

'TECHNICAL CHEMISTS' HANDBOOK

TECHNICAL

Chemists' Handbook

'TABLES ANI) METHOIS OF ANALYSIS FOR MANUFAC’TURERS OF INORGANIC CHEMICAL PROI)UC'TS

BY GEORGE LUNGE, Рн.D.

THINり EDICION REDISED
bY ALENANDER CHARLES CUMMING
().B.E.. ID.SC., F.I.C.

PREFACE

The aim of The Technical Chemists' IIandbook is to effect, as far as possible, the task of establishing uniformity among practical chemists, buyers and sellers, and analysts, in regard to both the numerical data employed in their work and the analytical methods used for the control of processes, and for the testing of the resulting products.

In the preparation of this new edition, all the analytical factors have been recalculated on the basis of the atomic weights published by the International Committee for 1916. This has involved in exceedingly numerous cases changes of the data contained in the last edition, some of them of importance even for merely practical purposes. The tables of specific gravities and other tables have been selected from among the most recent and reliable determinations.

In regard to the analytical methods, they are again chosen as before, on the principle that, as a rule, only one method should be given for each analytical operation, as well as for the preparation of standard solutions and for sampling the materials, in order to avoid discrepancies such as might arise should two or more methods be described. The method chosen should always, of course, be that which permits the greatest degree of accuracy possible that can be attained in a well-appointed works laboratory by a properly trained chemist. In cases where there is a choice between equally accurate methods, that occupying least time or least apparatus, or which is already widely known and employed, has been preferred. Many new methods have accordingly had to be omitted, but in all cases such omissions have
been justified by means of a careful examination of the relative merits of the processes under consideration, and only such methods as were found thoroughly reliable have been included. Also, a considerable number of tables of specific gravities of solutions not previously worked out, or which were unsatisfactory, have been very carefully checked and extended.

When necessary, reference is made to the more complete treatment of the subject-matter in my larger treatise, published with the co-operation of Dr Charles A. Keane, under the title Technical Methods of Chemical Analysis, in three volumes of two parts each, in 1908-1914. This treatise is referred to in the text as Tech. Meth.

The Author.
Zorich, Jan. 1916.

PREFACE TO THE THIRD EDITION

In preparing a new edition of this book, I have kept to the general lines explained by Dr Lunge in his preface to the last edition. Revision has necessarily involved many minor alterations, but there is no change in the general scheme of the book.

In a book of this kind, accuracy in figures is obviously of the greatest importance, and so many errors were discovered that so far as possible all figures in the book have been recalculated.

I desire to thank many friends for information and assistance. One of them, Mr Allin Cottrell, kindly rewrote the section on Nitric Acid and Nitrates shortly before his untimely death.

Mr J. W. Parkes has my thanks for not only revising the section on Sulphuric Acid, but also for sending me a list of errors in the previous edition which was very helpful to me.

I desire also to thank specially D.) J. Knox for reading the proofs and Miss Deakin for proof-reading and a great deal of laborious checking of figures.

Alex. C. Cumming.
Liverpool, October 1929.

CONTENTS

GENERAL TABIES

PAGE
Note on Temperatures and Atomic Weights 2
Table 1. International Atomic Weights 3
, 2. Weights and Measures of Different Countries 4
3. Converting English to Metrical Weights and Measures, and vice versa 8
4. Comparison of Thermometric Scales 13
5. Comparison of Thermometric Scales with Fahrenheit Degrees as Units 14
99 6. Conversion of Centigrade into Fahrenheit Degrees above 100, and vice versa 15
7. The Units of Energy and Work 16
8. The Unit of Heat 16
9. The Evaporation Unit 17
10. Electrical Units 19
11. Electro-chemical Equivalents 19
12. Reduction of the Volume of Gases to Normal Temperature and Pressure 20
13. Factors for reducing a given volume of Gas to Normal Temperature and Pressure 32
14. Volumes of Water at Different 'Temperatures 35
15. Reduction of Water Pressure to Mercurial Pressure 35
16. Tension of Aqueous Vapour 36
17. Tension of Aqueous Vapour for Temperatures from $40^{\circ} \mathrm{C}$. 38
18. Tension of Aqueous Vapour in Inches of Mercury from 1° to $100^{\circ} \mathrm{F}$. 40
19. Boiling Point of Water at Different Barometric Pressures 41
20. Comparison of the Hydrometer Degrees according to Baumé and Twaddell, with the Specific Gravities 42
21. Mathematical Tables: Circumference and Area of Circles, Squares, Cubes, Square and Cube Roots 44
PAGE
Table 22. Formulæ for Mensuration of Areas and Solid Contents 58
23. High Temperature Fixed Points 61
24. Symbols, Molecular Weights, and Percentage Com- position of the more important Inorganic Chemical Compounds 62
, 25. Factors for Calculating Gravimetric Analyses 70
26. Density of Gases and Vapours 72
, 27. Calculation of the c.c. read off in Gas-volumetric
Analysis, to Milligrams of the Substance required 73
28. Solubility of Salts and Certain Elements 74
29. Solubility of Gases in Water 77
30. Specific Gravities of Solids 81
, 31. Specific Gravity of Liquids 83
, 32. Specific Gravity and Percentage of Solutions saturated at 15°. 83
33. Linear Expansion of Substances on Heating 84
34. Weight of Substances as stored 85
35. Weight in lbs. of one square foot of Sheet Metal 86
36. Chemical Names and Formulir of Common Chemicals 87
37. Composition of Common Alloys 94
38. Composition of Acid-Resisting Cements 95
39. Freezing Mixtures 96
40. Specific Heats (a) of Solids and Liquids ; (b) of Gases and Vapours 97
, 41. Melting Points of Common Substances 98
42. Boiling Points of Common Substances 99
SPECIAI. PART
I. Rules for Sampling.
A. Fuel 103
B. Ores and Minerals 103
C. Chemicals 105
II. The Preparation of Standard Solutions.
Introductory 106
The Unit of Volume 107
Use of English Weights and Measures 108
Standard Solutions in Common Use-
A. Normal Acid and Alkali 109
B. Potassium Permanganate 114
Standard Solutions in Common Use-Continued. PACE
C. Iodine 114
D. Sodium Arsenite 115
E. Silver Nitrate 116
F. Copper Sulphate 116
G. Oxalic Acid 116
III. Fuel and Furnaces.
A. Testing of Fuel 117
B. Control of Furnaces 119
C. Measurement of Temperatures 126
D. Examination of Feed-Water for Boilers, etc. 128
IV. Sulphuric Acid Manufacture.
A. Examination of Brimstone 130
B. ., of Spent Oxide of Gas-Works 131
C. ,, of Pyrites. 133
D. ", of Burnt Pyrites (Cinders) 136
E. ,, of Zinc Blende 137
F. ., of Cinders from Blende 140
G. Gases-
(1) Examination of the Burner Gases and Chamber Gases in the Chamber Process 140
(2) Examination of the Gases in the Contact Process 145
H. Sulphuric Acid-
(1) Tables of Specific Gravity 145
(2) Table for reducing the Specific Gravities of Sulphuric Acid to Different Temperatures 150
(3) Specific Gravity of Fuming Sulphuric Acid 154
(4) Freezing and Melting Points 154
(5) Boiling Points 155
(6) Boiling Points of Oleum (Fuming Sulphuric Acid) 155
(7) Vapour Pressure 156
(8) Specific Gravities and Percentage of Oleum 158
(9) Fusing Points of Sulphuric Acid and Oleum 159
(10) Percentage of SO_{3} in Oleum 160
(11) Specific Gravity of Liquid Sulphur Dioxide 161
(12) Specific Gravity of Sulphurous Acid Solutions 161
(13) Examination of Sulphurous Acid and Sulphites 161
(14) Quantitative Examination of Free Sulphuric Acid 162
(15) Examination of Sulphuric Acid for other Substances 162
(16) Analysis of Fuming Sulphuric Acid and of Sulphuric Anhydride 171
V. Saltcare and Hydrochloric Acid.
A. Examination of Salt (Common Salt, Rock-Salt) paOR 174
B. Examination of Saltcake (Sulphate of Soda) 175
C. Chimney-Testing
D. Hydrochloric Acid-
(1) Variation of Specific Gravity with Concentration 178
(2) Variation of Specific Gravity with Temperature 179
(3) Analysis of Hydrochloric Acid 179
VI. Manufacture of Bleaching Powder and Chlorate of Potash.
A. Examination of Natural Manganese Ore 181
B. ., of Manganese Mud and Weldon Liquors 182
C. ., of Limestone 183
D. ., of Quicklime 184
E. \quad of Slaked Lime 184
F. Bleaching Powder-
(1) Estimation of Available Chlorine 185
(2) Comparison of the Percentage of Bleaching Powder with the French Degrees 185
(3) Testing the Chambers for Chlorine before opening 186
G. Electrolytic Chlorine-
Examination for Carbon Dioxide 187
Pressure and Specific Gravity of Liquid Chlorine 188
H. Examination of Chlorate of Potash 189
I. Examination of Bleach Liquors 189
VII. Commercial Soda Ash.
Analysis of Commercial Soda Ash 190
Table for comparing French, German and English Commercial Alkalimetrical Degrees 192
Specific Gravities of Solutions of Sodium Carbonate at 15° 194
Specific Gravities of Solutions of Sodium Carbonate at 30° 195
Influence of Temperature on the Specific Gravities of Solutions of Sodium Carbonate 196
Sulphur Recovery (Chance Process) 198
Vili. Manupacture of Soda by the Ambonia Procbso.
A. Examination of Raw Materials 201
B. Tests made during the process of Manufacture 201
C. Examination of Commercial Products. 202
IX. Caustrc Soda.
PAOE
A. Examination of Caustic Liquor 202
Table of Specific Gravities of Sodium Hydroxide at 15° 203
Influence of Temperature on the Specific Gravities of Solutions of Caustic Soda 206
B. Examination of Lime Mud 208
C. , of Fished Salts 208
D. ,, of Caustic Bottoms 208
E. , of Commercial Caustic Soda 209
X. Electrolytic Alfali Liquors.
Examination of Electrolytic Alkali Liquors 209
XI. Nitric Acid Manufacture.
A. Examination of Commercial Nitrate of Soda 211
B. , of Nitre-Cake 213
C. Nitric Acid-
(1) Specific Gravities at 15° 214
(2) Influence of Temperature on the Specific Gravity 217
(3) et seq., Analysis of Nitric Acid 219
D. Mixtures of Sulphuric and Nitric Acids 220
XII. Potassium Salts.
A. Examination of Crude Salts (Carnallite, Kainite, etc.) 221
B. ,, of Commercial Potassium Chloride 223
C. ., of Potassium Sulphate 223
D. ,, of Beet Ashes 223
E. ., of Commercial Carbonate of Potash 223
(1) Specific Gravities of Solutions of Potassium Carbonate at 15° 225
(2) Influence of Temperature on the Specific Gravities of Solutions of Potassium Carbonate 228
(3) Specific Gravity of Solutions of Potassium Hydroxide at 15° 230
XIII. Aumonia Manufacture.
A. Examination of Gas-Liquor 233
B. ", of Sulphate of Ammonia 234
C. \quad of Ammonia (Liquor Ammoniæ) 236
(1) Specific Gravities of Solutions of Ammonia at $60^{\circ} \mathrm{F}$. 237
(2) Specific Gravities of Solutions of Commercial Ammonium Carbonate 238
XIV. Manufacture of Coal-Gas.
A. Analysis of Coal-Gas 238
B. Examination of Spent Oxide 243
XV. Calcium Carbide and Acetylene
A. Examination of Raw Materials 244
B. Examination of Commercial Calcium Carbide 244
XVI. The Raw Materials and Pronucts of the Manufacture of Fertilisers.
A. Sampling 245
B. Moisture 245
C. Insoluble Matter 246
D. Phosphoric Acid 246
E. Free Acids 248
F. Ferric Oxide and Alumina 248
G. Nitrogen 249
H. Potash 250
XVII. Alumina Preparations.
A. Examination of Raw Materials 250
B. Control of Working Conditions 251
C. Examination of Commercial Products 252
XVIII. Cement Industry.
A. Portland Cement-
(1) Examination of Raw Materials 254
(2) Control of Working Conditions 256
(3) Examination of Commercial Cement 256
B. Hydraulic Lime and Roman Cement 257
C. Puzzuolanas, Trass, Blast-Furnace Slag 257
Imdex or Subjects 259

GENERAL TABLES

NOTE

All temperatures are given in degrees Centigrade, unless otherwise stated.

The atomic reights are those adopted by the International Committee on Atomic Weights as given in Table No. 1 referred to Oxygen $=16$.

TABLE 1.-INTERNATIONAL ATOMIC WEIGETS

According to the Table issued by the International Committee on Atomic Weights. (Revised to 1929.)

Aluminium .		Al	$27 \cdot 1$	Molybdenum		Mo	96.0
Antimony .		Sb	$120 \cdot 2$	Neodymium		Nd	144.3
Argon.		A	$39 \cdot 9$	Neon.		Ne	$20 \cdot 2$
Arsenic		As	$74 \cdot 96$	Nickel		Ni	$58 \cdot 68$
Barium		Ba	$137 \cdot 37$	Niton		Nt	222.4
Bismuth		Bi	208.0	Nitrogen		N	14.008
Boron .		B	$10 \cdot 9$	Osmium		Os	$190 \cdot 9$
Bromine		$\stackrel{B}{B r}$	$79 \cdot 92$	Oxygen		\bigcirc	$16 \cdot 000$
Cadmium		Cd	$112 \cdot 40$	Palladium		Pd	106.7
Cresium		Cs	$132 \cdot 81$	Phosphorus .		P	31.04
Calcium		Ca	$40 \cdot 07$	Platinum .		Pt	$195 \cdot 2$
Carbon		C	$12 \cdot 005$	Potassium		K	$39 \cdot 10$
Cerium		Ce	$140 \cdot 25$	Praseodymium		Pr	$140 \cdot 9$
Chlorine		Cl	$35 \cdot 46$	Radium .		Ra	$226 \cdot 0$
Chromium		Cr	$52 \cdot 0$	Rhodium		Rh	$102 \cdot 9$
Cobalt.		Co	$58 \cdot 97$	Rubidium		IRb	$85 \cdot 45$
Columbi		Cb	$93 \cdot 1$	Ruthenium		Ru	$101 \cdot 7$
Copper		Cu	63 57	Samarium		Sm	$150 \cdot 4$
Dysprosium ${ }^{\text {a }}$		Dy	$162 \cdot 5$	Scandium		Sc	$45 \cdot 1$
Erbium .		Er	$167 \cdot 7$	Selenium		Se	$79 \cdot 2$
Europium		Eu	$152 \cdot 0$	Silicon		Si	$28 \cdot 3$
Fluorine		F	$19 \cdot 0$	Silver .		Ag	$107 \cdot 88$
Gadolinium		Gd	$157 \cdot 3$	Sodium		Na	$23 \cdot 00$
Gallium		Ga	$70 \cdot 1$	Strontium		Sr	87.63
Germanium		Ge	$72 \cdot 5$	Sulphur		S	$32 \cdot 06$
Glucinum		Gl	$9 \cdot 1$	Tantalum		Ta	181.5
Gold .		Au	$197 \cdot 2$	Tellurium		Te	$127 \cdot 5$
Helium		He	$4 \cdot 00$	Terbium		Tb	$159 \cdot 2$
Holmium		Ho	$163 \cdot 5$	Thallium		TI	201.0
Hydrogen		H	1.008	Thorium		Th	$232 \cdot 15$
Indium		In	114.8	Thulium		Tu	$168 \cdot 5$
Iodine		I	$126 \cdot 92$	Tin .		Sn	$118 \cdot 7$
Iridium		Ir	$193 \cdot 1$	Titanium		Ti	$48 \cdot 1$
Iron		Fe	55.84	Tungsten		W	$184 * 0$
Krypton		$\mathbf{K r}$	82.92	Uranium		U	$238 \cdot 2$
Lanthanum		La	$139 \cdot 0$	Vanadium		V	51.0
Lead.		Pb	$207 \cdot 20$	Xenon		X	$130 \cdot 2$
Lithium		Li	6.94	Ytterbium		Yb	$173 \cdot 5$
Lutecium		Lu	$175 \cdot 00$	Yttrium		\mathbf{Y}	$88 \cdot 33$
Magnesium		$\mathbf{M g}$	$24 \cdot 32$	Zine		Zn	$65 \cdot 37$
Manganese .		Mn	$54 \cdot 93$	Zirconium		Zr	$90 \cdot 6$
Mercury -		Hg	$200 \cdot 6$				

4 THE TECHNICAL CHEMISTS' HANDBOOK

TABLH 2.-WHIGETS AND MHASURHS OF DIFFERENT OOUNTRIES.

1. Metric System (compulsory in France, Germany, Austria, the Netherlands, Belgium, Luxemburg, Switzerland, Italy, Greece, Turkey, Roumania, Spain, Portugal, and most of the South American Republics; optional in Great Britain, the United States, and Russia).
1 metre $(\mathrm{m})=.443 \cdot 296$ Paris lignes $=\mathbf{3 \cdot 2 5 0 8 9 9}$ English feet $=3 \cdot 18620$ Prussian feet $=1 \cdot 00000301$ mètres des archives.
1 kilometre (km.) $=10$ hectometres (hm.) $=0.6214$ English mile $=0.1328$ Prussian mile $=0.9375$ Russian verst $=0.5390$ nautical mile $-0 \cdot 1347$ geographical mile (15 to 1 degree of longitude).
1 lieue (France) $=1$ myriametre $=10 \mathrm{~km}$.
1 German mile $=7!\mathrm{km} .=0.996$ Prussian mile $=4.66$ English miles.
1 hectare (ha.) $=100$ ares (a.) $=10,000$ sq. $\mathrm{m} .=0.01 \mathrm{sq} . \mathrm{km} .=2.471$ English acres.
1 litre (l.) $=0.001 \mathrm{cb} . \mathrm{m} .=1000 \mathrm{c.cm} .=0.2201$ gallon.
1 hectolitre (hl.) $=0.1 \mathrm{cb} . \mathrm{m} .=100 \mathrm{l} .=22.01$ gallons.
1 kilogram (kg.) $=1000 \mathrm{~g} .==$ weight of 1 litre of water at $+4^{\circ} \mathrm{C}$. $=2$ German and Swiss pounds (zollpfund) $=0.999899842$ kilogram prototype $=2.2046$ pounds avoirdupois $=1.785$ Austrian pounds $=2 \cdot 3511$ Swedish pounds $=2 \cdot 4418$ Russian pounds.
1 gram (g.) $=15 \cdot 432$ grains (English).
1 quintal $=100 \mathrm{~kg} .=196 \cdot 84$ lbs. avoirdupois $=1 \mathrm{cwt} .3$ qrs. 0.84 lb .
1 metrical ton $=1000 \mathrm{~kg} .=0.9842$ English ton $=1 \cdot 1023$ American short tons (at 2000 lbs.).

2. Great Britain and Ireland.

1 foot $=0.3047943 \mathrm{~m}$.
1 inch $=25.3995 \mathrm{~mm}$.
1 yard $=3$ feet $=0.9143835 \mathrm{~m}$.
1 fathom $=2$ yards $=1.829 \mathrm{~m}$.
1 rod (pole, perch) $=5 . \frac{1}{2}$ yards $=5.029109 \mathrm{~m}$.
1 chain = 22 yards. 80 chains $=1$ mile.
1 statute mile $=8$ furlongs $=320$ poles -1760 yards $=5280$ feet $=1.6093$ kilometre (km .).
1 nautical mile $=$ th degree (at the equator). $6082 \cdot 66$ feet $=1854.96 \mathrm{~m}$.
1 acre $=4$ roods $=160$ poles $=0.40467$ ha $=43560$ square feet $=4047$ square metres.
1 square mile $=640$ acres $=258.989$ ha .
1 gallon $=4$ quarts $=8$ pints $=277 \cdot 274$ cubic inches $=4 \cdot 536$ litres.
1 cubic foot $=1728$ cubic inches $=28.81531$.
1 cubic inch $=16.3862 \mathrm{c} . \mathrm{cm}$.
1 quarter $=8$ bushels $=32$ pecks $=64$ gallons $=2.903 \mathrm{hl}$.
1 bushel $=8$ gallons $=0.3628 \mathrm{hl}$.

TABLE 2-Continued.

1 fluid ounce $={ }_{2}{ }_{2}$ th pint $=28 \cdot 35 \mathrm{c.cm}$.
1 pound avoirdupois (lb.) $=16$ ounces (oz.) $=7000$ grains $=0.4535926$ kg.
1 ounce avoirdupois $=437 \frac{1}{2}$ grains $=28.35 \mathrm{~g}$.
1 gallon $=10 \mathrm{lbs}$. water $=70,000$ grains $=4.535926 \mathrm{~kg}$. water.
1 hundredweight (cwt.) $=4$ quarters (qr.) $=8$ stones $=112$ lbs. $=50.8024 \mathrm{~kg}$.
1 ton $=20 \mathrm{cwt} .=2240 \mathrm{lbs} .=1016.648 \mathrm{~kg}$.

Apothecaries' Weight.

1 pound troy $=12$ ounces troy $=96$ drams $=288$ scruples $=5760$ grains $=373 \cdot 24195 \mathrm{~g}$.
1 ounce troy $=8$ drams $=24$ scruples $=480$ grains $=31 \cdot 1035 \mathrm{~g}$.
1 ounce troy (for gold and precious stones) $=: 20$ pennyweight (dwt.) $=480$ grains $=31 \cdot 1035 \mathrm{~g}$.
1 pennyweight (dwt.) $=1.552 \mathrm{~g}$.
1 grain (common to avoirdupois and troy weight) $=0.06479895 \mathrm{~g}$.
3. Austria (old measures and weights, now abolished for the metric system).
1 foot $=0.316102 \mathrm{~m}$., at 12 inches of 12 lines each.
3 ruthen $=5$ klafter $=30$ feet $=360$ zoll.
1 meile $=4000$ klafter $=7586.455 \mathrm{~m}$.
1 maass $=1 \cdot 4151$.
1 eimer $=40$ maass $=160$ seidel .
1 metze $=61 \cdot 4995 \mathrm{l}$.
1 Wiener pfund $=560.012 \mathrm{~g}$.
1 centner $=5$ stein $=100$ pfund $=3200$ loth.
4. Denmark and Norway employ, as unit of measure, the Prussian foot, as unit of weight the units of the metrical system, viz., kilos, etc.
5. Prussia (old system, now abolished for the metric system).

1 foot (Rhenish foot) $=12$ zoll (inches) $=144$ linien $=0.313853 \mathrm{~m}$.
1 ruthe $=12$ fuss $=3.76624 \mathrm{~m}$.
1 lachter (fathom) $=80 \mathrm{zoll}=2.09326 \mathrm{~m}$.
1 meile $=24,000$ fuss $=7532 \cdot 5 \mathrm{~m}$.
1 morgen $=180$ square ruthen $=0 \cdot 2,553$ ha.
1 quart $=64$ cubic inches $=g_{2}^{1}$; cubic foot $=1 \cdot 14503 \mathrm{l}$.
1 scheffel $=16$ Metzen $=48$ quarts $:=0.54961 \mathrm{hl}$.
1 tonne $=4$ scheffel $=2 \cdot 19846 \mathrm{hl}$.
1 klafter $=108$ cubic fuss $=3.3389 \mathrm{cb} . \mathrm{m}$.
1 schachtruthe $=144$ cubic fuss $=4.4519 \mathrm{cb} . \mathrm{m}$.
1 pfund $=30$ loth $=300$ quentehen $=500 \mathrm{~g}$.
1 centner $=100$ pfund $=50 \mathrm{~kg}$. (Formerly 1 pfund $=32$ loth $=407 \cdot 711 \mathrm{~g} . ; 1$ centner $=110$ pfund.)

6 THE TECHNICAL CHEMISTS' HANDBOOK

TABLE 2-Continued.

6. Russia.

1 foot $=1$ English foot.
1 sashehn $=7$ feet $=3$ arshin $=12$ tchetvert $=48$ vershok $=2 \cdot 13357 \mathrm{~m}$.
1 verst $=500$ sashehn $=1066.78 \mathrm{~m}$.
1 dessatine $=2400$ square sashehns $=10925 \mathrm{~m}$.
1 vedro $=10 \mathrm{krush} \mathrm{ky}($ stoof $)=12 \cdot 299 \mathrm{l}$.
1 tchetvert $=1$ osmini $=-4$ payok $=8$ tchetverik $=209.91$.
1 pound $=32$ loth $=96$ solotnik $=9216$ doli $=0.9028$ Eng. lb. $=409.531 \mathrm{~g}$.
1 berkovets $=10$ pud $=400$ pounds $=163.81 \mathrm{~kg}$.
1 pud $=40$ pounds $=36 \cdot 112$ Eng. lb. $=16 \cdot 3805 \mathrm{~kg}$.
7. Sweden.

1 foot $=10$ zoll (inches) $=100$ lines $=: 0.97408$ Eng. foot $=0.296901 \mathrm{~m}$.
1 famn (fathom) $=3$ alnar (ells) $=6$ feet $=5 \cdot 58445$ Eng. feet $=1.7814 \mathrm{~m}$.
1 mile $=6000$ fathoms $=6.6417$ Eng. statute miles $=10.6884 \mathrm{~km}$.
1 kanne $=100$ cubic inches $=0.57694 \mathrm{Eng}$. gallon $=2.617 \mathrm{l}$.
1 skålpund = 100 korn (at 100 art) $=0.9378$ Eng. lb. $=425 \cdot 3395$ g.
1 centner $=100$ skâlpund.
1 skipspund $=20$ liespund $=400$ skålpund.
8. Switzerland. Metrical measure and weight. The following are sometimes still employed :-
1 fuss $=0.3000 \mathrm{~m} .=0.9843$ Eng. foot.
1 juchart $=36$ are $=0.88956$ Eng. acre.
1 maass $=1 \div 1 \mathrm{l}$.
1 saum = 100 maass $=151 \mathrm{l}$.
9. United States. Weights and measures as in Great Britain, but instead of the "long ton" (gross ton) of 2240 lbs ., more frequently the "short ton" (net ton) of $2000 \mathrm{lbs} .=907 \cdot 1852 \mathrm{~kg} .=0 \cdot 89285$ long ton, is employed.
The U.S. gallon differs from the British gallon; it is $=3.7854$ litres. For timber, the measure is the "cord" $=4 \times 4 \times 8$ feet $=128$ cubic feet $=$ about $2 \frac{1}{2}$ cubic metres.
10. South America (Bolivia, Chile, Colombia, Ecuador, Guatemala, Honduras, Nicaragua, Peru, San Salvador, Venezuela)-1 quintal $=46.0093 \mathrm{~kg}$.

Argentina .				quin	二	
Brazil			1		$=58.752$,
Paraguay			1	,	$=46.008$	"
Uruguay			1		$=45.94$	"

TABLE 2-Continued.

Square Breet, Square Metre.

1 square metre (sq.m.) $=10.764$ square feet (English and Russian) $=10.008$ square feet (Austrian) $=10 \cdot 152$ square feet (Prussian and Danish) $=11.344$ square feet (Swedish).
1 square foot (English and Russian) $=0.09290$ square metre.

Oublc Feet, Oubic Metre.

1 cubic metre (cb.m.) $-35 \cdot 316$ cubic feet (English and Russian).
$1 \quad$., \quad, $=31 \cdot 66 \quad$,. (Austrian).
$1 \quad$., .. $==32.346 \quad$., (Prussian and Danish).
$1 \quad \ddot{\prime} \quad \because \quad=38 \cdot 209 \quad, \quad$ (Swedish).
1 cubic foot (English and Russian) $=0.028315$ cubic metre.

1 Kilogram per Running Metre

$=0.6719$ English pound per running foot.
$=0.6277$ zollpfund per Prussian foot.
1 English pound per 1 English foot $=1.4882 \mathrm{~kg}$. per running metre.
1 Kilogram per Square Centimetre (for steam pressure)

- 14.223 English pounds per square inch.
$=13.691$ zollpfund per Prussian square inch.
$=13.878$ zollpfund per Austrian square inch.

HORSE-POWER (per second).

Kg.-m.	Austria. Foot-pounds.	Prussia. Foot-pounds.	England. Foot-pounds.	Sweden. Foot-pounds.	Russia. Foot-pounds.
75	474.53	477.93	542.47	593.90	$600 \cdot 85$
76.041	481.11	484.56	550	602.14	609.19

75 kilogram-metres taken as unit, 550 English foot-pounds taken as unit, $=1$ Admiralty horse-power per second; or, 33,000 foot-pounds per minute.

TABLE 8.-TABLES FOR OONVERTING ENGLISH TO METRICAL WEIGHTS AND MEASURES, AND VICE VERSA.

Reduction of Metrical Measure to English Measure.

Melre. Sil.m. Cub.m.	Feet.	Inches.	Square feet.	Square inches.	Cubio feet.	Cuble inches.
1	$3 \cdot 2809$	$39 \cdot 3706$	10.7642	$1550 \cdot 05$	$35 \cdot 3161$	$61026 \cdot 2$
2	6.5618	$78 \cdot 7412$	21.5284	3100.09	$70 \cdot 6322$	$122052 \cdot 4$
3	9•8427	$118 \cdot 1118$	32-2926	$4650 \cdot 13$	$105 \cdot 9483$	183078.6
4	$13 \cdot 1235$	$157 \cdot 48.24$	$43 \cdot 0568$	6:200.18	$141 \cdot 2644$	244104 9
5	16.4044	$190 \cdot 8530$	53.8210	$7750 \cdot 23$	176.5805	305131-1
6	19.6853	$236 \cdot 2237$	64-5852	$9300 \cdot 27$	211-8966	366157-3
7	22.9662	$275 \cdot 5943$	75-3494	$10850 \cdot 31$	$247 \cdot 2126$	427183.5
8	26.2471	314-9649	$86 \cdot 1136$	$12400 \cdot 36$	282.5287	$488209 \cdot 7$
9	29.5280	$354 \cdot 3355$	96.8778	$13950 \cdot 40$	317-8448	549235.9

English Feet $=$ Metres.

Ft	0.	1.	2.	8.	4.	5.	6.	7.	8.	9.
0	0.0000	08048	$0 \cdot 6090$	$0 \cdot 9144$	$1 \cdot 2192$	$1 \cdot 5240$	1.8888	$2 \cdot 1836$	$2 \cdot 4384$	$2 \cdot 7432$
10	8.0479	8-8527	$3 \cdot 6575$	8.9623	4-2077	4.5719	4.8767	$5 \cdot 1815$	$5 \cdot 4868$	$8 \cdot 7911$
20	6.0959	6-4007	6.7055	$7 \cdot 0103$	$7 \cdot 3151$	$7 \cdot 6199$	$7 \cdot 9247$	8.2295	8.5342	8.8390
30	9-1488	$9 \cdot 4480$	9.7534	10.058	$10 \cdot 368$	$10 \cdot 668$	10.973	$11 \cdot 277$	$11 \cdot 582$	$11 \cdot 887$
40	12.192	$12 \cdot 497$	$12 \cdot 801$	$18 \cdot 108$	13.411	$18 \cdot 716$	$14 \cdot 021$	$14 \cdot 325$	$14 \cdot 080$	14.985
60	$15 \cdot 240$	$15 \cdot 545$	$15 \cdot 849$	16.154	16.459	$16 \cdot 764$	17.068	17-373	17678	17.988
60	18.288	18.592	$18 \cdot 897$	19-202	$19 \cdot 507$	$19 \cdot 812$	$20 \cdot 116$	20.421	$20 \cdot 726$	21.081
70	21.336	$21 \cdot 640$	$21 \cdot 945$	$22 \cdot 250$	22.555	$22 \cdot 880$	$23 \cdot 164$	$23 \cdot 169$	28.774	$24 \cdot 079$
80	24.384	24.688	$24 \cdot 903$	$25 \cdot 298$	$25 \cdot 603$	$25 \cdot 908$	$20 \cdot 211$	$20 \cdot 517$	26.882	$27 \cdot 127$
90	27.482	$27 \cdot 736$	28.041	28.846	28.651	28.955	$29 \cdot 260$	$29 \cdot 565$	29.870	80.175
100	30.479	30.784	81.089	81.894	$81 \cdot 699$	32.008	82.808	82.618	32.918	88228
110	83.527	38.882	34-187	$84 \cdot 442$	84.747	85.051	85.356	85.681	85.936	80.271
120	36.675	30.880	87-185	37-490	$37 \cdot 795$	88.099	88.404	88.709	89.014	89.818
180	80.623	39.928	$40 \cdot 238$	$40 \cdot 588$	$40 \cdot 842$	41-147	41.452	41.757	42.002	$42 \cdot 860$
140	$42 \cdot 671$	42.976	$48 \cdot 281$	43.586	$43 \cdot 890$	44.193	44.500	44.805	$45 \cdot 110$	45.414
150	$45 \cdot 719$	40.024	$40 \cdot 829$	46.634	40.988	$47 \cdot 248$	47.548	$47 \cdot 853$	48.158	48.462
160	$48 \cdot 767$	49.072	49.877	49.642	49.986	50.291	$50 \cdot 596$	50.901	51.205	$61 \cdot 610$
170	51.815	62-120	52.425	$52 \cdot 729$	58.084	88-889	58.684	58.948	54.258	54.658
180	54.868	$55 \cdot 168$	55.478	$55 \cdot 777$	56.082	66.887	$56 \cdot 692$	56.007	57.801	57.606
190	67.911	$58 \cdot 216$	68.521	58.825	59.180	$60 \cdot 485$	69.740	60.045	60.849	60.654

Anglish Inches $=$ Millimetres.

Inch.	Millimetres.	Inches.	Millimetres.	Inches.	Millimetres.
${ }^{81}$	$0 \cdot 39$	1	$25 \cdot 4$	7	177.8
$\frac{1}{32}$	$0 \cdot 79$	2	$50 \cdot 8$	8	203%
18	$1 \cdot 59$	3	76.2	9 •	$228 \cdot 6$
1	$3 \cdot 17$	4	$101 \cdot 6$	10	$254 \cdot 0$
\pm	$6 \cdot 35$	5	127.0	11	$279 \cdot 4$
$\frac{1}{2}$	$12 \cdot 70$	6	$152 \cdot 4$	12	304-8

English Square Feet = Square Metres.

Sq. ft.	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.
0	0.0000	0.0929	01858	$0 \cdot 2757$	0.3716	$0 \cdot 4645$	0.5574	0.6503	0.7432	$0 \cdot 8361$
10	0.9290	$1 \cdot 0219$	$1 \cdot 1148$	1-2077	13000	$1 \cdot 3935$	$1 \cdot 4564$	1.5793	$1 \cdot 1,722$	1.7651
20	1.8580	1.9509	$2 \cdot 0435$	$2 \cdot 1367$	2-2296	$2 \cdot 3225$	2.4154	$2 \cdot 5083$	$2 \cdot 6012$	$2 \cdot 6941$
30	27870	$2 \cdot 8799$	$2 \cdot 9725$	$3 \cdot 0657$	3-1556	$3 \cdot 2515$	$3 \cdot 3444$	3.4373	$3 \cdot 5302$	8.6231
40	3.7160	3•S089	3-901S	3.9947	4.0876	$4 \cdot 1505$	$4 \cdot 2734$	4.3653	$4 \cdot 4592$	$4 \cdot 5521$
50	4.0450	47879	4.8308	4.9237	5.0166	5•1095	5.2024	5.2953	$5 \cdot 3882$	$5 \cdot 4811$
60	5.5740	$5 \cdot 6669$	$5 \cdot 7598$	$5 \cdot 8527$	5.9456	$6 \cdot 0385$	$6 \cdot 1314$	$6 \cdot 2243$	6.3172	6.4101
70	6-6030	(ib959	6 6Ss8	6.7817	C-8746	$6 \cdot 9675$	$7 \cdot 0604$	$7 \cdot 1533$	$7 \cdot 2462$	$7 \cdot 3391$
80	$7 \cdot 4320$	7-2.49	$7 \cdot 6178$	$7 \cdot 7107$	7.8036	$7 \cdot 5965$	$7 \cdot 9894$	8.0523	8-1752	8-26S1
90	$8 \cdot 3610$	S.4539	8.5416	$8 \cdot 6307$	$8 \cdot 7326$	8-8255	8.9184	9.0113	$9 \cdot 1042$	9-1971

English Square Inches = Square Centimetres.

Sil ins	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.
0	$0 \cdot 0000$	-4:14	12.903	$10 \cdot 354$	$25 \cdot 505$	32-257	88.708	$45 \cdot 160$	$51 \cdot 611$	6S. 062
10	64.514	70.965	$77 \cdot 416$	$83 \cdot \mathrm{Sti8}$	90-319	$98 \cdot 771$	103.22	$109 \cdot 67$	$116 \cdot 12$	$122 \cdot 58$
20	129.08	$185 \cdot 48$	$141 \cdot 43$	145.38	154-88	161-28	$167 \cdot 74$	174-19	$180 \cdot 64$	$187 \cdot 09$
80	198.54	$190 \cdot 9$	$206 \cdot 44$	$212 \cdot 90$	210-35	$225 \cdot 80$	$232 \cdot 25$	$238 \cdot 70$	$245 \cdot 15$	$251 \cdot 60$
40	258.05	264•51	$270 \cdot 96$	$277 \cdot 41$	283-86	$290 \cdot 31$	296.70	$303 \cdot 21$	$309 \cdot 6$ 'r	816.12
50	822.57	320.02	$835 \cdot 47$	3.11.02	348-87	354-83	$361 \cdot 28$	967.73	374.18	380.68
60	887.08	393.53	$390 \cdot 98$	$400 \cdot 44$	418.89	419•34	$425 \cdot 79$	432.24	$485 \cdot 69$	$445 \cdot 14$
70	451.60	$458 \cdot 05$	4(34-50	470.95	$477 \cdot 40$	$483 \cdot 55$	$490 \cdot 80$	$493 \cdot 76$	503.21	$509 \cdot 69$
80	516.11	523.53	525.01	$585 \cdot 46$	541.91	$548 \cdot 37$	$554 \cdot \mathrm{~s} 2$	$561 \cdot 27$	567.72	$574 \cdot 17$
90	580.62	$587 \cdot 07$	$508 \cdot 58$	$699 \cdot 98$	606-43	612.88	619•83	$625 \cdot 78$	682.23	$688 \cdot 66$

10 THE TECHNICAL CHEMISTS' HANDBOOK

Bnglish Oubic Feet = Oubic Metres.

Cub. ft.	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.
0	0.0000	0.0283	0.0566	0.0849	$0 \cdot 1133$	0.1410	$0 \cdot 1699$	0.1982	$0 \cdot 2265$	0.2545
10	$0 \cdot 2832$	$0 \cdot 3115$	0.3398	0.3681	0.3964	$0 \cdot 4247$	0.4530	0.4814	0.5097	0.5380
80	$0 \cdot 5688$	6.5946	$0 \cdot 6229$	$0 \cdot 6513$	$0 \cdot 6796$	$0 \cdot 7079$	$0 \cdot 7362$	0.7645	0.7928	0.8211
80	0.8494	$0 \cdot 8778$	$0 \cdot 9061$	0.9344	$0 \cdot 9627$	0.9910	1.0194	1.0477	1.0760	$1 \cdot 1043$
40	$1 \cdot 1326$	1-1609	1-1892	$1 \cdot 2176$	$1 \cdot 2459$	$1 \cdot 2742$	$1 \cdot 3025$	$1 \cdot 3308$	$1 \cdot 3591$	$1 \cdot 3875$
50	1.415 S	1.4441	1.4724	1-500\%	1.5290	1.5573	1.5857	1.6140	1.6423	1.6706
60	1 -6959	1.7272	1.7555	1.7839	1.8122	1.8405	1.8683	1.8971	1.9254	1.9538
70	1.9831	$2 \cdot 0104$	2.0387	$2 \cdot 04 i 70$	$2 \cdot 0953$	2-123i)	$2 \cdot 1520$	$2 \cdot 1803$	$2 \cdot 2086$	$2 \cdot 2969$
80	$2 \cdot 2652$	$2 \cdot 2985$	$2 \cdot 3219$	$2 \cdot 3502$	$2 \cdot 378.5$	$2 \cdot 4063$	$2 \cdot 4351$	$2 \cdot 4634$	$2 \cdot 4017$	$2 \cdot 5201$
90	$2 \cdot 5484$	$2 \cdot 5767$	2.6050	$2 \cdot 6333$	$2 \cdot 6616$	$2 \cdot 6900$	$2 \cdot 7183$	$2 \cdot 7466$	$2 \cdot 7749$	$2 \cdot 8082$

English Cubic Inches = Cubic Centimetres.

Cub.in.	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.
0	0.0000	16.386	32-772	$49 \cdot 159$	65: 545	81-931	98.317	$114 \cdot 70$	131.09	147.48
10	$163 \cdot 56$	$180 \cdot 25$	$190 \cdot 63$	213.02	229.41	$245 \cdot 79$	262-18	$278 \cdot 56$	294.05	811-34
20	$327 \cdot 72$	344.11	$360 \cdot 50$	$376 \cdot 58$	393-27	$409 \cdot 65$	$426 \cdot 04$	$442 \cdot 43$	$458 \cdot 81$	$475 \cdot 20$
80	491.59	507-97	$524 \cdot 86$	540*74	557-13	573.52	589'90	006.29	62: 67	689.00
40	$655 \cdot 45$	671.83	$688 \cdot 22$	704.61	720.99	787.38	$753 \cdot 76$	$770 \cdot 15$	780.54	802.02
50	$819 \cdot 31$	835-69	852.08	$808 \cdot 47$	$884 \cdot 85$	$901 \cdot 24$	$017 \cdot 63$	034.01	050.40	860.78
60-	$985 \cdot 17$	999-5i	$1 \mathrm{Cl5} 9$	1032 3	$1048 \cdot 7$	$1065 \cdot 1$	$1081 \cdot 5$	$1097 \cdot 9$	1114.3	$1130 \cdot 6$
70	$1147 \cdot 0$	$1163 \cdot 4$	$1179 \cdot 8$	$1196 \cdot 2$	$1212 \cdot 6$	$1229 \cdot 0$	$1245 \cdot 8$	$1281 \cdot 7$	12781	$1294 \cdot 5$
80	$1810 \cdot 9$	$1327 \cdot 8$	$1343 \cdot 7$	$1380 \cdot 1$	$1376 \cdot 4$	$1392 \cdot 8$	$1409 \cdot 2$	$1452 \cdot 6$	$1440 \cdot 9$	14:8.4
90	1474.8	$1491 \cdot 1$	$1507 \cdot 5$	1523.0	$1540 \cdot 8$	1556.7	$1573 \cdot 1$	1589.5	1605\%	$1622 \cdot 2$

English Pounds = Kilograms.

Lbss.	0.	1.	2.	8.	4.	5	6.	7.	8.	9.
0	0.0000	0.4586	0.9072	1.8608	$1 \cdot 8144$	$2 \cdot 2880$	$2 \cdot 7216$	$3 \cdot 1751$	$8 \cdot 6287$	4.0823
10	4.5859	$4 \cdot 9895$	$5 \cdot 4431$	6.8907	6.3508	6.8089	$7 \cdot 2575$	$7 \cdot 7111$	$8 \cdot 1647$	$8 \cdot 6183$
20	9.0719	$9 \cdot 6254$	9.9790	$10 \cdot 488$	$10 \cdot 886$	$11 \cdot 340$	$11 \cdot 793$	12-247	$12 \cdot 701$	$18 \cdot 154$
80	18.608	14.061	$14 \cdot 315$	14.669	$15 \cdot 422$	15.876	$16 \cdot 829$	16.788	$17 \cdot 287$	$17 \cdot 690$
40	$18 \cdot 144$	18.597	19-051	$10 \cdot 504$	12.058	20.412	$29 \cdot 865$	$21 \cdot 910$	$21 \cdot 772$	22.220
50	$22 \cdot 680$	28.188	28.587	24.040	24.404	24.948	25.401	$25 \cdot 855$	20808	26.762
60	$27 \cdot 216$	$27 \cdot 669$	28.123	28.676	29.080	29.484	29.087	80.891	80.844	81.206
70	81.751	$82 \cdot 205$	32-659	$88 \cdot 112$	88.508	$84 \cdot 010$	84.478	84-927	85.880	85.884
80	86.287	86.741	37-105	$37 \cdot 648$	$88 \cdot 102$	88-555	89.009	$80 \cdot 488$	80.016	$40 \cdot 870$
90	40.823	41.277	41.781	$42 \cdot 184$	42.688	48.001	48.545	43.008	44.452	44.900

Finglish Tons $=$ Kilograms.

咸	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.
0	0.0000	1018	2032	8043	4004	5080	6090	7112	8129	9145
10	10161	11177	12193	13909	14225	15241	16257	17273	18289	19305
20	20321	21397	22353	23319	$2438{ }^{\circ}$	25402	26418	27434	28450	29468
30	30482	81498	32514	33.540	34546	35562	36578	37594	88610	89627
40	40043	41059	42675	43691	44707	45723	46739	47755	48771	49787
50	50808	51819	52835	58851	54868	55884	58900	57916	58932	59948
60	60964	61980	62996	64012	65028	68044	67060	68076	69002	70105
70	71125	72141	73157	74173	75189	76205	77221	78237	79253	80269
80	81285	82302	83817	84333	85346	86366	87382	88398	89414	90430
90	91446	92248	93478	94494	95510	96526	97542	$9 \mathrm{S558}$	99574	100590

English Grains = Grams.

号	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.
-	0	-065	- 1296	-194	- 259	-324	-389	-454	-518	-583
10	$\cdot 648$	$\cdot 713$	$\cdot 778$	-842	-907	972	1.037	1-102	$1 \cdot 160$	1.231
20	1-2903	1.361	1.426	1.480	1.555	1.620	1.685	1.749	1.814	$1 \cdot 579$
30	1.944	$2 \cdot 009$	$2 \cdot 074$	$2 \cdot 138$	$2 \cdot 203$	$2 \cdot 28$	$2 \cdot 333$	2.397	$2 \cdot 462$	$2 \cdot 527$
40	2.592	$2 \cdot 657$	$2 \cdot 721$	$2 \cdot 786$	$2 \cdot 851$	2.916	$2 \cdot 981$	3.045	3-110	$3 \cdot 175$
50	8.240	3.305	3.809	3.434	3-499	3.564	3-629	3.693	$3 \cdot 758$	3.823
60	9.888	3.953	4.018	$4 \cdot 082$	$4 \cdot 147$	4.212	$4 \cdot 277$	4.341	$4 \cdot 406$	$4 \cdot 471$
70	4.538	4.601	$4 \cdot 666$	4.730	4.795	$4 \cdot 360$	4.925	4.989	5.054	$5 \cdot 119$
80	$5 \cdot 184$	5 249	$5 \cdot 314$	6.378	5.443	$5 \cdot 508$	$5 \cdot 573$	$5 \cdot 637$	5-702	$5 \cdot 707$
90	5.832	$5 \cdot 897$	$5 \cdot 962$	6.026	0.091	6.156	6.221	6.286	6.850	$6 \cdot 415$

Grams = English Grains.

12 THE TECHNICAL CHEMISTS' HANDBOOK

Conversion of English to Metric Measures.

1 English pound (lb.) per sq. foot $=4.883 \mathrm{~kg}$. per sq. metre (sq. m.).
$1 \quad " \quad, \quad$, sq. inch $=0.07031 \mathrm{~kg}$. per sq. m.
1 ., ton per sq. inch $=158 \mathrm{~kg}$. per sq. cm.
1 ," pound per cub. foot $=16.02 \mathrm{gm}$. per litre.
1 kilogram per sq. metre $=0.2048 \mathrm{lb}$. per sq. foot.
1 English grain per gallon $=0.014286 \mathrm{gm}$. per litre.
1 ", , " English cub. foot $=2.287 \mathrm{gm}$. per cub. metre. 1 grm . per litre $=70$ grains per gallon $=0.06243 \mathrm{lb}$. per cub. foot. 1 metre-kilogram (mkg.) $=7 \cdot 235$ foot pounds.
1 foot-pound $=0.1382 \mathrm{mkg}$.
1 foot-pound per cub. foot $=4.8807 \mathrm{mkg}$. per cub. met.
(See also page 109 for other figures used in converting English th metric measures and vice vırsa.)

淢	
品	Hion oud
$\stackrel{\dot{m}}{\dot{8}}$	
参	
追	
$\dot{\dot{U}}$	$+$
茫	بำ
$\begin{aligned} & \text { gu } \\ & \text { 出 } \end{aligned}$	 $+$
\％	$+$
誌	サー $+$
号	鿊
$\stackrel{9}{ \pm}$	
$\underset{\text { 気 }}{\text { 品 }}$	$+$
$\frac{4}{3}$	1
吂	
㤩	
家	1

14 THE TECHNICAL CHEMISTS＇HANDBOOK

品	 $+$
$\stackrel{3}{8}$	＋
这	にかの
发	＂ $+$
シis	 $+$
立	
号	$+$
8	
立	
碼	 $+$
8	 $+$
㳫	
安	 $+$
ن̇	 $+$ जmmmonmmmmmonnmmmmot
垵	$+$
曷	
8	
	$1+$
晨	 1
8	
E	1

TABLE 6.-CONVERSION OF OENTIGRADE INTO FAHRENHEIT DEGREES ABOVE 100, AND VICE VERSA.

Divide the degrees above 100 into hundreds and a remainder. The figure corresponding to the hundreds is taken from the following tables and added to that corresponding to the remainder as taken from Table 4. If, on converting Fahrenheit into Centigrade, the "remainder" amounts to 32°, or less, the degrees Centigrade corresponding to it are negative (below freezing point), and hence must be deducted from the figures of the following table. Also note, for example, that $300^{\circ} \mathrm{F}$. is not $=166 \cdot \%^{\circ} \mathrm{C}$., but $=166 \cdot 7-17 \cdot 8$, $=148 \cdot 9^{\circ} \mathrm{C}$.
A.

B.

Fahr.	C.	Fahr.	C.	Fahr.	C.	Fahr.	C.
100	$55 \cdot 6$	1000	$556 \cdot 6$	1900	$1055 \cdot 6$	2800	$1555 \cdot 6$
200	$111 \cdot 1$	1100	$611 \cdot 1$	2000	$1111 \cdot 1$	2900	$1611 \cdot 1$
300	$166 \cdot 7$	1200	$666 \cdot 7$	2100	$1166 \cdot 7$	3000	$1666 \cdot 7$
400	$222 \cdot 2$	1300	$722 \cdot 2$	2200	$1222 \cdot 2$	3100	$1722 \cdot 2$
500	$277 \cdot 8$	1400	$777 \cdot 8$	2300	$1277 \cdot 8$	3200	$1777 \cdot 8$
600	$333 \cdot 3$	1500	$833 \cdot 3$	2400	$1333 \cdot 3$	3300	$1833 \cdot 3$
700	$388 \cdot 9$	1600	$888 \cdot 9$	2500	$1388 \cdot 9$	3400	$1888 \cdot 9$
800	$444 \cdot 4$	1700	$944 \cdot 4$	2600	$1444 \cdot 4$	3500	$1944 \cdot 4$
900	500	1800	1000	2700	1500	\cdots	\cdots

TABLE 7.--THE UNITS OF ENERGY AND WORK.

The "absolute" unit of mechanical energy, the org, is the product of the unit of length into the "absolute" unit of force, or dyne, i.e., the force necessary to impart to a mass of 1 gram in a second a velocity of 1 cm . per second.

For most purposes, it is more convenient to use a gravitation unit, in the definition of which the value of the earth's gravitation attraction for bodies on its surface is involved. The unit of force, thus defined, is the weight of 1 gram and is equal to 981 dynes. The corresponding unit of mechanical energy is the product of this unit into the unit of length, i.e., the gram-centimetre.

The relations between the mechanical unit of energy and the units of heat and electricity are given in Tables s and 10.

TABLE 8.--THE UNIT OF HEAT.

The usual unit of heat for chemical purposes is the "small calorie" or gram-calorie (cal.). It is roughly defined as the quantity of heat required to raise 1 gram of water $1^{\prime \prime} \mathrm{C}$., but as this quantity is not exactly the same for all temperatures, it is necessary to specify the temperature. The normal calorie is that which raises 1 gram of water from 14.5° to 15.5°.

The great or kilogram-calorie (Cal.) is 1000 times the small calorie. The centuple-calorie (K) is the quantity of heat required to raise 1 gram of water from 0° to 100°, and is very nearly equal to 100 small calories. We have then

$$
1 \mathrm{Cal} .=10 \mathrm{~K}=1000 \mathrm{cal} .
$$

Another unit of heat used for thermochemical work is the joule, which is equivalent to $10,000,000$ ergs. It is denoted by the letter j, while a larger unit, the kilojoule, cqual to 1000 j is denoted by the symbol Kj . The relations between these and the calorie are as follows :-

$$
\begin{array}{ll}
1 \mathrm{cal}=4.189 \mathrm{j} . & 1 \mathrm{j}=0.2387 \mathrm{cal} . \\
1 \mathrm{Cal}=4.189 \mathrm{Kj} . & 1 \mathrm{Kj}=0.2387 \mathrm{Cal} .
\end{array}
$$

The British heat-unit, is the quantity of heat required to raise 1 pound of water from 32° to 33° Fahr. and is $=252$ gram-calories. The British thermal unit is denoted by the symbol B.Th.U.

TABLE 8-Continued.

(a) Caloriflc Value of Fuels.
(The data given are the upper heating values, i.e., they are referred to the combustion of hydrogen to liquid water as found in the calorimeter.)

	gram-cal.		gram-cal.
Ether	9,000	Petroleum residue	10,500
Alcohol	7,100	Petroleum	. 11,000
Lignite-tar oil	9,950	Fatty oils .	9,300
Wood	4,100	Tallow	8,370
Methyl alcohol	5,300	Beeswax	9,000
Charcoal ($\mathrm{C}^{\text {to }} \mathrm{CO}_{2}$) .	- 8,000	Cellulose	4,200
, (C to CO)	2,300		

(b) Calorific Value of Gases.

		Calories when one gram-mol. is burnt to		Calories per cub. met. when burnt to	
		Liquin Water.	Steam.	Liquid Water.	Steam.
Hydrogen, H_{2}	2	$69 \cdot 0$	$58 \cdot 1$	3064	2585
Methane, CH_{4}.	16	$213 \cdot 5$	$192 \cdot 1$	9565	8606
Ethylene, $\mathrm{C}_{2} \mathrm{H}_{4}$	28	$334 \cdot 8$	$313 \cdot 4$	14,999	14,060
Benzene vapour, $\mathrm{C}_{6} \mathrm{H}_{6}{ }^{\text {c }}$.	78	$788 \cdot 0$	$755 \cdot 9$	35,302	33,864
Naphthalene vapour, $\mathrm{C}_{10} \mathrm{H}_{8}$	128	12584	$1230 \% 6$	50,376	55,131
Carbon monoxide, CO .	28	$68 \cdot 4$	$68 \cdot 4$	3064	3064

TABLE 9.--THR EVAPORATION UNIT.

(G. A. Rossetti.)

After the fundamental unit, the British thermal unit (B.Th.U.), the most important unit of heat measurement in use among engineers is the evaporation unit (ev.u.). The B.Th.U. means the amount of heat needed to raise 1 lb . of water $1^{\circ} \mathrm{F}$. at the mean specific heat of water between $32^{\circ} \mathrm{F}$. and $212^{\circ} \mathrm{F}$.; the ev.u. means the amount of heat needed to convert 1 lb . of water at $212^{\circ} \mathrm{F}$. into saturated steam at the same temperature and consequently at the atmospheric pressure of $14 \cdot 7 \mathrm{lb}$. per sq . in.

18 THE TECHNICAL CHEMISTS' HANDBOOK

TABLE 9-Continued.

In the case of boilers generating steam for power production and for various industrial uses, the conditions of this steam generation vary widely, and, in order readily to compare results from different sources, it is customary to reduce the boiler output to evaporation units (sometimes termed " lb . evaporated as from and at $212^{\circ} \mathrm{F} . "$). For this reduction it is necessary to know the equivalent of the evaporation unit in British thermal units. This equivalent is given in the steam tables, the best known of which are those of Professors Callendar, Marks and Davis, and Peabody. Of these, Professor Callendar's table is probably the most reliable, being founded on the soundest basis yet possible, both theoretical and experimental. The table of Professors Marks and Davis is recognised as standard in the United States, and is frequertly specified as the basis for test calculations by British engineers. Professor Peabody's table, though perhaps somewhat superseded by the two later tables, was undoubtedly the best authority on the subject twelve years ago, when its eighth edition was published. Naturally, the principal differences between these tables occur in regard to the properties of steam at the higher temperatures and pressures, where experimental difficulties are most. serious. But there is not absolute agreement as to the fundamental constant, the number of British thermal units equivalent to one evaporation unit. The following table gives the equivalent of the ev.u. in B.Th.U. according to each of the three authorities above mentioned, and also gives the conversion factor for each of the values of the ev.u. in terms of each of the others, and for the number of ev.u. equivalent to 1000 B .Th.U. The logarithm of each of the

Conversion Factors and Logarithms.

Factor.

1 Ev.u. (C.)	$=970 \cdot 74$	B.Th.U.	$2 \cdot 98710293$
	$=1.00035037$	Ev.u (M. \& D.)	0.00015214
	$=1.00107250$	Ev.u. (P.)	0.00046553
1 Ev.u. (M. \&	\& D.) $=970 \cdot 4$	B.Th. U.	$2 \cdot 98695079$
	$=0.99964976$	Ev.u. (C.)	0.99984786-1
	$=1.00072187$	Ev.u. (P.)	000031839
1 Ev.u (P)	$=969.7$	B.Th.U.	2.98663740
	$=0.99892865$	Ev.u. (C.)	$0.98953447-1$
	$=0.99927865$	Ev.u. (M. \& D.)	0.99968661-1
1,000 B.Th.U	U. $=1.03014195$	Ev.u. (C.)	0.01289707
	$=1.03050288$	Ev.u. (M. \& D.)	0.01304921
	$=1.03124679$	Ev.u. (P.)	0.01886260

conversion factors is also given, thus providing assistance for calculations. The several values of the evaporation unit are referred to by the initials (C.), (M. and D.), (P.).

TABLE 10.—HLECTRIOAL UNITS.

A joule or watt-second is the unit of electrical energy and is defined as the energy expended in one second by an unvarying electric current of one ampere flowing under an electrical pressure of one volt.

For technical use, the above units are inconveniently small and the following are the units commonly used in practice.

A kilowatt (K.W.) is 1000 watts. The kilowatt-hour, 1000 watthours, is commonly known in this country as the Board of Trade Unit (B.T.U.).

One horse-power (H.P.) is 746 watts. (The value taken for one H.P. in Germany is 736 watts.)

The kilowatt-hour (K.W.H.) and horse-power hour (H.P.H.) are the energy units which represent the energy consumption per hour of systems absorbing energy at the respective rates of one kilowatt and one horse-power. A horsc-power year is not a recognised unit, but an H.P. year is gencrally taken as 8760 H.P.H. The quantitative relations between electrical energy and heat energy are as follows :-

1 joule $=0.23835$ cal. (gram-calories).
1 kilo-joule (kilowatt-second) $=0.23865$ Cal. (kilogram-calories).
$1 \mathrm{cal} .=4.189$ joules.
1 Cal. $=4 \cdot 189$ kilowatt-seconds.

TABLE 11.-WLEOTRO-CHEMICAL EQUIVALENTS.

The separation of a gram equivalent requires 96,540 coulombs $=26.86$ ampere hours. 1 ampere hour is capable of yielding:-

TABLE 12.-REDUOTION OF TEE VOLUMTI OF

> General formula for Dry Gases, $V_{0}=\frac{V \times 278 b}{(278+t) 780}$
> $b=$ Barometric pressure, reduced to $0^{\circ} ; t=$ temperature $; f=$ tenaion
> I. Table for reducing the volumes of

0°.	1°.	$2{ }^{\circ}$.	8°.	4°.	5^{*}.	6°.	$7{ }^{\circ}$.	8*.	9°.	10°.	0°.
1	0.996	0.993	0.989	0.986	0.982	0.978	0.975	0.972	0.988	0.965	1
2	1.998	1.985	1.978	1.971	1.964	1.957	1.950	1.948	1.986	1.929	8
8	2.989	2.978	2.967	2.957	2.946	2.936	$2 \cdot 925$	2.915	2.904	$2 \cdot 894$	8
4	8.985	3.971	3.956	3.942	8.928	3.914	8.900	3.886	$8 \cdot 872$	3.859	4
5	4.982	4.964	4.946	4.928	4.910	4.898	$4 \cdot 876$	4.858	4.841	$4 \cdot 824$	6
6	5.978	5.956	5.935	5.913	5.892	$5 \cdot 871$	5.850	$5 \cdot 830$	5.809	5.788	6
7	6.974	6.949	6.924	6.899	6.874	$6 \cdot 850$	$6 \cdot 825$	6.801	6.777	6.753	7
8	$7 \cdot 970$	7.942	7.913	7.885	7.856	$7 \cdot 828$	$7 \cdot 800$	$7 \cdot 778$	7.745	$7 \cdot 718$	8
9	8.967	8.984	8.902	8.870	8.838	$8 \cdot 807$	$8 \cdot 775$	8.744	8.718	$8 \cdot 688$	9
10	9.968	9.927	$9 \cdot 891$	$9 \cdot 856$	$9 \cdot 820$	$9 \cdot 785$	8.750	9-716	$9 \cdot 681$	$9 \cdot 647$	10
11	10.96	10.92	10.88	10.84	10.80	10.76	10.78	10.69	10.65	10.61	11
12	11.96	11.91	11.87	11.88	11.78	11.74	11.70	11.60	$11 \cdot 62$	11.57	18
18	12.95	12.91	12.86	12.81	12.76	12.72	12.68	$12 \cdot 63$	12.59	$12 \cdot 54$	18
14	18.95	18.90	13.85	18.80	13.75	13.70	$13 \cdot 65$	$13 \cdot 60$	13.55	$18 \cdot 50$	14
15	14.95	14.89	14.84	14.78	14.73	14.68	14.63	14.57	14.52	14.47	15
16	15.94	15.88	15.83	$15 \cdot 77$	$15 \cdot 71$	15.66	$15 \cdot 60$	15.55	15.49	15.48	16
17	16.94	16.87	16.82	16.75	16.69	16.64	16.58	16.52	16.46	16.40	17
18	17.08	$17 \cdot 87$	$17 \cdot 81$	$17 \cdot 74$	$17 \cdot 67$	$17 \cdot 61$	17.55	$17 \cdot 49$	17.48	$17 \cdot 86$	18
19	18.93	18.86	$18 \cdot 79$	18.72	18.65	18.59	18.53	18.46	18.89	18.83	19
20	$19 \cdot 98$	$19 \cdot 85$	$19 \cdot 78$	$19 \cdot 71$	$19 \cdot 64$	$19 \cdot 57$	$19 \cdot 50$	$19 \cdot 48$	$19 \cdot 86$	19-29	20
21	20.98	20.54	20.77	20.69	20.62	20.55	20.48	20.40	20.88	20.26	21
22	21.92	21.84	21.76	21.68	21.60	21.58	21.45	21.37	21.80	21-22	22
28	22.92	$22 \cdot 83$	22.75	22.60	22.58	22.51	22.43	22.35	22.26	22.18	28
24	28.02	28.82	28.74	23.65	23.50	23.48	23.40	23.82	$28 \cdot 28$	$23 \cdot 15$	24
25	24.91	24.81	24.73	24.64	$24 \cdot 55$	$24 \cdot 46$	24-88	24'29	24'20	$24 \cdot 11$	25
26	25.01	25.81	$25 \cdot 72$	$25 \cdot 62$	2553	$25 \cdot 44$	$25 \cdot 35$	25.26	$25 \cdot 17$	25.08	26
97	28.00	26.80	26.71	26.61	20.52	$26 \cdot 42$	$26 \cdot 83$	23.28	$26 \cdot 18$	26.04	27
28	27.00	$27 \cdot 79$	$27 \cdot 69$	$27 \cdot 59$	$27 \cdot 50$	$27 \cdot 40$	27.80	$27 \cdot 20$	$27 \cdot 10$	27.01	28
29	28.90	28.78	28.68	25.58	25.48	$2 \mathrm{~S} \cdot 38$	28.28	$28 \cdot 17$	28.07	27.97	29
30	29.89	$29 \cdot 78$	29.67	29.57	$29 \cdot 40$	$29 \cdot 86$	$29 \cdot 25$	$29 \cdot 16$	$29 \cdot 04$	28.94	30
81	80.89	$80 \cdot 77$	30.63	80.55	3044	30.84	30.28	$30 \cdot 12$	30.01	20.01	81
82	81.88	81.76	81.65	81.54	81.42	31.32	31.20	81.09	30.98	30.87	82
88	82.88	32.76	82.64	32.52	32.40	32.80	32.18	32.06	81.94	81.84	88
84	38.88	83.75	$83 \cdot 63$	83.51	33.89	88.27	$88 \cdot 15$	83.03	32.01	$82 \cdot 80$	84
85	84.87	$84 \cdot 74$	84.62	$84 \cdot 50$	34.87	34-25	34.18	84.01	88.88	$88 \cdot 77$	85
86	85.87	35.74	85.61	85.48	35. 35	85-23	$85 \cdot 10$	34.08	84.85	84.78	86
87	86.87	86.73	36.60	30.47	86.83	86.21	86.08	35.95	$85 \cdot 82$	$85 \cdot 70$	87
85	87.86	87.72	87.59	87.45	97.32	$87 \cdot 10$	87.05	86.92	86.79	86.60	88
89	88.86	$88 \cdot 71$	38.58	38.44	83.30	88.16	88.03	87.80	87.75	87.62	89
40	$89 \cdot 85$	$89 \cdot 71$	$89 \cdot 56$	$80 \cdot 42$	$89 \cdot 28$	80.14	$80 \cdot 00$	88.86	88.72	88.59	40
	$40 \cdot 85$	40.70	40.55	40.41	40.26	$40 \cdot 12$	39.08	89.88	$39 \cdot 69$	89.55	41
42	41.85	41.69	41.54	41.89	41.24	41.10	40.95	$40 \cdot 80$	$40 \cdot 66$	40.52	42
43	42.84	42.68	42.58	42.88	$42 \cdot 20$	42.08	41.03	41.78	41.62	41.48	48
44	43.84	43.68	$43 \cdot 52$	48.37	4320	43.05	42.90	$42 \cdot 75$ 48.71	42.59 48.68	42.45	44
45	44.84	44.67	44.51	44.35	$44 \cdot 19$	44.68	48.88	$48 \cdot 72$	48.56	$48 \cdot 41$	43
46	45.88	$45 \cdot 66$	45.50	$45 \cdot 84$	$45 \cdot 17$	45.01	44.85	44.69	44.58	44.88	46
47	46.88	46.65	48.48	4682	48.15	45.69	$45 \cdot 88$ 40.80	45.68 46.68	45.68 46.47	$46 \cdot 84$ 46.81	47
48	$47 \cdot 88$	47.65	47.48	47.81	$47 \cdot 18$	40.07	46.80	46.68 47	46.47	$46 \cdot 81$	48
49	48.88	48.64	48.47	48.29	$48 \cdot 12$	47.95	47.78	$47 \cdot 60$	47.44	$47 \cdot 27$	49
60	49.82	4464	49.46	4928	49.10	48.98	48.75	48.58	48.41	48.84	60

GASMS TO NORMAL THMPERATURH \& PRHESURE.

General formula for Moist Geses, $V_{0}=\frac{\mathbf{V} \times 278(b-f)}{(278+t) 780}$
of aqueous vapour at t°. Compare Table 18.
gases to a temperature of $0^{\circ} \mathbf{C}$.

0°.	$1{ }^{\circ}$.	$2{ }^{\circ}$.	8'.	4°.	5°.	6°.	$7{ }^{\circ}$.	$8{ }^{\circ}$.	9°.	10°.	0°.
51	30.82	50.68	50.45	50.20	50.08	49.91	49.78	49.55	49.88	$49 \cdot 21$	51
52	51.81	51.62	51.44	51.25	51.06	50.89	50.70	50.52	50.85	50.17	52
58	52.81	52.62	52.48	52.24	52.05	51.87	51.68	51.49	51.31	51.18	58
64	58.81	58.61	58.42	53.22	58.03	52.84	52.65	$52 \cdot 16$	52-28	52.10	54
55	54.80	$54 \cdot 60$	$54 \cdot 41$	$54 \cdot 21$	54.01	53.82	58.68	$53 \cdot 44$	63-25	58.06	55
56	55.80	55.60	55.40	$55 \cdot 19$	54.99	54.80	$54 \cdot 60$	54-41	54.22	64.08	56
57	56.80	56.59	56.30	$56 \cdot 18$	55.97	65.78	55.58	55.88	$55 \cdot 19$	54.99	57
58	57.79	57.58	67.87,	6716	56.95	56.73	56.55	56.85	66.15	\$5.96	58
59	58.79	58.57	58.87 ${ }^{-}$	58.15	57.93	57.74	57.58	57.82	57.12	56.92	59
60	69.78	$59 \cdot 66$	59.85	$59 \cdot 18$	58.92	58.71	58-50	$58 \cdot 30$	58.09	67.88	60
61	60.78	60.50	60.34	60.12	59.90	59.69	59.48	59.27	59.08	58.85	61
62	61.78	61.55	61.88	61.10	60.88	60.67	60.45	$60 \cdot 24$	60.08	59.81	62
63	62.77	62.54	62.32	62.09	61.86	61.65	61.43	61.21	60.99	60.77	63
64	68.77	68.53	63.31	68.07	62.84	62.63	62.40	62.18	61.96	61.74	64
65	64.70	64.58	64.30	64.06	63.83	63.61	$63 \cdot 38$	63-15	62.98	62.70	65
66	$65 \cdot 76$	65.52	65.29	65.04	64.81	64.68	64-35	$64 \cdot 13$	63.89	63.67	66
67	68.75	68.51	66.27	66.03	65'79	65.56	65.33	$65 \cdot 10$	64.86	64.63	67
68	67.75	67.50	67.26	67.02	66.77	66.54	$66 \cdot 30$	68.07	65.88	$65 \cdot 60$	68
69	68.75	68.50	68.25	68.01	67.75	67-52	67.28	67.04	66.80	66.56	69
70	69.74	69.49	69.24	68.99	68•74	68.50	$68 \cdot 25$	68.01	67.77	67.53	70
71	70.74	70.48	70.23	69.98	$69 \cdot 72$	$60 \cdot 48$	69.23	68.98	68.74	68.49	71
78	71.74	71.48	71.22	70.96	70.70	$70 \cdot 46$	$70 \cdot 20$	69.95	$00 \cdot 71$	69.46	72
78	72.78	72.47	$72 \cdot 21$	71.95	71.69	71.44	71.18	70.93	$70 \cdot 67$	70.42	78
74	78.78	$78 \cdot 40$	$78 \cdot 20$	72.98	$72 \cdot 66$	$72 \cdot 41$	$72 \cdot 15$	71.90	71.64	71.89	74
75	74.72	74.45	74.19	73.92	78.65	78.39	$73 \cdot 13$	$72 \cdot 87$	$72 \cdot 61$	72.35	75
76	$75 \cdot 72$	75.45	$75 \cdot 18$	74.90	74.63	74.37	74.10	73.84	73.58	73.82	76
77	76.72	76.44	76.17	75.89	$75 \cdot 61$	$75 \cdot 35$	75.08	74.81	74.55	74.28	77
78	$77 \cdot 71$	$77 \cdot 43$	$77 \cdot 15$	76.87	76.59	76.38	76.05	75.78	75.51	$75 \cdot 25$	78
79	78.71	78.42	$78 \cdot 14$	$77 \cdot 86$	77-58	77.81	$77 \cdot 03$	$76 \cdot 75$	76.48	76.21	79
80	79•70	79.42	$79 \cdot 18$	78.85	78.50	78-28	78.00	77-78	77.45	$77 \cdot 18$	80
81	$80 \cdot 70$	80.41	$80 \cdot 12$	79.88	79.54	79.26	$78 \cdot 98$	$78 \cdot 70$	78.42	78.14	81
82	81.69	81.40	$81 \cdot 11$	$80 \cdot 82$	80.52	80.24	79.95	$79 \cdot 67$	79.39	$79 \cdot 11$	82
88	82.69	82.89	$82 \cdot 10$	81.81	81.51	81-22	$80 \cdot 93$	$80 \cdot 64$	$80 \cdot 36$	80.07	83
84	88.69	88.89	88.00	$82 \cdot 79$	$82 \cdot 49$	82.20	$81 \cdot 90$	$81 \cdot 61$	$81 \cdot 32$	81.04	84
85	84.68	84.88	84.08	$83 \cdot 78$	$88 \cdot 47$	$83 \cdot 17$	$82 \cdot 88$	$82 \cdot 53$	$82 \cdot 29$	82.00	85
86	85.68	85.87	85.07	84.76	84.45	S4.15	83.85	88.55	88.26	82.97	86
87	86.68	86.87	86.06	85-75	85.43	85.18	84.83	84.53	$84 \cdot 23$	83.93	87
88	87.67	87-86	87.05	86.78	86.42	86.11	$85 \cdot 80$	$85 \cdot 50$	$85 \cdot 20$	84.90	88
89	88.67	88.85	88.04	87.72	87.40	87.09	86.78	86.47	86.16	$85 \cdot 86$	S9
90	$89 \cdot 07$	89.84	$80 \cdot 02$	88.70	$88 \cdot 88$	88.07	87.75	$87 \cdot 44$	$87 \cdot 18$	80.82	90
91	90.66	90.84	90.01	89.69	$89 \cdot 36$	89.05	88.78	88.41	$88 \cdot 10$	87.79	91
92	91.66	91.88	01.00	$90 \cdot 67$	90.84	00.08	$80 \cdot 70$	$89 \cdot 38$	89.07	88.75	92
98	92.06	92.82	91.99	91.68	91.88	91.01	00.68	00.36	90.08	89.72	98
9	98.65	98.81	92.98	92.64	92.81	91.98	$91 \cdot 65$	91.88	01.00	90.68	94
98	94.65	04.81	98.97	98.68	08.29	92.96	92.68	02.80	91.97	91.65	95
06	95.65	85.30	94.98	94.61	94.27	98.94	$98 \cdot 60$	98.27	92.94	92.61	96
97	98.64	96.29	95.95	96.60	95.25	94.92	94.58	94.24	98.01	98.57	07
08.	$97 \cdot 64$	$97 \cdot 28$	96.98	96.58	96.24	95.90	$95 \cdot 55$	95-21	94.87	94.54	08
9	$98 \cdot 64$	98.27	97.02	97.57	97.28	96.87	06.58	96.18	95.84	95.60	90
100	00.68	09.27	98.91	98.66	98.20	07.85	97-50	$97 \cdot 16$	96.81	06.47	100

TABLE 12
I. Table for reducing the volumes of

0°.	11°.	12°.	13°.	14°.	15°.	16°.	17°.	18°.	19°.	20°.	0°.
1	0.961	0.958	0.955	0.951	0.943	0.945	0.941	0.988	0.935	0.082	1
2	1.923	1.916	1.909	1.903	$1 \cdot 896$	1.889	1.888	1.876	1.869	1.864	
8	2.884	$2 \cdot 874$	$2 \cdot 864$	$2 \cdot 854$	$2 \cdot 844$	$2 \cdot 884$	2.824	2.815	2.805	2.795	8
4	8.845	8.832	8.818	3.805	9.792	3.779	8.766	$8 \cdot 753$	$8 \cdot 740$	$8 \cdot 727$	4
5	4.807	4.790	$4 \cdot 773$	$4 \cdot 757$	$4 \cdot 740$	$4 \cdot 724$	$4 \cdot 707$	4.691	$4 \cdot 675$	$4 \cdot 659$	5
6	$5 \cdot 768$	5.747	$5 \cdot 728$	$5 \cdot 708$	$5 \cdot 688$	5.668	5.648	5.629	5.600	$5 \cdot 591$	6°
7	6.729	6.705	6.682	6.659	6.630	$6 \cdot 613$	$6 \cdot 590$	6.567	$6 \cdot 544$	6.523	7
8	$7 \cdot 690$	$7 \cdot 663$	$7 \cdot 637$	$7 \cdot 610$	$7 \cdot 584$	$7 \cdot 558$	$7 \cdot 531$	$7 \cdot 500$	$7 \cdot 479$	7-454	8
9	$8 \cdot 652$	$8 \cdot 621$	$8 \cdot 591$	$8 \cdot 502$	8.532	$8 \cdot 502$	$8 \cdot 472$	8.444	8.414	$8 \cdot 350$	9
10	$9 \cdot 613$	$9 \cdot 579$	$9 \cdot 546$	$9 \cdot 513$	9.480	9-447	$9 \cdot 414$	9.882	$9 \cdot 849$	9.318	10
11	10.57	$10 \cdot 53$	$10 \cdot 50$	$10 \cdot 46$	10.43	10.89	10.35	10.82	10.28	$10 \cdot 25$	11
12	11.53	11.49	11.45	11.42	11.88	11.83	$11 \cdot 30$	$11 \cdot 26$	11.21	$11 \cdot 18$	12
13	$12 \cdot 49$	12.45	12.41	12.36	12.82	12.28	$12 \cdot 24$	$12 \cdot 20$	$12 \cdot 15$	12.11	18
14	13.45	18.41	13.30	13.81	18.27	18.22	$18 \cdot 17$	18.18	18.08	$18 \cdot 04$	14
15	14.42	14.87	14.32	14-27	14.22	$14 \cdot 17$	$14 \cdot 12$	14.07	14.02	18.97	16
16	$15 \cdot 88$	$15 \cdot 32$	15.27	$15 \cdot 22$	$15 \cdot 17$	$15 \cdot 11$	15.06	15.01	14.96	14.01	16
17	16.84	16.28	16.23	$10 \cdot 17$	$16 \cdot 12$	16.06	16.00	15.95	15.89	$15 \cdot 84$	17
18	$17 \cdot 80$	17.24	17.18	17.12	$17 \cdot 01$	17.00	16.04	16.89	16.82	18.76	18
19	18.26	$18 \cdot 20$	$18 \cdot 14$	18.07	18.01	17.05	$17 \cdot 59$	17.83	17.76	17.70	10
20	$19 \cdot 23$	$19 \cdot 16$	19.09	19.03	18.90	18.89	18.83	18.76	$18 \cdot 69$	18.64	20
21	$20 \cdot 19$	$20 \cdot 12$	20.04	19.98	19.91	19.84	$19 \cdot 77$	$19 \cdot 70$	$19 \cdot 62$	$10 \cdot 57$	21
22	$21 \cdot 15$	21.08	21.00	20.93	$20 \cdot 86$	20.78	$20 \cdot 71$	20.64	$20 \cdot 50$	$20 \cdot 50$	22
28	$22 \cdot 11$	22.08	21.95	21.88	21.80	21.78	21.65	21.58	21.50	$21 \cdot 48$	23
24	23.07	22.99	$22 \cdot 91$	22.83	22.75	22.67	22.59	22.51	$22 \cdot 48$	$22 \cdot 97$	24
25	24.03	23.95	23.80	28.78	$23 \cdot 70$	$23 \cdot 61$	28.54	28.45	28.87	28-80	25
26	25.00	24.91	24.81	$24 \cdot 73$	24.65	24.56	24.48	24.89	24.80	$24 \cdot 28$	26
27	25.96	$25 \cdot 87$	$25 \cdot 77$	$25 \cdot 69$	$25 \cdot 60$	$25 \cdot 50$	25.42	25.88	$25 \cdot 28$	$25 \cdot 16$	27
$28 \cdot$	26.92	26.82	26.72	26.64	26.54	$26 \cdot 45$	$20 \cdot 36$	26.27	$26 \cdot 17$	26.09	28
29	$27 \cdot 88$	27.78	$27 \cdot 68$	27-59	$27 \cdot 49$	27-89	27.80	$27 \cdot 20$	$27 \cdot 10$	27.02	29
80	28.84	28.74	$28 \cdot 64$	$28 \cdot 54$	28.44	28.84	28.24	$28 \cdot 15$	28.05	27.95	80
81	29.80	$29 \cdot 70$	29.59	29.49	29.89	$29 \cdot 28$	29-18	29.09	28.99	28.87	81
82	$80 \cdot 76$	80.66	80.55	80.44	30.84	30.23	80.12	80.03	29.02	20.81	82
88	81.72	81.61	81.50	81.89	81-28	81-17	81.00	80.97	80.86	80.74	88
84	82.68	82.57	32.46	82.84	82.23	82.12	82.01	31.90	81.79	81.68	84
85	88.65	88-58	88-41	88.80	83-18	88.06	82.95	82.81	82.78	82.61	85
86	84.61	84.49	34.87	84.25	34.18	84.01	38.89	88.78	88.66	88.54	88
87	85.57	85.45	35.82	85.20	85.08	84.95	84.88	84.72	84.59	84.47	87
88	86.58	86.40	86.28	$86 \cdot 15$	86.02	85.90	35-77	85.66	85.58	$85 \cdot 40$	88
89	$87 \cdot 49$	87.86	87.23	$87 \cdot 10$	86.97	86.84	86.71	86.69	88.46	86.84	80
40	88.45	88.82	88-18	88.05	87.92	87.79	87.66	$87 \cdot 58$	$87 \cdot 40$	8727	40
41	89.41	89.28	$89 \cdot 14$	89.00	88.87	88.78	88.60	$88 \cdot 47$	88.84	88.20	41
42	40.87	40.24	40.09	89.95	89.82	89.68	89.54	89.41	$89 \cdot 27$	89.18	48
48	41.88	41-19	41.05	40.00	40.76	40.62	40.48	40.85	40.21	40.07	48
44	$42 \cdot 80$	$42 \cdot 15$	42.00	41.86	41.71	41.57	41.48	41.28	$41 \cdot 14$	41.00	44
46	48.26	48-11	42.95	42.81	$42 \cdot 68$	42.61	42.87	$42 \cdot 22$	42.08	41.98	45
46	44.29	44.07	48.91	48.76	48.61	48.40	48.81	48.16	48.01	42.86	46
47	$45 \cdot 18$	45.08	44.88	44.71	44.56	44.40	44.25	44.10	48.94	$48 \cdot 79$	47
48	46.14	45.98	$45 \cdot 82$	$45 \cdot 66$	45.50	45.85	$45 \cdot 19$	45.04	44.88	$44 \cdot 72$	48
49	47.10	$46 \cdot 94$	$46 \cdot 77$	46.61	46.45	48.29	46.18	45.97	45.81	45.65	40
60	48.07	47.00	$47 \cdot 78$	47.57	47.40	$47 \cdot 24$	47.07	46.91	46.75	46.59	80

Continued.

gases to a temperature of $0^{\circ} \mathrm{C}$.-Continued.

$0{ }^{\circ}$.	11°.	12°.	13°.	14*.	15°.	16°.	17*.	18°.	19°.	20°.	0°.
51	49.08	48. 56	$48 \cdot 69$	$48 \cdot 52$	48.85	48.18	48.01	47.85	$47 \cdot 68$	$47 \cdot 52$	51
52	49.99	$40 \cdot 82$	$49 \cdot 64$	$49 \cdot 47$	$49 \cdot 80$	$49 \cdot 13$	48.95	$48 \cdot 79$	48.62	$45 \cdot 45$	52
58	50.95	$50 \cdot 77$	50.59	50.42	$50 \cdot 24$	50.07	49.89	$49 \cdot 72$	49.55	4938	58
64	51.91	51.78	51.55	51.87	51.19	51.62	50.54	50.66	50.49	50.82	54
b5	62.87	$52 \cdot 69$	$52 \cdot 50$	$52 \cdot 38$	$52 \cdot 14$	51.96	$51 \cdot 78$	51.60	51.48	51.25	55
56	68.84	58.65	58.46	58.28	58.09	52.91	52.72	52.64	52.36	52.18	56
57	54.80	54.61	54.41	54.28	$54 \cdot 04$	53.86	53.66	58.48	63.29	58.71	57
58	55.76	$55 \cdot 50$	$55 \cdot 87$	$55 \cdot 18$	$54 \cdot 98$	54.80	54.60	54.42	54.28	54.04	58
59	56.72	56.52	50.32	$56 \cdot 13$	65.93	55.74	55.54	55.35	$55 \cdot 16$	54.97	59
60	$57 \cdot 68$	$57 \cdot 47$	57-28	57.08	56.88	56.68	56.48	56.29	56.09	55.91	60
61	58.64	58.48	58.23	58.08	57.88	57.68	57.42	57.28	57.02	56.84	61
62	59.60	59.39	$59 \cdot 19$	58.98	$58 \cdot 78$	58.57	58.86	58.17	57.96	57.77	62
68	50.56	$60 \cdot 35$	60.14	59.98	$59 \cdot 72$	59.52	59.30	$59 \cdot 11$	58.90	$58 \cdot 71$	68
64	61.58	$61 \cdot 31$	$61 \cdot 10$	60.88	$60 \cdot 67$	68.46	60.25	$60 \cdot 04$	59.88	59.64	64
65	62-49	$62 \cdot 26$	62.05	61.84	$61 \cdot 62$	61.40	61.19	60.98	60.77	60.57	65
66	63.45	63-22	68.01	62.79	62.57	62.35	62.18	61.94	61.70	61.50	66
67	64.41	$64 \cdot 18$	63.96	63.74	$63 \cdot 52$	$63 \cdot 29$	$63 \cdot 07$	$62 \cdot 86$	62.68	$62 \cdot 48$	67
68	65.87	$65 \cdot 18$	64.92	$64 \cdot 69$	64.46	$64 \cdot 23$	64.01	63.80	68.57	$63 \cdot 36$	68
69	60.83	66.09	65.87	65.64	$65 \cdot 41$	$65 \cdot 18$	64.95	64.78	$64 \cdot 50$	64.30	69
70	67-29	67.05	68.82	60.59	60.83	$60 \cdot 13$	$65 \cdot 90$	$65 \cdot 67$	$65 \cdot 44$	65-23	70
71	68.25	68.01	07.77	$67 \cdot 54$	67.81	$67 \cdot 07$	66.84	66.61	66.38	$68 \cdot 16$	71
72	69.21	68.97	08.73	68.49	68.26	68.02	67.78	67.55	67.31	67.09	72
78	$70 \cdot 17$	69.92	$69 \cdot 68$	$69 \cdot 44$	$69 \cdot 20$	68.96	68.72	68.49	$68 \cdot 26$	68.08	78
74	71.14	70.88	70.64	70.40	$78 \cdot 15$	69.91	$69 \cdot 66$	$69 \cdot 42$	$69 \cdot 18$	68.06	74
75	$72 \cdot 10$	71.84	71.59	$71 \cdot 35$	$71 \cdot 10$	70.85	$70 \cdot 61$	70.87	70.12	69.80	75
76	78.00	72.80	$72 \cdot 55$	72.30	72.05	71.80	71.55	71.80	71.05	70.82	76
77	74.02	$78 \cdot 76$	$78 \cdot 51$	$78 \cdot 25$	$78 \cdot 00$	$72 \cdot 74$	$72 \cdot 49$	$72 \cdot 24$	71.98	71.75	77
78	74.98	74.71	74.46	74.20	$73 \cdot 94$	$78 \cdot 69$	$78 \cdot 48$	$78 \cdot 18$	72.02	$72 \cdot 68$	78
79	75.94	$75 \cdot 67$	$75 \cdot 41$	$75 \cdot 15$	74.89	74.63	74-37	$74 \cdot 11$	78.85	78.61	79
80	76.90	76.63	76.87	$76 \cdot 10$	$75 \cdot 84$	75-58	75.31	75.06	$74 \cdot 79$	74.54	80
81	77-86	$77 \cdot 59$	$77 \cdot 82$	77.05	70.79	76.52	78.25	76.00	75.78	75.47	81
82	78.82	78.55	78.28	78.00	77.74	$77 \cdot 47$	$77 \cdot 19$	76.94	76.66	76.40	83
88	79.78	$79 \cdot 50$	$79 \cdot 23$	73.95	78.68	$78 \cdot 41$	$78 \cdot 18$	$77 \cdot 87$	$77 \cdot 60$	77.84	88
84	80.75	80.46	$80 \cdot 19$	79.91	79.68	$79 \cdot 85$	79.08	78.81	$78 \cdot 58$	$78 \cdot 27$	84
85	S1-71	$81 \cdot 42$	81.14	80.86	80.58	80.30	80.02	79.75	$79 \cdot 47$	79-20	85
86	$82 \cdot 67$	$82 \cdot 38$	$82 \cdot 10$	81.81	81.58	$81 \cdot 24$	80.96	80.69	80.40	$80 \cdot 18$	86
87	88.68	88.88	88.05	$82 \cdot 76$	$82 \cdot 48$	$82 \cdot 19$	81.90	81.63	81.88	81.06	87
88	84.69	84.29	84.01	$88 \cdot 71$	$83 \cdot 42$	$83 \cdot 18$	82.84	82.57	$82 \cdot 27$	81.99	88
89	88.56	$85 \cdot 25$	84.96	$84 \cdot 66$	84.37	84.08	88.78	$83 \cdot 50$	$88 \cdot 22$	82.98	89
00	86.62	86.21	85-92	$85 \cdot 62$	$85 \cdot 82$	85.02	84.72	84.44	$84 \cdot 14$	$88 \cdot 80$	90
91	87-48	$87 \cdot 17$	86.87	86.57	88.27	85.96	$85 \cdot 66$	85.38	85.07	84-79	91
92	88.44	$88 \cdot 18$	87.88	87.52	$87 \cdot 28$	86.91	86.60	$86 \cdot 82$	86.01	$85 \cdot 72$	92
98	$89 \cdot 40$	89.08	88.78	88.47	$88 \cdot 16$	$87 \cdot 85$	87.54	$87 \cdot 25$	86.95	86.60	98
94	90.86	90.04	$89 \cdot 78$	89.42	$89 \cdot 11$	88.80	88.49	$88 \cdot 19$	$87 \cdot 88$	$87 \cdot 59$	94
05	91.88	91-00	90.68	90.88	90.06	89.74	$89 \cdot 48$	$89 \cdot 18$	88.82	$88 \cdot 62$	95
	92.89	91.96	91.64	91.88	91.01	90.69	90.87	90.07	89.75	89.45	96
97	98.25	92.92	92.69	92.28	91.98	91.68	91.81	91.00	90.6S	90.88	97
98	94.21	98.87	98.65	98.28	98.90	92.68	92-85	91.94	91.68 02.65	91.81	08
99	$95 \cdot 17$	94.88	94.80	94.18	98.85 04.80	93.52	$98 \cdot 19$ 94.14	92.88 98.89	92.55 98.49	$02 \cdot 84$ 08.18	99 100
100	96.18	06•70	$95 \cdot 46$	$95 \cdot 18$	94.80	$94 \cdot 47$	94•14	98.88	98.40	08-18	100

TABLE 12-

1. Table for reducing the volumes of

0°.	21^{*}.	28°.	23°.	24°.	25°.	26°.	27°.	28°.	29°.	0°.
1	0.929	0.926	0.922	0.919	0.916	0.913	0.910	0.907	0.904	1
2	1.857	1.851	1.845	1.839	1.882	1.828	1.820	1.814	1.808	8
8	2-786	2.777	$2 \cdot 767$	$2 \cdot 758$	$2 \cdot 749$	2.789	$2 \cdot 780$	$2 \cdot 721$	8.718	8
4	8.714	$8 \cdot 702$	3.690	8.677	$8 \cdot 665$	8.652	$8 \cdot 640$	8.628	$8 \cdot 616$	4
8	$4 \cdot 648$	$4 \cdot 628$	$4 \cdot 612$	$4 \cdot 507$	$4 \cdot 581$	$4 \cdot 563$	$4 \cdot 551$	4.685	$4 \cdot 580$	6
6	5.672	$5 \cdot 653$	5.534	5.516	$5 \cdot 497$	5.479	$5 \cdot 481$	5.442	5.424	6
7	6.500	6.479	6.457	$6 \cdot 485$	6.418	6-892	6.871	6.849	6.828	7
8	7.429	$7 \cdot 404$	$7 \cdot 879$	$7 \cdot 854$	$7 \cdot 830$	$7 \cdot 305$	7-281	7.256	$7 \cdot 238$	8
9	8.857	$8 \cdot 880$	$8 \cdot 302$	$8 \cdot 274$	$8 \cdot 246$	$8 \cdot 218$	$8 \cdot 191$	$8 \cdot 168$	8.186	9
10	$9 \cdot 286$	$9 \cdot 255$	$9 \cdot 224$	$9 \cdot 198$	$9 \cdot 162$	$9 \cdot 181$	$9 \cdot 101$	9.070	$9 \cdot 040$	10
11	10.21	10.18	$10 \cdot 15$	$10 \cdot 11$	10.07	10.04	10.01	9.98	9.94	11
18	$11 \cdot 14$	11.11	11.07	11.08	10.99	10.96	10.92	10.88	10.85	12
18	12.07	12.08	11.99	11.95	11.91	11.87	11.83	11.79	11.75	18
14	18.00	12.96	12.91	12.87	12.88	12.78	12.74	12.70	12.66	14
15	18.93	18.88	18.84	18.79	18.74	13.70	13.65	18.61	18.56	15
16	14.86	14.81	14.76	14.71	14.66	14.61	14.56	14.51	$14 \cdot 46$	16
17	15.79	$15 \cdot 78$	15.68	$15 \cdot 68$	$15 \cdot 58$	$15 \cdot 52$	$15 \cdot 47$	$15 \cdot 42$	15.37	17
18	$16 \cdot 71$	16.38	16.60	16.55	16.49	16.44	16.88	16.88	16.27	18
19	17.64	17.58	17.58	$17 \cdot 47$	17-41	$17 \cdot 85$	17.29	$17 \cdot 28$	$17 \cdot 18$	19
20	18.67	18.51	18.45	18.89	18.82	$18 \cdot 26$	18.20	$18 \cdot 14$	18.08	20
21	$19 \cdot 50$	$19 \cdot 43$	$19 \cdot 37$	$19 \cdot 81$	19.24	$19 \cdot 17$	$19 \cdot 11$	19.05	18.98	21
22	20.43	$20 \cdot 36$	$20 \cdot 29$	$20 \cdot 28$	$20 \cdot 15$	20.09	20.02	19.95	$19 \cdot 89$	22
28	21.86	21.29	21.21	$21 \cdot 15$	21.07	21.00	20.98	$20 \cdot 88$	20.79	28
24	22.28	22.21	$22 \cdot 14$	22.07	21.99	21.91	21.84	21.77	21.70	24
25	23.21	$23 \cdot 14$	28.08	22.99	$22 \cdot 90$	$22 \cdot 88$	$22 \cdot 75$	28.08	22.60	28
26	24.14	24.06	28.98	23.91	28.82	$28 \cdot 74$	28.66	23.58	28.50	26
27	25.07	24.99	$24 \cdot 90$	24.83	24.78	24.65	$24 \cdot 57$	24.49	24.41	27
28	26.00	25.91	$25 \cdot 82$	25.74	25.65	25.57	25.48	$25 \cdot 40$	$25 \cdot 81$	28
29	28.98	26.84	26.75	26.67	26.67	26.48	26.89	26.30	20.22	29
80	27.86	$27 \cdot 77$	$27 \cdot 67$	$27 \cdot 58$	$27 \cdot 49$	27.89	$27 \cdot 80$	$27 \cdot 21$	27-12	80
81	28.79	28.70	$28 \cdot 59$	28.50	28.41	28.30	28.21	$28 \cdot 12$	28.02	81
82	29.72	20.62	$29 \cdot 51$	29.42	29.32	$29 \cdot 22$	$29 \cdot 12$	29.02	28.98	82
88	80.65	$80 \cdot 55$	80.44	$80 \cdot 84$	$30 \cdot 24$	80.18	30.08	29.98	29.88	88
84	81.57	$81 \cdot 47$	81.86	81.26	81.16	81.04	80.94	80.84	80.74	84
85	82.50	$82 \cdot 40$	82.28	$\mathbf{8 2} \cdot 18$	82.07	81.96	81-85	82.75	82.64	85
86	88.48	88.82	83.20	$83 \cdot 10$	82.99	82.87	82.76	82.65	82.54	86
87	84.36	84.25	84-12	84.02	83.90	83.78	$83 \cdot 67$	83.56	88.45	87
88	$\mathbf{8 5} \cdot \mathbf{2 9}$	$85 \cdot 17$	85.05	84.03	84.82	84.70	84-58	84.47	84.35	88
89	86.22	86.10	85.97	85.85	$85 \cdot 74$	85.61	85.49	85.47	$85 \cdot 26$	89
40	87-14	87.02	86.00	$88 \cdot 77$	$86 \cdot 65$	86.52	86.40	88.28	86.16	40
41	88.07	87.95	87.82	87.69	87.57	87.48	87.81	$87 \cdot 19$	87.06	41
42	89.00	88.87	88.74	88.61	88.48	88.85	88.22	88.09	87.97	42
48	89.98	$89 \cdot 80$	89.66	89.58	$89 \cdot 40$	89.26	$89 \cdot 18$	89.00	88.87	48
44	40.88	$40 \cdot 72$	40.59	40.45	40.82	$40 \cdot 17$	40.04	89.91	$89 \cdot 78$	4
45	41.78	41.65	41.51	41.87	41.28	41.00	40.95	40'82	40.68	46
46	42.71	42.57	42.48	42.29	$42 \cdot 15$	42.00	41.88	41.72	41.58	46
47	$48 \cdot 64$	48.50	48.35	$48 \cdot 21$	4808	42.91	42.77	42.68	$48 \cdot 49$	47
48	44.67	44.42	44.27	44.12	48.98	48.88	48.68	$48 \cdot 54$	48.89	48
80	$45 \cdot 50$ $46 \cdot 48$	$45 \cdot 85$ 46.28	$45 \cdot 19$ 46.12	$45 \cdot 04$ 45.97	44.89 43.81	$44 \cdot 74$ $46 \cdot 66$	$44 \cdot 59$ $45 \cdot 51$	$44 \cdot 44$	44-80	40
50	46.48	46.28	$46 \cdot 12$	45.97	45.81	$45 \cdot 66$	$45 \cdot 61$	46.85	4.8.20	50

Continued.

gases to a temperature of 0° C.-Continued.

0°.	21°.	22°.	23°.	24^{*}.	25*.	26°.	27°.	28°.	29°.	0°.
51	$47 \cdot 86$	$47 \cdot 20$	47.04	40.89	40.78	46.57	$46 \cdot 42$	46.26	$46 \cdot 10$	51
52	48.29	$48 \cdot 13$	47.96	$47 \cdot 81$	$47 \cdot 64$	47-48	$47 \cdot 88$	$47 \cdot 16$	47.01	52
53	49.82	48.06	48.89	48.78	$48 \cdot 56$	$48 \cdot 40$	$48 \cdot 24$	48.07	47.91	58
54	50.14	49.98	$49 \cdot 81$	49.65	$49 \cdot 48$	49.81	$49 \cdot 15$	48.98	48.82	54
55	51.07	50.91	50.78	50.57	50.89	50.28	50.06	$49 \cdot 89$	$49 \cdot 72$	55
56	52.00	51.83	51.65	51.49	51.31	51.14	50.97	50.79	50.62	56
57	52.93	52.76	52.58	$52 \cdot 41$	$52 \cdot 22$	$52 \cdot 05$	51.88	51.70	51.58	57
58	58.86	58.68	53.50	53.32	$53 \cdot 14$	52.97	$52 \cdot 79$	52.61	52.43	58
59	64.79	54.61	54.42	64.24	64.08	53.88	$53 \cdot 70$	58.61	58.34	59
60	$55 \cdot 72$	55.53	$55 \cdot 84$	56.16	54.97	$54 \cdot 79$	$54 \cdot 61$	$54 \cdot 42$	54-24	60
61	56.65	58.46	66.26	56.08	55.89	$55 \cdot 70$	55.52	55.88	55.14	61
62	57.58	57.88	57-19	67.00	56.80	56.62	$56 \cdot 43$	$56 \cdot 23$	56.05	62
63	58.51	68.31	$58 \cdot 11$	$57 \cdot 92$	57.72	$57 \cdot 53$	$57 \cdot 34$	$57 \cdot 14$	86.95	63
64	59.42	59.28	59.03	58.84	58.64	$58 \cdot 44$	$58 \cdot 25$	58.05	57.86	64
65	60.36	$60 \cdot 16$	$50 \cdot 95$	59.76	59.55	$59 \cdot 86$	$59 \cdot 16$	$58 \cdot 96$	58.76	65
66	61.29	61.08	60.87	60.68	60.47	$60 \cdot 27$	60.07	59.86	59.68	66
67	62.22	62.01	$61 \cdot 79$	$61 \cdot 60$	61.38	$61 \cdot 18$	60.98	60.77	60.57	67
68	$63 \cdot 15$	62.98	$62 \cdot 72$	62.51	$62 \cdot 30$	$62 \cdot 10$	61.89	61.68	61.47	68
69	64.08	68.86	$68 \cdot 64$	$63 \cdot 43$	$63 \cdot 22$	$63 \cdot 01$	62.80	62.58	62.38	69
70	65.00	$64 \cdot 79$	04.57	64.35	64-13	63.92	63.71	$63 \cdot 49$	63-28	70
71	65.93	65.71	$65 \cdot 49$ 68.42	65.27	65.05	64.88 65	64.62 65.53	64.40	64.18	71
72	66.80	68.64	68.42	$60 \cdot 18$	65.96	65.75	65.53	$65 \cdot 80$	05.09	72
78	67.79	$67 \cdot 67$	$67 \cdot 34$	$67 \cdot 11$	66.88	$66 \cdot 66$	66.44	$66 \cdot 21$	$65 \cdot 99$	73
74	68.61	$68 \cdot 49$	$68 \cdot 26$	68.03	$67 \cdot 80$	$67 \cdot 57$	$67 \cdot 85$	${ }^{37} \cdot 12$	66.90	74
75	$09 \cdot 64$	69•42	69-18	68.95	$68 \cdot 71$	$68 \cdot 49$	$68 \cdot 26$	68.03	67-80	75
76	$70 \cdot 57$	70.34	70.10	69.87	$69 \cdot 68$	$69 \cdot 40$	$69 \cdot 17$	68.93	68.70	76
77	71.50	71.27	71.03	$70 \cdot 79$	70.54	70.81	70.08	$69 \cdot 84$	69.61	77
78	72.48	$72 \cdot 19$	71.95	$71 \cdot 70$	$71 \cdot 40$	$71 \cdot 22$	70.99	70.75	70.51	78
79	78.86	$78 \cdot 12$	$72 \cdot 87$	$72 \cdot 62$	$72 \cdot 38$	$72 \cdot 14$	71.90	71.65	71.42	79
80	74.29	74.04	78.79	73.54	$73 \cdot 30$	$73 \cdot 05$	$72 \cdot 81$	$72 \cdot 56$	72.32	80
81	75.22	74.97	74.71	74.46	74.22	73.96	$78 \cdot 72$	$78 \cdot 47$	78.22	81
82	76.15	75.89	$75 \cdot 68$	$75 \cdot 38$	$75 \cdot 18$	74.88	74.63	74.87	74.13	82
88	77.08	76.82	$78 \cdot 56$	$70 \cdot 30$	76.05	$75 \cdot 79$	$75 \cdot 64$	$75 \cdot 28$	75.03	88
84	78.00	77.74	77.48	$77 \cdot 22$	76.96	$76 \cdot 70$	76.45	$76 \cdot 19$	75.94	84
85	78.93	78.67	$78 \cdot 40$	$78 \cdot 14$	77-88	77-62	$77 \cdot 36$	$77 \cdot 10$	$76 \cdot 84$	85
86	79.86	79.59	79.82	79.06	78.80	78.58	$78 \cdot 27$	78.00	77.74	86
87	80.79	80.52	80.25	79.98	$78 \cdot 71$	$79 \cdot 44$	$79 \cdot 18$	78.91	$78 \cdot 65$	87
88	81.72	$81 \cdot 44$	$81 \cdot 17$	80.90	80.63	80.86	80.09	79.82	$79 \cdot 55$	88
89	88.65	82.87	82.09	81.82	81.55	81.27	81.00	80.72	80.46	89
90	88.57	83-30	88.02	82.74	82.46	$82 \cdot 18$	81.91	81.68	81.86	90
91	84.50	84-22	88.94	83.66	88.88	83.09	82.82	82.54	82.26	91
92	85.48	$85 \cdot 15$	84.86	84.58	84.29	84.01	88.73	88.44	$88 \cdot 17$	92
98	88.86	86.08	$85 \cdot 79$	85.50	85.21	84.92	84.64	84.35	84.07	98
94	$87 \cdot 28$	87.00	88.71	86.42	86.18	$85 \cdot 88$	85.55	$85 \cdot 26$	84.98	94
96	.88.21	87.98	$87 \cdot 68$	87-34	87.04	86.75	$86 \cdot 46$	$86 \cdot 17$	85.88	96
96	$88 \cdot 14$	88.85	88.65	88.26	87.98	87.66	$87 \cdot 87$	$87 \cdot 07$	86.78	96
97	90.07	$89 \cdot 78$	80.48	$89 \cdot 18$	88.87	88.57	88.28	87.98	$87 \cdot 69$	97
98	01.00	90.70	$90 \cdot 40$	00.09	89.79	89.48	$89 \cdot 19$	88.89	$88 \cdot 59$	98
90	01-98	01.68	01.82	01.01	$90 \cdot 71$	$90 \cdot 40$	90.10	$89 \cdot 79$	89.50	99
100	92.80	92.65	92.24	91.98	91.62	91.81	91.01	$90 \cdot 70$	$90 \cdot 40$	100

TABLE 12-Continued. II. Table for reducing the

Deduct from the barometric pressure 1 mm . for temperature between 0° and 12° for the expension

760	710	712	714	716	718	720	722	724	728	728	760
1	0.984	0.987	0.940	0.942	0.945	0.947	0.950	0.958	0.955	0.958	1
2	1.888	1.874	1.879	1.884	1.890	1.895	1.900	1.905	1.911	1.916	2
8	$2 \cdot 808$	$2 \cdot 810$	2.818	2.826	$2 \cdot 884$	2.842	$2 \cdot 850$	$2 \cdot 858$	9.866	2.874	8
4	8.788	$8 \cdot 747$	$8 \cdot 758$	$8 \cdot 768$	$8 \cdot 779$	8.789	8.800	8.810	$8 \cdot 821$	$8 \cdot 832$	4
5	$4 \cdot 672$	$4 \cdot 685$	$4 \cdot 697$	$4 \cdot 711$	4.724	$4 \cdot 786$	$4 \cdot 750$	4.768	$4 \cdot 777$	$4 \cdot 790$	5
6	$5 \cdot 607$	$5 \cdot 621$	$5 \cdot 637$	$5 \cdot 653$	5. 669	$5 \cdot 684$	$5 \cdot 700$	5.716	5.782	$5 \cdot 747$	6
7	6.540	$6 \cdot 558$	6.577	6.595	6.614	$6 \cdot 631$	$6 \cdot 650$	$0 \cdot 668$	6.687	6.705	7
8	$7 \cdot 474$	$7 \cdot 494$	$7 \cdot 516$	$7 \cdot 537$	$7 \cdot 558$	$7 \cdot 578$	$7 \cdot 600$	$7 \cdot 621$	$7 \cdot 642$	$7 \cdot 668$	8
9	$8 \cdot 409$	8.481	$8 \cdot 456$	$8 \cdot 479$	$8 \cdot 508$	$8 \cdot 526$	8.550	8.573	8.598	$8 \cdot 621$	9
10	9.84	$9 \cdot 87$	$9 \cdot 40$	9.42	$9 \cdot 45$	$9 \cdot 47$	9-50	$9 \cdot 53$	9.55	$9 \cdot 58$	10
11	$10 \cdot 28$	10.81	10.34	10.36	10.39	10.42	10.45	10.48	$10 \cdot 51$	10.54	11
12	11.21	$11 \cdot 24$	11.27	$11 \cdot 30$	11.84	11.87	11.40	11.43	11.46	11.50	12
18	12.14	$12 \cdot 18$	12.21	12.24	12.28	$12 \cdot 81$	12.85	12.88	12.41	12.45	18
14	18.08	$18 \cdot 12$	$13 \cdot 16$	18.19	18.23	18.26	18.90	18.34	$13 \cdot 37$	18.41	14
15	14.02	14.06	14.10	14.18	14.17	14.21	14.25	14.29	14.88	14.87	15
16	14.95	14.99	15.08	15.07	$15 \cdot 11$	$15 \cdot 15$	$15 \cdot 20$	15.24	15.28	$15 \cdot 38$	16
17	15.88	15.98	15.98	16.02	16.06	$16 \cdot 10$	$16 \cdot 15$	$16 \cdot 19$	16.23	16.28	17
18	16.82	16.87	16.92	16.96	$17 \cdot 01$	17.05	17-10	$17 \cdot 15$	17-19	17-24	18
19	$17 \cdot 76$	$17 \cdot 81$	$17 \cdot 86$	$17 \cdot 90$	17.95	18.00	18.05	18.10	$18 \cdot 15$	18.21	19
20	$18 \cdot 68$	$18 \cdot 74$	18.79	$18 \cdot 84$	18.90	18.95	10.00	$19 \cdot 05$	$19 \cdot 11$	$18 \cdot 16$	20
21	$19 \cdot 62$	19.68	$19 \cdot 73$	19.78	19.84	19.90	10.05	20.00	20.08	20.12	21
22	20.55	$20 \cdot 61$	$20 \cdot 67$	$20 \cdot 72$	$20 \cdot 78$	$20 \cdot 84$	20.90	20.96	21.01	21.07	22
28	21.49	21.55	21.61	$21 \cdot 66$	21.73	21.79	21.85	21.91	21.97	22.08	28
24	22.43	22.49	22.55	22.61	22.68	22.74	22.80	$22 \cdot 86$	22.92	22.99	24
25	23.35	$23 \cdot 42$	28.49	23.65	$23 \cdot 62$	$23 \cdot 69$	$28 \cdot 75$	28.81	28.88	23.95	25
26	24.29	24.36	24.43	24.50	24.57	24.64	24.70	$24 \cdot 77$	24.88	24.90	26
27	25.28	$25 \cdot 80$	25.87	$25 \cdot 44$	$25 \cdot 51$	25.58	$25 \cdot 65$	25.72	$25 \cdot 79$	25.86	27
28	$26 \cdot 16$	26.28	26.30	$26 \cdot 37$	26.45	26.58	26.60	26.67	26.74	$26 \cdot 82$	28
29	$27 \cdot 10$	$27 \cdot 17$	$27 \cdot 24$	$27 \cdot 31$	27.40	$27 \cdot 48$	27.55	$27 \cdot 62$	$27 \cdot 70$	27.78	29
80	20-08	$28 \cdot 10$	$28 \cdot 18$	$28 \cdot 20$	28.34	$28 \cdot 42$	28.50	$28 \cdot 58$	$28 \cdot 66$	$28 \cdot 74$	80
81	28.07	29.04	$29 \cdot 12$	29.20	29.29	$29 \cdot 87$	29.45	20.53	$29 \cdot 62$	$20 \cdot 70$	81
82	20.90	29.98	80.06	30-14	80.23	$80 \cdot 82$	80.40	80.48	80.57	$80 \cdot 66$	82
88	80.88	30.91	81.00	81.08	31.17	81.20	81.35	81.43	81.52	81.61	88
84	$81 \cdot 77$	81.85	31.94	82.03	82-12	82.21	$32 \cdot 80$	82.39	$82 \cdot 48$	82.87	84
85	82.71	82.79	82.88	82.97	83.07	$38 \cdot 16$	33-25	83.84	$83 \cdot 44$	88.58	86
86	$38 \cdot 64$	88.78	83.82	88.91	84.01	$84 \cdot 10$	84.20	84.29	84.89	84.49	86
87	84.57	84.66	84.76	84.88	84.96	85.05	$35 \cdot 15$	85.25	85.85	85.45	87
88	85.50	$85 \cdot 60$	$35 \cdot 70$	85.80	85.90	80.00	86.10	86.20	86.80	36.40	88
89	86.44	86.54	86.64	86.74	88.85	86.95	87.05	97-15	87-26	87.87	89
40	87-88	$87 \cdot 48$	87.58	87-68	87.79	87-89	88.00	$88 \cdot 10$	88.21	88.82	40
41	88.81	88.41	$88 \cdot 52$	38.62	88.74	88.84	88.95	80.05	$89 \cdot 17$	90. 28	11
42	89.23	89.85	$89 \cdot 46$	39.57	89.69	89.79	89.90	40.01	$40 \cdot 12$	$40 \cdot 28$	42
48	40.18	40.29	$40 \cdot 40$	40.51	$40 \cdot 62$	40.78	40.85	40.00	41.08	41.19	48
44	41.11	41.22	41.84	41.44	41.56	41.68	41.80	41.01	42.08	42.16	44
45	42.05	42.16	42-28	42.89	42.52	$42 \cdot 68$	$42 \cdot 75$	42.87	42.90	48.11	45
46	42-98	$48 \cdot 10$	48-22	48.84	48.46	48.58	$48 \cdot 70$	48.82	48.94	44.06	46
47	48.91	44.08	44.15	44.27	41540	44.52	44.65	44.77	44.90	45.08	4
48	44.84	44.96	45.09	45.22	45.85	45.47	45.60	$45 \cdot 72$	$45 \cdot 85$	45.98	48
49	$45 \cdot 78$	45.91	46.04	$46 \cdot 17$	46.80	46.42	46.55	$46 \cdot 67$	46.80	46.94	49
60	46-72	46.85	46.97	47.11	47.24	47.88	47.80	47.68	$47 \cdot 77$	47.00	60

volumes of gases to a pressure of 760 mm .
O., and 2 mm . between 18° and $19^{\circ} \mathrm{C} ., 8 \mathrm{~mm}$. between 20° and $25^{\circ} \mathrm{C}$., to compensato of mercury.

