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PREFACE TO VOLUME Ii 

This second volume consists of entirely new material not contained 
in the previous editions of this book. It is adapted as well for use by 
the practicing engineer as for a textbook for students of Engineering. 
As far as it is known to the authors, this is the first book in any lan¬ 
guage in which the subject of statically indeterminate structures has 
been fully treated both from a theoretical and practical standpoint. 
Numerous original formulas are given for the easy use in the design of 
continuous beams, frames and arches. 

In all cases the authors attempted to furnish easily understood 
explanations for the action of the statically indeterminate members. 
Also the relation between simple structures and statically indeterminate 
structures is given and the causes for the difference in action explained. 

The volume covers the important field of statically indeterminate 
structures, i.c., structures where the members are either continuous over 
several supports, form frames of various description, or are arched and 
restrained at the supports. As is evident from the Table of Contents, 
the formulas, constants and examples are sufficient to solve practically 
all the problems likely to occur in the design of concrete structures. 

Continuous beams are exhaustively treated. Special treatment is 
provided for beams consisting of unequal spans. For the student the 
theory and the derivation of formulas are given. Final formulas are 
given for practical use. To take care of unusual cases general formulas 
are given. For more common cases simple final formulas are developed 
and in many cases constants and diagrams are provided. The use of 
the formulas is explained by numerous examples. 

Special formulas are developed for beams with variable moments of 
inertia. The use of fixed points for the solution of continuous beams is 
thoroughly explained. 

Rigid frames of several types are also properly treated by giving 
theoretical treatment as well as simple final formulas and diagrams. 
The action of rigid frames is explained in a simple manner. The 
bending moment diagrams show in all cases the type of bending moments 
to which the various frames are subjected for different types of loading. 
When used intelligently, these alone may form a basis for approximate 
solution of problems in cases where accuracy is not of prime impor¬ 
tance. 

v 



VI PREFACE TO VOLUME II 

The Chapter on Building Frames contains material specially devel¬ 
oped for this volume. Practical formulas ready for use by the prac¬ 
ticing engineer on this subject have not ever been published before. 
The formulas may be used without difficulty for the solution not only of 
regular arrangement of spans but also for buildings of unusual character. 
The treatment is also of special value as a guide and explanation as to 
what happens in a building frame when subjected to bending. The 
formulas are particularly valuable for the determination of bending 
moments in wall beams and columns; for the design of buildings two 
panels wide; and finally for the design of multi-story one-span build¬ 
ings. The slope-deflection method used for the development of the 
formulas for building frames is fully discussed and explained. By the 
general formulas for slope-deflection method here given, and following 
the plan of the example worked out, cases not specially treated in the 
book can be solved. 

Fixed and two-hinged arches are fully treated. The treatment is 
prefaced by a description of arch bridges and by an easily understood 
explanation of the arch action and the action of arches when subjected 
to loading or to the changes of temperature. Rational approximate 
method of design of fixed arches is fully treated. The use of the method 
is explained in an example and simplified by diagrams. Exact method 
of design is made easy by proper arrangement of tables for computations 
of the statically indeterminate values. Simple method is given for 
finding bending moments and thrusts for the several most unfavorable 
positions of live load for the critical sections without the necessity of 
computing the statically indeterminate values for every case. The 
method here given is original with the authors. 

In addition to the general treatment of arches, formulas for parabolic 
arches are given. For these the bending moments and thrusts at the 
critical sections may be taken directly from tables. The formulas for 
parabolic arches may be used to advantage in the design of arches with 
suspended floor and also in all other cases where the dead load is fairly 
uniform throughout the arch. 

In rigid frames and arches the sections are subjected to thrusts and 
bending moments. To simplify the design of such sections special 
formulas and diagrams are given. Formulas and diagrams are given 
also for plain section as well as for reinforced concrete sections. For¬ 
mulas are given, not only for sections with symmetrically arranged rein¬ 
forcement but also for sections with unsymmetrical reinforcement. 
Diagrams are developed by means of which the dimensions of the 
sections can be obtained directly for given thrust and eccentricity and 
for specified maximum and minimum stresses. These diagrams are 
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original with the authors. Formulas are given for practically all 
requirements and their use is shown by numerical examples. 

Sanford E. Thompson, President, 
The Thompson & Lichtner Co., Inc. Boston, Mass. 

Edward Smulski, Consulting Engineer 
New York City. 

New York, June, 1928. 

In compiling the book special credit must be given to Mr. Smulski 
who has drawn liberally from his store of knowledge and experiences 
and has thoroughly investigated material from all other authorities. 
The writer and Mr. Miles N. Clair of The Thompson & Lichtner Co., 

Inc., have carefully reviewed and checked this material. 

Sanford E. Thompson. 
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CONCRETE 
PLAIN AND REINFORCED 

CHAPTER I 

CONTINUOUS BEAMS 

Bending moment coefficients specified for continuous beams by the 
Joint Committee and by the various building codes apply only where 
the spans of the beams are equal and the loading uniformly distributed. 
They obviously do not apply to cases (1) where the spans are unequal, 
(2) where the loads are concentrated, and (3) where the loading con¬ 
sists of moving loads such as is the case in bridge design. The formulas 
given in succeeding pages are intended to take care of these cases. 

The understanding of the action of continuous beams and of the 
principles upon which the formulas are based is of prime importance 

for intelligent design of reinforced concrete structures. Even an 
ordinary concrete structure often offers problems which cannot be solved 
by general formulas and require, for safe and economical design, either 
exact analysis or an approximate treatment based upon sound judgment 
and full understanding of the principles involved. 

Scope of the Chapter.—This chapter gives not only a general treat¬ 
ment of continuous beams but also gives final formulas for bending 
moments and shears in such shape that they can be readily used in 
practice. In many instances diagrams and tables are prepared which 
still farther simplify the use of the formulas. Examples, based on 
conditions which are constantly arising in practice, show clearly how 
the material is used in design. 

Formulas are given for uniformly distributed and concentrated 
loadings. Following conditions are treated: 

Beams fixed at both supports. 
Beams fixed at one support, free at the other. 
Continuous beams with free ends. 

Two spans with free ends. 
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Three spans with free ends. 
Four spans with free ends. 

Continuous beams with fixed ends. 
Two spans with fixed ends. 
Three spans with fixed ends. 
Four spans with fixed ends. 

Beams with variable moments of inertia. 
Fixed point method of solving continuous beams. 

Basis of Formulas.—The formulas given in this chapter are based 
upon the elastic theory. The three-moment equation, the derivation 
of which by the slope deflection method is given on p. 644, was used 
for the development of the working formulas. Separate formulas are 
given for dead load and for live load since the maximum bending 
moment coefficients for the live load are different than for the dead load. 

Reliability of the Formulas.—The formulas for bending moments 
and shears are thoroughly reliable and can be applied very simply. 
The authors recommend their use in preference to the general formulas 
usually specified which are simply average approximations. Particu¬ 
larly they should be used where the spans are not equal and where the 
loading is concentrated. 

An objection is sometimes raised against formulas based on the 
elastic theory on the ground that they depend upon the computation 
of the deflection of the beam. It is being argued that the deflection 
of the beam depends upon the modulus of elasticity of concrete, which 
admittedly is variable, and that, since the deflection of the beam 
cannot be computed with any degree of accuracy, all formulas based 
upon it must be equally unreliable. 

This criticism is based obviously upon insufficient understanding 
of the theory of elasticity. The formulas are not based upon the 
magnitude of the deflection at any particular point but upon the relation 
to each other of the deflections and deformations at the various points. 
The modulus of elasticity does not enter into any of the formulas for 
bending moments as it is eliminated in the process of development of 
the formula. The formulas apply not only to concrete beams with 
a modulus of elasticity, E, of 2 000 000 in.-lb. but also to steel beams 
with a modulus of elasticity of 30 000 000 in.-lb. and in fact to beams 
made of any kind of material. 

Criticism of Approximate Formulas for Continuous Beams.— 
Various specifications and Building Codes specify general bending 
moment coefficients for continuous beams to be used for dead load 
as well as for live load. For example, most of the specifications require 
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that for interior spans of a continuous beam a bending moment coefficient 
r* should be used at the support and in the center of the span. Similarly 
in the exterior span a bending moment coefficient is specified. (See 
Vol. I, p. 279.) 

These coefficients were derived originally from the elastic theory 
for uniformly distributed loading and for equal spans. To make them 
applicable to dead as well as to live load an assumption had to be made 
of the ratio between the dead load and live load. It is obvious, there¬ 
fore, that these general formulas give accurate results only when the 
actual conditions are sufficiently similar to those assumed in deriving 
the formulas. When the conditions are different,—namely, when the 
spans are unequal, when concentrated loads are used for equal or 
unequal spans, or where the ratio between the dead load and the live load 
is different,—the general formulas give erroneous results. The error 
increases with the increase in the difference between the actual and 
the assumed conditions. As a result many beams designed by these 
general formulas either do not attain the desired factor of safety or else 
contain an appreciable excess of material. The examples on p. 178 to 
207, giving actual designs of continuous beams with unequal spans, show 
clearly the impossibility of obtaining proper design by means of the 
approximate formulas. 

In recent years a decided trend has developed towards more logical 
design methods. More than ever before it is being recognized that 
accurate design methods give better balanced structures. By elimina¬ 
tion of the guess work they permit much more economical design, as no 
allowance needs to be made for possible errors due to difference in 
conditions. The ease with which the exact formulas given in this 
chapter can be used will undoubtedly accelerate the movement towards 
more logical design methods. 

Sometimes continuous beams are being criticised because of dis¬ 
trust in the resistance of the beam at the support to negative bending 
moments. This criticism is now rarer than it was several years ago. 
The absurdity of this criticism needs hardly to be demonstrated. The 
beam at the support is of the same general design as in the center but 
only reversed. If it were unreliable at the support it would be equally 
unreliable at the center. 

Some engineers prefer the use of the general formulas thinking that 
they are more conservative than the results obtained by the exact 
formulas. This is not the case. If the bending moments are com¬ 
puted separately for the dead load and for the most unfavorable positions 
of the live load they have the same degree of conservatism as was used 
in the development of the general formulas. 
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Definition and Assumption.—Continuous beam is a beam which is 
supported by three or more supports and therefore consists of two or 
more spans. The general formulas are based on the assumptions that 
(a) there is no connection between the beam and the support, so that 
the bending moment on one side of any support is transferred in full to 
the beam on the other side of the support, (b) the moment of inertia 
of the beam is constant and (c) the supports are unyielding. 

The formulas given in this chapter apply only to cases where the 
beam is not rigidly connected with the supports but rests upon them 
freely. In such case the bending moments on both sides of any one 
support are numerically equal and turn in opposite directions. When 
a beam is connected with columns the negative bending moment in the 
beam on one side of the support is transferred partly to the column and 
partly to the adjoining span of the beam. Then the bending moments 
in the beam on both sides are not equal. Formulas for such con¬ 
structions are given in chapters III and IV. 

The assumption in the formulas of constant moments of inertia is 
justified in most cases found in practice. The effect of varying moments 
of inertia is discussed on page 133. 

Formulas in this chapter apply only when there is no uneven vertical 
displacement of the supports. Uniform settlement of all supports has 
no effect upon the bending moments. If, however, one support settles 
more than the adjoining supports, additional bending moments are 
produced in the beam, the magnitude of which are proportional to the 
magnitude of the excess settlement. The effect of the movement of 
supports is discussed on page 151. 

Difference between the Behavior of a Simple Beam and a Span of 
Continuous Beam.—The action of a continuous beam may be better 
understood by comparing the behavior under load of a simply supported 
beam, as in Fig. 1, with that of a continuous beam consisting of three 
equal spans, as in Fig. 2. To make the results comparable, the span 
length of the simple beam is made equal to that of the continuous 
beam. The dimensions of the beam also are considered to be the 
same. 

The deflection of the simple beam due to uniformly distributed load 
extending over its whole span, drawn to appropriate scale, is shown 
in Fig. 1. 

The corresponding bending moments are also shown in Fig. 1. 
Both the deflections and bending moments are in direct ratio to the 
magnitude of the load. All bending moments are of the same sign, 
which for downward loading is plus. 

The deflections and bending moments of a continuous beam are 
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shown in Fig. 2 (a) and (b). Two conditions are illustrated. Figure 
2 (a) shows the deflection and bending moments, respectively, when 

Deflections 

Fig. 1.—Deflection and Bending Moments in Simple Beam. (See p. 4.) 

w 

Deflection 

(a) Center Span Loaded 

the center span only is loaded, and Fig. 2 (b) shows deflection and 

bending moments when all spans are loaded. 
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The bending moment and deflection curves for the simple beam and 
for the continuous beam are drawn to the same scale and therefore 
may be used directly for comparison. 

By comparing the deflection curves it is found, first, that the deflec¬ 
tions of the continuous beam in all cases are smaller than those of the 
simple beam. Second, the shape of the deflection curve for the simple 
span is different from the shape of the deflection curves for the con¬ 
tinuous beam. The deflection curve for the simple span is a simple 
curve. In continuous beam, the deflection curve of the center span 
is a reverse curve with two points of contraflexure, and the deflection 
curve of the end span, when loaded, has one point of contraflexure near 
the inside support. 

In continuous beams the deflection curve extends from the one span 
to the adjoining spans even if they are not loaded. The deflection curve 
in one span is always a continuation of the deflection curve in the 
adjoining span so that both curves have a common tangent at the 
support. 

A comparison of bending moment curves shows that the simple 
beam is subjected to positive bending moments throughout its length, 
while the center span of a continuous beam is subjected to positive 
bending moments in the central portion and to negative bending 
moments at and near both supports. The location of the points where 
the bending moments change sign corresponds to the points of contra¬ 
flexure of the deflection curve. 

The maximum positive bending moment in the continuous span is 
appreciably smaller than in the simple span. Since a continuous span 
is subjected to negative and positive bending moments it requires a 
different disposition of reinforcement than a simple beam which is 
subjected only to positive bending moments. 

Effect of the Position of the Span in Continuous Beam.—By com¬ 
paring the bending moments in the center span of a continuous beam 
with those of an end span it is evident that the bending moments in 
the end spans are materially larger than in the center span for the 
same type of loading. 

Effect of Loading of One Span of Continuous Beam upon Adjoining 
Spans.—The bending moments in a simple beam depend only upon 
the loading in that beam. No loads placed outside of the beam can 
have any influence upon it. 

In continuous beam, on the other hand, the bending moments in 
any one span depend not only upon the condition of loading of that 
span but also upon the condition of loading of the other spans forming 
the continuous beam. Thus the bending moments in the center span 
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as shown in Fig. 2 (a) and (6) are different, although in both cases the 
load on the center span is the same and the only difference is in the 
loading condition of the end spans. 

Compare the bending moments for the condition when the center 
span, only, is loaded with the condition where all spans are loaded. 

By loading of the end spans also the following changes were produced 
in the bending moments of the center span: 

(1) The maximum positive bending moment was reduced from 
0.075mZ2 to 0.025w/2. 

(2) The maximum negative bending moment was increased from 
0.050mZ2 to 0.1 wl2. 

Fig. 3.—Continuous Beam of Eight Span Subjected to Concentrated Load. 

(See p. 7.) 

(3) The points of contraflexure in the center span moved towards 
the center of the span thereby increasing the length of the sections sub¬ 
jected to negative bending moments and reducing the length of the 
section subjected to positive bending moment. 

The effect of the load in one span upon the other spans of a multi¬ 
span beam may be studied from Figs. 3 and 4 showing the bending 

1 23456789 

Deflections 

Fig. 4.—Continuous Beam of Eight Span Subjected to Uniform Load. 
0See p. 7.) 

moments and deflections throughout a continuous beam produced by 
a concentrated load and by uniformly distributed load, respectively, 
placed in one span. 

The largest effect of the loading is always upon the loaded spans. 
The next largest effect is produced on the two adjoining spans at 
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each side of the loaded span. The effect upon succeeding spans becomes 
smaller and smaller until in the end spans it is negligible. 

The bending moment curve in the loaded span depends upon the 
type of loading and therefore is different for concentrated loads than 
for the uniformly distributed loads. The bending moment curves in 
the unloaded spans are straight lines for all types of loading. 

It should be noted that the bending moments at both sides of each 
support are equal, because the bending moment from one span is 
transferred in full to the adjoining span. At both sides of both supports 
of the loaded span the bending moments are negative. At the adjoining 
supports the bending moments are positive, then they change alternately 
to negative and positive. 

In the center of the loaded span the bending moment is positive. 
In the center of the spans adjacent to the loaded spans the bending 
moments are negative. In other spans the bending moments in center 
change alternately to positive and negative. 

Position of Load for Absolute Maximum Bending Moments.—It 
is evident from previous discussion that the loading of other spans has 
an appreciable influence upon the bending moments in any one span. 
By proper loading of other spans the bending moments at any one 
section may be either increased or decreased within certain definite 
limits. There is always a position of loading for which the bending 
moment at any one point is an absolute maximum. The position of 
loading, however, is different for absolute maximum bending moments 
at the support and in the center of the span. 

The following general rules may be formulated for obtaining absolute 
maximum bending moments: 

To get the absolute maximum negative bending moment in a con¬ 
tinuous beam at any one support it is necessary to load the two spans 
on both sides of that support and then every alternate span, as shown in 
Fig. 5. p. 8. 

I n Noha* jTTTrjprTT no had jp-rrr^ Noioad^rrrr^ 

1 2 3 4 5 8 7 8 9 

Fig. 5.—Position of Load for Maximum Negative Bending Moment at Support 4. 

(See p. 8.) 

£ 
1 

No load 

2 3 

SsJasL fmq 
e 7 

No toad jnrq 
8 9 

Fig. 6.—Position of Load for Maximum Positive Bending Moment at Center 

of Span 4-5. (See p. 9.) 
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To get the absolute maximum positive bending moment in the 
center of any span it is necessary to load the span under consideration 
and then the alternate spans, as shown in Pig. 0, p. 8. 

It will be noted that the positions of the load for the two cases are 
different. Also it is important to observe that when the negative 
bending moments at the supports are largest the positive bending 
moments in the central portion are smallest. For conditions of loading 
giving largest positive bending moments the negative bending moments 
are small. 

Points of Contraflexure.—Points of contraflexure, also called points 
of inflection, are the points in a continuous beam where the bending 
moments change from positive to negative. The bending moment at 
the points of inflection is zero. 

A loaded interior span has two points of contraflexure, one near each 
support, while a loaded exterior span has one point of contraflexure 
near the inside support. The locations of the points of contraflexure 
in the loaded span are not fixed but change according to the condition 
of loading in adjacent spans. They are nearest the supports for loading 
producing maximum positive bending moments and farthest from 
the support for loading producing maximum negative bending moments. 

In unloaded interior spans there is only one point of contraflexure. 
Unloaded exterior spans have no points of contraflexure. 

By comparing Fig. 3 for concentrated load and Fig. 4 for uni¬ 
formly distributed load it is evident that in the unloaded spans the 
position of points of contraflexure, i.e., the points at which the straight 
moment lines intersect the horizontals, is the same for both cases. The 
same is true for any other type of loading, therefore these points are 
called fixed points (a translation of the German term “ Feste Punkte”)- 
Depending only upon the span length, they can be easily located and 
used to advantage for graphical determination of bending moments in 
continuous beams. (See p. 153.) 

Continuous Beam Replaced by Simple Beam and Cantilevers.—A 
continuous beam may be replaced by simple beams and cantilevers 
by cutting the beam at the points of contraflexure (where the bending 
moments are zero) and connecting the parts by hinged connections 
sufficiently strong to transfer the shear. 

This is illustrated in Fig. 7, p. 10, showing the bending moments 
in a span of a continuous beam and also simple spans and cantilevers 
with their corresponding bending moments. To make the matter 
clear the simple beams are shown as suspended from the cantilevers 
instead of hinged. This does not affect the bending moments. 

The change of the continuous beam into a group of simple beams 
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and cantilevers produces no change in the magnitude of the bending 
moments. The central portion of the span behaves like a simply 
supported beam of a span equal to the distance between the points 
of contraflexure and loaded by the load resting upon it. The portions 
at the column behave like double cantilevers, pivoted at the support, 
with arms equal to the distance from the support to the point of inflec¬ 
tion. The loading of each cantilever consists of the reaction of the 
central portion applied at the point of contraflexure and of the load 
coming directly upon the cantilever. 

If the positions of the points of contraflexure are known the bending 
moments can be easily found by statics. It should be noted that for 

Simple span— ^ss jjj|| j 
-lf- 

Fig. 7.—Continuous Beam Replaced by Simple Beams. (See p. 9.) 

each type of loading the location of the points of contraflexure is dif¬ 
ferent. The change of the beam into simple parts would therefore 
reproduce the conditions in a continuous beam only for the type of 
loading for which the location of point of contraflexure corresponds 
to the position of the hinges. 

This property is sometimes utilized in bridge construction by 
using, instead of continuous beams, cantilevered beams combined with 
simple spans resting on cantilevers. 

Signs of Bending Moments.—In this chapter the signs customary 
in reinforced concrete design are used for designating the character of 
the bending moments. 
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The bending moment is negative when it produces in a horizontal 
beam tension on the top of the beam and compression on the bottom 
of the beam. 

The bending moment is positive when it produces in a horizontal 
beam tension on the bottom and compression on top. 

Thus in a loaded span of a continuous beam, negative bending 
moments act at the supports and positive bending moments in the 
center. 

This method of designation does not take into account the direction 
in which the bending moment turns. For instance, the bending mo¬ 
ments at both supports of a loaded span are considered as negative 
although they turn in opposite directions. 

Signs of Shear.—The conventional sign method for shears are used. 
The shear at any section is positive when it tends to move a section 
upward in relation to its original position. The shear tending to 
move the section downward is negative. 

Thus at left support upward reaction is called positive and the 
downward loads negative. A shear diagram drawn on this basis will 
be placed above the base in the left part of the beam and below the 
base in the right part of the beam. 

Notation.—The following notation is used in this chapter. 

lr = length of rth span; 
x = distance of any point from left support; 

Va = static reaction due to the loads; 
Vr = supplementary reaction due to continuity at the rth support; 

Fr+i = supplementary reaction due to continuity at the (r + l)th 
support; 

Vi = left end shear in continuous beam; 
Ma — static bending moment due to the loads; 

M'x = bending moment at any point caused by Vr and Vr+i; 
Mx = total bending moment in continuous beam. 
Mr = bending moment at the rth support; 

Mr+1 = bending moment at the (r+l)th support; 

Basis for Formulas for Continuous Beams.—Consider a continuous 
beam consisting of any number of spans and subjected to any type 
of loading as shown in Fig. 8, p. 12. For the purpose of investiga¬ 
tion one span, in this case the rth from the left support, is assumed as 
detached at the supports from the rest of the beam. It is obvious that, 
to maintain the same conditions as existed in the span before it was 
detached, it is necessary to add at the supports to the static reactions 
and static bending moments produced by the loads additional bending 
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moments and reactions caused by the continuity of the beam. This 
will be accomplished by adding at each support a bending moment 
and a supplementary reaction. Thus at the rth support will be 
added the bending moment Mr and the reaction Vr and at the (r + l)th 
support the bending Mr+1 and the reaction Vr+i. 

Moments in Continuous Beam 

r r-th Span Detached T r 

Moments and Reactions at Supports Due to Continuity 

Fig. 8.—Bending Moment and Shears Due to Continuity. (See p. 11.) 

Since the signs of these values arc not known they are considered as 
positive. Their actual sign will lie determined by the sign of the result 
of the computations. Thus from computations it may follow that for 

wl2 
uniform loading the bending moment is Mr =-, which means that 

the bending moment actually has a negative sign. Also the result 

may show that Vr = —which means that this reaction acts downward, 

i.e., in opposite direction to the static reaction. 
To keep the span in equilibrium these four values, Mrj Afr+i, Vr 

and Vr+u must be in equilibrium themselves, so that the sum of both 
reactions must be equal to zero and the sum of all bending moments 
also must be equal to zero. Since the sum of the reactions is zero 
the reaction Vr must be equal to the reaction Fr+i and they must act in 
opposite directions. The two equal reactions acting in opposite direc¬ 
tions form a couple which produces in a beam a bending moment equal 
to the reaction Vr multiplied by the span length lr. 

Since the sum of all bending moments must be equal to zero the 
bending moment Mr plus the bending moment due to the couple must 
be equal to the bending moment Mr+\ and must turn in the opposite 
direction.1 This may be expressed by 

1 It should be noted that when Mr and Afr+i are both negative and therefore of 
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Mr + Vrlr = Mr+1, 
from which 

(1) 

Supplementary Reaction Due to Continuity, 

Vr = 
Mr+1 - Mr 

lr 

(2) 

The three unknown quantities Mry Mr+\ and Vr added to replace 
the effect of continuity in the detached span may, therefore, be expressed 
in terms of two unknown bending moments at the supports Mr and 
Mr+1. These are called statically indeterminate values since they 
cannot be determined by the rules of statics alone. 

Bending Moments at Any Point Due to Continuity.—The bending 
moments at the supports Mr and Mr+1 and the supplementary reactions 
+ Vr and — Vr produce bending moments at every point of the beam 
of magnitude given in equation below. 

Bending Moment at Any Point Due to Continuity, 

M'x = Mr + 
Mr+1 - Mr 

lr 

~X. (3) 

Actual Bending Moments in Continuous Beam.—The loads on a 
span produce at every point a static bending moment Ma. To get the 
actual bending moment at any point in a continuous beam it is necessary 
to add to the static bending moment Ma due to the loads the bending 
moment due to continuity from Formula (3). Thus 

Actual Bending Moment in Continuous Beam, 

M. = Mr + —--■—"■'a; + M,.(4) 
ir 

For Mr and Mr+i above should be substituted their values with their 
signs. Usually the first and the second items of Equation (4) are nega¬ 
tive so that the actual bending moment Mx is smaller than the static 
bending moment Ms. 

Actual End Shear in Continuous Beam.—The actual end shear at 
the left support in a continuous beam equals the static end shear V, 

plus the supplementary reaction Vr. Substituting for Vr the value 
from Formula (2) 

the same sign as far as the span in question is concerned, they actually turn in 
opposite directions. The bending moment Mr turns from right to left and the 
bending moment Mr+i turns from left to right. 
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Left End Shear in Continuous Span, 

rr „ , Mr# -Mr 

The shear Vx at any point equals the static shear Vtx plus Vr. 

(5) 

Thus 

Shear at Any point, 

h 

(a) Static Bending Moments and End 
Shears Due to Loads 

( h) Bending Momenta and Shears 
Due to Continuity 

(c)Total Bending Moments and End 
Shears in Continuous Beam 

Mote: Since in this oaeeM^ is numerically 

larger thanMrt the End Shear Vr is negatiue 

and acts downward 

Fig. 9.—Bending Moments in a Span of Continuous 
Beam. (See p. 14.) 

When both Mr and 
Mr+i are negative, the 

! t Mr.fi Mr 
value of --- is 

Lr 

negative if Mr+1 is larger 
than Mr. In such case 
the actual end shear at 
the left support as obtained 
from Equation (5) is 
smaller than the static end 
shear. The following rule, 
then, may be formulated: 

In a continuous beam 
the support at which the 
bending moment is largest 
has also the largest end 
shear. 

At the right support 
the end shear is obtained 
by adding to the static 
reaction the value (— Vr) 

Mr.fi Mr 
or---. Also 

lr 

the end shear may be 
obtained by subtracting 
from the total load in the 
span the left end shear. 

Bending Moment 
Diagram for Continuous 
Beam.—The conditions in 
a span of continuous beam 
are clearly shown in Fig. 9 
(a) to (c). In Fig. 9 (a) are 
shown the static bending 
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moments due to the loads which may be obtained by drawing a 
funicular polygon. The moments are positive and are plotted below 
the axis. In Fig. 9 (b) are shown the bending moments and reactions 
produced by the continuity of the beam. The scale for. bending 
moments is same as in (a). It is assumed that Mr and Mr+1 are 
negative and they are plotted above the axis. In Fig. 9 (c) are shown 
the actual bending moments in a continuous beam obtained by com¬ 
bining bending moments 
shown in (a) and in (6). 
Near the columns the bend¬ 
ing moments are negative 
and in the central portion 
they are positive. Fig. 9 
(c) is drawn by plotting 
the moment area due to 
continuity abed first. The 
line bd is accepted as closing 
line for the static bending 
moments. Startingfromthis 
closing line the static bend¬ 
ing moments are plotted. 

Another method of combining the static bending moment with the 
bending moments due to continuity is shown in Fig. 10, p. 15. 

After the static bending moment diagram afhjc is drawn, the bending 
moments at the support due to continuity ab, and cd are plotted on 
vertical lines below the axis. The line bd is accepted as the closing line. 
All moments below this line are positive and above it negative. The 
moments are scaled on vertical lines, starting from line bd. 

afhjc ** Area of static bending moments 
abed ** Area of bending moments 

due to continuity 

Fig. 10.—Method of Combining Bending Mo. 

ments in Continuous Beams. (&ee p. 15.) 

BASIC THREE-MOMENT EQUATION FOR CONTINUOUS BEAMS 

As evident from Formula 4, p. 13, the bending moment at any 
point in a continuous beam can be expressed by the static bending 
moment and the two bending moments acting at the supports. The 
problem is solved when the two bending moments at the supports are 
found. They are statically indeterminate values and in their determina¬ 
tion it is necessary to use the elastic properties of the beam. A number 
of methods may be used, the theory of least work and the slope-deflection 
method given in Chapter IX are the best known. 

From elastic properties of the beam following relation is found 
between the bending moments at any three succeeding supports of a 
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continuous beam. It was first developed by Clapeyron and is justly 
called the “ Clapcyroll’s equation.” 

Notation. 

Let r, r + 1, and r + 2 = 

It — 

lr+1 = 

Mr = 

M r-j 1 = 

Mr+2 = 

Msr = 

Mar+i = 

Then 

three succeeding supports of a continuous 
beam; 

span length of the rth span; 
span length of the (r + l)th span; 
bending moment at left support, rth span; 
bonding moment at right support, rth span; 
bending moment at right support, (r + l)th 

span; 
static bending moment at any point of rth 

span; 
static bending moment at any point of the 

(r + 1) tli span. 

Basic Three-moment Equation (Clapcyronys Equation). (See. Fig. 11, 

p. 17.) 

Mrlr + 2Afr+i (lr + Zr+l) + Mr+2lr+L = 

- 6 Marxdx + Mar+i(lr+i — x)dx . • (7) 

In the above equation it is assumed that the beam has a constant 
moment of inertia and that the supports are unyielding and on the 
same level. The equation is developed in Chapter IX. 

For solving problems in practice no knowledge of calculus is needed 
as in all final formulas the integrals are solved and given as simple 
co-efficients. However, for the benefit of those who desire to go 
into the mathematical treatment the development of the formulas 
are also given. 

Use of Three-moment Equation.—By the use of the three-moment 
equation it is possible to find the bending moments at all the supports 
of a continuous beam. The manner of procedure is shown by the 
example below. 

Let M\ = bending moment at first support (zero for free ends); 
M2 = bending moment at second support; 
Mz = bending moment at third support; 
M\ = bending moment at fourth support; 
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M5 = bending moment at fifth support; 
h = span length, first span; 
h = span length, second span; 
h = span length, third span; 
h = span length, fourth span; 

Mai = static bending moment at any point, first span; 
Ma2 = static bending moment at any point, second span; 
Ma3 = static bending moment at any point, third span; 
Af,4 = static bending moment at any point, fourth span. 

Fia. 11.—Spans Used in Three-moment Equation. (See p. 16.) 

Assume a continuous beam of, say, four spans. Also assume that 
the ends of this continuous beam are free. Starting at the left, the follow¬ 
ing three-moment equation may be written for the first two spans: 

M{li -f- 2M2Q1 ~b I2) ~b M3I2 = —G L‘f Mti xdx -f- — ^ Ma2 (I2 — . 

Since the left end is free, Mi = 0. Therefore 

1. 2M2(li -b I2) + M3I2 = — J^*1*^*c "b j~^ ^*2 (I2 — 

Now consider the second and third spans, 

2. M2I2 + SMzfa + h) + M4I3 = 

— G\j2J" ^‘2xdx + YJ -M.3(h — 

Finally consider the third and fourth spans, 

Mzh + 221U(h + 10 + = 
— M,axdx + yJ" M,i(U — x)ctej. 
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Since the beam is free at both supports = 0. Therefore 

3. Mzh + 2M4(h + h) = —J Ma3xdx + * J Ma4(k — x)dx 

Thus are obtained three simultaneous equations marked 1, 2, and 3 
which are sufficient for finding the three unknown values M2, M3) 

and 
Solving of Integrals.—The integrals in the above equations depend 

upon the type of loading in the respective spans. In general the 
integrals are of two types, namely: 

J* Msxdx and ^ Ma(l — x)dx. 

The integral Maxdx represents the static moment about the left 

support of the area obtained by plotting the static bending moments at 
each point. 

The integral jf Ma(l — x)dx represents the static moment of the 

same static bending moment area about the right support. 
The values may be obtained by solving the integral or by drawing 

the bending moment diagram, computing its area, determining its center 
of gravity, and finally multiplying the area by the distance of its center 
of gravity from the respective support. When the bending moment 
area is complicated it may be divided into triangles and rectangles 
where areas and centers of gravity can be easily computed. 

Analytically the integrals may be solved by substituting a formula 
for Ma and integrating. 

Integrals for Uniformly Distributed Loads.—For uniformly distributed 
loading w extending over the whole span the values of the integrals 2 are 

Therefore 

'l 1 
Ma (Z — x)dx = —wl4. ^ Maxdx — ^ 

6 Cl 6 Cl 1 
7 Maxdx - 7 ( Ma{l - x)dx =7wZ3 

I Jo I'Jq 4 
(8) 

1 For uniformly distributed loads M8 = \wx(l — x). This substituted in the 
integrals gives Jrl rl 1 

Maxdx = \w | {l — x)x2dx = wl*. 
0 J 0 24 
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Integrals for Concentrated Load.—For concentrated load P placuu 
at a distance a from left support the integrals 3 are 

,21 

where 

and 

where 

-(?) 
* - ;[' - (f)\ 

PC2 = CiPl2; (91 

(10) 

!JV(! - *)* - ”(l - j)(t - j)pP - CSP; . (11) 

K1-!)(*-!).<12> 
The values of C\ and C2 for different - may be taken from Diagram 

L 

1, P- 19- 

Diagram 1.—Constants Ci and C2 for Continuous Beams. (See p. 19) 

Integrals for Several Loads.—The integrals for several loads may be 
obtained by oomputing separately the integrals for each load and adding. 

* Far a concentrated load P, placed at a distance a, the static bending moment is 

M9 = P (l — j'j x for x smaller than a and M, — P-(Z ~ x) for x larger than a. 

These substituted in the integrals gives 

/*•<* - (> - f) '•jT1’*+H‘<l ■ ’)xdx ■ [* - 
Similarly can be solved I M,(l — x)dx. 

Jo 
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Thus for load Pi, Pi and Pi" placed at distances ai, a\ and a\", 

respectively, from left support the integrals become 

+ 

This also may be written 

. (13) 

where Ci can be obtained for y, —9 and y-^ from diagram on p. 19. 
L L L 

In the same manner 

:jV.(i - ,>* - p[f (i - $(2 - + f(i - f) 

(-t)-+t(‘-t)(2-t>'4 
Iso 

!jV(l - x)dx = PSj(l - - jjpi = PSPiCz (14) 
6 
l 

d\ a1 a 1 
where C2 can be obtained for y, — and — from diagram on p. 19. 

LL L 

When all loads in a span are equal the load P in expression XPC1 and 
2PC2 may be taken before the summation sign. Thus for equal loads 

XPCi = PSCi and ZPC2 - PSC2 .... (15) 

Integrals for Symmetrical Loading.—For loading symmetrical about 
the center of the beam the values of both integrals are equal. The area 
of the statical bending moment diagram is symmetrical about the 
center so that its center of gravity is in the center of the beam. There¬ 
fore the static moment of this area about the left support is equal to 
the static moment about the right support. 

For symmetrical loading 

SPCi = SPC2 

Use of Three-moment Equations for Beam with Fixed Ends.—In 
a continuous beam with fixed ends there are unknown bending moments 
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at the fixed ends in addition to the unknown bending moments at the 
interior supports. The number of unknown values is, therefore, 
larger than in a continuous beam with simply supported ends by the 
number of fixed ends. If both ends are fixed there are two more un¬ 
known values. With one end fixed there is only one additional unknown 
value. To get the equations necessary for finding the additional 
number of unknown values the fixity of each end is expressed by assum¬ 
ing at the fixed end an additional span the length of which is infinitely 
small. Thus the first two spans considered in making up the three- 
moment equations will be the imaginary infinitely small span and the 
first actual span, and the last two spans are the last actual span and 
the imaginary infinitely small span. In such fashion are obtained 
just as many more equations as there are fixed ends which is sufficient 
for finding bending moments at all supports. 

RELATION BETWEEN MAXIMUM POSITIVE BENDING MOMENT AND 

THE NEGATIVE BENDING MOMENTS AT SUPPORTS 

Very often the negative bending moments at the supports are 
known and it is desired to get the corresponding maximum positive 
bending moments. 

The maximum positive bending moments always occur at the point 
of zero shear. Therefore, to find the maximum positive bending 
moment compute the left end shear first, then find the point of zero 
shear and finally compute the bending moment at the point of zero 
shear. Following formulas can be used. 

Notation.— 

Let l 

a 

X\ 

P 

w 

Mt 

Mr 

Afmax 

Vi 

vxl 
Cm 

CT 

span length; 
location of concentrated load measured from left 

support; 
distance of point of maximum positive bending 

moment from left support; 
any concentrated load; 
uniformly distributed loading; 
negative bending moment at left support; 
negative bending moment at right support; 
maximum positive bending moment; 
left end shear; 
shear at point x\; 

constant in = Cuwl2; 
constant in Vi = Cv wl and X\ * Crl. 
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Concentrated Loads.— 

Left End Shear, 
Mr - Mt 

+—— 

(16) 

If point of zero shear measured from left support is X\ then 

Maximum Positive Bending Moment, 

Mmax = Mi + - 2P(xi - a).(17) 

In the above formulas Afr and 717* must be used with their signs. 
Uniformly Distributed Loading.— 

Left End Shear, 

Vi = wl 
Mr - Mj\ 

wl2 / 
(18) 

Pomf o/ Maximum Positive Bending Moment,4 

(19) 

Maximum Positive Bending Moment,5 

jif 
max 

Mr - M,\ 

wl2 ) 

2 

wl2. . . (20) 

Table for Maximum Positive Bending Moment. Uniform 
Loading.—For known negative bending moments at the supports and 
for uniformly distributed loading, the maximum positive bending 
moment may be easily found from table p. 176. 

To use the table find the coefficients of the bending moments at 

the supports, namely, 
Ml Mr 

wl2 and wl2' 
Locate these values in the table 

and obtain a coefficient Cm, which multiplied by wl2 gives the maximum 
positive bending moment. Thus 

Mm&x = CmwI2. (21) 

4 At the point of maximum bending moment the shear is zero. Vx\ = Vi — 
Vi 

wxi = 0, hence wxi = Vi and Xi — —. By substituting the value for Vi the above 

{formula for xi is obtained. 

5Mmax = Mi+ Vixi — iwxi2. By substituting the value for Vi and x\ and 

combining, the above formula is obtained. 
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Table for Left End Shear and Point of Maximum Positive 
Bending Moment. Uniform Loading.—For known negative bending 
moments at supports and for uniformly distributed loading, the left 
end shear Vi and the point of maximum positive bending xi may be 
found from table on p. 177. 

To use the table find the coefficients of the bending moments 
Mi M 

at the supports, namely, — and —Locate these values in the 
wr wr 

table and obtain the corresponding value of CV- Then 

Left End Shear, 

V i — Cvwl (22) 

Point of Maximum Positive Bending Moment, 

xi = Cvl. (23) 

Example.—The bending moments at the supports arc 

Mi = - 0.11m**, Mr = - 0.08m*2. 

Find the maximum positive bending moments, the point of maximum positive 

bending moment and the left end shear. 

Solution.—In table on p. 176, locate “=—0.11 and ”= — 0.08 and 
wl1 wl2 

get CM = 0.03. 

Therefore 

ilfmax = 0.03 m*2. 

From table on p. 177, for 
Mi 

wl1 
M 

- 0.11 and ~ = - 0.08 find Cv = 0.53. 
wl2 

Therefore 

Left End Shear, 

Vi = 0.53m*2. 

Point of Maximum Positive Bending Moment, 

id = 0.531 

BEAM FIXED AT BOTH SUPPORTS 

Beams can be considered as fixed at both supports when their ends 
are firmly imbedded in the support and the support is sufficiently 
strong to keep the tangents to the deflection curve horizontal at sup¬ 
ports. Such beams have two statically indeterminate values, namely, 
the two negative bending moments at the supports M\ and M2. Using 
the expedient for fixed ends discussed in the previous paragraphs 
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the following equations may be derived from the three-moment equa¬ 

tions. 

Basic Equations for Fixed Span, 

2Mi + M2 = - -M M.(l - x)dx, .... (24) 
o 

6 Cl 
M\ -f- 2^/2 = — ~; I Mgxdx, . . o . . . (25) 

Jo 
from which 

Negative Bending Moment at Left Support, 

M9 {l — x)dx — ^ . . (26) 

Negative Bending Moment at Right Support, 

Mgxdx — J*M,(l-x)dxj . . . (27) 

The values of the integrals^" M,xdx and^ M,(l — x)dx in the 

above equations are worked out on p. 18 for uniform loading and for 

concentrated loads. 
Several special cases are given below. 
Uniform Loading. (See Fig. 12, p. 24.) 

Fig. 12.—Beam Fixed at Both Ends. Uniform Loading. (See p. 24.) 

End Shears, 

Vi = V2 = brt.(28) 

Negative Bending Moments, 

Mt = M2 = - 1hwl2.(29) 
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Maximum Positive Bending Moments, 

= -i-twl*.. (30) 

Bending Moment at Any Point x, 

Mx = Vs[- 1 + - l\(jf wP.(31) 

Concentrated Loading. (See Fig. 13, p. 25.) 

Fia. 13.—Beam Fixed at Both Ends. Concentrated Load. (See p. 25.) 

End Shears, 

v' - [l - (r)X3 - 2r)]p - c»p.<32> 
V2 = (1 - C3)P.(33) 

Negative Bending Moments, 

Mi = — j(l - ffpi = - CtPl,.(34) 

M2 = - )PI = - C6Pl.(35) 

Maximum Positive Bending Moments, 

(r)Xl ~ if>pl - Ctn ■ ■ <*9 Afmu = Mi + Via = 2 



I I 

[<-0.2i->j 

• I 

Fig. 16.—Beam Fixed at Both Ends. Fig. 17.—Beam Fixed at Both Ends. 
Loads P at. Quarter Points. {See p. 26.) Loads P at Fifth Points. {See p. 26.) 

Symmetrical Arrangements of Concentrated Loads. (See Figs. 14 
to 17, p. 26.)—Bending moments and end shears for special sym- 
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gLUskCLLiJ 1 1 JJLLLlJLiU JJJJJUJJJJJ-iJJ 1LLLLLLL 1 1 ill 1 IV 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Values of y 

Values of j 

Diagram 2.—Constants Cs, C<, Cs, and Cs for Beam Fixed at Both Ends. 
(See p. 26.) 
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metrical arrangements of equal concentrated loads P are given in table 
below, and shown in Figs. 14 to 17. 

Beam with Both Ends Fixed. Symmetrical Arrangement of Equal 
Concentrated Loads 

Bending Moments and End Shears 

Loading 
End 

Shear 

Bending Moments 

Negative at 

Supports, 

Mi and Af2 

Maximum 

Positive, 

MtQAX 

Maximum 

Static Bending 

Moment, 

Ma 

IP at center. 0 5 P - 0 125Pf 0 125 PI 0 250PZ 
2P at J points. 1 OP - 0 222PI 0.111 PI 0 333PZ 

3P at J points. 1 5 P - 0.313PI 0 188 PI 0 5 PI 
4P at J points. 2. OP — OAPl 0.2 PI 0.6 PI 

BEAM FIXED AT ONE SUPPORT 

A beam fixed at one support and free at the other, has one statically 
indeterminate value, namely, the bending moment at the fixed support. 
In the formulas below, the left end is free and the right end is fixed. 
The general formula is obtained by making in Formula (24) Mi = 0. 
Therefore 

from which 

2 M2 
_ 6 rl 

I2! 
Maxdx, (39) 

Negative Bending Moment at Fixed Support, 

3 rK 
Mi (40) 

The values of the integral J" M,xdx may be found as explained on 

p. 18. 

A number of special cases are developed below. 
Uniform Load. (See Fig. 18, p. 29.) 

End Shear at Free Support, 

Vi = \wl = 0.375wl. . . • • (41) 
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End Shear at Fixed Support, 

V2 = | wl = 0.625wl.(42) 

Negative Bending Moment, 

M2 = - jwP = - 0.125wl2.(43) 

Maximum Positive Bending Moment, 

Mm&x = r^wl2 = 0.07wZ2.(44) 

Concentrated Load General Formulas. (See Fig. 19, p. 29.) 

Fig. 18.—Beam Fixed at Right End. 

Uniform Load. (See p. 28.) 
Fig. 19.—Beam Fixed at Right End. 

Concentrated Load. (See p. 29.) 

End Shear at Free End, 

3 a 1/a\3 

+ ‘ ‘ (45) 

End Shear at Fixed End, 

. . ...(46) 

Negative Bending Moment, 

Positive Bending Moment, 

Afnua = Via.(48) 

Constanta C7 and Cs may be taken from Diagram 3, p. 30, for 
, . a 

the proper ratio 
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n I/I II II LLLi l U 11 11 11 M U I N 1 M I II II HI IIU LLL1 M HIM 
0 0.1 0 2 0.3 0.4 0.5 0.6 0.7 0,8 0.9 1.0 

Values oj 

Diagram 3.—Constants Ci and Cs for Beam Fixed at One End. 

(See p. 29.) 

Special Arrangements of Concentrated Loads. (See Figs. 20 to 
23, p. 31.)—Bending moments and end shears for special symmetrical 
arrangements of equal concentrated loads P are given in table below, 
and are shown in Figs. 20 to 23. 

Beam with One End Fixed. Symmetrical Arrangement of Equal 
Concentrated Loads 

Bending Moment and End Shears 

Loading 

End Shears Bending Moments 

Free 

End 
Fixed 

End 

Negative at 

Support, 
Mz 

Maximum 

Positive, 

Minax 

Maximum 

Static Bending, 

Moment, 

M, 

IP at center 0.312P 0.688P - 0.187Pi 0.156PZ 0.25 PI 
2P at j points 0.667P 1.333P - 0 333PJ 0.222PZ 0.333PI 
3P at 1 points 1.031P 1.969P - 0.469PJ 0.266PJ 0.5 PI 
4P at i points j 1.4P 2.6P - 0.6PJ 0.36PZ o.m 
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Fig. 20.—Beam Fixed at Right Fig. 21.—Beam Fixed at Right End. 

End. Load P in Center. (See Two Loads P, at Third Points. 

P- 30.) (Sec p. 30.) 

Fig. 22.—Beam Fixed at Right End. Fig. 23.—Beam Fixed at Right End. 

Three Loads P, at Quarter Points. Four Loads P, at Fifth Points. 

(See p. 30.) (Sec p. 30.) 

TWO SPANS WITH FREE ENDS 

A continuous beam consisting of two spans with free ends, as shown 
in Fig. 24, p. 32, has only one statically indeterminate value, namely, 
the negative bending moment at the center support. Therefore one 
equation is sufficient for solving the problem. This is obtained from the 
three-moment equation. Thus 
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Basic Equation for Two Spans, 

Myli + 2M2i.l1 + £2) -f-M3I2 ■ •LT 
1 rl» 

M,ixdx+- I M.2(h — x)dx 
L2J0 

Since the ends are free Mi = M3 = 0 and 

General Equation for Bending Moment at Support, 

M2 = - 

r 6 r1' 6 r1’ 
|j J M.ixdx + - I M,2(h — x)dx 

2(£i + £2) 

-i,~ l,- 
Uniform Loading 

P P' P' ,/ \t s £ S' 

t1 1 
K-aJ—>1 1 k—aj— -H i 
U—aj->1 -aj->1 

n-—h--£•-> 
Concentrated Loads 

Fia. 24.—Continuous Beam of Two Spans, Free Ends. (See p. 31.) 

Using the values for integrals 
fjy 

i xdx and Ma2(l ~ x)dx 

worked out on p. 18 for uniformly distributed and concentrated loads, 
respectively, the formulas become: 

Negative Bending Moment for Uniform Loading, 

wih3 + w2l23 

M‘-ioTTST. 
Negative Bending Moment for Concentrated Loading, 

M2 = - 
2 (h + h) 

Also using constants in Diagram 1, p. 19, 

£i2sPiCi + l22ZP2C2 

-wT+«-' ’ ' 

• (51) 
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SP1C1 means the sum of all loads in first span, each multiplied by 

the constant Ci from Diagram 1, p. 19, corresponding to its 
h 

2F2C2 means the sum of all loads in second span each multiplied 

by the constant C2 from Diagram 1, p. 19, corresponding to its 
h 

The maximum shears may be obtained from the following equation. 

End Shears for Uniform Load, 

Vi = 

f2,= 

F2r = 

F3 = 

wih M2 

2 + h ’. 
.... (53) 

Will M2 

~2 iT’ * ' ‘ * 
.... (54) 

M2 

2 fe ’. 
.... (55) 

w2i2 M2 

2 + l2. 
.... (56) 

End Shears for Concentrated Loads, 

Vi = 2.Pi^l — + ~J^>.(57) 

F21 = .(58) 

’ SP!(‘ - c) - IT-.(69) 

V3 = 2P2y + ^.(60) 
*2 12 

Reactions on Supports} 

The reactions on end supports are equal to the end shears. 
The reaction on the central support is equal to the sum of the end 

shears on both sides. Thus 

i?2 = V21 + F2, . (61) 
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Two Equal Spans. Ends Free. Uniform Load 

For two equal spans the formulas are obtained by substituting in 
Formulas (49) to (60), pp. 32 and 33, 

h = l2 = l 

When the spans are loaded with uniformly distributed load and the 
intensity of loading in both spans is the same then in Formula (50), 
p. 32, 

IV i = W‘> = UK 

When one span is loaded and the other not loaded, then for the 
loaded span wi = w and for the unloaded span w2 = 0. 

The formulas below are worked out on this basis. 
Both Spans Loaded. (See Fig. 25, p. 35.) 
Condition for maximum negative bending moment. 

End Shears, 

7i = \wl = 0.375wl. . . (62) V2t = iwl = 0.625wZ. . . (63) 

V2r = V2i.(64) Vs = Vi = 0.375wl. . . (65) 

Negative Bending Moment, 

M2=- Iwl2 = - 0.125toZ2.(66) 

Maximum Positive Bending Moment, 

Mmax = Tfowl2 = 0.0703ieZ2.(67) 

Bending Moment at Any Point x, 

Mx = —W - 4x),.(68) 
o 

x measured from free end. 

Left Span Loaded. (See Fig. 26, p. 35.) 

Condition for maximum positive bending moment in left span. 

End Shears, 

Vi = -&wl = 0.4375wZ. . (69) V2l = 0.5625wZ.(70) 

V2r = -hwl = 0.0625wZ. . (71) V3 = -^wl = - 0.0625wZ. . (72) 
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Negative Bending Moment, 

M2 = - -frwl2 = - 0.0625wZ2.(73) 

C. 
I 
IU, 

Fig. 25.—Two Equal Spans. Free Ends. Fig. 20.—Two Equal Spans, Free Ends. 

Both Spans Loaded. (See p. 31.) Left Span Loaded. (See p. 3L) 

Maximum Positive Bending Moment, 

Mm:ix = AW* = 0.096wZ2.(74) 

Bending Moment at Any Point x in Loaded Span, 

M, = &j(7 - *f)wP,.(75) 

Two Equal Spans. Free Ends. Concentrated Loads 

Concentrated Load P in Left Span at Distance a from Support. 
(See Fig. 27, p. 35.) 

Fia. 27.—1Two Equal Spans. Concentrated Load P in Left Span. 
(See p. 35.) 
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End Shears, 

V21 = (1 - C9)P. . . . 

P = C0P. 

1 af /a\2 
K2' ■ ij l1 ~ (r) J CwP. 

• • (76) 

• • (77) 

• • (78) 

. . (79) 

. . (80) 

• - (81) 

Constants C9 and Cio may be taken from Diagram 4, p. 36 for 

proper values of -j. 
L 

V3 = — C10P. 

Negative Bending Moment, 

M* — 5ft1 ~ (f>\ 
Maximum Positive Bending Moment, 

Mm&x = Vm « C9Pa. . . . 

PI = - C10PZ. 

Diagram 4,—Constants C* and Cio for Two Equal Spans, Concentrated Loads. 
($ee p. 36.) 

Symmetrical Arrangements of Concentrated Loads.—Following 
arrangements of concentrated loadings will be considered: 

1. One load P at center of span. 
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2. Two loads P at third points. 
3. Three loads P at quarter points. 
4. Four loads P at fifth points. 

The values in the table on p. 39 may be used for continuous girders 
which carry cross beams so that the load on the girder is concentrated. 

(b) Left Span Loaded (b) Left Span Loaded 

Fig. 28.—Two Equal Spans, Free Ends. Fig. 29.—Two Equal Spans, Free Ends 
Load P at Center. (See p. 36.) Two Loads P at Third Points. {See p. 37) 

Two conditions of loading are considered: 

(а) Both spans loaded. 
(б) Left span loaded. 
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The first condition gives ma 
the support and the other conditi< 
in the left span. 

(b)Left Span Loaded 

Fia. 30.—Two Equal Spans, Free Ends 
Three Loads P at Quarter Points. {Set 

(b)Lefi Span Loaded 

Fig. 31.—Two Equal Spans, Free Ends. 
Four Loads P at Fifth Points. (See 
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Two Equal Spans, Free Ends. Symmetrical Arrangements of 
Concentrated Loads P 

Bending Moments and End Shears 

Spans Loaded 

End Shears Bending Moment 

Vi V2I vv Vi 

Negative 
at Support, 

M2 

Maximum 
Positive, 

Afmax 

Static 
Bending 
Moment, 

M» 

One Load P a t Center 

Both Spans.... 0 312P 0 688P I 0 688P I 0 312P I -0 188PZ I 0.156PZ I 
| 0 25PZ 

Left Span. 0.406P 0.594P | 0 094 P 1 — 0 094 P 1 —0 094PZ | 0 203PZ 1 

Two Loads P at Third Points 

Both Spans . .. 0 667P I 1 333P I 1 333P 0.667P — 0 333PZ 0 222PZ I 
| 0 333PZ 

Left Span. 0 833P 1 1.167P 1 0 167P -0.167P — 0 167 PI 0.278PZ 1 

Three Loads P at Quarter Points 

Both Spans.. . . 1 031P I 1.9C9P I 1 969 P I 1 03 IP — 0 469PZ 0 266PZ I 
| 0.3PZ 

Left Span .... 1.266P | 1.734P | 0 234P 1 — 0 234P — 0 234PZ 0 383PZ 1 

Four Loads P at Fifth Points 

Both Spans.. . . 1 4P 2.GP 2.6 P 1 4P -0 6 PZ 0 36PZ 
| 0 6 PZ 

Left Span. 1.7P 2.3P 0 3 P — 0 3P -0 3 PZ 0 48PZ 

TWO UNEQUAL SPANS. UNIFORM LOAD 

The formulas for two unequal spans may be simplified by expressing 
the length of the shorter span in terms of the longer span. Thus, if 

li = 30 ft. and h = 20 ft., then h = = ih> 

Let l\ = l = length of longer span; 
l2 = ml = length of the shorter span; 

m = ratio of span length 
n 

Substituting these values in general equations, following simple for¬ 

mulas are obtained. 
Uniform Load. Both Spans Loaded. (See Fig. 32, p. 41.) 
Condition for maximum negative bending moment. 

End Shears, 
Vi = |(3 -fra — m2)wl = D\wl.(82) 

V2l = wl - Vx = (1 - Dx)wl.(83) 

V2r = wml — Vz = (1 — D2)wml.(84) 

V3 = -(3 + —-)wml = D2wml . . . (85) 
8 \ m m2/ 
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Negative Bending Moment, 

M2 = — |(1 — m + m2)wl2 = — D3WI2.(86) 

Points of Inflection (Measured from Center Support): 

Long span, 

x,- = [1 - i(3 + m - m2)]l = (1 - 2Di)J. . . . (87) 

Short span, 

x« = [l - j(3 + - - -)}ml = (1 - 2Z)2)mZ. . (88) 
L 4\ m mvj 

Maximum Positive Bending Moment: 

Long span, 

=r^-(3 + m — m2)2wl2 = D*wl2.(89) 

Short span, 

Mm„ = rhfs + --w(ml)2 = D5w(ml)2. . . . (90) 
\ m m*/ 

This formula is good only for m larger than 0.43. For smaller m 
there is no positive bending moment in the short span. 

Points of Maximum Positive Bending Moment: 

Long span, 

x, — 1(3 + m — m2)l = Dil (measured from support 1). . (91) 

Short span, 

x, = 3 + — —)ml = D^ml (measured from support 3). (92) 
8 \ m ml 

The value of constants D\ to Di are given in Diagram 5, p. 43, 
and constant D& in Diagram 6 p. 44, for different ratios of m. 

Uniform Load. Long Span Loaded. Short Span Not Loaded. 
(See Fig. 33, p. 41.) 

Left span assumed to be long span and right span to be short span. 

End Shears, 

.» 
V2l - wl - Vi - (1 - De)wl. 

Vi, =-Va = Drwl. 

• 8m(l + m)W^ 
— Drwl. . 

. . (94) 

. . (95) 

. . (96) 
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Negative Bending Moment, 

M2=- -wP = - DgwP. . . . (97) 
8(1 + m) 

Fia. 32.—Two Unequal Spans, Free Ends. Both Spans Loaded. (See p. 39.) 

Fig. 33.—Two Unequal Spans, Free Ends. Long Span Loaded. (See p. 40.) 

Point of Inflection, Long Span (.Measured from Support 2), 

• (98> 

Maximum Positive Bending Moment, 

- iSttS- ft*.<99> 
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Point of Maximum Positive Bending Moment, 

x\ = ^ — dqi (measured from support 1). (100) 
8(1 + m) 

Uniform Load. Short Span Loaded and Long Span Not Loaded. 

(See Fig. 34, p. 42.) 
Condition for maximum positive bending moment, short span. 

End Shears, 

m? 
Vi = - "■■■■-,.-w(ml) = -Dio w(ml) 

8(1 + m) 

V21 = —Fi = D10 w(ml) 

long span (101) 

V2r = w(ml) — V3 = (1 — Dn)w(ml) 

V3 = ~~ w(ml) = Dnw(ml) 
8(1 + m) 

short span (102) 

Fig. 34.—Uniform Load Two Unequal Spans, Free Ends. Short Span Loaded. 
(See p. 42.) 

Negative Bending Moment, 

m 
M2 =— ^w(ml)2 = —Diowm(l)2. . . . (103) 

Point of Inflection, Short Span (.Measured from Support 2), 
/ 3m + 4 \ 

Xi = \l-MP^))nd=^-2D^lm‘ ■ • <104) 

Maximum Positive Bending Moment, 

11 I 4 \ ^ 

Mmu = 2\8(1 + m)/ = Dl2w(-mI)2’ • * • <105) 
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Values of m 

D3=i(l-m+m*)m Mt--D3wl* 

Di-jk(3+m-m')*m M mai-D^wl* 

Values ofm 

Diagram 5.—Constants Di, Dt, D» and Dt for Two Unequal Spans. (See p. 40.) 
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Values of m 

For m smaller than O.AS no positive 
bending moments act in the smaller span. 

Diagram 6.—Constant D6 for Two Unequal Spans. (See p. 40.) 

Values of m 

D*~m+k),'form,t vtmD»wl 

Diagram 7.—Constants D% and Dr for Two Unequal Spans. (See pi 40.) 
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Point of Maximum Positive Bending Moment (Measured from Sup¬ 

port 3), 

*i = ■%” + \(ml) = Du(ml).(106) 
8(1 + m) 

The values of constants are given in Diagrams 6 to 9, pp. 44 and 
45 for different ratios of m. 

Two Unequal Spans. Concentrated Loads 

Concentrated Load P in the Long Span. 

End Shears, 

Vi = [(l - j) - £i]p. (107) V2l = P~V 1. . . . 

V2r = -ElP.(109) 
m 

Negative Bending Moment, 

U3 =- U2r. 

M2 5or+^j£i[‘- (r)']” EiPl • • ■ 2(1 + m) 

Point of Inflection (Measured from Support 2), 

M2 
Xi = v2i 

(108) 

(110) 

(HI) 

(112) 

Maximum Positive Bending Moment, 

= ^[(l-^) -PiJpI.(113) 

Bending Moment at Any Point (x Measured from Support 1), 

In loaded span, 

Mx = V\x = -|^1 ~ jj ~ Ei j PI for x smaller than a. . . . (114) 

Ms = V\x — P{x — a) = — j(ei + jj Jpi for x larger than a. (115) 

In unloaded span, x measured from support 2, 

Mx = {ml — x) 
M2 

ml --*(*-a)* 
(116) 



TWO UNEQUAL SPANS. UNIFORM LOAD 47 

Concentrated Load P in the Short (Right) Span. 

End Shear, 

Vi = — E2P.(117) V2t = - Vi = E2P. . . (118) 

V2r = P-V3.(119) V3 = - E^jP. . . (120) 

Negative Bending Moment, 

M‘ — iRTSjCljiX1 - £i)(2 - (121) 
PotnZ 0/ Inflection, (xi Measured from Support 2), 

71^2 P2 
Xi = 

Fa 
-Z. 

1-+ i?2 
ml 

Maximum Positive Bending Moment, 

Mmax == F3(mZ — a). . . 

(122) 

(123) 

Bending Moment at Any Point: 

In loaded span, x measured from support 2, 

Mx = V's(ml — x) — P(a — x) 

= E5\ 1 — —P(ml) forx smaller than a. (124) 
\ ml/ ml mlj 

Mx = Vz{ml — x) for x larger than a. . . 

In unloaded span, x measured from support 3, 

M2 „ xnl 
Mx - —x = — E2jPI. 

L v 

(125) 

(126) 

Anchorage of Short Span.—Whenever the reaction on the outside 
support of the short span for a proper combination of live and dead 
load is negative, the beam must be properly anchored to the support 
and the support must be heavy enough to resist the uplift. 

When the ratio, m> of the short span to the long span is smaller 
than 0.43, there will be uplift at support 3 even for dead load. 

The formulas for unequal spans apply only to beams capable of 
resisting uplift. If no resistance to uplift exists when it is required, 
the end of the short span moves up and it changes to a cantilever. 
The bending moment and shear for such case are different than for a 

continuous beam. 



48 CONTINUOUS BEAMS 

BEAM OF THREE SPANS. FREE ENDS 

A continuous beam consisting of three spans with free ends has two 
statically indeterminate values, namely, the negative bending moment 
at the interior supports, M2 and Ms (see Fig. 35, p. 49). It is neces¬ 
sary to set up two equations using the three-moment theorem given 
on p. 16. 

Following general equations are obtained. 

Basic Equations for Three Spans, 

(1) 2M2(li+l2)+M3h-— M,ixdx+j-J M,2(fe— 

(2) M2I2+2M3 (J2 -f-fe) = —6 nr M,2xdx+j^ M$s (Z3 — 

. (127) 

. (128) 

The values of the integrals are worked out on p. 18 for uniformly 
distributed and for concentrated loads. By substituting proper values 
for the integrals and solving the equations for M2 and Msf following 
formulas for the bending moments at supports are obtained. 

Bending Moments at Supports. Uniformly Distributed Load of 

Different Intensities. 

and 

M2 = 

M3 = 

2(l2 + ls)w\li3 + (I2 + 2Z3)i^2^23 — I2W3I33 

16(Zi + h){h + h) — 4/22 

—Z2i0i?i3 -f- (I2 4“ 2Zi)w2Z23 + 2(l\ + l2)wsLP 

16(Zi + h)(h + h) — 4Z22 ’ 

(129) 

(130) 

Bending Moment at Supports. Concentrated Loads. 

,, 2h*{l2+l3)ZPlCl+2l2*(l2+l3)VP2^^^ 
M2-,0-• (131) 

Ms— 

4(Ii +h)(l2+h)-h2 

-Zi2Z2SPiCi-fe32;P2C2+2Z22(ZiH-Z2)SP2Ci-f2Z32ai+fe)SP3Cr2 

4 (ll +12) (J>2 + h) —122 
.(132) 

In the above equations the constants are, in general, 

“d ft-K1-?)(*-?)• 
in which a is the distance of each particular load from left support of 
the span in which the load is located and l is the length of same spans. 

The values of Cx and C2 may be taken from Diagram 1, p. 19. 
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SP1C1 and 2P1C2 means the sum of all loads in the first span, each 
load multiplied by a constant C\ and C2 respectively corresponding to 

. «i 
its ratio 

li 
SP2C1 and SP2C2 are similar sums for the second span, and finally 

ZP3C1 and SP3C2 are similar sums for the third span. 

1 1 !■■! 1 r r 1 i-t r—1 1 t-r-i 9 

(I11IIII11I1II1I iii 1111111111111111 

i— m i 
Uniform Loading 

Fig. 35.—Continuous Beam of Three Spans, Free Ends. (See p. 48.) 

End Shears.—End shears in the various spans may be found from 
the following equations which are based on Formulas 16 and 18, p. 22. 

For Uniform Loads 

End shear at first support 

For Concentrated Loads 

V W' + f'. . . . ,m) 
A 11 

. . . (.34) 

End shear at second support left 

W\lx Mi ai Mi 
F* = - T-. - - • (135) Vu = SPif - 

h h 

End shear at second support, right 

wd 

"2 
f. - ¥ + . (.37) r. - a>,(. - a) + 

Mt-Mt 

End shear at third support, left 

Wilt Mi — Mi 
Vu = . . (139) = 

(136) 

(138) 

(140) 
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End shear at third support, right 

Wilt Mi 

Vv = T~T ■ ■ • ( 

End shear at fourth support 

mi) 

v - i 
4 " 2 + l, ' 

ai Mi 
. . (143) V4 = . 

tj *1 

(ll / (Zj 
In the above formulas, 2P17- and 2/Ml — 

ti \ 
denote sums of 

(12 / d'2 \ 
static end shears of all loads in the first span, 2jP2~ and 

a% 
are static end shears of all loads in the second span, finally 2/^3— and 

2P3 M) are static end shears in the third span. 

M2 and M3 are bending moments at the supports. It is important 
to use in the above equations the bending moments with their proper 

when M2 = 
Will2 . 

is negative signs. Thus, V\ = —p + (— —when M2 = — -1— is negative 
2i \ CL J OL 

, „ Wifi / wiZA w^i2 . 
and Fi = ——|- I H-1 when m2 =-is positive. 

2 \ a / a 

Reactions.—The reactions on end supports 1 and 4 are equal to 
the end shears Vi and F4, respectively, plus any load coming directly 
on the support. 

The reactions at the interior supports 2 and 3 are equal to the sum 
of end shears to the left and to the right of the support, namely, 
(V2i + F2r) and (F3* + F3r), respectively, plus any load coming 
directly on the support. 

THREE EQUAL SPANS. FREE ENDS 

For three equal spans the formulas for bending moments become 
simpler. They are obtained from Formulas (129) to (132) by sub¬ 
stituting h = h = h = l 

Uniformly Distributed Loads. Different Intensities in Each Span, 

w (4tt>i + Zw2 - wz)l2 

M‘-w.. (14i 

m3 = 
(— mi + 3u>2 + 4tfl3)£2 

60 
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Concentrated Loads, 

,, (42PjC, + 42P2C2 - 2P2Ci - 2P3O2). 
M2 =-—-1. (147; 

„ -2PX(7,+ 42P2Pi- 2P2C2 + (42P3C2), 
^*3 ---—--—-L (14oj 

15 

For loading symmetrically arranged with regard to the center of span 

Ci = C2 
so that 

42P2C2 - ZP2C1 = 32P2Ci, 
also 

4SP2C! + SP2C2 = 3 XP2Ci. 

In the above equations 2P1C1 is the sum in first span, 2P2C1 and 
SP2C2 are sums in second span and 2P3C1 and 2P3C2 are sums in third 
span. 

Ci and C2 are constants from Diagram 1, p. 19. 

Three Equal Spans. Free Ends. Uniformly Distributed Load 

It is assumed in the formulas below that the intensity of the uni¬ 
formly distributed loading in all loaded panels is equal. The intensity 
of loading in unloaded spans is zero. 

In practice the beam is loaded by the dead load, which always acts 
in all spans, and by the live load which cannot be counted upon to be 
always in all spans. Therefore, to determine the maximum bending 
moments, it is necessary to compute separately the bending moments 
for the dead load and for the most unfavorable position of the live load 
and add the results. 

Four conditions of loading are considered below, namely: 
(а) Condition for dead load all spans loaded. W\ = W2 = = w 

(Fig. 36(a)). ' 
(б) Condition for maximum negative bending moment, two adjoining 

spans loaded. W\ — W2 = w and W3 = 0 (Fig. 36 (6)). 
(c) Condition for maximum positive bending moment in center 

span, center span loaded, Wi = W3 = 0 and w2 = w (Fig. 36 (c)). 
(d) Condition for maximum positive bending moment, in end span, 

the end spans loaded. w\ = = w and w2 = 0 (Fig. 36 (d)). 

The bending moments and end shears are given in table on p. 52. 
The bending moment curves as well as shear diagrams are shown in 
Fig. 36, p. 53. The location of points of maximum positive bending 
moments as well as of the points of inflection are shown in the figures. 
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Three Equal Spans. Free Ends 

l — Length of Span, w = Uniform Unit Load 

End Shear. (See Fig. 36, p. 53.) 

Condition 

(Fig. 38) 

Spans 

Loaded 

First Span Second Span Third Span 

7i V* V3r v„ v„ Vi 

a 1, 2,3 0 4 wl 0.6 wl 0.5wl 0.5 wl 0.6 wl QAwl 

b 1.2,- 0.383tul 0.617 wl 0.583wl 0.417 wl 0 033wl —0 033wl 

c ”» 2, - —0 05wl 0 05wl 0.5wl 0.5 wl 0.0 5wl —0.0 5wl 

d 1,-2 0 45wl 0 55wl 0 0 0.55wl 0 46wl 

Static end shear 7 = 0.5wl 

Maximum Bending Moments. (See Fig. 36, p. 53.) 

Condition 

(Fig. 38) 

Spans 

Loaded 

Negative Bending 

Moment 

Maximum Positive Bending 

Moments 

m2 Mt 
First 

Span 

Second 

Span 
Third 

Span 

a 1,2,3 —0. luii* -0.ltt,!2 0.08wZ2 0.025u>!2 0.08 wl2 

b 1, 2,- —0.117it/2 -0 033wl1 0 0735u>!2 0.0535«,12 

c - 2, - -0.0 5m>!1 -0 05wl2 0.076wl* 
d 1,-2 -0.05 wl2 —0.05 wl* 0 101 wl2 0.101 wl2 

Static Bending Moment, Ms = 0 125wl2 

Absolute maximum values are shown in black face type. 

Maximum Values for Combined Dead and Live Load 

Dead 
Load 

Live 
Load 

End Shears Negative 
B. M. 

Mi and 
Mt 

Maximum Positive 
B. M. 

Vi and 
vt 

Vn and 
V,r 

V2r and 
F# 

End 
Span 

Center 
Span 

O.Sw 0 44wl 0.614 wl 0.566w£ -0.114m,!! 

9 0.7 w OASbwl 0.612 wl 0.558wl — 0.112m>!! 

OAw 0.6w OASwl 0.610 wl 0.550teJ 0.055u;f* 
0.5w 0.5w 0 425wl 0.608wl 0.54lwl -0.108wZ2 0 050wl* 

0.6w OAw 0.42wl 0.607wl 0 533wl —0.107 wl* O.OSSwl2 

0.7 w 0.3 w QA15wl 0.605wl 0.525wl —0.105u?Z2 0.086wl2 

vo - Uniform unit dead plus live load. I — Length of span. 
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Three Equal Spans. Free Ends. Concentrated Loads 

Formulas for the bending moments and shears produced by con¬ 
centrated loads for a beam consisting of three spans are given below. 

Load in the First Span at Distance a from Left Support. (See 
Fig. 37, p. 54.) 

Fig. 37.—Three Equal Spans, Free End. Concentrated Load in End Span. 
OSee p. 54.) 

End Shears, 

= • • (14W 
V21 = P - Vi = (1 - Fi)P.(150) 

- ir[‘ ~ (r)1p ■ PiP-.<I51> 
V3l=-V2r =-F2P.(152) 

Vs'~ M1-(r)1p — .(153) 
Vi = - V3r = IF3P.(154) 

Bending Moments at Supports, 

J’,!--ur[1-(r)lP!--P3Pi- • • • • <155> 
M3 =— IM2 = \F3Pl. ..(156) 

Maximum Positive Bending Moment f 

Mmtx = Via = jFiPl.(157) 

Bending Moment at Any Span (x Measured from Left Support): 

Loaded span, 

Mx = V\x = F\-Pl for x smaller than a.(158) 

Mx = Vix - P(x - a) PI for x larger than a. (159) 
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Second span, not loaded, 

Mx = M2+ —~A/2x = (- 1 4- 

Third span, not loaded, 

Load in Center Span at Distance a from Support 2. (See Fig. 38, 
p. 55.) 

/ A* 

« i % 
* T 

Tl 11111111111111111111 
*' ^Nimg im/" J 

Fir,. 38.—Three Equal Spans, Free Ends. Concentrated Load in Center Span. 

(See p. 55.) 

End Shearsy 

Vi = + = - F5P.(162) 

Vs, = F5P. 

r* ■ i[3" 2r - 3(r)’+2(r)1p -FtP- ■ ■ (164) 
Fa, = (1 - F4)P.(165) 

Vs, = — = F6p.(166) 

V4 = - FgP. . 

Negative Bending MomentSy 

M‘ — haAl-r){2+4)n —w ■ ■ ■ <169) 

Maximum Positive Bending Moment, 

"--nri®**?-*©’ 
8 + 2^-2o(jj +10(r/ pl = F7pi- (]7°) 
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Bending Moment at Any Point x: 

First span, unloaded span, 

M,=-VlX =- F5yPI. . 
V 

(171) 

Second span, loaded span, 

Mx = AT2 — V2rx — ~ FsjPl for x smaller than a. (172) 

Mx = [(P4 - l)j - 

Third span, unloaded span, 

Mx = V4(l - x) = - F0(l - fj 

PI for x larger than a. (173) 

PI. (174) 

Symmetrical Arrangement for Symmetrical Loads.—For loadings 
arranged symmetrically with regard to the center of the span in Formula 
(147), p. 51, the values 2PCi are equal to 2PC2, because the bending 
moment area is symmetrical and its center is in the center of the span. 
The final formulas for bending moments for symmetrical loads are: 

Negative Bending Moments for Symmetrical Loads, 

.(1?5) 

„ 42P3(7i + 32P2C, - SPxC,, , . 
^3 --—-1.(176) 

If the load groups in all spans are equal, then 

SPiCi = 2P2Ci = 2P3Ci. 
If some spans are loaded and others not loaded substitute proper values 
for the sum 2P1C1 for all loaded spans and in all unloaded spans make 
the sum equal to zero. 

Four conditions of loadings are considered. 

(а) All spans loaded. Condition for dead load. 

2PiCi = 2P2Ci 2P3Cj = 2PCi. 
(б) First and second span loaded. Condition for maximum nega¬ 

tive bending moment M2. 

2P1C1 = 2P2Ci = 2PCi and 2P3Ci = 0. 

(c) First and third span loaded. Condition for maximum positive 
'tending moment. 

SPiCi = 2P3Ci = 2PCi and 2P2Ci = 0. 
(d) Center span loaded. Condition for maximum positive bending 

moment. 

SP2Ci = 2PCi 2P1C1 = 2PaCi = 0. 
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For these loadings the values of negative bending moments are given 
in the table below. 

Negative Bending Moments for Symmetrical 

Concentrated Loads 

Condition Spans Loaded m2 M, 

a 1, 2, 3 -0 4IXPCi -OAlZPCt 
b 1, 2, - -0 46722/JCi -0.1332PCi, 
c - 2, - -0 2l2PCl -0 2lXPCi 
d 1, 3 -0.2 l2PCi -0 ‘2l2PCl 

where 2 PCi is the sum of all loads in a span multiplied by corresponding values of C\. 

Values of Ci for given - may be taken from diagram 1, p. 19. 

When all loads in a span are equal and symmetrically arranged 
it is possible to take P before the summation sign so that 2PCi = PXCj. 
For equal loads, then, the values of Ci in a span may be added and the 
sum multiplied by the constant P. 

Special Symmetrical Arrangement of Equal Concentrated Loads 

Tables are worked out for following special symmetrical arrange¬ 
ments of equal concentrated loads: 

1. One load P at center of spans (Fig. 39, p. 59). 
2. Two loads P at third points (Fig. 40, p. 61). 
3. Three loads P at quarter points (Fig. 41, p. 63). 
4. Four loads P at fifth points (Fig. 42, p. 65). 

In each case the four types of loading are considered which give 
maximum values for positive and negative bending moments, respec¬ 
tively. 

The bending moments can be used for continuous girders carrying 
cross beams, which bring concentrated loads on the girders. 

For dead load the bending moments for condition a should be used. 
For live load use the maximum values of bending moments for 

proper condition of loadings. Thus for the negative bending moment 
at the second support use the negative bending moment for condition 6. 

For positive bending moment in the outside spans use condition d 

and in the center span use condition c. 

The tables also give maximum bending moments and shears for a 
combination of dead load and live load. For given total load P and 
ratio of dead load to total load the maximum bending moments and 
shear can be obtained directly. 



58 CONTINUOUS BEAMS 

One Load P in Center. Three Equal Spans, Free Ends 

End Shears 

Condition 

(See 

Fig. 39) 

Spans 

Loaded 

First Span Second Span Third Span 

Fi VU v2r Vu Vtr 74 

° 
1,2,3 0.35P 0 657* 0 5 P 0 5 P 0 65 P 0 35 P 

b 1. 2,- 0.325P 0 675P 0 625P 0.375P 0.05 P -0 05P 

c " 2,- —0.075/* 0 075 P 0.5P 0.5P 0 075P -0 076P 

d 

i 
1,-3 0.426P 0 575 P 0 0 0.575P 0.425P 

Static End Shear, V8 — 0.5P 

Maximum Bending Moments 

Condition 

(See 

Fig. 39) 

Spans 

Loaded 

Negative at Supports Max. Positive Bending Moment 

Mz 
First 
Span, 

Mm&x l 

Second 

Span, 

A/max 2 

Third 

Span, 

Mmax 3 

a 1, 2,3 —0.15 PI -0 15 PZ 0 175PZ 0 1PZ 0.175 PI 

b 1. 2,- —0.175PJ -0 05PZ 0.162PZ 0 137PZ 

c ", 2,- -0.075PI -0 075PZ 0.176PZ 

d 1,-3 —0.075 PI -0 075PZ 0.212PZ 0.212 PI 

Max. Static Bending Moment, Ms = \Pl = 0.25 PI 

Absolute maximum values are shown in black face type 

Maximum Values for Combined Dead and Live Load 

Dead 

Load 

Live 

Load 

i 
End Shears Negative 

B. M. 

M 2 and 

Mi 

Maximum Positive 
B. M. 

Vi and 

vt 
Fs and 

Vtr 
Vt rand 

Vu 
End 

Span 

Center 

Span 

0.2P 0.410P 0.670P 0.60 P -0.170PZ 0.205PZ 0.160PZ 

0.3P 0.7 P 0.425P 0.667P 0.587P —0.167PZ 0.201 PI 0.152PZ 

0.4P 0.6 P 0.395P 0.665P 0.575P -0.165PZ 0.197PZ 0.145PJ 

0.5 P 0.5 P 0.388P 0.662P 0.562P -0.162P1 0.193PZ 0.137PZ 
0.6P 0.4 P 0.380P 0.660P 0.550P —0.160PZ 0.190PZ 0.130PZ 

0.7P 0.3P 0.372P 0.657P 0.537P -0.15 7 PI 0.186PZ 0.122PI 

P = Concentrated dead plus live load. I - Length of span. 



V (d) End Spans Loaded \r 

Fig. 39.—Three Equal Spans, Free Ends. One Load P at Center. (See p. 58.) 
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Three Equal Spans, Free Ends. 2 Loads P at Third Points 

End Shears 

Condition 

(Sec 

Fig. 40) 

Spans 
Loaded 

First Span Second Span Third Span 

Vi Fa v2. Fa Fjr 74 

a 1,2,3 0 733P 1.267P 1 OP 1.0P 1 267P 0 733P 

b 1. 2,- 0.689P 1 311P 1.222P 0 778P 0.089P -0 089P 

c - 2,- -0.133P 0 133P 1.0P 1.0P 0.133P -0 133P 
d 1,-3 0.867P 1.133P 0 0 1.133P 0.867P 

Static End Shear, 7, = 1.0P 

Maximum Bending Moments 

Condition 

(See 

Fig. 40) 

Spans 

Loaded 

Negative at Supports Max. Positive Bonding Moment 

m2 Mz 

First 
Span, 

Afmax l 

Second 

Span, 

-^max 2 

Third 

Span, 

AfmftT S 

a 1,2,3 —0.267PI -0.267PI 0.244Pi 0.067P2 0.244Pi 

b 1, 2,- -0.311 PI -0 089Pi 0.229 Pi 0.170P2 

c -> 2, - -0 133 Pi —0.133PJ 0.2 PI 

d 1,-3 —0.133Pi -0 133 PI 0 289P2 0.289Pi 

Max. Static Bending Moment, Ms = §Pi 

Absolute maximum values are shown in black face type 

Maximum Values for Combined Dead and Live Load 

Dead 
Load 

End Shears Negative 

B. M. 

M2 and 

Mz 

Maximum Positive 

Bending Moment 

F2j and 

Fjr 
Vit and 

Fa 
End 

Span 
Center 

Span 

0.8P 0.840P 1.302P 1.178P -0.302Pi 0.280P2 0.174P2 
11 .. 0.7P 0.827P 1.298P 1.155P —0.298Pi 0.275P2 0.160P2 

0.4P 0.6P 0.813P 1.293P 1.133P -0.293Pi 0.271 PZ 0.147P2 

0.5 P 0.5P 0.800P 1.289P 1.111P —0.289P2 0.266Pi 0.134P2 

0.6P 0.4P 0 787P 1.285P 1.089P —0.285P2 0.262Pi 0.120P2 

0.7 P 0.3P 0.773P 1.280P 1.067P —0.280P2 0.258P2 0.107P2 

P * Concentrated dead plus live load. I = Span length. 
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(d) End Spans Loaded 

Fio. 40.—Three Equal Spans, Free Ends. Two Loads P at Third Points. 

(See p. 60.) 
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Three Equal Spans, Free Ends. 3 Loads P at Quarter Points 

End Shears 

Condition 

(See 

Fig. 41) 

Spans 
Loaded 

First Span Second Span Third Span 

Vi T's V* Ftf V,r Vi 

a 1, 2, 3 1 125 P 1 875 P 1 5P 1.5P 1 875P 1 125P 

b 1. ‘2, - 1 062P 1 938P 1 812P 1 1887' 0 125P -0 1257' 

c -.2.- -0 188 P 0 1887' 1 5 P 1.5P 0 188 P -0 188P 

d 1, - 3 1.313 P 1 6877' 0 0 1 687P 1 313 P 

Static End Shear, lrs = 1.5P 

Maximum Bending Moments 

Condition 

(See 
Fig. 41) 

Spans 

Loaded 

Negative at. Supports Max. Positive Bending Moment 

M2 Mi 

First 

Span, 

Mmax l 

Second 

Span, 

M max 2 

Third 

Span, 

Mmax 3 

a 1, 2, 3 -0 375PZ -0 375PI 0 SVil’l 0 125 PI 0 313PZ 

b 1, 2, - -0 438P7 —0.125 PZ 0.281 PL 0.219 Pi 
c ", 2, - -0 1887'! -0 188 PI 0.312 PI 
d 1, 3 —0.1887'/ -0 188 PI 0.406PZ 0 406PZ 

Max. Static Bending Moment, Ma = \ PI = 0.5 PI 

Absolute maximum values arc indicated by black face type 

Maximum Values for Combined Dead and Live Load 

Dead 
Load 

Live 

Load 

End Shears Negative 

B. M. 

M2 and 
Mi 

Maximum Positive 

Bending Moment 

Vi and 

Vi 
Vn and 

Vir 
Vtr and 

F« 

End 

Span 

Center 

Span 

0.2P 0.8P 1.275P 1.925P 1.750P —0.425PZ 0.387PZ 0 275PZ 
0.3P 0 7 P 1.256P 1.919P 1.718P —0.419PZ 0.378PZ 0.256PZ 
0.4P 0.6P 1.238P 1.913P 1.687P -0.413PZ 0.369PZ 0 237PZ 
0.5P 0.5P 1.219P 1.906P 1.650P —0.406PZ 0 359PZ 0.218PZ 
0.6P 0.4P 1 200P 1.900P 1.625P —0.400PZ 0.350PZ 0 200PZ 
0.7P 0 3P 1.181P 1.893P 1.5947' —0.394PZ 0 341PZ 0 181PZ 

P = Concentrated dead plus live load. I - Span length. 
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Three Equal Spans, Free Ends. 4 Loads P at Fifth Points 

End Shears 

Condition 
(See 

Fig. 42) 

Spans 
Loaded 

First Span Second Span Third Span 

Ex V* Vir Vu Vir Vi 

a 1,2,3 1.52P 2 48P 2.0 P 2. OP 2.48 P 1.52 P 
b 1,2,- 1.44P 2.66 P 2 4 P 1 6P 0 16P -0 16P 
c - 2,- -0 24P 0 24 P 2 OP 2.OP 0.24P -0 24P 
d 1,-3 1 76 P 

cn
 

; 
_
1

 

0 0 2.24P 1.76P 

Static End Shears, V8 — 2P 

Maximum Bending Moments 

Condition 
(See 

Fig. 42) 

Spans 
Loaded 

( Negative at Supports Max. Positive Bending Moment 

m3 
First 
Span, 
Mjnox l 

Second 
Span, 

Afmax 2 

Third 
Span, 

Afmax 3 

a 1, 2,3 -0.48 PZ —0.48 PZ 0 408PZ 0 12PZ 0.424PI 
b 1,2,- -0 66PI -0.16PZ 0.376PI 0 28 PZ 
c -, 2, - -0.24 PI -0.24PZ 0 36PZ 
d 1,-3 -0 24 PZ -0.24PZ 0 604 PI 0 604PZ 

Max. Static Bending Moment, Ms = 0 6PI 

Absolute maximum values are shown in black face type 

Maximum Values for Combined Dead and Live Load 

Dead 
Load 

Live 
Load 

End Shears Negative 
B. M. 

M2 and 
m9 

Maximum Positive 
Bending Moment 

Vi and 
V 4 

V2i and 
Vsr 

Vtr and 
V3l 

End 
Span 

Center 
Span 

0.2P 0.8 P 1.712P 2.544P 2.32 P -0.544PZ 0.485PZ 0.312 PZ 
0.3P 0 7 P 1.688P 2 536P 2.28 P —0.536PZ 0.475PZ 0.288PZ 
0.4P 1.664P 2.528P 2.24P —0.528PZ 0.466P1 0.264PZ 
0.5P 0 5P 1.640P 2.520P 2.20P —0.520PZ 0.456P1 0.240PZ 
0.6P 0.4P 1.616P 2.512P 2.16P —0.512PZ 0.446P1 0.216PZ 
0.7P 0.3P 1.592P 2.504P 2.12P —0.504PZ 0.437PI 0.192PZ 

P = Concentrated dead plus live load. I = Span length. 
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(a) All Spans Loaded 

Fia. 42.—Three Equal Spans, Free Ends. Four Loads P at Fifth Points. 
(See p. 64.) 
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Example of Use of Tables for Concentrated Loads.—A numerical 
example showing the use of the tables for bending moments and shears 
for concentrated loads in actual design is given on p. 178. 

THREE UNEQUAL SPANS. FREE ENDS 

Continuous beams of equal spans can be designed, using bending 
moment coefficients recommended by various regulations. While there 
is a possibility of error, this ordinarily will not affect seriously the safety 
of the structure. 

In continuous beams with unequal spans the possible error due to 
the use of arbitrary bending moments may be very large and may 
endanger the safety of the structure. In many cases not only the 
magnitude, but also the character of the bending moments may be 
different from those specified for typical spans. Thus in case of large 
end spans and a small center span the whole center span may be sub¬ 
jected to negative bending moments. Again an end span, the length 
of which is small in comparison with the center span, may require 

anchorage to prevent uplift. It also may be subjected to negative 
bending moment for the whole length. (See Example 2, p. 183 and 3, 
p. 188.) 

For convenience in developing formulas for beams, with unequal 
spans, the beams with symmetrical arrangement of spans will be treated 
separately from the beams in which all spans are different. 

THREE UNEQUAL SPANS. SYMMETRICAL ARRANGEMENT 

Two cases are possible of beams of three unequal spans with sym¬ 
metrical arrangement, namely: 

1. Large center span I2 = l and small equal end spans li = I3 — ml, 
m being smaller than unity. 

2. Large equal end spans l\ = h = l, and small center span I2 = ml. 

1. Large Center Span, Small Equal End Spans, ml} l, ml. Free 

Ends 

Formulas are given below for an arrangement of spans where the 
center span is largest and the two end spans are equal and smaller 
than the center span. The ratio m is smaller than unity. This arrange¬ 
ment is shown in Fig. 43, p. 67. 
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(b) Bending Moments, when Ratio m Smaller than 0.375 

Fia. 44.—Spans ml, l, ml. Bending Moments for Uniform Loading. (See p. 67.) 

Maximum Shears, 

Vi = (-~ —^)wrrd. . (177) V2I = w(ml) - Vi. . . (178) 
\2 w7 
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V2r = j.(179) V3l = j. .(180) 

V3r = V2,.(181) 74 = 7i.(182) 

Negative Bending Moments, 

1 _L yyt 3 

M2 = Ms =- —±— —wp = - GlWP. . . (183) 
4(2 m + 3) 

Positive Bending Moments: 

First and third span, 

.(184) 

Second span, 

Mmax = iwP + m2 = (j - GOtuP..(185) 

Point of Maximum Bending Moments: 

First and third span, measured from support 1 or 4, 

Second span, 
l 

(186) 

(187) 

Values of G\ may be taken from Diagram 10, p. 70. 
Uniform Load. Two Adjoining Spans Loaded. 
Condition of loading for maximum negative bending moment. 

Maximum Shears, 

Vl = (l~ m)Wml ’ (188) 

V21 — wml — Vi. 

V2r = (| + G2 - G3)wl . (190) V3l — wl — V2r. 

M3 (?3 
V3r = 

ml 
= —wml . (192) 74 =-F3r. 

m45 

Negative Bending Moments, 

,, 1 2(1 + m)m3 + 1 + 2m n „ n 
M‘ — 4 4(1 + »)» - 1 “* " ~GmP' 

,, 1 1 + 2m - to3 „ ^ „ 

^ • • • 

(189) 

(191) 

(193) 

(194) 

. (195) 
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Maximum Positive Bending Moments: 

First span, 

Mm„ = ^ w(ml)2.(196) 

Second span, 

Mm&x = [- G3 + -J(J + G2 - G3)*]wl2.(197) 

Third span, 

No positive bending moment. 

Points of Maximum Bending Moments: 

First span, measured from support 1, 

“ "(I- .<i98> 
Second span, measured from support 2, 

xi = (2 + G2 - .(199) 

Values of G2 and G3 may be taken from Diagram 10, p. 70. 

Uniform Loading. End Spans Loaded. 
Conditions of loading for maximum positive bending moments in 

end spans. 

Maximum Shears, 

Vi = ^ — ^jwml. . . (200) V21 = wml — Vi. . . . (201) 

V2r =V3l = 0.(202) 

V3r = V2,.(203) V4 = Fi.(204) 

Negative Bending Moments, 

m^ 

M* = M3=-I(2mT3)Wp = ~ GaWP- ' * • (2°5) 

Positive Bending Moments: 

First and third span, 

. (206) 

Second span, 

No positive bending moment. 
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Points of Maximum, Positive Bending Moment: 

First and third span, 

.(207) 

Values of G4 may be taken from Diagram 10, p. 70. 

Values of m 

Diagram 10.—Constants Gi to G5 for Throe Unequal Spans. (See p. 68.) 

Uniform Load. Center Span Loaded. 
Conditions of loading for maximum positive bending moment 

center span. 

End Shears, 

Fi _ — = — %oml. . (208) V2, = - Vi.(209) 

V2, = \wl.(210) V3l 

Ffc— Vi. 74 = Fi. 

Negative Bending Moments, 

M2 = M3 =- 
4(2 m + 3) 

wP — — GgwP. . . (214) 
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Positive Bending Moments: 

First and third span, 

No positive bending moment. 

Second span, 

iVmax = (J- “ G*)WP.(215) 

Points of Maximum Positive Bending Moments: 

Second span, 

*1 = 2.(216) 

Values of (7r> may be taken from Diagram 10, p. 70 

Example.—A numerical example of the use of the formulas for 
bending moments and shears in actual design is given on p. 183. 

2. Large Equal End Spans, Small Center Span l, mZ, Z. Free 

Ends 

Bending moments and shears are developed below for a case of two 
large equal end spans and a small center span. This arrangement is 
shown in Fig. 15, p. 71. 

Four conditions of loading are considered. 

Jp J3 T5 4k 
-1-*+*-mZ--Z-n 

Fig. 45.—Two Equal End Spans, Small Center Span, Free Ends. (See p. 71.) 

Uniform Load. All Spans Loaded. (See Fig. 46.) 
Condition of loading for dead load. 

Maximum Shears, 

Vl = 2 

1 + m3 

4(2 + 3m) 
wl = (h — H\)wl. • • (217) 

V21 = wl — Vi.(218) 

V2r = \wrnl. . . (219) V31 — \wml. . . (220) 

Vzr = V21. . . . (221) V4 = Vl . . . (222) 
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Negative Bending Moments, 
1 4. 

M2 = M3=- = - Ihwl2. . . (223) 
4(2 + 3m) 

(a) Bending Moments when Ratio m Smaller than 0.8!> 

Fig. 46.—Spans Z, mZ, Z. Bending Moments for Uniform Loading. (See p. 71.) 

Maximum Positive Bending Moments: 

End spans, 

^max = i(i - HXYwl\ . 

Center span, 

M2max = (y - #iW. . 

Points of Maximum Bending Moments: 

End spans, 

*i = — = (i - 
w 

Center span, 
ml 

Values of Hi may be taken from Diagram 11, p. 74. 

(224) 

(225) 

(226) 

(227) 
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For m = 0.84 M2meiX = 0. For smaller values of m there is no 
positive bending moment in the center span when all spans are loaded. 

Two Adjoining Spans Loaded. 

Condition for maximum negative bending moment M2. 

End Shears, 

Pl 2(1 + to) + to3(2 + m) 

1 ~ 1.2 4(2 + m) (2 + 3 to) . 
wl = G - ff2)u>l. . (228) 

V2i = wl-V!. (292) 

V2t = ^ + m2 'SJwml- • (230) Vs l = wraZ — V2r. . (231) 

Vzr=~~ = Ihwl. . . . (232) i ii 

£
 (233) 

Negative Bending Moments, 

^ 2(1 + m) + m3(2 + m) 79 rr IO 
M2 =-77—-— ——:—wl2 = — H2wl2. 

4(2 -f* m) (2 -f- 3m) 

Mo = 

(2 + m)m3 — m 

* 4(2 + m)(2 + 3m) 

Positive Bending Moments: 

First span, 

^max = id ~ Ih)2wl2. . . 

Second span, 

M - M A.A. ^3 — H2\ 

Mm“ + 2\2+ to2 / 

Third span, 

No positive bending moment. 

Points of Maximum Bending Moments: 

First span, 

-wl2 = — Hzwl2. 

w(miy 

*! = — = (*“ #2)*. 
w 

Second span, 

V2r 2r= /I 
0 \2 

- ff2N 

. . (234) 

. . (235) 

. . (236) 

. . (237) 

. . (238) 

. . (239) 

Values of H2 and Hz may be taken from Diagram 11, p. 74. 
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Diagram 11.—Contents Hi to H6 for Three Unequal Spans. (See p. 72.) 



THREE UNEQUAL SPANS. SYMMETRICAL ARRANGEMENT 75 

End Spans Loaded. 

Condition for maximum positive bending moment in end spans. 

End Shears, 

- a - • <aw) 

V2l = wl-V i. (241) 

V2r = 0. . . . (242) F3/ = 0.(243) 

V3r = F2I. . . (241) F4 = Vi. ... (245) 

Negative Bending Moments, 

M2 = M3 = — — 7— wl2 = Ihwl2. . . . (246) 
4(2 + 3m) 

Maximum Positive Bending Moments: 

End spans, 

= 5(5 - H4)2^2.(247) 

Center span, 

No positive bending moment. 

Points of Maximum Bending Moment, 

Xi = — = (‘ - IU)l.(248) 
w 

Values of Ii4 may be taken from Diagram 11, p. 74. 

Center Span Loaded. 
Condition for maximum positive bending moment in center span. 

Maximum Shears, 

Ft = — - , ,.nvl=-H5wl . (249) F2i=-Fi. . (250) 
4(2 + 3m) 

F2r = .(251) F3l = Jttmd. . (252) 

F3r = F2l.(253) F4 = Fx. . . (254) 

Negative Bending Moments, 

M2 = M3 = - 4(3-jwP - - . . (255) 

Maximum Positive Bending Moment, 

Mm»x = + \w(ml)2.(256) 
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Points of Maximum Bending Moments, 
xi = \ml.(257) 

Values of II5 may be taken from Diagram 11, p. 74. 

THREE UNEQUAL SPANS. ALL SPANS DIFFERENT. FREE ENDS 

To simplify formulas for continuous beams of three spans when 
the lengths of all spans are different, the largest span is accepted as a 
unit and called l and the other spans are expressed in terms of the 
largest span. Thus the three span lengths are Z, mil, and m2l. 

Two arrangements of these spans are possible. 
1. The center span is largest and is called Z, and the end spans are 

mil and md. The arrangement of spans then is miZ, Z, md (see Fig. 

47, p. 77. 
2. The left end span is largest and is called Z, the other two spans 

are m\l and m2l. The arrangement of span then is Z, miZ, md. 
The second case applies also when the third span is largest. In 

such case the numbering begins from the right support instead of the 
left support as considered in the formulas. 

Case 1. Arrangement of Spans mil, Z, m2l 

General Formulas.—Substituting in Formula 129, p. 48, Zi = mil, 
I2 — l and Z3 = 7W2Z, following general formulas for negative bending 

moments are obtained. 

General Formulas for Negative Bending Moments, 
2(1 + m2)mi3wi + (1 + 2m2)w2 - m23w* 

Mi-16(1 + »,)(! + m) -4-' • ■ (258) 

,, — mi3wi + (1 + 2mi)w2 + 2(1 + mi)m23W3 

M‘-16(1 + mi)(l + md - 4-P' ' (25! 

This may be simplified by designating certain terms by constants, 

2(1 + m2)mi3 {9U 

16(1 + wii)(l + m2) — 4. 

h  _1 + 2m_ (I>R, 
16(1 + mi)(l + m2) — 4. J 

16(1 + mi)(l + m2) 
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ai 
mi3 

16(1 + wii)(l + m2) — 4' 
(263) 

bi 
1 + 2mi 

16(1 + mi)(l + m2) - 4 
(264) 

2(1 + nil) m23 

16(1 + mi)(l + m2) — 4 

All these constants have a common denominator. 
Then 

M2 = — (aw 1 + bw2 — cw3)l2. . . 

M3 =— (—aiwi + b\W2 + ciW3)l2 . 

(265) 

(266) 

(267) 

The constants a, b, c, and a\, hi, and ci for different values of mi 
and m2 may be taken from table on p. 79. 

sT 

-,-4Z_~ if 

Fig. 47.—Center Span Largest. Arrangement mil, l, m2l. (See p. 76.) 

Uniform Loading.—Assume that the intensity of uniform loading 
is the same for all loaded spans and zero in unloaded spans. To get 
maximum bending moments in different parts of the beam, following 
arrangements of load are considered. 

(а) All spans loaded. w\ = W2 = wa = w- Condition for dead load. 
(б) First and second spans loaded. w\ = W2 = w and ws = 0. 

Condition for maximum negative bending moment at second support. 
(c) First and third spans loaded. w\ = W3 = w, W2 = 0. Con¬ 

dition for maximum positive bending moment at end spans. 
(d) Second span loaded. w\ = ws = 0, W2 = w. Condition for 

maximum positive bending moments in second span. 
To get maximum negative bending moment at the third support, 

the second and third spans should be loaded. Formulas for this condi¬ 
tion can be obtained from case (6) by interchanging m\ and m2. Then 
the bending moment M2 becomes M3. 

(a) All spans loaded. 

M2 = — (a + b — c)wl2, .(268) 

M3 = — (— ai + &i + ci) wl2,.(269) 

where a, 6, c and ax, bi, ci are constants from table on p. 79 for the 
known span ratios mi and m2. 
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(£>) First and second span loaded. 

M2 = — (a + b)wl2y.(270) 

M3 =- (- ai + bi)wl2,.(271) 

where a, 6, and a\ and 61 are constants from table on p. 79 for the known 

span ratios m\ and m2. 
This loading gives M2 as maximum negative bending moment at 

second support for uniform loading. 

(c) First and third span loaded. 

M2 = — (a — c)wl2y.(272) 

Ms = — (— ai + a)wl2y .(273) 

where a, c and ai, c\ are constants from table on p. 79 for the known 
span ratios m\ and m2. 

The positive bending moments in the two end spans computed on 
the basis of the above values of M<2 and Ms are the maximum positive 
bending moments for uniform loading. 

The positive bending moments may be found as explained on 
p. 22 using table on p. 176. 

(d) Second span loaded. 

M2 = - bwl2y.(274) 

Ms = - biwl2y.(275) 

where b and 61 are constants from table on p. 79 for the known span 
ratios of mi and m2. 

The positive bending moment in the center span computed on the 
basis of the above values is the maximum for the center span. 

Example.—A numerical example showing the use of the formulas 
for bending moments and shears in actual design is given on p. 194. 

Maximum Positive Bending Moments.—After determining the 
negative bending moments by the formulas given above, the corre¬ 
sponding positive bending moments may be found from table on 
p. 176. To use the table find the bending moment coefficients for 
the negative bending moments at both supports in terms of the span 
for which the positive bending moment is desired. The coefficient 
equals the bending moment divided by wl2 for the center span, and by 
w(m\l)2y and w(m2l)2 for the first and third spans, respectively. 

In the table corresponding to the coefficients at both supports 
the coefficient for positive bending moment is found. The bending 
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Three Unequal Spans. Arrangement mj, Z, m2Z 

Constants a, b, c and ait bi, Ci 

in formulas (268) to (276) pp. 76 to 78 

m i 
for a 

7712 

Constants a and Cl 

m2 for a, mi for ci 

for ci 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

0.1 0.0001 0.0001 0.0001 0.0001 0.0001 0 0001 0.0001 0.0001 0.0001 0.0001 
0.2 0.0010 0.0010 0.0010 0 0010 0.0010 0.0010 0.0009 0.0009 0.0009 0.0009 
0.3 0.0031 0 0031 0.0030 0.0030 0.0030 0.0029 0.0029 0 0029 0.0029 0.0029 
0 4 0 0068 0 0067 0.0066 0 0066 0.0065 0.0004 0.0064 0.0064 0.0063 0.0063 
0.5 0.0123 0 0121 0.0119 0.0118 0 0117 0.0116 0.0115 0 0115 0.0114 0.0114 
0.6 0 0195 0 0194 0.0192 0.0190 0.0189 0.0187 0.0186 0.0185 0.0184 0.0183 
0 7 0.0291 0 0287 0.0284 0 0282 0.0280 0.0278 0.0276 0.0275 0.0274 0 0273 
0.8 0 0407 0 0402 0.0398 0.0394 0 0392 0 0389 0.0387 0 0385 0.0383 0 0382 
0 9 0 0545 0 0540 0.0534 0 0530 0.0526 0.0522 0 0518 0 0517 0.0515 0.0513 
1.0 

, 

0.0706 0.0698 0.0691 0.0686 0 0682 0.0678 0.0675 0.0673 0.0670 0.0667 

Constants b and bi 

mi for 6 m2 for 6, mi for &i 

0.1 0.2 0.3 0.4 0.5 0 6 0 7 0.8 0.9 1 0 

0.1 0.078 0.082 0.085 0.087 0.089 0.091 0.093 0.094 0 095 0 096 
0.2 0.070 0.073 0.076 0 079 0.081 0.082 0.084 0.085 0.086 0 087 
0.3 0 064 0 067 0.069 0 072 0.073 0.075 0 076 0 078 0 079 0 080 
0.4 0 058 0 061 0 064 0.066 0.067 0 069 0.070 0.071 0 073 0 073 
0.5 0 053 0 056 0.059 0 061 0.062 0.064 0.065 0.066 0.067 0.068 
0.6 0 049 0 052 0 055 0 056 0 058 0 059 0.061 0 062 0.064 0.065 
0.7 0 046 0 049 0.051 0.052 0.054 0.056 0.057 0.058 0.059 0.060 
0 8 0.043 0.046 0 018 0 049 0.051 0 052 0 053 0.054 0 055 0.056 
0.9 0 041 0.043 0.045 0 046 0.048 0 049 0 550 0 051 0.052 0.053 
1 0 0 038 0.041 0.042 0 044 0.045 0.046 0.048 0 048 0.049 0.050 

Constants c and ai 

h for c 
2 for a\ | 

m2 for c, mi for ai 

0.1 0 2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

0.1 
0.2 

0.0005 0.0014 0 0031 0.0056 0.0089 0.0132 0 0185 0.0248 0.0320 
0 0291 0.0004 0.0013 0.0028 0.0051 0.0081 0.0120 0.0167 0.0224 

0.3 0.0004 0 0012 0.0026 0.0046 0.0074 0.0109 0.0153 0.0205 0.0266 
0.4 0.0003 0.0011 0.0023 0.0042 0.0068 0.0101 0.0141 0.0189 0.0245 
0.5 0.0003 0.0010 0.0022 0.0039 0.0063 0.0093 0.0131 0.0175 0.0227 
0.6 0.0003 0.0009 0.0020 0.0036 0.0058 0.0087 0.0122 0.0163 0.0212 
0.7 0.0003 0.0009 0.0019 0.0034 0.0055 0.0081 0.0114 0.0153 0.0195 
0.8 0.0003 0 0009 0.0018 0.0032 0.0051 0.0076 0.0107 0.0144 0.0186 
0.9 0.0002 0.0008 0.0017 0.0030 0.0048 0.0072 0.0101 0.0136 0.0176 
1.0 0.0002 0.0007 0 0016 0.0028 0.0046 0.0068 0.0095 0.0128 0.0166 
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moment is obtained by multiplying this coefficient by wl2y w{mil)2 or 
w(ni2l)2 depending upon the span for which it is found. 

For the first and third spans obviously one of the negative bending 
moments is zero because the ends are free. 

The position of the point of maximum bending moment is found 
from tabic on p. 177 for the same negative bending moment coefficients. 
The ratio there found should be multiplied by the length of span for 
which the positive bending moment is sought. 

End Shears.—Having found the bending moments M2 and M3 the 
shears for any span can be found by means of table on p. 177. 

For this purpose the coefficient of negative bending moment at both 
supports should be found by dividing the bending moments by wl2y 
w(mil)2 or w{m2l)2y depending upon the span for which the end shears 
are being determined. 

The coefficients of shears are then found from the table. These 
multiplied by wl, w(mil) or w(m2l) give the end shear at the left support. 
The end shear at the other support is found by subtracting from the 
load in the panel the shear at the left support. 

Case 2. Arrangement of Spans Z, mil, m2l 

General Formulas.—General formulas for case 2 shown in Fig. 48, 
p. 81, are obtained by substituting in Formulas (129) and (130), p. 48, 
h = Z, h = milj Z3 = m2l. They are 

General Formulas for Negative Bending Moments. 
2(mi + m2)w\ + (mi + 2m2)mi3w2 — mim23wa^ 

"2“-— *».*- ^ 

,, — m\W\ + (mi + 2)m\2w2 + 2(1 + mi)m23wslo 

*’-I5a+'«0(m. + mi, - w-'• ■ (277> 

This may be simplified by substituting 

,_2 (mi + m2)_ 

16(1 + mi) (mi + m2) — 4mi2 * * (278) 

_(mi + 2m2)mi3_ 

16(1 + mi) (mi + m2) — 4mi2 * * " 

f_mim23_ 
16(1 + mi)(mi + m2) — 4mi2 * * * (280) 
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dx-^-. 
16(1 + mi) (mi + m2) — 4mi2 

(mi + 2)mi3 

16(1 + mi) (mi + m2) — 4toi2 

, _ _ 2(1 + Wi)7W23_ 

1 16(1 + mi) (mi + m2) — 4mi2 

Then 

Negative Bending Moments, Simplified, 

M2 = — (dwi + ew2 — . . 
M^ «= — ( — diwi + eiW2 + fiwz)l2. 

(281) 

(282) 

(283) 

(284) 

(285) 

Fig. 48.—Left End Span Largest. Arrangement l, mil, m2l. 

The constants d, e, f and di, ei, fi for different values of mi and m2 
may be taken from tables on pp. 82 and 83. 

Uniform Loading of Equal Intensity.—Assuming that wi = W2 = 
w,i = w, formulas are developed for different arrangement of uniform 
loads. Four conditions of loading as described on p. 77 are used. 

(a) All spans loaded. 
Condition for dead load. 

M2 = - (d + e - f)wl2.(286) 

M3 = — (- di + ei + fi)wl2,.(287) 

where the constants d, e, f and di, ei, fi may be taken from tables on 
pp. 82 and 83 for proper values of mi and m2. 

(b) First and second spans loaded. 
Condition for maximum negative bending moment at second sup¬ 

port M2. 
M2 =~ (d + e)wl2,.(288) 

Mz = - (- di + ei)wl2, .(289) 

where d, e and di, ei are constants from tables on pp. 82 and 83 for 

proper mi and m2. 
(61) Second and third spans loaded. 



82 CONTINUOUS BEAMS 

Three Unequal Spans. Arrangement h} mil, m%l 

Constants d, e, f 

in formulas (278) to (295), pp. 80 to 84 

Constant d 

Values of m2 

0.1149 
0 1071 
0 1005 
0 0947 
0 0895 
0 0849 
0 0808 
0.0770 
0 0736 
0 0705 

0.1145 
0 1063 
0 0996 
0.0937 
0 0886 
0 0840 
0 0799 
0 0762 
0 0728 
0 0697 

0.1143 
0.1059 
0 0990 
0 0931 
0 0879 
0 0833 
0 0792 
0 0755 
0 0722 
0 0691 

0 1140 0. 
0.1056 0. 
0 0986 0 
0.0926 0 
0 0873 0 
0 0827 0 
0 0786 0 
0 0750 0 
0 0718 0. 
0 0689 0 

) 0.1140 
l 0 1052 
50.0980 
50.0919 
) 0 08(36 
5 0 0819 
50 0778 
>0 0742 
5 0 0708 
50.0678 

0 1139 
0.1051 
0 0978 
0 0917 
0 0863 
0 0816 
0 0775 
0 0738 
0 0704 
0 0674 

0.1139 
0.1050 
0.0976 
0 0915 
0 0861 
0 0814 
0 0772 
0 0735 
0 0701 
0.0671 

0.11390. 
0.1049 0 
0.0975 0. 
0 0913 0 
0 0859 0 
0.0812 0. 
0 0770 0. 
0.0732 0. 
0.0699 0. 
0.0669 0. 

Constant e 

Values of ?7i2 

0.0001 0. 
0.0006 0. 
0 0017 0. 
0.0036 0. 
0 0065 0. 
0 0105 0. 
0.0150 0 
0.0220 0 
0 0295 0 
0 0385 0 

L0 0001 
JO 0007 
>0 0020 
)0 0042 
L0 0076 
5 0 0120 
T0 0177 
10 0246 
[ 0 0329 
' 0 0426 

0 00010 
0 0007 0 
0 00210 
0 0044 0 
0 0079 0 
0 0125 0 
0 0184 0. 
0 0253 0 
0 0342 0 
0.0441 0. 

L0 0001 
r0.0007 
5 0 0022 
r0 0048 
l 0 0085 
50 0136 
J0 0199 
5 0 0277 
) 0 0369 
J0.0476 

0 0001 
0 0007 
0 0023 
0 0049 
0.0087 
0.0138 
0 0203 
0 0282 
0 0376 
0 0485 

0 00010 
0 0008 0 
0 0023 0 
0.0049 0 
0 0088 0 
0 0140 0 
0 0206 0 
0 0289 0 
0 0383 0 
0 0493 0 

Constant / 

Values of m2 

0.000030. 
0.000030. 
0.000040. 
0.000040. 
0.000040. 
0.000040. 
0.000030. 
0.000030. 
0.000030. 
0.000030. 

1.0012 0. 
1.00190. 
1.0023 0. 
1.0026 0. 
1.0027 0. 
1.0028 0. 
1.0028 0. 
1.0029 0. 
1.0029 0. 
1.0029 0. 

1.0042 0 
1 0069 0 
1.0089 0. 
1.0102 0. 
1.01120. 
1.01180. 
1.01120. 
1.01260. 
1.01270. 
1.01280. 



THREE UNEQUAL SPANS. ALL SPANS DIFFERENT. FREE ENDS 83 

Three Unequal Spans. Arrangement mi/, l, m2l 

Constants ei, fi 

in formula (278) to (296) p. 80 to 84 

Constant di 

Constant Ci 

Values of m2 

0.1 0.2 0 3 0.4 0 5 0 G 0.7 0.8 0 0 1.0 

0.1 0.0006 0.0004 0 0003 0 0002 0.0002 0 0002 0 0001 0 0001 0.0001 0.0001 
0 2 0 0031 0 0023 0 0019 0.0015 0 0013 0 0011 0.0010 0.0009 0.0008 0 0008 
0 3 0 0078 0 0062 0 0051 0.0044 0 0038 0.0034 0 0030 0.0028 0.0025 0.0023 
0 4 0.0145 0 0120 0 0102 0.0089 0 0079 0.0071 0.0064 0.0058 0.0054 0.0050 
0.5 0.0233 0 0198 0 0172 0 01510 0136 0 0123 0.0112 0.0103 0.0096 0.0089 
0.6 0 03380.02930 0258 0 0231 0.0209 0.0190 0 0175 0.0162 0.0148 0.0141 
0 7 0 0467 0 0411 0 0366 0 0331 0 0301 0 0227 0 0256 0.0238 0 0222 0 0209 
0 8 0 0614 0 0546 0 0489 0 0448 0 0411 0.0381 0.0353 0 0329 0 0309 0.0291 
0 9 0.0778 0.0700 0 0636 0 0584 0 0538 0 0500 0.0466 0 0436 0 0411 0 0388 
1 0 0.0961 0 0872 0 0798 0.0735 0.0682 0 0636 0.0595 0 0560 0.0528 0.0500 

Constants ft 

Values of rn2 

0 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

0.1 0.0006 0 0033 0.0085 0.0161 0.0261 0 0387 0.0537 0.0713 0.0912 0.1139 
0.2 0 0004 0.0025 0.0069 0 0135 0.0226 0.0341 0 0481 0.0645 0.0834 0.1049 
0.3 0.0003 0.0021 0.0058 0.0117 0 0200 0.0306 0.0436 0.0582 0 0770 0.0974 
0.4 0.0003 0.0017 0.0050 0.0104 0.0179 0 0278 0.0400 0.0533 0.0716 0.0911 
0.5 0 0002 0 0015 0.0044 0.0093 0.0163 0.0255 0.0370 0.0492 0.0670 0.0857 
0.6 0.0002 0 0013 0 0040 0.0085 0.0150 0.0239 0.0345 0.0457 0.0631 0.0810 
0.7 0.0002 0.0012 0 00360.0078 0 0138 0.0220 0 0323 0.0426 0.0596 0.0768 
0.8 0.0001 0.00110 0033 0.0072 0 0129 0.0206 0.0304 0 0400 0.0561 0.0730 
0.9 0.0001 0.0010 0.0031 0.0067 0.0121 0.0194 0.0287 0.0376 0.0538 0.0698 
1.0 0.00010.0009 0.0029 0 0063 0.0114 0.0183 0.0272 0.0355 0.0513 0.0667 
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Condition for maximum negative bending moment at third sup¬ 
port ilf3. 

M2 =-(e-f)wl2,.(290) 

Ms =- (ci+/i)u>Z2,.(291) 

where e, f and c\, f\ are constants from tables on pp. 82 and 83 for 
proper mi and m2. 

(c) First and third spans loaded. 
Condition for maximum positive bending moment in first and third 

spans. 
M2 = - (d - f)wl2,.(292) 

Ms = — (— dx +fi )wP, .(293) 

where d, f and di, fi are constants from tables on pp. 82 and 83 for 
proper mi and m2. 

(d) Second span loaded. 
Condition for maximum positive bonding moment in second span. 

M2 = — eiel2,.(294) 

Ms = - envl2,.(295) 

where e and C\ are constants from tables on pp. 82 and 83, for proper 
mi and m2. 

Maximum Positive Bending Moments.—Having determined the 
negative bending moment, the maximum positive bending moment is 
found by means of table on p. 176, in the manner described on p. 22. 

Maximum Shears.—Knowing the negative bending moments, the 
maximum end shears are determined by means of table on p. 177, 

as described on p. 23. 

Bending Moment Diagrams for Case 1 and 2 

After the bending moments at the support M2 and Ms are com¬ 
puted for any particular type of loading, the bending moment diagram 
may be easily drawn in the following manner. 

Draw the bending moment diagrams for each loaded span, consider¬ 
ing it as simply supported. The diagrams then are parabolas for which 
the ordinates at the center are \wl2, \w(m\l)2 and \w(m2l)2, respectively. 
All parabolas to be drawn to same scale. 

Plot in a separate figure at the supports 2 and 3 the computed bending 
moments M2 and Ms, using same scale as before. The values should be 
plotted above the axis if negative and below the axis if positive. 
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Connect the points obtained by plotting M2 and with the 
supports 1 and 3 and with each other. Starting from the lines thus 
obtained transfer to this figure the ordinates of the parabolas. Part 
of the diagrams thus obtained will be above the axis and will denote 
negative bending moments. The balance will be below the axis and 
will signify positive bending moments. 

FOUR SPANS. FREE ENDS. 

A beam consisting of four spans with free ends has three statically 
indeterminate values, namely, the bending moments at the interior 
supports M2) M3 and Af4. There are no bending moments at the free 
supports, therefore Mi = M5 = 0. 

The static indeterminate values may be found from the following 
three equations which were derived from the three-moment equation. 

^M2(li‘^~l2)~^~M2l2==—Maixdx-\~Y^ Ma2Q'2—#)cte|, 

M2h+2Ma(l2+l3)+M4l3=: — G\jJa ^.2xdx+j-j' M,3(l3—x)dx], 

M2l2^2M4(ls-\-l4) = — G Ur M,3M*i(.k—x)dx 

To simplify the work substitute 

6 Cll 
Qi = rJ M.ixdx, 

0
^
2

 

II 

rh 
M, 2 xdx. 

