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PREFACE 
TO THE SECOND EDITION 

A NUMBER of corrections have been made in the text and 

a Table of Adjustments for the angles of a Quadrilateral 

with a Central Point has been added, as the method of 

Successive Approximations is unsuitable when the errors 

are large. A chapter has been added as a brief introduction 

to Survey from the Air, for which the Author frankly 

acknowledges his indebtedness to Brigadier J. M. Hotine, 

C.B.E., R.E., for his great work Surveying from Air Photo¬ 
graphs (Constable). 

PREFACE 

A COURSE in Surveying, like those for other subjects in 

Final Degree examinations, should extend over two years. 

A student is only ready to appreciate the higher parts of 

the subject when he has been through an elementary course 

such as is given in Professor M. T. Ormsby’s Elementary 

Principles of Surveying, illustrated by practical work in 

Chain Surveying, Levelling, Theodolite Traversing, Tache- 

ometry, and Curve Ranging. It is assumed that the student 

has undergone such a training and has an elementary know¬ 

ledge of the Calculus and of Geometrical Optics. 

This is a textbook, not a treatise, which a student can 

reasonably be expected to master in one session, along with 

the other subjects required for his Final examination. It is 

thus necessarily brief, and the Author’s aim has been to 

give clear explanations of the principles of the chief modern 

instruments and methods of Surveying, with the additional 
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Mathematics involved, and he must refer the student, for 

fuller descriptions and illustrations of these and other instru¬ 

ments and methods of surveying, to much larger books, 

such as the late Professor David Clark’s Plane and Geodetic 

Surveying. A large number of fully worked out illustrative 

examples are given in the text. Many of these, marked 

"L.U.,” and modified if necessary to suit the Author’s pur¬ 

pose, are taken from the Examination Papers for the B.Sc. 

(Engineering) Degree of London University, with the kind 

permission of the University. 

Many students find great difficulty in assimilating Astro¬ 

nomical ideas. The best way to overcome this is to practise 

oneself in approximate estimations of the position of stars 

in different latitudes and at various hours of the day and 

times of the year, as explained in Chapter II, with the aid 

of the simple model suggested: at a later stage the model 

can be dispensed with and a "clock diagram” used instead. 

The student should be thoroughly at home in the astro¬ 

nomical part of Whitaker's Almanackhtiort being introduced 

to the much more complicated Nautical Almanac. 

The use of Surveys for the location, design, and quantities 

of earthwork is dealt with in the Author’s companion volume 

on Contour Geometry. In conclusion, the Author gratefully 

acknowledges the help he has received from Professor J. B. 

Dale, of King’s College, London, in his treatment of the 

" Method of Least Squares ” and its applications to surveying 

problems. 
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ADVANCED SURVEYING 

CHAPTER I 

MATHKMATK'S 

SpHEKUAL rKlGONOMETKY—APPROXIMATIONS, 

Common Catenary'—Mkthoo of Least Squares 

SpIIF.RICAE rRlC.ONOMKTRY 

A SPHERE is a surface every point on which is at the same 

distance from a point called the "Centre”—this constant 

distance being the "Radius.” All sections of a Sphere by 

a Plane are Circles—when the plane passes through the 

centre of the sphere the radius of the circle is a maximum 

and equals the radius of the sphere—such circles are, there¬ 

fore, called "Great Circles.” 

The arc of a great circle passing through .any two points 

on a sphere is the shortest distance between them; in this 

respect a great circle on a sphere corresponds to a straight 

line on a plane. 

The figure contained by the arcs of three great circles is 

called a "Spherical Triangle,” and the intersections of the 

great circles are the Vertices of the triangle. The Sides of 

the spherical triangle are the lengths of the arcs of the great 

circles between the vertices and are, of course, proportional 

to the angles subtended at the centre of the sphere by these 

arcs and to the radius of the sphere. In Fig. L if ABC is a 

spherical triangle on the sphere of radius R, and if the angles 

at the centre in circular measure are as follows; BOC — a, 

CO A — b, AOB — c\ then the lengths of the sides are 

BC — Ra, CA = Rb, AB = Rc. We shall, in general, 
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consider the radius of the sphere as equal to unity, so that 
BC — a, CA = b, AB = c, i.e. the sides of the spherical 

triangle are the angles subtended by the sides at the centre of the 

sphere. 
The Angles of the spherical triangle are the angles between 

the planes of the sides, e.g. the anglt' .1 or /^.■l^' is the angle 

between the plane AOB and the plane AOC. If we draw the 
tangents AE, AF, at A to the arcs AB, AC, eacli in its 

own plane, AE, AF are lines in the planes AOB, AOC 
respectively, each perpendicular to OA the intersection of the 

two planes. The angle EAF is, therefore, the angle between 
the planes AOB, AOC. Consequently, the angles A, B, and 
C of the spherical triangle can also be defined as the angles 

between the tangents to the sides at the respective vertices. 
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Or, again, if we draw a great circle in a plane perpendicular 
to AO, cutting AB and AC in M and N, the angle MON or 

MN, also = angle A. 
Spherical Trigonometry deals with the relations between 

the sides and angles of a spherical triangle or with the rela¬ 

tions of the angles between any three intersecting lines AO, 
BO, CO with the angles between the three planes AOB, 

BOC, CO A which contain each pair of such lines. 
spherical Excess. The sum of the three angles of a spherical 

triangle is always greater than tt or than two right angles; 

in fact, A, B, and C may each be a right angle or more, the 
maximum value of the sum being six right angles, or Sn. 

When two angles of a triangle are given, therefore, it is not 
possible, as in Plane Trigonometry, to find the value of the 

third angle without other data being given. This "Spherical 

excess," i.e. the amount by which the sum of the three angles 

exceeds n depends on the ratio of the area of the triangle to 

the area of the hemisphere, as may be readily shown. 
Produce the radii AO to A', BO to B', CO to C on the 

opposite surface of the sphere, then the sides of the triangle 
intersect again at the points A', B', and C' and the triangle 

A'B'C is identically equal to triangle ABC The figure 

ABA'C between two great circles is called a "lune”—its 
area is obviously proportional to the angle A, and when 

A ~ 180° — 7T it becomes a hemisphere of area 27r/?®. There¬ 

fore we can write 
ABC + A'BC - ABA'C 

= - . 2nR^ = 2AR^ 
TT 

ABC AB'C = BAB'C 

3= - . 27tR^ = 2BR^ 
V 

Similarly, 
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and ABC + ABC ^ ABC A'B'C CACB 

= - . 2nR^ 
n 

Adding together, we get 

2CR^ 

2ABC + area of hemisphere — + /? + (^) 
2 X area ABC = 2R%‘\ + B + Q - 2nR^ 

or, area of triangle ABC — /?*(/! + B C - n) 
. „ ,, area of triangle 

A + B f C =-^ TT H- ^ 

Therefore, the spherical excess is 

R^ 

area of triangle 
R-^ 

The maximum area of a spherical triangle is the hemi- 

, , , - . • , . 277«* 
sphere; the maximum spherical excess is therefore 

= 2tt, and the maximum value therefore for the sum of the 
three angles of a spherical triangle is, therefore, 3rr. 

When one of the angles of a spherical triangle is a right 
angle, the triangle is said to be " Right-angled.” If Iwo of 
the angles are right angles, as in triangle AMN in Fig. 1, 
then the opposite sides are also right angles and the remaining 
side equals the remaining angle; if all three angles are right 
angles then all three sides are right angles. In the tatter case 

the spherical excess is 90'’ or^. The area of the triangle is, 
77 ^ 

therefore, ^ R^ or l2nR^, i.e. one-quarter of a hemisphere as, 

of course, is obvious. 
The fundamental formula in Spherical Trigonometry is 

cos a-cos 6 . cos c 
cos A =-—.-. lo prove this (rig. 2), let 

sin 6. sm c 
ABC be any spherical triangle on a sphere of radius unity. 

At A draw the tangents AD, AE to the sides AB, AC 
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respectively meeting the radii OB, OC, at D and E respec¬ 
tively. Then AD — tan c, OD = see c, AE = tan b, OE 

tan* b 4- tan* c - DE^ 

Fig. 2 

but in triangle DOE, DE- — sec* b sec* t - 2 .sec b . sec c 
cos a. 

cos A 
tan* b - sec* b -t- tan* c - sec* c -f 2 sec 6 . .sec c . cos a 

~~ 2 tan b . tan c 
2 sec . sec c . cos a - 2 

“ 2 tan b . tan c 
sec b . sec c . cos a - I 

tan b .tan c 
(multiply both Numerator and 
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Denominator by cos b . cos c) 

cos a - cos b . cos c 
sin 6 . sin c 

cos C 

, with similar formulae for cos B and 

.(1) 

Although this is the fundamental formula, it is not well 
suited for use with logarithms, so we proceed to transform 
it by Plane Trigonometry, thus— 

, . rw • . ^ cos a - cos b . cos c 
cos A — I - 2 sm* TT =-:—r—^- 

2 sm 0 . sm c 

^ A , cos a - cos b . cos c 
2 sm* IT = 1-:-r-:- 

2 sm 0 . sm c 

sin 6 . sin c + .cos b . cos c - cos a 
~ sin b . sin c 

cos (b - c) - cos a 
~~ sin 6 . sin c 

, a + b-c . a-b + c 
2 sm-2-• sin ^- 

~ sin 6 . sin c 

a “1“ b “1” c 
Now let s =-5-, and we have 

sm V- sin (s-b). sin (s - c) 
sin b . sine with similar formulae 

for sm 2 and sm g • 

., , ^ „ A . cos a - cos b . cos c 
Also cos A — 2 cos® „■ - * = -—£-:- 

2 sm 0 . sm c 

- (2) 
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2 cos* ^ 

cos 

sin h . sin c - cos h . cos c 4- cos a 
sin 6 . sin c 

cos a - cos (!» c) 
sin 6 . sin c 

. a + 6 + c . b c ~ a 
I sin-2-• sin-2- 

sin 6 . sin c 

/sin s . sin (s - a) 
V sin 6 . sin c 

for cos 2 ^ncl cos 

with similar formulae 

• ■ • (3) 

Dividing (2) by (3) we get 

A /sin (s - i) . sin (s - c) , • , , 
tan Tf == ./-.-:—^— and similarly for 

2 V sin s . sin (s - <j) ^ 

. . . (4) 
B , C 

tan 7y and tan ry 

A A 
Again, sin A - 2 sm -,y . cos 

\'sin s . sin (s - a) . sin (s - b) sin (s - c) 
sin 6 . sin c 

sin A 
sin a 

\-sin s . sin (s - a) . sin (s - b) . sin (s - c) 
sin a . sin b . sin c 

Now this result is quite symmetrical in a, b, and c, so that 
, ,, , , , sin , sin C 

we should get the same result for —v- and- 
^ sm b sm c 

sin A sin C sin B 
sm a sin b sm c 

Therefore = “ ’ 7 “ ' ’tt—. or, thesmw of the 

angles are proportional to the sines of the opposite 

sides ........ (5) 
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This last fonnula is, however, not nearly so useful as the 
corresponding "rule of sines” for a plane triangle as the 
sum of the three angles of a spherical triangle is not a 
constant quantity. 

Polar Triangles and their Reciprocal Properties. The ends 
of the diameter of the sphere at right angles to any great 

circle are called the "Poles” 
of that great circle as they 
occupy the same relation to 
it as the Poles to the Equator 
on the earth. The distance 
along the sphere of either 
pole from the great circle is 
the same in all directions, 
subtending 90° at the centre 
of the sphere. If ABC is a 
spherical triangle (Fig. 3) and 
A is the pole of the great 
circle BC, B' is the pole of 

the great circle CA and C' is the pole of the great circle AB, 
the spherical triangle A'B'C' is called the "polar triangle” 

of the triangle ABC. Then since A' is the pole of BC, 
CA' is a quadrant of the sphere, also since B' is the pole 
of CA, CB' is a quadrant. CA' — CB' = a quadrant 

and therefore C is the pole of A'B' Similarly, B is the pole 
of C'A' and A is the pole of B'C' Therefore, the original 

triangle ABC is the polar triangle of Us polar triangle A'B'C 
Now, produce side B'C both ways to M and N on AC 

and AB respectively. Then B'M and CN are both quad¬ 
rants, B'M + CN = MN -I- CB' -- 180° Rut MN is 
the arc measured along a great circle 90° from A and is 
therefore equal to A. B'C — 180° - A. Thus, the sides 

c 
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of the polar triangle are the supplements of the corresponding 

angles of the original triangle. 

Now, produce A'C' and A'W to met*! B(' in P and Q 
Then BP and CQ are both quadrants. 

BP f (:() BC f PQ - ISO" 

Hut P() is the arc m(‘asured along a great circle 90"" from 

A' and is therefore equal to A' 

.4' - 180"-/iC 

Thus, the angles of the polar triangle are the supplements of 

the corresponding sides of the original triangle. 

This supj)lemental property of the polar triangle is a very 

useful one, as it enables us to duplicate the formulae already 

[)roved, obtaining corresponding ones in wliich the sides 

take the place of angles and vice versa, k'or i xample, take 

, - , , cos a - cos b cos c , . , , 
the formula cos . 1 - -^. which we have 

sm 0 . sin c 

proved for the triangle ABC whose sides are a, h, and c 

respectively. Let A'B'C be the polar triangle of ABC and 

let a', 6', c' be its corresponding sides. 

Then A - 180" ~ a\ a - 180" - A\ fc = 180" - B\ c 

= 180" - C' 

Then cos 

- cos a' 

(180" - a') 

cos (180" - A') - cos (180" - B*) . cos (180" - C/) 

” ' sin (180"- /i') siii(r80" -n 

- (-cos B') (- cos C/) 

sin B'. sin C 

cos a 
cos A' 4* cos /?'. cos C' 

sin B*. sin C 

or, discarding the dashes, 

cos A 4 cos B . cos C 
cos a ^ -. —,3 . ,, 

sm B . sm C 
j - (707) 
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where we now have a formula which gives us a side when the 
three angles are known instead of the original formula, 
which gave us an angle when the three sides were known. 

, . , , , ^ /sin (s - tf) . sin (s - 6) 
Or, taking the formula tan - ^ ./-.- . - , --r—. 

° 2 y sin s. sin (s - c) 

we have C = 180° - c', and let S' = — 

Then s 
a + b + c 180°-.4'+180“-fi'+180°-C' 

2 ““ .~2 
270° - S’ 

And s-a--= 270° - .S' - (180° - A') -= 90° - (.S' - A'), simi¬ 
larly (s- b) 90' (.S' B'), s-c - 90° - (.S' - C) 

180° - (•' /cos (.S' - A') . cos7.S' - B') 
.-.tan—7r-*/—--n7—7-t. or, dis- 2 V - cos .S . cos (.S - ( ) 

carding the dashes. 

cot 
c _ jci 
2^ \ 

cos {S - A) . cos (.S - B) 
cos .S . cos (S-C 

Now, reverting to formula (6), 

cos A cos B . cos C 
cos a — 

let k - 

sin B . .sin C 

sin A sin B sin A -j- sin B 
sin a sin b sin a -f- sin 6 

cos A cos B . cos C — sin B . sin C . cos a 
— k . sin b sin C . cos a 

(7) 

Similarly, cos B -f cos C . cos A = sin C . sin A . cos b 
= A:. sin a . sin C . cos b 

adding, (cos A -fcos B) (i +cos C) ^ ^ . sin C . sin (a-f 6) 

sin A -f sin £f = ^ (sin a -f- sin b) 
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and cos A + cos B 
^ . sin r . sin {a + b) 

1 + cos C 

sin A + sin B sin a + sin 6 1 + cos C 
cos A 4- cos 5 sin (a + b) ' sin C 

sin A -f sin 

Now tan 

. A + B 
A + B ' 2 

2 cos 
A-B 

A + S cos A + cos B 
cos — - 

2 cos 
A -B 

sin A + sin B 
cos .-I + cos B 

sin a + sin 6 1 + cos C 
sin (a -f 6) ‘ sin C 

while 
1 4- cos C 

sin C 

2 cos2 ^ 
C 

cos ; 

C C 
Sin 2 • cos 2 sm 

C 
= cot 

A f B sin a + sin b C 
tan —„— — . - r-- cot 5- 

2 sin {a 4-6) 2 

a 4- ft « -ft 
z Sin 2 ~ • 9 

“ « 4- 6 a H- ft 2 
2 sin 2 ■ • <^05 ~2~ 

COS 

cos 

a-b 
2~ C 
—T . cot o 

a + 6 2 

11 

(8) 

i^
l 
o
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sin A -siaB 

Also, tan 
A-B 

2 

sm 
Aj-B 

2 " 
2 cos - 

aa-b 

cos 
A-B cos A + cos B 

2 cos - . 
A+B 

cot o 
sin A - sin B _ sin a - sin b C 

cos A + cos B sin (a 4- 

^ a -\-b . a - b 
2 cos 2 “ • ’ C 

. aA-b aT~b 2 
2 sin 

2 
COS 

2 

. a - b 
sin fy" ^ 

-VT • o . a + b 2 (9) 
sin 

2 

Formulae (8) and (9) are two of “Napier’s Analogies,” 
and are useful in finding the remaining angles of a triangle, 

when two sides and the included angle are given. 
By the use of the supplementary properties of polar 

triangles, the remaining two of Napier’s Analogies can be 

readily proved, viz.— 
A-B 

. , cos - „ 
^ “i“ ^ ^ it r\\ 

tan ^ ' — . tan . . (10) 
cos 

tan 
a-b 

' 2 

. A-B 
sm -2- 

2 
sm — .,i— 

(11) 

(The student should prove these two formulae for practice.) 
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It is interesting to compare these formulae with the 
corresponding ones in Plane Trigonometry— 

Sphkkical Formui.a Plane Formula 

COS C •» 
cos c - cos a . cos b 

(1) cos C 
a* 4 b*-~c* 

sin a . sin 6 

C 
tan - 

/sin {s- a). sin {s - b) 
{*) 

, c 
tan — 

hs - tfj (5 - b) 

"V ty sin s . sin (s - c) 

tin A sin B sin C 
(^\ 

sin A sin li sin C 

sin a sin d sin * a " b ' “ ~c~ 

A B 
(8) 

, A -h fi Q 
=• cot — , A& A B 

a + b 2 
cos 

A -B ^ 

a -6 
«n , 

. (8) Un ^^ 
_ a-b C 

2 “ . a + b °"‘2 
SUl - 

a -i- 6^^ 2 

This table should assist the student in memorizing the 

above five important formulae. 

Right-angled Spherical Triangles (Fig. 4). 

we have 

cos C — 

. cos c = 

cos c -- cos a . cos b 
sin a . sin ft 

cos a . cos ft . 

= 0 

When C = 90° 

. (12) 
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cos c 
cos h . cos c 

Also cos A 

Similarly, cos B 

Again, sin A 

Similarly, sin B -- 

cos a ~ cos h . cos c cos h 
sin h . sin c sin h . sin c 

cos c . sin* h _ tan 6 
cos bsinb . sin c tan c 

tan a 
tan c ■ ■ ■ ■ ■ 

sin a 

sin c 

sin a 
sin c 

sin b 

. sin C 

, as sin C — 1 

sin c 

Dividing (15) by (13) we have 

tan A 
sin 

sin a . cos b 

(13) 

(14) 

(15) 

(16) 

sin a tan c sin a 
sin c ' tan b cos c . tan b 

tan a 

Similarly, we have tan B 

Also, from (17) and (18), 

sin 6 . sin a 

cos a . cos ft . sin 6 sin ft 

tan ft 
sm a 

(17) 

(18) 

cot A . cot B 

Again, cos A 

cos a . cos ft — cos c (19) 
tan a . tan ft 

tan ft sin ft cos c 
~ tan c sin c ■ cos ft 

. _ cos a . cos ft . „ ^ 
= sin B .-r—i-— — sin B . cos a . (20) 

cos ft 

Similarly, cos B = sin A . cos ft . (21) 
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These ten simple (but confusing) formulae may be written 
down by Napier’s “5-part Circle Rule,’’ viz.: Sketch a 

circle (Fig. 4) and divide it into 5 parts; in these write down 
in order the two sides adjacent to the right angle and the 

complements of the three remaining parts (excluding the 

right angle). Then if any “part’’ is taken as “middle part’’ 

we have two “adjacent parts’’ and two “opposite parts,’’ 
relative to it. The rule then is “Sine of middle part — pro¬ 
duct of tangents of adjacent parts = product of cosines of 

opposite parts.” Note that “sine” and “middle,” “tangents” 
and “adjacent,” “cosines” and “opposite” have similar 

vowels, 

c.g. sin (90’ c) - tan (90 ’ -- A) . tan (90° - B), 

i.e. cos c --- cot .1 . cot B . . . (19) 

and sin (^X)' - c) — cos b . cos a 

i.e. cos c - cos b . cos a . . (12) 

(As there are 5 parts we can thus write down all the 10 
formulae. Tlie student should a])ply this rule to find the 

other 8 formulae.) 
Example 1. To find the shortest distance (for an airship 

route) of Winnipeg 49° 55' N.. 97° 06' W. from Prague 

50° 05' N., 14° '25' E., the direction of Winnipeg from Prague 

and of Prague from Winnipeg, assuming the earth a sphere 

of radius 3,957 miles (Fig. 5). 
Here we have a spherical triangle with its angles at 

Prague (^4), Winnipeg {B), and the North Pole (C); the 

lengths of the sides are: a — 90° - 49° 55' = 40° 05', h = 90° 
- 50° 05' = 39° 55', and the included angle at the pole is 
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14“ 25' + 97“ 06' = 111° 31 = C. For the angles A and B 
we use the formulae 

lM<;. 5 

logarithm logarithm 
cos 0’ 05' 1-999,9995 sin 0’ 05' I .1 16'2,fi9«0 
sec 40’ 0' ,0-115,7460 coscc 40’ 0' | 0191,9325 
cot 55° 451' l-H32,932l lot 55’ 45}' I 1 832.9321 

tan1-948,6776 tan| ^ 187,5606 

=0°05' 19' = 41“ 37'21'. 
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A — 41° 42 40", i.c. direction of Winnipeg from Prague 

= N. 41° 42' 40" W. 

B = 41° 32' 02", i.e. direction of Prague from Winnipeg 

N. 41° 32' 02' E. 

For the distance c we use the formula, 

. „ sin a 
sm c = sm C . . . 

sin A 

■ < III' 31' 
" i 68’ 29' 

sill 40’ 05' 
cosec 41*^ 42' 40" 

1-968.6281 

1-808,8192 
0 176,9334 

sin c l-9v54.3807 

c 64° 11' 45" = 1-1204287 radians. 

distance — 3,85If sea miles, which subtend 1 at centre 

of earth 
— 1-1204287 X 3957 = 4,433J statute miles. 

[The distance due east and west along the parallel of 
latitude of 50°, the radius of which is 3,957 cos 50°, would 
be: circular measure of 111° 31 x 3,957 cos 50° 

1-946,3330 
;19,57 

cos 50 

0-289,2172 
3-597.3661 
I 808,0675 

3-694,6508 

.', distance along parallel would be 4,950^ statute miles, 
or llj per cent greater.; 

N.B. As the side c was found from its sine, there is a 

possible ambiguity here, as c might be 180° -64° 11' 45' 
-- 115° 48' 15' This value is, however, inadmissible here, 
as the distance must be less than the distance along the 

parallel of latitude. 
Example 2. To find the most northerly point reached on 
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the course in Example 1. Where the great circular course 
reaches its most northerly point D (Fig. 5), it crosses the 

meridian at right angles. Thus CDA is a right-angled 
triangle of which we know the side CA = 39° 55' and the 

angle A = 41° 42' 40'. Then sin CD = sin CA . sin A. 

sin 39" 55' I-807.3I36 
sin 41" 42' 40* 1-823,0666 

sin CZ) 1-630,3802 

CD = 25° 16' 28'. 

.-. Latitude of D = 64° 43'32' N. 

Also cos CA = cot DC A . cot. A 

tan DCA — cot A . sec CA 

cot 41' 42' 40* 0-049,9686 
sec 39" 55' 0-115,2168 

tan DCA 0-165,18.54 

DCA = 55° 38'34' 

.-. Longitude of D = 14° 25' E. - 55° 38' 34' 

= 41° 13' 34' W. 

This point D is on the South-east coast of Greenland, and 
just here the course is due west. 

Example 3. To find an intermediate point on the course 
in Example 1 and the direction to pursue at this point. Let 

the point be E (Fig. 5) and its longitude 3° W. 
In the triangle ECA the angle C is 17° 25', CA — 39° 55', 

A == 41° 42' 40'. Let EA - c'. To find a' = CE the co¬ 
latitude of E, we use formulae (10) and (11), viz.— 



Mathematics 19 

. A-C 

a-c 2" CA 

=“TTC*“'2' 
sm 

where 

and 

A-C 24M7'40' 
2 2 

A+ C 59° 07' 40' 

= 12° 08' 50' 

= 29° 33' 50' 

-2" = 19° 57' 30' 

COS 12® 08' 50' 1-990,1657 sin 12® 08' 50' 1-323,0959 
see 29® 33' 50' 0060,5776 cOvSec 29® 33' 50' 0-306,8063 
tan 19® 57' 30' 1-560,0823 tan 19® 57' 30' 1-560,0823 

tan 
a c 

'~2~ 
1-610,8256 tan 

a ~ 
~2 

c 
1-189,9845 

, * 
a + c 

2 "" 
: 22° 12' 11' 

a - C 

2” 
= 0

0
 

o
 

a' = 31° 00' 25'. latitude of £ = 58° 59' 35' N. at 
longitude 3° W. (in the Orkney Islands). 

For the direction at £, we use the formula 
sin E 

sin C^4 
sin A 

sin a 

sin 4r 42' 40' 
cosec 31® 00' 25" 
sin 39® 55' 00' 

1 >823,0666 
0-288,0731 
1-807,3136 

sin E 1-918,4533 

£ = 55° 58' 35' or 124° 01' 25'. 

The angle A EC must be greater than 180° as the most 
northerly point has not yet been reached. 

angle AEC = 124° 01' 25', the angle CED = 55° 58' 35', 

direction of flight = N. 55° 58' 35' W. 
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Example 4. The inclined angle at a point B between 
two points *4 and C is measured with a sextant and found 

2 

Fig. 6 

to be 58° 16' 20'. The eleva¬ 
tion of A is 29° 32', and the 
depression of C is 11° 42'. Find 
the horizontal angle ABC. 

Here (Fig. 6), if Z is the 

zenith or point vertically over 
B we have a spherical triangle 
ZAC where the three sides are 

Z/1 = 90° - 29° 32' =--= 60° 28' 

ZC =90° + 11°42' 
= 101° 42' 

AC = 58° 16' 20' and we re¬ 
quire the angle Z. 

We use the formula tan 
and proceed as follows— 

/sin (s - ZA) . sin (s - ZC) 
V sin s . sin (.s - AC) 

Side 
60° 28' 

101° 42' 
58° 16' 20' 

2)220°^6' 20' 

s = 110° I3'lb' 

49° 45'10' 
5~ZC = 8° 31' 10' 1 
s^AC --^ 51° 56'50' j 

_ ( 110® 13' 10' I 
^ “ f 69“ 46' 50' I 

I 

Ijog. sine 
1-882,6746 
1-170,6870 
1-896,2193 

l-972,.3767 

Sums 

1-053,3616 

1-868,5960 

2)1-184,7656 
I 592,3828 

log tan ; 

.-. I = 21° 21' 53' 

Z = 42° 43' 46' = horizontal angle ABC. 

Example 5 A pipe has an inclination from ^4 to B of 

10° to the horizontal. At B it turns a plan amgle of 30° and 
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the inclination of the length BC is 25° to the horizontal. 
Find the deflection (inclined) angle between AB and BC. 

Fio. 7 

Here, if we produce the length AB forward to A' (Fig. 7) 
we have a spherical triangle ZA'C, where the sides are 
ZA' ~ 80°, ZC — 65°, and the angle Z — 30°. We require 

the side A'C. 
Here four-figure tables are sufficiently accurate and we 

shall use the formula 

cos A'C - cos ZA'. cos ZC 
Sin 7. A . sin ZC 

or cos A'C — cos ZA’ cos ZC -f- sin ZA’ sin ZC . cos Z 

sin 80” 1-9934 
sin 65” 1-9573 
cos 30” 1-9375 

0-7731 1-8882 

COS A’C=^ 0-0734 + 0-7731 = 0-8465 
A'C = 32° 10' 

We can derive a formula for these two useful cases, viz. if 
a and /? are the inclinations of the legs of the angle to the 

cos 80” 1-2397 
cos 65“ 1-6259 

0-07338 2-8656 
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horizontal, <ft is the (deflection) angle on plan and 6 is the 

actual (deflection) angle between the legs, then 

cos 6 - cos (90° - a) . cos (90° - fi) 
^ "" sin (90°-a), sin (90°-/?) 

, cos 0 - sin a . sin B 
or cos 6 =-o-« 

^ cos a . cos p 

or cos 0 = sin a . sin /? + cos a . cos /? . cos <f> 

or cos ^ 

When one inclination a is zero, this simplifies to 

cos 6 = cos ^ . cos (j> 

If one inclination u is negative, these formulae become 

, cos 0 + sin a . sin 8 
cos <b =--—5- 

^ cos a . cos p 

and cos 0 = cos a . cos cos ^ - sin o . sin p 

Example 6. Two roots are inclined to the horizontal at 
angles whose tangents are ^ and §, and the wall plates on 

^ which they rest make 
an angle of 120° with 

/ ^ /j each other, Find the 

/ / angle between the 
X yT J planes of the roofs, and 

/ / the angles between their 
^ intersection and the 

wall plates. 
p,G g I..et OA and OB be 

the wall plates, OC the 
intersection of the roofs (Fig. 8). Then in the spherical 

triangle ABC, 

B = tan-i -5000 = 26° 34', A = tan*^ -6667 = 33° 41i', 

and the side c — 120°; we have to find C, b, and a. 

Fig. 8 
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We use the supplementary formulae 

A -B 

tan 
, . cos n 

a + 0 2 

cos 
A2 

A-B 
a-b 

tan 

A-B T TV 
cos — cos 2 

A 60^ 151' 
sec = sec - - 

tan ~ ™ tan ^0^ 

2 , r 
. ^ + B • 2 

sm 

tan a 4 ^ 

1*99916; sin 

2 

A-B 
sin 3° 33i' 

0 06304 ; cosec — ^■— — cosec 30° 07}' 

0-23856 : tan 5 = tan 60° 

0-30076 tan 
a - b 

2-79335 

0-29934 

0-23856 

1-33125 

a + l> 
63° 25i' 

a-6 
= 12° 06' 

a = 75° 31J', b = 51° 19J' are the angles of the inter¬ 

section with the wall plates. 

For the angle C we have sin C = sin c . i- 
° sm a 

sin c = sin 120® 1-93753 
sin A = sin 33® 4IJ' 1-74408 
cosec a = cosec 75° 3IJ' 0-01402 

sin C 1-69563 

C = 29° 44|' or 150° 15J' 

Here we choose the value 150° 15J' as the greater angle 

must be opposite the greater side. 
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Approximations 

The use of series, e.g. the Binomial Theorem that (1 -t xY 

. wliere x < I, enables some 

useful short cuts to be made in computation by omitting 
terms that will be negligible when .r is small, in view of the 
limits of accuracy fixed by that of the data. For example, 

if the accuracy of computation is to be the omitted 

terms must not exceed of the result. If the series is 

rapidly convergent, i.e. if each term is very small compared 
to the preceding term, we need only consider the value of the 
next term in deciding how many terms of the series to em¬ 

ploy Taking first (1 >; xY ~ 1 ;h 2.': 1- x^, if we wish to 
omit the last term (a:-) and the result is to be correct to the 

nearest ^ part, we write x^ — 2^,^ (f 2-v + x^), whence 

{2m - 1) =p 2a; - 1 = 0. 

± 2 + V4~+^2tirii) 
X = 

2(2m - 1) 

:i:_2_-f_V8m 
4m'-'2 ■ ■ 

9 _i_ \/S(KK) 
If m = 1000, x = — = <>0229 and 0-0219. 

Next, taking (1 ± — 1 i 3ac + 3x^ t x®, if we wish 
to omit the last two terms and the result is to be correct to 

the nearest ^ part, we write 3x^ ~ 2m ^ 

whence 3(2m - 1)a;* =F 3a: - 1 = 0. 

±3-1- V9~+I2{2m - 1) ± 3 ± V24m-3 
X = 

If m = 10(K), a: = 

6(2m -1) 

±3 ± V2^ 
11994 

12m-6 

0-0132 and 0-0127. 
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The following table will be found useful— 

TABLE I 

Accuracy (1 
1 

xy 
-h 'lx 

(1 - 
1 -2x 

{1 4-*)* 
1 + 3x 

(1- 
= I 

X)* 

-3x 

To the nearest— 1 
j 

1 

1000 
part Ux > 00229 lix > 0 0219 If A' > 0 0132 If X > 0-0127 

1 

10,000 
part Ux > (J0071 j It'T > 9

 

o
 

o
 

If A > 0 0041: If ^ > 0-0041 

1 

ioo~(k)o part lix > 00022 ' If 0 0022 
1 

i Ux > 0-0013 If 0-0013 

1 

i.‘oooT6(k) part j 
1 

> 00007 If *■ > 0 0007 1; Ux 
j; 

> 0 0004 O-OOO-l 

Example 7. Find (1(Hp129)® and (99-871)® to the nearest 
1 

100.000 

(1(K)-129)» = KMF X 1-001293 -= 10« X (1 + -00129)3 

= 10« X 1-(H)387 = 1,003,870. 

(99-871)3 .= 1(M)3 X 0-99871 = 10« x (1 --(M)129)3 

= 10« x (1 - -(M)387) - 10« x 0-99613 

996,130. 

Take next 

-= (1.h,,)i = I + 

A useful case of this expansion is V/“ where h < 1. 
i (70/) 
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We have 

/»* A* 

. 

The first two terms will be accurate enough provided 

Sl^~2my^2l SP) 

where the result is to be correct to the nearest — part. m ^ 
We have 

or 

8/<“2mV^^2/2 81*) 

y* _ I 
8 ~ 2nt 2 8/ where y = 

h 
! 

Therefore, (2m + 1)>'* T 4y*-8 — 0. From which the 
following table is calculated— 

TABLE II 

Accuracy Vl* + = I + Vl*-h^ ^ I- 

To the nearest— 

jJ^part . . If 0-2535 If 0-2495 

TOWP*" ■ ■ »?>«■■*'» If?>0UM 

WW’*" • ■ ■ "?»«“’'« ><?> 00795 

rcWoO • • • ‘'?5-0»«’ l/?> 0 0547 
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Example 8. To find the horizontal projection of a length 
of 100 ft. measured on the slope, the rise being 10 ft. in this 

length, i.e. to correct the length for slope. 

The correction — ~0*500-0'00125 

Therefore, if the result is required to two decimal places, 
the answer is 99-50 ft. If the result is required to three 
decimal places the answer is 99-499 ft.; if to four decimal 
places, 99-4988 ft. (The next term in the expansion, viz. 

is only 0-000006,25.) 

Example 9. A reading of 12-13 ft. is taken on a level 
staff which is 2*15 ft. out of plumb in 14 ft. Find the correct 

reading if the staff were vertical. 
12-13 

In 12-13 ft. the staff is - X 2-15 = 1-86 ft. out of 

plumb. (1*861* 
.*. corrected staff reading is 12-13- 24.^ ~ 12-13-0-14 

= 11-99 ft. 

Example 9a. A point B is 656-7 ft. north of A and 91-3 ft. 

west of .4. Find the distance A B. 

Here we require V/* + /**. where I — 656-7, h = 91-3 

.-. AB = 656-7 + 51^^^ = 656-7 + 6-3 = 663-0 ft. 

^As^^^ =^0-139, this result will be correct to 

part.) 

A somewhat similar application of the use of approxima¬ 
tions is to find the amount dl by which we must correct a 
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length I measured on a slope, rising a height h in that dis¬ 
tance, in order that the horizontal distance may be I (Fig. 9). 

= / 

= / ((-r-) 
A 2/2 '1.2 ■ /2 

_ ^ 3 ^ 

- 2/ ^ 8 /’ ■*■ 
• (23) 

The correction 61 along the slope can, therefore, be taken 

as ^ provided the equation 873= 200oi^ + 2/ + 8/5j 

h . . h 
gives a value of j which is < the given value of j, for an 

accuracy of 1000 ^ sufficient for good ordinary 
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chaining. The solution of this equation is ^ == 0-1920 for 

this accuracy, i.e. a slope of 11° 04' or 1 in 5-11^. 
This is a very convenient way of applying the correction 

for slope in ordinary chaining. The chain is first stretched 

on the slope and the leading arrow inserted. The difference 
of level of the ends is then ascertained to 0-5 by a hand- 
level and a ranging rod marked in feet (or in links if a Gunter’s 

chain is used). The correction ^ is then calculated, where 

the denominator is usually 200, and the leading arrow is then 
advanced along the slope by that amount. 

Other useful approximations are afforded by the Trigo¬ 
nometrical Series for Angles, viz. 

x® -IC* 

Sin X' — ^ 1 2 3 ^ 1 2 3 4 5 ”* * * 

^ “ 6 ^ 120 ~ 

cos .X = 1 - j ^ 2 ^ 1 7273.4" ■ • • 

x'^ X* 

2 ^ 

2a:® 16a:® 

tan * - ^ + 1.2.3 1.2.3.4.5 + • . 

^+3 + 15-^* + - • • 

where x is the circular me;isure of the angle, or “arc” of 
the angle, i.e. arc subtended at unit radius 
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By a similar method to the preceding the following table 

has been prepared— 

TABLE HI 

Accuracy sin X COS X 

== 1 
tan X ! 

= * '1 
i! 

To the nearest 
11 
! 
i| 

iio 
3“ 08' r 49' 2° i.r ji 

10,000 
1“00' 1 0“ 34' : 0“ 42' j 

100,000 
0“ 19' 0“ 11' 

11 
0° 13' i 

1 j 

1 
1,000,000 P^^*^ 1 1 1 

o
 o i 

0“ 03' 

i 

i 
1 0“ OS' , 
i !j 
1 |! 

sin X I cos X tan x 
X^\ - , 

28“ 04' I 18“ 42' I 14“ 15' 
! j 

15“ 54' I 10“ 37' I T 59' 

8° 58' j 5° 59' j 4“ 29' 

Similarly, if is a “small” angle in view of the required 

accuracy so that the first term only of the expansions need 
be used, we may write 

sin {ir - x) = X, cos {n - x) = - I, tan {rr- x) — - x 

for angles close to 180°. 

sin (^-x) = 1, cos^^- == X, 

tan — tan i ~ x’ angles close to 90°. 

For angles, therefore, not exceeding a few minutes in 
A" 

magnitude we can say sin A = tan A = arc A = 

to a very high degree of accuracy, as there are 206,264-8' in 

one radian. The quantity 206 ^64-8 usually written as 
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sin 1", and we can write sin A = sin 1" = tan A = arc ^4 
for such angles. 

When the logarithms of sin A, tan A, and arc A are 

required for computation, it is necessary to adopt this form, 
as the logarithms of very small fractions increase very 

rapidly (negatively) as the fraction diminishes, the logarithm 
of zero being - 00 , and though the values of log sine and log 
tan are given for every V in, say. Chambers’ Seven-Figure 
Mathematical Tables, it would be inaccurate to inter¬ 
polate proportionally among these for the intermediate 

seconds as the increments from minute to minute are so 
variable. The value of log sin 1" — 6-685,5749 and for such 

small angles we write log sin A = log tan A = log arc A 
= log A" -t- 6685,5749. 

Thus, if we have to apply the “ Rule of Sines” to a plane 

triangle in which one angle C, and consequently the opposite 

... ... , , . . c b a 
side c, IS very small, instead of writing ^ — .—7 ■’ , ° sin C sm B sm A 

c b 
we write TTi——7,=-- . etc., or m logarithms 

C sin 1 sm B’ ° 

log c = log C" + log sin 1' -}- log b -f- log cosec B 

, etc., i.e. 

Similarly, in a spherical triangle, if one angle C, and conse¬ 

quently the opposite side c, is very small, instead of writing 
sine sin 6 sin a . c" sin 1' sin 5 

sm C sm B sin A C sm 1 sm B 
c" sin 6 . , 

or m logarithms 
C sin ° 

log c" ~ log C -f log sin b -j- log cosec B 

In measuring vertical heights with the theodolite, if .<4'' 

is the vertical angle in seconds (corrected for the curvature 
of the earth and atmospheric refraction) and is small and D 
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is the horizontal distance, then the height H is not written 
as D . tan ' but as D .A" . tan 1", or in logarithms 

log // == log D -f log ,1" + log tan 1* 
log D -f log A" -f fi-685,5749 

The Common Catenary 

This is the curve assumed by a uniform, inextensible, but 
flexible, chain, wire, tape, or cord, hanging freely. We shall 

first consider an arc CP of the catenary, commencing at its 
lowest point, or vertex C, where the curve is horizontal 

(Fig. 10). 
Let s be the length of the arc CP, iv its weight per unit 

length, W — ws = weight of arc CP, H — wa ~ the hori¬ 

zontal tension at C (so that a is the length of catenary 
whose weight = H), and T the tension at P acting along 

the tangent at P at an inclination ^ to the horizontal. 
Take the origin at 0, vertically below C and so that CO — a, 

and take horizontal and vertical axes of .v and y through 0, 
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so that OM — X, PM = y. Then, considering the equili¬ 
brium of the arc CP we have 

r sin (f) -- v£'s, T cos (f> — wa, and s — a tan <f> (24) 

dx dv ds a 
while -y — cos <i, -j- = sin <A, -j-; = « sec^ J) — -- -j 

ds ^ ds ^ d<f> ^ cos* <f> 

-ri _ '^y sin ^ . a 
14,"" Ts 14^ 

r , f sin (f>. d(f> rd{cos S) 
= ./ = - “J 

COS <f> 
a sec <l> 

'I'here is no constant of integration as at C, where ^ = 0, 

But T — xva sec T = wy 

dx dx ds _ cos <f>. a 

^ d(f> ~ ds d^ cos* (f> 

■ x-J - <^J cJs* ^ “ V i -sin*<^ 

a I r <f(sin <t>) , rdjsin (f>)\ 

~ 2\J 1 -h sin J 1 -sin <f>J 

I (log* (1 + si» 4') - log* (1 - sin <f>)) 

a, 1 -f sin a. 
= 2'°e- 1-sin ^ 

a, T + W 

T .\y ' 

lejs 
1 + 'Y 

(26) 



34 Advanced Surveying 

Here, again, there is no constant of integration as ^ — 0, 

when X — 0. 
If the supports of a catenary are at the same level, it is 

obvious that the catenarv will be symmetrical about its 

vertex and the span, or horizontal distance between the 
T + W 

supports, will be 2.r or a log,, -g where W is half the 

weight of the catenary of length 2s. 

If, however, the supports P and Q are at different levels 
there will be two cases— 

{a) WTien the vertex lies between the supports (Fig. 11). 
Let the lengths into which the catenary is divided by the 

vertex C be Sj, Sj, and let the total length be s, and the 

difference of level of P and Q be h. 
At any point we have 

7 * = — vo^-a^ -f- t£'*s* v* — + s® 

Then for P, ■— + .s,®; for (), y^* 4- '•'/ 
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(yi -Ja) (^'i + == (Si - Sa) ih + h) 
:. h{yi -f y^) = s(si - s^) 

h 
{y’l + 

Also, $1 + $2 = s 

h 
Si = 2 2s “ 2 • 

h r,+ 'A 

S A s /( Ti + 'A 
and S2 == . (v, h y^) = 2 ■■ TP • (27) 

where 11' — zf’s == the total weight of the catenary. 

fA) When the vertex lies outside the supports (Fig. 12). 

As before we havey," -y^ — but here Si - Sj = s. 

Si + S2 — - (Vi + ^’2) 

2 s 
(y, -f >’2) + 

h T, + r. s 
\y 2' '2 
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h , , s 
^ (Vi + Vj) 

^ 7\ 4 7', s 
14“ 2 2 

(28) 
2s ^ 2 ~ 14 • 2 

In botli cases the distance of the vertex from tlie centre 

, u ■ h 1\ 4 7 j , , 
of the catenary is jp —^—» measured along the catenary. 

Having found Si and s^, we can find and 

II» == a,s., while a = - 
thence tlie span 

H Vr/-I4i2 V7?-W 
XO w 

, and 

^ \ ^ 1 + 1 , 1 ^ 2 + ^^2 \ 
2!^ log, r: log, ) 

Note that, if we know the difference of level, h, of tlie sup¬ 
ports, only 7\ or T.^ need be known, as 1\ — avi — ?i’( V2 4 d) 
= 7 2 4 

We can, therefore, find the horizontal span in all cases, 
if we know iv, s, ii, and the tension at one end of a catenary. 

The process is, however, somewhat lengthy. For the “ taut ” 

catenaries which are used in base-line measurement, where 

the tension is great compared to the weight the horizontal 
span can be found from the measured length much more 
quickly by an approximate correction, which we shall now 

proceed to find. 
From equation (26) we have 

a, (1 4 sin <i>Y 
9 log, - 

a . 1 4 sin ^ 

s'"*- l -sinY cos- <f> 

, 1 -f sin <A , , 
= a log, - ^ a log, (sec <f> 4 tan <f>) 

but sec <f> - tan <f> 

sec <f> 4 tan ^ 

1 
sec <l> 4 tan ^ 

, as sec* <f> 1 4 tan* <l> 
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sec ^ - tan <f> = e “ 

^ * 
^ -f ^ ^ e 

sec <p =-2- tan <f> = — 

a / - \ 
y ^ a sec 0=21^'* + ^ *' / 

and s == a tan = '») 

Expanding these we get 

-y* >1^2 <y3 y4 

^ + fl + 2^2 + 6a3 + 24fl« + 

v'3 X ^ - 1 " 

a 2a2" 6a3 24a5 ■■■)i 

^ 24a3 + ■ (29) 

s-?j(i + 

-(■- 

X x’^’ 
-1" 0 2 a Zar 6a® 24a« 

X x'^ .r® 
a 2a^ 6^ ^ 24a® 

X® 

120«* 

120a® 

-■■) 

-■■)! 

" ^ 6a2 120a« ' 
(30) 

From equation (29) we see that the catenary (Fig. 10) is 
very approximately a parabola with its vertex at C, if the 
third term of the expansion can be neglected in comparison 

x-a 
with the second, i.e. if the ratio 2 ‘s very small. This 
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S2 „,2s2 

ratio IS approximately = j2^-j = 

As the tension in baselines will at least be 10 times the 
weight of the tape or T — 2011^, this ratio will not be greater 

than so that the approximation to a parabola will be 

very close. If the span were KM) ft., so that .v = 50 ft., the 

dip=>.-a = 2i ■'ei>riy= 2^ “ 2H ' ¥) “ " 

The maximum difference in ordinate from a parabola would 

. t. , u 1-25 , 1 , 
only, therefore, be ,o,^. or about ft. 

•' 4800 4(MK) 

From equation (30) we can take s — ,v ignoring 

the third term of the expansion as its ratio to the second 
1 

term is only 2q^2 about and write the correction of 

length as s - A" = on each half of a catenary with level 
supports. 

The correction for the whole catenary will be 2(.'i - x) 
*3 /3 jC^2/3 

— n ■) — where I is the fiorizontal span — o,,,,. As, 3a^ 24fl2 ^ 24H* 

however, it is the length 5 = 2s wliich we actually measure, 
and the tension T at the supports, we write the “.Sag Cor- 
reciion” for a catenary with level supports as 

247*2 24 ■ 7'2 (31) 

where in this case W — the weight of the tape between 

supports = wS. (Note that we have slightly increased the 
numerator and denominator, changing f* to .S® and fP to T*.) 

Example K). A steel tape is supported on two knife 
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edges at the same level, and the length of the tape between 
supports is lOO-OOOO ft. when corrected for temperature and 

tension. Find the horizontal distance between the supports 
if the tension there is 30 lb. and the weight of the tape is 
•025 lb. p)er ft.—also find the dip of the tape. 

(a) Horizontal distance by the exact formula (26) 

T A- W 
= a log, where IF = 1-25 lb. 

H - \/3(F - l-'252 = 30 - == 30 -- 
60 60 

- 30 - -02605 - 29-97395 lb. 

a = — - 29-97395 x 40 = 1198-9580 ft. 
'W 

31-25 
Then I 1198-9580 x 2-302585 log ^ 

= 99-97112 ft. 

.'U-25 : 1-494,8500 
28-75 , 1-458,6378 

1 0-036,2122 
) _ 

0-036,2122 ' ‘2-558,8549 
2-302,585 i 0-362,2156 
1198-9580 ! 3-078,8040 

99-97112 1-999,8745 

(6) The approximate “Sag Correction” is ^ . y.2 where 

W - 2-5 lb. 

_ 100/2-5 Y J(K) KX) 
“ 24 V 30/ 24 X 144 " 3456 

•028935 
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Then I — 99-971065 ft., so that the error is only -OOtKlSS ft. 

1 
2.00b.(KW 

(c) For the dip, we have T = xey, H - 

w{y - a). 

T - H 02605 

IV a, 

dip 

r-H 

= y - a 
•025 

= 1-042 ft. 

In practice, however, the supports will rarely be at the same 

level and for an exact calculation we must find the lengths 
Sj, .s'2 of the arcs from the vertex to the supports by the 

formulae (27), (28), and from them calculate Xi and x^, and 
hence Xi i x^ for the span. To avoid this labour we can use 

an approximate correction when the parabola is a “taut” 
one as above defined, which will, when applied, give the 

horizontal span with great accuracy. Tliis correction will be 
X,® A,® ie'*(Ai® ± Aj®) >'1 , *2’ 
6a® * 6a® 6f/2 

, but as the measured quantitie.'i 

are S — Sj Sj and Ti, the tensions at the supports, we 

shall write this correction as 
7f’®(.Si® i Sj®) 

where T 
r, + 'i\ 

67 ® ' - 2 

== average tension at the supports. 
Substituting the values of Sj, from formulae (27), (28), 

we get 

6'ni\2^w)^\2 wj) 
for vertex between supports, and 

(t 
6/’® 

i/hT sy (hT S\®) 
i(.v ' 2) [w 2)! 

for vertex outside supports, which, however, are identical. 
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In both cases, therefore, the correction is 

w- 

247-2 

id- 

U" 

W 

in'KS , li^ 
2m~ 

4 

4 • w 

ze>\S^ 

" 24 '7 2 

"" + 31' 
h^'n h^'r^\ 

• ' rr/.u I 

o 
/ + ^ 

/r 

2S 

14^2 

k-T^ 

‘ ■' 

24 ■ 7’2 

W^3 

iP /) 

T 
/?2 
2.S' 

(32) 

- correction for level supports -f- slope correction. 

Example 11. A steel tape is supported on two knife-edges 
wliose difference of level is 10 ft. The length of the tape 
between supports is lOO-OOOO ft. when corrected for tem¬ 
perature and tension, tlie weight per foot is ()'()25 lb. and the 
tension at the lower support is 30 lb. Find the horizontal 

length between the supports. 

(a) Here 'l\ = 30 lb., 'A = v30 lb. -t- 10 x f>-025 - 30-25 lb. 

Si = 

IF - 100 X 0-025 lb. = 2-50 lb. 

-f ^^30-f 30-25) 

170-50 
40 

KM) 10 

T "5 

70-50 

50-f 120-50-- 170-50 ft. 

= 4-2625 lb. 

(;10 30-25) - 50 - 120-50 ^ -70-50 ft. 

IK 
40 

1-7625 lb. 

This shows that the vertex of the catenary is outside the 

supports. 
a/SM)--* - (1-7625)2 3-1064 3-l()642\ 

" "" ^ 0-025 ' 40^30- - 216(MKV 

= (30 - -051773 - •(HMK)45)40 -= 29-94818 x 40 

- 1197-9272 ft. 
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= 598-9636 X + J.S-S 34*5125 
25*9875 

1*537,9764 
1*414,7645 

^ 598*9636 x 2*302585 log 

169*9295 ft. 

0*123,2119 

0123,2119 
2*302585 i 
598*9636 

1*090,6537 
0*362,2156 
2*777,4004 

169*9295 2*230,2697 

30*00 f 1 *7625 
.1.. 59S*W.1(> Oi,' . ^ “ 30-00 l *762v'> 

31*7625 
28*2375 

'1*501.9147 
'1*450,8263 

598*91^36 X 2*3 2585 log 

70*4593 It. 

0*051,0884 

0-051,0884 
2*302585 
598*9636 

; 2-708,3223 
0-362,2156 
',2-777,4004 

; 0*4593 1*847,9383 

llorizontul distance = v, - .Vj 99-4702 ft. 

(/>) Sag correction 

SlojM- correction 

Total correction 

Horizontal distance 

KK)/ 2-5 Y 1(H) 

24 \ 30-125 / 24 x 145-2 

1(H) 

" 3485 
0-0287 ft. 

A- 1(H) 

2S 2(H) 
0-c>(H) ft. 

-- 0-5287 ft. 

^)f)-4713 ft. 

The approximate method, therefore, is only in error by 

90 (HH) sIojK- of I in 10. I'o sliow the accuracy of this 

sim})le method of correcting for sag and slojX' in a baseline, 
the following talde has be(-n ]>n-])ared; in all cases tht- 

length of the catenary Ix-twei-n supports is assumed to be 
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1(J()*(XKK) ft. after correcting for temperature and tension, 
the tape weighs 0-025 lb. per ft. and the tension at the lower 
support is 30 lb. 

l ABI.E IV 

Kisf 
a 

1 
i 

zontal j 
Dtstano<> j 

.S 

24 n 

*- 

•]S 

Total 
Correc¬ 

tion 

Corrected 
l.^ngth 

Error 

rt. 
(I 

It. 
599-4790 

It 
49-985.50 

Vt. 
49-98550 

I-t. 1 
99-97112 1 -028935 0 •028935 99-971005 

H. 
- -OOfXlS 

59f)S594 73-97315 , 2 5-97799 ^ 
1 

1 99-9.5114 
1 

-02889 ■ -02 •04889 99-95111 i- -(XHKIO 
1 

4 599-9992 97-97122 1 I-92<H18 ' 99-891.30 I ; -02884 •08 ; -10884 1 99-89110 -f»0014 

H 5W1 8975 121-9099 - 22 -1787 99 7912 -02879 •18 ' -20879 99-7912 1 -(XKIO 

H 599-552H 145 9594 - 40-3()85 j 99 0509 -02874 ' -.32 •34874 1 99-0513 I T .(MHM 

10 i 59«-9(i'Ui : 109-9295 - 70-4593 99-4702 -0287t> •50 *52870 99-4713 1 t- -001 1 

It seems, therefore, that the approximate correction may 

be safely u.secl with an accuracy of kkT.oThi "P 
8 ft. in 100 ft., which it may be noted is the limit for this 

accuracy in Table II, The student should work out one of 

the above cases as an exercise in the catenary and in the 

use of 7-figure logarithms. 

CoKRLC'TlON or hUKOKS 1!V THli MkTHOU 

oi- Li;.\st Syt'.vKEs 

In scientific terminology we discriminate between "errors” 

and "mistakes.” The latter are due to carelessness of 
observation or calculation, and should be eliminated by a 

thorough system of checking results. By "errors” w'e mean 
the small residual differences from the correct values due to 

unavoidable <lefects in the instruments or accuracy of obser¬ 

vation and these errors are of two kinds; {a) Systemahe 

(or Cumulative) errors, which are always in the same 
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direction, i.e. always positive or always negative; and 

(6) Accidental (or Compensating) errors, which are equally 

likely to be positive or negative. 
For example, if a mile on level ground is chained with 

absolute accuracy with a Gunter’s chain, which is 0-1 link 
short of 66 ft. in length, the error in the mile will be 80 

X 0-1 = + 8-0 links. This would be a systematic error, and 

the total error would be proportional to the number of 
observations. On the other hand, if the chain was quite 

correct in length but the arrow was sometimes inserted 

0-1 links in front of the end of the chain and sometimes 

0-1 links behind the end, in both cases quite unsystematic¬ 

ally, it can be shown mathematically that the error in the 

mile would probably be Vsum of (errors)^ i.e. \/80.( hO-I)* 

= X (-; 0-1) = i 8-9443 X 0-1 = ± 0-89443 links. 

The total error is therefore much smaller, being ol a compen¬ 

sating nature and proportional to Vnumber of observations. 

Here the observations may be said to be "in series.” 
Again, if we average a number n of observations of 

the same quantity on each of which there is an error + e, 
tie 

the error of the average will be t ^he 

errors are cornpemsating the error of the average will be 

Vsum of (errors)* t , , 
-- _ —1, r., so that the error is 

n n “ Vn 

reduced by averaging. Here the observations may be said 

to be "in parallel," 
The Method of Least Squares is a methbd of dealing with 

slightly discrepant observations where the discrepancies or 

errors are assumed to be of an accidental nature only. It 

assumes that the individual errors will most probably be 
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such that the .9mw of the Squares of the Errors will be a 
Minimum, and by this means enables us to reduce tlie 

observations to their most probable consistent values. A 
numerical exam])l«! will fir.^t be worked out from first 
principles - 

Example 12. The following results were obtained in the 
rating tests of a current meter— 

n “ revolutions v -- velocity in 
per second feet per second 

0-30 j 1 *40 
l-OO I 4-6d 
1-50 j (v8vS 
2 00 I 9-00 

Find the constants a and b in the rating formula v = an -j- b. 
The observations are shown plotted in Fig. 13, and are 

found to be not quite in one straight line. If we “average “ 

the observations graphically by eye by drawing a straight 
line and measure the intercept on the 7 -axis and the ordinate 

q and abscissa p to some point on tt^e line, we have b inter¬ 

cept and a 
P 

, but it is doubtful if any two people will 

draw quite the same “average line” and obtain quite the 

.same values for a and b. The Method of I.east Squares will 

give definite values for a and b which will be obtained by all 

computers and which will be, in addition, the most probable 

values, providing, of course, that the law is really of the 
form <’ ~ an } h. Also, as will be shown later, it is equally 

applicable to the law 7’ an- -f- bn 4- c (which is a parabola 
and which it would be very laborious to draw so as to 
“average'* the points), (jr to any other mathemati('al 
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expression, and the criterion as to which formula is the most 
probable will be that it is the one for which the sum of the 

squares of the errors is least. 
If a and b are the correct values of those quantities, the 

errors of the four observ'ations are 1-40 - (KlOa - i, 4-60 
- a-h, 6*85 - l-50a - b, and 9-()() - 2-()()a - b. 

Then (1-4 -• 0-3a - b)^ + (4-6 - a ^ b)^ + (6-85 - l-5a - by 
+ (9 - 2fl - by is to be a minimum. 

Differentiating with regard to a and equating to zero we 
get 

- (>3( 1 -4 - ()3a -b) (4-6 -a-b) 1 •,‘>(6-85 - 1 -Srt - h) 

- 2(9 -2a-b)= 0 
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Differentiating witli regarfl to h and equating to zero we 

get 

- 1(1-4 - ()-3« ■ b) - 1(4-6 - a - h) 1(6-85 - l-5a - h) 

1(9 -2a -h) ^0 

These equations reduce to 

j7-34« -t- 4-8i - 33-295 0 

(4-8()a + 4-96-21-85 9 

(29-36a j 4-8 x 46 133-18 

r23-94a + 4-8 x 46 194-88 

a 
28-39 

6-32 
4-478 

6 
21-85 - 21-4944 

4 0-989 

the formula is, t- — 4-478» -f- 0-089 

The errors of the obscrx ed points are, therefore, 

I (Krror)‘ 

i 0 001024 
i 0001089 
: 0001936 
I 00020'^5 

2.’(i-rror)= .. 0006074 

1-40 -1-343 - 0-089 . -0 032 
4-60 4-478 -- 0-089 -I 0-033 
6-85 -6-717 -0-089 4 0-(i-t4 

8 0089 {» ()45 

We can now generalize the method taking tlie formula 

V =' ax~ -{- 6.r -f c for illustration, and let suffixes distinguish 

the various observations a, v,, VjV,, etc. The errors are 

therefore, v, -axi'^ hxi c, y.,-ax.i- -bx.-c, V;, -ax/ -bx^-c 

etc. The condition is that 

2’( V - ax- - 6.V (-)■- - (.^’l ‘'-V|- - /’-' i ■ 0- + (.v. • rt-'V-' - 0- 
} (V:, ax/ -6.V;, c)'-^ ! etc. 
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shall be a minimum. Differentiating this in turn with regard 

to a, b, and c, and equating each differentiation to zero wc 

get (dividing by 2 in each case) 

- «-'i“ “ - d) ■Va-(y2 - - bx^ - c) 

- -bx^-c) 

.Vi(yi - ax^ - bx^ - c) - «.V2^ - ft-Vj - c) 
•< 

- •'^3(3'3 - ^^^3^ -bx^-c)- . . 0 

(a'i - n.ri- - 6,Vi - c) - (^2 - ax^ - bx^ - c) 

- (^3 - axa^ -bx^-c) . . . 0 

' aZ{x^) -t- bE{x^) + cE{x^) - E{x^) = 0 

or. ■ uZC.v*) + bE{x^) + cE{x) ~ E{xy) = 0 

^ rti;(.v2) + bE{x) -L n . c - i:(.v) - 0 

where n is the number of observations. 

These are the simultaneous equations for a, b, and c, 
and are called the “Normal Equations.” 

VVe notice that the first equation is formed by multiplying 

each error by the coefficient of a (viz. x^^, - x^^, x^^,. . .) in 

that error, adding the products together and equating to 

zero; similarly, that the second equation is formed by multi¬ 

plying each error by the coefficient of b (viz. Aj, Aj, Aj, . . .) 

in that error, adding the products and equating to zero, 

while the third equation is formetl by multiplying eacli error 

by the coefficient of c (viz. - 1, 1, 1, . . .) in that error, 

adding the products and equating to zero. 

We do not, therefore, need to go through the proce.ss of 

differentiation each time, but, instead, we prepare a table of 

coefficients of a, b, r, and of the term not involving them, 

thus - 
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a 
1 ' 

1 ^ 
[ 

N 

-1 yx 
-V -1 yt 
-V ~ 1 

Then, multiplying by coefficients of a, we get 

a{xi* + x^* + . . .) 

+ b{xi^ + a;*® + ^3® 4- . . .) 

+ c{Xi^ + V + *3* + • • •) 

- {Xib’i + + x^y^, + . . .) = 0 

Multiplying by the coefficients ol i, 

a{x^^ + V + .r3® -J- . , -I 

+ b{xi^ + V -r + . . .) 

-f- c(Xi + *2 + ^3 "I" • • •) 

- + -'^*>'2 + V33'3 + • • •) = <> 

Multiplying by the coefficients of c, 

a{xi^ + V + JCs® -f • • .) 

-|- b{xi -(- ^2 + -''-'s "T • • •) ”i“ wc 

“ (>’l + >2 + JVs + • • •) = 

Which are the same Normal Equations as previously obtained. 

Applying this tabular method to Example 12, we get the 
following table - 

a \ b 
! j 

X 

! 1 
•30 ; -1 1-40 

-i ' -1 ! 4*60 
-1-5 -1 1 6-85 
-2 ; -1 900 
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and the normal equations 

(0-09 + 1-0 + 2-25 + 4)a + (0-30 + l-<» + 1-5 + 2-0)6 

- (0-42 + 4-60 -f 10-275 + 18) = 0 

(0-30 + 1-0 + 1-5 + 2-0)a + (1*0 + 1-0 + I-O + 1-0)6 

- (1-40 + 4-60 + 6-85 + 9-0) = 0 

... , (7-34a + 4-806 = 33-295 

which reduce to 21-85 

the Normal Equations found before. 