760	710	712	714	716	718	720	722	724	726	728	760
61	47.65	$47 \cdot 79$	47.92	48.05	$48 \cdot 18$	48.31	$48 \cdot 45$	48.59	48.78	48.80	51
62	48.58	$48 \cdot 72$	$48 \cdot 85$	48.99	$49 \cdot 18$	49.26	49.40	$49 \cdot 54$	$49 \cdot 68$	$49 \cdot 82$	52
58	49.52	$49 \cdot 66$	49.79	49.98	50.07	50.21	50.85	50.48	50.64	50.78	58
64	50.45	50.59	50.78	50.87	51.01	51-15	51.80	51.44	51.69	51.78	54
65	51.88	51.58	51.07	5I-82	51.96	52-10	62.25	52.39	$52 \cdot 54$	52.69	55
56	52.82	52.47	52.61	62.76	52.91	58.05	53.20	53.85	58.50	53.65	56
57	58.25	53.41	53.55	53.70	58.85	54.00	54.15	54.30	54.45	$54 \cdot 60$	57
58	54.19	54.84	54.49	54.64	54.79	54.94	$55 \cdot 10$	55.25	55.41	55.56	58
59	$55 \cdot 18$	55.28	55.48	55.59	55.74	55.89	56.05	56.21	56.37	56.52	59
60	56.07	56.22	56.37	56.53	56.69	56.84	57.00	57-16	57-32	57-47	60
61	57.00	57-15	57.31	57.47	57-63	57.79	57.95	58.11	58.27	58.43	01
62	57.93	58.09	58.25	58.41	58.58	5s.74	$58 \cdot 90$	59.06	59.23	59.89	62
63	58.87	59.08	59•19	59.85	59.52	59.68	59.85	60.01	$60 \cdot 18$	60.85	68
64	$59 \cdot 80$	50.96	60.13	60. 80	60.47	60.63	$60 \cdot 80$	60.97	61.14	$61 \cdot 30$	64
65	00.74	60.90	61.07	61.24	61.41	61.58	61.75	61.92	62.09	62.26	65
68	61.67	61.84	62.01	62.18	62.35	62.52	62.70	62.87	68.05	63.22	66
67	62.60	62.77	62.95	68.12	63.80	68.47	$68 \cdot 65$	63.82	64.00	64•18	67
68	63.54	68.71	63.89	64.06	64-24	$64 \cdot 42$	$64 \cdot 60$	$64 \cdot 78$	64.96	$65 \cdot 18$	68
69	64.47	64.65	64.83	65.01	65.19	65•37	65.55	65.73	65.91	66.09	69
70	$65 \cdot 40$	03.58	$65 \cdot 77$	$65 \cdot 05$	60-14	66.32	66.50	66.68	66.87	67.05	70
71	66.34	60.52	66.71	60.89	67.08	67-20	67.45	67.63	67.82	68.01	71
72	67-27	67-46	$67 \cdot 65$	$67 \cdot 83$	68.02	68.21	$68 \cdot 40$	68.59	$68 \cdot 78$	68.97	72
78	68.20	68.89	68.58	$68 \cdot 77$	65.97	69.16	$69 \cdot 35$	$69 \cdot 54$	69.73	69.92	78
74	69-14	69.38	69.53	69.72	69.92	$70 \cdot 11$	70.80	70.49	$70 \cdot 69$	70.88	74
75	70.07	70.27	$70 \cdot 47$	$70 \cdot 60$	70.86	71.05	$71 \cdot 25$	71.44	71.64	71.84	75
76	71.01	71.21	71.41	71.60	71.80	72.00	$72 \cdot 20$	72.40	72.60	72.80	76
77	71.94	72-14	72.84	72.54	72.75	72.95	$73 \cdot 15$	$73 \cdot 35$	78.55	78.75	77
78	$72 \cdot 87$	78.07	73.23	$73 \cdot 48$	$73 \cdot 69$	73.89	$74 \cdot 10$	74.30	74.51	74.71	78
79	78-80	74.01	74-22	74.42	74.63	74.84	75.05	75.25	$75 \cdot 46$	75.67	79
80	74.74	74.94	$75 \cdot 16$	$75 \cdot 37$	75.58	75.78	76.00	76.21	76.42	76.63	80
81	$75 \cdot 67$	75.88	$76 \cdot 10$	76.81	76.58	76.74	76.95	$77 \cdot 16$	77.87	$77 \cdot 58$	81
82	76.60	73.82	77.04	$77 \cdot 25$	$77 \cdot 47$	$77 \cdot 68$	77.90	$78 \cdot 11$	78.88	78.54	88
88	$77 \cdot 64$	$77 \cdot 76$	77.98	$78 \cdot 19$	$78 \cdot 41$	78.68	78.85	79.07	$79 \cdot 28$	79.50	88
84	$78 \cdot 47$	78.69	78.91	$79 \cdot 18$	$79 \cdot 85$	79.57	$79 \cdot 80$	80.02	80.24	80.46	84
85	79-41	79-63	$79 \cdot 86$	80.08	80.81	$80 \cdot 58$	$80 \cdot 75$	80.97	$81 \cdot 19$	81.41	85
86	80.84	80.57	80.80	81.02	81.25	81.47	$81 \cdot 70$	81.92	82.15	82.87	86
87	81.28	$81 \cdot 50$	81.74	81.96	82-19	$82 \cdot 42$	82.65	82.87	$88 \cdot 10$	83.88	87
88	82.21	82-44	82.68	82.90	$88 \cdot 18$	$83 \cdot 80$	88.60	83.88	84.06	84.29	88
89	88.15	88.88	88.62	83.85	81.08	84.81	84.55	$84 \cdot 78$	85.02	85.25	89
90	84.09	84-81	84.56	$84 \cdot 79$	8508	$85 \cdot 26$	$85 \cdot 50$	85.78	85.98	86.81	90
91	85.02	85.25	85.50	85.78	85.98	86.21	86.45	86.69	86.98	$87 \cdot 17$	91
98	85.95	$86 \cdot 19$	86.44	86.68	86.92	$87 \cdot 16$	$87 \cdot 40$	$87 \cdot 64$	$87 \cdot 89$	88.18	98
98	86.89	$87 \cdot 12$	$87 \cdot 38$	$87 \cdot 62$	$87 \cdot 87$	$88 \cdot 11$	88.85	88.59	88.84	89.08	98
94	87.82	88.06	88.82	88.66	88.81	89.05	$89 \cdot 30$	$89 \cdot 54$	$89 \cdot 80$	90.04	94
95	88.76	89.01	89.26	89.50	89.75	00.00	$90 \cdot 25$	90.50	90.75	91.00	95
96	$89 \cdot 69$	89.94	90.20	90.45	00.70	90.95	91.20	01.45	91.70	91.05	96
97	90.62	90.87	91.18	91.38	91.64	91.89	92.15	92.40	$92 \cdot 66$	98.01	97
98	91.56	01.82	92.07	92.88	02.59	98.84	$88 \cdot 10$	93.85	$98 \cdot 62$	98.87	98
99	98.49	$92 \cdot 76$	98.01	98.26	98-58	08.79	94.05	94-81	94.57	94.83	99
100	08.48	98.68	98.95	94.91	$94 \cdot 47$	94,74	96.00	95-26	95.58	95.79	100

TABLE 12-Continued. II. Table for reducing the

760	780	732	734	736	738	740	742	744	746	748	760
1	0.961	0.963	0.966	0.968	0.971	0.974	0.976	0.979	0.982	0.984	1
2	1.921	1.926	1.032	1.937	1.942	1.947	1.953	1.958	1.963	$1 \cdot 968$	2
8	$2 \cdot 852$	2.889	2.898	$2 \cdot 905$	$2 \cdot 913$	$2 \cdot 921$	$2 \cdot 929$	2.937	2.945	$2 \cdot 953$	8
4	$8 \cdot 842$	3.852	3.864	3.874	3.884	3.895	3.905	3.916	8.926	3.937	4
5	4.803	4.816	4.830	4.842	$4 \cdot 855$	$4 \cdot 868$	4.882	4.895	$4 \cdot 908$	4.921	5
6	$5 \cdot 763$	5.779	5•796	$5 \cdot 810$	5.826	5.842	$5 \cdot 558$	$5 \cdot 874$	$5 \cdot 890$	$5 \cdot 905$	6
7	$6 \cdot 724$	6.742	6.762	6.779	$6 \cdot 797$	$6 \cdot 816$	$6 \cdot 534$	$0 \cdot 858$	6.871	6.889	7
8	$7 \cdot 684$	$7 \cdot 705$	7.728	$7 \cdot 747$	$7 \cdot 768$	$7 \cdot 790$	$7 \cdot 810$	$7 \cdot 832$	$7 \cdot 853$	$7 \cdot 874$	8
9	$8 \cdot 645$	8.668	$8 \cdot 693$	8.716	8.739	8.763	8.757	8.811	8.834	8.858	9
10	$9 \cdot 61$	9.63	$9 \cdot 66$	$9 \cdot 68$	9.71	$8 \cdot 74$	$9 \cdot 76$	9.79	9.82	9.84	10
11	10.57	10.59	$10 \cdot 62$	10.65	10.68	10.71	10.74	10.77	10.80	10.82	11
12	11-53	11.56	11.59	11.62	11.65	$11 \cdot 68$	11.71	11.75	11.78	11.81	12
18	12.49	12.52	12.55	12.59	$12 \cdot 62$	12.66	12.69	12.78	12.76	12.79	18
14	18.45	13.48	13.52	13.50	13.59	13.63	13.66	18.70	18.74	18.78	14
15	14-41	14.44	14.48	14.52	14.56	14.60	14.64	$14 \cdot 69$	14.73	14.77	15
16	15.87	15.41	$15 \cdot 45$	$15 \cdot 49$	15.53	15.58	$15 \cdot 62$	15.67	15.71	15.75	10
17	16.33	$16 \cdot 37$	16.41	16.46	16.50	16.55	$16 \cdot 60$	16.65	16.69	16.73	17
18	17-29	$17 \cdot 33$	17-38	17.43	$17 \cdot 47$	$17 \cdot 52$	$17 \cdot 57$	$17 \cdot 62$	$17 \cdot 67$	$17 \cdot 72$	18
19	$18 \cdot 25$	$18 \cdot 29$	$18 \cdot 35$	$18 \cdot 40$	18.45	$18 \cdot 50$	18.55	18.60	18.65	$18 \cdot 70$	19
20	$19 \cdot 21$	$19 \cdot 26$	$19 \cdot 32$	$19 \cdot 87$	$19 \cdot 42$	19.47	$19 \cdot 53$	10.58	$19 \cdot 63$	$19 \cdot 68$	20
21	20.17	20.22	20.28	20.34	20.39	20.44	$20 \cdot 50$	20.50	20.61	20.66	21
22	$21 \cdot 13$	21.19	21.25	$21 \cdot 31$	21.86	$21 \cdot 42$	21.48	21.54	21.59	21.65	22
23	22.09	$22 \cdot 15$	22.21	$22 \cdot 27$	22.33	22.39	22.45	22.51	22.57	22.64	23
24	23.05	$23 \cdot 11$	23.18	23.24	$23 \cdot 30$	23.36	28.43	$23 \cdot 50$	23.56	23.63	24
25	24.01	24.07	$24 \cdot 14$	$24 \cdot 21$	24.27	$24 \cdot 34$	24.41	24.48	$24 \cdot 54$	$24 \cdot 61$	25
26	24.97	25.04	$25 \cdot 11$	$25 \cdot 18$	25.24	$25 \cdot 31$	25.88	$25 \cdot 45$	$25 \cdot 52$	$25 \cdot 59$	26
27	25.93	28.00	28.07	26.14	26.21	26.28	26.30	28.43	$26 \cdot 50$	$26 \cdot 58$	27
28	26.89	26.96	27.04	27-12	$27 \cdot 18$	27.26	27.83	27.41	$27 \cdot 43$	27.50	28
29	27:85	27.92	$23 \cdot 00$	28.08	28.15	28.23	28.81	$28 \cdot 39$	28.47	28.55	29
80	28.82	28.89	$28 \cdot 97$	29.05	$29 \cdot 13$	$29 \cdot 21$	$29 \cdot 29$	$29 \cdot 37$	29.45	29.53	80
81	29.78	29.86	29.94	30.02	30.10	30.18	30.26	80.85	80.48	80.51	81
32	80.74	30.82	30.91	30.99	31.07	81.15	31.24	81.38	81.41	81.50	82
88	31.70	81.78	31.87	31.96	32.04	32.13	32.21	$32 \cdot 30$	32.39	82.48	33
84	32.66	32.75	$32 \cdot 84$	32.98	32.01	$33 \cdot 10$	$33 \cdot 19$	83.28	83.37	33.46	84
85	$33 \cdot 62$	33.71	$33 \cdot 80$	33.89	33.98	84.07	$34 \cdot 17$	$84 \cdot 27$	84.36	84.45	85
86	84.58	34.67	$34 \cdot 77$	34-86	34.95	85.05	$85 \cdot 15$	$85 \cdot 25$	$85 \cdot 34$	85.48	86
87	85.54	85.63	85.73	85-85	85.92	38.02	36.12	86.22	36.82	36.42	87
38	88.50	86.60	36.70	80.80	36.90	37.00	$87 \cdot 10$	$37 \cdot 20$	37-80	$87 \cdot 40$	88
89	87.47	87.57	37.67	37-77	$37 \cdot 87$	37.97	88.07	$88 \cdot 18$	88.28	38.89	89
40	88.42	88.52	38.64	38.74	38.84	38.05	89.05	$89 \cdot 16$	30-26	89.37	40
41	89.88	99.48	$39 \cdot 60$	89.71	39.81	89.92	40.02	$40 \cdot 14$	40.24	40.86	41
42	$40 \cdot 84$	$40 \cdot 44$	40.56	$40 \cdot 68$	40.78	$40 \cdot 89$	41.00	41.12	41.22	$41 \cdot 84$	42
48	$41 \cdot 80$	41.41	41.58	41.64	41.75	41.86	41.97	$42 \cdot 10$	42.20	42.82	48
44	$42 \cdot 27$ 18.22	42.88	42.50	42.62 43.58	42.78	$42 \cdot 84$	42.05	48.07	$48 \cdot 18$ 44	$48 \cdot 80$	44
45	$48 \cdot 22$	$48 \cdot 34$	48.46	43.58	$43 \cdot 69$	$43 \cdot 81$	43.98	44.06	$44 \cdot 17$	$44 \cdot 29$	45
46	44.18	$44 \cdot 80$	44.42	$44 \cdot 54$	$44 \cdot 66$	44.78	44.90	45.08	$45 \cdot 15$	45.27	46
47	$45 \cdot 15$	$45 \cdot 26$	$45 \cdot 89$	$45 \cdot 52$	$45 \cdot 64$	45.76	45.88	46.01	43.18	46.26	47
48	$46 \cdot 10$	$46 \cdot 28$	48.88	46.49 47	46.61	46.78	46.85	46.99	$47 \cdot 12$	47.24	48
49	47.06 48.08	$47 \cdot 19$ 48.16	47.82 48.30	$47 \cdot 44$ 48.42	$47 \cdot 57$ 48.55	47.70 48.68	47.88 48.82	47.97 48.95	$48 \cdot 10$ 49.08	$48 \cdot 28$ 49.21	49
EC	48.03	$48 \cdot 16$	48.30	48.42	48.55	$48 \cdot 68$	$48 \cdot 82$	48.95	49.08	$49 \cdot 21$	60

volumes of gases to a pressure of 760 mm .-Continued.

760	730	732	734	786	738	740	742	744	746	748	760
51	48.90	$49 \cdot 12$	49.26	49.39	$49 \cdot 52$	49.65	$49 \cdot 79$	49.93	50.06	$50 \cdot 19$	51
52	49.96	50.08	50.22	$50 \cdot 36$	$50 \cdot 49$	50.68	50.77	50.91	51.04	$51 \cdot 18$	52
53	50.91	51.05	51.19	51.33	51.46	51.60	51.75	51.89	52.02	$52 \cdot 16$	53
54	51.87	52.01	52.16	52-30	52.44	52.58	52.72	52.87	53.01	53.15	54
55	52.83	52.98	$53 \cdot 13$	$53 \cdot 27$	63.41	53.55	53.70	53.85	53.99	54.14	55
56	63.79	53.94	54.09	54.23	54.87	54.52	54.68	54.83	54.97	$55 \cdot 11$	56
57	54.75	54.90	55.05	$55 \cdot 20$	55-35	55.50	$55 \cdot 65$	55.80	55.95	56.10	57
58	$55 \cdot 71$	55.86	60.02	$56 \cdot 17$	56.32	56.47	56.68	56.78	50.98	57.08	58
59	56.67	56.83	56.99	57-14	57-29	57-44	$57 \cdot 60$	$57 \cdot 76$	57.92	58.07	59
60	$57 \cdot 63$	$57 \cdot 79$	57.05	$58 \cdot 10$	58.26	58.42	58.58	58.74	58.90	59.05	60
61	58.69	58.75	58.01	59.07	59.23	59.39	59.66	59.72	59.88	60.04	61
62	59.55	59.72	$59 \cdot 88$	60.04	60.20	60.36	60.53	60.70	60.86	61.02	62
63	60.51	60.68	60.85	61.01	$61 \cdot 17$	$61 \cdot 34$	61.51	61.68	61.84	62.00	63
64	$61 \cdot 47$	61.64	61.81	01.08	$62 \cdot 15$	62.32	62.49	62.66	$62 \cdot 82$	62.09	64
65	$62 \cdot 43$	$62 \cdot 60$	62.77	$62 \cdot 94$	$63 \cdot 11$	$63 \cdot 28$	$63 \cdot 46$	$63 \cdot 64$	63.81	63.98	65
66	68.39	$63 \cdot 57$	63.74	63.91	64.08	64.20	64.44	64.62	64.79	64.96	66
67	64.35	64.53	64.71	44.58	65.05	65.23	65.41	65.59	$65 \cdot 77$	65.94	67
68	65.81	$65 \cdot 50$	65.68	6j-85	66.02	$40 \cdot 10$	$66 \cdot 38$	66.50	66.74	66.92	68
69	$66 \cdot 27$	06.45	66.64	$66 \cdot 82$	c7.00	$67 \cdot 18$	67-37	67-55	67.73	67.91	69
70	67-24	67-42	67.61	67.79	67.97	$68 \cdot 10$	$68 \cdot 34$	68.53	68.71	68.89	70
71	68.20	68.39	68.58	68.76	$65 \cdot 94$	69.13	69.32	69.51	69.09	69.88	71
72	$69 \cdot 16$	$69 \cdot 35$	$69 \cdot 54$	69.73	09.92	$70 \cdot 11$	$70 \cdot 30$	70.49	70.68	$70 \cdot 86$	72
78	$70 \cdot 12$	$70 \cdot 81$	70.51	70.69	70.88	71.08	$71 \cdot 27$	$71 \cdot 47$	71.68	71.85	78
74	71.08	71.28	71.48	$71 \cdot 66$	71.55	72.05	$72 \cdot 25$	$72 \cdot 45$	$72 \cdot 64$	72.83	74
75	72.04	$72 \cdot 24$	$72 \cdot 44$	$72 \cdot 63$	72.82	73.02	$78 \cdot 22$	$73 \cdot 42$	$78 \cdot 62$	78.82	75
76	$78 \cdot 00$	78.20	78.40	$73 \cdot 60$	73.80	74.00	$74 \cdot 20$	$74 \cdot 40$	$74 \cdot 60$	$74 \cdot 80$	76
77	73.96	$74 \cdot 17$	$74 \cdot 37$	$74 \cdot 57$	74-77	74.97	$75 \cdot 18$	$75 \cdot 39$	75.59	$75 \cdot 79$	77
78	74.03	$75 \cdot 12$	$75 \cdot 33$	$75 \cdot 53$	$75 \cdot 74$	75.95	$76 \cdot 16$	$70 \cdot 37$	76.57	$76 \cdot 77$	78
79	$75 \cdot 88$	76.09	76.30	$76 \cdot 50$	76.71	76.92	$77 \cdot 13$	$77 \cdot 34$	77.55	$77 \cdot 75$	79
80	$76 \cdot 84$	$77 \cdot 05$	$77 \cdot 27$	$77 \cdot 47$	$77 \cdot 58$	$77 \cdot 90$	78-10	$78 \cdot 32$	78.53	78.74	80
81	$77 \cdot 80$	78.02	78.23	78.44	$75 \cdot 65$	78.87	79.08	79.30	79.51	79.72	81
82	78.70	78.98	$79 \cdot 20$	79.41	$79 \cdot 62$	79.84	80.06	80.28	$80 \cdot 50$	50.71	82
83	$79 \cdot 72$	$79 \cdot 94$	$80 \cdot 16$	80.3s	80.60	80.82	81.04	\$1.26	81.48	81.69	83
84	$80 \cdot 68$	80.00	81.12	81.34	$81 \cdot 56$	\$1.79	82.01	82.24	82.40	82.68	84
85	$81 \cdot 64$	81.87	$82 \cdot 10$	8:31	$82 \cdot 53$	S2.76	$82 \cdot 99$	$83 \cdot 22$	83.44	$83 \cdot 60$	85
86	$82 \cdot 6$	82.83	83.06	83.28	$83 \cdot 50$	83.73	83.97	84-20	84.42	84.64	86
87	$83 \cdot 56$	83.79	84.02	84.25	84.48	S4.71	84.94	$85 \cdot 17$	$85 \cdot 40$	$85 \cdot 62$	87
88	$84 \cdot 52$	84.76	85.00	85.22	85.45	85.68	S5.92	$86 \cdot 15$	86.35	86.61	88
89	85.48	S5•72	85.98	$86 \cdot 19$	81.42	86.66	86.89	$87 \cdot 13$	$87 \cdot 36$	87-59	89
90	86.45	$80 \cdot 68$	S6:03	87-1;	57-39	87.63	$87 \cdot 87$	$88 \cdot 11$	$88 \cdot 34$	88.58	90
01	$87 \cdot 41$	$87 \cdot 65$	87-89	8S.12	$88 \cdot 36$	88.61	85.85	89.09	89.33	$89 \cdot 56$	91
92	$88 \cdot 37$	$85 \cdot 61$	88.86	89.09	59.33	$89 \cdot 58$	$89 \cdot 82$	90.07	90.31	90.55	92
03	$89 \cdot 38$	$80 \cdot 57$	89.82	90.06	$90 \cdot 30$	90.55	90.50	91.05	$91 \cdot 29$	91.53	93
94	$90 \cdot 29$	90.54	90.79	91.03	$91 \cdot 27$	91.53	91.78	92.08	$92 \cdot 27$	92.51	94
95	$01 \cdot 25$	$01 \cdot 50$	$91 \cdot 75$	92:00	02-25	$92 \cdot 50$	92.75	93.00	03.25	98.50	95
96	02.21	92.46	02.72	92.97	93.22	93.47	98.73	$93 \cdot 08$	94.23	$04 \cdot 48$	96
97	$08 \cdot 17$	03.48	98.68	03.93	94-19	94.45	$94 \cdot 71$	$94 \cdot 96$	95.22	$05 \cdot 47$	97
98	94-18	$04 \cdot 39$	94.65	94.00	$05 \cdot 16$	95.42	95.68	95.94	96.20	96.45	98
99	95.09	05.85	$95 \cdot 61$	95.87	96.18	96.39	96.66	96.92	97.18	97.48	99
100	96.05	96.82	90:58	$96 \cdot 84$	$97 \cdot 11$	97-87	97.63	97.89	08.16	08.42	100

TABLE I:--Continued. II. Table for reducing the

760	750	752	754	750	758	762	764	766	768	770	760
1	0.987	0.089	0.992	0.995	0.997	1.003	1.005	1.008	1.011	1.018	1
2	1.974	1.979	1.984	1.989	1.995	$2 \cdot 005$	2.011	$2 \cdot 616$	$2 \cdot 021$	$2 \cdot 626$	2
8	2.960	2.968	$2 \cdot 976$	2.984	$2 \cdot 982$	8.007	8.016	8.024	8.032	8.089	8
4	8.947	8.958	3.968	8.979	8.990	4.010	4.021	4.082	$4 \cdot 042$	4.052	4
5	4.984	4.947	$4 \cdot 960$	4.974	$4 \cdot 987$	5.013	$5 \cdot 026$	$5 \cdot 040$	5.053	5.066	5
6	5.921	5.937	$5 \cdot 952$	5.968	5.984	6.016	6.032	6.047	0.088	6.079	6
7	$6 \cdot 908$	6.926	6.944	0.963	6.082	$7 \cdot 018$	7.037	$7 \cdot 055$	$7 \cdot 974$	$7 \cdot 092$	7
8	$7 \cdot 894$	7.916	7.936	7.958	-979	8.021	$8 \cdot 012$	$8 \cdot 063$	8.984	$8 \cdot 100$	8
9	8.881	8.985	8.929	8.952	8.977	0.023	$9 \cdot 045$	9.071	$9 \cdot 095$	$9 \cdot 119$	9
10	9-87	$9 \cdot 80$	$9 \cdot 92$	9.95	9.97	10.03	10.05	10.08	$10 \cdot 11$	$10 \cdot 13$	10
11	10.85	10.88	10.91	10.94	10.97	11.03	11.06	11.09	11.12	11.14	11
12	11.84	11.87	11.90	11.94	11.97	12.04	12.97	$12 \cdot 10$	$12 \cdot 18$	$12 \cdot 16$	12
13	$12 \cdot 83$	12.80	12.89	12.93	12.96	18.04	13.07	$13 \cdot 10$	$13 \cdot 14$	$18 \cdot 17$	18
14	$18 \cdot 82$	$13 \cdot 85$	13.88	13:02	$13 \cdot 96$	14.04	14.07	$14 \cdot 11$	14.15	14.17	14
15	14.81	14.84	14.87	14.92	14.96	15.04	15.08	15.12	$15 \cdot 16$	$15 \cdot 19$	15
16	$15 \cdot 79$	15.83	$15 \cdot 87$	$15 \cdot 91$	15.95	16.05	16.99	16.18	$10 \cdot 17$	16.21	16
17	$16 \cdot 78$	10.82	16.80	16.91	16.95	17.05	$17 \cdot 99$	$17 \cdot 14$	17.1S	$17 \cdot 22$	17
18	$17 \cdot 77$	17.81	17.85	$17 \cdot 90$	17.95	$18 \cdot 05$	18.10	18.15	18.19	18.23	18
19	18.75	$18 \cdot 50$	18.85	18.99	18.95	$19 \cdot 0.5$	$19 \cdot 10$	$19 \cdot 15$	19) 20	$10 \cdot 25$	19
20	19.74	$18 \cdot 79$	$19 \cdot 84$	19.89	19.95	20.05	$20 \cdot 11$	$20 \cdot 10$	$20 \cdot 21$	$20 \cdot 26$	20
21	20.72	2977	20.83	$20 \cdot 89$	20.94	21.05	21.11	21.17	$21 \cdot 22$	$21 \cdot 27$	21
22	$21 \cdot 71$	21.76	21.82	21.88	21.94	$22 \cdot 06$	$22 \cdot 12$	$22 \cdot 18$	$22 \cdot 23$	$22 \cdot 28$	22
23	22.70	$22 \cdot 75$	22.81	22.88	22.04	23.00	$23 \cdot 12$	$23 \cdot 18$	23.24	23.80	28
24	23.69	23.74	23.80	23.87	23.93	24.06	$24 \cdot 13$	24.19	24.25	24.31	24
25	24.67	24.73	24.80	$24 \cdot 87$	24.93	25.06	$25 \cdot 13$	$25 \cdot 20$	$25 \cdot 26$	$25 \cdot 32$	25
26	25.60	$25 \cdot 72$	25.79	25.86	25.03	26.06	$20 \cdot 14$	20.21	26.27	20.34	26
27	20.65	$20 \cdot 71$	26.78	26.80	26.93	27.07	$27 \cdot 15$	27.22	27.28	$27 \cdot 35$	27
28	$27 \cdot 68$	$27 \cdot 70$	$27 \cdot 77$	27.85	27.92	$28 \cdot 97$	28.15	28.23	28.29	25.86	28
29	$28 \cdot 62$	28.69	28.70	28.84	28.92	$29 \cdot 67$	29.16	29.24	29.30	$29 \cdot 37$	29
80	$29 \cdot 60$	29.68	29.76	29.84	29.92	80.07	80.16	$80 \cdot 24$	30.82	$30 \cdot 39$	80
81	$30 \cdot 59$	30.67	80.75	30.84	80.92	31.08	81-17	31.25	81.33	31.41	81
82	31.58	81.66	31.74	31.83	81.92	32.08	$32 \cdot 17$	32.20	32.34	$32 \cdot 42$	82
83	32.56	32.65	32.73	32.82	$32 \cdot 91$	33.08	33.18	$33 \cdot 27$	33.85	83.48	38
84	33.55	33.64	33.73	33.82	83.01	34.09	34-18	3425	34.86	84.45	84
35	84.54	34.68	34-72	84.82	34.01	85.09	35-10	$35 \cdot 28$	06.87	85.46	85
88	85.52	$35 \cdot 62$	$35 \cdot 71$	35.81	35.91	86.09	3i.19	30.29	86.88	36.47	96
87	86.51	36.61	$36 \cdot 71$	36.81	36.90	37.09	87.20	$37 \cdot 30$	87.89	$87 \cdot 49$	87
88	37-50	87.60	$37 \cdot 70$	87.80	37.90	$88 \cdot 10$	38.20	38.30	83.40	88.50	88
39	$38 \cdot 49$	88.59	$38 \cdot 69$	38.80	$38 \cdot 90$	39-10	89.21	$80 \cdot 31$	89.41	89.51	89
40	$89 \cdot 47$	$39 \cdot 58$	$39 \cdot 68$	89.79	89.00	$40 \cdot 10$	$40 \cdot 21$	$40 \cdot 32$	$40 \cdot 42$	40.62	40
41	40.46	40.56	40.67	40.79	$40 \cdot 89$	$41 \cdot 11$	41.22	41.83	41.43	41.54	41
42	41.44	41.55	41.66	41.78	41.89	$42 \cdot 11$	42.22	42.34	42.44	42.65	42
48	$42 \cdot 43$	42.54	42.66	42.78	42.89	$43 \cdot 11$	43.23	43.35	43.45	43.50	48
44	$48 \cdot 42$	$43 \cdot 53$	43.65	43.77	43.89	$44 \cdot 12$	$44 \cdot 23$	$44 \cdot 35$	$44 \cdot 46$	44.58	44
45	44.40	$44 \cdot 52$	$44 \cdot 64$	$44 \cdot 76$	44.88	$45 \cdot 12$	$45 \cdot 24$	45.80	$45 \cdot 47$	$45 \cdot 59$	45
46	45.89	$45 \cdot 51$	45.63	45.76	45.88	4C.12	40.24	46.86	$46 \cdot 48$	40.60	46
47	46.88	46.50	46.68	46.76	46.88	$47 \cdot 12$	$47 \cdot 25$	$47 \cdot 88$	$47 \cdot 49$	47.61	47
48	$47 \cdot 86$	$47 \cdot 49$	$47 \cdot 62$	47.75	47.87	$48 \cdot 18$	48.25	48.39	48.51	$48 \cdot 68$	48
49	48.85	$48 \cdot 48$	$48 \cdot 61$	48.74	48.87	$49 \cdot 18$	$49 \cdot 26$	49.40	$49 \cdot 52$	49.64	40
50	49.84	$49 \cdot 47$	$49 \cdot 60$	$49 \cdot 74$	49.87	50.18	50.26	B0.40	60.68	$50 \cdot 66$	50

REDUCTION OF THE VOLUME OF GASES • 31

volumes of gases to a pressure of 760 mm .-Continusd.

760	750	752	754	750	758	762	764	766	768	770	760
51	50.33	$50 \cdot 46$	50.60	50.74	50.87	$51 \cdot 14$	51.27	51.41	$51 \cdot 54$	61.67	51
52	51.82	51.45	51.59	51.73	51.87	$62 \cdot 14$	62.28	$52 \cdot 42$	52.55	$52 \cdot 68$	52
58	$52 \cdot 30$	52.44	52.58	52.73	52.87	53.14	$63 \cdot 28$	53.42	53.56	53.70	53
54	58.29	58.43	53.57	53.72	$53 \cdot 86$	54.14	$54 \cdot 28$	54.43	$54 \cdot 57$	$54 \cdot 72$	54
55	54.28	54.42	54.50	54.71	$54 \cdot 86$	$55 \cdot 15$	$5 \overline{5} \cdot 29$	55.44	55.58	$55 \cdot 73$	55
56	55.20	55.41	55.53	55.71	$55 \cdot 86$	56.15	56.29	56.45	56.59	50.74	56
57	56.25	56.40	56.55	56.70	56.85	$57 \cdot 15$	$57 \cdot 30$	57.45	$57 \cdot 60$	57.76	57
58	$57 \cdot 24$	57.39	57-54	57.69	57.85	58.15	$58 \cdot 30$	58.46	58.61	58.77	58
59	58.22	$58 \cdot 38$	58.53	$58 \cdot 69$	58.85	$59 \cdot 16$	$59 \cdot 31$	59.47	$59 \cdot 62$	59.78	59
60	$59 \cdot 21$	$59 \cdot 37$	$50 \cdot 52$	$59 \cdot 68$	59.84	$60 \cdot 16$	60.32	60.47	60. 63	$60 \cdot 79$	60
61	60.20	60.36	60.52	60.68	60.84	$61 \cdot 16$	91.32	61.48	$61 \cdot 64$	61.81	61
62	61-19	61.35	61.51	61.67	61.84	$62 \cdot 10$	$62 \cdot 33$	62.49	$62 \cdot 65$	62.82	62
63	62.17	62.84	62.50	$62 \cdot 67$	62.53	$63 \cdot 17$	63.33	63.50	63.67	63.84	63
04	$63 \cdot 16$	$63 \cdot 33$	(i3.49	6366	c3.83	$64 \cdot 17$	$64 \cdot 34$	$64 \cdot 51$	$64 \cdot 68$	64.85 '	64
65	64.15	64.32	0449	64.66	$64 \cdot 83$	$65 \cdot 17$	6-3.34	$65 \cdot 51$	$65 \cdot 69$	$65 \cdot 86$	65
60	$65 \cdot 13$	$65 \cdot 31$	65.48	$65 \cdot 65$	65.82	$66 \cdot 17$	68.35	66.52	$60 \cdot 70$	$66 \cdot 88$	66
67	$60 \cdot 12$	$66 \cdot 30$	616.47	(itiog	$66 \cdot 52$	6.18	67\%3;	$67 \cdot 53$	${ }^{67} 71$	67.88	67
68	67-10	67-29	67.46	$67 \cdot 64$	67.82	68.18	$65 \cdot 30$	68.54	68.72	$68 \cdot 90$	68
69	$6 \mathrm{~S} \cdot 09$	68.28	68.45	68.63	68.82	$65 \cdot 18$	$69 \cdot 30$	69.54	$69 \cdot 73$	$69 \cdot 91$	69
70	69.08	$69 \cdot 26$	60.44	$69 \cdot 63$	69.82	T0.18	$70 \cdot 37$	70.55	70.74	70.92	70
71	70.07	7025	70.43	70.62	T0.81	$71 \cdot 19$	$71 \cdot 37$	71.56	71.75	71.94	71
72	71.05	71.24	71.43	71.62	71.81	$72 \cdot 19$	72.88	72.57	72.70	72.95	72
73	72.04	72.23	7\%42	72.61	72.81	$73 \cdot 19$	$73 \cdot 38$	73.57	73.77	73.97	73
74	73.03	73.22	73.41	73.61	73.50	$74 \cdot 19$	$74 \cdot 39$	74.58	74.78	74.98	74
75	74.01	$74 \cdot 21$	74.40	$74 \cdot 60$	$74 \cdot 80$	$75 \cdot 20$	$75 \cdot 39$	$75 \cdot 59$	$75 \cdot 79$	75.99	75
76	75.00	$75 \cdot 20$	75.40	75.60	$75 \cdot 80$	70.20	76.40	70.60	76.80	77.01	76
77	$75 \cdot 69$	$76 \cdot 19$	76.39	70.59	76.79	$77 \cdot 20$	77.40	$77 \cdot 60$	$77 \cdot 81$	78.02	77
78	$76 \cdot 97$	$77 \cdot 18$	77.38	77.58	77.79	75.20	$78 \cdot 41$	75.61	78.82	79.03	78
79	776	78.17	75.37	7s.5s	78.79	79.21	79.41	79.62	79.83	80.04	79
80	78-94	$79 \cdot 16$	$79 \cdot 36$	$79 \cdot 58$	70.79	$80 \cdot 21$	$80 \cdot 42$	80.63	$80 \cdot 84$	81.00	80
81	$79 \cdot 93$	S0.15	80.35	80.57	80.79	81.21	81.42	81.61	$81 \cdot 85$	82.07	81
82	$80 \cdot 92$	$81 \cdot 14$	$81 \cdot 35$	$81 \cdot 56$	81.78	$82 \cdot 41$	$82 \cdot 43$	82.65	$82 \cdot \mathrm{~S} 7$	83.09	82
83	81.91	$82 \cdot 13$	82.3.1	$82 \cdot 50$	s2.78	8322	83.44	$83 \mathrm{C6}$	$83 \cdot 58$	S4. 10	83
84	82.90	83.12	83.34	83.56	83.78	84.22	$84 \cdot 44$	84.60	84.89	$85 \cdot 11$	84
85	$83 \cdot 88$	$84 \cdot 11$	84.33	$81 \cdot 55$	54.78	$85 \cdot 22$	$85 \cdot 45$	$85 \cdot 67$	$85 \cdot 90$	$86 \cdot 13$	85
86	$84 \cdot 87$	85-10	85.32	S5 55	85-78	86.22	86.46	86.67	86.91	$87 \cdot 14$	86
87	$85 \cdot 8.5$	86.08	86.31	86.54	S6.77	87-23	87.46	$87 \cdot 68$	$87 \cdot 92$	$88 \cdot 15$	87
83	80.84	87.07	57-30	87.54	87.77	88.29	88.47	$88 \cdot 69$	$88 \cdot 93$	$89 \cdot 17$	88
89	$87 \cdot 82$	88.00	$88 \cdot 29$	88.53	ss. 77	$89 \cdot 23$	$89 \cdot 47$	89.76	89.94	$90 \cdot 18$	89
90	8S 81	89.05	89:29	39.52	$89 \cdot 77$	90.23	90.48	9071	90.95	91-19	00
91	$88 \cdot 80$	00.04	90.28	90.52	90.76	91.24	91.48	91.72	91.96	02.21	91
92	90.79	91.03	$91 \cdot 27$	$91 \cdot 51$	01.76	$92 \cdot 24$	$92 \cdot 49$	92.73	02.97	$98 \cdot 22$	92
98	91.77	92.02	92-26	92. 51	92.70	93.24	$33 \cdot 49$	93.74	$93 \cdot 98$	94.23	08
94	92.76	93.01	93.20	93.50	03.75	94.24	04.48	$94 \cdot 64$	94.99	$95 \cdot 24$	04
95	98-74	94.00	94.25	94.50	94.75	95.25	$95 \cdot 50$	95-75	96.00	$96 \cdot 26$	05
96	94.78	94.08	95.24	$95 \cdot 49$	95.75	96-25	9051	96.76	$97 \cdot 01$	$97 \cdot 27$	06
97	95.72	95.97	96.23	96.40	90.75	$97 \cdot 25$	97-51	$97 \cdot 77$	98.02	$98 \cdot 29$	97
98	96.70	96.06	$97 \cdot 22$	$97 \cdot 48$	$97 \cdot 74$	98.25	98.52	98.77	99.03	$99 \cdot 80$	98
99	97.69	97.85	98.21	08.4S	98.74	99.23	99.52	90.78	100.04	$100 \cdot 81$	99
100	08.68	08.95	99-21	09.47	99.74	100.26	100.53	$100 \cdot 79$	101.05	$101 \cdot 32$	100

32 THE TECHNICAL CHEMISTS' HANDBOOK

TABLE 13.-FACTORS FOR REDUOING A TEMPERATURE

0° Centigrade, and 760 millimetres, or 32°

Centigrado.		0.0 .	$1 \cdot 1$.	$2 \cdot 2$.	3.3.	4.4.	$5 \cdot 6$.	6\%.	7-s.	
Fahrenheit.		32°.	34°.	36°.	85 ${ }^{\circ}$.	40°.	42°.	44°.	46°.	45°.
In.	Milli.									
	metres.									
	$698 \cdot 5$. 9191	-9154	$\cdot 9116$	$\cdot 9079$	$\cdot 9043$	$\cdot 9007$	-8972	-8936	-8899
$27 \cdot 6$	701.0	-9224	. 9198	-9149	-9112	.9076	-9089	-9005	-8969	-8932
$27 \cdot 7$	$703 \cdot 6$	-9258	-9221	$\cdot 9183$	$\cdot 9145$	-9109	- 0072	$\cdot 9037$	- 0001	-8864
27.8	$706 \cdot 1$	-9291	-9254	-9215	-0179	-9142	-9105	$\cdot 9070$	-9034	-8996
27.9	$708 \cdot 6$	-9325	-9288	- 9249	-9212	-9174	. 9138	. 9102	-0067	- 0022
28.0	711.2	. 9358	. 9321	-9282	- 9244	-9203	.9170	$\cdot 9185$	-9090	. 9061
$28 \cdot 1$	$713 \cdot 7$	-9391	-9354	-9315	$\cdot 9278$	- 9241	-9208	$\cdot 9107$	-0181	-0093
98.2	716.3	-9425	-9357	. 0348	.9310	$\cdot 92 \% 3$. 9236	-0200	-9164	- 0125
$28 \cdot 3$	$718 \cdot 3$. 9458	-9421	-935:	-9344	-930'	-9269	-0233	$\cdot 9197$	-9158
28.4	721.3	-94:1	-9454	. 9415	$\cdot 0877$	-0389	-9301	. 9265	$\cdot 0229$. 9190
28.5	723.9	. 0525	- 0487	. 9448	- 0410	. 9372	- 0384	- 2928	9262	. 9228
$28 \cdot 6$	726.4	-9558	-9520	-0481	$\cdot 9443$	-9405	-9367	- 0331	. 9294	-9255
28.7	728.9	-9592	-9554	-9514	-9476	- 9438	$\cdot 9400$. 9334	-1327	-0287
28.8	731.5	-9625	$\cdot 9587$	$\cdot 9547$	-6\%09	-9471	-9432	-9396	-9359	-9820
28.9	$734 \cdot 0$	- 9659	. 9620	$\cdot 9580$	$\cdot 9542$	-9504	. 9405	. 04%	-9392	. 9852
29.0	736.6	. 9692	-0654	. 0613	. 9575	9536	. 0408	0462	. 9424	.9385
$29 \cdot 1$	$789 \cdot 1$. 9725	-9687	-9647	-9603	. 9569	-9581	. 9494	0457	\bigcirc
29.2	$741 \cdot 6$	-0759	-0720	-96\%0	-9640	-9602	- 05163	-9527	-6459	. 9440
29.3	$744 \cdot 2$	$\cdot 9792$	-0753	- 4713	-9674	-1635	-95! ${ }^{\text {d }}$	-95:59	$\cdot 4522$. 9481
29.4	746.7	-9820	. 9787	-9740	9707	. 0668	- 0629	9592	$\cdot 0.54$	-1514
29.5	$749 \cdot 3$	-0859	-9820	. 9779	-9740	. 9701	96is	0624	9587	0540
20.6	$751 \cdot 8$	-9893	-0853	. 0812	-0773	. 9733	. 0694	-6157	9619	0578
$29 \cdot 7$	$754 \cdot 3$	-9924	-9887	-9845	-9806	- 9766	-9727	-9650	9652	-9611
29.8	756.9	- 0959	. 0920	-9879	0899	-9800	. 9760	-9722	-9684	- 0643
29.9	$759 \cdot 4$	- 9093	-9054	. 9912	-98\%2	-9832	. 9793	. 9755	: 0717	0676
$80 \cdot 0$	762.0	1.0026	-9087	-9945	-9905	. 9865	- 0826	. 9788	9749	. 0708
$80 \cdot 1$	$764 \cdot 5$	1.0060	$1 \cdot 0020$. 0978	. 9938	-9508	-0858	- 0820	-9782	0740
80.2	$767 \cdot 0$	1.0093	1.0058	$1 \cdot 0011$. 9971	- 01931	-9891	. 9858	9814	9778
80.8	$760 \cdot 6$	1.0128	1.0086	1.0044	1.0004	. 9964	- 0924	9885	9846	9805
80.4	$772 \cdot 1$	$1 \cdot 0160$	1.0120	1.0078	$1 \cdot 0037$. 99097	. 9057	mils	.0879	4887
50.5	774.7	$1 \cdot 0194$	1.0153	$1 \cdot 0111$	$100 \% 0$	1.0030	. 9989	0950	9911	-9870
30.6	$777 \cdot 2$	1.0227	1.0186	1.0144	1.0109	1.0043	1.0022	-9983	0944	9902
$80 \cdot 7$	$778 \cdot 7$	1.0260	1.0220	1.0177	$1 \cdot 0136$	1.0096	10055	1.0016	-0970	. 9985
80.8	$782 \cdot 8$	1.0294	1.0253	1.0210	1.0169	1.0128	1.0087	1.0048	1.0009	. 9067
30.9	784.8	1.0327	1.0280	1.0249	1.0202	1.0164	1.0120	1.0081	1.0041	10000
310	$787 \cdot 4$	1.0860	$1 \cdot 0810$	$1 \cdot 2275$	$1 \cdot 0235$	1.0194	1.0158	1.0114	$1 \cdot 0074$	1.0092

GIVEN VOLUME OF GAS TO NORMAL AND PRESSURE．

Fahrenheit，and 29.92 inches barometric pressure．

Centigrade．		10.0	$11 \cdot 1$.	12.4.	13.3.	14．4．	15．4；	10.7.	17．8．
Fahrenheit．		50° ．	52^{3} ．	54° ．	50° ．	55° ．	60° ．	62° ．	64° ．
	Milli－								
	metres．								
27.5	698.5	－ 8867	－8532	－8797	$\cdot 8763$	S728	－ 8095	－ 8661	． 6628
$27 \cdot 6$	$701 \cdot 0$	－8900	－8564	－8829	－8795	－ 8760	． 8720	－Sro3	－ 8660
27.7	$703 \cdot 6$	－8932	－8897	－8861	－8527	－ 5102	－8755	－ 524	－ 8691
$27 \cdot 8$	$700 \cdot 1$	－ 8964	－8：ゼ	－8s．3	－8859	－6ヶ23	－6750	－$\$ 750^{\circ}$	－8722
$27 \cdot 9$	708.6	$\cdot 8996$	5900	－8925	－8s？0	－ 8855	－5s21	． 2767	$\cdot 8754$
28.0	$711 \cdot 2$	－ 9029	－8902	－8957	－8922	－Sss7	．8853	－8819	－8785
$28 \cdot 1$	$713 \cdot 7$	$\cdot 9060$	－9025	－	－ 8954	－8919	－8584	－8550	－ 8816
28.2	$716 \cdot 3$	－9093	$\cdot 9057$	－9021	－ 5986	－ 5951	－xilif	－ $\sin 22$	－S848
28.3	718.8	.9125	－9089	－90．3	－9019	－ 8 933	－3：18	－8413	$\cdot 8579$
28.4	$721 \cdot 3$	$\cdot 9157$	－9121	－9085	.2050	$\cdot 9014$	－8979	－ 8945	－ 6911
$28 \cdot 5$	723.9	$\cdot 9189$	－9153	$\cdot 9117$	－00：2	－ 9046	？011	－S976	－8942
28.6	729	－9292	－9185	$\cdot 9149$	$\cdot 9114$	－9037	－9043	$\cdot 9008$	－8073
$28 \cdot 7$	728.9	－92．54	－9218	－9181	$\cdot 9145$	－9109	．9074	$\cdot 0039$	－0005
28.8	$731 \cdot 5$	－92sti	． 9250	$\cdot 9213$	$\cdot 9177$	－9141	－9106	－ 9071	－0086
28.9	$784 \cdot 0$	$\cdot 9318$	． 9282	$\cdot 9245$	$\cdot 9203$	－9173	－9138	$\cdot 9102$	$\cdot 9067$
$29 \cdot 0$	$736 \cdot 6$.0351	． 0314	.9277	－0241	． 8205	． 9169	$\bigcirc 134$	－9099
$29 \cdot 1$	$739 \cdot 1$	$\cdot 0383$	． 9346	$\because 309$	$\cdot 9273$	－ 9236	－9201	$\cdot 9165$	$\cdot 9130$
$29 \cdot 2$	$741 \cdot 6$	． 9415	．0378	$\cdots 341$	．9305	． 9268	$\cdot 9233$	．9197	－ 0162
$20 \cdot 3$	$744 \cdot 2$	－9448	． 9410	．9373	． 9330	－9200	－ 0264	－9228	$\cdot 6193$
$20 \cdot 4$	$746^{\circ} 7$	． 9480	$\cdot 9443$	－940	－936is	－9332	－9296	－9260	$\cdot 9224$
$29 \cdot 5$	$749 \cdot 3$	$\cdot .9512$	． 9475	－9137	－9400	．0363	－032s	． 0291	－ 0256
$29 \cdot 6$	$751 \cdot 8$	－9544	－950i；		$\cdot 9432$	－1395	－0359	－1323	$\cdot 9287$
$29 \cdot 7$	$754 \cdot 3$	$\cdot 9577$	$\cdot 9535$	－9．01	－9464	$\because 407$	$\because 390$	$\because 354$	．0318
$29 \cdot 8$	$75 t i \cdot 9$	$\cdot 9609$	$\cdot 0571$	$\cdot 9.35$	－04：3	－9159	－402	－0350	． 0350
$20 \cdot 0$	$759 \cdot 4$	－9641	$\cdot 9603$	－ 9505	－9528	－9490	$\cdot 9454$	． 9417	－9381
80.0	762.0	$\cdot 9673$	$\cdot 9635$	$\bigcirc 0.97$	$\bigcirc 0.060$	$\cdot 9522$	\bigcirc	． 9449	－9413
$30 \cdot 1$	$704 \cdot 5$	．9706	\cdots	－9629	$\cdot 9591$	$\cdot 9554$	$\bigcirc 617$	－9480	－9444
$80 \cdot 2$	$767 \cdot 0$	－9738	$\cdot 9700$	－066il	－9623	－ 9556	－9549	－9512	$\cdot 9475$
80.8	769.6	$\cdot 9770$	－9731	$\cdot 693$	． 0655	－0017	$\cdot 0.550$	－9543	－9507
$80 \cdot 4$	$772 \cdot 1$	－9802	$\cdot 9764$.9725	－ 4687	－06．19	$\cdot 9612$.9575	－9538
80.5	$774 \cdot 7$	－9S35	$\cdot 9700$	． 8757	$\cdot 9719$	． 96181	$\bigcirc 043$	9606	． 9569
30.6	$777 \cdot 2$	－9867	－0828	－9789	$\cdot 9751$	． 9712	－ 9675	9638	－9601
$80 \cdot 7$	$779 \cdot 7$	－9899	． 9860	－9821	－9782	． 9744	$\cdot 9707$	－9669	－9632
$80 \cdot 8$	$782 \cdot 8$	－9031	－9892	$\cdot 9853$	－9815	.9770	－9738	．9701	． 9664
80.9	784.8	－9003	－ 0924	－9885	－9846	－9807	－9770	$\cdot 9782$	． 0695
81.0	$787 \cdot 4$	－9906	－9956	$\cdot 9017$	－9878	－9840	． 9801	． 9764	－9726

34 THE TECHNICAL CHEMISTS' HANDBOOK

TABLE 1:3-Continued.

Contigrade.		18.9.	20.	$\because 1 \cdot 1$.	22.2	$23 \cdot 3$.	$24 \cdot 4$.	$25 \cdot 6$	$26^{\circ} \%$
Fahreuheit.		60°	65°.	70°.	79°.	74°.	75°.	'8'.	80°.
In.	Mrili-								
$27 \cdot 5$	6:15.5	S595	- 8563	-8530	. 8498	- 8166	- 8435	$\cdot 8403$	-8372
$27 \cdot 6$	701.0	- 86020	-8594	-Stit	- 85%	-S497	- 3465	-8434	- 8403
$27 \cdot 7$	703.6	-8653	- 525	-6.512	-5itio	- 552 S	-849\%	- 8464	-8433
$27 \cdot 8$	$706 \cdot 1$	-Stis9	- 心60	-6ie3	- 5391	- 8.559	- $5: 57$	-8495	-8463
$27 \cdot 9$	708.6	- 5720	-6657	- Sür	-8622	-8589	- 8557	-8525	-8404
280	$711 \cdot 2$	-8751	-sis	-S6S5	- 8653	-8i20	-85s	-8556	-8524
48.1	713.7	$\cdot 8783$	- 8750	-hili	- S6S4	- 5651	-6119	-8587	-8555
$3{ }^{3} \cdot 2$	$716 \cdot 3$	-8514	-bisl	-hili	- 514	- A (is)	-864,	-617	-8585
$25 \cdot 3$	715.8	-8545	-sisle	-673	-8745	-3il3	-8650	-8648	-8616
284	$7: 1 \cdot 3$	-5s70	-5843	-8569	.8776	-8743	-8711	. 8678	-8046
25.5	723.9	- 830 S	-8s74	-S440	-8807	-8374	. 8741	-8709	-8677
25.6	726.4	-8939	-3:05	-nis	-6s38	-8:15	-5772	-8739	'S707
28.7	7** 9	-8970	-8030	-8:43	- S゙aty	-833t	-8808	- 8770	-8788
28.8	$731 \cdot 5$	-9002	-s!4s	. 6934	-8:00	- 3 sitis	. 8838	-8800	. 8768
28.9	$734 \cdot 0$	$\cdot 9033$	-8999	- 5900	-S981	-8897	$\cdot 8864$. 8831	-8708
$29 \cdot 0$	$736 \cdot 6$	-9044	-90130	-8996	- 5962	-8028	-8895	-S\$62	-8823
$29 \cdot 1$	$739 \cdot 1$	-90.95	-9041	- 1127	- 493	- 806	-8425	-8892	-8850
292	741.6	-9127	-9042	-90, 5	-9043	- 2990	-8950	-8523	-8890
$29 \cdot 3$	$744 \cdot 2$	-9158	$\cdots 123$	-9089	-9054	-9020	-8!97	-8453	-8920
$29: 4$	$740 \cdot 7$	-9189	2154	$\cdots 120$. 9085	$\cdot 9051$	$\cdot 9017$	'8984	-8051
$29 \cdot 5$	$749 \cdot 3$	$\cdot 0220$	9150	$\cdot 0151$	-9116	\cdots	-9048	$\cdot 9014$	-8981
296	751.8	$\cdots 2$	$\because 917$	- 185	$\cdot 9147$	9113	-9079	-9045	-9012
$29 \cdot 7$	$754 \cdot 3$	- 12 - ${ }^{\text {a }}$	4843	$\cdot 9213$	-017s	9144	-9109	-9076	-9042
29.8	756.0	$\cdot 9314$	4279	-9244	-9209	-9174	$\cdot 9140$. 9100	-9072
29.9	$759 \cdot 4$	$\cdot 9345$. 0310	. 9275	. 9240	$\cdot 9205$	-9171	$\cdot 9137$	$\cdot 9108$
300	7620	. 0377	.0341	$\cdot 9306$	$\cdot 9271$. 0236	-9201	-9167	-9138
$30 \cdot 1$	$764 \cdot 5$	-94018	-0372	-9337	- 9302	-92;7	-9232	-9198	-0164
$30 \cdot 2$	767.0	-9439	$\because 1418$	-9348	-9333	-9297	-9233	-9228	-0194
$30 \cdot 3$	769.6	- 0470	-9435	$\cdot 9329$	$\cdot 9363$. 9328	-9293	-9259	-9225
$30 \cdot 4$	$772 \cdot 1$	902	- 0406	$\cdot 9430$	- 9304	- 9350	- 0324	-9250	-9255
$30 \cdot 5$	774.7	0.033	. 0497	$\cdot 9461$. 9425	. 0390	. 9355	-9820	- 9286
30.6	$777 \cdot 2$	-0504	-0528	-0492	$\cdot 9456$	-9421	-9385	- 0351	-9816
$80 \cdot 7$	$779 \cdot 7$	-9545	-0559	$\cdot 0523$	-6487	-0451	-6416	-9381	-9846
$30 \cdot 8$	$782 \cdot 3$	-01;27	-9590	$\cdot 9554$	-6518	-9482	-0447	-9412	-0877
$30 \cdot 9$	784.8	-9658	-9421	-9585	- 05440	-0518	-9477	-9442	-0407
31.0	$787 \cdot 4$	-0689	-9653	. 0616	$\cdot 9580$	$\cdot 0514$. 0508	. 0478	-0488

TABLE 14.- VOLUMES OF WATER AT DIFFERENT TEMPERATURES. (Rossetti.)

$\begin{aligned} & \text { Temp. } \\ & { }^{\circ} \mathrm{C} . \end{aligned}$		'Temp.		Temp.	
0	1	11	$1 \cdot 000556$	40	$1 \cdot 007531$
1	$0 \cdot 099917$	15	$1 \cdot 000695$	45	$1 \cdot 009541$
2	$0 \cdot 999908$	16	$1 \cdot 000846$	50	$1 \cdot 011766$
3	$0 \cdot 999885$	17	1.001010	55	1.014100
4	$0 \cdot 999877$	18	$1 \cdot 001184$	60	1.016590
5	0-999883	19	$1.0013 \%^{\circ}$	65	1.019302
6	$0 \cdot 999903$	20	$1 \cdot 001567$	70	1.022249
7	$0 \cdot 999938$	21	1.0017: ${ }^{6}$	75	$1 \cdot 025440$
8	$0 \cdot 999986$	$2:$	$1 \cdot 001945$	80	$1 \cdot 028581$
9	$1 \cdot 000048$	23	10022%	85	1.03189 t
10	$1 \cdot 000124$	24	1 -002465	90	1.035397
11	1.000213	25	$1.00271:$	95	1.039094
12	$1 \cdot 000314$	30	$1 \cdot 004061$	100	$1 \cdot 042986$
13	1-000129	35	$1 \cdot 005697$		

TABLE 15.--REDUCTION OF WATER PRESSURE TO MERCURIAL PRESSURE.

a.9.	If_{8}.	aq.	H_{5}.	${ }^{\text {aq. }}$	Hg .	ar_{1}.	H_{5}.	${ }^{\text {a }} 1$.	Hg .
1	0.07	23	1.70	45	3.32	67	$1 \cdot 91$	89	6.57
2	$0 \cdot 15$	24	1.77	46	$3 \cdot 39$	6 S	$5 \cdot 0$	90	$6 \cdot 64$
3	$0 \cdot 22$	25	1:84	47	$3 \cdot 47$	69	-09	91	$6 \cdot 72$
4	$0 \cdot 30$	26	$1 \cdot 92$	48	$3 \cdot 54$	70	$5 \cdot 17$	92	679
5	$0 \cdot 37$	27	1.98	49	$3 \cdot 62$	\%1	$5 \cdot 24$	$9:$	6.86
6	$0 \cdot 44$	28	$2 \cdot 07$	- 0	$3 \cdot 69$	72	$5 \cdot 31$	94	6.94
7	$0 \cdot 52$	$\because 9$	$2 \cdot 11$	51	$3 \cdot 76$	73	$5 \cdot 39$	95	$7 \cdot 01$
8	$0 \div 9$:0	$2 \cdot 21$	52	$3 \cdot 8.4$	7.4	$5 \cdot 46$	96	$7 \cdot 08$
9	$0 \cdot 66$	31	$2 \because 9$	53	$3 \cdot 91$	75	$5 \cdot 54$	97	$7 \cdot 16$
10	$0 \cdot 74$	32	$2 \cdot 36$	54	$3 \cdot 99$	76	$5 \cdot 61$	98	$7 \cdot 23$
11	0.81	33	$2 \cdot 44$	55	$4 \cdot 06$	76	$5 \cdot 68$	99	$7 \cdot 31$
12	$0 \cdot 89$	34	$2 \cdot 51$	50	$4 \cdot 13$	78	$5 \cdot 76$	100	$7 \cdot 38$
13	0.96	35	$2 \cdot 58$	67	$4 \cdot 2 \mathrm{i}$	79	$5 \cdot 83$	200	14.76
14	1.03	36	$2 \cdot 66$	58	$4 \cdot 28$	80	$5 \cdot 90$	300	$22 \cdot 14$
15	$1 \cdot 12$	37	$2 \cdot 73$	59	$4 \cdot 35$	81	5.98	400	$29 \cdot 52$
16	$1 \cdot 18$	38	$2 \cdot 80$	60	$4 \cdot 43$	82	6.05	500	3690
17	$1 \cdot 26$	39	$2 \cdot 88$	61	$4 \div 0$	83	6.13	600	44.28
18	$1 \cdot 33$	40	$2 \cdot 95$	62	$4 \% 8$	8.4	6 $\because 0$	700	51.66
19	$1 \cdot 40$	41	$3 \cdot 03$	63	$4 \cdot 65$	85	${ }^{6} \cdot 27$	S00	59.04
20	$1 \cdot 48$	42	3•10	64	$4 \cdot 72$	86	$6 \cdot 35$	900	66.42
21	$1 \cdot 55$	43	$3 \cdot 17$	65	4.80	87	6.42	1000	$73 \cdot 30$
22	1.62	44	3-25	66	$4 \cdot 87$	88	6.49		

TABLE 16.-TENSION OF AQUEOUS VAPOUR.
Between -20° and $+118^{\circ}$ O. in Millimetres Mercury. (Magnus.)

T.	mm.	'1.	mm.	'T.	mm .
-20°	0.916	$+5^{\circ}$	6.471	$+30^{\circ}$	$31 \cdot 602$
19	0.999	6	$6 \cdot 939$	31	$33 \cdot 5$
18	1.089	7	$7 \cdot 436$	32	$35 \cdot 4$
17	$1 \cdot 186$	8	$7 \cdot 964$	33	$37 \cdot 5$
16	$1 \cdot 290$	9	$8 \cdot 525$	34	$38 \cdot 6$
15	1.403	10	$9 \cdot 126$	35	$41 \cdot 9$
14	$1 \cdot 525$	11	$9 \cdot 756$	36	$44 \cdot 3$
13	$1 \cdot 655$	12	10.421	37	46.8
12	1.796	13	$11 \cdot 130$	38	$49 \cdot 4$
11	1.917	14	11.882	39	$52 \cdot 1$
10	2.109	15	$12 \cdot 677$	40	$55 \cdot 0$
9	$2 \cdot 284$	16	$13 \cdot 519$	41	$58 \cdot 0$
-8	$2 \cdot 471$	17	14.409	42	$61 \cdot 1$
7	$2 \cdot 671$	18	$15 \cdot 351$	43	$64 \cdot 4$
6	$2 \cdot 886$	19	16.345	44	$67 \cdot 8$
5	3.110	20	17.396	15	$71 \cdot 4$
4	$3 \cdot 361$	21	$18 \cdot 505$	46	$75 \cdot 2$
3	$3 \cdot 624$	± 2	$19 \cdot 675$	47	$78 \cdot 1$
2	$3 \cdot 900$	23	$20 \cdot 909$	48	$88 \cdot 2$
1	4.205	24	$22 \cdot 211$	49	$87 \cdot 5$
0	4.525	25	23.582	50	$92 \cdot 0$
$+1$	4.867	26	$25 \cdot 026$	51	96.6
2	$5 \cdot 231$	27	26.547	52	101.5
3	$5 \cdot 619$	28	$28 \cdot 148$	53	$108 \cdot 6$
4	6.032	29	29.832	54	111.9

TABLE 16-Continued.

т.	mm.	T.	mm.	T.	mm.
$+65^{\circ}$	117.4	$+77^{\circ}$	312.9	$+99^{\circ}$	$733 \cdot 1$
56	$123 \cdot 1$	78	326.1	100	760.0
57	$129 \cdot 1$	79	$339 \cdot 8$	101	$787 \cdot 7$
58	$135 \cdot 3$	80	353.9	102	816.3
59	141.8	81	368.6	103	$845 \cdot 7$
60	$148 \cdot 6$	82	383.7	104	876.0
61	155.6	83	399.4	105	$907 \cdot 1$
62	162.9	84	$415 \cdot 6$	106	$939 \cdot 2$
63	$170 \cdot 5$	85	$432 \cdot 3$	107	$972 \cdot 3$
64	178.4	86	449.8	108	$1006 \cdot 3$
65	186.6	87	467.5	109	$1041 \cdot 3$
66	$195 \cdot 1$	88	$480^{\circ} 0$	110	$1077 \cdot 3$
67	$204 \cdot 0$	89	$500 \cdot 0$	111	$1114 \cdot 3$
68	213.2	90	524 S	112	$1152 \cdot 3$
69	2\%י\%	91	$245 \cdot 1$	113	1191.4
70	232.6	92	$566 \cdot 1$	114	1231.7
71	242.9	93	$587 \cdot 8$	115	$1273 \cdot 0$
72	$253 \cdot 5$	94	610\%	116	1315%
73	264.6	95	633.3	117	$1359 \cdot 1$
74	276.0	96	$657 \cdot 1$	118	1403.9
75	$287 \cdot 9$	97	681.7		
76	$300 \cdot 2$	98	$707 \cdot 0$		

38 THE TECHNICAL CHEMISTS' HANDBOOK
TABLE 17.-TENSION OF AQUEOUS VAPOUR FOR TEMPERATURES FROM $40^{\circ} \mathrm{C}$.

Temperature Centigrade.	Tension in mm. of Mercury.	Pressure in atmospheres.	l'ressure per scl. cm. in kilos.
$+40^{\circ}$	$54 \cdot 906$	0.072	$0 \cdot 07.165$
45	$71 \cdot 391$	$0 \cdot 094$	0.09706
50	91.982	$0 \cdot 1 \cdot 1$	$0 \cdot 12505$
55	$117 \cdot 478$	$0 \cdot 1.74$	$0 \cdot 15972$
60	148.791	$0 \cdot 196$	0'203:3
65	$186 \cdot 9.45$	0.246	$0 \cdot 25417$
70	$233 \cdot 093$	$0 \cdot 306$	$0 \cdot 31692$
75	288-517	$0: 380$	$0 \cdot 39227$
80	$354 \cdot 643$	$0 \cdot 466$	$0 \cdot 48217$
S5	$433 \cdot 041$	$0: 70$	$0: 8877$
90	$525 \cdot 450$	$0 \cdot 691$	0.71440
95	633.778	$0 \cdot 534$	$0 \cdot 86168$
100	$760 \cdot 00$	$1 \cdot 000$	1.03330
105	$906 \cdot 41$	$1 \cdot 193$	1 23236
110	$107 . \cdot 37$	$1 \cdot 415$	1.46210
115	$1269 \cdot 41$	1.673	1.72592
120	1.191 .28	1.963	$2 \cdot 02755$
125	1743.88	$2 \cdot 294$	2:37098
130	2030 -8	$2 \cdot 671$	$2 \cdot 76037$
135	23.73.73	$3 \cdot 097$	$3 \div 0013$
- 140	2717.63	$3: 75$	3.69490
145	312.\%5.:	$4 \cdot 112$	4*2.49:0
150	3.:81-23	$4 \cdot 712$	$4 \cdot 86904$
155	4089:\%	. 380	505881
160	4651.62	6.120	6:32434
165	$5274 \cdot 54$	6.940	7-17127
170	5961.66	7.814	$8 \cdot 10547$
175	$6717 \cdot 43$	$8 \cdot 838$	$9 \cdot 13302$
180	7546:39	$9 \cdot 929$	$10 \cdot 2601$
185	$8453 \% 23$	$11 \cdot 122$	11.4930
190	9442.70	$12 \cdot 424$	$12 \cdot 8383$
195	$10519 \cdot 73$	$13 \cdot 841$	$14 \cdot 3025$
200	$11688 \cdot 96$	$1.5 \cdot 380$	$15 \cdot 8923$
205	$129.55 \cdot 66$	$17 \cdot 047$	17.6145
210	$14324 \cdot 80$	18.815	$19 \cdot 4760$
215	$15801 \cdot 33$	$20 \cdot 791$	21.4835
220	$17390 \cdot 00$	$22 \cdot 881$	23.6439
225	$19097 \cdot 04$	$25 \cdot 127$	25.9643
230	20926.40	27-534	$28 \cdot 4515$

TABLE 17 - Continued. TENSION OF AQUEOUS VAPOUR FOR TEMPERATURES FROM $40^{\circ} \mathrm{F}$.

Temperature Fahrenheit.	Tension in inches of Mercury.	Pressure in atmospheres.	Pressure in lis. per square inch.
100°	$1 \cdot 918$	-064	-941
110	2:577	-086	$1 \cdot 267$
120	$3 \cdot 427$	-114	1.676
130	4.502	$\cdot 1.50$	2×205
140	こ.858	$\cdot 196$	2.883
150	7-546	-25	$3 \cdot 70 \%$
160	9.628	-322	$4 \cdot 734$
170	$12 \cdot 18$	-407	$5 \cdot 984$
180	$15 \cdot 27$	$\because 10$	$7 \cdot 498$
190	19.01	$\cdot 635$	$9 \cdot 336$
200	23.46	$\cdot 784$	11:53
210	$29 \cdot 92$	1.000	14.706
220	$3: 501$	$1 \cdot 170$	$17 \cdot 19$
230	$4{ }^{2} \cdot 34$	1.415	20.80
240	$50 \cdot 89$	1.701	$25 \cdot 01$
250	$60 \cdot 81$	2.032	29.87
260	7 $2 \cdot 27$	$2 \cdot 415$	35.50
270	$8.7 \cdot 41$	$2 \cdot 85.5$	41.97
280	$100 \cdot 4$	3-3:6	$49 \cdot 34$
290	117\%	$3 \cdot 927$:7.73
300	136.8	$4 \div 72$	$67 \cdot 22$
310	$1: 8.6$	$5 \cdot 301$	$77 \cdot 94$
320	$183 \cdot 1$	$6 \cdot 120$	89.98
330	210%	$7 \cdot 035$	$108 \cdot 4$
340	$2 \cdot 4 \cdot 1$	$8 \cdot 0: 8$	118:
350	$275 \cdot 0$	9.198	135.2
360	$31 \because \cdot 6$	$10 \cdot 45$	$15.3 \cdot 6$
370	35.4 -	11.83	$173 \cdot 9$
380	$399 \cdot 6$	13.35	196.3
390	$449 \cdot 6$	$1.5 \cdot 02$	$\because 20.8$
400	5.01 .4	16.86	247.9
410	5663.9	$18 \cdot 84$	277.0
420	$628 \cdot 8$	21.01	$309 \cdot 9$
430	$699 \cdot 2$	$23 \cdot 37$	$343 \cdot 6$
440	$775 \cdot 3$	$25 \cdot 91$	$380 \cdot 9$

40 THE TECHNICAL. CHEMISTS' HANDBOOK

TABLE 18.-TENSION OF AQUEOUS VAPOUR IN INCHES OF MERCURY FROM 1° TO $100^{\circ} \mathrm{F}$.

Temperature Fahrenheit.	Inches of Mereury.	Temperature Fahrenheit.	Inches of Mercury.
1	-046	$36{ }^{\prime}$	$\cdot 212$
2	-048	37	$\cdot 220$
3	-050	38	$\bullet 29$
4	-0.2	39	-238
5	-054	40	$\cdots 47$
6	-057	41	$\cdot 257$
7	-060	4\%	-267
8	$\cdot 062$	43	$\cdot 277$
9	-06:	44	-288
10	-068	45	'299
11	- 071	46	$\cdot 311$
12	-07!	47	$\cdot 323$
13	.078	48	-335
11	-082	49	'348
15	-086	50	$\because 361$
16	-090	51	-374
17	-091	52	-388
18	-098	63	-403
19	-103	5.1	-418
20	$\cdot 108$	55	$\cdot 433$
21	-113	56	-449
22	-118	57	-465
23	-123	58	$\cdot 182$
24	-129	59	-500
25	$\cdot 1: 5$	60	-518
26	$\cdot 141$	61	$\cdot 537$
27	$\cdot 147$	62	-556
28	$\cdot 153$	63	-576
29	-160	64	$\cdot 596$
30	$\cdot 167$	65	-617
31	$\cdot 174$	66	-639
32	-181	67	-661
33	-188	68	-685
34	$\cdot 196$	69	-708
35	-204	70	$\cdot 733$

TABLE 18-Continued.

Temperature Fahrenheit.	Inches uf Mercury.	Temperature Fahrenheit.	Inchas of Mercury.
71°	.759	86°	1.242
72	.785	87	1.282
73	.812	88	1.323
74	.840	89	1.366
75	.868	90	1.401
76	.897	91	1.455
77	.927	92	1.501
78	.958	93	1.548
79	990	94	1.596
80	1.023	95	1.646
81	1.057	96	1.697
82	1.092	97	1.751
83	1.128	98	1.806
84	1.165	99	1.862
85	1.203	100	1.918
			..-

TABLE 19.-BOILING POINT OF WATER AT DIFFERENT BAROMETRIC PRESSURES.

Barometru: Pressure.	Bolling Point.	Barometric Pressure.	Boiling Point.
		mm.	
710	$98 \cdot 11$	745	99.44
715	$98 \cdot 30$	7.5	99.63
720	$98 \cdot 49$	75.5	$99 \cdot 82$
725	$98 \cdot 69$	760	$100 \cdot 00$
730	$98 \cdot 88$	765	$100 \cdot 18$
735	99.07	730	$100 \cdot 37$
740	$99 \cdot 26$	775	100\%5

TABLE 20.—COMPARISON OF THE HYDROMETER DEGREES ACCORDING TO BAUME AND TWADDELL, WITH THE SPECIFIC GRAVITIES.

13.	Tw.	Spec. Gravity.	B.	Tw.	Spec. Gravity.	B.	Tw.	Spec. Gravity.
0	0	1.000	$15 \cdot 4$	24	1.120	$29 \cdot 3$	51	$1 \cdot 255$
$0 \cdot 7$	1	1.005	$16 \cdot 0$	25	$1 \cdot 125$	$\because 9 \cdot 7$	52	$1 \cdot 260$
1.0	$1 \cdot 4$	1.007	16.5	26	$1 \cdot 130$	$30 \cdot 0$	$52 \cdot 6$	1 "263
$1 \cdot 4$	2	1.010	170	$26 \cdot 3$	$1 \cdot 13.1$	30%	53	1 $\because 65$
$2 \cdot 0$	$2 \cdot 8$	1.014	$17 \cdot 1$	27	1-135	$30 \cdot 6$	54	$1 \cdot 270$
$2 \cdot 1$	3	1.015	17.7	28	$1 \cdot 1 \cdot 10$	31.0	$51 \cdot 8$	$1 \because 274$
$2 \cdot 7$	4	$1 \cdot 0 \div 0$	18.0	$\because 8 \cdot 4$	$1 \cdot 142$	$31 \cdot 1$	55	$1 \cdot 275$
$3 \cdot 0$	$4 \cdot 1$	$1 \cdot 022$	(18.3	$\because 9$	$1 \cdot 1.15$	315	56	$1 \cdot 280$
$3 \cdot 4$	5	1.025	18.9	30	$1 \cdot 150$	$32 \cdot 0$	57	$1 \cdot 285$
$4 \cdot 0$	$5 \cdot 8$	1.029	$19 \cdot 0$	$30 \cdot 1$	$1 \cdot 152$	$32 \cdot 4$	58	$1 \cdot 290$
$4 \cdot 1$	6	1.030	19.3	31	$1 \cdot 155$	$32 \cdot 8$	59	$1 \cdot 295$
$4 \cdot 7$	7	$1 \cdot 03.5$	$19 \cdot 8$	32	$1 \cdot 160$	3:3•0	$59 \cdot 4$	$1 \because 297$
$5 \cdot 0$	$7 \cdot 4$	$1 \cdot 0: 37$	20.0	$32 \cdot 4$	$1 \cdot 162$	$33 \cdot 3$	60	$1 \cdot 300$
$5 \cdot 4$	8	1.040	$20 \cdot 3$	33	$1 \cdot 165$	$3: 3 \cdot 7$	01	$1 \cdot 305$
$6 \cdot 0$	9	1.045	$20 \cdot 9$	34	1-170	3.40	$61 \cdot 6$	1-308
6.7	10	1.050	21.0	$34 \cdot 2$	$1 \cdot 171$	31%	62	$1 \cdot 310$
$7 \cdot 0$	10%	$1 \cdot 052$	if 21.4	3.5	1-175	346	63	$1 \cdot 315$
$7 \cdot 4$	11	$1 \cdot 05$	2 $2 \cdot 0$	36	$1 \cdot 180$	$35 \cdot 0$	64	$1 \cdot 320$
$8 \cdot 0$	12	1.040	22.5	37	$1 \cdot 185$	$35 \cdot 4$	65	$1 \cdot 3 \div 5$
$8 \cdot 7$	13	$1 \cdot 065$	$23 \cdot 0$:3	1-190	$35 \cdot 8$	66	$1 \cdot 330$
9.0	$13 \cdot 4$	1.067	23.5	39	$1 \cdot 10.5$	$: 360$	66.4	1.332
$9 \cdot 4$	14	1.070	1240	10	$1 \because 00$	$36 \cdot 2$	67	$1 \cdot 335$
$10 \cdot 0$	15	1.075	1215	41	$1 \cdot 20.5$	$36^{\circ} 6$	68	$1 \cdot 3.40$
$10 \cdot 6$	16	1.080	25.0	42	$1 \because 10$	$37 \cdot 0$	(69	$1 \cdot 345$
11.0	$16 \cdot 0$	1.083	25.5	43	$1 \because 15$	$37 \cdot 4$	70	1350
$11 \cdot 2$	17	1.085	26.0	44	$1 \cdot 20$	$37 \cdot 8$	71	$1 \cdot 355$
$11 \cdot 9$	18	1.090	26.4	45	1205	$38 \cdot 0$	$71 \cdot 1$	$1 \cdot 357$
$12 \cdot 0$	18.2	$1 \cdot 091$	$26 \cdot 9$	46	$1 \because 230$	38.2	7.	$1 \cdot 360$
$12 \cdot 4$	19	$1 \cdot 095$	$27^{\circ} 0$	46.2	$1 \times 2: 1$	$38 \cdot 6$	73	$1 \cdot 365$
$13 \cdot 0$	20	$1 \cdot 100$	$27 \cdot 4$	47	$1 \cdot 235$	$39^{\circ} 0$	74	1-370
13.6	21	$1 \cdot 105$	27.9	48	$1 \cdot 210$	$39 \cdot 4$	75	$1 \cdot 375$
14.0	$21 \cdot 6$	$1 \cdot 108$	28.0	48.2	$1 \cdot 241$	$39 \cdot 8$	76	1.380
$14 \% 2$	22	$1 \cdot 110$	$28 \cdot 4$	49	$1 \cdot 245$	$40 \cdot 0$	76.6	$1 \cdot 383$
$14 \cdot 9$	23	$1 \cdot 115$	$28 \cdot 8$	50	$1 \cdot 250$	$40 \cdot 1$	77	$1 \cdot 385$
$15 \cdot 0$	23 ${ }^{2}$	$1 \cdot 116$	1 29.0	$50 \cdot 4$	1×252	$40 \cdot 5$	78	$1 \cdot 390$

N.B.-The Baumed degrees are calculated by the formula $l-\frac{144 \cdot 3}{144 \cdot 3}-n$, where n is the degree on the Baume scale and d the specifle gravity. On this Baume scale, water at $15^{\circ} \mathrm{C} .=0^{\circ}$ and sulphuric acid of $1.842=60^{\circ}$. This is the Baume's hydrometer, mostly used on the Continent of Europe, but other scales are in use there as well, and quite another scale for Baumén hydrometer is used in America.

COMPARISON OF HYDROMETER DEGREES

TABLE 20-Continued.

B.	Tw.	Spec. Gravity.	B.	Tw.	Spec. Gravity.	B.	Tw.	Spec. Gravity.
$40 \cdot 8$	79	$1 \cdot 395$	$50 \cdot 9$	109	$1 \% 45$	59.5	140	$1 \cdot 700$
$41 \cdot 0$	$79 \cdot 4$	$1 \cdot 397$	$51 \cdot 0$	109%	$1 \cdot 546$	$59 \cdot 7$	141	$1 \cdot 705$
41.2	80	$1 \cdot 400$	51%	110	1.550	$60 \cdot 0$	142	1.710
$41 \cdot 6$	81	$1 \cdot 405$	$51 \cdot 5$	111	$1 \cdot 555$	$60 \cdot 2$	143	1.715
$42 \cdot 0$	82	$1 \cdot 410$	$51 \cdot 8$	112	$1 \cdot 560$	$60 \cdot 4$	144	1.720
$42 \cdot 3$	83	$1 \cdot 415$	$52 \cdot 0$	$112 \cdot 6$	1*563	$60 \cdot 6$	145	1.725
$42 \cdot 7$	84	1.420	$52 \cdot 1$	113	$1 \cdot 565$	$60 \cdot 9$	146	1.730
$43 \cdot 0$	84.8	$1 \cdot 424$	$52 \cdot 4$	114	1.570	$61 \cdot 0$	146.4	1.732
$43 \cdot 1$	85	$1 \cdot 425$	$5 \% \cdot 7$	115	1.575	$61 \cdot 1$	147	1.735
$43 \cdot 4$	86	$1 \cdot 430$	$53 \cdot 0$	116	1-580	61.4	148	$1 \cdot 740$
$43 \cdot 8$	87	$1 \cdot 435$	53.3	117	1.585	$61 \cdot 6$	149	1.745
$44 \cdot 0$	$87^{\circ} 6$	$1 \cdot 438$	53.6	118	1.590	$61 \cdot 8$	150	1 750
$44 \cdot 1$	88	$1 \cdot 440$	53.9	119	1.595	$62 \cdot 0$	$150 \cdot 6$	1.753
$44 \cdot 4$	89	1.445	54.0	$119 \cdot 4$	1.597	$62 \cdot 1$	151	1.755
41.8	90	1.450	$5 \cdot 1 \cdot 1$	120	$1 \cdot 600$	$62 \cdot 3$	152	1.760
$45 \cdot 0$	$90 \cdot 6$	1.453	54.4	121	1.605	62.5	153	1.765
$45 \cdot 1$	91	$1 \cdot 455$	$54 \cdot 7$	122	$1 \cdot 610$	6. 8	154	$1 \cdot 770$
$45 \cdot 4$	92	$1 \cdot 460$	55.0	123	$1 \cdot 615$	63.0	155	1.775
$45 \cdot 8$	93	1.465	55.2	124	$1 \cdot 620$	$63 \cdot 2$	156	1.780
$46 \cdot 0$	$93 \cdot 6$	1.468	$55 \cdot 5$	125	$1 \cdot 625$	63.5	157	1.785
$46 \cdot 1$	94	1.470	55.8	126	$1 \cdot 630$	$63 \cdot 7$	158	1.790
46.4	95	1.475	56.0	127	1.635	$64 \cdot 0$	159	1.795
46.8	96	$1 \cdot 480$	$56 \cdot 3$	128	$1 \cdot 640$	$61 \cdot 2$	160	$1 \cdot 800$
$47 \cdot 0$	96.6	$1 \cdot 483$	$56 \cdot 6$	129	$1 \cdot 645$	$64 \cdot 1$	161	1.805
$47 \cdot 1$	97	1.485	$56 \cdot 9$	130	$1 \cdot 650$	$64 \cdot 6$	162	1.810
$47 \cdot 4$	98	1.490	$57 \cdot 0$	$130 \cdot 4$	$1 \cdot 652$	$64 \cdot 8$	163	1.815
47.8	99	1.495	$57 \cdot 1$	131	$1 \cdot 655$	$65^{\circ} 0$	164	1.820
$48 \cdot 0$	$99^{\circ} \mathrm{B}$	$1 \cdot 498$	$57 \cdot 4$	13:	$1 \cdot 660$	65.2	165	1.825
$48 \cdot 1$	100	1.500	$57 \cdot 7$	133	1.665	$65 \cdot 5$	160	1.830
$48 \cdot 4$	101	1.505	$57 \cdot 9$	134	$1 \cdot 670$	$65 \cdot 7$	167	1.835
$48 \cdot 7$	102	$1 \cdot 510$	58.0	$134 \cdot 2$	$1 \cdot 671$	$65 \cdot 9$	163	1.840
$49 \cdot 0$	103	$1 \cdot 515$	58.2	135	$1 \cdot 675$	$66 \cdot 0$	$168 \cdot 4$	$1 \cdot 842$
$49 \cdot 4$	104	$1 \cdot 520$	$58 \cdot 4$	136	$1 \cdot 680$	$66 \cdot 1$	169	1.845
$49 \cdot 7$	105	$1 \cdot 525$	$58 \cdot 7$	137	1.685	$66 \cdot 3$	170	$1 \cdot 850$
$50 \cdot 0$	103	$1 \cdot 530$	$58 \cdot 9$	138	$1 \cdot 690$	66.5	171	1.855
$50 \cdot 3$	107	$1 \cdot 535$	59.0	$138 \cdot 2$	$1 \cdot 691$	66.7	172	1.860
50*6	108	$1 \cdot 540$	$59 \cdot 2$	139	$1 \cdot 695$	67.0	173	1.865

44 THE TECHNICAL CHEMISTS' HANDBOOK

TABLE 21.-MATHEMATICAL TABLES.
Circumference and area of circles, squares, cubes, square and cube roots.

$\boldsymbol{\pi}$	$\begin{gathered} \pi n \\ 0 \end{gathered}$	$\pi \frac{n^{2}}{4}$	$\boldsymbol{n}^{\mathbf{2}}$	n^{3}	\sqrt{n}	$\sqrt[3]{n}$
$1 \cdot 0$	$3 \cdot 142$	$0 \cdot 7854$	1.000	1.000	1.0000	$1 \cdot 0000$
$1 \cdot 1$	$3 \cdot 456$	$0 \cdot 9503$	$1 \cdot 210$	$1 \cdot 331$	1.0488	1.0323
$1 \cdot 2$	$3 \cdot 770$	1-1310	$1 \cdot 440$	$1 \cdot 728$	$1 \cdot 0955$	1.0627
$1 \cdot 3$	$4 \cdot 084$	$1 \cdot 3273$	$1 \cdot 690$	2-197	1-1402	1-0914
$1 \cdot 4$	$4 \cdot 398$	$1 \cdot 5394$	$1 \cdot 960$	$2 \cdot 744$	1-1832	1-1187
$1 \cdot 5$	$4 \cdot 712$	$1 \cdot 7672$	$2 \cdot 250$	$3 \cdot 375$	$1 \cdot 2247$	$1 \cdot 1447$
1.6	$5 \cdot 027$	$2 \cdot 0106$	$2 \cdot 560$	4.096	$1 \cdot 2649$	1-1696
1.7	$5 \cdot 341$	$2 \cdot 2698$	$2 \cdot 890$	$4 \cdot 913$	$1 \cdot 3038$	$1 \cdot 1935$
1.8	$5 \cdot 655$	$2 \cdot 5447$	$3 \cdot 240$	$5 \cdot 832$	$1 \cdot 3416$	$1 \cdot 2164$
$1 \cdot 9$	$5 \cdot 969$	$2 \cdot 8353$	$3 \cdot 610$	6.859	$1 \cdot 3784$	$1 \cdot 2386$
$2 \cdot 0$	6.283	$3 \cdot 1416$	$4 \cdot 000$	$8 \cdot 000$	$1 \cdot 4142$	$1 \cdot 2599$
$2 \cdot 1$	$6 \cdot 597$	$3 \cdot 4636$	$4 \cdot 410$	$9 \cdot 261$	$1 \cdot 4491$	$1 \cdot 2806$
$2 \cdot 2$	$6 \cdot 912$	$3 \cdot 8013$	$4 \cdot 840$	$10 \cdot 648$	1.4832	$1 \cdot 3006$
$2 \cdot 3$	$7 \cdot 226$	$4 \cdot 1548$	$5 \cdot 290$	$12 \cdot 167$	$1 \cdot 5166$	1-3200
$2 \cdot 4$	$7 \cdot 540$	$4 \cdot 5239$	$5 \cdot 760$	$13 \cdot 824$	$1 \cdot 5492$	$1 \cdot 3389$
$2 \cdot 5$	$7 \cdot 854$	4.9087	6.250	$15 \cdot 625$	$1 \cdot 5811$	13572
$2 \cdot 6$	$8 \cdot 168$	$5 \cdot 3093$	$6 \cdot 760$	$17 \cdot 576$	$1 \cdot 6125$	1-375i
$2 \cdot 7$	$8 \cdot 482$	$5 \cdot 7256$	$7 \cdot 290$	$19 \cdot 683$	$1 \cdot 6432$	$1 \cdot 3925$
$2 \cdot 8$	$8 \cdot 797$	6.1575	$7 \cdot 840$	$21 \cdot 952$	1.6733	$1 \cdot 4095$
$2 \cdot 9$	9•111	$6 \cdot 6052$	$8 \cdot 410$	$24 \cdot 389$	$1 \cdot 7029$	1.4260
$3 \cdot 0$	$9 \cdot 425$	$7 \cdot 0686$	$9 \cdot 00$	$27 \cdot 000$	1.7321	1.4422
$3 \cdot 1$	9.739	$7 \cdot 5477$	$9 \cdot 61$	$29 \cdot 791$	$1 \cdot 7607$	$1 \cdot 4581$
$3 \cdot 2$	$10 \cdot 053$	$8 \cdot 0425$	10.24	$32 \cdot 768$	$1 \cdot 7889$	1.4736
$3 \cdot 3$	$10 \cdot 367$	$8 \cdot 5530$	$10 \cdot 89$	35-937	1.8166	$1 \cdot 4888$
$3 \cdot 4$	$10 \cdot 681$	9.0792	11.56	$39 \cdot 304$	1.8439	$1 \cdot 5037$
$3 \cdot 5$	10.996	$9 \cdot 6211$	$12 \cdot 25$	42.875	1.8708	$1 \cdot 5183$
$3 \cdot 6$	$11 \cdot 310$	$10 \cdot 179$	$12 \cdot 96$	46.656	$1 \cdot 8974$	1.5326
$3 \cdot 7$	11.624	$10 \cdot 752$	$13 \cdot 69$	50.653	$1 \cdot 9235$	$1 \cdot 5467$
$3 \cdot 8$	11.938	11.341	14.44	54.872	$1 \cdot 9494$	$1 \cdot 5605$
3.9	$12 \cdot 252$	11.946	$15 \cdot 21$	$59 \cdot 319$	$1 \cdot 9748$	1.5741
4.0	12.566	$12 \cdot 566$	16.00	$64 \cdot 000$	$2 \cdot 0000$	1.5874
$4 \cdot 1$	$12 \cdot 881$	$13 \cdot 203$	16.81	88.021	$2 \cdot 0249$	$1 \cdot 6005$
$4 \cdot 2$	$13 \cdot 195$	13.854	$17 \cdot 64$	$74 \cdot 088$	$2 \cdot 049.1$	$1 \cdot 6134$
$4 \cdot 3$	$13 \cdot 509$	14.522	$18 \cdot 49$	$79 \cdot 507$	$2 \cdot 0736$	$1 \cdot 6261$
4.4	13.823	$15 \cdot 205$	$19 \cdot 36$	$85 \cdot 184$	$2 \cdot 0976$	$1 \cdot 6386$
4.5	$14 \cdot 137$	$15 \cdot 904$	20.25	$91 \cdot 125$	2.1213	1.6510
$4 \cdot 6$	14.451	16.619	$21 \cdot 16$	$97 \cdot 336$	2.1448	$1 \cdot 6631$
$4 \cdot 7$	$14 \cdot 765$	$17 \cdot 349$	22.09	$103 \cdot 823$	2•1680	1.8751

TABLE 21-C'ontinued.

n	$\begin{gathered} \pi n \\ 0 \end{gathered}$	$\pi \frac{n^{2}}{4}$	n^{2}	n^{8}	\sqrt{n}	$\sqrt[8]{n}$
$4 \cdot 8$	$15 \cdot 080$	18.096	23.04	$110 \cdot 592$	2-1909	$1 \cdot 6869$
$4 \cdot 8$	$15 \cdot 391$	$18 \cdot 857$	$24 \cdot 01$	117.649	$2 \cdot 2136$	1.6985
$5 \cdot 0$	15.708	19.635	$25 \cdot 00$	125.000	$2 \cdot 2361$	1.7100
$5 \cdot 1$	16.022	20.428	26.01	$132 \cdot 651$	$2 \cdot 2583$	$1 \cdot 7213$
$5 \cdot 2$	16.336	$21 \cdot 237$	$27 \cdot 04$	$140 \cdot 608$	$2 \cdot 2804$	1.7325
$5 \cdot 3$	16.650	$22 \cdot 062$	$28 \cdot 09$	$148 \cdot 877$	$2 \cdot 3022$	1.7435
$5 \cdot 4$	16.965	$2 \cdot 2 \cdot 902$	$29 \cdot 16$	157•164	$2 \cdot 3238$	$1 \cdot 7544$
5.5	$17 \cdot 279$	$23 \cdot 758$	80.25	$166 \cdot 375$	$2 \cdot 3452$	$1 \cdot 7652$
$5 \cdot 6$	17.593	$24 \cdot 630$	$31 \cdot 36$	$175 \cdot 616$	$2 \cdot 3664$	1.7758
$5 \cdot 7$	$17 \cdot 907$	$25 \cdot 518$	$32 \cdot 49$	$185 \cdot 193$	$2 \cdot 3875$	1•7863
$5 \cdot 8$	$18 \cdot 221$	26.421	$33 \cdot 61$	$195 \cdot 112$	$2 \cdot 4083$	$1 \cdot 7967$
$5 \cdot 8$	18.535	$27 \cdot 310$	$34 \cdot 81$	$205 \cdot 379$	$2 \cdot 4290$	$1 \cdot 8070$
6.0	18.850	28.274	36.00	216.000	$2 \cdot 4495$	1.8171
$6 \cdot 1$	$19 \cdot 164$	$29 \cdot 225$	$37 \cdot 21$	$226 \cdot 981$	$2 \cdot 4698$	1.8272
$6 \cdot 2$	$19 \cdot 478$	30.191	$38 \cdot 44$	$238 \cdot 328$	$2 \cdot 4900$	1.8371
$6 \cdot 3$	$19 \cdot 792$	$31 \cdot 173$	$39 \cdot 69$	$250 \cdot 047$	$2 \cdot 5100$	1.8469
6.4	20.106	$32 \cdot 170$	$40 \cdot 96$	$262 \cdot 144$	$2 \cdot 5298$	1.8566
$6 \cdot 5$	20.420	33-183	$42 \cdot 25$	$274 \cdot 625$	$2 \cdot 5495$	1.8663
$6 \cdot 6$	$20 \cdot 735$	$34 \cdot 212$	$43 \cdot 56$	$287 \cdot 496$	$2 \cdot 5691$	1.8758
6.7	$21 \cdot 049$	$35 \cdot 257$	$44 \cdot 89$	$300 \cdot 763$	$2 \cdot 5884$	1.8852
$6 \cdot 8$	$21 \cdot 363$	$36 \cdot 317$	$46 \cdot 24$	314.432	$2 \cdot 6077$	$1 \cdot 8945$
$6 \cdot 9$	$21 \cdot 677$	$37 \cdot 393$	$47 \cdot 61$	328-509	$2 \cdot 6268$	$1 \cdot 9038$
$7 \cdot 0$	$21 \cdot 991$	$38 \cdot 485$	$49 \cdot 00$	$343 \cdot 000$	$2 \cdot 64.58$	$1 \cdot 9129$
$7 \cdot 1$	$22 \cdot 305$	39.592	$50 \cdot 41$	$357 \cdot 911$	$2 \cdot 6646$	$1 \cdot 9220$
$7 \cdot 2$	$22 \cdot 619$	40.715	$51 \cdot 8.4$	$373 \cdot 248$	2-6S33	$1 \cdot 9310$
$7 \cdot 3$	$22 \cdot 034$	$41 \cdot 854$	$53 \cdot 29$	$389 \cdot 017$	$2 \cdot 7019$	1.9399
$7 \cdot 4$	$23 \cdot 248$	$43 \cdot 008$	$54 \cdot 76$	$405 \cdot 224$	$2 \cdot 7203$	$1 \cdot 9487$
$7 \cdot 5$	23.562	44•179	$56 \cdot 25$	$421 \cdot 875$	$2 \cdot 7386$	$1 \cdot 9574$
$7 \cdot 6$	$23 \cdot 876$	$45 \cdot 365$	$57 \cdot 76$	$438 \cdot 976$	$2 \cdot 7568$	$1 \cdot 9661$
$7 \cdot 7$	$24 \cdot 190$	$46 \cdot 566$	$59 \cdot 29$	$456 \cdot 533$	$2 \cdot 7749$	$1 \cdot 9747$
$7 \cdot 8$	$24 \cdot 50.4$	47•784	$60 \cdot 84$	$474 \cdot 552$	$2 \cdot 7929$	$1 \cdot 9332$
$7 \cdot 9$	$24 \cdot 819$	$49 \cdot 017$	$62 \cdot 41$	493.039	$2 \cdot 8107$	$1 \cdot 9916$
$8 \cdot 0$	$25 \cdot 133$	50.266	$64 \cdot 00$	512.000	$2 \cdot 8284$	$2 \cdot 0000$
$8 \cdot 1$	$25 \cdot 447$	51.530	$65 \cdot 61$	$531 \cdot 441$	$2 \cdot 8461$	$2 \cdot 0083$
$8 \cdot 2$	$25 \cdot 761$	$52 \cdot 810$	$67 \cdot 24$	551.368	$2 \cdot 8636$	$2 \cdot 0165$
$8 \cdot 3$	26.075	54.106	$68 \cdot 89$	$571 \cdot 787$	$2 \cdot 8810$	$2 \cdot 0247$
$8 \cdot 4$	26.389	$55 \cdot 418$	$70 \cdot 56$	592.704	$2 \cdot 8983$	$2 \cdot 0328$

46 THE TECHNICAL CHEMISTS' HANDBOOK

TABLE 21--Continued.

\boldsymbol{n}	πn \bigcirc	$\pi \frac{n^{2}}{4}$	n^{2}	n^{3}	\sqrt{n}	$\sqrt[3]{n}$
$8 \cdot 5$	$26 \cdot 704$	56.745	$72 \cdot 25$	$614 \cdot 125$	$2 \cdot 9155$	$2 \cdot 0408$
$8 \cdot 6$	$27 \cdot 018$	$58 \cdot 088$	$73 \cdot 96$	$636 \cdot 056$	$2 \cdot 9326$	$2 \cdot 0488$
$8 \cdot 7$	$27 \cdot 332$	$59 \cdot 4 \cdot 4$	$75 \cdot 69$	$658 \div 03$	$2 \cdot 9496$	$2 \cdot 0567$
$8 \cdot 8$	$27 \cdot 646$	$60 \cdot 821$	$77 \cdot 14$	$681 \cdot 472$	$2 \cdot 9665$	$2 \cdot 0646$
$8 \cdot 9$	$27 \cdot 960$	$62 \cdot 211$	79.21	$70.4 \cdot 969$	$2 \cdot 9833$	$2 \cdot 0724$
$9 \cdot 0$	23.274	$63 \cdot 617$	$81 \cdot 00$	729.000	3.0000	$2 \cdot 0801$
$9 \cdot 1$	28:58	$65 \cdot 039$	S $2 \cdot 81$	753:371	$3 \cdot 0166$	$2 \cdot 0878$
$9 \cdot 2$	$28 \cdot 903$	$66 \cdot 456$	81.64	778.688	$3 \cdot 0332$	$2 \cdot 0964$
$9 \cdot 3$	29.217	$67 \cdot 9 \cdot 9$	Sti $\cdot 49$	$801 \cdot 357$	$3 \cdot 0.196$	$2 \cdot 1029$
$9 \cdot 4$	29.531	$69 \cdot 393$	$88 \cdot 36$	$830 \cdot 58.1$	$3 \cdot 0659$	$2 \cdot 1105$
$9 \cdot 5$	29.8 .45	70.8s	$90 \cdot 5$	$857 \cdot 375$	3.08:2	$2 \cdot 1179$
$9 \cdot 6$	$30 \cdot 159$	$72 \cdot 382$	$92 \cdot 16$	88.1736	$3 \cdot 0984$	$2 \cdot 1253$
9.7	30.473	73.89,	$9+09$	$912 \cdot 673$	$3 \cdot 1145$	2.1327
$9 \cdot 8$	$30 \% 88$	$75 \cdot 430$	96.04	$941 \cdot 192$	$3 \cdot 1305$	$2 \cdot 1400$
$9 \cdot 9$	$31 \cdot 102$	76.977	98.01	970×299	$3 \cdot 1464$	2.1472
10.0	31.416	'78:540	$100 \cdot 00$	$1000 \cdot 000$	$3 \cdot 1623$	$2 \cdot 1544$
$10 \cdot 1$	$31 \cdot 730$	$80 \cdot 119$	102.01	1030.301	3.1750	$2 \cdot 1616$
$10 \cdot 2$	$32 \cdot 044$	$81 \cdot 713$	101.0.	$1061 \cdot 203$	$3 \cdot 1937$	2.1687
$10 \cdot 3$	$32 \cdot 358$	$83 \cdot 323$	$106 \cdot 09$	1092.727	3-2094	2-1757
$10 \cdot 4$	32.673	$84 \cdot 949$	$108 \cdot 16$	1124.864	$3 \cdot 2219$	$2 \cdot 1828$
10%	$32 \cdot 957$	$86 \cdot 590$	$110 \% 5$	1157.625	$3 \cdot 2404$	¢ 21897
$10 \cdot 6$	$33 \cdot 341$	$88 \cdot 217$	$11 \because 36$	1191.016	$3 \cdots 558$	$2 \cdot 1967$
10.7	$33 \cdot 615$	89.920	114.49	$1225 \cdot 0.43$	$3 \cdot 2711$	$2 \cdot 20336$
$10 \cdot 8$	$33 \cdot 929$	$91 \cdot 609$	116.64	1259.712	$3 \cdot 2863$	$2 \cdot 2104$
$10 \cdot 9$	$34 \cdot 243$	$93 \cdot 313$	118.81	1295.029	$3 \cdot 3015$	$2 \cdot 2172$
$11 \cdot 0$	$34 \cdot 558$	$95 \cdot 033$	121.00	$1331 \cdot 000$	$3 \cdot 3166$	$2 \cdot 2239$
$11 \cdot 1$	34.872	96.769	$123 \cdot 21$	$1367 \cdot 631$	$3 \cdot 3317$	2×2307
$11 \cdot 2$	$35 \cdot 185$	98-520	$125 \cdot 44$	$1401 \cdot 928$	$3 \cdot 3466$	$2 \cdot 2374$
$11 \cdot 3$	$35 \% 00$	$100 \div 29$	$127 \cdot 69$	$14.42 \cdot 897$	$3 \cdot 3615$	$2 \cdot 2441$
$11 \cdot 4$	$35 \cdot 814$	102.07	$129 \cdot 96$	$1481 \cdot 514$	$3 \cdot 3754$	$2 \cdot 2506$
11.5	$36 \cdot 128$	103.87	$132 \cdot 25$	1520.875	3-3912	$2 \cdot 2572$
11.6	36.442	$105 \cdot 68$	134.50	$1560 \cdot 896$	3-4059	$2 \cdot 2637$
11.7	$36 \cdot 757$	107:51	136.89	$1601 \cdot 613$	$3 \cdot 4205$	$2 \cdot 2702$
11.8	$37 \cdot 071$	$109 \cdot 36$	139.24	$1643 \cdot 032$	$3 \cdot 4351$	$2 \cdot 2766$
11.9	$37 \cdot 385$	$111 \% 2$	141.61	$1685 \cdot 159$	$3 \cdot 4496$	$2 \cdot 2831$
$12 \cdot 0$	$37 \cdot 699$	$113 \cdot 10$	141.00	1728.000	$3 \cdot 4641$	$2 \cdot 2894$
$12 \cdot 1$	$38 \cdot 013$	114.99	146.41	$1771 \cdot 561$	$3 \cdot 4785$	$2 \cdot 2057$
$12 \cdot 2$	$38 \cdot 327$	116.90	148:84	$1815 \cdot 848$	$3 \cdot 4928$	$2 \cdot 3021$

TABLE 21-Continued.

n	\%	$\pi_{4}^{4 i^{2}}$	n^{2}	n^{3}	\sqrt{n}	$\sqrt[3]{n}$
$12 \cdot 3$	38.642	118.82	$151 \cdot 29$	$1860 \cdot 867$	$3 \cdot 5071$	$2 \cdot 3084$
$12 \cdot 4$	$38 \cdot 956$	$120 \cdot 76$	153.76	$1906 \cdot 524$	$3 \cdot 5214$	$2 \cdot 3146$
$12 \cdot 5$	$39 \cdot 270$	124.72	$156 \cdot 15$	1953.125	$3 \cdot 5355$	$2 \cdot 3203$
$12 \cdot 6$	$39 \cdot 581$	$124 \cdot 69$	158.76	$2000 \cdot 376$	3.5496	$2 \cdot 3270$
$12 \cdot 7$	39.898	$126 \cdot 68$	$161 \cdot 29$	2048-383	$3 \cdot 5637$	$2 \cdot 3331$
$12 \cdot 8$	$40 \cdot 212$	128.68	$163 \cdot 84$	2097.152	$3 \cdot 5777$	$2 \cdot 3392$
$12 \cdot 9$	$40 \div 27$	$130 \cdot 70$	$166 \cdot 41$	2116.653	$3 \cdot 5917$	$2 \cdot 3453$
$13 \cdot 0$	$40 \cdot 841$	132.73	$169 \cdot 00$	2197.000	$3 \cdot 6056$	$2 \cdot 3513$
$13 \cdot 1$	$41 \cdot 150$	$134 \cdot 78$	17101	$2248 \cdot 091$	$3 \cdot 6194$	$2 \cdot 3573$
$13 \cdot 2$	$41 \cdot 469$	136.85	174\%1	2299.968	$3 \cdot 6332$	$2 \cdot 3633$
$13 \cdot 3$	$41 \cdot 783$	$138 \cdot 93$	$176 \bigcirc 9$	23552-637	$3 \cdot 6469$	$2 \cdot 3693$
$13 \cdot 4$	4.2097	$141 \cdot 03$	179:56	$2406 \cdot 104$	3.6606	$2 \cdot 3752$
13\%	$42 \cdot 412$	$113 \cdot 14$	152.5	$2460 \cdot 375$	$3 \cdot 6742$	$2 \cdot 3811$
$13 \cdot 6$	42.726	$145: 27$	184.96	$2515 \cdot 156$	$3 \cdot 6878$	$2 \cdot 3870$
$13 \cdot 7$	$43 \cdot 040$	$147 \cdot 41$	$157 \cdot 69$	$2571 \cdot 353$	$3 \cdot 7013$	$2 \cdot 3928$
$13 \cdot 8$	$43 \cdot 35 \cdot 1$	$149 \cdot 7$	$190 \cdot 11$	$2625 \cdot 072$	$3 \cdot 7148$	$2 \cdot 3986$
$13 \cdot 9$	43.668	151.75	$193 \cdot 21$	26S5•619	$3 \cdot 7283$	$2 \cdot 4044$
14.0	43.892	153.91	196.00	2744000	$3 \cdot 7417$	$2 \cdot 4101$
$14 \cdot 1$	$44 \cdot 296$	$156 \cdot 15$	$198 \cdot 81$	$2803 \cdot 22 \mathrm{i}$	$3 \cdot 7550$	$2 \cdot 4159$
$14 \cdot 2$	$44 \cdot 611$	$158 \cdot 37$	$201 \cdot 64$	$2563 \cdot 258$	$3 \cdot 7683$	$2 \cdot 4216$
$14 \cdot 3$	$44 \cdot 925$	160.61	$204 \cdot 49$	$29.4 \cdot 207$	$3 \cdot 7815$	$2 \cdot 4272$
14.4	$45 \cdot 239$	$162 \cdot 86$	207•36	2985.98.4	$3 \cdot 7947$	$2 \cdot 4329$
14.5	45:533	$16.5 \cdot 13$	$210 \cdot 25$	3018.625	3.8079	$2 \cdot 4385$
14.6	$45 \cdot 867$	$167 \cdot 42$	$213 \cdot 16$	$3112 \cdot 136$	3.8210	$2 \cdot 4441$
14.7	$46 \cdot 181$	169.72	216.09	3176.523	$3 \cdot 8341$	$2 \cdot 4497$
11.8	$46 \cdot 196$	172.03	219.01	$3211 \cdot 792$	$3 \cdot 8471$	$2 \cdot 4552$
119	$46 \cdot 810$	$174 \cdot 37$	222.01	$3307 \cdot 919$	$3 \cdot 8600$	$2 \cdot 4607$
$15 \cdot 0$	17-124	176.72	22:00	$3375 \cdot 000$	3.8730	$2 \cdot 4662$
$15 \cdot 1$	$47 \cdot 438$	179.08	2:3.09	3442.951	$3 \cdot 8859$	$2 \cdot 4717$
$15 \cdot 2$	$47 \cdot 752$	$181 \cdot 46$	$231 \cdot 04$	$3511 \cdot 808$	$3 \cdot 8987$	$2 \cdot 4772$
$15 \cdot 3$	$48 \cdot 060$	$183 \cdot 55$	234.09	3581 -577	$3 \cdot 9115$	$2 \cdot 4825$
$15 \cdot 1$	$45 \cdot 381$	$186 \cdot 27$	$237 \cdot 16$	$3652 \cdot 264$	$3 \cdot 9243$	$2 \cdot 4879$
$15 \cdot 5$	$48 \cdot 695$	$158 \cdot 69$	$2.10 \cdot 25$	3723.875	3.9370	$2 \cdot 4933$
$15 \cdot 6$	$49 \cdot 009$	$191 \cdot 13$	$243 \cdot 36$	3796.416	$3 \cdot 9497$	$2 \cdot 4986$
15.7	$49 \cdot 323$	193:69	$246 \cdot 49$	$3569 \cdot 893$	$3 \cdot 9623$	$2 \cdot 5039$
$15 \cdot 8$	$49 \cdot 637$	196.07	$219 \cdot 64$	$3944 \cdot 312$	3.9749	$2 \cdot 5092$
$15 \cdot 9$	$49 \cdot 951$	$193 \cdot 56$	$252 \cdot 81$	4019.679	$3 \cdot 9875$	$2 \cdot 5146$

48 THE TECHNICAL CHEMISTS' HANDBOOK

TABLE 21-Continued.

