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PREFACE 

The ])urpose of this book is to provide engineers and physicists with 

a practical introduction to the important subject of nondinear 

differential equations, and to give representative aj)plications in 

engineering and i)hysics. The literature, to date, exceeds 300 

memoirs, some rather lengthy, and most of them dealing with 

a])plications in various branches of technology. By comparison, the 

theoretical side of the subject has been neglected. Moreover, owing 

to the absence of a concise theoretical background, and the need to 

limit the size of this book for economical reasons, the text is confined 

chiefly to the presentation of various analytical methods employed 

in the solution of im])ortant technical problems. A wide variety of 

these is included, and j>ractical details given in the hope that they 

will interest and helj) the technical reader. Ac(^ordingly, the book is 

not an analytical treatise with technical applications. It aims to show 

how certain types of non-linear problems may be solved, and how 

experimental Results may be interpreted by aid of non-linear analysis. 

The reader w^ho desires information on the justification of the 

methods employed, should consult the references marked with an 

asterisk in the list at the end of the book. 

Much work involving non-hnear partial differentia] equations has 

been done in fluid mechanics, plasticity, and shock waves. The 

physical and analytical aspects are inseparable, and more than one 

treatise w^ould be needed to do justice to these subjects. Accordingly, 

the present text has been confined (apart from Appendix I) to 

ordinary non-linear differential equations. Brief mention of w^ork in 

plasticity, etc., is made in C'hapter I, while the titles of many ■|)apers 

will be found in the reference list, and particularly in [62]. Appendix 

I has been included on account of the importance of the derived 

formulae in loudspeaker design. 

A method of using Mathieu's equation as a stability criterion of the 

solutions of non-Unear equations is outlined in Appendix II. 

I am particularly indebted to Mr. A. L. Meyers for his untiring 

efforts in checking most of the analytical work in the manuscript, 

and for his valuable criticisms and suggestions. Professor W. Prager 



VI PREFACE 

very kindly read the manuscript, and it is to him that I owe the idea 

of confining the text to ordinary non-linear differential equations. 

I am much indebted to Professor J. Allen for reading and commenting 

upon §§ 5.170-3; also to Mr. G. E. H. Reuter for doing likewise with 

§§ 4.196-8, the material in w^hich is the outcome of reading his paper 

on subharmonics [131a]. 

My best thanks are due to Professor S. Chandrasekhar for per¬ 

mission to use the analysis in §§ 2.30-2 from his book |159]; to 

Professor R. B. Lindsay for facilities in connexion with § 7.22; and 

to 8ir Richard V. Southwell for permission to use the analysis in 

§§ 3.180-3 from his book [206]. 

I am much indebted to the following for either sending or obtaining 

pa])ers, books, and reports: Sir Edward V. Appleton, Professor 

W. G. Bickley, l)rs. Gertrude Blanch, M. L. t'artwright, and L. J. 

Comrie, Mr. B. W. Connolly, the Director of Publications Massa¬ 

chusetts Institute of Technology, the Editor of Evgineering, Jh'o- 

fessors N. Levinson, C. A. Ludeke, J. Marin, N. Minorsky, and Balth. 

van der Pol. 

Finally 1 have pleasure in acknowledging permission from the 

following to reproduce diagrams in the text: American Institute of 

Physics {Journal of Ap'pUed Physics), M. Etienne Chiron {L'Onde 

Mectrique), the Director of Publications M.I.T., the Editors of the 

Philosophical Magazine, and the U.S.S.R. Embassy {Technical 

Physics of the U,S,S.R.). 

LONDON 

May 1950 

N. W. M. 
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CHAPTER I 

GENERAL INTRODUCTION 

In the so-called classical theories of different branches of science the 

differential equations are mainly linear in type. They have been the 

subject of intense study, and the existence of well-known forms of 

solutions is now established beyond doubt. If anyone skilled in 

mathematical analysis encounters a linear differential equation of 

standard type, the formal solution is usually not difficult to obtain. 

