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PREFACE TO THE SECOND EDITION

Tlie first edition of this book was written as a text for a

course designed to give the student some competence in the

techniques of classical mathematical physics and some confi-

dence in his ability to read te<'hnical papers in that field.

The second edition has been amplified to better serve this

end without any very wide deviation from the fundamental

method of approach.

Chapters on mathematical methods alternate with those in

which the methods arc applied to physical problems, and every-

where the emphasis is on the drawing of quantitative conclu-

sions from carefully stated laws.

The amplification has consisted largely of the inclu-sion of

numerous illustrative examples completely or partly developed

in the text, the addition of drawings to clarify the text, and some

minor rearrangements of material to provide what seems after

use a more coherent order of presentation. A few sections

dealing wit.h matters not actually essential to the context have

been omitted.

The chapters on electricity and magnetism have been con-

siderably expanded and revised in the effort to present a precise

formulation of this conceptually difficult subject. Emphasis

has been laid on the similarities of, and the differences between,

the vectors D and E and between B and H. The point of view

presented is believed to be especially helpful in understanding

the electrical properties of matter.

Some minor changes have been made in the problems pre-

sented for solution by the student. Some of these have been

worked out and included in the text, and new ones have been

added. These continue to be the backbone of the course.

Mathematical physics, obviously, is an art whose mastery can

be attained only by extensive practice.

For many valuable suggestions concerning the treatment.



VI PREFACE TO THE SECOND EDITION

the author is indebted to numerous colleagues, as well as to

many of the students who have worked through the text. He is

especially obligated to Profs. Carl D. Anderson and Wm. A.

Fowler, who have given him the benefit of their teaching experi-

ence; to Dr. Leverett Davis, of the California Institute of

Technology, who worked over much of the manuscript with

him; and to Drs. Charles F. Squire and J. R. Risscr, of the Rice

Institute, who read much of the proof on electricity and magne-

tism. The wholehearted interest of one’s colleagues is one of the

pleasant phases of preparing a manuscript of this kind.

William V, Houston
IIoiKSTON, Tex.

Jdy
,
1948



PREFACE TO THE FIRST EDITION

This book has been written as the text for a course which
I have given for several years to juniors, seniors, and first-

year graduate students. Tlie course has been designed to

give a working knowledge of the fundamental methods of

mathematical pliysics rather than to give a critical or an exhaus-

tive exposition of the theories of physics. It has been assumed
that the students have a thorough knowledge of elementary

ph^^sics, analytical geometiy, and calculus.

The material presented has not l)een selected according

to any rigid plan. Chapters on differential equations and
vector analysis have been included since many students are

not well prepared in these subjects during their first two years

of college work. Mechanics is emphasized because it furnishes

the coiK'eptual basis for all physics and because it furnishes good

illustrations of nearly all the important mathematical methods.

Ckmsiderable attention has been given to the study of normal

coordinates and normal modes of vibration because of the

importance of this type of mathematics in the problems of the

quantum theory. A brief treatment of thermodynamics and of

statistical mechanics has been iiududed because they each have

characteristic methods which arc of importam^e. The treat-

ment of electricity and magnetism provides an introduction to

field-theory methods. It has seemed undesirable to include

any discussion of quantum mechanics and the methods pecniliar

to it, since the classical material fully occupies the time available.

In general, the idea has been to emphasize the derivation

of results from explicitly stated postulates and to distinguish

carefully between such derivation and physical intuition. This

plan has not been rigorously followed, however, because it easily

becomes too cumbersome in a textbook.

It is commonly accepted as a platitude that a student learns

only what he does for himself, but it is not always easy to make
vii



PREFACE TO THE FIRST EDITIONviii

use of this principle. This book has been written as a text, not

as a treatise, and as much as possible has been left to the

resourcefulness of the student. The physical theory is presented

only in the barest outline. The postulates and the definitions

are given together with some illustrative examples. The details

of the theory are left for the student to fill in by solving the

problems. The problems form an integral part of the text, and

many important results are given in them. This necessarily

means that the book must not merely be read but must be

carefully w'orked through. The text material given, together

with the solutions of the problems, should give a fair idea of

the subjects treated.

This form of presentation makes severe demands upon both

the student and the instructor. It is not to be expected that

many students will be able to solve all of tli(' prolilems, for they

require a considerable amount of insight and ingenuity. It can

be expected, however, that in making the attempt the student

will become familiar enough with the difficulties to und(u-stand

the solution when he learns it from the instructor or from some

other source. The references at the end of each chapter indi-

cate places in which many of the solutions can be found.

It is impossible to acknowledge properly all of the many
sources to which I am indebted, but the references at the end

of each chapter include a number of those books which have been

of importance in establishing my point of view. I am also

indebted to Prof. W. R. Smythe and Dr. M. S. Plesset who have

read portions of the manuscript, and to Dr. C. B. Crawley who
has assisted in the proofreading.

William V. Houston
Pasadena, (California

Augustj 1934
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CHAPTER I

ELEMENTARY DIFFERENTIAL EQUATIONS

Most laws of physics are best expressed in the form of dif-

ferential equations. When Galileo made his studies of falling

bodies, he found there was one property common to all the

motions. He found that the rate of change of the downward
velocity^ was always the same. The recognition of this common
and constant element constitutes tlie disc^overy of a law of

falling bodies.

To express such a law precisely and simply requires the

notation of the differential calciilus. Velocity itself is a deriva-

tive—the ratio of an infinitesimal distance to the time taken by a

body to move through tliat distance. The rate of change of

the velo(!ity is then a second derivative, and the law of falling

bodies near the surface of the earth can l)e written

dh

In this equation z is the height of the body, t is the time, and g

is a constant known as the acceleration of gravity. This state-

ment of the law is a differential ecjuafion. The differential

equation is true no matter with what velocity or from what posi-

tion the body starts to move. As is true with most laws of

physics, this law applies only under suitable restrictions. In

this case the law is valid when the resistance of the air and the

curvature of the earth’s surface can be neglected. Under these

restrictions the differential e(^uation states a property that is

common to the paths of all falling bodies.

Because of the important place that differential equations

occupy in mathematical physics, it is necessary to spend a little

time in the study of the more elementary methods for finding

their solutions. The general study of differential equations is

an extensive branch of mathematics and one about which a

1



2 PRINCIPLES OF MATHEMATICAL PHYSICS

physicist cannot know too much. Here, however, only practical

questions will be treated, and methods will be given for the

solution of a few of the simpler and more common types of

equations.

1. Nature of a Differential Equation and Its Solution.—An
ordinary differential equation of the first order and the first

degree states a functional relationship between a single inde-

pendent variable x, a dependent variable ?/, and the derivative

dy/dXj in which the derivative appears to the first power only.

Such equations can be written in the form

0 - 1 )

If y is represented as a function of x by a curve in the x-y

plane, equation (1-1) gives the slope of the curve at every point

in this plane. The object in solving such a differential equation

is to find a relationship between y and x such that equation

(1-1) will be satisfied for all values of the independent variable.

Geometrically, finding a solution is finding a curve whose

slope and coordinates at each point of the curve satisfy equation

( 1
-1 ).

As an illustration, consider the equation

dy

dx
= xy

( 1
-2)

This says that at every point in the x-y plane the slope of tlie

solution is equal to xy. The significance of this statement is

illustrated in Fig. 1-1, where the slope is indicated at a number

of points in the plane. In particular, the slope is zero at all

points on the x and y axes. At any point on the hyperbola

xy = 1, the slope is 1; at any point on xy = —1, it is —1. Any
curves representing solutions that pass through these points

must pass through them with the indicated slopes.

It soon becomes apparent from a study of Fig. 1-1 that

there is no one single-valued function of x which can be

regarded as the solution of the diflferential equation. There is

an infinity of such functions. For example, the x axis, y — Q,

is a solution, for it has everywhere the slope zero. Another
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solution is y = This crosses the y axis at 2/
= 1 and at

this point has a zero slope. In fact, its slope at any point
along it is dy/dx = xe^^'^ = xy, so that the differential equation
is satisfied.

equation dy/dx — xy.

It is possible to express this infinity of solutions by the use

of an arbitrary constant. Thus it may be said that

y = (l-2a)

is the general solution of equation (1-2), where A is an arbitrary

constant. This is meant to imply that equation (l-2a) has the

property expressed by equation (1-2) no matter what value is

given to A. When A = 0, the solution y = 0 results. When
A = -1-1 or —1, the two solutions illustrated in Fig. 1-1 are

obtained.

It is shown in the general theory of differential equations

that the general solution of a first-order differential equation will
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always contain one arbitrary constant and that a solution

containing an arbitrary constant is the general solution.

It is important to recall the significance of the function nota-

tion, f{x,y). This means that, if x and y are given specific

values, it is possible to find the corresponding value for the

function f(x,y). It has nothing to do with the possibility of

writing the function in a simple form. This possibility is largely

a matter of notation. A function may well be represented by a

table of values in which there corresponds to cacih set of values

of the independent variables a definite value of the function.

It is always necessary to keep clearly in min'd the differencie

between the existence of a function and the possibility of

writing an expression for it.

It is a fundamental problem in the study of a differential

equation to find out whether or not a solution really exists.

The differential equations of physics represent, in most cases, the

results of abstraction from experimental data and hence really

the results of differentiating the solutions. For this reason,

one is justified, in elementary work, in assuming that a solu-

tion exists and in merelj^ undertaking to find it. Furthermore,

one may say quite generally that, if in an equation of the type

of (1-1) the function /(a:,y) is single-valued and continuous, and

if it has an absolute value less than a certain upper bound at

every point of the x-y plane, a solution does exist.

If a differential equation contains derivatives higher than

the first, the equation is said to have the order of the highest

derivative. If the highest-order derivative appears to a power

higher than the first, the equation is said to be of the degree

of this power. The simplest equations, those of the first order

and the first degree, will be treated in this chapter.

If the dependent variable is a function of two or more
independent variables, a differential equation will contain the

partial derivatives with respect to the independent variables.

Such an equation is called a partial differential equation. Partial

differential equations are of great importance in physics, but

their solution requires more or less special methods for each

type of equation,, and therefore the methods of solution will be

discussed in connection with the equations of physics themselves.
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2. Solution by the Separation of Variables.—If an equat ion
can be written in the form

f{T)dx = g(y)dy (1-3)

the solution is immediately evident in the form

J/(x)dx = lg{:ii)dy C (l-3a)

where C is the arbitrary constant. This method is called

solution hy the separation of variables and is one of the most
commonly used.

As an example consider afiain equation (1-2). If both sides

are midtiplied by dx and divided bj^ y, there results

— = X dx (1-36)

This is of the form of ecpiation (1-3), sincie the left-hand side

is a function of y only and the right-hand side is a function of

X only. If now both sides are integrated, the result is

2/ = I + C (l-3c)

This is the general solution of the ecjuation, and it can be put

in the form of equation (l-2a) by transforming to the exponential

form and defining A as

Problem 1, For the following differential equations sketch rouglily

the slope at a number of points in the x-y plane, solve the ecjuations by

separation of the variables, and sketch roughly some of the solutions:

a.
dx

2xy

b. y dx — x dy — 0

dy 1

^

c.
dx X tan y

d. 11

3. Formulation of the Differential Equation.—Probably the

most difficult part of a problem in mathematical physics is

the formulation of the differential equation whose solution gives

the solution of the problem. .Tt is necessary to translate the

physical statement of the situation into a mathematical state-
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ment. The mathematical statement is usually a differential

equation.

Skill in the mathematical formulation of physical problems

comes largely from practice and experience. It requires a

thorough appreciation of the significance of mathematical

notation and an intimate and precise understanding of the

physical laws involved. It requires that the essential features

be recognized and the nonessential features neglected.

As an illustration of the process of writing a differential

equation, consider the geometrical problem of finding the

curve whose slope at every point is equal to a constant multiple

of the abscissa of the point. The first step is to establish a

notation. Let y(x) be the function whose curve in the x-y

plane has the desired properties, and let k be the constant by
which the abscissa is to be multiplied to get the slope. It is

then necessary to know, and to remember, that the slope of a

curve at any point is the value of the derivative, dy/dx, at

that point. The description of the curve then states the

equality of this derivative to k times the x coordinate of the

point. In equation form,

I = te (1-4)

The solution of this equation is y = {kx^/2) + C, This form

of 2/ as a function of x satisfies the differential equation, and
the statement of the problem, for any value of C. There is,

not one curve, but a whole family of curves that satisfy the

condition imposed. It is therefore possible to apply some other

condition in addition to that represented by the differential

equation. It might be desired to have the curve pass tlirough

the point (x = 0, y = 0). This can be accomplished by select-

ing that member of the family for which (7 = 0.

Problem 2. Find the curve for which the projection of the ordinate

on the normal is constant.

Problem 3. Find the curve y{x) whose slope at every point is

equal to the negative of the cotangent of the angle between the radius

vector and the x axis.

In the case of physical problems, a knowledge of the essential
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physical laws and principles must be used to get the proper
equation. Consider the problem of finding the atmospheric
pressure as a function of the lieight above the surface of the
earth. To establish the notation, consider a vertical column
of air of unit cross section, and let the height of a point in this

column be z. The problem is then to find the pressure p as a
function of z.

Consider a flat element of volume, of thickness dz and unit

cross section. The pressure on the top of this element will be
less than the pressure on the bottom by the weight of the air

in the element. This weight is the mass density p multiplied

))y the volume dz and the acceleration of gravity g. Then,
if dp is tlie amount by which the pressure on the top exceeds

the pressure on the bottom,

dp = -pgdz or ^ = -pg (1-5)

This is a differential equation that describes the physical

situation, but it is unsatisfactory because it contains too many
different quantities whose relationships to each other are not

precisely specified. If p and g are known as functions of z, these

functions can be inserted and the integration carried out.

Otherwise, recourse must be had to other information.

To simplify the problem, consider the fact that the value of

g does not change very much in heights to which the atmosphere

extends. For this reason a very close approximation can be

obtained by treating gr as a constant of the equation. From
the laws of a perfect gas it is knowm that a close approximation

is obtained by setting the density proportional to the pressure,

if the temperature is constant. The terapei'ature is really not

constant; but if this approximation is made,

f - -Kgr, (1-6)

where K is the assumed constant of proportionality. The

solution of this equation is

j, = (1-7)

and A can be adjusted to give the correct value of the pressure

at 0 = 0 or some other point.



8 PRINCIPLES OF MATHEMATICAL PHYSICS

If it is not desired to make the approximation of constant

temperature, other infoj-mation must he used, such as the value

of the temperature as a function of z. In any case, it is neces-

sary to get the ecjuation into such a form that it contains p
and z and the derivative only.

Problem 4. A rod of circular cross section is to support a tension T
when in a vertical position. If the density of the rod is p, find the

shape it must have in order that the tension per unit cross section shall

everywhere be t.

4. Linear Differential Equations. An equation of the form

t + Py~Q 0 -8 )

is said to be a linear differential eciuation if P and Q are not

functions of y. They may he constants or any functions of x.

Linear eciuations, especially those of the second order, are of

particular importance in jjhysics, and considerable attention will

be given to them later. For the first-order equation a general

solution can be written in the form

y = dx (J) (1-9)

To show that this is a solution, it is necessary only to dif-

ferentiate y with respect to x aiid show f.hat the derivative

satisfies equation (1-8). The presence of the arbitrary (‘on-

stant C makes the solution general.

As an example of a linear equation take

Comparison with equation (1-8) shows that P = l/x and

Q = a;^. Substitution in (1-9) then gives

y — dx -}- C)

Problem 6. Find the solution of the linear equation

I + 2X, = 2.-

(1
-11 )
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that passes through the point x = 0,y = 1.

Problem 6. Find the solution of

1 • 4 •

^ + y sin X = A sin x

that passes through a- = 0, y = ]

.

Problem 7. Find the solution of

dx
+ y A

that passes through x =
1

, ?/
= 1

.

Fig. 1-2,—An illustration of the geometrical representation of a definite integral by
means of an area.

6. Definite and Indefinite Integrals.—Most methods for

finding the solution of a differential equation give tlie result in

the form of an integral. The evaluation of such an integral in

terms of simple functions may be difficult or impossible, but

this is largely a matter of notation. The significance of the

integral is quite clear in any case, since it can always be evalu-

ated to any desired degree of accuracy by graphical or numerical

methods.

A useful definition of the integral of a function /(x) between

two limits Xi and Xj is that it is the area bounded by the curve

representing /(x), the x axis, and the straight lines perpendicular

to the X axis at Xi and Xj. This is shown in Fig. 1-2. It can be
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evaluated, if necessary, by plotting the curve and measuring the

proper area. Such a definite integral is a number; it is not

a function of x.

The integrals that appear in the solutions of differential

equations are not, however, usually definite integrals. They
are indefinite integrals. An indefinite integral can be defined

a.s a function whose derivative is the integrand in question. It is

often convenient, however, to define it in the same way as a

definite integral by means of an area. If the definite integral

is evaluated for different values of its upper limit, it can be

regarded as a function of the upper limit. Thus

j f(x)dx + C = jj^f{u)du + C (1-12)

The difference between the constants C and C' is conne(;f.(Ml

with the lower limit Uo from which the integration is carried

out, and the variable u is used under the integral sign on the

right-hand side to distinguish clearly between the variable of

integration and the limit. On this basis an indefinite integral

can be evaluated graphically or numerically by evaluating

a definite integral for different values of the upper limit and

then plotting or tabulating these values as a function of this

upper limit.

Problem 8. Let f{x) be such that it is equal to zero for a; < 0, is

equal to x for 0 < a; < a, and is equal to a for a: > o. Evaluate the

indefinite integral

I = J f(x)dx

Problem 9. Integrate f{x) when f{x) = sin x for 0 < x < tt and

is zero elsewhere.

6. Simpson’s Rule and Numerical Integration.—It is usually

possible to evaluate integrals numerically with greater accuracy

and less labor than is involved in graphical methods. One

numerical method, called Simpson’s rule, is based on the idea

of approximating small portions of the integrand by a quad-

ratic curve and then integrating the quadratic function analytic-
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ally. Consider the situation indicated in Fig. 1-3 when it is

desired to integrate the function f{x) between the limits Xo

and X2 - The numerical procedure is to replace f{x) by the

polynomial ao + aix + ^ 2^:^ that equals the given function

J{x) for Xqj x^j and x^- Xi is selected so that Xi — Xo — x^ — Xi.

The approximation involved is in the replacement of f(x) by this

polynomial. The pol^niomial can be direcdly integrated.

Fia. 1-3.—Approximation to an arbitrary curve by moans of a qiiadratie eiirvo, as used
in Simpson’s rule for numerical integration.

To determine tlie coefficients in the polynomial, it is con-

venient to move the origin of x to Xo and then to write the three

equations that represent the intersection of the polynomial

curve with the curve fix) at the three points (xo,?/o), (^n2/i),

(^ 2 , 2/ 2 ). These arc

ao = Vo ]

ao + aji + a 2h/^ = ?/i
[

ao + ai2h + a24:h^ = ?/2 j

From these it follows that

ao = 2/0

ai = - ^ ( 2
2/0
- 22/1 + 2 2/2

di = 2^-2 (2/2
- 22/1 + 2/0)

0-13)

(l-13a)



12 PRINCIPLES OF MA THEMA TICAL PHYSICS

The integral of the polynomial carried out between the limits

0 and 2h is

8 /)'*

I = 2hao + 2h^ai +

~ (y<> + 4?/i + 2/ 2 ) (1-136)

This expression is entirely independent of the position of the

origin. It depends only on the three values of the function

Uo, yi, and yi and the distance h between the corresponding

values of x.

As indicated above, the only approximation involved in

this method of integration is the rephuauncnt of f{x) by the

quadratic expression. This will be more exact the shortei’

the range of integration, or the smaller the value of h. Hence,

to get a good approximation to the desired integral, it is possible

to divide the region of integration into an even number of

regions of lengi.h h and to integrate each pair of them by the

above process. The result of adding these all together is

then

^ = I iVo + 4?/i + 22/2 + 42/3 -f 2r/4 + 42/6

+ * *
* + y2n) (1-14)

This is the usual form of Simpson’s rule.

Problem 10. Use Simpson^s rule to evaluate tlie integral

{2aX — dx
Jo.2a

^ ’

Divide the range of integration into four equal parts, and compare the

result with the result of analytic integration.

Problem 11. Integrate the sin x from x = 0 to x = tt by Simpson

rule. First divide the range of integration into two intervals and then

into four, and compare the results with the exact value of the integral.

Problem 12. Work out a formula analogous to equation (1-136) by

dividing the range of integration into three equal parts and approxi-

mating the function by a cubic expression.
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Problem 13. Evaluate the integral

numerically.

dx

7. Differentiation of Integrals.—A definite integral is a

function of the limits of integration and of any parameters

that may be in the integrand; therefore it can be differentiated

with respect to any of these quantities. It is not, however,

a function of the variable with respect to which the integra-

tion has been carried out. Since it is occasionally necessary

to differentiate integrals, the rules will be written down here

without any furtJier discussion. They are almost obvious

from the definition of an integral.

Differentiation with respect to the upper limit:

= /(^>0 (1-1 5a)

Differentiation with respect to the lower limit:

~ f{x,t)dx = (1-156)

Differentiation with respect to a parameter:

I / = L ^
Problem 14. Illustrate the use of equation (l-15c) by integrating

sin tx between x — a and x = h and then differentiating the integral.

Show that the result is the same as that obtained by first differentiating

with respect to t and then integrating with respect to x.

Problem 16. The density of a thin straight rod varies as e^^/x,

where x is measured along the rod. One end of the rod is at x = a

and the other end at a: = h. Both a and h are positive. If the cross

section of the rod is constant, find the rate of change of the total mass

of the rod with a change in a.

8. Second-order Equations That Are Reducible to the First

Order.—Some second-order equations can be reduced to the
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first order by considering dyidx as a new variable p. Among
these are two important classes.

a. Equations That Do Not Contain y .—These are of the

form

Upon substitution of p for dy/dx this immediately becomes a

first-order equation,

If this can be solved to give p as a function of x, the result is a

first-order differential equation whose solution gives y as a

function of x.

As an example, consider the ecpiation

— a: sin a; =0 (1-17)

>p>o^ 0 (1-1 6a)

Substitution of p for dy/dx gives immediately the first-order

equation

^ ^ sin X (l-17a)

This equation is separable, and its general solution is

p = A — X cos X + sin x =
dy

dx
(1-176)

where A. is the arbitrary constant. This again is a first-order

equation that is separable; therefore its general solution can

be written down.

y = B Ax — a; sin a; — 2 cos x (l-17c)

This solution has two arbitrary constants, A and B, and

both of them are necessary to give a general solution. In

the same way in which a first-order equation will have one

arbitrary constant in its general solution, a second-order

equation will have two such constants. To select any one

function as a solution of the equation, it is necessary to have
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two additional specifications. These may be that the curve

passes through two specified points, that it passes through some
one specified point with a specified slope, or some other pair of

similar conditions.

Problem 16. Plnd the solution of equation (1-17) that passes

through the points {x = Q,y = 0), and {x = v, y = 0).

Problem 17, Find the solution of equation (1-17) that passes

through the origin with a slope of —1.

Problem 18. Find the solution of

d'^y

dx'^
— x”'{m > 0)

that passes through {x = \, y = \) v'ith zero slope.

Problem 19. Plnd the gcaieral solution of

(1-18)

(1-19)

h. Equations That Do Not Contain x .—These are

form

of the

( 1 -20)

A simple substitution of p for dy/dx does not suflfice in this case;

but if it is accompanied by a transformation that makes y
the independent variable, a solution can be sought that gives

p as a function of y. This can be done by making use of the

fact that

d'^y _ dp _ ^^ _ dp

dx'^
^ dx ~ dy dx ^ dy

Then equation (1-20) becomes

/ {p ^’P’y) 0 (l-20a)

which is a first-order differential equation with p as the depend-

ent variable and y as the independent variable. The general

solution of this equation will give p as a function of y and an

arbitrary constant. This again is a first-order differential
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equation, whose solution gives y as a function of x and a second

arbitrary constant. As an example, consider the equation

The substitution of p for dy/dx leads to

This is now a first-order equation that is separable, and the

general solution is

This result can be transformed to

dx

which is again separable and has as its general solution

1 !

y = Aix + Br-jJ

(l-2lb)

(l-21c)

The member of this family of curves that passes through the

point (x = 0, y = 1) with zero slope has B = 0, A = —1 so that

y = (1 - x*)h

Problem 20. Find the solution of

d^y

y dx^
+ + 1=0

that passes through the origin with zero slope.

Problem 21. Find a curve such that its tangent at the point {x^y)

crosses the y axis at a distance x above the origin.

Problem 22. Find the general solution of

— a?/ = 0

when a. is positive.

Problem 23. Show that, if y satisfies the equation

d^
dx^

+ /i/ = 0
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where 7 is a function of x only, the quantity u = satisfies the

equation

I

.jdu
,

„(1I

Problem 24. Find the general solution of

_ dy

dx^ dx

and interpret the arbitrary constants in terms of the curves repre-

senting 2/ as a function of x.

Problem 25. Find a curve passing througli the origin such that the

projection of the normal on the x axis is equal to sin x.



CHAPTER TI

THE MECHANICS OF PARTICLES

In the study of the meehanies of particles, we shall be

concerned almost exclusively with the derivation of conse-

quences of the fundamental laws. In the early stages of the

development of a science, interest centers principally in the

study of experimental results for the purpose of discovering

in them the laws that can be formulated. The science of

ordinary mechanics passed this stage more than two centuries

ago. There is now no question but that the behavior of ordi-

nary material particles and rigid bodies, moving with veloci-

ties small compared with the velocity of light, is correctly

described by Newton's laws of motion. The interest now lies

in the purely mathematical problem of finding the conse-

quences of these law's in a variety of cases and in finding the

forces that act under different circumstances.

It is possible, of course, to state the fundamental laws

of mechanics in other forms than that selected by Newton.

Hamilton’s principle, which is one of these other forms, will

be treated in a later chapter. The original form, however,

appeals so directly to one’s sense of physical reality that there

seems to be good reason for using it as the basis from which

the others can be derived.

1. Newton’s Equations of Motion.—^Newton’s first and

second laws of motion for a system of n particles can be expressed

by means of 3n differential equations of the second order. Let

the mass and the rectangular coordinates of the fth particle be

TUi and Xi, yi, Zi, and let the three corresponding components of

the total force on the fth particle be Xi, Yi, Zi.

In this book the coordinates x, y, z wall always refer to a

right-hand system of Cartesian coordinates such as is shown

in Fig. 2-1. This specification is of some importance in the

formula for vector multiplication and in the electromagnetic

18
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equations, where a change from a right-hand to a left-hand

system involves a change in sign.

Newton’s equations of motion for the fill particle are then

For the cases to which these equations will be applied, the mass
is a constant, and the equations can be written

Mi

Fig. 2-1.- a right-hand .system of rectangular coordinate axes.

These are ecjuations of the second order and must be treated by
methods suitable for such equations. In some cases they can

be reduced to equations of the first order and solved by the

methods of the previous (diapter. The solutions are expressions

that give the positions of the particles as functions of the

time and the 6n. arbitrary constants of integration. These

arbitrary constants can then be determined from the known
values of the positions and velocities at any given time.

Equations (2-1) and (2-2) are generally known as Newton’s

equations, although much of their content was developed by

Galileo.

The confidence in the validity of these equations is based

upon the correctness of their solutions as descriptions of observed

motions. It is important to remember, however, that their

use involves the ability to define the quantities contained in
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them. The idea of accleration can be made precise in terms of

ideas of position and time. Tliese must be assumed. The
ideas of mass and force are less common, and Newton’s attempts

at definitions of them were not very satisfactory. It is not

difficult to get an intuitive idea of force in terms of muscular

sensations, although it is not so easy to get the precise signifi-

cance of the term as used in mechanics. The variety of the

possible ideas is well illustrated by the wide range of concepts

covered by the term force in popular language. It is also

possible to get an intuitive idea of mass, although again it is

not so easy to distinguish it from bulk or weight. These

definitions will not be discussed here, since it is assumed that

the reader has an adequate understanding of them. For

further analysis, reference may be made to the work of Mach.’*'

2. The Energy Integral.—For a complete solution of a

mechanical problem, it is necessary to know the forces on eacli

particle, Xi, F,-, Zj, as functions of the positions of all the

particles and of the time. It is the knowledge of these forces

that constitutes the knowledge of the physical laws governing

the situation. Because of Newton’s equations, a statement of

the forces is equivalent to a statement of the accelerations;

and the accelerations at all times together with the initial

positions and velocities determine the positions at any later

time. It is possible, however, without a complete knowledge

of the forces, to obtain some integrals of the equations that

depend on very general properties of the forces. Such integrals

are often of considerable assistance in the solution of a problem.

If in equations (2-2) one writes Xi for dxi/dt and multiplies

both sides of the equation by Xi, the result is

nn^ixi =Xi^ (2-3)

Multiplication by dt and integration of both sides gives

^rriiX^ = fXi dx, -f- Ci (2-4)

• Mach, E., “Science of Mechanics,” p. 238, The Open Court Publishing

Company, LaSalle, III.
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The quantity X,- dxi is, by definition, the work done by the

component of force X; wiien the particle is displaced by the

amount dXi. Correspondingly, the integral is the amount of

work done by X,- when the particle moves between the limits of

integration. This, however, is not a very useful quantity, for

only in especially simple cases is the value of the integral

independent of the particular path over which the particle is

moved.

In case the x component of the force, X,-, is a function of

the coordinate Xi only, the integral jXj dxi can be evaluated

and expressed in terms of the values of x,- at the limits only.

Such cases occur in some simple problems, such as that of a

projectile subject to a constant downward force. If the x axis

is taken as pointing vertically upward, jX dx — —mg(x — Xo)

where m is the mass of the particle, g the acceleration of gravity,

and Xo is an arbitrary constant or lower limit of integration.

The negative of this quantity, mg{x — Xo), may be (tailed the

potential energy in the x direction, when the partiede has the

coordinate x. If it is designated by V^, equation (2-4) leads to

Tx + T^x = C (2-^

where Tx = (m/2)x^ is the kinetic energy in the x direction.

It is only in special cases that sxich a separation of the

potential energy into parts along the various axes can be

carried out. More frequently, each component of the force

depends on all the coordinates of the system, and the work

done by any one component of the force depends upon the

path along which the partiede is moved. For example, con-

sider the case of a single particle attracted toward the origin of

coordinates with a force that is inversely proportional to the

square of the distance. The force on the particle when it is

at the point {x,y,z) is X/(x^ + y* + 2^), directed toward the

origin. The x component of the force is then

—Kx
(x* -\r

X (2-6)
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Now let the integral be evaluated when the particle is moved
from (a:o,0,0) to (xi,0,0) along the x axis. The integral can be

easily evaluated since y and z are always zero.

X = - K and -/
(J-I.O.O) K

(xo.O.O)

do: = -
Xi

K
Xq

However, suppose the particle is moved between these two
points along a different path. Suppose it is moved along the

Fig. 2-2.—Two possible paths of integration between {xa, 0, 0) and (xi, 0, 0).

path indicated in Fig. 2-2. Along this path the denominator in

equation (2-G) is constant from (xo,(),0) to (xi,x/xo^ — Xi^,0),

and therefore X = — Xx/xo®. The integral is then

over the first part of the path. Along the second part of the

path the integral vanishes, since there is no motion in the

X direction. It can be seen clearly from this example that

the value of such an integral may depend very strongly upon

the path over which the particle is moved, so that the integral

itself has a very restricted usefulness.

In spite of the fact just illustrated, there are a great many
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forces of common occurrence, with such a form that the sum
of the set of integrals

n

~ X + Yidxji + Zidz^) = F(xi,j/,,2i, . . . ,
z„) (2-7)

does depend on the limits of integration only. This integral

can then be given the name, the potential energy of the system.

The sum of the terms containing the squares of the velocity

components is called the kinetic energxj of the system T, and
the sum of equations (2-4) gives

^ + Zi^) - J
(Xi dxi -f Yi dxji -b Zi dzi)

j
i * 1

= T -b F = C
This is the theorem of the conservation of energy. It states that

the sum of the quantity defined as T and the quantity defined

as F does not change with the time but is a constant through-

out the motion.

There are several points in connection with the law of

conservation of energy that are worthy of mention and emphasis.

1. The law is in one sense a description of a certain class of

forces, the conservative forces. Only when the forces involved

are of this type does the law apply. When this is recognized,

it can also be recognized that the quantities defined as energies

have been so defined because their sum is a constant. When
the kinetic and potential energies are properly defined, the

conservation of mechanical energy is a direct consequence of

the laws of motion. It is not an additional law, but it is often

of great assistance in handling mechanical problems.

2. The potential energy can be defined in two ways. It

can be defined, as above, as the negative of the work done by

the forces of the system when the particles move from one

configuration to another. The final configuration is the one

to which the potential energy is assigned. The initial con-

figuration is arbitrarily selected as that for which the potential

energy is defined to be zero.

On the other hand, the potential energy can be defined as
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that function of the coordinates V{xi,y{,z^) whose negative

partial derivatives are the components of the forces.

- (2-8)

These two definitions arc obviously equivalent, for if these

values of the forces are inserted in equation (2-7) it becomes an

identity.

3. The actual value of the potential energy is entirely

arbitrary. Equation (2-8) is uiiafTccted by the addition of any

constant to V, and in e(iuation (2-7) the position of the initial

configuration can be arbitrarily chosen.

4. The potential energy as defined in equation (2-7) is

the negative of the work done by the forces of the system.

Another point of view is to regard it as the work done by some
outside agent in moving the system, against the forces of the

system, from the initial to the final configuration. Since

the force exerted by the outside agent must balance and over-

come the forces of the system, the change in sign is accounted

for.

In the case of the particle subject to the uniform force of

gravity, the outside agent must exert an upward force of mag-
nitude mg, and the work done by this agent is mg{x — x^.

Problem 1. Use the energy integral to determine the height to

which a projectile will rise when it is thrown upward.

Problem 2. Show by integration along the two paths in Fig. 2-2

that the sum of the work done by all components of the force is a

function of the end points of the path only.

3. Newton’s Third Law of Motion and the Momentum
Integral.—In addition to his first two laws of motion which can

be stated in the equations of motion, Newton stated a third

law of motion according to which two interacting bodies suffer

equal and opposite changes of momentum in each interval of

time. This implies that the force on one particle due to a second

is equal and opposite to the force on the second due to the first,

and that this equality is independent of the velocities of the

two particles.
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Let Xij be the force on particle i due to particle j. Then

Z.- = ^ + X.o (2-9)

J

The sum in this equation is over all values of j from 1 to n.

Since this includes the case of j — i, the quantity is defined

to be identicall}^ zero, since it has no real significance. The
quantity Xi^ is the x component of the fon^e on the ith particle

that is not associated with any other particle. It can be

regarded as an outside’’ force. Newton’s third law states

that

X,, - -X,, (2-10)

If the outside forces are zero and the only forces are those

between particles, equation (2-1) for the fth particle becomes

If a similar equation is written for each particle and they are

all added together, the result is

-1

1

“ I = 0 (2-12)

The double sum is over all values of i and j from 1 to n. It

is zero because to each Xij must be added X^/, and the sum of

this pair of quantities is zero by equation (2-10).

The integral of equation (2-12) can be immediately written

down. It is

(2-13)

The constant is called the x component of the total momen-
tum of the system. The same argument can be applied to the

other two directions, and the result is that all three components

of the momentum are constants under the conditions specified,

viz., that there are no external forces acting. This is called

the theorem of the conservation of momentum. It is a direct
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consequence of the laws of motion, including the third. One
might even say that Newton’s third law of motion is a statement

of the conservation of momentum.

Problem 3. Write out equation (2-12) for the case of three inter-

acting particles, and show that the sum of the forces is zero.

Problem 4. Show that the rate of change of the total momentum
is equal to the total external force acting.

Problem 6. The coordinates of the center of mass of a system of

particles are, by definition, given by

XlUiXi

'Errii
^

^nii
(2- 14 )

Show that the center of mass will move in the same way as a

particle whose mass is ecpial to the total mass of the system and which

is acted on by the sum of all the forces acting on the particles of the

system.

Show that if the only forces are mutual forces between the particles,

the center of mass of the system will move as a free particle moves.

4. The Conservation of Angular Momentum.—If the first

of equations (2-2) is multiplied by yi and the second by Xi^ the

difference of the two equations is

w) = ^2
-15 )

The left side of this can be transformed to give

THi ^ ~
i Vi^i (2-16)

The quantity in the parentheses is equal to twice the rate at

which a perpendicular from the particle to the 2 axis sweeps

out area over the x-y plane. The right-hand side of (2-16) is

called the moment of force about the 2 axis, acting on the fth

particle. The quantity mi{Xiyi — yiXi) is called the angular

momentum or, sometimes, the moment of momentum of the

fth particle about the 2 axis. Equation (2-16) states the

theorem that the rate of change of the angular momentum
about an axis is equal to the moment of force about that axis.

If both sides of equation (2-16) are summed for all the



THE MECHANICS OF PARTICLES 27

particles, the sum of the left sides gives the rate of change of

the total angular momentum of the S3^stem and the sum of the

right sides is the total moment of force.

Problem 6. Show by a diagram that Xiiji — yiXi is twice the areal

velocity of the zth particle about the z axis.

Problem 7. Show that the moment of force acting on a single

particle is equal to the component of force perpendicular to the radius

vector to the particle from the origin, multiplied by the length of the

radius.

Problem 8. Show that the rate of change of the angular momen-
tum about the x axis is equal to the moment of force about that axis.

Problem 9. Show that, if a single particle is subject to a force

that is directed toward or away from the origin of coordinates, the

three components of angular momentum will be constants, and the

particle Avill move in a plane.

Problem 10. Show that for a system of three particles subject to

no external forces and in which the mutual forces betAveen pairs of

particles are directed along the lines connecting them the total angular

momentum about any axis is a constant.

Problem 11. Write and integrate the equations of motion for a

particle subject to no forces. Evaluate the arbitrary constants in

terms of the initial position and velocity, and evaluate the components

of angular momentum.

6. The Conservation Laws of Mechanics.—The three con-

servation laws just discussed are the most widely useful. In

special cases, when special kinds of forces are involved, other

quantities also may be conserved. Such (plantitles are not

given names that have come into general use, for they repre-

sent situations that are too special to be of wide application.

It is worth while to summarize the conservation laws and

the conditions under which they apply.

. The law of conservation of energy is valid when the

forces are conservative, i,e,, when they can be derived from a

potential energy that is a function of the coordinates only.

This statement is really a tautology, for it is only in such cases

that the potential energy is defined.

. The law of conservation of momentum is valid when
the forces obey Newton^s third law of motion. Again this
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statement is fairly trivial, for Newton’s third law of motion is

equivalent to the law of conservation of momentum. The

physical significance of the third law of motion is that it does

hold in a very large number of cases and can be made to hold in

others by suitable definitions.

c. The law of conservation of angular momentum is valid

when Newton’s third law of motion holds and when the forces

between particles are central forces. This is a more severe

restriction than is necessary for the conservation of linear

momentum, but it nevertheless is satisfied in a great many
cases.

6. The Motion of a Projectile.—Consider a particle under

the influence of gravity only. Take a system of axes in which

the z axis points vertically upward, so that the x and y axes

are horizontal. Oidy the case in which the particle remains so

near the surface of the earth that, the acceleration of gravity

may be (ionsidered constant will be treated here. Under these

conditions the e(piations of motion are

_ n — n
d-z _

df^ dt^ W ~ (2-17)

Although tlicse arc cciuations of the second order, tliey can he

reduced at once to first-order equations of which tlie integrals

are

.
dy

.
dz

, . .

dt
~ ii 21

~

where to, t/o, and io are constants of integration whose values

must be delermined by the conditions of the problem.

Equations (2-18) can be integrated again, to give

X = xot xo y = yot + Vq 2 = -f- ^4 + zo (2-19)

These equations give the position of the particle as a function

of the time. The equations for x and y show that the pro-

jection of the path on the x-y plane is a straight line, so that

it is possible to take this line as the x axis and to make y always
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equal to zero. The solution of the problem is then given by

X Xo^ "f“ ‘^0 and z — — -j- ZqI -j~ (2-20)

Problem 12. Interpret the constants in equations (2-19) and
(2-20) in terms of the initial position and velocity of the particle.

Problem 13. Show from eciiiations (2-19) that the projetdion of

the path on the' x~y plane is a straiglit line.

Problem 14. Find the transformation of coordinate's x, 'y, z, in

equations (2-19), to x', 7y', z' such that ;//' will be identi(‘jLlly zero.

Problem 16. Eliminate i between eepiations (2-20) to find the

trajectory of the particle.

Problem 16. Find the constants of integration in eepiations (2-20)

in terms of th(^ initial position, speed, and inediuation of the patli to

the horizontal.

Problem 17. Tf a particlo skirts from the origin of (aiordiniiios,

with a speed v, along a path that makes the angle a with the horizontal,

at what distaiK^e from the starting point will it cross a line, through

the origin, that makes the angle d with the horizontal?

Problem 18. Show that the law of couseiu'at ion of energy a])|)lies

to the motion of a projeihile.

Problem 19. ('ompiite the comiionents of momentum and of

angular momentum for a project,ile, and show that their rates of

change are given by equations (2-11) and (2-U)).

If it is desired to take into ai^eount the resistance of the air

through which the partiede moves, it is neces.sary to include in

the differential ecjuations of motion some terms to represent

the resisting force. The exaid law of force is (;omplicated, hut

for very low velocities the resistance may be taken as pro-

portional to the first power of the velocity. Let the constant

of proportionality be R, and let the motion be in the x-z plane.

This restriction of the motion to a plane does not affect the

generality of the result, since it can be shown that the motion

will always be in a vertical plane. The equations of motion are

Xx R dx , dH

dP m dt dt'^

R dz

m dt
^ (2-21 )

These equations can be reduced to those of the first order by
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the methods of the previous chapter and can then be solved by
the separation of the variables. The solutions are

Tn A
y. — ^

g-Bt/m

.= + B (2-22)

The quantities A, B, C, and D are the constants of integration,

which must be determined from the initial conditions.

Problem 20. Find the solutions of equations (2-21 ) by the methods

of Chap. I.

Problem 21. Evaluate the constants in equations (2-22) in terms

of the initial position and velocity of the particle.

Problem 22. Show that the velocity of a partiede falling under

gravity and against a I’csistance proportional to the velocity tends to

approach a constant value as the time increases.

7. Simple-harmonic Motion.—One very common type of

motion is that in whir^h a particle is attracted toward a position

of ecjuilibrium with a force proportional to the displacement

from it. When the motion is confined to a straight line, the

equation of motion is

m
d^x

di^
—ax (2-23)

This may be integrated by the methods of Chap. I and gives

X = yl sin (cot -}- 5) or x = A cos (co< -f- 8') (2-24)

These two results are essentially the same, since one can be

transformed into the other by setting 5 = 5'
-f- (7r/2). A and

6 are the arbitrary constants of integration, while w = v^a(m
and thus is determined by the differential equation itself.

It is often convenient to write equation (2-24) in a slightly

different form. If the sine of the sum is expanded, the expres-

sion for X becomes

X = A sin cot cos 5 -f A cos cot sin 5

whence

X = C sin wf •+ D cos cot (2-25)
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Problem 23. Integrate equation (2-23) by reduction to an equa-

tion of the first order and the separation of variables.

Problem 24. Evaluate the constants in eciuation (2-24) in terms

of the initial position and velocity of the particle.

Problem 26. Evaluate the constants in ecpjation (2-25) in terms

of the initial position and velocity of the particle.

Problem 26. Show from the definition of potential energy that

ax^/2 is the potential energy of a particle attracted toward the origin

Fig. 2-3.—When a particle is attracted toward a fixed point witli a force proportional
to the distance from it, the orbit is an ellipse with the attractiiiK point at the center.

of X, with a force equal to —aXj when the potential energy at the origin

is set equal to zero.

Problem 27. Evaluate the total energy of a particle moving with

simple-harmonic motion, in terms of its initial position and velocity.

Problem 28. Evaluate the energy of a particle moving with

simple-harmonic motion, in terms of the amplitude of vibration and

the frequency.

Problem 29. If a particle is permitted to move in a plane and is

attracted toward the origin with a force proportional to the distance

from it, the motion is called plane simple harmonic. Write and solve

the differential equations for this case. Eliminate t betw^een the two

solutions to get the path of the particle, and show that this is in general

an ellipse (Fig. 2-3). Find the conditions under which it is a circle.

Problem 30. Show that, if in plane simple-harmonic motion the

velocity at any time is equal to zero, the motion is in a straight

line.
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Problem 31. Show from the theorem of areas that a three-dimen-

sional simple-harmonic motion will lie in a plane.

Problem 32. Show from the theorem of areas that a plane simple-

harmonic motion has a constant areal velocity, and find this areal

velocity in terms of the initial conditions.

Problem 33. Show tliat the bob of a simple pendulum moves with

simple-harmonic motion when the amplitude is small.

8. Motion under an Inverse-square Force.—One of the first

uses to which Newton put his formulation of the laws of motion

was the description of the motions of the planets. He found

that the observed motions could 1)C described by the statement

that every planet attracts and is attracted by every other

planet and the sun with a force which is proportional to tlie

product of the masses of the two bodies and inversely propor-

tional to the square of f.he distance between them. The planets

are small enough, compared with the distances between them,

so that they can be considered as particles for a first approxi-

mation. For more accurate results it will be shown later that

the distances to be taken are those })etween centers.

The formal statement of this law of gravitation is that

between every pair of particles there is a force of attraction

whose magnitude is given by

r- (2-26)

It will be shown later that the same law holds between larger

spherical bodies wliose density is a function of the radius only,

if the distance r is measured between the centers.

a. Separation of the Center of Mass .—To write the dif-

ferential equations of motion let Xi, ?/], Zi, and mi be the coordi-

nates and mass of one body and 0*2, 2:2, and m2 those of the

other. The equations for the x coordinates are then

mi

m2

d'^Xi

Tc

dC

—Gm^m 2 {xi — 0: 2)
^

[(xi - x^y + (2/1 - yiY + (Zi - 22)^]*

— Xi) _
[(Xi - X2)=' + (?/i - y^y + (21 - ZiYY ‘

(2-27)
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Now define the new coordinates

m^Xi + 1712X2

mi + 1712

X = ^

Y = yi - 7]

Z = zi-t

= miZi + m.2Z2
^ W ] + 7/72 ^ Wi + 7772

Wo

777i + ?«2

nij

t/li + 1772

-—
(Zi — Z2)

Wi + Wi2

(O-I - X2)

0/1 - 2/ 2 )

(2-28)

Combining equations (2-27) and (2-28) leads to the equations

of motion in the new coordinates,

d^X 0777^

= 0
df^

^

X
(wx + w,2)^ (X^ -f -f- z-^r

KX
(X^ -f- + Z‘^y

(2-29a)

(2-296)

and similar equations in the other two pairs of coordinates.

Equation (2-29a) describes the motion of the center of mass, and

(2-296) describes the motion of the particle 7711 about the center

of mass. The three differential equations in X", 1^, Z are just

the same as would be written for the mot ion of a single particle

about a fixed center of force, when the constant K is given the

proper significance. The ratios of the forces along the three

axes are equal to the ratios of the coordinates X, Y, Z, so that

the force is one of attraction toward the center of mass.

6. Motion about the Ce/zler of Mass u/idcr a Force toward It —
Motion of this kind satisfies the law of the conservation of

angular momentum, and therefore the orbit of the particles, in

the X", Y, Z coordinates, will be confined to a plane. Let

this be the X-F plane. It is then convenient to use plane

polar coordinates {r,d) in this plane. Hence let Z = 0, and

X = r cos d Y = r sin 6 (2-30)

In these coordinates the force is directed along r toward the

origin and is proportional to X/r*.
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The equations of motion (2-296), when expressed in these

plane-polar coordinates, have the form

dt^ ^\dt)
K dr dd

dt dt
+ r

d^d

dt^
- 0 (2-31)

These two equations show clearly the complications that are

met in transforming to other than rectangular coordinate

systems. The second derivative of a coordinate is not always

equal to the acceleration in the direction in which the coordinate

is increasing. The first of the equations shows that, even when

the distance r is constant, a force along r is necessary to main-

tain the motion. Heiice there can be an acceleration along r,

even though r does not change at all. The second equation

gives the force and acceleration perpendicular to r. This,

again, is not simply the second derivative of 6 but involves also

the first derivative of d as well as the first derivative of r. In

using these equations in polar coordinates, it is very important

to keep these facts in mind.

Problem 34. Work out in detail the transformations leading to

equations (2-29o) and (2-296).

Problem 36. Carry out the transformation to obtain equations

(2-31) from (2-2) and (2-30).

Problem 36. Express the theorem of angular momentum in these

polar coordinates.

Problem 37. Multiply the second of ecpiations (2-31) by r dt,

and integrate. The result is one of Kepler’s laws of motion.

To find the orbit of a particle moving around a center,

equations (2-31) could be integrated, and then the time could

be eliminated between the solutions. A more convenient

method, however, is to eliminate the time in the differential

equations and so to obtain a differential equation of the orbit.

This may be done by noting that dr/dt = {dr/d6){dd/di) and
that, from Prob. 36, dd/dl, = C. If, then, u — 1/r, the

result is

d^u
,

K ..

j/)2 “h ^ (2-32)

If the right-hand side of this equation were zero, it would be

of the same form as (2-23) and so would have the same form of
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solution. It can be reduced to this form by subtracting the

constant on the right from the dependent variable and calling

the result a new dependent variable. The solution is

u = "b ^ cos (0 -j- 5) (2-33)

Problem 38. Obtain equation (2-32) from (2-31).

Problem 39. A conic section may be defined as a curve such that

the distance from any point on it to a fixed point, called the focus^

Fig. 2-4.—^Whcii the force of attraction is inversely proportional to the square of the

distance from the attracting center, the orbit has tliis center at one focus. Note the

difference ])ctween this case and that shown in Fig. 2-3.

divided by the distance from the same point on the curve to a fixed

line, called the directrix, is ecjual to a constant e, called the eccentricity.

Using this definition, show that ctiuation (2-33) represents a conic

section with the focus at the origin (see Fig. 2-4). Show also that the

eccentricity is ecjual to AC^/K, in terms of the constants of equation

(2-33).

Problem 40. If € < 1, the conic section is an ellipse. For this

case show that the major and minor semiaxes are

KC^
j _ (2-34)

Problem 41. Find the potential energy of a particle that is

attracted toward the origin with a force inversely proportional to the

square of the distance. The potential energy is set equal to zero for

the particle at an infinite distance from the origin.
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Problem 42. Find tho total energy of a particle moving in an
ellipse, and show that this energy can be expressed as a function of the

major axis and the constants of the differential equations only and is

independent of the minor axis.

Problem 43. Find the constants in equation (2-33) in terms of the

initial position and velocity of the particle.

Problem 44. A particle is given an initial velocity perpendicular

to the line connecting it with the attracting center. Find the values

of this initial velocity for which the particle will move in a cii'cle, for

which it will fly off and never return, and for which it will move in an
ellipse.

Problem 46. The area of an ellipse is mh, and the rate at which
the area is covered is C/2. By using this fact, find the time necessary

for a planet to go around the sun in terms of the constants describing

the orbit, and show that the square of the period is proportional to

the cube of the major axis.



CHAPTER III

LINEAR EQUATIONS OF ORDER HIGHER THAN THE FIRST

Most problems in physics require the solution of differential

equations of higher than the first order. In the preceding

chapter such equations were solved by reduction to first-order

equations and subsequent integration in steps. This process

is not always possible, and when it is possible it is not always

the most convenient method. For the class of linear differential

equations there is a general theorjq so that in treating physical

problems an attempt is usually made to approach the matter in

such a way that the resulting differential equations are linear.

Hence such e(iuations are very important in mathematical

physi(vs, and this chapter will treat the methods necessary for

the solution of some of the simpler linear equations.

1. General Properties of Linear Differential Equations.

The general linear differential equation is

dx"

d"

dx'^~^
+ P2{X)

dx"''~^
+ • • = Q{x) (3-1)

Each term on the left-hand side contains y or a derivative of y
to only the first power. The various coefficients, and the

quantity Q that may appear on the right-hand side, are func-

tions of X only. The equation as writfen al)ove is a nonhomoge-

neous equation. When Q(x) is omitted or sot equal to zero,

the equation is called a homogeneous linear differential equation.

These two forms are of importance, for the general solution of

the nonhomogeneous equations is obtained by adding a particu-

lar integral to the general solution of the corresponding homo-

geneous equation.

The property of linear equations that makes them so amen-

able to solution is contained in the following two statements:

1. The sum of any two solutions of a homogeneous linear

37
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differential equation is also a solution of the equation, and the

product of any solution by a constant is a solution.

2. If any solution of the homogeneous equation is added to a

solution of the complete ecjuation, the sum is another solution

of the complete nonhomogeneous equation.

On the basis of these statements, any solution of a homo-
geneous linear differential equation can be multiplied by an

arbitrary constant and still be a solution, and the general

solution can be expressed as a sum of n terms, each of which is

a solution multiplied by an arbitrary constant.

On the other hand, a solution of the nonhomogeneous equa-

tion cannot be multiplied by an arbitrary constant, for it would

then no longer satisfy the equation. There can be added to it,

however, a general solution of the corresponding homogeneous

equation, which will contain n arbitrary constants. The
sum will then be the general solution of the nonhomogeneous

equation.

Consider, for example, the nonhomogeneous linear equation

^'§“"^^ + 2/
= 2]ogx (3-2)

The corresponding homogeneous equation is

+ <3-2a)

One solution of this homogeneous equation is

yi = X (3-26)

as can be checked by substitution. This is still a solution when
multiplied by any arbitrary constant.

Another solution of equation (3-2o) is

yt = X log X (3-2c)

so that a general solution of (3-2o) is

y = Aij/i -1- A 2J/2 = Aix -H AiX log x (3-2d)

Each term of equation (3-2a) operates separately on the two
terms of (3-2d) so that each solution separately gives zero
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when substituted. The two terms in (3-2d) do not interfere

with each other in any way so that the sum satisfies the dif-

ferential equation. That this sum is a general solution follows

from the presence of the two independent arbitrary constants.

To find the general solution of the complete equation one
must find some particular integral of it. In the case of equa-
tion (3-2) this can be taken as

Vp = 2 log X 4- 4 (3-2e)

That this satisfies the difl'erential equation can be shown by
substitution, but it will not satisfy the eciuation when multi-

plied by an arbitrary constant. If the above were multi-

plied by 3 and substituted in the left side of equation (3-2), the

result would be three times the right side.

To get the general solution of the complete equation, it is

necessary to add to the 'particular integral a complementary

function, which is a general solution of the homogeneous equa-

tion. Since this complementary function makes the left side

equal to zero, the complete equation is still satisfied.

Problem 1. Consider the equation

Show that yi = and 2/2 = x* log x are solutions of the homogeneous

equation and that yp = ^x^ is a solution of the whole equation. Write

the general solution, and find the solution that passes through (x = 1,

y = 1) with zero slope.

In dealing with linear differential equations, it is often con-

venient to use the symbolic operator D. This represents the

operation of taking a derivative, and its square represents the

repeated operation, or the taking of the second derivative. In

this notation

%-ay.(D-a)y

With this notation the general equation (3-1) becomes

D^y -H P,{x)D^-^y -b P2{x)D^-^y

+ • •
• + Pnix)y = Q(x) (3-3)
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For many purposes the operator D can be treated as an algebraic

quantity and handled as such. In so doing special attention

must be given to the fact that it does not commute with func-

tions of X so that

f(x)Dy ^ Dfix)y = f(x) ^ y

2. Linear Differential Equations with Constant Coefficients.

When the coefficients in the linear differential equation are

constants rather than functions of x, the operator D can be

treated quite generally as an algebraic quantity since it does

commute with constants. The general ecjuation may then be

written

{D^ -b ajr-' + asZ)"-^ -[-••• an)y = KD)y = Q (3-4)

If the polynomial in D can be factored, the equation becomes

(Z) — ai)(D — a 2)(J)
—

«;,) •••(!) — «„)</ = Q (3-5)

where aj, a.'i, eta, . . . , q;„ are the n roots of the algebraic;

equation

D" -t- -b + . . . a„ = 0 (3-())

in which D is treated as an algebraic number rather tlian an

operator. Equation (3-G) is (tailed the auxiliary equation,

and a definite general pro(;edure can be given for writing the

solution of equation (3-4) after the roots of equation (3-G) have

been determined.

The validity of the factoring indicated in equation (3-5)

can be checked by substituting derivatives for the D’s and
carrying out the necessary operations. When only constant

coefficients are present, the operator D can be handled wdth

respect to addition, subtraction, and multiplication as a simple

algebraic quantity. Division by D, however, requires further

consideration.

3. Solution of the Homogeneous Equation with Constant

Coefficients.—When the right-hand side of equation (3-5) is

zero, the equation is homogeneous, and its general solution is

the complementary function of the solution of the complete
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equation. It can be seen immediately that if is a solution of

the equation

{D - an)yn = 0 (3-7)

it is also a solution of

(D - ai){D - a,){D - a,) • •
• (D - a„)ij = 0 (3-8)

This follows because the operation with (D — an) gives zero,

and the remaining operations cannot change this. Further-

more, the order of the factors in equation (3-8) is entirely

arbitrary and can be changed at wall, so that the solution of

any one of the first-order linear equations

(D — ai)y = 0
,

{D — at)y = 0
,

. . . ,
(Z) — a„)i/ = 0

,

is a solution of equation (3-8). These solutions are

^* 3^ ^CtnX

and the general solution of the homogeneous differential equa-

tion is

y = 4-
-f (3-9)

where the A’s are arbitrary constants.

The procedure for finding the general solution of a homo-

geneous linear differential equation is first to solve the auxiliary

equation and then to use the roots to form an expression of the

form (3-9).

Consider, for example, the second-order ecpiation

The auxiliary ecpiation is

-|- (a -f- b)D + ab = 0 (3-lOa)

of which the factors are {D + a) and (D -f &). Then the

general solution is

y = -j- A 26
“'’"' (3-106)

That this is a solution can be shown by substitution in the

differential equation, and that it is the general solution follows

from the presence of the two independent arbitrary constants.
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A special case arises when one or more of the roots of the

auxiliary equation are repeated. In this case there are only

n — 1, or fewer, independent solutions of the simple exponential

form, and another form must be found to complete the general

solution. This can be formed by multiplying the exponential

containing the repeated root by x. If the root is triple, a third

solution can be formed by multipljdng by x*. Thus the general

solution of

oII1Q (3-11)

is

y = Aic"-' + A 2X6“"' (3-1 la)

and the general solution of

{D - aYy = 0 (3-12)

is

y
— Aie“® + Aixe"^ + AjxV'' (3-1 2a)

Problem 2. Pdnd the solution of

d^y

dx‘‘
m?y

that passes through the origin with unit slope.

Problem 3. Write the general solution of

d^y

dx^

dhj

dx^
+ 4y = 0

Problem 4. Write the general solution of

d^y

dx^
+ 8 g + lOy = 0

and evaluate the arbitrary constants to give a solution that will pass

through the origin and through the point {x = 2, y = 2).

4. Solution of the Nonhomogeneous Equation with Constant

Coefficients.—As was pointed out above, the solution of the

nonhomogeneous equation is the sum of a complementary func-

tion and a particular integral. The complementary function is a

general solution of the corresponding homogeneous equation and
can be found by the method just indicated. The particular

integral must be found by some other means. In some cases

one can be seen by inspection. For several special forms of the
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function Q on the right-hand side tiiere are special methods

that can be used, and a general procedure can be given for use

when the special methods do not apply. This section will

be devoted to these methods of finding a particular integral.

a. Q = C*o -|- CiX • 4*

When the right-hand side of the equation is a finite pol}"-

nomial in positive powers of x, the particular integral can also

be a finite polynomial in positive powers of x. In most cases

the highest power of x in the solution will not be greater than

N, the highest power in the equation. If, however, the operator

D appears as a factor in the auxiliary equation, the highest

power of X in the solution will be greater than N by the number
of times D appears as a factor.

For example, consider the equation

Assume as a particular integral

y = bo + biX -b b 2X^ (3-13a)

Substituting in the differential equation and c(iuating the

coefficients of each power of x leads to

rb2 = C 2

rbi + 2qb2 = Ci

rbo -f qbi + 2pb2 = Co

Hence

, C2 , _ C-.r - 2qC2
bi ~ bi -

^2

^ Cor"^ — 2pC2r — qCir + 2q^C2
bo -

J.3

With these values of the coefficients the expression (3-13o) is a

particular integral of equation (3-13). There is no need to

investigate whether there may be other solutions, for when this

particular integral is added to the complementary function the

sum is the general solution of the differential equation.



44 PRINCIPLES OF MATHEMATICAL PHYSICS

As an example of the case in which D appears as a factor in

the auxiliary equation consider the equation

dx^ ^ dx
(3-14)

A particular integral of this is

Vp =
x'^

2a
(344a)

This contains a term in x^ that is one degree higher than the term

in X on the right-hand side of equation (3-14).

6. Q =

When the right-hand side of the equation is an exponential

such that the coefficient of the exponent is not a root of the

auxiliary equation, the solution can be written down at once.

Uf(D)y = Ae-

V..
-

(3-15 )

where the denominator is merely f{D) with a substituted for

7). If, however, a is a root of the auxiliary equation, /(a) = 0

and the form indicated is not useful. In this case the particular

integral is multiplied by a suitable coefficient that can be

determined by substitution in the differential equation.

As an example of this special case, consider the equation

- ahj = (3-16)

Assume the particular integral in the form

yp
— Cxe*^"^ (3-16a)

Substitution in the differential equation leads to

so that the general solution is

y = Aie“ + ^26““ + ^ (3-166)
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c. Q = c sin ax or Q = c cos ax

If the right-hand side of tlie equation contains sine or cosine

terms that are not solutions of the homogeneous equation, a

particular integral can be built up of these quantities with

coefficients to be determined by substitution in the differential

equations. If the trigonometric functions are solutions of the

homogeneous equation, they must be multiplied by x before

substitution to determine the coefficients.

For example, take the equation

The complementary fuiudion is

yc = (4i + A2x)e~'‘ (3-17a)

so that sin ax is not a solution of the homogeneoiis equation.

To find a particular integral let

y,, = C] sin ax -|- cos ax (3-176)

Substitution in the differential equation leads to

[(1 — a^)ci — 2ac2] sin ax -t- [2aci -|- (1 — 0 ^) 02 ]
cos ax — sin ax

Since this equation must hold for all values of x, the coefficients

of the terms in sin ax and cos ax miist separately be eciual. This

condition leads to

(1 — a^)ci — 2nc2 = 1

2aci -|- (1 — a^)c-> — 0

From these tbe particular integral is

yp
~ h ~ (3-17c)

(J -|- o j

As an example of the case in wliich the sine and cosine terms are

solutions of the homogeneous equation, take the simple equation

d'‘y
, 2+ a^y == sin ax (3-18)
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Let the particular integral have the form

Dp = c^x sin ax + Ci,x cos ax (3-1 8o)

Substitution in the differential equation shows that Ci must

be zero and that a particular integral is

Vp =
x

2a
cos ax (3-186)

d. The General Case .—Although special methods can be

written down for finding particular integrals of many of the

commonly appearing equations, it is convenient to have avail-

able a general method which, even though it may be a little

complicated, can be applied to any case that may arise. Such a

method can be formulated in terms of the operator D.