ω	$\begin{gathered} \pi n \\ \bigcirc \end{gathered}$	$\pi \frac{n^{2}}{4}$	n^{2}	n^{3}	\sqrt{n}	$\sqrt[3]{n}$
$16^{\circ} \cdot 0$	$50 \cdot 265$	201.06	256.00	$4096 \cdot 000$	4.0000	2.5198
$16 \cdot 1$	$50 \cdot 580$	203\%8	259.21	$4173 \cdot 281$	4.0125	$2 \cdot 5251$
$16 \cdot 2$	50.894	$206 \cdot 13$	$262 \cdot 44$	4251:28	$4 \cdot 0249$	$2 \cdot 5303$
$16 \cdot 3$	51.208	$208 \cdot 67$	$265 \cdot 69$	$4330 \cdot 747$	4.0373	$2 \cdot 5355$
$16 \cdot 4$	$51 \cdot 522$	21124	265.56	$4110 \cdot 014$	$4 \cdot 0497$	$2 \cdot 5406$
$16 \cdot 5$	$51 \cdot 836$	213.83	272.25	$4492 \cdot 125$	4.0620	25458
$16 \cdot 6$	$52 \cdot 150$	216.42	$275 \cdot 56$	4574•296	$4 \cdot 0743$	2.5509
$16 \cdot 7$	$52 \cdot 465$	$219 \cdot 04$	278.89	4657.463	$4 \cdot 0866$	$2 \cdot 5561$
$16 \cdot 8$	$52 \cdot 779$	$2 \cdot 1 \cdot 67$	$282 \cdot 24$	4741.632	4.0938	$2 \cdot 5612$
$16 \cdot 9$	53.093	$224 \cdot 32$	$285 \cdot 61$	$4826 \cdot 809$	$4 \cdot 1110$	$2 \cdot 5663$
$17 \cdot 0$	53.407	220.98	289.00	$4913 \cdot 000$	$4 \cdot 1231$	25\%713
$17 \cdot 1$	$53 \cdot 721$	$229 \cdot 66$	292.41	$5000 \cdot 211$	$4 \cdot 1352$	2 \%763
$17 \cdot 2$	54.035	$23.3 \cdot 35$	$295 \cdot 84$	$5085 \cdot 148$	$4 \cdot 1473$	2% \%13
$17 \cdot 3$	$54 \cdot 350$	$235 \cdot 06$	299.29	5177.717	4.1593	2.5863
$17 \cdot 4$	51.664	$237 \cdot 79$	$302 \cdot 76$	こ268-024	4.1713	$2 \cdot 5913$
17.5	$51 \cdot 378$	240.53	306.25	$5359 \cdot 375$	$4 \cdot 1833$	$2 \cdot 5963$
$17 \cdot 6$	$55 \cdot 292$	$243 \cdot 29$	$309 \cdot 76$	$5451 \cdot 776$	$4 \cdot 1952$	$2 \cdot 6012$
$17 \cdot 7$	$55 \cdot 606$	246.06	$313 \cdot 29$	$5545 \cdot 2.33$	$4 \cdot 2071$	2.6061
$17 \cdot 8$	5\%.920	$2.18 \cdot 85$	$316 \cdot 84$	$5639 \cdot 752$	4:190	$3 \cdot 6109$
$17 \cdot 9$	$56 \cdot 235$	251.65	$320 \cdot 41$	$5735 \cdot 339$	$4 \cdot 2308$	$2 \cdot 6158$
$18 \cdot 0$	56.549	$254 \cdot 47$	$324 \cdot 00$	$5832 \cdot 000$	$4 \cdot 2126$	2.6207
$18 \cdot 1$	56.863	$257 \cdot 30$	$3 \cdot 7 \cdot 61$	$5929 \cdot 741$	$4 \cdot 2544$	$2 \cdot 6256$
$18 \cdot 2$	$57 \cdot 177$	$260 \cdot 16$	331.21	$60 \div 8 \cdot 568$	4.2661	2.6304
$18 \cdot 3$	$57 \cdot 491$	263.02	$334 \cdot 89$	$6128 \cdot 187$	$4 \cdot 2778$	$2 \cdot 6352$
$18 \cdot 4$	57.805	265.90	$338 \cdot 56$	6229.504	$4 \cdot 2895$	$2 \cdot 6400$
18.5	$58 \cdot 119$	268.80	312.25	$63.31 \cdot 625$	$4 \cdot 3012$	$2 \cdot 6148$
$18 \cdot 6$	58.434	271.72	$345 \cdot 96$	$6431 \cdot 856$	$4 \cdot 3123$	$2 \cdot 6195$
$18 \cdot 7$	$58 \cdot 748$	274.65	$319 \cdot 69$	6:39-203	1-3243	2•6543
$18 \cdot 8$	59.062	277.59	353.44	6644.672	$4 \cdot 3.159$	$2 \cdot 6.590$
$18 \cdot 9$	59.376	280:55	$357 \cdot 21$	$6751 \cdot 269$	43474	$2 \cdot 6637$
$19 \cdot 0$	59.690	283.5.3	$361 \cdot 00$	6859.000	$4 \cdot 3589$	$2 \cdot 6684$
$19 \cdot 1$	60.004	'286.52	$364 \cdot 81$	6967-871	$4 \cdot 3703$	$2 \cdot 6731$
$19 \cdot 2$	$60 \cdot 319$	289.53	$368 \cdot 64$	7077-888	$4 \cdot 3818$	2.6777
$19 \cdot 3$	$60 \cdot 633$	$292 \cdot 55$	$372 \cdot 49$	$7189 \cdot 057$	$4 \cdot 3942$	$2 \cdot 6824$
$19 \cdot 4$	60.947	$295 \% 9$	376.36	$7301 \cdot 384$	$4 \cdot 4045$	$2 \cdot 6869$
$18 \cdot 5$	61-261	298-65	$380 \cdot 25$	7.114 .875	4.4159	$2 \cdot 6916$
$19 \cdot 6$	$61 \cdot 575$	$301 \cdot 72$	384•16	7529.530	4.4272	$2 \cdot 6962$
$18 \cdot 7$	61.889	$304 \cdot 81$	$388 \cdot 00$	$7642 \cdot 373$	4.4385	$2 \cdot 7008$

TABLE 21-Continued.

n	$\begin{gathered} \pi n \\ \bigcirc \end{gathered}$	$\pi \frac{n^{2}}{4}$	n^{\prime}	n^{8}	\sqrt{n}	$\sqrt[3]{n}$
19.8	$62 \cdot 204$	307.91	$392 \cdot 04$	$7762 \cdot 392$	$4 \cdot 1497$	$2 \cdot 7053$
$19 \cdot 9$	$62 \cdot 518$	$311 \cdot 03$	$396 \cdot 01$	7880.599	$4 \cdot 4609$	$2 \cdot 7098$
$20 \cdot 0$	$62 \cdot 832$	$314 \cdot 16$	$400 \cdot 00$	$8000 \cdot 000$	4.4721	$2 \cdot 7144$
$20 \cdot 1$	$63 \cdot 146$	$317 \cdot 31$	40.4 .01	$8120 \cdot 601$	$4 \cdot 4833$	2.7189
$20 \cdot 2$	$63 \cdot 460$	$3 \geq 0 \cdot 17$	108.01	5212.108	$4 \cdot 1944$	2.7234
$20 \cdot 3$	$63 \cdot 774$	$323 \cdot 66$	$41 \% \cdot 0!$	$83365 \cdot 427$	4×055	- 27279
$20 \cdot 4$	64.088	326.85	$416 \cdot 16$	$8189 \cdot 644$	$4 \cdot 5166$	2.7324
$20 \cdot 5$	64.403	330.06	420*2.	$6615 \cdot 125$	4.5277	$2 \cdot 7368$
$20 \cdot 6$	$64 \cdot 717$	$383 \cdot 29$	42.136	$87.41 \cdot 816$	4:3887	$2 \cdot 7413$
$20 \cdot 7$	$61 \cdot 031$	$336 \cdot 54$	428-19	$5869 \cdot 713$	45497	$2 \cdot 7457$
$20 \cdot 8$	$65 \cdot 345$	3:39-80	$43 \% \cdot 64$	$8495 \cdot 412$	$4 \div 607$	$2 \cdot 7502$
$20 \cdot 9$	$65 \cdot 659$	$313 \cdot 07$	$436 \cdot 81$	$9129 \cdot 329$	4.5710	$2 \cdot 7545$
21.0	$65 \cdot 973$	316.36	$441 \cdot 00$	4261.000	$4 \cdot 5826$	$2 \cdot 7589$
$21 \cdot 1$	$66 \cdot 288$	$319 \cdot 67$	$445 \cdot 21$	9393•9:1	4.5935	2-6633
21.2	$66 \cdot 602$	$352 \cdot 99$	$449 \cdot 44$	9525 128	$4 \cdot 6043$	$\because \cdot 7676$
$21 \cdot 3$	$66 \cdot 916$	$356 \cdot 33$	$453 \cdot 69$	$9065 \cdot 597$	$4 \cdot 6152$	2.7720
$21 \cdot 1$	67-230	$359 \cdot 68$	$457 \cdot 96$	9S00.344	$4 \cdot 6260$	$2 \cdot 7703$
21.5	67.544	363.05	$462 \cdot 25$	99:38-375	4.6363	$2 \cdot 7806$
21.6	$67 \cdot 858$	$366 \cdot 44$	$466 \cdot 56$	$10077^{\circ} 696^{\circ}$	$4 \cdot 6176$	$2 \cdot 7849$
21.7	68.173	369.84	$470 \cdot 89$	$10218 \cdot 313$	$4 \cdot 6: 53$	2•7893
$21 \cdot 8$	$68 \cdot 487$	373.25	$475 \cdot 21$	$10360 \div 32$	4.6690	2.7935
$21 \cdot 9$	68.801	$376 \cdot 6$	$479 \cdot 11$	$10503 \cdot 459$	4.6797	$2 \cdot 7978$
$22 \cdot 0$	$69 \cdot 115$:3¢0•13	484.00	$10648 \cdot 000$	4.6901	$2 \cdot 5021$
$22 \cdot 1$	$69 \cdot 129$	$383 \cdot 60$	488.41	$10793 \cdot 861$	4.7011	9.8063
$22 \cdot 2$	$69 \cdot 743$	387.08	49% 81	$10911 \cdot 0.18$	$4 \cdot 7117$	$2 \cdot 8105$
$2 \cdot \cdot 3$	$70 \cdot 058$	$390 \cdot 57$	$497 \cdot 29$	11089:567	$4 \cdot 7223$	2.5147
$22 \cdot 4$	$70 \cdot 372$	394.08	$501 \cdot 76$	11239-424	4.7329	$2 \cdot 8189$
22.5	70.686	$397 \cdot 61$	$506 \cdot 25$	11390.635	1.7431	$2 \cdot 8231$
$22 \cdot 6$	71.000	$401 \cdot 15$	$510 \cdot 76$	11543.176	4.7539	$2 \cdot 5.273$
$22 \cdot 7$	$71 \cdot 314$	40.4.71	$515 \cdot 29$	$11697 \cdot 083$	$4 \cdot 7614$	$2 \cdot 8314$
$22 \cdot 8$	71.628	$408 \cdot 28$	519.84	$11852 \cdot 352$	47749	2-8350
$22 \cdot 9$	71.942	$411 \cdot 87$	$524 \cdot 41$	$12008 \cdot 989$	4.6854	$2 \cdot 839 ?$
23.0	$72 \cdot 257$	$415 \cdot 48$	$539 \cdot 00$	$12167 \cdot 000$	4.7958	$2 \cdot 8.438$
$23 \cdot 1$	$72 \cdot 571$	$419 \cdot 10$	$533 \cdot 61$	12326.391	4.8062	$2 \cdot 8479$
$23 \cdot 2$	72.885	$422 \cdot 73$	538.24	12487.168	$4 \cdot 8166$	$2 \cdot 8521$
$23 \cdot 3$	$73 \cdot 199$	426.39	542.89	$12649 \cdot 337$	4.8270	$2 \cdot 8562$
$23 \cdot 4$	$73 \cdot 513$	430.05	$547 \cdot 56$	12812.904	$4 \cdot 5373$	$2 \cdot 8603$

50 THE TECHNICAL CHEMISTS' HANDBOOK

TABLE 21-Continued.

n	πn \bigcirc	$\pi \frac{n^{2}}{4}$	$n^{\mathbf{2}}$	n^{3}	\sqrt{n}	$\sqrt[3]{n}$
235	$73 \cdot 8 \cdot 7$	$433 \cdot 74$	$552 \cdot 25$	12977-875	$4 \cdot 8477$	$2 \cdot 8643$
$23 \cdot 6$	$74 \cdot 142$	$437 \cdot 44$	$556 \cdot 96$	$13144 \% 256$	4.8580	$2 \cdot 8684$
$23 \cdot 7$	74.456	$441 \cdot 15$	$561 \cdot 69$	$13312 \cdot 053$	4.8683	$2 \cdot 8724$
$23 \cdot 8$	74.770	$444 \cdot 88$	$566 \cdot 44$	13481 272	$4 \cdot 8785$	$2 \cdot 8765$
$23 \cdot 9$	$75 \cdot 08.4$	$448 \cdot 63$	$571 \cdot 21$	13651.919	$4 \cdot 8888$	$2 \cdot 8805$
$94 \cdot 0$	$75 \cdot 39$ S	$45 \div 39$	576.00	$13824 \cdot 000$	$4 \cdot 8990$	$2 \cdot 8845$
$24 \cdot 1$	$75 \cdot 71 \%$	$456 \cdot 17$	$580 \cdot 81$	$13997 \cdot 521$	$4 \cdot 9092$	$2 \cdot 8885$
$24 \cdots$	$76 \cdot 027$	459 96	$585 \cdot 64$	$14172 \cdot 488$	$4 \cdot 9192$	$2 \cdot 8925$
$24 \cdot 3$	76.341	$463 \cdot 77$	$590 \cdot 49$	14343.907	$4 \cdot 9: 95$	$2 \cdot 8965$
$24 \cdot 4$	$76 \cdot 655$	$467 \cdot 60$	$595 \cdot 36$	14526:785	$4 \cdot 9396$	$2 \cdot 9004$
24.5	76.969	471.44	$600 \cdot 25$	14706.125	$4 \cdot 9.497$	$2 \cdot 9044$
$\because 4 \cdot 6$	$77 \cdot 283$	$475 \div 9$	$605 \cdot 16$	$14886 \cdot 936$	$4 \cdot 9598$	$2 \cdot 9083$
24.7	$77 \cdot 597$	$479 \cdot 16$	+110.09	$15069 \cdot 223$	$4 \cdot 9699$	$2 \cdot 9123$
$24 \cdot 8$	$77 \cdot 911$	$483 \cdot 05$	$615 \cdot 01$	15252.092	$4 \cdot 9799$	$2 \cdot 9162$
$24 \cdot 9$	$78 \because 26$	456.96	$920 \cdot 01$	15438:219	$4 \cdot 9890$	$2 \cdot 9201$
$25^{\circ} 0$	78.540	$490 \cdot 87$	$625 \cdot 00$	$15625 \cdot 000$	$5 \cdot 0000$	$2 \cdot 9241$
$25 \cdot 1$	78.851	$494 \cdot 81$	$630 \cdot 01$	$15813 \cdot 251$	$5 \cdot 0099$	$2 \cdot 9279$
$25 \cdot 2$	79.168	$498 \cdot 76$	$635 \cdot 0.4$	1600:3.008	$5 \cdot 0199$	2.9318
$25 \cdot 3$	79.482	502.73	$640 \cdot 09$	$16194 \cdot 277$	$5 \cdot 0299$	$2 \cdot 9356$
$25 \cdot 4$	79.790	$506 \cdot 71$	$615 \cdot 16$	16387.061	$5 \cdot 0398$	$2 \cdot 9395$
25.5	$80 \cdot 111$	$510 \cdot 71$	$650 \cdot 25$	16581-375	5.0497	$2 \cdot 9434$
$25 \cdot 6$	$80 \cdot 125$	514.7%	6.5936	$16777 \cdot 216$	$5 \cdot 0596$	2•947\%
$25 \cdot 7$	80.739	51875	$6680 \cdot 19$	16974\%93	$5 \cdot 0695$	$2 \cdot 9510$
25.8	$81 \cdot 053$	$\overline{5} 22 \cdot 79$	$665 \cdot 6.4$	17173.512	$5 \cdot 0793$	2-9549
$25 \cdot 9$	$81 \cdot 367$	526.85	$670 \cdot 81$	17373.979	$5 \cdot 0892$	$2 \cdot 9586$
26.0	$81 \cdot 681$	$530 \cdot 93$	676.00	17576.000	$5 \cdot 0990$	$2 \cdot 9634$
$26 \cdot 1$	$81 \cdot 996$	$535 \cdot 0 \cdot$	$681 \cdot 21$	17779:881	$5 \cdot 1088$	2.966:
$26 \cdot 2$	$82 \cdot 310$	$539 \cdot 13$	686.44	17984.728	$5 \cdot 1185$	$2 \cdot 9701$
$26 \cdot 3$	$82 \cdot 62$	$543 \cdot 25$	$691 \cdot 69$	$18191 \cdot 417$	$5 \cdot 1233$	$2 \cdot 9738$
26.4	$82 \cdot 938$	547 -39	$696 \cdot 96$	18399•744	$5 \cdot 1380$	$2 \cdot 9776$
$26 \cdot 5$	$83 \cdot 55$	551.55	$702 \cdots 5$	$18609 \cdot 625$	$5 \cdot 1478$	$2 \cdot 9814$
$26 \cdot 6$	$83 \cdot 566$	$555 \cdot 72$	$707 \cdot 56$	188:1•096	$5 \cdot 1575$	$2 \cdot 9851$
$26 \cdot 7$	$83 \cdot 881$	$559 \cdot 90$	$712 \cdot 89$	$19034 \cdot 163$	$5 \cdot 1672$	$2 \cdot 9888$
26.8	$81 \cdot 195$	$564 \cdot 10$	$718 \cdot 24$	19248-832	5•1768	$2 \cdot 9926$
$26 \cdot 9$	84.509	$568 \cdot 32$	$723 \cdot 61$	$19.65 \cdot 109$	$5 \cdot 1865$	$2 \cdot 9963$
27.0	84.823	572:56	729.00	19683.000	$5 \cdot 1962$	$3 \cdot 0000$
$27 \cdot 1$	$85 \cdot 137$	576.80	734.41	19902 511	$5 \cdot 2057$	$3 \cdot 0037$
$27 \cdot 2$	$85 \cdot 451$	$581 \cdot 07$	$739 \cdot 84$	$20123 \cdot 648$	$5 \cdot 2153$	$3 \cdot 0074$

TABLE 21-Continued.

n	$\begin{gathered} \pi n \\ \bigcirc \end{gathered}$	$\pi \frac{n^{2}}{4}$	n^{2}	n^{3}	\sqrt{n}	$\sqrt[3]{n}$
$27 \cdot 3$	85•765	$585 \cdot 35$	$745 \cdot 29$	$20316 \cdot 417$	$5 \cdot 2249$	3.0111
$27 \cdot 4$	86.080	$589 \cdot 65$	$750 \cdot 76$	$20570 \cdot 8.4$	$5 \cdot 2345$	$3 \cdot 0147$
$27 \cdot 5$	$86 \cdot 394$	593.96	$756 \cdot 25$	20796-875	$5 \cdot 2440$	$3 \cdot 0184$
$27 \cdot 6$	86.708	598•29	761.76	21024.576	$5 \cdot 2535$	$3 \cdot 0221$
27.7	87-022	602.63	$767 \% 9$	$21053 \cdot 933$	$5 \cdot 2630$	$3 \cdot 0257$
27-8	87-336	$606 \cdot 99$	$772 \cdot 84$	21484-952	$5 \cdot 2725$	$3 \cdot 0293$
$27 \cdot 9$	$87 \cdot 650$	$611 \cdot 36$	$778 \cdot 41$	$21717 \cdot 639$	$5 \cdot 2820$	$3 \cdot 0330$
28.0	87.965	615.75	$784 \cdot 00$	21952.000	$5 \cdot 2915$	$3 \cdot 0366$
$28 \cdot 1$	88.279	6:0.16	$789 \cdot 61$	22188.041	$5 \cdot 3009$	$3 \cdot 0402$
$28 \cdot 2$	88-593	6:4.58	795.24	22425•768	$5 \cdot 3103$	$3 \cdot 0438$
$28 \cdot 3$	$88 \cdot 907$	629.0²	$800 \cdot 89$	22665'187	$5 \cdot 3197$	$3 \cdot 0474$
$28 \cdot 4$	$89 \cdots 221$	$633 \cdot 47$	$800 \cdot 56$	22906.304	$5 \cdot 3291$	$3 \cdot 0510$
$28 \cdot 5$	89:535	$633 \cdot 94$	812 $\because 5$	$23149 \cdot 125$	$5 \cdot 3385$	3.0546
$28 \cdot 6$	$89 \cdot 850$	$612 \cdot 42$	$817 \cdot 06$	23393.656	$5 \cdot 3478$	3.0581
$28 \cdot 7$	$90 \cdot 164$	616.93	$823 \cdot 69$	$23639 \cdot 903$	$5 \cdot 3572$	30617
28.8	$90 \cdot 478$	$651 \cdot 44$	$8 \cdot 9 \cdot 11$	23887-872	$5 \cdot 3665$	$3 \cdot 0652$
$28 \cdot 9$	$90 \cdot 792$	$655 \cdot 97$	$8: 35 \% 21$	24137:569	$5 \cdot 3758$	3.0688
29.0	$91 \cdot 106$	600:52	811.00	$24359 \cdot 000$	$5 \cdot 3852$	3.0723
$29 \cdot 1$	$91 \cdot 420$	$665 \cdot 08$	$846 \cdot 81$	$24642 \cdot 171$	5-3944	3.0758
29.2	$91 \cdot 735$	$669 \cdot 66$	$852 \cdot 64$	24897.088	5-4037	$3 \cdot 0794$
$29 \cdot 3$	92.049	674•26	$858 \cdot 49$	25153.757	$5 \cdot 4129$	3.0829
$29 \cdot 4$	2 $2 \cdot 363$	$678 \cdot 87$	$861 \cdot 36$	25412.184	5-4221	3.0864
$29 \cdot 5$	$9 \% \cdot 677$	683 49	870.25	25672.375	$5 \cdot 4313$	3.0899
$29 \cdot 6$	92.991	$688 \cdot 13$	$876 \cdot 16$	25934.330	$5 \cdot 4405$	3.0934
$20 \cdot 7$	$93 \cdot 305$	692.79	$88: 00$	26198.073	$5 \cdot 4497$	$3 \cdot 0968$
$29 \cdot 8$	$93 \cdot 619$	$697 \cdot 47$	888.01	26463.592	5•4589	3•1003
$29 \cdot 9$	$93 \cdot 934$	702.15	$894 \cdot 01$	$26730 \cdot 899$	$5 \cdot 4680$	3.1038
$30 \cdot 0$	$94 \cdot 248$	706.86	$900 \cdot 00$	$27000 \cdot 000$	$5 \cdot 4772$	$3 \cdot 1072$
$30 \cdot 1$	$94 \cdot 562$	$711 \cdot 58$	906.01	$27270 \cdot 901$	$5 \cdot 1863$	$3 \cdot 1107$
$30 \cdot 2$	$94 \cdot 876$	716.32	$912 \cdot 04$	$27543 \cdot 608$	$5 \cdot 4954$	3.1141
$30 \cdot 3$	$95 \cdot 190$	721.07	918.09	27818.127	$5 \cdot 5045$	3•1176
$30 \cdot 4$	$95 \cdot 504$	$725 \cdot 83$	$9: 4 \cdot 16$	28091.464	5.5136	3.1210
30%	$95 \cdot 819$	$730 \cdot 62$	$930 \cdot 25$	$28372 \cdot 625$	$552: 6$	$3 \cdot 1244$
$30 \cdot 6$	$06 \cdot 133$	$735 \cdot 42$	936.36	$28652 \cdot 616$	5.5317	$3 \cdot 1278$
$30 \cdot 7$	96.447	$740 \cdot 23$	9.1% - 49	$28934 \cdot 443$	$5 \cdot 5407$	3•1312
$30 \cdot 8$	$96 \cdot 761$	$745 \cdot 06$	948.64	29218.112	5.5497	3•1346
$30 \cdot 9$	97-075	749.01	$954 \cdot 81$	29503 629	$5 \cdot 5587$	3.1380

52 THE TECHNICAL CHEMISTS' HANDBOOK

TABLE 21-Continued.

n	πn 0	$\pi \frac{n^{2}}{4}$	n^{3}	n^{3}	\sqrt{n}	$\sqrt[3]{n}$
31.0	$97 \cdot 389$	754.77	961.00	$29791 \cdot 000$	5•5678	3•1414
$31 \cdot 1$	97-704	759.65	$967 \cdot 21$	30080-231	$5 \cdot 5767$	3.1448
$31 \cdot 2$	98.018	764.54	973.44	30371 -328	5:5857	3•1481
$31 \cdot 3$	98.332	$769 \cdot 45$	$979 \cdot 69$	$30664 \cdot 297$	$5 \cdot 5946$	$3 \cdot 1515$
$31 \cdot 4$	98.646	$774 \cdot 37$	$985 \cdot 96$	30959•14.1	$5 \cdot 6035$	3-1549
31.5	98.960	779-31	$992 \cdot 25$	31255.875	$5 \cdot 6124$	3•1582
$31 \cdot 6$	$99 \cdot 274$	$784 \cdot 27$	998-56	31:5.51496	$5 \cdot 6213$	3•1615
$31 \cdot 7$	$99 \cdot 588$	789.21	1004•89	31855.013	$5 \cdot 6302$	3-1648
$31 \cdot 8$	99.903	79.4	$1011 \cdot 21$	$32157 \cdot 432$	$5 \cdot 6391$	$3 \cdot 1681$
$31 \cdot 9$	$100 \div 2$	$799 \cdot 23$	$1017 \cdot 61$	32161•759	$5 \cdot 6480$	3-1715
$32 \cdot 0$	$100 \cdot 53$	804.25	102.1.00	32768.000	$5 \cdot 6569$	$3 \cdot 1745$
$32 \cdot 1$	$100 \cdot 85$	809 '28	$1030 \cdot 41$	$33076 \cdot 161$	$5 \cdot 6656$	$3 \cdot 1781$
$32 \cdot 2$	101•16	$814 \cdot 33$	1036.84	333866.248	$5 \cdot 6745$	$3 \cdot 1814$
$32 \cdot 3$	$101 \cdot 47$	$819 \cdot 10$	1013.29	33698-267	$5 \cdot 6833$	$3 \cdot 1847$
$32 \cdot 4$	$101 \cdot 79$	$82 \pm \cdot 49$	1049.76	31012.224	$\Sigma \cdot 6921$	$3 \cdot 188 \mathrm{C}$
32.5	102•10	829:58	1056.25	$31328 \cdot 125$	$5 \cdot 7008$	$3 \cdot 1913$
$32 \cdot 6$	102.42	$834 \cdot 63$	$1062 \cdot 76$	$34645 \cdot 976$	$5 \cdot 7056$	$3 \cdot 1945$
$32 \cdot 7$	$102 \cdot 73$	$839 \cdot 52$	$1069 \cdot 29$	$31965 \cdot 783$	$5 \cdot 7183$	3•1978
$32 \cdot 8$	$103 \cdot 04$	$844 \cdot 96$	1075.84	35287 '552	$5 \cdot 7271$	$3 \cdot 2010$
$32 \cdot 9$	$103 \cdot 36$	$850 \cdot 12$	$1032 \cdot \pm 1$	35611-289	$5 \cdot 7358$	$3 \cdot 2043$
33.0	$103 \cdot 67$	$855 \cdot 30$	$1059 \cdot 00$	$35937 \cdot 000$	$5 \cdot 7447$	$3 \cdot 2075$
$33 \cdot 1$	103.99	$860 \cdot 49$	$1095 \cdot 61$	3626.1691	$5 \cdot 7532$	3•2108
$33 \cdot 2$	104 30	86570	1102'24	36:59.4.368	5•7619	3-2149
$3: 3 \cdot 3$	10.1 ¢ 2	870.92	$1108 \cdot 89$	$36925 \cdot 037$	$5 \cdot 7706$	$3 \cdot 2172$
$33 \cdot 4$	104.93	$876 \cdot 19$	1115 50	37259.701	5.7792	$3 \cdot 220.4$
33-5	105\%4	$881 \cdot 41$	1122.25	$37595 \cdot 375$	$5 \cdot 7879$	$3 \cdot 2237$
$33 \cdot 6$	105.56	$886 \cdot 68$	1123.96	37933.056	$5 \cdot 7965$	$3 \cdot 2269$
$33 \cdot 7$	105.87	$891 \cdot 97$	$1135 \cdot 69$	$38272 \cdot 753$	$5 \cdot 8051$	$3 \cdot 2301$
$33 \cdot 8$	106•19	$897 \cdot 27$	$1142 \cdot 44$	$38614 \cdot 472$	$5 \cdot 8137$	$3 \cdot 2332$
$33 \cdot 9$	106:0	902.59	$11 / 49 \cdot 21$	$38958 \cdot 219$	$5 \cdot 8223$	$3 \cdot 2364$
31.0	106:81	907.92	1156.00	39301.000	5.8310	3.2396
$34 \cdot 1$	107.13	$913 \cdot 27$	$1162 \cdot 81$	$39651 \cdot 821$	$5 \cdot 8395$	3-2424
31.2	107•14	918.6:;	$1169 \cdot 64$	$40001 \cdot 688$	$5 \cdot 8480$	3.2460
$34 \cdot 3$	$107 \cdot 76$	$921 \cdot 01$	$1176 \cdot 49$	$40353 \cdot 607$	$5 \cdot 8566$	$3 \cdot 2491$
$34 \cdot 4$	$108 \cdot 07$	$929 \cdot 41$	$1183 \cdot 36$	40707 584	$5 \cdot 8751$	$3 \cdot 2522$
$34 \cdot 5$	108.38	934.82	$1190 \cdot 25$	$41063 \cdot 525$	$5 \cdot 8736$	$3 \cdot 2554$
$34 \cdot 6$	108•0	$940 \cdot 25$	$1197 \cdot 16$	41421.738	$5 \cdot 8821$	$3 \cdot 2586$
$34 \cdot 7$	109.01	$945 \cdot 69$	$1204 * 09$	41781-923	5•8906	3-2617

TABLE 21-Continued.

\boldsymbol{n}	πn 0	$\pi \frac{n^{2}}{4}$	$\boldsymbol{n}^{\mathbf{2}}$	n^{3}	\sqrt{n}	$\sqrt[8]{n}$
$34 \cdot 8$	$109 \cdot 33$	$951 \cdot 15$	1211.04	42144-192	5.8991	$3 \cdot 2648$
$34 \cdot 9$	$109 \cdot 64$	$956 \cdot 62$	$1218 \cdot 01$	42508:549	$5 \cdot 9076$	$3 \cdot 2679$
$35 \cdot 0$	$109 \cdot 96$	$962 \cdot 11$	$1225 \cdot 00$	$42875 \cdot 000$	$5 \cdot 9161$	$3 \cdot 2710$
$35 \cdot 1$	$110 \cdot 27$	$967 \cdot 62$	$1232 \cdot 01$	43243551	5.9245	$3 \cdot 2742$
$35 \cdot 2$	$110 \cdot 58$	973.14	1239.04	4.614.208	$5 \cdot 9326$	$3 \cdot 2773$
$35 \cdot 3$	$110 \cdot 90$	$978 \cdot 68$	$12+6 \cdot 09$	43986.977	$5 \cdot 9413$	$3 \cdot 2804$
$35 \cdot 4$	$111 \cdot 21$	98.23	$1253 \cdot 16$	44361-864	$5 \cdot 9497$	$3 \cdot 2835$
$35 \cdot 5$	111.53	$989 \cdot 80$	$1260 \cdot 25$	$44738 \cdot 875$	$5 \cdot 9581$	3 2866
$35 \cdot 6$	$111 \cdot 84$	$995 \cdot 38$	$1267 \cdot 36$	45118.016	$5 \cdot 9665$	$3 \cdot 2897$
$35 \cdot 7$	$112 \cdot 15$	1000.98	$1274 \cdot 49$	45499.293	5.9749	$3 \cdot 2927$
$35 \cdot 8$	$112 \cdot 47$	$1006 \cdot 60$	$1281 \cdot 64$	$45852 \cdot 712$	5.9833	$3 \cdot 2958$
$35 \cdot 9$	$112 \cdot 78$	$1012 \cdot 23$	$1288 \cdot 81$	$46268 \cdot 279$	¢-9916	$3 \cdot 2989$
36.0	$113 \cdot 10$	1017.88	$1296 \cdot 00$	$46656 \cdot 000$	6.0000	3•3019
$36 \cdot 1$	113.41	1023:54	$1303 \% 21$	$47045 \cdot 881$	6.0083	$3 \cdot 3050$
$36 \cdot 2$	$113 \cdot 73$	1029 $\cdot 22$	$1310 \cdot 44$	$47437 \cdot 928$	6.0166	3.3080
$36 \cdot 3$	114.04	1034.91	1317.69	$47832 \cdot 147$	$6 \cdot 0249$	3-3111
$36 \cdot 4$	114.35	$1040 \cdot 62$	$1324 \cdot 96$	$48228 \cdot 54$	$6 \cdot 0332$	$3 \cdot 3141$
$30 \cdot 5$	$114 \cdot 67$	1046.35	$1332 \cdot 25$	$48627 \cdot 125$	6.0415	$3 \cdot 3171$
$36 \cdot 6$	114.98	$1052 \cdot 09$	1339.56	$49017 \cdot 896$	6.0497	$3 \cdot 3202$
36.7	$115 \cdot 30$	1057.8.1	$1346 \cdot 89$	$49430 \cdot 863$	$6 \cdot 0580$	$3 \cdot 3232$
$36 \cdot 8$	$115 \cdot 61$	$1063 \cdot 62$	$1354 \cdot 24$	$49836 \cdot 032$	6.0663	$3 \cdot 3262$
$36 \cdot 9$	$115 \cdot 92$	$1069 \cdot 41$	1361 \% 61	$50243 \cdot 409$	6.0745	$3 \cdot 3292$
$37 \cdot 0$	116.24	1075.21	$1369 \cdot 00$	50653.000	6.0827	$3 \cdot 3322$
$37 \cdot 1$	116.55	1081.03	1376.41	$51064 \cdot 811$	$6 \cdot 0909$	$3 \cdot 3352$
$37 \cdot 2$	116.87	$1086 \cdot 87$	$1383 \cdot 84$	51478.848	$6 \cdot 0931$	$3 \cdot 3382$
$37 \cdot 3$	$117 \cdot 18$	1092.72	1391.29	$51895 \cdot 117$	6.1073	$3 \cdot 3412$
$37 \cdot 4$	$117 \cdot 50$	1098-58	$1398 \cdot 76$	$52313 \cdot 624$	$6 \cdot 1155$	$3 \cdot 3442$
$37 \cdot 5$	$117 \cdot 81$	1104.47	$1406 \cdot 25$	5273.1.375	$6 \cdot 1237$	$3 \cdot 3472$
$37 \cdot 6$	$118 \cdot 12$	$1110 \cdot 36$	1413.76	$53157 \cdot 376$	$6 \cdot 1318$	$3 \cdot 3501$
$37 \cdot 7$	$118 \cdot 44$	1116.28	$1421 \cdot 29$	$53582 \cdot 633$	$6 \cdot 1400$	$3 \cdot 3531$
$37 \cdot 8$	$118 \cdot 75$	1122.21	$1428 \cdot 84$	$54010 \cdot 152$	6.1481	$3 \cdot 3561$
$37 \cdot 9$	119.07	1128.15	$1436 \cdot 41$	$54439 \cdot 939$	$6 \cdot 1563$	$3 \cdot 3590$
$38 \cdot 0$	119.38	$1134 \cdot 11$	$1444 \cdot 00$	$54872 \cdot 000$	6.1644	$3 \cdot 3620$
$38 \cdot 1$	$118 \cdot 69$	1140.09	1451.61	$55306 \cdot 341$	6.1725	3-3649
38.2	$120 \cdot 01$	1146.08	1459.24	55742.968	6'1806	3-3679
$38 \cdot 3$	$120 \cdot 32$	1152.09	1466.89	$56181 \cdot 887$	6.1887	$3 \cdot 3708$
$88 \cdot 4$	$120 \cdot 64$	1158•12	1474.56	96623-104	6•1967	3-3737

54 THE TECHNICAL CHEMISTS' HANDBOOK
TABLE 21-Continued.

n	πn 0	$\pi_{4}^{n^{2}}$	n^{2}	n^{3}	\sqrt{n}	$\sqrt[3]{n}$
39.5	$120 \cdot 95$	1164.16	1482:25	$57066 \cdot 625$	6.2048	3.3767
$38 \cdot 6$	$121 \cdot 27$	$1170 \cdot 21$	1489.96	$57512 \cdot 456$	6.2129	$3 \cdot 3797$
38.7	121.58	1176.23	1497-69	$57960 \cdot 603$	6.2209	$3 \cdot 3825$
$38 \cdot 8$	$121 \cdot 80$	1182•37	150.74	58.411 .072	6.2289	$3 \cdot 3854$
$33 \cdot 9$	$122 \cdot 21$	$1188 \cdot 47$	1513.21	$58863 \cdot 869$	6.2370	$3 \cdot 3883$
$39 \cdot 0$	122.52	1194 -59	$1521 \cdot 00$	$59319 \cdot 000$	$6 \cdot 2.450$	$3 \cdot 3912$
$39 \cdot 1$	$122 \cdot 81$	$1200 \cdot 72$	1:28:31	59776 471	$6 \cdot 2530$	$3 \cdot 3941$
$39 \cdot 2$	123-15	1206.97	1536\%94	60236-288	6.2610	$3 \cdot 3970$
$39 \cdot 3$	$123 \cdot 46$	121304	1544 19	$60098 \cdot 457$	6.2689	$3 \cdot 3999$
$39 \cdot 4$	123.78	$1219 \cdot 22$	$1552 \cdot 36$	61162.984	6.2769	$3 \cdot 4028$
39.5	$124 \cdot 09$	$1225 \cdot 42$	$1560 \cdot 25$	61629.875	$6 \cdot 2349$	$3 \cdot 4056$
$39 \cdot 6$	$12+41$	1231.63	1568.16	62099.136	$6 \cdot 2928$	$3 \cdot 4085$
$39 \cdot 7$	124.72	$1237 \cdot 96$	1576.09	62570.773	$6 \cdot 3008$	$3 \cdot 4114$
$39 \cdot 8$	125.04	124.10	1584.04	63044.792	$6 \cdot 3087$	$3 \cdot 4142$
39.9	$125 \cdot 35$	1250.36	$1592 \cdot 01$	$63521 \cdot 199$	6.3166	3-4171
40.0	$125 \cdot 66$	1256.i4	$1600 \cdot 00$	$6.1000 \cdot 000$	6.3245	$3 \cdot 4200$
$40 \cdot 1$	$125 \cdot 93$	1262.93	1608.01	$6.4481 \cdot 201$	$6 \cdot 3325$	$3 \cdot 4228$
$40 \cdot 2$	$126 \cdot 29$	$1269 \cdots 3$	1616.01	61964-808	6.3.404	$3 \cdot 4256$
$40 \cdot 3$	126.61	1275:56	1621.09	$65450 \cdot 82 \%$	$6 \cdot 3482$	$3 \cdot 4285$
$40 \cdot 4$	126.92	1281.90	$163 \% \cdot 16$	$65939 \cdot 264$	6.3561	$3 \cdot 4313$
40.5	$127 \cdot 23$	1298.25	$1640 \cdot 25$	$66 \cdot 430 \cdot 126$	6.3639	$3 \cdot 4341$
$40 \cdot 6$	127.55	1294.62	$1644 \cdot 36$	$66923 \cdot 116$	6.3718	$3 \cdot 4370$
40.7	$127 \cdot 86$	1301.00	$1650 \cdot 49$	67419 143	6.3796	3.4398
$40 \cdot 8$	$128 \cdot 18$	1307-11	$1661 \cdot 61$	$67917 \cdot 312$	6.3875	$3 \cdot 4426$
40.9	$128 \cdot 49$	$1313 \cdot 82$	$1672 \cdot 81$	68417.929	6.3953	$3 \cdot 4454$
41.0	128.81	$1320 \cdot 25$	$1881 \cdot 00$	$68921 \cdot 000$	6.4031	$3 \cdot 4482$
$41 \cdot 1$	$129 \cdot 12$	1326.70	$1689 \cdot 21$	$69426: 531$	$6 \cdot 4109$	$3 \cdot 4510$
41.2	$129 \cdot 43$	1333-17	$1697 \cdot 41$	69934:\%28	6.4187	$3 \cdot 4538$
41.3	$129 \cdot 75$	$1339 \cdot 65$	$1703 \cdot 69$	70444:997	$6 \cdot 4265$	$3 \cdot 4566$
41.4	130.06	$1316 \cdot 14$	$1713 \cdot 96$	70957.944	6.4343	$3 \cdot 4594$
41.5	$130 \cdot 38$	1352.65	$1722 \cdot 25$	71473.375	6.4421	$3 \cdot 4622$
41.6	$130 \cdot 69$	$1359 \cdot 18$	1730\%6	$71991 \cdot 296$	6.4498	$3 \cdot 4650$
41.7	131.00	$1365 \cdot 72$	$1738 \cdot 89$	$72511 \cdot 719$	6.4575	$3 \cdot 4677$
41.8	$131 \cdot 32$	1372 -28	1747•24	$73034 \cdot 632$	6.4653	$3 \cdot 4705$
41.9	131.63	1378.85	$1755 \cdot 61$	$73560 \cdot 059$	6.4730	$3 \cdot 4733$
$42 \cdot 0$	131.95	$1385 \cdot 44$	$1764 \cdot 00$	74088.000	8.4807	3.4750
$42 \cdot 1$	$132 \cdot 26$	1392.05	$1772 \cdot 41$	$74618 \cdot 481$	6.4884	3.4788
42.2	132.58	1398.67	$1780 \cdot 84$	75151.448	$6 \cdot 4961$	3.4815

TABLE 21-Continued.

n	πn 0	$\pi \frac{n^{2}}{4}$	n^{2}	n^{3}	\sqrt{n}	$\sqrt[3]{n}$
$42 \cdot 3$	$132 \cdot 89$	1405.31	1789.29	75686.967	6.5038	3.4843
$42 \cdot 4$	$133 \cdot 20$	1411.96	$1797 \cdot 76$	76225.024	6.5115	$3 \cdot 4870$
$42 \cdot 5$	133.52	1418.63	1806.25	76765.625	$6 \cdot 5192$	3.4898
$42 \cdot 6$	$133 \cdot 83$	$1425 \cdot 31$	1814.76	77308.776	$6 \cdot 5268$	$3 \cdot 4925$
$42 \cdot 7$	$134 \cdot 15$	14:3201	$1823 \cdot 29$	778.3.483	6.5345	3.4952
$42 \cdot 8$	$134 \cdot 46$	$1438 \cdot 72$	1831.81	$78402 \cdot 752$	$6 \cdot 5422$	$3 \cdot 4980$
$42 \cdot 9$	$134 \cdot 77$	$1445 \cdot 45$	1840.41	78953.589	$6 \cdot 5498$	$3 \cdot 5007$
$43 \cdot 0$	$135 \cdot 09$	1452.20	1819.00	59507.000	$6 \cdot 5574$	$3 \cdot 5034$
$43 \cdot 1$	$135 \cdot 40$	1458.96	1857.61	$80062 \cdot 991$	$6 \cdot 5651$	$3 \cdot 5061$
$43 \cdot 2$	$135 \cdot 72$	$1465 \cdot 74$	$1566 \cdot 24$	$80621 \cdot 569$	$6 \cdot 5727$	$3 \cdot 5088$
$43 \cdot 3$	$136 \cdot 03$	117.51	1874.59	$81182 \cdot 737$	$6 \cdot 5803$	$3 \cdot 5115$
$43 \cdot 4$	$136 \cdot 35$	$1479 \cdot 3.1$	1883.56	81746.504	6.5879	$3 \cdot 5142$
43.5	$136 \cdot 66$	$1496 \cdot 17$	1892.25	\$2312.875	6 69954	$3 \cdot 5169$
$43 \cdot 6$	$136 \cdot 97$	$1493 \cdot 01$	$1900 \cdot 97$	82881.850°	6.6030	3.5196
43.7	$137 \cdot 29$	1499.87	1901969	$83453 \cdot 453$	$6 \cdot 6106$	3-5223
$43 \cdot 8$	$137 \cdot 60$	1506.74	$1915 \cdot 4$	$84027 \cdot 672$	$6 \cdot 6182$	$3 \cdot 5250$
$43 \cdot 0$	$137 \cdot 92$	$1513 \cdot 63$	1927 $\quad 21$	84601519	6.0257	3-5277
44.0	$138 \cdot 23$	$15 \div 0.53$	$193 t^{\circ} 00$	8.518 .000	$6 \cdot 6333$	3•5303
$44 \cdot 1$	138.54	$1527 \cdot 45$	$1914 \cdot 81$	$85766 \cdot 121$	$6 \cdot 6408$	$3 \cdot 5330$
$44 \cdot 2$	$138 \cdot 86$	1.331.39	$1953 \cdot 61$	$86350 \cdot 858$	$6 \cdot 6183$	$3 \cdot 5357$
$44 \cdot 3$	$139 \cdot 17$	1511-34	$1962 \cdot 49$	86938-307	$6 \cdot 6558$	$3 \cdot 5384$
44.4	$139 \cdot 49$	1548:30	1971-36	87525-381	$6 \cdot 6633$	$3 \cdot 5410$
$44 \cdot 5$	$139 \cdot 80$	$1555 \cdot 28$	$1980 \cdot 25$	$88121 \cdot 125$	$6 \cdot 6708$	$3 \cdot 5437$
44.6	$140 \cdot 12$	$1502 \cdot 23$	$1989 \cdot 16$	85716:336	$6 \cdot 6783$	$3 \cdot 5463$
$44 \cdot 7$	140.43	1.569:30	1993.09	$89311 \cdot 623$	$6 \cdot 6558$	$3 \cdot 5490$
41.8	$140 \cdot 74$	1576.33	2007.04	89915•392	$6 \cdot 6933$	$3 \cdot 5516$
$44 \cdot 9$	141.06	$1583 \cdot 37$	201601	20518-849	$6 \cdot 7007$	$3 \cdot 5543$
$45 \cdot 0$	$141 \cdot 37$	$1590 \cdot 43$	$2025 \cdot 00$	$91125 \cdot 000$	6.7052	$3 \cdot 5569$
$45 \cdot 1$	$141 \cdot 69$	$1597 \cdot 51$	2034.01	91733.851	$6 \bigcirc 1156$	$3 \cdot 5595$
$45 \cdot 2$	$142 \cdot 00$	$1604 \cdot 60$	2043.04	92345:408	6.7231	$3 \cdot 5621$
$45 \cdot 3$	$142 \cdot 31$	$1611 \cdot 71$	2052.09	$92959 \cdot 677$	6.7305	$3 \cdot 5648$
$45 \cdot 4$	$142 \cdot 63$	1618.83	$2061 \cdot 16$	93.57664	$6 \cdot 7379$	$3 \cdot 5674$
$45 \cdot 5$	$142 \cdot 94$	1625.97	2070.25	94196.375	$6 \cdot 7454$	$3 \cdot 5700$
$45 \cdot 6$	$143 \cdot 26$	$1633 \cdot 13$	$2079 \cdot 36$	$94818 \cdot 816$	6.7528	$3 \cdot 5726$
$45 \cdot 7$	$143 \cdot 57$	$1610 \cdot 30$	$2088 \cdot 49$	$95443 \cdot 993$	$6 \cdot 7602$	$3 \cdot 5752$
$45 \cdot 8$	143.88	$1617 \cdot 48$	$2097 \cdot 64$	96071.912	$6 \cdot 7676$	3.5778
$45 \cdot 9$	$144 \cdot 20$	1654*68	2106.81	96702-579	$6 \cdot 7749$	$3 \cdot 5805$

56 THE TECHNICAL CHEMISTS' HANDBOOK

TABLE 21-Continued.

n	πn 0	$\pi \frac{n^{3}}{4}$	n^{2}	n^{3}	\sqrt{n}	$\sqrt[8]{n}$
$46 \cdot 0$	$144 \cdot 51$	$1661 \cdot 90$	$2116 \cdot 00$	$97336 \cdot 000$	6.7823	3.5830
$46 \cdot 1$	144.83	$1669 \cdot 14$	$2125 \cdot 21$	97972•181	6.7897	3.5856
$46 \cdot 2$	$145 \cdot 14$	$1676 \cdot 39$	$2134 \cdot 44$	98611-128	6.7971	3-5882
$46 \cdot 3$	$145 \cdot 46$	$1683 \cdot 65$	2143.69	$99252 \cdot 847$	6.8044	3.5908
$46 \cdot 4$	$145 \cdot 77$	$1690 \cdot 93$	$2152 \cdot 96$	99897-344	$6 \cdot 8117$	$3 \cdot 5934$
$46 \cdot 5$	146.08	1698.23	$2162 \cdot 25$	100544.625	6.8191	3.5960
$46 \cdot 6$	146.40	$1705 \cdot 54$	$2171 \cdot 56$	$101194 \cdot 696$	6.8264	3.5986
$46 \cdot 7$	$146 \cdot 71$	1712.87	$2180 \cdot 89$	101847-563	0.8337	$3 \cdot 6011$
46.8	147.03	1720.21	$2190 \cdot 24$	102503.232	6.8410	$3 \cdot 6037$
$46 \cdot 9$	147.34	1727-57	2199.61	103161•709	6.8484	$3 \cdot 6063$
$47 \cdot 0$	147.65	$1734 \cdot 94$	2209.00	103823.000	6.8556	3.6088
$47 \cdot 1$	$147 \cdot 97$	1742-34	$2218 \cdot 41$	$104487 \cdot 111$	6.8629	3.6114
$47 \cdot 2$	148.28	17.19 .74	2227.84	$105154 \cdot 048$	6.8702	3.6139
$47 \cdot 3$	$1.43 \cdot 60$	$1757 \cdot 16$	$2237 \cdot 29$	$105823 \cdot 817$	6.8775	$3 \cdot 6165$
$47 \cdot 4$	148.91	1764.60	$2246 \cdot 76$	106496.424	6.8847	3.6190
47•5	$149 \cdot 23$	1772.05	2256.25	107171-875	6.8920	3.6216
$47 \cdot 6$	$149 \cdot 54$	1779:52	2265 76	107850.176	6.8903	3.6241
$47 \cdot 7$	149.85	$1787 \cdot 01$	2275.29	108531-333	6.9065	3.6267
$47 \cdot 8$	$150 \cdot 17$	1794:51	2284*84	109215 35\%	6.9137	$3 \cdot 6292$
$47 \cdot 9$	$150 \cdot 48$	$1802 \cdot 03$	2294.41	109902•239	6.9209	$3 \cdot 0317$
48:0	150.80	1809\%6	2301.00	110592.000	6.9282	3.6342
$48 \cdot 1$	$151 \cdot 11$	1817.11	$2313 \cdot 61$	$111284 \cdot 6.11$	6.9354	3.6368
$48 \cdot 2$	$151 \cdot 42$	18:4.67	2323.24	111980•168	$6 \cdot 9426$	3.6393
$48 \cdot 3$	$151 \cdot 74$	183\% 25	2332-89	112678:587	6.9498	3.6418
$48 \cdot 4$	$152 \cdot 05$	1839-84	$2342 \cdot 56$	113379•904	$6 \cdot 9570$	$3 \cdot 6443$
$48 \cdot 5$	$152 \cdot 37$	$1847 \cdot 45$	$2352 \cdot 25$	114081-125	6.9642	$3 \cdot 6468$
$48 \cdot 6$	152.68	1855.03	2361.96	$114791 \cdot 256$	6.9714	3.6493
$48 \cdot 7$	153.00	1862.72	$2371 \cdot 69$	115501 303	6.9785	$3 \cdot 6518$
48.8	$153 \cdot 31$	1870.38	$2381 \cdot 44$	116214*272	$6 \cdot 3857$	$3 \cdot 6543$
48.9	153.62	1878.05	$2391 \cdot 21$	116930 169	6.9928	3.6568
43.0	153.94	1885.74	2401.00	117649.000	$7 \cdot 0000$	$3 \cdot 6593$
49.1	$154 \cdot 25$	$1893 \cdot 45$	$2410 \cdot 81$	$118370 \cdot 771$	$7 \cdot 0071$	$3 \cdot 6618$
$49 \cdot 2$	$154 \cdot 57$	1901-17	$2420 \cdot 64$	$119095 \cdot 488$	$7 \cdot 0143$	3.6643
$49 \cdot 3$	154.88	$1908 \cdot 90$	$2430 \cdot 49$	$119823 \cdot 157$	7-0214	$3 \cdot 6668$
$49 \cdot 4$	$155 \cdot 19$	$1916 \cdot 65$	$2440 \cdot 36$	120553.781	$7 \cdot 0285$	3.6692
49.5	$155 \cdot 51$	$1924 \cdot 42$	$2450 \cdot 25$	121287.375	$7 \cdot 0356$	$3 \cdot 8717$
49.6	155.82	$1032 \cdot 21$	$2460 \cdot 16$	122023.936	$7 \cdot 0427$	$3 \cdot 6742$
$49 \cdot 7$	$156 \cdot 14$	$1940 \cdot 00$	$2470 \cdot 09$	122763.473	7-0498	$3 \cdot 6767$

TABLE 21-Continued.

\boldsymbol{n}	πn 0	$\pi \frac{n^{2}}{4}$	n^{2}	\boldsymbol{n}^{8}	\sqrt{n}	$\sqrt[3]{n}$
$49 \cdot 8$	156.45	1947.8.2	2480.01	123505 992	$7 \cdot 0569$	$3 \cdot 6791$
$49 \cdot 9$	$156 \cdot 77$	$1955 \cdot 65$	$2490 \cdot 01$	124251*499	$7 \cdot 0640$	$3 \cdot 6816$
$50 \cdot 0$	157.08	1963.50	$2500 \cdot 00$	125000.000	$7 \cdot 0711$	$3 \cdot 6840$
$51 \cdot 0$	$180 \cdot 22$	20.12.82	$2601 \cdot 00$	$132651 \cdot 000$	7-1414	$3 \cdot 7084$
$52 \cdot 0$	$163 \cdot 36$	$2123 \cdot 72$	2701.00	140608.000	7×111	$3 \cdot 7325$
$53 \cdot 0$	16650	$2206 \cdot 19$	$\because 809.00$	$148877 \cdot 000$	$7 \cdot 2801$	$3 \cdot 7563$
$54 \cdot 0$	$169 \cdot 64$	$2290 \cdot 22$	$2916 \cdot 00$	$157464 \cdot 000$	$7 \cdot 3485$	$3 \cdot 7798$
$55 \cdot 0$	172•78	$2375 \cdot 83$	$30.5 \cdot 00$	166375.000	$7 \cdot 4162$	$3 \cdot 8030$
$56 \cdot 0$	175.93	2.683 .01	$3136 \cdot 00$	175616.000	$7 \cdot 4833$	3-8259
57.0	179.07	2551.76	$32.19 \cdot 00$	$185193 \cdot 000$	$7 \cdot 5498$	$3 \cdot 8485$
58.0	$182 \cdot 21$	$2642 \cdot 08$	$33 t \cdot 4 \cdot 00$	$195112 \cdot 000$	$7 \cdot 6158$	$3 \cdot 8709$
$59 \cdot 0$	$185 \cdot 35$	$2733 \cdot 97$	$3181 \cdot 00$	$205379 \cdot 000$	$7 \cdot 6811$	$3 \cdot 8930$
60.0	188.49	2827.44	$3600 \cdot 00$	$216000 \cdot 000$	$7 \cdot 7460$	$3 \cdot 9149$
$61 \cdot 0$	$191 \cdot 63$	2922 17	$3721 \cdot 00$	220981.000	7-810:	$3 \cdot 9365$
$62 \cdot 0$	194.77	$3019 \cdot 07$	384.400	$2383 \div 8 \cdot 000$	$7 \cdot 8740$	$3 \cdot 9579$
63.0	$107 \cdot 92$	$3117 \cdot 25$	$3969 \cdot 00$	$250047 \cdot 000$	$7 \cdot 9373$	$3 \cdot 9791$
$64 \cdot 0$	$201 \cdot 06$	3216.99	$4096 \cdot 00$	262144.000	$8 \cdot 0000$	$4 \cdot 0000$
$65 \cdot 0$	20.4-20	3318.31	$4225 \cdot 00$	$274625 \cdot 000$	$8 \cdot 0623$	4.0207
$66 \cdot 0$	207:31	3421.20	$4356 \cdot 00$	287496.000	8-1240	$4 \cdot 0412$
$67 \cdot 0$	210.48	$3525 \cdot 66$	$4489 \cdot 00$	$300763 \cdot 000$	$8 \cdot 1854$	$4 \cdot 0615$
68.0	$213 \cdot 63$	3631.69	462.4 .00	314432.000	$8 \cdot 2462$	$4 \cdot 0817$
69.0	$216 \cdot 77$	$3739 \cdot 29$	$4761 \cdot 00$	$328509 \cdot 000$	8.3066	$4 \cdot 1016$
70.0	219.91	$3848 \cdot 46$	$4900 \cdot 00$	$343000 \cdot 000$	$8 \cdot 3866$	$4 \cdot 1213$
$71 \cdot 0$	$223 \cdot 05$	$3959 \cdot 20$	$5011 \cdot 00$	$357911 \cdot 000$	$8 \cdot 4261$	$4 \cdot 1408$
$72 \cdot 0$	$226 \cdot 19$	4071.51	$518.4 \cdot 00$	$373248 \cdot 000$	$8 \cdot 4853$	$4 \cdot 1602$
73.0	$229 \cdot 33$	$4185 \cdot 39$	$53: 9 \cdot 00$	$389017 \cdot 000$	$8 \cdot 5140$	$4 \cdot 1793$
$74 \cdot 0$	$232 \cdot 47$	$4300 \cdot 85$	$5476 \cdot 00$	405224.000	$8 \cdot 6023$	4-1983
$75 \cdot 0$	$235 \cdot 02$	$4417 \cdot 87$	$5625 \cdot 00$	421S75.000	$8 \cdot 6603$	$4 \cdot 2172$
$76 \cdot 0$	$238 \cdot 76$	$4536 \cdot 47$	$5776 \cdot 00$	438976.000	$8 \cdot 7178$	$4 \cdot 2358$
$77 \cdot 0$	$241 \cdot 90$	$4656 \cdot 83$	$5929 \cdot 00$	456533.000	8•7550	$4 \cdot 2543$
78.0	$245 \cdot 04$	$4778 \cdot 37$	$6084 \cdot 00$	474552.000	S•S318	$4 \cdot 2727$
79.0	248-18	$4901 \cdot 68$	6241.00	493039.000	S•S882	$4 \cdot 2908$
$80 \cdot 0$	251-32	5026:56	$6400 \cdot 00$	$512000 \cdot 000$	$8 \cdot 9443$	$4 \cdot 3089$
$81 \cdot 0$	$254 \cdot 47$	5153.01	6561.00	$531441 \cdot 000$	$9 \cdot 0000$	$4 \cdot 3267$
$82 \cdot 0$	257-61	5281.03	6724.00	551368.000	$9 \cdot 0554$	$4 \cdot 3445$
$83 \cdot 0$	$260 \cdot 75$	$5410 \cdot 62$	$6889 \cdot 00$	571787.000	$9 \cdot 1104$	$4 \cdot 3621$
$84 \cdot 0$	$263 \cdot 89$	5541.78	$7056 \cdot 00$	$592704 \cdot 000$	9•1652	$4 \cdot 3795$

58 THE TECHNICAL CHEMISTS' HANDBOOK

TABLE 21-Continued.

n	$\begin{aligned} & \pi n \\ & 0 \end{aligned}$	$\pi \frac{n^{2}}{4}$	n^{2}	n^{3}	\sqrt{n}	$\sqrt[3]{n}$
$85^{\circ} 0$	267.03	5674:50	7225.00	$61.4125 \cdot 000$	9'2195	4.3968
86.0	$270 \cdot 17$	$5808 \cdot 81$	7396.00	$636056 \cdot 000$	$9 \cdots$ - 36	$4 \cdot 4140$
$87 \cdot 0$	$273 \cdot 32$	$59.4 \cdot 69$	7569.00	$658503 \cdot 000$	$9 \cdot 3274$	$4 \cdot 4310$
88.0	$276 \cdot 46$	$6082 \cdot 13$	754.4.00	$681472 \cdot 000$	$9 \cdot 3808$	$4 \cdot 4480$
$89 \cdot 0$	$279 \cdot 60$	$6221 \cdot 13$	$7921 \cdot 00$	704969•000	$9 \cdot 4330$	$4 \cdot 4647$
90.0	$282 \cdot 74$	$6361 \cdot 74$	$8100 \cdot 00$	$729000 \cdot 000$	$9 \cdot 4868$	$4 \cdot 1814$
91.0	285.88	6503.99	$8281 \cdot 00$	75:3571.000	$9 \cdot 6394$	$4 \cdot 4979$
$92 \cdot 0$	$289 \cdot 02$	66.7 -62	$8.46 .1 \cdot 00$	$778688 \cdot 000$	$9 \div 917$	$4 \cdot 5144$
$93 \cdot 0$	$292 \cdot 17$	$6792 \cdot 92$	8649.00	80.4:35\% 000	$9 \cdot 6437$	$4 \div 307$
$94 \cdot 0$	$295 \cdot 31$	693978	$8836 \cdot 00$	83058.000	$9 \cdot 6954$	4.5468
$95 \cdot 0$	$298 \cdot 45$	7085.23	9025•00	8:5375.000	$9 \cdot 7468$	4:5629
96.0	301.59	7238.24	9216.00	$88.4736 \cdot 000$	$9 \cdot 7980$	$4 \cdot 5789$
$97 \cdot 0$	$304 \cdot 73$	$7389 \cdot 83$	$9409 \cdot 00$	$912673 \cdot 000$	$9 \cdot 8489$	$4 \cdot 5947$
98.0	$307 \cdot 87$	7542.98	$9604 \cdot 00$	$911192 \cdot 000$	$9 \cdot 8995$	$4 \cdot 6104$
$99 \cdot 0$	311.02	7697.68	$9801 \cdot 00$	$970299 \cdot 000$	$9 \cdot 9193$	$4 \cdot 6261$
$100 \cdot 0$	$314 \cdot 16$	$7854 \cdot 00$	100000*00	$1000000 \cdot 000$	$10 \cdot 0000$	$4 \cdot 6416$

Approximately $\sqrt{a^{2} \pm b}=a \pm \frac{b}{2 a}$ and $\sqrt[3]{a^{5} \pm b}=a \pm \frac{b}{3 u^{2}}$

TABLE 22.-FORMULA FOR MENSURATION OF AREAS AND SOLID CONTENTS.

1.--Triangle.

Area $=\frac{1}{2} \times$ base \times height.
If all the sides, a, b, c, are known and half their sum is represented by s, so that $s=\frac{a+b+c}{2}$ then

$$
\begin{gathered}
A=\sqrt{s(s-a)(s-b)(s-c)} \\
\text { 2.-Circle. }
\end{gathered}
$$

Area of circle, if $l=$ diameter, $r=$ radius, and $\pi=3 \cdot 14159$

$$
\begin{aligned}
\mathbf{A}=\frac{\pi}{4} d^{2} & =r^{2} \pi \cdot \cdot\left(\frac{\pi}{4}=0.7854\right) \\
d & =1 \cdot 12838 \sqrt{\mathbf{A}}
\end{aligned}
$$

TABLE 22-Continued.

Area of segment of circle of an arc of a^{0}

$$
A=\left(\frac{a}{180} \pi-\sin a\right) \frac{r^{2}}{2}
$$

Or, if d is the diameter and h the height of segment, calculate $\frac{h}{d}$ and find the value x, in the following table, corresponding to $\frac{h}{d}$; the square of the diameter multiplied by x, gives the area of the segment.

$$
\text { Area of segment }=x i^{2}
$$

$\begin{aligned} & h \\ & d \end{aligned}$	\boldsymbol{r}	$-\frac{n}{d}$		h i	x	$\frac{h}{d}$	x
$\cdot 01$	-00133	$\cdot 14$	-06683	$\cdot 27$	$\cdot 17109$	$\cdot 40$	'29337
$\cdot 02$	-00375	$\cdot 15$. 07387	$\cdot 28$	$\cdot 18002$	$\cdot 41$	-30319
$\cdot 03$	-00687	$\cdot 16$	-08111	$\cdot 29$	-18905	$\cdot 42$	-31304
$\cdot 0.4$	-01054	$\cdot 17$	-08854	$\cdot 30$	-19817	$\cdot 43$	-32293
-05	-01468	$\cdot 18$	-09613	$\cdot 31$	-20737	$\cdot 44$	-33284
- 06	-01924	$\cdot 19$	-10390	-32	$\cdot 21667$	$\cdot 45$	-34278
-07	-02417	$\cdot 20$	-11182	-33	-22603	$\cdot 46$	- 35274
. 08	-02944	$\cdot 21$	-11990	$\cdot 34$	-23547	$\cdot 47$	- 36272
-09	-03501	$\cdot 22$	-12811	-35	-24498	$\cdot 48$	-37270
$\cdot 10$	- 04087	$\cdot 23$	-13646	-36	- 25455	$\cdot 49$	- 38270
$\cdot 11$	- 04701	$\cdot 24$	-14495	$\cdot 37$	- 26418	$\cdot 50$	-39270
$\cdot 12$	-05338	-25	-15355	-38	- 27386		
$\cdot 13$	- 06000	$\cdot 26$	-16226	-39	$\cdot 28359$		

8.-Cone and Pyramid.

Solid content : $S=\frac{1}{3}$ base \times height.
Area of convex surface of right cone: When $s=$ side of cone $=\sqrt{r^{2}+h^{2}}$, where $r=$ radius of base and $h=$ height of cone, the area of convex surface will be

$$
\mathbf{A}=\pi r s
$$

60

 THE TECHNICAL CHEMISTS' HANDBOOK
TABLE 22-Continued.

4.-Cylinder.

Area of convex surface $A=2 \pi r h$.
Content of cylinder $\quad S=$ base \times height.

5.-Sphere.

Convex surface $\quad A=4 \pi r^{2}=12 \div 6636 r^{2}$.
Surface of segment $\quad A=2 \pi r h, h=$ height of segment.
Solid content of sphere $S={ }_{3}^{4} r^{3} \pi=4 \cdot 1888 r^{\prime 3}$.
Solid content of sphere $S=\frac{1}{6} \pi d^{3}=0 \div 5236 d^{3}$.
Radius $\quad r=0.6: 2035: 3 /$ content.
Content of segment of sphere: If a is the radius of the sectional area, h the height of the segment, and r the radius of the sphere,

$$
\begin{aligned}
S & =\frac{1}{6} \pi h\left(3 a^{2}+h^{2}\right) \\
& -\frac{1}{3} \pi h^{2}(3 r-h)
\end{aligned}
$$

Solid content of spherical zone : If a and b are the respective radii of the two terminal surfaces, and h the height,

$$
\mathrm{S}=\frac{1}{o} \pi h\left(3 a^{2}+3 b^{2}+h^{2}\right) .
$$

TABLE 23.-HIGE TEMPERATURES, AS MEASURED WITH LE CHATELIER'S

TABLE 24.-SYMBOLS, MOLECULAR WEIGETS, AND PERCENTAGE COMPOSITION.
Of Compounds which are of importance in the Inorganic Chemical Industries and in
Note. -The salts are arranged alphabetically according to their cations. The $\mathrm{H}_{2} \mathrm{O}$ given in the percentage

Compounds.	Molec. Formula. weight. $0=16$.	Percentage Composition.
Aluminium chloride hydroxide oxide (alumina) sulphate	AlCl_{3}. . . . $133 \cdot 48$	$\begin{aligned} & \mathrm{Al} 20 \cdot 30 ; \mathrm{Cl} 79 \cdot 70 \\ & \mathrm{Al}_{2} \mathrm{O}_{3} 65 \cdot 41 ; \mathrm{H}_{2} \mathrm{O} 34 \cdot 59 \\ & \mathrm{Al}_{2} 53 \cdot 03 ; \mathrm{O} 46 \cdot 97 . \\ & \mathrm{Al}_{2} \mathrm{O}_{3} 29 \cdot 85 ; \mathrm{SO}_{3}, 70 \cdot 15 . \\ & \mathrm{Al}_{2} \mathrm{O}_{3} 15 \cdot 33 ; \mathrm{SO}_{3} 36 \cdot 03 ; \mathrm{H}_{2} \mathrm{O} 48 \cdot 64 . \end{aligned}$
	$\mathrm{Al}(\mathrm{OH})_{3}$. . . . 78.12	
	$\mathrm{Al}_{2} \mathrm{O}_{3}$ - . . . $102 \% 0$	
	$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+18 \mathrm{H}_{2} \mathrm{O} . \quad . \quad 666.67$	
Ammonia	$\left.\mathrm{NH}_{3} \mathrm{NH}_{4}\right)\left(\mathrm{SO}_{4}\right)_{2}+1 \dot{2}_{2} \mathrm{H}_{2} \mathrm{O}$ 153.45	$\mathrm{Al}_{2} \mathrm{O}_{3} 11 \cdot 27 ; \mathrm{NH}_{3} 3 \cdot 76 ; \mathrm{SO}_{3} 35 \cdot 31 ; \mathrm{H}_{2} \mathrm{O}$ $49 \cdot 66$.
carbonate	$\begin{aligned} &\left(\mathrm{NH}_{4}\right) \mathrm{HCO}_{3}+\left(\mathrm{NH}_{4}\right) \mathrm{CO}_{22}: \\ &+\left(\mathrm{NH}_{2}\right) \\ & 157 \cdot 11 \end{aligned}$	NH, $32 \cdot 52 ; \mathrm{CO}_{2} 56 \cdot 01 ; \mathrm{H}_{2} \mathrm{O} 11 \cdot 47.6$.
chloride . .		$\mathrm{NH}_{3} 31.83 ; \text { HCl } 68 \cdot 17$
magnesium arsenate.	$\left(\mathrm{NH}_{4}\right) \mathrm{MgAsO}_{4}+{ }_{2}^{1} \mathrm{H}_{2} \mathrm{O} \cdot 190 \cdot 33$	$\mathrm{MgO} 21 \cdot 18 ; \quad \mathrm{As}_{2} \mathrm{O}_{5} 60 \cdot 40 ; \quad \mathrm{NH}_{3} 8.95 ;$
$\underset{\text { cryst. }}{\text { magnesium phosphate, }}$	$\left(\mathrm{NH}_{4}\right) \mathrm{MgPO}_{4}+6 \mathrm{H}_{2} \mathrm{O} \quad .245 \cdot 50$	$\mathrm{MgO} 16.42 ; \mathrm{NH}_{3} 6 \cdot 94 ; \mathrm{P}_{2} \mathrm{O}_{5} \mathbf{2 8 . 9 4} \mathbf{~} \mathrm{H}_{\mathbf{4}} \mathrm{H}_{2} \mathrm{O}$
Ammonium nitrate	$\mathrm{NH}_{4} \mathrm{NO}_{3}$. . . 80.05	$\mathrm{NH}_{3} 21 \cdot 28 ; \mathrm{N}_{2} \mathrm{O}_{5} 67 \cdot 47 ; \mathrm{H}_{2} \mathrm{O} 11 \cdot 25$.

TABLE 24-C'ontinued.

TABLE 24-Continued.

TABLE 24-Continued.

TABIE 24-Continued.

TABLE 24-Continued.

TABLE 24-Continuerl.

Compounds.	Formula.		Molec. weight. $\mathrm{O}=16$.	Percentage Composition.
Silver sulphide .	$\mathrm{Ag}_{\underline{\text { S }} \text { S }}$.		247.82	Ag $87 \cdot 06 ; \mathrm{S}^{\text {S }} 12 \cdot 94$.
thiocyanate	AgCNS .		$165 \cdot 96$	Ag 65.00; CNS $35 \cdot 00$.
Sodium oxide .	Na O		62.00	Na 74-19; O 25.81.
hydroxide	NaOH		$40 \cdot 01$ $144 \cdot 10$	$\begin{aligned} & \mathrm{Na}_{2} \mathrm{O} 77 \cdot 48 ; \mathrm{H}_{2} \mathrm{O} 22 \cdot 52 . \\ & \mathrm{Na} \mathrm{O}_{2} \mathrm{O} 64 \cdot 54 ; \mathrm{Al}_{2} \mathrm{O} 35 \cdot 46 . \end{aligned}$
aluminate	$\mathrm{Na}_{3} \mathrm{Na}_{4} \mathrm{NlO}_{3} \mathrm{O}_{4}$		$144 \cdot 10$ $164 \cdot 20$	$\mathrm{Na} \mathrm{O} 37 \cdot 76 ; \mathrm{Al}_{2} \mathrm{O}_{3} 62 \cdot 24$
borate	$\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}+10 \mathrm{H}_{2} \mathrm{O}$		$381 \cdot 96$	$\mathrm{Na}, \mathrm{O} 16.24 ; \mathrm{B}_{2} \mathrm{O}_{3} 36 \cdot 57 ; \mathrm{H}_{2} \mathrm{O} 47 \cdot 19$.
carbonate anhydrous	$\mathrm{Na}_{2} \mathrm{CO}_{3}$. ${ }^{\text {a }}$		106.00	Na O O 58.49 ; $\mathrm{CO}_{2} 41.51$.
decahydrated	$\mathrm{Na}_{2} \mathrm{CO}_{3}+10 \mathrm{H}_{2} \mathrm{O}$		286.16	$\mathrm{Na}_{2} \mathrm{O} 21 \cdot 67 ; \mathrm{CO}_{2} 15 \cdot 38 ; \mathrm{H}_{2} \mathrm{O} 62.95$.
bicarbonate	NaHCO_{3}		84.01 106.46	$\mathrm{Na} \mathrm{N}_{2} 36 \cdot 90$; $\mathrm{CO} \cdot 52 \cdot 38 ; \mathrm{H}_{2} \mathrm{O} 10 \%$.
chlorate.	$\mathrm{NaClO}_{3}{ }^{\text {a }}$.		106.46 58.46	$\mathrm{Na} 39 \cdot 34 ; \mathrm{Cl} 60^{2} 66$.
chromate	$\mathrm{Na}, \mathrm{CrO}_{4}$		162.00	Na, ${ }^{2} 38 \cdot 27$; $\mathrm{CrO}_{3} 61.73$.
bichromate	NaHCrO_{4}		140.01	$\mathrm{Na}_{2} \mathrm{O} 22 \cdot 14 ; \mathrm{CrO}_{3} 71 \cdot 42 ; \mathrm{H}_{2} \mathrm{O} 6.44$.
hypochlorite	Na ()Cl		74.46	$\mathrm{Na} 2 \mathrm{O} 41 \cdot 63$; $\mathrm{Cl}_{2} \mathrm{O} 58.37$.
nitrate .	NaNO		85.01	Na. ${ }^{\text {O }} 36.47$; $\mathrm{N}_{2} \mathrm{O}_{5}$
nitrite	$\mathrm{NaNO} \mathrm{Na}^{\circ}$		69.01	Na, ${ }^{2} 44.92$; $\mathrm{N}_{2} \mathrm{O}_{3} 55.08$. $\mathrm{H}_{2} \mathrm{O} 62.86$.
phosphate	$\mathrm{Na}_{2} \mathrm{HPO}_{4}-12 \mathrm{H}_{2} \mathrm{O}$.		358.24	$\mathrm{Na}_{2} \mathrm{O} 17 \cdot 31 ; \mathrm{P}_{2} \mathrm{O}_{5} 19 \cdot 83 ; \mathrm{H}_{2} \mathrm{O} 62 \cdot 86$.
silicate -	$\mathrm{Na}_{2} \mathrm{SiO}_{3}$ -		$122 \cdot 30$	
sulphate . cryst.	$\stackrel{\mathrm{Na}}{\mathrm{Na} . \mathrm{SO}_{4}}+10 \mathrm{HO}$		$142 \cdot 06$ $322 \cdot 22$	$\mathrm{Na} \mathrm{a}_{2} \mathrm{O} 19.24 ; \mathrm{SO}_{3} 24.85 ; \mathrm{H}_{2} \mathrm{O} 55 \cdot 91$.
bisulphate	NaHSO		$120 \cdot 07$	$\mathrm{Na}_{2} \mathrm{O} 25.82 ; \mathrm{SO}_{3} 66 \cdot 68 ; \mathrm{H}_{2} \mathrm{O} 7 \cdot 50$.
sulphide.	Na.S		78.06	Na 53.93; S 41.07.
hydrogen sulphide.	NaHS $-{ }^{\text {N }}$		$56 \cdot 07$	$\mathrm{Na}_{2} \mathrm{~S} 69 \cdot 61$; $\mathrm{H}_{2} \mathrm{~S} 30 \cdot 39$.
sulphite, cryst.	$\mathrm{Na}_{2} \mathrm{SO}_{3} \div 7 \mathrm{H}_{2} \mathrm{O}$		$252 \cdot 17$	$\mathrm{Na}_{2} \mathrm{O} 24 \cdot 59 ; \mathrm{SO}_{2} 25 \cdot 40 ; \mathrm{H}_{2} \mathrm{O} 50 \cdot 01$.

TABLE 24-Continued.

70 THE TECHNICAL CHEMISTS' HANDBOOK

TABLE 25.-FACTORS FOR CALOULATING GRAVIMETRIC ANALYSES.

TABLE 25-Continued.

Sabstance welghed.	Substance to be determined.	Factor.	\log
Lead.			
Lead sulphide, PbS	Lead	0.8660	$0 \cdot 93752$
Lead, Pb	Lead oxide, PbO	1.0772	0.03230
Magnesium pyrophosphate, $\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$	Magnesium oxide, MgO	$0 \cdot 3621$	0.55881-. 1
Magnesium sulphate, MgSO_{4}	Magnesium oxide, MgO. .	0.3349	0•52497-1
Manganese.			
Mangano manyanic oxide, $\mathrm{Mn}_{3} \mathrm{O}_{4}$	Manganese, Mn	$0 \cdot 7203$	0.85749-1
	Manganese, Mn	$0 \cdot 6311$	$0 \cdot 80034$
Manganese sulphide, MnS	Manganous oxide, MnO . .	0.8154	0.91136-1
Ammonium platinumehloride, ($\mathrm{NH}_{4}, \mathrm{P}_{\mathrm{PtCl}}$	Nitrogen, N	0.0631	0.80003--2
Platinum, $\mathrm{Pt}^{\text {a }}$.	Nitrogen, N	$0 \cdot 1435$	0.15693-1
Phosphorus.			
Magnesium pyrophosphate,	Phosphorus, P .	$0 \cdot 2787$	0.44521-1
$\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7} \quad \cdot \quad \cdot \quad$.	Phosphorus pentoxide, $\mathrm{P}_{2} \mathrm{O}_{5}$	0.6380	0.80479-1
Potassium.			
Potassium chloride, KCl	Potassium K. O \quad oxide,	0.6317	0.80051-1
Potassium chloride	Potassium K	$0 \cdot 5244$	0.71967-1
Potassium platinum chloride,	Potassium oxide	$0 \cdot 1930$	0.28556-1
$\mathrm{K}_{\mathbf{2}} \mathrm{PtCl}_{6}$ (reduction factors	Potassium chloride	0.3056	0.48515-1
adopted at Stassfurt) .	Potassium sulphate	$0 \cdot 3571$	0.55279-1
Potassium sulphate	Potassium oxide	0.5106	0.73285-1
Potassium sulphate	Potassium	$0 \cdot 4488$	0.65201-1
Sodium.			
Sodium sulphate, $\mathrm{Na}_{2} \mathrm{SO}_{4}$	Sodium oxide, $\mathrm{Na}_{2} \mathrm{O}$	0.4364	0.63992-1
Sodium carbonate, $\mathrm{Na}_{3} \mathrm{CO}$	Sodium oxide, $\mathrm{Na}_{2} \mathrm{O}$	0.5849	$0.76708-1$
Sodium chloride, NaCl .	Sodium oxide, $\mathrm{Na}_{2} \mathrm{O}$	$0 \div 303$	$0.72450-1$
Sulphur.	Sulphur, S	0.1373	0.13780-1
	Sulphurdioxide, SO_{2}	$0 \cdot 2744$	0.43843-1
	Sulphur trioxide, $\mathrm{SO}_{\text {S }}$	0.3429	$0 \cdot 53522-1$
Barium sulphate, BaSO_{4}	Sulphuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$.	$0 \cdot 4202$	0.62340-1
	$\begin{gathered} \text { Sodium } \\ \mathrm{Na}_{2} \mathrm{SO}_{4} \\ \text { sulphate, } \end{gathered}$	0.6086	0.78431-1
Zinc.			
	Zinc, $\mathbf{Z n}$.	0.6709	$0.82669-1$
Zinc sulphide, ZnS	Zinc oxide, ZnO	0.8352	0.92177-1

72 THE TECHNICAL CHEMISTS' HANDBOOK

TABLE 26.-DENSITY OF GASES AND VAPOURS.

And Litre Weights at $0^{\circ} 0$., and at a pressure of 760 mm .

[^0]TABLD
Note.-The solubility is given in parts of the anhydrous salt dissolved by 100 parts of water, though the

100 parts of Water dissolve		At 0	t 1	30^{\prime}	At 50°.	$\Delta{ }^{\text {t }}$	At 100
Substance.							
Alum, ammonia	$\mathrm{Al}\left(\mathrm{NH}_{4}\right)\left(\mathrm{SO}_{4}\right)_{2}{ }_{1}{ }^{2} \mathrm{H}_{2} \mathrm{O}$	$2 \cdot 6$	5.5	${ }^{9.1}$	$15 \cdot 9$	${ }_{36} 7$	109.7
potash	$.11 \mathrm{k}\left(\mathrm{SO}_{4}\right), 2,12 \mathrm{H}, \mathrm{O}$	3.0	$5 \cdot 0$	$8 \cdot 4$			
Aluminium sulphate.	$\left.\mathrm{Al}_{5}(\mathrm{SO})_{3}\right)^{18 \mathrm{H}_{2} \mathrm{O}}$.	$31 \cdot 3$	$34 \cdot 9$	$40 \cdot 4$	$52 \cdot 1$	66.2	$89 \cdot 1$
Ammonium bicarbonate	$\mathrm{NH}_{4} \mathrm{HCO}_{3}$	$11 \cdot 9$	$17 \cdot 3$	27	\cdots
bromide.	$\mathrm{NH}_{4} \mathrm{Br}$		70		94		
chloride.	$\mathrm{NH}_{4} \mathrm{Cl}$.	$29 \cdot 7$	35.3	41.4	$50 \cdot 4$	$60 \cdot 2$	$77 \cdot 3$
nitrate	$\mathrm{NH}_{\mathrm{N}} \mathrm{NO}$	118	162	242	-344	499	871
sulphate	$\left(\mathrm{NH}_{2} \mathrm{SO}^{\text {SO}}\right.$	70.6	$74 \cdot 2$	78.0	$84 \cdot 4$	91.6	103.3
Barium chloride	$\mathrm{BaCl}, 2 \mathrm{H}_{2} \mathrm{O}$	31.6	$34 \cdot 5$	$38 \cdot 2$	$43 \cdot 6$	$49 \cdot 4$	$58 \cdot 8$
hydroxide (wt . of BaO)	$\mathrm{Ba}(\mathrm{OH})_{2},{ }^{\text {8 }} \mathrm{H}_{2} \mathrm{O}$	1.5	$\stackrel{2}{2} 85$	5.0	$11 \cdot 7$	$31 \cdot 9$	
nitrate	$\mathrm{Ba}\left(\mathrm{NO}_{3}{ }^{\text {a }}\right.$	$5 \cdot 0$	$8 \cdot 1$	$11 \cdot 6$	$17 \cdot 1$	$23 \cdot 6$	34.2
Boric acid (wt. of $\mathrm{B}_{2} \dot{\mathrm{O}}_{3}$)	$\mathrm{B}_{2} \mathrm{O}_{3}, 3 \mathrm{H}_{2} \mathrm{O}$.	$1 \cdot 1$	1.9	$3 \cdot 1$	$5 \cdot 1$ 3.52	$8 \cdot 0$	$15 \cdot 7$
Bromine . .	$\mathrm{Br}_{2}{ }^{10} \mathrm{H}_{2} \mathrm{O}$ (up to $6{ }^{2}{ }^{2}$)	$2 \cdot 37$		$3 \cdot 44$	$3 \cdot 52$		
Calcium carbonate	$\mathrm{CaCO}_{3}{ }^{\text {a }}$		${ }_{68}^{0.0013}$	102	...	\ldots	\ldots
chloride	$\mathrm{CaCl}^{\mathrm{CaCl}} .2 \mathrm{H}_{2} \mathrm{O}$	$59 \cdot 5$.		159.0
hyd̈roxide	$\mathrm{Ca}(\mathrm{OH})$,	$0 \cdot 131$	0.129	0.113	0.096	0.075	
nitrate.	$\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}, 4 \mathrm{H}_{2} \mathrm{O}$	$93 \cdot 1$	115				
sulphate	CaSO, ${ }^{2} \mathrm{H}_{2} \mathrm{O}$	0.1	${ }_{7}^{0 \cdot 200}$	${ }_{77.5}^{0.210}$	0.207 80.2		
Cadmium sulphate	$\begin{aligned} & 8 \mathrm{CdSO}, 3 \mathrm{O}_{2} \mathrm{O} \\ & \mathrm{CdSO} \end{aligned}$		$76 \cdot 1$				$60 \cdot 8$
Chlorine	$\mathrm{Cl}_{2}, 8 \mathrm{H}_{2} \mathrm{O}$ (up to $28 . \%^{\circ}$)	0.51	1.3				
Cupric chloride . .	$\mathrm{CuCl}_{2}, 2 \mathrm{H}_{2} \mathrm{O}$ -	$70 \cdot 6$	- 75	80			...

TABLE 28-Continued.

76 THE TECHNICAL CHEMISTS' HANDBOOK
TABLE 28-Continued.

TABLE 29.-SOLUBILITY OF GASES IN WATER.

Column a gives the volume of gas (reduced to 0° and 760 mm .) dissolved by one volume of the liquid at the temperature indicated, if the partial pressure of the gas is $=760 \mathrm{~mm}$. Hg.

Column q gives the weight of the substance in grams, dissolved by 100 gr . of the pure solvent, if the partial pressure of the gas + the vapour pressure of the liquid at the temperature indicated $=760 \mathrm{~mm} . \mathrm{Hg}$.

The letters following the name of the gas indicate the observer, viz., $\mathrm{W}=$ =Winkler; B. \& B. $=$ Bohr \& l3ock; F. $=$ Fauser ; R. $=$ Raoult; S. $=$ Schönfeld ; R. - D. $=$ RoscoeDittmar ; R. = Roozeboom ; B. = Bunsen.

T.	Oxygen, W.		Hydrogen, w.		Nitrogen, B. \& B.		Chlorine, w.	
	a.	q.	a.	q.	a.	q.	a.	q.
0	-04890	-006948	-02148	-0001922	-02388	-002 977	\ldots	\ldots
1	-04759	-006758	-02126	-0001902	$\cdot 02337$	-002912	...	
2	-04633	-006576	-02105	-0001882	-02288	-002843		
3	-04512	-006401	-02084	-0001862	-02241	-002790		
4	-04397	-006234	-020b4	-0001843	-02196	-002732		
5	-04286	-006074	-02044	-0001824	-02153	-002677		
6	-04181	-005920	-02025	-0001806	- 02111	-002624		
7	-04080	-005775	-02007	-0001789	-02070	-002570		
8	-03983	-005633	-01989	-0001772	-02031	-002520		
9	-03891	-005499	-01972	-0001756	-01993	-002472		
10	-03802	-005370	-01955	-0001739	-01956	-002424	3-095	$\cdot 9969$
11	-03718	-005248	-01940	-0001725	-01920	. 002378	$2 \cdot 996$	'9652
12	-03637	-005129	-01925	-0001710	- 01885	-002333	$2 \cdot 900$	$\cdot 9344$
13	-03560	-005011	-01911	-0001696	- 01851	-002289	$2 \cdot 808$	$\cdot 9048$
14	-03486	-004908	-01897	-0001682	-01818	-002246	$2 \cdot 720$	-8766
15	-03415	-004804	-01883	-0001669	-01786	-002205	$2 \cdot 635$	-8493
16	-03347	'004703	-01869	-0001654	-01755	-002164	$2 \cdot 553$	-8230
17	-03283	-004609	-01856	-0001641	-01725	-002125	$2 \cdot 474$	$\cdot 7977$
18	-03220	-004515	-01844	-0001630	-01698	-002089	$2 \cdot 399$	$\cdot 7736$
19	-0316i	-004428	-01831	-0001616	$\cdot 01667$	-002049	$2 \cdot 328$	$\cdot 7508$
20	-03102	-004339	-01819	-0001604	-01639	-002012	$2 \cdot 260$	$\cdot 7291$
21	-03044	$\cdot 004253$	-01805	-0001590	-01611	-001975	$2 \cdot 200$	-7098
22	-02988	-004169	-01792	-0001575	-01584	-001940	$2 \cdot 143$	$\cdot 6916$
23	-02934	-004088	-01779	-0001561	$\cdot 01557$	-001903	2.087	$\cdot 6737$
24	-02881	-004009	$\cdot 01766$	-0001548	-01530	-001868	2.035	$\cdot 6570$
25	$\cdot 02831$	-003932	-01754	$\cdot 0001534$	-01504	-001832	1.985	$\cdot 6411$
26	-02783	$\cdot 003859$	-01742	$\cdot 0001522$	-01478	-001798	$1 \cdot 937$	$\cdot 6257$
27	-02736	-003787	-01731	-0001509	-01453	-001764	1.891	-6110
28	-02691	-003717	-01720	-0001497	-01428	-001731	1.848	$\cdot 5973$
29	-02649	-003653	-01709	-0001485	-01404	-001699	1.808	- 5845
30	-02608	-003588	$\cdot 01699$	-0001470	-01380	-001660	1.769	. 5722
35	-02440	-003315	-01666	-0001426	- 01271	-001516	1.575	$\cdot 5103$
40	-02306	-003081	-01644	-0001385	- 01182	-001386	$1 \cdot 414$	$\cdot 4589$
45	-02187	-002860	-01624	$\cdot 0001338$	-01111	-001275	$1 \cdot 300$	-4227
50	-02090	-002657	-01608	-0001288	-01061	$\cdot 001184$	$1 \cdot 204$	- 3927
60	-01946	-002274	-01600	-0001178	$\cdot 01000$	-001026	1.006	- 3294
70	-01833	-001857	...	-0001021			$0 \cdot 848$	- 2792
80	-01761	-001381	\ldots	$\cdot 0000790$			$0 \cdot 672$	-2226
90	- 01723	-000787		-0000461			$10 \cdot 380$	-1268
100	$\cdot 01700$	$\cdot 000000$...	$\cdot 0000000$	-01000	-000000	$0 \cdot 000$. 0000

78 THE TECHNICAL CHEMISTS' HANDBOOK

TABLE 29—Continued.

т.	Carbon monoxide, w.		Carbon dioxide, B. \& B.		Hydrogen sulplide, F .		Ammonia, R.	
	a.	q.	a.	q.	a.	q.	a.	q.
0	0.03537	$0 \cdot 004397$	1•713	0.3347	$4 \cdot 686$	$0 \cdot 710$	1298.9	98.7
1	$0 \cdot 03455$	0.004293	1.616	$0 \cdot 3214$	4.555	$0 \cdot 689$	$1220 \cdot 2$	$92 \cdot 7$
2	0.03375	0.004192	1:784	0.3091	4.428	$0 \cdot 670$	1154.7	87.7
3	$0 \cdot 03297$	$0 \cdot 001092$	$1 \div 27$	$0 \cdot 2979$	$4 \cdot 303$	0.651	$1100 \cdot 9$	$83 \cdot 6$
4	0.03222	0.003997	$1 \cdot 473$	0×2872	4-182	$0 \cdot 632$	1053.0	$79 \cdot 9$
5	0.03149	0.003904	1-424	0.2744	4.063	0.615	1019\%	$77 \cdot 3$
6	0.03078	0.003814	$1 \cdot 377$	0.2681	3.948	0.596	997.2	$75 \cdot 6$
7	$0 \cdot 03009$	0.003726	$1 \cdot 3.31$		$3 \cdot 836$	0.579	974.9	$73 \cdot 9$
8	0.02942	0.003641	$1 \because 252$	$0 \cdot 2494$	$3 \cdot 728$	0.562	9545	$72 \cdot 3$
9	0.02878	0.003560	1×37	$0 \cdot 2404$	3.622	0.546	933.0	$70 \cdot 6$
10	0.02816	$0 \cdot 003481$	$1 \cdot 194$	$0 \cdot 2319$	3.520	0.530	$910 \cdot 4$	68.9
11	$0 \cdot 02757$	$0 \cdot 003416$	$1 \cdot 151$	0-2240	$3 \cdot 421$	0.515	888.0	67.2
12	0.02701	0.003333	$1 \cdot 117$	$0 \cdot 2166$	$3 \cdot 325$	$0 \% 00$	$865 \cdot 6$	$65 \cdot 5$
13	0.02646	0.00326°	1.083	0•2099	$3 \cdot 232$	$0 \cdot 485$	$843 \cdot 2$	63.7
14	$0 \cdot 0.2593$	0.003188	1.050	0•2033	$3 \cdot 142$	$0 \cdot 471$	$822 \cdot 1$	$62 \cdot 1$
15	0.02543	0.003130	$1 \cdot 019$	$0 \cdot 1971$	3.056	$0 \cdot 458$	$802 \cdot 4$	$60 \cdot 6$
16	0.02494	0.003065	0.985	0-1904	$2 \cdot 973$	$0 \cdot 445$	$783 \cdot 2$	$59 \cdot 1$
17	$0 \cdot 02448$	$0 \cdot 008007$	0.956	$0 \cdot 1845$	$2 \cdot 893$	$0 \cdot 433$	$764 \cdot 1$	$57 \cdot 6$
18	0.02402	0.002943	0.928	$0 \cdot 1789$	$2 \cdot 816$	$0 \cdot 121$	7443	$56 \cdot 1$
19	0.02360	0.002893	0.902	$0 \cdot 1736$	2742	$0 \cdot 409$	725.8	54.7
20	0.02319	0.002839	0.878	$0 \cdot 1689$	2672	$0 \cdot 398$	$710 \cdot 6$	53.5
21	Q:02281	0.002789	0.854	$0 \cdot 1641$...	690.2	51.9
22	0.02244	0.002739	$0 \cdot 829$	$0 \cdot 1591$	\cdots	...	674.3	$50 \cdot 6$
23	$0 \cdot 02208$	0.002691	0.804	$0 \cdot 1541$		\ldots	661.0	$49 \cdot 6$
24	0.02174	$0 \cdot 002647$	0.781	$0 \cdot 1494$			647.8	$48 \cdot 6$
25	$0 \cdot 02142$	0.002603	0.759	$0 \cdot 1450$	- 34.6	$47 \cdot 6$
26	$0 \cdot 02110$	0.002560	0.738	0-1407	\ldots	...	$6 \% 13$	46.5
27	0.02080	0.002519	0.718	$0 \cdot 1367$			$608 \cdot 1$	$45 \cdot 5$
28	0.02051	0.002479	0.699	$0 \cdot 1328$	\ldots		584.8	$44 \cdot 4$
29	0.02024	0.002442	0.682	$0 \cdot 1293$		
30	0.01998	0.002405	0.665	$0 \cdot 1259$
35	0.01877	0.002231	0.59\%	$0 \cdot 1106$			\cdots	\cdots
40	0.01775	0.002076	0.530	0.0974	\cdots			..
45	0.01690	0.001934	$0 \cdot 479$	$0 \cdot 0862$..	\cdots	\cdots	..
50	0.01615	0.001797	0.436	0.0762				
60	0.01488	0.001521	$0 \cdot 359$	$0 \cdot 0577$	\ldots	\cdots
70	0.01440	$0 \cdot 001276$						
80	0.01430	$0 \cdot 000981$			\ldots	...	\ldots	\cdots
90	0.01420	$0 \cdot 000568$	\ldots			
100	0.01410	$0 \cdot 000000$...	\ldots				\cdots

TABLE 29-Continued.

T.	Sulphur dioxide, s.		Hydrogen chloride, R.-1).		Methane, W.	
	a.	q.	a.	q.	a.	2.
0	79.789	$22 \cdot 83$	$506 \cdot 7$	82\%	$0 \cdot 05563$	0.003959
1	$77 \cdot 210$	$22 \cdot 09$			0.05401	$0 \cdot 003842$
2	$74 \cdot 691$	$21 \cdot 37$	$499 \cdot 8$	$81 \cdot 4$	0.05244	$0 \cdot 003729$
3	$72 \cdot 230$	$20 \cdot 67$...		0.05093	$0 \cdot 003620$
4	$69 \cdot 828$	$19 \cdot 98$	$493 \cdot 7$	$80 \cdot 4$	$0 \cdot 04946$	0.003514
5	$67 \cdot 485$	$19 \cdot 31$...		0.04805	0.003411
6	$65 \cdot 200$	$18 \cdot 66$	$486 \cdot 9$	$79 \cdot 3$	0.04669	0.003312
7	$62 \cdot 973$	18.02			$0 \cdot 01539$	0.003218
8	60-805	$17 \cdot 10$	$480 \cdot 8$	$78 \cdot 3$	0.04413	0.003127
9	58.697	16.80			0.04292	$0 \cdot 003039$
10	$56 \cdot 6.17$	$16 \cdot 21$	$473 \cdot 9$	77-2	0.04177	$0 \cdot 002956$
11	$54 \cdot 655$	$15 \cdot 64$			0.04072	$0 \cdot 002880$
12	$52 \cdot 723$	15.09	467.7	76.2	0.03970	0.002815
13	50.849	14.56			0.03872	$0 \cdot 002733$
14	49.033	14.04	4615	$75 \cdot 2$	0.03779	$0 \cdot 002666$
15	$47 \cdot 276$	$13: 54$			0.03690	$0 \cdot 002600$
16	45.578	13.05	$455 \cdot 2$	$74 \cdot 2$	0.03606	0.002538
17	$43 \cdot 939$	12.59			$0 \cdot 03525$	$0 \cdot 002479$
18	$43 \cdot 360$	$12 \cdot 14$	448.3	$73 \cdot 1$	0.03446	$0 \cdot 002422$
19	$40 \cdot 838$	11.70			0.03376	0.002369
20	$39 \cdot 374$	11.29	442.0	$72 \cdot 1$	$0 \cdot 03308$	$0 \cdot 002319$
21	$37 \cdot 970$	$10 \cdot 89$...		$0 \cdot 03243$	$0 \cdot 002270$
22	$36 \cdot 617$	$10 \cdot 50$	$435 \cdot 0$	71.0	0.03180	0.002223
23	$35 \cdot 302$	$10 \cdot 13$			0.03119	0.002178
24	$34 \cdot 026$	$9 \cdot 76$	$428 \cdot 7$	$70 \cdot 0$	0.03061	0.002134
25	$32 \cdot 786$	$9 \cdot 41$			0.03006	$0 \cdot 002092$
26	31.584	$9 \cdot 07$	423.0	$69 \cdot 1$	0.02952	0.002051
27	$30 \cdot 422$	$8 \cdot 43$			0.02901	$0 \cdot 002012$
28	$29 \cdot 314$	$8 \cdot 42$	$417 \cdot 2$	68-2	$0 \cdot 02852$	0.001974
29	$28 \cdot 210$	$8 \cdot 10$			0.02806	0.001939
30	$27 \cdot 161$	$7 \cdot 81$	4115	$67 \cdot 3$	$0 \cdot 02762$	$0 \cdot 001905$
35	$22 \cdot 489$	$6 \cdot 47$			0.02546	$0 \cdot 001732$
40	18.766	$5 \cdot 41$	$387 \cdot 7$	$63 \cdot 3$	0.02369	$0 \cdot 001586$
50	$361 \cdot 6$	59.6	0.02134	0.001359
60	$338 \cdot 7$	$56 \cdot 1$	$0 \cdot 01954$	$0 \cdot 001145$
70	0.01825	$0 \cdot 000926$
80	\ldots	...	\ldots	...	0.01770	$0 \cdot 000695$
00	. \cdot	0.01735	$0 \cdot 000398$
100 \cdot	0.01700	$0 \cdot 000000$

TABLE 29-Continued.

T.	Ethylene, W.		Acetylene, W.		Air, W.		Nitrous oxide, in Alcohol, B.
	a.	q.	a.	q.	a.		a.
0	$0 \cdot 226$	0.0281	1.73	$0 \cdot 20$	0.02881	\ldots	$4 \cdot 1780$
1	0.219	0.0272	$1 \cdot 68$	$0 \cdot 19$	0.02808		$4 \cdot 1088$
2	0.211	0.0262	$1 \cdot 63$	$0 \cdot 19$	0.02738	...	$4 \cdot 0409$
3	$0 \cdot 204$	0.0254	1.58	$0 \cdot 18$	$0 \cdot 02670$		$3 \cdot 9741$
4	$0 \cdot 197$	0.0245	1.53	$0 \cdot 18$	0.02606		$3 \cdot 9085$
5	$0 \cdot 191$	0.0237	$1 \cdot 49$	$0 \cdot 17$	0.02543		$3 \cdot 8442$
6	$0 \cdot 184$	$0 \cdot 0228$	$1 \cdot 45$	$0 \cdot 17$	0.02482		$3 \cdot 7811$
7	$0 \cdot 178$	0.0221	$1 \cdot 41$	$0 \cdot 16$	$0 \cdot 02424$...	$3 \cdot 7192$
8	$0 \cdot 173$	$0 \cdot 0214$	$1 \cdot 37$	$0 \cdot 16$	$0 \cdot 02369$...	$3 \cdot 6585$
9	$0 \cdot 167$	0.0207	$1 \cdot 34$	$0 \cdot 15$	0.02316	...	$3 \cdot 5990$
10	$0 \cdot 162$	$0 \cdot 0200$	$1 \cdot 31$	$0 \cdot 15$	$0 \cdot 02264$...	$3 \cdot 5408$
11	$0 \cdot 157$	0.0194	$1 \cdot 27$	$0 \cdot 15$	0.02217	\ldots	$3 \cdot 4838$
12	$0 \cdot 152$	0.0188	$1 \cdot 24$	$0 \cdot 14$	0.02171	...	$3 \cdot 4279$
13	$0 \cdot 148$	$0 \cdot 0183$	$1 \cdot 21$	$0 \cdot 14$	0.02127	...	$3 \cdot 3734$
14	$0 \cdot 143$	0.0176	$1 \cdot 18$	$0 \cdot 14$	$0 \cdot 02085$...	$3 \cdot 3200$
15	$0 \cdot 139$	0.0171	$1 \cdot 15$	$0 \cdot 13$	0.02045	...	$3 \cdot 2678$
16	$0 \cdot 136$	0.0167	$1 \cdot 13$	$0 \cdot 13$	$0 \cdot 02005$		$3 \cdot 2169$
17	$0 \cdot 132$	0.0162	$1 \cdot 10$	$0 \cdot 13$	$0 \cdot 01970$...	3•1672
18	$0 \cdot 129$	0.0158	1.08	$0 \cdot 12$	0.01935	...	$3 \cdot 1187$
19	$0 \cdot 125$	0.0153	105	$0 \cdot 12$	0.01901	...	$3 \cdot 0714$
20	$0 \cdot 122$	$0 \cdot 0150$	1.03	$0 \cdot 12$	$0 \cdot 01869$...	3.0253
21	$0 \cdot 119$	0.0146	$1 \cdot 01$	$0 \cdot 12$	0.01838	...	$2 \cdot 9805$
22	$0 \cdot 116$	$0 \cdot 0142$	0.99	$0 \cdot 11$	$0 \cdot 01808$...	$2 \cdot 9368$
23	$0 \cdot 114$	0.0139	$0 \cdot 97$	$0 \cdot 11$	0.01779	...	$2 \cdot 8944$
24	$0 \cdot 111$	0.0135	0.95	$0 \cdot 11$	0.01751	...	$2 \cdot 8532$
25	$0 \cdot 108$	0.0131	0.93	$0 \cdot 11$	0.01724	\ldots	...
26	$0 \cdot 106$	0.0129	0.91	$0 \cdot 10$	$0 \cdot 01698$
27	$0 \cdot 104$	0.0126	0.89	$0 \cdot 10$	0.01674
28	0.102	0.0123	0.87	$0 \cdot 10$	$0 \cdot 01650$...	
29	$0 \cdot 100$	$0 \cdot 0121$	0.85	$0 \cdot 10$	$0 \cdot 01627$	\ldots	
30	0.098	0.0118	0.84	$0 \cdot 09$	0.01606	\ldots	.
\ldots	0.01503
...	$0 \cdot 01418$
...	...	\ldots	0.01297
\ldots	...	\ldots	\ldots	...	0.01216	...	
...	0.01156
\cdots	...	\cdots	0.01126	\cdots	\cdots
...	...	\cdots	\cdots	...	0.01113 0.01105
...	\ldots	\ldots	0.01105	-	-

TABLE 30.-SPECIFIC GRAVITIES OF SOLIDS.

TABLE 30-Continued.

Iron, wrought . . 7-8-7.9	Potassium chloride . 1.945
Ivory 1.83-1.94	chromate . $2 \cdot 603$
Larch wood . . 0.44-0.5	hydroxide . 2.044
Lead, acetate, (ryst. . ${ }^{2} \cdot 395$	nitrate . 2.058
	Quartz sulphate . ${ }_{2}^{2.66}$
chromate . $\quad .6 .00$	${ }_{\text {Rock salt }} \quad$: $\quad . \quad{ }_{2} \cdot 1-2 \cdot 2$
nitrate . . 4.40	Rubber . . . 0.83
oxide . . $9 \cdot 41$	Sal-ammoniac . . 1.528
red . . . $8 \cdot 62$	Sand, damp . . 19-2.0
sulphate . . 6.169	dry . . . 1-4-1•6
sulphide . . 7.505	Sandstone . . . 19-2-5
Lignite - . . ${ }^{1 \cdot 2 /-1 \cdot 4}$	Silver . . . 10.6
Lime, burnt, quick- . $3 \cdot 08$	Silver chloride . . 5.501
Lime wood . . . 0.5	Slate $2 \cdot 7$
Litharge . . . $9 \cdot 36$	Sodium carbonate, anh. 2.509
Magnesia, calcined . $3 \cdot 2$	carbonate, cryst. 1-454
carbonate . $2 \cdot 94$	chloride . . $2 \cdot 078$
Magnesite . . . 2'9-3.1	hydroxide . $2 \cdot 130$
M gnesium chloride,	nitrate - . ${ }_{2} \cdot 226$
$\stackrel{\text { cryst. }}{\text { Magnesium sulph., cryst. }{ }^{\text {d }} \text { - } 751}$	sulphate . - ${ }^{2.63}$
Magnesium sulph.,cryst. 1.751	Sulphide . . ${ }^{2 \cdot 471}$
Manganese native ore ${ }^{\text {a }}$ /-5.0	thiosulphate . $1 \cdot 736$
peroxide . $2 \cdot 94$	Spruce . . . 0.52
Maple wood . . 0.5-0.6	Steel 780
Marble . . . $2 \cdot 5 \cdot 2 \cdot 8$	Steel, cast . . . 7.92
Nickel, cast hammered $\quad .$8.28	Sugrar hardened . $\quad . \quad{ }_{1}{ }^{7} 66$
	Sugar . Sulphur, native $. \quad . \quad{ }_{2}^{166}$ 2.06
Phosphor bronze, cast 8.6	soft, amorphous $1 \cdot 96$
drawn 8.72	sticks, fresh . 1.98
Phosphorus, red . $2 \cdot 106$	sticks, old . 2.05
yellow . 1-826	Sulphuric anhydride . 1.97
Pine wood, red . . 0.5	I cak $0 \cdot 80$
white . 0.55	Tin, cast . . . 7-21-7.4
yellow . 0.76	hammered . . 7.475
Pitch 1.07	Vulcanite . . . 1.52
Platinum . . . $21 \cdot 5$	Willow wood . . $0 \cdot 5-0.58$
Poplar . . . 0.38	Witherite . . . 4.30
Porcelain . . . $2 \cdot 1-2 \cdot 5$	Zinc, blende . . 3.9
Porphyry . . . ${ }_{2} .8$	cast . . . 6.8
Potash, natural . ${ }^{2} 3$	oxide . . . 5.73
Potassium bisulphate. ${ }^{2} \mathbf{2 . 2 7 7}$	rolled. . . 7.2
carbonate . 2.264 chlorate . $2 \cdot 35$	sulphate . . $2 \cdot 03$ B

TABLT 31.-SPECIFIC GRAVITY OF. LIQUIDS.