0 

rh 
I M92 (I2 — x)dxf 
*0 

rh 
I Maxdx, 
0 

rUM.3(l3 - x)dx, 
0 

C'*-6J 

rU 
| M^ (U — x)dx. 
0 

These equations solved for M%, M3 and M± give: 
General Equations for Negative Bending Moments, 

[l23~4{l2+h)(h+k)](Ql+Q,2)+‘2'l2(l3+l4:)(Q2+Q'3)~l2h(Q3+Qr4) 

2~ 2miH2)(l2+i3)(l3+h)-hHh+h)-l22(l3+k)] 
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M feCfe + fcQCQl + Q^) — 2(?i + fe)(^3 + ^4)(Q2 + Q/3)+?3(?l+?2)(Q3 + Q/4) 

[Mh~\~l2)(h~{-l3)(l3~bh) ”"fe2(^i+fe) —l22(h~bU)] 

-Z2Z3(Qi4-Q^)+2Z3(Zi+/2)(Q2+Q^+^2-4(Z1+Z2)(Z2+Z3)](03+Q/4) 

2[4(Zi+Z2) (Z2+Z3) (Z3+h) — lz2(li+Z2) — Z22(Z3+Z4) 

Value of Constants for Uniform Loading.—Assume that the loading 
in the four spans is uniformly distributed but the intensity of the 
loading in each span is different than in the others, so that 

101 = uniformly distributed load first span, per lin. ft.; 
W2 = uniformly distributed load second span, per lin. ft.; 
wz = uniformly distributed load third span, per lin. ft.; 
u?4 = uniformly distributed load fourth span, per lin. ft. 

11 mm i rni nnkm jmnjjri min ur 
-If--H — Is-- 

5A 

-L-> 

(a) Uniformly Distributed Loading 

p‘\ q r* 
p; | p; 

\p’ lp> \ 
K K 

4 l I <—aj-->i 

■<-fly—-e- 

U- -1T~ 

> 

—> 

■<—(£->- 

n 

1 
L-*| 

L * 

~at 

-<— 

> uJ 
.-‘-a;-. 
U-a;- 
k—Ij 

I a 
1 

->- 

(b) Concentrated Loads 

Fig. 49—Four Spans, Free Ends. (See p. 86.) 

Then the values of constants is 
Constants for Uniformly Distributed Loading, 

Qi = \w\lC for first span,.(296) 

Q2 = Q!2 = \v02h3 for second span, .... (297) 

Qz = Q'z = \wzh3 for third span, .... (298) 

Qt = Q'4 = 4104^43 for fourth span. . . . (299) 

Values of Constants for Concentrated Loads, 

Let P'i, Pn 1, P,n\ = concentrated loads in first span spaced a\} 
a"i, a"'i from left support; 

P'2, P"2, P'"2 = concentrated loads in second span spaced 
a!2) a"2, a!"2 from left support; 
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Then 

Pf3, P"3, Pf"3 = concentrated loads in third span spaced 
a'3, a"3, a'"3 from left support; 

P;4, PffPnt4 = concentrated loads in fourth span spaced 
a'i, a"4, a'"4 from left support. 

In simpler form this is written as follows: 
Constants for Concentrated Loads, 

S
\
s

 
c* r-o

 

II 

0> 1 — )P1 = li22PiCi for first span, (300) 

&=( 1 — ) P2 = h^PiCi for second span, (301) 

«• - 
1 — (j^j ^/J3 = h2~LPzCi for third span, (302) 

«* - 
1 — 4 ~ li2^>PiC\ for fourth span, (303) 

also, Q'2 = l22S^(l —p) ~ p) ^2 = ^^P^2 f°r second span, (304) 

1 — {2 — 3 = WZPzC? for third span, (305) 

QU=h2^(i . — (^2—^jPi = h2HPiC2 for fourth span. (306) 

a 
The values of Ci and C2 for different ratios - may be taken from Diagram 

1, p. 19. 

The process is then as follows. Find for each load in each span 

the values of j by dividing its distance from the left support by the 

proper span length. For this value find from Diagram 1 on p. 19 the 
value of Ci or C2. Multiply each load by its corresponding constant 
and add the results in each span. 
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When the loads are equal, then 2PC1 may be written as PSCi. In 
such case the values of Ci or C2 for all loads in a span are added and 
the sum multiplied by P. 

The value of Qif Q2) Qs, Q4, etc., so obtained are substituted in 
Formulas for M2 to M4 and the negative bending moments are obtained. 

Maximum Positive Bending Moments.—The Formulas for M2 to M±. 

give bending moments for negative bending moments at the support. 
After the negative bending moments are computed the positive 

bending moments for concentrated loads arc obtained as shown in 
Fig. 9, p. 14, and explained on p. 21. 

For uniform loading the maximum positive bending moments for 
known negative! bending moments may be obtained from table on 
p. 177, in the manner described on p. 22. 

Four Equal Spans. Free Ends 

For four equal spans h = I2 = h = h = l. This substituted in 
Formulas for M2 to M\ changes the general equations to 

General Equations for Equal Spans Any Type of Loading. 
Bending Moments at Supports, 

M2 

M3 

- 15Qi - 15Q'2 + 4Q2 + 4Q'z - Qs - QU 

561 

2Qi -f- 2Q'2 8Q2 8Q's ~h 2Q3 + 2Q;4 

2 81 

M± 
~~ Qi ~~ Q'2 ~4~ 4Q2 + 4Qr3 — 15Qa — 15Qr4 

56f 

(307) 

(308) 

(309) 

For values of constants Qx to Q4 and Q'2 to Q'4 see Formulas (296) to 
(306), pp. 86 and 87. They depend upon the loading of the spans. 

General Equation for Symmetrical Loading.—When the loading of 
each span is symmetrical about the center the general equation for 
bending moments at supports may be simplified because then 

Q2 = Q'2, Qs = Qf3, Q4 = Q'4. 

Substitute this in Equations (307) to (309). 
Bending Moments at Supports for Equal Spans and Symmetrical 

Loading, 

M2 
- 15Qi - llQg + 30a - fo 

56/ ’ 
. . (310) 

Mz 
2Qi — 6Q2 — 8Q3 + 2Q4 

28/ 
1 (311) 
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Mt = 

— Qi + 3Q2 — IIQ3 — 15Q4 
~~ 5M 

(312) 

Foi values of constants Qi to Qi see Formulas (300) to (303). 

Uniformly Distributed Loads of Varying Intensities.—If the uni¬ 

formly distributed loadings of various spans vary as to intensity, so that 

Wi = uniformly distributed loading in first span; 

w2 = uniformly distributed loading in second spang¬ 

les = uniformly distributed loading in third span; 

wz = uniformly distributed loading in fourth span; 

the formulas for bending moments become 

Bending Moments at Supports for Equal Spans, 

15wi + 11 w2 — Sw3 + W4 79 
il/2 =-12. 

224 

— Wl + 3W2 + Zw3 ~ W4 

">-50-' • 

«>1 — 3 W2 + llW3 + 15W4M 
Mt-—-P 

. (313) 

. (314) 

. (315) 

Uniformly Distributed Loading of Uniform Intensities.—In the table 
below are given bending moments and end shears for cases where the 
uniformly distributed loading of all loaded spans is of the same intensity. 

The bending moments at the supports for each condition of loading 
were obtained from Equations (313) to (315), p. 89, by substituting 
w for the loading of all loaded spans and zero for the loading of all 
unloaded spans. Thus if first and third spans, only, are loaded 

wi = w3 = w and W2 = = 0. 
Following conditions of loading are considered in the table. 
(a) All spans loaded, wi = w2 — w3 = = w. 
Condition for dead load (Fig. 50 (a)). 
(b) First, second and fourth spans loaded. w\ = W2 = = w, 

w3 = 0. 
Condition for maximum negative bending moment at second support 

M2 (Fig. 50 (6)). 
(c) Second and third spans loaded. w2 = wz = w, w\ = = 0. 
Condition for maximum negative bending moment at third support 

M3 (Fig. 50 (c)). 
(d) First and third spans loaded, wi = w3 = w2 = w* = 0. 
Condition for maximum positive bending moment in first and third 

span. (Fig. 50 (d)). 
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Case (b) takes care also of the maximum bonding moment at the 
fourth support. This is equal to the maximum bending moment at 
the second support as determined in case (6). It is obtained when the 
first, third and fourth spans are loaded. 

Case (d) takes care also of maximum positive bending moments in 
second and fourth spans. The maximum positive bending moment in 
the fourth span is the same as the maximum positive bending moment 
in the first span, while the maximum positive bending moment in the 
second span is equal to the maximum in the third span. These maxi- 
mums are obtained by loading the second and fourth spans. 

Combining Uniform Dead Load with Uniform Live Load.—Bending 
moments and shears for a combination of dead load and live load are 
obtained by computing separately the bending moments and shears 
for the dead load and for the live load and adding the result. For the 
dead load the condition (a) where all spans are loaded should be used. 
For the live load the most unfavorable positions of the load for each 
value should be used. 

To facilitate the work, the table below is given where the maxi¬ 
mum bending moments and shears are given for various combinations 
of the dead and live load. 

To use this table find the intensity of the dead load Wi and of the 
live load W2. Add these values and get w = wi + w<2. Find the ratio 

w i 
of the dead load to the total load —. Locate this value in the first 

w 

column. The bending moments and shears corresponding to this 
value are maximum values for this combination of dead and live load. 

It should be noted that the value w in the table is the sum of the 
dead plus live load. 

Uniform Loading, Four Equal Spans. Free Ends 

Maximum Values for Combined Dead and Live Loads. (See p. 92.) 

Dead 
Load 

Live 
Load 

End Shears Negative Bending 
Moment 

Maximum 
Positive Bending 

Moment 

Vi and 

V6 

Va, and 

Vv 

Vit and 
Vn 

Vzr and 
Vn 

M2 and 

m4 
Mz 

End 
Spans 

Center 
Spans 

0.2to 0.8to 0.435io/ 0.617 to/ 0.690io/ 0.550wl -O.II810/2 -O.IOO10/2 0.095io/2 0.071io/2 

0.3to 0.7to OAZQwl 0.616to/ 0.583io/ 0.540to/ -0.117io/2 -0.096io/2 0.092io/2 0.067io/2 
0.4io 0.6to 0.425io/ 0.615ivl 0.676ivl 0.529wl - 0.115to/2 - 0.093io/2 0.090io/2 0.062to/2 

0.6to 0.5to 0.419io/ 0.613to/ 0.569io/ 0.518io/ -0.114io/2 - 0.089io/2 0.08810Z2 0.058io/2 
0.6io 0.4to 0.414to/ 0.612io2 0.563io/ 0.507io/ -0.1131O/2 -0.085io/2 O.O8610Z2 0.053io/2 
0.7to 0.3to 0.409io/ 0.611tvl 0.556tvl 0.496to/ -O.lllto/2 - 0.082io/2 0.084io/2 0.049io/a 

to “ Uniform unit dead plus live load. I *= Length of span. 
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Four Equal Spans. Concentrated Loads 

Formulas are given below for end shears and bending moment 
produced by single concentrated loads P placed at any distance from 
left support a. 

These formulas can be used for any number of loads on the span 
adding the results for all loads. 

Concentrated Load in First Span at Distance a from Left Support. 
(See Fig. 51, p. 93.) 

Fig. 51.—Concentrated Load in First Span. (See p. 93.) 

End Shears, 

v'-(1~t)p+t■ <3I6> 

V2l = P - vu (317) V2r = — ~ — = (Ki + K2)P, (318) 

F3, =- V2r, • (319) F3r = ~ J — = — (/v2+A'a)P, (320) 

V4l = - Far, . (321) Vir = K-sP,. (322) F5 = -F4r. (323) 

Negative Bending Moments, 

sr[*^.<324) 
itf3 - ~[l - (-)' PI = K2Pl,.(325) 

Jf*-^r[1-(r)2]p‘-K5Pl.<*» 
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Bending Moment at Any Point: 

First span, 

x 
Mx = V\x = K4-PI, for x smaller than a..(327) 

L 

Mx = V\x — P(x — a), for x larger than a. . # . . . (328) 

Second span, 

Mx = M2 + ———x = A'i + (A'i + A2)^PL . (329) 

Third span, 

Mx = M3 + Mi ~ —x = [a2 - (K2 - K3)j^PI. . (330) 

Fourth span, 

Mx = M4 — ~x = — A3(l - .(331) 

Maximum Positive Bending Moment, 

Mm&x = 7ia.(332) 

Concentrated Load P in Second Span. (See Fig. 52, p. 94.) 

Fia. 62.—Concentrated Load P in Second Span. {See p. 94.) 

End Shears, 

Vi = Y=~ KiP • • • (333) V2t=-V1. . . (334) 
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V2r = (l - jjp + —- ~ — = K7P.(335) 

Vz, = P - V2r = (1 - K7)P.(33G) Vzi = P - V2r = (1 - A'7)P.(33G) 

Mi-Mz 5 
K3r = - -AGP 

L 4 
. (337) 

/-"■s 
00 
CO 
CO 

£
 1 II ^•4 

Vir=-~ = --KzP. 
1 4 

. (339) F5 = F4r. . . • (340) 

Negative Bending Moments, 

:sK1-?)(*-!) -4 - (jf)]n =~K5Pl. (341) 

*—M4" (?)*)-K: '-r)(2 ! - jjjri = — KqPI. (342) 

Mi = {KqPI.(343) 

Bending Moment at Any Point: 

First span, 

Mx = Vyx = — KzjPl.(344) 
L 

Second span, 

Mx = M2 + V2— KsJPl, for x smaller than a, (345) 

Mx = [(1 — K7)^1 - jj - XojpZ, for x larger than a. . (346) 

Third span, 

M. = M3 + F3r* = (—1 + .(347) 

Fourth span, 

Mx = ^(1 - x) = ~(l - f)K*pl.(348) 
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Beam Loaded by Equal Symmetrical Load Groups 

In the table below are given bending moments at supports for beams 
consisting of four equal spans and loaded by groups of concentrated 
loads, each group arranged symmetrically in each span about its center. 
The load groups in each span are equal, but the loading is not fixed 
so that it may or may not be applied in any span at any particular time. 

The values in the table are based on the general formulas (310) to 
(312), p. 88, for symmetrical loading. The values of constants Qi, 
Q2, Q3, and Q4 in all loaded spans were taken equal to Q, and in unloaded 
spans were made equal to zero. 

For example, the loading giving maximum negative bending moment 
at the second support consists of the first, second and fourth spans 
loaded. Therefore 

Qi = Q2 = Q4 = Q and Qa = 0. 

Four conditions of loading are used: 

(а) All spans loaded, Qi = Q2 = Qs = Q4 = Q• 
(б) First, second and fourth spans loaded, Qi = Q2 = Q4 = Q} 

Qs=0. 
(c) Second and third spans loaded, Qi = Q4 = 0, Q2 = Q3 = Q. 
(<d) First and third spans loaded, Qi = Q3 = Q, Q2 = Q* = 0. 

For these loadings the values of negative bending moments are given 
in the table below. 

Negative Bending Moments for Symmetrical Concentrated Loads. 

Four Equal Spans, Free Ends 

Condition Spans Loaded M2 Mi Mi 

a 1,2,3,4 —0.429^(2 
l 

—0.286fQ -0.429^Q 
l 

b 1,2, 4 -0.482^2 —0.071^(2 -0.232^Q 

c - 2. 3, - -0.143^2 —0.429hj 
l -0.143^2 l 

d 1,-3,- -0.214 -0.143^(2 -0.214/q 
V 

where Q - - (j)' P = I'ZPCi. 

Values of Ci may be taken from Diagram 1, p. 19. 
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Special Arrangement of Symmetrical Concentrated Loads.—Follow¬ 
ing arrangement of concentrated loads will be considered: 

1. Loads P at center of spans. 
2. Two equal loads P at third points. 
3. Three equal loads P at quarter points. 
4. Four equal loads P at fifth points. 

The bending moment can be used for continuous girders which 
carry cross beams so that the load transferred by the beams to the 
girders is concentrated. 

In each case the four types of loading are considered which give 
maximum values for negative and positive bending moments, respec¬ 
tively. 

For dead load the bending moments for condition (a) should 
be used. 

For live load use the maximum values of bending moment for the 
proper condition of loading. Thus for negative bending moment at 
the second support use the condition (6) and at the third support the 
condition (c). For positive bending moment for all spans use the 
maximum values obtained from condition (d). 

The formulas are obtained from general equations in table on 
p. 96 by substituting the proper values for constant Q. 

Combining Concentrated Dead Load with Concentrated Live Load. 
—The bending moments and shears for concentrated dead and live 
load are combined in the same manner as explained on p. 92 in con¬ 
nection with the uniform loading. 

The table on p. 106 facilitates the work of combining the maxi¬ 
mum end shears and bending moments. After the sum of dead load 
and live load is found, the ratio of dead load to total load is com¬ 
puted for which the maximum end shears and bending moments may 
be taken directly from the table. 
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FOUR SPANS. FREE ENDS 

(d) Spans 1 and S Loaded 

Fia. 54.—Four Equal Spans, Free Ends. Two Loads P at Third Points. 
(See p. 100.) 
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Fig. 55.—Four Equal Spans, Free Ends. Three Loads P at Quarter Points. 
(See p. 102.) 
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FOUR SPANS. FREE ENDS I 

c (d) Spans 1 and 3 Loaded 

Fig. 56.—Four Loads P at Fifth Points, Four Equal Spans. (See p. 103.) 
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CONTINUOUS BEAMS WITH FIXED ENDS 

Continuous beams with fixed ends are seldom found in practice, 
therefore, only typical cases will be given to demonstrate the effect 
of fixity at the supports. The same assumptions were made as in 
connection with beams with free ends (see p. 16). 

Ends of continuous beams may be considered as fixed when they are 
rigidly connected with supports of such rigidity, that after deflection 
the tangent to the deflection curve at the fixed ends coincides with the 
original axis of the beam. 

Due to fixity of the ends, considerable bending moments develop in 
the beam at the end supports. These affect the bending moments 
in all other spans. 

Sometimes the ends of the beam are only partially fixed. In such 
case the bending moments at the ends in the beam will be equal to a 
fraction of the bending moments for fixed ends. The bending moments 
in other spans will be somewhere between those for free ends and those 
for fixed ends. 

BEAM OF TWO SPANS WITH FIXED ENDS 

Beam consisting of two spans with fixed ends has three statically 
indeterminate values, namely, the bending moments at the two fixed 
ends and at the interior support. Following equations may be devel¬ 
oped from the three-moment equation. The method of application 
of the equation to beams with fixed ends is discussed on p. 20. 

Fundamental Equations, (see Fig. 57, p. 108), 

2M ih + M2l\ —-Q' 1..(349) 

Mih + 2M2{h + h) + M3Z2 = — (Qi + Qf 2).(350) 

M2I2 T- 2M3Z2 = — Q2,.(351) 

where 
6 6 A 

Qi = 7 M.xdx, Q’i = r I Mai(h - x)dx. 
hj 0 LUo 

6 r** 6 
Q2 = - I Maxdx, Q'2 = - ( M92(l2 — x)dx. 

hjo hjo 

These equations solved for Mi, M2 and M3 give: 

General Equation for Bending Moments at Supports, (see Fig. 57, p. 108), 

Mi-1-(m2 + jQ'^j.(352) 
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M2=~ 
2Qi — Qj + 2Q'2 — Q2 

3(/i + £2) 
(353) 

M3 =-^2 + ^2).(354) 

For uniformly distributed loads substitute following values: 

Qi = Q'i = Q2 = Q'2 = irf. 

Therefore the formulas become: 

Bending Moments at Supports for Uniform Load of Different Intensities, 

M\ = — ^M2 — £wiZi2.(355) 

M2 12(Zj + /a) ‘ 

M3 = — 2M2 — yWgh?. 

(356) 

(357) 

Two Equal Spans. Fixed Ends 

For equal spans h = I2 = l and the formulas change to 

t. 

b 

T, Jr 1 | 'I w " | I .T 
S3 

«r 

•nrnrnT.p 

(a) Uniformly Distributed Loading 

M 
-ir—* 

\p< 

-a\--3 

p; \p: 
$ 
n 

-k 

°» Ip,' 
'—' 1 

1 1 

-f#- 

K 

(6) Concentrated Loads 

Fia. 67.—Two Unequal Spans, Fixed Ends. (£ee p. 107.) 

Bending Moments at Supports. Two Equal Spans with Fixed Ends, 

Mx-^2 + ^').(358) 

2Qi — Q\ + 2Q'2 — Qz 
Mz=- 

Ms 

6Zi 

+r4 

(359) 

(360) 
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Uniformly Distributed Loading of Different Intensities. 

Bending Moments at Supports, 

Mi = - ’M2 - \wiP.(361) 

W\ + w2 
m2=-—2T-r 

M3 = - \M2 - {Wil2. (363) 

Uniformly Distributed Loading. -Assume that the intensity of 
loading in all loaded spans is the same and is equal to w and that in the 
unloaded spans it is zero. 

Two types of loading are considered: 
(a) All spans loaded for which the bending moments at center 

support is maximum. 
(b) One span loaded, the other not loaded, for which the positive 

bending moment is a maximum, also the bending moments at fixed 
ends are maximum and minimum, respectively. 

(a) All Spans Loaded, w\ = w2 = w. (See Fig. 58, p. 109.) 

11^ fxuilipx 
-MO.ff/ff-*- -*\0.2Ul>r0 211lr*~ ^^ 

Fig. 58.—Two Equal Spans, Fixed Ends. Both Spans Loaded. {See p. 109.) 

End Shears, 
Vi = V2l = v2r = Fs = \wl.(364) 

Bending Moments at Supports, 

Mi = M2 — M3 = — hwl2.(365) 

Maximum Positive Bending Moment: 

For both spans, 

Mma = -hwl2.(366) 

Paint of Maximum Positive Bending Moment, 

xi = ^.(367) 



110 CONTINUOUS BEAMS 

(6) One Span Loaded, wi = w, w2 = 0. (See Fig. 59, p. 110.) 

Fio. 59.—Two Spans, Fixed Ends. Left Span Loaded. (See p. 110.) 

End Shears, 

Vi = &wl. . . . (368) V2, = -&wl.(369) 

V2r = &wl. . . . (370) V =-&wl.(371) 

Bending Moments at Supports, 

Mi = - *wl2.(372) 

M2 = - J^vl2.(373) 

Mz = + tswI2.(374) 

Maximum Positive Bending Moment: 

Left span, 
= rV^wP.(375) 

Points of Maximum Positive Bending Moment, 

= tV.(376) 

THREE SPANS WITH FIXED ENDS 

Continuous beam with fixed ends consisting of three spans has four 
statically indeterminate values, namely, the bending moments at the 
two fixed ends and at the two intermediate supports. The four equa¬ 
tions below, obtained from the three-moment equation, are sufficient 
to determine the four unknown values. See p. 20 for method of 
applying the equation to beams with fixed ends. 

Fundamental Equations, 

2M1ll+M2l1=-Q'1,.(377) 

Mxli + 2M2(h + l2) + Mzl2 = — (Qi + Q'2). . . (378) 
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M2I2 + 2M2(l2 + £3) + M4I3 = — (Q2 + Q's)» • . (379) 

where 

Qi 

Msh + 2M4£3 = ~ Q3,.(380) 

0 C1' 6 r1' 
= M,ixdx. Q 

6 f ** 6 /^* 
O2 = — I Ma2xdx. Qf2 = 7 I M,2(£2 — x)dx, 

kjo £2^0 

6 rZj 

G A 
2'i = “ I Ma(£i - x)dp. 

6 r** 

O3 
6 rli 6 cl* 

= 7 I Maxdx. Q 3 = 7- I ^,3 (£3 — *)dx. 
^Jo Jo 

The values of Q and Qf are developed on pp. 19 and 20. They 
are in general: 

For uniform loading, 

Q = Q' = >£3. 

For concentrated load Pat a distance a from left support, 

«- f1 - @]pp - c‘pp 
and 

For a number of concentrated loads, 

«- 4 - ©1p!2 -2c,pp 
and 

«■ - - 7) (a - l)pp - sc“pp 

The values of C1 and C2 may be taken from Diagram 1, p. 19. 

The above equations solved for M1, M2) and Af4 give: 

Bending Moments at Supports. General Formulas (see Fig. 60), 

Mi • (381) 



112 CONTINUOUS BEAMS 

m2 =- 
(4k + 3fe)(2Qi - Q\ + 2Q'2) - 2h(2Q2 - Q3 + 2Qk) 

(3k + 4k) (4k 4~ 3k) — 4Z22 
. (382) 

M3- 
(3k + 4k)(2Qa - Os + 2Q'a) - 2k(2Q, - Q'i + 2Qk) 

(3k + 4k) (4k + 3k) — 4k2 
. (383) 

Mi = 

1 JAA3 4|p 
*■-i,— -*h--k---k-- 
^ (a) Uniformly Distributed Loading . *♦ 

1 g IV 
l’«l I ! * 1 I [ 
p._„a;—J L-«J-J U-aJ-->] 

p-it->K--->r*—--is- 
(b) Concentrated Loads 

Fig. 60.—Three Spans, Fixed Ends. (See p. 111.) 

Bending Moments at Supports. Uniform Loading of Different 
Intensities (see Fig. 60), 

Mi— — \M2 - |Wlk2.(385) 

M (4k + 3k)(toik8 + 2«)2k3) - 2k(2w2W + wak3) 

2 4[(3k + 4k) (4k + 3k) - 4k2] ‘‘ ' ‘ (386) 

M3 = - 
(3k "I- 4k)(2»2k3 H- u)2l33) — 2l2(wili3 *f* 2w2l23) 

. (387) 
4[(3k + 4k)(4k + 3k) - 4k2] ’ ' 

Mi =- \MZ - |u>3k2.(388) 

THREE EQUAL SPANS. FIXED ENDS 

For equal spans k = k = k = k Then 

General Formulas for Equal Spans. 

Bending Moments at Supports. General Formulas, 

Mi — \M2 - |Qk. . (389) 
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M2 
7(2Qi — Q\ -f- 2Q'2) — • 2(2Q2 ~ Q3 + 2Q',3) 

— (390) 

M3=- 
7(2Q2 - (h + 2ffg) - 2(2Qi - <7i + 2Q'2) 

46* 

M4=- hMt-yfh. 

(391) 

(392) 

Uniformly Distributed Loading. Intensities Different in Each Span.— 
For uniform loading of different intensities and equal spans the 

Formulas (385) to (388), p. 112, change to 

Bending Moments at Supports. Uniform Loading, 

M1 - — \M2 - Iwil2 .(393) 

7(wi + 2m>2) - 2(2w2 + w3) 7wi + 10w2 - 2w3,., 

180 180 

M3 
7w3 + 10w2 — 2wi„ 
—-r. 

180 
(395) 

Ma =- \M3 - lw3l2.(396) 

Uniformly Distributed Loading of Equal Intensities.—Assume that 
the intensity of the uniformly distributed load is the same in all loaded 
spans and is zero in unloaded spans. 

Following conditions of loading are considered: 
(a) All spans loaded, wi = w3 — w3 = w. Condition for dead 

load (Fig. 61 (a)). 
(b) First and second span loaded, wi = w» = w and w3 = 0. 

Condition for maximum negative bending moment at second support 

(Fig. 61 (b)). 
(c) First and third spans loaded. W\ = w3 = w and w2 = 0. 

Condition for maximum positive bending moment in end spans and 
maximum negative bending moment at fixed end (Fig. 61 (c)). 

(d) Second span loaded. w2 = w and wi = w3 = 0. Condition 
for maximum positive bending moment in middle span (Fig. 61 (d)). 

The bending moments and shears for these conditions are given in 
the table on p. 114 and shown in Fig. 61, p. 115. 
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Fig. 61.—Three Equal Spans, Fixed Ends. Uniformly Distributed Loadings. 
(See p. 113.) 
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Combining Dead Load with Live Load.—The bending moments 
and shears for a combination for dead load and live load may be obtained 
by computing separately the bending moments and shears for the dead 
load and adding to them the absolute maximum values for the live load. 

In table below are given maximum combined values for different 
ratios of the dead load to the total load. To use the table find the dead 
load and the total load. Find the ratio of dead load to the total load. 
The values from the table corresponding to this ratio give the maximum 
values for bending moments and shear. 

Three Equal Spans, Fixed Ends. Uniform Load 

Maximum Values for Combined Dead and Live Loads. (See p. 116.) 

Dead 
Load 

Live 
Load 

End Shears 
Negative Bending 

Moment 

i 

Maximum Positive 
Bending Moment 

Vi and 
Vi 

V2I and 
V,r 

Vzr and 
Vzi 

Mi and 
Mi 

M'i and 
Mz 

End 
Spans 

Center 
Spans 

0.2 to 0 810 0 560102 0.514 wl 0 540wl - O.IO61022 - O.O9110/2 0.05610/2 0 07210/2 
0.3w 0 7w 0 558t02 0.512 wl 0 535102 - 0.1031022 - 0 09110/2 0 05110/2 O.O69t0/2 

OAw O.610 0.550102 0 510102 0.530102 -0 IOO1022 - O.O9Oi0/2 0 05210/2 0 O65t0/2 

0.5 10 O.5t0 O.541i02 0 508102 0.525wl - 0.09710/2 - 0 08910/2 0 05010/2 0.06110/2 
O.0u> O.4t0 0 533i02 O.5O7t02 O.52Oi02 - 0 09410/2 - O.O8810!2 0.04910/* 0.05710/2 
0.7ti> O.3i0 0.525wl 0.505ivl 0.515102 - 0.09210/2 ~O.O87t0/2 1 0 04710/2 0.053102* 

10 = Uniformly distributed unit dead plus live load. 2 = Length of span. 

FOUR SPANS WITH FIXED ENDS 

Continuous beam with fixed ends consisting of four spans has five 
statically indeterminate values, namely, the bending moments at two 
fixed ends and at the three intermediate supports. 

The five equations below, obtained from the three-moment equation, 
are sufficient to determine the five unknown values. 

General Formulas (see Fig. 62, p. 117), 

Fundamental Equations, 

2M{li -f- M2I1 = 

Mill + 2M2(li + I2) -f* M3I2 = 

M2I2 + 2Ms(l2 + Z3) 4" -^4^3 = 

Mzk + 2Mt(k + h) + M5k = 

M4I4. + 2 M5I4 = 

Q'u • . . . . (397) 

0Qi + QU . . (398) 

(Q2 + Q'z), • . (399) 

0©8 + Q\), ■ . (400) 

Qi, . . . • (401) 
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where 
6 r*1 

Qi = 7 I M'lxdx, 
hjo 
6 Clx 

Q2 = j j Ma2xdx, 

6 P* 
O3 = 7 I Maxdx, 

0 

Q* Mtixdx, 

si * 

6 r1 
Q'i = ^ J M.,(* - *)dr, 

'2 = - I M.2(Z - x)dx, 

6 rl> 
'a = - j M*(!-x)dx, 

6 f*4 
4 = r MA(l - x)dx. 

UJo 

sf W« T1, 1-■ i l10*. ^ u>. i»i 
ms i mpnU 133 innnn n ip mnn 

-ir ->u. ir 

1 sf ' l^ar IP > ¥ 
llj 'tj 

<-—a\ —>1 Ur-_a 

1 1 
'.j 
-a; - J 
"ff— 

j “uj - 
1 J 

._»L--if—4-<—it-- 

4 

■—> 

Fig. 62.—Four Spans, Fixed Ends. (See p. 116.) 

The values of the integral as worked out on p. 19 are in general: 
For uniform loads, 

Q = Q' = \wP. 
For concentrated loads, 

<2 = ^1- (jj2 PI1 = CiPP and Q'= y(l - y)( 2- y)/>Z2 = CaPZ2. 

The above equations solved for Mi, M2, M3, M4 and M5 give the 
following formulas for negative bending moments. 

Bending Moments at Supports, General Formulas, 

My—W* ~ ^-Q'U (402) 

Mo— 

J —h2(2Qi — Q'i+2Q'2) + (4Z3+3i4) 1 
_ l[(Z2-bZ3)(2Qi“-Q/i+2Q/2)““Z2(Q2‘fQ/3)]4-Z2Z3(2Q3"~Q4+2Q/4) J 

2 — Z22(4Z3+3Z4) + (Z2+Z3) (3Zi +4Z2) (4^3+3Z4) ~ h2(3h +4 Z2) 

i 
(403) 

’ — Z2 (4Z3+3Z4) (2Qi—Q'i+2Q'2) + (3Zi+4Z2) (4Z3+3tt) 1 
= __,_(Qz+Q's) - Wh +4Z2) (2Q3 -<34+2Q,4) f 

iW3 "* _ J O/JT i 07 \ I /7 i 7 \/07 rTTTZn I 07 \ 7 9/07 i i) \1 * V*'"/ 2[ “ Z22(4Z3+3Z4)+(Z2+Z3) (3Zx+4Z2) (4Z3+3Z4)—Z32(3Zi+4?2)] 



118 CONTINUOUS BEAMS 

f hhi^Qi—Q'i+2Q'2)+(3Zi +4Z2) 1 
\[(h+h)(2Qa-Qi+2Q>i) -feCQa+Q's)!-h2(2Q^-Q4+2Q'4) J 

—Z22 (4^3+3k)+(l>+h) (3Zj+4/2) (4/3+3Z4)—h2(3h+4Z2) 

Af5=-JM4-^-Q4.(406) 

Since several expressions repeat in all the above equations, the 
formulas may be simplified by making following substitutions: 

-Si = 2Qi - Q\ + 2Q'a.(407) 

-S2 = Q2 + Q'3.(408) 

-S3 = 2Q3 - <2* + 2Q'4.(409) 
Then 

Mi-Wz-^rQ’i.(410) 

M2 =- 

M3 = - 

—Z32-Si + (4k+3h)[(h+h)Si - hS^l+lM 

—IriMi+'M.i) + (Z2+Z3) (3Zi+4Z2) (4Z3+3Z4) — h2(3li+4Z2) 

—Z2(4Z3+3Z4)-Si + (3Zi +4Z2) (4l.i+3U)S2 — h(3h +4Z2)-S3 . . 

2[—Z22(4Z3+3Z4)+Q2+I3) (3h +4/2) (4Z3+3/4) — Z32(31i +4Z2)] 

Mt = 

Ms = 

Z2Z3-Sl + (3Zl + 4Z2)[(Z2 + /3)-S3-Z3-S2]-Z22-S3 

—fc2 (4Z3+3Z4) + (h+h) (3Zi+4/2) (4Z3+3Z4)—la2(3h+4Z2) 

-^4--Q4. 

(413) 

(414) 

Values of Si, S2 and S3 for Uniform Loading.—When the loading is 
uniformly distributed but of different intensity in the different spans 
the values of Q and S are 

Qi = Q'i = {mh3, Q2 = Q'2 = \w2l23, 

Qz — Q’z = \wzlz3, Qi = Q'i = \wili3. 
Therefore 

51 = \(wiha + 2u)2?23).(415) 

52 = 4 (w2l23 + W3Z33).(416) 

53 = K2u>3l33 + Wih3).(417) 

FOUR EQUAL SPANS. FIXED ENDS 

For equal spans h = h = h = h = l- Therefore the denominator 
for M2 and Mi is 

P[- (4 + 3) + 2 X 7 X 7 - (3 + 4)] = (98 - 14)P = 84Z3. 
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The formulas for the bending moment at supports become 
Negative Bending Moment, Four Equal Spans, Fixed Ends, 

j 13*Sl — 7aS>2 + S3 /a 1 q\ 

M>=-Ml..(418) 

M3 = - — 7Sl +^2 ~ -'-■.(419) 

.(4 
4 84Z V 

Values of Si, S2 and S3 are given in Formulas (407) to (409), p. 118. 

Uniform Loading.—For uniformly distributed loads and equal spans 
the values of Si, S2 and £3 are 

51 = \l\wi + 2w2),  (421) 

52 = \P(W2 + «*),.(422) 

53 = \P(2w3 + w*),  (423) 

and the bending moments become 
Bending Moments at Supports. Uniform Load Varying Intensities, 

.(424) 
A O 

„ ?(13wi + 26w2 — 7w2 — 7ws + 2 w3 + w4)... 
MS----V 

_ 13wj + 19^2 — 5m + m,., . 
336 • ■ ( ) 

,, - Wt + 5u>2 + 5u>;{ - W4 
M3 =---12.(426) 

96 

,, Wi - 5w2 + 19^3 + 13^4,, 

M'--rsB-1 .(427) 
Mt--  (428) 

Z o 

Uniformly Distributed Loading.—Assume that the uniform loading 
is the same in all loaded spans and zero in unloaded spans. 

Four types of loading are considered: 
(а) All spans loaded. Wi = w2 = W3 = W4 = w. 
(б) First, second and fourth spans loaded. w\ = w2 = w* = w, 

W3 = 0. 

(c) Second and third spans loaded. W2 = u>3 = w, wi = = 0. 
(d) First and third spans loaded. w\ = W3 = w, w2 = w* = 0. 
The bending moments and shears for the above conditions are given 

in the table on p. 120 and illustrated in Fig. 63, p. 121. 
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Combining Dead Load with Live Load.—The table below is 
useful for finding the maximum bending moments and shears for a 
combination of dead load and live load. The method of combining 
the dead load values with those for live load is explained on p. 92. 

To use the table find the dead load and the total load. Find the 
ratio of dead load to total load. Values for bending moments and 
shears in the table corresponding to this ratio are maximum for this 
combination. 

Four Equal Spans, Fixed Ends. Uniform Load 

Maximum Values for Combined Dead and Live Loads. (See p. 122.) 

Dead 

Load 

Live 

Load 

End Shears Negative Bonding Moment 

. . 1 

Maximum Positive 

Bending Moment 

V\ and 

F6 

Vil and 

Vat 

Vyr and 

Vn 

V3I and 

Far 

Mi and 

Mi 

M2 and 

M A 
m3 

End 

Spans 

Center 

Spans 

0 2 to 0 8to 0 572wl 0 516 to/ 0 556to/ 0 54Swl -0 107 to/2 -0 095to/2 -0 lOOu;/2 0 056to/2 0 O6810Z2 

0 3 to 0 7 to 0 563wl 0 51 Awl 0 549to/ 0 542wl -0 101to/2 -0 094to/2 -0 098to/2 0 055to/2 0 064to/2 

0 4 to 0 6to 0 554wl 0 512 to/ 0 542toZ 0 536to/ -0 101 to/2 -0 002wl2 -0 096to/2 0 053to/2 0 06 lu72 

0 5 to 0 5 to 0 545wl 0 510 wl 0 535to/ 0 530wl —0 008 to/2 -0 091to/2 -0 093to/2 0 051to/2 0 058to/2 

0.6to 0 4 to 0 536wl 0 508toZ 0 528to/ 0 524wl -0 095to/2 -0 OSOto/2 -0 049to/2 0 019to/2 0 055to/2 

0 7 to 0 3w 0 527wl 0 506to/ 0 521 wl 0 518 wl —0.002to/2 -0 O8810Z2 -0 089to/2 0 047to/2 0 052to/2 

to = Uniformly distributed unit dead plus live load l = Length of span. 

BEAMS WITH CANTILEVERS 

Cantilevers are the parts of a beam which extend beyond the end 
supports. One end of the cantilever is connected with beam at the 
support while the other end is free. Loads placed on a cantilever 
produce bending moments not only in the cantilever, but also in the 
beam proper. They also produce shears in the beam and uplift at the 
opposite end of the beam. The bending moments and shears in a 
cantilever due to the loads on the cantilever are independent of the 
conditions of the remainder of the beam. The bending moment and 
shears in the beam, however, due to the loads on the cantilever depend 
upon the span of the beam and also upon the conditions at the opposite 
end of the beam. 

Following cases will be considered: 

1. Beam freely supported on one end, cantilevered at the other. 
2. Beam cantilevered at both ends. 
3. Continuous beam of two spans, cantilevered at one end. 
4. Beam fixed at one end, cantilevered at the other. 
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General Information.—The downward loads on the cantilever pro¬ 

duce negative bending moments both in the cantilever and in the 

adjoining span of the beam. The downward loads on the beam, on 

the other hand, produce positive bending moments in the beam and no 

bending moments in the cantilever. When the cantilever and the 

beam are loaded simultaneously, the negative bending moments in the 

beam due to the cantilever loads reduce the positive bending moments 

in the beam due to the loads on the beam. As a consequence the 

beam with a loaded cantilever, when fully loaded, is subjected to smaller 

bending moments than a similar freely supported beam carrying the 

same loading. 

To get this advantageous condition the cantilever and the beam 

must be loaded simultaneously. Therefore advantage of this reduction 

can be taken only for fixed loads, such as the dead load, for which the 

beam and the cantilever are always sure to be loaded simultaneously. 

For live load the beam may be loaded when there is no load on the 

cantilever, also the cantilever may be loaded when there is no load 

on the beam. Therefore, for live load the most unfavorable condition 

of loading must be accepted. 

In designing beams with cantilevers, the following rules should be 

observed: 

Only fixed loads shall be assumed to act simultaneously on the 

cantilever and on the beam. 

For live load it is necessary to consider following conditions of 

loading: 

(a) The cantilever loaded, the main span not loaded. This gives 

maximum negative bending moments and maximum uplift. 

(b) The cantilever not loaded, the main span fully loaded. This 

condition gives maximum positive bending moments in the 

beam. 

(c) The cantilever and the main span fully loaded. This gives 

maximum reactions and maximum end shears at the support 

adjoining the cantilever. 

Each one of these conditions should be combined with the dead load 

in the manner given below. 

The sections must be made strong enough for maximum bending 

moments and shears thus obtained. 

Combining the Dead Load and Live Load Bending Moments and 
Shears.—In combining the bending moments and shears due to live 

load and dead load, the following rules should be observed: 

Where the bending moment or shear due to dead load and live load 
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is of the same sign, they should be added and the beam designed for the 

sum of bending moments or shears. 

Where the bending moment or shear due to dead load is of opposite 

sign to that of the live, it is not permissible to deduct the full dead load 

bending moment from the live load bending moment. Before com¬ 

bining, the dead load bending moments or shears must be divided by 

proper factor of safety. These reduced dead load moments are then 

deducted from the bending moments or shears due to the live load. 

The reason for this is more fully discussed on p. 461, Vol. I. 

Particular attention should be given to the uplift. If the reaction 

due the dead load (divided by the factor of safety) is smaller than the 

uplift due to the live load, the beam must be anchored to the support. 

The support naturally must be heavy enough to resist the uplift multi¬ 

plied by a factor of safety. No live load should be considered as resist¬ 

ing the uplift due to the cantilever loads. 

Bending Moments and Shears in Cantilever 

The bending moments and shears on the cantilever depend only 

upon the load on the cantilever and its length. The load on the beam 

proper or its length have no effect upon the cantilever. 

Let P — concentrated load on cantilever; 

w = uniformly distributed load on cantilever; 

li = length of cantilever, also distance of load P from support. 

Then 

Bending Moment in Cantilever at Any Point x from Support: 

For uniform load, 

Mx = — w(h — x)—----- = — \w(h ~ x)2. . . . (429) 

For concentrated load, 

Mx=— P(h — x).(430) 

Maximum Bending Moment in Cantilever at Support: 

For uniform load, 

M^ =— W.(431) 

For concentrated load, 

= — Ph. (432) 
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End Shears: 

For uniform load, 

Vu = wh.(433) 

For concentrated load, 

Vi i = P.(434) 

Bending Moments and Shears in Beam 

The bending moments in the beam next to the cantilever depend 
upon the condition at the other support of the beam. Below are given 
bending moments for 
several conditions. p a, a. 

Case 1. Beam Free ,, nTTm! 111 nil'l n m ml*! I! 1111II i 111! 11*111 

at One End, Canti- mi||||| ||/r i 

levered at Other.— 111H111Hiiii 
The load on the canti- \Z__i_>_ 

lever produces in the Cantl,everJ^>^ Beam 
beam negative bend- A 

ing moments with a si T 
maximum at the can- lallmlL mnTrr>^ 
fcilever support where fa) Bending Moments due to Concentrated Load on Cantilever 

it is equal to the 
bending moment at 
the cantilever. At „ ^ 
intermediate sections * ^ 
the bending moments w 
vary according to a 
straight line to zero 
at the free support. 
(See Fig. 64, p. 125.) CantiieuerBeam | 

Fixed Loads.—For / |*gf T TT]Trm>^^ j 
fixed loads the bend- ^Au\It n|fi* 1.11 ITnTfTlTrrr^ 
ing moments in the ^ 

beam are a combina- (6) Bending Moments due to Uniform Load on Cantilever 

tion of the positive pIQ 04—Beam Free at One End, Cantilevered at Other 
bending moments due Concentrated Load. (See p. 125.) 
to the load on the 
beam and the negative bending moments produced by load on the 
cantilever. They are represented by Fig. 65, p. 126. 

For uniformly distributed loading the maximum positive bending 
moment due to the dead load is 

U—i, 
I Cantiieuer 



126 CONTINUOUS BEAMS 

Maximum Positive Bending Moment in Beam, Uniformly Distributed 
Dead Load, 

(435) 

This moment acts at a distance from free support equal to 

11 
Xi 4-G (436) 

When the fixed loads are concentrated, the maximum bending 
moment may be found analytically by determining the end shears and 

the point of zero shear. 
The maximum positive 
bending moment acts at 
the point of zero shear. The 
same result maybe obtained 
by drawing a moment dia¬ 
gram for the negative bend¬ 
ing moment due to the 
cantilever load and then 
plotting the positive bend¬ 
ing moments due to the 
loads on the beam starting 
from the inclined closing 
line. 

Live Loads.— Positive 
bending moment in the 
beam to be used for live 
load are the same as for 
simply supported beam. 

Fig. 65.—Beam Free at One End, Cantilevered at Case 2. Beam Provided 
Other. lixod Loads. (See p. 125.) with Cantilevers at Both 

Ends.—For fixed loads it 
may be assumed that both cantilevers are acting at the same time. 
The resulting bending moments are shown in Fig. 66, p. 127, 
assuming a symmetrical arrangement of cantilevers. The maximum 
positive bending moment for fixed loads acts in the center of the beam 
and is equal to the difference between the maximum positive bending 
moment for simple span and the negative bending moments at the 
support. 

For live load, maximum negative bending moments are produced 
in the beam when both cantilevers are loaded and the beam not 
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loaded. This gives a uniform negative bending moment in the 
beam. 

Positive bending moments in the beam to be used for live load are 
the same as for simply supported beam, which act when the beam is 
loaded and the cantilever not loaded. 

Case 3. Continuous Beams of Two Equal Spans with Cantilever 
at One End.—The load on the cantilever produces bending moments 
in both spans of the continuous beam as shown in Fig. 67, p. 128. 

Let 

Mc = maximum bending moment due to the cantilever load. 

Then the bending moments in the beam at the three supports are 

Fig. 66.—Beam with Two Symmetrical Cantilevers. (See p. 126.) 

Bending Moment at Supports Due to Cantilever Load, 

Mi = Mc = Ph + \wh*.(437) 

M2 = - \MC.(438) 

M3 = 0.(439) 

The bending moments produced by the load in the cantilever in the 
span next to the cantilever are mostly negative, while in the second 
span they are positive. This is illustrated in Fig. 67(a), p. 128. 

For dead load the bending moments due to the cantilever load may 
be combined with the bending moments of the continuous beam as 
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shown in Fig. 67(6). The bending moments without the cantilever arc 
shown by dotted lines. It should be noted that the load on the cantilever 
decreases the positive bending moment in the span next to the cantilever 
but increases the positive bending moment in the other span. 

i P 

(a) Bending Moments due to Loads on Cantilever 

W W w 

(b) Bending Moments due to Fixed Loads 

Fig. 67.—Continuous Beam of Two Spans with Cantilever. (See p. 127.) 

For live load the negative bending moments in the span next to the 
cantilever are obtained when the cantilever and the span away from 
the cantilever are loaded simultaneously. 

Maximum negative moment at the second support is obtained when 
both spans are loaded simultaneously and the cantilever not loaded 
(see Fig. 25, p. 35). 

Maximum positive bending moment for the span next to the canti¬ 
lever is obtained when that span only is loaded (see Fig. 26, p. 35). 

Maximum positive bending moment for the second span is obtained 
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when the second span and the cantilever are loaded simultaneously 
(see Fig. 67(6), p. 128). 

No positive bending moment is possible in the cantilever. 
Case 4. Beam Fixed at One Support and Cantilevered at the 

Other.—Bending moment in the cantilever same as for previous cases. 

p 

w 
''M l I 

No load 
iji rui i r iittitt n rn riTTfin 11 

iliullJi 
*3 
* 

As 

- dj-> 

3 3 
H*» "♦I*' f 

§, 4 

^___j___ 

(a) Bending Moments due to 
Loads on Cantilever 

10 10 

,pirtrirU-i 

_ 
Combined / 

bending moments ~~~ ^Be;dm3 momente 
for beam only 

(b) Bending Moments due to Fixed Loads 

Fig. 68.—Beam Fixed at One End, Cantilevered at the Other. (See p. 129.) 

Bending moments in the main span due to the cantilever load are 
shown in Fig. 68(a), p. 129. They are 

Bending Moment at Supports Due to Cantilever Load, 

Mi = Mc.(440) 

M2=- \Mc.(441) 

The bending moments between the supports vary according to a 

straight line. 
Bending Moments Due to Dead Load.—The dead load may be 

assumed as acting simultaneously on the cantilever and in the main 
span. The resultant bending moments on the beam are obtained by 
combining the bending moments due to cantilever load with the bending 
moments on the main span, computed as given on p. 28. 

The resultant bending moments for uniformly distributed load are 
shown in Fig. 68(6), p. 129. 

Maximum positive bending moment for dead load may be obtained 
from following formula: 

Maximum Positive Bending Moment, Dead Load. Case 4, 
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Distance of Point of Maximum Positive Bending Moment, 

(443) 

End Shears in Beam Due to Cantilever 

The end shears in the beam due to the load on the cantilever are 
given below. Assume that the cantilever in Case 1, 2 and 4 is located 
at the left end of the beam. 

Also let Me = bending moment due to left cantilever; 
Mci = bending moment due to right cantilever; 

l = span of beam; 
Vir = end shear to the right of first support; 
V21 = end shear to the left of second support. 

Case 1. Beam Free at One End, Cantilevered at Other. 

End Shears, 

. . (444) . . (445) 

Case 2. Beam Cantilevered at Both Ends. 

End Shears. One Cantilever Loaded: 

Same as in previous case. 

End Shears. Both Cantilevers Loaded, 

Vu = 
Mr - Me 1 

l 
(446) V21 = 

Mci - Me 

l 
. • (447) 

Case 3. Continuous Beam of Two Spans with Cantilever. 

End Shearsf 

Vu = 1 ~ = |y(P + \wh). . (448) V2l = - Vu. . . (449) 

V2r = - “(P + iwh). . . . (450) F3 = — V2r. . . (451) 

Case 4. Beam Fixed at One End, Cantilevered at Other. 

End Shears, 
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End Shear in Beam Due to Load in Beam.—The end shears in the 
beam due to the load on beam are the same as for similar beam without 
cantilever. 

End Shears for Dead Load.—End shears for dead load are obtained by 
adding the end shears due to the load in the beam to the end shears 
produced by the cantilever. It should be remembered that at the 
support away from the cantilever the quantity to be added to the end 
shear in beam is minus. 

Maximum End Shears.—For live load, maximum ends shears at both 
ends are produced by different conditions of loading. 

At the support next to the cantilever, maximum end shears in the 
beam acts when the beam and the cantilever are fully loaded. 

At the other support, maximum end shear acts when the beam is 
loaded and cantilever not loaded. 

Maximum Reactions and Uplift.—Maximum reactions on the support 
next to the cantilever is obtained when cantilever and the first span 
are loaded. 

Maximum reaction at the other support acts for the beam fully loaded 
and the cantilever not loaded. 

Maximum uplift acts when cantilever only is loaded and rest of 
span not loaded. 

MOMENTS OF INERTIA AND THEIR EFFECT UPON CONTINUOUS BEAM 

Method of Determining Moments of Inertia in Reinforced Concrete 
Construction.—Moments of inertia of a concrete member may be 
required either for the purpose of computing stresses due to direct 
stress and bending moments (Chapter II) or for the purpose of determin¬ 
ing the variation of moments of inertia to be used in applying the theory 
of elasticity. 

In the first case it is desired to find the actual moment of inertia at a 
particular section and for a known condition of stresses. The moment 
of inertia is used directly for determining of stresses. The methods of 
determining moments of inertia are given in the proper chapters (see 
Vol. I, p. 174, and Vol. II, p. 245). Where no (or only very small) 
tensile stresses exist, a substitute homogenous section is used in place 
of the reinforced concrete section of the member in which the reinforce¬ 
ment is replaced by an area of concrete equal to n times the area of steel, 
n being the ratio of modulus of elasticity. The moment of inertia of the 
substitute section is then found as for a homogenous section. On the 
other hand, where large tensile stresses occur the part of concrete section 

in tension is neglected and the moment of inertia is found indirectly 
in the same manner as used in determining stresses in simple bending. 
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In the second case the moments of inertia are used: 

(1) to determine the variation of moments of inertia in a member 
with variable moments of inertia; 

(2) to determine the ratio of moments of inertia for several members 
as, for instance, in a frame the ratio of moments of inertia of 
the column to that of the beam. For this purpose it is of 
more importance to find a representative ratio of moments 
of inertia for the member than to find the actual moments 
of inertia at any one section. 

Even in a concrete beam of constant dimensions the moment of 
inertia varies at different sections. The variation is due partly to the 
variation in the amount of steel and partly to stress conditions. In 
the sections subjected to large tensile stresses the concrete in the tensile 
zone is not effective and should be omitted in computing moments of 

inertia. 
In sections nearer the points of zero moment the ineffective concrete 

area becomes smaller and smaller. The area to be used in computing 
moments of inertia becomes larger and larger and therefore the moment 
of inertia increases until it reaches its maximum at and near the point 
of zero bending moment where the whole concrete section is effective. 
Therefore the moments of inertia at points of small bending moments 
are appreciably larger than at points of large stress. This is partly 
offset by the fact that the deflection of the beam is more affected by the 
moments of inertia at the points of large stress than at the points of 
small stress. 

Opinions differ as to the proper method of computing the moments 
of inertia for the purpose of determining the ratio of variation. The 
preponderance of opinion is in favor of computing the moments of 
inertia for the concrete section only considering it as a homogenous 
section and neglecting the reinforcement. This method is recom¬ 
mended by the authors. 

Formulas for Moment of Inertia.—The formulas for moments of 
inertia given below are for concrete section only neglecting the reinforce¬ 
ment. They should be used only for determining the ratio of moments 
of inertia. 

Let b = breadth of rectangular beam; also 
breadth of flange of T-beam; 

V = breadth of web of T-beam; 
h = depth of rectangular beam and T-beam; 
t = thickness of flange of T-beam. 
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Moment of Inertia of Rectangular Section, 

I = .(454) 

Moment of Inertia of T-Beam, 

I = 4(5 - 6')*3 + 
[(6 ~ &Q*2 + b'h2]2 

4[(6 - &')* + M] ’ " 
(455) 

(456) 

The value in the square brackets is a constant depending upon the 

ratios of 7 and 7-. The equation for moment of inertia may be written 
h 0 

I = CW,.(457) 

where Ci may be taken from Diagram 12, p. 134, for the proper com- 
.t h' 
bmation of the ratios 7 and —. 

h b 
Application of Formulas for Constant Moments of Inertia.—In 

previous pages formulas for continuous beams were developed on the 
assumption that the moments of inertia of the beam are constant 
throughout. For beams with constant depth and width this assumption 
gives accurate enough results. The effect upon bending moments of 
small haunches, the length of which does not exceed one-tenth of the 
span, may be considered as negligible. 

Effect of Variation in Moments of Inertia.—When the moments of 
inertia near the supports are appreciably larger than in the central 
portion of the beam, the bending moments in a continuous beam undergo 
the following changes. 

The negative bending moments at the supports become larger than 
for beams with constant moments of inertia. 

The length of the region subjected to negative bending moments 
becomes larger. 

The positive bending moments in the center becomes smaller than 
for beams with constant moments of inertia. 

The increase of the moment of inertia at the support therefore has 
the effect of putting more bending moment near the support and reduc¬ 
ing the bending moments in the center. The changes will be of course 
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Values of £ 

Moment of inertia /= Cjbh? 

Diagram 12.—Values of Ci for T-Beam for 
t b' 

Different - and -. 
h b 

(See p. 133.) 
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in some ratio to the increase of the moments of inertia and also to the 
length of beam affected by the increase. 

Variation of Moments of Inertia Found in Practice.—In practice 
the moment of inertia of the beam is increased by the following means. 

1. Beam may be provided with straight haunches at the ends as in 
Fig. 69. In this case the moment of inertia is constant in the central 
part of the beam. At the end the depth of the beam varies according 

Fig. 69.—Beam Provided with Straight haunch. (iStee p. 135.) 

to a straight line. It is assumed that the beam is symmetrical. Refer¬ 
ring to Fig. 69 the depth of the section at any point in the haunch 
may be represented by following formula. 

Hence 

Since 

and 

*.-I+d 

/* 
bhi 
12 ’ 

the ratio of moments of inertia 

(458) 

I bh3 h3 

Ix ~ bhxs ~ h3‘ 

The variation of moments of inertia, therefore, is 

Variation in Moments of Inertia for Straight Haunch, 

I h3 1 

M
 ii Cl
 II 

n
 

(hi \ (, 1 x\Y 
L1 -\h~ V V ml). 

. . (459) 
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XX X x 
for - = 0 to - = m and for - = (1 — m) to - = 1, 

l l L t 

and (460) 

X X 
for - = mto- = (1 — m). 

L l 

2. Beam with parabolic haunches. Sometimes for the sake of 
appearance the haunches are curved. The curvature may be made 
according to a parabola as shown in Fig. 70, p. 136. 

Fig. 70.—Beam with Parabolic Haunch. {See p. 136.) 

The depth at any point is 

Hence 

hx = h + Ami - x)2. 
0mly 

l_x\2 

ml / 

(461) 

(462) 

Assuming that the moments of inertia are proportional to the cubes 
of the depths of the section, the variation of the moments of inertia may 
be expressed by the formula below. 

Variation of Moments of Inertia for Parabolic Haunchy 

lx 
. (463) 

for x = 0 to x = ml and x = (1 — m)l to x = l. 

i 
X X 

for - = m to - = (1 — m). 
I v 

(464) 
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3. Beam with parabolic bottom. When the bottom is in shape of a 
parabola the formula above may be used by substituting m = 
Therefore 

. . (465) 

Al-->J 

Fia. 71.—Beam with Parabolic Bottom. (See p. 137.) 

BASIC FORMULAS FOR CONTINUOUS BEAMS WITH 
VARIABLE MOMENTS OF INERTIA 

The basic three-moment equation for continuous beams with variable 
moments of inertia is given below. 

In practice it is not necessary to use the complicated equations nor 
to solve calculus, as simple equations are given for conditions most 
likely to occur. 

Let lr and Zr+i = length of two adjoining spans; 

Ir — least moment of inertia of lr span; 

/r+i = least moment of inertia of Zrfi span; 

Ir 

h 
variation of moments of inertia in lr span; 

Ix 

Mry Mr+l, Mr+2 

= variation of moments of inertia in Zr+i span; 

= bending moment at the three supports of 
span lr and Zr_j_i; 

ar and pr — constants for lr span depending upon varia¬ 
tion of moments of inertia; 

a'r+1 and fir+i = constants for Zr+i span depending upon varia¬ 
tion of moments inertia; 

Mtr) Af#(r+i) = static bending moment due to loads in spans 
lr and lr+i, respectively, considering the 
spans as freely supported. 
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Basic Three-moment Equation, Variable Moments of Inertia, 

Mrpry + 2Mr+i(ary + a'r+iy—) + Mr+2pr+iy— 
ir \ ir ir+1/ ir+1 

= - of A C^M.Jydx +r-j- C+lM,{r+1)(lr+1 - x/^dx}. 
LMrjo I* ^r+lIr+1^/0 -* 

KllilNtt 
ip^i 

PiflElMC pkifw^rmr^ivivwiififv^MOMM;1 

mmmmmwa 

-Ir-1—"— ---^ 

Fig. 72.—Illustration for Three-moment Equation, (See p. 138.) 

in which the constants an a'r+j, ft and 0r+i depend upon the variation 
of the moments of inertia. They are: 

ConstantSj 

3 rV' 3 r 2^,7 , _ 3 ,/r+l . 
ar “ j 3 I $ j ^X, a r+1 “ p I (Wl *C) j dX, 

6 A+l 6 rlr Ir 6 />+l 7r+1 
ft == 7T I X(lr X)ydXy ft-f1 = ^ I X(lr.fl #) “~ dx. 

Irjo lx Pr+ljo /* 

The ratios y and depend upon the shape of the haunch, and 

for beams shown in Figs. 69 to 71 they may be represented by Formu¬ 
las (459), (463) and (465), respectively. Where the haunch forms only 

rU 
part of the beam of a length equal to ml) the integrals I must be 

solved by dividing it into parts so that 

fir fmlr . r(!r~mlr) ri 

I = + + 
/o /0 Jtnlr J{1\ 

The values ar, a'r+i> ft, and ft+i, are constant for any one design of the 
beam. 

When the minimum moment of inertia is the same in all spans, 

It = Ir+1 and may be cancelled. This changes the basic equation to 
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Basic Three-moment Equation when Ir = Ir+i, 

MrPrlr + 2ilfr+l (arlr + <x'r+llr+l) + Mr+'zPr+llr+l 

i rlr L 1 A+1 I 1 
= —6 - I M,rx—dx + -— ( M<r+i)(lr+i — x)ydx I. (467) 

-ItJO lx ''r+IJo lx J 

This equation is of the same shape as the three-moment equation with 
constant moments of inertia. 

Constants a and p for Beams with Special Shape of Haunches.—In 
the three-moment equations just given appear constants aTj pTy ar+i 
and pr+i which depend upon the length and shape of the haunches and 
upon the ratio between the maximum and minimum moments of 
inertia. If the haunches in the various spans are either of different 
length in proportion to the length of the span, their design is different, 
or, finally, if the ratios between the maximum and minimum moment 
of inertia are different, then the constants for each span are different. 
Thus aiy a'x and pi will be constants for the first span, «2, cl 2 and 
P2 will be constants for the second span and so on. 

In general there are three constants for each span a, a and ft which 
must be computed before the bending moments can be determined. 
For spans for which the haunches are symmetrical the integral 
n I rl i 
I x2—dx is equal to the integral I (Z — x)2—dx. Consequently 

Jo lx Jo lx 
For Spans with Symmetrical Haunches, 

The determination of the constants is complicated. It may be 
accomplished either by integration for haunches for which the variation 
of the moments of inertia can be expressed by an equation or by sum¬ 
mation for irregular shapes of beam. To facilitate the use of the formu¬ 
las two shapes of haunches, most common in practice, have been selected 
and constants for them computed. 

The selected shapes of haunches are: 
1. Symmetrical beam with straight-line haunches, as described on 

p. 135 and shown in Fig. 69. Constants for this case are given in 
Diagram 13, p. 140. 

2. Symmetrical parabolic haunches as described on p. 136 and 
shown in Fig. 70. For this case constants are given in Diagram 14, 
p. 141. 

In each case the constants are given for different ratios of length 
of haunches to length of spans and for different ratios of the maximum 
and minimum moments of inertia. 
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„ . _ I Min. moment of inertia 
Values of — —-- 

if Moment of inertia at support 

» . . / Min. moment of inertia 
Values of—---- 

/x Moment of inertia at support 

Diagram 13.—Constants a and /3 for Symmetrical Beam with Straight-line Haunches. 
(See p. 139.) 
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J Min. moment of inertia 

J Moment of inertia at support 

Diagram 14.—Constants a and 0 for Symmetrical Beam with Parable Haunches. 
(.See p 139.) 
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For the purpose of preparing diagrams the formulas for constants 
are changed to the following shape: 

3 P 

l3 

21 
« = ^r fd =3 

U Ix \l 
(469) 

Similarly, 

'-jfK‘-r)f.-(r).<-> 
The values of — are given by Equations (459) and (463) for the two 

types of haunches for which diagrams were prepared. To get the 

constants the integral ^ is divided into three parts, namely, r/*l — m /*1 j 

+ 1 +j .In each part proper values for — are sub- 
Jm Jl-m 

stituted and the integrals solved.6 

Right-hand Parts of Three-moment Equation.—The right-hand parts 
of the three-moment equation depend upon the loading. 

Let wr = uniformly distributed load in lr span; 

wr+i = uniformly distributed load in Zr+i span. 

Then, for uniformly distributed loading extending full length of the 
span the value of the integrals are 

Integrals for Uniform Loading, 

P> rl* I 
7 I M,rXydX = IfirWrlr*. 
I'rjQ 1% 

and 

^6 

lr+1, r +1 It 
M„+i(lr+i - X)~dx = iPr+lWr+ll3r+l. . 

lx 

. . . (471) 

. (472) 

Values of 0r and are the same constants as used in the left side 
of the equation. They are given in Diagrams 13 and 14 for two 
assumptions as to variation of moment of inertia. 

6 For solution of integrals, see A. Strassner, Neuere Methoden, Band 1, 1925, 
Wilhelm Ernst and Sohn. 
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For concentrated loads let 

Pr = concentrated load or loads in span lr; 

Pr+1 = concentrated load or loads in span Zr+i; 

Cvi = constant depending upon y of the load and the design 

of the beam (sec Diagrams 15 and 16, pp. 144 and 145); 

(7,2 = constant depending upon y of the load and the design 

of the beam (see Diagrams 15 and 16, pp. 144 and 145). 

The values Cv\ and Cv2 correspond to values C\ and C2 (see p. 19) 
in beam with constant moment of inertia. 

For concentrated loads the integrals on the right side of Equation 

(467), p. 139, become 
Single Concentrated Load, 

y \M„x~dx = pCvlPrlr.(473) 

— f M,r+i(l - x)ydx = PCrtPr+llr+U . . (474) 
tr+\jQ 

Several Concentrated Loads, 

— C Mirx-~dx — Zr/3SC,iP„ . . . (475) 
LJo ** 

y—~ (" M„+i(l — x)ydx = Zr+i/J2(7,2Pr+i, • . (476) 
tr+l^Jo ** 

where 2(7,iP, is the sum of all loads in span lr each multiplied by its 

corresponding value of Cv 1 and 2C»2Pr+i is the sum of all loads Pr+i 

in U+i span each multiplied by its corresponding value Cv2. 

For the selected shapes of beams, described on pp. 135 and 136, 

C,i and (7,2 are given in Diagrams 15 and 16, pp. 144 and 145, and con¬ 

stants 0 are given in Diagrams 13 and 14, pp. 140 and 141. 
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Diagram 15.—Constants C„i and Cvi for Symmetrical Beams with Straight-line 
Haunches. (jSee p. 143 
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Values of 
a Position of toad 

7 Length of span 

Diagram 16.—Constants Cv i and Cv% for Symmetrical Beams with Parabolic 
Haunches. (See p. 143.) 



146 CONTINUOUS BEAMS 

TWO SPANS, FREE ENDS. VARIABLE MOMENTS OF INERTIA 

Two Unequal Spans.—Using the three-moment Equation (467), 
p. 139, in the same manner as explained on p. 20 for the beams with 
constant moments of inertia, the bending moment at support is 

Bending Moment at Support. Uniform Loading, 

wiPih3 + W2P2I23 

8(a\lx + ash) 
(477) 

where «i, 0i are constants for the first span, 

«2, 02 are constants for the second span. 

Values of ai, <*2, 0i, 02 can be taken from Diagrams 13 and 14 for a 
and 0, pp. 140 and 141. 

Bending Moment at Support. Concentrated Loading, 

+ Z22022P2Cy2 

2(aiZi + a2 h) 
(478) 

Values of ai,a2,0i,02 may be taken from Diagrams 13 and 14, pp. 140 
and 141. Values of Cv\ and Cv2 may be taken from Diagram 16, p. 145. 

Two Equal Spans.—For two equal spans h = I2 = l and the formulas 
become 

Bending Moment at Support. Two Equal Spans. Uniform Loading, 

M2 
wi + w2 0 79 
-I* 

16 a 
(479) 

Bending Moment at Support. Two Equal Spans. Concentrated Load} 

M2 
(gjPigri + ^P2Cv2) 0 

4 a L 
(480) 

Values of a and 0 may be taken from Diagrams 13 or 14, pp. 140 and 
141. Values of Cv 1 and Cv2 may be taken from Diagrams 15 or 16, pp. 
144 and 145. 

End Shears.—After the bending moment at support is found the 
end shears may be obtained in the same manner as for beams with 
constant moment of inertia given on p. 14. 
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THREE SPANS, FREE ENDS. VARIABLE MOMENTS OF INERTIA 

Using the three-moment equation in the same manner as for beams 
with constant moment of inertia, following equations for bending 
moments at support are obtained: 

Let M2 

Mz 

hj hj h 
ai and 0i 

<22 and 02 

«3 and 03 

W\ 

W2 

w-3 

= bending moment at second support; 
= bending moment at third support; 
= span lengths of the three spans; 

= constants for first span, depending upon shape and 
length of haunch from Diagram 13 or 14; 

= constants for second span, depending upon shape and 
length of haunch from Diagram 13 or 14; 

= constants for third span, depending upon shape and 
length of haunch from Diagram 13 or 14; 

= uniform load in first span; 
= uniform load in second span; 
= uniform load in third span. 

Uniform Loading, General Equations. 
Bending Moment at Support for Uniform Loading, General, 

M2 =- 

M3 =- 

2(ot2h + a3h)^ilUwi + [2(0^2 + otzh) — 02^] 1 

_02fe3W2 ~~ 0203^33W3 J 

16(«iZi + «2^2)(«2^2 + <*3^3 ) — 4022Z22 

— 0102Zl3?2^1 + [2(<*iZi + CX2I2) — 02^2] 1 
._P2hsw2 + 2(aih + a2h)&3h3w3 J 

l(>(aiZi + 0L2I2) (&2I2 + <23^3) — 4022^22 

.(481) 

. (482) 

Special Case, Uniform Loading.—If the ratio of maximum and 
minimum moments of inertia and also the ratio of the length of haunch 
to total length of span are the same for all spans all constants a are 
equal and all constants 0 are equal. 

Thus in Formulas (481) and (482) substitute 

a — cn = a2 — &3 and 0 = 0i = 02 = 03* 
Then 

Bending Moment at Support, 

Mt =- 

2(Z2 + h)h3wi + 2(Z2 + h) — h3w2 — -hhhos 
L a J a 

**/? 1 i \ n 1 
(483) 
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M3=- 

-I1H2W1 + j^2(Zi + h) — + 2(ii + h)h3W3 

10—(Zi + I2) (I2 + h) — 4-£22 
p a 

. (484) 

Equal Spans, Uniform Loading.—When the spans are of equal length 
substitute in Equations (483) and (484) 

Zi = £2 = £3 = £. 

Then 
Bending Moment at Support. Equal Spans, 

ikf2 = 

M3 = 

. . (485) 

. . (486) 

a and may be taken from Diagrams 13 and 14 for the proper 

ratios of — and m and the proper shape of the haunch. 
11 

See p. 51 for method of obtaining most unfavorable loading of spans 
and absolute maximum moments. 

Maximum positive bending moments may be found, using table on 
p. 177, for known negative bending moments. 

Shear can be found as explained on p. 23 for beams with constant 
moments of inertia. 

Concentrated Loads.—General equation for bending moments due 
to concentrated loads is obtained in the same manner as for beams with 
constant moment of inertia. 

Let in addition to notation on p. 147. 

P\ = load or loads in first span; 

P2 = load or loads in second span; 

Pz = load or loads in third span; 
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Cvi = constant from Diagrams 15 or 16, depending upon -, 
L 

the ratio of distance of load from left support to length 
of span; 

Cv2 = constant from Diagrams 15 or 16, depending upon 
v 

the ratio of distance of load from left support to length 
of span. 

Constants Cv 1 and Cv2 correspond to C\ and C2 in beam with constant 
moments of inertia. They depend upon the location of loads and also 

upon the ratio of and the length and shape of haunch. 

Bending Moment at Support. Concentrated Load, 

M2 =- 

Ms =- 

2(a2h + ash)Pxh2^PiCv\ + 2(a2h + ash) 

@2h22P2Cv2 ~ fe^g^PgCVi — p2&M^^P^Cv2 

4{a\l\ + a2h){^2h + 0^3) — p22h2 

— fhP2h2h2PiCvi + 2(aih + a2l2)p2l22^P2Cvi 
_— ^22h2^P2Cv2 + 2{a\l\ + Ol2l2)p3h22p3Cv2 

4(ailx + a2l2){oL2h + ash) “ @22h2 

(487) 

(488) 

If a = ot\ = «2 = as and @ = Pi = p2 = P3 which occurs when the 
ratio of maximum and minimum moment of inertia and the ratio m 
are the same for all spans and the haunch is of same design, the formulas 
change to 

Bending Moment at Support for constant a and P, 

Af2 = — 

2(12 + h)h2^PiCvi + 2(h + h) 

l22ZP2Cv2 - ~l23ZP2Cvl - -l2l322P3Cv2 
a a 

£(h + i2)(i2 + h) - -h2 
p ® 

(489) 

— -li2l2hP\Cvi + 2(7i + l2)l222P2Cvi 

- %32P2Cv2 + 2(1, + l2)h2XP3Cv2 

Mz-^---. (490) 

£(h + l2)(l2 + h) - -l22 
P a 

If first span loaded others not loaded make P2 = Pz = 0. 
If second span loaded others not loaded make Pi = Pz «= 0. 
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Sec p. 57 for position of loads for absolute maximum bending 

moments. 
Three Equal Spans, Concentrated Loads.—If all spans are equal, 

h = h = h = l- The formulas become 
Bending Moment at Support. Three Equal Spans. All Spans 

Loaded, 

42PiC'„i + 4ZP2Cv2 - —2P2Cvi - -ZP2Cv2 

M2 =----Jl. . (491) 

- -SPiCa + 42P2C'vi - -2PCv2 + 4SP3C.2 

M3=~—-7-1. (492) 

If end span loaded, P2 = P3 — 0. 
Bending Moment at Supports. Three Equal Spans. Left End Span 

Loadedy 

M2 =---ZSPiC.i.(493) 
P 

P 

M3 
a 

—ixPiCvi 
P 

(494) 

If center span loaded, Pi = P3 = 0. 
Bending Moments at Supports. Three Equal Spans. 

Loaded, 

Ms- 
42P2C'„2-2P 2Cvi 

-~B-1 

P a 

Center Span 

. . (495) 

Ms =- 

42P2(7.i - -ZP2Cv2 
a 

. . (496) 
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a and /3 are constants, depending upon design of beam only, to be 
taken from Diagrams 13 or 14, pp. 140 and 141. 

Cvi and CV2 are constants, depending upon design of beam and location 
of the various loads, to be taken from Diagrams 15 or 16, pp. 144 
and 145. 

EFFECT OF DOWNWARD MOVEMENT OF SUPPORT 

Formulas previously given are based on the assumption that the 
beam is straight, that all supports are on the same level and that they 
remain on the same level after the loads are applied. When the relation 
of the elevation of the supports becomes disturbed, special bending 
moments are developed in the beam in addition to those produced by 
the loading. 

Sinking of all foundations by the same amount is not harmful, as 
it does not affect the bending moments. 

r r —“TJ—" »' 

U Jy-—>U—13—>U-->U-- 
Effect of sinking of support 3 

Fig. 73.—Effect of Sinking of Support. (See p. 151.) 

Sinking of one foundation below the level of other foundations 
produces bending moments and stresses in the whole beam. The 
magnitude of the bending moments is proportional to the magnitude 
of the downward movement. 

The effect of vertical downward movement of the support is evident 
from Fig. 73, p. 151. The maximum bending moments due the 
sinking of one support are developed in two spans carried by this 
support. 

At both sides of the disturbed support the bending moments are 
positive with a maximum at the support. 



152 CONTINUOUS BEAMS 

At the ends of the two spans carried by this support the bending 
moments are negative. In the balance of the beam the bending mo¬ 
ments may be found, using the fixed points. 

General Formulas for Bending Moments.—Bending moments due 
to the vertical movement of supports may be found by means of the 
three-moment equation. 

Notation 

Let r, r + 1, and r + 2 = 

Zr = 

Zrfi = 

7 = 
Mr = 

Mr+\ — 

Mr+2 = 

Ar = 

Ar+1 — 

Ar+2 = 

E = 

three succeeding supports of a continuous 
beam; 

span length of rth span, in inches; 
span length of (r + l)th span, in inches; 
moment of inertia of the beam, in.4; 
bending moment at left support, rth span; 
bending moment at right support, rth 

span; 
bending moment at left support, r + 1th 

span; 
vertical movement of rth support, in 

inches; 
vertical movement of (r + l)th support, 

in inches; 
vertical movement of (r + 2)th support, 

in inches; 
modulus of elasticity of concrete, lb. per 

sq. in. 

Values of Ar, Ar+i and Ar+2 are positive when the movement is down 
and negative when the movement is up. 

Then the relation between the bending moments produced at the 
three supports by these movements of the supports can be expressed 
by the following equation: 

Basic Three-moment Equation for Movement of Supports, 

MA, + 2Mr+l(lr+lr+1) + Mr+rir+i = 6g/(Ar+1;~A^+ Ar+1;~iAr+2)- (497) 

Use of the Three-moment Equation.—The use of the equation just 
given is evident from the following example in which it is desired to 
find bending moments in a beam consisting of five spans caused by the 

sinking of the third support from the left end by an amount equal 
to A. 
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Using the general equation (497), following four equations may be 
developed, from which the four unknown bending moments M2, M3, 
M4 and M5 may be found. 

Let A = sinking of third support from left in inches; 
/ = moment of inertia of beam in in.4; 
E = modulus of elasticity of concrete, lbs. per sq. in.; 

M2, M3, M4, M5 = bending moment at respective supports in 
pounds; 

li, hy hy hy h = span length in inches; 

2M2(Zi + I2) 4“ M3?2 = “ 62?/A--, .... (498) 
I2 

M2I2 + 2M3(l2 + h) + M4I3 = + GEIA1-^, . . (499) 
h h 

M3I3 + 2M4(k + h) + M5h = - 6 El Ay, .... (500) 

M4Z4 + + h) = 0.(501) 

FIXED POINTS 

Definition.—Fixed Points 7 (also called conjugate points) are points 
in which the straight lines representing the bending moment curves 
in unloaded spans intersect the axis. The position of these points is 
constant for any one arrangement of spans. It depends upon the 
properties of the beam such as relative span lengths, conditions at the 
end supports and relative moments of inertia. They are independent 
of the loading. Fig. 74, p. 153, shows fixed points of a continuous 
beam with free ends consisting of n spans. 

Fig. 74.—Fixed Points in Continuous Beam. (See p. 153.) 

Each span has two fixed points, one at each end. The left points, 
marked L in Fig. 74, are used when the loaded span is to the right 
and the right points marked R are used when the loaded span is to the 
left of the span under consideration. 

7 In German, “ Feste Punkte.” 
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In left end spans with free ends the left fixed point coincides with 
the end support. The same applies to the right fixed point in a right 
end span. 

In an end span with fixed end the distance of the last fixed point 
from the end is equal to one-third of the span length. 

In an end span with partly restrained ends the last fixed point is 
located somewhere between the restrained end and the third of the span, 
depending upon the character of restraint. 

Assumptions.—In the discussion and formulas below it is assumed 
that the moments of inertia of the beam are constant and that the 
beams rest on unyielding supports. It is assumed also that there is 

l, -vrnTflTI Ikl \A to 

L-ij->1*-—-4*—-jj—1 

m 

~*r 
Fig. 75.—Use of Fixed Points. (See p. 154.) 

no rigid connection between the beam and the support so that the 
beam can rotate freely at the supports. Formulas for variable moments 
of inertia are given on p. 164. 

Use of Fixed Points.—Assume that, in a continuous beam, consisting 
of a number of spans, one span is loaded and the other spans are not 
loaded. When the bending moments at the supports in the loaded 
span are known, the bending moments in other spans may be found 
graphically, using the fixed points in the manner shown in Fig. 75, 
p. 154. In this case the fourth span of a continuous beam consisting 
of a number of spans is loaded and the other spans are not loaded. The 
bending moment diagram of the loaded span is drawn first in a manner 
explained later. The bending moment M± is plotted above the axis at 
the support 4. The apex is connected with the left fixed point L3 
of the third span and the resulting line extended to intersection with 
a vertical erected at support 3. The point of intersection determines 
the magnitude of the bending moment M3 at the support 3. By con¬ 
necting this point of intersection with the left fixed point L2 in the 
second span and extending the line to intersection with a vertical 
at support 2 the bending moment M2 is obtained. Finally the bending 
moment diagram to the left of the loaded span is completed by connect¬ 
ing the apex M2 with L\ of the first span, which coincides with the 
support 1. The bending moment diagram on the right of the loaded 
span is obtained in the same manner as described for the left half of 
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the diagram by starting at support 5 with bending moment M5 and 
using the right fixed points Roy R7 . . . . This part of the diagram 
is not shown in Fig. 75, p. 154. See Figs. 3 and 4, p. 7, for complete 
diagrams. 

Formulas for Location of Fixed Points.—The location of the fixed 
points may be found by means of the formulas below. 

Let Zi, h, h . . . In = span length of span 1, 2, 3 and n; 
/1, fi2) h . . • = distance of left fixed points L\y L2, L3, . . . 

from left supports; 
fr\yJ,2y f'z . . . = distance of right fixed points R\y R2 R3 - • • 

from right supports; 
/ = distance of left fixed point in general; 
/' = distance of right fixed point in general. 

Formulas for Beams with Free Ends. Constant Moments of 
Inertia. 

Distance of Left Fixed Point Lj from Support 1, First Span, 

fi = 0.(502) 

Distance of Fixed Point L2 from Support 2, Second Span, 

h = '—h - F,h.(503) 

2+ 3 
12 

Distance of Point L3 from Support 3, Third Span, 

-Is = F2Z3. . . . (504) 

+ 3 

Distance of Point Ln from Support n, nth Span, 

/„ = --—--:-in = F2ln. 

In 

2 - 

1 

ln- 

fn — 1 

+ 3 

- 1) 

(505) 

Values of F1 and F2 may be taken from table, p. 157, for known 
span ratios and for the computed ratio of the span length to the distance 
of fixed point for the adjoining span. 

Formulas for Beam with Fixed Ends. Constant Moments of 

Inertia. 
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Distance of Left Fixed Point Li from Support 1, First Span, 

fi = ill.(506) 

Distance of Left Fixed Point L2 from Support 2, Second Span, 

h = 
1 

Va — 
y h 

V si 

-I2 = FJ&' (507) 

+ 3 

- 1, 

Distance of Point Ln from Support n, nth Span, 

fn= --:---:-In = Fil» 

——/ 2 - 
t-i 

\ fn—l 

1 
. (508) 

+ 3 

- 1, 

Values of F1 and F2 may be taken from table on p. 157 for known 
span ratios and ratios of span to fixed point of the adjoining span 
to the left. 

The distance /2 for free ends may be found directly. The other 
distances can be found only in succession by using the value found 
for one span in the computation of the value for the next span. 

Partially Restrained End.—For partially restrained ends the dis¬ 
tance fi is between 0 and %l, depending upon the degree of restraint. 
Formulas for other spans are the same as for fixed ends. 

Right Fixed Points.—The right fixed points may be found in the 
same manner as the left fixed points, starting at the right end. 

If n is the number of the span counting from the left, then the 
general equation for the distance of the right fixed point in that span, 
measured from the right support is 

General Formula} Distance of Right Fixed Point Rn in nth Span, 

/'» = 
ln+l 

In 
2 - 

In + 1 

f'n + 1 

In• . . (509) 
+ 3 

For the fifth span, for instance, n = 5, n+l=6 and the formula 

becomes 

/'• (510) 

The fixed points should be computed first for the last span, counting 
from the right. If r is the last span, then 
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Distance of Right Fixed Point for Last Span, 

/'r = 0 for free ends,.(511) 

f'r = llr for fixed ends,.(512) 

/'r = between 0 and llr for partly restrained end. . . (513) 

For the next to the last span use the general formula after substitut¬ 

ing for n the number of the span. The ratio refers to the last span 
f n+l 1 

and is either 0, 3 or some intermediate value depending upon end 
conditions. 

Values of Fi in Formula (603), p. 166_ 

Values of ^ 
h 

0.2 0.4 0.6 0 8 1.0 1 2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 

0.294 0.263 0.238 0.218 0.200 0.185 0.172 0.161 0.152 0.143 0 135 0 128 0.122 0.116 0 111 

These values can be used only when the end of the first span is free. 

To find constant for computing right fixed point in the span next to the last use instead of 

: the ratio of length of the last span to that of the span next to the last. 
i 

Values of Fa in Formulas (604) to (608), pp. 156 and 166 

Values of — 
Jn 

In 
8 7 6 5 4 3.5 3 

0.2 0 297 0.296 0.298 0.299 0 300 0.301 0.303 
0.4 0.267 0.268 0.269 0 270 meem 0.275 0.278 
0.6 0.243 0.244 0.245 0 247 Mm 0 252 0 256 
0.8 0.223 

Wmm 
0 226 0.227 Kmm 0 234 0.238 

1.0 0.205 Bfffl 0.208 0.210 II 0 217 0.222 
1.2 0.191 0 192 0 194 0.196 BI&9 0 204 0.208 
1.4 0.180 0.179 0.182 0.184 0.188 0 191 0 196 
1.6 0.168 0.169 0.170 0 173 0.177 0.180 0 185 
1.8 0 158 0.160 0 163 0.167 0.170 0 176 
2.0 0.149 0.150 mem 0.154 0.158 0.161 0.167 
2.2 0.141 0.142 BBS 0.146 0.150 0.153 0 159 
2.4 0.134 0.135 0.137 0.139 0.143 0.146 0.152 
2.6 0.128 

wmm mSSm 0.132 0.136 0.139 0.145 
2.8 0.122 B8H 1 1 0.127 0.130 0.134 0.139 
3.0 0.116 0.118 

• Ha 
0.121 0.125 0.128 0.133 

This table can be used for computing distance of right fixed points using 
t»+i 

instead of and instead of 
In J n+l Jn-l 
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Fixed Points for Beams of Equal Spans.—Fig. 76, p. 159, gives the 
location of fixed points for beams of three, four and five equal spans 
with free ends. 

Derivation of Formulas.—In Fig. 77, p. 160, are represented bending moments 

produced in the first three spans of a series of spans of a continuous beam, by loads 

placed in a span to the right of these spans. The spans are not loaded. 

From the three-moment equation applied as explained on page 17, following 

equations are obtained: 

from which 

2Mi(h + 1%) + Mzlt = 0, 

- Ms 

M* 
2(h + U) 

!> 
(514) 

from which 

Mill + 2Mi(li + U) -f- M*ls = 0, 

Mk li *4" U h Mi 
- Ms = IsT ” Ts (- Ms)' 

(515) 

From geometry of Fig. 77, p. 160, follows for the second span, 

-Mi = h-h _ lj _ 

Mi ft fi 

Comparing this with equation (514) 

A ” 1 " 20i + *)’ *u“ a‘25 + 3’ 
and finally 

/,= _1 it.(616) 

2- + 3 
li 

For the third span, following geometric relation is apparent 

M4 h-fs (h \ 

(-M.) f, \f, 7.(51 

Compare this with Equation (515) and substitute the value for 
M, 
- M,’ 

(i-O-'f(M8) 

f, l, U h 

/I-1 

from this 
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and finally 

/. 

This is a general equation. 

-h 
1 

hij _ 

ft 

Fig. 77.—Bending Moments in First Three Spans. (Sec p. 158.) 

(519) 

1-75 

Use of Fixed Points in Loaded Span.—The fixed points may be used 

to advantage in determining the bending moments at the supports in 

the loaded spans. 

As explained on p. 14 the actual bending moments in a span of a 

continuous beam may be found by drawing a static bending moment 

diagram for the loads and plotting at each end of the diagram downward 

the negative bending moments at the supports. The line connecting 

the two points at the supports thus obtained is the closing line for 

the actual bending moments in the span. The values below this line 

measured on vertical lines represent positive bending moments and 

above this line negative bending moments. 

To accomplish this the bending moments at the supports must be 
found which requires the solution of the three-moment equations. 

The work may be simplified by finding, instead of the bending 
moments at the support, the vertical distances to the closing line at 

the fixed points. 
These distances are given by the following equations. 
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Distance to Closing Line at Left Fixed Point, Constant Moment of 
Inertia (see Fig. 78, p. 160), 

Si = — fPC2 for single load P.(520) 

Si = — /2PC2 for number of loads in a span. . . . (521) 

Si — — {fwl for uniform loading.(522) 

Distance to Closing Line at Right Fixed Point, Constant Moment of 
Inertia (see Fig. 78, p. 160), 

Sr = — f'PCi for single load P.(523) 

Sr = — f'2PC 1 for number of concentrated loads. . . (524) 

Sr = — l fwl for uniform loading,.(525) 

in which / and /' are distances of the fixed points in the span under 
consideration and C1 and C2 are constants from Diagram 1, p. 19, 
depending upon the position of the load. 

Fig. 79.—Values of Si and Sr for Uniformly Distributed Loading. (See p. 162.) 

The solution of the problem is as follows (see Fig. 78). 
Find the distances of the fixed points from supports / and /'. 
Find for the loaded span the values of Si and Sr from Formulas 

(520) to (525), using the distances / and 
At the fixed points erect verticals and plot on them the values of 

Si and Sr thus obtaining points 1 and 2. In the line LI represents 
Si and R2 Sr. Connect points 1 and 2 and extend the line on both 
sides to the supports. Using this line as a closing line draw the static 
bending moment diagram. All the bending moments in the loaded span 
are now known. 

After the bending moments at the supports of the loaded span are 
known, the bending moments in the other spans are obtained graphically 
by using the fixed points. 
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It should be noted that this method gives the bending moments at 
the support for the condition of loading where only the span in question 
is loaded and all other spans are not loaded. If several spans are 
loaded, the bending moments at the support may be found by consider¬ 
ing successively each span as loaded separately and drawing for each 
case the bending moment curves in all spans. The final bending 
moments at the supports are then obtained by adding the bending 
moments produced there by the loads in various spans. 

Distance to Closing Line for Uniformly Distributed Load.—When 
the bending moment diagram for uniformly distributed loading is 
drawn, the values of Si and Sr may be easily found graphically by con¬ 
necting the points on the diagram at each support with the points at 
the center. The intersections of these two lines with the verticals 
at the fixed points give the values of Si and Sry respectively, in the 
same scale as used for drawing the bending moments. This is shown in 
Fig. 79, p. 161, as method 1. When it is desired to get the negative 
bending moments above the axis, method 2 may be used. This con¬ 
sists of erecting a vertical above the axis in the center of the span, 
scaling upon it the maximum static bending moment and connecting 
the apex with the supports. The intersection of these lines with 
verticals at L and R give Si and Sr. These points connected form a 
closing line for the bending moment diagram. 

Use of Fixed Points for Drawing Influence Lines.—Fixed points 
may be used to advantage for preparing influence lines for any desired 
section by drawing bending moment curves for unit loads placed at 
different sections throughout the beam. The bending moments at 
the desired section due to the unit loads are scaled and plotted on 
verticals passing through the corresponding point of loading. 

The method is best illustrated by the example below. 

Example.—Determine influence lines for bending moments at the center of the 

second span for a continuous beam of three spans of different lengths, h — 30 ft., 

U = 39 ft. and U = 24 ft. 

Solution.—First, find the fixed points using Equations (502) and (504), p. 155. 

Left fixed points L 

/i=0. 

ft 1 
2 X M + 3 

X 39 = 
1 

1.54 + 3 
X 39 = 8.6 ft. 

- 1 = 4.54 - 1 = 3.54, —5— = 0.28. 
fi h 

ff(2 - 0.28) + 3 
X 24 = 

u 1 

M"x-l172 4-3X24-r8X24"4-2ft- 





Fig. 80.—Method of Drawing Influence Lines Using Fixed Points. (See p. 164.) (To face p. 162) 
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Right fixed points R 

0. 
_1_ 
2X|| + 3 

X 39 = — X 39 = 9.2 ft. 
4.23 

h_ 

f* 
1 4.23 - 1 3.23, 

ft 
- 1 

1 
3323 

= 0.31 

/' i = 
— 0.31) + 3 

X 30 = — X 30 = 5.8 ft. 
5.2 

Divide each span into any desired number of sections. Find for each position 

of load values of Si and Sr and plot them at the fixed points above the basis. Connect 

the points and extend the line till intersection with verticals at support. Draw for 

each position of load a static bending moment diagram due to a load P — 1. This is 

a triangle with apex under the load and an altitude there equal to and 

measured from the line previously obtained. 

In this example each span was divided into six parts. However, bending moments 

at only one point in each span are shown so as not to confuse the drawing. The 

a 1 a 1 
points selected arbitrarily are in the first span - = in the second span - = - and 

in the third span - 
'3 

2 

3 

The static bending moments are, 

First span for - = - Yl —- jl = - X - X 30 = 6.67 ft.-lb. 
L 3 l\ ij 3 3 

Second span for = l{} ~~ l)^ ~ 2*2*^” ^.75 ft.-lb. 

Third span for ~ = | ^1 - ^ X - X 24 = 5.33 ft.-lb. 

For the selected points the values of Si and Sr for P = 1 are as follows: 

First span, /i = 0, f\ = 5.8 ft. 
* 

-=-,Ci= 0.30, Si = 0. Sr-cj\ = - 0.30 X 5.8 = - 1.74 ft.-lb. 
l\ 3 

Second span, /2 = 8.6 ft., = 9.2 ft. 

- = O, = 0.375, Si - -Cl/I = - 0.375 X 8.6 = - 3.3 ft.-lb. 

Ci = 0.375, Sr = - Ci/'t = - 0.375 X 9.2 = - 3.5 ft.-lb. 
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Third span, ft = 4.2, f» = 0. 

^ ? C2 = 0.37. S, = - Cy, = 0.37 X 4.2 = 1.56 ft.-lb. 
li 3 

Cl = 0.30. Sr — — Ci X 0. = 0. 

For these values bending moment diagrams are drawn in loaded spans as in Fig. 

80, opposite p. 162. 

Finally, draw the bending moment lines in the unloaded spans. In the end spans 

only one value, either Si or Sr, is required. 
The bending moment diagram for the point II in the first span is drawn as 

follows: At point f\ plot Sr = — 1.74 ft.-lb. and get point a. Connect point a 

with support 1 and get point b above point II, and c above support 2. Plot bd = 

6.67’ft.-lb. which is the static bending moment of load P = 1 lb. placed at point II. 

Connect point c with f\ in the second span and get point e below the support 3. 

The polygon ldcc41 is the bending moment diagram for a load P = 1 placed at 

point II. The bending moments above the axis 14 are positive, and below the axis 

negative. At the center of the second span (i.e., the point for which the influence line 

is drawn) the bending moment is equal to A. This value should be plotted on the 

influence diagram. 

The bending moment diagram for the point III in the second span is drawn as 

follows: at points /2 plot Si = — 3.3 ft.-lb. and get point g. Similarly get point 

h at f\. Connect gh and get points i, j and k. Plot the static bending moment 

Ik - 9.75 ft.-lb. To complete the diagram, connect i with 1 and j with 4. The 

bending moment diagram is H7;41. The value for the influence line is B to be 

plotted in the center of the second span. 

The bending moment diagram for point IV of the third span was drawn in the 

same manner as for the first span. The value for the influence line is C. 

It will be noted that, to get influence line for any point in the center span, 

it is not necessary to complete the bending moment diagrams in the other spans, 

as only the line ce of the diagram in the first span and the line op from the third 

span are required. Complete diagrams are required when influence lines for different 

points in all three spans are drawn. 

Draw an axis for the influence line parallel to the span and plot the supports and 

the division points. Erect verticals at each division point. After the bending 

moment diagrams are drawn scale for each position of the load the bending moment 

produced at the center of the second span (i.e., the section for which it is desired to 

draw an influence line) and plot it on the vertical passing through the position of 

the load. Minus values arc plotted above and plus values below the basis. 
This is shown in Fig. 80, opposite p. 162. 

FIXED POINTS FOR BEAM WITH VARIABLE MOMENTS OF INERTIA 

General rules for fixed points for beams with variable moments of 
inertia are the same as for beams with constant moments of inertia. 
Fig. 81, p. 105, shows fixed points for a continuous beam consisting 
of seven spans with free ends. L2 to L7 are left fixed points and R2 

to Rq are right fixed points. The left fixed point in the first span and 
the right fixed point in the last span coincide the ends of the beam. 
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Formulas for tho distance of the fixed points are derived in the 
same manner as for beams with constant moments of inertia but using 
the three-moment equation for variable moments of inertia. They are: 

Fig. 81.—Fixed Points for a Continuous Beam with Free Ends. (See p. 165.) 

Notation 

Let h, h, h ... ln = span length of continuous beam, numbering 
from the left; 

hy 12,13 . . . In = minimum moments of inertia of respective 
spans; 

a\f «2, as ... an = constants from Diagrams 13, p. 140, or 14, 
p. 141, depending upon shape and length of 
haunch and ratio of minimum to maximum 
moments of inertia in each span; 

0i, 02, 03 . . . 0» = similar constants from Diagram 13, p. 140, or 
14, p. 140; 

fly fi2y fs . . . fn = distances of left fixed points L\} L2 . . . Ln, 
from left support; 

jf'i,/'2,/'3 .../'»= distances of right fixed points Ri, R2 ... Rn 
from right support. 

General Formulas for Distances of Fixed Points. Haunches Sym¬ 

metrical. 

Left Fixed Points in nth Span, Measured from Left Support, 

0n 

/n = 
ln~ l In / 1 

2an + 0n + -T- 7— 2<*n-1 - 7-0n-l 

In. . (526) 

In In-1 1 

fn— 1 
- 1 

Right Fixed Points in nth Span, Measured from Right Support, 
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Special Formulas.—When the minimum moments of inertia of all 

spans are equal so that I\ = I2 = h = • • • In, also the shapes of the 
haunches, the ratios of length of haunch to length of span and finally the 
ratios of minimum to maximum moments of inertia are the same for 
all spans, then 

a\ ~ ol2 = ... an = a and /3i = ft* = 03 . . . 0n = 0 

and the formulas change to 
Special Formula for Distance of Left Fixed Point in nth Span, 

/« = (528) 

Special Formula for Distance of Right Fixed Point in nth Span, 

How to Use Formulas for Fixed Points.—After the dimensions of 
the beam are decided upon and the shape of the haunches selected, 
compute the minimum and maximum moments of inertia in each span. 
Compute the ratios of length of haunches to length of spans. Find for 
each span values of a and 0 from the proper diagram. For straight 
haunch use Diagram 13, p. 140, and for parabolic haunch use Diagram 
14, p. 141. 

The formulas (526) to (529) are general. If it is desired to get a 
formula for any particular span substitute for n the number of the span. 

Thus for the third span, for example, formula (526) changes to 

h = 

2a3 + £3 + lihU^ - 
kh[ 

-i3. (530) 

1 

h > 
h 

In this formula all values are known except — which must be found 
first before /3 can be computed. h 
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When finding the left fixed points start in the first span from the left. 
The fixed point there is 

fi = 0 for free end, 

fi = 3^1 for fixed end, 

fi = between 0 and \h for partly restrained end. 

Next find the fixed point in the second span /2, making in the proper 
formula n = 2 so that an and pn becomes a* and ft>, an-i and j3n-i, 

at and pi; ln becomes h and ln~ i changes to Zi. The ratio “ 
is either 0 for free end or J for fixed end. ^n~l •'1 

After/2 is found compute ^ and substitute it in the previously given 
J2 

formula for fa. Proceed thus until the fixed points for all spans are 
found. 

In computing right fixed points start from the right end and proceed 
in the same manner. In a beam with six spans, for instance, start with 
the sixth span for which the right fixed points are either zero or 
depending upon the end condition. Next compute the fixed points 
consecutively for the fifth span, fourth, span, third span, etc. 

Distance at Fixed Points to Closing Line, Loaded Span.—The dis¬ 
tance at fixed points to closing line of the bending moment diagram 
in loaded span is explained on p. 160. The formula for the distance 
for beams with variable moments of inertia is 

Distance to Closing Line at Left Fixed Point. Variable Moment of 

Inertia, 
Si = — fPpCv2 for single load P.(531) 

Si = — fXPfiCv2 for number of loads in a span. . (532) 

Si = — Ifwl for uniform loading.(533) 

Distance to Closing Line at Right Fixed Point. Variable Moment of 

Inertia, 
ST = — fPpCvi for single load P.(534) 

Sr = — jf; 2PpCv i for number of loads in a span. . (535) 

Sr =— Ifwl for uniform loading.(536) 

Values of Cv\ and Cv2 correspond to C\ and C2 in beams with con¬ 
stant moment of inertia. They may be taken from Diagrams 15 and 

I a 
16, pp. 144 and 145, for proper m and j and proper design of haunch. 
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Use of these values is described on p. 161 in connection with beams 
with constant moments of inertia. 

Influence Line for Beams with Variable Moments of Inertia.— 
Influence lines for beams with variable moments of inertia may be 
found in the same manner as for beams with constant moments of 
inertia. The fixed points, however, and the values of Si and Sr as 
determined for beams with variable moments of inertia should be used. 

INFLUENCE LINES FOR CONTINUOUS BEAMS 

When the loading consists of moving loads, as is the case in bridge 
design, it is necessary to determine the most unfavorable position of 
loading before the bending moments and shears at the selected section 
of the beam can be computed. For uniformly distributed loads it is 
sufficient to know which spans need to be loaded to get maximum 
results. For concentrated loads it is not sufficient to load some specified 
spans but, in addition, the largest concentrated loads must be placed 
in positions producing at the selected section the maximum bending 
moments or shears. 

If it is desired to get exact results the problem can be solved in the 
easiest manner by means of influence lines. 

Definition of Influence Lines.—It has been explained in previous 
paragraphs that a load placed anywhere on a continuous beam produces 
bending moments and shears at every cross-section of the beam (see 
p. 6). To get bending moments and shears at any selected section, 
it is necessary to find the effect on that section of loads placed in dif¬ 
ferent positions throughout the beam. This can be done by means 
of the so-called influence lines. 

Influence lines for any selected section, therefore, are lines giving 
the effect upon that section of unit loads placed anywhere on the beam. 
Since the selected section may be subjected to bending moments and 
shears, influence lines may be prepared for bending moments and for 
shears. 

In Fig. 83, p. 172 are shown influence lines for bending moments at 
various points of a beam consisting of three spans. The influence line 
for any point is partly above and partly below the axis. The loads 
placed in the part of the beam where the influence line is above the 
axis produce positive bending moments at the point under consideration. 
The loads placed where the influence line is below the axis produce 
negative bending moments. To get maximum positive or negative 
bending moments the positive or negative sections only respectively 
should be loaded. 
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Method of Preparing Influence Lines.—Influence lines for bending 
moments at a selected section are prepared as follows: 

The beam is laid out to any desired scale. Each span is divided 
into a desired number of divisions, say, ten divisions per span. Vertical 
lines are erected at each division point. Bending moments produced at 
the selected section by a unit load placed successively at every division 
point are then computed. Each computed value is plotted upon the 
vertical passing through the division at which the load was assumed 
to act. Negative values are plotted above the axis and positive values 
below the axis. 

The method is illustrated in the following example: 
It is desired to get an influence line for bending moments at the center 

of the center span of a continuous beam of three spans with free ends. 
On p. 54 are given formulas for bending moments at any point x 

in the center span due to loads placed at a distance a from support 
in the first span and center span, respectively. These are 

Bending Moment at Any Point x in the Center Span Due td Load in 

First Span, 

Bending Moment at Any Point x in Center Span Due to Load in 

Center Span} 

Mx 

Mx 

^/'4“ — Fsjpl for x smaller than a.(538) 

[(ft — 1)~ — F5 + ~j PI for x larger than a. . (539) 

These formulas may be used for drawing influence lines. Since it 
is desired to get bending moments at the center, substitute in the 
formulas just given x = \l. The load is made P = 1. 

Since in an influence line the position of the load is variable (instead 

of being fixed as in Formulas (537) to (539)) the constant values of - 
l 

are replaced by variable 
t 

Let y = ordinate of the influence line. 
Then the formula for bending moments at the center of the center 

span due to a load P = 1 placed anywhere in the beam may be designated 

Mhx = yl 
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The formula for influence line thus becomes 

Formula for Influence Line for Bending Moment at Center of First 

Span: 

First Span, 

y = (- 1 + l X i)^ * 

Second span, 

x 
y = QF4 — F5) for - smaller than 2, 

l 

y = 5(f*-d-F5 + - for - larger than 2. 
L 

In the same manner influence lines may be prepared for end shears. 

Influence Lines for Equal Spans.—Figs. 82 and 83 give influence 

lines for two and three equal spans. In each case lines are given for 

bending moments at supports, in the center and at several intermediate 

points and for end shears. 

Use of Influence Lines.—When the influence lines are drawn the 

bending moments or shear for any type of loading may be found by 

multiplying the loads by the corresponding ordinate in the influence 

line and adding the result. 

Usually it is sufficient to find by means of influence lines bending 

moments at the center and at the quarter points. The line of positive 

bending moments is obtained by plotting the positive values obtained 

for the three points from influence lines on vertical lines and drawing 

through them and the supports a curve resembling a parabola. The 

curve thus obtained represents approximately the positive bending 

moments due to most unfavorable loading of the span. The positive 

bending moments near the support are obtained by partial loading of 

the span. Full loading would have produced negative bending moments 

at those points. 

In the same manner curves are drawn for negative bending moments. 

Use of Fixed Points for Influence Lines—For beams consisting of 

unequal spans it is easiest to prepare influence lines using the fixed 

points as explained on p. 162. 
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Influence Line for 
Support i 

Influence Line for 
xa0.3l in First Span 

Influence Line for 
x~0.5l in First Span 

Influence Line for 
x~0.6l in First Span 

SShear at left support Vt 

s. max. 0.0981-^. 
trj <N <■— cS *<D *■* ®p 
K. *0 vjHS *N *0 . 

O do S HO O Q> 
C> O Ol C> c>| CS 

o d o ci o> p oddddddddd 

\-Shear at right support Vtl I 
l-->1 

Influence Line for 
Shear in First Span 

Influence Line for 
Reactions at Support t 

Fig. 82.—Influence Lines for Two Equal Spans. Free Ends. (See p. 170.) 
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Influence Line far 
Support 2 

Influence Line for 
x = 0 Si in First Span 

Influence Line for 
x»0.5l in First Span 

Influence Line for 
x*>0 7l in First Span 

Influence Line for 
* a 0 Si in Second Span 

Influence Line for 
2 = 0.51 in Second Span 

Fig. 83.—Influence Lines for Three Equal Spans. Free Ends. (See p. 170.) 

Fig. 84.-—Influence Lines for Shears for Three Equal Spans. Free Ends. (See p. 170.) 
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USE OF FORMULAS FOR CONTINUOUS BEAM IN DESIGN 

The use of the formulas given in this chapter is illustrated by five 
examples given on pp. 178 to 207. 

In general the object is to determine the absolute maximum bending 
moments at the critical sections, namely, at the supports and in the 
middle portion of the spans. These determine the dimensions of the 
beam unless larger dimensions are required by shear and the required 
amount of longitudinal reinforcement. Next it is required to determine 
the absolute maximum bending moments at the intermediate points 
by drawing the maximum bending moment diagrams. These are 
useful in determining the points of bending up or down of the longitud¬ 
inal reinforcement. 

Also it is usually necessary to compute the absolute maximum 
shears at the supports and to draw the absolute maximum shear dia¬ 
grams. The maximum shear, being a measure of diagonal tension, 
may determine the size of the section. The shear diagram may be 
used in determining the diagonal tension reinforcement. 

Absolute Maximum Bending Moments or Shears.—Absolute maxi¬ 
mum bending moments or shears are the largest values that can be pro¬ 
duced at any point by the dead load and the most unfavorable position 
of the live load. 

Bending moments and shears should be computed separately for the 
dead load and for the most unfavorable positions of the live load. 

For the dead load all spans must be considered as loaded simul¬ 
taneously. 

For live load only such spans should be considered as loaded which 
produce at the section under consideration bending moments or shears 
of the proper sign. Thus, if it is desired to find the maximum negative 
bending moment at support 2, the live load should be placed only in 
positions giving negative bending moments at support 2. 

The bending moments and shears to be used in designing the beam 
are obtained by adding the values due to the dead load to the absolute 
maximum values due to the five load. The above rule applies in all 
cases where the bending moments or shears due to the dead load are 
of the same sign as those for the live load. 

If, however, the bending moment due to dead load is of opposite 
sign to the absolute maximum value due to the live load, so that the 
dead load balances wholly or partially the effect of the live load, this 
rule must be modified. In such case the bending moment or shear to 
be used in design is equal to the maximum value due to the live load 
plus the value due to the dead load divided by a factor of safety. 
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Absolute maximum negative bending moments at the supports are 
always obtained directly from the formulas or tables as just described. 

Maximum positive bending moments can be obtained directly by 
adding the maximum positive bending moments for the dead load 
to the absolute maximum positive bending moments for the live load 
only when the location of the points of maximum bending moments in 
both cases are the same. Where the location of the points of maximum 
values are different, the maximum positive bending moments are 
obtained as follows: 

Compute in the considered span the negative bending moments at 
the supports due to dead load. 

Compute also in the same span the negative bending moments at 
the supports due to the position of live load producing absolute maxi¬ 
mum positive value. 

Add the bending moments at the supports and plot them above a 
selected axis on verticals erected at the supports. 

Connect the points thus obtained and considering this line as a 
closing line draw a static bending moment diagram for the dead load 
plus the live load. The part of the diagram below the axis gives the 
positive bending moments. The maximum value may be found by 
scaling. 

For uniformly distributed loading the maximum positive bending 
moment for known negative bending moments at the supports may be 
found by using Table on p. 176. The method is explained on p. 22. 
The location of the point of maximum positive bending moment also 
may be found using Table on p. 177. 

The absolute maximum positive and negative bending moments are 
sufficient to determine the required amounts of longitudinal reinforce¬ 
ment at the supports and in the central portion of the beam. The 
points at which the amount of longitudinal reinforcement may be 
reduced by bending up some of the bars may be obtained from the 
absolute maximum bending moment diagram which gives the maximum 
possible bending moments at all points of the beam. The method of 
preparing the diagrams is described in the succeeding paragraphs under 
proper heading. When several beams of similar character are designed 
it may be sufficient to draw the maximum moment diagram only once 
and accept the same location of points of bending of bars for all beams. 
Also the diagrams given in this volume in connection with tables for 
equal spans may be used as a guide for determining the points at which 
the reinforcement may be reduced by bending up (or down). In such 
manner the necessity of drawing the maximum bending moment diagram 
may be obviated. 



USE OF FORMULAS FOR CONTINUOUS BEAM 175 

In case of unequal spans it is always advisable to draw the maximum 
bending moment diagrams. 

To design the diagonal tension reinforcement it is necessary not 
only to compute the maximum end shears but also to draw the maximum 
shear diagrams which give the maximum shears at the intermediate 
points. 

Diagrams of Absolute Maximum Bending Moments.—The diagrams 
for absolute maximum bending moments are a combination of the 
bending moment diagram for the dead load with the bending moment 
diagrams for such positions of live load as give the absolute maximum 
values at all points in a beam. The curves giving absolute maximum 
bending moments are therefore composite curves parts of which are due 
to one type of loading, while other parts may be due to some other 
type of loading. The curves for maximum negative bending moments 
always overlap the curves for maximum positive bending moments. 

The simplest method of drawing the absolute bending moment 
diagrams is to draw separate diagrams for the dead load and to the 
same scale diagrams for each of the critical positions of the live load. 
The diagrams are drawn as shown in Fig. 85, p. 180, and Fig. 93, 
p. 198. The ordinates representing the bending moments due to the 
dead load are added to those giving maximum values for the live load and 
are plotted. The resulting diagrams are shown at the bottom of Figs. 
85 and 93. In this connection it should be remembered that where 
the dead load bending moment is of opposite sign to the live load 
bending moment, the dead load ordinates should be divided by a factor 
of safety before deducting them from the live load ordinates. 

The work in connection with drawing the absolute maximum 
diagrams may be reduced by using the method described and illustrated 
in the example 2, p. 185. 

Absolute Maximum Shear Diagrams.—The method of preparing 
maximum shear diagrams is clearly shown in examples on pp. 182, 187, 
191, 199 and 207. The diagrams are also clearly shown. 
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Table.—Maximum Positive Bending Moment in Continuous Beam 
For Known Bending Moments at Support 

Constant Cm 

in Mmax = CMwl2 

Mr Values of Mi *7- WP 

wla 0 0 01 0 02 0 03 0.04 0 05 0.06 0 07 0 08 

0.00 0.125 0.120 0.115 0 110 0.106 0 101 0.097 0.092 0.088 

0.01 0.120 0.115 0 110 0.105 0.100 0.096 0.091 0.087 0.082 

0.02 0.115 0.110 0.105 0.100 0.095 0.090 0.086 0.081 0.077 

0.03 0.110 0.105 0 100 0.095 0 090 0 085 0.080 0.076 0.071 

0.04 0.106 0 100 0.095 0.090 0.0S5 0.080 0.075 0.070 0.066 

0.05 0.101 0.096 0.090 0 085 o.oso 0 075 0.070 0.065 0.060 

0.06 0.097 0.091 0 086 0.080 0.075 0 070 0.065 0.060 0.055 

0.07 0.092 0.087 0 081 0.076 0.070 0.065 0.060 0.055 0.050 

0.08 0.088 0.082 0.077 0.071 0.066 0 060 0.055 0.050 0.045 

0.0833 0.087 0.081 0 075 0 070 0.064 0.059 0.054 0 048 0.043 

0.09 0.084 0.078 0.072 0 067 0.061 0 056 0.050 0.045 0.040 

0.10 0.080 0.074 0 0G8 0 062 0 057 0 051 0.046 0.040 0 035 

0.11 0 076 0 070 0.064 0 058 0.052 0.047 0 041 0.036 0.030 

0.12 0 072 0.0G6 0.060 0 054 0 048 0.042 0.037 0.031 0.026 

0.125 0.070 0.064 0.058 0 052 0.046 0 040 0 035 0.029 0.023 

0.13 0.068 0 062 0.056 0.050 0 044 0.038 0 032 0.027 0.021 

0.14 0 065 0 058 0 052 0 046 0.040 0 034 0.028 0.022 0.017 

0.15 i 0 061 0 055 0 048 0 042 0 036 0 030 0 024 0 018 0 012 

0.0833 0.09 0 10 0.11 0.12 0 125 0.13 0.14 0.15 

0.00 0.087 0 084 0 080 0 076 0.072 0.070 0.068 0.065 0.061 

0 01 0 081 0 078 0.074 0 070 0 066 0 064 0.062 0.058 0.055 

0.02 0.075 0 072 0.068 0.064 0 060 0 058 0 056 0.052 0.048 

0 03 0.070 0 067 0 062 0 058 0 054 0.052 0.050 0 046 0.042 

0.04 0.064 0 061 0.057 0 052 0 049 0 046 0 044 0.040 0 036 

0 05 0.059 0 056 0 051 0 047 0 042 0 040 0.038 0.034 0.030 

0 06 0.054 0 050 0 046 0 041 0.037 0 035 0.032 0.028 0.024 

0.07 0.048 0.045 0.040 0.036 0.031 0.029 0.027 0.022 0.018 

0.08 0.043 0 040 0.035 0 030 0 026 0.023 0.021 0.017 0.012 

0.0333 0 042 0 038 0.033 0 029 0 024 0 022 0.019 0.015 0.011 

0.09 0.038 0.035 0.030 0 025 0 020 0 018 0.016 0.011 0.007 

0.10 0.033 0.030 0 025 0.020 0 015 0.017 0 010 0.006 0.001 

0.11 0 029 0 025 0.020 0.015 0.010! 0.008 0.005 0.000 -0.004 

0.12 0.024 0.020 0.015 0.010 0 005 0.002 0.000 -0.005 -0.010 

0.125 0 022 0.018 0.013 0 008 0.002 0 000 -0.002 -0.007 -0.013 

0.13 0.019 0.016 0.010 0.005 0.000 -0.003 -0.005 -0.010 -0.015 
0.14 0.015 0.011 0 006 0.000 -0.005 -0.007 -0.010 -0.015 -0.020 
0.15 0.010 0 007 0 001 -0 004 -0 010 -0 012 -0 015 -0.020 -0.025 

Mi =* Bending moment at left support. Mr = Bending moment at right support. 
Mmax = Maximum positive bending moment, w = Unit load. I = Span length. 
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Table.—Left Reaction in Continuous Beam and Point of Maximum Positive 
Bending Moment for Known Bending Moments at Support 

Constant Cv 

in V\ — Cywl and X\ = Cyl 

Mr Values of Mi - T* Wl2 

wl2 0 0 01 0.02 0 03 0.04 0 05 0 06 0.07 0 08 

0.00 0 50 0 51 0.52 0 53 0.54 0.55 0.56 0.57 0.58 
0.01 0.49 0.50 0.51 0 52 0 53 0 54 0 55 0 56 0.57 
0.02 0.48 0.49 0 50 0 51 0.52 0 53 0 54 0.55 0.56 
0.03 0 47 0.48 0 49 0 50 0 51 0 52 0 53 0.54 0 55 
0.04 0.46 0.47 0 48 ( 0 49 0 50 0 51 0 52 0 53 0.54 
0.05 0.45 0.46 0 47 0.48 0 49 0 50 0 51 # 0.52 0 53 
0.06 0.44 0.45 0 46 0 47 0 48 0 49 0 50 0 51 0 52 
0 07 0.43 0 44 0.45 0.46 0 47 0.48 0 49 0 50 0.51 
0.08 0.42 0.43 0 44 0.45 0 46 0 47 0.48 0 49 0.50 
0.0833 0.42 0.43 0.44 0.45 0.46 0 47 0 48 0 49 0 50 
0.09 0.41 0.42 0 43 0.44 0 45 0 46 0 47 0.48 0 49 
0.10 0.40 0.41 0.42 0 43 0 44 0 45 0.46 0.47 0.48 
0 11 0.39 0.40 0.41 0.42 0 43 0 44 0 45 0 46 0.47 
0.12 0.38 0.39 0.40 0 41 0.42 0.43 0.44 0 45 ! 0 46 
0.125 0.375 0.385 0.395 0.405 0.415 0.425 0 435 0.445 ; 0 455 
0.13 0.37 0.38 0.39 0 40 0.41 0.42 0.43 0.44 0 45 
0.14 0.36 0.37 0.38 0.39 0 40 0.41 0 42 0 43 0 44 
0.15 0 35 0 36 0 37 0 38 0 39 0 40 0 41 0 42 1 0 43 

0.0833 0 09 0 10 0 11 0 12 0 125 0 13 0 14 | 0 15 

0.00 0.5833 0.59 0.60 0 61 0 62 0.625 0.63 0.64 0 65 
0.01 0.5733 0.58 0 59 0.60 0 61 0 615 0.62 0 63 0.64 
0.02 0.5633 0.57 0.58 0.59 0 60 0.605 0.61 0.62 0.63 
0.03 0.5533 0 56 0.57 0 58 0 59 0.595 0 60 0.61 0.62 
0.04 0.5433 0 55 0.56 0.57 0.58 0.585 0.59 0.60 0.61 
0.05 0.5333 0.54 0.55 0 56 0 57 0 575 0 58 0.59 0 60 
0.06 0.5233 0 53 0.54 0 55 0 56 0.565 0.57 0.58 0 59 
0.07 0.5133 0.52 0.53 0.54 0.55 0.555 0.56 0.57 0.58 
0.08 0.5033 0 51 0.52 0.53 0 54 0 545 0.55 0.56 0.57 
0.0833 0.5000 0.51 0.52 0.53 0 53 0.542 0.55 0.56 0.57 
0.09 0.4933 0 50 0 51 0.51 0.53 0.535 0.54 0.55 0.56 
0.10 0.4833 0.49 0.50 0 51 0.52 0.525 0.53 0.54 0.55 
0.11 0.4733 0.48 0.49 0.50 0.51 0.515 0.52 0.53 0.54 
0.12 0.4633 0.47 0.48 0.49 0 50 0.505 0 51 0.52 0 53 
0.125 0.4583 0.465 0.475 0.485 0.49 0.500 0.50 0.51 0.52 
0.13 0.4533 0.46 0.47 0.48 0.49 0.495 0.50 0.51 0.52 
0.14 0.4433 0.45 0 46 0.47 0 48 0.485 0 49 0.50 0.51 
0.15 0.4333 0 44 0.45 0 46 0 47 0.475 0.48 0.49 0.50 

Mi = Bending moment at left support. Mr = Bending moment at right support. 
Vi = Left reaction. Xi = Point of Maximum Positive Bending Moment, w « Unit 
load. I *= Span length. 
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THREE EQUAL SPANS CONCENTRATED LOADS 

Example 1.—Design a continuous girder of three equal spans, supporting longi¬ 

tudinal beams placed at the supports and at the centers of the spans. The span 

lengths, the general dimensions and the allowable stresses are: 

Span of girders, l = 20 ft. 