Example 13. The same data as Example 12, but assume 

the law is v = an^ + 6« + c. The errors are, therefore, 

1-40 - 0-09a - 0-36 - c, 4-60 - a - 6 - c, 6-85 - 2-25a -- 1 -56 - c, 

9-0 - 4a - 26 - c, and our table is 

a 1 b c 
1 

N 

-009 
1 

-0-3 1 - 1 1-40 
- 1 -1 1 -1 4*60 
-2*25 -1-5 1 - 1 6-85 
-4 

( 
-2 i 

1 
-1 900 

Hence our three equations are 

(-0081 + 1 + 5-0625 -I- I6)a -f (-027 + 1 + 3-375 + 8)6 

-f (-09 + 1 + 2-25 + 4)c = -126 + 4-60 + 15-4125 + 36-0. 

(-027 + 1 + 3-375 -f 8)a + (-09 + 1 + 2-25 + 4)6 

+ (-3 + 1-1- 1-5 + 2)c = -42 -f 4-60 -f 10-275 -f 18. 

(-09 -t- 1 -f 2-25 -t- 4)a 4- (-3 -f- 1 -|- 1-5 + 2)6 + Ac 

- 1-40 -b 4-60 + 6-85 + 9-00 

which reduce to 

r 22 0706a f 12-4026 -f- 7-340c = 56-1385 

\ 12-402a + 7-3406 -f 4-800c = 113-295 

I 7'340a -f 4-8006 + 4-OOOc = 21-85 
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14-9082a + 5-65406 = 25-0795 
14-376a + 6-326 - 28-30 

a = -0-116383, 
28-30 + 1-67312 

6-32 
4-7426 

21-85 + 0-8542 - 22-7644 -0-0602 

4 
= -0-01505 

Therefore, the formula is v = -0-1 164m* + 4-743m -0-0150 

The errors of the observed points will then be— 

1-40 + 0 0105 - 1-4229 -|- 0-0150 = 0-0026 
4-60 -I- 0-1164 -4-743 + 0-0150 = -0-0116 
6-85 -t- 0-2619 - 7-1145 -1- 0-0150 0-0124 
9-00 -t- 0 4656 - 9-486 + 0-0150 = -0-0054 

(Error)* 
0*0000,0676 
0*0001,3460 
0*0001,5380 
0*0000,2916 

r (error)* = 0*0003.2432 

Obviously this new formula fits the observations much more 
closely than the linear equation, v = 4-478m + 0-089, but 
its additional complication is probably not warranted by the 
accuracy of the observations. 

This method is not restricted to ordinary algebraical 
functions, e.g. ax + 6, ax^ + 6jc + c, but may be used to 
find the coefficients in any expression, e.g. y = af{x) + b<f>{x) 
+ c where f{x), <^{x) are such transcendental functions as 
sin X, log X, e^, etc. 

Ex.\mple 14. Given the observed values 

i 
X i y 

0*5 0*80 
1*0 1*36 
1-5 : 2*22 
20 

j 
3*70 

Find a if y = ae^. 
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Here the eiTor in each case is 3/ - and our table is 

1 

N ' 
! 

a 

0-80 -1-649 
1-38 -2*718 
2-22 -4*482 
3-70 -7*389 

the figures in the "a" column being the values of e* for 
* = 0-5, l-O, 1*5, and 2*0. 

Then (2-720 -f 7-388 4- 20-088 + 54-597)a 
= 1-319 + 3-696 + 9-950 + 27-339 

/, 84-793a = 42-304, /, a = 0-499 and the law is 
y =- 0-499e* 

Example 15. In levelling a round of levels A BCD A it 
was found that B was 4-71 ft. above A, C 3-59 ft. above B. 
D 1-48ft. above C and 9-72 ft. above A. The accuracy of 
all the four levellings is to be assumed equal. Find the 
probable heights of B, C, and D above A. 

We note that from the first three results D appears to be 
9-78 ft. above A, while the last result makes it 9-72 ft. above 
A ; a discrepancy of 0-06 ft. Calling the correct heights of 
B, C, and D above A,b,c,d respectively, we have the errors, 
4-71 - b, 3-59 - (c - 6), 1-48 - (ti - c), 9-72 - d. The table is. 

therefore. 

b 
i 

1 j 

i ' i 
1 

d N 

- 1 
i 1 0 0 4*71 

+ 1 -1 0 3*59 
0 -f 1 - I 1*48 
0 0 9*72 
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26-c = 4-71 - 3-59= M2 
-6 4-2c-<i = 3-59 - 1-48 = 2-11 

- c + 2<i = 1-48 + 9-72 = 11-20 

:.2b~2d --=- 10-08. Also 46 - 2c = 2-24 

-6 4-2c-d = 2-11 

36-rf = 4-35. 

46 = 18-78. 6 = 4-695 

and d — 
11-20 + 8-27 

■ 2 = 9-735 

2b-2d = - 10 08 

6b-2d= 8-70 

c = 9-39-1-12 = 8-27 

Therefore, B is 4-695 ft. above /I, C is 3-575 ft. above B, 
D is 1-465 ft. above C and 9-735 ft. above A. The errors 

in levelling were, therefore, probably + 0-015, + 0-015 
4- 0-015, and -0-015 ft. respectively, so that the total error 

of 0-06 has been equally divided among the four level- 
differences. 

Example 16 (L.U.). The same data as in Example 15, but 
add “that D was found to be 5-12 ft. above B,” the accuracy 

of this levelling being assumed equal to that of the others. 
The errors are now 4-71-6, 3-59-(c-6), l-48-(<f-c), 
9-72 - d, and 5-12 - (d - 6). The table is now— 

b c d N 

0 0 4*71 
-f 1 - 1 0 3*59 
0 -f 1 -1 1*48 
0 0 -1 9-72 

-f 1 0 -1 
! 

512 

36-c-rf = 4-71 - 3-59 - 5-12 =-4 

-6 + 2c-d = 3-59 - 1-48 =2-11 
- 6 - c + 3<i = 1-48 + 9-72 + 5-12 = 16-32 
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3b-c-d = -\ 5c - 4<i = 2-33 
-3fc + 6c-3rf = 6-33 3c-4ci = -14-21 

c = 8-27; d = 
41-35-2-33 

4 - 
9-755 

j = 4.675 

Therefore B is 4-675 ft. above /I, C is 3-595 ft. above B, 
D is 1-485 ft. above C, 5-08 ft. above B, 9-755 ft. above A, 
and the errors were -t- 0-035, - 0-(X)5, - 0-(X)5, + 0-04, and 

- 0-035 respectively. 
Example 17 The same data as in Example 16, but add 

"C is known to be 8-28ft. above A.” Here we are said to 
have an “Equation of Condition,” c is now 8-28 and is not 
subject to correction. The errors arc now 4-71-6, 3-59 

- (8-28 - 6) = - 4-69 + 6, 1-48 - (i - 8-28) - 9-76 - d, 9-72 
- d, and 5-12 + b. 

The table is therefore 

b d A' 

-1 ■ K) ; 4-71 

+ 1 i 0 { ~4-B9 
0 -1 9 76 
0 -1 I 9-72 

-f 1 -1 : 512 1 
1 

3b-d = 4-71 + 4-69 - 5-12 = 4-28 

-b + Sd = 9-76 + 9-72 + 5-12 = 24-60 
.-. 36 - (i = 4-28 

-3b + 9d = 73-80. .*. d = 9-76 ft. 6 - 4-68 ft. 

Therefore B is 4-68 ft. above A, C in 3-60 ft. above B, 

D is 1-48ft. above C, 5-08ft. above B, 9-76ft. above A, 
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and the errors were + 0*03, -0-01, O-OO, + 0-04, and -0‘04 
respectively. 

Weighting the Observations. Hitherto we have assumed 
that all the observations are of equal accuracy, but this is 

often not the case. If one of the observations has been 
repeated n times and the average of the results taken its 

inaccuracy should be reduced in the ratio i.e. its “obser¬ 

vation equation ” should be multiplied by Vn. For example, 

in Example 15, where c - b was observed to be 3-59, we call 
c - 6 = 3-59 an "observation equation,’’ and if it is the 

average of n observations of equal accuracy we treat it as 

equivalent to Vn observations, all of which gave c - b= 3-59. 
We, therefore, treat its error in the summation of squares as 

V«(3-59 - c + b). The (error)^ is then m(3-59 - c b)^, and 

when we differentiate this with regard to b and c we get 

m(3-59 -- c + b), and - w(3-59-c + b) respectively, so that as 
far as this observation is concerned we multiply by an 

additional factor n when preparing the normal equations. 

The factor n is called the iveight of the observation. 
On the other hand, if one of the observations is the sum 

of a series of observations each of the same accuracy as all 
the other observations, its inaccuracy will be increased in 

the ratio Vn ; 1, or its accuracy decreased in the ratio 

so that its “observation equation’’ should be multiplied by 

This means that we mur.l multiply, or “weight,” its 

(error)*^ by when dedvicing the normal equations. The 

iceighls are inversely fsroportional to the squares of the probable 

errors. 
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But in addition to cases of repeated observations as above, 
whether "in parallel” or "in series,” there are other cases 
where weighting should be employed. The observations 
may have been made by different observers of greater or less 

accuracy or the conditions under which the observations 
were made may not have been equally favourable, in which 
case the observations which are thought to be more accurate 

should be weighted with a higher number than those con¬ 
sidered to be less accurate. This is largely a matter of judg¬ 

ment, though as regards the relative accuracy of particular 
observers this can be deduced mathematically from the con¬ 
sistency of their results when repeating the same observations. 

Example 18. The same data as for Example 15, but let 

the weights be I for rlB and DA and 2 for BC and CD. 

Our table then becomes 

1 
b ! c 

1 
d N 

1 -1 r„'l 0 
\ 

4-71 
2 + 1 ‘ -1 i 0 t 3-59 
2 0 i +1 ; - 1 1 -48 
I 0 ; 0 ' - 1 : 9-72 

with an additional column for weight {w), and our normal 
equations are 

36-2c = 4-71 - 7-18 =-247 . . (1) 

-26 + 4c-7-18 - 2-96 = 4-22 . . (2) 

+ 2-96 + 9-72 = 12-68 . . (3) 

From (1) and (3), Zb -3d — ~ 15-15. 

From (1) and (2), 4b-2d = - 9-72. 

b-d=^-5-05) 

2b ~d -0-36) 
6 4-69. .-. d 9-74. c ^ 8-27. 
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Therefore B is 4'69 ft. above A, C is 3-58 ft. above B, 

D is 147 ft. above C and 9-74 ft. above A, so that the 
errors were + ()-()2, + O-Ol, -|- O-Ol, -()-()2 respectively, so 
that the errors were distributed inversely as the weights of 
the various levellings. 

Example 19. The same data as for Example 16, but with 
weights 1 for AB and DA and 2 for BC, CD, and DB. 

The table is then— 

w b c d N 

1 
1 1 - 1 0 ! 0 4-71 
2 1 -j- 1 - 1 ' 0 :e59 
<> ! 0 

i * 
* -1 , 1-48 

• ) -i- 1 ! : -1 1 512 
1 ' ; 0 ' 0 i -1 i 9-72 

2c - 2d - 4-71 - 7-18 - 10-24 - - 12-71 

4c - 2d - 7-18 - 2-9(^ = 4-22 

- 2h -- 2c -r 5d -- 2-96 10-24 + 9-72 --- 22-92 

Erom (1) and (2), 7I>-Sc ----- ~ 16-93 

From (2) and (3), -lb d- Sc - 33-47 

c 8-27 ft. b -= 4-67 ft. .-. d 9-76 ft. 

(1) 

(2) 

(3) 

Therefore B is 4*67 ft. above .1, C is 3TS() ft. above B, 

D is 1*49 ft. above C, 5*09 ft. above B, 9-76 ft. above A, 

so that the errors were + 0-04, - O-Ol, -O-OI, + 0-03, -0-04 

respectively. 
Alternative Method of('orrelates/' In Kxainple 17 wo saw 

that, when there was an “liquation of Condition" (i.o. any 
fixed relationship between the variables) to be satisfied, it had 
the effect of eliminating one of the variables. Similarly, if we 

5 ~(7^>7) 
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have m Equations of Condition we must first eliminate m 

of the variables, putting them in terms of the other variables 

by means of these m equations. When there are a number 
of such equations, the following method provides a quicker 

solution. We shall take the ca.se of the four levels as an 
illustration. Let the required “corrections” in the four 

8 

level differences AB, BC, CD, and DA be ^i, e^, e^, and e^ 

respectively, and the weights be w^, w^, w^, ic>4 respectively, 
in the simple round of four levels of Examples 15 and 18 

(see Fig. 14). “Correction,” of course, means error with 
changed sign : a + error means a - correction, and vice versa. 

The arrows in Fig. 14 indicate the directions in which the 
rises or falls given are to be reckoned. Here the total correc¬ 

tion required on the round is -0-06 ft. We have, therefore, 
one equation of condition, viz. 

2r(c) Cj -f- ^2 -{- ^3 T" ^4 “ " d'f)6 

Also for the Least Square condition we have 
E{we'^) = Wye'^ -f -F 4- w^e^^ — a minimum. If 

we vary Cj, e^, by amounts de^, de^, de^, dct we must 
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have Z(6e) — de^ + + <3^3 + = 0, also (differentiating) 
E{we6e) = -t- 4- 'w^ejien = 0. 

Multiply the first of these equations by - A and add it to 

the second; then - A)^e, + (it’jej - A)5e2 + (zt'3^3 - 

+ (“'4^4" ^)^^4 ■= 1^- Now, as dcj, be-^, and be^ are inde¬ 
pendent quantities, each of the coefficients of the he's, must 

vanish independently, or 7c\ei ~ X — — xv^e.^ — '<^'4^4. 
X X X A . , 

i.e. = —, e, — —, -- —, e. = —, i.e. the corrections 
K'l H’j ■' 70,, * JC4 

are inversely proportional to the weights. If we substitute 
these values in the origiiKil equation of condition, we hiive 

, / 1 1 1 1 \ , . . , ■ A — f — I-f- — I = -O-Od, an equation which gives 
VlCi 702 ‘C'a 2«'4/ 

US A and hence gives the values of e■^, C;,. and c,. 

In Example 15, all the weights are equal, s;iy 1, and we 

have A =-• = -()-()15 Cj = -- C;, ~ Cj. I'lie cor¬ 

rected level-differences are, therefore, 4- 4-695, f 3-575, 
-f 1’465, and -9-735, :is found before. 

In Example 18, the weights are. tc, -- 1, 77'2 -- 2, a'j = 2, 

701 -- 1. A(1 + J 4^4- 1) -= --(HKS. A -- -(H)2. So 

that we have c, :-=-0-()2, c, ”"**’**!. «.i ~-9'91, c. 
= -- ()-()2, so that the corrected levcl-ditferences are -f- 4-69, 

-4- 3-58, 4- 1-47, -9-74, as found previously. 
In Examples 16 and 19 we have two rounds of levelling 

(Eig. 15), ABD and BDC, with total corrections required of 

-O-ll and -0-05 respectively. Oilling Cj the correction in 

BD we have two equations of condition, viz. 

h 4- 4- <’4 —- - 9-11 ; c- -f- c., -L -0-05 

bci 4- be^ 4- bCf = 0 ; be^ -f dCj 4- bc^ — 0 

while 701^1^^! -f 4- tt’3^3^^a 4- xv^e^be^ 4- — 0 
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Multiplying the first two of these equations by - -- Aj 

respectively, adding all three equations and equating the 

coefficients of each be to zero, we get ™ Aj, XV2C2 ™ A2, 

—— A2, Aj, ^^'5^5 ~~ Aj A»2* 

A 

I 

c 

Fi(i. 15 

Substituting these values of e^, etc. in the original 

equations we get 

1^ 

I , 1 1 ' 

. i -O-Il 

a’l <1-, a’* / 44*3 

^■1 . / 1 1 1 \ 

- ()-(»5 -r- J — 
L - 

i — ) - 

V *> 
\a-2 (4’.; *‘'3/ 

which two simultaneous equations give us Aj, A.^, and hence 

^1, ^2» ^3- 

In Example 16, the weights are equal, say 1, and the 

equations are 
^3Ai ! - *011 

f A, + 31, - *(M)5 

Hence 8Aj -- "0-28, Ai - “0-03v5, A2 -- * O-OOS, so that we 

have = - 0-035, ^2 -- - 0-005, ^3 --- 0-(K)5, ^ -0-035, 
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r- -- ()-()4, which give corrected level-differences of f 4*675, 

-3*595. - 1*485. -9*755, and 5*08, as found before. 
In Example 19, where iCi ve, -- 1, W2 = 20,1 -- -- 2, 

the equations are— 

A.(l + 1 + i) -(hT 

-f- i i) - -()-o5 

^vS;., f - (1-22 14;, :=:= -()-56 

' * / /., t :u, -= ■(I-IO A, - -(H)4, A, = -0-()2 

so that the corrections are - -0*04, ^2““b*01. 
~ -0*01, V ^0-04, Cr^ ™ - 0*03, and the corrected level 
differences are 4-^1417, 3*6i), 1*49, -9*76, -f 5*09, as 

found before. 
In Example 17, all the weights are equal and unity, but 

we have nt)w three equations of condition, viz. 

}- <^5 + ^4 ■ 0*11. ^5 i- 6*3 -j- €2 -0*05, - 62 -0*02. 

as we require a - correction on AB and a 4- correction on CB 

to dimmish the rise (from A to C) of 8*30 to 8*28, the known 
value, j Instead of t\ -€2 - -0*02 we could have put 

^^3 = -0*04, 

as the fall from C to A is the difference of the falls from 

D to A and from D to C, and a - correction is required 
to increase the fall from - 8*24 to - 8*28. But we must not 
use both of these equations, as one is derivable from the 
other, together with the first two equations.] We have, 
therefore, 

“i~ be -f- be0, be^ -f- be>^ -|~ ^^2 ~~ 

also ^\bci + + ^hb^b ~ b. 

Multiplying the first three equations by -* A^, - Ag, - A3 
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resi>ectively, adding the four equations together, and equat¬ 

ing the coefficients of each de to zero, we have f, — Aj -f Aj, 

€2 — Aj -- A3, C3 = A2, ^4 — Aj, + Aj. 

Substituting these values in the original equations we 

have— 

3Ai + ;,2 A3 - - 0-11 4Ai 4- 4Aj = - 0-16 

Ai - 3A3 - A3 - () ()5 

A, - Aj. + 2A3 == - ()-(>2 ( Aj -h A* = - 0-04 

Also |3Ai + SAj = -0-12 

2Ai = - ()-08 

Ai - - 0-04 

•0-02 -t- ()-04 
= -f 0-01 

Therefore Cj = -0-(j3, = -O-Ol, Cj — 0, e^ — -(H)4, e^ 

= -0*04, and the corrected level-differences are -f 4-68, 
-3-60, - 1-48, -9-76, and 5-08 as found before. 

The reader should repeat this example, substituting the 

equation ^4 - ^3 = - 0-04 for the equation e, ~ - ()-()2, 
and he will find that he will get the same values of the 
corrections. 



CHAPTER II 

KLEMENTARY ASTRONOMY 

Astronomical Demnttions—Sidereal and Mean 

Time—Corrections of Altitude 

Astronomical Definitions 

At any place on the earth’s surface the fixed stars (i.e. 

excluding the sun, moon, and planets, which are parts of 
the solar system) appear to revolve in small circles round a 

fixed point in the heavens called the “Celestial Pole,” in 
a period of 23h. 56m. 4-()9s. of mean time (i.e. of ordinary 
clock time). This is the actual period of rotation of the 
earth and is called a “Sidereal Day.” Fig. 1 shows the 
earth E, iC, E; P^Ps being the North and South Poles 

and EE the equator, while at A and B are shown the celestial 
hemispheres visible to an observer in the northern and 
southern hemispheres respectively. The fixed point or celes¬ 

tial pole is the point p^, ps where a line Ap^, Bp^ parallel 
to the earth’s axis cuts the hemisphere: its altitude above 

the horizon NS is easily seen to be equal to <f), the latitude of 

the place. A star A' makes an angle XAp^ with the celestial 
pole, which, as the star is infinitely distant, remains constant 

as the observer and his celestial hemisphere rotate into the 
position A', so that the star appears to describe a “small 

circle” about P^. The star Y is not visible from A'. It is 
visible from B, but not from B', as it is below the horizon 
iV'S. 

In the northern hemisphere the fixed point is the North 
Celestial Pole, and it lies north of the Zenith (or point 

immediately overhead); in the southern hemisphere the 

<»3 
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fixed |>oint is the South ('elestial Foie, and it lies south of 

the zenith. As we go north from .f the North Celestial Foie 
will rise until at the North Foie, latitude 90° N., the North 
Foie will be at the zenith and the stars will describe horizontal 

circles round it. As we go south from A the North Celes¬ 

tial Pole will fall until, when the place is on the equator, 
latitude 0°, the North Celestial Pole is on the north horizon, 
the South Celestial Pole on the south horizon, and the stars 
now describe semi-circles across the sky. Proceeding into 

the southern hemisphere, the South Celestial Pole rises in 
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the sky until finally, at the South Pole, the stars again 
re\'olve in horizontal circles about the zenith. 

'fhe sidi'nnil day is shorter than the solar day because the 
earth travels round the sun once in a year in the same 

direction as it rotates on its 
axis. In h'ig. 2, if the earth ' 
/:, the sun .S', and a star .V 

are in line one? day, and on 
the next day the e‘arth has 
moved to it is obvious 
that a pe)int on the e'arth’s 
surface will jxiss the star ^ 
before it passes the sun, and ^ 
that the angle X'K'S, which 

measures this difference 
betwi‘en the sidereal and the seilar day, i^ equal to the 

angle H'SK as E'X' is parallel to EX, In a year, therefore, 
there will be one more sidereal day than there are solar days, 
i.e. there are 366*24 sider(?al days. One sidereal day, there- 

365-24 , . 

ViG. 2 

fore, days -- 1 ' 04 days -- 1 solar 

day 
time 

24 hours, etc., and 1 sidereal hour -- 1 solar hour - 

235*91 solar .seconds ™ 23h. 56m. 4*09s. of mean solar 
as above stated. The sidereal day is divided into 

235*91 
24 

seconds 1 solar *9*830 solar seconds. Similarly, 1 

fi66*24 I 
solar day ~ &dys ^ 1 -f sidereal days 

” 1 (- 236*v56 sidereal seconds - 24h. 3m. 56*56s. of sidereal 

236*56 
time. Therefore, 1 solar hour - ^ 1 sidereal hour + 

24 

sidereal seconds - 1 sidereal hoar -f 9*8v57 sidereal seconds. 
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By solar time we here mean mean solar time, because, as we 
shall see later, solar days—from noon to noon—are not 
quite equal in length and have to be averaged to give a 
uniform time interval. 

In the case of the North Celestial Pole, there is a fairly 

I 

Zd'^June 

/ 

North 

li 

0 

22'^'Dec 

Sept 
Fig. 

bright star—the Pole Star, or “Polaris”—within about 1° 
from it, and this is easily found from the well-known con¬ 
stellation of the “Plough” (Ursa Major = Great Bear), as 

shown in Fig. 3. By producing the line of the two stars a, ^ 
of the Plough to a distance about 5 x a p, we find Polaris. 
Actually Polaris describes a small circle of about 1° round the 
Celestial Pole. The Plough is shown in four different positions, 
as it appears at midnight on four dates at London. There is 

no corresponding bright star near the South Celestial Pole. 
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As tho tixod stars icmain very approximately in the same 

j)()siti()ns relative to each other we require a system of 

spherical co-ordinates to define their positions, similar to 

latitude and longitude on the earth. The great circle (or, 

rather, semicircle) on the observer's celestial hemisphere, 

parallel to the earth's 

e(|uator and, therefore, at 

fX)"" to the celestial pole, we 

call the Celestial Equator. 

I ts inclination to the horizon 

is, of course, - <f) — the 

co-latitude, where is the 

latitude of the place. The 

great circle through any 

star and the celestial pole 

we call the star’s Declination 

('ircle. The great circle 

tlirough the zenith and the 

celestial pole at any place 

we call the meridian of the 

place -it is, of course, the 

vertical plane running due 

north and south. Then the 

co-ordinate of a star corre¬ 

sponding to latitude on the earth is its Declination, which is 

the an^le from the celestial equator to the star, measured north 

or south of the equator along the declination circle of the 

star. Tlie declination, d, of a star is, in fact, the latitude of 

the point on the earth immediately below it, at which point 

the star appears to be in the zenith when it crosses the 

meridian (see Fig. 4). 

The co-ordinate of a star corresjxjnding to longitude is 

X 
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its Right Ascension (or K.A.), which is defined as the angle, 

measured in the opposite direction to that in wliich the 

stars revolve round the pole, Jrom a certain fixed point on 

the celestial equator, called the" hirst Point of Aries" {denoted 

by the symbol f), to the star's declination circle. The angle is, 

however, measured from to 360'^, not from 0° to 180° E. 

and 0° to 180° W. as on the earth, or, rather, it is measured 

in hours, minutes, and seconds from 0 hours to 24 hours, at 

the rate of 15° to 1 hour. The *' hirst Point of Aries,” wliich 

corresponds to (Greenwich, is the point where tlie sun, in 

its annual path among the stars, crosses the equator from 

south to north at tlie spring equinox, on or about the 

22nd March. 

But, as each star is revolving round the celestial ])ole at 

the rate of 15° |>er sidereal hour, we require a third co¬ 

ordinate to define its position relative to a place on the earth 

at any instant, viz. the star’s Hoar Angle, wliicli is the 

angle measured from the meridian of the place to the star’s 

declination circle, measured in tlie direction in which the 

stars revolve, from 0° to 360° or, more usually, in hours, 

minutes, and seconds, at the rate of 15° to an hour. It is 

measured from the side of the meridian opposite to ^he pole. 

The hour angle of any star, therefore, increases 15° {X?r 

sidereal hour, and any fixed star could be considered as the 

hour-hand of a 24-hour sidereal clock. Actually, the first 

point of Aries, is utilized for this purpose. The instant when 

it crosses the meridian of a place is called Oh. sidereal time at 

that place, or Oh. local sidereal time, or even "sidereal noon,” 

and we have the definition: Local sidereal time, at any 

place and instant, is the hour angle of tp. 

Fig. 5 shows the celestial hemispheres of two points, the 

one with a latitude <f> north, and the other with a latitude 
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<f) south, and in both cases the same star A' with a declination 

d north is shown, it being above the celestial equator in the 

northern hemisphere and below it in the southern hemi¬ 

sphere. The hour angle is /PX in both cases, and is 

measured from the south in the northern hemisphere and 

from the north in the southern hemisphere. The R.A. of 

the star is fPX in both cases and the local sidereal time is 

ZPiji in both cases, measured from the south in the northern 

hemisphere and from the north in tlie southern hemisphere. 

As f is always considered ahead of the star, we have the 

ecpiation: The ri^ht asceitsiou of a star -f- its hour angle 

- local sidereal time at the instant. If the two places are 

on the same meridian, the hour angles of the same star will 

be the same at the same instant, and the local sidereal times 

will be the same at the same instant. When the star is crossing 

the meridian above the pole it is said to be at Upper Transit 

or Upper Culmination, as its altitude is a maximum and its 

hour angle is zero. The right ascension of the star then equals 

the local sidereal lime. 

It will be noted that facing the equator the stars move 

clockwise in the northern hemisphere (from east to west 

through south) and anti-clockwise in the southern hemi¬ 

sphere (from east to w’cst through north). If we face the 
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pole, of course, these directions are reversed in each case. 

The angular distance of a star from the nearest pole is 

90“ -d, which is called the Co-declination or Polar Distance. 

When this is less than the latitude of the place, the star 

will cross the meridian again 12 sidereal hours later, above 

the horizon and beUnv the jjole. It is then said to at 

Lmeer Transit or Lower Culmination, as its altitude is a 

minimum. Of course, owing to dayliglit it may not Ih' 

visible at one of its two transits, or even at both «)f thc-m 

w'hen tlie nigiits are short. 

When the co-declination is less than tiie co-latitude («»r 

PX P/), or the star’s declination is greater than tin- 

latitude of tlie place, the star's up|>er transit will i»e l)etvveen 

the pole ami the zenith, and the star will never be .-s.-eii 

south in the northern hemi.sphtre i»r north in the soutlarr 

hemisphere, (amsequently, whett viewed with a theodolite, 

such a star will attain a maximuni ea.sterly iK-aring, then 

move north again (or south in the stnithern hemisphere), 

then attain a maxirntim westerly lx;aring, then again move 

north (or south in the .s«juthern hemisphere). When at such 

maximutti easterly or westerly Inraring.-. it i.s said to Ik' at 

eastern or w'estern elongation rcs|H’Ctively, and the angle 

ZXP is a right angle (Fig. 6). 

In any position of a star A' we have a spherical trituigle 
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ZXP formed by the zenith, the pole, and the star. As before 

defined, the side ZP is the co-latitude 90° - latitude = 

90° - <f>, the side PX is the co-declination — 90° - declination 

= 90° - d, while the third side ZX is the co-aUitude = 

90° - altitude = 90° - a = zenith distance (Fig. 7). 

If the declination is of opjx>site sign to the latitude, the 

co-declination PX 90° -f- 6. 

The angle at P is the hour angle if the star is west of the 

meridian, otherwise it is 360° - hour angle. The angle at Z 
is the azimuth of the star if the star is east of the meridian 

(as azimuths are reckoned eastwards from north) in the 

northern hemispliere, and 360“ - azimuth if it is west of 

the meridian. If azimuths are still reckoned eastwards from 

the north in the southern hemisphere, the angle at Z will 

l)e 180° - azimuth when the star is east of the meridian, 

and azimuth - 180° when the star is west of the meridian. 

The angle at Z will be a right angle when the star is on the 

Prime Vertical, that is, the great circle eZw through the 
zenith at right angles to the meridian, and, therefore, passing 

through the east and west points of the horizon. It is shown 

on the R.H. diagram. 

Altitudes of Stars Crossing the Meridian. When the star 

is crossing the meridian this spherical triangle becomes the 
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great circle PZX (or PXZ or XPZ) and the calculations are 

much simplified. The hour angle is O'* or 180''. the azimuth 

0° or 180\ while the star’s declination, its altitude, and the 

latitude of the place are so simply related that if any two 

Fic,. 8 

of these are known, the third can Ih' found by mere addition 

and subtraction. For this purpose we sketch a section 

through / and P, along the meridian of the })lace. 

Ex.^mplk 1. To find the altitudes of Aldebaran (a Tauri) 

at its upper transit at places in latitudes ST N. and 

51'‘30'S., given the declination of Aldebaran is 16° 22'N. 

(Fig. 8). The inclination of the equatt)r is 5-HF -51®80' 

— 38 30'S. in the northern, .'IS 30'N. in the southern 

hemisphere. Draw- OK at tlieso inclinations on the two 

diagrams. Draw DA' at an angle of 16 22' on the northern 

.side of the equator in each case, and we see that its 

altitude at transit is 38® flO' - 16'22' 54 52'S. in the 

first case, and 38' 30' - 16® 22' ^ ^ 22° 08' N. in the second 

case. 

Conversely, if we have found the altitude of .Aldebaran 

at upper tran.sit to be 54® 52' S. .and subtract its north 

declination, we know the inclination of the equator is 

38® 3<t' S., and, therefore, that the latitude is 90® - 38® 30' — 

5I®3()'N. On the other hand, if its altitude is 22®08'N., 

we add the declination 16® 22' and find the inclination of 
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the equator to be 38° IK)' N. Therefore the latitude of the 

place is 90° - 30' S. -- 51° 3(»' S. 

Kxamplk 2. To find the altitudes of the upper and lower 
transits of a IJrsae Majoris (declination 07' N.) in latitude 

N. (Fig. 9). riie cu-declination or polar distance of 

the star is V)0° -62 07' ‘27’’53’. Draw tlie pole at an 

I k. iu 

altitude of 51° 30' N. and draw lines at 27° 53' on each side 

of 0P^. The altitudes are, therefore, 79° 23' N. and 23° 37' N. 

EXAMtn.K 3. If the (corrected) altitude of ('anopus (n 

Argus) (declination 5‘2° tI9' 30' S.) at upptir transit is found 

to be 72°'29' 15'S., what is the latitude? (Fig. 10.) Draw' 
f. I7f.7t 
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the star X at this altitude. 72° 29' 15' S. Then subtract its 

polar distance 37° 20' 30' (as at upper transit) and we find 

the latitude as 35° 08' 45' S. At lower transit the star will 

be 37° 20' 30' - 35° 08' 45' - 2° 11' 45' below the horizon. 

Sidereal Time 

Approximate Determination of Time when a Star Crosses 

the Meridian. Tor this purpose it is convenient to sketch 

a “clock diagram” or diagrammatic plan looking down the 

earth's axis towards the celestial equator in the direction 

of the arrow of Fig. 5 (page 69). Fig. 11 shows such diagrams 

for the northern and southern hemispheres respi‘ctivcly. 

The pole is in the centre and the circle can Ixj considered to 

represent the equator. The zenith is south of the North 

Pole l\ and north of the South Pole P^, while the straight 

line ZP represents the meridian. The .same star A' is shown 

on both dmgrams with a north declination, and therefore, 

above (inside) the equator in the northern hemisphere and 

below (outside) it in the southern hemisphere. By taking 

the radim of the equator as 90° to scale we could plot the 
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star’s declination radially from the equator towards, or 

away from, the pole. In both cases the star’s hour angle is 

ZPX, its right ascension is tf)PX, and the local sidereal time 

is /J\. 

When the star is at upper transit, the jjosition of is 

known, the local sidereal time ZPxp being the star's right 

ascension fPX (l*'ig. 12). 

Now. just as we oonsitler »/> as the !iour-hand of a 24-hours 

.'.ideie.il lime clock, wi- can consider a jKiint M, which wi- 

call ihe "Mean Sun,” and which moves at a ttniform "peed 

round tlie ciiimtor, as the hour liand of a 24-hour moan time 

clock, and if we know tlie angle between M and v’ on atiy 

day we can plot the jtosition of M ;it the instant of transit, 

and so find the mean time. 

In Fig. 13 the four circles represent the faces of a 24-houv 

clock, with a mean time hour hand M, and a sidereal hour 

hand f at the two etjuino.xes (spring and autumn) anti the 

two solstices (summer and winter): in each case at mean 
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noon. As there is one more sidereal day in the year than 

there are mean days, the sidereal hour hand goes 6 hours 

fast every 3 months, or, approximately, 4 minutes per day. 

The angle between the two hour hands is tlie sidereal lime 

UtKi> jnt «•* StfMinIxr Otambt 
0 hti. 6 m >i m 9 m 

lu; IS 

at mean nnnn, or the right ascension of the mean sun at 

mean noon, or it is the angle between rg and tlie mean sun 

on the equator, and we see that this is (t hours on 22nd 

l io. M 

March, 6 hours on 22nd June, 12 lnmrs on 22nd Septeml)cr, 

18 hours on- 22nd December. The exact value of this 

quantity is given for every day at (ireenwich mean noon 

in the Nautical Almanac and (to the nearest second) in 

Whitaker’s Almanack, but we can find it approximately (to 

within some 5 minutes) by adding (or subtracting) 4 minutes 
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per day to (or from) its value on th(‘ nearest of the above 

four dates. 

lixAMPLU 4. d'o find the approximate mean time of transit 

of Aldebaran (a Taiiri) (R.A. 4h. 32m.) on 31st January. 

Fir. \> 

(I'ig. 14.) fhe approximate K.A. of the mean sun is 

18h. 40 (days) * 4m. - 20!i. 40m. We now mark v'^t 4h. 

32m. from / towards the west, then lay off 20h. 4()m. in the 

opposite direction from to find A/, which gives the hour 

angle of A/ as28h. 32m. - 20h. 40m. 7h. 52 m. p m., which 

is the local mean time of transit approximately on that 

date. 
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ExAMPl.lv 5. At whut hour (approximately) will h'ormal- 

haut (« Pisces Australis) transit on 7th September if its 

R.A. is 22h. 54m.? (Pif;. 15.) The K.A. of the mean sun is 

12h. - 15 (days) x 4m. 1 Ih. dm. Mark y at 22h. 54m. from 

/. then mark M at 22h. 54m. - llh. Om. — llh. 54m., and 

we see that the mean time of the transit is llh. .54m. p.in. 

1*-XAMPi.lv H. What will lx? the hour angle of .\Ulebaran 

(R,.\. 4h. il2m.) at 5-0 p.m. on 31st January? (P'ig. 16.) 

.\s in Example 4. the R.A. of the mean sun on this date 

2tHi. 4t)m. (apj)ro.v.). Mark the mean sun at .5 ()h. Then 

y is at S'Oli. f 2<lh. 4()m. - 25h. 40in. Hr 4dm. West ainl 

the star at lli. 4dm. 4h. 32 m. ^ 21i. 52m. East, or2.5h. 4dm. 
‘i 

4h.32m. 21h. dSrn. West. This is in accordance with 

Example 4. as it will transit at .5h. dm. •- 2m. .52s. - 7h. 

.52m. p.m. (as before). 

Mndel for lUustratin^ the Positions of the Stars (b ig. 17). 

The student will find this helpful in familiarizing himself 

with tlie alx>ve astronomical definitions, and even in locating 

bright stars from the Almanac. 

Divide a circle, drawn on cardboard, 6 inches diameter, 

into 24 p;irts of 15' each and numlx?r these from d to 24 

iclockw'ise for the northern hemisphere, anti-clockwise for 

the southern hemisphere). This we shall call the “hour 

circle." Draw a square touching the circle at the p<.»ints 

6, 12, 18, and 24, and cut out the stjuan*. t’ut a right- 

angled triangle out of cardlxiard, with its hypotenuse 6 inches 

long and its other angles equal to the latitude <f> of the 

place and the co-latitude 9d" - tf>. Fasten the triangle 

with its hyjxitenusc to the back of the square along the 

line 12-24, so as to tilt the square to the horizontal at an 

inclination equal to the co-latitude, with the 24 mark at 

the top. 
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Divide a circle, drawn on cardboard, 5 inches in diameter, 

into 24 parts and number them 0-24 (anti-clockwise for the 

northern hemisphere, clockwise for the southern hemisphere). 

Cut out the circle, which we shall call the “ right ascension 

circle.” Mark tp at the 24 mark. Then divide a quadrant, 

drawn on cardboard, 2\ inch radius, into 9 parts of 10° 

each and number these as shown in Fig. 17 from 0° to 90°- 

Cut out the quadrant, which is our "declination quadrant.” 

Pin the centre of the right ascension circle to the centre of 

the hour circle, place the model on a horizontal table with 

the 24 mark of the hour circle facing south in the northern 

hemisphere, north in the southern hemisphere. The hour 

circle is then in the plane of the celestial equator. If the 

quadrant is then placed with its centre C at the centre of 

the hour circle, the edge CP of the quadrant will then pioint 

to the celestial pole. 

To illustrate Example 4 with the model: Bring the star’s 

R.A. {4h. 32m.) on the R.A. circle up to 24h. on the hour 
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circio ; will then \)C in its right [position and 2()h. 4<hn. on the 

K.A. circle will then be the |X)sition of the mean sun, which 

will l>e found to read 7h, 52m. on the hour circle. Example 5 

can be illustrated in the same way. For JCxample 6 the 

mean sun is at 5h. on the hour circle and its K.A. is 2t)h. 4t)m. 

Therefore, bring the 20h. 4C)m. on the K.A. circle opposite 

5h. on the hour circio. v* t\\i*n be correctly placeil and 

Aldebaran will 1k‘ at 4h. 32m. on the K.A. circle, which will 

be found at the hour angle 21h.tWm. If the declination 

quadrant be placed perpendicularly on the K.A. circle at 

this mark, and a knitting needle placed on it from (' to 

16"^ 22' on the quadrant, the needle will |M>int to .Aldebaran 

if the place is in the northern hemisphere. 

By this means the student .should l)e able to find aity of 

the brighter stars given in the list on pages 140, 141 of 

Whitaker s Almanack, provided they have a north declination 

in the northern hemisphere and, conversely, a south declina¬ 

tion in the southern hemisphere. Even when the declination 

is of the opposite sign to the latitude, the declination can 

be estimated below the plane of the equator. v\ star chart 

will also lx* of great use in this connection, aiul will give the 

shapes and relative positions of the various constellations. 

The horizon, of course, is an imaginary horizontal plane 

through the centre of the model. 

The mcxlel would .s<^rve as a sun-dial if the knitting needle 

is insertefl at T, {xqxndicular to the plane of the hour circle, 

its shadow recording the (apparent) time in hours from 

midnight, but for this, of course, the sun must be above 

the equator. In practice, therefore, sun-dials are usually 

constructed with their hour circles horizontal, and the 

hour intervals projected thereon are, therefore, unequal in 

size. 
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Fig. 18 shows how this is effected; PNH is a spherical 

triangle right-angled at N, in which the side FN = <f>. 

sin <f> - tan NH . cot P tan NH — sin ^ . tan P. 

('-hoosing values 15'’, 30’’, 45° ... for P, this gives the 

value of the angle NH to set out for each hour on each 

side of noon. 

Conversion of Sidereal 

Time into Mean Time. 

riiis is a calculation 

which must frequently 

lx‘ made and nmst be 

thoroughly mastered. 

W’hen a star cross(!S the 

meridian at upper transit 

the local sidereal time is 

the H.A. of tlie ste.r: at 

lower transit it is the 

K..'\. 4- hours. In 

other p<jsitions of the 

star the local sidereal time - R.A. of star + its hour angle. 

If we know the star’s declination, the latitude of the place, 

and measure its altitude, we know the three sides of the 

spherical triangle /PS and can calculate the hour angle at 

P, and hence we find the local sidereal time. 

The Nautical Almanac gives the sidereal time of midnight 

at (ireenwich for each day very e.xactly, and Whitaker's 

Almanack gives the sidereal time of mean noon there each day 

to the nearest si'cond, and we must be able to find this quantity 

for a place of any given h)ngitude L. Fig. 19 represents the 

faces of two 24-hour clocks at the same instant, each with a 

mean time, and a sidereal time, hour hand, one at Green¬ 

wich. the other at a place L° west of Greenwich. It is mean 
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noon at (ireenwich. Then at the place in longitude L° west. 

1° 

the mean hour hand is hours before noon, because it will 

be mean hours before the place comes opposite the mean 

sun, while the sidereal hour hand is also hours behind its 

L° 
Greenwich position, because it will take jg sidereal hours 

to attain that position—in other words, both hour hands are 

Cnumkh lengiM»CW 
Fig. 19 

always slow by the same amount, jg hours, owing to the 

difference of longitude of L°. On the other hand, the sidereal 

hour hand in both clocks is going fast on the mean time hand 

by the same amount, viz. 9'857s. per mean hour (or 3m. 56-5^. 
per day or 24h. per year). By the time, therefore, that it is 

mean noon at the place in longitude L° west, the angle 
U 

between M and y has increased bv jg x 9'857 sec. Similarly, 

if the place is in longitude L’* east, mean noon occurs when 
L° 

it is mean hours before mean noon at Greenwich and the 
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angle is jg x 9-857 sec. less than at G.M.N. We have, there¬ 

fore, the rule— 

Local sidereal time of local mean | 

— Greenwich sidereal time of Greenwich Mean | 
( West 

[: 9-857 sec. Jor every hour of longitude j 

Having found the local sidereal time of the previous local 

(noon , L.M.N. \ , , . , 
mean 1 ... , ^ ( L.S. I. of ,,, ) we deduct it from the 

(midnight V 9h. M. 1. / 

given local sidereal time, and get the ‘‘sidereal interval,” 

(noon . . 
since local mean 1 ■, ■ , As this is in sidereal units, we 

(midnight 

turn it into mean units by deducting 9-830 sec. pier hour. 

These calculations are facilitated by tables in Whitaker’s 

Almanack and inChambers' Seven-Figure MalhemaiicalTables, 

which give the ‘‘ acceleration ” at 9-857 sec. per hour, and 

the “retardation” at 9-830sec. jier hour for each hour of 

the 24, each of the 60 minutes, and each of the 60 seconds. 

Picking out the figures for the required hour, minute, and 

st*cond, we have only to add them together to get the 

correction in the first case for the longitude, in the second 

case for the sidereal interval. Similar tables in Chambers' 

Tables facilitate the process of turning longitude in angle 

(arc) into longitude into hours, minutes, and seconds of 

time at the rate of 15° — Ih., 1"^ = 4m., 1' == 4s., and, 

conversely, tables for converting time into angle (or arc) at 

the rate of Ih. — 15°, Im. — 15', Is. — 15'. 

Failing these tables, it is, however, quite a simple matter 

to calculate these corrections on the slide-rule. 
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Example 7. Find the local mean time of transit of Alde- 

baran (R.A. 4h. 32m. Os.) on the 31st January, 1933, in a 

place of longitude 64° 16' E. 

(а) Longitude = 64 x 4m. 16 x 4s. 

== 4h. 16m. -f Im. 4s. ~ 4h. 17m. 4s. E. 

G.S.T. of G.M.N. (from Whitaker’s Almanack) 

- 20h. 41m. Is. 

^>-857 . 9-857 
Deduct 4 X 9-857s. + 17 x + 4 x o£mu» 

60 3600 

= 39-43 + 2-79 + -01 = 42-23s. -say, 42-2s. 

(as only required to nearest second) 

L.S.T. of L.M.N. - 20h. 40m. 18-8s. 

(б) Local sidereal time = Right ascension of star 

^ 4h. 32m, (Ls. -= 28h. 32m Os. 
Deduct L.S.T. of L.M.N. - 20h. 40rn. 18 8s. 

Sidereal interval since L.M.N, ^ * 7h. 51m 4l*2s. 
Q.QQ q.QQ 

Deduct 7 K 9-83s. + 51 x s. + 41 2 x 

68-81 -f 8-35 -t- O il . 77-27S, - Itn. l7-3s. 

Ixx;al mean timt- - 7h. .5<)m, 23-9s. 

say 7h. .50m. 24s. p.m. 

Example 8. Find the local mean time of transit of For- 

maUiaut (R.A. 22h. 53m. 57s.) on 7th September, 1933, in 

a place of longitude 157’ 51' W. 

(a) Longitude = lOh. 28m. 3m. 24s. — lOh. 31m. 24s. W. 

G.S.T. of G.M.N. = llh. 4m. '27s. (from Whitaker's 
Almanack) 

L.S.T. of L.M.N. = llh. 4m. 27s. + Im. 38-56s. + 5 09s. 

+ 0-07s. = llh.4m.27s. -f Im. 43-72s. — llh.6m. 10-7s. 
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(6) Local sidereal time = Right ascension of star 

22h. 53rn, 57s. 
Deduct L.S.T. of L M N. ~ llh. 6m. 10*78. 

Sidereal interval since L.M.N. - llh. 47m. 46*3s. 
Deduct Im. 4813s. f 7-70s. f 013s. lm.55'96s- ~ Im. 56 0s. 

- Local mean time - Mh. 45m. 50s. 

p.m. to nearest second 

Tlie converse operation -of converting local mean time 

into local sidereal time- is best executed by reversing the 

process, e.g. in Example 8. 
L<K'aI mean time 1 Ih. 45m. 50s. 

4S SO 
AiU\ 11 .< 9 857s. r 9-857s. r 9 857s. 

60 3600 

108-42S. 4 7 39s. ^ 0 I4s. - 115-95 -- Im. 56s. 

Sidereal interval since mean noon llh. 47m. 46s. 
Add L.S.r, of I-,M N (as alx>ve) ™ llh. 6m. lls. 

I.<K'al sitlcreal time - 22h. 53m. 57s. 

Alternative Method of Conver^iion of Sidereal Time into 

Mean Time. The Nautical Ahnanac and Whitaker’s Almanack 

22’^m0Oi tr^Stptmbtr 22^Dea3inbff 
9 hMn 6 ttovr% 0 kpun 91 hmn 

Fig. 20 

also give daily the mean time of transit of \p at Greenwich, 

or “mean time of Oh. sidereal time at Greenwich,” the mean 

time being reckoned from the previous midnight as is usual 

when 24-hour time is used. Fig. 20 shows the 24-hour 

clocks again at the equinoxes and solstices, but with y> at 
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Oh. The mean time hour hand goes slow 6h. in 3 months, or 

3m. 55-91s. per sidereal day, or 9‘83()s. per sidereal hour. 

Therefore, as the transit of w occurs 1 sidereal hour i 

East 
for each hour (15°) of longitude | we have the rule— 

Local mean time of transit of ^ 
= Mean time of transit of ^ at Greenwich 

( East 
± 9-830 sec. per hour of longitude j 

Having found the local mean time of transit of yr, we turn 

the given local sidereal time into a mean time interval 

since transit of yi, by deducting 9-830 per hour and tl\on add 

the two together to get the local mean time, reckoning from 

the previous midnight. 

Example 9. Taking the data for Example 7, but working 

by this alternative method. Mean time of Oh. sidereal time 

at Greenwich = 15h. 18m. 26s. on 31st January, 1933, from 

Whitaker's Almanack. 

(а) Longitude 64° 16' E. — 4h. 17m. 4s. E. (as l)efore). 

9-83 4 
Add 4 X 9-83s. + 17 x i x 9-83 

- 39-32 + 2-78s. -f 0-(Hs. - 42-11s. 

Local mean time of transit of f ■-■= 15h. 19m. 08-Is. 

(б) Local sidereal time = 4h. 32m. Os. 

'12 
Deduct 4 X 9-83s. -f ~ X 9-83s. == 39-32.S, + 5-24s. 

D</ 

= 44-56S. 

Mean time int4M^at since transit of y 4h. 3lm. 
Add LA1*T, of trannit of tp I5h. I9in.()H‘U. 

/. LfKal mean time I9h. 5dm. 23*5s. 
7h* 50m. 23‘5». p.in. 
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Our previous value was 7h. 50m. 23'9s., the difference 
being due to the quantities from Whitaker's Almanack being 
only given to the nearest second. 

To turn local mean time into local sidereal time by this 
method, reverse the process, viz. deduct the local mean 
time of transit of ip found by the above rule. This gives the 
mean time interval since the transit of y, then convert this 
into sidereal time by adding 9*857 sec. per hour. 

Example 10. To find the local sidereal time at 3*30 a.m. 
on 1st February, 1933, in a place of longitude 64° 16' E. 

3h. 30m. a.m. 1st February = 27h. 30m. 00s. Local mean time on 31st Jan. 
Deduct I^ocal mean time of 

transit of ^ = 15h. 19m. 08*Is. as found above for 31st Jan. 

Mean time interval since 
transit of ^ 

Add 9-857s. x 12 4- 9-857 

10 
^ 9-857 X 

51-9 

3600 

: Ira. s58 28s. + l-64s 
4 0-14s. 2m 0 06s. 

12h. 10m. 51 9s. 

2m. 0 I.S. 

Local sidereal time 12h. 12m. 52s. 

Mean and Apparent Solar Time 

Apparent Solar Time is the Hour Angle of the Centre of 
the Actual Sun. It is the time given by a sun-dial, correctly 

graduated and with the gnome or style pointing to the 
celestial pole. But the intervals of time between transits of 
the sun across the meridian are not quite equal, and as a 

measure of solar time it is necessary to define mean time as 
the hour angle of the mean sun, where the Mean Sun is 
defined as a point in the equator which moves at a uniform 
speed and the hour angle of which agrees with that of the 
actual sun at least once a year, while it makes, of course, 



88 Advanced Surveying 

the s;ime number of revolutions in a year as the actual sun. 

It makes, therefore, one revolution among the fixed stars 

in a year, its right ascension increasing uniformly by 3m. 

56-56s. per day. 

The actual sun, denoted by the symbol o, moves amdng 

the stars in a great circle called the “ Ecliptic,” inclined to 

the equator at an angle of 23'^ 27', the “obliquity” of the 

earth’s axis, which cuts the equator at the First Point of 

Aries (v) and at a point diametrically opposite called the 

First Point of Libra {^) these being tl\e sun’s positions at 

the equinoxes, on or about the 22nd March and '22nd Septem¬ 

ber respectively. The d<Jclination of the sun is, therefore, 

constantly changing, being 0° at the equinoxes, '23'’ 27' N. 

on or abfiut the ‘22nd June (summer solstice in the northern 

hemisphere) and 23° 27' S, on or about the 22nd December 

(winter solstice in the northern hemispliere), while it.s right 

ascension does not increa.se uniformly for two n?a-sons. 

First, the earth moves rouiul the sun in an ellipse (eccen¬ 

tricity = with the sun at one of the foci, not a circle, 

and consequently its sjieed is not uniform, b»it varies in 

such a way that the line joining the earth to the sun .sweeps 

out equal areas in equal times as require<l by the law of 

gravitation. Constxpiently, the sjx^etl increases from the 1st 

July, when the earth is farthest from the sun to the 31sl 

December, when it is nearest to the sun, and then decreases 

again till the 1st July, if a p<jint moved at a uniform speed 

in the ecliptic among the fixed stars, the actual sun would 

be ahead of such point from 31st December to 1st July, and 

behind it from 1st July to 31st Deccmljer, the point and the 

sun agreeing on these two dates. The difference l)etwcen 

the right ascension of the point and the sun bc;tween these 

dates has a maximum value of about 7 minutes, due to 
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eccentricity—tins correction being shown in a broken line 
on Fig. 21. 

Secondly, even if the point moved uniformly in the ecliptic 
its right ascension 
would not increase 
uniformly, for right 
ascensions are 
measured along the 
equator about the 
pole P, not along 
the ecliptic about 
its “pole" Q (Fig. 
22). I n each quarter 
between 22nd 
March, 22nd June, 
22nd September, 

and 22nd December, i)()° is described by both the mean sun 
in the equator and the steadily moving point in the ecliptic, 

p so that the two imagi¬ 
nary points would 
have the same Right 
Ascension on these 
four dates, but at 
intervening dates the 
right ascension of the 
point in the ecliptic 

w'ould differ from the 
right ascension of the 
mean sun in the 

equator by amounts whose maximum value is about :ir2r 
or 1: Id minutes. This is the correction for obliquity and is 
shown by the chain line in Fig. 21. 
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Compounding these two corrections, we get the total 
correction for the right ascension of the actual sun to obtain 
the right ascension of the mean sim, which is shown by the 
full line in Fig. 21. This curve has been drawn to show the 
± corrections to the right ascension of the mean sun to 
obtain the right ascension of the actual sun, but as hour 
angle is measured in the opposite direction to right ascension, 
it represents also the ± correction on the hour angle of the 
actual SMn {apparent time) to obtain the hour angle of the mean 
sun (fnean time). 

This correction is called the “Equation of Time" (we 
should now call it the “Correction" of Time). We may 
consider it positive when the sun is “after the clock,” 
negative when the sun is “before the clock.” We have, 
therefore the equation (Fig. 23)— 

Apparent time (A.T.) -f Equation of time (e) = Local 
mean Erne {L.M.T.). 

At apparent noon when the sun is crossing the meridian, 
the apparent time is zero and, therefore, the equation of time 

is the local mean time of apparent noon. 
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The maximum and minimum values of the equation of 

time are— 

12th February f I4m.23ij. 14th May ~3fn. 48s. 
15th April Om. Os. 14th June Om. Os. 

26th July 4- 6m. 21s. 3nl Novcml>er - I6m. 22s. 
1st September Om. Os. 25th Decc*mbt*r Om. Os. 

Longitude, The importance of the determination of time 

to surveyors is that difference of local time between two 
places, whether mean, apparent, or sidereal, at the same 

instant, is convertible into difference of longitude. If, for 
example, the Greenwich mean (or sidereal) time is known 

by a chronometer at the instant when a star is observed 

crossing the meridian of a place and the local sidereal time 
is, therefore, known, viz. the right ascension of the star, the 

difference of local sidereiU (or mean) time and the Greenwich 
sidereal (or mean) time, converted into angle is the longitude 

of the place. If the local time is more than the Greenwich 
time, the place is east of Greenwich, and conversely. In the 
case of a star transit being observed and a Greenwich mean 

time chronometer used, the G.M.T. should be converted 
into G.S.T. and compared with the L.S.T. actually deter¬ 

mined. If the sun’s transit is observed, the L.M.T. at the 

instant of transit is tlic Equation of Time for the Greenwicli 
mean time recorded on the chronometer (obtained by intcr- 

ixtlation from the Almanac) the difference of longitude 
being the difference of this L.M.T. and the G.M.T. con¬ 

verted into angle. The altitude of the sun's centre when 

cros.sing thi^ meridian can be used to determine the latitude, 
but as tlie declination is not constant we must know the 

Greenwich time in order to find the declination. 
Standard Time. It would be quite impracticable to u.se 

local mean time for ordinary puqx),ses, as this varies 4 min. 
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for every 1" of longitude, e.g. for every 43-1 miles east and 

west in latitude 51'’30'N. (that of London). In practice, 
therefore, the local mean time of some one meridian is kept 
as the ” standard time ” for the whole of a country, e.g. 
Greenwich mean time for the whole of the Britisli Isles, even 
though it differs by 40 minutes from the local mean time at 

10° W. in the West of Ireland. For convenience, standard 
time usually varies from country to country in zones, differ¬ 
ing by 1 hour; a large area like the United States being 

divided into several such zones. 
Apparent Right Ascension and Apparent Declination. 

Hitherto we have assumed that the right ascension and 
declination of fi.xed stars are absolutely constant; in reality 

they vary by a small amount throughout the year and from 

year to year. The reasons for this variation are as follows: 
Precession.—The First Point of Aries moves backward along 

the ecliptic 50-22' on the average per annum, which means 
that the celestial pole descrilx*s a circle of angular radius 

23“27' about the “pole” of the ecliptic in a jx*riod of 25,8fK) 

years. This is called the "Precession of the Equinoxes.” 
The First Point of Aries has moved backwards into the 

next constellation, “Pisces,” since the term was first usird, 
Nutation.—The obliquity of the eartli’s axis is not constant 
but varies over a range of 18' in a period of 18| years, so 

that the celestial pole describes not a circle but a wavy 
path, averaging a circle. This is called “Nutation.” Paral¬ 

lax.—The distances of the fixed stars are not quite infinite, 

and the passage of the earth in 6 months from one extremity 
of its orbit to the other (some 186,(KX),0()0 miles) causes a 

slight annual change in the position of some of the nearer 
stars called "Heliocentric Parallax,” Proper Motion.—The 

motion of the whole solar system through space, and those 
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of the fixed stars, cause slight progressive changes in the 
positions of the stars. Aberration of AigAf.—The velocity of 

the earth in its orbit, and of rotation about its axis, are not 
quite negligible compared to the velocity of light (186,330 
miles per second), so that the direction in which the light 

of a star appears to reach the earth is not quite the direction 
of the star, being comi>ounded of the two velocities. This 

is called the "Aberration of Light” and varies throughout 
the year. 

As corrections for all these effects would be very com¬ 
plicated, the apparent right a.scension and declination of 

a number of bright stars have l>een calculated and are given 
in the Nautical Almanac at 1 day or 10 day intervals, so 
that only a correction for atmospheric refraction needs to 

be applied to the observed altitude of the fixed stars. 
Whitaker's Almanack only gives the "Mean Places” of the 

fi.xed stars on the 1st January and the annual variation of 

their right ascension and declination, except in the case of 
the Pole Star, where the apparent right ascension and 

declination are given every 20 days, and of the sun, whose 
apparent right ascension and dt^clination are given daily. 

For accurate determinations of position and direction on 

the earth from star ob.ser vat ions, recourse must, therefore, 
lx.‘ had to the Nautical Almanac. 

Whitaker's Almanack. The student .should now be able to 

understand the extracts from tins Almanack (1933), which 

refer, of course, to (ireenwich. (See page 94.) 
He will note that the "Sidereal Time at Mean Noon” 

incrciises by 3m. 56-56s. jxt day, while the "Mean Time at 

Oh. Sidereal Time" decreases by 3m. 55*91s. per day, that the 
R.A. of the sun at mean n<H)n “ sidereal time at mean noon 
(i.e. K.A. of the mean sun at mean ninm) | equation of 
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Date 

Equation ol Tiboe The Sun (Mean Noon) 
1 

Sidereal 
Time 1 

at 
Mean 
NtMjn 

Mean 
Time 
at Ob, 

Sidereal 
Time 

Subtract 
i Irocn 

j Tiiue 1 

Hourly 
Varia¬ 
tion Asccnrion 

Htmriy 
Varia- | 
tioii oi i 
R.A. 

Apparent j 
I>tH Hua- 

tk>n 
1 

Hourly i 
Varia¬ 
tion ol 
Deiiin. 

M, s S H. M. S. S. H. M. S H. M. S. 
Dec. 1st 10 59 o-oa 16 28 35 10-78 ; 2I*47 TS. 16 :I9 34 19 19 14 

Dee.2iid 10 36 0-96 16 32 51 1081 21^56 4' 0-37' 16 43 31 19 IS 18 

10 13 U-98 16 37 14 l^^84 j 22- 5 2' 0-36* 16 47 27 19 11 22 

—- — — ^ - -_ ____ . ___ „.. _ - , .. --- 

time, the equation of time being negative liere, and that the 
hourly variation of the R.A. of the sun ~ hourly variation 

u 

of the R.A. of the mean sun.(viz. 9-857s.) + hourly variation 
of the equation of time (in this case positive, as it is a 
decrease of a negative quantity.) To understand the con¬ 
nection between the last two columns wc shall work an 

example— 
Example 11. If the sidereal time at mean noon is 16h. 

39m. 34s„ what is the mean time of transit of y? (See data 
for 1st December above.) (Fig. 24.) y will transit in 

24h. - 16h. 39m. 34s. — 7h. 20m. 268. sidereal time 
* 7h. 20m. 26s. - (Im. 8-81s. + 3*28s. + 0-07s.) 
= 7h. 20m. 26s. - Im. 12-16s. 
=* 7h. 49m. 13*84s. mean time, 
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i.e. at 7h. 19m. 14s. after mean noon or 19h. 19m. 14s. local 

mean time, reckoned from midnight. 
As an exercise on the data for the sun we shall work the 

following example— 

Example 12. The centre of the sun is observed to cross 

the meridian of a place at a (corrected) altitude of 43° 02' 12' 
N., when the time on a (ireenwich mean time chronometer 

s 
Fig. 25 

is 7h. 20m. a.m. on 2nd December, 193^1. Find the latitude 

and longitude of the place (Fig. 25). 

(«) The declination of the sun is 21° 56' 24' S. - 4§ x 0-37' 

= 21° 56' 24' - 1' 44' == 21° 54' 40' S. 

As the sun is to the north, the latitude is south. 

90° ~ ^ = 43° 02' 12' - 21° 54' 40' = 21° 07' 32' 

^ - latitude - 90° - 21° 07' 32' = 

(6) The equation of time = 10m. 36s. + 4| x -968 

= 10m. 36s. 4- 4‘48s. = lOin. 40‘48s. and is negative. 

Local mean time = 12h. - 10m. 40*48s. 
= llh. 49m. 19.*52s. a m. 
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Greenwich mean time = 7h. 20m. OOs. a.m. 

Longitude - 4h. 29m. I9’52s. cast 

= 60° -f 29 X 15' + lt>-52 x 15' -= 60’ + T 15' f 4' 53' 

= 67° 19'53'east 

iV.B. The above use of the hourly variation is not quite 
correct. If the hourly variation of the equation of time, for 
example, was 0*96s. at Greenwicli mean noon on*2nd 1 )cccm- 
ber and 0'93s. at Greenwich mean noon on 1st l>cc:emlx'r, it 

would be 0-96s. -0 (K1 = 0-96s. - 0 0(X1 0.957s. half wav 

between 7h. 20m. a.m. and G.M.N. on 2nd December. This 
will be the average hourly variation over the })eriod of 4| 
hours, and the correction is 4| x •957s. -- 4-47s. 