	Specific Gravity.	Temp.
Acetic anhydride	1.004	17°
Acetone	$0 \cdot 81$	
Alcohol	$0 \cdot 7939$	$12^{\circ} \cdot 5$
Acetic acid	1.064	17°
Bisulphide of carbon	1×272	
Benzene .	0.884	$15^{\circ} \cdot 5$
Coal tar	$1 \cdot 15$	15°
Ether	0.723	$12^{\circ} \cdot 5$
Glycerine.	1.260	15°
Linseed oil	$0 \cdot 9347$	15°
Mercury . . ${ }^{\text {a }}$	13.596	0°
Nitrogen peroxide (liquid)	1.45 0.917	
Olive oil Petroleum	0.917 $0.78-0.81$	15°
Rapeseed oil ${ }^{\circ}$. ${ }^{\text {a }}$	${ }_{0} 0.9136$	15°
Sulphur dioxide (liquid) .	$1 \cdot 45$	20°
Sea-water ${ }_{\text {S }}$ irits of turpentine	${ }_{0}^{1 \cdot 865}$	15°
Spirits of turpentine	0.865	15°

TABLE 32.-SPECIFIC GRAVITY AND PERCENTAGE OF SOLUTIONS SATURATED AT 15°.

The percentage refers to Anhydrous Salt in 100 solution.

	Tem. perature.	Porcentage of Salt.	Specific Gravity.	Degrees Twaddell.
Ammonium chloride	15	$26 \cdot 30$	$1 \cdot 0776$	$15 \cdot 5$
sulphate	19	50.00	$1 \cdot 2890$	$57 \cdot 8$
Barium chloride	15	$25 \cdot 97$	$1 \cdot 2827$	$56 \cdot 5$
Calcium chloride .	15	$40 \cdot 66$	$1 \cdot 4110$	$82 \cdot 2$
Magnesium sulphate	15	$25 \cdot 25$	$1 \cdot 2880$	$57 \cdot 6$
Potassium chloride.	15	$24 \cdot 90$	$1 \cdot 1723$	$34^{\prime} 4$
carbonate	15	52.02	$1 \cdot 5708$	114
nitrate	15	21.07	$1 \cdot 1441$	28.8
sulphate	15	$9 \cdot 92$	1.0831	$16 \cdot 6$
Sodium chloride .	15	$26 \cdot 395$	$1 \cdot 2043$	$40 \cdot 8$
carbonate	15	$14 \cdot 35$	$1 \cdot 1535$	$30 \cdot 7$
nitrate	$19 \cdot 5$	$46 \cdot 25$	1-3804	76
sulphate	$15 \cdot 0$	11.95	1-1117	$22 \cdot 3$

TABLE 33.-LINEAR EXPANSION OF SUBSTANCES ON HEATING.

By heating from 0° to 100° C. ($32^{\circ}-212^{\circ}$ F.).

TABLE 34. WEIGHT OF SUBSTANCES AS STORED.

Substance.	1 Cubic Metre Weighs	1 Cubic Foot Weighs	$\begin{gathered} \text { Tons } \\ \text { per } \\ \text { Cub. Foot. } \end{gathered}$
	Kilo.	lb. avilp.	
Alkali waste (wet)	1268	79	-0352
Bicarbonate (ground)	986	$61 \cdot 5$	-0274
Black ash (lumps) .	962	60	-0268
Bleaching powder .	721-834	45-52	-0216
Bricks . .	2100	131	. 0584
Cement	1200	75	-0335
Cinders (ashes) .	738	46	-0205
Clay, damp .	1650	103	-0459
Clay, dry .	1570	98	-0437
Coke (for filling towers)	417-534	26-33	. 0131
Flints (for filling towers)	1600	100	. 0446
Limestone and other building stones	2000	125	. 0558
Limestone dust . .	1550	$96 \cdot 5$	-0431
Limestone (small pieces)	1400	$87 \cdot 5$	-0391
Mangranese dioxide, native	2210	138	-0616
Mortar (lime and sand)	1800	112	-0500
Nitre . . .	1310	$81 \cdot 5$	-0364
Nitre cake (acid sulphate of soda)	1335	83	-0375
Pyrites, broken pieces . .	2500	156	-0696
burnt	1520	95	-0424
smails	2340	146.5	-0654
Quicklime	1000	$62 \cdot 5$	-0279
Quicklime (small lumps)	1058	66	-0295
Salt	689	43	-0192
Saltcake	1180	73.5	-0328
Sand, dry .	1330	83	-0370
damp . . .	1770	110	-0491
Sieved lime (for bleaching powder)	497-593	31-37	. 0151
Soda ash (unground) . . .	1195	$74 \cdot 5$	-0332
	1010	63	-0281
Soda salts ($\mathrm{NaL}_{2} \mathrm{CO}_{3}, 10 \mathrm{H}_{2} \mathrm{O}$) (drained)	810	$50 \cdot 5$	-0225
Wood, beech logs	400	$24 \cdot 5$	-0107
fir logs	330	$20 \cdot 5$	-0091
oak logs .	420	26	$\cdot 0116$

86 THE TECHNICAL CHEMISTS' HANDBOOK

TABLE 35.-WEIGHT OF SHEET METAL.
Weight in lbs. of one Square Foot.

Thickness.	Wrought lron.	Cast Iron.	Steel.	Copper.	Brass.	Lead.	Zinc.	Tin.	Gun- Metal.	Aluminium.
Inch.	Lb.	Lb.	Lb.	I.b.	Lb.	Lb.	Lib.	Lb.	Lb.	Lb.
10	$2 \cdot 53$	$2 \cdot 34$	2.55	$2 \cdot 80$	$2 \cdot 73$	3.71	$2 \cdot 34$	$2 \cdot 41$	$2 \cdot 73$	0.86
$\frac{1}{8}$	$5 \cdot 05$	$4 \cdot 69$	$5 \cdot 10$	$5 \cdot 78$	$5 \cdot 47$	7-42	$4 \cdot 69$	4.81	$5 \cdot 40$	$1 \cdot 72$
$1{ }^{3} 8$	7.58	7.05	$7 \cdot 66$	$8 \cdot 67$	$8 \cdot 20$	$11 \cdot 13$	7.03	$7 \cdot 22$	$8 \cdot 19$	$2 \cdot 58$
4	$10 \cdot 10$	$9 \cdot 38$	$10 \cdot 21$	11.76	10:04	14.83	$9 \cdot 38$	$9 \cdot 63$	$10 \cdot 9$	$3 \cdot 45$
38	12.63	11.72	12.76	14.45	$13 \cdot 67$	18.54	11.72	12.0	$18 \cdot 7$	4.81
4	$15 \cdot 10$	11.06	$15 \cdot 31$	17.34	$16 \cdot 41$	2225	14.06	$14 \cdot 4$	$16 \cdot 4$	5.18
¢	17.68	16.41	17.87	20:23	$19 \cdot 14$	25.96	$16 \cdot 41$	$10 \cdot 8$	$19 \cdot 1$	5.97
1	20.21	\| 18.75	$20 \cdot 42$	$23 \cdot 13$	21.88	$29 \cdot 67$	$15 \cdot 76$	$19 \cdot 3$	2109	0.91
in_{7}	$22 \cdot 73$	21.09	22.97	26.02	$24 \cdot 61$	33.38	$21 \cdot 09$	21.7	24.6	7.76
8	$25 \cdot 27$	23.44	$23 \cdot 52$	28.91	$27 \cdot 34$	37.08	23.44	24.0	27.4	$8 \cdot 64$
11	27.79	25.78	28.07	$31 \cdot 50$	30.08	40.79	25.78	$20 \cdot 4$	$30 \cdot 1$	$9 \cdot 49$
3	$30 \cdot 31$	$28 \cdot 13$	$30 \cdot 63$	34.69	32.81	44.50	$28 \cdot 13$	28.8	$32 \cdot 8$	$10 \cdot 86$
13	32.84	$80 \cdot 47$	$33 \cdot 18$	37-58	$35 \cdot 55$	48.21	$30 \cdot 47$	$31 \cdot 2$	35.5	11.22
8	85.87	82.81	$35 \cdot 73$	$40 \cdot 47$	38.28	51.92	32.81	33.6	38.2	12.09
18	$37 \cdot 40$	$35 \cdot 16$	85.28	$43 \cdot 3 ;$	41.02	55.63	35-16	36.0	$40 \div$	12.95
1	$40 \cdot 42$	37-50	40.83	$46^{\circ} \cdot 6$	43.75	59.38	37-50	$38 \cdot 5$	437	$13 \cdot 82$

TABLE 86.-OHEMIOAL NAMES AND FORMUL用 OF COMMON CHEMICALS.

Common Name.	Chemical Name or Description.	Formula.
Abraum salts	Residue from Stassfurt salts	
Acetic ether	Ethyl acetate . . .	$\mathrm{CH}_{3} . \mathrm{COOC}_{2} \mathrm{H}_{5}$
Alabaster .	Fine grained masses of gypsum	$\mathrm{CaSO}_{4}, 2 \mathrm{H}_{2} \mathrm{O}$
Aldehyde.	Acetaldehyde. .	$\mathrm{CH}_{3} . \mathrm{CHO}$
Alum	Potassium aluminium sulphate	$\mathrm{KAl}\left(\mathrm{SO}_{4}\right)_{2}, 12 \mathrm{H}_{2} \mathrm{O}$
Alundum	Essentially fused alumina	
Aniline	Amidobenzene	$\mathrm{C}_{6} \mathrm{H}_{5}$. N
Aniline salt	Aniline hydrochloride	$\mathrm{C}_{1} \mathrm{H}_{5} \cdot \mathrm{NH}_{2}^{2} . \mathrm{HCl}$
Animal charcoal		Mixture of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
Antifebrin	Acetanilide	$\mathrm{C}_{6} \mathrm{H}_{5}$. NHCOCH_{3}
Antimony black	Antimony trisulphide	Sbw
Antimony vermilion.	Antimony oxysulphide	
Antimony white	Antimonious oxide .	$\mathrm{Sb}_{\mathrm{O}} \mathrm{O}_{3}$
Antimony yellow	Basic lead antimoni	$\mathrm{PbO}^{\text {P }} \mathrm{Sb}_{3} \mathrm{O}_{5}$
Aqua fortis	Concentrated nitric acid.	HNO:3
Aqua regia	Nitric acid+hydrochloric acid	$\mathrm{HNO}_{i},+3 \mathrm{HCl}$
Argol	Crude potassium bitartrate	$\mathrm{KHC}_{4} \mathrm{H}_{4} \mathrm{O}_{6}$
Arsine	Arscuuretted hydrogen .	AsH:
Asphalt	Solution of pitch in heavy tar oils.	
Asphaltum	Natural pitch from Trinidad	
Aspirin	Acetyl-salicylic acid	${ }^{0}-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{OCOCO}_{3}\right) \mathrm{COOH}$
Azurite	Basic copper carbonate	$2 \mathrm{CuCO}_{3} . \mathrm{Cu}(\mathrm{OH})_{2}$
Baking soda	Sodium bicarbonate	NaHCO
Baryta	Barium oxide .	
Barytes	Native barium sulphate .	BaSO
Bauxite Benzine	Hetrol ${ }^{\text {Pded }}$ alumina	Hydrated $\mathrm{Al}_{2} \mathrm{O}_{3}$
Benzol	Benzene	
Bichrome .	Potassium bichromate	$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
Black ash .	Impure sodium carbonate	
Black flux.	Mixture of potassium carbonate and charcoal	
Black Jack	Native zinc sulphide	$\mathrm{ZnS}^{\text {S }}$
Black lead	Graphitc.	
Blanc fixe.	Barium sulphate	BaSO_{4}
Bleaching powder	Calcium chlorite chloro-hypo	CaOCl_{3}

TABLE 36-Continued.

Common Name	Chemical Name or Description.	Formula.
Blue-john .	Fluorspar (calcium fluoride)	CaF
Bluestone.	Copper sulphate . .	$\mathrm{CuSO}_{+} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
Blue verditer	Basic copper carbonate	$2 \mathrm{CuCO}_{3} . \mathrm{Cu}(\mathrm{OH})_{2}$
Blue vitriol	Copper sulphate	$\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$
Bog iron	Hydrated ferric oxide	$\mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{H}_{2} \mathrm{O}$
Bone ash	Impure calcinm phos. phate	$\text { mainly } \mathrm{Ca}:\left(\mathrm{PO}_{4}\right):$
Bone black	Crude animal chareoal	Ca, $\left(\mathrm{P}^{(1)}\right)_{2}+\mathrm{C}$
Borax	Sodium tetraborate.	$\mathrm{NaL}_{2} \mathrm{~B}_{1} \mathrm{O}_{7} \cdot 101 \mathrm{H}_{2} \mathrm{O}$
B.O.V.	Crude 70 per cent. sulphuricatid.	
Bremen blue	Basic copper carbonate .	$\mathrm{xCuCO}_{5} \cdot \mathrm{yCu}(\mathrm{OH})_{2}$
Brimstone	Sulphur .	S
Burnt alum	Anhydrous potassium aluminium sulphate	$\mathrm{K}_{2} \mathrm{~S}()_{1} \cdot \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
Burnt lime	Calcium oxide . .	Cal)
Butter of antimony	Antimony trichloride	SbCls
Cadmium yellow	Cadminm sulphide .	CdS
Calamine .	'inc carbonate	\% nCO
Caliche	Impure sodium nitrate	NaNO
Calomel	Mercurous chloride.	Hg, Cl,
Cane sugar	Sucrose	$\mathrm{C}_{12} \mathrm{H}_{2} \mathrm{O}_{11}$
Carbolic acid	Phenol	$\mathrm{Cif}_{5} \mathrm{H}_{5} \mathrm{OH}$
Carbon black	Carbon from American natural gas.	C
Carbonic acid	Carbon dioxide .	CO_{2}
Carborundum	Silicon carbide	SiC
Cassel Yellow	Basic lead chloride.	入pprox. $\mathrm{PbCl}_{2}+7 \mathrm{PbO}$
Cassiterite	Native stannic oxide	SnO_{2}
Ceruse	Basic lead carbonate	$2 \mathrm{PbCO},{ }_{3} . \mathrm{Pb}(\mathrm{OH})_{2}$
Celluloid	Dinitro-cellulose with camphor	
Chalk	Calcimm carbonate .	CaCO
Chili saltpetre	Sodium nitrate .	NaNO 3
China clay	Aluminium silicate.	$\mathrm{NIO}_{2} \cdot 2 \mathrm{SiO}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
Chincse red	Basic lead chromate	PbCiO. Pbo
Chinese white	Yinc oxide	ZnO
Chloride of lime	Bleaching powder .	$\mathrm{CaOCl} \mathrm{C}_{2}$
Chrome alum	$\begin{aligned} & \text { Potassium chromium } \\ & \text { sulphate } \end{aligned}$	$\left.\mathrm{K}_{2} \mathrm{SO}\right)_{4} . \mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3} 24 \mathrm{H}_{2} \mathrm{O}$
Chrome green	Chromium oxide .	$\mathrm{Cr}_{2} \mathrm{O}$
Chrome red	Basic lead chromate	$\mathrm{PbCrO}_{4} \cdot \mathrm{PbO}$
Chrome yellow .	Lead chromate	PbCrO_{4}
Cinnabar	Mercuric sulphide	HgS
Cobalt black	Cobalt oxide .	CoO

TABLE 36-Continued.

Common Name.	Chemical Name or Deseription.	Formula.
Cobalt green	Cobalt zincate	$\mathrm{CoO} . \mathrm{ZnO}$
Copperas	Ferrous sulphate	$\mathrm{FeSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$
Corrosive sublimate	Mercuric chloride	
Corundum	Aluminium oxide .	$\mathrm{Al}_{2} \mathrm{O}_{3}$
Cream of tartar	Potassium hydrogen tar- trate.	$\mathrm{KHC}_{4} \mathrm{H}_{4} \mathrm{O}_{6}$
Cresylic acid	Mixture of $0-m$ - and p cresol .	$\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{5}^{4}\right) \mathrm{OH}$
Derby red.	Basic lead chromate	PbCrO_{4}. PbO
Derbyshire spar	Fluorspar (calcium fluoride)	CaF
Dextros	Glucose . ${ }^{\text {a }}$	
Dutch liquid	Fthylene chloride . .	$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl} \mathrm{L}_{2}$
Eau-de-Javelle .	Potassium hypochlorite solution	KClO
Eau-de-Labarraque	Sodium hypochlorite solution	
Emerald green.	Copper aceto-arsenite	$\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2} \cdot 3 \mathrm{CuAs} \mathrm{O}_{4}$
Emery -	Ferric oxide and cor- undum	
Epsom sal	Magnesium sulphate	$\mathrm{MgSO} \mathrm{O}^{7 \mathrm{H}}$
Ferro-prussiate.	Potassium ferrocyanide	$\mathrm{K}_{4} \mathrm{H}, \mathrm{e}(\mathrm{CN})_{6}$
Firedamp .	Gas escaping from coal, mainly methane.	
Flowers of sulphur	Sulphur	
Fluorspar.	Calcium fluoride	CaF
Formalin .	40 per cent. aqueous hyde	H.CHO
Freezing salt	Crude sodium chloride	
Fruit sugar	Fructose.	
Fuhnimating mercury	Mercuric fulminate.	$\mathrm{HgCa}_{2} \mathrm{O}_{2}$ f SO_{2}
Fuming oil of vitriol.	Fuming sulphuric acid	A solution of $\underset{H_{2}}{\mathrm{HO}_{3} \mathrm{SO}_{4}}$
Gasoline	American for petrol Sarlium sulphate	
Golden sulph sate:	Sordimmons suphate pentasulphide	
Grape sugar	Glucose .	
Green verditer .	Basie copper carbonate	$\mathrm{CuCO})_{3} . \mathrm{Cu}(\mathrm{OH})_{2}$
Green vitriol	Ferrous sulphate	$\mathrm{FeSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$
Gun cotton	Cellulose trinitrate .	$\mathrm{C}_{66} \mathrm{H}_{4} \mathrm{O}_{2}\left(\mathrm{NO}_{3}\right)_{3}$
Gypsum	Calcium sulphate	$\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
Heavy spar	Native barium sulphate .	BaSO_{4}
Hexamine	Hexamethylene tetra- mine	
Horn silver	Silver chloride	AgCl

TABLE 36-Continued.

Common Name.	Chemical Name or Description.	Formula.
Hypo	Sodium thiosulphate	$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} .5 \mathrm{H}_{2} \mathrm{O}$
Iceland spar	Pure native calcium carbonate.	CaCO_{3}
Indian red	Ferric oxide . .	$\mathrm{Fe}_{2} \mathrm{O}_{3}$
Invert sugar	Glucose and fructose	
Iron mordant	Ferric sulphate .	$\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
Ivory black	Purified bone char .	$\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)$ and C
Kaolin .	Aluminium silicate . for	$\mathrm{Al}_{2} \mathrm{O}_{3} \cdot 2 \mathrm{SiO}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
Kerosenc .	American term paraffin oil \quad for	
Killed spirits of salt .	Solution of zinc chloride.	ZnCl_{2}
King's yellow .	Arsenic sulphide .	$\mathrm{As}_{2} \mathrm{~S}_{3}$
Kish .	Graphite scales from blast	
Lævulose .	Fructose. .	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
Lampblack	Impure oily carbon.	
Lanolin .	Cholesterol ${ }^{\text {. }}$	$\mathrm{C}_{272} \mathrm{H}_{46} \mathrm{O}$
Laughing gas .	Nitrous oxide .	N. O
Lemon chrome.	Barium chromate	$\mathrm{CaO}^{\mathrm{CaCrO}}$
Limeshells	Calcium oxide	CaO
Limestone	Calcium carbonate	CaCO_{3}
Litharge .	Lead monoxide .	PbO
Lithopone	Zinc sulphide + barium sulphate	$\mathrm{ZnS}+\mathrm{BaSO}_{4}$
Liver of sulphur	Mixed potassium sulphides.	
Loadstone	Magnetic iron oxide	
Lunar caustic	Silver nitrate .	AgNO_{3}
Lye .	Solution of sodium hydroxide	NaOH
Magnesia	Magnesium oxide .	MgO
Magnesite	Magnesium carbonate	$\mathrm{CuCO}_{\mathrm{in}}^{\mathrm{Mg}} \cdot \mathrm{Cu}(\mathrm{OH}) .$
Malachite .	Basic copper carbonate Calcium carbonate.	$\mathrm{CuCO}_{3} . \mathrm{Cu}(\mathrm{OH})_{2}$
Marble ${ }_{\text {Marsh gas }}$ -	Calcium carbonate Methane.	CaCO_{3} CH
Massicot	Lead monoxide	PbO
Metol	Photographic developer.	
Microcosmic salt	Sodium ammonium hydrogen phosphate	$\mathrm{Na}\left(\mathrm{NH}_{4}\right) \mathrm{HPO}_{4} .4 \mathrm{H}_{2} \mathrm{O}$
Milk of lime	Calcium hydroxide. .	$\mathrm{Ca}(\mathrm{OH})_{2}$
Milk of magnesia	Magnesiun hydroxide	$\left.\mathrm{Mg}_{\mathrm{C}} \mathrm{OH}\right)_{2}$
Milk of sulphur.	Precipitated sulphur	
Milk sugar	Lactose ${ }^{\text {a }}$. ${ }^{\text {a }}$	$\begin{aligned} & \mathbf{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11} \\ & \mathrm{Ca}_{\mathrm{a}} \mathrm{SO}_{4}, 2 \mathrm{H}_{0} \mathrm{l} \end{aligned}$
Mineral white Minium .	Native calcium sulphate. Lead tetroxide	$\begin{aligned} & \mathrm{CaSO}_{4}, 2 \mathrm{H}_{2} \mathrm{O} \\ & \mathrm{~Pb}_{3} \mathrm{O}_{4} \end{aligned}$

TABLE 36-Continued.

Common Name.	Chemical Name or Description.	Formula.
Mixed acid	Mixture of concentrated sulphuric and nitric acids	
Mosaic gold	Stannic sulphide	SnS_{2}
Moulder's blacking .	Ground coke or coal	
Muriate of ammonia.	Ammonium chloride	NH
Muriatic acid	Hydrochloric acid	HCl
Naples Yellow .	Basic lead pyro-anti- monate	
Natron	Sodium carbonate . .	$\mathrm{Na}_{2} \mathrm{CO}_{3} .10 \mathrm{H}_{2} \mathrm{O}$
Nitre	Potassium nitrate .	KNO,
Nitre cake	Sodium sulphate and bisulphate.	$\mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{NaHSO}_{4}$
Nitro-lime.	Calcium cyanamide	
Nitrous ether -	Ethyl nitrite . ${ }^{\text {Fuming }}$	$\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{NO}_{3}$
Nordhausen acid Norge saltpetre	Fuming sulphuric acid	$\mathrm{H} . \mathrm{SO}+\mathrm{SO}_{2}$ $\mathrm{Ca}(\mathrm{OH})(\mathrm{NO}$,
Norge saltpetre Oil of bitter almonds.	Basic calcium nitrate Benzaldelyde.	$\begin{aligned} & \mathrm{Ca}(\mathrm{OH})\left(\mathrm{NO}_{3}\right) \end{aligned}$
Oil of mirbane.	Nitrobenzene	$\mathrm{C}_{6} \mathrm{H}_{5}$
Oil of mustard.	Allyl isothiocyanate	$\mathrm{C}_{3} \mathrm{H}_{5}$. CNS
Oil of vitriol	Concentrated sulphuric. acid	HiS
Oil of wintergreen	Methylsalicylate	${ }^{0-\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OH}) \mathrm{COOCH}_{3}}$
Olefiant gas	Fthylene. $\dot{\text { F }}$	
Oleum	Fuming sulphuric acid	$\mathrm{H}_{4} \mathrm{SO}_{4}+\mathrm{SO}_{3}$
Orpinent. Paris green	Arsenic sulphide Copper aceto-arsenite	
Pearl ash.	Potassium carbonate	$\mathrm{K}_{4} \mathrm{CO}_{3}{ }^{\text {a }}$
Perhydrol.	Trade name for hydrogen peroxide	
Permanent white	Barimm sulphate .	BaSO_{4}
Petroleum cther	Petrol	
Petroleum spirit	Petrol -	
Phenic acid	Phenol	${ }^{\text {COCH }}$
Phosgene Picric acid	Carbonyl chloride ${ }_{\text {sym-Trinitrophenol }}$.	$\mathrm{C}_{6} \mathrm{H}_{2}\left(\mathrm{NO}_{2}\right)_{3} \mathrm{OH}$
Pink salt.	Stannic chloride ammonium	$\left(\mathrm{NH}_{4}\right)_{3 n} \mathrm{SnCl}_{1}$
Plaster of Paris	Calcium sulphate	$\mathrm{CaSO}_{4} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$
Plumbago. -	Graphite. ${ }^{\text {a }}$,	
Potash ${ }^{\text {Precipitated }}$	Potassium hydroxide	KOH
Precipitated chalk Prussian blue .	Calcium carbonate Ferric ferrocyanide.	
Prussic acid	Hydrocyanic acid	HCN
Putty powder	Stannic oxide	SnO_{2}
Pyrites .	Iron disulphide	${ }_{\mathrm{CH}} \mathrm{Fe}_{2} \mathrm{COOH}$
Pyroligneous acid	Crude acetic acid	$\mathrm{CH}_{3}{ }^{\text {COOH}}$

TABLE 36-Continued.

Common Name.	Chemical Name or Desseription.	Formula.
Pyroligneous spirit	Methyl alcohol	$\mathrm{CH}_{3} \mathrm{OH}$
Pyrolusite. .	Manganese dioxide.	$\mathrm{MnO})^{2}$
Quick lime	Calcium oxide.	CaO
Quicksilver	Mercury	Hg
Quinol	Hydroquinone.	${ }^{p}-\mathrm{C}_{6,} \mathrm{H}_{4}(\mathrm{OH})_{2}$
Realgar	Arsenic disulphide	
Rectified spirit.	Ethyl atcohol, 90 per cent. Lead tetroxide	
Red liquor	Impure ferric chloride solution	
Red oxide.	Mainly ferric oxide.	$\mathrm{Fe}_{2} \mathrm{O}$
Red prussiate of potash.	Potassium ferricyanide	$\mathrm{K}_{5} \mathrm{Fe}(\mathrm{CN})_{6}$
Rochelle salt	Potassium codiuntartratc	$\mathrm{KNaC} \mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}_{6}, 4 \mathrm{H}_{2} \mathrm{O}$
Rock oil.	Petroleum	
Rock salt .	Native sodium chloride.	
Rongalite.	Sodium formaldehyde sulphoxylate	Na (S. O. $\mathrm{CH}_{2} \mathrm{OH}$
Rouge	Ferric oxide .	
R.O.V.	Crude concentrated sul- phuric acid..	
Saccharin .	Benzoic sulphimide	${ }_{o-\mathrm{C}_{6} \mathrm{H}_{4}^{\prime}} \mathrm{CO}_{i} \backslash \mathrm{NH}$
Salammoniac	Aminonium chloride	NHiCl
Salol.	Phenyl salicylate	${ }^{-}-\mathrm{C}_{61} \mathrm{H}_{4}(\mathrm{OH}) \mathrm{COOCO}_{6} \mathrm{H}_{5}$
Salt cake..	Impure sodium sulphate.	
Salt of amber .	Succinic acid . .	$\mathrm{C}_{4} \mathrm{H}_{16} \mathrm{O}_{4}$
Salt of lemon . Salt of sorrel	Potassium hydrogen oxa-	
Salt of tartar	Potassium carbonate	K. ${ }^{\text {c }}$
Saltpetre.	Potassium nitrate	KNO:
Salvarsan	3. 3^{\prime} - Diamino- $4 \cdot 4^{\prime}$ - dihydroxy - arsenobenzene dihydrochloride .	$A \mathrm{~s}_{\mathrm{i}}\left[\mathrm{C}_{6} \mathrm{H}_{5}(\mathrm{OH})\left(\mathrm{NH}_{2}\right)_{2}, \mathrm{HCl}\right.$
Satin white	Calcium sulphate	$\mathrm{CaSO}_{4}, 2 \mathrm{H}_{2} \mathrm{O}$
Scheele's green	Copper hydrogen arsenite	Culins ${ }_{3}$
Slaked lime	Calcium hydroxide.	
Smelling salt	Ammonium carbonate	Mainly ($\left.\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$
Snow white Soda.	Zinc oxide Sodium carbonate	$\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}$
Soda water	Water charged with $\mathrm{CO}_{2}{ }^{\text {a }}$	
Sodium hyposulphite	Sodium thiosulphate	$\mathrm{Na}_{42} \mathrm{~S}_{2} \mathrm{O}_{3} .5 \mathrm{H}_{2} \mathrm{O}$
Soft soap . .	Formerly potash soap, now many substitutes	

TABLE 36-Continued.

Common Name.	Chemical Name or Description.	Formula.
Soluble glass	Sodium silicate	$\mathrm{Na}_{\mathrm{a}} \mathrm{SiO}_{3}$ NaOl
Spirit of salt	Hydrochloric acid	
Spirit of wine	Ethyl alcohol .	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
Sugar of lead	Lead acetate .	$\left.\mathrm{Pb}^{\text {(}} \mathrm{CH}_{3}, \mathrm{COO}\right)_{2}, 3 \mathrm{H}_{2} \mathrm{O}$
Sulphuric ether	Diethyl ether	$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)$
Tartar	Crude tartrate ${ }^{\text {potassium }}$ bi-	$\mathrm{KHC}_{4} \mathrm{H}_{4} \mathrm{O}_{6}$
Tartar emetic	Potassium antimonyl tartrate	$\mathrm{K}(\mathrm{SbO}) \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6} \cdot{ }_{2}^{2} \mathrm{H}_{2} \mathrm{O}$
'Tetralin	Tetrahydronaphthalene	$\mathrm{C}_{10} \mathrm{H}_{12}$
Thermit	Mixture of iron oxide and aluminium	
Tin salt	Stannous chloride	$\mathrm{SnCl}_{\mathrm{n}}$,
Tin stone	Native stanmic oxide	
Tin white -	Stannic hydroxide .	$\left.\mathrm{S}_{\mathrm{C}} \mathrm{COH}\right)_{4}$
T.N.'T.	Trinitrotoluene	
Toluol	Toluene	$\mathrm{C}_{4} \mathrm{H}_{3}$, CH
'Turnbull's blue	Ferrous ferricyanide	$\mathrm{Fe},\left[\mathrm{He}(\mathrm{CN})_{6}\right]_{2}$
Ultramarine yellow	Barium chromate	$\mathrm{BaCrO}_{4} \mathrm{CHO}$
Vanillin	Methyl ether of protocate- chualdehyde	
Vascline	Purified paraffin low - melting	$\left(\mathrm{C}_{19} \mathrm{H}_{40}\right.$ to $\left.\mathrm{C}_{21} \mathrm{H}_{44}\right)$
Venetian red	Ferric oxide	Fee ${ }^{\text {O }}$
Verdigris.	Basie copper aretate	$2 \mathrm{Cu}_{\left(\mathrm{C}, \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}+\mathrm{CuO}}$
Vermilion.	Red mercuric sulphide	$\mathrm{IHgS}^{\text {S }}$
Vitriol	Sulphuric acid	H. ${ }^{\text {c }}$
Washing soda Water glass	Sodium carbonate .	$\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}$
Water glass	Solution of sodium sili- cates .	
White arsenic	Arsenious oxide	$\mathrm{As}^{(0)}$
White lead	Basic lead carbonate	$2 \mathrm{PbCO})_{3}+\mathrm{Pb}(\mathrm{OH})_{2}$
White vitriol	Zinc sulphate . .	$\mathrm{ZnSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$
Whiting	Calcium carbonate .	CaCO
Wood alcohol	Methyl alcohol	$\mathrm{CH}_{2} \mathrm{OH}$
Wood naphtha.	Crude methyl alcohol	$\mathrm{CH}_{3} \mathrm{OH}$
Wood spirit	Methyl alcohol	$\mathrm{CH}_{3} \mathrm{OH}$
Yellow prussiate of potash	Potassium ferrocyanide	$\mathrm{K}_{4} \mathrm{Fe}(\mathrm{CN})_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$
Zinc vitriol	Zinc sulphate . .	$\mathrm{KnSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$
Zinc white	Zinc oxide	

TABLE 37.-COMPOSITION OF COMMON ALLOYS.

Aluminium bronze	$90 \mathrm{Cu}, 10 \mathrm{Al}$	$\begin{aligned} & \text { m.p.t.t. } \\ & 1000^{\circ} \end{aligned}$
Argozoil	$14 \mathrm{Ni}, 54 \mathrm{Cu}, 28 \mathrm{Zn}, 2 \mathrm{~Pb}$,	
Babitt metal	$90 \mathrm{Sn}, 7 \mathrm{Sb}, 3 \mathrm{Cu}$	
Bell metal	77-85 $\mathrm{Cu}, 15-23 \mathrm{Sn}$	
Benedict metal.	$14-16 \mathrm{Ni}, 84-86 \mathrm{Cu}$.	
Brass (for casting) (sheet)		
	36-46 $\mathrm{Zn}, 54-64 \mathrm{Cu}$ (sometimes $\mathrm{Pb}, \mathrm{Sn})$	
(naval brass)	$37 \mathrm{Zn}, 62 \mathrm{Cu}, 1 \mathrm{Sn}$	
Brittania metal	${ }^{5-8} \mathrm{Sb}$, trace Pb ; remainder	
Bronze coinage (old)	$95 \mathrm{Cu}, 4 \mathrm{Sn}, 1 \mathrm{Zn}$.	
Cast (present)	$95 \frac{1}{2} \mathrm{Cu}, 3 \mathrm{Sn}, 1!\mathrm{Zn}$	
Cast iron (white) .	3 combined C, 0.1 free C, traces $\mathrm{Si}, \mathrm{S}, \mathrm{P}, \mathrm{Mn}$; remainder Fe	
(grey)	0.9 combined C, 2.8 free C, traces $\mathrm{Si}, \mathrm{S}, \mathrm{P}, \mathrm{Mn}$; remainder Fe	
Constantan	$40 \mathrm{Ni}, 60 \mathrm{Cu}$.	1290°
Delta metal	$40 \mathrm{Zn}, 1-2 \mathrm{Fe}$; remainder Cu .	
Dental alloy (1st quality).	$66 \mathrm{Ag}, 33 \mathrm{Pt}$.	
(2nd quality)	$75 \mathrm{Ag}, 25 \mathrm{P}$ 't	
Ferro-chrome .	${ }^{60-688} \mathrm{Cr}, 2-5 \mathrm{C}, 30-38 \mathrm{Fe}$	\cdots
silicon	${ }_{10-50} \mathrm{Si}$; remainder Fe .	
German silver	50-60 Cu, 10-30 Ni, 20-30 Zn .	1100°
Gold coinage (British)	$22 \mathrm{Au}, 2 \mathrm{Cu}$ or Ag . .	
Gun metal	${ }_{80}^{90} \mathrm{Cu}, 10 \mathrm{Sn}$. ${ }^{\text {c }}$,	
metal	$\begin{gathered} 80-95 \mathrm{Cu}, \\ 0-10 \mathrm{lb} \end{gathered}$	
Illium	$60 \cdot 6 \mathrm{Ni}, 6 \cdot 4 \mathrm{Cu}, 21 \cdot 1 \mathrm{C} \mathrm{r}, 4 \cdot \dot{7}$	
Invar	${ }_{35} \mathrm{Mo} \mathrm{Ni}, 2 \cdot 1 \mathrm{O}$ M $\mathrm{Mn}, 0.5 \mathrm{C}^{\circ}$, 64 Fe .	1300° 1425
Magnalium	$90 \mathrm{Al}, 10 \mathrm{Mg}$	
Manganin.	4-40 Ni, 60-80 $\mathrm{Cu}, 1-12 \mathrm{Mn}$	
Monel metal	$60 \mathrm{Ni}, 33 \mathrm{Cu}, 6.5 \mathrm{Fe}, 0.5 \mathrm{Al}$.	1360°
Muntz metal	$40 \mathrm{Zn}, 60 \mathrm{Cu}$.	
Newton's metal	$18.75 \mathrm{Sn}, 31.35 \mathrm{~Pb}, 50 \mathrm{Bi}$	$94.5{ }^{\circ}$
Nichrome.	${ }^{60} \mathrm{Ni}, 14 \mathrm{Cr}, 15 \mathrm{Fe}$	
Nickel coinage .	Usually $25 \mathrm{Ni}, 75 \mathrm{Cu}$.	\ldots
Nickelin	$82 \mathrm{Ni}, 55-70 \mathrm{Cu}, 0-13 \mathrm{Zn}$	\cdots
Pewter	$78 \mathrm{Sn}, 20 \mathrm{~Pb}, 1 \mathrm{Sb}$	

TABLE 37-Continued.

Phosphor bronze (for strength)(for bearings)		m.p.t.
	${ }^{91-92} \mathrm{Cu}, 7 \cdot 4-8 \cdot 7 \mathrm{Sn}, 0 \cdot 3-0 \cdot 6 \mathrm{P}$	
	$10-15 \mathrm{Sn}, 1 \cdot 0 \mathrm{P}, 10 \mathrm{Sb} \text { or } \mathrm{Pb} \text {; }$	
Platinite	$46 \mathrm{Ni}, 0.15 \mathrm{C}$; remainder Fe	
Platinoid	$60 \mathrm{Cu}, 14 \mathrm{Ni}, 24 \mathrm{Zn}, 1-2 \mathrm{~W}$	
Rose's metal	$25 \mathrm{Sn}, 25 \mathrm{~Pb}, 50 \mathrm{Bi}$	95°
Silver coinage (old)	${ }^{92} 50.5 \mathrm{Ag}, 7.5 \mathrm{Cu}$	
(new).	$50.0 \mathrm{Ag}, 50.0 \mathrm{Ni}$	
Solder (hard)	$25-50 \mathrm{Sn}, 50-75 \mathrm{~Pb}$ $67 \mathrm{Sn}, 33 \mathrm{~Pb}$.	182°
Speculum metal	$68 \mathrm{Cu}, 32 \mathrm{Sn}$.	
Stainless steel		
Stellite (a "stainless stel ")	$75 \mathrm{Co}, 25 \mathrm{Cr}$ (usually traces W)	
Stereotype metal	$112 \mathrm{~Pb}, 3 \mathrm{Sn}, 18 \mathrm{Sb}$	
Tantiron	$84 \mathrm{Fe}, 15 \mathrm{Si}, 1 \mathrm{C}$. ${ }^{\text {c }}$	
Type metal	${ }^{5}-20 \mathrm{Sb}, 80-85 \mathrm{~Pb}$; often little Sn or Bi	
Wood's alloy	$12 \mathrm{Cd}, 50 \mathrm{Bi}, 25 \mathrm{~Pb}, 13 \mathrm{Sn}$	$60.5{ }^{\circ}$

TABLE 38.-ACID-RESISTING CEMENTS.

Cottrell (Nitric Acid and Nitrates) recommends the following :Silicate Cement (Hard) for permanent joints. Coarse white asbestos powder made into a stiff dough with silicate of soda (Sp . Gr. 1•250).

Rust Cement for permanent iron to iron connections. 5 lbs. iron filings, 1 oz . sal ammoniac, 2 oz . flowers of sulphur, and sufficient water to make the mixture feel just damp.

Soft Putty for joints exposed to nitric acid or its vapour. Mix thoroughly 40 parts white asbestos powder, 8 parts blue asbestos fibre, 10 parts china clay, $2 \frac{1}{2}$ parts tallow and 21 parts of boiled linseed oil.

96 THE TECHNICAL CHEMISTS' HANDBOOK

TABLE 39.-FREEZING MIXTURES.

TABLE 40.-SPECIFIC HEATS.

(a) Of Solids and Liquids.

Aluminium	$0 \cdot 2220$	Iron (cast) .	$0 \cdot 1050$
Alcohol	$0 \cdot 547$	(wrought)	0.1081
Antimony .	$0 \cdot 0495$	Lead . .	$0 \cdot 0309$
Ashes	$0 \cdot 20$	Limestone (marble)	0.21
Bismuth	$0 \cdot 0303$	Mercury	0.0334
Brass.	$0 \cdot 0917$	Nickel	$0 \cdot 109$
Bricks	$0 \cdot 22$	Oil (lubricating)	$0 \cdot 40$
Cement	$0 \cdot 19$	Platinum	0.0324
Carbon (wood)	$0 \cdot 1653$	Sandstone.	$0 \cdot 22$
(graphite	$0 \cdot 1604$	Slag .	$0 \cdot 18$
(diamond)	$0 \cdot 1042$	Silver	$0 \cdot 0559$
Copper -	0.0936	Steel .	$0 \cdot 1070$
Glass (for thermometers)	$0 \cdot 1988$	Sulphur	$0 \cdot 1764$
Gypsum . . .	$0 \cdot 20$	Sulphuric acid	0.332
Granite	$0 \cdot 20$	Tin	$0 \cdot 0552$
Gold .	0.0316	Zinc	$0 \cdot 0935$

(b) Of Gases and Vapours for Constant Pressures between the Temperatures of 0° and $200^{\circ} \mathrm{C}$. (Langen and Regnault.)

	Cal. per 1 kg .	Cal. per $1 \mathrm{cb} . \mathrm{m}$.		$\left\lvert\, \begin{gathered} \text { Cal. per } \\ 1 \mathrm{~kg} . \end{gathered}\right.$	$\begin{aligned} & \text { Cal. per } \\ & 1 \mathrm{cb} . \mathrm{m} . \end{aligned}$
Atmospheric air	0.2389	0.3082	Carbon monoxide	0.2466	0.3082
Oxygen	0-2158	0.3082	Methane	0-5930	0.4241
Nitrogen	$0 \cdot 2459$	0-3082	Ethylene	$0 \cdot 4040$	$0 \cdot 5053$
Hydrogen	$3 \cdot 452$	0.3082	Sulphur dioxide	O-1544	$0 \cdot 4413$
Carbon dioxide	$0 \cdot 2092$	$0 \cdot 4109$	Aqueous vapour	0.4542	$0 \cdot 3654$

TABLE 41.-MELTING POINTS (OF COMMON SUBSTANOES).

[^1]
TABLE 42.-BOILING POINTS.

100 THE TECHNICAL CHEMISTS' HANDBOOK

TABLE 42-Continued.

SPECIAL PART

I. RULES FOR SAMPLING.

A. -Fuel.*

Take a shovelful of each wheelbarrow, basket, etc., throw it into a cask or tub. Coarsely grind up the whole without delay, mix the contents, spread them out in a flat, square heap, divide this diagonally into four quadrants, remove two opposite quadrants, grind up the other two more finely and mix them again, and continue in this manner until the weight has been reduced to about \ddagger cowt. Put this into a tin box, which is soldered up and sent to the testing-laboratory. There this sample is ground again, mixed up, and divided into twelve or sixteen portions in the manner of a chess-board. Take out a teaspoonful from each of these portions and grind them in a porcelain mortar to a powder as fine as dust. This powder is kept in a stoppered bottle, and is well mixed up before taking out a fresh sample for testing.

For separate moisture tests, a number of samples are taken during the first sampling, and kept in air-tight vessels.

B. -Ores and Minerals (Pyrites, Manganese, Salt, etc.).

(a) S'malls, slack, salt, or other sulstances not requiriny to be crushed.-Take a sample of about 1 lb . of each weighing-tub, cart, or the like, by means of a scoop, so as to obtain about the same quantity each time. Of railway trucks, which are tipped directly into the warehouse, take three samples, one from the middle and one from each end.t All these single samples are put in a cask and kept covered, to prevent the evaporation of moisture. When the large sample is taken, empty the contents of the cask on a level, clean, and hard place, spread it flat, heap it up in a cone at the centre by going regularly round with a spade; spread this heap again flat, and take a sample of about a quarter of the mass, by taking out with a spade two strips crossing each other at right angles, and adding a little from the centre of each remaining

[^2]
104 THE TECHNICAL CHEMISTS' HANDBOOK

quadrant. Treat this reduced sample exactly like the larger one, so that a third sample of about 5 lbs. is obtained. Mix this again thoroughly, and fill it into four (or more) wide-necked bottles of 4 ounces capacity, placed close together on a sheet of paper, so that a portion of each handful gets into each of the four bottles. When these are full, they are at once closed with tight-fitting corks; these are cut off straight above the necks of the bottles and well covered with sealing wax, putting on the seals of both buyer and seller, or any other party concerned. The mixing and filling must be done as quickly as possible, in order to prevent the evaporation, or, on the other hand, the absorption of appreciable quantities of moisture during the operation.

The above sample bottles are handed over to the laboratory chemist, who has to pulverise their contents till they pass completely through a sieve with holes $1 \mathrm{~mm} .(=1, i \mathrm{in}$.) wide; no coarse material must be left behind. From this, after thorough mixing, a smaller sample is taken and reduced to the degree of division necessary for analysis, by grinding in a steel or agate mortar, in the case of softer substances in a porcelain mortar. Manganese samples should not be treated in iron mortars. Moisture is estimated in an unground portion of the sample.
(b) Ores in pieces requiring to be rrushed.--Large-sized samples must be taken if the lumps of the ore are very coarse. If the pieces are not ahove the size of an apple, and not too unequal, it is sufficient to take a sample from each tub, etc., as in (a), but with a shovel or scoop holding about 10 lbs . In the case of larger lumps, and of very unequal sizes, it is preferable to tip every tenth or twenticth tub or cart into a separate place, where the whole average sample is collected. In any case, the proportion between the large and small pieces must be represented as accurately as possible in the average sample. This is then crushed to the size of a walnut, either by hand or hy machinery, leaving no larger lumps behind. The crushed material is thoroughly mixed by turning it over with a spade several times; it is then spread out in a flat heap and a smaller sample of about 4 cwt. is taken, by lifting out two strips crossing each other at right angles, adding something from the centre of each remaining quadrant. The reduced sample is crushed further, either in a large metal mortar, or preferably with a sledge hammer on a flanged cast-iron plate about 3 ft . square, bedded on a solid foundation; the latter process is much cleaner and more convenient than grinding in a mortar. The coarse portions are sifted out by a riddle of $\frac{1}{4}-\mathrm{in}$. holes and crushed again, till all has passed through. The product is reduced as in (a), by mixing, etc., to a quantity of 2 or $4 \mathrm{ll} s$. , from which the sample bottles are filled as described above.

O.-Ohemicals.

Saltcake, soda ash, etc., if in bulk, are sampled as in No. 1, (a). If packed in casks, each third, fifth, or tenth cask, according to the size of the parcel, is bored at one of its bottoms and sampled by means of an auger (Fig. 1), which is inserted up to the centre of the cask, turning it round its axis all the while. The single cask samples are put into a large wide-mouthed bottle, as drawn, till the sampling is over. Then empty the whole on to a large sheet of paper, mix thoroughly, crush any lumps with a spatula, and fill

Fig. 1.
the 4 -ounce bottles, previously prepared, exactly as described in No. 1 as for ores, observing the simple rules for corking and sealing.

Blearhing poucder, potash, and any other substances which are liable to be quickly spoilt in contact with the air by attracting moisture, or from other reasons, are treated like the foregoing substances, but operating with the greatest possible speed, and keeping the large bottles for collecting the cask samples well closed. The sampling is still more safely performed by taking away the upper end of the cask, removing the top layer to a depth of about 2 inches, taking a handful of the material from the interior as far as it is possible to reach in, which should be nearly to the centre of the cask, and placing it in the large bottles. In this

Fia.
way there is the least contact with air. Or else a sample auger is employed, like that shown in Fig. 2. It is made of a piece of gas-pipe of $1 \frac{1}{6}$-inch bore, cut open for part of its length, so that a longitudinal slot of 1 inch width, a, is formed. One side of the slot is sharpened, as well as the tip b, which is driven into the bleaching powder, ctc. The upper part of the pipe is left uncut, and is provided with a handle, c. Before introducing the auger the cask is well shaken up; then it is placed in an upright position and the auger is driven in as deeply as possible, in case of need by the aid of a hammer. This is done either after opening the cask, or by boring a hole in the end, which is afterwards closed by a piece of tin, with paper underncath. After driving
in the auger, it is turned several times round its axis, so that it cuts through the bleaching powder with its sharp side and is thus filled. The sample drawn out is put on paper, and is crushed as quickly as possible, preferably by means of a small hand-roller ; it is then mixed and spread out flat. Small samples are finally taken from various parts by means of a spatula, as quickly as possible, and are put into bottles, which are tightly closed and kept in a dark place. Bleaching powder samples should be always tested with as little delay as possible.

Caustic Soda.-Since the samples absorb moisture and carbonic acid on their surface, even in well-closed bottles, the outer opaque crust must be removed by scraping before weighing out the samples ($c f$. p. 203). It should be borne in mind that the centre of the drum is of weaker strength than the remainder, because the foreign salts accumulate in the portion which remains liquid the longest. The average strength is best represented by the portions next to the bottom and sides of the drum, which solidify quickest. This is most conveniently done while the contents are still in the liquid state. For the control of the manufacture itself it is best to take samples out of every pot during the time its contents are ladled out, from the top, the centre, and the bottom. These are poured out on to a metal plate, where they quickly solidify. The centre sample is the most important one for judging the quality of the pot.

Solid sulphuric anhydride camot be sampled directly for analysis. An auger cannot be employed, as the mass is too firm and tough; melting the mass in the drums themselves is out of the question, on account of the clouds of fumes. The following process is, therefore, employed:-A large sample of the solid anhydride is mixed with so much exactly analysed "monohydrated" sulphuric acid that an acid of about 70 per cent. is formed, which is liquid at ordinary temperatures. This mixture is made in a stoppered bottle, and is gently heated to 30° or $40^{\circ} \mathrm{C}$., the stopper being loosely put in until the solution is complete, and a small sample then taken out by means of Lunge and Rey's glass-tap pipette (1, 172).

II. THE PREPARATION OF STANDARD SOLUTIONS.

As mentioned in the preface, the author has assumed that the user of this handbook is a qualified chemist working in a well-appointed works laboratory. The book is not intended to be used as a students' text-book, but, in order to prevent misunderstanding as to the units and conventions adopted, some notes regarding standard solutions, indicators, ctc., have been included. Fuller particulars, with details of procedure, will be
found in text-books, such as C'umming and Kay's Quantitative Chemical Analysis.

Standard Solutions.-Any solution of accurately known composition is called a standard solution.

Normal Solution.-A solution which contains one gramequivalent of the reacting substance per litre of solution is called a normal solution. The gram-equivalent of a substance is the weight of the substance, in grams, which is chemically equivalent to 1.008 g . of hydrogen.

A normal solution of an oxidising agent is one which is capable of yielding 8 g . of "available" oxygen per litre. One litre of a normal solution of an oxidising agent will therefore oxidise 1.008 g . of hydrogen with formation of water.

The Unit of Volume.

The instruments used in volumetric work are graduated in cubic centimetres. The true cubic centimetre is the volume of a cube whose sides are 1 cm . in length. For analytical purposes, it may be taken as equal to the volume of 1 g . of water (as weighed in a vacuum) at 4^{\prime}.

Measuring instruments are sometimes graduated in terms of Mohr's unit. 'This unit is often incorrectly called a cubic centimetre, but is actually the volume occupied by a quantity of water (at 15° or 175°) which, when weighed in air with brass weights, has an apparent weight of 1 g . This unit (at 15°) is $0^{\circ} 2$ per cent. larger than the true cubic centimetre.

RATIO OF WEIGHT TO VOLUME OF WATER, WEIGHED IN AIR WITH BRASS WEIGHTS.

Temperature.	Weight of 1 c.e. m grams.	Volume in c.c. occupien ly 1 gram.	Temperature.	Werght of 1 c.c. in srams.	Volume in c.c. occupied by 1 gram .
10°	$0 \cdot 9987$	$1 \cdot 0013$	21°	$0 \cdot 9970$	$1 \cdot 0030$
11°	86	14	22°	67	33
12°	85	15	23^{\prime}	65	35
13°	83	17	94°	63	37
14°	82	18	25°	60	40
15°	81	19	26 ${ }^{\circ}$	57	43
16°	79	21	27°	55	45
17°	77	23	28°	52	48
18°	76	24	29°	49	51
19°	74	26	30°	46	5.4
20°	72	28	31°	43	57

108 THE TECHNICAL CHEMISTS' HANDBOOK

Measuring instruments, as bought, are often inaccurate. In order to calibrate a vessel, one requires to know
(1) the weight of water which will occupy 1 c.c. at the given temperature,
(2) the corrections to be applied for the weight of air displaced by the water and by the brass weights respectively.
In the table on p. 107 these corrections have been introduced.

Use of English Weights and Measures.

The metric system of weights and measures is now almost universally used in analytical work. It is to be regretted, however, that in England it is still usual to specify quantities in the old-fashioned, unscientific English units, e.g. grains per gallon or grains per cubic foot.

The analyst is recommended in all such cases to use metric weights and measures, and convert the results by calculation. As there are, however, still laboratories in which the "English system " is used, the following notes may be useful.

The unit of weight of the English system is the grain. All normal solutions are prepared so that 1000 grains by volume (100 decems) contain one equivalent of the reagent in grains, and consequently all normal solutions prepared on the English system are identical in concentration with those prepared on the metric system.

English burettes usually hold 1000 grains, and are divided into 100 parts of 10 grains each, called one decem. The decem corresponds to the cubic centimetre. As, however, this unit, the decem, is ten times the unit of weight, the following rules must be observed when any of the data are to be changed from the metric to the English system :-

Instead of litre read 10,000 grains.
" cubic centimetre read decem, or ten times the number of grains.
.. grams read ten times the number of grains.
If, for instance, we are told to prepare a standard solution of permanganate by dissolving 15.820 g . of potassium permanganate in 1 litre of water, and that $1 \mathrm{c} . \mathrm{c}$. of such a solution corresponds to 0.028 g . of iron, we obtain a solution of equal strength by dissolving $158 \cdot 20$ grains in 10,000 grains of water, and 1 decem of this solution corresponds to 0.28 grain of metallic iron. The reader should substitute ten times as many grains for the number of grams, ten times as many grains, or an equal number of decems, for the number of cubic centimetres, and 10,000 grains for each litre. Where we are directed to measure out by means of a pipette 50 c.c., we take 500 grains instead, etc.; but when speaking of the number of cubic centimetres on the burette, we substitute exactly the same number of decems.

It will also be useful to remember that :

Grams per litre	$=$ grains per 1000 grain
, ,	$=$ ounces per 1000 ounces.
", "	$=\begin{gathered}\text { ounces per cubic foot (approxi- } \\ \text { mately). }\end{gathered}$
Grams per litre $\div 16$	$=\mathrm{lbs}$. per cubic foot.
Grams per litre ${ }^{\text {¢ }} 70$	$=$ grains per 70,000 grains
	$=$ grains per gallon.
$0.4375 \times$ grams per cub. metre Kilograms per cubic metre	$=$ Erains per cubic foot. $=$ lbs. per 1000 lbs.
Kilograms per cubic metre	$=$ lbs. per 1000 lbs . $=$ lbs. per 16 cubic feet.
Kilograms per cubic metre	per cubic f
16	
$16 \times$ cub. metres per kilogram	$=$ cubic feet per lb.
Kilograms per square metre	$=0.205 \mathrm{lb}$. per square foot.
Kilograms per scq. metre $\times 1.8$	lbs. per square foot.

As 1 gallon of any dilute aqueous solution weighs approximately 70,000 grains, it is a close approximation to take

Parts per gallon =: parts per 70,000 .

STANDARD SOLUTIONS IN COMMON USE.

A.-Normal Acid and Alkali.

The only acids in common use as standard acids are sulphuric acid and hydrochloric acid, and of these hydrochloric acid has the wider range of utility. Normal hydrochloric acid has no tendency to lose the free acid but, if exposed to the air, becomes more concentrated.

As standard alkalis, the most useful are sodium hydroxide, sodium carbonate, and barium hydroxide. It is essential that a standard alkali solution should always be used with the indicator used when it was standardised.

Indicators.-The indicators commonly used in acidimetry and alkalimetry are litmus, methyl orange, phenolphthalein, and methyl red.

Indicators for acid and alkali are substances which exhibit a marked change of colour at or near the neutral point. Usually the colour change does not occur at the point of true neutrality and the change occurs at different points with different indicators. This does not affect the accuracy of the results, provided a suitable indicator is used under correct conditions.

Strong Acids and Strong Bascs.--If acids and bases are free from carbonates and sulphides, any indicator may be used if the concentration of the standard solution is not less than 0.2 normal. With more dilute solutions, methyl red or phenolphthalein should be used.

Weak Acids with Strong Bases.-Use phenolphthalein.
Weak Bases with Strong Acids.-Use methyl red.
Carbonates and Sulphides with Strong Acids.-This can be

110 THE TECHNICAL CHEMISTS' HANDBOOK

done with cold solutions using methyl orange as indicator. Methyl red or litmus can be used if the titration is carried out at the boiling point of the solution.

For convenience, the above and some further information is given below under the headings of the various indicators.

Litmus.- Although this was at one time the universal indicator, it is nowadays more satisfactory to use other indicators. Litmus is variable in quality and, unless a purified product (azolitmin) is used, the results are often unsatisfactory. It may be used for strong acids and alkalis, but is inaccurate if carbonates are present. It can be used for the estimation of anmonia with a strong acid. It can also be used in the estimation of carbonates, bicarbonates and sulphides if the solution be boiled. Sulphide will bleach the litmus but more litmus can be added towards the end of the titration.

Methyl Orange.-This is the most useful indicator for the titration of carbonates, bicarbonater, sulphides, silicates, borates, and arsenites. If more than traces of carbonate are present, the solution should be boiled when nearing the neutral point and then cooled before completing the titration.

Methyl orange cannot be used for the titration of weak acids. It can be used for titrating ammonia, but methyl red is better.
l'henolphthalein.-This is the most useful indicator for the titration of weak acids, such as acetic acid, with a strong base. It should be used only with strong bases free from carbonate. Organic acids insoluble in water can often be titrated in an alcohol-water solution using this indicator. Phenolphthalein is useless for ammonia or in presence of ammonium salts. With carbonates of the alkalis, it indicates neutrality roughly at the bicarbonate stage.

Methyl Red.-This is the best indicator for the titration of ammonia or solutions containing ammonium salts. It is more sensitive and gives a sharper end-point than methyl orange with very dilute solutions of strong acids and bases. It is useless for weak acids. It is less sensitive than litmus or phenolphthalein to carbonic acid. and the amount present in an ordinary solution of sodium hydroxide does not affect this indicator.

As basis of Alkalimetry and Acidimetry, we employ chemically pure sodium carbonate. This is tested for purity by dissolving 5 g . in water, which ought to yield a perfectly clear, colourless solution; if, after acidifying this solution with pure nitric acid, no opalescence is caused by barium chloride, or silver nitrate, the salt may be taken as sufficiently pure. Before using it, the sodium carbonate must be heated in a platinum crucible (or if this is not available a porcelain basin). This is half-filled with the carbonate and is placed on a sand-bath, the sand reaching to the same level outside as the carbonate inside. A thermometer is put in, which at the same time serves as a stirrer. The temperature is raised to 270° to 300° for about half an hour,
with frequent stirring ; the contents are then emptied hot into a stoppered weighing-bottle, which is kept in a desiccator up to the time of weighing. Then weigh off, for normal acid, four portions of about 2 g . each into the beakers in which the titration is to take place; for one-fifth normal acid the single portions ought not to exceed 0.4 g . The balance ought to turn to at least 0.2 mg .

As normal acid we prefer hydrochloric acid, which has the following advantages over sulphuric and oxalic acid, viz. : 1st, it is more generally applicable, e.!., for alkaline earths; 2nd, its strength. after being fixed by pure sodium carbonate, can be accurately checked by silver nitrate, far more accurately than that of sulphuric acid by bariun chloride; 3rd, it does not change on keeping, like oxalic acid.

Normal HCl ($36-47 \mathrm{~g}$. HCl per litre) is prepared as follows : Dilute pure hydrochloric acid to 1.020 specitic gravity (4 Tw.). Such an acid will be rather too strong. Fill a burette with this acid, and titrate with it one of the weighed samples of sodium carbonate, the weight of which is w grams. Suppose that x c.c. of this acid are required. As the acid is sure to be too strong, x will always be smaller than $\frac{w}{0.053}$, and we shall have to add to
 quantity of acid of specific gravity $1 \cdot 020$ amounts to V c.c., the amount of water to be added thereto to render it correct will be n c.e., where $n \ldots V\left(\begin{array}{cc}u r & 1) \text {. For one-fifth normal acid } \\ 0.053 x & 1\end{array}\right.$ the above factor would be $=\frac{11}{0.0106}$.

If accurate nomal alkali is at hand, it may be similarly employed for examining the provisional acid, and then adjusting it to the normal strength.

In any rase, the mixed normal acid must be checked by titrating new simuples of sodium carbonate, when x ought to $=\frac{\not \prime \prime}{0.053}$. A further check is afforded by estimating the chlorine gravimetrically by silver nitrate ; 10 c.c. $(=0.3647 \mathrm{HCl})$ ought to yield $1 \cdot 4334 \mathrm{~g}$. AgCl .

The ordinary indicator in alkalimetry and acidimetry used to be tincture of litmus, which must be kept in open vessels to avoid its being spoiled. When employing litmus, the lipuid to be tested must be kept boiling for some time, in order to expel all (O_{2}, and normal acid must be added as long as, on further boiling, the colour changes back from red to purple, or bluc. This prolonged boiling causes some alkali to be dissolved from most kinds of glass, which makes the tests inaccurate. A test with litmus

112 THE TECHNICAL CHEMISTS' HANDBOOK

rarely lasts less than half an hour, usually more. Phenolphthalein has exactly the same drawbacks. Even the action of the carbon dioxide contained in the air, which comes into contact with tho liquid on cooling, may cause trouble in very accurate work. On the other hand, a test is finished in a few minutes, if litmus is replaced by a very dilute solution of methyl orange; but in this case the liquids must not be hot, but at the ordinary temperature, and only mineral acids, not oxalic acid, may be employed. The cold solution of sodium carbonate is coloured just perceptibly yellow by adding a drop or two of the solution of methyl orange, preferally by means of a pipette; if the colour is too intense, it will cause the transition into red on neutralisation to be less sharp. CO_{2} does not act in the least upon methyl orange ; a change of colour only takes place when all $\mathrm{Na}_{2} \mathrm{CO}_{3}$ has been decomposcd. When the $\mathrm{Na}_{2} \mathrm{CO}_{3}$ has been exactly converted into NaCl , a tinge of brown or red appears in the faintly yellow solution. This is the end-point. Exactly the same course is followed in titrating acids with caustic soda solution ; in this case also the reading is taken at the brownish transition colour, before the change to yollow has taken place. The results obtained in this way are identical with those obtained by the proper application of litmus or phenolphthalein, that is, working with these indicators under complete exclusion of air, with prolonged boiling, and in porcelain or silver vessels. The great advantage of methyl orange over the last-named indicators is the saving of time, the working at ordinary temperatures, and the possibility of employing glass vessels without any danger of error caused by the use of this material.

Another advantage of methyl orange is that it is not affected by sulphuretted hydroyen (which destroys litmus); hence it can be employed, e.g., for the direct titration of black-ash liduors. Sulphur dioxide acts upon it like the stronger mineral acids, but only to the extent of one-half of its equivalent ; that is, the point of neutrality is reached when the compound NaHSO_{3} has been formed. In the presence of nitrous acid methyl orange is gradually destroyed, but it is quite easy to employ it even in this case by proceeding as described on p. 162.

It is generally agreed that methyl orange is the best indicator for titrating bases by means of strong mineral acids, and this holds good also for the titration of the strong acids-sulphuric, hydrochloric, and nitric acid. In these cases, indeed, its advantage over litmus or phenolphthalein is even more marked, because a slight percentage of CO_{2} in the standard alkali employed has no effect. But organic acids cannot be titrated with methyl orange.

Some authors have proposed, in lieu of methyl orange, the unsulphonated compound, dimethylaminoazobenzene, but this is only soluble in alcohol, and cannot be recommended. This is also the case with ethyl orange.

To prepare standard alkali, dissolve about 50 g . of the best commercial caustic soda in 1 litre of pure water and titrate 50 c.c. of this solution with standard acid. More than 50 c.c. of acid will be required ; we call this x c.c. The fraction $\frac{5000}{x}$ shows the number of c.c. of the first solution, which must be diluted with pure water to 1 litre in order to obtain a really normal alkali. The solution thus prepared is again checked by titration with normal acid.

The normal alkali, when intended to be used with litmus, should be as frec as possible from carbonate, and should be protected against absorption of CO_{2} from the air, because otherwise the change of colour does not take place sufficiently rapidly and markedly in cold solutions. A solution of sodium hydroxide entirely free from carbonate is difficult to prepare and to preserve when in constant use. When employing methyl orange as an indicator, an ordinary caustic sola solution may be employed without any special precautions. The canstic soda employed should not contain more than a very small proportion of alumina; ordinary strong caustic nearly always fulfils this condition, or it may even be replaced by a solution of 53.00 g . pure sodium carbonate in 1 litre water, which is employed cold, and which yields as accurate results as NaOH , no notice being taken of the CO_{2} which escapes with effervescence. The general use of this solution is, however, inconvenient on account of the efflorescence on the burettes, necks of hottles, etc. Weaker (e.f, fifth-normal, or even seminormal) solutions do not have this drawhack.

All standard solutions must be prepared and employed as nearly as possible at a certain temperature. Mohr prescribes 15°; some prefer $18^{\circ}(!$., as being more suitable for laboratories. When the solutions have stood for some time in bottles, a little water is evapotated and recondensed in the upper part of the bottles; the contents must then be properly mixed by shaking.

If the temperature of the laboratory differs more than 2° or 3° from that employed for preparing the standard solutions, a correction should be made by means of the following table. In order to reduce the volumes read off at $t^{\prime \prime}$ to 15°, deduct per 100 c.c. the following amounts:--

t°	c.c.	t	c.c.
15	0	23	$0 \cdot 135$
16	$0 \cdot 013$	24	$0 \cdot 156$
17	$0 \cdot 027$	25	$0 \cdot 179$
18	0.043	26	0:20\%
19	0.059	27	$0 \cdot 227$
20	0.076	28	$0 \cdot 252$
21	0.095	29	$0 \cdot 278$
22	$0 \cdot 114$	30	$0 \cdot 305$

114 THE TECHNICAL CHEMISTS' HANDBOOK

B.-Potassium Permanganate.

The ordinary solution is decinormal, i.e., it yields 0.0008 g . oxygen per c.c. It serves, e.!., for estimating nitrous acid in sulphuric acid, for testing the nitrogen acids in the chamber exits, for testing manganese ore, for testing Weldon mud, etc.

The solution is made by dissolving pure crystallised potassium permanganate, and is then quite stable, if protected from dust and direct sunlight. Dissolve 3.161 g . of pure permanganate in 1 litre of cold water. (Do not heat the solution, and do not grind the crystals.) Keep the solution in a dark place and free from dust. If any sediment forms in the solution at any time, reject it. Store in a bottle with a glass stopper.

None of the methods formerly employed for standardising permanginate (hy means of metallic iron, or oxalic acid, or hydrogen peroxide, etc.) is entirely free from objections. No such objection exists to the employment of pure sodium oralate, first proposed by Sorensen. This salt need only be kept for a few hours in a drying oven at $100^{\prime \prime}$, and then allowed to cool in a desiccator over calcium chloride. Dissolve about 026 g . of this (exactly weighed) in about 200 c.c. water, heated to $60^{\circ}-70^{\prime \prime}$, add dilute sulphuric acid, and run in the permanganate solution from a burette, first quickly, then drop liy drop, until a permanent red colour is produced. If a be the weight of sodium oxalate, b the c.c. of permanganate solution used, the fraction $\begin{gathered}29 \cdot 851 \\ b\end{gathered}$ gives the quantity of oxygen given off per c.c. of the permanganate solution.

If a brown precipitate (of MnO_{2}) should be formed during the titration, the experiment must be rejected, but this oceurs only when the solutions are too concentrated or too hot (i.e. above $70^{\prime \prime}$).

Permanganate is best employed in a hurette with a lateral hollow glass-tap. Any change in its titre (lue to dust, etc.) is perceptible by a deposition of MnO_{2} in the hottle. It is advisable to check the solution once every three months.

Permanganate can be used with perfect accuracy in the presence of free hydrochloric acid, if the solutions contain a considerable quantity of manganese salts; in other cases the same effect is produced by adding, say 1 g . of manganese sulphate free from iron.

C.-Iodine.

Weigh exactly 12692 g . of pure resublimed iodine (either bought as such, or prepared by grinding up commercial iodine with 10 per cent. of potassium iodide and resubliming) on a balance turning at least with 1 mg . ; put it into a litre flask containing a concentrated solution of 15 to 18 g . KI, close the flask,
agitate till the iodino is completely dissolved, and fill up to the mark. This decinormal solution is checked by the arsenite solution (p. 115). Both solutions ought to be precisely equivalent, c.c. per c.c.

For estimating very small quantities of sodium sulphide a special iodine solution is"sometimes marle, by dissolving $3 \cdot 2515 \mathrm{~g}$. of pure iorline with 5 g . of potassium iodide in a litre, to correspond to 0.001 g . Na, S per c.c.

Solutions of iodine, especially the more dilute ones, keep a long time in well-stoppered loottles in a cool place, but they ought to be checked once a month by the arsenite solution.

Preparation of the Starch Solution.-Grind up 3 g . potato starch with a little water to a homogeneous paste ; introduce this gradually into 300 g . of boiling water, contained in a porcelain dish, and continue the boiling till an almost clear liquid has been produced. Nllow this to settle in a tall beaker, pour the clear portion through a filter, and saturate it with common salt. This solution, when kept in a cool place, is stable for some time; as soon as fungoid growths are noticed in it, it is thrown away.

A very convenient form of soluble starch is that made by Kulkowsky's method, by heating l10 parts of concentrated glycerine with 6 parts of starch to $190^{\circ} \mathrm{C}$. for about an hour, pouring ints water, precipitating the soluble starch by alcohol, and filtering. This starch is kept in the state of a thick paste, not allowed to dry, and a small quantity is taken out for each test by means of a glass rod. There are also other forms of soluble starch, e.g., "ozone-starch."

D.-Sodium Arsenite.

This serves for standardising the iodine solution, and as its volumetrical complement, especially in testing bleaching powder. Employ commercial pure powdered arsenious acid : test its purity by subliming a little from a small dish into a watch-glasis, when no yellow sublimate of $\lambda \mathrm{S}_{\mathrm{s}}$ (which volatilises more easily than As. $\left(O_{3}\right)$ should result initially: on heating more strongly it should leave no residue. Before use the powdered A s. O_{3} is kept for some time over sulphuric acid in a desiceator, and can then be weighed out without any special precautions, since it is not hygroscopic. For preparing a decinormal solution, weigh out exactly $4 \cdot 948 \mathrm{~g}$. Ass O_{3}, dissolve it in a litule hot solution of caustic soda, neutralise with dilute sulphuric acid (using phenolphthalein as indicator), add a solution of about 20 g . sodium bicarbonate in 500 c.c. water, and dilute on cooling to 1000 c.c. This solution is quite stable, and equivalent to $0 \cdot 003546 \mathrm{~g}$. chlorine or $0 \cdot 01 \geq 692 \mathrm{~g}$. iodine per c.c.

If really pure and dry arsenious acid has been employed, the above solution will be correct at once. But when preparing large

116 THE TECHNICAL CHEMISTS' HANDBOOK

quantities, it ought to be checked by grinding up 0.5 g . iodine with 0.1 g . potassium iodide, heating this mixture in a small dish on a sand-bath or upon an asbestos board till abundant vapours arise, covering with a dry watch-glass, allowing the major portion, but not the whole, of the iodine to sublime into the watch-glass, covering this with a second watch-glass which fits air-tight upon the former, and has been weighed with it, and weighing. Slip the watch-glasses into a solution of 1 g . of potassium iodide (free from iodate), in 10 g . water, wait a little till the iodine is dissolved, dilute with 100 c.c. water, and titrate with the arsenite solution. When the colour is only a light yellow, add a little starch solution, and titrate exactly till the blue colour has just vanished. The c.c., of arsenite solution used, multiplied by 0.012692 , ought to correspond exactly with the weight of iodine taken. Or the dry, sublimed iodine is transferred directly from the upper watch-glass into a tared stoppered weighing-bottle, weighed, and dissolved in KI solution in the same bottle.

E.-Silver Nitrate.

Weigh out exactly 16.989 g . of pure crystallised silver nitrate, preferably kept in a desiccator for a few hours, and dissolve in 1 litre. This gives a decinormal solution, corresponding per c.c. to $0.003546 \mathrm{~g} . \mathrm{Cl}$, or $0.003647 \mathrm{~g} . \mathrm{HCl}$, or $0.005846 \mathrm{~g} . \mathrm{NaCl}$. By dissolving $2 \cdot 906 \mathrm{~g} . \mathrm{AgNO}_{3}$ in 1 litre, a solution is obtained corresponding to $0.001 \mathrm{~g} . \mathrm{NaCl}$ per c.c.

Ammoniacal silver solution, for Lestelle's estimation of alkaline sulphides, is obtained by dissolving 13.818 g . of pure silver in pure nitric acid, adding 250 c.c. of ammonia, and diluting to 1 litre. Each c.c. of this corresponds to 0.005 g . Na, $\mathrm{Na}_{2} \mathrm{~S}$.

F. - Copper Sulphate.

Copper solution, for testing ferrocyanide, is obtained by dissolving. 12486 g . pure crystallised, non-effloresced, cupric sulphate, in 1 litre water.

G.-Oxalic Acid.

Oxalic acid solution is employed for testing the "base" of Weldon mud, and caustic soda or line in the presence of carbonate.

Dissolve 63.03 g . pure, non-effloresced, crystallised oxalic acid in 1 litre water, and check with normal alkali. This solution is not quite stable, especially when exposed to daylight ; nor can it be employed for alkalimetry, when using methyl orange as an indicator.

III. FUEL AND FURNAOES.

A.-Fuel.

The following tests should be applied in the case of lignite, peat, coal, and coke. The method of sampling is described on p. 103.

1. Moisture.-Heat 100 to 200 g . of coal to 110° (not above), for two hours, preventing access of air as much as possible. At a higher temperature the result might be too high, owing to escape of volatile matters, or too low, owing to a partial oxidation. The sample should be broken up quickly into pieces not smaller than a bean, otherwise too much water would evaporate during the process. Lignite and peat are heated to $100^{\prime \prime}$ for five or six hours, and repeatedly weighed, till no further diminution of weight takes place. Coke is heated to 110° for two hours.

All other tests are made with air-dried material. The average sample is weighed before taking the samples for the tests; it is then spread out in a thin layer and allowed to lie in ordinary dry air for forty-eight hours. It is then weighed again, and the results obtained with such air-dried fuel are calculated on the original (undried) material.
2. Residual C'oke (f'ixed C'arbon).-One g. of finely powdered coal is placed in a platinum crucible at least $1 \frac{1}{} \mathrm{in}$. deep, weighing from 20 to 30 g ., provided with a tightly fitting cover. The crucible should then be heated by means of an ordinary Bunsen burner, the flame of which should not be less than 7 in . high. The crucible should be supported on a triangle of thin platinum wire, and it should be so placed that the space between the bottom of the crucible and the top of the burner is $2: 5$ to 3 in . The heating ought not to last longer than a few minutes, but must be continued as long as any appreciable quantity of inflammable matter escapes. The surface of the crucible cover should then be clean, but its lower side should be covered with carbon. If the flame be smaller, or the crucible be supported by a stout wire triangle, the yield of coke will be too bigh. The results should always be calculated upon coal or coke free from ash, in order to render them comparative. Good conl for reverberatory furnaces should yield from 60 to 70 per cent. of coke.
3. Ash.-This estimation is very simple for lignite or peat; coke requires a very high temperature ; coal which cakes presents most difficulty. This type of coal must be powdered very finely, and heated up gradually, so that the volatile matters may escape before the powder can form a cake. If an analysis is only occasionally required, 2 to 5 g . of finely ground coal is heated in a platinum crucible, which is fitted in a hole into a stoneware

118 THE TECHNICAL CHEMISTS' HANDBOOK

slab, or, better, in a fused-silica plate (Fig. 3). This is placed in a slanting position on a tripod stand. The slab serves to separate the air required for oxidation from the gases of the burner, and greatly hastens the combustion, which is thus completed in two hours, whereas without the slab it frequently remains incomplete even after eight or ten hours' heating. It is not advisable to use a blowpipe, because the chance of mechanical loss is thereby greatly increased. If determinations have to be made frequently, it is preferable to effect the combustion in a muffle furnace, or still more quickly in a platinum boat placed in a heated porcelain tube, through which a current of oxygen is passed. When using the latter, the coal or coke should be broken into small pieces, and not ground fine, or else the oxygen does not come sufficiently into contact with the lower strata.

Where frequent tests have to be made, several platinum dishes can be placed in a muffle at the same

Fig. 3. time. It is best to cover the dishes or boats at first by a mica plate and to remove this only when the gases have been driven off, after which the ignition is continued, until no more black spots are visible and the weight remains constant.
4. S'ulplur (Eschka's method).Mix 05 to 1 g . of the fincly ground coal with $1!$ times its weight of an intimate mixture of 2 parts of well-burnt magnesia and 1 part of anhydrous sodium carbonate. The magnesia and sodium carbonate should be tested for traces of sulphate before use, and only pure reagents used. The mixture is made in a phatinum crucible by means of a glass rod, and the crucible, without putting on the cover, is heated in an inclined position, in such manner that only its lower portion attains a red heat. This is most conveniently done by placing it in a fused silica plate, provided with a hole, as shown in Fig. 3. The combustion of the sulphides to sulphates should be promoted by frequent stirring with a thick platinum wire ; it will be finished in about an hour, during which time the grey colour of the mixture mostly passes into yellow, red, or brown. The calcined mass is covered with hot water, and bromine water is added until the liquid shows a slight yellow colour. Then heat the whole to boiling, decant the liquid through a filter, and wash the residue with hot water. Add hydrochloric acid to the aqueous solution, boil till all the bromine has been removed and the liquid has been decolorised, and add a solution of barium chloride, drop by drop, always at a boiling heat, until the precipitation is complete.

Even if the gas employed for heating the crucible should
contain a notable quantity of sulphur, no error is caused if the products of combustion are kept away from the contents of the crucible by the silica shield as shown in the figure. One part BaSO_{4} indicates 0.1374 part S .
5. The calorific power of fuel can be estimated by ascertaining the percentage of carbon and hydrogen, according to the ordinary methods of elementary analysis, and calculating the results according to Dulong's formula. In the case of coal it is necessary to take account of the volatile sulphur-that is, that which is determined by heating in a current of oxygen, passing the gases through neutralised hydrogen peroxide, and titrating the sulphuric acid formed. If the percentage of C, H, and (volatile) S , and that of the moisture (W), is known, the percentage of the oxygen is expressed by the equation :-

$$
\mathrm{O}=100-(\mathbf{C}+\mathbf{H}+\mathbf{S}+\mathbf{W}+\mathrm{ash}) .
$$

The nitrogen contained in the coal may be neglected. The calorific power of the coal, expressed in gram-calories, is then

$$
=81 \mathrm{C}+290\left(\mathrm{H}-\frac{\mathrm{O}}{8}\right)+25 \mathrm{~S}-6 \mathrm{~W} .
$$

A direct estimation of the heating power of fuel can be made by means of the calorimetric bomb, of which a description is given in T'ech. Meth., vol. i., p. 340 (second edition).

B.-Furnaces.

1. ('himmey (rases.--In these, $\mathrm{CO}, \mathrm{O}, \mathrm{CO}$, and N (the latter by difference) are most conveniently estimated by the Orsat apparatus, shown in Fig. 4. This consists of a gas-burette, A, connected with the water-filled level-bottle, B, by means of a rubber tube. Λ is filled to the zero point with water, and by lowering B gas is aspirated, either from the supply tube C or from the absorption pipettes, D, E, F. The gas is forced into each of these pipettes by opening its special tap and raising B. For reading the volume of gas in A, the bottle B must be held in such a position that the level of water is the same in A and B.

The absorption pipettes are charged as follows:--Tube D receives 110 c.c. of caustic potash solution of specific gravity $1 \cdot 20$ to $1^{\prime 2}$. This absorbs CO_{2}, and can serve for a long time. Tube E serves for absorbing the oxygen by means of very thin sticks of phosphorus, kept under water. This tube, when not in use, should be protected from the light by a covering of black paper. Any tarry matters getting into this tube render the phosphorus inactive, and must therefore be kept out by fltering the gas before entering into C , through asbestos, cotton-wool, or other suitable

120 THE TECHNICAL CHEMISTS' HANDBOOK

material. The absorption of the oxygen by the phosphorus only sets in at $16^{\circ} \mathrm{C}$., better at $18^{\circ} \mathrm{C}$. In case the room is at a lower temperature, the vessel E must be cautiously warmed up by a spirit-lamp. In tube F the carbon monoxide is absorbed. For this purpose a solution is prepared by shaking up in a closed bottle 250 g . cuprous chloride with a solution of 250 g . ammonium chloride in 750 c.c. water. When completed, a spiral of copper wire, reaching from top to bottom, is introduced into

Fia. 4.
the stock bottle. This bottle is always kept well closed when not in use. Before charging tube $\mathrm{F}, 3 \mathrm{vols}$. of the solution from the stock bottle are mixed with 1 vol. ammonia, specific gravity 0.905 . One c.c. of this mixture ought to absorb 16 c.cm. CO, but this requires prolonged shaking. The reagent in F must be frequently renewed; if this is neglected, it may even yield up some CO to gases containing too little of it. The reagent in F also absorbs ethylene, but this gas does not occur in chimney gases. Since the solution in F also absorbs oxygen, the latter must always be removed before employing pipette F .

For daily use it is often sufficient to test merely for CO_{2}, by means of the caustic potash solution in pipette D.
lor the testing of acidity in flue gases, see p. 142.
Checking the Working of F'urnaces.-The estimation of $\mathrm{CO}_{2}{ }_{2}$ in the chimney gases, if combined with an observation of temperature, chocks both the efficiency of a furnace or boiler and the daily work of the firemen, according to a formula worked out by Lunge ($/$ sch.f. anyew. Chem., 1889, p. 240). A consecutive number, say from 10 to 15 tests for CO_{2}, are made by an Orsat apparatus in the flue leading from the furnace to the chimney, and the mean volume percentage of CO_{2} found is called n. At the same time, a thermometer with very long stem, tightly inserted in the testing hole in such manner that its bulb is woll within the flue, but with the scale outside, is observed at frepuent intervals, and the mean temperature of the gases is called t^{\prime}, that of the air outside $t . \quad c$ is the specific heat of a cubic metre of (O., expressed in gram-calories ; c^{\prime} that of N or O (see helow). The total volume of exit gases produced hy the combustion of 1 kg . of carbon burnt on the grate is $=1.854+1.85 \cdot\left(\frac{100 n}{n}\right)$ cubic metres, and the loss of heat in the exit gases, expressed in gram-calories:-

$$
\mathrm{L}=1.854\left(t^{\prime}-t\right) c+1.854\left(t^{\prime}-t\right)\binom{100-n}{n} c^{\prime} .
$$

The loss, expressed in per cent. of the heat theoretically given out by the carbon, is:-

$$
\begin{gathered}
100 \mathrm{I} \\
8080
\end{gathered}
$$

The value of a^{\prime} may be assumed for all temperatures $=0.31$; that of c varies with the temperature, and must be taken as follows :-

If t^{\prime} i	below	$150{ }^{\circ} \mathrm{C}$.	$c-0.41$.
-	between	$150-200^{\circ}$	$=0.43$.
,	..	200-250'	. 0.44.
,	.,	$2.00-300$	-0.45.
, ,	.,	300-350	0.46 .

Note. - The observations of x and t^{\prime} must be made several times in succession, and the average value taken as tinal. For accurate investigations several series of tests must be made at different times of the day.

Instruments have been devised for a continuous approximate check of the percentage of CO_{2} in chimney gases, such as Arndt's Econometer.
2. Gas from Producers (Generators).-In producer gas usually only CO_{2} and CO are estimated by means of Orsat's apparatus, as described, p. 120. Any ethylene present in the producer gas would
be absorbed and estimated together with the CO. Hydrogen can be estimated in the residue from absorbing $\mathrm{CO}_{2}, \mathrm{CO}, \mathrm{C}_{2} \mathrm{H}_{4}$, and O, by mixing it with i measured volume of air, and passing the mixture over gently heated platinum or palladium asbestos.* The estimation is conveniently done in Lange's molification of Orsat's apparatus, Fig. 5. The indicating letters correspond to those in Fig. 4, hut there is an additional ${ }^{\top}$-tube, G , comnected

Fin. 5.
with a capillary, H , of refractory glass. H contains platinum or palladium asbestos and can be heated by the small spirit lamp, I , turning on a pivot. The U-tube (1 is filled with water. The gas freed from $\mathrm{CO}_{2}, \mathrm{CO}, \mathrm{C}_{2} \mathrm{H}_{4}$, and O (if this be present) is mixed in the gas-burette Λ with as much air as the space will allow, and

[^3]a reading is taken. This air will suffice for a quantity of hydrogen corresponding to ${ }_{1}^{4} 0$ of the employed volume of air (i.e., twice the volume of oxygen contained in that air). If more H be present, which will only occur in the case of "water gas," either less than 100 c.c. of gas must be employed at the commencement for the analysis, or the residual gas is mixed with oxygen instead of with air. The capillary tube H is heated very gently by means of the lamp I, and the gaseous mixture is quickly passed once through it into (x and back again, when one end of the platinum asbestos should become red hot. The residual gas is again measured and 8 of the diminution in volume calculated as hydrogen. If methane (marsh gas, $\left(\mathrm{CH}_{4}\right)$ is to be estimated, the residue from the last operation is mixed with more air and burnt ly means of

Fig. ti.

Fig. 7.
an electrically heated palladium or platinum wire, enclosed in a capillary tube. If a capillary platinum tube is employed, filled with a few platinum wires, sio as to leave a very small space for the gases to pass through, the electric heating may be replaced by that of a broad gas flame, producing a strong red heat.
3. Speed of 1)rought.- -1 convenient apparatus for measuring this in chemical works, where any fine mechanism would soon be ruined, is Fletcher's anemometer, based upon the movement of a column of ether in a U-tube (described in Lunge-Cumming's Acid and Alkali, vol. ii., 1. 136). Fig. 6 shows this in the simpler form, leaving out the microscopes, which are quite unnecessary for reading the divisions of the scale or the vernier. The ends of the glass tubes $a b$ should be placed rather less than one-sixth of the diameter of the flue from its inner wall. The straight end of a ought to be as exactly parallel as possible to the

124 THE TECHNICAL CHEMISTS' HANDBOOK

direction of the draughts; the end of l ought to be exactly at a right angle to this, so that the current blows straight into it. Without this precaution a mistake is made, which is avoided by the arrangement shown in Fig. 7, and proposed by Hurter, viz., employing tubes with ends bent in opposite directions. The tubes $a b$ communicate with the ether tube $c d$; the draught causes the ether to rise in a by aspiration and to fall in b by the pressure of the air blowing into the tube. The difference of level between c and d is read off by means of the scale and vernier. The sliding disc e is then turned through 180, whereby the currents are reversed. There will now be a difference of levels in the opposite direction, but equal in amount to the first, if the observation is correct. The sum of these two differences is the "anemometer reading" given in the tables.

The following tables show the application of the readings of the Anemometer for calculating the speed of draughts, both for instruments graduated on the inch scale and for those on the metrical scale.

a. -TABLE TO SHOW THE SPEED OF CURRENTS OF AIR.

Δt a temperature of $15^{\circ} \mathrm{C} .=60^{\circ} \mathrm{F}$.; Barometer, $760 \mathrm{~mm} .=20^{\circ} 92$ inches.
A.-Readings in Inches.

Anemometer: Reading Inches.		Anemometer Reading. Inches.		Anemometer Reading luches.			Speed. per Second
-01	2.855	$\cdot 16$	11.42	-32	$16 \cdot 15$	$\cdot 95$	27.83
-02	$4 \cdot 038$	$\cdot 17$	$11 \cdot 77$	$\cdot 34$	$16 \cdot 65$	$1 \cdot 00$	$28 \cdot 55$
$\cdot 03$	$4 \cdot 945$	$\cdot 18$	$12 \cdot 11$	-36	17.13	$1 \cdot 25$	$31 \cdot 93$
-04	$5 \cdot 710$	$\cdot 19$	$12 \cdot 45$	$\cdot 38$	$17 \cdot 6$	$1 \cdot 50$	$34 \cdot 97$
-05	$6 \cdot 384$	$\cdot 20$	$12 \cdot 77$	$\cdot 40$	$18 \cdot 06$	$1 \cdot 75$	$37 \cdot 77$
$\cdot 06$	6.993	$\cdot 21$	13.08	-45	19.15	$2 \cdot 00$	$40 \cdot 37$
$\cdot 07$	$7 \cdot 554$	$\cdot 22$	$13 \cdot 39$	$\cdot 50$	$20 \cdot 18$
-08	8.075	'23	$13 \cdot 70$	$\cdot 55$	$21 \cdot 17$...	
-09	$8 \cdot 565$	-24	13.99	$\cdot 60$	$22 \cdot 12$	\cdots	...
$\cdot 10$	$9 \cdot 028$	-25	$14 \cdot 28$	-65	23.02
$\cdot 11$	0.469	-26	$14 \% 6$	$\cdot 70$	23.89
-12	9.891	$\cdot 27$	14.84	$\cdot 75$	$24 \cdot 73$...	
$\cdot 13$	$10 \cdot 29$	-28	$15 \cdot 11$	-80	$25 \cdot 54$		
$\cdot 14$	$10 \cdot 68$	-28	$15 \cdot 38$	85	26.32
-15	11.06	-30	$15 \cdot 64$	-90	$27 \cdot 08$

B.-Readings in Millimetres.

Read. ing.	Speed.	Read ing.	Speed.	Reading.	Speed.	Read. ing.	Speed.	Read. ing.	Speed.	Read. ing.	Speed.
mm.	m.	mm.	m.	mm.	m.	mm .	m.	mm.	m.	mm.	m.
$0 \cdot 1$	0.575	$1 \cdot 4$	2.040	$2 \cdot 7$	$2 \cdot 833$	$5 \cdot 0$	$3 \cdot 855$	$10 \cdot 0$	$5 \cdot 452$	$10 \cdot 0$	7-515
0.2	0.771	$1 \cdot 5$	$2 \cdot 111$	2.8	$2 \cdot 885$	$5 \cdot 2$	$3 \cdot 631$	10.5	$5 \cdot 586$	200	$7 \cdot 710$
0.3	0.944	$1 \cdot 6$	$2 \cdot 181$	$2 \cdot 9$	2.935	$5 \cdot 4$	4.006	11.0	5.718	21	$7 \cdot 900$
0.4	1.090	1.7	2.248	3.0	2.986	$5 \cdot 6$	$4 \cdot 0 \mathrm{~s} 0$	11.5	5.846	22	8.086
0.5	1.205	$1 \cdot 8$	$2 \cdot 313$	3.2	$3 \cdot 077$	$5 \cdot 8$	$4 \cdot 152$	12.0	5.972	23	8.268
0.6	1.341	1.9	$2 \cdot 370$	8.4	3.179	6.0	$4 \cdot 223$	12.5	6.095	24	8.446
0.7	$1 \cdot 442$	$2 \cdot 0$	2.438	$3 \cdot 6$	$3 \cdot 271$	6.5	$4 \cdot 395$	13.0	6.216	25	$8 \cdot 620$
0.8	1.560	$2 \cdot 1$	2.498	3.8	$3 \cdot 361$	$7 \cdot 0$	4.561	$13 \cdot 5$	6.334	30	9.443
0.9	1.686	$2 \cdot 2$	$2 \cdot 557$	$4 \cdot 0$	3.448	$7 \cdot 5$	$4 \cdot 721$	14.0	6.450	35	10.199
$1 \cdot 0$	1.724	$2 \cdot 3$	$2 \cdot 615$	$4 \cdot 2$	3.460	8.0	4.876	$15 \cdot 0$	6.667	40	10.903
$1 \cdot 1$	1.808	$2 \cdot 4$	$2 \cdot 671$	$4 \cdot 4$	3.616	$8 \cdot 5$	5.020	36.0	6. 896	45	11.565
$1 \cdot 2$	1.889	$2 \cdot 5$	2726	$4 \cdot 6$	3.698	9.0	$5 \cdot 172$	$17 \cdot 0$	$7 \cdot 108$	50	$12 \cdot 190$
$1 \cdot 3$	1.966	$2 \cdot 6$	$2 \cdot 775$	4.8	3.777	$9 \cdot 5$	$5 \cdot 314$	$18 \cdot 0$	$7 \cdot 314$		

B.- CORRECTIONS FOR TEMPERATURE.

Column a shows the temperature of the chimney or flue, column b the factor for multiplying the figure found in Table a in order to arrive at the real speed of the current of gas.
A. -Readings in Degrees Fahrenheit.

$\begin{gathered} \text { Fahr. } \\ \text { a. } \end{gathered}$	b.	a.	b	a.	b.	a.	b.
0	1.0634	90	$0 \cdot 9723$	180	0.9012	380	$0 \cdot 7865$
5	10577	95	$0 \cdot 9679$	185	$0 \cdot 8977$	400	0.7763
10	1.0520	100	$0 \cdot 9636$	190	$0 \cdot 8943$	425	$0 \cdot 7663$
15	1.0464	105	$0 \cdot 9593$	195	0.8909	450	$0 \cdot 7556$
20	1.0409	110	$0 \cdot 9551$	$\because 20$	0.8875	475	0.7454
25	1.0355	115	$0 \cdot 9509$	210	$0 \cdot 8808$	500	0.7356
30	$1 \cdot 0302$	$1 \because 0$	$0 \cdot 9468$	220	$0 \cdot 8743$	525	$0 \cdot 7261$
35	$1 \cdot 0250$	125	0.9428	230	0.8680	550	$0 \cdot 7171$
40	$1 \cdot 0198$	130	0.9388	$\because 40$	$0 \cdot 8614$	575	0.7085
45	1.0148	135	0.9348	250	$0 \cdot 8557$	600	$0 \cdot 7000$
50	$1 \cdot 0098$	140	0.9309	260	$0 \cdot 8497$	650	0.6841
55	$1 \cdot 0049$	145	$0 \cdot 9270$	270	0.8438	700	0.6691
60	$1 \cdot 0000$	150	0.9232	280	0.8380	750	$0 \cdot 6552$
65	0.9952	155	0.9194	$\because 90$	0.8324	800	0.6420
70	0.9905	160	0.9156	300	0.8269	850	$0 \cdot 6297$
75	0.9858	165	0.9119	320	0.8163	900	0.6181
80	$0 \cdot 9812$	170	0.9083	340	$0 \cdot 8060$	950	$0 \cdot 6070$
85	0.9767	175	$0 \cdot 9047$	360	0.7960	1000	0.5964

126 THE TECHNICAL CHEMISTS' HANDBOOK

B.-Readings in Degrees Centigrade.

a. $\mathrm{C} .$	b.	$\stackrel{a}{\text { t }} \stackrel{\text { c }}{\text { C }}$.	b.	$\begin{gathered} a . \\ t^{\circ} \mathrm{C} . \end{gathered}$	b.	$\mathrm{t}^{\text {a }}$. C.	b.	${ }_{\text {t }} \stackrel{\text { a }}{ }$.	b.	$t^{\text {a }}$. C.	b.
. 10	1-046	18	0.995	42	0.956	66	$0 \cdot 922$	140	0.535	260	0.735
5	1.036	20	0.991	44	0.953	68	$0 \cdot 919$	150	0.825	270	0.728
0	1.027	22	0.988	46	0.950	70	$0 \cdot 916$	160	0.815	250	0.721
2	1.023	24	$0 \cdot 985$	48	0.947	75	0.909	170	$0 \cdot 806$	290	0.715
4	1.020	20	0981	50	0.944	S0	$0 \cdot 903$	180	0.797	300	$0 \cdot 709$
6	1.016	2 S	0975	52	0.941	85	$0 \cdot 897$	190	$0 \cdot 788$	320	0.697
8	1.012	30	0.975	54	0.938	90	$0 \cdot 890$	200	$0 \cdot 780$	340	$0 \cdot 685$
10	1.009	32	$0 \cdot 972$	56	0.935	95	$0 \cdot 884$	210	0.772	360	0.676
12	1.005	34	0.968	58	0.933	100	0.878	220	0.764	400	0.654
14	1.003	86	0.965	60	$0 \cdot 930$	110	0.867	230	$0 \cdot 756$	450	0.631
15	1.000	38	0.962	62	0.927	120	0.856	240	$0 \cdot 749$	500	$0 \cdot 603$
10	- 998	40	0.959		0.924		0.845		0.742		

A very simple and cheaper instrument is Seger's lifferential Anemometer, Fig. 8. The U-tube Λ is surmounted by two enlargements, B and (.. I) is a sliding

Fig. s. scale, adjustable by slits a a and screwpins $b b$. The tube is filled with two nonmiscible liquids of nearly equal specific gravity ; for instance, paraftin oil and dilute spirits of wine (coloured). The line of contact, at X, is the zero point of the scale D. If an aspirating force is acting on the surface of the liquid in C, the level of the liguid will be raised in C , and the point X will be lowered in a multiplied ratio, corresponding to the difference in the sectional areas of the narrow part of Λ and the enlargements in (., say 1:20.

C. Temperature.

The measurement of temperatures up to about $300^{\prime \prime}$ calls for no special remark, as the ordinary mercurial thermoneters are always used. For higher temperatures a large number of 1 ! y rometers have been constructed. All of these are unreliable after prolonged use, many of them even from the very beginning, and they require a frequent control of their indications by calorimetric methods. Among these "empirical" pyrometers those mostly used are: (auntlett's (up to $900^{\prime \prime}$ C. or 1600° F.), Steinle and Hartung's graphite pyrometer (up to $1200^{\prime} \mathrm{C}$. .), and Klinghammer's

Thalpotasimeter. In many cases Prinsep's metallic alloys, of definite fusing points, and Seger's cones, do good service; the fusing points corresponding to the commercial forms of the Seger cones have been given on p. 61.

The calorimetric control can be effected by any of the wellknown calorimeters, such as Mahler's or Fischer's, but is a somewhat difficult and complicated operation, and the working of the air pyrometer is even more so.

Most of the drawbacks formerly connected with pyrometry have been removed by the construction of Le Chatelier's Thermoelectric Pyrometer. Its working part is shown in Fig. 9. It consists of a thermocouple, composed of a wire a of pure platinum, and a wire b of an alloy of 90 parts of platinum +10 parts of rhodium, soldered to the former. These wires are insulated by

Fl!. 9.
porcelain tubes c, d, abont 3 feet long, and protected on the outside, against heating gases, by the iron pipe ee. The wires are connected with platinum or copper wires, leading to a galvanometer, and the indications of the needle of the latter show the temperature at the point where " and b are soldered together. The temperature scale marked on the galvanometer is fixed by comparing it with an air pyrometer at the works where the instruments are made.

The following rules must be observed for the use of this pyrometer. The galvanometer should be placed in a horizontal position and so as to be protected against mechanical oscillations, preferably on a wall-bracket, and this may be at some distance from the pyrometer itself-e.g. in the manager's oftice. Before moving the galvanometer from its place, the needle should be always arrested. After fixing it on its backet, the arrestingscrew is cautiously loosened, until the needle begins to move. If it does not point to zero after being placed in a horizontal position, this must be effected by moving the adjusting screws. The electric resistance of the conducting wire should not appreciably exceed 1 ohm ; up to distances of about 300 feet this will be
attained by employing insulated copper wire of 1, -inch thickness. The junction of the couple with the conducting wires ought not to be much above the ordinary temperature. If one of the wires should break, the contact can be re-established by twisting the ends tightly together for a length of about $\frac{1}{2}$ inch; it is preferable to fuse them together in an oxyhydrogen flame. If the temperature within the furnace does not exceed 1000°, the pyrometer may be left permanently inside; for higher temperatures, which would cause the iron pipe to soften and to burn away too rapidly, the pyrometer should be taken out and introduced merely for taking an observation, which may be done ten minutes afterwards. Even then it is best to provide a fireclay slab on which the instrument can rest. Le Chatelier's pyrometer may be employed for temperatures up to 1500 C . For higher temperatures, up to 2100°, ${ }^{\prime}$. C. Herems (Hanau, Germany) has constructed a thermocouple, consisting of a wire of pure iridium, fused to another wire of an alloy of 90 parts iridium +10 ruthenium.

For such high temperatures Wanner's pyrometer is now frequently used. It allows a photometric comparison of the polarised light from a small electric lamp with that of the furnace, etc., to be tested, by means of an instrument like a telescope; it is easy to handle, and is serviceable for approximately measuring temperatures above 1500 , where Le Chatelier's pyrometer cannot be employed. It is also more convenient than the latter for estimating temperatures inside the furnace at some distance from the front of the furnaces. (Supplied by Townson \& Mercer, London.)

D.-Feed-Water for Steam-Boilers, etc.

1. Mardness. - The English degrees of hardness are based on the unit of 1 part CaCO_{3}, or its equivalent of $\left.\mathrm{MgC(}\right)_{3}$, in 70,000 parts of water (grains to the gallon). The French degrees signify each 1 part CaCO_{3} (or MgCO_{3}) in 100,000 water, the (ierman degrees that of 1 part ($\mathrm{Ca}(\mathrm{O}$ (or $\mathrm{Mg}(\mathrm{O})$ in 100,000 water.

The testing for hardness was formenly mostly effected by Clark's soap test. The methods to be described here are both simpler and more accurate than the soap test.
(a) T'emporary IIardness (alkalinity) is that which is removed by prolonged boiling, by which operation nearly all the CaCO_{3} and some of the MgCO_{3} is precipitated. This can be estimated with sufficient approximation by testing the water alkalimetrically, employing ! normal hydrochloric acid and methyl orange as indicator, at the ordinary temperature, until the first reddish tint appears. When employing 200 c.c. of the water for this test, the number of c.c. of $\frac{1}{5}$ normal acid used, multiplied by 3%, indicates the English degrees of temporary hardness (for French degrees multiply by 5 , for German degrees by $2 \cdot 8$).

Where feed-water, purified by means of sodium carbonate, is tested in this way, an error may be caused by the presence of an excess of $\mathrm{Na}_{2} \mathrm{CO}_{3}$, which makes the hardness appear too high. In such cases the 200 c.c. of water employed should be boiled in a porcelain dish for some time, the precipitated carbonates removed by filtration, and the filtrate titrated as above. The acid then used corresponds to the $\mathrm{Na}_{2} \mathrm{C}^{(} \mathrm{O}_{3}$ and a little unprecipitated MgCO_{3}.
(b) Total IIardness.-Add to 200 c.c. of the feed-water hydrochloric acid in slight excess, boil down to about 50 c.e.; wash this into a 100 c.c. flask, neutralise exactly with caustic soda solution, employing methyl orange as indicator ; add 20 c.c. of a mixture of equal volumes of $\frac{1}{5}$ normal caustic soda solution and $\frac{1}{2}$ normal sodium carbonate solution, boil, allow to cool, fill up the flask to the 100 c.c. mark with distilled water, pour through a dry filter, and estimate the unsaturated alkali in 50 c.e. of the filtrate by $\frac{1}{5}$ normal hydrochloric acid and methyl orange. Multiply the c.e. of acid used by 2, and deduct this from 20 ; the remainder $=a$ shows the alkali consumed for precipitating the alkaline earths contained in 200 c.c. of water. The total hardness is hence $=3.5 a$ in English degrees, $5 u$ in French, $28 a$ in German degrees. This process is aecurate also in presence of magnesia. By deducting the degrees of alkalinity found in a from the total hardness found in l, the permanent hardness is obtained-i.e. that which is caused by calcium sulphate.

Water having a total hardness of less than 8^{\prime} (English) is considered as soft, from 8 to 15° as moderately hard, above 15° as hard.
(c) Residue on Evaponation.-In the case of water containing but little MgO , a convenient check for the total hardness-i.e. the sum of alkalinity a and permanent hardness b-is afforded by evaporating 500 e.c. down to dryness, heating to decompose the organio matter, moistening with a solution of CO_{2} in distilled water, and drying at 110°. Since the degrees of hardness are all calculated for (a) , the value of r will not be quite equal to $a+b$, if any considerable quantity of magnesia is present, and this indirectly proves the presence of more magnesia than usual.
2. Estimution of the Reagents (lime water and sodium carbonate) required for P'urifying I'ater.-Add to 500 c.c. of the water 10 c.c. of a $\frac{1}{5}$ normal sodium carhonate solution, evaporate to dryness, take up the residue with a small quantity of water, filter through a small filter, wash till there is no further alkaline reaction, and estimate the unconsumed sodium carbonate in the filtrate plus washings by titrating with methyl orange and $\frac{1}{5}$ normal hydrochloric acid. If a c.c. of $\frac{1}{2}$ normal sodium carbonate are used in the titration, then $2 a \times 0.0106$ shows the grams of pure sodium carbonate required per litre of the water for removing the calcium sulphate-i.e. the permanent hardness.

The amount of lime water required for removing the temporary

130 THE 'TECHNICAL CHEMISTS' HANDBOOK

hardness is estimated as follows :-To 500 c.c. of water add 100 c.c. of clear lime water, after having previously determined its percentage of CaO by titrating with $\frac{1}{5}$ normal hydrochloric acid and phenolphthalein (methyl orange is not applicable in this case, because this would indicate also the Ca(O_{3} present in small quantitics along with (a $(\Theta) \mathrm{H})$, which would be wrong). Heat the mixture during half an hour in a covered flask (to keep out CO_{2}), allow to cool, pour through it dry filter, and titrate, without delay, 500 c.e. of the filtrate. The HC'l now used, increased by one-tifth (since the original 500 c.c. of water had been brought to 600 c.c.), sbows the quantity of lime not used up. By deducting this from the CaO originally contained in 100 e.ce of the lime water, the quantity of CaO required for destroying the temporary hardness of $\frac{1}{2}$ litre of the water to be tested is ascertained.

IV. SULPHURIC ACID MANUFACTURE.

A.-Brimstone.

1. Moisture.--This should he estimated hy drying an average sample of 100 g . at 70 for a few hours, in an oven or water-bath. The sample must he prepared without losing any moisture during the operation ; the brimstone for this purpose must, therefore, not be ground, but only coarsely crushed, as quickly as possible.
2. Bituminous S'ubstances (Fresenius).-Remove the sulphur by heating the sample for some time a little over 2000°, taking care that it does not take fire, weigh the residue, and deduct the ash found in No. 3.
3. Äsh.-Burn 10 g . in a porcelain dish and weigh the residue. Some samples of brimstone contain carbonaceous matter. In this case (which is easily recognised by the appearance of the sample) the Hame must be removed immediately after the sulphur has been burned, and before the carbon has taken fire, so that the latter is not calculated as sulphur.
4. Arsenic.-Treat 10 g . brimstone with dilute ammonium hydroxide at 70° to $80^{\prime \prime}$, in order to dissolve the $\mathrm{As}_{2} \mathrm{~S}_{3}$, filter, neutralise the filtrate exactly with dilute nitric acid, and titrate with decinormal silver nitrate solution, until a drop gives a brown colour with a solution of neutral potassium chromate. Each c.c. of the silver nitrate solution indicates 00041 per cent. $\mathrm{As}_{2} \mathrm{~S}_{3}$. If the arsenic should be present as ferric or calcium arsenate (this never occurs in the case of native brimstone, but it may do so in the case of sulphur recovered from Leblanc soda residue), the sample must be extracted with carbon disulphide, the residue oxidised by aqua regia, and the sulphur estimated as in pyrites (see below).
5. Direct Estimution of the TotaluSulphur (Pfeiffer). -Shake a weighed sample of powdered sulphur with exactly four times the
quantity of pure carbon disulphide, filter, reduce the temperature to 15°, and ascertain the specific gravity of the solution. The following table (abridged from the original) shows the number of parts of sulphur dissolved by 100 parts by weight of CS_{2} at 15° for various specific gravities found :-

Specific Gravity.	Sulphur Dissolvel.	Specific Gravity	Sulphur Dissolved.	Specific Gravity	sulphur Dissolved.
1.2708	$0 \cdot 0$	$1 \cdot 3057$	$8 \cdot 5$	$1 \cdot 3426$	17.0
1.2731	$0 \cdot 5$	$1 \cdot 3108$	$9 \cdot 0$	$1 \cdot 3445$	$17 \cdot 5$
$1 \cdot 2754$	$1 \cdot 0$	$1 \cdot 3129$	$9 \cdot 5$	$1 \cdot 3463$	18.0
$1 \cdot 2779$	$1 \cdot 5$	$1 \cdot 3150$	$10 \cdot 0$	$1 \cdot 3481$	18.5
$1 \cdot 2800$	$2 \cdot 0$	$1 \cdot 3170$	10%	$1 \cdot 3500$	$19 \cdot 0$
1.2833	$2 \cdot 5$	1:3190	11.0	$1 \cdot 3517$	$19 \cdot 5$
$1 \cdot 2857$	$3 \cdot 0$	1-3211	11.5	$1 \cdot 3536$	20.0
$1 \cdot 2870$	$3 \cdot 5$	1-3231	$12 \cdot 0$	$1 \cdot 3553$	$20 \cdot 5$
1.2894	$4 \cdot 0$	$1 \cdot 3251$	$12 \cdot 5$	$1 \cdot 3571$	$21 \cdot 0$
$1 \cdot 2916$	$4 \cdot 5$	1.3271	13.0	1:3587	21.5
$1 \cdot 2938$	$5 \cdot 0$	1-3291	13.5	$1 \cdot 3605$	$22 \cdot 0$
$1 \cdot 2960$	$5 \cdot 5$	$1 \cdot 3311$	$14 \cdot 0$	$1 \cdot 3622$	2.5
1-2982	$6 \cdot 0$	1-3:30	14.5	$1 \cdot 3840$	23.0
$1 \cdot 3003$	6.5	$1 \cdot 3350$	15.0	$1 \cdot 3657$	23.5
1-3024	$7 \cdot 0$	$1 \cdot 3369$	15.5	$1 \cdot 3674$	$24 \cdot 0$
$1 \cdot 3045$	7%	1.3338	$16 \cdot 0$	1-3692	$24 \cdot 5$
1•3066	$8 \cdot 0$	$1 \cdot 3408$	16.5	$1 \cdot 3709$	25.0

6. Selenium is found by fusing a sample with potassium nitrate, dissolving the mass in hydrochloric acid, and treating with sulphur dioxide, which precipitates the selenium.
7. The degree of finemess of ground brimstone is estimated in France by means of (hancel's sulphurimeter, i.e. a glass tube, closed at one end, provided with a glass stopper at the other, and graduated in 100 parts. In this, the ground brimstone is shaken up for some time with pure, anhydrous ether, and after allowing the tube to rest in a vertical position, the number of divisions occupied by the brimstone is read off (degrees Chancel).

