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ABSTRACT 
 

In the present manufacturing scenario, miniaturization is the basic strategy all over the 

world. Mechanical and electronic products are in great demand having small size and lighter 

weight. The development of high-strength alloys in biomedical and aerospace industries 

necessitates the use of precision machining with advanced technology. Micromachining 

techniques are used to create micro features or miniature parts in micro devices such as 

micropumps, microvalves, microactuators, etc. Machining in the microdomain is difficult and 

requires precise and sophisticated technique. Among various advanced machining techniques, 

micro-electric discharge machining (μEDM) finds its importance because of its unique advantages 

of low cost and clean environment.  

Micro electric discharge milling (μED-milling) is the advancement in the μEDM which is 

specifically used to create complex features with high aspect ratio. It utilizes a simple cylindrical 

rotating tool to cut the microchannel (μchannel) while moving along the predefined path. The 

phenomenon happening at the inter-electrode gap (IEG) of the tool and workpiece is complex. The 

IEG size formed between the two electrodes mainly depends on the input energy supplied and the 

value happens to be less than 50 μm. At this small gap, multiple numbers of plasma channels are 

formed with very high temperature and pressure which contributes to the removal of material due 

to melting. This plasma channel on collapsing ejects the molten metal from the crater which cools 

due to surrounding dielectric to form debris particles. This debris has to be removed instantly from 

the IEG to avoid secondary sparking. Among the different approaches of flushing, rotation of tool 

is a simple and effective method. The rotation will also provide sufficient stiffness for the tool 

during the process. But the rotation of the tool in the process will further add to the complexity. 

The literature survey shows that μED-milling has a history of nearly 40 years. Most of the research 

in this area is focused on the material removal rate (MRR), tool wear rate (TWR), and tool wear 

compensation. Many aspects of the μED-milling process such as the shape of plasma channel, 

crater geometry, temperature distribution model, etc. are studied. However, only a limited research 

work is reported on the flow behavior of dielectric flow and its interaction with the molten metal 

or debris at the IEG at different conditions of the μED-milling process. This phenomenon is 

important in achieving desired performance on MRR, TWR and surface finish and the process is 



attractive for micro features. Hence it has been decided in the present research to focus on the flow 

behavior at the IEG in the microdomain. 

The complex phenomenon happening at the IEG is a multiphysics problem involving 

different phases such as dielectric, debris and bubbles occurring in microseconds. Such a 

multiphysics problem is very complex to simulate or capture through instruments experimentally. 

So, it has been decided to simulate this problem in different stages using various tools of 

computational fluid dynamics (CFD). For the first stage of simulation, only the dielectric fluid is 

considered and the flow behavior is analyzed. In the subsequent stages, the interaction of the 

dielectric fluid with debris particle at room temperature is solved and followed by the interaction 

behavior at a high temperature. Molten metal is injected and its interaction with the dielectric fluid 

is investigated. All the simulations are performed on the standard Fluent software.  

To simulate the dielectric flow, the realizable k-epsilon (k–ε) model is selected. This model 

responds more accurately to the flow features involving turbulence. The geometrical model of the 

study is a 2D representation of the cutting process by μED-milling. This is shown as partially cut 

straight channel with rotating tool positioned in the direction of machining. The tool is represented 

as a solid circular domain and the μchannel excluding the tool represents the fluid domain which 

is finely meshed. Moving reference frame is used to provide the rotation to the tool. The entire 

fluid domain surrounding the tool is filled with kerosene which is selected as a dielectric fluid 

because of low viscosity. The inlet and outlet for the flow of dielectric are provided in the boundary 

of the geometry that represents the edge of the work. Through the detailed review, various 

parameters which are critical for dielectric flow such as tool rotation speed, IEG size, inlet nozzle 

velocity, and tool diameter are selected with initial reference of simulation. The critical range for 

each parameter has been decided by the initial simulation study and a total of 51 simulations are 

performed considering 4 variables to cover all the conditions.  

Among all the variables discussed, tool rotation is the most influencing parameter which 

affects the dielectric velocity in the gap. It is observed that with the increase in the tool speed the 

dielectric velocity in the gap increases. Rotating tool exerts a centrifugal force on the dielectric 

near the tool which drags the fluid in the gap. The velocity pattern observed in the IEG is uniform 

along the gap and the vortex formation is observed at the back of the tool. The pressure distribution 

also varies in the gap due to tool rotation. This effect of velocity pattern, vortex, and pressure 

distribution are largely affected by the other input parameters such as IEG size and inlet nozzle 



velocity. With the decrease in the size of IEG, the velocity is found to increase but the vortex is 

not significantly affected. On the other hand, with the increase in the inlet nozzle velocity the 

velocity in the IEG increases and also the vortex size is affected.  