Corrections of Altitude 

(a) Atmospheric Refraction. When a ray of light pas.ses 
from a rarer to a denser medium it is Ix’nt, in the plane of 

the incident ray and the normal at the }K)int of incidence, 
closer to the normal according to the law 

sine of angle of incidence _ 
sine of angle of refraction ~ 

where //, the coefficient of refraction, depends on the two 
media. Also when a ray of light passes through a succession 
of media in parallel layers its path in any layer is parallel to 
the path it would have followed in that layer if it had passed 
tiirectly into that layer without piussing through the inter¬ 
vening ones. The path of a ray of light from space to the 
earth's surface is, therefore, a curved line through the earth’s 
atmosphere, and a star appt^ars at a greater altitude than 
it actually pos.scs.ses, Wc shall assume for the moment that 
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tlic air is urrangecl in parallel layers. The ray of light is 
ilisplaced laterally by an amount, insignificant in com¬ 
parison witli the distance of the stars, but its real altitude 
a - r is altered t»i appear as a, the observed altitude, and 

I I 
1 

\ ^ 
's 

Fit;. 

all we rKH'd consider is the final densest layer of air in contact 

with the earth's surface. 

The angle of incidence is VKV (f/ the angle of refrac¬ 

tion is - a (Idg. 26), Then 

sin • (n - r)) r(»s - r) 

sin (VX) - (i) Cf)S (t 

cos n , cos r I sin a . sin r 
- r: fi 

cos a 

when* /# de|H*nds on the air pressure and temperature, 

cos r ; tan a . sin r ft 

Now, r is a Muall angle, and we can take cos r - 1, sin r r. 

r {/I 1) cf)t u in circular measure 

2<Ki2{^ {// 1) . C(Jt a seconds - .1 cot a 

where A is about 58*" at a pressure of 29*6 inches of mercury 

and t(an|K’ralure of 49' 1^'. 

I'or a))pro\inuite purj>oses we may, therefore, take the 

i ornriian for refraction as 58" \ cot . apparent aUitadc, 

when the aliinide is over 29 . 4 his obviously should not Ik* 
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used for small altitudes as it would make the refraction 

correction infinite when a = 0®, whereas "horizontal refrac¬ 
tion ” is about 33'. For small angles, the above approxima¬ 
tions do not hold, as r becomes comparatively large, and 

for small altitudes the assumption that the layers of air should 
h^partdlel becomes very far from tnie owing to the curvature 

of the earth. 
For more accurate work, we must use Bessel’s Tables of 

Refractions, as given in Chambers' Tables. These are for 

use in the formula r" ~ . .*1 . cot n, where B is a 
factor depending on the height of the barometer, t one 

depending on the temperature of the barometer, T one 
depending on the temperature of the air, A is a factor, and 

M and N are indices, depending on the observed altitude a, 

the values of these factors and indices being tabulated in 
Chambers' Tables. Now, when a > 20°, M and N arc very 

nearly equal to 1, while B, t, and T all vary from values a 
little less than 1 to a little more than 1. For altitudes greater 

than 20° it is, therefore, usually accurate enough to write 

the formula as r’ = B . t. T . A cot a. If the reading of the 
barometer was 29-6 inches and its temperature 32° F., while 

the air temperature was 49° F., the factors B,t, and T would 

each be unity and the refraction would then Ije simply 
r" ■= A . cot a. This value is called the Mean Refraction for 

the altitude; it is given in the above tables, and for an 
accurate result must be multiplied by the factors B, t, and 

T, depending on the barometer, attached thermometer, and 

air thermometer. A varies from 57*24' at 20®, to 57*75' 
at 90®. 

(6) Geocentric Parallax. This is an additional correction 
which we mu.st apply to the sun’s altitude, as its di.stance 

cannot be taken a,s infinite compared with the earth’s radius. 
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so that its apparent position is slightly affected by the 
observer’s position on the earth: all altitudes of the sun 
must, therefore, be corrected to the earth’s centre. 

Let the sun’s altitude (corrected for refraction) at a 
point A on the earth be a — S.45' (Fig. 27). Then its 

ge(K:t;ntric altitude -- SOH — « + />, where p is the angle 
sjibtended by the earth’s radius AO at tlie .sun’s centre, S. 

Now, 
sin p AO AO 

sin (90“ + a) OS 
- . cos a. 

When the sun is at S' on the horizon, the angle subtended 
by AO is P = ’’horizontad parallax,” where 

. ^ AO AO 
sm P ^ Q5> - 05 

so that we have sin ^ — sin P. cos a. As both /> and P are 
very small angles, we have the formula, correction for paral¬ 
lax -f p = 4- P . cos a. 
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The average value of 

but P varies inversely with the distance of the earth from 
the sun, being 8*95* on 31st December and 8*65* on 1st 

July. Its value, i.e, ‘‘Sun’s 
Horizontal Parallax,” is given 
daily in the Nautical Almanac 
and every 10 days in Whitaker s 
Almanack, It is, of course, 
always a positive correction. 

(c) S H n * s Semi - Diameter, 
When obstTving the sun it is 
im{H)>sible to set the cross¬ 
hairs of the theodolite on its 
centre, for which the apparent 
right ascension, apj)arent de¬ 
clination, and equation of time 
are given in the Almanac, and 
we rnust obs<Tve th<‘ altitude 

of its upper or lower “limb” (i.e. edge) and then subtract or 

add itsS angular “s4,*mi-(liameter.” This latter varies inversely 
with the sun’s distance, being 16' 18' on 31st December and 
15M5'on 1st July. It isgiwn daily in the S’aitlicul Almauai' 
and every 10 days in Whilaker'a Almamuk. 

Similarly, when measuring a hori/untal angle tc) the sun, 

we set the vertical hair of the theodolite to the east or west 
limb of the sun and apply a correction “in azimuth" in 
order to get the horizontal angle to tlie sun's centre, 'riiis 
correction dcpentls, however, mi the altitude of the sun 
(see h'ig. 28, where two viTtical circles are shown, one 
through the sun's centre Z. I and the other ftuiching tlie sun 
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at B). We have then a right-angled spherical triangle ZAB, 

right-angled at B, where AB = semi-diameter, ZA = 90° - a, 

and Z is the correction in azimuth. 

sin /IB “ cos (90° - Z). cos « = sin ^ . cos a, 

but as AB and Z arc small, we have Z AB. sec a, or 

correction for scini-diamcler in azimtUh --- semi-diaincler x 
secant altitnde. 

{d) Dip of Horizon. When the sc.\tant is used to find the 

altitude of the sun or of a star at sea (Fig. 29), the altitude 

is measured from the visible horizon and a correction d for 

the dip of the horizon must be subtracted, depending upon 

the height h of the observer above the .sea. This correction 

has to Ik* determined by e.xperimcnt, as the line of sight 

which touches the sea’s surface is curved downwards by 

refraction. A table of this correction is given in Chambers’ 

Tables. 



CHAPTER III 

THE THEODOLITE AND LEVEL 

Instrumental Errors and Adjustments—Modern 

Developments 

The Thkoik)lite 

The theodolite is an instrument for mciLSuring horizontal 
and vertical angles. A horizontal angle is one l>etwcen two 
vertical planes intersecting in a vertical line through the 
centre of the instrument; a vertical angle is one nunisured 
in a vertical plane, upwards or downwards, from a horizontal 
plane through the centre of the instrument. If the theodolite 
is in adjustment, the colliniation line of tlie tclescojw, i.e. the* 

line joining the intersection of the cross-hairs to the oj>tical 
centre of the objt^ct glass, sluuild swta*p out a vertical plane 
as the telescope rotates alMuit the trunnion axis. In ortler 
that it should sweep out a plane, the line of collimati»m must 
be perpendicular to the trunnion a.xis: in order that this 
plane should be a vertical plane, the trunnion axis must be 
horizontal. For the trunnion axis to l)e horizontal when 
turned in all directions, two conditions are necessary: {«) the 
trunnion axis must be perpendicular to the vertical axis, 
and (6) the vertical axis must be vertical. If condition (6) 
were satisfied but not condition («), the trunnion axis, when 
rotate*! rouiul the vertical axis, would inaki- a constant 
anglt! (/) with the h«iri/.ontal. aiul the planes gem*rattxl by 
the line of coltiination would make a constant angle (/) with 
the vertical. If condition («) were fulfilled but not comlition 
(A), so that the vertical axis made an angle (e) with the 

vertical, the inclination of the trunnion a.xis to the horizontal 
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(and, therefore, the inclination of the generated planes to 
tl»e vertical) would vary from v to zero, according as the 

trunnion axis was in the plane of the inclination of the 
vertical axis to the vertical, or at right angles to that plane. 

In order that vertical angles should be read correctly, 
there should be no “index-error of the vertical circle,’’ i.e. 
the vertical circle verniers should read zero when the line 
of collimation is horizontal. It is also important that the 
line of collimation should not vary in position in the telescope 
when focusing objects at different distances from the instru¬ 
ment, but this defect has been minimized in modern instru¬ 
ments with “Internal Focusing’’ of the telescope. We shall 
first consider the errors caused in horizontal and vertical 
angles by lack of adjustment in each of the above particulars 

taken separately; all the other adjustments being assumed 

correct. 
1. Horizontal Collinuition Error. Let the line of collima¬ 

tion make a small angle (c) with the perpendicular to the 
trunnion axis, in the plane of the trunnion axis and collima¬ 
tion line; the line of collimation now sweeps out a very flat 
cone of semi-angle 90° - c with the trunnion axis as axis, 

viz. the small circle XK in broken line in Fig. 1 instead of 
the great circle ZM. When the line of collimation is directed 
to a jx)int A’, the reading of the horizontal circle is as if A' 
were in the vertical circle ZM, whereas it is actually in the 
vertical circle ZN. The error in tlie horizontal circle reading 

is. thereft)re. MN or bZ. Draw A'V', a great circle per- 
jKuidicular to ZM, then A'V’ ^ c. In the riglit-angled tri¬ 
angle XYZ, we have sin c - .sin bZ sin Z\ - sin bZ . cos u 

where a is the true altitude XN. As c and bZ are very small 

angles, we have, therefore, 

c~ dZ, cos a, or bZ ^ c . syce a — error m azimuth. 
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If the face of the theodolite were changed, and the line 

of coUimation again directed to X, X would now appear to 
be on the vertical circle ZM\ making an equal angle 6/. on 
the other side of the tnie vertical circle ZX, so that the 

ai'eraf’e of kco obsen'alions uith chau^eJ face cH mi nates this 

error on horizontal angles. 

Again, sin (90 - ZX) cos YZ . cos c 

sin a ~ sin YM . cos c sin <t . cos c 

where «' is the apparent :Utitude YM. As. linwever. c is a 
very small angle, never more than a few minutes, we m.ty 

say a -■- a' for all practical purposes. 
2. Trunnion Axis not Perpendicular to Vertical .l.v/.s. If 

the trunnion axis Is inclined to the vertical axis at an angle 
9tl^-» (Fig. 2), the line of sight now describes the br(»ken 
great circle XM, making an angle i with the vertical gnxit 

circle ZM. The [joint A' appears to lx* on the vertical circle 
ZM, whereas it is actually on the vertical circle ZN. The 
eiror in horizontal circle rcatling i.s MX hZ. In the right- 

anglcxl triangle XNM we have sin MX — tan /, tan XX, 
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or sin bZ — tan i. tan a, but as i and 6Z are very small, 

we have bZ ~ i. tan ~ error in azimuth. 

If the face of the tlicodolite were changed and the line 

of sight again directed to A', A' would now appear to be on 

tfie vertical circle ZM', making an c(jual angle bZ on the 

otluT side of the true vertical circle ZN, so that the average 

e/ two ohservatiotts u ith changed face eliminates this error on 

horizontal angles. 

Again, sin A'A’ sin AM/ . cos /, or sin a - sin a' . cos i, 

as A'A' is the true altitude, XM the false one, but as i is a 

vi'ry sntail angle, a few minutes at most, \vc may say a n 

for all practical puqwses. 

It. Vertical .Ivis not Vertical, but inclined at a small 

angle (r) to the vi rtical, in the plane of the pa}H'r (I'ig. 3). 

OZ is I lie true vertical, f)Z' the vertical axis, and the 

angle ZOZ' v. Hie line of collimation through an object 

A' describes the grt'ut circle Z'XY, where V' is on the great 

circle A'A'V jxr|K'ndicvilar to OZ' clescriln'd by tlie trunnion 

axis, and inclined at an angle r to the liori/.ontal. 



io6 Advanced Surveying 

Draw ZXIJ, the true vertical circle through X, then 
XU ~ a — true altitude, XY = a' = apparent altitude of 
X. Also the error in azimuth of the horizontal circle reading 
is SZX~SZ'X 6tZ~Z’. 

U R 
Fig. 3 
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cot 
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a 4- n' 
Now , anil ^ are small angles and = a 

(nearly). /. we may say Z Z* === A' . sin a. 

l*'rom Z draw a gieat circle /A', jx^rjx^ndicular to /'A’. 

In tlie right-angled triangle /.NX we have 

sin A' sin ZN 

sin 9<r sin ZX 

. _ sin ZN vr 11 

/, sin A , and as A andare small (juantities, 
cos a 

, V 
we may write A -- 

cos it 

Substituting this value of A’ in the first formula, we have 

Z /: ZN , tan n. 

Now ZN is the inclination of the plane <lescribcd by the 

collimation line to the vertical or the inclination of the 

trunnion axis OA to the horizontal when sighting on A'^, so 

that, just its in case (2). we have error in azimuth indina- 

(ion of trunnion axis x tangent of the altitude, the difference 

Ixung that now the inclinatiou the trunnion axis, OA, 

varies witli the direction of the line of sight. Tliis error is 
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obviously not eliminated by change of face; it can, however, 

be corrected by measuring the inclination of the trunnion 
axis by means of a "striding level” for each reading. 

In the right-angled triangle ZXZ' wc have 

sin ZN sin ZZ' 

sin Z' sin 
/. sin ZN — sin w . sin Z' 

and as ZN and v are small angles, wc have ZN =- v . sin Z'. 

so that, as stated above, the inclination of the trunnion axis 

varies from zero to r as the instrument is rotated. As 0.4 is 
perpendicular to OY, ZN -■ i’. sin Z' is the inclination of 

the plane RST in the direction of the circumference at V', 
and if Z' is increased by 180’ this inclination will lx? tlie 

same but of changed sign. 

The error in altitude of the iwint .V is XU -XY 
{9ir - XZ) - (90" - XZ') XZ' - XZ -: Z'N (nearly). 

In the right-angled triangle ZNZ' we have (Fig. 3), 
cos Z' “ tan NZ'. cot v. 

tan NZ' ~ tan v . cos Z', or, as NZ' and t> are small 

quantities, error in altitude =; NZ* r . cos Z'. 
In practice, however, the use of the "altitude level” on 

the vernier arm of the vertical circle enables any error from 
this cause to be corrected, as will l)c explained later. 

The Spirit Level. This is a sealed gla.ss tulx*, generally 
circular in cross-s(?ction, with its interior surface very accu¬ 
rately ground longitudinally to a circular arc of large radius, 

and containing a bubble of air floating in sj)irit, the centre 

of the bubble always coming to rest at the highest point of 

the tube. The outer surface of the ttil)c is marked in equal 
divisions, usually Odbin. or 2 mm. long, which should lie 
numbered mtlwards from a zero at the centre of the tube. 

It is obvious that if the bubble is in it.s central position. 
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and the tulH* is then tilted longitudinally, the bubble will 

move througli a number of divisions projwrtiona! to the 

inclination of tlu- tube. One division of the tube has, there¬ 

fore, an ‘'angular value,” which usually varies from 10" to 

20' per division of O-Htin. The radius of the longitudinal 

curvature of the tube, therefore, varies from 

- 20(^5 - 206‘2 «5in.-- 171-9ft. 

to ono»half tlint amount or 83-95 ft. The maker determines 

the angular value by {dating the bublde tube on a '‘level 

lri(T/‘ vvliich is a frame hinged at one end and elevated by 

a micrometer screw at tin* other, so that the cliange of 

inclination required to move the bubbh^ through a certain 

nurnlxT of divisions can be found va ry accurately. Of course, 

the position of the cTuirc of th(‘ buldile cannot be read 

dir(*ctly, but if / is the* r(‘ading of the [..-H. end of the bubble 

/ ■ r 

and A is th(‘ri'ading of the R.-l 1. e nd, tluai is the Heading 

for tin* centre' of tiu' bul>ble, ]>rovid(*d, of course, that the 

bubble is large ( iiough to ovtTlaj) the /a'ro of the grailuations 

in its extrt ine position, as it should he. If ,, is j>ositive, 

the einlof the tube is tlu' higlu'r, and vivc-versa. It is 

not etiough to reail one t'nd of tin* bubble only, as llie length 

of the bubl)le decreases with a rise of temjHrature. and 

conversely. 

l^XAMCLK 1. In ordf'r to <letermine the angular value of 

one division of the altitude levtd of a tluodolite, readings 

are taken on a vertical levelling stall 50ft. away, first with 

Uie bnbbU' m'ar its extremr L.-ll. position, secondly witli 

the bnbbh' near its extreme position, fin' verlieal 
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circle is claniped and the position of the bubble was altered 
by using the plate screws. The following were the readings - 

Altitudi' Level Staff Kcailin^ 

! I 
L.U. i K.H. Feet 
n« ! 28 I 
8-2 I H-2 I 

Find the angular value of a tlivision. 

The movement of the centre of the bubble is from 
14*6-2-8 3-2 14-2 

2“ -. to 2-• ‘ ^ + 5-9 to - 5*5. a total of 

11*4 tlivisions. The change of inclination is 

4 496 - 4-457 

5(» 
< 2«)H2a5' 

angular value of one flivision 

lfi(»-9' 

160-9' 
11-4 

14-r 

The "axis” of the level tula* is the langetft to tlie curve 
of the tube at its zer<j (central) divi.sion. 

The glass tulaf b. of course, encasi'd in metal and if the 
spirit level is a sep.'irate detachable instrument, eg. the 
"striding level" usetl for determining the inclifiation of the 
trunnion axis (Fig. 4), the plane containing the points on 
which the instrument rests may l)e called the “base” of 
the instniment. The base of the spirit level should lie 

parallel to its axis, so that when the bubble is central the 
base is horizontal; if not, the "error" of the level is the 
inclination of the axis to the base or the inclination of 
the base when the bubble is central. 

By "reversing" the level, i.c. by turning it through 180'’, 
end for end, we can find not only the error {e) of the level 
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but also the inclination (t) of the surface on which it rests. 
Let r, be the readings of the L.-H. and R.-H. ends of the 

Ik; 4 

bubble in tl>o first or “direct ’’ jiosition (big. 5); L, r., the l-.-H 

and K.-H. readings in the second or “reversed” j^osilion. 

I* Hi. 5 

L.-H. and R.-H. being reckoned from the observcr’.s position, 
.assumed uncluingcd. Let 0 he the angular value of a division. 
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And f 
2V 2 

m - E(r) 

4 
0 

-* inclination of the base of the level. 

~ 2 ® ■ ” error of the level. 

This latter is zero if the readings are unchanged; if tlie 
readings are reversed the base surface is level. We ran thus 
eliminate the error of a spirit level by reversing it and 

averaging the readings. 
Ex.\mple 2. The following readings were taken on a 

reference mark and on a star 

; Striding f.evel on j 
I Trunnion .Xxis j 

Object' .—--i 
f Direct Uteversed 
j I,. K. U. i 

1 Horizontal ('in:U’ 
I 

Altitude } -- - - 

j Vernier *1 V'ernier li j 

Average 

H M. 
? I • 

! 112 :M’ SH 4 8 ' a !4'00' «« 
i I0 » a-7i » 51 :«0 4tt'20' 112 
i : ! ! 

14'1II*24K 14'20' iMi 14'l.S' 
a 1 • .SO' ■2»2 :t2' (M)* 112 ar .s.s' 

The value of a bubble division is 12*. The altitude has 

lx.*en corrected for the altitude level. I'ind the corrected 

horizontal angle lK!twt“on the reference mark and the star, 
and the ermr of the striding level. 

The inclination of the trunnion axis when the reference 
mark is sighted is 

11-2 f 9*8-3-4-4-8 

4 

The correction of the horizontal circle is 

I tan a 38-4' tan T 14' 2* 

12' - as-4" 

The left-hand end of the trunnion axis iH-iiig high, the cor- 

n-ction is positive, therefore corrected reading ■ - tKf' 14' 17*. 
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The inclination of the trunnion axis when the star is sighted is 

10-9 -I 9-5 -3-7 51 
4" 

X 12" 34-8" 

The correction of the horizontal circle is 34-8"’ tan 60° 46' 20" 

= 62*. This correction is also positive and the corrected 

horizontal circle reading is 112° 32'57". 

'I'he horizontal angle from reference mark to star is then 

112 :12'57' -66° 14' 17" 4(T 18' 4o". 

riu‘ error of the level is 

in 1-2 -3-4 9-8 4-8 

ol 2 2 

, l/lOf)-3-7 9-5 5 1 

-ii 2 “ 2 " 

0-7 divisions - 8-4" 

0-7 divisions 8-4" 

from till' second set of readings). 

spirit Level on the Upper Horizontal Plate, parallel to the 

trunnion a.\is. The object of this level is, of course, to enable 

the vertical axis to be made vertical when setting up the 

instrument. .\s it is connected rigidly to the vertical axis 

it may be considered as attached to a plane perpendicular 

to the vertical axis and as giving the inclination of this 

imaginary plane in various circumferential directions. The 

"error” of the level is then the inclination of its axis to this 

plane. It has aln-ady been shown that at points on this 

plane diametrically o|t|)osite the circumferential inclinations 

are eipial but reversed in sign: the. effect, therefore, on the 

spirit level of turning the level through 180° is exactly the 

same as the reversing of a detachable level. The object, 

however, is not now to measure the inclination of the 

vertical a.xis but to render it vertical, and the i)riM:cdure is 

as follows: 'rurn the up|X'r plate until the .spirit level is 

approximately |Kirallel to two of the three levelling screws 
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(or to two opp<^te screws if there are four of them). Bring 

the bubble central by raising one screw and lowering the 
other, so that = rj. The inclination of the perpendicular 
plane in this direction has now been made equal and opposite 

to the error of the level (Fig. 6a). Now tom the upper plate 
through 180“; the inclination of the level axis is now tmce 
the error of the level (Fig. 66). Bring the bubble half-way 
back to its central position by the adjusting screws pro¬ 
vided ; the error of the spirit level is now corrected (Fig. 6c) 
and the bubble is then made central by the two levelling 

Fig. 6 

screws which makes the perpendicular plane horizontal in 

the direction of the spirit level (Fig. 6d). Now turn the 
upper plate through 90°, so that the spirit level is perpen¬ 

dicular to its former direction, and turn the third levelling 
screw (or the two remaining screws in a four-screw instni- 
ment) until the bubble is central. The imaginary perpen¬ 

dicular plane is now horizontal and. therefore, the vertical 
axis is vertical, but, in practice, the whole operation is one 

of ‘‘trial and error” and has to be repeated several times. 
It is impossible to set the spirit level exactly parallel to the 
plate screws at the beginning, and it is not worth the trouble 

to rotate the plate through exactly 180“ and 90“ by reading 
the verniers. As a preliminary the bubble should be brought 
to the centre in two directions at right angles in order to 

make the axis approximately vertical before any reversing 
is effected. If the altitude level is more sensitive than the 

level on the upper plate, the process may be repeated with 
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this level for a finer adjustment of the vertical axis, the 
clip screw being employed for correcting half the bubble 
movement on reversal. 

The Altitude Level on the Vernier Arm of the Vertical 

Circle. The object of this level is to provide a horizontal 

datum from which altitudes may be measured even if the 
vertical axis is not truly vertical. By means of the clip 

screw the bubble can be brought central, the zero line of 
the two verniers being rotated through the same angle. 

When the clamp and tangent screw of the vertical circle are 
on the same side of the telescope as the clip screw, turning 

the clip screw alters the pointing of the telescope but leaves 

the readings of the vertical circle unaltered, as it rotates 
the vertical circle and the verniers together. In more modem 

practice the clamp and tangent screw are placed on the 
opposite side of the tele.scope to the vertical circle and 

clip screw; turning the clip screw now alters the reading of 

the vertical circle but does not alter the pointing of the 

telescope. 
In Fig. 7a, let SS be the line of collimation inclined at an 

angle a to the horizontal HH, 00 the line of zeros of the 
vertical circle .showing a small vertical collimation error r'i, 

and VV the line of the vernier zeros inclined at an angle e 
to ffff when the bubble of the altitude level A B has been brought 

central by the clip screw. Let jS, be the reading of the vertical 

circle, then a==/3i+<5 + f. In Fig. 7b the face of the 
theodolite has been changed, the line of sight is directed to 

the same object, and the observer views the vertical circle 
from the opposite side of the theodolite. The bubble of the 

altitude level AB has again been brought central by the clip 

screte, so that VV has the same inclination e to the horizontal 
as Ixjfore. If is now the reading of the vertical circle. 
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a — fit-d - e. Averaging the two values of a we have 

fit + fit 
a — - - . i.e. if the bubble of the altitude level is centred by 

the clip screw for each reading, the average of the vertical 
circle readings with changed face is the correct altitude. 3 + e 
is called the " Index Error of the Vertical Circle,” and is thus 

eliminated. 
Now .suppose by turning the clip .screw in Fig. la the 

"object” end of the level is raisc<l so that the centre of the 

bubble reads reading of the 

end of the bubble, the angle r. lx:tween VV and HH will lx- 

increased by *2 ' "'bere 0 - angular value of a division, 

anti if the line of sight SS is directed to the same object the 
vtTtiad circle reading will lx; decrea.sed by the same amount, 
lad the vertical circle reading now l)e y,, then 

n-y, 4 1 
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Similarly in Fig. 76, if the "object” end of the level is 
raised by turning the clip screw so that the centre of the 

bubble reads *2 *. the angle e between VV and HH will 

be decreased by *2 sight SS is still 

directed to the same object the vertical circle reading will 
be decrciised by the same amount. If the reading of the 
vertical circle is now y,. then 

Yt 2 

Averaging the two values of a we have 

n 5'i+5'2 , 

2 ' \ 2 *■ 2 j-I 
71, -o- 2V 

- 2'^' ■' 4 

the Inflex Error, 6 + r. of the vertical circle being again 
eliminated. 

Therefore, if the bubble of the altitude level is not brought 
central for each reading, the altitude is the average of the vertical 
circle readings with changed face f ax^erage reading of centre 
of bubble x vaUu of a division. Turning the clip screw, 
therefore, merely transfers part of the measurement of the 

altitude from the vertical circle to the altitude level. It is 
advisable, however, to ke<*p the bubble of the altitude level 
near the centre of its nui, as the vahie of a level division is 

rather liable to be affected by change of temperature. 
ExAMl'Llc 3. The readings shown in the table on page 118 

arc taken to determine the elevation of an object. 
The value of a level division is 15". Find the elevation of 

the object. 
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Altitude Level Vertical Circle 

Face 1 Average 

! 
1 0 ; 2: Vprnicr C i Vernier D 
[_>_ __ 

R 8-6 7-4 193‘’14'25' I3"I4'30' 
1 

1 13M4'27*5" 
L 7-8 8-2 346° 45'25* 166“ 45'30' 

! 

13’ 14'32-5* 

The average vertical angle from the vertical circle is 

13° 14'3()'. 

The level correction is 

X ,5-- + r 
• the elevation is 13° 14' 33* 

In precise work, therefore, we must not assume that the 

vertical axis is vertical, no matter how carefully the instru¬ 

ment was set up. and. in addition to changing face and 

averaging the angles read on the horizontal and vertical 
circles, we must correct each reading of the horizontal circle 

£1 - 2> 
by adding i tan «, where i = —^— x angular value of a 

division. / and r being the readings of the striding level on 
the trunnion axis taken direct and reversed for each reading, 

before subtracting such readings to obtain the horizontal 
angle, and we must correct the average angle of elevation 

read on the vertical circle by adding angular 

value of a division, where o and e are the object and eye-end 

readings of the altitude level. If the angle is a depression 
£0 -- £e , 

we must subtract ^ x value of a division. 

But although the instrumental errors can be thus 
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eliminated, it is advisable to keep them as small as possible 

by adjusting them from time to time. 
To Adjust the Line of CoUimation Perpendicidar to the 

Trunnion Axis (Fig. 8). Choose a piece of level ground 

about 600 ft. long. Set up the theodolite midway at B 
and sight on a fine mark at A, say 300 ft. away. Transit 
the telescope and make a fine mark Q on the line of sight 

at about 300ft. on the other side of B to A, then transit 
back on to A to ensure that there is no slackness in 

Fig. 8 

the instrument. Turn the upper plate through 180°, and 

transit the telescope so as to change face. Again sight 

on A, transit the telescope, and if Ci is not now on the 

line of sight, make a second fine mark Q, opposite to Q, 
then again check back on to /4. From Fig. 8 it is obvious 

that if the line of sight makes an angle of 90° - c with the 

trunnion axis, the angle C^BC^ is 4c. To correct the adjust- 

C C 
ment mark a point Cj between C, and (so that CjCj = ^ ‘ 

and after sighting on C* with the same face as before, move 

the diaphragm by its horizontal adjusting screws until Cj 
is on the lin6 of sight. To check the result mark a fourth 

point C4, bisecting CiC„ bring the line of sight on to C4 

by the horizontal tangent screw, transit the telescope, when 

A should be on the line of sight. The amount of the error 
C C 

C = X 206265'. This adjustment should also be tested 

at a much shorter distance, say 30 ft. for jEfC,, to test for 
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"draw tube error.” 'I'lie ground should be level, or at least 

of uniform slope, .so that non-iwrpendicularity of the trun¬ 

nion axis to the vertical axis may not affect the result. 

This will be the case if /I, B, and C are in a straight line, 

vertically as well ;is horizontally, the two planes generated 

by the line of collimation, if slightly incline<l to the vertical 

on opposite sides of it intersecting in the line 

ABC. 

To Adjust the Trunnion Axis Perpendicular to 

the Vertical .l.v/s (Tig. 9). Set up the theodolite 

at, say, ilOft. from a vertical wall, sight on a fine 

mark A on the wall immetliately opposite and at 

an elevation of about 45’, depress the telescoj>e 

and make a fine mark 7?, on the wall, level with 

the centre of tiie instrument. Check hack on to 

.4. Change face, again sight on .1, depress tlu* 

telescope and, if /f, is not on the line of sight, 

make a second mark, B.^, at the same, level as B,. 

Bisect Bi B-i at B.^. (ABj is a vertical line if tlu* 

vertical axis is vertical.) If the inclifiation of the 

trunnion axis to the vertical axis is - i, the angles 

B2AB3, BjAB^ each -- i, and wh<'n sighting it is evident 

that the R.-H. <-nd of the trunnion axis is low. Now .siglit 

on 77, and by moans of the adjustment unth-r one end of the 

trunnion axis raise the R.-H. (or lf>wer the L.-Il.) end until 

the line of .sight when the tele.scojx; is rai.sed passes throtigh 

both />:, and .1. The amount id the error is < 2<tH2(i5*. 

If the collimation error had not been first adjusted, tlie 

traces of the lines of siglit on the w'all would liave been 

hyperbolas, as shown in broken lines in h'ig. 9, and it would 

have been impossible to distmtanglc the two maladjustments. 
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If a striding level is available, the adjustment can be 

performed more readily by setting up the theodolite with 

truly vertical axis and then applying the striding level to 

the trunnion axis—direct and reversed. 

the trunnion axis is level; if not, alter the trunnion axis 

adjustment until the bubble takes up {wsitions equally to 

left and right of the centre. 

To Adjust the Index Error of the Vertical Circle (Fig. ID). 

Bring the altitude bubble carefully central and sight on a 

fine mark at some distance away, which is distinctly above 

(or below) the instrument, read the two vertical verniers 

and average tliem to get the angle of elevation (or depres¬ 

sion). Change face, again bring tlie altitude bubble carefully 

central, sight on the same mark again, read the two vertical 

verniers and average them for the angle of elevation (or 

depression). Average the two values of the elevation thus 

obtained. {N.B. The difference of the two elevations will 

be 2 X index-error.) Alter the readings of the vertical circle 

to read this average elevation by the tangent screw in the 
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old form, by the clip screw in the new form. In the former 

it will now be necessary to re-sight on the mark, using the 
clip screw for the purpose. In both cases the effect is to 

make e — - d, so that /Si = Then bring the bubble 
central by its own adjusting screws, which alter the inclina¬ 

tion of the bubble axis to VV, as it will be out of centre 

owing to turning the clip screw. 
Internal Focusing. Modem theodolites and levels have 

their telescopes constructed with the diaphragm at a fixed 
distance from the object glass, the image of the object being 
focused on to the cross-hairs by the movement of a double¬ 
concave lens between the object glass and its principal 
focus. There are great advantages in this: (1) Damp and 

dust are not admitted to the telescope by the movement of 

a draw-tube carrying the diaphragm or the object glass. 
(2) The balance of the telescope is practically unaffected by 

alteration of focus. (3) A difference of focus is much less 
likely to cause a variation in the line of collimation, partly 

because the internal lens, being near the centre of the 
telescope, can be made to travel more rigidly in a line 
through the optical centre of the object glass, and partly 

because any displacement of the internal lens from such line 
produces a much less angular error than would an equal 

displacement of the object glass or diaphragm with a simple 
draw-tube, as will be illustrated in Example 5. (4) The tele¬ 

scope can be made very nearly anallatic for use in Tacheo- 
metry, as will be illustrated in Examples 4 and 5.* 

Example 4. The fixed distance of the diaphragm from 
the optical centre of the object glass of a theodolite is 7 in., 

the focal length of the object glass is 6 in., and that of the 
internal focusing lens is 12 in. Find (a) the position of the 

internal lens for an infinite distance; (6) the interval between 
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the stadia marks for a multiplying constant of IfX) at a 
distance of 5(X) ft.; and (c) the errors that will be caused 
with this constant at distances of 1(K) ft. and 50 ft. 

(a) For Infinite Distaftce. The rays would be focused by 
the object glass at 6 in. from its centre, i.e. at 1 in. from the 

.... f k . 

-A r 
,.r- Iti, -- .. _ 

_r 
f—. 

- «' 

i.-"" ^ 

- - 1 1 _rr-.Su-^: 

I'lc;. II 

diaphragm. If x is the distance of the optical centre of the 
internal lens from the diaphragm, we have 

1 1 _1 
A A - 1 “ 12 

\2{x - 1) - I2x ■--- - .V- + a;. ■v'* - .t - 12 - 0 

X = 4 in. 

(6) For 5(K) ft. — 6,000 in. from centre of instrument, or 
59t)6-5 in. from centre of object glass. (T'ig. 11.) 

Lot y be the distance of the virtual image V from the 
object glass and i the interval between the stadia marks. 

1 11.1 5990-5 
‘ 5996-5 >• " 6 • • y 35979 

y == 6-(K)60 in. 17) — 0-9940 in. 

Also ‘ ^ -r'- - -9940^ - 11 928 = 0 

X == 
-9940 i; \/-f){S() +47-712 

2 
- 3-9863 in. 

IV = 3-9863 - -9940 = 2-9923 in. 
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As the distance is 6,0(X) in. and the constant is 100, the 

intercept on the staff is to be 60 in. 
. ^ , 6-tK)6() 3-9863 . 

^ 5^-5 ^ 2-^3 

(c) For 100/f. -- 1,200 in. from centre of instrument : 

1 1 1 7179 

1196-5 ' 6 

VD = -9698 in. 

1190-5 

1 1 

X X ~ -96^ 

- 6-0302 in. 

_JL 
" 12 

.'. X * - -9698 - 11-6376 - 0 

-9698 i: V-9405 -f 46-5504 „ . 
• ^ - ^ J-9J0bin. 

/. IV - 3-9306 - -9698 = 2-9608 in. 

- « ^ 2-9608 1196-5 
Staff reading -08006 x g.tjgfjig ^ 6-(Xl02 

= 11-966 in. -= -99711. 

The reading should, of course, be Ti-fX) in. The error is, 

therefore, 1200 - 1196-6 = 3-4 in. or 0-28 ft. 

For 50 ft. — 6(X) in. from centre of instrument; 

1 I 1 
596-5 V "" 6 

VD = -9390 in. 

590-5 

X X - -9^) 

X* - -9390* - 11-2680 =- 0 

-9390 ± V'-W17T 4^07^ 

y — 6-0610 in. 

12 

3-8590 in. 

/F = 3-8590 - -9390 2-9200 in. 

2- 9;^) 596-5 
3- 8^) ^ f 

5-962 in, = 0-497 ft. 

Staff reading == -08006 x 3.^^ x 
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The reading should, of course, be 6-<X)0 in. Therefore, the 

error is 600 - 596’2 = 3*8 in. = 0-32 ft. 
Therefore, over a range of distances from 50 ft. to 500 ft. 

the distances will be correct to the nearest foot. 

[N.B. If, on the other hand, the stadia interval were 
reduced to give the distance of the staff from the object glass, 

the approximation would be still closer. For 500 ft. or 
5996-5 in. from the object glass, the stadia interval should be 

59-965 
X -OStKie = -08001 in. 

For 1(K) ft. the reading would be 

-08001 
-()80()6 

X 11-966 -■= 11-958 in. 

Error 1196-5 - 1195-8 - 0-7 in. = -06 ft. 

For 50 ft. the reading would be 

-08001 

-08006 
X 5-962 = 5-958 in. 

Error 596-5 - 595-8 - 0-7 in. - -06 ft. 

However, in this case we should have to add 3-5 in.= 0-29 ft. 
for all distances.] 

Examplk 5. If, in the above instrument, the internal lens 

has its optical centre correctly in line between the inter¬ 

section of tlie cros.s-hairs and the optical centre of the 
object gla.ss when focused at 500 ft., but its centre deviates 

0-001 in. laterally from that line when focused at 50 ft., 

find the angular error introduced in measuring the horizontal 

angle between two points at these distances respectively 

from the instrument. (Fig. 12.) 
When sighting the farther point A, the line of sight 

would be DO A, but when sighting the nearer point B. its 

image would have to be at U in the line ID at a distance 
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0-939 in. from the diapljragm, so that the line of sight would 

be VOB, where 
0-939 

VU 
3-859 

X -(K)l in. -0(K)243 in. 

The angular error caused by this change in the line of 

coUimation would be 

UOV — X '>06*^65* 
“ 6-0610 

8-3' 

If B lay to the right of .1. the horizontal angle read would 
be too small by this amount. Changing face would eliminate 

lio 12 

this error, of course, on the average reading, as the line of 

sight would Iw deviated equally in the opjwsite direction, 
provided the displacement of the internal lens remained 

unaltered and was not due to mere loo.sene.ss. If the object 

glass, or diaphragm, moved in a draw-tuhe, as in the older 
instruments, and were -<Xll in. out of its former line at the 

nearer distance, the angular error would have been 

•0^ 

6d)61 

or more than four times greater. 
Estimating Microscopes. Instead of verniers some theo¬ 

dolites are fitted with microscopes Itaving a glass diaphragm 

X 206265' - 34-0' 



The Theodolite and Level 127 

at the common focus of the objective and eye-piece on which 

is engraved a scale of ten divisions, the length of the scale 

agreeing with that of the image of the smallest division of 

the graduations on the plate and 90* jr ss* sr 
its zero forming the index mark, 1_1_i_1_1_1_I_1_1_I 
Fig. 13 illustrates a reading by 

this method. The observer esti¬ 
mates that the reading of the 97® 40' mark on the small 
scale is 3-3 divisions. The full reading is, therefore. 

— 
o 0 

Fig. 13 

3.3 
97° 40' -b X 20' 97° 46-6' = 97° 46' 40' 

to the nearest 10*. If he estimates 3-5 divisions on the 
opposite microscope, the average reading is 

3-3 -J- 3-S 20 
97° 40' + - - X ^ = 97° 46-8' = 97° 46' 50* 

to the nearest 10*, the two scale readings being simply added 

together to give tlie addition in minutes to the last division 

on the plate. 
Micrometer Theodolites. Much greater accuracy of reading 

is obtainable when the horizontal and vertical circles are 

read by micrometers instead of verniers. Each micrometer 
consists of a microscojie with two cross-hairs, close together, 

at the common focus of the eye-piece and objective, which 

can be moved laterally by a micrometer screw with a 

graduated drum attached. 
For a 5-in. theodolite the circles are subdivided to 10' 

and the pitch of the screw is such that one complete turn of 
the screw moves the cross-hairs across the image of the 

10' graduation. The drum is divided into ten divisions, 
numbered as single minutes, and each division is subdivided 
into six parts, each representing 10*. The index mark for 
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the reading is the central position of the cross-hair when 
the drum reads 0, and this position is marked approximately 
by a V-notch on a plate just in front of the hairs. (Fig. 14.) 

To take a reading the micro- 
af 9t nieter is turned till the cross-hairs 

Li. are so placed that the next lower 
division on the scale lies equally 
between the cross-hairs, the 

Fig. m drum is then read at its index 
mark. If this latter reading is 

6' 40', the total reading in Fig. 14 is 97® 46' 40', as the notch 
shows that it lies between 97® 40' and 97® 50'. It is advisable 
also to bring the cross-hairs over the next higher division as a 
precaution against back-lash. If the readings differ slightly 
the mean should be taken. If the two readings differ appre¬ 
ciably the distance between the cross-hairs and the object 
glass will need adjustment. 

It is important to ensure that there is no parallax, so the 
cross-hairs should first be focused, by moving the eye-piece, 
on a piece of white paper placerl on the scale until they 
appear as clear as possible. The piece of paper is then 
removed and the scale graduations are carefully focused 
by moving the whole microscope towards or away from the 
scale and clamping it in the position in which the gradua¬ 
tions are clearest, and in which the cross-hairs appear fixed 
when the eye is moved. 

Parallel Plate Micrometer (Fig. 15). If a ray of light falls 
normally on a plate of glass with truly parallel surfaces it 
passes through it unchanged in direction. If the plate is 
rotated the emergent ray is parallel to the entering ray, but 
shifted by an amount {x) depending on the angle of rotation 

(0). If the angle is small, the shift is proportional to the 
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sin 0 
angle. In the figure we have ~ index of refrac¬ 

tion from air to glass. Then 

, « .. , cos 0 sin ^ \ 
X - t (tan 0 fan (f>) cos 0 -- / sin 0( 1 ^ -r- ) 

' V sin 0 Vl-sinU/ 

/ sin 0 1 
cos 0 
sin 0 

sin d 

/< 
siii'^ 6 J 

-- / sin 0( 1-7 - ) 
V V - sin* 0 ) 

, ■ J , V' 1 - sin* fl'\ 
“/ sin 01 1 - . -—1 

\ 's//<*-sin* 0' 

If 0 be small, sin 0 — arc 0, and sin* 0 is negligible, 

.and .T : /O ^ 1 - - 'j, so that, approximately, .v is proportional 
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to 6 and can be measured by a micrometer drum on the 
axis of rotation. The following table shows the closeness of 
the approximation, taking / as 1, as 1-6, 

0 * X 

000055 0 00<>.S.S 
2' 00I3I0 0 ()i;w9 
3^ OOISW-S 0 oi9o:i 

002022 0-02018 
S'’ ; 003281 0 03272 

10^ 0*06013 0-00545 
15 0 l(H)48 0-09818 
20 0 13640 0-13090 
25" 0 17441 0-16.363 
30" 0-21510 

1 
0-196:15 

When the ratio 
X 

1 is so large that the degree of approxima¬ 

tion is insufficient for the required accuracy, the divisions 
on the drum must be placed closer together, to correspond 
with the exact values of 0 for the required values of x. The 
range for any required accuracy xdih equal graduations can 
be doubled by rotating the dnim through small angles on 
both sides of the normal, e.g. if 0 varies from 3° to ~ 3° 

the error is less than 
1 

l(KX) 
th part. 

Double Reading Theodolites. This is the most modern 
development, viz. by means of a system of prisms, to bring 
the images of the opposite parts of the horizontal circle, or 
of the vertical circle, into the field of view of the same 
microscope. This saves time in reading and |>ossible dis¬ 
turbance of the theodolite by walking round it. This may 
be represented diagrammatically in b'ig. 16tf. As the images 
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of the op[K)site n'adings arc read at the same index mark, 

the averagi' reading is 70' { ^ ^ 70"'' + ^ where 

X is the distance between the corresponding degree divi¬ 

sions (250'' and 70'") which have not passed each other. 

Similarly, in the enlarged views, hh’g. 16/> and I'ig. 16r, the 

average readings are t In Fig. 16/>, counting the 

20' divisions and estimating the fraction of a division, we 

find .V 5*0 divisions, therefore the average reading is 

75" 
5*6 X 20' 

- 75" 56' 

while' in Idg. 16r we find x 4-6 divisions, therefore the 

4*6 X 20' 
average reading is 75 | 75" 46'. 1 he index line 

is sliown thus [ 
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To read to greater accuracy, Estimating Microscopes 
may be used with a double scale, thus : 10 -0 10, the scale 
readings to the last divisions, upjjer and lower, are thus 

estimated and added together for the average reading. 
Messrs. C. F. Casella & Co. employ a micrometer which 

reads zero when its cross-hairs are over the index mark. 
With the micrometer, the distances (a and b) from the index 
mark to the next lower division on both scales would be 

read successively, the drum having complementary num- 

. . . 7 6 5 4 ,, 
benng to its 1 divisions, thus •3450^®'^ re*‘dings 

in opposite directions, e g. when brought over the 75° 40' 
division the micrometer might read 6' 10' and when brought 

over the 255° 40' division it might read 6' 30'. The average 

reading would then l>e 75° 46"20'. In this case the circle 

is divided to 10' and the micrometer head into ten divisions 

of r each, each sulnlivided into six divisions of 10' eacli. 
The micrometer drum is shown in the siime microscope as 

the horizontal circle reading; an adjacent microscope^ sIkuvs 

the vertical circle. 
In tl le Wild or Zeiss Universal Theodolite the tw'o images 

of the circle are made to coincide by moving them equal 
amounts in opfiosite directions. This is effected by pa-ssing 

the rays from the opposite sides of the circle through two 
parallel plate micrometers which rotate equal amounts in 

opposite directions. The motion of each is read on a micro¬ 

meter drum in the same microscope, the drum lieing gradu¬ 
ated from 0' to 10' in seconds. Fig. 16</ and Fig. 16<j show 

the circle images of Fig. 166 and Fig. 16c when brought into 

coincidence, the total motion in each case being y in Fig. 
166 and Fig. 16c. In (6) the distance lietwccn the last 
corresponding divisions (75° 40' and '255° 40') which have 
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not passed is 20' + y. The average reading is, therefore, 
20' 4- V V V 

75° 40' H-- - —- 75° 50' + where ^ is read on the 

micrometer drum (say, 6' 13'), and when brought into coin¬ 

cidence the index mark appears half-way between 75° 40' 
and 76° <X)', thus indicating that we must add the micrometer 

reading to 75° 50', so that the total reading is 75° 56' 13". 

In (c) the distance between the last corresponding divisions 
(75° 40' and 255° 40') which have not passed is y. The 

V V 
average reading is. therefore, 75 40' where is the 

micrometer reading (say, 6' 13"). The total reading is, there¬ 

fore, 75° 46' 13'. the index in tliis case appearing over 
75° 40' when coincidence is obtained. The microscope is 

placed with its eye-piece alongside that of the telescope. 
By interposing a prism, the vertical circle readings are read 
in the same microscojx?. The horizontal and vertical circles 

are graduated on glass cylinders, which allows smaller circles, 
finer graduation marks, and much higher magnification to 

be employed. 
The "Tavistock” Theodolite. In the “Tavistock” Theo¬ 

dolite of Messrs. C(X)ke, Troughton iS: Simms, Ltd., a different 

form of optical micrometer is adopted for double-reading 
to single seconds. The images of tlie graduations on the 

opposite sides of the circle are brought together by refli'ction 
through prisms, but the line of separation of the images is 

now parallel to the graduations and the graduations increase 

in the same direction. By the use of travelling prisms, as 
represented diagrammatically in Fig. 17, the two images 

can be moved equal amounts {x) in the same direction which 
are proportional to the eqxial movements {y) of the travelling 

prisms. Actually, the travelling prisms are mounted side 
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by side on a frame so that they move in the same direction 

and the emergent rays are eacli reflected through towards 

each other before meeting the fixed reflecting surfaces shown. 

The frame is moved by turning a liead outside the instru¬ 

ment and. by means of a rack and pinion, the movement of 

the frame rotates a glass fine-reading circle, graduated in 

seconds from 0' 0' to 20' O', in the same plane as the images 

of the circle graduations. 

There are two microscojx's, one for horizontal, and the 

I 
) 

I’lG. 17 

other for vertical, circle readings, one on each side of the 

telescope eye-piece, and these can lx“ turned over when the 

telescope is transitted. Each of these shows a .sena-n with 

three openings (Fig. 18), viz. (1) the coarse reading to the 

last degree and 20', (2) the fine reading in minutes and 

seconds to lie added thereto, and (3) the main index mark 

bisecting the interval between two c.orresj>onding op|>osite 

graduations. 

In Fig. 18a, the index in the fine-reading opiming (2) 

reads 0' O', and the main index mark, which is at the 

junction X of the prisms in lug. 17. appears midn ay Ixtween 

the graduations 75' 40' and 255' 40' in the central ojxning 

(3), so that the average reading would lx 

+ 75° 40' - r 

but actually the index in the coarse reading opening (1) 
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reads 75® 20', so the full reading is 75° 20' 00*. If the theo¬ 

dolite were now turned through 20' 0* to the left, or if the 

fine reading were increased to 20' 0* by turning the head 
controlling it, the next lower pair of graduations would 
"straddle” the main index, and the index in (1) would read 
75° 00'. 

In Fig. 186, the theodolite has l)een turned 12' 26* to the 
right, the opening (2) still reads 0' 0*, the index in opening 
(1) is not over a graduation, and in opening (3) only one 

graduation appears with the main index mark. The micro¬ 

meter head is then turned, moving both images to the right, 
until tw'o graduations appear equally spaced on each side 

of the main index mark in opening (3), Fig. 18c, and the 
iiulex now again appears over 75° 20' in opening (1). The 
index in opening (2) now reads 12' 26*, so that the full 

reading is 75° 32' 26*. The main index mark is compara¬ 
tively broad and, wheti centered between two graduations, 

shows narrow spaces on each side, which it is easy to equalize 

with great accuracy. 
The altitude level is read from the telescope eye-piece by 

a prism bubble reader. The horizontal circle is 3^ in. diameter 

and the vertical circle 2J in. diameter; both are divided on 

glass to 20', then silvered, and are read through the glass; 
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this protects the silver from tarnishing and from dust. The 

graduations on the horizontal circle are thus only f,';;? in. 
apart, the thickness of the etched graduations is about 

t.jtSsr, in., and the figures are yi.i in. in height. The displace¬ 
ment of a graduation by in. would cause an error of 
1 * at the centre of the circle; these figures give some idea 

of the perfection of workmanship attainable.* It should l)c 
home in mind that 1' is the angle subtended by ,i., in. at 

UK) ft., or in. at 1,(HK) ft. 

Eccentricity. If the vernier zeros, or inde.x j)oint.s. of a 

theodolite are not diametrically opposite to each other, 
their readings will not differ exactly by IS-t’ Provided, 

however, that they rotate round the centre of the graduated 
circle as axis, the angle niea.sured by each vernier will be 
unaffected, the two vernier readings always differing by a 

constant amount. On the other hand, if the axis of rotation 
does not coincide with the centre of the graduated circle, 

the angle, as recorded on the two verniers, will Imj different, 
and the difference of the readings of the two verniers will 
not remain constant. However, the average angle obtained 

from the readings of the two verniers, or the angle obtained 
by averaging each pair of vernier readings (after, of cour.s(\ 

the readings of one vernier 

to reduce its readings to the other) will l>e free from this 

error. To prove this (Fig. 19)— 
Let O be the centre of the graduated circle, C the axis 

of rotation, U, I' the [wsition of the verniers for one piinting 

♦ “'Fhe Tavistoc k t ransit Theoiloliti?bv 1C, \Vilfr»*<l Taylor. Trans. 
OpUcai Society, Vol, 32 i '"The Tavistock Thcociolite/' 
Engineering, Vol. 131 (1931). 

adding or subtracting 18(P 
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of the telescojx', U'V their position for the other pointing. 
The actual angle turned through is 

VOV UOW 
0 == VCV' VL’V + CV'l’ - t 

VOV + UOW 

— average of angles read by each vernier. 

Irregulanly of Graduation. In spite of the modern perfec¬ 

tion of tlic division of tlie circles, there must still remain 

small residual irregulari¬ 

ties. To eliminate their 

effect on the measured 

angles, these should lx* 

measured repeatedly on 

different arcs of the circle. 

In the case of vertical 

angles, only two such 

mi'asurements are pos¬ 

sible, viz. 1*'.R. and I*.L. 

In the cas<' of horizontal 

angles, -however, any 

numlx'r can be taken l)y 

“changing zero,” i.e. by 

unlocking the lower 

clamp and turning the vernier plate through about tX) if 

the angle is to lx mea.sured twice, viz. F.K. anrl F.L.; if it 

is to be measun*d four times, it should lx turned through 

45 " Ixtween each measurement ; then Im k the lower clamp. 

Swinging Right and Left. I'o eliminate the turning effect 

of the sun on the theodolite, and the p<nsonal bias of the 

observer in bisecting a signal, half the obsr'rvations in 
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measuring horizontal angles should be taken reading the 

objects in a clockwise order, and the other half taking 
them in an anti-clockwisc order. In the former the cross-hair 

should be brought on to the signal from the L.H. in the 
latter from the R.H., by the horizontal tangent screw. 

The Reversible Level 

Modern levels are constructed of the tilting tyj>e, i.e. the 

telescope has a small motion about a horizontal axis just 
below it, the motion being controlled by a fine levelling 

screw at the eye-piece end. At the same time the bubble of 
the spirit level, which is placed at the side of the telescope, 
can be viewed by a mirror or prism from the eye-piece end 

of the telescope. Consequently, the plate screws are only 
employed when setting up to make the vertical axis approxi¬ 
mately vertical, using for this purpose a small circular spirit 

level placed on the base of the instrument. The bubble of 
the long spirit level on the telescop>e is brought central for 

each reading by turning the above fine levelling screw. The 

telescope is made with internal focusing to obtain the 
advantages already mentioned. 

In the best types of tilting level the telescope is made 
reversible, i.e. it can be rotated in a sleeve or collars about 

its longitudinal axis through 180°, so that the spirit level 
is now upside down on the opposite side of the telescope. 

The spirit level tube must, therefore, be convex both top 

and bottom, i.e. barrel-shaped, and it is essential that the 
upper and lower "axes” must be parallel. If they are truly 

parallel the adjustment of the level is very readily effc*cted, 
and the reversible level is sometimes termed " self-adjusting ’’ 

on this account. The only adjustment is to place the axis 

of the bubble tube parallel to the line of collimation. Set 
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up the instrument about l(K)ft. from the levelling staff. 

(Fig. 20.) Bring the bubble central and read the staff to 

•<K)1 ft. Turn the telescope 180° about its longitudinal axis 

and bring the bubble again to its central position. Again 

read the staff to -OOl ft. If the readings differ there is an 

error of half thv: difference of readings. By the fine levelling 

screw bring tiie staff reading to I 

the a\ erage of the two readings - 

the line of collimation is now 

horizontal; then adjust tlu; 

bubble l)y the means provided 

until it is truly central; then check the staff reading again. 

.\ tilting level which does not reverse must be tested like a 

Dumpy Level, on two jx'gs, whose true difference of level is 

determined by setting up tiie level at equal distances from 

tliem. Then the level is set up behind one of the pegs, and 

if tlie same level-difference of the pegs is not obtained, the 

level is tilted by the fine .screw to give the true level- 

difference, the bubble being then adjusted to its central 

I III I— IIHB _ - ~ 

-d_1 
Fig. 20 

posit ion. 

Ihibble Reading Dev ices. .Kn inclined mirror is, of course, 

the simplest, but both <-n<ls of the bubble have to lx? read 

aiul their readings etpialized, as the bubble shortens with a 

rise of temperature, and '. /cc versa. 

Messrs. Iv. U. Watts iSc Son have invented a “Constant 

Bubble" spirit level, in which the tube is of approximately 

elliptical cross-section and the volumes of air and spirit are 

■SO proiKirtioned that the decrease of surface tension with 

rise of temperature comjx'usates for the expansion of the 

sj>irit and renders the length of the bubble constant over a 

range of at least 1(H)° F. of temperature. With such a 

"constant” bubble, only one end of the bubble need be 
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observed, and this is easily effected by total internal reflec¬ 
tion in a 45° right-angled prisnrj, placed on top of the 
spirit level case in which the bubble is seen reflected from 
the eye-piece end of the telescope. In a reversible level there 
is a second prism on the other side of the case for use in the 
reversed position. A short bubble is less sensitive than a 

long one, so that when a "constant” bubble is not used it 
is necessary to have an air chamber at one end of the tube, 
from whirh air can be drawn to increase the length of the 
bubble at high temperatures. 

When both ends of the bubble are observed, it is best to 
reflect them together by prisms, as shown in Fig. 21, which 
shows Connolly's Prism Bubble Reader, as used by Messrs. 
iJeiss. Both ends of each prism are cut at 45° as shown. 
The ends of the bubble are, therefore, totally reflected twice 
and appear together on the inner bevels as shown. In order 
to view them from the eye-piece end of the telescope, these 
adjacent images are turned through a right angle by a 45° 
right-angled prism and then magnifled by a lens. If the 
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bubble is uncentred they appear as in (a), when centred the 
ends of the bubble appear as in (6). 

The only marks on the bubble tube are one at each end, 
which should appear coincident when the bubble reader is 

in its correct position. It will Ix^ noted that both ends of 
the bubble arc viewed under exactly the same conditions, 

that the jwsitions of the two ends of the bubble have not to 
l)e read on graduations, tliat as the images of the ends move 
in opjxjsite directions coincidence, when obtained, is very 
exact, and that the bubble can be adjusted to give coinci¬ 
dence in another position by moving the whole reader 

longitudinally. The line joining the two calibration marks on 
the upper surface of the tube, must be parallel to the 
axis of the symmetry of the tube, so that, when rotated 

about this axis of symmetry, the ends of the bubble will 
still appcnir in coincidence. In order to set the axis of sym¬ 

metry of the bubble tube parallel to the longitudinal axis 
of tlie telescojH', the inclination of the two axes is altered 
until the bubble remains in coincidence when turned through 

18d' about tlie longitudinal axis.* 
For the most j>recise work, however, in addition to this 

reversibility *)f rotation about a longitudinal axis through 

180*, the eye-piece of.a Zeiss level can be removed and 
inserted into a collar, jxovided for the purpose, at the 

object glass end. The diaphragm is marked on the face of 
a second object glass, and a second diaphragm is marked on 

the face of the object glass projxr. When the eye-picce is 
thus reversed the object glasses reverse their functions; the 
one that formerly acted as diaphragm now' acts as object 

glass, and vice versa. 

*'* Now Tyju'S of I^'vclling Instruments Using Keversible Hubbles." 
by r. F. Connt>lly. Trati< of^fual Socuiy, \"ol. 25 (192»l-4), 
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In adjusting the level,/oi/r readings are taken, viz. (1) eye¬ 

piece direct, level direct; (2) eye-piece direct, level re¬ 

versed ; (3) eye-piece reverstnl, It'vt'l reversed; (4) eye¬ 

piece reversed, level direct; in each case the ends <»/ (he 
bubble being brought into coincidence. In Fig. 22 let fi be the 

angle between the two coincidence positions of the bubble 

when reverst'd, a the inclination of the line of collirnation 

to the coincidence position Ali in (1). In (1) tlie angular 

error is f n, in 121 the angular error is - a il. When the 

eye-piece is reversed the line of collirnation may be slightly 

altered; let it now make an angle y with the coincidence 

position AH. In (3) the angular error is 4 [i \ y. in (4) the 

angular error is y. The av«;ragc angular error of the line 

of collirnation in the four jx)sitions is, therefore, zero, so 

that the average reading on a staff is the reading which is 

level with the centre of the instrument. '1 he line of collima- 

tion is then directed to this mean reading, and the bubble 

reader prisms are then adjusted longitudinally until the 

enrls of the bubble are in coincidence in the normal position 
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(1), i.e. with eye-piece in its normal position and spirit level 

on the left hand; or, if preferred, so that when the bubble is 

in coincidence in positions (1) and (2) the average of the 

two readings will be that given by the average of the four 

readings above described. 

The diaphragms are engraved with stadia lines for a 

constant of 10). This serves two purposes: (a) it enables 

the lengths of the sights to be read and thus kept in very 

approximate equality, and (6) by reading the staff on all 

three marks to avoid misreadings, as, of course, the average 

of the readings of the two outer marks should equal the 

middle reading. 

The staff consists of an Invar strip, with fine lines engraved 

at each 0'02ft., mounted in a groove in a mahogany staff 

in which it is free to slide, the lower end of the strip being 

fixed to a hard steel shoe. The staff is provided with a 

plummet (or circular spirit level on a bracket) to enable it 

to 1k“ kept tndy vertical, and is also fitted with handles and 

two steadying rods. In front of tlie object glass on the level 

is a thick sheet of parallel plate glass with a micrometer 

head, so tliat the line of sight can be made to intersect an 

exact division on the staff, the micrometer reading being 

added to tlie reading of tlie next lower graduation on the 

staff. By this means the staff can be read to -(K)! ft. and, 

by estimation on the micrometer, to -iKiOl ft. 
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DKTKKMINATION OF LATITUDK, AZIMUTH, 

riMF., AND LONGITUDE 

Instruments 

A 5-in. Transit I'hemlolile with Micrometers, reading to UP 

and by estimation to 1", is the proper instrument to employ, 

with a sehsitive Altitude Level on the vernier arm of the 

vertical circle, a Striding Level for application to the Trun¬ 

nion Axis, a dark glass for the Sun, and, for high altitudes, 

u Diagonal Eye-piece. An aneroid barometer with ther¬ 

mometer is required for the Uefraction correction. In order 

to see the cross-hairs at night, a simple device is to fix a 

strip of white paper about | in. wide across the obje^^ct glass 

by means of a rublxT band, making a couple of .slits ] in. 

long near top and bottom of the strip, and Ixnding the papier 

Ixtween the slits at 45® so as to s*Tve as a reflector. If the 

light from an electric torch is directc^l on this reflector the 

cross-hairs will lx visible. In order to sight on anotluT 

station at night, or on a “Reference Mark“ whose a/.imuth 

is to lx determined, a lamp sliould be placed inside a box 

with a slit in one side, the width of the slit being j>ro}X)r- 

tioned to the distance from the instrument, so that it is 

unnecessary to alter the focus when sighting on a star. The 

slit, of course*, must lx accurately centred over the station or 

reference mark, and should be as far as possible from the 

instrument. 