The comparatively simple nature of such equations is due to the 

‘characteristic’ relationships of the systems, which they describe 

symbolically, being aSiSunied to be linear. For instance the character¬ 

istic relationship used in developing the theory of sound x^ropagation 

in air is the adiabatic law a constant. Now the graphical 

relationship between 'p and v is a curve, no finite portion of which is 

hnear. To overcome this difficulty from a mathematical viewpoint, 

the theory is based ux)on infinitesimal pressure variation, so it is 

assumed that the adiabatic curve may be rex)laced at the working- 

point by its tangent. In x^ractice all audible sounds necessitate finite 

pressure amplitude. Fortunately, however, there is no need to depart 

from the linear theory based on infinitesimal (and, therefore, in¬ 

audible) vibrations, until the sound is fairly intense. 

In modern science certain x)hcnomena cannot be explained on the 

classical linear doctrine, and it is then imperative to resort to non¬ 

linear differential equations in order to deduce the desired informa¬ 

tion. For example, consider a lowly damped vibrational system whose 

restoring force is represented by ay-{-by’^ [y the displacement), the 

system being driven by a force /cosa)^. When 6 ™ 0 we have the 

linear case, and the single-valued amplitude is ^ ~ fl(a—cjo^). In 

the non-linear case, where b ^ 0, the second approximation entails a 

cubic equation for the amplitude of the fundamental vibration of 

frequency co/27r. Here 

|^?+(a-a,Vi-/= 0, (1) 

which reduces to the form above when 6 = 0. Thus for given non¬ 

zero values of a, 6, /, co, there are three possible values of A^. Over a 
6077 ^ 
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certain range of co, all the roots of (1) are real. Outside this range only 

one root is real. By introducing a viscous damping term into the 

differential equation, formulae are obtainable from which amplitude- 

frequency curves may be plotted. Phenomena arising from the 

multi-valued nature of .4^ may be explained by aid of such curves. 

One arresting and important feature of the analysis reveals that the 

ynotion is nearly sinusoidal. Formulae for the non-linear case, obtained 

merely to a second approximation, are adequate to enable a satisfac¬ 

tory explanation of the behaviour of the system to be given, whereas 

on a linear basis it could not be explained at all! 

Some thirty years ago our knowledge of non-linear differential 

equations might have been compared with that of linear differential 

equations at the time of Newton, Leibnitz, and the elder Bernoullis 

(James and John), i.e. about the beginning of the eighteenth century. 

Until recently the subject of non-linear differential equations has been 

a happy (!) hunting-ground populated almost exclusively by the 

technologist. Research into methods of solving these equations has 

been neglected by the pure mathematician. Like our resources of‘ 

coal, those of the mathematician in the field of hnearity may be ex¬ 

hausted in a finite time! 

Interest has been shown in non-linear equations, chiefly in America 

and in Russia, and research has now started in Britain, with very 

promising results [2(3-9, 131 a\. Although the analytical difficulties to 

be encountered in setting the subject of non-linear differential equa¬ 

tions on a firm foundation are formidable, it is here precisely that the 

pure mathematician can help the technologist. Such assistance will 

ultimately be mirrored in new technical devices destined to benefit 

the community in general and, therefore, the pure mathematician in 

particular. 

When a problem involving a new kind of non-linear equation arises, 

or new non-linear boundary conditions are encountered, the techno¬ 

logist may be puzzled as to the proper form of solution to be assumed. 

Usually these equations cannot be integrated explicitly in terms of 

known functions. Thus the solution will be an approximate one, but 

it must be adequate to account for all the salient physical features 

of the problem. Moreover, theoretical knowledge formulated by the 

pure mathematician in the guise of suitable forms of solution, existence 

theorems, and methods of solution would prove invaluable. So far 

as questions of periodicity, stability, and instability are concerned, 
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we may turn profitably, but not exclusively, to the work of Bendixon 

[14], Liapounoff [87], and Poincare [116]. 

A knowledge of the experimental aspect of a problem may give 

guidance as regards an appropriate form of solution, e.g. § 7.230. 