Consider the equation

fiD)y = (D - «])(!> - ttz) • •
• (i> - a„)7j = Q (3-19)

If the operator D is treated as an algebraic quantity, one may
write

y - Id - «,)(/) - oc,) •
‘ (/>- «;)

^ (3-20)

This is now a symbolic form of a particular integral, but its

significance must be interpreted. One way of treating this

form is to continue to regard D as an algebraic quantity and to

separate the expression (3-20) into partial fractions. This

leads to

y =
N,

£) — ai
Q +

N,
D - a27

Q +
Np

D - a,
Q (3-21)

In equation (3-21) the quantities Ni, • •
•

,
are coeffi-

cients such that the right sides of (3-20) and (3-21) are equal.

If, for example.

y = Q = _
Nr

D m Q + D — m Q (3-22)

the values of Ni and N 2 can be determined by recombining the

partial fractions. This leads to

(Nr + N2)D - (Nr - N2)m
(3-23)
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which must be the same as the first equation (3-22). Since D
is an operator, it cannot be canceled by a number so that there

are two equations for the determination of Ni and N2 .

The solution of these is

N: =
2m

N2 = J_
2m

It is now necessary to interpret an expression of the form

C
J) - (X,

Q (3-24)

which is just the symbolic form of the solution of a first-order

linear equation. This was treated in Chap. I. Hence

— Qix) = Ce“"^ f Q{u)e~“"'‘ du (3-25)

With this interpretation, equation (3-22) can be immediately

evaluated in terms of integrals.

To illustrate the procedure take the second-order equation

dh)

dx^
-b 12y = ax (3-20)

Of course, this could be handled by the special method described

above for this form of equation, but it will also serve as an

illustration of the general method. The particular integral can

be symbolically written as

ax
y - -

27^
This has now been reduced to a sum of two quantities of the

form (3-25) so that

ax

y = ae'** J ue du — ae*^ r ue

ax

T
a ax a

T6+¥ + 9

du

ax 7a

12 l44
(3-206)

If two or more of the roots are repeated, the separation into

partial fractions cannot be carried out completely and there

will remain expressions of the form

y ^ {D - a„y ^
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This can be interpreted by successive integration

e. TJie Green’s Function .—It is also possible to approach the

particular integral in a somewhat different way, which is often

instructive in physical problems. For simplicity in exposition,

consider a second-order equation only. The particular integral

as shown in ecjuations (3-21) and (3-25) has the form

Up = j"" Q{u)e du -f- NiC"-’' j Q{u)e du (3-28a)

This can be combined into a single integral

Vp = Q(u) -t-

= Q{u)Y(x,u)du (3-286)

The function Y{x,u) is known as the Green’s function for the

differential equation. It has the following properties:

1. Considered as a function of x, Y{x,u) is a solution of the

homogeneous differential equation for an,y value of the param-

eter u.

2. Y {x,u) = 0 when x = u
This is true in equation (3-286) bec^ause A^i -f A^2 = 0.

3. dY/dx = 1 when x = u
This is true in equation (3-286) because

Niai -b N^a-i — 1

which follows from the separation into partial fractions.

If conditions 2 and 3 are imposed on the arbitrary constants

of a general solution of the homogeneous equation, the result is a

Green’s function suitable for use in equation (3-286). For an

example, consider the equation

dx^ dx
-b Sy = (3-29)
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The general solution of the homogeneous equation is

y = Ae-^ + Be-^^ (3-29a)

and conditions 2 and 3 give

Be”'*" = 0

-22le-2“ - 456-*“ = 1

Solving for A and B and inserting in (3-29a) give

Y{x,^J,) = (3-296)

The particular integral is then

Vp — 2

= 1%^ d” (3-29c)

The Green’s function representation of the particular integral

is often instructive in mechanical problems. Consider the

equation for a forced oscillator,

S + = (3-30)

The quantity on the right-hand side, Qit), is 1/m. times an

external force in addition to the forces of the system represented

by —mp dx/dt and —mrx. If it is assumed that the external

force acts only at the time t and for the short space of time dr, it

will produce a velocity Q{T)dT. A solution of the equation can

be written such that a: = 0 at i = t and x = Q{T)dT at i = t.

This solution is then Q{t)Y

{

t,T)dT •, and if the force continues to

act, the motion due to the force at other times is merely

Xp = j‘ Q(T)Y(t,T)dT (3-30a)

In all this work the lower limit of the integral is omitted.

The inclusion of a lower limit would be equivalent to the addition

of terms of the same form as those in the complementary function.

Problem 6. Find the general solution of

dx^
+ 5
%
dx

-f- 62/ = 6 *^=
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and evaluate the constants to find the solution that passes through

the origin with unit slope.

Problem 6, Write the general solution of

Problem 7.

^ = 2 + 5x

Write the general solution of

Problem 8. Find the general solution of

dx- dx
+ y _L±z“

(] + x)®

Problem 9. Show that one gets the general solution correctly

without considering the complementary function, if the constants of

integration are included in the various integrals of the form (3-25)

and (3-27).

Problem 10. Find the solution of

dx^
+ 4

d^y
I A

dx^ dx
= 5

that passes through the origin.

6. Complex Numbers.—Many equations of mathematical

physics, especially those representing vibrating systems, can

be most easily solved by the use of complex numbers. In this

section and the next two, we shall deal with some of the more
elementary properties of these numbers.

In elementary mathematics, one deals first with positive

real integers only. With these it is always possible to carry

out the operation of addition. However, in order that it shall

always be possible to carry out the operation of subtraction,

it is necessary to introduce the negative real integers. These

numbers are not suflucient to permit the operation of division

always to be carried out, and all the positive and negative

rational fractions must also be included. This system of posi-

tive and negative rational numbers will always permit the

fundamental operations of addition and subtraction, multiplica-

tion, and division to be carried out, provided that the division
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by zero is excluded or specially defined. However, there are

still other operations that cannot be carried out in this number
system. One of these is the extraction of roots, even of positive

numbers. To permit this and other “irrational” operations,

it is necessary to introduce the irrational numbers. Then one

has all the real numbers between positive and negative infinity,

and they can be correlated with the points on a line. Still,

however, the system is incomplete, since it does not permit the

extraction of the roots of the negative numbers. There is no

number that is equal to the square root of —1. It is necessary,

therefore, to define such a number, which is called i.

i ^ + V^l

The other square root of —1 is —i. This i is called the unit

of imaginary mimbers, although it is no more imaginary, in the

common sense of the word, than negative or irrational numbers.

Any imaginary number is a product of a real number and the

imaginary unit, such as 3i or ai for instance.

Two imaginary numbers can be added or subtracted by add-
ing or subtracting the real coefficients and multiplying the results

by i. To multiply or divide two imaginary numbers, it is

necessary to multiply or divide both the coefficients and the

units.

A complex number is the sum of a real and an imaginary

number, such as a + ib. It is customary to call a the real

part and b (not ib) the imaginary part of this number. Two
complex numbers are equal when their real parts and their

imaginary parts are equal, respectively. In addition or sub-

traction, the real parts and the imaginary parts are added or

subtracted separately. In multiplication, the complex num-
bers are treated as binomials.

A complex number Zi is said to be the complex conjugate

of another complex number if the real part of Zi is equal to

the real part of Zs and the imaginary part of Zi is the negative

of the imaginary part of Z2 .

Since the real numbers and the imaginary numbers are

special cases of complex numbers, this definition of complex
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numbers has extended very materially the variety of numbers
available for calculations. In this set of complex numbers

every algebraic equation has a number of roots equal to its

degree, and the range of solutions of differential equations is

very materially extended.

On the basis of the above definitions, a number of properties

of complex numbers follow directly. Among these are the

following:

1. The product of an even number of imaginary numbers

is real, and the product of an odd number of imaginary numbers

is imaginary.

2. The product of a complex number and its complex con-

jugate is real.

3. The .sum of a number and its complex conjugate is real,

and the difference is imaginary. The sum is twice the real

part of the complex number, and the differem^e is 2i limes the

imaginary part.

It is often convenient to reprc.sent real numbers by points

on a line. In a similar way, it is often convenient to represent

complex numbers by points on a plane. If the points are

designated by their rectangular coordinates, the point {x,y)

represents the complex number (x + iy).

The distance from the origin to the point (x,y) is called the

modulus or the absolute vahie of the number. The angle between

the straight line from the origin to the point and the axis of

real numbers is called the argument of the number.

Problem 11. Show that {x + iy) = r(cos <p i sin <p), where r is

the modulus and (p is the argument of the complex number (x + iy )

.

Problem 12. Show that

Z 1Z2 = rirafcos (^1 -t- ^2) + i sin (<pi + (po)]

where ri, r2 and <pi, <(>2 are the moduli and the arguments of Zi and 22,

respectively.

Problem 13. Show that

a ib _ ac -h bd
,

.be — ad

c -b id . c* + d* ^ c* -f- d*
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in the sense that the right-hand side multiplied by the denominator of

the left-hand side is equal to the numerator of the left-hand side.

Problem 14. Show that

7 = 7 (f 1 - ^2) + i sin i<pi - <p2)]

in the sense of the previous problem.

Problem 16. Show that

^cos
<p -f- 27rm

+ i sin
<p + 2Trm

)

I

in the sense that the nth power of the right-hand side is equal to z.

In this expression, n anti m are integers. The n different roots are

obtained by using the n diffei’ent values of m.

6 . Complex Functions of Real Variables.—As witli real

.vai’iables, a function of a complex variable is most generally

defined as a table of values such that with every value of one

complex number called the argument there is associated another

complex number called the function. In some special cases

the function can be defined by specifying a scries of operations

to be performed upon the argument and defining the result of

these operations to be the function.

Although very general concepts of a function can be defined

and are sometimes useful, it is necessary in dealing with com-

plex numbers, just as in dealing with real numbers, to restrict

considerably the nature of the functions used, if elementary

methods of analysis are to be applied. Among the functions

that are of importance are complex functions of a single real

variable. These can be put into the form

2 = fix) = /i(x) -f if2ix) (3-31)

where x is the real variable. The usual criteria of continuity

and differentiability can then be applied by applying them
separately to the two functions /i (x) and/2(x).

Problem 16. If the function e* of the complex variable z is defined

by the infinite series

z^ 2»
e' = l+. + 2 , + 3,+

• •

show that

= cos X + i sin x (3-32)
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when X is real. As a result of this fact a complex number can be

written z — where r is the modulus and ip is the argument of z.

Problem 17. Show that

sin X = — — and cos x = ^
2i 2

7. Hyperbolic Functions.—Many differential equations in

physics, particularly those pertaining to electrical or mechanical

problems, have as solutions functions known as hyperbolic

functions. Without going into the many interesting properties

of these functions, the definitions and some of the more ele-

mentary properties will be stated here. The functions can be

defined as the solutions of the differential equations that they

satisfy; but since they can also be expressed in terms of expo-

nential functions, it is more convenient to define them in these

terms. Hence, we have tlie following definitions

:

The hyperbolic sine of a: = sinh x — — sinh {—x)

The hyperbolic cosine of x = cosh x = cosh (—x)

The hyperbolic tangent of a: = tanh x =

The three functions that are the reciprocals of these are

correspondingly called the hyperbolic cosecant, the hyperbolic

secant, and the hyperbolic cotangent. The above definitions

combined with Prob. 17 show the relationship between the

hyperbolic functions and the circular trigonometric functions.

These hyperbolic functions have many properties that are

similar to those of the circular functions; and although these

properties can in all cases be derived from the above definitions,

it is often convenient to remember them as properties of the

hyperbolic functions. The following problems give some of

these properties:

Problem 18. By determining the values at the points 0, 1, and
infinity, sketch roughly the curves of the hyperbolic functions.

Problem 19. Show that (i(sinh x)/dx — cosh x.

Problem 20. Show that d(cosh x)/dx = sinh x.

e^ ~
2

2
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Problem 21. Show that A cosh x -j- B sinh x is the general solu-

tion of the equation dhj/dx^ —
2/
= 0.

Problem 22. Show that cosh^ x — sinh- x = 1.

Problem 23. Show that sinh {ax -|- bx) = sinh ax cosh bx cosh

ax sinh bx.

Problem 24. Show that sin ix = i sinh x; cos ix = cosh x.

8. Principles of Superposition and Decomposition.—As has

already been indicated, any number of solutions of a homogene-

ous linear differential equation can be added together, or super-

posed, to form another solution. If the solutions are linearly

independent, their addition after multiplication by arbitrary

constants leads to the general solution.

In the case of nonhomogeneous linear differential equations,

a principle of superposition can be stated as follows;

If

/(D)yi = and f{D)y, = Q,

then

f{D){y, -h y,) = -b Q 2 (3-33)

This shows that it is possible to separate the right-hand side

of an equation into parts and, after finding an integral cor-

responding to each part, to add them together to get an integral

of the original equation.

For example, if the eqtiation under consideration is

{D^ -}- a^)y = C (3-34)

each part of the right-hand side may be treated separately.

yi = e”'*/ (m^ -b a^) is a particular integral when only the term

e™ is considered, and y^ = is a particular integral when
only the constant C is considered. The sum of these is then a

particular integral of the whole equation

^mx Q
2/p = 2/1 + ?/2 = q2 + ~2 (3-34o)

This principle of superposition is of very extensive use in

physical problems, since it is the mathematical representation of

the fact that many physical phenomena can be treated as super-

positions of independent phenomena that do not interfere with
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one another. For example, if two light waves pass through the

same portion of space, the phenomenon is a superposition of

the two waves without either influencing the other. In a similar

way the terms that make some equations of physics nonliomo-

geneous are due to sources, such as sources of radiation. The

principle of superposition shows that, as long as the differential

equations are linear, the sources act entirely independently.

The principle of decomposition is somewhat more limited

in its applicability than the principle of superposition. In

general, it is not possible to know in advance how a solution

will divide into partial solutions corresponding to the different

parts of the nonhomogeneous term. In the special case, how-

ever, that the coefficients of the differential equation are all

real and the term on the right side is complex, the particular

integral will be complex. It then follows that the real part of

the integral corresponds to the real part of the right-hand side

and the imaginary part corresponds to the imaginary part

of the right-hand side. As an example, consider the equation

di^v

^“2 + «'!/ = (3-35)

The particular integral for the exponential form is then

- i
(3-35a)

Suppose now it is desired to find the solution of the equation

d^y
, ,

^-2 4- a^y = cos X (3-36)

The right-hand side of this is just the real part of the right-

hand side of equation (3-35) ; hence its particular integral is the
real part of (3-35a).

cos X
(3-36a)

The general solution is then

A in- ,
cos X

2/
= A cos X -1- jB sin a: -f (3-366)

(Ji X
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Furthermore, the solution of

= sin a; (3-37)

is

siri oc

y = A cos ax B sin ax 4- -VzT (3-37a)
CL JL

where A and B are arbitrary constants.

When presented with an equation such as (3-36) or (3-37),

it is often convenient to take another equation such as (3-35)

that contains the equation in question as its real or its imaginary

part and that may be easier to solve.

Problem 26. Find the solution of

d'^y

dx^

that is equal to

Problem 26.

of the equation

zero when j = 0 and when a: == 10.

Use the principle of decomposition to find an integral

d^y — 2^ 4y = cos x

Problem 27. Use the principle of decomposition to find an integral

of the ecjnation

g + 2| + 4„-3.in2x

Problem 28. Find the general solution of

dx^ dx
+ 4y =

Problem 29. Find the general

d^y _& -

solution of

== + e”*

Problem SO. Find the general solution of
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Problem 31. Find an integral of

d^y

dx^
cos* X

9. Equations with Variable Coefficients.—The solution of

linear equations of order higher than the first, in which the

coefficients are not constant, is required in the treatment of

many physical problems. Many such eqriations have been

studied and the properties of their solutions determined. The

general discussion of such equations is quite elaborate, but a

few suggestions will be given here to indicate how information

can be obtained regarding the nature of the solutions in the

neighborhood of certain values of the independent variable.

The general equation of this type has the form

(3-38)

where po, pi, p 2 ,
. . . , p„ are functions of x only. Just as

in the case of the equations with constant coefficients, the gen-

eral solution of this equation is the sum of a particular integral

and a complementary function, which is the general solution of

the homogeneous equation. Methods for finding a particular

integral will not be discussed here, and attention will be con-

centrated on the homogeneous equation.

The behavior of the solution is governed largely by the

behavior of the coefficients of the equation for different values

of X. In examining the behavior of the coefficients, the equa-

tion should be reduced to a standard form by dividing out

PoCx). This gives

d"y

dx^

d” V , D d” *y

dx^-
+ PnV = 0 (3-38a)

where Pr = Pr/Po and Q is taken to be equal to zero.

If all the PrixYs are regular at the point or = 0, the general

solution of (3-38a) is regular at this point and the point is called

an ordinary point of the differential equation. A function P{x)
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is said to be regular at a; = c if it can be expanded in a Taylor

series,

P{x) = Oo + ai(a: — c) + a-iix — c)* + • • •

about this point. Regularity requires, among other things,

that a function be single-valued, continuous, and differentiable.

A polynomial containing only positive powers is regular at all

finite values of its argument. It may be regarded as a power

series, most of whose coefficients are zero.

Points other than ordinary points are called singular points or

singularities. If all the pr(^)’s in equation (3-38) are regular,

the only singularities in the finite region are at zeros of po{x).

Consider the equation

(1 -f-a;^)g-h3x^-by =0 (3-39)

All the coefficients are polynomials and regular for all finite

values of x. When this is reduced to the standard form, it

becomes

r ^ ,

1 _ _ «

dx^ I + x^ dy i ^ x^^
~ (3-39a)

In this form it can be seen that all the finite real values of x

are ordinary points and that the only singularities in the finite

region are at x = ±^. The methods for finding solutions at

ordinary points and at singularities will be considered separately.

10. Solutions in Power Series around Ordinary Points.—It

is shown in treatises on differential equations that, in the neigh-

borhood of an ordinary point x = c, the general solution of a

linear homogeneous differential equation can be expressed as a

power series with only positive integral powers.

y =
2 o„(x - cY (3-40)
n =>0

The values of the coefficients o„ can be determined by substitu-

tion in the differential equation itself. In practice, it is almost

always most convenient to expand about the point a; = 0.

This (^n always be done by first making a linear change in
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the independent variable. In further illustrations this will be

assumed to have been done so that c can be set equal to zero in

equation (3-40).

Another important practical consideration is that, while

the standard form of equation (3-39a) is appropriate for deter-

mining the location and nature of the singularities, a form like

that of equation (3-39), in which one has cleared of fractions and

expressed each coefficient as a polynomial or power series in x,

is the one to be used in finding the coefficients of the power-series

solution.

To illustrate the procedure, let the solution of equation

(3-39) be expressed in the form

00

2/ = ^ a„x"
n =0

When this is substituted in the differential ecjuation, tlie result

is
00

^ [a„n{n - + a„(n + 1)V] = 0 (3-396)

In order that this power series be ecjual to zero for all values of

X, it is both necessary and sufficient that the coefficient of each

power of X be zero.

Consider the coefficient of 3f~^. In the first part of equation

(3-396), this appears when n = s so that s{s — l)a, is a part

of the desired coefficient. In the second part, appears

when n = s — 2. Hence a second part of the coefficient is

(s — 1) The requirement is then that

s(s - l)a, -f (s - l)®as_2 = 0 (3-39c)

for all values of s from 2 to infinity. Equation (3-39c) is the

recursion formula for the coefficients in the power series.

The lowest value of s that can be used in the recursion for-

mula is s = 2, for this gives the coefficient of x® in equation

(3-396). With s = 2 the formula gives in terms of Oo.

With s = 3 it gives 03 in terms of O:. Other values of s give
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in terms of and hence of ao, and a& in terms of 03 and hence

of fli. Proceeding in this way, all the coefficients can be deter-

mined in terms of Oo and Oi. These two then become the

arbitrary constants of the general solution, and the complete

theory of linear differential equations shows that the series will

converge in the neighborhood of the ordinary point. Hence

the series constitutes a general solution.

Since ao and Oi are arbitrary, ao = 1, Oi = 0 gives a .solution,

which in this particular case contains only even powers of x.

From the recursion formula it follows that aa = —aol'2 — — h
and 04 = —902/12 = f. This .solution is then

2/0
= 1-^ + ”^- •

• (3-39d)

Similarly, Oq = 0, Oi = 1 gives another solution,

2x^
,

Sx^yi=x- -3- + 75
- • • • (3-39e)

The general solution can then be expressed as a linear combina-

tion of the.se two particular solutions.

y = aoyo + ai 2/i (3-39/)

By arguments along the lines of the above illustration, it

can be shown that a general solution of an nth order equation, in

the neighborhood of an ordinary point, can be expressed in

the form

y = aoyo + O12/1 + aiy-i + • •
• + On-i2/n-i (3-41 )

where yr is a power series beginning with x’’.

Problem 32. Work out a few more terms of the series solution of

equation (3-39). Identify the function j/o of equation (3-39d) as the

series expansion of a binomial, and show by substitution that the

binomial satisfies the differential equation.

Problem 33. Find the expansion in a power series around the

origin of the solutions of Legendre’s equation

(3-42)
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Show that, for integral values of n, the series of even powers is a poly-

nomial, with a finite number of terms, when n is even and that

similarly the series of odd powers is finite when n is odd. These

polynomials are the Legendre pol3momials.

Problem 34. Find a solution of the equation

Problem 36, Find the power-series solutions of

As an illustration of a situation that sometimes arises in

evaluating the constants of a power-series solution, consider

the equation

g + xy^0 (3-45)

Substitution of a power series leads to

00

^ [n(n — -f = 0 (3-45a)

n=U

A convenient form of recursion formula is obtained from this

by picking out the coefficient of This leads to

s(b‘ — l)a« T 3 = 0 (3-456)

provided that s is equal to 3 or more. When s = 3, equation

(3-456) represents the coefficient of x and not the constant;

if s is taken equal to 2, the recursion formula would seem to sug-

gest a coefficient a_i, which does not exist. If the coefficient

of x®, or the constant term, is picked out of (3-45a), it leads to

202 = 0. This might also have been obtained from (3-456) by
understanding that a_i = 0. In any case of doubt, however,
the situation can be clarified by referring to the sum of the type
(3-45a).

When s = 3, equation (3-456) gives Os = — Oo/G; when
s = 4, 04 = — ai/12. But when s = 5, it leads to 05 = -02/20
and 02 must be zero. Hence not all powers of x appear in the



LINEAR EQUATIONS OF ORDER HIGHER THAN THE FIRST 63

general solution, which, however, can still be written in the

general form for a second-order equation,

y = ao?/o + aiVi (3-45c)

Problem 36. Write a general solution of

g + = 0 (3-46)

Problem 37. Find the first few terms of the power scries for a

general solution of

11. Solutions in Power Series around Regular Singularities.

There are some singularities in the neighborhood of which it

is possible to write power-series solutions. These are called

regular points or regular singularities. Other singular points,

called essential singularities, will not be treated here.

The nature of a singularity can be determined by inspection

of the coefficients of the differential equation when it is written

in the standard form of equation (3-39a). As disciissed above,

if all the coefficients Prix) arc regular at a; == c, that is, if they

can be expanded in power series, c is an ordinary point of the

differential equation.

If c is not an ordinary point but if {x — cyPr{x) is regular

for all values of r, then x = c is a regular singularity of the

differential equation. Otherwise x = c is an essential singu-

larity. Sometimes these two kinds of singularity are called

regular points and irregular points, respectively.

In accordance with the above criteria, the singularities in

Legendre’s equation (3-42) at x = ±1 are regular. The singu-

larities in equation (3-39o) are also regular.

Problem 38. Show that Bessel’s equation.

has a regular singularity at x = 0.
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The formal procedure for finding a power-series solution in

the neighborhood of a regular point is very similar to that used

at an ordinary point. There are two principal differences.

1. It is not, in general, true that the various series solutions

begin with the terms Uo, aiX, a 2^^ etc., as is the case at an

ordinary point. The term with which each series begins must

be determined from a study of the recursion formula, and its

exponent may be negative and may be fractional.

2. It is not always possible to find enough linearly inde-

pendent power-series solutions to make up a general solution.

In this case other methods must be used, but they will not be

discussed here.

The power-series method can be illustrated by applying it

to find a solution of Bessebs equation in the neighborhood of

the regular singularity at a; = 0.

Let
00 OO

y = X" y a^x’ = ^ asX’+“ (3-48a)
s=0

This differs from the form used at an ordinary point by the

presence of the factor Not only the coefficients a^, but also

the exponent a must be determined by substitution in the dif-

ferential equation. To make the value of a unique, it is assumed
that ao 0 so that a is the exponent of the first term in the

series.

Substitution of the series into the differential equation leads

to
00

2^” 2 o.{[(s + «)* — n®]x’ + x*+2j = 0 (3-486)

Equating to zero the coefficients of x®, x^, x^
summation leads to

ao(a* — n^) = 0 i

ai[(a -f 1)2 — ^2] = 0

02[(q: + 2)2 — n2j ^0 = 0

a,[(Q: -1- s)2 — n2] + a,_2 = 0

, X* in the

(3-48c)
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The first of these equations is called the indicial equation. The
last is the recursion formula. The indicial equation can be

obtained from the recursion formula if the coefficients with

negative subscripts are understood to be zero.

Since Oo ^ 0, the indicial equation is a condition on a and

shows that a = + w. These values of a are called the exponents

of the equation at the point a; = 0. Except in the special case

when = (a + 1)^, the second equation requires that Oi = 0.

Even in this special case, Ui may be taken to be zero. The third

equation gives 02 in terms of Uo- The recursion formula then

permits the evaluation of all the coefficients in terms of Oo

and the value of a. Since there are two values of a, this pro-

cedure leads to two solutions, unless the recursion formula

breaks down for one of the values.

The usual notation for the solutions of Bessel’s equation

labels them /±„(a:), where the subscript corresponds to the

lowest power of x in the expansion. When n = ^, the two

exponents are ±^. If we take Oo = (S/tt)* to agree with the

conventional definition.

Similarly,

(3-48d)

(3-48e)

The general solution is then

y = AJt^ix) + BJ^iix) (3-48/)

In the case of Bessel’s equation with n = is possible to

form a general solution out of the two power series based on the

two exponents of the equation. In general, this is not possible

when the two exponents differ by an integer, and in such cases

other methods must be used for determining a second solution.

Problem 39. Show that if n = 2 the power-series method will not

give both solutions of Bessel’s equation.

Problem 40. Show that

sm X
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and show that these forms satisfy Bessel’s equation.

Problem 41. Show that a; = 0 is a regular point of

d^y 5 \ „

dx^ (,4 36a;7
^ ^

and find the power-series solutions about this point.

Problem 42. Show that, if the substitution of (3-48a) is made at an

ordinary point of an equation such as (3-39), the method of proc^edure

given above will produce both solutions.



CHAPTER TV

MECHANICS OF VIBRATING PARTICLES

1. Damped Vibrations.—There are many problems, in both

mechanics and electromagnetism, tliat must be treated by means

of the equations for vibrating particles. The mechanical

problem is that of a particle attracted toward a fixed point with

a force proportional to the distance from it and whose motion

is at the same time opposed by a force proportional to the

velocity. The meclianical problem is illustrated by the simple

pendulum when the air resistance is considered; the electrical

case is that of a circuit consisting of a capacitance, an induct-

ance, and a resistance. The differential equation and the forms

of the solution are the same for these two problems and for

many other problems. For definiteness, consider the mechanical

problem. The differential equation of motion is

m
d^x

dP + 4^ + A:. = 0

where m is the mass of the particle, k is the force per unit dis-

placement from the center, and q is the force per unit velocity.

When k is positive, the force is in such a direction as to oppose

the displacement and to restore the particle to an equilibrium

position. When q is positive, the force associated with the

velocity is in the direction to oppose it. Only positive values of

these constants occur in simple cases. If k is negative, there

is no position of equilibrium and no oscillation. If q is negative,

the motion is not damped in the usual sense since the faster the

particle is moving the more it is urged along. A negative q

will not be expected in a simple mechanical oscillator, but it

may occur in more complicated mechanical problems and in

some electrical circuits.

67
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The equation of motion is more conveniently written

where p = q/m and r = k/rn. By the methods of the previous

chapter, the solution can be written at once. It is

X — Aoe“‘‘ + jSoc"-' (4-2)

where

«! = “ I + -^
— 4r)i ao = “

2
~

^
~ 4?")*

The nature of the motion represented by this solution

depends upon whether ai and are real, imaginary, or complex

numbers. This in turn depends upon whether p- — 4r is

zero, negative, or positive and whether p is zero or positive.

Only cases in which p is not negative will be considered here.

a. Underdamped Motion.—When p^ — 4r < 0, the motion is

said to be underdamped. In this case the restoring force,

which tends to maintain the vibration, is dominant; and the

particle executes oscillations about its position of equilibrium

in spite of the damping force, which tends to stop it. Let

0)0 = i(4r — p^)b Then equation (4-2) can be written in

three forms.

X = + B,e-“»') (4-2a)

X = cos U)ot -T B sin WoO (4-2fo)

X = cos (wo< — <p) (4-2c)

Each of these represents an oscillation with an exponentially

diminishing amplitude as shown in Fig. 4-1.

The arbitrary constants Aj and Bi in (4-2a), A and B in

(4-26), or C and <p in (4-2c) are so chosen as to fit the desired

conditions of any particular motion. When the complex form

of equation (4-2a) is used, the constants will turn out such that,

even though the expression is written in complex notation, its

value is real. This frequently means that the constants them-

selves are complex. The specification of the position and

velocity, x and x, at any given time, for example, will suffice
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to fix these constants. The more characteristic properties of

the motion, however, are fixed by the constants p and r that

occur in the differential equation. Various combinations of

these constants give useful characteristics.

Even though the motion of a damped oscillator is not strictly

periodic, since the amplitude is decreasing, it is convenient to

Fig. 4-1.—The dijsplacenieiit as a function of the time for an underclainpecl oscillator.

The broken line represents the exponential decrease.

define a period, which is the time between two suc(!essive pas-

sages through zero in the same sense. This turns out to be

T = — = (4-3)
coo (4r — ^ '

The period characterizes the oscdllatory nature of the motion.

The damping of the oscillations is described in several ways.

The logarithmic decrement is the logarithm of the ratio of two

successive maxima of the same sign. It is equal to p/2 times

the period so that

pT vp _ 2-kp
^ ~ Y ~Yo~ (4-4)

It is also possible to define a modulus of decay as the time during

which the amplitude decreases to 1/e of its initial value. The
modulus of decay is obviously equal to 2/p. A third constant is
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used frequently in electrical circuits and acoustic devices and is

known merely as Q. It is given by

(4-5)

A circuit with high Q is only slightly damped. Its energy

dissipation is low, and its resonance is sharp, as will be shown

later.

A damped oscillator is not a conservative system. Initially

it has a certain potential and kinetic energy, but this is event-

ually used up in overcoming the damping resistance. If one

wished to include the sources of the damping resistance in the

system under consideration, there would be conservation of

energy in the whole system; but this is not usually convenient.

It is usually most convenient to regard the woi’k done against

the damping force as simply a dissipation of energy.

The energy of the oscillator is the sum of the potential and

the kinetic energies.

Txr mr „.mW = + 2
^ (4-6)

When the damping is neglected, p = 0, this sum is constant, and
a decrease in x'^ is accompanied by an increase in x-. When
p > 0, equation (4-2c) can be used to express the energy as a

function of the time. This leads to

Tf = V
-f -2 cos^ (uot — (p)

-|- pcoo sin {coot — <p) cos (wot — ^)
j

(4-7)

and shows that the energy does not decrease steadily, as would
be suggested by the exponential alone, but in a manner related

to the oscillations. Energy is dissipated only when the particle

is moving. The rate of dissipation falls to zero at the extreme
excursions where the particle stops and starts back.

Problem 1. Show that equation (4-2) is a solution of the differen-

tial equation (4-1). Show also that (4-2a), (4-26), and (4-2c) are
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different forms of (4-2) for the underdamped case, and express the

constants C and (p in terms of A and B.

Problem 2. Evaluate the arbitrary constants of (4-26) in terms of

the initial position and velocity of the particle. Sketch the motion

as a function of the time vvlien the initial velocity is ^^ero.

Problem 3. Show that the time between successive maxima of

displacement is T.

Fk;. 4-2.—The displacement as a function of the time for a critically damped oscillator.

Problem 4. Work out the rate of dissipation of energy against the

damping force of an underdamped oscillator, and show that it is equal

to the rate of decrease of total energy of the oscillator.

b. Critically Damped Motion .—When — 4r = 0, the

motion is said to be critically damped. In the critically damped
case the auxiliary equation has equal roots, and the solution

can be written

X = (A Bt)e~^‘^^^ (4-8)

Figure 4-2 illustrates this motion for the case in which

the particle starts from the origin with an initial velocity.

It attains a maximum displacement and then approaches the

equilibrium position asymptotically. Under these conditions

the curve never crosses the axis. If the particle starts with an

initial displacement and a sufficiently great velocity toward

the origin, it will cross the axis once and then return to it

asymptotically from the other side.
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Problem 6. Evaluate the constants in equation (4-8) in terms of

the initial conditions. Find the time and magnitude of the maximum

displacement when the particle starts from the origin with an initial

velocity.

c. Overdamped Motion .—When p^ — At > 0, the motion is

said to be overdamped. This is the case in which the damping

force is dominant, and in extreme cases the restoring force can

be neglected altogether. The two roots of the auxiliary equa-

tion, tti and a 2 ,
are real and negative, and the solution can be

used directly in the form of equation (4-2).

Problem 6. Consider an overdamped oscillator that starts from

the origin with an initial velocity. Find the time at which the maxi-

mum displacement occurs, and find its value.

Problem 7. An overdamped oscillator has an initial displacement

Xo and an initial velocity xo. For what values of Xo and Xo will the

particle pass the origin before coming to rest?

Problem 8. Write and solve the differential equation for a damped
motion in which the elastic restoring force is neglected entirely. Show
how this solution is related to equation (4-2).

2. Forced Vibrations.—In most cases of practical interest,

the vibrating system is acted on by an outside force. This is

the case of vibrations in the mounting of a machine containing

an unbalanced rotating part. It is also the case of excitation

of an electrical resonant circuit by electromagnetic waves.

In these two examples, the external force is periodic in time,

and this, in fact, constitutes the most important case because

of the phenomenon of resonance. When the period of the oscil-

lating system and the period of the external periodic force are

nearly the same, the force is most effective in stimulating oscil-

lations. The amplitude of the motion then builds up until

the work done by the force is dissipated against the damping
resistance. When the periods of the force and the oscillation

differ widely, the force does little work, for part of the time
the motion is in the direction of the force and part of the time
against it.
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If the external force acting on the oscillator is mF(t), the

equation of motion is

F{t) is represented as a function of the time only, for this is

the only case that is properly called a forced oscillation. If

the force is a function of position or of velocity, the motion is of a

completely different character.

Equation (4-9) is a nonhomogeneous linear differential

equation. The general solutions of equations of this type were

discussed in the previous chapter. The interest here lies in

investigating the properties of the solution under various

circumstances.

Problem 9. Show that a constant force acting on an oscillator is

equivalent to a displacement of the origin.

Problem 10. Consider an oscillator that starts from the origin

with an initial velocity Xo and is subject to an external force mF(t),

F{t) = 0 for 0 < t < t\, and F{t) = Fq for t > t\. Find the motion.

Problem 11. Find the motion of an oscillator acted on by a force

proportional to the time. Evaluate the arbitrary constants if the

velocity and the displacement are zero at ^ = 0.

a. Harmonic Forces ,—Most of the important properties of

forced oscillators can be derived by a consideration of sinusoidal

forces. This is because the forces in many practical cases can be

closely approximated by a sine or cosine function of the time.

In addition, as will be shown later in a discussion of Fourier

series, any periodic function of the time can be expressed as a

sum of sine and cosine terms.

If F{t) in equation (4-9) is given by F^ sin co^, a particular

integral of the equation is given by

with

— sin {o)t — e)

[(r — w^)2 +

po)

r — co^

(4-10)

tan € = (4-lOa)
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where e is between 0 and tt. This shows that the motion of the

oscillator under the influence of the harmonic force is a sinu-

soidal motion with the frequency of the force. The motion is

out of phase with the force by the amount of the -phase lag e,

and the amplitude depends upon the relationship between the

frequency of the force and the constants of the oscillator.

The amplitude for very small and very large values of co

is easily understood from physical considerations or from a con-

sideration of the differential equation (4-9). When co —^ 0, both

the second derivative and the first derivative be(!ome negligible

compared with the term rx. Hen<!e the equation is effectively

rx = Fo sin (4-11)

and the solution is clearly

X
Fo

r
sin (Jit (4-1 la)

This same result is obtained when w is set equal to zero in equa-

tions (4-10) and (4-10o). Physically it represents a displace-

ment such that the restoring force just balances the slowly

varying external force.

For a very rapidly varying force, the second derivative is

dominant, so that the differential equation approaches

d^x

^ = Fo sin (Jit (4-12)

of which a particular integral is

X = Fo
. ^—„ sm (Jit

(ji^

Fo

(ji^

sin {(Jit — tt) (4-1 2a)

Here again this agrees with equations (4-10) and (4-lOa) when
CO ^ 00 . Physically it means the displacement is so small that

the restoring force is unimportant; the velocity stays so small

that the frictional force is negligible; and the rapidly varying

external force is just equal to the mass multiplied by the

acceleration.

It is also possible to give a physical interpretation to the
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case in which w = Vr. In this case the acceleration is just

equal to the restoring force divided by the mass, so that the

particle moves as though there were no damping whatever. The
frictional resistance is then balanced by the external force, so

that the amplitude can be obtained from the differential equation

— ^0 sin cot (4-13)

A particular integral of this equation is

^ - (ip) " (5) (“‘ -
1)

This is the form taken by equation (4-10) when co- — r.

Figure 4-3 shows the amplitude as a function of co for several

values of the damping coefficient, and Fig. 4-4 shows the pliase

lag €. The phenomenon of resonance is shown by the sharp

maximum in the amplitude when the damping is small and by
the corresponding rapid change in e as « passes through Vr.

This maximum occurs in the neighborhood of Vr, which is

the angular frequency of the undamped oscillator, but not

exactly at this frequency. Neither does it occur at the fre-

quency of the free damped oscillator Wo- However, these

differences are small when the damping is small.

Problem 12. Find the frequency Wm at which the amplitude of a

forced oscillator is a maximum.
Problem 13. Find the frequency at which the maximum velocity

of a forced oscillator has its greatest value.

Problem 14. Show that the frequency Ur, at which the amplitude

of a forced oscillator has l/'v/2 its maximum value, satisfies the

relationship

03 = 0)J‘ ± po3a (4-14)

Although equation (4-10) is a particular integral of equation

(4-9), it is not the general solution. It cannot be fitted to

arbitrary initial conditions. The general solution is obtained

by adding the general solution of the homogeneous equation.

Hence for an oscillator subject to a sinusoidal force

Fo sin {cot — e)

[(r — «^)^ +X = A 06
“'*

-f- Boe“'* + (4-15)
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Since the real parts of ai and at are negative, the contribution

of the general solution eventually disappears and the steady

motion is that of the particular integral. The contribution of

Fio. 4-3.—The amplitude of a damped oscillator, driven by a sinusoidal driving force,

as a function of the frequency of the driving force.

the complementary function is hence called a transient. It is

often important to know the transient behavior of an oscillator,

since the time necessary to build up the oscillation to its steady

state may be of importance.

To get the maximum response at resonance it is desirable

to make p as small as possible, but with a small damping the

transient dies out slowly and some time is required for the
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steady state to build up. At the frequency of maximum
amplitude

Xn,., ^ J_
Fa pwo

(4-16)

At the start of the motion the transient term is just equal and

opposite to the term describing the steady state, so that the

resultant is zero. As the transient dies out, the resultant builds

Fig. 4-4.—TIic plia.se lag of a forrod o.scillator.

up, so that the rate of growth of the oscillation is just given by

the rate of decay of the transient term of the general solution.

The time necessary for the transient to decrease to of its

original magnitude is

T
V

(4-16a)

Hence the average rate of growth of the amplitude, is

A

li'qt 2Awo
(4-166)

and is independent of the damping, except as p is contained in

(Oo.
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Problem 16. Evaluate the arbitrary constants of equation (4-15)

when the particle starts from rest at the origin.

h. Energy Absorption .—In the steady state, the external

force is doing work on the oscillator at the same average rate

as that at which the oscillator is working against the damping

force. During each cycle the work done by the external force

is just equal to the work done against the resistance. The work

is not always done directly against the damping resistance,

however. It is stored as potential and kinetic energy of the

oscillator during part of the cycle and dissipated during another

part. The energy of the oscillator is not constant during the

cycle, except when the force has the frequency of the undamped
oscillator. Usually the oscillator, even though it is moving with

simple-harmonic motion, does not have a constant energy

because i(,s frequency does not correspond to its restoring force

and mass.

Problem 16. Show that the energy of a foi’ced oscillator is con-

stant if the force has a frecjucncy corresponding to the free oscillator

without damping.

Problem 17. Compute the energy of a forced oscillator as a

function of the time.

Problem 18. Comp\ite the rate at whi<!h work is done on a forced

oscillator by the damping force.

c. Vibration Insulation .—It is often necessary to protect a

sensitive instrument, such as a galvanometer or an interferom-

eter, against vibrations from external sources. This can be

done by suspending a heavy base on springs and possibly insert-

ing some damping between the base and the support. Figure

4-5 indicates schematically the arrangement. In this figure

only vertical motion is considered, and the instrument base is

supported from the floor. The floor is then supposed to move
vertically with a sinusoidal motion. The springs and the damp-
ing mechanism both operate by virtue of a difference between

the displacements of the floor and the base. The object of

the mounting, of course, is to reduce as far as possible the motion

of the base.
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Let Xo be the vertical displacement of the floor from its

equilibrium position, and let x be the corresponding displacement

of the instrument base. Then the equation of motion is

For convenience let x

d^X
^ dt^

— Xo = X. Then

+ q-^j + kX = -m d^Xo
(4- 17a)

Insfrumenf base

Fig. 4-5.—Schematic illustration of an in.striiinent base mounting designed to isolate

the mechanism from vibrations of the floor.

If Xo = A sin co<

d^X
d,^ +'’f + ’'^ sin cjot (4-18)

By the methods already discussed it can be shown that tlie

steady-state solution of eejuation (4-18) leads to

A
~

[(r - + pW]i ^0 (4-19)

The object of the design is to make x/A as small as possible.

A detailed study of equation (4-19) shows that r should be made
as small as possible to protect against a given frequency oj.

In fact x!

A

> 1 if co^ < 2r. For large w the damping is of

little use and tends to increase the transmitted motion. For

uA < 2r the damping is helpful.
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Problem 19. Show that equation (4-19) follows from equation

(4-18).

Problem 20. Show that, for = 2r in equation (4-19), x/A = 1

and the vibration mounting is useless.

Problem 21. Show that for = r the motion of the base is

greater than that of the floor but that the damping is helpful in keeping

it from attaining very large values.

Problem 22. Show that, for > 2t, xjA < 1 and that damping
is detrimental.

3. Coupled Oscillators.—If two or more vibrating systems

are connected in such a way that they influence each other, the

differential equations of motion are simultaneous linear equa-

tions with constant coefficients. The method of treatment in

tliis case can be illustrated by the following problem:

Consider two simple pendulums of length I and mass m,

Fig. 4-6. Let the bobs be connected by a massless spiral sprmg
whose force constant is o. This fiction of massless springs is

customary in mechanical problems and simply means that the

inertia of the spring is not to be taken into account. The
spring serves merely to represent a force between the two
masses, which is proportional to the difference between their
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actual separation and tlicir separation in the normal rest

position. Let x be the displacement of the left-hand pendulum
from its position of rest, and let y be the displacement of the

other from its position of rest. Both displacements are

measured to the right and are assumed to be so small that tlie

motion of a pendulum alone can be treated as simple liarmonic.

The natural length of the spring is equal to the distance between

the vertical positions of rest. Then the equations of motion

are

max ,
. \

dP = --f -a{x-y))

d^y mgy
{

di^
~

I
+ a(x y) j

(4-20)

To find a solution of these equations, let x = Ae^\ and let

y = This substitution represents a motion in which

both masses move with simple-harmonic motion and with the

same frequency. Advantage has been taken of the fact that

the motion is undamped, and the exponents have been written

so as to be pure imaginaries when co is real. The substitution

of these forms into the differential equations gives a pair of

algebraic equations for the determination of A and B,

— ^ A — aB = 0

—aA —
• B = 0

Both these equations must be satisfied if it is to be possible to

find a solution of the form assumed, and they can be satisfied

by values different from zero only if they are not contradictory.

The two equations are compatible only if the determinant of

the coefficients is equal to zero. This determinant contains the

undetermined quantity co; and, by a proper selection of the

values of co, it is possible to ensure the compatability of

the equations. This condition then fixes the frequency of the

vibration. The expansion of the determinant gives

" - 2a (mw^ - -f = 0 (4-22)
/ 2

mg- T

(4-21)
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The values of w that satisfy this equation are

coi^ = [ + ^ and = f
(4-22a)

Including both the positive and the negative roots of there

are really four values of w for which it is possible to write a

solution in the form assumed. For each value of co, the cor-

responding ratio between the coefficients A and B is given by
equations (4-21). For co = A ~ —B; while for w = +C02

,

A = B. Hence the general solution of equations (4-20) is

X = + A 26
-^'^ + + ^ 46

“"='
1 2^')

y = - -f
^

In this solution there are the four arbitrary constants that are

to be expected in the solution of two second-order differential

equations so that these solutions can be adapted to an arbitrary

set of initial conditions.

It is important to understand the .significance of equation

(4-22). Only wdien this ecpiation is satisfied is it possible to

satisfy simultaneously the two equations (4-21), and only when
these two are satisfied is it pos.sible for the assumed exponential

forms to satisfy the differential equations. Equation (4-22 )

gives the values of co for which a solution can be found in the

form a.ssumed. In the example treated, there are four usable

values and con.sequently four different solutions. Each of

these is a particular solution of the problem, -while the .sum of

them, each multiplied by an arbitrary constant, is the genera

solution.

When the energy of this system of coupled pendulums is

written down, care must be taken to include the potential energy

of the coupling spring in the proper way. The kinetic energy is

simply the sum of the energies of the two masses.

+ (4-24)

The potential energy can be visualized most simply as con-

sisting of two terms representing the potential energy of each
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particle in the gravitational field and a term representing the

energy stored in the spring. Hence

^ ^ If If 1
(^ - 2/)® (4-24a)

A more formal but still instructive way to arrive at the

potential energy is to consider the work necessary to move the

system from its position of equilibrium to its final position.

First hold the right-hand pendulum fixed and displace the left

hand one by the amount x. The work done is

Then, holding the left-hand mass at x, move the right-hand one

to y. The work is

Wi = y + aiy - x)^dy = y^ + ^y^ - axy

The sum of these two terms is equal to the potential energy V
of equation (4-24a).

Problem 23. Evaluate the constants in eciuations (4-23) in terms

of the initial positions and velocities.

Problem 24. Express the solution (4-23) in trigonometric form.

Problem 26. Find the initial conditions for which and A 2 are

zero and also those for which Az and d.4 are zero. A vibration under

either of these conditions is a “normal vibration.’^

Problem 26. In the case where a/m is small compared with g/l,

express the motion of each pendulum as a simple vibration with a

variable amplitude.

Problem 27. Treat the case in which the masses of the two
pendulums are different.

4. Normal Coordinates.—As was shown in Prob. 25, it is

possible to set this system of coupled pendulums vibrating in

such a way that the vibration takes place with one frequency

only. From equations (4-23) it is possible to show that

(x + ?/) = X = 2^36^“-^' + 2^ 46
-^'"

' I

{x — y) = Y = + 24.26“^“'^
J

(4-25)
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Each of the quantities X and Y varies harmonically, but with

its individual frequency. When A" = 0 and Y is vibrating,

there is one normal vibration excited; when Y = 0 and X is

vibrating, the other normal vibration is excited. In general,

both are excited simultaneously. The quantities X and Y
are called the normal coordinates of the system, and they are

just as satisfactory as the original x and y for specifying the

configuration. These normal coordinates have in addition,

however, the advantage that they are entirely independent

of one another in their vibration.

In general, normal coordinates are linear combinations of

the ordinary coordinates. In the simple and symmetrical case

of the two identical pendulums the normal coordinates are

simply the sum and the difference as shown in equations (4-25).

In other cases such as that of Prob. 27 the linear combinations

are less simple. In that problem

IT

,

rn.2

“^11 V\
mi ^

= :ri yi

(4-25a)

constitute the normal coordinates. In these simple cases such

coordinates can be obtained from the general solutions by

inspection.

Problem 28. Make the transformation to the coordinates X and Y
in the differential equations (4-20). Write the solutions of the trans-

formed equations.

Problem 29. Express in terms of the normal coordinates the

energy of the system of two coupled pendulums shown in Fig, 4-G.

Problem 30. Treat the problem of two coupled pendulums when

each mass moves against a frictional force that is proportional to the

velocity.

Problem 31. Three equal masses are confined in a frictionless

tube, which is in a horizontal position. The masses are separated

from each other and from the ends of the tube by four springs of the

same length and the same force constants. Find the motion of the

masses.

Problem 32. Find the normal coordinates for the above problem.
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From the above treatment, the following properties of normal
coordinates can be tabulated:

1. Normal coordinates are coordinates in which the equations

of motion take the form of a set of linear differential equations

with constant coefficients and in which each equation contains

one dependent variable only.

2. Normal coordinates are coordinates that are independent

of each other in the sense that one can be set into vibration while

the others remain at rest. This fact can, of course, be derived

from the general solution of the equations mentioned in item 1.

A vibration in which only one normal coordinate is vibrating

is called a normal mode of vibration.

3. Normal coordinates are coordinates in which the total

energy of the (undamped) system can be expressed as a sum of

the squares of the coordinates multiplied by constant coefficients

and a sum of the squares of the first derivatives of the coordinates

multiplied by constant coefficients.

Normal coordinates do not otherwise differ from arbitrarily

chosen coordinates and can be used for the description of the

system in the same manner as the original ones. When there

are only two coordinates, it is sometimes convenient to plot the

configuration of the system as a point in an x-y plane. This

point then gives the value of the two coordinates and so com-

pletely defines the system. The motion of the system can then

be described by an orbit in this plane.

6. Oscillations under an External Force.—In systems of two

and more degrees of freedom, an external force can be applied

in a variety of ways. In the problem of the two pendulums if

the same periodic force is applied to both of them the normal

coordinate X will be set into vibration. If the force is applied

to the two pendulums in opposite directions, the coordinate Y
will be excited. If the force is applied to one pendulum only,

both normal modes of vibration will be stimulated.

As an illustration, consider the case in which both pendulums

are subject to a damping resistance equal to mp times the

velocity, and let a force mFo sin wi act on the left-hand pendulum.

The problem can be treated in several ways. One way is to
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write down the differential equations and substitute an exponen-

tial. Perhaps a simpler way is to transform the differential

equations directly to normal coordinates. This leads to

d^X
dt^

+ P dt
+ f X = Fo

sin cot

dW
dr-

dY .(g, 2a\ Fo .

PlTt^
\J.
+ m j

^ = T
(4-26)

These equations are of the form already treated, and the solu-

tions can be written down at om^e.

X = Q sin (co/ — e)

with

tan € =
po)

(g/i) co^

+ p‘^0)‘^

(wt —

co^y

+

and tan e' =

y jFo sin ((A)t
— F)

^
[(r +

^

(4-27)

po)

(g/l) + (2a/'m) - co^

One normal coordinate has its resonance at one frequency and
the other at a different frequency.

The motion of either pendulum can be obtained by taking

the sum or difference of the normal coordinates. Each indi-

vidual mass shows resonance at two frequencies. The magni-

tude of the oscillation as well as the phase can be worked out

from equations (4-27).

Problem 33. Show that equations (4-26) follow from the state-

ment of the problem.



CHAPTER V

CALCULUS OF VARIATIONS

The Newtonian equations of motion, as postulated in Chap.

II, have a very simple form; the force along each coordinate

axis is represented by a single letter, and its dependence on the

coordinates is not specified. When the functional form of the

forces is specified in order to give the equations of motion for a

specific problem, a good deal of complication may result, and

most problems can best be handled by introducing a coordi-

nate system particularly adapted to the situation. Frequently

the direct transformation of the equations of motion to the new
coordinate system is a matter of some difficulty. Even the

transformation to plane polar coordinates, carried out in Chap,

n, is laborious. If, however, the equations of motion are

written in the form of a variation principle, which is independent

of the particular coordinate system used, the transformation to

various systems can be much simplified. This method of

writing the equations of motion will be considered in the next

chapter. The present chapter wfill deal with some of the more

elementary methods of the calculus of variations that must be

used in dealing with variation principles.

1. The Variation Problem.—The standard problem of the

calculus of variations is that of finding the form of the function

y = yix) such that a given integral

shall have a maximum or a minimum value. The function $
is given, and in many cases the limits Xi and Xi are prescribed.

The only thing that can be changed in the attempt to make 1

larger or smaller is the form of the function y. In some cases

the limits of integration may not be fixed, and then they, too,

can be varied.

87
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The following three examples of variation problems will

serve to illustrate the methods of the calculus of variations and

the types of problems that can be treated.

a. What is the shortest line between two points in a plane?

To put this problem in the standard form indicated above, take

X and y axes in the plane, and let {xi,yi) and {x2,yi) be the two

points between which the line is to be drawn. The line con-

necting the points will be represented by the function y — y{x).

The length of the line between the two points is then given by

the integral

fixi.vt) fx, r

^ [‘ + (*) J

The problem is to find the form of y as a functiozi of x that will

make the integral Jj a minimum.

b. Another classical problem is that of the brachistochrone.

Given two points in a vertical plane, the coordinates of which are

(xi,yi) and {X 2,y^, what is the curve along which a particle

will slide from one to the other in the shortest time? For

simplification let the upper point be at the origin of coordinates

so that Xi = yi = 0, and let the x axis be horizontal. Then
the speed of the particle is a function of y only and is given by

= {-2gy)^ (5-3)

when the initial velocity is a.ssumed to be zero. The time

occupied in passing over an element of the curve is

^
= (^4^7

and the whole time is

1 -f- {dy/dx)'^^^

0 L
dx (5-4)

The problem is to make this integral a minimum by finding the

proper form for y as a function of x.

c. A modification of the brachistochrone problem involves

a case in which the ordinate of the curve is not fixed at both

limits of integration. A special case is the problem of finding
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the curve down which a particle will slide in the shortest time

from a given point to a given vertical line. Since the point at

which the curve meets the vertical line is not specified, the end

point of the curve is not fixed and may be changed in the attempt

to find a curve for which the time is a minimum. The integral

for this problem is the same as for the previous one. The
limit of integration Xi gives the position of the vertical line,

but the value of must be determined as part of the solution.

The mathematical form of equations (5-2) and (5-4) in

which these problems are expressed is valid only when a num-
ber of conditions are satisfied. In particular, tlie two limits

Xi and X 2 must not coincide. If they do, the axes should be

selected in some other way. For a detailed discussion of these

restrictions reference should be made to a standard treatise

on the calculus of variations.

2. Extreme Values of Ordinary Functions.—The problem of

finding the maxima and minima of functions of one or more

independent variables is treated in the ordinary differential

calculus. To determine whether a certain value of a single

independent variable Xo gives a maximum or minimum value to

the function y = y{x), the value of the function for a; = Xo

is compared with the values of the function for neighboring

values of the independent variable. To find the values of the

function for neighboring values of x, it is convenient to use a

Taylor’s expansion. This gives

y{x) = y{xo) -f (a: - Xo)y'{xo)

+ i{x - Xo)y{xo) + • •
• (5-5)

If y(xo) is a maximum or a minimum value, the second term in

this expansion will vanish; and this requires that the first

derivative of y at the point Xo shall vanish. The vanishing of

the first derivative does not distinguish between a maximum and

a minimum, nor is it a sufficient condition for either. It is,

however, a necessary condition.

In dealing with a function of one real variable, there is no

uncertainty as to what values of the independent variable must

be considered. The independent variable can be only increased
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or decreased, and the first derivative is uniquely defined. In

dealing with a function of two or more independent variables,

however, the situation is already a little more complicated.

Such a function may have a maximum with reference to some
values of the independent variables and at the same time have

a minimum with respect to others. In such a case a function

has a true, or absolute, maximum only when it is greater at a

given point than at any other point in its neighborhood.

An example of this situation is the function

y(x,z) = (z - xo)- - (z - ZoY- (5-6)

The point — Xq, z = Zq) is one at which tlie function has a

stationary value; the first derivatives with respect to x and

with respect to z are zero at this point and are zero no matter

how the X and z axes are rotated. However, this is clearly

neither a true minimum nor a true maximum. It is a minimum
with respect to points on the line parallel to the x axis through

Zo and is a maximum with respect to points on the line parallel

to the z axis through Xo- At all points along the lines

X - Xo = ±iz — Zo)

the function has the constant value zero. Furthermore, any

point whose z coordinate is Zo gives to the function a maximum
value compared with those points having the same value of x

but different values of z, but at no point does the function have a

true maximum. This function serves to illustrate two points.

1. The vanishing of the first derivative in all directions is

only a necessary and not a sufficient condition for the existence

of a maximum or a minimum. At the point (xo,yo) the first

derivative vanishes, but this point is neither a maximum nor a

minimum. However, at this point the function may be said

to have a stationary value, and the vanishing of the first deriva-

tive may be taken as both necessary and sufficient for the

existence of such a value. It may be taken as the definition of

a stationary value.

2. The vanishing of the first derivative with respect to

only one of the independent variables is not sufficient even for the
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existence of a stationary vahie. At all points along the line

X — Xo, dy/dx = 0, but the function does not have a true

stationary value. It has a stationary value with respect to

X only. Hence a necessary and sufficient condition for the

existence of a stationary value is that the first derivative vanish

in all directions.

3. Extreme Values of an Integral.—In the problems of the

calculus of variations the dependent variable is the value of

the integral, and the independent variable is the form of the

function that appears as an argument in the integrand. If a

given form of the function y — y{x) gives the integral a minimum
value, any neighboriiig function must give the integral a value

equal to or greater than the minimum. To make such a state-

ment precise, it is necessary to define what is meant by neighbor-

ing functions. This can be done as follows: Let y = f{x} be

the function for which the integral has its extreme value. Let

7i{x) be another fuiudion of x that is bounded, continuous, and

has a continuous first derivative. Then it is convenient to

define

y = /(a:) + ay{x) (5-7)

as a family of functions in the neighborhood of f{x). a is a

parameter that may be given any positive or negative value, and

the functions of the family may be taken as close as desired to

f{x) by giving to a a sufficiently small value.

If the integral has a maximum value when its values for

only certain forms of the function y{x) are considered, it is said

to have a relative maximum. To have an absolute maximum
it must have a value larger than or equal to the value given

when any form of the function rj{x) is used.

If the integral I is evaluated for the family of functions

represented by equation (5-7), I will be a function of a. If,

then, the integral is to have an extreme value when y = f(x),

it is necessary that {dI/da)a=o — 0 and that this be true for all

functions ri(x).

Problem 1. Consider the family of curves y = a; -f- a sin nx,

with n an integer, that lie in the neighborhood of the function y — x.
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Show by actual evaluation that the integral of {dy/dx)^ between x = 0

and z = 27r is small(;r iov y — x than for any other member of this

family.

Problem 2, Consider the family of curves

y — Ax B vsin nx + a sin (n + 2)x

that lie in the neighborhood oi y ~ Ax + B sin nx. Show that

I = (dy/dx)^ dx is less for y = Ax + B sin nx than for any other

member of this family but that for the curves y = Ax + (B — a) sin nx

it can be still less.

Problem 3. Evaluate the integral 7 = /* [{dy/dxy + 4y]dx for

y — X + 3-4
-f- rA-X^ — (x*/X)\, and show that the minimum value

occurs for a = 0 and that dl/da = 0 when a = 0.

It is customary in the calculus of variations to deal with

variations of the integral and the quantities in the integrand

rather than with their differential (luotients. The variations are

designated by the sign With the family of functions defined

by equation (5-7),

d
by = ar](x) and by' = ^ i^y) (5-8)

The last of these equalities is true because

^ (2/ + 5y) = y' + 5?/' = ^ [y + ay{x)] = y' + ay'{^)

Each of these variations is a function not only of x but also

of a and is in fact proportional to a. For the function

y = fix) + ayix),

the integral will also have a value that depends on a, although

it is not generally a linear function of a. Under suitable

assumption as to the form of the integrand, the integral can be

expanded as a function of a by differentiating with respect to

the parameter a under the integral sign. This leads to

r^t fxi

/ $(y + Sy,x,y' + by')dx =
/

^iy,x,y')dx
J XI J XI

+ “ nix) + v'ix)
J
dx -t-

• •
• (5-9)
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If the integral has an extreme value for a = 0, the first derivative

with respect to a will be zero and the second terra in this expan-

sion will vanish. The term containing a is called the first

variation of the integral.

A necessary condition for the existence of an extreme value is

then that, for any value of a,

5/ = 0 (5-10)

This condition is a necessary condition for a maximum or a

minimum. It is not the only necessary condition, nor is it at all

a sufficient condition. It is, however, the condition that is

of importance in the variation principles of mechanics. Such

principles are concerned with the vanishing of the first variation

rather than with the existence of a maximum or a minimum.
For further discussion of the general variation problem, refer-

ence should be made to a treatise on the calculus of variations.

4. The Euler-Lagrange Equation.—The condition in equa-

tion (5-10) requires that

eyV(^ +
dy'

y'(x) dx = 0 (5-11)

for all suitable functions yix). A function is suitable if it is

continuous, has a continuous first derivative, and satisfies the

boundary conditions. If the values of yi and yi are specified

in the problem, tiixi) and riix^ must both vanish, since there is

no point to considering curves that do not connect the specified

points. If the values of yi and y^ are not specified, no such

restriction can be imposed on yix), and equation (5-11) must hold

whether ^{x) vanishes for x — Xi and x = Xa or not (see Fig. 5-1).

With these restrictions it is possible to carry out the second

integration, by parts, and

_d ^
dx dy

E>1 d<I>

7 y{x)dx -t- ri(x)
dy'

= 0 (5-12)
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This condition can be satisfied for almost any y{x) if the y]{x)

is properly selected; but, to be sure that it is satisfied for any

T]{x) that could be used, it is necessary that {d^/dy')rj{x) = 0

at Xi and X 2 and also that

d

dx dy' ~dy
(5-13)

for all values of x from Xi to X 2 * Equation (5-13) is the Euler-

Lagrange equation of the variation problem. It is always a

Xi X2

Fig. 5-1.—Sketch indicating the way 7^{x) is added to y{x) to give a function which
satisfies the boundary conditions at x — xi and x — x-i, but which differs from y(^x)

at other points.

necessary condition for the existence of an extreme value of

the integral. If the values of y are specified at Xi and X 2 ,
a

condition on d^/dy' at these points is not necessary, for all

suitable yixYs will vanish there.

Problem 4. Show that, if 4> = {dy/dxY, y = Ax + B sin nx,

and ri{x) = sin (n + s)x, dl — 0 even though this form of y does not

give the integral of # from 0 to 27r a stationary value.

As an illustration of the use of the Euler-Lagrange equation

consider the integral in equation (5-2). In the notation of

equation (5-13)

$ = (1 + y'^Y

A
dx dy'

d4> _ y'

dy ~ dy' “
(1 -f y'^)‘

d^y 1

dx^ (1 -t- y'^Y
~
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Thus it is necessary that the second derivative of y witli respect

to X shall be zero. This leads to a straight line whose equation

contains two arbitrary constants which can be adjusted to make
the line pass through the desired points.