Span of beams, l\ = 22 ft. 

Live load, w = 200 lb. per sq. ft. 

Dimensions of slab and beams: 

Slab, t — 6 in. 

. Beam, b = 12 in. 

h = 28 in. 

Allowable unit stresses: 

fe = 800 lb. per sq. in. 
fe = 900 lb. per sq. in. at supports 

/, = 16 000 lb. per sq. in. 

v — 401b. per sq. in. in plain concrete 

v = 120 lb. per sq. in. with web reinforcement 

n = 15 

Solution.—The dead and live loads (excepting the weight of the girders) being 

transmitted to the girders by the beams an', therefore, concentrated. The uni¬ 

formly distributed weight of the girder which forms only a small proportion of the 

total load, may be assumed , for the sake of simplicity, to be concentrated at each 

beam without any appreciable error. 

The concentrated loads are: 

Concentrated dead loads, 

Slab, 75 X 10 X 22, = 16 500 lb. 

Beam (below slab), ^ X 12 X 22 X 150 X 21 - 5 800 lb. 

Dead load of girder, considered as concentrated, 300 X 10 = 3 000 lb. 

Concentrated dead load at each point, = 25 300 lb. 

Concentrated live load at each point, 10 X 22 X 200 = 44 000 lb. 

Bending Moments.—The bending moments may be obtained by multiplying 

the constants from Table on p. 58, by the concentrated dead load and the con¬ 

centrated live load, respectively, and by the span. To get the bending moments 

in inch-pounds use the span length in inches. Thus the constants should be mul¬ 

tiplied by 

for dead load PI « 25 300 X 20 X 12 - 6 072 000 in.-lb. 

for live load PI =* 44 000 X 20 X 12 =» 10 560 000 in -lb. 
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The results arc tabulated in the table below: 

Dead Load 

Live Load in 

1st and 2nd Span 1st and 3rd Span 2nd Span 

Constant 
Actual 

value 
Constant 

Actual 

value 
Constant 

Actual 

value 
Constant 

Actual 

value 

1 
Inch-kips Inch-kips Inch-kips Inch-kips 

M2 -0.15 - 910.8 -0.175 -1850 0 -0.075 -792 0 -0.075 -792.0 
M* -0.15 - 910 8 -0 05 - 528 0 -0 075 -792 0 -0.075 -792.0 

M linax 0.175 + 1062.6 0 163 1710 0 0.212 2240.0 

M 2max 0 1 

! ; 

-F G07 2 0.137 1150 0 1 0 175 1850.0 

All bending moments are in inch-kips (1 inch-kip = 1000 in.-lb.). 

These bending moments arc plotted in Fig. 85, p. 180. 

The maximum bending moments are obtained by combining the bending moments 

due to the dead load with the bending moments due to the most unfavorable condition 

of the live load.8 The diagram at the bottom of Fig. 85 gives the combined bending 

moments for which the beam should be designed. The maximum bending moments 

are given in the table below: 

Absolute Maximum Bending Moments 

Negative Rending 

Moments at 

Supports 

Positive Bending Moment 

First span Second span 

Dead load. 

Inch-kips 

- 910.8 

-1850.0 

Inch-kips 

1062.6 

2240 0 

Inch-kips 
607.2 

1850.0 Live load. 

Total. -2760.8 3302.6 2457 2 

Rending moments are in inch-kips (1 inch-kip = 1000 in.-lb.). 

External Shears.—The external shears are obtained by multiplying the constant* 
m table on p. 58, by P = 25 300 lb. for the dead load and P = 44 000 lb. for the 
live load. To get the absolute maximum values use the figures in black-face type. 

8 See p. 92 for method of combining the live load and dead load. Where the 
bending moments due to dead load are of opposite sign to the bending moments 
due to live load, divide them by a factor of safety before deducting from the bending, 
moments due to live load. 
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0 S 10 IS 2pA f 1000 20g0 3000 

8eaU for Lengths Scale for Bending Moments 

Fig. 86.—Bending Moment Diagrams. (See p. 178.) 
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The table below gives the maximum end shears at the first and the second supports. 
Due to symmetry the end shears at supports 1 and 4, and at supports 2 and 3, 
respectively, are equal. 

End Shears Absolute Maximum Values 

V, V2i V2r 

Dead load. 
Live load. 

Kips 
0.35X25 3= 8 9 

0 425X44 0 = 18 7 

Kips 
0 65X25 3 = 16.4 

0 675X44.0=29 7 

Kips 
0 5 X25.3 = 12.6 

0 625X44.0 = 27.5 

Total. 27 6 46.1 40.1 

The shears are given in kips (1 kip — 1000 lb.;. 

Design of the Girder.—After the maximum bending moments and shears are 
computed, the girder is designed in the manner described in Vol. I, pp. 215 to 240. 
The dimensions of the section of the girder arc usually controlled either by the 
maximum shear or by the maximum negative bending moment. The dimensions 
required at the support are larger than required at the center of the girder because 
at the support the girder must be considered as a rectangular beam, while in the 
center it is a T-beam. 

Assume width of section b = 14 in. 
Depth Required by Diagonal Tension.—For V = 46 100 lb., assuming j = 0.9 and 

v = 120. 
46 100 

0 9 X 14 X 120 
30.4 in. 

Depth Required at Support.—Assume that one-half of the required tensile rein¬ 
forcement will be used as compression reinforcement at the support. 

Then pf = 0.5pi. Assume a =0.1. 
Using Diagram 7, p. 904, Vol. I, for fe — 900, f8 — 16 000, and n — 15 the 

desired relation p' = 0.5pi is obtained for p' = 0.095 and pi = 0.019. For pi = 
0.019 the depth is obtained from Formula (26), p. 222, Vol. I, 

J I 2 760 800 , . 
d ~ 1.05\f-= 25.4 in. 

\14 X 0.019 X 16 000 

Selected Dimensions.—The depth required by shear is larger than the depth 
required by the bending moment. Therefore the accepted section is (see Fig. 86) 

b = 14 in. 
d = 31 in. 

Required Amount of Steel. 

At support, 

_ 2 760 800 

* ~ 0.9 X 31 X 16 000 
6.2 sq. in. 
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Center, first span, 

A _ 3 302 600 

* ~ 0 9 X 31 X 10 000 
7.4 sq. in. Use 6—1-in. sq. 

2—1-in. rd. 

6.0 sq. in. 

1.6 sq. in. 

Total, 7.6 sq. in. 

Center, second span, 

As 
2 457 200 

(TiTx 31 X 16 000 
= 5.5 sq. in. Use 4—1-in. sq. 

2—1-in. rd. 

4 0 sq. in. 

1.6 sq. in. 

Total 5.6 sq. in. 

Points of Bending Reinforcement.—The points at which the longitudinal bars 

may be bent up may be determined from the bending moment diagram showing 

the maximum bending moments. (See Fig. 86 opposite p. 182.) 

The amount of bending moment resisted by each bar is computed and plotted 

on the bending moment diagram. Where the bar is bent up the corresponding 

area stops. The steel should be arranged so that the total bending moment diagram 

is properly covered by the resisting moment due to the bars. 

Diagonal Tension Reinforcement.—The amount of diagonal tension reinforce¬ 

ment is determined in the same manner as described in Vol. I, p. 251. The shear 

is considered as a measure of diagonal tension. 

A shear diagram is drawn for the most unfavorable combination of the dead and 

live loads. (See Fig. 86.) 

The amount of shear resisted by the concrete is plotted assuming that concrete 

alone resists 40 lb. per sq. in. 

The bent bars are located and their value for resisting diagonal tension computed. 

Diagonal tension resisted by 1 in. sq. bar = X 16 000 = 22 900 lb. 

Since the maximum shear in the beam to be resisted by reinforcement is 1 080 lb. 

per lin. in. and the spacing of bent bars is 15 in., the total amount of shear to be 

resisted in the distance tributary to one bent bar is 15 X 1 080 = 16 200 lb. The 

computed strength of the bar is larger than the amount of diagonal tension to be 

resisted. Hence the bent bar is sufficient to take care of its tributary distance. 

The same can be proved about the 1-in. rd. bars. 

Stirrups are required only in the sections which are not taken care of by the 

bent bars. Adopt two pronged stirrups made of f-in. rd. bars. The value of one 

stirrup is 2 X 0.307 X 16 000 = 9 824 lb. This divided by the shear per lin. in. 

to be resisted gives the spacing of the stirrups. Thus, at the left end the shear to 

be resisted by the stirrups is 420 lb. per lin. ft. and the allowable spacing of stirrup 

is * 23 in. The stirrups will be spaced as shown in Fig. 86, opposite p. 182. 
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THREE UNEQUAL SPANS, SYMMETRICAL ARRANGEMENT. UNIFORM 

LOAD 

Example 2.—Design a continuous beam of three unequal spans. The arrange¬ 
ment of spans and their length are 

h = 14 ft. U = 24 ft. h = 14 ft. 

Loading 

Dead load, w\ = 1 300 lb. per lin. ft. 

Live load, w2 — 3 000 lb. per lin. ft. 

Total, w = 4 300 lb. per lin. ft. 

Allowable stresses same as in Example 1. 

Solution.—For this condition use formulas given on p. 66 for arrangement of 
spans 

Compute ratio m: 

ml, l, ml. 

m 
Ii i4 

T2~ 24 
0.58. 

Compute: 

Dead Load Live Load 

wl. 
w(ml). 

12 wl2. 

I2w(ml)2. 

hoi2 X 12. 

\(ml)» X 12. 

31 200 lb. 

18 200 lb. 

8 908 000 in.-lb. 

3 000 000 in.-lb. 
1 113 000 in.-lb. 

383 000 in.-lb. 

72 000 lb. 

42 000 lb. 

20 700 000 in.-lb. 

7 000 000 lb.-lb. 

2 593 000 in.-lb. 

882 000 in.-lb. 

From Diagram 10, p. 70, get the constants Gi, <72, Gz, GA, and <7*. 

Gi = 0.072 G2 = 0.077 Gz = 0.055 G4 = 0.012 G6 = 0.06 

Using these constants compute all the required coefficients for shears and bending 

moments for the dead load and for all critical positions of live load using Formulas 

(178) to (216). The coefficients are given in the following table 
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-1- 

Dead Load 

Live Load in 

1st and 2nd Span 1st and 3rd Span 2nd Span 

Coefii- Actual Coeffi- Actual Coeffi- Actual Coeffi- Actual 
cients value cients value cients value cients value 

Kips Kips Kips Kips 

V, 0.166 5.2 0.157 11 3 0.27 19.4 -0.108 - 7.8 

Vil 0.414 12.9 0.423 30.6 0.31 22.3 0.108 7.8 

Vi T 0.5 15.6 0 522 38.0 0 5 36.0 

Vn 0.5 15 6 0 478 34.0 0.5 36 0 

JV 0.414 12.9 0.095 6.8 0.31 22.3 0.108 7.8 

v4 0.166 5 2 , -0.095 - 6.8 0.27 19.4 -0.108 - 7.8 

Inch-kips Inch-kips Inch-kips Inch-kips 

Mi 0 072 —646 0 0.077 -1590 0 0.012 -249 0 0.06 -1246.0 

Mz 0 072 -646 0 0 055 -1140 0 0.012 -249.0 0.06 -1246.0 

Afimax 0 014 216 0 0.012 249 0 0.037 770.0 

Afsmax 0.053 476.0 0.059 1220.0 0.063 1290.0 

All shears are in kips (1 kips = 1000 lb.). 

All bending moments are in inch kips (1 inch kip = 1000 in.-lb.). 

Maximum Negative Bending Moments.—Maximum bending moments at the 

supports are obtained by adding the bending moments due to dead load to the 

absolute maximum value for live load. 

Mi =Mi = — 646.0 - 1 590.0 = - 2 236 in.-k. 

= - 2 236 000 in.-lb. 

Maximum Positive Bending Moments.—To get exact maximum positive bending 

moment in the first span it is not possible to add the maximum bending moment 

due to dead load to the absolute maximum positive bending moment due to live 

load because these two bending moments act at different points. Instead proceed 

as follows: Add end shear at support 1 for dead load to that of live load when first 

and third spans are loaded. 

Vi = 5.2 + 19.4 = 24.6 k. = 24 600 lb. 

The unit dead and live load is w = 1 300 + 3 000 = 4 300 lb. The point of maxi¬ 

mum positive bending moment is at the point of zero shear. 

7, 24 600 e 
X\ — — = - —- = 5.72 ft. 

w 4 300 

Finally, 

Mimax - IV'iSi = i X 24 600 X 5.72 = 70 400 ft.-lb. = 845 000 in.-lb.9 

• This bending moment is smaller than the sum of the Mx max for dead load plus 

the absolute maximum for live load which is 216 + 770 - 986 000 in.-lb. 
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In the second span the maximum positive bending moment may be obtained 

directly from the table by adding dead load to absolute maximum live load. 

= 476.0 -f 1 290.0 = 1 766.0 in.-k. = 1 766 000 in.-Ib. 

Maximum End Shears.—Maximum end shears arc obtained by adding the end 

shear due to dead load to the absolute maximum values due to live load. 

Vi = 5.2 + 19.4 = 24.6 k. = 24 600 lb. 

V2J = 12.9 + 30.6 = 43.5 k. = 43 500 lb. 

Vtr « 15.6 + 38.0 = 53.6 k. = 53 600 lb. 

The end shears at the supports 3 and 4 are the same as at the supports 2 and 1, 

respectively. 

Maximum Bending Moment Diagrams.—To get the points at which the longi¬ 

tudinal bars may be bent up it is necessary to draw the maximum bending moments 

diagrams. These are combinations of the bending moment diagrams for the dead 

load with the diagrams for the most unfavorable positions of the live load. 

To draw the diagrams proceed as follows: First, the diagrams for maximum 

negative bending moments are drawn by plotting the bending moment diagrams for 

the dead load plus the live load extending over the first and second spans. In 

such case 
M2 = — 646 — 1 590 = — 2 236.0 in.-k. 

Ms 646 - 1 140 = - 1 7S6.0 in.-k. 

Plot the negative bending moments at the supports 2 and 3, respectively and get 

points a and b. Connect points a and 6, also points 1 and a and get the closing 

lines la and ab for the static bending diagrams. Plot in the first and second span 

the static bending moment diagrams for dead plus live load, for which the maximum 

static bending moments an; 

First span M = -\2- X (1.3 + 3.0) X 14* = 1 260.0 in.-k. 

Second span M = X 4.3 X 24* = 3 720 in.-k. 

To complete the diagram in the first span combine the negative bending moment 

at the support 2 when the second span, only, is loaded with the bending moments 

for one-half of the dead load. (See p. 92.) 

646 0 
Mi =--- 1 240 = - 1 563.0 in.-k. 

Plot this at the support 2 and get point g. Using lg as a closing line draw the 

bending moment diagram for one-half the dead load for which the maximum static 

12 13 
bending moment is M = —- X — X 14* = 191.5 in.-k. 

8 2 

The work is simplified by including the values of m and m* in the formulas in 

the coefficients. Then the values of the shears in all spans are obtained by multiply¬ 

ing the coefficients by wl and the values for bending moment are obtained by mul¬ 

tiplying them by 12tcZ*. The value of wl and 12wl1 are worked out in the preceding 

table for dead and live loads. 
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To complete the diagram in the second span combine the negative bending 

moment produced when first and third spans are loaded with one-half of the dead load 

Mt = M, - - 
646 0 

244 — 567 in.-k. 

Plot this value at both supports and get points h and i. With hi as closing line draw 

a bending moment diagram for one-half the dead load for which the maximum 

12 13 
static bending moment is M = — X — X 24* = 562 in.-k. 

8 2 
The diagrams for positive bending moments are now drawn. In the first span 

combine the bending moment for dead load with bending moments for the live 
load on the first and third spans. 

Mi = — 646 — 244 = — 800 in.-k. 

Scale for Lengths 

Fig. 87.—Maximum Bending Moment Diagrams. Spans 14 ft., 24 ft., 14 ft 
(See p. 186.) 

Plot this at support 2 and get point j. Using ljf as a closing line draw the bending 

moment diagram for dead plus live load. 

In the second span combine the bending moments for dead load with those for 

live load in the second span only for which 

Mt - Mt = - 646 - 1 240 = - 1 886 in.-k. 

Plot this at the supports 2 and 3 and get points k and l. Using kl as a closing line 
draw a bending moment diagram for dead and live load. 

The absolute maximum bending moment diagrams are shown in Fig. 86, p. 186, 

where they are indicated by heavy lines. 
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Maximum Shear Diagram.—The maximum shear diagram is shown in Fig. 88, 

p. 187. Draw the diagram in the following manner: 

At support 1 plot the maximum end shears Vi = 24.6 k. and get point a. At 

the support 2 plot the corresponding value of Vu — wl — Vi getting point b. Con¬ 

nect points a and 6. The portion of this line above the axis gives the shear at the 
left side of the end span. 

To get the maximum shear at the right side of the end span plot the maximum 

value for Vu — 43.5 k. and the corresponding value of Vu The line cd results 

and the portion below the axis gives the maximum shear in the right side of the 

first span. 

To get the uplift, combine the value of Vi for a condition when the second span 

only is loaded with one-half of the end shear for the dead load V\ = 7.2 + 
52 

2 
- 5.2 k 

The shear diagram in the second span is drawn in similar manner as used for 

the first span. 

The resulting diagram shown in Fig. 88 should be used to design the diagonal 

tension reinforcement. 
Dimensions of Beam.—The depth of the section for a selected breadth is deter¬ 

mined either by diagonal tension or by requirements at the support. 

Absolute maximum end shear, Vu = 53 600 lb. 

Depth Required by Diagonal Tension.—Assuming b = 14 in., j = 0.9, 

d = 
53 600 

0.9 X 14 X 120 
— 35.5 in. 

Depth Required by Bending Moment at Support.—The beam at the support is a 

rectangular beam reinforced for tension and compression. As found on p. 181 
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for pi = 0.018 and p' — 0.0095 and tho specified stresses the ratio between the 

amount of compression steel and that of tension steel is equal 0.5. 

The maximum bending moment at the support is 

= - 2 236 000 in.-lb. 

For pi — 0.019 the depth is obtained from Formula (22), p. 222, Vol. I. 

d = 1.05 . 221: 

\14 X 0.0 

236 000 

019 xTo ooo 
24 in. 

Selected Dimensions.—The depth required by diagonal tension is larger and will 

be selected. 

b — 14 in. 

d = 36 in. 

Longitudinal Reinforcement.—Use absolute maximum bending moments and 

the selected depth of section. Use constant j — 0.9 in all cases. 

First span, center, 

A. _845 000 _ 

0 9 X 36 X 16 000 
= 1.64 sq. in. 

Use 4—J-in. rd. bars, Aa — 4 X 0.44 = 1.76 sq. in. 

2 236 000 
Support 2, Aa ~ 

Second span, center, 

A, 

0.9 X 36 X 16 000 
= 4.3 sq. in. 

1 766 000 

0 9 X 36 X 16 000 
- = 3.4 sq. in. 

Use 6—J-in. rd. bars, Aa = 6 X 0.6 = 3.6 sq. in. 

The arrangement of steel is shown in Fig. 89, opposite p. 188. 

Example 3.—Design a continuous beam of three unequal spans, the arrangement 
and lengths of which arc 

h - 24 ft. U = 14 ft. U = 24 ft. 

Loading: 
Dead load. Wi = 1 300 lb. per lin. ft. 

Live load, w2 = 3 000 lb. per lin. ft. 

Total, w — 4 300 lb. per lin. ft. 

The allowable stresses are the same as in the previous example. In the central 
portion the beam is a T-beam for which f = 6 in. 
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Solution.—For this arrangement of spans use Formulas (217) to (257) for the 

case h = l, h = ml, U — l. 

Find ratio m: 

Compute: 

14 

24 
= 0.58. 

Dead Load Live Load 

wl. . 

w(ml). 

12 Xwl2.. 
12 Xw(ml). 

xswl2X 12. 
^w(rnl)2XV2. . . . 

31 200 lb. 

18 200 lb. 

8 908 000 in.-lb. 
3 000 000 in.-lb. 

1 113 000 in.-lb. 

383 000 in.-lb. 

72 000 lb. 

42 000 lb. 

20 700 000 in.-lb. 
7 000 000 in.-lb. 

2 593 000 in.-lb. 

882 000 in.-lb. 

Tie constants may be obtained from Diagram 11, p. 74. For m = 0.56 they are 

Hi = 0.086, Il2 = 0.094, J/3 - 0.002, //4 = 0.072, IIb = 0.014 

Using these constants, the coefficients for the bending moments and the shears may 

be found from Formulas (217) to (257). They are tabulated in the table below. 

Bending Moment and End Shears 

Dead Load 

Live Load in 

1st and 2nd Span 1 st and 3rd Span 2nd Span 

Constant 
Actual 

value 
Constant 

Actual 

value 
('onstant 

Actual 

value 
Constant i 

Actual 

value 

Kips Kips Kips Kips 

Vi 0 42 13 1 0.406 29.3 0.428 30 8 -0.014 - 1 0 

V21 1 0 58 18.1 0 594 42.7 0.572 41.2 0.014 1.0 

Far 0 28 9 1 0 46 33 3 0.28 21.0 V2r 
Vsi 0 28 9.1 0 12 8.7 0.28 21 0 r 3f 
V,r 0.58 18.1 -0 002 - 1.4 0 428 30.8 0.014 1.0 

vt 0.42 13.1 0.002 1.4 0.572 41.2 -0.014 - 1.0 

Inch-kips Inch-kips Inch-kips Inch-kips 

Mt -0.08 -720.0 -0.094 -1950 -0.072 -1480 0 -0.014 -290.0 

M, -0.08 -720.0 +0.002 + 41.0 -0.072 -1480.0 -0.014 -290.0 

All shears are given in kips (1 kip = 1000 lb.). 

All bending moments are in inch-kips (1 inch-kip = 1 000 in.-lb.) 
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Maximum Negative Bending Moments.—Maximum negative bending moments 

at the supports are obtained by adding the bending moments due to the dead load 

to the absolute maximum value for the live load 

M, = Mi = - 720 - 1 950 = - 2 670 in.-k. = - 2 670 000 in.-lb. 

Maximum Positive Bending Moments.—In the first span the absolute maximum 

positive bending moment is obtained as follows: 

Find the end shear at the support 1 for dead load plus the live load giving the 

maximum positive bending moment in the first span, namely, when the first and the 

third spans arc loaded. 

Vi = 13.1 + 30.8 = 43.9 k. = 43 900 lb. 

Since the unit load is w = 1 300 -f 3 000 = 4 300 lb., the point of zero shear is 

distant from the support 1. 

Vi _ 43900 

w ~ 4 300 
10.2 ft. 

Consequently, 

Ml max = iViXi = i X 43 900 X 10.2 = 223 000 ft.-lb. = 2 680 000 in.-lb. 

In the second span the maximum positive bending moment in the center is equal 

to the positive bending moment for the condition of loading when the center span 

only is loaded plus one-half of the bending moment due to the dead load. Only 

one-half of the dead load bending moment is used because it is negative and balances 

the positive bending moment due to the live load. (See also p. 173.) 

Bending moment at supports is 

Afi = ilfj = — - 290 = - 650 in.-k. 

Mnnax = M9 - M2 = (882 + - 650 = 424 in.-k. = 424 000 in.-lb. 

Maximum End Shears.—Maximum end shears arc obtained by adding the end 

shears due to the dead load to the absolute maximum values for live load as given 

in the table on p. 189. 

Vi = 13.1 + 30.8 = 43.9 k. 

Vn = 18.1 + 42.7 = 60.8 k. 

Vir = 9.1 + 33.3 = 42.4 k. 

The end shears at the support 3 are the same as at support 2 and those at the support 

4 are the same as at support 1. 

Maximum Bending Moment Diagrams.—The absolute maximum bending 

momenta at the various points are obtained by drawing diagrams as shown in 

Fig. 90, p. 191. 

The method of drawing the diagrams is the same as described in Example 2. 

The bending moments were taken from the table on p. 189. The sums are given 

on the diagrams. These diagrams are useful in determining the points of bending 

of the longitudinal reinforcement. 

Maximum Shear Diagrams.—The absolute maximum shears at the various 

points are given in the diagrams, Fig. 91, p. 191. The method of drawing the 

diagrams is the same as used in Example 2. 
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Fia. 90.—Maximum Bending Moment Diagrams. Spans 24 ft., 14 ft., 24 ft 

cSee p. 190.) 
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Fio. 91.—Maximum Shear Diagram. Spans 24 ft., 14 ft., 24 ft. (See p. 190.) 
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The maximum shear diagrams may be used in designing the diagonal tension 

reinforcement. 

Dimensions of Beam.—The dimensions are governed by diagonal tension as in 

Example 2. 

Assuming b — 16 in. and j = 0.9, 

60 900 

0 9 X 16 X 120 
= 35 in. 

Longitudinal Reinforcement. 

Negative, at supports 2 and 3, 

_ 2 670 000 

* “ 0.9 X 35 X 16 000 
5.3 sq. in. 

Use 7—1-in. rd. bars Aa = 5.5 sq. in. 

Positive: 

Central part of first span, 

A. = 
2 680 000 

0.9 X 35 X 16 

Use 7—1-in. rd. bars Aa = 5.5 sq. in. 

Central part of second span, 

424 000 

= 5.4 sq. in. 

Aa = 
0 9 X 35 X 16 

= 0.84 sq. in. 

Use 3—j-in. rd. bars Aa = 0.9 sq. in. 

Compression Reinforcement at Supports 2 and 3. 

Pi 
5.3 

16 X 35 
= 0.095. 

Referring to Diagram 7, p. 904, Vol. I, it is evident that for Ja — 900, fa = 16 000, 

n * 15, and pi = 0.0985 no compression reinforcement is required. 

Beam Derails.—The details of the beam design are shown in Fig. 92, p. 193. 

This figure also shows the bending moment diagram and the diagram of the resisting 

moments. The resisting moments are represented by the areas of effective rein¬ 

forcement. In this case it was assumed that the bars stop being effective as direct 

tension reinforcement at the points where they are bent up or down, as the case 

may be. 
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THREE UNEQUAL SPANS, UNSYMMETRICAL ARRANGEMENT 

Example 4.—Determine maximum bending moments and shears in a continuous 

beam with three unequal spans. 

Spans, 14 ft., 24 ft., and 18 ft. 

Loading, 

Dead load, tz?i = 1 300 lb. per lin. ft. 

Live load, = 3 000 lb. per lin. ft. 

Total, w = 4 300 lb. per lin. ft. 

Solution.—In this case the center span is the largest, therefore Case 1, p. 76, 

with arrangement miZ, Z, m2Z, applies. 

Find first values of mi and m2: 

mi - = 0.58 m2 = if = 0.75 

mi5 = 0.194 m23 = 0.422 

Next find the constants a, b, c and ah bif C\. These may be taken from the table 

on p. 79. If desired they may be worked out as follows, using Formulas (260) to 

(265), pp. 76 to 77. 

Common denominator = 16(1 + 0.58)(1 + 0.75) — 4 = 44.2 — 4 = 40.2. 

Numerators Constants 

2(1+to,)toi*=2(1+0.75)X0.194=0.6S «=^=0.017 
40 2 

1 +2to2 — 1 +2 X0.75 =2.5 
, 2 5 

-0.002 

to, *=0.422 Cj^=°.01l 
40.2 

to,*=0.194 
“'-40 2 - 0 005 

1+2to, =1+2X0.58=2.16 l-51-00s4 

2(1 +to,)to,»=2(1+0.58) X0.422 = 1.33 ..-^-0 033 

Using these constants the bending moments at supports are found for the dead 
and live loads. 
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Bending Moments at Supports. 

Dead load, w = 1 300 lb per lin. ft.; u>i2 = 1 300 X 24* = 749 000 ft.-lb. 

Mi = — (a + b — c)wl2 = - (0.017 + 0.062 - 0.01)u>f2 = 

- 0.068wi2 = - 50 800 ft.-lb. 

Mt = — (— ai + 6, + ci)wl* = - (- 0.005 + 0.054 + 0.033) wi2 = 

- 0.082tef2 = - 61 400 ft.-lb. 

Live load, to = 3 000 lb. per lin. ft.; wl2 = 3 000 X 242 = 1 728 000 ft.-lb. 

First and second span loaded, 

Mi = - (a + b)wl2 = - (0.017 + 0.062)to!2 = 0.079tol2 = - 136 500 ft.-lb. 

Mi = - (- a, + 6iM2 = - (- 0.005 + 0.054M2 = - 0.049wl2 = - 84 600 ft.-lb. 

First and third span loaded, 

Mi = - (a - c)wl~ = - (0.017 - O.OUM2 = - O.OOGwl2 = - 10 400 ft.-lb. 

Mi = - (- a, + c,)wl2 = - (- 0.005 + 0.033)u>i2 = - 0.028wl2 = - 48 400 ft.-lb. 

Second and third spans loaded, 

Mi = - (/> - c)wl2 = - (0.062 - 0.01 l)uil2 = - 0.051iwl2 = - 88 000 ft.-lb. 

Mi = - (5. + c,)wl2 = - (0.054 -(- 0.033)tcZ2 = - 0.087tei2 = - 150 000 ft.-lb. 

Second span loaded, 

Mi=- bwl1 = - 0.062tel2 = - 107 200 ft.-lb. 

Mi=- biwl2 = - 0.054«)12 = - 93 400 ft.-lb. 

Absolute Maximum Negative Bending Moments at Support.—These bending 

moments are obtained by combining the bending moment due to the dead load 

with the bending moment for live load when two adjoining spans are loaded. 

Mi = - (50 800 + 136 500) = - 187 300 ft.-lb. 

Mi = - (61 400 + 150 000) = - 211 400 ft.-lb. 

Absolute Maximum Positive Bending Moments.—Absolute maximum positive 

bending moments are obtained by combining the dead load with the following 

conditions of loading: 

(а) For end spans, when the end spans are loaded and the center span not loaded. 

(б) For center span, when the center span is loaded and the end spans not loaded. 

First find bending moments at the supports for these conditions: 

(а) Mi =- (50 800 + 10 400) = - 61 200 ft.-lb. 

Mi = — (61 400 + 48 400) = - 109 800 ft.-lb. 

(б) M, = - (50 800 + 107 200) = 158 000 ft.-lb. 

Mi = — (61 400 + 93 400) = - 154 800 ft.-lb. 

The maximum positive bending moments corresponding to these negative bending 

moments may be found from table on p. 176. 



196 CONTINUOUS BEAMS 

Left end span, 

M% - - 61 200 ft.-lb. w = 1 300 + 3 000 = 4 300 lb. I - 14 ft. 

Coefficient = 
wl2 

61 200 

4 300 X 142 
0.072. 

The bending moment at support 1 is zero. Referring to table on p. 176, it is found 

that to the coefficient at supports of 0 and 0.072 corresponds to a maximum positive 

bending moment coefficient of 0.092, therefore the absolute maximum positive 

bending moment in first span is 

Mm&x = 0.092 X 4 300 X 142 = 67 500 ft.-lb. 

This bending moment acts at a distance from support 1 equal to 

xi = 0.43 X 14 = 6.02 ft., 

where the coefficient 0.43 is taken from table on p. 177. 

Similarly for the third span the bending moment coefficients at the supports 

are 0 and 0.079 and the corresponding positive bending moments coefficient is 

089. Therefore 

Afmax - 0.089 X 4 300 X 182 = 125 000 ft.-lb. 

and 
xi = 0.421 X 18 = 7.58 measured from support 3. 

For the center span 

158 000 
Mi = 158 000 ft.-lb.; coefficient = — --— = — 0.064. 

' 4 300 X 242 

Mi = 154 000 ft.-lb.; coefficient =-- ^7-- = — 0.062. 
4 300 X 242 

From table on p. 177, for coefficients 0.064 and 0.062, the maximum positive bend* 

ing moment coefficient is 0.062. Therefore 

Mmax = 0.062 X 4 300 X 24* = 154 000 ft.-lb. 

aq = 0.502 X 24 = 12.1 ft. 

Static Bending Moments.—To draw bending moment diagrams it is necessary 

to find the static bending moments in the center of the various spans for dead load 

and for live load. 

Dead load, 

First span Mt = i X 1 300 X 14* = 

Second span M, = i X 1 300 X 242 = 

Third span = J X 1 300 X 182 = 

31 850.0 ft.-lb. 

93 600.0 ft.-lb. 

52 650.0 ft.-lb. 

Live load, 

First span Ma - i X 3 000 X 14* = 73 500.0 ft.-lb. 

Second span M, = J X 3 000 X 242 = 216 000.0 ft.-lb. 

Third span M, = i X 3 000 X 182 - 121 500.0 ft.-lb. 
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Bending Moment Diagrams.—The points of bending of the longitudinal rein¬ 

forcement and the length of bars may be obtained from the bending moment diagram. 

First the bending moment diagrams are drawn for the dead load and the various 

positions of the live load. Then the bending moments for the dead load are com¬ 

bined with the bending moments for the live load so as to get the maximum results 

(see p. 173). To get maximum negative bending moments in the center span, 

combine diagram (d) with one-half the ordinates in diagram (a). Maximum positive 

bending moments are obtained by combining diagram (a) with diagrams (d) and (c) 

respectively. The bending moment diagrams are shown in Fig. 93, p. 199. 

The bending moment diagrams are combined by adding and plotting of the 

ordinates of the diagrams to be combined. Thus to get the maximum negative 

bending moments at the support 2 the ordinates in diagram (a) are added to the 

ordinates of diagram (b). For maximum values at support 3, diagrams (a) and (c) 

are combined. To get maximum negative bending moments in the end spans 

combine diagram (c) with one-half of the ordinates of diagram (a) (see p. 173). 

End Shears.—The maximum end shears at supports 1 and 4 act when the first 

and the third spans are loaded. For this condition the negative bending moments 

and the corresponding coefficients were computed previously. 

For support 1, 

M2 = — 61 200 ft.-lb.; coefficient = — 0.072. 

Therefore the maximum shear at support 1 is 

Vi = (0.5 - 0.072) wl - 0.428 X 4 300 X 14 » 25 8001b., 

V2t = 4 300 X 14 - 25 800 = 34 400 lb. 

For support 4, 

Ms = -109 800 ft.-lb.; coefficient = - 0.079. 

Vi = (0.5 - 0.079)tcZ = 0.421 X 4 300 X 18 = 32 7001b., 
also 

Vgr - 4 300 X 18 - 32 700 = 44 700 lb. 

At support 2 the maximum end shears act when the first and second spans are 

loaded. 

The bending moments then are 

M2 = - 187 300 ft.-lb. ; 

coefficients 
187 300 

= 0.224 and 
187 300 

= 0.076. 
4 300 X 14* ' 4 300 X 24* 

M, = - (61 400 + 84 600) = - 146 000 ft.-lb.; 

146 000 
coefficient . = 0.059. 

4 300 X 242 

Therefore, 

also 

Vu - (0.5 + 0.224) u>Z = 0.724 X 4 300 X 14 - 43 700 lb., 

Vi = (0.5 - 0.224) tcZ * 0.276 X 4 300 X 14 * 16 5001b. 
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The end shear at the right of support 2 may be found by using table on p. 177. 
Locating the coefficients 0.076 and 0.059 the end shear coefficient is found to be 0.52. 

also 

Vtr = 0.52wl = 0.52 X 4 300 X 24 = 53 7001b., 

Yu = 0.48u>Z - 49 500 lb. 

At support 3 the maximum end shears act when second and third spans are loaded. 
The bending moments are 

Therefore, 

also 

Mi = — (50 800 + 88 000) = - 138 800 ft.-lb.; 

coefficient = 
138 800 

4 300 X 242 
= 0.056. 

Mi =- 211400 ft.-lb.; 

coefficients = 
211 400 

4300 X 242 
- 0.085 and 

211400 

4300 X 182 
- 0.15. 

Vir «= (0.5 + 0.15)ieZ = 0.65 X 4 300 X 18 = 50 200 lb., 

Vi = (0.5 - 0.15)ieZ = 0.35 X 4 300 X 18 = 27 0001b. 

The end shear at the left of support 3 may be found by using table on p. 177. 
Locating the coefficients at support 0.056 and 0.085 the end shear coefficient is found 
to be 0.53. Hence, 

Therefore, 
Vu = 0.53 X 4 300 X 24 = 54 700 lb. 

Vir = 0.47 X 4 300 X 24 = 48 600 lb. 

The end shears are plotted in Fig. 93, p. 199. This figure should be used to design 
the diagonal tension reinforcement. 

Determination of Dimensions.—After the maximum bending moments and 
shears are computed the dimensions of the beam are computed in the same manner 
as used in Example 2, p. 187. First the depth of the section for an assumed width 
is found. Then the amount of reinforcement computed at the points of maximum 
bending moments. Using the bending moment diagram as a guide the points 
of bending of the bars and their length are determined. Finally the diagonal tension 
reinforcement is computed. 
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FOUR UNEQUAL SPANS. SYMMETRICAL ARRANGEMENT. UNIFORM 
LOAD 

Example 6.—Determine maximum bending moments and shears in a continuous 

beam consisting of four unequal spans. The ends of the beam arc considered as 
simply supported. The span lengths and the loads are 

Spans, 36 ft., 46 ft., 46 ft., and 36 ft. 

Dead load, W\ — 1 500 lb. per lin. ft. 

Live load, = 3 800 lb. per lin. ft. 

Total, w — 5 300 lb. per lin. ft. 

Solution.—The problem will be solved by using the u fixed points ” method 

described on p. 154. The position of the fixed points is determined first using 
Formulas (502) to (505), p. 155. 

Left Fixed Points. 

First span, 

fi — 0, because the end is simply supported. 

Second span, 

Third span, 

3+MX2 
X 46 = 

4.57 
X 46 - 10.1 ft. 

3 + 

Fourth span, 

%_'—) 
46 \ 4.57 -1 / 

-X 46 = — X 46 - 9.77 ft. 
4.72 

A- 
46/ 1 \ 

3+3-6(2-r^Tj 

X 30 = —— X 36 = 6.9 ft. 
5.22 

Right Fixed Points. 

Since the beam is symmetrical the positions of the right fixed points is the same 

as of the left points but arranged in opposite order. Thus, 

/'i = 6.9 ft., A = 9.77 ft.,/', = 10.1 ft, and/'4 - 0. 

Static Bending Moments.—The static bending moments are: 

36-ft. span Dead load, Afmax — 243 000 ft.-lb. 
Live load, Af mar — 616 000 ft.-lb. 

Total, 859 000 ft.-lb. 

46-ft. span Dead load, Afmax = 397 000 ft.-lb. 
Live load, Afmax = 1 005 000 ft.-lb. 

Total, 1 402 000 ft.-lb. 
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Actual Bending Moments.—The bending moments at the supports are found 

graphically using the fixed points. First plot the spans to scale and locate the 

fixed points as shown in Fig. 91, facing p. 203. 

Next draw bending moment diagrams when the first and the third span, respec¬ 

tively, is loaded. Since the beam is symmetrical the bending moment diagrams due 

to loads in the first and the third spans, respectively, are sufficient to get the bending 

moments for all loadings. The bending moments caused by loading placed in the 

fourth span are equal to those produced by the loading placed in the first span, 

only they are placed in reverse order in the beam. The same relation exists between 

the bending moments due to the loads in the second and those in the third 

span. 

First Span.—In the center of the first span erect a vertical above the base and, 

by plotting to a convenient scale the maximum positive bending moment due to 

live load, get point a. Connect this point with support 2. Erect a vertical at 

fit which intersects the line a2 at c. Point c connected with support 1 intersects 

a vertical at support 2 at point d. Distance 2d measured to the same scale as used 

in plotting a'a gives the negative bending moment at support 2 when the first span 

only is loaded. The bending moments in the loaded span are found by plotting the 

static bending moment diagram with line Id as a closing line. The bending moments 

above the base are negative and below the base positive. 

To get the bending moment in the unloaded spans connect point d with the right 

fixed point in the second span and extend the lino to intersection at point e. This 

line gives the bending moments in the second span. The distance 3e is the bending 

moment at support 3 due to the load in the first span. 

Point e connected with the right fixed point in the third span gives the line cf 

indicating bending moments in the third span. 

Finally point/connected with support 5 gives bending moments in the fourth span. 

Third Span.—The bending moments caused by the load placed in the third span 

are found as follows: 

In the center of the third third span plot g'g equal to the maximum static bending 

moment, using the same scale as in the first span. Connect point g with supports 

3 and 4- Erect at both fixed points verticals. The points h and i are intersections 

of the verticals with lines g3 and g/h respectively. Connect point h and i and extend 

the line to intersection with the verticals at the supports 3 and 4. Distance Sj 

and 4k arc negative bending moments at the supports. 

To get bending moments in the loaded span plot the static bending moment 

diagram using jk as a closing line. 

The bending moments in other spans are represented by jl in the second span, 

h in the first span and k5 in the fourth span. 

The bending moments at all supports due to live load may be found easily by 

scaling. They are tabulated in the table on p. 203. To get the bending moments 

due to the dead load, the bending moments due to the live load are multiplied by 

the ratio of unit loads They are also tabulated in the table. 
3 800 

Since the dead load acts at all spans simultaneously the actual bending moment 

at each support is obtained by adding the bending moments due to all four conditions 
of loading. 

To get the maximum negative bending moments at the supports add only the 
negative values. 
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Bending Moment at Supports 

Bending Moments at 

Support 2 Support 3 Support 4 

Foot-kips Foot-kips Foot-kips 
Live load: 

In 1st span. - 300 + 82 - 28 
In 2nd span. - 412 - 425 + 128 
In 3rd span. + 128 - 425 - 442 
In 4th Span. - 28 -f 82 - 300 

Dead Load: 

In 1st span. - 118 + 33 - 11 
In 2nd span. - 175 - 170 4- 50 
In 3rd span. -1- 50 - 170 - 175 
In 4th span. - 11 4- 33 - 118 

Dead load in all spans.... - 254 - 274 - 254 
Most unfavorable live load. - 770 - 850 - 770 

Total dead and live load. .. -1024 -1124 -1024 

All bending moments in foot-kips (1 foot-kip = 1000 ft.-lb.). 

To get bending moments at supports to be used in designing add the bending 

moments caused by the dead load to the maximum negative bending moments 

caused by the live load. 

Maximum Positive Bending Moments.—Maximum positive bending moments 

in the first and the third span occur when these spans are loaded and the other spans 

are not loaded. For this condition the negative bending moments are given in the 

table below. 

Bending Moments at 

Support 2 Support 3 Support 4 

Foot-kips Foot-kips Foot-kips 
Dead load. 

Live load: 

-254.0 -274.0 -254.0 

In 1st span. -300.0 4- 82.0 - 28.0 
In 3rd span. 4-128.0 -425.0 -442 0 

Total. -426 0 -617.0 -724 0 

Due to symmetry of the beam the bending moments in the second span are the same 

as in the third span only reversed so that the bending moment M2 is equal to the 

bending moment M 4. 
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To get maximum positive bending moments plot the negative bending moments 
at the support above the axis. Connect the two points thus obtained and, consider¬ 
ing this new line as a closing line, plot the static bending moment diagram for the 
sum of the dead and live load. The portion of this diagram below the axis gives 
the positive bending moments. The maximum value may be obtained by scaling. 

The maximum positive bending moment may also be found by using table on 
p. 176. 

(b) Absolute Max. Positive Bending Moments 
o io 20 30/?. o 500 mrt.-kipt 

Lllu-Lu-u Lj-u-Lllu LlluJLixjjJ l—i—i—i—i—I—i—i—i—i—I 
Scale for Lengths Scale for Bending Moments 

Fig. 95.—Diagrams of Absolute Maximum Bending Moments (See p. 204). 

Maximum Negative Bending Moment Diagrams.—The exact location of the 
points at which the reinforcement may be bent up may be obtained from diagrams 
showing the absolute maximum bending moments at all points in the beam. This 
diagram is a composite curve drawn for several positions of the live load. 

1. To get the maximum bending moments in the region around the support 2 
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find from the table on p. 203 the bending moments M2 and for the dead load on 

all spans plus the live load on the first, second and fourth spans. 

M2= - 1 024 ft.-k. 

Mt = - 274 + 82 - 425 + 82 = - 535 ft.-k. 

Plot these bending moments at the supports, obtaining points a and b in Fig. 95. 

Considering line la and ab as closing lines draw for both spans the static bending 

moment diagrams for the sum of dead and live load in the manner explained on p. 185. 

Now consider the region around the support 3. The maximum bending moments 

there occur when the second and third spans are loaded, for which 

Ma = - 254 - 442 + 128 = - 508 ft.-k. 

Mi = —1 124 ft.-k. (From Table.) 

Plot these values at the supports and get point c and d. Using cd as a closing line 

draw the static bending moment diagram for dead and live loads in the same manner 

as for the previous case. 

To complete the maximum negative bending moment diagrams draw the nega¬ 

tive bending moments that may be produced in the central portions of the first 

and second spans. Referring to Fig. 50, p. 91, negative bending moments in the 

first span are produced when the second and fourth spans are loaded and the first 

span not loaded. For this condition the negative bending moment at the support is 

Mi — — 442 — 28 = — 470 ft.-k. 

As there is no live load in the first span the bending moment varies according to a 

straight line. In the central span the negative blinding moment due to the live 

load is offset by the positive bending moment due to the dead load. As explained 

on p. 92, to get proper factor of safety, only one-half of the dead load should be 

considered as effective in reducing the negative bending moment due to the live load. 

Therefore add to the above value of M2 one-half of the bending moment due to the 

dead load. 

Mi = — 470 - =- 597 ft.-k. 

Plot this at support 2 and get point e. Considering el as & closing line draw a 

bending moment diagram for half of the dead load. 

The curve indicating the absolute maximum negative bending moments in the 

first span is the composite curve afg. 

In the second span the negative bending moments are developed when the first 

and the third spans are loaded. The bending moments at the supports when com¬ 

bined with one-half of the dead load are 

Mi = - - 300 + 128 = 299 ft.-k. 

M, = - + 82 - 425 = - 480 ft.-k. 
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Plotting these values gives points i and j. Considering ij as a closing line plot 

static bending moment diagram for one-half of the dead load. The curve indicating 

the absolute negative bending moments in the span is the composite curve akld. 

Maximum Positive Bending Moment Diagrams.—The absolute maximum 

positive bending moment diagrams are easily drawn, using the negative bending 

moments obtained when computing maximum positive bending moments (sec p. 203). 

In the first span plot il/2 = — 426 ft.-k. obtaining point m. Using line lm as a 

closing line plot a static bending moment diagram for dead and live load. The 

part of the diagram below the axis 12 is the absolute maximum positive bending 

moment diagram. 

In the second span plot Af2 = — 724 ft.-k. and = 617 ft.-k.10 and obtain the 

closing line no. The part of the bending moment diagram below the axis 23 is 

the absolute maximum bending moment diagram for the second span. 

Maximum Shears.—Maximum shears at the first support occur when live load 

acts in the first and third spans. This is the same loading as for the maximum 

positive bending moment. The negative bending moment at support 2 then is 

A/2 = — 426 ft.-k., 

and the corresponding end shear is 

Vi = - W'h + ^ = 0.5 X 5 300 X 36 - —— = 95 400 - 12 000 = 83 4001b. 
l\ 36 

The shear at the second support is a maximum when the first, second and fourth 

spans are loaded. This is the same condition of loading as for maximum negative 

bending moment at the support 2. The negative bending moments at the supports 

are 

M2 - - 1 024 ft.-k. 

Mz = - 535 ft.-k. 

Therefore the maximum end shears are 

M2 1 024 000 
Vu = Iwli - = i X 5 300 X 36 +-— - = 95 400 + 28 500 = 123 900 lb. 

h 36 

and 

Tr t - 535 000 + 1 024 000 
Vir = M +-;-=i X 5 300 X 46 +-—- 

h 46 

122 000 + 11 000 = 133 000 lb. 

At the third support the maximum shear acts when the second and third spans 

are loaded. This is the same condition of loading as for the maximum negative 

bending moment at the support 3. 

10 These values are obtained from table on p. 203 which gives values for the 

condition when the first and third spans are loaded. Since for the present case the 

second and fourth spans should be loaded the bending moment at support 2 is the 

same as the bending moment at support 4 in the table. 
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The negative bending moments at the supports are 

Mi =- 568 ft.-k. 

Mi =- 1144 ft.-k. 

Therefore the maximum end shears are 

Vir = Vu = \wh 
Mi = .If, 

h 
i X 5 300 x 46 - 

- 1 444 + 568 

46 

= 122 000 + 12 000 = 134 000 lb. 

The most unfavorable conditions of the external shears are plotted in Fig. 96. 

This diagram should be used in designing the diagonal tension reinforcement. 



CHAPTER II 

MEMBERS SUBJECTED TO DIRECT STRESS AND BENDING 

In this chapter are given formulas for concrete members such as 

columns, arch ribs, members of rigid frames, dams and foundations, 

with and without reinforcement, which are subjected to direct pressures 

and bending moments acting simultaneously. 
The commonly known formulas for direct stress and bending can be 

used only for computing stresses in the member when its dimensions 
are known. They cannot be readily used for the determination of 

dimensions. These have to be assumed first and then the stresses 

computed. 
To simplify the design of members subjected to direct stress and 

bending, formulas from which dimensions can be obtained directly have 

been developed, and are here presented, by the authors. The diagrams 

based on these formulas and given in this chapter make the design 

of members subjected to direct stress and bending as simple as the 

design of simple beams and columns. 
Examples of Members Subjected to Direct Stress and Bending.— 

Many of the members of ordinary concrete structures are subjected to 

direct stress and bending.1 

The most common examples are the wall columns in a building, 
which are always subjected to the direct compression caused by the 
column load and to bending stresses produced by the bending moments 

due to the floor construction. Interior columns also arc often sub¬ 
jected to bending in addition to the column load, especially when either 

the spans on both sides of the column or the loading are not symmetrical. 
Another example of direct stress and bending is found in arch design 

where all sections are subjected to a concentric thrust and a bending 

moment. 
Dams of gravity type arc also subjected to direct pressure and 

bending when the line of pressure does not coincide with the center line 

of the dam section. 

1 By direct stress is meant the stress produced by a pressure acting in the centroid 
of a section. Such pressure produces stresses uniformly distributed over the whole 
section. 
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In rigid frame design all members are subjected to thrust and bending 
moment. It is often possible to neglect the effect of the thrust in the 
design of the horizontal members forming the frame. The vertical 
members, however, must be always designed for direct stress and 
bending. 

Pressures on foundations are also determined by the formulas for 
direct stress and bending when the resultant force acting on the founda¬ 
tion is not concentric with the base. This takes place in foundations 
for arches, retaining walls and dams. 

Stresses Due to Direct Stress and Bending.—When a member is 
subjected to a concentric force or thrust and a bending moment acting 
simultaneously, or when it is subjected to an eccentric force, the stresses 
acting upon it are a combination of compressive stresses produced 
by the force and bending stresses produced by the bending 
moment. 

The bending stresses consist of compressive stresses acting on one 
part of the section and tensile stresses acting on the balance of the 
section. Both the tensile and compressive stresses due to bending 
moment vary according to a straight line from zero at the neutral axis 
to a maximum at the extreme fiber. 

The stresses produced by the concentric force are uniformly dis¬ 
tributed over the whole section. 

The stresses produced by the concentric force and the bending 
moment acting simultaneously are equal to the sum of the stresses pro¬ 
duced by each of them separately. The compressive stresses due to 
the force arc increased by the compressive stresses produced by the 
bending moment. The tensile stresses due to the bending moment, 
on the other hand, are reduced by the compressive stresses due to the 
force. The resulting stress is compression over the whole section 
when the uniformly distributed compressive stress is larger than the 
maximum tensile stresses. When the maximum tensile stresses are 
larger than the uniformly distributed compressive stresses part of the 
section will be in tension. The neutral axis is located where the com¬ 
pressive stresses are equal to the tensile stresses. 

Relation between Bending Moment and Eccentrically Applied 
Thrust.—The stresses produced by a combination of a central thrust 
and a bending moment are the same as those produced by an eccentric¬ 
ally applied thrust. Thus, a central thrust, N, and a bending moment, 
M, may be replaced by an eccentric thrust, N, acting at a distance from 

M 
the axis of the section equal to e = ~—. In turn, the eccentric thrust 

A 
may be replaced by a central load of the same intensity and a bending 
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moment equal to the thrust multiplied by the eccentricity.2 Therefore, 
both cases can be solved by the same formulas. The case of an eccen¬ 
trically applied thrust gives simpler formulas. 

Relation between Position of Eccentric Thrust and the Sign of 
Bending Moment.—A positive bending moment, producing, in a hori¬ 
zontal member,3 compressive stresses at the top of the section and 
tensile stresses at the bottom, may be replaced by a positive thrust 
acting above the axis. (See Fig. 97, p. 210.) 

/ Gravity Axis 

N 

Gravity Axis , AT 

l 
e 

rz J 
Eccentric Thrust applied 1 j Central Thrust and 

above Gravity Axig^ J ^Quiualent to » Positive Bending Moment 

Fig. 97.—Positive Bending Moment and Central Thrust. (See p. 210.) 

< 

Gravity Axis t N 

lL " T 
* * i a * N 1 

Eccentric Thrust applied I I Central Thrust and 

below Gravity Axis J Qulua en 0 1 Negative Bending Moment 

Fig. 98.—Negative Bending Moment and Central Thrust. (See p. 210.) 

A negative bending moment, producing compressive stresses at the 
bottom of the section and tensile stresses on the top, may be replaced 
by a positive thrust acting below the axis. (See Fig. 98, p. 220.) 

1 Proof of the above statement.—Assume that a section is submitted to an eccentric 

thrust N acting at a distance e from the axis. The stress conditions will not be 

altered if in the center of the section are added two equal forces, but acting in oppo¬ 

site directions, such as + N and — N. The section is then exposed to three forces, 

namely + N at a distance e from center of section and — N and + N in the center 

of the section. The eccentric force with the negative central force forms a couple, 

Net and may be replaced by a bending moment M = Ne. There remains in the 

center a positive force N. Thus the eccentric thrust is replaced by a central force, 

N, and a bending moment M = Ne. (See also Vol. 1, p. 165.) 

* Similar action, of course, is true in a vertical or inclined member. 
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Conversely, a positive thrust acting above the axis produces maxi¬ 
mum compression at the top and minimum stresses at the bottom. A 
positive thrust acting below the axis produces reverse results. 

Formulas for Members Subjected to Direct Stress and Bending.— 
After determining the normal thrust N and the bending moment 
M = Ne, the stresses or the dimensions are found from formulas given 
below. 

For more elementary treatment of the subject reference is made to 
Vol. I, pp. 164-189, where formulas for stresses in plain concrete sections, 
symmetrically reinforced section and section with tensile steel only 
are developed. These formulas are repeated below and new formulas 
for determining dimensions and amount of reinforcement are added. 

To take care of conditions not provided for by formulas in Vol. I 
additional formulas are given for stresses and dimensions in sections 
with unsymmetrical reinforcement. Particular attention is called to 
the formulas for sections with reinforcement near the face subjected to 
maximum stress only, and also to the formulas for dimensions and 
amount of reinforcement where it is required that definite stresses fc 
and fa are reached simultaneously. 

For the sake of clearness the list of formulas and diagrams are here 
recapitulated. Unless otherwise designated, the page numbers refer 
to present Vol. II. 

1. Plain Concrete Sections. 

Formulas for maximum and minimum stresses, pp. 213 and 214. 
Formulas for dimensions of sections, p. 215. 
Diagrams for finding dimensions of sections, p. 215. 

2. Reinforced Concrete Sections. Whole Section in Compression. 

а. Symmetrical Reinforcement 

Formulas for maximum and minimum stresses, p. 218. 
Diagrams for stresses, p. 219. 

. . . Co 
Limiting ratio , p. 222 

h 

Formulas for dimensions, p. 222. 
Diagrams for dimension, p. 223. 

б. Reinforcement Near Face under Maximum Stress Only. 

Formulas for maximum and minimum stresses, p. 224. 

Co 
Limiting ratio of t-| P- 225. 

h 
Formulas for dimensions for accepted value of p2, p. 225. 
Required value of for given dimensions, p. 226. 
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3. Reinforced Concrete Section. One Face in Tension. 

а. Symmetrical Reinforcement. 

Formulas for maximum compression and tensile stresses, 
p. 228. 

Diagrams for constants Ca, pp. 057 to 001. 
Formulas for required steel areas for given stresses, p. 229. 
Formulas for dimensions for given stresses and steel 

ratios, p. 230. 

б. Unsymmetrical Reinforcement 

Formulas for areas of tensile and compression reinforce¬ 
ment Aa and A \ for specified stresses, pp. 233-234. 

Formulas for depth of section for specified stresses and 
accepted ratio of compression steel po, p. 235. 

Diagrams of constants, pp. GG3-GG5. 

c. Section Reinforced for Tendon Only. 

Formulas for maximum stresses in steel and concrete, 
p. 236. 

Diagrams, pp. G66-GG7. 
Formulas for ratio of tensile steel p for specified stresses, 

p. 237. 

Dimensions of sections for accepted stresses, p. 238. 

Derivations of Formulas. 

Formulas for plain sections, Vol. I, p. 1G9. 
Formulas for symmetrically reinforced sections under com¬ 

pression, Vol. I, p. 173. 
Formulas for section with reinforcement near highly com¬ 

pressed face, p. 244. 
Formulas for symmetrical reinforced sections when one sur¬ 

face is in tension, Vol. I, p. 180. 
Formulas for unsymmctrically reinforced section, p. 238. 
Formulas for section with steel near tension side only, Vol. I, 

p. 185. 

PLAIN SECTIONS UNDER ECCENTRIC THRUST 

Plain sections subjected to eccentric thrust (or to a thrust and 
bending moment) are found very often in practice in structures such 
as plain concrete or masonry arches, dams, also in foundations for 
arches, dams and retaining walls. 
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In such cases, after the magnitude and the position of the thrust are 
found, the problem resolves itself either into computations of stresses 
in a given section for possible excessive compression at the highly 
compressed face or tension at the opposite face, or into computations 
of dimensions for given maximum and minimum allowable stresses. 

Special attention is called to the ease with which the dimensions may 
be found by using diagrams 1-2, opp. p. 648, and 6-7, pp. 654 *655. 

Full treatment of the subject with development of formulas is 
given in Vol. I, pp. 164-191. Final formulas are repeated below. 

Notation. 

Let N = normal thrust acting on section, lb.; 

M — bending moment acting on section, in.-lb.; 
M . 

e — eccentricity of thrust equals —, in.; 

A = area of cross-section of concrete, sq. in.; 

I = moment of inertia of concrete section, in.4; 

- = limiting ratio for which ft = 0; 
h 
2/i = distance extreme upper 4 fiber from center of gravity of 

irregular section, in.; 

2/2 = distance extreme lower 4 fiber from center of gravity of 
irregular section, in.; 

b = effective breadth of section, in.; 

h — effective depth of section, in.; 

fc = maximum compression stresses, lb. per sq. in.; 

ft = minimum compression stresses, lb. per sq. in. 

In vertical and inclined members the depth, h} is assumed to be the 
dimension, measured at right angles to the axis of the member, between 
the surfaces of maximum and minimum stress. 

If the dimensions are in feet, the bending moment must be in foot¬ 
pounds and the resulting stresses will be in lb. per sq. ft. 

General Formulas for Stresses. (See Fig. 99, p. 214.) 
Maximum Stress, 

f _ N_ Myi 

fc ~ A + I 
(1) 

4 The definition “upper” and “lower” used in defining the distances t/i and y% 

apply to a condition shown in Fig. 99, p. 214. 
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Minimum Stress, 
, N My 2 

(la) 

See Fig. 99, p. 214, for distribution of stresses. 

Fig. 99.—Section Subjected to Eccentric Thrust. (See p. 214.) 

Formulas for Stresses Rectangular Sections. (See Fig. 100, p. 214.) 
Maximum Stress, 

or if M = Ne, 

Minimum Stress, 

or if M » Ne, 

N 6 M 
.... (2) 

bh + bh*. 

N( 6e\ 
.... (3) 

»(1+*> * * * 

n m 
.... (4) bh bh2’ • • • • 

^1 _ «5) 
bh\ h/' ' * * 

.... (5) 

See Fig. 100, p. 214, for distribution of stresses. 

Fig. 100. Rectangular Section Subjected to Eccentric Thrust. (See p, 214.) 
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Limiting Value . —Sections without reinforcement can be used 
h 

only when for the most unfavorable condition of loading no tensile 
eo 

stresses arc developed. The limiting value — may be obtained by 
h 

making in Formula (5), p. 214 ft = 0. 
Co 

Limiting value for ft = 0, 
h 

£o __ 1 

h ~ 6' 
(6) 

When the ratio of 
e 

h 
is larger than £, i.e., when the thrust acts outside 

the middle third, the section must be reinforced. 
Formulas for Dimensions of Plain Sections.—The dimensions of a 

section may be governed either by the maximum stress or by the mini¬ 
mum stress. Usually the width of the section, b, is known and it is 
desired to find the depth, h, for which the maximum compression stress, 
fcy does not exceed the allowable maximum value and for which minimum 
stress ft is not smaller than the allowed limit. For plain sections the 
limit is preferably zero. 

The formulas for depth of section h for known width are 
Depth of Plain Section Governed by Maximum Stress fC) 

Use Diagram 1, opp. p. 648, for finding depth h. 
Depth of Plain Section Governed by Minimum Stress ft) 

Use Diagram 2, opp. p. 648, for finding depth h. 
Diagrams for Dimensions of Plan Sections.—The solution of the 

above formulas is complicated. To simplify the design, the Diagrams 
1-2, opp. p. 648, are prepared,5 from which may be obtained the value 

of h for any value of e and or —. 
bfc bft 

* The working out of the diagrams was simplified by changing formulas 3 and 

5 into the following shape: 
(Continued on next page.) 
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These diagrams are of great assistance in selecting proper dimensions 
of the section. For arches they may be used for the preliminary 
design of both plain and reinforced ribs. In reinforced concrete arches 
the dimensions b and h may be fixed first and the required amount of 
reinforcement found after the final bending moments are determined. 

In plain concrete arches the lower limit should be preferably zero 
or a small value of tension (see p. 453). In reinforced concrete arches 
the lower limit may be equal to the tensile strength of concrete when 
it is desired that no cracks should form under working conditions 
(see p. 453). 

Use of Diagrams 1-2, opp. p. 648, for Plain Sections.—The value of 
N and M = Ne are known. Stresses fc and ft are specified or selected 
as discussed on p. 453. 

It is desired to find the smallest section for which the maximum 
compression is not larger than the maximum allowable compression 
stress fc nor the minimum stress smaller than the allowable stress ft. 

Assume a value of b. For barrel arches the value of b is either 12 in. 
when bending moment and thrust are computed for a strip of arch 
1 ft. wide or it is equal to the full width of the arch rib. For rib arches 
the width of rib must be assumed and several trials may be required 
before best values of b and h are found. 

Compute value of e = Compute the values of ~~ and — 
N N 

and find depths for each value, using proper diagrams. In each case the 
depth is found at the intersection of the line for the value of 
bfr l bf\ 

N \°r W) 
should be used. 

and the line for proper e. The larger of the two values 

For use in design computations see examples, p. 247. 
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SYMMETRICALLY REINFORCED CONCRETE SECTIONS. 
WHOLE SECTION IN COMPRESSION 

The formulas given below apply to symmetrically reinforced sections 
when the whole section is in compression or only negligible tension 
stresses occur so that the whole section may be considered as effective 
in resisting stresses. Such cases occur in arches and rigid frames. 
When large tension stresses are developed in the section, formulas on 
pp. 227-231 must be used. 

For general treatment of the subject and development of formulas 
see Vol. I, pp. 173-180. Final formulas are repeated below. 

Notation. 

Let N = 

M = 

e — 

eo _ 

h ~ 

A = 

A.= 

V = 

Pi = 

V2 = 

I = 

/. = 

2/1 = 

2/2 = 

normal thrust acting on section, lb. ; 

bending moment acting on section, in.-lb.; 
M . 

eccentricity of thrust equal to — inches; 

limiting ratio of - for which ft = 0; 

area of effective G cross-section of concrete, sq. in.; 

total area of cross-section of steel in symmetrically 
reinforced section, sq. in.; 

A 
ratio of steel in symmetrically reinforced section; 

ratio of steel in tension to area of concrete; 

ratio of steel in compression to area of concrete; 

moment of inertia of effective6 cross-section of con¬ 
crete, in.4; 

moment of inertia of steel, in.4; 

distance of extreme compression fiber from centroid of 
equivalent 7 section, in.; 

distance of extreme tension fiber from centroid of 
equivalent 7 section, in.; 

8 Effective section is the portion of the actual section which is considered as resist¬ 

ing stresses. For instance if it is desired to provide fire proofing, the effective 

section is the area within the fire proofing. 

7 Equivalent section is a section in which the reinforcement is replaced by a 

concrete area equal to the area of steel multiplied by the ratio of moduli of 

elasticity, n. 
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b = effective6 breadth of section, in.; 

h = effective 6 depth of section, in.; 

a = distance of center of steel to centroid of effective 6 con¬ 
crete section, in.; 

d' = distance of center of compression steel to outside face 
of effective 6 section, in.; 

fc = maximum compressive stresses, lb. per sq. in.; 

ft = minimum compressive stresses, lb. per sq. in. 

If the dimensions are in feet, the bending moments must be in 
foot-pounds and the resulting stresses will be in lb. per sq. ft. 

Formulas (9) to (14) may be used to compute stresses when 
dimensions are given. 

Formulas (17) and (18) and diagrams may be used to find dimensions 
of the section. 

General Formulas for Stresses. (No tension or only small tension 
in section.) 

Maximum Compression, 

= N_My i 

*c~A + (n— 1)AS + I + (n - I)/.* 

Minimum Stress, 

_N_My2 

A + (n- 1 )A, I + 1)7/ 

(9) 

(10) 

Formulas for Stresses in Rectangular Sections Symmetrically 
Reinforced. (See Fig. 101, p. 219.) (No tension or only small tension 
in section.) 

Maximum Compression, if M = Ne, 

/ =- 
h bh 

+ 
1 + (n“1)P l + 12(n-l)V(ffh 

Minimum Stress, if M — Ne, 

1 

bh 

6 

i + (n — i)p 1 + 12(n_1)p^h 

(11) 

(12) 

The formula for maximum compression also may be written 
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Maximum Compression Stresses, 

N 

where the constant is 

Ce = ■ 
1 

+ 
0 

1+ («-!)/»■ .. M3*' 
1 + 12(w — l)/>^y 

(13) 

(14) 

Fkj. 101.—Rectangular, Symmetrically Reinforced Section. Whole Section in 

Compression. (See ]>. 218.) 

Diagrams 3-6, pp. 650-653, give values of constants for different 

ratios of steel p and for ratios of = 1.0, 0.9, 0.S, and 0.7, respectively. 

The dash line in each diagram indicates the limits for which ft = 0. 
c 

For ratios to the right of the dash line, part of the section will be 
h 

in tension. If the tension is appreciable these formulas arc not 
applicable. 

For numerical example of the use of formula for fc and the diagrams 
see p. 249. 

Limiting value ~ for ft — 0.—The formula for the limiting value 
h 

of for which the minimum stress ft equals zero, is 
h 

Limiting Value — 
h 

h 6[1 + (» - l)p] 
(15) 
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This formula is derived by substituting in formula (12) ft = 0 and 

solving for 
h 

The limiting ratios — may be obtained from Diagrams 3-6, pp. 
h 

650-653, for 2a = h, 0.9h, 0.8h and 0.7/z and for different steel 
ratios. The point at which the straight line for proper p intersects 

the dash line curve, projected down, gives the limiting value of -. 
h 

Effect of Ratio of Moduli of Elasticity.—The stresses in steel and 
concrete caused by direct stress and bending are affected not only by 
the dimensions of the sections and the amount of reinforcement but 
also by the ratio of the moduli of elasticity of steel to concrete, n. 

By inspecting the formulas for reinforced concrete sections it is 
evident that n and p always appear simultaneously and in some formulas 
always in the form (n — 1 )p and in others in the form of np. The 
value of a constant in any of the formulas for a definite numerical value 
of (n — l)p, say, 0.14 will not change if the ratio n is decreased, provided 
that at the same time the value of the steel ratio p is increased suf¬ 
ficiently to make the result of (n\ — l)pi = 0.14. Therefore for a given 
bending moment and thrust and given concrete dimensions of the 
section the stresses will be the same for the following combinations of 
n and pi 

n = 15 and p = 0.01, 

n = 12 and p = 0.0127, 

n = 10 and p = 0.0156, 

because in all three cases the result (n — \)p — 0.14. 

The various diagrams can be used for n equal 15, 12, and 10 by 
properly changing the steel ratios. All diagrams were computed for 
n = 15. The changed steel ratios for n = 10 and n = 12 which corre¬ 
spond to the steel ratios in the diagrams are given in the table 
on p. 221. 
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Changed Steel Ratios for n = 10 and 12 

Based on Relation (n — l)p = (m — l);n 

Ratios p 

in Diagrams 

n = 15 

Changed Ratios for 
Ratios p 

in Diagrams 

n — 15 

Changed Ratios for 

n — 12 n = 10 n = 12 n = 10 

0 002 0 003 0 003 0 032 0 011 0 050 
0.004 0 005 0 006 0 034 0.043 0 053 
0 006 0.008 0 009 0 036 0.046 0.056 
0 008 0 010 0.012 0 038 0 048 0 059 
0.010 0.013 0.016 0.010 0 051 0 062 
0.012 0 015 0 019 0 042 0 053 0 065 
0.014 0 018 0.022 0 044 0.056 0.068 
0.016 0 020 0 025 0 046 0.059 0 072 
0 018 0 023 0 028 0 048 0 061 0 075 
0.020 0 025 0 031 0 050 0 064 0 078 
0.022 0 028 0 031 0.052 0 066 0.081 
0 024 0 030 0 037 0.054 0 069 0 084 

0.02G 0.033 0 040 0 056 0 071 0.087 
0 028 G 036 0.044 0.058 0.074 0.090 

0.030 0 038 0.047 0 060 0.076 0.093 

The use of this table is shown by the following example. 

Example.—Find from the proper diagram the value of Ce for - = 0.19, p = 0.028 
h 

n — 10, when 2a = O.S/i. 

Solution.—To be able to use the diagrams for C, which are based on n = 15, 

convert the steel ratio for n — 10 to a steel ratio for n = 15. From the table, p. 221, 

find that to p = 0.028 and n = 10 corresponds p = 0.018 for n = 15. Refer to 

diagram for Ce on p. G52 marked 2a — 0.8h and n — 15. Locate ~ = 0.19. The 
h 

vertical line intersects the curve for p = 0.018 at Ce = 1.352. This is the desired 

value of Ce. When used in formula (13), p. 219, it gives the maximum stress /c. 
e 

Since the point of intersection of - = 0.19 and p = 0.018 is to the left of the heavy 

dash line, the whole section is in compression. 

Method of Determining Required Amount of Reinforcement.—The 
dimensions of the section b and h are given. The normal thrust N 
and bending moment M = Ne arc known. The problem is to find the 
required amount of steel for which the maximum compression stresses 
do not exceed the specified value fc. The problem can be solved by 
using Diagrams 3-6, pp. 650-653, for C9. 



222 MEMBERS SUBJECTED TO DIRECT STRESS AND BENDING 

First find the ratio — which determines 
ft 

f> 

Also find the ratio 7. 
ft 

Next from Formula 13, p. 219, find 
_ bhfc 

Ce~ N * • 

which diagram to use. 

(10) 

In the proper diagram locate value of Ce and -. This determines the 

ratio p for n = 15. 
The required amount of reinforcement then is 

Aa — pbh. 

For numerical example of determining the amount of reinforcement 

see p. 249. 
For other ratio of n, say n = 10, locate the value of p just computed 

in table on p. 221 under n = 15 and find the ratio of steel in column 
n = 10 corresponding to it. This is the required steel ratio. 

Formulas for Depth of Section ft.—As explained in connection with 
plain sections on p. 215 the dimensions of a section may be governed 
either by the maximum or the minimum stresses in the section. There¬ 
fore formulas are given below in which the depth is governed by the 
maximum compressive stress and also by the minimum stress. The 
minimum stress may be small compression, zero or small tension. The 
maximum stress to be used in the formula is the maximum allowable 
working stress. Both formulas must be solved and the larger of the 

two results accepted. 
Depth of Section with Symmetrical Reinforcement as Determined by 

Maximum Compressive Stress, f, 

ft 
IN 1 

2 6/c 1 + (n — l)p 
1 + 

24e [1 + (n — 1 )p]2 

(w)1 +12(” - ,)P©J. 
• (17) 

Depth of Section with Symmetrical Reinforcement as Determined by 

Minimum Stress, ft, 

h 
1N 1 

2 bft 1 + (» — 1 )p 
1 + 

24e [1 4- (to — 1 )p]2 

01+12<” - 

2 
(18) 
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These formulas are rather involved. In practice the depth may 
be found using the Diagrams 7- 8, pp. 654- 655. 

Diagrams for Finding Depth, h.—To simplify the determination of 
the depth, diagrams 8 arc given on p. 654 from which the depth may be 

N N 
obtained for any value of e, — or — The diagrams arc based on the 

bfc UJt 

ratio of steel p = 0.01 and n= 15. It was assumed that the distance of 
the center of steel from the nearest surface is 2 in. 

Use of Diagrams 7 and 8 for Symmetrically Reinforced Sections. 
The value of N and M = Ne are known. Stresses fc and/* are specified 
or selected as discussed on p. 453. The problem is to find depth h. 

The problem can be solved as follows: 
Accept value b in the manner suggested on p. 216 for plain sections. 

Compute the value of e = — and values of 77 

N N 
and —. Find depth 

at the intersection of lines for 

for both values, using proper diagrams. The desired depth is found 

M( bj\ 

NY N/ 
of the two values of h should be used. 

For numerical example of the use of the diagrams see p. 248.) 

with lines for e. The larger 

SECTION WITH REINFORCEMENT NEAR HIGHLY COMPRESSED FACE 
ONLY. WHOLE SECTION UNDER COMPRESSION 

As evident from Fig. 101, p. 219, in sections subjected to 
eccentric thrust (or thrust and bending moment) the reinforcement 
placed near the face with minimum stress resists very small stresses, 
particularly when the eccentricity is large. If there is no possibility 
of tension stresses this reinforcement is practically wasted. In such 
case a symmetrically reinforced section is not economical. Better 

8 Instead of the complicated formulas 17 and 18, following simple formulas were 
used for working out the diagrams. 

bfr 
Relation between —, h and e for symmetrically reinforced sections 

N 

Mr 

N /ill + (n - l)p] + /i2 + 12!(» - l)po«’ 

6 e 

and 

bft 
Relation between h and e for symmetrically reinforced sections 

N 

bft 1 __6c_ 
W “ h[l + (n - l)p] ~~ hT+ 12(n - l)paf’ 
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results are obtained if most of the reinforcement is concentrated near the 
face under maximum stress and only nominal amount of steel (say, 
l per cent) is placed near the face under light stress. 

Position of Thrust N.—Assume that the section is subjected to a 
normal thrust N, acting in the center of the concrete section, and a 
bending moment M = Ne, where e is measured from the center of the 
concrete section. Due to the unsymmetrical arrangement of the 
reinforcement the center of gravity of the reinforced concrete section 
does not coincide with the center of the concrete section but is moved 
by a distance da toward the reinforced face of the section. The thrust 

Fia. 102.—Rectangular Section with Steel Near Face under Max. Compression. 

(See p. 224.) 

N acting in the center of the concrete section is therefore eccentric as 
far as the whole section is concerned. The bending moment produced 
by this eccentricity is of opposite sign to the external bending moment. 
The resultant bending moment is M — Nda and the resultant eccen¬ 
tricity is (e — da). 

Formulas.—The following formulas may be used for sections with 
reinforcement near one face only. (See Fig. 102, p. 224.) 

Maximum Compression Stresses for Known 6, h and p2} 

N 
6 1+2 in - Dp2f| _ 

fa e dg 

bh i + (»-Dj.a 1,+ 

i-
1 

(N
 

+
 

'•-s(c- + c-iTk)' 
where 

C 1 
1 + (n - 1)P2 

(19) 

( 20) 

(21) 
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cm = 

6 1 + 2 (ft - 

1 + (ft — l)p2 

+
 1 

1
_
1

 

to
 

1_
 . . . (22) 

(ft - _l)/>2 _ 

’ 1 + (n-l);,/' 

cl 

(23) 

Constants C„, Cm and — arc given in table, p. 226, for different values 
a 

of P2- 
Minimum Stresses for Known b, h and j>2, 

Si = 

-
1

 

1 
®

 

1 
1 

C
M

 

+
 

V 
r—l 1 +

 
i—I 

I
_

1
 e — dt 

1 + (ft - l)p2 . . 
1 + (ft - 1)P2 +iit)\ 

" • —
 

n
 

1 1 ^
 

. eo 
Limiting Ratio of — for which ft = 0, 

/t 

e() 1 1 
1 + (n 

h 6 1 + (n — 1) p2 
1 + (ft - 0»(l + 20 

(24) 

(25) 

One-sided reinforcement shall not be used if for any condition of 

loading the ratio - is larger than the value from the above formula. 
h 

Required Depth h for Accepted Ratio of Steel p2, 

h = . . . (26) 

where Cn and Cm are same constants as used in Formula (20), p. 224. 
They are given in table on p. 226. d9 is given by formula (23), p. 225, 
in terms of a. 

Since a is not known, the value of ds must be assumed first. After 
h is computed check the values of ds and if the difference between the 
assumed and actual value is large recompute h on the basis of a net 
value for ds. 
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The result can be used only when the value of 7 is smaller than the 
h 

limiting value from Formula (25), p. 225. 
For numerical example of the use of the formula for h see p. 250. 

da 
Constants Cn, Cm and —. (See p. 225) 

a 

Unsymmetrically Reinforced Section, One Face in Tension 

Pi Cn 

Cm da t- a 

0
 

II ~ = 0.05 
h T - 01 h 

n — 15 n = 12 

0.002 0 972 5.39 5 47 5 56 0 027 0 022 
0 004 0 946 4 90 5 05 5 21 0 053 0 042 
0 006 0 919 4 50 4 70 4 91 0 081 0 062 
0.008 0 898 4 15 4 38 4.62 0 101 0 081 
0 010 0 877 3 85 4.12 4 38 0 123 0 099 
0.012 0 856 3 58 3 88 4 17 0 144 0 117 
0 014 0 836 3 36 3 66 3 95 0.163 0 134 
0 016 0 817 3 16 3 48 3 79 1 183 0 150 
0.018 0 792 2.99 3.32 3 64 0 202 0.165 
0.020 0.781 2 83 3.16 3.49 0.219 0.180 
0.022 0.764 2 69 3.02 3.36 0 236 0.195 
0.024 0 748 2.56 2 89 3 25 0 252 0.209 
0.026 0.732 2.44 2 77 3.13 0.267 0 222 
0 028 0.718 2 34 2 65 3 01 0.282 0 236 
0.030 0 704 2 24 2 50 2 92 0.296 0.248 

Required Ratio of Reinforcement p2 for Given Effective Dimensions 
b and h and Compression Stress fc.—The thrust N, the eccentricity 

M 
e = — and dimensions of the section b and h are known. The problem 

N 

is to find the ratio of reinforcement P2 required to reduce the maximum 
stress in concrete to the allowable value of /c. 

Formula for P2 would be complicated. The problem can best be 
solved by trial from the following relation. 

Relation between fC) 6, h and £>2, 

6^1 + 2(n - VP2j) 

/- = *c AT 

1 

N 1 + (n — l)p2 
+ 

e — d, 

1 + (n - l)p2 1 + 12(i 
(27) 
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Use of Formula (27), p. 226.—Given dimensions of sections b and h, 
and the thrust and bending moment N and M — Ne. 

Specified is the compression stress in concrete fc. 

Stresses in concrete for plain section are too large. 
Problem is to find ratio of steel p2 which, placed near the highly 

compressed face, would reduce the maximum compression stress to the 
allowable value of fc. 

To solve the problem compute value of 
fj>h 

N' 
Find value of ~ (see 

h 

M e 
Fig. 102). Find value of e = — and the ratio of - 

N h 

Assume value of p2 and substitute in Formula (27). 
If for the assumed po both sides of the equation are equal, the value 

P2 is correct. If the left side is larger than the right side, accept a 
larger value of P2> If right side is larger, reduce value of p2 and refigure. 

SYMMETRICALLY REINFORCED SECTION—ONE FACE IN TENSION 

Formulas in previous pages are applicable only in cases where no 
appreciable tension is developed in the section so that the full section 
may be considered as effective. Where large tensile stresses arc devel¬ 
oped, the concrete in the portion of the section below the neutral axis, 
being in tension, should not be considered as resisting stresses. Formulas 
for symmetrically reinforced rectangular sections with one face in ten¬ 
sion are developed in Vol. I, pp. 180-184. Final formulas are repeated 
below. 

Center of Gravity of Symmetrically Reinforced Section when One 
Face is in Tension.—When the whole concrete section is effective in 
resisting stresses, the center of gravity of a symmetrically reinforced 
section coincides with the center of gravity of the concrete section. 

When, however, part of the concrete section is in tension and there¬ 
fore is not considered as effective in resisting stresses, the concrete in 
this part cannot be considered in computing the center of gravity of 
the reinforced concrete section. The center of gravity of the effective 
section does not coincide with the center of the concrete section but 
moves toward the face under compression by the distance da. Then 
normal thrust, acting in the center of the concrete section, actually 
is not a central thrust, but acts at an eccentricity equal to da. This 
is taken into account in formulas and it is not necessary to find the 
actual position of the center of gravity of the effective section. 

Stresses in Steel and Concrete for Known Dimensions b, d and p. 

(See Fig. 103, p. 228.) 
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Maximum Compression Stresses in Concrete, 

Ne 

fc ~ CM* ‘ ' ' 
(28) 

Constant Ca is given by formula (32). It may be taken from Diagrams 
10 to 14, pp. 657 to 661. 

Maximum Tensile Stresses in Steel, 

also 

/. = 
1 - k 

k ' 
(29) 

/. = Cs 
Ne 

CM* 
(30) 

Constant C$ is given by formula (33), p. 228. It may be taken from 
Diagram 15, pp. 662. 

Fia. 103.—Rectangular Section, Symmetrical Reinforcement, One Face in Tension. 
(See p. 228.) 

Maximum Compression Stresses in Steel, 

Constants 

npl a 

and 

C, = n 

k \dj 

1 - k 

k 

-) kd/’ 

k/h\ k2 

. . . (31) 

+ 4W ~ 6 • • 
. . . (32) 

. . . (33) 
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The value of k is obtained from the following relation 
Relation between ft, e and p, 

e 

d 

— k[i + 1.5fc2- + 6/z/;(- 

3/c2 + (jtipk — \Snp- 
d 

(34) 

The values of Ca and Ca can be found directly if the value of k is 
known. The value of k cannot bo found directly from Equation (34) 
but must be obtained by trial. Namely, a value of k is assumed and 

substituted in the equation. If the resulting value of - is equal 
d 

to actual value - the value of k is correct, otherwise a new assump- 
CL 

tion for k, with the previous value as a guide, must be made and the 
work repeated. 

Diagrams for ft, Ca and Cs.—From diagrams given on pp. 656-659 
the value of k can be obtained for any given ratio of steel p and 

£ 
eccentric ratio The value of Ca and C, for the value of k so 

d 
obtained may be taken from diagrams on pp. 657-662. 

h 
The diagrams are worked out for the ratios - = 1.0, 1.1 and 1.2. 

CL 

An example showing the use of the formulas is given on p. 252. 
Required Area of Steel for Known Dimensions b and d and Specified 

Stresses/ and/..—The dimensions b and d are given and also the thrust 
N and bending moment M = Ne. The stresses/, / and the ratio n are 
specified. The problem is to find the required steel ratio p for which 
neither the tensile stresses in steel / nor the compression stresses in 
concrete / exceed the allowable working values. 

The problem can be solved by means of the diagrams in the manner 
described below. Attention is called to the fact that usually the steel 
ratio p found for the steel stresses will be different than that for the 
compression stresses in concrete. The larger of the two values should 
be used. It is obvious that then either the concrete or the steel is 
understressed. To get the maximum stresses in both materials simul¬ 
taneously a section with unsymmetrical reinforcement should be used 
as described on p. 232. 

From Formulas (28) and (29) the two values of Ca are ob¬ 

tained. 
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Constant governed by compression, 

C a 

Ne 

befj; 

Constant governed by tension, 

Ca = C\ 
Ne 

'm2/; 

(35) 

(36) 

These two equations may be used in connection with the diagrams 
to determine the steel ratio p. 

Substitute in the above equations the known values of N, e} b, d, fc 
and /, and find the numerical values of Ca- 

Assume value of fc and find the corresponding <7,. As a first assump¬ 

tion k — 0.5 may be taken. In the diagram for proper find the 
a 

corresponding values of p for the two computed values of Ca and for 
the assumed value of k. The larger of the two values should be used. 

Check the value of k by means of the diagram for k for the known 

eccentricity ratio - and the value of p just found. 
a 

In case of large 

discrepancies between the actual value of k and the assumed values, 
new values of p should be found for closer value of k. 

An example showing the use of the formulas is given on p. 254. 
Required Depth of Section d} if it is Desired that the Ratio p Should 

Not Exceed a Definite Value.—Given is width of section 6, also thrust 
N and bending moment M = Ne. Specified are the stresses/f, fa and n. 
The problem is to find depth d for which the ratio p does not exceed 
a definite chosen value. 

Formulas for depth derived from Formulas (28) and (29), p. 228, are 
Depth governed by Stresses in Concretey 

d = (37) 

Depth Governed by Stresses in Steel} 

d = 
Ne 

Cabf.' 
(38) 

To solve the problem assume a ratio of fc. As a first approximation 
fc may be assumed as equal to 0.5. For the assumed fc and specified 
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value of p find the corresponding values of Ca and Cg. Solve Equations 
(37) and (38) thereby obtaining two values of depth d. The larger 
value of d should be used. For this value of d find the ratio of eecen- 

e 
tricity Check the value of k for the specified p and computed ratio 

value is large, make another assumption, taking an intermediate value 
of k and then recompute the depth d. 

An example showing the use of the formulas is given on p. 253. 
Use of Diagrams for k and Ca for Different Values of n.—As evident 

from Formulas (32) to (34), p. 228, the values k and Ca depend 
not only upon the steel ratios p but also upon the ratio of moduli of 
elasticity n. It is also evident that the values of p and n always appear 
in the shape up. Therefore, as explained on p. 220, the diagrams for 
k and Ca, which were worked out for n = 15, can be used for any other 
n, provided the steel ratio is adapted so that up remains constant. 
The following table gives the values of p for n = 10 and 12, respectively, 
which correspond to the steel ratios for n = 15. 

Changed Steel Ratios for n = 10 and 12 

Based on Relation up = nipi 

Ratios p 

in Diagrams 
n — 15 

Changed Ratios p for Ratios p 

in Diagrams 
n — 15 

Changed Ratios p for 

n = 12 71 = 10 n = 12 n — 10 

0 002 0 0025 0 003 0 032 0 040 0.048 
0.004 0.005 0 006 0 034 0.0425 0 051 
0.006 0.0075 0 009 0 036 0.045 0 054 
0.008 0.010 0 012 0 038 0 0475 0.057 
0.010 0.0125 0.015 0 040 0 050 0 060 
0.012 0.015 0 018 0.042 0.0525 0 063 
0.014 0 0175 0.021 0.044 0 055 0.066 
0.016 0.020 0.024 0 046 0 0575 0.069 
0.018 0.0225 0.027 0 048 0 060 0.072 
0.020 0 025 0.030 0 050 0.0625 0 075 
0.022 0.0275 0.033 0 052 0 065 0 078 
0.024 0.030 0 036 0.054 0.0675 0.081 
0.026 0.0325 0.039 0.056 0 070 0 084 
0.028 0.035 0 042 0.058 0 0725 0.087 
0.030 0.0375 0.045 0.064 0 075 0.090 



232 MEMBERS SUBJECTED TO DIRECT STRESS AND BENDING 

UNSYMMETRICALLY REINFORCED SECTION—ONE FACE IN TENSION 

Required Reinforcement for Rectangular Sections—Symmetrically 
reinforced concrete sections are not the most economical to resist eccen¬ 
tric thrust (or thrust and bending moment) as ordinarily cither the 
amount of compression or tension reinforcement is larger than required 
by stresses. By using an unsymmctrically reinforced section, i.e., a 
section where the amount of tension reinforcement is different from 
that of compression reinforcement, it is often possible to design a section 
so that both the stresses in the tension reinforcement and the compres¬ 
sion stresses in the extreme fiber of concrete reach the maximum allow¬ 
able values simultaneously. The required amount of compression 
reinforcement in such cases is nearly always different from the amount 
of tension reinforcement and therefore the Formulas (28) to (34) for 

symmetrical sections do not apply. 
The condition is illustrated in Fig. 104, p. 232. The formulas are 

developed on p. 238. 

Fig. 104.—Unsymmetrically Reinforced Section Subjected to Eccentric Thrust. One 
Face in Tension. (See p 202.) 

Center of Gravity of Section.—When the amount of tension rein¬ 
forcement is different from the amount of compression reinforcement 
the center of gravity of the reinforced concrete section does not coincide 
with the center of gravity of the rectangle composing the concrete 

section. 
The distance of the center of gravity may be found from the following 

formula: 
Distance of Center of Gravity of Reinforced Section from Center of 

Concrete Section, 
, (n - l)(p2 - Pi) 

d. = --' 

- + (n - l)(pi + p2) 

(39) 
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Hence 

<1* = (n - 1)(p3 ~ Pi) 

a h 
j + (tl - l)(Pi + P2) 

(40) 

If the value of da is positive, the center of gravity is nearer the 
compression face of beam. For negative value of da ihe center of 
gravity is nearer the tension face of beam. 

Use Diagram 1G, p. 663, to determine value of Cc for different 
h h 

values of n, pi and p2 and - = 1.0. For other values of -- and when 
d d 

2?2 is smaller than pi, see explanation on p. 662. 
Position of the Central Thrust N.—In the following formulas it is 

assumed that the section is subjected to a normal thrust N acting in 
the center of gravity of the reinforced concrete section (and not the 
center of the rectangle composing the concrete section) and to a bending 
moment M = Ne. The eccentricity c is measured from the center of 
gravity of the reinforced concrete section. 

If the normal thrust acts in the center of the concrete rectangle, it 
produces, in addition to the moment M = Ne, a bending moment 
— Nda which should be added to the main bending moment. 

Areas of Reinforcement for Given Stresses. 
For known dimensions of the concrete section b and d and specified 

stresses fc and fa the areas of compression and tension reinforcement 
required by a given N and M = Ne may be found from the following 

formulas. 
Area of Tension Reinforcement Unsymmetricalhj Reinforced Section. 

also 

where 

(41) 

A. 
N 

V. + CM’ 
(42) 

a-’H) 
(43) 

Values of C\ are given in Diagram 17, p. 664. 
In the above equations j and p are values corresponding to the 

stresses fc and /, in balanced rectangular beams. 
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Area of Compression Reinforcement Unsymmetrically Reinforced 

Sediony 

also 

where 

a, 1 + d, \l - k 1 - k j 

2f, \ a L cl' ‘ d’ a 

k-J2~d 

A'. - C,(- + - + l)^r - CM, 
\a a / 2/a 

C2 =-- and 63 = V-7, —• 

*-H 

(44) 

(45) 

(46) 

Values of Co and C3 are given in Diagram 18, p. 665. 
In the above equations jy k and p are values corresponding to the 

stresses fc and f8 in balanced rectangular beams. See Table 1, p. 649. 
Unsymmetrically Reinforced Section. How to Use Equations (40) 

to (46) and Diagrams 16 to 18.—Equations (40) to (46) and Dia¬ 
grams 16 to 18 are used for sections subjected to thrust N and 
bending moment M = Ne when the concrete dimensions b and d are 
known or assumed and it is desired to find the amount of reinforcement 
for which the stresses in concrete and tension reinforcement reach the 
specified values of fc and fs. 

Proceed as follows. Find the value of k from Table 1 which 
correspond to the specified stresses fc, f, and the ratio of moduli n. 

2 a 
Compute the ratio —. From proper diagrams select the corresponding 

a 
values of C\y C2 and C3. (Pages 663 to 665.) 

g 
Compute eccentricity e and ratio Since the ratios of tension 

a 
and compression steel are not known the value of day which is the dis¬ 
tance of the center of gravity of concrete section to center of gravity 
of reinforced section, is not known. It may be assumed as equal 
0.05a for small eccentricities and equal 0.15a for large eccentricities. 

. d9 
These assumptions give the ratio — as 0.05 and 0.15, respectively. 

a 

The constants found above are substituted in Formulas (41) and 
(44) and the areas of steel AB and A\ computed. The value of d« 
should now be found from Diagram 16. If the difference between 
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the assumed d, and the computed value is considerable, new areas of 

steel A, and A', should be computed for the new ratio of Cc = —. 
a 

Depth of Section for Fixed Ratio of Compression Reinforcement. 
Unsymmetrically Reinforced Section.—When it is desired that the 
ratio of compression steel p > shall not exceed a certain definite value the 
depth of the section may be found from the equation given below. 

Depth of Section for Fixed Ratio of Compression Steel, 

where 

d = C4— 
bf. 

r 1 1 c4 = ir 

1 + 

k 

2(e + d.) 

a N 

d %f. J 

1 C2 

d' 1 — k j 4 (p2 + C3) 

dT‘ + r7 d'~a 

k~i2i 

(47) 

(48) 

The values of k, j and p in the Formula (48) are the constants in 
balanced rectangular beams for the selected unit stresses fc, /. and the 
ratio of moduli n. See Table 1, p. 649. Co and C3 are constant from 
Diagram 18, p. 665. 

The value N is the normal thrust and e is the eccentricity. 
The value of d8 is the distance from center of gravity of plain section 

to center of gravity of reinforced section. It is not known, but it may 
be assumed as equal to 0.15c. After A, and A\ are found check the 

assumed value of d8. 
After the depth d is found, the area of compression reinforcement is 

computed and finally the amount of tension reinforcement is found by 

Formula (41), p. 233. 

SECTION REINFORCED FOR TENSION ONLY 

When the concrete section is large enough to resist all compression 
stresses produced by eccentric thrust, compression reinforcement is not 
required and it is necessary to provide tension reinforcement only. This 
stress condition is illustrated in Fig. 105, p. 236. Formulas for such 
condition are developed in Vol. I, p. 185. Formulas there given are 
here repeated. Also additional formulas are given to cover all require¬ 

ments. 
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Position of Normal Thrust.—The section is assumed to be sub¬ 
jected to a normal thrust acting in the center of gravity of the rein¬ 

forced concrete section and to a bending moment M = Ne. 

Stresses in Section. 
Maximum Compression Stress in Concrete, 

M Ne 

*c ~ CJxP ~ CM?' ’ 

Maximum Tensile Stress in Steel, 

f* ~~ ^ k C} ' * * 

(49) 

(50) 

where 
Constants, 

.<5i) 

c*" l(f -**) + n’,Lr(l ~ f)• ■ • (52) 

C. = rv—-^.(53) 
rC 

, 1 + 2(n - l)p(f) 
*_I*_(M) 

* M 1 + 0.-^.( 

a Kf - ») + 2np(l - t)(l - f) 

d k2 — 2np(l - fc) ' ' (55) jfc2 — 2np(l — A;) 
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Values of C&, k and J may be taken from diagrams, pp. GG6-667. The 

values of Ca for known k may be taken from Diagram 15, p. GG2. 

Area of Reinforcement for Given Stresses.—Given dimensions 
b and d, also the thrust N and bending moment M = Ne. Specified are 
stresses fCyfs and ratio n. 

Problem is to find the area of steel required to keep the tensile 
stresses within the allowable limits. 

The problem may be solved by means of Diagrams 19 and 20, 
pp. GGG G67. 

From Formulas (49) and (51), p. 23G, following relations are 
obtained: 

Constant governed by compression, 

Ch 
Ne_ 

fJxP' 
(55a) 

Constant governed by tension, 

t\ = Ci 
Ne 

(56) 

These values of the constants may be found from the above formulas 
because all values in the equations an' known. 

Assume value of k and find Cs. Find both values of (\. For the 
assumed k and the first value of C& find from Diagram 20 the correspond¬ 
ing value of p. For this value of p and the known ratio of eccentricity 
check the assumed value of k by means of Diagram 19, p. GGG. If 
the value found from Diagram 19 is appreciably different from the 
assumed value, new value of p should be found on the basis of a new k. 

Similarly find a value of p corresponding to the second value of C& 
and k. The larger of the two values should be used. 

Finally, knowing the ratio of steel p the area of steel is 

Aa = pbd.(57) 

Dimensions of Section for Accepted Stresses and Ratio of Steel p.— 
Given width of section 6, thrust N and bending moment M = Ne and 
the stresses fc and /,. Find depth of section for which neither the 
stresses are exceeded nor the ratio of steel is larger than a certain 
definite value of p. 

Problem is solved by using following formulas in conjunction with 
the diagram. 
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Depth of Section Governed by Compression Stresses, 

*-\b 
Ne 

1C„fcb‘ 
(58) 

Depth of Section Governed by Tensile Stresses, 

d -Jc-to 
GW/. 

(59) 

In the above equation C& and C, arc not known. They are found 
from proper diagrams corresponding to the accepted value of p and an 
assumed value of fc. The value's of d are then found, and the value of k 
checked from Diagram 19, p. 666. If large error was made in assuming 
value of k the process is repeated. 

The depth as governed by fc will not be equal to the depth governed 
by /,. The larger of the two values must be accepted. 

DEVELOPMENT OF FORMULAS FOR UN SYMMETRICALLY REINFORCED 
SECTION 

The formulas already given for unsymmetrically reinforced section 
subjected to thrust and bending moments are developed as follows: 

Problem. —It is desired that the section be reinforced so that the 
stresses in steel and concrete reach simultaneously the specified values 
fe and 

Notation. 
Let h = depth of rectangular section, in.; 

b = breadth of rectangular section, in.; 
d = depth of steel in tension, in.; 

di = depth of steel in compression, in. ; 
a = distance from center of concrete section to steel, in.; 

d, = distance of center of gravity of reinforced section from 
center of gravity of plain section; 

/, = maximum unit tension stress in steel, lb. per sq. in. ; 
fc = maximum unit compression in concrete, lb. per sq. in.; 
n = ratio of moduli of elasticity; 
k = ratio of depth of neutral axis to depth of tension steel d; 

j = 1 — \k = distance of tension steel from center of gravity 
of compression stresses in concrete, balanced rectangu¬ 
lar section; 
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p = ratio of tension stool in balanced rectangular section; 
P2 = ratio of actual amount of compression steel; 
pi = ratio of actual amount of tension steel; 
A9 = p\bd = area of tension steel, sq. in.; 
A\ = p2bd = area of compression steel, sq. in. 

Center of Gravity Axis of Section.—The effective area of the section 
consists of the concrete area and of the compression and tension areas 
of steel. 

To get the gravity axis of the reinforced section the concrete and 
steel areas are converted into a homogenous concrete section in which 
the steel area is replaced by a concrete area equal to n times the steel 
area and placed in the same relation to the axis of the section as that 
of the reinforcing bars. 

Since the effective section is not symmetrical its center of gravity 
will not coincide with the center of the rectangle forming the beam 
but will rest a certain distance da above (or below) it. Assume that the 
compression zone is placed above and the tensile zone below. Then 
when the amount of compression steel is larger than of tension steel 
the actual center of gravity will be above the center of the rectangle. 
In such case d, is positive. For Aa larger than A'a the actual center of 
gravity is below and da is negative. The magnitude of da is computed as 
follows. 

Referring to Fig. 106, p. 240, the area of the effective section is 

A = bh + (n — 1)A. + (n — l)A'g, 

also 
A = bh + (n — l)pibd + (n — l)p2bd. 

Compute the static moment of all areas about the center of rectangle, 
considering the moment of the compression areas as positive and of the 

tensile areas as negative. 

Static moment of concrete area is zero. 
Static moment of compression steel (n — l)p2bda. 
Static moment of tension steel — (n — 1) pibda. 

The total static moment is 

M = (n — l)bd(p2 — p\)a. 

The distance d, is obtained by dividing the total static moment by 

the total effective area. 

(n - \)bd{p2 - pi)a _ (n - l)(p2 - pi) 

bh + (n — l)bd(pi + P2) h 
-a. (60) 

- + (n - l)(pi + p2) 
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Finally 

c. - * . .(61) 

U 5 + (n — l)(pi 4- P2) 
a 

The values of Cc are given in Diagram 16, p. 663. 
Formulas for A, and A'a.—A reinforced concrete rectangular 

section with dimensions b and h is subjected to a thrust N and a bend¬ 
ing moment M acting simultaneously. The problem is to find the 
required areas of compression and tension reinforcement for which the 
stresses in concrete and in the tension reinforcement will be equal to 
the selected unit stresses fc and /, and the corresponding ratio n. 

Making same assumptions as for beams subjected to flexure only 
(see Vol. I, p. 126), the stresses will be as represented in Fig. 106. 

i—— 
t | Neutral A 

3 
I 

\ Neutral Axis' I 
I I I ? ss 

T 1 1 111 
' I j ^ i 

J-1 

Fig. 106.—Section with Unsymmctriciil Reinforcement Subjected to Thrust and 
Bending, One Face in Tension. (See p. 240.) 

The position of neutral axis and the relation between tension and 
compression stresses are the same as for a beam subjected to flexure only. 

Thus 

fc = —L_f.(62) 

1 + A’ 
nfc 

also 

t — 11 ~ ^ 

~ nfc k > 

/«=/. 
n( 1 — k) 

(63) 

(64) 
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The relation of compression stress in steel to the tensile stresses is, as 
evident from Fig. 106, 

cT 

d 

f- k. 

k - 

r. (65) 

The areas of steel may he obtained from the two lequirements of 
equilibrium. 

1. The bending moment about any point of all stresses is equal and 
of opposite sign to the bending moment about this point of all external 
forces. 

2. The sum of all stresses acting on a section must be equal to the 
normal thrust N. 

Tension reinforcement will be found from the first requirement of 
equilibrium. To simplify the work the external bending moment M 
and the central thrust N will be replaced by a thrust acting eccentrically 

(see Vol. I, p. 165). The eccentricity equals e = ~ and it is measured 

from the center of gravity of the converted section (and not the center 
of gravity of plain section). 

The section is thus exposed to the external force, N acting eccentric¬ 
ally on the one hand and to the resisting stresses composed of the 
compression stresses in steel and concrete and tension stresses in steel 
on the other hand. 

Take the moment of all stresses about the center of compression 
steel. This is equal to total tension times 2a, minus compression in 
concrete times (Ikd — d'). The equation is 

M = 2A,}A - bd—^-rrf.ihkd - d’).(66) 
2n (1 — k) 

As evident from the figure the moment arm for the external force, 
i.e., the distance from the force to the compression steel, is (e + da — a) 

and the moment 

M = N(e + ds - a). 

Equating Formulas (66) and (66a) we have 

k2 
N(e + d.-a)=2A.f.a~bd-2n{1_k) 

Finally area of tension steel 

1 /6 d9 \ 

A--W.Nhr~1) + 

fs($kd - d'). . . 

k2 (ikd - d') 

2ra(l — k) 2a 

(66a) 

(67) 

bd. . (68) 
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Since from Fig. 106 Ikd — d' = 2a — jd and 
k2 

balanced rectangular beams 
2n(l - k) 

2If. \ a 
l) +p( 1 - - 

; 1 s 
- — \bd. 

!-) 
d/ 

= p for 

(69) 

The second requirement of equilibrium will be used to determine 
the amount of compression reinforcement. 

The compression stresses on the section arc: 

, , . . Wd , fc2 ,f , . , # fc 
(a) m concrete —— also -— /ffrd, since fc — /, 

(6) in steel A',/', = A',/, 

2n(l - fc)' 
d' 

k~d 

n( 1 - fc)J 

1 - fc’ 

d' 

fc2 d 
TotaZ Compression equals /,M—-- + A',/4i-7 . . . (70) 

2n(l — fc) 

ToZaZ Tension in Steel equals — f,At. 

1 — fc 

Concrete is considered to resist no tension. The sum of tension and 
compression equals N. Thus 

k — — 
fc2 K d 

^ + -- - f,A,. . • 
2n(l — fc) 

From this equation we get 

fc2 

T — fc 
(71) 

also since 

A. = bdt 

k2 

2n(l — fc) 

2n(l — fc) 

= P 

k~dd 
+ A’—±-1-N 
+ A‘l~ifc /. ’ (72) 

k-d- 

A. = pM + A'.j—^ (72o) 

The area of tension steel is also represented by Equation (69), p. 242. 
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To get the area of compression steel equate Formulas (69) and 
(72a) and solve for A', 

fc-- 

LW(i±* - i) + 1.^1 - - PM + A'.j-i - -V. (73) 

From this 

A'Tri--4pM+2Tv(^+1)' • • (74) 
2d 

Finally, 
-Area 0/ Compression Reinforcement, 

• <75> 

‘-J V-J 
In Formulas (69) and (75) k and j are values corresponding to the 

selected stresses/<• and/,, and p is the ratio of steel in balanced rectangu¬ 
lar beams corresponding to the selected stresses. Expressing the 
values depending upon the stresses by constants, the formulas become: 

Area of Tension Steel, 

A--wfr^-')+CM’ .<76) 
where 

Ci - pfl ——\.(77) 

1 
Area of Compression Steely 

*'■ = c’(rir ~ ’)! - CM.m 
where 

1 - k „ 1 - k j 
C2 =-j„ and C3 = V-T, *“• 

k~A 
The constants are given in Diagram 8, p. 665. 



244 MEMBERS SUBJECTED TO DIRECT STRESS AND BENDING 

DEVELOPMENT OF FORMULAS FOR SECTION WITH STEEL NEAR SIDE 
UNDER MAXIMUM STRESS ONLY 

As evident from pp. 217 to 220, in sections subjected to eccentric 
thrust the reinforcement near the side with minimum stress resists 
very small stresses. If there is no possibility of tension stresses this 
reinforcement is practically wasted. It may, therefore, be desirable 
to omit this reinforcement and use steel only in the part with maximum 
stresses. For such case formulas given below apply. 

Let section be provided with reinforcement near one side only, also 

let 
A\ = pobh = steel near side under maximum stress; 

P2 = steel ratio; 
b = breadth of section; 
h = depth of section; 
| ^ 

a = - — d! = distance center of concrete section to center of steel; 

dM = distance center of gravity of concrete section to center of 
gravity of reinforced section. 

Due to the assumed arrangement of steel the center of gravity of 
the reinforced section does not coincide with that of the concrete section. 
The distance between the two centers is obtained by taking static 
moments about the center of concrete section and dividing it by the 
area of the reinforced section. 

Moment of concrete section about its center being zero, the moment 
of the reinforced section is 

M — (n — l)p2bha. 

The area of reinforced section converted into concrete is 

A = bh + (n — l)p2bh = bh[l + (n — l)ps]. 

Consequently, 

d. = 
(n — l)p2bh 

bh[l + (» - l)p/' 
(79) 

Finally, 
Distance between Axis of Gravity of Plain and Reinforced Sections, 

(n — l)p2 

1 + (n - 1 )p2°' 
(80) 
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The moment of inertia of the reinforced section about its center of 
gravity is composed of the moment of inertia of concrete plus moment 
of inertia of steel. 

Moment of inertia of concrete section, 

12 L12 U / J Ll2 \i + (n -1 )p2' W J 
Moment of inertia of steel 

J, = (n — l)p2bh(a d,)2 = (n - l)p-J>ha2(l- 
\ 1 + (n - 1 )pj 

— (n — l)p2bha2y 

(n — l)p2 

1 + (n — l)p2 — (n — l)p2\2 

1 + (n — l)p2 / 

[1 + (n — l)p2]2\h, 
- bh\ 

Fid. 107.—Section Reinforced Near One Face, Subjected to Thrust and 
Bending Moment. (See p. 244.) 

Total Moment of Inertia, 

/ = Ic + /. = bh» 
(n ~ 1)P2[1 + (n - l)p2]l 

[1 + (n - l)p2]2 J 

= bh3 
(n - l)p2 /a\2 

1 + (n — l)p2\h/ . 
(81) 

The section is subjected to a thrust N acting in the center of the 
concrete section and the bending moment M = Ne. Since the center 
of gravity of the concrete section does not coincide with the center of the 
reinforced concrete section the thrust N produces a bending moment 
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Mi = — Nd, so that the actual bending moment acting on the section 
is M = Ne — Nd, = N(e — d,). The stresses in the section are 

- _ N NJe — d.)y, 

Je A + I ' 

The formulas for A and I are given above. 
The value if y, is found as follows: 

_ A _h_ (n - 

2 * 2 1 + (n — l)p2 

1)P3 A 
-a = 1-- 

- 1)P2 \2 1 

(n — l)p2 

1 + (n — l)p2 - 2(n - 1)P2T 
fl 

2[1 + (n — l)p2] 

a d! 
Finally, since 1 — 2- = 2—, 

h h 

h = 

+ (n — l)p2 

1 + (n - l)p2(l - 2^ 

2[1 + (n - l)p2] 
h. 

d' 

y. = 
Therefore, 

fc = 

1 + 2(n — l)p2- 
--) 
2[1 + (n - l)p2] 

(82) 

N 

M»[l + (n — l)p2] 
+ 

1 + 2(n — l)p2T’ 
_*_« 
2[1 + (n — l)p2] 

bh:t JL 4. (» ~ 1)P2 /o\2 
.12 1 + (n — l)p2\h/ J 

(83) 

This simplified gives 
Maximum Compression Stress, 

/=- 
1 -4 G. 

1 + 2(» - 1)P2 a 
1 + (n — l)p2 

1 + (» - 1)P2 1 + 12 

. (84) 

The minimum compression stress is obtained from formula 

, N h-y. 
/« = —--N(e-d,). 

By substituting values for A, h — y„ and I, and simplifying, follow¬ 
ing final formula is obtained. 



PLAIN OR UNREINFORCED SECTION 247 

Minimum Compression Stress, 

/< = 
N 

bh 

e — d. 

I 

, 6[l + („-l,K(x + 20] 

1 + (n - l)p2 h 
1 + (n - l)p2 1 + 12 1 

(85) 

PLAIN OR UNREINFORCED SECTION 

Example 1. Finding Dimensions and Stresses.—Plain concrete section sub¬ 

jected simultaneously to a normal thrust acting centrally and bending moment. 

Given: Normal thrust, N = 300 000 1b. 

Bending moment, M = 1 000 000 in.-lb., 

. . 1 000 000 
Lccentricitv, e =-= 3.33 in. 

300 000 

Assumed width of section b — 40 in. 

hence, 

Find: depth of section h for which maximum compressive stresses do not exceed 

400 lb. per sq. in. No tensile stresses in concrete are permitted. 

Such problem may occur in design of plain concrete arches, dams, eccentrically 

loaded piers, etc. 

Solution.—This example is solved by using Diagram 1, opp. p. 648. 

_ , bfc 40 X 400 
Compute 

N 300 000 
- 0.0533. 

Me 
Locate in Diagram 1, opp. p. 648, e — 3.33 in. and ™ = 0.0523 and get /i == 31 in. 

h 31 
Since - = — =5.17 in. and l = 3.33 in. is smaller than h. the whole section is in 

6 6 
compression. 

Check the correctness of this solution by using Formulas (3) and (5), p. 214. 

/« = 

ft = 

300 000 / f 6 X 3.3 

40 X 31> \ 31 , 

300 000/ ' 6X33’ 

40 X 31' X1' 

)- 
398 lb. per sq. in. 

155 lb. per sq. in. 

The depth of section h = 31 in. is satisfactory. 

Example 2.—Find dimensions of foundations subjected to eccentric pressure. • 

Given: Normal thrust, N = 700 000 lb. 

Eccentricity, e = 10 in. 

•Such problem may occur in arch design where the center of the footing was 

made to coincide with the line of pressure for dead load. The actual dimension 

of the footing is found for the most unfavorable combination of dead load with live 

load and temperature stresses. 
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Allowable maximum pressure on foundation fc = 10 000 lb. per sq. ft. 

No uplift is permitted, therefore ft = 0. 

Solution.—Assume 6 — 9 ft. Since the dimensions are in feet change the eccen¬ 

tricity to feet. Therefore e — } 2 — 0.82 ft. 

Compute 
bfc _ 9 X 10 000 

N ~ 700 000 

Locate in Diagram 1, opp. p. 618, 

bfc 
e = 0.82 ft. and - 0.129 

N 
which gives h = 11.2 ft. 

Check the stresses by Formulas (3) and (5), p. 214. 

fc = 

ft = 

700 

9 X 

700 000 

9X11 

000 / 6 X 0 82\ 
-( 1 H- ) = 10 000 lb. per sq. ft. 
11.2\ 11 2 / 11 

) / 6 X 0 S2\ 
-II— —- ~— ) = 3 890 lb. per sq. ft. 
Lt \ 112 f 

To get the most economical results, several assumptions as to the width of 

foundations should be made and the corresponding depth should be computed as 

above. The dimensions giving the cheapest foundation should be accepted. 

SYMMETRICALLY REINFORCED CONCRETE SECTIONS 

Example 3. Finding Dimensions.—Find dimensions of a symmetrically rein¬ 

forced concrete section subjected to direct stress and bending for the following 

condition: 

Given: Normal thrust, N — 300 000 1b. 

Bending moment, M = 1 800 000 in.-lb. 

1 800 000 

300 000 
= 6 in. 

Allowable unit stresses fc = 600 lb. per sq. in. (compression) 

ft — — 40 lb. per sq. in. (tension) 

n = 15. 

Accepted ratio of reinforcement, p = 0.01, and distance center of steel to outside 
face d' — 2 in. 

Solution.—Assume width of section 6 = 24 in. 

fe — 600 and 6 — 24 

ft - - 40 and 6-24 

bfc 

N 

24 X 600 

300 000 

bft 24 X 40 

N 300 000 

- 0.048 

- - 0.0032. 
300 000 
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Locatinge = Gin. and = 0.048 in Diagram 1,0pp. p. 648, gives h = 34 in. Using 

Diagram 2, opp. p. 618, and locating c — 0 in. and ^ — — 0 0032 gives h = 27 in. 
N 

rHic larger of the two values of h should he used. Therefore the design section 

fulfilling all requirements is 

b = 24 in. 

h = 34 in. 

Aa = 0.01 X 24 X 34 = 8.2 sq. in. 

Example 4. Finding Stresses. -Find maximum stresses in concrete for a sym¬ 

metrically reinforced concrete section subjected to direct stress and bending. 

Given: Normal thrust, N = 180 000 lb. 

Bending moment, M — 720 000 in.-lb. 

M 
- ^ = 40in- 

Dimensions: b = 30 in., h — 20 in., d' — 2 in. 

Reinforcement: Ten I-in. round bars arranged symmetrically near both faces. 

4, = 10 X 0 6 = G.Osq. in. 

6 0 
p = - — = 0.01. 
H 30 X 20 

Solution.—Since for h = 20 in. and e - 4.0 in. the ratio of eccentricity 

e _ 4 0 _ 

h ~ 20 6“ °‘ 1 

the whole section is effective and Formulas (13) and (14), p. 219 apply. Diagrams 

3 to 6, pp. 650 to 653, will be used to solve the problem. 

2 a 16 
For h = 20 in. and df = 2 in., 2o = 20 — 4 = 16 in. and — * - - = 0.8. 

h 20 

Therefore use Diagram 5 on page 652 marked 2a = O.S/i 

e 
Locate in the diagram p = 0.01 and - = 0.2 and find Ce = 1.63. 

h 
The maximum compression stress in concrete from Formula (13), p. 219. 

180 000 
fc = L63 X 3Q x— = 489 lb. per sq. in. 

Example 5. Finding Areas of Steel.—'Find the required amount of reinforce¬ 

ment arrangement symmetrically near two faces for which the maximum compres¬ 

sion stresses would not exceed fc — 450 lb. per sq. in. 

Given: Normal thrust, N = 180 000 lb. 

Bending moment, M = 720 000 in.-lb. 

M M . 
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Dimensions of sections: b = 30 in. h = 20 in., and df - 2 in. 

e 4 
Solution.—For h — 20 in., e — 4 in., - = —- = 0.2. 

h 20 

Since h = 20 in. and d' = 2 in. Therefore, 2a = 20 — 2 X 2 = 16 in. and 

Use Diagram 5, p. 052, marked 2a = O.&h. 

_ fM _ 450 X 30 X 20 _ 270 000 _ 

'e ~ N ~ 1800 020 ~ 180 000 ~ 

Locate in the diagram 

and find 

Cg - 1.5 and - = 0.2 
h 

p = 0.0141. 

The required amount of reinforcement, therefore, is 

Ag = 0.0141 X 30 X 20 = 8.46 sq. in. 

SECTION REINFORCED ONLY NEAR HIGHLY COMPRESSED FACE 

Example 6. Finding Dimensions.—Find depth of section, reinforced only near 

highly compressed face, for following conditions: 

Given: Normal thrust, N — 200 000 lb. 

Bending moment, M = 700 000 in.-lb. 

M 
Eccentricity, e — ~ = 3.5 m. 

N 

Normal thrust acts in the center of the concrete section. 

Allowable stress, fc = 450 lb. per sq. in. Allowable stress, fc = 450 lb 

Accepted 

Width of section, b = 20 in. 

Steel ratio, p2 = 0.02 

d' = 2 in. 

Solution.—This problem may be solved by using Formula 26, p. 225. 

4Cm e - ds 

0Cn)» A 

bfc - 

W _ 200 000 

bfe ~ 20 X 450 
— = 0.1 and dg — 2 in 
h 

Compute 22.2. Assume 
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For the specified ratio of stool p2 = 0.02 and the assumed - = 0.1 the constants 
h 

Cn and Cm taken from table on p. 226 are 

4 Ct 
Cn = 0.781, Cm 3.40 and 

(Cn)2 
4 X 3 49 

-= 22.8. 
0 7812 

Finally h — 0.39 X 22 '2(iW 
3 5- 21 

l + 22.8 X - ) = 8.63 X 2.39 = 22.3. 

(V 2 
For the computc'd depth - = - - - = 0.0S2 and ds = 0.219 X 9.2 = 2.0. 

h 22 4 

These are sufficiently close to the assumed value. In case of large difference the 

dimension should be recomputed. 

Solution.— b — 20 in. li ~ 23 in. (in even inches) 

pi = 0.02 hence As = 20 X 22.4 X 0.02 = 8.96 sq. in. 

All the computed reinforcement should be placed near the face under high com¬ 

pression. It is advisable, however, to use some additional steel near the opposite 

face. 

Example 7. Finding Area of Steel.—Find the area of compression reinforcement 

placed near the highly compressed surface required to reduce the maximum com¬ 

pressive stress to fc — 450 lb. per sq. in. Use ratio of moduli of elasticity n = 15. 

Given: Normal thrust, N = 200 000 lb. 

Bending moment, M = 900 000 in.-lb. 

M 
Eccentricitv, e = — = 4.5 in. 

N 

Dimensions of section: h = 28 in., b = 30 in. and d' = 2 in. 

Allowable compressive stress fc = 450 lb. per sq. in. 

Allow 2 in. on each side of concrete section for fireproofing. 

Solution.—Since it is necessary to allow 2 in. on each side for fireproofing, the 

d' 
effective section is h = 24 in., 6 = 26 in., and d' — 0. Therefore ~ = 0. 

h 
bh 26 X 24 

Compute/,- = 450 X 2(^)W = 1.4 and 
U5 

24 
= 0.187. 

Substituting these values in Formula (27), p. 226, we find = 0.008. The 

required area of reinforcement, to be placed near the face under maximum com¬ 

pression, is 

Asf = 26 X 24 X 0.008 = 5.0 sq. in. 