But it will be realized that the accumulation of experimental data may 

in certain cases be either too costly or imj)racticable, so that otiier 

procedure must then be invoked. Graphical or numerical methods, 

although tedious, are sometimes useful. Better still is the employ¬ 

ment of a differential analyser, or an electronic computing machine. 

From a purely utihtarian point of view, difficult and troublesome 

non-linear differential equations involving much numerical work are 

best solved by a machine. Just as the expert craftsman in various 

branches of industry has been replaced largely by machines, so in the 

course of time the technical mathematician may be replaced by 

differential analysers or other calculating machines. Then the 

intrinsic interest in mathematical problems will have ceased to exist. 

At the moment, however, these machines are so rare and the price 

so high, that the^y are beyond the reach of the average technologist, 

and from his standpoint may, therefore, be counted out. 

To give a concrete idea of the growing importance of non-linear 

differential ecjuations, the following typical (but not exhaustive) 

branches of science where th(\y occur may be cited: acoustics, aero¬ 

dynamics, astronomy, cable telegraphy, elasticity, electrical power 

circuits, electrical machinery, electronics, engine governors, fluid 

jets, hydraulics, hydrodynamics, naval architecture (stabilization of 

ships), plasticity, wave motion of finite amplitude on fluids and in 

solids. 

One of the earliest non-linear equations of acoustics was given by 

S. Earnshaw in 1860 [32], and pertained to the propagation of plane 

sound waves of finite amplitude in air. A general equation for ex¬ 

panding sound waves of finite amplitude, of which the above is a 

particular case, is given by the author in reference [183]. Solutions of 

this equation for conical and exponential loudspeaker horns have 

been obtained by S. Goldstein, N. W. McLachlan, and A. L. Meyers 

[41, 100, 101]. Non-linear equations were encountered by Lord 

Rayleigh in connexion with an electrically maintained tuning-fork 

[131], and by C. V. Raman in his experimental work on vibrating 

strings [127, 128]. 

An important non-linear equation which occurs in astronomy 
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concerns the gravitational equilibrium of gaseous configurations (stars). 

It originated with J. Homer Lane in 1870 [78], and has been discussed 

at some length by S. Chandrasekhar [159], V. R. Emden [165], R. H. 

Fowler [36, 37], and Lord Kelvin [68]. Of other non>linear equations 

in celestial mechanics, those pertaining to the white dwarf stars]* [159] 

and the pulsation of cepheid variables, treated by A, S. Eddington, 

may be mentioned [164]. 

About twenty-six years ago the speed of signalUng on long sub¬ 

marine telegraph cables was increased some fivefold by ‘loading’ the 

inner copper conductor with thin nickel-iron tape or wire. This alloy 

has an initial permeability {dBjdH as -> 0) of the order 4,000, and 

with normal sending voltages (40 to 60) it becomes saturated mag¬ 

netically, thereby introducing non-linearity and consequent distor¬ 

tion of the signals. Using a method of G. Riemann for the propagation 

of impulses in a gas, H. Salinger showed that a wave front, vertical at 

the sending end, tilts backwards (on a time basis) with increase in 

distance along the cable. If the sending voltage exceeds a critical 

value, the wave front along the cable has both vertical and non- 

vertical parts [135]. 

There are a variety of non-linear problems in the theory of elasticity. 