In the second stage of the simulation, debris is introduced in the IEG to study its interaction 

with the dielectric flow. The model which is used for dielectric flow simulation is retained for 

debris analysis. Besides, discrete phase modeling (DPM) is used where the dielectric is a primary 

phase and the debris are the secondary phase. During the simulation, generation of debris is 

represented by injecting micro-sized particles from the workpiece surface. The geometrical model 

selected is also the same where the inlet and outlet are assigned with escape boundary condition 

for the particles to move out of the domain. The tool and workpiece surface are assigned with 

reflect boundary condition. The injection points on the workpiece surface are assigned wall jet 

boundary condition to provide injection velocity to the particles. Particles injected with a different 

velocity reaches various positions in the IEG and is dragged from this position due to dielectric 

flow. These particles follow the dielectric flow and travel as a single particle or a group of particles. 

The grouping of particles shows chain-like structure, clustering, and accretion on the workpiece 

surface. These trajectory patterns observed are reasonably in accordance with the results reported 

in the literature. During motion, particles make multiple rotations around the tool before accreting. 

The distance traveled by the particle before accretion is calculated by tracing the path followed. 

The particles accrete on the workpiece surface inside the IEG and outside the IEG. Accretion 

outside the IEG can affect the geometry of the μchannel whereas the accretion inside the IEG will 

not affect as it will be removed by the subsequent sparks. The study is further extended by 

introducing particles with a high temperature and finding the distance traveled by the particle 

before cooling. The simulation results are compared with the analytical method and it is observed 

that the results are reasonably similar. Like the particles, molten metal is injected at a high 

temperature during the simulation. It is observed that the molten metal gets cooled rapidly and 

solidify in a few milliseconds. Hence, the multiphase study of the molten metal flow is carried by 

injecting solid particles at high temperature. 

The next objective is to study the effect of the slotted tool on flow behavior. The slotted 

tool consists of a peripheral slot along the surface of the tool. These slots provided on the tool 

helps in collecting the particles and reducing their concentration in the IEG. The stages of 

simulation explained before is now applied for the slotted tool. All the models selected for the 



simulation study is similar except the geometry of the slotted tool. Different shapes of the tool with 

various slot size and the number of slots are studied. The width and height of the slot are varied to 

study its effect on the particle removal rate. It is observed that the dielectric velocity in the gap is 

less for all the slotted tools as compared to the cylindrical tool due to a disturbance in the flow 

around the slots. Also, a large variation of pressure is seen in the slots. Among various slotted tool 

shapes considered, the tool which as a deep slot is efficient in the removal of particles. The vortex 

observed in the slot is responsible to collect the particles in the slot and reduce its concentration in 

the IEG. While the accretion is majorly observed on the corners of the slot which does not affect 

the workpiece surface.  

Different tools are fabricated with the slotted shapes considered for simulation to conduct 

experiments. The experimental study is the investigation of the machining performance of the 

slotted tool over the conventional cylindrical tool. Here the machining performance such as MRR 

and TWR is calculated using 9 different tools consisting of different slot size while cutting a 

channel. Out of 9 tools, 3 tools are similar to simulation study and the other 6 tools are used to find 

the effect of slot width, height and the number of slots on the MRR. It is observed that the MRR 

is higher using a slotted tool as compared to the cylindrical tool. The surface topography of the 

machined surface and the tool surface is captured to observe the accumulation of debris particles 

on various slotted tools. The simulation results are correlated with the experimental findings.  

An attempt is made to capture the actual process images at the IEG of the μED-milling 

using a high-speed video camera. As the field of view (FOV) is few microns and the process is 

submerged under the dielectric it is difficult to capture the micro size debris particles ejecting from 

the crater. However, the images of spark and dielectric flow are captured at a high resolution with 

a high frame rate of 2277 fps. The images show sparking is continuous along the periphery of the 

tool and its size changes with the input energy. The vortex flow is also observed at the back of the 

tool. The obtained images of the spark and the bubble motion are used to calculate the IEG size 

and the velocity of the dielectric. The scanning electron microscope (SEM) images show spherical 

debris particles deposited on the machined surface which is the direct validation to the assumption 

of spherical particles for simulation. The experimental results are reasonably in accordance with 

the simulation results.  

The detailed investigation conducted at the IEG of the μED-milling process helps to 

understand the flow behavior at the IEG and improve the machining performance. In addition, the 



study of tool geometry can be applied to improve flushing characteristics. For various 

microfabrication sectors, the slotted tool can provide a large opportunity for improving the process 

performance and suggest approaches to achieve higher performance of machining. The above 

discussion will justify a better understanding of the process phenomenon happening at the IEG of 

μED-milling for machining complex shapes.                    
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