SYMMETRICALLY REINFORCED SECTION. ONE FACE IN TENSION 

Example 8. Finding Stresses.—Find the maximum compressive stresses in 

concrete fc and the tensile stresses in steel f9 in a section subjected to direct stress 

and bending for the following conditions. 

Dimensions b = 24 in., h = 30 in., d = 28 in., and d = 2 in. Whole section is 

considered as effective. 
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Reinforcement symmetrically arranged, 

As — 11.6 sq. in., 

hence 

11 6 
p =-= 0.016. 
F 24 X 30 

Normal thrust, N = ISO 000 lb. 

Bending moment, Af = 2 900 000 in.-lb. 

M 
Eccentricity, c = - = 16.1 in. 

N 

Solution.—Since the eccentricity is largo, a part of the section will be in tension. 

This problem, therefore, must be solved by using Diagrams 9 to 15, pp. 656 to 662. 

h 
Since h — 30 in., d = 28 in., and — = 1.07 use diagrams marked h = l.ld. 

,l e 16 \ . , 
By locating in Diagram 11, p — 0.016 and — = —— = 0.57 find Jc = 0.6. 

(I Zo 

Locating in Diagrams 12 and 15, respectively, k = 0.6 and p = 0.016 find 

values of Ca and C8: 
Ca - 0.19 

Cs = 10 

These substituted in Formulas (28) and (30), p. 228, give 

Sc = 

No 

CJjd2 

ISO 000 x 16 1 

0 19 X 24 X 28* 
= 810 lb. per sq. in. 

/. ISO 000 X 17 7 

0.19 X 24 X282 
= 8100 lb. per sq. in. 

Answer.—The maximum compression stress in concrete is fc — 810 and the 

maximum tension stress m steel is Js — 8100. 

Example 9. Finding Dimensions.—Find depth of section h, subjected to direct 

stress and bending and reinforced symmetrically near both faces, for which the 

ratio of steel will not exceed p = 0.02. No fireproofing is required, hence the whole 

section may be considered as effective. 

Given: Normal thrust, N = 125 000 lb. 

Bending moment, M = 1 750 000 in.-lb. 

M 
Eccentricity, e = = 14. 

N 
Normal thrust acts in the center of the section. 

Specified stresses: 

Allowable compressive unit stress in concrete, fc = 750 lb. per sq. in. 

Allowable tensile unit stress in steel, /, = 16 000 lb. per sq. in. 

Ratio of elasticity, n = 15. 
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Assume: 
Width of section b = 36 in. dV = 2 in. 

Solution.—The depth can be found from Formulas (35) and (50), j>. 230. 

d = and 

The larger of the two values must be accepted. Values of Ca and Cs are taken 

from proper diagrams. First assume k = 0.5 and h = 1.1 d. 
Use Diagram 15 for C, and Diagram 12, p. 059, marked h = l.ld for Ca. 
For the assumed k — 0.5 and the accepted p = 0.02 find the proper diagrams 

Compute: 
Ca = 0.218 and Ca = 15. 

J _ 1Ne - 1 a = 1 
\Cabfc \l 

Jc 
0 = -i 

\C,cabf. ~" 

125 000 X 14 

218 X 30 X 16 000 
= 14.5 in. 

The depth governed by compression is larger of the two values and will be 

accepted. 

For the depth governed by compression compute 

e 

d 

_14_ 

17/2 
0.81 and 

h 

d 

17 2+2 

17 2 
1.11 

and find from Diagram 11, p. 658, corresponding to ~ = 0.81 and p = 0.02, k — 0.55. 
d 

For the new value of k find from Diagram 12, p. 659, Ca = 0.211. 

Finally, 

I_125 

“ \0 211 

000 X 14 

X 36 X 750 
= 17.5. 

Answer.—b = 36 in., h = 18.0 + 2 = 20 in. (in even inches), and for p = 0.02, 

A9 = 0.02 X 36 X 17.5 = 12.6 sq. in. 
Example 10. Finding Area of Steel.—Find the required area of steel when 

the dimensions of the section are given and the allowable stresses are specified. Fire¬ 

proofing of 2 in., measured to center of steel, is required. The section to be sym¬ 
metrically reinforced. 

Given: Normal thrust, N = 120 000 lb. 

Bending moment, M — 2 160 000 in.-lb. 

M _ . 
Eccentricity, e = — = 18 m. 

Dimensions: b = 24 in. h = 26 in. d' = 2 in. 

To get effective area deduct fireproofing. 
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Specified stresses: fc = 800 lb. per sq. in. 

f8 = 10 000 lb. per sq. in. 

n = 15. 

Small value of fa is used to prevent opening of cracks. This is often desired in 

structures subjected to effects of the weather. 

Solution.—The problem will be solved by means of diagrams for Ca and Ca. 
Since it is necessary to provide 2-in. fireproofing on each side the effective width 

is b = 24 — 4 = 20 in. and the effective depth h = 26 — 4 = 22 in. The value 

h 
of d = h and - = 1.0. 

d 
Therefore use Diagrams 9 and 10, pp. 050-657, marked h = l.Od. 

e _ 18 

d ~ 22 
0.82. 

Assume k — 0.5. 

From Formulas (35) and (30), p. 230, compute 

_ Ne_ _ 120000 X 18 _ # 

0 ~~ bd% ~ 20 X 222 X 800 ~ °'279 

Ca 
120 000 X 18 

' X 22 X 222 X 10 000 
0.334. 

Locate in diagram for Ca the value k = 0.5 and Ca — 0.279 and find p = 0 026. 

Also locate the value of k — 0.5 and Ca = 0.334 and find p = 0.033. The larger 

of the two values will be used. Now check the assumed values of k. Value 

of k is found from Diagram 9, p. 056, for p 

k = 0.53. 

= 0.028 and - = 0.82. 
d 

It is 

For the revised value of k the required ratio is p — 0.024. This will be used. 

UNSYMMETRICALLY REINFORCED SECTION. ONE FACE IN TENSION 

Example 11. Finding Areas of Steel.—Find the required areas of tension and 

compression reinforcement for an unsymmetrically reinforced concrete section 

subjected to direct stress and bending, when it is required that the maximum stresses 

in steel and concrete should reach the maximum allowable values simultaneously. 

Concrete dimensions are given. Whole section is assumed as effective. 

Given: Normal thrust, N = 150 000 lb. 

Bending moment, M = 2 850 000 in.-lb. 

M 
Eccentricity, e = — = 19 in. 

The normal thrust acts in the center of gravity of the reinforced concrete section 

(and not in the center of the concrete rectangle). 
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Specified stresses: fc — 650 lb. per sq. in. 

fa = 16 000 lb. per sq. in. 

Dimensions: b = 24 in., h = 28 in., d' — 2 in., 

d = 28 — 2 — 26 in., 2a = 24 in. 

Solution.—The problem can be solved by using Formulas 02) and (45), p. 233. 

. (-*+* -.)' 
\a a / i 

+ CM 

Cs (- + - + - CM 
\a a / 2/s 

Find ratios: 

a 12 _ e 19 

<f - 26 ~ ‘ a " 12 

N__150 000 

’ 2/, " 2 X 16 000 

Assume — = 0.1. Then 6 + - — 1 = 0.68 and - + -* + 1 = 2.68. 
a a a a a 

Find from Table 1, p. 649, value of k for the specified stresses. It is k = 0.378. 

From Diagrams 17 and 18, pp. 664 and 665, find for k = 0.378 and - = 0.46 
d 

constants Ci, C2 and C3. They are: 

C\ = 0.0004, C2 = 2.07 and C\ = 0.015. 

Solve equations for As and A's: 

A8 = 0.68 X 4.68 + 0.0004 X 24 X 28 - 3.2 + 0.27 = 3.47 sq. in. 

A\ = 2.07 X 2.68 X 4.68 ~ 0.015 X 24 X 28 = 25.9 - 10.1 = 15.8 sq. in. 

Find ratios of steel: 

Pt = 2Tx‘28 = 0 0052’ P2 = = 0-0235’ 

15.8 

24 X 28 

Check values of * by means of Diagram 16, p. 663. The diagrams are based 
a 

h h 28 
on - = 1.0. In this example -- = = 1.08. To be able to use the diagrams 

d d 26 

divide the steel ratios by 1.08. Thus reduced ratios, to be located in the diagrams, are 

0.0052 „ , 0.0235 
Pi = “7 = 0.0048 and p2 = - = 0.0218. 

locating these in the Diagram 16, p. 663, gives — = 0.175. The assumed ratio 
a 

d8 
was — = 0.1. The difference between the assumed and the computed value is 

a 
0.175 — 0.1 = 0.075. This increases the amount of tension and compression rein- 
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forcement. Instead of refiguring the amount of steel from formulas for A9 and 
d8 

A'a it is easier to compute the additional areas caused by the increase of —. This 

increase influences only the first term in the formulas for Aa and A'a. 

Increase of tension steel — 0.075 X 4.08 = 0.351 sq in. 

Increase of compression steel = 1.9 X 0.075 X 4.68 = 0.060 sq. in. 

These should be added to the areas previously found. 

Example 12. Finding Dimensions. Find the depth of a section subjected to 

direct stress and bending, when it is desired that the maximum stresses in concrete 

and steel should reach simultaneously the maximum allowable values and when it 

is desired to limit the ratio of the eompiession reinforcement, to p2 = 0.02. 

Given: Normal thrust, N = 220 000 lb. 

Bending moment, M = 3 500 000 in.-lb. 

M 
Eccentricity, e — —- = 15.9 in. 

N 

Specified stresses: fc — 050 lb. per sq. in. 

ft = 10 000 lb. per sq. in. 

n = 15 

k — 0.378 (see table, p. 649). 

Assumed: Width of section, 5 = 28 in., d' — 2 in. 

Whole section may be considered as effective. 

Solution.—The depth is found from Formula (47), p. 235, 

C4 = 

-r N 
Ct bfa ,+ l 

ll 1 ^ 
d 'bfa . V 

Ct 

4(p2 + C 3) 

Find constants C2 and C3 from Diagram 18, p. 665. 

First assume = 0.46. Then, for k = 0.378, n - 15 and - = 0.46, C2 = 2.07 
d d 

and Cz = 0.015. 

Therefore, 

Compute 

C4 = 
2.07 

4(0.02 + 0.015) 

N_ _ 220 000 

bfa ” 28 X 16 000 

2.07 

0.140 
= 14.8. 

N 
= 0.49 and — = 6.9, 

2/a 

da = 0.05e, so that 2(e -f da) = 2.1e = 33.4 in. Assume 
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These values substituted in formula for d give 

d = 14.8 X 0.4!) I +\ 1 +-—-- 
|_ V 0.40 X 14.5 X 0.49 

= 7.25 [1 +\/l + 1«-25| =315 in. 

29.5 
Since d! = 2 in., 2a — 31.5 — 2 = 29.5 in., and a = = 14.75 in., the amount 

of compression reinforcement, therefore, is 

A'a -- 0.02 X 28 X 31 5 - 17.G sq. in. 

The amount of tension reinforcement is found from formula 

a.,I‘ + ±-,Y+c, w. 
\a a J 2fs 

Ci is taken from Diagram 17, p. 604. It is 

e + da 15.9 e d* 
Ci = 0.0004, - - 1.05 X = 1.13 and - + - 1 = 0.13. 

a 14./5 a a 

and 

A8 = 0.13 X 6.9 - 0.0004 X 28 X 31.5 = 0.896 + 0.353 = 1.25 sq. in. 

V i = 
1.25 

28 X 31.5 
= 0.00142. 

Now check the value of —. The steel ratios are pi — 0.00142, p2 *= 0.02 and 
a 

h — -a 1.065. To use the Diagram 16, p. 663, which is based on \ = 1, divide 
d 31.5 d 

0.00142 
the steel ratios by 1.065. The reduced ratios are pi — = 0.00133 and 

1.005 

0.02 ds 
p2 =-= 0.0188. Located in the diagram they give -- - 0.19 and d8 = 0.19a 

1.065 a 
= 0.19 X 14.75 = 2.8 in. The assumed value is d8 = 0.05c — 0.05 X 15.9 = 0.795 

in. The difference between the assumed and the computed value of d8 is fairly 

large, therefore, the depth and the areas of steel will be refigured. 2(c + d8) — 
(15.9 + 2.8) = 37.4 in. 

i -14.8 X ».4o[l+^l+o4(.x^x55] - 7.25 [l + V.245] - 32.9 m. 

A’, = 0.02 X 28 X 32.9 = 18.4 sq. in. 

A, = f--9 + 0.19 - l)0.9 + 0.0004 X 28 X 32.9 = 1.73 + 0.37 = 2.10 sq. in. 
\15.45 / 

V1 = 

2.10 

28 X 32.9 
= 0.00228 

and the new — = 0.182, against accepted 0.19. The values of - are sufficiently 
a ° 

close, therefore, the results will be accepted. 



CHAPTER III 

RIGID FRAMES WITH TWO COLUMNS 

Definition.—Rigid frames are structures consisting of a number of 
vertical and horizontal or inclined members joined in such a manner 
that at the joints the construction is able to resist all the bending 
moments and shears that can come upon them. In the types of frames 
treated in this chapter two members meet at each joint. 

As a matter of fact practically all reinforced concrete buildings 
built by pouring the concrete without positive joints are statically 
indeterminate structures. This chapter is confined to the treatment of 
one-story frames supported by two columns. These should always be 

designed as rigid frames, using the simple formulas given in this chapter. 
Structures consisting of a number of spans and a number of stories 

are often symmetrical in design so that the common general formulas 

given in Vol. I, p. 279, can be used with safety. More unusual cases 
should be designed by formulas given in the chapter on Building Frames. 

All rigid frames are statically indeterminate structures. The 
number of statically indeterminate values depends upon the number 
of spans and the number of vertical members. The character of the 
end supports has also an influence upon the number of statically indeter¬ 
minate values. 

When the frame is fixed at the ends, statically indeterminate bending 
moments develop there. When the frame is hinged at the ends the 
bending moments there are zero. Thus a frame with fixed ends has 
as many additional statically indeterminate values than a hinged 
frame as there are fixed supports. 

Types of Frames.—Following frames are treated in this chapter: 
Frames with two columns and one span: 

(а) Right-angle frames, hinged ends. 
(б) Right-angle frames, fixed ends. 
(c) Ridge frames, hinged ends. 
(d) Frames with parabolic top, hinged ends. 

(<e) Inclined frames, hinged ends. 
(f) to (i) Sawtooth roofs, several types. 
(j) Closed rectangular frames. 

258 
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Basis for Formulas for Rigid Frames.—The statically indeterminate 
values for rigid frames are found by means of the elastic theory. There 
are several methods of application of the theory such as method of 
least work, slope and deflection method, Maxwell’s theorem of reciproc¬ 
ity and others. All these are based on the same general principle and 
the results obtained by one method should agree with the results 
obtained by any other method. The advantage of one method over 
the other is only in ease of understanding or in ease of application. 

Fig. 108.—Frames of One Span with Two Columns. (See p. 258.) 

After the statically indeterminate values arc found, the bending 
moments and shears at any point are computed by the ordinary rules 

of statics. 
Reliability of Elastic Theory as Applied to Frames.—The reliability 

of the elastic theory as applied to reinforced concrete has been definitely 
established by tests and by the performance of the numerous structures 
designed by means of formulas based upon it. 

The formulas based on this theory give the best available means 
of consistent designing of the frames. All members in a frame so 
designed have the required strength, thus combining safety with 
economy. The use of arbitrary formulas, on the other hand, produces 
structures which may be too strong in one section and too weak in some 
other section. The resulting structure, as a whole, is naturally lame. 

Objections are sometimes raised to the elastic theory as applied to 
concrete, that reinforced concrete is not a homogenous material as 
presumed in the theory, that the modulus of elasticity is not known, 
that the deflections of the structure cannot be computed with exactness; 
hence any method based on deflection is faulty. 

These objections are not valid. Reinforced concrete construction 
properly designed acts sufficiently as a homogenous structure for all 
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practical purposes. In applying the elastic theory it is not necessary 
to compute and use actual defections of the structure. In determining 
of the formulas only the relation of deflections of different parts of the 
structure are used and in that way the value of the modulus of elas¬ 
ticity is finally eliminated so that its magnitude is not material. The 
formulas are applicable to steel structures as well as concrete structures 
irrespective of the strength of the concrete and the magnitude of its 
modulus of elasticity. 

Requirements.—To get successful results with a rigid frame, the 
following requirements must be fulfilled. 

1. The frame must lie properly designed. At all points the most 
unfavorable bending moments and shears must be taken care of. Where 
reversal of bending moments is possible, the most unfavorable negative 
and positive bending moments must be provided for. 

2. Proper foundation must be provided so that no unequal settle¬ 
ment takes place. Where appreciable settlement cannot be avoided, 
either a rigid frame should not be used or provision should be made to 
resist stresses produced by unequal settlement. The foundation must 
be able to resist the horizontal thrust. 

3. The frame must be connected to the foundation in the manner 
contemplated in the design. Obviously a frame designed as fixed at 
the support and built without provision for fixity will not have the 
expected factor of safety. 

The connection between the frame and the foundation must be 
strong enough to resist the horizontal thrust. If the frame is con¬ 
sidered as fixed at the supports, proper provision should be made to 
transfer to the foundation the bending moments developed at the ends. 

If the frame is considered as hinged, the most effective method would 
be to provide actual hinges at the bottom. These are seldom used on 
account of the expense involved. The next best method are the so- 
called Mesnager hinges illustrated in Fig. 157, p. 366, which consist of 
inclined bars imbedded in the foundation and in the frame in such a 
manner that adjacent bars cross each other at the center of the hinge. 
Such bars resist shear but are not able to resist bending moments. 
With such construction, to allow free rotation of the frame a clear 
space should be provided at the bottom by rounding up the top of the 
foundation and the bottom of the frame. The space may then be 
filled with asphalt. 

Often no special provision is made to permit free rotation of the 
ends. The frame is joined to the foundation by proper number of 

dowels arranged so as to be unable to resist bending moments. It is 

then assumed that rotation of the end will be accomplished by opening 
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of a crack at one edge and compression of concrete at the other. This 
method is simple, but of course introduces some uncertainties as to the 
action of the frame. 

Another method often used is to provide a rigid connection between 
the foundation and the frame and to make provision for some bending 
moments at the ends developed by such connection. No advantage, 
however, is taken of this in the design of this restraint, and the frame 
is designed as hinged at the ends. To use this scheme successfully 
the designer must have sufficient judgment to be able to foresee the 
effect of the partial restraint. 

4. Each frame should be constructed where possible in one con¬ 
tinuous operation. Where this is not possible, construction joints 
should be placed at points of minimum shear. To take care of any 
possible shear, recesses in concrete should be provided so that old and 
new concrete should dovetail in the direction of the shear. Proper care 
should be used in joining old and new concrete. 4ny laitance should 
be removed. The surface should be roughened and neat cement paste 
spread on the top. 

Deformation of Rigid Frames under Various Loadings 

A clear understanding of the action of rigid frames may be obtained 
by studying their deformation under various loadings. For this purpose 
the deformations of a rectangular frame are discussed and illustrated 
below for the following loadings: 

(a) Vertical loading. 
(/>) Frame with cantilever. Cantilever loaded. 
(c) One-sided horizontal pressure. 
(id) Horizontal pressure on both sides. 

For purposes of comparison of the character of deformations, frames 
with hinges are placed side by side with frames with fixed ends. On 
the deflection diagrams at the points of maximum negative bending 
moments the tension side is indicated by cracks by the letter T. Points 
of inflection are shown by small circles. To show the relation between 
bending moments and deflections, bending moment diagrams are also 

shown. 
Hinged Frame. Vertical Loading. (See Fig. 109 (a), p. 262).— 

Fig. 109 shows deflection curves for uniformly distributed loading. 
The type of deflection curves is the same, however, for all kinds of 
vertical loading. The deflection curve of both columns is always the 
same, differing only as to the magnitude of deflection. The deflection 
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curve of the beam is symmetrical for symmetrical loads and unsym- 
metrical for unsymmetrical loads. 

For vertical loading both columns bulge outward. The outside faces 
of both columns are under tension in the upper sections where the 
tensile stresses due to the bending moment are large enough to over¬ 
come the compression due to the vertical pressure acting on the column. 
Cracks are likely to occur at the outside face at the juncture of the 
beam and the column. 

w 

nrmiuiu.mu 
Loading 

Bending momenta 

T 

Deformation 

(a) Hinged Ends 

Fig. 100.—Right-angle Frame. Deflection Due to Vertical Loading. 

(See p. 261.) 

The deflection curve of the beam has two points of contraflcxuro 
which coincide with the points of zero moments. Tensile stresses occur 
at the top of the beam between the points of contraflexure and the 
corners and at the bottom in the central part of the beam. Cracks are 
likely to occur near the center at the bottom and near the ends at the top. 

Fixed Frame. Vertical Loading. (See Fig. 109 (&), p. 262).—For 
vertical loading the deflection curve of the columns is a reverse curve 
with a point of contraflexure at one third of the height for symmetrical 
loading. For unsymmetrical loading the points of contraflexure are 
higher for the lighter loaded column than for the heavier loaded 

cunn nnmiD 
Loading 

Deformation 

(b) Fixed Ends 
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column. The lower portion of the columns below the points of con- 
trafiexure are subjected to positive bending moments producing tension 
at the inside face of the columns. The upper portion of the columns 
are subjected to negative bending moment producing tension at the 
outside face. Cracks are likely to occur at the foot of the column 
at the inside and at the top of the column at the outside. 

The deflection of the beam of a frame with fixed ends is of the same 
character as for a frame with hinged ends except that the total deflection 

is smaller and the points of contraflcxure arc farther away from the 

corners. 
Hinged Frame with Left Cantilever. (See Fig. 110 (a), p. 263). 

The deflection curves of both columns are simple curves. With the 
left cantilever loaded and the beam not loaded the left column bulges to 
the right so that its inside face is in tension. The right column bulges 
inward and its inside face also is in tension. Cracks are most likely to 
occur at the top of the left columns on the inside, and less likely at the 

top of the right column also on the inside. 
The deflection curve of the beam is a reverse curve with the point of 

contraflexure near the right corner. The beam bends upward. In the 
whole left section, including the cantilever, tension acts at the upper 
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part of the beam. In the balance of the beam tension acts at the bottom 
of the beam. Cracks are most likely to occur at the top on both sides 
of the left column and less likely at the bottom next to the right column. 
It should be noted that when the beam is loaded at the same time as 
the cantilever, the deflection is the sum of the deflections for both types 
of loadings. The deflection due to one type offsets partly the deflection 
due to the other type. 

Fixed Frame with Left Cantilever. (See Fig. 110 (6), p. 263).—The 
deflection curves of both columns are reverse curves. At the bottom 

(a) Hinged Ends (b) Fixed Ends 

Fig. 111.—Right-angle Frame. Deflection Due to Horizontal Pressure. 

(See p. 205.) 

both curves have vertical tangents. The point of contraflexure of the 
left column is near the bottom while at the right it is in the upper half 
of the column. The deflection curves above the points of contraflexure 
is of the same kind as in hinged frame. Below the points of contra¬ 
flexure the curves bend in opposite directions. The cracks are apt 
to occur in same places as for hinged frame and in addition at the 
bottom of columns at the outside. 

The deflection curve of the beam is of the same type as for hinged 
frame. The magnitude of the deflections of beams and columns is 
appreciably smaller for fixed frames than for hinged frames of same 

dimensions. 
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Horizontal Pressure on Left Side. Hinged Frame. (See Fig. Ill, 
p. 264).—The type of deflection curves is the same for all one-sided 
horizontal pressures, such as uniformly distributed or concentrated 
wind pressure, earth pressure or traction force. In Fig. Ill, p. 264, 
deflection curves and bending moments are shown for uniformly dis¬ 
tributed wind pressure. 

With the horizontal pressure acting from the left as in Fig. Ill, 
p. 264, the deflection curves of both columns are simple curves bulging 
to the right. The tension stresses act on inside face of the left column 
and at the outside face of the right column. The cracks are likely to 

Bending moments 

(a) Hinged Ends 

Deformationt 

(b) Fixed Ends 

Fia. 112.—Right-angle Frame. Horizontal Pressure on Both Sides. (See p. 266.) 

occur near the top on the inside for left column and on the outside 

for right column. 
The deflection curve of the beam is a reverse curve, with one point 

of contraflexure nearer the left corner. The cracks are most likely to 
occur at the top of the beam near the right corner and less likely at the 

bottom near the left corner. 
Horizontal Pressure on Left Side. Fixed Frame. (See Fig. 112, 

p. 265.)—With the horizontal pressure acting from left as in Fig. 112, 
p. 265, the deflection curves of both columns are reverse curves with 
vertical tangents at the ends. The points of contraflexure are in the 
lower half of the left column and in the upper half of the right column. 
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In the left column the cracks are likely to occur in the outside face 
at the bottom and the inside face at the top. In the right column the 
cracks are likely to occur in the inside face at the bottom and the 
outside face at the top. 

The deflection curve of the beam is of the same type as for the 
hinged frame except that for equal dimensions of the frame and equal 
pressures the deflections are much smaller for the fixed frame. 

Horizontal Pressure on Both Sides. Hinged Frame. (See Fig. 
112 (a), p. 265.)—When horizontal pressure acts on both sides the 
deflection of both columns is inward. The deflection curve is a simple 
curve. The cracks are apt to occur in the upper part of the columns 
in the inside face where the bending moments are large. 

1 r 

«*— Original centerline 

' 

Original centerline 

1 J 
(a) Hinged Ends 

m 77% 777m 

(b) Fixed Ends 

Fro. 113.—Effect of Rise of Temperature upon Rigid Frame. (See p. 266.) 

The deflection curve of the beam is also a simple curve bulging up¬ 
ward. The bending moment is uniform throughout the beam so that 
for this loading alone, the cracks could occur anywhere in the upper 
face of the beam. 

Horizontal Pressure on Both Sides. Fixed Frame. (See Fig. 
112 (6), p. 265.)—For horizontal force acting on both sides of a fixed 
frame, the deflection curve of the columns is a reverse curve with a 
vertical tangent at the bottom and points of inflection in the lower 
half of the columns. The cracks are likely to occur either in the outside 
faces at the bottom of the columns or in the inside faces in the upper 
part of the columns. 

The beam deflects upward as in the previous case except that the 
deflection is appreciably smaller. 

Temperature Changes. (See Fig. 113, p. 266.)—The effect of the 
rise of temperature upon hinged and fixed frames is shown in Fig. 113 (a) 
and (b). The type of deflection curves is clearly shown in the figures. 
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RIGID FRAMES WITH HINGED ENDS 

Definition.—The definition of a rigid frame, in general, is given 
on p. 268. A rigid frame is called “ rigid frame with hinged ends ” 

when it is attached to the foundation by means of actual hinges or by 
such other means which make turning of the frame at the ends possible. 
When subjected to loading the frame with hinged ends turns at the 
ends so that no bending moment can be developed there. However, 
the ends are secured against any horizontal or vertical movement. 

Simple frames with hinged ends have one statically indeterminate 
value, namely, the horizontal thrust at the hinges. This thrust is 
determined from the requirement that, when subjected to loading, the 
frame must deform in such a way that there would be no change in 
the relative position of the hinges. This means that the hinges after 
deformation must remain on the same levels as before and the hori¬ 
zontal distance between the hinges must not be changed. 

Changing a Rigid Frame with Hinged Ends into a Statically Deter¬ 
minate Structure.—For the sake of computation it is necessary to 
change the statically indeterminate structure into a statically deter¬ 
minate structure. 

A rigid frame with hinged ends may be changed into a statically 
determinate structure by providing one of the hinged ends with rollers. 
In such case the structure is not capable of resisting any horizontal 
thrust. At the movable end, the one with rollers, there can act only 
vertical reactions as any horizontal reaction would cause horizontal 
movement of the rollers. When loaded, the ends spread sufficiently * 
to allow free deformation of the beam. All reactions are static reactions 
and the bending moments due to the loads can be determined by simple 
statics. 

For the vertical loads the reactions are vertical and are found in the 
same raammer as for simple beams. 

For the horizontal forces the horizontal reaction can act only at 
the end not provided with rollers and is equal to the sum of all horizontal 
forces. In addition the horizontal forces produce vertical reactions at 
both ends which are equal but act in opposite directions. 

This statically determinate construction can be changed back to a 
statically indeterminate structure by providing horizontal thrusts at 
the hinge. 

Comparison of Rigid Frames with Hinged Ends and Two Hinged 
Arches.—Rigid frames with hinged ends are, from the standpoint of 
analysis, structures of the same character as the two-hinged arches. 
In both cases the horizontal thrust is the only statically indeterminate 
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value. The method of determining the horizontal thrust is the same 
and the general formula for horizontal thrust is the same in both cases. 

A rigid frame differs from an arch in that the bending moments in 
a rigid frame are very much larger and the thrust much smaller than 
in an arch. It is possible to design an arch so that no, or only small, 
tensile stresses are developed at all sections of the arch. It is also 
possible to adapt the shape of the arch axis so that there are no bending 
moments in the arch for dead load. This is impossible in rigid frames. 
All loads, dead and live, produce considerable bending moments in 
rigid frames. 

In many members of the rigid frame the effect of the thrust is 
negligible. In arches, on the other hand, the thrust at all sections has a 
considerable effect upon the stresses. 

The methods of solving formulas for horizontal thrust for the arch 
and the rigid frame are also different. A rigid frame usually consists 
of straight sections for which integrals are easy to solve. Therefore it is 
possible to solve the integrals for the whole frame by solving separately 
integrals for each straight section and then adding the results. It is 
hardly ever necessary to resort to the summation method often required 
for arches. 

General Formula for Rigid Frame with Hinged Ends.—General 
formula for the horizontal thrust for rigid frame is same as developed 
for two-hinged arches on p. 552. 

Let l = span of rigid frame; 
Ma = static bending moment;1 
Ix = moment of inertia at any point x; 
11 = moment of inertia of the top section; 
y = ordinate for a system with origin at left hinge. 

Then 

Horizontal Thrust, Rigid Frame of Any Design with Hinged Ends, 

Center of the system of coordinates x, y, is at the left hinge. 
The value of ds in the above formula changes to dy for straight 

1 Static bending moment obtained when the frame is changed into a statically 
determinate structure by providing one end with rollers. 
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vertical members, to dx for straight horizontal members and to- 
• cos 0 

for straight members inclined at an angle <t> with the horizontal. 
Solving the Integrals.—A rigid frame usually consists of a number 

of straight sections. Each integral in the Equation (1) therefore 
may be represented by a sum of integrals for the various straight 
sections. Ordinarily the moments of inertia of each member are 
constant so that the ratio of moments of inertia may be taken before 
the integration sign. 

In practical design it is not necessary to solve integrals as in the 
following pages simple formulas are developed for the cases most likely 
to occur in practice. 

Illustration of Solving Integrals in Equation (1).—As an example 
integrals will be solved for a rigid frame with a ridge roof shown in 
Fig. 114 for which 

h = height of vertical member; 

fti = height of roof; 

s = length of inclined member = 

l = span of frame; 

l 

2cos <t>’ 

= angle of inclination of inclined members with horizontal; 

h = moment of inertia of inclined member; 

I = moment of inertia of vertical member. 

Denominator.—The integral for the denominator becomes 

jdy + 
2h\ \2I\ dx 
— x i-- 

l / Jicos<£ 

y)2jdy? 

2 

1 It is evident from figure that the value of y for any point at a distance x from the 

left support is y = h + -yx for left half, and y = h + -y(l — x) for the right half. 

Due to symmetry of the structure 
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u 
38 <H 

dx 

= - —h3 + 
3 I cos <t> I 

h2l + jhl2 + 

Finally, 
KfM 

Numerator.—The numerator may also be divided into integrals for 
the various straight sections. 

Let M9i = static bending moment at any point due to loads in left 
column; 

M,2 = static bending moment at any point due to loads in 
inclined member; 

M# = static bending moment at any point due to loads in 
right column. 

Fig. 114.—-Rigid Frame with Ridge Roof. (See p. 269). 

Center of the system of coordinates at left hinge A. 
Then 

+ £J>(‘ + f*)^ 
+rjfJf-(*+t« - ’>)£-*+!i£ *-*-•»* • ® 

It is necessaiy to find the equation for M,i, M,2 and Af,3 for any particu- 
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lar type of loading. The working is simplified if the vertical loads and 
the horizontal loads are treated separately. 

For vertical load the static bending moments in the columns are 
equal to zero. Therefore Mai = M& = 0. The equation changes to 

Numerator for Vertical Loads, 

2 

The numerator must be solved for each type of loading by substitut¬ 
ing proper values for M&. 

Thus for uniformly distributed loads 

M, 2 = \x{l — x)w, 

and the numerator becomes 

The solution of the integrals is simple. 

Numerator for Horizontal Pressures.—For horizontal pressures it is 
usually assumed in computing the static bending moments MaM# 
and Mss that the windward end of the frame is anchored and the leeward 
end is supplied with rollers. The anchored end, only, can resist hori¬ 
zontal reaction; therefore, the whole horizontal reaction, which is 
equal to the total horizontal pressure, acts at the windward end. The 
static bending moments then can be easily computed. After the 
horizontal thrust is found from formula, it is then added at both hinges 
to the static horizontal reaction. 

Figure 115, p. 272, shows static bending moments for a concen¬ 
trated wind pressure and uniformly distributed wind pressure. It is 
evident that there is no bending moment in the right, i.e., the leeward 
column, so that the fourth term in Equation (3), p. 270, becomes zero. 

Semi-graphical Solution of Integrals.—The integral for the numerator 

is C M,yyds. 
Jo ■** 
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It can be divided into separate parts for each straight section of the 
frame. Thus for ridge frame the integral for any type of loading 

becomes 

j^M.yjds = yjfV.it/d2/ + jfV.2(* 

+ jfV.2(i 

+ 2*i \ 
77 

2fti \ dx 

l ) cos <j> 
+ 

dx 

cos <f> 

h 
M.3 (h — y)dy. 

(a) Concentrated Load W fW Uniform Load p 

Fig. 115.—Frame Made Statically Determinate. Bending Moments Due to 

Horizontal Pressure. (See p. 271.) 

Examing the integral of each part it is evident that all of them are 
of the same character. All of them represent the static moment about 
the origin at A of the area formed by plotting on the member of the 
static bending moment due to the load. 

The semi-graphic method then may be based upon the area of 
moment principle as follows (see Fig. 116, p. 273): 

Lay out the frame to a convenient scale. 
Find the static bending moments due to loads and plot them. 

Area BibdfDiBi in Fig. 116. 
Plot the static bending moments at proper points on lines drawn at 

right angles to the frame. (In Fig. 116 ab = ai&i, cd = Cdi, ef = ei/i.) 
Divide the areas thus obtained into simple parts such as rectangles, 

triangles, etc., for which the areas can be easily found. Compute the 
areas. (In Rg. 116 triangles Bb\di, Bd\Cf Cd\D and Ddifi.) 

Find the center of gravity of each area (points 1, 2, 3, 4) and draw 
through each a line at right angles to, and till intersection with, the 
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frame (points 1', 2', 3' and 4'). Measure the vertical distance of 
these points of intersection from the axis passing through A. In figure, 
distances l'l", 2'2", 3'3" and 4'4". 

Multiply each area by proper distance above A of the projected cen¬ 

ter of gravity (l'l", 2'2", 3'3", 4'4") and by the ratio y of each member. 

The sum of all these values gives the value of the integral. 

RIGHT-ANGLE FRAME. HINGED ENDS 

Right-angle frames with hinged ends have one statically indeter¬ 
minate value, namely, the horizontal thrust H acting at the bottom 
of the frame. After this thrust is found the bending moments and 

shears may be computed by ordinary rules of statics. 
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Notation. 
Let l 

h 

h 
I 

H 
M. i 

M, 2 

M,8 

M. 

Mv 
Mx 

Mb and Mc 

span of the frame; 
height of frame; 
moment of inertia of horizontal member; 
moment of inertia of vertical member; 

horizontal thrust; 
static bending moment at any point in left column 

due to any loading; 
static bending moment at any point in beam due 

to any loading; 
static bending moment at any point in right 

column due to any loading; 
static bending moment at any point in beam due 

to vertical loading; 
actual bending moment in column; 
actual bending moment in beam; 
corner bending moments. 

General Formula for Horizontal Thrust.—General formula for 
horizontal thrust for any kind of loading is given below. 

Horizontal Thrust for Any Kind of Loading, 

Horizontal Thrust for Vertical Loads.—For vertical loads acting on 
the beam the static moments in the columns M,i and Mt3 are zero and 
M.2 = Ma. The formula then changes as follows. 

Horizontal Thrust for Vertical Loads, 

This horizontal thrust applies at the hinges and produces in the 
frame negative bending moments which can be found from formulas 
below. 

Bending Moment in Column at Any Point y above Hingest 

My=— Hy.(8) 
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Comer Bending Moments, 

MB = Mc =- Hh.(9) 

To get bending moment in the beam it is necessary to subtract from 
the static bending moment due to the loads the negative bending 
moment due to the horizontal thrust. This gives following formula. 

Bending Moment in Beam at Any Point x, 

MX = M,-Hh.(10) 

Special Cases of Right-angle Frames 

Following special cases will be considered. 

Vertical Loading. 

Case 1. Beam loaded with uniformly distributed loading. 
Case 2. Beam loaded with concentrated loading. 
Case 2o. Beam loaded with special arrangement of concentrated 

loading. 
Case 3. Beam provided with cantilever, load on cantilever. 
Case 3o. Beam provided with two cantilevers. 
Case 4. Column provided with brackets, load on bracket. 

Horizontal Loading. 

Case 5. Uniformly distributed horizontal pressure as wind pressure. 

Case 6. Concentrated horizontal pressure. 
Case 7. Varying horizontal pressure such as earth pressure. 

Case 1. Uniformly Distributed Vertical Loading. (See Fig. 117,. 

p. 275.) 

Fig. 117.—Right-angle Frame. Uniformly Distributed Loading. (See p. 276.) 

End Shear in Beam, 

VB - Vo = \wl. (11) 
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Horizontal Thrust, 

Maximum Negative Bending Moment in Corners, 

Mb = Mc = - Hh = - Cxwl2.(14) 

Maximum Positive Bending Moment, 

Mmux= $wl2 — Hh = (i — Ci)wl2.(15) 

Bending Moment at Any Point x, 

M« = \x(l — x)w — Ciwl2.(16) 

Points of Contraflexure, Distance from Either Corner, 

Xl = i(l - Vl - 8Ci)l = C2l, ... . (17) 
where 

C2 = K1 - Vi - 8Ci).(18) 

The constants C\ and C2 may be taken from Diagram 17, p. 277. 
The bending moments in the frame are shown in Fig. 117, p. 275. 
It should be noted that all members are subjected to bending 

moments and thrusts. In the horizontal member the thrust is equal 
to the horizontal thrust H. In the vertical member the thrust is 
equal to the reaction due to the vertical load on the beam plus any 
additional load coming directly on the vertical member. 

The horizontal thrust H produces shearing stresses in the vertical 
member. 

Case 2. Concentrated Vertical Load at Distance a. (See Fig. 118.) 

Assume that a vertical load P is placed at a distance a from left 
comer. The formulas are given below. 

End Shears, 

VB = (l- j)p. . . (19) Vc - jP. (20) 
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Diagram 17.—Constants Ci to C% in Formulas for Right-angle Frames. 

Ci formula (13), p. 276, C% formula (18), p. 270, C% formula (22), p. 278, C4 
formula (04), p. 287 and C# formula (73), p. 289. 
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Horizontal Thrust, 

H - c‘i(' ~ f)pi 
where 

(21) 

(22) 

The values of Cs are given in Diagram 17, p. 277. 
Bending Moments at Corners, 

Mb - Mc = — Hh,.(23) 
also 

Mb = Mc-C3j(l-jjPl.(24) 

Bending Moment at Any Point y: 
For x smaller than a, 

Mx - M. - Hh - (l - jj(j - fc)n . . . (25) 

For x larger than a, 

.<26) 

Maximum Positive Bending Moment, x = a, 

M^ = ^1 - jjpi - Hh - (1 - Cs)j(l - jjPL . (27) 
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Values of Cz are given in Diagram 17, p. 277. 
If the loading consists of a number of loads P, Pi, P2 placed at 

distances a, 01, a2, . . ., the horizontal thrust H is equal to the sum of 
the horizontal thrusts due to the separate loads. The formula for 
horizontal thrust for several loads becomes 

Horizontal Thrust for Several Vertical Loads, 

H - (' - t)+p'i(' -f) + pn(1-j)+ ■■■]■ (28) 

Also in shorter form 

H - icWP?(l - f).(29, 

The values of Cz depend upon the dimensions of the frame and may 
be taken from Diagram 17, p. 277. 

The negative bending moments at the corners may be found from 
Formula (23), p. 278. 

The maximum positive bending moment in the beam equals the 
maximum static bending moment due to the loads minus the bending 
moment at the corner due to the thrust. 

Position of Concentrated Moving Loads for Maximum Positive and 
Negative Bending Moments.—For moving concentrated loads such as 
used in bridge design, before computing the bending moments, it is 
necessary to determine the most unfavorable position of the loads on the 
span by means of influence lines discussed on p. 292. From this it 
is evident that the exact position of loads for maximum positive bend¬ 
ing moment is different than for maximum negative bending moment. 
It is also found, however, that for the loads there considered it is pos¬ 
sible to use for both bending moments the position of loads for maximum 
static bending moment, without any appreciable error. 

Case 2a. Special Arrangement of Concentrated Loads.—Following 
special arrangements of concentrated loads are considered 

(а) Load P at center. 
(б) Two loads P at third points. 
(c) Three loads P at quarter points. 
(d) Four loads P at fifth points. 
(e) Five loads P at sixth points. 
(/) Six loads P at seventh points. 
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The results are given in table below: 

Right-angle Frame Concentrated Symmetrical Loads 
All Loads are Equal and Spaced Equal Distances Apart 

Condition 
Position 

of 

Loads 

Number 

of 

Loads 

Horizontal 

Thrust 

H 

Negative 

Bending 

Moment at 

Comers 

Ma Mb 

Maximum 

Positive 
Bending 

Moment 

Mn\Kt 

a At Center P ~iC.Pl i(l-C,)Pl 

b At Third Points 2 P ~$CJ>1 id-$c,)pi 

c At Quarter 

Points 
3P —|C«PJ id~iC,)Pl 

d At Fifth Points 4 P ~iC.Pl i(3-4 C,)Pl 

e At Sixth Points 5 P ~Mc.pi |(1 ~^C.)Pl 

1 
At Seventh 

Points 
6P -Uc,pi w-nc,)pi 

Loads placed directly on top of columns do not produce any bending 
moments or shears in the frame. 

The bending moment diagrams for each case may be drawn in a way 
similar to that shown in Fig. 119, p. 280, for three equal loads P, 

Fia. 119.—Right-angle Frame. Three Equal Loads P. (See p. 280.) 
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The values of 

may be taken from diagram p. 277. 

Case 3. Frame Provided with Cantilever on One Side.—Assume 
that the frame is provided with a cantilever on left side only as shown 
in Fig. 120, p. 281. 

Also assume that the load on the cantilever produces at the edge 
of the cantilever an end shear Fi and a bending moment — Mi. 

Let, in addition to notation on p. 274, 

Vi = end shear at edge of cantilever, equal to sum of loads on 
cantilever; 

Mi = bending moment at edge of cantilever. 

Fig. 120.—Right-angle Frame with Cantilever at One End. {See p. 281.) 

The bending moments and shears in the frame for this condition 
are given below and are shown in Fig. 120, p. 281. 

Reactions at Hinges, 

Ra = Vi + 
Mi 

• (31) Rd — — 
Mi 

l ' 

. . (32) 
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End Shears in Beam, 

VB (33) Vc 
Mi 

l ' 

Horizontal Thrust, 

H = 

• (34) 

. . (35) 

Bending Moments in Vertical Members at B and C, 

Mb = Mc - Hh = C3Mi. . . . 

Bending Moments in Horizontal Member, 

MBl=-Mi + MB=-Mi(l - C3), 

Mci = C3Mt. 

Point of Contraflexure from Right Comer, 

Xl l = C3l. 

. . (36) 

. . (37) 

. . (38) 

. . (39) 

Values of constants C3 are expressed by formula (30), p. 281, and 
may be taken from diagram, p. 277. 

Bending Moment on Cantilever, 

For uniformly distributed load, 

— MXu ~ — \wl\2.(40) 

For concentrated load, 

— Mu = — Ph.(41) 

Total Bending Moment, 

— Mi = — (Miu + Mu).(42) 

Case 3a. Frame with Two Cantilevers.—When the horizontal mem¬ 
ber projects on both sides the bending moments and shear should be 
computed separately for each cantilever and then the results combined 
so as to get maximum values. 

It should be noted that the negative bending moment in the hori¬ 
zontal member at the corner is a maximum when one cantilever only is 
loaded. For other members the condition is most unfavorable with 
both cantilevers fully loaded. 
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Combining Bending Moment Due to Loads on Cantilever with 
Bending Moments Due to Loads on Beam.—Bending moments due to 
loads on cantilever and those due to loads on the beam should be 
computed separately and then combined so as to get maximum results. 
The method of combining should be the same as explained on p. 123 for 
beams with cantilevers. 

Case 4. Left Column provided with Brackets. (See Fig. 121(a)). 

Fig. 121.—Right-angle Frame. Columns Provided with Crane Bracket. 
(See p. 283.) 

Let hi = depth of bracket above hinges; 
li = distance of load to center of column; 
P = load on bracket; 

Mb = maximum bending moment in bracket. 

Reactions at Hinges, 

Ra = ( 1 - j)p. • (43) Ro = yP.. (44) 
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Shear in Beam, 

Vc-\P. (45) VD m 4P. (46) 

Horizontal Thrust, 

also 

H-2/2/,V-7j{rr[1-(i)1+1}^- • <47> 
2\3lT+l) 

©1*fr.- 
Value of Cz may be taken from diagram, p. 277. 
Bending Moments in Column with Bracket, 

Just below bracket, 

Msi = - Hhi.(49) 

Just above bracket, 

Mb2 ='Ph - Hhi.(50) 

Corner Bending Momentsy 

Mb = Pli — Hhf.(51) 

Mc = — Hh.(52) 

Bending Moment in Bracket, 

Mb=-Pl i.(53) 

The above formulas apply also when the bending moment on the 
bracket is due to any other cause than a concentrated load. If the 
bending moment on the bracket is Mb) then substitute in all formulas 

Mb for PIi. 
Case 4a. Both Columns Provided with Brackets.—In this case it 

is assumed that both columns are provided with brackets and that the 
bending moments at both brackets are equal. 

This case with Case 4 are sufficient to take care of all conditions 
possible in practice. 

When the bending moments transferred to each of the two columns 
are different either on account of a difference in length of brackets or a 
difference in the magnitude of loads, following procedure may be used. 

The larger bending moment is divided into two parts one equal to 
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the bending moment in tne opposite bracket and the other equal to 

the difference between the bending moments at the two brackets. 

Bending moments and shears in the frame are then found for a 

condition of a frame with two brackets with equal bending moment 
(Case 4a) and also for a condition of bending moment at one bracket 

only (Case 4). The result added give bending moments in frame for two 
brackets with unequal bending moments. 

The bending moments below are given for a frame subjected'to two 

equal bending moments. They are illustrated in Fig. 121 (6), p. 283. 

Reactions on Hinges. Two Brackets with Equal Loads, 

Ra — Rb — P.(54) 

Shear in Beam, 

VB = Vc = 0.(55) 

Horizontal Thrust. Two Brackets with Equal Loads, 

H ■ ^{y i[l - (i)1+ I)!p- •••<“> 

Value of C3 may be taken from diagram, p. 277. 

Bending Moments in Columns, 

Just below bracket, 

Mb 1 = - Hhi.(57) 

Just above bracket, 

Mb2 = Pl\ — Hhi.(58) 

At corners B and C, 

MA = MB = Ph-Hh.(59) 

Bending Moment in Bracket, 

Mt = — Ph.(60) 

The bending moments in the beam at all points due to load in both 
cantilevers are equal to the corner bending moments. They may be 

either positive or negative, depending upon the location of the bracket 

in respect to the total height. 
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Right-angle Frame Subjected to Horizontal Pressures 

Horizontal pressure to which a frame may be subjected is due either 
to wind pressure as in case of buildings or earth pressure as in case of 
bridges. It may also be caused by the water pressure. 

The wind pressure on the wall may be transmitted directly to the 
columns by the wall, in which case it is assumed as uniformly dis¬ 
tributee!. Earth pressure, on the other hand, is represented either by a 
triangle, when no surcharge is considered, or by a trapezoid when 
surcharge is considered. The trapezoid loading may be replaced by a 
uniform loading and a triangular loading. 

Wind pressure may also be transferred to the column as a hori¬ 
zontal concentrated load. 

The following three cases will therefore cover wind pressures and 
earth pressure. 

Case 5. Uniformly distributed horizontal pressures on the column. 
Case 6. Triangular pressures on the column. 
Case 7. Concentrated horizontal load on column. 

In general the horizontal pressures produce in a frame: 
1. Two equal vertical reactions at the hinges acting in opposite 

directions. The reaction on the windward side is an uplift. The two 
reactions form a couple, the bending moment of which is equal to the 
bending moment about the hinge due to the horizontal pressures. 

2. Two horizontal reactions acting in opposite direction to the wind 
pressure. The sum of both horizontal reactions is equal to the sum of 
the horizontal pressures. The horizontal reaction at the windward 
hinge, which in the formulas below is called H, is much larger than the 
horizontal reaction at the leeward hinge. 

3. The windward part of the frame, namely, the windward column 
and the adjacent part of the beam are subjected to positive bending 

moment. The leeward balance of the frame is subjected to negative 
bending moment. 

Additional notation, 

p = uniformly distributed unit wind pressure, lb. per lin. ft. 

Case 6. Uniformly Distributed Horizontal Pressure on Column. 

Vertical Reactions, 

Ra-iphj- . • (61) Rd - hphj. (62) 
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Horizontal reactions, 

Windward hinge A, 

where 

U7- + 18 

H - -ph - C.pk, 

8 2— - + 3 
I l 

111T ? +18 

(63) 

(64) 

«• 

Fig. 122.—Right-angle Frame. Uniformly Distributed Horizontal Pressure. 

(See p. 286.) 

Leeward hinge D, 

Ih = ph - II = (1 - C4)pA.(65) 

Bending Moment at Any Point y in Column Subjected to Pressure, 

My = Hy — \py2. 

y is measured from the bottom, 

Maximum Bending Moment, Windward Column, 

Mma ~ 2U 
1/1 u7r+“'* 

2^ + 3 

ph2 = ?(Ci)2ph2. (66) 
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Point of Maximum Bending Moment above A, 

“7* +18 

2^ + 3 
I t 0 

h = C4h. (67) 

Bending Moments in Corners, 

MB = Hh- \ph? = 

— - + 2 
3 7 l 

& 2— - + 3 
It 

■ph2 — (C4 — 0.5)ph2. (68) 

Mc = - ffi/l-(1 - C4)pA2.(69) 

These bending moments act both in the beam and in the columns. 
Values of C4 may be taken from Diagram 17, p. 277. 

Case 6. Triangular Horizontal Pressure on Column. (See Fig. 123.) 

Fig. 123.—Triangular Horizontal Pressure on Column. (See p. 288.) 

Additional notation, 

pi = maximum unit pressure at bottom, lb. per lin. ft. 

Vertical Reactions, 

Ra-\pihj. . . (70) Rn = ^Pihj. . . . (71) 
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Horizontal Reactions, 

Side next to pressure, hinge A, 

1.25 + 0.775y j 

H = —7-—r -pih = C5pih,.(72) 

Mr) 
where 

1.25 + 0.775y ' 

Ct 7—Trrr- .™ 
(3 + 2Tr) 

Values of C5 may be taken from diagram, p. 277. 

Side opposite the pressure, hinge Z), 

Hi = - ff = (J - C6)M.(74) 

Bending Moment at Any Point y in Column Subjected to Pressure, 

Jif, = - 4(1 - 

y is measured from the bottom. 

Maximum Bending Moment in Column Subjected to Pressure, 

Mmn = *<7,(1- Vl - . (75) 

where 

c„.je5a-vr^2cgi±^^.<76) 

Point of Maximum Bending Moment Measured from A, 

yi = /i(l —Vl —2C5).(77) 

Bending Moments in Corners, 

Mb = Hh — \Vlh? = (C6 - l)pih2.(78) 

Me =— H\h = — (2 — C5)piA2.(79) 

These bending moments act both in the beam and in the columns. 
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Case 7. Concentrated Horizontal Load W at a Distance hi = mh. 

Additional notation, 

W = horizontal concentrated load; 

h\ = mh = vertical distance of point of application of 
pressure from hinge; 

hi 

m = T 

Vertical Reactions, 

VD = -±W. 

Horizontal Reactions, 

Windward hinge A, 

— -(m3 — 3m + 4) + 3(2 — m) 

ff - --rr-r-t-W. 

Leeward hinge D} 

Hi = W - II. 

Maximum Bending Moment in Column Next to Pressure, 

Mm&x = Hhi. ............. 

Bending Moment in Corners, 

Mb = Ilh - W(h - Ai). 

Me = Hih. 

Case 7a. Concentrated Load W above the Frame.—This case is 
applicable for tractive force. 

If hi is larger than h, i.e., the force acts above the frame, the follow¬ 

ing formulas apply. 
Vertical Reactions, 

VA=-W y. . . . (87) VD = Fy.(88) 
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Since the tractive force cannot be exactly determined, it is per¬ 
missible to use, for the horizontal reactions following approximate 
formulas. 

Fio. 124.—Right-angle Frame. Horizontal Concentrated Load. (See p. 290.) 

Horizontal Thrust, 

Left side, hinge A, 

.(8») 
Right side, hinge Z), 

H = Wj.(90) 

Effect of Changes of Temperature 

Temperature changes cause changes in the length of the columns 
and the beam composing the frame. Since the frame is firmly anchored 
at the hinges so that the ends cannot change their relative positions, 
the change in length of the beam produces bending in the frame with 

consequent bending stresses. 
Temperature changes produce horizontal thrust applied at the 

hinges. The direction of the thrust is inward for rise of temperature 
and outward for fall of temperature. 

Let a. = coefficient of expansion for 1° F.; 

E = modulus of elasticity of concrete; 

t = change in temperature in degrees. 
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Case 8. Rise of Temperature. (See Fig. 125 (a)). 

Fig. 125.—Right-angle Frame. Effect 

A D 

(b) Fall of Temperature 

Change of Temperature. (See p. 292.) 

Horizontal Thrust, 

jj ___otEt 7i 

2 /i h h* 

3 I 1 +l 

Corner Bending Moments, 

Mb = Me = Hh 
aEt 

6 11 

h 
h ' 

(91) 

• • (92) 

Case 8a. Fall of Temperature. (See Fig. 125 (6)). 
Horizontal Thrust, 

jj ~ h 
~2hh K*. 

3 7 i"+1 
Comer Bending Moments, 

Mb = Mc = Hh = 
aEt 

2-!ih- + 1 
3 / i T 

h 

h ' 

(93) 

. . (94) 

Influence Lines for Right-angle Frame with Hinged Ends 

Useful for Concentrated Live Loads 

In bridge design it is sometimes required to use concentrated loads 
for live load. In such case the computations may be simplified by 
using influence lines. 

The significance of influence lines is explained on p. 168. 
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Influence Lines for Bending Moments for Vertical Loads.—The 
ordinates of an influence line for bending moments at any selected point 
is obtained by making in the Formulas (25) and (26), p. 278, P = 1, 
substituting for x the value x% for the selected section and making the 

a x 
position of the load variable by changing - to 

L L 

Let X\ — section for which influence line is drawn; 
yx = ordinate of influence line at any point x. 

Then general equation for influence line for bending moments at 
point xi due to vertical load is 

Ordinates of Influence Line for Bending Moment at Any Point Xi, 

L x\(xi X \ , „ „ 
2/x = l 1 C3 % for x smaller than X\. . . 

yx = ^Tl — y — ^1 + y^C3J for x larger than x\. . . (96) 

Influence Line for Center of Span.—For center of the span, x\ = \l 
X\ 1 

and -y = The influence line is symmetrical. Thus 
l 2t 

Influence Line for Bending Moments at Center of Span, 

/. a:\/l 

Influence Line for Quarter Point.—For quarter point, x\ — \l 

, x\ 1 
and — = 

I 4 

Influence Line for Bending Moments at Quarter Pointf 

y,_ = (l - f)(\ ~ jCz)l, left side.(98) 

y,_ = - (l + y)c3J right side.(99) 

Constants C3 may be obtained from Diagram 17, page 277. 
How to Draw Influence Lines.—Lay out the beam to a desired scale. 

Locate the point for which the influence line is intended. Divide the 
span into any number of divisions. Usually ten divisions are used. 
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Erect vertical lines at each division point. Compute the constant C3 

for the frame or take it from diagram, p. 277. Compute for each 
x 

division point the value - and substitute it in proper equation. Com- 
L 

pute the ordinate yz and plot it on a vertical line passing through this 
division point. Connect the points so obtained by a smooth curve. 
Note that there is a break in the curve at the point for which the line 
is drawn. 

How to Use Influence Lines.—Place on the beam above the influence 
line the concentrated loads in the position for which the static bending 
moment at the selected section is a maximum. Scale the influence line 
ordinates under the loads and multiply them by the loads. The sum 
gives the bending moment. 

FRAME WITH RIDGE ROOF 

General Formula for Vertical Loads.—Frame with ridge roof is shown 
in Fig. 126, p. 294. The general dimensions are given in the figure. 

~r 

~«r 

4 ■ 
1 
1 
1 
1 
1 

l 
1 1 
• 

JL 

Fig. 126.—General Dimensions of Ridge Frame. (See p. 294.) 

Let /* = height of vertical member; 

hi = vertical projection of inclined member; 

l = horizontal span of the frame; 
l 

s = length of inclined portion = --; 
2 cos 0 

(p = angle of inclination of inclined members with the horizontal; 

11 = moment of inertia of normal section of inclined member; 

/ = moment of inertia of vertical member. 
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The vertical reactions may be determined by statics. 
The horizontal thrust is the only statically indeterminate value. 

The derivation of general formulas is given on p. 268. 
General Equation for Horizontal Thrust Due to Vertical Loads} 

II 

dx 

—, (100) 

where MB is the static moment of the vertical loads considering the beam 
as freely supported on both ends. 

Several special cases are given below. 
Case 9. Ridge Frame Uniformly Distributed, Vertical Loading. 

(See Fig. 127.) 

Loading 

w 

Fia. 127.—Ridge Frame Uniformly Distributed Vertical Loading. (See p. 295.) 

Vertical Reactions, 

Ra = \wl. . 

Horizontal Thrust, 

H = 

(101) 

8 + 5r tl i , z , 
-wl = C7-WI, 

h 

(102) 

(103) 
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where 

CV = 
8 + s| 

32 11 h 
+ + 3 

(104) 

I s 

Comer Bending Moments, 

Mb = Md = - Hh = - C7u>P. 

Bending Moment at Any Point in Inclined Member, 

. (105) 

. (106) 

Bending Moment at Ridge for x — 
JL 

Mc - [| - C7(l + jj\wl2.(107) 

Case 9a. Ridge Frame. Left Half of Roof Loaded Uniformly. 
(See Fig. 128.) 

W 

m n rrm 

Fia. 128.—Ridge Frame Left Half of Roof Loaded Uniformly. (See p. 296.) 

Vertical Reactions, 

Pa = \wl. . (108) Rb = \wl. (109) 
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Horizontal Thrust, 

H = \c\wl, 
h 

(110) 

where C7 is same as in previous case. 
Corner Bending Moments, 

Mb = Md =— \C7wl2.. . . (Ill) 

Bending Moment at Any Point: 

Left half of roof, x measured from left end, 

Mx = • • (H2) 

Right half of roof, x measured from left end, 

M, = 
• • • (m> 

Bending Moment at Ridge x = 
l 
2’ 

- [5 - M1+!)]rf.<iu> 

Mc may be positive or negative, depending upon the inclination of the 

roof. 
Case 10, Ridge Frame, Single Concentrated Vertical Load. (See 

Fig. 129, p. 298.) 

Vertical Reaction, 

RA = (l- f)P. • (115) Rb = jP.(116) 

Horizontal Thrust, 
l 

(118) 
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where 

Cs = 

5M 
(119) 

Fig. 129.—Ridge Frame, Single Concentrated Vertical Load. (See p. 297.) 

Corner Bending Mo?nents, 

Mb = Md = - Hh = CsPl.(120) 

Bending Moment at Ridge, 

•Me = \Pa — H(h h\).(121) 

Bending Moment at the Load, 

M- = T(1--)F,-(1 + Tt)Hh■ ■ ■ ■ <122> 

Bending Moment at Any Point x, 

MZ = M.~ (l +~f)Hh.(123) 

Case 11. Special Arrangement of Concentrated Loads.—Following 
special arrangements of concentrated loads are considered. 

(a) Load P at ridge. 
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(b) Three loads P at quarter points. 
(c) Five loads P at sixth points. 
The bending moment diagram for each case may be drawn in the 

same manner as shown in Fig. 130, p. 299, for five loads. 

Fia. 130.—Itidge Frame, Hinged Ends. Five Loads P at Sixth Points. 

(See p. 299.) 

Ridge Frame Concentrated Symmetrical Loads 

All Loads are Equal and Spaced Equal Distances Apart 

Case 
Number and 
Position of 

Loads 
Horizontal Thrust II 

Corner 
Bending 
Moments 

Mand M 

IP l / flA 
o At Center h \5+h) r“P 

—11 h 

3P i / /iA 
h At Third - ( 3.75 + 2.375- ) P8P — Ilh \ 

Points 
h \ h ) 

5P l / h\\ 
c At Sixth -(5.833+3.667-) C8P -Ilh < 

Points 
A \ h J 

Bending Moment 
at Loads Location 

iPl-{1+f)Hh 
llidge 

1 pi- (1+i£)"A Quarter Point 

Ridge 

A«- ^1 +J^ Hh Sixth Point 

In- Third Point 

\Pl- (l +—) Hh Ridge 
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For dimensions see Fig. 130, p. 299. 
Constant Cs was given in Formula (119), p. 298. 
Vertical reactions same as for statically determinate structures. 
All formulas for bending moments in the inclined members consist 

of two items, a positive item depending upon the load and a negative 
item depending upon the value of H, h and hi. The resulting bending 
moment may be positive or negative or equal zero depending upon the 
inclination of the roof. 

Loads placed at columns produce vertical reactions in columns, but 
no bending moments or shear in the frame. 

Case 12. Ridge Frame. Left Column Provided with Bracket. 
(See Fig. 131 (a), p. 301.) 

In addition to notation, p. 294, let 

h — horizontal distance of load on bracket from center of 
column; 

A2 = vertical distance of center line of bracket from hinge level. 

Vertical Reactions, 

Ra = (l - lj)p. . (124) 

Horizontal Thrust, 

also 

H = 

H = 

31 \h 
r s M V\2' 

h/ . 
+ 

lhiP 

4 

jhh h, 

LJ s + h (3 + 
hi> 

h) 
1+3 

hp> 

■1? a- 

(125) 

(126) 

(127) 

Values of constant Cs are the same as used in the previous formulas. 

Bending Moments in Column with Bracket, 

Just below bracket, 

MF1 = - Hh2.(128) 

Just above bracket, 

My2 - Ph - IIh2. (129) 
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Corner Bending Moments, 

Mb = Ph - Hh.(130) 

Md=- Ilh.(131) 

Fig. 131.—Ridge Frame. Columns Provided with Bracket. (See p. 300.) 

Bending Moment at Ridge, 

Mc = \Ph — H{h + hi).(132) 

Bending Moment in Bracket, 

Mb = - Ph (133) 
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Case 12a. Ridge Frame. Both Columns Provided with Brackets. 
Loads on Brackets are Equal. (See Fig. 131 (6), p. 301.) 

Vertical Reactions, 

Ra — Re — jP. 

Horizontal Thrust, 

•{?;[“(!)•] + S + 2li, 
h ’ 

also 

rc*p- h 

. (134) 

. (135) 

. (136) 

Value of Cs is the same as in the previous formulas. 

Bending Moments in Column, 

Just below bracket, 

Mpi = — Hh2.(137) 

Just above bracket, 

Mf2 = Ph - Hh2.(138) 

Comer Bending Moments, 

Mb = MD = Ph-Hh.(139) 

Bending Moment at Ridge, 

Mc = PIi - H(h + h).(140) 

Bending Moment in Bracket, 

Mb=-Ph.(141) 

Case 126. Bending Moment Applied on Column from Outside.— 
Formulas given for Cases 12 and 12a may also be used when the brackets 
are outside instead of inside. Also they may be used when one or both 
columns are subjected to bending moments M acting from the outside 
and due to any cause. In such cases substitute in all formulas the 
value of the bending moment — M for Pli. It should be noted that 
the sign of the resulting bending moments for this case are opposite 
to the signs in Cases 12 and 12a. 

This case applies also when the frame is provided with a lean-to. 
The bending moments at the juncture of the lean-to and the main 
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frame may be computed, considering the lean-to as a separate frame 
fixed at one end. This bending moment then may be considered as 
applied on the main frame and its effect computed according to Case 126. 

Horizontal Forces Acting on Ridge Frame 

Since ridge frames are used mainly for buildings, only such horizontal 
forces will be considered as may be caused by wind pressure. These are: 

Case 13a. Uniform wind pressure on inclined member. 
Case 136. Uniform wind pressure on vertical member. 
Case 13c. Concentrated horizontal pressure W. 
Effect of wind upon the frame is same as described on p. 286 in 

connection with rectangular frame. The reactions are found in the 
same manner. As stated there the whole windward portion of the 
frame is subjected to positive bending moments while the leeward por¬ 

tion is subjected to negative bending moments. 
Case 13a. Uniform Wind Pressure on Inclined Portion. (See Fig. 

132 (a), p. 304.) 

Additional notation, 

p = uniformly distributed unit wind pressure, lb. per lin. ft. 

Vertical Reactions, 

Ra=~ J(h + \hx)Vhu . . (142) R* = - Ra. . . (143) 

Horizontal Reaction, 

Leeward hinge E, 

4^ + ii(4+i) + 6]c'*- • ■ • (144> 

Value of Cs are the same as in the previous formulas. 

Windward hinge A, 

Hi = phi - H. (145) 
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Bending Moment at Comers, 

Mb = Hih.(146) 

Md = — Hh.(147) 

Fig. 132.—Ridge Frame. Horizontal Wind Pressure Uniformily Distributed. 
(See p. 303.) 

Bending Moment at Any Point x, 

Mx = Hih(l +2~jj-VAx- - - (148) 

Bending Moment at Ridge, 

Me - «4 - (l + \)m. • (149) 
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Case 13b. Uniform Wind Pressure on Vertical Member. (See 
Fig. 132 (6), p. 304.) 

Vertical Reactions, 

1 h 
Ra = — ~ rph. . . (150) Rs =— Ra. . . . (151) 

2 l 

Horizontal Reaction: 

Leeward hinge E, 

= ~^5y - + 6y + .(152) 

Values of C$ are the same as in the previous formulas. 
Windward hinge A, 

Hi = ph — II.(153) 

Bending Moments in Corners, 

Ma = (Hi - \ph)h. 

MD — — Ilh. 

Bending Moment at Ridge, 

Me = [ipfc-//(i + jj h. . . 

Bending Moment at Any Point in Column, 

Mv = (Hi - lpy)y. 

Maximum Positive Bending Moment in Column, 

Mm„ = ip(y). 

Point of Maximum Positive Bending Moment, 

Hi 

(154) 

(155) 

(156) 

(157) 

(158) 

(159) 
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Case 13c. Concentrated Horizontal Pressure at Distance mh above 
Hinge. (See Fig. 133, p. 306.) 

Vertical Reaction, 

Ra=- n£\V. • • (16°) R* = mlw• • • • (161) 
l * 

Fig. 133.—Ridge Frame. Concentrated Horizontal Pressure on Vertical Member. 

(See p. 306.) 

(162) 

(163) 

(164) 

(165) 

(166) 
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When the wind applies at A, m = 1. 
These formulas may be used when the main frame is provided with 

a lean-to. The wind then is transferred from the lean-to to the main 
frame at the juncture. 

Effect of Temperature Changes 

Changes of temperature cause horizontal thrusts at the hinges, 
which in turn produce bending moment throughout the frame (see also 
pp. 266 and 291). 

Rise of temperature produces thrusts acting inward while fall of 
temperature produces thrust acting outward. 

The resulting bending moments are negative for rise of temperature 
and positive for fall of temperature. 

Let a = coefficient of expansion for 1° F.; 
E = modulus of elasticity of concrete; 
t = change in temperature in degrees. 

Case 14a. Rise of Temperature. 
Horizontal Thrust, 

\2EatI\-r- 
H __2s 

4B* + t(3 + ^) + 3 
Values of Cs are the same as in the previous forumlas. 
Bending Moments in Corners, 

Mb = Md = — IIA.(168) 

Bending Moment at Ridgc} 

Mc = - !h(h + hi).(169) 

Case 14b. Fall of Temperature. 
Horizontal Thrust, 

Ht=- l2CsEatlX.(170) 

= 12C&EatI i 

\h2 
2s 

. (167) 

Bending Moments in Corners, 

Mb = Md = - Hth. 

Bending Moment at Ridges, 

(171) 
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ROOF FRAME WITH ARCHED ROOF 

Roof frames with a curved top are less often used, therefore only 
typical cases will be considered below. Bending moments due to wind 
pressure and due to brackets on columns may be computed, without 
appreciable error, by means of formulas for ridge frames of the same 
height. 

Following assumptions were made regarding the curved roof. 
Moments of Inertia.—The moment of inertia of the roof member 

at the center is It. At the other points it varies so that Ix = ——, 
cos <t>x 

where <j>x is the angle of the tangent to the arch with the horizontal. 
Shape of Arch.—The arch was assumed to be parabolic in shape 

as expressed by the following formula. 
Formula for Parabolic Roof’, 

4hi 
y = - *)>.(173) 

where x is measured from left corner B and y above the axis BC. 
The formulas can be used without appreciable error when the arch 

is an arc of a circle, also when the moment of inertia is constant. 
Case 16. Parabolic Roof Frame. Whole Span Uniformly Loaded. 

(See Fig. 134, p. 308.) 

w 

Fig. 134.—Parabolic Roof Frame, Uniformly Distributed Load. (See j>. 308.) 

Reactions, 
VA - VD = \wl (174) 
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Horizontal Thrust, 

'0751 

Corner Bending Moments, 

Mb = Me = — Hh.  .(176) 

Bending Moment at Any Pointy x Measured from B, 

Mx = }*(J - *)u> - + y).(177) 

Maximum Positive Bending Moment, 

MmtkX = l^Z2 - 7/(A + fo).(178) 

Case 16. Parabolic Roof Frame. Half Span Uniformly Loaded. 

Reactions, 

7a = fid.(179) 7* = \wl.(180) 

Horizontal Thrust, 

For one-sided loading the horizontal thrust is equal to one-half the 
thrust for full loading. 

Corner Bending Moments, 

MB= Mc = - Hh.(181) 

Bending Moment at Any Point, x Measured from B, 

Mx = x(|Z — \x)w — H (h + y).(182) 

Maximum Positive Bending Moment, 

This moment is obtained by substituting in formula (182) for x 

the value of x\ from the next formula. 

Point of Maximum Positive Bending Moment, 
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Case 17. Concentrated Vertical Load. (See Fig. 135, p. 310.) 
Reactions, 

VA=(l- jjP. . . (000) VD = °P.(184) 

Horizontal Thrust, 

(185) 

Comer Bending Moment, 

Md = Mc = - Ilk (186) 

Fig. 135.—Parabolic Roof Frame. Concentrated Load. (See p. 310.) 

SLANTING ROOF FRAME WITH HINGED ENDS 

A slanting roof frame is a frame consisting of three members in which 
the vertical members are not of the same height as shown in Fig. 136, 
p. 311. Special formulas must be worked out for this case. These 
are given below. 

Notation. 

Let l = length of span; 
s = length of inclined member; 

hi = height of left, in this case short, column; 
hr = height of right, in this case long, column; 
I = moment of inertia of inclined member; 
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Ii = moment of inertia of left column; 
1r = moment of inertia of right column; 

<t> = angle of inclination of inclined member. 

Case 18. Uniformly Distributed Load. (See Fig. 136.) 

(tnimiTu mm-} 

Fig. 136.—Slanting Roof. Uniformly Distributed Load. (See p. 311.) 

Vertical Reactions, 

Ra = Rd = Iwl.(187) 

Horizontal Thrust, 

Corner Bending Moments, 

Mb — — Ilht.(189) 

Mc = — UK.(190) 

Bending Moment at Any Point x, 

Mx = \x(l — x)w — II (hi + ----x'j. . . (191) 
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Point of Maximum Positive Bending Moment, 

Xl=hl-.B.hjZ±'i.(192) 
wl l 

Maximum Positive Bending Moment. 

This is obtained by substituting the above value of x\ in equation 
for bending moment at any point. 

Case 19. Concentrated Load at Distance a. (See Fig. 137, p. 312.) 

Fia. 137.—Slanting Roof. Concentrated Load. (See p. 312.) 

Vertical Reactions} 

Ra = (i - f)P, • (193) Rd = jP.(194) 

Horizontal Thrust, 

Comer Bending Moments, 

MB =-Hhi,.(196) 

Mc = — Hhr.(197) 
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Maximum, Positive Bending Moment at Load, 

+ .(1.8) 

Case 20. Symmetrically Placed Concentrated Loads. 
Five positions of concentrated loads are considered, namely: 

1. Load P at center. 
2. Two loads P at third points. 
3. Three loads P at quarter points. 
4. Four loads P at fifth points. 
5. Five loads P at sixth points. 

It should be noted that loads placed directly over columns produce 
no bending moments and increase only the reactions at the columns. 

General formula for the horizontal thrust is given below. 

Horizontal Thrust for Concentrated Loads. 

The values of 2^1 — jj j^2 + ^ + 1^ j for the five loading 

conditions are given in table below. 

Number and 

Position of Load 

Numerator in Formula for H 

*?H)K+r(H] 
Maximum Positive 
Bending Moment 

IP 

At Center *(H iPl-iH(h,+h,) 

2 P 
At Third Points 

. *(H iPl-iH(2h,+hr) 

3 P 
At Quarter Points «(H iPl-iH(hi+hr) 

4 P 

At Fifth Points ■*(H $Pl-$H(h,+$hr) 

5 P 

At Sixth Points *«(H }Pl-$H(h,+hr) 
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Case 21. Slanting Roof. Wind Pressure on Inclined Member. 
(See Fig. 138, p. 314.) 

Fig. 138.—Slanting Roof. Wind Pressure on Inclined Member. (See p. 314.) 

Vertical Reactions, 

Ra=- p(hr - . (200) RD=-RA.. . (201) 

Horizontal Reactions: 

At left hinge A, 

H = p(hr - hi) 
mb’ht +1 

. (202) 

At right hinge D, 

Hi = p(hr — hi) — II.(203) 

Comer Bending Moments, 

Mg — + Hhi.(204) 

Me = - Hihr.(205) 

Case 22. Slanting Roof. Wind Pressure on Vertical Member. 
(See Fig. 139, p. 315.) 

Vertical Reactions, 

Ra 
_ i \ph 

ht 

7’ 

(206) Rd=-Ra. . . . (207) 
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Horizontal Reaction: 

At left hinge A, 

H = ph, 

8 a./. 
Is h 

. (208) 

Fio. 139.—Slanting Roof. Wind Pressure on Vertical Member. (See p. 314.) 

At right hinge D, 

Hi = pht- H.(209) 

Corner Bending Moments, 

Ma = Hhi - \ph?.(210) 

MB=-Ihhi.(211) 

Bending Moment at Any Point in Left Column, 

My = IIy — \py2.(212) 

Point of Maximum Bending Moment, 

Maximum Bending Moment, 

M max 

1 ip 

2 p 

(213) 

(214) 
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SAW-TOOTH ROOF FRAME 

Saw-tooth roof frame as shown in Fig. 140, p. 316, is similar to a 
ridge roof frame, the difference between the two being in the location 
of the ridge. 

Fig. 140.—Saw-tooth Roof Frame. (See p. 316.) 

Let l = horizontal span of frame; 
h = height of vertical member of frame; 

h\ = vertical projection of the inclined member; 
h = ml = horizontal projection of the left inclined member; 

h = (1 — m)l = horizontal projection of the right inclined member; 
si — length of left inclined member; 
S2 = length of right inclined member; 
h = moment of inertia of normal section of inclined 

members; 
/ = member of inertia of vertical members; 

a and 0 =* angles of the inclined members with horizontal. 

The derivation of formulas is similar to that for ridge frames. 
Vertical Reactions.—Vertical reactions are same as for statically 

determinate structures. 
Horizontal Thrust.—General formula for horizontal thrust for vertical 

loads is given below. 
Horizontal Thrust General Formula, 

“IfrH 
M, 

7 + 7)H 

h + y(l-x) ]c 
h_ 

1 . , 1 
1+h+ 3 

l£_ 

l/hv Aiyii 
v JJ 
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Tjrpes of Loading Considered.—Usually a saw-tooth roof is loaded 
by uniformly distributed loading and by a concentrated load on the 
ridge. Formulas for these loadings are given below. 

Uniformly Distributed Loading.—The unit dead load on the flatter 
part, which is provided with a concrete slab, is always larger than of the 
glass-covered steeper part. The live load on the flatter part of the 
roof is also heavier. Therefore it will be assumed that the intensity 
of the uniformly distributed loading is different for the two sections. 
The condition is illustrated in Fig. 141, p. 317. 

Fig. 141.—Saw-tooth Roof. Uniformly Distributed Loading. (See p. 317.) 

Let, in addition to notation on p. 316, 

w = uniformly distributed vertical unit load, left part of the 
frame; 

wi = uniformly distributed vertical unit load, right part of the 
frame. 

Then 
Vertical Reaction for Loading on Both Sidesf 

Ra = (l — ^jwli+ J-(l - m)wih.(216) 

Rs = wh + wik - Ra.(217) 

To get reactions when one side only is loaded make, in the above 
equations, the unit load of the unloaded side equal zero. 
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Horizontal Thrust: 

For uniform loading on the flatter side, 

+ ?1 + : 

2hh ,/*i , «*\r. Ai lAA2 

37T + \1 + IJi1 + h + 3\h) J 
•wh. (218) 

For uniform loading on the steep side, 

(1 - 3m(f + TX1 + I ») + f(‘ + 5 *) 
124 

Total Thrust for Loads on Both Sides, 

// = Hi + H2. 

The denominator of both equations is the same. 
If the uniformly distributed loading is the same on both sides the 

formula for horizontal thrust becomes 

Horizontal Thrust, Both Sides Loaded with Loading w, 

3m(l - »)(2 + ®)(l 4- |x) + 

(m‘*j + (1 - «)»y)(l + 

2 /i h /si ssA h\ l(hi V 

3 I l + ill + h + 3U/ 

vl (221) 

Bending Moments at Corners, 

Mb = = - flTi. 

Bending Moment at Ridge, 

Mc = - \wh) - //(A + hi). . . . (223) 

This bending moment may be positive or negative, depending upon 
the inclination of the members and the ratio m. 

Bending Moment at Any Point: 

Left side, x measured from left support, 

Mx = Rax — \wx2 — H (*+r)- 
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Right side, x measured from left support, 

Mx = RB(l - x) - iwi(l - x)2 - n[h + ^(l- x)j. . (225) 

The point of maximum bending moment depends not only upon 
the load, but also upon the inclination of the roof. It is given by the 
following equation. 

Point of Maximum Bending Moment) 

. (226) 

Maximum Positive Bending Moment, 
Maximum positive bending moment is obtained by substituting the 

value of Xi in equation for Mx for the left side. 
Concentrated Load P at Ridge. (See Fig. 142, p. 319.) 

Vertical Reactions, 

Ra. = (1 — m)P. . (226a) RE = mP. 

Horizontal Thrusty 

m(l “ “’(t + ?)(’ + 5 t) 
H = ,2hh (s i s2\r Ai l/Ai\2 

3 I l + \l + l)V + h+ 3U/ . 

\p. 

(227) 

(228) 
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Corner Bending Moment, 

Ma = Md = — Hh.(229) 

Bending Moment at Ridge, 

Mc = (1 - m)Ph - II(h + hi).(230) 

Special Shape of Saw-tooth Roof 

The special shape of saw-tooth roof shown in Fig. 143 is often used. 
The equations for this case are worked out below. 

For this special case 

h = f l, m = i 

*. - f 0.867; „ - R 

1 + 1~ 

hi = -V l = 0.434Z. 
4 

1 

2’ 

These values are substituted in general formulas. 
Uniform Loading, Special Shape of Saw-tooth Frame. 

Vertical Reaction, 

Ra = (yf W + TfgWi )l. 

Re = + t$Wi)1. 

(231) 

(232) 
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Horizontal Thrust: 

For load on flat side, 

Hi = 0.047 

1.03^1+0.289^ + ^0.867 + 0.188^ 

0.667—+ 1. 
1 

t.433- +- 0.0625 
n 

1.367 j^l + 0. 

For load on steep side, 

3.075^1 + 0.2890 + (o.5 + 0.108^ 

i_v 
h 

wl. (233) 

H2 - 0.005 

0.667yy + 1.367 1 + 0.433^ + 0.0625^ 

wil. (234) 

Total thrust, both sides loaded, 

H = Ih + II2.(235) 

Bending moment formulas are same as for general case. 
Concentrated Load at Ridge. Special Shape of Saw-tooth Roof. 
Vertical Reaction, 

Ra = IP.(236) Re = \P.(237) 

Horizontal Thrust, 

0.256^1 + 0.289jj 

0.667y j + 1.367[l + 0.433+ 0.0625 

Formulas for bending moments same as for general case. 

(238) 

Saw-tooth Roof Frame Not Connected with Columns 

If the connection between the column and the frame is not rigid, 
but the column is held against side movement, the saw-tooth roof may 
be considered as hinged at the juncture of the roof and the column 
(see Fig. 144, p. 322). In such case the value of h in Formulas (218) 
to (226) is zero and following formulas result. 

Uniformly Distributed Loading. 
Reactions: 

Both sides loaded, 

Ra = (l- y)wh + HI - rn)wih.(239) 

Rc = (wli + W1I2) — Ra• ..(240) 
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Horizontal Thrust: 

Left side loaded, 

1 ml (I* ~ m)l + (1 ~ m,T 

""h-JTTi-wl" 

l + l 
Right side loaded, 

„ 1 (1 ~ m)l 1 + (” + i)? 
Si £2 

l + l 

(241) 

(242) 

Fiu. 144.—Saw-tooth Roof Hinged on Top of Columns. Uniform Loading. 
(See p. 321.) 

Both sides loaded, 

H = Hi + Hi.(243) 

Bending Moment at Any Point, 

Left side, x measured from left support, 

Mz = Rax — \wx2 — H~x.(244) 
1 

Right side, x measured from right support, 

Mx = Rc(l - x) - \wid - x)2 - H~d -x). . . (245) 

Points of Maximum Bending Moment, 

(246) 
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Bending Moment at the Ridge, 

Mb = h(RA - \wh) -Hhi.(247) 

Concentrated Load P at Ridge. 

Reactions, 

Ra = (I - m)P. . (247a) Rc = mP. . . (248) 

Horizontal Thrust: 

II = m{ 1 - tn)~P.(249) 
h\ 

Bending Moment at Ridge, 

Md = Hhi.(250) 

Saw-tooth Roof with Tension Member 

When the columns upon which the saw-tooth rests are not held 
firmly on the top and, therefore, are not capable of resisting the hori¬ 
zontal thrust, a frame shown in Fig. 144 cannot be used because under 
the action of the load the ends of the frame would spread and it would 
act as a simple supported beam. In such case the frame should be 
provided with a horizontal tension member which resists the horizontal 
thrust. Such frame is shown in Fig. 145, p. 323. 

Fig. 145.—Saw-tooth Roof with Horizontal Tension Member. (See p. 323.) 

Vertical Reactions.—The vertical reactions of such frame are same 

as in the previous case. 
Horizontal Thrust.—The horizontal thrust is resisted by the tension 

member. Under the action of the thrust the tension member lengthens 
thus allowing a small increase of the span. To allow for this increase 
the Formulas (241) to (243) for horizontal thrust is changed to 

Let Ea = modulus of elasticity of steeJ. 
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Horizontal Thrust, Uniform Load, Frame with Tendon Member: 

Left side, loaded, 

Hi = - --—-wh. 
2 hi si $2 /, l 

- + - + —■ 
l l E.hi 

Right side, loaded, 

(251) 

ry 1 (1 — m)Z l l _ 
//2 - —— - —wh. . . , (252) 

2 Ai £i £a , 

l + I + LUi 

Horizontal Thrust, Load Concentrated at Ridge, 

ra(l — m) 

// = 
(!+?) 

£[ , f2 .oIlL hl 
l + 1 + £Ui 

ip. (253) 

In the expression the values/, and 2?, and £and Ai, respectively, 
hi 

must be in the same units. 
The bending moments are found in the same manner as in previous 

case. 
Tension Member.—The area of the tension member is found by 

dividing the horizontal thrust by the allowable unit stress /,. 

A.= 
n 

1: 
(254) 

The tension member may consist of one or more heavy bars. These 
may be exposed or covered with a shell of concrete. The bars must be 
firmly anchored to the concrete member at the ends. In such con¬ 

struction no bending moment is developed at the ends. 

Sometimes the tension member consists of a number of small bars 

imbedded in a concrete beam. The juncture of the beam with the 

inclined members in rigid and must be reinforced to take care of the 
bending moment developed there. 
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EFFECT OF FIXING OR RESTRAINING IN RIGID FRAMES OF COLUMNS 
AT BOTTOM 

The formulas for rigid frames given on the previous pages are 
based on the assumption that the columns are hinged at the bottom, 
i.e., that they are free to rotate at the ends so that no bending 
moment can develop there. 

This condition may not always exist in practice. The columns 
either may be actually fixed at the bottom, as, for instance, when they 
arc connected with heavy foundations, or they may be partly restrained. 

In both cases proper changes must be made in the design to take care 

of the bending moments produced by the restraint at the ends. 
Ends of Columns Fixed.—The effect of fixing the ends of the columns 

is as follows: 

1. The maximum bending moments at the top of the columns are 
increased. 

2. The negative bending moments in the loaded spans are increased 
and the positive bending moments decreased. 

3. Bending moments are developed at the bottom of the columns 
the magnitude of which is equal to one-half of the bending moments 
at the top of the columns. The sign of the bottom bending moments is 

opposite to the sign at the top. 
For vertical loading the bending moments in a right-angle frame 

with fixed angles are equal to the bending moments of a frame with 

hinged ends of the same span, but with a height of columns equal to 
three-fourths of the height of the fixed frame. The bending moments 

obtained from the hinged frame may be used for the beam and for 
the columns at the top. At the bottom of the columns will act a bend¬ 

ing moment of opposite sign and equal to one-half the bending moment 
at the top. Between the top and bottom of the columns the bending 

moments vary according to a straight line, which fixes the point of con- 

traflexure in the columns at one-third of the height of the column, 
measured from the bottom. 

Partial Restraint of Column Ends.—When the column ends are 
partially restrained the bending moments in the frame will be between 

the bending moments for the fixed and hinged end condition. If the 
restraint at the end can be expected but cannot be positively counted 

upon, it is best to design the frame as hinged at the bottom and in 

addition to provide reinforcement at the bottom to take care of the 

bending moment developed there by the restraint. 
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RIGID FRAMES WITH FIXED ENDS 

Definition.—Rigid frames are considered as having fixed ends when 
the columns are rigidly attached to heavy foundations, or placed on 
top of other heavy construction, in such a way that when loaded the 
tangent to the deflection curve at the bottom coincides with the original 
axis of the member. 

Rigid frames are structures of same nature as fixed arches. As is 
the case with fixed arches, rigid frames with fixed ends have three 
statically indeterminate values. 

Since rigid frames usually consist of straight members it is possible 
to solve the integrals so that it is not necessary to resort to the summa¬ 
tion method often required in arch design. 

Notation 

Let l = span of frame; 
11 = minimum moment of inertia of the horizontal or inclined 

member; 
Ix — moment of inertia at any point of frame; 

X, Y = coordinates referred to left support A as center; 
Xc, Yc = coordinates of elastic center; 

Xj y = coordinates referred to elastic center as center of coor¬ 
dinates; 

Va = vertical reaction at left support; 
Ha = horizontal reaction at left support; 
M = auxiliary bending moment; 

Ma = static bending moment at any point due to loading, 
considering frame as a cantilever fixed at right support. 
It is negative (see Formulas (264) to (266); 

M» = actual bending moment in frame at any point. 

General Formulas.—General formulas for rigid frames with fixed 
ends arc the same, and are developed in the same manner, as for 
arches. The formulas are developed in Chapter VIII. 

Elastic Center.—Usually it is necessary to find the elastic center 
first, which is then accepted as the center of coordinates. The formulas 
for the location of the elastic center for a symmetrical frame are given 
below. 

Position of Center of Coordinates with Reference to Left Support, 

= ll Xc (255) 
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Yc = (256) 

Statically Indeterminate Values.—The three statically indeterminate 
values are: 

1. Vertical reaction at left support Va. 
2. Horizontal thrust at left support HA. 
3. Auxiliary bending moment M. 

The formulas for the statically indeterminate values are: 
Vertical Reaction at Left Support, 

VA 

X* h 
Msj-Js 

2_ 

j-i ’■ 

(257) 

Since Ms is negative, Va is positive. 
Horizontal Thrust at Left Support, 

Ha=- 

This value is negative. 
Auxiliary Bending Moment, 

M = - 

(258) 

(259) 

Since Ms is negative M is positive. 
The values of x and y in the Formulas (257) to (259) refer to the 

center of coordinates at the elastic center. 

After the above indeterminate values are found the bending moments 
at the supports MA and at any point Mx are computed from the follow¬ 
ing formulas. 
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Bending Moment at Left Support, 

MA = M -v\- HaY.. ... (260) 

Bending Moment at Any Point x and y, 

Mx = M + VAx + HAy + M., . . (261) 

where x and y are coordinates referred to the elastic center as origin. 
They must be used with their proper signs. Thus for all points to the 
left of the center use (— x) for x and for points below the axis (—2/) 
for y. 

Example of Application of General Formulas to Frames 

Frames usually consist of straight sections for which the integrals 
may be easily solved. The integrals for the frame are evaluated by 
solving the integrals for each straight section and adding the results. 

To illustrate the application of general formulas, special formulas 
will be developed for a ridge frame as shown in Fig. 146, p. 328. Mo¬ 
ments of inertia are constant throughout each member. 

In addition to notation on p. 326, 

Let/i = constant moment of inertia of inclined member; 
I = constant moment of inertia of vertical member; 
h = height of vertical member; 
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hi — vertical projection of inclined member; 
<f> = angle of inclination, inclined member. 

Elastic Center for Ridge Frame.—The integrals forming Formula 
(256) are solved as follows: Referring to Fig. 146 the numerator of 
Formula (256) is 

The denominator of Formula (256) is 

JO f Jo hjo 0 I 

l 

2cos 0 

Therefore 

Ordinates for Elastic Center for Ridge Frame, 
(262) 

Yc = 

7 h2 + 
/ COS 0 

W*+£) 
•s 0\ 2/ 

2yA + — 
I COS 0 

(263) 

This is the new center of coordinates. 
Denominator for HA for Ridge Frame.—The denominator for 

Formula (258), p. 327* is solved as follows: 
i ... i 

\2 dx fob - +2fhfo- fo COS 0 

This solved gives 

fWjds = hjQi*-2YJi+2Y*j 

+ -(h2+hhl+l^._2YJl-YM+YA 
cos 0\ 3 / 
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Denominator for Va for Ridge Frame.—The denominator for Formula 
(257), p. 327, is solved as follows: 

Hhh i 1 1 \ 
2 \ / ' 6 cos <t>)' 

Denominator for M for Ridge Frame. 

I 

COS (j> 

Numerators for Ridge Frame.—Numerators for all formulas must 
be determined separately for each type of loading as they depend 
upon the value of the static bending moments Ma. For vertical loading 
Ma acts only on the inclined member so that the formulas for denomina¬ 
tors become 

Numerator for H for Vertical Loading, 

JHM&+ dx. 

Numerator for Va for Vertical Loading, 

i i X2 h IT2 
M,x~ ds =-| M,xdx. 

L Iz cos <t> ILL 
9 •' 9 

Numerator for M} 

<-1 JCl h 1 n 
M~ds =- Madx. 

b h cos ct>Jj 

After the value for Ma is substituted the integrals can be easily solved. 
The values of Ma are 

For uniformly distributed load, 

(264) 

For concentrated load P at a distance a from center, 

M9 = — (x — a)P for points to the right of the load. (265) 

Ma = 0 for points to the left of the load.(266) 
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See also p. 600 in arch chapter. 
Semi-graphical Solution.—The numerators also may be solved by 

means of the semi-graphical method explained on p. 272. 

The numerator for H represented by y Ma yds is the static moment 

of the moment area about the x-axis passing through the elastic center 

multiplied by y. 

The numerator for Va represented by If- is the static 

moment of the moment area about the y-axis passing through the 

elastic center multiplied by y. 

The numerator for M represented by 

multiplied by y. 

jj'M.dsi Is is the moment area 

The bending moment diagram should be drawn first. Then the 
bending moments should be plotted on the frame on lines at right angle 
to the frame. The ends should be connected to form a curve. The 
total area becomes divided into areas belonging to each member. 
The area enclosed by this curve should be computed for each member 
separately and its center of gravity determined. The center of gravity 
should be projected on the member and the ordinate X\ and y\ of this 
point should be found. The moment area multiplied by Xi and y\f 

respectively, gives the desired respective static moment of the moment 

area. This now should be multiplied by proper y. By adding the 

partial static moments the total numerator is obtained. 
Solution for Variable Moments of Inertia.—When the moments of 

inertia of the member are not constant, it is impossible to take the 

value y before the integration sign. In such case draw the bending 
lx 

moment diagram as before. Each ordinate of the diagram multiply 

by the corresponding value of y. Plot this new diagram. Determine 
lx 

the area thus obtained and find its center of gravity. Finally proceed 
as explained in connection with the solution with constant moments 
of inertia. 
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RIGHT-ANGLE FRAME. FIXED ENDS 

Formulas for following conditions of loading are given below. 

1. Uniformly distributed vertical loading. 
2. Concentrated vertical loading. 
3. Horizontal pressure. 

Let l = length of span; 
h = height of frame; 

11 = moment of inertia of horizontal member; 
I = moment of inertia of vertical member. 

Position of Elastic Center.—The position of elastic center is common 
for all loadings as it depends upon the dimensions of the frame. 

Position of Elastic Center in Reference to Left Support, 

x -l 
Xc~2' 

Ye 

^+1 
LL—» 

2— - + 1 
11 T 

(267) 

(268) 

Denominator for H, Va and M.—The values of numerator for H, 
Va and Af depend only upon the shape of the frame. They are: 

Denominator for H, 
j 

(Vs*" *<* - K,)(2 + / ?)“■ ■ 
J “2 

Denominator for Va, 

/*,**/!*“AP(1+6/i) • 
J ~ 2 

(269) 

(270) 

Denominator for M, 

+2?f).(271> 
These values may be used for solving problems not covered below. 

Case 1. Uniformly Distributed Vertical Loading. (See Fig. 147.) 
Vertical Reaction, 

VA - VB = \wl. (272) 
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Horizontal Thrust, 
l 

Auxiliary Moment, 

(273) 

(274) 

Fia. 147.—Rectangular Frame, Fixed End. Uniform Loading. (See p. 332.) 

This does not need to be computed. 
Corner Bending Moments, 

Bending Moment at Supports, 

Bending Moment in Beam at Any Point x, 

(275) 

(276) 

Mx = \wx(l — x) + Mb. . (277) 
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Maximum Positive Bending Moment, 

J77J—-P. 
/ 1 + 

. . (278) 

Case 2. Concentrated Vertical Load P at Distance a. (See Fig. 148, 
p. 334.) 

P 

Fia. 148.—Rectangular Frame, Fixed Ends. Concentrated Load. (See p. 334.) 

Reactions, 

VA 

VD = P- 

Horizontal Thrust, 

VA. 

(279) 

(280) 

(281) 
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Bending Moments at Corners, 

r 0 - f) mji 

a 

■ * 

Mf °MS)I 
M, -K-r) 

a 

Mr 2(‘+ °7r)J 

Pi. . (282) 

PZ. . (283) 

Bending Moments at Bottom, 

^-+K‘-r) 
KMr) 2(Mr)J 

PZ. (284) 

*-r(‘-r) 
1_2r 

Bending Moment at Load P, 

Mmu = Ma- Hh + VAa. 

PL (285) 

(286) 

Case 2a. Symmetrically Placed Concentrated Vertical Loads.— 
For symmetrically placed loads the points of inflection of the col- 

h 
umns are distant - above the bottom (see p. 325). Also the vertical 

O 
reaction is equal to one half of the loads applied on the beam. This 
property may be utilized for determining the bending moments. The 
only statically indeterminate value is the horizontal thrust which acts 
at the points of inflections of the columns. 

Reactions, 

VA = V3 = = i (Pi + P2 + Ps +. 

Horizontal Thrust, 

(287) 

H = 
l_ 

h 

lK!) 
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i 

h at a\ 

. 

Corner Bending Moments, 

Mb = Me = — J//A. 

Bending Moment at the Bottomf 

Ma = Md = + | Hh. 

Bending Moment at Any Pointy 

Mx= M.~ IHh. . 

Case 3. Left Columns with Load on Crane Bracket. (See Fig. 149, 
p. 336.) 

Notation. 

In addition to notation on p. 332. 

Let h = distance of load P on bracket from center line of vertical 
member; 

hi = height of bracket above the level of the hinges. 

Reactions, 

l h\„ Md-Ma 

V^v-~i)p+—r^.(293) 

Vb = -rP — 
Md-Ma 

Horizontal Thrust, 

J-I* + 2 
11^ 

P. (295) 

Comer Bending Moments, 

Mb = ~ — 

2,i[^ r,+* 
Pli. . . (296) 
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Fig. 149.—Rectangular Frame, Fixed Ends, with Crane Brackets. (See p. 330.) 

Bending Moments at the Bottom, 

Ma = Mb + Hh - Ph.(298) 

Md = Mc + Hh.(299) 

Bending Moment at the Bracket: 

Just below bracket, 

Me = Ma — Hhi. 
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Just above bracket, 

Mei = Ph + Me...(300) 

Case 3a. Equal Concentrated Loads on Both Brackets. (See Fig. 

149 (6), p. 337.) 

Vertical Reactions, 

VA = VB = P. 

Horizontal Thrust, 

Equal double the thrust for single load. 

Corner Bending Moments, 

Bending Moments at Bottom, 

Ma = Mb + HA - PZi.(302) 

M = Mc + Hh.(303) 

Bending Moments at Bracket: 

Just below bracket, 

ME = MA — Hh!.(304) 

Just above bracket, 

Me i = Pli + Me.(305) 

Case 4. Uniformly Distributed Horizontal Pressure. (See Fig. 150, 
p. 339.) 

Let p = uniformly distributed horizontal pressure. 

Vertical Reaction, 

Ii h 

. (306) VD = - Fa. (306a) 
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Horizontal Thrust: 

At left support, 

,«t r + 13 

« = l~n—ph' 
8 — - + 2 

. (307) 

Fio. 150.—Uniformly Distributed Horizontal Pressure. (See p. 338.) 

At right support, 

Hi = ph - H. . . 

Bending Moments at Bottom, 

(308) 

(309) 

(310) 

Bending Moments at Comers, 

Mb = MA - Hh + \ph?.(311) 

M0= Md- Hih.(312) 
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RIGHT-ANGLE HINGED FRAME WITH VARYING MOMENTS OF INERTIA 

In bridge construction it is often desirable to make the beam com¬ 
posing a frame deeper at the ends than in the center, either for the sake 
of appearance or to increase the head room in the center. In such cases 
the top of the beam is made straight, but the bottom is either curved 
or provided with haunches. 

If the bottom is curved, the curve either extends throughout the 
whole length of the span or a part of the beam at each end is curved 
and the central part is straight. 

The vertical members may also have variable dimensions. 
If the depth of any member of the frame is not constant throughout 

its length, its moments of inertia are not constant but vary with the 
variation in depth. This affects the formulas for bending moments and 
thrusts. 

The formulas below are for frames with variable moments of inertia. 
In succeeding pages special cases are worked out so that in practical 

design the use of calculus is avoided and the calculations can be made 
with comparative ease. 

General Formula.—The hinged frame has one statically indeter¬ 
minate value, namely, the horizontal thrust at the hinges. The general 
formula for this thrust is 

Let Ma i = 

M. 2 = 

M, 3 = 

Zl = 

/* = 

/ = 

ly = 

// = 

static bending moment in left column; 

static bending moment in beam; 

static bending moment in right column; 

smallest moment of inertia of the beam; 

variable moment of inertia in beam at point x; 

smallest moment of inertia of the columns; 

variable moment of inertia in column at point y; 

horizontal thrust. 

General Formula for Horizontal Thrust, 

t h rl 7 f M.iyydy + { M,2~dx + \ f M^y—dy 
H = il llth il Lh. il 

- f V- 
IJo V h 

dy + h-CL' 
r V hjo I . 

(313) 

dx 

In the above formula M81 and Ma3 are zero for vertical loads as these 
produce static bending moments in the beam only. 
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For horizontal loading such as earth pressure there are static bending 
moments in the columns as well as in the beam (see p. 272). 

Assumptions as to Variation of Moments of Inertia.—To make the 
solution of the integrals possible it is necessary to establish a formula 
for the variation of the moments of inertia. 

Vertical Member.—The vertical members are either of constant depth 
or the depth is made smallest at the bottom and is increased according 
to a straight line to a maximum at the juncture of the horizontal and 
vertical members. In such case it is accurate enough to assume that the 
vertical member is of constant moment of inertia and make this assumed 
constant moment of inertia equal to the actual moment of inertia at a 
height equal to 0.65 the theoretical height of the vertical member. 

Horizontal Member.—The horizontal member is assumed to have a 
straight top and to be provided at the bottom with haunches sym¬ 
metrically arranged about the center of the beam. 

Two types of haunches will be considered: 
1. Straight haunches. 
2. Parabolic haunches. 
When the length of the parabolic haunches is equal to one-half of the 

span the bottom of the horizontal member assumes the shape of a 
continuous parabola. The two cases are illustrated in Fig. 151, p. 344. 

Denominator for H.—With the above assumptions the integrals 
forming the denominator for H assume following values. 

Let lav = moment of inertia of cross-section of vertical member 
at a height above hinge equal to 0.65A; 

h = theoretical height of vertical member; 

l = span length; 

ml = length of haunch; 

di = minimum depth of beam at center; 

efe = maximum depth of beam at support; 

dx = depth of beam at any point x; 

11 — minimum moment of inertia of beam; 

12 = maximum moment of inertia of beam; 

Ix = moment of inertia at any point x. 

Then 
Vertical Member, 

(314) 
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Horizontal Member: 
Straight haunch,2 as shown in Fig. 151 (a), 

where 

Finally 

where 

h? C'h. I2/, c(3 + 2c) V 

rJL r* - IX ~ or# ”*/'• 

C=^-L 

.(1 

c(3 + 2c) 

j) 

(316) 
(1 + c)2 

Values of 7 may be taken from table on p. 346 for proper values of c. 

* For a beam with symmetrically arranged straight haunches of a length ml at 

rlh 
each side and a portion of constant depth in the middle, the integral | ~-dx should 

Jo Iz 
be divided into three parts namely, 

r'h. rm,/i7 , , , c1 K 
I —dt = I -—ax 4“ I dx -f- I —dx. 

Jo I* Jo Jml J (J—lm) Ix 

Due to symmetry the first and the third parts are equal. To solve the integral it is 

necessary to express y by an equation. 
Iz 

For straight haunch from geometric relation 

Consequently, 
A-J,+^rv-*) “1 5i‘[1 + (5'1)(1~S)]- 

dt 
Substituting this in equation above and making c = -— 1 

01 

Cjdx = tf”*f-1--\T> + f 

u J" M-s)] J“ 
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Parabolic haunch,3 as shown in Fig. 151 (6), 

“ r|{‘ -2m+ir [£+§»+Vcare *“ 
where ml — length of haunch, 

Finally 
h2 rlIt h2 
- [ jdx = -(1 - &m)l.(317) 

where 

* -2 - *[<£+$“»*- v?].. <3is> 

Values of 8 may be taken from table on p. 346 for proper values of c. 
Total Denominator.—To get the total denominator add to the value 

of the integral for vertical member, Equation (314), the value for 
horizontal member either Equation (316) or (318). 

5! Cl 
/Jo z 

rlh 
1 For a beam with symmetrical parabolic haunches the integral I —dx also equals 

Jo lx 
-ml 

2r>+r Jo ix Jim 
dx. 

The variation in the depth of beam in the haunches may be expressed by 

Consequently, 
di 

dx 

dx = di + ~~—7~~~~ x)*• 
ml 

and ~r = 

r'h, r* i , if5 +3c , 3 

!J. Tf -2x r i.liVl* ‘;+ 

Hence, 

2 arc tan y/c jmZ. 

The whole integral therefore is 

5 -j- 3c 3 
H—-p arc tan y/c \ ml + l — 2ml 

(c + 1)» Vc =]■ 

1 -2m + *[£+$ + ttrc*“ }L 



Where y and 6 are given in table on p. 346 for different values of 
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Numerator of H.—The numerator for II for vertical loads is 
h 

h H 
dx. The integral represents the area of the reduced static bend¬ 

ing moment diagram obtained by multiplying the static bending moment 

at all points by the corresponding ratios of 7- and plotting the so- 
lx 

obtained values. This problem can be solved graphically for any 
shape of beam. The numerator may also be obtained from formulas 
below for the two types of haunches described on p. 341. Values are 
given for uniformly distributed and concentrated loads. 

Numerator for H. Uniformly Distributed Loading,4 

_, I\ 1 h , 0 
M.jdx = — -0wl? 

1X lZll 
(321) 

where is a constant from Diagram p. 140 for straight haunches and 
Diagram p. 141 for parabolic haunches. It depends upon the length of 
haunch ml and the ratio of minimum to maximum moment of inertia. 

Horizontal Thrust, Variable Moments of Inertia.—By substituting 
the denominators and numerators previously developed in Formula 
(313), p. 340, final formulas for horizontal thrust are obtained. 

Horizontal Thrust, Uniform Loading, 

H = 

12 \ T1+ 1 ~ ym .w a av* 

wl. Straight Haunch. 

H = 
2 I ill 

12 or I + 1 “ 5m 
-4 -*av^ 

wl. Parabolic Haunch. 

(322) 

(323) 

4 For uniformly distributed loading M, = -x(l 
z 

x). The denominator for H 

h /* l I h \jd J, 
then is — 1 Ms~rdx =77 | x(l — x) ~dx. Since, as explained on page 138, 

hJo lx h 2J0 I* 

Jx(l — x)~dx = #8, the value of the integral becomes —- -—fiwl*, where f) is a con- 
0 I£ o 12/i 

stant from Diagrams, pp. 140 or 141. 
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0 is a constant from Diagrams pp. 140 or 141. 8 and y are con¬ 
stants from the Table that follows. 

Constants y and 8 

CLOSED RECTANGULAR FRAME 

Following loading will be considered for a closed rectangular frame 
shown in Fig. 152, p. 346. 

(а) Uniformly distributed vertical loading on BC. 
(б) Uniformly distributed vertical loading on AD. 
(c) Concentrated horizontal load W at top corner B. 

Let l = span of frame; 
h = height of frame; 

11 = moment of inertia of the top beam BC; 
12 = moment of inertia of the bottom beam AD; 
I = moment of inertia of the columns; 
w = uniformly distributed vertical unit load; 

W = concentrated horizontal load. 

B It 

Fig. 152.—Closed Rectangular Frame. (See p. 346.) 

(a) Uniformly Distributed Vertical Loading on Top Beam BC 
(See Fig. 153 (a), p. 347.) 
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Reactions, 

wl 
Vi = ~. (324) 

Corner Bending Moments, 

1 
= ATn = wl2. . 

MB = Mc = - 
12 /i 

(325) 

(326) 

(327) 

Maximum Positive Bending Moment in BC, 

M max = Ivd2 + Mb.(328) 

(b) Uniformly Distributed Vertical Loading at Bottom Beam AD. 
(See Fig. 153 (6), p. 347.) 

(a) Tap loaded 

Fig. 153.—Closed Rectangular Frame. Uniformly Distributed Vertical Loading. 
(See p. 346.) 

Reactions, 

. . (330) (329) 
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Comer Bending Moments, 

Ma = Md = 
12 

fcil) 

Afs = = 

/. 
I, 

(331) 

. (332) 

Maximum Positive Bending Moment in AD, 

= IwP + Ma. (333) 

(c) Concentrated Horizontal Force W in Comer B. (See Fig. 154, 

p. 349.) 

Reactions, 

v ■ — 4 (334) F2 = W-. 

Comer Bending Moments, 

MA = 

M + l 
I l 

Mb= 

(335) 

■ 

. . . (336) 

^ + t Wh 
r4 • • 

,°Ti"hh + v 

. . . (337) 

Mb. . . . (338) 

ma. . . . (339) 

Closed Frame Resting on the Ground.—The formulas given in the 
preceding paragraphs apply when the frame is supported at the corners. 
If a frame rests directly on the ground the reaction of the soil will be 
distributed over the entire bottom member of the frame. The dis¬ 
tribution will depend upon the type of loading. 
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When the frame is loaded by uniformly distributed loading acting 
downward on the top member the reaction of the soil acting upward 

Fig. 154.—Closed Rectangular Frame. Horizontal Force W ir Corner B. 

. (See p. 348.) 

w 

w 

(a) Uniformly Distributed Vertical (b) Uniformly Distributed Horizontal 
Loading Top and Bottom Loading on Both Sides 

Fig. 155.—Closed Frame. Loading Applied at Opposite Sides. (See p. 348.) 

on the bottom member will also be uniformly distributed. This condi¬ 
tion of loading is shown in Fig. 155(a), p. 349. The bending moments 
at the corners for such condition become 
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Bending Moments at Comers, Top and Bottom Uniformly Loaded: 

Upper corners, 

Mb= Mc = - 

2 + 3— - — — 
7o h 12 

12 
wl2. . (340) 

Lower corners, 

Ms =Md = 

2— + 3— - — 1 
h hh 

12. 

Bending Moment in the Beam at Any Point, 

wZ2. . (341) 

Mx= Ma+ lwx(l - x).(342) 

Maximum Bending Moment in Beam, 

Mm&x = Ma + {wl2.(343) 

This bending moment is positive in the top beam and negative in the 
bottom beam. 

Bending Moments in Columns, 

M b — ATA 
Mv = Ms +-T—^y.(344) 

h 

Closed Frame Loaded by Uniformly Distributed Inside Pressures.— 
The formulas given in the preceding paragraphs may also be used when 
the frame is subjected to inside pressures. In such case the signs of 
the bending moments will be reversed. 

Horizontal Pressures Acting on Both Sides of the Frame.—When 
both vertical sides are loaded by horizontal pressures, and when the 
pressures on both sides are equal and act in opposite directions the 
bending moments in the corners are given by formulas below. This 
condition of loading is shown in Fig. 155, p. 349. 

Let M/a = bending moment at A due to loads on vertical member 
AB, considering it as fixed at both ends; 

MfB= bending moments at B on vertical member AB, con¬ 
sidering it as fixed at both ends. 
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Then 
Bending Moments at the Corners, 

End Shears, 

. (345) 

. (346) 

VA=V.~ 
mb — ma 

(346a) VB = V. + 
Mb - Ma 

(347) 

Bending Moment in Columns at Any Point y Above Point A, 

My = M. + Ma-M°~ —y..(348) 
h 

Bending Moments in Beams, 

In beam AD, 

Mx = Ma (constant). 
In beam BC, 

Mx = Mb (constant). 

Values of MfA and MfBfor Different Types of Loading, 

For uniformly distributed loading, 

MfA = MfB = -£<zph2.(349) 

For triangular loading with zero at top of frame and maximum 

pressure at bottom pi, 

MfA = ^pih2. . . (350) MfB = -^pih2. . . . (351) 

GENERAL INSTRUCTIONS FOR DESIGNING RIGID FRAMES 

Before designing a frame, all dimensions independent of the frame 
design must be selected. Thus the span and the height of the con¬ 
struction must be definitely established and the spacing of frames 

selected. 
Next step is to design the construction which transmits the load to 

the frame. In roof construction the beams supporting the slabs are 
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usually placed longitudinally with the building. Their spacing should 
be made just close enough so as to permit the use of the minimum 
thickness of slab. Such arrangement gives minimum dead load on the 

frame. 
Sometimes the construction supported by the concrete frame is 

made of wood or some other material. This reduces to some extent 

the cost of construction. 
In bridge design the spacing of the frames is much closer than in 

building construction. No floor beams are needed and the slab is 

supported directly on the frames. 
Preliminary Dimensions of Frame.—It is necessary to make assump¬ 

tions as to the preliminary dimensions of the frame to get the moments 
of inertia as well as the dead load of the frame. 

Preliminary dimensions of the frame members may be accepted by 
judgment. After the bending moments are computed, the dimensions 
may be changed sufficiently to take care of the stresses. Any appre¬ 
ciable change in dimensions, however, may affect the ratio of stiffness of 
the various members thereby affecting the bending moments sufficiently 
to require refiguring. This may be avoided by computing the dimen¬ 
sions, using arbitrary coefficients for moments for dead and live load, 
varying from TIT to depending upon conditions. This bending 
moment may be assumed to act at the joint of vertical and horizontal 
members. There the cross-section is usually rectangular, the slab 
being in the tensile zone, reinforced in tension and compression. The 
ratio of tension and compression steel is selected and the depth of the 
frame member computed by Formula (26), p. 222, Vol. I. 

In selecting the dimensions of the vertical member for roof frames, 
it must be borne in mind that the magnitude of the horizontal thrust 
and, therefore, the amount of reduction of the positive bending moment 
depends upon the stiffness of the vertical members. The stiffer the 
vertical member in relation to the horizontal members the smaller are 
the bending moments in the center of the frame. It is often economical 
to make the vertical members especially heavy and thereby reduce the 
dimensions of the horizontal or inclined members. This method 
reduces the dead load of the member producing bending moments, and 
is especially advantageous in long spans. 

The vertical members may be made rectangular in shape. Their 
width is usually same as the width of the flange of the other members. 
Where the wall between the vertical members is of reinforced concrete 
it may be considered as a part of the vortical member under the same 
conditions as used for T-beams. When any part of the wall is con¬ 
sidered as a part of the vertical member it must be built monolithic with 
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the member. Sufficient reinforcement must be used to prevent the 
separation of the wall and vertical member. 

Improved Design of Vertical Members.—The vertical members of 
hinged frames may be made of constant depth for their full height. 
Such design, however, is not economical. 

Referring to the bending moment diagrams for hinged rigid frame it 
is evident that the bending moments at the bottom of the vertical 
members is zero and increases gradually to its maximum at the joint 
between the vertical member and the beam. The reaction is prac¬ 
tically constant. It is obvious that much smaller depth is required 
at the bottom where there is no bending moment than at the top where 
the bending moment is a maximum. 

An economical design of the vertical member may be obtained by 
designing it at the bottom to resist the vertical reaction in the same 
manner as a centrally loaded column. The smallest percentage of steel 
permitted for reinforced columns should be used there. 

At the top the vertical member should be designed for the direct 
stress and bending moment. The section should be considered as 
reinforced for tension and compression. Obviously, much larger depth 
is required there. Usually, both faces of the column are made straight 
so that no additional computations of depth for intermediate sections are 
required unless it is desired to reduce amount of reinforcement in the 
lower parts of the columns. 

A good design is obtained by making the outside face of the vertical 
member vertical and slanting the inside face. In such design the 
actual axis of the vertical member is inclined somewhat inward, which 
affects advantageously the bending moments. 

Moment of Inertia of Vertical Member with Slanting Face.—The 
moments of inertia of the ve rtical member designed as recommended 
above are not constant as assumed in the formulas. This may be taken 
into account as explained on p. 341. Ordinarily it is exact enough to 
use the formulas with constant moments of inertia and accepting for the 
moment of inertia of the columns the value at a height above the hinge 

equal to 0.65ft. The depth of the column there is 0.65— + 0.35^ 

where d is the minimum depth and d\ is maximum depth. 
Horizontal and Inclined Members.—The depth of the horizontal 

and inclined members may be uniform. Since at the quarter points 
the bending moments are very small, the depth of the member there 
may be reduced. 

Such design may not give pleasing results when the member is hori¬ 
zontal. With inclined members, on the other hand, the reduction of 
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the depth at the quarter points may be easily accomplished in the 
manner shown in Fig. 157, opposite p. 366. 

Rounding Up of Comers.—Sharp corners in rigid frames are objec¬ 
tionable. At the joint the construction should be provided either with 
a fillet or, preferably, the corners should be rounded up. The rounding 
up of corners not only reduces the compression stresses but also obviates 
the necessity of making sharp bends in the reinforcement. 

To reduce formwork instead of rounding up the corners, two or three 
straight fillets are often used as shown in Fig. 215, opp. p. 665, Vol. I. 

Reinforcement 

The amount of reinforcement at the critical sections should be com¬ 
puted according to the formulas accepted for reinforced concrete 
construction. 

All members composing a frame are subjected to direct stress and 
bending moments. However, the normal thrust in the horizontal and 
inclined members is usually small in comparison with the bending 
moment. Therefore, the effect of the thrust may be disregarded and 
members may be designed for bending moments only in the same 
manner as ordinary beams and girders. 

The moment diagram should be used as a guide where to bend the 
reinforcement. The main reinforcement of the horizontal or inclined 
member should be made independent of the vertical member reinforce¬ 
ment. No attempt should be made to run bars from the beam into the 
column as such bars would be awkward to handle in the field. The 
bending of the bars should be made as simple as possible. The problem 
of erection should be always kept in mind when designing the reinforce¬ 
ment. Sometimes an excess of steel is more economical than over¬ 
elaborateness in bending of bars. 

The normal thrust in the vertical members is much larger; therefore, 
they should be designed for direct stress and bending. The required 
tension and compression reinforcement may be obtained by formulas 
given in Chapter II. It is not necessary to use the same amount of 
reinforcement near the compression face as used near the tension face. 

The joint between the horizontal and vertical members should be 
particularly well reinforced. All the reinforcement of the joint should 
extend from the column into the beam (and not from the beam into the 

column). A sufficient amount of ties or hoops should be used at the 
joint. Where compression reinforcement is curved it should be held in 
position by ties, else the bars might buckle when stressed. All reinforce- 
ment must be extended beyond the point where it is needed a sufficient 
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distance to develop the bar by bond. When the end of a bar is located 
within a region subjected to tensile stresses it should be provided with 
a hook. 

When a member is bent, as is the case with the inclined members of a 
ridge frame, the bars at the bend must be curved gently and not bent. 
Where the curvature is small, continuous bars may be used, extending 
from one half of the frame to the other. To prevent straightening of the 
bars a sufficient number of stirrups must be used at the curved section. 
When the curvature is large, a part or all the bars must be made up of 
two parts, one for each half of the member. The two parts of the bar 
then intersect at the bend and are lapped there by extending each bar 
in a straight line a sufficient distance beyond the point of intersection to 
develop its strength by bond. Hooks at the ends are also advisable as 
additional precaution. 

Diagonal Tension Reinforcement 

As in other types of reinforced concrete construction, the shearing 
stresses in a frame are accepted as a measure of diagonal tension. 

The shearing stresses in any member are produced by external shears 
acting at right angles to the members. In a rigid frame the external 
forces are vertical and horizontal. After the horizontal thrust and the 
vertical reactions are computed, the external shears at any point can be 
found by statics. 

In a right-angle frame the external horizontal shears produce 
shearing stresses and diagonal tension in vertical members and direct 
compression or tension in horizontal members. The vertical forces and 
reactions, on the other hand, produce shearing stresses and diagonal 
tension in horizontal members and compression in vertical members. 