An early problem is that of the ‘elastica’ or flexible rod bent in one 

plane so that the two ends approach each other. It attracted the 

attention of the Bernoullis, Euler, and Lagrange. R. V. Southwell 

has given the solution for a uniform bar in terms of elliptic integrals 

[206], while W. G. Bickley has studied the problem in which fabrics 

bend under their own weight [16]. In connexion with large deflexions 

of beams, solutions have been obtained by H. L. Cox, K. O. Friedrichs, 

Th. von Karman, J. J. Stoker, J. S. Way [62], and others. Finite 

deformation of soUds has been discussed analytically by M. Biot, 

J. Boussinesq, G. Kirchhoff, and F. D. Murnaghan [62]. The author 

has studied the deformation of steel shells, with non-linear character¬ 

istics, due to impulsive forces (§§ 8.20-8.23). In the realm of vibra¬ 

tional mechanical systems having non-linear restoring forces, analyti¬ 

cal and experimental work has been done by E. V. Appleton [11], 

G. Duffing [162], J. P. Den Hartog [47-9], and 0. A. Ludeke [91, 92, 

92 a]. In certain cases the control stiffness decreases with increase in 

f The radius of such a star is much smaller than that of one of the main stars. Thus 
for the same luminosity the former will have a much higher effective temperature than 
the latter. Hence the smaller star will be much ‘whiter’ than the larger one. This is 
the origin of the name ‘white dwarf’. 
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amplitude, resulting in instability which is evinced by a ‘jump’ or 

discontinuity. Appleton obtained this effect with a ‘magnetic’ 

vibration galvanometer [11], and solved the appropriate non-linear 

equation. The decreasing stiffness characteristic occurs also in con¬ 

nexion with a simple pendulum and a synchronous electrical motor. 

Non-linearity arising from iron-cored apparatus in electrical power 

circuits may introduce oscillations, whose frequency is a sub-multiple 

of the supply frequency, when the circuit switch is closed. These sub¬ 

frequencies must not be confused with sub-harmonics in electrical 

circuits under different conditions or excited parametrically as in 

§ 7.12. The former have been discussed by J. D. McCrumm and are 

initiated by ‘shock’ [99]. 

An experimental investigation into resonance effects in LCR 

circuits having iron-cored inductances has been made by C. G. Suits 

[140]. A variable potential difference (50 c.p.s.) was applied in series 

with the LCR combination. Provided i? < a certain value when 

the potential difference reaches a certain magnitude, the reactance 

vanishes and the current suddenly jumps to many times its former 

value. The matter has been investigated analytically by E. G. 

Keller [64, 65]. R. J. Duffin has discussed the behaviour of electrical 

networks having positive non-linear resistors [31]. 

In connexion with transient effects in suddenly loaded synchronous 

electrical motors, solutions of the non-linear equations have been 

given by H. E. Edgerton, P. Fourmarier, W. V. Lyon, and F. J. Zak 

[33, 34, 93]. The solutions were obtained in graphical form by means 

of a differential analyser. 

In the field of electronics the triode oscillator is the outstanding 

example of a non-linear device. The characteristic is curved, the 

curvature changing from positive to negative, there being a point of 

inflexion. During a period of the oscillation the damping of the 

associated electrical circuit is sometimes negative (maintenance or 

growth) and at others positive (limitation and loss). The non-linear 

differential equation of the circuit, namely, 

was first studied by E. V. Appleton and B, van der Pol [8]. Later van 

der Pol obtained solutions by the isocline method (see § 8.12) with 

f{y) = —c(i—fQP g In the latter case he found that 
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under certain conditions a triode oscillator executed relaxation 

oscillations, tins being a limiting case when the parameter € is large 

[119]. He also showed that relaxation phenomena occur in a number 

of branches of science, e.g. physiology, the heart-beat being a relaxa¬ 

tion oscillation. B. van der Pol and S. van der Mark constructed an 

electrical model working on the same principle as the heart and 

exhibiting similar characteristics (121]. V. Volterra has investigated 

the variation in the numbers of individuals in animal species which 

/N 

T 
-><r—^ 

< - orip CLjcle - ^— one cyclr —► time 

Fig. 1. The ordinates in 0 represent the number of soles, and 
in (2) the number of sharks (different vertical scales). 