Problem 6. Find the curve between the points (a; = 0, y — 0)

and {x = :ci, 2/ = y\) for which the integral of

has a stationary value.

Problem 6. Given two points and a line that are coplanar, find

the form of the curve between the two points, and lying in the plane,

that will generate a surface of minimum area when rotated about the

straight line as an axis.

Problem 7. Find the curve connecting two given points down
which a particle will slide in the shortest possible time.

Problem 8. Find the curve down which a particle will slide in the

shortest possible time from a given point to a given vertical line.

6. Variation Problems with Several Dependent Variables.

—

The common case of variation principles in mechanics is that in

which the integrand of the integral whose stationary value

is sought contains one independent variable but more than one

dependent variable. In this case it is necessary to admit arbi-

trary, independent variations of all the dependent variables.

The first variation is then

r r3<i> 1»-j
[si,- + Wj'

^y' + a. + a?
&'•••]*

In the case of fixed limits, the partial integration gives

Since the variations of the different variables are independent,

the vanishing of this expression requires the separate vanishing

of the quantities in parentheses. This gives a set of simultane-
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ous differential equations for the determination of the desired

functions.

As an example, consider the problem of determining the

shortest line between two points in three dimensions. In

Cartesian coordinates the integral is

L (1 + y’^ + z'^)^ dx

The two simultaneous Euler-Lagrange equations are then

dx (1 + y'^ + dx (1 + + 2 '^)^

The solution of these gives y and z as functions of x and four

arbitrary constants, which can be evaluated to make the curve

pass through the desired points.

Problem 9. Find x and y as functions of t so that the integral

dt

has a stationary value. Assume that x and y are given at h and ^2.

Problem 10. Find the differential equations whose solution gives

X and 2/ as a function of the time such that the integral

=
i: If Ks)’ + (s)’]

-

»

(x''* + y^) — hxy] dt

has a stationary value. Take the end points as fixed.

6. Problems with Auxiliary Conditions.—In some cases it

is desired to find the curve along which a given integral has

an extreme value while at the same time certain relationships

exist between the variables. For example, it might be desired

to find the shortest line that connects two points and at the same
time lies on a given surface. The problem of the shortest line

between two points in three dimensions is one involving two
dependent variables. If it is required that the line lie in the

surface defined by g{x,y,z) = 0, a straightforward procedure is

to use this relationship to express one of the variables, say y,

in terms of the other two. The variation problem is then

reduced to one of a single dependent variable.
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To illustrate the procedure for the case of two dependent

variables y and z and a single condition, let ^{x,y,z,y',z') be the

function whose integral between Xi and is to be given an

extreme value under the restriction that g{x,y,z) = 0. The
first variation is

dl
dx dy'

df
dz

d d^'

dz dz7^
5z dx (5-15)

This integral must vanish if the integral I has an extreme value.

However, the vanishing of the integral does not require the

independent vanishing of the two expressions in parentheses.

8y and 8z are not independent but are connected by the equa-

tion g{x,y,z) = 0. From this equation it follows that for any

given value of x

(5-16)

so that 8z can be expressed as a product of 8y and a function of

X. With this value of 8y the expression for the first variation

becomes

81
dx dy'

/3'}> d 3<IA 73(7 dg

\32 dx dz')/ dz dy

^ 34^

dx dy'
8y dx = 0

8y dx

(5-17)

Since 8y is now entirely arbitrary and is not subject to any

restrictions due to the auxiliary condition, equation (5-17)

requires that

dx dy'

34>
,

. , , 3gr -

% + ^ = 0 (5-18)

The function X(r) is also involved in the relationship

£
dx dz'

34>

3z + I = 0 (5-1 8a)

Equations (5-18) and (5-18a) are those obtained by writing the

Euler-Lagrange equations for a problem in which the integrand

is 4> — 'K{x)g{x,y,z) and no additional conditions need to be
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considered. However, in this process an additional function

\{x) has been introduced so that three functions y{x), z{x),

and X(x) are to be determined by means of three equations,

(5-18), (5-18a), and the auxiliary equation (j{x,y,z) = 0.

The rule for treating a variation problem with algebraic

auxiliary conditions is to form the function F = <l> -f-

and to write the Euler-Lagrange equations for a stationary value

of F. These will be of the form of (5-18) and (5-18a) and com-

bined with the equation of condition will serve to determine the

dependent functions and the auxiliary functions \{x)*

Problem 11. Find y and z as functions of x .such that the first

variation of / (y'* + 3'^ — ay)dx is zero and z = by. (h is a constant.)
Jri

Problem 12. Find y and z as functions of x such that the first

variation of r {y'^ + ,'2 az^)dx is zero and z = b -{ cy.

7. Isoperimetric Problems.—Sometimes the auxiliary condi-

tion in a variation problem is not a simple relationship between

the variables, such as was treated in the previous section, but is

the requirement that a certain integral shall have a predeter-

mined value. Such problems are called isoperimetric problems

because of their relationship to the classical problem of finding

the closed curve of given perimeter that encloses the maximum
area. The general problem can be formulated as follows:

Find the form of y as a function of x such that the integral

I = Xr ^i^>y,y')dx (5-19)

has a stationary value with respect to those functions for which

S = <r{x,y,y')dx (5-19a)
Jxi

has the prescribed value So- We shall consider here only the

case in which y{xi) and yix',) are prescribed and not subject to

variation. The generalization of the problem to include

more than one dependent variable will also not be explicitly

considered.

* The conditions under which a problem can be treated in this way are dis-

cussed by Forsyth, “Calculus of Variations,'^ p. 433, Cambridge University Press,

London.
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As in the case of algebraic conditions, it is necessary to

find a family of comparison curves that satisfy the auxiliary

condition, that for which S has the value aSq. Let y{x) be

the function that represents the desired solution of the problem,

and let and 7]{x) be two different functions of x that vanish

at xi and X2 - Then

y + = y + + i3rj

represents a two-parameter family of curves that includes the

curve y when a = jS = 0. The integral S along one of these

curves is a function of a and (3 and can be expanded in terms of

them.

S{a,^) == So + oeSa + ^Sfi + • • •

where

/x. /, (,dy dx dy) ^{x)dx

•/:o dx dy^

The requirement that S(a,/3) = So constitutes a relationship

between a and /3 that for small vahies of a and d can be approxi-

mated by jS = —{Sa/Sf,)a. Thus if by = a[^ — {Sa/Se)rj\, the

family of curves y by satisfies the auxiliary condition for

small values of a.

If, with respect to this family of curves, the integral has

an extreme value when « = 0, it follows that

81 = a
jx. Vdy (bdy'Jy^ — ^ dor = 0 (5-20)

Let

ix. \dy S - I,

Equation (5-20) can then be written

dx dy'/1

^{x)dx — a
Sff

(5-21)

-•n? A §A
dx dy'

Iff (da

sMj di a^)]
= 0
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The ratio I^/S^ is fixed as soon as r)(x) is selected because of the

definitions of Ig and But, in addition, equation (5-21)

could be written

& -S,. = 0 (5-21a)

and since and can depend only on ^{x) while 7^ and Sf

depend on vix), it follows that I^/Sf is a constant independent

of 7]{x). Equation (5-21) then also states merely that la/Sa

is also a constant, independent of ^(x).

The formulation of equation (5-21) may be expressed in a

simple rule. If the function E = $ -(- Xo- is formed, a neces-

$ dx with a

prescribed value of (S = jj' a dx is

±dF _dF
dx dy' dy

(5-22)

together with the equation S = So. These two equations serve

to determine y{x) and the value of the constant X.

To illustrate this method^ consider the problem of finding

a curve passing through the points (x = 0, y = 0) and {x = a,

y = 0) for which the integral I = 2 fg
{dy/dxY dx has a

stationary value at the same time that dx = So.

Following the rule outlined above leads to the function

T’ = hidy^/dx) + Xy®, and equation (5-22) then takes the form

g - 2Xy = 0 (5-23)

The general solution of this equation is

y = (5-23a)

The fact that the curve passes through the origin requires that

B = —A, and the passing through {x = a, y = 0) requires that

^y/^a ^—\/2\a _ Q
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This fixes the value of V2\a as one of the series mri where n

is an integer. Only the case with n ^ 0 leads to a useful

solution. With the conditions at the end points the solution

(5-23o) becomes

y = Ao sin— (5-236)
CL

where do is a new constant proportional to the original A. To
evaluate do use must be made of So.

do=* / sin^— dx = So = do% (5-23r)
Jo d A

This illustration is an example of a case in which there is an

infinity of solutions giving stationary values.

It is to be noted that all the discussion in this chapter has

referred to necessary conditions for a stationary value. If

the solution in question represents a stationary value, the

Euler-Lagrange equation will be satisfied. The question of the

sufficiency of the conditions, of whether the satisfaction of the

Euler-Lagrange equation guarantees a stationary value, is

discussed in treatises on the calculus of variations.

Problem 13. The end.s of a uniform string are fastened at given

points. Find the equation of the curve in which it must hang in order

that its center of mass be as low as possible.

Problem 14. A fence of length L is to be built so as to connect two

points on a straight wall that are a distance 2a apart. Along what

curve should the fence be built to enclose the maximum area? Con-

sider only the case in which L < ica.



CHAPTER VI

HAMILTON’S PRINCIPLE

Hamilton’s principle is a variation principle; it is equivalent

to the Newtonian equations of motion and can be derived from

them. Instead of describing the motion of a particle directly

in terms of its acceleration, this principle describes the path

in terms of a quantity whose integral along the path has a

stationary value compared with other possible paths. From
the statement that the variation of a certain integral is zero

can be derived the differential equations that describe the

motion. This principle provides a statement of the Newtonian

equations that is independent of the coordinates used and from

wliich the differential equations can be obtained witli a minimum
of effort. The variation principle is of little or no assistance

in solving the equations, but it does provide a convenient means

of writing them in any desired coordinates.

Hamilton’s principle is not the only variation principle that

can be used for mechanical problems. Others, notably the

principle of least action, can be, and often have been, used.

However, in this chapter only Hamilton’s principle will be

treated.

1. Derivation of Hamilton’s Principle from Newton’s Laws.

Consider a mechanical system of n particles whose coordinates

aTexi,yi,Zi,X2,y2,Z2, . . • ,Xn,yn,Zn- The motion of the system

is known when the value of every coordinate is known as a

function of the time. Suppose the system moves from a cer-

tain configuration given by x/, . . . ,
2:„’ at the time t' to

another configuration given by x/', yi", . . . , Zn" at the time

t”. During all of the motion between these two configurations

the Newtonian equations of motion will be followed, and the

acceleration of each particle will be given by the total force

acting on it. This motion can be described by expressing each
102
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coordinate as a function of the time. Tliere are then 3n depend-

ent variables depending on tJie one independent variable t.

These functions can be written

xi = xi{t), yi = . , . ,
= z,Xt) (6-1)

Now consider some other w-ay in which the system might have

moved from the initial configuration to the final (configuration

in the same amount of time, t" — t'. This new motion is to

be one that satisfies the geometrical conditions, or the con-

straints, of the problem. It will not, however, satisfy the

equations of motion. If this new motion is just slightly dif-

ferent from the original motion, the coordinates, as functions of

the time, can be written

Xi{t) -{- dxi(t), yi{t) -b 8yi{t), . . . , Zn(0 + 5z„(f)

The variation of a coordinate a; is a function of the time and is

the difference betw'een the x coordinate of the comparison path

and that of the true path. It is to be assumed that the true

path is a continuous function with continuous first derivatives,

as it must be to satisfy Newton’s equations. Similarly, the

comparison paths must be functions of the time that are con-

tinuous and have continuous first derivatives. It is also

specified that the true path and the comparison path lead from

the same initial configuration to the same final configuration in

the same time. On this account,

Sx,it’) = 5xi(f") = = 5(/i(f") = • • •

= 5zn{t") = 0 (6-2)

The true path was originally defined in terms of the New-
tonian equations of motion. The object now is to translate

this definition into a definition in terms of the properties of this

path compared with these various other possible paths. For

the true path there are the 3n equations

d% _ Y-
trn Xi

The quantity Xi may be a function of the coordinates, a func-

tion of the time explicitly, or both. It may be considered,
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however, as a function of the time only, since the dependence on

the coordinates is a dependence upon the positions of the

particles and these are uniquely determined by the time along

any path that may be considered. If, now, each component of

the force X, is multiplied by the variation of path in the direction

of the force and all the resulting equations are added together,

the result is

= ^(Xj 5xi + } i S'lji + Zi Sz,)

_ d'^yi
,

dhj
^ \

i

= ^ Pii (Xi dXi + Vi dy-i + Zi 5z,)

— Xi 8xi - yi biji — z,- bz,

The quantity 51/ is defined by the first equality in equation

(6-3). It is the work done by the forces of the system during

the infinitesimal displacement bxi, . . . , bZn and is a function

of the time and the independent coordinates of the system. If

the forces do not depend explicitly on the time, bXJ can be

expressed as a function of the coordinates only. The last part

of (6-3) represents the variation of the kinetic energy bT.

Hence the equation can be written

57’ + bU = + Vi + 2 ,- 5z,) (6-4)

In all these expressions t is the independent variable. If both

sides of (6-4) are integrated with respect to this independent

variable between the limits t' and t", the result is

{bT + bU)dt = 5 f‘"
Tdt + I!"

bUdt = 0 (6-5)

The integral of the right-hand side of (6-4) is zero because all

of the variations are zero at both limits. Equation (6-5) is a

property of the path that satisfies the equations of motion, and
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this property furnishes a way of defining the true path of the

system.

In the special case in whicli the forces are conservative, i.e.,

when they can be derived from a potential energy, 517 is the

negative of the variation of the potential energy, so that

h {T - V)dt = 8 I!"
Ldt = 0 (6-5o)

The quantity T — F is denoted byL and is called the Lagrangian

function or the kinetic potential of the system. The Lagrangian

function can be expressed in any convenient coordinates, and

the variation principle will still apply.

Hamilton’s principle, then, states that for tlie motion of a

mechanical system

ft"
^ L(Qi, <?2, qu 92 , ... , (in, i)dt = 0 (6-6)

In this equation the g’s represent tlie coordinates necessary

to specify the configuration of the system. The time appears

explicitly in the Lagrangian function only in case the forces are

explicit functions of the time, or the coordinates used are in

motion. In the simple conservative cases the Lagrangian

function depends upon the coordinates and their first derivatives

only. If, as has been assumed, the coordinates are all inde-

pendent, the treatment of the previous cliapter shows that the

path is described by the set of differential equations

d^_^
dt dqi dqi

(6-7)

The coordinates in the Lagrangian function may be independent

from the beginning, as in the case of the free motion of particles

under their mutual forces. On the other hand, the particles

may be constrained to move upon certain lines or surfaces.

In this case the original 3» coordinates can be reduced in num-
ber, by the use of the equations that express the constraints,

xmtil a smaller number of independent coordinates is left. The
use of equation (6-7) as it stands implies that this latter process

has been carried out, if necessary.
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The Euler-Lagrange eqxiations for Hamilton’s principle

[equation (6-7)] are usually called simply Lagrange’s equations.

They contain nothing more than was contained in the original

Newtonian equations, but they have the decided advantage

that the coordinates may be of any kind whatever. It is

necessary only to write the potential and the kinetic energies in

the desired coordinates, to obtain the equations of motion by

simple differentiation. This is usually much simpler than

transforming the differential equations themselves.

Although Lagrange’s equations have been obtained here

from Hamilton’s principle, they can also be obtained diretftly by

transformation from Newton’s equations. This serves to

emphasize the fact that Lagrange’s equations and Newton’s

equations are entirely equivalent, and the more convenient

form should be used.

From the form of the Lagrangian function it is often possible

to obtain one or more integrals of the motion. If a particular

coordinate is not contained in the Lagrangian function^

equation (6-7) shows at once that

^ = const. (6-8)
oq.

For this reason it is usually desirable to make such transforma-

tions of coordinates that as few as possible appear explicitly in

the Lagrangian function. By this process the conservation

of momentum and of angular momentum can be established

for those systems in which they hold.

2. Illustration of Lagrange’s Equation for Conservative

Systems.—To illustrate the use of equation (6-7), consider a

particle moving in a plane and attracted toward the origin of

coordinates with a force inversely proportional to the square

of the distance from it. With plane polar coordinates one has

simply

F = - - and T = ^ (f* -f- rW)
T 2

L = T - V = ^ (f^ -h rW) + -
2 r

From this
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and the derivatives are

dr
= mr and

dr
mrd^ —

which give for this equation of motion

^2 - +^2 = 0

For the other equation in the variable 6,

^ = mr^ and = 0
dd de

so that this equation of motion is

m 4 = 0
at

These are the equations of motion obtained in Chap. II by the

much more laborious process of changing the variables. The
last of these is an illustration of the use that can be made of

the absence of a coordinate from the Lagrangian function.

Since 6 is not explicitly present in L, the derivative of L with

respect to 0 is a constant.

Problem 1. A mass m moves on the x axis under the influence of

the force X =
. If the motion of the particle is given by a; = A sin find the

time integral of the Lagrangian function from t = 0 to t = 7r/4co.

. Consider also the different motion given by the equation

X = A (sin o)t — a sin 4cot). This motion coincides with the previous

motion at the times t = 0 and t = tt/Aco. Find the time integral of

the Lagrangian function between the same limits for this second motion.

Problem 2. Find the differential equations of motion, in spherical

polar coordinates, for a particde attracted toward the origin with a

force that is a function of the distance only.

Problem 3. A particle moves on the surface of a sphere under the

influence of gravity. Use spherical polar coordinates, and find the

differential equations of motion.
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Problem 4. Find the differential equations of motion for a free

particle in cylindrical coordinates.

Problem 6. A particle slides along a wire bent into the shape of a

circular helix whose equation is 2 = ad. The particle is also attracted

toward a point on the z axis with a force proportional to the distance

from it. Write and solve the equations of motion.

Problem 6. A mass m is lying on a smooth table and is attached

by a cord of length I, which passes through a hole in the table, to a

mass M suspended beneath. Write the differential equations of

motion. If m is given an initial velocity perpendicular to the cord,

find the minimum velociity that will keep M from descending. Con-

sider M to move in a vertical lino only.

3. Problems Involving Constraints.—As was stated above,

the paths with wliioh the true path is to be compared, in apply-

ing Hamilton’s principle, are those which satisfy the constraints

of the problem. In the preceding problems it has been assumed

that either there are no constraints to begin with or the number
of coordinates has been reduced until those remaining are all

independent. In the case of the particle moving on the sur-

face of the sphere, if only two angular coordinates are used,

they are independent, and so the constraint is said to have been

removed. If Cartesian coordinates are used for this problem,

an additional condition must be introduced to confine the

motion to the sphere. It is often inconvenient to reduce the

number of coordinates, and a better way is to treat the equa-

tions connecting the coordinates as auxiliary conditions, by a

method similar to that described in the previous chapter.

The relationships between the coordinates, which may
include the time, may be written in the form

?2j • • • > 0 ^ Cd-9)

In the preceding chapter it was shown that such an auxiliary

condition can be taken into account by including it in the inte-

grand of the variation problem. Hence the variation principle

can be written

S ^Z/ -j- ^ dt — 0 (6-10)
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The corresponding Lagrangian equations, since the 0’s do not

contain the velocities, are

dt dqi
0 (6- 11 )

In dealing with e(}uations of this kind, it is important to

remember that X is an unknown function of tlie time. In simple

cases it may turn out to l)e a constant, but this cannot be

assumed in solving the eejuations.

As a simple illustration of this method, consider a bead that

can slide without friction on a straight wire. Let the wire

make an angle with the horizontal wliose tangent is a, and then

take the x-y axes in the vertical plane containing the wire. Let

the X axis be horizontal. Consider the force of gravity and an

attraction toward the y axis equal to k times the distance from it.

The kinetic energy is {ni/2)(x^ + y^), the potential energy

is {k/2)x^ + mgy, and the equation of constraint is

y — nx — h = 0

The variation equation is then

(x^ + y^) -
I

x^ myy -(- \{y — ax — b) dl = 0

PTom this the two differential equations of motion are

vix -f- kx -j- a\(t) = 0

niij -f mg — X(t) = 0

The function X(() (!an be eliminated between these two equations

to give

m{£ ay) + kx -f amg = 0

The equation of constraint gives y — ax, and therefore an equa-

tion in X alone can be written

m(l -|- a^)x -f -|- amg = 0

The solution of this differential equation is immediately obvious

as

amg
X = —

k
, ^ . If k/m Y

.

+ ^ LVfT^V ' “
‘J
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From the equation of constraint, y is just ax + 6, and X(/)

can be determined from either differential equation.

\{t) = +mg - kaA
z.—j—^ sin
1 +

Problem 7. A mass m is fastened to one end of a string that passes

over a fixed pulley. From the other end of the string is suspended a

second pulley, and over it passes a string supporting masses mi and m 2 .

Use Lagrange^s equation involving constraints to find the motion of the

system.

Problem 8. Solve Prob. 5 by the use of Lagrange/s equation with

constraints.

Problem 9. Show, by carrying out the substitutions, that equa-

tion (6-11) can be obtained by eliminating some of the independent

variables in Hamilton's principle through the equations of constraint.

Problem 10. A smooth wire is bent into the form of an inverted

cycloid. Find the motion of a particle sliding on this wire under the

influence of gravity.

4. Problems with Nonconservative Forces.—In the problems

thus far treated it has been possible to express the forces in

terms of the derivatives of a potential energy. This is not

always possible, and systems in whicli it is not are called non-

conservative system,s. When a system is nonconservative, it is

frequently because not all the bodies that act on each other are

included as belonging to the system under consideration. In

such cases, the forces due to the neglected bodies must be

known as functions of the time and the positions and velocities

of the particles that are included.

It is possible to use Lagrange’s equations in arbitrary

coordinates as equations of motion for nonconservative systems

by including a generalized force term on the right-hand side.

If the coordinates to be used are gi, 92 ,
. . . , gn, the work

done by the forces of the system when these coordinates are

changed by small amounts can be written

517 = Q] bqi + Q2 bq2 + * *
' Qn bqn (6-12)

8U has the dimensions of work; but since the g’s may not all

have the dimensions of length, the Q/s will not necessarily
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have the dimensions of force. With the Q/s as defined in

equation (6-12), the Lagrangian differential equations of motion

are

£dL _ dL _
dt dqi dqi

~ (6-13)

In this equation, the function L contains the kinetic energy

and the potential energy due to any conservative forces that

may be acting. The remaining, nonconservative forces are

described by the quantities Q,-.

Consider a particde constrained to move in a plane under the

influence of an attraction toward the origin proportional to

the distance from it and also of a force perpendicular to the

radius vector. This latter force is inversely proportional to

the distance of the particle from the origin and has the counter-

clockwise sense. The Lagrangian function is

171 - n
L = ~ (r^ + rW) -

2
r-^ (6-14)

when plane polar coordinates arc used. The nonconservative

force does work only when the angle 6 is changed and

5U = ^rdd = bde (6-14a)

where b is the constant of proportionality. The ecpiations of

motion are then

mf — wrd* + ar = 0

m ^ (r^d) = b (6-14?>)

This is an illustration of the way in which the variation dU can

be defined without the necessity of having a single-valued

function U.

Problem 11. Write the differential equations of motion for a

particle moving around an attracting center and opposed by a resist-

ance proportional to the velocity.

6. Hamilton’s Canonical Equations of Motion.—For many
problems the methods just described serve to put the differential
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equations of motion into the best form for integration. For

some cases, liowever, and especially for general considerations,

it is more convenient to use a system of 6n partial differential

equations of the first order, instead of the 3n equations of the

second order. These can be obtained as follows:

Let

p, = II
(6-15)

Then let

H = 'Lfhqi -- L = (6-16)

Since L is a homogeneous quadratic function of the qi’s, e(]ua-

tions (6-15) are linear in the g/s and can be solved for them in

terms of the Pi’s. With these solutions, the function H can be

expressed as a function of the p,’s and q/s. The differential of

H can then be written in terms of either set of variables:

dH = ^ di, ^ dp, - Y, fl ^ I;

dpi -f- dt

4 Sg,
- Tl

(0-17)

Since the two forms of H are equal to each other for all values of

the variables, the coefficients of the corresponding differentials

must be equal. The coeflftcients of dg, add to give zero becau.se

of the definition of the p,’s. There result, then, the equations

.
dL ^ §H _ _ dh

~
dpi dqi dqi dt

~
dt

By Lagrange’s equations, p,- = dL/dqi, and therefore the equa-

tions are

dH dH
~

dpi ~ dqi
(6-18)

The advantage that the Hamiltonian equations (6-18) have
over the Lagrangian equations is that they contain 6n inde-

pendent variables. All these can be transformed in the effort to

get the equations in a form suitable for solution. Transforma-
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tions of these variables that leave the form of the Hamiltonian

function unchanged are called canonical transformations.

If a canonical transformation can he found such that the

transformed Hamiltonian function is independent of one or more
of the new coordinates, an integral of the equations is immedi-

ately obvious. The momenta conjugate to the missing coordi-

nates are constant. The general procedure in solving the

Hamiltonian equations is to find such a transformation that

the new Hamiltonian function depends on momenta only.

A general method for doing this is provided by the Hamilton-

Jacobi partial differential equation, but the discussion of tliis

equation is too extended to be given here.

Problem 12. Show that, if the Lagrangian function does not

contain the time e.xplicitly, the Hamiltonian function is equal to the

total energy of the system.

Problem 13. Show that, if the Hamiltonian function does not

contain the time explicitly, it is constant.

Problem 14. Write the Hamiltonian function and the equations

of motion for a simple-harmonic osc-illator. Then transform to the

new variables a and <p by the equations

X = and j) = {2maui)^ cos <p (6-19)

Demonstrate that this is a canoni(;al transformation hy showing that

the form of the equations of motion is unchanged. Solve the equa-

tion in these variables.

6. The Pendulum.— In Chap. II the simple pendulum was
treated with the limitation that only very small swings were

considered. With that restriction it was shown to have a

sinusoidal motion with a frequency independent of the ampli-

tude. However, it is also possible to treat the pendulum with-

out this restriction, and the treatment provides an illustration

of some of the methods used in more complicated cases.

Consider a pendulum composed of a mass m attached to

the end of a light rod of length a. The other end is pivoted so

that the mass can move freely in a vertical plane, in circles

around the pivot.
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a. The Differential Equations of Motion ,—The differential

equations of motion can be written in various ways. The most

obvious way is to apply Newton’s equations directly. Let the

origin of the coordinates be taken at the pivoted end of the rod

with the X axis horizontal and the axis vertical. The forces

acting on the mass m will be the tension in the rod directed

along the rod and the force of gravity directed vertically down-

ward. Taking components of these forces along the x and y

axes, the equations of motion are

^ \mx X
I

"
! (6-20 )

my — ~ ~^y ~
"'.9

)

These are relatively simple to write down, but they contain the

tension K, which is an unknown function of the time and must

be so treated in solving the equations. The approximate

treatment, valid for small swings, consists in assuming that y is

constant so that ij = 0. This gives a constant value for K
from the second equation, and the first one can be solved with

this constant K.

This is also a case in which Lagrange’s etpiation with con-

straints can be used.

T = 2
+ y^) T = m^y + y^ — = 0

From equation (6-11), it then follows that

mx — 2\x = 0 I

mi) — 2\y + rruj = 0]
(6-20a)

In these equations the function 2X replaces —Kja of equations

6-20. This illustrates a general principle that the undetermined

functions X of equation (6-11) represent forces exerted by the

constraints.

The most effective use of Lagrange’s equation comes when a

transformation of coordinates is made in the Lagrangian func-

tion. For the problem of the pendulum take polar coordinates
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{r,&) with the negative y axis corresponding to 0 = 0. The
kinetic and potential energies can be written directly in these

coordinates or transformed from the above expressions.

171

L = ^ + mgr cos 6

<f>
= — 0

If account is taken of the constraint, the Lagrangian function

becomes

L — ^ + mga cos 0

and there is only a single differential equation of motion

0 + ^
sin 0 = 0 (6-205)

If, instead, Lagrange’s equation is used to take account of the

constraint, there is an additional equation

f — — g cos 0 — 2 r = 0m

for which X may be determined as a function of the time.

r = a, this leads to

X = m mg
2

^ ”

Since

h. Sohition of the Equation of Motion .— It is convenient to

write equation (6-205) in the form

0 -f 2 - sin cos ^ = 0 (6-21)

and this will be taken as the equation of motion.

The Hamiltonian momentum is

p = ma“0 (6-22)

and the Hamiltonian function is

H =
2mo®

-f- 2mga sin* — mga (6-23)
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Since this does not contain the time, it is a constant, in this

case the energy, and may be set equal to C — mga. Then it

follows that

p - 2«»>
(I)'

- sin> 0' (C-24)

Some of the properties of the motion can be obtained directly

from equation (6-24). Since p must be real, only those values

Fil;. ()-1. Some pliast' orbits of a pendulum.

of d are permitted for which siii^ 6/2 < (U2m(ja, The limiting

ease defines the maximum swing, so tliat the amplitude a is

given by

I
-

If C < 2mga, there exists this limiting angle a, and d oscil-

lates between a and —a. In the other case (C > 2mga) the

pendulum turns clear over. Figure 6-1 shows p as a function of

0 for various values of CI2mga. The lines in this figure may
be regarded as orbits described by a point representing the

position and momentum of the pendulum. The point describ-
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ing an orbit of this kind does not move with constant velocity in

this p-d plane. Its velocity must be obtained by further

integration of equation (6-24).

To find the period of the motion, p in equation (6-24) is

replaced by its value in terms of 6. Then

^ (a) "" (sm~W2 - sin^ 0/2)‘

To integrate this for the case of oscillatory motion (sin^ a/2 < 1)

let

sin <p
= sin d/2

sin a/2
(6-26a)

Then

dtp

(1 — sin^ a/2 sin* tp)^
(6-266)

This integral gives the time during which the angle tp increases

from 0 to tpi and 6 increases from 0 to the corresponding value

of 6 as given by equation (6-26a). When the integral is carried

out to tpi = t/2, d = a and the time is a quarter period of oscil-

lation. Hence, if T is the full period.

T =
dtp

sin* a/2 sin* tp)^

= 4 (6-27)

F{{a/2), tp] is an elliptic integral of the first kind whose values can

be found in tables. For a/2-^7r/2 the period T approaches

infinity. This corresponds to the situation shown in Fig.

6-1 for CI2mga = 1. The orbit crosses the axis as a straight

line so that the representative point never actually reaches the

singular point 0 = tt, p = 0.

If C > 2mga, the mass has enough kinetic energy at the

bottom of its swing to carry it clear around. In this case

equation (6-266) becomes

_ r
® ""

\ C / “ jo [1 — {2mgalC) sin* 0/2]*
(6-28)
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This again is an elliptic integral of the first kind that can be

looked up in the tables. When d = -ir, the time is that neces-

sary for a half revolution, so that if T is the time for a full

revolution

T- 2a r ^
~ \C / jo [1 - {2mgalC) sin^ 0/2]*

= (6-29)

Fig. 6-2.—Period of a pendulum as a function of its amplitude. For a pendulum that

makes a complete rotation, the period is expressed as a function of the enerK^y.

where sin^ jS = 2mgajC. The value of T as a function of CI2mga
is shown in Fig. 6-2. For the oscillatory case the magnitude

of the amplitude is indicated also.

Problem 16. Obtain an approximate expression for the period of a

pendulum with finite amplitude by expanding the integrand in equa-

tion (6-27) in powers of sin^ a/2.

Problem 16. Show that for small values of the amplitude the

orbit of the representative point in the p-B plane is an ellipse and that

for the limiting case of a = tt the orbit is such that p is proportional to

cos 6/2.

Problem 17, Show that in the limiting case of C/2mga oo

the period given by equation (6-29) is just that to be expected when
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gravity is neglected and the pendulum turns uniformly with its initial

angular velocity.
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CHAPTER VII

THEORY OF VIBRATING SYSTEMS

In Chapter IV the vibrations of some systems of two and

three degrees of freedom were studied and were expressed in

terms of normal coordinates. In this chapter a similar treat-

ment will be given to some systems of many degrees of freedom

and to continuous strings. These last may be considered as

vibrating systems with an infinite number of degrees of freedom.

1. General Theory of Normal Coordinates.—Because

Lagrange’s equation can always be used as the form of the

equations of motion, the problem of treating a general vibrating

system starts Avith the problem of writing the kinetic and

potential energies. A vibrating system will have some position

of equilibrium, and it is usually convenient to take the coordi-

nates in such a way that they are all zero when the system is

in its equilibrium configuration. The potential energy can

then be expressed as a Taylor’s series, which will be a power

series in these coordinates. The constant term in this series

can be set equal to zero by so defining the energy that it is zero

in this equilibrium position. The coefficients of the first powers

of the coordinates will be the first derivatives of the potential

energy with respect to the coordinates. These will be zero,

because the configuration is one of equilibrium. The first

coefficients, then, different from zero, are those of the quadratic

terms, and they will all be positive if the equilibrium is stable.

If all the forces are Imrmonic, there will be no higher derivatives

;

and, in general, if only small displacements are considered, the

higher terms can be neglected. Hence the potential energy

will be a quadratic expression in the coordinates that, if the

equilibrium is stable, will be a positive definite expression,

i.e., it will never be negative and will be zero only when all

the coordinates are zero. It will also be possible to write the
120
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kinetic energy as a positive definite quadratic expression in

the time derivatives of the coordinates.

It is shown in works on algebra that it is always possible to

reduce any two positive definite quadratic expressions to a

sum of squares of quantities which are linear combinations of

the original variables. Hence, it will always be possible to

find such linear combinations of the originally selected coordi-

nates that the kinetic and potential energies can be written as

sums of squares of these combinations and their time deriva-

tives. The linear combinations for which this is true are the

normal coordinates of the problem. Thus it is always possible

to find normal coordinates for any system whose potential

energy can be expressed as a homogeneous quadratic function

of the coordinates.

Problem 1, Show that, if the potential energy of a .system is a

sum of squares of the coordinates multiplied by constant coefficients

and if the kinetic energy is a similar sum of the squares of the time

derivatives of the coordinates, the differential equations of motion

are those for simple-harmonic motion.

Problem 2. Write the exact expression for the potential energy of

the system of two coupled pendulums connected by a spring, and

show how it satisfies the various conditions presented in the above

discussion of vibrating systems.

The method.s of reducing the expressions for the potential

and kinetic energies to sums of sejuares are in essence just the

methods of Chap. IV.

2. Vibrations of a Loaded String.—In many cases the

actual determination of the normal coordinates is a difficult

matter because of the necessity of solving an algebraic equation

of high order to find the normal frequencies. One case, how-

ever, which can be treated is that of a number of similar particles

uniformly distributed along a string. This problem was first

treated by Lagrange and is of especial interest because of the

light it throws upon the vibrations of a continuous string.

The system consists of n particles, each of mass m, uni-

formly distributed along a string of length (n -h l)a. Let T
be the tension in the string. This tension is assumed to be
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the same at all points of the string and to be unaffected by the

small displacements of the particles. The string is to be fas-

tened at the end points and to have only a negligible mass.

Let yr be the displacement of the rth particle in a direction per-

pendicular to the string. All the displacements are to be taken

in one plane. The differential equations of motion can be

written down directly by considering the component of the

Fig. 7-1.-- Specification of the coordinates used in describing the positions of the masses
on a loaded string.

tension directed downward as shown in Fig. 7-1. The rth

mass is pulled toward the axis by the force {yr — yr-\)Tla due

to the tension on the left and by the force (y, — yr+-i)Tla due

to the tension on the other side. Hence

d^yr

dt^

T
(2/r-I - 2yr + 2/r+l) (7-1)

This equation can also be written down from the kinetic and
potential energies.

Problem 3. Write the Lagrangian function for a stretched string,

and show that it leads to equation (7-1). The potential energy can

be taken as zero when all the particles are in a straight line and to be

due to the work done in stretching the string against its tension.
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The set of differential equations can be treated as in Chap.

IV by substituting yr = ArC'^K For the first equation this

leads to

(

„ mao3^\ , , „ V

2 —
—y

~ ^ (7-2o)

since yo represents the displacement of the fixed end of the

string and is zero. The next equation is

-A, + (2- A2- A, = 0 (7-26)

and the last equation will be

-A„_i + (2
-

-f"')
= 0 (7-2c)

since again, y„+i must be taken as zero. The equation for the
normal frequencies is then

c -1 0 0 0

1 c -1 0 0

0 -1 c -1 0

0 0 -1 (7 -1
0 0 0 -1 c

= 0 (7-3)

(n rows and
columns)

where

C
maoi^~
r
~

For n = 1 the equation is simply C = 0. This gives the

frequency of a single particle at the center of a stretched string.

CO
2

ma

For TC = 2, C* — 1 = 0, and the values of co* are

T \

(7-4a)
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For n = 3, C(C* - 2) = 0 so that

wi* = (2 - V2)— \^ ^ ma
j

C022 = - - > (7-4c)
ma (

= (2 + \/2 )
— I

These solutions for small values of n are obtained by simply

expanding the determinant. In general, equation (7-3) is of

the nth. degree in C, but because of its symmetrical form it can

be solved by a suitable change in variable.

For any value of C the determinant has a value that depends

upon C and upon the number of rows and (lolumns in the deter-

minant. There is nothing else upon which this value can

depend. Let the value of the determinant with n rows and

columns be Dn, and let Dn-t, etc., be the values of the

corresponding determinants with the smaller numbers of rows

and columns. These quantities, D„, Ai-i, etc., are all functions

of C. Then, by expanding the determinant in terms of the

elements of its first row, there can be obtained a relationship

between the determinants of the different orders.

Dn = CDn-l - D„_2 (7-5)

While evaluating the determinant, C is considered as a constant.

This equation connects the values of determinants of different

orders for the same value of C. The definition of C shows that

it must always be less than 2, and consequently a possible sub-

stitution may be C = 2 cos 0, where 0 is a new quantity defined

by this relationship with C. If it can be shown in the end that

the n different roots of equation (7-3) lead to values of C greater

than —2, the substitution will be justified. With this sub-

stitution equation (7-5) becomes

D„ = 2 cos QDn-i - i)„-2 (7-6)

This is a difference equation for X> as a function of n, and its

solution is

Dn — D sin (n -1- 1)0 (7-7)
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The solution of a difference equation is similar to that of a

differential equation in that it contains arbitrary constants.

The quantity D in equation (7-7) is an arbitrary constant that

can be evaluated from the known value of Di. Since

it follows that

and

Di = D sin 20 = C = 2 cos 0

D =
sin 0

Dn =
sin (n + 1)0

sin 0

(7-8)

(7-9)

Equation (7-9) gives the value of the determinant in terms of

the quantity 0, which is a known function of C, and hence the

value of the determinant is given in terms of C.

From equation (7-9) it is evident that the values of 0 for

which the determinant is zero are

0,
= SIT

n + 1

and hence the corresponding values of C are

(7-10)

C, = 2cos^j (7-11)

In equations (7-10) and (7-11) s is an integer that can take any

value from 1 to n. There are thus n different values of C and

correspondingly n different frequencies with which the system

can vibrate. These different frequencies will be designated by
the subscript s.

= —
(
1 — cos— .—r )

(7-12)
" ma\ n + 1/

^ ^

Since equation (7-3) has just n roots, it is clear that all the

roots have been found and it is not necessary to investigate

further the generality of the substitution for C or of (7-7) as a

solution of (7-6).

Problem 4. Show by substitution that equation (7-7) is a solution

of (7-6) for any value of D.
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Problem 6. Show that the normal frequencies for the cases of

one, two, and three particles are given by equation (7-12).

After the frequencies are known, the next step is to solve

the equations for the relative amplitudes Ar. The first two

and the last of these equations are given by (7-2a), (7-26), and

(7-2c). The general equation is

-Ar-l + CAr - Ar+1 = 0 (7-13)

Tliis has just the form of equation (7-6) and therefore a similar

solution. The difference lies in the boundary conditions,

which require that Ao = An+i = 0. If is the amplitude of

the rth particle when C = Cs,

sin — sin . (7-14)

The quantities are the coefficients used with the negative

cOs in the exponent. The 2n arbitrary constants and B'*'

provide the necessary number of arbitrary constants for a gen-

eral solution.

Problem 6. Write the general solution of the problem of three

equal masses on a stretched string.

Problem 7. In the case of three particles, evaluate the arbitrary

constants in terms of the initial conditions when all the particles start

from an initial displacement with zero initial velocity.

3. Normal Coordinates of a Loaded String.—With the

values of the coefficients given in equations (7-14) the general

solution of the set of differential equations can be written

B<'> sin

s = 1 « = 1

n

X
TSTT

sin

n

rSTT

n at 1

rSTT
sin —r-7 Y„(t)

« -h 1
(7-15)
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The quantities Y^it) are functions of t only and are the normal
coordinates of the system. From their dependence on time it

appears that they satisfy the differential equation

dW
= 0 (7-16)

To express the kinetic energy in terms of these normal

coordinates, equation (7-15) must be differentiated, squared, and
summed over all values of r.

2/r'
= V' V' . rsTT . raw •

sm —r--T sm —r-r Y.Y,4 4"' 1 n + 1
(7-17)

s ~ 1 <r — 1

Then the kinetic energy

n V n

r = ] 6‘=1 a =

rSTT . rcTTT • •

sin —r—r sm —r“T Y.Y„

r= 1

m 71 \

n + 1 n + 1

(7-18)

The sum over r in this equation gives zero except when cr = s so

that only squares of the normal coordinates are left. In a

similar manner it can be shown that the potential energy

V =
m{n + 1)

n

I
s = l

(7-19)

as is required of normal coordinates.

To express the normal coordinates in terms of the y/s,

multiply each yr by sin raTl{n -b 1), and add them all together.

Then from equation (7-15)

n

I
r = l

Vt sm
rair

n + l~ Li 2^ n + 1 n + 1
r«l «=1

n + 1

rSTT rtTir

sm sm Ys{t) (7-20)
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Here again, use is made of the fact that

n

I
rsir . ratr ^ ,sm—T—-,- sm -—r—r = 0 when s 5^ a

,
- OllJL

, -In + 1 n + 1

n

I

(7-21)

r87r
sin

1 1 sm ,n + 1 n + 1

rair n + 1
when s

Problem 8. Illustrate equations (7-21) for' the case 7i = 3.

Problem 9. Prove equations (7-21).

4. Forced Vibrations of a Loaded String.—If one of the

masses on a string is subject to an external force, the motion of

the system can still be described in terms of the response of

the normal coordinates. Let particle p be acted on by a force

Fp sin o)t. The differential equation containing d^j/pldt^ will

contain this force, but the others will remain as in equation

(7-1). If now each equation is multiplied by sin rs7r/{n + 1 )

and they are added together, the result is

n + 1 /d^r. \

The solution of this equation was worked out in detail in Chap.

IV. It can be concluded immediately that the response of a

normal coordinate Ys to a force applied to particle p is propor-

tional to sin psw/{n + 1 ). In the case of three particles and a

force applied to the center one, the normal coordinate with

5 = 2 will not respond at all.

Problem 10. Consider three particles on a string with a sinusoidal

force applied to the central particle. Find the motion of each of the

particles as a function of the frequency of the force, and show that

there is a frequency at which the central particle does not move at all.

6. Approximation to a Continuous String.—If the length of

the string is held fixed and the number of masses is increased,

the loaded string approaches the string in which the mass is

uniformly distributed. The various quantities pertaining to

the loaded string also approach the corresponding quantities for

the uniform string. Equation (7-15) for the displacement of a
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particle can be expressed in terms of the distance of the particle

from the end of the string, rather than in terms of the number
r of the particle. This distance is a; = ra, and the length of

the string is (w + l)a. Furthermore, the time dependence

of the normal coordinates can be expressed in terms of an

amplitude and a phase angle so that

y{x,t) = ^ sin (^os — ej (7-23)

s = 1

Although this expression has a definite magnitude for all values

of X, it has significance for the loaded slxing only when x repi’e-

sents the position of a particle.

Problem 11. Show that co, is proportional to s when .s'/(a + 1) is

small.

Problem 12. Show that if the length of the string is held constant

and n is increased, equation (7-1) approaches

d'^y

p ax^
(7-24)

where p is the mass per unit length and y is the displacement, as a

function of the time, of a point on the string whose coordinate is x.

6. Normal Vibrations of a Continuous String with Fixed

Ends.—The above problems show the way in which both the

differential equation and the solution for the loaded string

approach those for the continuous string as the number of

particles increases. It is possible also to treat the string as

continuous from the beginning. By considering the force on an

element of length as the sum of the tensions from the elements

on either side, the equation of motion can be derived in the

form of equation (7-24). The procedure in this derivation is

really no different from that of obtaining the equation for the

loaded string and passing to the limit. The use of elements

and derivatives is essentially this process of passing to the

limit. This one partial differential equation is equivalent to

the infinity of ordinary differential equations that would be

necessary if a different equation were written for each point
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on the string; and in fact it is this infinite set, since for each

value of X it is an ordinary differential equation in y as a function

of t.

In solving the problem with discrete particles, a substitution

was made to find a solution in which all the particles would

vibrate with the same frequency but with different amplitudes.

The sum of all such particular solutions, each multiplied by an

arbitrary constant, then gave the general solution. The
procedure for solving the partial differential equation is just

the same. In this case, however, the differetit amplitudes must

be expressed as functions of the coordinate x rather than of a

discrete index. Hence the substitution will be made in the form

y - /(or) 0(0 (7-25)

When this is substituted in the partial differential equation,

the result is the equation

4>
~

P f
(7-26)

The left-hand side of this is a function of t only, wliile the right-

hand side is a function of x only. These two sides can be equal

to each other for all values of t and all values of x, only if each

side is a constant. Let this constant be —p. Equation (7-26)

is then equivalent to the two equations

^ ^ ff- Pf- P4> and p^f (7-26a)

The solutions of these equations are simply those for simple-

harmonic motion. When they are multiplied together to give

the expression for y, the result is

= (^^0 sin X + Do cos

{A 0 sin Vpt Bo cos Vpt) (7-27)

Equation (7-27) gives a value of y that will satisfy the partial

differential equation for any values of the five constants .do,

Bo, Co, Do, and p. Of the first four, only three are independent
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as can be seen by combining the sine and cosine into a single

trigonometric fimction with a phase constant. However, in

addition to the differential equation, it is necessary to satisfy

the boundary conditions. The prol)lem provides that the ends

of the string are fixed so that their displacement is always zero.

Hence, y — Q for a: = 0 and x = L, for all values of the time.

This requires then, either that 4> shall be zero at all times,

which is a trivial case, or else that f{x) shall be zero at the end

points. When x = 0, sin ^/ppITx is zero for all values of p,

but cos Vpp/Tx is not zero for any value of p. Hence the

boundary conditions can be satisfied only by making Do — 0 .

To satisfy the condition at the other end, it is necessary that

sin Vpp/TL = 0 . This is true only for certain values of p,

which are given by the equation

pp
Y ^ IX (7-28)

where n is an integer. The second factor in (7-27) shows that

these values of p determine the freqiiencies with which the

system can vibrate. Hence tliis continous system can vibrate

with only a discrete set of normal frequencies just as systems

of discrete particles can vibrate with only certain normal fre-

quencies. The final result can be written

. VTX ( . . It rnr .
I r. It rnv \ n€\\

?/„ = sin
-J-

IA„ sm
-y/ ^ 77 ^ yj— 7; M (7-29)

where A„ and B„ are the arbitrary constants that determine the

amplitude and the phase of the vibration.

Equation (7-29) gives a particular solution of the problem.

In addition to being a particular solution this is also a solution

that represents a normal vibration, since all parts of the string

vibrate in phase. The time-dependent part of (7-29), or the

function <f>„, may be considered as a normal coordinate of the

system. Each normal coordinate is associated with one of the

permitted values of p and may be designated by the integer n
that fixes p. Since there is no limit to the number of possible

values of p, there is no limit to the number of possible normal
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coordinates. This is as it should be, since there is an infinity

of particles in the string and an infinity of coordinates is neces-

sary in order to locate them all. These normal coordinates

have the properties previously tabulated for such quantities.

The differential equations governing their variation are those

for simple-harmonic motion, such as the first of (7-26a). It is

also possible to set one into motion independently of the others

as in the solution (7-29). The manner in which the energy of a

string can be expressed in terms of the normal coordinates will

be treated later.

7. General Solution and Evaluation of Constants.—Equa-
tion (7-29) is a particular integral of the partial differential

equation that describes the motion of the string. To get the

general solution it is necessary to add all the particular solutions,

each multiplied by suitable arbitrary constants. These arbi-

trary constants are the An and the Bn of equation (7-29). Hence
the general solution is

. nvx ( . it mr \

4 TTr T ‘ Vp T V
n = ]

This solution contains an infinity of arbitrary constants, which

must be determined from the initial conditions. As initial

conditions there can be given the position and the velocity of each

point. These can best be given as functions of x. Suppose that,

at < = 0, 2/o = g{x) and yo = h{x). It then follows from (7-30)

that

and

00

X Bn sin
mrx

~r

h{x) =
n = 1

sin

(7-31)

If it is possible to find such values of and JS„ that these

equations are satisfied, the arbitrary constants will have been
determined.
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The problem of finding the coeflficients is thus reduced to

the problem of expressing the arbitrary functions g(x) and h(x)

as sums of sines and of finding the coefiicients in these sums.

These functions g and h are also subject to the condition that

they are zero at a: = 0 and x = L. The theory of Fourier

series gives the method for finding the coefficients. To find

the coefficient Br, multiply both sides of the first of equations

(7-31) by tt/L sin rirxIL dx, and integrate between 0 and L.

g{x) sin dx
. mrx . rirx

,

8in -j— sin dx

This gives

Br j \ g(x) sm dx (7-32)

The values of An. can be determined in a similar way.

Problem 13. Explain and justify the steps leading to equation

(7-32).

Problem 14. Evaluate the constants An in equation (7-30) in terms

of g(x) and h{x).

Problem 16. A stretched string is displaced to the position given

hy y = D sin 3tx/L and let go with zero initial velocity. Find the

subsequent motion. Is this a normal vibration?

Problem 16. A stretched string is pulled aside at the center to a

distance d and then let go. Find the subsequent motion.

Problem 17. A string is struck so as to give an initial velocity v

to the central portion for a distance s on each side of the center. Find

the subsequent motion,

8. The Energy of a Vibrating String.—The kinetic energy

of a vibrating string is simply the sum of the energies of all the

elements of length. Hence

The potential energy can be obtained as the limit of the

expression for the potential energy of the loaded string, as the

number of particles increases. To find the energy of the loaded
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string, it is convenient to consider the string first in the equi-

librium position. Then the first particle is moved to its desired

position, and all the other particles are moved at the same time

to a displacement equal to that of the first particle. The work

done in making these displacements can easily be determined.

The only force on the first particle is due to the first segment of

string, while the only force on the last particle is due to the last

segment of string. The other particles experience no force.

The second to the last particles are then moved to the desired

position of the second particle. In this process, only the second

and the last segments of string exert any force, and the work

done can be ea.sily calculated. By a continuation of this

process the particles can all be put into their desired po.sitions,

and the amount of work necessary can be calculated. The
result gives for the potential energy

n-f 1

F = ^ (?y. - (7-34)

; - I

In this expression T is the tension, y„ represents the displacement

of one fixed end of the string, which is, of course, zero, while

Un+i represents the displacement of the other end of the string,

which is also always zero. The inclusion of these two zero dis-

placements makes the notation a little simpler.

In the limit in which the number of particles becomes infinite

and the string becomes uniformly loaded, equation (7-34)

becomes

Problem 18. Express the potential energy of a loaded string as

given in equation (7-34) in terms of normal coordinates F,.

Problem 19. Express the potential energy of a continuous

stretched string in terms of the normal coordinates <f>n.

9. Forced Vibration of a Continuous String.—The problem

of forced vibrations can be treated by analogy with the case of a

loaded string and in terms of normal coordinates. Let a sinu-

soidal force be applied to a string with an amplitude that depends
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on position. It may then be written F{x) sin cat. The function

F{x) specifies the way in which the force is distributed over the

string. For a force applied at a single point, F(x) is zero except

at the point of application. If a more complicated dependence

on the time is involved, it can be built up of a series of sine

functions.

The differential equation of motion of the string is then

Q2y Q2y
Pj^-Tj^=F{x)^mcat (7-35)

If the solution is to be expressed in terms of the normal co-

ordinates.

y =

n — 1

nwx

17 <t>n i7-35a)

Substituted in the differential equation, this leads to

^ T4>,^ sin~ = F{x) sin cot (7-355)

n — i

If now both sides of the equation are multiplied by sin sttxIL

and integrated from x — 0 to x = L, only one term of the sum
gives an integral different from zero and it follows that

o2-r2 O r qtttt^ T(l>, F{x) sin^ dx sin cat (7-36)

This shows that the normal coordinate 4>s will be forced to oscil-

late with the frequency w. Damping has not been considered

in this problem, but it will have the usual effect of causing the

transient motion to die out and the steady state to be only an
oscillation with the frequency of the force. The steady-state

oscillation of each normal coordinate will have an amplitude

proportional to the integral on the right-hand side of equation

(7-36), which is just the coefficient in the Fourier-series expansion

of the function F{x).

Problem 20. Find the steady-state motion of a stretched string

acted on by a force distributed as sin tx/L and varying sinusoidally
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with a frequency much lower than the fundamental natural frequency

Wl.

Problem 21. Show that a force applied at a point P of a string

will not stimulate normal vibrations having a node at P.

10. Expansion of Functions as Series of Orthogonal Func-

tions.—According to equation (7-30) the shape of a string at

any time is given by a series of sines of multiples of x in which

the coefficients are functions of the time. At the particular

time t = 0 the coefficients are simply the B’s. At other times

the coefficients are combinations of the A’s and the B’s. The
significance of this statement is that any function y{x), which

represents a possible displacement and position of the string,

can be represented as a series of sine functions of x. This is

merely a special case of the expansion of functions in series of

orthogonal functions. The evaluation of the constants in such

a series depends upon the property of the orthogonality of

certain groups of functions.

Two functions Ri{x) and R^ix) are said to be orthogonal to

each other in a certain range of the independent variable
rh

a < X <h li / RiRi. dx = 0. If in a certain, set of functions

Ri, Ri, . . . , Rn, • • • )
each of the functions is orthogonal to

all the rest, the functions are said to form an orthogonal set.

If there exists no function, except zero, that is orthogonal to

all the members of the set, the set is said to be a complete ortho-

gonal set. With certain restrictions, which are usually of little

importance in physics, any arbitrary function can be expressed

as a series of the functions of a complete orthogonal set, with

suitable coefficients.

A function can be normalized by multiplying it by a con-

stant. When it is normalized Ri^ dx = 1. Hence a set

of normalized orthogonal functions has the property that

RiRj dx = Sij (7-37)

The quantity 8^ is a function of the subscripts. It is equal to

1 when i = j and is equal to 0 otherwise.
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The orthogonality is essential to the determination of the

coefficients in a series, while the normalization is convenient.

Let

F{x) = AyRi + A,R 2 + • • AJi^ + • •
• (7-38)

where the R’s are the members of a complete set of normalized

orthogonal functions. To determine the value of the coefficient

An, multiply both sides of this equation by 72„, and integrate

between the limits a and h. Then, because of the normaliza-

tion and the orthogonality.

An = Rn(x)F{x)dx (7-39)

Thus the coefficients can always be determined by a single

integration. The investigation of the convergence of these

series is too elaborate to be undertaken here.

Between the limits 0 and tt the functions sin nx, with n

integral, form a complete orthogonal set. The functions

cos nx form a similar set. Between the limits —x and x, the

combination of these two sets gives a complete orthogonal set.

A series of such functions, vahd between —x and x is called a

Fourier series, after its inventor.

There are many sets of orthogonal functions. One is formed

of the functions Hn€~^"^‘^, where the H„’s are the hlermite poly-

nomials. These polynomials are

Hn = (2x)" - — (2x)"-2

n{n - l)(n - 2)(n - 3)

2 !

(7-40)

As given in this form the functions are not normahzed. They
can be normalized by dividing by the square root of the integral

of the square of the function from negative to positive infinity.

These functions are orthogonal for the whole range of the

variable x from — oo to 4- oo

.

Problem 22. Expand the function y — x, in a series of sines

between x = 0 and x = ir.
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Problem 23. If the function y{x) is such that y = 0 for values of

X between — ir and 0 and y = x for values of x between 0 and v, find

the Fourier series for y{x).

Problem 24. Normalize the orthogonal functions that involve the

Hermite polynomials for n = 0, 1, and 2. Find the first two coeffi-

cients in the expansion ofy — in terms of these functions.

11. Vibration of a Nonuniform String.—The problem of

determining the vibration of a nonuniform string may be taken

as an example of a large class of vibration problems that are

more complicated than those thus far treated but about which

something can be learned by comparison with the simpler

problems. The partial differential equation of the motion is

(7-41)

Tliis differs from equation (7-24) in that the density p is not a

constant but is a function of x. To find the normal vibrations

one proceeds in the usual waj^ with the substitution y = f{x)(l>{t).

Substitution in the differential equations and the separation of

the variables give

-p<t> (7-41 a)

il (7-416)

The period of vibration of
<f>

is given by the constant p, and p
must have such a value that there exists a function f{x) which

satisfies the differential equation (7-416) as well as the boundary

conditions. Equation (7-416) is an example of the Sturm-

Liouville type of equation. It has no simple solution for an

arbitrary density p{x), but a number of its properties can be

determined with relative ease.

Since the density is always positive, the differential equation

shows that the second derivative of / will always have the oppo-

site sign to / itself. This means that the curve will always be

concave toward the axis so that the function will cross the axis

at a number of points. If p = 0, the only value of / that can

satisfy the boundary conditions is ?/ = 0. This is, however, a
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trivial solution. If then the value of p is allowed to increase,

the roots of the function come closer and closer together until,

if the function starts from the origin, the first positive root

coincides with the other end of the string. Tliis is then the

smallest value of p that satisfies the conditions of the problem.

It gives the frequency of the fundamental vibration. As p
is again allowed to increase, there comes a value for which the

second root of / will coincide with the end of the string. The
process can be continued indefinitely to show that there is an
infinity of discrete values of p which satisfy the conditions of

the problem. In principle thej^ could be determined by graplii-

cal integration and interpolation.

It is also possible to show that the various functions fix),

when multiplied by p^ix), form an orthogonal set. Let/,- be the

function associated "wath the value p, of p, and let fj be the func-

tion associated with the value pj. The differential equation for

fi is multiplied by fj, the differential equation for fj is multiplied

by/i, and the difference between the two equations is integrated

between a: = 0 and x = L. The integral of the two terms con-

taining second derivatives is equal to zero so that

ipi - Pi) fo
p(x)fiix)fjix)dx = 0 (7-42)

This shows that the functions are orthogonal unless pi — pj.

For this case the integral can be made equal to 1 by suitable

normalization. This is a general method of proving the ortho-

gonality of functions from their differential equations.

Problem 26. Carry through in detail the proof of equation (7-42).

Problem 26. Use the method just indicated to show that the

sines and cosines of integral multiples of the independent variable are

orthogonal functions between — tt and w.

Problem 27. The differential equation for the Hermite poly-

nomials is

+ (7.43)

From this show that the functions form an orthogonal set.



140 PRINCIPLES OF MATHEMATICAL PHYSICS

Since the functions fj{x) in equation (7-416) must be zero

at both ends of the string, they are adapted to an expansion in a

series of sines. Let
00

fj{x) = ^ A/ sin^ (7-44)

r = l

The coefficients in this expansion must then be determined from

the differential equation. When tlie series is substituted, the

result is

y sin - I y AM:r) sin= - 0 (7-44„)

r = 1 r = 1

If this equation is multiplied by sin sttx/L and then integrated

from a; = 0 to X = 7>, the result is

‘ \2L
V 4 ,• / \ • • S’rx , -

j
~

rf’ 2, J T~ ~r~
~ ^ (7-446)

An equation of the form of (7-446) can be obtained for every

value of s, so that one has a set of simultaneous equations for

the determination of the constants A/. These equations

will be compatible only for those values of p that make the

determinant of the coefficients equal to zero. Each value of p,

say Pi, has associated with it a set of values of the coefficients

designated by the superscript j. Since there is an infinity of

equations and each equation contains an infinity of terms, the

determinant has an infinite number of rows and columns.

Although a general treatment is not possible, it is possible to

find approximate solutions for certain special cases.

In some cases the density can be expressed as a constant

density plus a variable part. Then, if p{x) = po + <r{x),

equation (7-446) becomes

pLpo

2T
. . . VTTX . STTX

,

cr{x) sin -J- sin —j— ax = 0

(7-44c)
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If (t{x) is small compared with po, an approximation to the fre-

quencies can be obtained by neglecting all except the diagonal

terms of the determinant. This is equivalent to neglecting

quantities of the order of {a/pY.

Problem 28. A small mass m is attached to the middle point of a

vibrating string. Find the first approximation to the frequencies of

vibration.

Problem 29. Show that a small mass attached to any point

on a vibrating string will not affect the frecpiencies or the forms of

those normal modes of vibration which have a node at the point of

attachment.

12. The Variation Problem for Normal Vibrations.—Some
useful results can be obtained from the treatment of equation

(7-416) as the differential equation for a variation problem.

If it is required to find the form of /(x) that gives the integral

a stationary value, while

S = ^Y pix)P dx = 1 {7Aba)

the Lagrangian equation becomes just equation (7-416). Hence,

if some other method of solving the variation problem can be

found, the result is a solution of the differential equation.

Furthermore, by multiplying equation (7-416) by f{x) and
integrating between the limits a; = 0 and a: = L, it can be shown

that the integral I gives the value of p.

Although it is not easy to get an exact solution of the varia-

tion problem, it is possible to get an upper limit for the smallest

value of p by tliis method. Since the lowest value of p cor-

responds to that function /(a:) which makes the integral in (7-45)

a minimum, it is evident that the substitution of any other

function in the integral will give a value of p greater than the

true minimum value. Hence, it is possible by the trial of

several functions to find the one that gives the lowest and,

hence, best value of p. One method is to take a function that
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depends upon one or more parameters, and then by differentia-

tion with respect to the parameters to find those values which

give the lowest frequency. By a judicious selection of the func-

tions taken for trial, a vci y good approximation can be obtained

to the lowest or fundamental frequency.

Problem 30. Show that the Lagra.ngian equation for tlie vaiiation

problem cjf cciuations (7-45) and (7-45a) is the differential equation

(7-415).

Problem 31. Show that the integral I of equation (7-45) is ecjual

to the corresponding value of p.

Problem 32. (Consider a stret(died string with a mass m attached

to its center point. Assume that the function f(x) for the fundamental

mode of vibration has the form

on the positive side of the origin, which is taken at the center, and is

symmetrical about the center. Find the value of n that gives the best

approximation to the frequency. Compare this result with the exact

result in the case where m = 0.

13. Traveling Waves in a String.—Thus far the problem of

a vibrating string has been treated from the point of view of

normal coordinates, which represent a vibration of the whole

string. It is also possible to treat the propagation of disturb-

ances along the string. The general solution of the partial

differential equation (7-24) can be written

y = Fi{x — vl) -f Fi{x -f vt) (7-46)

This solution is similar to that in equation (7-27) since it satisfies

no particular boundary conditions. The constant v is equal to

{T/p)\ while and 7^2 are arbitrary functions of their respective

arguments. The generality of the solution is indicated by
the appearance of arbitrary functions instead of merely arbi-

trary constants such as occur in the solutions of ordinary dif-

ferential equations. The solution represents a disturbance of

the form of F i moving toward the positive values of x with the

velocity v and another disturbance of the form ofF 2 moving with
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the same velocity in the opposite direction. If the ends of the

string are so far away that the disturbances cannot reach them
during the time in which the behavior of the string is observed,

the ends may be neglected and the string treated as infinite.