In a frame with inclined members, the inclined members are at an 
angle to both the horizontal and vertical external shears. In such case 
each external shear must be resolved into a component acting at right 
angles to the inclined member and a component parallel to the inclined 
member. The components at right angle to the member produce 
shearing stresses which may be used as a measure of diagonal tension. 

The components parallel to the member produce direct compression 
or tension in the member and should be combined with the bending 
moments in determining flexual stresses. 

To get maximum shearing stresses, the dead load should be com¬ 
bined with such positions of live load and wind as would give maximum 
values for shearing stresses. 

The maximum shearing stresses in the left column are produced by the 
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dead and live load and by wind pressure acting from the right. The 
opposite is true of the right column. 

The maximum shearing stresses in an inclined member of a frame 
are produced also by dead and live load and by wind acting on the 
opposite side of the member. 

EFFECT OF CRANE LOADS ON A RIGID FRAME 

If a rigid frame is provided with brackets for cranes, the effect of 
the crane loads should be found in the following manner. 

1. Find the capacity of the crane as well as the weight of the machin¬ 
ery. The capacity of the crane should be multiplied by a proper 
factor to allow for impact. 

2. Find the most unfavorable reactions of the crane on the left 
bracket. This is obtained when the crane load is as near the left column 
as possible. Also find the reaction on the right bracket for the same 
loading. 

3. The reaction at the left bracket separate into two parts, one of 
which is equal to the reaction at the right bracket. 

4. Using Formulas (56) to (60), p. 285, for right-angle frames 
(or Formulas (136) to (141), p. 302, for ridge frames), find bending 
moments in the frame due to symmetrically loaded brackets. The 
symmetrical load on each bracket is equal to the reaction on the right 
support. 

5. Using Formulas (44) to (53), p. 302, for right-angle frames 
(or Formulas (125) to (133) for ridge frames), find bending moments 
in the frame due to one-sided load on the left bracket. This load equals 
the left reaction minus the right reaction. 

After the bending moments and shears are computed combine them 
with the bending moments due to dead load, live load and wind load 
so as to get the largest possible bending moment, both positive and 
negative, at the various sections. It is obvious that the maximum 
values at various points will be obtained for different combinations. 
The dead load must be included in all combinations. Any or all other 
loadings may be omitted when necessary to get maximum values. 

EFFECT OF WIND PRESSURE ON FRAMES 

The intensity of wind pressure should depend upon the possibility 
of high winds in the locality. In most cities the intensity of wind load 
is specified. In New York City, for instance, it is required to assume 
a horizontal wind pressure of 30 lb. per sq. ft. Larger values should 
be used in locations subject to tornadoes and hurricanes. 
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The bending moments due to the wind should be computed by 
approximate formulas. This should be combined with the bending 
moment due to dead load or dead and live load to get the most unfavor¬ 
able results. 

Usually for a combination including the wind load, unit stresses 
30 per cent larger are allowed than for live and dead load alone. In 
many cases this increase is sufficient to take care of the wind pressure 
except in such places where the wind load produces bending moments 
of different sign to that due to the dead load, of sufficient magnitude to 
change the sign of the resultant bending moment. Thus it may happen 
that the bending moment due to wind load is negative where the positive 
bending moment due to dead load is small. Then negative bending 
moment must be provided for. 

EFFECT OF EARTH PRESSURE 

In bridge design earth pressure must be considered in design. 
Following conditions should be considered. 

1. Bridge without live load subjected to earth pressure with sur¬ 
charge on one or both sides. 

2. Bridge with live load subjected to earth pressure with surcharge 
on one side. 

The bending moments due to earth pressure are found by Formulas 
(61) to (69), p. 286, and (70) to (79), p. 288. They should be 
combined with the dead and live load in such a manner as to give the 
most unfavorable results. 

Some designers consider earth pressure with surcharge as a fixed 
load in the same sense as the dead load of the frame and include the 
earth pressure in computing the bending moments due to fixed loads. 
Since on both sides of the frame pressure produces negative bending 
moments in the beam, the effect of such assumption is that for the fixed 
loads the negative bending moments due to the dead load are increased 
and the positive bending moment due to dead load are decreased. 

The authors do not approve of this method. 
It is possible for the actual intensity of the earth pressure to be 

materially smaller than that assumed in computations so that the 
actual reduction in positive bending moments would be materially 
smaller than obtained form computations. The positive bending 
moment for fixed load may be larger than obtained by considering the 
earth pressure as fixed. 

The earth pressure should best be considered as a live load and 
included or omitted in combinations same as any other live load. If 
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it is desired to get largest economy, part of the earth pressure may be 
considered as fixed load and part as live load. 

DESIGN OF RIGID FRAME WITH RIDGE-HINGED ENDS 

Example,—Design a Ridge Frame having the following general dimensions: 

Span l = 50 ft. 

Height of columns h = 30 ft. 

Height of roof hi =6 ft. 

Spacing of frames = 20 ft. 

Assumptions as to live load, wind and dead load: 

Live Load: 40 lb. per sq. ft. 

Weight of roofing: 20 lb. per sq. ft. 

Wind Load: 30 lb. per sq. ft., acting horizontally. 

Unit Stresses: 

In flexure: 

fc = 800 lb. per sq. in. 

Jc — 900 lb. per sq. in. at supports 

n - 15 

/, = 16 000 lb. per sq. in. 

In direct compression: 

Sc - 500 lb. per sq. in. 

The unit stresses may be 30 per cent higher when used for a combination of 

dead load, live load and wind. 

Solution.—To get the dead load supported by the frame and the points of appli¬ 

cation of the concentrated loads, it is necessary to decide upon the arrangement of 

the longitudinal beams and slabs forming the roof. In this case the beams will be 

arranged as shown in Fig. 156, p. 359. The thickness of the slab is 3J in. The 

dimensions of the beams are 10 in. by 18 in. These dimensions are sufficient to 

determine the dead load. 

Concrete Dimensions of Frame.1 

Inclined Member.—The inclined member is a T-Beam as shown in Fig. 156, p. 359. 

The assumed dimensions are b = 68 in., b' = 12 in., A = 40 in. and t = 3£ in. 

The moment of inertia of the inclined member is found by Formula (457), p. 

133, using diagram on page 134. 

t b' 12 
7 = 0.0875 and r- = — = 0.18. 
h b 68 

The constant from diagram corresponding to these values is Ci — 0.0258. 

Hence 

11 = 0.0258 X 68 X 40* = 112 400 in.4 

1 To get the moments of inertia and the dead load of the frame, it is necessary 

to assume the concrete dimensions of the frame. These may be assumed by judg¬ 

ment or computed on the basis of approximate formulas for bending moments. 
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Vertical Member.—Vertical Member is a rectangle for which b = 12 in. and 

h = 38 in. 

Moment of Inertia: 

/ = ^2- X 12 X 38* = 54 900 in.4 

Ratio of Rigidity.—Since l = 50 ft. and hi = 6 ft., 8 = \/252 + 6* — 25.7 ft., 

therefore, 

h h = 112 400 X 30 ^ 

/ s “ 54 900 X 25.7 * * 

Loading of Frame.—Both dead and live loads due to the roof are concentrated 

at the intersections of the beams and the frame. Hence the loads are placed at sixth 

points. The weight of the inclined member of the frame is uniformly distributed.* 

C 

Dead Load: 

12 X 40 25.7 
Weight of inclined member equals -—— X 150 X -r— = 515 lb. per lin. ft. 

144 25 
Call this 520 lb. 

* In this example the uniformly distributed weight of the inclined member is 

considered separately so as to show the use of formulas. In practice it would be 

accurate enough to concentrate this weight at points of application of the other loads 

and add it to the dead load of the roof 
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Concentrated loads at intersections of beams and inclined member: 

Slab and Roofing 8.33 X 1.03 X (44 -f 20) = 550 

10 X 14 5 
Beam below Slab-— X 150 = 150 

144 700 lb. per lin. ft. of beam 

Total concentrated load: 

Pd = 700 X (20 — 1) = 13 300 lb. placed at sixth points. 

Vertical JAve Load: 

Unit Load: 40 lb. per sq. ft. 

Since live load is transferred to the frame by beams, it is concentrated and the 

concentrated load is 

Pi = 8.33 X 40 X 20 = 6604 lb., call 6700 lb., placed at sixth points. 

Wind Load: 

Unit Load: 30 lb. per sq. ft. 

p = 30 X 20 = 600 lb. per lin. ft. of frame. 

DEAD LOAD 

Uniformly Distributed Weight of Inclined Member: 

u? = 520 lb. per lin. ft. 

wl = 520 X 50 — 20 000 lb. 

wl* = 26 000 X 50 = 1 300 000 ft.-lb. 

7i h hi 6 
-r - = 2.4, — = - = 0.2. 
Is l 30 

Use Formula (103), p. 295 for horizontal thrust 

II = c!-wl. 
h 

Find constant C7, from Formula (101), p. 296. 

= ± 8 + 5 X 0.2_ 

7 ~ 32 2.4 + 0.2(3 + 0*2) + 3 

Hence 

Horizontal Thrust: 

9 

193.3 
= 0.046. 

H = 0.040 X U X 26 000 = 2000 lb. 

Vertical End Shear: 

VD = 520 X 25 = 13 000 lb. 

Comer Bending Moments: 

Mb = Md = — 2000 X 30 = - 60 000 ft.-lb. 
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Bending moment at loads (Formulas 106 and 107, p. 296), 

at x = \l 

Mi = [\X^(l“J) ""0-046(1+0.067)]i^i2 = (0.0694—0.0491—26000 ft.-lb. 

at x = \l 

Mi = [J X i(l-£)-0.046(1 -f0.133)]wZ2 = (0.111 -0.052)tt;Z2=76 700ft.-lb. 

at ridge 

Mc = [ J- - 0.046 X 1.2]i»Z* = (0.125 - 0.055)it>Z2 = 91 000 ft.-lb. 

Concentrated Dead Load: 

P — 13 300 lb., placed at sixth points, 

PI = 665 000 ft.-lb. 

Horizontal thrust is found from table, p. 299, Case c. 

II = ^5.833 + 3.607^ C,P, 

in which C8 is obtained from Formula 119, 

4 2.4 + 0.2(3 + 0.2) +3 

Horizontal Thrust: (See table, p. 299, Case c.) 

H = f§(5.833 + 3.667 X A) X 0.041P = 0.45 X 13300 - 6000 lb. 

Vertical End Shear: 

VB = 2.5 X 13 300 = 33 250 lb. 

Corner Bending Moments: 

Mb — Md = — Hh = — 6000 X 30 - - 180 000 ft.-lb. 

Bending Moments at Loads: [From formula in table, p. 299.] 

Mi = -&PI - (1 -f 0.0G7)///t = 277 100 - 192 000 - 85 100 ft.-lb. 

M2 = iPl - (1 + 0.133)///t = 443 400 - 203 900 = 239 500 ft.-lb. 

Mc = \Pl - (1 + 0.2)Hh = 498 800 - 216 000 = 282 800 ft.-lb. 

Summary of Dead Load Bending Moments: 

M„ Mi m2 Mc 

Uniform D. L. 60.0 26 0 76 7 91 0 

Concentrated D. L. 180.0 85 1 239.5 282 8 

Total. 240.0 111.1 316.2 373.8 

The bending moments in thousand ft.-lb. or ft. kips. 

These bending moments are plotted in Fig. 157, opposite p. 366. The columns 

in this figure are shown as horizontal lines to make the plotting clearer. 
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LIVE LOAD 

The Live Load is also considered as concentrated at sixth points. 

Both Sides Loaded: 

Pi = 6700 lb. at sixth points. 

The bending moments arc proportionate to the bending moments for concentrated 
6700 

dead load and may be obtained by multiplying the values for dead load by ——:- 
13 300 

= 0.504 

VA = 16 750 lb. 

Hi = 6 000 X 0.504 = 3 020 lb. 

Mb = 180 000 X 0.504 = - 91 000 ft.-lb. 

Mi = 85 100 X 0.504 = 42 900 ft.-lb. 

Mi = 239 500 X 0.504 = 121 000 ft.-lb. 

Mc = 282 800 X 0.504 = 143 000 ft.-lb. 

Left Side Loaded: 

Pi = 6700 lb. at sixth and third points. 

Pi = 3350 lb. at ridge. 

Horizontal thrust for one-sided load is equal to one-half the thrust for full load, 

= 5 X 3020 = 1510 lb. 

Reactions 

VA = (f + $ + i)P = X 6 700 = 11 700 lb. 

Comer Bending Moments: 

Mb = Md = — H\ih = - l 510 X 30 = - 45 300 ft.-lb. 

Bending Moments at Loads: 

Mi = 11 700 X - 1.067 X 45 300 = 97 500 - 48 300 = 49 200 ft.-lb. 

Mi - (11700 X % -6700Xs)50 - 1.133 X 45 300 = 140 000 -51 300 =88 700 ft.-lb. 

Mc- 5 050 X 25 - 1 510 X 36 = 126 250 - 54 360 = 72 000 ft.-lb. 

WIND PRESSURE 

Wind on Left Inclined Member: 

p = 30 X 20 — 600 lb. per lin. ft. 

phi = 600 X 6 - 3 600 lb. 

phi1 = 21600 ft.-lb. 
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Vertical Reactions: 

VA - — 3 600 X ft = — 2 376 lb. VD = + 2 376 lb. 

Horizontal Thrust. (Formulas (144) and (145) p. 303.) 

Right Column 

// = [2 X 2.4 + \ X ^(4 + sV + 6]0.041 X 3 600 = 1 750 lb. 

Left Column 

Hi = 3 600 - 1 750 = 1 850 lb. 

Bending Moments: (Formulas (146) to (149), p. 304.) 

Mb = IIih = 1 850 X 30 = 55 500 ft.-lb. 

Mc = - 1 750 X 36 + 2 376 X 25 = - 63 000 + 59 400 = - 3 600 ft.-lb. 

Md = — 1 750 X 30 = — 52 500 ft.-lb. 

Bending Moments left half of beam, intermediate points 

„.k(l+2^)-VAl-2^W 

Bending Moments in Inclined Member, Wind on Inclined Member 

X 
X 

1 2^5 
hi 

-Fax -2(?)w Mm 

8 33 i 0 067 1 067 50 2 -19 8 0 028 -1.22 38 2 
16 66 i 0 133 1.133 62 9 -39.4 0 111 -4.80 18 7 

.25 0 2 1 2 66.5 -59 4 0 25 -10.8 -3 6 

These bending moments arc plotted in Fig. 157, opposite p. 366. 

Wind from Left on Vertical Member: 

p = 600 lb. per lin. ft. 

ph * 18 000 lb. 

Reactions: (Formula 150, p. 305.) 

RA = - X 18 000 = - 5 400 lb. Re = 5 400 lb. 

Horizontal Thrust: (Formulas (152) and (153), p. 305.) 

Right hinge B 
H = 1(5 X 2.4 + 6 X 0.2 + 12)0.041^ = 0.26 X 18 000 =* 4 700 lb. 

Left hinge A 

Hi = ph - II = 18 000 - 4 700 « 13 300 lb. 
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Bending Moments: (Formulas 151 to 156, p. 305.) 

/ 18 000\ 
Mb = (13300-^— j 30 = 129 000 ft.-lb. 

.2^30 = ( 18 000 
- 4 700 X 1.: 34 200 ft.-lb. 

Md = — 4 700 X 30 = — 141 000 ft.-lb. 

Bending moment at intermediate points in Beam: 

Mi = 129 000 - |(129 000 + 34 200) = 74 600 ft.-lb. 

Mi = 129 000 - ^ (129 000 + 34 200) = 20 200 ft.-lb. 

Moments at intermediate points in Column: 

My = {III - \vv)v- i 

Bending Moments in Column, Wind on Vertical Member 

y ipy 
- .. 

Hi - ipy My Remarks 

6.0 1 8 11 5 69 0 

12.0 3 6 9 7 116 4 

18.0 5 4 7.9 142.2 
22.2 6 65 6 65 147.6 Maximum 

24.0 7.2 6 1 146.4 

30.0 9.0 4.3 129 0 Moment Mjj 

Sum of Moments Due to Wind in Inclined Members 

Wind on Mb Mi m2 

, 

Mc 
. 

MD 

Inclined member. 55.5 38.2 18.7 —3.6 -52 5 

Vertical member. 129 0 74 6 20.2 -34 2 -141 0 

Total. 184.5 112.8 38.9 -37.8 -193 5 

Sum of Bending Moments Due to Wind in Column 

Wind on y=6 ft. y-12 ft. 2/ = 18 ft. y = 22.2 y=24 ft. 

Inclined member. 11.1 22.2 mm mm 44 4 

Vertical member. 69.0 116.4 HI mm 146.4 

Total. 80.1 138.6 175.5 188.7 190.8 
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SUMMARIES OF BENDING MOMENTS 

Bending Moments for Dead and Live Load 

Point B Load 1 Load 2 Point C 

Dead load. -246.3 102 6 303.8 355.9 

Live load*. -91 0 49 2 121.0 143.0 

Total. -337.3 151.8 424 8 498.9 

Bending moments are in ft.-kip (1 kip = 1000 lb.) 

Maximum Negative Bending Moments 

Point B Load 1 Load 2 

D. L. -246.3 102 6 303.3 

L. L.f. -45 5 

Wind. -193 5 -141 6 - 89.7 

Total. -485 3 -39 0 213 6 

Bending moments are in ft.-kip (I kip = 1 000 lb.). 

Maximum Positive Bending Moments 

Point B Load 1 Load 2 Point G 

D. L. -246.3 102 6 303 8 355 9 

L. L.f. 49.2 88 7 143 0 

Wind. 184.5 112 8 38 9 

Total. -62.8 264 6 431.4 498.9 

Bending moments are in kip ft. (1 kip = 1 000 lb.). 

The bending moments are shown in Fig. 157, opposite p. 366. This figure should 

be used to determine the points of bending of the reinforcement. 

* Values of bending moments for load on whole span were used, except at load 1, 

where load at half span gives larger value. 

f Where Bending Moments due to wind are combined with bending moments 

due to live load, it is assumed that the live load acts only upon the half of the frame 

not subjected to wind. It is not conceivable that, with high wind acting on the 
roof, snow would remain on the part of the roof subjected directly to the wind. 
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DIAGONAL TENSION REINFORCEMENT 

Inclined Members.—As explained on page 355, to find the diagonal tension in 

the inclined members, it is necessary to find components at right angles to the inclined 

member, due to the external vertical shears and to the horizontal forces. 

The forces producing maximum shearing stresses are: 

Dead load 

Live load acting on the member 

Wind acting on opposite side of the member under consideration. 

The vertical end shears for dead load and live load are: 

va VD 

Dead load uniform. 13 000 13 000 

concentrated.... . 33 200 33 200 

Live load on one side. 11 700 5 050 

Total. 57 900 lb. 51 250 

To get the reaction at the hinge, it is necessary to add to the end shear the load 

coming directly on the column. 

The external vertical shears at the different sections of the frame are shown in 

Fig. 157, opposite p. 366. 

The wind on the right produces following reactions and thrusts: 

Horizontal Thrusts At A At E 

Wind on inclined portion.... 1 750 lb. 1 850 lb. 

Wind on vertical portion.... 4 700 lb. 13 300 lb. 

Total. 6 550 lb. 15 150 lb. 

Vertical Reactions: 

Wind on inclined portion. =fc 2 376 lb. 

Wind on vertical portion. rb 5 400 lb. 

± 7 776 lb. 

The external shears acting at right angles to the member are obtained by multi¬ 

plying the vertical shears by cos and the horizontal shears by sin <t>, where <t> is the 

angle of inclination of the inclined members. 

I 50 
In this case cos 0 = — = --- = 0.972 

^ 25 2 X 25.7 

• a 2h' sm 9 = — 
L 

12 

50 
0.24. 

Normal shear due to wind: 

Vn - 7.8 X 0.972 = 6.5 X 0.24 - 7.6 - 1.6 = 6.0 kips. 

The external shear normal to the inclined members at various sections are shown 

in Fig. 157. 









FINAL DESIGN OF FRAME 367 

After the external shears are found, the diagonal tension reinforcement is com¬ 

puted in the same manner as for other reinforced concrete structures. This is 

explained on page 251, Vol. 1. 

Vertical Members.—Maximum external shear in vertical members is obtained 

by adding the horizontal thrusts due to dead load, the one-sided live load and the 

wind. The sum of horizontal thrusts is 

9.5 + 6.5 = 16 kips 

It produces shearing stresses and diagonal tension at all sections of the vertical 
member. 

FINAL DESIGN OF FRAME 

After the bending moments and shears are determined, the dimensions of the 

frame are computed by formulas and methods given in Vol. I. The general instruc¬ 

tions regarding the design of rigid frames given on p. 351 will be found of assistance. 

The final design of the frame is shown in Fig. 157, opposite p. 366. 

Inclined Member.—The inclined member is subjected to bending moments 
and to a thrust the magnitude of which is equal to the sum of the components acting 

at right angles to the normal section of the member of the external shear and the 

horizontal thrust. The magnitude of this thrust is small and it may be neglected 

in computing the dimensions or stresses. 

At the center of the span the maximum positive bending moment is Mmax = 

498.9 ft.-kip, as evident from the summary on p. 365. It is produced by the live 

and dead loads. Steel areas are computed for this bending moment. 

At the support the bending moment is M# = 337.3 ft.-kip for the live and dead 

loads and M# = 485.3 ft.-kip for a combination of the dead and live loads with the 

wind pressure. Since the second amount is more than 30 per cent larger than the 

first, it should be used in determining the dimensions and the amount of reinforce¬ 

ment, using, however, unit stresses 30 per cent larger than for the dead and live 

load, alone. 

To accommodate the reinforcement and also to reduce the compression stresses, 

the breadth of the beam has been increased from 12 to 14 inches. Compression 

reinforcement was found necessary. 

Diagonal tension is resisted by the bent bars, and by stirrups in the portion in 

which the bent bars are not effective. At the center of the span stirrups are intro¬ 

duced to prevent the curved bars from straightening under the effect of the tensile 

stresses. 

Vertical Members.—The dimension of the vertical member is smallest at the 

hinge and increases towards the top where it is determined by the maximum bending 

moment and thrust. The vertical member is subjected to a thrust equal to the 

reaction and to bending moments. It should be noted that the effect of the thrust 

is very much smaller in comparison with that of the bending moments, than found 

in arch design. Considerable tensile stresses are developed in the member requiring 

a large amount of tensile reinforcement. 
The member is designed using the formulas and diagrams in Chapter II. The 

maximum bending moment acts at the joint of the vertical and inclined members 

and is of the same magnitude as was used for the inclined member. 
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Shearing stresses are produced at all sections of the vertical member by the 

horizontal thrust. Their magnitude, however, does not exceed the allowable stresses 

for plain concrete. 

No actual hinges are used. To permit rotation of the member the bottom of 

the column was rounded up as shown in Fig. 157. The horizontal thrust is resisted 

by eight f-in. rd. bent bars extending from the foundation into the column, four on 

each side, and arranged so that they can resist shear and direct tension but are incap¬ 

able of resisting bending moments. (See Fig. 157, opposite p. 366.) 

Points of Bending of Reinforcement.—The maximum bending moment diagram 

was used to determine the points of bending of the reinforcement. For this purpose 

the bending moment diagram was plotted and upon it were superimposed the areas 

of reinforcement resisting this bending moment. Since the depth of the member 

decreases toward the end, the effect of the reinforcement is similarly decreased. 

Each bar is therefore represented by two slanting lines. 



CHAPTER IV 

BUILDINGS CONSIDERED AS FRAMES 

When a continuous beam is rigidly connected with columns, as, for 
example, in ordinary reinforced concrete skeleton buildings, the bending 
moments in the beam depend not only upon the number and the length 
of spans composing the beam itself, but also upon the rigidity of the 
columns with which it is connected. Since the formulas for bending 
moments in continuous beams given in Chapter I are not applicable 
to such construction, special formulas are developed in this chapter. 

Difference between Frames and Continuous Beams.—When con¬ 
tinuous beams are independent of the supports, the bending moment 
in one span at the support is transmitted in full to the beam in the next 
span. Conditions of this nature exist in continuous bridges, where the 
beam rests on supports but is not connected with them, and approxi¬ 
mately in constructions where the amount of column reinforcement 
running into the beams is not sufficient to tie the members rigidly 
together. The intermediate beams in a floor construction run¬ 
ning into the girders (and not into the columns) furnish another 
example of continuous beam action. 

The condition is different when beams run into concrete columns of 
considerable rigidity as ordinarily found in building construction. The 
bending moment at the end of one span of the beam cannot be trans¬ 
ferred to the beam in the next span without subjecting the columns 
to bending. Instead of transmitting the bending moment in full to the 
beam in the next span, part of the moment is transferred to the column 
above the beam, part to the column below the beam and the balance 

to the beam. Consequently the effect of loading of one span upon the 
other spans is much smaller than in continuous beams not connected 
with columns. The range of bending moments to which a beam may 
be subjected is considerably smaller in a frame than in a continuous 
beam. 

As far as columns are concerned, the difference between continu¬ 
ous beams and frames is that the columns of continuous beams are 
subjected to vertical loads only, while the columns of frame structures 
are also subjected to vertical loads and in addition to considerable 
bending, particularly due to unbalanced loadings. 

369 
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General Principles of Frame Action.—When in a structure several 
members meet and are rigidly connected, thus forming a rigid joint, the 
bending moment in one member composing the joint must be balanced 
or resisted by the bending moments in the remaining members. For 
equilibrium the algebraic sum of the bending moments acting on all 
members composing the joint must be zero. This means that the sum 
of the bending moments turning in one direction must be equal to the 
sum of bending moments turning in the opposite direction. 

Members composing a joint may be considered as rigidly connected 
when each member at the plane of juncture with the other members is 
capable to resist the bending and shearing stresses to which it may be 
subjected. 

Signs of Bending Moments.—The signs used for making summations 
must be based on a different principle than commonly used in concrete 
design. A bending moment in a member at any section is positive when 
the resisting forces at that section turn the member clockwise, i.e., 
from left to right. A bending moment turning counter-clockwise is 
negative. This method differs from that commonly used in concrete 
construction where a bending moment in a beam is negative when it 
produces tension on the top of the beam or outside face of column, and 
positive when it produces tension at the bottom of the beam or inside 
face of column, irrespective of the direction in which it turns. Thus 
in a beam subjected to downward vertical loading, according to common 
designation, the bending moments at both supports are negative. If 
designated according to the direction of turning explained above, the 
bending moment at the left support is negative while at the right support 
it is positive (see also p. 631). 

Illustration of Frame Action.—The principle of frame action will be 
illustrated by following examples. Clear understanding of the principle 
is essential for intelligent designing of concrete structures. 

First Case.—Assume a beam continuous over three spans but simply 
resting on the top of the four supports (see Fig. 158, p. 371). The 
ends of the beam are held against uplift but they are free to turn. 

To simplify the explanation the middle span only is considered as 
loaded. The bending moments are shown in the figure. Consider the 
condition at the second support marked 2. There are only two members 
at joint 2, i.e., the beam in the center span and the beam in the end span. 
The bending moment produced in the center span by the loads, the 
resisting forces of which in this case turn counter-clockwise, may be called 
minus. It must be resisted by a bending moment in the only other 
member in the joint. The bending moment is therefore transferred in 
full from the center span to the end span. In the end span, the resisting 
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forces at the left end turn clockwise and may be called plus. The 
algebraic sum of the moments at the joint 2 is therefore zero. 

Second Case.—Assume a beam of the same length and the same 
number of spans as before but rigidly connected with the columns by 
sufficient reinforcement (see Fig. 159, p. 372). Let the center span be 
loaded in the same manner as in the previous case. The bending 
moments and deflection for this case are shown in the figure. 

Bending Moments 

Mo toad 
Loaded 

No toad 

2**^—.__ 

Deflection of Beam, 

a a 

Joint, 2 

Fig. 158.—Continuous Beam. Condition at Support. (See p. 370.) 

Consider the joint at the interior column marked 2. It consists 
of three members, namely, one column and two beams. At the joint 2 
the loads produce in the center span a bending moment M2 which turns 
clockwise and is negative. Since at this joint three members are rigidly 
connected no member can turn without turning the other two members. 
All three members, therefore, will be subjected to bending moments. 

The bending moment M2 is not transferred in full to the beam on 
the other side of the support as in a continuous beam but only in part. 
Therefore Mi is smaller than M2. The ratio between Mi and M2 is 
called the ratio of transference. 
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For equilibrium the algebraic sum of all the moments at the joint 
must equal zero; therefore, the sum of the resisting bending moments in 
the column M3 and in the end span Mi must be equal to the bending 

Joint 2 

Fig. 159.—One Story Frame. (See p. 371.) 

moment M3 produced by the loads at the support in the middle span. 
Or Mi + M3 + 3/3 = 0 and M2 = — Mi — M3. The bending mo¬ 
ments in the column and the end beam are of opposite signs to the 
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bending moment in the center span; therefore they turn clockwise and 
are positive. 

Since the joint 2 is rigid, the beam in both spans has the same tangent 
to the deflection curve 
and the angle with the 
vertical of the tangent 
to the deflection curve 
for the column is equal to 
the angle with the hori¬ 
zontal of the tangent 
for the beam. 

Third Case.—Assume 
a beam of the same Bending Moments 

length and number of 
spans as in the previous 
two cases but rigidly con¬ 
nected with the columns 
above and below the 
beam (sec Fig. 160, p. 
373). Let the center 
span be loaded for which 
case the bending mo¬ 
ments are as shown in 
the figure. 

Consider the joint 
2 at the interior column. 
It consists of four mem¬ 
bers, namely, two col¬ 
umns and two beams. 
The bending moment Mz 
in the middle span pro¬ 

duced by the loads turns 
counter-clockwise as in 
the previous cases. This 
moment will be resisted 
by bending moments 
in the other three 
members. The algebraic 
sum of the bending Fig. 160—Two-story Frame. (See p. 373.) 
moments again is zero or 
Afi + M2 + Mz + Mt = 0, therefore, Mz = — Mi — M2 — M±. 
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The bending moments in the three resisting members turn in oppo¬ 
site direction to the moment in the center span. 

Effect of Rigidity of Restraining Members on Bending Moments.— 
The restraint exerted by one member upon another member composing 
a joint depends upon the relative rigidity of the two members. The 

rigidity of a member is expressed by the ratio - where I is the moment 
L 

of inertia of the member and l its length (span in case of a beam and 
height in case of column). In the above ratio both items are in first 
power. The rigidity of a member is therefore directly proportional 
to its moment of inertia and inversely proportional to its length. This 
means that the rigidity of a member increases with the increase of its 
moment of inertia and decreases with the increase of its length. 

The magnitude of the bending moment produced by the load at 
the support of the loaded member increases with the increase of the 

ratio of rigidity of the restraining member y in proportion to the 

rigidity of the loaded member, 
/ 

f 
One extreme condition is ~ -s- - = 0 

h l 

when no restraint exists. Another extreme when the ratio y 
h 

lj_ih 
l 11 

is very large in which case the member is rigidly fixed. 
Effect of End Condition of Restraining Member.—The restraining 

effect of one member upon the other members forming a joint depends 
also upon the condition existing on the other end of the restraining 
member. The end may be either free to turn, partially restrained or 
rigidly fixed. The restraining effect is largest for the rigidly fixed 
condition of the end and smallest for free end. For partially restrained 
end the effect is intermediate between the two extreme conditions. 
As a general rule the restraining effect of a fixed member is one-third 

larger than the restraining effect of a member of the same rigidity but 
L 

with the end free to turn. 
A member may be considered as free to turn when it is provided with 

a hinge (conditions very seldom found in practice) or when the end 
simply rests upon a support. Also the end of a column provided with 
a small footing may be considered as free to turn. 

A member may be considered as fixed when it is built monolithic 

with a member of comparatively large rigidity. This condition is 

approached when the ratio of y -f- - = 10. 
li l 

The characteristic of this 
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condition is that irrespective of the loading the angle between the 
tangent to the elastic curve and the original axis of the member is zero. 

The end of a member may be considered as partly restrained when 
it runs into another joint composed of several members. This condition 
is most often found in concrete skeleton construction. A column with 
a footing of considerable size may also be considered as partly restrained 

at its end. 
Effect of the Number of Restraining Members upon Bending 

Moments.—The restraint upon a loaded member by other members 
in a joint increases with the number of restraining members. This 
can be readily understood if it is considered that, since each member, 
acting separately, restrains the loaded member in proportion of their 
ratios of rigidity, the effect of all members acting together must be 
equal to the sum of all individual effects. 

METHOD OF DETERMINING MOMENTS IN BUILDING FRAME 

The determination of exact bending moments in a structure con¬ 
sisting of a number of spans and several stories high is a complicated 
problem. A simplification, however, accurate enough for all practical 
purposes may be obtained by using, instead of the whole frame, simpler 
substitute frames. 

Substitute Frames.—Consider a frame shown in Fig. 161 represent¬ 
ing a vertical section of a building six stories high and five panels wide. 
Suppose that it is desired to compute bending moments in any beam 
or column, for instance ab and columns ac and ad. The bending 
moments in these members are influenced to a larger or smaller degree 
by the condition of loading of all spans. Actual computations, however, 
show that the members in question arc affected mainly by the condition 
of loading of the portion of the frame shown by heavy lines and to a 
smaller extent by the portions of the frame indicated by dash lines. 
The effect of the balance of the frame is negligible. Therefore, instead 
of making computations for the complete structure it is permissible to 
accept the simpler frames as a substitute frame, for which it is possible 
to develop workable formulas. 

Types of Substitute Structures.—It will be found that for ordinary 
conditions the four types of substitute structures treated in this chapter 
will be sufficient. 

Fig. 163 shows a three-span structure with two-story columns. 
Fig. 167 shows a substitute frame for wall columns. 
Fig. 168 shows a substitute frame for a building two panels wide. 
Fig. 169 shows a substitute frame for a building one panel wide. 
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BASIS OF FORMULAS AND DEGREE OF ACCURACY 

The formulas for the building frames are based on the elastic theory 
and were worked out by means of the slope deflection method given 
on p. 631. To simplify the formulas it was assumed that in no case 
does any horizontal or vertical movement of any of the joints take place. 
This assumption is not correct in all cases. It introduces some inac¬ 
curacies into the formulas, the degree of which varies with conditions. 

For symmetrical and symmetrically loaded frames the formulas give 
exact results. For unsymmetrical frames the error increases with the 
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Fia. 161.—Complete Building Frame and Substitute Frames. (See p. 375.) 

degree of variation from the symmetrical condition. In no case, how¬ 
ever, is the error appreciable. The formulas may be used with con¬ 
fidence for the purposes for which they are intended. 

ABSOLUTE MAXIMUM BENDING MOMENTS 

The bending moments in the beams are usually affected mainly by 
the condition of loading of the members on the same level with the 
beam under consideration. The maximum bending moments, therefore, 
found for the beam, considering it as a center span of a substitute 
frame (or end span in case of a wall beam), may be considered as the 
maximum bending moment to be used in design. Thus the substitute 
frame shown by heavy lines in Fig. 161, p. 376 gives maximum bending 
moments for span ab. 

The bending moments in a column obtained from the formulas for 
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substitute frames are not the absolute maximum values possible in a 
building as a whole. Each tier of columns may be a lower column in one 
substitute frame, when the frame is selected in one story, and also 
an upper column in another substitute frame, when the frame is placed 
in the story below. The bending moments produced in the columns 
in the two cases are of the same sign. When the floor just below a tier 
of columns and the floor just above the tier of columns are loaded 
simultaneously the bending moments in the columns are equal to the 
sum of bending moments produced by the two substitute frame condi- 

Heavif lines signify upper substitute frame 

Heavy dash lines signify lower substitute frame 

Fig. 162.—Substitute Frames for Absolute Maximum Bending Moment in Column. 

(See p. 877.) 

tions. Other floors also affect the bending moments in the columns 
under consideration, but the effect never exceeds more than 5 per cent 

of the total bending moment. 
From the above explanation follows a rule that for the absolute 

maximum bending moment in any column may be taken the sum of 
bending moments produced in that column by considering it as a part 
of two substitute frames placed so that the column forms first the 
upper column of one frame and then the lower column of the other 
frame. The two frames are shown in Fig. 162, p. 377. The two sub¬ 
stitute frames, one of which is shown by heavy lines and the other by 
heavy dash lines, give maximum bending moment in the column ah 
It should be noted that it is necessary to compute bending moments 
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in the columns not only at the joints but also at the ends. This may 
be accomplished by using Formulas 13 to 15, p. 383. 

If it is not desirable to compute bending moments in two frames, 
sufficiently accurate results may be obtained by multiplying the maxi¬ 
mum bending moment in the column as obtained from one frame by 1.43. 

USE OF THE BUILDING FRAME FORMULAS 

The formulas given in this chapter may be used for determining 
bending moments in beams and columns in any multistory structure 
with equal and unequal span lengths. 

Following procedure may be followed in design: 
Determine the spacing of the beams and columns. Design the slab. 

Determine the dimensions of the beams on the basis of approximate 
formulas for bending moments and shears, such as recommended in 
Vol. I, p. 279. Compute the column loads and using them as a basis 
determine the column sizes. Where the difference in spans is great the 
accepted dimensions should be larger than required by vertical loads to 
take care of the bending moments. 

Compute the moments of inertia of the beams and columns, using 
formulas given on p. 133. The diagram on p. 134 may also be used to 
advantage. 

Select the substitute frame in which the span of the beam for 
which bending moments are desired forms the center span. This sub¬ 
stitute frame may be moved from story to story and in this manner 
bending moments determined in the various floors. Usually similar 
beams in all floors are made of the same dimensions and provided with 
the same amount of steel. Therefore one substitute frame may 
be sufficient when placed in a position in the structure for which the 
bending moments are the largest. To get bending moments in the wall 
columns and wall beams, substitute frames described on p. 390 should 
be used. When the spans of beams are not equal, substitute frames 
may have to be used in which the largest span forms the center span 
and also frames in which the smallest span forms the center span. 
Several trial computations may have to be made to get the frame for 
which the bending moments are maximum. 

, ,, . . ,.x .. I\h I3I2 I4I2 I5I2 Ish I7I2 
Compute the rigidity ratios —, —, —, yr> TT’ TT‘ 

2 2H 12I3 2 2^2 2 2^1 2 2^2 22/II 

Determine the end ratios ci, C3, C4, C5, C6, and C7 according to the 
existing end conditions in the substitute frame. Where the ends of the 
substitute frame are restrained by members of the structure not forming 



USE OF THE BUILDING FRAME FORMULAS 379 

a part of the frame, the values of c may be computed by Formula (30), 
p. 640. 

Compute Frame Constants A and B, or A, B and 0. 
Find the bending moments in the beams due to dead load and the 

maximum bending moments due to the most unfavorable position of 
the live load. Add the bending moments for dead load and live load. 
For the sum of the bending moments compute the amount of reinforce¬ 
ment required by the positive and negative bending moments. Also 
check the compression stresses. 

In columns the absolute maximum bending moments should be 
obtained as explained on p. 377. To get the stresses the maximum 
bending moments should be combined with the column loads, using 
formulas given in Chapter II. 

To get maximum compression stresses in columns combine maximum 
vertical loads with maximum bending moments. 

To get maximum tensile stresses in columns combine the maximum 
bending moments with the minimum vertical loads. Minimum ver¬ 
tical loads are obtained when the structure is considered as unloaded 
except in the panels producing the bending moments. 

The magnitude of the bending moments in beams and columns 
respectively, depends upon the relative rigidity of the beams and col¬ 
umns. Usually the beams are made of the same dimensions in all 
floors (except when the intensity of the loading changes materially). 
The dimensions of columns on the other hand are smallest at the top 
of the building and increase with the increase of the load upon them. 
In the upper floors, therefore, the ratio of the rigidity of the beam to 
that of the column is larger than in the lower floors. By inspecting 
the formulas it is found that for equal rigidity of the beams the positive 
bending moments in the beams increase with the decrease of the rigidity 
of the columns. The negative bending moments in beams, on the other 
hand, increase with the increase of the rigidity of the columns. There¬ 
fore in a building the positive bending moments are largest in the 
upper stories where the columns are least rigid, and the negative bending 
moments are maximum in the lower stories where the columns arc most 
rigid. 

As far as columns are concerned the bending moments in the columns 
increase with their rigidity; therefore they are largest in the lower 
stories. The effect of the bending moments in columns, however, is 
much larger in the upper floors, because there the dimensions of the 
columns are the smallest and also the vertical load much smaller than 
in the lower stories. The possibility of tensile stresses in columns is also 
much larger in upper stories than in lower stories. 
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FRAME LOADED BY SYMMETRICALLY ARRANGED CONCENTRATED 
LOADS 

If the frame is loaded by symmetrically arranged concentrated loads 
the formulas in this chapter may be used by substituting in them 
for -fowl2 the bending moment Mf produced at the support by the 
concentrated loading when the beam is considered as fixed at both 

supports. 
For special cases the bending moments Mf are given in the table 

on page 28. 

TWO-STORY FRAME OF THREE SPANS. IRREGULAR SPACING OF 
COLUMNS 

Three-span, two-story substitute structure may be used for deter¬ 
mining bending moments in beams and columns for irregular spacing of 
columns. The formulas are based on a substitute structure shown in 

Fig. 163.—Two-Story Frame of Three Spans. (See p. 380.) 

Fig. 163. The condition of restraint of the ends of the members is 
expressed by the ratio c. 

In investigating maximum bending moments in a building such 
substitute structure should be selected for which the largest spans is in 
the center. Maximum bending moments in columns are found as 
explained on p. 377. 

Formulas are given first for a two-story frame consisting of three 
spans of unequal lengths, as shown in Fig. 163, p. 380. For equal 
spans or equal end spans the formulas are much simpler as given in 
subsequent pages. 
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Four conditions of loading are considered: 

Case a.—All spans loaded. Condition for dead load. 
Case 6.—Center span loaded. Condition for maximum positive bend¬ 

ing moment in center span. 
Case c.-*Two adjoining spans loaded. Condition for maximum nega¬ 

tive bending moment at support. 
Case d.—End spans loaded. Condition for maximum positive bend¬ 

ing moment in end spans and maximum negative bending moment in 
center spans. 

To determine the bending moments for dead loads the first con-' 
dition of loading should be accepted. To determine the maximum 
negative bending moment at the support in the beams the third condi¬ 
tion of loading, for which two adjoining spans are loaded, should be 
adopted. The maximum bending moment in the columns should be 
determined from the second condition of loading with middle span 
loaded. The bending moments due to live load and dead load should 
be combined. 

Let Ily h, h = 
Cl, cs = 

74 and h = 
C4, Cg 

h and 77 = 
C5, C7 = 

lit fa> fa = 
hi = 

A and B = 

moments of inertia of the three spans; 
constants depending upon end conditions of first 

and third span; 
moments of inertia of lower columns; 
constants depending upon end conditions of lower 

columns; 
moments of inertia of upper columns; 
constants depending upon end conditions of upper 

columns; 
span lengths of the beam; 
height of lower columns; 
height of upper columns; 
constants, Formulas (1) and (2). 

Constants for All Cases. 

Members at left joint, 

A = (6 - CX)j y + (6 - C4)y y- + (6 - cjy y- + 4. (1) 
12 n i2 hi 12 fl2 

Members at right joint, 

B = (6 - ^+(6- Co£ y- + (6 - c7)£ y-+ 4, (2) 
12 12 fl\ 12 fl2 

where c = 2 for members fixed at ends, 
c = 3 for members hinged at ends. 
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For restrained ends use for c intermediate values between fixed and 
hinged or compute by Formula (30), p. 640. 

Signs of Bending Moments.—The bending moments are negative 
for downward loads: in a beam, when tension is produced at its 
upper face; in end columns, when tension is produced at their outside 
faces; in a center column (for frames with three columns), when ten¬ 
sion is produced at the left face. 

Case a. All Spans Loaded.—Using constants for A and B given 

on p. 381 the formulas for bending moments are 

Negative Bending Moments in Beams: 

Left end span, 

Ml " - U1 - (6 - n)hli 

12 12 Zi AB — 4 

. ® 

Center span, 

„ ci (B - 1) , , 1 (B + 2)(A - 4) ,, 

Mi ~ ~ t AB=7*' - 12 AB - 4 Wh 

+ T2^T±^. (4) 

„ , n B- 4 , , 1 (A + 2)(B - 4) , . 

Ms -+ 12 JF=4 U'h ~ 12 AB - 4 Wh 

. (5> 
Right end span, 

M7 = —(6 - c3)—  --—wh2 
7 12v ’h h AB- 4 1 

-H(6 

n/3 fc A + 2 

'I2 l3AB- 4 
wh2 

(6) 
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Bending Moments in Column: 

Left column, 

M2 = (6-e6)~(- 
c 1 

+ 

h h2\ 

1 B + 2 

12 AB - i 

24 AB — 4 

™fc2 - 

W?l2 

12 AB — 4 
^32^. • • • 

I± h2 6 C4 
jjf4 = _ --M2. 

15 /li 0 — C5 

Right column, 

Me= (6 — ci)— — 
1 

12 h2\ 

, 1 A+2 .2 C3 
+ — ——;wfe2 - 

12 AB — 4 

A 

wl{z 

12 AB - 4 

,, 15 h2 6 C5 
Afs = - t T- --Aff). 

17 hi 6 — C7 

24 AL£ - 4 
wlz^J. . . . 

(7) 

(8) 

(9) 

Bending Moments at Ends of Beams and Columns.—The bending 
moments at ends of beams and columns depend upon the degree of 
restraint. They may be found from the following formulas: 

Negative Bending Moment at End of Beams, 

Mo=0 for hinged end.(10) 

Mo = —\Mi — Iwli2 for fixed end.(11) 

Mo — ——-— Mi — —~—wl\2 for restrained end, (12) 
6 — Ci 2(6 — ci) 

where c is between 2 and 3 or may be computed by Formula (30), p. 640. 
If the span is not loaded, wl\2 in the formulas is zero. 

To get bending moment at other end, substitute in above formulas 
M7 for Mi and h for h and C3 for ci. 

The bending moments at end of columns vary from zero for hinged 
ends to one-third of the bending moments at the joints for fixed ends, 
and are of opposite signs. 

Negative Bending Moment at Ends of Columns: 

For hinged ends, 

Mo = 0. (13) 
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For fixed ends, 

Mo = -\M2.(14) 

For restrained ends, 

Mo = -2(3-~-c)-M2,.(15) 
6 — c 

where c is a constant of a value between 2 and 3. 

The formulas just given are for the end of the left top columns. 
By substituting for M2 the bending hioments M4, Mo and Mg, re¬ 
spectively, the bending moments at the ends of the other columns 
may be found. 

Positive Bending Moments in Beams.—For known negative bending 
moments at supports, the maximum positive bending moment for this 
loading may be found graphically by plotting the negative bending 
moments above the axis and then drawing a parabola (see p. 14). 
It may also be found using table on p. 176. 

Case b. Center Span Loaded.—(See Fig. 164, p. 384.) 
This condition of loading gives maximum positive bending moment 

in the center span. 

The bending moments in the columns are also maximum for this 
loading. 

Using the constants for A and B as given by Formulas (1) and 
(2), 381, the bending moments are 
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Bending Moments in Beams at Supports: 

Left end span, 

-mj 1 /l h B + 2 
M, —. 

Center span, 

M 1 (g + ~ 4> 72 T ft 
12 A/i — 4 Wli ’ Cft. 

Ms = 
1 (A + 2)(B-4) 

wZa2, right. (18) 

Right end span, 

hh A + 2 

hAB 

Maximum Bending Moments in Columns: 

Left column, 

M2 = — cs)~ “ -777*—upper column. (19) 
1J lz hi An — ^ 

14 8 — C4 ---j| 
Io hi 6 ~ C5 

lower eolumn. (20) 

Right column, 

ikjt 1 /p /7 h A + 2 
^g = ~~ ci)t T ~aTi-~AW^r' 12 12 AR — 4 

L5 fe 6 - C5 
m8 = -T~ --Mo. 

17 h\ 6 — c7 

Positive Bendwig Moment.—After finding 3/3 and AT5 the maximum 
positive bending moment may be obtained from table on p. 176. 

Case c. Two Adjoining Spans Loaded. (See Fig. 165, p. 386.)— 

This condition of loading gives maximum negative bending moments in 
the center span at the left column. 

Negative Bending Moments at Supports in Beams: 

End span, 

1 shh B + 2 
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Center span, 

M3=-CJ JLZ±wh2 _ 
3 GAB-4 1 

1 (7? + 2) (A - 4) 

12 -AB — 4 
wh2. . (24) 

„ c, B - 4 , , 1 (A + 2)(B -4) ,, 

"■ - 12 AB=7*‘ - a AB- 4 * • 
(25) 

Loading for Max, Mi and Mt 

Fig. 165.—Two Adjoining Spans Loaded. (See p. 385.) 

Case d. End Spands Loaded. (See Fig. 160, p. 386.) 

Fig. 166.—End Spans Loaded. (See p, 386.) 

This condition of loading gives maximum positive bending 
moments in the end spans. also maximum bending moments in 
columns. 
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Negative Bending Moments at Supports in Beams: 
End span, 

Mi =- - (6 - ci) 
Ijh_B 

hii AB - 4. 
wii2 

Center span 

M3 = 
Cl B - 1 , o . C3 A - 4 

;^i2 + — —--wls2. 
6 AB — 4 12 AB - 4 

,, ci B - 4 c3 A - 1 
M5 = — —-- - —-:u42. 

Right End Span 
12 AB - 4 

M7 = ^(6 - cb/8*2 
/„/„ A R 

GAB - 4 

-wii2 

. . (24) 

• • (25) 

• • (26) 

Bending Moments in Columns: 
Left Column 

" . 

„, h hi 6 — C2,. 
M*= _ r r?—Mz. 13 hi 6 — C3 

Right Column 

. 

(27) 

(28 

(29. 

(30) 

7,5^2 6 — c,5 , . 
Ms = - 7-—Ms.(31) 

17/11 6 — C7 

Use results either from Formulas (19) and (20) or (28) and (29), 

which ever give larger results. 

Bending moments at the ends of beams and columns may be 
found by Formulas (10) to (15) p. 383. 
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TWO-STORY FRAME. ALL SPANS EQUAL 

Use notation on p. 381 except that c\ applies to both end spans, c2 
to both lower columns and C3 to both upper columns. 

For equal spans h = I2 = h = l also h = 12 = Is = 7. 
The column sizes in each story are also equal so that 1\ = 7e = h, 

I5 = I7 = Iu The ratios of rigidity become 

/1 _ 1 73/2 _ 1 14I2 _ I oh _ h}_ i ^5 ?2 __ I7I2 _ Iu l 
T2h~ 3 TzTr 3 T2hl~~ hh[~ Thx and I2h2 ” 72A2 “ Th2 

The frame constants for both joints are equal so that A = B. 
Value of Frame Constant, 

A = (6 — ci) + (6 — c2)y j-+ (6 — C3>“ “ h 4. 

Case a. Center Span Loaded. 

Bending Moments in Beams at Supports: 

End span, 

Center span, 

(32) 

16 ci ('33) 
1 12 A - 2. 

1 A - 4 „ 

M» — I2A-2“P- ' ' ' • 
.... (34) 

Bending Moments in Columns: 

Upper columns, 

1 Iu l 6 —C3 79 
M2 = - 7 — -r—-1wl2. 

12 7 h2 A - 2 

Lower columns, 

,, 11 h2 6 — C2 
^4 = -7r“-M2. 

Iuhi 6 — C3 

Case b. End Span Loaded. 

Bending Moments in Beams at Supports: 

Loaded span, 

(6 — ci)A 
A2 - 4 

(35) 

(36) 

(37) 
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Center span, 

Ms“-r^4rf- 

Unloaded span, 
Cl (6 - Cl) 

- 5 ' 

(38) 

(39) 

(40) 

Bending Moments in Columns: 

Left column, 

,, It h2 6 — c2 
M4 = --M2. 

iu All 6 — C3 

Right column, 
, _ 7tt / Ci 1 A,6_-(6 

M, “ - 77* S'J,«. /u/?l () ~ C3 

(41) 

(42) 

(43) 

(44) 

Maximum Bending Moments.—Maximum bending moments are 
produced by the following loading conditions: 

Maximum negative bending moments in beams when two adjoining 
spans arc loaded. 

Maximum positive bending moments in the end beams when both 
end spans are loaded. 

Maximum positive bending moment in the center beam when the 

center span is loaded. 
Maximum bending moments in columns when both end spans are 

loaded. 
The formulas below are obtained by proper combination of the 

formulas given in the previous paragraphs for end span loaded and 
center span loaded. 

Maximum Negative Bending Moments in Beams for Live Loadf 

Mi = — 

a/3 = - 

JL_ 

12 - 2 2L A2 — 4jJ 

X 

„ A - 1 , A - 

5D* • • (45) 
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Maximum Positive Bending Moment in Center Beam for Live Load, 

M--ii1-5 ~ x^)wl2.<«> 

Maximum Bending Moment in Column for Live Load, 

Cl 

5»-4' 
(47) 

3/4 
7iA2 6 — C21/r 
_-7j/2 

7tt Ai 6 — C3 
(48) 

The above formulas give the maximum bending moments in the 
column for the substitute frame. To get the actual maximum bending 
moments in the column for the structure the effect of other substitute 
frames must be considered as explained on p. 377. The actual maximum 
bending moment in the columns of the structure is about 43 per cent 
larger than obtained from the last two formulas. 

BENDING MOMENTS IN WALL COLUMNS AND END BEAMS 

Wall columns are always subjected to bending not only due to the 
live load but also due to the dead load. It is of great importance for 
the safety of the structure that these bending moments be properly 
provided for. In flat slab construction this necessity has been generally 
recognized and most modern flat slab specifications include a require¬ 
ment for bending moments in wall columns. In beam and girder 
designs the bending moments in columns arc often neglected with great 
detriment to the structure. 

A comparatively simple method of finding the bending moments in 
the wall columns of a structure is by the use of the substitute frames of 
a type shown in Fig. 167, p. 391. This consists of three spans and three 
two-story columns, one of which is the wall column. 

Notation. 

Let Zi, Z2, Z3 = 
hi, h2 = 

7i, 72,13 — 

C3 = 
74, 76, 7g = 

C4, Co, Cs = 

7g, I7,19 = 

c&, C7, eg = 
A, B, C, D = 

length of the three spans; 
length of lower and upper columns; 
moments of inertia of beams in the three spans; 
constant at the end of third span; 
moments of inertia of lower columns; 
constants at ends of lower columns; 
moments of inertia of upper columns; 
constants at ends of upper columns; 
frame constants from Formula (49). 



BENDING MOMENTS IN WALL COLUMNS AND END BEAMS 391 

Right End Span Loaded 

Fia. 167.—Substitute Frame for Wall Columns. (See p. 390.) 
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Frame Constants, 

A = (6 - c4)~ + (6 - c,)j~ + 4 
l\h\ hh2 

/ c — ——\ 

B - <6 -+<6 - + 

c - <6 - ^+<6 - 

^ ,B Jeh , , ,,/Wi , A — l\ o _ (6 _ <*)— + (6 - „)— + 4^— + —; 

(49) 

where C3, C\> c5, c6, C7, eg = 2 for members with fixed ends, 

and = 3 for members with hinged ends. 

For restrained ends use intermediate values for c or compute it from 
Formula (30), p. 640. 

Formulas are given separately for dead load and for live load. In 
the formulas for dead load all spans are assumed to be loaded. The 
formulas for live load are based upon the loading giving the maximum 
values at the section under consideration. 

Signs of Bending Moments.—The bending moments are negative 
for downward loads; in beams, when they produce tension at the top; 
in left end and center columns, when the tension is produced at their 
left faces. 

Bending Moments for Loads Placed in Separate Spans.—Figure 
167, p. 391, illustrates bending moments in the frame produced when 
each one of the three spans is loaded separately. Formulas for bend¬ 
ing moments for each of the three conditions were developed separately 
and then combined so as to get the most unfavorable results. The 
formulas for separate loadings are not given. If desired they may be 
obtained from the formulas for dead load by retaining only the values 
applying to the loaded span and omitting the values for the unloaded 
spans. Thus for a condition when the left end span only is loaded 
formula (50) changes to 

Ms =- 
12 

(A - 4Kg + 2) 

AB — 4 
wli2. The other two values in the formula 

containing h and h are omitted. 
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Maximum Bending Moments for Dead Load. 

Bending Moment in Beams at Supports Due to Dead Load: 

Wall span, at supports, 

„ 1 (A - 4)(B + 2) ,, , 1 

"* " - 5 - AB- 4 ’* + 6 

(A - 4)1 C + 2 

i CD-4 

W 
T7Twl2 

£3 Ijh A — 4 

6 ni2, JL. 
-*wh2. 

l(A + 2)(B-4) 1(A 1)(C+2J,k 

"•“-is as-4-s.1'.:.. ./«vi 

' 4 /i/2 

A - 1 

Center span, at supports, 

„ i«,(A+2)l°-i).. . 
M6 = --y---—toll'8-— 

3 life C(AB—4) 12 

D-4^ 
, C3 /2Z1 Ilk 7 (> 

CD—41~ 

i(A+2)(c_4m, ,^/lD+2^.. 

"■ "S' *-5 CD_4/raf * 
\llk/ 

D—— 
C;t I2I1 1ife 

CD-4 
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Maximum Positive Bending Moments Due to Dead Load.—Maxi¬ 

mum positive bending moments, due to the dead load, are obtained 
from table on p. 176, using the negative bending moments obtained 
from the above formulas. 

Bending Moments in Columns Due to Dead Load, 

Wall columns,1 

M2 = - (6 - c5)~ .(54) 
hh.2 A — 4 

Mx =- 

6 — C4 hho 

6 — C5 Ishi 
Mo 

M5- 

Second column,9 

(6—C7) I ih± 

12 hh 

A+2 
C+2 

AB—4 
wli2+- 

Ijh 
hh 

«~C0 
rwh2— 

C3 
hh 

hh 

CD -40 
rwh2 

(55) 

(56) 

M7 = — 
6 — ce IcJio 
--t~tm 
() C7 I71I1 

5- (57) 

Maximum Bending Moments for Live Loads.—To get maximum 
bending moments at any section due to live load, only the spans pro¬ 
ducing bending moments of the desired sign are considered as loaded. 
The following formulas are for maximum bending moments. It 
should be noted that all the fractions in these formulas are the same 
as used in formulas for dead load for the corresponding spans. 

Maximum Negative Bending Moments in Beams for Live Loads, 

Wall span, 

4-4 „ 1 (4-4)08 + 2) 79 cshh 

m,= -5 Au-~i 5 hi 

12 AB - 4 3 

Center span, 

4“-401 
wl32. (58) 

CD 
\h hJ 

(59) 

1 Positive bending moment produces tension at the right face of the column and 
negative bending moment produces tension at the left face of the column. 
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i »,(A+2)(c-l) 
Zhh C(Alf—4) Wl 12 CD_Jhl1\ 1 

\hh/ 

>h2. (60) 

5 

Z>~ — 
7 9 /lfe , „ 

~ ft 77-7TT\2w1* • (61) 6WaM£!) 
Maximum Positive Bending Moments for Live Loads.—First find 

negative bending moments at the supports from formulas below. The 
maximum positive bending moments corresponding to these bending 
moments at the supports may then be taken from table on p. 176. 

Negative Bending Moments Used to Determine Maximum Positive 
Bending Moment: 

Wall span, 

1 (A-4)0B+2) 79 C3I2I1 A-4 

An-r'^1' 6 hh r TmvT*-- <62) 

,, 1 (A+2)(B—4) C3/2Z1 ^1 — 1 

*‘—15 Afi-4 ’*,+r j£ • m 

Uk Acd-<t£>!] 

Center span, 

JW ,(-■§)(—») 
CD — 4 

I2I1 

M» = — 
,(»*©(«-«) 

CD — 4 
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Maximum Bending Moments in Columns for Live Loads: 

Wall columns, 

M2 =(Q—c&)y~~ 
1 l/l2 

±l±lwh2+<*. 
12 AB—A. 6 

Ijh 

/,/a 

“-‘(8)1 
WI32 

6 — 04/4^2,. 
Mi = - ---—M2 

6 — C5 Ishi 

Second column (first and third spans loaded),9 

Ijh 

Iih 
Ms — — (6 —c7) 

Ijh 

hh2 

l A + 2 , C3 
-wli2 

12 AB — 4 12 

»-*(£ 
-wl32 

6 — c7 /7A1 

Second column (second span loaded),2 

(66) 

(67) 

(68) 

(69) 

To h 

1 7 1 C + 27T 

CD - 4- 
/1A2 ,, 6 — CihJl2 

M7 = - --—¥5. 
O — C7 / 7^1 

(70) 

(71) 

The absolute maximum bending moment in the columns are obtained 
as explained on p. 377. 

Bending Moments at End of Beams and Columns.—Bending mo¬ 
ments at end of beams and columns may be found by Formulas (13) 

to (15) p. 383. 

Numerical Example.—For numerical example of the application of 
the preceding formulas, see p. 410. 

Wall Columns and End Beams. All Spans Equal 

Assume that all spans composing the frame are equal and that the 
moments of inertia of all beams are equal. Also assume that the 
moments of inertia of the second and third columns are equal. Then 

h = h = h = 1, I\ = I2 = Is = If 16 = Is and I7 = /«. 

* See note, p. 394. 
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The frame constants become 

A= (6 — C4) + (6 — C5 )j^ + 4. 

B=C- [(2-C3) + i]. 

C = (6 - < + (6 - c7)^ + (6 - ca) + 4. 

D=C- [(2-c3) + |]. 

These values substituted in the general formulas given in the preceding 
pages give: 

Maximum Bending Moments for Dead Load. 

Bending Moments in Beam for Dead Load: 

Wall panel, negative bending moments, 

1 r(A-4)(/?+2) 2(A-4)(C+2) 2c3(A-4)1 

12 L AB-4 A(CD-4) + A(CD-4)\Wl~ 
(73) 

Mi 
1 |~(A+2)(Z?—4) 4(A-l)(C+2) _ 3c3(A-l) 1 

12L AB-4 + A(CD-4) A(CD-4)\ ' 1 J 

Center panel, negative bending moments, 

1 r4(A+2)(C—1) (C+2)(D—4) 

I2L C(AB-4) + CD-4 

c3(P-4)1 
CD—4 J 

(75) 

2(A+2)(C-4) (C-4)(D+2) 2c3(D-l)1 

C(AD-4) + CD-4 + CD-4 J ' 
(76) 

Maximum Positive Bending Moments for Dead Load.—Maximum 
positive bending moments are obtained from the table on p. 176, 
using the negative bending moments at the supports found from the 
above formulas. 
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Bending Moments in Columns for Dead Load: 

Wall column,3 

2(C+2) 
Jlf _ ±/« Ml 1+1._ 

Mi 12 6 C* /A2 \-AB — 4 A (CD-A) 
+ —-"Lp. 

A(CD- 4)J 

Mi = 
6 — C4 /4A2 

6 — c$ /5A1 

Second column,3 

Mo. 

M6 = --(6 L6 _ C.M[A±1 _ ^±2 

m7 = - 
6 

C7)/A2Lyl/3 - 4 CD-A + CD 

~Mr, 
6 — C7 /7A1 

Maximum Bending Moments for Live Load. 

Maximum Negative Bending Moments in Beams: ; 

Wall span, 

4) 
Mz -rl 

-M- 

(A - 4)(B + 2) 2c3(A 

Mi 

Center span, 

AB - 4 

(A + 2) (B - 4) 

A£ - 4 

wZ2. 

+ 

A (CD - 4) 

4 (A - 1)(C + 2) 

A(CD - 4) 
Ju>P. 

Mg = — 

C(AS - 4) 

_l_[(C-4)(D + 2) , 2c3(D - 

12L CD - A 

(77) 

(78) 

(79) 

(80) 

(81) 

(82) 

(83) 

(84) 

Maximum Positive Bending Moments in Beams, 
To get maximum positive bending moments in the beams compute 

the negative bending moments at the support for the proper loading 
and then find from the table on p. 176 the corresponding maximum 
positive bending moment. 

The negative bending moments to be used are: 

For wall span, 

Ms = -- 
1 f(A — 4)(B + 2) , 2c3(A - 

12L AB — 4 
+ 

A(CD - 4) 
—1-]wl2, 
- 4)J ' 

(85) 

* Positive bending moment produces tension at the right side of the column and 
the negative bending moment produces tension at the left side of the column. 
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l[(A + 2)(B-4) 3c3(A - 1) 1 io , N 

4 12L AB — 4 A(CD - 4)_H ' * * (86) 

For center span, 

„ 1 (C + 2) (D - 4) „ 

*■ — 5 CD-i .(87) 

„ 1 «' - 4)(D + 2) „ 

M‘—U CD — 4 .<») 

Maximum Bending Moments for Live Load in Columns: 

Wall columns,4 

" B<6 " C5)7Ta[^l+ ^(c?- ' <89) 

Mz — —  -TTMi.(®0) 
0 — C$ 15AI1 

Second column,4 

Mi,-A(0-n)|[A±i + ^]„F. . (91) 

,, 6 — C6/f>/*2,, 
a^7 - -  -7-rMs.(92) 

O — C7 1 7fli 

Wall Columns and End Beams. Special Case of Equal Spans 

To simplify the use of the formulas for this type of substitute frames, 
formulas are given in which the spans of beam and their moments of 
inertia are assumed to be equal. Also it is assumed that the rigidity 

ratios for the columns are as follows: 

£-• £=0'8' 1=™- 

The constants at the ends are assumed to be 

C3 = C4 = C5 = Cq = C7 = 2.5. 

Substitute these values in Formulas (81) to (92) for live load. For 
dead load use Formulas (73) to (80) in which the items previously found 

for live load may also be substituted. 

4 See note, p. 398. 
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For these assumptions the frame constants become 
Frame Constants, 

A = 3.5 + 3.5 X 0.8 + 4 = 10.3. 

B = 12.75 + (- 0.5 + 0.31) = 12.56. 

C = 3.5 X 0.8 + 3.5 X 0.7 + 3.5 + 4 = 12.75. 

D = 12.75 + (- 0.5 + 0.39) = 12.64. 
Also 

AB = 129, AB — 4 = 125, C(AB - 4) = 1600. 

CD = 161, CD — A - 157, A(CD - 4) = 1620. 

Bending Moments for Dead Loads. 

Bending Moments in Beams for Dead Load: 

Wall panel, negative bending moments, 

M, = - ifo.754 - 
12 L 1620 J 12 

Mi 18 

1620 

4 X 9.3 X 14 

1620 

.751 „ ^nwP 
— wl~ = — 0.84—. 

11 12 

Center panel, negative bending moments, 

1 f „ 2.5 X 8.641 io , wl2 

Ma=_au7—TBr-JwP—103i2- ■ 

2 X 12.3 X 8 
Ms 

J_r _ 2 X 12.3 X 8.75' 

12L1'1 1600 
wl2 = - 1.06 

wl2 

J12 ' 

Maximum Positive Bending Moments for Dead Load, 

Wall span, 
Mmu = 0.061wl2. 

Center span, 
= 0.052wl2. 

Bending Moments in Columns Due to Dead Load: 

Wall column,5 

T 2 X 14.751 wl2 wl2 
M, = 2.$[°.12-^-Jjj - °28^. • • • 

_ ^ 1 wl2 wl2 

M^-rsxo-28ii-=-°-35ir. 

(93) 

• (94) 

• (95) 

. (96) 

• (97) 

• (98) 

• (99) 

(100) 

1 See note, p. 398. 
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Second column6 

14.75 wl2 
= 2.5 0.099 -— — = O.C 

157 J12 

0.8 wl2 wl2 
^ — -X 0.018-= -0.02-. 

Maximum Bending Moments for Live Load. 

Maximum Bending Moments in Beams, 

Wall span, 

_ _ J.ro.3 X 14.56 5.0 X 6.31 _ _ 
u I 1 -t I f, — + - - 0.754—. . . (103) 

12L 125 1620 J 12 y 

, 1 f 12.3 X 8.56 , 4 X 9.3 X 14.75] „ , ,owl2 

1^+—m—r-‘\ (io4) 

1 U X 12.3 X 11.75 14.75 X 8.641 

12 L 12.75 X 125 + 157 J 
1 T8.75 X 14.64 2 X 2.5 X 11.64] 

I2L 157 + 157 J 

wl2 = - 1.17 

.. 1 18-75 X 14.64 , 2 X 2.5 X 

w>--a—157—+—a 

Maximum Positive Bending Moments, 

Wall span, 

n.041 72 
- uP = 

wl2 
1.19—. (106) 

Center span, 
O.OOOwZ.2.(107) 

M max = 0.057^.2.(108) 

Maximum Bending Moments in Columns. Live Load: 

Wall column, 

M\ —-— 

0.8 

Second column, 

2 X 2., f)l wl2 wl2 
- 1 77T = 0.34—. . . (109) 

1620 J12 12 

. wl2 
0.43-. * • * • • . (110) 

2.5' wl2 wl2 

+ I57j 12 = ~~ 
0.25^. . . (Ill) 

0.8 , wl2 nwl2 
M,—-x°.25-. 0.29-. 

6 Sec note. p. 398. 

(112) 



402 BUILDINGS CONSIDERED AS FRAMES 

STRUCTURES TWO PANELS WIDE 

For structures two panels wide the substitute frame shown in Fig. 
168, p. 403, may be used 

Let l = length of the left span; 
h = length of the right span; 
h = height of the lower column; 

hi = height of the upper column; 
11, I2 = moments of inertia of the left and right spans; 

h, I5,17 = moments of inertia of the lower columns; 
C3, C5, C7 = constants depending upon end conditions of lower 

columns; 
^4, /6, Is = moments of inertia of the upper columns; 

C4, Co, c$ = constants depending upon end conditions of upper 
columns; 

A, B, C = frame constants given by Formula (113) below. 

Frame Constants.—The frame constants to be used in the formulas 
for bending moments are 

Frame Constants, 

where 

and 

A = (6 - c3)j^ + (6 - Ci)~- + 4. . . . 
Iih Iihi 

b=(6_c„^ + (6_m)M + 4(1 + ||),. 

C3, £4, C5, C6, £7, cs = 2 for members with fixed ends, 

= 3 for members with hinged ends. 

(113) 

For partial restraint use an intermediate value for c or compute it by 
means of Formula (30), p. 640. 

Case a. Left Span Loaded. (See Fig. 168, p. 403.)—This condition 
of loading gives (1) maximum positive bending moment in the loaded 

span; (2) maximum negative bending moment at wall support of loaded 
span; (3) maximum bending'moment in the center column and (4) max¬ 
imum bending moment in wall column at loaded span. 
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The bending moments may be found from formulas given below. 
Bending Moments in Beam at Supports: 

Left span, 

Right span, 

Fig. 168.—Substitute Frame Two Panels Wide. (See p. 402.) 

014) 

015; 

(116) 

Bending Moments in Columns: 

Left end column, 
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hh 6 — d 

— . 

Center column, 
leh 

(6 — cq)-~C(A +2) 

Ms - s-i-TTTvn-Wl2- 
ABC-Ai:d\-K 
I ah 6 — ca 

M7 = - 77 --. 
i6^1 o ~ Co 

Right end column, 

. (6-C8)^(A + 2)^ 

m9= ---t-77-p-T.—wh*. 

‘4*-<‘(i)J-- 

^ /7A1 6 — c7 
M10 —  -Mg. 

/s* 6 — c8 

(119) 

(120) 

(121) 

(122) 

(123) 

Maximum Positive Bending Moment in Left Span.—For known 
bending moments at the supports M3 and M4 the corresponding maxi¬ 
mum positive bending moment may be taken from table on p. 176. 

Case b. Right Span Loaded.—This condition of loading gives 
(1) maximum positive bending moment in the right span; (2) maximum 
negative bending moment in the right span at the wall column; (3) max¬ 
imum bending moment in the center column; f4) maximum bending 
moment in the right wall column. 

The bending moments are given in the formulas below. 
Bending Moments in Beam at Supports: 

Left span, 

. (c+2i) 
(A-4) 

1 (C + 21)^-1> 

3 CUB- 4)-4^(0 

%wh2. 

rwl22. . 

. • (124) 

M4 = . . (125) 
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Right span, 

*• — 5 

Mg — ■ 

" CW-4,-44^)* ' 

wfc2. (126) 

Bending Moments in Columns: 

Left end column, 

M j -- 
6 

C + 2: 
Ijh\ 

hlj 

C(AB - 4) - 4^1 

hh 6 — a 
M2 = “ 7T p- 

/l«l 6 — C3 

(-1)2 

U'l22. 

Center column, 

M7 = 

M6 = - 

C(AB 

Is>h\ 6 — C5 

/ 6^ 0 Cg 

Right end column, 

Jsh 

.. i(0 ” C8)w 

- 

Ms. 

C(A - B) + 4A (-Y \hij 

(127) 

K»«H„ 
-TTTw-wl22. 

(128) 

(129) 

(130) 

(131) 

(132) 

m10= ~ tt r—~Mg.(133) Ishi 6 — eg 

In end columns the bending moment is negative when it produces 
tension on outside faces of the columns. In center column negative 
bending moment produces tension at the left face of the column. 
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Case c. Both Spans Loaded.—This condition of loading should be 
used for dead load and also for maximum bending moments at the 
center support. The bending moments are obtained by computing 
the bending moments due to case a and b and adding the results. 

Maximum Bending Moments in Columns. See p. 377 for method 
of determining maximum bending moments in columns. 

Numerical Example. For numerical example of application of the 
formulas for a building two panels wide, see p. 416. 

ONE-SPAN MULTI-STORY FRAME 

Following formulas may be used for structures one span wide and 
a number of stories high. They are based upon the substitute frame 
shown in Fig. 169, p. 406. 

Fig. 169.—One-span, Multi-story Frame. (See p. 406.) 

Notation. 

Let I\, 12, Is = moments of inertia of beams; 
Ihv Ihv Ihv h4 = moments of inertia of columns; 

l = span of beams; 

hi, h%, hs, h4 = height of columns; 
ci, C4 = constants depending upon end conditions of 

columns; 
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wi, W2y viz = uniformly distributed loading in the three floors; 
M2, M5, Ms = bending moments in beams at supports at points 

2, 5 and 8 (see Fig. 169); 
= bending moments in columns at supports (see 

(Fig. 169); 
X, Y, Z = angles of tangents to deflection curves at joints 1, 

2 and 3 multiplied by 

A, B, C = frame constants as given by Formulas (134) to 
(136). 

Miy Ms, M4, 
Mg, M7, Mg 

The frame is symmetrical and the loading is assumed to be sym¬ 
metrical also. Therefore the bending moments at both sides at sym¬ 
metrical points are equal. 

The constants are 
Frame Constants, 

A = 

B = 

C = 

(6-c'>7a + 2 + 47S- 

(G 4- 2— + 4—*- 
} I ihi + 2h + 

(134) 

(135) 

(136) 

Values of X, Y, and Z, 

Y =■ 

- ‘2C~r~-wi + ACw2 — 2A~-U'z 
hh2_lifts _r 

12' 

ABC - 40 
m - “&r 

■ (137) 

X = 

Z = 

1 1 72 2 14 

A^ll ~ A hh2Y' 

11 72 2 IhJ v 
cTX/- 

(138) 

(139) 

To get the bending moments compute the values of X, Y, and Z 
and substitute in the following formulas 

Formulas for Bending Moments,7 

First joint, 

Mi = — (6 — ci)^-X Column 1st Tier . . . (140) 
Iim 

7 The formulas are developed by the slope-deflection method. 
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Ma = 2X — -^toiP Beam.(141) 

Ma = 2^-(2X + Y) Column 2nd Tier . . . (142) 
Iih2 

Second joint, 

Mi = - 2-~~(X + 2Y) Column 2nd Tier . . . (143) 
Iihz 

= 2Beam.(144) 
ii 12 

Me = 2-~-(2Y + Z) Column 3rd Tier . . . (145) 
hh3 

Third joint, 

M7 = - 2~l-(Y + 2Z) Column 3rd Tier. . . (146) 
IlH 

Ma = 2^Z - \)3l2 Beam.(147) 
/1 12 

Mq = (6 — C4)~™Z Column 4th Tier . . . (148) 
il/l4 

The signs of the bending moments in the formulas just given are 
the conventional signs used in concrete design. These are based upon 
the position of tension and not upon the direction of rotation. 

The formulas for Mi to M9 are obtained directly from Formulas 
(140) to (148). Since the frame is symmetrical and symmetrically 
loaded, the angles of the tangents to the deflection curves on both 
sides of each beam are equal and of opposite sign. The values of 
X, y, and Z were obtained by making the sum of bending moments at 

each joint equal to zero. This gave three equations which were suf¬ 
ficient to determine the unknown values of X} Y, and Z. To simplify 
the formulas the sums of elastic ratios at each joint were represented 
by A, By and C, respectively. 

Formulas for Maximum Bending Moments.—The formulas given 
above may be used for dead and live loads by substituting proper values 

for unit loads w\, w>z and W3. 
For dead load all three floors must be co idered as loaded simul¬ 

taneously. 
For live load only such floors should be loaded which give maximum 

bending moments at the points considered. 
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The bending moments due to loads placed in different floors are 
evident from Fig. 170 (a) to (c). 

For numerical example of application of the formulas, see p. 424. 
Use of Formulas.—The formulas given above may be used for 

structures of any number of stories. 

Fig. 170.—Bending Moments in One-span, Multi-floor Frame. (See p. 409.) 

When used for a frame consisting of a roof and two floors, the top 
floor of the substitute frame should be considered as the roof. The 
columns above the top floor should be omitted by making I)4 = 0. 
Mq is then equal to zero and M7 and Ms are equal. 

When the number of floors in a structure is larger than three the 
bending moments are found by using the frame as a substitute frame. 
It may be placed in two or three positions in the structure and in such 
manner all bending moments in the structure may be computed with 
sufficient accuracy. 
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BENDING MOMENTS IN FRAME WITH UNEQUAL SPANS 

Example 1.—Find bending moments in beams and columns in a building frame 
of three unequal spans shown in Fig. 171, p. 410. 

The main dimensions of the frame arc: 

Span of beams, 20 ft., 12 ft., 26 ft. 

Story heights, 11 ft. G in. 
Loadings of floors, 

Dead load, 1 100 lb. per lin. ft. 

Live load, 1 GOO lb. per lin. ft. 

Total, 2 700 lb. per lin. ft. 

Substitute Frame 

Fig. 171.—Building Frame of Three Unequal Spans and Substitute Frame. 

(,See p. 410.) 

Solution.—The problem is solved by using the substitute frame shown in Fig. 171, 

p. 410, and the Formulas (50) to (71), p. 393. The substitute frame is assumed 

to be placed in the building so that the beams coincide with the top floor. In 
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this example only one position of the substitute frame is considered. For more 

accurate work, the substitute frame should be placed successively in each story. 

The beam is of uniform cross-section throughout, therefore Ii = /2 = /3. Since 

the frame is symmetrical, h = I9 and I6 = /8. 

Ratios of Rigidity.—From preliminary design of the sections based on approx¬ 

imate formulas, the ratios of rigidity are: 

hU _ 29 

hh ~ 12 
o 41 1 ^1 ^ o 1 1 _ r\n 17no 2.41, — 1, — 1.2, ■ — 1.1, ■ — 0.9, V7~ — 0.8. 

11»3 I\h\ 11 hi I ihi 11 h‘i 

These ratios are found by computing for the beam and for each column the moments 

of inertia. All moments of inertia must be in the same units. Also the span and 

the column height must be in the same units. The results are not affected if the 

moments of inertia are in in.4 and the values of h and l in feet. 

The beam is usually a T-beam and its moment of inertia is found by Formula 

(457), p. 133. Diagram on p. 134 may also be used. No reinforcement needs to 

be considered in computing the moments of inertia of the beams or columns. 

End Constants c.—The constants c3 to c9 are computed by Formula (30), 

p. 610. The ends of each member is assumed to be restrained by the members 

of the building frame, outside of the substitute frame, meeting at the respective 

ends. These are shown in Fig. 171 by dash lines. The ratios of rigidity of the 

outside members are either computed in the same manner as for the members 

of the substitute frame, or estimated, using the computed ratios as a guide. 

C3 2 + 4 + 3 5 X 1 1 + 3 5 X 1 2 2‘33> 

4 
= 2.37, f4 = 2 + 

C6 = 2 + 

4 +3 5 X 1 1 + 3 5 X 0 83 

4 

4+35X08 

Ct = Cs — 2 + 

= 2.59, 

6 - c3 = 3.67. 

6 — c4 = 3.63. 

6 — c6 = 3.41. 

4+35X11+35X11+35X26 
- = 2.19, 6 - cfl = 3.81. 

Ci — c9 = 2 + — 
4 

4+35X12+35X29 
= 2.22, 6 — c7 = 3.78. 

Frame Constants. 

A = 3.63 X 1.2 + 3.41 X 1.1 + 4 = 12.11, 

/ 19 76 - 2 4l\ 
B = 3.81 X 0.9 + 3.78 XO.8+4 1+ 2.41--j = 18.93, 

C = 3.81 X 0.9 + 3.78 X 0.8 + 3.67 X 1 + 4 X 2.41 = 19.76, 

D = 3.81 X 0.9 + 3.78 X 0.8 + 4^2.41 + = 19.76. 

Values of wl2 and [wl1. 
Dead load, wip = wl,2 = 1.1 X 26s = 743.6 ft.-k., iwh2 = 92.95 ft.-k. 

wh2 = 1.1 X 12* = 158.4 ft.-k., Iwh2 = 19.8 ft.-k. 
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Live load, wh* = wli1 « 1.6 X 262 = 1 081.6 ft.-k., - \wh* - 135.2 ft.-k. 

= 1.6 X 122 = 230.4 ft.-k., \wlf = 28.8 ft.-k- 

The bending moments are in foot-kips. 1 ft.-k. = 1000 ft.-lb. 

Maximum Negative Bending Moments in Beams for Dead Load (use Formulas 
(50) to (53), p. 393). 

Wall span, 

1 8.11X20.93 1 8.11X24.58 „ „ 

' 1212.11X18.93-4 ' 612.11(19.76X19.76-4X2.412) 

2.33 8.11 1 169.7 33.2 
- — X2.41— X1.1X26»---X— X1.1X2CH-— X1.1X122 

6 4 450 12 225.2 4 450 

- -^-X1.1X26J= -(.063 +0.002)X743.6 +0.0074X158.4= -47.1 ft.-k. 
4 450 

,, 1 14 11 X 14 93 _ _ 1 11 11 X 24 58 , , _ 
M‘ — T2 225.2 X 1.1 X 26* - - 4<5|) XUXIf 

2 33 11 11 
+ -— X 2.41 —f— X 1.1 X 26s = (- 0.078 + 0.0047) X 743.6 

3 4 450 

- 0.02 X 158.4 = - 57.6 ft.-k. 

Center span, 

2 33 10 12 
+-f-X2.41—;~ Xl.lX262 = (-0.044+0.013)X743.6-0.057Xl58.4 

12 307 

= -32.1 ft.-k. 

Due to symmetry of the building frame, the same value will be accepted for 

bending moment jl/a as for M6. 

Bending Moments in Columns for Dead Load.—(Use Formulas (54) to (57), 

p. 394.) 

Wall columns, 

M, = 3.41 X 1.1 X ~ X 47.1 = 21.8 ft.-k., 

Mt — — X X 21.8 = - 25.4 ft.-k. 
3 41 11 

Second column, 

„ 3.78 ^ 
M, = —X0 

r i4.ii „ 
I 225.2X ' 

X1.1X262 

= 0.252[-(0.063 + 0.015) X 743.6 + 0.067 X 158.4] = - 11.8 ft.-k. 

w 3.81 0 9 

"’T78X0l><"-9-I3'7,*-k- 
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Maximum Negative Bending Moments in Beams for Live Load.—Using the 

proper coefficients found for the dead load, the maximum negative bending moments 

for live load are: 

Wall span, 

Mi ** - (0.063 + 0.002) X 1.6 X 262 = — 70.0 ft.-k., 

Mi — — 0.078 X 1.6 X 262 - 0.02 X 1.6 X 12* = - 89.0 ft.-k. 

Center span, 

Mt = - 0.044 X 1.6 X 262 - 0.057 X 1.6 X 12* = - 60.7 ft.-k. 

Due to symmetry of the building, the same value for M8 will be accepted as 

found for Mt. 

Maximum Bending Moments in Columns for Live Load. 

Wall columns, 

Mt = 3.41 X 1.1 X —X 70.0 = 32.4 ft.-k., 
8 11 

Mi =— ~~ X y X 32.4 = - 37.6 ft.-k. 
3 41 11 

Second column, 

Mt = - 0.252(0.063 + 0.015) X 1.6 X 262 = - 21.3 ft.-k. 

Q Ol A f) 

^=^T8X0”8X21-3=24-2ft-k- 

Total Bending Moments.—The bending moments for dead load should be added 

to the maximum bending moments for live load. 

Mi = -(25.4 + 37.0) = - 03.0 ft.-k., 

A/j = 21.8 + 32.4 = 54.2 ft.-k. 

Mi = — (47.1 + 70.0) = - 117.1 ft.-k., 

Mt=- (57.6 + 80.0) = - 140.0 ft.-k., 

M„ = - (11.8 + 21.3) = - 33.1 ft.-k., 

Mi =— (32.1 + 00.7) = - 92.8 ft.-k., 

M1 = 13.7 + 24.2 = 37.9 ft.-k., 

Ma=- Mi = ™ X 63.0 = 21.8 ft.-k., 
0 — C4 3.63 

Mb = - —3-z-!^ il/2=-^?X 54.2 = - 13.1 ft.-k., 
6 — Ct 3 41 

Me— 2(f;-C- M, = - ~ X 37.9 = - 16.1 ft.-k., 
o — Ct 3. 81 

Md = - 2*3--— Mt = ^ X 33.1 = 13.7 ft.-k. 
6 — c? 3.78 
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The bending moments in the beams just given may be considered as maximum. 

To get maximum bending moments in the columns, add to the maximum bending 

moments for this frame, the bending moments produced by substitute frames placed 

just above and below the frame under consideration (see p. 377). 

Maximum Positive Bending Moments in Beams.—Maximum positive bending 

moment in the end span is produced when the two end spans are loaded and the 

center span not loaded. The negative bending moments for such condition are: 

Mi = - 70 ft.-k., 

Mi = (- 0.078 + 0.004) X 1 6 X 262 = — 80.2 ft.-k. 

Combine these negative bending moments with the corresponding negative 

bending moments for the dead load and draw a bending moment diagram as shown 

in Fig. 172, p. 415. The maximum positive bending moment, then, may be scaled. 

Also the maximum positive bending moment may be found, using the table on p. 176. 

Mi = - 70 - 47.1 = - 117.1 ft.-k. = - 0.0643 X (1 081.6 + 743.6), 

Mi - - 80.2 - 57.6 = - 137.8 ft.-k. = - 0.0745 X (1 081.6 + 743.6). 

From the table the coefficient for maximum positive bending moment corresponding 

to the coefficients 0.0643 and 0.0745 is 0.056. Hence 

Mm&x= 0.056(1 081.6 + 743.6) = 102.2 ft.-k. 

For the center span, the maximum positive bending moment is produced when the 

center span only is loaded. Then Af8 — Ms = — 0.057 X 1.6 X 122 = — 13.1 ft.-k. 

for live load. 

For dead load alone the bending moment in the center span at the points of 

maximum positive bending moment is negative, and it balances partly the positive 

bending moment due to the live load. Therefore, to get the most unfavorable 

condition, the live load bending moments should be combined with one-half of the 

bending moments for the dead load as explained on p. 92, 

32 1 
Mi = - — - 13.1 = - 29.2 ft.-k. 

19 8 
The static bending moment is Ms = —-\- 28.8 = 38.7 ft.-k. and the maximum 

positive bending moment in the center is 

M= 38.7 - 29.2 = 9.5 ft.-k. 

Maximum Bending Moment Diagrams.—If desired, the maximum bending 

moment diagrams are drawn as follows: 

The diagram drawn to find the maximum positive bending moment also gives 

the maximum negative bending moments near the wall support. 

To get the maximum bending moments at the center support find the negative 

bending moments for a condition when the first and the second span are loaded 

and the third not loaded. 
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Mi = - 0.063 X 1.6 X 26* + 0.0074 X 1.1 X 12* = - 66.6 ft.-k., 

M4 = - 89.0 ft.-k., 

M = -60.7 ft.-k., 

„ 114.11X10 12 , „ 1 10.12 X 24.58 „ 
*-i 4 450 x 1.6 X 36’ - ----X ..6 X I» 

= 0.005 X 1 081.6 - 0.056 X 230.4 = - 7.5 ft.-k. 

All bending moments in foot - hips 
1 ft.-h = 1000 ft.-lb. 

Fig. 172.—Bending Moment Diagrams for Beams. (See p. 415.) 

Add to these the corresponding bending moments for dead load and plot the diagrams 

as shown in Fig. 172, p. 415. 

Ms = - (47.1 + 66.6) = - 113.7 ft.-k., 

M4 = - (57.6 + 89.0) = - 146.6 ft.-k., 

M« = — (32.1 -f 60.7) = - 92.8 ft.-k., 

ilf8 = - (32.1 + 7.5) = - 39.6 ft.-k. 

The static bending moments, to be used in drawing the diagrams, are: 

End span, 

M9 = 92.95 + 135.2 « 228.1 ft.-k. 

Center span, 
Ma = 19.8 + 28.8 = 48.6 ft.-k. 

The diagrams may be used to determine the points of bending of the reinforcement 
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BENDING MOMENTS FOR BUILDING FRAME TWO SPANS WIDE. 

Example 2.—Find bending moments in beams and columns of a two-span, four- 
story building frame shown in Fig. 173. 

Roof 

to 

7 4th floor 

X 
to 

3rd floor 

f 
2nd floor 

mm mum 
4 

L_ 
Basement 

BV L J 

(a) Complete Frame 

*1 

j _ - 

. 

(b) Substitute Frame*1 

-——-- ■ 

*2 

—
 

i 
I 
l 
1 

*4 

(c) Substitute Frames*2 and% 

\ 
1 i 

t 
i 

V 

—
1

 

9
 

_j 
i 

i 
L . . 1 
L,- JL -i 

(d) Substitute Framed 

Fig. 173.—Two-span, Four-story Building Frame. (See p. 416.) 

The main dimensions of the frame are: 

Span of a beam, 29 ft. 

Story heights, 11 ft. 6 in. 

Loadings, 

All floors Dead load, 1 800 lb. per lin. ft. 

Live load, 3 200 lb. per lin. ft. 

Total, 4 000 lb. per lin. ft. 

Roof Dead load, 1 600 lb. per lin. ft. 

Live load, 700 lb. per lin. ft. 

Total, 2 300 lb. per lin. ft. 
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Solution.—The problem is solved by using two-span substitute frames shown 

on p. 403, formulas for which are given on p. 402. The substitute frame is placed 

consecutively in four locations in the building, and bending moments are computed 

for each position. The location of the substitute frames in the building are shown 

in Fig. 173, p. 416. 

Substitute Frame No. 1.—In this frame the beam is placed at the roof level 

(see Fig. 174, p. 418). Since both spans are of equal length and the loads are equal, 

their moments of inertia are equal. The moments of inertia of the wall columns 

on both sides are equal for the same reason. Since there are no upper columns 

in the frame, in the formulas the moments of inertia of the upper columns are made 

equal to zero. 

Therefore I\ = /*, 7j = /?, 7< = 7j = 7g = 0. 

The ends of the columns are restrained by the members of the building frame which 

are not a part of the substitute frame. The values of cs, cb and c7 are assumed to be 

equal to 2.4 (see p. 402), and (6 — c3) — (6 — c5) = (6 — c7) = 3.6. 

For more accurate work compute the values of c as in example 1. 

Constants A, B and C (see p. 402). 

From a preliminary design it was found that 

Also 

hh 

7i h 
y" - 0.9 and -y = 0.5. 
h h I h 

h h _ - , hh. — hh. — hh. 
I\li 11 hi 11 hi 11 hi 

0. 

The constants are, therefore, 

A = 3.6 X 0.0 + 4 = 7.24, 

B = 3.6 X 0.5 + 8 = 9.8, 

C = A = 7.24. 

Bending Moments, Lejt Span Loaded. (Use Formulas (114) to (123), p. 403.) 

Beam, left span, 

Mi 
JL (7 24 - 4)[7 24(9 8 + 2) — 4] 

12 7.24(9 8 X 7 24 - 4) - 4 X 7.24 
wh2 = — 0.049w7i2, 

Mi = — 
1 (7 24 + 2)17 24(9 8 - 4) - 4] 

12 454 6 
wli2 = — 0.065u>Zi2. 

Beam, right span, 

Mi 

Mi 

1 (7 24 +2)(7.24 - 1) 

3 454 6 

1 (7 24 + 2) (7 24 - 4) 

wh2 = — 0.042wZi2, 

6 454 6 
■wh2 = O.OllwZi2. 

Left column, 

Top, Mi = Mi = - 0.049u>Zi2. 

Bottom, Mb — — 
2(3 - Ci) 

Mi hi 
3.6 

X 0.049to7i2 0.016^!*. 
6 — Ci 
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Center column, 

Top, Mi = - (Jlf4 - M8) = 0.023u>Zi’. 

1 2 
Bottom, Mc = — — X 0.022u>b2 = — Q.Q07wh*. 

3 6 

Right column, 

Top, Afio = Mg =* 0.01 lieb2- 

1.2 
Bottom, AT^' = — — ATio = — 0.004wb2. 

Fia. 174.—Substitute Frame No. 1. (See p. 417.) 

Due to the symmetry of the frame, the bending moments produced by the 

uniformly distributed loading on the right span are the same as produced by the 

loading on the left span, but acting in reverse order. Thus Mh when right span 

is loaded, equals Mi0 when left span is loaded. 

The bending moment coefficients just computed are tabulated in the following 

table. In computing final bending moments, both spans are considered as loaded 

-0 049 

0 010 

-0 049 

-0 107 

±0 022 
±0 007 

Inch-kips Inch-kips Inch-kips 

- 613.8 

193 8 

- 613.8 

-1728.0 

-346.2 

113.0 

-346.2 

-756 0 

dbl55.4 

=F 49.4 

- 960 0 

306.8 

- 960 0 

-2 484.0 

dfc 155 4 

=F 49.4 

for dead load. For live load, the loads are placed so as to produce maximum values 

at the points considered. Multiply the coefficients by wlj, which is 
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for dead load, 1 600 X 29* X 12 = 16 150 000 in.-lb. = 16150 in.-k. 

Ms = \wl2 - 2 020 000 in.-lb. = 2020 in.-k. 

for live load, 700 X 29* X 12 = 7 064 000 in.-lb. = 7064 in.-k. 

Ms = \wl2 = 883 000 in.-lb. = 883 in.-k. 

All bending moments are in inch-kips (1 in.-k. = 1 000 in.-lb.). The bending 
moments in the right side are same as for the symmetrically placed points on the 
left side. 

Maximum Positive Bending Moment in Beam.—The maximum positive bending 
moment in the beam occurs when only one span is loaded. To find this bending 
moment, combine the negative bending moments at the supports for the dead load 
and for the live load acting on one span. 

Mt = - (0.038 X 16 150 000 + 0.049 X 7 064 000) = - 960 200 in.-lb. 

Mk = - (0.107 X 16 150 000 + 0.042 X 7 064 000) = - 1 728 000 in.-lb. 

For these bending moments draw a bending moment diagram as explained on p. 175 
and shown in Fig 175, p. 420. The static bending moment is 

Ms = J(16 150 000 + 7 064 000) = 2 903 000 in.-lb. 

This diagram gives not only the maximum positive bonding moment, which can be 
obtained by scaling, but also the points where the bars may be bent up. 

For the known negative bending moments, the corresponding maximum positive 
bonding moment may be found also by using table on p. 176. 

Diagrams of Maximum Negative Bending Moments.—The points where the 
bars at the supports may be bent down are obtained by drawing bending moment 
diagrams for the conditions of loading producing maximum values at the supports. 

At the wall column the diagrams previously drawn may be used. 
At the center column draw a diagram when both spans are loaded. 

The bending moments at supports are 

Mz = - (613.S00 -f 0.038 X 7 064 000) = - 882 300 in.-lb., 

Mi = - 2 484 000 in.-lb. (See Table, p. 418.) 

The static bending moment is 

Ms = 2 903 000 in-lb. 

Maximum Bending Moments in Columns.—As explained on p. 377, the maximum 
bending moments in columns are obtained by combining bending moments produced 
by two successive frames. In this case the bending moments in the upper columns 
are obtained by combining bending moments for Substitute Frames, Nos. 1 and 2. 

Substitute Frame No. 2.—This frame is shown in Fig. 176, p. 420. Use Formulas 

(117) to (123), p. 403. 
Due to symmetry h = /2, h = 17 and 14 = 1%. The ends of the frame are 

restrained by one, two and three members. Due to symmetry, c8 = c7 and c4 = c8. 
Using Formula (30), p. 640, the values of c are found as follows: 
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The upper wall column is restrained by one member. For this member the 

relative rigidity is the reciprocal for -* 7 in Frame No. 1. It is —* = 1.1. Therefore 
11 ti u y 

c< = 2 + 4 + 3.5 X 1.1 = 2-51’ 6 "C4 = 3-49' 

, All bending momenta in inch - kipe J 
1 in -kip = 1000 in - lb. 

Fig. 175.—Maximum Bending Moments in Roof Beam. (See p. 419.) 

The upper center column is restrained by two members. The relative rigidity of 

hh . 
each of these members and of the column is the reciprocal of 7-7 in Frame No. 1. 

Ix h 

It is = 2. Therefore 
0.5 

» ~ * •|'4+».» X j+VTx 2 - ** 6-a-378- 

Fig. 176.—Substitute Frame No. 2. OSee p. 419.) 

Similarly are found the ratios for lower columns 

C| = 2.28. 6 — C| = 3.62: C| ■» 2.18, 6 — c# = 3 
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Constants A, B and C for Frame No. 2. (See p. 402.). 

From preliminary figures (here not reproduced) the ratios of rigidity are 

I til I i l\ I ih I i l\ I ill /# h 0.5 
tt - L0’ tt = 0*9> rr = °-9> r* = °-6' rr = °-5- 7r = ^. = °-83* /i A Iihi 11 hi 11 h 11 hi I$hi 0.6 

T 2 h 
Due to symmetry, —* - = 1, and the rigidity ratios of the right wall columns 

11 h 

are the same as for the left wall columns. Also c8 = c4 = 2.51, and c9 = cj = 2.28. 

The frame constants are: 

A = 3.72 X 1.0 + 3.49 X 0.9 + 4 = 10.86, 

B * 3.82 X 0.6 + 3.78 X 0.5 + 8 « 12.18, 

C = A - 10.86. 

Bending Moments. Left Span Loaded. (Use Formulas (114) to (123)). 

In beam, left span, 

Mi 
(10 86 - 4)[10 86(12 18 + 2) - 4]_ 

12 10.86[10.86 X 12.18 - 4] - 4 X 10 80 1 

= " 12 =-0-063^ 1. 

Mi = - 

_L (1Q 36 + 2)[1Q 86(12 18 - 4) - 4] 

12 1350 
wli* = - 0.068u?Zi*. 

In beam, right span, 

„ 1 (10 86 + 2)(10 86 - 1) ,, „ , 
M, — ^ ^ 3*50 ^' i5 — 0.032trii , 

„ 1 (10 86 + 2)(10.86 - 4) ... 
Af, = -- --wh’ = 0.01 lu>(,’. 

t) 1 ooU 

In’left wall column, 

„ 1 3 72 X 1 0[10 86(12 18 + 2) - 4] ,, 

M‘ “ - 12-—-1390-Wh ~ ~ 

Ma = - 2(3 ~ —M$ =*~X 0.034tcli* = 0.014u>Z,», 
6 — Ca 3.62 

3 49 
Mt = - 0.9 Af i = 0.029^i2, 

Mb = - ———Af, - - ^ X 0.029wZi* = - 0.008u>l,‘. 
6 — c4 3.49 
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In center column, 

,, 1 3 82 X 0 6 X 10 86(10 86 + 2) , , 
3/7 =-wh = 0.02whK 

12 1 350 ’ 

Me — — —- Af, = - — X 0.02 = - 0.009wk\ 
6 — c5 3 82 

3 78 
Mb = — 0.83 ——Af7 = — O.OlOicZr, 

3.82 

Md = — — Jf» = 0.007u>Z,5. 
6 — c® 3 78 

In right wall column, 

13 49 X 0 9(10 86 + 2) , 
3/ _ __ - - -wi 2 — _ 0.005u?ii*, 

6 1350 

A/'b = - ——-—A/, = ° °g X 0.005u)ii2 = 0.0014u;Zis, 
6 — c8 3 49 

1 0 3 62 
Af10 - - — X ~ - 0.0058urf,2, 

09 3.49 

--—Afio = - —^ X 0.0058icZis = - 0.0023ioZiJ. 
6 — c7 3 62 

Due to the symmetry of the frame, the bending moments produced when the 

right span is loaded are the same as at the symmetrically placed points of the frame 

when the left span is loaded. Thus M3, when right span is loaded, equals Ms when 

left span is loaded. Similarly M4 = M*, M2 = Af9 and M1 = M10. 

The bending moment coefficients and the final negative bending moments are 

tabulated in the following table. For the Frame No. 2 the dead load is 1 800 lb. 

per sq. ft. and the live load 3 200 lb. per sq. ft. Hence for dead load 

12wlS - 12 X 1 800 X 292 = 18 200 000in.-lb., 

Ms = 2 280 000 in-lb., 

and for live load 

12*^ = 12 X 3 200 X 292 = 32 400 OOOin.-lb., 

Ms = 4 050 000 in .-lb. 

Static bending moment for dead plus live load is 2 280 000 + 4 050 000 = 

6 330 000 in.-lb. 

Due to symmetry, bending moments are given only for the left half of the frame. 

For the right half the maximum bending moments are same as for the symmetrically 

placed points in the left half. 

Maximum Positive Bending Moments in Beam.—The maximum positive bending 

moments in the beam are found in the same manner as explained on p. 419 in con¬ 

nection with Frame No. 1. 
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Substitute Frame No. 2. Bending Moments at Supports 

Bending Moment Coefficient Bending Moments 

Span Loaded 
Dead Dead Live 
Load 

Live 
Load Load 

Total 

Left Right 
Load 

Inch-kips Inch-kips Inch-kips 
Mi -0 034 0 0058 -0 0282 -0.034 - 513 1 -1 102 0 -1615 1 

ma 0 014 -0.0023 0 0117 0.014 212 9 453.6 666.5 
m2 0 029 -0 005 0 024 0 029 436 8 939 6 1 376 4 

Mb -0 008 0 0014 -0 0066 -0 008 - 120 1 - 259 2 - 379.3 

M* -0.063 0 011 -0 052 -0 063 - 946 4 -2 041 0 -2 987 4 

MA -0 068 -0 032 -0 10 -0 10 -1820.0 -3 240 0 -5 060 0 

Mb -0 016 0 016 TO 016 T 518 4 T 518 4 

m7 0 02 -0 02 ±0 02 db 648 0 ± 648 0 

Mc -0 008 0 008 TO 008 T 259 2 T 259 2 

Md 0 007 -0 007 ±0.007 ± 226 8 ± 226 8 

The negative bending moments are 

M3 = - 2 987 400 in.-lb., 

MA = - (1 820 000 + 0.068 X 32 400 000) = 4 024 000 in.-lb., 

and the corresponding maximum positive bending moment is 

Mmax = 2 280 000 + 4 050 000 = 6 330 000 in.-lb. 

Maximum Bending Moments in Top Columns.—The top columns of Frame 

No. 2 are also parts of Frame No. 1 where they form the bottom columns. The 

bending moments produced by the two conditions are of the same sign. To get 

maximum bending moments in the columns, the bending moments from Frame No. 1 

should be added to the bending moments from Frame No. 2. 

The maximum values for the columns in the top story are 

Wall column Top, 

Bottom, 

Center column Top, 

Bottom, 

Mb = - (379 300 + 960 000) = - 1 339 300 in.-lb. 

M2 = 1 376 400 + 306 800 - 1 682 800 in.-lb. 

MD = =f (259 200 -f* 155 400) = T 414 600 in.-lb. 

M7 = db (648 000 + 49 400) = db 697 400 in.-lb. 

The bending moments at intermediate points in the column vary according to a 

straight line. The variation may be obtained by plotting the top and bottom 

moments at the ends of the columns and connecting them by a straight line. It 

should be noticed that the bending moments at the ends are of opposite sign and 

should be plotted on opposite sides of the axis. 

The maximum bending moments in the lower columns of Frame No. 2 are obtained 

by combining the bending moments for Frame No. 2 with bending moments in 

upper columns of Frame No. 3. 
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Bending Moment Diagrams.—The bending moment diagrams for Frame No. 2 

are shown in Fig. 177, p. 424. They were drawn as explained in connection with 

Frame No. 1. 

Frames No. 3 and 4.—The bending moments for Frames No. 3 and No. 4 may 

be found in the same manner as illustrated for Frame No. 2. 

Fig. 177.—Maximum Bending Moments in Beam, Frame No. 2. {See p. 424.) 

Design of the Building.—After the bending moments are found for each member, 

the beam and columns are designed as explained in Vol. I. The beams are sub¬ 

jected to thrusts in addition to the bending moments, but the effect of the thrusts 

are insignificant. For this reason no formulas are given for the computation of the 

thrusts. After the bending moments in the beams are found, the shears may be 

computed in the same manner as for continuous beams (see p. 14) and rectangle 

frame (see p. 355). The beams should be made strong enough to take care of the 

shears and bending moments. The points of bending of reinforcement may be 

taken from the bending moment diagram. In this connection reference is made to 

the example on p. 181 where the complete design of a continuous beam is worked out. 

The columns are subjected to the direct pressure due to the vertical load, and 

also to bending moments. For designing, formulas given in Chapter II should be 

used. 

BENDING MOMENTS IN BUILDING FRAME ONE-SPAN WIDE 

Example 3.—Find bending moments in beams and columns of a four-story 

building frame one-span wide, as shown in Fig. 178, p. 425. 

The main dimensions of the frame are: 

Span of beams, 32 ft. 

Story heights, 11 ft. and 12 ft. (see Fig. 178). 
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Loadings, 

Roof, Dead load, 

Live load, 

Total, 

Floors, Dead load, 

Live load, 

Total, 

1 800 lb. per lin. ft. 

900 lb. per lin. ft. 

2 700 lb. per lin. ft. 

2 200 lb. per lin. ft. 

4 000 lb. per lin. ft. 

6 200 lb. per lin. ft. 

Solution.—The problem is solved by using the two substitute frames marked 

(a) and (h) in Fig. 178, p. 425. 

Substitute Frame No. 1.—The bending moments in this frame are found by 

using Formulas (134) to (148), p. 408. 

Detail computations are given for Frame No. 1 only, because the work for Frame 

No. 2 is identical with that for Frame No. 1. 

Since in this frame no columns extend above the floor, 7^4 =0. 

From preliminary design of sections, based on approximate bending moments, 

the moments of inertia of the section are 

/. 1, - 0.83/1, f 
il il 

' 0.83, = 1.25, '4 = 1.2, = 1.1, ££ =0. 
1 ihi I l \hz 1 \h\ 

Also from Formula (30), p. 640, the effect of restraint by two members is 

4 
Ci — 2 -f--- — 2.31, 6 — Cj — 3.69. 

' 4 + 3.5 X 1.5 -f- 3.5 X 1.1 

Frame Constants for Frame No. 1. 

A = (6 - 2.31) X 1.25 + 2 + 4X1.2 = 11.4, 

B = 4 X 1.2 + 2 + 4 X 1.1 = 11.2, 

C = 0-f2X0.8+4Xl.l=6.0. 

Values of X, Y and Z for Frame No. 1. 

G) First floor loaded, other floors not loaded, w2 = Wz = 0, 

Y = 
- 2 X 6 0 X 1.2 W\l2 

11.4 X 11.2 X 6.0-4X6 OX lT22^4X~lf4~ XlT TsT 
« - 0.0214 

Wil2 
TsT’ 

/ 1 2 \wil2 W]l2 

X=\TT4 + lY^X 12 X 0 0214)l2~ = 0 032 

2 W\l2 W\l2 

Z=0 + 6lXUX0-214¥=0'°07V 

(2) Top floor loaded, wy = 0, Wz = 0, 

11 4 X 6.0 wjP _ W2 

676 4 12 ~ ‘ 12 ’ 
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2 wd2 wd2 

0-iT4XL2xo1011F=- 0 02131F' 

2 wd* wd2 
Z = 0 - — X 1.1 X 0.101-"- = - 0.037-^-. 

6 0 lZ 

(3) Roof loaded, 101 = 0, w2 - 0, 

2 X 11 4 X 1.1 wd2 _ W2 

676.4 12 ' 12 ' 

2 t03Z2 
X = o + — X 1.2 x 0.037 

114 J 2, 

z-(iTo+roxllx0'037) 

wd2 
= 0.0078— 

12 

wd2 

12* 
0.181 

t03Z2 

l2~' 

For known values of X, Y and Z all the bending moment coefficients are found 

using Formulas (140) to (148) as given in the following table. 

Bending Moment Coefficients 

Bending Moment 
Roof Loaded, Top Floor Loaded, 

Bottom Floor 

Loaded, 

M’i = Wi = 0 77; i = Uh — 0 tr2 =703=0 

*1 

wd2 wd2 
-0 061 — 

12 
0.013^ 

12 

fe
: ii oe 

wd2 
-°.7°~ 

Uhl2 
-0.001- 

wd2 
0.013 — 

12 

M.=2^f(2F +Z) 
I fl% 

0,«'f 0.303^ 
12 -00,0if 

ms=2^f-tv<^2 
wd2 

—0.798-“ 
±Z -»■< 

Mt- -2y?-(X+2Y) 
hhi °'150 if 

wd2 

-°‘435iy -onof 

wd2 
-°.052— 0.1«f 0.392 — 

12 

Mi = 2X — jifW J2 
wd2 

°oi«- -0 043'f 
Wil2 

-0.816^ 

M1=-(6-c1)y-1 jx 
hi 

ivd2 
—0.030—— 

Uhl2 
0.097—~ 

wd2 
-0.424— 

12 

Using the bending moment coefficients given in the table, the bending moments 

for dead load and live load are computed. For dead load consider all spans as 

loaded. For live load consider that the load is placed only in the floors which 

produce at the considered section the bonding moments of the desired sign. 
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Bending Moments for Dead Load 

t*i = 1.8 kips, = 154.0 foot-kips 

10! = = 2.2 kips, = yVWJ3^2 — 188.0 foot-kips 

(1 kip = 1 000 lb.) 
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Maximum Bending Moment for Live Load and Total Bending Momenta 

Wi = 0.9 kips, x^w\l2 = 76 9 foot-kips 

= u>i = 4.0 kips, j%wJL2 = jtfWil* = 342.0 foot-kips 

(1 kip = 1000 lbs.) 

Bending 

Moment 
Roof Floors 

Total 

Live Load 

Total 

Dead and 

Live Load 

Mt 

M7 

M* 

M6 

Mk 

Mz 

M2 

Ml 

- a.7~--a.fi 

- °-7f—53 6 
W\l2 

0.234-—= 18.0 
lZ 

W\l2 
-0.074-^- = - 5.7 

1Z 

W\l2 
-0.036-;- = - 2 8 

LZ 

IV*12 
-0.061-^ = - 20.8 

1Z 

W2l2 
-0.061—=- 20.8 

Uhl2 
0 303—f- = 124.0 

1 

w212 
-0.841- -287.0 

IV-il2 

-0.554-—=-189.0 

wj* 
0.532— = 181.0 

LZ 

Uhl2 
-0.869—= -296.0 

LZ 

-0.424^=-144 0 
1Z 

Foot-kips 

- 74.4 

- 74.4 

142.0 

-293.7 

-189.0 

181 0 

-296.0 

-146 8 

Foot-kips 

-191.5 

-191.5 

231.7 

-463.1 

-224.1 

289.0 

-454.5 

-202 7 

For the top floor of the frame, place the load in the top floor only and consider 

the roof and the bottom floor as not loaded. 

M6 = - 169.4 - 0.798 X 342.0 = - 441.4 ft.-k. 

Since = 780.0 ft.-k. 

Mm&x = 780.0 - 441.4 = 338.6 ft.-k 

For the bottom floor, load the bottom floor and the roof 

M2 = — 158.5 + 0.016 X 154.0 - 0.816 X 342.0 = - 435.0 ft.k., 

consequently 

iMmax = 780.0 - 435.0 = 345.0 ft.-k. 

Maximum Bending Moment Diagrams.—For the computed maximum positive and 

negative bending moments, bending moment diagrams may be drawn as shown in 
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Fig. 179, p. 430. These are useful for determining the points of bending of the 
reinforcement. 

Fig. 179.—Maximum Bending Moment Diagrams. (See p. 430.) 



CHAPTER V 

CONCRETE AND REINFORCED CONCRETE ARCH BRIDGES 

The development of concrete and reinforced concrete increased 

considerably the use of arches for bridges. An arch bridge is subjected 
mostly to compressive stresses and since concrete is particularly adapted 
to resisting compression it is the logical material for this type of con¬ 

struction. With reinforcement to resist any possible tensile stresses 
a reinforced concrete arch bridge is much superior to stone or brick 
arch, where reliance must be placed entirely upon resistance in com¬ 
pression and tension must be avoided. 

The first concrete arches were of moderate spans such as used in 
ordinary masonry construction. With better understanding of this 
type of construction the length of spans increased materially. The 
most marked increase took place within the last decade. Up to 1915 
the Walnut Lane Bridge in Philadelphia with a span of 233 feet was one 
of the longest concrete arch spans in existence. Since then spans of 
that length have become comparatively common. In 1927 the longest 

span built in America was the Cappellen Memorial Bridge in Minneap¬ 
olis with a clear span of 400 ft. This has been surpassed by an arch 
erected in France with a span of 433 ft. A bridge is now (1928) in 

process of construction in France with an arch span of 558 ft. 
Advantages of Arch Construction.—Concrete arch construction has 

following advantages: 
1. Permanency. A properly designed and built arch is permanent. 

Instead of deteriorating it gains in strength with age. 

2. Small cost of upkeep. A properly designed and built arch bridge 

entails practically no expense for upkeep. 
3. Aesthetic appearance. An arch bridge lends itself admirably to 

artistic treatment. It may be fitted into a landscape without destroying 
any of its natural beauty. 

4. Less vibration and less noise. Due to the large mass there is no 
appreciable vibration in concrete arch bridges. The noise, so common 

in steel bridges, is entirely eliminated. 
Comparative Costs.—The cost of a bridge depends upon a number 

of factors and local conditions which may affect an arch bridge in a 
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different manner than a steel truss or a concrete girder. Therefore it is 
not possible to establish any fixed rule showing where any particular 
type of bridge design is most economical. 

In comparing the cost of arch bridges with other types of con¬ 
struction, it is necessary to consider not only the cost of superstructure 
but also the cost of foundations. 

The cost of superstructure for arches with spans longer than 50 ft. 
is cheaper than that of concrete girder bridges and also cheaper than 
steel trusses. 

The relative economy of foundation depends upon conditions of 
the ground. Where rock or other hard foundation is not far from the 
surface of the ground, the cost of foundations for arches may be even 
lower than for other types of construction. The total cost of the 
arch bridge therefore will be lower than for a well-designed steel bridge 
or concrete girder bridge. Where the foundation work is more dif¬ 
ficult, the cost of foundations for arches will be larger than for steel 
bridges, not only because the arch bridge is heavier, but also because 
the arch foundation must be made unyielding and also provision must 
be made to resist the horizontal thrust. The extra cost of foundation, 
therefore, reduces the advantage of the arch bridge and in bad ground 
may make the cost of an arch bridge higher. 

Where difficult foundations are encountered, it may be more econom¬ 
ical to consider the use of bow string arches with horizontal tics in which 
the thrust is resisted by ties. The foundations for such structures are 
subject only to vertical forces the same as for simple girders and trusses. 

Where an unyielding foundation is hard to obtain and fixed arches 
are not advisable, the use of hinged arches may be considered, the 
stresses in which are not affected by yielding of foundations. 

CONCRETE ARCHES vs. STEEL TRUSSES 

In comparing the relative advantages of concrete arches and steel 
trusses, not only the initial cost but also the cost of upkeep must be 
taken into consideration. A steel bridge must be regularly painted, 
otherwise it corrodes and in a comparatively short time becomes dan¬ 
gerous to traffic. Where proper maintenance can be counted upon, the 
yearly cost of this should be estimated and an amount added to the 
estimated cost of the steel bridge sufficient to yield the required yearly 
expenditure. In outlying districts or in small municipalities having 
no efficient maintenance forces, a bridge is likely to receive no attention. 
In such cases concrete arch bridges should be used even if the initial 
cost is appreciably larger than for steel bridges because an unattended 
steel bridge may become useless within a very short time. 
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GENERAL REQUIREMENTS FOR SUCCESSFUL ARCH BRIDGE 

To got a successful structure the following requirements must be 
fulfilled: 

1. The arch bridge must be designed by a competent engineer expe¬ 
rienced in designing of arches. 

2. Not only the general design but also details, such as expansion 
joints in spandrel walls in filled spandrel arches and in floor construction 
of open spandrel arches, must be carefully worked out. 

3. Proper water proofing and drainage must be provided. Water 
must not be allowed to accumulate in pockets or cracks where in freezing 
it might damage the structure. 

4. The structure should be built under the supervision of an expe¬ 
rienced engineer and by a reliable contractor who has had experience in 
building concrete arches. 

5. Proper foundation must be provided as required by the plans. 
If unyielding foundation was anticipated but is not obtainable, the 
design of the arch might have to be changed to take care of a possible 
yielding of foundations. Foundation in running water must be properly 
protected against underscoring. 

6. Concrete of first class quality and of required strength must be 
used. Particular pains should be taken to produce dense concrete, as 
porous concrete, irrespective of strength, is in danger of deterioration 
under the influence of weather and frost. 

7. Method of placing concrete as well as the location of construction 
joints must be carefully worked out by the engineer in charge and not 
allowed to be determined in the field. 

CLASSIFICATIONS OF ARCH BRIDGES 

The arch bridges may be classified according to their method of 
design and also according to the type of construction. The method of 
design depends upon the number of hinges. The classification then 
may be: 

Three-hinged Arches, 
Two-hinged Arches, 
One-hinged Arches (hinge at the crown) and 
Fixed (or hingeless) Arches. 

The difference between these types is not only in construction as required 
by the presence or absence of hinges but also in methods of design. 
Separate formulas are given for two-hinged and fixed arches. 



434 CONCRETE AND REINFORCED CONCRETE ARCH BRIDGES 

According to their construction the arch bridges may be divided into 

Filled Spandrel Arches, 
Open Spandrel Arches. 

Filled Spandrel Arches.—The oldest type of concrete arch bridges 
is the filled spandrel type illustrated in Fig. 180, p. 435. In this type of 
construction the space between the extrados of the arch and the road¬ 
way is filled with earth. This fill, after it is properly tamped and rolled, 
supports the roadway. The fill is retained on both sides by spandrel 
walls. The spandrel walls perform the same duty as an ordinary 
retaining wall. They may be built of any kind of masonry. 

Spandrel Walls.—Spandrel walls are the walls placed at the sides 
of the arch bridge and extending from the top of the arches up to the 
level of the roadway. Usually they are built separately from the arch 
and are not considered as a part of the load-carrying structure. A 
coping and balustrade or railing may be placed on the top of the spandrel 
wall. 

The main purpose of the spandrel wall is to retain the filling material, 
• and its structural action is similar to that of a retaining wall. The 
force to be resisted is the earth pressure of the fill increased by the 
side pressure caused by the live load. The effect of live load may be 
replaced by a proper surcharge in the manner described in connection 
with retaining walls.1 

Ordinarily in concrete construction the spandrel walls are made of 
concrete, plain or reinforced. When desirable, as for instance to give 
the arch the appearance of a masonry arch, the walls may be made of 
stone, brick or any other type of masonry. 

Masonry or plain concrete spandrel wall must be proportioned in 
the same manner as a gravity type of retaining wall. Proper provision 
must be made against sliding and overturning. As the thickness of the 
wall at the bottom is much larger than required at the top, a reduction 
of the thickness may be obtained by stepping or sloping of the back 
surface. 