live together, one feeding on the other [147, 209]. The curve of varia¬ 

tion is a relaxation type. The problem may be illustrated by the 

simple case of two species offish in the sea, e.g. sharks and soles. The 

sharks eat soles, and the latter live on food in the sea, of which an ever 

present supply is assumed. If the soles existed alone, they w ould 

multiply in number at an ever increasing rate. The sharks, how^ever, 

take care that this does not happen, by devouring large quantities of 

soles, so the latter diminish rapidly in number. Ultimately there is an 

inadequate supply of soles to sustain the sharks which commence 

to die off at a high rate. Thereafter the soles again begin to increase 

in number, so the sharks now have more food, thus entailing a growth 

in the shark population, which reaches a maximum. Then the cycle 

is repeated indefinitely. The relationship between the two populations 

and time is depicted in Fig. 1, being in the nature of a relaxation 

oscillation, although the changes from maxima to minima and vice 

versa are less precipitous than those in an electronic relaxation 

oscillation (Fig. 63). The recurrence of epidemics and the problem of 

parasites show similar characteristics when a time base is used [182]. 

Other aspects of non-linearity in valve circuits have been treated by 

E. V. Appleton, W. M. Greaves, and B. van der Pol [7-10], e.g. the 

‘silent interval’ when a valve oscillator is driven by an external source. 

The problem of parametric excitation and of oscillations in electri¬ 

cal and other systems having non-linear elements has been studied 

by A. Andronow, S. Chaikin, N. Kaidanowsky, L. Mandelstam, 
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A. Melikian, N. Papalexi, H. Sekerska, S. Strelkow, K. Tlieodortschik, 

and A. Witt [94, 95, 139, 142]. Methods of solving the types of non¬ 

linear equations occurring in researches of the above kind have been 

developed by N. Kryloff and N. BogoliubofT. The procedure is one 

of successive approximation, being based on rational assumptions 

relating to such applications. The method may be classified with 

Lagrange’s variation of parameters. It is described in [175] by S. 

Lefschetz, and in [187] by N. Minorsky. The Poincare perturbation 

method, developed primarily for astronomical problems, may be 

applied (with limitations) to non-linear equations for various types of 

oscillatory system. Mandelstam and Papalexi have extended the 

procedure to cover the equations for a self-oscillatory system when 

acted upon by an external source. The extended analysis enables 

certain resonance phenomena peculiar to non-linear circuits to be 

explained, e.g. sub-harmonics in a thermionic valve circuit into which 

an e.TU.f. is injected from an external source [94 j. 

Problems in hydrodynamics involving non-linear equations occur 

in connexion with rivers, artificial channels, and hydro-electric 

systems. They have been studied by J. Boussinesq, R. S. Cole, P, 

Forchheimer, and others [30, G2, 16G]. 

Non-linear problems in the science of plasticity have received 

attention by various authors, of whom we cite J. Boussinesq, Th. von 

Karman, A. Nadai, W. Prager, and G. I. Taylor [G2, 125, 126, 189]. 

Extensiv^e researches in connexion with viscous and with compressible 

fluids have been conducted by many authors during the past century. 

Of these W. G. Bickley, A. Busemann, S. Goldstein, T). R. Hartree, 

Th. von Karman, C. W. Oseen, L. Prandtl, O. Reynolds, and G, I. 

Taylor may be mentioned [62]. 

The theory of ship stabilization by means of anti-rolling tanks and 

auxiliary mechanism involves non-linear differential equations. This 

subject has been studied by N. Minorsky [108-11]. 

Wave motion of finite amplitude on fluid surfaces has been treated 

analytically by T. H. Havelock, T. Levi-Civita, Lord Rayleigh, 

G. G. Stokes, 1). J. Struik, and others [62]. 

For additional information on the subject of non-linear equations 

in general, the reader may consult the references at the end of the 

book, and also those in [62], which contains a bibhography of 178 

items classified under nine heads. The importance of the purely 

theoretical aspect has been mentioned already. During the past few 



8 GENERAL INTRODUCTION ch. i 

years the theory of non-linear equations for (a) mechanical vibrators, 

(b) triode oscillators (including relaxation oscillations), has been 

studied by M. L. Cartwright and J. E. Littlewood [26-9], G. E. H. 