The description in terms of traveling waves is more suited to

this case than that of normal vibrations.

The traveling-wave point of view can also be used when
boundary conditions must be satisfied. If it is required that the

string be fastened at x = 0, the solution (7-46) must be sub-

jected to the restriction that — — —F^ivt) for all values

of t. If, in addition, it is required that the other end of the

string at X = L is to be fixed, the functions Fi and F^ must be

periodic with the period L. When subject to these conditions,

the general solution is such that it can be interpreted as repre-

senting a disturbance reflected I)ack and forth between the ends

of the string.

Although the functions Fi and Fi are perfectly arbitrary,

they can be expressed, over any finite range of the independent

variable, as Fourier series. On this account it is sufficient for

many purposes to study the behavior of sinusoidal waves of

the form

2/
= sin -y (x — vt) and y = sin y- (x -f vt) (7-47)

The constant X is called the wave length, since at a given time,

if X changes by X, the argument of the sine changes by 27r. It

is clear in a similar way that v/\ is the frequency with which

any point of the string vibrates.

Problem 33. Show that in a string of length L the solution

y = A {x — vt) + A sin ^ (x -f vt)
L/ iv

where n is an integer, satisfies the boundary conditions. Express this

solution in the form of equation (7-30), and determine whether it

represents a normal vibration.

Problem 34. Consider a stretched string of infinite length whose

density has one constant value for negative values of x and another
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constant value for positive values of x. Assume that a train of waves

of the form (7-47) comes from the negative x axis and is partly reflected

and partly transmitted at the discontinuity. By applying the condi-

tions arising from the continuity of the string, match the solutions on

the two sides of the origin, and determine the relative amplitudes of the

transmitted and the reflected waves.
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CHAPTER VIII

VECTOR ANALYSIS

In the study of a physical problem it is usually necessary to

establish a system of coordinates in which the various material

bodies can be located. The positions of the bodies, expressed

in terms of these coordinates, are then the variables in the equa-

tions that state the laws of physics. Although these equations

contain explicit reference to the coordinates used, it is difficult

to believe that the relationships expressed should depend upon
the coordinates in any essential Avay. The laws of physics

should be relationships between physical things, and these

relationships should be true regardless of the language used to

state them. In fact, it has long been taken as an axiom that

the laws of physics must be expressible in a form that is the

same for all systems of coordinates.

The treatment of Hamilton’s principle, in Chap. VI, has

shown one method of expressing the Newtonian laws of motion

in a form independent of any particular system of coordinates.

The use of vectors is another way in which this object may be

attained. A vector is independent of any particular coordinate

system and can be used for the representation of physical

quantities.

1. The Definition of a Vector.—Many physical quantities are

of such a nature that they cannot be completely specified by
single numbers but require in addition the specification of

directions. For example, although a mass is completely given

by a single number, a force is not completely defined until both

its magnitude and direction are known. Quantities of this

kind, such as force, velocity, or momentum, are called vector

quantities. Quantities such as mass are called scalar quantities.

A vector can be defined as a line whose length and direction

represent the magnitude and direction of a vector quantity. To
145
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represent the direction unambiguously it is necessary to dis-

tinguish between the origin and the end of the vector. A vector

will be regarded as unchanged when it is moved parallel to itself.

If the point of application of a force is of importance, this is

regarded as an additional specification, and not as a property

of the vector.

A vector can be multiplied by a scalar to give a vector whose

direction is that of the original vector but

whose magnitude is the original magnitude

multiplied by the scalar. Multiplication by
— 1 interchanges the origin and the end.

Multiplication by a negative scalar is equiv-

alent to multiplication by — 1 and then by the

absolute value of the scalar.

Two vectors are equal when they have the

same magnitude and the same direction. A
vector equation always implies this kind of

equality between its two sides and so contains

more information than does a scalar equation.

If a vector is equal to zero, its length is zero

and its direction is indeterminate.

Vectors will be designated by letters in

boldface type, and the magnitude of the vector

will be represented by the same letter in

italics. Thus xa. designates a vector whose

direction is that of a and whose magnitude is xa.

2. Addition of Vectors.—The addition of vectors is so defined

as to satisfy as many as possible of the laws of addition of scalars

and also to be useful in representing physical relationships.

To add two vectors the origin of the second vector is placed at

the end of the first. The sum is then the vector whose origin

coincides with the origin of the first vector and whose end coin-

cides with the end of the second. Figure 8-1 illustrates this

relationship. These tliree vectors clearly lie in the same plane.

A number of geometrical theorems can be established by
means of vector algebra, using only addition and subtraction

of vectors and multiplication by scalars. Consider, for example.

Fig. 8-1.—Addition of

the vectors a and b to

form the sum a 4- b.



VECTOR ANALYSIS 147

the intersection of the diagonals of a parallelogram. In Fig.

8-2 the sides of the parallelogram are designated by a and b so

that the diagonals are a -1- b and a — b. The point of inter-

section is a fraction, say x, of the distance along a -|- b and

another fraction, say y, of the distance along a — b. Hence

x(a -h b) = b -f y(a - b)

or

(x - 2/)a = (1 - X - i/)b (8-1)

Fig. 8-2.“ The sides and diagonaLs of a parallelogram expressed in terms of the vectors
a and b.

Since tlie vectors a and b are not parallel, this equation can be

satisfied only when both sides are zero. This requires

X = y = I

and thus the diagonals bisect each other.

Problem 1. If xa -f yb = 0 and x -1- y = 0, show that a and b

have the same length and the same direction.

Problem 2. Show that the middle points of the lines joining the

middle points of the opposite sides of a quadrilateral coincide, whether

the four sides are in the same plane or not.

Problem 3. Show that the line drawn from one vertex of a parallel-

ogram so as to trisect the diagonal bisects the opposite sides.

3. Orthogonal Components of Vectors.—In a system of

Cartesian coordinates, any vector can be represented as the sum
of three vectors lying along the coordinate axes. Let i, j, and k
be vectors of unit length lying along the x, y, and z axes, respec-

tively. Then any vector a can be written

a = a*i -f Uy] -b o*k (8-2)
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ay, and are scalar quantities called the scalar components of

a, and the vectors a^i^ aj, and a^k may be called the vector com-

ponents of a. These components are unique. No other triad

of numbers will serve as components of this vector along these

three directions.

A vector can be expressed as the sum of components along

any three non(*oplanar axes and hence in terms of any three non-

coplanar unit vectors. The unit vectors i, j, and k, hownver,

are especially useful because of their orthogonality. For

practical computation with vectors it is nearly always necessary

to make use of these rectangular components.
,

Problem 4. Write the vector equation for the center of mass of a

number of particles. The v(^ct,or representing a point is the vector

drawn from the origin of (coordinates to that point. Show^ also that the

center of masS; defined in this way, is independent of the point chosen

as origin.

Problem 6, A group of forces acting at the point 0 are represented

by the vectors 0^1, OB, OC, . . . ,
ON. Show that, if the forces are

in equilibrium, 0 is the centroid of the points A, B, C, N. A
centroid is defined so that it is the center of mass, if unit masses are

placed at all of the points in question.

Problem 6. A person who is moving eastward at 3 miles per hour

finds that the wind appears to blow directly from the north. On
doubling his speed, it appears to come from the northeast. Find the

vector wind velocity.

Problem 7. If three vectors a, b, and c start from the same point

and end on the same straight line, find a relationship between them.

4. Multiplication of Vectors, a. The Scalar Product .—It

has been found useful to define two kinds of vector multiplica-

tion. The first kind gives the scalar product. The scalar

product of two vectors is equal to the product of their lengths

and the cosine of the angle between them.

a • b = a6 cos (ab) (8-3)

In Gibbs^ notation it is denoted by a dot between the letters

denoting the vectors and hence is frequently called the dot

product. Another notation, frequently used in Europe, encloses

the two letters in parentheses.
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The scalar product is of much use in physics. For example,

the work done by a force during a displacement is equal to the

scalar product of the force and the displacement.

It must be noted that the scalar product of two vectors is a

scalar, not another vector. From the definition it is obvious

that this product is commutative; the order of the factors is

immaterial. The distributive law is also obeyed.

Problem 8. Find the scalar products of the unit vectors i, j, and k
with each other.

Problem 9. Find the scalar product of an aribtrary vector a and

the unit vectors along the coordinates axes.

Problem 10. Show that the scalar product of two vectors, in

terms of their components, is

a • b = ttxhz + + a^bx (8-4)

Problem 11. Show that the two vectors a = Zi -f- -|- nk and

b = Xi H- gj — [(/X/n) + (wig/n)]k are perpendicular to each other.

Problem 12. Show that the sum of the squares of the diagonals of

a parallelogram is equal to the sum of the squares of the sides.

b. The Vector Product .—The other kind of product of two

vectors is called the vector product. In Gibbs’ notation it is

indicated by a small cross between the letters representing the

vectors, and therefore it is often called the cross product. The
definition of the vector product is given by the equation

a X b = a6 sin (ab)e (8-5)

where e is a unit vector perpendicular to both a and b. The
sense of e is such that a right-handed screw would advance in

the positive direction of e if it were turned from a to b. From
this definition, and the specification of e, it is clear that

a X b = — b X a (8-6)

Thus the commutative law does not hold, and the order of the

factors is important in this product. The distributive law, how-

ever, does hold for this kind of multiplication.

The result of vector multiplication is a vector and therefore

has a direction as well as a magnitude. This distinctian between

scalar and vector products is of importance in forming the prod-
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uct of three or more factors. It is impossible to form a scalar

product of three factors, since the product of any two of them is

already a The only possible interpretation of such a

product would be to multiply the tliird vector by the scalar

product of the other two. The result would then depend upon

the two that were selected for forming the first product. On
the other hand, it is possible to form a vector product of three

vectors, although it is necessary to specify the association of

the vectors.

Problem 13. Evaluate the products i X i, i X j, i X k.

Problem 14. Show that the vector product of two vectors can be

written in terms of their components, formally, as the determinant

i j k
a X b = ax Qy a^ (8-7)

hx hy hz

Problem 16. Find the area of the triangle bounded by the vectors

a, b, and their difference.

Problem 16. Show that the vector product obeys the distributive

law of ordinary multiplication.

Problem 17. Show that the volume of the parallelepiped whose

edges are the vectors a, b, and c is given by the triple scalar product

a • b X c.

Problem 18. Show that

Cfx Oy Oz

a • b X c - />x by hz (8-8)

Cx Cy Cz

Problem 19. Show that

a X (b X c) == b(a • c) — c(a • b) (8-9)

Problem 20. ShoAV that, if a line passes through the centroid of a

number of points, the sum of the perpendiculars from the points to

this line is zero. These perpendiculars are to be treated as vectors

whose origins lie on the line through the centroid and whose ends are

at the various points.

Problem 21. Show that the work done by a force during the dis-

placement of its point of application is equal to the sum of the quanti-

ties of work done by the components of the force.

ProbleiA 22. A fluid is flowing through a plane surface with a

uniform velocity q. If n is the unit normal to the plane, show that the
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volume of the fluid passing through unit area of the plane per unit

time is q • n.

5. Differentiation of a Vector with Respect to a Scalar.—If a

vector a is a function of the scalar variable t, then to every value

of t will correspond a certain length and direction of a. If the

value of t is changed slightly, the vector a will be changed slightly

and in general both the length and the direction will be changed.

If the difference between the two values of t is At, and the

difference between the two corresponding values of a is Aa, then

the derivative of a with respect to t is

da _ Aa
d« “ S AF (8-10 )

if this limit exists. This derivative is evidently a vector and
therefore has a direction as well as a magnitude. If the vectors

are referred to a fixed set of rectangular axes, the derivative

can be expressed in terms of its components.

da _ . d^ . day , d^
dF

“ *
^ dF dt

(8-11 )

It is important to note that this form of the derivative is vahd
only when the coordinate axes are fixed and do not change with

the independent variable. In some problems it is convenient

to use rotating axes, and in these cases the time derivative of a

vector, when expressed in terms of its components, must con-

tain terms representing the rates of change of the axes.

The extension of these statements to higher derivatives is

relatively obvious. The differentiation of sums and products

will be the same as for ordinary scalars, except that attention

must be paid to the order of the factors in the case of vector

products.

If r represents a vector from a fixed origin to a point moving
in a plane, the rate of change of r is often convenientlj^ expressed

in terms of imit vectors along and perpendicular to its length.

Let Ti be the unit vector in the direction of r, and let 0i be a unit

vector perpendicular to r. Then t = rxi, and

dx dr
.

dxi
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If r is confined to a plane and its direction is specified by the

angle d,

dti _ dd

dt dt

whence

dr dr
,

dd

dt
~ di^^'^^dt

(8-13)

Problem 23. If r is any vector that is a function of the time t,

and if r • dr/dt = 0 at all times, show that the length of the vector is

constant. Also show that, if r X dr/dl = 0 at all times, the vector

has a constant direction.

Problem 24. If Ti is a unit vc(d.or in the direction of r, show that

ri X d.Ti = r X dT/r\

Problem 26. 8ho\\^ that

dh ^ d'^r

dt^
~

dt‘^
+ 2

dr dA
dt dt

)

Oi (8-14)

Problem 26, The equation r = a cos ^ + b sin t, where a and b are

arbitrary constant vectors, represents an ellii>se. Express the equa-

tion of the ellipse in Cartesian coordinates. If a • b =0, show that

a and b are the principal axes of the ellipse.

6. Transformation Properties of Vectors.—When a rectangu-

lar system of coordinates is used, a vector can be completely

specified by its components. These components depend, of

course, upon the orientation of the coordinate system, and the

same vector may be descril)ed by many different triplets of

components, each of which refers to a particular system of axes.

The three components that represent a vector in one set of

axes will be related to the components along another set of

axes as are the coordinates of a point in the two systems. In

fact, the components of a vector may be regarded as the coor-

dinates of the end of the vector drawn from the origin. This

fact is expressed by saying that the scalar components of a

vector transform as do the coordinates of a point.

It is possible to concentrate attention entirely on the three

components of a vector and to ignore its geometrical aspect.

A vector would then be defined as a set of three numbers that
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transform as do the coordinates of a point, when the system of

axes is rotated. It is often convenient to designate the coordi-

nate axes by numbers instead of the letters x, y, z so that the

components of a vector will be a\, a<i, and as. The designation

for the whole vector is then Of where it is understood that the

subscript i can take on the values 1, 2, or 3. A vector equation

is then written

Oj = hi (8-15)

This represents three equations, one for each value of the sub-

script i.

The rotation of a system of coordinates about the origin

may be represented by the nine quantities where jiy is the

cosine of the angle between the i axis in one position of the

coordinates and the j axis in the other position. These nine

quantities give the angles made by each of tiie axes in one posi-

tion with each of the axes in the other. Tliey are also the

coefficients in the expression for the transformation of the

coordinates of a point. The cosines can be conveniently kept

in order by writing them in the form of a matrix

Tir 7i2' 7i3'

721' 722' 723' (8-16)

731' 73-2' 733'

Of the nine q\iantities only three are independent since there

are six independent relations between them. Since yty can

be considered as the component along the f axis in one coordi-

nate system of a unit vector along the i axis in the other,

T»i'® + + Tt3'^ = ^ 7,;'^ = 1 (8-17)

/

This will be true for every value of i. Similarly,

i

The components of a vector, or the coordinates of a point,

can be transformed from one system of coordinates to the other

by

Oi = Jivav -t- 7i2'a2- -f jirUa' = 7>7'«j' (8-18)
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The ttj' represents the components of the vector a in one system

of coordinates and the a, the components in tlie other. The
summation sign is omitted in the last term since it is to be imder-

stood that a sum is to be carried out over all three values of any

index that is repeated.

Problem 27. Show that

yii' ykf
~ (8“J 7b)

where = 1 when i = k and Su = 0 when i 9̂ k.

Problem 28. Write the components of the transformation matrix

when one system of (;oordinates differs from the other by a rotation

through the angle a about one axis.

Problem 29. Write the components of the transformation matrix

when one system of axes is obtained fi'om the other by rotation through

120° about an axis making equal angles with the three coordinate axes.

7. Linear Vector Functions.—If a vector is a function of a

single scalar variable, such as the time, each component of the

vector is independently a function of this variable. If the

vector is a linear fimction of the time, each component is pro-

portional to the time.

A vector may also be a function of another vector. In

general, tliis implies that each component of the function

depends on each component of the independent vector. A vec-

tor is a linear function of another vector if each component of

the first is a linear function of the three components of the

second. This requires nine independent coeffitdents of propor-

tionality. The statement that a is a linear function of b means
that

0-1 — Ciibi -f- Cvibi -f- C1363 ^

02 = Ciibi -j- Citbi -f- C'23&3 (8-19)

03 = Csibi -b Ci^b^ -\- Cszba
^

Using the summation convention as in equation (8-18), this

becomes

a* = Cijbj (8-19a)

A relationship such as that in equation (8-1 9o) must be
independent of the coordinate system in spite of the fact that

the notation is clearly based on specific coordinates. The
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components a, and 6, are with reference to a particular coordinate

system. The constants Cij also have reference to specific axes,

but they must so transform with a rotation of axes that a given

vector b always leads to the same vector a.

If the coordinate system is rotated about the origin, the

vector components will change so that

di 'Yij'djf (8*20 )

If both sides of this equation are multiplied by Yr, and the

equations for the three values of i are added, the result is

= ai' = {yi'iCijy,k')hk’ (8-21 )

If the quantity yvi^iiYik' is called

O-v = Ci’k’^k' (8-22 )

This relationship between the components in this system of

coordinates is the same vector relationship as was expressed by
the Cik in the original system of coordinates.

8. Tensors .—Tensor is a general name given to quantities

that transform in prescribed ways when the coordinate system is

rotated. A scalar is a tensor of rank 0, for it is independent of

the coordinate system. A vector is a tensor of rank 1. Its

components transform as do the coordinates of a point. A
tensor of rank 2 has components that transform as do the

quantities Cij.

Tensors can be added or subtracted by adding or subtracting

their corresponding components. They can also be multiplied

in various ways by multiplying components in various com-

binations. These and other possible operations with tensors

will not be described here. They can be found in some of the

references suggested below.

A tensor of the second rank is said to be symmetric if

Cij = Cji and to be antisymmetric if Cij = — C,,. An anti-

symmetric tensor has its diagonal components equal to zero.

Any tensor may be regarded as the sum of a symmetric and an

antisymmetric part for

Cij = UCij + Cji) + iiCij - Cji) (8-23)
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and

UCiJ + Cj,) =

where Sij is symmetric and Aij is antisymmetric.

Numerous physical quantities have the properties of tensors

of the second i*ank. As will be show^i in the next chapter, the

inertial properties of a rigid body can be described by the sym-

metric tensor of inertia.

Problem 30. A particle is attracted toward each of the three

coordinate planes with a force proportional to the distance but with

different proportionality constants in the three directions. The total

force is then a linear vector function of the displacement. Write the

tensor relating the force and the displacement. Show how it is trans-

formed when the axes are rotated about one of them.

Problem 31. Show that if Ca is a symmetric tensor and

OiCijaj = 1 (8-24)

the vectors that sniisfy this equation reach from the origin to a qua-

dratic surface. Show that, if the diagonal components of the tensor

are all positive and the nondiagonal components all zero, the surface is

an ellipsoid.

Problem 32, Show that CijDjk = Eik^ where is a tensor of the

second rank, ix,, it transforms as does Ciy

References

Coffin, J. G.: ^‘Vector Analysis, John Wiley & Sons, Tnc., New York.

Gibbs, J. Willard, and E. B. Wilson: ^‘Vector Analysis,^’ Charles

Scribner's Sons, New York.

Page, L. : ^^Introduction to Theoretical Physics," Chap. 1, D. Van
Nostrand Company, Inc., New York.



CHAPTER IX

DYNAMICS OF RIGID BODIES

The motion of a solid body can be treated by applying to

each small part of it the laws applicable to the motion of a

particle. These particles will move under the influence of

forces from other parts of the body, as well as outside forces,

and both types of forces must be taken into account. The
application of this analysis to every particular case would be

extremely complicated, but it has been found possible to define

a number of idealizations that approximate practically impor-

tant cases. These idealizations permit the establishment of

certain simplifying theorems, so that the motion of the body

under consideration becomes amenable to a mathematical

treatment.

One such idealization is the clastic body, with relationships

between internal stresses and deformations that conform to

Hooke’s law. Another idealization, and the one that will be

treated in this chapter, is the rigid body. In a rigid body the

distance between each pair of points is a constant and is never

changed by the application of a force.

Strictly .speaking, there exist in nature no rigid bodies. All

bodies can be deformed by the application of sufficient force,

and in many cases this deformation has an important influence

on the motion. Nevertheless, the ideal rigid body is a useful

approximation. It is possible to prove a number of theorems

and to define a number of quantities that refer to such a body
as a whole, rather than to its elementary parts. These theorems

constitute the laws of motion of rigid bodies. It should be

emphasized, however, that such theorems are merely conse-

quences of Newton’s laws and the assumed rigidity of the bodies.

They contain no really new statements.

1. Center of Mass and Linear Momentum.—The center of

mass of a rigid body can be defined in a manner similar to that
157
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used for the center of mass of a number of particles. Each

volume element of the body is considered as a particle, and the

sums are replaced by integrals.

R = ^jrpdv (9-1)

where R is the vector from some origin to the center of mass and

r is the vector from the same origin to the volume element dv.

p is the mass density at the volume element, and M is the total

mass of the body. The integral is taken over the whole of the

body in question.

The properties of the center of mass of a rigid body are

essentially the same as those of the center of mass of a col-

lection of particles. Indeed, there is some simplification in the

case of the rigid body, since the distances between the various

parts of the body are constant and the center of mass has a

fixed location in it.

Problem 1. Find the location of the center of mass of an octant

of a sphere of uniform density.

Problem 2. Find the center of mass of a rectangular parallele-

piped whose density increases linearly from one end to t he other.

When Newton’s equations of motion are applied to each

element of a rigid body, an equation for the motion of the center

of ma.ss can be obtained.

/
W2j. W2T> r r

^ j J
V^edv (9-2)

The first equality follows from equation (9-1), and the second is

just the integral of the forces acting on each volume element.

is the force per unit volume acting on the element dv due

to the rest of the rigid body. dv is then the total internal

force on this volume element, and since the internal forces follow

Newton’s third law of motion their integral is zero. The vanish-

ing of this integral comes about in just the same way as th6

vanishing of the sum of mutual forces on page 25.

In the same way represents the vector external force per

unit volume on the element of volume dv. The force per imit
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volume is used here so that the product dv will be the vector

force on dv. If the force is a gravitational force, it has the

magnitude pg per unit volume. If the external forces are

discrete forces, the integral is just the sum of the forces.

The vector linear momentum P of a rigid body is an integral

over the vector momenta of the various volume elements so that

/
dr

, ,, dR ^

It follows then from equation (9-2) that

dP C— = y
dv = F (9-4)

where F is the total external force acting on the body.

It is important to notice the significance of the integral in

equation (9-4). The force effective in producing an accelera-

tion of the center of ma.ss is the sum of all the forces acting on all

the particles of the body. It makes no difference at what
points they are applied. If all of the force is applied at one or

more discrete points, equation (9-4) states that the motion of

the center of mass is determined by the vector sum of these

forces but is independent of their points of application. This

does not mean that the motions of all the parts of the body are

independent of the points of application of the forces. It

refers merely to the motion of the center of mass.

2. Angular Momentum.—The equation of motion for an

element of volume dv is

dh
p ^dv = ^idv dv (9-5)

as was used in equation (9-2). If the vector product of the left-

hand side by r is integrated over the body, the result is the rate

of change of the total angular momentum.

f dh
,

d f ^ dr j dHo .

where Ho = /[pr X {dr/dt)]dv. The integral is taken over

the entire body, and the quantity dr/dt is the vector velocity of

the volume element dv.



160 PRINCIPLES OF MATHEMATICAL PHYSICS

The differentiation with respect to time can be taken out of

the integral sign because of the assumed rigidity of the body.

This involves the constancy, with respect to time, of p as well

as of the dimensions of the body over which the integration is

carried out. In these integrals the vector r is measured from a

fixed origin, which may or may not be in the body. The sub-

script on Ho indicates that there is a fixed origin from which

the vectors start.

The vector product of r with the right-hand side of equation

(9-5) leads to two integrals. The first is

Jr X dv = 0 (9-55)

The value zero for this integral may be taken as part of the

definition of a rigid body. It would follow from the assumption

that the forces between the parts of a body are central forces,

but this assumption lacks generality and seems unnecessarily

restrictive. Frequently equation (9-55) is justified by the

statement that the internal forces within a rigid body are in

equilibrium among themselves. It may be considered as a law

similar to Newton’s tliird law of motion. It describes the

observed fact that isolated bodies do not set themselves into

rotation.

The second integral is given a name.

Jr X tF, dv = Lo (9-5c)

where Lo is called the torque or moment of force, with reference to

the origin about which it is measured.

It was pointed out above that the effect of forces on the

motion of the center of mass is entirely independent of their

points of application. However, the whole effect of the forces

is not given by the motion of the center of mass. The rotation

of the body does depend on these points of application through

the law connecting dHo/dt and Lo- The additional law based

on the idealization of a rigid body is the vector equation

(9-6)
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The remainder of this chapter is essentially a discussion of the

consequences of this law.

Problem 3. Write out the Cartesian components of Ho.

Problem 4. Write out the Cartesian components of Lq.

Problem 6. Consider a uniform rod pivoted at its upper end so

as to swing freely under gravity in a vertical plane. Evaluate the

torque on it from equation (9-5c) and the angular momentum from

equation (9-5a).

Problem 6. Show that the tortpie about the center of mass due to

the weights of the elementary parts of a rigid body is zero.

3. Moments of Force and Couples.—Equation (9-2) shows

that the motion of the center of mass of a rigid body is deter-

mined by the vector sum of all the acting forces but is inde-

pendent of their various points of application. The system of

forces could be replaced, as far as the translation of the center of

mass is concerned, by a single force equal to the resultant and
applied at any point whatever.

Equation (9-6) shows that the rate of change of the angular

momentum of a rigid body depends on the total moment of force,

or the total torque, but is independent of the total force. This

torque is defined in terms of the forces and their points of

application and is with reference to a certain origin. It is,

however, a vector, so that it is independent of the orientation of

the coordinate system in terms of which it is described.

To predict the motion of every point in a rigid body, it is

both necessary and sufficient to know the resultant force acting

and the total moment of force. These two quantities are quite

independent. It is possible to have a set of forces whose

resultant is zero but which produce a nonzero torque. In

such a case the center of mass will move in a straight line with

uniform velocity, and the rotation may conveniently be referred

to it as a center.

The simplest combination of forces that has a moment but a

zero resultant is that of two equal and parallel but oppositely

directed forces that do not act in the same straight Une. This

combination is called a couple. The moment of a couple is

independent of the origin to which it is referred. The vector
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that represents it is perpendicular to the plane containing the

two forces and has the sense of the angular momentum it tends

to produce.

In their effects on a rigid body, two sets of forces are equiva-

lent if they produce the same motion of the center of mass and

the same kind of rotation. This requires tliat they have the

same resultant and the same torque with reference to all origins.

It can be shown, however, that if two sets of forces have the

same resultant, and the same moment about one point, they

have the same moment about all points. Hence it is necessary

to require only the equality of the moments about one point.

In general, a set of forces is not equivalent to a single resultant

Fig. 9-1.—Three forces applied to a rigid rod.

alone. Such a set is equivalent, however, to a resultant applied

at an arbitrarily selected point and a couple that depends upon

the point selected for application of the resultant. It is neces-

sary only that the couple be equal to the total moment of the

set of forces about the point of application chosen for the

resultant.

Problem 7. Show that the torque of a couple with reference to

any origin is given by
L = d X F (9-7)

where F is one of the two parallel forces and d is the vector to the point

of application of this force from that of the other.

Problem 8. Consider the set of forces shown in Fig. 9-1 acting

on a rigid rod. All three forces lie in the same plane. Find the single

force and couple, applied at the left end of the rod, equivalent to this



DYNAMICS OF RIGID BODIES 163

set of forces. Find also the force and couple, applied at the point P a

distance 2o/3 from the right end of the rod, equivalent to the set

shown.

Problem 9. If in the system of Fig. 9-1 the force Fi is turned 90°

so as to act outward from the plane of the figure, find the equivalent

force and couple applied at the center of the rod.

Problem 10. Show that, if the resultant of a system of forces is

zero, the total moment about one point is the same as about any other.

Problem 11. Show that a single force applied at a given point of a

rigid body is equivalent to the same force applied at any other point,

plus a suitable couple.

Problem 12. Show that any set of forces acting on a rigid body
can be replaced by an equivalent single force, acting at any point,

and a suitable couple.

4. Kinematics of a Rigid Body.—To describe completely the

position of every point in a body, it is both necessary and

sufficient to give the positions of three selected points of the

body that are not in the same straight line. Specif}dng the

positions of three points requires, in general, nine coordinates

;

but since the condition of rigidity fixes the three distances

between the points, only six independent coordinates are neces-

sary to locate the points when they are in a rigid body. When
the location of these three points is given, the location of every

other point in the body is fixed by its distances from these three.

It is usually convenient to take three coordinates to locate

one of the selected points. This point can then be taken as

the origin of a system of coordinates fixed in the body. The
line connecting tlus point with one of the other selected points

can then be taken as the x' axis of tliis system, and two coordi-

nates, ordinarily two angles, will give the direction in space of

this axis. If the plane containing the x' axis and the tliird

selected point is taken as the x'-y' plane, a single angle will give

the orientation of this plane. The z' axis is then fixed by its

relationship to the x'-y' plane. Hence three coordinates will

locate the origin of the x’-y'-z' system, and three angles will

give its orientation. Every point in the body has a fixed

location in this system so that the six coordinates suffice for a

complete specification of the location of every point.
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The position of a particle can be specified by a vector from

some fixed origin to the particle, and the most general displace-

ment can be described in terms of a vector from an initial posi-

tion to a final position. To describe the displacement of a

rigid body is more complicated. It can be shown that the most

general displacement can be described in terms of the translation

of some particular point in the body and a rotation about an

axis passing through this point. By such a description the

displacement of every point in the body can be specified. How-
ever, the details of this process will not be treated here sim-e

they are unnecessary for the elementary dynamics of rigid

bodies.

For dynamics it is more important to be able to describe the

velocities and accelerations of each element of the body than to

describe the displacements. For this purpose Chasles’ theorem

states that, in the most general case, the velocities of the parts

of a rigid body can be described in terms of a translational

velocity of any selected point in it, plus an angular velocity

about an axis through this point.

The velocity of translation, and both the magnitude and

direction of the angular velocity, will be functions of the time,

but at any fixed time the angxilar velocity will be independent

of the point about which it is measured.

Chasles’ theorem can be established by proving it with

reference to a coordinate system x', y', z'

,

fixed in the body,

since the motion of such a coordinate system fixes the motion of

the body. The origin of this coordinate system is put at the

point through which it is desired to have the axis of the angular

velocity pass. Then let a be the vector from a fixed origin to

the origin of the moving coordinates, and let r be the vector

from the same fixed origin to an arbitrary point in the body.

Let the coordinates of this point be {x',y',z') with reference to

the system fixed in the body, so that x', y', and z' are constants,

independent of the time. The vector r' from the origin of the

moving coordinates to the arbitrary point has the constant

components x'
,
y', and z'. Then

r = a -f r'
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and
dr _ da. dr

dt
~

dt dt

da/dt is the translational velocity of the origin and may be

represented by v; it remains to be shown that dr'jdt can be

expressed in terms of an angular velocity.

The vector r' is fixed with reference to the moving system of

coordinates, since x'
,
y', z' are constants. By the derivative of

r' with respect to the time is meant its rate of change with

reference to a coordinate system whose axes are fixed in direction

but whose origin coincides with the origin of the coordinates

fixed in the moving body. Since the length of r' is constant, its

only change is in direction and can be expressed in terms of

the motion of the coordinate axes. Under these conditions

dt

,
di'

,
dy

,
,
dk’

di + y -31 + ^ IT (9-9)

The unit vectors are vectors of constant length, and their

rates of change must consequently be perpendicular to the

vectors themselves. Hence let

dt
= ei' + dk'

dk'

di
hi' + dy (9-10)

Since the vectors i', j', and k' remain perpendicular to each other

during the motion, i' • j', j' • k', and k' • i' are constant and the

derivatives of these scalar products must be zero. This leads,

for example, to

di' dy

Tt'^ ’Tt = c + e = 0

and to the three relationships

d — —a f = —b e = —c (9-lOa)

If o, b, and c are taken as the three components of a vector u,

o> = ai' d” by -H ck^ = Ux'i' -1- oiy'j' -h oi^k' (9-lOb)

the relationships (9-10) can be combined with (9-9) to give
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dt'

dt

k'

o>Xr' (9-11)

The vector w is called the angular velocity.

The angular velocity w is defined in terms of quantities that

refer to the motion of the coordinate system only, and thus it is

the same for all points of the body. The combination of equa-

tions (9-11) and (9-8) then shows that

~ = V + (0 X r' (9-12)

Problem 13. Show that, for the vectors Ti and to from the origin

of a moving system of coordinates to two points fixed in the coordinate

system,

dr2
,

dti ^
'•sr + iir-'--®

Show that the conditions (9-1 Oa) constitute a special case of this

equation.

Problem 14. A plane body is moving in its own plane, and its

motion is specified by the translation of one point and an angular

velocity about an axis perpendicular to the plane and passing through

the point. Find the point in the body that is instantaneously at rest,

and show that every other point has a velocity perpendicular to the

line connecting it with this point.

Problem 16. Consider a wheel of a locomotive that is traveling

at a constant speed. Describe the motion of the w heel in terms of the

translation of the center and an angular velocity. Then describe it in

terms of the translation of a point halfway between the center and the

rim and the corresponding angular velocity.

Problem 16. Show that the angular velocity of a solid body is the

same for all locations of the origin about which it is taken.

Problem 17. Show that the angular-velocity vector is parallel to

the axis of rotation.

Problem 18. Show that if the vector a has the components

ciy, cLy'j a/ in a moving system of coordinates

da

dt

dax>

dt
i' +

dUy'
j' +^ k' + « X a (9-13)

6. Three Systems of Coordinates Axes.—In dealing with the

motions of rigid bodies it is desirable, at different times, to use
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different sets of coordinate axes. Of these, three are of particu-

lar importance.

a. Axes Fixed in Space with Reference to Which All Processes

May Be Described.—Although there is some theoretical difficulty

in defining the term fixed in space, there is no practical difficulty

when dealing with ordinary phenomena on a small scale. It

is with reference to such coordinates that Newton’s laws were

stated, and it is with reference to such coordinates that equations

(9-2) and (9-6) were written.

h. Axes Fixed in Direction hut with an Origin Fixed in the

Moving J5ody.—There are two cases in which the selection of the

origin for such a system will be different.

(1) If one or more points of the body are fixed in space, the

origin will be located at one of them. If the body is a top spin-

ning on its point or a wheel mounted as a gyroscope so that only

one point is fixed, the selection of the origin is unique. In

the case of a body turning about a fixed axis, any point on the

axis is suitable for the origin. Since the directions of the axes

are fixed and the origin is fixed, these coordinates are equivalent

to those of (a) with a particular select ion of the origin.

(2) If no point of the body is fixed, the origin is placed at

the center of mass.

With respect to coordinates fixed in direction, integrals such

as those defining angular momentum or torque must be carried

out between changing limits. The limits will be the surfaces of

the body and these will, in geneial, be moving.

c. Axes Fixed in the Rigid Body.—As in the previous case,

the origin may be located differently in two cases.

(1) If there is a fixed point, it is usually convenient to locate

the origin at such a point.

(2) If the body is entirely free, it is usually most convenient

to locate the origin at the center of mass.

For those cases in which the origin is fixed, equation (9-6)

applies directly. The integrations involved in the definitions of

Ho and Lo must be carried out over the volume of the rigid bodies

concerned. For this purpose, it is convenient to use axes fixed

in the body when these integrals are to be evaluated, for then the

integrations are between fixed limits. In principle, the Integra-
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tions can also be carried out between moving limits, with respect

to fixed coordinates, if it is so desired.

For cases in which the origin is moving, it is important to

consider equation (9-6) a Uttle further. As above, let r' be the

vector locating a point in the moving coordinate system, and

let a be the vector from the fixed origin to the moving origin.

Then

H.= /prx|'*

Since the origin in these cases is at the center of mass,

/ ® * - (/ *)

The time derivative of the angular momentum then becomes

where

H = j
pr' dv (9-14C)

Justification of the differentiation under the integral sign

becomes obvious when it is remembered that the integral is

equivalent to a sum over all the elements of the body.

In the last expression in equation (9-146), the first integral

is a force, and the second integral is equal to ilf da/df because

the origin of r' is located at r = a. Hence

®2.ax/x* + f (9-m

Also, from equation (9-5c)

Lo = Ja X JPe dv + Jr' X dv

= a X J>,F« dv + L
(9-14e)



DYNAMICS OF RIGID BODIES 169

where L = Jr' X dv is the torque with respect to the moving

axes. From equations (9-6), (9-14d), and (9-14e), it follows

that
(M
dt

~ ^ (9-15)

Equation (9-15) shows that the relationship between the

torque and the rate of change of angular momentum is the same

in all the coordinate systems mentioned above. It is the same

for a fixed origin and for an origin at the center of mass.

6. The Tensor of Inertia.—Since the motion of all tlie parts

of a rigid body, relative to an origin fixed in the body, can be

expressed in terms of an angular velocity, tlie quantity di/dt in

the definition of angular momentum can be replaced by w X r.

This gives, for H,

H = Jpr X (<>> X T)dv = Jp[r^(o — (w • T)i]dv (9-16)

where the primes have been omitted and r is understood to have

its origin at the origin of any one of the three systems of coordi-

nate axes that are described above. The x component of this

equation is

Hj: = Wxjp(y^ -f z^)dv — coyjpxy dv — o^^jpxz dv

As shown in the previous section, this definition is to be used for

either fixed or moving coordinates
;
l)ut if the origin of the coordi-

nates is moving, it is to be taken at the center of mass. If the

coordinate axes are fixed in the body, the limits of integration

are constant and the integrals in (9-16) can be carried out in

terms of the vector w and the dimensions of the body. For

axes not fixed in the body, the result of the integration must be

the same, although it is not so easy to express.

According to equation (9-16) the angular momentum is a

function of the angular velocity and constants of the body. In

fact, it is a linear vector function of the angular velocity. The
relation between H and w can be written in tensor form by using

the tensor of inertia. This has the nine components

/ =
'Jp(2/* + ^^)dv

— ^pxy dv

— jpzx dv

— ^pxy dv

Jp(x* + z^)dv

— jpyz dv

— Jpzx dv

— Ipyz dv

jp{x^ y^)dv_

(9-17)
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In terms of this tensor of inertia, the components of the angular

momentum can be written

Hi = li}0)j (9-18)

The diagonal components of the tensor of inertia are called

the moments of inertia, and the nondiagonal components are

called the products of inertia. If the coordinates are such that

the products of inertia vanish, the coordinate axes are said to

correspond to the principal axes of the body. It is always

possible to rotate the coordinates so that the products of inertia

vanish; i.e., principal axes exist for all bodies and for all possible

locations of the origin. These principal axes are of importance

because of the simplification they introduce into the equations

of motion.

Consider a cube of uniform density, and take the origin of

coordinates at one corner with the coordinate axes lying along

edges of the cube. The integrals over the cube are easily

expressed in these coordinates; and if the edge of the cube is 6,

hx ^ P dz dy(y^ + £ dx = |p6" = (9-19)

where M is the total mass of the cube. Similarly,

Ixy = -P fo
^ dx £ ydy £ dz = - (9-19a)

Because of the symmetry of this problem, all the diagonal terms

are identical, and all the nondiagonal terms are identical.

- \Mh^'

/ = - (9-196)

_
- \Mh^ -

Clearly the edges of the cube are not principal axes.

If the cube is rotating at a constant rate about one edge, say

the z axis, the angular velocity will be constant in the rotating

coordinates, u = co^k. Then the vector angular momentum
has three components, and

H = M6W-ii-ij + fk) (9-20)

It is important to notice that in this case, and in general, the

angular momentum is not parallel to the angular velocity.
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Hence, although the fundamental law requires that, in the

absence of external torques, the angular momentum shall be

constant, the angular velocity will not necessarily also be

constant.

Problem 19. Work out the components of the tensor of inertia for

a thin rectangular sheet, when the coordinate axes pass through the

center of the sheet and are parallel to the edges. Show that the

products of inertia are zero and

hz = lyy = Izz = iM(a^ + b^)

where 2a and 2b are the dimensions of the rectangle in the x and y
directions, respectively.

Problem 20. Transform the above tensor to coordinates whose
origin is at the center but whose x axis is along a diagonal of the

rectangle.

Problem 21. Show that the moment of inertia of a body about

any axis is equal to its moment of inertia about a parallel axis through

the center of mass, plus the product of the total mass by the square

of the distance between the two axes.

Problem 22. Show^ that the tensor of inertia of a body with refer-

ence to any system of axes is equal to the tensor of inertia with respect

to a parallel system of axes of w hich the origin is at the center of mass,

plus the tensor of inertia with reference to the first system of axes

w^hich represents the concentration of the wiiole mass of the body at the

center of mass.

Problem 23. Show that the moment of inertia of a thin sheet

about an axis perpendicular to its plane is ecpial to the sum of its

moments about any two perpendicular axes w hich lie in the plane and

intersect the first axis.

Problem 24. Find the angular momentum of a thin rectangular

sheet when it is rotating about one of its diagonals.

Problem 26. Find the components of the tensor of inertia of a

uniform sphere when a point on the surface is taken as the origin of

coordinates.

A rigid body can have a very complicated shape, but its

dynamical properties are given by its mass and its tensor of

inertia. Since the tensor of inertia is symmetrical, only six

independent quantities are needed to describe it. These

quantities can be represented by an ellipsoid of inertia. This
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is an ellipsoid whose center is at the origin of coordinates and

of such a size and shape that the moment of inertia around any

axis is inversely proportional to the square of the distance

from the center to the surface of the ellipsoid along the direction

in question.

To show that such an ellipsoid exists, consider the vector r

with components ri, r^, and vt, and transform the tensor of

inertia to coordinates of which one axis lies along r. The
cosines of the angles between r and the original axes are ri/r,

r-z/r, and rz/r. Then the moment of inertia about this axis is

given by

Irr = (9-21)

If the length of the vector r is chosen so that 1 /r* = the com-

ponents of r will satisfy the equation of an ellipsoid

rilijTj = 1 (9-22)

A point on the surface of this ellipsoid has the coordinates

{ri,rz,rz), which are connected by the relation (9-22), and is a

distance r from the center.

Problem 26. Transform the tensor of inertia for a cube as given

above to its form when one axis is a body diagonal of the cube. Find

the principal axes of the ellipsoid of inertia for a cube when the origin

is at one corner.

7. Euler’s Equations.—The fundamental law of the rotation

of rigid bodies is contained in equation (9-15). For many
purposes, however, it is desirable to write out the component
equations instead of combining them all into one vector equa-

tion. When this is done, two distinct cases must be considered.

If the axes are chosen so as to be fixed in direction, the rate of

change of the angular momentum must include the rates of

change of the various components of the tensor of inertia, as

well as the rates of change of the components of the angular

velocity. This leads to a very complicated set of equations

that are rarely, if ever, used. On the other hand, if coordinate

axes are chosen that are fixed in the body, the components of

the tensor of inertia are constant and the expression for the rate
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of change of the angular momentum contains only the rates of

change of the components of the angular velocity together with

the terms that represent the motion of the coordinate axes.

These equations take a particularly convenient form when the

coordinate axes coincide with the principal axes of the body.

In this latter case

H = i/iiWi + (9-23)

and
^XT

= ilxxMx +

+ Ixx<^x + lyyi^v ^ + Izz (9-24)

Equations (9-10) and (9-11) show how the rates of change of

the unit vectors c^ari be written in terms of the components of the

angular velocity. When this is done, the three components of

the equations of motion can be written separately as three scalar

equations known as Euler’s equations. Euler’s equations

referred to the principal axes are

Ixx^x iEz ^yy)^z^y “ )

^vy^y (-fxx azz)o^x0^z ~ Ey
I

(9-25)

Izz<^z + {lyy — /xi)WyC0i = )

Lx, Ly, and are tlie components of the external torque about

the moving x, y, and z axes, respectively. It must be remem-
bered that these components of torque arc referred to moving
axes and hence may change with the time even when the vector

torque is constant.

It is possible to write similar equations when the axes are not

parallel to the principal axes, but they are much more com-
plicated and are rarely used.

Problem 27. Derive Euler’s equations referred to principal axes.

Problem 28. Write Euler’s equations when the axes are not

principal axes.

8. The Eulerian Angles.—As has been already indicated

above, six independent coordinates are necessary to specify

the position of a rigid body. This is best done by specifying
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the location and orientation of a system of axes attached to the

body. Three of the coordinates will locate the origin of the

axes, and the remaining three can be used to fix the orientation.

Tliis orientation can be specified in various ways. The nine

components of the tensor F could be used to represent the posi-

tions of the axes in the body relative to an external set of fixed

axes. Since there are six independent relationships between the

nine components of the tensor, there are really only three inde-

pendent quantities in it. This method, however, is not very

convenient. For many purposes, the most convenient coordi-

nates are the Eulerian angles. They can serve to define the

orientation of a rigid body, and they will also serve as inde-

pendent variables in the equations of motion.

The Eulerian angles are indicated in Fig. 9-2. In this figure

X, y, and z are the three axes fixed in the body, while X, Y, and Z
represent a system of axes whose direction in space is fixed.

The angle between the Z axis of the fixed system and the z axis

of the moving system is called 6. The line ON in which the

x-y plane cuts the X-Y plane is called the line of nodes, and the

angle between the X axis and the line of nodes is called Some
convention must be made as to the direction in wliich this angle

is measured; therefore, it is usually specified to be measured in
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the positive direction around OZ to the positive side of the line

of nodes. The positive side of the line of nodes is defined as

that side toward which the vector product of a vector along Z
times a vector along z would point. The angle from the line

of nodes, measured in the positive direction around z, to the

positive X axis is called tp.

These three Eulerian angles seem an uns5Tnmetrical set of

coordinates, but they are especially adapted to the problem of a

rotating body and give the equations the simplest form in most

cases. Each of the angles can be changed independently of

the others and the rate of change of each one can be considered

as an angular velocity in the appropriate direction. By the

projection of these angular-velocity vectors on the moving
axes, it is possible to express the three Cartesian components of

the angular velocity in terms of the derivatives of the Eulerian

angles.

The angular velocity corresponding to 6 can be seen from

Fig. 9-2 to lie along the positive direction of the line of nodes.

Its component along the x axis is then d cos tp. The angular

velocity corresponding to <p is perpendicular to the plane includ-

ing the line of nodes and the x axis and hence is along the z axis.

This has no component along x. The angular velocity cor-

responding to yj/ lies along the Z axis. Tliis has a component

xj/ cos 6 along Oz and a component xj/ sin 6 in the x-y plane.

The latter component will also lie in the plane including z and Z.

This plane is perpendicular to the line of nodes ON, and thus

the component along x will be \j/ sin 6 sin tp. The total is the

sum of these contributions. By similar analysis, the other

angular velocities can be written down, and the result is

Ux = 0 cos -t- ^ sin 0 sin ^
'

Uy — — 0sin (p -|- ^sin 0 cos <p\ (9-26)

Ux = <p -h xp cos 0

Problem 29. Show from Euler’s equations that if Ixx = lyy and

Lt = 0, the angular velocity about the z axis is constant.

9. The Kinetic Energy of a Rotating Body.—The kinetic

energy of a rigid body may be regarded as the sum of the kinetic
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energies of its parts. Hence it can be written

T = ijp(R)2 dv = Jip(a + r) . (a + T)dv (9-27)

In this equation R is the vector from a fixed origin to the volume
element dv, a is the vector from the fixed origin to the origin

fixed in the rigid body, and r is the vector from the origin in

the body to the volume element dv. According to the con-

vention already described for the selection of systems of coordi-

nates, a either is constant, or the origin of the moving system of

coordinates is at the center of mass. For one reason or the

other, equation (9-27) becomes

T — ^ {dy -f- jpk • i dv
j

pr • r dv

= ^ -b
^ j

p(a) X r) • (o) X r)dv (9-28)

In a triple vector product containing one dot and one cross, the

dot and cross (^an be interchanged without affecting the value

of the product. Hence

r = ^ -b
g I

po> • r X (o> X T)dv = i Mv^ -f
^

• H (9-29)

Equation (9-29) contains the important result that the kinetic

energy of a rigid body can be divided into two parts. One part

is the energy of translation of the body as a whole, and the other

part is the energy of rotation about the center of mass.

Equation (9-29) shows that these two energies are entirely

independent.

Since the angular momentum H is a linear vector function of

the angular velocity, equation (9-29) shows that the kinetic

energy of rotation is a homogeneous quadratic function of the

velocity components.

Problem 30. Express the kinetic energy of a body that is turning

about a principal axis, in terms of components of the tensor of inertia

with reference to the principal axes.

Problem 31. Show that the kinetic energy of rotation of a rigid

body rotating about any axis is equal to the moment of inertia about
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the axis of rotation multiplied by one-half the sciuare of the angular

velocity.

Problem 32. Show from Euler^s equations that the kinetic energy

of rotation of a rigid body subject l.o no torque is constant.

Problem 33. Show that the rate of change of the kinetic energy

of rotation of a rigid body is equal to the scalar product of the torque

and of the angular velocity.

10. Rotation about a Fixed Axis.—The simplest motion of

rotation is that in wliich one line in the body remains fixed and

serves as an axis of rotation. Under tiiese conditions the

Fig. 9-3.—Moving axes used with a dynaniieally unbalanced flywheel.

angular-velocrity vector is fixed in space and fixed in tiie body.

However, tlie angular momentum is not always parallel to the

angular velocity and thus the angular momentum is not fixed in

direction, and a torque is needed to maintain such a motion. This

torque is supplied through the bearings that support the axle.

These bearings must supply the force necessary to cause the

center of mass to move in its prescribed path, and at the same
time they must supply the torque necessary to keep the axis of

rotation fixed.

a. Flywheel out of Dynamic Balance .—Consider the case of a

flywheel attached to its axle in such a way that, although the

center of mass of the wheel is at the center of the axle, the

principal axis of the system consisting of the wheel and axle is
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not parallel to the axis of rotation but makes an angle a with it.

Figure 9-3 shows the situation.

Since the center of mass is on the axis of rotation, it does not

move when the wheel is turning and the only force that the

bearings need supply to keep it in place is a constant upward
force equal to the weight. This force w 11 be divided between

the two bearings according to their distances from the center

of mass.

It is convenient to take axes fixed in the flywheel parallel

to the principle axes of the body and with the origin at the

center of mass. Take the z axis along the axis that makes

the angle a Avith the axis of rotation. From the symmetry of the

problem, it is apparent that another principal axis lies in the

plane including z and the axis of rotation. Let the x axis be

selected in this direction. The positive y axis will then be

directed out of the paper. If a is small, the moments of inertia

IXX and lyy will be practically equal. If they were exactly equal,

the orientation of the x and y axes around the z axis would be

arbitrary but it would still be convenient to select them as

indicated.

The angular velocity is naturally along the axis of rotation

so that if coo is its magnitude

<0 = — Wo sin a i + Wo cos a k (9-30)

If Ixx, lyy, and 7^2 are the components of the tensor of inertia

referred to the principal axes, the angular momentum in these

coordinates is

H — Wx^xxi “b WjZxjk

= Uoi — Ixx sin ai + cos a k) (9-31)

All the quantities in this expression are constants except the

unit vectors i and k. But because the unit vectors are changing,

H is changing, w^hich shows the existence of a torque. From
equation (9-10) it follows that

di . , , dk . .

^ = Wxj - Wj,k and = Uyi - Wxj

L =
dt

Ixx) sin a cos a j

Hence

(9-32)
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Since J« > Ixx for an ordinary flywheel, this torque is in the

positive direction around the y axis. But the y axis is turning

uniformly in a plane perpendicular to the axis of rotation, and

the force supplied by the bearings must change direction cor-

respondingly. The force from one bearing, over and above the

static force, will always be equal and opposite to that from the

other since they constitute a couple about the eenter. The
magnitude of each force wdll be constant, but the direction will

rotate around the axis with the wheel. This tends to set the

supporting structure into vibration and may cause undue

stresses in the mounting

The wheel in this problem is in static balance. It will not

tend to turn if it is set in any position. But it is not in dynamic

balance and hence will require variable torques to keep it

turning about a fixed direction. For smooth running it is just

as important to have dynamic balance as to have static balance.

6. Case with Center of Mass off the Axis .—In the above

illustration the eenter of mass was on the axis of rotation, and

no force was needed to move it in the specified orbit. It often

happens, however, that the center of mass is not on the axis of

rotation, and this fact mu.st be taken into account in computing

the forces that must be supplied by the bearings.

As a simple illustration, consider a plane square sheet rotat-

ing about one edge and supported l)y bearings at the corners.

For simplicity the effect of the weight (not the mass) will be

neglected. For high speeds of rotation this may be quite

justifiable. Figure 9-4 illustrates the situation and the axes

selected with the origin at one bearing. The sheet is taken to

be 2a on an edge and to be rotating about the x axis with a con-

stant angular velocity a>o.

The center of mass moves in a circle about the axis, but to

make it do so a force toward the axis must be provided. Hence

Fi + F2 = -MaoioH (9-33)

The division of this force between the two bearings must be

determined from the torque, and this is given by the rate of

change of angular momentum. With the coordinates indicated

Ixx ~ ^Ma^ and hy — —Ma^ (9-34)
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Hence

and
H = Ma^o)o(^i - j)

(9-35)

(9-36)

The force Fi produces no torque about the origin, and therefore

all the torque must be due to F2 applied at the point 2ai.

2oi X F2 = L = — (9-37)

Equations (9-33) and (9-37) must be solved simultaneously to

evaluate Fi and F2 .

Fu;. 9-4.—A plane sheet turning!: about a fixcnl axis.

The vector product of i and (9-33) gives

i X Fi -f- i X F2 = — Mttoju^k

Then (9-37) can be written

i X F2

This leads to

i X Fi = —

^

(9-33o)

(9-37a)

(9-38)

From this equation nothing can be concluded about the x com-
ponent of Fi, but the z component can be seen to be zero and the

y component equal to —
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Equation (9-33) shows that the sum of the x components of

Fi and F2 is zero, but the individual components are not further

determined. The motion is independent of what they may be.

Hence assume them to be zero. The result is then

F, = F 2 = - (g.39 )

Since the coordinate system is rotating, the direction of j is

changing and the forces must follow it.

Problem 34. Evaluate the angular momentum of the square sheet

rotating about one edge by the use of the integral definition (9-1 4c).

Problem 36. Treat the problem of the rotating square sheet when
the origin of the moving coordinates is taken at the center of mass.

Problem 36. A body is suspended from a horizontal axis parallel

to one of the principal axes that passes through the center of mass.

The axis of rotation is a distance d from the center of mass. Write the

Lagrangian function and the eciuations of motion for this type of

pendulum.

11. Free Rotation of a Rigid Body.—If a body is subject to

no external force whatever, the center of mass will move in a

straight line with constant velocity and the angular momentum
will be constant in both direction and magnitude. Tiiis, how-

ever, does not at all mean rotation with constant angular

velocity about an axis fixed in direction. It was shown in the

previous section that motion about a fixed axis may require a

torque to maintain it. The motion of a free body with constant

angular momentum may appear complicated if the body has an

irregular shape, but it has certain simple characteristics that

permit its description.

It was shown in Prob. 32 that the kinetic energy of a body
subject to no forces is constant. This means that

2T = u • H = const (9-40)

and, combined with the constancy of H, it means that the pro-

jection of <0 on H is constant. If <.> and H are drawn from a

common origin, H will be constant in magnitude and direction

while « will always end in a plane perpendicular to H at a

distance 2T/H from the origin.
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Problem 37. Show from the form of equation (9-40) that the

vector 6) also always ends in the surface of an ellipsoid that is fixed in

the body.

Problem 38. Show that, if tlie angular vehxaty of a free body
coincides in direction with a principal axis, it will always coincide with

that axis and will be fixed in spa(;e as well.

Problem 39. Show that the rotational kinetic energy of a body
for which I^x — lyyy referred to principal axes, is

T — "k 4'^ sin^ 6) -j- "k 6 cos“ 6) (9-41)

Problem 40. Sho\v that for a rigid body, u'it h /xr = lyy, the angu-

lar momentum vector lies in the plane (*ontaining the 2* axis and the

angular velocity. If Izz > 7xx, H lies between the 2 axis and If

hz < IXX, the angular velocity lies between the ^ axis and H.

The study of the motion of a free rigid body is of importance

in understanding the motion of projectiles shot from a rifle.

These are projected with an angular velocity about the axis of

symmetry
;
and, to the extent that air resistance can be neglected,

such a projectile can be treated as a free body as far as its rota-

tion is concerned. Gravity will accelerate the center of mass

but will produce no torque or change in angular momentum.
Since the treatment as a free body is based on the neglect of air

resistance, questions of stability are important. It is important

to know that small deviations from an ideal motion will not

result in entirely new characteristics.

In Prob. 29 it was shown that the angular velocitj^ about the

z axis, which is taken as the axis of symmetry, is constant. Let

this be called coo. When the projectile is fired, it is given this

initial angular velocity about this principal axis; and, according

to Prob. 38, it should continue to rotate about this axis, and the

axis should remain fixed in direction. However, small torques

may introduce small amounts of angular momentum in other

directions, and it is important to see how this will affect the

motion.

By differentiating the first of Euler^s equations and sub-

stituting o)y from the second it follows tliat
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Then

(Ax = A sin (9-42tt)

where account is taken of tiie fact that Ixx > Izz-

The solutions of Probs. 41 and 42 below permit one to show
that the vector <0 moves around the z axis so as to describe a

circular cone. For bodies in which the difference between Ixx

and Ixx is a significant fraction of Ixx the motion of this angular-

velocity vector is almost as fast as the rotation of the body itself.

Fig. 9-5. Kci)roNPfit4itit)ii of tlio motion of Mie priiiripal axis of a free body z and the
angular velorit.v veetor 00 by one rone rolliiiK on another.

Problem 41. Show that for a symmetrical body

cox" “f" — const (9-43)

Problem 42. Show from Kuler’s equations that cjy follows a

differential ecjuation of the form of (9-42), and find the relationship

between the constants in equation (9-42a) and the corresponding con-

stants in the expression for coy.

Problem 43. A projectile consists of a right-circular cylinder with

a hemispherical cap on one end. The length of the cylinder is three

times its diameter. Find the rate at which the angular-velocity vector

moves in the body compared with its rate of rotation.
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As a consequence of the rotation of the body about an axis

that is not a principal axis and the motion of the axis of rotation

around the axis of symmetry, as well as the fact that the axis of

symmetry, the angular velocity, and the angular momentum
always lie in the same plane, the motion can be described as

the rolling of one cone on another. Figure 9-5 indicates the

situation. The vector H is composed of a portion /^^a)o along

the z axis and a portion Ixx{oix^ + perpendicular to z.

The angular-velocity vector lies between z and H and in the

same plane. If then a right-circular cone is constructed about H
such that u lies in its surface and another cone tangent to the

first is constructed about z, the rigid body can be considered

as attached to the second cone. The motion of the rigid body is

then reproduced by rolling the second cone around the first.

12. Rotation of a S3unmetrical Body about a Fixed Point.

—

Another case of interest is that in which a point in a symmetrical

body is kept fixed in space and some external torques are applied.

For simplicity take the fixed point to be the center of mass and

let Ixx = lyu- This is the case usually referred to as a gyroscope.

Problem 44. Use Lagrange’s equation to obtain the equations of

motion of a symmetrical body in terms of the Eulcrian angles, and

then show that, if the only torque acting is such that it tends to increase

the angle 6, the following equations hold;

Izz(<p + cos 6) = R \

Ixx'p sin* $ -{- R cos d = S I (9-44)

Ixx 1 1x4'^ sin 6 cos d sin 0 = Lf )

where R and S are constants of integration.

Problem 46. Show that 0 = ir/2, <p
— const, 4/ = const is a solu-

tion of equations (9-44) if there is a proper relationship between <p and 4'-

Problem 46. Show that equations (9-44) admit of a solution cor-

responding to any desired constant angle of inclination $o and any

desired constant rate of precession ^ if the torque Le has the

proper constant value. Find the necessary value of the torque.
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CHAPTER X

THERMODYNAMICS

The subject of thermodynamics developed from the study

of heat engines and concerns the transformation of heat into

other kinds of energy. The work of Sadi Carnot, published

in 1824, may be (ionsidered as the first real contribution to

this study. Guided by the prevalent idea of his time, that

heat was an indestructible substance, he sought for the con-

ditions imder which it would produce work. His conclusion

was that heat can produce external work when it falls from one

temperature to a lower temperature, much as water can do

work in falhng from one level to a lower level. Although this

conclusion is only partly correct, Carnot’s penetrating insight

led to the discovery of the theorem that the maximum amoimt
of work which can be obtained from a heat engine depends only

upon the temperatures between which it operates and not at all

on the working substance used.

By the middle of the nineteenth century the idea of heat

as an indestructible substance had been superseded by the

mechanical theory. According to this point of view, the

increase in temperature of a body is the outward evidence

of an increase in the energy of its molecules. The energy

which is put into the body to produce this increase in tem-

perature may be transferred by contact from another body
at a higher temperature, or it may be transferred by doing

mechanical work. Thus the idea of "quantity of heat” loses

its definiteness and applies more to a method of transfer of

energy than to any quantity which exists after the energy is

transferred. The fundamental ideas of the mechanical theory

of heat are very old. They were known to Huygens; and
before Carnot’s death, he himself recognized the insufficiency of

the indestructible-substance idea with which he had been work-

ing. Between 1840 and 1850, however, Mayer, Helmholtz,
185
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Joule, and others stated the conception so clearly, and per-

formed the necessary experiments so convincingly, that this

theory began to be widely accepted.

It was the combination of the mechanical theory of heat

with the discoveries of Carnot about the availability of heat

for doing work that produced the principles of thermodynamics.

This synthesis was due to a large extent to Clausius and to

William Thomson (Lord Kelvin). They put thermodynamics

into its present position—that of a deductive science, founded on

two very general laws. In their hands it became a powerful

means of treating a restricted class of problems. More recent

work has added a thii'd general principle, which is now widely

accepted as the third law of thermodynamics. This, however,

will not be treated in the present cliaptcr.

1. The Problems and Methods of Thermodynamics.

a. The Thermodynamic System.—In the treatment of thermo-

dynamic problems, the objects under consideration are usually

divided into two parts. One part is called the syste77i, the other

the surroundmgs. Attention is then gi^’en to the transfer of

energy between the surroundings and tlie system by means of

heat flow or by means of mechanical work done on the system.

In the case of a steam engine the water may ):>e considered as

the system, while the rest of the engine constitutes the surround-

ings. Energy is given to the water by the heat flow from the

fire, and some is returned to the condenser by the heat flow from

the steam. In addition, an exchange of energy takes place

between the steam and the piston. The study of the relation-

ships between the energies transferred as heat and as work
constitutes the problem of thermodynamics.

h. The State of a Thermodynamic System.—The state of a

mechanical system is determined by the positions and the

velocities of all its component parts. According to the

mechanical theory of heat, the state of a thermodynamic system

then would be determined by the positions and velocities of all

of its component molecules. So detailed a knowledge of a

system, how'ever, is not necessary for the thermodynamic
treatment of its behavior. It is necessary to know only the
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quantities which are observable by macroscopic methods.