A Chronometer Watch, keeping mean or sidereal time, is 

also required. It should lx treated with great care, always 

wound at the same time of the day and kept as horizontal 

as possible. Tlie imfx^rtant quality of a chronometer is that 

*44 
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its " Rate” should be constant, i.e. that it should go fast or 
slow by a constant amount per day or per hour. If its rate 

is constant and known, then having determined its “error” 
or difference from true time at any instant, the true time at 

any other instant can be determined from the reading of the 
chronometer at that instant. Obviously, this is best done 
by a process of “interpolation,” i.e. by determining its error 
before and after the instant of observation, and finding its 
rate from the increase or decrease in its error; if this is not 

{lossible, the instant of observation should be as soon after 
the second of the two determinations of error as possible, 

so as to "exterpolate” as little as possible. The “standing 
rate” of a Chronometer kept at one place differs from its 

“travelling rate” w'hen taken on a land journey, and these 

must be separately determined. 
If the student has no opportunity of using all the above 

instnunents, he must not supj)ose that he cannot get useful 
experience with less perfect ones which may be available. 
He may, for example, use a 4-in. Theodolite and an ordinary 

Watch, make his observations, and reduce them as accurately 
as his instniments pennit. It is only by actually making 

and reducing astronomical observations that this important 

branch of Surveying will become real to him. If only one 
observation is possible, the Extrameridian observation for 

Azimuth and Time on the Star (or on the Sun) should at least 
be made and reduced. It is the best observation to begin 

with as it has not to be made at an exact instant, and can 

l>e repeated immediately as often as desired. 

Latitude 

From Chapter II, it will be obvious that this is determined 
by mea.suring the Altitude of the Sun, or of a fixed Star, 
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when crossing the meridian; in the case of the Sun at 

apparent noon, in the case of a Star at upper or at lower 
transit when the altitude is a maximum or a minimum. 
The Sun is, of course, the most convenient object for the 

2 Z 

1 

observation, but the fact that its Declination is constantly 
varying—in March and SeptemWr by nearly 1' per hour or 

1' per minute—requires us to know the Greenwich Mean 

Time, or the Longitude and Local Mean Time, at least 
approximately. Owing to this variation in Declination the 

Sun is not quite at its maximum altitude when crossing the 
meridian, but the difference is very minute. With the Sun, 

moreover, the uncertainty as to the correction of Altitude 
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for Atmospheric Refraction cannot be eliminated by " pair¬ 
ing ” the observation, i.e. by taking a second observation at 
nearly the same altitude on the other side of the zenith, and 
averaging the results obtained from the two observations. 
Still for some purposes a Sun observation is sufficiently 
accurate. 

{a) Latitude by Zenith-Pair Observations of Two Stars Cross¬ 
ing the Meridian (Fig. 1). Two stars, X^, X^, are selected 
for observation whose times of transit differ by not more 
than half an hour, and which transit at nearly equal alti¬ 
tudes but on opposite sides of the zenith. There are four 
cases. In (1) and (4) the star nearer the pole is at Upper 
Transit, and the R.A.’s should differ by > 30 min. 
In (2) and (3) the star X^ is at Lower Transit, and the 
K.A.'s should differ by from 11 hr. 30 min. to 12 hr. 
30 min. Calling the altitudes a,, o*. the declinations dj, d*, 
and the latitude (f>, for equal altitudes at transit we must 
have 

in 

in 

(1) - <f> + ,f> + 90° - df 

4- ^ 

(4) 90° -<f> - (i, + 90° -- 

= 2<^. 

both stars at upper 
transit. 

in 

in 

(2) 9f)° - - <5, ^ - 90° -f St] 

(3) 

A, -f d, - 180° - 24>. 

90° - ^ -f ^ - 90° -f (5, 

.-. (5, - <5, = 180°-2f 

I one star at low'er 
I transit. 

These formulae enable us to choose two suitable stars whose 
apparent declinations arc given in the Nautical Almanac, 
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but actually the altitudes can never be equal exactly, and 

we have 

in (1) 90° - ^ = a, - 

^ = 90° - ai + ^ = 0, - 90° + <1. 

. , cu-n, -j- d, 
averaging, = 2' I 2 

in (4) 90° - <ft = ai + di 

^ = 90° - - d, : ^ - 90° + <5, 

, U4 ” Ui d* "• d^ 
averagmg, 4> = -2“” + 2 

in (2) 90° - ^ = a, + d, 

^ = 90° - a, - d, : ^ = a, + 90° - d, 

/. averaging, <^ == 90° + ~ *** ^ 

in (3) 90°-^ = oi-d, 

^ = 90° - a, + d, : ^ - fi, + 90° - d, 

averaging, = 90° -f 

These four formulae are not given to be memorizetl, but to 
show that in all cases the average latitude deduced from the 
paired observations depiends on the difference of the altitudes 
of the two stars. These altitudes have, of course, been cor¬ 
rected for refraction; as the altitudes are nearly equal the 

corrections will be nearly equal, and any error made in the 
estimate of the refraction correction will be practically 
eliminated on the difference, a, - of the altitudes. Also, 

if the face of the theodolite is not changed, the Index Error 
of the vertical circle is the same for both altitudes and is, 
therefore, eliminated on their difference. It is necessary. 
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of course, to read the object end (0) and the eye-end (e) 
of the altitude level bubble, and to correct each altitude by 
0—6 

2“ X angular value of a division of the level, unless the 

bubble is brought central for each observation. 
To make the observation the theodolite is set up carefully 

in the approximate meridian a few minutes before the 
estimated time at which the first of the two stars should 
transmit and directed on the star. The horizontal cross¬ 
hair must be made to intersect the star, close to the vertical 
hair, and kept in contact with the star by turning the ver¬ 
tical tangent screw. The star will move slower and slower 
in altitude, till at the moment of culmination it will appear 
to travel along the horizontal hair. When this moment 
arrives, the two ends of the bubble in the altitude level are 
read, then the two vertical verniers and the barometer and 
thermometer. The instrument is then rotated on its ver¬ 
tical axis, and the process is repeated on the second star. 
If a number of pairs of suitable stars can be observed 
similarly, the accuracy of the result can be increased by 
averaging the latitudes obtained from each pair. 

Example 1. Reduce the following meridiaa observation 
for Latitude— 

Star Declination Ascension 
Observed 
Altitude 

Altitude 
I^vel 

A 
B 

eo” 02' 45 0's. 
19° 32' 09 0' N. 

I3h. 59in. 00s. 
14h. I2ni. XU. 

49° 28' 15^ S. 
50° 58' 10" N, 

Object 
End 
54 
5-2 

1 

Eye 
End 

4-6 
4*8 

The value of a level division is 14*. Take the refraction cor¬ 
rection as 58* cot altitude. If the longitude is 142° 36' E. 
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and the sidereal time of mean noon at Greenwich is 4 hr. 
6 min. 17 sec., at what Local Mean Times will the two 
transits occur ? 

First make a sketched meridian section thus (Fig. 2). 
Mark the two ends of the horizon N and S for North and 
South, then mark the star of least declination (B) by its 

altitude 51° N. Then 
draw the Equator E 20° 
on the South side of B, 
so as to make the de¬ 
clination of B about 
20° N. The angle £0N 
is then 71° N., and 
therefore draw P the 
Pole at 19° S. Then 

mark the other star (/I) by its altitude 49° S.; .4 will be 30° 
above the pole which agrees with its declination 60° S. We 
thus avoid any doubt as to whether A is at upper or lower 
transit. We then find the corrected altitudes of the two 
stars, thus— 

Star ' 
i 

Observed 
Altitude j 

l^vcl ; 
Correction 

Kefraction 
Correction 

Corrected 
Altitude 

A 49^ 28' 15' S. 
! 

-f 0*4 X 14' ; -- 58' cot 49“ 28'| 
i 
|49° 27'3I 0' S. 

4- 5-6' - 49-6' 1 1 
B SO'’ 58' 10' N. ^ 0*2 X 14' -58'cot .50“ 58' 50" 57' 25*8' N. 

==* -f 2*8' =. - 47 0' 

From >4 = 49” 27'.310' From = 50“ 57'25-8' 
-co-dcc. == 29“ 57'15 0' + dec. =19“ 32'09 0' 

Latitude =19” 30'16 0' EOS -70” 29'34-8' 
Latitude = 19” 30' 25-2' 

19" 30' 16 0' 
19“ 30' 25 2' 

Average =» 19” 30'20-6* S. LaUtude 
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Longitude = 142° 36' E. = 9 hr. 28 min. + 2 min. 24 sec. 
= 9 hr. 30 min. 24 sec. = 9-507 hr. before Greenwich. 

sidereaJ time of Mean Noon = 4 hr. 6 min. 17 sec. - 
9-507 X 9-857 sec. = 4 hr. 6 min. 17 sec. - 1 min. 34 sec. 
= 4 hr. 4 min. 43 sec. 

star A Star B 
L.S.T.13h. 59m. 00s. I4h. 12m. 33s. 

4h. 4m. 43s. 4h. 4m. 43s. 

Sidereal interval since L.M.N. 9h. S4m. 17s. lOh. 07m. 50s. 
Deduct 9-83s. per hour Im. 37s. Im. 40s. 

L.M.T.’s ol Transit 9h. 52m. 40s. p.m. lOh. 06m. 10s. p.m. 

(6) Latitude by Circum-meridian Altitudes of a Star (Fig. 
3). Instead of observing only the maximum (or minimum) 

altitude of each of a pair of North and South stars, increased 
accuracy can be gained by taking a series of altitudes before 
and after the transit of the star, noting the times of the 
observations. There should be an equal number of observa¬ 
tions (say 4) before and after transit, and the face of the 
instrument should be changed, thus R, R, L, L (transit) 
R, R, L, L, the observations extending over not more than 
20 min. in all. By a formula to be deduced, each of the eight 
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altitudes is corrected to give a value of the maximum (or 
minimum) altitudes, and the average of the eight altitudes 
thus corrected is used to determine the latitude. We have 

„ cos ZX - cos PX . cos ZP _ sin a - sin 3 . sin ^ 
aHIP^TsiiTZP ” ~ ~cos dTcos<l> 

where a, 6, ^ — altitude, declination, and latitude, 

sin a = sin d . sin ^ -f cos 6 . cos <f>. cos P 
P 

= sin ^ . sin 4- cos 6 . cos ^ - 2 cos 6 . cos ^ . sin* ^ 

P 
= cos - 2 cos <5 . cos <t>. sin® 

Now, if .4 be the maximum altitude of the star 

.4 = 90° - ^ + <5 = 90” - - 6) 

sin i4 cos {if> - d) 
P 

sin a = sin ^ - 2 cos 6 . cos <f>. sin* ^ 

P 
sin A - sin a — 2 cos d . cos <f>. sin* ^ 

But sin i4 - sin a 
_ A a A - a 
2 cos - n • sin . n 

A + a . A -a P 
.. cos —2— • SI*' 2 ' ~ ° ^ ■ ***'* 2 

But if the observations are taken within a few minutes of 

. A A + a 
transit ~ 2 s**'*'^ angles, and cos - - — cos A, 

practically 
. - _JCOSd.COS^ 0 -2^ 
.. A - a — --i — . 2 sin* „ 

cos A 2 

cos d . cos ^ P* 
cos A ' 2 

where A - a and P are in circular measure. 
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Now if / is the time in sidereal seconds between the 

observation and the time of transit, P” = 15/, and we have 

cos 5. cos ^ 
iA -aV . sin V . -- 
' ' cos A 

(A-ay 
cos d . cos <f) 

cos A 

cos d . cos if) 

cos A 

P^2 

(sin IT 

225/2 

2 X 206265 

/2 

i8:«*5 

or A a + 
cos d . cos if) /2 

A a f- 

cos A ‘ 1833*5 

Wlien applied to a nuinhei of observations, we have 

cos 6 . cos if) (/2) 

cos .1 183:i*5 

which gives the mean value of the maximum altitude. 

'Fables of the factor ,000 usuailv written as 

2 sin2 

MU 1'^ 

where / stands for our P, are given in C lose's Topographical 

Surveying for every S(Xond of time up to 20 min. It is easy 

to show that this formula holds for all cases of Upjx^r Transit, 

viz. star above or below equator or between the zenith and 

the [Xile, also that when the star is at Lower Transit, 

P 

A 
COS d , CDS if) ^ 2 cos d . cos if) /2 

cos.l sin r cos A 183IL5 

in which case P is the angle in arc and f in seconds of time 

from Lower Transit. 

In order to calculate the factor 
cos d , cos if) 

cos A 
, it is suflicieiu 
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to take the mean of the pair of altitudes nearest the transit 
and one on each side of it, corrected for altitude level and 
refraction, for A and to calculate tf> from it for this purpose. 
Of course, an accurate knowledge of the local time is re¬ 
quired, and the observations should not extend more than 
10 min. on each side of the transit. The completed observa¬ 

tion should be followed 
as soon as possible by a 
similar set of circum- 
meridian observations on 
a star at nearly the same 

altitude on the other 
side of the zenith in 
order to eliminate any 

error due to refraction as already explained. 
Example 2. Reduce the following observation for Lati¬ 

tude: Star a orionis (R.A. — 5 hr. 51 min. 32-55 sec., Dec. 
= 7^ 23' 46-0' N.). Longitude, T 17' 45' W., Siderial 
Time of G.M.N. = 21 hr. 40 min. 10-2 sec. Altitudes are 
South. Watch, 6 sec. slow on G.M.T. Barometer, 29-6 in. 
Temperature, 40° F. Level, one division = 15'. 

Fig. 4 

Watch Time 
(M.T.) 

/ j 

Altitude [ 
{ I^vel ’ 

Vortical Circle 

Vernier C Vernier D 

H. M. s. ! i o 
S 5 16p.nni. • ^ i 5-4 
8 7 55 5'6 
8 K) 39 L 1 5-8 
H 13 31 ? i i 

i 5'H 
8 16 30 1 { ft : 5-6 
8 19 16 i k I 50 
8 21 47 L ' ! 5**^ 
8 24 40 L 1 5*4 

E \ 
50 1 43“ 21'00' ! 21' 10" 
4*8 43^ 22' 40" > 22' 50" 
4 6 136“ 37'10' 37' 30" 
46 I rw* 36'Sir 1 37' 10" 
4-8 43** 24' 00" 24' 10" 
54 43^ 23'40" i 23' 50" 
5*2 136^^:W'20" I 38' 40" 
50 136^' 39' 20" 

i 
39' 40" 
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We first find the watch time of transit: 
Longitude = 1° 17' 45' W. = 5 min. 11 sec. W. 

Acceleration for 
5 min. 11 sec. — 0-82 sec. -f 0-03 sec. — 0-85 sec. 

.'. Sidereal Time at L.M.N. = 21 hr. 40 min. 11-05 sec. 
L.S.T. of transit 

= 5 hr. 51 min. 32-55 sec. + 24 hr. 
= 29 hr. 51 min. 32-55 sec. 

Sidereal Int. since L.M.N. = 8 hr. 11 min. 21-5 sec. 
Retardation 

= I min. 18-64 sec. + 1-80 sec. f 0-06sec. 
= 1 min. 20-50 sec. 

L.M.T. -- 8 hr. 10 min. 01 sec. p.m. 
Add 5 min. 11 sec. for Longitude. 

G.M.T. - 8 hr. 15 min. 12 sec. 
Watch time of Transit -- 8 hr. 15 min. 06 sec. 

We next estimate the meridian altitude A and the lati¬ 
tude (Fig. 4) from the two middle readings thus— 

1(43° 23' 00* t- 43 24' 05') = 43° 23' 32-5' 

Altitude level * ^ X 15 -4- 07-5' 

Refraction (fil «' X 21') 1-017 X-090. - I' O'i' 

43° '22' 38' = A 
Declination - 723'46* 

35^ 58' 52* ^ 90^ ~ 
latitude - 54® 01'08* N. «= ^ 

cos <5 1 199^4 
• os ^ I 1-7690 

' I-7654 
cos .1 1-8614 

I 9040 

, 0-8017 
COS A 
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VV’e then complete our table thus— 

Mean Sidereal 
Interval Interval 

to to 
Transit Transit 

0 E 1 M. 
i 

s. 1 M S. ' ; 

5-4 50 43“ 21' 05" ! i ^ 50 9 51-8 591*8 .349,991 
5*8 4 8 43'22' 45" 1 7 II ' 7 12'2 432-2 186.797 
58 4 8 43“ 22' 40" 4 27 . 4 27 7 287'7 71,883 
5-8 4‘6 43“ 23' 00' 1 35 ’ 1 ,35*3 95-3 9,082 
5-8 4 8 4a3“ 24' 05' 1 24 ■ 1 24-2 84-2 7.090 
50 4 4 ! 43 23' 45' 4 10 4 10*7 250*7 62,851 
5*2 5-2 43"21' 30' 8 41 8 42-1 402*1 181.684 
5 4 5 0j 1 43“ 20' 9 34 ' 9 v35-8 575*8 :131.316 

Totals 43 8 39-4 8)348 ' 59' 20' 8)1.180,474 

Average 43“ 22' 25^ 147,559 

+- 4r 

2r 25* 

- r 02' 

t r04 5' 

4.r 31-6' 
35^ 58' 45 8' 
54 or 14 4' N 

(c) Latitude by Sun Observation. The method of circum- 

meridian altitudes may be applied to the sun if circum¬ 
stances necessitate a daylight observation. In this case the 
altitudes should be taken alternately to the upper and lower 
limbs, letting the vertical hair bi.sect the limb as nearly as 
possible, so as to eliminate its semi-diameter. A correction 
for parallax must l)e applied wlicn calculating ,1, provision¬ 
ally and finally; on the other hand the interval, I, if recorded 
on a mean time watch, will not require conversion to sidereal 

Average level corrt^tion - — .x 15 

A-Vdd average observ^ed altitude 

/ 22*5 \ 
Refraction correction f 61 x 2* I' ) I 4>l 7 < -999 

Circum-meridian correction 8017 x 18:13 **> 
Average value of .1 

/. 90^ - ^ - 43 22'31 8' 7^23'48' 
I^atitudc 

.\ltitude 
Level 

Mean 
Observed 
Altitude 
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seconds. The declination to be employed will be that at 
apparent noon, i.e. at the time of transit. It is not, of course, 
possible to “pair" the observation, so that there will always 
be some uncertainty .as to refraction. 

For comparatively rough determinations of latitude a 
single observation may be made on the sun at its maximum 
altitude, taking a second 
observation with changed 
face on tlie opposite limb 
of the sun as soon as the 
first has been completed 
at maximum altitude, or 
a single maximum alti¬ 
tude may be taken by 
previously determining the index error of the vertical circle, 
or eliminating it by adjustment. The following example 
will be found useful in showing the order in which the 
corrections are made. 

Example 3. At a place in longitude 23° 21' 50* E., the 
observed altitude of the lower limb of the sun crossing the 
north meridian was 43° 17' 35*. At Greenwich Mean Noon 
the equation of time was 3 min. 3-0 sec. (Sun before clock), 
increasing 0-20 sec. per hour, and the declination of the Sun’s 
centre was 15° 19' JKrO* N., increasing 45'0* per hour. The 
altitude level read 5-6 O., 6-4 E. (one division = 14'), index 
correction of vertical circle = f 15'. Taking the semi¬ 
diameter as 15' 35*, the parallax as -j- 8-7' < cos altitude, 
reinaction as -58* x cot altitude, find the latitude of the 
place and the time of transit on a (i.M.T. chronometer. 
(Fig. 5.) 

We first find the Ci.M.T. of transit in order to find the 
declination at apparent noon. 
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Longitude -- 23° 21' 50' E. 

— 1 hr. 32 min. + 1 min. 24 sec. + 3-3 .sec. 

= 1 hr. 33 min. 27-3 sec. before Greenwich. 

But as apparent noon at the place occurs approximately 
3 min. 3 sec. before L.M.N., it will occur approximately 
1 hr. 36 min. 30-3 sec. before (i.M.N., and in this time the 
decrease in the equation of time will be 

0-29 sec. X 1*61 hr. =- 0*5 sec. 

.*. equation of time -- 3 min. 2-5 .sec. and tran.sit occurs 
1 hr. 36 min. 29-8 sec. before G.M.N.. that is, at 

10 hr. 23 min. 30-2 sec. a.m. G.M.T. 

(or 11 hr. 56 min. 57-5 sec. L.M.T.) 

Declination of Sun -- 15° 19' 36 0' 1-608 < 45' -= 
15° 19' 36-0' - r 12-4' = 15° 18' 23-6' N. 

Obser\»e<l altitudo of lower limb 
Index correction 

Level correction - — x 14 

Refraction - 58* cot 4:f' 18' 

S»;mi-«lian\eter 

I»arallax 4- H 7 cos 43^ 32' 

Corrected! attitude 

Declination 

HOX 
latitude - 3r 09'12 3*S. 

N.B. Strictly we should not have taken the change of 
declination as 45'" per hour, but as 45"' * (increment of hourly 

4:LI7'35* 
4- 15* 

- 5-6* 

43’ 17'44-4* 
■ rni-H* 

43 ' 18'42 8* 
. ^ 15'35* 

43 32' 17-8* 
h 8-3* 

^ 43 32'24*I* 

15^ 18'23‘8* 

-r. 58 50' 47*7* 
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variation of declination in 24 hours) x ,y i.e. as the aver¬ 

age rate over the period between (l.M.N. and L.A.N., but ho 
information was given in the question on this point and the 
interval was short. 

Azimuth 

Usually th(‘ Mieodolite will be set up at one end of a sur¬ 
vey line wh(b;e azimuth is required, but in other cases the 

N 

meridian may liave to be set out on the ground, in which 
cast; a "Reference Mark" is fixetl anil its azimuth deter¬ 
mined. riie observation is also useful to find the Magnetic 
Variation of the Compass. 

{<1) the Ehtigation of a Circum-polar Star. star whose 

declination is greater than the latitude of the place has its 
uppt;r transit t>n the same side of the Zenith as the pi>le (Fig. 
6). riie azimuth of such a star varies from a maximum 
amount East to a maximum amount West, and these posi¬ 
tions are called the liastern and Western Jilongations of the 
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star. At elongation the angle P\Z ~ 9()°. If such a star 

is observed through the theodolite at the moment of eastern 
elongation it will appear to travel up the vertical cross-hair, 
and at the moment of western elongation it will appear to 

travel down the vertical cross-hair. Thus an elongation 
corresponds as regards azimuth to a meridian transit as 

regards altitude. If the star is not too far from the pole it 
is po.ssible to take a .second observation with changed face, 
as the azimuth of the star changes very slowly, and it is 

important that this should be effected to eliminate the effect 
of instrumental errors on the horizontal angle Y/.\ Ix'tween 

the reference mark Y and the star X. which m.iy be con¬ 
siderable owing to their great difterenoe in altitude. I'he 
IxKjking of the observation would be as follows - 

Object 
1 lorizontiil (‘ire If* 

Vernier . I X’ernier 

K.M. 
Star 
Star 
KM 

H 
:< 
L 
L 

If the exact watch time of elongation is not known, set 
up a few minutes before the calculated time of elongation 

and keep the vertical hair on the star near its intersection 
with the horizontal hair. As soon as the star commences to 

a.sccnd or descend the vertical hair, read both veniiers on 

the horizontal circle, change face, again bring the vertical 
hair on to the star near the horizontal hair, and again read 

the horizontal circle. The reference mark is sighted before 
and after the observation. If the observer has a chronometer 

• For work th**fc .shouki al^> column'* for tin* n atlin^H tlu* 
stridinj^ level, direct and revers^*^!, 
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on whicli lie knows the exact instant of elongation he should 

make his two observations, one before that instant and one 

after it, and both as close to the instant of elongation as wilt 

just allow him to read the verniers, to change face, anil to 

again sight on the star between the two pointings. 

The calculations are very simple as the spherical triangle 

/.PX is right-angled at ,V. We have 

sin (9<1 -- h) -■ cos h - cos . cos - /.) 

cos <f> . sin / 

sin / 
cos h 

cos 

h'rom / X/l* and the observed angle Y/X we find Y/P. 

.\lso sin (9(1 P) cos P tan . tan (9(( - (>) 

tan <f> . cot d 

tan <f> 

tan f) 
cos P 

I'roin P hour angU- and the R .\. we hiul the I..S. 1". 

.\ls(i sin (i> Cos (tX) It) . CoS (SX) -1)) 

sin n . sin <> 

sin It 

sin <f) 

sin () 

1 his gives n, the altitude of the star at elongation. I'liis 

last is useful if tlie star is a faint one, as it enables the 

observer to identify the star by setting his instrument to 

the calculated altitude r the refraction correction for that 

altitude, and to the approximate a/.imuth given by / and 

the api>roximate bearing of /.Y. the line to the reference 

mark. If he linds ;i star elongating close to his j^iinting he 

kiioW' this is the star he ie<iuires. 
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Effect of an Error in the Assumed Latitude. If we differen- 

cos 6 
tiate the equation sin Z 

cos Z.dZ 

dZ 

cos S 
cos 4> 

, we get 

cosd .sin 
cos* 

. (~ sin 4>)d6 ~ . V d<f> 

sin Z . tan 4> • d4> 
tan Z . tan <f>. d<{> 

Therefore, an error d<f> in latitude will cause a large error dZ 

in Z, (a) if Z is large or {b) if is large. We see, therefore, 

that (a) the .star should l)e near the pole, and {b) tlie method 

is unsuitable in high latitudes. 
Example 4. At a place in latitude 31^ 41' 40' S.. 121’ 

32' 30' E., a star whose K.A. - Ohr. *22 min. 15-6 sec. 

Declination 77“ 37' 54' S. is observed at eastern elongation, 
when its clockwise horizontal angle from a survey line ZY 
is 117“ 14' 50' Find the azimuth of the survey line and the 

local mean time of the elongation, if the mean time of 
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transit of tp at Cireenwich is 1 hr. 2() min. 57 sec. from mid¬ 
night, al-so tlic standard time of the elongation if standard 
time is 8 lir. fast on (ireenwich (Fig. 7). 

cos 77 37'54' j I'330,8103 azimuth of line (clockwise from north) 
.cos 31* 41'40' I I-9'i‘».859'.' -t 180“ - 14“ .'14' 50' - 117“ 14' 50' 
-I-- 48 10"i0' 
sin 14“ 34'50' i 1-400.9511 

tan 31“ 41'40' i T-790.6219 
tan 77 37'.54' 0-6.58.9912 XIV. - 82 13'05' ^ .5h. ‘2.Sm 52-3s 

<os82 13'lt.5' I-13I.6307 ylV .5h. 28in. .52-3s. - Oh. 22ni 1.5-6s 
; .5h ttOm. :t6-7s. 

.-. L.S.T. ^ 24h. ~ 5h. (I6m. :«>-7s. -- 18h. 53m. 23-3s. 
Longitude = 121° 32' »)' E. 8h. 06m. lOs. - 8103h. 

.'. Mean time of transit of ip at 121 32' 30" E. 
- Ih. 20m. 57s. OKlOs. •: 8-103 - Ih. 22m. 16-6s. 

ISh. 53m. 2iFv<s. sidert'ul time 
- - I8h. 53m. 23-3s. -3m. 05'7s. mean time 

18h. 50m. 17-6s. 
.'. Lt>cal mean time of eastern elongation 

20h. 12m. Ii4-2.s. from midnight 
- 8h. l‘2m. :i4-2s. p in. 

Standanl time is 8 hours fast on (Ireen- 

wich, i.e. is 6m. 10s. slow on Iwal mean i-h; s 
time. 
.'. Stamlard time of eastern elongation is 8h. 6m. 24-2s. p.m. 

Azimuths by Elnngatimis of l\o Stars. If the latitude is 
unknown, the azimuth of a line ZY can be found by observ¬ 
ing the horizontal angles from it to the elongations of two 
stars which reach elongation within a short time of each 
other. Thus (Fig. 8) we measure V'/fA',, V'ZA'j and, there¬ 
fore, we know the angle A'l^A’j which equals J_ Zj, 
according as the stars are at op|)osite, or the same, elongation. 

Let Z, j’(say). 
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Then 
^ cos d, . „ 

sm Z, = ,: sm Z, 
‘ cos <t> * 

cos 6x 

cos <f> 

sin Zi cos 

sin Z^ cos d, 
k (say). 

The problem is, therefore, similar to the “Three Point 

Problem;” see Chapter VTI, or it may be solved thus, 

= y f 
sin Z, ~ sin y . cos Zj cos )'. sin Z, 

sin Z. 

sin 

cot /a 
/ sin \ 1 
[ y cosy) . 
\s1nZ2 ' / sm y 

k cosec y t cot y 

Azimuth by Circum-Elofigution Ohser^ations. li. W. Chap¬ 

man, in far Surveyors, page 134 ((iriffin & ( o,), 

has deduced a formula tor the difference of tlie azimuth of 

a star from its azimuth at elongation in terms of tlie differ¬ 

ence of its hour angle from its hour angle at elongation, so 

that a series of observations of azimuth, half of them face 

right and half face left, may \m* made on a star for a short 

time l)efore and after its elongation, just as of altitude in 

circum-meridian observations. 

In our notation his formula iKcomes 

14 
0 . sin d sin Z, 

sin P 

sin Z® . sin d 

2 sin .2 
' 2 

sin r 

where Z*. azimuth and hour angle at elongation and 

/ ■ time in sidereal seconds from elongation. 
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If the observations are fairly evenly arranged on both 

sides of elongation, we can write sin Po for sin P, and 

P 
simplify the formula to. {Z^-■ Z)" == tan . sin® f). ,qq,. £• as ,, ■ t ■ r, 1oa5-5 
COS Zq = sm d sm Pq. 

Applying the average value oi Z^~ Z to the average angle 
Y/^X, we get the mean angle from Y to the star at elonga¬ 

tion. Using this formula for the extreme case of a star whose 
polar distance XP --- half the colatitude ZP of the place, the 

author finds that for a |x;riod of 4 minutes the azimuth of 

the star at elongation does not vary more tlian 5". 
{h) By Extra-Meridian Obserjiation of a Star. This is 

generally the most convenient observation, as it may be 

made at any time when the stars are visible and may be 

repeated as often as desired to obtain a good average result. 

The obser\'er sights on tlte reference mark and reads the 

horizontal verniers, then sets his horizontal cross-hair a 

little ahead of the star and his vertical cross-hair on the 
star, following the star with the horizontal tangent screw- 

nut il it reaches the intersection of the cross-hairs, then he 

reads both ends of the altitude bubble and both vertical 
and horizontal vernii-rs, changes face, and rej^ats the process 

as quickly as jwssible, then sights on the reference mark 
again and rea<is the horizontal verniers again. This coni- 

plett's a single observation, reaily for computation, but it 

should 1)C repi'ated at least once for a more accurate result. 

It is safe to assume that the average azimuth of the star 

corresponds to its average altitiule if the time betweim the 

(Tointiugs docs not exceed 5 minutes. The barometer and 

thenuometer must also be read for the refraction correction. 

In the triangle ZPX (h'ig. 9), as we know the latitude <f> 

and the declination wo know the sides ZP - - fK)'^ - <f) 
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tan; 

and PX — 90“ - d, and we have measured the altitude a 

and, therefore, know the side ZX ~ 90“ - a. 

From the formula _ 
Z /sin Is ~ ZX). sin (s - ZP) 

2 V sin s . sin (s - PX) 

we calculate the angle Z, then, by applying the average 

horizontal angle YZX to Z, we find the azimuth of Y, 

the reference mark 
Pairing Observations. After 

re{>eating the observation as 
many times as required for tlie 

desired accuracy on a star A'j, 

an equal number of similar obser- 

vadons should be made on a star 

A'j as similarly situated as f)ossihle 

on the other side of the meridian, i.e. the altitude of the st*cond 

star A', and its angle A’^F at the zenith should be as nearly 

as possible the same as the altitude of the first star A', and 
its angle A',ZP at the zenith or Declinations and Hour 

Angies A'jPZ, X^PZ should lx* equal. This is called pairing 

the observations and its object is to eliminate uncertainty iis 

to refraction. For if we have underc.stimated the refraction 

correction, the position of both .V, and A'j is too high by tiio 

same amount (the altitudes of A',and A'j Iwing assumed equal), 

and this will make both ZA',' and ZXf too small and the 
angles XfZP, XfZP ten) large, by the s;ime amount as the 

tw<* triangles ZPX^, ZPXfWerv assumed equal in all respects. 

From star A'„ the azimuth of ZY -■ fiGtP • YZXf XfZP. 

From star A', it is V'ZA',' f- XfZP. 'I'lie average azimuth 

of Zy from the two sets of observations is, therefore, 

VZAV VZAV X.'ZP x:zp 
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pends on the difference of XylP and Xt'ZP, if both are too 
large (or too small) by the same amount it will be unaffected 
by an error in the assumed refraction correction. Of course, 
in practice, the triangles ZPX^, ZPX^ will never be quite the 
same, so the error will never be entirely eliminated, but the 
nearer the triangles are to equality the more will the error 
be minimized. 

Example 5. The following is an extra-meridian observa¬ 
tion for the azimuth of a line ZY, 

i 
1 

Ibjn t 1 \'m r 

I .\UittKlc tvcvel 
I . . _ 

}l<»rtzonta) Cir«. Ir Vertical Circle 

1 
1 (Ibjet 1 Eye r A Wrnier li 

' 
\ rniier t N'emier D 

\ ! R i - 
106^ 27' 50' 

i 

j 286"2H'00' • 

Star R ! 5-*.» 44^ 39'20* 1 224" 39' 30' 28" 15'(XT '206° 15' 10' 

Star L , SPt 1 ! 225" 42' 20' j 4.5" 42' 30' 150" 59' 30' i 
1 
i 330" 59'40' 
1 

V t. ( i : 2«6" 27’40' j 106° 27' 50' ; 
i 

The stars R.A. is 4h. 32m. (>4'4s., declination 16° 22' 34" N., 
the latitude 51” 30' 31* N. The value of a level division 
is 20", the barometer 3(M) in., the temperature 35° F. Find 

the azimuth of ZY. 

The average observed altitude is 

28° 15' 05* + 29° 00' 25* 
.2 .. 
- 28° 37' 45*; 

as it is obviously rising, it must be to the 
east of the meridian (Fig. 10). I'u-.. 10 

The altitude level correction is ^ . x 20* = -f 4*. 

On reference to the table of Bessel’s Refractions in 
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Chambers' Seven-Figure Mathematical Tables, we find mean 
refraction for an altitude of 28® 37' 49' 

= 108-2' - X 4.4' - 105-4' 

and B = 1-014 for 30 in., T = 1-028, I = l-(KK) for 35® F. 

Refraction correction = 105-4' x l-0'28 x 1-014 -- 109-9' 
say, 1'50'. 

a == corrected altitude 28® 37' 49' - I' 50' - 28^ :15' 59'. 

We then prepare a table— 

a ‘ir 59* zx 1)1-* I’VOl'‘ > /.V 2.5 ir 27* 

I Miic 

. 1841,7125 1 
7 HM.59S5 

p 51* ao'jr IP 3*** is- > /p ^ 44> ‘ 15' 59- 1 1 H72.SK;4i» ' 

16* Tr 34* ! PX vT 1 V - PA ... | 4-0«*02- ! i -:<58.4e<»»>) 

1 1 » 

MM? tai! ^ 

T ;i.V5.7b49 
2)TfT »Y - 98® 45' '2K- 

’2|0 l4H,H:4lk4 

0 074.2153 

I 05 «'. / = 99 4«'ir 

The av-jrage horizontal angle from /Y tc the stal¬ 

er 48'30' + GO® 45' '20' er 18' 55' 

Azimuth of HY (clockwise from north) 

- 99® 46' 1 r + er le' 5v5'... ler o3' oe'. 

Extra-Meridian Observation for d zimuth on the Sun {l-'ig. II). 
This observntion can be made on the sun, l)ut in tliis cast* 
the sun’s disc sh^mld lx- made to touch tlie horizontal ami 

vertical hairs in two ojjposite quadrants, .say (1) and (3) in 
Fig. 11 (1) in the F.K. and I'.L. observations, so as to 
eliminate its semi-diameter both in altitude and azimuth. 

This completes one observation, but it is well to follow 
it with a sM-cond observation, in which the sun's disc is 
placed succc-ssively in the remaining two (|u.uhants, say (2) 
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and (4) in Fig. 11(1) , as it is more difficult than witli a star to 
both horizontal and vertical contacts simultaneously. 

If there are three cross-liairs, the contacts can be as shown 
in Fig. II (2). For both contacts the horizontal hair should 

be set in advance and the side of (he disc followed with the 
vertical (or inclined) hair 
by means of the horizontal 
tangent screw until the 
contact takes place with 
th(‘ horizontal hair. The 
times must be nottnl when 
each contact takes plact‘, so 
that the sun’s declination 
at tlu‘ average tithe may 
U' computed and employed in the calculation. 'Fhis, of 
cotirse, demaiuls an approximate knowledge of (irei‘nwicli 
mean time. 'I'he altitude must \>o corrected for parallax. 
A sun observation can only be “paired” on the sun itself 
aftet a considerable time has elapsed, during wliich the 
refraction conditions may have altered. 

E xtra-Mcridian Ofiserratiou hv flttnr It is ol>vious 

that from this obsi rvation of altitude wi- t an alM> lind tie* 

hour angle I\ and henrr tlie L.S T.. fn»m a star or tlu* 

l-.M. r. from tlu‘ sun. Hut in tlu* best work the observation 

is mad(* first as a finK’ <ibs<‘rvati<m simply, altituihs, altitiuk’ 

level, and chronometer times only l)eing nrordeil, and is 

paind witli a second star on tl\e otlier side' of the nuridiaii 

to eliminate refraction en<»r. '\'\\c « lironometer enoi i> thus 

found, 

fheu the a/imuth obsirvaliou is made, re('<u‘diug ( hrono- 

meter timt s and horizontal circle n ading'^, but only u/>/>re\/* 

al(itu(K‘ rea<lings for fmding tlu‘ coiiection of the 
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horizontal angles due to inclination of the horizontal axis, 
this latter being measured with the striding level, direct and 
reversed, for each pointing. The hour angle of the star is 
found by subtracting the star’s R.A. from the L.S.T., as 
found from the corrected chronometer reading at-the average 
time of the two pointings (or the equation of time from the 
L.M.T. in the case of the sun). Then, in the triangle ZPX, 
we have the angle P and the two .side.s PX = 90° -• 6, 
ZP 90° - <!>, and can calculate Z from the formulae for 

tan * and tan and hence find the azimutii of 

ZY from Z and the average horizontal angle YZX. 
The advantages arc that the vertical hair can be set a 

little in advance of the star or sun, and the instant noted 
when contact is made (near the horizontal hair) without 
touching the instalment; altitudes need only lie read roughly, 
the altitude level need not be read, and refraction does not 
affect the observation at all—the sun or star can be taken 
just above the horizon; but, on the other hand, it is obvious 
that the time must be known very accurately.* 

Effect of an Error in Altitude on the Azimuth. We have 

cos PX - cos ZP . cos ZX sin d - sin ^ . sin u 
sin ZP . sin Z\ cos ^ . cos a 

Differentiating, we have 

. /sin d sin a sin ^ I \ , 
-smZ .dZ — { . . , - , . - I ofi 

\cos cos* a cos 4> cos*«/ 

sin d . sin a • sin J> , 
cos <f>. cos® a 

* Ahtrnnomy for Surveyors, by Kicc-Oxlt*v anti Shearrr (Methuen 
Co , l.lif,, 
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i5Ut cos A' = 
cos /P - cos PA'. cos ZX 

sin PA'. sin ZX 

sin (^ - sin 6 . sin a 
cos d . cos a 

dZ ■■ - 
sin <f) - sin d . sin a 

sin Z . cos <f>. cos^ « 
. d(i 

cos X . cos 6 . cos (t 

siti Z . cos <f). cos“ a 
. da 

ctit A' . sec « . da 
sin Z 

us . .. 
sin A 

cos 6 

cos <f> 

Therefore, to keep the error in Z as small as possible, 
A' should lx; as near 90" as jxissible, i.e. if the star is circum- 

}x>lar it should lx; near elongation, if not, it should be as 

far from the meridian as possible, and the altitude should 

be as small as possible, but not, of course, less than 20° on 

account of the uncertainty of refraction at low altitudes. 
This last restriction does not apply when Hour Angles are 

observed. 
liffed of an Error in Laiihule on the Azimuth. 

sin h sin . sin a 
cosZ - , 

cos 9.cos u 

Differentiating, we have 

sm Z . dZ -- { •■11 -I \cos a COS'* <f> cos a . cos" <(> j 
d4> 

Now, 

cos P 

dZ 
sin a sin d . sin 

sin Z . cos a . cos® <f> ' 
d<f, 

cos ZX cos PX . cos Z/' sin a sin h . sin <f> 

sin /'A' . sin Z/' cos d . cos ^ 
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cos P . cos 6 . cos if) 

sin Z . cos a . cos® 4 
. d4 

sin Z sin PX 

sin P sin ZX 

cot P .sec 4 ■ d4> 

cos 6 

cos (I 

Hence, for the error in aziinutli to l)e as small as j.K)ssible, 

the hour angle should be nearly or “ hours. Obviously, 
t(>o, the method is unsuitable for high latitudes. 

Effect of an Error in Declination on the Azimuth. I'his 
would occur in a sun observation if there was an error in local 

time or longitude, pnxlucing an error in the as.sumed (irecn- 

wich mean time, and therefore in the assumed declination. 

cos Z 
sin 6 • sin 4 . sin a 

cos 4 ■ f 

■ sin Z . dZ 
cos 6 

cos 4 ■ 
. dh 

dZ 
cos d . dd 

sin Z . cos 4 ■ f ns n 

dh 

sin P . cos 4 

-r.-: ■ ros<'c P . sec 4 ■ 

Therefore, here again tlu^ hour anglt^ shoultl be as nearly 

90 as p*)s_sible, and the method is unsuited to high latitudes 

as sec 4 woukl be large. 
Daylight Observations. It is sometiin<’S convenient to nuke 

an obsitrvation for the ;izimuth of a survey line in the early 
morning or late afternoon, when the stati«>n can be .si'cn 

w'ithout illumination. The meridian must have been pre¬ 

viously fixed approximately by a reference mark, and the 
local sulereal time must Im; known approximately. 

Chf)osing a bright star, its h<»ur angle is calculated for a 
convenient instant, and from the lujur angle P and the 

sides PX -90 -b, ZP -90' the azimuth Z of the 
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sin P 
star is calculated and its altitude from cos a — . - . cos 5. 

sin Z 

The refraction correction is added to thus altitude and just 
Indore the instant assumed the theodolite is set to the 

required azimuth and altitude, when the star sliould be 
visible in the field of view and exact observations can be 
taken on it. 

Time 

The most obvious way to determine tlie local time at any 

instant on the chronometer would be to observe the time 
of transit of a star or of the sun across the meridian, as in 

the former case, the R.A. of the star would give the L.S.T. 
of upper transit, or the K.A, - 12 liours would give the 

L.S.T. at lower transit, svhile in the latter case the equation 

of time would give the L .M. f. at the average watch time of 
transit of the sun's western .ind eastern limbs. But this 

would involve previous observations to find the true meridian 

\ ery exactly, and tlu‘ theodolite, would ha\’e to lx* in perfect 
adjustment so as to sweep out a pi rfectly vertical great 

circle, or corrections for inclination of trunnion axis and for 

ciillimation must Ix’ applied. 

Extra-Meridian Observation of a Star for Time. This is 
conducted similarly to the extra-meridian observation for 
azimuth, except that the star dix;s not need to be followed 

by the vertical hair, so long as it crosses the horizontal hair 

close to the vertical hair, the observer calling “Up” or 
"Now” to his assistant at the instant of crossing, the latter 

recording the chronometer time of crossing. I'he face of the 
instrument is now cluuigeil and the horizontal hair re-set 

for a six’ond timing of tlie instant of crossing, the two 
pointings constituting one obsv^vation. The altitude level 

must, of course, be reai! each timt' before the vertical 
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verniers. Having corrected the average vertical angle from 
the four vernier readings for the altitud<‘ level and for 
refraction, we calciilate the hour angle P from 

tan 
Ism (s - ZP). sin (s ■ P\) 

sin s . sin {s - /.VI 
and hence the L.S.T. - R.A. P, according a.s the hour 

angle is west or east. 
h'or accuracy, at least another similar observation should 

be made on the star and then the olxservation should be 
"paired” by an equal number of observations on a star 

similarly situated on the other side of the meridian. This 
eliminates any uncertainty as to the refraction correction, 
or at least minimizes it, for in the one case the L.S.T. is 

(K.A.), r P, and in the other (K.A.), ■ Pj. so tiuit the average 

(R.A.), + (R.A.), rP.-P, ‘ 

2 
L.S.T. is which nearly elim¬ 

inates any error in the refra<'tion correction, as Pi and P, 
are almost equally affected. The second pointing in each 
case should bt‘ made as soon as possible after the first, the 

average value of P from each two pointings should be worked 
out as a .sefMrate observation, and the various chronometer 

errors thus found should then lx* averaged, for we arc assum¬ 
ing that the star is at the average altitude at the average 

time, which is only true over a slu>rt interval of time. 
Just as in the corresponding azimuth, observation, the 

sun may be observed instead of a star, the upper and lower 

limb being alternately sighted on to eliminate semi-diameter 

in altitude, the contact being close to the vertical hair, so 
that the vertical hair apparently bisects the disc. The 
altitude must be coirectcfl for parallax jis well as for altitude 
level and for refraction. The local mean time -- P equa¬ 

tion of time, but for Ixjth the declination and the equation 
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of time a knowledge of the approximate Greenwich mean 
time is necessary. 

Mxami'm-; 6. In Example 5 the times noted on a sidereal 
time chronometer when tlie star's altitudes were observed 

were tlh. 12m. I54s. and (Hr I7m. 16-Os. Find the error of 
the chronometer. 

We have already, 

loj* MHO s //* 

Nint* V VX 
sine .s‘ - /X 

loj; S 

I-S72.8H:tO > 

2)IS»«.U2«8 

Ion tan /; 1'799.1 fist 

P 
O 32 12' 01-4". 

P - 64° 24' ()2-8* - 4h. 17m. 36-2s. 

which we can consider negative as the star is east. 

L.S.T. 41t. 32m. 04-4s. 4h. 17m. 36-2s. 

Oil. 14m.‘28-‘2s, 

Average tif the chronometer times Oh. 14ni. 45-7s. 

the chronometer error is 17-5s. fast. 

liffixl of (VI Error in Altitude on a Time Obsereution. We 

have 
Cos cos /\V . cos 

sin /'A' . sin /P 

sin (i sin d . sin (f> 
cos d . cos tf> 

CoS /' 

cos It 
Differentiating, sin/'. <//* . . „ , a 

(t>S *> . cos (f) 
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., dP 
cos a 

sin P . cos d . cos ^ 

costH'. / . scH‘ <f>. da ; 

. da 

sin P 
as 

sin z 

Ct)S « 

Ci)S d 

Therefore the efiect on the hour angle u( an error in 

altitude is least when Z - 9(P, i.e. when the star is on the 
Prime Wrtical. and will be large in high latitiuKs. 

Effect of an Error in Latitude on a Time Observation. 

, sin a -sin c) . sin 
cos --- , . 

cos 0 . C<*S fp 

Differentiating, 

sin P . dP 

dl^ 

/ sin n , sin sin b 

\ cos d . cos- <f) C(»s d . cos- (f> 

sin d sin a , sin 

sin I*. cos <) . Cos- 4> 
dif 

lint cos / 
sin (> sin a . sin 6 

cos a . cos <f> 

dP 
cos Z , cos n . cos 
. - r; Cl dtp 

sin / . Cos d . cos- <p 

cot / . Sir . d(f>: 
sin P 

as . 
sin / 

c< »s a 
(‘<»S /) 

I herelore the i*ftect on the laair angle of an error in lati¬ 

tude will l)c zero, when / - VK) . i.e, when the star is i>n the 
Prime Verticah but will In* very large in high latitudes. 

Effect of an Error in Declination i*n a Time Observation 

(iot the Sun), 

sin a sin d . sin tf 

cos a . Co ^ f/> 
cos 
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Differentiating, 

sin P. dP 

dP 

but cos ,V 

dP 

/sin a si 
\cos <f> ■ CO 

sin d sin <f> ' 

cos® is cos ^. cos*.S, 

sin <f> - sin u . sin d 

sin P . cos (f>. cos® d 

sin ^ - sin a . sin d 

dd 

. dd 

cos a . cos 6 

as 
sin P 
sin A' 

cos A'. . COS il . cos d 

sin P . cos (f) . cos® d 

cot X . sec d . dd 

sin ZX cos a 

sin ZP cos 

. dd 

Tlie effect of an error in the declination is, therefore, less 
the farther the sun is from tlic meridian and the nearer it is 
to tlte Equator. 

Time by Equal Altitudes of a Star. Tliis is a very simple 
observation, requiring no knowledge of the latitude or declin¬ 
ation, but generally demanding a long period of waiting. A 
star is sighted rising or setting and the time is recorded 
when it crosses the horizontal hair near the vertical hair, 
the instrument is then turned in azimuth until the star 
again appears setting or rising in tlie held of view. It is then 

followed with the vertical cross-hair by means of the hori¬ 
zontal tangent screw till it crosses the horizontal hair near 
to the vertical hair at the saute altitude as before, .when the 
time is again recorded, riien obvioiisly the average of the 
two recorded times is the watch time of upper or lower 
transit. The face of the theodolite nujst not be changetl, 
and just before each observation the altitude bubble should 
lie made exactly central by means of the clip .screws. Better 
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results are obtained if (say) four pairs of observations are 
taken on the sanie star, the altitude being read and then 
altered about for the next observation, the instrument 
being re-set to the same altitudes in the reverse order as 
the star returns to them. Then the average of all the times 
is taken as the watch time of transit. 

It is important that the star should be well away from its 
transit when observed, as its altitude reaches a maximum (or 
minimum) at transit and consequently changes very slowly 
there. As shown on page 176, dP ~ - cosec Z . sec ^ . da. 

Therefore = - sin Z . cos and as P changes at a uni¬ 

form rate of 15' per second, wc see that the rate of increase or 
decrease of altitude of any star is a tmximutn lehen Z — 90°, i.e. 

d<l 
when the star is on the Prime Vertical, when ^ = - 15' . cos (ft 

where t is in sidereal seconds. The star should, therefore, be 
near the Prime Vertical when observed. A possible source 
of error is a change in the refractive condition of the air 
between the two observations if the interval is a long one. 
This interval can be reduced by choosing a star whose declin¬ 
ation is not much less than the latitude, so that the interval 

between its crossings of the Prime 
V'ertical will not be large. If the 
declination were equal to the lati¬ 
tude it would pass through the 
zenith, so the altitude of observa¬ 
tion will be considerable and a 
diagonal eye-piece will lx; needed to 
turn the line of sight through 90°. 

In Fig. 12, which represents a star crossing the Prime 
Vertical at A' and A", we have a triangle XZP, right-angled 
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at Z, then cos P tan 6 . cot <f> — f, which gives P, 
2P° ^ tan ® 

the interval being hours; also sin d — sin a . sin <f>, or 
sin d 

sin a ~ which gives the altitude of crossing the Prime 

Vertical. 

Example 7. a Persei (K.A. 3h. 19m. 31-7s., declination 
49° 37' 28* N.) is to be observed for time by equal altitudes 
on the Prime Vertical. Find the altitude when on the Prime 
Vertical and the Greenwich mean times of crossing it, the 
latitude being 51° 23'(M)'N., the longitude 1°23'00*E., 
and the sidereal time of previous midnight at Greenwich 
5h. 32m. 17-9s. 

sin 49° 37' 28' i 1-881,8504 tan 49^ 37' 28' ! 0 070,4119 
sin 51° 23'00' I-892.8:t95 

1 
tan 51" 23' 00* j 0 097,5805 

sin a 1-989,0109 cos P ! 1-972,8314 

a ~ 77“ 09'54' .'. P = 20'03'21-2'= Ih. 20m. 13-4s. 
Add refraction = 0' IS'' L.S.T. of transit = 3h. I9m. 31 *78. 
Observed altitude == 77" 10'07* /. L.S T. of prime vertical transits 

Ih. 59m. I8'3s. and 4h. 39m. 45 Is. 

1.38 
S.T. of 0 hours L.M.T. 5h. 32m. 17-9s. - x 9-857s. 

= 5h. 32m 17-Os. 

Sidereal intervals from Oh. L.M.T. are 

L.S.T. + 24h. -5h.:i2m. 17-Os. 

= 20h. 27m. (»l-3s. and 23h. 07m. 28-ls. 

L.M.T.'s are 

20h. 27m. 01-3s. ~ (3m. 16-59s. + 4-42s. + O-OOs.) 

== 20h. 27m. 01-Ss. -3m. 21-Os. -= 20h. 23m. 40-3s. 

and 23h. 07m. 28-ls. - (3m. 46-08s. + l-15s. f 0-08s.) 

= 23h. 07m. 28-ls. -3m. 47-:fe. - 23h. (Kim. 40-8s. 
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Longitude = 5m. 32s. East 
G.M.T.’sare20h. 18m. 08-3s. and 22h. 58m. 08-8s. 

Therefore the transits of prime vertical are at 

8h. 18m. 08*3s. p.m. and lOh. 58m. 08*8s. p.ra. 

The theodolite should therefore, be set to the above altitude 
and the star observed a little before the first above time (to 
allow for chronometer error) and the chronometer time noted 

when the star crosses the horizontal hair. A little before the 
second above time the star is observed again, the chrono¬ 
meter time being recorded when it crosses the horizontal hair. 

Time by Equal Altitudes of the Sun. This demands an 

approximate knowledge of the latitude and of the Greenwich 
time, as a correction must be applied for the change of 

declination of the sun during the observations. In all the 
observations the same (upper or lower) limb of the sun must 

be on the horizontal cross-hair, and the vertical hair should 

bisect the sun's face when the contact is made. On page 177 

we had 

sin ^ - sin « . sin b .. 
dr — . , ..... do 

Sin F . cos <p . cos* 0 

But sin a ~ sm <5 . sin i + cos <5. cos <f>. cos P 

sin ^ - sin*<5 . sin ^ -sin 0 . can 0 . cos ^ . cos P 
• • da * n 1 M du sm P . cos <p . cos* 0 

(sin ^ . ?os* <> sin (5 . cos 0 . cos 4> • ''-os 

sin P . cos i . cos* 0 sin P . cos <f>. cos* A j 

.= (cosec P . tan ^ -- cot P tan 0)d0 

Therefore, if the sun's declination has increased by dO', 
the aftemoofi hour angle is greater tlian the morning hour 

angle for the same altituile by (coscc P. tan tf» - cot P. tan 6)40". 
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The average hour angle is, therefore, increased by half this 
amount and we must apply a correction of 

dd' 
15 X 2 ^ ^ ^ seconds 

to the average time of the two equal altitudes. P is 
half the mean time interval between the two observa- 

dd 
tions expressed in arc, and is the change of declination in 

this half interval. A number of pairs of observations should 
be taken and the correction can be calculated for the average 
interval of the pairs. “Declination increasing” means the 

sun rising daily higher in the sky. If the sun is falling daily 
in the sky the correction must be added to the average time 
of the observations. 

AzimtUh by Equal Altitudes. The method of equal altitudes 
may be used also for determining azimuth, but in this case 

horizontal angles must be read instead of chronometer times, 
and the face of the theodolite should be changed after each 
observation before transit and re-sot to the sjime altitude 

and same face successively for the observations after transit. 
There should be an equal number of F.R. and F.L. observa¬ 

tions. The algebraic average of the horizontal angles from 
the reference mark is then the angle between the reference 
mark and the south or north, as the case may be. The sun 

may also be ust^d in this method, but in this case, where 
the L.H. limb of the sun has touched the vertical cross-hair 

before noon at any particular altitude, the R.ll. limb must 
b«.^ made to touch it at the corres{K)nding altitxide in the 
afternoon and vice versa, and there should be an equal 

number of L.H. and R.H. contacts in both moming and 

afternoon. 
A correction must be applied for the changing declination 
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of the sun. It has been shown on page 172 that an increase 

of declination d& produces a decrease of Z, i.e. XZP, by 
cosec P sec ^ . d^. it therefore produces an increase of the 
azimuth of the sun reckoned from the transit T (Fig. 13). 
From the algebraic average of the two angles between the 

sun and the reference mark Y we must, therefore, subtract 

a correction . cosec P . see tp 

when the declination is increasing 
and add it when the declination 
is decreasing, where P — half the 

mean time interval between the 
observations e.xpre.s.sed in arc and 

^ is the change of declination in 

this half interval. The watch time 

of each sun observation must, therefore, be taken and the 
average interval, 2P, between the morning and afternoon 

observations u.sed for finding the correction. 

Longitude 

The difference of longitude oi two places on the earth’s 
surface is the difference of their local times (sidereal, mean, 

or apparent) at the same instant. Tlie principal methotls 
of determining longitude differences are by (a) Triangulaiion 
(as explained in Chapter V). (ft) Chronometer, and (c) Signals. 

(a) Triangulaiion. Thi.s method is the most accurate, but 
involves a knowledge oi the earth’s dimensions and is a 

very expensive method unless the triangulation is required 
for other purposes. 

(ft) Chronometer. Here a number of chronometers ket;p* 

ing local time at place A, with known errors and rates, are 
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transported to place B and there compared with chrono¬ 
meters which have been recently checked, as to error and 

rate, on the local time at B. The difficulty is to find the 
" travelling rate ” of the transported chronometers, especially 

on a land journey, and to be sure that it is uniform. 
(c) Signals. The great developments in wireless telegraphy 

all over the world render the method of wireless signals the 

simplest and most accurate method where a triangulation 
is unavailable. At an increasing number of wireless stations 
time signals are sent out once or twice a day on the Rhythmic 
Time system, actuated by a pendulum, at the rate of 61 dots 

to a mean time minute, lasting for 5 minutes. At the begfin- 
ning of each minute a dash is sent instead of a dot, the dash 
commencing at the beginning of the minute. The result is 

a "time vernier,” the interval between two successive dots 

being gj —■ *9836 seconds. The observer notes on his 

chronometer the hour, minute, and second at the beginning 
of each minute of the signals and the succeeding second on 

his chronometer when a dot coincides with a second on his 
chronometer. By subtraction of his chronometer times he 

gets the number of seconds, which is the number of beats 
of the pendulum, since the commencement of the minute of 
the time signal and this number, multiplied by -9836 seconds 

and added to the minute of the time signal, is the signalled 
time which coincides with the chronometer time at the 

coincidence. 
Example 8. Fig. 14 shows that the first minute (18h. Om. 

G.M.T.) of the time signal was recorded at 14h. 23m. 54s. on 

the L.M.T. chronometer, and that the next coincidence 
occurred at 14h. 24m. 03s., i.e. 9s. later. Therefore, the time 
signal at 18h. (hn. ^ 9 x •OSf^Ss., i.e. at 18h. Om. 8*8524s., 
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coincided with 14h. 24m. 03s. chronometer time. Tiierefore, 

the chronometer is 3h. 36m. 5-85s. slow on the time signal. 

Repeating this observation (or the coincidences in each of 

the remaining 4 minutes of the time signal, the observer 

averages the five results. We will suppose the average result 

to be: chronometer 3h. 36m. 5*92s. slow on the time signal. 

,1- r-1-r 
K 
sT 

-f- -I- 

t'lc 14 

We will also assume that the chronometer was found to lx; 

I-OOs. fast by a paired star obst'rvation at 2h. 22m. 3(»s. 

and l-67s. fast by a paired star observation at 22h. 17m. 3t)s. 

Then at 14h. 26m. 30s. the chronometer was 

1-09 4- 
12h. 04m. 

X 0-58s. ~ l'44s. fast on L.M.T. 
I9h. 5Sm. 

LfKal time is 3h. 36m. 7vl6s. slow on the time signal. 

Difference of longitude - 45 -f 9 - l'5()-4* 

- 54 ' 1' 59-4' W 



CHAPTER V 

THE CURVATURE OF THE EARTH AND ITS EFFECT 

ON SURVEYS AND LEVELS 

Curvature of the Earth 

In the chapters on Astronomical Work we have assumed 
that the earth is a sphere. If it w'ere so, the distance of the 
surface from its centre 
would be everywhere 
the same, viz. R, the 
radius of the sphere, the 

vertical at any point of 
the surface (i.e. the 
normal to the horizon) 
would pass through the 
centre of the sphere and 
its inclination to tlie 
equator would be the 
latitude, of the place 

(I'ig- !)■ 
The equator, meridi¬ 

ans, and all (apparently) straight lines would be “great 
circles” of radius R. The length of 1' of latitude would 
be R sin 1' and would be constant, while that of 1' of 
longitude would be R cos <f>. sin 1', as the parallel of 
latitude is a small circle of radius R cos <ft. The radius 
of the sphere could be found by measuring the difference 
of latitude d<f> of any two points on the same meridian 

ds 
and the distance ds between them, as R — 

o<f> 
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By the “surface” of the earth we do not, of course, 

mean the irregular surface of the land but the surface of 
the “Geoid" or "mean sea level surface," assumed to be 

continued across the land. This surface, indeed, shows small 

irregularities, due to variations in gravity and attractions 

of mountains, so we approximate to it with a "Spheroid of 

Reference,” as the Geoid is found to be nearly an “Oblate 
Ellipsoid of Revolution,” formed by the rotation of an 

ellipse about its minor axis, and treat the small variations 
of the Geoid from the spheroid as irregularities. According 

to the latest measurements the major semi-axis of the 

ellipse, a — 20,926,500 ft. and the minor semi-axis b = 

20,856,000 ft. The compres.sion, c = 

(eccentricity)* = e* = — 0'(X)6724, 

297.(j' 

e = 0-0820, so 

that the spheroid is not very different from a sphere. 
The vertical, or normal to the surface, at any point P 

does not j>ass through the centre (except at the equator and 

poles) but bisects the angle FPF' between the two focal 
distances PF, PF', so that we have now two definitions of 

latitude: the inclination ^ (Fig. 2) of the normal PG to the 

equator is called the “geographical latitude,” while the 
inclination L of the radius vector OP to the equator is 

called the "geocentric latitude.” The former is the latitude 
determined by an astronomical observation and used on maps. 

from the equator to the poles, and if we mark off its length 

along the normal from P we get the “centre of curvature,” 
H, of the meridian. The length of I' of latitude is p sin 1* 

and increases about 1 per cent from equator to poles. If we 
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produce the normal PG to meet the minor axis at K, K is 
the centre of curvature perpendicular to the meridian, for 
as the ellipse rotates about the minor axis the normal always 
passes through K. The distance PK ~ v is, therefore, the 
radius of curvature perpendicular to the meridian, the radius 
of the parallel of latitude PM — v cos if>, and the length 

of 1' of longitude is i' cos <^ . sin 1', where r increases about 
I per cent from the equator to the poles. 

To find expressions for these two radii of curvature p 

and V, the geocentric latitude L, and the radius vector 

r — OP in terms of the geographical latitude, <f>. 

^ y 
Taking the usual equation to an ellipse 

a* - 6* 6* “ 
using c* = - j - ^ 1 we have 

6* 
1 and 

6* 

-2x(l-tf*) 
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dy 

dx 

iPy 

• dx^ 

,(1 - a 
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xV 1 - 

V a® 

\/«® - -V® . V1 - -f- 

- cot ^ 
r 

•i-t iVl - ® 

2 Va® A* 

n) 

{rt® - .v®) Vl -c® -t- A® \/l -r® rt®V l -c® 

(a® - .v®)« 

</®v 
(/.i® 

a®Vl -c® 

(a® - ,v®)* 

ta® -«r®v»)‘ 

a®^! - f» 

Now, from (1), tan ^ 
Va® A® 

aV I - <r® 

.•. A*(l ~e*) tan® <^ = a* - a® 

a® a® cos® 

■ ■ ^ ~ sec® <l> - e* tan* ^ 1 - ^® sin® <f> 

a cos ^ 
or A 

Vl - /f® sin® iff 

( c®a® ct»s® d> 

V" ■ 1 - «» sin* 

a* Vl -<!* 

(a* -«*a*)‘ 

a®V 1 ~ e* . (1 - e* sin® i 

. 
(1 - r* sin* 

And r = A sec ^ = „ ,. 
V1 - sm* ^ 

(2) 

(3) 

(4) 

(5) 
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At the equator, <f> - we have p «(! - e-) , i- = a 

At the poles, <f> - 90", we liave p - 
Vl - e^ " b 

tan L X vVl - ?■ 
tan<f> Va--x- 

-V V1 - e- 

VI ~ e'^ V- x'^ \/1 - 
V a} 

1 -e- = 0-993276 

Also X — r cos L, v -- r sin L 

r* cos* L r* sin* 1. 