B.-Spent Oxide of Gas-works.

The Spent Oxide Association advise the following procedure :-

Sampling.

Samples sent for quotation purposes are often assumed to represent bulk deliveries. This is almost impossible to be the case, as the bulk of the oxide may subsequently dry further or become damper owing to exposure. It is also possible that

132 THE TECHNICAL CHEMISTS' HANDBOOK

portions of the heap of oxide which contain more or less sulphur may have become covered up and not included in the sample, however carefully taken. The spent oxide should, therefore, for invoicing purposes, be again sampled during loading and the greatest care taken to obtain correct proportions of lumps and fines, as these may contain different percentages of sulphur.

When deliveries are being made, daily samples are to be taken from every cart or wagon and collected in an air-tight receptacle. It camnot be too strongly emphasised that samples must not be allowed to lie about exposed to the risk of drying, but must be mixed, ground, and bottled each day. When the delivery of the parcel is completed, all the daily samples are to be at once mixed and broken down, and for this purpose coning and quartering is the best method. The well-mixed oxide is poured several times on to a given centre; this ensures an even distribution of both lumps and tines in the form of a cone. The cone is then flattened and quartered. Two opposite quarters are discarded and the remainder again mixed, coned, and quartered until the quantity is reduced to a convenient amount. This is now crushed until it will all pass through a $\frac{1}{4}$-inch mesh sieve, and at once bottled.

The above operation must be carried ont as quickly as possible to avoid alteration in the moisture content of the sample.

Samples should be of at least $\frac{1}{2} \mathrm{lb}$., and must be packed in air-tight bottles or tins; no other receptacle may be used. In taking the necessary samples, one must always be sealed and retained for reference.

Before carrying out the analysis, the whole of the sample is further intimately mixed and broken down and reduced to about 100 g ., which is ground so that the whole quantity passes through a 20 -mesh sieve.

Analysis.

Moisture.-Five g. are dried for three hours at 100° in a water oven. The loss of weight found on cooling and reweighing represents the moisture.

Sulphur and I'ar.-The dried residue from the moisture determination is to be extracted for two, hours in a Soxhlet's apparatus with freshly distilled carbon bisulphide. The carbon bisulphide is then distilled off, the flask cautiously blown out with air and dried for two hours at 100° in the water oven. The flask is then placed on a hot sand-bath until the sulphur has just fused, care being taken that no loss by overheating and volatilisation takes place. After the Hask has cooled completely it is again carefully blown out with dry air and again weighed.

Estimution of the Sulphur.-Fifteen c.c. of concentrated (95 per cent.) sulphuric acid are poured on to the sulphur and tar in the flask, and the whole is heated for two hours at 100°
in a water oven. After cooling, the contents of the flask are diluted with water, filtered, washed free from acid, and dried. The dried filter paper with contents is placed in a Soxhlet's tube and again extracted with carbon bisulphide. The bisulphide is distilled off, and the residue fused exactly as described above.

The following alternative method gives reliable results and expedites the extraction by CS: -

Place the 5 g . of dried spent oxide in a beaker with 25 c.c. of strong sulphuric acid and heat for four hours at 100°. Carefully dilute with distilled water, filter and wash free from acid, dry and extract with CS., in the usual way. Only one extraction with the solvent is necessary.

Sce also Spent Oxide, 1. 243.

C.-Pyrites.

The average sample is taken and reduced according to the rules given on p. 103. 'Two samples are customary. (1) C'oarsely ground for moisture; (2) finely ground for quality. For this purpose, the ore is reduced to an impalpable powder, by grinding it first in a steel, and then in an agate mortar, and is kept in well-scaled bottles.

1. Moisture.-The coarsely ground pyrites is dried at $105^{\circ} \mathrm{C}$. until the weight remains constant.
2. Qualit!,-For the following tests, the finely ground average sample in a well-scaled bottle (not the dried sample) is employed. The analytical results are calculated for dry pyrites, for which reason a special estimation of moisture is made in the finely ground average sample.

Sulphicr (Lunge's method).- About 05 g . of pyrites is treated with 10 e.c. of a mixture of 3 vols. nitric acid (spec. grav. 1•4) and 1 vol. strong hydrochloric acid, both ascertained to be absolutely free from sulphuric: acid, in a 300 c.e. beaker, which is covered with a watch-glass to avoid any loss by spurting. At first, the acid is allowed to act in the cold, but the reaction is completed by heating upon a water-bath. The separation of a little free sulphur is observed sometimes when the temperature exceeds 60° (., and must be oxidised by adding a little potassium chlorate. Evaporate to drymess on a water-bath, add 5 c.c. hydrochloric acid, evaporate once more (no nitrous fumes should escape now), add 1 c.c. concentrated hydrochloric acid and 100 c.c. of hot water, filter through a small filter, and wash with hot water. T'be insoluble residue may be dried, ignited and weighed. It may contain, in addition to silica and silicates, the sulphates of barium, lead, and even calcium, the sulphur of which, being non-available, is purposely neglected. (N.B.-If this residue is not to be estimated, the filtration need not be carried out, and

134 THE TECHNICAL. CHEMISTS' HANDBOOK

the elimination of the iron by precipitation with ammonia may be proceeded with as soon as all the nitric acid has been driven off, but for very accurate work, the removal is recommended.)

The filtrate and washings are saturated with ammonia, avoiding much excess (5 to 7 c.c. strong ammonia after neutralisation is sufficient), and kept at 60 to $70^{\circ} \mathrm{C}$. for about 15 minutes before filtration. (The solution should still smell of ammonia, for if this is removed by boiling, some basic sulphate is precipitated.) The ferric hydroxide precipitate is filtered off and washed. This can be done in from half an hour to one hour, by employing the following precautions:-(1) Filter hot and wash on the filter with hot water, avoiding channels in the mass by churning up the whole precipitate thoroughly each time with the water: (2) employ sufticiently dense, but rapid, filtering paper; (3) use funnels, made exactly at an angle of 60°, whose tube is not too wide and is filled completely by the liquid running through. A filter pump also gives satisfactory results with the usual precautions.

The precipitate is washed until about 1 c.c. of the washings shows no turbidity on adding barium chloride solution, even after standing a few minutes. (If there is any doubt, the ferric hydroxide should be dissolved in hydrochloric acid and reprecipitated with excess of ammonia again. The two filtrates are then mixed. The complete absence of basic sulphates can be confirmed by drying the precipitated ferric hydroxide, fusing it with pure sodium carbonate and testing the aqueous solution of the melt for sulphates.)

If the filtrate and washings exceed 300 c.c., they should be concentrated by evaporation. The solution is neutralised by adding pure hydrochloric acid until methyl orange is just reddened, and then 1 c.c. of strong hydrochloric acid is added in excess. Then heat to boiling; remove the burner and add 20 c.c. of a boiling hot 10 per cent. solution of barium chloride, while stirring vigorously. The barium chloride solution is measured off roughly in a test tube provided with a mark, and boiled in the same tube; it is then poured into the hot liquid all at once, not drop by drop. An error is introduced by this procedure owing to the absorption of some barium chloride by the barium sulphate precipitate; but this just compensates with the loss caused by the slight solulility of barium sulphate in the hot solution containing tree hydrochloric acid and ammonium chloride. A large excess of barium chloride must be avoided, or the results will turn out too high.

The precipitate is allowed to settle for about half an hour, and is then washed three or four times by decantation, with 100 c.c. of boiling water, until the liquid ceases to give an acid reaction. The precipitate is transferred to a filter, washed free from chloride, dried, ignited and weighed. It should be a
perfectly white and loose powder. One part of it is equal to $0 \cdot 1373$ sulphur.
3. Copper-(Method of the Duisburg Copper Co.).-Of the powdered pyrites, dried at $100^{\prime \prime}$ C., 5 g. is gradually dissolved in 60 c.c. of nitric acid, spec. grav. $1 \cdot 2$, in a flask placed in a slanting position. When the first violent reaction is over, the flask is heated and the evaporation continued until thick, white fumes of sulphuric acid escape. Dissolve the dry residue in 50 c.c. hydrochloric acid, spec. grav. 1•19, add 2 g. sodium hypophosphite, dissolved in 5 c.c. water, for the purpose of removing the arsenic and reducing the ferric chloride, boil for some time, then add an excess of concentrated hydrochloric acid, diluted with about 300 c.c. hot water, pass hydrogen sulphide into the liquid, separate the precipitate from the liquid by filtration, and wash it well. Pierce the filter paper with a glass rod, wash the precipitate back into the precipitating flask, dissolve the sulphides adhering to the filter and the principal portion of the precipitate by means of nitric acid, and evaporate the contents of the Hask to dryness on the water-bath. Treat the residue with nitric acid and water, neutralise with ammonia. and add sulphuric acid in slight excess. After the liquid has cooled down, separate the clear liquid from the insoluble lead sulphate, etc., wash out the flask and filter with water containing a little sulphuric acid, add to the filtrate 3 to 8 c.c. nitric acid, spec. grav. $1 \cdot 4$, and precipitate the copper electrolytically. From the ascertained percentage of copper deduct 0.01 per cent. for bismuth and antimony.
4. Lead remains in the residue from the treatment with aqua regia (No. 2) or nitric acid (No. 3), as lead sulphate. This is extracted from the residue (preferably that from the nitric acid treatment) ly heating with a concentrated solution of ammonium acetate. The solution is evaporated, with addition of a little pure sulphuric acid, the evaporation completed in a porcelain crucible, and the residue dried and ignited. One part $\mathrm{PbSO}_{4}=$ 0.6829 Pb .
5. Zinc is sometimes estimated in pyrites, because the sulphur combined with it is hardly recoverable in the pyrites burners. The following methool of Messrs Hissseidter and Prost should be employed in this case, in lieu of Schaffiners method described subsequently for zinc blende, because in the case of pyrites the presence of iron renders gravimetric preferable to volumetric analysis:-Dissolve 1 g . pyrites in aqua regia, as described on p. 133, expel the nitric acid, take up the residue with about 20 c.c. concentrated hydrochloric acil. dilute with water, treat the acid solution with $\mathrm{H}_{2} \mathrm{~S}$ in order to precipitate lead, etc., filter, expel the $\mathrm{H}_{2} \mathrm{~S}$ from the filtrate by boiling, and oxidise the liquid with aqua regia. When cooled down, add ammonium carbonate until the precipitate.formed redissolves but slowly, then add ammonium acetate, boil for a short time, and filter the liquid from the

136 THE TECHNICAL CHEMISTS' HANDBOOK

precipitated basic ferric sulphate. As this contains a little zinc, dissolve it in hydrochloric acid, precipitate it again as above, and repeat this tratment until no more zinc is found in the filtrate. The united filtrates are concentrated by evaporation. Then precipitate the zinc in the hot solution by Hys, allow to stand for twenty-four hours, pour off the clear liquid, filter, wash the ZnS , dissolve it (without removing the filter) in dilute HCl , boil off the $\mathrm{H}_{2} \mathrm{~S}$, precipitate with sodium carbonate, wash the ZnCO_{3}, dry and ignite it. One part $/ \mathrm{nO}=0.8034 \mathrm{Zn}$. For very accurate work the $\mathrm{SiO}_{2}, \mathrm{Fe}_{2} \mathrm{O}_{3}$, and $\mathrm{Al}_{2} \mathrm{O}_{3}$ retained in the ZnO should be estimated and deducted, but this is very rarely necessary.
6. The Carbonates (of Ca , etc.) are sometimes estimated in pyrites, because they convert a certain quantity of sulphur into sulphate. Since their quantity is always small, the CO_{2} is estimated directly by expelling with strong acids, and is easily estimated gravimetrically by absorbing it in soda-lime, etc., or, more quickly, by decomposing a weighed quantity with hydrochloric acid in an evacuated vessel and measuring the CO_{2} evolved in a Hempel pijette.
7. Arsenic.-Reich's method, modified by M'Cay :-Decompose 0.5 g . pyrites hy concentrated nitric acid in a porcelain crucible, remove the free acid by evaporation, but not to complete dryness, add 4 g . sodium carbonate, heat on the sand-bath until the mass is quite dry, add $+g$. potassium nitrate, and heat until the mass has fused quietly for ten minutes. After cooling, wash it with hot water, acidulate the filtered solution with a little nitric acid, heat for some time till all CO, is expelled, add silver nitrate, and neutralise carefully with dilute ammonia. The precipitate formed contains all the arsenic as $\mathrm{Ag}_{3} \mathrm{AsO}_{1}$. Dissolve it in dilute nitric acid, and either estimate the silver volumetrically by ammonium thiocyanate (Volhard's method), or evaporate the solution in a porcelain dish, dry, and weigh the residue. One part $\mathrm{Ag}_{3} \mathrm{AsO}_{4}=0.1620 \mathrm{As}$, or 1 part $\Lambda \mathrm{g}=0.2316 \mathrm{As}$.
8. Selenium.-Twenty to 30 g . of pyrites are dissolved in hydrochloric acid (spee. grav. 1•19) and potassium chlorate. After filtering from gangue, the iron is reduced to the ferrous state by means of zinc, more hydrochloric acid is added, the solution boiled and the selenium precipitated by stannous chloride. Since it may contain arsenic, it is collected on an asbestos filter, dissolved in potassium iodide, and reprecipitated by hydrochloric acid and sulphur dioxide.

D.-Burnt Pyrites (Cinders).

1. Sulphur.-Mix exactly 2 g . sodium bicarbonate of known alkalimetric value in a nickel crucible of 20 or 30 c.c. capacity, intimately with $3 \cdot 207 \mathrm{~g}$. of ground cinders, by means of a glass rod
flattened at the end. Heat the crucible by a small gas-flame, the point of which reaches just to the loottom of the crucible, for ten minutes. Stir the mass up again, heat it again for fifteen minutes by a stronger flame, but not to the fusing point. During the heating the crucible should be covered, and no stirring should take place during this time to prevent the escaping CO_{2} from carrying away any dust. Empty the contents of the crucible into a porcelain dish, wash it out with water, add a concentrated solution of sodium chloride, free from magnesium chloride and perfectly neutral (without this addition it is difficult to avoid some ferric oxide passing through the filter later on), boil for ten minutes, filter, wash the insoluble residue till there is no alkaline reaction, allow the filtrate, etc, to cool down, and titrate it with methyl orange and normal hydrochloric acid (1 c.c. $=0.05300$ $\mathrm{Na}_{2} \mathrm{CO}_{3}$, indicating 0.01604 S). If we call the number of c.c. of the acid required by 2 g . bicarbonate $=a$, and the c.c. of acid used for titrating $=b$, the percentage of sulphur in the cinders corresponds to $\begin{gathered}a-b \\ 2\end{gathered}$.
2. Copper is estimated as in fresh pyrites, but the solution of 1 g . of the sample is effected by hydrochloric acid with only a few drop's of nitric acid, and no deduction for Bi and Sb is made from the electrolytically estimated Cu.
3. 1 ron.-Dissolve 0.5 g . cinders in concentrated hydrochloric acid by prolonged heating; reduce the boiling solution by zinc, free from iron, or more conveniently by stannous chloride, the excess of the latter being removed by a little mercuric chloride solution; pour the solution thus clbtained into a half-litre of water, to which about 2 g . manganous sulphate has been added, and which has been just reddened by one or two drops of potassium permanganate. Determine the iron by titrating with decinormal potassium permanganate, each c.c. of which indicates 0.005584 g ., or in 0.5 g . cinders 1.117 per cent. Fe.

E.--Zinc Blende.

1. Total Sulphur.-Decompose 0.5 of the finely ground sample by pure fuming nitric acid, cooling the beaker until the first violent reaction is over, and add hydrochloric acid, drop by drop, gently heating, until the decomposition is finished. Remove the iron by precipitation with ammonia, as in the case of pyrites (p .134), and precipitate the sulphate by adding the requisite quantity of the dilute hot solution of barium chloride, all at once, in which case the BaSO_{4} remaining in solution is just compensated by the BaCl_{2} carried down with the precipitate (compare p. 134).
2. Zinc.-The following modification of Schaffner's method is employed at the Rhenish and Belgian zinc works, as com-

138 THE TECHNICAL CHEMISTS' HANDBOOK

municated to the author by Messrs Hassreidter and Prost:-Treat $2 \cdot 5 \mathrm{~g}$. of the finely ground blende (dried at $100^{\circ} \mathrm{C}$.) in a 250 c.c. Erlenmeyer flask with 12 c.c. fuming nitric acid, first without heating, then heating gently until no more red vapours come off. Add 20 to 25 e.c. concentrated hydrochloric acid, evaporate to dryness on a sand-bath, dissolve in 5 c.c. hydrochloric acid and a little water, heat for some timie, add 50 or 60 c.c. water, and heat to 60 or $70^{\prime} \mathrm{C}$. until everything except gangue and sulphur has passed into solution. Pass a moderate current of H.yS into the solution, and gradually add, with continuous stirring, 50 to 100 c.c. water, until all Pb and Cd have been precipitated. This will be recognised by the fact that the bubbles of gas evolved are transparent. Any excessive dilution or too much prolonged treatment with $H_{y} S$ must be aqoided. Filter and wash with 100 c.c. sulphuretted hydrogen water, to which 5 c.c. hydrochloric acid has been added, until a drop of the filtrate gives no reaction for zinc with ammonium sulphide. Boil the filtrate and washings (together about 300 c.c.) in order to expel the $\mathrm{H}_{2} \mathrm{~S}$ (test by lead paper), and oxidise the ferrous salt by adding 5 c.c. concentrated nitric acid and 10 c.c. hydrochloric acid. When partially cooled down, put the solution into a half-litre flask, add 100 c.c. ammonia (spec. grav. 0.9 to 0.91) and 10 c.c. of a cold saturated solution of ammonium carbonate, shake well and allow to cool. This solution we call A.

In the meantime an ammoniacal zinc solution of known strength, the "titre," is prepared by dissolving a quantity of chemically pure zinc, approximately equal to that contained in the ore, in another half-litre Hask, in 5 c.c. nitric acid +20 c.c. hydrochloric acid, adding 250 c.c. water, 100 c.c. ammonia, and 10 c.c. of ammonium carbonate solution, shaking up and allowing to stand till cool. (If manganese be present, add 10 c.c. hydrogen peroxide before adding the ammonia.) This solution we call B. When all is cool, fill both flasks up to the mark, and filter the solution A (made from the ore) through a dry pleated filter. For the titration itself take from each of the solutions Λ and B 100 c.c., run this into stout glass cylinders ("battery glasses") and dilute each with 200 c.c. water. The titration is effected by a concentrated solution of commercial crystallised sodium sulphide, diluted with ten or twenty times its volume of water and indicating per c.c. 0.005 to 0.010 g . Zn . This solution is placed in two 50 c.c. burettes, standing side by side, and is run by turns into the zinc solutions A and B. At first 2 or 3 c.c. less than is ultimately required is run in. Λ gitate the solutions and place at the same time a drop of each, by means of a thin glass rod, on to a strip of sensitive lead paper. After the action has lasted fifteen or twenty seconds, blow away the drops by means of a small wash-bottle and continue the addition of $\mathrm{Na}_{2} \mathrm{~S}$, until both drops, after acting for the same time, produce a slight but distinct
brownish colour of the same intensity. If too much liquid has been used in these drop tests, the titration must be repeated once or twice ; at all events, the final reaction must take place equally in both glasses, and the readings must be accurate to 0.05 c.c.

If we call the quantity of pure zinc weighed ont as "titre" a, that of the c.c. sodium sulphide solution used for the "titre" b, and the c.c. used for 100 c.c. of the ore solution ($=0^{\circ} 5 \mathrm{~g}$. ore) c, the expression $\begin{gathered}40 a c \\ b\end{gathered}$ gives the percentage of zinc in the ore.

For exact estimations, a quantity of ferric chloride, equal to the content of iron in the ore, is added to the "titre," in order to meet the objection that the ferric hydroxide may carry down a little zinc.

Somo blendes, containing a large proportion of silicates, obstinately resist the ordinary methods of testing (Jensch, Zsch. f. angew. Chem., 1894, p. 155).
3. Lead.--The sulphides precipitated in No. 2 are, if necessary, digested with a concentrated solution of sodium sulphide ; then dilute, filter, wash the residue, dissolve it (together with the filter) in nitric acid (spec. grav. $1 \cdot 20$), filter, add an excess of sulphuric acid, evaporato to dryness, and weigh the lead as sulphate. One part $\mathrm{PbSO}_{4}=0.6831 \mathrm{~Pb}$.
4. Lime and Iraguesia are estimated, because they form sulphates in the roasting process. Digest 2.5 g . blende with 50 c.c. dilute sulphuric acid ($1: 10$), with application of heat, decant the clear portion; repeat this treatment once or twice, wash the residue, expel the H_{y}, from the filtrates by boiling, oxidise with bromine water, precipitate with ammonium carbonate, and in the filtrate precipitate first the calcium by ammonium oxalate (weigh this as CaO after strongly igniting), and in the filtrate from this the magnesium by ammonium phosphate (compare p. 175).
5. Arsenic is estimated as described on p .136.
6. Carbon l)ioxide may be estimated as in pyrites, pp. 136 and 137. This is useful, even when CaO and MgO are estimated, since blende contains sometimes ferrous and zinc carbonate.
7. Available Sulphur.-From the total sulphur found in No. 1 deduct:

$$
\begin{aligned}
& \text { For each part of } \mathrm{Pb} \text { found in No. 3, } 0.1550 \text { part. }
\end{aligned}
$$

The remainder indicates the sulphur available for the manufacture of sulphuric acid. The S of BaS_{4}, etc., remains in the residue from the dissolving process.

140 THE TECHNICAL CHEMISTS' HANDBOOK

F.-Cinders from Blende.

1. Sulphur (according to Lunge and Stierlin, Zsch. $f_{:}$angew. Chem., 1906, p. 26). The process is carried out as described for pyrites cinders on p. 136, but 2 g . ground potassium chlorate is added to the mixture. The bottom of the crucible should finally be at a red heat, but the contents should merely frit together, not fuse entirely. The crucible must be covered during the heating, and its contents must not be stirred up. The calculation is as on p. 137-that is, the percentage of $\mathrm{S}=\frac{a-b}{2}$.

An addition of potassium chlorate is already required in the case of cinders from iron pyrites containing much zinc. In case the cinders contains upwards of 6 per cent. S , the mixture should be: 1.603 g . cinders, $2 \cdot 000 \mathrm{~g}$. $\mathrm{NaHCO}, 4.0 \mathrm{~g} . \mathrm{KClO}_{\mathrm{t}}, 2-3 \mathrm{~g}$. ferric oxide (free from S). The percentage of sulphur is then $=a-b$, where a is the c.c. of normal acid corresponding to the 2.000 g . bicarbonate, b the c.c. of acid required for titration after the heating.

This process is also applicable to fresh (unroasted) blende, by using the following mixture : 0.3207 g . Wlende, $2 \cdot 000 \mathrm{~g}$. NaHCO_{3}, $2 \mathrm{~g} . \mathrm{KClO}_{3}, 2 \mathrm{~g} . \mathrm{Fe}_{2} \mathrm{O}_{3}$; percentage of $\mathrm{S}=5(11-b)$.

A crude test is made by the foreman at the works, in this manner: he heats a sample of the cinders with 10 c.c. hydrochloric acid ($1: 2$ water) in a flask, holding in its neck a strip of paper soaked in a neutral or faintly alkaline solution of lead acetate, and he judges of the more or less complete state of roasting by the depth of the brown colour developed on the paper.
2. Zinc, as on p. 135.

G.-Gases.

I. Chamber Process.

1. Burner (rases.-(a) SO_{2} is estimated by Reich's method. The gas is aspirated throngh a solution of iorline, contained in a wide-necked 200 c.c. bottle, and coloured blue by starch solution, till the colour is just discharged. 'This bottle is connected with a larger bottle, converted into an aspirator by having a tap near the bottom, or by a siphon with a pinchcock. Water is run from this into a graduated 250 c.c. jar. The iodine bottle is shaken up during the aspiration, and at the moment when the colour is discharged, the tap of the aspirator is closed and the volume of water in the jar is read off. It is equal to the volume of the water run out, increased by that of the S()$_{2}$ absorhed. The absorb-ing-bottle is charged with 10 c.c. of a decinormal solution of iodine (12692 g . iodine per litre, preparation and valuation as on p. 114), along with about 50 c.c. of water, a little starch solution, and a little sodium bicarbonate. The above quantity of iodine is $=0.03203 \mathrm{~g} . \mathrm{SO}_{2}=10.93$ c.c. at $0^{\circ} \mathrm{C}$. and a pressure of

760 mm . The latter figure, multiplied by 100 and divided by 10.93 c.c. + the volume of the water run out, yields the percentage of SO_{2} in the gas by volume.

This calculation is saved by the following table, in which the 10.93 c.c. are taken into account.

Cubic Centimetres. Water Collected.	Volume per cent. SO_{2} in Kiln Gas.	Cubc Centimetres. Water Collected.	Volume per cent. NO. in Kiln Gas.
$80 \cdot 1$	$12 \cdot 0$	$125 \cdot 7$	$8 \cdot 0$
$84 \cdot 1$	11%	1:3.8	$7 \cdot 5$
$88 \cdot 4$	$11 \cdot 0$	$145 \cdot 2$	$7 \cdot 0$
$93 \cdot 2$	10%	157.2	$6 \cdot 5$
$93 \cdot 4$	$10 \cdot 0$	171.2	$6 \cdot 0$
$104 \cdot 1$	$9 \cdot 5$	187.8	5:5
$110 \cdot 5$	$9 \cdot 0$	$207 \cdot 8$	$5 \cdot 0$
$117 \cdot 7$	$8 \cdot 5$		

In this no notice is taken of temperature and barometer. If these are to be observed, the volume read off is reduced to 0° and 760 mm . by the Tables 12 and 13, and then looked up in the above table.
(b) Since Reich's test takes no account of the SO_{3} always present in burner gases, it is preferable to estimate the total acids $\left(\mathrm{SO}_{2}+\mathrm{SO}_{3}\right)$, either along with the test (a) or exclusively. This is performed in the same apparatus, but the absorbingbottle is preferahly provided with a gas entrance tube, closed at the bottom and perforated by numeruus pinholes, through which the gas issues in small bubbles. The gas is passed through a solution of decinormal sodium hydroxide, coloured by phenolphthalein, until the colour is just discharged. The calculation is made as for pure SO_{2}, employing the table given in (a) (Lunge, Zsch. f. angew. ('hem., 1890, p. 563).

In both cases - (a) and (b)-an error is sometimes caused by arsenious oxide collecting in the aspirating tube; this is avoided by filtering the gases through asbestos.
2. Chamber (rases.-In these, sulphir dioxide and nitrous gases are estimated (as described by Raschig, Zsch. angeu. Chem., 1909, xxii., p. 1182) by means of a Reich apparatus (p. 140), charged with 10 c.c. decinormal iodine solution, 100 c.c. water, a little starch solution, and 10 c.e. of a cold saturated solution of sodium acetate. The estimation is performed as described on p. 140, taking care that no droplets of sulphuric acid get into the iodine solution, which is effected ly passing the chamber gases through glass wool. The calculation of SO_{2}, is effected as described supra. In order to estimate the nitrous gases, add, after estimating the SO_{2}, a drop of phenolphthalein solution

142 THE TECHNICAL CHEMISTS' HANDBOOK

to the decolorised solution, and titrate with decinormal caustic soda solution up to the appearance of a red colour. From the number of c.c. used deduct 10 c.c. for the hydriodic acid and 10 c.c. for the sulphuric acid formed. according to the equation : $\mathrm{SO}_{2}+\mathrm{I}_{2}+2 \mathrm{H}_{2} \mathrm{O}=\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{HI}$. The c.c. of decinormal soda solution, used over and above these 20 c.c., indicate nitric or nitrous acid.
3. Chamber Exit Gases.-(a) Oxygen. Before estimating this, the acids are removed from the gas by washing with a solution of potassium or sodium hydroxide. Single samples can be taken at odd times during the day, but it is recommended to take an average sample for the whole day, by aspirating at least 10 or 20 litres of gas, and analysing a portion of this. The estimation of oxygen is best made by moist phosphorus in an Orsat apparatus with two absorbing tubes, one of which is filled with potassium hydroxide solution for removing the acids, the other with small pieces of phosphorus. The manipulation is exactly as in testing flue gases, but it should be obscrved that the temperature must be at least 16°, better $18^{\circ} \mathrm{C}$., otherwise the tube must be warmed a little.
(b) Sulphur and Nitrogen Acids.-'The different acid compounds of sulphur and nitrogen are estimated together, whatever their degree of oxidation. A continuous test over twenty-four hours is taken of the gases escaping from the exit pipes of the Gay-Lussac towers, aspirating at least one cubic foot per hour by means of any aspirator acting at a constant rate and recording the volume of gas $=\mathrm{V}$ by means of gauging the aspirator or by a gas meter. The volume V is reduced to $0^{\prime \prime} \mathrm{C}$. and 760 mm . pressure ($=32^{\circ} \mathrm{F}$. and $29^{\circ} 92$ inches*) by the Tables 12 and 13 , and is called V^{1}. In order to allow comparisons, the number of cubic feet of chamber space per pound of sulphur lurnt and passing into the chambers is recorded, excluding towers, but including tunnels, the amount of sulphur being taken by the weekly average, each firm to state the distance of the testing hole from the point at which the gases leave the Gay-Lussac towers. The absorption apparatus consists of four bottles or tubes, containing not less than 100 c.c. of absorbing liquid each, with a depth of at least 3 inches in each bottle, the aperture of inlet tubes not to exceed ${ }_{50}$ inch in diameter, and to be measured by a standard wire. The first three bottles each contain 100 c.c. of normal caustic soda solution (40.01 g . per litre), the fourth 100 c.c. distilled water. The caustic soda used must be free from nitrogen acids. The gases are tested (1) for total acidity, stated in grains of SO_{3} per cubic foot of gas, or in grams per cubic metre; (2) sulphur acids; (3) nitrogen acids, both stated in grains of S and N per cubic foot (or grams per cubic metre). The

[^4]analysis is carried out as follows :-The contents of the four bottles are united, taking care not to unnecessarily augment the bulk of the liquids, and are divided into three equal parts, one of which is reserved for accidents, etc. The first part is titrated with normal sulphuric acid ($49.04 \mathrm{~g} . \mathrm{H}_{2} \mathrm{SO}_{4}$ per litre), to ascertain total acidity. The number of cubic centimetres of acid necessary for neutralisation is called x. The second part of the liquid is gradually poured into a warm solution of potassium permanganate, strongly acidified with pure sulphuric acid. A small excess of permanganate must be present, and must be afterwards reduced by the addition of a few drons of sulphurous acid solution, until only a faint red tint is visible. Now all nitrogen acids are present as HNO_{3}, but no excess of SO_{2}. The HNO_{3} is estimated by its action on FeSO_{4}. Twenty-five c.c. of a solution, containing per litre 100 g . crystallised ferrous sulphate and 100 c.c. pure sulphuric acid (the same solution which is used for estimating $\mathrm{MnO}_{2}, \mathrm{p}$. 182), are put into a llask, 20 c.c. to 25 c.c. pure concentrated sulphuric acid is added, the mixture is allowed to cool, and the other mixture, treated with permanganate, ctc., is added. The flask is closed by a cork with glass tubes. A current of CO_{2} passes through and issues beneath the surface of some water, to prevent entrance of air. First, all the air is expelled in this way by means of an apparatus giving a constant current of CO_{2}; then the solutions are introduced, and the contents of the flask are heated to boiling, till the dark' colour produced by the formation of NO has changed to a clear light yellow. This takes from a quarter of an hour to one hour, according to the quantity of HNO_{3} present and that of the sulphuric acid added. The unoxidised ferrous sulphate is titrated by a seminormal permanganate solution (yielding 0.004 g . oxygen per cubic centimetrecompare p.114). The cubic centimetres used $=y$. Since the titre of the iron solution changes somewhat quickly, it should be tested daily by taking out 25 c.c. with the same pipette as is used for the above operation, and ascertaining the amount of permanganate required for oxidising it $=z$ c.c. The data required are found by the following equations:-

1. Iulul Actdety in grams per cubic metre $=$

$$
\mathbf{S O}_{3}=\frac{0 \cdot 120(100-x)}{\mathbf{V}^{1}}
$$

2. Sulphur in grams per cubic metre $=$
$S=\frac{0.008(600-6 x-z+y)}{\mathrm{V}^{1}}$
3. Nitrogen in grams per cublo

$$
\mathbf{N}=\frac{0.007(z-y)}{\mathbf{V}}
$$

1. Total Acidity in grains per culic foot $=$

$$
\mathbf{S O}_{3}=\frac{1 \cdot 852(100-x)}{\mathbf{V}^{1}}
$$

2. Sulphur in grains per cubic foot $=$ $\mathrm{S}=\frac{0.12346(600-6 x-z+y)}{\mathbf{V}^{1}}$
3. Nitrogen in grains per cubic foot $=$

$$
N=\frac{0 \cdot 10803(z-y)}{\mathbf{V}^{1}}
$$

144 THE TECHNICAI. CHEMISTS' HANDBOOK

The legal limit for total acidity in the lead-chamber process is 4 grains of SO_{3} per cubic foot, before admixture with air, smoke, or other gases ; for the contact process, the "best practicable means" are to be adopted.*

In lieu of the above process, it is customary in works practice, and for the purposes of the Alkali Act, to estimate the total acidity in the chamber exit gases, by means of the bellows aspirator, as described under chimney-testing, on p. 176.

The Tochnical Index to the Alkali Reports (1919), pp. 46-47, should be consulted for detailed information on this sulject.

The test is carried out as follows:-
About 300 c.c. of distilled water with 5 to 10 c.c. of neutral hydrogen peroxide (" 10 volume $\mathrm{H}_{2} \mathrm{O}_{2}$ ") is introduced into the bellows. The gases are drawn from the exit pipe through a glass tube, and are washed thoroughly after each aspiration by shaking the contents of the aspirator vigorously. When a sufficient

Fif. 10.
volume of gas has been withdrawn ($\frac{1}{2}$ cubic foot is usually enough), any acid which may have condensed in the glass tube is washed back into the bellows and the liquid then transferred to a porcelain dish and titrated with $\frac{N}{2}$ sodium carbonate solution, using methyl orange as indicator.
N.B.-Hydrogen peroxide should he kept in a cool place and protected from the action of light; for this purpose bottles of a brown or deep green colour should be used, not blue or colourless ones. (See Dr 'T. L. Bailey's report on experiments on the action of light on hydrogen jeeroxide in the 46th Amual Report, 1909, p. 110.)
(c) Nitric Oxide (NO) may be present in the exit gases after passing through the absorbing-loottles. If it is to be estimated, an absorption-tube (Fig. 10) t is interposed between the tubes of the apparatus described above and the aspirator. This tube contains 30 c.c. of seminormal permanganate and 1 c.c. of sulphuric acid, spec. grav. $1 \cdot 25$. The gas is passed through for twenty-

[^5]four hours, and the tube then emptied and washed out. Now add 50 c.c. ferrous sulphate solution, corresponding to $2 z$ permanganate (compare last paragraph), and retitrate the decolorised liquid with permanganate. The quantity of the latter now used is called u. The NO has consumed ($30+u-2 z$) c.c. permanganate, which is equal-

II. Contact Process.

1. The Enterin! (rases are analysed like those of the Chamber Process (pp. 140 and 141).
2. The C'atalysed Gases are passed through a measured quantity of iodine solution and then throngh a vessel containing thiosulphate solution. The non-consumed ioline is retitrated by thinsulphate, and the total acidity is ascertained by baryta solution or hy decinormal soda solution, with phenolphthalein as indicator, making the same deduction as prescribed in the ReichRaschig method (p. $1+1$). If the c.e. of $1 / 10 N$ iodine solution consumed are designated by a, and those of $1 / 10 N$ soda solution (or baryta solution) by l, the formula $x=0.003203 a$ indicates the quantity of non-catalysed SO_{2}, and $y=0.004(b-2 a)$ that of the SO_{3}, formed. The yield of SO_{3} in volumo per cent. is shown by the formula -

$$
\frac{(b-2 a) 100}{b-a}
$$

H.-Sulphuric Acid.

1. Specitic (iravity.-The specific gravity tables of sulphuric acid refer, of course, to chemically pure acid. Since, in the case of high-grade acids, the impurities always present in commercial acids quite sensibly increase the sperific gravity, the table in the case of acids over 90 per cent. $\mathrm{H}_{4} \mathrm{SO}_{4}$ should only be employed for the private use of the works, but sales should always be effected on the basis of a real analysis, as described later on under No. 12, p. 162.

The following tables have been recalculated by the editor from the data of Domke and Bein, who investigated the density and expansion of sulphuric acid on liehalf of the Normaleichungskommission at Berlin. There are many variations in these recalculated figures from those given in the last edition of this book.

146 THE TECHNICAL CHEMIS'TS' HANDBOOK

1. SPEOIFIC GRAVITY OF SULPHURIO AOID.

Degrees Twaddell.	Specific gravity a $15^{\circ} / 4^{\circ}$.	100 parts by weight contain		$\begin{gathered} \mathrm{Kilos} \\ \mathrm{H}_{2} \mathrm{SO}_{4} \\ \text { per hitre. } \end{gathered}$	1 Cubic foot of acid	
		SO_{3}.	$\mathrm{H}_{2} \mathrm{SO}_{4}$.		weighs lb. avoir.	$\begin{aligned} & \text { contains } \\ & \text { 1b. } \mathrm{H}_{2} \mathrm{SO}_{4} . \end{aligned}$
1	1.005	$0 \cdot 69$	0.84	0.0084	$62 \cdot 74$	$0 \cdot 53$
2	1.010	$1 \cdot 28$	1.57	$0 \cdot 0159$	63.05	0.99
3	1.015	1.89	$2 \cdot 31$	0.0234	6:3•37	$1 \cdot 46$
4	$1 \cdot 020$	$2 \cdot 48$	$3 \cdot 04$	0.0310	$63 \cdot 68$	$1 \cdot 94$
5	1.025	$3 \cdot 10$	$3 \cdot 79$	0.0388	63.99	$2 \cdot 42$
6	1.030	$3 \cdot 70$	$4 \cdot 53$	0.0467	64.30	$2 \cdot 91$
7	1.035	$4 \cdot 31$	$5 \cdot 27$	0.0546	$64 \cdot 61$	$3 \cdot 40$
8	$1 \cdot 040$	$4 \cdot 90$	$6 \cdot 00$	$0 \cdot 062.4$	$64 \cdot 93$	$3 \cdot 90$
9	1.045	$5 \cdot 49$	$6 \cdot 72$	0.0702	$65 \cdot 24$	$4 \cdot 38$
10	$1 \cdot 050$	$6 \cdot 08$	$7 \cdot 44$	$0 \cdot 0781$	$65 \cdot 5.5$	$4 \cdot 88$
11	$1 \cdot 055$	$6 \cdot 66$	$8 \cdot 15$	$0 \cdot 0560$	65.86	$5 \cdot 37$
12	$1 \cdot 060$	$7 \cdot 24$	S.86	0.0939	$66 \cdot 18$	$5 \cdot 86$
13	1.06 .5	7.81	9:56	$0 \cdot 1015$	66.49	$6 \cdot 36$
14	1.070	$8 \cdot 39$	$10 \cdot 26$	$0 \cdot 1098$	$66 \cdot 80$	$6 \cdot 86$
15	1.075	$8 \cdot 96$	$10 \cdot 96$	$0 \cdot 1178$	$67 \cdot 11$	$7 \cdot 36$
16	1.080	$9 \% 3$	$11 \cdot 66$	0.1259	67.42	$7 \cdot 86$
17	1.085	10.09	$12 \cdot 35$	0.13310	$67 \cdot 74$	$8 \cdot 37$
18	1.090	$10 \cdot 65$	$13 \cdot 03$	$0 \cdot 1420$	$68 \cdot 05$	$8 \cdot 87$
19	1.095	$11 \cdot 21$	13.71	$0 \cdot 1.501$	$68 \cdot 36$	$9 \cdot 37$
20	$1 \cdot 100$	11.76	14.39	0.15S:3	65.67	9.88
21	$1 \cdot 105$	$12 \cdot 32$	15.07	$0 \cdot 1665$	$68 \cdot 98$	10.40
22	1.110	$12 \cdot 86$	15.73	$0 \cdot 1746$	$69 \cdot 30$	10.90
23	$1 \cdot 115$	$13 \cdot 40$	$16 \cdot 40$	$0 \cdot 1829$	$69 \cdot 61$	11.42
$24 *$	$1 \cdot 120$	13.95	$17 \cdot 07$	$0 \cdot 1912$	$69 \cdot 92$	11.93
25	$1 \cdot 125$	$14 \cdot 49$	$17 \cdot 73$	$0 \cdot 1995$	$70 \cdot 23$	12.45
26	$1 \cdot 130$	$15 \cdot 03$	$19 \cdot 39$	$0 \cdot 2078$	$70 \cdot 55$	12.97
27	$1 \cdot 135$	$15 \cdot 56$	$19 \cdot 04$	$0 \cdot 2161$	$70 \cdot 86$	13.49
28	$1 \cdot 140$	16.09	$19 \cdot 69$	0×2245	$71 \cdot 17$	14.01
29	$1 \cdot 145$	16.62	$20 \cdot 34$	$0 \cdot 23229$	$71 \cdot 48$	$14 \cdot 54$
30	$1 \cdot 150$	$17 \cdot 15$	$20 \cdot 98$	$0 \cdot 2.413$	$71 \cdot 79$	$15 \cdot 06$
31	$1 \cdot 155$	$17 \cdot 67$	$21 \cdot 62$	$0 \cdot 2497$	$7 \cdot 2 \cdot 11$	$15 \cdot 59$
32	$1 \cdot 160$	$18 \cdot 19$	$22 \cdot 26$	$0 \cdot 2582$	$72 \cdot 42$	$16 \cdot 12$
33	$1 \cdot 165$	18.72	$22 \cdot 90$	$0 \cdot 2668$	$72 \cdot 73$	16.66
34	$1 \cdot 170$	$19 \cdot 2 \cdot 4$	$2 \cdot 3 \cdot 54$	$0 \cdot 2754$	$73 \cdot 04$	$17 \cdot 19$
35	$1 \cdot 175$	19.75,	$24 \cdot 17$	$0 \cdot 2840$	$73 \cdot 35$	$17 \cdot 73$
36	$1 \cdot 180$	$20 \cdot 27$	$24 \cdot 80$	$0 \cdot 2926$	$73 \cdot 67$	$18 \cdot 27$
37	$1 \cdot 185$	20.78	$25 \cdot 4.3$	$0 \cdot 3013$	73.98	18.81
38	$1 \cdot 190$	21.29	$26 \cdot 05$	$0: 3100$	$74 \cdot 29$	$19 \cdot 35$
39	$1 \cdot 195$	21.81	$26 \cdot 68$	$0 \cdot 3188$	$74 \cdot 60$	$19 \cdot 90$
40	$1 \cdot 200$	$22 \cdot 3 \mathrm{i}$	27 20	$0: 3278$	$74 \cdot 92$	20.45
41	$1 \cdot 20 \%$	22.82	$27 \cdot 92$	0.3364	$75 \cdot 23$	21.00
42	$1 \cdot 210$	$23 \cdot 17$	28:53	$0 \cdot 3452$	$75 \cdot 54$	21.55
43	$1 \cdot 215$	$23 \cdot 82$	$29 \cdot 15$	$0 \cdot 3542$	75.85	$22 \cdot 11$
44	1.220	$24 \cdot 32$	$29 \cdot 76$	0.3631	$76 \cdot 16$	22.67
45	1.225	24.82	30.37	0.3720	76.48	$23 \cdot 23$
46	$1 \cdot 230$	$25 \cdot 32$	30.98	$0 \cdot 3810$	76.79	23.79

SPHOIFIC GRAVITY OF SULPHURIC ACID-Continued.

Degrees Twaddell.	Specific gravity d $15^{\circ} / 4^{\circ}$.	100 parts by weight conta.in		$\begin{gathered} \mathrm{Kilos}_{8} \\ \mathrm{H}_{2} \mathrm{SO}_{4} \\ \text { per litre. } \end{gathered}$	1 Cubic foot of acid	
		SO_{3}.	$\mathrm{H}_{2} \mathrm{SO}_{4}$.		weighs ib. avoir.	$\begin{gathered} \text { contains } \\ \text { lb. } \mathrm{H}_{2} \mathrm{SO}_{4} . \end{gathered}$
47	$1 \cdot 235$	$25 \cdot 81$	$31 \cdot 58$	$0 \cdot 3900$	77-10	24-35
48	$1 \cdot 240$	$26 \cdot 30$	$32 \cdot 18$	$0 \cdot 3990$	$77 \cdot 41$	$24 \cdot 91$
49	1.245	$26 \cdot 79$	32.78	$0 \cdot 4081$	$77 \cdot 72$	$25 \cdot 48$
50	$1 \cdot 250$	$27 \cdot 28$	$33 \cdot 38$	$0 \cdot 4172$	78.04	26.05
51	$1 \cdot 255$	$27 \cdot 77$	$33 \cdot 98$	04264	$78 \cdot 35$	26.62
52	1.260	$28 \cdot 25$	$34 \cdot 57$	$0 \cdot 4356$	$78 \cdot 66$	27-19
53	$1 \cdot 265$	$28 \cdot 74$	$35 \cdot 17$	$0 \cdot 4449$	78.97	27.77
54	$1 \cdot 270$	$29 \cdot 23$	$35 \cdot 76$	$0 \cdot 4515$	$79 \cdot 29$	$28 \cdot 35$
55	$1 \cdot 275$	$29 \cdot 71$	$36 \cdot 35$	$0 \cdot 4635$	$79 \cdot 60$	$28 \cdot 93$
56	$1 \cdot 280$	$30 \cdot 19$	$36 \cdot 94$	(). 4728	$79 \cdot 91$	29-52
57	1.285	$30 \cdot 67$	37:52	$0 \cdot 4821$	$80 \cdot 22$	$30 \cdot 10$
58	1290	$31 \cdot 14$	$38 \cdot 10$	$0 \cdot 4919$	$80 \cdot 53$	$30 \cdot 68$
59	$1 \cdot 295$	$31 \cdot 61$	38.68	() $\% 009$	$80 \cdot 85$	$31 \cdot 27$
60	$1 \cdot 300$	$32 \cdot 08$	$39 \cdot 25$	$0 \cdot 5102$	$81 \cdot 16$	31.85
61	$1 \cdot 305$	$32 \cdot 56$	39-83	$0^{0} 5198$	81.47	$32 \cdot 45$
62	$1 \cdot 310$	33.02	$40 \cdot 40$	$0 \cdot 5292$	$81 \cdot 78$	33.04
63	$1 \cdot 315$	$38 \cdot 48$	$40 \cdot 97$	$0 \cdot 638 \mathrm{~S}$	$82 \cdot 09$	$33 \cdot 63$
64	$1 \cdot 320$	$33 \cdot 94$	$41 \div 3$	$0 \div 482$	$82 \cdot 41$	$34 \cdot 22$
65	$1 \cdot 325$	$34 \cdot 40$	42.09	$0 \cdot 5577$	$82 \cdot 72$	34.82
66	$1 \cdot 330$	$34 \cdot 86$	42.65	$0 \cdot 5672$	8303	$35 \cdot 41$
67	$1 \cdot 335$	$35 \cdot 31$	$43 \cdot 20$	$0: 5767$	83.34	36.00
68	$1 \cdot 340$	$35 \cdot 76$	43.75	$0 \cdot 5862$	$83 \cdot 66$	$36 \cdot 60$
69	$1 \cdot 345$	$36 \cdot 21$	$44 \cdot 30$	$0 \cdot 5958$	$83 \cdot 97$	$37 \cdot 20$
70	1.350	$36 \cdot 66$	44.85	$0 \cdot 605.5$	84.28	$37 \cdot 80$
71	$1 \cdot 355$	$37 \cdot 10$	$45: 39$	$0 \cdot 6150$	84.59	$38 \cdot 40$
72	1.360	$37 \cdot 54$	$45 \cdot 93$	$0 \cdot 6246$	$84 \cdot 90$	$39 \cdot 00$
73	$1 \cdot 365$	$37 \cdot 97$	$46 \cdot 46$	$0 \cdot 6342$	$85 \cdot 22$	$39 \cdot 59$
74	1.870	$35 \cdot 40$	$46 \cdot 99$	$0 \cdot 6438$	85.53	$40 \cdot 19$
75	$1 \cdot 375$	$38 \cdot 84$	47-52	$0 \cdot 6531$	S5.84	$40 \cdot 79$
76	$1 \cdot 380$	$39 \cdot 26$	$48 \cdot 04$	$0 \cdot 6629$	$86 \cdot 15$	41-39
77	$1 \cdot 385$	$39 \cdot 69$	48:56	$0 \cdot 6726$	86.47	$41 \cdot 99$
78	$1 \cdot 390$	$40 \cdot 10$	$49 \cdot 07$	$0 \cdot 6821$	$86 \cdot 78$	$42 \cdot 58$
79	$1 \cdot 395$	$40 \cdot 53$	$49 \cdot 59$	$0 \cdot 6918$	$87 \cdot 09$	$43 \cdot 19$
80	1.400	$40 \cdot 95$	$50 \cdot 10$	$0 \cdot 7014$	$87 \cdot 40$	$43 \cdot 79$
81	$1 \cdot 405$	$41 \cdot 36$	$50 \cdot 61$	$0 \cdot 7111$	$87 \cdot 71$	44-39
82	$1 \cdot 410$	$41 \cdot 78$	$51 \cdot 12$	$0 \cdot 7208$	88.03	$45 \cdot 00$
83	1.415	$42 \cdot 89$	51.62	$0 \cdot 7304$	$88 \cdot 34$	$45 \cdot 60$
84	$1 \cdot 420$	$42 \cdot 60$	$52 \cdot 12$	$0 \cdot 7401$	$88 \cdot 65$	$46 \cdot 20$
85	$1 \cdot 425$	$43 \cdot 01$	$52 \cdot 62$	$0 \cdot 7498$	$88 \cdot 96$	46.81
86	$1 \cdot 430$	$13 \cdot 41$	$53 \cdot 11$	$0 \cdot 7595$	$89 \cdot 27$	$47 \cdot 41$
87	1.435	4:3•81	$53 \cdot 60$	$0 \cdot 7692$	$89 \cdot 59$	$48 \cdot 02$
88	$1 \cdot 440$	$44 \cdot 21$	$54 \cdot 09$	$0 \cdot 7780$	$89 \cdot 90$	$48 \cdot 63$
89	1.445	$44 \cdot 61$	54.58	$0 \cdot 7887$	$90 \cdot 21$	$49 \cdot 24$
90	1.450	$45 \cdot 00$	55.06	$0 \cdot 7984$	$90 \cdot 52$	49.84
91	1.455	$45 \cdot 39$	55.54	$0 \cdot 8081$	$90 \cdot 84$	50.45
92	$1 \cdot 460$	$45 \cdot 79$	56.02	$0 \cdot 8179$	$91 \cdot 15$	51.06

148 THE TECHNICAL CHEMISTS' HANDBOOK

SPECIFIC GRAVITY OF SULPHURIC ACID-Continued.

Degrees Twaddell.	Specific gravity ($15^{\circ} / 4^{\prime \prime}$.	100 parts by weight contain		$\begin{gathered} \mathrm{Kilos}_{4} \\ \mathrm{H}_{2} \mathrm{SO}_{4} \\ \text { per litre. } \end{gathered}$	1 Cubic foot of acid	
		NO\%	$\mathrm{H}_{2} \mathrm{SO}_{4}$.		weighs lb. avoir.	$\begin{aligned} & \text { contains } \\ & \text { 1b. } \mathrm{H}_{2} \mathrm{SO}_{4} \end{aligned}$
93	$1 \cdot 465$	$46 \cdot 18$	$56 \cdot 50$	$0 \cdot 8.77$	$91 \cdot 46$	$51 \cdot 67$
94	$1 \cdot 470$	$46 \cdot 56$	$56 \cdot 97$	0.8375	$91 \cdot 77$	$52 \cdot 28$
95	1.475	$46 \cdot 9$.	$57 \cdot 44$	$0 \cdot 8472$	92.08	52.89
96	$1 \cdot 480$	47•33	$57 \cdot 91$	$0 \cdot 8571$	92.40	53.51
97	$1 \cdot 485$	$47 \cdot 71$	$58 \cdot 38$	0.8669	$92 \cdot 71$	$54 \cdot 12$
93	$1 \cdot 490$	$48 \cdot 10$	58.85	$0 \cdot 8769$	93.02	$54 \cdot 74$
99	1495	$48 \cdot 48$	$59 \cdot 3:$	$0 \cdot 8868$	$93 \cdot 33$	$55 \cdot 36$
100	1.500	$48 \cdot 86$	59.78	$0 \cdot 8967$	93.64	55.98
101	1.505	$49 \cdot 23$	60×4	0.9066	03.96	56.60
102	$1 \cdot 510$	$19 \cdot 61$	60.70	0.9166	$94 \cdot 27$	$57 \cdot 22$
103	$1: 515$	$49 \cdot 99$	$61 \cdot 16$	$0 \cdot 9266$	94:58	57.85
104	$1 \cdot 520$	$50 \cdot 35$	\$1.61	0.9365	$94 \cdot 89$	$58 \cdot 46$
105	1025	$50 \cdot 73$	$62 \cdot 07$	$0 \cdot 9466$	$9 \% \cdot 21$	59.09
106	1.530	51.10	628	$0 \cdot 9566$	95.52	$59 \cdot 72$
107	1.535	$51 \cdot 47$	$6 \cdot 2 \cdot 97$	$0 \cdot 9666$	95.83	60:34
108	1.540	51.83	63.12	$0 \cdot 9767$	$96 \cdot 1.4$	$60 \cdot 97$
109	1.545	22.20	$63 \cdot 87$	$0 \cdot 9.968$	$96 \cdot 45$	61.60
110	1.550	$52 \cdot 56$	$61: 31$	0.9968	96.75	$62 \cdot 23$
111	1.555	52.92	64.75	$1 \cdot 0069$	$97 \cdot 08$	62.86
112	1.560	53.28	(6) $9 \cdot 9$	1.0170	$97 \cdot 39$	63.49
113	1.565	5:3.64	6.5 $\times 3$	$1 \cdot 0271$	$97 \cdot 70$	$64 \cdot 12$
114	1.570	5401	66.08	$1 \cdot 0375$	98.01	$64 \cdot 77$
115	1.575	54-37	66.5	1.0477	9838	65.41
116	1.580	54.73	6696	$1 \cdot 0580$	$98 \cdot 64$	66.05
117	1.585	$55 \cdot 09$	$67 \cdot 40$	1.0683	98.9.,	$66 \cdot 69$
118	1.590	55.44	(;7.83	1.0785	$99 \cdot 26$	$67 \cdot 33$
119	1:595	$55 \cdot 79$	$68 \cdot 26$	$1 \cdot 0887$	99:58	$67 \cdot 97$
120	$1 \cdot 600$	$56 \cdot 14$	68×9	1.0990	99-89	$68 \cdot 61$
121	$1 \cdot 605$	$56 \cdot 19$	69012	1-1094	$100 \cdot 20$	$69 \cdot 26$
122	$1 \cdot 610$	$56 \cdot 84$	69%	$1 \cdot 1198$	$100 \cdot 51$	69.91
123	$1 \cdot 615$	$57 \cdot 19$	$69 \cdot 98$	1-1302	$100 \cdot 82$	70:56
124	1620	$57 \cdot 46$	$70 \cdot 41$	1'1406	$101 \cdot 14$	$71 \cdot 21$
12\%)	$1 \cdot 625$:7789	$70 \cdot 83$	$1 \cdot 1510$	101.45	71.86
126	1.630	$58 \cdot 25$	$71 \cdot 27$	$1 \cdot 1617$	$101 \cdot 76$	$72 \cdot 52$
127	1-63.)	\%8•60	$71 \cdot 70$	$1 \cdot 1723$	$102 \cdot 07$	$73 \cdot 19$
128	$1 \cdot 640$	$58 \cdot 95$	$72 \cdot 13$	1-1829	$102 \cdot 38$	73.85
129	$1 \cdot 645$:9.30	$72: 55$	1-1934	$102 \cdot 70$	$74 \cdot 51$
130	$1 \cdot 650$	59.64	$72 \cdot 97$	$1 \cdot 2040$	$103 \cdot 01$	$75 \cdot 17$
131	$1 \cdot 655$	$59 \cdot 99$	$73 \cdot 40$	$1 \cdot 2148$	103:32	$75 \cdot 84$
132	1.660	$60 \cdot 93$	73.82	$1 \cdot 2254$	$103 \cdot 63$	76:50
133	1.665	$60 \cdot 68$	$74 \cdot 24$	$1 \cdot 2361$	$103 \cdot 95$	$77 \cdot 17$
134	1.670	61.02	$74 \cdot 66$	$1 \cdot 2468$	$104 \cdot 26$	77.84
135	$1 \cdot 675$	$61 \cdot 37$	$75 \cdot 09$	$1 \cdot 2578$	104•57	$78 \cdot 52$
136	1.680	61.71	$75 \cdot 51$	$1 \cdot 2686$	104-88	79.20
137	1.685	$62 \cdot 06$	$75 \cdot 93$	$1 \cdot 2794$	$105 \cdot 19$	79.87
138	1.690	$62 \cdot 41$	$76 \cdot 36$	$1 \cdot 2905$	105:51	$80 \cdot 56$

SPECIFIC GRAVITY OF SULPHURIC ACID-Continued.

Degreas Twaddell.	Specific gravity d $15^{\circ} / 4^{\circ}$.	100 parts by weight contain		$\begin{gathered} \text { Kilos } \\ \text { Hers }_{\text {per }}^{\text {pitre }} \end{gathered}$	1 Cubic foot of acid	
		SO_{3}.	$\mathrm{H}_{2} \mathrm{SO}_{4}$		weighs 1b. avoir.	$\begin{gathered} \text { contains } \\ \text { lb. } \mathrm{H}_{2} \mathrm{SO}_{4} . \end{gathered}$
139	1.695	62.75	$76 \cdot 78$	$1 \cdot 3014$	$105 \cdot 82$	$81 \cdot 25$
140	1.700	$63 \cdot 10$	$77 \cdot 21$	$1 \cdot 3126$	$106 \cdot 13$	81.94
141	1.705	63•45	$77 \cdot 63$	$1 \cdot 3236$	$106 \cdot 44$	$82 \cdot 63$
142	1.710	133.80	$78 \cdot 06$	$1 \cdot 3348$	$106 \cdot 75$	$83 \cdot 33$
143	1.715	64.15	$78 \cdot 49$	$1 \cdot 3461$	107.07	$84 \cdot 04$
144	1.720	64:50	$78 \cdot 92$	$1 \cdot 3.74$	107:38	84.74
145	1.725	$64 \cdot 8$	79.35	$1 \cdot 3688$	$107 \cdot 69$	$85 \cdot 45$
146	1.730	$65 \cdot 21$	$79 \cdot 79$	$1 \cdot 3804$	$108 \cdot 00$	$86 \cdot 18$
147	1.735	(65:37	$80 \cdot 23$	13920	108:32	$86 \cdot 90$
148	1.740	$65 \cdot 94$	$80 \cdot 68$	$1 \cdot 4038$	$108 \cdot 63$	$87 \cdot 64$
149	1.745	$66 \cdot 31$	$81 \cdot 14$	$1 \cdot 4159$	108.94	$88 \cdot 39$
150	1.750	$66 \cdot 69$	81.60	$1 \cdot 4280$	$109 \cdot 25$	$89 \cdot 15$
151	1.7 .5	$67 \cdot 08$	82.07	$1 \cdot 4403$	$109 \div 6$	$89 \cdot 92$
152	1.760	$67 \cdot 16$	82:54	$1 \cdot 4527$	109.88	$90 \cdot 69$
153	$1 \cdot 765$	$67 \cdot 55$	83.02	$1 \cdot 4653$	110•19	91.48
154	1.770	68.24	$83 \cdot 50$	$1 \cdot 4779$	$110 \cdot 50$	$92 \cdot 27$
155	1.775	68.68	$84 \cdot 03$	$1 \cdot 4915$	$110 \cdot 81$	$93 \cdot 12$
156	1.780	$69 \cdot 11$	84.56	15052	$111 \cdot 12$	93.97
157	1.785	$69 \cdot 57$	$85 \cdot 12$	$1 \div 194$	111.44	$94 \cdot 86$
158	1790	70.03	$85 \cdot 69$	1:3338	111.75	$95 \cdot 76$
159	1.795	$70 \div 3$	$86 \cdot 30$	15491	112.06	$96 \cdot 71$
160	1.800	71.04	86.92	1 -5616	$112 \cdot 37$	$97 \cdot 67$
161	1.805	71.60	87.61	1 -5814	112.69	$98 \cdot 72$
162	1.810	72.21	$88 \cdot 35$	1.5991	113.00	99.83
163	1.815	72.87	$89 \cdot 16$	$1 \cdot 6182$	113:310	101.03
164	1.820	73.59	$90 \cdot 0.4$	$1 \cdot 6387$	11362	$102 \cdot 31$

DENSITY OF SOLUTIONS CONTAINING ABOVE 90 PER CENT. OF SULPHURIC ACID.

- Per cent. $\mathrm{H}_{2} \mathrm{SO}_{4}$	91	92	93	94	95
Density d. $\frac{15^{\circ}}{4^{\circ}}$.	$1 \cdot 8248$	1.8293	$1 \cdot 8331$	1.8363	1.8388
Per cent. $\mathrm{H}_{2} \mathrm{SO}_{4}$	96	97	98	99	100
Density d. ${ }_{4}{ }^{\circ}{ }^{\circ}$	$1 \cdot 8406$	$1 \cdot 8466$	$1 \cdot 8411$	1.8393	1.8357

150 THE TECHNICAL CHEMISTS' HANDBOOK

2. TABLE FOR REDUOING THE SPHOIFIO GRAVITIHS OF SULPHURIC AOID OF VARIOUS STRENGTHS TO ANY OTHER TEMPHRATURH (DEGRHES O.).

0°.	5°.	10°.	15°.	20°.	25°.	80°.	85 ${ }^{\circ}$	40°.	45°.	50°.
1.857	1-852	1.846	1.840	1.835	1.830	1.825	1.821	1.816	1.811	1.806
1.847	1.841	1.836	$1 \cdot 830$	1.525	1.820	1.815	1.810	1.805	1.800	1.795
1.837	$1 \cdot 831$	1.825	1.520	1.815	1.809	$1 \cdot 504$	1.799	$1 \cdot 794$	1.789	1.784
1.827	1.821	1.815	1.810	1.805	1.799	1.793	1.788	1.783	1.778	1.773
1.817	1.811	$1 \cdot 805$	$1 \cdot 500$	1-794	1.788	1.783	1.777	1.772	1.766	1.761
1.807	1-801	1.790	1.790	1.781	1.778	1.773	1.767	1.762	1.756	1.751
$1 \cdot 797$	1.791	1.786	1.780	1-774	1.768	1.763	$1 \cdot 757$	1752	1.746	1.741
1.786	$1 \cdot 781$	1.776	1.770	$1 \cdot 765$	1.759	1.754	1.748	$1 \cdot 743$	1.737	1.732
1.776	1.770	$1 \cdot 765$	1760	1.755	1.749	1.744	1.738	1.783	1728	1.723
$1 \cdot 765$	1.760	1.755	1.750	1.745	1.740	$1 \cdot 735$	$1 \cdot 780$	1.725	1.720	1.715
1.754	1.750	$1 \cdot 745$	$1 \cdot 740$	1.735	1.730	1.726	$1 \cdot 721$	1.716	1.711	1.706
1.744	1.740	1.735	1.730	1.725	1.720	1.716	1.711	$1 \cdot 706$	1.701	1.696
1.734	$1 \cdot 730$	1.725	1720	1.715	1.710	1700	1.701	1.696	1.691	1.686
$1 \cdot 724$	1.720	1.715	1.710	$1 \cdot 705$	1.700	$1 \cdot 696$	1.691	$1 \cdot 686$	1.681	1.676
1.714	1.710	1.70.)	$1 \cdot 700$	$1 \cdot 695$	1.690	1.686	1.681	1.676	1.671	$1 \cdot 667$
$1 \cdot 704$	$1 \cdot 700$	1.695	1.690	1.685	1.680	1.676	1.671	1.660	1.661	1.653
$1 \cdot 694$	1.690	1.685	1.880	1.675	1.670	$1 \cdot 606$	1.661	1.650	$1 \cdot 651$	1.646
1.684	1.680	1.675	1.670	1.665	$1 \cdot 660$	$1 \cdot 656$	$1 \cdot 651$	$1 \cdot 646$	1.041	1.637
$1 \cdot 674$	1.670	1.665	1.660	$1 \cdot 655$	1.650	1.646	1.641	1.686	1.632	1.628
$1 \cdot 664$	1.660	1.655	1.650	$1 \cdot 645$	1.640	$1 \cdot 636$	1.682	$1 \cdot 627$	1.022	1.618
1.654	1.650	1.645	1.640	1.635	1.631	1.626	1.622	$1 \cdot 617$	1.612	1.608
1.644	$1 \cdot 640$	1.635	1.630	1.625	1.621	1.616	1.612	1.607	$1 \cdot 602$	1.598
1.634	1.630	1.625	1.620	1.615	1.611	$1 \cdot 606$	1.602	1.597	1.592	1.588
$1 \cdot 624$	1-620	1.615	$1 \cdot 610$	$1 \cdot 605$	1.601	1.596	1.592	1.587	$1 \cdot 582$	1.578
$1 \cdot 614$	$1 \cdot 610$	$1 \cdot 605$	1.600	1.595	1.591	1.586	1.582	1.577	1.572	1.568
$1 \cdot 604$	1.600	1.595	1.590	1.585	$1 \cdot 581$	1.576	1.572	1.567	$1 \cdot 562$	1.558
$1 \cdot 594$	1.689	1.584	1.580	1.575	1.570	1.566	$1 \cdot 562$	1.558	$1 \cdot 553$	1.548
$1-584$	$1 \cdot 579$	1.574	1.570	$1 \cdot 566$	1.561	1.556	$1 \cdot 552$	$1 \cdot 548$	1.543	1.539
$1 \cdot 574$	1.569	1.564	1.560	1.556	1.552	1.547	1.543	1.539	1.534	1.530
$1 \cdot 563$	1.558	1.554	1.550	1.546	1.542	1.535	1.534	$1 \cdot 580$	1.525	1-521
1.552	1.548	1.544	1.540	1.536	1.532	1.528	1.524	1.520	1.516	1.512
1.542	1.538	1.534	1.530	1.523	1.522	1.518	1.514	1.510	1.506	1.502
1.532	1.528	$1 \cdot 524$	1.520	1.516	1.512	1.508	1.504	1.500	1.497	1.492
1.522	$1 \cdot 518$	1.514	1.510	1.503	1.502	1.498	1.494	1.490	1.486	1.482
1.512	1.508	1.504	1.500	1.490	1.492	1.488	1.484	1.480	1.476	1.472
1.502	1.498	1.404	1.490	1.486	1.452	1.478	1.474	1.470	1.466	1.462
1.492	1.488	1.484	1.480	$1 \cdot 476$	1.472	1.468	$1 \cdot 465$	1.461	1.457	1.453
1.482	1.478	1.474	1.470	1.466	$1 \cdot 162$	1.458	1.455	1.451	1.447	1.448
1.472	1.468	1.464	1.460	1.456	1.452	$1 \cdot 448$	$1 \cdot 445$	1.442	1.438	1.484
1.462	1.458	1.454	1.450	1.446	1.442	1.438	1.435	1.482	1.429	1.425
1.452	1.448	1.444	1.440	1.436	1.432	1.429	1.426	1.423	1.420	1.416
1.442	1.438	$1 \cdot 434$	1.430	1.426	1.422	1.419	1.416	1.418	1.409	1.405
1.432	1.428	1.424	1.420	1.416	1.413	1.410	1.406	1.402	1.898	1.894
1.422	1.418	1.414	1.410	1.406	1.403	1899	1.396	1.302	1.888	1.884
1.412	1.408	1.404	1.400	1.896	1.898	1.889	1.886	1.882	1.878	1.874
1.402	1.898	1.894	1.390	1.886	1.888	1.379	1.375	1.872	1.868	1.864
1.392	1.388	1.884	1.880	1.876	1.878	1.870	1.806	1.862	1.859	1.855
1.882	1.878	1.874	1.370	1.866	1.868	1.860	1.865	1.852	1.849	1.846
1.872	1.868	1.864	1.860	1.856	1.853	1.850	1.347	1.844	1.840	1.886
1.862	1.858	1.854	1.850	1.846	1.848	1.840	1.887	1-884	1.880	1.826

TABLID 2-Continued.

65°.	60°.	65°.	70°.	75°.	80°.	85°.	90°.	95°.	100°.
1.801	1.796	1.792	1.787	1-782	$1-778$	$1 \cdot 774$	$1 \cdot 770$	$1 \cdot 766$	1.762
$1 \cdot 790$	1.787	1.781	$1 \cdot 776$	$1 \cdot 770$	1.766	$1 \cdot 762$	$1 \cdot 757$	$1 \cdot 752$	$1 \cdot 748$
1.779	1.774	1.769	1.764	1.759	$1 \cdot 754$	1.749	1.744	$1 \cdot 789$	1.784
1.767	$1 \cdot 762$	1.757	1.752	1.747	$1 \cdot 741$	1.736	$1 \cdot 731$	$1 \cdot 726$	$1 \cdot 721$
1.755	1.750	1-744	1.739	$1 \cdot 784$	1-729	1-724	1.719	$1 \cdot 714$	1•708
1.746	1.741	$1 \cdot 735$	$1 \cdot 730$	$1 \cdot 725$	$1 \cdot 720$	1.715	$1 \cdot 710$	$1 \cdot 705$	$1 \cdot 700$
$1 \cdot 786$	$1 \cdot 781$	1.726	$1 \cdot 721$	1.716	$1 \cdot 712$	$1 \cdot 707$	$1 \cdot 702$	$1 \cdot 697$	$1 \cdot 692$
1.727	$1 \cdot 722$	1.717	$1 \cdot 712$	$1 \cdot 707$	1702	$1 \cdot 697$	1.693	1.688	1.683
1.718	$1 \cdot 713$	1.708	$1 \cdot 703$	1.698	1.693	1.658	$1 \cdot 684$	$1 \cdot 679$	$1 \cdot 674$
1.710	1.705	$1 \cdot 700$	$1 \cdot 695$	1-699	$1 \cdot 685$	1.681	$1 \cdot 676$	$1 \cdot 671$	$1 \cdot 667$
1.702	1.697	1-602	1.688	$1 \cdot 683$	1.678	1.674	$1 \cdot 669$	$1 \cdot 664$	$1 \cdot 660$
$1 \cdot 692$	1.687	1.688	1.678	$1 \cdot 673$	$1 \cdot 668$	1.664	$1 \cdot 659$	$1 \cdot 654$	$1 \cdot 650$
$1 \cdot 682$	1.677	1.673	1.668	$1 \cdot 663$	$1 \cdot 659$	1.654	$1 \cdot 649$	$1 \cdot 644$	$1 \cdot 640$
1.672	$1 \cdot 667$	$1 \cdot 663$	1.058	$1 \cdot 653$	$1 \cdot 649$	1.644	1.639	$1 \cdot 635$	1.630
$1 \cdot 662$	$1 \cdot 657$	$1 \cdot 653$	1.648	$1 \cdot 644$	1.639	1.634	$1 \cdot 630$	$1 \cdot 625$	$1 \cdot 620$
1.652	1.647	$1 \cdot 642$	1.033	1.634	1.630	1.625	$1 \cdot 620$	$1 \cdot 615$	$1 \cdot 610$
1.642	1.637	$1 \cdot 632$	1.623	$1 \cdot 624$	1.620	1.615	$1 \cdot 611$	$1 \cdot 608$	1.602
1.633	1.628	$1 \cdot 623$	$1 \cdot 619$	$1 \cdot 615$	$1 \cdot 611$	$1 \cdot 600$	1.602	$1 \cdot 597$	1.593
1.623	1.619	$1 \cdot 614$	$1 \cdot 610$	$1 \cdot 606$	$1 \cdot 602$	$1 \cdot 597$	1.593	1.588	1.584
1.614	1.610	$1 \cdot 605$	$1 \cdot 600$	1.596	$1 \cdot 592$	$1 \cdot 588$	$1 \cdot 583$	$1 \cdot 579$	1.575
$1 \cdot 004$	1.600	$1 \cdot 595$	$1 \cdot 591$	$1 \cdot 586$	1-582	$1 \cdot 578$	1.574	1-5\%0	$1 \cdot 565$
1.594	1.590	1.585	1-581	1.577	1.573	$1 \cdot 569$	1.565	1.561	1.556
1.584	1.580	1.576	1.572	1.568	$1 \cdot 564$	$1 \cdot 560$	$1 \cdot 556$	1.552	1.547
1.574	1.570	1.560	1.562	1.558	$1 \cdot 554$	1.550	1.546	1.542	1.537
1.564	1.580	1.550	1.552	1.548	1.544	$1 \cdot 540$	1.536	1.581	1.527
1.554	1.550	$1 \cdot 545$	$1 \cdot 041$	1.537	1.533	$1 \cdot 529$	1.525	1.521	$1 \cdot 516$
1.544	1.539	1.535	1.531	$1 \cdot 527$	$1 \cdot 523$	$1 \cdot 519$	$1 \cdot 515$	$1 \cdot 510$	1.506
1.535	1.581	1.526	$1 \cdot 522$	$1 \cdot 518$	$1 \cdot 513$	$1 \cdot 509$	$1 \cdot 505$	$1 \cdot 501$	1.496
1.526	$1 \cdot 522$	1.517	1.513	$1 \cdot 509$	1.504	$1 \cdot 500$	$1 \cdot 490$	1.492	1.487
$1 \cdot 517$	$1 \cdot 513$	$1 \cdot 509$	1.504	1-500	1.495	$1 \cdot 491$	$1 \cdot 487$	$1 \cdot 483$	1.478
$1 \cdot 508$	1.504	1.500	1.495	1.491	1.486	1.482	1.478	1.478	1.469
1.498	1.494	$1 \cdot 490$	1.485	1.481	1.476	$1 \cdot 472$	1.468	1.463	1.459
1.488	$1 \cdot 484$	$1 \cdot 480$	$1 \cdot 476$	1.472	1.467	$1 \cdot 462$	$1 \cdot 458$	1.453	1.449
1.478	$1 \cdot 474$	1470	1.466	$1 \cdot 462$	$1 \cdot 457$	$1 \cdot 452$	1.448	1.443	1.488
$1 \cdot 468$	$1 \cdot 464$	$1 \cdot 460$	$1 \cdot 455$	1.451	$1 \cdot 446$	1.442	$1 \cdot 438$	1.433	1.428
1.458	1.454	1.450	1.442	1.441	1.437	1.433	1.429	1.424	1.419
$1 \cdot 449$	1.445	1.441	1.436	$1 \cdot 432$	$1 \cdot 425$	$1 \cdot 424$	1.419	1.414	1.410
1.489	1.435	$1 \cdot 481$	1.427	$1 \cdot 423$	1.418	$1 \cdot 414$	$1 \cdot 409$	$1 \cdot 405$	$1 \cdot 401$
1.430	1.426	$1 \cdot 422$	1.418	$1 \cdot 418$	$1 \cdot 409$	1.405	$1 \cdot 400$	1.396	$1 \cdot 392$
$1 \cdot 421$	$1 \cdot 417$	$1 \cdot 418$	$1 \cdot 409$	$1 \cdot 404$	$1 \cdot 400$	$1 \cdot 396$	1-301	1.387	1.388
1.412	1.407	$1 \cdot 403$	1.899	1.395	1.391	1.386	$1 \cdot 382$	1.878	$1 \cdot 374$
1.401	$1 \cdot 397$	$1 \cdot 393$	$1 \cdot 389$	$1 \cdot 385$	1.380	1.376	$1 \cdot 372$	1.368	$1 \cdot 364$
1.890	1.850	1.882	1.378	$1 \cdot 374$	$1 \cdot 370$	1.366	$1 \cdot 362$	$1 \cdot 358$	$1 \cdot 353$
1.880	1.376	$1 \cdot 372$	1.368	$1 \cdot 364$	1.360	1.356	$1 \cdot 352$	1.848	$1 \cdot 343$
1.870	$1 \cdot 366$	1.362	1.858	1-354	$1 \cdot 850$	1.946	$1 \cdot 342$	1.338	1.338
1.860	1.856	1.852	1.848	-	.	.	-	.	-
1.851	1.846	1.342	1.388				.		.
1.842	1.837	1.884	1.329			.	.	-	.
1.882	1.827	1.823	$1 \cdot 819$						
1.822	1.817	1.814	1.810	-•	.	\cdots	-	.	\cdots

152 THE TECHNICAL CHEMISTS' HANDBOOK

TABLE 2-Continued.

0°.	$5{ }^{\circ}$	10°.	15°.	20°.	25°.	30°	85°	40°	45°.	50°.
1.352	1.34 S	$1 \cdot 344$	$1 \cdot 340$	$1 \cdot 336$	1-333	1.330	$1 \cdot 327$	$1 \cdot 324$	1.320	1.816
1.341	1.337	$1 \cdot 333$	$1 \cdot 330$	$1 \cdot 327$	$1 \cdot 324$	$1 \cdot 321$	1.318	1.314	$1 \cdot 310$	$1 \cdot 306$
1.330	1.326	1.323	$1 \cdot 320$	$1 \cdot 317$	1.314	$1 \cdot 311$	1.308	1.304	$1 \cdot 301$	$1 \cdot 297$
$1 \cdot 320$	1.316	1.313	1.510	1.807	$1 \cdot 304$	$1 \cdot 301$	1.298	$1 \cdot 294$	1.291	1-287
$1 \cdot 310$	1.300°	1.303	1.300	1-297	1-29.4	$1 \cdot 291$	1.288	1-284	1-281	1.277
1.300	$1 \cdot 296$	1.293	1.290	$1 \cdot 287$	1-2S4	1-2S0	1.277	1.274	1-270	1.267
1.290	$1 \cdot 286$	1.283	$1 \cdot 280$	1.277	$1 \cdot 274$	1.270	$1 \cdot 267$	1.264	$1 \cdot 260$	1.256
1.2S0	1.276	1.273	$1 \cdot 270$	1.267	$1 \cdot 264$	$1 \cdot 2 t 0$	$1 \cdot 257$	$1 \cdot 254$	1.250	1.246
1.270	1.266	1.263	$1 \cdot 260$	1.257	1.254	1.251	$1 \cdot 248$	1.245	$1 \cdot 241$	1.237
1.260	1.256	1.253	1.250	$1 \cdot 247$	$1 \cdot 244$	$1 \cdot 241$	$1 \cdot 238$	$1 \cdot 235$	1.231	1.227
1.250	1.246	1.243	1.240	1.237	1.234	1.230	$1 \cdot 227$	$1 \cdot 22.4$	1.220	1.217
1.240	1.236	1.233	$1 \cdot 230$	$1 \cdot 227$	1-224	1-220	$1 \cdot 217$	1.214	$1 \cdot 210$	$1 \cdot 207$
1.230	1220	$1 \cdot 223$	$1 \cdot 220$	$1 \cdot 217$	$1 \cdot 214$	$1 \cdot 210$	1-207	1-204] 200	$1 \cdot 197$
1.220	1.210	1.213	1.210	1.206	1-20t	1.200	$1 \cdot 197$	1-194	1.190	$1 \cdot 187$
$1 \cdot 210$	1.200	1.203	$1 \cdot 200$	$1 \cdot 196$	$1 \cdot 193$	$1 \cdot 190$	$1 \cdot 186$	$1 \cdot 183$	1.150	$1 \cdot 176$
1.200	1-190	1.193	$1 \cdot 190$	$1 \cdot 186$	1-183	1-180	$1 \cdot 176$	$1 \cdot 173$	1-169	1-165
1-190	1-186	$1 \cdot 183$	$1 \cdot 180$	$1 \cdot 176$	$1 \cdot 173$	$1 \cdot 170$	$1 \cdot 160$	$1 \cdot 163$	$1 \cdot 159$	1-155
1-180	$1 \cdot 170$	$1 \cdot 173$	$1 \cdot 170$	$1 \cdot 166$	$1 \cdot 163$	1-160	$1 \cdot 156$	$1 \cdot 153$	1-149	$1 \cdot 146$
1-169	$1 \cdot 166$	1-163	$1 \cdot 160$	$1 \cdot 157$	$1 \cdot 153$	$1 \cdot 150$	1-147	1-144	$1 \cdot 141$	$1 \cdot 188$
1.159	$1 \cdot 156$	$1 \cdot 153$	$1 \cdot 150$	$1 \cdot 147$	1-143	1•140	$1 \cdot 137$	$1 \cdot 184$	$1 \cdot 131$	$1 \cdot 128$
1.149	$1 \cdot 146$	$1 \cdot 143$	$1 \cdot 140$	$1 \cdot 137$	$1 \cdot 134$	$1 \cdot 131$	1-128	1-125	$1 \cdot 122$	$1 \cdot 119$
$1 \cdot 138$	$1 \cdot 135$	$1 \cdot 133$	$1 \cdot 130$	1-127	$1 \cdot 125$	$1 \cdot 122$	$1 \cdot 110$	1.116	$1 \cdot 118$	$1 \cdot 110$
$1 \cdot 129$	1-12.j	$1 \cdot 123$	1-120	1-118	$1 \cdot 115$	1-112	$1 \cdot 110$	$1 \cdot 107$	1-104	1-102
1.118	$1 \cdot 115$	$1 \cdot 113$	$1 \cdot 110$	$1 \cdot 108$	$1 \cdot 105$	$1 \cdot 102$	$1 \cdot 100$	$1 \cdot 017$	$1 \cdot 094$	1.092
1-108	1-105	1-103	$1 \cdot 100$	$1 \cdot 047$	1.094	1.092	1.000	1.087	1.084	1.082
1.03\%	1.095	1.093	1.000	1.087	1.054	1.082	1.0s0	1.077	1.074	1.072
1.088	1.085	1.058	$1 \cdot 050$	$1 \cdot 077$	$1 \cdot 074$	1.072	1.070	1.067	1.064	1.062
$1.07 \times$	1075	$1 \cdot 073$	$1 \cdot 070$	1.067	1.064	1.062	1.060	1.057	1.054	1.052
1.068	1.065	$1 \cdot 063$	1.060	1.057	1.054	1.052	$1 \cdot 050$	1.048	1.044	$1 \cdot 042$
1.058	$1 \cdot 055$	1.053	1.050	1.047	1.044	1.042	1.040	1.038	1.034	1.032
1044	1.045	$1 \cdot 043$	1.040	1.037	1.03t	$1 \cdot 032$	1.080	1.02 s	1.024	1-022
1.03S	1035	1.033	$1 \cdot(0) 30$	$1 \cdot 047$	$1 \cdot(124$	$1 \cdot(022$	1.020	1.018	1.014	1.012
1.02	1.025	$1 \cdot 093$	$1 \cdot 020$	1017	$1 \cdot 014$	$1 \cdot 012$	1.010	1.008	$1 \cdot 004$	1.002
1-018	$1 \cdot 015$	1.013	1.010	1007	1.004	1.002	1.000	0.998	0.904	0.992

TABLE 2-Continued.

55*.	60°.	65°.	70°.	75°.	80°.	85°.	90°.	95°.	100°.
1.312	1.308	1-304	1.300	.	..	\cdots
1.302	1.298	$1 \cdot 294$	$1 \cdot 290$	\cdots	.	.	\ldots	.	\ldots
1.293	1.259	$1 \cdot 254$	1.280	\cdots	\cdots	\cdots	\cdots	.	\cdots
1.283	$1 \cdot 279$	1.274	1.270
1-273	1.269	$1 \cdot 265$	$1 \cdot 260$
$1 \cdot 263$	$1 \cdot 259$	$1 \cdot 255$	1.250	.	\cdots	.	.	\cdots	.
1.252	1.248	1.244	1.240	.	\ldots	\ldots	..	\ldots	.
1.242	$1 \cdot 238$	1.234	$1 \cdot 230$	\cdots	\cdots
1.233	1-228	$1 \cdot 224$	$1 \cdot 220$
$1 \cdot 223$	1.218	1.214	1-210
$1 \cdot 210$	$1 \cdot 209$	1.204	1-200	.	\cdots	.	..	\cdots	-
$1 \cdot 204$	$1 \cdot 200$	$1 \cdot 195$	$1 \cdot 190$
$1 \cdot 194$	$1 \cdot 190$	$1 \cdot 185$	1-1s0	\cdots	\cdots	\ldots
1-183	1.170	$1 \cdot 175$	1-170	..	\cdots
1-172	1-168	1-164	1-160
$1 \cdot 162$	$1 \cdot 158$	$1 \cdot 154$	$1 \cdot 150$.	\cdots	\cdots	\cdots	\cdots	\cdots
1.152	1.148	$1 \cdot 144$	$1 \cdot 140$	\ldots	\ldots	.
$1 \cdot 143$	1'139	$1 \cdot 135$	$1 \cdot 131$	\cdots	\cdots	\cdots
1.135	1.131	1-127	1.123	\cdots	\cdots	\cdots	\cdots	..	\cdots
1-125	1-122	1-118	1-114
$1 \cdot 118$	$1 \cdot 113$	1-109	1-106		..	.	\cdots	\cdots	\cdots
$1 \cdot 107$	$1 \cdot 104$	$1 \cdot 100$	$1 \cdot 097$.			..		
$1 \cdot 099$	1.096	1.092	1.058	\ldots	.	..
1.059	1.056	1.052	1.078	\cdots	\cdots
1-079	1.075	1.072	1.008	.	.	.	\cdots	\cdots	.
$1 \cdot 069$	1.065	1.062	1.058	\cdots	\cdots
1.059	1.055	$1 \cdot 65$	$1 \cdot 048$.	\cdots	..	\cdots
1.049	$1 \cdot 045$	1.042].038	\cdots	..
1.036	$1 \cdot 035$	$1 \cdot 032$	1.023
1.039	$1 \cdot 025$	1.022	1.018	\cdots	..
1.019	1.015	1.012	1.008	\cdots	\cdots
1.009	$1 \cdot 005$	1.002	$0 \cdot 998$..	.	\cdots	\cdots		..
0.999	0.995	$0 \cdot 992$	0.988	\cdots	\cdots	\cdots
0.989	$0 \cdot 985$	0.982	0.978	-•

154 THE TECHNICAL CHEMISTS' HANDBOOK

3. SPHOIFIC GRAVITIES OF COMMFRCIAL (NORDHAUSEN) OIL OF VITRIOL.

(Messel, Joirn. Soc. Chem. Ind., 1885, p. 573.

Specimens.	Percentage of SO_{3}.	Specifle Gravity.	
		$\begin{aligned} & \Lambda \mathrm{At} \mathrm{80} 0^{\circ} \mathrm{F} \\ & =26^{\circ}{ }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { At } 60^{\circ} \mathrm{F} . \\ & =15 \cdot{ }^{\circ} \mathrm{C} \end{aligned}$
Liquid	$8 \cdot 3$	$1 \cdot 842$	1.852
Do.	$30 \cdot 0$	$1 \cdot 930$	1.940
Crystalline mass, resembling nitre .	40.0	$1 \cdot 956$	$1 \cdot 970$
Do. do.	44.5	$1 \cdot 961$	1.975
Do. do.	$46 \cdot 2$	1.963	1.977
	$59 \cdot 4$	1.980	1.994
Liquid	$60 \cdot 8$	$1 \cdot 992$	2.006
Do.	65.0	1.992	2.006
Do.	$69 \cdot 4$	$2 \cdot 002$	2.016
Crystallised	$72 \cdot 8$	1.984	1.988
Do. .	$80 \cdot 0$	1.959	1.973
Do.	$82 \cdot 0$	$1 \cdot 953$	1.967

. 4. FREEZING AND MELTING POINTS OF SULPHURIC ACID.*

Speciffc Gravity at 15 $^{\circ}$.	Freezing Point.	Meiting Point.
1.671	Liquid at -20°	
1.691	Liquid at -20°	\ldots
1.712	Liquid at -20°	\cdots
1.7 .27	-7.5°	$\cdots .5^{\circ}$
1.732	-8.5°	-8.5°
1.749	-0.2°	$+4.5^{\circ}$
1.767	$+1.6^{\circ}$	$+6.5^{\circ}$
1.778	$+8.5^{\circ}$	$+8.5^{\circ}$
1.790	$+4.5^{\circ}$	$+8.0^{\circ}$
1.807	-9.0°	-6.0°
1.822	Liquid at -20°	\cdots
1.840	Liquid at -20°	\cdots

* Lunge, Berichte d. deutsch. chem. Ges., 1881, s. 2649.

5. BOILING POINTS OF SULPHURIC ACID.
(Lunge, Der. d. d. chem. Ges., 11, 370.)

$\begin{gathered} \mathrm{Per} \\ \text { Cent. } \\ \mathrm{H}_{2} \mathrm{SO}_{4} . \end{gathered}$	Specific Gravity.	Boiling Point.	$\begin{gathered} \text { Per } \\ \text { Cent. } \\ \mathrm{H}_{2} \mathrm{SO}_{4} . \end{gathered}$	Speciflc Gravity.	Boiling	$\begin{gathered} \text { Per } \\ \text { Cent. } \\ \mathrm{H}_{2} \mathrm{SO}_{4} . \end{gathered}$	Specific Gravity.	Boiling Point.
5	1.031	Degrees. 101	56	$1 \cdot 459$	Degrees. 133	82	$1 \cdot 758$	Degrees. 218.5
10	1.069	102	60	$1 \cdot 503$	141.5	84	1.773	227
15	$1 \cdot 107$	$103 \cdot 5$	62.5	$1 \cdot 530$	147	86	1.791	$238 \cdot 5$
20	$1 \cdot 147$	105	65	$1 \cdot 557$	153.5	88	1.807	$251 \cdot 5$
25	1.184	106.5	$67 \cdot 5$	1.585	161	90	1.818	$262 \cdot 5$
30	$1 \cdot 224$	108	70	1.615	170	91	1.824	268
35	1.265	110	72	1.639	174.5	92	1.830	274.5
40	$1 \cdot 307$	114	74	1.661	180%	93	1.834	$281 \cdot 5$
45	$1 \cdot 352$	118.5	76	1.688	189	94	1.837	$288 \cdot 5$
50	$1 \cdot 399$	124	78	1.710	199	95	1.840	295
53	1.428	$128 \cdot 5$	80	1.733	207			

Monohydrate (100 per cent.) boils at 338° (Marignac).
6. BOILING POINTS OF OLEUM (FUMING SULPHURIC ACID).

Per cent. free SO_{3}.	Per cent. total SO.	Boiling Point C.	Barometric Pressure, mm.
3.64	82.3	212	759
9.63	83.4	170	759
26.23	86.45	125	759
42.84	89.5	92	759
63.20	93.24	60	759
97.2	99.5	43	759

7. TOTAL VAPOUR PRESBORE OF SULPHURIO

$\begin{gathered} \text { Percentage } \\ \mathrm{H}_{2} \mathrm{SO}_{4} \\ \text { Temperature. } \end{gathered}$	24-92.	30-46.	35.54.	41.01.	48.37.	54.24.	62\%81.	70.78
$55^{\circ} \mathrm{C}$	$95 \cdot 5$	86.8	78.2			\ldots		\ldots
60	$120 \cdot 7$	$111 \cdot 0$	$100 \cdot 1$	$84 \cdot 2$	$59 \cdot 8$	$44 \cdot 1$	\ldots	...
65	$153 \cdot 7$	$140 \cdot 6$	126.8	107*4	$79 \cdot 0$	$57 \cdot 3$	\ldots	
70	192.7	$176 \cdot 6$	159%	$136 \cdot 5$	$100 \cdot 4$	$74 \cdot 0$	$35 \cdot 4$	
75	$240 \cdot 2$	219.8	199.0	171.6	$126 \cdot 4$	$94 \cdot 1$	$45 \cdot 9$...
80	$295 \cdot 1$	$271 \cdot 3$	$245 \cdot 0$	211.8	1578	$118 \cdot 1$	$58 \cdot 0$	
85	$363 \cdot 3$	$332 \cdot 8$!	301.5	$261 \cdot 3$	19.) 9	$146 \cdot 4$	$73 \cdot 6$	
90	$439 \cdot 1$	$403 \cdot 4$	366.0	$317 \cdot 2$	$241 \cdot 2$	182.9	$92 \cdot 3$	$35 \cdot 5$
95	$532 \cdot 6$	488.2	$445 \cdot 4$	386.0	293.5	$223 \cdot 8$	$115 \cdot 8$	$44 \cdot 8$
100	$640 \cdot 8$	589.9	537.7	$465 \cdot 8$	$355 \cdot 6$	$267 \cdot 4$	$140 \cdot 0$	$57 \cdot 0$
105	759.6	$762 \cdot 7$	$646 \cdot 2$	5602	$429 \cdot 8$	325%	171%	$71 \cdot 0$
110	(10.4.3)	$\left(\begin{array}{c}107 \cdot 11) \\ \cdots\end{array}\right.$	$\left(\begin{array}{c} 757 \times 2 \\ (109 \cdot 56) \end{array}\right.$	670ヶ2	$515 \cdot 4$	$391 \cdot 9$	210'S	$89 \cdot 0$
115	\cdots	...	(...	$\left(\begin{array}{c} 749 \cdot 4 \\ (113 \cdot 21) \end{array}\right.$	$621 \cdot 9$	$470 \cdot 9$	$255 \cdot 3$	\cdots
120	$\left(\begin{array}{c}\text { (13 } \\ \cdots\end{array}\right.$	$\begin{gathered} 754 \cdot 0 \\ (120 \cdot 82) \end{gathered}$	561.8	308.0	$140 \cdot 4$
125	$662 \cdot 6$	368.5	$171 \cdot 3$
130	...	\ldots	\ldots	...	\ldots	$\begin{gathered} 753 \cdot 7 \\ (128 \cdot 7) \end{gathered}$	$438 \cdot 3$	205%
135	...	\ldots	\ldots	(128)	$517 \cdot 6$	$246 \cdot 3$
140	$612 \cdot 8$	291.2
145	\cdots	...	\cdots	\ldots	\ldots	\ldots	$\left\|\begin{array}{c} 745 \cdot 0 \\ (145 \cdot 85) \end{array}\right\|$	$355 \cdot 4$
150	(145 0)	426.9
155	\ldots	\ldots	...	$501 \cdot 5$
160	\ldots	589.0
165	...	\cdots	- \cdots	..	\ldots	\ldots	\cdots	$\left(\begin{array}{l} 740 \cdot 05 \\ (166 \cdot 47) \end{array}\right.$
170	...	\ldots	(108.47)
175	\cdots	\ldots
180	\|	\ldots	...	\ldots	...
185
190	...	\cdots	\cdots	...	\ldots	\cdots
195	\ldots
200	\cdots	\ldots	\cdots	...	\cdots
205	
210	\ldots	\ldots	\cdots	\cdots	...	\ldots
215	\ldots
220	
225	\ldots	\ldots
230	\cdots	\ldots	\cdots
235	...	\ldots	\cdots	\cdots	...	\cdots

158

 THE TECHNICAL CHEMISTS' HANDBOOK
8. SPECIFIC GRAVITIES AND PERCENTAGE OF FUMING OIL OF VITRIOL (OLEUM) AT DIFFERENT THMPERATURES.

Density at					$\underset{\text { Per Cent. }}{\mathrm{SO}_{3}}$
15°.	20°.	25°.	80°.	85°.	
1.8417	1.8371	1.8323	1.8287	1.8240	76.67
$1 \cdot 8427$	1.8378	1.8333	1.8295	1.8249	$77 \cdot 49 \cdot$
$1 \cdot 8428$	1.8388	$1 \cdot 8351$	1.8302	1.8255	$78 \cdot 34$
$1 \cdot 8437$	1.8390	1.8346	183300	18257	79.04
$1 \cdot 8427$	1-8386	$1 \cdot 8351$	$1 \cdot 8297$	18250	79.99
$1 \cdot 8420$	1.8372	1.8326	1.8281	$1 \cdot 8234$	$80 \cdot 46$
1.8398	18350	1.8305	1.8263	1.8218	$80 \cdot 94$
$1 \cdot 8446$	$1 \cdot 8400$	$1 \cdot 8353$	1.8307	1.8262	$81 \cdot 37$
1.8509	1.8466	1.8418	1.8371	$1 \cdot 8324$	$81 \cdot 91$
1.8571	$1 \cdot 8522$	1.8476	1.8432	1.8385	$82 \cdot 17$
1-8697	1.8647	1.8595	18545	1.8498	82.94
1.8790	1.8742	1.8687	1.8640	1.8592	$83 \cdot 25$
1.8875	1.8823	1.8767	1.8713	1.8661	83.84
1.8942	1.8888	1.8833	1.8775	1.8722	$84 \cdot 12$
18990	18940	1.8890	1.8830	1-8772	$84 \cdot 33$
$1 \cdot 9034$	$1 \cdot 8984$	$1 \cdot 8930$	1-8874	18820	84.67
1.9072	$1 \cdot 90 \% 1$	$1 \cdot 8950$	18900	$1 \cdot 8845$	84.82
1.8095	$1 \cdot 9042$	$\underline{1} \cdot 8986$	$1 \cdot 8932$	$1 \cdot 8866$	84.99
$1 \cdot 9121$	$1 \cdot 9053$	$1 \cdot 8993$	1-8948	$1 \cdot 8892$	$85 \cdot 14$
1.9250	1.9193	$1 \cdot 9135$	1.9082	$1 \cdot 9023$	85.54
$1 \cdot 9290$	1.9236	$1 \cdot 9183$	1.9129	$1 \cdot 9073$	85.68
1.9368	$1 \cdot 9310$	$1 \cdot 9250$	$1 \cdot 9187$	$1 \cdot 9122$	85.88
1.9447	$1 \cdot 9392$	1-9334	$1 \cdot 9279$	1-9222	86.51
1.9520	$1 \cdot 9465$	$1 \cdot 9402$	$1 \cdot 9338$	1.9278	$86 \cdot 72$
$1 \cdot 9584$	$1 \cdot 9528$	$1 \cdot 9466$	1.9406	$1 \cdot 9340$	87.03
1.9632	1.9573	1.8518	1.9457	$1 \cdot 9398$	87.46
cryst.	cryst.	$1 \cdot 9740$	$1 \cdot 9666$	$1 \cdot 9740$	88.00

The above table is only intended for control in works, but not for commercial purposes, because the specific gravity is anything but a certain guide for the percentage of Nordhausen acid, and altogether fails as such, for strengths just below the monohydrate. The table was not made for chemically pure acids, but for commercial acid.

9. FUSING POINTS* OF SULPHURIC ACID AND OF NORDHAUSEN OIL OF VITRIOL. (KNIETSCH.)

Sulphuric Acid.				Nordhausen Oil of Vitriol.	
$\begin{aligned} & \text { Percentage } \\ & \text { of } \mathrm{SO}_{3} \\ & \left(\mathrm{as} \mathrm{H}_{2} \mathrm{H}_{4}\right) . \end{aligned}$	Fusing Point. ${ }^{\circ} \mathrm{C}$.	$\begin{aligned} & \text { Percentage } \\ & \text { of } \mathrm{SO}_{3} \\ & \left(\text { as } \mathrm{H}_{2} \mathrm{SO}_{4}\right. \text {). } \end{aligned}$	Fusing Point. ${ }^{\circ} \mathrm{C}$.	Percentage of free SO_{3}.	Fusing Point. ${ }^{\circ} \mathrm{C}$.
Per cent. $1 \mathrm{SO}_{3}$	- $0 \cdot 6$	Per cent. $69 \mathrm{SO}_{3}$	+ $7 \cdot 0$	Per cent. 0 SO	$+10 \cdot 0$
	- 1.0	70 ,"	+ 4.0	5 ,	+100 +3.5
3 ,"	- 1.7	71 ,"	-1.0	10 ,,	- 4.8
	- 2.0	72 ,,	- 2.0	15 ,,	- 11.2
5 ,	- 2.7	73 ,	- 16.2	20 ,,	- $11 \cdot 0$
6 ,	- 36	74 "	-250	25 ,	- $0 \cdot 6$
7 ,"	- 4.4	75 ,	$-34 \cdot 0$	30 ,,	$+15.2$
8 , ,	- $5 \cdot 3$	$76) 66^{\circ}$	$-32 \cdot 0$	35 ,	$+26 \cdot 0$
	- $6 \cdot 0$	77 Be	$-33 \cdot 0$	40 .,	+33.8
10 ,"	- 6.7	78 -	-16.5	45 .,	$+34 \cdot 8$
11 ,"	- 7×2	79 ,	- $5 \cdot 2$	50 .,	$+28.5$
12 ,	- 79	80 ,	+ 30	55	+18.4
13 ,	- 8.2	81 ,	+ 70	60 ,	$+0.7$
14 ,	- $9 \cdot 0$	82 ,"	+ $8 \cdot 2$	65 ,.	+ 0.8
15 .,	- 93	83 ,,	- 0.8	70 ,	+9.0
16 ,	- 9.8	84 ,	- 9.2	75 ,	+17*2
17 "	$-11 \cdot 4$	85 ",	$-11 \cdot 0$	80 ,",	$+22.0$
18 ,	$-13 \cdot 2$	86	-2.2	85 ,	+33.0 (27) \dagger
19 ",	$-15 \cdot 2$	87 ,	$+13 \cdot$	90 ,	+34.0 (25)
20 ,	$-17 \cdot 1$	88 ,	+26.0	95 ,	+36.0 (26)
21 ",	-22.5	89 ,	$+34 \cdot 2$	100 "	$+40 \cdot 0$ (15)
22 ,	$-31 \cdot 0$	90 ,	$+34 \cdot 2$		
23 ",	$-40 \cdot 1$	91 ,	+25.8		
... , , $\}$	below	92 ,	$+1.42$		
\ldots	-40	33 ",	+ 0.8		
61 ,	-40.0	94 ,	+ 4.5		
62 "	-20.0	95 ,,	+14.8		
63) 60°	$-11 \cdot 5$	96 ,	$+20 \cdot 3$		
64 Bé	- 48	97 ",	$+29 \cdot 2$		
65 ,	- 4.2	98 ,	$+33.8$		
66 \%	+ 12	99 ,	$+36.0$		
$67{ }^{67} 62^{\circ}$	+8.0 +8.0	100 ,	$+40 \cdot 0$		
68) Bé	$+8.0$				

* "rusing l'oint" is understixul to the the temperature to which the mercury of the thermometer, dipping into the solidifying liquid, rises and at which it remains constant. It should be noticed that largc quantities of Nordhausen oil of vitriol, such as exist in transportation vessels, frequently do not behave in accord with the above data, because during the carriage and storage a separation often takes place in the acid, crystals of a different concentration being formed, which of course possess a correspondingly different fusing point.
\dagger The figures in parentheses signify the fusing points of freshly made Nordhausen oll of vitriol, which has not polymerised.

160 'THE TECHNICAL CHEMISTS' HANDBOOK

10. PERCENTAGE OF SO_{3} IN OLEUM.

	Equivalent per cent. $\mathrm{H}_{2} \mathrm{SO}_{4}$.	Per cent. Total $\mathrm{SO} \mathrm{O}_{3}$		Equivalent per cent. $\mathrm{H}_{2} \mathrm{SO}_{4}$.	Per cent. Total $\mathrm{SO})_{3}$.	边	Equivalent per cent. $\mathrm{H}_{2} \mathrm{SO}_{4}$.	Per cent. Total SO_{3}.
0	$100 \cdot 00$	$81 \% 3$	34	$107 \cdot 65$	87.88	68	$115 \cdot 30$	$94 \cdot 12$
1	$100 \cdot 23$	81.82	35	$107 \cdot 88$	$83 \cdot 06$	69	$115 \cdot 53$	$94 \cdot 31$
2	$100 \cdot 45$	$82 \cdot 00$	36	$108 \cdot 10$	85.25	70	$115 \cdot 75$	$94 \cdot 49$
3	$100 \cdot 68$	$82 \cdot 18$	37	$103 \cdot 33$	88.43	71	115.98	$94 \cdot 67$
4	$100 \cdot 90$	$82 \cdot 37$	38	10855	$88 \cdot 61$	72	$116 \cdot 20$	$94 \cdot 86$
5	$101 \cdot 13$	82.55	39	103.78	88.80	73	116.43	$95 \cdot 04$
6	$101: 35$	$82 \cdot 73$	40	109.00	88.98	74	116.65	95.22
7	$101 \cdot 58$	$82 \cdot 92$	41	$109 \cdot 23$	89.16	75	116.88	95.41
8	$101 \cdot 80$	$8.3 \cdot 10$	42	109.45	$89 \cdot 35$	76	$117 \cdot 10$	$95 \cdot 59$
9	102.03	$83 \cdot 29$	43	$109 \cdot 68$	89:53	77	$117 \cdot 33$	$95 \cdot 78$
10	$102 \cdot 25$	$83 \cdot 47$	44	109.90	8971	78	$117 \cdot 55$	$9.7 \cdot 96$
11	102.48	$83 \cdot 65$	45	$110 \cdot 13$	89.90	79	$117 \cdot 78$	$96 \cdot 14$
12	$102 \cdot 70$	83.84	46	$110 \cdot 35$	9008	80	$118 \cdot 00$	$96 \cdot 33$
13	$102 \cdot 93$	84.02	47	$110 \cdot 58$	$91 \cdot 27$	81	$118 \cdot 23$	96.51
14	$103 \cdot 15$	$84 \cdot 20$	48	$110 \cdot 80$	$90 \cdot 4$.	82	118.45	96.69
15	$103 \cdot 38$	$84 \cdot 39$	49	111.03	90.63	83	118.68	96.88
16	$103 \cdot 60$	8.4.57	50	111%	90.82	84	$118 \cdot 90$	$97 \cdot 06$
17	103.83	84.76	51	111.48	91.00	85	$119 \cdot 13$	97×2
18	104.05	$84 \cdot 94$	5	111.70	91.18	86	$119 \cdot 35$	$97 \cdot 43$
19	$104 \cdot 28$	$85 \cdot 12$	- 53	111.93	$91: 37$	87	$119 \% 8$	$97 \cdot 61$
20	$104 \cdot 50$	85.31	; 54	$112 \cdot 15$	91.55	88	119.80	$97 \cdot 80$
21	$104 \cdot 73$	85.49	55	$112 \cdot 38$	91.73	89	$120 \cdot 03$	$97 \cdot 98$
22	$104 \cdot 95$	85.67	1.56	$112 \cdot 60$	91.92	90	$120 \cdot 25$	$98 \cdot 16$
23	$105 \cdot 18$	$85 \cdot 86$	57	$112 \cdot 83$	$92 \cdot 10$	91	$120 \cdot 48$	$98 \cdot 35$
24	10540	$86 \cdot 04$	- 58	113.05	$92 \% 9$	92	$120 \cdot 70$	$98 \cdot 53$
25	$105 \cdot 63$	$86 \cdot 22$	59	$113 \cdot 28$	92.47	93	$120 \cdot 93$	98.71
26	$105 \cdot 85$	$86 \cdot 41$	60	$113 \cdot 50$	$92 \cdot 65$	91	$121 \cdot 15$	$98 \cdot 90$
27	106.08	$86 \cdot 59$	61	113.73	$92 \cdot 84$	95	$121 \cdot 38$	$99 \cdot 08$
28	106.30	86.78	62	113.9	93.02	96	$121 \cdot 60$	$99 \cdot 28$
29	106\%3	86.96	63	$114 \cdot 18$	$93 \cdot 20$	97	$121 \cdot 83$	99.45
30	106.75	$87 \cdot 14$	64	114.40	$93 \cdot 39$	93	$122 \cdot 05$	99.63
31	106.98	$87 \cdot 33$	65	$114 \cdot 63$	93-57	99	$122 \cdot 28$	$99 \cdot 82$
32	$107 \cdot 20$	87.51	66	11.4 .85	$93 \cdot 76$	100	$122 \cdot 50$	$100 \cdot 00$
33	$107 \cdot 43$	$87 \cdot 69$	67	$115 \cdot 08$	$93 \cdot 94$

11. SPECIFIC GRAVITY OF LIQUID SULPHUR DIOXIDE.

Temp.	Sp. Gr.	Temp	Sp. Gr.	Temp.	nr. Gr.
$-20{ }^{\prime}$	$1 \cdot 485$	$10^{\prime \prime}$	$1 \cdot 409$	35°	1-344
$-10^{\prime \prime}$	1-4it0	15°	$1 \cdot 396$	40°	$1 \cdot 326$
5	1.448	20°	$1 \cdot 383$	50°	$1 \cdot 296$
0°	$1 \cdot 485$	$25^{\prime \prime}$	$1 \cdot 369$	$60^{\prime \prime}$	$1 \cdot 263$
5	$1 \cdot 422$	$30^{\prime \prime}$	$1: 356$

12. SPECIFIC GRAVITY OB SULPHUROUS ACID SOLUTIONS. (Pellett.)

13. The Quantitative Examination of Sulphurous Acid and Sulphites.

The quantitative estimation of free sulphurous acid is made by titration with standard hydroxide, using either phenolphthalein or methyl orange as indicator, but not litmus. With phenolphthalein, the colour change to red is reached when the normal salt $\mathrm{Na}_{3} \mathrm{SO}_{3}$ is formed, so that 1 c.c. of normal alkali corresponds to 0.03203 g . SO_{2}, but with methyl orange, the change to yellow is reached at the formation of NaHSO_{3}, so that 1 c.c. of normal alkali corresponds to 0.06406 g . SO_{2}.

The reducing property of sulphuric acid serves also as a basis for its estimation. The mothod consists in running the acid into a decinormal iodine solution, 1 c.c. of which indicates $0.003203 \mathrm{~g} . \mathrm{SO}_{2}$.

A combination of the two methods of estimation enables the percentage of normal sulphite, acid sulphite, and free sulphurous acid present in a solution to be estimated.

14. The Quantitative Examination of Free Sulphuric Acid.

The quantitative examination of free sulphuric acid is made by titrating a weighed quantity. It is not sufficiently accurate to measure the acid by a pipette, etc., especially in the case of concentrated acid. The titration is performed by means of standard sodium hydroxide solution, and the results are expressed in terms of $\mathrm{H}_{2} \mathrm{SO}_{4}$.