These quantities are the pressure which tlie system exerts

upon its container, the volume which it occupies, its temperature,

its energy, the electric, magnetic, or gravitational fields to

which it is subject, and any other parameters of a similar nature.

These variables are not usually all independent, and the equa-

tions wduch connect them arc known as the equations of state.

The simplest cases are tho.se in which the only variables involved

in the determination of the state are the volume, pressure, and

temperature. In such cases, two of the quantities are .selected

as the independent variables, and the third is expressed in terms

of them by means of the C(}uation of state. The energy, and

any other functions of the state, can also be expressed in terms

of the same two independent variables.

If the temperature T and the volume V of a given mass

of a substance are taken as the independent variables of state,

the pressure may then bo written as a function of the.se two.

P = p{T,V) (10-1)

The nature of this function can be determined by experiment

only and is characteristic of the substance. For this reason the

equation of state is sometimes called the characteristic equation.

If the temperature and the volume are changed, the pressure is

changed accordingly by an amount dp, which is given by

The subscripts attached to the partial derivatives indicate

the variables that are kept constant during the differentiation.

This method of specifying the independent variables is necessary

because of the variety of such variables which can be used.

Equation (10-la) is also the equation of a curve of constant

pressure, or an isobar, when dp is set equal t o zero. In a similar

fashion the equations for isothermal curves and curves of con-

stant volume can be obtained.

Problem 1. Take the temperature and volume as independent

variables, and draw curves representing states of equal volume,
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equal pressure, and equal temperature. From these carves find

the geometrical significance of the differential coefficients in ecpiation

(10-la).

Problem 2. Take the pressure and the volume as independent

variables. Draw for this case the curves indicated in the previous

problem, and interpret the differential coefficients.

Problem 3. Repeat Prob. 2 for the case where temperature and

pressure are the independent variables.

Problem 4. Show that

Problem 6. Show that

{dp/dT)y

(dp/d V) T
(10-16)

idV/dp)T
(10-lf)

c. Thermometry.— T\i(i first ideas of heat and lemperaiure

come from the sensation of lieat and cold, and from the oliserva-

tion that, if a hot body and a cold body are placed in contact,

the hot l.)ody becomes less hot and the cold one becomes less

cold. The distinction between quantity of heat and temperature

becomes necessary when it is ob.scrvcd that a small hot body

becomes nearl}^ as cold as a large cold body with which it is

placed in contact. It is also easy to ob.serve a correlation

between hotness and expansion, so that it is natural to use the

expansion of some standard substance as a measure of tem-

perature. Because of their large expansions, gases w^ere early

selected as the standard materials for thermometers. This,

however, is a perfectly arbitrary definition of temperature, and

it should not be expected that physical laws could be expressed

in any simple form with this sort of temperature scale. The
establishment of a natural scale of temperature was suggested

by Lord Kelvin in 1848. This suggestion was based on the

principle now known as the second law of thermodynamics

,

and

its discussion will be left until later. It will suffice to say here

that the absolute scale of temperature does not differ much
from the scale of a gas thermometer.

The unit of heat is the calorie. This is the amount of heat

required to raise the temperature of one gram of water by one
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degree centigrade. Careful measurements show, however, that

the initial temperature of the water makes some difference. If

the above definition were satisfactory, the equilibrium tem-

perature reached by mixing two equal masses of water at dif-

ferent temperatures would be the arithmetic mean of their

initial temperatures. This is found not to be true, and there-

fore the calorie must be defined between two specific degrees

of the centigrade scale. It is frequently defined between 15 and

16°C.

Experiments on the equilibrium temperature attained when

other substances are mixed with water show that it is necessary

to assign a number called the heat capacity to every body if it is

desired to maintain the idea of a (piantity of heat. Thus there

arises the idea of specific heat. This is defined as the amount of

heat necessary to raise the temperature of one gram of the sub-

stance through one degree. This might as well have been

defined with reference to unit volume, but it is subject to less

variation with external conditions if the definition with reference

to unit mass is used. Further difficulties arise when a change

of state is considered. The amount of heat necessary to rai.se

one gram of water from 99.5 to 100.5°C at atmospheric; pressure

is certainly far from one calorie. To account for this fact,

there was introduced the term latent heat. This term implies

that when heat is used in changing the stale of a substance it is

not used in raising its temperature, and yet the heat, as such,

is presumed to reside in the body.

All the terminology of thermometry is leased upon the

implicit idea of heat as an indestructible substance. With
the aid of the various devices mentioned above, it is possible

to maintain the fiction of a "quantity of heat,” and to speak

of the amount of heat in a body. With the complete acceptance

of the mechanical theory, the idea of a quantity of heat must
disappear; but the terms of the older theory can hardly be

avoided, since they are in such common use. Strictly speaking,

however, the only quantity which exists in this connection is

energy. Energy may be transferred from a body at one tem-

perature to another at a lower temperature by a heat flow. The
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heat is only a means of transfer of energy and should not be

imagined to exist inside the body.

For some time after the recognition of the mechanical

nature of heat flow, attempf,s were being made to consider

the kinetic energy of the molecules as heat, while the poten-

tial energy was regarded as internal energy. It is, however,

of very doubtful advantage to try to separate these two kinds

of energy; and throughout the rest of this chapter the term heat

will be used only in connection with the flow of energy o(!casioned

by a difference in temperature.

d. Reversible Processes .—If a gas is allowed to expand into

a vacuum, it does no work on its surroundings, since there is

no resisting force and the surroundings are not moved. If it

expands against a resisting force, the work done is equal to

the integral of the force multiplied by the distance moved.

The most work is done when the resistijig force is the largest.

However, if the resisting force is larger than the pressure of the

gas, there will be no expansion whatever, so that the maximum
work will be done when the resisting force is just infinitesimally

smaller than the force exerted by the gas. Under these cir-

cumstances the two for(!es are essentially equal to each other,

and either can be used in calculating the work done. When
expansion is carried out in this way, it is called reversible,

because an infinitesimal increase in the opposing force will cause

a compression.

If a heat flow occurs from one body to another at a lower

temperature, the process is irreversible, sincfe the energy can-

not be made to flow' directly from the colder to the w'armer body.

If, however, the temperature difference betw'een the two bodies

is infinitesimal, the rate of flow will be infinitely slow and an

infinitesimal change in the temperature of one body will cause a

heat flow in the opposite direction. The process of heat flow,

then, is reversible when the two bodies are at practically the

same temperature.

The reversibility of a process refers to the manner in which

it is carried out rather than to the initial and the final states of

the system. The first illustration given above shows that the
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maximum amount of work is done on the surroundings when an

expansion is carried out reversibly. It will be shown later

that a reversible engine is the most efficient kind possible. For

these reasons, analyses of thermodynamic problems are often

made by reference to reversible processes.

e. Cyclical Processes .—It was first emphasized by Carnot

that, if a process is to consist in the absorption of energy as

heat and the loss of the same amount of energy as work, all

the material bodies used in the process must be left at the end in

exactly the state in whicli they were at the beginning. If this

condition is fulfilled, the process will consist in one or more cycles

of operations, such as expansions and compressions, absorptions

and emissions of enc'rgy as heat, vaporizations and condensa-

tions, which return the system to its original slate. In the

course of such a cycle the system will, in general, absorb or

give out a certain net amount of energy as heat and Avill do or

receive a certain net amount of work. When a cyclical process

is carried out in a reversible manner, the energy relations can

be easily analyzed.

/. The Perfect Gas. - A perfect gas is one wliose equation

of state is

pV — nRT (10-2)

where p is the pressure, V the volume of the gas, T the tem-

perature measured on the absolute s(!ale, 11 the so-called "gas

constant,” and n the number of gram molecules of the gas.

R = 8.314 X 10^ ergs per degree per gram molecule.

The ordinary permanent gases are fair approximations to a

perfect gas in the ordinary ranges of Icmperature and pressure,

and reasoning carried out with c(iuation (10-2) can be applied to

them with a high degree of accuracy. It should always be

remembered, however, that a perfect gas is a limiting case

which is not actually realized in any real gas.

Problem 6. Show that, for a perfect gas,
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Problem 7. Show that, for a perfect gas,

{%\ = T
Problem 8. Take the temperature and volume as the inde-

pendent variables, and draw the lines of constant pressure for a perfect

gas.

Problem 9. Illustrate equations (10-16) and (10-lc) by means of

the equation of state for a perfect gas.

Problem 10. Show that the work done in compressing any sub-

stance from a volume Fi to a volume F2 ,
by means of hydrostatic

pressure p, is given by

W = - i^'pdV (10-3)
JVi

Problem 11. Show that the work done on a perfect gas in com-

pressing it reversibly from a volume Fi to the volume F 2 is

W = nUT logY (10-3a)

g. The van der WaaU Eqxiation of State.—Alf.liough the

ordinary gases obey the perfect-gas law fairly well, vapors of

high density and liquids deviate very far from it. An ecpiation

of state which describes vapors and liquids well enough for some

purposes and which approaches the perfect-gas law as a limiting

case is the van der Waals equation. This is

/ RT na\ nn a\
” " " - Y’)

The letters p, n, V, R, and T have the same significance as

before, a and b are constants which characterize the particular

gas under consideration. When a and b are zero, tliis equation

becomes the perfect-gas law. It also approaches the perfect-

gas law as F becomes larger.

Equation (10-4) is of the third degree in F; thus, for a

given pressure and temperature, there may be three values of

the volume which will satisfy the equation. Either all three of

these may be real values, or one may be real and the other two
complex. If two roots are complex, only the one real root has

any physical significance. For a certain value of pressure and
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temperature all three roots coincide. This point is called the

critical point. For higher values of the pressure and tempera-

ture, there is only one real root.

Problem 12. Find the work done in compressing a gas which

obeys the van der Waals equation of state from a volume Fi to the

volume F2 .

Problem 13. Take the temperature and the pressure as the inde-

pendent variables of state, and draw the lines of constant volume for a

gas which obeys the van der Waals equation.

Problem 14. Take the pnissure and the volume as independent

variables, and sketch the lines of constant temperature. Those por-

tions of the curves which show three values of the volume for each

value of temperature and pressure represent the condensation of the

gas into the licjuid. Show on this diagram the process necessary for

transforming the gas into the licpiid without going through the ordinary

process of condensation.

Problem 16. Find the values of the critical pressure, temperature,

and volume in terms of the constants a and 6.

2. The First Law of Thermodynamics, a. Statement of

the Law ,—The first law of thermodynamics expresses the

equivalence of heat and work as means of transferring energy.

It states that the internal energy of a thermodynamic system

can be increased in two ways. Either mechanical work can

be done on the system, or energy may flow into it as heat from a

body at a higher temperature.

The equation which states this law is

dV ^ bQ + 51F (I)

where IJ represents the energy of the system. dC/ is the infini-

tesimal increase in energy of the system when an amount of

energy 8Q flows into it as heat and an amount of work 5IF is

done on the system. The sign of 8W is taken as positive when
the surroundings do work on the system. It is often taken in

the opposite way, since the conventions have been developed

in the study of engines where the work done on the surroundings

is the important thing. When the properties of the system form

the subject of the investigation it seems a little better to take

the sign as is done in (I).
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The quantity C/ is a function of the state of the system

only, and dU is therefore a differential of this quantity. dlJ

can be integrated, and its integral between any two states is

the difference between the energy of one state and the energy of

the other. The path by which the system is taken from one

state to the other is of no importance in evaluating this integral.

On the other hand, the quantities Q and W have no such

significance. In equation (I), 8Q and 51T aie written to

indicate that only infinitesimal amounts of heat flow and of

work are involved, but the sign 6 docs not imply a derivative.

The integral of 5Q or of 8W can be evaluated only when the

equation of state is known and when the path by which the

system goes from one state to another is specified. The dis-

tinction between these two kinds of quantities is fundamental for

the significance of the first law. The internal energy of a system

can be increased in these two separate ways, and it is impossible

to tell from the change of state of a system which way has been

used.

The use of 8Q added to 8W implies that heat flow and work

must be measured in the same units. The factor of pro-

portionality between the thermometric unit of heat and the

mechanical unit of heat is called the mechanical equivalent

of heat J. It was the subject of very extensive experimental

investigations by Joule and others. The best value at the

present time is / = 4.185 joules per calorie. In this chapter

heat flow will always be measured in joules unless otherwise

specified.

Problem 16. Show that, if T and F are the independent vari-

ables which describe the state of the system and if the only work done

by the surroundings is by the change in volume under the external

pressure, the amount of energy which flows into the system in the form

of heat during an infinitesimal change in state is

= (I?),. + [{w\ +
"]

Problem 17. Show that, if the pressure and the volume are the

independent variables,



THERMODYNAMICS 195

- (f)/'’ + [(If). + <>““)

Problem 18. Show that, if the pressure and the temperature are

taken as the independent variables,

5Q

f). Applications of the First Laiv to Perfect Gases .—The
equation of state given above for a perfect gas gives tlie relation

between the pressure, the volume, and the temperature. It is

necessary also to determine experimentally the dependence of

the internal energy II upon the variables which define the state.

Since the kinetic-theory model of a perfect monatomic gas gives

for the energy

U = ^nRT ergs (10-6)

it may be taken as an additional pari, of the definition of an

ideally perfect gas that U = CvT, where (b is a constant.

An early experiment performed by Joule sliowed that the

ordinary ga.scs approximate closely to this condition, in mxich

the same way t hat they approximate closely to the equation of

state (10-2). Joule filled a vessel with gas under a moderately

high pressure. This vessel was connected to an evacuated

vessel by means of a stopcock, and the whole was immersed in a

calorimeter. When the stopcock was opened, the gas expanded

without doing any work. It was also observed that the tem-

perature of the water in the calorimeter did not change, so that

no heat was absorbed in the process. The conclusion is that

the internal energy of the gas is independent of the volume and
is a fmiction of the temperature only. Later and more accurate

experiments by Joule and Thomson have shown that this result

is approximate only, but it may be taken as a property of a

perfect gas.

In dealing with the heat capacities of gases, it is important

to differentiate between the heat capacity at constant volume

Cv and the heat capacity at constant pressure Cp. The dis-

tinction must also be made for solids and liquids, but it is more
important in gases because of their larger rates of thermal
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expansion. The heat capacity at constant volume is the amount
of energy that must be added to the substance to increase its

temperature by one degree when it is not allowed to expand.

Similarly, the heat capacity at constant pressure is the amount
that must be added when the gas is allowed to expand just

enough to maintain a constant pressure.

A distinction must also be made between heat capacity and
specific heat. Heat capacity refers to any given quantity of

substance and will be indicated by a capital C. Specific heat,

on the other hand, refers to a specified quantity, such as a gram,

and will be designated by a small letter c.

Problem 19. Show that

C, - (10-7a)

Problem 20. Show that, for a perfect gas,

Cp = + nR (10-76)

Problem 21. Show that

Cj, = Cv + nR (10-7c)

for a perfect gas.

Problem 22. Show that for a perfect gas, when the temi)erature

and the volume are taken as the ind('i>erid(ait variables,

nRT
dQ = CvdT +^ dV (10-8a)

Problem 23. Show that for a perfect gas, wlien the temperature

and the pressure are the independent variables,

tiR'V
8Q = CpdT - dp (10-86)

Problem 24. Show that for a perfect gas, when the pressure and

the volume are the independent variables,

= + (10-80

If the path by which a change of the state of the system

takes place is given, equations (10-8) can be integrated. There
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are several types of change which it is convenient to use. One
is that in which one of the independent variables is held fixed.

In this way paths of constant pressure, volume, or temperature

are obtained. Another type of path is the adiabatic. When a

system is so arranged that it can absorb or give out no energy

in the form of heat, any changes that take place are said to be

adiabatic. The equation of these paths can be obtained by
setting bQ = 0.

Consider the case of an adiabatic transformation of a perfect

gas whose state is described by pressure and volume. Equation

(10-56) gives the relationship between d/p and dV for an adiabatic

change

dp {dU/dV)r, + p
dV

~
''(dU/dp)y

From the definition of a perfect gas

Hence

U = CvT = CvpV
nR

Cy

R

From this and e(}uation (10-7c)

dp (Cy -f- nR)p Cj, p
dV ~ CyV " Cy V

and by integrating this equation it can be shown that

pV'' = const (10-9a)

where 7 = CpjCy.

Problem 26. Show that for an adiabatic expansion of a perfect gas

3’y7-i = const (10-96)

and
7’p(i-Y)/7 = const (10-9c)

To show the way in which the internal energy U can be a

function of the state of a system at the same time that the work

done on it and the heat flow into it depend on the processes

carried out, it is instructive to consider a special case. Consider
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a perfect gas at the temperature T' with the volume V. Let

it first be warmed to the temperature T" at constant volume.

The heat flow into the gas is then, from equation (10-5a)

Q = yj
- n (10-10a)

Thin, at the constant temperature T", let fho gas expand from

V' to V". Again from equation (10-5n) the heat flow into the

gas is

= nRr''\ogyr (10-106)

Fig. 10-1.—A eyrie carried out at coiiataiit temperature and coiiKtant volumes.

For a perfect gas, {dU/dV)r — 0; hence the only contribution

to the integral comes from jpdV.

If the change in state is made along the other path shown in

Fig. 10-1, the heat flow during the first leg is

Q = nltr log (lO-lOc)

and during the second leg is

Q = Cv{T" - T') (lO-lOd)

This example shows that the heat flow depends on the path in

the T-V plane and is not at all the same for all paths.

It is also of interest to compute the work done on the gas
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in making this change of state. The only work done is associ-

ated with tlie change in volume and is —jpdV.

fv" dY yn
W = -

1^
nRT"^- = -nRT" log y, (10-lla)

for the first path and

W = -nRT log y/ (10-llfc)

for tlie second path.

From the tii’st law of thermodynamics it follows that

u{r\v") - u{T\r) Q + w = Cv {t" - r) (10-12)

If it is assumed known that Cv is independent of V so that the

heat (‘apacity is the same no matter whether the heating is done

with the volume V' or F", this equation serves as an illustration

of the first law. On the other liarid, the first law can be used

in this way to show that the specific heat is independent of the

volume.

Problem 26. Consider a perfect gas which undergoes a cyclic

process made up of elements at constant temperature and at constant

volume. Let it first expand at the temperature T" from the volume F'

to the volume F". Then let it be heated at the volume F" to the

temperature T", compressed at the temperature T" to tlie volume F',

and finally cooled at F' to T', (Compute the heat absorbed and the

net work done on the gas.

Problem 27. Compute the work done on a gas that obeys the

van der Waals equation when it is compressed from Fi to Fo at con-

stant temperature.

Problem 28. Let the state of a perfect gas be represented by the

independent variables p and F. Compute the heat absorbed and the

work done on the gas when it is changed from the state (p'F') to

the state (p"F")- It is convenient to make the path out of one section

at constant pressure and another at constant volume.

Cyclical processes similar to the one in Prob. 26 are fre-

quently used in thermodynamic reasoning. One of particular

usefulness is illustrated in Fig. 10-2. The substance may be

considered to start at 3hFi and to expand at constant tem-

perature to TiFo. To maintain the temperature constant dur-

ing this expansion, heat must be supplied to the working
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substance. In the case of a perfect gas this amount of heat is

(r.y. - T,v.) Q - + r] dv

= nRTi log~ (10-13a)

The quantity (dU/dV)T ~ 0 for a perfect gas. The work done
on tlie gas during this process is

(TiVi-^T.Vi) W = - = -nRT^log^ (lO-ldb)
Jvi y I

The sum of these two quantities is zero as it must be, since the

Fig. 10-2.—A cycle carried out isothormally and abialmtically.

internal energy of a perfect gas depends only on the temperature

and is the same at (^iFi) as at (TiVt).

The next step in the process is an adiabatic expansion from

TiVi to T-zVi. Along this line 5Q = 0 by the definition of an

adiabatic process, and by equation (10-9b) = K. Hence
the work can be calculated.

(TiV^-^T^Vz) W - j pdV = -nR

PR'- nRK

nRK (I 1 \
"7-1 F,-*;

= -T,) (10-13C)



TIIERMODYNAMICE 201

The third step is an isothermal compression from 7^2F3 to

T2F4 . The heat and work are

T2F4) Q = nRT^ log ~
y 3

(10-14a)

(T2F 3
- 7’2F4) W = -nRTi log p (10-145)

These two quantities are equal and opposite, so that the internal

energy U does not change during this process.

, The fourth step is an adiabatic compression during which no
heat flows and

{T,V, ^ TiFi) W = (Ti - T,) (10-14c)

This step returns the gas to its original state and its original

internal energy. The sum of the heat absorbed and the work

done on the gas must be zero. In this case the net heat absorbed

was

Q = nR {T, - 1\) log (10-15)

since

Zb - Z?
Fx “ F4

The total work done on the gas is the negative of this. The
gas does work on the surroundings, and the energy for this work
gets into the gas by heat flow.

Problem 29. Compute the work done along an adiabatic path in

the T-p plane in changing the state of a perfect gas from Tipi to T^p^.

3. The Second Law of Thermodynamics, a. Statement

of the Second Law .—The first law of thermodynamics states

the equivalence of heat and work as methods of transferring

energy; the second law states the properties that distinguish

the transfer of energy by heat flow from transfer by work.

The second law may be stated as follows: It is impossible for a

self-acting machine, unaided by any external agency, to convey

heat from one body to another at a higher temperature. This

is the form in which it was stated by Clausius. The expressions

used show clearly the persistence of the idea of heat as an
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indestructible substance. Possibly a modification of this state-

ment which would better accord with the mechanical theory of

heat is : It is impossible for any self-acting machine, un,aided by any

external agency, to absorb energy in the form of heat from one

body and to give up energy in the form of heat to another body

at a higher temperature.

A great many different formulations of this second law

have been given. Attempts have also been made to prove it

from the first law or from some proposition thought to be

“self-evident.” It is certainly impossible to prove it from the

first law because it states facts which are not imduded in the first

law. Whether the statements with which it is equivalent are

self-evident or not depends entirely upon the state of mind of

the person stating them. The above statement of the second

law is made as a generalization from observation, and its truth

or falsity can be determined only by experiment. Thus far

it has proved to be correct in the macroscopic sense in which it is

meant. The microscopic interpretation of this law in terms of

statistical mechanics will be reserved until the next chapter.

On the basis of the law as just stated, it is possible to show
that all reversible engines have the same efficiency and that no

engine can have an efficiency higher than that of a reversible engine.

A heat engine, or an engine, is a device that absorbs energy

in the form of heat and does work on its surroundings. If the

engine is 100 per cent efficient, all the energy absorbed is trans-

formed into w'ork done on the surroundings. When the effi-

ciency is less than 100 per cent, some of the energy absorbed as

heat is given out again as heat at a lower temperature. Since

the energy for doing the work is to be obtained only by absorp-

tion as heat, the engine must work in cycles. At the end of a

cycle, all parts of the engine will be in exactly the same state

as at the beginning. Some energy will have been absorbed at

one temperature, some work will have been done on the sxm-

roundings, and the remainder of the absorbed energy will have

been given out as heat at a lower temperature. The engine is

only the agent for effecting the transformation of energy and
suffers no change itself.

This reversibility is a very important thermodynamic con-
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cept. In this case the implication is that the engine can be

driven backward by doing on it the work it normally does on its

surroundings. The working substance then goes through its

cycle in the opposite direction; it absorbs some heat at the lower

temperature and gives out a larger quantity of heat at the higher

temperature. As applied to other processes, the term repre-

sents the fact that the conditions describing the process do not

specify the direction in which it will go. If a gas is expanding

reversibly at a pressure p, it is implied that the pressure against

which it is working is also p, and an infinitesimal increase in

the external pressure would turn the expansion into a compres-

sion. In either case lliere is no net force to produce an accelera-

tion. In the case of reversible heat flow, both bodies must be

at essentially the same temperature so that the flow can be

directed one way or the other by an infinitesimal change in

temperature.

The cycles described and analyzed above in discussing the

first law are typical of reversible cycles that can be carried out

with perfect gases. The efficiency of such a cycle is defined as

the ratio of the work done on the surroundings to the heat

absorbed at the higher temperature. This ratio, for reversible

cycles, is independent of the nature of the working substance and

the nature of the cycle and is a function of the working temper-

atures only. Hence it can be evaluated by using a particular

cycle whose properties are known.

Problem 30. Show from the second law of thermodynamics that

all reversible heat engines have the same efficiency and that no engine

can have a greater efficiency than a reversible engine. This can be

shown by allowing tlie more efficient engine to drive the other back-

wards, which would make possible a violation of the second law.

Problem 31. From the result of Prob. 29 show that the efficiency

of a reversible engine which absorbs energy as heat at the temperature

Ti and gives out energy as heat at the temperature T 2 is {Ti — T2)/Ti,

Problem 32. Show that, for any reversible cycle in which an

amount of heat Qi is absorbed at the temperature and —Q 2 is given

out at the temperature Ts,

^ ^ = 0 (10-16)
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The heat absorbed is given the positive sign, while the heat given out

is considered as negative.

Problem 33. Show that for any reversible cycle

/f = 0 (10-17)

where the integration is around the cycle.

b. The Absolute Scale of Thermodynamic Temperature-

-

The second law of thermodynamics provides a method of

defining temperature which is independent of the propertie.s

of any substance. It was suggested by Lord Kelvin that,

since the efficiency of a reversible cycle is a function of the

temperature only, it could be used to define temperature.

Such a definition establishes a scale with which all actual

thermometers may be calibrated.

The characteristic of all reversible cycles is that they

absorb energy at one temperature Ti and give out energy

in the form of heat at another temperature T^. They also

deliver an amount of work which is equal to the difference

between the energy absorbed and the energy given out as

heat. Since the quantities of energy can be measured, it

is possible to define the temperatures between which the

cycle works in such a way that

Qi
I

Q2

Ti Ti
= 0

This will be independent of the nature of the cycle becau.se

all cycles will have the same efficiency.

In the previous work the temperature has been implicitly

defined on the basis of the perfect-gas law. Since, however,

there exists no perfect gas, it is impossible to prescribe a method
for establishing such a scale. The above given definition of

temperature is in complete accord with the definition on the

basis of a perfect gas but is independent of the existence of such

a gas. When temperature is used in thermodynamics, it is

always referred to this absolute, or Kelvin, scale.

c. Entropy .—The results of Probs. 32 and 33 make it possible

to define a function S called the entropy. The entropy is a
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function of the state of the system and is given when the inde-

pendent variables of state, such as pressure and volume, are

specified. The entropy is defined by defining its differential

along any infinitesimal portion of path. For a reversilile

process this is

d-S = ^ (10-18)

The quantity on the left side of this equation is an exact dif-

ferential because the quantity on the right has been shown in

Prob. 33 to be an exact differential when the change of state is

carried out reversibly. It is because the integral of dS around

any cycle is zero that S is a single-valued function of the state.

The absolute value of the entropy is not defined by equation

(10-18). If some state is taken as a standard, it is possible

to determine the entropy of any other state by integrating

equation (10-18) along a curve which represents a reversible

passage from the standard state to the state in which it is desired

to know the entropy.

If a system passes from one state to another by a process

which is not reversible, the change in entropy can be calcu-

lated from a knowledge of the possible reversible processes,

but it will not be equal to 8Q/T for the irreversible process.

This may be seen by (lonsidciing the system to pass from the

state >Si to tlie state S^. The change in entropy is defined, and

the change in internal energy is defined, since these two are

functions of the state of the system only. When the process is

reversible, the amount of work done by the system can be

obtained from the first law in terms of the heat absorbed and

this is the maximum amovmt of work. If the process is irreversi-

ble, the amount of work is less than the maximum and, according

to the first law, the heat absorbed is also less. Hence, in an

irreversible isothermal process the change in entropy is greater

than the integral of 8Q/T.

A mathematical formulation of the second law of thermo-

dynamics is that for all processes
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If, then, a system is thermally insulated so that no heat can

enter or leave it, the entropy can only increase or remain

constant.

To compute the entropy of a perfect gas, consider n moles of

the gas to be at. the pressure po, temperaturf! To, and volume Vo.

First heat it, to the temperature ?’ while holding the volume

constant. The pressure will increase; but since the volume is

constant, no work is done and t.hc internal energy increases

directly with the temperature. The heat absorbed in each

element of this process is 5Q = Cv 8T so that

fT dT T
S(Vo,T) - S(Vo,To) = /

Cv^r = CV log ^
J To J Jo

If then the temperature is held constant and the gas is permitted

to expand from r,, to F at constant temperature the heat

absorbed is just ecpial to the work done by the gas so that

1 riRT dV V
S(V,T) - S(Vo,T) = j, J^^pdV = -y- = nR log-f^

Combining t hese two residts gives the entropy as a function of V
and T and an arbitrary value as.signed to the entropy at VoTo.

S{V,T) = nR log -- + Cv log ^ + S{Vo,To) (10-19)

This computation of entropy involves a knowledge of the equa-

tion of state and of the internal energy JJ of the substance as a

function of tlie variables describing the state.

Problem 34. Show that when a perfect gas is allowed to expand

into a vacuum the increase in entropy is greater than would be com-
puted on the basis of the heat absorbed.

Problem 36. Two bodies at different temperatures are put in

contact. Assume that each body has the same temperature through-

out, and show that the entropy increases when bQ flows from one to

the other.

Problem 36. If the internal energy of a gas that obeys the van der

Waals equation of state is given by

U ^CvT -'^ + w

where ir is a constant, compute its entropy as a function of T and V,
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4. Application of the Two Laws. o. Various Functions of

State .—Tims far the energy and the entropy have been defined

as functions of the state of the system, together with the vari-

ables p, V, and T. Any two of these five quantities may be

taken as the independent variables to specify the state, and the

others may be expressed in terms of them. There must then be

three "equations of state” to give the three dependent quantities

in terms of the two independent variables, and these ecjuations

must be determined experimentally for any particular sub-

fitance. The laws of thermodynamics, however, give some
relationships between them.

The specification of the state of a system by only two vari-

ables is sufficient for simple systems. In some cases more
quantities are required, but the principles can be described in

terms of the simplest cases.

If the only way in which the surroundings can do work upon
the system is through a uniform external pressure, the first and
second laws of tliermodynamics can be combined into an

equation iuvolvdng only the variables whose values are given

for a fixed state. By means of equation (10-18), the first law

can be written

dU = T dS -pdV (10-20)

Because of the use of equation (10-18) this holds for reversible

processes only. If S and V are laken as the independent vari-

ables, the condition (hat U is a function of state and dU is an

exact differential leads to

(10-21)

This process of deriving relations between differential quotients

of the variables of state from the condition for an exact dif-

ferential is characteristic of much thermodynamic reasoning.

By the use of the combination of the first and second laws,

it is possible to determine (dU/dV)T from the equation that

gives p as a function of V and T. This gives some information

about C/ as a function of V and T, although it does not determine
the function entirely. If T and F are taken as the independent
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variables, equation (10-20) may be written

KdTjy
dT -h (Ti«

'(» dT -\-T
\dv).

dV -pdV (10-22 )

By equating coefficients of the independent differentials dT and

dF it follows that

and
©.-'(a (10-22a)

(10-22/d

Differentiating equation (10-22rt) with respect to V leads to

(10-22c)
d^U d^S

dV dT
~

^ Wdf
where the subscript indicating the independent variable held

constant is omitted, since V and T are the two independent

variables and tlic order of differentiation does not matter.

Similarly, differentiating (10-226) with respect to T leads to

d^U d^S ,{ds\
dV dT~ ^ dV df + VOFA

Comparing equations (10-22c) and (10-22d) shows that

II (lQ-22e)

so that equation (10-226) becomes

1II (10-23)

The quantities on the right side of this equation can be evaluated

from the equation of state that gives p as a function of T and V
so that {dU/dV)T for any volume and temperature can be

determined.

Problem 37. Show from equation (10-23) that the energy of a

perfect gas is independent of the volume.



THERMODYNAMICS 209

Problem 38. Find the volume dependence of the internal energy

of a gas that follows the van dor Waals equation.

Problem 39. Show by differentiating equation (10-23) that

and show that, for both a perfect gas and a van der Waals gas, the

specific heat at constant volume is independent of the temperature.

There are a number of other functions of the state of a system

that are frequently useful.

F ^ U - TS (10-25)

is often called the free energy but is perhaps more appropriately

called the work function.

H + pV (10-26)

was originally called the heat content or heat function. The
significance of the name was based on the old idea of heat as

an indestructible fluid. The modern name enthalpy is more
appropriate.

G = U - TS + pV (10-27)

is called the thermodynamic potential at constant pressure or

the Gibbs function. All three of these functions arc useful

because they are functions of state and their differentials are

exact.

Problem 40. Show that

dF = -SdT - pdV (10-28)

Problem 41. Show that

dH = T dS + 7 dp (10-29)

Problem 42. Show that

dG = -Sdr +Vdp (10-30)

Problem 43. Show that
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Problem 44. Show tliat

(fv\ = C"?).

Problem 46. Show from the above equation that

L==T(^J!^{V,-Vr) (10-33)

where L is heat of change of state and Vi is the volume of one

mole of the substan(‘e in the initial state while V2 is the volume in

the final state. T is the temperature at Avhicdi the change of state

takes place.

Problem 46. Show that

( 10-34 )

and calculate the amount of the depression of the melting point of ice

by a pressiu’o of 1 atmosphere.

h. Work Done in a Reversible Cycle ,—It is frequently desir-

able to use graphical naethods of representing the states of a

system and various changes in state. If the pressure and the

volume are used as the coordinates in which a cycdical process is

described, the area inside the curve which represents the path

of the system gives the work done on it. If other variables are

used, the work is not directly given l)y the area but is equal to

the integral of a function 7 multiplied by an element of area

dA and integrated over the area inside the (uirve. This can

be shown by drawing isothermal and adiabatic curves close

together. The work done in any small cycle bounded by two

adiabatics and two isothermals is proportional to the area.

Hence the whole work can be given by the above integral.

Problem 47. Show that the work done in any cyclical process,

when X and y are the independent variables of state, is given by

where
W = Jr dA

_ (Jp dV _ dp dV
^ dx dy dy dx

(10-35)

Problem 48. Use temperature and entropy to represent graphi-
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cally a cycle which consists of adiabatics and isothermals. Compute

the work done and the heat absorbed.

Problem 49. Use pressure and volume as the independent vari-

ables to represent graphically a cycle which consists of the evaporation

of a liquid at constant temperature, an adiabatic expansion and

evaporation, an isothermal condensation, and an adiabatic compression.

C'ompiite the work done and the heat absorbed.

Problem 60. Use entropy and temperature as independent

variables in the above problem.

c. The Joule-Thomson Porous-plug Experiment .—In 1845

Joule showed that the energy of a gas is almost independent of

its volume by permitting a fixed mass of gas to expand into a

vacuum and observing that there was no change in temperature.

The conditions of the experiment were such that the accuracy

was not very great, and therefore Joule and Thomson later

revised the experiment to permit more precision. The gas was

allowed to flow through a tube containing a plug of porous

material. This plug retarded the flow of gas and maintained

the pressure on the input side higher than on the outflow side.

The temperature on the two sides was measured by means of

sensitive thermometers, and it was established that a small

temperature difference did exist.

The whole process was carried out adiabatically, so that the

only change in internal energy was due to mechanical work done

on the gas. As a given ma.ss of gas is pushed into the plug at

the pressure pi, the work done on it is piVi, where Fi is the

volume at the pressure pi and the temperature of the experi-

ment. As the gas comes out of the plug against the pressure

Pi, it will expand to the volume Vi and do work against the sur-

roundings of amount PiVi. The internal energy after the

expansion will then be

Ui = I/i -f- piUi — P2V2
or

H - U + pV = const (10-36)

The experiment is thus carried out at constant enthalpy.

With pressure and temperature as the independent variables

of state and the specification that the enthalpy is constant,
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and

dH =^0 = T dT +T (^) dp+Vdp (10-37)
\UI /p \ op/ T

/an T(ds/dp)T + V
\dp)j, ^ T(dS/dT)^

(10-38)

From equation (10-38) it is possible to compute the tem-

perature change to be expected in the porous-plug experiment

when the entropy is known as a function of the pressure and

the temperature.

Problem 61. Show that a perfect gas experiences no (*hange in

temperature in the porous-plug experiment.

Problem 62. Work out the temperature change in the porous-

plug experiment when the gas follows the van der Waals equation of

state and its internal energy is as given in Prob. 36.

Problem 63. Show that

= Cp (10-39)

to

Equation (10-39) shows that equation (10-38) is equivalent

- V

It also follows from ecjuation (10-30) and the fact that dG is an
exact differential that

As a result

^ _(dV\
\dp)r \dT)^

V CpidT/dp)„

(dV/df)„
(10-40)

It was pointed out by Lord Kelvin that this equation permits

the calibration of actual thermometers in terms of the absolute

thermodynamic temperature T.



CHAPTER XI

STATISTICAL MECHANICS

According; to the present view of the constitution of matter,

all bodies arc made up of large numbers of similar particles

called molecules. In different cases these may be chemical

atoms or nudecules, or they may be electrons and atomic

nuclei. Individually they can be treated to a large extent as

small solid bodies, which obey the laws of mechanics. The
properties of the larger bodies are then to be explained as coii-

sequeiK^es of the motions and the interactions of the mole(;ules.

This is, for example, the idea of the mechanical theory of heat.

It suggests the possibility of deducing the laws ol thermo-

dynamics from the laws of mecharu(;s applied to a large number
of particles. The study of statistical mechanics is concerned

with a formulation of the properties of large aggregations of

particles in terms of their individual properties and the attempt

to explain the properties of matter in tliis way.

In this chapter, oidy the classical statistical mechanics will

be treated; i.e., the properties attributed to the moleimles will

be those of ordinary matter as it is known directly to our senses.

These arc not, however, the true properties of the molecules,

and the modifications that must be made in the treatment lead

to the quantum statistical mechanics. In many cases, however,

the differences between classical and quantum statistical

mechanics are in detail rather than in the general principles.

1. The Phase Space.—Problems in statistical! mechanics are

nearly always treated by means of Hamilton’s equations of

motion. The solutions of these equations give the values of

the coordinates qi and their conjugate momenta p, as functions

of the time and the initial values. If, for a system of one coordi-

nate, the value of the coordinate is plotted along a horizontal

axis and the value of the conjugate momentum is plotted along a

213
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vertical axis, a point in this p-q plane will represent a state of

the system. As the values of p and g change with the time,

the representative point will describe an orbit in the plane.

The space in which the representative point moves is called

the phase space. For a system with one degree of freedom, or

one independent coordinate, it is a phase plane. For a system

Fig. 11-1.—Orbits in the phase siiace of the i>oint reprosontinj? a simple oscillator.

with N coordinates the phase space has 2N dimensions, and the

position of the single representative point in this 2A’^-dimensional

phase space gives all the possible information about the system.

The point represents its state or phase.

Only for one-dimensional systems can the phase space be

easily represented graphically. In the case of a one-dimen-

sional-harmonic oscillator

q = A sin (w< — e)

mq = p = mo}A cos (cot — e) (H-l)

The orbit described by the representative point in this phase

plane is given by the relationship between q and p.

q2

This is an ellipse whose semiaxes are A and muA. These axes

are determined by the initial values of q and p for

A2 = -f

pi

m^co^
+ (11-3)



STATISTICAL MECHANICS 215

The value of the constant e does not affect the size or shape of

the orbit, but it does affect the position in the orbit as a function

of the time.

If at the time t = U & number of different identical oscil-

lators have 9 = 0 but values of q lying between v and — v, the

representative points will lie on a straight line coinciding with

the p axis. As time goes on, these points will describe their

individual orbits but will continue to lie on a straight line.

It is also interesting to note that no two of these orbits

intersect. A point on one never gets on another. Furthermore,

each of these orbits can be completely characterized by the

total energy corresponding to it.

Problem 1. Determine the orbit in the phase plane of the point

that represents a particle projected vertically upward against gravity.

Find the lines of constant total energy in this plane, and shoAV that

the point moves along one of them. Indicate for several different

times the position of a number of particles projected upward at the

same time with different velocities.

2. Distribution in Phase and Liouville’s Theorem.—As has

been mentioned before, the solution of the differential equations

of mechanics gives the coordinates and the momenta of the

system in terms of the initial conditions and the time. It is

necessary to know’ these initial conditions before the configura-

tion of the system can be predicted. In physical systems in

which the number of degrees of freedom, or the number of

independent coordinates, is very large, it is impossible to

determine these initial conditions experimentally and it wmuld

be impossible to use the information even if it could be obtained.

In the case of a gas, the knowledge of the initial conditions w'ould

involve the knowledge of the position and the momentum of

every molecule at some one time. It is obviously impractical

to get this information, since only relatively coarse means of

studying the gas are available, and, because of the large number
of molecules, it would be impossible to carry out the necessary

computations in any reasonable time. It is necessary, then, to

see what can be learned from the molecular theory of matter

without an exact knowledge of the initial conditions.
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If the initial conditions of the system were known, it would

be possible to place a point in the phase space at the proper

location to represent these conditions. The future motion of

the point would then be given by the differential equations of

motion, and the future behavior of the system could be pre-

dicted. Since, however, it is not known where the point should

t>e put, the next best thing is to put a point at every place that

might be the correct place. This leads to the study of an

ejisemhle of systems. Instead of studying a single system whose

initial conditions are known, the statistical procedure is to

study a whole collection of systems whose initial conditions

are distributed in some way throughout the phase space. Each
point in the phase space represents a separate system, and each

point, therefore, carries out its motion independently of all

the others. Instead of studying the motion of a single point,

one studies the streaming of the whole ensemble of points.

The motions of the mechanical systems will be governed

by the mutual forces between the component particles and also

by the values of a number of outside parameters. These outside

parameters, or coordinates, will have at any time the same
values for all the systems of the ensemble, although they may
change with the time. If the system is a gas contained in a

cyhnder closed by a piston, the position of the piston will be

the same for all the gases of the ensemble. Thus a variation

in the external parameters will cause a cliange of the whole

ensemble.

It is convenient to consider the representative points to be

so densely distributed throughout the phase space that it is

possible to speak of a density in phase D, This implies, of

course, that the volume elements by means of which the density

is calculated will not be allowed really to approach zero as a

limit but will always be kept so large as to contain a very large

number of points. On the other hand, the elements must be

made so small that the density does not change appreciably

from one to the next. Then the number of systems whose

representative points lie in the element of the phase space
* *

• dqn dpi * •
* dpn will be (by the definition of D)

D dqi ‘
• dqn dpi • • • dpn-
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A rather remarkable theorem, called Liouville theorem or the

theorem of the conservation of density in phase^ can be proved

about this density D. Consider the surface element perpendicu-

lar to the axis of qi and on the side of the volume element toward

the lower values of gi. The number of systems that pass

through this surface per unit time into the volume element

under consideration will be

Dqi dq2 *
*

* dq^, dpi *
*

* dpn

The number that pass out tlirough the opposite surface will l)e

d(Dqi) ^ ,+ dqn dpi •
*

* dpn

Similar expressions will hold for all the other surfaces. By
combining all these expressions, one obtains the result that

the net rate of increase of the density of representative points

within this element of volume of the phase space is given by

dl)

dt
Y d

L( dpi
(Dpi) (11-4)

From the Hainiltonian equations of motion

so that

dqj

dqi

dpi

dpi

dt

0 07:>
, V V a/) . .

1 -~dT ^ 1, dq + 2/ dp
~ ^

Equation (11-5) is called Liouville’s theorem. It is the funda-

mental theorem of statistical mechanics.

A simple illustration of tliis theorem can be given in the case

of a particle projected upward against gravity. Figure 11-2

represents the phase plane with the coordinate q plotted hori-

zontally and the momentum plotted vertically. At < = 0 let

four representative points be at the corners of the square, 1, 2, 3,

4. Points 1 and 2 have q = 0 with different values of p. Points

3 and 4 have the same small positive value of q, and the same
two values of p as points 1 and 2. After a time these .points

occupy the positions V. 2', 3', 4'. The difference in momentum
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between points 1' and 4' and points 2' and 3' is just the same

as between points 1 and 4, since the momentum of all points

decreases at the same rate. Furthermore, the difference in q

between points 1' and 4' and between 2' and 3' is just the same

Fig. 11-2.—Orbits in the phase space of^poiutvS represcritinp; a particle projected upward
against gravity. The area enclosed by the four points remains constant as they move.

as between 1 and 4. The area of the parallelogram is just

the same as that of the original square. As time goes on, the

angles of the parallelogram change but the area remains constant.

Problem 2. Consider the pha.se plane for a particle moving in a

straight line. Show that the area enclosed by tlu; lines connecting a

number of points does not change as time goes on.

3. Statistical Equilibrium and the Canonical Distribution.

—

A distribution of points in the phase space is said to be in

statistical equilibrium if the partial derivative of the density
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with respect to the time is zero. This means that the density

of the representative points at each point in the phase space is

constant. If tlie density were uniform, the distribution would

be in statistical equilibrium, since all the derivatives would

be zero.

There are otlier distributions, liowever, which are also in

equilibrium. If the density in phase is a function of constaift^

of the motion only, the distribution will be in equilibrium.

Constants of the motion are such things as energy, momentum,
angular momentum, and other quantities that, in any particular

case, may remain constant as the system carries out its motion.

Each constant of the motion defines a set of surfaces in the

phase space on each member of which it has a specified value.

The intersection of the surfaces for different constants defines

the path of the point representing the system. A point will

never leave the surface defined by one of the constants of its

motion. Hence, if the distribution is such that it depends

only upon these constants, it will l)c uniform over the surfaces

representing this constant and will remain uniform over these

surfaces. The whole will then be a distribution in statistical

equilibrium. In a conservative s\^stem the total energy is a

constant of the motion. If the density Z) is a function of the

energy only dD/dt = {dH/dt){dD/dH) = 0. This is one of the

most useful kinds of equilibrium distributions.

Instead of dealing with the density in phase Z), it is often

more convenient to deal with the probability of phase P, P is

defined as the fraction of the total number of points per unit

volume of the phase space. Hence, P = D/N, where N is the

total number of systems. Although both D and N may be

thought of as infinite in order to get a continuous distribution,

P will be finite. P must satisfy the condition

^Pdqidq2 • *
• dqndpi • •

• dpn = 1 (11 -6)

where the integration is over the whole of the phase space, f.e.,

over the whole range of each of the quantities qi and pi.

Since the p/s have an infinite range, this condition puts

certain limitations on the nature of the function P. It is not
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possible to have P constant without having P = 0 at all points.

If the distribution is to be one of equilibrium because the density

is a function of the energy only, it is impossible to have P
proportional to the energy and to satisfy equation (11-6).

In fact, it is necos.sary t o have a distribution in which the points

are more or less restricted to one part of the phase space, in

order that the probability of phase can be sensibly used.

When it is desired t;0 use a distribution in the phase space

to represent a system of a definite energy but otherwise unknown
initial conditions, it could be done by distributing the points

over tlie surface that represents the desired energy. Then
the average of the properties of the systems in the different

parts of this surface might be thought to represent or at least

to have something to do with the ob.scrvable properties of a

single system as it carries out its motion. Sucli a distribution,

over a single energ.y surface, was named by Gibbs a micro-

canonical ensemble.

Although in thermodynamics one always talks about the

energy of an isolated system, it is impossible to construct an

isolated .system. Any system is in contact with its surroundings

and can exchange energy with them. The determination of

the energy of a system by the means implied in the study of

thermodynamics is a determination of some sort of average,

or apparent, energy. On this account, the microcanonical

ensemble does not exactly repre.sent a thermodynamically iso-

lated system. To get an emsemble that includes this po.ssible

variation of energy, Gibbs suggested and used the canonical

ensemble. This is a distribution in which the probability of

phase is given by

p = e” = (11-7)

In this expression H is the Hamiltonian function, and hence

the energy, which is a function of position in the phase space.

The quantities \j/ and 0 are parameters characterizing the

distribution. 0 is called the modulus of the distribution, and ri

is called the index of probability. ^ is given such a value that P
satisfies the condition (11-6). Much of the study of statistical
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mechanics consists in the study of the properties of this canonical

ensemble and sometimes of the microcanonical ensemble.

4. The Frmdamental Assumption of Statistical Mechanics as

Applied to Thermodynamics.—Of course it is possible to study

statistical mechanics for its own sake. It is possible to derive

theorems concerning the behavior of distributions of points in

the phase space for systems of various kinds, and these theorems

will depend only upon the basic laws of mechanics. How-
ever, the object of most of the development of statistical

mechanics has been the explanation of thermodynamic prop-

erties and the other properties of complex systems by means of

the application of ordinary mechanics to the molecules of

which the complex systems are composed. For this purpose

it is necessary to know, or to assume, some connection between

the ensemble whose properties are determined and the system

whose properties it is desired to determine.

The fundamental assumption can be stated in various ways.

Maxwell and Boltzmann made use of the ergodic hypothesis.

According to this hypothe.sis, each representative point describes

an orbit that eventually brings it into every portion of the

phase space consistent with its energy. Thus any system, if

left to itself long enough, will take on every possible con-

figuration. In its extreme form this hypothesis is clearly

untenable. The motion of an n-dimcnsional system is deter-

mined by 2n initial conditions, or 2n arbitrary constants. The
values given these constants sp(!cify tlie orbits in the phase

space, and different values give different orbits.

It seems much more sati.sfactor}^ to recognize from the

beginning the statistical nature of statistical mechanics. Only

probability statements can be made, and these have nothing to

do with sequences in time. Probabilities and average values

can be evaluated, but the average refers to an average over dif-

ferent systems under the same macroscopic conditions, not to an

average over the time for one system. Statistical mechanics is

used because the information available about the system under

consideration is incomplete. If nothing whatever is known
about it, the reasonable assumption is that all positions of its
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representative point in the phase space are equally probable.

Such a system is well represented by a uniform distribution of

points throughout the phase space. Such a distribution is

constant in time, and the complete ignorance regarding the

configuration of the system continues without change.

If the energy of the system is known, the representative

point must lie on the surface corresponding to the given energy

;

but without additional information its location on the surface

is entirely imknown. The proper repre.sentative ensemble is

then one in which the density on the given energy surface is

uniform and is elsewhere zero. Such a microcanonical ensemble

is also in equilibrium and remains uniform over the energy

surface.

If other constants of the motion are given, such as the

momentum or the angular momentum, the uniform distribution

is restricted to those regions of phase space corresponding to

the specified quantities. In general, the rule for setting up a

representative ensemble is that all parts of the phase space,

consistent with the available informaiion regarding the state of

the system, are equally probable and must contain a uniform

density of points. The probability that the system under

consideration lies in a given volume of phase space consistent

with its state is just proportional to the volume.

The above rule is easy to apply when certain constants of the

motion are specified. It is less easy when thermodynamic

quantities such as the temperature are given. However, var-

ious considerations suggest that a canonical ensemble is the

proper representation of a system of which only the temper-

atm-e is known. The modulus of the distribution 0 is pro-

portional to the temperature, with a proportionahty constant

whose value can be determined.

According to the hypothe.sis just described, a problem in

statistical mechanics consists first in setting up the proper

ensemble to represent the available information (and lack of

information) about the state of the system. The average

values of various quantities can then be determined by averag-

ing over the ensemble. The average value, over a canonical
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ensemble, of any quantity u, which is a function of the canonical

variables pi and g,-, is given by the integral

u = dqi ' '
• dq„ dpi • •

• dp„ ( 11 -8)

It is also of interest to know whether all the values are close

to the average or are widely distributed. This can be deter-

mined by evaluating the average square and higher powers. In

many useful cases the spread of the distribution of values can

be represented by the root-mean-square (rms) deviation.

(Au)^ = {u — uY = (11-9)

To illustrate the procedure for averaging over a canonical

ensemble consider a system that can be described by n normal

coordinates Qi. The Hamiltonian function, or the energy, is

given by
n

H = ^ {uiPi^ -t- 6,g,-2) (11-10)
t = i

and the average energy is

n

{(liPi^ + biq,

S(o,p.i+&,g,«)

^)e o dqi dpn ( 11 - 11 )

To evaluate this integral consider first the average value of

ttipY only.

To satisfy condition (11-5) e~*'^ - n (^y (^)‘ so

% = 1

aipY =
0
2

This is independent of the coefficient Oi and is the same for all
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coordinates and momenta. Hence

H = ne (11-12)

This is the famous equipartition theorem according to which

each degree of freedom in a system such as the one under con-

sideration has the average energy 0, half of it kinetic and half

potential.

If the spread in a quantity is small compared with the

magnitude of the average value of the quantity itself, the

average value takes on added significance and may he regarded

as the quantity to be expected under the given conditions.

Hence the computation of average values and rms deviations

can furnish an indication of the values of various quantities

that are to be expected.

Problem 3. Prove the last equality in equation (11-9).

Problem 4. Show that in a canonical ensemble representing a

system described by n normal coordinates

A//=0y5 (11-13)

Problem 6 . Consider an ensemble of systems each of which is a

model of a perfect gas enclosed in a rectangular box. The molecules

of each gas do not influence each other at all, and they have only

kinetic energy. Show that the average energy of such an ens(imble is

equal to the number of molecules in a single gas multiplied by 30/2.

Show also that the rms deviation divided by the average energy is

inversely proportional to the square root of the number of molecules

in each body of gas.

Problem 6. Show that, if a- mechanical system consists of two

independent parts and if the system as a whole is represented by a

canonical ensemble, the individual parts are distributed as a canonical

distribution with the same modulus 0.

Problem 7. By the use of the above problem to show that each

molecule of a perfect gas can be represented by a canonical ensemble

of molecules, find the density of a perfect gas as a function of position

when it is subject to gravity.

6. Thermodynamic Analogies.—As has already been indi-

cated, much of the interest in statistical mechanics lies in the

light it sheds on the laws of thermodynamics. The behavior
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of a thermodynamic system can be paralleled to a significant

extent by the behavior of a canonical ensemble. This parallelism

is based on a number of analogies.

a. The Internal Energy.—The, above problems show that for a

system composed of a large number of molecules, or having a

large number of degrees of freedom, the average energy in a

canonical ensemble closely represents the energy of all the

systems. Hence the average energy of a canonical ensemble is

taken as the analogue to the internal energy U of a system in

thermodynamic equilibrium with its surroundings. The equal-

ity of the average energy of the ensemble and the internal

energy of the thermodynamic system can be used as a criterion

for the proper selection of the parameters \p and 6 in order that

the canonical ensemble shall properly represent the system.

b. The Tem.perature .—The modulus of distribution 0 shows

a behavior similar to that of the temperature of a thermo-

dynamic system. If two bodies have the same temperature

and are put in contact, the composite system is in thermo-

dynamic equilibrium at the same temperature unless there is a

significant interaction between the two bodies. If there is a

chemical reaction, for example, the resulting system will eventu-

ally come to equilibiium at a lower or a higher temperature

than that of the individual systems before they were put in con-

tact. If, however, the interaction is negligible, the whole

system will be in equilibrium at the original temperature.

Each of the original systems can be represented by a canoni-

cal ensemble. When the two systems are put together, the

probability of finding a representative point in a given element of

phase space is equal to the product of the probabilities for the

two portions of the phase space, or the two systems. The proc-

ess is essentially that of combining each system of one ensemble

with each system of the other to produce the composite ensemble.

The probability of phase is then

p = = gC*i+*r-/r)/0 (11-14)

This is possible because only one value of 0 is involved and

because in the absence of significant interactions Hi — H.



226 PRINCIPLES OF MATHEMATICAL PHYSICS

Although the quantity 0 shows a behavior analogous to that

of temperature, it must be connected with the ordinary scale

of temperature by a constant factor. Problem 5 leads to the

result that for a perfect gas the average energy is fn0, and from

simple kinetic theory this energy is known to be §nkT, where n

is the number of molecules in the gas and k is the molecular gas

constant. Hence 0 may be identified with kT.

c. The Entropy—T\ve. average value of the negative of the

index of probability shows many analogies with the thermo-

dynamic quantity entropy.

It can be proved that the average value of the index of prob-

ability for a canonical ensemble is less than for any other dis-

tribution with the same average energy. Tliis can be shown as

follows: Let r\ be the index of probability for the canonical

distribution, i.e., let v = (^ — H)/Q, and let tj -b At? be any
other value of the index leading to the same average energy.

At? is then subject to two requirements. The definition of index

of probabihty requires that

Je’ dqi ' - ' dqn dpi dpn
— . . . dqndpi • •

• dp„ = 1 (11-15)

and the equality of the average energies provides the require-

ment that

jHe’'dqi • • • dqn dp i
• • • dp„

= dqi ' '
• dqn dpi • • • dp„ = H (11-16)

Then, because of these conditions,

T? -1- At? — ^ = y* [(t? 4- AT?)e’^^’' — ye’]dqi • • • dp„

^ / [

"~
0
^ dpn

""
Q j

~ ‘ dpn —J ^ (e’+‘^’ — e'>)dqi • • •

-f j dqi • ' • dpn

The first integral in the last line vanishes because of equation
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(11-15), and the second becauseofequation (11-16). Then, again

because of equation (11-15),

T) Ari — fj = dqi • dpn
=

J (Atjc^’ -t- 1 - e'^’’)e’’ dqi ‘
• dpn

The function in the parentheses is never negative so that its

integral will be zero or positive, and ij is a minimum under the

specified conditions. The maximum nature of (— ^) is con-

sistent with the idea of the increase in entropy as the system

approaches equilibrium.

d. The Free Energy.—The quantity which is a constant

and therefore does not have to be averaged over the ensemble,

is analogous to the free energy F defined in equation (10-25).

Since

^ = ^ + 07? (11-17)

and 0 is taken as kT, this equation is analogous to

F = U - TS (11-1 7a)

if jj is taken as analogous to —S/k.

6. The Phase Integral.—From condition (11-6) it follows

that
g-f/e _ • •

• dpn - f (11-18)

The integral on the right is known as the phase integral, or the

partition function. A number of averages can be evaluated by
differentiating this phase integral, and the corresponding

expressions are analogous to thermodynamic expressions.

The average energy can be obtained by differentiating with

respect to 0. Since 0 is not a function of the coordinates or

momenta, the differentiation can be carried out under the

integral sign. It follows directly that

= 0=*-/Qiog/ = -e^~we) ( 11-19 )

Upon inserting the corresponding thermodynamic quantities

this becomes

U F -
(11-20)
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The phase integral depends on 0 and also on all the param-

eters of which H is A function. This may include such things

as the positions of pistons or the strengths of electric or magnetic

fields. If these parameters arc designated by a,- and

dH
dui

(11 -21 )

the average values of the Ai can be obtained by differentiating

/. If a,- is a volume, A , is a pre.ssure. If an a,- is a magnetic field,

Ai is a magnetic moment.

Since

Ai
dH ^ a _ 1

dai dui 0 da,-
(11-22)

,// = - e lojr /

d\}/ = — — log / (IQ

~
-j(M) 2 m *

= (g
-

-g)
(11-23)

This is analogous to equation (10-20) with ^ Aj da,- as a gcnerali-

i

zation of p dv.

A canonical ensemble represents a system in a certain thermo-

dynamic state. The independent variables that define the

state are sufficient to define the corresponding ensemble, by
means of the analogies just' discussed. Other variables of

state are the volume, which appears in the statistical treatment

as one of the external parameters a,-, and the pressure, which is

the corresponding A,-. When the proper ensemble has been

determined, the fundamental postulate can be applied to obtain

a statistical interpretation of the thermodynamic quantities.

Problem 8. Show that, when the external parameters are held

constant,

.
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and show that this is analogous to the corresponding equation of

thermodynamics.

Problem 9. Show that
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CHAPTER XII

THE VECTOR FIELD

If with every point in spaec there is associated a certain

vector, the whole set of vectors is said to constitute a I'ector

field. The association of the vectors with the points in space

is the same as the association of the values of a function with

the values of the independent variables. In fact, the vector is a

function of the three coordinates of position. Since a vector

has three components, a vector field can be represented by three

independent functions of the three independent coordinates of

position. The linear vector function described in Chap. VIII

is a special case of a vector field if the independent vector is

regarded as giving the location of a point in space. The general

vector field is not limited to linear functions; but, in most

physically significant cases, each component of the vector field

can be differentiated with respect to the three independent

variables x, y, z.

A field of force, such as the earth’s gravitational field or the

electric field around a charged conductor, is a vector field. For

every point there is a vector representing the force on a particle

placed at the point. Each component of the force is a scalar

function of the coordinates.

1. The Gradient.—A type of vector field which is most useful

in physical problems is one in which the vector can be derived

from a scalar function of position by differentiation. If there

exists a single-valued differentiable function V{x,y,z), the

gradient of V is defined by the equation

grad V =
.dv ^.dv dv

(12-1)

Thus grad F is a vector, even though F itself is a scalar. Since

F is a function of three independent variables, the partial deriva-
230
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tive signs must be used, and the components of the gradient are

the partial derivatives of the scalar along the three coordinate

axes.

The points at which the function V has a given value C will

lie on the surface F{x,y,z) = C. Then let idx + j dy + k dz

be an infinitesimal vector lying in this surface. The statement

that this vector lies in the surface implies a relationship between

dx, dy, and dz. This relationship can be obtained by differenti-

ating the equation of the surface.

dV dV dV
dV = ^dx-^^dy^-^dz = Q (12-2)

If dx and dy are arbitrarily chosen, dz can be determined from

equation (12-2) so the vector will lie in the surface.

dz dV
dz

(12-3)

The scalar product of grad V and the vector in the surface is then

dV dV dV
ax

<*' + 3^
'*!' + 3j

' * ' ® (’ 2-4)

SO that the gradient is perpendicular to every vector lying in

the surface V = C. The gradient represents the direction and

magnitude of the rate of change of V normal to the surface on

which V is constant and thus the direction and magnitude of

the greatest rate of increase of V.

Problem !• Find the gradient of the potential energy of a particle

near the surface of the earth. Take first a system of coordinates in

which one axis is vertical. Then take a system of axes in which one

axis is parallel to the surface while the other axes make angles of

45° with the vertical.

Problem 2. Find the gradient of V when V = (x^ + 2/^), and show

that this represents the direction and magnitude of the greatest rate of

increase of this function.

Problem 3. Show that the increase in V due to a change in position

dr is given by dV == dr • grad F.
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Problem 4. Find the gradient of a/r, where a is a constant and r

is the length of the vector from the origin to the point in question.

Problem 6. Find the gradient of the potential energy of a particle

attracted toward the origin with a force proportional to the distance

from it.

Problem 6. Show that the force on a particle is given by the

negative gradient of its potential energy.

Problem 7. Show that the components of the gradient transform

properly for them to be the components of a vector.

Problem 8. Show that grad (w • r) = w, where w is a constant

vector and r is the radius vector from the origin.

2. The Divergence.—If a = Oxi + a„j + o^k, the divergence

of a is the scalar quantity defined by the equation

div a
dox

dx

day

dy ~dz
(12-5)

The divergence lias no meaning, of course, for an isolated vector.

It can be formed only in a vector field, where each compoirent

of the vector is a function of the three coordinates x, y, and z.

It is necessary to distinguish clearly between the components

of the dependent vector, a*, ay, and a^, and the coordinates of

position X, y, and z. The coordinates of position represent the

components of the vector from the origin to the point with

which the dependent vector is associated and therefore may be

considered as the components of the independent vector; usu-

ally, however, they are considered as merely the coordinates of

this “field point.”