"a*"” “>)* ■■ "" 
a*6* _ a*6*(l_+ tan* I) 

«* sin* L -f- 6* cos* L ci~ tan* L + 6* 

a' + b> tan’ ^ 
f + i’Tan’-# 

(6) 

(7) 

It can l>e shown that the radius of curvature of a section 
by a vertical plane inclined at an angle n to the meridian is 

pv 
- _ . _ which becomes p when « = 0, and r 

p sin* a -4- V cos* a 

when a = 90°. 
In the determination of the figure of the earth a long 

triangulation is run for hundreds of miles north and south, 
and at each station the latitude and the azimuth of the 
lines are determined astronomically. The stations cannot, of 
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course, be on the same meridian, but they can be projected 
on to the sjime meridian; the average radius of curvature 

rf.S 
between each pair of stations can then be found as 

Then if and are two radii of curvature thus obtained 
for average latitudes ^ and we have 

p,(l - sin* .^) <1(1 - e*) -= /*,{! - sin® 
an equation w'hich gives e*; tfien, by substitution, we find a 

and hence 6 = a Vl - e*. 
As the variation of the acceleration of gravity, g, with the 

latitude depends on c -- ** ^ ^, valuable confirmation of the 

shape of the earth is obtained by observations of the value 
of g at various latitudes, and the value of c thus obtained is 
in very close agreement with that obtained by the measure¬ 
ment of arcs of the meridian. 

For the surveyor the most convenient form in which the 
two radii of curvature can be given is a table giving at 
frequent intervab of latitude the length of 1' of latitude and 
the length of I* of longitude in feet. Such tables are given 
in Sir C. F. Close’s Textbook of Topographical and Geographical 
Surveying, at intervals of 5' of latitude from (F to 60® 
Tlie following table has been calculated from the most 

recent determination of the earth's figure— 

i of I-atitude i 
1 pftin 1* ! 

! 1* of 1 
, - y con ^ , sin 

I* IVrp. to Meri 
dian «« t' sin 1 * 

i 
Ft. Ft. 1 Ft. 

O'* J 00-7724 101-4545 i 101-4545 
101 0270 87-9301 1 101-5599 

5rao" 10t'39ft} a:F2«74 101-0041 
mr 101-5:194 50-a556 101*7113 

101-797:1 ! O-fKKKl 1 101 7973 
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Effect of Curvature on Surveys 

Spherical Excess. Assuming the earth as a sphere, the 
sum of the tliree angles of a triangle exceeds 180° by an 

, , Area of triangle 1 .... 
amount equal to v„--^—,—v* x • seconds, but this 

^ (Radius of earth)* sm 1 
effect is only appreciable on very large 
triangles. 

Taking the average radius of curvature / </ 
at 30° latitude as a'/ 

X 101 
528()sinT' 

3956-2 miles 

we find the area of triangle necessary for 
the spherical excess to amount to 1* is * 
(radius)* x sin I' = (3956-2)* sin 1* = 75-9 Vto. 3 

square miles. In large triangulations 
this must, of course, be allowed for in adjusting the errors 
of the angles of each triangle, which must be corrected to 
sum up to 180° + spherical excess. In calculating the sides, 
one-third of the spherical excess is deducted from each 
angle and the sides are then calculated by plane trigono¬ 
metry. 'Fhe spheroidal excess decreases towards the poles 
as the average radius increases. 

Convergence of Meridians. A much more appreciable effect 

of the curvature of the earth on surveys is that a “ straight 
line” is constantly changing its azimuth. The "Reverse 

Azimuth,” or direction of A from B, is not the same as the 
azimuth of B from A ± 180°. We can deduce a very simple 
formula for this change of azimuth on a sphere (Fig. 3). 

Let AB be the "straight line” (great circle) having an 
azimuth a at A and a •+• da at B, and let ^ and pt ^ the 
latitudes of A and B. Let C be the pole. 
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Then in the triangle . IWC, JC' 90" - liC ~ 90" • 
.-I a, B -- 180" - a - fni, (' -- difference of longitude. 

« - b 

d + B 2 C 

2 ^ .T+b-^^2 
cos 2 

90" -<^ -90" + ,Ai 
180" - d^i 2 C 

tan 2 ”• ^ 90“ _ a 2 
COS 

cos ^2'^ r 

. h 4 *,' S 
•Sin 

2 

cot -;j- 
da 2 

sin 

c 
cot rj- 

2 

^ 

.-. tan Tjr - 
*"* 2 

cos 

( 
tan ,, 

Now in all surveying oj>erations the difference of longitude 

C and the difference of latitude ^ of adjacent stations 

A and B will be small; we can, therefore, write this last 

equation 

da — sin ^ sin <j> (8) 

i.e. increase of angle from the meridian == difference of longi¬ 

tude X sine average latitude. This useful formula, although 
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derived from tlio spljcrc. is a|)plicahle to a splieroid like the 

eartli, of small eccentricity, provided the line is very short 

compared t(» the ••arth’s radius, as in practice it must lH^ 
This change of direction is <pute appreciable on surveys 

of quite moderate size, e.g. if in the latitude of London, 
51“ 3b' N., a straight line 10 miles long is ranged at 90“ to 
the meridian, the difference of hmgitude of its ends will be 

528(KI 

(>1-2874 
13' 54' 

Its increase of azimuth will Ik* 

8:14' sin 51' :10' ^ 653' ^ ^ 10' 53" or 1' 5 :1' ix:r mile 

Starting due east, or at azimuth 90 , after lo miles its 

azimuth will be i-XL lo' 53', i.e. S. 89 49' 07' E. We can 

put this in a general form thus; if d is the length of the line 

jx'r}x.*ndicular to the meridian, the difference of longitude 
d 

in seconds is , ,, and the increase of azimuth 
I' cos <A , sin 1 

on m s«*conds 

d 

V . cos i(> ^^in 1' 
sin tf> 

d fan <f> 
I' sin 1' (9) 

This formula also approximately gives the change of azimuth 
in a traverse, where d is the total departure between the 

two jKiints. and is the average geographical latitude. 

Kxami’I.k 1. To set out a jxirtion of a parallel of latitude, 

say for a distance of 10 miles in latitude 51“ flO' (Fig. 4). 

Let .'1 and li be two points on the fxirallel, P be the pole, 

and let A HD lx.* the great circle through ,1 and B, and .IC 

a great circle {x*r[x*ndicular to the meridian .-IP. Then, 
by sjunmetry, P/Ll - PAH. But PHD ---- PAH + ha - 

180“ - PH A. PAH e do ^ 180“ PAH. PAH PHA 
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-= 9(>° - Y* =^- + IF- • • ^^ ' y) 

— and for short distances we cun take BC - - AC .^ . sin 1*. 

In this case ^4C — 10 miles and we found above that 
da — 653'; so that the offset at 10 miles will be 

52800 X 
653 1 

2 206265 
-= 8:i 6 ft. 

Fig. 4* 

As the difference of longitu<le, and, 

therefore da, is proportional to the 
distance, the offset will l>e proportional 
to the (distance)*, e.g. at I mile it will 
be 0*836 ft. and at 5 miles it will be 
20*9 ft. A parallel of latitude, there¬ 
fore, appears as a circular curve of 
very large radius for a short dis¬ 
tance. Using formula (9), we can 
state this in a general form- -offset 

to great circle perpendiatlar to meridian at distance d 
itan^ d . <i*tan^ 

=-r--^i X .sm 1'.. . —r . . (10) 
r.sinl 2 2» ' ' 

Strictly speaking, the offset should not be perpendicular to 
AC. but along the meridian CP, i.e. at 89° 49' 07' to .-ir. 

We can plot a survey over a large region by rectangular 
co-ordinates with considerable accuracy, but the azimuths 
of the lines will become more and more incorrect as we 
depart farther and farther from the origin, as we are in 
reality using as axes a meridian and a great circle perpen¬ 
dicular to it (Fig. 5). If the meridians are drawn on it they 
will become more and more inclined to the initial meridian 

* S.B. In Fig. 4, for ^ read 'y in all cajwrs. 
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as wc depart fartiier from it tin* angle lM?t\vccn the meri¬ 
dians at the t\v»t ends of any line lx*ing the “ coiu'ergence of 
meridians ” for that line. The “ l)earing” of a line is its angle 
ln»ni a line parallel to the initial meridian, wlnle its “azi¬ 
muth " is its angle from the meridian at the point in question. 
This effect is quite noticeable on the British Ordnance Maps, 
where the longitudes are marked 

the upper and lower margins 
and the meridians are not parallel 
to the sides of the sheets, e.xcept 
near the central meridian which 
runs through (‘heshire. All 
methods of map projection, i.e. 
of representing larg<‘ regions of 

the curved surface of the earth 
on a Hat surface, are boiiml to 
lx* defective in some resjxjcts, 
and in this case (which is called 
(assini's Projection) distances 
north and south arc exaggerated more and more as we 
depjirt from the central (initial) meridian, and such a pro¬ 

jection should not lx? ust;d for more than 150 miles from its 
central meridian. The exaggeration is approximately as the 
.secant of the angular distance from the central meridian. 

For larger regions a system of geographical co-ordinates, 
i.e. latittides and longitudes, must be used, and some other 

form of map projection adopted to keep the unavoidable 
defects as small as possible. It would be very lalxirious to 
have to find astronomically the latitudes and longitudes of 
all stations on a large triangrdation. so we must lx* able to 
calculate the differences of latitiule and longitude from the 

lengths of lines {/) aiwl their azimuths («), and also to 
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cak'ulato the reverse azinnillts of the lin«‘S so as to obtain 

tl»e azimuths of tlte m*xt lim- therefrom; by tliis means 

only the lalitmles iiml hnij^itiules of a few stations neeil be 

found astronomkally to serve as “(‘outrols." If the earth 

were a sphere these tliflerences of latitude and longitude 

an<l reverse azimuths for two jH»ints .1 an<I />* eould lx* 

found by spherical trigono- 

metrv (as we should have two 

sides ftp [ ,, and the 
A sin 1 

included angle <1 in the splicric d 

triangle l*AH. where I* is the 

jM)le), but as it is a spheroid th<- 

formulae Ixu'ome nmcli more 

complicateil and are cpiite beyond 

the scojx' of this book. Hie 

following approximate method 

of "Mean Latitudes” is, however, suhiciently accurate for 

comparatively short lines (h'ig. 6). 

If .-1 and li are the two stations and AH /, <}> and h 
are the latitude am! longitude of .1 ami n is the azimuth of 

AB at .1, we represent the meridians and parallels through 

A and H by straight lint's at right angles to each otlu'r at 

mean latitude distances apart, t.e. we make the distance 

between the two parallels = difference of latitude of 

A and B in seconds x length (z) of 1' of latittide at the 

average latitude of .d and B, and the distance Ix'tween the 

two meridians ~ difference of longitmh' idO) of A and B in 

seconds x length (/<) of 1' of longitude at the average 

latitude of A and B. 
The great circle from A to B will be represented on this 

diagram by a curved line, convex towards the nearer pole. 
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sf) as to show an increase of azimuth from a at A to « f ha 

at li, while its average azimuth (that of tiie broken line) 

can lx? taken as n t We can then write clown the 

following formulae 

Difference of latitude of .1 and li 

I cos I a r -7y I 
d<h . seconds (11) 

1 tillereiicc of longitude of d and li 

Ism (a 1 v'-] 

hO . ' seconds . (12) 
t! 

l>ittt‘rc*nce of azimuth of AH at .1 aiul B 

da dO sine of average latitude . . (13) 

WV will first give an example in which, as d4> and dO are 

given in the data, the mean latitude ^ and da can be 

calculated at once. 

hlXAMiM I. 11 (l-.r.) Two |>oints, A and />', have the follow¬ 

ing co-ordinates 

luitiliulc IxniKitiuU- 

.1 . . Si '.’I'l-fN. y.r 48'SO* 1-: 
U . . 5i 24'18'N. 93 42'30'E. 

(liven the following values— 

Iof I' of !x>n>*itude 

I Ft I Ft. 
S2"2(>' ! 101-4115 j «2r27'2 
52 '25' i I01-4I29 820I04 
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find the :izimuths of B from A and of .1 from B, also the 

distance AB (Fig. 7). 

^ = Average latitude - 52“ 22' 46' 

Difference of latitude 3' 04*. 

Difference of lougitmle 6'20’ 

dit ^ :«0*siiu^ - 301* : 5'Of* 

Length of 1* of latitude at f>2" '22' 46* 

- 101-4115 - V (HK)14 101-412:1 ft 

Length of 1* of longitude at 52 ' '22' 46* - »i 

- 6-2-1272 -gjjj X -1168 == 62-06*26 ft. 

tan 

a = 5V 38' 54-3* 

380 X 62-0626 
184 X 101-4123 

5'or 
2 

: tan Sr 3S' 54-3* 

51'38'54-3* ~ 2'30-5* 

«5r36'24 
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a + da = 51'’ 36' 24' + 5' 01' = 51“ 41' 25“ 

Azimuth of /IB at .4 = 308“ 23' 36' from north 

Azimuth of BA at B — 128“ 18' 35' from north 

Length AB = 184 X 101-4r23 x sec 51“ 38'54-3' 

= 30.073 ft. 

More usually, we are given the latitude and longitude of 

A, the length of the line AB and its azimuth at A, so that 

we have to find SO, and Su which, when applied to the 

data, give us the latitude, longitude, and azimuth of the 

line .4B at B, As da is the last item to be found, we must 
proceed in the alM)ve order by “successive approximations,” 

du 
omitting in the first two formulae and taking the “average 

latitude” in the first fonnula as the latitude of A. Then, 

when da has l>een found, we repeat the three calculations 

in order, taking ^ into account; in fact, when one quantity 

has l>een found to a first approximation, we utilize it in the 
subsequent calculations. 

E.xample 3. A line AB, 52,800ft. long, has an azimuth 

of N. 45“0'0'W. from A in latitude 54“ 51'30'N., longi¬ 

tude 101“ 13' 15' E. Find the latitude and longitude of B 

and the reverse azimuth of the line at B, given the following 

data- - 

latitude 1 ' 

i I"' latitude 
1 

I'' lx>ngitiidc 

i 
j Ft. ! Ft. 

54*^ 50' 101*4547 1 56*5659 
54^ 55* 101*4561 58*4452 
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i’ of latitude at 54'" 51' 30" 

90 
101-4547 f -0014 ^ 101-4551 

dif> -- 368-(Hr = 6'08-00* 
^ 101-4cx>l 

-•• ^-54’5r:i0' + 3'04’ -54’54':M* 

274 
I* longitude at ^ - 58-5859 x tt-12o7 

--- 58-4557 ft. 

dO - - 6:i8-8»* - tO';i8-65-)* 
58-4n57 

da = 638-69 sin 54" 54' .'M* - 522-61* -- 8' 42-61' 

26 
1' latitude at <j> - 101-4561 0-tKH4 

t U»l-4560ft. 

52800 cos 45 04' 21-3' 
' IOI■45(i.l hCl7-,-U 

I - v54' 51' 3«r r 3' 03-76' 54 54' :«-76* 

'26-24 
'Mtii 

X 0-1207 1' longitude nl 4> - 58-4452 - 

- 58-4558 ft. 

528t)Osin45 ()4'21-3* 
d'e -- ”eo 4-co 639-54r lO':j!r)-5o 

58-4o58 

d'u = 639-50 X sin 54 ‘ 54' 3:i-76' -- 52:1-27' - 8' 4:i-‘27' 

Latitude of B - 54 51' 30' -f 6' 07-5:1' 

- 54 57' 37-53' N. 

Longitude of/I 101" 13' 15' 10':i9-50" 

- 101 02'35-50' K. 

Azimuth of AB at Jfl N. 45" 08' 4:i '27' W. 
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Azimuth of BA at B - S. 45'’<»8' 43-27' E. 

- 134*’ 51' 16-73' from north 

(This calculation has Ixjen checked by Puissant’s method 

as given in Close's Topographical Surveying, page 46, and 

found correct to the nearest 0-01'. (With the azimuth taken 

as 80’, the greatest discrepancy is 0-02'.) 

The rejx-tition of the caloilation of dp, dO, and da is rather 

laborious ,ind may be avoided by applying corrections to 

their first values thus; we notice that there is hardly any 

cliange in the denominators of dp and dt; disregarding this, 

we can write A and << for these denominators. 

/ / dll . 
. 1 cos a . cos " y • sin 

. dn\ 
a . sin ,y- 1 

l( ha . 
. ( cos a sin a . ,, . sm 1 

/ /. . Cos a I 1 tan a . . sin 1 1 

I I . dn du\ 
I sin n . cos 7j;^ *- cos a . siii tj- j 

I { . 
I sin a • cos u . . sin I j 

/ / dn \* 
sin n ( 1 i- cot a . . sin 1'1 

i)r, t>v i iivlor's I 
1 / / \ 
^ CUN ^ U \ ■ ^ ^ Ct>s ft 

^ / «>fi\ / / . t) i 

- Sin ( n 1 ) * ( Sin a -1 • . COS a 

h • \ 2 f \ - 

Aa' 

circular rnci iisiirc — sin 1 I t 
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the correction of— 

.. • • V tanu. du* ,,.. 
0^ IS - {first value) x " 412^)" • (‘4) 

, V cot n. 6<i 
IS + (first value) X . . (15) 

dit is + (correction of 60) x sin 4> . •(!<>) 

Taking the first values, 

:168 (K> X 1 X 522-61 
64 ■— 368-00': correction -- 

4125:tO 

()-47* 64 - 367-53' 

60 — 638-69': correction 
638-69 X 1 X 522-61 

412530 

-:-+0-81' 639-50' 

6a ~ 522-61': correction ■= f 0-81 sin 54'54' 34* 

- -rt»-66' - 523-27' 

i.e. this mtich shorter method gives the same results, and 

the corrections, being relatively small, can Ik* calculated on 

the slide rule. 

Latitudes and Azimuths. In rapid surveys this method is 

sometimes adopted, viz. to determine astronomically the 

latitudes of stations visible from each other and measure the 
azimuths of the lines joining the stations, also astronomically. 

The average latitude 4 is, therefore, known and A and fi can 
be interpolated from the tables, while 64 and a are also 
known. 
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Then 

60' 

. tan 4- 

w. / \ - 6<f> I tan <i r -Tf ■ sec-n I 

A / 2 \ 
. tan nil r sin 1" • ,, ) 

/« \ 2 sin 2n/ 

, . / /)n\ 
/ /.6<p . M'C In r ~.f 1 

• 1» / sin n \ 
. 6<f> I SOI' n -.7 . ) 

^ \ 2 cos-n/ 

/ 6n’ . \ 
-- A . M'o n I I ,j . sin 1” tan n 1 

dn* - AO* . sin 

Here again, the second term is uddeil as a correction when 
An has Ix'en found. 

Another iinj>ortant use of tlie "convergence of meridians 

fonnula ” is in checking the anglis of a long open traverse by 

olitaining tlie a/Jinutiis of the first and last lines by an 

astronomical observation. If the earth’s surface were plane 
the a/.imuth of the last line wouUl lie cc^ual to the azimuth 

of the first line -j- the .sum of the deflection angles to the 

right - stun of deflection angles to the left, but owing to the 
curvature of the earth a correction must be applied which 

is “difference of longitiule of first and last stations x sine 
of average latitude of first and last stations," provided the 

length of the traverse is such that the total differences of 
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latirudo and longitude are small enough for the formula to 
apply. If the traverse is too long to be treated as a whole, 
it can Ik? dividefl into sections and the convergence (»f 
meridians calculated fi>r each section. The first a/irnuth of 
each section should be corrected for convergence in such 
cases Ix'fore the section is reduced. 

Kx.'VMI’I.I'. 4. .V traverse* is run as follows 

Stilt U)!i Lt‘n‘4th 
(. !<h k\\ 

irtiin Krai Malioii 
\ 21 ninth 

li 

11 

4.S 0‘ 0" 
2M# O' O’ from Nttrth 

i:i5 O'O' 

The latittide of .1 is 5<» tM»' N. 

Find the azimuth of line ( 1) at />, given tin* folli)wing 

t * 1 1 ^ f.r>ni4«tut!r 

\ t Ft 
So OO' |0I :i7n:4 :u:<s 

o.>' lOI :47i7 2:i05 

The defl<?ction angle at H is ill) H 

bearing of Hf is 75" O' D' fn)m iu»rth. 

The deflection angle at (' is 45" 1. 

bearing of Cl) is ilO' 0' 0' from north. 
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\\V liavf. tlu;n, for tlx; three litK**; — 

i 
t .atitiuli' l)f par turf 

! 

IH . i 14I42i 14142*1 
m . ; S17<>4 1 i9:4lS*5 
< 7> ; I7.TJOS 1 HMMKXf 

('t>-(irt.lin.Ilf'S 1 . ,, 1 - 

of D sire . (I i 4:i4<>o t 

. . ti’h 

■ ■ <h 

ioi:i7ua 
5u '03'(1-72 

;«31-44' 6'01 •44' 

1' longitude at 4> - 65-3435 - 
180-72 

:joo " 
■IKiO 

65-2754 ft. 

(i65-Sl’ 11'5-81' 
434(^1 

65-2754 

<Vz (165-81' >; sin v5it (t3'0-72' 510-41' - 8'30-41' 

•. Azimuth of CD at D - ‘MC -08' 3o-4' 

Azimuth of /)(' at D 210' -08' viO-4" 

(Latitude of /) 5o 06' 1-44' N. 

Longitude of D o 11'5-81'K. of .4) 

Wlien each line of tiiis traverse is treated s«*}>arately* tlie 

azimuth of DC is foutnl to he 75 tl2'46’ at /Land the 

azimuth of ( D at (' is found to be ftO^Of-J'fL2-9' aiul at 

D 30’08'30-9', while the latitude of D is found to lx- 

50'06'0-8’N. and the longitude 0’11'06-50' east of .1 

Therefore, the latitude and longitude of D, and the azimuth 

of CD at D all agree within 1’, so that in this case it was 

amply accurate to treat the traverse as a whole.t 

• The stuUent will find it a useful exercise to do this, 
t If the second corrections are applied aRrecment is to the nearest o-i'. 
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Km kct (»f Ci’KV.vrrKK ok Li:\kli.in(. 

Trigonometrical Lnvlling. Another imjxjrtant effect of the 
earth’s curvature is in finding tlifferences of level with the 

theodolite when the distance is at all considerable, b'ig. 8 
gives a sketch to illustrate this effect; the sketch is neces- 
siirily much distorted. 

The angle u of elevation of li from .1 is measured from 
the horizontal line AD through .1. ami tne angle of tlepres- 

sion of A from B is measureil 
from the horizontal lint; BE 
through B. If, from the inter¬ 
section 0 of the vertical" 
through .1 and B, circular arcs 

.'If. are descrilx'd through 
I ' .1 and B, these arcs are ‘' level 
I* , lines, and as the angles DAT, 

' / f [ ^ EBT are each equal to c 

' ^ Ix-'ing tlie angle subtended 
by the two verticals T'A, B(' at the centre of the earth. 

the elevation a at A must lie corrected by | and the 

depression [{ at B nmst be corrected by ■ , in order to 

determine the difference of level of A and B, which is BT 
or .'1/*. 

The line of sight AB is not a straight line but is curved 
a.s shown by atmospheric refraction, the object appearing 
too high, both from .'I or B as in astronomical olrservations. 

'Fhe value of the correction, r. is not the same as in astrono¬ 
mical work, as the ray only passes through a portion of the 
atmosphere. It is found to be proportional to the di.stance 
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c 
and to have an average value of r = (>07()c = 0-14 x ,y 

or about one-seventh of the curvature correction, though 
it varies appreciably over sea and land, in different climates 

and at different times of the day.* The corrected angle of 
c 

elevation BAC at A is then o r -f and the corrected 
c 

angle of depression FBA at B is /3 -f But these are 

equal, as the cliords AC, BF are parallel; we have, therefore. 

« - r -f 
£ _ ^ -f « 

2 ■ 2 • (»7) 

We are assuming tliat the angles a and are measured from 

ground level to ground level, or, what is exactly equivalent, 

from the instniment to a signal at the same height above 
ground as the height of the instrument. 

From equation (17) we see that ^ - a = c ~2r, and, there¬ 

fore. that the observed angle »)f depression is greater than 
the observed angle of elevation, also that each of these 

B + a 
corrected angles - J their sum = ty ~- 

Where possible, the levelling should be reciprocal, i.e. both 

angles should lx; measured, and, best of all, simultaneously 
(to avoid any risk of change of refraction), and when this is 

effected the effects of b*)th curvature and refraction are 
eliminated. By such simultaneous observation we can find 

the refraction correction as 
c P ~ a 

""2 2 (18) 

To find the difference of level BC we solve the triangle 
ABC. which is nearly a right-angled triangle, as ACB equals 

♦ r averaj?t*s *07(k over land and -dHOc owr water. 
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90® + ,y, where c in seconds geodetic distune*' d (i.e. at 

mean sea-level) InHween .1 and B length of 1' of the 
earth’s surface in the direction AH. .*!f, the base of this 

triangle, can be calculated as 2{R 1- H^) sin , where 

length of 1' 

but for all practical purposes the chord .4f arc .IT 

R + H, 
-z d. unless //, is considerable this is in¬ 

appreciably greater than d. Then the ditferencc of level B( 

sin (u - r t- ‘ 1 sin In r ; 
-If' - If '' 

sin(9(r -/f r) cos (fi : r) 

- AC 
COS (a - r -t c) * cos {fi - r) 

. P -y a 
sin 

Tjrf-Tx . ■ • • (IH) 

2 ^ 2/ 

f'niess the distance .If’ is very great, the angle is so 

small ami the cosine in the <lenominator varies so slowly 

that we may alter the angle in tin; denominator tt) agree 

with that in the numerator, and we can writ** thest* 

BC AC tan - r 4- AC tan ^(i f r • 

fl -f n 
- .If tan (20) 
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for use when the elevation a, the depression ji, or both a 
and /? have been observed, respectively. 

Case when Both a and p are Depressions (Fig. 9) From the 
higher of the two points the 
angle is always a depression, 
but if the distance is great 
compared to the difference of 1 

level of the points, the angle i 
at the lower point may be also 1 u 
a depression, but a less depres 
sion than the other. In this 
cas(‘ « is negative and the 
corrected angle BAC at A is 
c , c 

- a - We now have 2~ n ~ r ~ ft + r - 2 and either 

ct)rrected angle at ,1 or B --- 

and 

P 
2 

, while r 
c _ p + a 
2 2 ’ 

sin - a - »') sin(^P + r - ^ 
BC AC ) , AC 

cos (c a - r] cos {p + r) 

= .1C 

. p -a 
sin ,, 

/p-n . c\ 
“’H 2 ■ 2/ 

c 
If. as usual, .j is very small, we may write these 

BC .^C tan r^ — AC tan 

= AC tan ^ 2 ** 
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in all of which we have merely written - o for + a in the 
formulae (19) and (20). 

Example 5 (L.U.). From 

Fig. 10 

, a station B, 97,770 ft. distant, 
is observed with a depression 

angle of 04'08* and a reciprocal 
observation from J? to /4 gave 

a depression angle of 09' 41'— 
in both cases the sights were 
taken to signals at the same 
height above ground as the 
observing theodolite. Calcu¬ 
late the refractive correction 
and the difference of level. 

Take 1* of arc as 101*4 ft. and log tan 1' = 6*685,5749. 
Here A is the lower station and a — - 04' 08* 

^-a _ 5'33* 
2‘ ~ 2 2' 46*5' = 166*5* 

rise from A to B — 97,770 x 166*5* x tan 1' 

log rise = 4*990,2056 + 2*221.4142 -f- 6*685,5749 

= 1*897,1947. 

rise = 78*93 ft. 

_ c o 
.*. r = 2- 

Also c* 

= 482*1 

97770 _ 
101*4 - 

13;^49* 
■ “2 

964*2' 

= 4821*-414*5* =67*6' 

r 
c 

67*6 
964^2 

0*070 

Eye and Object Correction. If, as happens frequently, the 
theodolite ui A ia sighted on a signal G at B, which is at a 

greater height above ground than itself, let Jt => height of 
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signal G at B - height of instrument at A. We must subtract 
the angle GAB ~ e (Fig. 10) from o', the observed elevation 
of the signal at B from ^, as an “ ey’c and object ” correction, 
in order to obtain a for the point B. 

Draw BH perpendicular to AG. Then BH is inclined at 
an angle a' - r to the vertical at A and, therefore, is inclined 
at an angle a' - r + c to the vertical at B. 

BH ~ h cos (a' - f + c) 

>ri. I A-.r, /l COS (a'- r + c) 
Then e = angle GAB — , „ . — —77^—^—r;;^— 

° J/i.sinl . sm 1 

c 
very nearly, while, as the angle ^^5 = 90® + ^, it is 
practically 90°, and therefore, 

AC AC 

~ C0S G.4C “ 7 , c\ 
cos I a'-r + 2 j 

h cos {<1'- r + c) . cos ^a'- 

^C.sinr 

h cos*^a'-- >■ + <2^ 
- - > seconds, nearly, 

A( . sin 1 ■’ 

to be subtracted from a! . . (21a) 

If a' is negative, this correction must, of course, be added, 
i.e. a' must be increased by e to give a. Similarly, we can 
show that if the signal at A is higher above ground than 
the instrument at B by the amount k, the correction to be 
added to the depression /?' at B is 

BF. sin 1' 
. (216) 
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where F is on the vertical through A at the level of B. 
In practice we can usually adopt the much simpler ex¬ 
pressions, 

h 
^ ” dsin r’ 

and / = -r---—ri seconds ■' d sm 1 

c c 
because if the angles - r -f ,, and (i‘ + r - ^ are less 

(5° 44' “ ^ 
than I JO tbe value of their (cosine)* differs from unity 

by less than \ \ while for a small correction the ■' (O-l per cent 

difference in length of AC and BF from d is inappreciable. 
These corrections must first be applied to the observed 
angles a' and to obtain a and fi for use in fonnulae (17) 
to (20) which only hold for equal heights of instrument and 
signal. 

As the length of 1' of the earth’s surface averages about 
101*5 ft., the curvature correction in a distance of 1,000 ft. 

1000 . 
averages „-~ ^'03 • The refraction correction aver- 

It X lUi'i) 
ages about 0*14 of this or 0*69* per 1,(K)0 ft. The combined 

correction, therefore, averages about 4*24' per l.(K)0ft. or 

22*39' per mile of distance. 
Example 6 (L.U.). Two stations, A and B, are situated at 

a distance apart of 11,420 ft. The following observations 
were recorded: Height of instrument at A =- 4*68 ft. Height 

of signal at A ~ 14*70 ft. Reduced level of A =- 421*20 ft. 
Elevation of signal at B 49' 05'. Height of instrument 
at B — 4*91 ft. Height of signal at B — 12*80 ft. Depres¬ 
sion of signal at A = 1® 45' 18'. Find the level of B, given 
that 101*31 ft. subtends 1' on the earth and find the refrac¬ 

tion correction. 
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Eye and object corrections: 

12-80 - 4-68 = 8-12 ft. 

•^ "" iTfl) ^ 206,265 - 146-65' 

k 14-70-4-91 

9-79 

9-79 ft. 

X 206,265 - 176-8' 

1°46' 38-35' 

11420 

a - r 49'05' - 02'26-65 

ft ^ V 45' 18' t- 02' 56-8' - 1° 48' 14-8' 

^ .U.Z r 47' 26-6' 

Ri.s<- - 11,420 tan 1“ 47' 26-6' - 357-04 ft. 

level of B - 421-20 -f 357-04 778-24 ft. 

11420 
c 

101-31 

c ft " a 
o ' o 

112-72' 

56-:i6 
I'36-45' 

56-36 - 48-22 

- 8-14' 0-072c 

were In this case if cos* - r -f or cos* ^^'4- r - ^ 

calculated, they would be found to be 0-999, while the 

lengths AC and BF would be found inappreciably greater 
than 11,420 ft.; also cos (1° 47' '26-6' + 56-36') is 0-9995031 
as against 0-9995117 for cos 1“ 47' 26-6', a difference of less 

than th part. 

Curvature and Refraction in Spirii-LeveUing. Taking the 
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average value of 1' of arc as 101*5 ft., we have c* = 
and the correction for curvature in levelling is 

c' X 5280* 
d.2 sin I -2(]QSinl 20^ 

27880000 
D» = 0*666 D* 

dft. 

lOf^ 

where D is the distance in miles. 
c 

If r — 0-070C — 0*14 2* the average correction for refrac¬ 

tion in levelling — 0*14 X *666 £)* = 0*093 D*. and the com¬ 
bined correction for curvature and refraction — 0*573 D*. 

In ordinary precise levelling great care is taken to make 

the length of the foresight equal to the length of the back¬ 
sight, in order to eliminate instrumental error, and, inci¬ 
dentally, this should eliminate any error due to curvature 
and refraction, as the error would be the same on both 
sights. The length of the sights is kept short in British 
practice, say not greater than 150 ft., to allow for irregu¬ 
larities in refraction. But when precise levels are carried 
across a wide river or arm of the sea, a long sight is necessary, 

and in this case the process of "Reciprocal Levelling" is 
employed to eliminate curvature and refraction errors. In 
the best work two levels are used simultaneously, one on 
each side of the river, each reading on an adjacent bench¬ 
mark and on the benchmark on the far side of the river. 
Then the levels are each taken across the river and the 
process repeated with the positions of the levels reversed. 
Here again we must employ a distorted sketch (Fig. 11). 

Let the readings taken from i4 be A* on benchmark A 
and Hn on benchmark B, and the readings taken from B 
be /fj, on benchmark A and A* on benchmark B. Then from 
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A, B appears lower than A by and from B, B 
appears lower than ^4 by A* - H„. 

The average fall from A to B appears, therefore, to be 

Hb “ Aji Ab — Hx 
2 

Actually, the distant readings and £f» each require a 

correction of - (curvature - refraction) so that, from ^4, B is 

lower than A by - curvature + refraction - A^, and from 

B, B is lower than A by A, - (//* - curvature + refraction) 

= Ab - + curvature - refraction. 
The correct average fall from A to B is, therefore, 

Bb “ Ai -}■ Ab — Hx 
2 .. 

as the curvature and refraction cancel out on addition, and 
this is exactly what it appears to be. showing that the 

errors due to curvature and refraction have been eliminated 

by the reciprocal levelling. 
The taking of the readings simultaneously from both sides 

of the river is to eliminate any change of refraction, and the 
change of station of the leveb is to eliminate their instru¬ 

mental error. If only one level is available it should read 
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from -4 to B, then the observer should cross the river 

quickly and read from B to .4, then he should re-cross the 

river and again read from .4 to B to ensure that there has 

been no change of refraction in the interval. If only a single 

reading is available, the corrections must be applied. 

Example 7. Two B.Ms., .4 and B, are 2640 ft. apart 

across an estuary. With the level at .4 the readings are: 

.4. 4-62; B, 6-88ft. With the level at B the readings are: 

.4, 2*89; B, 4-71 ft. The level has an error of -r 0-002 ft. 

in 66 ft. Find the level difference and the refraction. 

Fall .4 to B = J ---- . 2-04 ft. 

Curvature correction - -666 --- *1665 ft. 

Instrumental error 
2640 

66 
X •(K)2 + 0-08 in 2640 ft. 

^88 - • 1665 4- r - 4)8) - 4-62 4-71 (2-89 -1665 -f r • -08) 

20135 4- r 2-0665 - r. 

• r — 04)265 ft. - -159 x curvature. 



CHAPTER VI 

TKIANGULATION AND PRECISE LEVELLING 

Tkiangulation : Equations of Condition—Base Lines— 

Extension of Bask—Angle Measurement—Satellite 

Station—Angle Adjustment—Computation of Sides 

AND Co-ordinates 

Precise Levelling: Fieldwork and Adjustment of 

Errors 

Triangulation 

1 RlANGi'i.ATloN is the fletennination of position by the use 

of triangles, in which the length of one side is known and 

the three angles are measured. If angles could be measured 

with jK-rfect accuracy only two angles would need to be 

measured, viz. the two adjacent to the known side, but, in 

practice, when all three angles are measured their sum 

always differs slightly from 18(F (or from 180° -f spherical 

excess where the latter is appreciable in a triangle of large 
area, see Chapter \’) and the discrepancy must be distributed 

over the angles in the most probable way. If we have a 
single triangle, or if the triangles forming a system are not 

interlocked as in Fig. !«, the error in each triangle can 

only be taken as ^ the error on the whole triangle. If, how¬ 
ever, we “close'' the triangulation as in one of the quadri¬ 

laterals with diagonals in Fig. 16, the “polygon with a 

central point” (Fig. Ic). or the “intersecting polygons" of 
Fig. Id (four polygons arc shown, each with its central point 

on a vertex of another |)olygon) so as to obtain what, in the 
“Theory of Structures," would Iw called "redundant mem- 

liers," we can distribute the angular errors with a much 
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closer probability, owing to the greater number of "Equa¬ 
tions of Condition ’’ which must be satisfied. 

Equations of Condition. If we take a polygon with a 
central point (Fig. 2a) we have the following conditions: 

(i) 'fhe sum of the "central angles" taken at the central 
point O must = 36(r 

or E{0,) = 360" . . . . (1) 

If the round of angles taken from O closes, this condition 
is satisfied by the measured angles, but it must still be 

satisfied when the angles have been "adjusted" to satisfy 
other equations of condition. 

(ii) The sum of the angles in each of the constituent 

triangles must ~ 180“ (or, of course, 180" + spherical excess 
if the triangle is large). The angles laA A. B, C, D, etc., can 

be divided into L.H. angles and R.H. angles, according as 
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they appear if we face towards the central point, thus at A, 
OAB is a L.H. angle, OAD is a R.H. angle, and we call the 
former A^. and the latter Each of the constituent 
triangles OAB, OBC, OCD, ODA thus contains a central 

angle, a L.H. angle, and a R.H. angle. This equation of 
condition can, thereft)re, l>e cxpres.scd as 

fl, + 1- 180° for each of the triangles . (2) 

N.B. It would not be another independent condition that 
Bf, + -f C* -f- Ci, -f- + D,. 360°, 

as this is deduciblc from (1) and (2). 
(iii) VVe have 

j OB . sin R, OC . sin C* sin 

sin .li, sin/ifc sin/li, 

OL) sin /)* sin C» sin B^ 
sin Cl ■ sin Rt' sin A i 

OA . sin A R sin D*. sin Cr . sin R, 
sin Di ■ sin Cl. sin Zii. sin .^4i 

sin .4* . sin B^ . sin C, . sin 
sin A t. sin Bt,. sin Ci. sin D,, 

or log .sin ,4* b log sin B^ + log sin C\ + log sin D* 

=== log sin /1|. 4- log sin Bt, + log sin C'l -f log sin 

i.e. -(Jog .sin 0,) .-(log sin 0*) . . . (3) 
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In this quadrilateral, composed of four triangles, we have, 
therefore, six equations of condition to be satisfied. 

Now, taking the quadrilateral with diagonals of Fig. 26, 
which has no central point but angles are measured at each 
station between the remaining three stations, we can again 
divide the two angles at each station into L.H. and R.H. 
angles quite obviously, and the first equation of condition is 
that 

.-1« + ^4 , + -f- C\ 4- C. + -}- D,360° (4) 

A second equation of condition follows from the fact that 
the two inner angles at .4 and B must be the sujjplement of 
the angle at the crossing of the diagonals and must, there¬ 
fore, equal the two inner angles at C and D. Therefore, 

*4l -f- ( L + Bn ■ • . (5) 

Similarly, a third equation of condition is established, viz. 

R = ^1. + • • • (6) 

Instead ol these three equations (4), (5), and (6) we could 
have made use of the fact that the sum of the three angles 
of each of the triangles .IJE^C, BCD, CD A, DAB = 180°, but 
these would still only provide us with three independent 
equations, c.g. taking triangles ABC, BCD, CDA, we have 

,4t -f* R - 18b ’ • . (7) 

Bt + C'r -t- /Jr - 180° . . (8) 

Ct +/)r +/Jt-f-^4,-180° . . (9) 

Therefore, adding the first and third equations, 

.<4 R -f- /I t 4“ /^R + B,. 4" (R 4 (-1. 4" //r 4" /Jl — 360° 
as in (4). 

Now, deducting the second equation, we get Jr 4- At 
-f Br-f-£>1 = 180°, i.e. the s». .» «/ the angles of triangle 
DAB = 180°. -Xs this last has been deduced it is not an 
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independent condition. Again, we have already deduced 
equation (4) from the three triangles, and we can also 

deduce equations (5) and (6), thus 
From equations (7) and (8), 

+ Br - IStr - (Bt + C.) = C\ + Bh 

which is equation (5); and from equations (8) and (9). 

B,. -}- Ck =-■ 180° - (C,. -f- />,) />,. -f /1r 

which is equation (6). 
A fourth equation of condition can be established thus— 

BC . sin CY. (T) . sin Br sin Tk 
sin,4i. sin/it sin.di. 

sin A * sin Dr sin C\ 
AD . ; . U ■ i 

sm C sin Dl sin .1,. 

/ID sin Dr sin .-Ir sin Br sinTn 
sin D|, ■ :.in Ci' sin Di, ’ sin .-1, 

So that, here again, 

sin /Ir . sin D* . sin Cr . sin Dr 

sin AI.. sin B,.. sin . sin Di, 

i.e. the fourth equation of condition is 

2'(log sin 0.) - ^'(log sin 0r) . . . (10) 

Arrangement of Triangles. For the survey of a region of 

moderate size, e.g. the British Isles, the whole area would 
be covered with a network of interr-ecting jxilygons. This 

would be too lengthy and costly for a ver>’ large country, 
e.g. India, where chains of triangles at intervals along 
the meridians of longitude and parallels of latitude are used 

instead, as in Fig. 3. When the country has been covered 
with such a grid, chains of triangles can be cairied across 

any mesh from known stations on one chain to known 
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stations on another chain, xincl from tlu'sc the details may 

be filled in as rcqnire<l. 
\ fundamental principle in Surveying is "to work from 

the whole to the i)arl,” and not conversely,* i.e. to cover the 
country with a ‘‘primary triangulation" first, with large 
triangles or chains of triangles of great accuracy, then to 

cover it with smaller triangles of ‘‘secondary* accuracy, 
and lastly with smaller triangles still of "tertiary” accuracy, 
which will provide stations at such comparatively short 

distances from each other that the detail may be surveyed 
by chain surveys, traverses, or even plane table surveys, 
tied in or "controlled” by the tertiary stations already 

fixed. No angle of a triangulation should be less than 30®, 

in order that angular error may not cause too great error 
in the computation of the .sides. 

Base-lines. The most expensive part of a triangulation 

• Topographicnl Sufveying, by Col. C. F, CloHff. (Wynuin A Sfinn, I.td.) 
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is the base-line, the accuracy of which is the upper limit of 
accuracy of the trian^'^ulation The farther the triangulation 

proceeds from its base the less the accuracy, owing to 
accumulated errors, s«i that, after pr(x:ee<iing a certain 

distance a "Check base” or "Base of verification” becomes 
necessary, and this process will require repetition at interv'als 

if the survey covers a very large region. Base-lines 'are 
always now measured by suspended wires or tapes hanging 
in a catenary, a span of about 100 ft. being usual in this 

country, although in America longer tapes, say, 3(X) ft. long, 
supported at a number of intervening points by posts whose 
tops are set at a unifonn gradient, are frequently employed 

for the sake of greater speed. 
For work of first-class importance the tapes or wires are 

made of " Invar,” w'hich is an alloy of per cent nickel 
and 64 per cent steel, as this alloy ix)s.sesses the least coeffi¬ 

cient of expansion with temperature, viz. about -OOO.OtMt.S 

per P F., while that for steel is •000,006,25. This is of great 
importance, as it is always difficult to determine the tem- 

jjerature of the ta{)e or wire itself, especially when the sun 
is shining. “Invar” increases in length with age, comp)ara- 

tively rapidly at first but more slowly as time goes on, so 

that the tape or wire requires standardization before and 
after the base-line is measured. In practice, several of these 

are used, one being used as a "reference tape,” and the 

others as "working tapes.” The reference tape is the one 

standardized and the working tapes are tested against the 

reference tape at frequent intervals during the measurement 

of the base. The tapes are only finely divided for a short 

distance at each end, the terminal marks (Oft. and KKfft.. 

say) being well inside the rings at the ends—wires must have 
a "reglette,” or short divided scale of triangular sc'ction. 
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attached at each end, the edge of the scale being along the 

axis of the wire. 
At each end the tape is strained by a cord attached to the 

ring and passing over a pulley on ball-bearings, carried on 

a " straining trestle ” (P,, P, in Fig. 4), to a suspended weight 
of not less than twenty times the weight of the tape. Inside 

l i<; A 

these at the terminal graduations of the tajic (or the reglette 
of the wire) are placed the "measuring trijKKls” {/,, /,) 

which carry a small vertical cylinder (Fig. 4) adjustable in 
line and level, with the index mark at right angles to the 

tape, and one side cut away so that the tajH.' or reglette may 
have its upper surface level with the iiulcx mark. It is 
important that the tape or reglette sliould not disturb the 

catenary. 
There should l)e a numlx'r of such measuring triporls, so 

that several can lie set in ad\ance at approximately conwt 
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distances, all being aligned by a thewlolite, and their differ¬ 
ence's uf h'vel ascertained by level and staff. The actiial 
nieasmenu'iit is made ley a luimlK'r of siinnltaneous readings 
of the index mark at eacli end with a (hand) magnifying 

glass, the tajee being im>ved a little alternately in each 

direction between each pair of readings so as to eliminate 
jnilley friction by the " push and pull” method. The measur¬ 

ing trijx)ds are, of course, alw^ays being moved forward 
from the rear and erected in advance. It is advisable always 

to leave oni' behind the span actually under measurement in 
case of accidetits. At the end of each day’s work the 
measurement is transferred to a peg in the ground by two 

theodolites set at right angles to each other. Similarly the 
permanently marked ends of the base are transferred to and 

from the index marks on the tripods. The temperature must 
be read for each span, the bulb of the thermometer touching 
the ta{te and shaded from the sun. Accurate work is imjx)s- 

sible «in windy days. 
( \>rrectioiis of Jiuse. (1) Standard and Temperature. The 

tajx' or wire must be standardized at a projx-r establishment 

such as the Natifuial Physical Laboratory at Teddington, 
near London, where there is a marble slab. 50 metres long, 

till which tajHS can be te.sted for various lengths, supported 
under known ti'nsions a]>plied by straining pulleys or, pre- 

feraldy, suspended in catenary and just touching index 
marks at the eiuls of the tajH*. The base calibrating apj)ara- 

tus is in a gallery kept at a constant temperature, aiul the 

distance Ixdween the index marks is checked from time to 
time by a standard H-section "Invar” bar, l‘2.Jft. long, 

which is carried i»n a trawlling carriage on rails. Adjustable 
micro.scojM's fixed t<» the wall behind the slab read the 
gratlualions near the ('iids of the standard bar, then the bar 
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is moved forward until its near end is opjwsite the micro¬ 
scope by which the fonvard end was jtrevioiisly read. The 
certificate isstied will state that the length of the tape or 
wire l)etwcen its end marks (siiy, t)ft. and IDOft.) had a 

certain value at a certain temjKTature and tension. If 
desired, the coefficient of expansion with temperature can 
also be certified, this being ascertained by immersing it at 
the standard tension in a tank the whole length of the 
gallery, the water in which can Ixj kept at any required 

temperature by circulation. It is easy then to calculate at 
what lemjKTature (/„) the length of the fajM' would b«i correct 
Ijetween its terminal marks, l-'or other t('in|M'ratures {/) the 
correction will be (I Q . ^d. where / is the measured 
length and n the ccx'fficient t)f expansion. 

(2) Tensnm. If the tajx: has l)een standardized at a 
tension T^, but is used at a tension T, the correction is 

T ~ T 
+ -I, where a is the sectional area of the tape and E 

is Young’s Modulus. (E is alxnjt '22 x 10« lb. per in.* for 
Invar.) 

(3) Sag. As shown in Chapter I, the correction for 
/ IT* /* !£•* 

sag ‘s - ^ . y.2 ^ 04 • where IT i.s the weight of the tajx? 

between index marks, and 10 -- weight jwr unit length. 

(4) Slope. As shown in Chapter I, the correction for 
A* 

slope is where h is the risi (or fall) between imlex 

marks, and the ratio j is not greater than the limits there 
stated. 

(5) Height Above Sea. All survey measurements nmst be 
reduced not only to tlie horizontal Imt to sea-level. If H 

is the average height of the base-line abov«! si'a level (Fig. 5) 
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llu- riMlticctl d ig. 5) will lx; correction 

/ R \ HI HI , 
will tlicrelorc In; /(I ~ f, ff j A* |-// -^nearly, 

as R — 2(l,8VX(,(>tK) ft. nearly, and is large compared 
to H. 

Exampi.k 1 (I.U.). A base-line is 
measured with a suspended steel tape 
with a tension of 30 lb. The tape was 

correct when tested at 62° !•'. .supported, 
aiul witli a tension of 20 lb. Its weight is 
0-015 lb. |M;r ft., its st-rtional area (HK)44 
in.-*, coefficient of expansion 0-Ot)0,(K)6,25 
])er I^ F., Young’.s Modulus = ^fO X I0®lb. 

]>er in.- I'lie measured lengths of the 
five span.-., the rises t)r falls in the spans, 
and the tenijR-raturcs are as follows -- 

Span Rise Temperature 

h'ect 1 Feet 1 F- 
100I9I ! 1 f 1-26 ! 45-5'* 
100176 4^ 2 43 i 45-7* 
I(H)008 -f 0-20 1 460® 
! 00* 142 + 3 46 S 46-2® 
MH)0I2 1 - 7-72 ^ 46*6® 

Find the length reduced to sea level if the average height 
above sea is 5,000 ft. 

rfmperainfe Corteriinn. As tlic lengths arc so nearly ci]ual 
this can lx.* t alcnl.itcd on the averag^e tempf^rature, vi*. 46'*, 

lotal c«>rrt't tion ^ (46^ S lOlfiKW '^500*529 =« -0*0501 ft. 
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Tension Cort^ction, Similarly this correction can also be 
calculateii on the total length, viz. 

rotal Correction 
(3tl ~ 20) 5W)‘529 

0 0044 x 30 k lO* 
f 0 0379 (t. 

Sag and Slope Correctiofis. 

I 100 » - 10* 
X (I 4“ X (l -f~ 3.r) h A* 

100*191 1,005.730 f 1'2B 1-5HS Sag Correction ^ 
10(M7B l.iH)5.280 f 2*43 5*905 5 015.870 < i 015)» 
|(M>008 !.<Mm,24(> I 0*2i» 0 040 “ " 
I04J I42 1.<MM.2B0 ^ 3*40 11*972 -■« x aiu 
100 012 l.000.:i«0 - 7 72 59 5^8 Slope Corrii ti.m 

5)500-529 5.015,870 79 105 
100-106 av. 

-0-0522 (t 

0 3951 It. 

Height Above Sea Correiti.in 
5.000 

20.8tK).0(»0 
500-529 0 1198 It. 

Reduc<-<1 Length of Hasc ^ .>tM) 529 + 0-0379 - 0 6172 

, StK) 529 - 0-5793 499 950 ft. 

Strictly, of course, the value of I used iu each of the above 
corrections should be the vahit* after tlu^ corrections alx)ve 
it have been applied. This would, however, make no appre¬ 
ciable difference to the tension correction, as the length has 

only been redure<l f>y the temperature correction, 

and, as it happens, the signs of the fen.shui and temperature 
corrections are opposite. Kven had there liecn no tension 
correction, however, each of the lengths for the sag correc¬ 

tion would have lx*en reduced bv and the values 

of P would have Ijeen reduced liy .j which 
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would liave made no appreciable alteration of the sag correc¬ 

tion. Nor would the reduction of the lengths by 

part have affected the slope correction, nor the height above 

sea correction. The result is, therefore, correct to three 

decimal places. 
A base-line should be measured at least twice —onefe in 

each direction. The accuracy of a base so measured would 

lie between ^intl 2T)()^(>00’ accuracy is 

1 1 
required, say 50 (KX)’ measured 

along the ground, pegs being driven flush with the ground, 
with zinc strips nailed on their tops. The tape is stretched 

from peg to {>eg with a pull of 201b. registered on a spring 
balance, and a fine cut is made simultaneously with a knife, 
flush with the outside of the handle on the zinc strips at 

each end at the word of command. The two marks on each 
peg are distinguished by letters, and the distance between 

them is aftei^anls measured with a scale to -01 in. and 

allowed for. In this case there is no correction for sag. 

Extetision of Pase. A base-line is usually much shorter 

than the average length of the side of the triangles which 
constitute the triangulation. It must, therefore, be extended 

by well-conditioned triangles, the most usual method being 
shown in Fig. 6, though the process can l)e repeated as 
often as necessary. 

AB is the measured base and angles are measured at 
A, li, C, and 1)\ from these the length «.tf CD (the first 

extension) is computed, then, by measuring the angles at 
C, D, E, F, the length of EF (the sc'cond extension) is calcu¬ 

lated. If no angle is to be less than 30“, the angles of 
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triangles ABC, ABD, CDE, CDF will have to lx; about tiri*' 
and each extension would enlarge the base about V'S times; 

on the other hand, if it is sullicicnt that these triangles be 
" well-conditioned,” i.e. 

no angle less than , 
' f each extension will »-n- 
^ large the base about Ian 

75*. or ;h7;VJ limes. 
i>J 

On .solifl r<K.'k. a boll ol 

some non-rusting metal 

mav be ti.xed with cement 

in a drilled hole. Where rtK'.k is unavailable, a large stone i-> 
buried about 3 ft. deep, the .station In’ing niaik<;<l on the 

-Stone by a metal bolt fixed in it. Another stone is then 

laid flush with ground level, its mark Ixing Mitically 

above that in the buried stone, which latter is only 

referrerl to when it is feared that the .surface stone has In-en 

disturbed. 

AtigU Measuremeni. Naturally, the very l)est theiKloliti'-' 
are employed, but these never now exceetl 12 in. diainettu 

for primary triangulations. U.siially three micrometers are 

used to read the horizontal circles, reading to single sixaiiub 
and, by estimation, to d-1 .second. A small vertical telesr'ojie 

is used for centring over the station, anti a very .stm.sitive 
striding level is placed on the Imrizontal axis .An eye-piece 

micrometer is frequently fittixi in the t'‘leMdjH* for the 

bisection of tlie signal by a movable vertical hair, the reading 
of the micrometer Ix-ing adtletl to that of the einle iuicr«»- 

meters. The object of the three micromett'is on the hori¬ 
zontal circle Is to read the angle et|ually on all parts of the 

circle, e.g. if the micrometers (T,, I .,, I':,, in I'ig. 7) are at 
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0°, 120°, and 240° respectively for the first readings of the 
first station, and are advanced (i.e. "changing zero”) about 
70° for each reading till the reads 350°, then face is 

changed and the micrometers read 180°, 3(X)°, and 60° 
respectively on the first station, and the micrometers are 
then advanced about 70" for each reading until the Vj 
reads about 170°, it will lx* seen that the different micro¬ 
meters have read the circle at 10° intervals all round the 
circle, and thus errors due to irregularity of graduation are 
thoroughly eliminated. Actually, the increase of reading is 
made about 70° 01' to check the smaller divisions. 

The readings on a .number of stations are made a large 
number of times, an equal numljer face right and face left, 
and an equal number swinging right and swinging left, and 
the angles thus obtained between the stations are averaged. 
In all, each angle would be measured 20 or 30 times. Each 
horizontal reading is corrected for inclination of the trunnion 

axis. Atmospheric refraction is the greatest difficulty, and 
all rays should be kept well away from the ground where 
possible. Lateral refraction is most dangerous. Observa¬ 
tions can l)e taken at any time in densely cloudy weather— 
otlierwise from 3.30 p.m. to sun.set is the Ix^st jx‘ri(Kl. For short 
lines, opaque signals can be used; for long lines, heliotropes 
(i.e. mirrors to direct the .sun's rays from the station obst^rved 
to the observing station) are best when, of course, the sun 
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is shining. Observations are frequently made at night, lamps 
being used to sight on, refraction being more constant. 

Satellite Station. Occasionally it is convenient to employ 
as a station a steeple, or other elevated object, on which it 

would be difficult or impossible to erect the theodolite in 
order to measure the angles at the station itself. In such 

cases a " Satellite 

Station” is employed 
near the inaccessible 
station. 

In I'ig. 8 let E 
swell an inaccessible 
station to which 
angles have been 
real! from stations A, 
1> C, and D, but, 
from which it is 
impossible to 
m<;asure the angles 

AEH, BEC, CED, 
and DEA. A station 
•S' is chosen as near 
E as possible, and 

from S as many of the stations an; read as can be 
seen, say D, A, and B] readings must also lie made 
from 5 to E, and the horizontal distance SE must be 
measured by laying off a short ba.se-line ST and observing 
the angles EST, ETS. Then we have 

SE SE 
sin dA = sin ESA ; sin dB — sin ESB, 

SE 
sin dD — sin ESD 
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or, as the angles are small, 

, SE sin £5/1 SE sin £5£ 
dA" ; dB" -----Y"— Ak sin 1 BE sin 1 

_ ESD 
^ DE "iin P" 

s(j that ().l, dB, and dD can he calculated from the measured 
angles £5.4, ESB, ESD, the measured length SE and the 
values of AE, BE, and DE calculated from the unadjusted 
values of the angles EAB, EBA, EAD, and EDA. Then the 
angle AEB -- ASB-6A - dB obviously. Producing ES to 
P, we have 

.1£'D -- PED - PEA - PSD -dD~ (PSA - dA) 
= ASD + 1>A - dD 

N.B. .S' is inside the angles at .1 and B of triangle AEB, 
but as regards triangle AED it is outside the angle at A and 
inside flu angle at D. Another satellite station 5' wouhl 

probably 1h* re(|uired in order to observe the stations B, C, 
and 1) and thus obtain values for the angles BEC and CED. 

.V .similar procedure would lie adopted if it was impossible 
to siglit on a station and angles had to lx* taken to a signal 
close to it, or if it was found that a signal was not tndy 

centred over a station. 
lv.\.\Mi*i.K 2. .1, B, C are three .stations, AB — 39,8S6 ft., 

PC 24,t)76ft., and tlte angle (/>M - KW 24' IB". The 
billowing angles are imasured to the top of a spire D, viz., 

D( B 7(P 2i)' 40", CBD aS" 21' 40", 
DBA r 73 02' mr, BAD - - 44^' *25' 54' 

Prom £'. a point inside tlie angle BDP and distant 250 ft. 
from />, the following angles arc measured, 

/)£.! - 97'^ 13' 50", AEB = 62" 42' (K)" 
BEC 46 30' 50' 

!'• OS') 
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Find the angles ADB, BDC and the angular error in the 
triangles ADB. BDC (Fig. 9). 

The unmeasured angles are 
ADB -= mr - 117" 28' 30’ 62" 31' 30' 

and BlX: == 180° - K»° 51' 20' - 46° 08' 40' 
We first calculate AD, BD, and CD— 

39,sm ■»(>00,«1’0S 
sm 62*^ 31'30" j 1-948,0275 

44vS2.79:Ul 4 (>52.7930 
i,in 7:r 02' i I-980.696« sin 44'25' 54' * 1-845,1341 

.U) ! 4 <vKi489(; Iii> ' 4*497.9271 

2J.07fi ' 4 :18I,.5843 
sm 40 0S^4U" 1-8.57.9887 

4'523.5'>50 . 4 523.5950 
hill 70 20' -lO" 1-974.3.317 hill 03 2r 1 951.2647 

liU \ 4-497.9-J73 ( i) 4 474.8003 

}il) i 2-397,94(Hi 1:0 2 397.94(M) 
j <97 nrstr l-996.532« <159 55\S(r 1-.535,4951 

<82 40' 10": -- < JO 04' [O' ... 
2*394.4720 1*933,4351 

A1) ' 4•«33,489(> 0/> ' 4-497.9',’7I 

''in ()A :l-760.98;i<t Mil dfi .3 4;i5,5080 
sm r 3-685,5749 sin !' ft ■665,5749 

<vr .3075,4081 d/r •J-749.9331 

d.l IIH9 0* 19'49 0" dfi 502 :r 9' T’-'.i’ 

/A) 1 2 397.9400 97" 13' 50' 
:i:V20"i !*(>.JK.08I8 02 42' 00' 
. — . 
2*040.0218 1.59" 55'50' tH.li 

CO : ! 4'474.8(i03 4VC 30t 50" 
} 

sin MS } 3-571,7615 2(Xf^ 26' 40" 
sin r P.-6K5,5749 I5.3“.33".ir . Df-C 

2‘H80.I8<>0 dc - 769 5' . 12^ 

Therefore, 
ADB - 62° 4'2 ' «M)' 19' 49-6 4 9' 22-3' - - 62°31'32< 

and error in triangle ADB + 2-7' 
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BDC = 46° 30' 50' - 9' 22-3' - 12' 49*5' = 46° 08' 38-2' 

and error in triangle BDC - 1-8' 
Before commencing the question of the adjustment of 

the angles in a triangulation, we shall work out two examples 

on the Method of Least Squares applied 
to angles. 

F-Xamplk 3 (L.U.). A, />', C, D form a 
round of angles at a station so that 
A -f- B + C /J - 360°. riieir observed 
values were 

.1 - 76 ’ 24' 40', li . 

r ' - 103° 37' 50". 1) 

82° 14' 25'. 

97° 43' 15'; 

tile angle B }- C was also separately 

measured ticive and found to average 
185'52' '20'. I'ind the probable value of ^ 
each of the four angles if all six measure¬ 
ments were of e(|ual accuracy. 

From the equation of comtition .1 -\ B i 
we eliminate D and write 

I lO, H 

I) .= :i6o\ 

.1 1 I! :k-)0 D 

I Ik‘<)bser\alional etpiation/V ! ( 
a weight of 2. 

262 16' 45' 

185 ’ 52' '20" must have 

.V 

(I 
a 
I 

(I 

7U ?-!'nr 
S'J I-I' '.t.S' 

io,r ;</' Sir 
•JU'i' !»>' 45* 
185" S J' 20' 
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The normal equations are— 

(i) 2.1 + ft + r - 338° 41' 25' 

(ii) ,4 + 4ft I-3r716° 15'5()' 

(iii) .1 -f 3ft f 4r - 737° 39' 15' 

(i) 2,1 4- ft 4- C - 338° 41'25' 

(ii) 2.-1 4- 8ft f 6C --1432" 31' 40* 

f 7ft 4- 5C = 
1093° v50' 15' 

(ii and iii) 
21° '23' 25' 

7ft 4 5r : 1093 50' 15' ) . 
- 7ft 4- 7C - 149 43' 55' j • • 

C -= 103° 37' 50r ft - 82 14' 25r 

338’ 41' 25' - 185° 5'2' 16f' 
A - 76° '24' 34 r 

D 360° - ‘262 16' 50;:' 97° 43' 09i' and 

B yC - 185° 52' 16§' 

We will now check tliis by the method of Correlates, 
We have two equations of condition, viz. 