A reinforced concrete wall may consist of a simple upright slab as 
shown in Fig. 181, p. 436, designed as the upright slab of a T-shape 
retaining wall, the arch itself serving as the base. The slab is then 
a cantilever fixed at the top of the arch and loaded by the horizontal 
earth pressures with surcharge. The maximum bending moment acts 
at the bottom of the spandrel, i.e., where the spandrel joins the arch. 
The slab may be made of uniform thickness. In arches with large rise, 

lFor design of retaining walls, see Voi. I, p. 841. 
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however, the inside face of the walls is made slanting. The main rein¬ 
forcement is upright and is placed near the inside face of the wall and 
parallel to it. It ieceives its maximum stress at the bottom of the 
wall, therefore the wall reinforcement must be anchored in the arch 
a sufficient distance to develop the strength of the bar by bond (see 
p. 267, Vol. I). It is apt to be difficult to keep the long slender 

wall bars in position during the 
Cement sidewa/k concreting of the arch. Therefore, 

instead of anchoring the bars in the 
arch, separate dowels are used of a 
length equal to double the distance 
required for anchorage. Half of 
each bar is imbedded in the arch 
and the other half serves as a lap 
for the reinforcement in the wall. 

To prevent sliding of the wall, 
a recess should be provided in the 
arch sufficient to take the shear. 

Horizontal temperature reim 
forcement should be used to pre¬ 
vent cracks. 

When the wall is of considerable 
depth, its cost may be decreased 
by using buttresses as shown in 
Fig. 182, p. 437. The wall then acts as 
a slab supported by the buttresses 
and loaded by the earth pressure. 

Usually it should be treated as a continuous slab. The main reinforce¬ 
ment in the wall is horizontal and is placed near the outside face between 
buttresses and near the inside face at the buttresses. The amount of 
the steel should be proportioned according to the earth pressure. The 
largest amount of steel is required at the bottom of the arch and may 
be decreased with the decrease of the intensity of pressure. 

The buttresses must resist the pressure transferred to them by the 
wall. They act as cantilevers supported on the top of arch and resist 
the pressures equal to the unit pressures multiplied by the spacing of 
the buttresses. The main reinforcement is placed near their inside 
faces and must be anchored in the arch either by extending it into the 
arch a sufficient distance or by means of dowels in the same manner 
as explained in connection with upright walls. Recesses capable of 
resisting the shear must be provided in the arch. 

Shearing stresses must be computed in the buttress to determine 

For position of section II-H, see Fig. 180, p. 435. 

Fia. 181.—Reinforced Concrete Spandrel 

Wall. CSee p. 434.) 



CLASSIFICATION OF ARCH BRIDGES 437 

whether diagonal tension reinforcement is required. The wall must be 
anchored to the buttresses by means of horizontal stirrups extending 
from the buttress into the wall a sufficient length to develop the bar 
by bond. 

Buttressed walls are particularly advantageous when it is desirable 
to cantilever out the sidewalk beyond the face of the wall as shown 
in Fig. 182, p. 437. The sidewalk then is supported on brackets built 
from every buttress. The 
brackets act as cantilevers 
having a maximum bending 
moment at the face of the wall. 
The main reinforcement is 
placed horizontally near the 
top and is anchored in the 
buttress. Also diagonal ten¬ 
sion reinforcement may be 
required. The sidewalk slab 
is considered as a slab carried 
by the brackets. 

The buttress for this case is 
subjected to horizontal forces 
in the same manner as ex¬ 
plained before. In addition 
it must resist the bending 
moment transferred to it by 
the sidewalk bracket. This 
bending moment should be computed about the center of the buttress 
section on the top. It is therefore equal to the bending moment for 
which the bracket is designed plus the total load on the bracket mul¬ 
tiplied by one-half the depth of the buttress section on the top. This 
bending moment acts at all sections of the buttress. Particular care 
should be used in designing the joint between the buttress and the 
bracket so as to make it capable of resisting the shear and bending 
moment. 

Cantilever Sidewalk for Plain Concrete Spandrel Walls.—Some¬ 
times it is desirable to extend the sidewalk beyond the outside edge 
of the spandrel wall when spandrel of plain section is used. The con¬ 
struction then will depend upon the length of the projection. Small 
projection may be made without any special provision relying on con¬ 
crete to resist shear and bending moment. Of course the bending 
stresses produced by the projection must not exceed the allowable 
working stresses for plain concrete in tension. 

Pour Nol- Arch ring 
nniir KL- 9. Counterforts and parapet wait 

1 to underside of sidewalk slab 
Pour No3 Coping, sidewalk,cantdeuerbeam 

and curb 

Waterproofing 
membrane 

1—^--r 
Cantilevery 

beam/ 
Hotch parapet wajj 
to receive beam 

Pour Ho 2 

Constructionjoint 

Pour No 1 

Fibre conduit 

Curb-beam seat 
top of counterforts 

ir-O'ctoc 

'Constructionjoint 

Cement plaster 

■l{ "Cement mortar 

| Ex trad os of arch 

Section A-Afthrouqh Parapet and 
Sidewalk-Earth filled Arch 

Fig. 182.—Spandrel Wall with Buttresses. 

CSee p. 436.) 
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Larger projections require brackets properly proportioned and 
reinforced. The tension reinforcement from the brackets must extend 
into the wall. It is not sufficient to extend the bars sufficiently to 
develop them by bond. Such construction would take care of the 
bracket but would not provide for the bending moment transferred by 
the bracket to the wall. Usually it is necessary to extend the bars the 
whole height of the wall and anchor it in the arch because the bending 
moment from the bracket acts with equal force on all sections. The 
reinforcement could be stopped only in case of a very heavy wall when 
its weight is sufficient to keep the eccentricity caused by the bending 
moments well within the middle third of the wall. 

Contraction Joints in Spandrel Walls.—Ordinarily the spandrel 
wall is not considered a part of the carrying construction, therefore it 
should be built so as to enable the arch to deflect independently of the 
spandrel walls. For this purpose a number of vertical contraction 
joints are provided in the spandrel wall, which not only enable the arch 
to deform but also provide for any movement of the wall due to the 
temperature changes. 

Filling Material.—Any available material may be used for filling 
between the spandrel walls. It is important, however, to have the 
fill properly tamped, otherwise it may settle, and cause damage to the 
roadway. 

In flat arches when it is desirable to increase the thrust due to the 
dead load in order to reduce the tensile stresses due to the live load and 
changes of temperature, material with high specific gravity such as very 
lean concrete may be used for fill. It is placed on top of the arch proper 
and is not considered as a part of the arch ring. This method is used 
in Europe but seldom in the United States where tensile stresses are 
provided for by proper reinforcement. 

Fill for Arches on Grade.—When the roadway of the arch is on a 
grade but the springing lines are placed on a level, the depth of fill on 
one side of the crown is much larger than on the other side. When 
filled with same kind of material on both sides the dead load is unsym- 
metrical and the line of pressure for the dead load is an unsymmetrical 
curve. It is obvious, therefore, that in such case it is impossible to 
make the arch axis coincide with the line of pressure for dead load and 
consequently some bending moments will be developed by the dead 
load. 

To remedy this, attempts are often made to equalize the load on both 
sides. This can be done by using on the side with smaller depths 
filling material of larger specific gravity than on the other side. Where 
this is not possible the load on the side with larger depths may be 
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reduced by making part of the spandrel space hollow and support the 
fill above the extrados by small arches or concrete slabs. 

Often the expense of the equalizing of the loads would be much 
larger than the extra cost of providing for the bending moments due 
to the dead load. This is particularly true in America. 

Waterproofing and Drainage.—The extrados of the arch and the sides 
of the spandrel walls must be properly waterproofed. The waterproofing 
membrane must be applied on the top of the concrete and properly 
protected before the spandrel is filled. All rain water must be promptly 
carried off by proper drainage. 

OPEN SPANDREL ARCHES 

In recent years the open spandrel arch construction became most 
favored for arch bridges, especially arches with large ratio of rise to 
span and for spans over 100 ft. In open spandrel arch bridges the 
fill above the arch ribs is omitted and the construction consists of 
(a) arch ribs, (b) a system of vertical supports above the arch ribs, 
(c) a horizontal floor construction carrying the roadway and supported 
by the vertical supports. 

The economy of open spandrel arch construction is due to following 
reasons: 

1. The dead load is reduced by omitting the fill so that the arches 
and the foundation may be made lighter. 

2. The arches do not need to be made the full width of the bridge. 
The barrel type arch rib may be replaced by two or more independent 
narrow ribs. 

3. The independent ribs may be made deeper than is possible with 
barrel arches, thus reducing the effect of the bending moments and 
reducing the tensile stresses. 

4. The ribs may be made of rich concrete properly reinforced, with 
consequent reduction in cost. 

By the introduction of open spandrel arches the usefulness of this 
arch construction has been considerably increased. 

Arch Ribs.—The arch rib may be a barrel rib extending 'the full 
width of the bridge same as in filled spandrel arches. This is shown in 
Fig. 183, p. 440. The width of the rib, however, may be reduced if 
desired by cantilevcring the sidewalks beyond the faces of the ribs as 
shown in Fig. 184, p. 441. 

The cost of construction may be reduced by using instead of one 
barrel rib two separate ribs as shown in Fig. 185, p. 442. The combined 
width of the two ribs is smaller than the width that would have been 
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required for full barrel arches. In very wide bridges three separate 
ribs may be used, a wide one in the center and two narrower ones 
at the sides. 

In the above cases the width of the arch rib is large in comparison 
with its depth. Each rib is stable by itself so that no lateral bracing is 

R. M. Morton, State Highway Engineer. Harlan D. Miller, Bridge Engineer. 

Fig. 184.—Bridge across Van Duren River, near Alton, California. (See p. 439.) 

The cost of construction may be farther reduced by using two or 
more narrow ribs as illustrated in Figs. 186 and 188. This type lends 
itself very well to cases where the bridge is designed for combined traffic 
such as vehicular traffic and railroad traffic. Separate arch ribs are 
used under the railroad tracks for vehicular traffic and sidewalks respect- 
ively. Each set of ribs is proportioned for the loads coming upon them. 
No question is then involved as to the distribution of the loads over 
the ribs. 

Since the ribs are narrow, they require lateral bracing not only to 
increase the unsupported length of the ribs but also to resist wind 
stresses. 
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A modification of this type of construction is the construction with 
suspended roadway, treated on p. 446; also the construction in which 
the ribs extend to the roadway as discussed on p. 445. 

Vertical Supports.—The load from the floor construction is trans¬ 
mitted to the arch ribs by means of vertical supports. It is well to 
remember that those vertical supports not only must carry the load 
with a proper factor of safety but also must transmit properly and 
uniformly the load to the arch ribs. The type and arrangement of the 
vertical supports will depend upon the arrangement and type of arch 

ribs. 
For barrel arches or for wide arch ribs, the most effective type of 

vertical supports from the standpoint of distributing the load on arch 

ribs consists of cross walls, as shown in Figs. 183 and 187. In Fig. 183 
the cross wall is provided with an opening in the center which reduces 
the amount of material in the wall and also its weight. This opening 
gives convenient access to the top of the arch rib for inspection. The 
material in the cross walls is not properly utilized because its thickness 
is governed not by strength but by lateral stiffness and also by con¬ 
struction reasons. The compression stresses are therefore small. 

To reduce the cost of vertical supports, the cross walls may be 
replaced by independent columns of proper strength to carry the 
vertical load. They must be placed so as to distribute properly the 
load over the arch ribs. A distributing block of concrete should be 
placed under the column. When one row of columns is used per rib, 
it should be placed in the center of the rib. When two rows of columns 
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are used per rib, they should be placed so that the center of gravity of 
the loads on the two columns will coincide with the center of the arch rib. 

To distribute the load over the arch rib, reinforcement should be used 
on the top and bottom so as to take any tensile stresses in case of cross 
bending of the ribs. Also stiffening cross ribs are often used over the 
rib between the columns. 

The columns are designed according to formulas given in the chapter 
on columns in Vol. I. Proper proportions must be maintained between 
the height and the least dimension of the columns. Slender columns 
must be properly braced. Any horizontal traction force must be 
provided for by making the columns able to resist bending. 

As the columns and walls are poured separately from the arch rib, 
dowels should be provided in the arches of same number and size as 
used for column or wall reinforcement. A proper seat also should 
be provided in the arch rib with a horizontal bed to receive the column 

or wall. 
Longitudinal Walls.—Vertical supports may also consist of a series 

of longitudinal walls extending full length of the arch. This construc¬ 
tion is but rarely used in America, as it has no advantages over the 
cross-wall type of construction. It has merits only when it is desirable 
to give the arch bridge an outside appearance of a filled spandrel arch 
or where the longitudinal walls form a part of the arch. 

Floor Construction.—The floor construction may rest upon vertical 
supports above the arch rib the whole length of the bridge as shown 
in Fig. 183 or the roadway in the central part of the span may rest 
directly upon the arch rib with vertical supports on both ends of each 
span (see Fig. 187, p. 444). 

The type of floor construction depends upon the type of vertical 
supports. Where vertical supports consist of cross walls the floor con¬ 
struction usually consists of: 

1. Arches spanning between cross walls. 
2. Slabs spanning between cross walls. 
Since sliding joints are required in the floor to take care of tempera¬ 

ture changes, the floor arches can seldom be considered as actual arches 
and for this reason they are treated as curved beams and provided 
with reinforcement. When slab construction is used, the spacing of the 
walls should be made small enough to permit the use of a slab thickness 
not larger than 8 in. 

The main reinforcement consists of bars running longitudinally with 
the bridge. When the slabs are continuous, proper negative reinforce¬ 
ment must be provided over the walls. To prevent longitudinal cracks 
cross bars are also used. 
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When the vertical support consists of independent columns, the 
floor construction may consist of (1) cross beams running between 
columns and slab spanned between them, (2) stringers running longitu¬ 
dinally, supported by cross beams, and a slab running between stringers, 
the cross beams often being cantilevered out to support the sidewalk, 
and (3) flat slab construction where beams and girder are omitted and, 
instead, a massive slab is supported on columns with enlarged heads. 

ARCH RIBS EXTENDING ABOVE ROADWAY 

When the clear headroom under the bridge is not sufficient for an 
economical arch, it is possible to place the arch ribs partially or wholly 
above the roadway. Such construction is shown in Figs. 188 and 201. 

Fixed Arch Ribs Extending above Roadway.—In Fig. 188 the 
arch consists of two ribs placed on both sides of the roadway with the 
roadway suspended from the arch ribs. In this construction the ribs 
are rigidly attached to the abutment so that the arches may be con¬ 
sidered as fixed arches. The horizontal thrust is resisted by the abut¬ 
ments. 

The arch is located below the roadway at the supports and above the 
roadway at the crown. The floor construction consists of floor beams 
running from arch rib to arch rib, longitudinal beams extending between 
the floor beams, and slab carried by the longitudinal beams. The floor 
beams in parts of the construction are suspended from the arches while 
next to the abutment they are supported on posts. 

Bow-String Bridges.—When it is not desirable to transfer the 
horizontal thrust to the abutment the arch rib may be connected by 
horizontal tics as shown in Fig. 201. The ties are made strong enough 
to resist full horizontal thrust. To make sure that no horizontal 
pressure will be exerted against the abutment, it is advisable to rest one 
end of the bridge upon a sliding bearing. When the arch is of con¬ 
siderable size it is advisable to support it in the same manner as is 
customary in steel trusses—namely, one end is supported on a steel 
shoe with a pin bearing while the other end is placed upon roller bearings. 
Such a bridge is able to move longitudinally with the movement due 
to temperature, without exerting any pressure on the abutment except 
that required to overcome friction. 

In Europe the expansion is often taken care of by means of concrete 
rocker bearings. These are usually cast of rich concrete and are 
heavily reinforced with spirals. The rockers are rectangular in shape 
and their upper and lower faces are segmental. For a description of a 
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rocker used for a 286J-ft. bow-string arch see Engineering News-Record, 
Aug. 18, 1927, p. 273. 

From the standpoint of design, bow-string arches are considered as 
two-hinged arches with a horizontal tie. 

The ties may consist of bars of proper number and size properly 
anchored at the supports. These may be spliced by laps of proper 
length. More positive results are obtained by using tie rods of large 
diameter with upset ends connected with turnbucklcs. Proper care 
should be used to transfer the stress in the ties at the ends to the con¬ 
crete of the arch. Anchor plates are often required, specially when the 
ties consist of heavy bars. In each case the tie must be computed for 
the maximum horizontal thrust. 

Vertical Suspenders.—The floor beams are suspended from the 
arches by means of vertical suspenders. These may consist of exposed 
steel rods or of steel construction imbedded in concrete. They are 
subjected to the following stresses: (1) direct tension caused by vertical 
load; (2) bending due to the wind; (3) bending due to rigidity of con¬ 
nection between the floor beam and the suspender; (4) distortion 
caused by shortening or lengthening of the arch ribs. This is specially 
marked in hangers of short lengths. 

The stresses due to wind pressure are caused by the action of the 
wind on the suspenders alone. This pressure may act from both sides, 
so that reinforcement on both sides is required. Also bending stresses 
in the suspenders may be produced by wind pressure acting upon the 
ribs. 

Lateral Stability of Ribs.—When the ribs extend far enough above 
the roadway it may be necessary to connect them by lateral bracing so 
as to give them lateral stability and also prevent excessive stresses due 
to wind pressure. 

USE OF REINFORCEMENT IN CONCRETE ARCHES 

Concrete arches may be built cither of plain concrete or of reinforced 
concrete. 

Plain concrete arches may be used when the compression stresses in 
concrete due to the dead load are sufficient to balance the tensile stresses 
caused by bending moments produced by the live load and the changes 
of temperature. 

This is often the case in arches of spans more than 180 ft. where the 
arches and the superstructure are of massive construction. For instance, 
the Walnut Lane Bridge, in Philadelphia, with a clear span of 233 ft. 
was built without any reinforcement in the arches. 
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The authors, however, do not recommend the use of plain concrete 
for arches, because in most cases reinforced concrete arches may be 
built cheaper. The reinforced concrete arch section may be made 
more slender and, therefore, be less subject to temperature stresses. 
Finally reinforced concrete arches are more able to resist unexpected 
stresses due to any disarrangement of foundation or any tensile stresses 
due to any causes whatever. 

Plain concrete arches should never be used unless they rest directly 
on rock foundation. 

Reinforcement in concrete arches is used when the compression due 
dead load stresses is not sufficient to balance the tensile stresses caused 
by bending moments. The reinforcement then serves to resist tensile 
stresses. Reinforced concrete arches have the additional advantage 
that the allowable unit compression stresses in reinforced concrete 
arches are larger than for plain concrete. In addition to this increase 
in unit stresses the reinforcement may be assumed as resisting compres¬ 
sion directly in the same manner as in columns. 

When the reinforcement consists of rigid structural shapes, it may 
be used to support either partially or wholly the framework. 

Reinforcement is particularly necessary for flat arches because there 
the effects of rib shortening and changes of temperature is especially 
large. 

It is obvious that isolated ribs (unless of very large width in pro¬ 
portion to depth) should be fully reinforced in the same manner as 
recommended for columns. 

Reinforcement Consisting of Bars.—The most common type of 
reinforcement for arches consists of bars of diameters usually employed 
in reinforced concrete. The main reinforcement runs longitudinally 
with the arch. Since for different conditions tension can occur near the 
intrados just as well as near the extrados, reinforcement is usually placed 
near both faces of the arch. In addition to the longitudinal bars, cross 
bars are used which tie the main bars and also prevent any longitudinal 
cracks. To prevent buckling of longitudinal bars hoops are used run¬ 
ning around the top and the bottom bars. (Typical arrangement of 
reinforcement is seen in Fig. 180, p. 434.) 

When the reinforcement consists of two layers of bars (one near the 
intrados and the other near the extrados) the bottom bars may be 
placed first before construction has started and supported on blocks or 
spacers. The concrete may then be poured and the top reinforcement 
placed after concreting has reached the level of top reinforcement. 
While with proper care and proper supervision this method may give 
satisfactory results it is not recommended by the authors. More satis- 
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factory results arc obtained by placing and inspecting all the reinforce¬ 
ment before beginning the concreting. 

It is important to keep the reinforcement in place during concreting. 
It is particularly harmful for the reinforcement to come too near the 
surface or to be exposed as then its rusting would materially impair the 
safety of the structure. Also it is harmful for the steel to be too far in 
from the surface, as then its effect in resisting bending stresses is lessened 
and the concrete must crack on the outside before the steel can come 
into action. Sagging or bent bars are also of comparatively little use. 
Therefore some positive means must be employed to keep the bars in 
the position shown on the plans. 

The lower layer of bars can be kept in place easily and the difficulty 
is encountered only with the top reinforcement. This layer must 
be supported rigidly enough so that during concreting it will not be¬ 
come misplaced. It is well to remember that the steel is subjected to 
considerable ill usage while concrete is being poured. 

Sometimes a sufficient number of stirrups with sufficient number of 
cross bars in the top layer may keep the top bars in place. When 
it is desired to use more positive means, it is possible to use horizontal 
steel cross frames consisting of small angles. 

Such frame was used in the construction of Park Avenue Bridge at 
Cincinnati, Ohio.2 It consists of 3J- X 2J X s-m- horizontal angles 
and 2 X 2 X f-in. vertical inclined angles. Notches are provided in 
the upstanding legs of the horizontal angles to receive the bars. 
Between frames the bars were held in position laterally by two 
1J X f flats placed across the bars one on top and one on bottom. 
The flats were bolted tightly. 

Bars must be spaced far enough apart to permit pouring of the 
concrete through the top layer of steel. 

The amount of longitudinal reinforcement usually ranges between 
one-half and 1 per cent of the cross section of the arch. Usually the 
reinforcement is placed symmetrically about the arch axis, one-half 
of the total area being used near each face. The bars are spliced to 
develop their full tensile strength. Sometimes at points of maximum 
bending stresses a larger amount of steel is required than the amount 
used throughout the arch. In such cases extra bars are added in 
these heavily stressed sections which extend only as far as needed. 

In some designs bars near one face, only, are used. They are 
placed near the lower face of the arch at the crown and then are bent 
up and carried near the upper face of the arch at the springing. The 
authors do not recommend this method because it does not take care 

* See Engineering News-Record, Year 1917, p. 193. 
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of the condition where tensile stresses develop on the top at the crown 
and at the bottom at the springing. 

The reinforcement of the arch is considered as increasing the cross 
section of the arch as indicated in formulas pp. 217 to 238. Where 
no considerable tensile stresses occur Formula (100), p. 219, may be 
used. Where considerable tensile stresses occur near one face Formulas 
(28) p. 228 should be used. 

Unsymmetrical reinforcement may be computed bymeansof Formulas 
on p. 233. 

Spiral Reinforcement of Arches.—The longitudinal bars described 
in previous paragraph are used mainly to take care of possible tension 
and only incidentally as compression reinforcement. Sometimes in 
arches consisting of separate ribs it is desirable to increase the com¬ 
pression strength to reduce the section of the rib. In such cases the 
heavily stressed sections of the ribs may be reinforced by means of 
spiral reinforcement in addition to the longitudinal reinforcement. 
As explained in Vol. I, spiral reinforcement increases considerably the 
allowable compression strength of the concrete. 

When the cross section of the rib is round or octagonal, one spiral 
is used as in round columns. In this manner the compression strength 
of the whole section is increased. 

Usually it is desirable to strengthen by spirals only the section of 
the arch which is apt to be subjected to largest compression stresses. 
This leads to a design where separate spirals of small diameters are 
placed near the upper and lower face of the arch section, respectively. 
To reinforce fully the compression zone for its whole width it is necessary 
to use several intersecting spirals of small diameters. 

Since the spiral increases the compressive strength of the highly 
stressed zone of the arch section, its width may be made much smaller 
than would be otherwise required. The unit stresses in spiraled con¬ 
crete may be accepted as recommended in connection with spiral 
columns, Vol. I, p. 421. 

To get largest benefit from spiral reinforcement the cross-section 
of the rib is made I-shaped. Such design gives a much larger moment 
of inertia than obtained for a rectangular section of the same area. 
Furthermore, a much larger proportion of the cross-section can be 
strengthened by the spiral as both flanges are spiraled and only the 
web has no spirals. 

Spiral reinforcement in arches is used to some extent in England 
and France, but is used very rarely in the United States. It has the 
advantage that the required section of the rib is reduced, thereby reduc¬ 
ing the dead load. The disadvantage is the increased cost of labor for 
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formwork and for fabrication and placing of the spiral reinforcement. 
Finally the placing of concrete in the portions of the rib reinforced by 
spirals is much more difficult. The condition is much worse than in 
spiral columns because there the spiral is vertical and concrete is de¬ 
posited from the top, and only the small amount of concrete outside of 
the core needs to pass through the spiral. In arch section, on the other 
hand, the core concrete must be poured through the spiral. 

Melan System 

This system of arch reinforcement invented by Joseph Melan of 
Briinn, Austria, in 1892, consists of structural ribs built of angles con¬ 
nected by lattice work. The depth of the ribs is such that the steel is 
protected by 2 in. of concrete. In small arches the ribs may consist 
of I-beams or channels curved to the curvature of the arch. The ribs 
are usually spaced laterally from 2 to 4 ft., at an average 3 ft., apart. 
Transversely they are connected by cross frames spaced 10 to 15 ft. 
apart. Very often in addition to the steel ribs longitudinal reinforce¬ 
ment consisting of bars is used. 

The main advantage of the Melan System is that the rigid ribs 
may be used to carry partially or wholly the forms for the construction 
of the arches. In such manner the dead load stresses are resisted 
by the ribs. Another advantage is that the steel ribs can be easily 
kept in position during erection. 

Another modification of the Melan arch is the construction used in 
the Springfield arch bridge.3 The arch ribs in that construction were 
provided with three hinges. After the arch was constructed the top 
hinge was removed. 

To get full benefit of this type of reinforcement the arch ribs must 
be carried into the abutment for sufficient distance to offer full 
anchorage. 

The importance of this is brought home by the failure of an arch 
bridge in Dayton, Ohio, described in Engineering News-Record, May 24, 
1921, p. 511. The failure was caused by yielding of the pier. The 
steel ribs in this case extended only a short distance into the pier and 
pulled out. The failure probably would have been prevented had the 
reinforcement been properly anchored. 

Usually the abutment is constructed separately from the arch rib. 
To make the pouring of concrete in the abutment possible before the 
steel ribs for the arch are placed, short dowel ribs are used which extend 
into the abutment and project beyond the springing line sufficiently for 
proper connection with the steel rib. 

* See Engineering News-Record, March 31t 1922, p. 514. 
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The reinforcement of two adjoining arches should be connected at 
the pier. 

Wunsh System 

This system has comparatively a very limited application. The 
reinforcement consists of rigid frames spaced from 1J to 2\ ft. apart. 
A horizontal upper member is placed near the extrados and a curved 
lower member near the intrados. The two members are connected 
at each abutment to vertical members imbedded in concrete. In this 
manner a steel frame is obtained. The amount of reinforcement at 
the crown usually amounts to 1 to 2 per cent. 

Arches of that type are applicable only for very shallow arches in 
which the ratio of the rise to the span is from XV to XV 

The bridge at Sarajevo, Bosnia, with an 83-ft. span is one of the 
largest spans of this system. 

Emperger System 

The Emperger System of arch bridges consists of cast iron encased 
in spiraled concrete. Considerable economy is claimed by the inventor 
for this system. Arches of considerable size have been built or pro¬ 
jected which distinguish themselves by lightness and low cost. Arches 
of that type while common in Europe have not as yet been used in the 
United States. 

ALLOWABLE UNIT STRESSES IN AN ARCH 

Allowable Compression Stresses.—The allowable unit stresses in 
an arch should not exceed the values given in the table below. 

Allowable Compressive Unit Stresses fc in Concrete Arches 

Description 

Concentric 
or Nearly 

Thrust and Bending Moment 

Concentric 
Load e Smaller 

than \h 
__ 

e Larger 
than \h 

a) (2) (3) (4) 
Plain concrete. 0.18/'. 0.21/'. 
Reinforced concrete, 

min. p = 0.01. 0.225,/'. 0.265/'« 0.315/'c 

/'c = ultimate compression strength of concrete at 28 days tested in cylinders. 
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The compressive stresses in an arch should be computed by formula? 
in Chapter II on Direct Stress and Bending. 

The reasons for the above recommendations are as follows: 
If an arch is subjected to a central thrust, the stresses will be uni¬ 

formly distributed over the whole section. The stress conditions, 
therefore, as far as compressive stresses are concerned, are the same 
as in columns. The allowable unit stresses for this condition must not 
exceed the allowable unit stress for columns. We have, therefore, the 
requirement in column 2 of the above table which may be expressed 
as follows: 

The allowable unit stresses in concrete for central thrust must not 
exceed the allowable unit stresses for columns. For plain concrete 
arches the allowable stresses are 0.8 of those for reinforced concrete 
arches. 

If an arch is subjected to bending moments and normal thrusts the 
section is subjected to a stress of varying intensity. The maximum 
stress acts only on a small area. The character of the stresses changes 
gradually from column stresses to flexural stresses. As explained in 
Vol. I, p. 30, the allowable unit stress for flexural stresses are larger 
than for the column stresses. Therefore, the allowable maximum 
compression stresses in arches should vary between those allowed for 
columns and the allowable unit stresses in flexure depending upon the 
variation in stresses. 

Allowable Tension Stresses and Required Amount of Tension 
Reinforcement.—The tensile stresses must be investigated first for 
working conditions. The stresses due to the dead load, including rib 
shortening, are combined with stresses due to the most unfavorable 
position of the working live load, the change of temperature producing 
at the section bending moments of the same sign as those for live load 
and the shrinkage. 

Second, the tensile stresses must be investigated to determine 
whether the design has a sufficient factor of safety. This is accom¬ 
plished by combining the stresses due to the dead load, including rib 
shortening, with the live load and temperature stresses used for previous 
case but multiplied by a desired factor of safety. The factor of safety 
may be taken as two. 

For the first, i.c., the working conditions, the tensile stresses in con¬ 
crete should not exceed 

(a) for plain concrete sections preferably no tensile stresses and 
never more than 0.02/'c or 40 lb. per sq. in. for 2000 lb. 

concrete, using formula // = 77 
oh 
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(6) for reinforced concrete sections 0.08/'c or 160 lb. per sq. in. 
for 2 000 lb. concrete, using formula 

, = 4_L_ 
Jt bhll - (n - bhll — (n — 1 )p K2 + 12 (n — l)pa2J 

For the second condition, i.e., when the live load and temperature 
stresses are multiplied by factor of safety, the tensile stresses must not 
exceed 

(a) for plain concrete sections 0.10/'c or 200 lb. per sq. in. for 2 000 

N ( 6 A 
lb. concrete, using formula = —( 1 — 

6/i\ h / 
(b) for reinforced concrete sections the stresses in steel must not 

exceed 14 000 lb. per sq. in. multiplied by the same factor 
of safety. Formulas 29, p. 228, or 51, p. 236, should be used. 

Required Amount of Tensile Reinforcement.—The required amount 
of tensile reinforcement must not be less than 0.25 per cent of the largest 
gross cross-section of the arch. The exact amount of reinforcement 
to be used should be computed for the combination used for the second 
condition. The allowable tensile stress in steel must not exceed the 

values specified above. 
The object of the requirement for the first condition is plain. It is 

to prevent under working conditions open cracks in concrete. These 
are particularly harmful in structures subjected to atmospheric condi¬ 
tions as they may lead to gradual disintegration of the concrete at the 
cracks. The condition is particularly unfavorable in arches where the 
sections are subjected to reversal of stresses, i.e., a section under tension 
for one position of the load becomes subjected to compression for another 
position of the load. An open crack usually is irregular. After the 
load producing it is removed the crack may not close completely due to 
small relative displacement between the projections and the opposing 
indentations. When the section is subjected to compression, the crack 
may be closed forcibly with the consequent crushing and grinding of 
the projecting particles of concrete. Again subjected to tension, the 
resulting crack becomes wider than it was originally under the same type 
of loading. 

Cracking is particularly undesirable in plain concrete sections as 
then it automatically reduces the depth of the section. This is not the 
case in reinforced concrete sections where the reinforcement supple¬ 
ments the lost tension due to cracked concrete. When the arch section 
fulfills the first requirement no cracks in concrete need to be expected. 
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The object of the requirement for the second condition is not as 
self-evident, especially as no such requirement is made in beam design. 
The reason for it is given below. 

A beam, the sections for which are determined for allowable unit 
stresses, has automatically the factor of safety upon which the unit 
stresses are based. If for working loads the steel is stressed theoretically 
to 16 000 lb. per sq. in., the stress will be 32 000 lb. per sq. in. when 
the load is doubled. 

In arch design the stresses are not a simple result of the loading as 
in beam design. Instead, they are resultants of several items, each 
independent of the others. Moreover the effect of each item is of 
different nature from that of the other items. When the live load and 
temperature, for instance, are doubled the stresses in the section are 
not doubled, as was the case with the beam. On the contrary, the 
increase in the stresses, particularly the tensile stresses, will be much 
out of proportion to the ratio of increase in the live load and temperature. 

In properly designed arches the dead load produces a central thrust, 
causing compression stresses uniformly distributed over the arch 
sections. To these should be added the bending stresses caused by 
rib shortening due to dead load thrust. The amount of the stresses 
due to dead load, including rib shortening, is fixed and is not affected 
by the magnitude of the live loading or by the temperature changes. 

Live load and changes of temperature produce mainly bending 
moments. The thrusts produced by unfavorable positions of live load 
and temperature are comparatively small. Fall of temperature and 
shrinkage, even, produce a pull, i.e., a thrust acting outward. 

When the dead load stresses, which are compression, are combined 
with stresses due to live load and changes of temperature, the tensile 
stresses produced by the bending moments are balanced in part or in 
full by the compression stresses due to the dead load. It often happens 
that for working conditions the tensile stresses are either entirely 
balanced by the dead load compression stresses or only very small ten¬ 
sion remains. In such cases, according to prevailing practice and the 
recommendations of textbooks treating on the subject of arch design, 
this would signify that the arch is safe as far as tensile stresses are 
concerned and that no tensile reinforcement is required. 

This conclusion usually is erroneous as no factor of safety is pro¬ 
vided. For working conditions the tensile stresses may be small. 
However, for unusual conditions, as, for instance, when the arch is 
subjected to a larger live load than that accepted in design, when 
larger temperature changes occur than assumed or when any other 
emergency arises for which the factor of safety should be provided, 
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the tensile stresses increase out of proportion to the increase in these 

items. 
Assume that the accidental live load is twice the working live load. 

The tensile stresses produced by this increased load doubles, but since 

the balancing compression stresses produced by fixed dead load remains 
the same as for working load, the resulting tension is very largely 
increased. For further explanation and example see Vol. I, p. 462. 

To provide sufficient factor of safety the amount of tensile reinforcement 

should be designed according to following rule. 

Combine thrust and bending moment due to the dead load and rib 
shortening with the bending moment and thrust due to working live load 

and temperature changes multiplied by a desired factor of safety. If 
there is a possibility of yielding of the foundations or bending of the 
pier proper, bending moments should be added. 

If for this condition the tensile stresses in concrete do not exceed 

the values specified on p. 454 no reinforcement is required. If tensile 
stresses are larger, provide sufficient reinforcement so that the stresses 

in concrete and steel do not exceed double the allowable unit stresses in 
flexure. Formulas on p. 228 or those on p. 236 may be used. 

This method provides sufficient factor of safety as far as tensile 

stresses are concerned. 



CHAPTER VI 

FORMULAS FOR DESIGN OF ARCHES FIXED AT SUPPORTS 

Arch action, contrary to widespread belief, is governed by the same 
rules of mechanics as ordinary beam action. Once the reactions in an 

arch are computed, the bending moments and shears at any point are 
found by common rules of statics. The formulas for computing stresses 
in arches are based on the same assumptions as in other reinforced 
concrete structures. The characteristic difference between a beam and 
an arch is that while the cross-sections of a beam are subjected only to 
bending moments and shears, the cross-sections of an arch are subjected 
to bending moment, shears and normal thrusts. 

An arch is always a curved beam, but a curved beam is not necessarily 
an arch. 

A curved beam supported in such a manner that its ends are free to 
slide and thereby increase the span of the beam is not an arch but a 
simply supported beam. When subjected to vertical loading, the beam 
will have a tendency to straighten. Its ends will slide outward and 
tensile stresses will develop on the under side of the beam throughout its 
length in the same manner as in simply supported beams. At the 
support there are only vertical reactions and their magnitude is the same 
as for ordinary beams carrying the same loading. The cross-sections 
are subjected to bending moments and shears only, which are found in 
the same manner as for simply supported beams. These are resisted 
by the cross-section of the beam in substantially the same manner as 

with straight beams. No benefit is derived from the curvature of the 
beam. 

A curved beam, provided at the ends with hinges firmly attached to 
solid unyielding supports, is a hinged arch. When loaded with vertical 
loads it can rotate at the ends, but the ends cannot move outward 
because the tendency of the curved beam to straighten is overcome 
by the resistance of the unyielding supports. When loaded with 

vertical loads, the beam exerts vertical pressure on the supports. In 
an attempt to straighten, the beam exerts upon the support in addition 
a horizontal pressure which is resisted by a horizontal reaction called 
the horizontal thrust. The direction of the horizontal thrust is inward 

458 
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so that it produces compression in the arch. It also produces a negative 
bending moment in the beam equal to the thrust multiplied by the 
vertical distance of the section from the support. The curved beam 
under such conditions is a two-hinged arch. The bending moments at 
any section are appreciably smaller than for simple beams because the 
static bending moments are reduced by the negative bending moments 
produced by the horizontal thrust. The actual bending moments are not 
positive throughout the span, as in the previous case, but are positive 
in some sections and negative in others. In this case two benefits are 
derived from the curvature of the beam. First, the bending moments 
are greatly reduced. Second, the whole section is subjected to com¬ 
pression stresses due to the thrust which reduce the tensile stresses 
produced in the section by the bending moment. 

A curved beam built into solid unyielding supports, so that the ends 
can neither rotate nor spread, is a fixed arch. Not only the tendency of 
the curved beam to straighten under load but also the tendency to rotate 
at the ends is prevented. At the support not only horizontal thrusts 
are developed, as in hinged arches, but also bending moments. The 
bending moments at any section of the arch are, therefore, a combination 
of static bending moments produced by the loads, bending moments 
produced by the horizontal thrust, and bending moments developed at 
the supports. The benefits derived from the curvature of the beam 
are similar to those in the previous case. In addition, the resulting 
bending moments are smaller. 

Characteristics of Arch Action.—As follows from the preceding 
paragraphs, the main characteristic of arches common to all is the 
presence at the support of a horizontal thrust induced there, because 
the unyielding supports prevent the curved beam from straightening 
under vertical loads. The horizontal thrust acts towards the center 
of the arch. It produces compression stresses at all sections of the 
arch. 

The horizontal thrust also produces negative bending moments at all 
sections of the arch which counteract the positive bending moments due 
to the loads. Thus the second characteristic of arch action is that in 
addition to the bending moment each section is subjected to a direct 
thrust and also that at all sections the static bending moment due to the 
load is considerably reduced by the bending moment due to horizontal 
thrust. 

The above characteristics are common to fixed as well as hinged 
arches. 

The difference between hinged arches and fixed arches is that in 
hinged arches at the hinges there is no bending moment and the thrust 
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is applied at the center of the hinge. In fixed arches all sections are 
subjected to bending moment. The location of the point of application 
of the thrust at the springing is different for different positions of 

loading. 
Illustration of Arch Action.—Following example illustrates the dif¬ 

ference between beam action and arch action. 
Assume a curved beam as shown in Fig. 189 (a) and (6), p. 460, 

parabolic in shape with following dimensions: span Z = 30 ft., rise 
r = 5 ft., width of beam 1 ft. The uniformly distributed loading 

equals w = 1 000 lb. per lin. ft. 

W = 10001b per I in. ft. 

W = 1000 lb perlin ft. 

(b) Curved Beam Hinged to Unyielding Abutments 

Fig. 189.—Illustration of Arch Action. (See p. 460.) 

In Fig. 189 (a) the ends of the beam are hinged and one bearing is 
movable. In Fig. 189 (b) the ends are also hinged, but both bearings 
are securely fastened to the unyielding abutments. 

Curved Beam, as Simply Supported Beam.—Consider the beam in 
Fig. 189 (a) with movable support. When subjected to loading the 
free end of the beam will move outward, so that no horizontal thrust 
can develop. Because of the hinges no bending moment can be devel- 
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oped at the support. The reaction at the supports and the bending 
moments at any point, therefore, are the same as for a straight simply 
supported beam of the same span and loading. 

Maximum static bending moment in the center 

M = \wl2 X 12 = \ X 1 000 X 302 X 12 = 1 350 000 in. lb. 

For allowable unit stresses /, = 16 000, fc — 800 using the corre¬ 
sponding constants from Table 2, p. 880, Vol. I, and the formulas on 
p. 204. 

11 350 000 
h = 0.079>J---+ 1.5 = 33.5 + 1.5 = 35 in. 

jlA 

At — pbd = 33.5 X 12 X 0.0118 = 4.75 sq. in. 

This means that it is necessary to use a section 35 in. deep, 12 in. wide 
with 4.75 sq. in. of tension reinforcement to resist the bending moments 
produced by the load. 

Curved Beam as an Arch.—Now consider a curved beam in Fig. 189 (b) 
identical in curvature with the previously described beam and subjected 
to the same loading, but placed between unyielding abutments. Since 
the ends are hinged, no bending moment is developed there. The 
vertical reactions and the static bending moment due to the loads are 
the same as in previous case. However, in addition to vertical reaction 
we have at each support a horizontal thrust H acting inward. As is 
shown on p. 574 the magnitude of this thrust is 

II = - 
1 wP 

8 r 

1 000 X 302 

8X5 
= - 22 500 lb. 

This thrust produces at each section of the arch a negative bending 
moment, the magnitude of which is Mx = Hy, where y is the vertical 
distance of the center of the section from the support. In the center 
of the span y equals the rise, or y = r so that the bending moment 
produced by the thrust is 

M — Hr — — \ —r = — -wl2, 
8 r 8 ’ 

This bending moment is equal and of opposite sign to the static 
bending moment produced by the load. Therefore, the resultant 
bending moment in the center of the span is zero and the arch section 
is subjected only to the horizontal thrust, H = — 22 500 lb. 
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If the allowable unit stress for direct compression is /„ = 450 lb. 
per sq. in., the required area of concrete section is 

, 22 500 
50 sq. in. 

or a section 4£ in. deep and 12 in. wide is sufficient to resist stresses due 
to this particular loading. 

Compare the two constructions. In the first case, where the curved 
beam acts as a simple beam, it is necessary to use in the center a section 
35 in. deep and 12 in. wide with 4.75 sq. in. of steel, while in the second 
case, where the beam is an arch, a section 4£ in. deep and 12 in. wide is 
sufficient to resist the stresses due to this special type of loading. 

In the above illustration arch action was produced because the ends 
of beams were attached to unyielding supports. Similar results may 
be obtained by tying the ends of the beam by a tension member or tie 
which resists the horizontal thrust. The area required by the tie equals 
the horizontal thrust divided by the allowable stress in steel. 

IJ_ _ 22 500 

/. “ 10 000 
1.4 sq. in. 

Fia. 190.—Arch with Tension Tie Member. (See p. 462.) 

In Fig. 190 is shown a section through the center of an arch provided 
with a tie. The concrete section is subjected to compression, the steel 

tie to tension. These forces form a resisting couple which opposes the 
bending moments due to the loads. The moment arm of the resisting 
couple equals the rise of the arch. 

In the above illustration for the sake of clearness the simplest form 
of arch action was assumed. In practice the problem is complicated by 
one-sided loading, temperature stresses, etc., so that larger dimensions 
would have to be used for the arch than result from the computations 

just given. 
Deflection of Arch under Different Types of Loading.—There is a 

considerable difference between the manner of deflection of an arch 
under vertical loading and that of a beam. 
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A beam subjected to vertical loading always deflects downward. 
After deflection, all points on the axis of the beam (except the supports) 
are below the original position of the axis of the unloaded beam. 

An arch subjected to vertical loading deflects downward throughout 
only for loads extending over the whole span. For partial loading part 
of the axis deflects downward and the balance deflects upwards. Fig- 

Effect of one sided loading 

Load producing max. pos. 
bending moment at crown 

Load producing max. neg. 
bending moment at crown 

fall of temperature and rib shortening 

Rise of temperature 

Fig. 191.—Deflection of Arch under Different Types of Loading. (See p. 463.) 

ure 191 shows in exaggerated form the shape assumed by the arch for 
different types of partial loading. 

The most unfavorable loadings for an arch are one-sided loadings 
shown in Fig. 191. The loaded part of the arch moves downward while 
the unloaded part moves up. The points of maximum tension, i.e., 
where cracks may be expected, are marked by T. 

The partial loading shown in Fig. 191, p. 463, producing maximum 
tension at the crown pushes the crown downward and the haunches 
outward. The exaggerated deflection is shown in the figure. 
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The loading producing maximum negative bending moment at 
crown shown in Fig. 191 has the opposite effect to that in the previous 
case. The arch is pushed downward at the haunches and forced up 
at the crown. 

Effect of Temperature.—As will be explained later, temperature 
changes have a very marked effect upon arches. Due to the fall of 
temperature the arch shortens and assumes a shape shown in Fig. 191. 
The crown lowers. The bending moments are positive at the crown 
and negative at the springings. 

The rise of temperature has the opposite effect to the fall of tem¬ 
perature. The deflections caused thereby are shown in Fig. 191, 

p. 463. 
Effect of Yielding of the Abutments.—Yielding of the abutments 

has a very unfavorable effect upon the arch as it nullifies the arch action, 
partly or fully, depending upon the extent of the yielding. In a general 
way yielding of the abutments has an effect similar to that of the fall 
of temperature. The deflection caused by it is shown in Fig. 191. 

METHOD OF DESIGNING FIXED ARCH BRIDGES 

In designing arch bridges following problems must be solved. 
First, proper type of construction must be selected, i.e., either the 

filled spandrel type or the open spandrel type. The various types are 
discussed on p. 434. 

Second, the curvature of the arch axis must be determined as 
explained on p. 465 under “ Curvature of Arch Axis.” 

Third, preliminary dimensions must be determined as discussed on 
p. 476 under “ Proportioning of Arch Sections.” 

Fourth, complete analysis of the arch should be made, using formulas 
for the indeterminate values given on pp. 492 to 496. 

Fifth, after the bending moments and thrusts are determined 
maximum stresses at various sections should be computed. When the 
stresses are either too small or too large, proper change in the dimensions 
of the arch section or the amount of reinforcement should be made. 

CRITICAL CROSS-SECTIONS AND CRITICAL POSITIONS OF 
LIVE LOAD 

Critical Cross-sections.—In the design of arches the depths of 
the cross-sections are measured upon lines drawn at right angles to the 
tangent to the arch axis. The dimensions of the cross-sections are not 
constant throughout the length of the arch but are smallest at the crown 
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and increase gradually toward the springing, i.e., the support of the 
arch. 

Experience teaches that, where the variation of the magnitude of the 
cross-sections at the intermediate points is properly selected, as sug¬ 
gested on page 477, only three critical sections need to be examined. 
If the stresses at these are satisfactory, the other intermediate sections 
are also safe. The critical cross-sections are at: 1. The Springing; 
2. The Quarter Point; and 3. The Crown. 

In arches of special magnitude or with unusual design of the arch 
ribs it may be advisable to consider several additional sections. 

Critical Positions of Live Load.—As evident from the influence lines 
for bending moments shown in Fig. 199, p. 535, and the discussion on 
pp. 543 and 544, the maximum bendings at the critical sections are 
produced not by a live load extending the whole length of the arch 
span but by different positions of partial loadings. The positions of 
the live load producing maximum bending moments at the critical 
sections are given on p. 505. 

CURVATURE OF THE ARCH AXIS 

The axis of a properly designed arch is a continuous consistent curve 
the radius of curvature of which is largest at the crown and decreases 
consistently towards the support. As will be shown later the ratio of 
change of the radius of curvature depends upon the ratio of the unit 
dead load at the crown to that at the springing. The larger this ratio, 
the larger is the decrease in the radius of curvature and also in the 
consistent increase in curvature. 

Dead Load for Arches with Filled Spandrel.—The determination of 
the dead load in arches with filled spandrel is simple. The dead load 
consists of the weight of paving, the weight of fill and the weight of the 
arch. 

The weight of the spandrel and the balustrade may be considered 
as distributed over the whole width of the arch. 

The weight of paving is constant for the whole arch and is usually 
known before the design of the arch is started. After the arch is laid 
out the weight of the fill and the arch proper may be obtained by 
scaling the vertical distances and multiplying these by the unit weight 
of fill and concrete, respectively. When a graphical method of deter¬ 
mining the arch axis is used, the work may be simplified by reducing the 

ordinates of the fill to the basis of the unit weight of the concrete by 
multiplying them by the ratio of unit weight of fill to unit weight of 
masonry. The reduction can also be done by graphics. The scaled 
dimensions at various sections can then be used directly for the purpose 
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of drawing the line of pressure without the necessity of changing them 
into weights by computations. The actual horizontal thrust then may 
be obtained by proper adjustment of the scale. 

The dead load may be computed either for a horizontal strip of 
arch 1 foot wide or for the whole width of the arch. The last method 
should be used when the width of the arch rib is not constant but 
increases towards the support. 

The unit dead load varies with depth of fill and thickness of arch 
and therefore is a minimum at the crown and increases towards the 
springing consistently. The ratio of increase depends upon the ratio 
of rise to span of the arch. Obviously it is smaller for shallow arches 
than for deep arches. The unit dead load plotted along the span of 
the arch on vertical ordinates gives a consistent curve. Often for 
approximate work this curve is assumed to be a parabola. More 
accurate results are obtained by assuming the increase to be propor¬ 
tional to the increase in the vertical ordinate of the arch axis measured 
from the crown. 

qc = dead load at crown per unit of length of arch span; 
qa = dead load at springing per unit of length of arch span; 

m = -- = ratio of dead loads at springing and crown; 
Qc 

l = span length of arch axis; 
r = rise of arch axis. 

Dead Load for Arches with Open Spandrel.—In arches with open 
spandrel the dead load consists of the weight of paving and the weight 
of floor construction supporting the roadway, the weight of the vertical 
supporting members for the floor construction and the weight of the 
arch rib. Usually the floor construction and the supporting members 
are designed before the work on the design of the arch rib is started 

so that the largest part of the dead load is accurately known. The 
only unknown value is the weight of the arch rib. The weight of the 
roadway and floor constructions in many cases is constant throughout 
the whole length of the arch, and the variable items are the weights 
of the vertical supports, which increase towards the support because 
of the increasing height, and the weight of the arch rib. While there 
is some variation between the unit dead load at the crown and at other 
points, the ratio of variation is much smaller than in arches with filled 
spandrel. In some cases, particularly in arches with suspended road¬ 
way, the total unit dead load is almost uniform throughout the whole 
length of the arch. 

The dead load due to paving, the floor construction and the vertical 
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supports are concentrated at the points of application of these vertical 
supports. These concentrations should be used when determining the 
line of pressure. Obviously, for divisions of the arch between the 
vertical supports, the dead load consists only of the dead load of the 

arch ribs. 
When the arch consists of separate parallel ribs, proper proportion 

of the floor load for each rib must be determined by computing reactions 
of the floor construction. Where the construction consists of two 
arch ribs only, and the floor is symmetrical, one-half of the weight of 
the floor comes upon each rib. When there are three ribs, the interior 
rib usually carries more load than the outside ribs unless the load is 
adjusted by cantilevcring the sidewalk beyond the outside ribs. 

Often it is desired to determine preliminary dimensions of arches 
with open spandrel by means of the approximate method given on 
p. 480 using the diagrams on pp. 669 to 677. These are based upon 
an assumption that the dead load is distributed over the arch (and not 
concentrated as is actually the case), that the variation of the dead 
load is proportional to the variation in the ordinates of the arch axis 
and that the curve representing the variation is fixed by the ratio 

m = which is the ratio of the unit load at the crown and at the 
Qc 

springing. To make possible the use of these diagrams it is necessary 
to replace the concentrated dead load at the crown and springing by 
distributed load of an intensity equal to the concentrated loads divided 
by the spacing of concentrated loads. 

It must be kept in mind that the object of finding these unit loads 

is to find such a ratio m = — for which the corresponding curve would 
Qc 

properly represent the distribution of the dead load throughout the 
arch in question. Where the floor construction is the same throughout 
the whole span of the arch as in Fig. 183, p. 440, the actual unit loads 
at the crown and springing may be used. However, when the roadway 
construction in the central portion of the arch rests on shallow fill and 
at the ends on concrete floor construction such as in Fig. 187, p. 444, 
the use of actual unit loads at the crown and at the springing would not 
represent properly the variation of the dead load throughout the arch. 
The dead load in such case does not increase consistently but there is a 
break at the point where the fill ends and concrete construction begins. 
In such case closer results can be obtained for the purpose of computing 

the ratio of m = ~ if, instead of the actual dead load at the crown, 
9.c 
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the load is used that would be produced by extending the concrete 
floor construction over the whole length of the arch. 

Method of Determining Arch Axis.—The shape of the arch axis 
has a decided effect upon the economy of an arch construction. It 
cannot be accepted arbitrarily. Proper arch shape may be obtained 
by one of the two well-recognized methods. 

1. The arch axis is made to coincide with the line of pressure for 
dead load so that the arch, when not loaded, is subjected only to the nor¬ 
mal thrust due to the dead load. This method is recommended by the 
authors. 

2. The arch axis is made to coincide with the line of pressure for the 
dead load plus one-half of the live load uniformly distributed over the 
whole arch, a method originally recommended for masonry arches by 
Tolkmitt. For dead load alone, such an arch is subjected to negative 
bending moments at the crown and positive bending moments at the 
springing. The purpose of these initial bending moments is to counter¬ 
act partially the bending moments due to the live load and rib shortening. 

In both cases the effect of rib shortening due to the dead load thrust 
should be considered. The thrust and bending moments due to this 
cause should be computed separately as given on p. 494 and the stresses 
produced by it combined with the axial stresses due to the dead load 

thrust. 
Improved Shape of Arch Axis.—The stresses in the arch can be 

decreased somewhat by using the so-called improved shape of arch. 
To eliminate the effect of rib shortening the arch axis is made to deviate 
from the line of pressure at points where bending moments are produced 
by rib shortening. In this way bending moments are produced in the 
arch by the dead load thrust. If proper shape is used these bending 
moments may be equal and of opposite sign to the bending moments 
produced by rib shortening, thereby neutralizing each other. Formulas 
for the shape of the improved axis were developed by Osterfeld.1 The 
method is complicated and is not recommended to any but experts 
in arch design. 

Shape of Arch Axis as Affected by Variation in Intensity of Dead 
Load.—The shape of the arch axis in methods 1 and 2 coincides with 
the line of pressure for the dead load (or the dead load plus live load). 
It is obvious, therefore, that the shape will depend upon the distribution 
of the dead load along the span of the arch. 

Dead Load Uniform.—For constant intensity of dead load for the 
whole length of the arch span, the line of pressure is a parabola of 

1 Beton und Eisen, year 1923, p. 70. 
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4tV 
second power and may be expressed by the equation y = r—x2, where 

V 

the x and y are ordinates referred to a system of coordinates passing 

through the crown. The ordinate at the quarter point for which x = \ 
4 

is y± = \r. It should be noted that in this case both methods of 
determining the arch axis give the same result. 

Variable Intensity of Dead Load.—When the intensity of the dead 
load is not uniform and the unit dead load increases towards the support, 
the arch axis becomes flatter near the crown and steeper at the springing. 
The shape of the arch axis approaches parabolas of third or fourth 
power, depending upon the magnitude of the variation between the 
unit dead load at the crown and at the springing. The depth of the 

l 
axis below the crown for - becomes smaller than the 0.25r for the 

parabolic axis. The arch axis for this case is usually a composite curve 
and usually cannot be expressed by any closed mathematical function. 

Approximate Formulas for Arch Axis.—The arch axis may be ex¬ 
pressed by approximate formulas by assuming that the dead load 
between the crown and the support varies according to some mathe¬ 
matical formula. Such approximate shapes sometimes give satisfactory 
results. One of the approximate methods for the shape of the arch 
axis and also for the magnitude of the horizontal thrust due to dead 
load is given on p. 486. It should be used only for the purpose 
of determining the preliminary shape. Since the amount of work 
connected with the determination of the line of pressure for the exact 
loads is comparatively small, it is preferable to use the actual line of 
pressure for the final arch axis. 

Determining Shape of Arch Axis when it Coincides with Line of 
Pressure for Fixed Loads.—Below are outlined methods of determining 
the shape of arch axis for any given fixed loads. The fixed loads may 
be dead loads only or they may be dead loads plus any portion of the 
live load. Horizontal thrust for these loads is obtained incidentally. 

The rise and the span of the arch must be fixed before the work on 
the arch axis is started. This fixes three points on the arch axis, namely, 
the crown and the springings. The arch axis must pass through these 
three points. 

As fully explained on p. 626 a line of pressure is a funicular polygon 
for given loads drawn with a pole distance equal to the horizontal 
thrust produced by these loads. When the arch axis corresponds with 
the line of pressure for any type of loading then this loading produces 
no bending moment in the arch but only concentric normal thrusts. 
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To become an arch axis the line of pressure must pass through the 
selected crown and springings. With this additional requirement the 
line of pressure may be drawn without the necessity of a prior deter¬ 
mination of the horizontal thrust. The magnitude of the horizontal 
thrust is obtained incidentally while the shape is being determined. 
The shape of the arch axis does not depend upon the statically indeter¬ 
minate values. This means that the arch axis is fixed only by the 
magnitude and location of the fixed loads and is entirely independent 
of the elastic properties of the arch. For equal loads the shape of the 
arch will be the same for fixed arches, arches with one, two, or three 
hinges. 

The line of pressure may be determined either analytically or 
graphically. In both cases the following preliminary work must be 
performed. 

1. The rise and span of the arch must be selected, thus fixing the 
position of the crown and the springings. 

2. The preliminary dead load must be determined. For this 
purpose the type of roadway must be decided upon to get the weight 
of paving. The relation of the top of the roadway to the arch axis 
must be fixed. For arches with filled spandrel the depth of fill at the 
crown must be fixed. In open spandrel arches the floor construction 

must be designed and its weight computed. This can be done prior 
to the design of the arch because the design of the floor is independent 
of the actual shape of the arch axis. 

3. An approximate arch axis is selected for the purpose of deter¬ 
mining the dead loads in arches with filled spandrel. Often it is close 
enough to accept for first approximation an arc of a circle passing 
through the selected crown and springings. More accurate results are 
obtained when two or more points on the arch axis are computed by 
means of approximate Formula (10), p. 482. Usually it is sufficient 

l 
to determine points at quarter points of the arch, i.e., for x = 7. The 

4 
preliminary axis is then fitted to pass through these selected points. 

4. The depth of the arch rings at various points is assumed. This 
fixes the dead load of the arch. Having drawn the arch axis and the 
thickness of the arch the dead load of the fill can be determined. 

5. The arch axis is divided into a desired number of divisions. 
The larger the number of divisions the more accurate is the result. 

The arch axis may be divided in a number of ways. 
(a) The arch axis may be divided into a number of divisions of equal 

length. Then ds for all divisions are equal. Since the inclination of 
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the arch axis at various divisions is variable, the horizontal length dx 
will be variable, being larger near the crown than near the springings, 

(b) The span of the arch may be divided into a number of equal 
divisions so that the values of dx are constant. In such case the length 
of the sections of the ribs ds are variable, being larger near the springing 
than near the crown. 

ds 
3. The arch axis may be divided so that the ratio of —* for each 

J-x 

division is the same. This reduces the work of computations as it 
ds 

eliminates the — values. In such case the divisions near the crown 
1 X 

are smallest and increase towards the support. Where the difference 
between the moment of inertia of the arch ring at the crown and at the 
springings is large, the length of divisions at the springing may become 
too large for accuracy. 

For arches with open spandrel the division should be made so that 
their center will coincide with the center of vertical supports. If the 
spacing between the supports is too large an intermediate section between 
these supports may be taken. 

The dead load for each division may be assumed to act in the center 
of the division, unless the variation in load within that division is 
large, in which case the point of application should coincide with the 
center of gravity of the load. 

Analytic Method of Determining the Line of Pressure.—Knowing 

the magnitude and the positions of dead loads at the various divisions, 
the line of pressure may be determined analytically by computing the 
static bending moments of the loads for each division point, considering 
the arch as a simply supported beam, and by dividing these bending 
moments by the horizontal thrust. The result gives at the respective 
points the vertical distance of the line of pressure from a base line 
passing through the springings. The horizontal thrust is found by 
dividing the static bending moment in the center by the rise. 

This method follows directly from the requirement that for the 
fixed loads there should be no bending moment at any point in the 
arch. To make this possible the positive static bending moments due 

to the loads must be balanced by the negative bending moment due to 
the horizontal thrust. The horizontal thrust applied at the springing 
and its bending moment equals Hy) that is the thrust times the vertical 

distance of the point at the arch axis from the springing. By equating 
the static bending to Hy the value of y may be found. 

The amount of work may be reduced by finding the increments of 
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the static bending moments starting from the crown. These divided 
by the horizontal thrust give the depth of the line of pressure below 
the crown. The procedure is shown in the table on p. 473. The loads 
and dimensions used in the table are taken from Fig. 192, p. 472. The 

values ai, <12, as ... clq are 
distances of the centers of 
gravity of loads in each divi¬ 
sion from their left end. The 
loads Pi to P6 are dead loads. 
The arch is shown as divided 
into six divisions. Usually a 
larger number of divisions is 
advisable. The ordinates of 
the line of pressure referred 
to an axis passing through 
the crown are given in column 
(6) of the table. 

Graphical Determination 
of Line of Pressure for Arch 
Axis.—When it is required to 

make the arch axis coincide with the line of pressure, the axis may be 
determined graphically in the following manner. 

Preliminary shape of arch axis and thickness of arch are accepted 
first and laid out to scale. The top of roadway is also drawn. This 
for arches with filled spandrels determines the dead load. 

The arch is divided into a desired number of divisions. For filled 
spandrel arches divide the span into divisions of equal length. The 
points of application of dead load are in center of gravity of the divisions. 
For open spandrel arches the points of application of load coincides with 
the location of vertical supports. 

Dead load for each division is computed (see p. 465). In filled 
spandrel arches the work may be simplified by reducing the ordinates 
of the fill to the basis of unit weight of concrete by multiplying them 
by a ratio of unit weight of fill to unit weight of concrete. To this 
should be added a length corresponding to weight of paving. These 
reduced values of ordinates are plotted above the top of the arch ring. 
Then, instead of actual dead loads for each division, it is possible to 
use the ordinates at the points of application of the loads measured 
from the bottom surface of arch rib to the top of the reduced surface. 
These are laid out as a force polygon to a convenient scale. The 
use of the ordinates instead of the actual loads is permissible because 
the actual loads are proportional to the ordinates, and for graphical 

Mote: The arch rib which should be plotted 
to determine dead load is not shown 

Fia. 192.—Analytical Determination of Line 

of Pressure. (See p. 472.) 
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work the proportions of the various loads and not their magnitude are 
required. 

Draw a force polygon for one-half of the arch starting at the top 

with the section next to the springing. Select a convenient pole distance 

and draw a funicular polygon. When the arch axis for the left side is 

drawn, place the pole distance to the right of the force polygon. The 

resulting funicular polygon is concave as shown in Fig. 193. Extend 

the end rays of the polygon till intersection. Draw a vertical line 

through this point of intersection. This line indicates the position of 

the resultant of the forces on the left half of the arch. Draw a hori¬ 

zontal at the crown. This line is the outside line of the line of pressure 

at the crown. Extend this line to intersection with the resultant just 

found. Connect this new point of intersection with the springing. 

The line thus obtained is the end line of the line of pressure at the 

springing. Draw parallel lines to these two lines at the ends of the 

force polygon, the horizontal line at the bottom and the inclined line 

at the top. The point of intersection of these two lines gives the pole 

for the line of pressure. 

The horizontal thrust is equal to the horizontal distance of the new 

pole from the force polygon, measured to the same scale as used in 

drawing the force polygon. 
When the force polygon represents not actual forces but ordinates 

scaled in the manner described above for spandrel filled arches, then 

the horizontal thrust is obtained by multiplying the pole distance by 
the length of the division in feet, by the weight of the concrete per cubic 

foot and by the number by which the ordinate was divided before 

using in the force polygon. 

To check the work, continue the outside rays of the funicular polygon 
to intersection with the verticals passing through springing and the 

crown, respectively. The points of intersection connected give the 

closing line of this polygon. 

Draw from the original pole a line parallel to this closing line. This 

intersects the force polygon at a certain point a. 
Connect the springing with the crown. This is the closing line 

for the line of pressure. From the new pole draw a line parallel to this 

closing line. If the work is correct this line will intersect the force 

polygon at the point a. 
After checking the position of the new pole draw a new funicular 

polygon which is the desired line of pressure. The outside rays of this 

should pass through the springing and the crown, respectively. 



CURVATURE OF THE ARCH AXIS 475 

r*
t5

ft
 



476 FORMULAS FOR DESIGN OF ARCHES FIXED AT SUPPORTS 

PROPORTIONING OF ARCH RIB SECTIONS 

Dimensions of Arch Rib Sections.—The cross-sections of the fixed 
arch rib are not constant throughout the length of the arch but are 
smallest at the crown and increase gradually until they reach a maxi¬ 
mum at the springing. In arch design normal cross-sections are used, 
i.e., sections on planes perpendicular to the tangents to the arch axis. 

Let 
I = moment of inertia of section at the crown; 
Ix = moment of inertia of section at an intermediate point x; 
It = moment of inertia of section at the springing; 
(j>8 = angle between the section and the vertical at the springing; 

<t>x = angle of inclination of intermediate section, 
I 

n = ratio --, 
I, cos <t>8 

r — rise of arch; 
l = span of arch; 

h = depth of section at crown; 
hx = depth of section at intermediate point; 

The relation between the moment of inertia at the crown and at the 
springing is usually expressed by the ratio n, which is the ratio of the 
moment of inertia at the crown, /, to the vertical projection of the 
moment of inertia at the springing, Is cos </>s. This ratio is not constant 
for all arches but depends mostly upon the ratio of rise to span of the 

r 
arch. The ratio n decreases with the decrease of the ratio -. For 

V 

shallow arches with - = 0.1 the ratio may be as small as n = 0.1. For 

larger values of p n increases rapidly. For average conditions it is: 

Ratio of n for average conditions: 

I 
n = 

I9 cos <t>9 
= 0.3. 

Variation of Moments of Inertia at Intermediate Points.—At inter¬ 
mediate points the variation of the moments of inertia is usually repre¬ 

sented by the ratio -—-—. The moments of inertia at the inter- 
Ix cos <f>x 

mediate points must be large enough to take care of the bending moments 
and thrusts there developed. It has been found from computations 
that both the parabolic variation of the ratios as expressed by Formula 
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(1) and the straight line variation as expressed by Formula (4) give 
large enough sections at the intermediate points when proper n is 
selected and when the section at the crown is large enough. The para¬ 
bolic variation is more economical then the straight line variation and 
is recommended by the authors. 

Parabolic Variation of Moments of Inertia: 

I 

Ix COS <t>x 

1 — 4(1 — n) (i) 

where x is measured from the crown. 

For a known ratio of n = -—-— and a known moment of inertia 
/„ cos <t>a 

at the crown the moment of inertia at any intermediate point is 
Moment of Inertia at Intermediate Point, Parabolic Variation 

h 
cos <t>x 1 - 4(1 - 

. • (2) 

For rectangular sections the depth of the section at any intermediate 
point is 

Depth of Rectangular Section at Intermediate Point, Parabolic Variation 

hx 
1 

— 4(1 — n) 

A. . • (3) 

The variation of moments of inertia given in Formula (1) was used 
in developing the formulas for parabolic arches given on p. 545. In 
the approximate method given on p. 480 a straight line variation was 

used to simplify the integration. 

This is 
Straight Line Variation of Moments of Inertia 

I 

Ix cos 4>s 

2x 
1 - (1 - n)y. (4) 

Moment of Inertia at Intermediate Point, Straight Line Variation 

Is 

_1_ 

COS 0, 1 — (1 

(5) 

where x is measured from the crown. 
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Arch sections proportioned by these formulas require somewhat 
more material than by the parabolic variation given by previous 
formulas. 

After the sections at the crown and the springing are selected, the 
ratio n is computed and the type of variation selected, the sections at 
intermediate points can be easily computed from the appropriate 
formula. 

How to Determine Dimensions of Cross-sections.—The required 
dimensions of cross-sections of the arch cannot be computed directly 
as in case of a beam design, because the magnitude of the bending 
moments and thrusts required to determine the dimensions of the 
sections are dependent upon the same dimensions of cross-sections. 

The work of determining the required dimensions of the arch rib, 
therefore, is somewhat involved. It consists of (a) determining pre¬ 
liminary dimensions of the arch rib, (6) determining statically inde¬ 
terminate values and bending moments and thrusts at various points 
of the arch, based upon these preliminary dimensions, (c) checking of 
the preliminary dimensions to determine whether the stresses are 
satisfactory and determining the exact amount of reinforcement. 

If the stresses are either too large or too small the dimensions of the 
sections are reduced or increased. Small changes in the dimensions 
of the arch do not affect to any extent the statically indeterminate values 
and therefore do not change the bending moments and thrusts. Appre¬ 
ciable changes, however, particularly if they are different for different 
parts of the arch, may require new computations for the statically inde¬ 
terminate values. For this reason it is important to select the pre¬ 
liminary dimensions of the arch with care so as to require only as small 
changes in the dimensions as possible. 

The preliminary dimensions are often selected by judgment or by 
“ rule-of-thumb ” formulas. More satisfactory results are obtained 
by actually computing the preliminary dimensions, using the approx¬ 
imate method described on p. 480. The results obtained by this 
method are sufficiently accurate so that only small final adjusting of 
dimensions will be necessary. 

Determining of Preliminary Dimensions.—It is sufficient to compute 
preliminary dimensions at the crown and at the springing only. Pre¬ 
liminary dimensions of arch ribs are computed for approximate bending 
moments and thrusts, which are found as explained on p. 480. The 
computations may be made as follows: 

1. The span and rise of the arch should be fixed. The type of road¬ 
way should be selected. Position of the top of the roadway in respect 
of the top of the arch should be accepted. For open spandrel arches 
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the floor construction should be designed as it is not dependent upon the 
dimensions of the arch ring. 

2. The dead load on the arch is determined next in the manner 
described on p. 466. To get the total dead load it is necessary to 
assume the thickness of the arch. This first approximation of the arch 
dimensions may be selected by judgment or computed from rule-of- 
thumb Formula (6), p. 480. These dimensions are to be used only 
for computation of the dead load. 

3. Find the values of q8 and qc which are the intensities of the 
dead load, at the springing and at the crown, respectively (see p. 466). 

These determine the ratio of m = —. The approximate dead load 
Qc 

thrust Ila is then found from Formula (35), p. 486, also the position of 
l 

the arch axis at the quarter point, x = -, from Formula (10), p. 482. 

4. The type of construction of the arch rib is selected, i.e., whether 
of plain concrete or reinforced concrete. For reinforced concrete section 
the minimum steel ratio to be used is selected (see p. 448). 

5. The live load for which the bridge is to be designed is decided 
upon and also the extent of the temperature changes to be pro¬ 
vided for. 

6. Approximate bending moments and thrusts for live load, tem¬ 
perature changes and rib shortening are found by the approximate 
method from diagrams in Chapter X. It is sufficient to find values 
for the crown and the springing. The bending moments and thrust 
for various conditions are combined so as to get the most unfavorable 
combination (see p. 487). 

7. For the most unfavorable combination of the bending moments 
and thrusts found as above, preliminary dimensions of the arch rib 
are determined, using diagrams opp. p. 648 for plain concrete sec¬ 

tions and diagrams pp. 654-655 for reinforced concrete sections. The 
allowable unit stresses in compression are given on p. 453. As far as 
tensile stresses are concerned, only first condition, p. 454, needs to be 
considered for preliminary dimensions. The amount of steel actually 
required is found after final computations are made. 

Rule-of-Thumb Formula for Arch Thickness.—The following rule- 
of-thumb formula, originally developed by F. F. Weld,2 and revised by 
the authors, may be used as a guide for the first approximation of the 
arch thickness to be used for computing the dead load. 

2 Engineering Record, Nov. 4, 1905, p. 529. 
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Let h = thickness of arch at crown, ins.; 
l = length of span of arch, ft.; 

w = uniformly distributed live load, lb. per sq. ft.; 
w7 = weight of fill at crown, lb. per sq. ft.; 

c = constant; 
fc = allowable compression stress at crown. 

Then 

Thickness of Arch at Crown, 

_ ( r- l W . w'\ 

h=c\vr+T6 + w> + m)’ • • * 

where 

c = for plain concrete, 

c =-7 for reinforced concrete. 
1.14fc 

(6) 

The rule-of-thumb formula should never be used for the final design. 
Relation between the thickness at the crown and that at the spring¬ 

ing is discussed on p. 476. The thicknesses at intermediate points 
should be varied as given on p. 477. 

APPROXIMATE METHOD OF DESIGNING FIXED ARCHES 

The approximate method 3 given below is based upon the same 
elastic theory as used in the exact method. It differs from the exact 
method in that instead of the actual dead loads, assumed dead loads are 
used which vary according to a fixed rule. For this assumed dead load 
the line of pressure can be represented by a closed mathematical function 
and the formulas for the statically indetermined values may be solved 
by integration. 

Following notation is used in the formulas for the approximate 
method. 

8 This method has been evolved partly by Dr. Ing. Farber and partly by A. 

Strassner. (See Deutsche Bauzeitung No. 3, year 1915, “Neues Verfahren zur 

raschen Ermittelung der Forinen und Normalkrafte in Gewolben,” by Dr. Ing. R. 

Farber. Also A. Strassnei, “Neure Methoden,” Vol. 2. Wilhelm Ernst & Son, 

publishers.) Subsequently this method with modifications was embodied in a 

paper presented by Mr. Charles S. Whitney before the American Society of Civil 

Engineers. See Transactions of Am. S. of C. E., Vol. 88, year 1925, p. 931. 
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Notation. 

Let Y = ordinate for any point on arch axis, center of coordinates 
at crown; 

Yt = vertical distance of elastic center from crown, 

n = -——-= ratio of moments of inertia at crown and of 
Is COS <t>s 

vertical projection at springing. 
x = abscissa for any point on arch axis, center of coordinates 

at crown; 
l = span length of arch axis, ft.; 
r = rise of arch axis, ft.; 

qc = unit dead load at crown, lb. per lin. ft. of arch; 
qa = unit dead load at springing, 11). per lin. ft. of arch; 
qx = unit dead load at any point lb. per lin. ft. of arch; 

m = — = ratio of dead loads; 
Qc 

I = moment of inertia at crown; 
Ia = moment of inertia at springing; 
Ix = moment of inertia at any point x; 

<j>x = angle of inclination of tangent to arch axis at point x; 
<j)a = angle of inclination of tangent to arch axis at springing. 

Use of Approximate Method.—The approximate method is very 
useful: 

1. For proper selection of preliminary dimensions; 
2. For determining the preliminary shape of arch axis. 

As the amount of work involved in the determination of the bending 
moments and thrusts is comparatively small, computations may be 

made for several ratios of y and finally the most economical arch 

sections selected. 
After the most suitable dimensions of the arch arc selected an actual 

line of pressure for the dead load should be drawn and this should be 
accepted as the actual arch axis. 

The criterion of the correctness of the results obtained by this 
approximate method is the degree to which the arch axis as obtained 
by this method coincides with the arch axis obtained by drawing the 
actual line of pressure for the dead load. If the two curves coincide, 
the results by the approximate method are exact. 

For small arches the dimensions obtained by the approximate method 
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may be used for final design without the exact analysis, unless the 
line of pressure for dead load differs considerably from the arch axis 
obtained by the approximate formula. 

For more important structures complete analysis should be made 
after satisfactory dimensions are obtained by the approximate method. 

Assumption.—The dead load at the various points in the arch is 
assumed to be represented by the equation: 

Dead Load at Any Point, 

ff* = ?«[l-“(»»-1)J..(7) 

where m = — and Y is the ordinate of arch axis when center of coor- 

q° 
dinates is at the crown. 

Arch Axis as Line of Pressure.—A formula for line of pressure is 
found for the dead load given by the above equation and this line of 
pressure is accepted as the arch axis.4 The formula for arch axis is 

Ordinates of Arch Axis. Center of Coordinates at Crown, 

where 

and 

Finally 

7 
y =-(hyper, cos 2k — 1),.(8) 

m — 1 

k — log (m + V^/i2 — 1).^9) 

«• 

Ordinates of arch axis. 

Y = C0r,.(10) 

where the constant CQ is given in Diagram 22, p. 670, for various ratios 

of m and for ~ and jj. 

Where tables pf hyperbolic functions are not available and the con¬ 
stants in Diagram 22, p. 670, do not apply, the following approximate 
formula may be used. 

4 For note (see p. 480). 
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Approximate Formula for Arch Axis. Center of Coordinates at crown. 

Vi_ 
3 V/ l2+V2(m+l) V 2+V2(w+l) \2+V2(w+l) /\l -111? (ID 

Variation in Moments of Inertia.—To solve the integrals in the 
formulas for static indeterminate values, following equation was assumed 
for the variation of the moments of inertia. 

Variation of Moments of Inertia, 

where 

I 

Ix COS <f>z 

2x 
i - a -») j, 

n = 
I 

I, COS </>,’ 

(12) 

Elastic Center.—The formulas for Y and 
/* cos <t>s 

substituted in the 

general equation for the elastic center gives 3 

v 2 fVm2+l |Vm2-l rn-l ill 

c_(m-l)(n+l)i fc , W)L k k 2J J ' 

Finally, where k is given by Formula (9), p. 482. 

Distance of Elastic Center from Crown. 

Yc = Cer.(14) 

Ce is given in Diagram 23, p. 670, for different ratios of m and n. 
Denominators of Horizontal Thrust.—The denomination for the 

horizontal thrust is 

—ds + 
f X 

The second item may be omitted. Then 
Denominator for Horizontal Thrust,5 

Chlr (15) 

where Ch is given in Diagram 24, p. 671, for different ratios of m and n. 
This formula is used in determining the horizontal thrust for tem¬ 

perature changes, rib shortening for dead load and shrinkage. 

8 For development of these formulas see A. Strassner, Neuere Methoden. 
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Denominator for Vertical Reaction V—Substituting values for 

-ds from Formula (12), the denominator for Va becomes 

f. .1 I* 48 
2 

(16) 

Denominator for Auxiliary Moment M.—The denominator for M 
for the variation of moments of inertia expressed by Formula (12) is 

(17) 

Maximum Bending Moments for Live Load.—Using the above 
formulas for the statically indeterminate values and the assumed 
formulas for the arch axis and the variation of moments of inertia, 
formulas were developed by A. Strassner for maximum bending 
moments at the crown, the quarter point and springing due to uniformly 
distributed loading. On the basis of these formulas constants in 
Diagrams 26 to 31 were developed by means of which the bending 
moments and the corresponding thrusts can be obtained. 

Crown. 
Maximum Positive Bending Moment, 

Mc = C{+c)wl2.(18) 

Corresponding Horizontal Thrust, 

Hc = - C(+hc)Wl~.(19) 
r 

Maximum Negative Bending Moment, 

Mc = — C{-c)wl2.(20) 

Corresponding Horizontal Thrust, 

Hc^-C^wt-.(21) 
r 

Values of C(+c), C{-c), C(+ac), C(_*c) may be taken from Diagrams 
26 and 27, pp. 672 and 673, for proper ratios of moments of inertia n and 
dead load ratio m. 

Quarter Point x = 
4 

Maximum Positive Bending Moment, 

Mi = C(+j)U)Z2. (22) 
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Corresponding Horizontal Thrust, 

= “  (23) 

Maximum Negative Bending Moment, 

Miz=~ C{-^wl2.(24) 

Corresponding Horizontal Thrust, 

//5 = - C^wl.(25) 

Values of C(+i), C(_C(+$A), C^h) may be taken from Diagrams 
28 and 29, pp. 674 and 675, for the proper ratios of moments of inertia n 
and the dead load ratio m. 

Springing. 

Maximum Positive Bending Moment, 

Ms = C^wP.(26) 

Corresponding Horizontal Thrust, 

II. = - C\ht)wl- 
r 

Maximum Negative Bending Moment, 

M. = - C^wP 

Corresponding Horizontal Thrust, 

11, = -C^h8)wl.(29) 
T 

Values of C<+a), C(_5), C(^); C(_A*); may be taken from Diagrams 

30 and 31, pp. 676 and 677, for proper ratios of moments of inertia n 
and the dead load ratio, m. 

Normal Thrusts.—Normal thrusts can be obtained from the follow¬ 

ing formula. 
Normal Thrust for Dead or Live Load, 

N* = ~~r.(30) 
COS 0x 

This formula gives exact results for dead load, when the line of 
pressure coincides with the arch axis. For live load the error is not 

appreciable. 

(27) 

(28) 
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Effect of Temperature Changes.—Using the denominator for hori¬ 
zontal thrust given by Formula (15) and the distance for elastic center 
from Formula (14) and letting 

dtt = total expected change of temperature in degrees Fahrenheit 
from temperature at closing of arch (+ for rise of tem¬ 
perature, — for fall of temperature); 

a = coefficient of expansion due to temperature changes; 
l = span of arch, ft.; 
r = rise of arch, ft.; 
I = moment of inertia of arch section at the crown; 

Ch = constant from Diagram 24, p. 671. 

Then 
Horizontal Thrust Due to Changes of Temperature, 

Ht= 
aEI(dbt) 1 

? ci: 
(31) 

where Ch is a constant from Diagram 24, p. 671. 
Bending Moments Due to Changes of Temperature: 

Crown, 
Mct =db HtYc.(32) 

Springing, 
Mat=^Ht(r- Y().(33) 

For Fall of Temperature II is positive, the bending moment at the 
crown is positive and the bending moment at the springing is negative. 

For Rise of Temperature H is negative, the bending moment at the 
crown is negative and the bending moment at the springing is positive. 

Horizontal Thrust for Dead Load.—For known unit dead load at 
crown qe and at the springing q8 and the assumed variation of dead load 
given on p. 482 by Formula (7), and assuming that the arch axis 
corresponds with the line of pressure for the dead load, the formula 
for the horizontal thrust becomes 

Horizontal Thrust for Dead Load, 

also 

12 
Hd = (0.1080 + 0.0190m - 0.0005m2)gc-, . . . (34) 

r 

12 

Hd = Caqc—f 
r 

where Ca is a constant from Diagram 25, p. 671. 

(35) 
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Rib Shortening Due to Dead Load.—The effect of rib shortening 
for known Ha may be obtained from the general formula 

by substituting for the denominator the value given by Formula (15), 
p. 483. 

Horizontal Thrust for Rib Shortening, 

H, = - 
Chlr2 

Hd = — 
Aavr2 Ci 

Ha.(36) 

Values of Ch may be taken from Diagram 24, p. 671. 
Bending Moments Due to Rib Shortening: 

At crown, 

Mc = H.YC.(37) 

At springing, 

M9 = — H.(r - Yc).(38) 

Effect of Shrinkage.—The effect of shrinkage may be taken care 
of by assuming it to be equivalent to a drop of temperature of 15 degrees 
Fahrenheit, because the shortening of the arch rib caused by shrinkage 
is about the same as the shortening produced by the specified drop of 
temperature. 

Angles <f>9 and <£* at Springing and Quarter Point.—To get the 
normal thrusts it is necessary to know the magnitude of the angles of 
inclination of the tangent to the arch axis at the springing and at the 
quarter points. These can be taken from Diagram 21, p. 669, for 
different assumptions as to the shape of the arch. 

Computation of Dimensions.—After the bending moments and 
thrusts are found for the various conditions they should be tabulated as 
outlined in table on p. 488. To simplify the summation the positive 
bending moments and the negative bending moments with the corre¬ 
sponding thrusts are tabulated in separate columns. Separate tables 
should be made for the crown, the quarter point and the springing. 

The thrusts due to the dead load and the rib shortening and the 
bending moment due to these causes should be entered with their signs 
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both in the negative and the positive columns. The items in the 
positive and the negative columns should then be added. Attention 
is called to the fact that not all the thrusts in each column are of the 
same sign. This should be taken into account when adding the items. 

After the resulting bending moments are found the required sections 
may be obtained by using Diagrams 1-2, opp. p. 648, for plain con¬ 
crete sections and Diagrams 7-8, pp. 654 and 655, for reinforced con¬ 
crete sections. The accepted sections should be such that neither the 
maximum allowable compressive unit stresses nor the allowable tensile 
unit stresses in the section should be exceeded (see p. 453). 

Section at Springing 

Allowable compressive unit stress fc — 

Allowable tensile unit stress ft = 

cos <f>9 — 

Type of Loading 

Positive Bending Moment Negative Bending Moment 

Thrust 
Bending 

Moment 
Thrust 

Bending 

Moment 

Dead Load. 
i 

Rib Shortening. 

Live Load. 

Temperature Changes.... 

Shrinkage. 

Yielding of Piers. 

Sum. 

Enter the Thrusts and Bending Moments for Dead Load and Rib Shortening, 

with their signs, both in the positive and the negative columns. 

Use the sum of bending moments and the corresponding thrusts in each column 

to determine the dimensions of the section. 

Find the normal thrust from formula N —-. 
cos <t>9 

Make similar tables for the Crown and Quarter Point. 
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EXACT METHOD OF ANALYSIS FOR FIXED ARCHES 

As explained in the previous pages a fixed arch is a statically inde¬ 
terminate structure with three statically indeterminate values. These 
are 

1. Horizontal thrust, //. 
2. Vertical reaction, VA. 
3. Auxiliary bending moment, M. 

To solve the problem of computing the stresses in an arch it is 
necessary to compute these three statically indeterminate values. The 
bending moments and shears at any section of the arch may then be 
computed by statics. The formulas for the statically indeterminate 
values, full derivation of which is given in Chapter VIII on Theory of 
Arches, are repeated here for convenient use. 

The design of an arch usually consists of the determination of the 
arch axis, the selection of the dimensions either by judgment or by 
using approximate formulas, the computation of bending moments 
and thrusts using the statically indeterminate values, finally the com¬ 
putation of stresses. 

The final analysis should include: 

Dead load, including the effect of rib shortening; 
Live load; 
Effect of changes of temperature; 
Effect of shrinkage; 
Effect of yielding of abutments. 

Dead Load.—When the arch axis coincides with the line of pressure 
for the dead load, no bending moments exist in the arch except those 
produced by the rib shortening. The horizontal thrust for dead load 
is easily determined from line of pressure as explained on p. 471. The 
effect of rib shortening is then found from Formula 51, p. 494. 

Live Load.—The live load may be considered either as uniformly 
distributed or as consisting of concentrated wheel loads. 

For uniformly distributed loading compute first the denominators 
for Hj VA, and M, using Tables 1 and 2. These are constant for all 
positions of the load. The numerators for the statically indeter¬ 
minate values depend upon the position of the live loads on the arch. 
As explained on p. 505, it is sufficient to determine the numerators for 
the live load extending over the whole span, using Table 3, p. 502, 
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and for the live load extending over f of the span length, using Table 4, 

p. 504. By proper combination of these values in the manner described 
on p. 506 it is possible to get statically indeterminate values for the 
most unfavorable positions of the live load producing maximum stresses 
at the crown, the quarter point and the springing. 

The actual steps to be taken may be seen more clearly from the 
example on p. 511. 

For concentrated wheel loads the problem is solved most conveniently 
by the use of the influence lines. 

After the statically indeterminate values are determined, bending 
moments and thrusts are found at the critical sections, namely, the 
crown, the quarter point and the springing. 

Computation of Stresses.—After the bending moments and thrusts 
are found for the various conditions they should be tabulated as out¬ 

lined in table, p. 491. Separate tables should be made for the crown, 
the quarter point and the springing. The negative bending moments 
and the positive bending moments with the corresponding thrusts should 

be tabulated in separate columns. 
The thrusts due to the dead load and the rib shortening and the 

bending moment due to the rib shortening should be combined with the 
positive bending moments and the corresponding thrusts and then 

with the negative bending moments and the corresponding thrusts. 
Finally stresses should be computed for the resulting bending 

moments and thrusts. If the stresses are too large or too small, either 

the dimensions of the section or the amount of reinforcement should be 
changed. The formulas for the computation of the stresses are given in 

Chapter II on Direct Stress and Bending. The formula to be used 
depends upon the design of the section, i.e., whether plain or reinforced, 
and upon the character of the stresses, i.e., whether the whole section 
is in compression or whether part of it is in tension. 

If additional reinforcement is required it may be added at both 

faces so that the section is symmetrically reinforced or only at the face 
at which the stresses are excessive. In the last case an unsymmetrically 
reinforced section will result for which formulas given on p. 232 may 
be used. 

If change in section is required, the new section may be found by 
using Diagrams 1-2, opp. p. 648, for plain sections and Diagrams 7, 

8, p. 654, for reinforced concrete sections. The final dimensions 
should be such that neither the maximum allowable compressive unit 
stress nor the allowable tensile unit stresses in the section will be 
exceeded (see p. 453). 
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Section at Springing 

Concrete area A = Steel area Aa — Moment of inertia Ia = 

Depth of section h — cos <f>a = 

Type of Loading 

Positive Bending Moment Negative Bending Moment 

Thrust 
Bending 

Moment 
Thrust 

Bending 

Moment 

Dead Load. 

Rib Shortening ... . 

Live Load . 

Temperature Changes... 

Shrinkage. 

Yielding of Piers.... 

Sum. | 

Combine Thrust and Bending Moment for Dead Load and Rib Shortening with 

both the sum of all positive and the sum of all negative bending moments and their 

corresponding thrusts. 

Get the normal thrust from formula N = -. 
cos <f>s 

Use the sum of bending moments and thrust in each colujmn to compute stresses 

or to determine dimensions of the section. 

Make similar tables for the Quarter Point and the Crown. 

FINAL EXACT FORMULAS FOR FIXED ARCHES 

Notation. 

Let Y = abscissa of the arch axis referred to left support as center 
of coordinates; 

X.andF, = location of elastic center with reference to left support; 
ds = length of a division of the arch; 

l = span of arch; 
Ax = area of average section in each division of the arch; 
Ix = moment of inertia of average section in each division of 

arch; 
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I = moment of inertia of section at the crown; 
xy y = coordinates of the center of the division of the arch 

referred to axes through elastic center; 
<f>x = angle with vertical of any normal section of the arch; 

M9 = static bending moment of loads considering arch as 
cantilevered at right support (see p. 600); 

II = horizontal thrust at both supports for vertical loads; 
Ma = bending moment at left support; 
Va = vertical reaction at left support; 
M = auxiliary bending moment; 

Mx = bending moment at any section of the arch; 
Nx = normal thrust at any section of the arch. 

Assumptions. 

Symmetrical arch; 
Center of coordinates in elastic center of arch; 
Arch fixed, supports unyielding. 

Final Formulas.—The final formulas for exact analysis of an arch 
are given in the succeeding pages. Formulas are given for vertical 
loads, for the effect of change of span length, and for the effect of rib 
shortening and temperature changes. (See Fig. 194, p. 492.) 

Arch considered as fixed at right support and free at left support. VAt II and 

Ma replace the effect of fixity at left support. 

Fig. 194.—Bending Moment and Reactions at Left Support of Fixed Arch. 
(See p. 492.) 

Position of Center of Coordinates with Reference to Left Support 

X. = \l,.(39) 
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where Y are the ordinates of the arch axis referred to the left support 
as the center. 

Horizontal Thrust Due to Vertical Loads, 

// = - 

25 TUT Ids 

_2 

. L Ids __* L Idx 

X’tr. + X‘. i: 
2 2 

l 
. » 2 I dx 

This value is negative. > may be omitted or made 
^-LA. 

(See p. 608.) 
Vertical Reaction Due to Vertical Loads, 

(41) 

IL 
A a. 

2 

Since M, is negative (see p. COO), VA is positive. 
Auxiliary Bending Moment, 

' . Ids 
K2 M.— 
1 l lx 

M = — 
' Ids 

2v_» h 
2 

(43) 

Since M, is negative (see p. 600), M is positive. 
Bending Moment at Left Support, 

ma = m-va1-- iiay.. (44) 

Bending Moment at Any Section of the Arch with Ordinates x and yy 

Mx =M + VAx + IIAy + M,. . . . (45) 

Normal Thrust and Shear at Any Point} 

Nx Vx sin </>j + IIa cos • • • • (46) 

Vs=Va-2P.(47) 

In the above equations Ma is the static bending moment of the ver¬ 
tical loads at the various points, obtained for each point by multiplying 
the loads to the left of it by their distance from the point under con¬ 
sideration as explained on p. 600. 
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Effect of Change of Span Length 

Let Al = change in span length, in.; 
E = modulus of elasticity, lb. per sq. in. 

Al is positive for shortening of span and negative for lengthening of 
span. Formulas are developed on p. 602. 

Horizontal Thrust Due to Change of Span Length, 

Bending Moments at Support, 

MA = MB = - HY,.(49) 

Bending Moment at Any Point x, 

Mx = Ily.(50) 

Use H and y with their signs. Ya is positive. 

Effect of Rib Shortening for Dead Load 

The formulas given below are developed on p. 606. 

Let Ha = horizontal thrust for dead load; 
H, = horizontal thrust for rib shortening. 

Horizontal Thrust Due to Rib Shortening, 

2 Idx 
Ax 

H‘ = ^4 7* 7 ' ' 2 /t, + 2 ,t. 

This thrust is positive. N' 2 ^7- may be replaced by (See p. 
^t-iA, Aav 

608.) 

Bending Moment at Any Point x, 

Mx = H.y. 

Maximum Negative Bending Moment at Support, y — — Y„ 

M, = — H.Y. (53) 
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Maximum, Positive Bending Moment at Crovm, y — (r — Y,), 

Mc = H,(r - Y.) • (54) 

Effect of Temperature Changes 

Formulas are developed and fully discussed on p. 608. 

Let t = change of temperature in degrees; 
a = coefficient of expansion per 1 degree Fahrenheit; 
E = modulus of elasticity; 

Average values: E = 2 000 0001b. per sq. in.; a = 0.0000055 and 
aE = 11. Value of t for average conditions equals 

± 30 degrees. 

Fall of Temperature.—Formulas below give effect of a fall of tem¬ 
perature by t degrees below the temperature at closing of the arch. 

Horizontal Thrust, 

Bending Moment at Any Point} 

Mtx = II ty.(56) 

Maximum Bending Moment at Springing, y = — Yt1 

Mu = — HtY,.(57) 

Maximum Bending Moment at Crown, y — (r — Ya), 

Mtc = IIt(r - Y.).(58) 

Rise of Temperature.—Formulas below give effect of rise of tem¬ 
perature by t degrees above the temperature at closing of arch. 

Horizontal Thrust, 

Maximum Bending Moment at Springing, y = — Y„ 

Mu = — II tY.(60) 

Maximum Bending Moment at Crownf y = (r — Yt), 

M^ = Ht{r - Y») (61) 
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Effect of Shrinkage 

The effect of shrinkage may be obtained by computing the expected 
shrinkage and considering this as equal to the lengthening of the span 
AZ. This value is negative. Substituted in Formulas (48) to (50), 
p. 494, it gives the horizontal thrust and bending moments due to 
shrinkage. (See also p. 487.) 

METHOD OF SOLVING FORMULAS FOR H, VA AND M 

Formula (41) to (43) must be solved in most cases by the summa¬ 
tion method. This means that the arch must be divided into small 
divisions, then computations must be made for each division and 
finally the results must be added. The work can be simplified by 
arranging the computations in table form in the manner shown in 
Tables 1 to 4. The tables are: 

Table 1.—Method of Finding Elastic Center Ya and Denominator 
for M; 

Table 2.—Method of Finding Denominators for II and VA; 
Table 3.—Method of Finding Numerator for II and M for full 

uniform load; 
Table 4.—Method of Finding Numerators for //, V and M for 

uniform load on f of the span; 

After the values of H, V and M are computed for the full uniform 
load (Table 3) and the partial load (Table 4), the values for the most 
unfavorable positions of loads may be found as explained on p. 505. 

Determining of Elastic Center of Arch.—After the shape of the arch 
is determined (see p. 469) and the thickness of arch sections decided 
upon the elastic center is found as follows: 

1. Accept first a system of coordinates with a center at the left 
support. If the springings are on the same level, then the X-axis is 
horizontal. If the road is on a grade the springings may be placed on 
a line parallel to the road. In such case the line connecting the spring¬ 
ings and not the horizontal line should be accepted as the X-axis. 
The Y-axis is always vertical. 

2. Divide the arch into a number of divisions. While the divisions 
may be of any length, usually the work is simplified if either their 

Ids 
projection on the X-axis is constant or if the ratio — is constant. The 

first method is recommended.6 The span is divided into a number 

Ids 
8 While in some cases the method with constant ——- requires somewhat less work, 

IX 

it has the disadvantage that the end divisions are too large. Also if after first com- 
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of equal parts. Vertical lines through the division points intersect 
the arch axis at the division points. The number of divisions depends 
upon the span. For ordinary spans 8-10 divisions for each half of the 
arch are sufficient. 

3. Find the values of X and Y relating to the original axes for the 
center of each division. 

4. Find the length of each division of the arch ds, measured along 
the arch axis. This is best done by scaling. 

5. Find thickness of arch ring at the center of each division. 
The width of the section for barrel arches may be assumed equal 

to 1 ft. In rib arches the actual width must be taken. 
6. The value of Ya is found by tabulating values as shown in the 

table below. Since the arch is symmetrical only one-half of the arch 
needs to be considered. 

Table 1.—Method of Finding Elastic Center Ys, New Values of y and 

Denominator for M 
(Arch has eight divisions for each half. I — moment of inertia at crown) 

Properties of Sections 
Ids yljt 

lx 

(3^X0^ 

Ids j 
No. of 

Section 
X Y ds 

b 
bd 

h<fl 

1 

lx 

IX" — 
(8) 

y 

(3 )-Ys 

VIx 

(ID X (9^ (2)-i 

(1) (2) (3) (4) (5) («) (7) (8) (9) (10) (ID (12) (13) 

1 
2 
3 
4 
5 
6 
7 
8 

; 

2 Ids 
1'*—— for one-half of the arch. 

Ix 

Add all values in column (9) to get S~“ for one-half of the arch. 
Ix 

Jtz. _ SumjCol.JlO) 

Ids Sum Col. (9) ’ 

Tx 
As a check, add values in column (11). If the sum is zero the work is correct. 

Denominator for the auxiliary bending moment M equals sum of Col. (9) multiplied by 2. 
Col. (11) and (lli) give new ordinates referred to elastic center. 

putation it is necessary to change the thickness of some parts of the arch, the constant 
Ids 
— may be upset and a new division required before the arch can be refigured. 
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Table 2.—Method of Finding Denominators for H and Va 

(In this table arch assumed to have eight divisions per each half) 

No. of 
Section 

V 

\ 

Ida 

lx 

Ida 

lx 
(2) X (3) 

Ida 

V lx 
(2) X (4) 

X x2 1x 
(7) X (3) 

! 

Ids 1 ■ 
;d (2) (3) (4) (5) (6) (7) (8) (9) (10) (ID (12) 

1 
2 
3 
4 
5 
6 
7 
8 

From 
Table 1 

From 
Table 1 

i 

j 

Sum 
1x lx 

*2- 

2 , v2—— equals twice the sum of column (5). 

*• 

^ equals twice the sum of column (11). Columns (9), (10) and (11) may be omitted 

II 
when the second member of the denominator for H is made equal to -—. 

Anv 
The sum of two above values is denominator in Formula (41), p. 493, for //. 

XT' 2 Id* 
> .x2  is twice the sum of column (8). It is the denominator in Formula (42), 

p. 493, for Va- 
Column (12) is required only for influence lines for //. 

Denominator for Auxiliary Bending Moment.—The denominator 

for the auxiliary moment M in Formula (43), p. 493, is —. 
^ ~2Ix 

It does not depend upon the character of the loading but only upon 
the dimensions of the arch. The denominator for Ya previously com- 

putated is . By comparing the two, it is evident that the 
0 ir 

denominator for M consists of sums for the whole arch while for Ya it 
consists of sums of the same values but only for one-half of the arch. 
Since the arch is symmetrical the desired denominator is equal to 
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I TJ^ 

where — is the sum of column (9) in the previously computed 
0 Ij; 

table 1 on p. 497. 
Denominators for H and VA.—The denominator for H is 

or 

where Aav is the average cross-sections area, and for Va 

The computation is shown in Table 2 p. 498. In symmetrical arches 
it is sufficient to compute the values for one-half of the arch. The 
sum for the whole arch is then double the sum for one-half the arch. 

NUMERATOR FOR H, M AND VA FOR DEAD LOAD 

The numerators for H, M and VA are dependent upon the character 
of the loading as well as upon the shape and dimensions of the arch. 

When the arch axis coincides with the line of pressure for dead 
load, no computation for H, M and VA are required because M = 0, 
VA is static reaction and H is obtained from line of pressure. (See 

P- 471.) 
When the arch axis does not coincide with the line of pressure for 

dead load then the statically indeterminate values H and M must be 
computed just as for the live load. For symmetrical arches Va for 

dead load equals one-half of the total load. 
The denominators for the statically indeterminate values are the 

same as used for live load. The first step in determining the numerators 
is to compute the dead load for each division of the arch and consider 
it as applied in the center of the division.7 

The values of M, which appear on the numerators can be best 
found graphically by drawing a funicular polygon as shown in Fig. 195. 
The values are then scaled at each section. 

For symmetrical arches the work of computing the numerator for 
H and M may be simplified by adding the values of Ma for symmetrical 

7 Actually the load should be applied in the center of gravity for the dead load 
in that division. Usually such refinement is not warranted. 
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Ids 
points and multiplying the sum by the common values of y-— and 
Ids ' ■** 
—. The procedure of computing the numerators is outlined in Table 3. 
lx 

Pt P, Pt Pt P, R P, P, R P, Ps P. P, P, P, 

Force polygon 

Fia. 195.—Static Bending Moments for Dead Load. (See p. 499.) 

For symmetrical loads the numerator for Va. does not need to be 
computed because the vertical reaction equals one-half of the dead 
load upon the arch. 



NUMERATOR FOR H, M AND VA FOR LIVE LOAD 501 

NUMERATOR FOR //, M AND VA UNIFORMLY DISTRIBUTED LIVE LOAD 

Full Span Loaded.—Assume that the arch is symmetrical. 
Numerator for VA for symmetrical arches loaded by symmetrically 

disposed loads does not need to be computed because the value of VA 
is equal to one-half of the load upon the arch. SI lds A L ids 

2 ^May— and for M it is fMa—. 

The values could be found by computing Ma for each section of the 

arch, multiplying them by the corresponding values of y~^- and 
I* 1 x 

respectively, and adding the results. 
For symmetrical arches and loads the work may be simplified. The 

Ids Ids 
values of y— and — are the same for points located symmetrically 

I x I * 

about the t/-axis on both sides of the arch. The ordinates of the two 
points are + x and — x. Instead of multiplying separately the value 

Ids Ids 
of Ma for+ x by y-~ or —- and the value of Ma for — x by the same 

Ids Ids 
y— or —, the values of Ma for + x and — x may be added and the 

lx lx 

sum multiplied. 
The bending moment Ma at any point x for full uniform load 

may be found from Formula (47), p. 602. It is for the point at the 
right half of the arch for which x = + x.8 

M,w=--8(l + 2x)*. 

For the symmetrical point at the left half of the arch for which 
z = — x the bending moment becomes 

— 2x)2. 

The sum of the moments for + x and — x is 

M,w + =--8d + 2*)2 - -g(l - 2*)2 = - t.[Q2 + **]. 

These values may be substituted in the formulas for the numerator 

8 Af,(X) denotes bending moment Ms at section x. 3fl(_x) denotes bending 
moment M» at section — (x). 
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for Ha and M. The summations then need to be made only for orie¬ 
ls 

half of the arch; the limits of the sums will be 

Numerator for Ha for Full Load.—Substitute these values in the 
formula for the numerator for Ha. 

sr/iv, ,1 
•Lw +x\yr. 

" '1—‘‘’V7T 4'Y' ^' 'si-S 
Table 3.—Numerators for H and M for Full Uniform Load 

(Arch axis assumed to consist of eight divisions per half arch) 

Number 
of 

Section 
X y 

Ids 
x I Ix 

Ids 
x*y— 

(3) X (4) 

l+2x (i+2*y 

(6)2 

M. (1+2x)! 

w 8 
(7) -s-8 

(i) (2) (3) (4) (7) (8) 

1 and V 
2 and 2' 
3 and 3' 
4 and 4' 
5 and 5' 
6 and 6' 
7 and 7' 
8 and 8' 

From Table 2 

Sum 2 = 

g Ids >r“A 2 Ids 
The numerator for II, / ^ x M9y-j- = — w / is equal to the sum 

of column (5) multiplied by unit load w. 

m Ids fds /l2\'sr'5ldsl 
The numerator for Af, / ^ , M9— — w 2——h \^J / eclua*8 

IV 
the sum of column (4) plus sum of column (3) from Table 2 times y-J , the total 

multiplied by unit load w. 
To get values of H and M divide the above values by the denominators found in 

Table 2. 
Values in column (8) will be used in Table 5, p. 510, for determining bending 

moments at any point. Usually neither Table 5 nor columns (6) to (8) in this 
table need to be computed. 
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Since = 0 the formula for the numerator for Ha becomes 
X x 

S2 _ _ Ids >r^2 ids 
Jl.y— = - w2^x2y—. 

Numerator for M for Full Load.—Substituting the values for M9 
the numerator for M becomes 

2Y-“— s:BM“ 
—feHN-O'sS] 

Ids 

Values of Hi, Vi, and Mi for Loading Scheme 1.—In this scheme 
live load extends over § of the span and is placed on the right side of 
the arch. The values of II\y VAi and M\ are determined by Formulas 
(41) to (43), p. 493. The denominators in these equations are the 
same as found on p. 498 because they are functions of the arch and 
independent of the loading. See p. 506 for explanation of Scheme 1. 

The numerators are: 

for II i 
Ids 

.(62) 

for VA\ .(63) 

and for M \ 
va i» ,, Ids 
> M,—. 

Ix 
.(64) 

From inspection of Fig. 196 (b), p. 507, it is evident that the 
bending moment M9 at any point x is 

M. == - Mil + *)2. 

For points on the left half of the arch and the values of x to be 
subtracted in the above equation are negative. For points on the 
arch to the left of the loaded area, i.e., where — x is larger than — \l, 
M% is zero. 

The formula for numerators for Hi, VA\ and M\ are obtained by sub¬ 
stituting the above value for M9 in Equations (62) to (64). 

The numerators are: 

for Hi 
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for VA1 - + X^^T> 
I x 

for Mi m + 

An easy method of obtaining the values is by using the tabulation 
below. 

Table 4.—Numerators for Hh Mi and Va\ for Loading Scheme 1. 

(Load extends from right springing for §l) 

No. of 
Section X 

1 
U+z m+xy 

Ids 

77 
~lw+xyx 
1 x A 

'^ki+»>■, 
IX & 

(i) (2) (3) (4) (5) (6) (V) (8) 

3' 
2' 
V 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Sum 

The numerator for Hi is h(\l + x)2t/—- is equal to the sum of column (8) 
• lx 

multiplied by w. 

The numerator for Vai is i(i^ + xYx-~ is equal to the sum of column (7) 

multiplied by w. 

The numerator for Mi is ^2 !!i/ hill + x)*-— is equal to the sum of column (6) 

multiplied by w. 
To get values of Hi, Vi and Mi divide the numerators by the appropriate denomi¬ 

nators on p. 498. (See p. 522 for numerical example.) 

Ids. 

Simplification of Work in Tables 3 and 4.—The work may be some¬ 
what simplified if the horizontal projections of the divisions of the arch 
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are equal. If the number of divisions per half arch is n, and the hori¬ 
zontal length of each division a, the span length may be expressed by 
l = 2na. The ordinate of the center of each division then is x =* 0.5a, 
1.5a, 2.5a .. . . (n — 0.5)a. In general the ordinate of any point is 
x = m*a. This may be introduced in the various equations. 

For instance, 

and 

Ids 

1 h 
becomes 

2 V 
ds 

z becomes 

In column (2) of Table 3 and (2) of Table 4 instead of values of x intro¬ 
duce the corresponding values of mX) namely, 0.5, 1.5, 2.5, . . . n. 
The balance of the work is performed in the same manner as given in 
the table. The sums must then be multiplied by the common length 
of the divisions a. 

PARTIAL LOADINGS PRODUCING MAXIMUM BENDING MOMENTS 

As explained on pp. 543 and 544 the following loadings produce 
maximum stress at the critical three cross-sections of the arch ribs. 

At Left Springing. 

Maximum positive bending moment is produced by loading scheme 1 
shown in Fig. 196 (6), p. 507. (Load on f of span length from B.) 

Maximum negative bending moment is produced by loading scheme 2 
shown in Fig. 196 (c), p. 507. (Load on f of span length from A.) 

At Left Quarter Point. 
Maximum positive bending moment is produced by loading scheme 2 

shown in Fig. 196 (c), p. 507. (Load on § of span length from A.) 
Maximum negative bending moment is produced by loading scheme 1 

shown in Fig. 196 (6), p. 507. (Load on § of span length of B.) 

At Crown. 
Maximum positive bending moment is produced by loading scheme 3 

shown in Fig. 196 (d), p. 507. (Load on § of span length each 
side of crown.) 

Maximum negative bending moment is produced by loading scheme 4 
shown in Fig. 196 (e), p. 507. (Load on f of span on each end.) 

To find the statically indeterminate values H, Va and Af, for each 
of the above conditions, it is sufficient to find the values for a load 
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extending over the whole span of the arch and for a load extending over 
f of the span of the arch. The values for other cases may then be 
found by combining the values for these two loading schemes in the 
manner given below. 

Notation. 

Let M = auxiliary moment full load; 
M\ = auxiliary moment for left springing, loading scheme 1; 
M2 = auxiliary moment for left springing, loading scheme 2; 

M2R = auxiliary moment full right springing, loading scheme 2; 
M3 = auxiliary moment for left springing, loading scheme 3; 
M4 = auxiliary moment for left springing, loading scheme 4; 
Va = vertical reaction at left springing, full load; 

VA\ = vertical reaction at left springing, loading scheme 1; 
VA2 = vertical reaction at left springing, loading scheme 2; 
Vb2 = vertical reaction at right springing, loading scheme 2; 
VA3 = vertical reaction at left springing, loading scheme 3; 
VA4 = vertical reaction at left springing, loading scheme 4; 

H = horizontal thrust, full load; 
Hi = horizontal thrust, scheme 1; 
H2 = horizontal thrust, scheme 2; 
lh = horizontal thrust, scheme 3; 
#4 = horizontal thrust, scheme 4; 

w — uniformly distributed load per unit of length; 
l = span of arch. 

Full Span Loaded.—The statically indeterminate values for load 
extending over the whole span may be found as outlined in Table 2, 
p. 498, and 3, p. 502. The values for this condition are called VA, H 
and M. Due to symmetry of loading VA = \wl. 

Scheme 1.—Five-eighths of span on right side loaded. This loading 
scheme shown in Fig. 196 (6), p. 507. The statically indeterminate 
values for this condition are called VAi, Hi and M1 and are found as 
outlined in Table 2, p. 498, and 4, p. 504. This loading produces 
maximum positive bending moment at left springing and maximum 
negative bending moment at left quarter point. 

Scheme 2.—Three-eighths of span on the left side loaded. By com¬ 
paring scheme 1 and scheme 2 it is evident that simultaneous loading 
of both schemes would be equivalent to loading extending over the 
whole span. Therefore, if the indeterminate values for full load and 
for scheme 1 are known, the indeterminate values for scheme 2 may be 
obtained by simple subtraction. This scheme of loading produces 
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r—f*-®*r*——#«—i5*i 

(e) Scheme 4 

Fig. 196.—Position of Loading for Maximum Bending Moments. (See p. 605.) 
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maximum negative bending moment at left springing and also maximum 
positive bending moment at left quarter point. 

Thus 
M2 = M - Mi) 

H2 — H — Hi; 

VA2 = VA1. 

For determining the indeterminate values for scheme 3 it is necessary 
to have values of scheme 2 at the right support. These can be readily 
expressed in terms of values at the left support. Thus from statics 
the vertical reaction at right support is 

Vb2 = | wl — Va2- 

The auxiliary moment M2r at right support may be found from 
equation,9 

M2r = M2- JftwP = M - Mi - 

Scheme 3.—Load extends on each side of crown for \ of span. This 
loading scheme is shown in Fig. 196 (d)y p. 507. From inspection of 

schemes 1 and 2, it is evident that scheme 3 may be obtained by 
subtracting from scheme 1 the reversed loading of scheme 2. For this 
purpose it is necessary to find the vertical reaction at right springing Vb2 

for scheme 2 and the auxiliary moment for right springing M2r. For 

8 From Formula (44), p. 493, after substituting M2R for Af, etc., and solving 
for Mm 

M2R = Mb% + VbI- + HYS. 

From ordinary statics 

MB2 = MA2 + VA2l - (f wl)$l = MA2 + VA2l - I X 
and 

VB2 “ — VA2m 

Substitute this in above equation 

M2r = MA2 + Va21 ~ | X rf^2 + IlswI2 — Va2^ + 

M2R - MA2 + VA- + HaY, - JftwlK 

Since 

mA2 + vA- + hay, = m2 

the above form changes to 

M2r = M2- ^fowl*. 
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reversed loading of scheme 2 shown in Fig. 196 (d), p, 507, Vb2 and Mzr 
become values at the left springing. 

The vertical reaction from scheme 3 due to symmetry of loading 
equals one-half of the load in the arch. Therefore 

VA3 = \wl. 

Values of Hz and M3 are obtained by subtracting from scheme 1 
the reversed scheme 2. Thus, taking M211 as found in footnote, p. 508, 

M3 = M1 - M2r = Mi - M + Mi + f&wl2 

= 2Mi - M + J&wl2. 

#3 = # 1 _ h2 = 2Hi - H. 

Scheme 4.—Three-eighths of each half of the span loaded. This 
loading scheme is shown in Fig. 196 (e), p. 507. It produces maximum 
negative bending moments at the crown. The statically indeterminate 
values may be obtained by subtracting from full load the load in 

scheme 3. 
The vertical reaction due to symmetry of loading equals one-half 

of the load on the arch. 

Fa4 = f wl 

The other values are found by subtracting from the values for full 
load corresponding values for scheme 3. 

Thus 
Mi = M - Md = M - 2Mi + M - J&wl2 

= 2(M - Mi) - J&wl2, 

and 
Hi =H = II - 211! +H= 2(11 - Hi). 

Bending Moment at Any Point of Arch 

Usually in arches in which proper variation of moments of inertia 
at intermediate points has been accepted it is sufficient to find bending 
moments at the crown, the springing and the quarter points. In 
important structures it may be advisable to investigate bending moments 
at all intermediate points in the manner explained in the following 

paragraphs. 
After the values of VA, HA and M are found the bending moments 

at all points in the arch may be either computed analytically as explained 
below or found graphically by drawing a line of pressure as described 
on p. 626. 
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Analytically the values are computed from Equation (45), p. 493, 
which is 

Mx = M + VAx + HAy + ilf.. 

To reduce the amount of work the tables may be computed for 
w = 1 and the final result multiplied by the unit load w. 

The equation then changes to 

Mx M VA H M, _ (-X ~|-y _|-. 
WWW w w 

Uniformly Distributed Load. Whole Span Loaded—In symmetrical 
arches loaded uniformly throughout, the bending moments, at sections 
of the left half of the arch are equal to the bending moments at sym¬ 
metrically placed sections of the right half of the arch. Therefore, 
computations need be made for one-half of the arch only. 

The values of — and — are taken from p. 502. Since VA = —. 
w w 2 

Va 

w 

1 M 
The values of —- are taken from column (8) of Table 3, 

2 w 
p. 502. 

The work may be performed according to the scheme given in 
Table 5. 

Table 5.—Bending Moments at any Point for Full Load 

(Bending moments in this table are seldom required, see p. 509. 

(A) = — = ~. (B) — — = see p. 502. (C) = — = see p. 502 
w 2 w w 

Point X 

vA 
—X 
w 

(2)X(A) 
y 

H 
-y 
w 

(4 )X(B) 

M, 

w 

M M9 

w w 

(Q + (6) 

Mx 

w 

(3)-(5)-f(7) 

Mx 

(8)X«> 

(i) (2) (3) (4) (5) (6) (7) (8) (9) 

1 
2 
3 
4 
5 
6 
7 
8 

! 
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Uniform Load. Partial Loading.—For one-sided loading it is 
necessary to compute bending moments for all sections of the arch, as 
the bending moments at symmetrically placed sections are not equal. 
It may be noted, however, that for symmetrical sections, the values of 

VA . H 
—x are numerically the same but of opposite signs, while values —y 
w w 

are the same numerically and of the same sign. Considering the 
right half loaded, the values of M9 for the unloaded section are zero. 
Values of M, for right half of the arch may be taken from Table 4, 
p. 504. 

The bending moments may be worked out by the scheme suggested 

in Table 6. 

Table 6.—Bending Moments Mz for Partial Loading 

(Bending moments in this table are seldom required, see p. 509 

VaHM 
(A) = — = see p. 504. (B) = — = see p. 504. (C) = — = see p. 504. 

w w w 

Va_ H 
-v 
w 

(B) X (4) 

«. M , Ma Mx 
Mx 

(8 )Xw 

Point X 
X 

w 
(A) X (2) 

y w 
Seep. 504 

w w 
(C) + ( 6) 

w 
(3)-(5)+(7) 

(i) (2) (3) (4) (5) (6) (7) (8) (9) 

1 

2 

3 
4 
5 
6 

7 
8 
8' 
r 
6' 

5' 
4' 
3' 
2' 

v 

| 
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DESIGN OF A FIXED ARCH BRIDGE WITH FILLED SPANDRELS 

Example.—Design a fixed arch with filled spandrels to serve as a highway bridge, 
for which 

theoretical span, l = 120 ft. 
theoretical rise, r = 22 ft. 

Live load, 100 lb. per sq. ft. Impact, 20 per cent. 
Changes of temperature, ±25° F. 
Shrinkage equivalent to a drop of temperature of 15° F. 

Reinforcement: Minimum 1 per cent of concrete area. 

Stresses in concrete: Concentric compression, fc — 450 lb. per sq. in. 
Direct stress and bending, small eccentricity, fc - 530 lb. per sq. in. 

large eccentricity, fc = 630 lb. per sq. in. 
Maximum tension, /1 = 120 lb. per sq. in. 

E = 2 000 000 lb. per sq. in., a = 0.0000055, hence, olE = 11. 

Depth of fill at crown equals 1 ft. Unit weight of fill = 100 lb. per cu. ft. Road¬ 
way on top of fill, 100 lb. per sq. ft. Roadway is assumed to be level longitudinally. 

Solution.—In solving this problem following steps are taken: (1) the dimensions 
of the arch are found by the approximate method given on p. 480; (2) the exact line 
of pressure for dead load is determined and adopted for the arch axis; (3) bending 
moments and thrusts are computed by the exact method; and (4) the stresses in 
the arch sections are computed. 

Use of Approximate Method.—To be able to use the approximate method, it 
is necessary to determine the unit dead loads at the crown and at the springing, 

Qc 
respectively, and then compute the ratio —. For the purpose of computing the 

Q* 

dead load, the thickness of the arch at the crown is obtained by the rule-of-thumb 
Formula (6), p. 480 

hc = 530 X°1.14(VI^+ W + *** + m) = 18 

Hence for a strip of arch 12 in. wide 

y 12 X 18* B DOO . 
Ic =-tz— = 5 832 in4. 

= 0.3 (see p. 476). From To get the depth at the springing, assume n = -— 
if COS 

l 120 1 
diagram, p. 669 for - = — = 5.5 the value of - = 1.45 at an average. 