The divergence gets its name from association with the idea

of the flow of a liquid. Suppose a vector a represents the

velocity of flow at each point in a liquid. Then consider a small

element of volume dx dy dz, the coordinates of whose center are

X, y, and z. The volumes of liquid that flow in unit time

through the two faces perpendicular to the x axis are, respec-

1
Ox

2

excess of the volume flowing out over the volume flowing in is

{dax/dx)dx dy dz. Similar considerations for the other two

pairs of faces show that the total excess of the volume flowing

dox

dx
do^ dy dz and

^
dc^ dy dz. The
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out of the element over the volume flowing into it is

(

ScLx .

dz = div a dv

The divergence of the velocity is thus the volume of liquid that

diverges from a unit volume per unit of time.

It is often convenient to use the symVjolic operator V to

represent the differential operations in connection with vector

fields. This operator is definexl by

Problem 9. Find the divergence of r, where r is the vector from

the origin to the point with which it is associated. In this problem

care must be taken to dislinguish between x, ?/, and z as components

of the dependent variable r and ?/, and z as components of the

independent vector of position.

Problem 10. Find div grad F, where V is any differentiable scalar

function of position.

Problem 11. Show that the divergence is invariant under a rota-

tion of coordinates.

Problem 12. If the scalar S and the vector A are both functions

of position, show that

div (SA) = S div A + A . grad S (12-7)

3. The Curl.—The curl a, or (v X a), is a vector and is

defined by

curl a = V X a

+ j

/dax

Vds’

daA
,

, /dOy _ dfflA

By/ (12-8 )

The form of this definition can be remembered by writing it as

the determinant for the vector product. In this sense it is the

vector product of the vector operator V and a.

i j k

A A i.
dx dy dz

(tx CLy

(12-9)

a.
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The curl is of especial use in the study of rotational motion,

for it relates the linear velocity of the particles of a body to the

angular velocity of the body as a whole. If a solid is rotating

about an axis, twice the angular velocity of this rotation is equal

to the curl of the linear velocity of the particles of the body.

The curl is also of use in electromagnetic theory, since it relates

a magnetic field to the current that produces it.

Problem 13. A solid body is turning about a fixed axis with a

constant angular velocity o>. Find the linear velocity of the particles

of the body, and find the curl of these velocities in terms of a>.

Problem 14. Show that

curl grad F == V X VF = 0

This is a very important property of the gradient and shows that,

unless the curl of a vector field is everywhere zero, the vector cannot be

the gradient of a scalar.

Problem 16. Evaluate div curl a in terms of the Cartesian com-

ponents.

Problem 16. Show that

div (A X B) = B • curl A — A • curl B (12-10)

4. The Line Integral.—The line integral of a vector a along

a curve L is written a • dl. It is the integral of the scalar

product of the vector a and the vector element of the curve dl.

The notation implies that the vector a is a function of position,

and its value at the location of dl is to be taken in forming the

scalar product. If a represents the force on a particle as a

function of its position and L is the path along which it moves,

the line integral is the amount of work done by the force during

the motion. It is thus useful in evaluating potential energies .

The line integral can be written in terms of the components

of a and dl or the components of a and the direction cosines

X, n, V of the element dl.

a • dl = (Xoj, + nUy + pa^jdl = (o* dx + ay dy + o* dz) (12-11)

Problem 17. Show that the line integral of a constant vector

around any closed curve is equal to zero.
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Problem 18. Consider the vector field a = yi^ and evaluate the

line integral of a around a square in the x-y plane.

Problem 19, Evaluate the line integral of a ~ around a circular

path in the x-y plane.

Problem 20. Show that the line integral grad V • dl between

any two points is independent of the path and hence that this integral

taken around any closed curve is zero.

Problem 21. A particle moves in an ellipse under the influence

of an inverse-square attraction toward one focus. Find the work

done on the particle as it moves from one end of the major axis to the

other. Also find the work done while it moves from one end of the

minor axis to the other.

Problem 22. Evaluate the line integral of a = x^^i around a semi-

circle joining the origin with the point {x = 5, y = 0). Also evaluate

the integral along a straight line from the origin to (a: = 5/2, y ~ c)

and then along another line to {x = 5, ?/ = 0).

Problem 23. Evaluate the line integral of a == y'^i — x-j along

the paths in the above problem.

6. The Surface Integral.—It is often convenient to represent

a plane surface by a vector, perpendicular to the surface, whose

length is proportional to the area. Some convention must be

adopted as to the positive direction of such a vector. If the

surface encloses a volume, the positive direction is taken out-

ward. If a line integral is taken around the surface, the direc-

tion in which the boundary is traversed is related to the positive

direction of the surface vector by the right-handed-screw rule.

A curved surface may be considered as the sum of infini-

tesimal plane surfaces in the way that a curved line is regarded

as made up of infinitesimal straight elements. The surface

integral of a vector a over a surface S is defined as the integral

of the scalar product of the vector a and the infinitesimal vector

ds that represents the surface element. The surface integral

is written ^ a • ds. Since ds is an outward-drawn normal to

the surface, the surface integral is the integral of the normal
component of the vector a. Evidently the surface integral of a

constant vector over a plane surface is just the scalar product

of the constant vector and the vector representing the surface.

If the vector a represents the velocity of a fluid, the surface
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integral of a over a surface represents the volume of the fluid

that flows through the surface per unit time.

Problem 24. Evaluate the surface integral of a constant vector

a = ai over the surface of a sphere.

Problem 26. ShoAv that = 0, when A is a constant vector

and S is a closed surface.

Problem 26. Find the value of r • ds, when S is a sphere whose

center is at the origin and r is the radius vector from the center.

Problem 27. Show that the volume enclosed by any closed sur-

face is given by

3F==^.r-ds (12-12)

6. Gauss’s Theorem.—An important theorem in potential

theory is known as Gauss ’s theorem. It states that the surface

integral of a vector over a closed surface is equal to the volume

integral of the divergence of the vector throughout the enclosed

volume. In the usual notation

J^v -Adv = f^A-ds (12-13)

By means of this theorem it is often possible to transform a sur-

face integral into a volume integral or a volume integral into a

surface integral. The physical significance of the theorem is

very simple in some cases. If the vector A represents the

velocity of flow of a fluid, the integral of the divergence is the

volume of material created inside the surface, while the surface

integral is the amount that flows out through the surface per

unit time.

An elementary proof of this theorem can be given as follows:

If equation (12-13) is written in terms of its components, it

becomes

V • Adv ~ j
dx dy dz

j
dx dy dz

+ j^dx dy dz

= y
Axdydz-\- J

Ay dxdz + J
A^ dx dy

-/^A.ds
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The sequence of the reasoning can be followed with the aid of

Fig. 12-1. Consider first the integration of the term containing

and integrate this with respect to x. The result is the value

of at tlie upper limit of x minus the corresponding value at

the lower limit of x. The figure sliows a rectangular prism of

cross section dy dz cut out of tlie volume over which the inte-

gration is to be carried out. dsi is the element of surface cut

out by this prism on the right-hand side of the volume, while

Fig. 1 2- J. —Transformation of a volume inioRral into a surfaro integral by means of

Gauss’s theorem.

ds2 is the corresponding surface element on tlie other side.

dy dz is the projection of dsi perpendicular to the x axis, while

— dy dz is the corresponding projection of ds 2 . These projec-

tions multiplied by the values of at the corresponding posi-

tions are those elements of the surface integral which are con-

tributed by the elements of surface dsi and ds 2 . Hence the

integration with respect to x gives an element of the surface

integral, and the integration with respect to y and z gives the

complete surface integral of the x component of A multiplied

by the x component of the vector representing the surface

elements. A similar procedure with Ay and A^ gives the com-

plete surface integral. It will be noted that the elements of

the surface used in carrying out the integration of A„ are not

the same as those used for A*. However, all three integrations

cover the entire surface.
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Problem 28. Show what additions must be made to the above

proof of Gausses theorem when the surfa(*.e has some reentrant portions.

Problem 29. Show that the volume enclosed by a closed surface is

given by

^ ^ js

where r is the radius vector from the origin.

Problem 30. Show that

B div A dv + jv fs
(12-14)

where the surface S suri’ounds the volume F.

7. Stokes’s Theorem.— Stokes’s theorem states that the

surface integral of the curl of a vector over an}" surface is equal

to the line integral of the vector around the boundary of the

surface.

curl A • ds = A • dl (12-15)

This is analogous to Gauss’s theorem in a smaller number of

dimensions, since it is a relation between a surface integral and a

line integral.

To prove this theorem consider a square element dx dy of

the surface S, and for convenience consider the origin of coordi-

nates as at the center of the element. Let the components of

the vector A at the origin be A^, Ay, and A^. Then evaluate

the line integral of the vector around this element.

This relation for the single surface element is clearly independent

of the orientation or the location of the element and thus will

hold for every square element of the surface. Since every sur-

face can be approximated as closely as is desired by square

elements and since the line integral around the whole surface is
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equal to the sum of the line integrals about any parts into which

it may be divided, the theorem is proved.

Problem 31. Show by a diagram that the line integral about a

surface is equal to the sum of the line integrals about any parts into

which it may be divided.

Problem 32. Illustrate Stokes’s theorem by evaluating the line

integral, and the surface integral of the curl, of the vector r X k,

where k is the unit vector along the z axis and r is the radius vector

from the origin. Take as the surface a hemisphere the center of which

is at the origin and which is bounded by the x-y plane.

Problem 33. Show that, if v X A = 0, the line integral of A
between any two points is independent of the path.

Problem 34. Show that

curl kdv = — A X ds (12-10)

8. Tensor Fields.—A vector is a special case of a tensor, and

a vector field is therefore a special case of a tensor field. If each

component of a ten.sor is a function of the three coordinates of

position, various differential operations can be carried out and

the results of these operations are again tensors. All the con-

siderations given in this section refer directly to tensors whose

components are with reference to Cartesian axes. Care must

be exercised in extending them to other systems.

a. The Gradient of a Tensor.-—As already indicated, the

gradient of a scalar is a vector. Since the scalar is a tensor of

rank 0 and the vector is a tensor of rank 1, the operation of

taking the gradient increases by 1 the rank of the tensor. A
similar operation on a vector, or tensor of rank 1, leads to a

tensor of rank 2, dai/dxj. The fact that this is a tensor follows

from the way in which it will transform when the coordinate

axes are rotated about the origin.

A tensor of rank 2 may be regarded as the sum of a symmetric

and an antisymmetric tensor.

The antisymmetric tensor in equation (12-17) is what has been

called the curl and considered to be a vector. This identifica-
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tion of an antisymmetric tensor of tlie second rank with a

vector is possible only in three dimensions. If the vector Oi

is the gradient of a scalar, the antisymmetric tensor vanishes

and the whole derivative tensor is symmetric.

An important property of the gradient of a scalar is that its

line integral between two points is independent of the path.

The gradient of a vector has somewhat similar properties.

(12-18)

and the line integral is again independent of the path.

b. The Divergeiice .—While taking the gradient increases

the rank of a tensor by 1, taking the divergence decreases it

by the same amount. The divergence of a vector is a scalar,

and the divergence of a tensor of rank 2 is a vector, or tensor of

rank 1.

{div T), = (12-19)

If the tensor T is symmetric,

_ dTu
dxi dxi

so that the definition of the divergence does not require specifica-

tion of whether the derivative is with respect to the first or

second index.

A theorem very similar to Gauss’s theorem holds for the

divergence of a symmetric tensor.

The proof of this theorem can be cariied through jxist as the

proof of Gauss’s theorem on page 237 and need not be given

in detail here.

9. Orthogonal Curvilinear Coordinates.—In the previous

sections it has been assumed that positions in space were located

in Cartesian coordinates and also that the vectors were described

in the same set of coordinates. This is not always convenient,

and therefore it is desirable to derive the expressions for the

various differential operations when other coordinates are used.

A three-dimensional coordinate system consists of three
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sets of surfaces that intersect each other. On eacli surface a

certain quantity, the coordinate, is constant. This coordinate

has a different value for each surface of the set, and it will be

assumed that there is a continuum of surfaces, represented by
all possible values of the coordinate. In Cartesian coordinates

the surfaces are planes intersecting each other at right angles.

The intersection of three of these planes determines a point,

and the point is then designated by the values of the three

coordinates that specify the planes. Similarly, in spherical

polar coordinates the surfaces are a set of concentric spheres

specified by the values of r, a set of planes which all pass through

the polar axis and are specified by the values of tp, and a set of

circular cones of which the vertices are all at the origin and

w'hich are specified by the values of the variable 6. In these

two examples the surfaces inter.sect each other at right angles,

and consequently these coordinates are examples of orthogonal

coordinates. Only orthogonal coordinates will be considered

here.

Let the three coordinates be qi, q^, and q-i. Because of the

orthogonality of the coordinate surfaces, it is possible to set up,

at any point, an orthogonal set of unit vectors ei, 62, 63, in the

directions of increasing qi, q-i, qa, respectively. It is important

to select qi, q^, and q^, so that the unit vectors ei, 62, 63 form a
right-hand sj'stern of axes. This set of three vectors defines a

Cartesian coordinate system that coincides with the curvilinear

system in the immediate neighborhood of this one point. The
differentials of these systems of coordinates are connected with

the differentials of the q’s by the relations

dsi = hi dqi ds-i = Ih dq2 dsa = ha dqa (12-21 )

In cylindrical coordinates

dsi — dr ds-i = r dd dsa = dz

so that

hi = \ hi = r /i3 = 1 (12-22)

The quantities hi, hi, and ha are functions of qi, 52, qz and vary
from point to point. In general, the q’s do not have the dimen-
sions of length, and the quantities h are necessary to translate a
change in q into a length. The general expression for the
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gradient is

^ 1 dV
,

1 dV
,

1 dV^ + s; as s (12-23)

This includes the expression (12-1) for the case of Cartesian

coordinates, since then hi = = hz = 1 and qi — x, etc. It is

important also to notice that the unit vectors are not necessarily

constant but may vary in direction from point to point.

By similar analysis it is possible to derive general expressions

for other functions in vector fields, but in doing so account must

be taken of the variation in direction from point to point of the

unit vectors. However, probably the simplest derivation of

the expression for the divergence is not directly, but by means
of Gauss’s theorem. Consider the volume element bounded

by the surfaces

qi + dqi

2 ’

dqi dqi dq^ dq^ dq^
92 T— 92 93 T— 93 ^

The center point is at 919293. Neglecting small quantities of

higher order, the volume of this element is hih^hz dqi dq^ dq^,

and the divergence at the center multiplied by the volume will

be equal to the integral of the vector over the bounding surface.

Consider first the two surfaces to which ei is perpendicular.

These surfaces differ in area because hi and hs are changing with

qi. If A is the vector whose divergence is to be found,

A 1
“ A • Cl

also changes with 9. Hence the integral over one face is

— Aih2hz — ^ (Aih2hz) dqz and over the other face is

^Aihih^ + (Aihih,)^
other four faces can be simil

dqi dqn. The integrals over

arly expressed so that

the

div A/ii/i2^3 dqi dqi dqi

[

d d d n
(Aihihi) -1- ^ {Aihihs) -|- ^ (A 3/11 /12

) J
dqi dqi dq^

Hence

* = siv. [4i + w.
(12-24)
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Problem 36. Show that the expression for the gradient in cylindri-

cal coordinates is

- dV dV dV
grad F - e,— + (12-25)

r 66 dz

Problem 36. Show that the expression for the gradient in spherical

polar coordinates is

- dV . 6V
,

1 dV .

grad F = e.— + e,— + e, (12-26)
rdd r sin 6 d<p

Problem 37. Show that the expression for the divergence in

spherical polar coordinates is

divk = +
dr

—L- ^ (sin e Ae)+ -4— (12-27)
r sin 6 66 r sin 6 6(p

Problem 38. Show that in orthogonal curvilinear coordinates,

if d /h‘Jh6V\, 6 fhih,6V\
tv gra

hih^hz \ hi 6qi) dq^ \ h ‘2 dqo)

+ / (r'rOldr/3 \ hz dqz/ ]

Problem 39. Show that in spherical polar (‘oordinates

*’ *'•'* (’’ + ai Te " -S)

(12-28)

+
1 dW

Problem 40. Show that
sin^ 6 d<f>

~2 (12-29)

- (if + (%)’ + (I)’
where x, t/, and z are fixed Cartesian coordinates.

Problem 41. The expression for the curl in curvilinear coordinates

can be obtained by applying Stokes’s theorem to an elementary rec-

tangle perpendicular to each of the unit vectors, much as the above

expression for the divergence was obtained. In this way show that

curl A ei

h2hz ai -4; ]

+ 62

hiha |_d^3

+

^ {hlA^) -
dqi

& [4; 6q>
(/M^i)] (12-31)
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Problem 42. Show that in spherical polar coordinates

curl A =

+

Cr

r sin 6

1

‘_d

_dd
(sin SA^)

d<p

e

r sin 6
- I (rri„ + & [I M,) - ^'] (12-32)

10. Vector Identities.—There are several identical relation-

ships between various functions of a vector field that are of use

in the treatment of physical problems. Some of these are

tabulated here for future reference. Several have already been

proved, while the proofs of the others can be carried out by
means of the definitions of the various operations.

(1) A X (B X C) = B(A . C) - C(A • B)

(2) div curl A = 0

(3) div (SA) — S div A -f A • grad S
(4) div (A X B) = B • curl A — A • curl B
(5) curl grad 5 = 0

(6) curl (SA) = S curl A -|- grad S X A
(7) curl curl A = grad div A — v-A

(8) curl (A X B) = A div B - B div A -f (B • T)A - (A • V)B

(9) grad (A • B) = (A • v)B + (B • V)A -h A X curl B
+ B X curl A

These identities are independent of the coordinate sys-

tem used, but the expressions V^A, where V- is applied to a

vector, and (A • V)B have not yet been defined. In Cartesian

coordinates

and

(A • v)B

v^A = + j(vM^) + k(vU,)

= dB.
, ,

dB,
^

. dB
+ a,-^ + a

dx

+ j

dz

. ( , dBy . dBy . dBy\

(a +

A

)

+ k + A
dy ^ dz)

In other systems of coordinates these must be properly trans-

formed.

11. The Potential.—As was pointed out in Chap. II, if the

force on a particle can be expre.ssed as the negative gradient of a

scalar function of the particle’s position, this scalar function
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may be called the potential energy of the particle in the given

field of force. The use of a potential energy is a very convenient

method of representing forces due to a number of different

attracting centers, for the potential energies due to the different

centers can be merely added together. It is often easier to add

the scalar potentials than to add the vector forces.

From the solution of Prob. 4, it follows that the potential

energy of a system consisting of an element of matter fixed at

the origin and a unit mass at the end of the vector r is

dF = - (12-33)

where p is the density and dv is the volume of the element at

the origin. This potential energy with respect to a unit mass

at the end of r may be (tailed tlie potential at the end of r due

to the element of mass at the origin. A similar terminology

is used in electrostatics, where a unit positive charge is used

instead of a unit mass. If the attracting body is not small

enough to be considered as a single particle, the potential due

to the whole is merely the sum of the potentials due to the

individual elements.

F = -X
J^ (12-34)

where the integral is taken over the whole of the attracting

body and r is the distance from the element dv to the point at

which V is the potential.

Problem 43. Find the potential, at points both inside and outside,

due to a thin spherical shell of uniform density.

Problem 44. Find the potential due to a sphere whose density is

a function of the distance from its center only.

Problem 46. Find the potential, at a point on its axis, due to a

thin circular sheet of uniform density.
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CHAPTER XI IT

ELECTROSTATICS

The theory of electrostatics is l)ased on a fundamental law of

force between point charges. The law is an experimental law,

but the range of its direct experimental verification is by no

means as great as the range of its applicaxtlon. It is logically

possible that the law is only approximate ratlier than general

and exact, but the assumpt ion of exact validity has led to a

theory which satisfactorily describes a wide range of plienomena,

so that much indirect support of the fundamental law has

been obtained.

1. Electrostatic Fields Due to Fixed Charges, a. The

Fundamental Law of Force .— Tlie law upon which electiestatics

is based was verified with considerable accura(\y by Coulomb
about 1785 and is known as Coulomb’s law. By means of his

torsion balance he found that the fon^e of attraction or repulsion

between two small charged bodies is proportional to the product

of their charges and inversely proportional to the s(]uare of the

distance between them. If the charges are of the .same kind,

or sign, the force is one of repulsion; if the charges are of oppo.site

signs, the force is one of attraction. The existence of the forces

and of two kinds of charges had been known for a long time,

but Coulomb was the first to establish the quantitative law of

force with precision. The accuracy of such a direct experi-

mental verification of the law depends upon the use of test

bodies whose linear dimensions are small compared with the

distances between them. Later and slightly more indirect

experiments have confirmed tl)e law with still greater precision

when applied to bodies of ordinary dimensions. The expres.sion

for the law of force in a vacuum can be written

F = 1 7i'72

47rKo IC
^

246

(13-1)
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F represents the vector force on one particle due to the other,

qi and 92 represent the magnitudes of the electrical charges on

the two particles, with the appropriate signs, and R is the

distance between them. The unit vector e is parallel to the

line connecting the two particles and points in such a direction

that it represents a repulsion between them when the two charges

have the same sign and an attraction when they have opposite

signs. The constant kq has dimensions that depend on the

dimensions assigned to the electri(!al charge and a value that

depends on the units used in expressing the force, tlie distance,

and the charge. It is written in the denominator and multiplied

by 4ir for convenience in later equations.

The law of force expressed by equation (13-1) is similar to

the law of gravitation but differs from it in two important

respects. In the first place, there are two kinds of electri(!al

charge, designated as positive and negative. Consequently

there are forces of both attraction and repulsion, while gravita-

tional forces are only attractive. In the second place, the

charges represented by q\ and qo have no connection with the

inertia of the particles on which they arc located. Only if

the particles are electrons or protons themselves are the masses

and the charges related.

h. Field Strength and, Potential.- An electric field is said to

exist at any point at which an electrically charged, stationary

body experiences a force l)ecause of its charge. In the case of

two charges that repel each other, an electric field exists at

the location of each charge. The strength of the field at a

point, E, is a vector. It gives the direction and the magnitude

of the force, per unit positive charge, experienced by a small

charged particle placed at the point in question. The field is

called an electrostatic field if its changes with time are so slow

that they need not be considered. The utility of this definition

of a field depends on the fact that the force on a particle is

always proportional to its charge, so that from a specification of

the field the force on any charge follows directly.

There are two points of view that may be taken with respect

to the nature of an electric field. According to the older
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“ action-at-a-distance ” point of view, the electric field strength

is merely a convenient way of representing the forces between

all the individual charges. It is then purely a mathematical

convenience. On the other hand, according to the point of

view developed by Faraday and Maxwell, the electric field

represents a state of the “ether” in the region in which the field

exists. Since, at the present time, it is generally desired to

Fig. 13-1.—The electric field due to a point charge is everywhere radial and inversely

proportional to the distance from the charge. In this figure the small open circles

indicate the points with which the vectors are associated.

avoid the term ether, the field is regarded as a certain state of

“space.” A statement coiicerning a “state of space” may
seem to have little physical content, but an electric field is

regarded as having a certain physical reality. In particular, it

may possess energy and momentum. When principal attention

is paid to the field, the charges that produce it are more or less

incidental. This point of view has received much support

from the production of electromagnetic waves by means of which

energy can be propagated. Since, however, the mathematical

development of electrostatics does not depend upon the view

adopted as to the nature of the field, the question will be left
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open during this chapter and an attempt will be made to keep

both possibilities in mind.

In defining the vector E as the force per unit charge, it is

ixnportant to pay attention to the test charge by means of wliich

the force is measured. In the case of a field "produced” by
fixed charges, the test charge may be as great as desired if its

geometrical extent is small enough. This implies, of course,

tJiat there is some way of fixing the charges so they will not be

moved by the test charge. To measure a field in the general

ease, it is necessary to use such a small test charge that its influ-

ence in displacing other charges and so distorting the field can

be neglected. A single electron is the smallest charge that can

be used, and hence it must be concluded that an electric field

cannot be measured, and lienee cannot be defined, with unlimited

precision. Such problems are of importance in the study of

atomic electrodynamics and electron theory, but they are of

little consequence in the ordinary applications of electricity and
will not be considered further in this work.

The law of electrical force between charged particles is

enough like Newton’s law of gravitation to permit similar use

of a potential. A region in an electrostatic field is said to have

the potential $ if

E = — grad $ (13-2)

From the law of force it follows that, when the positions of all

the charges are known, the potential can be calculated from a

formula similar to that used for the gravitational potential

Here g, is the magnitude of the charge (with the proper sign)

that is located at the point i, and Ri is the distance from the

point at which €> is the potential to the charge qt. The potential

is a function of position, so that every point in the field will have

associated with it a number which is its value of the potential.

Equations (13-1) and (13-2) would still be true if any arbitrary

constant were added to the potential as given by (13-3). It is

customary, however, to take $ as given in equation (13-3),
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except in some idealized cases where it is convenient to take tlie

potential as zero at some point other than at infinity. Since

the charge can be either positive or negative, the potential can

have either sign.

c. Electrical Units .—There has been much confusion con-

cerning the units in electrical problems, for numerous different

systems have been proposed and used. Each of these has its own
particular advantage, but the multiplicity of systems has led

to frequent errors in the interpretation of equations. Within

recent years still another system has been adopted by numerous

international scientific; and engineering bodies. It is known as

the Giorgi system after its proponent or more usually as the

mks system after the fundamental units, meter, kilogram,

second, that it uses. Tliis system has grown out of the practical

electrical units long used by engineers and for this reason is

well adapted to engineering computation. Altliougli the sj^stem

is devised to facilitate computation rather than to promote

understanding of the fundamental processes involved, it appears

to offer numerous advantages and has been received with a good

deal of approval. It will therefore be used as the basis of the

material presented here, but reference will also be made to

the Gaussian system used in much of the published literature.

If Ko is set equal to l/dx and is consicka-ed to be dimensionless,

equation (13-1) defines units of electrical charge in addition to

expressing the law of force. When the force is expressed in

dynes and the distance in centimeters, the charge will be in

electrostatic units whose dimensions follow from equation

(13-1). These are the units of charge used in the Gaussian

system and in much of the older work on tlic subject.

In the mks system, the charge is measured in coulombs. It

is not necessary to give the definition of a coulomb here but

merely to emphasize that it is a unit of charge which can be

reproduced by following suitable specifications. It may be

regarded as the fourth fundamental unit in a system that might

be known .as the meter-kilogram-second-coulomb (mksc) system.

The distance is measured in meters, and the force is measured in

newtons. The meter is, of course, a well-known measure of
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length, and the newton is the force necessary to give a mass of

one kilogram an acceleration of one meter per second per second.

Hence one newton is 10*^ dynes.

When the electrical charge is measured in coulombs, the

distance in meters, and the force in newtons, the dimensions of

/Co are given by equation (13-1). The munerical value of /Co is

given by experiment to be

_ 1_
47rKo

= 8.988 X 10 y
newton • meter^

coulomb^
(13-4)

It follows that the field E is measured in newtons per coiilomb

and tliat tlie potential <h, introduced in equations (13-2) and

(13-3), is measured in newton-meters per coulomb or joules per

coulomb. This derived unit is called a volt, so that 4’ is measured

in volts and E in volts per meter.

d. Co7iiinuoxis Distribution of Charge .—If there are many
charges close together, it is usually convenient to deal with the

charge density p instead of with the individual point charges.

This charge density is equal to the algebraic sum of the charges

in a small element of volume dv, divided by dv. Care must be

used in the application of this definition. The density of a

quantity is usually defined as the limit toward which the above

ratio approaches as the size of the volume element is decreased.

However, we know that electricity exists in the form of discrete

elementary charges, so that the density p will not approach a

limit as the volume element is reduced to such a size that it

contains only two or three charges. The apparent value of p
determined in this way would depend so much on the exact size

and location of dv that it would be of no use.

If dv were reduced still further, so as to include only a por-

tion of a charge, the knowledge of p would require a knowledge

or assumption about the structure of these ultimate units.

In addition, we know through the study of electron theory that

these ultimate units of charge, or electrons, are not to be treated

as having a precisely defined location and must, in fact, be

treated by the methods of quantum mechanics. To avoid such

problems and to construct a theory of electricity that is satis-
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factory on the macroscopic scale it is sufficient to require that

the dimensions of the volume elements used be large compared

with interelectronic distances and that such volume elements

contain a great many electrons and positively charged nuclei.

On the other hand, of course, the dimensions of the volume ele-

ments must be small compared with other distances involved.

This requirement limits the theory to macroscopic problems.

For application to atomic structure, such questions must be

reconsidered.

With the above restriction in mind, the density of electricity

may be used, and the expression for the potential at a point

becomes

* - / -r
The integration is to be taken over all the volume in which

there is charge, and in fact over all .space, since those parts in

which p = 0 make no contribution to the integral. The
validity of equations (13-3) and (13-3a) depends upon the fact

that the potential due to a group of different charges is the sum
of the potentials due to them individually. It is an experimental

fact .that the force between two charges seems to be entirely

independent of the presence or state of motion of other charges,

and the forces are to be treated as additive.

The form of equation (13-3a) shows that, as long as the

charge density p does not become infinite, the potential $ is a

continuous function of position and can be differentiated to give

the field.

Problem 1. Two equal positive charges are placed at opposite

comers of a square, and two negative charges of the same magnitude

are placed at the other two corners. Find the potential and the field

strength at points near the center of the square. Include points out-

side the plane.

Problem 2. Three charges are located at the vertices of an equi-

lateral triangle. Show that the force exerted by any two upon the

other one is directed through the center of charge. The definition of

the center of charge is analogous to that of the center of mass.

Problem 3. Find the potential and the electrostatic field around

a uniformly charged, infinite, straight wire. This problem can be
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treated by first considering the wire to be finite, finding the potential

about its center, and then letting its length increase.

Problem 4. Find the potential and the field due to two concentric

spherical shells that are differently charged.

e. Restricted Form of Gausses Law .—Gausses law states that

the integral of the electric field over any closed surface is equal

to the total charge inside the surface divided l)y /cq. This is

called the restricted form of Gauss's law liecause it is valid only

in the absence of polarization, which will be discussed later.

In symbols,

f E • ds = - f pdv (13-5)
Js 1^0 Kojv

To show this, the field at each point of the surface over which the

integration is to be carried out may first be divided into two
parts. One part is that due to the cliarge in a certain volume

element dvi and may be called Ei. The other part is due to all

the rest of the charge and may be called E. The law is first to

be established for Ei only.

A spherical surface is described about the volume element

dvi, and the field on this surface due to p dvi may be easily calcu-
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lated. The integral over this surface can be shown by actual

integration to be equal to p dvi/Ko. By Gausses theorem and the

fact that the divergence of Ei is zero outside of dvi, it follows that

the integral of Ei over S is also p dv^/Ko if dvi and the spherical

surface are inside S but is zero if dvi and spherical surface are

outside S, Hence the law is established for Ei and the charge

p dvi that may be said to produce Ei.

Since the total field is the sum of the fields due to individual

elements of charge, the law is established for the whole field.

It is sometimes possible to use Gauss's law and the symmetry
of a problem to evaluate the field strength itself. Consider the

case of an infinite straight line of charge with no other charges

present. Due to the symmetry of tlic problem the electric

field must be everywhere radial, and its magnitude can depend

only on the distance from the wire. Hence E = erE{r)j where

Cr is a unit vector in the radial direction.

Construct a circularly cylindrical surface with the line of the

charge as its axis and with plane ends perpendicular to the axis.

Let the length of the cylinder be dl and the radius r. The
electric field will be parallel to the ends of the cylinder so that on

those surfaces E • ds = 0, and it will be normal to the cylindrical

surface. Hence the total surface integral is 2TtrE dL By
Gauss's law, this is equal to the total charge inside, or X dZ//co,

where X is the linear density along the line. Hence

E = X/27r/cor

Problem 6. Use Gauss's law to find the field due to an infinite

plane uniform distribution of charge.

Problem 6. Use Gauss's law to show that the field is zero inside a

spherical shell of uniform surface charge density.

From Gauss's theorem as discussed in the previous chapter,

equation (13-5) can be written

j^E-ds = div Edv = - dv = j p dv (13-6)

Since this is true for any volume, however small, it is true for

each individual volume element and there results one of the

fundamental laws of electricity,

— = div E = p/ko (13-7)
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/. Dipoles .—In addition to the electric fields due to isolated

charges and to volume distributions of charge, electrical phe-

nomena are observed that can best be described in terms of

electric dipoles. In terms of the microscopic theory of matter

and electricity, the necessity for considering these distributions

is due to the limitations mentioned above on the concept of a

charge distribution. In a macroscopic tlieory, however, it is

not necessary to go into the origin of such distributions but

merely to take them as observed.

A dipole may be visualized as a limiting case of two equal and

opposite charges separated })y a distance d. Let R V)e the dis-

tance from the charges to a point at which the field is to be

computed. When the ratio d/R approaches zero, the two

charges can be regarded as a dipole. Such a dipole is described

by its vector moment p. This moment has a magnitude given

by the product of one of the charges and the distance between

them. Its direction is such as to point from the negative to the

positive charge.

The potential due to a dipole is given by

_ Jl p -JR

47rKo R^
(13-8)

where R is the vector from tlie center of the dipole to the point

at which is the potential. It must alwa3\s be remembered

that a dipole is a limiting case. Two equal and opposite charges

constitute a dipole only w4ien all observations are made so far

aW'ay that the separation betw^een the charges can be neglected.

Problem 7. Show that equation (13-8) gives the potential due to

a dipole.

Problem 8* Show that the field strength due to a dipole is given by

Problem 9. Show that, if a dipole is parallel to the polar axis,

the components of the electric field parallel and perpendicular to the

radius vector are

E 1 2p
47rKo

cos B and Ee = 1 V •^ sin 6 (13-10)
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Problem 10. Show that the field of a dipole has components

parallel and perpendicular to the dipole equal to

™
-I- (3 cos' e - 1) and Ej, =~ sin 20 (13-11)

" 47rKo 47rKo

where 0 is the angle between the axis of the dipole and the vector from

the dipole to the point at which the field is measured.

g. Electric Polarization .—If an element of volume is filled

with dipoles, its net charge will be zero and yet it may give rise

to an electric field. In this case equation (13-3a) is inadequate

Fia. 13-3.—The field due to a dipole is inversely proportional to the third p<3wor
of the distance from the dipole. This figure shows the field vectors at one distance.

for computing the potential, and additional account must be

taken of the dipoles. The fact that this case exists is associated

with the limitations on the volume elements that can be used.

They are not infinitesimal in the mathematical sense but have

a finite size. They cannot be made small enough to include

only one of the charges of a dipole because of the limitations

imposed by quantum mechanics. This limitation has already

been mentioned in connection with the discussion of charge

density, and it sometimes leads to situations in which the charge

density is zero but in which there is an electric field that can

be described as due to a distribution of dipoles.

This deficiency in equation (13-3a) can be remedied by
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adding to it an expression for the potential due to the dipoles

themselves. If P represents the resultant dipole moment per

unit of volume, this additional potential is given by

where R is the vector from the point at which is the potential

to dv. This is opposite to the direction used in equation (13-8)

and is the reason for the negative sign. The vector P is called

the electric polarization. It is a vector function of position such

that P dv represents the vector sum of the dipoles in the element

of volume dv. As is the case with the charge density p, the

polarization P is defined subject to the limitation that the volume

elements must always contain a large number of atoms.

The integral in equation (13-12) is taken over all the volume

in which a polarization exists, or over all space, since the regions

in which P = 0 make no contribution to the integral.

Problem 11. Consider a long thin rod of constant cross section S,

uniformly polarized in the direction of its axis. Use equation (13-12)

to find the electric field due to this distribution of polarization.

Problem 12. Consider a right circular cylinder of radius 10 cm
and length 15 cm filled with a uniform polariz.ation P parallel to the

axis. Find the electric potential at points on the axis both inside and

outside of the cylinder by thc^ use of etjuation (13-12).

If the polarization P is everywhere finite with finite deriva-

tives, , it is possible to transform equation (13-12) into a form

that may be easier to use. By considering div (P/f?) and equat-

ing its volume integral to a surface integral by Gauss’s theorem,

it follows that

-1
47r/Co /

PR
dv

-1
47rKo /

div P
~ir dv +

1 r p-ds
47rKo j R (13-13)

where the volume integral is taken over any volume that includes

all the polarization and the surface integral is taken over the

surface enclosing this volume. Such a surface can be selected

so that P = 0 on it and hence so that the surface integral
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vanishes. It follows then that

The form of (13-13a) compared with that of (13-3a) shouts that

the negative divergence of the polarization has the same effect

in producing an electric field as does an electric charge density

(see Fig. 13-4).

Fio. 13-4.—The very rai)id rate of change of the normal component of polarization at the

surface of a polarized body has the same effect in producing a field as has a surface charge.

In Probs. 11 and 12 the polarization has a constant value, and

hence a zero divergence, within the regions where it differs

from zero. The application of equation (13-13a) to such a

region would then seem to lead to a zero potential. This is

clearly incorrect. The difficulty lies in the fact that the diverg-

ence of the polarization is not everywhere finite as is assumed in

in the derivation of equation (13-13a).

The apparent discontinuity in the polarization at the surface

of a polarized body is probably an idealization. In any case
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it is possible to retain all the significant features by treating this

change as very rapid, but not discontinuous. Equation (13-13a)

is then applicable, but care must be taken to include this very

large value of the divergence near the surface. The volume

integral of this part of the divergence can then be approximated

by a surface integral.

Let the x and y axes lie in the surface at a selected point.

The integrand in this neighborhood will then be

I\^)dxdy (13-135)

The derivatives parallel to the surface are considered as negli-

gible compared with tlic derivative normal to the surface. The
change in R is also negligible. is the normal component of

the polarization on one side of the surface, and is the normal

component on the other side. Hence, if the distribution of

polarization contains surfaces of discontinuity, the integral of

the divergence over these surfaces can be replaced by a surface

integral of the normal component of the discontinuous change

in potential.

It is very easy to confuse the surface integral on the right-

hand side of equation (13-135) with the surface integral neglected

in equation (13-13). With the proper understanding, and the

proper selection of volumes and surfaces, they lead to the same

result. It seems, hoAvever, that a more universally applicable

procedure for handling problems of polarization can be reached

by (1) regarding surfaces of discontinuity as idealizations that

should properly be replaced by a very rapid change; and (2)

replacing the volume integral over this region of very rapid

change by a surface integral of the normal component of the

total discontinuity.

Problem 13. Show how the distributions of polarization in Probs.

11 and 12 can be represented by distributions of apparent surface

charge.

By combining equations (13-3a) and (13-13a) it can be
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seen that the total potential, due to both charge and polariza-

tion, is given by

* = j '>3-14)

When the distribution of charge and of polarization is completely

known, the potential in any electrostatic situation can be

evaluated by the \ise of equation (13-14). In the use of this

equation it must be remembered that the integral is to be carried

out over all space and must include all of the charge and polariza-

tion that affects the potential. In some cases there will be

discontinuities in the polarization, but it will be assumed that

these can be approximated by a rapidly changing, continuous

distribution, as already described.

The fact that the divergence of the polarization and the

normal component of the polarization on a surface of discon-

tinuity are equivalent to volume and surface charge densities

has led to numerous attempts to visualize the effect in terms of

the charges composing the dipoles. If all dipoles are parallel

to each other and normal to the surface, one may picture the

positive or the negative ends of these dipoles as being the positive

or negative surface charges. Such visualization clearly violates

the restrictions imposed on the size of the volume elements that

can be used and must be employed with caution.

In a similar fashion the p in equation (13-14) is sometimes

referred to as a “real” charge density while the —div P is called

a “bound” charge density. This also seems of doubtful value,

and it appears more practicable to recognize that the integral is

just a method of calculating the potential due to both charges

and dipoles.

h. Complete Form of Gauss’s Law .—In equation (13-14) the

quantity p — div P takes the place of p in equation (13-3a).

By the same type of reasoning as led to equation (13-5) it can

be shown that

E • ds — ^ j (p — div 'P)dv
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From this it follows that

J(koE + P) • ds = JD • ds = Jp dv (13-16)

This is the complete form of Gauss’s law that must he used w hen

polarization is present. The vector D = /cqE P is called the

electric displacement. It is of importance largely because of the

role it plays in Gauss’s law.

It follows directly from equation (13-16) that

div D = p (13-17)

and this may be called the differential form of Gauss’s law.

i. Summary of Electric Fields Due to Knoum Distributions of

Charge and Polarization .—The discussion thus far has referred

to the case in which the electric charges and electric dipoles are

fixed in known positions. The question as to whether they are

held in these positions by nonelectrical forces or are in equilib-

rium under the action of electrical forces only has not been con-

sidered. If the charge distribution is knowi, p is known as a

function of position and any isolated point charges are in known
positions. The knowledge of the distribution of polarization

reqiiires the knowledge of P as a function of position and of the

locations of any isolated dipoles. When these are given, the

potential at every point in space may be defined as

* - 4^ /
- *• P)*

subject to the restrictions already discussed as to the minimum
size of the elements dv. This integral will give the potential $ a

value that is everywhere continuous and single-valued when

p and div P are always finite. It applies for points inside as

well as outside of the distributions of charge and polarization.

When the potential <I> is known, the electric field can be
evaluated by the operation of taking the gradient.

E = — grad $ (13-2)

This may be taken as the definition of the electric field E. In

regions of space accessible to a test charge, this field may be

measured by the force on such a charge. Inside of dielectrics,
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however, E may be regarded as that function of the charge

and polarization distributions given by equations (13-14) and

(13-2).

The displacement D is defined by

D = koE 4- P (13-18)

It follows from this definition that the electric displacement in a

vacuum is kq times the electric field, and therefore the field and

the displacement are assigned different dimensions. This is.
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Fig. 13-5.—Polarization and field inside a uniformly polarized slab.

of course, a logical possibility, but it may also be misleading

and is probably the only significant objection to the mksc sys-

tem of units as now used. In the older Gaussian units,

D == E + 47rP, and it is much more obvious that the displace-

ment is obtained from the field merely by adding the polariza-

tion. Nevertheless, equation (13-18) should cause no trouble

if the apparent role of kq as -the ^^permittivity of a vacuum’^ is

not taken as suggesting the possibility of polarization in a

vacuum.

Problem 14. Consider a thick slab of uniform polarization, per-

pendicular to the plane surfaces. Let the area of the slab be indefi-

nitely large. Evaluate the potential, the field, and displacement inside

and outside of the slab. This can be treated by considering a cylindri-

cal volume with its axis parallel to the direction of polarization. One
flat end is inside the slab, and the other outside. From a consideration

of the symmetry of the situation and the complete form of Gauss’s law,

the problem can be solved (Fig. 13-5).
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Problem 16. Consider a charge Q at the center of a thick spherical

shell of polarization. Let the polarization be everywhere along the

radius and constant in magnitude. Find the potential, field, and the

displacement at all points, and illustrate Gauss’s law by integrating

over spherical surfaces inside and outside of the shell.

2. The Effect of an Electrostatic Field on Material Bodies.

—

All matter is now believed to be made up of electric charges in the

form of electrons and atomic nuclei. If a material body is

placed in an electric field, it may be expected that the field will

cause a rearrangement of the charged particles and, in general,

that the body as a whole will experience a force. The complete

description of the rearrangement cannot be given in terms of the

ordinary laws of electricity. Recourse must be had to the

methods of quantum mechanics. Nevertheless, the macroscopic

aspects of the response of material bodies to electric fields can

be satisfactorily described by dividing the bodies into two classes,

known, respectively, as conductors and as insulators.

The distinction between conductors and insulators is not

sharp, and some substances might be put in either class. Never-

theless, it is a vei-y useful distinction. It emphasizes the two
ways in which substances react to an electric field.

If a condiKitor is placed in an electric field, some of the elec-

trons in it will move through the body until they build up sur-

face charges that will completely neutralize the field originally

existing inside the (!onductor. On this account, there is, by
definition, no electric field inside a conductor. This statement

refers, of course, only to the static situation after equilibrium has

been attained. There does exist a field inside the conductor

while the electrons are moving around to neutralize it. In

addition, a conductor contains no dipoles and hence no polariza-

tion. A conductor may then be defined as a substance inside of

which there exists no electric field and no polarization, in static

situations.

An insulator, on the otlier hand, is a substance in which all

the electrons are held at or near to positions of equilibrium and
in which the effect of an electric field is to displace them slightly

and hence to produce a polarization. An insulator is a sub-
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stance in which the polarization at each point is some function of

the electric field at the same point. In some cases the polariza-

tion also depends on tlie past history of the elec^tric field.

a. Conductors .—The essential property of a conductor is

^iven by the definition above. In an electrostatic situation,

all parts of a conductor will be at the same potential, since the

field inside it is zero. The potential everywhere is given by

equation (13-14). If there are outside distributions of charge

and polarization that would tend to cause different parts of

the (a)nductor to be at different potentials, the electrons in the

conductor will move until the potential produced by them com-

bines with the externally produced potential to give zero field

and a constant potential throughout the conductor. In general,

this requires a nonuniform distribution of cliarge over the sur-

face, but in a few simple cases the symmetry of the situation

is such that a uniform surface distribution of charge produces

the necessary result.

In dealing with conductors the charge is usually treated as a

surface charge. This is not strictly true ; but since the charge is

distributed in a layer that is as thin as or thinner than the

minimum allowable element of length, all the essential properties

are retained when it is treated as a surface charge.

Problem 16. Show from the definition of a conductor and the

fact that the potential as given by equation (13-14) is a continuous

function of position that the tangential component of the electric field

just outside the surface of a conductor is zero.

Problem 17. Show from Gauss’s law and the definition of a

conductor that any charge on a conductor is at its surface.

Problem 18, Show from Gauss’s law that the normal component

of the displacement in a dielectric adjacent to the surface of a con-

ductor is given by

Dn (13-19)

where <r is the surface density of the charge.

Problem 19. Consider a thick spherical shell of a conductor on

which there is no net charge. If a charge Q is placed at the center,

make use of the spherical symmetry of the problem and the fact that

the field inside the conductor must be zero to compute the charge dis-
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tribution on the conductor. Then compute the field due to the

induced charge alone.

As can be seen in Prob. 19 the potential of a conductor is

determined not only by any charge that may be on it })ut also

by any other charges or polarization that may be in the neighbor-

hood. If a conductor is completely isolated, its potential is

determined by its own charge only. The ratio between the net

charge on such a conductor in coulombs and the potential of

the conductor in volts is known as its capacitance. The capaci-

tance of an isolated sphere is equal to 47r/co/?, where R is the

radius in meters and the capacitance is measured in farads. A
farad is one coulomb per volt and hence Kq can be expressed in

farads per meter.

The term capacitance is used in a number of slightly dif-

ferent senses, but in each case it refers to a charge that will

produce a unit potential. The above-defined capacitance of an
isolated sphere could also be regarded as the capacitance with

reference to an enclosing conductor at infinity. For most
practical purposes the earth serves as the conductor at infinity,

and thus such a capacitance is sometimes referred to as the

capacitance to ground.

If two conductors are isolated from other bodies or are

enclosed in an infinitely large conducting shell, a mutual capaci-

tance may be defined. This is the charge on one (conductor

divided by the difference in their potentials, when the two con-

ductors have equal and opposite charges. Two conductors so

close together that their difference in potential is little affected

by other bodies constitute a capacitor, or a condenser, whose

capacitance is this mutual capacitance.

Problem 20. Show that the capacitance of an isolated sphere is

equal to AtthoR farads when R is its radius in meters.

Problem 21. If the insulation of the air breaks down at 2 X 10®

volts per meter, what is the maximum potential to which an isolated

sphere surrounded by air can be charged?

Problem 22. A conducting sphere is placed inside and concentric

with a spherical shell that is connected to earth. Show that, if the

inner sphere carries a charge g, the outer Avill carry a charge —q. Find

the capacitance of this system.
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Problem 23. In a capacitor composed of two flat parallel con-

ductors separated by a distance that is small compared with their

linear dimensions, the charge will be almost uniformly distributed over

the opposing conducting surfaces. Under the assumption that the

charge is uniformly distributed and that there are equal and opposite

charges on the two plates, show that the capacitance of the condenser

is

where A is the area of one of the plates and d is the distance between

them.

h. Insulators or Dielectrics.-—If an uncharged insulat,or is

placed in a field due to fixed charges, polarization will he pro-

duced throughout its volume. The total electric field at any

point will then be different from the field due to the fixed

charges. In addition to the original field there will be the field

due to the polarization “induced” throughout the dielectric.

Hence the field at any point that is effective in producing

polarization is determined, in part, by the polarization it

produces.

In numerous simple dielectric substances, the polarization

is approximately proportional to the electric field, and a dimen-

sionless constant of proportionality Xo called the dielectric

susceptibility, is defined by P = Xe'^oE. In these substances the

displacement also is proportional to the electric field so tliat

D = xoE -t- Xp'^^oE = xE (13-21)

and

K = Kko = (1 + Xo)xo

The quantity k has the same dimensions as Xo and is called the

permittivity of the medium, while iC is a dimensionless ratio called

the dielectric constant.

In the simplest cases of anisotropic crystals in weak fields,

the displacement is a linear vector function of the electric field.

Thus its direction may be different from that of the field itself.

In more complicated cases the polarization and the displace-

ment may be still more complicated nonlinear functions of the
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electric field. The relationship between the displacement and
the field at any point in a dielectric is a characteristic property

of the substance and can be found empirically by properly

designed experiments. Only in the very simplest isotropic cases

is the dielectric constant as defined in equation (13-21) a useful

quantity.

I’lo. 11^-6.— The field inside a long narrow cavity, whose axis is parallel to the polar-
ization, is equal to the field in the body itself.

Problem 24. Consider a simple isotropic dielectric in which the

displacement is parallel to the field. Let a small cylindrical cavity

ho cut in the dielectric, with its axis parallel to the field and a diameter

very much smaller than its length. Let the whole cavity be so small

it has no influence on the distribution of field and polarization in the

body, and show that the field at the center of the cavity will be equal

to the field in the material just outside the cavity (Fig. 13-6).

Problem 26. Under the conditions of the above problem except

that the length of the cavity is very much less than the diameter, show
that the field' at the center of the cavity is equal to 1 /kq times the

displacement adjacent to it.

Problem 26. Show that the electric field at the center of a small

spherical cavity in a dielectric is eciual to E + P/3/co, where E and P
are the field and polarization in the dielectric adjacent to the hole.
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Problem 27. Show by means of Gauss’s law that, at a boundary

between two dielectrics on which there is no charge, the normal com-

ponent of the electric displacement is continuous across the surface.

Problem 28. Show from the fact that the electric field is the

gradient of a potential that the tangential component of E is con-

tinuous across the boundary between any two bodies.

Problem 29. For cases in which equation (13-21) holds, use the

results of the above two problems to establish a law of refraction for

the lines of electrical force at a boundary between two dielectrics.

Problem 30. Show that at the surface between two dielectrics the

electric field behaves as though it were in a vacuum and there were a

surface charge of density

'
= (I

-
>)

Ki and Ko are the respective dielectric constants of the two media,

and El is the normal component of the fi(dd in the first medium. The

positive direction of Ei is taken from the first medium to the second.

Problem 31. A flat-plate condenser is attached to a battery so

that the two plates arc kept at a constant diflerence of potential. At

first the plates are in a vacuum. Compute the surface density of

charge on the plates and the field between them. A dielectric of

constant K is then inserted between the plates so that it practically

fills the whole space but does not quite touch either plate. Find

the distribution of charge, polarization, field, and potential in this case.

The effects of the edges should be neglected in all cases, and, owing

to the symmetry of the problem, the field and the polarization can be

assumed perpendicular to the plates.

Problem 32. Carry through the above problem when the con-

nection with the battery is broken before the dielectric is inserted.

Problem 33. Show that the capacitance of a flat-plate condenser

is multiplied by K when a dielectric described by equation (13-21) is

placed between the plates.

3. The General Electrostatic Distribution Problem.—In the

first section of this chapter the problems treated were those in

which distributions of electric charge and polarization were

given and the problem was to compute the resulting potentials

and electric fields. In the second section the behavior of con-

ductors and dielectrics under the influence of an electric field

was described. The behavior consists in the redistribution of
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the charge on the conductors and the production of polariza-

tion in the dielectrics. When a conductor or a dielectric is

placed in an electric field, the redistributed charge on the con-

ductor, or the polarization produced in the dielectric, leads to

additional terms in the expression for the potential and to

possible changes in the original field. These again react on

the material bodies, and the final result is an equilibrium situa-

tion whose determination is the object of the analysis of an

electrostatic problem. In general, the distribution of charge

and polarization is not given, and the properties of the insulators

and dielectrics must be used to find it. The general problem of

electrostatics is then to find this distribution of charge and

polarization, of potential and field. The minimum information

necessary for this purpose depends upon the situation.

a. The fundamental equation of electrostatics is the dif-

ferential form of Gauss’s law, equation (13-17),

div D = p (13-17)

In a homogeneous dielectric in wliich the displacement is pro-

portional to the field, with a permittivity k,

div E = ^
(13-17a)

In the discussion that follows only this idealized type of dielec-

tric will be considered.

In most problems one has to deal with discrete pieces of

homogeneous dielectric to which equation (13-17o) can be

applied and it is not necessary to use the more general form of

(13-17). Since the field strength is the negative gradient of

the potential, equation (13-17a) is equivalent to Poisson’s

equation

^ ^ (13-17&)

In most problems the charge is confined to isolated points

or to the surfaces of conductors. An exception is the case of a

space charge in an electron tube, but such cases require special

methods of treatment and will not be considered here. The
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charge distribution in the usual case can be included in the

boundary conditions, and thus the potential will be a continuous

function that satisfies Laplace’s equation

= 0 (13-22)

in each dielectric. The connection between the potential in one

dielectric and in the next is made by the appropriate schedule

of boundary conditions.

In the remainder of this chapter it will be assumed that

1. All charges are located on conductors or at specified

isolated points.

2. The material bodies consist of discrete pieces of conductor

or of homogeneous dielectric with a permittivity k.

3. The only polarization is that induced in the dielectrics.

b. Schedule of Boundary Conditions.-- In ea{di of the discrete

regions of space defined by the conditions of the prol)lem, the

potential satisfies Laplace’s equation. Its beliavior at the

boundaries and at isolated points is given by the following

conditions:

1. The potential is continuous across the boundaries.

2. a. The normal component of the electric displacement is

continuous across tlie boundary between two dielectrics, wlien

there is no charge on the boundary.

d4>i d4>2
(13-23)

where n represents a normal to the surface.

h. At the boundary between a conductor and a dielectric

^ _
dn

~ —cr (13-24)

where a is the surface density of charge on the conductor and n
is the unit normal pointing into the dielectric.

3.

On the surface of a conductor one or the other of the

following is specified

:

a. The potential of the conductor.

b. The total charge on the conductor.
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4. a. In the neighborhood of an isolated charge the potential

has the form of {Q/AttkR) + constant.

h. In the neighborhood of an isolated dipole the potential has

the form of (p • R/47rKjK*) + constant.

5. At large distances from all charges and polarization the

potential vanishes at least as fast as 1/A. It is sometimes

desired, however, to treat a portion of a problem, in which case

this condition may be replaced by some other. For example, if

a number of bodies are placed between the flat plates of a very

large capacitor, the field at infinity may be said to be a uniform

field.

c. Theorem of Uniqueness.—The solution of problems in

electrostati(?s is very much simplified by the theorem of unique-

ness. According to this, if anj" function 4> satisfies Laplace’s

equation and the above s(*hedule of boundary conditions, it is

unique. No other function will satisfy the conditions, with the

possible exception of those wliich differ immaterially from the

first by an additive constant.

To prove this tlieorem, let and $2 be two possible poten-

tials for an electrostatic situation, and let [7 = $1 — 4>2. The
theorem is proved when it can be shown that U must be either

zero or a constant.

It is first clear that the theorem is satisfied throughout each

conductor. If the potential of the conductor is specified, U = 0.

If it is not specified, the definition of a conductor still requires

U to be constant. It is also clear that v^U = 0 throughout each

of the dielectrics, since both <i>i and <I>2 must satisfy Laplace’s

equation. Furthermore, it follows from the conditions on the

potential at infinity that U cither vanishes or is a constant. It

then remains to investigate the behavior of U throughout the

dielectrics.

By applying Gauss’s theorem to the vector {U grad U), it can

be shown that within each dielectric

Uv^U dv- f^U grad U - ds + (grad U)^ dv = 0 (13-25)

The first term in this equation is zero because = 0, so that



272 PRINCIPLES OF MATHEMATICAL PHYSICS

(grad uy dv= f^U grad U • dS (13-26)

This equation can be multiplied by k and the corresponding

equations for all the different dielectrics added together. Then

^ (grad Uy dv^"l Ki U grad U • dS (13-27)
i i

The surface integral is taken over the surface of each portion of

dielectric with dS in the direction of the outward-drawn normal.

Fig. 13-7.—The iritogral.s over the two sides of the boundary between two dielectrics
cancel each other.

U and grad U are the values of the fimctions just inside the

surface. The various surfaces will have the following types of

properties (Fig. 13-7):

1. Surfaces at infinity. On these either U or grad U becomes
so small that the surface integral vanishes.

2. Surfaces where two dielectrics meet. On these the

integral on one side will be the negative of the integral on the

other, since U must be continuous across the boundary, and
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the normal component of k grad U is also continuous across the

boundary.

3. Surfaces where the dielectric meets a conductor. If the

potential of the conductor is specified, 17 = 0 on this boundary.

If the potential is not specified, the integral over all the surfaces

adjacent to this conductor must be considered. 1/ is a con-

stant because of the conductor, and ^ 17 j grad U • dS will

vanish because of condition 3. Hence the right side of (13-27)

will vanish; and, since tlie integrand on the left can never be

negative, grad U must everywhere be zero. This requires that

U be zero or a constant.

Problem 34, Derive equation (13-25) for any continuous scalar

function U.

Problem 36. Consider a splierical conductor carrying a charge Q
and surrounded by a dielectric spherical shell of thickness T. Find

the potential, field, and displacement at all points.

Problem 36. Show that, in a space containing no charges and

surrounded by a conductor, the potential is a constant equal to the

potential of the conductor.

Problem 37. Consider a charged spherical conductor of radius A

.

Outside of the sphere, on one side of a plane through its center is a

dielectric of constant Ki and on the other side a different dielectric of

constant K^. Find the potential, field, and displacement in the

dielectric; and find the distribution of the charge over the sphere.

Then evaluate the potential by means of equation (13-14).

d. Spherical Harmonics .—A function that satisfies Laplace’s

equation is called a harmonic function. There are many kinds

of such functions, and it is important to know those whose

symmetry makes their application relatively simple. One
group of such functions consists of the spherical harmonics and
is especially useful in solving problems with spherical symmetry.

In spherical polar coordinates, Laplace’s equation becomes

dr \ dr) sin d dd \
^ 66

)

sin^ 6 d(p^
= 0 (13-28)

A solution of this equation, whose dependence on the radius is

expressed by a single power of r, is a spherical harmonic. There
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are a great many different solutions of equation (13-28). Since

the equation is linear, the general solution is a linear combina-

tion of all the independent particular solutions. We shall

treat here only the very simplest cases of elementary problems

that can be solved by means of spherical harmonics, for a com-

plete discussion of the properties of these functions constitutes

an extensive branch of mathematics.

To find a particular solution of equation (13-28) assume it

to be a product of fxmctions of the three independent variables

r, 6, (fi.
This gives the form

4’ = R{r)e{e)<j>{,p) (13-29)

Substitution of this form into (13-28) shows that it is a solution

provided that

dm 2dR
dr'^ r dr

1 d

sin 6 do
n{n -f 1)

n(tt, -f 1)

,. 2

-

“
sin^

“0

R 0

0 = 0

(13-29a)

(13-29?>)

+ m^4> = 0 (13-29C)

where n and m are constants. The solutions of equation

(13-29c) are trigonometric functions, and in order that they

be single-valued it is necessary that m be an integer. When n
and m are both integers, equation (13-296) has a series of

solutions designated by P„”‘(cos 9).

Problem 38. Show that

= r"P„”‘(cos d){A sin imp + B cos rrup) (13-30)

is a solution of equation (13-28).

Problem 39. Show that Po® = const. Pi® = cos 0, andPd = sin 0

are solutions of equation (13-296).

Problem 40. Show that

$ = )^(.n+i)p^m
((.(jg gin q. p gQg (13-30a)

is also a solution of equation (13-28).

Problem 41. Show that the functions of the form (13-29) that

satisfy equations (13-29a), (13-296), and (13-29c) form an orthogonal

system.



ELECTROSTATICS 275

Solutions of Laplace’s equation can be obtained by substitut-

ing all integral values of m and n such that m < n. The most gen-

eral solution is then a linear combination of these particular solu-

tions. In a particular problem it is necessary to evaluate the

constants in this linear combination so that the solution will

satisfy the prescribed boundary conditions.

Some of the solutions for small values of n and m have simple

interpretations.

1. n = 0, m — 0. The solution corresponding to equation

(13-30) is a constant, and that corre.sponding to equation

(13-30a) is 1/r. This latter is the potential about a point

charge at the origin.

2. n = 1, w = 1. The solution corresponding to equation

(13-30) is

= r sin d(A sin <p A B cos <p) (13-31)

This represents a uniform field perpendicular to the polar axis

and in a direction determined by the relative magnitudes of A
and B.

The solution corresponding to equation (13-30a) is

$ = (A sm^ + B cos (13-31 a)

This represents the potential of a dipole perpendicular to the

polar axis and in a direction determined by the ratio of A and B.

3. n = 1, TO = 0. Here again the two solutions represent a

uniform field and the field of a dipole but in both cases directed

along the polar axis.

As an illustration of the method of solution of a general

electrostatic problem, consider the case of a dielectric sphere

placed in a uniform ele(dric field. The charges producing this

field are considered as so far away that they are unaffected by
the sphere, and the field at infinity is required to be uniform.

The origin may be taken at the center of the sphere, and the

potential at the origin may be chosen to be zero. This latter

choice is possible because the field at infinity is specified rather

than the potential. The potential of the uniform field will then

be = —E(,r cos 6. This is one of the spherical harmonic
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solutions of Laplace’s equation, and it is the only one with a

positive power of r that can be used, since it must represent the

field at infinity. The effect of the dielectric sphere must then

be represented by only those solutions of Laplace’s equation

that vanish at infinity.

Fig. 13-8.—Some of the equipotential surfaces near a dielectric sphere in a uniform field.

The general procedure would be to assume an infinite series

of solutions, with arbitrary constants, and then determine the

constants from the boundary conditions. In simple cases,

such as the present one, however, it is possible to make a plausi-

ble assumption as to the solution and then to see whether or not

it is possible to satisfy the boundary conditions. If this can be

done, the theorem of uniqueness shows that the assumed solution

is correct.
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Let us try to represent the potential outside the sphere in

the form

= -E^r cos e + — (13-32)

and inside the sphere in the form

= Br cos d (13-32a)

The expression for contains the term necessary to ro^present

the field at infinity and no other term with a positive power of

r. It contains the one term with a negative power of r, and it

remains to be shown that the boundary conditions can be

satisfied with so simple a solution. The expression for con-

tains no negative powers of r since these would lead to an infinite

potential of the center of the sphere. Furthermore, since the

uniform field has been taken parallel to the polar axis, the poten-

tial must be independent of the azimuili angle <p, and only

spherical harmonics witlr m = 0 need be used. Considerations

of this kind can be used as a guide in sclecding the type of func-

tion to be used in a trial solution, but tlie final criterion must be

the possibility of satisfying all tlie boundary coziditions.