Weigh from 2 to 3 g . acid in a glass-tap pipette (Fig. 14, p. 172), after cleaning the latter on the outside ; run its contents into at least 100 c.c. water, and weigh the pipette again, uithout washing it out. This enables another pipette full of acid to be taken and tested, without washing and drying the instrument, and so forth. The same procedure is also very well adapted for slightly fuming mixtures of sulphuric and nitric acid, and for Nordhausen oil of vitriol ($\quad f$. p. 171).

The standard sodium hydroxide solution is "normal," i.e. containing 0.04001 g . NaOH per c.e. It is controlled by means of standard hydrochloric acid ($0 \cdot 03647 \mathrm{~g}$. H('l per c.c.), the strength of which has been fixed by pure sorlium carbonate.

As indicator, methyl orange is used always in the cold, and so much only is taken that the colour produced is just visible. Nitrous acid destroys this colouring matter, but ordinary commercial acid never contains sufficient to cause any trouble, and even "nitrous vitriol" or fuming nitric acid can be treated with methyl orange, if the indicator is added (or renewed) shortly before the last quantity of alkali has been added; or else an excess of alkali is alded, then methyl orange, and titrated back. Nitrous acid hehaves towards methyl orange like the strong mineral acids ; that is, the change of colour takes place when the compound NaNO_{2} has been formed.

15. Examination of Sulphuric Acid for other Substances.

(a) Nitrous Acid (Nitrososulphuric Acid) is titrated with seminormal permanganate. This can be done without loss of NO by manipulating as follows (Lunge, Berliner Berichte, x., 1075):-Put the nitrous vitriol into a burette fitted with a glass tap, run it slowly into a measured quantity of permanganate, diluted with five times its volume of tepid water $\left(30^{\circ} \mathrm{C}\right.$. to $40^{\circ} \mathrm{C}$.), and agitate continuously till the colour just vanishes. Sometimes during this process a little manganese dioxide is separated, which makes it difficult to recognise the end of the reaction; but this is avoided by keeping the temperature not above 40° and by diluting the permanganate, say to 200 c.c. (The same method
holds good for the analysis of sodium nitrite, but in this case the permanganate solution must be previously acidulated to such an extent that the NaNO_{2} solution is immediately decomposed

TABLE FOR ESTIMATING NITROUS VITRIOL.

Employ 50 c.c. of seminormal permanganate. The results are expressed as INO_{3} and NaNO_{3}. The column y refers to acid of 140° Tw. as unit :-

	HNO_{3}.		NanOs.			HNO:.		NaNO_{3}.	
	$\begin{aligned} & \text { q.i.er } \\ & \text { fitrer } \end{aligned}$	$\underset{\substack{\text { p.er } \\ \text { cernt. }}}{ }$	$\stackrel{a .}{\substack{a . \\ \text { y. } \\ \text { intrer } \\ \text { itre. }}}$	$\begin{gathered} l \\ \substack{t \\ \text { c.r } \\ \text { cent. }} \end{gathered}$		$\begin{aligned} & \text { a. .i.er } \\ & \text { siter } \\ & \text { liter. } \end{aligned}$	$\begin{gathered} \text { bor } \\ \text { cor } \\ \text { cent. } \end{gathered}$	$\begin{aligned} & a . \\ & \text { g. per } \\ & \text { litre. } \end{aligned}$	$\begin{gathered} \text { b. } \\ \text { per } \\ \text { cent. } \end{gathered}$
10	78	$4 \cdot 61$	106	6.	36	21	$1 \cdot 23$	53	173
11	71\%9	$4 \cdot 19$	96.63	$5 \cdot 65$	37	$21 \because 2$	$1 \cdot 24$	28.72	1.68
12	$65 \cdot 63$	3.84	88.58	$5 \cdot 18$	38	20.72	$1 \% 1$	27.97	$1 \cdot 64$
13	60\%	$3 \cdot 54$	81.76	$4 \cdot 78$	39	$\because 0 \cdot 1$	$1 \cdot 18$	27×2	1.59
14	56.25	3.29	75.92	$4 \cdot 11$	40	$1: 969$	$1 \cdot 15$	26.53	$1 \cdot 55$
15	52.50	$3 \cdot 07$	$70 \cdot 86$	4.11	41	$19 \% 1$	$1 \cdot 12$	25.83	$1 \cdot 51$
16	49.22	$2 \cdot 88$	$66^{\circ} 13$	$3 \cdot 8$	42	18.75	$1 \cdot 10$	25.31	1.48
17	$46 \cdot 32$	2.71	62.52	$3 \cdot 6$	43	18.27	1.07	$24 \cdot 66$	$1 \cdot 44$
18	43.75	$2 \cdot 56$	$59 \cdot 05$	$3 \cdot 45$	41	$17 \cdot 90$	1.05	$24 \cdot 16$	$1 \cdot 41$
19	$41 \cdot 15$	$2 \cdot 42$	55.05	$3 \cdots 7$	45	17.76	1.02	23.57	$1 \cdot 38$
20	39.38	$2 \cdot 30$	53.15	$3 \cdot 11$	46	17.12	1.00	$23 \cdot 11$	$1 \cdot 35$
21	37.50	$2 \cdot 19$	$50 \cdot 61$	$2 \cdot 96$	47	16.72	0.978	$22 \cdot 57$	$1 \cdot 32$
22	35.80	$2 \cdot 09$	$48 \cdot 32$	$2 \cdot 83$	43	$16 \cdot 41$	$0 \cdot 960$	$22 \cdot 15$	$1 \cdot 30$
23	34.24	$2 \cdot 00$	46.21	2.70	49	16.01	$0 \cdot 938$	$21 \cdot 65$	1×27
24	32.81	$1 \cdot 92$	44.28	2.59	50	15.75	$0 \cdot 921$	$21 \cdots 26$	$1 \cdot 21$
25	31.50	1.81	42.52	$2 \cdot 49$	5	14.32	$0 \cdot 8: 37$	$19 \cdot 33$	$1 \cdot 13$
26	$30 \cdot 29$	$1 \cdot 77$	$40 \cdot 88$	$2 \cdot 39$	60	$13 \cdot 13$	0.768	17.72	1.04
27	$29 \cdot 17$	1.71	39.37	$2 \cdot 30$	65	$12 \cdot 12$	0.709	16.36	$0 \cdot 957$
28	$28 \cdot 13$	$1 \cdot 65$	$37 \cdot 97$	$2 \cdot 2$	70	$11 \% 5$	0.653	$15 \cdot 18$	0.888
29	$27 \cdot 16$	$1 \cdot 59$	$36 \cdot 66$	$2 \cdot 14$	75	10\%5	$0 \cdot 614$	$14 \cdot 17$	$0 \cdot 829$
30	26.25	1-54	$35 \cdot 13$	$2 \cdot 07$	80	$9 \cdot 85$	$0 \% 76$	$13 \cdot 29$	$0 \cdot 777$
31	$25 \cdot 40$	$1 \cdot 49$	34\%	$2 \cdot 00$	85	$9 \div 6$	0.512	12.00	0.731
32	$24 \cdot 61$	$1 \cdot 44$	33×2	$1 \cdot 94$	90	8.73	$0 \cdot 511$	11.78	$0 \cdot 689$
33	23.86	$1 \cdot 40$	$32 \cdot 20$	1.83	95	$8 \cdot 9$	$0 \cdot 485$	$11 \cdot 19$	$0 \cdot 654$
34	$23 \cdot 16$	$1 \cdot 35$	31.26	$1 \cdot 83$	100	$7 \cdot 83$	$0 \cdot 461$	10.64	622
35	22.50	$1 \cdot 32$	$30 \cdot 37$	1.78					

N.B.-The figures in column a also indicate 0.01 lb a avoirdupois per gallon, or nearly ounces per cubic foot.
when run into the permanganate.) Each cubic centimetre of the permanganate indicates 0009502 g . $\mathrm{N}_{2} \mathrm{O}_{3}$, hence more or less of it is employed, according as to whether an acid containing more or less $\mathrm{N}_{2} \mathrm{O}_{3}$ is titrated. For chamber acid, employ at
most 5 c.c.; for good Gay-Lussac acid, up to 50 c.c. of permanganate. If the quantity of permanganate is called x, and that of the vitriol consumed for decolorising it !, the quantity of $\mathrm{N}_{2} \mathrm{O}_{3}$ present in grams per litre of acid is:-

$$
\begin{gathered}
9.502 x \\
y \\
\mathrm{HNO}_{3}=15 \cdot 75 x \\
y \\
\mathrm{NaNO}_{3}=\frac{21 \cdot 253 x}{y}
\end{gathered}
$$

Calculated as
as

The preceding talle, p. 163, saves the calculation for all cases in which $x=50$. The column ! gives the number of cubic centimetres of nitrous vitriol used, a the percentage in grams per litre, and b the percentage hy weight, for acid of $140^{\prime \prime}$ Tw. (For other strengths the percentage by weight is calculated hy dividing the figures of column a hy $10 \times$ specific gravity.)
(b) Total Nitroyen Acids.-These are contained in sulphuric acid as $\mathrm{N}_{3} \mathrm{O}_{3}$, or more correctly as nitrososulphuric acid, $\mathrm{SO}_{2}(\mathrm{OH})(\mathrm{ONO})$, and HNO_{3}. NO can be present only in minute quantity, and only in absence of $\mathrm{HNO}_{3} . \mathrm{N}_{2} \mathrm{O}_{4}$ is decomposed by sulphuric acid into nitrososulphuric and nitric acid. The estimation made according to (a) only indicates $\mathrm{N}_{2} \mathrm{O}_{3}$. The total nitrogen acids are converted into NO by shaking up the nitrous vitriol with mercury ; the quantity of NO formed is estimated by volume (Crum's reaction). This is done hy Lunge's Nitrometer, Fig. 11, p. 165. Fill the graduated limb a with mercury by raising the level tube b; put the three-way tap so that it communicates with any of the openings; run the nitrous vitriol into the top cup of a from a 1 c.c. pipette graduated in $10 \overline{0}$ c.c., employing only 0.5 c.c. of very strong, but up to 5 c.c. of very weak nitrous vitriol ; lower the level tube, open the tap carefully so that the vitriol runs in without any air entering ; pour 2 or 3 c.c. of pure strong sulphuric acid, free from nitrogen compounds, into the cup; let this acid enter the nitrometer, and repeat the washing of the cup with 1 or 2 c.e. of pure acid. Start the evolution of gas by taking the tube a out of the clamp, inclining it several times till almost horizontal, and suddenly righting it again, so that mercury and acid are well mixed; shake for one or two minutes till no more gas is evolved. Place the tubes so that the mercury in b is as much higher than that in a as is required for balancing the acid in a; this requires 1 mm . of Hg for $6 \frac{1}{2} \mathrm{~mm}$. of acid. An exact reading can only be obtained when the gas has attained the temperature of the room and all froth has subsided. Read off the volume of the gas, also a thermometer hung up close by, and the barometer. In order to check the levelling, open the
tap, when the level of a should not change. If it rises, the pressure has been in excess, and the reading must be increased a little, say by 0.1 c.c. If it sinks, the reverse is the case, i.e. always in the opposite sense to the change of level. Another plan is, to put a little acid into the cup before opening the tap. This will be sucked in if the pressure was too low, or raised if too high. With adroit manipulation the reading can then soon be corrected. Finally, lower the graduated tube a, lest any air should enter on opening the tap; open the tap, raise the tube b,

Fig. 11.
force the gas and all acid into the cup, and turn the tap so that the acid flows through into a vessel held below ; the last portions are drawn off by hotting-paper. The nitrometer is then ready for the next experiment.
Λ test must always be made to see whether the glass tap is gas-tight. It will hardly remain so without greasing it occasionally with vaseline, but this ought to be done very slightly, so as to avoid any grease getting into the bore, for if the grease comes in contact with acid, troublesome froth is formed.*

[^6]
166 THE TECHNICAL CHEMIS'IS' HANDBOOK

This process is interfered with by the presence of sulphurous acid, the best test for which is the smell. To remove it, the acid is stirred up with a very small quantity of powdered potassium permanganate. Any great excess of this acid makes the process very troublesome and inaccurate.

In highly concentrated acids a notable quantity (up to 3 per cent. by volume) of NO may be dissolved; therefore a little water must be added to such acids in the nitrometer, sufficient to reduce their strength to about 90 per cent. $\mathrm{H}_{2} \mathrm{SO}_{4}$. The volume of NO read oft is reduced to $0^{\circ} \mathrm{C}$. and 760 mm . ($32^{\circ} \mathrm{F}$. and 29.92 in .) by means of the tables, pages 20 et seq., and calculated for the nitrogen compounds present by the table on this page, in which column a gives milligrams, b per cent. by weight, when employing 1 c.c. acid of $140^{\circ} \mathrm{Tw}$.

(Multuples of thene ligures alegiven in Table 27, p. 73.)
Nitrometers (and gas-volumeters) should of course be obtained from a reliable dealer, so that the correctness of the graduations and the tightness of the taps can be depended upon.

The reduction to 0 and 760 mm . can be effected without thermometer and barometer, and without the use of any tables, by means of Lunge's (ias-rolumeter, Fig. 12, which serves also for numerous other analytical operations. It consists of the gas-measuring tube A, the reduction tube B, and the level tube C, all connected by thick rubber tuling with the threc-way tube a. B and C are held in two arms of the same clamp, so as to be each either individually movable in its own arm, or both together by means of the common clamp. 'Jube Λ may be an ordinary nitrometer with three-way tap and funnel; it is, however, best employed merely as a gas-measuring tube, and for some purposes this tube is made to hold upwards of 100 c.c., in which case the upper portion is in the shape of a bulb, the division beginning below this, say, at 90 or 100 c.c. The most convenient shape,
which serves both for small and large quantities of gas, is a tube possessing a bulb in the middle, and graduated above this from 0 (at the tap) to 40 c.c., below the bulb from 100 to 140 c.c. A two-way tap, !, allows communication either with the straight outlet tube h, or with the right-angle tube e.

Instead of carrying out the decomposition in tube A, it is decidedly preferable to employ for this purpose a separate tube D , provided with a two-way tap f, a funnel d, and an outlet tube c, corresponding to the tube e on Λ. D has its own

Fio. 12.
level tube E. All these tubes are held in clamps, which can be moved up and down on the two bars of a heavy iron stand.

The "reduction tube" B is enlarged at the top, and the narrow portion below is graduated from 100 to 125 c.c. in ${ }^{1} \frac{10}{6}$ c.c. It contains a volume of dry air which at 0° and 760 mm . pressure would occupy exactly 100 c.c. This is obtained by taking, once for all, a reading of the thermometer and the barometer, and calculating what would be the volume of 100 c.c. of dry air under the prevailing atmospheric conditions. In reading the barometer, a deduction must be made for the expansion of the mercury, viz., 1 mm . between 0°

168 THE TECHNICAI. CHEMISTS' HANDBOOK

and $12^{\circ}, 2 \mathrm{~mm}$. between 13° and $19^{\circ}, 3 \mathrm{~mm}$. between 20° and 25°. For calculating the volume of 100 c.c. air at "normal conditions" from the observed temperature t and the barometric reading b (corrected as above), we have the formula :-

$$
\mathrm{V}=\frac{100(273+t) 760}{273 b}
$$

A drop of concentrated sulphuric acid is previously introduced through the open end of b, most conveniently ly suction After setting the level in B to the point indicated by the equation, the capillary end of b is sealed liy fusing it up; in order to prevent the heat from expanding the air in B, a cardboard shield is put between the flame and B.

This is avoided by replacing the open capillary tube b by Lunge's "beaker-tap" (Ber., 18e2, p. 3157), and still hetter by Gückel's gas-tap with annular mercury seal.

The "laboratory vessel" or "decomposition tube" D, in which the reaction is carried out, is provided with the fittings of an ordinary nitrometer, viz., the three-way tap f, the cup, d, the lateral outlet c, and the special level tube E. It holds about 150 c.c. and is not graduated. Mercury is poured in through E. By raising E , the vessel D is completely filled with mercury, till it begins to run out at c. The tap f is shut, the end of r closed by a glass or rubber cap, and the nitrous vitriol placed in d; this is suckerl into D, then some pure acid sucked in, to wash the cup and tap, tap f closed (no bubbles of air must remain below it!), and the decomposition brought about in the usual manner by shaking the vitriol with the mercury, to evolve all the nitrogen acids as NO. The tubes D and A are then brought opposite to each other (A having been previously filled, ly raising C, with mercury till it flows out at e); c and e are joined by a short piece of rubber tubing till they touch, so that no air remains in the space between ; C is lowered, E raised, and by cautiously opening tap f, the NO contained in 1) is transferred into A. As soon as all the gas is in A, and the acid following it has filled the narrow tube e, tap ! is closed. Now tube C is raised till the mercury in B has risen to the mark 100 , and B and C are simultaneously moved up or down, as may be repuired, till the levels in A and 13 coincide, that in B being still at 100 c.c. Since the air in B is now compressed to the point which it would occupy in the dry state at $0^{\prime \prime}$ and 760 mm ., and the gas in A is placed under exactly the same pressure (the temperature of these two parallel tubes being presumably the same), the reading in A gives the volume of NO reduced to the same conditions of 0° and 760 mm . The temperature in A and B must be exactly the same; this is ensured by the conductivity of the mercury, but in the case of large quantities of NO it is necessary to wait at least ten minutes before finally adjusting the levels.

If only one gas-volumeter is available, and that is adjusted for moist gases (as is required for other purposes), it may be used also for dry gases, but it is then necessary to avoid any sulphuric acid passing from D into A , and to suck a drop of water into A, before transferring the gas into it from D. Another way for measuring $d r y$ gases with a moist reduction tube is as follows :-observe the temperature ; take the tension of aqueous vapour corresponding to this from the table, $\mathrm{p} .36=f$, and adjust the mercury in the measuring tube Λ higher by $f \mathrm{~mm}$. than in the reduction tube B , where as usual, the mercury is adjusted by means of the level tube C to the point marking $100 \cdot 00$ c.c. If, on the other hand, a reduction tube has been prepared for $d r y$ gases, hy introducing a drop, of concentrated acid, it may be used for moist gases (as in the testing of mangancse ore, bleaching powder, potassium permanganate, etc.), by adjusting the merenry in A f mm. lower than in B.
(c) Relative Proportions of the three Nitrogen Acids.-In order to find from the resilt of the permanganate titration and from the estimation of total nitrogem in the nitrometer (ass $N()$) the relative proportions of $\mathrm{N}_{2} \mathrm{O}_{3}, \mathrm{~N}_{2} \mathrm{O}_{4}$, and HNO_{3} in a mixture of all three nitrogen acids absorbed ly sulphurie acid, we may employ the following formula :-
$a=$ c.c. NO found in the nitrometer.
$b=$ c.e. O, calculated from the permanganate titration.
(1 c.e. $0=14292 \mathrm{mg}$. ; 1 e.c. seminormal permanganate
$=0.004 \mathrm{~g} .=2 \cdot 7975$ (.c. oxygen.)
$x=$ vols. N() , corresponding to the $\mathrm{N} . \mathrm{O}$. present.
$\stackrel{y}{y=}=\ddot{\text { NO, }} \quad, \quad, \quad, \quad, \quad$ NO, \quad, \quad,
If $4 b$ be $>a$,
$x=4 b-a ; y=2(a-2 b)$, or $-a-x$.
If $4 b$ be $<a$,
$y=4 b ; z=a-4 b$.
(d) Qualitative Test for Traces of Nitrogen Acids.-These can
be detected by means of diphenylamine. Dissolve a few grams
of diphenylamine in 100 parts of pure sulphurie acid. This acid
should be completely free from nitrogen oxides, and can be made
so, if not at hand, ly boiling with a trace of ammonium sulphate.
Dilute the acid with ${ }^{1}$ th volume of water before dissolving the
diphenylamine. This solution may be employed at once, or kept,
as it keeps quite well. Pour about 2 c.c. of the vitriol to be
tested into a test-tube, and add about 1 c.c. of the diphenylamine
solution so that the layers mix only gradually. In the case of
dilute acids, or other lighter liquids, proceed in the opposite manner.
The slightest traces of nitrogen acids are detected hy the appear-
ance of a brilliant blue colour at the area of contact of the liquids.

The smallest traces of nitrous acid are detected, even in the presence of nitric acid, by the reagent proposed by Griess, as modified by Ilosvay and by Lunge. This reagent is prepared by (1) dissolving 0.5 g. sulphanilic acid in 150 c.c. dilute acetic acid; (2) boiling 0.1 g. solid α-naphthylamine with 20 c.c. water, pouring the colourless liquid off from the purple residne, and mixing it with 150 c.c. dilute acetic acid. The two solutions are united, and can thus be kept for an indefinite time in a bottle, well protected against air (which often contains traces of nitrogen acids). Add a few c.c. of this solution to the solution to he tested, and heat to 70° or 80°. If as little as 1 part nitrons acid be present in 1000 million parts of the liquid, a red colour is formed in about one minute. More concentrated solutions of HNO_{3}, say $1: 1000$, do not yield the hlue colour, but a yellow solution.

In the presence of selenium the diphenylamine test fails, as Se gives the same reaction as nitrogen acids. In that case test for somewhat large quantities of nitrogen acids by the decoloration of indigo solution ; for traces, by the reddening of a solution of brucine sulphate.
(c). Selenium in sulphuric acid can be recognised ly adding to the acid a strong solution of ferrous sulphate, when a brownishred precipitate will make its appearance, which cannot be confused with the colour produced by NO. It can also be recognised by the green colour, produced in a solution of codein.
(f) Examination for Lead.-Dilute the acid, if concentrated, with an equal volume of water and twice its volume of alcohol. Allow the mixture to stand for some time, filter any precipitate of PbSO_{4}, wash it with dilute alcohol, and dry and ignite in a porcelain crucible, burning the filter separately. $1 \mathrm{~g} . \mathrm{PbSO}_{1}=0.6829$ g. Pb .
(g) Examination for Iron.-Boil the acid, if free from nitrogen, with a drop of nitric acid to oxidise the iron. Dilute a little, allow to cool, and add a solution of potassium thiocyanate. A red colour proves the presence of iron. If there is not too little, it can be quantitatively estimated in another sample by heating with pure zinc (free from irom), pouring off from the zine, washing the latter, allowing to cool, and titrating with permanganate. This is best employed as ${ }_{20}^{10}$ th normal, indicating 0.002792 g . Fo per cubic centimetre. Not less than 50 c.c. of the acid should be taken for this test, as it gencrally contains very little iron.

The smallest traces of iron can be estimated colorimetrically (Lunge, Zsch.f. anyew. Chem., 1896, p. 3).
(h) Arsenic is detected qualitatively by the well-known methods of Marsh or of Reinsch. For quantitative estimation dilute 20 c.c. of the acid with water, and treat with a current of SO_{2}, until there is a strong smell of the gas. This reduces $\mathrm{As}_{2} \mathrm{O}_{6}$ to $\AA_{s_{2}} \mathrm{O}_{3}$, but it requires a long time and a considerable excess of

SO.. Now drive off this excess by heating and passing in a current of CO_{2}, neutralise exactly with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and a little NaHCO_{3}, add starch and titrate with decinormal iodine. 1 c.c. of the iodine solution indicates 0.00495 g . $\mathrm{As}_{2} \mathrm{O}_{3}$. (Any considerable proportion of iron should be previously removed.)
(i) Chlorides.-Buil 10 c.c. of the acid in a flask, pass the vapours on to the surface of a little water, contained in a flask, and estimate the absorbed HCl acidimetrically, or after neutralising with $\mathrm{Na}_{2} \mathrm{CO}_{3}$, by titrating with decinormal silver nitrate (p. 174).

16. Analysis of Fuming Sulphuric Acid (Oleum) and of Sulphuric Anhydride.

Although other tests are often carricd out (among which that for arsenic is the most usual) the estimation most frequently made is that of the total acidity.

The substance is either weighed in glass bulbs or in a glass-tap tube. The former are very thin bulbs of about 2 cm . diameter, ending on each side in a capillary tube. Melt the acid, if solid, till it is completely homogeneous, and suck 3 g . to 5 g . into the bulb, which ought to be half-filled with it. The sucking is best done by means of a bottle closed with a rubber cork, through which passes a tightly fitting glass tap, connected at its free end with a rubber tube. Suction is applied to the latter, the tap closed, the rubber tube drawn over one of the capillary ends of the weighing bulb, and by opening the tap a sufficient quantity of acid admitted into the bulb. The tube is cleaned ontside, and one of the capillary ends is scaled off. The other end can be left open without fear of any loss of SO_{3} or attraction of moisture during weighing. The weighing is best done on a small platinum crucible with two nicks,

Fia. 13. on which the ends of the bulb can rest. If the latter should be accidentally broken, the acid rums into the crucible, not on to the balance. Put the bubb, after weighing, open end downwards into a small Erlenmeyer flask, into the neck of which it ought to fit exactly (Fig. 13), and which contains so much water that the capillary tube dips well into it, to prevent any loss of SO_{3} on mixing the acid with water. Break off the other point, allow the acid to run out, squirt a few drops of water into the upper capillary, and ultimately rinse the whole bulb tube by repeated aspiration of water. Dilute the liquid to 500 c.c. and take 50 c.c. for each test. This is done with $\frac{1}{5}$ normal sodium carbonate solution (1 c.c. $=0.008007 \mathrm{~g} . \mathrm{SO}_{3}$), and methyl
orange as indicator. From the acidity found, that due to SO_{2} is deducted, which is ascertained by titrating another sample with iodine.

Lunge and Rey's glass-tap pipette (Fig. 14) (the taps of which must be tight without greasing !) is more convenient than the bulb tube. Shut the lower tap c, open the upper tap a, apply suction (with the mouth) at d, and shut a whilst sucking. Immerse the point e in the acid to be tested, and open c; the partial vacuum in bulb b suffices for drawing up

Fio. 14. enough acid, which must not be allowed to reach the tap c. Shat c, clean the point p, put the pipette in the outer glass vessel f, and weigh. Take the pipette out of f, place it point downwards in water, and slowly run out the contents. Then squirt some water from above into b, allow to stand for a moment, and rinse thoroughly with water.

The strongest fuming oil of vitriol cannot be run directly into water without loss. Such oil of vitriol is weighed out in small glass bulbs, as described above; both ends are sealed up, the bulb is placed in a bottle containing a considerable quantity of water, the stopper put in, the bulb broken by shaking the bottle, and after waiting a little the solution titrated.

Solid products of this class must be melted by moderate heating; they then remain long enough in the liquid state to complete the weighing and running out without being heated again. But products which are not far removed from real SO_{3} in composition would give out too much vapour in this operation. Such products are weighed out in a stoppered bottle, and mixed in this with a known and exactly analysed quantity of monohydrate, at a temperature of 30° to $40^{\circ} \mathrm{C}$. This ought to produce a mixture containing about 70 per cent. SO_{3} which will remain liquid at ordinary temperatures.

If only 0.5 to 1 g . of acid has been weighed off, titrate directly. This is more accurate than diluting and titrating only part of the liquid, but the latter method cannot be avoided when a larger quantity of acid has been weighed.

The acidimetric determination, of course, indicates the total percentage of acid. From this we must deduct in the first instance any SO_{2} present. This is estimated in the usual way by decinormal iodine, and for each c.c. of this 0.05 c.c. normal sodium carbonate solution is deducted (since with methyl orange the
colour changes when SO_{2} has passed into NaHSO_{3}). If we call the c.c. of normal sodium carbonate used $=n$, those of decinormal iodine used for the same quantity of oil of vitriol $=m$, the acidity due to $\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{SO}_{3}$ is $=(n-0.05 \mathrm{~m}) 0.040035 \mathrm{SO}_{3}$. To the SO_{3} thus found add the SO_{2} (calculated $=0.0032035 \mathrm{~m}$), and assume the residue to be water.* By multiplying this $\mathrm{H}_{2} \mathrm{O}$ by 4445 , we obtain the quantity of SO_{3} combined with it to form $\mathrm{H}_{2} \mathrm{SO}_{4}$, and by deducting this from the total SO_{3} acidity, that of the free SO_{3}.

PLANT TEST FOR FREE TRIOXIDE IN OLEUM.

Curtis and Miles have deseribed a simple test which can be applied by a workman on the plant. The apparatus required is of the simplest kind-an carthenware jug or mug holding about a pint, two glass cylinders each holding 200 c.e., and a thermometer, which is proferably protected by sealing into a light iron case perforated with holes at the lower end.

To carry out the test, measure 200 c.c. of sulphuric acid (92.5 to 91.5 per cent.) into the mug and have ready 200 c.e. of oleum in the cylinder. 'lake the temperature of each, and then quickly jour the olcum into the acid, stirring vigorously all the time. Note the maximum temperature of the mixture, and calculate the increase, I, as follows :-

$$
I=t_{\text {mivtur }}-\frac{t_{\text {arid }}+t_{\text {oldum }}}{2}
$$

Reference to the table helow gives the percentage of free anhydride :-

Increase Temp Temp. I.	Per cent. SO_{3}	$\begin{gathered} \text { Increase } \\ \text { of } \\ \text { Temp. } I . \end{gathered}$	$\begin{aligned} & \text { Prr rent. } \\ & \text { SO }{ }^{2} . \end{aligned}$	$\left\{\begin{array}{c} \text { lncrease } \\ \text { of } \\ \text { Temp. } I . \end{array}\right.$	Per cent. SO_{3}.	Increase of 'Temp. I.	$\begin{array}{\|c\|} \hline \text { Per cent. } \\ \mathrm{SO}_{3} . \end{array}$
1		11	$5 \cdot 9$	21	$12 \cdot 1$	31	$18 \cdot 7$
2	$0 \cdot 0$	12	6%	22	$12 \cdot 8$	32	$19 \cdot 4$
3	$0 \cdot 6$	13	7%	23	134	33	$20 \cdot 1$
4	$1 \cdot 3$	14	$7 \cdot 8$	24	$14 \cdot 1$	34	$20 \cdot 8$
5	$2 \cdot 0$	15	8:	25	14.7	35	$21 \cdot 4$
6	$2 \cdot 6$	16	$9 \cdot 7$	26	$15 \cdot 4$	36	$22 \cdot 0$
7	$3 \cdot 2$	17	$9 \cdot 1$	27	$16 \cdot 0$	37	$22 \cdot 7$
8	$3 \cdot 9$	18	$10 \cdot 3$	28	$16 \cdot 7$	38	$23 \cdot 4$
9	$4 \cdot 6$	19	$10 \cdot 9$	29	$17 \cdot 4$	39	$24 \cdot 1$
10	$5 \cdot 3$	20	$11 \cdot 5$	30	$18 \cdot 0$	40	$24 \cdot 7$

The results from this table are correct to within ± 0.5 per cent. The strength of the sulphuric acid may vary from 92.5 to 94.5 per cent. but should not go outside these limits.

* In case any weighable quantity of solid impurities is present, this must also, of course, be deducted.

174 THE TECHNICAL CHEMISTS' HANDBOOK

V. SALTCAKE AND HYDROCHLORIC ACID.

A.-Salt (Common Salt, Rock-Salt.)

1. Moisture.-Ignite 5 g . of salt, in a covered platinum crucible (to prevent loss by spirting); heat first quite gradually, then for some minutes, up to a low red heat. If the sample is too damp, or if several samples are to be tested at the same time, weigh off the 5 g . samples in flat-bottomed Erlenmeyer flasks, with funnels on, heat a number of these on a sand-bath for three or four hours to 140° or 150° (without funnel), and allow them to cool with the funnel in, which saves the use of a desiccator. Afterwards the small remainder of chemically combined water may be removed by heating on a wire-gauze, but this is mostly unnecessary.
2. Insoluble matter:-Dissolve 5 g ., filter the insoluble matter, wash, dry, and ignite.
3. Chlorine.-Weigh off 5.8 .16 g . of the moist salt, dissolve it, and dilute to 500 c.c. ; take out 25 c.c. by means of a pipette, add so much of a solution of neutral potassium chromate that the liquid is distinctly yellow, and titrate with decinormal silver solution. Add the silver solution from a 50 c.c. burette, till the precipitate, even after agitation, shows a distinct but faint pink colour. 0.2 c.c. is deducted from the number of cubic centimetres of silver solution used, as being required for producing the colour. The remainder, multiplied by 2, gives the percentage of NaCl in the salt. In lieu of potassium chromate, sodium arsenate may be employed as indicator. This is even more sensitive, and no deduction from the silver solution used should be made in this case.
4. Lime.-Dissolve 5 g . of the salt in water, if necessary with the aid of a little HCl. When analysing impure rock-salt, the treatment with dilute HCl must be continued for some time. in order to dissolve all CaSO_{4}. It is also necessary to filter off any clay, etc., but non-argillaceous salt ought to dissolve completely, excepting any grains of sand and the like. In the clear solution precipitate the lime with ammonia and ammonium oxalate, allow to stand for twelve hours, filter the precipitate through a fine filter-paper in a well-shaped funnel (cf. p. 134), wash, dry, and ignite it in a platinum crucible till it is completely converted into CaO . This is done by first gently heating till the calcium oxalate is decomposed, and then igniting at nearly a white heat for twenty minutes, either over a gas blowpipe or, more conveniently, in a Hempel's gas-oven or over a Muencke burner. One part CaO is equal to $2.4281 \mathrm{CaSO}_{4}$, and is calculated as such.
5. Sulphates.-Dissolve 10 g . of the salt in tepid water, with addition of a little hydrochloric acid. Dilute to 1 litre, filter through a dry pleated filter, and precipitate $250 \mathrm{c.c} .(=2 \cdot 5 \mathrm{~g}$. salt $)$ by barium chloride ($c f$. p. 134). The sulphate is usually calculated as CaSO_{4}.
6. Magnesium Chloride may be titrated directly by drying the salt, extracting it with alsolute alcohol, filtering, evaporating off the alcohol from the filtrate (which contains nothing but MgCl_{2}), and titrating with silver nitrate.

B.-Saltcake (Sulphate of Soda).

(N.B.-Nos. 1 and 2 are sufficient for the daily checking of the manufacture; the others are employed for saltcake when bought and sold.)

1. F'ree Acid.-Dissolve 20 g . saltcake, dilute to 250 c.c., take out 50 c.c. with a pipette, add methyl orange, and titrate with standard sodium carlonate to the point of neutralisation. Each cubic centimetre of the standard alkali is equal to 1 per cent. SO_{3}. The total acidity is calculated as SO_{3}, including HCl and NaHSO_{4}. (If litmus were employed as indicator, the presence of salts of iron and alumina would cause trouble in the titration; with methyl orange this is not the case.)
2. Sodium C'hloride. - 'Take another 50 c.c. of the solution made for the test No. l, add the same quantity of standard alkali as used for this test, so that the acid is exactly neutralised, then a little neutral potassium chromate, and titrate with decinormal silver solution, as in $\Lambda, 3$. Each cubic centimetre of silver solution (after deducting 0.2 from the whole) is equal to 0.1462 per cent. NaCl . Or else employ a solution containing $2 \cdot 906 \mathrm{~g} . \mathrm{AgNO}_{3}$ per litre and indicating 0.001 g . NaCl per cubic centimetre. This would, in the present case, indicate 0.025 per cent. NaCl per cubic centimetre.
3. Iron.- Dissolve 10 g . of sulphate in water, reduce the iron salts to the ferrous state by a little sulphuric acid and zinc, and titrate with potassium permanganate.
4. Residue, insoluble in water, is estimated as usual, if present.
5. Lime.-Dissolve 10 g . in water, if necessary with a little HCl ; add $\mathrm{NH}_{4} \mathrm{Cl}$ and NH_{3}, precipitate with ammonium oxalate, ignite, and weigh as CaO . If any appreciable quantity of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ has been found, this must be deducted.
6. Magnesia is precipitated in the filtrate from No. 5 by ammonium phosphate; allow to stand for twenty-four hours; filter, wash with dilute ammonia, dry, ignite, and weigh the magnesium pyrophosphate, of which 1 part $=0.3621 \mathrm{MgO}$.
7. Alumina.-The solution of the saltcake is precipitated by ammonia (free from CO_{2}). The precipitate is ignited and weighed.

176 THE 'TECHNICAL, CHEMISTS' HANDBOOK

Deducting the weight of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ found in No. 3, the remainder is $=\mathrm{Al}_{2} \mathrm{O}_{3}$.
8. Sodiam Sulphate (divert estimation).-Dissolve 1 g . of the saltcake; precipitate any lime together with ferric oxide, etc., as in No. 5 ; filter; evaporate the filtrate to dryness after adding a few drops of pure sulphuric acid ; ignite; repeat this after adding a small piece of ammonium carbonate, and weirh. Deduct from this weight (1) the NaCl found in test No, 2, calculated for $\mathrm{Na}_{4} \mathrm{SO}_{4}\left(1 \cdot 0000 \mathrm{NaCl}=1 \cdot 2151 \mathrm{Na}_{2} \mathrm{SO}_{4}\right.$, or each cubic centimetre of decinormal silver solution employed in test No. $2=0.001776 \mathrm{~g}$. $\mathrm{Na}_{3} \mathrm{SO}_{4}$) ; (2) the MgO found in test No. 6 calculated as MgSO_{4} ($1.000 \mathrm{MgC}=2.9859 \mathrm{MgSO}_{4}$). The remainder is equal to the sodium sulphate actually present in 1 g . saltcake.

C.-Chimney-Testing.

Act of I'arliament.- By the Alkali Works Regulation Act of 1906, it is enacted that "Every alkali work shall be carried on in such a manner as to secure the condensation to the satisfaction of the chicf inspector, (a) of the muriatic acid gas evolved in such work to the extent of 95 per centum, and to such an extent that in each cubic foot of air, smoke, or chimney gases escaping from the works into the atmosphere, there is not contained more than one-fifth part of the grain $[=0.457 \mathrm{~g}$. per cubic metre $]$ of muriatic acid; (b) of the acid gases of sulphur and nitrogen which are evolved in the process of the manufacture of sulphuric acid in that work to such an extent that the total acidity of such gases in each cubic foot of residual gases after completion of the process, and before admixture with air, smoke, or other gases, does not exceed what is equivalent to four yrains of sulphuric anhydride; (c) in the residual gases from the concentration or distillation of sulphuric acid, the total acidity of gases in each cubic foot must not exceed the equivalent of $1 \frac{1}{2}$ grain of sulphuric anhydride."

IIydrochloric Acid in C'himney Gases.- In order to ascertain the HCl in chimney gases, an aspirator is used known as Fletcher's Hexible aspirator, or bellows. This aspirator is supposed to draw at one aspiration one-tenth of a cubic foot. It is not safe to trust to this supposed capacity, and moreover the capacity of a new aspirator varies for some time. To ascertain the real capacity, fill a very large beaker or other cylindrical vessel with water, and invert it under water. Completely fill the aspirator with air, and expel this air into the inverted beaker. Mark the point to which the beaker is filled when the water inside the beaker is level with that outside. Measure the capacity of the beaker to that mark ; say it contains V cubic centimetres of water.

Then the number of aspirations which must be made with this aspirator in order to draw 1 cubic foot of air is :-

$$
\mathrm{N}=\frac{28290}{\mathrm{~V}}
$$

or if the capacity of the beaker is measured in grains:-

$$
\mathrm{N}=\frac{436485}{\mathrm{~V}}
$$

N will usually be a mixed number, but the nearest integral number is substituted, and it will be safest to substitute the next higher integral number. Thus, if N be found $9 \cdot 3$, it will be safest to consider 10 as the number of aspirations necessary to draw 1 cubic foot. The aspirator must be air-tight. The gas is withdrawn from the chimney through a glass tube, which should be sufficiently long to reach a considerable distance into the chimney, say 6 feet. The glass tube should be of at least $\frac{1}{2}$ in. diameter, otherwise the aspiration is tedious. In flues where the temperature is too high for glass, a porcelain tube may be employed. The bellows and tube are washed with distilled water until the washings give no reaction with silver nitrate. 100 or 200 cubic centimetres of distilled water, free from chloride, are then charged into the bellows, and after each aspiration the gas is well washed by shaking the contents of the aspirator violently. When the number N of aspirations has been made, some water is forced into the glass tube, and allowed to flow back into the bellows to wash out any acid which may have condensed in the tube. The liquid is then transferred into a porcelain dish (or into a beaker standing on a poreclain slab). If the liquid is so highly charged with soot that it would be impossible to recognise the change of colour, it must be filtered through a filter previously washed free from chlorides. The liquid is then oxidised by adding sufficient hydrogen peroxide to oxidise the sulphur dioxide to sulphuric acid; the total acidity is then determined by titration with standard alkali, using methyl orange as indicator. The chloride in the neutralised solution is then determined by titration with centinormal silver nitrate using potassium chromate as indicator.

Sometimes black or green precipitates are formed which render the ondpoint a matter of uncertainty. The Alkali Inspectors recommend the following procedure to ensure freedom from "black" tests :-

After titration with sodium carbonate for total acidity, about $0 \% \mathrm{~g}$. of calcium or magnesium carbonate is added, followed by 5 to 10 drops of ferric sulphate solution (5 per cent.) ; stir for one minute, decant and filter the solution, and titrate with centinormal silver nitrate in the usual way.

The "grains per cubic foot" in the gas is found by multiplying the cubic centimetres of centinormal silver nitrate solution used by 0.05633 .

D. -Hydrochloric Acid.

1. SPECIFIC GRAVITY OF PURE HYDROCHLORIC ACID AT 16° C. COMPARED WITH WATER AT 4°, AND REDUCED TO VACUUM. (Lunge and Marchlewski.)

Degrees Twaddell.	Specific Gravity at $\frac{15^{\circ}}{4^{\circ}}$ in vacuo.	100 parts by weight correspond to parts by weight of			$\begin{gathered} 1 \text { litro } \\ \text { contains } \\ \text { g. of } \\ \text { HCl. } \end{gathered}$	1 cubic foot contains lbs. of HCl .
		HCl .	Acid of spec. gravity $1 \cdot 1425$ $=2 \mathrm{~s} \cdot 5^{\circ} \mathrm{Tw}$.	Acid of spec. gravity 1-152 $=30 \cdot 4^{\circ} \mathrm{Tw}$.		
0	1.000	$0 \cdot 16$	0.57	$0 \cdot 53$	$1 \cdot 6$	$0 \cdot 10$
1	1.005	$1 \cdot 15$	4.08	$3 \cdot 84$	12	$0 \cdot 75$
2	$1 \cdot 010$	$2 \cdot 14$	$7 \cdot 60$	$7 \cdot 14$	22	$1 \cdot 37$
8	1.015	$3 \cdot 13$	$11 \cdot 80$	$16 \cdot 41$	32	$1 \cdot 99$
4	$1 \cdot 020$	$4 \cdot 13$	14*6	$13 \cdot 79$	42	$2 \cdot 62$
5	1025	$5 \cdot 15$	18.30	$17 \cdot 19$	53	$3 \cdot 30$
${ }^{6}$	1.030	$6 \cdot 15$	$21 \cdot 85$	20.53	64	$3 \cdot 99$
7	1.035	$7 \cdot 15$	$25 \cdot 40$	$23 \cdot 57$	74	$4 \cdot 61$
8	1.040	$8 \cdot 16$	28.90	$27 \cdot 24$	85	$5 \cdot 30$
9	1.045	$9 \cdot 16$	$32 \cdot 55$	$30 \cdot 5.5$	96	$5 \cdot 98$
10	1.050	$10 \cdot 17$	$36 \cdot 14$	$33 \cdot 95$	107	$6 \cdot 67$
11	1.055	$11 \cdot 18$	39.73	$37 \cdot 33$	118	$7 \cdot 35$
12	1.060	$12 \cdot 19$	$43 \cdot 32$	$40 \cdot 70$	129	$8 \cdot 04$
13	1.065	$13 \cdot 19$	$46 \cdot 87$	44.()4	141	$8 \cdot 79$
14	1.070	14.]7	50.35	47.31	152	$9 \cdot 48$
15	1.075	$15 \cdot 16$	$53 \cdot 87$	50.62	163	$10 \cdot 16$
16	$1 \cdot 080$	$16 \cdot 15$	57.39	$53 \cdot 92$	174	$10 \cdot 85$
17	$1 \cdot 055$	$17 \cdot 13$	60.87	$57 \cdot 19$	186	$11 \cdot 69$
18	1-0:10	$18 \cdot 11$	64.35	60.47	197	$12 \cdot 28$
19	$1 \cdot 095$	$19 \cdot 04$	67.73	$63 \cdot 64$	209	18.03
20	$1 \cdot 100$	20.01	71-11	66.81	220	13.71
21	$1 \cdot 105$	$20 \cdot 6$	$74 \cdot 52$	70.01	232	14.46
22	$1 \cdot 110$	21.92	77.89	$73 \cdot 19$	243	$16 \cdot 15$
23	$1 \cdot 115$	$22 \cdot 86$	$81 \cdot 23$	76.32	255	15.90
24	$1 \cdot 120$	23.82	84.64	$79 \cdot 53$	267	$16 \cdot 65$
25	$1 \cdot 125$	$24 \cdot 78$	88.06	82.74	278	$17 \cdot 38$
20	$1 \cdot 130$	$25 \cdot 75$	91.50	$85 \cdot 97$	291	$18 \cdot 14$
27	$1 \cdot 135$	$26 \cdot 70$	94.88	$89 \cdot 15$	303	$18 \cdot 89$
28	$1 \cdot 140$	$27 \cdot 66$	$95 \cdot 29$	92.35	815	19.64
29	$1 \cdot 145$	$28 \cdot 61$	$101 \cdot 67$	$95 \cdot 52$	82 K	$20 \cdot 45$
30	1.150	$29 \cdot 57$	$105 \cdot 08$	$98 \cdot 73$	840	$21 \cdot 20$
31	$1 \cdot 155$	80.55	$108 \cdot 58$	102.00	853	22.01
32	1-160	$31 \cdot 52$	112.01	$105 \cdot 24$	366	22.82
83	1-165	32.49	$115 \cdot 46$	108.48	379	$23 \cdot 68$
84	$1 \cdot 170$	$83 \cdot 46$	$118 \cdot 91$	111.71	392	24.44
85	1.175	34.42	$122 \cdot 32$	114.92	404	$25 \cdot 19$
86	$1 \cdot 180$	35.39	$125 \cdot 76$	$118 \cdot 16$	418	26.06
37	$1 \cdot 185$	$36 \cdot 31$	129.03	$121 \cdot 23$	430	26.81
88	$1 \cdot 190$	$87 \cdot 23$	$132 \cdot 30$	$124 \cdot 30$	443	$27 \cdot 62$
89	$1 \cdot 195$	$88 \cdot 16$	$185 \cdot 61$	$127 \cdot 41$	456	28.48
40	$1 \cdot 200$	$39 \cdot 11$	138.98	180.58	469	$29 \cdot 24$

SALTCAKE AND HYDROCHLORIC ACID

2. INFLUENCE OF TEMPERATURE ON THE SPEOIFIO GRAVITY OF HYDROCHLORIC ACID.

3. ANALYSIS OF HYDROCHLORIC ACID.

(a) Estimation of HCl .-Mcasure off, by means of an accurate pipette, 10 c.c. of the acid, the specific gravity of which should be known, dilute to 200 c.c., take out 10 c.c. Or else employ a glasstap pipette, as described on p. 172 for fuming sulphuric acid; in this case its contents are run into water and employed directly for

180 THE TECHNICAL CHEMISTS' HANDBOOK

titration. Add sodium carbonate, free from chloride, till the reaction is neutral or faintly alkaline. This point will be hit quickly, and without the loss of many drops for testing, if the percentage of the acid is ascertained from its specific gravity by the table (p. 178) and the corresponding quantity of sodium carbonate solution is run in from a burette. Now add a little neutral potassium chromate, and titrate with decinormal silver solution till a faint pink colour is produced (cf. p. 174). Deduct 0.2 c.c. from the silver solution employed; the remainder, multiplied by 72.94 and divided by the specific gravity of the acid, indicates its percentage of HCl . This test would fail in the presence of metallic chlorides, which are, however, hardly ever present in appreciable quantity in ordinary hydrochloric acid. The free HCl can also be ascertained by estimating the total acidity and deducting therefrom that due to sulphuric acid, making allowance for any sodium sulphate present.
(b) Estimation of S'ulphuric Acid.-Ncutralise the acid almost, but not quite, with sodium carbonate free from sulphate, and precipitate the sulphuric acid by barium chloride, as on p.134. If the acid be partially saturated with NH_{3}, or not saturated at all, the result is too low. Each part of BaSO_{4} is equal to $0.3430 \mathrm{SO}_{3}$.
(c) Estimation of Iron.-Reduce this toferrons iron by digesting the acid for a short time with a rod of zinc free from iron, wash the rod, dilute the whole with water, add some manganous chloride or sulphate (in order to counteract the action of HCl on permanganate), and titrate with a twenticth normal solution of potassium permanganate, each cubic centimetre of which indicates 0.002792 g . Fe. In case of SO_{2}, being present, this must first be oxidised to sulphuric acid, before reducing the ferric salt and titrating.
(d) Pree Chlorine.-Introduce a sample of the acid into a flask, remove the air from the empty space by CO, ; shake the acid with a strip of clean metallic copper. The latter is converted into chloride by the free chlorine, and the copper thus dissolved can be detected by potassium ferrocyanide, cte. This will show the smallest traces of chlorine. For ordinary purposes it is sufficient to heat the acid gently and hold a strip of KI starch paper in the vapour ; this will at once turn blue in the presence of free (l.
(e) Sulphur Dioxide.-Oxidise with permanganate, or iodine, or $\mathrm{H}_{2} \mathrm{O}_{2}$ to sulphuric acid, estimate the total $\mathrm{H}_{2} \mathrm{SO}_{4}$ now present as in No. 2, and deduct the quantity there found ; the remainder $=\mathrm{SO}_{2}$.
(f) Arsenic.-Reduce all to trichloride by passing in SO_{2} for some time, and precipitate by $\mathrm{H}_{2} \mathrm{~S}$ as $\mathrm{As}_{2} \mathrm{~S}_{3}$. Wash the precipitate, dissolve it on the filter in ammonia, evaporate the solution in a glass or porcelain dish, dry at $100^{\prime \prime}$, and weigh. One part $\mathrm{As}_{2} \mathrm{~S}_{3}$ $=0.6091 \mathrm{As}=0.8041 \mathrm{As}_{2} \mathrm{O}_{3}$.

VI. BLEACEING POWDER AND CHLORATE OF POTASH MANUFACTURE.

A.-Natural Manganese Ore.

1. Manganese Dioxide.-Weigh $1 \cdot 0866 \mathrm{~g}$. of manganese ore, ground as fine as possible, and dried for some time at $100^{\circ} \mathrm{C}$.; put it into the Hlask (Fig. 15) closed by a rubber (Bunsen) valve, or, preferably, into a Hask provided with a Contat-Göckel bulb (Fig. 16), which has been half-filled with a concentrated solution of sodium carbonate; put into the flask 75 c.c. (in three portions with a 25 c.c. pipette) of a solution containing

Fio. 15.

Fig. 16.

100 g . pure crystallised ferrous sulphate and 100 c.c. pure concentrated sulphuric acid, diluted to 1 litre, and standardised on the same day by means of the same 25 c.c. pipette, with decinormal potassium permanganate. Close the flask with its cork or valve, and heat till the manganese is completely decomposed, leaving a light-coloured residue. On cooling, the valve must act properly, which will be seen by the collapsing of the rubber tube, Fig. 15, or by the running in of sodium carbonate solution, Fig. 16. After complete cooling add 200 c.c. of water, and titrate with potassium permanganate to a faint pink coloration. Deduct the quantity of permanganate required from that corresponding to the 75 c.c. of iron solution ; the remainder indicates for each cubic centimetre 0.02173 g , equal to 2 per cent. MnO_{2}.
2. Carbon Dioxide is estimated gravimetrically by expelling it with dilute sulphuric or nitric acid and absorbing it with sodalime, by means of the apparatus and process described fully in Cumming and Kay's Quantitative Analysis (5th Edition), pp. 215 and 219.
3. Estimation of the Hydrochloric Acid required for Decomposing the Ore.-Dissolve 1 g . of manganese ore in a flask provided
with a reflux condenser in 10 c.c. of ordinary strong hydrochloric acid the titre of which is known, employing heat as far as necessary. Allow the solution to cool, and add standard alkali till reddishbrown flakes of ferric hydroxide appear, which do not redissolve on agitation. Calculate the standard alkali corresponding to the acid employed for dissolving the ore, and deduct the quantity thus found from the 10 c.c. first employed.

B.-Recovered Manganese Mud and Weldon Liquors.

1. MnO_{2} in Wreldon Mrud.-Standardise an acid iron solution (100 g . pure crystallised ferrous sulphate +100 c.c. pure concentrated sulphuric acid in 1 litre) by seminormal potassium permanganate, by diluting 25 c.c. of the former with 100 c.c. or 200 c.c. of cold water, and adding the permanganate from a stopcock burette, till, on agitating, the pink colour is not discharged immediately, but remains at least for half a minute. Subsequent decolorisation is not taken into account. This test should be made once each day. Call the cubic centimetres of permanganate employed x. Now, put another 25 c.c. of the iron solution into a beaker. Take 10 c.c. of manganese mud out of the well-shaken bottle (mere stirring does not ensure a proper mixture) containing it ; wash the pipette outside, run its contents into the beaker containing the iron solution, and wash the mud remaining inside into the same beaker. When all has dissolved, on agitating, add 100 c.c. of water, and titrate ly potassium permanganate. The number of cubic centimetres now used we call y. ${ }^{-}$The quantity of MnO_{2} in grams per litre of mud equals $2 \cdot 173(x-y)$.
2. Total Manganese of the Mud, expressed in Grams of theoretically possible MnO_{2} per Litre.-Take 10 c.c. of the mud, with the same precautions as in test No. 1. Boil with strong hydrochloric acid till all chlorine is driven off; saturate the excess of acid by ground marble or precipitated calcium carbonate ; add a concentrated filtered solution of bleaching powder; boil a few minutes till the colour turns a decided pink, and the excess of bleaching powder can be smelt, and again destroy the pink colour by adding alcohol drop by drop. All manganese is now present as MnO_{2}; filter and wash. The filtrate should not produce any brown colour with a bleaching-powder solution, which would show the presence of Mn in solution. Continue the washing till starch and KI do not give any reaction. Transfer the filter with the precipitate into 25 c.c. of the acid iron solution employed in test No. 1. If all MnO_{2} is not dissolved, add another 25 c.c. of iron solution; dilute with 100 c.c. of water, and titrate with permanganate. Calculation as in No. 1.
3. Estimation of the "Base," i.e. the Monoxides, etc., of the Mud which combine with HCl without yielding Free Chlorine.-Dilute 25 c.c., or in case of a very rich base 50 c.c., of normal oxalic acid (63.03 g . crystallised oxalic acid in 1 litre) to 100 c.c. ; heat to $60^{\circ}-80^{\circ} \mathrm{C}$., add 10 c.c. manganese mud by means of a pipette, with the precautions stated in No. 1, and agitate till the colour of the precipitate is no longer yellowish but pure white, which ought to take place very soon at the above temperature. Dilute to 202 c.c. (2 c.c. correspond to the volume of the precipitate, and are marked on the neck of the 200 c.c. flask) ; pour through a dry filter, and titrate 100 c.c. of the filtrate with standard alkali, employing phenolphthalein as indicator. (Methyl orange is not applicable for oxalic acid.) Call the number of cubic centimetres of standard alkali used, z. The oxalic acid serves (1) for reducing the MnO_{2} with formation of MnO and CO_{2}; (2) for saturating the MnO thus formed; (3) for saturating the monoxides originally present, i.e. the base. The oxalic acid not thus used is equal to $2 z$. The acid used for reducing MnO_{2} is equal to that used for neutralising the MnO formed, and both amounts together are equal to the value $x-y$ obtained by the MnO_{2} test, since the oxalic acid is normal and the permanganate half normal. The amount of oxalic acid consumed by the bases of the mud is found by deducting from the total acid used that required for the MnO_{2} $(x-y)$, and that which was not neutralised at all by the $\operatorname{mud}=2 z$, therefore in all $x-y-2 z$. The "base " is equal to the ratio of this value to that found in test No. 1, viz., $\frac{x-y}{2}$.
It is, therefore, if 25 c.c. of oxalic acid had been employed, equal to :

$$
\frac{50-2 x-4 z+2 y}{x-y}=\binom{50-1 z}{x-y}-2 ;
$$

or, if 50 c.c. had been employed, equal to :-

$$
\binom{100-4 z}{x-y}-2 .
$$

C.-Limestone.

1. Insoluble Matter.-Dissolve 1 g . in hydrochloric acid, filter the residue, wash, dry, and ignite. In the presence of appreciable quantities of organic matter, weigh the filter after drying at 100°, and ignite afterwards. The difference is calculated as organic matter.
2. Lime.-Dissolve 1 g . in 25 c.c. normal hydrochloric acid and titrate with normal alkali. Deduct the volume of the latter used from 25 and multiply the remainder by 2.8 to find the percentage of CaO , or by 5 to find that of CaCO_{3}. (N.B.-Here

184 THE TECHNICAI. CHEMISTS' HANDBOOK

MgO is calculated as CaO . This is admissible for most limestones employed in alkali and bleaching-powder making, because they contain but little Mg() ; otherwise the MgO or MgCO_{3} found as in No. 3 must be deducted.)
3. Maynesia need only be estimated in limestone used for manganese recovery. Dissolve 2 g . of limestone in HCl , precipitate the CaO by NH_{3} and ammonium oxalate, and precipitate the magnesia in the filtrate by sodium phosphate (cf. p. 175).
4. Iron is usually estimated only in limestone used for bleach-ing-powder making. Dissolve 2 g . in HCl , reduce by zinc, dilute, add some manganese solution free from iron, and titrate by permanganate (cf. p. 170).

D.-Quicklime.

1. Free CaO .-Weigh 100 g . of an average sample carefully taken, slake it completely, put the milk into a half-litre flask, fill up to the mark, shake well, take 100 c.c. out, run it into a halflitre flask, fill up, mix well, and employ 25 c.c. of the contents, equal to 1 g . quicklime, for the test. Titrate by normal oxalic acid and phenolphthalein as indicator, adding the acid very slowly and shaking well after each addition. The colour is changed when all free lime has been saturated and before the CaCO_{3} is attacked. One c.c. normal $\mathrm{HCl}=0.02804 \mathrm{~g}$. CaO .
2. Carbon Dioxide.-Titrate CaO and CaCO_{3} together by dissolving in an excess of standard hydrochloric acid and titrating back with standard alkali. By deducting the CaO estimated as in No. 1 the quantity of CaCO_{3} is obtained. For very accurate estimations the CO_{2}, is expelled by HCl , absorbed in soda-lime, and $\mathfrak{w} e i g h e d . ~(S e e ~(J u m m i n g ~ a n d ~ K a y ' s ~ Q u a n t i t a t i v e ~ A n a l y s i s, ~$ (5th Edition), pp. 215 and 219.)

E.-Slaked Lime.

1. Water.-Weigh about 1 g . in a stoppered glass tube, and heat it gradually in a platinum crucible, at last to a strong red heat ($c f$. p. 174) ; allow to cool in the exsiccator, and weigh. The loss of weight is equal to $\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$.
2. Carbon Dioride is estimated as above in D, 2.
3. Estimation of the percentage of Caustic Lime in Milk of Lime by means of the specific gravity (Blattner).-Thin milk of lime is poured into the cylinder and the reading of the hydrometer is taken quickly, before the lime subsides. For thick milk of lime employ a somewhat wide cylinder, put the hydrometer in without using any force and turn the cylinder slowly round, so that it receives a slight shaking, until the hydrometer ceases to sink. The following table is from Blattner's data for 15°.

TABLE SHOWING AMOUNT OF LIME IN MILK OF LIME.

Degrens Twaddell.	Grms. CaO per litre.	Lbs. CaO per cubic foot.	Degrees Twaddell.	$\begin{gathered} \text { Grms. } \mathrm{CaO} \\ \text { per litre. } \end{gathered}$	Lis. CaO per cuble foot.
2	11.7	0.7	28	177	$11 \cdot 1$
4	24.4	$1 \cdot 5$	30	190	$11 \cdot 9$
6	$37 \cdot 1$	$\bullet \cdot 3$	32	203	$12 \cdot 7$
8	$49 \cdot 8$	$3 \cdot 1$	34	¢16	13.5
10	$62 \cdot 5$	$3 \cdot 9$	36	229	14.3
12	$75 \cdot 2$	$4 \cdot 7$	38	242	$15 \cdot 1$
14	$87 \cdot 9$	$5 \cdot 5$	40	255	$15 \cdot 9$
16	100	$6 \cdot 3$	42	'268	16.7
18	113	$7 \cdot 1$	44	281	$17 \cdot 6$
20	126	$7 \cdot 9$	46	294	$18 \cdot 4$
22	138	$8 \cdot 7$	48	307	$19 \cdot 2$
24	152	$9 \cdot 5$	50	321	$20 \cdot 0$
20	164	$10 \cdot 3$			

The editor would recommend that a talble similar to the above be made by each user for his own use. Widely different results were obtained using lime from different sources.

F.-Bleaching Powder.

1. Available Chlorine (l'enot's Method). -Weigh 7.092 g. of the sample, previously well mixed; grind it with a little water in a porcelain mortar (the lip of which has been greased a little underneath) till a completely homogeneous thin paste has been obtained; dilute with more water, wash the whole into a litre flask, fill up to the mark, and take for each test 50 c.c. $=0.3546 \mathrm{~g}$. bleaching powder, having shaken up the flask immediately before. Run into the above, with continuous agitation, an alkaline decinormal arsenite solution, containing $4.948 \mathrm{~g} . \mathrm{As}_{2} \mathrm{O}_{3}$ per litre till the expected point is not very far off. Then place a drop of the mixture on to a piece of filter paper, moistened with a starch solution containing potassium iodide. If there is very much chlorine left, a brown spot will be produced; if less chlorine, the spot will be blue. According to the depth of this colour more or less arsenite solution is run in, and the above test is repeated till the paper is coloured hardly perceptibly, or not at all. Each cubic centimetre of the arsenite solution indicates 1 per cent. available chlorine.
2. Comparison of the Percentage of Bleaching Powder with the French (Gay-Lussac) Degrees.-The latter are understood to mean the number of litres of chlorine gas at $0^{\circ} \mathrm{C}$. and 760 mm . pressure which can be given off by 1 kilogram of bleaching powder.

French Degrees	Per cent. Chlorine.	French Degrees.	Per cent. Chlorine	French Degrees.	Per cent. Chlorine.	French Degrees.	Per cent. Chlorine.
63	$20 \cdot 28$	81	26.07	99	31.87	116	$37 \cdot 34$
64	$20 \cdot 60$	82	$26 \cdot 40$	100	$32 \cdot 10$	117	$37 \cdot 66$
65	20.92	83	$26 \cdot 72$	101	32.51	118	$37 \cdot 99$
66	$21 \cdot 25$	84	$27 \cdot 04$	102	$32 \cdot 83$	119	$38 \cdot 31$
67	21.57	85	27-31	103	$33 \cdot 16$	120	$38 \cdot 63$
68	21.89	86	$27 \cdot 36$	104	33.48	121	$38 \cdot 95$
69	$22 \cdot 21$	87	$28 \cdot 01$	105	33•80	122	$39 \cdot 27$
70	$22 \cdot 55$	88	$28 \cdot 33$	106	$34 \cdot 12$	123	$39 \cdot 51$
71	$22 \cdot 86$	89	$28 \cdot 65$	107	$34 \cdot 47$	124	$39 \cdot 92$
72	$23 \cdot 18$	90	$28 \cdot 97$	108	$34 \cdot 78$	125	$40 \cdot 24$
73	23.50	91	$29 \cdot 29$	109	$35 \cdot 09$	126	$40 \cdot 56$
74	$23 \cdot 82$	92	29.6	110	$35 \cdot 41$	127	40.88
75	$24 \cdot 14$	93	$29 \cdot 94$	111	35-7:3	128	$41 \cdot 20$
76	$24 \cdot 47$	94	$30 \cdot 26$	112	$36 \cdot 0$	129	41.53
77	24.79	95	30.53	113	$36 \cdot 38$	130	$41 \cdot 85$
78	$25 \cdot 11$	96	$30 \cdot 90$	114	$36 \cdot 70$	131	$42 \cdot 17$
79	$25 \cdot 40$	97	31.23	115	$37 \cdot 02$	132	42.49
80	$25 \cdot 75$	98	31:55				

3. T'esting the Atmosphere of the Chambers jor Chlorine before (o) pening them. - In England a maximum of $2{ }_{2}^{1}$ grains chlorine per cubic foot is prescribed before the chamber may be opened. This is ascertained by the apparatus, Fig. 17. A is a rubber pressure ball holding about 100 c.c., B a hole in its mouthpiece, D) a glass tube reaching nearly to the bottom of the glass jar E; its lower end is contracted so that only a thin needle can pass through. E is charged with 25 c.c. of a solution, so prepared that ten bulbfuls (A) of gas containing $2 \frac{1}{2}$ grains of chlorme per cubic foot will just colour the liquid by separation of iodine. The content of the chamber gas in grains of chlorine per cubic foot is inversely as the number of bulbfuls required to colour the solution. The solution is prepared by diluting 64.0 c.c. of decinormal sodium arsenite solution (see p. 115), adding 25 g . potassium iodide, 5 g . precipitated calcium carbonate, 6 to 10 drops of ammonia, and diluting the whole to 1 litre. For a test, take 25 c.c. of this solution, add a little starch solution, introduce the outer end of D into the bleaching powder chamber 2 feet above the bottom, compress A and close the hole B by a finger, whereupon the pressure on A is
relieved. By the expansion of the rubber ball A chamber air is aspirated into the liquid contained in E. Note the number of times the ball A must be employed as described, before the liquid is coloured by the separation of iodine. According to the prescribed limit, this number should be at least 10 .

A more accurate method for determining the chlorine is given in Lunge-Keane, T'echn. Methods, vol. i. (2nd Edition), p. 597.

G.-Electrolytic Chlorine.

Examination for Carbon Dioxide.-Chlorine gas produced by means of gas carbon electrodes may contain up to 12 per cent. carbon dioxide. This C'O, is estimated by Ferchland's process, as modified in Lunge's laboratory.

A dry Bunte burette, the content of which (from tap to tap $=v$) is exactly known, is filled with the chlorine by passing this through for some time, the gas passing in from below, so as to rise regularly below the lighter air. When filled with the chlorine gas under atmospheric pressure, the burette is fixed in a clamp in a vertical position, and a level tube is attached by means of a strong rubber tube, filled with mercury to the bottom tap, which has a single bore. The rubber tube must be entirely filled with mercury, so that no air can get into the burette, and it is secured against slipping off by iron wire. When the bottom tap of the burette is opened, mercury enters into the burette and absorbs the chlorine, at first rather quickly, but later on its surface is covered by a pellicle, which precludes further action. Then the bottom tap is closed, and by agitating the burette the complete absorption of the chlorine is effected. The sides of the burette are thereby covered with a non-transparent layer, and a mixture of mercurous chloride and mercury floats on the top of the mercury, which prevent reading off the volume. When the absorption of the chlorine is finished, open the bottom tap, put the level of the mercury approximately equal in the burette and the level tube, and allow ten or fifteen minutes for the equalisation of the temperature. Now put 1 c.c. saturated solution of sodium chloride into the top beaker, and allow this to enter the burette by lowering the level tube. This causes the pulverulent mixture on the top of the mercury to subside, and an easily readable surface to be formed. Then adjust the levels for atmospheric pressure, as described in the case of the nitrometer (p. 165) and read the volume of gas $=a$. Now introduce a little concentrated solution of potassium hydroxide through the funnel into the burette, absorb the CO_{2} by shaking, re-establish atmospheric

188 THE TECHNICAL CHEMISTS' HANDBOOK

PRESSURE AND SPEOIFIC GRAVITY OF LIQUID OHLORINE. (Knietsch).

Temperature.	Pressure.		Specific Gravity.	Mean coefflcient of expansion.
-88°	$37 \cdot 5 \mathrm{~m}$	nm. $\mathbf{H g}$.	...	
-85	$45 \cdot 0$,,	\ldots	
- 80	62.5	,	$1 \cdot 6602$)
-75	$88 \cdot 0$,,	$1 \cdot 6490$	
-70	118	,	$1 \cdot 6382$	
-65	159	,	$1 \cdot 6273$	
-60	210	,	$1 \cdot 6167$	
-55	275	"	$1 \cdot 6055$	$0 \cdot 001408$
-50	350	,"	1.5945	
-45	445	"	$1 \cdot 5830$	
-40	560	"	1.5720	
-35	705	,	1.5589	
$-33 \cdot 6$	760	,	$1 \cdot 5575$)
-30	$1 \cdot 20$ a		$1 \cdot 5485$)
-25	$1 \cdot 50$		1.5358	
-20	$1 \cdot 84$		1.5230	-001703
-15	$2 \cdot 23$	",	1.5100	\} 0.001793
-10	$2 \cdot 63$		1.4965	
- 5	$3 \cdot 14$	",	$1 \cdot 4830$	
± 0	$3 \cdot 66$		$1 \cdot 4690$	$)$
$+5$	$4 \cdot 25$	"	1.4548	\} 0.001978
+10	$4 \cdot 95$	",	$1 \cdot 4405$) 0.001978
+15	$5 \cdot 75$	"	1.4273	\} 0.002030
$+20$	6.62	,	$1 \cdot 4118$	$\} \quad 0.002030$
+25	7.63	"	1.3984) 0.002190
+30	$8 \cdot 75$	"	$1 \cdot 3815$	$\} \quad 0.002190$
+35	9.95	"	$1 \cdot 3683$) 0.002260
+40	$11 \cdot 50$	",	$1 \cdot 3510$	$\} \quad 0.002 .260$
50	$14 \cdot 70$	"	1-3170) 0.002690
60	$18 \cdot 60$	",	$1-2930$) 0.002690
70	$23 \cdot 00$,'	$1 \cdot 2430$) 0.003460
80	$28 \cdot 40$,	$1 \cdot 2000$	\} 0.003400
90	34.50	"		
100	$41 \cdot 70$	"		
110	$50 \cdot 80$	"		
120	$60 \cdot 40$,		
130	$71 \cdot 60$,		
146	$93 \cdot 50$		Critical	Point

pressure, and read the new volume of gas $=b$. The formula $\frac{(a-b)}{v} 100$ shows the percentage of CO_{2} in the crude chlorine gas. No correction for vapour tension of water need be made in this case if concentrated solutions have been used.

H.-Chlorate of Potash.

1. Chlorate Liquors contain calcium chlorate and chloride, but these are calculated as potassium salts for the sake of convenience.
(a) Chlorate is estimated both in order to check the work and to calculate the necessary addition of KCl . Measure 2 c.c. of liquor in an accurate pipette, run it into a flask (Fig. 15, p. 181, add a little hot water and one drop of alcohol, boil (without the valve) till all smell of chlorine and the pink colour have disappeared, allow to cool, add 25 c.c. of the strongly acid ferrous sulphate solution (cf. p. 181, and requiring a c.c. of seminormal permanganate), close the Hask with its valve, and boil for ten minutes. After cooling, titrate with seminormal permanganate. The number of cubic centimetres reguired to produce a faint $p \mathrm{ink}=b$. The liquor then contains calcium chlorate equivalent to $5 \cdot 10 \pi(a-b) \mathrm{g} . \mathrm{KClO}_{3}$ per litre, and it will theoretically require an amount of $3.106(a-b)$ g. of pure KCl per litre.
(b) Chloride is estimated in order to check the work, and is therefore calculated as KCl , although present as CaCl_{2}. Treat 1 c.c. of liquor as alove, to destroy the free chlorine and pink colour, allow to cool, add a little nentral potassium chromate, and titrate with decinormal silver nitrate (as described p. 174). Each cubic centimetre of the latter indicates chloride equivalent to $7: 156$ g. KCl per litre.
2. C'ommercial Chlorate of l'otash is only tested for chlorides, calculated as KCl . As their quantity is very small, it is advisable to dissolve 50 g . of the salt in water absolutely free from chlorine, and to test with decinormal silver nitrate, as in 1 (b). Each cubic centimetre of this solution $=0.007456 \mathrm{~g} . \mathrm{KCl}=0.015$ per cent. KCl.

I.-Bleach Liquors.

These are tested like Bleaching lowder, 1. 185.
Electrolytic Bleach Liquor, see 1. 209.

VII.-ANALYSIS OF COMMERCIAL SODA ASH.

When merely the available alkali (alkalimetrical degree) has to be ascertained, it is convenient to weigh out $15^{\circ} 5 \mathrm{~g}$., to dissolve in a 500 c.c. flask, and to take for each test 50 c.c. (in Germany, without filtering ; in England, sometimes with, sometimes without). In this case each cubic centimetre of standard acid indicates 0.03100 g . $\mathrm{Na}_{2} \mathrm{O}$, or just 2 per cent. of available alkali ($\mathrm{Na}_{2} \mathrm{O}$). The standard acid is normal hydrochloric acid, containing 36468 g . HCl per litre, and is standardised both with pure sodium carbonate and with silver nitrate. The indicator is either litmus (in which case the solution has to be boiled for some time) or more conveniently methyl orange (which is used with cold solutions).

If the percentage of alkali is to be calculated in terms of $\mathrm{Na}_{2} \mathrm{CO}_{3}$, as is usual in Germany and other countries, $2 \cdot 6500 \mathrm{~g}$. is weighed out, dissolved, and titrated (without filtering) with normal hydrochloric acid, each c.c. of which indicates 2 per cent. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in this case. In Germany the samples are ignited before weighing, and the percentage is always stated for soda ash in this dry state.

For a complete analysis of commercial soda ash 50 g . are dissolved in warm water.

1. The Insoluble Residue is filtered and washed, the filtrate and washings are diluted up to 1 litre, and the following tests are made with this solution.
2. Sodium Carbonate is found by titrating 20 c.c. (equal to 1 g . of soda ash) with normal HCl , deducting the amount of No. 3. That of No. 4 is always too small to consider in this case.
3. Sodium Mydroxide is estimated by adding to 50 c.c. of the solution, contained in a 100 c.c. Hask, an excess of barium chloride. Add water to 100 c.c. and allow precipitate to settle. Take 50 c.e., without filtering, and titrate with standard acid (e.g., decinormal hydrochloric acid), using methyl orange as indicator.
4. Sodium Sulphide. 100 c.c. (equal to 5 g . of ash) are titrated with ammoniacal silver nitrate containing 13.818 g . Ag per litre, and indicating $0005 \mathrm{~g} . \mathrm{Na}_{\mathrm{y}} \mathrm{S}$ per cubic centimetre. Heat the soda liquor to boiling, add ammonia, and run in the silver solution from a burette divided in $\frac{10}{10}$ c.c., till no further black precipitate of $\mathrm{Ag}_{2} \mathrm{~S}$ is produced. In order to observe this more accurately the liquid is filtered towards the end of the operation, and the titration is continued if necessary. This filtration is repeated several times. Each cubic centimetre of silver solution indicates 0.1 per cent. of $\mathrm{Na}_{2} \mathrm{~S}$ in the alkali.
5. Sodium Sulphite.- Λ cidulate 100 c.c. (equal to 5 g . soda ash) with acetic acid, add starch solution, and titrate with iodine till a blue colour appears. A decinormal iodine solution corresponds to $0.006304 \mathrm{~g} . \mathrm{Na}_{2} \mathrm{SO}_{3}$ per cubic centimetre (in this case $0^{\prime} 126$ per cent.). From this should be deducted the amount corresponding to test No. 4;1 c.c. of the silver solution can be regarded as equal to 1.3 c.c. of the decinormal, or equal to 5% c.c. of the weaker iorline solution.
6. Sodium Sulphate.-Acidulate 20 c.c. of the solution (equal to 1 g . soda ash) with hydrochloric acid, precipitate with barium chloride, as on p. 134, and weigh the BaSO_{4}, of which $1 \cdot 000$ part is equal to 0.6086 part $\mathrm{Na}_{2} \mathrm{SO}_{4}$.
7. Sodium C:hloride.-Neutralise 20 c.c. (erfual to 1 g . soda ash) exactly with nitric 'acid, preferably by adding exactly as many cubic centimetres normal nitric acid from a burette as had been used in test No. 1; then add neutral potassium chromate, and titrate with decinormal silver nitrate as described on p. 174. Each cubic centimetre of this corresponds to $0.005846 \mathrm{~g} . \mathrm{NaCl}$.
8. Iron.-Neutralise 100 c.c. (equal to 5 g. soda ash) with sulphuric acid free from iron, reduce with zinc free from iron (p .170), and titrate with normal potassium permanganate, of which each cubic centimetre corresponds to 0.002793 g . Fe, or in this case 0.0559 per cent. Fe.
9. Sodium Silicate is not present in appreciable quantities in ordinary soda ash, but always in the ash recovered from the liquor used in the manufacture of wood "cellulose." It is estimated by acidulating $20 \mathrm{c} . \mathrm{c}$. (equal to 1 g . soda ash) with HCl , filtering the SiO_{2}, drying, and igniting. $1 \mathrm{~g} . \mathrm{SiO}_{2}=2.028 \mathrm{~g} . \mathrm{Na}_{3} \mathrm{SiO}_{3}$.
10. T'able for comparing l'rench, (ierman, and English Commercial 1 lkalimetrical Degrees.--'The French or Descroizilles degrees mean the quantity of real sulphuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$, neutralised by 100 parts of soda ash. The German degrees express the available alkali in terms of sodium carbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3}$. In England some works invoice in actual percentage of soda, $\mathrm{Na}_{2} \mathrm{O}$, as found in the first column of the following tables. The Newcastle test is based on the equivalent 32 for $\mathrm{Na}_{2} \mathrm{O}$, or 59.26 degrees for pure $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and invoices fractions of degrees.

192 THE 'TECHNICAL CHEMISTS' HANDBOOK

FRENOH, GERMAN, AND HNGLISH COMMEROIAL
ALKALIMETRICAL DEGRHHS.

Real Soda. Na, ($)$	German degrees. $\mathrm{Na} \mathrm{H}_{2} \mathrm{CO}_{3}-$	$\begin{gathered} \text { New- } \\ \text { castle } \\ \text { decrees. } \end{gathered}$	French degrees.	Real soda. Nato.	German degrees. $\mathrm{Na}, \mathrm{Cl}_{1}\left(\mathrm{O}_{3}\right.$	New. castle degrees.	French degrees.
0.5	$0 \cdot 86$	$0 \% 1$	0.79	$20 \cdot 5$	$35 \cdot 06$	20.77	$32 \cdot 40$
1	$1 \cdot 71$	1.01	$1 \cdot 58$	21	$35 \cdot 91$	$21 \cdot 27$	$33 \cdot 19$
15	$2 \cdot 57$	$1 \cdot 52$	$2 \cdot 37$	215	$36 \cdot 77$	21.78	$33 \cdot 98$
2	$3 \cdot 42$	$\because \cdot 03$	$3 \cdot 16$	22	$37 \cdot 62$	22.29	34.77
$2 \cdot 5$	$4 \cdot 28$	$2 \cdot 5$	$3 \cdot 95$	$2 \cdot 5$	38.48	$22 \cdot 80$	$35 \cdot 56$
3	$5 \cdot 13$	$3 \cdot 1$	$4 \cdot 74$	23	$39 \cdot 33$	23.30	$36 \cdot 35$
$3 \cdot 5$	$5 \cdot 99$	35	$5 \cdot 3$	235	$40 \cdot 19$	$23 \cdot 81$	$37 \cdot 14$
4	$6 \cdot 81$	$4 \cdot 05$	$6 \cdot 32$	24	41.04	2.4.31	37.93
4%	7.71	$4 \cdot 56$	$7 \cdot 11$	24.5	$41 \cdot 90$	24.85	38.72
5	3-65	$5 \cdot 06$	$7 \cdot 90$	25	4.2.75	$25 \cdot 3:$	$39 \cdot 51$
5%	$9 \cdot 41$	$5 \cdot 57$	$8 \cdot 69$	2.55	4:31	25.83	$40 \cdot 30$
6	$10 \cdot 26$	6 0s	$9 \cdot 48$	26	44.46	$26 \cdot 31$	$41 \cdot 09$
6%	11.12	$6 \cdot 59$	$10 \cdot 27$	265	$15 \cdot 32$	$26 \cdot 85$	41.88
7	$11 \cdot 97$	$7 \cdot 0$	11.06	27	$46 \cdot 17$	$27 \cdot 35$	$42 \cdot 67$
7\%	128:3	7 761	$11 \cdot 85$	27.5	$47 \cdot 03$	27.86	$13 \cdot 46$
8	1:68	$8 \cdot 11$	12.64	$\because 8$	47:88	$28: 36$	14.25
$8 \cdot 5$	1454	8.61	$13 \cdot 13$	28%	48.74	$28: 37$	$45 \cdot 04$
9	$15: 39$	9-1٪	14.22	$\because 9$	19:99	$29 \cdot 38$	$45 \cdot 83$
$9 \cdot 5$	$16 \div 5$	$9 \cdot 63$	15.01	29%	$50 \cdot 45$	$29 \cdot 89$	$46 \cdot 62$
10	$17 \cdot 10$	$10 \cdot 13$	$15 \cdot 81$	30	$51: 30$	30:39	$47 \cdot 42$
10\%	$17 \cdot 96$	$10 \cdot 64$	$16 \cdot 60$	30%	$52 \cdot 16$	$30 \cdot 90$	$48 \cdot 21$
11 ‥	$18 \cdot 81$	11.14	$17 \cdot 39$	31	53.01	$31 \cdot 41$	$49 \cdot 00$
11.5	$19 \cdot 67$	$11 \cdot 65$	18.1s	315	53.87	$31 \cdot 91$	49.79
12	20.52	$12 \cdot 17$	$18 \cdot 97$	32	54.72	$32 \cdot 42$	50.88
125	21.38	$12 \cdot 68$	19.76	$32 \cdot 5$	$5.5 \cdot 58$	$32 \cdot 92$	$51 \cdot 37$
13	22:3	$13 \cdot 17$	20.55	33	$56 \cdot 43$	$33 \cdot 43$	52.16
135	$23 \cdot 09$	13.65	21.34	$33 \cdot 5$	$57 \% 9$	$3: 3 \cdot 94$	$52 \cdot 95$
11	23.94	11.18	$2: 13$	34	$58 \cdot 14$	$34 \cdot 44$	$53 \cdot 74$
14\%	24.80	14.69	$20 \cdot 92$	34%	59.00	34.95	$54 \cdot 53$
15	$25 \cdot 65$	$15 \cdot 19$	$23 \cdot 71$	35	$59 \cdot 85$	$35 \cdot 46$	$55 \cdot 32$
$15 \cdot 5$	26.51	15\%0	$24 \cdot 50$	$35 \cdot 5$	$60 \cdot 71$	$35 \cdot 96$	$56 \cdot 11$
16	$27 \cdot 36$	$16 \cdot 1$	$25 \cdot 29$	36	$61 \cdot 56$	$36 \cdot 47$	$56 \cdot 90$
$16 \cdot 5$	$28 \cdot 22$	$16 \cdot 73$	26.08	$36 \cdot 5$	$62 \cdot 42$	$36 \cdot 98$	$57 \cdot 69$
17	$29 \cdot 07$	$17 \cdot 22$	26.87	37	$63 \cdot 27$	$37 \cdot 48$	$58 \cdot 48$
17:5	$29 \cdot 93$	17•73	$27 \cdot 66$	$37 \cdot 5$	64-13	$37 \cdot 98$	59.27
18	$30 \cdot 78$	$18 \div 3$	$: 2845$	38	$64 \cdot 98$	$38 \cdot 50$	60.06
$18 \cdot 5$	$31 \cdot 64$	$18 \cdot 74$	$29 \% 4$	$38 \cdot 5$	$65 \cdot 84$	$39 \cdot 00$	60.85
19	$32 \cdot 49$	$19 \cdot 25$	30.03	39	$66 \cdot 69$	$39 \cdot 51$	61.64
$19 \cdot 5$	$33 \cdot 35$	$19 \cdot 76$	$30 \cdot 82$	$39 \cdot 5$	$67 \cdot 55$	$40 \cdot 02$	62.45
20	34•20	$20 \cdot 26$	31.61	40	$68 \cdot 40$	40:52	63.22

FRHNOH, GHRMAN, AND FNGLISE COMMERCIAL ALKALIMETRICAL DEGREES-Continued.

Real soda. $\mathrm{Na}{ }_{2} \mathrm{O}$.	German degrees. $\mathrm{Na}_{2} \mathrm{CO}_{3}$.	New. castie degrees.	French degrees.	Real Soda. $\mathrm{Na}_{2} \mathrm{O}$.	German degrees. $\mathrm{Na}_{2} \mathrm{CO}_{3}$.	Newcastle degrees.	French drgrees.
$40 \cdot 5$	$69 \cdot 26$	41.03	64.01	60%	$103 \cdot 46$	$61 \cdot 30$	$95 \cdot 63$
41	$70 \cdot 11$	$41 \cdot 54$	$64 \cdot 81$	61	104•31	$61 \cdot 80$	$96 \cdot 42$
41.5	$70 \cdot 97$	$42 \cdot 04$	$65 \cdot 60$	61%	$105 \cdot 17$	$62 \cdot 31$	$97 \cdot 21$
42	71.82	$42 \cdot 55$	$66 \cdot 39$	62	$106 \cdot 02$	$62 \cdot 82$	$98 \cdot 00$
$42 \cdot 5$	$72 \cdot 68$	$43 \cdot 06$	$67 \cdot 18$	62.5	$100 \cdot 88$	$63 \cdot 32$	93.79
43	$73 \cdot 53$	$43 \cdot 57$	$67 \cdot 97$	63	107.73	$63 \cdot 83$	99.58
$43 \cdot 5$	$74 \cdot 39$	$44 \cdot 07$	$68 \cdot 76$	63.5	108:59	$64 \cdot 33$	$100 \cdot 37$
44	$75 \cdot 24$	44.58	69.55	64	$109 \cdot 44$	$6.1 \cdot 8.4$	$101 \cdot 16$
$44 \cdot 5$	$76 \cdot 10$	$45 \cdot 08$	$70 \cdot 34$	64.5	$110 \cdot 30$	$65 \cdot 35$	$101 \cdot 95$
45	$76 \cdot 95$	$45 \cdot 69$	$71 \cdot 13$	65	111.15	$65 \cdot 85$	102.74
$45 \cdot 5$	$77 \cdot 81$	$46 \cdot 10$	$71 \cdot 92$	65.5	112.01	$66 \cdot 36$	$103 \cdot 53$
46	$78 \cdot 66$	$46 \cdot 60$	7: 71	66	$112 \cdot 86$	ธ6.87	104.32
$46 \cdot 5$	79.52	$47 \cdot 11$	$73 \cdot 50$	$66 \cdot 5$	113.72	$67 \cdot 37$	105•11
47	$80 \cdot 37$	$47 \cdot 62$	$74 \cdot 29$	67	114.57	67.88	$105 \cdot 90$
$47 \cdot 5$	$81 \cdot 23$	$48 \cdot 12$	$75 \cdot 08$	67\%	115.43	$68 \cdot 39$	$106 \cdot 69$
48	$82 \cdot 08$	$48 \cdot 63$	75.87	68	$116 \cdot 28$	68.89	$107 \cdot 48$
$48 \cdot 5$	82.94	$49 \cdot 14$	$76 \cdot 66$	68\%	$117 \cdot 14$	$69 \cdot 40$	$108 \cdot 27$
49	$83 \cdot 79$	$49 \cdot 64$	$77 \cdot 45$	69	$117 \cdot 99$	$69 \cdot 91$	109.06
$49 \cdot 5$	$84 \cdot 65$	$50 \cdot 15$	$78 \cdot 24$	$69 \cdot 5$	118.85	$70 \cdot 41$	$109 \cdot 85$
50	$85 \cdot 50$	$50 \cdot 66$	79.03	70	$119 \cdot 70$	$70 \cdot 9.2$	$110 \cdot 64$
50.5	$86 \cdot 36$	$51 \cdot 16$	79.82	$70 \cdot 5$	$120 \cdot 56$	$71 \cdot 43$	111.43
51	$87 \cdot 21$	51.67	$80 \cdot 61$	71	121.41	71.93	$112 \cdot 23$
51.5	88.07	$52 \cdot 18$	$81 \cdot 40$	$71 \cdot 5$	$122 \cdot 27$	$72 \cdot 44$	113.02
52	$88 \cdot 92$	$52 \cdot 68$	$82 \cdot 19$	72	$123 \cdot 12$	7295	113.81
$52 \cdot 5$	$89 \cdot 78$	$53 \cdot 19$	82.98	$72 \cdot 5$	$123 \cdot 98$	73.45	$114 \cdot 60$
53	$90 \cdot 63$	$53 \cdot 70$	83.77	73	$124 \cdot 83$	73.96	$115 \cdot 39$
53.5	$91 \cdot 49$	$54 \cdot 20$	$84 \cdot 56$	$73 \cdot 5$	$125 \cdot 69$	71.47	$116 \cdot 18$
54	92-34	5.4 .71	$85 \cdot 35$	74	126.54	$74 \cdot 97$	116.97
$54 \cdot 5$	$93 \cdot 20$	$55 \cdot 22$	$86 \cdot 14$	$74 \cdot 5$	$127 \cdot 40$	$75 \cdot 48$	$117 \cdot 76$
55	94.05	$55 \cdot 72$	$86 \cdot 93$	75	$128 \cdot 25$	$75 \cdot 99$	118.55
$55 \cdot 5$	$94 \cdot 91$	$56 \cdot 23$	87.72	$75 \cdot 5$	$129 \cdot 11$	$76 \cdot 49$	119.34
56	$95 \cdot 76$	56.74	$88 \cdot 52$	76	$129 \cdot 96$	$77 \cdot 00$	$120 \cdot 13$
56.5	96.62	$57 \cdot 24$	$89 \cdot 31$	$76 \cdot 5$	$130 \cdot 82$	$77 \cdot 51$	$120 \cdot 92$
57	$97 \cdot 48$	$57 \cdot 75$	90•10	77	$131 \cdot 67$	78.01	$121 \cdot 71$
$57 \cdot 5$	$98 \cdot 33$	$58 \cdot 26$	$90 \cdot 89$	$77 \cdot 5$	$132 \cdot 53$	$78 \cdot 52$	$122 \cdot 50$
58	99•18	$58 \cdot 76$	$91 \cdot 68$				
58.5	$100 \cdot 04$	$59 \cdot 72$	$92 \cdot 47$				
59	$100 \cdot 89$	$59 \cdot 77$	93.26				
59.5	101.75	$60 \cdot 28$	94.05				
60	$102 \cdot 60$	60.79	$94 \cdot 84$				

194 THE TECHNICAL CHEMISTS' HANDBOOK

SPEOIFIC GRAVITIES OF SOLUTIONS OF SODIUM CARBONATE AT $15^{\circ} \mathrm{C}$.

Specific gravity.	Degrees Twaddell.	Degrees Baumé.	Per cent. by weight.		1 cubic metre contains kilog.	
			$\mathrm{Na}_{2} \mathrm{CO}_{3}$.	$\begin{aligned} & \mathrm{Na}_{2} \mathrm{CO}_{3}, \\ & 10 \mathrm{aq} . \end{aligned}$	$\mathrm{Na}_{2} \mathrm{CO}_{3}$.	$\begin{gathered} \mathrm{Na}_{2} \mathrm{CO}_{3}, \\ 10 \text { aq. } \end{gathered}$
$1 \cdot 000$	0	0	0.00	0.00	$0 \cdot 00$	0.00
$1 \cdot 005$	1	0.7	$0 \cdot 45$	$1 \cdot 21$	4.62	$12 \cdot 16$
1.010	2	$1 \cdot 4$	$0 \cdot 91$	$2 \cdot 46$	9•19	24.85
1.015	3	$2 \cdot 1$	1-39	$3 \cdot 75$	$14 \cdot 11$	38.06
1.020	4	$2 \cdot 7$	$1 \cdot 90$	$5 \cdot 13$	$19 \cdot 38$	$52 \cdot 33$
1.025	5	$3 \cdot 4$	$2 \cdot 35$	$6 \cdot 34$	$24 \cdot 09$	$64 \cdot 99$
1.030	6	$4 \cdot 1$	$2 \cdot 82$	$7 \cdot 61$	29.05	78.38
$1 \cdot 035$	7	$4 \cdot 7$	$3 \cdot 27$	$8 \cdot 82$	$33 \cdot 84$	91.29
$1 \cdot 040$	8	$5 \cdot 4$	$3 \cdot 74$	10.09	$38 \cdot 90$	104.94
$1 \cdot 045$	9	6.0	$4 \cdot 21$	11.36	$43 \cdot 99$	$118 \cdot 71$
$1 \cdot 050$	10	$6 \cdot 7$	$4 \cdot 70$	$12 \cdot 68$	$49 \cdot 35$	$133 \cdot 14$
1.055	11	$7 \cdot 4$	$5 \cdot 17$	$13 \cdot 95$	54:54	$147 \cdot 17$
1.060	12	$8 \cdot 0$	$5 \cdot 65$	$15 \cdot 24$	59.89	$161 \cdot 54$
$1 \cdot 065$	13	$8 \cdot 7$	$6 \cdot 15$	$16 \cdot 59$	$65 \cdot 50$	$176 \cdot 68$
$1 \cdot 070$	14	$9 \cdot 4$	$6 \cdot 63$	17.83	$70 \cdot 94$	191.42
$1 \cdot 075$	15	$10 \cdot 0$	$7 \cdot 08$	$19 \cdot 10$	$76 \cdot 11$	$205 \cdot 33$
$1 \cdot 080$	16	$10 \cdot 6$	$7 \cdot 56$	$20 \cdot 40$	$81 \cdot 65$	$220 \cdot 32$
$1 \cdot 085$	17	$11 \cdot 2$	$8 \cdot 03$	21.67	$87 \cdot 13$	$235 \cdot 12$
$1 \cdot 090$	18	$11 \cdot 9$	$8 \cdot 48$	22.88	$92 \cdot 43$	$249 \cdot 39$
$1 \cdot 095$	19	$12 \cdot 4$	$8 \cdot 90$	24.01	$97 \cdot 46$	$262 \cdot 91$
$1 \cdot 100$	20	$13 \cdot 0$	$9 \cdot 31$	$25 \cdot 12$	$10 \cdot 2 \cdot 41$	$276 \cdot 32$
$1 \cdot 105$	21	$13 \cdot 6$	$9 \cdot 80$	$26 \cdot 44$	$108 \cdot 29$	$292 \cdot 16$
1-110	22	$14 \cdot 2$	$10 \cdot 27$	27.71	114.00	$307 \cdot 58$
$1 \cdot 115$	23	$14 \cdot 9$	10\%75	29.00	$119 \cdot 86$	$323 \cdot 35$
1-120	24	$15 \cdot 4$	11.22	$30 \cdot 27$	$125 \cdot 66$	339.02
1-125	25	16.0	11.67	31.49	$131 \cdot 29$	$354 \cdot 26$
$1 \cdot 130$	26	16.5	$12 \cdot 17$	$32 \cdot 83$	$137 \cdot 52$	370.98
$1 \cdot 135$	27	$17 \cdot 0$	$12 \cdot 64$	$34 \cdot 10$	$143 \cdot 46$	$387 \cdot 04$
1-140	28	$17 \cdot 7$	13.08	$35 \cdot 29$	$149 \cdot 11$	402.31
$1 \cdot 145$	29	$18 \cdot 3$	$13 \cdot 50$	36.42	$154 \cdot 58$	$417 \cdot 01$
$1 \cdot 150$	30	$18 \cdot 8$	13.94	$37 \cdot 61$	$160 \cdot 31$	$432 \cdot 52$
$1 \cdot 155$	81	$19 \cdot 3$	$14 \cdot 34$	38.69	$165 \cdot 63$	$446 \cdot 87$

ANALYSIS OF COMMERCIAL SODA ASH 195

SPHCIFIC GRAVITIES OF CONOENTRATED SOLUTIONS OF SODIUM CARBONATE AT 30°
 C.*

Speciflc gravity at 30°.	Degrees Twaddell.	Degreas Biaumé.	Per cent. by weight.		1 cubic metre contains kilog.	
			$\mathrm{Na}_{2} \mathrm{CO}_{3}$.	$\begin{gathered} \mathrm{Na}_{2} \mathrm{CO}_{3}, \\ 10 \mathrm{aq} . \end{gathered}$	$\mathrm{Na}_{2} \mathrm{CO}_{3}$.	$\begin{gathered} \mathrm{Na}_{2} \mathrm{CO}_{3}, \\ 10 \mathrm{aq} . \end{gathered}$
$1 \cdot 310$	62	34%	28.08	$75 \cdot 76$	367.85	992•46
$1 \cdot 305$	61	$33 \cdot 7$	$27 \cdot 66$	74.63	$360 \cdot 96$	973.92
$1 \cdot 300$	60	$33 \cdot 3$	$27 \cdot 25$	73.54	$354 \cdot 25$	$955 \cdot 76$
$1 \cdot 295$	59	$32 \cdot 8$	26.84	72.41	347-58	$937 \cdot 71$
$1 \cdot 290$	58	$32 \cdot 4$	26.42	$71 \cdot 28$	$340 \cdot 82$	919.51
$1 \cdot 285$	57	$32 \cdot 0$	$26 \cdot 00$	$70 \cdot 15$	$334 \cdot 10$	901.43
$1 \cdot 280$	56	$31 \cdot 5$	$25 \cdot 60$	69.07	$327 \cdot 68$	$884 \cdot 10$
$1 \cdot 275$	55	$31 \cdot 1$	$25 \cdot 18$	$67 \cdot 94$	321.05	866.24
$1 \cdot 270$	54	30%	$24 \cdot 74$	$66 \cdot 75$	$314 \cdot 20$	$847 \cdot 73$
$1 \cdot 265$	53	$30 \cdot 2$	$24 \cdot 28$	$65 \cdot 51$	$307 \cdot 14$	828.70
$1 \cdot 260$	52	$29 \cdot 7$	$23 \cdot 85$	64.35	$300 \cdot 51$	810•81
$1 \cdot 255$	51	$29 \cdot 3$	$23 \cdot 13$	$63 \cdot 21$	294.05	$793 \cdot 29$
$1 \cdot 250$	50	28.8	23.03	62.14	287-88	776.75
$1 \cdot 245$	49	$23 \cdot 4$	$22 \cdot 63$	61.06	$281 \cdot 74$	$760 \cdot 20$
$1 \cdot 240$	48	$27 \cdot 9$	$22 \cdot 22$	$59 \cdot 95$	$275 \cdot 53$	$743 \cdot 38$
$1 \cdot 235$	47	$27 \cdot 4$	21.80	58.82	$269 \cdot 23$	726.43
$1 \cdot 230$	46	$26 \cdot 9$	21.37	57.66	262.85	709 '22
$1 \cdot 225$	45	26.4	$20 \cdot 96$	56.55	256.76	692.73
$1 \cdot 220$	44	26.0	20:55	$55 \cdot 44$	250.71	676.37
$1 \cdot 215$	43	$25 \cdot 5$	$20 \cdot 12$	54.28	$244 \cdot 46$	$659 \cdot 50$
$1 \cdot 210$	42	$25 \cdot 0$	$19 \cdot 67$	53.07	238.01	$642 \cdot 15$
$1 \cdot 205$	41	24.5	$19 \cdot 26$	$51 \cdot 96$	$232 \cdot 08$	$626 \cdot 12$
$1 \cdot 200$	40	$24 \cdot 0$	$18 \cdot 83$	$50 \cdot 80$	$225 \cdot 96$	$609 \cdot 60$
$1 \cdot 195$	39	23.5	18.42	$49 \cdot 70$	$220 \cdot 42$	594.22
$1 \cdot 190$	38	$23 \cdot 0$	$18 \cdot 00$	$48 \cdot 56$	$214 \cdot 20$	577-84
$1 \cdot 185$	37	$22 \cdot 5$	$17 \cdot 55$	$47 \cdot 35$	$207 \cdot 97$	$561 \cdot 10$
$1 \cdot 180$	36	$22 \cdot 0$	$17 \cdot 09$	$46 \cdot 11$	$201 \cdot 66$	$544 \cdot 10$
] 175	35	21.4	16.62	$44 \cdot 84$	$195 \cdot 29$	526.87
$1 \cdot 170$	34	$20 \cdot 9$	$16 \cdot 16$	$43 \cdot 60$	189.07	$510 \cdot 12$
$1 \cdot 165$	33	$20 \cdot 3$	$15 \cdot 70$	$42 \cdot 36$	$182 \cdot 91$	$493 \cdot 49$
$1 \cdot 160$	32	$19 \cdot 8$	$15 \cdot 25$	$41 \cdot 14$	$176 \cdot 90$	$477 \cdot 22$
$1 \cdot 155$	31	$19 \cdot 3$	14.84	$40 \cdot 04$	$171 \cdot 40$	$462 \cdot 46$
$1 \cdot 150$	30	$18 \cdot 8$	14.42	$38 \cdot 91$	$165 \cdot 83$	$447 \cdot 47$
$1 \cdot 145$	29	$18 \cdot 3$	$14 \cdot 02$	$37 \cdot 83$	$160 \cdot 53$	$433 \cdot 15$
$1 \cdot 140$	28	$17 \cdot 7$	$13 \cdot 61$	$36 \cdot 72$	155 15	418.61

*This temperature has been specially chosen, because the higher concontrations of sodium garbonate cannot exist in solution at !ower temparatures.

196 THE TECHNICAL CHEMISTS' HANDBOOK

INFLUENOE OF TEMPERATURE ON THE SPEOIFIO

$0^{\circ} \mathrm{C}$.	$5{ }^{\circ}$.	10°.	15°.	20°.	25°	30°.	35°.	40°	45°	50°.
.	...			\ldots	...	$1 \cdot 285$	1.282	1279	$1 \cdot 276$	1.273
...	$1 \cdot 274$	1271	1"267	1265	1-262
	$1 \cdot 263$	$1 \cdot 260$	$1 \cdot 25 \%$	$1 \cdot 254$	$1 \cdot 251$
..	\ldots	\ldots	...	$1 \because 25$	1250	1×24	1244	$1 \cdot 240$
...	\ldots			$1 \cdot 241$	$1 \cdot 239$	$1 \cdot 236$	1.233	1.230
	...	\ldots	1210	1-238	$1 \cdot 236$	$1 \cdot 234$	$1 \cdot 232$	$1 \cdot 230$	$1 \cdot 227$	$1 \cdot 224$
...	...	\ldots	1.230	1-228	1225	$1 \cdot 223$	$12: 1$	$1 \cdot 219$	$1 \cdot 216$	1.213
...	\ldots	\ldots	1.220	1"218	$1 \cdot 215$	1"213	$1 \cdot 210$	$1 \cdot 208$	1×205	$1 \cdot 201$
...			1.210	1-208	$1 \cdot 200$	$1 \cdot 204$	1×201	1-199	$1 \cdot 196$	$1 \cdot 192$
			1.200	1-198	$1 \cdot 196$	$1 \cdot 191$	1-192	$1 \cdot 189$	$1 \cdot 186$	$1 \cdot 183$
$1 \cdot 198$	$1 \cdot 195$	$1 \cdot 193$	1-190	$1 \cdot 188$	$1 \cdot 186$	$1 \cdot 184$	$1 \cdot 182$	$1 \cdot 179$	$1 \cdot 176$	$1 \cdot 173$
1.188	$1 \cdot 185$	1-183	$1 \cdot 180$	$1 \cdot 178$	$1 \cdot 176$	$1 \cdot 174$	$1 \cdot 172$	$1 \cdot 169$	1-166	$1 \cdot 163$
$1 \cdot 177$	$1 \cdot 174$	$1 \cdot 172$	$1 \cdot 170$	1-168	$1 \cdot 166$	$1 \cdot 161$	$1 \cdot 162$	1-160	$1 \cdot 157$	$1 \cdot 154$
1-166	1-164	$1 \cdot 162$	$1 \cdot 160$	$1 \cdot 1 \overline{5} 8$	$1 \cdot 156$	$1 \cdot 151$	$1 \cdot 152$	$1 \cdot 150$	1-148	$1 \cdot 145$
$1 \cdot 156$	$1 \cdot 154$	$1 \cdot 152$	$1 \cdot 150$	$1 \cdot 148$	1-146	$1 \cdot 144$	$1 \cdot 142$	1-139	$1 \cdot 136$	$1 \cdot 134$
1-146	I-144	$1 \cdot 142$	$1 \cdot 140$	1-138	1-136	$1 \cdot 134$	1-132	$1 \cdot 129$	$1 \cdot 126$	$1 \cdot 123$
$1 \cdot 136$	$1 \cdot 134$	$1 \cdot 132$	$1 \cdot 130$	$1 \cdot 128$	$1 \cdot 126$	$1 \cdot 124$	$1 \cdot 122$	$1 \cdot 120$	$1 \cdot 117$	$1 \cdot 114$
1-126	1:124	$1 \cdot 122$	$1 \cdot 120$	$1 \cdot 118$	$1 \cdot 116$	$1 \cdot 114$	$1 \cdot 112$	$1 \cdot 110$	$1 \cdot 107$	1-10.1
1-116	$1 \cdot 114$	$1 \cdot 112$	$1 \cdot 110$	1-108	1.106	$1 \cdot 104$	$1 \cdot 102$	$1 \cdot 100$	$1 \cdot 098$	$1 \cdot 095$
1-106	$1 \cdot 101$	1-102	$1 \cdot 100$	1.098	$1 \cdot 096$	$1 \cdot 094$	$1 \cdot 092$	$1 \cdot 090$	1.088	$1 \cdot 085$
1.096	1.094	1.092	$1 \cdot 090$	1.088	1.086	1.081	1.082	1.080	1.078	1.075
1.086	1.084	1.082	$1 \cdot 080$	1.078	1.076	1.074	1.072	$1 \cdot 070$	1.068	1.065
1.075	1.073	$1 \cdot 071$	1.070	$1 \cdot 069$	1.067	1.065	$1 \cdot 063$	1.061	1.059	$1 \cdot 056$
1.084	1.063	1.061	1.060	$1 \cdot 059$	$1 \cdot 057$	1.056	1.054	1.052	1.050	1.047
1.053	$1 \cdot 052$	1.051	$1 \cdot 050$	$1 \cdot 049$	1.048	1.046	1.044	1.042	1.040	$1 \cdot 037$
$1 \cdot 043$	1.042	$1 \cdot 041$	$1 \cdot 040$	1.039	1.038	1.036	1.034	1.032	1.030	1.027
1.033	1.032	1.031	1.030	1.029	1.028	1.026	1.024	1.022	1.020	1.017
1.023	1.022	1.021	1.020	1.019	1.018	1.016	1.014	1.012	$1 \cdot 010$	1.007
1.013	1.012	1.011	1.010	$1 \cdot 009$	1.008	1.006	1.004	1.002	1.000	0.997

GRAVITIES OF SOLUTIONS OF SODIUM CARBONATE,

55°.	60°.	65°.	70°.	75°.	80°	85°.	90°.	95°.	100°.
$1 \because 270$	$1 \cdot 267$	1*264	1×260	1-256	1.252	$1 \cdot 24 \%$	$1 \cdot 243$	$1 \cdot 238$	1.234
1 -259	$1 \cdot 256$	1×25	1"249	$1 \because 244$	1×20	1236	1'232	$1 \cdot 228$	$1 \cdot 224$
1×248	$1 \because 45$	$1 \cdot 241$	1-237	$1 \cdot 233$	$1 \cdot 299$	1426	1*222	$1 \cdot 218$	$1 \cdot 215$
$1 \cdot 237$	$1 \cdot 234$	1-230	1-227	1-22.4	$1 \cdot 220$	$1 \cdot 217$	1'213	$1 \cdot 210$	1206
1.226	1×223	$1 \cdot 220$	1.216	1-213	1-210	$1 \cdot 207$	1'204	$1 \cdot 200$	$1 \cdot 197$
$1 \cdot 220$	1.217	1.218	$1 \cdot 210$	1-206	1.203	1-199	$1 \cdot 195$	$1 \cdot 191$	$1 \cdot 188$
1-209	$1 \cdot 206$	1 $\because 02$	$1 \cdot 199$	$1 \cdot 195$	$1 \cdot 192$	$1 \cdot 188$	$1 \cdot 184$	$1 \cdot 181$	$1 \cdot 178$
1-198	$1 \cdot 191$	1-191	$1 \cdot 188$	$1 \cdot 184$	$1 \cdot 181$	$1 \cdot 178$	$1 \cdot 174$	1-171	1-168
1-189	$1 \cdot 185$	1.182	$1 \cdot 178$	$1 \cdot 175$	1•17:	1-168	$1 \cdot 165$	1-162	1-159
$1 \cdot 179$	$1 \cdot 176$	$1 \cdot 172$	$1 \cdot 168$	$1 \cdot 165$	$1 \cdot 162$	$1 \cdot 158$	$1 \cdot 155$	$1 \cdot 152$	$1 \cdot 149$
1-169	$1 \cdot 166$	$1 \cdot 163$	$1 \cdot 159$	$1 \cdot 156$	$1 \cdot 15.3$	$1 \cdot 149$	$1 \cdot 146$	$1 \cdot 143$	$1 \cdot 140$
1-160	$1 \cdot 156$	$1 \cdot 153$	$1 \cdot 150$	$1 \cdot 147$	$1 \cdot 144$	$1 \cdot 140$	$1 \cdot 137$	$1 \cdot 134$	$1 \cdot 131$
$1 \cdot 151$	$1 \cdot 147$	$1 \cdot 144$	$1 \cdot 141$	$1 \cdot 138$	$1 \cdot 135$	$1 \cdot 131$	$1 \cdot 128$	$1 \cdot 125$	$1 \cdot 122$
1-142	$1 \cdot 139$	$1 \cdot 136$	$1 \cdot 133$	$1 \cdot 130$	$1 \cdot 126$	$1 \cdot 123$	$1 \cdot 120$	$1 \cdot 117$	$1 \cdot 114$
$1 \cdot 131$	$1 \cdot 128$	$1 \cdot 125$	1-122	$1 \cdot 119$	$1 \cdot 116$	$1 \cdot 113$	$1 \cdot 110$	$1 \cdot 107$	$1 \cdot 104$
1-120	$1 \cdot 118$	$1 \cdot 115$	$1 \cdot 112$	$1 \cdot 109$	1-106	$1 \cdot 103$	$1 \cdot 100$	1.097	1.094
$1 \cdot 111$	$1 \cdot 108$	$1 \cdot 105$	$1 \cdot 102$	1.099	$1 \cdot 096$	1.093	$1 \cdot 090$	1.087	1.084
$1 \cdot 101$	$1 \cdot 098$	1.095	1.092	1.059	$1 \cdot 0 \pm 6$	1.083	1.080	1.077	1.074
1.092	$1 \cdot 059$	1.086	1.083	1.080	$1 \cdot 077$	1.074	$1 \cdot 071$	1.068	1.065
1.082	1.079	$1 \cdot 076$	$1 \cdot 073$	$1 \cdot 070$	$1 \cdot 067$	1-064	$1 \cdot 061$	1.058	1.055
1.072	$1 \cdot 070$	1.067	$1 \cdot 064$	1.061	$1 \cdot 058$	$1 \cdot 055$	1-053	1-049	1.046
1.062	1.060	$1 \cdot 057$	1.054	$1 \cdot 052$	$1 \cdot 049$	1.046	1.043	1.040	1.038
1.053	1.051	1.048	$1 \cdot 045$	1.043	$1 \cdot 010$	$1 \cdot 037$	1.034	1.032	1.029
1.044	$1 \cdot 041$	1.038	$1 \cdot 036$	$1 \cdot 032$	1-030	1.028	$1 \cdot 025$	$1 \cdot 023$	1.020
1.034	$1 \cdot 032$	$1 \cdot 029$	$1 \cdot 027$	$1 \cdot 0.24$	1.021	$1 \cdot 019$	$1 \cdot 016$	1.014	1.011
1.024	1.022	1.019	1.017	1.015	1.012	$1 \cdot 010$	1.007	$1 \cdot 005$	1.003
1.014	1.012	1.009	$1 \cdot 007$	1.005	1.002	1.000	$0 \cdot 997$	$0 \cdot 995$	$0 \cdot 993$
1.004	1.002	$0 \cdot 999$	$0 \cdot 997$	$0 \cdot 995$	0.992	0.990	0.987	0.985	$0 \cdot 983$
0.994	0.992	0.989	0.987	0.985	0.982	0.980	0.977	0.975	0.973

Sulphur Recovery (Chance Process).