22 

* 12 XV , , ^ , 
It = ——— — V- Therefore 

COS <t>9 

12 

18* 
0.3 = — X 1.45 and ht — 18 

V 
= 30.4 in. 

Accept ha = 30 in. (measured at right angle to the arch axis). 
Plot the rise and span of the arch for one-half of the arch. Plot at the springing 

and at the crown the computed thicknesses of the arch. Also plot the fill and the 
roadway. The unit dead loads at the crown and at the springing are now obtained 
by scaling the fill and the arch thicknesses and multiplying by their respective unit 
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weights. For the purpose of determining the dead load the arch thickness at the 
springing is scaled on a vertical line. The unit dead loads are 

qc = 1.5 X 150 + 100 + 100 = 425 lb. per sq. ft. 

qt = 3.2 X 150 + 21 X 100 + 100 = 2 680 lb. per sq. ft. 

, . * q, 2680 „ o 
and the ratio — =-= 6.3. 

qc 425 

The constants to be used in the approximate method are 

m = ^ = 6.3 and n = -—-— = 0.3. 
qc fi cos <f>g 

Live load, w = 100 + 20 per cent = 120 lb. per sq. ft. 

wl = 120 X 120 = 14 400 lb.; wl2 - 120 X 1202 = 1 728 000 ft.-lb. 

Live Load at Springing.—Find constants from Diagrams 30 and 31, pp. 676 and 
677, corresponding to rn = 6.3 and n = 0.3. Use Formulas (26) to (29), p. 485. 

Positive bending moment, 
l 

Mt = 0.032u>Z2 = 55 300 ft.-lb; H = — 0.104wZ - = - 8260 lb. 

Negative bending moment, 
l 

M, = — 0.0163iuZ2 = - 28 200 ft.-lb.; II = - 0.032wl- = - 2530 lb. 

Live Load at Crown.—Find constants from Diagrams 26 and 27, pp. 672 and 
673, corresponding to m — 6.3 and n = 0.3. Use Formulas (18) to (21), p. 484. 

Positive bending moment, 
l 

Mc = 0.0068wZ2 = 11 700 ft.-lb.; H = - 0.08wZ - = - 6340 lb. 

Negative bending moment, 
l 

Mc = - 0.0029wV- =-5000 ft.-lb.; // « - 0.057u>Z- = - 4520 lb. 

Effect of Changes of Temperature and Shrinkage. —The horizontal thrust is ob¬ 
tained from Formula (31), p. 486, in which the constant Ch is obtained from Dia¬ 

gram 24, p. 67. The formula is Ht = — ——^ 
r2 Ch 

As given on p. 512 aE = 11, / = 18* = 5 832. From Diagram 24, Ch = 0.037. 

aEI 11 X 5 832 

(12 X 22)2 X 0.037 
(=t 0 24.75(± Z°)lb. 

For rise of temperature, t — 25° and //< = — 24.75 X 25 = — 620 lb. 
For fall of temperature plus shrinkage, t — — 40° and Ht = 24.75 X 40 = 990 lb. 
Bending Moments Due to Temperature.—Find the location of the elastic center 

from Formula (14), p. 483. Yc = C0r, in which Co taken from Diagram 22, 
p. 670, is 0.194. • 

Ye = 0.194 X 22 = 4.268 ft. 
Therefore 

r - Yc = 22 - 4.268 « 17.732 ft. 
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Springing Rise, M, - 620 X 17.732 - 11 000 ft.-lb.; H, - - 620 lb. 

Fall, M. = - 990 X 17.732 = - 17 600 ft.-lb.; Ht - 9901b. 

Crown Rise, Mc=- 620 X 4.268 = - 2 650 ft.-lb.; H,=- 620 lb. 

Fall, Mc — 990 X 4.268 = 4 230 ft.-lb.; Ht = 990 lb. 

Effect of Dead Load.—The arch axis is assumed to coincide with the line of pressure 
for dead load. Therefore, dead load produces no bending moments in the arch. 
The dead load thrust is found from Formula (34), p. 486, in which the constant 
C«, from Diagram 25, p. 671, is 0.213 

120’ 
Ht=- 0.213 X 425 X — = - 59 500 lb. 

zz 

Effect of Rib Shortening.—The horizontal thrust for rib shortening is found from 
Formula (36), p. 487, in which Ch is the same as used previously for the effect of 
temperature. Assume that the average thickness of the arch is 22 in. and A&y — 

12 X 22 = 264 sq. in. The rise in inches is 22 X 12 = 264 in. Then the horizontal 
thrust is 

5 832 1 
//, = - —-— —— Hd = 0.0086 X 59 500 = 510 lb. 

264 X 2642 0 037 

The bending moments due to rib shortening are (see Formulas (37) and (38), 
p. 487. 

Springing, M9 = — 510 X 17.732 - - 9 040 ft.-lb. 

Crown, Mc = 510 X 4.268 = 2 220 ft.-lb. 

Summary of Bending Moments and Thrust.—The bending moments and thrusts 
previously computed are tabulated in the following table. 

Approximate Method. Summary of Bending Moments and Thrusts 

Positive Bending Negative Bending 
Moments Moments 

Type of Loading 

Horizontal Bending Horizontal Bending 
Thrusts Moments Thrusts Moments 

Springing 

Dead load. 
Pounds 
-59 500 

Foot-lb. Pounds 
-59 500 
-f 510 
- 2 530 

+ 990 

Foot-lb* 

- 9 040 
-28 200 

- 17600 

Rib shortening. 
Live load. 
Effect of temperature and 
shrinkage. 

- 8 260 

- 620 

55 300 

11000 

Total. -67 380 66 300 -62 030 -54 840 
+ 1500 

-60 530 



DESIGN OF A FIXED ARCH BRIDGE WITH FILLED SPANDRELS 515 

Crown 

Dead load. 
Pounds 
-59 500 

Foot-lb. Pounds 
-69 600 

Foot-lb. 

Rib shortening. + 510 2 200 
Live load. - 6 340 11 700 - 4 520 - 5000 
Effect of temperature and 
shrinkage. + 990 4 230 - 620 - 2 650 

Total. -65 840 18 130 64 640 - 7 650 
4- 1 500 

-64 340 

Dimensions of Arch Section, Approximate Method.—The dimensions are found by 
using the maximum bending moment given in the previous table. 

Springing, MB = 66 300 X 12 = 796 000 in.-lb. 

II = - 67 380 lb. 

H 
N =- = 67 380 X 1.47 = 990001b. 

cos <t>. 

796 000 

99 000 
8.05 in. 

For fc = 630 lb. per sq. in. and ft - 120 lb. per sq. in., the depth of the section 
reinforced with 1 per cent of steel, is obtained from Diagrams 7, p. 654, and 8 
p. 655. 

bjc 

N 

bjt 
N 

12 X 630 

99 000 

12 X 120 

99 000 

= 0.0764 and corresponding hB = 29 in. 

— 0.01455 and corresponding h, - 28 in. 

Crown, Mc = 18 130 X 12 = 218 000 in.-lb. 

H - — 64 340 lb. 

N = H 

218 000 
e = 

64 340 
= 3.39 in. 

For small eccentricity use fc = 530 lb. per sq. in. 

~ •— = 0.0988 and corresponding he = 18 in. 
N 64 340 

kft_12 X 120 

N 64 340 
— 0.0224 and corresponding ht = 14 in. 
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Adopted Preliminary Dimensions.—From the previous figures following dimensions 
of the arch sections are adopted 

Springing, h9 =* 29 in. 

Crown, hc = 18 in. 

EXACT ANALYSIS OF ARCH 

The adopted preliminary dimensions will be checked by the exact method. 
First determine the line of pressure for dead load, which will be accepted as the 

axis of the arch. For this purpose lay out the arch to scale using an approximate 
arch axis as determined by constants in Diagram 22, p. 670. Take constants corre¬ 
sponding to m — 6.3. 

Constants Constants X 22 ft. 

0.039 0 86 ft. 
0.172 3 78 ft. 
0.454 9.99 ft. 

These figures give the vertical distances from the crown of the arch axis at the 
one-eighths, quarter and three-eighths points. They are sufficient for plotting the 
preliminary arch axis. 

Plot the fill and the roadway. (See Fig. 197, p. 518.) 
Divide the span into 16 equal horizontal divisions, each division 7 ft. 6 in. long. 

Find center of gravity of the dead load in each division. For the two end divisions 
find the actual center of gravity of the trapezoid forming the load. For other 
divisions assume that the loads act in the center of each division. 

Find dimensions at the intermediate points using the parabolic variation of the 
moments of inertia given on p. 477. For n = 0.3 

7 - - 1 - 4(1 - = 1 - 2.68(7)’, 
Ix COS <t>z \ 1 J \l J 

where x is measured from the crown. 

1 

In this formula all values are known except cos <£*. This is obtained graphically 
as shown in Fig. 197, p. 518. Computations for hx are given in the following table. 

After the thicknesses of the arch are found at the intermediate points they are 
plotted and the outline of the intrados and extrados is drawn. The dead loads 
acting at the various arch sections may now be computed. At each center of gravity 
scale the thickness of the arch (measured on a vertical line) and the depth of the 
fill. Multiply each value by the corresponding specific gravity. Add the weight 
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of fill and concrete and multiply by the length of the division. The work is shown 
in the following table. 

Dead Loads Acting on Arch 

Division Fill + Roadway Arch Arch-f Fill 
Dead Load 
per Division 

Pounds per Sq. Ft. Pounds per Sq. Ft. Pounds per Sq. Ft. Pounds 
1 200 1.4X150 = 210 410 3100 
2 235 1.5X150 = 230 465 3 500 

3 350 1.6X150 = 240 590 4 400 
4 475 1.7X150 = 255 730 5 500 

5 700 1.8X150 = 270 970 7 300 

6 1000 2.0X150 = 300 1300 9 700 

7 1425 2.3X150 = 345 1 770 13 300 

8 2 000 3.0X150 = 450 2 450 18 400 

Knowing the dead loads and their points of application, the line of pressure is 
found in the manner shown in the following table. 

Line of Pressure for Dead Load 

Point 
Loads 

Pn 

Dis¬ 
tance 

of 

Loads 

on 

Pnan 

Length 
of Divi¬ 

sion 
3*n-1 Mn 

Vn H 

I 3 100 
3 500 

3 75 
3 75 

11 630 7.5 11 630 0.197 

II 13 130 7.5 3 100X7 5= 23 250 11630 47 980 0 812 

III 4 400 3 75 16 500 7.5 6 600X7.5= 49 500 47 980 113 980 1.930 

IV 5 500 3 75 20 630 7 5 11000X7.5= 82 500 113 980 217 110 3.68 

V 7 300 3 75 27 380 7.5 16 500X7 5=123 750 217 110 368 240 6 23 

VI 9 700 3.75 36 400 7.5 23 800X7 5=178 500 368 240 583 140 9 86 

VI 13 300 3.6 47 900 7.5 33 500X7.5=251 300 583 140 882 340 14 94 

A 18 400 3 6 66 200 7.5 46 800X7.5=351 000 882 340 1 299 540 22 00 

iia 
1 299 540 

22 
=— 59 070 lb. 

The table gives the values of y' measured from the crown for the arch axis at the 
end of each division. These values are plotted and the arch axis drawn. 

Now find the elastic center for the new arch axis and for the cross-sections of the 
arch worked out in the table of dimensions on p. 517. The work is done in the 
manner outlined in Table 1, p. 497. It should be noted, however, that, since the 

values of---are already worked out, the values of —r~ arc obtained by multi- 
IX cos <f>x ** 

plying- by the horizontal length of the division dx, because -— = ds. 
Iz cos <t>x cos <*>x 

The values of Y are measured from the X-axis passing through the springing, as 
origin, to the centers of the divisions. The values x and y in Table 1 refer to the 
system of coordinates with an origin at the elastic center. 
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Table 1.—Finding Elastic Center Y, 

Point v y I Ids Ids 
y 

Ids 
i A 

Ix cos 4>x lx YIx VIx 

X 

0 22 60 4.528 
1 21.88 56.25 0.997 7.49 163 9 4.408 33.02 ± 3.75 
2 21.50 48.75 0.976 7.32 157.4 4.028 29.48 =tll 25 
3 20.58 41.25 0.936 7 02 144.5 3.108 21.82 ±18.75 
4 19.21 33.75 0 872 6 54 125.6 1.738 11.36 ±26.25 
5 17.08 26.25 0.786 5.90 100.8 - 0.392 - 2.31 ±33.75 
6 14.00 18.75 0.684 5.13 71.8 - 3.472 -17.81 ±41.25 
7 9 58 11.25 0.555 4.16 39 8 -7 892 -32.83 ±48.75 
8 3.58 3.75 0.410 3 07 11.0 -13.892 -42.65 ±56.25 
A i -17.472 ±60.00 

46.63 814.8 
1 

+95.68 
-95.60 

Y, = r=7T7: = = 17.472; y = Y - 17.472; x = X - 60. 
Ids 46.63 

Ids 
Since in Table 1 the sum of y-r- column is almost zero, the work is sufficiently 

IX 

accurate. 
The denominator for H, Va and M are now found by means of Table 2.^ In com¬ 

puting assume — 1 X 1*66 = 1.66 sq. ft. 

Table 2.—Denominators for H} Va and M 

Section y H Ids 

yT I x 

Ids 
X B Ids 

xi: 

(i) (2) (3) (4) (5) (6) (7) (8) 
1 4.408 7.49 33.02 145.53 ± 3.75 14.06 105.33 
2 4.028 7.32 29.48 118.75 ±11.25 126.56 926.41 

3 3.108 7.02 21.82 67.82 ±18.75 351.56 2 468.00 

4 1.738 6.54 11.36 19.74 ±26.25 689.06 4 507.00 

5 - 0.392 5.90 - 2.31 0.91 ±33.75 1139.06 6 721.00 
6 - 3.472 5.13 -17.81 61.84 ±41.25 1701.56 8 729.00 

7 - 7.892 4.16 -32.83 259.10 ±48.75 2376.56 9 885.00 

8 -13.892 3.07 -42.65 592.50 ±56.25 3 063.96 9 715.00 

46.63 1266.19 43 056.74 
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i 22 Ids II 1.423 X 120 
v* — = 2 X 1 266.19 « 2 532.38; — ---- 

I* Aav 12 X 1.66 

Denominator for # = 2 532.38 + 17.3 = 2 549.68 ft.* 

Denominator for V a - 2 X 43 056.74 = 86 113.48 ft.3 

Denominator for M = 46.63 X 2 = 93.26 ft. 

17.3. 

For live load the four schemes of loading, which give maximum bending moments 
at the springing, the quarter point and the crown respectively, will be considered. 
For this purpose find the numerators for If and M for full load by means of Table 3 
and the numerators for Hi, Mi and V a\ for Scheme 1 by means of Table 4. The 
value of Hf M and Va are then found for these two loadings. Finally, by combining 
these in the proper manner, the values are found for all the other schemes of loading. 

Table 3.—Numerator for Full Loading 

Section X y 
hh Ids 

X°-yj- 

* X 

a) (2) (3) (4) (8) 
1 3 75 4 408 105 33 464.35 
2 11.25 4.028 926, 41 3 734 00 
3 18 75 3 108 2 468 00 7 671 00 
4 26 25 1.738 4 507 00 7 383.00 

5 33 75 - 0 392 6 721 .00 - 2 634.50 
6 41 25 - 3 472 8 729 00 - 30 308.00 
7 48 75 - 7 892 9 885 oo - 78 020.00 
8 56.25 — 13.892 9 715 00 -134 930.00 

43 056 74 -245 892.50 
19 252.35 

-226 640.15 

Numerator for H = — 226 640.15w lb.-ft.8 

Numerator for M =* 43 056.74 + 603 X 46.63 = 210 924.7w lb.-ft.8 

H, M and Va for Full Load.—Using the numerator from Table 3 and the denom¬ 
inators from Table 2 the statically indeterminate values for uniformly distributed 
loading extending over the whole span are 

226 640.15 

2 549.68 
88.9w lb., 

210 924 7 

93.26 
2 260w ft.-lb. 

Va = \wl = 60w lb. 
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Hit Mi and Va\ for Loading Scheme 1.—Using the numerator found in Table 4 
and the denominator from Table 2, the static indeterminate values for Scheme 1 are 

Hi 
165 825.0 

2 549.68W 
65.0510 lb., 

My 
45 267.8 

93 26 
w = 485.4i0 ft.-lb. 

1 676 299.6 

86 113 48 
19.4i0 lb. 

Loading Scheme 2.—The statically indeterminate values for Scheme 2, in which 
the loading extends from left support for a distance equal to §1, are obtained by 
subtracting from the values for full load the value for Scheme 1. 

Hi « (88.9 - 65.05) 10 = 23.85i0 lb., 

Mi =(2 260 - 485.4)i0 = 1 774.6a; ft.-lb., 

VAi = (60 - 19.46)10 = 40.54a; lb. 

Loading Scheme 3.—The statically indeterminate values for Scheme 3, in which 
the loading extends on both sides of the crown for a distance equal il, are obtained 
as explained on p. 509. 

Hi = Hy - Hi = (65.05 - 23.85)i0 - 41.2i0 lb., 

Mi = 2Mi - M + Otfd* = (970.8 - 2 26O)t0 + ^ X (120)*u; - 399.8u; ft.-lb. 

VAl = \wl = 15i0 lb. 

Loading Scheme 4.—The loading in this scheme extends on each side of the 
arch from the springing for a distance equal to \l. The statically indeterminate 
values are obtained as explained on p. 509. 

Hi = H - Ih = (88.9 - 41.2)i0 - 47.7t0 lb., 

Mi = M - Mi = (2 260 - 399.8)t0 = 1 86O.2t0 ft.-lb., 

VAi ~ = 45t0 lb. 

The statically indeterminate values for all schemes of loading are tabulated in 
the following table. 
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Statically Indeterminate Values for All Schemes of Loading 

Type of Loading II VA M 

Pounds Pounds Foot-lb. 
Full load. 88.9u> = 10 668 60 w =7 200 2 260u> =271 200 
Scheme 1. 65 05u> = 7 806 19 46w = 2 335 485.4xo — 58 260 
Scheme 2. 23 85w= 2 862 40.54^=4 865 1 774 6^ = 212 980 
Scheme 3. 41 2 w = 4 945 15 Ow =1 800 399 8ic= 47 980 
Scheme 4. 47.7 w = 5 725 45w =5 400 1 860.2w=223 250 

w = 120 lb. per sq. ft. 

All values are for a width of arch equal to 1 foot. 

Bending Moments for Live Load.—Using the values given in the previous table, 
the bending moments at the springing, crown and quarter point are found as follows: 

Scheme 1: 

Bending moment at springing, 

1 
MA = Mi - VAl - - HxYa = .58 200 - 130 100 + 7 806 X 17.472 = 64 546 ft.-lb. 

2 
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Scheme 4: 

Bending moment at crown, 

Mc = Mi - H,(r - y.) - f wl X^! = 223 250 - 5 725 X 4.528 - f X 120 
X 120 X A X 120 = - 5 172 ft.-lb. 

Effect of Rib Shortening.—The horizontal thrust due to rib shortening is found 
from Formula (51), p. 494, in which the numerator is taken from Table 2. The 

II 
value of —— is the same as worked out under Table 2. 

^lav 

17.3 
Hg = ——— X 59 070 = 0.0068 X 59 070 = 402 lb. 

2 549.68 

Effect of Temperature Changes and Shrinkage.—The horizontal thrust due to 
temperature changes are found from Formula (59), p. 495, in which aE = 11 X 144 
= 1 584 lb. per sq. ft., I is in feet and I in ft.4 The numerator is the same as above. 

Ht 
1584 X 120 X 0 238 

2 549 68 
X (dbf°) = 17.7 X (±t°) 

Rise of Temperature t° = 25°, 

Ht = - 17.7 X 25 = - 443 lb. 

Fall of Temperature Plus Shrinkage t° = — 40°, 

Ht = 17.7 X 40 = 708 lb. 

Bending Moments Due to Rib Shortening and Temperature Changes.—The 
bending moments at the springing, the quarter point and the crown are obtained 
by multiplying the horizontal thrusts by the proper values of y. They arc tabulated 
in the following table. 

Bending Moments Due to Temperature Changes and Rib Shortening 

II 
Springing 

y =-17.472 ft. 
Quarter Point 
y=0.848 ft. 

Crown 
y=4.528 ft. 

Pounds Foot-lb. Foot-lb. Foot-lb. 
Fall. 708 -12 370 600 3 188 
Rise. —443 7 740 -376 -2 007 
Rib shortening... 402 -7 020 341 1820 

Combined Bending Moments.—The following table gives the final bending 
moments and thrusts for a combination of live load, dead load, rib shortening and 
temperature changes. These values are used to compute the stresses in the arch 
sections. 
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Final Bending Moments and Thrusts 

Positive Bending Negative Bending 

Type of Loading 

Moments Moments 

Horizontal Bending Horizontal Bending 
Thrusts Moments Thrusts Moments 

Springing 

Pounds Foot-lb. Pounds Foot-lb. 
-59 070 -59 070 

Rib shortening. + 402 - 7 020 
Live load. ~ 7 806 64 546 - 2 862 -28 915 
Temperature and shrinkage - 443 7 740 + 708 -12 370 

Total. -67 319 72 286 -60 822 -48 305 

Quarter Point 

Pounds Foot-lb. Pounds Foot-lb. 
Dead load. -59 070 -59 070 
Rib shortening. + 402 341 
Live load. - 2 872 10 603 - 7 806 -18 409 
Temperature and shrinkage 4- 708 600 - 443 - 376 

Total. —60 832 11 544 -67 319 -18 785 

Crown 

Pounds Foot-lb. Pounds Foot-lb. 
Dead load. -59 070 “59 070 
Rib shortening. + 402 1820 
Live load. - 4 945 11410 “ 5 725 - 5172 
Temperature and shrinkage -I- 708 3 188 “ 443 “ 2 007 

Total. “63 015 16 418 -65 238 “ 7179 

Stresses Due to Final Bending Moments and Thrusts. 
Springing, 

H - - 67 319 lb., 

Ma = 72 286 ft.-lb. = 865 000 in.-lb. 

Na « —— = 67 319 X 1.47 = 990001b., 
cos 4>x 

865 000 

99 000 
8.7 in. 
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Section: b =* 12 in., h — 28 in., d' = 2 in., d — 20 in., 

A, = 0.01 X 12 X 28 - 3.36 sq. in. 

Since part of the section is in tension, use Formula (28), p. 228. 

e 8 7 h 28 , _ 
- = — = 0.334, - = — = 1.08. 
d 26 ’ d 26 

Use diagrams for h = l.ld, pp. 658 and 659. 

From diagram for kf for - = 0.334 and p = 0.01, A; = 0.79. 
a 

From diagram for C0, for k = 79 and p = 0.01, <7a = 0.152. 
From diagram on p. 662 for C9, for fc = 0.79 and n = 15, C, = 4.0. 
The final stresses are 

fe = 
Af 

Ca6d2 

865 000 

0 152 X 12 X 282 
610 lb. compression, 

fg = C,/c = 4 X 610 = 2 440 lb. tension. 

The stresses are satisfactory. 
Crown, 

H = - 63 015 lb., 

Afc = 16 418 ft.-lb. = 197 000 in.-lb., 

e 
197 000 o _ 
- = 3.12. 
63 015 

Section: b = 12 in., ^ = 17 in., (V — 2 in., 2a = 13 in., 
2a 

J 0.77, 

As = 0.01 X 12 X 17 = 2.04 sq. in. 

Since the eccentricity is small, the Formula (13), p. 219 may be used. Use 
diagram marked 2a = 0.8h. 

e 3.12 
Find ratio 7 = = 0.184. 

h 17 

From Diagram 5, p. 652, for p = 0.01 and 7 = 0.184, Ce = 1.76 and 
h 

63 015 
fc = 1.76 X — — = 546 lb. per sq. in. 

The stress is slightly larger than 530 lb. allowed for small eccentricties. The 
section should be enlarged to 18 in. or the steel area should be increased. 

Quarter Points, 
H = - 67 319 lb., 

- - 18 785 ft.-lb. = - 226 000 in.-lb., 

Nu = = 67 319 X 1.09 = 73 200 lb.t 
cos <t>x 

226 000 

73 200 
3.1 in. 
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Section: 6 = 12 in., h = 18.5 in., df — 2 in., 2a = 14.5 in., — « 0.78, 
h 

A» = 0.01 X 12 X 18.5 * 2.2 sq. in. 

Use Diagram 5, p. 652, marked 2a = 0M. 
6 3 1 <5 
- = —— = 0.168. From diagram, for p = 0.01 and - = 0.168, C€ = 1.68 and 
h 18.5 ft 

73 200 
/„ = 1.68 X — x — = 550 lb. per sq. in. 

Results.—From the computations of stresses it is evident that the stresses at the 
crown and at the quarter point are too large. This can be remedied by increasing 
the section at the crown to 18 in. The remaining section will be increased in pro¬ 

portion by maintaining the ratio --—  as in the original design. 
«x COS 

INFLUENCE LINES 

Definition of Influence Lines.—Influence lines are lines representing 
the effect of unit loads P = 1 placed at different points on the arch, 
upon the magnitude of the statically indeterminate values in an arch or 
upon the bending moment at any selected section of the arch. 

Usually influence lines are drawn for the three statically indetermi¬ 
nate values H, Va and M. These are common for the whole arch. 
Typical influence lines for //, Va and M are shown in Fig. 198, p. 529. 

In addition, there are drawn influence lines for bending moments 
at selected sections. A separate influence line is required for each 
section. 

Sections for which Influence Lines are Drawn.—The sections for 
which bending moment influence lines are usually drawn are; 

1. Springing line of arch; 
2. Quarter-point of arch; 

. 3. Crown of arch. 

For important arches other intermediate sections may have to be 
investigated. In such case additional influence lines for bending 
moments are drawn. 

Figure 199, p. 530, shows typical influence lines for bending moments 
at the springing line, quarter point and crown. 

How Influence Lines are Prepared.—An influence line for bending 
moments at any section (say, the crown) is prepared as follows. 

Divide the arch into a number of divisions. Place the load P = 1 
successively at the end of each division. For each position of the load 
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P = 1 compute the bending moment produced by that load at the 
selected section (say, the crown) by the appropriate formulas given in 
previous paragraphs. The determined values are plotted to any 
convenient scale on vertical lines passing through the corresponding 
positions of the load. Starting from a common horizontal axis, the 
positive values are plotted above the axis and the negative values below 
the axis. The curve passing through the points thus obtained is the 
influence line for the bending moments at the selected section. 

In similar fashion can be drawn influence lines for the horizontal 
thrust II, vertical reaction Va and the auxiliary bending moment M. 

Purpose of Influence Lines for H, VA and M.—The influence lines 
for the three statically indeterminate values of H, VA and M are 
necessary in order to determine the influence lines for bending moments 
at the selected section. 

The influence lines for II and Va are also used to determine the nor¬ 
mal thrust Nx to be used in conjunction with the bending moments 
to determine stresses in the arch. It is obvious that the same position 
of loading must be used in determining II and VA as was used for 
determining the bending moment. 

If it is desired to get maximum values for H and VA the whole arch 
must be loaded because a load placed in any position produces values 
of the same sign. 

When the loading consists of concentrated loads the maximum 
horizontal thrust is obtained when the heaviest loads are placed in the 
center of the span. Maximum vertical reaction, on the other hand, is 
obtained when the heaviest loads are placed near the support at which 
the reaction is desired. 

Purpose of Influence Lines for Bending Moments.—Influence lines 
for bending moments are used to determine maximum positive and 
negative bending moments at the selected sections. The position of 
the loads for maximum bending moments can be obtained from the 

study of the influence lines. 
As evident from Figs. 199 (a) to (c), p. 535, the influence line for 

bending moments lies partly below and partly above the axis. The 
parts above the axis signify positive bending moments, while the parts 
below signify negative bending moments. 

When it is desired to get maximum positive bending moment, those 
parts of the arch should be loaded for which the influence line is above 
the axis. For maximum negative bending moments the remaining 

parts of the arch should be loaded. 
For concentrated loads the heaviest loads should be placed where 

the ordinates of the influence line are largest. Two or three trials may 
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Values of j 

0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1.0 

(b) Influence Line for Horizonal Thrust H 

Fig. 198.—Typical Influence Lines for H, Va and M. (JSee p. 528.) 
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be necessary before absolute maximum value of the bending moment 
is obtained. 

To find stresses at any section due to any particular loading, not only 
the bending moment but also the thrust is necessary. The thrust is a 
function of H and Va which are obtained from the respective influence 
lines. It is important to remember that the same loading must be 
used for determining the H and Va as was used for determining of the 
bending moment. 

Influence Line for H.—This line gives the value of the horizontal 
thrust, Hf caused by a vertical unit load P = 1 placed at any point 
on the arch. It is obtained by computing H for a load P = 1 placed 
successively at each point of the arch and plotting the result as an 
ordinate under the load. The line connecting the points is the influence 
line. 

A typical influence line for H is shown in Fig. 198. Since all down¬ 
ward loads produce horizontal thrusts of the same sign, the whole line 
is below the horizontal base. 

The values of H for unit loads may be obtained either analytically 
or graphically. 

The analytic method is given below. 
General formula for horizontal thrust is (see p. 493) 

Since for symmetrical arches the influence line is symmetrical, the 
values need to be found only for one-half of the arch. To simplify the 

work the loads will be placed on the right half of the arch. 
For P = 1 placed at a distance x\ from the crown the static bending 

moment M9 is (see p. 330) 

and 

M9 = — (x — xi) when x is larger than x\ 

M9 = 0 when x is smaller than z\. 

Substituting this value for M9 in formula for H the equation for the 
influence line becomes 
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Horizontal Thrust for P = 1 Placed at Distance x\ from the Crown, 

The denominator of this formula, constant for all positions of the 
load, is found in Table 2, p. 498. The numerator may be found by the 
scheme suggested in Table 7, p. 533. 

Influence Line for VA.—Typical influence line for Va is shown in 
Fig. 198. It should be noticed that the values of Va for all positions of 
downward load are positive, therefore the whole influence line is above 
the horizontal base. 

The general formula for VA is (see p. 493) 

Values of M9 are same as used for H. 
For a load P = 1 at x\ from center the bending 

— {x — xi). Substitute this in the equation for VA. 

Vertical Reaction for P = 1 Placed at a Distance 

moment is M9 = 

x\ from Crown, 

.... (63) 

The denominator, constant for all positions of the load, is worked out 
in Table 2, p. 498. The numerator may be found by the scheme sug¬ 
gested in Table 8, p. 534. 

In determining the influence line for Va the following facts may be 

useful. 
For load P = 1 placed at the center the reactions at both supports 

are equal. Therefore, the ordinate of the influence line there is 0.5. 
For load P = 1 placed at the right support, the reaction Va on the 

left support is equal zero. 
For load P = 1 placed at the left support, the reaction there is equal 

unity. 
For two equal loads each equal to P = 1 placed symmetrically on the 
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arch and acting simultaneously, the reaction Vj equals 1. Therefore, 
if the reaction for one load acting separately is known, the reaction 
for the other load acting separately may be found by subtracting 
from unity the known reaction of the fourth load. This simplifies the 
preparation of the influence line, because it is only necessary to compute 
the reactions for the loads placed on the half of the arch next to the 
right support. The ordinates for the other half are obtained by sub¬ 
tracting from unity the computed ordinate of the symmetrically placed 
load in the other half of the arch. 

Table 8.—Method of Determining Influence Line for Va. 
Ids 

(Values of x— are taken from Table 2.) 
Ix 

Assumption: Span, J =98 ft., divided into 16 divisions, each 6 ft. long. 

Section X 

Ids 

x I, 

(See p. 498) 

Load at End of 
First Division 

x\ =42 

Load at End of 
Second Division 

X\ =36 

Load at Center 

3i=0 

X—Xi 

Ids 
(x-Xl)x— 

(4i) X (3)* 

X—Xi 
(x-Xi)x-^- 

(4,)X(3)X 

X—Xi 
(x—Xi)xy- 

(4,)X(3)* 

a) (2) (3) (4.) (5.) (5,) (4.) (5.) 

1 45 3 9 45 
2 39 3 
3 33 33 
4 27 27 
5 21 21 
6 15 15 
7 9 9 
8 3 3 

Sum of Col. (50 to (5g) 2 = 2 = 2 = 

VaUotP 1) 
Sum of Col. (5) 

To find Va for P » 1 at each successive section add in table above each column S| Ids 
i x2—- obtained from Table 2, p. 498. 

~2 I* 

Plot the values obtained to same scale as used for H on verticals passing through 
the positions of the load, starting from common horizontal base. 
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(c) Bending Moments at Springing 

Fia. 199.—Typical Influence Lines for Bending Moments. (See p. 528.) 



536 FORMULAS FOR DESIGN OF ARCHES FIXED AT SUPPORTS 

The vertical reaction Va due to any load placed at any point is equal 
to the load P multiplied by the ordinate of the influence line below that 

point. 

Influence Line for Auxiliary Moment M.—Influence lines for M 
has the same significance as the two previously described influence lines. 
It is obtained in the same manner as described for H. 

The general formula for M is (see p. 493) 

Substituting the values of Mt for P = 1 in same manner as for II 

on p. 531. 
Auxiliary Moment M for P = 1 Placed at Distance Xi, 

The denominator, constant for all loadings, is worked out in Table 2, 
Ids 

p. 498. The values — used in the numerator are also given in Table 1, 
X 

p. 497. The numerator may be found as suggested in Table 9, p. 538. 
The work will be simplified as follows. As is demonstrated in the 

foot-note,10 the ordinate of the influence line for a load P = 1 on the 

10 The numerator for a load placed on the left side of the arch for which 

x - — Xi 

is 

2-„(* 

, l 

- (~ = y,2 _ (* + Xi)~. 

This sum can be replaced by a sum 

2*i Ids , •Nr'ii Ids , . Ws , „ •s~'\lds 
+''2,-..77+2>-*'>7, +2*'2,„77- 

The first two items are obtained by multiplying out the item 1 * (x + X\)“ and 
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left side of the arch is equal to the ordinate or symmetrical load on the 
right side of the arch plus xi, which is the distance of the load from the 
center. Therefore, only the ordinates for the right half of the arch 
need to be computed from the formula. 

Influence Line for MA.—Having determined the influence lines for VA, 
H and M the influence line for the bending moment at the left support, 
MA may be obtained from Formula (44), p. 493. 

MA = M - l-VA - Y.Hs. 

This formula may be used for loads placed on the right half of the 
arch. For loads placed on the left half the bending moment at left 
support may be expressed in terms of the bending moment due to the 

symmetrically placed load on the right half. The relation is expressed 

taking the constant Xi before summation sign. The last two items were obtained 

by adding and subtracting 2 'Exrj-. The first term 1 x^~- = 0 because the 
I x lx 

terms for between — xi and 0 are equal and of opposite sign to those between 0 and 
Vxi Ids _ V Ids , _ Ids 

-fxi. The term X\ > — equals 2xi > — because the values of — are 
/ x 0 ijf 

the same for both sides. The expression then is reduced to 

Jds , 'sr^zrfds .—I 

‘'>t:+2i'L2.t;+2 XiJXJ 1 1* 

Substituting this numerator in the formula for M, the formula becomes 

y Hx-x^ 2x,y^s y^x-x,)^ 
Z-WX\ Zwo ZWiQ 

l + l ~ l , S2 Ids \r^ 2 Ids 2 Ids 

~9. Ix ' ^ ~9. Ix '>^ ~9 IX 

M (for — Xi) = 7-Yxx. 
2 Ids 

because 
nST'ylds = ypa Ids 

2L* o Ix 2* J- Ix 
The term 

y^(x-x,)-f 
£*4 x\_ 

1 

X'-I 
2 Ids 

2-* 

is equal to M for a point placed at a distance x =* xi on the right side of the arch. 
Thus the above statement is demonstrated. 
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Table 9.—Influence Line for Auxiliary Moment M 

Ids 
(Values of — are given in Table 2, p. 498.) 

Ix 

Assumption: Span, 1=96 ft., divided into 16 divisions, each 6 ft. long. 

No. of 
Section 

(See Table 2) 
Load at End of 
First Division 

Xx =42 

Load at End of 
Second Division 

Xx =30 

Load at Center 

Xx ■* 0 

Ids , Ids Ids Ids 
X B X — Xx (x-Xx)— X—Xx {x-Xi)-r- 

■* X 

X— Xx (X-Xi)— 
*X 

B (40 X (3) (40 X (3) 

(i) (2) (3) (40 (50 (40 (50 (40 (50 

1 45 3 9 
2 39 3 
3 33 33 
4 27 27 
5 21 21 
6 15 15 
7 9 
8 3 

Sum of Column (5) 2 = 

! 

2 = 2 = 

1#f „ « Sum of Col. (5) 
M for P = 1 = -1———. 

right side Vs — 
Z*-lJx 

M for left side = M for right side plus xi. 

To find M for P = 1 at each successive point on right side of arch, add in table 22 Ids 
, — obtained from Table 2, 

~~2 

p. 498. 
To find M for P = 1 at each successive point on left side of arch, add to the values 

of M for corresponding points on right side the value of Xi. 

Plot the values obtained to any convenient scale on verticals passing through the 
positions of the load, starting from common horizontal base. 

Auxiliary bending moment M due to any load P placed at any point is equal to 
the load multiplied by the ordinate of the influence line below that point. 
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by the formula11 where MA{x\) and MA( — xi) signify bending moments 
at springing A due to a load P = 1 placed at x\ and ( — xi), respectively. 

= + IVA(Xl) — ~ x^j. . . . (66) 

The ordinates of the influence line for MA may be found as suggested 
in Table 10. The values for the right side of the arch are computed 
first and then the values for the left side from Formula (66). 

11 The bending moment MA for a load P = 1 located x = xx is (right side of arch). 

I 
MAW * M(zi> ~ -Fact!) — YaH(Xl). 

For load P = 1 at x — — Xi (left side of arch) the formula is 

l 
MA(-xi) = M{-Xl) — ~VA(-Xl) ~ Y8H(-.Xi). 

For loads at points on the arch located symmetrically about y-axis of the values 
of YaH are equal. 

Therefore 
YsH{zo - YJI (-*>. 

The relation of values of VA for loads P — 1 at symmetrically located points as 
given on page 534 is VM-Xl) = 1 - VMxv. 

Therefore 
l l l 

« - - ~VA(Xl). 

The relation between values M for loads P = 1 at xx and at —xh as given on 
page 536, is 

Af(_Xl) = M(Zl) + Xi. 

Using the above values following relation may be found between the bending 
moments MA for P = 1 placed separately at symmetrically located point. 

Substitute for MA(-Xl), VA(-xi) and 7/(_Zl) values in terms of M(Zl>, VA^Xl) and 
H(X\). Then 

The moment MA for left side of arch namely for x = — xi is 

MA{-xi) = M(Xl) + Xi 

Also 
(2 “ 12Vmz0) ~ yjim. 

I l 
MA(—Xi) — M(Xl) -f" ~Fa(xi) Y.Ihzo + xi — 

Add and subtract at the right side Va^), 

l l l 
= M(Xl) — -Fa(*i) — Y.HiXl) -f -Va(xx) 4- -Fa(*i> — 

Finally 

Ma(-*!) = MmX) 4- IVam - (- - xiY 
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INFLUENCE LINES FOR BENDING MOMENTS AT ANY SECTION 

Influence lines for bending moments at any selected section of the 
arch for which the ordinates are xn and yn may be found from Formula 
(45), p. 493/which is 

Mxn = M + VA%n + Hyn + M9. 

The load P = 1 is assumed to be placed successively at each division 
of the arch. For each location of the load values of M, are computed. 
This is the static bending moment of the load P = 1 about the selected 
section, considering the arch as a cantilever fixed at right support. 
The values of M, Va and HA for each location of the load are taken 
from the influence lines previously prepared. 

After the bending moment Mxn for P = 1 placed at any one point 
is found, it is plotted to a convenient scale on a vertical line passing 
through that point starting from a horizontal base. The positive 
values are placed above and the negative values below the horizontal 
base. In symmetrical arches the influence line for symmetrically placed 
sections are the same, but placed in reverse positions. 

The work is simplified if the section for which influence line is desired 
is assumed to be on the left half of the arch, as then the values M, need 
to be computed only for the loads to the left of the section. For loads 
placed at points to the right of the section Ma = 0. 

Table 11 outlines a convenient method of determining the ordinates 

of the influence lines. 

PROPERTIES OF INFLUENCE LINES FOR BENDING MOMENTS 

Influence lines are regular consistent curves. Any irregularity in 
their shape is a sure sign of error in computations. For all fixed arches 
the shape of influence lines for bending moments for points similarly 
located is similar in character irrespective of the shape of the arch. 
Below will be shown and discussed influence lines for bending moments 
at the crown, springing line and haunch. These points are the critical 
points in an arch. 

It will be noted that each influence line consists of positive areas, 
i.e., areas above the base line, and negative areas below the base line. 
This means that loads placed where the influence line is positive produce 
at the selected section positive bending moments and loads placed where 
the influence line is negative produce negative bending moments. For 
maximum bending moment of any one sign the load must cover the whole 
length of the influence line of that sign. 
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The bending moment due to any load is equal to the load, times the 
corresponding ordinate of the influence line. For uniformly distrib¬ 
uted load extending over any part of the arch the bending moment 
equals the area between the influence line and the base in the section 
below the loaded part of the arch multiplied by the unit load. The 
area of influence line therefore is the measure of the magnitude of the 
bending moments. The larger the area of the influence line the larger 
is the moment. 

Influence Line at the Crown.—Fig. 199 shows a typical influence 
line for bending moment at the crown. It consists of two symmetrical 
arms. The positive section is in the central part of the arch and the 
negative sections on each side. 

The positive section extends on both sides of the crown a distance 
equal to about JZ. Each negative section extends from the support for 
a distance equal to about f Z. 

To get maximum positive bending moment at the crown, the central 
part of the arch only must be loaded. For maximum negative bending 
moment this central part must be left without load and instead the 
remaining parts of the arch must be loaded. 

The area of the positive section of the influence line always pre¬ 
dominates, which means that when live loads are placed in the most 
unfavorable position, the maximum positive bending moment at the 
crown due to live load is larger than the maximum negative bending 
moment. The difference between the positive and negative areas is 
smallest for parabolic arch axis and is due only to the effect of rib 
shortening. Were the effect of rib shortening neglected, the sum of 
negative areas would be equal to the positive area, consequently for 
full span loaded uniformly the bending moment at the crown would be 

zero. 
For arch axis such as used for arches with filled spandrels (where the 

arch axis approaches a parabola of third or fourth power) the negative 

areas of the influence lines decrease with the increase of the radius of 
curvature at the crown. 

The maximum positive and negative bending moments for different 
shapes of arch axis, based on influence lines, are given in Diagrams 26- 
27, pp. 672-673. 

Influence Line at the Quarter Point of the Span.—Fig. 199, p. 535, 
show a typical influence line for bending moments at the quarter point. 
It consists of two areas intersecting at the vertical passing through the 
quarter point. The shorter arm is wholly above the axis, while the 
longer arm is partly above and partly below the axis. The section of 
positive bending moments starts from the support nearest to the load 
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and extends for a distance equal to from 0.35 to 0.40 of the span. The 
lower value is for parabolic arch axis while the higher value is for arch 
axes resembling parabolas of fourth power such as would be used for 
arches with filled spandrels. Negative bending moments are caused by 
loads placed on the remaining 0.65 to 0.60 of the span. 

Influence Lines for Bending Moments at Springing.—Typical 
influence lines for bending moments MA at the left springing is given in 
Fig. 199. It consists of a negative section next to the left support and 
a positive section on the rest of the arch. The loads producing the 
maximum negative and maximum positive bending moments, respect¬ 
ively, are shown in Fig. 196, p. 507. 

The shape of the influence line and, therefore, the length of the 
negative and the positive sections depends mainly upon the shape 
of the arch axis and also, but to a smaller degree, upon the ratio of the 
moments of inertia at the crown to the moment of inertia at the spring¬ 
ing. The negative section extends from the left support for a distance 
varying from 0.35 to 0.40 of the span. The positive section extends 
over the rest of the span. At an average the section of negative bend¬ 
ing moments may be taken as f of the span while that of the positive 
bending moments as f of the span. 

Although the negative section is shorter than the positive section, 
the negative ordinates are much larger than the positive ordinates. 
Consequently the difference between the areas is not as large as would 
seem from the difference of their length. For parabolic arch axis and 

-— -constant the two areas are almost equal, the difference being 
Ix cos 4>x 
only due to the effect of rib shortening. If the effect of the rib shorten¬ 
ing is neglected the two areas would be equal. When the arch axis 
becomes flatter in the center and steeper at the ends and, therefore, 
resembles the shape of parabolas of higher power, the negative areas 
become smaller and the positive areas larger. 

In diagrams, pp. 676-677, are given maximum negative and positive 
bending moments for different shaped arch axes. 

PARABOLIC FIXED ARCHES 

Use of Parabolic Arches and Parabolic Arch Formulas.—When the 
dead load is practically of uniform intensity over the whole length of 
the arch, the line of pressure for the dead load is a parabola. In such 
case the arch axis should be made parabolic in shape. The formulas 
for parabolic arches, then, give exact results. 
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The dead load is nearly uniform in open spandrel arches, particularly 
in arches consisting of separate ribs and in arches with suspended road¬ 
way. In such cases the weight of the floor system, which forms the 
largest part of the dead load, is uniform. The difference between the 
load at the various points is due only to the difference in the weight 
of the arch rib. This small difference in dead load produces a negative 
bending moment at the crown which partly offsets the bending moment 
due to rib shortening. The actual bending moments due to this excess 
of the dead load may be readily found from the influence lines. When 
the ratio of the dead load at the springing and at the crown exceeds 1.2 
but is not more than 1.5 the arch axis should not be parabolic, but should 
be made to coincide with the line of pressure for dead load. However, 
the parabolic formulas for bending moments and thrusts and the 
influence lines give reliable enough results and their use is permissible. 

For ratios of dead load at springing to that at the crown larger than 
1.5 the error in using the formulas for parabolic arches is at least 
8 per cent and increases with the increase of the dead load ratio. 
In such cases the use of parabolic formulas is not advisable. Prelimi¬ 
nary bending moments may be taken from diagrams on pp. 671 to 677 
and the statically indeterminate values should be computed in the 
manner given on p. 481. 

Properties of the Arch. 
Equation of Arch Axis, Center of Coordinates at Crown, 

F = (67) 

Elastic Center, Distance from Crown, 

where 

(68) 

Equation of Arch Axis, Center of Coordinates at Elastic Center, 
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Variation in Moment of Inertia, 

I 

Iz COS <t>x 
= 1 - 4(1 - n)(~) , 

where 

(70) 

n = 
I, cos 

Moment of Inertia at Any Point, 

I: = 

1 +641r/ Ir,1 

1 - 4(1 - n)\j 

Depih of Rectangular Section at Any Point, 

sW1 + %M r 
1 - 4(1 - n)(j- 

(71) 

(72) 

Formulas for Statically Indeterminate Values if, 7* and Af.— 
Formulas for statically indeterminate values H, VA and M for parabolic 
fixed arches are given on pp. 618, 620, and 622 to 624. 

Uniformly Distributed Loading.—The tables below give reactions, 
thrusts and bending moments for most unfavorable positions of uni¬ 
formly distributed live load at springing, quarter point and crown. 

Springing 

Values of n 

0.8 0.6 0.4 0.3 0.2 

Maximum Positive Bending Moment (Formulas (92) to (95) p. 623) 

ma 0.017trl2 0 0l8tuf* 0.019 wl* 0 021 tel* 0.022wl* 0.023wl* 0.025tvl* 

0.085t&f 0.086wl 0.08Qwl 0.087wl 0.087wl 0.087wl 0.088wl 

Va 0.151«?i 0.150wl 0.148 wl 0.146 wl 0.145wl 0.143 wl 0.141iri 

Maximum Negative Bending Moment (Formulas (96) to (99) p. 623) 

ma -0.017 urf* -0.018 wl* —O.OlOtel* -0.021tol2 —0.022tol2 —0.023u>l2 -0.025tol* 

(r/l)H 0.040tol 0.039wl 0.039tcl 0.039tci 0.038wl 0.038wl 0.037tpI 
vA 0.349wl 0.35wl 0.35tri 0.35tri 0.36tol 0.36 wl 0.36tri 
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Quarter Point 

Values of n 

1.0 0.8 

1 
0.6 0.4 0.3 0.2 0.1 

Maximum Positive Bending Moment (Formulas (100) to (103) p. 624) 

mh O.OO9O10Z2 0.0087ti;l2 O.OO8I10I* O.OO77t0l* 0.0075101* 0.0071101* O.OO65i0l* 

(r/DH 0.0345wf 0.0342i0l 0.0338i0i 0.0333wl 0.0329i0l 0.0324t0l 0.031810I 

Vi 0.333wl 0.33310I O.335t0l O.337t0l 0.338i0l O.34Ot0l 0 34210! 

Maximum Negative Bending Moment (Formulas (104) to (107) p 624) 

Myt I 0.0090101* O.OO87i0l* 0.0081101* 0. OO77i0l* O.OO75i0l* 0. OO71i0i* O.OO65t0l* 

[r/DH 0.09010! O.OO91i0l 0 0091101 O.OO92t0l O.OO92i0l O.OO93i0l 0.0093101 

VA 0.167i0I 0.167101 O.165i0l O.l63i0l O.I6210I 0.160tvl 0 158tol 

Crown 

Value of n 

0.8 0.6 0.4 0.3 0.2 

Maximum Positive Bending Moment (Formulas (84) to (87) p. 622) 

Mc 0 OO51i0l* 0.0049101* 0.0048101* 0.0045101* 0. OO44i0l* 0 OO42i0i* O.OO4Oi0l* 
Cr/l)H O.O5Gi0l O.O57i0l 0.057wl O.O58t0l 0 O59i0l O.O6O10I 0 O6I10I 

VA <-itvl-► 

Maximum Negative Bending Moment (Formulas (88) to (91), p. 622) 

Mc O.OO5I10I* 0 0049101* 0 0048101* 0 0045101* 0 0044101* 0 0042101* 0.0040101* 

(r/1)// O.OG910I 0.06810! O.O6810I 0 067i0! 0 O6610! O.O65i0l 0 O64t0l 

•firl- 

Effect of Rib Shortening, Parabolic Fixed Arch.—In Formula (61), 
p. 494, make in the numerator 

1 A “ A * ~2 Slav 

in the denominator omit the second term and for the first term sub¬ 
stitute a value from Formula (76), p. 619. This gives 

Horizontal Thrust for Rib Shortening, Parabolic Arch, 

H, = 
175(n + 2) I I 

4(n2 + 8n + 2.667)r2 A„ * PA„ * 
(73) 

This thrust should be used as explained on p. 494. 
Effect of Temperature, Parabolic Fixed Arch.—Making in Formula 

(55), p. 495, similar substitutions as in the previous case, the following 
formula is obtained. 



648 FORMULAS FOR DESIGN OF ARCHES FIXED AT SUPPORTS 

Horizontal Thrust Due to Temperature Changes, 

175 (n + 2) 
H,=± 

4 (n2 + 8n + 2.667)r2 

This thrust should be used as explained on p. 495. 

Values of Cp 

aEtl = CfOtEtl. (74) 

Value of n 

1 0 0.8 0.6 0.4 0.3 0.2 0.1 

Cp 11.3 12.6 14.5 17.4 19.6 22.4 26.4 

Influence Lines for Parabolic Fixed Arches. 
Influence Line for Horizontal Thrust} 

H< for P -1' 

[H 

fx\2 

a). 
3n(n+4)+8(l —n) (n+2) 

l 

i: 

31 

2/ 0 8> 

i("!+8“+5/ l+15<”+2)^„ 

r 

Influence Line for Vertical Reactionf 

= -^K1 +r)"2(2 + 3») 

Influence Line for Auxiliary Bending Moment, 

(75) 

3(1 - n 

SlM)*]- (76) 

~-iM) 2fi+ 1 n 
2(2 + n)\ 

Influence Line for Bending Moment at Springing, Ma, 

l 
Ma - M — VA- — H(r - Yc). 

z 

(77) 

(78) 

Take values of M, Va and H from proper influence lines. 

Influence Line for Bending Moment at Crown, Mc, 

Mc = M + //7C. Right side of arch. . . . 

Take values of M and H from proper influence lines. 

(79) 



CHAPTER VII 

TWO-HINGED ARCHES 

Description of Two-hinged Arches.—Two-hinged arches are arches 
provided with hinges at both springings. Ordinarily the hinges are 
placed at the abutments or pier. More rarely the hinges are placed 
above the springing of the arch, thus dividing the construction into a 
two-hinged arch and two cantilevers, one at each abutment. The 
cantilevers are built monolithic with the abutments. 

Behavior of Two-hinged Arches under Load.—The figure 200 
illustrates the behavior of the arch under different positions of the live 

nmmim nnnnnn i numm nn 

a m niTminuniffl 

Fig. 200.—Two-hinged Arch Subjected to Various Loads. (See p. 649.) 

load. As is the case with fixed arches, partial load produces larger 
bending moments at the critical sections than a load extending the full 
length of the arch span. 

649 
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Bow - String Arch Bridge 

Roof Arch 

Fig. 201.—Types of Two-hinged Arches.1 (See p. 551.) 

1 The Bow-string Arch Bridge represents the bridge at Kristianstad in Sweden, 
described in Beton und Eisen, year 1916, p. 6. 

The Roof Arch represents the Arch in a theatre at Kopenhagen, described in 
Beton und Eisen, year 1909, p. 146. 
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Use of Two-hinged Arches.—Two-hinged arches are used, par¬ 
ticularly in Europe, for long span roof construction, where the horizontal 
thrust is usually resisted by horizontal steel ties connecting the ends 
of the arch. Bow-string arch bridges may also be designed as two- 
hinged arches with or without ties. For ordinary arch bridges two- 
hinged arches are seldom used, three-hinged arches being preferable. 

Notation. 
Let l = length of span; 

Al = change in span length; 
Ax = area of cross-section of arch normal to arch axis at any 

point x; 
A&y = area of average cross-section of the arch, normal to arch 

axis; 
Ie = moment of inertia of cross-section at the crown; 
Ix = moment of inertia of cross-section of arch Ax; 
E = modulus of elasticity of concrete; 

Mx = actual bending moment in the arch at any point x due to 
loads; 

Ms = static bending moment due to loads at any point x 
considering arch as a simply supported beam; 

and VB an same as static reactions 

Fig. 202.—Forces and Reactions in Two-hinged Arch. {See p. 552.) 

<f>x = angle of inclination of section with the vertical at point x\ 
Va = vertical reaction at left support; 

VB = vertical reaction at right support; 
Ha = horizontal thrust at left support; 
Hb = horizontal thrust at right support; 
H = horizontal thrust for vertical loads; 
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Nx = thrust normal to cross-section Ax of the arch; 
x and y = ordinates relating to left support as center of coordinates; 

ds = infinitely small division of the arch axis used in integration; 
As = finite division of the arch axis used in summation. 

Reactions and Bending Moment in Two-hinged Arches at the 
Hinges.—In two-hinged arches no bending moment can exist at the 
hinges. At each hinge A and B there exists only a vertical reaction 
Va and Vb, respectively, and a horizontal thrust Ha and HB) respect¬ 
ively. Where the loading is vertical the horizontal thrusts at both 
hinges are equal so that Ha = HB = H. (See Fig. 202, p. 551.) 

Vertical Reactions.—Vertical reactions are statically determinate. 
Since there are no bending moments at the hinges, one vertical reaction 
can be computed as for freely supported beams by taking bending 
moments of loads and reactions about one of the hinges and equating 
it to zero. The other reaction is then found from the requirement 
that the sum of both reactions must be equal to the sum of the loads. 

Horizontal Thrust.—The horizontal thrust H in two-hinged arches 
is the only statically indeterminate value. It is formed from the 
following formulas.2 

* The horizontal thrust is found from the requirement that the horizontal move¬ 
ment of the support due to the bending moments and thrusts be equal zero. 

The equation for the horizontal movement of the support is the same as for fixed 
arches. (See p. 592.) 

1 N 
Al -- | i^yds+ ‘ x = ~f0ml>vds+f0itdscoa^ 

The ordinates x and y refer to a system of coordinates with an origin at the left 
support A. 

Substitute in the first term of the above equation for the bending moment at any 
point of arch Mx = M$ + Hy. (See Formula (10), p. 275.) The second term of the 
above equation is small in comparison with the first so that it is permissible to 
simplify it by substituting Nx = — H and also using instead of the variable A* an 
average value Aav. This makes the solution of the integral possible. The integral is: 

-- Cdz=- H~. 
yo A* AaVtyo Aav 

*=-foV?dS-Hiy' 

The equation then becomes 
HJ_ 

EIX EAa 

Make Al = 0. Eliminating the constant value of E and solving for H. 

Horizontal Thrust Two-hinged Arch, by Integration 

(1) 

H -- r Mgyyds 

J 0 l* 

He 
iftv 
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Horizontal Thrust Two-hinged Arch, by Integration, 

H = - 1 * It, 
Msy—ds 

JP 
, U. 

Tds + T 1 X 

(2) 

By substituting for the integral sign the summation sign and for the 
infinitely small ds the finite value of As, 

Horizontal Thrust Two-hinged Arch, by Summation, 

// = 2l 2Ic\ _j_ lIc o2/2—As + — 

(2a) 

The last term in the denominator represents the effect of rib 
■d-HV 

shortening due to live load thrust. It is small and may be omitted 
except in very flat arches. 

Bending Moment at Any Point.—After the horizontal reaction is 
computed, the bending moments are found from the formula. 

Bending Moment at Any Point, Two-hinged Arch, 

Mx — Ms + Hy} (3) 

where Ms is the static bending moment for simply supported beams. 
H should be used with its sign. For downward loads Hy is negative. 

Normal Thrust. 
Formula for normal thrust is 
Normal Thrust, Two-hinged Arch} 

Nx = Vx sin (f)x — II cos <f>x.(4) 

Determining of Horizontal Thrust by Summation 

Where the arch axis cannot be expressed by an equation the hori¬ 
zontal thrust II cannot be obtained by integration and the summation 

method must be used. 
Denominator.—As evident from Formula (2), p. 553, the denomi¬ 

nator for H is The denominator can be computed 

as follows: 
Lay out the arch axis to a convenient scale and also the assumed 

thickness of the arch. Divide the arch into a desired number of 
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divisions. Find the values of y for the center of each division. Measure 
the length of each division As. Scale the thickness lix of the arch at 
the center of each division, also scale hc at the crown. Prepare a table 
as shown on p. 554 and make the computations there indicated. For 
symmetrical arches only one-half of the arch needs to be used and the 

sum multiplied by 2, because the value of for the whole 

arch equals twice the value for the half arch. For rectangular cross- 

L = (h)3 

Ix \hj • 

Ur 

sections 

To get the denominator add — unless this value is omitted. 

Table 1.—Denominator for H, Two-hinged Arch 

Value of y2~r&s 
* X 

Arch Divided into 2n Divisions 

y = ordinate of the center of each division 

Number 

of 

Division 
y y2 As kx 

hr. 

hz y{h)’AS 

(1) 
1 

2 

3 
4 

5 

n 

(2) (3) (4) (5) (6) (7) (8) (9) (10) 

Sum of Col. (9) -2 
L T 
2 J/2 “As = 
o h 

To get the denominator for H multiply the sum of Col. (9) by 2 and add —* 
Aav 

Numerator.—The numerator Ms&y&s depends upon the loads 

and must be determined separately for each arrangement of the loading 
for which the arch is investigated. 

Uniform Load Extending Over Whole Span.—In symmetrical arches 
for uniform loading extending over the whole span the values of Ms 
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for two symmetrically located points are equal. Since the values of 

V‘ yf As and Ix are also equal, the sum 
^0 

for the whole arch is equal 

to twice the sum for one-half of the arch. Therefore, the sums for 

one-half of the arch, only, need to be computed. 
The general formula for static bending moment is Ms = \wx(l — x). 

If the arch is divided into 2n equal divisions so that l = 2nl\ the equa¬ 
tion may be simplified by using the following formula for static bending 
moment. 

I 
Let l\ = length of division of the span = —. 

2 n 

wl\2 
~2 h f,(2n - 0- 

(5) 

Table 2.—Numerator for Horizontal Thrust, Two-hinged Arch 

Uniform Load, Whole Span Loaded 

x and y are ordinates of the centers of each division, h is horizontal length of 

each division. 

Number 

of 

Division 

y—As 
•»* 

X 

it 

X 
2n-~ 

2n — (3) 
iM) 

(3) X (4) 

x! x\ Ic 

nr-hji? 
(5) X (2) 

a) (2) (3) (4) (5) (6) 

1 0.5 

2 1.5 

3 2.5 
H 

8 
o 
£ , . 

n n—0.5 

Sum of Col. (6) = ■2i;(* 
*\ 

To get the numerator multiply the sum 

V)l\2 
2 

As obtained from 
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Uniform Load Extending over One-half of the Span.—For symmetrical 
arches the horizontal thrust for uniform load w, extending over one-half 
of the span is equal to one-half of the horizontal thrust for full loading. 

Uniform Loading Extending over Five-eighths of Span Length. (See 
Fig. 203(a).)—This loading gives approximately the maximum negative 
bending moment at the unloaded quarter point of the arch. If the load 
covers the left side of the arch the static bending moments are 

Ma 

Ms 

1 x/55 _ x\ 

2l\64 l) 

('-?) 

wl2 for x smaller than H. 

25 

128 
wl2 for x larger than f l. 

. • (5) 

(6) 

To simplify the work, divide the arch into 2n equal parts and substitute 
x 

as before l = 2nh and — = n*. Then the formulas change to 
h 

Ms = £ra*(3.44n — nx)wh2 forx = nJLi smaller than 
and 

Ms = 0.39n(2n — nx)wli2 iorx — nxh larger than 11. 

The numerator for H becomes 

2. t . _ 5 1 r 

Msy-^As— wlA V8‘> (3.44n — nx)i/~As 
o Ix \^Q\nx 

+ nx)yyAs\. (7) 
Jx ) 

It is best to divide the arch into sixteen equal divisions. Then ten 
5 l 

divisions are loaded and six are not loaded. Also 2n = 16 and - - = 10. 
8 h 

The computations should be worked out as suggested in table below. 

The loading of the arch and the divisions are shown in Fig. 203(a), p. 552. 
Uniform Load Extending over Three-eighths of Span Length. (See 

Fig. 203(6).)—This loading gives approximately the maximum positive 
bending moment at the loaded quarter point of the arch. The hori¬ 
zontal thrust is obtained by subtracting the horizontal thrust for load 
extending over five-eighths span found above from the horizontal thrust 
for full load. 

Uniform Load Extending Over One-eighth Span on Both Sides of 
Crown. (See Fig. 204(a).)—This loading gives approximately the 
maximum positive bending moment at the crown. The horizontal 
thrust for this loading may be obtained by subtracting, from the hori- 



T
ab

le
 3

.—
N

u
m

er
at

o
r 

fo
r 

H
o
ri

zo
n
ta

l 
T

h
ru

st
, 

T
w

o-
hi

ng
ed

 A
rc

h 

F
iv

e-
ei

g
h

th
s 

of
 S

p
an

 U
n

if
o

rm
ly

 L
o
ad

ed
 

DETERMINATION OF HORIZONTAL THRUST BY SUMMATION 657 

oooooooooo 
b-cOiOTfcO<Mi-iOCioC 
<NCSCSC^C^<M(N<M^h^‘ 

lOiOiOiO^OiOiOiOiOLO 

Oi-HlMCO^tocOt^OOOS 

ic »o »o lO 10 >o 
Or-i(NCO^iO 

<3 
Oi H x oiq^X ra0JJ 

jg | 
| *81 

I S 

0* CO ^ C© *>■ 00 OS O rH W COU5 CO 

S
um

 o
f 

C
ol

. 
(6

)j
 

jj 
S

um
 o

f 
C

ol
. 

(9
)] 

T
o
 g

et
 n

u
m

er
at

o
r 

ad
d
 s

u
m

s 
of

 C
ol

. 
(6

) 
an

d
 C

ol
. 

(9
) 

an
d
 m

u
lt

ip
ly

 b
y
 w

li
2.

 
T

h
e 

fi
gu

re
s 

gi
ve

n 
in

 t
h

e 
ta

b
le

 a
p

p
ly

 t
o
 a

ll
 a

rc
h
es

 i
rr

es
p
ec

ti
v
e 

of
 s

p
an

 o
r 

ri
se

. 



558 TWO-HINGED ARCHES 

zontal thrust for load over five-eighths of the span, the horizontal thrust 
for load extending over three-eighths of the span. 

Uniform Load Extending at Each End for Three-eighths of Span. 
(See Fig. 204(6).)—This loading gives approximately the maximum 
negative bending moment at the crown. The horizontal thrust for this 

E---1 
mniiiiiinmiiiiiTm 

(a) Loading for Maximum Negative Bending 
Moment at Right Quarter Point 

r——i 
_minim mn 

(b) Loading for Maximum Positive Bending 
Moment at Right Quarter Point 

Fig. 203.—Loading for Maximum Bending Moments at Quarter Point. (See p. 556.) 

loading equals twice the horizontal thrust for load extending on one 
side only for three-eighths of the span. 

Horizontal Thrust for Concentrated Loads.—The work of deter¬ 
mining the numerator for horizontal thrust for a single concentrated 
load may be simplified by applying the characteristics that the hori¬ 
zontal thrust produced by one load is equal to one-half of the horizontal 
thrust produced by two equal loads placed symmetrically on the arch. 
Therefore the numerator for two symmetrical loads is computed and 
then divided by two. This method is advantageous because it is 
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necessary to make summations for one-half of the arch only, the sum¬ 
mation for the both halves being equal, and because the formulas for 
static bending moments Ms are simpler. Thus for two loads P placed 
at a distance a from each support, for which x = a and a? = J — a, 

(a) Loading for Maximum Positive Bending Moment at Crown 

Fig. 204.—Loading for Maximum Bending Moments at Crown. [See p. 556.) 

respectively, the static bending moment is Ms = Px for all points 
between the support and the load and Ms = Pa for all points between 
the two loads. Then the formula for the numerator becomes 

Numerator for Two Symmetrically Placed Loads, 

=2p(xy4:As+® 
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The table below gives an easy method of finding the numerator. 
The work may be still more simplified by dividing the arch span into 

an even number of equal divisions. If the horizontal length of each 
division is As and their number 2n, then the span length is l = 2nli, the 
location of the load from left support a = ml\ and any point x — nJL\- 

The formula for the numerator for two symmetrical loads becomes 

‘MsyyAs = 2hP\ ^ nxyyAs + rnS\ j/^As . . (9) 
o Ix L^-^o Ix lz J 

Table 4.—Numerator for H for Concentrated Load placed at a =* mli, 
Two-hinged Arch 

So MsVjte = 

Arch Divided into 2n Divisions. 

Make summations for one-half of the arch, only. 

1 

Number 
of Divisions 

X 
~=nx 
n 

y As 
* X 

/,A 
nxy- As 

lx 

IrA 
y-As 

* X 

(i) (2) (3) (4) (5) 

For nx 

1 0.5 
tH 
u smaller 

2 1.5 than m 

3 2.5 H 

4 3.5 a o For nx 
... ... 1 larger 
n n -0.5 than m 

Sum of column (4) and (5) = = 

To get numerator for two symmetrical loads P add the sums of Col. (4) and Col. 
(5) and multiply by 2Pl\, 

For one concentrated load P multiply the sum of Col. (4) and Col. (5) by Plx. 

LINE OF PRESSURE, TWO-HINGED ARCH 

Having determined the horizontal thrust, H, the bending moments 
at all points may be obtained by drawing a line of pressure. As ex¬ 
plained on p. 626 a line of pressure is a funicular polygon for the forces 
acting upon the arch drawn with a pole distance equal to the horizontal 
thrust, H. 
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When the vertical reactions are known, the vertical forces are laid 
out to a convenient scale on a vertical line starting with the force 
nearest the right support. The right reaction is then scaled off from 
the top. A horizontal line is drawn to the right upon which the hori¬ 
zontal thrust, H} is laid out to the same scale as used for the forces. 
A funicular polygon is now drawn, starting at the left hinge. If the 
work is done correctly, the polygon will pass through the right hinge. 

If the line of pressure is correctly drawn the distance between the 
line of pressure and the arch axis represents the eccentricity of applica¬ 
tion of the thrust. The magnitude of the resultant thrust at any point 
may be obtained from the force polygon by scaling the length of the ray 
parallel to the line of pressure. The normal thrust may be easily 
found by resolving the resultant thrust into normal thrust and shear. 
The line of pressure, therefore, in connection with the force polygon 
gives all the required information for computing stresses. 

Line of Pressure for One Concentrated Load.—For one concen¬ 
trated load the line of pressure consists of two straight lines passing 
through the hinges, and intersecting at a point located on the vertical 
line indicating the force. The location of the two lines is fixed when 
the location of the point of intersection is known. The distance of 
this point of intersection above the arch axis is the eccentricity and, for 
known horizontal thrust, //, it may be obtained by dividing the bending 
moment Mx at that point by the thrust, II. 

Since according to Formula (3), p. 553, Mx = Ms + Hy and for a 

load placed at x = a, Ms = P 

Therefore 

-a + Hy. 

PI-a 

H l 
a — y. 

INFLUENCE LINES, TWO-HINGED ARCH 

Influence Line for Horiatntal Thrust.—Influence line for horizontal 
thrust is a curve by means of which can be found the horizontal thrust 
produced by any force P placed at any point on the arch. The influence 

line is drawn as follows: 
The horizontal thrusts are computed for a unit load P = 1 placed 

successively at all division points in the arch. The numerators of H 
may be found as outlined in Table 3, p. 557. For denominator of H 
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use scheme in Table 2, p. 555. The computed values of H are plotted 
to a convenient scale on verticals passing through the respective points 
starting from a horizontal base. The resulting points connected give a 
a curve called the influence line for H. The ordinate of this curve 
multiplied by the load P gives the horizontal thrust due to that load. 

A typical influence line for H is shown in Fig. 207, p. 575. 
Influence Line for Bending Moments at Any Selected Section.— 

Influence lines for bending moments at any selected section are curves 
by means of which it is possible to get, by scaling, the bending moments 
due to any kind of loading. An influence line may be prepared for 
any section. Usually, it is sufficient to get influence lines for the 
bending moments at the crown and at the quarter point. 

The influence line for any selected section is obtained by computing 
for that section the bending moment Mx due to a load P = 1 placed 
successively at each division of the arch. The values are plotted to a 
convenient scale above or below a horizontal base on vertical lines 
passing through the locations of the load. They are plotted above 
the base line when the bending moment is positive and below when 
it is negative. The curve connecting the points forms the influence 
line. The ordinate of this curve at any point multiplied by the load 
P gives the bending moment of this load placed at that point about the 
selected section. 

Let l = span length; 
Xit yi = coordinates of the selected section for which influence 

line is drawn; 
x = coordinate of any point at which load P = 1 is placed; 

Mx = bending moment at selected section. 
Then 
Bending Moment at Selected Section} Two-hinged Arch 

When load P = 1 is placed to the right of the selected section 

Mx = Hyi + —j—x 1.(10) 

When load P = 1 is placed to the left of the selected section 

Mx = Hyi + .(11) 

In both formulas H is the horizontal thrust due to the load P = 1 
when placed at point x. Its magnitude changes with the change in the 
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position of the load. It may be taken from the influence line for the 
horizontal thrust. H is negative and should be used in formulas and 
tables with its sign. 

When the arch is divided into 2n sections of equal length h, then the 
span length is l = 2nli. The ordinate of the section for which influence 
is drawn, is x\ = mli and any point it is x = nJi. 

I 
Let 2n = — = ratio for span length; 

h 

Xi 
m sr = ratio for selected section; 

h 

x 
nx = - = ratio for any point at which load P = 1 is placed. 

The Equations (10) and (11) change to: 
When load P = 1 is placed to the right of the section, 

*>r rr , 2nZl ” 71i rr , ™(2n *“ n*), Mx = Hyi H-—-mh = Hyi H-—-li. 
2nli 2 n 

(12) 

When load P = 1 is placed to the left of the section, 

^ rr , U*(2n ~ Mx = Hyi H---h. 
2 n 

(13) 

The values for the influence line may be found as outlined in Table 5, 
p. 564. 

Use of Influence Lines for Bending Moment.—Similarly as in fixed 
arches, the influence lines are partly above and partly below the 
axis. This means that the loads in one position produce positive 
bending moment and in the other position negative bending moment. 
To get maximum positive bending moment, place the loads only at 
points producing positive bending moment. For uniformly distributed 
load multiply the area of the influence line by unit load. For concen¬ 
trated loads place the heaviest loads at points producing maximum 
moment. Multiply the loads by the ordinates below them. 

To get maximum negative bending moments, place the loads only at 
points producing negative bending moments. 

In both cases the horizontal thrust and vertical reactions to be used 
with these bending moments should be taken for the same type of 
loading. 
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Table 5.—Influence Line for Bending Moment at Quarter Point Xi « 0.25/, 
yi » ... Two-hinged Arch 

JL 
20 

Length of span l = 20Ji, 2n = 20, Xi = 0.251 = 5Zj, m » 5, It 

n*(2n — m) 3 , m(2n - nx), l/rt„ 
---h = Tnxli, ---li = "(20 - n*)l! 

2n 4 2n 4 

Loads to the Left of 
Quarter Point 

Section H Hyi 

(2) Xj/i 
Wi 

U iX(4) 
M 

(5)+(3) 

(i) (2) (3) (4) (5) (6) 

1 0.5 
2 1.5 
3 2.5 
4 3.5 
5 4.5 
6 Vi 

> 7 
£ 

8 
8 

s 
bO 

9 
<D 

10 
a 2 

10' s a 

9' .5 

8' a 

7' § 

6' J8 
5' 

08 
H 

4' 
3' 
2' 
1' 

Loads to the Right of 
Quarter Point 

nx 
20—nx 

20-(7) 
Ui(20-nx) 

(8) X}L 
M 

(9)+(3) 

(7) (8) (9) (10) 

5 5 
6.5 
7.5 
8 5 
9 5 

10.5 
11.5 
12 5 
13 5 
14.5 
15.5 
16.5 
17 5 
18 5 
19.5 

14.5 
13 5 
12 5 
11.5 
10 5 
9 5 
8.5 
7 5 
6 5 
5.5 
4 5 
3.5 
2.5 
1.5 
0.5 

EFFECT OF CHANGE OF SPAN LENGTH, TWO-HINGED ARCH 

It has been proved on p. 602 in connection with fixed arches that 
change of span length produces a horizontal thrust and bending moments 
at all points of the arch, but no vertical reaction. At the springing of a 
fixed arch there is a bending moment and horizontal thrust. In two- 

hinged arches there can be no bending moment at the hinges, therefore 
there the arch is subjected to a central horizontal thrust only. 

Let the center of coordinates to which the arch is referred coincide 
with the left hinge. Also 
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Let H = horizontal thrust due to change of length of span; 
Mx — bending moment due to change of length of span; 

y = ordinate of any point on arch axis; 
Al — change in length of span. 

For signs of Al see p. 584. 

Then 
Bending Moment at Any Point, 

Mx = Hy.(14) 

Introducing this value in formula for change of span length and making 
Nz = — H 

, r'Hy rl II a,_-j, j Ha,cos 
From this the horizontal thrust is • 

H= - 
A l 

Jo EIxy ^ JQ EAX 

Taking the constant E before the integration sign, multiplying top and 

* l 
-ds by ——, where Aav is average bottom by Ie and replacing 

area of section, the equation changes to 

Jr1 cos <t>x 

o ~aT' 

Horizontal Thrust Due to Change in Span Length At. 

IcEAl 
H = - 

f y2yds + 
JO *Z 

u/ 
(15) 

This formula can be used when the span length actually changes 
due to a movement of the support. Also it can be used in case when 
the span remains fixed, but the length of arch changes, thereby producing 
the same effect as if the arch axis remained constant but the span 
changed. 

EFFECT OF RIB SHORTENING, TWO-HINGED ARCH 

When subjected to a normal thrust the arch rib compresses. The 
heavy lines in Fig. 205(a) show the position an arch would assume 
after being compressed if it was free to move at the ends. In such case 
not only the length of rib but also the length of span would shorten. 
Since the hinges are firmly attached to unyielding supports this change 
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in span cannot take place. Instead, the shortened arch must change 
as shown in Fig. 205(6), where light lines show the arch before rib short¬ 
ening and heavy lines after rib shortening. The crown of the arch is 
lowered and tensile stresses are produced at the bottom of the arch. 
Their intensity is maximum at the crown and reduces towards the 
support. 

The effect of rib shortening is the same as if the arch rib remained 
constant, but, instead, the span length increased. Therefore Formula 
(15), p. 565, may be used to solve the problem. 

Heavy liner. Arch after compreseion 

(a) Compression of Arch Due to Thrust, if Ends Free to Move 

(b) Actual Effect of Rib Shortening 

Fig. 205.—Effect of Rib Shortening. (See p. 565.) 

The unit stress produced by a normal thrust Nx on any section 
Nx 

Ax is fe = The shortening due to this stress of a division of arch 

axis equal in length to ds is —j-ds. The horizontal component of this 
EAX 

shortening is The shortening of the whole span is 
EAX XNx cos < 

EA, 
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It is accurate enough to make Nt — —H and replace the varying 
Ax by average A„. Then 

A l -JC 
Nx cos 4>x 

EA. 
cos 4>±ds = — 

HI 

EA„ 

Substituting this value in Equation (15) the thrust, due to rib shorten¬ 
ing becomes 

Horizontal Thrust Due to Rib Shortening, 

H,= 

III 
A„ 

f* y2—ds + ——- 
Jo V h A„ 

H. (16) 

This thrust is positive because H in the formula is negative. 
This formula needs to be used for dead load only. For live load 

the effect of rib shortening is taken care of by the item -7^ in the formula 

for H. 

EFFECT OF CHANGES OF TEMPERATURE, TWO-HINGED ARCH 

Fall of temperature produces contraction, and rise of temperature 
produces expansion of the arch rib. 

Let t° = rise or fall of temperature in degrees; 
c = coefficient of expansion per degree of Fahrenheit; 
l = length of span in inches; 
s = length of arch rib in inches. 

The change in length of rib due to temperature changes, obtained 
by multiplying the length of rib by the number of degrees and by the 
coefficient of expansion, is st°c. The corresponding horizontal change 
in length is obtained by multiplying the horizontal component of each 
section by t°c. Since the sum of the horizontal components is the 
span Z, the change of the length of span due to the change in length 

of rib is 
Al = =fc lt°c. 

This change is positive for rise of temperature and negative for fall of 

temperature. 
The effect of the changes of temperature and consequent changes 

in length of arch rib is the same as if the arch rib remained constant 
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but the span shortened or lengthened by U°c. The thrust may be 
found by substituting this value for Al in Formula (15), p. 565. 

Thrust Due to Fall of Temperature, Two-hinged Arch 

H = 
IcElt°c 

C4 y2~rds + IL 
(17) 

Thrust Due to Rise of Temperature, Two-hinged Arch 

H = - 
IcElt°c 

Cy2jds + 
Jo 

He 
(18) 

If the lengths are in inches, areas in square inches, moments of inertia in 
inches4, E must be in pounds per square inch. The resulting force 
will be in pounds. 

Bending Moment Due to Changes of Temperature.—The thrust 
found above acts at the level of the hinges. The bending moment 
produced by it at any point of the arch a distance y above the hinges is 

Bending Moment Due to Changes of Temperature, 

M= Hy. ..(19) 

Since the value y is always positive the moment is positive for positive 
Hy and negative by negative H. 

Fall of temperature produces positive bending moments throughout 
the arch varying from zero at the support to a maximum Hr at the 
crown. These bending moments produce tension at the bottom of the 
arch. 

Rise of temperature produces negative bending moments throughout 
the arch varying from zero at the support to a maximum —Hr at the 
crown. These bending moments cause tension at the top of the arch. 

This should be contrasted with the condition in fixed arches where 
the thrust acts at the elastic center of the arch and produces bending 
moment of one sign above and of another sign below the elastic center. 

ECONOMICAL SHAPE OF ARCH AXIS 

The best results are obtained when the arch axis coincides with the 
line of pressure for the dead load. The line of pressure is drawn in the 
same manner as explained for fixed arches on p. 468. Arches so de¬ 
signed, when not loaded, are subjected to normal thrust only and also 
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to the effects of rib shortening due to dead load computed as explained 
on p. 565. 

When the dead load is practically uniformly distributed as is the 
case in bow-string arches the arch axis will be a parabola. In such 
case the simplified formulas for parabolic arch axis may be used. 

PRELIMINARY DIMENSIONS FOR TWO-HINGED ARCHES 

Preliminary dimensions of the arch can be found as follows: 
Assume depth of section and compute the dead load. The hori¬ 

zontal thrust for dead load is then found by dividing the static bending 
moment by the rise in the center. 

The live load thrusts and bending moments are found by using par¬ 
abolic arch formulas (see p. 573). 

Temperature thrusts and bending moments are also found as for 
parabolic arches (see p. 576). 

The thrust and bending moments are combined and the dimensions 
found by using Diagrams 1 and 2, opp. p. 648 or 7 and 8, pp. 654-655. 

The dimensions may be found either at the crown only or at the 
crown and at the quarter point. 

Having the preliminary dimensions the dead load is checked. The 
arch axis is then determined to coincide with the line of pressure for 
the new dead load. The arch is then laid out to scale and the final 
computations made. 

Critical Sections for Two-hinged Arches.—The following sections 
need to be investigated: 

1. Crown; 
2. Quarter point; 
3. Hinge. 

The bending moments at the crown are smaller than at the quarter 
point. Therefore the depth of the section at the crown is made smallest 
and then increases slowly at first and then more rapidly, reaching its 
maximum at the quarter point. From the quarter point toward the 
hinge the bending moments decrease and the sections may also be 
decreased. At the hinge the bending moment is zero and the section 
is determined only by the required bearing of concrete on the hinge. 

As the appearance of the arch with such variations in sections 
would not be pleasing, it is often made either of constant depth through¬ 
out or with the depth increasing from the crown toward the hinge with 
the section at the hinge a maximum. With such arrangement, naturally, 
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some material is wasted in the portion of the arch between the quarter 
point and the hinge. 

Most Unfavorable Position of Loading.—In arches, partial loading, 
when properly placed, produces larger bending moments than a loading 
extending the full length of the span. The position of the most unfavor¬ 
able loading is different for different sections. Thus a different loading 
must be used in the section at the crown from that used at, say, the 
quarter point. 

Negative bending Positive tending moment 

(a) Crown 

Negative bending moment Positive bending moment 

(b) Quarter Point 

Fig. 206.—Most Unfavorable Position of Live Load. (See p. 570.) 

Influence lines for bending moments furnish the best method of 
determining the most unfavorable position. Their use for the purpose 
is explained on p. 563. They are particularly useful when the loading 
consists of concentrated loads as then the loads must be placed not 
only within a proper region but also the largest loads must be placed 
at points producing largest bending moments. For uniformly dis¬ 
tributed loads it is sufficient to know the extent of the length of arch 
to be loaded. 

The position of points where bending moments change sign is not 
An 

constant but depends upon the curvature of arch and upon the — 
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ratios. However, it is accurate enough for practical purposes to accept 
the following average positions of the most unfavorable loading for 
critical sections. 

For Crown. 
For maximum positive bending moments. Load extends from x = 0.35Z 

to x = 0.65Z. (See Fig. 206(a), p. 570. 
For maximum negative bending moments. Load extends on each side 

from support for a distance equal 0.35Z. (See Fig. 206(a), p. 570. 
At the Left Quarter Point. 
For positive bending moment. Load extends from the left hinge for 

a distance equal to 0.41 of the span. (See Fig. 206(6), p. 570. 
For negative bending moment. Load extends from right hinge for 

a distance equal to 0.59 of the span. (See Fig. 206(6), p. 570. 
At the Hinges. 
Full load produces maximum compression at the hinges. 

TWO-HINGED ARCHES WITH HORIZONTAL TIE 

Two-hinged arches with horizontal tie are often used in bridge con¬ 
struction for the so-called bow-string arches and in roof construction. 

Horizontal ties are used when it is impossible or undesirable to make 
the abutments strong enough to resist the horizontal thrust. In such 
case the horizontal thrust is resisted by the tie, and the supports are 
designed for vertical reactions only. 

The horizontal tie under the action of the horizontal thrust lengthens; 
therefore the span length increases by the same amount. This must be 
taken into account in formulas for the arches with ties. 

In Formula (1), p. 552, instead of making Al = 0 as was done for 
arches with fixed hinges, it is made equal to the elongation of the ties 
under the action of the thrust. 

Let 

Then 

H = horizontal thrust, lb. ; 
E, = modulus of elasticity of steel, lb. per sq. in.; 
As = area of tie, sq. in.; 

I = length of tie, in.; 
Al = elongation of the tie, in. 

Al = 
H 

A.Es 
l 

Substituting this value for AZ in Equation (1), p. 552. 

COS </>: 

~KAX 
ds = ■ 

HI 

a.e; 

(20) 
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This solved for H, and making 

and bottom by Ie 

/cos <!>: 

HZ 
ds = 

EA„ 
also multiplying top 

H = - 
if Msyyds 

IX 

i ry 
E\ I. y T EA„ A. E. 

E 
Multiplying by E and since = n. 

Horizontal Thrust, Two-hinged Arch with Ties, 

Msyyds 
Jo *y_ 

H = - 

C y2—ds + — 
Jo /. ^av 

+ U/ 

nAt 

(21) 

Comparing this formula with Formula (2), p. 553, for fixed position 

lie 
of hinges, the two formulas differ in that the term —— denoting the 

TlJxj 

lengthening of the tie is added in the denominator for arches with ties. 
The denominator is found in the same manner as explained on p. 553 

II c . 
and after the summation is made, the fixed value is added. There 

nA9 
is no difference in the numerator. 

Bending Moments and Influence Lines.—The bending moments and 
influence lines are found in the same manner as for arches without ties. 

Since in arches with ties the support is not capable of resisting the 
horizontal thrust the arch should be designed so that it is free to move 
at one end. The span length then is governed only by the ties. When 
no means are provided to enable free movement of the arch the thrust 
may be transferred to the abutment instead of bringing the ties into 
action. This may be harmful to the abutment. 

Influence of Temperature Changes.—When an arch with a tie is 
subjected to changes of temperatures, not only the arch but also the 
tie undergoes a change in length. If the change in temperature is the 
same in the arch as in the tie and when the coefficient of expansion is 
the same the whole structure will change its length without producing 
any stresses. The free end of the arch will move to adjust itself to the 
new length of the arch and the new length of the span. 
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The difference between an arch with fixed hinges and unyielding 
supports and an arch with a tie (and one movable end) is that with 
fixed hinges, under influence of temperature, the length of the arch 
changes but the span remains the same, while with a tie not only the 
arch but also the span, which is governed by the tie, changes. 

PARABOLIC ARCH WITH TWO HINGES 

The formula for the only statically indeterminate value in a two- 
hinged arch is 

Horizontal Thrust, General Formula, Two-hinged Arch 

When the curve of the arch axis can be expressed by a mathematical 
equation, the integrals can be solved. 

On the following pages information is given so that the value of H 
for parabolic arches may be determined without the necessity of solving 
the integrals. 

The formula for a parabolic arch axis, considering the left hinge as 
the center of coordinates, is 

y = ^(lx - **).(23) 

It is also necessary to express Ix by a formula. 
Ic 

tion is that /* cos 0* = Ic so that y = cos 0*. 

above formulas gives 

H = — 
1 
1" 

Msy cos0*ds 

2 cos <j>xds + 
II c' 

The simplest assump- 

This substituted in the 

The value of Ic is constant and therefore may be taken before the 
integration sign and canceled. Also ds cos 0* = dx. This changes 

the formula to 

X Msydx 

y2dx + 
lie 

(24) 
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Denominator for H Formula, Parabolic Two-hinged Arch.—Sub- 
4 T 

stituting in the denominator for Formula (24) y = —(£c ~ *2) an^ 

solving the integral3 the denominator for H becomes 

!b-L*, + !k. 
15 -A*. 

The formula then becomes 
Horizontal Thrust for Parabolic Two-hinged Arches, 

H = - 1 
i 

Msydx 

bn+ 

(25) 

Horizontal Thrust for Uniformly Distributed Load in Parabolic Arch. 
—The horizontal thrust for uniformly distributed load is found by 
substituting in Formula (25), p. 574, the proper value for Ms and 
solving the integral. 

For loading extending the whole length of the span the thrust is 
Horizontal Thrust, Uniform Load, Whole Span Loaded, 

H (26) 

For loading extending for a distance ml from support the thrust is 
Horizontal Thrust, Uniform Load over Length ml, 

H = 15ffm2(l — m2 + $m3)wl-.(27) 
T 

For loading extending for a distance of ml from both supports, the 
horizontal thrust is equal to twice the value in Formula (27). 

For loading extending for a distance mil on each side of the crown, 
the horizontal thrust is found by computing from Formula (27) 
the horizontal thrust for loads extending from support a distance 
ml — — mi)l} multiplying it by two and subtracting it from the 
thrust for full load from Formula (26). 

16r* rl I6r2 
— ( (JV - 2lx* + x*)dx = —!■(* - i + i). 
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Horizontal Thrust for Concentrated Load in Parabolic Arch.—For 
a load P located at point a from left support the horizontal thrust4 is 
represented by the following formula 

Horizontal Thrust for Concentrated Load, 

Ordinates for Influence Line for H.—In the Equation (26) for 
// make P = 1 and replace a by x to get the influence line for the 
horizontal thrust. 

Ordinate for Influence Line for //, Parabolic Two-hinged Arch 

-i'rHO’H)].« 
Figure 207, p. 575, gives influence lines for different ratios of 

r 
Bending Moments for Concentrated Loads in Parabolic Arch.—The 

bending moment about a section located at a distance x from the left 
support produced by a load placed at a distance a from left support 
may be found from following formulas. 

For load P placed between the section and the left support 
(a is smaller than x)} 

- f) {? -1 ft1 - (?)X2 - !)]f}«• • • <3°> 
4 This formula is obtained by using two symmetrically placed loads for which 

the static bending moments are Ma — Px for x smaller than a and Mt = Pa for 

z larger than a. Substitute these values in the equation for the numerator and solve 

the integrals for one half of the span only then the numerator can be used for single 

loads (see p. 558). 

j ^ J 
2Msydx J2Msydx = j*e 

4 r, 
Px^ilx - x2)dx + j'iPa^(lx - x')dx 

j^P^J'a(lx2 — x3)dx + ap (lx — x*)(fa).] 

This solved gives for the numerator 

lrxi j: [‘-©■(-0] PI*. 

The denominator is, neglecting the second term, x^rH. 
The horizontal thrust, then, is 

H =- 
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For loads placed between the section and the right support 
(oi is larger than x), 

PI. (31) 

It should be noted that the bending moments due to loads are 
independent of the rise of the arch. They are the same for all arches 
having the same span and the same loading even if the rise is different. 

Influence Line for Bending Moments.—The influence line for bend¬ 
ing moments at any definite point consists of two branches. The 

Values of j 

Fig. 207.—Influence Line for Horizontal Thrust. Parabolic Arch. (See p. 575.) 

equations for these two curves may be obtained by substituting in 

Equations (28) and (29) P = 1, also for x the ordinate X\ of the 
point for which the influence line is desired and making a a variable 

value. Thus 

Left Branch of Influence Line, Parabolic Two-hinged Arch 

Vm • • (32) 

Right Branch of Influence Line, Parabolic Two-hinged Arch 
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The influence lines for the bending moment are independent of the 
rise. 

Rib Shortening Due to Dead Load, Parabolic Two-hinged Arch.— 
The thrust due to rib shortening is obtained by substituting in Formula 
(16), p. 567, the value of the denominator for parabolic arch. 

Horizontal Thrust Due to Rib Shortening Produced by Thrust Ht, 

.<*» 
Moment Due to Rib Shortening, 

Mx = Hry.(35) 

Effect of Temperature, Parabolic Two-hinged Arch.—Substituting 
in Formula (17), p. 568, the value for the denominator for parabolic 
arch, the formula for horizontal thrust due to changes of temperature 
becomes 

Thrust Due to Fall of Temperature by t° Degrees 7 

15 7 
Ht = —~Et«c.(36) 

8 H 

Thrust Due to Rise of Temperature by t° Degrees, 

15 7 
.(37) 

When r is in inches and E in pounds per square inch the horizontal 
thrust H is in pounds. 

Bending Due to Temperature Changes, 

M = Hty.(38) 

Jn the above formula the value for 77, must be substituted with the 
proper sign. 



CHAPTER VIII 

THEORY OF ARCHES 

In this chapter are developed formulas which are used in Chapter 
VI where final formulas necessary for design of arches are given. The 
formulas there given are in complete form, so that no reference is 
necessary to the chapter on Theory of Arches. However, for proper 
understanding of the formulas it is advisable for the designer to acquaint 
himself with the manner in which the formulas were derived. 

Assumption as to Fixed Arches.—An arch is called fixed when: 

(1) the supports are unyielding so that the arch can neither increase 
nor decrease its span, and 

(2) the arch is built into the supports so that it cannot turn at the 
springings. The last requirement means also that there can¬ 
not be any changes in the central angle, i.e., the angle formed 
by lines drawn at the springings at right angles to the tangents 
to the arch axis remains constant. 

Formulas will be first developed based upon these assumptions. 
Later, on p. 602, will be considered the effect upon the arch if these 
assumptions are not entirely fulfilled. 

Reactions and Moments at Support.—As a general rule the arch 
action produces at each support an inclined reaction Ry which can be 

resolved into a vertical reaction V, and horizontal reaction H. Thus 

at the left support marked A, the inclined reaction is Ra and its com¬ 
ponents Va and Ha. At the right support marked B, the inclined 
reaction is Rb with components Vb and Hb. For downward loading of 
an arch the vertical reactions act upward and the horizontal reactions 
inward. (See Fig. 208, p. 583.) 

In fixed arches, since the ends of the arch are not free to turn, bending 

moments will be developed there in addition to the reactions. Thus 

at support A a bending moment Ma and at support B a bending 
moment Mb will be developed. They may be either positive or negative. 
In computations the bending moments at the support MA and MB are 

578 
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assumed as positive. Their actual sign depends upon the plus or minus 
sign of the result. 

Thus at the support there are six unknown quantities, Va, Ha, 

Ma at left and Vb, Hb, Mb at right. Three of these can be deter¬ 
mined from static rules of equilibrium. 

Notation. 

Let l = span length; 
x, y = distance of any point from left support; 

Pi, P2, P3, P* = vertical downward forces; 
a\, a,2, <13, <4 = distances of downward forces from left support; 

Phv Ph2, Ph3 = horizontal forces; 
yx, 2/2, 2/3 == vertical distances of horizontal forces from support; 

Va and Vb = vertical reactions; 
Ha and HB = horizontal reactions or thrusts; 

Ma = bending moment in arch at left support; 
Mb = bending moment in arch at right support; 
Ms = static bending moment considering arch as freely 

supported beam; 
M9 = static bending moment at any point due to vertical 

forces, considering arch as a cantilever fixed at the 
right support B. 

Three Static Equations of Equilibrium.—The three static conditions 
of equilibrium are: 

1. The algebraic sum of all vertical forces and reactions (or vertical 
components of inclined forces and reactions) must be equal to zero. 
From which follows that the sum of vertical forces must be equal to 
the sum of vertical reactions, and act in opposite direction. 

2. The algebraic sum of all horizontal forces and reactions (or 
horizontal components of inclined forces and reactions) must be equal to 
zero. From which follows that the sum of horizontal forces must be 
equal to the sum of horizontal reactions and act in opposite direction. 

3. The moment of all forces and reactions about any point of the 
structure must be equal zero. 

These conditions are sufficient for finding all reactions in simply 
supported beams. 

When the loading acts at right angles to the beam, only conditions 
1 and 3 are necessary because horizontal forces are absent. 

Sign of Forces.—The sign of downward vertical forces, such as loads, 
is accepted as minus. The sign of upward vertical forces, such as 
reactions, is taken as plus. 
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The sign of horizontal forces acting inwards, such as horizontal 
thrust due to downward loads, is accepted as minus. The sign of 
horizontal forces acting outward, such as thrust due to rib shortening 

and fall of temperature, is taken as plus. 
Sign of Bending Moments.—The sign of bending moments pro¬ 

ducing tension at the bottom of the arch member is accepted as plus, 
while bending moments producing tension at the top of the member is 

taken as minus. 
Relation between Reactions.—From the first rule of equilibrium 

following relation is obtained: 

VA + VB - (Pi + P2 + P3 + P4) = 0 

also 

VA = (Pi + P2 + Pa + P4) ~ Vb. 

Thus if one reaction is known, the other can be easily found. 
From the second rule of equilibrium 

Ha + Hb “ (P/q + Ph2 + Ptf3) 388 0 
also 

Ha = (Ph, + Ph2 + Ph,) ~ HB. 

If all external forces are vertical there are no horizontal forces, therefore 
both horizontal reactions are equal and act in opposite directions. Thus 

Ha = - Hb. 

From the above it is evident that by the use of the two equations 
of equilibrium the four unknown reactions at the support RA) Rb, HAf 
and Hb can be reduced to two unknown values, namely, Ra and HA. 
These two values must be found by formulas based on the elastic proper¬ 
ties of the arch to be determined in succeeding pages. The bending 

moments at the support MA and MB are additional unknown quantities. 
Relation between Bending Moments at Support.—According to the 

third equation of equilibrium, by taking bending moments about the 
right support, the following relation may be formed between the bending 
moments at the support MA and MB. 

Ma + VAl - [Pi(f - ai) + P2(i - 02) + P3(* - 03)] 

+ [Ph,V 1 + Ph2V 2 + PhzV^ + Mb — 0. 

The horizontal thrusts Ha and Hb do not appear in the above equa¬ 
tion as they act at the level of the supports and therefore do not produce 
any bending moments at the supports. 
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There being two unknown quantities M a and MB the above equation 
is not sufficient for determining of both of them. However, if the 
bending moment at one support is known, the bending moment at the 
other support can be found from the above equation. This makes one 
value determinable by statics while the other value, say, Ma, is static¬ 
ally indeterminate. 

Statically Indeterminate Values.—As evident from above discussion, 
in fixed arches, the following values cannot be determined by the three 
rules of equilibrium, 

Va, Ha, and Ma. 

These are the reactions and the bending moment at one (in this case 
the left) support. The statically indeterminate values will be found from 
rules which take into consideration the elastic properties of the arch. 
Having found these values, the reactions and the bending moment at 
the other support can be found by statics. 

Bending Moment in the Arch at Any Intermediate Point.—When 
all the loads are vertical the bending moment at any point may be 
expressed in terms of reactions and loads as follows: 

Mx = Ma + VaX — Pi(x - ai) — P2(x — a2) - P3(x — a3) + HAy. (1) 

Since — Pi(x — a{) — P2{x — a2) — P3(x — a3) is the static bending 
moment of the vertical loads considering the arch as a cantilever fixed 
at the right support B, it may be replaced by M„ 

Therefore 

Bending Moment at Any Point x, in Terms of Ma, Va and Ha, 

Ms = Ma + VAx + HAy + M9j.(2) 

where M, = — Pi(x — a\) — P2{x — a2) — P3(x — a3). 
It should be noted that for vertical loading Ha is negative so that 

HAy is actually negative. If instead of the vertical reaction Va the 
bending moment at the other support MB is known the formula becomes 

Bending Moment at Any Point x, in Terms of Ma, Mb and Ha, 

Mx = Ma. + + Ms + HAy. ... (3) 

Where Ma is the static bending moment of the load considering the 
arch as a beam simply supported on both supports. The bending 
moment Mt may be positive or negative, depending upon the sign of the 

result. 
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Notation. 

Let l — 
r = 

Al = 

Ail = 

A2^ = 

Ar = 

Air = 
A2r = 
A0 = 

77 a and Hb = 

Fa and F* = 
ATa and Mb = 

ATX = 

/x = 

7 = 
0* == 
da = 

span of arch; 
rise of arch; 
horizontal movement of one support in respect to the 

other due to thrust and bending moment; 
horizontal movement of support due to thrust; 
horizontal movement of support due to bending 

moment; 
vertical movement of one support in respect to the 

other due to thrust and bending moment; 
vertical movement of support due to thrust; 
vertical movement of support due to bending moment; 
change in central angle; 
horizontal thrusts at supports A and B, respectively; 
vertical reaction at supports A and By respectively; 
bending moments at supports A and By respectively; 
static bending moment considering arch as cantilever 

fixed at right support B; 
normal thrust at any point x; 
shear at any point x; 
area of normal cross-section at any point x; 
moment of inertia of normal cross-section Ax; 
moment of inertia of normal cross-section at the crown; 
inclination of normal cross-section Ax; 
length of a division of arch. 

DETERMINATION OF STATICALLY INDETERMINATE VALUES FOR 
FIXED ARCHES 

The forces and the consequent reactions at the supports in a fixed 
arch are shown in Fig. 208, p. 583. 

As evident from the figure, there are three unknown quantities at 
each support. The static rules of equilibrium (see p. 579) furnish 
three equations sufficient to find three unknown quantities. The 
remaining three unknown values are statically indeterminate and must 
be found from formulas developed on the basis of the elastic properties 
of the arch. The method of attack is to develop expressions for deforma¬ 
tion of the arch under various conditions and from these to obtain 
formulas for three of the unknown reactions and moments. 

In the succeeding pages formulas will be developed for the three 
values at the left support, namely, Ha, Ma and Fa. After these are 



DETERMINATION OF STATICALLY INDETERMINATE VALUES 583 

found, the values at the right support as well as bending moments and 
thrusts at any point may be found from statical equations. 

Assumption for Determining the Statically Indeterminate Values.— 
All sections of the arch are subjected to a bending moment and a thrust. 
Each factor causes deformation of the arch sections. The deformation 
of the arch due to each one of these two factors will be found separately 
and then they will be added. After the general formulas for deforma¬ 
tion due to the thrust and bending moment are found, the final formulas 

Fig. 208.—Forces and Reactions in a Fixed Arch. {See p. 582.) 

for the indeterminate values are obtained from the following require¬ 
ment: 

The magnitude and the disposition of the bending moments and 
thrusts in the arch must be such that the aggregate of all the deforma¬ 
tions at the various sections of the arch will not increase its span, 
raise or lower it at its supports, nor change its central angle. 

Mathematically this requirement may be expressed by the follow¬ 
ing formulas: 

Requirement for Fixed Arches with Unyielding Supports, 

Al = 0.(4) 

Ar = 0.(5) 

A0 = 0.(6) 

The procedure in developing formulas then is as follows: 

1. Find general formula for horizontal and vertical movements, 
respectively, of the support due to the thrust. 
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2. Find general formula for horizontal and vertical movements, 
respectively, of the support due to the bending moments. 

3. Add the horizontal and vertical movements separately, due to 
the two above causes, and equate them to zero. 

4. Find general equation for change of central angle due to the 
bending moments and equate it to zero. 

Sign of Movements of Support.—Following signs are adopted for 
the movement of the support: 

A horizontal movement which shortens the arch axis is positive. 
A horizontal movement which lengthens the arch axis is negative. 
A vertical movement which raises the left support is positive. 
A vertical movement which lowers the left support is negative. 

cosfxt ad**VA sin <px, Nx=*ab+ad~-HAco8$x.+VA rinfe 

bcm-HA sin<pz, demVA cos^x, S=-bc+de» 8in<px+VA co8?x 

Fig. 209.—Forces and Reactions Acting on an Arch Section. (See p. 585.) 

Normal Arch Section and Forces Acting upon it.—The work is 
simplified by using in formulas normal arch sections and the bending 
moments and thrusts acting upon these normal arch sections. The 
normal sections are sections at right angles to the tangent to the arch 
axis at the considered points. In circular arches the normal sections 
coincide with the radial lines. 

In Fig. 208, I-I is a section normal to the arch axis at point x. 

This section is subjected to a horizontal thrust Ha, a vertical shear 
Vz = Va — Pi, both acting centrally, and a bending moment M* com¬ 
posed of the bending moment at the support Ma, the bending moment 
due to the reaction Va and the bending moment due to the load Pi. 
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The forces acting upon this section are more clearly shown in Fig. 209, 
p. 584. Ha and Vx combined form the resultant thrust. 

Effect of the Thrust upon the Arch 

To get the deformation due to the forces Ha and Vz they are resolved 
into two components, one normal and the other parallel to the section. 
The two normal components added, form the normal thrust Nx while 
the two components parallel to the section form the shear Sx. The 
angle of inclination of the section I-I with the vertical being <j>x, the 
components of the two forces HA and Vx normal to the section are 
Ha cos <t>x and Vx sin </>x and the components parallel to the section 
are Ha sin <t>x and Vx cos </>x. The normal thrust Nx is equal to the 
sum of the normal components and the shear Sx to the sum of the 
parallel components. Their equations are 

Nx = Vx sin <t>x — Ha cos <f)x.(7) 

sx = Vx cos <f>x + Ha sin 0X.(8) 

Effect of Shear S*.—In an arch of the dimensions used in practice 
the effect of the shear upon deformation is very small and will be 
neglected. 

Effect of Normal Thrust Nx.—As will be proved below the normal 
thrust acting upon an arch tends to reduce its span and its rise. If 
free to move, the left end of the arch would perform a horizontal and 
vertical movement of the magnitude given by the formulas below. 

Horizontal Movement of the Left Support Due to Thrust NX) 

Ail 
X 

■_N* 

EA 
■ds cos <t>x • 0) 

Vertical Movement of Left Support Due to Thrust NXl 

A\r X Nx, . 
EAXdSSm^ 

(10) 

The above formulas are developed in the following manner: Divide the arch 
axis into n small divisions, the lengths of which are dsl} ds2, . . . dsn. Consider any 
division of arch of a length equal ds, with area of cross section Ax, subjected to normal 
thrust, Nx acting in the center of the cross section. The unit stress on the section Ax 

due to the thrust is fc = 
Nx 

Ax 
The unit shortening due to this stress is equal to 

fc _ Nx 

E EAf 
The shortening of the whole division, the length of which is ds, is 

obtained by multiplying the unit shortening by ds. 
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Therefore, the shortening of the whole division or Aids This is shown 

in Fig. 210, p. 586, in which the division of the arch before deformation is shown by 
solid lines, and after deformation by dash lines. 

As evident from the figure the shortening Aids takes place along the arch axis. 
The point 1 on the arch axis moved to point 1'. This movement may be resolved 
into a horizontal movement 1-1" and vertical movement l'-l". The horizontal 
movement is called Aidx and the vertical movement Aid?/. Their magnitude may 

Fig. 210.—Deformation Due to Normal Thrust. (See p. 586.) 

be obtained by multiplying the movement along the axis Aids by cos <f>x and sni 
N 

respectively. Since Aids = the formulas for partial movements are: 
EAX 

Partial Horizontal Movement Due to Thrust NX) 

Nx 
Aidx = Aids cos <t>x = -zrrds cos 0*. 

hiA.x 

Partial Movement Due to Thrust Nx 

Nx 
Aidy = Aids sin <t>x = —~-ds sin <f>x. 

EAX 

(11) 

(12) 

These formulas apply to all divisions of the arch. Now consider the division 
next to the right support. Let its partial movements be Aidxi and Aidt/i. This 
means, due to the thrust acting upon it, the end section of this division moves by this 
amount towards the right support. Since the rest of the arch is connected with this 
division, all the points on the arch to the left of this division must also perform the 
same movement. Consider a division adjoining the first division. Due to the thrust 
acting upon it, this division will perform a movement Ai dx* and Aidt/2. All the 
points on the arch to the left of the second division must also move by the same 
amount. The whole arch has already performed the movement Aidxi and Aidyi, 

due to the compression of the first section, therefore the total movement will be 
equal to the sum of the two partial movements. The same reasoning may be 
applied to the movements of the succeeding sections. Consequently the movement 



EFFECT OF BENDING MOMENT Ms UPON THE ARCH 687 

of the point A at the left support caused by the compression of all sections by the 
thrust, Nx equals the sum of the partial movements of all the divisions in the arch. 

Let Ail — total horizontal movement of point A at the left support 
due to thrusts acting on all sections. 

Air = total vertical movement of point A at the left support due 
to the thrusts acting on all sections. 

Aidxu Aidxt, ... Aidxn — horizontal movements of divisions 1, 2, . . . n, due to 
normal thrusts action upon them. 

Aidyi, Aidytf . . . Aidyn — individual vertical movements of the division due to 
normal thrusts acting upon them. 

Ail = Aidxi 4* AidXi + Aidx3 -}■*••• Aidxm — 2Aidxf 

Air = Aidyi + Aidy2 -f Aidy3 + .. . Aidyn « SAdij/. 

Substituting the proper values for Adx and Ady from Formulas (11) and (12), 
the above formulas may be written 

Nx 
Ail = / cos <f>x. 

“■f HjAx 

Air Slr^8in*‘- 

(13) 

(14) 

If the divisions are infinitely small, the total movements may be expressed by 
integrals 

All=L 
Nx , 

~—as cos <t>x. 
BjAx 

(13a) 

Air =X^8in^.(i4a) 

Effect of Bending Moment Mx upon the Arch 

Horizontal and Vertical Movement of Supports Due to Bending 
Moments.—As will be proved below the bending moments acting 
upon all the sections of an arch tend to produce a horizontal and a 
vertical movement of point A of the left support, the magnitude of 
which is given by the following formulas. 

Horizontal Movement of the Left Support Due to the Bending Moments, 

A>l=-£w.ds'.(15) 

Vertical Movement of the Left Support Due to Bending Moments, 

To develop these formulas consider a division of the arch of a length equal to ds, 

subjected to a bending moment, Mx. Since the length of the division is very small 
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the bending moment at all normal sections within this division may be considered as 
constant. Assume that the normal cross sections of the arch are homogeneous and 
symmetrical and that their depth equals h and the moment of inertia equals Ix. 

The bending moment Mx produces tensile stresses in one-half of the cross section and 
compression stresses in the other half. The stresses are zero at the central axis of 
the cross section and increase according to a straight line to a maximum at the 

extreme fibers where it reaches the value fe = The sign plus designates the 
2iX 

compression stresses and minus the tension stresses. 
These stresses cause deformation of the concrete, namely, shortening of the 

fibers where the section is under compression and lengthening of the fibers in the 
part of the section under tension. The deformation at the center is zero. Letting 
E equal the modulus of elasticity and assuming that the modulus of elasticity in 
tension is the same as in compression, the unit deformation at any point is equal the 

Fia. 211.—Deformation Due to Bending Moment. (See p. 588.) 

unit stress divided by the modulus of elasticity, E. At the extreme fibers the unit 

deformation is expressed by ! The lengthening and shortening of the 
2Etlx 

extreme fibers for the whole division, the length of which is ds, is obtained by multi¬ 
plying the unit deformation by ds. The total deformation of the extreme fibers of 

the section due to the bending moment is therefore ds~~ 
E 

MJi 

2 EIX 
ds. As evident in 

Fig. 211, p. 588, due to the deformation caused by the bending moment the cross 
section rotates about its gravity axis so that the section 1-2 assumes the position 
l'-2\ The angle between the two positions of the section measured in radians is 
obtained by dividing the total movement of the extreme fibers by the radius of the 
movement which, for rectangular sections, is equal to one-half of the depth of the 
section. 
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Thus 
Angular Movement of Section Due to Bending Moment, in Radians, 

£*. 
A d<f> 

MJi , h 
-ds 4“ — 
2#7X 2 

(17) 

The deformation of the section affects not only the division of the arch under con¬ 
sideration but also the remainder of the arch. In Fig. 212 is shown the division of 
the arch 12 3 4 and also the balance of the arch 1 2 5 6 to the left of the section 1-2, 
before and after deformation. For 
the present the section 1 2 5 6 is 
considered as unstressed and as 
free to move. The section 1-2 
moves to the position 1-2'. The 
balance of the arch 12 5 6 being 
connected with the section 1-2 
must follow and therefore must 
assume the position 1' 2' 5' 6'. 
The left support A, which also is 
considered as free to move, moves 
to the position A'. The object 
now is to determine the horizontal 
and the vertical component of the 
movement A A', caused by the 
bending moment acting upon the 
division 12 3 4. 

To avoid confusion, in Fig. 
212 (6) the center lines of the arch 
shown in Fig. 212 (a) are redrawn, 
while the outlines of the arch are 
omitted. In Fig. 212 (b) connect 
point 0 with point A and A'. 
Also erect a perpendicular at A'. 
Then A A" is the horizontal 
movement of point A and may 
be called A^dx, while A'A" is the 
vertical movement of point A 
caused by the bending moment 
Mx and may be called Andy- From 
the figure it is evident that the 
angle between OA and OA' is 
equal to the angular movement of 
the section 1-2. A A' is the arc 
of a circle, the radius of which is equal to OA = s and the center angle equal to 
d<t>. The magnitude of this arc equals sd<t>. Since the angle d<t> is very small AA' 
may be considered not only as the arc of the circle but also as the tangent to the 
circle at point A. The angle A'AO may be, therefore, considered as a right angle. 
With this assumption the angle at A' in a triangle A A'A" is equal to the angle 
at A in the triangle OAOTherefore, the triangle AA'A" is similiar to the 
triangle OAO' 

(b) 

Fia. 212.—Movement of Support Due to Bend¬ 
ing Moment Mx. (See p. 5S9.) 
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From the similarity of triangles, following proportion is obtained. sAtdy = xsAd<f> 
xsAd<p Mx 

from which A*dy =- 53 xAd<f>. Since from Equation (17), Ad<f> =* —ds the 
8 SI% 

vertical movement of the left support due to the bending moment Mx is 

A rfty 
Eh 

ds. 

Similarly the horizontal movement of the left support due to the bending mo- 
Mxy 

ment AT* is Asdx = — -—-ds. Following signs are adopted for the movement of the 
SIX 

support. 
A horizontal movement which tends to shorten the arch axis is considered positive. 
A horizontal movement which lengthens the arch is negative. 
A vertical movement which raises the left support is called positive. 
A vertical movement which lowers the left support is called negative. 
From Fig. 212 (a) it is evident that the positive bending moment lengthens the 

arch and raises the support upward. Therefore, it produces a negative horizontal 
and positive vertical movement. The opposite is true of the negative bending 
moment. In other words, the horizontal movement is of opposite sign to the sign 
of the bending moment while the vertical movement is of the same sign as the bend¬ 
ing moment. 

In the above discussion only one division of the arch was considered as subjected 
to bending moment and the balance of the arch as not stressed. Actually, however, 
in a loaded arch all divisions are subjected to bending moments. The angular 
deformation of the section of each division will produce partial movements of the 
left support. Thus, for the first division next to the right support, for which the 
values are Mi, Ilf X\, iji, and dsi, the movement of the left support according to the 
above formulas is 

A2dx\ = y i Ad (pi = — ~~~dsi. 
HjI i 

Aadr/i = XiAdtfn — 
MiXi 
Eh 

dsi. 

For the adjoining section with values Mif I a, xa, yt, and dsif the movement of the 
left support is 

A i/lxi 
M2yi 

EIt 
dst. 

A A MjXjj 

Atdy* = ~EhdSi' 

The total horizontal movement of the left support due to the bending moments 
acting at all divisions of the arch is, therefore, equal to 

A2l « A*dxi + Ajds* + ... Andxn, 

and substituting the values for Arfxi, A*dx% 
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Finally 
Total Horizontal Movement of Left Support Due to Bending Moments, 

‘t—’Lifc-.<■» 

Similarly the total vertical movement of the left support may be obtained. It is 
Total Vertical Movement of Left Support Due to Bending Moments, 

Change in Central Angle Due to Bending Moment.—The angular 
change of the section 1-2 in Fig. 212 due to the bending moment not 
only produces a movement A2dz and A2dy at the support but also changes 
the central angle. f 

From inspection of Fig. 212 it is evident that the increase or decrease 
in the central angle due to a bending moment acting upon a section 
of arch is the same as the change of the angle of inclination of the 
section, namely, Adcj>. Decrease in angle is called positive and increase 
negative. Positive bending moment decreases the angle while negative 
bending moment increases it. 

If an arch is divided into a number of sections and each section is 
submitted to a bending moment MX} the total change in the central 
angle is equal to the sum of the changes of the angle of the individual 
sections or 

A0 = Ad0i + Ad</>2 + Ac?03 + . . . Ad<t>n* 

This can be expressed by 

40 - §-*. + 
Eh Eh 

M3 

+ Ii^‘3 + 
M. 

• • • «... ' 
Eln 

dsn. 

This may also be expressed as 

When the arch axis and the moments can be represented by mathe¬ 
matical functions, the above equation may be expressed by an integral. 

Change of Central Angle Due to Bending Moment, 
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FINAL EQUATIONS 

As explained in the previous discussion, an arch, for the present 
considered as fixed at the right support and free at the left support, 
when subjected at the various sections to bending moments and thrusts, 
deforms and as a result the left end of the arch tends to 

(1) move horizontally; 
(2) move vertically; 
(3) turn at the springing line, i.e., change the central angle. 

The horizontal and vertical movements are caused by the bending 
moments and the thrusts while the turning effect is caused only by 
bending moments. Formulas for movements due to each individual 
cause separately are developed under proper headings on pp. 585 and 
587. The total movement is the sum of movements caused separately 
by the bending moment and by the thrust. 

Consider the arch as referred to rectangular coordinates, with the 
center at the left support. Designate the coordinates by capital letters 
X and Y to distinguish them from another set of coordinates to be 
introduced later. (See Fig. 213, p. 593.) 

Then adding the movement from Formulas (9) and (10), p. 585, 
due to bending moment and from Formulas (15) and (16), p. 587, 
due to thrust. 

Total Horizontal Movement of Left Springing Due to Bending Moment 

and Thrust, Xm~y rl N 

eT** +1 5T* °“ m 

Total Vertical Movement at Left Springing Due to Bending Moment 

and Thrust, 

41=jf >ihdl+X .<22) 
Total Angular Movement at Left Springing Due to Bending Moment, 

In the above equations the bending moments Mx and thrusts Nx are 
functions of the three unknown values at the left support Ha, Va and 
Ma and of the loads. If the values Al, Ar and A<f> are known, the above 
three equations may be used for finding these three statically indeter¬ 
minate values. 
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Requirements for Fixed Arches.—In fixed arches the supports are 
unyielding and the connection between the arch and the support rigid. 
From this it follows directly that in a fixed arch no movements of the 
arch at the supports can take place. 

The above requirement may be represented by following equations. 

Al — 0, Ar = 0 and A <f> = 0. 

The bending moments and thrusts at the various sections, therefore, 
must be such that the movement of the support due to one set of bend¬ 

ing moments acting on one part of the arch is neutralized by a move¬ 
ment in opposite direction due to another set of bending moments 
acting on another part of the arch. Thus the arch must be subjected 
to negative and positive bending moments of such magnitudes, and so 
placed that the effect of positive bending moments would neutralize 
the effect of the negative bending moments and the thrust. 

Substituting in the above equation the values for AZ, Ar and A<f> 
from Formulas (21) to (23) and dividing by the constant value of E} 

following three formulas arc obtained: 

Nz 

Ax 
COS <j)x = 0. f^ds+ f 

Jo I* Jo 

r ~?Xds + r ~rds sin <j>x = 0. 
Jo I* Jo Ax 

X -ds = 0. 

(24) 

(25) 

(26) 

The term Nx sin <j>x in Equation (25) may be neglected because it is 
zero in the center of the arch where sin <t>x = 0. It increases slowly 
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with the increase of <t>x, but even at its maximum it assumes only a 
small value. 

The bending moment Mx and thrust Nz will now be expressed in 
terms of Ha, Va and MA. 

Referring to p. 581 the bending moment and thrust at any point 
at a distance X and Y from the left support are 

Ma + VaX + HaY + M„ .... (27) 
and 

Ns = Vx sin 4>x — Ha cos <t>x,.(28) 
nrhpra 

VX=VA~ [Pi + P2 + P3].(29) 

The effect of the thrust Nx upon the total deformation of the arch 
is small in comparison with that of the bending moment; therefore, the 
total result will be affected very little by substitutions for the com¬ 
plicated expression for Nx in Formula (7) the expression 

Nx = — Ii. 