To evaluate the undetermined constants in the problem at

hand we may first apply the condition tliat the potential is

continuous. If the dielectric sphere lias the radius R,

Wi) = <t>i(R)

and
T . ^ -A eos 6
BR cos 0 — — Ei)R cos 0

or

B = Eo (13-326)

The normal component of the electric displacement must be

continuous across the boundary so that

K
or

dr dr

KB cos 0 = —Eq cos 0

for r — R

2A
R^

cos 6
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This leads to

A = ^'^0 and B = Eo (13-32c)

and the potentials are therefore

(

K — \

K~V2^ 7 ^ {V^^S2d)

d>i = - ^ (13-32e)

Problem 42. Determine the^polarization of the dielectric sphere

in the above problem, and use equation (13-11) to find the potential

due to it, on the axis and in the ecjuatorial plane.

Problem 43. Find the potential about a conducting si)here in a

uniform field.

Problem 44. A conducting sphere is given a charge Q and is phu^ed

in a uniform field. Find the potential around it, the distribution of

charge on its surface, and the total force on it. The force on each

element of area of surface is directed noi’mally outward and is ecjual to

(a-/2Ko)ds.

4. Energy of an Electrostatic System.—For purposes of com-

puting the forces on a few point charges, it is sufficient to u.se

Coulomb’s law. For more complicated cases, however, it

is more satisfactory to use a potential energy of the system.

Of course, this must be clearly distinguished from the potential

of the various points.

A single isolated charge experiences no force and so has an

energy independent of its position. Let this be set equal to zero

here. To bring up another charge while the first is held

fixed requires an amount of work equal to qq'/Aw

K

qR, where R is

the distance between the two charges. This may be called the

energy of the electrostatic system. There is no reason for

assigning it to one charge rather than the other, but its negative

gradient with respect to the position of either charge gives the

force on that charge.

Because the electric field can be derived as the gradient of a

scalar potential, it can be shown that the energy of an electro-

static system is a single-valued function of its configuration
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and therefore is suitable for use in finding forces. If a series of

point charges is brought up from infinity, one at a time, the

total amount of work done will be

tj

where both i and i are summed over all the charges. It is clear

from the derivation of this expression that the terms for which

i = j must be omitted as they have no significance.

Problem 46. Show that the energy of two charges is qq^/At

Problem 46. Show that the work necessary to bring a point charge

into an electrostatic field is (Hpial to the potential of the point to which

it is brought, multiplied by the charge. In this process it may be

assumed that all the charges but one arc held fixed in position and that

only these fixed charg(5S contribute to the potential of the point to

which the other charge is brought.

Problem 47. Show that the amount of energy necessar}^ to charge

a conductor is g^/2C, where q is the charge put on the conductor and

C is its capacitance.

Problem 48. Work out the potential energy of a dipole in an

electric field.

When the charges are treated as continuously distributed,

the sum in equation (13-33) becomes an integral and has the

form

W =
^ J P^dv (13-34)

When it is written in this way there is no difficulty about exclud-

ing the potential due to the charge at the point in cjuestion, for

this goes to zero as dv is made smaller. It does not lead to a

singularity as in the case of point charges.

Problem 49. Use equation (13-34) and the solution of Prob. 44 to

compute the energ.y of a charged sphere in a uniform field. From this

energy compute the force on the sphere.

To treat the general case it is necessary to compute also the

energy associated with the polarization that is present. In this

case one must consider the question as to where the zero of



280 PRINCIPLES OF MATHEMATICAL PHYSICS

energy is to be put. If the polarization is fixed and its energy

of formation is not taken into account, a term

— j
"9 ‘"E dv =

/ P* grad d* dv

must be included. The more usual case, however, is that in

whi(!h the polarization is induced and is proportional to the

field E which produces it. In this case the energy stored up in

forming the polarization just compensates the negative energy

of the dipole in the field that produces it, and the total energy is

zero. Hence induced polarization contributes to the energy

only in so far as it gives rise to a field at points where charges

are located. Under these conditions, when only induced polari-

zation is present, equation (13-34) is clearly the general form

for the energy of an electrostatic system.

As an illustration of this situation consider a dipole made up

of a positive charge q and a negative charge —q, held together

by a force proportional to the distance d between them. This

force is intended to represent the elecd-rostatic attraction and

whatever other forces exist, and may be a godd appioximation

when the distance d is of atomic dimensions. If then a positive

charge Q is brought to a distance R from the dipole, the two

charges composing it will separate until the fonie holding them

together just balances the force from the charge Q. Under

these circumstances d is given by

ad = qQ
AttkoR'^

(13-35)

where a is the force constant. The work done against this force

is ad‘^/2 so that the energy of formation of this dipole, Wd, is

Wd = / qQ
(13-35a)

2a yiiTKoR^J

The dipole as a whole is attracted by the charge Q, and thus

the energy in the field of Q is negative and of amount We where

qQd ^ _ 1 / qQ Y
AttkoR'^ a \4ir/CoI2v

If.
= - (13-356)
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Similarly the energy of the charge Q in the field of the dipole is

Qqd

AtTKoH^ a \4TrKuR‘^/
(13-35c)

The total energy may be considered as W

a

and either We or Wq.
In either case

IT = - (13-35d)

This is just one-half the energy of Q in the field due to the dipole

and is an illustration of the justification for the use of equation

(13-34) to express the energy of an electrostatic system con-

taining only induced polarization.

The energy expressed by equation (13-34) is a property of the

system as a whole and cannot properly be divided among the

charges. This fact is emphasized strikingly by the field point

of view when it is applied to this electrostatic energy. It is

possible to transform tlie integral in equation (13-34), which is

over the charge density, into an integral over the field.

TT = iJ p# dv = I j div D ^ d.v

=
-jJ div (4>D)d?; — 4 j D • grad $ dv

= D • E d?; (13-36)

In this expression the integral of div (<I’D) is set equal to zero

because it can be transformed into a surface integral over a

surface enclosing the whole system. This surface can be taken

so far away that all tlie field quantities, including # and D,

vanish rapidly enough to make the integral approach zero. The
result is that the energy of the system is one-half the volume
integral of the scalar product of D and E. According to the

point of view of Faraday and Maxwell, the energy actually

resides in the space surrounding the charges, and one-half the

scalar product of D and E can actually be regarded as the energy

density. This point of view is certainly suggested, although it is

not required, by equation (13-36).

There is an apparent discrepancy between equations (13-36)

and (13-33) as regards the energy of an isolated charge. In

equation (13-33) the terms for which i = j are omitted so that a



282 PRINCIPLES OF MA THEMATICAL PHYSICS

single charge is assigned a zero energy. Equation (13-36), on

the other hand, would assign it an energy given by the integral

over the field. The difficulty is associated with the restrictions

it is necessary to place on the size of the volume elements in

which charge density is defined. Equation (13-36) leads to no

difficulty when the charge distributions are such that a charge

density can be used. It cannot be used, however, to compute

the field of an isolated electron Avithout further restriction.

Problem 60. Find the energy of a charged conducting sphere by
integrating over the electric held outside of it. Compare the result

with that obtained by considering the capacitance.

Problem 61. Compute the (uiergy of two (duirged, concentric,

spherical shells.
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CHAPTER XTV

MAGNETOSTATICS AND THE INTERACTION
OF STEADY CURRENTS

For many years after the discovery of electricity and the

discovery of magnetism, these phenomena were considered to be

separate. Although they displayed striking similarities and

were cast into the same mathematic^al form, the studies of

magnetostatics and electrostatics were essentially independent.

After 1820, when Oersted made the fundamental discovery that

an electric current is accompanied by a magnetic field, this

situation changed. The two phenomena are no longer con-

sidered to be separate. The relationship between them, how-

ever, is not asso(aated with their similarities. It is an actual

physical relationship such that magnetic phenomena can be

produ(!ed by electric means and electric phenomena by magnetic

means. Oersted’s discovery, in fact, emphasized the difference,

since there is no means for isolating a magnetic charge or pro-

ducing a magnetic current. The fundamental magnetic

quantity is not charge but magnetization. This is a very

fundamental difference and justifies abandoning the early

identical treatment for the tw'o subjects and the use of dif-

ferent mathematical descriptions for magnetic and for electric

phenomena.

A magnetic field is always produced by an electric current

or by magnetization. Magnetization is analogous to electric

polarization. It can be crudely pictured as due to molecular

currents that act as magnetic dipoles. For this reason the

fundamental magnetic phenomenon may be considered to be

the interaction between electric currents, and the treatment in

this chapter will follow such a line of development. This

method of treatment ignores to a large extent some of the strik-

ing similarities between electric and magnetic phenomena, but
283
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it emphasizes other more fundamental properties and seems the

best introduction to the general theory of the electromagnetic

field.

1. Ohm’s Law and Steady Currents,—In electrostatic

problems a conductor is characterized by the property that all

parts of it are at the same potential. Tliis state is attained,

however, only after there has been a movement of charge from

one part of the conductor to another. Such a movement does

not take place instantaneously but lequires a certain time, not

only because of the inertia of the electrons, but more because

the conductor presents a frictionlike resistance to the flow of

charge. Such a flow of charge is called a current, and the amount
of charge passing through a fixed surface per unit time is a

measure of the current.

If the two plates of a charged capacitor are connected by a

wire, the charge will flow from one plate to the other through

the wire and while it is flowing there will be a current in the

wire. If the rate at which charge passes a given section of the

wire is expressed in coulombs per second, it is a measure of

the current in amperes. When expressed in electrostatic units

(esu) of charge per second, the current is in esu of current. The
measurement of a current requires only the measurement of a

charge and a time.

It is found experimentally that, when there is a constant

current in a homogeneous wire at constant temperature, the

current is proportional to the potential difference between the

ends of a section of the wire. The constant of proportionality is

called the conductance of the section of the wire, and its reciprocal

is called the resistance. It is found experimentally also that the

conductance of a section of wire of uniform cross section s is

proportional to s, inversely proportional to the length dl, and

proportional to a constant of the material called the conduc-

tivity <T, Hence

I = (14-1)

where the negative sign indicates that the current has the direc-

tion of decreasing potential. The current per unit cross section
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of the wire is called the current density and may be designated

by i. From equation (14-1) it follows that

T
i = = aE (14-lo)

s dl

so that the current density is proportional to the electric field

in the direction of the wire. The current in a thin wire has the

direction of the wire and the sense of the electric field. A cur-

rent in an extended isotropic conductor has the direction of

the electric field, and the current density is a vector proportion

to this field.

i = (tE (14-15)

If the conductor is not isotropic, the current density is a linear

vector function of the field and the conductivity is a tensor

rather than a scalar. Only the isotropic case will be treated

further in this chapter.

Because the current-density vector represents a flow of

electricity, its divergence must be zero in a steady state. Other-

wise, charge would be a(;cumulating or disappearing. Except

at points where charge is fed into the conductor or taken away
from it,

div i = 0 (14-2)

This differential equation describes the current-density vector

in an extended conductor. If a vector function can be found

that satisfies equation (14-2) and also the boundary conditions

and other conditions of the problem, it will be a possible solution

of the problem but may not be the only solution. To determine

the solution uniquely, other factors may have to be taken into

account.

As an example, consider an infinite plane sheet of conductor,

and identify points on it by means of a Cartesian coordinate

system. Let I coulombs per second of electricity be fed into

it at the point x — —a and removed at a: = a. The problem is

thus to find a function whose divergence is zero except at

X = —a and x = a. The integral of the normal component of i

around any curve enclosing x = —a but excluding x = a must
be equal to I.
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A vector representing an outward flow from x = —a is

Similarly a vector

l2 =

(^+ a)i y]

2x {x + + 2/^

- I (x — q )i + j/

j

2ir (x — a)'^ + y*

(14-3a)

(14-3f>)

will represent an inward flow to the point x = a. The sum of

these is a solution of the problem

J
2Tr

(.T + a)

{x -j- a)‘^ + y'^ {x

y

(x -
a)- + y'\

+ y

(x + a)‘^ + y2 _ „)2 -)- fj
2]^)

(14-3)

In these equations the symbol i represents both current density

and the unit vector along the x axis, but the distinction between

these two uses should be clear from the context. Ecpiation

(14-3) is not the only solution under the conditions stated. To
it could be added a third solution of equation (14-2) such as

= -j/L+JLi
~ + y^)

(14-3c)

where / is an}" function of its argument x^ -f- y^. This vector

has a zero divergence, and its inclusion does not affect the way
in which the boundary conditions are satisfied. However is

represents a current around the origin, and it is quite evident

on physical grounds, and also because of the symmetry, that such

a current should not exist in the circumstances of this problem.

The current is can also be eliminated as a solution of this

problem by another consideration. Since the electric field in an

electrostatic problem can be expressed as the gradient of a

potential, its curl must be zero. Hence from equation (14-2) it

follows that in an isotropic conductor

curl i = 0 (14-4)

If both equations (14-2) and (14-4) are valid at all points, the

only possible vector current density is a constant. This means
that currents cannot exist in a purely electrostatic field and that
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one of the two equations must be inapplicable at some points.

In the above problem, equation (14-2) doe.s not apply at

the two points where the charge is introduced and removed,

and equation (14-4) does not apply throughout all the circuit

leading to and from the plate under consideration.

Problem 1. Consider an infinite solid conductor into which

charge is introduced at one point and removed at anotlau-. Find the

current and the electric field.

According to equation (14-4) the line integral of i about a

closed curve should be zero. It is known, however, that cur-

rents do exist in closed circuits, so that sucli currents must be

produced by other than electrostatic; means. There must exist

electric fields other than the kind described in the previous

chapter.

Let E' be an electric field in the ,sen.se that it repre.sents a force

on an electric charge, Init let, it not be tlie gradient of a potential.

The curl E' will not l)e nece.s.sarily zero. This electric field

may be due to chemical a<;tion as in a battery, to thermal

action as in a thermocouple, to electromagnetic action as in a

generator, or to other cau.ses. The line integral of the total

field E = Es -f- E' around a closed circuit Avill be equal to the

line integral of E' around the circuit and is called the electro-

motive force (emf) of the circuit.

The important distinction between electromotive force and

potential difference can be illustrated by the schematic diagram

of a circuit fed by a battery as shown in Fig. 14-1. The battery

is represented as consisting of two plates marked -f and —

.

The circuit is a long wire of uniform material and cross .section

so that the resistance per unit length is everywhere the same.

Let the potential of the negative pole be zero and the potential

of the positive pole be V. The potential will then drop uni-

formly along the wire. Halfway around the circuit it will be

F/2.

Inside the battery the potential will likewise fall from F to

zero. The field associated with this potential will be — Vfl,

where I is the distance between the plates and this field would

tend to stop the current. The characteristic feature of a
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battery, however, is that the chemical reaction going on in it

tends to move the charge from the negative to the positive pole

against the electrostatic field E*. The energy necessary for

doing the work involved comes from the chemical energy of the

battery. In Fig. 14-1 the effect of the chemical reaction is repre-

sented by the hypothetical electric field E', and it is clear that

E' > Eg in order to overcome the resistance inside the battery.

Fiq. 14-1.—Potential distribution around a cirnuit oontaining a battery.

In this illustration it can be seen that the integral of E^ around

the circuit and through the battery is zero, for the field inside

the battery is taken in the opposite direction to that outside.

The integral of the whole electric field around the whole circuit

is E'l, and this is the emf of the battery.

Problem 2. Find the relationship between the emf of a battery

and the potential difference between its terminals.

2. Forces between Steady Currents.—As in the case of

electrostatics, it is necessary to begin the study of magneto-
statics with a fundamental law of force that is the expression of

experimental results. This fundamental law seems to have been
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first investigated by Ampere about 1825. He studied the forces

between closed circuits of various kinds and expressed the results

in a series of laws. These laws refer to closed circuits only,

since it is not possible to produce a steady current in an open

circuit. For the purpose of building a mathematical theory,

however, it is desirable to have an expression for the influence of

one current element on another. Such an expression can be

derived from Ampere’s laws, but the result is not unique. There

are many laws of force between current elements that will give

the observed results for closed circuits. The selection of one

of these laws rather than another must be made on the basis of

the study of more complex phenomena and by considerations

of convenience. The form given below has proved useful in

the general theory of the electromagnetic field and is now
generally used.

a. The Fundamental Law of Force .—We shall take as the

fundamental law of force between elements of a current

dF = ^ dl X (dr X R) (14-5)

This gives the force on the element dl due to the presence of

dl'. dl and dl' represent elements of thin wires that carry the

currents I and /', respectively. The vector R is directed from

dl' to dl. As has been indicated, this expression gives the

observed forces between closed circuits, but it cannot be directly

tested for current elements. Nevertheless, other indications

strongly suggest that it is correct. It is also to be especially

noted that the expression is not symmetrical in dl and dl'. This

means that the interaction between these two elements does not

satisfy Newton’s third law of motion and that the momentum
of the elements dl and dl' would not be conserved. The forces

between closed circuits, as given by an integral of equation

(14-5) as well as observed experimentally, do satisfy this law.

Because open circuits must be considered in connection with

varying currents, there will be introduced later the idea of

momentum and energy existing in the field between the charges

and currents. When all the momentum is considered, it will

be conserved.



290 PRINCIPLES OF MA THEMATICAL PHYSICS

Problem 3. Two elements of current lie in the same plane. Find

the force on each of them in terms of the angles they make with the

line connecting them.

Problem 4. Find the force per unit length Ixitween two long

parallel wires of length L that <!arry curnmts / and /'.

h. Electromagnetic and Practical Units.—Tlie esu of charge

was defined by means of the law of force between two charges.

In a similar way, equation (14-5) can be u,sed to define a unit

of current. Equation (14-5) gives the force in d3m.es between

two current elements wlien the current is measured in electro-

magnetic units (emu) and /xo = 47r and is dimensionless. Since

current is defined as tlie amount of charge that passes a given

surface per second, the definition of the unit of current gives also

the emu of electric charge. The unit of time is the second in

all cases. The connection between these emu and the esu of

the previous chapter must be determined by experiment, and

it will be shown later how this relationship involves the velocity

of light.

In using the mksc system of units jxo must be given such

dimensions and such a value that e(}uation (14-5) holds. Since

force is measured in newtons and current in amperes, /xo must
be measured in newtons per ampere.^ The value of fio is the

result of experiment and is 47r X 10~‘ newtons per ampere^.

c. The Magnetic Field.—Again as in electrostatics, it is con-

venient to introduce a vector field to facilitate the calculation of

forces. This field is called the magnetic induction and is desig-

nated by B. It is so defined that an element of current put into

this field experiences a force given by

dF = / dl X B (14-6)

The dF in this equation differs from the one in equation (14-5) in

that it represents the total force on the element dl due to the

presence of all the other existing currents, while the dF in equa-

tion (14-5) represents the force due to the current element dl'

only. From equations (14-5) and (14-6) it follows that

(14-6a)
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where the integration is carried out over all the elements of

current dl' which can exert a force on an element placed at the

point for which B is calculated. The vector R points from dl'

to this point. The vector B can be regarded as merely a con-

venient way of expressing the resultant effects due to all the

currents present, and it is often convenient to regard these

currents as producing the induction. From equation (14-6) it

can be seen that B will be measured in newtons per ampere-

meter or webers per meter*.

Problem 6. Show that the magnetic induction around an infinite

straight wire is equal in magnitude to ju„//2irpand is perpendicular to the

wire. This can be done by assuming the wire to be finite, computing

the field in a plane perpendicular to it at its mid-point, and letting the

length increase indefinitely, p is the pei-pondicular distance from the

wire to the point at which pJI'^Tp is the induction.

d. The Magnetic Vector Potential .—In electrostatics it is

convenient to introduce a potential from which the electro-

static field can be obtained by differentiation, by taking the

gradient. With the magnetic indindion a similar procedure

can be followed, with the difference that tlie potential is a vector

and the induction is obtained by taking the curl. In equation

(14-6) the vector R has its origin at dl' and its end at dl. The
vector R/ii* can then be expressed as — grad {1/R) where the

differentiation is with respect to the coordinates of the end of

R, i.e., with respect to the coordinates of dl. This differentia-

tion is independent of the integration over dl' and so can be

taken out of the integral sign. Then equation (14-6a) can be

written
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The curl in this equation is with reference to the coordinates of

the point at which B is desired. This shows that the vector B
can be derived from a vector potential A by taking the curl and

that in the case when only steady currents are present

B = curl A with A Mo

47r R (14-8)

As an example of the utility of this method, consider the

case of a straight wire of length 2L carrying a current I, Since

all the elements of the wire are in the same direction, the vector

potential A will have this direction. Take this direction as

the z axis of cylindrical coordinates, and compute A, in the plane

perpendicular to the wire at its center, as a function of p and d.

A = ^ 7k
47r

L + (L^ +

As L becomes larger and larger, A approaches the value for an

infinite wire,

A = g/k(log27. -logp) (14-9;

This vector potential has the same dependence on p as the

electrostatic potential due to a long charged wire worked out in

Prob. 3 of the preceding chapter. Although log L is infinite,

it is a constant, independent of p, and is immaterial in the

determination of B from A.

The field associated with this vector potential can be found

by taking the curl in cylindrical coordinates.

B = curl A = ei)(po/2Tr)7

P
(14-10)

This is the same as the result obtained in Prob. 5, with the

additional information as to the direction furnished directly by
the process of taking the curl.

Problem 6. Find the magnetic vector potential and the magnetic
induction about two parallel straight wires of infinite length, both for

the case in which the currents are in the same direction and that in

which they are in opposite directions.
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Problem 7. Show from equation (14-6a) that on the axis of a

circular loop of wire the magnetic induction is

B = (mo/2)/.4^

(4 2 + z^)l
^ (14-11)

where A is the radius of the loop, z is the distance from the plane of the

loop along the axis to the point at which B is the induction, and k is the

unit vector along the axis.

Problem 8. Use the result of the previous problem to show that

the induction on the axis of a long, closely wound solenoid is

B ^ /If I
L d

,

L d

2 \[{L + d)^ + ^ [(L -- dr + A'^]^\
(14-12)

where 2L is the length of the solenoid, n is the number of turns per unit

length, A is the radius, and d is the distance along the axis from the

center to the point at which B is the induction.

Problem 9. Show that div B = 0. (14-13)

Problem 10. Show that the vector potential due to a circular

current is

where R is the vector from the center of the circle and is much larger

than the diameter D of the circle. In this expression m has a magni-

tude given by the product of the current and the area of the circle

around which it flows, m is perpendicular to the circle, and its

direction is related to the direction in which the current is flowing by
the right-hand-screw rule, m is called the mag7ietic moment of the

current.

Problem 11. Find the magnetic induction around the current of

Prob. 10, and show that at large distances it has the same form as the

electric field around an electric dipole.

c. Current Density .—The fundamental law of force in equa-

tion (14-5) was expressed in terms of current elements having a

length dl and a cross section so small as to be unimportant.

It is sometimes necessary to study the distribution of the mag-
netic induction in and around large conductors in which the

distribution of the current must be taken into account. For

this purpose it is necessary to consider the current density.
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The connection of the current density with the current is made
by means of the equation

im.-=idv (14-15)

This equation can be interpreted by taking volume elements in

the conductor which are long compared with their transverse

dimensions and of which the lengths are parallel to the direction

of the current at the point considered. Then each volume

element has the properties of a long thin wire to which the left-

hand side of the equation can be applied. The right-hand side

follows from the definition in equation (14-la). In terms of

the current density the vector potential is given by the equation

A Ho f idv

The integral gives the value of this potential at all points inside

and outside of the conductors carrying the current.

3. Properties of the Vector Potential and Magnetic Induc-

tion When Due to Steady Currents Only.—From the expression

for the vector potential in terms of the current distribution it is

possible to determine properties of the field of induction that

are sometimes more useful than the defining equations them-

selves. These properties of the magnetic vectors are analogous

to those already described for the electric, vectors. It must be

remembered that the properties given here refer to the case in

which only steady currents are present and do not take into

account the presence of material bodies or the existence of

variable currents. The magnetic behavior of material bodies

will be treated later in this chapter, and the effects of varying

currents will be treated in the next chapter.

a. The vector potential is a continuous function of position.

This follows from its definition in equation (14-1 G). Any
quantity defined by such an integral will be continuous if the

numerator of the integrand is everywhere finite.

b. The vector potential satisfies the partial differential

equation

V^A = —fioi (14-17)
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Each component of A is given by the defining equation (14-16) in

the same form as the scalar electrostatic potential. The
Laplacian of this potential was shown to be equal to the negative

of the charge density divided by kq; it can thus be seen immedi-

ately that the Laplacian of each component of A is equal to

— )Uo times the corresponding component of i. Combining the

three component equations gives (14-17).

c. For this special case of steady currents the vector potential

satisfies the equation
div A = 0 (14-18)

This follows from the definition of A by taking the divergence

div A ~ 4t f dx] (/() dyl (/() + dz, (/f),

where the subscript s indicates that the (x,y,z) involved are

those of the point at which A is the potential. The one end of

R is at this point, and the other is at the volume element dv.

This equation can be written as

divA = £ J
i • grad» ~ S /

*

'
(t^)

(14-185)

This last e(iuality is based on the fact that

as can be seen by writing it out. Because of the vector identity

(8) on page 244 it follows that

div A = ~ ^ J
dR

(j^
dv + ^ J ^ div i dv (14-18c)

Since div i = 0 for steady currents, the last integral vanishes.

The first can be transformed into a surface integral over any
surface bounding the volume containing the currents; and if

this surface is taken large enough, the current density on it

vanishes. Hence equation (14-18) follows for the case of steady

currents with div i = 0.

d. From (b) and (c) it follows that

curl B = )Lioi (14-19)
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and from Stokes’s theorem that

• dl = fiol (14-20)

where I is the total current through the loop around which the

line integral is taken. As will be emphasized later, this relation

is valid only in the absence of magnetization.

e. Uniqueness .—If the current density is specified at every

point in space, the vector potential can be determined uniquely

by means of the definition in equation (14-10). It can also be

determined as a solution of equation (14-17) subject to the

auxiliary condition (14-18). When determined in this latter

way there remains undetermined an additive constant, which,

however, is as unimportant as the possible additive constant on

the scalar potential.

The proof of this uniqueness follows along lines similar to

those in the electrostatic case. If two vectors Ai and A2 satisfy

the differential equations consider the vector A' = Ai — A2 .

Then div A' = 0, and from equation (14-17) it follows that

V^A' = 0. This vector equation is the equivalent of three

scalar equations, one for each component. Consider Ax'. Then
as in equation (13-26),

Ax' grad Ax'

•

ds = j {grad AA)^ dv (14-21)

The left-hand side of this vanishes if it is required that Ax'

vanish at infinity as rapidly as \/R. Hence grad A*' = 0 and

Ax' must be zero or a constant.

Problem 12. Show that, if equation (14-18) is not taken as the

auxiliary condition, there are many different values of the vector poten-

tial that will give the correct field of induction, B.

Problem 13. Derive equation (14-19).

Problem 14. Use equation (14-20) to find the value of B around an

infinite straight wire carrying a current.

4. Magnetic Fields Due to Magnetization.—In the previous

sections the production of magnetic fields due to steady currents

has been treated, but it is also true that there exist magnetic

fields around magnetized bodies when there are no currents in
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the neighborhood. A magnetized body is not analogous to an

electrically charged body, which is accompanied by its electric

field; instead, it is analogous to an electrically polarized body
surrounded by an electric field characteristic of its state of

polarization. A magnetized body is characterized by a magnetic

moment rather than by anything like a magnetic charge, and

the magnetic moment per unit volume is a vector function of

position called the magnetization M. Magnetic moment has the

dimensions of current times area, so magnetization is measured in

amperes per meter.

On the molecular picture first developed by Ampere, the

magnetic moment of an element of volume is due to closed cur-

rents within the molecules. It has been shown above that a

small circular current produces a magnetic field which is, at

great distances, identical with the field of a dipole. Hence
the theory of the field due to magnetization can be taken over

almost bodily from electrostatics. For the purposes of a macro-

scopic theory the detailed nature of the magnetization is

unimportant.

In a field due to electric polarization alone, one has from

Chap. XIII that, since div D = 0, div E = — (1 /ko) div P, and

curl E = 0. Similarly in a field due to magnetization alone

div H' = — div M (14-22)

curl H' = 0 (14-23)

Here the field vector is designated by H'. The letter H is

used instead of B because this vector clearly has properties

different from those of B [equations (14-19) and (14-13)], and
the ['] is used to indicate that only magnetization is present.

If now we define a new vector B' = juoH' + /xoM, then

div B' = 0 (14-23a)

This vector is similar to the previously defined B in that it has a

zero divergence and can therefore be derived as the curl of a

vector potential.

B is the fundamental vector of a magnetic field. When the

field is produced by currents only, B is given by equations
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(14-6) and (14-8). When the field is due to magnetization only,

B has the properties of the B' described above.

In general, botli currents and magnetization are present and

contribute to the field. In this case the magnetic field vector B
satisfies the following equations:

div B - 0 (14-24)

curl B = jU()i + Mo curl M (14-25)

^ * * Mo r i + curl M
, _ ,B = curl A ^ ~ ^ ^

—

J{
— (14-26)

If the distributions of current and magnetization are known, the

vector potential can be computed from equation (14-26) and B
can be found by taking the curl. Equation (14-24) is true for

the part of the field due to currents by equation (14-13) and

for the part of the field due to magnetization l)y equation

(14-23a). The first term on the right side of equation (14-25)

comes from equation (14-19) and describes the part of B due

to currents. The second term applies to the part of B due to

magnetization only. Similarly the integral for the vector

potential contains a term representing the effect of the current

and another the effect of the magnetization.

In the general case a vector H can be defined by the equation

H = — - M (14-27)
Mo

H is called the magnetic field strength and is often a convenient

vector to use. Its curl is equal to the current density and its

divergence is equal to — div M. It may be considered asmade up
of two independent parts. One part has a zero divergence and a

curl equal to i, and may be computed by means of equation

(14-8) if the /xo is omitted. The other part has a zero curl and a

divergence equal to — div M. It can be (computed by regarding

— div M as an effective magnetic charge and using equations

similar to those by which E is computed from (p//co). The sum
of these two parts gives the whole vector H.

The difference between B and H can be illustrated in the

case of a long, uniformly magnetized, cylindrical rod in which

the magnetization is parallel to the length. Let I be the length
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and S the area of the cross section. Under these circumstances

the divergence of M is everywhere zero except at the ends, and

the curl of M is everywhere zero except on the cylindrical sur-

face. On each end of the rod the div M has a large value where

the vector rapidly changes from its value of zero outside the rod

Fig. 14-2. ~ 'J’lie field H around a uniformly magnetized rod.

to the constant value inside. This value of the divergence is

such that, when it is integrated over a thin flat volume including

the end of the rod, the result is that of a sui*face integral of the

magnitude of M over the end of the rod. The divergence has

values of opposite sign on the two ends. Thus the distribution

of H as shown in Fig. 14-2 is the same as the distribution of

the electric field due to two flat surface distributions of charge of

surface density M. At the center of the rod H SMS^
A—iV k and
47r/^

is in the direction opposite to the magnetization. Just inside

the end at the left of the figure, H = —M/2 so that at this

point
M

B = /xqH + Mo M = + Mo-y;
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just outside this end, B = yiioH = + /xoM/2. As a consequence

of equation (14-24) the normal component of B is continuous

across any boundary.

On the other hand, the vectors could have been computed

from equation (14-26). The current density is everywhere zero,

but the curl M is different from zero in a cylindrical sheet

coinciding with the surface of the rod. This curl is parallel to

the surface and perpendicular to the axis of the rod, which makes

the vector B the same as in the case of a long solenoid with a

current M per unit length. At the center B = ;uoM if the rod is

long enough to neglect the end effects entirely, i.e., long enough

to neglect H at the center.

Problem 16. Assume that the magnetization at the surface of the

rod treated above falls uniformly to zero in a surface layer of thickness

t. Compute the value of div M and curl M on the surface.

Problem 16. Determine approximately the values of B and H
inside and around a right circular cylinder of which the radius is much
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greater than the length and which is uniformly magnetized parallel

to its axis.

As another illustration of the utility of the vectors B and H
and of the application of equations (14-22) to (14-27), consider

a large piece of magnetized material in which a cylindrical

cavity has been made. Let the axis of the cavity be parallel

to the direction of magnetization, and let the radius of the

Fi«. 14-4. ValuoH of B and H inside and around a cavity in magnetic material,

cylinder be much greater than its length. Inside such a cavity

it might be possible to measure the magnetic induction B, and

the question arises as to the connection between this measured

B and the vectors B, H, and M in the sub.stance just outside the

cavity. It will be assumed that the cavity is so small that its

presence will not appreciably affect the magnetic vectors in the

material around it and that the field quantities wall not change

appreciably from one side of it to the other.

From equation (14-24) it follows that the vector B will have

the same value just inside a circular end of the cylinder as just

outside; and since these circular ends are very large compared

with the length, one can immediately conclude that the field in

the cavity is equal to the B in the material. However, it is

instructive to consider this on the basis of equation (14-26) as

well. The value of B inside the material before making the

cavity could be computed from the vector potential as deter-

mined from equation (14-26). Making the cavity leaves

unchanged all the quantities in this expression such as the

current density and the curl M, with the exception that on the

cylindrical wall an additional curlM is introduced. The curlM
introduced along this surface has the same effect on the vector

potential as a circular current. The field due to such a current.
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at its center, is inversely proportional to the radius of the circle,

and therefore in the limit of the case considered here it will be

negligible. Thus one concludes again that the insertion of the

cavity has no effect on the vector B.

On the other hand, if one wishes to work with the vector H,
the analysis is different but of course leads to the same result.

The divergence of H is not zero but is equal to —div M,
and the divM has a large value on the circular ends of the cavity.

On these surfaces the divergence has such a value that in produc-

ing a field it is similar to a charge distribution of surface density

M. This, as in the electrical case of a flat-plate condenser,

produces at the center a field equal to poM in the direction of H
so that the total is moH -f /IqM = B. The field H in this expres-

sion refers to the H present before making the cavity, since of

course in the cavity itself the vectors /ioH and B are identical.

Problem 17. Carry through an analysis similar to that above for

the case of a spherical cavity, and also for th(^ (;aso of a cylindrical

cavity in which the radius is very small compared with the length.

Find the relationships between B in the cavity and B, H, and M, in

the material.

Problem 18. Show that in a field due to both curi'cnts and mag-

netization

JH • dl = / (14-28)

This is in contrast to eqiiation (14-19), which .applies only to the case

when no magnetization is present. In that special ca.se, equations

(14-19) and (14-28) arc identical.

6. Effect of a Magnetic Field on Material Bodies.—When a

material body is placed in a magnetic field, magnetization

appears in it. This is very similar to the appearance of electric

polarization when a body is placed in an electric field. The
laws governing the behavior of the material in the field are very

complicated. In some cases the magnetization is parallel to

the field and proportional to it. The substance is then said to

be paramagnetic. In other cases the magnetization is not pro-

portional to the field and is very much dependent upon the

previous history of the substance. The materials that show the

most striking behavior of this kind are in the iron group, and
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therefore the behavior is called ferromagnetism. In some case

the magnetization is opposite in direction to the field. The
body is then called diamagnetic.

The behavior of paramagnetic and diamagnetic materials

can be treated much as was the behavior of a dielectric. The
magnetization may be regarded as approximately proportional

to the magnetic field so that

M = XmB. (14-29)

where the assumed constant of proportionality Xm is dimen-

sionless and independent of the system of units used. Xm
is positive for paramagnetic and negative for diamagnetic

substances.

From equation (14-29) it follows that

B = moH + MoM = (]-!- Xm)MoH = jaH (14-30)

where g is called the permeability. For crystalline bodies the

permeability will be a tensor .so that the induction is a linear

vector function of the magnetic field.

It must be remembered that equations (14-29) and (14-30)

are really defining equa tions for Xm and g. Only if Xm and p. are

fairly independent of the magnitude of H are they mseful, but

only this case will be considered further.

Problem 19. A toroidal ring of paramagnetic, material i.s closely

wound with wire carrying a current. Find the distribution of induc-

tion and magnetization throughout the material.

6. Energy in a Magnetic Field.—When dealing with steady

currents, the energy of the interaction between circuits may
be determined from the fundamental law of force and may be

used to express the mechanical forces. The energy can be

found by computing the work necessary to bring the circuits

into the desired configuration when the currents are kept con-

stant. The work necessary to keep the currents constant, as

well as that necessary to start them in the first place, is neglected,

so that this result represents only one phase of the magnetic

energy.

Consider a closed circuit, carrying a current 7, and let
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the circuit be at first entirely outside of the region in which the

induction B due to other circuits has an appreciable value. Let

the circuit be turned to be parallel to its desired final position,

and then let it be moved, without turning, into this position.

Let dl be an element of the circuit, and let dr be an element of

the displacement of the whole circuit. Since the circuit is

moved without turning, a single element dr describes the motion

of all parts of the circuit. Then the element of work done during

the displacement dr will be

dW = -dF • dr = -/Jdl X B • dr

This integration is with respect to dl and is around the circuit.

Thus far there is no integration with respect to dr. If the dot

and the cross are interchanged, and Stokes’s theorem is applied,

the result is

dW = -IjB X dr • dl = -If curl (B X dr) • dS

This surface integral is over any surface bounded by the circuit.

In taking the curl of the vector product it is to be remembered

that dr is constant and does not change from one part of the

circuit to another. If the curl is expanded, the result is

dW = -/J (dr . v)B • dS - -/ dr • grad JB • dS

The total work necessary to move the circuit into the desired

configuration is obtained by integration with respect to dr

and is

W = -/jB • dS (14-31)

This equation shows that there can be defined a kind of potential

energy of a circuit in a magnetic field equal to the negative of the

product of the current by the total flux of induction through

the circuit. This potential energy can be used to determine

the force on the circuit. The circuit is urged into such a

position that it encircles the maximum flux of induction. It

must be emphasized again, however, that this is only the

mechanical energy of the circuit. From it the mechanical

forces can be derived but the total energy, in which is included

the work done in keeping the currents constant, will be treated

in the next chapter.
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Problem 20. Work out in detail the steps leading to equation

(14-31).

Problem 21. A circular wire carrying a current is placed at the

center and in the plane of a much larger circular wire through which

the same current flows. Find the force on the small coil when it is

displaced along the axis from its position of equilibrium.

Problem 22. Find from the energy expression, and then from the

fundamental law of force, the restoring torque if the small coil in

Prob. 21 is turned about a diameter instead of being displaced.

Problem 23. Show that the energy of a circuit in a magnetic field

can be expressed in terms of the magnetic vector potential by

W = -IjA-dl (14-32)

where the integration is around the circuit.

Problem 24. Show from the expression for the energy that the

force between two closed circuits satisfies Newton's third law.



CHAPTER XV

THE ELECTROMAGNETIC FIELD

The two previous chapters have treated essentially static

situations. The case of a steadj^ current involves motion of the

electricity, but the fields produced and the forces exerted are

essentially static. These static situations are special cases of

the more general case to be treated in the present chapter. To
treat this general case of variable currents and fields, it is neces-

sary to take up two extensions of the electric and magnetic

equations. These connect the electric and magnetic phenomena

very intimately with each other. Before doing this, however,

it is of interest to summarize the transition, made in each of the

two preceding chapters, between the two basic points of view

from which electromagnetic phenomena can be treated. Each
chapter began with a point of view from which the interactions

between charges and current elements were the objects of

attention but ended with the point of view from which the

properties of the field itself were regarded as more important.

Either point of view is adequate in dealing with the static

situations, but for the general case it is necessary to adopt the

field point of view.

1. The Electrostatic Field.—This is the special case treated

in Chap. XIII. It includes only those situations in which all

the electricity is at rest. The results of Chap. XIII may be

summarized as follows:

1 . The assumed basic law was a law of force between point

charges,

F = 1

dTT/Co
(16-1)

This was assumed as an expression of experimental facts and

was taken for the basis of the rest of the development.
306
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2. A vector field was defined by the relation

F = gE (15-2)

where F is the total force experienced l)y the point charge g at

the place where E is the electric field. From this definition it

follows that the electric field E at a given point will be equal

to the vector sum of a number of terms of the form (15-1).

Through such expressions the field E is associated with the

charges, which may be said to “produce the field.” At this

stage E is merely a convenient way of expressing the forces

between charged particles.

3. An electric potential was defined l)y tlie equation

E = - grad ^ (15-3)

where <1> is a scalar field quantity. That such a definition is

possible is due to the form of the basic law of force, (15-1). The
scalar d>, as well as the vector E, is a fuiu'tion of the coordinates,

but in tlie static situations under consideration it is not a func-

tion of the time. By means of equations (15-1) to (15-3) the

potential <1? is associated with the point charges for wliich the

assumed law of force holds. The scalar d> is usually more
convenient to handle than the vector E, but both of tliem are at

first regarded merely as conveniences, defined to help in the

application of the basic law of force.

4. It was stated that there exist distributions of positive

and negative charge of such a nature as to be best represented

as distributions of electric dipoles. The polarization P was
then defined in terms of the distribution of dipoles tliroughout

a material body, and the vector field D was defined by the

relationship

D = /coE + P (15-4)

In connection with this definition was mentioned the fact that

in many practical cases D = XkqE where iv is a constant, char-

acteristic of the material, and called the dielectric constant.

5. On the basis of the tlu-ee definitions, (15-2), (15-3), and
(15-4), and the assumed law of force (15-1), it was shown that

divD = p (Is)
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subject to certain restrictions concerning the possibility of fusing

together a large number of point charges into an apparently

continuous distribution of charge density p. Equation (Is)

is a partial differential equation that describes the nature of

the field D. It no longer emphasizes the “sources” of the field,

or the charges that could be said to “produce” the field. The
equation is assumed to be true at all points and connects the

value of D at a given point with its values at neighboring

points. This connection is in terms of the charge density p at

the point in question, but it is only by integrating the equation

and evaluating the constants of integration that the field can

be expressed in terms of all the charges which produce it.

6. Another equation that follows from the definitions and the

assumed law of force is

curl E = 0 (Ills)

This is of little use in considering the forces between charges

but of great importance in considering the properties of the

field itself. Equations (Is) and (Ills), together with a knowl-

edge of D as a function of E at every point, serve to describe

completely an electrostatic field.

7. Equation (15-3) is the general solution of equation (Ills).

A vector obtained by taking the gradient of any scalar function

will satisfy (Ills), but to satisfy (Is) at the same time it is

necessary to find a suitable value for the potential It was

shown in Chap. XIII that this is

$ = p — div P
R '

dv (15-5)

The argument in Chap. XIII was such as to derive this expres-

sion from the law of force. It can, however, be derived dif-

ferently. It can be shown that (15-3) and (15-5) give that

particular solution of equations (Is) and (Ills) associated with a

given distribution of charge density p and polarization P. The

only other solutions of the equations are those representing

additional fields that are everywhere constant. If the boundary

condition is imposed that the fields must not extend to infinity,

this trivial generalization is excluded. It is thus possible to
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take equations (Is) and (Ills) as the assumed basic electro-

static laws, instead of assuming the law of force.

2.

The Magnetostatic Field,—In the special case of the

magnetic fields produced by steady currents, one point of view

is characterized by the consideration of the law of force between

current elements. In Chap. XIV this point of view was

developed to give the properties of the magnetic field vectors.

The second point of view, that of the field theory, treats these

properties of the magnetic field vectors as the fundamental

assumptions. The conclusions of Chap. XIV can be sum-

marized as follows:

1. The law of force between current elements was assumed to

be

dF = X (dr X R) (15-6)

where dF is the force on the element dl due to dl'.

2. A field vector B, called the magnetic induction, was then

defined by the equation

dF = / dl X B = i X B dt; (15-7)

where dF is the force on the current element / dl, or i dv, at the

point where B is the magnetic induction.

3. Because of the properties of this vector field B, as ex-

pressed in equations (15-6) and (15-7), it was possible to define

another field vector A, the magnetic vector potential, by the

relationship

B = curl A (15-8)

In magnetostatic situations A is a function of position, but not

of the time.

4. On the basis of the law of force and equation (15-7), or

as a consequence of equation (15-8), it follows that

div B = 0 (IIs)

This property of B is the justification for the definition of A in

equation (15-8), since equation (15-8) is the general solution of

(IIs) in terms of the arbitrary function A.

5. For use in material bodies another vector, H, was defined
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by the relationship

H = — - M (15-9)
Mo

where the magnetization M was defined in terms of the effective

magnetic-moment distribution in the material body. In this

connection was mentioned the experimental fact tliat in many
cases B = mH, where m is characteristic of the material and is

called the magnetic permeability.

6. It also follows from the law of force that the equation

connecting the field quantities with the currents producing’^

them is

curl H = i (IVs)

Equations (IIs) and (IVs) together with the definitions

(15-7) to (15-9) describe the magnetic situation as completely

as the law of force (15-6), although they describe it in a different

way. They give differential properties of the fields. From
them a specific field corresponding to a definite problem can be

obtained by integration and insertion of the appropriate bound-

ary conditions. For steady currents a suitable vector potential

was shown to be

. /xo n + curl M , /-.c

This leads to fields B and H, which satisfy (IIs) and (IVs). The
procedure of concentrating attention on the field itself is the

essence of the treatment of the general electromagnetic field.

3. Electromagnetic Induction.—The electric and magnetic

fields described by equations (Is) to (IVs) are quite independent

of each other. It is true that the magnetic field is associated

with a movement of charge in the form of a current; but with a

steady current there is no variation in the electric field, and

there may be no significant electric field whatever. Neverthe-

less, after the discovery of the production of a magnetic field

by a current, it seemed natural to look for the production of an

electric field by some magnetic means. Because of the lack of

magnetic charges and the corresponding magnetic current, it

was impossible to produce the exactly analogous situation; and

not until the years after 1830 was the phenomenon of electro-
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map^netic induction discovered. The discovery was made inde-

pendently by Joseph Henry in Albany, N.Y., and by Michael

Faraday in London. They showed that the results of a variety

of experiments could be included in the single statement that a

transient current flows in a loop of wire when the flux of magnetic

induction through the loop changes. This can be formulated

in the equation

I(R = B‘dS (15-11)

In this equation I is the current in the wire, measured in am-
peres. It is not; necessarily a steady current but flows just

during the time in which the flux of magnetic induction is

changing. 01 is the resistance of the wire, and B is the magnetic

induction. The integral is taken over any surface bounded by
the circuit, and the positive direction of I is related to the

direction of the surface element dS by the right-hand rule used

in Stokes’s theorem. The equation as given is correct for

quantities measured in the practical system. If the quantities

on the left side of equation (15-11) are measured in esu and those

on the right in emu, the dimensions of the two sides are the same
only if the right-hand side is divided by a velocity. Experiment

shows that this must have the magnitude of the velocity of

light in vacuum, so the equation holds if the right-hand side is

multiplied by 1/c.

In the previous chapter the product of the current flowing in

a wire by the resistance between two points of it was shown to be

equal to the potential difference between those two points.

However, in the case of a closed loop, there can be no potential

difference around the whole loop, since the potential is a single-

valued function of position. The effect of the change in the flux

of magnetic induction must then be described as an emf. This

emf is the integral, around the loop, of an electric field. It is an
electric field, however, that cannot be described as the gradient

of a potential and that does not satisfy equations (15-3) and
(Ills). If E' represents the strength of this induced electric

field, equation (15-11) is equivalent to

‘=-/. (15-12)
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In so far as equation (15-12) is identical with equation

(15-11), the line integral is to be taken around a loop of wire;

but since the tangential component of an electrostatic field

was found to be continuous across the boundary between two

substances, it is natural to regard (15-12) as applicable also to a

path just outside the wire. After that it is not difficult to

think of the equation as applicable even after the wire is removed

and thus as applicable to any closed path whatever.

If equation (15-12) is assumed to apply to any closed path,

it is convenient to use Stokes’s theorem to write the corre-

sponding differential equation

curl E = - ^ (III)

E is written here instead of E', since the curl of any electric field

due to fixed charges is zero. This E then refers to the field

produced by electric charges plus the field produced by electro-

magnetic induction. With the restriction to fields of these

types, equation (III) will replace equation (Ills), which was

vaUd in static situations only. In the static cases (III) reduces

to (Ills). Equation (III) can be regarded as the differential

form of the law of electromagnetic induction, although it con-

tains in some respects more and in other respects less than the

results of the original experiments.

Equation (III) contains more than the original experimental

results in that it implies the existence of an electric field without

regard to the presence or absence of a conductor. It implies

that an electric charge will experience a force in the presence of a

changing magnetic field, and in this respect it is a true generaliza-

tion of the experimental results. This generalization will now
be taken as a basic assumption instead of equation (Ills), and
it thus becomes one of the postulates of the general theory. In

recent years this assumption has been the basis of construction

of a type of electron accelerator known as the Betatron.

On the other hand, equation (III) contains less than the

results of the original experiments in that it does not describe

the emf induced in a circuit when the circuit itself is moved in

the magnetic field. The flux of induction through a loop can.
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be changed either by moving the loop to a place where the

magnetic induction has a different value or by changing the

value of the induction while keeping the circuit fixed. Both

these processes are envisaged by equation (15-11), but only the

latter is covered by equation (III) . For most problems equation

(15-11) can be used directly to include both cases, but as a gen-

eral basic hypothesis equation (III) must be adopted. The

method of treating cases in which the circuits are moved will be

taken up in the next section.

Problem 1. A cinic of wire is placed inside a long solenoid with

its plane perpcndicidar to the axis of the solenoid. If the current

through the solenoid is equal to /o sin find the emf in the wire.

Neglect the magnetic field due to the current flowing in the wire itself.

This is a good approximation in cases where the resistance of the wire

is high.

Problem 2. Treat the above problem when the current in the loop

is not neglected. Show that

dS
,

(R „ flonwR -r , /ir- ,o\
-jT -!-•; £= — —

f
— Aid cos wt (15-13)

dt Lj Li

where 8 is the emf around the loop, (R is its resistance and A its area,

n is the number of turns per unit length of the solenoid, and L is a

constant such that the total flux of induction through the loop due
to a current / flowing in it is LI. L is called the coefficient of self-

induction of the loop. Also, find the current in the loop.

4. Fields in Moving Coordinate Systems.—The vector E in

the equations of the electromagnetic field refers to the electric

field at a given point and time, {x,y,z,t), specified with reference

to a given set of coordinate axes. The person observing and
describing the phenomena is regarded as at rest with reference

to these axes. Suppose, however, that the same phenomena
are to be observed and described by another person, who wishes

to use coordinate axes moving with respect to the first. In these

axes let the corresponding coordinates and time be {x',y',z' ,t').

This second observer may be considered to be at rest with

reference to this second set of axes, and it is assumed to be
just as possible to describe the phenomena from liis point of

view as from the point of view of the first observer. The
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question then arises as to whether the two observers will describe

the phenomena in the same way or whether they will differ in

essential respects.

It is possible to write immediately the connection between

the coordinates and the time {x,y,z,t), of an event as measured
with reference to the first set of axes and clocks, and the coordi-

nates of the same event, and the time, (x',y',z',t'), as measured

with reference to the second set of axes and clocks. To avoid

any relativistic effects it will be assumed that the relative

velocity v of the two sets of axes is constant and very small

compared with the velocity of light. Under these circumstances

the transformation equations for the coordinates and the time

are

X = x' + vj y = y' Vyt

Z = z' + V^t t = t'
(15-14)

The problem is then to find out whether the fields E and B at a

given point are the same for both systems of axes or whether

they appear differently to the two observers.

Let S be the set of axes with reference to which {x,y,z,t) are

the coordinates and the time of an event, and let S' refer to the

other set, which is moving with the constant velocity v with

reference to S. Assume the observer at rest in the system S
finds that at the point P there is no electric field but that there

is the magnetic induction B. This he would find by placing at

the point P a stationary electric charge q and noting that it

experiences no acceleration. On the other hand, if he moves

the charge with the velocity v, he finds it subject to such an

acceleration as to indicate the action of a force equal to qv X B.

Now let the observer associated with the axes S' perform similar

experiments. He places at the point P a charge that to him is

stationary. This means that it is stationary with respect to

the axes S' but that with reference to the axes <8 it is moving

with the velocity v. The observer in S would see such a charge

accelerated as by a force gv X B, and the observer in S' will see

it accelerated by the same amount. That the accelerations,

and consequently the forces, as seen by both observers are the

same follows from the form of the transformation equations
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(15-14) for the coordinates and the time. Since the observer

in S' is using a charge that to him is stationary, he must con-

clude that there exists at the point P an electric field of magni-

tude V X B. This is clearly in addition to the force due to any

electric field which might have been observed by the observer

in S, so that the fields as seen by the two observers are con-

nected by the transformation equation

E' = E -f V X B (15-15)

E' is the electric field with reference to the axes S', and E and B
are the electric field and magnetic induction, respectively.

Fici. 15-1.- A Hliding bridge across two wires in a magnetic field.

with reference to t he axes S. It is to be emphasized that these

fields are at the same point and at the same time. The dif-

ference is entirely in the system of axes with reference to which

they are descril)ed.

One important use of the transformation of fields is in the

determination of the emf in a moving conductor. In the pre-

ceding chapter it was stated that the current density is equal to

the electric field multiplied by the conductivity. Since only

steady currents were under consideration it was not necessary

to state that the field was referred to a system of axes with

reference to which the conductors were stationary; but such a

specification was implied. It is possible to complete the defini-

tion of emf in a conducting circuit by stating it to be the line

integral, around the circuit, of the electric field, where, at each

point, the field is measured with reference to axes moving with

the conductor.

As an illustration of the application of this idea, consider

the arrangement shown in Fig. 15-1. Two straight wires Wi
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and W2 are parallel to the x axis, in the x-z plane, and a distance d

apart. They are connected together at one end through an

ammeter, which makes possible the measurement of the emf

when the resistance is known. Another short wire b is parallel

to the z axis and makes contact with Wi and W2 . The whole

arrangement is in a uniform magnetic field B, parallel to the

y axis. Let the connecting wire, b, be moved with constant

velocity v in the direction of increasing x, and calculate the

emf of the circuit. There are three principal methods by which

this is usually done.

1. By means of equation (15-12) the emf can be equated to

the rate of change of the area of the circuit multiplied by the

normal component of the induction B. The rate of change of

the area is vd so that this procedure gives

g = vdB

This is a convenient method for many cases. It will always

work, as will be shown later, when the circuit is permanently

connected together without sliding contacts. In the above

case it works even in the presence of sliding contacts.

2. The induced emf is often said to be equal to the rate at

which lines of flux are cut by the moving parts of the circuit.

The number of lines of flux per unit area is defined as the compo-
nent of B normal to the surface. The number of lines of flux

cut per unit time in the above arrangement is clearly vdB, so

that this method gives the same result as the previous one. It is

necessary, of course, to specify some means of determining the

sign of the emf but this can be done easily. This method may
lead to confusion when the source of the magnetic induction is

not stationary but is also moving.

3. The third method makes use of the transformation

equation for the fields. Along the wires Wi and W2 there is no
electric field and no contribution to the emf. Along the wire 6,

however, the field has a value, which must be obtained from

equation (15-15). To an observer moving with the wire there

is an electric field of magnitude E/ = vB, and the emf is just

this quantity multiplied by the distance d along which it acts.

Clearly this gives the same result as the other two methods.
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In the above example all three methods give the same result,

and one might conclude that they should be regarded as equally

satisfactory. The reason for adopting the, last method as the

most fundamental is that it permits the treatment of problems

to which the first two methods cannot be applied unambiguously.

The following problems are illustrative of such cases:

Problem 3. A very long conducting strip of thickness t and width

d lies in the plane normal to a uniform field of magnetic induction B.

At two points on opposite edges of the strip are sliding contacts, which

connect the edges together through a circuit containing an ammeter.

Fig. 15-2. —Arrangerneni for inducing an electromotive force by moving a conducting
strip parallel to its length.

The strip is then moved partillel to its length with the constant velocity

V. What current, if any, will flow through the ammeter? The resist-

ance of the complete circuit is (R (see Fig. 15-2).

Problem 4. Compute the emf induced in a solid metal wheel

rotating about its axis which is parallel to a uniform magnetic induc-

tion. The emf can be measured by the current flowing in a wire that

makes sliding contact at the edge and at the axis of the wheel.

It is not difficult to show that this method of transforma-

tion of the fields, applied to a moving circuit or to a circuit that is

being deformed in an unchanging field, leads to equation (15-12).

Let V be the vector velocity of the element of the circuit dl.

Then, by equation (15-15),

JE • dl = Jv X B • dl = - JB X V • dl

= -jB-v X dl (15-16)

The last integral is just the rate of change of the area of the
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circuit multiplied by the magnetic induction, and thus equation

(15-16) is equivalent to (15-12) when B does not change with the

time. When both kinds of changes are taking place, when the

induction is changing with the time and the circuit is also being

moved or deformed, the emf will be composed of two parts.

One of these will be based on equation (15-16) and the other on

equation (111). This leads to

j E . dl = - j| ^ . dS -b j
B . V X dlj

--4/B.dS (1.5-17)

This indicates that in the general case, when a simply connected

circuit without sliding contacts is under consideration, equation

(15-12) will give the induced emf correctly. The restriction to a

particular kind of circuit is due to the equating of JB • v X dl

to the rate of change of flux through the circuit due to its

motion or deformation. In Probs. 3 and 4 such a possibility

did not exist.

Problem 6. A circular loop of wire is turned with constant angular

velocity about a diameter as an axis. It is in a magnetic held that is

uniform but that changes sinusoidally with the time. This change has

a frequency different from the rate at which the coil is being turned.

Find the emf induced in the coil when the current flowing in it is

neglected.

6. The Energy in a Magnetic Field.—In the preceding

chapter it was shown that the mechanical work necessary to

bring a circuit carrying the current I into a magnetic field is

given by

W=-7/^B.dS (15-18)

where the integral is taken over any surface bounded by the

circuits. The vector B as used in this expression refers only to

that part of the magnetic induction independent of the current

/ in the circuit itself. The negative sign indicates that the forces

are such as to pull the circuit into a position in which the flux

through it is a maximum.
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Equation (15-18) was derived on the assumption that all

currents were kept constant while the relative positions of the

circuits were being changed, and no account was taken of the

means by which this was to be done. No account was taken of

the phenomenon of electromagnetic induction. When account

is taken of this, of the fact that the work per unit time necessary

to keep a current / flowing against an opposing emf is — /s, it is

possible to compute from equation (15-11) the work necessary

to keep the currents constant while the circuits are being moved.

For simplicity consider only two circuits, 1 and 2 (a larger

number could be included without any essential change in the

argument). Let W i be the work done in keeping up the current

1 1 in circuit 1 while it is moved from a position in wliich the

flux of induction is zero up to the desired position. Then

dWi ^ r d f T,

nr -

whence

W, h (15-19)

where B 2 is the induction due to the current /2 in circiiit 2.

Similarly

IF2 = /2 dS2 (15-19a)

Careful attention must be given to the signs in these equations.

The statement that the work done per unit time is equal to

—Is, is based on the convention by which both I and 8 are

taken as positive in the same sense around the circuit. This

sense is related to the positive direction of the surface elements

dS by the rule used in Stokes’s theorem.

The total work done in bringing the circuits together is the

sum of Wi, W2 ,
and the mechanical work of equation (15-18).

It can be shown by using the expression for B in terms of the

vector potential and the expression for A in terms of the currents

that

h B 2 • dSx = h Bi • dS2 (15-20)

From this it follows that all the three components of the work
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are of the same magnitude but two are positive in sign and one

is negative. The result is that the total work done is given by

Tr = /jB-dS (16-21)

where the current and the integral refer to either circuit but the

induction is that due to the other circuit only. This quantity

may be called the mutual electromagnetic energy of the pair of

circuits. Another way of writing this would be to attribute

half the energy to each circuit, but this would have as little

significance as any other division of mutual energy among the

component parts of a system.

If we consider only cases in which the magnetic permeability

is not a function of the magnetic field but may still be a function

of position, the magnetic induction at any point may be divided

into parts due separately to each of the circuits present. Each
of these parts will be proportional to the current flowing in the

circuit that produces it, according to equation (14-6). This
fact makes it possible to regard the flux of induction through a
circuit as a sum of terms proportional to the various currents

involved.

B • dSi = LiU -I- 2 Mijij (15-22)

Li is called the coefficient of self-inductance of circuit i and Mij is

called the coefficient of mutual inductance between circuits i and j.

Li is the flux of induction through circuit i when unit current is

flowing in it and no other currents are in the neighborhood.
Similarly, Mtj is the flux of induction through circuit ^ due to a
unit current in circuit j. These coefiicients depend upon the
shapes and the relative positions of the circuits and upon the
distribution of permeability in the surrounding material. Since
the flux of magnetic induction is measured in webers, the coef-

ficients of induction are measured in webers per ampere, or
henrys.

Problem 6. Show that Mu = M^, and justify equation (15-20).

Problem 7. Calculate the mutual inductance between a long sole-

noid and a short coil placed inside of it.

Problem 8. Calculate the mutual inductance between a large
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circular coil and a small circular coil, when they are coaxial and lie in

parallel planes.

A system of circuits can be brought into a desired situation

in two characteristic ways, for which the necessary work can

be calculated. One way is to start the current in each of the

circuits and to bring it up to its desired value while they are

all far apart and do not influence each other and then to bring

the circuits into their desired positions while the currents are

kept constant. The other way is first to put the circuits into

the desired positions and then to increase all the currents

together from zero.

Consider first the former method. The energy of the final

configuration of circuits will be equal to the work necessary to

start the currents flowing in each circuit plus the work necessary

to bring the circuits together. The work necessary to start a

current in one circuit is determined by the dilferential eejuation

whence

dW,
dt

-/S B . ds

W, = (15-23)

For the work necessary to bring the circuits together a term of

the form (15-21) appears for each pair of circuits. The whole

energy is then

+
(15.24 )

i

This expression is useful when the system is composed of a small

number of well-defined circuits. When the distribution of

current density in large conductors is involved, other forms are

more convenient.

Problem 9. Show that the work done in changing one current

while holding the others constant is correctly given by the partial

derivative of W with respect to the current in question, multiplied by
the change in the current. Part of the work is necessary to hold the

currents constant when the induction is changed.

Problem 10. Derive equation (15-24) by the second of the methods
mentioned above.
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Problem 11. Consider a circuit of resistance CR and self-inductance

L, Let there be applied to it an cmf given by 8o sin cot, and compute

the current.

Problem 12. Consider two circuits of resistances (Ri and (iio,

self-inductances Li and L2, and carrying currents Ii and I2. Let the

mutual inductance be M12. If an emf 80 sin o)t is applied to circuit 1,

show that

Li^ + Mi2^ + (R = £0 sin wt (15-25a)

L, + Mrz -h (R2/2 = 0 (1 5-2f>h)

The expression (15-24) for the energy of a system of circuits

is written from the point of view of the currents and the forces

they exert on each other. The energy depends on the magni-

tudes of the currents and, through the coefficients of inductance,

on the position of each element of current. The energy can

also be expressed, however, as an integral over the field vectors.

Equation (15-24), as can be seen from the method of derivation,

is equivalent to one-half the sum, over all the circuits, of the

current in each one multiplied by the total flux of induction

through it. This includes the induction due to the current in

the circuit itself. Thus

W = ij/.- B • dSi = J / A . i dr = I / A • curl H dv
i

= ^ / B . H dr (15-26)

The sum in the first expression is over all the circuits. When
it is replaced by a volume integral of the current density, this

integral must be taken over all space. Since by means of

equation (15-26) it is possible to obtain the total energy of the

system of circuits by an integration over all the magnetic field,

one is tempted to regard the energy as located in the field and
to say that (B • H)/2 is the density of energy. This concep’tion

of a field energy distributed throughout the space in which there

is a magnetic field is indispensable in the treatment of problems

of radiation, but it is not required by the derivation of equation

(15-26).
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Problem 13. Work out in detail the steps in equation (15-26).