1. Estimation of Sulphur as Sulphide in Vat Waste.-The apparatus consists of a small flask fitted with a stopeock funnel and outlet tube connected with two Mohr's potash bulbs, the first one being empty, the second containing a strong solution of caustic potash. (In lieu of Mohr's bulbs a tube of the shape shown in Fig. 10, p. 144, can be employed with great advantage.) It is preferable to connect the last potash bulb to an aspirator or Bunsen pump, to produce a slight vacuum. About 2 g . of vat waste is put into the flask, and a sufficient quantity of water is added. Then hydrochloric acid, diluted with its volume of water, is run in from the funnel gradually. Λ fter the decomposition has ceased, the solution is boiled, until the whole of the gases are displaced by steam, most of the steam condensing in the first empty potash bulbs. When enough steam has been produced to bring the first bulb of the second set, filled with potash solution, up to boiling, the tap of the funnel is opened, and the apparatus allowed to cool down. The potash solution is then transferred to a $\frac{1}{4}$ or litre flask, made up to the mark, an aliquot part taken, diluted with a large quantity of previously boiled water (free from air), nentralised with acetic acid, and titrated with decinormal iodine, each c.c. of which indicates 0.001604 g. S.
2. Sulphur as Sulphide in Carbonated Mud.- About 6 g . is taken for analysis; otherwise the test is conducted just like the preceding one.
3. Sulphide-sulphur + Carbonic Acid in Vat Waste.-This test (which is only exceptionally made) is carried out in a small flask, fitted with stopcock funnel, connected with a U-tube containing sodium sulphate to absorb) any traces of HCl passing over, and a sufficient number of chloride of calcium tubes to thoroughly dry the gases. To the last of these are connected two weighed potash bulbs containing a strong solution of caustic potash, followed by weighed CaCl_{2} tubes. The whole apparatus being connected, 2 g . of vat waste is put into the flask, and some water added. Λ current of nitrogen is then passed through tho apparatus to displace the air. [Nitrogen from a cylinder may be passed through a solution of potassium hydroxide to remove any trace of carbon dioxide.] The vat waste is then decomposed by hydrochloric acid, and the contents of the flask are boiled. Afterwards a current of nitrogen is passed through the apparatus for a considerable time to displace the $\mathrm{H}_{2} \mathrm{~S}$ and CO_{2} in the flask and drying tubes. The potash bulls and the last drying tubes are reweighed, the lincrease showing the amount of $\mathrm{H}_{2} \mathrm{~S}+\mathrm{CO}_{2}$ in the vat waste employed. The potash solution is then transferred to a
measuring flask, and the $\mathrm{H}_{2} \mathrm{~S}$ estimated as described in 1. Deducting the amount from the increase of weight of the absorbing apparatus, we find the amount of CO_{2} present.
4. Sulphur as Sulphide in Solutions of Calcium or Sodium Sulphydrates and Sulphides.-10 c.c. is diluted to 250 , and of this liquid a convenient portion is taken out, largely diluted with air-free water, acidulated with acetic acid, and titrated with iodine, as in test 1. If thiosulphates are present, they are estimated as in 5, and deducted. If polysulphides are present, the sulphur which would be precipitated ly an acid is not estimated by this method, but only that which would be liberated as $\mathrm{H}_{2} \mathrm{~S}$ by an acid.
5. Soda, Lime, and Thiosulphate in Sulphur Liquors.-In one sample of the liquor, say 5 c.c., estimate the total alkalinity, i.e. $\mathrm{Na} \mathrm{O}+\mathrm{Ca}(\mathrm{O}$, by standard hydrochloric: acid and methyl orange. Take another sample, say 50 c.c., pass pure CO_{2} in till lead paper shows the absence of all sulphides, bril to decompose calcium bicarbonate, dilute with water to 500 c.c., allow the precipitate to settle, take 50 c.c. of the rlear liquor and titrate again, the alkalinity this time being due to Na, O only. CaO is found from the difference between the two titrations.

Another sample of the carbonated liquor is titrated with decinormal iodine for thiosulphate. Each c.c. of iodine solution indicates 0.006414 g . S. as thiosulphate.
6. Lime-kiln (rases.-(O_{2} is estimated by an Orsat apparatus, or a Honigmann burette, or any other similar apraratus. When using an Orsat apparatus, the test for oxygen can be made as on p. 119.
7. G'as from Gas-lolder:
(a) Hydrogen S'ulphide + Carbon Dioxide are estimated by an Orsat apparatus or a Honigmann burette, etc.
(b) Hydrogen Sulphide only.-A wide-mouthed bottle of known capacity, holding about 500 c.c., is fitted with a rubber cork and two tubes, one nearly reaching to the bottom, the other ending just below the cork, both of them with stopcocks outside. Gas is passed through for some time, till it has entirely displaced the air in the hottle. Then 20 or 25 c.c. of standard potash solution is run in from a pipette, through one of the stopcocks, the bottle is well shaken until the whole of the $\mathrm{H}_{v} \mathrm{~S}$ and CO_{2} are absorbed, the contents of the bottle are poured into a measuring flask, the bottle is rinsed out completely, and the total liquid mado up to the mark.

An aliquot portion is taken out, largely diluted with previously boiled water, acidified with acetic acid, and the $\mathrm{H}_{2} \mathrm{~S}$
estimated by iodine. In this case a solution of iodine is employed containing 11.463 g . I per litre, each c.c. of which indicates 1 c.c. of gaseous H, S at ()$^{\circ} \mathrm{C}$. and 760 mm . pressure. For somewhat exact estimations, the temperature, pressure, and vapour tension have to be taken into account ; but it is unnecessary to observe the thermometer and barometer, and to make any complicated calculations, if a Lunge's gas-volumeter be used (p. 167). In this case the level-tube, (!, of the instrument is placed so that the mercury stands at the same height in () as in the reduction tube B ; the height of mercury in the latter is read off, which gives the volume occupied by 100 c.c. of dry air of $0^{\prime 2}$ and 760 mm . under the prevailing atmospheric conditions; the number of c.e. of iodine solution, multiplied by 100 , is divided by this figure, and thus the correction of the normal volume effected.
8. Erit G'ases from the Claus Kilus.-These contain SO_{2} and $\mathrm{H}_{2} \mathrm{~S}$. Both these gases, on being passed through iodine solution, produce 2 HI for each atom of S ; but whilst $\mathrm{H}_{2} \mathrm{~S}$ does not further increase the acidity of the solution, SO_{2} produces its equivalent of $\mathrm{H}_{2} \mathrm{SO}_{4}$: Hence SO_{2}, and $\mathrm{I}_{2} \mathrm{~S}$ are measired together by the amount of iodine converted into HI , and SO_{2} by the acidity present after the HI has been saturated with caustic soda. Since the current of gases carries away some iodine from the decinormal solution, the gases must be passed through caustic soda, or, better, throngh sodium thiosulphate, to intercept this iodine. The manipulation is hence as follows: Aspirate one or more litres of the gases through 50 c.c. of decinormal iodine solution, contained in a bulb apparatus (Fig. 10, p. 144), or other efficient absorbing-tubes, followed by another apparatus containing 50 c.c. of decinormal thiosulphate solution. Empty the contents of both apparatus into a beaker, and titrate with decinormal iodine and starch solution, till a blue colour appears. The number of c.c. of iodine solution used, if multiplied by 0.001604 g . indicates the total sulphur present as SO_{2} and $\mathrm{H}_{2} \mathrm{~S}$. Now add a drop of thiosulphate solution to discharge the blue colour, then a drop of methyl orange, and decinormal caustic soda from a burette, till the pink colour of the liquid is discharged. The number of c.c. of caustic soda used, less those of iodine used in the preceding test, multiplied by 0.001604 , indicates the sulphur present as SO_{2}.

VIII. MANUFACTURE OF SODA BY THE AMMONIA PROCESS.

A.-Raw Materials.

1. Rock Salt, compare p. 174 .
2. Brine.-The following determinations are made :-
(a) Specific ('ravity, by the hydrometer.
(b) Chlorine, expressed as NaCl . Dilute 10 c.c. to 1 litre, and titrate 10 c.c. of the diluted solution as on p. 174.
(c) Sulphates.- Jilute 50 c.c. brine to 150 or 200 c.c., add a little hydrochloric acid, and precipitate with barium chloride as on p. 134.
(d) lerric Oxide and Aluminu.-To 500 c.c. brine add a little nitric acid, heat to 80°, precipitate by an excess of ammonia, digest for half an hour at 80°, filter, and wash well. As a check, redissolve the precipitate in hydrochloric acid and reprecipitate it by ammonia.

In the filtrate lime and magnesia may be estimated as on pp. 174 and 175.
(e) Bicarbonates of Lron, Lime, and Magnesia.-Destroy the bicarbonates as such by prolonged boiling of 500 c.c., replace the water driven off, filter the precipitate formed, wash it, dissolve it in hydrochloric acid, and in the solution estimate the iron by precipitation with NH_{3}, and lime and magnesia in the ordinary way.
3. Concentrated Gas-liquor or Sulphate of A mmonia, cf. Chapter XIII., pp. 233 and 234.
4. Limestone, cf. 1 . 183.
5. Quicklime, cf. p. 184.
6. Coals or Coke, cf. p. 117.

B.-Tests made during the Process of Manufacture.

1. Ammoniacal Brine from the receivers.
(a) Sodium Chloride.-Acidulate with nitric acid and estimate the NaCl by AgNO_{3} gravimetrically, or volumetrically in the neutral or faintly alkaline solution as on p. 174.
(b) Ammonia, free and combined.-Dilute 10 c.c. to 100 c.c. and boil in a distilling flask until all the free ammonia and ammonium carbonate has been expelled; absorb this in a measured volume of normal sulphuric acid, and titrate back. To
the solution remaining in the flask add caustic soda solution, distil again, and absorb this "combined" ammonia also in sulphuric acid. Cf. Chapter XIII., p. 233.
2. Carbonators.-Free and combined NH_{3} are estimated as in No. 1 (b).
3. Mother Liquor:-Estimate :-
(a) NH_{3}, free and combined, as above.
(b) Undecomposed NaCl , by evaporating 10 c.c. in a platinum dish, heating until all $\mathrm{NH}_{4} \mathrm{Cl}$ is expelled, and weighing.
4. Crude Bicarbonate.-Estimate:-
(a) The Alkalimetrical Degree, as on 1. 190.
(b) CO_{9} as on p. 209.
(c) Moisture, by igniting and allowing for the (O, present as bicarbonate and found in (b).
5. Distillation of Ammonia :-
(a) NH_{3}, free and combined, in the mother liquor, as in No. 1 (b).
(b) Milk of lime, as on p. 184.
(c) Excess of lime in the stills. Boil 100 c.c. until all NH_{3} has been expelled, add a little ammonium sulphate, and boil again. The NH_{3} now set free, which corresponds to the excess of lime, is absorbed in standard sulphuric acid and titrated.
6. Lime-kiln, Gases.-Estimate the CO_{2} as on 1. 119.

C.-Commercial Products.

1. Soda $A s h$, as on p. 190.
2. Commercial Bicarbonate is tested like the crude, No. 1, or very accurately by heating in an air-bath to 270° and receiving the gas in a Lunge's gas-volumeter, p. 167 (compare Lunge, Z. angeu. Chem., 1897, p. 522).

IX. CAUSTIC SODA.

A.-Caustic Liquor.

(a) Test for total alkali by titration with standard acid, using methyl orange as indicator. If carbonate is present, it can be determined as described on p. 209.
(b) sPEOIFIC GRAVITIES OF SOLUTIONS OF SODIUM HYDROXIDE AT $15^{\circ} \mathrm{C}$.

specific Gravity.	Degrees Twaddell.	Degiees Baumé.	Per cent. $\mathrm{Na}_{2} \mathrm{O}$.	Per cent. NaOH .	$1 \mathrm{cb} . \mathrm{m}$. contains kg .	
					$\mathrm{Na}_{2} \mathrm{O}$.	NaOH.
1.000	0	0	0	0.00	0	0
1.005	1	$0 \cdot 7$	$0 \cdot 33$	$0 \cdot 43$	$3 \cdot 31$	$4 \cdot 32$
$1 \cdot 010$	2	$1 \cdot 4$	$0 \cdot 67$	$0 \cdot 86$	$6 \cdot 77$	$8 \cdot 69$
$1 \cdot 015$	3	$2 \cdot 1$	$0 \cdot 99$	$1 \cdot 28$	$10 \cdot 05$	$12 \cdot 99$
1.020	4	$2 \cdot 7$	$1 \cdot 31$	$1 \cdot 69$	$13 \cdot 36$	17-24
1.025	5	$3 \cdot 4$	$1 \cdot 65$	$2 \cdot 13$	$16 \cdot 91$	21.83
1.030	6	$4 \cdot 1$	$2 \cdot(02$	$2 \cdot 60$	$20 \cdot 81$	$26 \cdot 78$
1.035	7	$4 \cdot 7$	$2 \cdot 37$	$3 \cdot 06$	24.53	$31 \cdot 67$
$1 \cdot 040$	8	$5 \cdot 4$	$2 \cdot 71$	$3 \cdot 50$	$28 \cdot 18$	$36 \cdot 40$
1.045	9	$6 \cdot 0$	3.02	$3 \cdot 90$	$31 \cdot 56$	$40 \cdot 76$
1.050	10	$6 \cdot 7$	$3 \cdot 36$	$4 \cdot 34$	$35 \cdot 28$	$45 \cdot 57$
$1 \cdot 055$	11	$7 \cdot 4$	$3 \cdot 69$	$4 \cdot 76$	$38 \cdot 93$	$50 \cdot 22$
$1 \cdot 060$	12	$8 \cdot 0$	4*03	$5 \cdot 20$	$42 \cdot 72$	$55 \cdot 12$
1.065	13	$8 \cdot 7$	$4 \cdot 39$	$5 \cdot 67$	$46 \cdot 75$	$60 \cdot 39$
1.070	14	$9 \cdot 4$	$4 \cdot 75$	6•13	$50 \cdot 83$	$65 \cdot 59$
1.075	15	$10 \cdot 0$	$5 \cdot 10$	6.58	$54 \cdot 83$	70.74
1.080	16	$10 \cdot 6$	$5 \cdot 46$	$7 \cdot 05$	$58 \cdot 97$	$76 \cdot 14$
1.085	17	$11 \cdot 2$	$5 \cdot 81$	$7 \cdot 5$	$63 \cdot 04$	$81 \cdot 38$
1.090	18	11.9	$6 \cdot 16$	$7 \cdot 95$	67-14	$86 \cdot 66$
1.095	19	$12 \cdot 4$	6.50	$8 \cdot 39$	$71 \cdot 18$	$91 \cdot 87$
$1 \cdot 100$	20	$13 \cdot 0$	$6 \cdot 81$	$8 \cdot 78$	$74 \cdot 91$	$96 \cdot 58$
$1 \cdot 105$	21	$13 \cdot 6$	$7 \cdot 15$	$9 \cdot 23$	$79 \cdot 01$	101.99
$1 \cdot 110$	22	14.2	$7 \cdot 50$	$9 \cdot 67$	83.25	$107 \cdot 34$
$1 \cdot 115$	23	14.9	$7 \cdot 84$	$10 \cdot 12$	$87 \cdot 42$	$112 \cdot 84$
$1 \cdot 120$	24	$15 \cdot 4$	$8 \cdot 18$	10.56	$91 \cdot 62$	$118 \cdot 27$
$1 \cdot 125$	25	$16 \cdot 0$	$8 \cdot 57$	11.06	$96 \cdot 41$	$124 \cdot 43$
$1 \cdot 130$	26	16.5	$8 \cdot 95$	11.55	$101 \cdot 14$	$130 \cdot 52$
$1 \cdot 135$	27	$17 \cdot 0$	$9 \cdot 32$	$12 \cdot 02$	$105 \cdot 78$	$136 \cdot 43$
$1 \cdot 140$	28	$17 \cdot 7$	9.68	$12 \cdot 49$	$110 \cdot 35$	$14.2 \cdot 39$
$1 \cdot 145$	29	$18 \cdot 3$	10.03	$12 \cdot 94$	114.84	$148 \cdot 16$
$1 \cdot 150$	30	$18 \cdot 8$	$10 \cdot 34$	$13 \cdot 34$	$118 \cdot 91$	$153 \cdot 41$
$1 \cdot 155$	31	$19 \cdot 3$	$10 \cdot 67$	$13 \% 6$	$123 \cdot 24$	158.93
$1 \cdot 160$	32	$19 \cdot 8$	$11 \cdot 00$	$14 \cdot 19$	$127 \cdot 60$	16.460
$1 \cdot 165$	33	$20 \cdot 3$	$11 \cdot 33$	14.62	131.99	170.32
$1 \cdot 170$	34	$20 \cdot 9$	$11 \cdot 67$	$15 \cdot 06$	$136 \cdot 54$	$176 \cdot 20$
$1 \cdot 175$	35	$21 \cdot 4$	$12 \cdot 04$	$15 \cdot 53$	$141 \cdot 47$	$182 \cdot 48$
$1 \cdot 180$	36	$22 \cdot 0$	$12 \cdot 40$	16.00	$146 \cdot 32$	$188 \cdot 80$
$1 \cdot 185$	37	$22 \cdot 5$	$12 \cdot 75$	$16 \cdot 45$	151.09	194.93
$1 \cdot 190$	38	$23 \cdot 0$	$13 \cdot 11$	$16 \cdot 91$	$156 \cdot 01$	$201 \cdot 23$
1-195	39	$23 \cdot 5$	$13 \cdot 46$	$17 \cdot 36$	$160 \cdot 85$	$207 \cdot 45$
$1 \cdot 200$	40	24.0	$13 \cdot 80$	$17 \cdot 81$	$165 \cdot 60$	$213 \cdot 72$
$1 \cdot 205$	41	$24 \cdot 5$	$14 \cdot 15$	$18 \cdot 26$	$170 \cdot 51$	$220 \cdot 03$

204 THE TECHNICAL CHEMISTS' HANDIBOOK

(b) SPECIFIC GRAVITIES OF SOLUTIONS OF SODIUM HYDROXIDH AT 15° C.-Continued.

Specific Gravity.	Degrees Twaddell.	Degrees Baumé.	Per cent. $\mathrm{Na}_{2} \mathrm{O}$.	Per cent. NaOH .	$\mathrm{Na} \mathrm{Na}_{2} \mathrm{O}$	tains kg . NaOII .
$1 \cdot 210$	42	$25 \cdot 0$	14.50	$18 \cdot 71$	$175 \cdot 45$	$226 \cdot 39$
$1 \cdot 215$	43	$25 \cdot 5$	14.97	$19 \cdot 18$	$180 \cdot 67$	$233 \cdot 04$
$1 \cdot 220$	4.1	$26^{\circ} 0$	$15 \cdot 23$	$19 \cdot 65$	$185 \cdot 81$	$239 \cdot 73$
$1 \cdot 225$	45	$26 \cdot 4$	$15 \cdot 59$	$20 \cdot 12$	$190 \cdot 98$	$246 \cdot 47$
$1 \cdot 230$	46	$26 \cdot 9$	$15 \cdot 97$	$20 \cdot 60$	$196 \cdot 43$	$253 \cdot 38$
$1 \cdot 235$	47	$27 \cdot 4$	$16 \cdot 30$	21.03	$\because 01 \cdot 31$	259.72
$1 \cdot 240$	48	$27 \cdot 9$	$16 \cdot 6.4$	$21 \cdot 47$	$206 \cdot 31$	$\because 66 \cdot 23$
$1 \cdot 245$	49	$28 \cdot 4$	$16 \cdot 97$	$21 \cdot 90$	211.28	$272 \cdot 66$
$1 \cdot 250$	50	$28 \cdot 8$	$17 \cdot 31$	$2 \cdot 33$	$216 \cdot 38$	$279 \cdot 13$
$1 \cdot 255$	51	29.3	$17 \cdot 65$	22.77	$221 \cdot 51$	$285 \cdot 76$
$1 \cdot 260$	52	$29 \cdot 7$	$15 \cdot 01$	$23 \cdot 23$	226.93	$292 \cdot 70$
$1 \cdot 265$	53	$30 \cdot 2$	$18 \cdot 35$	$23 \cdot 68$	$232 \cdot 13$	299.55
$1 \cdot 270$	54	$30 \cdot 6$	$18 \cdot 70$	$21 \cdot 13$	$237 \cdot 62$	$306 \cdot 45$
$1 \cdot 275$	55	$31 \cdot 1$	19.05	24.58	24.2.89	$313 \cdot 40$
$1 \cdot 280$	56	$31 \cdot 5$	$19 \cdot 41$	$25 \cdot 04$	$248 \cdot 45$	$3: 20 \cdot 51$
$1 \cdot 285$	57	$32 \cdot 0$	$19 \cdot 77$	$25 \cdot 50$	254.04	$327 \cdot 68$
$1 \cdot 290$	58	$32 \cdot 4$	$20 \cdot 12$	$25 \cdot 96$	259.55	$334 \cdot 88$
$1 \cdot 295$	59	32•8	$20 \cdot 47$	$26 \cdot 41$	$265 \cdot 09$	342.01
$1 \cdot 300$	60	$33 \cdot 3$	$20 \cdot 81$	$26 \cdot 85$	$270 \cdot 53$	349.05
$1 \cdot 305$	61	$33 \cdot 7$	$21 \cdot 20$	$\because 7 \cdot 35$	$276 \cdot 66$	$356 \cdot 92$
$1 \cdot 310$	62	$34 \cdot 2$	$21 \cdot 59$	27.85	282.83	$364 \cdot 83$
$1 \cdot 315$	63	$34 \cdot 6$	21.97	$28 \cdot 34$	$288 \cdot 91$	$372 \cdot 67$
$1 \cdot 320$	64	$35 \cdot 0$	$22 \cdot 35$	$28 \cdot 83$	$295 \cdot 0$	$380 \cdot 56$
$1 \cdot 325$	65	$35 \cdot 4$	22.73	$29 \cdot 32$	$301 \cdot 17$	$388 \cdot 40$
$1 \cdot 330$	66	$35 \cdot 8$	$23 \cdot 10$	$29 \cdot 80$	$307 \cdot 23$	$396 \cdot 34$
1-335	67	$36 \cdot 2$	23.47	$30 \div 28$	$313 \cdot 32$	$404 \cdot 24$
$1 \cdot 340$	68	$36 \cdot 6$	$23 \cdot 83$	$30 \cdot 74$	$319 \cdot 32$	$411 \cdot 92$
$1 \cdot 345$	69	$37 \cdot 0$	$24 \cdot 18$	$31 \cdot 20$	$325 \% 2$	$419 \cdot 64$
$1 \cdot 350$	70	$37 \cdot 4$	$24 \cdot 61$	$31 \cdot 75$	$332 \cdot 24$	$428 \cdot 63$
$1 \cdot 355$	71	$37 \cdot 8$	25.02	$32 \cdot 28$	$339 \cdot 0$	$437 \cdot 39$
$1 \cdot 360$	72	$38 \cdot 2$	$25 \cdot 42$	$32 \cdot 79$	$345 \cdot 71$	$445 \cdot 94$
$1 \cdot 365$	73	$38 \cdot 6$	$25 \cdot 78$	$33 \cdot 26$	$351 \cdot 90$	$454 \cdot 00$
$1 \cdot 370$	74	$39 \cdot 0$	$26 \cdot 14$	$33 \cdot 73$	358-12	$462 \cdot 10$
$1 \cdot 375$	75	$39 \cdot 4$	$26 \cdot 52$	$34 \cdot 22$	$364 \cdot 65$	$470 \cdot 53$
$1 \cdot 380$	76	$39 \cdot 8$	$26 \cdot 90$	$34 \cdot 71$	$371 \cdot 22$	$479 \cdot 00$
$1 \cdot 385$	77	$40 \cdot 1$	$27 \cdot 28$	$35 \cdot 20$	$377 \cdot 83$	$487 \cdot 52$
$1 \cdot 390$	78	$40 \cdot 5$	$27 \cdot 66$	$35 \cdot 68$	$384 \cdot 47$	$495 \cdot 95$
$1 \cdot 395$	79	$40 \cdot 8$	$28 \cdot 02$	$36 \cdot 15$	$390 \cdot 88$	$504 * 29$
1.400	80	$41 \cdot 2$	$28 \cdot 42$	$36 \cdot 67$	$397 \cdot 88$	$513 \cdot 38$
1.405	81	$41 \cdot 6$	$28 \cdot 81$	$37 \cdot 17$	$404 \cdot 78$	$522 \cdot 24$
$1 \cdot 410$	82	$42 \cdot 0$	$29 \cdot 18$	$37 \cdot 65$	$411 \cdot 44$	$530 \cdot 87$
1.415	83	$42 \cdot 3$	$29 \cdot 58$	38-16	$418 \cdot 56$	$539 \cdot 96$

(b) SPECIFIC GRAVITIES OF SOLUTIONS OF SODIUM HYDROXIDF AT 15° O.-Continued.

Specific Gravity.	Degrees Twaddell.	Degrees Baumé.	Per cent. Na.2.	Per cent. NaOlI .	$1 \mathrm{cb} . \mathrm{m}$. contains kg .	
					$\mathrm{Na}_{2} \mathrm{O}$.	NaOH .
1.420	84	$42 \cdot 7$	$29 \cdot 97$	$38 \cdot 67$	425:57	$549 \cdot 11$
1.425	85	$43 \cdot 1$	$30 \cdot 36$	$39 \cdot 17$	$432 \cdot 63$	$558 \cdot 17$
$1 \cdot 430$	86	$43 \cdot 4$	30.75	$39 \cdot 67$	$439 \cdot 72$	$567 \cdot 28$
1.435	87	$43 \cdot 8$	$31 \cdot 14$	$40 \cdot 18$	$446 \cdot 86$	$576 \cdot 58$
$1 \cdot 440$	88	$44 \cdot 1$	31.53	$40 \cdot 68$	$454 \cdot 03$	$585 \cdot 79$
1.445	89	$44 \cdot 4$	31.93	$41 \cdot 20$	$461 \cdot 39$	$595 \cdot 34$
1.450	90	$44 \cdot 8$	$32 \cdot 32$	$41 \cdot 70$	$468 \cdot 64$	$604 \cdot 65$
1.455	91	$45 \cdot 1$	$32 \cdot 72$	$42 \cdot 22$	$476 \cdot 07$	$614 \cdot 30$
1.460	92	$45 \cdot 4$	$33 \cdot 14$	$42 \cdot 75$	$483 \cdot 84$	$624 \cdot 15$
1.465	93	$45 \cdot 8$	$33 \cdot 54$	$43 \cdot 27$	$491 \cdot 36$	$633 \cdot 91$
1.470	94	$46 \cdot 1$	$33 \cdot 95$	$43 \cdot 80$	$499 \cdot 07$	$643 \cdot 86$
1.475	95	$46 \cdot 1$	$34 \cdot 36$	$44 \cdot 33$	506.81	$653 \cdot 87$
1.480	96	$46 \cdot 8$	$34 \cdot 76$	44.85	514.45	$663 \cdot 78$
1.485	97	$47 \cdot 1$	$35 \cdot 17$	$45 \cdot 37$	$522 \cdot 27$	$673 \cdot 74$
1.490	98	$47 \cdot 4$	$35 \cdot 57$	$45 \cdot 89$	$529 \cdot 99$	$683 \cdot 76$
$1 \cdot 495$	99	$47 \cdot 8$	$35 \cdot 98$	$46 \cdot 42$	537.90	$693 \cdot 98$
$1 \cdot 500$	100	$48 \cdot 1$	$36 \cdot 38$	$46 \cdot 94$	$545 \cdot 70$	$704 \cdot 10$
1.505	101	$48 \cdot 4$	$36 \cdot 79$	$47 \cdot 47$	553.69	714.42
$1 \cdot 510$	102	$48 \cdot 7$	$37 \cdot 20$	$48 \cdot 00$	$561 \cdot 72$	724.80
$1 \cdot 515$	103	$49 \cdot 0$	$37 \cdot 61$	$48 \% 3$	569.79	$735 \cdot 23$
$1 \cdot 520$	104	$49 \cdot 4$	$38 \cdot 02$	$49 \cdot 05$	$577 \cdot 90$	$745 \cdot 56$
1.525	105	$49 \cdot 7$	$38 \cdot 42$	$49 \cdot 58$	$585 \cdot 91$	$756 \cdot 10$
$1 \cdot 530$	106	$50 \cdot 0$	38.83	50.10	$594 \cdot 10$	$766 \cdot 53$

[(c) Influence of Temperature.
(c) INFLUENOE OF TEMPERATURH ON THH SPEAIFIC

$0^{\circ} \mathrm{C}$.	$5{ }^{\circ}$.	10°.	15°.	20°.	25°.	80°.	35°.	40°.	45°.	50°.
1-367	1-364	$1 \cdot 362$	1-360	$1 \cdot 357$	$1 \cdot 355$	1.353	1.850	$1 \cdot 348$	$1 \cdot 845$	1.342
$1 \cdot 357$	$1 \cdot 854$	1.352	$1 \cdot 350$	$1 \cdot 347$	$1 \cdot 3+5$	$1 \cdot 3.43$	$1 \cdot 340$	$1 \cdot 337$	$1 \cdot 335$	1.332
$1 \cdot 347$	$1 \cdot 344$	$1 \cdot 342$	$1 \cdot 340$	$1 \cdot 335$	$1 \cdot 335$	$1 \cdot 333$	$1 \cdot 380$	$1 \cdot 327$	1.325	$1 \cdot 322$
1.338	$1 \cdot 335$	$1 \cdot 332$	$1 \cdot 330$	$1 \cdot 325$	$1 \cdot 325$	$1 \cdot 323$	$1 \cdot 320$	$1 \cdot 317$	1.315	$1 \cdot 312$
1.328	$1 \cdot 325$	1.322	$1 \cdot 320$	$1 \cdot 315$	$1 \cdot 315$	$1 \cdot 313$	$1 \cdot 310$	$1 \cdot 307$	1-305	1-302
1.318	$1 \cdot 315$	1.318	$1 \cdot 310$	$1 \cdot 308$	$1 \cdot 305$	$1 \cdot 303$	$1 \cdot 300$	1.297	1.294	1-202
$1 \cdot 308$	$1 \cdot 305$	1.303	$1 \cdot 300$	$1 \because 297$	$1 \cdot 294$	$1 \cdot 292$	1.289	$1 \cdot 257$	1.284	$1 \cdot 282$
$1 \cdot 298$	$1 \cdot 295$	1.293	$1-230$	$1 \cdot 287$	1-284	1-282	$1 \cdot 279$	1.277	$1 \cdot 274$	1.272
1'288	$1 \cdot 285$	$1 \cdot 283$	$1 \cdot 280$	$1 \because 77$	1.274	1.272	$1 \cdot 269$	$1 \cdot 267$	1.264	$1 \cdot 262$
1.278	$1 \cdot 275$	1.273	$1 \cdot 270$	$1 \cdot 267$	$1 \cdot 265$	1.262	1.260	$1 \cdot 258$	$1 \cdot 255$	1.252
1.268	1.265	1.203	1.260	1.257	1.255	$1 \cdot 250$	1.250	1.248	1.245	1.242
$1 \cdot 257$	$1 \cdot 255$	1252	$1 \cdot 250$	$1 \cdot 247$	$1 \cdot 245$	$1 \cdot 242$	$1 \cdot 240$	$1 \cdot 238$	1.235	1-233
1.247	$1 \cdot 2.45$	$1 \cdot 242$	$1 \cdot 240$	1.237	1-235	1-232	$1 \cdot 230$	1.228	1.225	1.223
1.237	$1 \cdot 235$	1.232	$1 \cdot 230$	$1 \cdot 227$	1-224	1-222	1.220	$1 \cdot 218$	1.215	$1 \cdot 212$
1'227	$1 \cdot 225$	1-222	$1 \cdot 220$	$1 \cdot 217$	$1 \cdot 214$	1-212	$1 \cdot 210$	1-208	$1 \cdot 205$	1-202
1.217	1.215	1.212	1.210	$1 \cdot 207$	$1 \because 04$	1-203	$1 \cdot 200$	$1 \cdot 198$	$1 \cdot 196$	1-192
$1 \cdot 207$	$1 \cdot 205$	$1 \cdot 202$	1-200	$1 \cdot 197$	1-195	$1 \cdot 193$	$1 \cdot 190$	1-188	$1 \cdot 186$	$1 \cdot 184$
1-197	$1 \cdot 195$	1-192	$1 \cdot 190$	$1 \cdot 157$	$1 \cdot 185$	$1 \cdot 183$	$1 \cdot 180$	$1 \cdot 178$	$1 \cdot 176$	1-174
$1 \cdot 187$	1.185	$1 \cdot 182$	1-180	$1 \cdot 177$	1-175	$1 \cdot 173$	$1 \cdot 170$	1-168	1.160	1-164
$1 \cdot 176$	1-174	$1 \cdot 172$	$1 \cdot 170$	$1 \cdot 167$	1-165	$1 \cdot 163$	1-161	1-158	1.150	1-154
$1 \cdot 166$	1-164	$1 \cdot 162$	$1 \cdot 160$	$1 \cdot 157$	$1 \cdot 155$	$1 \cdot 153$	$1 \cdot 151$	1-148	$1 \cdot 146$	1-144
$1 \cdot 156$	$1 \cdot 154$	$1 \cdot 152$	$1 \cdot 150$	$1 \cdot 148$	$1 \cdot 146$	$1 \cdot 144$	$1 \cdot 142$	$1 \cdot 140$	$1 \cdot 137$	$1 \cdot 185$
1-146	$1 \cdot 144$	$1 \cdot 142$	$1 \cdot 140$	$1 \cdot 198$	$1 \cdot 186$	1-134	1-132	1-130	$1 \cdot 127$	$1 \cdot 125$
$1 \cdot 136$	$1 \cdot 134$	$1 \cdot 132$	$1 \cdot 130$	$1 \cdot 128$	$1 \cdot 126$	$1 \cdot 124$	$1 \cdot 122$	$1 \cdot 120$	$1 \cdot 118$	$1 \cdot 116$
$1 \cdot 126$	l-124	$1 \cdot 122$	$1 \cdot 120$	$1 \cdot 118$	$1 \cdot 110$	$1 \cdot 114$	$1 \cdot 112$	$1 \cdot 110$	1-108	$1 \cdot 106$
$1 \cdot 115$	$1 \cdot 113$	$1 \cdot 112$	$1 \cdot 110$	1-108	$1 \cdot 106$	$1 \cdot 104$	$1 \cdot 102$	$1 \cdot 100$] 0099	$1 \cdot 007$
$1 \cdot 105$	$1 \cdot 103$	$1 \cdot 102$	$1 \cdot 100$	$1 \cdot 098$	$1 \cdot 096$	$1 \cdot 095$	$1 \cdot 003$	$1 \cdot 092$	$1 \cdot(6)$	1.087
$1 \cdot 094$	1.008	1.091	$1 \cdot 090$	1.088	1.087	1.086	1.084	1.082	1.080	1.078
1.084	1.083	1.081	1.080	1.078	1.077	1.076	1.074	$1 \cdot 0 \% 2$	1.070	1.068
$1 \cdot 074$	1.073	$1 \cdot 071$	$1 \cdot 070$	$1 \cdot 068$	1.067	1.060^{3}	1.064	1.062	1.080	1.058
1.064	1.063	1.061	1.060	1.058	1.057	1.056	1.054	1.052	1.050	1.048
1.054	$1 \cdot 053$	$1 \cdot 051$	1.050	1.048	1.047	1.046	1.044	1.042	$1 \cdot 040$	$1 \cdot 088$
1.044	1.043	1.041	$1 \cdot 040$	1.038	1.037	1.036	1.034	1.032	1.080	1.028
1.034	1.033	1.031	1.030	1.028	1.027	1.026	1.024	$1 \cdot 022$	1.020	$1 \cdot 018$
1.024	1.023	1.021	1.020	1.018	1.017	1.016	1.014	1.012	1.010	1.008
$1 \cdot 014$	1.018	$1 \cdot 011$	1.010	1-008	1.007	1.000	1.004	1.002	$1 \cdot 000$	0.008

GRAVITIES OF SOLUTIONS OF OAUSTIC SODA.

65°.	60°.	65°.	70°.	75°	80°.	85°.	90°.	95°.	100°.
1.839	$1 \cdot 336$	1.333	$1 \cdot 331$	$1 \cdot 328$	1-326	1.323	$1 \cdot 321$	1.318	1.316
1.380	$1 \cdot 327$	$1 \cdot 324$	$1 \cdot 322$	$1 \cdot 319$	$1 \cdot 316$	$1 \cdot 314$	$1 \cdot 311$	$1 \cdot 308$	$1 \cdot 306$
1.320	$1 \cdot 317$	$1 \cdot 814$	$1 \cdot 312$	$1 \cdot 309$	$1 \cdot 306$	$1 \cdot 304$	$1 \cdot 301$	$1 \cdot 298$	1.296
1.810	$1 \cdot 807$	$1 \cdot 304$	$1 \cdot 302$	$1 \cdot 269$	$1 \cdot 296$	1-294	$1 \cdot 291$	1.288	1-286
1.800	1-297	$1 \cdot 294$	1-292	$1 \cdot 289$	1.286	1.283	$1 \cdot 280$	$1 \cdot 277$	1.274
1-280	1.280	1.284	1.281	1.278	1.275	1.272	$1 \cdot 269$	$1 \cdot 266$	1.203
$1 \cdot 279$	$1 \cdot 276$	$1 \cdot 274$	$1 \cdot 271$	$1 \cdot 268$	1.265	1.262	$1 \cdot 259$	$1 \cdot 256$	$1 \cdot 253$
$1 \cdot 269$	$1 \cdot 260$	$1 \cdot 264$	1-261	$1 \cdot 258$	$1 \cdot 255$	1-25	$1 \cdot 249$	$1 \cdot 245$	$1 \cdot 242$
1.259	1.256	$1 \cdot 254$	$1 \cdot 261$	$1 \cdot 248$	1.245	$1 \cdot 242$	$1 \cdot 239$	$1 \cdot 235$	1.232
$1 \cdot 250$	$1 \cdot 247$	1-245	1.242	1.239	1.236	$1 \cdot 233$	1-231	$1 \cdot 228$	1.225
$1 \cdot 240$	1.297	$1 \cdot 235$	1-282	$1 \cdot 229$	1.226	$1 \cdot 223$	$1 \cdot 221$	$1 \cdot 218$	1.215
$1 \cdot 231$	1.228	$1 \cdot 226$	$1 \cdot 2: 3$	1-220	1.218	1.215	$1 \cdot 213$	$1 \cdot 200$	$1 \cdot 207$
$1 \cdot 221$	1-218	$1 \cdot 216$	1-213	$1 \cdot 210$	1:208	1.205	$1 \because 03$	$1 \cdot 200$	1-197
$1 \cdot 210$	1.208	1-205	1.202	$1 \cdot 200$	1-198	$1 \cdot 195$	1-192	1-190	$1 \cdot 187$
$1 \cdot 200$	1-198	$1 \cdot 195$	1-192	$1 \cdot 190$	1-189	1.185	1-182	$1 \cdot 180$	$1 \cdot 177$
$1 \cdot 191$	1-189	$1 \cdot 186$	1-184	1-181	1-179	1.176	$1 \cdot 173$	1.171	1.168
1-182	$1 \cdot 180$	$1 \cdot 177$	$1 \cdot 175$	1-172	$1 \cdot 169$	1.166	$1 \cdot 163$	$1 \cdot 161$	1.158
$1 \cdot 172$	1-169	$1 \cdot 166$	1-164	$1 \cdot 161$	1-158	1.155	$1 \cdot 153$	$1 \cdot 150$	1.147
1-162	1-159	$1 \cdot 156$	$1 \cdot 153$	1-151	$1 \cdot 148$	1.145	$1 \cdot 143$	1-140	1.137
$1 \cdot 152$	$1 \cdot 149$	$1 \cdot 146$	$1 \cdot 143$	$1 \cdot 140$	1-188	1.135	$1 \cdot 132$	$1 \cdot 130$	1.127
1-142	I-139	$1 \cdot 136$	$1 \cdot 133$	1-130	1-128	1-125	1-122	1-120	$1 \cdot 117$
$1 \cdot 182$	$1 \cdot 180$	$1 \cdot 127$	$1 \cdot 124$	$1 \cdot 121$	$1 \cdot 118$	$1 \cdot 116$	$1 \cdot 113$	$1 \cdot 110$	$1 \cdot 107$
$1 \cdot 122$	$1 \cdot 120$	$1 \cdot 117$	$1 \cdot 114$	1.111	1.108	$1 \cdot 106$	$1 \cdot 103$	$1 \cdot 100$	$1 \cdot 097$
$1 \cdot 118$	$1 \cdot 110$	$1 \cdot 107$	1.104	1-101	$1 \cdot 099$	1.096	1.093	$1 \cdot 090$	1.087
$1 \cdot 103$	1-100	$1 \cdot 097$	1.094	1.092	1.089	1.086	$1 \cdot 083$	1.080	$1 \cdot 077$
1.094	1.091	1.089	1.086	$1 \cdot 083$	1.080	1.077	1.074	1.071	1.068
1.084	$1 \cdot 082$	1.079	1.076	1.073	1.070	1.067	$1 \cdot 064$	1.061	1.058
1.075	1.073	1.070	1.067	1.064	1.061	1.058	1.056	1.052	1.048
1.066	1.063	1.060	1.057	$1 \cdot 054$	1.051	$1 \cdot 048$	$1 \cdot 046$	$1 \cdot 043$	$1 \cdot 040$
$1 \cdot 056$	1.053	$1 \cdot 050$	1.047	$1 \cdot 044$	1.042	1.039	$1 \cdot 036$	1.083	1.080
1.046	1.043	$1 \cdot 040$	1.037	1.034	1.032	1.029	1.026	1.023	1.020
1.086	1.083	$1 \cdot 030$	$1 \cdot 027$	1.0:4	1.021	1.019	1.016	1.013	$1 \cdot 010$
1.026	1.023	$1 \cdot 020$	1.017	1.014	1.011	1.009	1.006	1.003	1.000
1.016	1.018	1.010	1.007	1.004	1.001	0.999	0.096	$0 \cdot 993$	$0 \cdot 990$
1.006	1.008	1.000	0.097	0.994	0.991	0.089	0.086	0.083	0.080
0.000	0.998	0.900	0.087	0.984	0.981	0.979	0.976	0.978	0.970

B. -Lime Mud.

(a) Sodium as Carbonate and II!droxide.-Evaporate to dryness with addition of ammonium carbonate (in order to decompose the insoluble sodium compounds), repeat this, digest with hot water, filter, wash, and test the filtrate for alkali. The soda may have been originally present as NaOH or as $\mathrm{Na}_{2} \mathrm{CO}_{3}$. It is expressed in terms of $\mathrm{Na}_{2} \mathrm{O}$ ($0 \cdot 03100 \mathrm{~g}$. per cubic centimetre of normal acid).
(b) Caustic Lime.-Titrate as described (p. 184) with normal hydrochloric acid and phenolphthalein. This indicates NaOH as well, for which half of the amount found in test (a) may be assumed without any serious error.
(c) Calcium C'arlonate.-Titrate with normal hydrochloric acid and methyl orange, deduct from the cubic centimetres required those required in tests (a) and (b).

C.-Fished Salts.

Dissolve 50 g . in 1 litre of water, and take 50 c.e. of the solution for every test.
(a) Available dlkali is tested for with normal hydrochloric acid.
(b) Sodium C'hloride.-Neutralise with nitric acid, preferably running normal acid out of a burette, and proceed in other respects as described on p. 174.
(c) Sodium Sulphate.-Add a slight excess of hydrochloric acid, precipitate with barium chloride, and weigh the BaSO_{4} (p. 134).
(d). Sodium S'ulphite, Thiosulphate, etr.-Add an excess of bleaching-powder solution, then hydrochloric acid, till the reaction is acid, and a smell of chlorine is produced ; precipitate with BaCl_{2}, weigh the BaSO_{4}, and deduct the amount found in test (c). The remainder is calculated as " $\mathrm{Na}_{2} \mathrm{SO}_{4}$ from oxidisable sulphur compounds."

D.-Caustic Bottoms.

Dissolve 10 g . in water, and filter. The washed residue is dried and ignited, and yields:-
(a) Insoluble Matter.-If necessary, the contained iron is estimated by dissolving in concentrated hydrochloric acid, reducing with zinc, adding manganous sulphate, and titrating with permanganate as on p .137.
(b) Available Alkali is estimated in the aqueous solutions by normal hydrochloric acid, using litmus or lacmoid as indicator. (Methyl orange is not available in this case, owing to the presence of alumina.)
(c) Sodium Carbonate is estimated as in commercial soda ash (p. 190).

E.-Commercial Caustic Soda.

The sample must be very carefully taken. The single pieces must be freed from the outer crust by scraping it off, before weighing.

Dissolve 50 g . of the prepared sample in 1 litre of water, and take aliquot portions for each of the following tests with a pipette.
(a) Available Alkali is tested in at least 20 c.c. (equal to 1 g .) by normal HCl . If the caustic soda contains more than traces of alumina, methyl orange cannot be used as indicator, but litmus or lacmoid should be employed. In the case of strong caustic this is unnecessary.
(b) Sodium Carbonate is estimated by expelling the CO_{2} with dilute sulphuric acid, and absorbing it in soda-lime (the pumice saturated with cupric sulphate is left out here). The quantity of CO_{2} being so small, any estimation by difference yiclds unsatisfactory results. Very approximate result.s can, however, be obtained by titrating first with phenolphthalein till the pink colour is discharged (when all $\mathrm{Na}_{2} \mathrm{CO}$; will have been changed into NaHCO_{3}), noting the amount of standard acid used, adding methyl orange and more standard acid till the pink colour appears. The acid used in the second test $\times 2$ indicates $\mathrm{Na}_{2} \mathrm{CO}_{3}$.

For more exact methods of determining carbonates, see Cumming and Kisy's Quantitative Aualysis (5th Edition), pp. 215 and 219.
(c) The TTable for comparing English, l'rench, and Cerman Degrees is given on pp. 192 and 193.

X. ELEOTROLYTIC ALKALI LIQUORS.

These are analysed just like bleach liquor, p. 189.

1. Hypochlorites are titrated as on p. 185.
2. F'ree II!pochlorous Acid.-Estimate the bleaching chlorine as in No. 1, then chloride, chlorate, and other acids on the one hand, and all bases on the other ; the acidity in excess represents free HOCl .
3. Chlorate may be estimated as on p. 189, but since there is but little chlorate in presence of much hypochlorite, it is prefer-
able to use the direct method of Fresenius, as follows:-To the solution add an excess of neutral lead acetate solution; this produces a precipitate which gradually turns brown, and which contains a quantity of PbO_{2}, corresponding to the chlorate. Allow to stand for eight or ten hours, until there is no more smell of chlorine, filter, wash, evaporate the filtrate to a small volume, precipitate lead and lime by means of a little sodium carbonate, and estimate the chlorate in the filtrate according to p. 189.

In mixtures of chlorate and hypochlorite, containing large quantities of the latter, Ditz and Knopfelmacher estimate the chlorate iodometrically, by decomposing it at the ordinary temperature with concentrated hydrochloric acid and potassium bromide. Put the substance, together with a sufficient excess of KBr , into a small Hask provided with a hollow glass stopper with dropping funnel and lateral absorbing vessel for the retention of bromine vapours. The latter is charged with 10 c.c. of a 5 per cent. solution of KI. Pour 50 c.c. concentrated hydrochloric acid through the dropping funnel into the flask, allow it to act for an hour, pour in 300 c.c. water, then 20 c.c. of the solution of Kl, shake well, transfer the contents of the absorbing vessel to the flask, and titrate the iodine which has been set free by thiosulphate. The quantity of chlorate + hypochlorite is thus ascertained. If there is very much of the latter present, it should be removed beforehand.
4. Chloride-Employ the solution from No. 1, in which all hypochlorite has been converted into chloride, with formation of sodium arsenate, which is an excellent indicator for the titration of the total chlorides by silver nitrate, p. 175, making no deduction for any excess of silver nitrate required to produce the colour. From the quantity of chloride thus found, deduct that which corresponds to the hypochlorite.
5. Carbon Dioxide.-Destroy the hypochlorite by boiling with ammonia, expel the CO_{2} by a strong acid, and estimate it as on p. 209. The ammonia used must itself be free from carbonate.
6. Bases.-Convert these into sulphates, by evaporation with sulphuric acid, and estimate them in the residue by the ordinary methods.
7. Free Alkali.-Add to the solution a little of Merck's chemically pure hydrogen peroxide, which reacts as follows with the hypochlorite :-

$$
\mathrm{NaOCl}+\mathrm{H}_{2} \mathrm{O}_{22}=\mathrm{NaCl} \mid \mathrm{H}_{2} \mathbf{O}+\mathrm{O}_{22}
$$

NaOH and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ remain unchanged in solution, and are titrated as on p. 202.

In regard to the estimation of carbon dioxide in electrolytic chlorine gas, see p. 187.

XI. NITRIC ACID MANUFACTURE.

A.-Commercial Nitrate of Soda.

According to the custom of the trade, which has held for many years, no direct estimation of the nitrate is made in the commercial nitrate of soda exported from Chili. The rule is, to estimate moisture, sodium chloride, sodium sulphate, and insoluble substances. The sum of these impurities is called the "refraction," and everything else is assumed to be real nitrate of soda. But as Chili saltpetre sometimes contains potassium nitrate (in which the percentage of NO_{3} is less than in NaNO_{3}), errors up to 1 per cent. NaNO_{3} or even more may be caused by this indirect method of testing. Therefore, besides the above estimations, it ought to be insisted upon to estimate the potassium present and to calculate the results accordingly, or even better, to estimate the nitric-nitrogen directly.

The sampliney ought to be done very carefully, since especially the amount of moisture may vary considerably in different parts of a cargo, and the reduction of the large sample to a smaller bulk ought to yield a really representative average sample.

1. Moisture.-Heat 10 g . or more of a good average sample in a small glass or porcelain dish to 130° for four or five hours, till the weight is constant ; or, about 0.5 g . is accurately weighed in a small silica crucible and heated gently over a Bunsen flame until the nitrate just fuses. The crucible is then cooled in a desiccator and re-weighed.
2. Insoluble.-Dissolve 10 g . in water, filter, wash, and ignite. If there is a vcry appreciable quantity of organic matter present, first dry at $100^{\circ} \mathrm{C}$. and weigh the filter with the precipitate before igniting it. The solution is used for the tests Nos. 4 to 6.
3. Sodium Vitrate.-In order to obtain a really representative sample, take about 20 g . of the carefully taken, large, average sample, dry this at 110°, grind it very finely, mix it thoroughly, and use it for the estimation of nitrate, etc. For the nitrate test, weigh out about 0.35 g . (that is, a quantity which will yield between 100 and 120 c.c. NO at the ordinary temperature and barometric pressure) in a narrow weighing-tube. Pour its contents as complotely as possible into the decomposition vessel D of the gas-volumeter, Fig. 12, p. 167, so that the substance gets as much as possible to the bottom of the beaker of D. Weigh the weighing-tube again, with the small quantity of nitrate still adhering to it, so as to ascertain the weight of nitrate taken $=a$, in D. The three-way tap must be closed. Now run in 0.5 c.c. water, wait until the nitrate has been entirely or nearly all dis-

212 THE TECHNICAI CHEMISTS' HANDBOOK

solved, draw the solution with any small crystals into the inside of D, by lowering the level-tube E and cautiously opening the tap, rinse the beaker with $\frac{1}{2}$ or at most 1 c.c. water, and then allow 15 c.c. of pure concentrated sulphuric acid to enter in the same way. (It is important not to employ more than 1.5 c.c. water altogether to 15 c.c. of strong acid, for if the acid is too much diluted, a froth of basic mercuric sulphate is formed which prevents an exact reading of the volume. On the other hand, the addition of a little water to the strong acid prevents the solution of an appreciable quantity of NO in the liquid.)

The reaction is finished by vigorous shaking of the acid solution with the mercury (as in the ordinary nitrometer). During this period the level-tube should be roughly put into position, to avoid any considerable differences of pressure and possible leakages through the tap. When the agitating has been tinished wait half an hour for cooling. Then connect tube c of vessel D (Fig. 12, p. 167) with tube e of the measuring tube A, so that glass touches glass, as described p. 168, and transfer all the gas to A, by raising E and lowering C', but not allowing any acid to get into A. Then shut both taps, and by adjusting the tubes $\mathrm{A}, \mathrm{B}, \mathrm{C}$, in the manner described, p. 168, compress the gas volume to that corresponding to 0° and 760 mm . pressure.

Of course it is also possible to employ, in lien of the gasvolumeter, an ordinary nitrometer, that is, to leave out the "reduction-tube" B. In this case the volume NO is read off under the prevailing atmospheric pressure, by adjusting the leveltube accordingly ; the volume of NO is then reduced to 0 " and 760 mm . by reading the thermometer and barometer, and employing the Tables 12, I. and II., pp. 20 et seq. The reduced volume of NO we call r. Each c.c. of it corresponds to 0.0037963 g . NaNO_{3} (compare the table, p. 20) ; the whole divided by the weight of the nitrate employed a and multiplied by 100, indicates the percentage of real nitrate ; that is :-

$$
\frac{0 \cdot 37963 x}{a} .
$$

A plus correction of 0.4 per cent. of the NaNO_{3} found is necessary to allow for the solubility of NO.
($N . B .-$-The nitrometer should be tested whether it really contains exactly 100 c.c. to the mark 100 , by inverting it, filling in mercury to the mark 100 , running it off, and weighing. It should weigh 1360 g . reduced to 0°, or 1355 g . at $15^{\circ} \mathrm{C}$. If there is an error, this must be allowed for in each reading.)
4. Sodium Sulphate is estimated in the solution No. 2 by precipitation with BaCl_{2} and weighing the $\mathrm{BaSO}_{4} . ~(C f . \mathrm{pp} .134$ and 176.)
5. Sodium Chloride is titrated with silver nitrate. (\%f. p. 174.)
6. Iodine is detected by reducing the iodic acid with zinc, heating the solution with concentrated sulphuric acid, which liberates the iodine, diluting and agitating with carbon disulphide, which takes up the iodine, and is thereby coloured pink. The faintest traces of iodate are found by dissolving 5 g . in 100 c.c. of boiled water, adding a little nitric acid, a few drops of a solution of potassium iodide in boiled water, and a drop of starch solution. In the presence of as little as 0.01 mg . I in 1 g . of nitre, a blue colour will appear. A check test must, however, be made with the potassium iodide employed for this test, as this of ten contains some iodate.
7. P'otassium.--Evajorate a special sample several times, with strong hydrochloric acid until all the nitrate is decompsed, and estimate the K as in the analysis of potassium chloride, p .221. Calculate it as $\mathrm{KNO}_{3}, 100$ parts of which is equivalent to 84.08 of NaNO_{3}.
8. l'erchlorate ((iilbert).-Treat 20 g . of the dricd substance with 2 or 3 c.c. concentrated hydrochloric acid in a flat platinum dish; add about 1 g . manganese dioxide, free from chlorine, dry by heating over a small flame; bring to fusion, put on the lid and keep the dish at a red heat during one-quarter hour. Dissolve the melt in hot water and dilute the solution to 250 c.c. Take out 50 c.c. $(=4 \mathrm{~g}$. nitre), acidulate with nitric acid and add a 1 per cent. solution of $\left.K \ln _{n}\right)_{4}$, until the red coluur persists for a full minute. Then add ferric porassium sulphate (iron alum), and titrate the chloride by means of silver nitrate (Volhard's method). From the (dl thas found, deduct that which was originally present (No. 5), and calculate the remainder as perchlorate. 1 part $\mathrm{Na} \mathrm{C}^{\prime} \mathrm{l}$ corresponds to $2.095 \mathrm{Na}\left(1 \mathrm{O}_{3}\right.$.

B.-Nitre-Cake.

1. l'ree Acid is titrated with standard alkali (p. 175). If considerable quantities of ferric oxide or alumina are present, no indicator is employed, but normal alkali is added till the first flakes of a precipitate indicate the end of the reaction.
2. Nitric Acid should be estimated in a nitrometer with a narrow measuring tube (p. 165); the method employed is exactly the same as described there, viz., dissolving in the beaker in very little water, and decomposing with a large excess of sulphuric acid.
3. Ferric Oxide and Alumina (as pp. 170 and 175).

214 THE TECHNICAL CHEMISTS' HANDBOOK

O.-Nitric Acid.

1. SPEOIFIC GRAVITY OF NITRIO AOID AT 15° O., OOMPARED WITH WATER OF 4° C. (IN VAOUO).
(Lunge and Rey.)

Degrees Twaddell.	Specific gravity.	Percentage by weight.		Grams per litre.	
		$\mathrm{N}_{2} \mathrm{O}_{5}$.	HNO_{3}.	$\mathrm{N}_{2} \mathrm{O}_{5}$.	HNO_{3}.
0	$1 \cdot 000$	$0 \cdot 08$	$0 \cdot 10$	1	1
1	$1 \cdot 005$	$0 \cdot 85$	$1 \cdot 00$	8	10
2	$1 \cdot 010$	$1 \cdot 62$	$1 \cdot 90$	16	19
3	1.015	$2 \cdot 39$	$2 \cdot 80$	24	28
4	$1 \cdot 020$	$3 \cdot 17$	$3 \cdot 70$	33	38
5	$1 \cdot 025$	$3 \cdot 94$	$4 \cdot 60$	40	47
6	1.030	$4 \cdot 71$	$5 \cdot 50$	49	57
7	$1 \cdot 035$	$5 \cdot 47$	$6 \cdot 38$	57	66
8	1.040	$6 \cdot 22$	$7 \cdot 26$	64	75
9	$1 \cdot 045$	$6 \cdot 97$	$8 \cdot 13$	73	85
10	$1 \cdot 050$	$7 \cdot 71$	$8 \cdot 99$	81	94
11	1.055	$8 \cdot 43$	$9 \cdot 84$	89	104
12	$1 \cdot 060$	$9 \cdot 15$	10.68	97	113
13	$1 \cdot 065$	$9 \cdot 87$	$11 \cdot 51$	105	123
14	$1 \cdot 070$	$10 \cdot 57$	$12 \cdot 33$	113	132
15	1.075	11.27	$13 \cdot 15$	121	141
16	1.080	$11 \cdot 96$	$13 \cdot 95$	129	151
17	1.085	$12 \cdot 64$	14.74	137	160
18	1.090	$13 \cdot 31$	15.53	145	169
19	1.095	$13 \cdot 99$	$16 \cdot 32$	153	179
20	$1 \cdot 100$	$14 \cdot 67$	$17 \cdot 11$	161	188
21	$1 \cdot 105$	$15 \cdot 34$	$17 \cdot 89$	170	198
22	$1 \cdot 110$	$16 \cdot 00$	$18 \cdot 67$	177	207
23	$1 \cdot 115$	$16 \cdot 67$	$19 \cdot 45$	186	217
24	$1 \cdot 120$	$17 \cdot 34$	$20 \cdot 23$	195	227
25	$1 \cdot 125$	$18 \cdot 00$	21.00	202	236
26	$1 \cdot 130$	$18 \cdot 66$	$21 \cdot 77$	211	246
27	$1 \cdot 135$	$19 \cdot 32$	$22 \cdot 54$	219	256
28	$1 \cdot 140$	19.98	$23 \cdot 31$	228	266
29	$1 \cdot 145$	$20 \cdot 64$	24.08	2.37	276
30	$1 \cdot 150$	21.29	$24 \cdot 84$	245	286
31	$1 \cdot 155$	21.94	$25 \cdot 60$	254	296
32	$1 \cdot 160$	$22 \cdot 60$	$26 \cdot 36$	262	306
33	$1 \cdot 165$	23.25	$27 \cdot 12$	271	316
34	$1 \cdot 170$	23.90	$27 \cdot 88$	279	826

SPEOIFIO GRAVITY OF NITRIO ACID AT 15° C., COMPARED WITH WATER OF 4° O. (IN VACUO)-Continued.

Degreos Twaddell.	Specific gravity.	Percentage by weight.		Grams per litre.	
		$\mathrm{N}_{2} \mathrm{O}_{5}$.	HNO_{3}.	$\mathrm{N}_{2} \mathrm{O}_{5}$.	HNO_{3}.
35	$1 \cdot 175$	$24 \cdot 54$	$28 \cdot 63$	'288	336
36	$1 \cdot 180$	$25 \cdot 18$	$29 \cdot 38$	297	347
37	$1 \cdot 185$	$25 \cdot 83$	$30 \cdot 13$	306	357
38	1-190	$26 \cdot 47$	$30 \cdot 88$	315	367
39	$1 \cdot 195$	$27 \cdot 10$	$31 \cdot 62$	324	378
40	$1 \cdot 200$	27.74	$32 \cdot 36$	333	388
41	$1 \cdot 205$	$28 \cdot 36$	$33 \cdot 09$	342	399
42	1.210	$28 \cdot 99$	33.82	351	409
43	$1 \% 15$	$29 \cdot 61$	$34 \cdot 55$	360	420
44	$1 \cdot 200$	$30 \cdot 24$	$35 \cdot 28$	369	430
45	$1 \cdot 225$	$30 \cdot 88$	36.03	378	441
46	$1 \cdot 230$	31.53	$36 \cdot 78$	387	452
47	$1 \cdot 235$	$32 \cdot 17$	$37 \cdot 53$	397	463
48	$1 \cdot 240$	$32 \cdot 82$	$38 \cdot 29$	407	475
49	$1 \cdot 245$	$33 \cdot 47$	$39 \cdot 05$	417	486
50	1.250	$34 \cdot 18$	39.82	427	498
51	$1 \cdot 255$	$34 \cdot 78$	$40 \cdot 58$	437	509
52	$1 \cdot 260$	35.44	$41 \cdot 34$	447	521
53	$1 \cdot 265$	$36 \cdot 09$	$4 \cdot \cdot 10$	457	533
54	$1 \% 270$	$36 \cdot 75$	$42 \cdot 87$	467	544
55	$1 \cdot 275$	$37 \cdot 41$	$43 \cdot 64$	477	556
56	$1 \cdot 280$	$38 \cdot 07$	$44 \cdot 41$	487	568
57	$1 \because 85$	$38 \cdot 73$	45.18	498	581
58	1.290	$39 \cdot 39$	$45 \cdot 95$	508	593
59	$1 \cdot 295$	$40 \cdot 05$	46.72	519	605
60	$1 \cdot 300$	$40 \cdot 71$	$47 \cdot 49$	529	617
61	1-305	$41 \cdot 37$	$48 \cdot 26$	540	630
62	$1 \cdot 310$	$42 \cdot 06$	49.07	5.51	643
63	$1 \cdot 315$	$42 \cdot 76$	49.89	562	656
64	$1 \cdot 320$	$43 \cdot 47$	$50 \cdot 71$	573	669
65	1.325	$44 \cdot 17$	51.53	585	683
66	$1 \cdot 330$	$44 \cdot 89$	52.37	597	697
67	$1 \cdot 335$	$45 \cdot 62$	53.22	609	710
68	$1 \cdot 340$	$46 \cdot 35$	54.07	621	725
69	$1 \cdot 345$	$47 \cdot 08$	54.93	633	739

216 THE TECHNICAI. CHEMISTS' HANDBOOK

SPHCIFIC GRAVITY OF NITRIC ACID AT 15° O., COMPARED WITH WATER OF 4° C. (IN VACUO)-Continued.

Degress Twaddell.	Specific gravity.	Percentage by weight.		Grams per litro.	
		$\mathrm{N}_{2} \mathrm{O}_{5}$.	IINO:3.	$\mathrm{N}_{2} \mathrm{O}_{5}$.	HNO ${ }_{3}$.
70	$1 \cdot 350$	$47 \cdot 82$	$55 \cdot 79$	645	753
71	$1 \cdot 355$	$48 \cdot 57$	56.66	6.58	768
72	$1 \cdot 360$	$49 \cdot 35$	57.57	671	783
73	$1 \cdot 365$	50.13	$58 \cdot 48$	684	798
74	$1 \cdot 370$	$50 \cdot 91$	$59 \cdot 39$	698	814
75	$1 \cdot 375$	$51 \cdot 69$	60.30	711	829
76	1-380	52.52	$61 \cdot 27$	725	846
77	1.385	53.35	$62 \cdot 24$	739	862
78	$1 \cdot 390$	$54 \cdot 20$	$63 \cdot 23$	753	879
79	1-39.)	$55 \cdot 07$	$64 \cdots 5$	768	896
80	$1 \cdot 400$	$55 \cdot 97$	$65 \cdot 30$	783	914
81	$1 \cdot 405$	56.92	$66 \cdot 40$	800	933
89	$1 \cdot 410$	$57 \cdot 86$	$67 \cdot 50$	816	952
83	$1 \cdot 415$	58.83	$68 \cdot 63$	832	971
84	$1 \cdot 4: 0$	$59 \cdot 83$	$69 \cdot 80$	849	991
85	$1 \cdot 425$	$60 \cdot 84$	$70 \cdot 99$	867	1011
86	$1 \cdot 430$	$61 \cdot 86$	$72 \cdot 17$	885	1032
87	$1 \cdot 435$	$62 \cdot 91$	$73 \cdot 39$	903	1053
88^{*}	$1 \cdot 440$	$64 \cdot 01$	74.68	921	1075
89	1.445	$65 \cdot 13$	75.98	941	1098
90	1.450	66.24	77.28	961	$11 \because 1$
91	1.455	$67 \cdot 38$	$78 \cdot 60$	981	1144
92	1.460	$68 \cdot 56$	$79 \cdot 98$	1001	1168
93	1.465	$69 \cdot 79$	81.42	1023	119:3
94	$1 \cdot 470$	71.06	$82 \cdot 90$	1045	1219
95	1.475	$72 \cdot 39$	84.45	1068	1246
96	1.480	$73 \cdot 76$	86.05	1092	1274
97	1.485	$75 \cdot 18$	$87 \cdot 70$	1116	1302
98	$1 \cdot 490$	$76 \cdot 80$	$89 \cdot 60$	1144	1335
99	1.495	$78 \cdot 52$	$91 \cdot 60$	1174	1369
100	1.500	$80 \cdot 65$	94-09	1210	1411
101	$1 \cdot 505$	$82 \cdot 63$	$96 \cdot 39$	1244	1451
102	1.510	84.09	$98 \cdot 10$	1270	1481
103	1:315	84.92	99.07	1287	1501
104	$1 \cdot 520$	$85 \cdot 44$	$99 \cdot 67$	1299	1515

2. INPLUENOE OF TEMPERATURH ON THE SPECIFIC GRAVITY OF NITRIC ACID.

$0^{\prime} \mathrm{C}$.	$5{ }^{\circ}$	10°	15°	20°	25°	30°	35°	40°	45°	50°
1.424	1.414	$1 \cdot 407$	$1 \cdot 400$	1-392	1.385	1.378	1.371	1.363	1.856	$1 \cdot 349$
$1 \cdot 413$	$1 \cdot 404$	$1 \cdot 397$	$1 \cdot 390$	$1 \cdot 382$	$1 \cdot 375$	$1 \cdot 367$	$1 \cdot 361$	$1 \cdot 354$	$1 \cdot 347$	1.340
$1 \cdot 402$	$1 \cdot 394$	$1 \cdot 387$	$1 \cdot 350$	$1 \cdot 372$	$1 \cdot 365$	$1 \cdot 357$	$1 \cdot 351$	$1 \cdot 344$	$1 \cdot 389$	$1 \cdot 382$
$1 \cdot 391$	1.383	1.377	1-370	$1 \cdot 363$	$1 \cdot 356$	$1 \cdot 349$	$1 \cdot 343$	$1 \cdot 335$	$1 \cdot 330$	$1 \cdot 323$
$1 \cdot 380$	1.373	$1 \cdot 307$	1-360	$1 \cdot 353$	$1 \cdot 346$	$1 \cdot 340$	$1 \cdot 333$	1-326	$1 \cdot 320$	$1 \cdot 314$
$1 \cdot 369$	$1 \cdot 362$	$1 \cdot 356$	$1 \cdot 350$	$1 \cdot 3.43$	$1 \cdot 337$	$1 \cdot 330$	1.323	$1 \cdot 317$	1.312	$1 \cdot 305$
$1 \cdot 359$	$1 \cdot 352$	$1 \cdot 344$	$1 \cdot 340$	$1 \cdot 3: 3$	$1 \cdot 3: 7$	$1 \cdot 3 \div 0$	$1 \cdot 314$	1.308	$1 \cdot 303$	$1 \cdot 297$
1.3 .48	1-3.42	1.336	1.330	$1 \cdot 304$	$1 \cdot 318$	1.311	$1 \cdot 305$	1-299	1-294	1-288
1.338	$1 \cdot 332$	$1 \cdot 326$	$1 \cdot 820$	1.314	1.30 S	$1 \cdot 302$	$1 \cdot 296$	$1 \cdot 290$	1-285	$1 \cdot 280$
$1 \cdot 327$	$1 \cdot 321$	$1 \cdot 316$	$1 \cdot 310$	$1 \cdot 304$	$1 \cdot 299$	1.293	$1 \cdot 287$	1-281	1.276	$1 \cdot 271$
1.817	1.311	$1 \cdot 306$	1.300	1-294	$1 \cdot 2 \mathrm{~s} 9$	1-2¢3	1-27s	1.273	1.26S	1.263
$1 \cdot 307$	$1 \cdot 301$	$1 \cdot 200$	$1 \cdot 290$	1-284	$1-29$	1273	$1 \cdot 268$	$1 \cdot 263$	1-258	1.253
$1 \cdot 297$	$1 \cdot 291$	$1 \cdot 286$	$1 \cdot 251$	$1 \cdot 274$	$1 \cdot 969$	1243	1.258	1×53	1-248	1.243
1-2S7	$1 \cdot 281$	$1 \cdot 276$	$1 \cdot 270$	$1 \cdot 265$	1.059	$1 \cdot 254$	1.248	$1 \cdot 243$	$1 \cdot 238$	1.234
$1 \cdot 277$	$1 \cdot 271$	$1 \cdot 260$	$1 \cdot 260$	$1 \cdot 255$	$1 \cdot 249$	1-244	1.288	1-233	1-228	1-224
1.206	$1 \cdot 260$	$1 \cdot 255$	$1 \cdot 250$	$1 \cdot 245$	$1 \cdot 240$	$1 \cdot 235$	1-229	1-224	$1 \cdot 219$	$1 \cdot 215$
1.250	1.250	$1 \cdot 245$	$1 \cdot 210$	$1 \cdot 235$	$1 \because 30$	$1-205$	$1 \because 20$	$1 \cdot 215$	$1 \cdot 210$	$1 \cdot 205$
$1 \cdot 245$	$1 \cdot 240$	$1 \cdot 235$	$1 \cdot 230$	1-225	$1 \cdots 0$	1-215	$1 \cdot 210$	$1 \cdot 206$	$1 \cdot 201$	$1 \cdot 196$
$1 \cdot 235$	$1 \cdot 230$	1-225	$1 \cdot 00$	$1 \cdot 215$	1-210	1-205	$1 \cdot 200$	$1 \cdot 196$	$1 \cdot 191$	1-186
$1 \cdot 224$	$1 \cdot 219$	$1 \cdot 214$	$1 \because 10$	$1 \because 005$	$1 \cdot 200$	$1 \cdot 196$	1-1! 1	$1 \cdot 157$	1-182	$1 \cdot 1 \% 7$
$1 \cdot 218$	1.208	$1 \cdot 204$	$1 \cdot 200$	$1 \cdot 995$	1-190	1.186	1-181	$1 \cdot 177$	1.172	1-167
$1 \cdot 202$	$1 \cdot 198$	$1 \cdot 194$	$1 \cdot 190$	$1 \cdot 185$	$1 \cdot 181$	1-177	1-172	$1 \cdot 168$	1-163	$1 \cdot 158$
$1 \cdot 192$	$1 \cdot 188$	$1 \cdot 184$	1-150)	$1 \cdot 177$	$1 \cdot 171$	$1 \cdot 167$	1-163	1-158	$1 \cdot 154$	$1 \cdot 150$
1-182	l-178	$1 \cdot 174$	$1 \cdot 170$	$1 \cdot 160$	$1 \cdot 162$	1.15 s	1-154	$1 \cdot 749$	$1 \cdot 145$	1.141
$1 \cdot 172$	$1 \cdot 168$	$1 \cdot 164$	$1 \cdot 160$	$1 \cdot 150$	$1 \cdot 152$	$1 \cdot 148$	1-144	$1 \cdot 140$	1-186	$1 \cdot 132$
$1 \cdot 161$	$1 \cdot 158$	$1 \cdot 154$	$1 \cdot 150$	$1 \cdot 146$	$1 \cdot 142$	$1 \cdot 189$	$1 \cdot 135$	$1 \cdot 130$	$1 \cdot 127$	1-123
$1 \cdot 151$	$1 \cdot 147$	$1 \cdot 144$	$1 \cdot 140$	$1 \cdot 136$	$1 \cdot 132$	$1 \cdot 129$	$1 \cdot 125$	$1 \cdot 121$	$1 \cdot 118$	$1 \cdot 114$
$1 \cdot 189$	$1 \cdot 136$	$1 \cdot 133$	1.180	$1 \cdot 126$	1-123	$1 \cdot 119$	$1 \cdot 116$	1-112	$1 \cdot 109$	$1 \cdot 105$
$1 \cdot 129$	$1 \cdot 120$	$1 \cdot 123$	$1 \cdot 120$	1.116	$1 \cdot 113$	$1 \cdot 110$	$1 \cdot 106$	1-108	$1 \cdot 100$	1.006
$1 \cdot 118$	$1 \cdot 115$	$1 \cdot 112$	1.110	$1 \cdot 107$	$1 \cdot 104$	$1 \cdot 101$	1.097	$1 \cdot 094$	1.091	1.057
$1 \cdot 108$	1-105	$1 \cdot 102$	$1 \cdot 100$	1.097	1.094	1.091	$1.08 s$	1.085	1.082	1.079
1.098	$1 \cdot 095$	1.092	$1 \cdot 090$	$1 \cdot 0 \leqslant 7$	$1 \cdot 084$	1.081	1.075	1.075	1.073	1.070
1-088	1.085	1.082	1.0s0	$1 \cdot 077$	$1 \cdot 074$	$1 \cdot 071$	1.06 s	$1 \cdot 065$	1.063	1.060
1.077	1.075	1.072	1.070	$1 \cdot 067$	$1 \cdot 064$	1.061	$1 \cdot 055$	1.050	$1 \cdot 054$	1.05]
1.067	$1 \cdot 064$	1.062	$1 \cdot 060$	$1 \cdot 057$	$1 \cdot 055$	1.052	$1 \cdot 050$	$1 \cdot 048$	1.045	1.043
1.057	1054	1.052	$1 \cdot 050$	$1 \cdot 047$	1.045	$1 \cdot 043$	1.040	1.038	1.085	1.033
1.047	$1 \cdot 044$	1.042	$1 \cdot 040$	1.037	1.085	1.038	$1 \cdot 030$	1.028	1.025	1.023
1.087	1.034	1.032	1.030	$1 \cdot 027$	1.025	1.023	$1 \cdot 020$	1.018	1.015	1.013
1.027	1.024	1.022	1.020	1.017	1.015	1013	1.010	$1 \cdot 008$	1.005	1.003
$1 \cdot 017$	1.014	$1 \cdot 012$	$1 \cdot 010$	$1 \cdot 007$	$1 \cdot 005$	$1 \cdot 003$	$1 \cdot 000$	0.998	0.995	0.993

218 THE TECHNICAL. CHEMISTS' HANDBOOK

INFLUENCH OF TEMPERATURE ON THE SPECIFIO GRAVITY OF NITRIO ACID-Continued.

55°	60°	65°	70°	75°	80°	85°	90°	95^{*}	100°
1.342	$1 \cdot 335$	$1 \cdot 329$	$1 \cdot 323$	1.316	1.310	$1 \cdot 303$	1.296	1-290	1-283
1.333	$1 \cdot 327$	$1 \cdot 3 \because 0$	$1 \cdot 314$	$1 \cdot 308$	$1 \cdot 302$	$1 \cdot 294$	1-288	1.282	1.276
$1 \cdot 325$	$1 \cdot 919$	1.312	$1 \cdot 305$	$1 \cdot 300$	$1 \cdot 93$	1.286	$1 \cdot 280$	1.274	$1 \cdot 267$
1.316	$1 \cdot 910$	1.304	$1 \cdot 298$	$1 \cdot 292$	$1 \cdot 286$	$1 \cdot 279$	$1 \cdot 274$	1.267	1.260
1.308	1-302	$1 \cdot 296$	$1 \cdot 290$	$1 \cdot 284$	1.278	$1 \cdot 272$	1.266	1.260	1-254
$1 \cdot 300$	$1 \cdot 294$	1.258	$1 \cdot 282$	$1 \cdot 276$	$1-2 \% 0$	$1 \cdot 265$	1.259	1.253	1.247
$1 \cdot 291$	$1 \cdot 286$	$1 \cdot 2 \mathrm{so}$	1.274	$1 \cdot 268$	$1 \because 63$	$1 \cdot 257$	$1 \cdot 252$	$1 \cdot 240$	$1 \cdot 240$
1.282	$1 \cdot 278$	$1 \cdot 272$	$1 \cdot 266$	$1 \cdot 261$	$1 \because 255$	$1 \cdot 250$	$1 \cdot 245$	1-240	1.284
$1 \cdot 274$	$1 \cdot 269$	$1 \cdot 264$	$1 \cdot 258$	1-253	$1 \cdot 248$	$1 \cdot 248$	$1 \cdot 238$	1.233	1.228
$1 \cdot 260$	$1 \cdot 261$	$1 \cdot 256$	1.251	1.246	$1 \cdot 240$	$1 \cdot 235$	$1 \cdot 230$	$1 \cdot 2: 5$	$1 \cdot 220$
1.258	$1 \cdot 253$	1.248	$1 \cdot 213$	$1 \cdot 238$	$1 \cdot 232$	1.227	$1 \cdot 222$	1.217	1.212
$1 \cdot 248$	$1 \cdot 244$	1.239	$1 \cdot 234$	$1 \cdot 249$	$1 \cdot 223$	$1 \cdot 218$	$1 \cdot 213$	1.208	$1 \cdot 203$
$1 \cdot 238$	$1 \cdot 234$	1-229	1-224	$1 \cdot 219$	$1 \cdot 214$	$1 \cdot 209$	$1 \cdot 204$	1-199	1-194
1-229	$1 \cdot 225$	1.220	1.215	$1 \cdot 210$	$1 \cdot 205$	$1 \cdot 199$	$1 \cdot 195$	$1 \cdot 190$	$1 \cdot 185$
1.219	$1 \cdot 215$	$1 \cdot 210$	1.205	$1 \cdot 200$	1-195	$1 \cdot 100$	$1 \cdot 185$	1.180	$1 \cdot 175$
1.210	$1 \cdot 206$	$1 \cdot 201$	$1 \cdot 196$	$1 \cdot 191$	$1 \cdot 186$	$1 \cdot 181$	$1 \cdot 176$	$1 \cdot 171$	$1 \cdot 167$
1.200	$1 \cdot 190$	$1 \cdot 191$	$1 \cdot 186$	$1 \cdot 181$	$1 \cdot 177$	1.172	$1 \cdot 167$	1.162	$1 \cdot 158$
$1 \cdot 191$	1.187	1-15\%	$1 \cdot 177$	$1 \cdot 172$	-1.168	$1 \cdot 163$	1.158	1.153	$1 \cdot 149$
1-182	$1 \cdot 177$	1-172	$1 \cdot 167$	$1 \cdot 163$	$1 \cdot 158$	1-153	$1 \cdot 148$	1.144	$1 \cdot 180$
$1 \cdot 173$	$1 \cdot 168$	1-163	$1 \cdot 160$	$1 \cdot 154$	$1 \cdot 149$	$1 \cdot 144$	$1 \cdot 140$	1-135	$1 \cdot 180$
$1 \cdot 163$	$1 \cdot 158$	$1 \cdot 154$	1-150	$1 \cdot 145$	$1 \cdot 140$	$1 \cdot 136$	$1 \cdot 181$	1-126	1-122
1.154	$1 \cdot 150$	1.146	$1 \cdot 141$	$1 \cdot 130$	1-192	$1 \cdot 128$	$1 \cdot 123$	$1 \cdot 119$	$1 \cdot 115$
$1 \cdot 145$	1-141	$1 \cdot 137$	$1 \cdot 183$	1.128	1-124	1-120	$1 \cdot 110$	1.112	$1 \cdot 107$
1.187	1-132	$1 \cdot 128$	1.124	$1 \cdot 120$	1.116	$1 \cdot 113$	$1 \cdot 108$	$1 \cdot 105$	$1 \cdot 100$
1-128	$1 \cdot 124$	1.120	$1 \cdot 116$	$1 \cdot 112$	1-108	$1 \cdot 105$	1-101	$1 \cdot 097$	$1 \cdot 094$
1-119	$1 \cdot 115$	$1 \cdot 112$	1.108	$1 \cdot 104$	$1 \cdot 100$	$1 \cdot 097$	1.095	1.090	1.086
$1 \cdot 110$	$1 \cdot 107$	1.103	$1 \cdot 100$	1.096	1.093	1.090	1.086	1.082	1.079
$1 \cdot 102$	1.099	1.094	1.091	1.088	1.084	1.081	1.078	1.075	1.071
1.093	1.090	1.086	1.089	1.080	1.076	1.073	1.070	1.067	1.084
1.084	1.081	$1 \cdot 078$	$1 \cdot 075$	1.072	1.008	$1 \cdot 065$	$1 \cdot 063$	1.000	1.056
1.076	1.078	1.070	1.067	1.064	1.061	$1 \cdot 058$	1.055	1.052	1.049
1.067	1.064	1.081	1.058	1.055	1.052	1.050	1.048	1.045	1.042
1.058	1.055	1.052	1.050	1047	1.044	$1 \cdot 042$	1.040	1.088	1.086
1.049	$1 \cdot 046$	1.044	1.042	1.039	1.087	1.034	1.081	1.029	1.027
1.040	1.088	1.036	1.034	1.031	$1 \cdot 029$	$1 \cdot 026$	1.028	1.021	1.018
1.080	1.028	1.023	1.024	1.021	1.019	1.015	1.014	1.012	1.009
1.020	1.018	1.016	1.014	1.011	$1 \cdot 009$	1.007	1.004	1.002	1.000
1.010	1.008	1.006	1.004	1.001	0.099	0.097	0.994	0.998	0.900
1.001	0.990	0.097	0.995	0.992	0.990	0.988	0.085	0.088	0.981
0.991	0.989	0.987	0.985	0.082	0.980	0.978	0.075	0.078	0.071

3. Total Acidity.-Titrate a diluted sample by standard caustic soda solution. Methyl orange can be quite well used as indicator, if the titration is performed as described, p. 162, although it would be destroyed by prolonged contact with nitrous acid. Strong fuming acid is weighed in a bulb-tap pipette, Fig. 13, p. 171 ; from this the acid is slowly run on to the bottom of a flask, containing ice-cold water, and the titration is performed quickly, to prevent a decomposition of the nitrous acid. Less concentrated nitric acids may be measured by pipettes or burettes, in lieu of weighing.
4. Chlorine.-Saturate with sodium carbonate, free from choride, till the reaction is neutral or faintly alkaline, and titrate with silver nitrate according to p. 174.
5. Sulphuric Acicl.-Saturate almost completely with sodium carbonate and precipitate with barium chloride as on p. 134. If the acid on evaporating leaves any appreciable fixed residue, this usually consists of sodium sulphate.
6. Nitrous Acid or Nitrogen Tetroxide are estimated by running the acid from a burette into a measured volume of warm, dilute potassium permanganate (cf.p.162). The result may be expressed in terms of nitroyen peroxide, $\mathrm{N}_{2} \mathrm{O}_{4}$. Each c.c. $\frac{1}{8}$ normal permanganate $=0.023005 \mathrm{~g} . \mathrm{N}_{2} \mathrm{O}_{4}$. Hence, if m c.c. acid have been used and n c.c. permanganate required, the amount of $\mathrm{N}_{2} \mathrm{O}_{4}$ is :-

$$
\frac{0.023005 n}{m} \mathrm{~g} .
$$

The result may also be expressed as nitrous acid calculated to HNO_{3}. Each c.c. $\frac{1}{2}$ normal permanganate $=0.011755 \mathrm{~g} . \mathrm{HNO}_{2}$ and the factor for conversion to HN$)_{3}=1.34$.

The quantity of $\mathrm{N}_{2} \mathrm{O}_{4}$ is of ten so considerable that the specific gravity tables give a very deceptive result as to the real percentage of HNO_{3}, and an actual determination should be made.
7. Fixed Residue, consisting chiefly of sodium sulphate, with a little ferric oxide, etc., is estimated by evaporating to dryness in a place protected from dust, igniting, and weighing.
8. Iron.-Precipitate with excess of ammonia, filter, weigh, and ignite the $\mathrm{Fe}_{2} \mathrm{O}_{3}$.
9. Iodine is detected by digesting for a short time with pure zinc, which reduces iodic acid and generates some nitrous acid; the latter sets the iodine of the HI free, and this can then be recognised by shaking up with carbon disulphide, which thereby assumes a pink colour.
N.B.-Tests Nos. 8 and 9 are only made with nitric acid sold as chemically pure.

D.-Mixtures of Sulphuric Acid and Nitric Acid.

Such mixtures are sold for the manufacture of explosives and other nitrating purposes. They are analysed by the methods described by Lunge and Berl, Z. angeu. Chen., 1905, p. 1681 ; Chem. Zeit., 1907, p. 485.

1. Total Acidit!!-Weigh about l g . in a bulb-tap pipette, Fig. 13, p. 171, and titrate with normal caustic soda solution. When employing methyl orange as indicator, either add it only towards the end of the titration (or else renew it as destroyed), or else add an excess of soda, then the indicator, and titrate back with normal hydrochloric acid.
2. Nitrous Acid is estimated as on p. 162, by running the mixed acid into a measured quantity of seminormal permanganate. It may be calculated as HNO_{2}, or $\mathrm{N}_{2} \mathrm{O}_{32}$, or even as $\mathrm{N}_{2} \mathrm{O}_{4}$. In the latter case each cc. of the normal permanganate indicates $0.023005 \mathrm{~g} . \mathrm{N}_{2} \mathrm{O}_{4}$. If we call the c.c. of permanganate used x, the c.c. of mixed acid required for decolorising it $\%$, and s the specific gravity of the latter, the $\mathrm{N}_{2} \mathrm{O}_{1}$ is $=\frac{23 x}{\prime \prime} g$. per litre, or $\frac{2 \cdot 3 x}{y / s}$ per cent. by weight of $\mathrm{N}_{2} \mathrm{O}_{4}$ in the mixed acid.
3. Total nitrogen acids are estimated by the nitrometer, p. 165. A quantity of acid, varying with the nature of the mixed acid being analysed, is weighed by difference into the cup of a calibrated nitrometer to which 2 c.c. of pure nitrogen-free 94.5 per cent. sulphuric acid has previously been added. Λ LungeRey pipette is used for this purpose. The sample is then run into the nitrometer and the cup thoroughly washed by five successive washings of 2 e.c. of sulphuric acid, followed by a sixth washing of 5 c.c. The decomposition is effected in the usual way. The observed volume of gas is reduced to N.T.P. and the result calculated as percentage of nitric acid $\left(\mathrm{HNO}_{3}\right)$. Each c.c. NO at N.T.P. corresponds to 0.0028144 g . HN($)_{3}$, so that the percentage total nitrogen acids expressed as nitric acid is given by the formula

$$
v \times 0.0028144 \times 100
$$

v
where $v=$ volume of NO and $w=$ weight of mixed acid taken.
A plus correction of 1 per cent. of the total nitrogen acids found is necessary to allow for the solubility of NO.
4. Nitric acid is obtained by subtracting the nitrous acid (as HNO_{3}) from the total nitrogen acids (as HNO_{3}).
5. Sulphuric acid is found by subtracting the value for the total nitrogen acids expressed as $\mathrm{H}_{2} \mathrm{SO}_{4}$ from the total acidity also expressed as $\mathrm{H}_{2} \mathrm{SO}_{4}$. For this purpose the percentage of total nitrogen acids expressed as HNO_{3} is multiplied by 0.778 which represents the ratio between equivalent weights of sulphuric acid and nitric acid, $\frac{1}{2} \mathrm{H}_{2} \mathrm{SO}_{4}: \mathrm{HNO}_{3}$.

XII.-POTASSIUM SALTS.

A.-Crude Salts (Carnallite, Kainite, etc.).

1. Moisture.-Heat 10 g . to 150° for some time, and allow to cool in a desiccator.
2. Percentage of l'otassium :*-
(a) In the Absence of more than 0.5 per cent. Potassium Sul-phate.-(Obtain a well-mixed sample; dissolve 7.640 g . in a half-litre flask, fill up to the mark, and filter. Place 20 c.c. of the filtrate ($=0.3056$ of the crude salt) in a porcelain dish ; add 5 c.c. of a solution of platinum chloride containing 10 g . Pt. in 100 c.c. Evaporate on the water-bath to a syrupy condition, with frequent agitation, so that most of the HCl is driven off and the mass appears dry after cooling. When cool, crush it with a flattened glass rod, add 20 c.c. strong alcohol (at least 94 per cent.), mix well through and pour the liquid portion through a filter which has been previously dried at 120° to 130° till the weight is constant, then weighed and moistened with alcohol. The filter should not be filled up to the top. Pour fresh alcohol on the residue, and heat it on the water-bath nearly to boiling. Wash the solid portion on to the filter, remove most of the liquid by suction, press it between layers of filter paper and dry it till the weight is constant at $120^{\prime \prime}$ to 130° (this will usually require only twenty minutes). Each milligram of the potassium-platinum chloride corresponds to 0.1 per cent. KCl in the quantity of substance employed.
(b) In the Presence of more than 0.5 per cent.Potassium Sulphate. -Dissolve 30.56 g . of the crude salt in a 1 -litre flask in 300 c.c. water +15 e.c. strong hydrochloric acid by boiling, allow to cool, and fill the flask up to the mark. Put 50 c.c. of the clear

[^7]solution into a 200 c.c. flask, heat to boiling, and precipitate the sulphate with the exactly necessary quantity of barium chloride, adding the principal portion of the reagent quickly, the remainder in single drops, always waiting till the liquid shows a clear layer and throwing into this a minute crystal of barium chloride, until this ceases to produce a cloud. If too much BaCl_{2} should have been accidentally added, it must be removed by a drop or two of dilute sulphuric acid. After cooling, fill up to the mark and take 20 c.c. of the clear solution $=0.3056$ g . salt, which is then treated with platinum chloride as described in No. 1. One mg. of the precipitate corresponds to 0.1 per cent. KCl , if the K is to be calculated as such.

For the analysis of salts consisting essentially of $\mathrm{K}_{2} \mathrm{SO}_{4}$, like kainite, dissolve 35.71 g ., in which case each mg. of the platinum precipitate indicates 0.1 per cent. $\mathrm{K}_{4} \mathrm{SO}_{4}$. When testing rich sulphate (90 to 97 per cent. $\mathrm{K}_{2} \mathrm{SO}_{4}$) it is necessary to add to the percentage thus found a correction of +0.3 per cent., but this should not be made in the case of potasso-magnesium sulphates.

3. Percentage of Sodium Chloride :-

(a) In IIigh-(rrade Salts.-If there is little or no sulphate present, the NaCl is calculated from the difference between the KCl found directly by gravimetric analysis and the total chlorides as found by titration with silver solution, p. 174. If there is an appreciable proportion of sulphate present, the percentage of (combined) SO_{3} must be estimated, as well as that of potassium and chlorine. The barium sulphate obtained is calculated to KCl (1 part $\mathrm{BaSO}_{4}=0.7465$ $\mathrm{K}_{2} \mathrm{SO}_{4}=0.6388 \mathrm{KCl}$) ; this amount is deducted from the total quantity of K , calculated as KCl ; the remaining KCl , which was present as such and must be quoted as such in the analysis, is deducted from that which is found when calculating all the Cl as KCl . The now remaining nominal amount of KCl is calculated as $\mathrm{NaCl}, 100$ parts KCl being equivalent to 78.41 NaCl . The SO_{3} found is calculated as $\mathrm{K}_{2} \mathrm{SO}_{4}$.
(b) In Low-Grade Salts it is not usual to estimate the NaCl . If it is to be done, a complete analysis is required. KCl is estimated as above, in addition : Ca (p. 174), Mg (pp. 170 and 223), SO_{3} (p. 133), insoluble matter, and moisture. SO_{3} is calculated as CaSO_{4}; if there is not enough (aa present for all the SO_{3}, the remainder is calculated as MgSO_{4}, and after that as $\mathrm{K}_{2} \mathrm{SO}_{4}$. If more Mg is present than is required to saturate the SO_{3} at disposal, the remaining Mg is calculated as $\mathrm{Mg}\left(\mathrm{Cl}_{2}\right.$. Any excess of Cl over that required to form KCl and MgCl_{2} is calculated as NaCl .
4. Magnesium Chloride.- In order to distinguish the carnallite salts (which give up the MgCl_{2} to alcohol) from the non-carnallitic
salts (which do not do this), shake 10 g . of the crude salt for ten minutes in a $\frac{1}{2}$-litre flask with 100 c.c. 96 per cent. alcohol and titrate 10 c.c. of the filtrate with ${ }_{10}^{10}$ normal silver solution. Such salts as contain upwards of 6 per cent. Cl soluble in alcohol are regarded as belonging to the carnallite group.
5. Total Magnesium.-Boil 10 g . of finely ground, crude salt with 300 c.c. of water in a $\frac{1}{2}$-litre flask for an hour ; after cooling add 50 c.c. twice-normal sodium hydroxide solution, in the case of much lime being present also 20 c.c. of a 10 per cent. solution of neutral potassium oxalate, fill the Hask up to the mark, filter after a quarter of an hour, and titrate 50 c.c. of the filtrate by normal hydrochloric acid. Each c.c. of the twice-normal alkali used up is $=0.04032 \mathrm{~g} . \mathrm{MgCl}_{2}$. To the percentage of MgO 0.2 per cent. should be added (Precht, Z. anal. Chem., 1879, p. 438).

B. -Commercial Potassium Chloride.

Weigh out 7640 g . and proceed exartly as deseribed under $\Lambda, 2$ (a), p. 221. The calculation is also made in the same manner.

Potassium chloride made from vinasses contains much sulphate and a little carbonate, which is estimated alkalimetrically.

Cyanide is sometimes present in commercial potassium chloride, occasionally in appreciable quantity.

C.-Potassium Sulphate.

Proceed just as in the case of sodium sulphate, p 176. The potassium must sometimes be estimated, which is done as on 1. 221 for A, 2 (b).

D.-Beet Ashes.

For this material special methods have been worked out by Heyor (Chemiker-Zeitung, 1891, p. 1489 et seq.), and by Alberti and Hempel (ibid., p. 1623).

E.- Commercial Carbonate of Potash.

1. Available Alkali is titrated with normal hydrochloric acid, as on p. 190.

224 THE TECHNICAL CHEMISTS' HANDBOOK

2. Total Potassium is estimated according to p. 221, A (b), so that all sulphate is converted into chloride. Of course, initially, more hydrochloric acid must be employed in order to decompose the carbonate.
3. Chloride is estimated by decinormal silver solution, p. 174. 1 c.c. of this $=0.007456 \mathrm{~g} . \mathrm{KCl}$.
4. Sulphate is estimated as BaSO_{4}, p. 13.4. $1 \mathrm{~g} . \mathrm{BaSO}_{4}=0.7465$ $\mathrm{K}_{2} \mathrm{SO}_{4}$.
5. Insoluble matter, as on p. 190.
6. Silicate.-Saturate the salt with hydrochloric acid,cvaporate to dryness, moisten with HCl , evaporate again, dissolve in dilute HCl , filter, wash, and strongly ignite the SiO_{2}. This test is only made exceptionally, and the potassium silicate is calculated together with the carbonate.
7. Phosphate is estimated by the magnesia method, and is treated like the silicate.
8. Calculation of the Avalyses.-Calculate :-
(a) $\left.\mathrm{K}_{2} \mathrm{C}\right)_{3}$ from the difference hetween the total potassium and that corresponding to the Cl and SO_{3} found.
(b) $\mathrm{Na}_{2} \mathrm{CO}_{3}$ from the difference between the total available alkali and the $\mathrm{K}_{2} \mathrm{CO}_{3}$ as calculated in (a).
(c) KCl and
(d) $\mathrm{K}_{2} \mathrm{SO}_{4}$ as above.
(e) Water and
(f) Insoluble matter, if necessary also iron, by a special test.
9. SPECIFIC GRAVITIES OF SOLUTIONS OF POTASSIUM CARBONATH AT 15°.

Speciflc Gravity.	Degrees Twaddell.	Degroes Baumé.	$\begin{gathered} \text { Per cent. } \\ \mathrm{K}_{2} \mathrm{CO}_{3} . \end{gathered}$	$\begin{aligned} & 1 \text { cb.m. contains } \\ & \mathrm{kg} . \mathrm{K}_{2} \mathrm{CO}_{3} . \end{aligned}$
1.000	0	0	0	0
$1 \cdot 005$	1	$0 \cdot 7$	$0 \cdot 50$	$5 \cdot 0$
1.010	2	$1 \cdot 4$	$1 \cdot 04$	$10 \cdot 50$
1.015	3	$2 \cdot 1$	$1 \cdot 60$	$16 \cdot 24$
1.020	4	$2 \cdot 7$	$2 \cdot 10$	21.42
1.025	5	$3 \cdot 4$	$2 \cdot 64$	$27 \cdot 06$
1.030	6	$4 \cdot 1$	$3 \cdot 21$	$33 \cdot 06$
1.035	7	$4 \cdot 7$	$3 \cdot 77$	39.02
1.040	8	$5 \cdot 4$	$4 \cdot 34$	$45 \cdot 14$
1.045	9	$6 \cdot 0$	$4 \cdot 90$	$51 \cdot 21$
1.050	10	$6 \cdot 7$	$5 \cdot 47$	$57 \cdot 44$
1.055	11	$7 \cdot 4$	$6 \cdot 00$	$63 \cdot 30$
1.060	12	$8 \cdot 0$	$6 \cdot 50$	$68 \cdot 90$
1.065	13	$8 \cdot 7$	$7 \cdot 07$	$75 \cdot 30$
1.070	14	$9 \cdot 4$	$7 \cdot 60$	81.32
1.075	15	$10 \cdot 0$	$8 \cdot 10$	$87 \cdot 08$
$1 \cdot 080$	16	$10 \cdot 6$	$8 \cdot 67$	$93 \cdot 64$
$1 \cdot 085$	17	$11 \cdot 2$	$9 \cdot 20$	99.82
$1 \cdot 090$	18	$11 \cdot 9$	$9 \cdot 70$	$105 \cdot 73$
$1 \cdot 095$	19	$12 \cdot 4$	$10 \cdot 20$	$111 \cdot 69$
$1 \cdot 100$	20	$13 \cdot 0$	10.70	$117 \cdot 70$
$1 \cdot 105$	21	$13 \cdot 6$	11.26	$124 \cdot 42$
$1 \cdot 110$	22	$14: 2$	$11 \cdot 80$	$130 \cdot 98$
$1 \cdot 115$	23	14.9	$12 \cdot 30$	$137 \cdot 15$
$1 \cdot 120$	24	$15 \cdot 4$	$12 \cdot 80$	$143 \cdot 36$
$1 \cdot 125$	25	16.0	$13 \cdot 30$	$149 \cdot 63$
$1 \cdot 130$	26	$16 \cdot 5$	$13 \cdot 80$	$155 \cdot 94$
$1 \cdot 135$	27	$17 \cdot 0$	$14 \cdot 30$	$162 \cdot 31$
$1 \cdot 140$	28	$17 \cdot 7$	$14 \cdot 80$	$168 \cdot 72$
$1 \cdot 145$	29	$18 \cdot 3$	15:30	$175 \cdot 19$
$1 \cdot 150$	30	$18 \cdot 8$	15.80	$181 \cdot 70$
$1 \cdot 155$	31	$19 \cdot 3$	$16 \cdot 30$	$188 \cdot 27$
$1 \cdot 160$	32	$19 \cdot 8$	$16 \cdot 80$	$194 \cdot 88$
$1 \cdot 165$	33	$20 \cdot 3$	$17 \cdot 30$	$201 \cdot 55$
$1 \cdot 170$	34.	$20 \cdot 9$	$17 \cdot 80$	$208 \cdot 26$
$1 \cdot 175$	35	21.4	$18 \cdot 30$	$215 \cdot 03$
$1 \cdot 180$	36	$22 \cdot 0$	$18 \cdot 80$	$221 \cdot 84$
$1 \cdot 185$	37	$22 \cdot 5$	$19 \cdot 26$	$228 \cdot 23$

226 THE 'TECHNICAI، CHEMIS'TS' HANDBOOK

SPEOIFIC GRAVITIES OF SOLUTIONS OF POTASSIUM oarbonate at 15°-Continued.

Specific Gravity.	$\begin{aligned} & \text { Degrees } \\ & \text { Twaddell. } \end{aligned}$	Degrees Baumé.	Per cent. $\mathrm{K}_{2} \mathrm{CO}_{3}$	$1 \mathrm{cb} . \mathrm{m}$. contains $\mathrm{kg} . \mathrm{K}_{2} \mathrm{CO}_{3}$.
$1 \cdot 190$	38	$23 \cdot 0$	19.70	$234 \cdot 43$
$1 \cdot 195$	39	$23 \cdot 5$	$20 \cdot 20$	$241 \cdot 39$
$1 \cdot 200$	40	24.0	$20 \cdot 70$	$248 \cdot 40$
$1 \cdot 205$	41	24.5	$21 \cdot 15$	$254 \cdot 86$
1.210	42	25.0	$21 \cdot 60$	$261 \cdot 36$
1.215	43	25.5	22.05	$267 \cdot 91$
$1 \% 20$	44	$26 \cdot 0$	$22 \cdot 50$	$274 \cdot 50$
1.225	45	$20 \cdot 4$	$22 \cdot 96$	281.26
11230	46	$26 \cdot 9$	$23 \cdot 41$	$287 \cdot 94$
1.235	47	$27 \cdot 4$	$23 \cdot 90$	$295 \cdot 17$
1.240	48	$27 \cdot 9$	$24 \cdot 10$	$302 \cdot 56$
$1 \cdot 245$	49	$28 \cdot 4$	$24 \cdot 86$	$309 \cdot 51$
$1 \cdot 250$	50	$28 \cdot 8$	$25 \cdot 32$	316.50
$1 \cdot 255$	51	$29 \cdot 3$	$25 \cdot 80$	$323 \cdot 79$
1-260	52	$29 \cdot 7$	$26 \cdot 30$	$331 \cdot 38$
$1 \cdot 265$	53	$30 \times$	26.37	$338 \cdot 64$
$1 \cdot 270$	54	$30 \cdot 6$	$27 \cdot 17$	$345 \cdot 06$
1-275	55	$31 \cdot 1$	$27 \cdot 60$	$351 \cdot 90$
1.280	56	31.5	28.05	359.04
$1 \cdot 285$	57	$32 \cdot 0$	28.50	366.23
1.290	58	$32 \cdot 4$	28.96	373.58
$1 \because 29$	59	$32 \cdot 8$	$\because 2 \cdot 42$	$380 \cdot 99$
1-300	60	$33 \cdot 3$	29.97	$389 \cdot 61$
$1 \cdot 305$	61	$33 \cdot 7$	$30 \cdot 43$	$397 \cdot 11$
$1 \cdot 310$	62	$34 \cdot 2$	$30 \cdot 86$	$404 \cdot 27$
$1 \cdot 315$	63	$34 \cdot 6$	81.24	$410 \cdot 81$
$1 \cdot 320$	64	$35 \cdot 0$	31.60	$417 \cdot 12$
$1 \cdot 325$	65	$35 \cdot 4$	$32 \cdot 06$	424.80
$1 \cdot 330$	66	$35 \cdot 8$	$32 \cdot 52$	$432 \cdot 52$
$1 \cdot 335$	67	36.2	$32 \cdot 96$	$440 \cdot 02$
$1 \cdot 340$	68	$36 \cdot 6$	33.38	$447 \cdot 29$
$1 \cdot 345$	69	$37 \cdot 0$	33.80	$454 \cdot 61$
1.350	70	$37 \cdot 4$	$34 \cdot 22$	461.97
$1 \cdot 355$	71	$37 \cdot 8$	$34 \cdot 64$	$469 \cdot 37$
1.360	72	$38 \cdot 2$	35.06	476.82
$1 \cdot 365$	73	$38 \cdot 6$	35.48	$484 \cdot 30$
$1 \cdot 370$	74	$39 \cdot 0$	35.90	$491 \cdot 83$

SPEOIFIC GRAVITIES OF SOLUTIONS OF POTASSIUM
CARBONATE AT 15°-Continued.