.1 r ft r C 4- ft :160°, and ft 4 C - ft I C 

Tlje first entails a correction of • U>', and the second of -5', 
so if e^, e^, r,, e-^ anr the corrections (>11 A, ft, C, ft, and 

ft : (', we must have 

! e./ -{ e./ ) j- ‘2Ci* minimum 

Cf f e,i i C3 i t’4 -10': <’5 -Cj -fj -5' 

f f 4- 4- '2<’,^«j = 0 

■ Ac, 4- Ac* f 5c, -f AC4 — 0 

Acs Ac, - Ac, — 0 
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Multiplying the two latter equations by - A, - /x respec¬ 

tively, adding all three equations, and equating the coeffi¬ 

cient of each 6e to zero, we get 

- C4 - - A ; Cj — ^3 -- A — /I; — 2 

Substituting, we get 

4A- 2/1 = --10' . _ . - 
- 2A -t- 2-5/i = - 5’ • • ^ ~ 

- 3J' 
. - K' - 13i 

Also /. “-^-= -5.: " e^ = e^, and r, = r, = -f ^ 

Therefore, A = 76° 24' 34 J', B = 82° 14' '25;^ 

C = 103° 37' SO,':' D 97° 43' 09J' 

B f (' -- 185° 52' 16|', as before. 

Kxami'I.K 4 (K.r.). A tunnel is to be run l)etween two 

points, .1 and B. Tlie station B is invisible from ,1. but ob.ser- 

vations were taken to two other stations, C and D, ]>otii to 

the right of AB, with A BCD clockwi.se. The following angles 

{l"'ig. 10) were recorded - 

CAD = 61° 45' (K)’, ADB = 21° 14' 10', CDB = 44° 18' 10' 
ACD --- 52' 42' 50', A( B - 31“ 20' ;10", CBD = 51“ 38' 2o" 

Calculate the angles BAC and ABD. 

The sum of tiie angles in triangle .1(7) 

180 tK»' U»' ; error - f 10' 

and the sum of the angles in triangle B( D 
179\59'50': error = - 10' 

Calling the correct values of the 6 given angles Oi, flj, 63, 
O4, O3, and 0,, and eliminating Oj ami as there are two 

equations of condition, we have 

O3 {-O3 \ O4 180 61°45'<HC - 118'15'(Kr 

0a i O4 i 0;, ISO 51 ;i8"20' 128 21'40’ 
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(h «, H, 

I ; 0 0 
0 ! I . 0 
(> ; (» I 
o (» 0 
I I I 
o I i 

0, ,v 

<> ‘Jl 14' 10' 
0 44 IS' 10 
O ST 42' 50' 
I :n 2o':io 
O ns 15'(HI 
I 12s 21'40 

riio p.ornial equations an' 

(i) 20^ r 0., f 0, i:W"29'l(r 
(ii) (K h 30, + 20, r 0, ^ 2^H) 54' 5<r 

(iii) 0, + 20,5 f i 0. - 19' 30" 
(iv) 0„ f- 0, I 20, . 159 ^ 42' 10" 

(i) and (iv) ( 0,^ f 0, + 0, i 0, 149" 35'40" 
(ii) ( 0, I 30, 5 20, I 0, 2f)0‘ 54' 5<3" 

/. 20, i 0, - 141 19' or 
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Also (i) and iiv^ ( Oj 1- % -j O4 | O5 - 149‘’35'4()" 
(iii) f t 2O3 \ 1-05-= 29!-r 19'3(»" 

% f 2O4 - 149'4.T 59' 

i 203 + 04 - Hr 19' 10' 
( 203 + 404 - 299“ 27' 40' 

158“ 08' 30' 

3 
52“ 42' 50' 

03 - 149“ 43' 50' 105“ 25' 40' - 44“ 18' 10 " 

^ 139“29'10' 97"0r«Kr 
03 ,, -- 21“ 14'Od" 

0, - 180" - (21“ 14' 05' 4 44’ 18' 10' + 52'42' 50' 

81'44' 55" 

0c - 180“ (41 18' 10" i 5'2' 42'50' f 31“ 20'35' 
5r :iS' 25" 

I By tlu* Mt'thod of ( onri.'jrs, U*! Tj, t r,, r,; hr tin* 

Ojrif('liuns <»f 0^, /a,. 0^, 0^, (h 0,.^ 

ill'll Jt’lr*) -- nniiiimini JLi-iV; »i — 
, 4, Ml a., - - A*, , u - / 

I * I J ~ K 

r, . A ^ 'i: *• 

i4/ • 2n la i i/. • j// ^ la 
(LV. f 4// Ja < \A Sfi ja 

.■. 8j(» ■ 30. II ■ 5". 

10 20 
/. - ■ —7}-— aii<I/. f II 0. 

.*, t'l ■ 5'. t'3 <'4 - o, c- <*4 -- 4" 5' 
0, or 44'55" ; 0. 21' 14'05’: 0;. --44 '18' 10" 
0, 52 42'50"; 03 312O'35';0« 51 ,'18'25' 
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as before. The reader will notice the shortening of the work 

by the Method of Correlates, but the signs of the tf’s require 

care.] 

Calling the angles ABD, a and p respectively, we 

have 

a + ^ = 0, + 0^ 44° 18' 10' + 5‘2° 42' 50' = 97° 01' (X)' 

Also 

sin a sin 61° 44' 55' . sin 44° 18' 10' . sin 31° '20' :15' 

sin p sin 21° 14' 05' . sin 52° 4‘2' 50'. sin 51° 38' *25' 

by condition (iv) for a Quadrilateral [liquation 10, page '2*211. 

sin Sr 44'.S5'! 1-944,9I«;» sin'jr 
sin 44 ’ J«' 10' i 1-844,1359 sui 
sin 31’ 20' .35' j 1-718.1378 sin 51’ 

14'05' 1 1-.5.58,9.3.59 
42' 50' 1 l -9tM1.70.59 
38'25'| 1-894.3880 

1 .505,1894 
1 ;l.54.0298 

; 1-.505.1894 I 1-354,0-298 0-1.51.1.598 

. .'iin n 
* * ^i^ fi 

1-418314 = 

ife - 1 0-416:114 

it f 1 ‘2-416:114 

sin a sin fi 

sin u + sin p' 

. n - p n + p 
2 sin ,, . cos ,, 

it - p 11 ft 
tan tan ,, 

. ii f li n * ti 
2 sin . cos 

n t P tan 
tan ,, 

48 :x»':io' 

()-4i(i:n4 
2 4161414 

1 819.4210 
0-.'{.S.3.1.534 

tan 48 ‘ :40' 3ir 
1 ■2:«>,'2878 
0-0.5:1,3188 

tan U " or 2:4" 1 ■289..5.S«i4 

A ^" 11 <u 2:r 

48 /. fi 59° 31'5:1' , p :17° '29' 07 
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Adjustment of Angles, (i) Quadrilateral with Diagonals. 
This is a useful figure for the survey for a bridge across a 

wide river, for a chain triangulation and for extension of a 

Fig. 11 

base-line. In the figure (Fig. 11) the equations of condition 

are - 

(>) 0i + + ®3 4* “H = 360° 
(ii) 0, -f- Oj — Oj 4“ 

(iii) 0;, 4- Q^ Of -f- Of) 
(iv) r(Iog sin 0|,) " ^^(log sin 0*) 

Calling the corrections ot the angles c^, Cj, e, . . . respec¬ 

tively, their increa.ses of log sine per 1' i',. v.^, f,, etc., and 

the total corrections retjuired for each of the above con- 

ditions to be fulfilled £.'j, E,.s ind li^, we have- 

‘'i* 4 .* -f ft f»’ <’** 4 <•7* 4<-,» 
minimum r(oV) - 0 — 

f, f 4 ^ r, 4" <■» f r, +- <■ 
Ki rtA-) = 0 i 

fV| 4* tV j - tVj - tVg = - 0 

<*.1 ^ ''7 ' tVj -f <V ’4 ‘ r. ti i 
4 4 • V, + 

2:(nVJ = 0 i 1 

(N.B. If an angle is greater than 90°, its v will be negative.) 
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^ ^ + (*'^1 > ^ — •^i H" " /<*'»; 

— Aj 4" ^ 4" /**'3 i ^4 = Aj 4" Aj — /1V4; 

j — Aj — Aj 4" A*^s 1 ^4 — Ai — Aj — /iVj; 

— Ai - Aj -f- ^1^7; ^4 = A| — Aj - fiVf 

Therefore, substituting. 

SAj 4- /i{», - 4-1*3 -1'4 4- Vs - V, 4- Wt - J'i) = £'i 
4Aj -I- /<} (v, - Vs) -- (t’s -1-,) I = £* 
4As + ,** I (Va — V4) -- (V7 - - Vg) I ~ 

Ai I (t-i - Vs) 4- (I’s - V4) 4- (vs - V,) 1- (V7 - V,) ( 

4- As) {i\ - V,) - (vj - r.) { 

4- A,) (v, - V4) - (V7 - V,) I 4- --= £'4 

These are the normal equations, and the values of Aj, A,, 
>ls, and n obtained therefrom give us the corrections required 
by the above formulae for <i, e^, etc. 

Ex.ample 5. Find the corrections of the angles given in 
the table for a Quadrilateral with Diagonals. (See page 243.) 

The sohition of the normal equations i.s Ixrst executed in 
tabular form as shown on page 244. 

The values of the r’s are now insiTted in the table and 
multiplied by the corr<‘sj)onditig differences of log sim* fta 
1*, to give the corre<'tion of log .sines; these, when totalle<l 
up, show that tlie L.H. lr>g sine total is decreasc'd by f)36 
and the R.H. one increased by 457, so that the difference of 
•0(J01394 in log .sine lias been decrea.sed to -(KKI.IKK),!, which 
is negligible. The total correction in the angles is found to lx‘ 
- 40*82 4- 21-82 = - 19', as required. 

The last column ("sums of angles”) now reads— 
88® 49' 40' - 3*93' =- 88® 49' :J6 07' 
91“ 10' 17* 4- 6-93' = 91“ 10' 23-93* 
88“ 49' 45* - 8-93* = 88“ 49' 36-07' 
91“ 10' 37* - 13-07* = 91“ 10' 23-93* 



$ 
c ^ 

<u 

o «= 

2 U 

tuO *t^ 

t*? s 

c 5P 

uT 

C VC u* 
nr ^ 
§ - 

c 
^ £i 

^ T, «P-I V 

2 ^ 
'w *73 
cd c; 
^ rt 
2 2 <C Jj 
<u 

& § S 
<u ^ o 

' o r^ •>> r^ ^ i 
O t 

^ to 

^0^0 
^ ^ ^ 

05 06 

i 1 
S I? 

» v-rf 
•0 •“• 

» i 
^ ff 

f:: ^- 

\ 

c. \ 

o ^ cm ^ 
do ^ ^ 

•r 'Y 0 

+ 4- + + 
+ B 

cm 

fi 
*3* <J5 cm 
c^ CO ^ o S3 

«* lO o 
Cl 

! 

.±“t:t'J: 
_±_ 

QO r^ c^i CO 
<M CO -«■ op 
o db cm db 
^ ^ cm 

«/> CO r^ 05 55 

rfc if 
f r^ «o CO 
to O C4 CO 

■o* 
to 

^■i 
CO r^«o o 
uo r*' CO i c^ op c^ r^ 

% * » « 

. a 
(M *0 <3^ Cl 
‘<r CO o cm 

QO *— 
•If CO 

do ^ ^Ti do hi 0 8 <v^ 5 tjo cm o — ^ 
*— -< o o o o c 0 e 

S?S?5? ss 

d 
cm -r cc 00 

rs, — i^ CO 
*0 00 05 o <35 

■» ' —• -r Cl <7V O' CO 
V. 

! ♦ J » 1 1 1 

-r Cl vT. 
oc 17- O » Sc 5 

'«• <T. rb cb -c 0 05 
''T cm •—» 

; f 1 1 
.L ■+ 

J 

0 Cl 
^ —• -r i'^ 

{ 

* i 
to rb '4' 
— Cl CO — t i 

^ S 5; CO Cl CO CO 
«o — 

-.... j 

5 

'u: if S 3 cm •? 
do ''T 
CO to 

CO 

9 -E oo- c-T 0 co" 
0 Cl oPi —« 
^ Cp CO 05 

Oi' trT 

«9 

t % » « 
oo Cl CO to 
•0 -r « —« 

% 
i 

CO 
X*Sb- 

J < 
s'£gs 
0 f> ...» 9 

0 
-f 

i 
\ 
\ 

c^i a> tn 
uo o* cm to 1 

\ 

6 *— CO »o 
e 
s 

i 

i 
JAJ \ 

',=1. :a :a 

o 

II 
Oi 

s 

^ f—% 
H H do „ 
u.o’^ « 

’ ‘ 

O Oi o * 

'**■•”* s^ 
• +3“i 

o in c^ Oi OO 
.1^7 _.CO ’ 
, — o 

-f-x 1 7 ‘ cm CO 
CO or 
ors — QO 

TS 
CO 

br r 
10 

4* 
S s 4- «• 
^21' * 
=*•« 

t. *■>2 00 

4" 
-T 

+*2 

XT' "< 

3- 

o *-m 
cS 
I/: C O 
c< 

O 
G 
if 

^43 



S<N® 
M i tp 

} l>» Ul t to 
^ ^ ^ eii Nt* to rr < 

fli £< fS -• ! 
c c c , 

M .§ i 

Cl s ^ 
M Cl to 

$9 5$ 

So I S 
^ ih A <o 

I 4“ ^ "t“ 

!1 II II II 

•i2 g §5 2 

X X X X 

I -f • 'H 

2 2 ^ S 

?l ?l S 3 
M 0*1 «b ix> 

I I -f- -i- 
« 

3 3 3 3 
c-'l 04 04 

I I I I I I I I 

li II II II II II II II 
^ w » 

2-
34

20
 +

 2
-2

21
6 

-
 

-3
46

9 
x 

37
-4

7 
=
 
-
 

13
-1

2"
 

2*
34

20
 -

f 
2

-2
2

1
6
 +

 -
34

69
 x
 1

2-
42

 =
 +
 

4-
19

* 

2-
34

20
 
-
 6

-6
4

0
0
 -
 

-3
46

9 
x
 

14
-7

2 
=
 
-
 

14
-0

9 

2-
34

20
 -
 

6-
64

00
 +

 -
34

69
 x

 2
8-

83
 =

 +
 

1
0
2
' 



Triangulation and Precise Levelling 245 

so that all the four conditions are complied with by the 
corrected angles. 

(ii) Polygon with a Central Point. This is a most adaptable 
figure, as the polygon 
may have any number of 
sides from three upwards. 
It is the form adopted 
when the whole surface 
of a country is to. l>e 
covered with triangula¬ 
tion, the polygons inter¬ 
secting each other. We 
shall take a Quadrilateral 
for illustration, but the 

principle is the same for 
any number of sides. 

In the figure (Fig. 12) the equations of condition are— 

(i) 0, -t- 0, 4- 0, - 180° 

(ii) 0, -F 04 + 0.0 = 180° 

(iii) 05 -f- 0. 1- 0„ 180° 

(iv) 0, -f 0* f 0„ - 180° 

(v) 0» -f- Oio -f- 011 -f- 01J = 360° 

(vi) 2’(log sin 0,) = 2'(log sin 0*) 

We have, therefore, 

iV*) ■= minimum 2,'(<A*) = 0 
e, + '■j 4 e, l<i «V, + (V, + iV, 
<■4+^1 + f,* ■- »V, 4- iVj 4- (V,, 
<'i + Cj 4 <fn “ I't dfg 4- Aft 4- 
ft 4 4- fit Aff 4- Aff 4 dfit 
f* 4- <'i» 4- (’ll 4- ^11 t--t Aft 4- <V|j 4- A-,! 4 A,, 
f, i', -1",!), 4- ffii'i <’4!', 4 ftVt 

4 f,v,-etv, r= /;, 
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<5, = 4- HIV. e, = A, ~ e, = ^ + fay, 

<?« == A, - /«'«; Cs = A, + ^v,; 

~ A4 -f" i <5* = A4 — /iWg; tf 4 .— -(- Aj; 

^0 ~ Aj + Aj; “ Aa + A|; e^ = A4 + Aj. 

Therefore, substituting in the observational equations, we 
get the normal equations, viz.— 

(i) 3Ai + Aj + /4(r, - I’j) = £', 
(ii) 3A* 4- As + -1-4) 

(iii) 3A3 4" Aj 4" h(^'s ~ *’«) “ ^3 

(iv) 3A4 + A* 4- j«(t4 - Vs) ^ i 

(v) Aj 4" Aj "I" A3 4' A4 -j" ^Aj £'s 
(or, A, 4- A, 4- Aj 4- . ■ . A„ 4- «A„ ( I - for » sides) 
(vi) A,(i>i - t>t) + A3(i>, -1'4) 4- Aj(i's - tj 4- Aair., - r,) 

4- /<2'(v*) £« 

We could solve these equations by the tabular process of 

elimination used in Example 5, with columns for the coefti- 

cients of Aj, A*, A*, A4, Aj, yu and N. We should put down 
equations (i), (ii), (iii) and (iv) in order with eliminating 

equations for A^, A,, A, and A4 in terms of A« and h- Then put 
down equation (v) and substitute for A,, A*, A4, giving an 

eliminating equation for A, in terms of /i. Then put down 
equation (vi); substitute for A,, A,, A*, A4, add up the columns 
for A,, H and N, and, on substituting for Aj, we obtain the 

value of H- now retrace our steps and find successively 
A,. Aj, A,, A, and A| and hence the various e’s. In Appendix I 
is given the tabular solution of Example 6 on page 248. It 

is rather a tedious process without a calculating machine, 
and the following method of “Successive Approximations’* 
suggested by Professor J, B. Dale will probably be preferred 
if the errors are small.* 

• Or Panton's metliod may be used, vix.— 
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Adding (i), (ii), (iii), (iv), we get 

3Ai 3Aj -f- 3Aj -1- 3A4 -|- 4X^ — Ei -J" -I- £3 + £4, 

ignoring the fi term. 
Multiply (v) by 3— 

3Ai 4- 3A, + 3A, + 3A4 + I2A4 = 3E^ 

3£3-(£4 + £3 + £, + £4)* 
Subtracting, Aj 

8 

Using this value of A5 and stiU ignoring the fi terms, from 

(i), (ii), (iii), (iv) we can write 

J £1 " A5 Xij - As 

Aj — 2 .A3 — - , Aj 
£,-A. 

3 
'* “ As 

, A4 = 
£4-As 

Substituting these values of Aj, A*, A,, and A4 in (vi), 

we, have 
_ £4 - EX{i\ - V4) 

.i(v^). 

We then proceed to a second approximation, finding 

£,' — £, - fi{vi - t's), etc., 

_ 3£s - (£/ + £3' + £*' + £4') 

. 8 

and then 
F 1 

A, == ‘3 etc. 

If the second value of fi differs appreciably from its first 

value, we must repeat the process until no appreciable 

change is effected by repeating the process. 
Example 6 (L.U.). ABCD (in clockwise order) is a quad¬ 

rilateral, with a central point £. which forms a triangulation 
Multiply (y) by 3 and subtract it Irom the sum of (i), (ii). (iii) and (iv). 

This giv« (Vj — <'*).— — 3£». Multiply (vi) by 3, (i) by 
V| — V|4 (ii) by (ui) by Vg^ Vg, (iv) by — vg miu »ubtj[a«;i 
Tliis give* V/f)* — 3 -f - Pji) « (v^ ~ Pji) 

ZEg. These two equations give a simultaneous equation for A^'and /i* 
Then proceed as above for A|. kg, Xg and Xg. 

* If there were n sides in the polygon the denominator would be 2ti. 
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for a bridge across a river, E being on a small island. The 
measured angles are tabulated as shown on page 249. 

AB \s the l>ase line and its reduced length is 499*857 ft. 
Adjust the angles to tlie nearest second by the Method of 
Least Siquares. Calculate the lengths of the sides EB, BC, 
and EC to the nearest 0*01 ft. P is a point in AB, 247*61 ft. 
Irom B,Q isA point in CD such that PEQ is a straight line. 

Find the angles BPQ and CQP to the nearest second. 
Calculate the lengths of PE, EQ. and ('Q to the nearest 

(Mil ft. 
We first add up the three angles in each triangle and find 

£, - - 10'. F, -- + 10', A'a = 4- 5', E^ - + 5'. Then we 
add up the central angles, total 360'" tK)'(K)', - 0. 
Then wo enter the log sines of each angle (and the increases 

per 1') as shown. We add them up and find that they 
require a shift of 819(*(KK)0819) to the left; /i, = 819. 
First Approximation. 

j _0 -(-10 4- 10 + 5 I 5) 

- 10 + 1*25 
- .j - -- - 2*92; 

10 
A-» ■ • ■ 

1 1-25 
3 

h ** : 
5 -- 1*25 

3“ 
208 

Then we make a table - 

•’t t'.,* i'R 

n-67 i K«*i i 12*18 ! 148-4 1 (»*5I 
.as-sa ; II3IO 87 15 l.38t)-(> ! 8*52 
«3-9a ; ItM-a ! 10 78 ; II5-I j 8*20 
38-45 ! 1479-0 ! 

1 __ 
87*57 1 1411-0 t 0*88 

1 2940-2 1 
1 1 3054-5 j 
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E(v*\ » 5995 
819 - ((- 2-92) (- 0-5J) + 3-75 (- 3-52) + 2 08 (3-20) + 0-88 (2 08)) 

• • ^ 5995 
819 - (1-49 - 13 20 + 6-6fi + 1-83) 822-22 „ 

-^5995- - “ 5995 “ ® 

Second Approximation. 

= - 10- 1372 ( -0-51) = - 9-93 
= + 10- 1372 (-3-52) = + 10-48 
= + 5 - -1372 X 3-20 - + 4-56 

£; = + 5 - -1372 X 0-88 = + 4-88 

0 - (~ V)-93 + 10-48 + 4-56 -f 4-88) -9-99 
~ . “8 "" 8" 

K 

~ - 1-25 as before 

-9-93+ 1-25 
3 

= - 2-89; A, == "’-1^-t±H5 ^ 3.91 

^,.94; ,._:'‘»+':?5=294 

819 - ( (- 2-89) (- 0-51) + 3-91 (- 3-52) + I -94 (3-20) -f 2-04 (0-88)) 
f‘ - . 5995 

819 - (1-47 - 13-76 -f 6 21 -f 1-80) 823 28 „ 
“-5^5 — -.- “ 5^5 - - 0 1373 

as against 0-1372 before. 

Therefore we can take 
Aj = -2-89, ;i, = 3-91, ;i, l-VM. A« - 2-04 

A, = -1-25, /I = 0-1373. 

^, = - 2-89 - 1-25 = - 4-14'; e^o ------ 3-91 - 1-25 = 2-66' 
= 1-94 - 1-25 = 0-69'; = 2-04 - 1-25 = 0-79' 

which we enter in the “correction column" for the central 

angles, where they total (HK)'. 
-2-89+ 1373 X 11-67 l-29';f,=-2-89--1373 X l2-18 = -4-56' 

#, » 3-91 + -1373 X 33-63 =-• + 8-53';<f« == 3-91 -1373 x 37-15 «. - 1-19* 
- 1-94 + -1373 X 13-93 + 3-«5*;4-, =» 1-94 - -1373 x 10-73 « + 0-47' 

#, - 2-04 + -1373 X 38-45 * + 7-32'; « 2-04 - -1373 x 37-57 » -3-12' 
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We note 
= — 9*99*, ^3 H" ^4 "I" Cio — + 10*00* 

+ ^4 4* ^11 = + 5*01*, Cj e^-\- Cjj = + 4*99' 
so tliat the three angles in each of the four triangles now 
total 180“ 00'00' to 0*01. 

Entering these corrections (odd = left hand, even = right 
hand) in their respective columns, and multiplying by the 
differences per 1', we obtain the corrections of log sine, 
which now total -f-607 on L.H. angles, -212 on R.H. 
angles, making a shift of 819 = *(XXX)819 to the left as 

required. 
Now, proceeding with the calculation (Fig. 13)— 
499-857 2-698.84.58 tili 2-707,4261 

sin 6, corrected I-941.8808 sin 0, corrected 1-692,8030 

cosec SO" 03'5-86* 0-066,6995 3-014,6231 

EB 2-707,4261 sin 0. corrected 1-725,0259 

509-8;t (t. 

2-698.84.58 
1-941.8808 

Eli 
sin 0* corrected 

2-707,4261 
1-692,8030 

0-066,6995 3-014,6231 

2*707,4261 sin 0, corrected j 1-725,0259 

EC 2*739.6490 

/. EC - 549*10 ft. 

1 Id* 23' .52-«?6' 
61°36' 07-:M* 

liC 
909-79 (t. 

EPB~PEB 
2 

, PBE 
where - ^ 

3*014,6231 as aly^ve 
1- 944.3176 

2- 958.9407 

509*83 - 247*61 PBE 
509*83 + 247*61 2 

59“ 56'1*44' 
2 

29“ 58' 0*72' 

EPli - PEB 
2 

262*22 
cot 29" US' 0*72" 

30" SS' 53-9" 

2*418.6656 
0*239,1408 

2 657.8066 
2*879,3482 

1*778,4584 
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PDP I PPP 

and —^-- = 90“ - 29° 58' 0-7' - 60° 01'- 59-3' 

EPB = BPQ = 91° 00' 53-2' ; PEB = 29° 03' 05-4' 

CEQ = 180° - (29° 03' 05-4' + 118° 23' 52-7') 

= 180° - 147° 26' 581' = 32° 33' 01-9' 

CQP = 180° - (32° 33' 01-9' + 56° 28' 04-8') 

- 180° - 89° or 06-7' 90° 58' 53-3' 

EB 
sin 0, corrected 

2*707.4261 
1*937.2402 

cosec EPB 

PE 

0*000,0662 

2*644.7345 

/. PE » 441-30 ft. 

EC 
s«n CQP 

Hill 0* correctetl 

HQ 

EQ « 457 ': 

■2-739,6490 
1- 999.9362 

2- 739.7128 
1-9-20.9461 

I 2-660.6589 

: 2-739,7128 as above 
sin CEQ I I-730.8172 

i 2-470.5300 CQ 

CQ - 295-48 (t. 
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(iii) Two Intersecting Polygons with Central Points. We 
will take only a simple case, viz. two Quadrilaterals which 
intersect, the central point of each being on a vertex of the 
other. Let the angles be numbered as in Fig. 14. We shall 

distinguish the quadrilaterals by their central points A and 
B. The normal equations are deduced thus— 

2r{r«) - minimum 2:(c6e) = 0 

'i (-'t I- ^ 6e^ 4- + <V, 0 

«, -i- ti -I- f* i-t -4- = 0 

‘i t- f r. /•:, <V, f 6e^ -f 0 

'1. + '■n + /u *^11 = 0 

«i» 'it -f fn /s» rV„ + cV„ 4- <V,s - 0 

+ ^l» <Vi, -f- <5^17 -f <5^j. 0 

f, t e. f /'j,- i:, <V, -f ^4 + <5^1^ -f* <V,g ^ 0 

e, + <•, -f de,* 4- dr,. 0 

- V) cV,CA, - -f dr,iA, - -f 

- <V,4t/,4 + dr„i^,7 ~ dr„t»„ = 0 

V) Ai.. <5^41/4 - dr4^4 -f dr,!/, - dr4V4 -f* 

dr,4^,4 - iV„v„ + dr,4V,4 - dr,4»,4 -- 0 

-K 

~ K 

-A, 
-A, 
-A. 

~Ut 
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— A| I 

fjl — 4“ ^7 i 
— Aj + fiiV^ ~ fi^v^; 

Cj = Aj 4* *» 
= Aj- /ifVf; 

= A4 - ; 

^13 = Aj 4* Aj 4" 

^14 Aj 4" A7 - ; 

^17 “ A3 4* f^i^n I 

— A| - ; 

^4 ^ A3 + A7 4" /h^4 I 

A3 4“ Ag - /iit/g: 

^8 == Ag 4” i 

^10 — A4 4“ /H^io» 
^11 ^ A4 4* Ag; 

^14 A5 - /<il^l4 4“ /V^U i 

^18 Ag 4“ A7; 

^18 Ag -- /i|T^lg 

Therefore, the normal equations are— 

(i) 3A| 4" A7 4^ /^i(^'i ^'2) ™ Ai| 
(ii) 3A3 + A7 4” Ag 4“ ^«) + - ^b) - 

(iii) 3A3 4” Ag 4* ^3 
(iv) 3A4 4* Ag 4 '•^'11) Aig 

(v) 3Ag 4 A7 4 Ag 4 Mi(vi3 - Vt4) 4 - Vn) -- £*4 

(vi) 3Ag 4 A7 4 fh{^\7 ^'i«) = ^-8 

(vii) Aj 4 Ag 4' A5 4 Ag 4 4A7 4 fHi^U ^’i&) £7 

(viii) 4 A,, 4 Ai 4 A^ 4 4Ag }- - r*) fe'^ 

(ix) 2:,A(r, -- Vg) 4 /q ^\{v^) 4 Ag(T'j3 - Vg)) /<3(V 4 t»,4*) 

.. /fg 

(x) - Vm) 4 fh ^n{v^) 4 Xj{v^ - v,g) - /I,(rg« 4 

-£,o 

For solution by successive approximations, ignore /4 terms, 

add equations (i), (ii), (v), and (vi), and subtract 3 x (vii), 
thus— 

3A| 4 3A3 4 3Ag 4 3Ag 4 ^Ag 4 2Ag — £| 4 £14 £4 4 £g 

3A| 4 ^Ag 4 '^Ag 4 3Ag 4 I2A7 ■ ~ 3Ej 

8A7-^2Ag-3£7-(£,4£t4£4 + £8) . . {a) 
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Similarly, add (ii), (iii), (iv), and (v), and subtract 3 x (viii)— 

3Aj -1- 3^3 d- 3^4 -■}- 3^5 -|- ‘IX-j d" “b E^ + £j 
3A3 d- 3A3 3A4 -j- 3A5 -f- 12Ag — 3Eg 

— 2A7 4* 8A* = 3£.’g — (£j 4- £3 4- £4 -f* -^s) • • W 

These simultaneous equations (a) and (b) give us A, and A,, 
then 

j ^1 ~ ^7 j ^7 ~ ^8 5 

— o I o ■ . '*3 3 

E,-X, 
3 3 ■ 

When these values are inserted in (ix) and (x), we have a 
simultaneous equation for /i, and /i,: then proceed as in 
Case (ii).* 

Computation of Sides. This should be done in a methodical 
manner, for which the following table is suitable, the data 
being taken from Example 6. • 

Tnangl** Allglr Angle Miie i Ditiermee » Ixtg side ! ■Side 1 Side 

j FAiA 1 f»9* .‘W'OI ti' 1 T 937.24(n! j 

! 1 9:i3.3rg»5 ] 

i ! 
i 0 00.1,93971 

2'70'2,78.55 j 504 41 FA 

Ahli \ 59* 03'0.^9- I 
1 

1 : 
i 0 (StH..5«03 1 

2-898,84.58 ! 1 499 857 AB 

1 I 94I.HK08 

1 _1 

KAO 61* 00'52 7' ! 

i 
i 
1 

2 7U7,4'26I 1 1 509'83 FB 

EHC OFX 118= 23'52 7* i 
I 

1944,3178 

I ^9*2.8030 
0*251.5146 

2 958,9407 909 79 BC 

FCO 29*:ri'04(r 2 707,4’28l 509^83 EB 
1 1 

1 I 725.0259 
04)32.22*29 

HOC 32* 04'02 5* 1 ! 2 739.6490 549 10 FC 

In this table, the known side is written on the middle line, 
and the side which is to pass forward into the next triangle 
is written on the last line. The table is continued up to 

* The student should apply this method to two intersecting hexagons* 
with two triangles common; then to three intersecting hexagons* one 
triangle common. 
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triangle EDA, in which the side EA sliuuld check with its 
value above. 

Co-ordinates. By extending the alxive table with columns 
for the bearing of the side from some selected meridian, the 

log cosine and the log sine of this bearing, its latitude and 
departure, and the total co-ordinates of the stations from 
some convenient origin, these last can l)e computed in a 

systematic manner. Plotting should always be effected from 
calculated co-ordinates of the stations, (a) as a valuable 

check on the plotting is the mea-surement of the length of the 
side when thus plotted, and {b) as the survey can be readily 

plotted on a number of sheets by draughtsmen plotting 

independently. 
Precise Levelli.ni; 

In good ordinary engineering levelling the error in M 

miles should not exceed from 0-05 V.M to (>U) VM ft., but 
in the best precise work the allowable discrejxmcy between 

two determinations of the level difference iK'tween two 

B.Ms., M miles apart should not excee<l- 012 VM ft.* Precise 

I.,evelling is required for the e.stablishment of Bench Marks 
for general purposes at convenient distances apart all over 

a country, and for long lines of levels in Water Kngineering, 

where gradients of 
1 

4(KH) 
or less may lx; used. Special pre¬ 

cautions are, of course. neces.sary. In this country the Zeiss 

reversible level, with parallel plate micrometer to read the 
staff to O'OOOl ft., as described in Chapter III, is employed 

by the Ordnance Survey: in the United States the levelling 
on the Coast and Geodetic Survey is executed by a tilting 

level of IXimpy type. The spirit level is sunk into the 
telescope so as to be close to the line of collination, and 

♦ Plam and Gcodeiic Sun^eyinft, iiavid Clark (C^nniable dr Co.). 



Triangulnt'ion and Precise Levelling 257 

" Invar” is used for the telescope to eliminate the effects of 
temperature. The telo.scopc is long and powerful and the 

level tube is extremely simsitive. The difference in type of 
instrument is due to difference in practice, the Americans 

taking much longer sights where there are long stretches of 

level ground. As in the Zeiss instrument, the backsight and 
foresight distances are read by stadia hairs, and the instru¬ 

ment is adjusted by taking the apparent level difference of 
two pegs from Ixrth ends. 

Bench Marks. It is. of course, of the highest importance 
that these should be as invariable as possible. The new 
primary Ordnance Bench Marks, alx)ut 25 miles apart, are 

fixed in small underground chambers founded from 3 ft. to 
13 ft. below ground in solid rock, a secondary surface mark 

being provided on a granite pillar about 1 ft. above ground.* 
Secondary Bench Marks, about 1 mile apart, are formed on 
gun-metal plates securely fi.xed in the walls of buildings with 

good foundations. Bench marks in mining districts and on 
alluvial soil are, of course, liable to vary in level. 

Sources of Error, (i) One source of error is vertical move¬ 

ment of the level between the reading of the backsight and 
that of the foresight. If the instrument sinks, this will cause 

the foresight reading to be less than it should be, and will 
cause an apparently increased rise or decreased fall. This 

error can be overcome by having two staves and reading the 
backsight on one and the foresight on the other as quickly 

as possible; the next time the level is set up the foresight is 

read first and then the backsight, and so on alternately. 
The corresponding error due to the vertical movement of 

the sta/f while the instalment is being moved to a fresh 

position cannot, however, be entirely eliminated. If the 

* '* I’nKis*' Major K i) /Vr>r. inst.C.f: , Vol. 209. 
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staff sinks, the effect is to increase tl»e backsight reading and, 

ttierefore, also to cause an increased rise or decreased fall. 

The iH'st that can lx> done is to drive a steel pin witl> rounded 

he€ad,.froin 4 in. to 12 in. long, into the ground on wliich to 

hold the staff, and, of course, to cliooso :ls good ground as 

po-ssible for turning iH)ints witliin tlie limiting distance. Such 

j)ins in good ground tend to rise with time. A systematic 

error from this cause can only Ih' avoided by relevelling the 

line by the same route in the of>f>osile direetiou, and taking 

the mean of the results. 

(ii) Instrumental errors would In; eliminated if the instru¬ 

ment was always e.xactly midway between the two staves, 

and the bubble brought always to the same position. The 

stadia hairs enabh* the distances to be c»pialized in most 

cases or, where ineqtiality cannot be avoided, a correction 

to be applied for the difference of distance, due to the small 

residual error in parallelism of the bubble a.xis and line of 

collination which remains after the instrtunent has Inxm 

adjusted as carefully as j>ossible. N'eedless to say. the adjust¬ 

ment of the instrument is fr<‘quently checked ami its residual 

error per foot of distance recortled. Reailini; errors are 

eliminated also by reading all three hairs on the staff and 

comparing the readings. The staff, of course, must Ix.^ care¬ 

fully held vertical, and must lx; calibrated at every (M ft of 

its 10 ft. length (all in one piece), .so that a correction can be 

applied for non-uniformity of graduation. 

(iii) Atmospheric Refraction. The midway }XJsition of the 

level Ixjtween the two staves would eliminate this error if 
the line of .sight followed a similar curve for both backsights 

and foresights—actually the curvature is greatt'st when 

nearest the ground. On level ground, ami with steady 

atmospheric conditions, the curvature is similar on both 
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sides. Tiie Ordnance Survey minimize this error by restrict¬ 
ing the length of sights to 150 ft. in primary work and by 

avoiding lines of sight close to the grountl. The most 
dangerous condition is when the ground is colder than the 

air, for a layer of cold dense air then covers the ground. 

The instrument should be shaded by an umbrella from the 
sun and wind, and work should only be carried out during 
the middle of the day say 10.0 a.m. to 4.0 p.m., when 
refraction is stea<liest. 

Adjustmcnl of Observation a. If tliere were no cumulative 

error, such as movement of the staff, the probable errors 
would lx* wholly tomptmsating and would be proportional to 

the \/numlx*r of settings of the level. As the distance 
between staves at each setting of the level is kept as constant 

as })ossible (say 300 ft.), the probable errors would be pro¬ 

portional to the Vdistance. If E is the total discrepancy on 

a closed circuit of levels, <*,, e^, fj . . . are the errors on the 

level differences Ixtween the various intermediate B.M.’s, 
and /,, 4, ii . . . their distances apart on tho route levelled, 

.so that E <*, i (’2 -f l- <"4 f- . . ., then, by the Method 
of Least Sejuares, we have 

“ \ 7 / '"“ttmum ; — I-j- 1 = 0, 

-j- -f- fVj -f- Acj -|-.~ 0 

Multiplying the latter by - A, we have 

h k L 
= etc. “ A 

E 

A 

A(/, -4- k -i- 

!L 

El 

. 'if —E 
’if- 

etc. 
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We should, therefore, divide the total error found in pro¬ 
portion to the lengths between B.M.’s. In practice, the 

oumulative error cannot be avoided, but the mean of two 

levellings taken in opposite directions by the same route 
should to a large extent be free from this error.* If, therefore, 

the closed circuit has been levelled in both directions, and 
the means of the results between each pair of bench marks 
are taken, these can be corrected for accidental error by the 

above method. 
Example 7. In levelling a round of preci.se levels for four 

bench marks the following results were obtained: level 
differences A io B, 176-422 ft.; B to C, - 425-365 ft.; 

C to D, -f 88-757 ft.; D io A, -f 160-727 ft. In check¬ 
levelling in the reverse direction the level differences were: 
AloD,- 160-409 ft. :DioC.~ 88-615 ft.. C to B. -}- 425-601 

ft.; £1 to .d, - 176-262 ft. The distances A - B - C - D were 
14-2, 2))-4, 10-1, 25-6 miles. Find the probable value of the 

levels of the bench marks, that of A being 325-722 ft. 

Bench 
Mark 

Ijcvel 1 
DiflierriMr 1 

1 

1 evrl 
Ditf»-r»^nce 

(i) 
M.tes ; 

1 

t * - : 
thui j liifle-rriK «• 

Hviim rtl 
Level 

.4 
1 176 42? - t7ti 26? 1 I70J42 14 2 

! 

-ovri . 176,JIV» 
325 r22 

B 
425 3HS i 425 601 - 425 4H3 20 4 0 ojw ; - 425 5l« 

5tr2 04l 

C 
f IW-757 - tia6i5 10 1 1 1 0 016 ! L 88 670 

76525 
i 

1) 
f 1 fit) 727 * mm \ f lt Kh54>H i 25-6 i 

1 
-0f»41 { t 100-527 

! 165 1»S 

A 

4 425 500 D 7tV3 1 

1 
' 0 113 1 - 425 516 

325 722 

- 425 4B3 
I 1 

- 425 510 

Total Cofrr<*lioii ' * ibiia 

1.. ..I 

In practice, circuits, each twice levelled in opjx)site direc¬ 

tions, will often intersect one another, and the Method of 
* Precise f^‘veniing/' by Major K. O, Hcnrici, l*r(K. fnsf. C.£. Vol. 209 

(1919). 
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Least Squares should be employed, weighting each mean 

level difference by -3^-:--. 
•' distance 

Example 8. The same data as Example 7, but add: 
" A fifth levelling from B to D gives a fall of 336-54() ft., and 
when cliecked from D to B gives a rise of 336’760 ft., the 
length of the route followed being 30*2 miles.” Find the 
probable levels of B, C, and D. 

The average value of level difference BD -- - 336-650 ft. 
Fig. 15 sliows tlie data, arranged to form two closed circuits. 

c 

A 

Fig. Iv5 

('ailing the corrections in Ali, Cli, DC, DA, 
BD rcsjK’Ctively. we have 

eA cJ 
-7- + 7“ + -~+y-+-y-^ minimum 
M h ^4 ^5 

+ ‘'i + ^5 = ~ 0-260 
+ <^3 + --0*147 

. , ^Ato 
h *4 *4 ‘s 

-f ^4 F 
'F <V, -f <V* 

=« 0 
S® 0 

-A, 
-A. 
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«i = Xdi; Cf ~ A)/|; e^ -- ; <4 -- A|/4; <*5 - - (A, + Ai)/^ 
A,(/, + /, + U) + Aj/s = -(»*26() 
V. +^^(4+ /» + /») =--0-147 

or 7() ()A4 + 3()-2A4 - - 0-260 
30-2Ai + 60-7 A, = -0147 

whence A, == -0-(K>340. A* - -(HKM)73, A, -j- A.^ - (HKW13 

<, = - 0034 X 14-2 = - 048; AU = + I7fi :»4 > - 048 - + 178 294 

tt - - 00073 X 20-4 « - 015; CB ~ f 425 483 - 015 + 425 46« 

f, - 00073 X 10-1 - 007 ; DC - - 884>86 - -007 - 88-693 

#, = - 0034 X 25-6 = - -087; DA ^ f 160 568 - -087 -- f 160 481 

«4 = - -00413 X 30-2 = - -125 ; BD = - 316-650 - -125 -- - 336-775 

.• A --- 325-722 11.; B = 502-01611.; C - 76-548 It.; D 165-241 It 

The assumptions made are: (a) that systematic error is 

eliminated by the check levelling, and {/;) that the lengths 

of all sights and other conditions arc approximately the 

same in each levelling. 



CHAFriiK VII 

((THICK MICTHODS OI- I’LAXK SUKVKVING 

I’l.AXIC TaKLINC. - COMI'ASS SUKVICYING SliXTANT- 

HiCSICI TION -PiiOTO-SL'KVKYIM;—SulJTKNSE Mkasgkicmexts 

-liAKOMKTKIC LlCVlCl.LlNC; -AdJYSTMKXT OK TkAVEKSICS 

Pi.ANic Tahle Sukvi.yinc; 

rui. Plano Tablo in its simplest fonn consists of a draw¬ 
ing,'-board, monntod on a tripo<l stand, on which it can Iro 

rotated horizontally and clamjx-d in any position, to¬ 
gether with an "alidade” or straight-edge fitted with 

folding sights, so that a line can be drawn on the board 

in the direction of any visible object. Many convenient 
elaborations can be made, e g. a ball and socket joint, or 

foot-screws, with a circular spirit level sunk in the surface 
of the table for more accurate levelling of the table, a clamp 

and tangent screw for preventing rotation and for "orient¬ 

ing" the table more accurately (i.e. for setting any line drawn 
on the paj)cr mounted on thetable in any given direction), anct 

a trough compa.ss for marking magnetic north on the paper 
or h)r setting a magnetic mirth jx)int on the jrajx'r to magnetic 

north. The alida<le may lx* fitted with a telesco{X?, rotating 
on a luirizontal axis carried by a pillar on the straight¬ 

edge, with cross hairs, which greatly improve.s the sighting 

and enables more steeply inclined sights to lx* taken, and 
when such a telescojx' is provided witli stadia hairs, a vertical 

gra<luated circle with clamp aiul tangent screw and a spirit 
level on its vernier arm, we have a " Tacheometric Plane 
Table," which is nearly as exjxjnsivc as an ordinary 

theodolite. 
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In plane table surveying, horizontal angles are drawn 
directly on the paper fixed to the board. When at least two 
known stations. .1 and li (Fig. 1), have been plotted on the 
paper to scale as a and f>, the position of any other points 
C, D, and E, visible from both stations, can be found by 

first setting up the table at .1, so that a is vertically over .1 
and the table oriented so that ab points to li, then setting 
the alidade in the line aC and drawing a "ray" ac along the 
straight-edge, and similarly rays ad. ae to D and /:, Then 
the table is moved to B and set up so that h is vertically 
over B, the alidade is placed along ha and the table turned 
until it points to A, the ray be is then drawn through b 
towards C. The intersection c of the two rays ac, he is the 
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position of C on the plan, and similarly points d and e are 
found. 

In any given position, therefore, the “centre” of the 
instrument is the point on the paper which represents (and 
is vertically above) the station at which the table is set up. 

C 

11., 1 

and llie table nmsl always be correctly oriented so that 
all lines drawn on it are pointing in tlieir correct directions, 
riie [wsition of any point may also be fixed by drawing a 
ray in its direction and scaling off the distance of the point 
from the station at which the instrument is set up: this, of 
course, is only suitable for short distances which can be 
tapK'd, unless a tacheometric alidade is available. Traversing 
can also be effected with the jrlanc table by chaining the 
<li.stance .IP (Fig. 2), drawing the ray ah in the direction 
■ l/i. and scalittg ah on the pa|x*r. Then the table is moved 
to /{, set tip so that h is vertically over />’. laying the alidade 
along ha and turning the table so that it j.K)ints to A. I'he 
ray he can then be drawn to the next station C, and when 
the distance IK' has been measured it can be scaled off as 
be. This process is called “orienting by the back ray,” and 
is obviously inferior in accuracy to the method of inter¬ 
section. Detail adjacent to the traverse lines may be fixed 
by rays and taiietl distances from one station, by intersecting 
rays from two adjacent stations, or by drawing a ray to the 

II' 
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point and taping the distance to it from a i)oint already 

plotted. 
The plane table is the instrument par excellence for sur¬ 

veying detail in topographical or small-scale surveying, as 
all important details can be fi.xed by intersections or by a 

ray and a measured distance, and less important detail can 
be sketched in between such jx)ints, thus saving much time; 
in addition, the survey is plotted on the ground witijout 

calculations and its use is readily taught to comparatively 

l-ir.. a 

unskilled assistants. There must, however, lie a preliminary 

triangulation to establish a sufficient number of accurate 

stations to ‘'control” the plane table survey and prevent 
errors from accumulating. 

Indian Clinometer. This is a simple accessory to the plane 
table which enables the levels of points, whose position has 

been found on the plane table, to be determined by simple 
calculation. It is made of metal (Fig. 3) anti consists of a 

base which rests on the plane table. Hinged to this at one 

end is an upper base plate which carries vanes at each end, 
one containing a pin-hole and the other a scale of tangents 

with its zero at the same level as the pin-hole, when the 
upper base plate is correctly levelled by means of the screw 
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and spirit level shown. If the distance apart of the vanes 

is 8 inches, the larger graduations on the vane will be 

(*•8 inch, and the smaller 0-()8 inch, so that the tangents of 

elevations and depressions can be read to O'Ol, and by 

estimation to 0-(K)l. To find the level of a point plotted on 

the plane table the observer sights towards the point, levels, 

the upper base, and estimates the reading on the tangent 

scale which intersects the point. Then (the scale reading) x 

(the distance scaled from the survey) gives the difference of 

level of the table and the point. Conversely, if the level of 

the plane table is unknown, the observer sights with the 

clinometer on to a station whose level is known and which 

is shown on the survey, and thus can deduce the level of the 

table, which can then be used for the determination of the 

levels of other points. 

Compass Survkvi.nc. 

A compass with sights fi.xcd to its case at opposite ends 

of a diameter is a useful instrument in rapid or topo¬ 

graphical survey, the position of points being fixed by their 

Ix'arings from (or to) two known stations, or the compass 

may lx* used to find the bearings of the lines of a traverse. 

The smaller sizes of compa.ss, about 3 inches diameter, 

are usually held in the hand and the reading is taken by 

a right-angled triangular prism just below the slit, whicli 

acts as the nearer sight to the eye; the further sight being 

a fine vertical wire fi.xed in a frame. The needle carries 

a card or liglit metal ring on which are the graduations, 

running clockwise from 0° to 360° and commencing at the 

south end of the needle (Fig. 4a). 

Larger compasses, say 6 inches diameter, arc mounted on 

tripod stands, with a ball and socket joint and clamp, by 
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means of which the compass can be set level by two spirit 

levels at 90° on the case, and the case, with its sights, can 

be rotated and fixed in the required direction. The graduated 

circle is fixed to the case and the graduations run anti¬ 
clockwise, with 0° at the farther sight to the eye (Fig. 46). 

The north end of the needle is marked in some way—say 

by a short gold bar and its rea<ling on tlie graduated circh; 

is the magnetic bearing of the line the bar needle Ix'ing 

sh:uT>ly jwinted at its ends for this purpose. 
The needle carries a small adjustable counter-weight to 

correct its balance for variation in dip in dilferent parts of 

the world, and has a jewel fixed to its lower side at tlie 

centre, which rests on a hard steel point on the bottom of 

the case. Great care must be taken to avoid blunting of this 

point by lifting the needle off its Ixaring by a lever provided, 

when not in use. The compass is not, of course, a precise 

instrument, as the direction of Magnetic North does not 
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make n constant angle with True or (ieographical North 

viz. 

{(i) Tlie magnetic “declination,” or deviation of magnetic 

from true north, varies from place to place on the earth’s 

surface, e.g. in the north-west of Ireland it is more than 6° 

more westerly than at Dover, i.e. in 515 miles in a W.N.W. 

direction, an increase of 1' in less than miles. 

{b) The declination at any place varies continuously with 

the time. e.g. at London it is decreasing (westerly) about 

10' or 1 r per annum. 

(c) The declination has a diurnal oscillation, of a range 

at (ireenwich of about 7' in winter and 12' in summer, about 

its mean position for the 24 hours. 

(</) Occasional magnetic storms cause deviations up to 

1“ or more from the mean values.* 

In addition, "local magnetic attraction'’ may cause con¬ 

siderable displacement of the needle. The most common 

source of this is magnetic material, e.g. steel rails or iron 

fences near the instrument, but if due to magnetic rock 

lielow ground, it may e.xtend over a considerable area. The 

ob.servi-r must, of cour.se. see that he has no magnetic mate¬ 

rial about his j)erson or of a movable nature near the instru¬ 

ment, as the movement of this alters its effect on the needle. 

If the source of attraction is fi.xed, its effect can usually be 

eliminated by reading both the forward and back bearings 

of the lines, the readings of which should differ by 180°. 

If not, the tlivergence from 180° is due to local attraction at 

one or both ends of the line, causing, say, the north end of 

the needle to deflect 6° to the west and. in this case, causing 

al: l)earings taken from this station to l)e increased by the 

same angle <5°. 

Sre Whitahrr's AUmnack, p, I5i>. 
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Example 1 (L.U.). The following are the forward and back 
bearings observed in a closed coin|xiss traverse A BCD - 

Line Bearing Line Bearing Line Bearing Line Bearing 

AB 
75’ <r 

BC 
106’ 20' 

CD 725’ fv- 
224’ 50' 

DA 306’ 40' 

BA •*iarrin 4V*- u 
255’ (f 

CB 286’ 20' DC 
44’ 50' 

AD 
126’ 40' 

Find the corrected forward liearings. 

The discrepancies of forward and back Ijoarings on the 
four lines are 1°40', I®!)', 0° 20', O"* 40' respectively. The 

least of these is 0° 20' on CD, and may be due to sluggishness 
of the needle due to blunting of its bearing. As the compass 
only appears to be read to 20', we arc justified in correcting 

CD to 224” 50' and DC to 44” 50' to agree, and we can 
assume that stations C and D are both free from attraction, 

so that the bearings of CB and of DA are correct. We, 

therefore, alter BC to lOO” 20', i.e. apply a correction of 
- 1”0' at B, and, therefore, alter BA to '255° O', i.e. by tlic 

same amount. AB is then altered to 75° 0' to corivsj>ond, 
i.e. we apply a correction of -f- 0° 40' at A. Consequently, 

we correct AD by the same amount and make AD r26° 40'. 
As this agrees with £>^4 306° 40', we should feel pretty sure 
of our corrections. The corrected forward bearings of the 
four lines are, therefore, 75° O', 106° 20', 224° 50', 306° 40', 
and the local attraction at ,4 and B deflected the needle 

0° 40' east at A and 1° 0' west at B. 

The Sextant 

This is a precision instrument wh«rh is comparable in 
accuracy with the theodolite. It consists (Fig. 5) of a 
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gnuluatcd arc or limb AA, which, in the full-size marine 

sextant, is from 6 inches to 8 indies radius, extends over 

rather more tlian a sixth of a circle, and is connected by 

framework to the centre of the circle. On an axis at this 

centre is pivoted an arm with a clamp and tangent screw 

(not shown) for fastening it to the arc, and a vernier V and 

luicroscofx' for reading the graduations. This arm carries a 

mirror or "index glass” / -with its face perpendicular to 

the plane of the arc, and the a.xis about which the arm turns 

lies in the plane of the mirror. To the framework and also 

perjH'ndicular to the plane of the limb is fixed a second 

mirror -the "horizon glass” H - so placed that when the 

vernier on the arm reads 0" 0' the faces of the two mirrors 

are parallel. Only the lower half of this mirror is silvered, so 

that the observer, Imiking through a small telescoi>e T, fixed 

to the framework, with two pairs of cross-hairs at 90° to 

each other, sees directly through the upper half of the 
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liorizun gloss and. I>y d«ml)le rclh'ction at both mirrors, 

through the lower half. When the mirrors are parallel the 

reflected ray of light Tiff A' makes, with the normal to each 

mirror, an angle of reflection -- its angle of incidence. 

/ IHT = 2 / IHM and /. .'1 'IH -= 2 / HIN 

But as the mirrors an* parallel, tlieir normals HM. IN are 

also parallel. 

/JH.M = /HIN 

/IHT - /A'lH anil r. /.I'is parallel to//7' 

Consequently, if the point .-1, seen directly through the plain 

pjirt of the horizon glass, is at a great f/;.s/<j«a’,,so that the 

angle 7/1T is too small to measure, A is also seen by double 

reflection in coincidence with A, as seen directly. If now 

the vernier arm, and with it the inde.x glass, is turned 

through an angle 0, the reflected ray from T follows the 

same pjith until it reaches the inde.x mirror, but as the 

normal IN has bt'en turned through the angle 0 to IN' the 

angle of incidence on the index glass is increased by 0; 

the angle of reflectum on the ittdex glass is, therefore, also 

increased by 0. Therefore the ray, after reflection from the 

index glass, makes an angle 20 with its original direction and 

now follows the line IB. If, therefore, A is at a great 

distance, the angle turned through by tlu^ vernier arnt is 

one half of the angle A IB, when A and the image of B 
coincide on the horizon glass. 

The graduations on the limb are made in I rlegrees about 

the centre 7, but are numbered as degrees, so that the 

reading on the arm is automatically doubled and gives the 

angle AIB directly in a single reading, whereas a theorlolite 

would need two readings. If the point .("I seen <lire«'tly 
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through the horizon glass is not so far away that the angle 
I AT is inappreciable, to see A by reflection as well as 
directly, the vernier has to be moved behind the 0° 0' point 

and reads a small negative angle on the arc, which is extended 
a few degrees for this purpose, which angle must be added 

as a correction. That is, we must first sight on A direct and 
by reflection, and read the angle lAT — A'lA, then bring 
B by reflection into coincidence with A seen directly, and 

read the angle A'IB, then add the two together to find the 
angle A IB. The arc is usually graduated from -5° to 120° 

or 160°, and read by the vernier to 10* on a marine sextant. 
In the smaller “box" sextants, completely enclosed in a 
metal ca.se of some 3 inches diameter, the vernier reads 

to 1'. Both are usually held in the hand, but are occasionally 
mounted on a tripod. Dark glasses are provided to place 

before the mirrors when observing the sun. 

In observations of horizontal and vertical angles taken 
from a floating vessel, the sextant takes the place of a theo¬ 

dolite. As regards horizontal angles, an angle taken with 
a theodolite is the difference of the readings on the two 

j>oints, and the sliglitest movement of the instrument, even 

when the ve.ssel is supposed to be at rest, will spoil the 
accuracy of the observation; with the sextant the observa¬ 

tion of both the distant points is made instantaneously, so 
that even if the vessel is moving rapidly the angle is read 

accurately. As regards vertical angles to celestial bodies, 

the slightest motion of the vessel would upset the levels on 
a theodolite, while with a sextant at sea the instrument is 

held with its plane vertical, and the object “ brought down ” 
by reflection until it appears to touch the visible horizon 

as view'ed directly through the horizon glass: this also can 
l>e done instantaneously and accurately, but, of course, a 
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correction for the dip of the horizon,* depending on the 
height of the observer above the sea, must be subtracted 
from the measured altitude. 

On land, the sextant is not at all so suitable as the theo¬ 
dolite, except in very level country, as it gives the inclined 

angle 6 between the objects, not the horizontal angle ^ 

which is required. It is necessary to measure also, say with 
a clinometer, the inclinations a and ^ of the legs of the 

angle and calculate (f> by Spherical Trigonometry, thus - 

cos 0 -- cos (90° - a) . cos (90° - fl) 
sinl«)° ''«jTsTir(9^°~^' (i) 

cos 0 - sin a . sin p 
cos a . cos p 

^Fig. 6): cos <ft 

where if a or ^ is a depression it must be treated as negative, 
which means that sin a or sin p will be negative. 

When the sextant is used on land for measuring vertical 
angles to celestial bodies, an "artificial horizon” is required 
(Fig. 7). This usually consists of the surface of a layer of 
mercury contained in a tray and protected by a sloping 

• Chambrrs Mafkrmaiital Tahlta, Apf»arent Depmsion of the Horizon,*' 
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glass roof. The reflection of the object in the mercury is 
viewed directly in the horizon glass, and the object itself is 
brought down by the .sextant into apparent coincidence 
with it. The angle between the object and its reflection is 
therefore measured, and the figure shows that this is twice 

the altitude of the object. As the object is infinitely distant, 
the rays A''5, X'R are, of course, parallel. 

Adjustments of the Sextant 

(а) To Make the Index Gleiss Perpendicular to the Plane 

of the Arc. Clamp the vernier arm near the middle of the 
arc and place the eye near the index glass. If the reflection 
of the arc in the mirror appears continuous with the arc as 

seen direct, the adjustment is correct; if not, adjust the 
index glass by the screw at its back. 

(б) To Make the Horizon Glass Perpendicular to the Plane 

of the A rc. Sight on a star and move the vernier arm through 
zero so that the reflt^cted image passes the star as seen 

direct. If the former does not pass through the latter, adjust 
the horizon glass by the screw behind it until it does so. 

(c) To Make the Line of Sight of the Telescope Parallel to 

the Plane of the A rc. Make two of the cross-hairs parallel to 
the plane of the arc by turning the telescope in its support. 

Choose two stars not less than 90° apart, and make their 
images coincide on one of the above two cro.ss-hairs. Then, 

by moving the sextant, try and make them coincide on the 

other of these cross-hairs. If they do not coincide, alter the 
inclination of the telescope to the plane of the arc by the 
screws provided until they can be made to coincide on each 
cross-hair. When using the sextant, coincidences must always 

l>e made in the square formed by the four cross-hairs. 
(rf) To Ascertain the Index Error of the Sextant. Sight on 
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a star and make its reflected image coincide with the star 
as seen direct. Then read the arc. The reading is the index 
error and may be -f- or -. It can l>e corrected by a screw 
provided, which slightly rotates the horizon glass, but this 
will necessitate repeating adjustment (b). The index error 
is aifected by changes of temperature, so that it should be 

determined each time the 
Ijr sextant is used. In the day- 

j ^ time a very distant terrestrial 
object may be used instead 

r ^ of a star. 
51 sextant only 

* ^ adjustments (b) and (d) are 
k k provided for. Square-headed 

screws are brought through 

{ [ { g holes in the case and can l>e 
B ^ turned by a small key pro- 

J. J vided with the instrument. 
|| ^ Examplk 2. In order to 

find the index error of a sex- 
tant, the reflected image of 

F'c. 8 • I I * . the sun is brought into con¬ 

tact with its disc seen directly, first on one side and then on 
the other. The two readings are 31'0'and-32'40'. Find the 
index error and the sun’s semi-diameter. The altitude of the 
sun's lower limb is then measured at noon, using an artificial 
horizon, and the observed angle (between the lower limb and 
its reflection) is found to be 57° 01' 50*. Find the altitude 
of the sun’s centre corrected for index error, refraction, semi¬ 
diameter, and parallax, the barometer reading 28'5 inches, 
attached thermometer 15° F'., air temperature '20° F.. hori¬ 
zontal parallax 8'74'. 
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(Fig. 8a): Index error 
31'0'-32' 40' 

Diameter = 
3r0' + 32' 40' 

= -0' 50'. 

= 31' 50'. 

Semi-diameter =15' 55'. 

(Fig. 86); Observed altitude of lower limb 

57° or 50' -1-50' 57° 02'40' 
2 ~ 2 

28° 31' 20' 

On reference to Chambers’ Mathematical Tables, "Bessel’s 

Refractions," we find 

Mean refraction for 28° 31' 20' = 1' 48-2' 
31;3 

~eo X 4-4 

= 105-9' 

H = 0-963 for 28-5 inches, t = 1-(X)2 for 15° F. 

T = 1-060 for 20° F. 

. Refraction correction 

= - 105-9 X 0-963 X 1-002 x 1-060 = - 108' 

Corrected altitude of sun’s centre 

= ‘28° 31' 20' - 1' 48' -i- 15' 55' -h 8-74' cos 28° 45' 27' 

- 28° 45' 35' 

N.K. It would have lx*en better to repeat the observation, 
i.e. immediately to measure the altitude of the upper limb 

(Fig. 86) and average the results, eliminating the sun’s semi¬ 

diameter. 

Resection 

Resection is the fixing of the position of a point by 
angular observations from it to known stations. In general, 

three known stations are required and the method of re¬ 
section is then called the “Three Point Problem." Any 
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form of angular measuring instrument may be used. With 
the compass, only two known stations arc required, as their 
bearings from any other point will fix the position of that 
point, lines being drawn through the known stations at 
bearings which are the “back bearings” of their given 
bearings (i.e. given bearing ± ISO®), but as the compass is 

4 an instrument of only secondary accuracy, 
it is well to check the result by taking the 
bearing of a third station. Resection is 
most used (a) at sea with the sextant, and 

s) (b) on land with the plane table, and we 
shall deal with these two cases. 

(a) Reseclion tenth the Sextant. If the 

^ point P is in line with two of the known 
/ I stations A and C (Fig. 9), only one angle 

* / \ fi need be measured, viz. BPC. This is 
1 / 1 the method commonly adopted when 
^ soundings are taken in “ranges” or 
^ straight lines. A number of pairs of 

stations such as /I, C are fixed so that 
their lines produced cover uniformly the 

area to be sounded, and the soundings arc taken from 
a boat rowed in turn along each of the.se lines. The position 
of the boat is fixed by the .sextant angle ft taken to a third 
known station. If the boat is rowed at a uniform speed and 
the times noted for each sounding, the sextant observations 
need only be made occasionally, say at P and Q, the times 
of the sextant observations being also noted. When the 
positions fixed by the sextant have been plotted, the posi¬ 
tions of the soundings can be found by dividing the distance 
between the determined positions in proportion to the time 
intervals. In tidal waters, of course, the water level must 
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be read at, say, half-hourly intervals on a tide gauge, so 
that its level can be found by interpolation at the time of 
each sounding, and the soundings can thus be reduced to 
levels above or below a fixed datum level. 