Problem 14. Find thp electromagnetic energy of a long solenoid

carrying a current, on the assumption that the field is uniform inside

it and zero outside it.

6. The Displacement Current.—The second extension of the

fundamental equations necessary to treat the general case is

concerned with curl of the magnetic induction. According to

the equation for the static case

curl H = i (IV.s)

Because the divergence of a curl is identically zero, this equation

implies that the divergence of the current is always zero. While

this is true for the case of steady currents, to which equation

(lYs) is applicable, it is not true in the more general case. If a

condenser is being charged through a wire, the current ends at

the condenser plate and its divergence is not zero at this point.

However, the divergence of the current is necessarily accom-

panied by a disappearance of charge, and the general principle

of the conservation of charge is expressed by the equation

div i + ^ = 0 (15-27)

Since div "D — p, the quantity i -|- dlD/dt is a vector whose

divergence is zero. If equation (IVs) is now generalized to

curl H = i -f (IV)

the divergence of the left side is identically zero, and the diver-

gence of the right side is zero because of the conservation of

charge. The equation is thus consistent under all circum-

stances. The quantity dD/dt is the displacement current den-

sity. Its inclusion is often regarded as the outstanding contri-

bution of Maxwell to the electromagnetic theory. This general-

ization was made, not as the result of experiments, but rather for

reasons such as those just outlined. Nevertheless, subsequent

experiments have provided full justification for its inclusion as

one of the fundamental hypotheses of the electromagnetic theory.
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There is a niarked similarity between equation (IV) and

equation (III), but the absence of a magnetic conduction current

in equation (III) constitutes an essential difference. This is

paralleled by the corresponding difference between equations (I)

and (II) due to the absence of any magnetic charge density.

In many problems the displacement current is negligible

when compared with the conduction current. This is true

even with rather rapidly alternating currents. However, when
the frequency becomes very high, as in problems dealing with

radio transmission, the displacement current cannot be neg-

lected. In fa(!t, the displacement current may be regarded as

principally responsible for the phenomena of electromagnetic

waves.

Problem 16. The two plates of a condenser are connected by a

wire. Show that when there is a current in the wire the total displace-

ment current between the condenser plates is equal to the conduction

current in the wire.

Problem 16. Find the magnetic field due to a charged particle

moving in a straight line with a constant velocity small compared

with the velocity of light. This involves consideration of the rate of

change of the electric field.

7. Maxwell’s Equations.—We may now collect the four

equations that are to be regarded as the basic equations of the

electromagnetic field. These are usually called Maxwell’s

equations because of Maxwell’s work in developing the mathe-

matical formulation of the theory. The four field equations are

as follows:

(I) div D = p (LI) div B = 0

(III) curl E = - I?
(IV) curl H = i -f

To the field equations must be added the force equation, which
permits a definition of the field quantities in terms of the

mechanical concept of force.

F = pE + i X B (15-29)

F is the force per unit volume on an element of volume in which
the charge density is p and the current density is i.

(15-28)

i
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It is also necessary to include in the list of the fundamental

equations the relationships between E and D and between B
and H. For it is through them that the effects of electric and

magnetic dipoles are included in Maxwell’s equations. These

relationships are

D = xoE + P = xE B = moH + MoM = /xH (15-30)

The expressions of D in terms of E and P and of B in terms of H
and M are generally true by definition, but the use of the dielec-

tric permittivity k and the magnetic permeability ju is only

generally valid if these quantities are not required to be con-

stants but are made functions of E and H, respectively. If

they are not constants, their usefulness is small. In the present

work we shall consider onl}" the simple cases in which /x and k

are constants for a given piece of material. This excludes the

cases in which there is permanent magnetization, magnetic or

electric hysteresis, or other similar phenomena that are to a

greater or less degree characteristic of all real materials.

8. Units.—It is important to note carefully the units used in

writing these equations. Here, as in the previous chapters,

the practical, or inks, system has been used because of its recent

widespread adoption.

In reading earlier pap^irs on electricity and magnetism other

systems of units will be encountered. One of the most preva-

lent of these is the Gaussian system. In this system the

electric quantities, electric field, displacement, charge, current,

etc., are measured in the esu mentioned in Chap. XIII. The
magnetic quantities such as magnetic induction, magnetic field,

magnetization, etc., are measured in the electromagnetic system

mentioned in Chap. XIV. Since the Maxwell equations contain

both electric and magnetic quantities, the equations themselves

must define a relationship between these two systems of units.

This connection is given by the value of a quantity c, which is

the velocity of electromagnetic waves in a vacuum. In the

mks units, this velocity is implicit in the quantities Ko and /xo.

The following table gives the relationship between the units

of a number of quantities in the mks, or practical, system, the

electrostatic system, and the electromagnetic system. The
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electrostatic and electromagnetic are designated by the sub-

scripts s and m, respectively. The ratios arc expressed in terms

of the measures of a fixed quantity in the indicated units. They

are not the ratios of the sizes of tlie units themselves. For

example, if a given current is I amperes, the same current will

be Im = //lO emu or = (c/10)/ esu.

Problem 17. Show that the product ii «k„ has the dimensions of the

recii)rocal of the square of a velocity.

Conversion Table for Units

Name of Measure Mfbasiire in Measure in

Quantity practic.al in practical electromagnetic ('ku^trostatif^

units units units units

Charge Coulomb q q,n == g/10 (,, = (c/\0)q

Current AnipoTc I In. = //lO I, = (d/lO)/

Electric field
Volt

Meter
K E„ = 10“^: E\ iX lO-^E

Potential Volt V Vm = 10«F
1

oXII

Polarization
Cnulomh
i\lctor2

P II o = 3 X

Displacement
CV)ulom])

Meter 2
D I)„ = 7). = 3 X WD

Conductivity
Mho
Meter

a <r„ = 10-”<r (T, = 9 X lOV

Uc5sistarice Ohm R ! It„ = 10»7^ R. = J X
C>apacitance l^'arad C Cm - i(r»c Ci = 9 X ]0"C

Magnetic Field. . , .

Ampere
Meter

II H„ = = 3 X WH
Induction

Weber
Meter^

' B = WB B. = iX lO-i'B

Magnetization
Ampere
Meter

M = lO-’M Ms = 3 X low

9. Maxwell’s Equations in Moving Systems.—The discus-

sion in Sec. 4 showed that the electric field at a point is not an
absolute property of the point but depends upon the system of

axes with reference to which it is observed. The question as to

whether a magnetic field has a similar dependence cannot be

answered in so simple a fashion, since the law of force ordinarily

used contains no terms that indicate a force on a current mo\dng
in an electric field. Nevertheless, if it is desired that Maxwell’s

equations shall be valid in all systems of coordinates, it is neces-
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sary that the magnetic field also shall differ from system to

system. Such an assumption is usually made, and the necessary

transformation equations are

E' == E + V X B B' = B - mkv X E (16-31)

It is important to emphasize the fact that these transformations

are adequate only when the relative velocity of the coordinate

axes is very much less than the velocity of light but that in this

limiting case Maxw'cll’s equations will be approximately valid

with reference to all systems. The approximat ion depends upon
V VUK and also upon the rate of change with the time of the

fields. If these quantities are small enough, the equations are

approximately invariant to the transformation. The trans-

formation of the fields that makes the equations exactly vahd

for all velocities will be taken up in the study of the theory of

relativity, where the invariance of these equations will be made
the basis of that theory.

Consider equation (IV) in tlic S' system.

curl' H' = i' +^ (IV')

The designation ['] refers to the S' system. In this equation it is

important to remember that not only are the field (juantities

and the current measured with reference to S' but they are

expressed in terms of {x',y',z',t') and the derivatives are taken

with reference to these coordinates. By means of the trans-

formation equations (15-14), it can be shown that

curl' H' = i' -b
/ dD'

,

dD'

do; + dy +
dP'

dz ^ dt
(15-31a)

The last term is due to the fact that dD'/dt' implies that the

(x',y',z') are held constant, while dD'/dt implies that the

{x,y,z) are held constant and that D' is now expressed in terms

of (x,y,z,t), even though it is the field measured in S'. The
current density in S' is related to that in <S by

i' = i — pv (15-316)
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and if the transformation (15-31) is used, (15-31a) becomes

9D
curl H — K curl (v X E) = i — pv (v • V)D -f-

- (V . V)k(n X B) _ kv X ^ (15-31C)

When curl (v X kE) is expanded by means of the vector identity

(8) on page 244 and use is made of equation (I) in the S system,

this i)ecomcs

curl H = i -f
-
dD
dt

fXK (v • V)(v X H) -f- V X
dH
di

(15-31d)

This is equation (IV) in the S system except for the final term,

which is multiplied by ijlk. This prodiud. is equal to the recipro-

cal of the square of the velocity of light in the medium with

permittivity k and permeability fx. As long as v is much less

than the velocity of light and dH/dt is not too large, the whole

term can be neglected. To this approximation the transforma-

tion in equation (15-31) makes equation (IV) invariant under a

transformation to a moving coordinate system.

Problem 18. Show that the first three of Maxwell’s equations are

approximately invariant to the transformation from 8 to S'.

10. Electromagnetic Field Energy.—From the field-theory

point of view, the field itself, as well as charged particles of

matter, can possess energy and momentum; and, in fact, it

must possess these quantities in order to provide for their con-

servation. Since the particles act, not directly on each other,

but only through the intervention of the field, a particle may
lose energy and momentum that may not appear immediately

in another particle. In the meantime, the missing energy or

momentum must be attributed to the field. This idea has

already been suggested in the expressions for the energy of

electrostatic systems and systems of steady currents that have
the form of integrals over the whole field.

In the further discussion of the properties of an electro-

magnetic field it will always be assumed that the dielectric

permittivity k and the magnetic permeability fi are constant in
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both space and time and are independent of the fields. This

implies that D — kE, B = /xH and that k and fx can be factored

out in differentiation. This assumption describes the situation

in a vacuum and in a simple homogeneous and isotropic dielec-

tric. It excludes, however, substances in which k or jjl changes

from point to point, such substances as iron or nickel, and cases

in which several different dielectrics are present. When several

homogeneous sul)stances are present, the treatment can be

extended by the imposition of suitable boundary conditions.

The general expression for the energy of the field can be

developed from Maxwell’s equations and the force equation.

If both sides of ecjuation (15-29) are multiplied by the velocity

and the product is integrated over all the volume in which there

is any charge or current, the result is the rate at which the field

is doing work on the charges. This will then be the rate at

which the energy of the charges is increasing and can be equated

to the rate at which the energy of the field is decreasing. Since

pv is the current density,

— ^ ^ y* F • v dr = j
p(E • V + V X B • v)dT

= f
curl H - E •

^^j) dT (15-32)

The volume element is designated by dr to avoid confusion with

the velocity. Tliis work is done by the electric field only, since

the force exerted by the magnetic field is always perpendicular

to the velocity. By the use of a vector transformation and the

third of Maxwell’s equations, this becomes

^ = / f H • curl E — E • — div E X HJ dr

= - j
(h • E

. g^) dr - J
E X H ds (15-33)

If the volume over which the integration is carried out is so large

that the integral of the fields over the surface vanishes, this rate

of change of the field energy may be written

dW 1 d ,

(15-34)
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It is very natural to maintain the general validity of the

conservation of energy by interpreting the integral in equation

(15-34) as the energy in the electromagnetic field. A similarly

natural, although perhaps le.ss easily justifiable, interpretation

is that the integrand is the volume density of the energy. This

conception of localized energy has been fruitful, however, and

will be retained as long as it leads to no difficulties.

If integration is carried out over a limited volume, the surface

integral does not, in general, vanish. Since the whole expression

(15-33) represents the work done by the field on the charges and

since the volume integral is to be interpreted as the rate of

change of the energy of the field, it is natural to interpret the

surface integral as the rate of flow of energy through the surface.

The vector S is called Poynting ’s vector, where

S = E X H (15-35)

The interpretation of the surface integral of S as the flow of

energy through the surface leads naturally to the interpretation

of S itself as the density of energy flow.

Problem 19. A wire, which may be treated as approximately

straight, carries a steady current I from a battery. Compute Poyn-

ting’s vector at the surface of the wire, and interpret the result in

terms of the energy flow.

Problem 20. A circular loop of wire with resistance (R is placed

in a uniform magnetic field. If the field is changed, find the flow of

energy into the wire.

Problem 21. Find Poynting’s vecdor around a uniformly charged

sphere placed in a uniform magnetic field.

11. Electromagnetic Field Momentum.—The momentum of

the electromagnetic field can be evaluated by the use of argu-

ments similar to those employed for the energy. The rate of

increase of momentum of the matter carrying charges and
currents will be equal to the volume integral of the force per

unit volume. This can then be equated to the rate of decrease

of the momentum of the field in order to provide conservation of

the total momentum.
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^- = f
'P dr == J

pE dr + J
i X B dr

= y
E dw Ddr + J

(curl H) X B dr

XBdT (15-3G)

where M is the momentum of the field. It follows then, since

fjL div H = 0, that

dM d

dt dt
IjlkS dr — k

j
(E div E — E X curl E)rfT

- M f (H div H - H X curl H)f7r (15-37)

The last two terms in equation (15-37) can be transformed

into surface integrals siru^e they are the divergences of tensors.

The divergence of a symmetric tensor is a vector, which can

be defined by

(div T), = ^ (15-38)

j

By reasoning similar to that used in establishing Gauss’s

theorem it can be shown that

(div T)i dr = ^ dsj (15-38a)
j

where dsj is the component of the surface perpendicular to the

Xj axis.

Let
= (HiHi - (15-39)

and
= (EiEj - iE^ij) (15-39a)

It follows directly from the definitions that

div = H div H - H X curl H (15-396)
and

div 7^ O') = E div E - E X curl E (15-39c)

^ Jt j
~ (15-40)

Then
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The tensor kT^^'> + is called the Maxwell stress tensor.

It gives the electromagnetic stress across the surface ds as a

linear vector function of ds. Equation (15-40) then can be

interpreted as showing that jukS is the volume density of the

momentum in the field and that the rate of change of the field

momentum plus the momentum of the charges is equal to the

total vector stress on the surface of the portion of the field under

consideration.

Problem 22. Evaluate the divergence of the Maxwell stress

tensor, and show that equation (15-40) follows from (15-37).

12. General Electromagnetic Potentials.—In the treatment

of elecitrostatics and magnetostatics it was convenient to

introduce potentials from which the fields could be derived by
differentiation. These potentials w'ere expressed in terms of

the charges and the currents by the use of the laws of force

betw^een charges or between current elements. Similarly in

the general case it is desirable to introduce a scalar potential

and a vector potential. These will represent forms in wliich all

solutions of Maxwell’s equations can be put, and they will be

expressable in terms of the charges and the currents. Such

potentials will be similar to the potentials previously used, but

they will not in general be the same. Only in static situations

will they reduce to the forms already used.

Let df* be the scalar potential and A the vector potential.

Then let the fields be derived from the potentials by means of

the equations

f)A
B = curl A and E = — grad $ — (15-41)

Maxwell’s equations (II) and (III) will be identically satisfied

by fields derived from any potentials in this way. Equations

(15-41) may be considered as general solutions of these two of

Maxwell’s equations in terms of the arbitrary functions $
and A.

Problem 23. Show that Maxwell’s equations (II) and (III) are

identically satisfied by any fields that are derived from potentials

by means of equations (15-41).
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If the potentials are given, equations (15-41) serve to deter-

mine the fields uniquely; but if the fields are given, there are

many potentials equally satisfactory for describing them.

Therefore it is possible to adopt an arbitrary relationsliip

between $ and A in order to remove this lack of definiteness.

This can be done in a number of ways. To agree with the form
of the vector potential used in the chapter on magnetostatics

it is necessary to adopt the equation

div A — 0 (15-42a)

With this condition, equations (15-41) substituted into Max-
well’s equations lead to

K

V=A - d^A . ,

fiK = -pi + fXK grad (15-43a)

If the potentials $ and A satisfy these two equations and if

fjL and K are everywhere the same, the fields derived from them by

(15-41) will satisfy Maxwell’s equations.

The above equations are unsatisfactory for some purposes

because the potentials and A have not been separated. It is

possible to separate them if another condition is used instead of

(15-42a). This is called the Lorentz condition and is

div A = (15-425)

With this condition the equations for the potentials are

- pK

V^A - fiKy
These equations are called wave equations because they represent

the propagation of a disturbance with the velocity

General solutions for equations (15-436) can be written in the

form of integrals similar to those for the static cases. The dif-

ference lies in the fact that the charges and currents effective in

P

K

= -Ml

(15-436)
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producing the potentials are not those existing at the various

points at the time for which the potential is to be computed but

are those which existed at such an e^ier time that the effect,

propagated with the velocity I/V^k, has just reached the

point at which the potential is desired.

Problem 24. Show that, if $ and A describe an electromagnetic

field, the potentials 4>' = 4> — (df/dt) and A' = A + grad / also

describe the same fic'ld. / is any scailar function of the coordinates

and the time. This transformation of the potentials is called a gauge

transformation.

Problem 26. Show that, if equations (]5-42a) and (15-43a) are

satisfied, the fields will satisfy Maxwell’s equations.

Problem 26. Show that, if equations (15-42h) and (15-431)) are

satisfied, the fields will satisfy Maxwell’s equations.

Problem 27. Show that the potentials of equation (15-43fl) can

be derived from those of (15-435) by means of a gauge transformation,

and find the differential eejuation for the function /.

13. Electromagnetic Waves in Homogeneous Uncharged

Dielectrics.—In a homogeneous uncharged dielectric. Maxwell’s

equations lead to wave equations for the fields.

V^E - y/c = 0 V^H - MX^ = 0 (15-44)

These two second-order equations are more general than the

first-order equations from which they are derived. Their general

solution is not itself a solution of Maxwell’s equations, but it

must be limited by additional conditions. Since they are partial

differential equations, they have a wide variety of particular

solutions. One kind of solution is of the form

E = f(a:a: + yz — vt) (15-45)

where = l/jux. This represents a wave in the electric field.

The form of the wave is given by the arbitrary vector function /,

the direction of propagation is given by a, /?, y, and the velocity

of propagation is v. According to equations (15-44) the mag-
netic field could contain another similar, but independent wave.

However, the original Maxwell’s equations require a connection
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between the electric and magnetic fields so that the two solutions

cannot be independent.

Problem 28. Derive equations (15-44).

Problem 29. Show that (15-45) is a solution of (15-44).

Problem 30. Show that, in the absence of charges, the first of

Maxwell’s equations requires the electric field in a plane eloctro-

magneti(*> wave of the form (15-45) to be perpendicular to the direction

of propagation.

Problem 31. Show that Maxwell’s equations require the electric

and the magnetic fields pn a plane wave to be perpendicular to each

other and to the direction of propagation. This assumes that no

constant fields are present.

Problem 32. If a plane electromagnetic wave is sinusoidal, has

its electric vector alwa 3^s along the x axis, and is propagated in the

z direction, the expression for the electric vector can be written in the

form
E = = i/i'o sin a(z — vt) (15-4G,

Interpret the constants in this equation in terms of the amplitude)

wave length, and frequency of the wave.

Problem 33. Find the magnetic wave that ac(*()mpanies the

electric wave of equation (15-46).

Problem 34. Find the energy density in the wave of the above

two problems.

Problem 36. Find Poynting’s vector and the momentum density

in the wave of Probs. 32 and 33.

Problem 36. Show that the wave equation (15-44) is satisfic'd by

E = iE^ = (15-47)

14. Lorentz’s Form of Maxwell’s Equations.—According to

the electrical theory of matter, the dielectric permittivity and

the permeability are quantities that describe average properties

of material substances. The idea is that, if the materials were

examined in detail, only the motions of charged particles would

have to be considered. The development of this point of view

constitutes the electron theory, much of which is associated

with the name of H. A. Lorentz. When Maxwell’s equations

are written for use from this point of view, the only field quanti-

ties that can appear are E and B and the current can be replaced
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by the motion of the charges. Hence the equations become

(la) div E = (Ha) div B = 0 )

(Ilia) curl E = - ^ > (15-48)

aE \
(IVa) curl B = /iopv + poKo I

The quantity v is the vector velocity of the charge density p.

Although the equations when written in this form constitute

the starting point for the classical electron theory, the electrons

really have no place in them. It is the charge density and not

the number of electrons that appears. This fact implies that

the equations are to be used to describe the structure of the

electrons themselves, and many attempts have been made to

find a solution that would represent a small amount of charge

permanently held together by electromagnetic forces. All

such attempts have failed. The classical electron theory has

never been able to account satisfactorily for the fact that elec-

trons exist, and this remains one of the outstanding problems of

theoretical physics.

In spite of the incompleteness of the theory, it is possible to

use equations (15-48) to describe the fields of electrons at

distances from them large compared with their dimensions.

Because the electrons are very small, this makes the equations of

considerable use.

15. Radiation from an Oscillating Dipole.—The light waves

sent out by an excited atom, as well as the long waves emitted

by a radio antenna, can be closely approximated by the radiation

of an oscillating dipole. The dipole may be pictmed as made up
of two spherical conductors, separated by a distance greater

than their diameters, and connected by a wire. It will be

assmned that energy is supplied to the system to cause the charge

to oscillate between the spheres in a prescribed sinusoidal

manner. The system will then have an electric moment deter-

mined by the charges on the spheres, and this electric moment
will vary sinusoidally with the time. The current in the

connecting wire, which will be proportional to the rate of change
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of the charge on the spheres, will also vary sinusoidally. The
vector potential around the system will always have the direction

of the current in the connecting wire. This direction will be

taken as the axis of a system of polar coordinates and as the

z axis of a Cartesian system. The origin of the coordinates

will be at the center of the dipole. The values of the field

quantities and the potentials will be determined only at distances

from the origin that are much greater than the length of the

dipole h. It must also be assumed that the frequency of the

sinusoidal variation is low enough so that the changes which

take place in the time h/v can be neglected.

Under these conditions the vector potential at distances

from the origin large compared with h can be writ ten

A = A,k = k/^(r - Pi)

r
(16-49)

In this expression f'(r — vt) is the derivative, with respect to

its argument, of a function f(r — vt) to be evaluated later. It

can be shown by substitution that this expression for the vector

potential satisfies equation (15-436), and it will be shown later

in what way it satisfies the boundary conditions. The combina-

tion of equation (15-49) with equation (15-426) then permits

the determination of the scalar potential, with the exception of a

constant, which is unimportant here. The result is

vz vz

^ Jz Sir - vt) - --2 f{r - vt) (15-50)

In the region close to the dipole, although still for values of r

much larger than h, the presence of r in the argument of / can

be neglected, and the term with the higher power of r in the

denominator will be the larger. That such is the case is due to

the restriction imposed on the rate of change of the current.

Hence the principal term in the scalar potential, in this region, is

$ = ^fi—vt) cos 6 (15-51)

This expression is the ordinary electrostatic potential of a dipole

of magnitude Aitko vf{—vt) parallel to the z axis. Since, in the
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immediate neigiiborhood of the dipole, the time necessary for

the propagation of the effects can be neglected, the result

indicates that the potential assumed is correct to this extent.

In the region farther from the dipole, where the current has

changed considerably in the time r/v, only that term in the

potential need be retained which has the lower power of r in

the denominator. In this region,

$ = - /'(r - vt) cos 0 A = - k (15-52)

This zone is called the wm)e zonCy because the predominating term

in the potentials represents a wave traveling outward from the

origin.

Problem 37. Show that in the wave zone the electric and magnetic

fields are perpendicular to each other and to the radius vector. Use

polar coordinates.

Problem 38. Compute Poynting^s vector in the wvae zone, and
show that the total energy v'hich passes outward through a spherical

shell per unit time is

For this result it is not required that the current in the dipole vary

sinusoidally, but the subscript indicates that the second derivative is

to be taken at the time r/v before the time considered. This is the

time necessary for the energy to travel from the dipole to the spherical

shell.

Problem 39. Show that if the current in the dipole varies sinusoid-

ally with the time the average rate of emission of energy is propor-

tional to the fourth power of the frequency.
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CHAPTER XVI

THE RESTRICTED THEORY OF RELATIVITY

The notation of vector analysis provides a method by which

many of the equations of physics can be written in a form inde-

pendent of the orientation and position of tlie coordinate system

used to locate the bodies. This notation does not, however,

remove the distinction between systems of coordinates that are

moving relative to each otlier. Some use was made of moving

systems in the study of solid bodies, but the vectors were always,

in the last analysis, refen-ed to coordinates at rest with respect

to the observer and for which Newton’s laws were postulated.

In the study of electromagnetic fields some attention was given

to moving systems of coordinates, but it was specified that only

velocities small compared with the velocity of light were to be

considered. The theory of relativity consists in the study of

consequences of the assumption that all coordinate systems are

equally good for the description of physical phenomena. The
restricted theory treats only those systems of coordinates that

move relative to each other with constant velocity. Other cases

are included in the general theory of relativity.

1. Invariance of Newton’s Laws under Galilean Transforma-

tions.—Newton’s equations [equations (2-2)] are unchanged

when the coordinates and the time are subjected to a Galilean

transformation. A Galilean transformation is given by the

equations

x' = X — vt y' = y z' = z t' = t (16-1)

According to the elementary ideas of space and time, this

represents a transformation to a system of coordinates S' mov-
ing with the velocity v in the positive x direction with respect

to the system S. This is a specialized form of the most general

Galilean transformation. It is obtained by assuming that,

when t = t' = 0, the origins of the two systems of coordinates
339
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coincide. It is also assumed that the motion is in the direction

of the X axis. These restrictions do not really limit the general-

ity of the results, and therefore they will always be used here

and in the later treatment of the Lorentz transformation.

The invariance of Newton’s laws is descriptive of the fact

that mechanical processes should appear the same to all observ-

ers who move relative to one another with uniform velocity.

This certainly does not mean that velocities and positions are

the same for all observers, or even that such quantities as energy

and momentum are the same
;
but it does mean that the relation-

ships suitable for the fundamental laws cannot depend on which

particular coordinate system is used. In speaking of the trans-

formation from one coordinate system to another, it is implied

that there is an observer in each coordinate system who observes

the physical events in terms of his coordinates and time. The
transformation equations then express the relationship between

the observations, by different observers, of the same events.

The transformation of Newton’s laws of motion involves the

transformation of second derivatives with respect to the time.

It follows directly from equation (16-1) that d^x'/dt'^ = d^xjdt^

and that the forces as functions of (x,y,z,t) can be expressed in

terms of {x',y',z',t'). Hence the laws have the same form in

the system S' and S.

Problem 1. Find the way in which momentum and kinetic energy

transform under a Galiliean transformation.

2. The Postulates of Relativity.—The first postulate of

relativity is an extended form of an old idea. Because of the

invariance of Newton’s equations with respect to a Galilean

transformation, it is impossible, by means of any mechanical

experiment, to detect any such thing as an “absolute velocity.”

An absolute velocity would be a velocity relative to some system

of coordinates which is a “preferred” system, in that the laws

of mechanics might take some especially simple form when
referred to it. Since no such thing as absolute velocity can be

detected, it cannot be used in the formulation of the theory.

Hence, in the realm of Newtonian mechanics, all velocity is

relative.
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The first postulate of relativity extends this idea to all

physics. This postulate is based on the fact that no experiment

has ever been devised which detected any motion of the earth

through an “ether,” although many were tried. The postulate,

then, can be stated as follows:

1. All systems of coordinates are equally suitable for the

description of physical phenomena.

This postulate literally refers to all systems of coordinates,

although the treatment here is restricted to those that are

moving relative to each other with uniform velocity. The more

general treatment is called the general theory of relativity.

There are a number of equivalent forms in which this first

postulate can be stated. It is equivalent to the statement that

all velocities are relative and that it is impossible by any means
whatever to detect a motion through an ether. In spite of this

principle. Maxwell’s equations seem to indicate such a pos-

sibility. Maxwell’s equations contain first derivatives and are

not invariant to the Galilean transformation. This could mean
that the first postulate of relativity is not true, or it might mean
that Maxwell’s equations are not exact but are only approxima-

tions to the correct laws. Einstein, however, made the startling

assumptions that the first postulate is true and at the same time

Maxwell’s equations are exact. If both these things are

assumed, the only escape from the apparent inconsistency is

that the Galilean transformation is not the correct way in which

to relate observations made with reference to different coordinate

systems.

Instead of postulating the invariance of Maxwell’s equations,

it is sufficient to make the second postulate as follows

:

2. The velocity of light is independent of the relative motion

of the source and the observer.

It is this second postulate that leads to the unfamiliar results

of the Einstein theory of relativity. This postulate could be

stated with reference to the Maxwell equations. It could be

postulated that these equations must be invariant to a trans-

formation of coordinates. However, the above statement is

simpler and can be shown to amount to the same thing. This

postulate then implies that the Maxwell equations have the
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correct form for the representation of ele^romagnetic phe-

nomena but that Newton^s equations do not\have the correct

form for the exact representation of mechanical phenomena.

With these two postulates as the basis of the theory of

relativity, it is first necessary to find the transformation of

coordinates that will satisfy the second postulate and then to

find such laws of mecdianics as will satisfy th4 first postulate

with this new form of transformation. The appjicability of the

two postulates to natural phenomena can then be appraised

by the correctness of the results deduced from them.

3. The Lorentz Transformation.—It is easy to see that the

Galilean transformation does not satisfy the second postulate

of relativity; therfore, if this postulate is to be adopted, it is

necessary to find another transformation. The transformation

that has been adopted is called the Lorentz transformation

because of the contributions made by H. A. Lorentz to its

development.

In a system of coordinates in which a source of light is at

rest at the origin, the equation for the propagation of a pulse of

light is

~ 0 (16-2)

In another system of coordinates moving relative to the first

with a uniform velocity, the second postulate requires that the

propagation of the same pulse of light be described by

^/2 yf 2 4. ^'2 _ ^2^'2 ^ 0 (16-2a)

This assumes, of course, that the origins of the two systems

coincide at the time at which- the light pulse starts. Such a

restriction does not at all hmit the generality of the result.

The requirement of the second postulate is that the equations of

transformation connecting the description of the event in the

S' system with the description of the same event in the S system

shall leave the form of equation (16-2) invariant.

The left-hand side of equation (16-2) may be regarded as

the length of a four-dimensional vector in a space whose coordi-

nates are x, y, z, and ict. The transformations that will leave

(16-2) invariant are then the orthogonal transformations in four
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dimensions. With this kind of representation, a transformation

to a moving system of coordinates consists in a rotation of

the four-dimensional coordinates. Care must be taken in the

use of this system to remember that one of the coordinates is

imaginary, but for many purposes this makes no difference.

As mentioned before, the analysis is simplified, and no generality

is lost, if it is assumed that the relative motion of the two three-

dimensional coordinate systems is parallel to their x axes. The
corresponding rotation of the four-dirnensional system is around

the y and the z axes, and thus these are unchanged. The matrix

of the transformation then takes the form

'Til' 0 0 T4r\

0 1 0 0 \

0 0 1 0 I

,714 ' 0 0 7447

(16-3)

The coordinates Xi, X 2 ,
X 3 ,

X4 are the space and time coordinates

X, j/, Zy and icty respectively.

The four coefficients left undetermined in this transformation

can be reduced to a single coefficient jS, by the use of the condi-

tions for orthogonality. Let 711 ' == a, and let 741 ' = iot^-

Then the orthogonality conditions and the requirement that

the determinant of the transformation shall be equal to unity

give 7 i 4 ' = 744 ' = and a — 1/Vl — /3^. In order

that the time shall not be reversed, it is necessary to take the

upper sign all the way through. If, then, the transformation is

written in terms of the original space and time coordinates, the

equations are

X - ^ct /

Vl -
11

1
1

II II

(16-3a)

This is the usual form of the Lorentz transformation.

For the zero value of x' in equations (16-3a), x = 0ct, This

means that the system aS is moving past the system S' with the

speed jSc in the negative x direction. Similarly, then, the

system S' is moving past the system S with the same speed in
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the positive x direction. This determines jS in terms of the

relative velocity of the systems.

Problem 2. Work out the details of the process by which (16-3o)

is shown to be the necessary form for an orthogonal transformation in

the coordinates Xi, X2 , Xa, X 4,.

Problem 3. Invert the Lorentz transformation as given in (16-3a)

to get the expression for the unprimed quantities in terms of the primed.

Problem 4. Show by direct application of the Lorentz transforma-

tion that the expression (16-2) is left invariant.

Problem 6. Show that, as c —» 00
,
the Lorentz transformation

ai)proaches the Galilean.

The treatment just given has shown only that the second

postulate of relativity is satisfied if the space and time coordi-

nates transform according to the Lorentz transformation. It

can l)e shown, however, that the Lorentz transformation is a

consequence of the postulate; and since there is a considerable

amount of experimental evidence in favor of the postulate, there

is good reason for concluding that the Lorentz transformation is

the proper one by means of which to connect observations made
in different coordinate systems.

It is important to understand the sequence of the argument.

The quantities x, y, z, t are the space and time coordinates of a

definite physi(!al event as it is described in one system of coordi-

nates. The quantities x', y', z', t' are the corresponding coordi-

nates of the same physical event when it is described in another

system of coordinates. The first postulate states that one

system is as good as another for the description of physical

phenomena, and hence a correctly formulated physical law must
have the same form in both systems. It is then assumed in the

second postulate that the spherical propagation of light with

constant velocity is one such correctly stated law. Because of

this, it must be the same in all coordinate systems so that the

Lorentz transformation is required as the correct way to correlate

observations made with reference to one system with those made
with reference to another. Physical laws that change their

essential form when this transformation is made are then con-

sidered as incorrectly formulated.
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4. Transformation of Maxwell’s Equations.—If any equa-

tion representing a physical law can be written as an equation

between vectors in the kind of four-dimensional space-time

described above, it will be invariant to the Lorentz transforma-

tion and thus will satisfy the postulates of relativity. Since all

electromagnetic phenomena are described by Maxwell’s equa-

tions, it is necessary to investigate the possibihty of writing

these in a four-dimensional vector form.

The electromagnetic potentials introduced in the previous

chapter form a four-dimensional vector. We shall be concerned

here only with the Lorentz form of the equations; thus the per-

mittivity and the magnetic permeability can be given the values

for a vacuum, and = 1/m(Ao. It is then possible to define a

four-dimensional potential d**, and a four-dimensional current

P* as shown in the following table

:

k 1 2
1

3 4

Xk X y Z id

^k A. Ay A, i^/c

Pk MoP^’a: f^OpVy MoP?’^ Q.

\J^

In this table the ^’s are the components of the magnetic vector

potential, is the scalar potential, and the v’s are the com-
ponents of the velocity of the charge density p. All the quanti-

ties are functions of the four coordinates, so that d** and Pk are

two vector fields in four dimensions.

In the four-dimensional vector analysis there are operations

analogous to those in three dimensions, although there are

some important differences. A four-dimensional gradient can

be defined by
TT

Grad ^ (16-5)

In this equation the summation convention implies a sum of

four terms on the right-hand side, and the e^’s are the four unit
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vectors in the directions of the four coordinate axes. The
symbolic operator V is written in four dimensions, and the

divergence can be written

HA T.

Dw A = • A = (16-6)

The operator analogous to the Laplacian is

Div Grad U = D^U

d^U d^U d^U
dx^ dy^ dz^

1 d^U
dt^

(16-7)

With this notation, the equations obeyed by the electromagnetic

potential can be written in very concise form.

— —Pk with Div d> = 0 (16-8)

Since this is an equation between vectors, it will be invariant

under orthogonal transformations and thus will be invariant

under the Lorentz transformation.

The electromagnetic fields can be obtained from the four-

dimensional potential by an operation analogous to the curl.

Here, however, the presence of four coordinates makes evident a

distinction concealed in the three-dimensional analysis, although

even in three dimensions the curl is an operation connected with

two axes rather than with one. The x component of the curl is

obtained by differentiation with respect to the y and the z-axes.

However, since there is only one axis perpendicular to these two,

the result of the differentiation can be associated with this axis

in the same way that an area is represented by a vector per-

pendicular to it. In four dimensions such an association is not

possible, and the curl must be treated as a tensor of the second

rank. A tensor of the second rank in four dimensions has

formally 16 components. The Curl, however, is an antisym-

metric tensor in which the diagonal components are zero and
the others are oppositely equal in pairs, so that there are only

six independent components. For this reason it is sometimes

called a six-vector. If the field tensor is designated by /a*,, it is
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defined by

. _
'*'* dxk dxh

(16-9)

In terms of this field tensor Maxwell’s equations can be

written very compactly.

The first of these equations is written with the ordinary sum-

mation convention so that there are four separate equations,

each of which contains four terms on the left-hand side. The
second equation contains three different subscripts, representing

three out of the four possible dimensions. These are to be

taken in the cyclical order h, j, k, and the sum is to be taken of

the terms in which h takes the three possible values in succession.

In case the omitted index is 2, the equation will read

d/34
,

dfii dfi 3 ^
dxi ' dxs dXi

(16-lOa)

Problem 6. Show that equation (16-8) is the equation for the

electromagnetic potentials.

Problem 7. Show that the field tensor is antisymmetrical.

Problem 8. Show that the field tensor Jhk is associated with the

ordinary field quantities as follows

//ii /12 /l3
I

0 By -By -iExIcX

I
/21 /22 /23 /-L - 0 Bx — iEy!c

j

1 /31 /32 /33 /.n)- By Bx 0 -iEJc]
/42 /43 fj \ iExIc lEylc iEtjc 0 /

Problem 9. Show that equations (16-10) are Maxwell’s equations

for vacuum.

The four-dimensional form in which Maxwell’s equations

can be written shows very clearly their invariance under the

Lorentz transformation, and it also brings out the intimate

connection between electric and magnetic phenomena. In the

previous chapter it was shown that an electric field with refer-

ence to one system of coordinate axes may be part electric and

part magnetic when referred to another set of axes. The
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previous considerations were restricted to low relative velocities

and were approximate. They are now extended to include all

velocities. The four-dimensional transformation provides exact

invariance for the Maxwell equations and shows that these

equations are applicable, in all systems of coordinates, and that

pure electric and ma^]5netic fields are merely limiting cases of

the general electromagnetic field.

Problem 10. Apply the Lorentz transformation to the four-

dimensional electromagnetic potential to determine the equations of

transformation for the magnetic vector potential and the scalar electric

potential between systems of coordinates moving with respect to each

other.

Problem 11, The general formula for the transformation of a

tensor of the second rank by an orthogonal transformation is

fhk — yhg'fo'j' Ki'k

With this transformation formula show that the transformation

equations for the field are

Ex' — Ex

JP
Ey jScBz

Jcjy' ~ J-::
:

-VT^
Et + ficBy

E.- =
\/l -

Bx' = Bx

Tf _ By + 0Eg/c
Jjy' / 'V 1 -

Bi — 0Ey/C

V 1 -

(16-12)

Problem 12. Show that the transformations in (16-12) approach

those of Chap. XV Avhen the relative velocity of the coordinate systems

is small compared with the velocity of light.

It is possible to use these transformation equations to find the

fields due to charges moving with uniform velocities. All that

is necessary is to take the fields present when the charges are at

rest relative to the observer and then to transform them to a

system of coordinates in which the charges appear to be moving.
Thus the observer with reference to which a charged particle is

moving will see a magnetic field, while an observer who is

moving with the charge will see only an electrostatic field.

Problem 13. Find the electric and magnetic fields that surround
a charged particle moving with uniform velocity along the x axis.
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Problem 14. Find the electric and magnetic fields surrounding a

long charged wire moving parallel (.o its length.

Problem 16. Find the electric and magnetic fields about a long

charged wire moving perpendicular to its length.

6. Consequences of the Lorentz Transformation for

Mechanics.—The discussion in the preceding section has shown

that, if the Lorentz transformation is the prop(!r way in wLich to

connect the coordinates and time measured in one system of

coordinates with those measxii'ed in another system, electro-

magnetic phenomena will appear to follow Maxwell’s equations

in both sets of coordinates. It will then never be possible to tell

anything about an “absolute motion” by performing electro-

magnetic experiments. Hince no experiment has ever given any

conclusive indication of an absolute motion and since the

velocity of light appears experimentally to be inde])endent of

the relative motion of the source and the observer, it has been

concluded that the Lonmtz transformation ecjuations are the

correct ones to use. How(!vei’, these transformation equations

do not leave Newton’s equations invariant. If the first postu-

late of relativity is to be maintained for mechanical experiments,

it is necessary to conclude that Newton’s equations are not

exact and require some corrections. Most of this consists in a

modification of the kinematicis, but there is also a modification

of the mechanical concepts of energy and mass.

a. The Relativity of Siviultaneity .— The use of the Lorentz

transformation implies that events which are simultaneous as

seen from one system of coordinates arc not necessarily simul-

taneous as seen from another system, moving relative to the

first. Tfiis lack of simultaneity appears only when the events

do not coincide in space. If two events coincide both in space

and in time as seen from one system of coordinates, they will

similarly coincide in all others. Relationships of this kind

can be determined by imagining a definite physical situation in

one set of coordinates and then transforming it to the other.

Problem 16. Show that, if two events ai’e simultaneous in the

system S in which they have different space coordinates, they will not

in general be simultaneous as seen from the system S' but will be
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separated by the time interval

Af = /3 Ax/c
(16-13)

Problem 17. Show that, if two events are separated by the time

interval At in the S system in which they have the same space coordi-

nates, they will appear from the S' system to be separated by the time

interval

At' = - ..P:....,: (16-14)

Problem 18. Show that the above result is reciprocal, i.e., that

two events which occur at the same place in the *S" system appear to an

observer in the S system l-o he separated by a time interval longer than

that measured by an observer in the S' system. Show that this result

cannot be obtained by solving equation (16-14) for At, because the

conditions for the validity of equation (Ki-ld) are not satisfied.

b. The Lorentz Contraction.—One of the best-known effects

of the Lorentz transfoniiation is the so-called “Lorentz con-

traction.” This is in some respects an unfortunate name, as it

implies that the material of a body contracts when it is set in

motion. The viewpoint of relativity, however, is that this

apparent contraction is not due to any special property of the

body itself but is a general property of space and time.

Consider a measuring stick with its length parallel to the

X axis. In the S system, let one end of the sticL be at the origin

and the other at the point x = L. Then consider a system S'

that is moving relative to S and to the stick with the velocity

V in the x direction. To find the length of the stick as seen from

this system, it is necessary to oLserve the x' coordinates of the

two ends of the stick and to observe them at the same time, i.e.,

the same value of i'. For simplicity let t' = 0. Then, although

these observations are simultaneous in the S' system, they will

not be simultaneous in the S system. In fact, from the equa-

tions of transformation the time at which the one end of the

stick is observed will be f = 0, while the time of observation of

the other end of the stick will be f = ^L/c. These are the values

of t that must be put into the transformation equations to

determine the values of x' that will be observed. The result is
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that

U = L \/r=T= (16-15)

Problem 19. Derive equation (Ki-lS) in detail.

c. The Transformation of Velocity .— TJie measurement of a

uniform velocity consists in the observation of two events.

Each observation (!onsists in the measurement of a coordinate

and the corresponding time. If it is observed from the system

S that a particle has the coordinate .Ti at the time h and then

has the coordinate a*., at the time t-i, the average velocity of the

particle is, by definition, given by

F. = j y (16-16)

By the transformation of these four individual coordinates it is

possible to obtain the equation for the transformation of

velocities.

Problem 20. Carry out the above described analysis, and show

that the transformation of a velocity in the x direction is given by

T/- Vx
~

1 - (fiVx/c)
(16-17)

Problem 21. Show that the transformation for a velocity per-

pendicular to the direction of motion of the coordinate system is given

by

Vy' = F„(l - (16-18)

Problem 22. Carry through similar considerations for the trans-

formation of a velocity that has both x and y components.

Problem 23. Show from the above transformation equations for

velocity that it is impossible, by adding velocities, to get a velocity

greater than th(! velocity of light.

d. The Laws of Motion and the Transformation of Mass .

—

Although the ordinary Newtonian laws of motion are not invari-

ant under the Lorentz transformation and hence cannot be

considered as exact, it is possible to set up very similar laws

that do hold under the postulates of relativity. The difference

consists essentially in a change in the concepts of mass and
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energy. Newton’s equations may be taken over in the form

that he originally gave them, i.e.,

dM,
~dr

(16-19)

where ilf* is the component of>the momentum along the h axis

and Fft is the corresponding component of force. There can

be no question about the validity of this equation when it is

regarded as a definition of force, but it is then necessary to

consider carefully the definition of the momentum.
Momentum can be defined by Newton’s third law. Accord-

ing to this, if two bodies influence each other, the change of

momentum of one is equal and opposite to the change of momen-
tum of the other. This statement can be used for the definition

of momentum by carrying out an imaginary experiment first

proposed by Tohnan and Lewis.

If a particle is moving with a velocity very small compared

with the velocity of liglit, the momentum must be given by the

ordinary expression mo?>. This is because the Lorentz trans-

formation reduces to the Galilean wlien the light velocity

approaches infinity. The mass is wj’itten as mo to indicate this

restriction to small velocities. Since the velocity can be

measured and defined in all systems of coordinates, the expres-

sion mv can always be used for the momentum if m is allowed to

vary with the velocity. It is then necessary that m approach

mo as the velocity approaches zero. The way in which m varies

with the velocity can be determined from the conceptual experi-

ment of Tohnan and Lewis.

Consider two systems of coordinates S and S'. Let them be

moving past each other along their coincident x axes with the

velocity v = /3c. Let there be a particle whose mass, when at

rest, is mo, and which has the velocity Uy along the y axis in the

S system, and let there be an exactly similar particle with the

velocity —Uy' in the S' system. Each of these particles is

moving parallel to the y axis of its own system with a speed

small compared with v. Let the two particles be moving in such

a way that they collide and each is reversed in its direction of

motion as seen from its own system. It is thus assumed that
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neither particle acquires in the collision any motion along the

X or z axes. If Uy ~ Uy' before the collision, the symmetry of

the situation and the first postulate of relativity require that

Uy = Uy’, where these are the component velocities after the

collision. Thus far the experiment has been described by

giving the motion of each particle in its own system of coordi-

nates. Now consider the whole experiment as seen from the S
system. The particle that has no a; or z velotat}'^ in the S'

system will appear to have the velocity components

Wy = Uj/ vl — S"- and Wy = Uy' y/l — (16-20)

before and after the collision. This represents the appheation

of the Lorentz transformation. The application of the postu-

late, or definition, of the conservation of momentum then leads

to the equation

nioUy + nioUy - m'Wy -f m'Wy
- m'{uy’ -F Uy) ( 16-21 )

This leads to the conclusion that

m = Too

Vl - (16-22)

If the mass is defined to vary with the velocity as indicated in

equation (16-22), the momentum can be expressed as mv and

there will be conservation of momentum.
In the above treatment the variation of the mass due to the

motion of the particles along their y axes has been neglected.

This is of course only justified because Uy «: v. However, it

can be shown by a more detailed analysis that the result in

equation (16-22) still holds when this is taken into account.

With the above definitions of mass and momentum, equa-

tion (16-19) gives a definition of force. The law of transforma-

tion for force can be determined from the law of transformation

of the left-hand side.

e. Equivalence of Mass and Energy .—With the definitions of

mass, momentum, and force just indicated, a very remarkable

theorem concerning the equivalence of mass and energy can be
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established. Equation (16-19) can be written

d / x dv
,

dm _
gj(mv) = ».^ + v^=F (16-2.i)

If the increase in the energy of a particilo is defined as equal to

the amount of work done on it, the principal of the conservation

of energy can be maintained. Hence let

AE = JF • dl = jd(mv) • v = Jmv • dv + Jv • v dm
— dm + (16-24)

By means of equation (16-22) it is possible to express the speed

as a function of the mass, so that the integral in (16-24) can be

expressed as an integration with reference to the mass. The
result is

AE = J -f- dm ~ J
dm = c® Am (16-25)

This is the important result that the increase in the energy of a

particle is just equal to c® times the increase in mass. It sug-

gests that the total mass can be expressed as energy in the

equation

E - me® (16-26)

The derivation just given does not fix the constant of inte-

gration and does not require equation (16-26). The early

experiments on the mass of electrons at high velocities led to

confirmation of equation (16-22) for the change of mass with

velocity, but the first conclusive confirmation of equation (16-26)

came in the study of nuclear physics, where this equivalence

of mass and energy is now one of the fundamental principles.

Problem 24. Consider an electron as a charged sphere inside of

which there is no field. By the use of equation (16-26), compute the

mass of the electron as a function of the radius of the sphere and the

charge on it. The energy of the electron is that of the electric field

around it.

Problem 26. In the same way compute the mass of a moving

electron. Note that when in motion the sphere is subject to the

Lorentz transformation and becomes an ellipsoid of rotation.
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Problem 26. Show by application of the Lorentz transformation

that the force on a charged particle which is moving with uniform

velocity'' is just equal to that due to the electrostatic field as seen by an

observer v ho is at rest with respect to the particle.

The postulates of relativity have been developed into a very

elaborate structure, and the necessity for invariance, under

the Lorentz transformation, of any physical law lias been gener-

ally recognized. The restricted theory has been important in

treating the high-speed motions of atomic and nuclear particles.

The general theory has been of importance in the treatment of

large-scale cosmological problems, where gravitational forces

and potentials are of major importance. However, there still

I'ernain important problems that are not understood.
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Absolute scale of temperature, 204

Absolute value of a complex number, 52

Absorption of energy by an oscillator,
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Adiabatic process, 197

Air, resistance of, 29

Amperes, 284

Ampere’s laws, 289

Analogies, thermodynamic, 224

Analysis, vector, 145

Angles, Eulerian, 173

Angular momentum, 159

conservation of, 26

Angular velocity, 164, 166

Arbitrary constant, 3

Areal velocity, 26

Argument of a complex number, 52

Auxiliary conditions in the calculus of

variations, 96

Auxiliary equation, 40

Axes, principal, 170

B

Bessers equation, 63

Betatron, 312

Body, rigid, 157

Brachistochrone, 88

C

Calorie, 188

Canonical distribution, 218

Canonical ensemble, 220

Canonical transformations, 113

Capacitance, 265

to ground, 265

mutual, 265

Cartesian coordinates, right-hand sys-

tem of, 18
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Center of mass, 26, 157

separation of, 32

Characteristic equation of a thermo-

dynamic system, 187

Charge density, 251

Chasles' theorem, 164

Coefficient, of mutual inductance, 320

of self-inductance, 313, 320

Complementary function, 39

Complete set of orthogonal functions,

136

Complex conjugate, 51

Complex functions, 53

Complex numbers, 50

representation of, 52

Components, orthogonal, 147

Conductance, 284

Conductivity, 284

Conductors, 263

Conic section, 35

Conservation, of density in phase, 217

of energy, 23

Conservation laws of mechanics, 27

Constant, arbitrary, 3

Continuous string, forced vibrations of,

134

normal vibrations of, 129

traveling waves in, 142

Contraction, Ijorentz, 350

Conversion table for electrical units,

326

Coordinates, Cartesian, 18

normal, 83, 120

orthogonal curvilinear, 240

Cosecant, hyperbolic, 54

Cotangent, hyperbolic, 54

Coulomb ^s law, 246

Couple, 161

Coupled oscillators, 80

Critical point, 193

Critically damped motion, 71
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Cross product, 149

Curl, 233

Current, 284

four-dimensional, 345

Current density, 285, 293

Currents, steady, vector potential due

to, 294

Curvilinear coordinates, orthogonal, 240

Cyclical processes, 191

D

Damped vibrations, 67

Decay, modulus of, 69

Decomposition, principle of, 55

Definite integrals, 9

Degree of a differential equation, 4

Density, current, 293

in phase, 216

conservation of, 217

Diamagnetism, 303

Dielectric constant, 266

Dielectric susceptibility, 266

Differential equation, degree of, 4

formulation of, 5

homogeneous linear, 37

linear, 8, 37

nature of, 2

order of, 4

ordinary, 2

partial, 4

Differential equations, elementary, 1

with constant coefficients, linear, 40

Dipole, electric, 255

Directrix, 35

Displacement current, 323

Distribution, canonical, 218

modulus of, 220

Divergence, 232

of a tensor, 240

Dot product, 148

Dynamics of rigid bodies, 157

E

Eccentricity, 35

Electric dipoles, 255

Electric displacement, 261

Electric polarization, 256

Electrical units, 250, 290, 326

Electromagnetic field, 306

Electromagnetic field energy, 328

Electromagnetic field momentum, 330

Electromagnetic induction, 310

Electromagnetic potentials, 332

Electromagnetic waves, 334

Electromotive force, 287

Electrostatic field, 247, 306

Electrostatic system, energy of; 278

Ellipsoid of inertia, 171

Energy, absorption of, by an oscillator,

78

associated with polarization, 279

conservation of, 23

of an electrostatic system, 278

free, 209

integral, 20

kinetic, 21

in a magnetic field, 303, 318

and mass, equivalence of, 353

potential, 21

of a vibrating string, 133

Ensemble, canonical, 220

microcanonical, 220

Enthalpy, 209

Entropy, 204

Equation, auxiliary, 40

Bessers, 63

characteristic, 187

Euler’s, 172

Euler-Lagrange, 93

exponents of, 65

homogeneous differential, 40

indicial, 65

Lagrange’s, 106

Legendre’s, 61

Maxwell’s, 324

nature of a differential, 2

nonhomogeneous, 37

ordinary differential, 2

Poisson’s, 269

of state, 187

van der Waals, 192

Equations, linear differential, 8

with constant coefficients, 40

with variable coefficients, 58
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Equations, of motion, Newton's, 18

of order higher than the first, linear,

37

of the second order that do not con-

tain 2/,
14:

Equilibrium, statistical, 218

Equipartition theorem, 224

Equivalence of mass and energy, 353

Equivalent sets of forces, 162

Ergodic hypothesis, 221

Essential singularities, 63

Euler's equations, 172

Eulcr-Lagrange equation, 93, 106

Eulerian angles, 173

Exponents of a linear differential equa-

tion, 65

Extreme values, 89

F

Ferromagnetism, 303

Field, electromagnetic, 306

electrostatic, 247, 306

magnetostatic, 309

P'ield eiuirgy, electromagnetic, 328

Field momentum, electtromagiietic, 330

Field strength, electric, 247

magnetic, 298

Fields, magnetic, due to currents only,

290

due to magnetization, 296

in moving coordinate systems, 313

First law of thermodynamics, 193

Fixed axis, rotation about, 177

Force, inverse-square, 32

moment of, 26, 160

Forces, equivalent sets of, 162

harmonic, 73

nonconservative, 110

sinusoidal, 73

Formula, recursion, 60

Formulation of the differential equa-

tion, 5

Four-dimensional current, 345

gradient, 345

potential, 345

Fourier series, 133, 137

Free energy, 209

Free rotation of a rigid body, 181

Function, complementary, 39

Gibbs’, 209

Green's, 48

Hamiltonian, 113

Lagrangian, 105

partition, 227

Function notation, 4

Functions, complex, 53

hyperbolic, 54

orthogonal, 136

G

Galilean transformations, 339

Gauss's law, complete form of, 260

differential form of, 261

restricted form of, 253

Gauss's theorem, 236

Gaussian system of units, 250, 325

Gibbs’ function, 209

Giorgi system of units, 250

Gradient, 230

four-dimensional, 345

of a tensor, 239

Gravitation, law of, 32

Green's function, 48

H

Hamilton’s principle, 102

derivation of, 102

Hamilton-Jacobi partial differential

equation, 113

Hamiltonian function, 113

Harmonic forces, 73

Harmonic motion, plane, 31

simple, 30

Harmonics, spherical, 273

Heat, latent, 189

mechanical equivalent of, 194

mechanical theory of, 185

quantity of, 188

specific, 189

Heat capacity, 189

Heat content, 209

Heat function, 209

Hermite polynomials, 137

Homogeneous linear differential equa-

tion, 37

solution of, 40
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Hyperbolic cosecant, 54

Hyperbolic cotangent, 54

Hyperbolic functions, 54

Hyperbolic secant, 54

Hypothesis, ergodic, 221

I

Imaginary numbers, 51

Imaginary part, 51

Index of probability, 220

Indicial equation, 65

Induction, electromagnetic, 310

Inertia, ellipsoid of, 171

moments of, 170

products of, 170

tensor of, 169

Insulation, vibration, 78

Insulators, 263

Integral, energy, 20

line, 234

particular, 39, 42

surface, 235

Integrals, indefinite, 9

Integration, numerical, 10

Inverse-square force, 32

Irrational numbers, 51

Irregular points, 63

Isoperimetric problems, 98

J

Joule-Thomson porous-plug experi-

ment, 211

K

Kinematics of a rigid body, 163

Kinetic energy, 21

of a rotating body, 175

L

Lagrange’s equations, 106

Lagrangian function, 105

Latent heat, 189

Law, Coulomb’s, 246

of motion, Newton’s third, 24

Ohm’s, 284

Laws, Ampere’s, 289

Legendre’s equation, 61

Line integral, 234

Linear differential equations, with con-

stant coefficients, 40

general properties of, 37

Linear equations of order higher than

the first, 37

Linear momentum, 157, 159

Linear vector functions, 154

Liouville’s theorem, 217

Loaded string, vibrations of, 121

Logarithmic decrement, 69

Lorentz contraction, 350

Lorentz’s form of Maxwell’s equations,

335

Lorentz transformation, 342

M

Magnetic field, energy in, 318

Magnetic field strength, 298

Magnetic fields due to magnetization,

296

Magnetic moment, 293

Magnetic vector potential, 291

Magnetization, 283, 297

Magnetostatic field, 309

Magnetostatics, 283

Mass, center of, 26, 157

and energy, equivalence of, 353

transformation of, 351

Maxwell’s equations, 324

Ijorentz’s form of, 335

Maxwell stress tensor, 332

-Mechanical equivalent of heat, 194

Mechanical theory of heat, 185

Mechanics, statistical, 213

Meter-kilogram-second-coulomb sys-

tem of units, 250, 325

Methods of thermodynamics, 186

Microcanonical ensemble, 220

Modulus, of a complex number, 52

of decay, 69

of the distribution, 220

Moment, dipole, 255

of force, 160

Moments of inertia, 170
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Momentum, 25

angular, 26, 159

conservation of, 25

linear, 157, 159

moment of, 26

Momentum integral, 24

Motion, critically damped, 71

of the planets, 32

simple-harmonic, 30

Mutual capacitance, 265

Mutual inductance, coeflicicnt of, 320

N

Newton^s equations of motion, 18

Newton^s third law of motion, 24

Nonconservative forces, 1 10

Nonhomogeneous differential equation,

37

Nonuniform string, 138

Normal coordinates, 83, 120

Normal vibration, 83

variation proV)lem for, 141

Normalized functions, 136

Numbers, complex, 50

imaginary, 51

irrational, 51

real, 51

Numerical integration, 10

O

Ohm ^8 law, 284

Operator /), 39

Order of a differential equation, 4

Ordinary point of a differential equa-

tion, 58

Orthogonal components of a vector, 147

Orthogonal coordinates, 241

Orthogonal curvilinear coordinates, 240

Orthogonal functions, 136

Orthogonal set, complete, 136

Oscillators, coupled, 80

P

Paramagnetism, 302

Partial differential equation, 4

Particular integral, 39

Partition function, 227

Pendulum with arbitrary amplitude,

113

Perfect gas, 191

Period, 69

Permeability magnetic, 303

Permittivity, 266

Phase, density in, 216

conservation of, 217

Phase integral, 227

Phase lag, 74

Phase space, 213

Plane simple-harmonic motion, 31

Planets, motions of the, 32

Poisson’s equation, 269

Polarization, electric, 256

energy associated with, 279

Polynomials, Hcrmite, 137

Porous-plug experiment, Joule-Thom-

son, 211

Positive definite expressions, 120

Potential, 244, 247

electromagnetic, 332

four-dimensional, 345

magnetic vector, 291

scalar, 332

vector, 332

Potential energy, 21

Postulates of relativity, 340

Poynting’s vector, 330

Practi(;al system of units, 325

Principal axes, 170

Principle, Hamilton’s, 102

variation, 87

Probability, index of, 220

Problems of thermodynamics, 186

Processes, cyclical, 191

Product, cross, 149

dot, 148

of inertia, 170

scalar, 148

vector, 149

Projectile, motion of a, 28

Q

Q of an oscillator, 70

Quantity of heat, 188
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R

Real numbers, 51

Real part, 51

Recursion formula, 60

Regular points of a differential equa-

tion, 63

Relativity, postulates of, 340

restricted theory of, 339

of simultaneity, 349

Resistance, 284

Resonance, 75

Restricted theory of relativity, 339

Reversible processes, 190

Rigid bodies, dynamics of, 157

free rotation of, 181

kinematics of, 163

laws of motion of, 157

Rotating body, kinetic energy of,

175

Rotation about a fixed axis, 177

S

Scalar potential, 332

Scalar product, 148

Scalar quantities, 145

Secant, hyperbolic, 54

Second law of thermodynamics, 201

Self-inductance, coefficient of, 320

Separation of variables, 5

Scries, Fourier, 133

of orthogonal functions, 136

Simple-harmonic motion, 30

Simpson’s rule, 10

Singular points of a differential equa-

tion, 59

Singularities, of a differential equation,

59

essential, 63

regular, 63

Sinusoidal forces, 73

Solution, general, 3

around ordinary points, 59

Specific heat, 189

Spherical harmonics, 273

State of a thermodynamic system, 186

Stationary value, 90

Statistical equilibrium, 218

mechanics, 213

Steady currents, 294

Stokes’s theorem, 238

Stress tensor, Maxwell, 332

String, continuous, 129

loaded, 121

nonuniform, 138

Sturm-Liouvillc equation, 138

Summation convention, 154

Superposition, principle of, 55

Surface integral, 235

Systems, vibrating, 120

T

Temperature, 188

absolute scale of, 204

Tensor, 165

divergence of a, 240

field, 239

gradient of a, 239

of inertia, 169

Thermodynamic analogies, 224

Thermodynamic potential at constant

pressure, 209

Thermodynamic sj^stem, 186

Thermodynamics, first law of, 193

methods of, 186

problems of, 186

second law of, 201

third law of, 186

Theorem, Chasles’, 164

cquipartition, 224

Gauss’s, 236

Liouville’s, 217

Stokes’s, 238

of uniqueness, 271

Theory of relativity, restricted, 339

Thermometry, 188

Third law, of motion, Newton’s, 24

of thermodynamics, 186

Torque, 160

Transformation, of mass, 351

of velocity, 351

Transformations, canonical, 133

Galilean, 339

Transient, 76

Traveling waves in a string, 142
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U

Underdamped vibrations, 68

Uniqueness, theorem of, 271

Units, conversion table for, 326

electrical, 250

Gaussian, 260

(laussian system of, 325

Giorgi system of, 250

mks system of, 250

V

Value, of a complex number, absolute,

52

extreme, 89

stationary, 90

Van dor Waals equation of state, 192

Variation, first, 93

Variation principle, 87

Variation problem for normal vibra-

tions, 141

Vector, definition of, 145

diffeirentiation of, 151

Poynting's, 330

Vector analysis, 145

Vector field, 230

Vector functions, linear, 154

Vector potential, 332

magnetic, 291

properties of, 294

Ve(;tor product, 149

Velocity, angular, 164, 166

transformation of, 351

Vibrating string, energy of, 133

Vibrating systems, 120

Vibration, normal, 83

Vibration insulation, 78

Vibrations, damped, 67

W

Waves, electromagnetic, 334

in a string, traveling, 142

Work function, 209
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