Specific Gravity.	Degrens Twaddell.	Degrees Baumé.	$\begin{aligned} & \text { Per cent. } \\ & \mathrm{K}_{2} \mathrm{CO}_{3} . \end{aligned}$	$\begin{gathered} 1 \text { cb.m. contains } \\ \mathrm{kg} . \mathrm{K}_{2} \mathrm{CO}_{3} \text {. } \end{gathered}$
1.375	75	$39 \cdot 4$	$36 \cdot 32$	$499 \cdot 40$
1.380	76	$39 \cdot 8$	$36 \cdot 74$	$507 \cdot 01$
$1 \cdot 385$	77	$40 \cdot 1$	$37 \cdot 17$	$514 \cdot 80$
$1 \cdot 390$	78	$40 \cdot 5$	$37 \cdot 60$	$522 \cdot 64$
1-395	79	$40 \cdot 8$	$38 \cdot 02$	530-38
1.400	80	41.2	$38 \cdot 45$	$538 \cdot 30$
$1 \cdot 405$	81	$41 \cdot 6$	$38 \cdot 88$	$546 \cdot 26$
$1 \cdot 410$	8:	4 ± 0	$39 \cdot 30$	$554 \cdot 13$
$1 \cdot 415$	83	$42 \cdot 3$	39.73	$562 \cdot 19$
$1 \cdot 420$	84	$42 \cdot 7$	40•16	$570 \cdot 27$
$1 \cdot 425$	85	$43 \cdot 1$	40:59	$578 \cdot 41$
1.430	86	$43 \cdot 4$	41.0%	586.59
$1 \cdot 435$	87	$43 \cdot 8$	41.45	504-81
$1 \cdot 440$	88	$44 \cdot 1$	$41 \cdot 85$	$602 \cdot 64$
1.445	89	$44 \cdot 4$	4202	$610 \cdot 08$
$1 \cdot 450$	90	$44 \cdot 3$	$4 \cdot \cdot 58$	$617 \cdot 41$
1.455	91	$45 \cdot 1$	$42 \cdot 97$	$625 \cdot 21$
1.460	92	$45 \cdot 4$	$43 \cdot 37$	$633 \cdot 20$
1.465	93	$45 \cdot 8$	$43 \cdot 77$	$641 \cdot 23$
1.470	94	$46 \cdot 1$	44-17	$649 \cdot 30$
1.475	95	$46 \cdot 4$	$44 \cdot 57$	$657 \cdot 41$
1.480	96	$46 \cdot 8$	$44 \cdot 96$	$665 \cdot 41$
1.485	97	$47 \cdot 1$	$45 \cdot 38$	$673 \cdot 89$
1.490	98	$47 \cdot 1$	$45 \cdot 81$	$682 \cdot 57$
$1 \cdot 495$	99	$47 \cdot 8$	$46 \cdot 24$	$691 \cdot 29$
1500	100	$15 \cdot 1$	$46 \cdot 66$	$699 \cdot 90$
$1 \cdot 505$	101	$48 \cdot 4$	47.03	$707 \cdot 80$
1.510	102	$48 \cdot 7$	$47 \cdot 40$	$715 \cdot 74$
1.515	103	$49 \cdot 0$	$47 \cdot 78$	$723 \cdot 87$
1.520	104	$49 \cdot 4$	$48 \cdot 15$	731.88
1.525	105	$49 \cdot 7$	$48 \cdot 53$	740.08
1.530	106	$50 \cdot 0$	$48 \cdot 90$	$748 \cdot 17$
1.535	107	$50 \cdot 3$	$49 \cdot 26$	$756 \cdot 14$
$1 \cdot 540$	108	$50 \cdot 6$	$49 \cdot 61$	$763 \cdot 99$
1-545	109	$50 \cdot 9$	$49 \cdot 96$	$771 \cdot 88$
1.550	110	51%	60.33	$780 \cdot 12$
$1 \cdot 555$	111	51.5	$50 \cdot 70$	$788 \cdot 39$
1.560	112	$51 \cdot 8$	51.07	$796 \cdot 69$
1.565	113	$52 \cdot 1$	51.45	$805 \cdot 19$

2. INFLUENOE OF THMPERATURE ON THE SPFCIFIO

$0^{\circ} \mathrm{C}$.	5°.	10°.	15°.	20°.	25°.	30°.	35°.	40°.	45°.	60°.
1-588	$1 \cdot 586$	1.553	1.580	1.577	1.574	$1 \cdot 571$	$1 \cdot 568$	1.560	1.563	$1 \cdot 559$
$1 \cdot 577$	$1 \cdot 575$	1:573	$1 \cdot 540$	1.56 S	$1 \cdot 565$	$1 \cdot 563$	$1 \cdot 560$	1.557	1.554	1.551
$1 \cdot 567$	$1 \cdot 565$	$1 \cdot 563$	$1 \% 60$	$1 \cdot 558$	$1 \cdot 555$	1:553	$1 \cdot 550$	1.548	$1 \cdot 545$	1.543
$1 \cdot 557$	$1 \cdot 554$	1\%52	$1 \cdot 550$	$1 \cdot 548$	1.546	$1 \div 54$	1-541	1.538	1 - 536	1.533
$1 \cdot 547$	1.544	1-542	$1 \cdot 540$	1.538	1.536	1.534	$1 \cdot 531$	$1 \cdot 5 \pm 8$	1.526	$1 \cdot 523$
$1 \cdot 536$	$1 \cdot 534$	1.532	$1 \cdot 530$	1-525	1-5.6	1.5\%4	1.521	1.518	$1 \cdot 515$	1.512
$1 \cdot 526$	1.524	1-523	1500	1-518	$1 \cdot 516$	$1: 514$	$1 \cdot 511$	1.508	$1 \cdot 505$	$1 \cdot 502$
1.516	1.514	1.51\%	1.510	$1 \cdot 508$	1.500	$1 \cdot 503$	1.500	$1 \cdot 4!8$	$1 \cdot 495$	$1 \cdot 492$
1.506	$1 \cdot 504$	1:502	$1 \cdot 500$	$1 \cdot 498$	$1 \cdot 496$	$1 \cdot 493$	1.490	$1 \cdot 488$	$1 \cdot 485$	1-482
1.496	1.494	$1 \cdot 42 \%$	$1 \cdot 490$	$1 \cdot 188$	1.486	$1 \cdot 454$	$1 \cdot 481$	$1 \cdot 478$	$1 \cdot 475$	1.472
1.486	$1 \cdot 484$	$1 \cdot 482$	1-480	1.478	1.476	$1 \cdot 474$	1.471	1.468	$1 \cdot 465$	$1 \cdot 462$
1.476	$1 \cdot 474$	1.472	1.470	1.468	1.460	1.464	$1 \cdot 461$	1.458	1.455	$1 \cdot 452$
$1 \cdot 466$	$1 \cdot 464$	1.462	1.460	1.458	1.456	$1 \cdot 454$	$1 \cdot 451$	$1 \cdot 448$	1.445	$1 \cdot 442$
$1 \cdot 456$	$1 \cdot 454$	$1 \cdot 452$	$1 \cdot 450$	1.448	1.440°	$1 \cdot 444$	1.441	1.438	1.435	1.482
$1 \cdot 446$	1.444	1-442	$1 \cdot 440$	1.438	1.436°	1.434	$1 \cdot 431$	$1 \cdot 428$	1.425	1.422
$1 \cdot 436$	$1 \cdot 434$	1-433	$1 \cdot 430$	1.428	1.426	$1 \cdot 424$	$1 \cdot 420$	1.418	1.414	$1 \cdot 411$
$1 \cdot 426$	1.421	$1 \cdot 422$	$1 \cdot 420$	1.418	$1 \cdot 416$	1.414	$1 \cdot 410$	1.408	1.404	1.401
1.416	$1 \cdot 414$	1.412	$1 \cdot 410$	1.408	$1 \cdot 400$	$1 \cdot 404$	$1 \cdot 401$	1.398	$1 \cdot 395$	$1 \cdot 392$
$1 \cdot 406$	1.404	$1 \cdot 402$	$1 \cdot 400$	$1 \cdot 398$	$1 \cdot 390$	$1 \cdot 364$	1.341	1.38s	$1 \cdot 885$	1.382
$1 \cdot 396$	$1 \cdot 394$	$1 \cdot 392$	1-390	$1 \cdot 388$	$1 \cdot 386$	$1 \cdot 384$	1.381	$1 \cdot 378$	1.876	1.378
$1 \cdot 386$	$1 \cdot 884$	1.352	$1 \cdot 3 \mathrm{~s} 0$	$1 \cdot 378$	$1 \cdot 376$	1.374	1.371	$1 \cdot 368$	$1 \cdot 366$	1.363
$1 \cdot 376$	$1 \cdot 374$	$1 \cdot 372$	$1 \cdot 370$	1.368	$1 \cdot 360$	$1 \cdot 36.4$	$1 \cdot 361$	$1 \cdot 358$	$1 \cdot 356$	1.353
$1 \cdot 366$	1.354	$1 \cdot 362$	1.360	1.358	1.356	$1 \cdot 354$	$1 \cdot 351$	1.348	$1 \cdot 346$	1.343
1-356	$1 \cdot 354$	$1 \cdot 352$	1.350	1.348	$1 \cdot 346$	1.344	$1 \cdot 341$	$1 \cdot 338$	1.386	1.393
$1 \cdot 346$	1.344	$1 \cdot 342$	$1 \cdot 340$	1.338	1.336	$1 \cdot 334$	1.331	$1 \cdot 328$	$1 \cdot 326$	1.323
1.336	1.834	$1 \cdot 332$	1.330	1.328	1.320	1-324	1.321	$1 \cdot 318$	1.816	1.313
$1 \cdot 326$	$1 \cdot 324$	$1 \cdot 322$	$1 \cdot 320$	$1 \cdot 318$	1.316	1.314	1.311	1.308	1.300	$1 \cdot 308$
$1 \cdot 316$	1-314	1.312	$1 \cdot 310$	$1 \cdot 308$	$1 \cdot 306$	$1 \cdot 303$	$1 \cdot 300$	$1 \cdot 298$	1.295	$1 \cdot 292$
$1 \cdot 306$	$1 \cdot 304$	$1 \cdot 302$	$1 \cdot 300$	$1 \cdot 298$	$1 \cdot 296$	1.293	$1 \cdot 290$	$1 \cdot 288$	$1 \cdot 285$	1-282
$1 \cdot 296$	1.294	1.292	$1 \cdot 290$	1.288	$1 \cdot 280$	1.283	1.280	$1 \cdot 278$	1.275	1-273
1.280	1.284	1.282	$1 \cdot 280$	$1 \cdot 278$	1.276	1.278	$1 \cdot 270$	$1 \cdot 268$	$1-265$	1.268
1.276	1.274	1.272	1.270	1.268	1.265	1.263	1.260	$1 \cdot 257$	1.255	1-252
1.266	1.264	1.262	1.260	$1 \cdot 258$	1.255	$1 \cdot 253$	$1 \cdot 250$	1.247	$1 \cdot 245$	1.242
$1 \cdot 256$	$1 \cdot 254$	$1 \cdot 252$	$1 \cdot 250$	$1 \cdot 248$	$1 \cdot 246$	1.243	$1 \cdot 240$	1.235°	1.285	1.232
$1 \cdot 246$	$\cdots 1.244$	$1 \cdot 242$	$1 \cdot 240$	$1 \cdot 238$	$1 \cdot 236$	$1 \cdot 233$	1.230	1*28	$1 \cdot 225$	1-222
1.236	1.234	1.232	$1 \cdot 230$	$1 \cdot 228$	1.296	$1 \cdot 224$	$1 \cdot 222$	1-219	1-217	$1 \cdot 214$
$1 \cdot 226$	1.224	$1 \cdot 222$	$1 \cdot 220$	1.218	1.216	1.214	1.212	$1 \cdot 209$	$1 \cdot 207$	1.404
1.216	1.214	$1 \cdot 212$	$1 \cdot 210$	1.208	1.206	1\%04	$1 \% 02$	1.199	$1 \cdot 107$	$1 \cdot 104$
1.200	$1 \cdot 204$	$1 \cdot 202$	$1 \cdot 200$	1.198	$1 \cdot 196$	$1 \cdot 194$	$1 \cdot 192$	1•180	$1 \cdot 187$	1-184
$1 \cdot 196$	1-194	$1 \cdot 192$	$1 \cdot 190$	1.188	1.186	1.154	$1 \cdot 182$	$1 \cdot 170$	$1 \cdot 177$	$1 \cdot 174$
$1 \cdot 186$	1.184	1-182	1-180	1.178	$1 \cdot 176$	$1 \cdot 174$	1-172	$1 \cdot 170$	1-167	1-164
$1 \cdot 175$	$1 \cdot 173$	$1 \cdot 171$	$1 \cdot 170$	1-1;8	1.160	1.16i	$1 \cdot 169$	$1 \cdot 160$	1.167	$1 \cdot 165$
$1 \cdot 165$	$1 \cdot 163$	1-161	1-160	$1 \cdot 158$	$1 \cdot 150$	$1 \cdot 154$	$1 \cdot 152$	$1 \cdot 150$	1.147	$1 \cdot 145$
$1 \cdot 155$	$1 \cdot 153$	$1 \cdot 151$	$1 \cdot 150$	1.148	$1 \cdot 146$	1.144	$1 \cdot 142$	$1 \cdot 140$	$1 \cdot 187$	1-185
$1 \cdot 144$	1.143	1-141	1.140	$1 \cdot 188$	$1 \cdot 136$	1-134	1-132	$1 \cdot 180$	$1 \cdot 127$	1-125
$1 \cdot 138$	$1 \cdot 132$	$1 \cdot 181$	$1 \cdot 180$	$1 \cdot 128$	$1 \cdot 120$	$1 \cdot 124$	1-122	$1 \cdot 120$	$1 \cdot 117$	$1 \cdot 114$
1.123	$1 \cdot 122$	$1 \cdot 121$	$1 \cdot 120$	1.118	$1 \cdot 116$	1.114	$1 \cdot 112$	$1 \cdot 110$	$1 \cdot 107$	$1 \cdot 104$
$1 \cdot 113$	$1 \cdot 112$	$1 \cdot 111$	$1 \cdot 110$	$1 \cdot 108$	$1 \cdot 106$	$1 \cdot 104$	$1 \cdot 102$	$1 \cdot 100$	1.097	1.094
$1 \cdot 108$	$1 \cdot 102$	1.101	$1 \cdot 100$	1.098	1.096	$1 \cdot 094$	1.092	1.000	1.087	1.084
1.098	1.092	1.091	$1 \cdot 090$	1.089	1.087	1.086	1.083	1.081	1.070	1.077
1.088	1.082	1.081	1.080	1.079	1.077	1.076	$1 \cdot 073$	1.071	1.069	1.067
1.078	1.072	1.071	1.070	1.009	1.067	1.066	1.064	1.002	1.060	1.058
1.063	1.062	1.061	1.060	1.059	1.057	1.056	1.054	1.052	1.050	1.048
1.053	$1 \cdot 052$	1.051	1.050]-049	1.047	1.046	1.044	$1 \cdot 042$	1.040	1.088
1.043	1.042	1.041	1.040	1.089	1.087	1.086	1.084	1.082	1.080	1.028
1.083	1.082	1.081	1.080	1.028	1.027	1.025	1.024	1.022	1.020	1.018
1.028	1.022	1.021	1.020	1.018	1.017	1.015	1.014	1.012	1.010	1.008
1.018	1.012	1.011	1.010	1.008	1.007	1.005	2.004	1.002	1.000	0.008

GRAVITIES OF SOLUTIONS OF POTASGIUM CARBONATE.

65°.	60°.	65°.	70°.	75°.	80°	85°.	90°.	95°.	100°.
1.556	1.553	$1 \cdot 550$	$1 \cdot 546$	$1 \cdot 542$	$1 \cdot 538$	1.534	$1 \cdot 530$	1.526	1.521
1.548	$1 \cdot 545$	$1 \cdot 541$	1.537	$1 \cdot 533$	$1 \cdot 530$	$1 \cdot 526$	1.522	1.518	$1 \cdot 513$
$1 \cdot 539$	1.536	1-53:	$1 \cdot 528$	$1 \cdot 525$	$1 \cdot 522$	$1 \cdot 517$	$1 \cdot 513$	$1 \cdot 509$ 。	$1 \cdot 505$
1.530	1.527	$1 \cdot 524$	1.521	$1 \cdot 517$	$1 \cdot 518$	$1 \cdot 509$	$1 \cdot 504$	$1.501{ }^{\circ}$	$1 \cdot 498$
$1 \cdot 520$	1.517	$1 \cdot 514$	1-511	$1 \cdot 508$	$1 \cdot 504$	1.500	1.497	1.494	$1 \cdot 490$
$1 \cdot 509$	$1 \cdot 507$	$1 \cdot 504$	$1 \cdot 500$	$1 \cdot 497$	1.494	1.491	1-488	1-485	1.481
$1 \cdot 499$	1.497	$1 \cdot 494$	$1 \cdot 490$	$1 \cdot 487$	$1 \cdot 484$	1.481	$1 \cdot 478$	$1 \cdot 475$	1.471
$1 \cdot 48!$	1.487	1.454	$1 \cdot 480$	$1 \cdot 477$	$1 \cdot 474$	$1 \cdot 471$	1.468	1.465	1.461
1-47!	1.476	1.474	$1 \cdot 470$	$1 \cdot 467$	$1 \cdot 464$	$1 \cdot 461$	1.458	$1 \cdot 455$	$1 \cdot 451$
1.460	1.466	$1 \cdot 464$	$1 \cdot 460$	$1 \cdot 457$	$1 \cdot 454$	1.450	1.447	1.444	1.441
1.459	1.450	1.454	1.450	$1 \cdot 447$	$1 \cdot 444$	$1 \cdot 440$	1.437	1.434	1.431
$1 \cdot 449$	$1 \cdot 4.46$	1.44.4	1.440	$1 \cdot 437$	1.484	$1 \cdot 431$	1.428	$1 \cdot 494$	$1 \cdot 421$
1.439	$1 \cdot 436$	1.43.4	1.430	$1 \cdot 427$	$1 \cdot 424$	$1 \cdot 421$	$1 \cdot 418$	1.414	1.411
1-429	$1 \cdot 4 \% 6$	$1 \cdot 423$	$1 \cdot 4 \geq 0$	$1 \cdot 417$	$1 \cdot 414$	$1 \cdot 410$	1.408	1.405	$1 \cdot 402$
1.419	$1 \cdot 416$	$1 \cdot 413$	$1 \cdot 410$	$1 \cdot 407$	$1 \cdot 404$	$1 \cdot 400$	$1 \cdot 398$	$1 \cdot 396$	$1 \cdot 392$
$1 \cdot 409$	$1 \cdot 406$	$1 \cdot 401$	1.401	$1 \cdot 395$	$1 \cdot 395$	1-391	$1 \cdot 388$	$1 \cdot 385$	1-3n9
$1 \cdot 399$	$1 \cdot 396$	$1 \cdot 394$	$1 \cdot 391$	$1 \cdot 358$	$1 \cdot 385$	1.381	$1 \cdot 378$	$1 \cdot 375$	1-37\%
$1 \cdot 390$	1.387	$1 \cdot 384$	$1 \cdot 380$	$1 \cdot 377$	$1 \cdot 374$	$1 \cdot 371$	1.368	$1 \cdot 365$	$1 \cdot 362$
$1 \cdot 380$	$1 \cdot 377$	1.37.4	$1 \cdot 370$	$1 \cdot 367$	$1 \cdot 364$	$1 \cdot 361$	$1 \cdot 358$	$1 \cdot 355$	$1 \cdot 352$
$1 \cdot 370$	$1 \cdot 367$	$1 \cdot 36 \cdot 4$	1.361	$1 \cdot 35$ s	$1 \cdot 355$	$1 \cdot 351$	1.348	$1 \cdot 345$	1.342
$1 \cdot 360$	$1 \cdot 357$	$1 \cdot 354$	$1 \cdot 351$	$1 \cdot 3.48$	$1 \cdot 345$	$1 \cdot 341$	$1 \cdot 339$	1.335	$1 \cdot 332$
$1 \cdot 350$	$1 \cdot 347$	$1 \cdot 344$	$1 \cdot 341$	$1 \cdot 333$	1.335	$1 \cdot 332$	$1 \cdot 3 \% 9$	1.326	1.323
$1 \cdot 340$	$1 \cdot 337$	1-334	$1 \cdot 331$	$1 \cdot 325$	$1 \cdot 325$	$1 \cdot 322$	$1 \cdot 319$	1.310	$1 \cdot 313$
$1 \cdot 330$	$1 \cdot 327$	$1 \cdot 324$	$1 \cdot 321$	$1 \cdot 318$	$1 \cdot 315$	$1 \cdot 312$	$1 \cdot 309$	$1 \cdot 306$	$1 \cdot 303$
$1 \cdot 320$	$1 \cdot 317$	$1 \cdot 314$	1.311	$1 \cdot 308$	$1 \cdot 305$	1-302	1-699	1-296	$1 \cdot 293$
$1 \cdot 310$	$1 \cdot 307$	$1 \cdot 304$	$1 \cdot 301$	$1-295$	$1 \cdot 695$	$1 \cdot 292$	1-289	1-2sc	$1 \cdot 284$
$1 \cdot 300$	$1 \cdot 997$	$1 \cdot 294$	$1 \cdot 291$	1-0s	$1 \cdot 285$	$1 \cdot 282$	1-279	$1 \cdot 276$	$1 \cdot 274$
$1 \cdot 290$	$1 \cdot 257$	1.294	$1 \cdot 281$	$1 \cdot 27$:	$1 \cdot 276$	$1 \cdot 273$	$1 \cdot 270$	1-267	$1 \cdot 264$
$1 \cdot 250$	1.277	$1 \cdot 274$	$1 \cdot 271$	$1 \cdot 268$	$1 \cdot 266$	$1 \cdot 263$	$1 \cdot 260$	1.257	$1 \cdot 254$
$1 \cdot 270$	$1 \cdot 267$	$1 \cdot 264$	1.261	$1 \because 58$	$1 \cdot 256$	1.253	$1 \cdot 250$	$1 \cdot 247$	1.244
$1 \cdot 260$	$1 \cdot 257$	$1 \cdot 254$	$1 \cdot 251$	$1 \cdot 248$	$1 \cdot 9.46$	1 213	$1 \cdot 240$	1-237	1-234
$1 \cdot 250$	$1 \cdot 247$	$1 \cdot 2.44$	1×42	1×39	$1 \cdot 236$	$1 \cdot 234$	1.231	$1 \cdot 228$	$1 \cdot 225$
1-210	1.237	1.234	1.232	$1 \cdot 29!$	1-226	$1 \cdot 22.4$	$1 \cdot 221$	$1 \cdot 218$	$1 \cdot 215$
$1 \cdot 230$	$1 \cdot 227$	$1 \cdot 224$	$1 \cdot 221$	1-218	$1 \cdot 216$	$1 \cdot 213$	$1 \cdot 210$	1.208	$1 \cdot 205$
$1 \cdot 2 \% 0$	$1 \cdot 217$	$1 \cdot 214$	$1 \cdot 211$	1.208	$1 \cdot 206$	1.203	1-200	$1 \cdot 198$	$1 \cdot 195$
1.212	$1 \cdot 209$	$1 \cdot 205$	$1 \cdot 202$	$1 \cdot 198$	$1 \cdot 196$	$1 \cdot 194$	1-192	1-158	$1 \cdot 186$
$1 \cdot 202$	$1 \cdot 199$	$1 \cdot 100$	$1 \cdot 193$	$1 \cdot 190$	$1 \cdot 187$	$1 \cdot 184$	$1 \cdot 152$	$1 \cdot 178$	$1 \cdot 176$
$1 \cdot 192$	1-189	$1 \cdot 186$	1.183	$1 \cdot 180$	$1 \cdot 178$	$1 \cdot 175$	$1 \cdot 172$	$1 \cdot 169$	$1 \cdot 167$
$1 \cdot 182$	$1 \cdot 179$	$1 \cdot 176$	$1 \cdot 173$	$1 \cdot 171$	$1 \cdot 168$	$1 \cdot 165$	$1 \cdot 162$	$1 \cdot 159$	$1 \cdot 157$
1-172	$1 \cdot 169$	$1 \cdot 160$	$1 \cdot 164$	1-161	$1 \cdot 158$	$1 \cdot 155$	1-152	$1 \cdot 149$	1.146
$1 \cdot 162$	$1 \cdot 159$	$1 \cdot 156$	$1 \cdot 154$	$1 \cdot 151$	$1 \cdot 14 \mathrm{~S}$	$1 \cdot 145$	1-142	1-13!	$1 \cdot 136$
1-152	$1 \cdot 150$	$1 \cdot 147$	$1 \cdot 144$	$1 \cdot 141$	1-13s	$1 \cdot 135$	$1 \cdot 132$	$1 \cdot 129$	$1 \cdot 126$
$1 \cdot 142$	$1 \cdot 140$	1-137	$1 \cdot 184$	$1 \cdot 131$	$1 \cdot 123$	$1 \cdot 125$	$1 \cdot 122$	1-119	1.116
$1 \cdot 132$	1.130	1-128	$1 \cdot 125$	1-122	$1 \cdot 11 \mathrm{~s}$	$1 \cdot 115$	1.112	$1 \cdot 109)$	$1 \cdot 106$
1-122	$1 \cdot 120$	$1 \cdot 118$	$1 \cdot 115$	1-112	1.10s	$1 \cdot 105$	1-102	$1 \cdot 099$	1.096
$1 \cdot 112$	$1 \cdot 110$	$1 \cdot 108$	$1 \cdot 105$	$1 \cdot 102$	1.098	1.095	$1 \cdot 092$	1.089	$1 \cdot 086$
$1 \cdot 102$	$1 \cdot 100$	1.098	1.095	1.092	$1.08 s$	1.085	1.082	1.078	1.076
1.092	1.090	1.087	1.084	1.082	1.079	1.055	$1 \cdot 072$	$1.06!$	1.067
1.082	1.080	1.077	1.074	1.072	$1 \cdot 069$	1.065	$1 \cdot 062$	1.059	$1 \cdot 057$
1.074	1.071	1.068	1.065	1.063	1.060	1.057	$1 \cdot 054$	1.050	$1 \cdot 0.48$
1.060	1.062	1.050	1.056	1.054	1.051	1.048	1.045	1.01]	1.038
1.056	1.053	1.050	$1 \cdot 047$	1.04 .5	1.042	1.039	1.036	1.082	1.029
1.046	$1 \cdot 0.44$	1.041	1.08 S	1.036	1.033	1.030	$1 \cdot 020$	1.023	1.020
1.036	1.083	1.081	1.023	1.025	$1 \cdot 022$	$1 \cdot 019$	1.016	$1 \cdot 013$	1.010
1.020	1.023	1.021	$1 \cdot 018$	1.015	1.012	$1 \cdot 009$	1.006	1.003	1.000
	1.014	1.012	$1 \cdot 009$	1.006	$1 \cdot 002$	0.999	0.996	0.993	0.990
1.007	1.004	1.002	0.099	0.990	0.998	0.990	0.987	0.984	0.981
0.996	0.904	0.982	0.989	0.986	0.988	0.980	$0 \cdot 977$	0.974	0.973

8. SPECIFIC GRAVITY OF SOLUTIONS OF POTASSIUM HYDROXIDE AT $\frac{15^{\circ}}{4^{\circ}}$. Calculated from the results obtained by Pickering (.Journ. Chem. Soc., lxiii., 890).

Spocifle Gravity.	Degrees Twaddell.	Degrees Baumé.	100 parts by weight contain		1 cb.m. contalns kg.	
			$\mathrm{K}_{2} \mathrm{O}$.	KOH.	$\mathrm{K}_{2} \mathrm{O}$.	KOH.
1.000	0	0	$0 \cdot 00$	$0 \cdot 00$	$0 \cdot 00$	0.00
1.005	1	0.7	0:50	$0 \cdot 60$	$5 \cdot 03$	$6 \cdot 03$
1.010	2	1.4	$0 \cdot 99$	$1 \cdot 18$	$10 \cdot 00$	11.92
1.015	3	$2 \cdot 1$	$1 \cdot 45$	$1 \cdot 73$	14.72	$17 \cdot 56$
1.020	4	$2 \cdot 7$	$1 \cdot 91$	$2 \cdot 28$	$19 \cdot 48$	$23 \cdot 26$
1.025	5	$3 \cdot 4$	$2 \cdot 37$	$2 \cdot 8$	24.29	28.91
1.030	6	$4 \cdot 1$	$2 \cdot 82$	$3 \cdot 36$	29.05	$34 \cdot 61$
1.035	7	$4 \cdot 7$	$3 \cdot 27$	$3 \cdot 90$	33.8.4	$40 \cdot 37$
1.040	8	$5 \cdot 4$	$3 \cdot 73$	$4 \cdot 44$	$38 \cdot 79$	$46 \cdot 18$
1.045	9	$6 \cdot 0$	$4 \cdot 19$	$4 \cdot 99$	$43 \cdot 79$	$52 \cdot 15$
1.050	10	$6 \cdot 7$	$4 \cdot 64$	$5 \cdot 53$	48.72	58.07
1.055	11	$7 \cdot 4$	$5 \cdot 10$	$6 \cdot 08$	53.81	$64 \cdot 14$
1.060	12	8.0	$5 \% 4$	$6 \cdot 60$	58.72	$69 \cdot 96$
1.065	13	$8 \cdot 7$	$6 \cdot 00$	$7 \cdot 15$	63.90	$76 \cdot 15$
1.070	14	$9 \cdot 4$	$6 \cdot 45$	$7 \cdot 68$	$69 \cdot 02$	$82 \cdot 18$
1.075	15	$10 \cdot 0$	$6 \cdot 90$	$8 \cdot 22$	74.18	$88 \cdot 37$
1.080	10	$10 \cdot 6$	7.35	$8 \cdot 76$	79.38	$94 \cdot 61$
1.085	17	$11 \cdot 2$	$7 \cdot 79$	$9 \cdot 28$	84:5:	$100 \cdot 69$
1.090	18	$11 \cdot 9$	$8 \cdot 24$	$9 \cdot 82$	$89 \cdot 82$	107.04
1.095	19	$12 \cdot 4$	$8 \cdot 68$	$10 \cdot 37$	$95 \cdot 05$	113.2\%
$1 \cdot 100$	20	$13 \cdot 0$	$9 \cdot 13$	10.87	$100 \cdot 43$	119.57
$1 \cdot 105$	21	$13 \cdot 6$	$9 \cdot 62$	11.46	$106 \cdot 30$	126.63
$1 \cdot 110$	22	14%	$10 \cdot 00$	11.92	$110 \cdot 00$	$132 \cdot 31$
$1 \cdot 115$	23	$14 \cdot 9$	$10 \cdot 44$	$12 \cdot 44$	116.41	$138 \cdot 71$
$1 \cdot 120$	24	$15 \cdot 4$	$10 \cdot 88$	12.96	$121 \cdot 86$	$145 \cdot 15$
$1 \cdot 125$	25	16.0	11.32	$13 \cdot 48$	$127 \cdot 35$	151.65
$1 \cdot 130$	26	16.5	11.76	14.01	$132 \cdot 89$	$158 \cdot 31$
$1 \cdot 135$	27	$17 \cdot 0$	$12 \cdot 1$	14.53	138.58	164.92
$1 \cdot 140$	28	$17 \cdot 7$	12.63	15.04	$143 \cdot 98$	$171 \cdot 46$
$1 \cdot 145$	29	$18 \cdot 3$	13.06	$15 \cdot 56$	$149 \cdot 53$	$178 \cdot 16$
$1 \cdot 150$	30	18.8	13.50	16.08	$155 \cdot 25$	184.92
1.155	31	$18 \cdot 3$	13.92	16.58	$160 \cdot 78$	$191 \cdot 50$
$1 \cdot 160$	32	$19 \cdot 8$	$14 \cdot 36$	$17 \cdot 10$	$166 \cdot 58$	$198 \cdot 36$
$1 \cdot 165$	33	$20 \cdot 3$	14.79	$17 \cdot 62$	$172 \cdot 30$	$205 \cdot 27$
$1 \cdot 170$	34	$20 \cdot 9$	$15 \cdot 22$	$18 \cdot 13$	$178 \cdot 07$	$212 \cdot 12$
$1 \cdot 175$	35	$21 \cdot 4$	15.65	18.64	183.89	219.02

GPECIFIC GRAVITY OF SOLUTIONS OF POTASSIUM
HYDROXIDH AT $\frac{15^{\circ}}{4^{\circ}}$-Continued.

Speciflc Gravity.	Degrees Twaddell.	Degrens Baume.	100 parts by weight contain		$1 \mathrm{cb} . \mathrm{m}$. contains kg .	
			$\mathrm{K}_{2} \mathrm{O}$.	KOH.	$\mathrm{K}_{2} \mathrm{O}$.	KOH.
$1 \cdot 180$	36	$22 \cdot 0$	16.08	$19 \cdot 15$	$189 \cdot 74$	$225 \cdot 97$
1.185	37	22.5	$16 \cdot 51$	$19 \cdot 66$	$195 \cdot 64$	$232 \cdot 97$
$1 \cdot 190$	38	$23 \cdot 0$	16.93	$20 \cdot 17$	$201 \cdot 47$	$240 \cdot 02$
1-195	39	$23 \cdot 5$	$17 \cdot 35$	$20 \cdot 66$	$207 \cdot 33$	$246 \cdot 89$
1.200	40	24.0	$17 \cdot 77$	$21 \cdot 17$	213×4	$254 \cdot 04$
$1 \cdot 205$	41	24\%	$18 \cdot 18$	$21 \cdot 66$	210.07	$261 \cdot 00$
$1 \because 10$	4)	$25 \cdot 0$	$18 \cdot 60$	22.16	$225 \cdot 06$	$268 \cdot 14$
$1 \cdot 215$	43	25%	$19 \cdot 03$	22.67	$231 \cdot 21$	$275 \cdot 44$
$1 \cdot 220$	44	$26 \cdot 0$	$19 \cdot 45$	$23 \cdot 17$	237*29	$282 \cdot 67$
$1 \cdot 225$	45	$26 \cdot 4$	$19 \cdot 86$	$23 \cdot 66$	$\because 43 \cdot 29$	$289 \cdot 84$
1.230	46	$26 \cdot 9$	$20 \cdot 27$	$2 \cdot 1 \cdot 14$	$249 \cdot 32$	296.92
1×235	47	$27 \cdot 4$	$20 \cdot 69$	$24 \cdot 64$	255:53	$304 \cdot 30$
1×240	48	$27 \cdot 9$	$21 \cdot 10$	$25 \cdot 13$	$261 \cdot 64$	311.61
1.245	49	$28 \cdot 1$	21.51	$25 \cdot 62$	267•0	$318 \cdot 97$
$1 \cdot 250$	50	28.8	21.91	$26 \cdot 10$	273.88	326.25
1×255	51	$29 \cdot 3$	$2 \cdot 2 \cdot 32$	$\bigcirc 6.59$	280-12	$333 \cdot 70$
1.260	52	$29 \cdot 7$	$22 \cdot 73$	$27 \cdot 07$	$286 \cdot 40$	341.08
1.265	53	30%	$23 \cdot 14$	$27 \cdot 56$	29:32	348.63
1.270	54	$30 \cdot 0$	$23 \cdot 54$	$23 \cdot 0.4$	$298 \cdot 96$	$356 \cdot 11$
1.275	55	$31 \cdot 1$	23.94	$28 \cdot 52$	$305 \cdot 24$	363.63
1.280	50	31%	$24 \cdot 35$	$29 \cdot 00$	$311 \cdot 68$	371×0
$1 \cdot 285$	57	$32 \cdot 0$	24.75	29.48	$318 \cdot 0.4$	$378 \cdot 8$
1.290	58	$32 \cdot 4$	$25 \cdot 15$	$29 \cdot 96$	$32.4 \cdot 4$	$386 \cdot 48$
.1•295	59	$32 \cdot 8$	$25 \cdot 55$	$30 \cdot 43$	$330 \cdot 87$	394.07
$1 \cdot 300$	60	$33 \cdot 3$	$25 \cdot 95$	50.91	$337 \cdot 35$	$401 \cdot 83$
$1 \cdot 305$	61	$33 \cdot 7$	$26 \cdot 3 \cdot 4$	$31 \cdot 37$	$343 \cdot 74$	$409 \cdot 38$
$1 \cdot 310$	62	3.4	26.73	$31 \cdot 8.1$	$350 \cdot 16$	$417 \cdot 10$
$1 \cdot 315$	63	$34 \cdot 6$	$27 \cdot 13$	$32 \cdot 31$	$356 \cdot 76$	$424 \cdot 88$
$1 \cdot 320$	64	$35 \cdot 0$	$27 \cdot 52$	32.78	$363 \cdot 26$	$432 \cdot 70$
1.325	65	$35 \cdot 4$	$27 \cdot 91$	$33 \cdot 24$	369.81	$440 \cdot 43$
$1 \cdot 330$	66	$35 \cdot 8$	$28 \cdot 29$	$33 \cdot 70$	$376 \cdot 6$	$448 \cdot 2$
1.335	67	$36 \cdot 2$	28.68	$34 \cdot 16$	382.88	$456 \cdot 04$
$1 \cdot 240$	68	$36 \cdot 6$	$29 \cdot 07$	31.63	389.54	$464 \cdot 04$
1.345	69	$37 \cdot 0$	$29 \cdot 46$	$35 \cdot 09$	$396 \cdot 24$	471.96
1.350	70	$37 \cdot 4$	29.85	$35 \cdot 55$	$402 \cdot 98$	479.93
$1 \cdot 355$	71	$37 \cdot 8$	$30 \cdot 23$	36.01	$409 \cdot 62$	487.94
$1 \cdot 360$	72	$38 \cdot 2$	$30 \cdot 61$	$36 \cdot 46$	416.30	$495 \cdot 86$

232 THE TECHNICAL. CHEMISTS' HANDBOOK
SPHCIFIC GRAVITY OF SOLUTIONS OF POTABSIUM HYDROXIDE AT $\frac{15^{\circ}}{4^{\circ}}$-Continued.

Specific Gravity.	Degrees Twaddell.	Degrees Baumé.	100 parts by weight contain		$1 \mathrm{cb} . \mathrm{m}$. contains kg .	
			$\mathrm{K}_{2} \mathrm{O}$.	KOH.	$\mathrm{K}_{2} \mathrm{O}$.	KOII.
$1 \cdot 365$	73	$38 \cdot 6$	$30 \cdot 99$	$36 \cdot 92$	423.01	$503 \cdot 96$
1:370	7.1	$39 \cdot 0$	$31 \cdot 37$	$37 \cdot 37$	$429 \cdot 77$	$511 \cdot 97$
$1 \cdot 375$	75	$89 \cdot 4$	$31 \cdot 76$	$37 \cdot 83$	$436 \cdot 70$	$520 \cdot 16$
$1: 380$	76	$39 \cdot 8$	$32 \cdot 14$	$38 \cdot 8$	$44.3: 3$	$528 \cdot 26$
$1 \cdot 385$	77	$40 \cdot 1$	$32 \cdot 59$	38.73	$450 \cdot 40$	$536 \cdot 11$
$1 \cdot 390$	78	40%	$32 \cdot 89$	$39 \cdot 18$	$457 \cdot 17$	$544 \cdot 60$
1395	79	$40 \cdot 8$	$33 \cdot 27$	$39 \cdot 63$	464.12	$552 \cdot 84$
$1 \cdot 400$	80	41.2	$33 \cdot 66$	40.09	$471 \cdot 24$	$561 \cdot 26$
$1 \cdot 405$	81	$41 \cdot 6$	34.03	$40 \cdot 53$	$478 \cdot 12$	$569 \cdot 45$
$1 \cdot 410$	82	$42 \cdot 0$	$34 \cdot 40$	$40 \cdot 98$	$485 \cdot 04$	$577 \cdot 82$
$1 \cdot 415$	83	$42 \cdot 3$	$34 \cdot 37$	$41 \cdot 42$	$492 \cdot 00$	586.09
1.420	84	$42 \cdot 7$	$35 \cdot 15$	$41 \cdot 87$	$499 \cdot 13$	594*55
$1 \cdot 425$	85	$43 \cdot 1$	$35 \div 3$	$42 \cdot 32$	$506 \cdot 30$	$603 \cdot 06$
$1 \cdot 430$	86	$43 \cdot 4$	$35 \cdot 90$	$42 \cdot 76$	$513 \cdot 37$	$611 \cdot 47$
$1 \cdot 435$	87	$43 \cdot 8$	$36 \cdot 27$	$43 \cdot 0$	$520 \cdot 47$	$619 \cdot 9 \cdot$
$1 \cdot 440$	88	$4 \cdot 1$	36.63	$43 \cdot 63$	$527 \cdot 47$	$628 \cdot 27$
1.445	89	$4.4 \cdot 4$	$36 \cdot 99$	$44 \cdot 06$	534.51	$636 \cdot 67$
1.450	90	$44 \cdot 8$	$37^{\circ} \cdot 36$	4.450	$541 \cdot 72$	645.25
14.5	91	$45 \cdot 1$	$37 \cdot 72$	44.93	548.83	$653 \cdot 73$
1-460	92	$45 \cdot 4$	$38 \cdot 09$	$45 \cdot 37$	$556 \cdot 11$	$662 \cdot 40$
$1 \cdot 465$	93	$45 \cdot 8$	$38 \cdot 45$	$45 \cdot 80$	$563 \cdot 29$	$670 \cdot 97$
$1 \cdot 470$	94	$46 \cdot 1$	$38 \cdot 81$	46×2	570:51	679.58
1.475	95	$46 \cdot 4$	$39 \cdot 17$	$46 \cdot 66$	$577 \cdot 76$	$688 \cdot 24$
$1 \cdot 480$	96	$46 \cdot 8$	$39 \cdot 54$	$47 \cdot 09$	585.19	696.93
1-485	97	$47 \cdot 1$	$39 \cdot 89$	$47 \% 1$	$592 \cdot 37$	705.52
1.490	98	$47 \cdot 4$	40. 4	47.93	590:58	$714 \cdot 16$
$1 \cdot 495$	99	$47 \cdot 8$	$40 \cdot 60$	$48 \cdot 36$	$606 \cdot 97$	$722 \cdot 98$
$1 \cdot 500$	100	$48 \cdot 1$	10.95	48 ヶ\%	$614 \cdot 25$	731.70
$1 \cdot 505$	101	$48 \cdot 4$	$41 \cdot 31$	$49 \% 2$	$621 \cdot 72$	$740 \cdot 46$
1510	102	$48 \cdot 7$	$41 \cdot 68$	$49 \cdot 6$.	$629 \cdot 37$	749 -56
1.515	103	$49^{\circ} 0$	$42 \cdot 03$	$50 \cdot 06$	$6336 \cdot 75$	758.41
$1 \cdot 520$	104	$49 \cdot 4$	$42 \cdot 38$	$50 \cdot 48$	$6.41 \cdot 18$	$767 \cdot 30$
$1 \cdot 525$	105	$49 \cdot 7$	42.73	$50 \cdot 00$	$651 \cdot 63$	$776 \cdot 23$
1:530	106	$50 \cdot 0$	$43 \cdot 09$	51.32	$659 \cdot 28$	$785 \cdot 20$
1.535	107	$50 \cdot 3$	$43 \cdot 44$	$51 \cdot 74$	$666 \cdot 80$	$794 \cdot 21$
1.540	108	$50 \cdot 6$	$43 \cdot 78$	$52 \cdot 15$	$674 \times 2]$	803.11

XIII. AMMONIA MANUFACTURE.

A.-Gas-Liquor.

This liquor generally contains the ammonia principally in the state of carbonate and sulphide, which can be driven off by boiling, without employing lime or alkali, and which are indicated by alkalimetrical testing (nolatile ammonia). There is, however, always a certain quantity of ammonia present in the state of salts which are not appreciahly volatilised by mere boiling, and not indicated liy simple testing with standard acid. These are the chloride, thiocyanate, sulphite, thiosulphate, sulphate, ferrocyanide (fixed ammonia). No other salts need be enumerated.

For technical purposes, it is sufficient to make the following tests :-

1. Volatile Anmonin.-D)irect titration of the liquor gives inaccurate results.

Dilute 25 c.c. of the liquor to 350 c.c. and distil from a roundbottom flask through a Leibig condenser into a tube containing excess of $\underset{2}{\stackrel{N}{2}} \mathrm{H}_{3} \mathrm{SO} \mathrm{O}_{1}$. The tube should be packed with fragments of hard glass (not beads as these often yield alkali). Distil until 200 c.c. has passed over and titrate back the acid with standard alkali.
2. Fixed Ammonia.-The residue in the flask is then made up to about the original volume, excess of sodium hydroxide added and the ammonia distilled again as above into a measured amount of standard acid. The ammonia is determined as before by finding the amount of acid used by back titration with standard alkali.
3. Carbonic Acirl.-Fifty c.c. of the liquor are added to an excess of an ammoniacal solution of calcium chloride and heated for two hours on the water-bath. After cooling, the precipitate is filtered through a (Gooch erucible, washed three or four times with warm water, dissolved in standard hydrochloric acid and hack titrated with standard alkali.
4. Total Sulphur:-Run 50 c.c. of gas-liquor, drop hy drop, into bromine, covered by hydrochloric acid, evaporate to dryness on the water-bath, and precipitate the sulphuric acid formed by barium chloride, as described, p. 134.

Sometimes it may be desirable to deduct from the total sulphur that originally present in the gas-liquor as sulphate, which is estimated by boiling the unoxidised gas-liquor with HCl and proceeding as above.

234 THE TECHNICAI. CHEMISTS' HANDBOOK

5. Thiocyanate.-Evaporate 50 c.c. of gas-liquor to dryness, heat the residue at $100^{\circ} \mathrm{C}$., for three or four hours, digest it with strong alcohol, filter, wash on the filter with alcohol, evaporate all the alcoholic solutions to dryness, dissolve in water, filter from any residue, add a mixed solation of sulphurous acid and cupric sulphate, and heat.gently, when cuprous thiocyanate will be precipitated. Wash the precipitate of CuCNS into a flask, dissolve it in nitric acid, boil for some time, and precipitate the Cu as CuO by NaOH . The weight of $\mathrm{CuO} \times 0.9561=$ the equivalent amount of (NH_{1}) CNS (Dyson, S.C.I., 1883, p. 231). Or else proceed by titration, employing a solution containing

Fig. 18.
$6 \cdot 236 \mathrm{~g} . \mathrm{CuSO}_{4}, 5 \mathrm{H}_{2} \mathrm{O}$ per litre, 1 c.c. of which is equivalent to 0.00145 g . $\mathrm{SCN}=0.00190 \mathrm{~g}$. $\left(\mathrm{NH}_{1}\right) \mathrm{SCN}$, which is added to a boiling solution, to which some sodium bisulphite has been added, till a drop of the mixture, brought into contact with a drop of a solution of potassium ferrocyanide in 20 parts of water, produces immediately a brown coloration (Barnes and Jiddell, S.C.'I., 1883, p. 122).

B.-Sulphate of Ammonia.

1. Estimation of Ammonia.-The average sample, car fully drawn, is well ground up, passed completely through a sieve with 10 holes to the linear inch, and a smaller sample is taken from this. Weigh 17.03 g . of the latter sample in a stoppered tube, dissolve and dilute to 500 c.c., and place 50 c.c. of the solution
without filtration into the apparatus, Fig. 18 (p. 234). The test is carried out exactly as in A, No. 2. As absorbent, use 60 c.c. of $\frac{\mathrm{N}}{2} \mathrm{H}_{2} \mathrm{SO}_{4}$ and when the distillation is complete, find the number of c.c. of $\frac{\mathrm{N}}{2} \mathrm{NaOH}=a$ c.c. required to complete the neutralisation of the sulphuric acid. Each c.c. of the quantity

$$
\frac{60-a}{2} \text { is }=0.01703 \mathrm{~g} . \mathrm{NH}_{3} \text { or }=1.0 \text { per cent. }
$$

Fig. 19.
The analysis of sulphate of ammonia is, however, best, and much more quickly performed by the bromine method, in which the NH_{3} is converted into nitrogen. This method can be carried out in the "Azotometer." The necessary "brominated soda" is prepared by dissolving 100 g .70 per cent. caustic soda in 1250 g . water, and cautiously adding 25 g . bromine. The reagent must be kept in a dark, cool place, but even then does not keep more than a few days. The ammonium salt, preferably dissolved in water, is introduced into the outer space of the decomposing flask a, Fig. 19, and 25 or 30 c.c. brominated soda poured into the inner vessel b. The cork f, having been already attached to the volumeter-tube by means of a short rubber tube, is pressed tightly down into the flask a, taking hold of this only by the neck; the pressure thus produced
is relieved by momentarily pulling out the stopper of the volu-meter-tap e. If thereby the mercury in A should sink a little, it is brought back to the zero point by raising the "level-tube," while A communicates through d with the outer air. When the temperatures are equalised and the mercury is up to the tap, this is put in such a position that a communicates through c with A; then the flask a is tilted so that the contents of b run into the outer space; the flask is then shaken till no more gas is evolved. The mercury levels in A and the level-tube are made to coincide, after waiting a quarter of an hour, or, better, half an hour, in order to cool down the flask. (This may be expedited by placing a both before and after the operation, in a large vessel filled with water of the temperature of the room.) When the levels have been exactly adjusted, as described 1 . Iss, so as to bring the gas to the volume it would occupy at 0 and 760 mm . in the dry state, read off the number of c.c. of gas in A; each c.c. $\sim 0.0012818 \mathrm{~g}$. $\mathrm{N}=0.0015582 \mathrm{~g} . \mathrm{NH}_{3}$ (this includes the necessary correction for absorption or incomplete evolution of N). In order to save all calculations, dissolve 1.558 g . sulphate of ammonia in $100 \mathrm{c.c}$. of water, and employ $1(1$ c.c. $=0.1558 \mathrm{~g}$. for each test; in this case each c.c. of gas contained in $\mathrm{A}=1$ per cent. NH_{5}.
2. Thiocyınate.-Cif. p. 143, A, No. 4.
3. F'ree Acid is found by titration with decinormal soda solution and methyl orange.
4. Moisture is estimated hy drying 50 g . in a stove at 100 up to constancy of weight.

C.-Ammonia (Liquor Ammoniæ).

This is mostly sold by specific gravity, the relation of which to the percentage of NH_{3} is shown in the subjoined table No. 1.

The entpyreumatic substances in liquor ammonix are detected qualitatively by the smell on exact neutralisation with sulphuric acid. The pyridine bases (which do not redden phenolphthalein) can be tested for by the method of Pennock and Morton (.Iourn. Amer. Chem. Soc., vol. xxiv., p. 377). Neutralise 100 (..c. of the liquor exactly by sulphuric acid, employing methyl orange as indicator and cooling the vessel used from the outside ; distil into a flask charged with 30 c.c. water until this volume has increased to about 100 c.c., add phenolphthalein and a solution of mercuric chloride until the liquid is decolorised, then a few more drops of the mercury solution (thereby precipitating the NH_{3}), filter, and titrate with decinormal acid and methyl orange, each c.c. of which $=0.0079$ g. pyridine.

The testing of liquid ammonia, as sent out in iron bottles, is described in T'ech. Meth.

1. SPEOIFIC GRAVITIES OF SOLUTIONS OF AMMONIA AT $60^{\circ} \mathrm{F}$. (Price and Hawkins, J.S.C.I. Traus., 1924, 48, 113.)

Spectio gravity.	Per cent. $\mathrm{NH}_{\text {: }}$.	Specifie gravity.	P'er cent. NH_{3}.
0.875	$36 \cdot 90$	0.938	$16 \cdot 25$
0.878	$36 \cdot 56$	$0 \cdot 9.40$	15.65
$0 \cdot 877$	$36 \cdot 22$	0.942	15.06
0.878	$35 \cdot 88$	$0 \cdot 944$	$14 \cdot 47$
0.880	$35 \cdot 20$	0.946	13.89
0.882	34.53	0.948	$13 \cdot 31$
0.884	$33 \cdot 86$	0.950	$12 \cdot 74$
0.886	$33 \cdot 19$	$0 \cdot 952$	$12 \cdot 17$
0.888	$32 \cdot 5 \%$	0.954	$11 \cdot 61$
$0 \cdot 890$	31.85	$0 \cdot 956$	11.05
0×89	$31 \cdot 18$	$0 \cdot 958$	$10 \cdot 50$
$0 \cdot 894$	30:51	$0 \cdot 960$	$9 \cdot 95$
0.896	29:84	0.962	$9 \cdot 40$
$0 \cdot 898$	$29 \cdot 17$	$0 \cdot 964$	8.86
$0 \cdot 900$	$28 \cdot 50$	0.966	$8 \cdot 32$
$0 \cdot 902$	$27 \cdot 83$	$0 \cdot 968$	$7 \cdot 79$
$0 \cdot 904$	$27 \cdot 16$	$0 \cdot 970$	$7 \cdot 27$
0.906	26.49	0.972	6.75
0.908	$25 \cdot 82$	$0 \cdot 974$	$6 \cdot 24$
$0 \cdot 910$	$25 \cdot 15$	0.976	$5 \cdot 73$
$0 \cdot 912$	24.48	$0 \cdot 978$	$5 \cdot 23$
0.914	23.83	0.980	$4 \cdot 73$
0916	$23 \cdot 10$	0.98:	$4 \cdot 24$
0.918	$2 \cdot 50$	$0 \cdot 984$	$3 \cdot 75$
$0 \cdot 920$	21.85	0.986	$3 \cdot 7$
$0 \cdot 922$	$21 \because 1$	$0 \cdot 988$	$\because \cdot 79$
$0 \cdot 9.4$	20.57	$0 \cdot 990$	$\because \cdot 31$
0.926	19.94	0.99\%	$1 \cdot 84$
$0 \cdot 928$	$19 \cdot 31$	$0 \cdot 991$	$1 \cdot 37$
$0 \cdot 930$	$15 \cdot 69$	0.996	0.91
$0 \cdot 932$	$18 \cdot 07$	$0 \cdot 998$	$0 \cdot 45$
$0 \cdot 934$	$17 \cdot 46$	1.000	$0 \cdot 00$
$0 \cdot 936$	16.85

See also Ferguson, I. Sor. Chem. Ind., 1905, 781, for table adopted ly the Manufacturing Chemists' Association of the United States.

238

 THE TECHNICAL CHEMISTS' HANDBOOK2. SPFOIFIC GRAVITIES OF SOLUTIONS OF COMMERCIAL AMMONIUM CARBONATE, AT 15° C. (Lunge and Smith.)

Degrees Twaddell.	Degrees Baumé.	Specitic Gravity at 15°.	$\begin{gathered} \text { Per cent. } \\ \text { Commercial } \\ \text { Ammonium Car. } \\ \text { bonate. } \end{gathered}$	Change of Specific Gravity for $\pm 1^{\circ} \mathrm{C}$.
1	0.6	1.005	$1 \cdot 66$	$0 \cdot 0002$
2	$1 \cdot 4$	1.010	$3 \cdot 18$	$0 \cdot 0002$
3	$2 \cdot 1$	1.015	$4 \cdot 60$	$0 \cdot 0003$
4	$2 \cdot 7$	1.020	$6 \cdot 04$	$0 \cdot 0003$
5	$3 \cdot 4$	$1 \cdot 025$	$7 \cdot 49$	$0 \cdot 0003$
6	$4 \cdot 1$	1.030	$8 \cdot 93$	$0 \cdot 0004$
7	$4 \cdot 7$	1.035	$10 \cdot 35$	$0 \cdot 0004$
8	$5 \cdot 4$	$1 \cdot 0.40$	11.86	$0 \cdot 0004$
9	$6 \cdot 0$	$1 \cdot 0.45$	$13 \cdot 36$	$0 \cdot 0005$
10	6.7	$1 \cdot 050$	$14 \cdot 83$	$0 \cdot 0005$
11	$7 \cdot 4$	$1 \cdot 055$	$16 \cdot 16$	0.0005
12	$8 \cdot 0$	1.060	$17 \cdot 70$	$0 \cdot 0005$
13	$8 \cdot 7$	1.065	$19 \cdot 18$	$0 \cdot 0005$
14	$9 \cdot 4$	1.070	20.70	$0 \cdot 0005$
15	$10 \cdot 0$	1.075	$22 \cdot 25$	$0 \cdot 0006$
16	$10 \cdot 6$	1.080	23.78	$0 \cdot 0006$
17	$11 \cdot 2$	1.085	$25 \cdot 31$	$0 \cdot 0007$
18	$11 \cdot 9$	1.090	26.82	$0 \cdot 0007$
19	$12 \cdot 4$	1.095	$28 \cdot 33$	$0 \cdot 0007$
20	$13 \cdot 0$	$1 \cdot 100$	$29 \cdot 93$	$0 \cdot 0007$
21	$13 \cdot 6$	$1 \cdot 105$	$31 \cdot 77$	$0 \cdot 0007$
22	$14 \cdot 2$	$1 \cdot 110$	$33 \cdot 45$	$0 \cdot 0007$
23	$14 \cdot 9$	$1 \cdot 115$	$35 \cdot 08$	$0 \cdot 0007$
24	$15 \cdot 4$	$1 \cdot 120$	36.88	$0 \cdot 0007$
25	16.0	$1 \cdot 125$	$38 \cdot 71$	$0 \cdot 0007$
26	$16 \cdot 5$	$1 \cdot 130$	$40 \cdot 34$	$0 \cdot 0007$
27	$17 \cdot 1$	$1 \cdot 135$	$42 \cdot 20$	$0 \cdot 0007$
28	$17 \cdot 8$	$1 \cdot 140$	$44 \cdot 29$	$0 \cdot 0007$
29	$17 \cdot 9$	1-1414	$44 \cdot 90$	$0 \cdot 0007$

XIV. MANUFACTURE OF COAL-GAS (ILLUMINATING GAS).

A.-Coal-Gas.

For a satisfactory analysis of coal-gas the Orsat apparatus (p.120) is not sufficiently accurate, and the gas-hurettes of Bunte, Hempel, Drehschmidt, or Pfeiffer should be used. The following rules are taken from the private notes, printed for Professor Bunte's students, with his permission.

The analysis is performed by means of Bunte burettes, which must satisfy the following conditions:-The capillary tube below the bottom tap must not allow any water to come out, even on shaking. The upper (three-way) tap must be made so as to shut off communication with any one of the three outlets. (The GreinerFriedrichs patent tap, with two oblique bores, as shown in Fig. 19, p. 235, adinits of doing this without any difficulty.) The taps should be greased with a mixture of 2 parts para-gum, 2 parts beeswax, and 10 parts tallow, and they must be tight even in a strong vacuum. The confining water must have the temperature of the room, and this must remain unchanged during the whole time occupied by the work. The burette must be held only at the top funnel or at the capillary tubes. The correctness of its graduation must be controlled by running out its contents of water in portions of 10 c.c., and weighing these. When one of the components of the gas has been absorbed, first allow the water to rise from below and then adjust the pressure by allowing water to run in from the top funnel. To do this, fill it to the mark, open the tap and wait a minute, until the surface of the water inside the burette remains constant.

I'o take a sample of the gas to be tested, employ either an empty burette, or one filled with water. In the former case, connect the top tap (the funnel being charged with water) sideways with the gasholder or pipe, the bottom tap being open, and allow the gas to pass through, until it has driven out all the air ; then shut first the bottom tal and immediately afterwards the top tap. In the second case fill the burette with water, connect the top tap with the gasholder or pipe, open the bottom tap, until the water has sunk a little below the zero mark, then shut first the top tap and afterwards the bottom tap.

If the gas is at a lower pressure than the atmospheric pressure, take the sample by means of a rubber bellows, or a water aspirating bottle, or a water-pump, and connect then with the bottom capillary.

Measuring the gas in the burette.-Adjust the three-way tap so that all its bores are closed, fill the funnel with water up to the mark, connect the rubber tube of the pressure bottle (levelling bottle), previously entirely filled with water, with the bottom tap, and allow the water to rise up to about $0 \cdot 2$ c.c. above the zero mark. Now open the three-way tap, whereupon a little gas escapes and the pressures are equalised. The water then usually stands at the zero mark; if not, read the actual volume and calculate from this. Then turn the threc-way tap, after having put a short rubber tube on its lateral outlet, so as to run a little water into this, and close the tube by a small piece of glass rod. Λ s long as the tap is not used, it remains in this position.

Introduction of the absorbing liquids.-Draw off the confining liquid by means of the aspirating bottle, holding the bottom tap

240 THE TECHNICAI. CHEMIS'I' HANDBOOK

fast in its position, and shutting it at once when the water has got down to the capillary. Take the rubber tube off and draw the liquid back into the aspirating bottle, lest it should siphon itself off. Then pour the absorbing liquid into a small poreelain capsule, and allow it to rise in the burette.

The various gases are estimated, seriutim, as follows :-

1. Carbon Dioxide, CO, by absorption with a solution of caustic potash, 1 in 3 water-that is, specitie gravity $1 \div 23$. Of this 1 c.e. takes up 90-100 c.c. CO... It is sufficient, if the inside of the burette is once wetted with the solution. Afterwards water is allowed to enter from below and to run in from the top, to wash the glass; then the normal pressure is re-established and the volune read off. In the case of crude gas the $\mathrm{H}_{0} \mathrm{~S}$ must be first removed by a tube containing pumice soaked with cupric sulphate.
2. Heavy hydrocarbons, $\mathrm{C}_{m} \mathrm{H}_{n}$.- Draw out the contining water as completely as possible, rinse off the potash solution with a little water (which is also drawn off), allow about 10 c.c. of water, saturated with bromine, to enter, and shake the burette. When the spare above the liquid ceases to show the brown colour of the bromine, draw off the liquid and replace it by fresh bromine water. Finally, in order to absorb the bromine vapour, draw about 1 c.c. of caustic potash solution into the burette, shake this up in the burette, allow a little water to run in at the top, establish the normal pressure, and read off the volume. Thus all the illuminants are absorbed-i.e., ethylene and the other unsaturated hydrocarbons, also benzene vapour.
3. Oxygen is absorbed by drawing in alout 2.5 c .c. of a solution of pyrogallol (1 to 5 water) and after this 7.5 c.c. caustic potash solution ($1: 3$). Shake well for five minutes, run in water through the funnel until the pressure is equalised, shake again, and continue this until no more water will enter the burette. Run off the dark liquid at the bottom, allowing water to run in at the top, so that a layer of clear water remains at the top, which allows a correct reading after re-establishing the pressure.

Accurate estimations of oxygen are made by titration with potassium iodide, manganous chloride, and thiosulphate, as described in T'ech. Meth., vol. i, pp. 209 and 334.
4. Carbon Monoside.-Draw off the confining water, wash with more water, draw in 10 c.e. ammoniacal solution of cuprous chloride (made by dissolving 200 g . commercial cuprous chloride and 250 g . ammonium chloride in 750 c.c. water, placing a copper spiral in the bottle, and before use mixing 3 vols. of this solution with 1 vol. ammonia, specific gravity $0 \cdot 905$), shake for one minute, draw off the solution, replace it by a fresh yuantity, shake again, and repeat this procedure at least twice. After the last removal of the absorbent, run through the funnel 3 or 4 c.c. concentrated
hydrochloric acid, and then a little water, which forms a layer at the top. Draw off the liquid, wash with water, draw in 1 or 2 c.c. concentrated potash solution, shake up, allow some water to enter, re-establish the normal pressure, and take the reading.
5. I ydrogen.-The gas now contains nothing but $\mathrm{H}, \mathrm{CH}_{4}$, and N . The hydrogen is estimated ly fractional combustion, for which purpose a second burette (B) is needed. Measure in the first burette (A) 22 to 25 c.c. of the residual gas under normal pressure, and mix with air for burning the hydrogen. For this purpose open first the bottom tap, then the top tial, so as to communicate outwards, whereupon water will run out and air enter. When the level of the water has gone down to about 5 c.c. bslow 0 , quickly shut the top tap and after this the bottom tap, mix the gases by shaking, regulate the pressure to that of the atmosphere plus that of the column of water in the funnel, and read the volume. Now fill burette B up to the capillary and connect both three-way taps, interposing a palladium tube C , between them. (: is a tube of glass of high melting point, 10 cm . long, 3 mm . bore, and 5 mm . thick. It contains a 100 mm . of palladium wire, 0.3 mm . thick, folded into four and introduced into the central part of tube C. Ji heating this part of the tule, it is made to collapse and to hold the wire fast ; the remaining portion of (! is loosely filled with long fibrous ashestos. The connection hetween C and the capillaries of A and B is made hy short, thick-walled rubber tubing.

Now turn both three-way taps so that both are closed, fill the funnel of burette A with water, lower the pressure ly opening the bottom tap for a moment, turn both three-way taps at the same time and quickly, so that (communicates with the interior of both burettes, and heat ('. 'The air in (' thus increases its volume, and forees the water in the capillaries back into both burettes. Now eomect the rubber tube of the pressure bottle with the lower taj of A, open this tap, heat (l at its narrowed part until the small flame turns yellow, and open the lower tap of B, so that the gas passes from A through (l into B in a moderately quick current. The water should issue from 13 in a continuous jet, not in single drops, and the palladium wire should not become red-hot on the side where the gats enters: otherwise some methane would be burnt together with the hydrogen. As soon as the water has got to the top of the hurette A, quickly shat first the bottom tap of Λ and then that of B, and syphom the gas back from B to A as described above. After cooling, the pressure in Λ is mande equal to the normal ; the volume is then read, and the contraction ascertained.

Example: 100 c.c. coal-gas, taken for analysis, after absorbing CO_{2}, heavy hydrocarbons, () and CO , left 85 c.c. Of this 22.2 c.c. were transferred to buretto A, and diluted with air to 105.3 . After the combustion the volume was 86.3 , shewing a contraction
of 19.0 . Calculating this upon a 100 c.c. of the original gas, we find $\frac{19.0 \times 85^{\circ} 0}{22^{2}}=72.8$.

Therefore the hydrogen amounts to $\frac{2 \times 72.8}{3}=48.5$ per cent.
As a final control, estimate the oxyyen left after combustion; it must be less than that originally employed by two-thirds of the contraction observed.
6. Methane is estimated, together with hydrogen, by burning another portion of the gas remaining after the operations 1 to 4 , in the "explosion burette." For this, measure off 12 to 15 c.c. of this gas, draw in an excess of air, shake up, ascertain the volume, draw off the confining water, explode by means of an electric spark (generated by a battery and induction coil), ascertain the contraction, let 1 or 2 e.c. potasin solution run down inside the burette, and after this, slowly, some water, adjust the pressure and ascertain the total contraction, which is equal to $\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$. From this deduct the amount corresponding to the hydrogen found in No. 5; one-third of the remaining contraction corresponds to the methane, for 1 vol. ($\left(\mathrm{H}_{1}+2\right.$ vols. $\mathrm{O}_{2}=0$ vols. $\left(\mathrm{O}_{2}+0\right.$ vols. $\mathrm{H}_{2} \mathrm{O}$.

Example: Residual gas employed, $12 \cdot 7$ c.c. (forming part of the 86 c.c. remaining after the absorption of $\mathrm{C}^{\circ} \mathrm{O}_{2}, \mathrm{C}_{2} \mathrm{H}_{n}, \mathrm{O}_{2}$, and $(\because O)$; after addition of air $=104 \cdot 1$; therefore air cmployed $=914$. After the explosion remain 78.9 c.c. gas; therefore contraction $=25.2$; calculated upon the total gas $\frac{85 \times 25.5}{12.7}=168 \%$. From this deduct the contraction due to hydrogen, according to No. 5, $=72^{\circ} 8$; this leaves for the methane a contraction of $168^{\circ} 8-72 \cdot 8=96 \cdot 0$, or one-third of it $=32 \cdot 0$ per cent. methane.
7. Nitrogen is represented by the deficit from 100 after estimating all the other constituents. Suppose we have found :--

The estimation of ethylene, benzene, acetylene, naphthalene, bydrogen sulphide, total sulphur, ammonia, cyanogen, etc.. is described in Lunge-Keane's I'ech. Meth. of Chem. Anal., vol. ii.

The calorific power of coal-gas is best ascertained by means of the Junckers calorimeter, which is always sold with instructions for use.

B.-Purifying Material (Spent Oxide).

1. Cyanogen (Bueb).-Boil 20 g . of an average sample of spent oxide (from which the sulphur has been previously extracted as below), or the same quantity of pressed "cyanide mud," with 100 c.c. caustic potash solution (specific gravity $1 \cdot 26$) and 200 c.c. water for half an hour, dilute to 1010 c.c. (reckoning 10 c.c. for the volume of the solid substance), and pass through a dry filter. Take 25 c.c. of the filtrate, add 50 c.c. water and 10 c.c. dilute sulphuric acid ($1: 10$), and titrate with zinc solution. This solution is made as follows:-Dissolve $10 \% \mathrm{~g}$. of pure crystallised zinc sulphate ($\mathrm{KnSO}_{1}, 7 \mathrm{H}_{2} \mathrm{O}$), together with 10 c.c. sulphuric acid of specific gravity $1 \cdot 7$ in water, make up to 1 litre, and compare this with a freshly made solution of 10 g . pure crystallised potassium ferrocyanide in llitre, in the following manner :- T'o 25 c.c. of the ferrocyanide solution add 50 c.c. water and 10 c.c. dilute sulphuric acil. 'Ihis mixture is titrated with the zinc solution, testing for the completion of the reaction by drops put on to filter paper soaked with a 1 per cent. solution of ferric chloride. The end of the reaction is reached when no blue coloration is produced on the paper.

Other methods for the estimation of cyamides (described by Knublauch and ly Drelschmidt) are given in T'ech. Meth., vol. i., pp. 546 et seq., and vol. ii., 1. 725.
2. Sulphur---Extract 15 g. of the air-dried mass in a Soxhlet apparatus with 100 c.e. carbon disulphide in a 200 c.c. roundbottomed flask of known weight. Heat on a water-bath, condensing the vapours by a reflux condenser, until twenty extractions have been made. l)istil off the (S', remove the last portions by hot air, and after cooling again weigh the flask. The difference between the weighings $=\mathrm{S}$.

Sometimes it is desirable to know the amount of S which on burning the oxide forms SO_{2}, since a certain quantity of S is always retained by lime, etc., on burning the spent mass. For this purpose Pfeiffer burns 1 g . of the sample, by putting a piece of tinder in a litre flask filled with oxygen and previously charged with 25 or 30 c.c. of normal caustic soda solution. Finally he adds 1 c.c. ncutral 30 per cent. hydrogen peroxide and titrates back with standard HCl and methyl orange. Each c.c. of the normal soda solution consumed corresponds to 1.6 per cent. of S burnt.

Processes for estimating all the essential constituents of spent oxide are described in I'ech. Meth., vol. ii., 11). 723 to 730.

244 THE TECHNICAL CHEMISTS' HANDBOOK

XV. CALCIUM CARBIDE AND ACETYLENE.

> A.-Raw Materials.
(a) Coke, see p. 117.
(b) Limestone, see p. 183 .

B.-Commercial Calcium Carbide.

(a) The sampling in this case has to he done with special care, since it is anything but casy to obtain a small sample representing the real average quality. The sample is quickly crushed in an iron mortar, provided with a rubber cover, or in a coffee-mill, and the powder must be kept free from contact with air.
(b) The estimation of the yield of afas should always be made by actual measurement of the gas, not by loss of weight. Take 50 g . carbide, and put it into a glass tube, er or 3 cm . wide inside, which is connected with the gas-generating flask (250 c.c.) by a rubber tube so that the carbide can be dropped in small quantities into the flask. 150 c.c. water, previously saturated with acetylene, are first placed in the flask, the rork of which is also provided with an exit-tube connected with a measuring bottle. This bottle holds 20 litres, and has a division on which ${ }_{f}$ litre can be read off. It is connected by means of a lateral neck just over the bottom and by a rubber tube with a level-bottle of the same size, filled with water saturated with acetylene. By raising the levelflask, the water is forced into the measuring flask up to its neck; during the time the gas is given off, the level Hask is lowered, so that there is never may notable pressure in the measuring bottle. When all the gas bas been eollected in the latter, the level-bottle is placed so that the water is exactly at the same level in both bottles, and about two hours are allowed for the temperature to reach that of the surrounding air. Read the thermometer and barometer, and reduce the volume of the gas ly the talles, jp. 12 et sey., to the normal state, regarding it as saturated with moisture. If, as usual, the reduction is to be made not to 0°, but to $15^{\circ} \mathrm{C}$., this can be done with sufficient accuracy by the formula :--

$$
\mathrm{V}=\underset{100}{v}(1 \cdot 40 \cdot 2-0.6 t) \stackrel{c}{100}
$$

where V is the volume at $15^{\circ}, v$ the volume at t, and B the (corrected height) of the barometer. ((1f. T'ech. Meth.)
(c) Impurities.-It is best to test for these, not in the carbide, but in the acetylene given off from it. Put 70 or 80 g . carbide, crushed to the size of a pea, into a previously weighed, well-dried, half-litre flask, and weigh it on an ordinary balance which turns to 0.1 g . The cork of this flask is fitted with a dropping funnel,
contracted at the outlet, with glass tap, and with a side tube connected with a ten-bull tube, like that shown in Fig. 10, p. 144. The latter contains 75 c.e. of a 2 to 3 per cent. solution of sodium hypochlorite. Run from the fumel three to seven drops of water on to the carbide, and shake the flask gently from time to time. The gas should all be liberated in three or four hours; it may, if required, be measured, or else allowed to escape. Then the flask is filled u, to its neck, so as to drive all the gas into the bulb-tube, and in the contents of the latter the phosphoric acid which has been formed by the hypochlorite from the hydroyen phosphide contained in the gas, is estimated ly the ordinary magnesia method.

If it is reguired to estimate the sulphur also, which escapes principally as Hus, divide the contents of the bulb-tube in two portions, estimate in one of these the phosphorie acid as above, and in the other the sulphuric acid, formed from the $\mathrm{H}_{2} \mathrm{~S}$, as Basiot.

XVI. EXAMINATION OF THE RAW MATERIALS AND PRODUCTS OF THE MANUFACTURE OF FERTILISERS.

Note.-This section is based on the resolutions agreed to at the Fifth International C'ongress of Λ pllied C'hemistry at Berlin (1903).

A.-Sampling.

Samples must be taken out of every tenth sack in the case of shipments in bulk, in at least ten places, by means of the sampling-auger described on 1 . 105 ; in the ease of ship, cargoes, from every fiftieth tub; the total weight to be about 300 g . for each of the three normal samples. In the case of unequal composition, the samples must be ground and mixed ; in the case of moist fertilisers, this must be done by hand.

B.-Moisture.

Moisture in crude phosphates, hone charcoal, etc., is estimated by drying 10 g . at 100 until weight is constant; in the case of gypsum, during three hours. If the substance alters its percentage of moisture during grinding, the moisture must be determined both in the coarsely crushed and in the finely ground sample, and the result of the analysis calculated on the original coarsely crushed sample.

C.-The Insoluble Matter.

The insoluble matter is determined in 10 g . of the sample. (a) When dissolving in mineral acids, after rendering the silica insoluble by heating on the water-bath during several hours, or on the air-bath to 120 ", the residue must be ignited. (b) When dissolving in water, the residue must be dried at $100^{\circ} \mathrm{up}$ to constancy of weight.

D.-Phosphoric Acid.

1. Preparation of the Solutions.

(a) Phosphates soluble in Waicr.--Shake 20 g . in a litre flask with about 800 g . water for half an hour, and fill up to the mark. Solutions of so-called double superphosphates must be boiled with addition of nitric acid (10 c.c. concentrated nitric acid to 25 c.c. of the solution) before precipitating the phosphoric acid, in order to convert any pyrophosphoric acid present into orthophosphoric acid.
(b) Phosphates soluble in Ammonium Citrate are treated according to Petermann's method. In the case of superphosphates containing njwards of 20 per cent. $\mathrm{P}_{2} \mathrm{O}_{i}$, take $1 \mathrm{~g} . ;$ of those containing 12 to 20 per cent. $\mathrm{P}_{2}\left(\mathrm{O}_{5}\right.$, take 2 g .; if there is less than 10 per cent., $\mathrm{P}_{\mathrm{y}} \mathrm{O}$., or of a composite fertiliser, take 4 g . for each sample. Grind it first dry, then with 20 to 25 c.c. water, decant on to a filter, and wash with water until the volume of the filtrate is about 200 c.c. If the filtrate is not quite clear, add a drop of nitric acid. Put the filter and residue into a 250 c.c. flask, add 100 c.c. of the ammonium citrate solution (prepared as below), digest about fifteen hours at the ordinary temperature, with frequent shaking, then one hour at 40°, allow to cool, fill up to the mark, take 50 c.c. of the filtrate and 50 c.c. of the alove aqueous solution, mix these, boil with 10 c.c. concentrated nitric acid for ten minntes, and estimate the total phosphoric acid soluble in water and in citrate by the molyblenum or the citrate method.

Preparation of the Ammonium Citrate Solution.-Dissolve 500 g . citric acid in water, neutralise with ammonia, allow to cool, reduce the specific gravity to 1.09 , and add to a litre of this solution 50 c.c. ammonia, specific gravity $0: 92$. The specific gravity of the final solution should be from 1.082 to 10083 .
(c) Total Phosphoric Acid.- Boil 5 g . with a mixture of three parts hydrochloric acid (specific gravity $1 \cdot 12$) and 1 part nitric acid (specific gravity $1 \cdot 20$), or with 20 c.c. concentrated nitric acid and 50 c.c. concentrated sulphuric acid for half an hour, and make up to 250 c.c.
(d) In Thomas-Slag Plossphates the phosphoric acid is estimated in the portion which passes through a 2 -millimetre sieve,
but the result is calculated upon the whole sample, including the coarser portion. The following estimations are made :-

1. Phosphoric Acid soluble in Citric Acid.-Shake 5 g . Thomas phosphate in a half-litre flask, previously charged with 5 c.c. alcohol, with a 2 per cent. solution of pure citric acid during half an hour at $17 \frac{5}{0}^{\circ}$, in a revolving agitator which makes thirty to forty revolutions per minute.
2. T'otal Phosphoric Acid.-Soak 10 g. Thomas phosphate (for the analysis of fine flour passed through sieve No. $100=0.19 \mathrm{~mm}$. mesh) in a half-litre flask with 5 c.c. water, then boil with 50 c.c. concentrated sulphuric acid half an hour, stirring frequently, and fill up to the mark.

2. Examination of the Solutions.

For phosphoric acid, according to one of the following methods:-
(a) Molybdenum Methord, according to Wagner.-To 25 or 50 c.c. solution, free from silica and containing from 0.1 to $0.2 \mathrm{~g} . \mathrm{P}_{0}, \mathrm{O}_{\mathrm{b}}$, add so much concentrated solution of ammonium nitrate (750 g . per litre) and so much molyblenum solution (150 g . ammonium molybrlate, dissolved in 1 litre water and poured into 1 litre nitric acid of specific gravity $1 \cdot 2$) that the total liquid contains 15 per cent. ammonium nitrate, and for each $0.1 \mathrm{~g} . \mathrm{P}_{2} \mathrm{O}_{\mathrm{i}}$ not less than 50 c.c. molybdenum solution. Heat to 80° or 90° for ten minutes, put aside for an hour, filter, wash the precipitate with dilute solution of ammonium nitrate $\left(150 \mathrm{~g} .\left(\mathrm{NH}_{4}\right) \mathrm{NO}_{3}+10\right.$ c.c. nitric acid in 1 litre) until there is no reaction for calcium, pierce the filter, wash the precipitate into a beaker by means of a $2 \frac{1}{2}$ per cent. ammonia, dissolve it ly stirring, and add so much ammonia that the total volume is 75 c.c. Then add for each $0.1 \mathrm{~g} . \mathrm{P}_{2} \mathrm{O}_{5} 10$ c.c. of magnesium mixture (55 g . crystallised magnesium chloride +70 g . ammonium chloride, dissolved in 1 litre of 2.5 per cent. ammonia), in single drops, stirring constantly, cover the beaker, allow to stand for two hours, filter the precipitate, wash it with $2 \cdot 5$ per cent. ammonia until the reaction for chlorine ceases, and dry at 100°. Detach the precipitate from the filter, place it in a platinum crucible, add the rolled-up filter, and carbonise it in a covered crucible; then heat the crucible for ten minutes in an upright position over the Bunsen flame and for five minutes on the blowpipe.
(b) Citrate Method.-In the case of aqueous solutions of superphosphate, employ 50 c.c. citrate solution for 50 c.c. of the phosphate solution, corresponding to 1 g . substance; in that of acid solutions of bone meal, fish guano, Thomas-slag, Hour, etc., take 100 c.c. of the citrate solution for 50 c.c. of the phosphate solution ($=\frac{1}{2} \mathrm{~g}$. substance). The citrate solution is made by dissolving 1100 g . pure citric acid in water, adding 4 litres of 24 per cent.

248 THE TECHNICAL CHEMISTS' HANDBOOK

ammonia, and making up to 10 litres. After adding the citrate solution, add at once 25 c.c. magnesium mixture (550 g . magnesium chloride +1050 ammonium chloride, dissolved in $6 \frac{1}{2}$ litres water +31 litres 27 per cent. ammonia), and shake or stir for half an hour. Filter the precipitate, preferably by means of a Cooch or Neubauer crucible (see below), rinse the beaker with 5 per cent. ammonia, and wash the precipitate five or six times with the same solution, using a filter pump. Dry the crucible on a hot plate until the mass begins to crack, ignite for three to five minutes (preferably in a Roessler furnace), and allow to cool in a desiccator. After weighing, the crucible may at once be used for a fresh determination, without removing the precipitate, and thus thirty or forty estimations can he made in it without renewing the asbestos filter.

This method involves several errors, which, however, compensate one another, so that when the above details are strictly adhered to, the final result is perfectly correct. According to the resolutions of the Union of the German Agricultural Research Stations in 1903, the citrate method is the only one admissible for all fertilisers, except crude phosphates.

The preparation of a Gooch crucible-that is, a platinum crucible with platinum sieve and asbestos filter-is a little troublesome; it is described in T'ech. J/eth. (second edition), vol. i., p. 18.

The Nembauer crucible (sold by W. (.. Hereens, Hanau) is similar to the (iooch crucible, but contains a platinum sponge filter on the sieve. It is ready for use, as obtained from the dealers, and is much more convenient than a Gooch crucible.

E.-Free Acids.

(a) The total free acid is estimated ly titration with caustic soda solution and methyl orange.
(b) Free phosphoric acid is estimated gravimetrically in the alcoholic extract, as described above.

F.-Ferric Oxide and Alumina.

In Germany the accepted method is that of E. Glaser. Dissolve 5 g . phosphate in 25 c.c. nitric acid (specific gravity $1 \cdot 2$) $+12 \cdot 5$ c.c. hydrochloric acid (specific gravity 1.12), and dilute to 500 c.c. Put 100 c.c. $(=1$ g. of the phosphate) in a 250 c.c. Hask, add 25 c.c. concentrated sulphuric acid (specific gravity $1 \cdot 84$); after five minutes' shaking add 100 c.c. 95 per cent. alcohol, allow to cool, fill up to the mark with alcohol, shake well, and fill up again. After waiting for half an hour, filter, heat 100 c.c. of the filtrate in a platinum dish until the alcohol is driven off, transfer to a beaker,
add 50 c.c. water, and heat to boiling. Remove the flame, add NH_{3} till the reaction is alkaline, hoil off the excess of NH_{3}, allow to cool, filter, wash with hot water, ignite, and weigh. The weight found is assumed to be aluminium phosphate + ferric phosphate, or 50 per cent. of $\mathrm{it}=\mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{Nl}_{2}\left(\mathrm{O}_{3}\right.$.

G.-Nitrogen.

1. Nitric-nitrogen is estimated gas-volumetrically by the nitrometer (p). 164 and 165), or by Schloesing-(irandeau's method ('lech. Meth., second edition, vol. i., p. 482), or by one of the methods for reducing it to NH_{3}. The following method is due to Ulsch. Into a flat-bottomed half-litre flask put 25 c.c. of the aqueous nitrate solution (which ought to contain at most 05 g . KN()$\left._{3}=0.4 \mathrm{~g} . \mathrm{Na} . \mathrm{N}_{\mathrm{B}}()_{3}\right)$ and 10 c.c. dilute sulphuric acid (1 vol. concentrated acid +2 vols. water), add 5 g. commercial "ferrum hydrogenio reductum " (iron reduced ly hydrogen), and close the flask with a pear-shaped glass vessel of 25 c c. capacity filled with water, whichat the same time serves as a reflux condenser. Heat first cautiously, then more strongly, at least for half a minute to full beiling (altogether tive minutes), dilute with 50 c.c. water, ald 20 c.c. caustic soda solution (specilie gravity $1 \cdot 25$), and distil the NH_{3} formed into titrated hydrochloric or sulphuric acid. The distillation may be finished in five to seven minutes after the commencement of the boiling. By titrating back the excess of acid the quantity of $N I_{\text {, }}$, is ascertained ; each c.c. normal acid saturated $=0.01401 \mathrm{~g}$. N or $0.0630 \leq \mathrm{HNO}_{3}$ or $0.10116 \mathrm{KNO}_{3}$ or $008506 \mathrm{NaNO}_{3}$.
2. Ammoniactal mitroyen, cf. p. 233. Ireferably distil with freshly calcined magnesia, 3 g. to 1 g . NH_{3}. In the case of ammoniacal superphosphates, the solution prepared as on p. 246 should be used.
3. Total mitroyen is estimated in presence of nitrates by Kjeldahl-Jodlbaners mothod. llace 1 g . substance in a flask of difficultly fusible glass holding about 3 हैu c.c., slowly add 30 c.c. phenolsulphuric acid (made by dissolving 200 if $\mathrm{P}_{2}()_{5}$ in 500 c.c. concentrated sulphuric acid, and 10 g . phenol in 500 c.c concentrated sulphurie: acid, and uniting the two solutions, after cooling), shaking continuously, and cooling by placing the flask in cold water. When finished agitate for another half-hour or hour, add a drop of mercury (about 1 g .) and then gradually 2 to 3 g . dried rine dust, with good agitation and cooling. Allow to stand for one or two hours: then boil until the solution has become clear and colourless, allow to cool, wash with water into a distilling flask, add 110 e.c. of canstic soda solution of specific gravity $1 \cdot 285$ (which must be free from nitrogen compounds), distil the NH_{3}
into normal hydrochloric acid, and estimate it by retitrating. The calculation is made as above, sub $\mathrm{G}, 1$.

Damp substances are ground up with a little gypsum before adding the phenolsulphuric acid.
4. Organic nitrogen, in the absence of nitrates and ammonium salts, is estimated according to Kjeldahl-Wilfarth's method. Put 1 g . substance in a 150 c.c long-necked thask of Bohemian glass, add a drop of mercury and 25 c.c. of concentrated sulphuric acid, to a litre of which $200 \mathrm{~g} . \mathrm{P}_{2} \mathrm{O}_{3}$ and $15 \mathrm{~g} . \mathrm{K}_{4} \mathrm{SO}_{4}$ have been added. Heat at first slowly, then to violent boiling, putting the flask, or several flasks, on a wire gauze in a slanting position. The whole is best placed on a sheet of lead with turned-up edges, covered with a thick layer of sand and placed under a hood, so that no damage is done if a flask is cracked. In the case of badly frothing liquids put a little paraffin in the flask and close this loosely by a Kreusler's stopper, i.e., a glass tube drawn out below into a long point, and sealed at the bottom. Continue the boiling until the contents of the flask are quite clear, which may take half an hour to three hours. Then wash its contents by the aid of 200 c.c. water into a half-litre flask, add 100 c.c. canstic soda solution of sp.cific gravity $1 \cdot 285$ (free from N) and 1 to $1 \cdot 5 \mathrm{~g}$ zinc dust, and distil into titrated HCl , proceeding just as in No. 1 .

In the case of substances which cannot be fincly ground, prepare a good average sample ly weighing off 3 to 5 g., boil with 50 to 60 c.e. sulphuric acid and 2 to 3 g. mercury, wash, after cooling, into a 300 c.c. flask, filling this up to the mark, mix by shaking, and take 10) ece. for the distillation with raustic soda and zinc.dust.

H. -Potash.

Potash is estimated as in potassium chloride containing sulphate, p. 221, or by the perchloric acid method.

Details for the examination of the varions fertilisers are given in Tech. Meth., vol. ii., pl. 418 et seq.

XVII. ALUMINA PREPARATIONS.

A.-Raw Materials.

1. Kaolin (rhina clay), see p. 254, sub "Clay."
2. Bauxite (a)-J)ry 2.500 g . at 100° for eight hours, boil with 30 c.c. of a mixture of 1 part concentrated sulphuric acid +1 water, with good agitation, until vapours of SO_{3} begin to escape, allow to cool, run the paste slowly into 300 c.c. cold water so as to prevent heating (which would cause a precipitation of TiO_{2}), add

10 c.c. hydrochloric acid, digest six hours with agitation, filter the solution (a) from the precipitated crude silica and make it, with the washings, up to 500 c.c. Ignite the crude silica, weigh it, evaporate with 2 c.c. hydrofluoric acid and three drops of dilute sulphuric acid, and ignite ; the residue is weighed as $\mathrm{Al}_{2} \mathrm{O}_{3}$, and by deducting it from the crude silica we obtain the pure SiO_{2}.
(b) Take $200 \mathrm{c} . \mathrm{c}$. of the solution (a) $(=1 \cdot 000 \mathrm{~g}$. bauxite), neutralise with sodium carbonate until a slight precipitate begins to appear, bring this again into solution by adding a few drops of dilute sulphuric acid, reduce the contained iron to the ferrous state by NaHSO_{3} or gaseous SO_{2}, dilute to 400 or 450 c.c., boil for two hours, replacing the evaporated water by an aqueous solution of SO_{2}. The titanic acid is thus precipitated. Allow to cool, make up to 500 c.c., pour through a dry filter and wash the $\mathrm{T}^{2} \mathrm{O}_{2}$, with warm water containing a little ammonium chloride, but keep the washings separate from the first filtrate. Dry, ignite, and weigh the TiO_{2}.
(c) Boil 125 c.c. of the first filtrate obtained in (b) $(=0.250 \mathrm{~g}$. bauxite) till the SO, has been removed, add a little zinc, dilute strongly, and estimate the iron by titration with permanganate, after having rendered the solution slightly acid by sulphuric acid, as described p .180.
(d) Alumina, Ferric Oride, and Titanic Acid together are estimated in the first solution (a). Take 25 c.c. of this solution ($=0.125 \mathrm{~g}$. bauxite), add a little fuming nitric and hydrochloric acid, dilute considerably, add NH_{3} in slight excess, boil up for a moment, filter, dissolvo the precipitate again in hydrochloric acid, precipitate again with NH_{3} wash, filter, dry and weigh. By adding the alumina found in (a), and deducting the TiO_{2} found in (b), and the ferric oxide in (c), we obtain the remainder =Alumina.
(e) Ignite a fresh sample of dried bauxite for a quarter of an hour by means of the blowpipe ; the loss of weight is = chemically combined water +organic matter.

B.- Control of Working Conditions.

1. The residue from decomposing the bauxite is tested by boiling 2 g . with 3 c.c. concentrated sulphuric acid +3 c.c. water until the red colour is destroyed, diluting a little, filtering, and making the filtrate up to 100 c.c. . In this we estimate :
(a) Iron in 10 c.c. by reducing it to the ferrous state and titrating with KMnO_{4}, p. 180.
(b) Ferric oxide + Alumina by precipitation with NH_{3}.
(c) Soluble sorla by boiling 20 c.c. with a solution of ammonium chloride and absorbing the NH_{3} set free in titrated hydrochloric acid.
2. Aluminate solution.-In this we estimate $\mathrm{Na}_{2} \mathrm{O}$ and $\mathrm{Al}_{2} \mathrm{O}_{3}$ in the same operation, as described below for sodium aluminate.

C.-Commercial Products.

1. Sulphate of Alumina and Alum :-
(a) Estimution of Alumina-(a) Gravimetric estimation.-Dissolve 10 g . in water, dilute to $\frac{1}{2}$ litre, take 00 c.c. of the clear solution $=1 \mathrm{~g}$. of the substance, add ammonia in slight excess, boil up for a moment, filter, wash, dry the precipitate, ignite, and weigh the $\mathrm{Al}_{2} \mathrm{O}_{3}$. It is slightly contaminated with traces of iron, silicate, and phosphoric acid, which may be neglected.
(β) Volumetric Analysis.-Dissolve F g . in water, dilute to! litre, take out 50 c.e. $=0.5$ g. substance, nentralise the free acid by dilute solution of caustic soda (indirator:methyl orange, till the pink changes to yellow), then add phenolphithalein and titrate with standard caustie soda solution until the red colour appears. Each c.e. of the NaOH solution corresponds to $0.1703 \mathrm{~g} . \mathrm{N}_{2} \mathrm{O}_{3}$.
N.B.-This method gives only aproximate results, mess a number of preantions, detailed in T'ech. Mrth., vol. i., 1. 613, are observed.
(b) Iron cannot be extimated either gravimetrically or by titration, on account of its small quantity. Hence it is estimated colorimetrically by Lunge and Kelers method. We require for this a number of small stoppered eylinders of white glass, 13 mm . internal diameter, 17 (m . high, containing 2. e.r. divided in $0.1 \mathrm{c} . \mathrm{c}$, and a free space of $5 \mathrm{c} \cdot \mathrm{c}$. above the 2 s c c. mark. Also the following reagents:-(1) a 10 per cent. solution of potassium thiocyanate: (2) pure ether ; (3) a solution of $8 \times 6: 30 \mathrm{~g}$. ammonium-iron-alum and 5 e.c. concentrated sulphuric acid in 1 litre ; (4) a solution prepared from (3) by diluting it in the proportion of $1: 100$, so that this solution contains 10 mg . Fe per litre. It should be kept proterted from sumlight, but even then keeps only for a few days, wheress solution (3), when protected from air and light, keeps a long time without gretting turbid; (5) pure nitricacid. It is hardly $\mathrm{p}_{\mathrm{os} \text { sihle to ohtain nitric }}$ acid absolutely free from iron, but this does not matter, if it gives only a slight pink colour with potassium thiocyanate, since very little of it is used, and an equal quantity for the check test as for the actual test.

Dissolve 1 or 2 g . of the aluminium sulphate, weighed exactly, in a little water, add exactly 1 c.c. of the pure nitric: acid (5), heat a few minutes, allow to cool, and dilute to 50 c.e. Put 5 c.e. of this solution into one of the colorimeter cylinders, A. (N.B.-If this method is applied to estimate traces of iron in sulphurie acid, this is diluted in the same way.). Into a second cylinder, B, put 5 c.c. of dilute nitric acid, obtained by diluting 1 c.c. of (5) to 50 c.c., and a certain accurately measured quantity of the ironalum solution (3), e.g., 1 c.c. Add as much pure water to cylinder Λ as you put iron solution in B, so as to always have the same degree of dilution in Λ and B. Then add to both Λ
and B 5 c.c. of the thiocyanate solution (1) and 10 c.c. of the ether (2), put the stopper in and shake thoroughly, until the aqueous layer has become colourless and the red colour has passed over entirely into the ether. The comparison of the colours in A and B is most accurate after a few hours, since they deepen a little on standing, but marked differences can be observed at once, so that three cylinders will suffice, of which A receives the solution to be tested, B and C the quantities of iron most nearly approaching to A . The comparison is made ly holding the cylinders a little distance from a white surface (not putting them down upon it!) and looking at them from the top downwards. It is then quite easy to estimate differences of $\pm 0 \cdot 1$ c.c. of the iron-alum solution (5), that is of $\pm 0.001 \mathrm{mg}$. Fe in the 5 c.c. employed for analysis, but only when the total quantity of dron does not exceed 2 c.c. of the solution, that is $=002 \mathrm{mg}$. Fe. If there should be more than this present, the permanganate method is applicable.
(c) Free acid in aluminium sulphate cannot be directly titrated by any of the hitherto known indicators. Beilstein and Grosse proceed as follows:-Dissolve 1 or 2 g . of the sulphate in 5 c.c. water, add 5 e.c. of a cold saturated solution of ammonium sulphat", stir fifteen minutes and precipitate with 50 ec. 95 per cent. alcohol. Wash the precipitate with 50 c.ce alcohol, evaporate the alcohol from the mixed filtrate and washings on the waterbath, and titrate the acid in the residue by decinormal soda solution and phenolphthalein.
(d) Zinc only oceurs occasionally in commercial sulphate of alumina, hut is very injurions. Estimate it by alding to the solution of the sulphate a sufficient quantity of barium acetate to precipitate all the sulphuric acid, and precipitating the zine in the filtrate as ZnS .
2. Aluminate of Sola :-
(a) Soda amd Alumim.-Dissolve 2 g. in water, dilute to 100 cec. and titrate 10 e.e. ($-0 * \mathrm{~g}$. substance) quite hot, with phenolphthalein as indicator, by fifth momal hydrochloric acid until the red colour has vanished. The soda only is saturated at this stage, and each c.r. of the acid corresponds to 0.0062 g . Na, (). Now add a single drop of methyl orange and continue the titration with the same acid, bat at a temperature of 30 , until the alumina first precipitated has been redissolved and the red colour has appeared. Each c.c. of acid used in this second titration corresponds to $0003107 \mathrm{~g} . \mathrm{Al}_{2} \mathrm{O}_{3}$. The percentage is obtained directly when employing $0: 300 \mathrm{~g}$. substance by multiplying the e.c. used in the first titration (a) ly $3 \cdot 105 \cdots$ per cent. Nat, O , and those used in the second titration (b) by $1704=$ per cent. $\mathrm{Al}_{2} \mathrm{O}_{3}$.
(b) Insoluble matter is estimated in 10 to 20 g . substance in the usual manner, but employing "hardencd" filtering paper, since ordinary filter paper would not stand the strongly caustic solution.

254 THE TECHNICAL CHEMISTS' HANDBOOK

(c) Silica is estimated by evaporating with hydrochloric acid, digesting the residue with dilute HCl , filtering, washing, igniting, and weighing the residue.
3. Commercial Alumina is either the hydrate or anhydrous. In this the silica occurring as an impurity is estimated as in 2 (c); total soda by igniting at a red heat, digesting with water, heating with normal HCl , and titrating back the excess of acid; soluble soda by boiling with 100 c.c. water and titration with normal HCl and phenolphthalein; iron in the hydrochloric acid solution as in No. 1 (b) ; loss of reight on igution ($=\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$) by heating for fifteen minutes over the blowpipe.

XVIII. CEMENT INDUSTRY.

A. - Portland Cement.

1. Raw Materials.

(a) Limestone. (a) Estimate carbon dioride, as desseribed p. 184, by titration or by volumetric estimation of CO_{2}. It is calculated as (0). In the presence of considerable quantities of magnesia (which is considered as an injurious constituent of cement), estimate it in the hydrochloric acid solution, as on p. 175, calculate it as MgCO_{3}, and calculate the excess of $\mathrm{C}^{\prime} \mathrm{O}_{2}$, as CaCO_{3}.
(β) Aryillaceous residue is the difference between 100 and the carbonates found in (a). If there is much present, it may be examined like clay, No. (b).
(b) Clay.-The percentage of coarse salul (quartz) is found by elutriation. Weigh 50 g . of the corarsely ground, dried average sample into a rather large porcelain dish, pour over it 100 c.c. dilute hydrochloric acid (1 concentrated acid +8 water), boil for about three hours, allow to cool, pour off the acid and direct a jet of water on to the mass, carefully rubhing it up with the fingers, so that only clay goes away with the water and pure sand remains behind. This plan is better than the application of mechanical elutriating apparatus.

The sand may be sorted by sieves into different sizes, viz., fine dust (down to 0.025 mm .), dust (0.040 mm .), tine sand (0.20 mm .), coarse sand (above this).

Complete analysis of clay (cf. Terh. Meth., vol. i., p. 569, and pp .688 et seq.).

1. Decomposition bymeans of alkaline rarbrmute, i.e., a mixture of equal parts potassium carbonate and sorlimm carbonate, of which 6 to 10 g . are required for one part of clay. Dry the clay at $120^{\prime \prime}$,grind it very finely, mix it intinately with the alkaline carbonate in the platinum crucible itself by means of a platinum or glass spatula (which is afterwards cleaned with a little car-
bonate), and heat in the covered crucible, first slowly, then up to full, quiet fusion. A good Mecker or Fletcher burner is preferable to the blowpipe for the heating. After cooling, heat the bottom of the crucible by a small flame to a low red heat twice successively, in order to facilitate the separation of the fused mass, allow to cool, add a few c.c of water, and heat gently with a small flame, until the cake detaches itself from the crucible. Wash it into a good-sized platinum dish, cover this with a large watch-glass and heat on the water-bath until the mass has softened and fallen to powder. Then add an excess of hydrochloric acid, remove the watch-glass, wash its under-surface, and evaporate to dryness on the water-bath. During the evaporation the mass is stirred with a glass rod, so as to render the residuc powdery. Then heat the dish in an air-bath to 120° for an hour, moisten it, after cooling, with moderately strong hydrochloric acid, allow to stand for an hour, heat up with water, pour the clear portion through a filter, and continue this treatment until the residue ceases to yield a colour with hydrochloric acid. Then transfer it to a filter, wash, dry, and ignite it first over a small flame, then to constancy of weight, and weigh it as silica. It may still contain some titanir acid. This is separated by evaporating with hydrofluoric acid and concentrated sulphuric acid on the water-bath as a residue which should be tested whether it yields the purple microcosmic salt bead of TiO_{2}.

The filtrate from the titanic acid is divided in two halves. In one of these estimate alumina ferric oride by adding pure ammonia (free from curbonate) in slight excess, boiling up for a moment, filtering, washing, and igniting. In the other half estimate the iron by reducing with zine and titrating with permanganate.

In the filtrate from the precipitate of $\left.\mathrm{Al}_{2} \mathrm{O}\right)_{\mathrm{a}}+\mathrm{Fe}_{2} \mathrm{O}_{1}$, estimate calcium by precipitation with ammonium oxalate (1. 175), and in the filtrate from this magnesium by ammonium phosphate (p. 175).
g. The Alkalies can be estimated, if desired, by decomposing about 5 g. clay with hydrofluoric acid ; cf. T'erh. Mcth., vol. i., p. 694.
3. Sulphur, present as sulphates or pyrites, is estimated by oxidation with aqua regia and precipitating the hydrochloric acid solution with barium chloride ; cf. p. 134.
4. Carbon dio.cide, as in the case of limestone, p. 184.
5. Loss of weight on ignition over the blowpipe or a powerful gas burner gives water + organic matter $+\mathrm{CO}_{2}+$ sulphur present as pyrites, etc.
(c) Separation of Silica present as (uartz, and that present in the Form of Silicates. - The separation of these two kinds of silica is frequently demanded in so-called "rational analysis of clay." It can be effected by the process of Lunge and Milberg (Z. angev. Chem., 1897, p. 393), on the basis of the observation that extremely finely divided quartz is dissolved by concentrated
caustic soda solution, but not by a 5 per cent. solution of sodium carbonate, whilst the latter dissolves the silica, separated from silicates by strong acids in an amorphous state, when heated on the water-bath for half an hour. This is applied to the separation of the two modifications of silica as follows:-Heat 5 g . of clay (dried at 120) with dilute sulphuric acid (50 c.c. concentrated acid +100 c.e. water) to boiling in a porcelain or platinum dish, covered with a watch-glass, until the water has been driven off and fumes of SO_{3} begin to escape, allow to cool, dilute with water, pour off the liquid, moisten the residue with hydrochloric acid, heat for a quarter of an hour, filter, and wash. Wash the moist residue, which contains a mixture of both modifications of SiO_{2}, into a porcelain dish, make up the solution to about 250 c.e. add about $12 \% \mathrm{~g}$. pure anhydrous sodium carbonate, and heat on the water-bath for half an hour. Then pour off the clear liguid and repeat the treatment with 5 per rent. solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$, three times. Finally, wash the insoluble matter on to a filter and wash it thoroughly with water containing a little alcohol. The dried and ignited residue consist of the Nio, present as quartz ; the difference between this and the total SiO_{2}, found in (h) 1 is the SiO_{2} present as silicat's.

2. Control of the Working Conditions.

The "rulle mirture is tested for its percentage of day and calcium carbonate like limestone; compare Λ, 1. Usually the estimation of CO. (1 , $1^{\mathrm{N}} \mathrm{f}$) is sulficient.

The clinker is analysed like the finished ement, if this is required.

3 Commercial Cement.

Ignite 1 g. cement in a platinum rucible over the blowpipe for fifteen minutes, deromposie by hydrochboric acil, filter from the insoluble matter, fuse this with sodinm carbonate, dissolve the melt in water, and unite this solution with the filtrate previously obtained. In this solution the followine restimations are made :- -
(a) Silice is determined by boiling down the united solutions and filtering off the precipitated SiO_{2}. The filtrate is again concentrated by boiling, and any Si(), that separates is united with the first portion. Dry the total (crule) silica, heat on the blowpipe for half an hom, and weigh. Then heat with 10 e.c. hydrofthoric acid and four drops concentrated sulphuric acid till fumes cease to be given off, and de:duct the residue from the crude SiO_{2}; the portion thus removed by volatilisation represents the real SiO_{2}.
(b) Divide the united filtrates into two halves. In one of these estimate the sesquioxiles, $\mathrm{Al}_{2} \mathrm{O}_{3}+\mathrm{Fe}_{2}()_{3}$, by precipitation with pure ammonia, as on 1 . 255.
(c) l'erric oxide is estimated in the second half of the filtrate from (a), by reducing to the ferrous state by means of zinc or $\mathrm{H}_{3} \mathrm{~S}$ and titrating with permanganate.
(d) Calcium is estimated in the filtrate obtained in (b) by precipitation with ammonium oxalate, p. 175.
(e) Mragnesium in the filtrate from (d), by precipitation with ammonium phosphate, p. 175.
(f) Sulphates are determined in a special sample by dissolving 1 g . in hot hydrochloric acid, filtering, and precipitating with barium chloride, p. 134.
(g) T'otal s'ulphur.-Fuse 1 g . cement with sodium carbonate and a little potassium nitrate, dissolve in hot water, filter, acidify, and precipitate with barium chloride.
(h) The estimation of alkelies is rather troublesome, and is only carried out in exceptional cases; (f. T'ech. Meth. i., p. 694.
(i) The physical tests for fineness of grimuling, time of setting, breakiny strain, ctc., are described ibid.

B.-Hydraulic Lime and Roman Cement.

The raw material for these are murls. In these usually only CO) and argillaceous residue are estimated, as in the case of limestone, p. 254.

An aceurate analysis can le made as described for clay, p. 254, more especially the separation of the silica present as quartz from that of the silicates.

C. Puzzuolanas, Trass, Granulated BlastFurnace Slag.

1. Hy, 1 rosionic witer is estimated by drying 10 g . at 110 .
2. (hermically comblyed Water:--Ignite 1 g. of the substance dried as in No. 1 in a platimum crucible by means of the blowpipe, a Hempel gas furnace, or wher suitable means The temperature ought to be raised gradually, so as to attain a red heat in about ten minutes, in order to avoid mechanical losses by dust being carried away through a sudden liberation of steam. After this continue the heating for half an hour to a yellow heat, and then transfer at once to the desiccator. The loss of weight is an important criterion for the hydraulicity.
3. Silica present as silicates should be estimated as well as that of quartz as an important hydraulic factor, as described p. 255.
4. Mechanical tests for tineness of grinding, etc., as for cement, supra, p. 254.

INDEX OF SUBJECTS

Λ

Acid-resisting cements, 95
Alkalimetrical degrees, comparisons of, 192
Alloys, composition of, 94
Alumina preparations, 250
Ammonia, 23?, 236
in gas liquor, $2: 33$
liquor, 236
specific gravity of solutions of, $2: 37$
Ammonia-soda process, 201
Ammonium carbonate, specific gravitics of solutions of, 2.98
Arsenic, in pyrites, 136
in hydrochloric acid, 180
in sulphuric acid, 170
Atomic weights, 3

B

Baumé scale of density, 4 :
Beet ashes, 2e:3
Bleaching powder, 18.5
table of percentages, 186
Boiling points, 99
Brimstone, 130
Bunte burette, use of, 239

Calcium carbide, 24.
Calorific value of fuels, 17
of gases, 17

Caustic bottoms, 208
Caustic soda, analysis of, 202
commercial, 209
sprecific gravities of, 203,206
Celcius scale of temperature, 13
Cement, 25 :
Cements, acid-resisting, 95
Chamber gases, 141
Chamee process, 198
Chemical names of common chemicals, 87
Chimney gases, 119
Chimney-testing for acidity, 176
Chlorate of potash, 189
Chlorates, 189, 209
Chlorine, available in bleachingpowder, 185
in chambers, 186
electrolytic, 187
pressure of liquid, 18 s
specific gravity, 188
Coal, examination of, 117
Coal-gas, analysis of, 2:38
Common chemicals, chemical names of, 87
Contact process, 145, 171, 173
Conversion tables of weights and measures, 8, 13, 109
Copper sulphate, standard, 116

D

Density of gases, 72

E

Electrical units, 19
Electro-chemical equivalents, 19
Evaporation unit, 17

F

Factors for gravimetric analysis, 70
Feed-water, testing, 128
Fertilisers, 245
Fished salts, 203
Freezing mixtures, 96
Fuel, sampling of, 103
testing, 117
Fuels, calorific value of, 17
Fuming sulphuric acid-
analysis, 171
boiling points of, 155
fusing points of, 159
specific gravities of, 158
Furnace control, 119

G

Gases, calorific value of, 17
density of, 72
reduction of volume to N.'T.I'., 20, 32
solubility of, it
specific heat of, 97
Gas-liquor, ammonia in, 293
analysis of, 233
Gas-volumetric factors, 73
Gravimetric analysis, factors for, 70

H

Hardness of water, 129
temporary, 128
total, 129
Heat, unit of, 16
High temperatures, 61

Horse-power, 7, 19
Hydrochloric acid, analysis of, 179
in chimney gases, 176
normal, 111
specific gravities of, 178
standard, 111
Hydrometer scales, 42

I

Indicators, 110
Iodine, standard, 114

L

Lime mud, 208
Limestone, analysis of, 183
Lincar expansion on heating, 84
Litmus, 110

.

Manganese ore, analysis of, 181
Mathematical tables, 44
Measures of various comntries, 4
Melting points, 94, 93
Mensuration of areas, 59
Mercury pressure from water pressure, 35
Metal, weight of shert, sif
Methyl or:ange, 110
Methyl red, 110
Mctric measures, 4
" Mixed" acid, $2 \geq 0$

N

Nitrate of soda, amalysis of, 211
Nitre-cake, analysis of, 213
Nitric acid, analysis of, 219
manufacture, 211
specific gravities of, 214

Nitrometer, 164
Nitrous vitriol, 163

0

Oleum, 155, 158, 159, 160, 171, 173
Orsat apparatus, 120
Oxalic acid, standard, 116

P

Percentage composition of inorganic compounds, 62
Phenolphthalein, 110
Phosphoric acid in fertilisers, 246
Portland cement, 254
Potassium carbonate, analysis of, 224
specific gravity of solutions of, 225,229
chlorate, 189
hydroxide, specific gravity of solutions of, 230
permanganate, standard, 114
salts, analysis of, $2: 21,223$
Pyrites, 133
Pyrometer, 126

Q

Quicklime, analysis of, 1,1

S

Salt, analysis of, 174
Saltcake, 174
analysis of, 175
Sampling chemicals, 105
fertilisers, 245
fuel, 103
ores, 103
rules for, 103
spent oxide, 131

Sheet metal, weight of, 86
Silver nitrate, standard, 116
Sola ash, analysis of, 190
Sodium arsenite, standard, 115
carbonate, analysis of, 190
carbonate, densities of solutions of, 194, 195, 196
Solubility of gases, 77
of salts, 74
Specific gravity of liquids, 83
of solids, 81
of solutions, 83
comparison of scales, 42
Specific heats, 97
Spent oxide, 131
in gas-works, analysis of, 243
Standard solutions
acid, 109, 111
alkali, 109
copper, 116
general, 106
iodine, 114
oxalic acid, 116
permanganate, 114
silver, 116
sodium arsenite, 115
Sulphate of ammonia, analysis of, 234
Sulphur in brimstone, 130
in burnt pyrites, 136
in cinders from blende, 140
in pyrites, 13:3
in spent oxide, 132
in vat waste, 198
in zinc blende, 137
dioxide, liquid, 161
recovery (Chance process), 198
Sulphuric acid, 130
analysis of, 162
boiling points of, 155
freering points of, 154
fusing points of, 159
. melting points of, 154

Sulphuric acid-
specific gravity of, 146
vapour pressure of, 156
Sulphuric anhydride, 171
Sulphurous acid, 161
Symbols of inorganic compounds, 62

'

'Temperatures, measurins high, 120
Tension of aqueous vapour, ist, 40
Thermometric scales, comparison of, 13, 14, 15
Twaddell hydrometer scale, 4:

U

Unit of volume, 107
Units, electrical, 10
Units of energy, work and heat, 1;

V

Volume of gases, reduction to N.'T.I., 20, 32

Volume of water at various temperatures, 35

W

Water, aqueous tension of, 36, 40
boiling point under pressure, 41
estimating hardness of, 128
volume at various temperatures, 35
Weights and measures, 4, 8
volumetric, 108
Weights of substances as stored, 85
Weldon liquors, 182

7
Zine blende, 137

PRINAED IV GRENG BRITAV BY

DATE OF ISSUE

This book must be returned within 3/7/14 lays of its issue. A fine of ONE ANNA per day will be charged if the book is overdue.

[^0]: * In the case of the hydrogen peroxide methods, where only half of the oxygen liberated comes from the substance analysed.

[^1]: * The statements found in literature vary between these limits.

[^2]: * According to the rules laid down for the German Official tests of steam-boilers and steam-ongines.
 \dagger At somo factories very unsatisfactory results lave been obtamed with this mode of sampling; they prefor that described later on (in b), viz., taking a certain number of entire tubs, barrows, or carts as sample.

[^3]: * This can be obtained rearly-made or is prepared by soaking a few threads of long soft asbestos in a strong solution of platinum or palladium chloride, mixed with a saturated solution of sorium formate and enough sodium carbonate to produce an alkaline reaction. After an hour's soaking the asbestos is dried completely in a waterbath, whereby the metal is precipitated in a very minutestate of division. The soluble lasts are then washed out by hot water and the asbestos is again dried.

[^4]: * The law prescribes the cubic feet to be measured at $60^{\circ} \mathrm{F}$. and 80 inches, which necessitates the use of other tables or factors than those mentioned in the text; but the difference is hardly perceptible, and certainly within the limits of experimental error.

[^5]: * Alkali Act, 1906 .
 - This shape of bulb-tubes has beek found to be far superior to any other form of absorption-tubes tried.

[^6]: * Such froth may also be formed in the presence of too much water, by the separation of mercuric sulphate, but this hardly ever happens in the case of nitrous vitriol, and even in the analysis of sodium nitrate only when the description given for the estimation is not properly adhered to.

[^7]: * These are the methouls given by Tietjens in Teck. Meth., vol. i., p. 5\%0, as worked out and practised at all the Stassfurt works. This apples also to the digures employed for the calculation of the results which are not based on the real atomic weight of platinum (-194×80) and on the formula $\mathrm{K}_{2} \mathrm{PtCl}_{6}$, but are empirical data, based on many yours' experience. The difference is mainly caused by the fact that the precipitate is not pure $\mathrm{K}_{2} \mathrm{PtCl}_{6}$, but contans some chemically combined water which is not given up even after prolonged drying.