To plot the point P draw a line BD parallel to AC, and 

draw the line PB so that angle DBP = /?. The intersection 

of this line with AC produced gives the point P. Or we can 
calculate the distance PC as 

sin PBC _ sin (C ~ /}) 
sin ^ sin fi 

b and C being known. 

In the general case (Fig. 10) we measure the angles a 

and p at P, when we can plot the points geometrically as 

follows— 
From A and C draw AO, CO at angles of 90° - a to AC, 

and from C and B draw' CQ and BQ at angles of 90°-p 



28o Advanced Surveying 

to CB. From 0 as centre describe the circle ACP and from 
Q as centre the circle BCP. The intersection P of these 
circles is the point required, as the angles AOC, BQC at the 
centres have, by construction, been made 2a, 2^ respectively, 
which are twice the angles a and /3 at the circumference, 
standing on the arcs AC, BC respectively. (More accurately, 
the radii of these circles can be calculated as 

OC - and QC 
b 

2 sin fi 

then with centres .•! and C describe arcs of radius OC, and 
from O as centre an arc ACP of tlic same radius; with centres 
B and C describe arcs of radius QC, and from as centre 

an arc BCP of the same radius.) 
"/his construction will, of course, fail if P lies on the circle 

ACB, as any point on such a circle w'ould subtend an angle a 
to AC and p to bC, and the points O and Q would coincide. 
The figure ACBP would then be a cyclic quadrilateral and 
the sum of its opposite angles ACB n -t /i - - 180“. It is 
important to see that this condition is not fulfilled, and the 
nearer the points .4, C, B, and P lie to a circle the wc»rse is 
the “fix" obtained. If the angle ACB in the quadrilateral 
ACBP is not less than 180“. as in Fig. 10. it cannot occur. 

To calculate the p<»sition of P, we must first calciilate the 
angles A and B. We have 

A +C A- B + n + (i - 

A + B = 360“ - C - a - = y (say) 

while PC = 
asin/1 
sin a 

b sin B 
sin ^ 

sin 6 sin a _—j. ~ li (say) 
sm B a^nft ' 
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Then 
A - 1 _ sin /! - sin B 
A + 1 sin ^ -I- sin B 

2 sin - 2 - . cos —2 — 

. A + B 
2 

2 sin - . cos 
2 

A - 8 k - \ y 
tan 2 -k v\- 2 

A - 8 
tan —2- 

A+ 8 
tan - -2- 

... , - , , - A - H A B 
We thus nnd tfie value of - while ^ “ 

2 
By addi¬ 

tion we get A, then ACP — 180"^ - /I - a. 
We can then calculate AP and CP by the “rule of sines" 

and plot P by arcs or, if required, calculate the co-ordinates 

of P, from the angle A and length 

Example 3 (f-.U.). The co-ordinates (jf throe stations are— 

S)uth ‘ Hast 

.1 0 
li , 0 
(' (>(M> 

0 
750 

1.200 

With a sextant at a jwint P the angles to .1, 8, and (’ are 
found to be .IPB - 50’’ 10', BBC -= 69'’:12'. l-ind the co¬ 
ordinates of B. 

4 
Obviously, 8C -- 750 ft. and .4Bf 18iC -tan*'^ 

180° -5:i“08' - 126" 52' (Fig, 11). 

Also 

A F C - 

k -- 

360° - 126° 52' - 119" 42' - 113 26' 

75()sin69°32' ^ 

750 sin 10' “ sin .*1 

y 

if (7b7) 
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tan 
C-A 
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k - \ y ()-22(K) 
k -f 1 • 2 tan 56“ 43' 

C-J 
2 

2-2200 

tan 8“ 35' (using 4-figure logarithms) 

C + A 
8“ 35' and 

2 
56° 43' 

/, A = 48° 08' by subtraction. 

AliP - 180° - 48° 08' - 50° 10' -= 81° 42' 

XK IP OfiftC Then AP ~ 750 - j ~ 966-5 
sin 50 10 

South co-ordinate of P == 966-5 sin 48° 08' -= 719-7. 

East co-ordinate of P “ 966-5 cos 48° 08' - 645-1. 

(6) Resection with the Plane Table. This process is in 
constant use in plane tabling as a large number of sub¬ 
stations are neces.sary in order to obtain the detail points 
by intersections or by "radiation,” i.e. by direction and 
distance. 'Fhe labour would Ixr very greatly increased if, 
whenever a new sub-station was found necessary, the sur¬ 
veyor had to proceed to three known stations in order to 
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fix the position of the new sub-station by two rays and 

check its position by a third ray. By using resection he has 
merely to find a point, convenient for viewing his detail, 

whence lie can sec three known stations or sub-stations, and 

at once to fix his position as will lx* described. 
In b'ig. 12, .1, /i, C are the three known stations, visible 

from the point where a sub-station P is required, and a, b, c 
are the three stations plotted on the table. If the surveyor 
orients his table correctly he will have ab, be, ca parallel to 

AB, HC, (.'/I. If rays are then drawn through .lu, Bb, and 
Cc they will obviously intersect in a point />, which will be 

vertically over the fxiint P on the ground which it represents. 
A trough compivss is. very u.seful for this pur|X)se if Magnetic 
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North is already marked on the plan, as it can be placed 
with its edge along the North Point and the table turned 
until the north end of the needle reads 0®. The table should 
then be oriented very approximately and time is saved. 
If when the three rays are now drawn they are not quite 
concurrent, they will form a small “triangle of error,” 
indicating that ab is not quite parallel to AB, etc., and the 
table requires to be rotated a little to make the rays con¬ 
current. The three following rays will be found useful— 

1. If the triangle of error is triangle abc, 

the triangle of error. 

2. If the correct point is outside the triangle of error it 
will be wholly to the left or right of all three rays. 

3. Whether the correct point p is inside or outside the 

triangle of error, its distance from each ray will be proix)r- 
tional to the length of that ray pa, pb, pc, as measured on 

the plan. 
The reasons for these rules are as follows (Fig. 13): 

Assuming the correct point p has been found on the plan 
and fresh rays drawn from it through a, b, and c, the angles 
which these new rays make with the old ones must all be 

equal and must all deflect to the left or all to the right of 
the old rays, as they all represent the angle through which 
the table must be turned for correct orientation. Rule 3 
ensures that all the angles should be equal, and Rules 1 and 
2 that they shall all involve turning the table in the same 
direction. It is assumed in this pr<M)f that a, b, and c do not 
change their positions; this is practically the case, as their 
movements are small compared to the distances Aa, Bb, 
and Cc. If a trough compass and Magnetic North Point on 

, (inside 
the correct point * is 1 ^ . 

* ^ (outside 
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the plan are not available, several attempts may be neces¬ 
sary, the diminishing size of the “ triangle of error” showing 
that the "trial and error” process is proceeding correctly. 

After each attempt the table is turned so that pa points 
to A, and the other two rays Bb, Cc are drawn to see if they 
are concurrent. When p has been thus found on plan, a 

Fic !3 

point P vertically below it on the ground should l>c lagged, 
so that it may serve as one of the three known points for 

some future resection. 

Photoc.raphic Sukvkying 

This may be looked on as a development of plane table 
surveying by intersecting rays from two sub-stations, as 

two photographs of the same area taken in known directions, 
one from each sub-station, enable us to draw intersecting 

rays from the sub-stations on plan to each point, which can 
be recognized on both photographs and thus to locate the 
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point. Tlie photo-theodolite employed consists essentially 
of- 

1. A photographic camera of fixed known focal length. 
2. Horizontal and vertical cross-wires pressed tightly 

against the sensitive plate, these wires being photographed on 

the plate. The collimation line of the instrument joins the 

Fic. M 

intersection of the cross-hairs to the optical centre of the 
object glass, which latter is the centre of the instrument. 

3. Three plate screws and a spirit level for levelling the 

collimation plane. 
4. A graduated horizontal circle, with verniers, clamp, and 

tangent screw below the camera. 
5. A telescope with cros.s-hairs rotating on a horizontal 

axis above the camera so that the vertical plane of collimation 

may be sighted on to any station. 
In Fig. 14, let A and B be the two sub-stations and AC 

and BC the two positions of the vertical plane of collimation, 
the angles CAB and CBA having l)een mea.sured on the 



287 Other Methods of Plane Surveying 

horizontal circle. A poiijt P is shown on both negatives, 
and both prints, as /»: the prints, of course, being complete 
reversals of the negatives. Let the distances of p from the 

vertical and horizontal wires at A be y^, z,, and from the 
vertical and horizontal wires at B be v*, Zj rcsjjectively, then 

we can plot the point P on plan thus: From A and B on 

plan draw AC and BC, making the observed angles w’ith 
AB. Draw lines jx^r^KMidicular to AC and BC at a distance 
/ (the focal distance) in front of A and B. From and 

BC measure off Vi. V* along these lines on the same side as 
on the prints, and draw lines AP, BP through the points 

thus obtained, their intersection giving P on plan. In prac¬ 
tice, corresjwnding jxiints on both prints are first marked 

and numbered, and long tlireads are used instead of drawing 

the lines ■\P and BP. 
F'or the level of the point we measure z,, the height of p 

alxjve the horizontal wire, the horizontal distance D of the 

point having first l)een scaled, viz. .IP on plan (I'ig. 15). 
The ray from p to the centre of the object glass rises a 

height z, in a horizontal distance v7‘ + yi*, consequently, 
the height H ot P above the horizontal plane of collimation 

is /> . , r.-r, and the level of P can be thus determined. Vp }- y,* 

Points intersected by the horizontal cross-wire, of course, 

lie along a contour. 
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Example 4, The optical axes of two photo-theodolites 
at A and B are inclined inwards at angles of 57° 26' and 

42° 34' to a base line AB 346 feet long. The print from A 

shows a point 1'46 inches to the left of the vertical wire, 
0*82 inch above the horizontal wire; that from B shows the 

same point 2-31 inches to the right of the vertical wire. The 
fixed focal length of both cameras is 6 inches and the level 
of the coUimation at A is 386-70 feet. Calculate the distance 

and direction of P from A and the level of P. 

Here 6.4 = tan 
1-46 
6-(H) 

tan-M)-24:«13° 40' 

angle PAB - 57° 26' -f- 13° 40' - 71° 06' 

2-31 
SB ~ tan'* 

6-00 
tan-*(K1850 21° 03' 

angle PBA 42° 34' -f 21° 03' - 63“ 37' 

angle APB^ 180° -71° 06' -63° 37' 45° 17' 

PA - 346 
sin 63° 37' 

sin 45° 17' 
— 4,'16-3 feet at an angle 

of 71° 06' to AB 

and level of P — 386-70 x 436-3 
{- 1-46* 

386-70 +- X 4:16-3 - :i86-7 + 57-9 
O' I /O 

- 444-6 feet 

Stereo-photogrammetry. This is a modern development of 

photographic surveying where the two photographs are taken 

with the vertical planes of coUimation of the cameras at right 
angles to the base joining the positions of the cameras, so that 

the two positions of the photographic plate are in the same 
vertical plane. The trunnion axis of the telescope on the 
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camera is fixed in the vertical plane of collirnation of the 

camera, so that when a photograph has been taken from a 

known station A (Fig. 16), the second position B of the camera 

can be fixed in a vertical plane at right angles to the vertical 

plane of collirnation of the first view, and similarly the 

Fig. 16 

camera can be set up at B, the telescope jxiinted at .-1, 

and the second view taken with the vertical plane of collima- 

tion also at tXl" to tlie base AB. The telescope is fitted with 

a vertical circle and stadia hairs, so that the. horizontal 

distance L) and the difference of level {Z^ - of the collima- 

tion planes at .1 and B can l)e determined. 

Then, if y,, 5,; y*, Sj are the distances from the vertical and 

horizontal wires of the same i-KHiit p on the plates exposed 
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at .-1 :iiul B resjX'Ctively, wt* ran calculatr thr co-ordinafes 

of P from tiu' L.H. cumrra thus 

V V y '■ i ^ - y , 1 5 j. •A', and \\ V, /) 

/). A' / " . I): \\ X 
Ai -.'2 ./ 

. -V(y, - Vj) 
.. y - 

Also if Zi, Zi are tite heights of P above the hmi/ontal planes 

of collimation at .1 and B, \vc have 

_ .1P A 

7 . . /, 
f 

A , and similarly Z., 

Also Zx ■ Z<x‘A’ difference i>f level of cameras 

~ height of camera B above camera .1. 

L _ -- 
V, “ / "■ y-, y, y,. c, 

Exampi.K 5 (L.U.). I'wo photographs arc taken with a 

photo-theodolite from positions .1 anti B, 3<H) feet apart, the 

lines of collimation Ixnng both at 90 ’ to the line AB. A jroint 
C apjK'ars on the (>rint from .1 as 2-02 inches to the K.H of 

the vertical wire and 0-98 inch above the hori/.ontal wire, 

and on the print from B as 3-(t6 inches to the L.H, of the 
vertical wire and 1-90 inches above the horizontal wire 

B is to the right of .1 and the f(K:al distam'e is H inches. 
Find the co-ordinates of (' from .1 as origin and the difference 
of level of the two collimation planes. 

V, - A'. V., ' A', and [m V, ■ V, 

X .S-OS 
-T (2-02 ■ ;t fK^) .V 
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-V 

I 

Z 
i “ 

18()<) 

508 

2-02 

6 
()-98 

6 
I-9() 

6 

- 8540 ft-et 

X 854-3 := 119-3 feet 

X 354-3 = 57-9 feet 

< 354-3 - 112-2 feet 

( ollimation at B is 112-2-57-9 — 54-3 feet below co\- 
limation level at A. 

In practice, the co-ordinates A', V', and Z are measured 

on a “ Stereo-Comparator ” (Pulfrich’s), of which Fig. 17 is a 

diagrammatic sketch. The two negatives are placed in the 

instrument and are viewed through a stereoscope—as the 

negatives are views taken from a distance of, say, Ii(K)feet 

apart, an intensely stereoscopic effect is produced. At the 

focus of each eyepiece of the stereoscope is a fixed index, 

and each evei)iece must first be adjusted separately to see 

this clearly. Then, using the left eye only, and the screws 1 

and 3. the L.H. negative is moved till the index of the L.H. 

eyepiece coincides with the intersection of the cross-wire 

lines on the L.H. negative: then, by moving the K.H. 

negative by the screws 2 and 4 and using the right eye only, 

the index of the R.H. eyepiece is made to coincide with the 

intersection of the cross-wire lines on the K.H. negative. 

Using both eyes, the two indexes now appear as a single 

index at an infinite distance in the combined view. The 

screw 1 moves both negatives in the direction V and 

measures Vi, the “azimuth”; the screw 2 moves the R.H. 

negative relatively to the L.H, one in the direction V' and 

measures y, - Vj, the “parallax.” The screw 3 moves both 

eyepieces in the direction Z and measures r,, the “altitude," 



Advanced Surveying 292 

and the screw 4 moves the R.H. negative relatively to the 

L.H. one in the direction Z and measures the "level 

compensation.” Zero readings are now taken on all four 

screws. Using both eyes, and by turning screw 2. the index 

is brought to apparently the same distance as some point 

Fio. 17 

From SunevtHg Instruieunti by H M Abraluni, by pt niuii^too Oi 
Mevm C. F. C^srlU A to . l.td 

on the ground whose position is required, and the screw 4 

• v. -• v» 
IS adjusted so that z, - * (Z, • Z,). where Z, - Z, 

is the difference of level of the instruments and D is their 

horizontal distance apart. Then the index is made apparently 

to touch the point in question by turning the screw 1 for 

direction and the screw 3 for level. 

It is obvious that the "level compfuisation screw'" 4 can 

Z - Z 
be geared to the "parallax screw” 2 in the ratio *, 

also that the " altitude screw ” 3 can be geared to the " paral- 

Z Z 
lax screw" 2 in the ratio -jj- so that z, -- jj {vj -y*), w’here 
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Zi is the height of a given contour line above the collimation 

plane of the L.H. instrument. If these gearings are effected 
the index can only be made to touch points which are on 

the required contour level, the co-ordinates X and Y of 
which can thus be computed from the readings of the 

micrometer heads of the screws 2 and 1. In a further 

development, viz. Von-Orel’s "Stereo-Autograph,” a draw¬ 
ing table is attached to the comparator and a pencil is 

arranged to move in the co-ordinate directions X and Y 
to a suitable scale by levers and gearing from screws 2 

and 1, and by this means the contour at a given height 

above the collimation plane of the L.H. instrument is drawn 

automatically on the plan. 

SrnTENSK Mkasi rkmknts oi- Distance and Height 

In the usual form of Tacheometry readings are taken on a 

vertical levelling staff at the upper, middle, and lower stadia 
hairs in tlie tacheometer, which readings, together with the 

readings of the horizontal and vertical circles and the height 
of the instrument above the ground, enable the direction of 

the point observed, its horizontal distance, and its difference 
of level from the observing station, to be found. The reading 

of the middle hair is a useful check on the readings of the 

other two hairs. When the instrument is moved forward to 
a fresh sub-station a set of readings is taken first to the 

station just left, and the new values of the horizontal and 

vertical distance thus obtained should agree closely with 
the values obtained from the forward readings, and should 

be averaged with them for obtaining the new position and 
level of the instrument. Only one pointing of the instrument 

is made for each point observed, and, therefore, only one 

reading of the vertical and horizontal circles, but the distance 
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at which observations can be taken is limited to that at 
which the graduations on the levelling staff can be read with 
sufficient accuracy. For greater distances, ‘‘subtense meas¬ 
urements” can be used, i.e, conspicuous targets are fixed at 
known distances apart horizontally or vertically at the point 

to be observed, and the theodolite is pointed at each in 

turn, the horizontal circle or vertical circle being read for 
both pointings. There are no stadia hairs. 

(a) Horizontal Subtense Suneying 18). Here ,1 is the 
theodolite and H is the point to 1h> observed, l•ronl li equal 
distances d HP H(J are marked off at right angles to 
/!/>. If the <listance .IH is not very gre.it, P and {) may l)e 

targets fixed to a rod from lit feet to 'Jit feet in length, held 
horizontally at H, with sights at the centre at right angles 

to PQ. thnmgh which the assistant sights on .1 ; for great 
dictances, P and Q may lx* targets otj vertical |x)les set out 
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at (say) 5() feet horizontally from B, so that PQ is perpen¬ 
dicular to AB. The horizontal angle PAQ = 0 is read a 
number of times (say 10) and averaged, and the vertical 
angle a from ^ to a target at B is also read. Then the hori¬ 

zontal distance AB — D ~ dcoi while if h, H are the 

heiglits above ground of tlie theodolite at .-I and tlie target 

at B respectively, the height of B above A is D tan a ♦ h - H. 
A traverse can bo made in this way with considerable accu¬ 
racy, but the pr<H:ess is a slow one. 

(h) Vertical Subtense Survey Surveying {Vig. 19). Here the 
tangtuits are fi.xed to a vertical staff at a distance, K, apart 
(say 10 feet). The vertical angles <1^ are read to the lower 
and upper targets by the theodolite at .d. Then we have 

K D Xnu tu /) tan fi, /)(tan - tan «,) 

1) - ..^-— horizontal distance 
tan (ij - tan a, 

and the rise from .d to B ~ D tan u, A - If. 
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In both methods of subtense surveying the horizontal 
circle must, of course, be read for the direction of AB, back 
readings as well as forward readings of the staff should be 

taken, and the results averaged for a change of station. 
Szepessy Tacheometer. This is a new tyjx-* in which a 

graduated vertical levelling staff is read from a theodolite, 
but the tangent principle is used as in (b) above. There are 
no stadia hairs in the diaphragm, but a scale of tangents of 

vertical angles is engraveil on the fixed cover of the \'ertical 
circle, tlie graduations iK'ing at each O-Ol and 0-(K)5. I'licse 

graduations are reflected by prisms through a window in 
the size of the telescojx* .so that the .scale of tangents is 
visible in the field of view of the eyepiece alongside the 

image of the levelling staff. In taking a rea<ling. the hori¬ 

zontal hair is brouglit on to one of the <i-OI (long and num¬ 
bered) divi.sions of tlie tangent .scale and the staff reading 
taken on the horizontal liair and at the()-(H)5 tangent divisions 

immediately above and Iwlow it. As in ordinary tacheo- 

metry the difference of the lower staff reading and that 
of the hair .should equal the difference of the upper staff 
reading and that of the hair as a clieck on the accuracy of 
reading. 

Here, tan a*- tan a, isO-Ol andconse(]uontly the horizontal 

distance D -- 100 x difference <)f tlie lower and upjx'r read¬ 
ings. The rise from .-1 to B - - /> < tangent scale reading of 

horizontal hair -f height of instrument (A) - middle reading 
on the staff (H). 

I)epres.sions are read in the same manner, the "rise” 

being - D x middle reading *- // - H, i e. the fall from A 
to B ~ D X middle reading h -f H. ( alculations are thus 

much simplified. 

h H Watti tV Sni, l.tmdon 
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Exampi.k 6 (L.U.). The following are the readings taken 

to a jwint on a Szepcssy Tacheometer— 

Staff (fci t) 1 aiif'cnt of Kl<*vation 

51U 
4‘‘ji ; 

•'JSS 

\ 

the height of the instrument l)eing 4*5(> feet aho\ e the station 

level ol 37(P61 feet. 
Find the horizontal dis¬ 
tance and lev<‘l of the 
jviint. If the top of the 
staff had been inclined 
2 ‘ towards the tacheo- 
metcr, what would have 
been tlie readings_ 
and the calrulat<‘d 
distance and level? 
(I'ig. 20.) 

S I 9 4-21 - 0-98 

4-21-^3-2:1 
I lierefoie, the readings 
are consistent. 

5* 19 - 
Horizontal ilistance - ItKsfect. 

•2(-*r> ■-200 

Rise of colliination - If-Hs y (i*26 — 50-96 feet. 

Reduced level of point 370-61 -f 4-50 -j- 50-9(S -4-21 

: 421-v57 F (t-29 - 

40 <;or) 
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The inclinations of the three rays to the horizontal are 

14° 18', 14° 34^', 14° 51' (from the above tangents). 

Their inclinations 0 to the vertical (Fig. 20) are, therefore, 

75° 42', 75° 25i'. 75° 09'. g 

Their inclinations to the inclined staff are, 

therefore, 
77° 42'. 77° ‘25J'. 77° 09' = 0 + ‘2° 

The inclined staff readings arc 

true reading x sin 0 

sin (0 + 2°) 
which are 3-203, 4-175, and 5-145 feet. 

TIterefore, D would be calculated as 
1-942 X KM)--- ^M-'2ft. 

Rise of collimation -- 194-2 x 0-26 - 50-4^)2 
leet. 

Therefore, the apparent level of B would be 

370-61 > 4-50 f 50-492 4-175 
= 421-102 -f- 0-325 

-= 421-43 feet. 
A^h, 

i i.i 21 
B.\r<)mktkic Lkvkixinc; 

For the approximate determination of levels 

(.say to an accuracy of 10 feet) in hilly country, tlie Mercury 
Barometer may be ustxl, or, more conveniently, the Aneroid 

Barometer, which is a mechanical copy of it. Fig. 21 
represents a column of air at constant temperature Irelween 

the two levels //, and /;,. At an intermediate point P, let 

p lx; the presstire, p the density, g ~~ acceleration of 

gravity, then 
. dp 
• dh 

p . g . fill - ■ dp. PK 
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Also for a perfect gas, 

where t — absolute temperature = temperature Fahrenheit 
-i- 460 ', and k is a constant for air. 

dh Rt 

'it 
P Rt 

dh. log. />. 
Rt 

difference of level, lij //, -= x" 
/ 2 

/h) 

Rt 
b'g. 

where If, If heights of barometer in any unit' 

2-3026 Rt , „ , 
^-(loRf/l 

♦ ^ 62,760 (lo^ Hi ' log H^) 

lU 

:ov air at 5o I'., 50^\^ saturation and taking <: 62-19 

ft./sev.*- at London. 

A tahlo ran bo prt'pared of 62,760 log //, thus: 

Harttmt ter 
ft in 

io}4 af ‘)a.59S '* i> .41’990 
92.704 ; 29-884 

.. 9l.7vSU 2.non 2vS-897 

., INS 9n,s24 27-79S* 

.. *J7 s9.saj l.unu ‘28 769 

.. SS.SlM S.ouo 25 805 

.. 1:5 S7.7:\5 24 875 

.. 24 SU.(>2*J ! 7.<HU> 24 979 

with suoh a table, eoniplotod for every 0*1 inch 

height of tin* haroinotrr, and by intiTpolation, the difforonco 

♦ ’ I lt<' Xiu'voitl H.trunU'tt'i .n;tl litro^rai'h in i:ni;iti'\‘rmjL;. K (I 1 

Il*}^u iHst. fj/ \ v,’a 
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of level can be found by mere subtraction of the value of 
62,76b log H at the upper level from its value at the lower 

level. 
More conveniently, a scale of heights can be graduated 

round an aneroid barometer used for surveying with its 0 

opposite 31 inches. The I.tXK* feet mark will be placed at 

such a reading //, of the barometer that 

, „ 93598-KMK> 

62760“' ~ 
1-47543 

i.e. at 29-883 inches, t!ie2.<KK' feet at a reading f/, such that 

, „ 935i)8 2(XK> 
log//*-- (^27»> 

i.e. at 28-807 inches, and so on, as in the above table. 

The difference of level of two points uncorrecled for (cm- 

perahtre can then be found by subtraction of the reading »>f 
the height scale at the lower level from its reading at the 

upper level. This scale should not be movable, as its gradua¬ 

tions are not uniform. In practice, the temperature of the 
air must lie taken at the upjxir and lower levels and the 

difference of level must be corrected by miiltiplying by the 
factor 

average temperature -+-460° . 

average absolute temperature 

absolute temperature at ^1“ F. 

as indicated by the formula proved above. Also, the varia¬ 

tion in the value of g may have to be allowed for if far from 
the latitude of I.ondon, g being given by the formula 

g ---32-0f)(l -f ()-(X)53 sin* 

where <(> latitude. 
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Where this latter correction is needed the correcting factor 

g at place 

As the temperature of the air varies very considerably 
with great heights, it will be more accurate to measure such 

heights in stages not exceeding 1 ,()00 feet at a time, correcting 
each for the average temperature in that stage. To allow 

(or changes in the atmospheric pressure not due to altitude, 
the surveyor can return to his starting point of kno%vn level, 
or to another point of known level, and adjust any dis¬ 

crepancy in level found over the intermediate readings in 
proportion to the time, or an assistant may be left to read 

another instrument at intervals during the day at the 

starting point, so that by interjx)lation simultaneous readings 
at the starting and observ’ed points may be obtained. 

The mercur\' barometer is, of course, the more accurate 
instrument, but it requires another correction for the unequal 

expansion of the mercury and the metal scale, defending 

on the tem|)erature read on the attached thermometer, 
whereas tlie aneroicl barometer is compensated for changes 

in its own temjx'rature. Strictly, also, a correction should 
Ik* made for variation of gravity with altitude, but the 
errors due to uncertainty as to tlie actual average air tem- 

jK'ratures probably render this latter an unnecessary retiiu - 

ment. 
Thk Adjustmknt of Traverses 

Open Trai'crses. These can only Ik adjusted as regards 
their angles and only by linding the azimuths of their hist 

and last lines by astronomical observations. The difference 
of these azimuths, corrected for the "convergence of meri¬ 

dians," .slmuld agree with the difference of azimuth calcu¬ 
lated from the oliserved angles of the traxerse, and any 
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discrepancy should be divided equally among the angles. 
If the traverse is many miles in length the'correction for 

convergence, viz. difference of longitude x sine of average 
latitude, should be calculateu in sections of only a few miles 
in length as described in (diapter V. 

Closed Traverses The.se are of two kinds, viz. traverses 
that return to their starting points, and traverses that connect 

two known points, e.g. two triangulation stations. In the 
latter case, if the angles between the first and last lines of 

the traverse and the line joining the triangulation stations 
have been measured, it is obvious that we have a closed 
traverse with one sitle, who.se length and l>earing must not 

be adjusted, i.e. its latitude and departure are unalterable. 
If these angles have not been measured, the traverse may 

be reduced to its first side as meridian, and the length and 

bearing of the line joining its first and last stations calculated. 
If this length does not agree with 

the known distance between the 
triangulation stations, the sides of 
the trav'erse must lx* altered in the 

ratio of the known length to the 
calculated length and the traverse 

reduced to the true Ix'aring of the 
triangulated sitle. 

(a) lioaditch’s Method of Adjust- 

vient. If All (Fig. 22) is a side 
of a traverse of length s, the probable error in its length 

will lx* proportional to V .s if of a comp<.‘nsating nature. 

This would move li to li' (say). Bowditch assumed that 
the probable error in its bearing due to incorrect angular 

measurement would pnwhice an equal displacement Bli" at 
right angles to All, so that li would move to C anti the total 
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probable error }i( would be proportional to Vs. I-et eand 

/ be the projections of HC on the north and cast axes, so 

that e is the error in latitude and / the error in dejiarture, 

then BC - Vc* +7”-. 

Then if li total error in latitude and F -- total error in 

departure we have, by the Method of Least S(|uares, weight¬ 

ing inversely as the (])robable error)-, 

”(* ' 0 niiniimun. ^(e) /:, —{/) P 

Ditterentiating, 

^ ^ -(V) <* 

tli(* iwo last (*<]iiati<Mis by ft rcsjX'ctiwly, 

adding all three equations and equating the coefficients of 

each de and df to zero, we obtain 

Si 
A; 

^ • * i./i /: — z, etc., and ~ n : ~ 
S , Ni 

f: 
(t \ J 3 :t 

M ^.1 

Substituting these values in the original equations wt* have 

, i'(.s) E. n I'is) F. ?. - J: 

Theiefor(’ the ('oiri'Ctif»!i> of latitinle are 

sM 
I 

and till- corrections of dej>arturc an- 

.s. .. . .s./- . 
J : ' l\s) 

,s .J-: 

l\s) 

IV) 

r(s) 

< ic. 

. etc. 

. (latitude 
1 hat IS ; (oiTtH'tion of a i , 

(departure 
total corriH tion ot 

('latitude length of Cf»ire^poiuling side 

(fleparlure sum of lengths of side's 



304 Advanced Surveying 

Bowditch’s Rule, therefore, alters the position of one end 

B of a line AB (Fig. 22) reUitive to the other by X /f in 

latitude and -fr X F in departure, i.e. by a resultant amount 
SmtS 

BC ~ VE* + F* = -ft X closing error, in a direction 0 

F 
where tan 9 — i.e. in a direction parallel to the closing 

error. The total movement of each station is, therefore, 

parallel to the closing error and equal 

Z'flength of sides from start) , . 

—. 

This correction can, therefore, be applied graphically as 
shown in Fig. by drawing a line parallel to the closing 

error through each station and making the “shifts" B'B, 
C'C. D’D, d'.-l, proportional to the distance from the starting 
fx)int .-1 by the diagram shown. Here AB'C'D’A' is the 

unadjusted traverse. A'A the closing error, ABC DA the 
adjusted traverse. 

The bearings of all sides are altered (unless they lie in the 
flirection of the closing error) and this alteration of bearing 
vvill be a maximum if the side is perpendicular to the 

direction of the clo.sing error, when it will be 

■s, closing error 
'(.s) ■“ 's, Vi 

closing eiTor 

i'(sides) 

in circular measure. Now, even with good chaining, the 

closing error , . 1 . . . 
'^(sides) ^ niuch as so that the maximum 

'14'18 
alteration in bearing may Iw; 3'26'. 

•Although some closing error i.s generally hnind in the angles 
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of a theodolite traverse, the en’or of the bearing of each 
side should be much less than 3^' so that this rule is unsuit¬ 
able for a theodolite traverse, though it is very suitable for 
■A, compass traverse, where bearings cannot be read to less 

than 10'. In a theorlolite traverse the angular error is usually 
much smaller than the error in chaining the sides, and the 

former should first be distributed equally over the angles: 

the closing error in latitude and departure then found should 
, . , , , correction of departure 

be adiusted m such a way that the-p-— 
^ ^^ correction of latitude 

for each side should equal j, the tangent of the bearing of 

the side, so that the bearing of the side is unaltered (Fig. 24). 
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(6) Adjustment of a Closed Tra%>erse when the Bearings are 
to be Unaltered Let the correction of a side be xs where s is 

the length of the side, then if I, d are tlie latitude and 
departure of the side, the correction of latitude is I xl 
and the correction of departure is/ ” xd, where x will vary 

with different sides. The probable error in the length of the 

Fig. 24 

side will be proportional to Vs, therefore we must weight 

the error by Then if E. F are the total corrections in 

latitude and departure we .shall have, by the Method of 

Least Squares, 

27^^ minimum ; l'(xl) ■■ E; 2^(xd) - - F 

IXxsdx) = 0 . I{l6x) ^ 0; l'{ddx) 0 

Multiplying the two latter equations by /., /• respectively, 
adding all three equations together and equating the coi'lTi- 
cients of each dx to zero, we have 

d' //j -f- /irfj t' .ad^ 
Xl...-t*-- ; : A3 - - , etc. 

■'l 'j *3 
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Substituting in the original equations we get 

which equations give A and /». 

Then the corrections of latitude are 

, /,* hd, 

307 

, etc. 
s, s, 

and the corrections of departure arc 

A 
^1 

As a check, we note that 

correction of departure _ + ftdi^ 
correction of latitude 

“ mmt m1 " f 
Weighting. In Method («) if the measurements of the 

lengtlis of the sides are known to vary in accuracy they may 
be weighted with weights u\, Wj, a’j, etc. Then, taking 

.S' 

corrections will l>e 

(e* +/*) -- a minimum, it is easy to prove that the 

ex =- 

r- 
w 

, etc., in latittide 

and f,~~ , etc., in deoartnre 

w 

Similarly in Method (6), taking -- n a nnninunn, 
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we can show that the equations for X and u will be 

\WS/ ^\WS/ \v>S/ \wsj 

/,* Ldi 
and that the corrections will be ^. = A + n . , etc., 

lAx rfi® . , 
in latitude, and/i = A ft — , etc., in departure. 

Method (6) is, of course, much more laborious than 
Method (a), but it has a sound theoretical basis, while the 

method frequently adopted for adjusting a theodolite 

traverse (viz. by correcting each latitude bv 
the latitude , , 

—r-r-;   X total Correction of latitude, 
arith sum of the latitudes 

, . , , the departure 
and each departure by —:7r--tit—3-ii- x 

^ anth. sum of the departures 

correction of departure) has no theoretical justification 
whatever, and it is easily seen that it alters the bearings of 

the lines. 
The adjustment of a traverse means, of course, distributing 

the small unavoidable errors of measurement over a traverse 

(1) so as to make it close without, in this case, altering the 
bearings of the sides, and (2) to efft'C.t the corrections in the 

most probable way. 
Method (c). This is given in Middleton and ('hadwick’s 

Surveying (Spon, London), and will be found much shorter 

than Method (6); it fulfils condition (1), but not condition (2). 
Two correction factors x and y are chosen such that about 

half the sides arc corrected by amounts xs and the remainder 
by amounts ys. The factor x is applied to all sides whose 
direction lies in the N,E. and S.W. quadrants, and the 

factor y to all sides whose direction lies in the N.W. and 
S,E. quadrants. 
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If E, the total correction in latitude, is | than P> 

the total correction in departure, the signs of aU the 
(latitude ^ . (E 
i j , corrections we made the same as the sign of j 
(departure ** (F 

Then the signs of the | corrections for each side 

are made consistent with those already chosen lor its 

(latitude ., (+ . . , 
(departure Thus, if a | correction is to be 

applied to a | ^ latitude, the length of the side is assumed to 

be increased, and | ^ correction must be applied to a 

+ 
departure. If, how'ever, ^ | correction is applied to a 

latitude, the length of the side is assumed to be decreased 

and a correction must be applied to a departure. 

The latitude corrections are then summed up and equated 

to E, and the departure corrections are summed up and 
equated to F, and thus x and y are found from this simul¬ 

taneous equation. The reader w’ill note that latitudes 

and departures are spoken of as + or - instead of as 
'‘Northings” or "Southings,” "Eastings” or "Westings.” 

This lessens the number of columns in the traverse table and 
enables the corrections to be applied by ordinary algebraical 

addition. 
Example 7. The angles of a closed traverse ABCDEF{A) 

are in order 96° 14' (H)'. 105° 17' 30*. 124° 22' 00*. 249° 05' 40*. 

40° 47'30*. 104° 14'20* (measured clockwise from the rear 
station) and the lengths of the sides AB to FA are 701*4, 
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249*2, 309*6, 1092*8, 1278*5, and 988*5 feet respectively. 
The bearing of .4 £1 is 149° 13' (K)', clockwise from the north. 

Draw up a traverse table and adjust it to close and determine 
the co-ordinates of all the stations. Take the co-ordinates of 
A as 1000 N., 00 E. 

We draw up a traverse table as shown on page 311. 
We first calculate the "deflection angles.” If the angle 

is less than 180° the deflection angle is (180°-angle) Left: 

if more than 180° the deflection angle is (angle - 180°) 
Right. The sum of the deflection angles is 429° 04' 40* L. 

- 69° 05' 40* k. - 359° 59' 00* L. As this should be 360° I.., 

wo add 10* to each L.H. deflection angle and subtract 
10’ from each R.H. deflection angle. The total is now 
360° L. Then, starting from the given bearing of .{li we 

successively deduct L.H. deflection angles and atld R.H. 

ones, checking back on to rhe t)earing of Ali. Then we 
convert the.se wliole circle bearings into reduced bearings 

in the usual way. The latitudes and departures are then 
calculated, using si.x-figure logarithms. The closing error is, 
therefore, -f 0*98 in latitude, -h 4-95 in departure, or 5*05 

feet in actual magnitude. The corrections of latitude and 
departure shown have fieen worked out by Bovvditch’s 

Method, though this is quite unsuitable here, as the l)earing 

of any side nc.arly perfxindirular to the direction of the 

closing error will lx.* altered ' 9*76', which 

is obviously wrong when the angles check so closely. The 

corrections are worked out on the slide rule, viz. 
0*98 

4(i‘20 

X length of side for latitude, • 
4*95 
4620 

X length of side for 

departure. The corrected latitudes and departures being 
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found, the co-ordinates are calculated and check back to 
those of A. 

The side AB most nearly perpendicular to the closing 
error. After adjusting the latitudes and departures, its in- 

iJ58*21 
clination to the South Meridian is tair * — 30® 43' 25* 

so that the bearing of this line has been altered 

3()° 47' (Kr - 30“ 43' 25' == 3' 35* 
or nearly the maximum 3-76' possible. 

We shall now work out the corrections, keeping the bearings 

unaltered, as they should be, by Method (b). Sec page 313. 
The equations for X an<l /< are, therefore, 

C 1673-2;.- ‘259-6/1 == -0-98 
I ‘259-6 ;. + '2946-4/1 - - 4-95 

from which we find /. — --(HK)0858, /< — -0-001756. So far 
the calculations must not be done on the slide rule, as small 
differences may l>e involved. The remaining columns, how¬ 

ever. can be calculated on the slide rule. It will be noticed 
how very different these correcti«ins are from those fouiul 
by Bowditch’s Method. 

We shall now work out the corrections by Method (c), 
keeping the bearings unaltered again - 

Factor I.atituclc nv*j.»arturt‘ 
('orrt't tion oi 

1 .^Ttttudc 
' 

t r>rr»*i ln>n ol 
Departure 

*/ 602-58 r 35896 ! 3- 0-37 - 0-22 
X ; r 66-57 * 240 14 - 0-12 0-45 
X ; 4^ 292-96 1 » 100-13 - 0-54 j i 0-19 
X i 4 38-88 i r 1.092-11 007 ! i 2-02 

.V 1 t 800-24 997-08 , 0 49 1 1 0-61 
X 1 595-09 1 789 3 i MO 1 ! 1 46 

rotals . 0'S7 4 95 
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We first choose the factors, x and y, for each side, then we 
insert the signs of the corrections as already explained. As 

the greatest total correction is in departure and is -, we 
make the signs of all the depwirture corrections and then 

insert the signs of the latitude corrections to be consistent 

with them. We then write down the simultaneous equations 
for X and y, thus— 

602^- 67x-2a3.r- 39x-f StXH'- 595x =-0-98) 
- 35^ - 24().v - l()0x - l()92x - 997y - 789x = - 4-95) 

( 994* - 14()3y = 0-98 
f 222l.r-1-135^ = 4-95 

whence x — (H)()1853, y — 04KK)615. The corrections are 
then calculated on the slide rule. Comparing the results 

with those given by Method (f») we find no .serious disagree¬ 
ment in this case, the greatest discrepancies being on lines 
AB and EF, which are most nearly perpendicular to the 

closing error. 
Examplk 8. The co-ordinates of two triangulation 

stations are as follows— 

f j 
' North (ft.) 
i 1 

Eaiit (ft.) 

A . 2464*2 1242 7 
H . 5243*05 

A traverse is run from A io B with sub-stations at X 

and y. The distances AX.XY. YB arc 1010-5. 2789-6, and 

1849-8 feet respectively, and the angles at A, X, Y, B are 

28“ 22' 2t)', 166“ 29' 00', 124“ 47' 50' and 40“ 20' 50' respec¬ 
tively (clockwise from the rear station). Calculate the co¬ 

ordinates of X and y. 
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We first find the azimuth of A B. It is 

tun“’ 
4000*35 
2999*6' 

= 53° 08' 10' 

Therefore, azimuth of BA = 233° 08' 10'. See page 316. 

Here again the corrections have been calculated by 
Bowditch’s Rule, which is quite inapplicable here. 

To find the corrections e.xactly by Method (6), see page 317. 

Here, again, we see how very different the corrections are 
from those given by Bowditch’s Rule. 

To find the corrections by the simpler approximate Method 

(c), we note that all the three traverse lines lie in the first 
quadrant; we must, therefore, select x and y in quadrants 

from the direction of the given line AB. The factors for 
.4A', XY, YB are, therefore, x, x, y respectively, and we 

1195a: + 1804>- - 1*09 
3586a: + 409*5y = 5*14 

X = 0*001476, y — -0*(KK13735, giving for - • 

! l-atituclc 
j ('orreotion 

Departure 
Cornx'tion 

0-22 j 4 1 47 
X y . + 1-54 i f 3 82 
YB . 0*67 i 

_1 
- 015 

1 

-f 1 -09 1 
j 

1 5I4 

Here, again, there is no serious discrepancy from the exact 

results given by Method {b). 
Inter connected Traverses. When a survey consists of 

several closed traverses with some of the sitles common to 

two or more polygons, it is usual to adjust first the polygon 
with the largest closing error, then that with the next 
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largest closing error, and so on. Wlien the latitude and 

flcparture of a common side have once been corrected, they 

must not be altered but that side must be taken as a "known 

side" as in the last Example, and the error distributed 

among the remaining sides of the polygon in question. This 

is, of course, an empirical method, and the Method of Least 

Squares can be applied if greater accuracy is required. The 

student will find it a useful exerci.se to take the case of two 

quadrilaterals whose sides are (1). (2), (3), (4): (4), (5), (6), 

(7) respectively, with closing errors E^. Ej in latitude and 

F, in departure resiiectivcly and to deduce the normal 

equations, (<i) when tlie bearings may 1h' altered, and (6) 
when the Ix^arings are correct. 



CHAPTER VIII 

SETTING OUT 

Transition Curves—Compound Curves^— 
Vertical Curves—Funnels 

Transition Curves 

When a road or railway is to be suitable for traffic at any 
but the lowest speeds a "Transition Curve ” should be intro¬ 

duced whenever the centre line changes from a straight line 

to a circular arc. In order to prevent skidding on the road, 

or undue flange pressure on the outer rail on a curve, the 

road should be "banked" or given an inward slojx', and the 

outer rail should be "superelevated” or "canted" above 

the inner one, by an amount depending on the radius of 

the curve and the speed of traffic. 

If m is the mass and v the velocity of the vehicle, p the 

radius of the centre line, and a the inward inclination of the 
road (or surface of the rails) (Fig. 1), in order to eliminate 

skidding or flange pressure, the resultant of the weight of 
the vehicle and of the reaction perpendicular to the road 

or rail surface must be horizontal, inwards, and of the 

value m —. 
P 

Therefore tan n —-= — . . • (*) 
P*»g gp 

If b is the breadth of the road (or distance between the 
centre of the rails), the superelevation e = b sin a. If a is 

small, we have 
6ti* 

e = - n 
gp 

3«9 

(2) 
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riiis superelevation should lx* applied gradually, so that 
<• is proportional to the distance s from the commencement 

of the transition curve, or that s x e oc We have thus 
P 

to find such a form of spiral curve that its radius of curvature 

p at any point is inversely proportional to the distance s from 

the commencement of the curve. 

The gauge of a railway line has also to be widened on a 
curve in order to allow the bogies of the vehicles, with their 

parallel axles, to travel round it, and this widening, which 
increases as the radius decreases, can lx* gradually applied 

along the transition curve. A transition curve also reduces 

the shock which would be felt when the path suddenly 
changed from a straight line to a circle, due to the inward 

ir* 
radial acceleration -- required on the latter. 

Length of Transition Cun>e. Let a' l)e the time rate at 

which the radial acceleration — on the circular curve of 
r 
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radius r may lx- ai)i)licd. riicii. if / is the Ini^tli of the 

transilion nirve, vvc liave 
V- 

u’ 77 

as the tinu‘ tak(‘n to traverse tiu* curve is . 
I * 

W’e have, lhert*fore. 

/ r . 
ru {•^) 

i.e. the length <'uries inversely its the rndins af the cirenlur enrve 

if the velneity is independent of the radius. 

On sharj) radius curves, howevtT, the haukiuR atif^le, a, 

would !)e too i4rt‘at for the safety of vehicles at re<l on the 

curve, (‘siMH'ially with a strong inward wind, so that on 

sharj) curves it is usual to limit tlu' sujxTelevaticm c, or 

banking angle, n, and reduce tin* sjkhxI accordingly h'roni 

formula (1) we have r \ gr tan// as the apj*)ropriate 

sj^eed for a bankitig angle* a, on a curve of radius r. Inserting 

this in formula (3), we have 

(*^r tan a)- 

ra' 
(g tan rO" 

\ r 
(4) 

i.e. h hen the superelevation or banking is limited, the length 

of the transitio)t enrves varies directly as 

Vradius of the circular curve. 

If the maximum cant allowed is 6 inches on a standard 

railway gauge (4' 8^), say 4' Hi* between rail centres, we 

6* 
have sin a -- so that 

n 5' 47' and tan o - 

The maximum sjx’ed f(*r tl>e curve slumld then he 
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v/32-2 X '1013 Vi" = 1-806 Vr ft. per sec., but we can 
safely increase this to 2 Vr by allowing a small amount of 

llange pressure on the outer rail. If «' be taken as I ft. 

per sec.® per .sec., we have f — - 8v r, where I and r are 

in feet. Writing the length as L and the radius as K in 

Gunter's C/iains of 66 feet, we have66f. — 8v'^66/if ~ 65\^, 

or, approximately. 

L - VW . . . . (5) 
a common rule.* 

As the radius increases, the allowable velcKaty, Vgr tan u, 

increases until when Vgr tan n I'l, the maximum velocity 
allowed on the straight, the vcU)city again Ik'comes inde¬ 
pendent of the radius, and the length of the transition 

curve = or varies inversely as the radius for curves 
ra 

of greater radius than r ‘ 
° g tan « 

Approximate Treatment. For most purposes it is suffi¬ 
ciently accurate to use the Cubic Parabola, y -- Cx^, as the 

transition curve (Fig. 2). Differentiating, we obtain 

dx ’ rf.v® 

Now p, the radius of curvature, at anj' }X)int P 

/rfyW 

ecx 

{'Vm 
dH' 

dx^ 

dv I 
therefore, if -f- is small, 6C'x — -• 

dx p 
• Sliortt» "On a Practical Mctlwxl for tht* Improvement of MxUting 

kailway Curven/' /Vof. I mi. C.U., V'ol. I7H. 
Hi/ = 1-806^7./ -- S-WT. 



t;ingent 7', which satisfies the ciuidition required for 
a transition curve. 

When s ~ I, at the "junction point ” J, where the circular 
curve begins, we liave p -- r. 

• / — * • C - * 

so that the equation to tlie c»irve is 

V 
6/r (6) 

Let *--• the inclination of the tangent at P to the .v-axis 
or straight, « - the "spiral angle," i.e. the value of ^ at 
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the junction jioint J, and 0 ••• the ‘‘tangential angle” at 

P angle PTA, then we have ^ tan ^ 3( v- -- ; 

/'* / . dy 
tan rt - ,w 

Mr 
„ , and as — is assumed to lx* small, we 
Zr dx 

may write 

Also, tan ft 

/ 
(7) 

y 

\ 
\~ 

(Hr 

tan <f) dv . 
.or as IS small, 

d d\ 

ft - 4 
(«) 

A- 

3 6// 

It will be noted tliat the tangential angle 0 increases as 

the square of the distance from the tangi^nt point and the 

offset V as the cube of that distance, wlu*reas in a circular 

curve the tangential angle increases pro|)ortionately to the 

distance and the offset (approximately) as the scpiare of 

the distance. 

The circular curve does not touch the tangent but is 

moved inwards by an amount BM ~ c, called the shift. 

We have 
Ir I .. .. . . / 

nr But C J BJ (very nearly) 

Therefore, the shift BM bisects the transition cufve, very 

approximately. 

y.i-RV 'I Also, c -- liM 

P 
6r 
/* 
6r 

/* 
24r 

.. • ir sin-.~, 

/■(I - cos (l) 

..2 

2 6r " 
r P P P 

2 ■ 6> ' 8^^ 

--- shift 
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and us C T 
/» _ BM 

48r~ 2 

Therefore, the shift is bisected by the transition curve* 

To Find the Distance of the Transition Curve from the 

Circular ( urve at any Point. Let Vj == ordinate to the tran¬ 

sition curve, Vj -- ordinate to the circular curve, and x' — 

distance of the point from A. 

Then 

v3 (/ v']-* P -- 3P.C + 

" 61 r "" " ‘(Vr "" . 61 r 

^ ^4.^ ^'1 
6r 2r 2r &r 

•' * 2r 24r Sr 2r ^ 2r 24r 

' 6r' 2r 2r 

y'® 

I'herefore, distance between curves 3^2- >’i — and, 

therefore, is proportional to (distance from junction point)^. 

If required, therefore, the transition curve could be set 

out by measuring these distances from the circular curve. 

At the quarter points .r, or a', ^ 

f _ _ / •* _ 
and V, or ,v, _v, ^ - ,g--24,. 

so that, in the first quarter of its length, the transition curve 

♦ (ilovrron “Transition C urves lor Hailuays/’ J*roc. Jn.^i.C /: , Vol. 140. 
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£ 
only deviates jg from the tangent, and in the last quarter 

of its length from the circular curve. 

If the length of the curve (in chains) --- v^rudhis (in chains) 

the shift c ~~ -- ,-rj chain -= 4-16(i links. The deviations 
24r 24 

from the tangent and the circular curve at the quarter and 
three-quarter point.s respectively are, therefore, only (h26 
link - - 2*<)6 inches. 

The length of the tangent of the romhined curve will 
now be (Fig. 3), 

I\l l\l == i 4- (r + c)tan^ (10) 
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i.e. it is increased, by the insertion oi the transition curve, 

L . I P 
by the amount 2 + ^ 2- 

The length of the combined curve will be 

CD -f 2TiC r arc fi 1 ■ (11) 

The “external secant,” 
fi 

Ik — (r c) sec r> - >' • . (12) 

This last enables the middle jM)int of the curve to be set 

out from the intersection point of the straights by bisecting 
the internal angle 'I\l I\. 

Example 1. (L.U.) A road 30 ft. wide is to turn through 
an angle of 26" 24' with a centre line radius of 600 ft., the 

(forward) chainage of the intersection point being 3640-6 ft. 

A transition curve is to be used at each end of the circular 
curve, of stich a length that the rate of gain of radial 

acceleration is 1 ft./sec.® when the speed is 30 m.p.h. Find 

the length of the transition curve, the banking of the road 

for this speed, the cliainage of the beginning of the combined 

curve, and the angle to turn off there for the jx'g at 3,500 ft. 
30 m.p.h. ~ 44 f.p..s. Hate of gain of radial acceleration 

Ir 
1. 

443 

600 
= 142 ft. 

tan « == — 

. banking = 

Shift, c 

44 X 44 
= 0-l(K)2. 

32-2 X 6(H) 

30 sin o = 2-99 ft. 

/* ^ 142 X 142 
' 24r - 24 X <«H» 

- 5" 43' 

•40 ft. 

tangent ~ (6(H) 4- 1*40) tan 13° 12' 71*0 

: = 140*7 - 0*33 -! 71*0 - 212 0 ft. 



328 Advtimed Surveying 

chainagc of - 3640-6 - 212-l> - 3428-6 ft. 

tangiMitial angle for 3,5<M) It. peg 

(71-4)-* 
6 X (itKi X 142 

X 34;i8' - 0 ’ 34-3' 

•V./f. It is interesting to calculate tlie oftsrHs to the transi¬ 
tion curve at J of its length and at the JP. 

These will b<' (])®, {\)^, (J)® of the «»lf>et at J, which latter is 
/* 
^ 4 x shift — 5-6i> ft. 

The offst'ts are. therefore, (t-(»!-)ft., o-7oft.. 2-»t6 ft., and 
5-60 ft. at 33-.S, 71, 106-5, and 142 ft. from /'P,. 

The oftset to the circular curve at 106-3 ft. from 7'P, 

l-4(» ft. -r 

:i5-5® 
2 X 6(H» 

2-45 ft. 

Therefore, in the first <|uarter of its length the transition 
curve only deviates O-Of) ft. from the tangent, and in the 

last quarter of its length it only rlevi.ites il-ttVlft. from the 
circular curve. 

E.\.\Mri,i: 2 (L.U.). A circular <-urve,6iHt ft. radius, touches 

a straight line at a chainage of 8576-6 ft., deflects through an 

angle of 67'24' to the right, and touches another straight 

line. This curve is to be shifted, maintaining the same radius, 
so as to admit a transition curve 200 ft. long at each end. 
Calculate the chainages of the beginning (.1) and end (/f) 

of the combined curve, the ma.ximum radial displacement 
of the circular curve, and the attgles to In* turned off at ,f 

from the first straight for the 8,50') It. jx-g, and at H from 
the siicond straight for the 0,2(K)ft. jx'g. 

•Y./f. As WKtft. and ‘200 ft. are nearly 9 and 3 (iunter’s 
chains re.spectivelv, the length nearly conforms to formula 
(5). 
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/■■' 2»«) X 2<H> 

24r 24 X 6lMr 
2-78 ft. 

Inrrcasc in lengtli of tangent ; 2-78 tan 88’42' + 1<X)4) 
- l(U-85ft. 

chainagc of .1 - 857B-6 -101-85 8474-75 ft. 

Length of cornl)ine<l curve - BiMhirc B7' 24' 200 

: ^>05-81 ft. 

( h.unai^c of li 8474-75 | 005-81 9880-.5(S ft. 

The ina.vimuin ladial tii-iplacement of tlie circular curve 

will lx- at it'' middle j)oint and will he 

II 
( sec 2-78 sec, ITT 42' - 8-84 ft. 

riie tangential angle at .1 for 8,5(K) ft. peg 

(Mr « •' ‘200 • (>(NI 
- 84;i8' O 8-04' 

The tangential angle at li for 0,200 ft. jx-g 

V- (18o-5(s)^ . 

61 r 6 ‘2iK» ■ (itKt 
•; 84:i8' 155-7' --- 2 85-7' 

lx\.\Ml*i.K 8 (I..L .). If the circular curve in Example 2 is 

not shifted but the radius is sharpened to 540 ft. at its ends, 

.so as to admit transition ettrves of length - v radius (in 

(iunter’s chains), find the chainages of the beginning of the 

combitied curve and of the beginning and end of the first 

curve of 540 ft, radius (Eig. 4). 

Length of transition curve in feet 

, /540 
: v B<s ; 540 188-8 ft. 

shift 
188-8 X 188-8 

~2-4 X 54t» 
2-75 ft. 

24 (70;) 
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From the figure we see that OP = 6() ft., 

60<> - (54() + 2-75) = 57-25 ft 

cos POQ = = 0-9542. POQ = 17° 24' 

PQ = 60 sin 17° 24' - 17-94 ft. 

chainage of iV or C = 8576-6 + 17-94 ft. = 8594-54 ft. 

I io. 4 

This is the ‘‘.shift p<4int’' or miUdie of the transition curve, 

chainage of new tangent point, T — 8594-54 - 94-4 

==-.8500-14 ft. 
and chainage of the junction point J with the transition curve 

= 8594-54 + 94-4 = 8688-94 ft. 

The length CK = 540 arc 17°'24' = 164-00 ft. 

chainage oi K ^ 8594-54 4- 164-(K) = 8758-54 ft. 
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This procedure might be necessary if buildings, etc., pre¬ 

vented inward movement of the centre line on the middle 

portion of the curve, or outward movement of the adjoining 

straights, for the transition curve. 

Setting Out the Cnmbined ('nne. After measuring the 

deflection angle ft at the intcrst'ction / of the straights, the 

tangents wovdd be chained and the tangent points 7',. 7.^ 

fixed. 

When chaining tliese it is well to leave marks at .1 

and F (Fig. 3) on the tangents, opposite to the junction 

points JiJi. i.o. at distances I from 7', and 'I\. Then the 

theodolite is set up at 'i\, set to zero on /, and the first 

transition curve is set out by tangential angles and lengths 

along the curve. When tlie junction point J. is reached the 

tangential angle will Ik':;^ and tiie total length of arc /. The 

offset, f.A can then be meas\ired as a check on the j br 

position of /, I'he second transition curve is tlien set out 

from and tlu' point J., fixed and checked. 1 lie theodolite 

fi 
is then set up at /, and sighted on 7\, reading t he zero 

line of the horizontal circle is now parallel to ll\. If the 

telescopt' were now transitted ami the horizontal circle set 

to read a, the telcscojie would Ixr pointing along the tangent 

at 7,. Actually, the circidar curve is set out from 7i by 

adding a to the tangential angles for each point, s being 

the distance from Jy, and the setting out is checked on to 

the }H’g at /j. 

Exact Treatment {Glovcr'i Spiral).* Starling from the 

♦ (Vlover on ’* rransition ('urves for Kailway^, ’ /‘mu ( / .. Vol 140. 
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fundamental condition - ks, \vc liavc aNo for all curves 

ks^ 
ds = pdff>. d<f> - ksds. Integrating, ' ,, , there being 

no additive constant, as ^ . (*, when .s 0. .\t the jiinction 

point p --- r, s ~ 1. 

? ” ■■■ /' ■■ ■ ■ c.t) 

Also at tju* jimrtion point, n, 

/- / 

I'o lran>forn) to rrrtanj^ula:' ro-onlinatrs, \vt‘ havr 

.s \ ; (/s 

(ix i </v . <'os 

/t/ \ 
^ . I • .Vi 

4 (*■' • ti' )•'. 

V ^. t) 

in ’ 2\*i '? I / 

tiy //v .sin 4^ 
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Vj 1 
1 

£ 
n ti.. 

■Zi §r) 

. *' \ 
iT 1 1 

440 / 

<!>- \ 
- 7. i' It -mi ) 

*: 
iJ 

, 

-1-10 ) . . . . (15) 

If we lake the first tenn> only of these expansions, we have 

S-> .V3 

^ " tVr “ air 

i.o. wo have tlio cubic paraixila as a lirst approximation, as 

in tnjuation ((•>). If wo take the first two terms we have 

^ » - f,'). V * t^) ample accmacy. 

At the junction point (hig. 3) let v — A', y — F, while 

s - - /, <f> n and we have 

for the co-onlinates of the junction point. 

The shift, c, V -r(l -cos«) 

d 
Tite tangent - (r t c) tan .y + A - r sjn a 

The length of the combined curve — r arc (/if - 2u) -f- 2/ 

The external secant {r t c) sec 2'^* ' ‘ 
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Also, tan 0 

3V' ^ 35 ^ 51975 

^ 26^* 
3 105 ■'■ 155925 

- ■ 
f , tv ^ 

“ 3 ' 8! 3845 

which is practically tlic same. 

Therefore, as <{> i.s generally > 0*2, 

" 3 Sir . (18) 

to a very close approximation. 
To illustrate the closeness of approximation of a cubic 

paral)ola to the tnie spiral, we will take ICxattijih; 2 (above) 
where / ^ 2(K> ft , r 800 ft., ami /( - 87^ 24' 

/ 200 1 1 
The spiral angle « ^ • 34.'t8' 

- 573' 9 

.V -- '3^,) - 199-445 0 

2<K) X 2<H>/ 1 \ 
^ "■6“x~60<rV‘ ~3S X 14/ 

11-09 ft. 
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The shift, c ll (« -6<K) (1 -cos9°33') = ll-(»9 8-32 
- 2-77 ft. 

The increase in length of the tangent, above that required 
o 

for a purely circular curve. = c tan ^ - r sin a + A' 

- 2-77 tan 33" 42' - 600 sin 9° 33' + 199-445 
l-aS -99-54 4 199-45 - 101-76 ft. 

The length of the combined curve 

- 6<M) arc (67" 24' 19" 06') -f- 400 
-= 5<»5-81 + 4(M) 9(>5-81 ft. 

IT • u- , , Y- ,. , 2(K) X 2tX) Lsing the cubic paralxua, t would be = -g—-ggg- 

— 11-11 ft., an error of 0-02 ft., the increase of the tangent 
was 101-85 ft., an error of (H)9ft.. while the length agreed 

exactly. 
COMPOrSD Cl.KVl-.S 

When the radius of a circular curve changes from one 

value r, to another r* we have a compound curve, and there 
are two cases, {a) both curvatures in the same direction, 

and {h) reversed curvature, where the curvature is in opposite 

directions. In the latter case a length of straight is usuallj' 
interposM l>etween the curves if no tiansition curves are 

employed. We shall assume that the common tangent is 
known (Fig. 5). Then, if there are no transition curves, in 

the first case: 
(i y 

r, tan ^ + >'t tan — /., and I “ /? + y 

and in the second case: 
ft y 

r, tan ^ 4- / + r, tan ^ = L, and I — ^ -y 

which formulae must be satisfied by the two radii. 
When transition curves are employed with reversed curves 
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tlic length of intervening straight is nnneeessary, and we 

have (Fig. B). 

(r, { c^) tan il -| .j .j i (n ! e^) tan L 

where /,, /* are the lengths of the transition curves and c,, t j 

the correspomhng shifts. 

IM.: .S 

E.s.ami’LE 4 (L.l'.). AU, IK'. ('D are three straights. The 
length of BC is 40 (tlriintei'^) eiiain^. IK deflects (it) right 

from AB and Cl) 45 left from B( . I'ind the radius (r) for 

two e(iual circular curves, each witii transition curves «)f 

length Vr at Iroth ends, to connect .1 /> and Cl); BC is to 

Ik,* the conimot) tangent withotit intermediate straight. I•'ind 

also the total length of curve. 