This is exact in the central portion of the arch where the depth of 
the section is small and therefore the effect of the thrust the largest. 
Near the springing there is a difference between the actual thrust and 
the assumed thrust, but the effect is small due to the increased section. 

Substituting in Equations (24) and (26) the values of Mx and 
Nx (with the simplifications mentioned above) the following basic 
equations for arches are obtained: 

- C\^Yds + rjrXYds + ^Y2ds + ^Yds] 
Jo L i* 1% lx Ix J 

rl Ha COS <£: 

-I ds = 0. (30) 

„ . HaYX1 , M.Xds'] „ . 
2. I I -j—Xd$ H——X2ds -f  —ds H  — I = 0. [(31) 

7o L'« Ix i 

, C \MAds , VaXj , HAYds , M.] n 

1 nr+-rr*+—rr+z*J_0- • • <32) 
Finally, taking the constant values MA, Ha and Va before the inte¬ 

gration and since ds cos <t>x = dx, the equations become 1 

1M, cannot be taken before the integration sign because it is different for every 
point. The moment of inertia Ix also varies for different points because the cross 
sections vary. 
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(33) 

General Equations, 

1. "'X Y'f,+ F'jf xrf.+ r'f, +1 
r'ldx 

+ Ha — = 0. 
Jo 

2. Mxj^ Xy + y^jT X2y + tfxjf FXy +M.Xy = 0. (34) 

3. Mx fy + Fa f Xy + Ha f + f M.^=0. . (35) 
Jo lx Jo lx Jo lx Jo lx 

X and Y are coordinates with the center at the left support. 
The above equations were multiplied by the moment of inertia at 

the crown / to simplify the mathematical work. 

From these three equations the unknown values MA, Va and HA 

could be determined. The resulting formulas can be simplified by 
moving the center of coordinates from the left support to the elastic 

center of the arch, i.e., a point for which the Cy—, {x-^ and Cxy 
J dx J lx J lx 

terms are zero. 
Location of the New Center of Coordinates.—The new center of 

coordinates, i.e., the elastic center of the arch, is found by considering 
Ids 

the values — for each division of the arch as loads applied at their 
lx 

centers and locating the center of gravity for these loads. 

Let X9 = horizontal distance of the elastic center from Y-axis; 
Y, = vertical distance of the elastic center from X-axis. 

For symmetrical arches the elastic center is located on the axis of 
symmetry of the arch, i.e., the vertical line through the center of the 
span. Therefore 

Horizontal Distance of Elastic Center from Y-axis, 

X -l 
x,~ 2‘ 

(36) 

The vertical distance of the center of gravity from the original 

X-axis is found from the requirement that the static moment about the 
Ids 

X-axis of the values — for all sections be equal to the sum of all values 
lx 
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multiplied by Y„ The static moment of any value — about the X-axis 
lx 

is Y~. The sum of the static moments is Y~ and the sum of all 
/* Ix 2* Ids 

—. Therefore 
o Iz 

from which 
Vertical Distance of Elastic Center from X-axis, 

1 Ids 

r 0 h 

9 yp'lds' 

2*o jx 

(37) 

Transferring the Center of Coordinates to the Elastic Center.—The 
old and the new systems of coordinates are shown in Fig. 213. The old 
axes passing through the left support A are shown by solid lines, while 
the new axes passing through the elastic center are shown by dash lines. 

Formulas (33) to (35) are based on the system of coordinates 
passing through the left support. To change the center of coordinates 
from the left support to the elastic center it is necessary to substitute 
for the old coordinates X and Y values based on new coordinates. 

Let X and Y = old coordinates with origin at left support; 

x and y = new coordinates with origin at elastic center. 

Then for any point the relation between the old and new coordinates 
may be expressed by 

X = \ + x 

Y=Y, + y. 

The transfer is accomplished by substituting these values for X and Y 
in the Equations (33) to (35). 

Ids 
The values A/a, Va and M, and — are not affected by the change 

of the axes of coordinates. 
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Thus Equation (1), p. 595, will change to 

(la) Ma(£ y!± + />“) + Va.jj £ + .)(r. + ^ 

+ //x P (F. + y^-f 4- P M,(Y, + y)~~ + ff.Pj=0. 

/Ids 
x— = 0, 

C Ids ^ , f Ids , . , . t L 
1 y— = 0 and I xy— = 0, the integrals m the above equation 

may be simplified as follows: 

p (l , Vv , ,/<fe Z v f*/* , v P 
J.1 (*+v(r-+a)r' 2y-J.i 7:+r-J...*7: 

Z Pa 7ds P* Ids l Tr A 7ds 

2J.pT:+J.l^t:= 

n r* /<& , „Tr c* ids, r* „/ds ],(•'. + y)^ = >vj, - + 2K J , yr + J,»77 
•/“2 ^ 2 ^ i 2 

Substituting these values in (la) 

P2 7ds Z P2 /ds 0 P2 /ds P2 /ds 

+ v'2f-J.|77+^fT-|7:+X'/r 

, V f* IT , p Ti, Ids p 7d* + y‘J.iM,17 + J-lm,vT + HaJ-IA. ”°- 
Finally 

(i) (^+f4+Ha7,)f*JjT7 
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Making similar substitutions for X and Y the Equations (2) and 
(3) change to: 

(II) -[Ma + Va' + HaY, m 
,T n 2ids 1 n tu Ids p m ids 

/ l \ ft Ids ft Ids 
(III) [Ma + Va- + HaY.) j - = - J , M.-. 

If the value for (ma + VAl~ + HaY^^ y-from Equation (III) 

is substituted in Equation (I) we get 

from Equation (III) 

Final Formulas.—After canceling, following formula is obtained. 
Horizontal Thrust at Left Support, 

Ha = 

The horizontal thrust is negative for vertical loads-. 

Similarly from Equation (II) 
Vertical Reaction at Left Support, 

Va=- 
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Since for vertical loads, M, is negative and 
Ids . 

M&— is negative, 
** 

the vertical reaction will be positive. 
The value for the bending moment at the support Ma may be found 

from Formula (III) by substituting in it first the determined values 
for Ha and Va and then solving for MA. The work is simplified if, 

in place of the expression (^Ma + Va^ + HaY^j an auxiliary bending 

moment M is introduced, then the Equation (III) becomes 

from which 
Auxiliary Bending Moment, 

M= — (40) 

Since for vertical loads, M8 is negative the numerator is negative, 
consequently the value of M will be positive. 

Bending Moments.—Having computed the values for HAf Va and 
Mf the bending moment at the left support is found from the relation 

M = Ma+Va1- + hay.. 

It is 
Bending Moment at Left Support A, 

Ma = M-v1~- HaY..'... (41) 
z 

To get bending moment at any point using new coordinates, sub¬ 
stitute for X and Y values from equations on p. 596 in Formula (2), 
p. 581. 

Mz = Ma + Va(^ + x) + Ha(Y, + y) + M,. 

This also may be written 

Mx = (ma + vl- + HaY?) + Vax + HaV + M,. 
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Since the expression \Ma + Va~ + HaYaJ is equal to the auxiliary 

bending moment M, the formula may be written in following simple 
form. 

Bending Moment at Any Point) 

Ms = M + VAx + HAy + Ma.(42) 

The values M, Va and Ha are fully explained. Since Ha is negative 
the value + HAy is also negative. The value of Ma is explained in 
next paragraphs. It is negative. Values of x and y are ordinates of 
any point referred to the system passing through the elastic center. 

Static Bending Moments Ma at Any Point.—Bending moment Ma 

is the static bending moment at any point of the vertical loads, when the 
arch is considered as a cantilever free at the left support and fixed at 
the right support B. The static moment Ma is negative. 

From the nature of the bending moment Ma follow these two rules: 
A concentrated load, to produce a bending moment Ma at any point, 

must be placed to the left of the point. Loads placed between the 
point under consideration and the right support produce no bending 
moment Ma at that point. 

The bending moment Ma of any concentrated load about any section 
is equal to the load multiplied by its distance from the section. 

When, instead of the distance between the load and the section, the 
ordinates of the load and the section are given, following general formula 
may be used. 

Let x = distance from center of coordinates to section at which 
bending moment is required; 

a = distance from center of coordinates to loads; 
P = concentrated load. 

Then 
Bending Moment Ma for Concentrated Load} 

M9~— P(x — a) for all points to the right of the load. (43) 

M. = 0 for all points to the left of the load. . (44) 

The above equations are general. The values for x and a must be 
substituted with their signs. 

Thus for load Pi at a distance (—a) the formula becomes 

Ma = - Pi[x -(- a)] = - Pi(x + a). 
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The method of computing the bending moment M, from Formula 
(43) is illustrated below. Bending moments will be found at section 
1, 2 and 3, due to the loads Pi and Pi shown in Fig. 214, p. 601. 

Consider section 1 at a distance x from the center of coordinates. 
The bending moment produced at that section by the load Pj placed 
at a distance ai from the center is — Pi(x — ai). 

For load Pi placed at a distance — ai from the center the value to 
be substituted for a in Formula (43) is — ai. The bending moment 
due to Pi about section 1 is — Pi[x — (— 02)] = — Pi(x + ai). 

Fia. 214.—Static Bending Moments Due to Concentrated Loads. (See p. 601.) 

This is correct because the distance between the load and the section 
as evident from Fig. 214 is x + a2. 

The total bending moment about section 1 of loads Pi and P2 

Mg = — [Pi (a; — ai) + P2(x + a2)]. 

Consider now section 2 at a distance — x from the center. The only 
load producing bending moment there is P2 for which the distance is 
—a2. Substituting these values in the general equation 

Mt = — P2[(— x) - (— a2)\ = - P2(a2 — x). 

At section 3 there is no bending moment M, because all the loads 
are at the right of the section and produce moment in this part of the 
cantilever. 

Bending Moments M, for Unit Loads.—A general formula for M% 

of a load P = 1 placed at a distance a from the center about a section 
at a distance x from the center is 

Bending Moment for Unit Load P = 1, 

For x larger than a, 

Af, = — (x — a) (45) 
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For x smaller than a, 

M, = 0.(46) 

x and a must be used with their signs. 
Bending Moment Ma for Uniformly Distributed Load.—For uni¬ 

formly distributed load the bending moment M, equals the load to the 
left of the section multiplied by the distance of the center of gravity of 
this load from the section. 

Let w = uniform load per unit of length; 
x = distance from center to the section; 
l = span of arch. 

Then 
Bending Moment M, at Section x when Whole Span Loaded, 

M, — — wy- + x^^ + X^ = - iw(l + 2x)2. . . (47) 

If the section is located on the left half of the arch substitute for 
x the value (— x). Then M$ = — £w(Z — 2x)2. 

Bending Moment M, at Section x when Only Right Half of Span Loaded, 

wx^ 
M9 =-— for point at the right.(48) 

& 

EFFECT OF SHORTENING OR LENGTHENING OF ARCH SPAN 

In the previous discussion it was assumed that the span of the arch 
is fixed so that there is no lengthening nor shortening of the span of 
the arch. In the discussion below will be found the effect upon the 
arch of any change of its span length. 

Occasions When Change of Span Takes Place.—Actual change of 
the span takes place when the supports yield either due to give of 
the ground or due to bending of the piers. 

An effect upon the arch similar to the effect of a change in span 
length is also produced, (a) when the arch shortens or lengthens 
due to temperature changes; (6) when the arch rib becomes com¬ 
pressed due to the normal thrust; (c) when the arch rib shortens due 
to shrinkage of concrete. In these three cases the length of the span, 
i.e., the distance between supports, remains constant and the change 
takes place in the length of the arch rib. Thus under the effect of 
normal thrust or fall of temperature the arch rib itself shortens by a 
distance As. If the ends of the arch could move, the distance between 
springings of the shortened arch would be equal to l — Al. Actually, 
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however, the distance between supports remains equal to L The effect 
upon the shortened arch, therefore, is the same as if the length of the 
arch remained constant, but, instead, the span increased by the distance 
equal to Al. 

The effect of the fall of temperature, the rib shortening and the 
shrinkage are of the same nature as the effect of a horizontal yielding of 
the supports, i.e., a lengthening of the span. 

The effect of the rise of temperature is similar to that of a horizontal 
movement of the support inward, i.e., a shortening of the span. 

Effect of Change of Span Length Equal to Al,—A change of span 
length equal to Al produces bending moments and reactions at the sup¬ 
ports and also bending moments and thrusts at all points of the arch. 
The relations between the bending moments and reactions and statically 
indeterminate values must be the same as between bending moments 
and reactions for the loads. 

Assume, as before, that the axis of coordinates passes through the 
elastic center of the arch. 

Let V A, Ma and II = reactions and the bending moments at left 
support; 

Vb, Mb and II = reactions and bending moment at right 
support; 

M = auxiliary bending moment. 

Then according to Formula (42) and since the static bending 
moment due to loads M. = 0, the bending moment at any point is 

Mx = M + V Ax + Hy 

and the bending moments at the supports for which 

x = ± \ and y = — Y. 

Ma = M - \VAl - HY. 

Mb= M + \VAl - HY.. 

Subtracting the first equation from the second we get 

Mb — Ma = VJ. 

Due to the symmetry of the arch the bending moments at both 
supports must be equal. Therefore, 

Mb — Ma — 0. 

From this it follows that VAl is zero, also VA = 0. For the same reason 
the other vertical reaction is equal zero. 
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The formula for bending moment at any point is reduced to 

Mx = M + Hy. 

The relation between a horizontal movement of the support and the 
bending moments causing it is given on p. 592. By transferring the 
arch to the new system of coordinates and making Nx = — H this rela¬ 
tion becomes 

According to Maxwell’s law of reciprocity the relation between the 
movement of the support and the bending moments in the arch causing 
this movement is the same as the relation between the movement 
of support and the bending moments in the arch which this movement 
produces. We can, therefore, use the above equation for solving our 
problem by substituting for Al the movement of the support and for 
Mz the bending moment from formula above. Thus 

— ,/2Vf-*2S,£: 
. ^ \ ds 

Since for the accepted coordinates > j2/y = 0. 

-~K2-/£+2‘k) 
and finally 

H = - 
EAl 

I 'ST'2 dx X-fj. + L-fc 
It will be noticed that the denominator is the same as for horizontal 

thrust due to the loads. For signs of Al see p. 584. 
The bending moment M will be found from the Equation (23), 

p. 592. This transferred to new system of coordinates becomes 

Since 
A<£ = 0 
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we have after substituting value for Mx 

■' Sds 
0 = 2* ■ (M + H»>f - "S’’.? +4- 

*« <fe 

Since 
2S 

,2/ —- = 0 the second item cancels and we have 
~2 lx 

ds 

-i'T. 
M-g'.f-O. 

2 ** 

Therefore 
M = 0. 

Hote. Arrows indicate direction of turning of resisting forces in arch 

(b) Effect of Lengthening of Span 

Fig. 215.—Effect of Change in Span Length of Arch. (See p. 606.) 

This demonstrates that when the span length changes by AZ, Va and 
M are equal zero and H equals 

Final Equations for Change of Length: 
Horizontal thrust (after multiplying the numerator and the denom¬ 

inator by I) 

(49) 
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Bending moment at the support, 

Ma = Mb = — H Y.(50) 

Bending moment at any point, 

Mx = Hy.(51) 

From the above it is evident that change of length of the span 
produces a horizontal thrust applied at the arch at the level of x-axis 
as shown in Fig. 215 (a) and (6), p. 605. 

Lengthening of the span produces a positive, H, as shown in Fig. 
215 (a), while shortening produces a negative, H, acting as shown in 
Fig. 215 (5). 

RIB SHORTENING 

The positive thrust acting on the arch compresses the arch ring. 
If free to move, the compressed arch would assume the shape of an 
arch with a shorter span. If l is the original length of span, while 
l\ = l — Ai is the span a free arch would assume when compressed. 

Since the arch is not free to move, the span of the compressed arch 
remains the same as before compression and the shortened arch rib must 
adapt itself to the larger span by spreading. The crown is lowered 
and the arch bends. The maximum negative bending moment acts 
at the springing line, where it produces tension at the top and maxi¬ 
mum positive bending moment is at the crown where it produces ten¬ 
sion at the bottom. The effect of rib shortening is the same as that in 
the fall of temperature shown in Fig. 215 (a), p. 605. 

For live load the effect of rib shortening is small because the thrust 
is small in comparison with the bending moment. It could be neglected 

g Idx 
without any appreciable error. It is represented by the term y, i ~T~ 

“2 A-X 

in the denominator of the formulas for the horizontal thrust. All 
formulas based on these formulas for horizontal thrust automatically 
include the effect of rib shortening. 

For dead load the effect of rib shortening is appreciable particularly 
for shallow arches and in most cases needs to be computed. 

Usually the axis of the ring is selected so that it coincides with the 
line of pressure for the dead load (or the dead load plus one-half of the 
live load) (see p. 468). In such case the thrust acts centrally and 
there is no bending moment due to the thrust. However, this does 
not take into account the effect of the rib shortening due to the thrust 
which needs to be computed separately. 

The effect of rib shortening is small when the rise of the span is 
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more than one-quarter of the span. For flatter arches the effect 
increases rapidly with the decrease of the ratio of rise to span. Prof. 
Morsh 2 has computed the stresses due to rib shortening due to dead 
load for arches of different ratios of rise to span. The axis of all arches 
were made to coincide with the line of pressure so that the thrust acted 
centrally. 

From his computations it is evident that stresses due to rib shortening 
r 1 

are fairly small for high arches with ratio of rise to span - = - but 

increase rapidly with the decrease of the ratio of rise to span. 

Formula for Rib Shortening. 

Let Ha — horizontal thrust due to dead load; 
Ha — horizontal thrust due to rib shortening; 

Ndx = normal thrust due to dead load at any point x; 
Ax — area of cross section of the arch at any point x; 
</)x = angle of inclination of any section with vertical; 
E = modulus of elasticity; 
ds = length of division of arch. 

The shortening of the arch caused by the dead load thrust may be 
found in the following manner: The normal thrust at any section may 
be expressed with sufficient exactness by the formula Ndx — —Ha 

Na Ha 
(see p. 594.) The unit stress due to the thrust is —- = — — 

Ax Ax 

Ha 
and the unit shortening of the arch along arch axis is — 

EAX 

The shortening of the division ds along its axis is ~r~~ds. The 
EAX 

horizontal projection of this shortening, i.e., the shortening along the 

, A . span is — —-~ds cos </>* = — ”~dx. 
EAX EAX 

When the rib shortens and the span remains the same the effect is 
the same as if the span lengthened and the rib length remained constant. 

The total lengthening of the span, therefore, is 

a/ — V* CQS jfi ___ 

* Berechnung von eingespannten Gewolben, by Prof. E. Morsh. Schweizerishe 
Bauzeitung, Band XLVII, No. 7 und 8. 
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This value of AZ introduced in Formula (49) gives the thrust due 
to rib shortening. It is (after multiplying numerator and denominator 

by/) 
Horizontal Thrust Due to Rib Shortening, 

H. = - 

I IJx 

Ux 2-U 
2Id* I 

2*-iyT + 2 lx 

Idx 
Hd (52) 

The expression may be replaced by where Aav is area 

of average cross-section. 
This thrust is positive and applies at the level of the center of gravity 

of the elastic weights of the arch, the position of which is already deter¬ 
mined. All values in the equation are already computed for the arch. 

Bending Moment Due to Rib Shortening.—The horizontal thrust 
produces a bending moment in every point of the arch, the general 
equation for which 

Bending Moment at Any Point) 

Mx = Hay (53) 

Maximum Negative Moment at Support, y = — Y„ 

.(54) 

Maximum Positive Moment at Crown, y = (r — Y$), 

Me = //,(r - 7.) (55) 

The bending moment is positive at the crown and negative at the 

springing. 

TEMPERATURE STRESSES 

Changes of temperature from that at which the arch ring was closed 
cause either lengthening or shortening of the arch rib. If the arch were 
free to move horizontally at either end, the arch ring could expand 
and contract freely. The change in length of the rib would cause 
either shortening or lengthening of the span and no stresses would be 
developed in the arch. 

Since, however, a fixed arch is held at the supports, the arch rib 
after expanding or contracting cannot change its span length but 
must accommodate itself to the fixed span which is either too short 
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or too long for the changed length of rib. Bending moments and a 
horizontal thrust are thereby developed in the arch. 

The effect of shortening of the arch rib caused by fall of temperature 
and the bending moments and thrust produced by it are of the same 
character as for rib shortening. As a consequence the arch lowers at 
the crown and tensile stresses are developed at the springing at the 
bottom and at the crown at the top, as shown in Fig. 216 (a). 

The lengthening of the arch, caused by rise of temperature, produces 
bending moments and a horizontal thrust of opposite sign. The crown 
rises and tensile stresses are developed at the springing at the bottom 
and at the crown at the top, as shown in Fig. 216 (6). 

The effect of temperature changes is shown in Fig. 216 (a) and (6). 

light lines:-Original shape of arch 

Heavy lines - Shape due to change of temperature 

Fig. 216.—Effect of Temperature Changes on Arches. (See p. 609.) 

Thrust and Bending Moment Due to Changes of Temperature. 

Let t = change of temperature in degrees; 
a = coefficient of expansion per 1 degree Fahrenheit; 
E = modulus of elasticity, lb. per sq. in.; 
I = moment of inertia at crown; 
l = span of arch. 

The change in span which would take place in a free arch due to 
change in temperature 

Al — it led. 
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The sign + is for rise of temperature and sign — for fall of temperature. 
Substitute this in Equation (49), p. 605. 

The horizontal thrust produced by the change of temperature is 

Ht = - 
zfc odElI db atElI 

2v Ids 

h 

^^2 Idx 

+ 

Horizontal Thrust for Rise of Temperature, 

H, = - 
atElI 

2>2f + 2’, 
' 2 x ' ~o 

Idx 
(56) 

The sign, — , signifies that the thrust acts inward. It is of the same 
sign as the thrust due to loading. Stresses produced by this thrust on 
the section are compression. 

Horizontal Thrust for Fall of Temperature, 

Ht = 
odElI 

21 
2 Ids Idx' 

Ly2Y+ 2, XT 2 ±x 2 

(57) 

The sign, +, signifies that the thrust acts outward. It is of opposite 
sign to the thrust due to loading and of the same sign as the thrust due 
to rib shortening. Stresses produced by it on the section are tension. 

The numerator of the above formulas is the same as for the thrust 
due to loading. 

This thrust applies at the center of gravity of the elastic ratios 
Ids 
—. In Formulas (56) and (57) all values must be in the same units. 
lx 

Bending Moments.—The bending moments produced by the thrust 
may be found from general formula 

Mt - II ty, (58) 

where y is the distance of the point from x-axis. It is zero at the level 
of x-axis and reaches maximum values at the springing line and the 
crown. The signs of bending moments are as follows: 

At Crown At Springing 

Rise of temperature. minus plus 
Fall of temperature. plus minus 
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Line of pressure for temperature is a straight line coinciding with 
the x-axis. 

Peculiarities of Temperature Stresses.—One of the peculiarities of 
the temperature stresses is that the magnitude of the thrust caused by 
temperature changes is comparatively small but the bending moments 
are large so that the stresses are mainly bending stresses. The tensile 
stresses are particularly harmful to the arch. 

Another peculiarity of the effect of temperature changes which 
gives a good deal of trouble in design is that the stresses caused by 
them not only cannot be reduced but actually are increased, by increas¬ 
ing the dimensions of the sections of the arch. This is apparent from 
the study of the Formula (56) for temperature thrust. Divide the 
numerator and denominator by the common J. 

The numerator of this formula, atEl, is not affected by the dimensions 
of the arch sections. 

In the denominator, on the other hand, the magnitude of the arch 
sections affects both terms. The second term is small and will not be 

discussed. In the first term iV2y- the values of y and ds depend 

upon the shape of the arch axis only. The moment of inertia Ix depends 
upon the size of the section. For a rectangular section the value Ix 

bh? . 
is equal —. If h increases, the value of 7* increases with the third power 

1 

of the increase of h. 

Let h = original depth of section; 
hi = increased depth of section; 

Y = m = ratio of increase of the section; 

7Xl = moment of inertia of increased section; 
Ix = moment of inertia of original section; 
fi = temperature stress increased section; 
/ = temperature stress original section. 

The moment of inertia of the increased section is equal to 

hi = The ratio of moments of inertia ~) = m3. 
12 Ix \h/ 

Therefore 7Xl = m3I*. Since Ix is in the denominator, the value of the 

term ^^y2ir decreases according to m3, i.e., according to the third 

power of the ratio of increase of the depth of section h. Consequently 
the denominator for the thrust Ht decreases according to third power 
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of the ratio of increase of the depth. If the ratio of increase of the 

depth of section — is constant for all section of the arch, then 
h 

S = Si/2— 
y IXl J m3Ix 

This substituted in formula for Ht gives 

atEl 

—;Sl/2—. 
m? y Ix 

Hh = ± 

—Sw2- 
m3 V lx 

= ± m3 
atEl 

S y2- 
y I, 

or 
Hh = m3Ht. 

The value of Htl for the arch with increased dimensions increases 
according to the third power of the ratio of increase of the depths of 
sections. The same is true of the bending moments due to changes of 
temperature, 

Mtl = m3Mt. 

The stresses due to the bending moment for the increased section are 

Mh2 m2 h 
fi = —j— = m3Mt-—- = mMt— 

J-X\ Wi ix 2lx 

since Mt— is / the stress for the smaller section. Therefore 
21 x 

fi = mf. 

From the above it is evident that for the increased sections the 
temperature stresses are larger than for the original section. 

At first glance this result seems unreasonable. However, the cor¬ 
rectness of it is evident from the following reasoning: Suppose that the 
arch has very small thickness such as would be the case for an arch 
made of sheet metal. Such an arch can adapt itself very easily to the 
changes of temperature and practically no stresses will be developed 
due to the changes of temperature. With the increase of the stiffness 
of the arch the stresses increase rapidly because the stiffness of the 
arch is denoted by the moment of inertia which increases according to 
the third power of the thickness of the arch. It is important, therefore, 
to remember that a slender arch is much more desirable than a heavy 
arch. 

If the stresses due to the temperature changes are excessive the only 
way to decrease them is by reducing the thickness of the arch at the 
crown and increasing the thickness at the springing. In this manner 
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the thrust may remain of the same magnitude as before, but the center 
Ids 

of gravity of the elastic ratios for the new arch will be higher than 
I* 

for the original arch. The moment arm at the crown is reduced, 
thus reducing the bending moment at the crown. The stresses due to 
the temperature changes are either reduced or remain of the same 
magnitude as before. Due to the decrease of the section at the crown, 
however, the dead load stresses, which are compression, become larger 
and may reduce sufficiently the tensile stresses due to the temperature. 

Influence of Shrinkage.—Shrinkage has the same effect upon the 
arch as the fall of temperature or rib shortening. If the coefficient 
of shrinkage is known the shortening of the span Al may be easily 
found. The thrust and moments, then, may be computed by Formulas 
(57) and (58) in which the shortening due to shrinkage is substituted 
for the shortening due to temperature. Shrinkage is often taken care 
of by adding 15 degrees Fahrenheit to the assumed fall of temperature. 

It should be noticed that when the arches are built in transverse 
strips, the arch is not closed until most of the strips have set and thereby 
undergone the largest part of the shrinkage. The arch as a whole is 
then affected only by the additional shrinkage of the cured concrete. 

Methods of Eliminating the Effect of Rib Shortening and Shrinkage. 
—In shallow arches the stresses caused by the rib shortening and the 
shrinkage are considerable and it is often economical to eliminate their 
effect by the introduction of temporary hinges or by the method used 
by Freyssinet in France. Freyssinet’s method consists of compressing 
the arch ribs artificially, before closing them, by means of hydraulic 
jacks inserted between two planes which cut the crown of the arch. 
After the ribs are properly compressed and the centering removed the 
crown section is closed and the jacks are removed.8 

FORMULAS FOR FIXED PARABOLIC ARCHES 

If the arch axis is a parabola, it can be represented by a mathematical 
equation and the formulas for H, Va and M may be solved by integra¬ 
tion instead of the summation method. 

The general formulas for the statically indeterminate values are 
(see p. 598) 

= - 

£ 
9 

M,y 
Ids 

+ £ 
^ 2 ^ 2 

Idx 
(59) 

-I A* 

1 See Engineering News-Record, Sept. 18, 1924, p. 463. 
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To make integration of the above formulas possible it is necessary 
Ids 

to express y and — in terms of x. A formula for the curvature of the 
•l X 

arch axis gives the values of y and ds. To get the value of Ix it is neces¬ 
sary to express the variation of moments of inertia by a formula. It 
should be noted that the formula for y must be referred to a system 
of coordinates passing through the elastic center of the arch. 

Let r = rise of arch axis, ft. ; 
l = span of arch axis, ft.; 

Y = vertical ordinate, when the x-axis passes through the crown; 
y = vertical ordinate, when the x-axis passes through elastic 

center; 
x = horizontal ordinate (same for both systems of coordinates); 

ds = small element of arch axis; 
4>x = angle of inclination at any point x of the tangent to the 

arch axis horizontal. Also angle of inclination of normal 
section with vertical; 

lz = moment of inertia of a normal section at any point; 
1 = moment of inertia of arch section at the crown; 
It = moment of inertia of normal arch section at the springing; 

= angle of inclination of tangent at the springing; 
Ye = vertical distance of elastic center from crown; 
Yt = vertical distance of elastic center from springing. 

Variation of Moment of Inertia.—The ratio of the moment of inertia 
of the arch at the crown and springing is known or assumed. It is 

usually expressed as 
Ratio of Moments of Inertia, 

I 
It cos <t>t 

= n, (62) 
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To make integration possible, it is necessary to express the variation 
of the moments of inertia at the intermediate points of the arch by 
means of a formula. As explained on p. 477, the design of an arch is 
most economical when the moments of inertia at the various sections 
vary according to the following formula: 

Ix COS <t>x 

(i_'_)(*)■ 
V J.costf./W/ 

I 
or since -- 

I. cos 4>. 
= n and is a constant 

/ 

Ix cos (fix 
1 — 4(1 — (63) 

Knowing the value of I at the crown and n, the moment of inertia 
for intermediate section may be found from 

1 1 
/x= / 

1 ,,x\2 coa 4>x 
1 - 4(1 - n)( - f 

(64) 

In the above formula only cos 4>x depends upon the shape of the 

arch. From general rules cos <t>x = , -===. For a parabola 
v 1 + tan2 4>x 

4 r dy 4 r 
dy = 2~xdx> therefore tan 4>x = — = 2—x = 8 

CLX L 

for cos <i>x becomes 

M\lt 
The formula 

COS <t>x = 

1 + 64 
1/ \l 

and 

COS 0; («5) 

Therefore for a parabola the moment of inertia at an intermediate 
point is 

• (66) 
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For rectangular section with constant width 6 and variable depth 
, , ,. . . . T bhh , y M3 0 , 
h9 the moment of inertia at any point is Ix — -~r and I = —. bub- 

12 12 

stituting this in Equation (66) following relation between the depths 

is found 

hx=h (67) 

Equation of Parabolic Axis Referred to Coordinates through Crown. 
—The equation of the parabolic axis referred to a system of coordinates 
passing through the crown is 

Y = 
4 r 
—x 
l2 

(68) 

Elastic Center.—Elastic center is the center of gravity of the ratios 
Ids 

of —. As explained on p. 595 to simplify computations the system 
*x 

of coordinates is transferred to the elastic center, as then for the new 

zero. 
/Ids f Ids C Ids 

y—f I x— and 1 xy— are equal to 

For symmetrical arches the clastic center is on a vertical line passing 
through the crown. The vertical distance of the elastic center from 
the crown, i.e., from the original center of coordinates is given by the 
general equation 

"5 yMs 

Yc = 
£ _L h 

2 

£ 

2 Ids 

-iTx 
2 

(69) 

Ids 
To solve this, substitute proper values for Y and for —. The value 

f * 
Ids 

for Y is taken from Formula (68), p. 616. In the expression —, 
* X 

, dx . , Ids Idx 
ds =-.4 Therefore — becomes --. 

COS </>g Ix Ix cos 4>x 

4 ds is the hypothenuse in a right-angle triangle in which the two other sides are 
dx 

dx and dy. Consequently dx ** ds cos fa and ds =-. 
cos <f>x 
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Substitute the value of 7* from Formula (64), p. 615, 

ly = Y~~~a = f1 “ 4d - 7, 7, cos <f>, L \l / J 

Substitute this value and Y = —x2 in Equation (69), 
l1 

jt[l- 4(1 -.)(?)*]* 

After the integrations are solved the equation changes to 
Distance of Elastic Center from Crown. 

v - — + 2 , _ r r 

Yc 5 (n + 2) °3. 
where 

3 n + 2 

5 (n + 2)' 

For n — 1 the above equation changes to 

Yc = Jr,. 

Formula of the Arch Axis when Center of Coordinates is at the 
Elastic Center.—Following relation is apparent between the vertical 
coordinates of the two systems for fixed parabolic arch. 

y — Ye — Y 
iin + 2 

5(» + 2) 
r - Y. 

Substituting for Y the value from Formula (68)* namely, —x2, 
V 

we get 
Equation of Arch Axis, Referred to Coordinates Passing through 

Elastic Center, 
3 n + 2 4 r 

» = 5<7+2)r - F*.(72) 
Final Formulas for H} VA and Af, Fixed Parabolic Arch.—By sub- 

Ids T /x\2 
stitutingin Formulas (59) to (61), p. 613, — = |^1 — 4(1 — n)^-J dx, 

and P —^ the formulas become 
J-l A„ 
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£4-4(1-^ dx 
J 2 

^[l_4,l-4)!]& + £ 

Va= - 

M = - 

j>[‘ -4(1 - ">(r)1 

£, *2[‘ -4(1 - n)(r)1“ 
^ 2 

r ~ 4(1 - n)(jj j<fc 
*^~2 

j’* 1 - 4(1 - n)(jj2 dx 

The problem now resolves itself into solving for the parabolic 

axis of the integrals^?/2£l — 4(1—n)(jj x2 j\—4(1 —dx 

and | 1—4(1—n) dx, which depend only upon the arch axis, and 

of the integrals^*M9y £ 1 — 4 (1 — n) j dx,^MBx 1—4 (1 — n) (jj dx 

andJ*Af.j^l—4(1—j dx which depend upon the arch axis and 

also upon the character of the loading as expressed by M,. 

Denominator for H, Fixed Parabolic Arch. 

f*2 T AA2 4r 
Substituting inj ,2/2^ ““ 4(1 — n)\jJ dx, V — Yc —^x2 the in¬ 

tegral changes to 

jl(K--4pv)1i-4(i-”,(f)!]<,x 
a 

-'{(" - lrY■+H -«- +H }■ 
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3n + 2 
Substitute for Fc = ——:——r. Finally the denominator for H 

becomes 
5 (» + 2) 

J** y2[\ - 4(1 - n)(jj jdx = 
Ir2 

5 X 35 (n + 2) 
(n2 -1- 8n + (76) 

Denominator for Fixed Parabolic Arch.—After integrating, the 
denominator becomes 

J>[‘ -4(1 ~ dx = —(2 + 3n)Z3. 
60 

(77) 

Denominator for M, Fixed Parabolic Arch. 

dx = “(2 + n)l. 
o 

(78) 

Numerators for H, 7^ and Af.—The numerators for Formulas 
(73) to (75) depend not only upon the shape of the arch but also upon 
the static bending moment of the load Ma. Therefore they must be 
found for each particular type of loading. 

Using for Ms in the denominators the value for a unit load P = 1 
placed at any point x, the resulting formulas would give equations for 
influence lines for //, Va and M. 

Influence Lines for H.—The value of Ma at any point for a unit 
load P = 1 placed at a distance x\ from the crown is Mt — — (x — Xi). 

The numerator for H then becomes 

J^M,2/[l-4(l-n)^2 dx 

" I*2)!1 -4(1 - n)(r)1*- 
This solved, gives 

jf«+ -*-4)']*-sfe[i-(T)T 
|3n(n + 4) + 8(1 — n)(» + 2) — (-jJ j J. 



620 THEORY OF ARCHES 

Substituting in Formula (73) the above numerator as well as the 
value for the denominator from Formula (76), p. 619t and replacing 
the specific value x\ by a general value x) the formula for influence 
line for H becomes 

rl2 [1 

„ _ 15(n+2) l4 [l 
"tor P-1-——— 

3n(n+4)+S(l-n)(n+2) [r(f)11 

Finally 
Influence Line for H, 

5X35 
^(»“+8»+|)+£- 

[S-0TI 3 n (n+4) +8(1—n) (n+2) 

12 

35 
^n2+8n+-^ + 15(w+2) 

-■ (79) 
r 

The last term in the denominator, which signifies the effect of rib 
shortening, may be omitted as for live loads it is insignificant. 

Influence Line for V\.—Substituting Ma = x — X[ the numerator 
in Formula (74) for a unit load P = 1 placed at xi becomes 

This integrated and simplified becomes 

1—n X\ 

2(2+3n) 7 
P. 

Substituting in Formula (74) the above value for the numerator 
also the value from Formula (77) for the denominator, and replacing 
X\ by x the formula for influence line becomes 

Influence Line for Va, 

3(1 — n) x 

2(2 + 3») l 
(80) 

Substituting in the above formula consecutively the values for - for 
It 

different points on the axis and plotting the result under the correspond¬ 
ing points, we obtain an influence line for Va. 



FORMULAS FOR FIXED PARABOLIC ARCHES 621 

Influence Line for M. — Substitute in Formula (76) 

M,— —(x—xi). 

The resulting equation is 

-JT* <x-.,>[l-4(l-»)(?)’]*. 

This solved and simplified gives 

1M1 - 4<* - 
P(2 + n)^ _ 2x,y 

24 
V2fl+ 

2(2 + n) 

Substituting in Formula (75) the above numerator and the denomi¬ 
nator from Formula (78), p. 619, also replacing the specific value 
x\ by a general value x we get a formula for influence line for M. 

Influence Line for M, 

Mfor P-1 — 
Z2( 2 + ??,) 

1(2 + ft) 24 

i + 
i - 

2(2 + n) 

2(2 + n) 

-( »)\ 4 + 
(81) 

Influence Line for MA.—The formula for bending moment at the 
left support is as explained on p. 599, 

Ma = M — V J- — IJ(r - Yc).(82) 

The values of M, Va and II for successive points taken from the 
influence lines and substituted in the above formula give the points of 
the influence line for MA. 

Influence Line for Bending Moment at the Crown.—The bending 
moment at the crown is obtained from the following general formula. 

Me = M + H Yc + M%. 

To get an influence line for the bending moment at the crown substitute 
in the above formula values for M and H from the influence lines for 
different positions of the load P = 1 and also the corresponding value 

of M9. For the loads placed at the right side of the arch the moment 
Mt at the crown is zero. Therefore 
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Bending Moment at Crown for Loads at Right side of Arch, 

Me = M + HY..(83) 

Since the influence line is symmetrical, the values for the right side 
only need to be computed. This simplifies the work somewhat. 

MAXIMUM BENDING MOMENTS FOR UNIFORMLY DISTRIBUTED 
LOADING PARABOLIC ARCH 

Formulas below give maximum bending moments at the crown, 
the springing, and at the quarter points for parabolic arch. These are 
found by integration and are based on the most unfavorable loading 
for each particular case. 

Bending Moments and Thrusts at the Crown.—For maximum posi- 
l l 

tive bending moment the loading extends from x = — - to x = 
8 8 

For maximum negative bending moment the load is placed at each 
end and extends from springing for a distance equal to f1. 

Formulas for H, Va and M as well as for the bending moment at the 
crown Mc are given below. 

Maximum Positive Bending Moment at Crown, 

Mc = M + HYC - ^wl\ . 

L2515 + 0.719n + 
B — 2(^ 

2.677 + 8n + 

.(84) 

0.085n2 lV , 
2-77 I'M • • (85) rr 16/r 

VA = \wl, 

1 

(86) 

M = 
2 + n 

(0.484 + 0.0466n)wZ2.(87) 

In table on p. 647 are given values for different ratios of moment 

of inertia n. 
Maximum Negative Bending Moment at Crown, 

Me = M + Hye - ffrwl2, 

H 
'1 0.2515 + 0.719n + 0.085w2\Z 

,8 2.677 + 8n + n2 Jr" ’ 

Va =» iv>l. 

M = —J—(0.252 + 0.153n)toZ2. 
2 T W 

. . (88) 

. . (89) 

. . (90) 

. • (91) 
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In table on p. 647 are given values for different ratios of moments 
of inertia n. 

Bending Moments and Thrusts at the Springing.—For maximum 
positive bending moment at left springing the load extends from 
the right springing for a distance equal to 0.6Z. 

For maximum negative bending moment at left springing the load 
extends from left springing for a distance equal to OAl. 

Formulas for H, Va and M as well as for the bending moment at the 
springing Ma are given below. They were obtained by substituting 
in the denominators for //, Va and M the value for M9y which 
for uniformly distributed load is M, = — %w{xi — x)2, and solving the 
integrals within the limits of the loaded section of the arch. 

Maximum Positive Bending Moment at Springing, 

Ma = M — VA1 - H(r - yc), . . . 

where 
0.2368 + 0.678n + 0.0806m2 l 

2.667 + 8n + ri2 7° ' 

VA = — -1— ■ (0.275 + 0.481n)ioZ, . . . 
Jj “T" on 

M = —-— (0.0493 + 0.0587n)wl2. . . 
2 + n 

(92) 

(93) 

(94) 

(95) 

In table on p. 546 are given values for different ratios of moments 
af inertia n. 

Maximum Negative Bending Moment at Springing, 

Ma 

H 

Va 

M 

- M - Va\- H(r - yc). 

/l _ 0,02368 + 0.678w + 0.0806n2y 

~~ \8~ 2.677 + 8n + n2 Jr'’ 

= [i - - + 3~(0.275 + 0.481n) jwZ, . . . 

= j-^(0.251 + 0.l4ln)wl2. 

• (96) 

• (97) 

• (98) 

. (99) 

In table on p. 546 are given values for different ratios of moments of 

inertia n. 
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Maximum Bending Moments at Quarter Points.—For maximum 
positive bending moment at left quarter point the load extends from 
the left support for a distance equal to $Z. 

For maximum negative bending moment at right quarter point 
the load extends from the right support for a distance equal to |Z. 

Formulas for H, Va and M were found in the same manner as 
explained in connection with the bending moments at the springing. 

Maximum Positive Bending Moment at Quarter Point, 

Afji = M — l-VA + H(Ye - ir) - *u;Z2, . . . . (100) 

„ fl 0.2515 + 0.719n + 0.085n2l /1\ , 

H- Li 2.667 + 8« + »* Jlir1’ . (101) 

Va = U - - 1 „ (0.3096 + 0.5292n) \wl, . . 
L2 2 + 3n J 

. . (102) 

M = —(0.243 + 0.135n)wZ2. 
2 + n 

. . (103) 

In table on p. 547 are given values for different ratios of moments 

of inertia n. 
Maximum Negative Bending Moment at Quarter Point, 

= M - l-VA + H(YC - ir), . . . . 

rr 0.0215 + 0.719n + 0.085n2/Z\ , 

H =-2.607+ 8n + »»- 

Va = (0.3096 + 0.5292n)wl, . . 

. . (104) 

. . (105) 

. . (106) 

M = —i—(0.0572 + 0.0648n)u>Z2.(107) 
2 + n 

In table on p. 547 are given values for different ratios of moments 
of inertia n. 

LINE OF PRESSURE, FOR FIXED ARCHES 

Thrust at Any Point.—The thrust R is the resultant of the vertical 
external shear and horizontal external shear acting at any point. 

The vertical external shear at any point, Vx equals the vertical 
reaction minus all the vertical downward loads between the point and 
the reaction. 
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The horizontal external shear at any point equals the horizontal 
thrust at the support minus all horizontal forces between the support 
and the point under consideration. If there are no horizontal forces, 
the external horizontal shear at any point is constant and equal to the 
thrust at the support, H. 

If V9 and Hz are the external shears, the resultant thrust is 

Vz2 + Hz2. 

The resultant thrust, R, is usually inclined at an angle to the normal 
section. All stresses in an arch are computed on a section normal to 
the arch axis. To get stresses on the section the inclined thrust, R, 
must be resolved into a thrust at right angles to the section, i.e., the 
normal thrust, N, and force parallel to the section, i.e., the shear. The 
normal thrust, N, causes uniform compression of the section. In 
arches the effect of the shear S is negligible. 

Knowing the direction and magnitude of the resultant thrust, R, 
and the position of the section, the normal thrust may be found graphic¬ 
ally by resolving it into two components, one perpendicular and the 
other parallel to the section. 

Analytically the normal thrust may be found as follows: 
Let (/> = angle of the section with the vertical. 
Then the normal thrust consists of the normal thrust due to the 

vertical shear, Vxy and the horizontal shear, Hx. 

Nx = Vz sin </> — Hx cos <j>.(109) 

In the above equation Hx for vertical loads is a negative value, 
consequently — //* is positive. 

Eccentric Normal Thrust Replaces Bending Moment and Central 
Thrust,—Each section of an arch is subjected to a central thrust Ns 
and a bending moment Mx. As explained on p. 210, a bending moment 

and thrust may be replaced by a thrust applied eccentrically on the 
section. The eccentricity measured on normal section equals 

.<no> 

If the bending moment Mx is positive and the thrust positive, the 
location of the eccentric thrust is above the axis. 

If the bending moment Mx is negative and the thrust positive the 

location of the eccentric thrust is below the axis. 
Characteristics of Line of Pressure.—Line of pressure in an arch 

is a curve obtained by connecting the points of application of the eccen- 
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trie thrust at various sections of the arch. The eccentricities are 
found as explained in the previous paragraph. 

Line of pressure is also a funicular polygon for the forces acting 
upon the arch drawn with a pole distance equal to the horizontal thrust 
at the support, H. To draw a line of pressure it is necessary to know 
the three statically indeterminate values, namely, Fa, Ha and MA. 
Having determined these values, a line of pressure is drawn in the 
following fashion. 

First, draw to any convenient scale a force polygon for the loads 
acting on the arch starting with the force at the extreme left side of the 
arch. 

For vertical loads the force polygon is a vertical line. For inclined 
loads the sides of the polygon are parallel to the corresponding loads. 

Second, on a vertical passing through the starting point of the force 
polygon, starting from the top, lay out the vertical reaction Va at the 
end of which erect a horizontal extending to the left and upon this 
scale off the value of Ha to the same scale as used for other forces. 

Third, determine the eccentricity for a vertical section at the left 
support by dividing Ma by Ha and lay off this eccentricity on a vertical 
through the left support. The point thus obtained will be the starting 
point of the line of pressure. Where the bending moment is positive 
this point will be above the axis; while for negative bending moment it 
will be below the axis. 

Fourth, from this starting point draw the funicular polygon in the 
ordinary fashion. 

It is obvious that a separate line of pressure corresponds to each 
type of loading. 

The method of drawing the line of pressure is shown in Fig. 217, 
p. 628 for forces Pi, P2 and P3. As evident from the figure the force 
polygon is drawn first starting with Pi. The left reaction is then scaled 
at the top of the polygon. The balance is the right reaction. The 
distance AC at the left support is equal Ma divided by H} and the 
distance BD is equal to MB divided by H. 

Properties and Use of Line of Pressure.—The line of pressure in 
conjunction with the force polygon gives all the information necessary 
for computing stresses at all sections of the arch for the particular 
loading for which the line of pressure is also drawn. The location and 
the direction of the eccentric resultant thrust may be taken from the 

line of pressure and the magnitude of resultant thrust may be found 
from the force polygon by measuring the ray parallel to the line of 
pressure in the same scale as was used for drawing the force polygon. 

The bending moment may be found as follows: For any vertical 
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section of the arch the bending moment is equal to the horizontal thrust 
at that point Hx multiplied by the eccentricity eX) i.e., the vertical dis¬ 
tance from the arch axis to the line of pressure. The value of Hx may 
be taken from the force polygon. If the arch is subjected to vertical 
forces only, the horizontal thrust is constant throughout the arch. 
When, in addition, there are horizontal forces (or horizontal components 
of inclined forces) the value Hx equals the horizontal thrust at the sup¬ 
port plus the horizontal forces between the section in question and the 
support. 

For any section normal to the arch axis the bending moment is found 
by multiplying the normal thrust Nx by the eccentricity of the line of 
pressure measured along the normal section. The normal thrust NX) 
i.e., the component of the resultant thrust acting at right angles to a 
section normal to the arch axis, may be obtained from the force polygon 
by drawing at the top of the ray representing the resultant thrust, R, 
a line at right angles to the section of the arch and at the bottom a line 
parallel to the section. The length of the line at right angles to the 
section gives the normal thrust, Nx, and the other line gives the shear, Sx. 

In both cases the eccentricity is measured to the same scale as was 
used in drawing the arch. When the line of pressure is above the axis 
the bending moment is positive while when below the axis it is negative. 

For symmetrical arches and symmetrical loading the line of pressure 
for the two halves of the arch is symmetrical. In such case it is 
necessary to draw only the line of pressure for one-half of the arch. 

The correctness of the line of pressure for fixed arches may be checked 
from the following two properties: 

First, the line of pressure must intersect the arch axis in at least 
three points. 

Second, when the value of Ix cos <t>x is constant the areas between 
the line of pressure and the arch axis placed above the arch axis must be 
equal to the areas placed below the arch axis. This follows directly 

s* ds 
from the requirement that | Mxy = 0 (see p. 593). For constant 

Jo lx 

I9 cos<£* this may be written f Mxdx = 0. If ex is the eccentricity at any 

point, then the bending moment Mx equals Hex. Substituting this in the 

equation, ^Mxdx = jHejlx = Hjedx — 0. Finally = 0. 

The differential e*dx is the area of an infinitely small section of a 
width equal to dx. The integral of this value is the total area between 
the arch axis and the line of pressure. Since the sum of all areas must 
be equal zero, the positive areas above the axis must equal the nega¬ 
tive areas below the axis. 
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Line of Pressure for Single Loads.—The line of pressure for a single 
load P consists of two straight lines intersecting at P. To draw this 
line of pressure the same information is required as for multiple loads. 
To each position of load corresponds a different line of pressure and a 
different force polygon. The magnitude of the horizontal thrust is 
different for different location of the load. In comparing the bending 
moments produced by two equal loads but placed at different points 
on an arch, not only the eccentricities from the line of pressure but also 
the horizontal thrusts should be compared because the bending moment 
depends upon the eccentricities and also upon the horizontal thrust. 

Proof that Funicular Polygon Drawn as Described is Line of Pres¬ 
sure.—That a funicular polygon drawn as described above is a line of 

pressure will be proven, if it is shown, that at any point the bending 
moment Mx on a vertical section of the arch equals the horizontal 
thrust multiplied by the vertical eccentricity. The equation for bend¬ 
ing moment at any point in an arch from Formula (3), p. 581, is 

Mx = MA + Ma + —- ~ Max - Hy. . . . (Ill) 

In Formula (111) H is considered as a positive value. 
In Fig. 217 in which the force polygon and the line of pressure 
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were drawn according to the rules laid out on p. 626, connect the points 
C and D by a straight line. 

From the general property of funicular polygon it follows that at 
any point the vertical distance from the closing line CD to the polygon 
multiplied by the pole distance (which in this case is equal to the 
horizontal thrust, //) is equal to the static bending moment at that 
section. Thus at point E the distance FG multiplied by the pole 
distance H is equal to the static bending moment Ms considering the 
arch as a simply supported beam. 

Thus ___ 
Ms = H X FG, 

consequently, 

From the figure it is evident that the distance FG consists of three 
sections, FE, EH and HG, so that 

fg = Ye + eh + Tig. 

_ Ms _ _ 
In the above, FG = —, FE is the eccentricity e, and EH is equal 

Ms _ 
to y. Therefore, — = ev + y + HG and 

Ms — 
e, = —-HQ- y. . (112) 

The value of HG is found as follows: 

AC + BD 
From proportions HG = 

l 

_ Ma _ Mb _ 
p. 626 AC — — and BD =-—, the value of HG = 

H H 

x — AC. Since as explained on 

Ma — Max 

H l 
Ma 

——. By substituting this in Equation (111) and multiplying by H, 
H 

we get 

e,H = Ma + Ms + x — Hy = AT,. 

In the above H is considered as a positive value. 
Graphical Determination of Line of Pressure.—As explained in 

previous paragraphs, the location of the line of pressure for a given 
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load is fixed when the three statically indeterminate values HAf VA 
and Ma are known. 

The line of pressure also may be drawn without computing the 
statically indeterminate values when three points of the line of pressure 
are known or assumed. The effect of fixing of the three points is the 
same as if the arch were provided at these three points with hinges. 
Graphical method is used to determine the line pressure due to the dead 
load (or dead load plus one-half live load) if it is desired to make the 
arch axis to coincide with this line of pressure for this loading. In 
such case the selected springing points and the crown point are the 
fixed points of the line of pressure. Also this method may be used 
for approximate design of arches when the eccentricities of the line 
of pressure at the supports and at the crown are found from approximate 
empirical formulas. 

For symmetrical arches and symmetrical loading the line of pressure 
needs to be drawn for one-half of the arch only, because the other half 
is symmetrical. 

For unsymmetrical loading the whole line of pressure must be deter¬ 
mined. 



CHAPTER IX 

SLOPE DEFLECTION METHOD OF SOLVING STATICALLY 
INDETERMINATE STRUCTURES 

The method of determining statically indeterminate values used 
for arches and explained on p. 582 can be used for all statically inde¬ 
terminate structures. Its application to frames consisting of a large 
number of straight members, however, is too involved. The slope 
deflection method explained below gives a simpler solution of such 
problems. It should be understood that the basic principle of this 
method is identically the same as used for solving arches. The two 
methods differ only in the manner of application of a common principle. 
If a problem is solved correctly using the two methods the results must 
be identical. 

Fig. 218.—Deflection of Frame Consisting of Number of Straight Members. 
(See p. 631.) 

Consider a rigid frame consisting of a number of straight members 

joined rigidly at each intersection. Such frame is shown in Fig. 218, 
p. 631. When any member of the frame is loaded, all members of the 
frame, whether loaded or not, deflect. For vertical loading the deflec- 

631 
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tion is largest in members near the loaded spans and diminishes for the 
members away from the loaded spans. 

After deflection the axis of each straight member becomes a curve, 
the shape of which depends upon the end conditions of the member and 
also upon whether the member is loaded and, if so, how. Although the 
slope-deflection method is based upon the investigation of the deflection 
of the members, the actual deflection is not computed as it becomes 
eliminated in the final formulas for bending moments. 

Types of Deflection Curves.—The type of deflection curve assumed 
by a member depends upon the end conditions of the member and also 
upon the loading acting directly upon the member. The various types 
of deflection curves are shown in Fig. 218, p. 631, and are described 
below. 

1. Member 3-4, hinged at one end and restrained by the structure at 
the other end, not loaded directly. Its deflection curve is a simple 
curve. The angles of rotation at the two ends are of opposite sign 
to each other. 

2. Member 5-6, hinged at one end and restrained at the other, and 
loaded. Deflection curve has one point of contra-flexure. Angles of 
rotation at the ends may be of same or opposite signs. 

3. Member 1-4, fixed at one end and restrained by the structure at 
the other, not loaded directly. Deflection curve is a reverse curve. 
At the fixed end the deflection curve is tangent to the original position 
of the axis of the member so that the angle of rotation there is zero. 

4. Member 4-7, restrained at both ends by the structure and not 
loaded directly. The deflection curve is a reverse curve. Tangents to 
the deflection curve at both ends of the member are inclined to the 
original position of the member. The angles of rotation at the ends 

are of the same sign. 
5. Member 4-5, restrained at both ends as before and loaded. Its 

deflection curve has two points of contra-flexure. Similar curve would 
be obtained if one of the ends were fixed. However, the angle of 
rotation at the fixed end would be zero. 

Angle of Rotation.—Angle of rotation at any point of the member 
is the angle between the original position of the axis of the member 
and the tangent to the deflection curve at that point. It is measured 
in radians, i.e., arcs of a circle the radius of which is unity. Thus the 

measure of one degree is ~. 

The sign of the angle of rotation is positive when the rotation of 
the tangent, starting from the original position, is from left to right, 
i.e., clockwise (see Fig. 219, p. 633). 
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The sign of the angle of rotation is negative when the rotation is 
from right to left, i.e., counter-clockwise (see Fig. 219, p. 633). 

When a joint in which several members meet is rigid, the angles 
between the axes of the members meeting there must remain the same 
after deflection as they were before deflection. Therefore the angles 
of rotation of all members in a joint must be the same. This rule will 
be used in determining the statically indeterminate values. 

Movement of the Joint.—The center of a rigid joint after deflection 
may remain in the same position as before deflection, or it may move. 
Thus the joints 3, 4, 5, 6, in Fig. 218, p. 631, remained in the same 
position as before deflection, while the joint 7 and 8 moved by a dis- 
distance A measured on a line drawn at right angles to the original 
position of the member. 

Notation.—Following notation is used in formula below. 

Let l = length of the member; 
Qi = angle of rotation at left end of a member, i.e., angle between 

tangent to deflection curve and original position of 

member, in radians; 
Q2 = angle of rotation at right end, in radians; 
Mx = actual bending moment at any point x of the member; 
Ms = static bending moment due to the loads at point x; 

Mfx = bending moment at left support, considering member as 

fixed at both ends (see pp. 24 to 28 for constants); 
Mf2 = bending moment at right support, considering member as 

fixed at both ends (see pp. 24 to 28 for constants); 
Ix = moment of inertia of the member at any point x; 
A = movement of the joint at right angles to the member; 
E = modulus of elasticity. 
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Basis for Slope Deflection Method.—The slope deflection method is 
based upon the following two propositions. 

1. In a member subjected to bending the difference between the 
angles of rotation at ends of the member Qi and Q2 is equal to the area 

Mx 
of the —— diagram for this member. 

EIX 
Mathematically this is expressed 

by the formula below, using Qi and Q2 with proper signs. (See Fig. 
220, p. 634.) 

XM 
zfdx,.(1) 

XM 
jfdx.(2) 

Bending Moment in Member 1-2 

Fiq. 220.—Basis for Slope Deflection Method. (See p. 634.) 

2. If, in a member subjected to bending, one end of the member moves 
in relation to the other, then the distance of end 1 from the tangent to 
the deflection curve at end 2 measured on a line at right angles to the 
initial position of the member is equal to the static moment about the 

Mx 
end 1 of the area of the ~ diagram. This is expressed by 

tlx 

(3) 

(See Fig. 220, p. 634.) 
Proposition 1 follows directly from the reasoning on p. 591 relating 

to the change of the center angle caused by bending moments. Using 
the signs for angles of rotation on p. 632 the difference Qi — Q2 for the 
condition shown in Fig. 220, p. 634, actually is equal to the numerical 
sum of the two angles. As evident from the figure, the center angle 
is also equal to the numerical sum of Qi — Q2 and represents the change 
in center angle for this member. Taking this into account Formula 
20, p. 591, is identical with Formula (3), p. 634. 

Proposition 2 follows from reasoning relating to the movement of the 
end of the member caused by bending moment, explained on p. 587. 
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Basic Formulas for Slope-deflection Method.—Using propositions 
1 and 2 it is possible to express the bending moments at each end of a 
member in terms of the angles of rotation Qi, Q2y the movement of the 
end A and the bending moments due to the load Mfl and Mfr 
Assume that the moment of inertia for the span under consideration 
is constant. Then Iz becomes I and may be taken before the integrar 
tion sign. 

Basic Formulas for Slope-deflection Method/ 

M\ = 2E-J^2Qi + Q2-j-J + Mfl.(4) 

M2 = 2E^2Q2 + Qi-+ ^/2> • • • • (5) 

where Mfl and Mh are bending moments at supports for beams fixed 
at both ends and are given by the following formulas: 

M$dx — 3J Mtxdx j. ... (6) 

Mf2 = M&dx — l^ Mtdx'j.(7) 

(See pp. 24 to 28 for values of Mfl and Mf2 for special loadings.) These 
are general formulas. For special end conditions of the members special 
formulas may be developed as given below. 

1 These basic equations are derived as follows: 

The bending moment at any point may be expressed in terms of the bending 

moments at the ends and the static bending moment. Referring to Fig. 220 and 

using signs as explained on page 370 the bending moment at any point Mx is 

Mx = M,— (—M,)+ ~¥}.zJkX' 

Substituting this in integrals of Equations (1) and (3) and solving gives 

j^Mxdx -£(*.+ M,+ —xjdx = IKMi- Mi) +f*M,dx. 

f^Mxxdx Af,+ ~M'~Mixjxdx= \lK\Mi- M,)+j^M,xdx. 

Substitute these values in Equation (1) and (3), 

A - QJ. - Ml) +f^M.xdxj. 

(Note continued on next page) 
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Possible Conditions at the Ends of Members.—There are four 
conditions possible at the ends of the members. They are illustrated in 

Fig. 221, p. 636. 
Condition 1. Both ends are restrained by the other members of the 

structure. Such condition exists in the member 2-3. The angles at 
both ends are determined by considering other members of the structure. 
Formulas (8) to (11) apply. 

Condition 2. One end fixed, other end restrained by other members 
of the structure as in members 2-5 and 3-7. The angle at the fixed 
end is zero. Formulas (12) to (19) apply. 

Condition 3. One end free or hinged, other end restrained by 
other members of the structure as in member 1-2. The bending moment 
at the free end is zero. Formulas (20) to (25) apply. 

Solving these equations for Afi and Mi, 

Afi= 2jE^2Q,+ Qt- 3yj - ?(- jj^M.xdx + 2^M,dxj. 

M»= 22Qt- 3*j + j(jj^M,xdx - 

When the member is fixed at both ends the deflection curve is tangent to the original 
position of the member. Therefore, Qi = <?a = 0, and the bending moment for fixed 
beams fixed at both ends become: 

Mi=Mfx 

Mt=Mf2 

“ K " +2XJW"fa)- 

These values may be substituted in the general equations for the integrals, which 
results in the final formulas. 
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Condition 4. One end restrained by other members of the structure, 
other end restrained by members outside of the structure under con¬ 
sideration. Thus in member 3-4 end 3 is restrained by the structure 
while end 4 is restrained by three members shown by dash lines not 
considered a part of the structure. Similarly ends 6 and 8 are restrained 
by two members not considered a part of the structure. 

Condition 4 occurs when a substitute structure is used instead of the 
complete structure. The omitted members exert a restraint upon the 
end of the substitute structure which is intermediate between a free 
condition and fixed condition. The effect of these restraining members 
may be taken into account without incorporating them into the sub¬ 
stitute structure by using Formula (30), p. 640. 

Formulas for Special End Conditions.—The basic Formulas (4) 
and (5) assume following shape for special end conditions. 

Notation. 

Let E = modulus of elasticity; 

I = moment of inertia of the member; 

Mi = bending moment at left end; 

M2 = bending moment at right end; 

Mfl = bending moment at left end, considering member fixed 
at both supports (see pp. 24 to 28 for constants); 

M/2 = bending moment at right end, considering member fixed 
at both supports (see pp. 24 to 28 for constants); 

Mf = bending moment at supports for symmetrical load, con¬ 
sidering member fixed at both supports (see pp. 24 to 
28 for constants); 

l = length of member; 

Qi = angle of rotation at left support, in radians; 

Q2 = angle of rotation at right support, in radians; 

A = movement of one end of the member at right angles to 

original position. 

Condition 1. Both Ends Restrained. 

(a) Both ends remain on same level, 

Mi = 2Ej(2Qi + Q2) + Mfl>.(8) 

M2 = 2Ej(Qi + 2Q2) + Mft.. (9) 
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(£>) Right end moved by distance A, 
_ / . \ 

Mi = 2 E J\2Qi + Q2 — 3 1 + MJv .... . (10) 

M2 = 2Ej(qi + 2Qi - sft 1 + Mit. . (11) 

Condition 2. One End Restrained, Other End Fixed. 

(a) Both ends remain on same level: 

Right end fixed, 

M1 = 4EjQ1 + Mfl at restrained end, . • (12) 

M2 = {(Mi - Mh) + Mh 

Left end fixed, 

at fixed end. . . • (13) 

Mi = {(M2 - Mh) + Mfl at fixed end, . . . (14) 

M2 — 4EjQ2 + Mft at restrained end. . . (15) 

(b) One end moved by distance A, 

Right end fixed 

if
 

+
 

<
iT

^
 

1 II at restrained end, . • (16) 

M2 = {(Ml- Mh) + Mh 

Left end fixed, 

at fixed end. . . . (17) 

Mi = {(M2 - Mh) + Mfl at fixed end, . . . (18) 

M2 = 4EjQ2 + Mh at restrained end. . . (19) 

Condition 3. One End Restrained, Other End Hinged. 

(a) Both ends remain on same level, 

Right end hinged. M2 = 0, 

Mi = 3Ej Q1 + (Mfl - \M,t).(20) 

Left end hinged. Mi = 0, 

M2 = 32? - Q2 + (M/t — §M/,).(21) 
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(6) One end moved relative to the other end by distance A, 

Right end hinged. M2 — 0, 

Mi = 3Ej(Qi - |) + (Mh - \Mh).(22) 

Left end hinged. Mi = 0, 

M2 = 3Ej(q2 - j) + (Mh - \Mh).(23) 

For symmetrical loads, 
Mfl = — Mf2 = Mf.(24) 

and 

Mh - \Mh = - (M/t - Wh) = 1 \M,. . . . (25) 

Condition 4. One End Restrained by Members Outside the 
Frame, Other End Restrained by the Members of the Frame. (See 
222, p. 641.) 

Assume that a member of a frame at one end is restrained by the 
frame itself and at the other end by three members not forming a part 
of the frame, with length h, hi and /12 and moments of inertia I\, I2 and 
J3, respectively. The length of the member is l and its moment of 
inertia I. 

This case occurs when the frame under consideration is a substitute 
frame for a more complicated structure. The ends of the substitute 
frame are then restrained by the members of the structure which are 
outside of the substitute frame. In Fig. 222, p. 641, the member AB, 
which is a part of the frame shown by heavy lines is restrained at 
B by the frame and at A by the three members outside of the frame 
shown by dash lines. 

Right end restrained, 

Mi= (6-c)EjQi + pifv . . . . (26) 

„ 2(3 — c) , 6(3 — c) 
M2 - „ Mi + Mfr . . . 

6 — c 6 — c 
... (27) 

Left end restrained, 

„ 2(3 — c) 6(3-c) 
Mi — .M2 + -M/f . . . 

6 — c 6 — c 
... (28) 

M2 = (6 — c)EjQ2 + 2^f*’ . ... (29) 
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where 

c - 2 ---. 
, , W . hl L hl 

For members with hinged ends, ai, a2 and az each equals 3; for 
members with partly fixed ends, a\, az and 03 equals 3.5; for members 
with fixed ends az and az equals 4. 

Signs of Bending Moments, Angles and Movements of Ends.— 
In the above formulas following signs are used: 

Bending Moments.—In applying the slope deflection method it is 
necessary to use different signs for bending moments than ordinarily 
used in reinforced concrete design. The customary signs used in con¬ 
crete design depend upon the location of the tensile zone, whether near 
the upper or lower surface of the member. In the slope-deflection 
method, on the other hand, the sign depends upon the direction in 
which resisting forces produced by the bending moment tend to turn the 
member. 

The bending moments are positive (+) when the resisting stresses 
tend to turn the member, or a portion of the member under consideration, 
clockwise, i.e., from left to right. 

According to this sign method in a span of a continuous beam 
subjected to downward loads the bending moment at the left support 
is negative and the bending moment at the right support is positive. 
(In ordinary method both bending moments would be negative.) 

In a rigid right-angle frame subjected to downward loads at the 
left corner the sign of the bending moment in the beam is negative while 
the bending moment in the column is positive. At the right corner the 
signs are reverse. (In ordinary method all bending moments would 
be minus.) 

Sign of Angles of Rotation.—The angle Q is called positive when 
the tangent to the deflection curve, starting from its initial position, 
rotates clockwise. 

The angle Q is negative when the tangent to the elastic curve, start¬ 
ing from its initial position, rotates counter-clockwise. 

For example, in Fig. 218 the angles at points 4 and 7 are positive 
while the angles at points 5 and 8 are negative. 

Sign of Movement of the Ends A.—When the movement of the end 
results from a clockwise rotation of the member from its original position, 
the value of A is positive. When it is due to a counter-clockwise rotation, 
it is negative. 
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For example, the movement of point 7 is positive while point 8 is 
negative. 

Sign of Bending Moments Mh and MSv—When the loads act down¬ 
ward the bending moments M/l and have the same sign as used in 
Equations (8) to (29). For loads acting upward the sign of Mtl and 
Mh in Formulas (8) to (29) would have to be reversed. 

For horizontal pressure acting from the left upon a vertical or 
inclined member the upper end of this member corresponds to the 
right end of the beam and the lower end to the left end. 

Fig. 222.—End of Member of a Frame Restrained by Members Outside of the 

Frame. (See p. 640.) 

How to Apply Slope Deflection Method.—The method is applied 
in the following manner: 

1. Equations for bending moments at each end are set down, using 
one of the Formulas (8) to (29). For each member there are two 
unknown angles of rotation, one at each end. The actual number of 
unknown angles in the whole structure is decreased, however, by the 
fact that all members meeting at a joint have a common angle of 
rotation. The total number of unknown angles, therefore, is equal to 

the number of joints. 
2. Equations are then formed for each joint based on the require¬ 

ment that for equlibrium the sum of bending moments for all members 
meeting a joint is equal zero. This means also that of the members 
meeting at a joint some are subjected to bending moments turning to 
the left while the others are subjected to bending moments turning to 
right. The sum of bending moments turning to the right must be equal 
to the sum of the bending moments turning to the left. 

3. When no movement A occurs at any joint due to the deflection of 
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the frame, the joint equations are sufficient to find all the unknown 
angles of rotation Q\ because the number of unknown angles is equal to 
the number of joints and the number of joint equations is also equal 
to the number of the joints. 

When any joints move, due to the deflection of the frame, the 
values of A so created are additional unknown quantities. To find 
these values, additional equations are written from the requirement 
that the frame as a whole must be in equilibrium. 

4. After all equations are prepared the values of the unknown angles 
are found by solving the simultaneous equations in the well-known 

manner. When solved, the values of Q are expressed in terms of the 
known Mfl and Mfj. 

5. Finally, bending moments at all joints are obtained by substituting 
in proper equations the proper values of Q. 

Example of Application of the Slope Deflection Method.—To 
illustrate the use of the slope deflection method, formulas are deter¬ 
mined for a three-legged, two-span frame shown in Fig. 223, p. 642. 

The three unknown angles at the three joints are Qb at joint B, 

Qc at joint C and QB at joint E. 
An additional unknown quantity is the horizontal movement of the 

joints B, C and E called A. This movement is included only in formulas 
for columns. The number of unknown values therefore is four. Four 
equations are required to solve the problem. 

Bending Moments at the Ends of Members: 

Bending moment in beams, 

M2 = 22?— (2 Qb + Qc) + M/t.(31) 

M3=2Ej (2 Qc + Qb) + Mh.(32) 
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Mi = 2Ej(2Qc + QB). 

M6=2Ej(2Qb + Qc). 

Bending moment in columns, 

M8=3J^Qc-|).(36) 

'•Ejfa-i 

Equations for Joints, 

(1) Mi + M2 = 0 for joint B. 

(2) Mz + + M5 = 0 for joint C. 

(3) Mq + Mj s= 0 for joint E. 

Equation for structure as a Whole,2 

(4) ^ ^ =0. 
it tt th 

By substituting values for the bending moments, following equations are 
obtained. 

(1) 3 E-^Qb — ~j + 2E-j-(2QB + Qc) + Mjx = 0.(42) 

(2) 2B*y(2Qc+Q^)+^/2+2JE,'y(2Qc+Qif)+3£,-^Qc"”~^:=0. (43) 

(3) 2E—(2Qe + Qc) + %Ej(\Qe ~ “^= 0.(44) 

<4> M0+340+34q*-x)]=°- • •<45) 

t ^ and are equal to the horizontal thrust at the bottom of the legs 
h h h 

For equilibrium the sum of horizontal thrust must be equal zero. 
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To simplify, call Qb = X, Qc = Y, Q* = Z and = k, E^ = k\. 
hi 

The equations then become 

Final Equations for Determining X, Yy Z and A, 

(1) (4fci + 3k)X + 2)kiY - 3^A = - Mh. . . (46) 
lx 

(2) 2kiX + (81fci + 3k)Y + 2kiZ - 3/A = - M,... . . (47) 
h 

(3) 2kxY + (4*i + 3k)Z - 3~A = 0.(48) 
h 

(4) X + Y + Z - 3/A = 0.(49) 
h 

The above four equations must be solved for X, 7, Z and A. After 
the values of the unknown are found the bending moments M\ to 
Mr are obtained by means of the Equations (31) to (37). 

Derivation of Three-Moment Equation for Continuous Beams.— 
The three-moment equation for solving continuous beams may be 
developed by means of the slope-deflection method. 

Consider two spans of a continuous beam consisting of any number 
of spans as shown in Fig. 224, p. 645. 

Let lr = span length of the 7th span; 
lr+i = span length of the r + 1th span; 
Mr = bending moment at left support, rth span; 

Mr+l = bending moment at left support, r + 1th span;3 
Mr+2 = bending moment at left support, r + 2th span;3 

M9r = static bending moment at any point of rth span; 
Mtr+i =*= static bending moment at any point of r + 1th span; 

Mflr = bending moment at left support, rth span 
Mf2r = bending moment at right support, rth span 

Mftf+i) = bending moment at left support, r + 1th 
span; 

Jlf/jCr+D = bending moment at right support, r + 1th 
span; 

1 At support r + 1 the bending moments at both sides are equal but of opposite 
sign. It is positive at the right. 

At support r + 2 the bending moment is positive at the right of the support 
*2id negative at the left. 

Considering 
the spans as 
fixed at both 
ends. 
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Qr = angle of rotation at rth support; 
Qr+x = angle of rotation at r + 1th support; 
Qr+2 = angle of rotation at r + 2th support; 

E = modulus of elasticity of concrete. 

As explained on p. 637, it is possible to establish following relations 
between the angles of rotation and the bending moment. 

First span3 (for signs see footnote), 

Mr = 2Ey(2Qr + Qr+i) + Afyy.(50) 

- Mr,, = 2£,’f-r(2Qr+1+Qr) + Mh.(51) 
f'r 

Second span,3 

Mr+l = 2E ~^(2Qr+i + Qr+2) + Mmr+n.(52) 
*'r+1 

- Mr+2 = 2f;~(2Qr+a+ Qr+i) + Mmr+1).(53) 
^+1 

Multiply Equation (51) by 2 and subtract from the result to Equa¬ 

tion (50). In this way Qr is eliminated. 

—2Mr+i - Mr = 6EjQr+1 + (Mfir - 2Mrv). . . (54) 

In the same manner eliminate Qr+2 froni Equations (52) and (53). 

Mr+t + 2Mr+l = SE^Qr+i + (2M/l(f+1) - Mh(r+n). . (55) 
*r+l 

* See note, p. 644. 
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Multiply Equation (55) by 
Irlr+l 

Ir+Jr 
and subtract from the result Equa¬ 

tion (54). 

M, + 2 M,Jl + £%) + 
\ 1 r-f \lr‘ -1 r+l^r 

= + [(M/ir — 2Mftr) + j -y(2M/1(r+1) — j. (56) 

6 C1' 
Finally, since4 Mhr - 2Mhr = - tt> I M^cdx and 2M/l(r+1) — MfAr+l) 

*r Jo 
6 r 

l2r+iJo 
M,(lr+1— x)dx, 

Three-moment Equation, 

m, + m.Ji + !^) + 
\ Ir+iLr/ Ir+lb 

= - ef~ (lM.xdx + ^-~f r^+1 - *)dx • (57) 
L/rVo l r+1 Ir+llr J0 J 

When the moments of inertia of both spans are equal the equation 
changes to the form most commonly known 

Three-moment Equation, Constant Moment of Inertia, 

M£ + 2Mr+Sr + k+i) + Mr+2lr+1 

1 Wr+l 

^Jo 

♦Substitute for Af/ir, Af/2r, M/nr+i) and Mji(r+i); values from Equations (6) 
and (7) and combine. 

i) X)dx • (58) M9rxdx + 



CHAPTER X 

DIAGRAMS 

This chapter gives diagrams required for the design of sections sub¬ 
jected to direct stress and bending moments and also diagrams required 
for approximate designs of fixed arches. 

DIAGRAMS FOR DIRECT STRESS AND BENDING 

The diagrams required for the design of sections subjected to direct 
stress and bending moments are described in Chapter II. They are: 

Diagram 1. 

Diagram 2. 

PLAIN CONCRETE SECTIONS 

y PAGE 

Depth of sections for known eccentricity e and ratio *77. Upper 
N 

limit.opp. 648 

bft 
Depth of section for known eccentricity e and ratio 77. Lower 

N 
limit.opp. 648 

REINFORCED CONCRETE SECTION SUBJECTED TO BENDING ONLY 

Table 1. Constants for rectangular beams and slabs subjected to bending... 649 

REINFORCED CONCRETE SECTION. WHOLE SECTION 

IN COMPRESSION 

Diagram 3. 
Diagram 4. 
Diagram 5. 
Diagram 6. 
Diagram 7. 

Diagram 8. 

Constants Ce for symmetrically reinforced sections. 2a = h. 650 

Constants Ce for symmetrically reinforced sections. 2a = 0.9h.. 651 

Constants Ce for symmetrically reinforced sections. 2a = 0.8h.. 652 

Constants Ce for symmetrically reinforced sections. 2a = 0.7/i.. 653 

Depth of symmetrically reinforced sections for known eccentricity 

e and ratio 
bfc 
N * 

Upper limit, 654 

Depth of symmetrically reinforced sections for known eccentricity 

e and ratio Lower limit. 655 
N 

647 



648 DIAGRAMS 

SYMMETRICALLY REINFORCED CONCRETE SECTION 

ONE FACE IN TENSION 
PAGE 

Diagram 9. Ratio of depth of neutral axis, k, for known eccentricity e. 
h = l.Od.656 

Diagram 10. Constants Ca in formula (29), p. 228. h = l.Od.657 
Diagram 11. Ratio of depth of neutral axis, k, for known eccentricity, e. 

h = l.ld.658 
Diagram 12. Constants Ca in formula (29), p. 228. h = l.ld.659 
Diagram 13. Ratio of depth of neutral axis, k, for known eccentricity e. 

h = 1.2d. 660 
Diagram 14. Constants Ca in formula (29), p. 228. h = 1.2d.661 
Diagram 15. Constants C8 in formula (31), p. 228. 662 

UNSYMMETRICALLY REINFORCED CONCRETE SECTION 

ONE FACE IN TENSION 

Diagram 16. Constants Cc in formula (40), p. 233 for unsymmetrically rein¬ 
forced sections. One face in tension. 663 

Diagram 17. Constants C\ in formula (43), p. 233 for unsymmetrically rein¬ 
forced sections. One face in tension. 664 

Diagram 18. Constants C2 and Cs in formula (45), p. 234 for unsymmetrically 
reinforced sections. One face in tension. 665 

SECTION WITH TENSION STEEL ONLY 

ONE FACE IN TENSION 

Diagram 19. Ratio of depth of neutral axis, k, for known eccentricity e.666 
Diagram 20. Constants C^ in formula (49), p. 236 . 667 
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DIAGRAMS 649 

Table 1.—Constants for Rectangular Beams and Slabs 

To be used in formulas for Depth of Beam, d — Oxford - V||and 

Depth of Slab, d « C%y/M; in formulas for Moment of Resistance, M * —*, 

or M ■» Rbd%; in formula for Area of Reinforcement, As = pbd, or As = 

Ratio of Moduli of Steel to Concrete, n = 15. 

Working 
Strength 

of 
Steel, 

Lb. per 
Sq. In. 

/* 

Working 
Strength 

of 
Concrete, 
Lb. per 
Sq. In. 

fe 

Ratio 
Depth of 
Neutral 
Axis to 

Depth of 
Steel. 

k 

Ratio of 
Moment 
Arm to 

Depth of 
Steel 

0-1) 
; 

Ratio 
Area of 
Steel to 
Beam 
Above 
Steel. 

V 

Constants. 

For E 

C 

learns. 

R 

For 
Slabs. 

Ci 

14 000 500 0.884 0.0062 0.114 77.1 0 0329 
550 FjWfrgS 0.876 0 0073 89 4 0.0306 
600 0.869 0 0084 0 0286 
650 0.411 0.863 0 0095 0.093 115.2 0.0268 

700 0.428 0.857 0 0107 0 088 128 6 0 0254 
750 0 446 0.851 0 0119 0 084 142 2 0.0243 
800 0.462 0.846 0 0132 0.080 156.4 0.0231 
850 0.477 0.841 0 0145 0 077 170.4 0.0222 

16 000 600 0.319 0.894 0 0050 0.119 71.3 0 0341 
550 0.339 0.887 0 0058 0 110 83.0 0.0318 
600 0 360 0.881 0 0067 0.103 95 0 0 0297 
650 0.378 0.874 0.0077 0.096 107 5 0 0277 

700 0.397 0.868 0 0087 0.091 120 4 0 0263 
750 0 414 0.862 0 0097 0 087 133 5 0 0251 
800 0 429 0.857 0 0107 0 083 146 7 0 0240 
850 0 444 0.852 0 0118 0.079 160.4 0 0228 
900 0.458 0.847 0 0129 0.076 174.5 0.0219 

18 000 500 0 294 0.902 0 0041 0 123 66.3 0.0355 
550 0.895 0 0048 0.114 77 1 0 0329 
600 0 333 0.889 0 0056 0.106 88.9 0 0306 
650 0 351 0.883 0.0063 0.100 100.8 0.0289 

700 0 369 0.877 0 0072 0 094 112.9 0 0271 
750 0 385 : 0.872 0 0080 0.089 125.9 0 0257 
800 0.400 0.867 0 0089 0.085 138 7 0 0245 
850 0 415 0 862 0 0098 0.081 151 9 0 0234 
900 0.429 0.857 0 0107 0.078 165 4 0.0225 

20 000 500 0 272 0 909 0 0034 0 127 62 0 0 0367 
550 0 292 0 903 0 0040 0 118 72 5 0 0341 
600 0 311 0 896 0 0047 0 110 83 5 0 0318 
650 0 328 0 891 0 0053 0 103 94.9 0 0297 

700 0 344 0 885 0 0060 0 097 106 5 0 0280 
750 0.359 0 880 0 0068 0 092 118.8 0 0266 
800 0 374 0 875 0 0075 0 087 131 3 0 0251 
850 0.389 0 870 0 0083 0 083 143 8 0 0240 
900 0 403 0 866 0 0091 0 080 157.0 0 0231 



650 DIAGRAMS 

2a = h, n = 15. See p. 221 for different n. 
N 

Use in Formula for Max. Compression Stress, fc = —. (See p. 219.) 
bh 

For example, see p. 249. 

Diagram 3.—Constants Ce for Symmetrically Reinforced Sections. Whole Section 
in Compression. (See p. 219.) 

Q
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DIAGRAMS 651 

Values of -jj 

2a — 0.9h, n = 15. See p. 221 for different n. 

N 
Use in Formula for Max. Compression Stress, fc = Ce —. (See p. 219.) 

bh 
For example, see p. 249. 

Diagram 4.—Constants Ce for Symmetrically Reinforced Sections. Whole Section 
in Compression. (See p. 219.) 
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652 DIAGRAMS 

Va/ues of 

2a = 0.8A, n = 16. See p. 221 for different n. 
AT 

Use in Formula for Max. Compression Stress, /c = Ce —• (See p. 219.) 
bh 

For example, see p. 249. 

Diagram 6.—Constants Ce for Symmetrically Reinforced Sections. Whole Section 
in Compression. (See p. 219.) 
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DIAGRAMS 653 

<\1 Jo 5P <\| <0 <0 <0 <*> 
K < 

0 <3 <0 <0 

/o/ues of 

2a = 0.7/i, n — 16. See p. 221 for different n. 
N 

Use in Formula for Max. Compression Stress, fc = Ce 77. (See p. 219.) 
oh 

For example, see p. 249. 

Diagram 6.—Constants Ce for Symmetrically Reinforced Sections. Whole Section 
in Compression. (See p. 219.) 
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654 DIAGRAMS 

V /o mm! 

Diagram 7.—Depth of Symmetrically Reinforced Sections for Known Eccentricity e 

and Ratio . Upper limit. (See p, 223.) 
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DIAGRAMS 655 

Diagram 8.—Depth of Symmetrically Reinforced Sections for Known Eccentricity * 

and Ratio Lower limit. (See p. 223.) 



DIAGRAMS 

Values of Eccentricity % 

h = 1.0d% n = 15. See p. 231 for different n. p = ~ where A, is Steel at 
ba 

Both Sides. For Example, see p. 252. 

Diagram 9.—Ratio of Depth of Neutral Axis, k, for Different Eccentricities Part 
of Section in Tension. (See p. 229.) 
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DIAGRAMS 657 

0.600 

0460 

0.400 

£.7^0.360 

I 

0.300 

iSi 0.250 

«? 

-9 0.200 
£ 

0.160 

0.100 

0.0SO 

Q> C> CJ O O O O O O' O 

k, Ratio of depth of neutral axis to depth of$tee/,d 

b-’° 
£ 

h = l.Od. n = 15. See p. 231 for different n. p = —7, where -4, is Steel at 
bd 

Both Sides. For Example, see p. 252. 

Diagram 10.—Constants Ca in Formula (29), p. 228* Part of Section in Tension. 
(See p. 229.) 
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DIAGRAMS 

Values of Eccentricity 

0 60 0.50 0.40 0.30 0.20 0.15. 
■■V//V//UV 
mm wmunm 
wmm/miumi i »////7###/ J mwnmaami a 
mr//Jinwm/i m m.unuwmmm wt '/iuumi r~ w/nuiimi i fl ■———I✓/>//## F/ ■7 

■Mlrifi im 
Br////ffti r///////«a 

Pwrt'iwiM ■By ftitt rmMi iniiim—■ 
//•■ AMNI 

ry/4 'tarn, wmu, imam—■ 
y/i rMMifMtii'iiiMmmmmn ——r/J— 

wmwmmA'fMWAWMMimiiik 
mm mr*A wmm mm a mi mu la 
■m rMri r^Ji r/////A ■ 
Mi VM WM /////// ■ 
■r* kmu r^m vjv. r//////j ■ 
RK r##i vwj r«i //////i ■ 
mmmmmmmmmmiiimiam 

——mmmmmmmmmmmmmwmmmm'jKdrMm'Amrmjwmffunimmmmmmmm 
ms# ■——————i Wj**rj*M.w^mmwiiiiinmmmmmam■ 

■——■■——■Kj^^ir4rir^irf///47M— 
mmmmw^^arjm^m^dar.mrmwmm ammmmmmmmmm ■ 

■—■ ——■ 

!SBBS^B3S!i5BSS!Si!Si!BSSB! 
■■■——gj^#aiiMi>!«ig—rjBrjr/i/iifi— 

Ki##r«!«nL 

Values of Eccentricity y 

ft = l.lcf, n = 16. See p. 231 for different n. p = —~ where -4, is Steel at Both 
oa 

Sides. For Example see o. 252. 

Diagram 11.—Ratio of Depth of Neutral Axis, /c, for Different Eccentricities Part 

of Section in Tension. (£ee p. 229.) 
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660 DIAGRAMS 

Values of Eccentricity 7 

A 
h = 1.2d, n = 15. See p. 231 for different n. p = where A, is Steel at 

od 
Both Sides. For Example, see p. 252. 

Diagram 13.—Ratio of Depth of Neutral Axis, k, for Different Eccentricities Part 
of Section in Tension. (See p. 229.) 
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DIAGRAMS 661 

k, Ratio of Depth of Neutral Axis to Depth of Steel, d. 

Aa 
h — 1.2df, n = 15. See p. 231 for different n. p = -7, where Aa is Steel at 

bd 
Both Sides. For Example, see p. 252. 

Diagram 14.—Constants Ca in Formula (29), p. 228. Part of Section in Tension. 
{See p. 229.) 
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662 DIAGRAMS 

0.3 0.4 0.5 0 6 0.7 0.8 0.9 
Values of k 

Diagram 15.—Constant C8 in Formulas (33), p. 228 and (53), p. 236. (See p. 229.) 

BASIS FOR DIAGRAM 16 

Constants in Diagram 16 are based on Formula (40), p. 233. Values are given 

for ~ =•= 1.0 and n = 10, 12 and 15, respectively. 

Use of Diagrams for Different —The diagrams may be used for different values 
d 

of - by locating in the diagrams not the actual values of pi and p2 but the values of 
d 

pi — and pi •¥ 7. Thus for - = 1.1, pi = 0.01 and p* = 0.02, locate in the 
d d d 

0.01 0.02 
diagram the values pi = — = 0.091 and p2 = — = 0 0182. 

Use of Diagrams for p2 Smaller than pi.—In diagram values of p2 are always 
larger than pi and the resulting constant is positive denoting that center of gravity 
is nearer the compression face. When p2 is smaller than plf interchange pi and p2 

before using the diagram and consider the result obtained from diagram as negative. 
Thus for pi = 0.017, p2 = 0.022 and n = 15, Ce = 0.045. 
For pi = 0.022 and p2 = 0.017 the value of Cc is the same numerically as in 

previous case but is of opposite sign. Ce =• — 0.045. 



DIAGRAMS 663 

Diagram 16.—Constants Cc in Formula (40), p. 233 for ITns> mmetrically Reinforced 

Sections. One Face in Tension. (See p. 233.) 
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664 DIAGRAMS 

Values of Ct for n = 12 

ci o c»c»c>c>c>c>c>c>ciCiC>Q>oc>ci 
i * 

Values ofCI for 71 = 15 

Diagram 17.—Constants C\ in Formula (43), p. 233. Unsymmetrically Reinforced 
Section. One Face in Tension. (See p. 233.) 
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DIAGRAMS 665 

Values of C), n=15 

Diagram 18—Constants C2 and C8 in Formula (45), p. 234. Unsymmetrically 

Reinforced Section. One Face in Tension. (See p. 234). 



666 DIAGRAMS 

Ratio of - for Different Steel Ratios p. {See p. 236.) 
a 

dc is measured from compression face of section. 

Steel Ratios p 

0.011 0.012 

de 

d 
0.565 0.570 0.605 0.609 0.613 

Values of k 

d = 0.9h, n = 15 
A 

Tension Side Only Reinforced, p = — 
bd 

Diagram 19.—Ratio of Depth of Neutral Axis, k, for Different Eccentricities. Part 

Section in Tension. (See p. 236.) 
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668 DIAGRAMS 

DIAGRAMS FOR APPROXIMATE DESIGN OF FIXED ARCHES 

The diagrams required for the design of fixed arches according to 
the approximate method described on page 480 are as follows: 

PAGE 

Diagram 21. Angles and <f>s at Quarter Point and Springing, respectively. . 6G9 

Diagram 22. Ratio of depth of arch axis below crown, C0, for x = \ly \l and § l 
from crown in Formula (10), p. 482. 670 

Diagram 23. Constant Ce in Formula (14), p. 483 for location of clastic center 670 

n t / 
Diagram 24. Constant Ca in Formula (15), p. 483 )_ lV2yds = C/jZr2.671 

Diagram 25. Constant Ca in Formula (35), p. 486 for horizontal thrust due 

to dead load.671 

Diagram 26. Coefficients for maximum positive bending moment and corre¬ 

sponding horizontal thrust at crown. 672 

Diagram 27. Coefficients for maximum negative bending moment and corre¬ 

sponding horizontal thrust at crown. 673 

Diagram 28. Coefficients for maximum positive bending moment and corre¬ 

sponding horizontal thrust at quarter point. 674 

Diagram 29. Coefficients for maximum negative bending moment and corre¬ 

sponding horizontal thrust at quarter point. 675 

Diagram 30. Coefficients for maximum positive bending moment and corre¬ 

sponding horizontal thrust at springing. 676 

Diagram 31. Coefficients for maximum negative bending moment and corre¬ 

sponding horizontal thrust at springing. 677 
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Values of m 

Values of Wt 

Diagram 21—Angles <£t and </>, at Quarter Point and Springing, Respectively. 

(See p. 487.) 



670 DIAGRAMS 

Diagram 22.—Ratio of Depth of Arch Axis below Crown C0, for z =» \l, \l and 11 

from Crown. {See p. 482.) 

Distance Elastic Center from Crown Ye = Cer 

Diagram 23.—Constant Ce in Formula (14), p. 483 for Location of Elastic Center. 

{See p. 483.) 



DIAGRAMS 671 

i 

c*=M~4,j2t:18 
Diagram 24.—Constant Cn in Formula (15), p. 483. {See p. 483.) 

Diagram 25.—Constant Ca in Formula (35), p. 486 for Horizontal Thrust for Dead 
Load. (See p, 486.) 
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672 DIAGRAMS 

<7, 
Values of m =» - 

*e 

A/e = C{+c)wl2, He = C(+Jte)»£ 

Diagram 26.—Coefficients for Maximum Positive Bending Moment and Correspond¬ 

ing Horizontal Thrust at Crown. (See p. 484.) 



DIAGRAMS 673 

Diagram 27.—Coefficients for Maximum Negative Bending Moment and Corre¬ 
sponding Horizontal Thrust at Crown. (See p. 484.) 



674 DIAGRAMS 

Diagram 28.—Coefficients for Maximum Positive Bending Moment and Corre¬ 

sponding Horizontal Thrust at Quarter Point. (See p. 485.) 
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DIAGRAMS 675 

q 
Values of m=t~ 

*9 

Mi-- C^aufl, Fj = - C^trt1- 

Diagram 29.—Coefficients for Maximum Negative Bending Moment and Corre¬ 

sponding Horizontal Thrust at Quarter Point. (See p. 485.) 
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676 DIAGRAMS 

Vatuu ofmm-q 

M, = C„wfi; H, = - CMwl- 
T 

Diagram 30.—Coefficients for Maximum Positive Bending Moment and Corre¬ 

sponding Horizontal Thrust at Springing. (See p. 485.) 
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Values of m 

M, = — C(-S)wl2, H, = - 

Diagram 31.—Coefficients for Maximum Negative Bending Moment and Corre¬ 
sponding Horizontal Thrust at Springing. (See p. 485.) 





INDEX 

A 
Alton bridge, California, 441 

Arch action, 458 

Arch bridges, 431 

accidental live load, 457 

advantages arch bridge construction, 

431 
advantages of concrete, 431 

appearance, 431 

bars, sagging or bent, 450 

bow-string, 446 

brackets, sidewalk, 438 

classification, 433 

concrete quality, 433 

concrete vs. steel trusses, 432 

construction supervision, 433 

contraction joints, spandrel walls, 438 

costs, 431 

cracks in, 445, 455 

deflection of, 463 

design of, 431 

drainage, 433, 439 

Emperger system, 453 

expansion joints, 433 

factor of safety, 454, 456, 457 

failure of, 452 

fill, 438 

filled spandrel, 433, 434 

filled spandrel design, example, 511 

fixed, approximate calculation, 512 

line of pressure, 470 

floor construction, 444, 445, 448, 467 

foundations, 432 

kinds of, 433 

longitudinal walls, 445 

maintenance, 431 

Melan system, 452 

open spandrel, 433, 439 

permanency, 431 

plain vs. reinforced, 448 

reinforcement in, 448 

reinforcement, tensile, 455 

requirements for, 433 

Arch bridges, reversal of stresses, 455 

ribs, types of, 439, 446 

sidewalks, cantilever, 437 

spandrel walls, 434 

spiral reinforcement, 451 

steel working loads, 456 

stresses, allowable unit, 453 

suspended roadway, 447 

temperature stresses, 455 

vertical suspenders, 448 

vibration of, 431 

waterproofing, 433, 439 

Wiinsh system, 453 

Arches, advantages of, 431 

arch action vs. beam action, 458 

barrel, 439, 444 

circular, 584 

fixed, abutments, effects of yielding, 

464 

action of, 458, 459, 460 

analyses, exact method, 489 

approximate design, 480 

approximate design diagrams, 668 

assumptions for, 492, 578, 583 

axis, approximate formula for, 469 

dead load effect on shape, 468 

exact determination of, 517 

improved shape, 468 

ordinates, 482 

bending moments, at any point, 505, 

581,600 

at crown, 484 

at springing, 530 

auxiliary, 492, 498 

effect of, 587, 591 

effect of temperature change on, 

609 

equations for, 599 

for dead load, 500 

loadings for maximum, 505 

computation of dimensions, approxi¬ 

mate method, 487 

computation of stresses, 490 

679 



680 INDEX 

Arches, fixed, critical points, 541 

curvature of axis, 465 

dead load, 489 

filled spandrel, 465 

open spandrel, 466 

deflection, 463 

design, approximate method, 480 

examples, 511 

exact method, 489 

examples, 516 

design formulas, 458 

design, method of, 465 

determination of arch axis, 468 

dimensions, approximate computa¬ 

tion of, 476, 487 

dimensions of cross section, 478 

elastic center, 483, 496, 595, 596, 

600, 603, 616 

elastic properties, 582 

exact analysis of, 489, 516 

examples, 516 

forces and reactions, 583 

formulas, exact, general, 458, 491, 

496, 592, 598 

influence lines, 528, 541, 619 

line of pressure, 469, 470, 472, 624, 

629, 630 

live load, 489 

maximum moments and thrust, 484 

load position for maximum bending, 

505 

loadings, 489, 505 

moments of inertia, variation of, 

471, 476, 477, 483 

normal section, 584 

parabolic, 543, 544, 613 

crown bending moment at, 622 

elastic center, 616 

formulas for analysis of, 613 

influence lines, 548, 619 

line of pressure, 624 

moment of inertia variation, 614 

moment maximum, 622 

properties of, 545 

rib shortening, 547 

shrinkage, influence of, 613 

temperature, effect of, 547 

reactions at supports, 578, 580 

relation between moments at sup¬ 

ports, 580 

Arches, fixed, relation between reactions, 

580 

requirements for, 593 

rib section dimensions, 476, 478 

rib shortening, 487, 494, 606, 613 

dead load, 487 

ribs, numbers of, 467 

shear, effect of, 585 

shrinkage, effect of, 487, 496, 611 

span, effect of changing, 494, 602 

springing, 485, 623 

computation of section, 488, 491 

static equations of equilibrium, 579 

statically indeterminate values, 581, 

582* 

stress computation, 490 

symmetrical, 499 

temperature, effect of, 464, 486, 495, 

525, 608 

temperature stresses, 608, 611 

theory of, 578, 580 

thickness of arch at crown, 479 

thrust at any point, 624 

thrust, effect of, 585 

types, 464 

wheel loads on, 490 

Arches, flat, 449 

hinged, characteristics, 459 

hinges, 433 

one-hinged, 433 

spiral reinforcement of, 451 

theory of, 578 

three-hinged, 433 

Arches, two-hinged, 549 

abutments, 571, 572 

action, 460 

analysis of, 552 

approximate design, 569 

axis, shape of, 568 

bow-string bridge, 550 

critical sections, 569 

deflection of, 549 

design, method of, 549 

dimensions, 569 

forces and reactions, 551 

formulas, general, 551 

horizontal thrust, 552 

line of pressure, 560 

loadings, position of, 570 

loads, effect of, 549 



INDEX 681 

Arches, two-hinged, moment, effect of 

temperature change on, 568 

parabolic, 573 

rib shortening, 576 

effect of, 565 

temperature, effect of, 576 

shape, economical, 568 

span change, effect of, 564 

temperature, effect of, 567 

thrust, 552 

types, 550 

use of, 551 

with horizontal tie, 571 

abutments, 571, 572 

influence lines, 572 

temperature, effect of, 572 

types of, 464 

Area of moment principle, 272 

Avenue Sixty Bridge, Los Angeles, 435 

B 

Barrel arches, 439, 444 
Basic formulas, continuous beams, con¬ 

stant moment of inertia, 15 

variable moment of inertia, 137 

Beams, cantilevers, 123 

continuous, 1 

anchorage of spans against uplift, 47 

approximation of usual code for¬ 

mulas, 2 

cantilever at one end, other end 

free, 125 

cantilever at one end, other end 

fixed, 129 

cantilevers at both ends, 126 

comparison with simple, 4 

continuity, due to, 13 

contraflexure, points of, 7, 9 

definition, 4 

design of, 173 

examples, 178 

details, 193 

diagonal tension, 173, 175 

fixed at one support, 28 

fixed ends, 107 

fixed ends, four spans 116, 120, 122 

one span, 23,28 

three spans, 110,114,116 

two spans, 107 

Beams, continuous, fixed points, use of 

9, 153, 162, 164, 170 

formulas, basis of, 2, 11 

reliability of, 2, 3 

four equal spans, fixed ends, 118 

free ends, 88 

four spans, fixed ends, 116 

free ends, 85 

four unequal spans, example, 201 

free ends, four spans, 85, 90, 92, 96, 

98, 100, 102, 104, 106, 201 

three spans, 49, 52, 57, 58, 60, 62, 

64, 147 

two equal spans, 31, 39, 146 

two unequal spans, 39 

haunches, parabolic, 136 

straight, 135 

influence lines, 168 

modulus of elasticity, effect of, 2 

moments of inertia, variable, 131, 

137 

movement of supports, 151 

variation, 135 

simple beam and cantilevers, re¬ 

placed by, 9 

span position, effect of, 6 

three-moment equation, 15 

three unequal spans, symmetrical 

loads, design of, 183 

unsymmetrical loads, design of, 

194 

two unequal spans, anchorage of 

short span, 47 

variable depth, 131 

variable moments of inertia, three 

spans, free ends, 147 

variable moments of inertia, two 

spans, free ends, 146 

with cantilever and fixed ends, 

129 

with cantilevers, 122 

design of, 123 

Beams, curved, 460 

curved, as arches, 458, 461 

fixed at both supports, 23 

fixed at one end, 28 

restrained. See Beams fixed at ends, 

with cantilevers, 122, 123 

with fixed ends, three moment equa¬ 

tion, use of, 20 
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Bending moments. See Particular struc¬ 

ture. 

by fixed point method, 201 

eccentrically applied thrust, 209 

Beton und Eisen, 550 

Bow-string arch bridges, 550 

Bow-string arches, anchor plates, 448 

Bow-string bridges, 446, 555 

Brackets. See Frames. 

Bridges, 431 

Bridges, arch, 431 

See also Arches, 

comparative cost, 431 

Brunn, Austria, 452 

Building codes, bending moment and 

coefficients, 2 

Building frames, 369 

See also Frames. 

Butler, Merrill, bridge engineer, 435 

C 

Calculation, fixed arch bridge, 511 

Cantilevers, 9, 122 

See also Frames, and Beams, 

sidewalls for arch bridges, 437 

Cappellen Memorial bridge, 431 

Center of gravity of section, 232, 239 

Central thrust, 210, 233 

Characteristics, arch action, 459 

Chicago & Eastern Ill. Il.lt. Bridge, 440 

Clapeyron’s equation, 16 

Classification of arch bridges, 433 

Concrete arch bridges. See Arches. 

Concrete dimensions of frame, 358 

Concrete, reinforced for tension only, 235 

Concrete, reinforced, moment of inertia, 

131 

Continuous beams. See Beams. 

Continuous girders. See Beams. 

Costs, comparative for bridges, 431 

Cracks in concrete. See Rigid frames 

and Arch bridges. 

Crane brackets. See Frames. 

Crane loads on rigid frame, 356 

Crown. See Arches. 

Curved beam as arch, 458, 461 

Curved beam as simply supported beam, 

460 

D 

Dams, 208 

Dayton, Ohio, arch bridge failure, 452 

Dead Load. See also Particluar structure, 

arches, 451, 466, 479 

continuous beams, 51, 92, 173 

effect on axis of fixed arch, 468 

effect on axis of two-hinged arch, 560 

fixed arches, 489 

rigid frames, 355, 381 

Deflection curves, 326, 632 

continuous beam, 5, 7 

simple beam, 5 

Deflection of supports of beams, 151 

Deflections. See Particular structure, 

reciprocal, 604 

Deformation of arch. See Arches. 

Design. See also Particular structure, 

fixed arch bridges, 458 

rigid frames, 351 

Diagonal tension. See Particular struc¬ 

ture. 

Diagrams, approximate design, fixed 

arches, 668 

direct stress and bending, 647 

Direct stress and bending, 208 

area of reinforcement, 237, 240 

diagrams for design, 647 

formulas, 211 

development of, 238 

members subject to, 208 

modulus of elasticity, effect of, 220 

plain and reinforced sections, design, 

examples of, 247 

plain concrete station, dimensions, 

215, 648, 649 

stresses, 213 

reinforced section, all compression 

symmetrical reinforcement 

dimensions, 222, 654, 655 

stresses, 218, 650, 651, 652, 653 

unsymmetrical reinforcement 

dimensions, 225, 654, 655 

stresses, 225 

reinforced section, some tension 

symmetrical reinforcement 

dimensions, 230 

stresses, 228, 656 to 662 

tension reinforcement only 

dimensions, 237,666, 667 
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Direct stress and bending, stresses, 236, 

666, 667 

unsymmetrical reinforcement 

dimensions, 235,663, 664, 665 

stresses, 233, 663 to 665 

stresses due to, 209 

Dimensions, fixed arches, 478 

two-hinged arch, 569 

Drainage, bridges, 439 

E 

Earth pressure on frames, 265, 357 

Eccentric thrust, members subjected to, 

209, 210, 212 

Eisen, Beton und, arch illustrations from, 

550 

Elastic center, 326, 595, 616 

Elastic ratios, 499 

Elastic theory, 259 

Emperger system arch bridges, 453 

End ratio, frames, 378 

End shear. See Particular structure. 

Equations. See Formulas, and particu¬ 

lar structure. 

Equilibrium, static equations for, 579 

Ernst, Wilhelm & Son, publishers, 480 

Examples. See Particular structure or 

subject. 

Extrados, 449 

F 

Farber, R., design of arches, 480 

Feste Punkte, fixed points for beams, 9 

Fill, arch bridges, 438 

Filled spandrel arches, 434 

Fixed arches. See arches. 

suspended roadway, 447 

Fixed ended beams. See Beams. 

Fixed points, definition and use, 9, 153 

example of use, 201 

for beam with fixed ends, 155 

for beam with free ends, 155 

Flat arches, 449 

Flexural stresses in arches, 454 

Floor construction, bridges, 445 

Force polygon. See Line of pressure, 

Arches. 

Formulas. See Particular structure. 

Foundations, bridge, 432 

Frames, arched roof, 308 

Frames, building, 369 

action of, 370 

basis of formulas, 376 

columns and frame, effect of load on, 

369 

design, examples of, 410 

end beams, moments, 390 

end ratio, 378 

equal spans, 399 

formulas, use of, 378 

moments, critical loads for, 381 

moments, example of computation 

one span wide, 424, 800 

moments, maximum, 376 

moments, two spans wide, examples 

of computation for, 416 

one-story, 372 

one-span, four-story, example of de¬ 

sign, 424 

multi-story, 406 

partially restrained ends, 374, 378, 

637 

restraining members, effect of, 374 

rigidity of ends, effect of, 374 

three spans, irregular spaced col¬ 

umns, 380 

two panels wide, 402, 642 

two-story, three equal spans, 388 

three unequal spans, 380 

unequal spans, examples of compu¬ 

tation, 410 

unsymmetrical, 376 

wall columns, moment, 390 

closed rectangular, 346 

closed, resting on ground, 348 

columns, restraint of, 325 

corners, rounding of, 354 

cracks in, 262, 263, 264 

crane loads, 356 

definition, 258 

deflection of, 264, 326, 631, 632 

deformation under load, 261 

design of members, 351 

design, examples of, 358 

diagonal tension reinforcement, 355 

earth pressure, 357 

elastic center, 326, 332 

elastic theory, reliability of, 259 

fixed ends, 326 

column restraint, 325 
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Frames, fixed ends, right-angle, 332 

statically indeterminate values, 327 

formulas, basis of, 259 

hinged ends, 273 

arch comparison, 207 

design, example of, 353, 358 

haunches, parabolic, 343 

straight, 342 

influence lines, 292 

loadings, special, 275 

Mesnager hinges, 260 

moments, maximum, 279 

moments of inertia variable, 231,340 

parabolic roof, 308 

ridge roof, 268, 294 

right-angle, 273 

slanting roof, 310 

statically determinate, made, 272 

saw-tooth roof, 316 

hinged at columns, 321 

right angle special, 320 

with tension member, 323 

temperature, effect of, 29, 307 

with brackets, 283, 300 

with cantilevers, 263, 281 

varying horizontal pressure, 288 

moving loads, 279 

ridge, elastic center, 329 

rigid. See also Frames with fixed ends 

and hinged ends, 267 

contraflexure, points of, 262 

loads, 356 

partially restrained ends, 636 

preliminary dimensions, 352 

reinforcement, 354 

requirements, 260 

semi-graphical solution, 271, 331 

slope deflection method application, 

631 

example and use, 642 

temperature, effect of, 266, 291 

types, 258 

wind pressure on, 356 

saw-tooth roof, 316 

substitute, 375, 378 

Freyssinet, method of construction of 

arches, 613 

Funicular polygon, 469, 474, 561, 626, 

628 

See also Line of pressure. 

G 

Girders. See Beams. 

Graphical determination, arch axis, pres¬ 

sure line, 472, 475, 629, 630 

Graphical solution of integrals, 271, 331 

Greiner & Co., engineers for James River 

bridge, 442 

II 

Haunches. See Beams, Frames, and 

Arches. 

Hinged ends. See Frames, and Arches. 

Horizontal pressure. See type of struc¬ 

ture considered. 

Horizontal pressure varying. See type 

of structure considered. 

Horizontal thrust. See type of structure 

considered. 
Hurricanes, effect on frames, 356 

I 

Inflection, points of, definition, 9 

See also Beams, frames, and contra¬ 

flexure. 

Influence lines, 168, 293, 528, 541 

See also Particular structure considered 

definition, 168, 528 

for arches, 541, 528, 561, 619 

for continuous beams, fixed point 

method, 162, 170 

use of, 294, 170 

Interior columns of buildings, 208 

Interior spans of continuous beams, 3 

Intrados, 449 

J 

James River bridge, Richmond, 442 

Joint Committee, bending moment co¬ 

efficients, 1 

Joint formulas, frames, 633 

Joints, contraction for spandrel walls, 438 

sliding, bridges, 445 

K 

Kopenhagen, theater arch roof, 550 

Kristianstad bridge, Sweden, 550 
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L 
Laitance, effect on joints, 261 

Law of reciprocity, Maxwell’s, 604 

Lean-to, effect on frame, 302 

Least work, 259 
Line of pressure for fixed arches, 471, 624 

analytic method for dead load, 471 

graphical method for dead load, 472 

properties of, 626 

use of, 626 

Line of pressure for two-hinged arch, 561 

Live loads. See Particular structure. 

Loading. See Particular structure. 

Loadings for arches, 489, 505 

Loads, combined live and dead, beams, 

106, 116, 122, 123 

fixed. See dead loads. 

Longitudinal walls, arch bridges, 445 

Los Angeles, Avenue Sixty bridge, 435 

M 

Maxwell’s law of reciprocity of deflec¬ 

tions, 604 

Melan, Joseph, arch system, 452 

Mesnager hinges, frames, 260 

Miller, Harlan D., bridge engineer, 441, 

443 

Minneapolis, bridge, 431 

Modulus of elasticity, 2, 131, 220 

Moment area method, 271 

application to frames, 271 

Moment of inertia, 378, 476 

See also Variable moments of inertia, 

and particular type of struc¬ 

ture. 

arches, parabolic variation, 477 

diagrams for, 134,140,141 

rigid frames, 353 

Moments. See Particular structure. 

Morton, R. M., highway engineer, 441 

Moving loads. See Particular structure. 

Multi-span continuous girders. See 

Beams. 

N 

Neutral axis, depth for different eccen¬ 

tricities, 656, 658, 660 

New York, wind pressures, 356 

Notation, basic three-moment equation, 

16 

Notation, continuous beams, 11,21 

direct stress and bending, 213 

fixed arches, 481, 491, 579, 582 

fixed points, 165 

frame with ridge roof, 294 

frames with load on crane bracket, 336 

one-span multi-story frame, 406 

right-angle frame, hinged ends, 274 
rigid frames, fixed ends, 326 

slanting roof frame, hinged ends, 310 

slope-deflection method, 633 

three-moment equation, continuous 

beams, 644 

two-hinged arches, 551 

two-story frame, wall columns, 390 

O 
One-span, multi-story frame, 406 

One-story frame, 372 

Open spandrel arches, 439 

Osterfeld, arch formulas, 468 

P 

Parabolic arches. See also Arches, 

fixed, 544, 613 

two hinges, 573 

Parabolic haunches, continuous beams, 

136 

rigid frames, 343, 344 

Parabolic roof frame, 308 

Park Avenue bridge, Cincinnati, 450 

Paving, weight of, 465, 472 

Philadelphia, Walnut Lane bridge, 448 

Plain concrete sections, 211, 208 

See also Direct stress and bending, 

design, example, 247 

dimensions of, 215 

eccentric thrust on, 212 

use of diagrams for, 216 

Points of contraflexurc (inflection), 41, 

261 

See also Beams, or Frames. 

Pressure. See Particular structure. 

Principles. See Particular structure. 

R 

Railroad arch bridge, illustration, 440 
Ratio for “n,” arches, 476 

of moduli of elasticity, effect, 220 

of rigidity, building frames, 374 
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Reactions on supports, continuous 

beams, 12 

Reciprocal deflections, principle of, 604 

Rectangular frames, 258 

Reinforced concrete arch bridges. See 

Arches. 

spandrel walls, 436 

Reinforcement. See Particular structure 

also direct stress and bending, 

bending example for beams, 182 

compression, example for beams, 192 

concrete arch bridge, 448 

crack prevention, 445 

diagonal tension, 173, 175, 355, 437 

in place during concreting, 450 

longitudinal, beam, example of design, 

188, 192 

near compressed face only, 223, 250 

near one face only, 224 

rigid frames example, points of bend¬ 

ing, 368 

spiral for arches, 451 

stresses for working loads, bridges, 456 

symmetrical, 221, 227, 248 

one face in tension, example, 251 

unsymmetrical, formulas for, 238 

one face in tension, example, 254 

Reliability of elastic theory for frame, 

259 

Restrained beams. See Beams with fixed 

ends. 

Restrained ends, slope deflection method, 

637 

Reversal of stresses, arch bridges, 445 

Rib section, arches, 476 

Rib shortening, fixed arches, approx¬ 

imate formula, 487 

exact formula, 494, 606 

numerical example, 525 

parabolic fixed arch, 547 

parabolic two-hinged arch, 576 

two-hinged arch, 565 

Ribs, arch, 439 

lateral stability of arch bridge, 448 

parallel arch, 467 

Richmond, Va., James River bridge, 442 

Ridge frames. See Frames. 

Ridge roof, 294, 326 

Right-angle frames, fixed ends, 332 

hinged ends, 273 

Right-angle frames, varying moments 

of inertia, 340 

Rigid frames, 209, 258 

See also Frames, 

design, examples of, 35S 

Rigidity ratios, frames, 374, 378,379,411 

Roadway, bridge, 446 

suspended bridge, 447 

Rocker bearings, arches, 446 

Roller bearings, arches, 446 

Roof frames, 294, 308, 310, 316, 352 

See also Frames, 

arched, 308 

ridge, 294 

saw-tooth, 316 

slanting, 310 

Rule of thumb formula, for thickness of 

arch ribs, fixed arches, 479 

S 

Sarajevo, Bosnia, bridge, 453 

Saw-tooth roof frames, 316 

not connected with columns, 321 

special shape, 320 

with tension member, 323 

Sections, fixed arches, critical, 464 

normal arch, 584 

Sections, subjected to direct stress and 

bending, 208 

depth for compression, 222, 230, 

235, 238 

depth for tension, 230, 232, 238 

entire under compression, 223 

plain or unreinforced, 211, 247 

reinforced at compression face only, 

example of design, 250 

symmetrically reinforced, 217, 227, 

248 

unsymmetrically reinforced, 223, 

232, 234 

with tension reinforcement only, 235 

two-hinged arches, critical, 569 

Semi-graphical solution for integrals, 

271, 331 

Shear. See also Particular structure, 

arches, 585 

continuous beams, absolute maximum, 

13,173,181 

Shrinkage. See Particular structure. 

Sidewalk, cantilever, arch bridges, 437 
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Simple beams, 4 

Sinking of supports. See Particular 

structure. 

Slanting roof, frame, 310 

Sliding joints, arches, 445 

Slope deflection method, 631 

advantages of, 631 

angle of rotation, 632, 640 

application of, 641 

basic formula, 635 

basis for, 634 

example of use, 641, 643 

partially restrained structures, 636 

solution of structures, 632 

three-moment equation, derivation, 

644 

Span. See Particular structure, 

anchorage, beams, 47 

fixed arches, change of length, 494, 602 

two-hinged arches, change of length, 

564 

Spandrel, filled, arches, 434 

open, arches, 439 

walls of arches, 434 

Springfield (Mass.) arch bridge, 452 

Statically indeterminate construction, 

general discussion of, 1, 258 

general, 258, 631 

structures, 631 

values. See Particular structure. 

Steel. See Reinforcement. 

trusses vs. concrete arches, 432 

Stiffness, rigid frames, 352 

Stirrups, 355, 437 

Straight haunch for frames, 343 

Strassner, A., arch design, 480, 483, 484 

Stresses. See also Particular structure, 

allowable in arches, 453 

general formulas for rectangular sec¬ 

tions, 218 

reversal in arches, 455 

Structures. See Beams, Frames, and 

Arches. 

Structures statically indeterminate, 631 

Substitute frames. See also Frames. 

Substitute frames, used in buildings, 375, 

391,402 

building one span wide, 406, 424 

building two spans wide, 402, 416 

for wall columns, 390, 410 

Substitute frames, three-span, two 

stories, 380 

Supports, arches, movement of, 587, 589 
beams, moments at, 21 

movement of, 151 

building frames, condition of members 

at, 636 

unyielding two-hinged arch, 573 

yielding of arch, 603 

Suspended roadway, arch bridges, 447 

Symmetrically reinforced section, 217, 

227 

See also Direct stress and bending, 

center of gravity, 227 

T 

T-Beam, moment of inertia of, 133 

Temperature effects. See also Particular 

structure. 

arches fixed at supports, 464, 486, 495, 

513, 602 

parabolic fixed arches, 547 

parabolic two-hinged arches, 576 

rigid frames, 266, 291, 307 

two-hinged arches, 567, 572 

Temperature stresses, arch bridges, 455 

fixed arches, 608, 611 

Tension member in saw-tooth roof, 323 

Tension, symmetrically reinforced sec¬ 

tion, 227 

Tension tie member, arch, 462 

Theory of arches, 578 

Theory of least work, 15, 259 

Ties, horizontal between supports, two- 

hinged arch, 571 

Ties, reinforcement for frames, 354 

Three-hinged arches, 433 

Three-moment equation for continuous 

beams, 15, 20, 38, 152, 644 

Thrust. See also Particular structure, 

eccentric, 224, 236 

horizontal, rigid frames, 260, 267 

on fixed arches, 458, 585, 624 

two-hinged arches, 552 

Tornadoes, wind pressures due to, 356 

Truckee River bridge, California, 443 

Two-hinged arches. See Arches. 

Types of arches, 464 
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U 

Unsymmetrically reinforced section. See 

also Direct stress and bending, 

all compression, 223 

center of gravity of section, 232, 239 

design example, 250 

one face in tension, 232 

V 

Van Buren River bridge, 441 

Variable movement of inertia, effect of. 

See Beams, Frames, and Arches. 

Vertical supports, bridges, 444 

Vertical suspenders, bridges, 448 

Vibration, bridges, 431 

W 

Wall columns, direct stress and bending, 

208 

Wall columns, moments, 390 

Walnut Lane bridge, Philadelphia, 431, 

448 

Waterproofing of concrete, 433, 439 

Weight of paving, 465 

Weld, F. F., formula for arch thickness, 

479 

Wheel loads on bridges, 490 

Whitney, Charles S., arch design, 480 

Wind pressure, bridges, 448 

frames, 265, 271, 356, 362 

ridge frames, 303 

slanting roof, 314 

Work, least, 15, 259 

Wtinsh, System of Arch reinforcement 

453 

Y 

Yielding of abutments, 464 
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