/- r 1 
Shift .; r „T 771 tHl42 chains 

24r 24r 24 

4<HK)-: -f-;i^tan.'^t) 4.-^-^+ f i ;“^tan 22^30' 

- (t»-5774 F 0-4142) fr ; 774) ‘ Vr 
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0-9916r + \/r-39-96 = 0 

Solving as a quadratic in Vr 

^ . - 1 ; + 4 X -9916 X 39'-96 - 1 + 12-629 
"" "2 X -9916 ' “ ^ “ 1-9832 
= 5-864 chains. r = 34-39 chains 

11-73 + 63-02 — 74-75 chains 

When a transition evirve of length / is required between 

two circular curves of radii r, and r*. the curvature being in 

the same direction, Glover* shows that the shift, 

c shorte.st distance between the two circular curves 

and the shift bisects the transition curve and is bisected 

♦ *’ rransition Curves for Kailways,” Proc. Inst.C:!... Vol. 140. 
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by it. Curve r, is set out up to the shift point and curve r, 
is set out forward from that point. The shift is bisected at 

C and CJx, C/, marked off, each equal to L Offsets are 

then set off outside curve rj and inside curve r, at distances 
(s) from 7i, 7, respectively, and of lengths 

_ s* c 

Unless the difference of radii is very considerable, it is 
unnecessary to employ this refinement; the two circular 
corves are allowed to touch, and the superelevation is 
gradually increased from its value on the r, curve to its 
value on the r, curve in a length /, of which half is on each 
curve. In any case, the length I should be decided by 
the permissible rate of gain of radial acceleration, say 
1 ft./sec.* 
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Vertical Curves 
Somewhat analogous to transition curves are the vertical 

curves used to connect two gradients on a railway or road 
where the change of gradient is considerable. The curve 

- —'XT 

1 

1 
1 

1 
1 
1 
i 

1 
1 

i 
i 

•^1 

1 
1 

1 1 1 
1 1 

45eO 40k> 4^20 

Fig. 8 

used is a parabola with vertical axis tangential to the two 
gradients (Fig. 8). The vertical through the intersection 
of the gradients is a diameter of the parabola and bisects 

the chord joining the two tangent points, so that the 
tangent points are equidistant (horizontally) from'the inter¬ 

section point. The equation to the parabola, measuring y 
vertically and x, along either tangent is y = CiX,®, and as 

is proportional to the horizontal distance x from the 

tangent point, the equation may be written y — Cx*. The 
constant C is found by calculating the vertical deflection 

6 of one tangent point from the other tangent produced, 

thus— 
Example 5. A gradient of I in 50 meets a gradient of 

1 in 400 at chainage 4,670 ft. and level 461*25 ft. A vertical 
parabola is to be introduced, 300 ft. long, to connect the 
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gradients. Calculate the levels at the tangent points and at 
each 50 ft. of through chainage. 

The chainage of the tangent points will be 
4670 ± 150 - 4.520 ft. and 4,820 ft. 

Producing the 2 per cent gradient, its level at 4,820 ft. 
- 461-25 + 3-00 -= 464-25 ft. 

The level of the 0-25 per cent gradient at 4,820 ft. 
= 461-25 + 0-375 ft. = 461-625 ft. 

.-. d = 2-625 ft. at .T = 3t)0 ft. 

2-625 
^ "" (30()j'» "" “•<*<^'<‘2917 

We, therefore, prepare the follow-ing table (the level of 
the 2 per cent gradient at 4,520 ft. ~ 461-25 -3*00 == 458-250 

1 

Chainage 
i 

j 

X 

! 

: - l/jvcl of ' 
2\ gradient 

: 1 

V- i 
1 

V ! 
1 V : Level 

of paratiota 

4.5-20 1 0 458-25 1 «! 
0 * 458-25 

4.550 1 30 458-85 1 1 900 I 0-03 i 458-8‘2 
4.600 ! 80 45985 i 6.400 ; 0-19 459-66 
4.650 i 130 4mB5 ! I6.9<X) 049 460-36 
4JOO 180 461-85 1 32,4<H) 0-95 460-90 
4.750 1 230 462-85 i 52.iMK) 1 54 461-31 
4,800 i 280 ! 463 85 1 1 78,400 2*29 46l-v56 
4.820 

i 
300 1 

: 1 1 
1 464 25 1 
[ i 

! 90.(XM> 1 

i 
2-625 461 625 

Setting Oot Tunnels 

The setting out of tunnels divides itself into three parts: 
(i) the surface survey or setting out, (ii) the connection of 
the surface and underground surveys, and (iii) setting out 

underground. In all three of these, levelling is involved as 
well as the alignment of the centre line. 

(i) Surface Survey. In open country the centre line is 
usually set out on the surface, and the centre line is usually 
straight for the greater part of its length. An approximate 
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line is chosen on an existing survey, and this is set out with 
a theodolite from one of the terminal stations and produced 

until it passes the other terminal station; the first inter¬ 
mediate station is then shifted laterally by an amount equal 

, .... distance from starting point 
to the total deviation x -:~r~T ---• Then 

total distance 
the process is repeated, by “ trial and error,” until a straight 

line between the terminal points has been obtained. Of 
courst*, all observations will be taken, both Face Right and 
Face Left, and the results averaged. Permanent pillars of 

Fici. 9 

ma.sonry or concrete should now be built on this line at all 
salient points, capped with a stone into which a metal plate 

is fixed, and surrounded with a scaffold, on which the 

surveyor can stand without shaking the pillar. The centre 
line should now l>e set out again, marking it on the metal 

plates and setting the theodolite (removed from its leg.s) 
over these marks. The theodolite should be as powerful as 

possible, and the process repeated several times, the resultant 

positions on the pillars being averaged. 
It is advisable that two stations should be visible from 

the terminal stations, and for this purpose it may be neces¬ 
sary to extend the line beyond the terminal stations, as 
shown in Fig. 9. A line of careful levels should be run over 

the tunnel and checked in the reverse direction, two bench 
marks being left near each end, and intermediate bench 
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marks if shafts are to be sunk at intermediate points to 
expedite construction. The object of the duplicate stations 

and bench marks is to guard against any disturbance of 
these marks, in which case such disturbance can be readily 

detected before it leads to serious error. If there are to be 

shafts, a peg should be carefully fixed with the theodolite 
near each shaft, the centre line being marked on the head of 

a copper nail driven into the top of the peg, or a low pillar 
may be used. 

In towns, it will not usually be possible to set out the 

centre line on the surface, and a traverse must be run 
between the terminal points, the stations being marked per¬ 
manently. say on metal plates let into the curbstones. The 
work has usually to be executed at night and must be as 

accurate as possible, the angles being read repeatedly on 
both faces with a powerful theotiolitc, and the lengths 

measured with a steel band along the ground at a constant 

tension and corrected for temperature and difference in 
level. If possible, the traverse should be closed; if not. a 

check on the angles can be obtained by finding the azimuths 

of the first and last lines by astronomical observation, and 
comparing the difference of azimuth with the resultant 

observed deflection angle, allowing, of course, for the effect 
of the convergence of meridians. 

From this traverse, when the co-ordinates of the stations 
have been reduced, the position, chainage and direction of 

the centre line can be calculated at the terminal or any 

intermediate points. 

In mountainous country the tunnel will probably be long 

and deep, and shafts will not be economical, the tunnel 
being driven wholly from the ends. In such cases a triangu¬ 

lation would be made over the tunnel between the terminal 
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stations, from which the angles between the centre line and 
an adjacent side of the triangulation at each end can be 

calculated. In very mountainous country it may not be 
possible to level over the surface in the usual way, but the 
difference of level of the ends can be determined by taking 

vertical angles reciprocally between stations when executing 
the triangulation. 

(ii) Connection of the Surface and Underground Surveys. 
Setting out the centre line of the tunnel from the ends is a 

straightforward operation. If the centre line has been set out 
over the surface, the theodolite is set up on the terminal 
station and sighted on the two visible stations; it is then 
directed up the tunnel and a f>ermanent mark made in the 
floor or roof, the average of face right and face left observa¬ 

tions being taken. 
As the tunnel advances this process is repeated and 

marks made farther and farther in, until it becomes neces¬ 

sary, for visibility, to move the theodolite to one of these 
marks in order to produce the centre line still farther; as 

before, sighting always on two known points before fixing 

a new one. The most for\vard mark should be sufficiently 
near the working face to be of use to the workmen in driving 

and lining the tunnel, but sufficiently far from it not to be 
damaged by blasting operations. The levels are carried in 
by spirit levelling from the two bench marks outside the end, 

and bench marks are established in the floor or on the sides 

of the tunnel. 
When vertical shafts are employed, as is economical when 

the tunnel is not too deep, each shaft providing two 

additional working faces, the method usually adopted is to 
suspend two long plumb-lines down the shaft, as far as 

possible apart, to place them exactly in the centre line by 
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a theodolite on the surface, then to transfer the theodolite 

to the bottom of the shaft and set it up in the tunnel in line 
with the plumb-lines, when the centre line can be produced 
both ways and marked in some substantial way on the floor 

or roof of the tunnel. This is an operation demanding great 
care, as it amounts to producing a very short base for a 
long distance, and many precautions are necessary. Long 

plumb-lines are easily deflected and apt to oscillate slowly, 

the period of oscillation being proportional to Vlength; 

shafts are frequently very wet from ground water, and great 
care must be taken to see that the plumb-lines do not touch 
the timbering or rock, and are protected from water drip. 

A useful check on the freedom of the plumb-lines is to 
measure carefully their distance apart at top and bottom 

of the shaft and see that the.se agree. Fine piano-wire is 
used for the plumb-lines with heavy plumb-bobs, up to 
50 lb. in weight in some cases, immersed in buckets of water 

or oil to damp out oscillations as much as possible (Fig. 10). 
The bobs may have projecting vanes to prevent rotation. 

At the surface the wires are suspended from cross-beams, 

frequently passing over a nut on a horizontal screw per¬ 
pendicular to the centre-line of the tunnel; by rotating the 

screw the wire can be moved laterally into the required 
line. 

Practice varies as to the position of the theodolite at both 

top and bottom of the shaft.* Some engineers place the 
theodolite at a distance from the nearer wire about the same 

as the distance between the wires, they can then see each of 
the wires by focusing on it, although one is behind the 

other, and to the naked eye completely obscured by it, and 

♦ L. H. Cooke. " Underground Orientation bv Exact and Appmximatc 
Alignments of Plumb-wires in One Shaft.’’ Proc, Inst. M. and M., 1925, 
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undoubtedly an accurate bisection of tiie wires is better 
ensured by this close position. The theodolite is centred 
over the peg or pillar left near the shaft for the purpose, 
and siglited on to two of tlic principal stations, then focused 
on each wire in turn and the wire moved into line as required. 
If this operation is repeated with changed face errors due 

— 
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to non-liori/.ontality of the trunnion axis, non-jwrpendicu- 
larity of the collimation line to the trunnion axis and non- 
axial draw of the t»'lescope in focusing at very different 
distances will lx; eliminated, provitled the wires are set in 
the mean positions obtained by face right and face left 
obst'rvations. Other engineers prefer to set up at IM) ft. to 
50 ft. from the nearer wire, so that both wires can be 
observed at the same focus, although the focus has certainly 
to be changed when sighting on the permanent stations. 
In order, however, to be able to see both wires, some special 

- (7671 
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device must be employed, e.g. the supports must be at 
different levels at the top and the plumb-bobs at different 
levels at the bottom, or two or three links must be inserted 
in the nearer wire at top and bottom, through which to see 

the farther wire, or the farther wire may be made thicker 
than the nearer one and a white card placed between the 

two wires, so that, when truly centered, they 
appear as in Fig. 11.* 

_At the bottom of the shaft there are the addi¬ 

tional difficulties of bringing the axis of the 
theodolite exactly into the plane of the wires and 
the slow o.scillations of the plumb-wires, which 

cannot always be completely damped out with 
very long wires. The first can be obviated by 

having the theodolite, above the levelling screws, 
mounted with a screw motion at right angles to 

the centre line of the tunnel, so as to move it gently into line. 

If the oscillations are very small, they can be averaged by 
eye on the intersection of the cross-hairs; if too large for 

this, a fine scale can be fitted in the diaphragm of the 

theodolite, and the extreme readings on this scale averaged, 
or a scale may be fixed behind each wire on which similar 

readings can be read and averaged. 

Having set the theodolite exactly in the plane of the wires, 
a couple of marks should be made in the floor or roof of the 

tunnel as far from the instrument as possible, and the process 
should then be repeated with changed face—the permanent 

marks being the average of those obtained face right and 

face left. 
An alternative method, adopted in mines on the Continent, 

^ H. A. Bartlett^ Notes on the Construction and Setting-out of Tunnels 
in the London Clay/' Ptoc. Inst.C^E,, VoL 156. 
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is that of the “Weisbach Triangle” (Fig. 12). Here the 
theodolite is set up at C, very slightly out of line with the 
two wires .4 and B, so that both wires are visible. The angle 
ACB is then measured very accurately—it should not exceed 
a few minutes—and the distances AC, and BC, also AB as 
a check, also measured very accurately, and from these 

y'' 

y 

?_^_ 

Fig. 12 

measurements the azimuth of any other line CD can be 
deduced if the angle ACD is also read. If desired, the devia¬ 
tion CM of C from the vertical plane of AB can be calculated, 
and a line CE set out parallel to the centre line at a very 
short distance CM from it, by sighting on A and deflecting 
through the angle BAC. 

Example 6. The vertical plane of two plumb-wires A, B, 
has an azimuth of 54° 36'20' (clockwise from north). A 
theodolite is set up at C, south of AB, and the angle ACB is 
measured as 0° 12'30', the distances AC, BC being 20-065 
and 10-122 ft. respectively. An angle ACD is measured 
clockwise from A as 124° 17' 50'. Calculate the azimuths 
of the lines AC and CD and the amount C is distant from 
the line AB produced. 

As the angles /?.4C, ACB are so small, w'e can take AB¬ 
AC ~ BC = 9-943 ft., also the sines of such small angles 
can be taken as their arcs or circular measures, therefore, 

BAC . sin BAC _ BC _ 10-122 
ACB sin ACB AB 9-943 
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angle BAC = X 750' = 763-5' 

= 0** 12' 43-5' 

/. azimuth of .4C = 54° 36' 20' + 0° 12' 43-5' 
= 54° 49' 03.5' 

CD deflects from .-IC by 180° - 124° 17' 50' 

= 55° 42' 10' Left 

azimuth of CD = 54° 49' 03-5' - 55° 42' 10' 
- 359° 06' 53-5' 

Deviation of C from AB produced — 20-065 sin 0° 12' 43-5' 
^ (NI74 ft. 

20 0«>,S ^ I.302.4.W2 
7«3 .S > 2 H82.StW(» 
sin I' 1 8(!«5,5749 

0074272 I 2 s70,S231 

As sin .V agrees with .v to ’‘P 

and cos.v agrees with 1 to '’P .v ~ <>° 11' 

(see Chapter I) the validity of these a{)pro.\imations is appar¬ 
ent. If desired, a line could be set out from C parallel to the 

line -*1B and 0-074 ft. away from it, by sighting on A and 
turning oft an angle of 0" 12' 43-5' from the line C,4. If 

is the centre line of the tunnel, the marks thus fixed could be 

altered by 0-074 ft, to give the centre line. 
It frequently happens, espt-cially in towns, that the shaft 

cannot be placed on the centre line of the tunnel, which may 

be under the road, while the shaft is outside the road and 
connected with it by an "adit” or short horizontal (tem¬ 

porary) tunnel. In such cases the plumb..wires are suspended 
in the shaft in some known azimuth so that their line can 
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be produced along the adit into the tunnel proper. The 
theodolite below ground is then placed in the main tunnel 
in line with the wires, and at a distance from the wires 
equal to their distance from the centre line of the tunnel, 
and the centre line found by turning off the necessary angle. 

I'lo. 1.3 

E.\.\mpliv 7. The co-ordinates of two stations. .-1 B, on a 
street traverse and of three intersection points A', V’, Z of 
straights on a sewer tunnel are as follows (Fig. 13). 

N.>rlh i Mast 
i 

.1 . 5021 *50 1032*72 
n , 5872*01 1292-90 
A* . 488(»00 : 99(vm) 
V S47<MM> i ! 1192-00 
/ . i 0050-00 i 

I i 

j 1320-tK» 

Calculate the distance AP from .1 of a point P in A B 
such that PI' is perpendicular to AB, the distance Pi', and 
the angles PYX and PYZ. 
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Azimuth of AB — tan“^ 851^5 ” 10-6* 

159*28 
Azimuth of AY = tan-» = 19“ 33' 15-7' 

260-24 2-415.3741 159-28 I 2-202.1612 
851-05 2-929.9551 448-44 j 2-651.7043 

tan 17‘0'10-6' 1-485.4190 19'33'15-7' j 1-550,4569 

A Y = 448-44 sec 19' 33' 15-7' 

AP = A Y cos 2' 33' 05' = 475-42 ft. 

PY = A Y sin 2' 33' 05' = 21-18 ft. 

44844 2-651,7043 
sec ir 33' I5'7" 0-025.7995 

.4>’ 2-677.5038 A y 2-677.5038 
cos 2' 33' 05' 1-999.5692 sin 2' 33' 05' 2-648.5098 

AP 2-677,0730 J’V j 1-326.01.36 

198-00 
Bearing of A'Y = tan-» = 17' 01' 38' 

bearing of YA' = 197° 01'38' 

128*0(1 
Bearing of YZ = tan-* = 12° 19' 18' 

196 1 2-292,2561 128 j 2-107,2100 
640 1 2-806,1800 586 2-767.8976 

tan 17'or 38' j 1 -486.0761 tan 12'^ 19' 18" 1-339,3124 

Bearing of YP = 270° + 17° 00' 11' = 287° 00' 11' 

Angle PYA' = 89° 58'33'and 

Angle PYZ = 85° 19' 07' 

In setting out, therefore, we measure off 475-42 ft. from A 
towards B and find P. Set the theodolite over P and tom 
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an angle of 90®, then measure off 21*18 ft. and thus find Y 
on the ground. If the shaft can be on the tunnel centre-line, 

we should now set up the theodolite over Y and set out 
two points on each of the lines YX, YZ by turning off the 
above angles PYX, PYZ from YP. 

After the shaft is sunk and a short length of tunnel driven 
in the two directions, plumb-wires can be suspended succes¬ 

sively in each of the lines YX and YZ, and these centre lines 
thus carried underground as above described. If, on the 

other hand, the shaft has to be placed off the line of the 

tunnel, as indicated in the figure, PY would be extended 
to Q and the shaft sunk at Q. When the shaft has been sunk, 

the adit or heading driven back to Y, and a short length of 
the tunnel driven along YX, YZ, the line PY would be 

again ranged with the theodolite and the plumb-wires sus¬ 

pended in the shaft in this line. The theodolite would then 
be ranged into the line of the wires underground at a distance 

from the nearer wire of n ft., and the angles 
QYX = 180® - PYX and QYZ = 180® - PYZ 

set off for the centre lines of the tunnel. 

To carry the levels down the shaft, the level of a nail in 
a timber at one side of the top of the shaft is ascertained by 

levelling from the bench marks left near the top of the 
shafts for this purpose. A steel tape is then hung down the 

shaft, care being taken to stretch it vertically and clear of 

obstructions. If the tape is long enough to measure to the 
foot of the shaft the depth can be measured in one opera¬ 

tion : if not, the lower end of the tape must be marked in 
some way, the engineer descending the shaft in the skip or 
cage for this purpose, and the operation is repeated until 

the bottom of the shaft is reached, where the level of some 
temporary mark is obtained, this level being transferred to 
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a permanent bench mark on the side of the tunnel by means 
of the level and staff set up inside the tunnel. 

(iii) Seiting Out Underground. To render plumb-wires and 
-lines visible a lamp .should be held behind them, with tracing 
paper pasted o\er the glass, or some other form of trans¬ 
lucent screen held between the lamp and the line. An electric 

torch held near the object 
glass of the level or theodo¬ 
lite will render the cross¬ 
hairs visible, and a lamp 
lield near the levelling staff 
w ill enable readings of this 
to be taken. Permanent 
alignment marks usually 
consist of file marks on 
dogs ilriven into the roof 
of the tunnel lining (Fig. 
14), from which a plumlv 
line can Ix' susjX'nded. 
Pencil marks on chalk can 
be used until the two posi¬ 
tions, F.K. and F.L.,have 

been marked, then the fde mark can be made, averaging 
the two marks. W hen the theodolite is set up below one of 
these marks for producing the line, a mark must first be 
plumbed vertically below it, over which the theodolite is 
set up. Alternatively, the jx*rmanent mark can be a centre- 
punch mark in the head of a nail driven into wooden peg 
embedded in concrete in the floor and covered over so as 
to be protected from the traffic. Bench marks are mo.st 
conveniently formed of spikes driven into the side of the 
tunnel on which the staff can be held. As the tunnel 
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advances, the centre line marks and bencli marks must be 

advanced and kept as near the face as will be safe from the 

blasting' operations. All productions must be by “ double 

centering.” i.e. the mean of observations taken face right 

and face k-ft. th<‘ back sight being as long as possible. The 

worknu-n prolong the centre line of the last two maiks by 

eye. using pluml) lines and candles held to them. It is 

advisable at intervals to re()».*at the process of plumbing 

down the shaft and checking the aligntnent marks pre¬ 

viously established to ensure that no error is undetected 

l)efore it ha> produced too -.erious result.s. If possible, the 

bench mark.s should !)e maile at a ccmstant hf;ight above the 

invert level of the tunnel, to rentier the risk of error by the 

workmen as small a> po»il>le. e.g if at intervals a brick in 

the same course is left projecting a little, or a slight step 

left in the concrete at a constant height above the actual 

invert le\ el, the engineer can u-'C these as bench marks and 

inform the foreman of the amount they are above or below’ 

tin- Correct lev»'l. so tliat the levels of future work may be 

made correct. 

The workmen ascertain their level at the working face 

by sigliting along the tops of boning rods,” shaped like 

r-squ.iies. of constant length, held on the projections thus 

left, making anv necessary conections by packings under 

the boning rods. Small (.leviations from Ixith line amt level 

are c ertain to occur it is important to ensure that there is 

no cumulative c'rror. Great care and constant checking of 

the Setting out and completed work are essential if the 

different lengths of the tunnel are to meet in line and level 

with that accuracy of which tunnel engineers ate justly 

protul 

Where possible, curves are a\otded in tunnel work, but 
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they cannot always be avoided, especially near the ends of 
a tunnel. In such cases, a “heading,” i.e. small temporary 

tunnel, is sometimes driven through in prolongation of 
the tunnel straight, so that a straight line can be ranged 
through from end to end, which conduces to greater accuracy. 

Curves are set out with the theodolite in the usual way, 
but. of course, the intersection of the two straights is 

rarely inside the tunnel, nor can the tangent lengths be 
measured off from the intersection as on the surface. The 

tangent point must be accurately fixed, and the theodo¬ 
lite moved round the curve as soon as the “long chord" 
fouls the side of the tunnel. Frequent centre line marks 

must be left at equal distances apart, and the workmen 
should be instructed how much to deviate in any given 

distance from the “short chord” joining the last two marks 

produced. 
Example 8 (L.U.) (Fig. 15). The co-ordinates of two p>oints 

A, B are 

North i hast 

A 00 
li . ■ . i 201-40 998-40 

A straight line AC bears llo'-' 30' (clockwise from north) 

and intersects at C a straight line BC bearing 275° 50'. The 
chainage of A is 2671*62 ft. Calculate the lengths of AC 
and CB. The two straights are to be joined by a curve of 

500 ft. radius. Calculate the chainage of the tangent points 
and of B. 

The bearing of CB is 95’ 50' 
.'. deflection angle at C ~ 14° 40' Left 
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If CB be produced to D, 
OD = 201-40 + 998-40 tan 5“ 50' 

= 201-40 + 102-0007 = 303-4007 
AD = 399-60 - 303-4007 = 96-1993 ft. 

.4C = 96-1993 = 377-97 ft. 
sin 14® 40 

Easting of C = 377-97 sin 69® 30' = 354-04 ft. 

BC = (998-40 - 354-04) sec 5® 50' 
= 644-36 sec 5® 50' = 647-71 

Fig. 15 

998-40 1 

tan 5° 50' 
! 2-999,.3046 
1 1-009,2984 

1020007 i 2-008.6030 

96-1993 
sin 84° 10' 

coscc 14® 40' 

1*983,1720 
1 *997.7453 
0*596.5446 

377*97 
sin 69® 30' 

2-577,4619 
1-971,5876 

354*04 2*549,0495 

a44<<6 
sec 5® 50' 

2-809,1286 
1 0-002.2547 

647-71 2-811.3U33 
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Length of tangent = 50(> tan 7° 20' 
500 X *1286943 = 64*35 ft. 

Length of curve =- 500 arc 14° 40' 
= 500 X *2559816 == 127*99 ft. 

chainage of Tl\ - 2671*62 + 377*97 - 64*35 
= 2671*62 313-62 == 2985*24 ft. 

chainage of TP^ = 2985*24 + 127*99 -= 3113-23 ft. 

chainage of 8 - 3113-'23 + 647*71 - 64*35 
3113-2:1 -r- 58:1-36 3696*59 ft. 

I-K!. 16 

For setting out the curve the following table is prepared— 

Chainaj*f, 
ft. 

\r 
It. 

liKTfmcnt j 
of ! 

1 afV4fntiiil 
Am*lc 

r.uii't'nli.O 
\ngk* 

r»ini;i*ntijil 
An«l«* 

1 Actual 
j 3 licodolite 
t Kcadin" 

i_ 

2985 24 
1 
t o 0 0" 0" ! IWO MM)'IK)^ 

3fHMr 14*70 50 74' 50 74' ’ 0 50'40" i 359 09' 20" 
3t>25 25 85*94' 134v08' 2' nr 40" 357 43'20*' 
3050 25 85*9 r 3 42'40" 350 17'20" 
:h>75 25 85 94' 308 50' 5 08' 30" 35451'30" 
3roo 25 85*94' 394*50' 0 34'3(r 1 353 25' Mr 
3J 13*23 ; 13*23 4.S-48' ! 439*98' i 7 20'00" i 352 40' 00' 

i 

The increment of tangential angle for 25 ft. is 

1 ’ 26' nearly. 
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The increment for the first length 

14-76 
- ,,5” X 85-94' = 50-74' 

•ind that for the last length 

- X 85-94' ^ 45-48' 

The tangential angle for TP^ = 7° 20', this checks correctly. 

In '25 ft. the arc will deviate from the tangent by 

25 sin 1- 26' -0-625 ft. 

i.e. from the line of tlie preceding chord by 1-250 ft., as in 

Fig. 16. 



CHAPTER IX 

SURVEYING FROM THE AIR 

Vertical and Oblique Photographs—Grid for High 

Obliques—Vertical Stereoscopic Pairs—Stereoscopy 

—^Topographical Stereoscope—Plotting Stereoscopic 

Pairs—Determination of Ground Levels—Grid for 

Low Obliques 

Surveying by means of photographs taken from aircraft, 

like Aeronautics itself, has made immense progress during 
the last 30 years, and for any adequate treatment requires 
a book to itself, but this v’olume would be incomplete 

without some introduction to its principles. Its use enables 
undeveloped country to be rapidly and economically 

surveyed to a small scale and existing large-.scale surveys 
(e.g. the 6 in. to 1 mile. Ordnance Survey) to be revised as 
regards new detail such as roads, buildings, etc. Like all 

forms of <letail surveying it depends on "Ground Control,” 
i.e. on the positions of stations, tixed at intervals by Triangu¬ 

lation (or Traversing), to which corresptmding points on 
the air survey must be adjusted to avoid the accumulation 
of errors. If the levels of iin(>ortunt j,)oints of detail have to 

be shoum, or contours of altitude, the levels of the ground 
control points must also lie fountl. Air photographs are 
taken from a height of from 5,(MM) to I0,<MM)ft., which is 
measured on an "Altmeter,” a form of aneroid barometer. 
There are two main classes of air survey, viz. (a) by Vertical 

Photographs and {h) by Oblique Photographs. 

Vertical Photographs 

Fig. 1 rcpresejits a vertical photograph of devel ground, 
being the negative film (or plate) and C the perspective 

358 
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ceviJtre of the lens through which all rays, e.g. XCx, pass in 
straight lines: the extent of the photograph is limited to 

Viyt by the size of the film, say 7 in. square. If a perpendi¬ 
cular Cp is dropped from C to the negative, Cp is called the 

principal distance, and p the principal point of the camera. 

Ya X G Yt 
I'lo. ! 

There are no cross-hairs in the camera but the principal point 

is marked by a -f on a glass plate covering the film {or can 
be found by joining pairs of marks on the edge of the glass 
plate), these marks being photographed so as to show on 
the negative. If H is the height of C above the ground, 

/ the principal distance and K a point on the ground re¬ 
produced at X on the plate, the .scale of the photograph will 

r; and it will be constant over the whole of the 

negative. A plane through C will cut the ground and the 
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negative in parallel straight lines and straight lines at an 
angle on the ground will be represented by straight lines 

at the same angle on the negative. If the point observed, 
however, were X,, at a height h vertically above X, the 
point on the negative would be shifted to .Vj and the scale at 

/. / Cl would be increased from to 
H H ■ h 

This is an example 

I'lo. 2 

of height distortion. The jwint G, vertically below C, is 
called the ground plumb-point—in this case the plate plumb- 
point coincides with p the principal point. 

High Oblique Photographs 

Fig. 2 represents an oblique photograph of level ground, 
the tilt or inclination of the plane of the negative to tlie 
horizontal being 0. The plane of the paper (vertical) con¬ 
taining the principal distance Cp { = /) is called the prin¬ 
cipal plane. The plate plumb-point is now at g vertically 
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above the perspective centre C and ground plumb-point 6'. 
The principal plane cuts the negative in the principal line 
yipyt- A horizontal plane through C cuts the negative in 
a horizontal line through k called the horizontal trace. 
Straight lines on the ground will still be represented by 

straight lines on the negative, but parallel straight lines, 
which may be considered to meet at infinity, will, on the 

negative, converge to a vanishing point on the horizontal 
trace: if they are parallel to the principal plane, this point 
will be at k, and the lines will be called plate meridians. 
Parallel straight lines on the ground perpendicular to the 
principal plane will be represented by parallel straight lines 

at right angles to the principal line, i.e. horizontal lines or 
plate parallels as their vanishing points are at ± infinity 

on the horizontal trace. 
The scale at' any point x along the plate parallel is —, 

C A 

and decreases from the upper edge of the negative to zero 

at the horizontal trace at k. The scale along the central 
meridian, i.e. the ratio of a short distance xx’ on the negative 

to the corresponding short distance A'X' on the ground, 

/dcot (a-fO) / cosec'^ (a -r 0) Cx cosec (a -1- 6) 

Hdcoix ~ H cosec'** 9 CX cosec a 

where CXO — a, and it will also decrease from the upper 

edge of the negative to /.ero on the horizontal trace. These 
scales being different, if is obvious that the angles at which 
lines, other than the ground parallels, cross the central 

meridian will not be correctly reproduced by the angles 
between corresjKrnding straight lines on the negative. If 
we bisect the angles PCC, pCg by the straight line Id. the 

points I and i are isocenires, and the ground and plate parallels 
through / an<l i are called isometric fxtralleh. The triangles 
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CJG and Cip being similar, the scale along this parallel is 

a f 
— a= —, the same as for a vertical photograph; the scale 
Cl H 
along the central meridian there is also as, smce 

cosec (« + 0) 

cosec a 
= 1 

Consequently a straight line crossing the central meridian 

at / is represented by a straight line crossing the principal 
line at i on the negative at the same angle. If this angle is 

45“. this line will meet the horizontal trace through A at a 
distance 1u[ from k — ik = Ck since the angle iCk = 

90° - = = Cik. This point q will be the vanishing point for 

all straight lines on the ground at 45° to the central meridian. 

Grid for High Obliques 

To construct a grid for the positive photograph which will 

represent a grid of equal squares on the ground with their 

sides parallel and perpendicular to the central ground 

meridian OGP, proceed as follows—Draw a straight line 

kl (Fig. 3) to represent the principal line kpyi, and a line 

perpendicular to it, to represent the horizontal trace, 

making kqi — kq^ Ck ~ f cosec 0. If the sides of the 

squares on the ground are a ft. and we choose the intervals 

b in. 
along the parallel at I XoXxh in., the latetal scale at f *= —r- 
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But from Fig. 2 the lateral scale at / = 

bH cost^c H 

C/ _ _ _Jk_ 

CL kO H cosec 0 

Ik - , where Ik ami b are in inches, H ana a in 
a 

feet. Set olY / at this distance from k, through / draw a line 

I'l.;. a 

parallel to q^q^, mark off intervals of b in. on each side of I 
and join the points to k by straight lines. These will be 
the plate meridians. Then mark oH kp cot 0, and draw 
a parallel through />. Radial straight lines from q^ and q^ 
(commencing with those through p), which represent the 
diagonals of the squares and are at 45'' tt) the central ground 
meridian, give the positions of the other parallels. Figs. 2 
and 3 represent a high oblique, i.c. the trne horizon shows on 
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the photograph. To draw the visible horizon find from 
tables (see page lOl) the dip & of the visible horizon for a 

height of //ft. Then mark off kk' — /{cot 0 — cot {0 + i)} 
and draw a line through k‘ parallel to qikq^ to represent the 
visible horizon; the grid is now complete. 

The student should draw out such a grid from the follow¬ 
ing data—Tilt 0 — 67°, height //= 5,<KM) ft., principal 

di-stance = 7 in., sides of grid squares on ground = 660 ft., 
6 = 1 in.: plot to ^ full size (i.e. b — I in.). Take tlie dip 

of the horizon 6, as ft. approximately. 
To allow for variation in tilts and altitudes a number of 

grids are made, marked on gla-ss, for various combinations of 

height H and distances of the visible horizon from the upper 
edge of the photograph. When a grid has been selected to 

suit those conditions it is laid on the positive photograph 
and fitted to the principid point p: the detail and control 
points can then be transferred from the perspective squares 

on the photograph to the true squares on the ground grid, 
on which the ground control points arc already plotted. To 
join the photograph to the ones preceding and following it, 

azimuth lines are drawn on each, near the principal line, 
through points of detail recognizable on the adjacent 

photographs. 

Surveying with high obliques has been used extensively in 
Canada for the huge wastes of almost level country covered 

with forest and innumerable small lakes on the “ Laurentian 
Shickl.” The aircraft flies in a straight course and photo¬ 

graphs are taken at about 2 mile intervals to avoid having 

to plot too far into the background beyond p, the principal 
point. Immediately after each exposure the camera is 

swung 45" to the right and left against stops to take side 
obliques which widen the strip of ground surveyed to about 
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6 miles. A low oblique is a photograph with a smaller tilt, 
0, so that the horizon doe.s not .show on the photograph. 

Vertical Photographs in Stereoscopic Pairs 

This method is suitable for larger scale surveys in more 
developed or more hilly country. The photographs are 

1 3 1 4 i 5 3 6 4 s 6 

V'lr.. 4 

taken in a series of parallel strips at regular time intervals so 
arranged in relation to the speed of the aircraft that each 
photograph overlaps (id per cent of the adjoining ones in the 
.strip. If a wind is blowing tlie aircraft will drift and the 
directitm of the camera must then be deflected from the 
forward direction of the aircraft so as to lie along the actual 
track followetl, i.e. the direction of the resultant of the two 
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velocities. The overlap of the strips laterally is usually 
^ per cent of their width. It will be seen from Fig. 4 («) that 
20 per cent of each photograph appears on three successive 
photc^aphs in a strip. The distance B between successive 
positions of the camera is called the air base and is usually 
about 3,000 ft. If b is the 40 per cent length of each 

photograph not overlapped by 
the next one. it is obvious 

6 / 
4 (6) that g = jj. 

i.e. B so that the time 

from Fig. 

Hb 

/’ 
interval for exposures can be 
found from the actual speed of 
the aircraft relative to the 

fB 
ground. Also — = 6, which 

H 
should be constant. 

Again {Fig. 5), if two successive photographs have been 
taken from an air base B, the point X appears in different 
positions, Xj, x,, which show a shift of position or absolute 
parallax, p, in the direction of the air base, p being the algebraic 
difference of position from the principal point, measured 
parallel to the air base. If we draw parallel to C*x„ we 

Fig. 5 

see that 
B 

i.e. p 
Bf 
—. If, however, K were at X' on 
ti f 

top of a hill of height h, the parallax of X' would be increased 
to ^ As A is usually small compared to H, we-can write 

.X A . 
op — — jpoH ~ H ^ length of photo¬ 

graph not overlapped by the next one. All objects on the 
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same level have the same absolute parallax, and an increa^ 
of ground level (or decrease of depth from the air base) 
increases the absolute parallax by an amount proportional 
to that increase (or decrease). 

The overlapping portion of each pair of photographs is 
examined in a stereoscope, the principles and use of which 
will now be explained. 

Stereoscopy 

If two large dots A and B (Fig. 6) about 1 in. apart on 
paper are held parallel to the eyes E, E and viewed by both 
eyes,^ith a little practice they can be fused into a single 
dot mP^rtual image at D. If the separa- £_£ 
tion AB of the dots is increased to AC, the J 
angle of convergence ADB is decreased to \ // 
AFC s^d the depth or distance of the image g He 
below the dots is increased. This resembles “ ^ ~ 
what takes place in ordinary binocular vision \ , . 
and gives the effect of distance and relief \ ' ' 
to a view; each eye forms its own picture \l I 
and the two pictures, taken from an eye base ^ j 
about 2\ in. long, are fused into one. The . 1 

object of a stereoscope is to increase by optical ' 
means the distance between the eyes and the 
separation of the corresponding points viewed Eig. 6 
on the overlap of two successive photographs (taken from the 
ends jof a horizontal air base, say 3,000 ft. long), placed 
side-by-side without overlapping. Such a stereoscopic view 
loo|cs solid instead of flat and enables the relative levels of 
points ^n the earth’s surface to be determined by measuring 
their difference in parallax or separation. The two photo¬ 
graphs must be in correspondence, i.e. exactly oriented so 
that the base-line, from the principal point of each photo- 
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graph to the position on that photograph of the principal 
point of the other, is in line with the corresponding line on 
the other photograph. When this is effected the separation 
of all pairs of corresponding points at the same level is the 
same and is parallel to the air base, with truly vertical 
photographs. 

If each photograph is covered with an exactly similar 
grid of fine lines engraved. 

NK ^ glass plate and 
the separation of corres- 

/X ponding lines on the grids 
Bmijht. equals that of the corre- 

spending points at the 
same level on the plioto- 
graphs, then the fused 

j images of the lines and 
of the points w'ill be 

fused at the same depth and the lines will appear to 
touch the ground at that level, provided, of course, that there 
are some details showing on the photographs by means of 
which the lines may be brought into coincidence. By moving 
one of the grids outwards along the base-line, we can increase 
the .separation of the corresponding lines and form the fused 
image of the lines and p<jints at a greater depth, .so that the 
lines will appear to touch the ground at a lower level. 
This increase of separation i> the same as the decrease in 
parallax (dp) due to difference of level, anti enables us to 

.... 
measure this ditference as h Iht* marking of the 

grids asually consi.sts of two series of equally Sfxiced lines 
(Fig. 7) at 45'’ to the base line, which is marked by short 
lines. Short lines i>erpcndicuiar to the base are also marked 
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as ^own. The sloping lines are -known as “N.W.’’ and 
"N.E.” lines by analogy with directions on a map. 

Topogh.aphkal Stereoscopk 

Fig. 8 is a diagram of the Barr and Stroud Precision Type 
of Topographical Stercoscoi>c. The observer’s eyes are at 

£ £ 
I I 

E, E and the two successive photographs are viewed stereo- 
scopically by two pairs of parallel mirrors 3/, M; the 
inclination of the smaller mirrors can be altered by turning a 
screw F at the back of the framework which supports the 
mirrors from the base of the instrument. The photographs 
are clamped to two tables T, T, each of which can be rotated 
through a small angle by turning the orientation screws 0 
at the L.H. end of the base, one at the front and one at the 
back The centres of the vertical axles of the tables are 
marked on the tops of the tables. Each table has a pair of 
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stops S, 5 so arranged that their four faces are all in a line 
which passes through the centre marks of the tables; thus a 

straight edge i^ced against them fixes the position for the 
base>Unes of the grids and photographs on each table. The 
parallactic grids G, G are fixed in frames supported by arms 

from a spindle RR at the back so that they can be lowered on 
to the photographs on the tables (as shoMOi) or raised well 

Fic. 9 

above them to allow the photographs to be moved or marked. 
Both frames can be moved p>arallel to the base-line by equal 
amounts by turning a milled head A at the L.H. end of the 

spxndle. At the R.H. end is a micrometer head B, which 

moves the R.H. grid only so as to alter the sep>aration of the 
grids, and is graduated so that the readings increase as the 

sep)aration of the grids decreases. 
Error in Correspondenu. In Fig. 9 an object, which lies 

at A on the intersection of a cross on the L.H. grid, appiears 

at A' above the intersection of the cross on the R.H. grid. 
There is clearly an error in correspondence e, as A A' is not 

pHurallel'to the base-line, due to incorrect orientation of the 

photograph (or to the photographs having been tilted 
when eiqxjsed). When the wires are fused it is still possible 

with a little eyestrain to fuse the object if e is small, but 
the effect is that the N.W. line ap^pears to have a smaller 
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separation than the object by and, therefore, to be higher 
than A, while the N.E. line appears to have a larger separa¬ 
tion than A and, therefore, to be lower than A. The reverse 
would be the case if the object were at A" below the inter¬ 
section of the cross. If the R.H. grid is moved so that the 
two lines touch the object in turn, the total movement is 

iPi -f- dpg and the error in correspondence e = 
6p^ +jp^ 

2 

Plotting Stereoscopic Pairs 

Orientation of the Photographs. On both tables the grids 
are adjusted so that the intersection of a cross is over the 
centre mark of the table. The photographs are then clamped 
to the tables with their principal points under the inter¬ 
sections of these crosses, and turned so that corresponding 
detail near both principal points lies along the base-lines. 
Then the photographs are viewed through the stereoscope 
and fused by turning the screw F to the small mirrors, and 
correspondence observations are made on objects near each 
of the two principal points. Errors in correspondence are 
eliminated by turning the orientation .screws 0, 0 to rotate 
the tables .slightly and the parallax screw B until both N.E. 
and N.W. lines of the grid touch the ground near the prin¬ 
cipal points. 

Approximate Measurement of Difference of Level of Two 

Points, X and Y. By means of screw A bring a short grid 
line close to each point. By turning B make the mark 
touch ground successively at X and Y, reading the micro¬ 
meter head B each time. The difference of the micrometer 
readings is the difference of parallax, 6p. from which the 

Hdp 
difference of height, h = —r— may be calculated. For 

o 
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example, if the photographs measure 7 in. x 7 in., the 
40 per cent of non-overlap will be 2*8 in. If H is 8,000 ft., 

a difference of parallax of 0-5 mm. will represent 

8,000 X 0-5 X 00394 ^ .... 
-—--- = 56 ft. If the pnncipal distance 

A*0 

Hb 8,000 X 2-8 
/ = Tin., the air base B would be -- = — -- = 

3,200 ft. If the sloping lines are used for observation of 
either X or Y, both N.W. and N.E. lines must be brought 

to touch ground one after the other and the average of the 
micrometer readings taken for that point. This is necessary 
as X and Y may be at different distances from the base-line. 

To Transfer a Point from one Photograph to the Other by the 
Stereoscope. This may be necessary if there is no well defined 

detail at some point to wliich we require to take directions 
from the princijxal points of the two photographs. Mark 
the point required by placing a correspondence mark, i.e. a 

cross like one on the grid marked on a small piece of celluloid 
film, over the desired position on one of the photographs, 

then place a similar mark over the approximate position on 
the other photograph and move it by hand until both lines 
when fused are at the same depth as the adjacent ground. 

Then pierce the centres of both marks with a needle on to the 
j^otographs. 

Plotting from Vertical Photographs by the Stereoscope. 
Although every care is taken to keep the camera level by 
the screws provided for this purpose, the photographs are 

liable to small tilt distortions as well as height distortions. The 
former can be shown to be in a radial direction from the 
isocentre and the latter from the plumb-point on the photo¬ 
graph, neither of which now quite coincides with the prin¬ 
cipal point as in a truly vertical photograph. However, 
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Hotine* shows that directions taken from the principal 
point of a photograph can be taken as sufficiently accurate 

for surveys of scales up to or nearly Sin,to 1 mile, 
provided the tilt does not exceed 2° and the range in height 

of the ground does not exceed a tenth of the height of the 
aircraft above the average ground level. We cannot assume 
that the base-lines of the photographs, between each pair 

of principal points, are in one straight line throughout the 
whole strip, or that their lengths are as calculated from the 
ground speed of the aircraft and constant interval between 

the exposures of the photographs; therefore Minor Control 
Points are chosen near the upper and lower edges of the 

photographs in the 20 per cent portion which appears on 
three successive photographs and in which lies the principal 
point of the middle photograph. Lines are drawn to them 
from the principal points on the different photographs. 
Then the directions of the base-lines are found by stereo¬ 

scopic observations of each pair of photographs and the 
positions of the principal points are fixed by resection from 
the minor control points. This process gives the Minor 
Control Plot of the strip which can be adjusted to fit the 
similar plots of adjacent strips until the whole width of the 

survey is contained on a Compilation; this is adjusted again 
to fit the ground control points which should not be more than 

7 miles apart longitudinally and the width of 4 or 5 strips 
laterally, t 

Fig. 10 represents three successive photographs, 1, 2 and 

3, with their principal points ixi A, B and C. Photographs 
1 and 2 are placed in the stereoscope and carefully oriented. 
By using a straight edge placed against the stops S, the base- 

• Capt. M. Hotine; Surveying from Air Photographs (1931) (Constable 
St Co.), p. 152, 

t Ibid. p. 153. 
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line direction Ah is drawn on the overlap as Ah and a short 
line or tail T drawn at the farther edge of the photograph. 
Similarly in 2 the base-line direction Ba is drawn also with 
a tail. The ^ocess is repeated with jAotographs 2 and 3 
and so on for each pair of photographs, which can then be 
joined in direction. 

The minor control points are then selected in the 20 per 
cent overlap common to three successive photographs. 

Fig.10 

These should be distinct points of detail lying above and 
below the principal points at distances about the same as the 
base-line lengths. If there is no such detail available, they 
will have to be fixed to correspond by using the stereoscope 
(see p. 372). These points are shown as K, L in the second 
photograph and as M, N on the third photograph: similarly, 
these points are represented by /fj, li and A,, /g on the photo¬ 
graphs to the left and right of 2; and by mj, m, and »n„ «, on 
those to the left and right of 3. Short lines arc drawn from 
the principal point of each photograph through these points, 
the third and subsequent photographs each showing 6 minor 
control points with short lines through them. A strip of 
(xlhiloid, with a roughened surface for drawing, is then cut 
to include the whole length and breadth of the strip surveyed. 
The first {^ot(^;raph is placed under it and the positions of 
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the principal point A and of one of the minor control points 
traced on it; also the direction Ab and the short line 

through the other minor control point (Fig. 11). Then the 
second photograph is fitted under the celluloid so that aB 

lies along Ab (Ab being produced so that it lies under 
the tail of aB) and moved until the short line from B 

Fig. 11 

through K passes through kj. This fixes the position of B, 
which is marked. The short line from B through L is then 

traced to intersect at L the short line from A through 
The base direction Be is traced and produced and the short 
lines through and are traced. The third photograph is 

then inserted with bC under Be and moved until the short 
lines from C to and pass through the plotted positions of 

K and L. This gives the position of C and the radial short 
lines, intersecting those from B through and fix the 

points M and N; the short lines through pi, and the 
base direction Cd are then traced and so the process continues. 

If, in fixing the position of C. the short lines from C 
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through A, and cannot both be made to pass through K 
and L, while bC is still kept under Be, move the photograph 

so that these latter two lines still coincide, until a short 
line CA, passes through K and trace this line on the celluloid. 
Then move the photograph, still keeping bC under Be, until 

the short line C/, passes through L and trace this linfe. 
These two lines, traced back to meet Be, form a small 

triangle of error with it and the position of C is chosen inside 
it—at its centre if very small, as it should be. Then the 
photograph is shifted again so that C on the photograph is 

under this new position and bC lies under Be; the points M 
and N are found by intersection, and the base-line Cd and 

short lines through Pi and qi are traced. 
As angles taken from the principal points of the photo¬ 

graphs are correct, any points which can be identified on the 
overlap of two photographs can be marked and transferred 
to the minor control plot by placing it over one of the two 

photographs, so that the principal point (say A) and the 
base-line on the photograph lie under the corresponding 

ones on the celluloid, and tracing short radiating lines from 
A through the marked points. Then substitute the other 
photograph with its principal point B and base-line Ba under 

the corresponding ones on the celluloid and intersect the 
short lines traced on the celluloid with ones traced from B 
through the corresponding marked points. Thus ground 

control points, whose positions have been fixed by the 
triangulation, can be plotted, and auxiliary points can be 

fixed on the 25 per cent overlap between adjacent strips, 

which can thus be plotted on the minor control plots of 
adjacent strips and which will serve, when adjusted to fit, 
to connect these plots when the compilation is traced for 
the whole area of the survey. Otner points can be fixed in 
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a similar way to provide triangles for tracing the detail 
within them from the photographs. The compilation is then 
adjusted to fit the ground control points. The longest 
distance between those 
marked on the compi¬ 
lation compared with 
their true distance on 
the ground gives the 
mean scale of the 
compilation and the 
positions of all the 
ground control points 
are plotted on paper 
to this scale. The 
positions of all ground 
control points on the 
compilation are then 
adjusted to fit those on the paper. When all this adjust¬ 
ment is completed the detail can be traced on the com¬ 
pilation by the triangles traced on it for this purpose and the 
compilation is ready for reproduction as a survey. 

Determination of Ground Levels 

The levels of some salient points will have been found 
during th6 ground triangulation by vertical angles, corrected 
for curvature and refraction, and these will provide ground 
control for determining spot-levels on the air survey. For 
this a more accurate method than that already described 
/ . , Hdp\ ' fB 
^viz. A = absolute paralla.x. p = —, for 

both the point X of known level and the point Y whose level 
is to be found (Fig. 12.) Here B is the average length of 

<-hy 

Fir.. 12 
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the air base CD as measured from tlie compilation, and H is 

the average height of the two air stations C and D above 

the point observed. If h^, are the heights of X and Y 
above datum and M tiie average altitude of C atid D above 

datum as given by altmeter, then M — h^. and the 

//>* 
absolute paralla.x of A - p, ~ ; ;-7~- When examined in 

M — h 
the sterooscojx? the ditlcrence of parallax of A’ and Y is found 

bv the micrometer head to be - />,, - bp. Therefore, the 

ab.solute parallax of {p^\ is />, — bp. I hen - --— 
Px — °P 

anti the height of V' above datum (/»J is .1/ —■ HThis would 

be true if the camera were absolutely level at both exposures, 

but owing to small unavoidable tilts there will be tlefects 

in corres{)ontlence between eorresjKjnding points on the two 

photograjdis and tluse must first be determined at four 

points near the corners of the overlap of each pair of photo¬ 

graphs. I 'rom tlu se I lie parallaxes can be corrected for corre¬ 

spondence at other fKjints* and the aiiove method can then 

be applied. When the levels of suitable points, e.g. summits, 

ridge and valley lines, tops and bottoms of steep slopes, 

have thus been found, and, if necessary, adjusted to suit 

values obtained from neighbouring ground controb levels, 

they can lie used to interpolate grtamd contours on the 

survey in the usual way. 

Gkid for Low Obi.iquks 

If four points m, n, p, q on a photograph have been iden¬ 

tified as corresponding to four ground control points M, N, 
P, Q on the map, any other point 0 can be plotted on the 

• Sec M. Hotine: Surveying from Air Phoiographs (1931^ 
(Constable & Co ), p. 172 et seq. 
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map from its position o on the photograph by the following 

construction. Join MN, PN, QN, mn, pn, qn, on (Fig. 13). 

Lay a straight-edged strip of paper across the four rays from 

« and mark on it where each ray is cut—m', q', o', and p'. 

Then transfer the strip to the map and move it about until 

m' falls on MN, p' on PN, q' on QN, and mark o' on the map. 

Join No' and j)ro(luce. Then draw rays on the map from 

M (say) and on the photo from in, and roj>eat the operation, 

getting a second ray Mo' wliich fixes (). Reversing the 

process, this can be done for each corner of a true square 

on the map. giving a jwrspK'ctive ‘ square” on the photo¬ 

graph. The rays through the perspective centre and in', ii'. 

o’, and p' form a plane jxmcil with a constant cross-ratio, so 

that the cro^s-ratios of the radiating lines on the pliotograph 

are the same as those of the corresponding lines on the map.* 

As this process is rather laborious it is u.sual to use it 

to project a large "square” first—abed (Fig. 14)—and then 

to break this up into, say, 16 smaller "squares" for the 

* See Appendix H. 
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grid. Draw the diagonals of the large perspective "square" 
on the photo and draw lines ae, df parallel to the diagonals 
db, ac respectively. Divide ae at g m the same ratio as db is 
divided at *, and dc at h in the same ratio as ac is divided 
at», by the construction shown, and draw A/ parallel to be; 

Fig. 14 

then fg* divides the original "square," abed, into two double 
" squares " which are easily divided into four single " squares ’ ’ 
by drawing diagonals as shown. These are each readily 
divided into four smaller "squares" by drawing their 
diagonals, so that 16 "squares" are obtained. 

^ fg, da and cb, as representing paraHel lines, conv’crge to the same 
vanishing point. 
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<See p. 246 aod Example 6, p. 248.) 
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APPENDIX II 
Any system of four straij^ht lines in a plane radiating from a 

{)oint, is called a pencil of rays. A straight line cutting all four 
rays is called a transvenal, e.g. AliCD in P'ig. A. Tlien the ratio 
Ab^D 
bC . Ah 

is called the cross-ratio of the pencil as it is the same 

as that for any other transversal, abed, of that pencil. 

Fig. -V 

Draw and mbn {larallcl to OD. 
Mb Ab ,0D CD 

Then and ^-r 

Mb Ab.CI) . ., , mb ab.cd 
M^bC:AD' b7t = bc .ad- 

Mb ~ Ob ” /iA' 6n “ bN 
ab.cd Ab. CD 

•• be .ad~" bC .AD 
{Q.E.D.) 
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INDEX 
Aberration of light, 93 
Adjustment of horizontal colliina> 

tion error, 119 
- of index error of the vertical 

circle, 121 
- of levelling errors. 259 
- of reversible and tilting levels. 

138, 142 
- of traverses, 301 
- of triangulation angles. 241 
- of trunnion axis error, 120 
Air base, 366 
Alidade for plane-table. 263 
Altitude corrections, astronomical. 

96 
- level on verticle circle. 115 
Altmeter, 358 
Apparent right ascension and de¬ 

clination. 92. 93 
- (solar) time, 87 
Approximations. 24 
Artihciai horizon. 274 
Astronomical definitions. 63 
Atmospheric refraction, 96, 206, 

231, 258 
Auxiliary points. 376 
Azimuth. 71, 195 
- by circum-eiongation observa¬ 

tions, 164 
-by elongation of a circum¬ 

polar star, 159 
- — by elongations of two stars, 

163 
- by equal altitudes of star or 

sun, 181 
- by extra-meridian altitude of 

a star, 165 
- by extra meridian altitude of 

the sun. 168 
-, extra meridian observation by 

hour angle, 169 

Barometric levclUug, 298 
Base lines, 222 
- line corrections. 225 
Bearings, 195 
Bench marks, 257 

Bessel’s refi'actions, 98 
Box sextant, 273 

Casella’s double-reading micro¬ 
meter theodolite, 132 

Cassini’s projection, 195 
Catenary, correction for sag. 38 
-, correction for sag and slope, 

41 
Celestial equator, 67 
- pole, 63 
Change of azimuth of a "straight 

line,” 191 
Changing zero, 137 
Check b^ or base of verification, 

j 223 
Chronometer, error and rate, 145 
- watch, 144 
Clock diagram. 74 
Co-altitude (zenith distance). 71 
Co-declination (polar distance). 70 
Co-latitude, 67 
Collimation error (horizontal), 103 
Common catenary, 32 
Compass surveying, 267 

. Compilation, 373 
j Compound curves, 335 

Connolly's prism bubble-reader, 140 
Convergence of meridians, 191 
- of vision, 367 
Conrelatcs, 57 
Correspondence 367 
- error, 370 

i-marks, 372 
; Cross-ratio, 379, 383 
! Curvature of the earth, 185 
! - and refraction correction in 

! levollinK, 21)6. 213 
i - effect on levelling, 206 
j--on surveys, 191 

! Daylight onservations on stars, 172 
! Declination, 67 
'-circle, 67 

Depth. 367 
Dip of horizon, 101, 274 
Double reading theodolites. 130 
Drift, :465 
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Eccentricity of earth's orbit, 89 
- of verniers* J36 
Ecliptic. 88 
Effect of errors in azimuth observa¬ 

tions. 162. 170 
- of errors in time observations, 

175 
Elongation. 70 
Equation of time, 90 
Equations of condition, 54, 57. 218 
Errors, accidental or compensating. 

44 
-, sy'steraatic or cumulative. 43 
Estimating microscopes, 126 
Extension of base. 229 
Eye and object correction, 210 

First point of Aries (^), 67 
Fixed stars, 63 

Geoid, 186 
Great circle, 1 
Grid for high obliques, 362 
- for low obliques. 378 
-in stereoscope, 3f>8 
Ground control. 3^, 373 
-levels. 377 

Height distortion, 3(>0 
High oblique photographs, 360, 363 
Horizontai parallax of the sun, 100 
- trace, 361 
Hour angle, 68 

Index error of the vertical circle. 
103, 116, 121 

Indian clinometer, 266 
Interconnected traverses, 313 
Internal fcx:using. 122 
Invar tapes or wires, 223 
Isocentre, 361 
Isometric paraOel, 361 

Latitude, by circum-meridian alti¬ 
tudes, 151 

- by sun observation, 156 
- by zenith-pair altitudes, 147 
-, determination, 145 
-, gecKentric, 186 
-, geographical, 186 
Latitudes and azimuths, 202 
Lengths of K of latitude and longi¬ 

tude, 190 

j Level differences, 371 
i Levelling, adjustment of errors, 259 
-, sources of error, 257 
Level-trier, 109 

I Local magnetic attraction, 269 
j-meiui time. 90 
j - sidereal time, 68 
I Longitude, 91 
- by chronometers, 182 
- by rhythmic time signals. 183 

j Low oblique photographs, 365, 378 
Lower transit (lower culmination), 

i 70 
^ Lune, 3 

j Magnetic variation or declination, 
: 269 
i Mean latitudes, niethoti for latitude, 
‘ longtitude, and reverse azimuth, 
; 196 

Mean refraction, 98 
;-(solar) time. 66. 87 
-sun, 75 
Measuring trijwd, 224 
Meridian. 67 

' Methoil of l(*ast squares, 43 
Micrometer theoiiolites, 127 
Minor control p(>ints, 373 
--plot, 373 

! Model for positions of stars. 78 

: Napier’s analogies, 12 
: - 5-part circle, 15 
: Sautical Almanac, 76. 93 
! Night observations. 144 

Non-vertical axis error, 105 
Normal equations. 48 
Nutation, 92 

. Obliquity of earth's axis. 88 
1 Observation e({uation$, 55 

Orientation of photos, 367, 371 
' Orienting by the l>ack ray. 265 
I Overlap, 365 
; Overlap (lateral), 366 

; Paikino obst*rvations, 166, 174 
Parallax, absolute, 366 
->, geocentric of the sun, 98 
-, heliocentric of the stars. 92 
Parallel of latitude, setting out. 193 
- plate micrometer, 
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Pencil, 379, 383 
Perspective centre, 358 
Photographic surveying, 285 
Plane table, orienting, 263 
-- surveying, 263 
-- tacheometric, 263 
—— -^ traversing, 265 
Plate meridian, 361 
-parallel, 361 
Plotting stereoscopic pairs, 371 
- by stereoscope, 372 
Plough (Ursa Major), 66 
Plumb-point, ground. 360 
-, plate, 360 
Polar spherical triangles: reciprocal 

properties, 8 
Pole Star (Polaris), 66 
Precessi<)n of the Equinoxes. 92 
Precise levelling, 256 
-staff, 143 
Prime vertical. 71 
-vertical transits, 178 
Principal distance, 359 
-line, 361 
-plane, 360 
- point, 359 
Prismatic compass. 267 
Proper notion of the fixed stars, 

92 
Puissant’s method, 201 

Radii of curbature of the earth, 
186 

Radius vector of the earth, 187 
Reciprocal levelling, 207, 214 
Reference mark, 144 
Reglette, 223 
Resection, 277 
-with the plane table, 282 
- with the sextant. 278 
Reverse azimuths, 191 
Reversible levels (self-adjusting), 

138 
Right ascension, 67 
-o( mean sun at mean 

noon, 76 

Satsllitb station. 232 
Semi^diameter (sun's), 100 
Separation, 367 
Sextant, 270 
—- adjustments, 275 

Side oblique photos, 364 
Sidereal day, 63 
- hour, 65 
- time, 74 
- time at mean noon, 76 
Simultaneous equations, tabular 

method, 244, 246 
Slope correction in chaining, 27 
Small angles—approximations, 30 
Soundings, fixing positions, 278 
Spherical excess, 3, 191 
- triangles, 1 
-- right-angled, 4, 13 
- trigonometry, 1 
-and plane trigonometrical for¬ 

mulae (comparison), 13 
Spheroid of reference, 186 
Spirit-level, 108 
--Qn upper horizontal 

plate, 113 
I Standard time, 91 

Standardization of tapes or wires, 
1 225 
. Stereo-autograph, 293 
I - -comparator, 291 
j - -photogrammetry, 288 
i Stereoscope, topographical, 369 
j Stereoscopic pairs, 365 
j Stereoscopy, 367 
; Straining trestle, 224 
' Striding-level, 110 
t Subtense measurements, 293 
: Successive approximations—Pro¬ 

fessor Dale’s method, 247 
■ Sun dial, graduations, 80 
1 Swinging left and right, 137 
i Szepessy tachcometer, 296 

Tails, 373 
"Taut” catenary, 36 
Tavistock theodolite, 133 
Theodolite, 102 
Three-point problem, 277 
Tilt distortion, 372 
Tilting levels, 138 
Time by equal altitudes of a star, 

177 
-of the sun, 180 
Time, by extra-meridian altitude, 

173 
Transferring points, 372 
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Traosition curves. 319 
-curve, cubic parabola. 322 
-, Glover's s^ral. 331 
-.distance trom circular 

curve. 325 
-^ length of, 320 
-, ''shift ', 324 
-. "^iral angle," 323 
Transversal, 383 
Traverse adjustment (Bowditch's 

method). ^ 
-(unaltered bearings), 306 
-(4f, y, method), 3fe 
Triangle of error, 284, 376 
Triangulation, 217 
-, adjustment of angles, 241 
-, angle measurement, 230 
-. arrangement of triangles. 221 
-, computation of sides, 255 
-. co-ordinates of stations. 255 
-, intersecting polygons, 217,253 
-, polygon with central point. 

217, 218, 245 
-, quadrilateral with diagonals, 

217. 220, 241 
- stations, permanent marking, 

230 

Index 

Trigonometrical levelling, 206 
Trough compass. 263 
Trunnion axis error, 104 
Tunnels, connection of surface and 

underground surveys, 343 
-. curve ranging in, 3M 
-, setting out, 340 
-^ - - underground* 

352 
-, surface survey. 340 

Ufpbr transit (upper culmination). 
69 

Vanishing point. 361 
Vertical curves. 339 

Watt's "Constant Bubble," 139 
Weighting observations. 55 
Weisbach triangle, 347 
WhUakef*s Almanack, 76. 80. 94 
Wild, or Zeiss, universal the^olite. 

132 

Zbiss precise level, 141 
Zenith, 63 
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