Reuter [131a], H. J. Eckweiler, I). A. Flanders, K. 0. Friedrichs, 

J. J. Stoker, F. John [163], N. Levinson and 0. K. Smith [82-6], 

Although solutions of a number of the problems mentioned above 

were obtained either by graphical means or by a differential analyser, 

the majority of cases to date have been solved approximately by analy¬ 

tical or numerical processes. In some problems the amount of com¬ 

putation is considerable, calculating machines being needed. 

The methods of solution used in this book are summarized below: 

Chap. II, Integrable exactly, using suitable transformations. 

III. Integrable exactly (with some exceptions) in terms of 

either Jacobian or Wei erst rassian elliptic functions. 

IV. Approximate periodic solutions by (a) successive approxi¬ 

mation (iteration), (b) perturbation method, (c) assuming a 

Fourier series, and determining early coefficients therein. 

V. Approximate j)eriodic and non-periodic solutions by 

method of slowly varying amplitude and phase. 

VI. Method in V applied to derive equivalent linear equations. 

VII. Approximate periodic solutions, assuming Fourier series, 

as based upon theory of Mathieu functions. 

VIII. (a) Isocline graphical construction, (b) Li6nard graphical 

construction, (c) Maclaurin series, (d) numerical methods. 

Appendix I. As at IV (a). 



CHAPTER II 

EQUATIONS READILY INTEGRABLE 

2.10. Definition. If in an ordinary differential equation the depen¬ 

dent variable y and its derivatives are of the first degree only, there 

being no products like yy\ i/'y", y^, y^, the equation is said to be linear. 

But when the degree of y and/or its derivatives differs from unity, or 

if they occur as products, the equation is said to be non-linear in y. 

For example 70 7 
^ d^y , ^dy . = ziv 

—(1) 

is a linear equation of the second order. The presence of x^y does not 

constitute non-linearity in y. But 

are non-linear equations of the second order, y dyjdxy (dyjdx)^ 

being non-linear terms. 

2.11. Examples. In this chapter we shall deal with equations 

which are integrable exactly without recourse to elliptic functions. 

We commence with those of the first order. 

P. Solve ^-1-^ = 0, (1) 
dx y 

the initial condition being y = y^ when x ~ x^. 

The equation may be written 

x dx-\^y dy = 0, (2) 

so the second term is non-linear in y. Integrating, we have 

x2-f-y2 — a constant. (3) 

The initial condition gives A = x%-\-yl = say. Hence the solution 

(4) 

the equation of a family of concentric circles radius a (variable). The 

solution may also be written in the form 

y ^ (5) 

so y is double-valued, and is also a function of a®, the constant of 

integration. 
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Comparison may be made with the linear equation 

+ i = 0, 
ax X 

whose solution is y — (7) 

where ^ 0 is an arbitrary constant multiplier dependent on the 

initial condition. 

20. Solve (1) 
dx x—y^ 

the initial condition being x ~ \,y ^ 1. If the equation is written in 

the form {x-{-y) dx ^ (x—y) dy, (2) 

the term —y dy is non-linear in y. Let 

X rcosff, y ^ rsm0, (3) 

r, d being variable. Then 

dx ~ oos^ ^r-“rsin 6 dd, (4) 

and dy — sin 6 rfr-f r cos 0 dd. (5) 
./•VJ 

Substituting from (4), (5) into (2), we get 
K 

(cos0-l-sin0)(cos0 dr—rHind dd) 

~ (cos0—sin^)(sin0 rir-f r/0), (0) 

so cohW dr—rsinW dd ^ —sinW dr-^rcAynW dd, (7) 

giving dr/dd ^ r. (8) 

Thus logr — d-\~A, (9) 

A being a constant of integration, so in terms of x, y we have 

\\og{x'^~\r y^)—tdbn~^y jx A. (10) 

Since y 1 when a; = - 1,^1 ~ ^(log^ 2—iTi), and the solution takes the 

implicit form log4(x“+?/‘‘^) —2[tan“^(y/:r) —Jtt] — 0. (11) 

For initial condition x = x^, y ^ y^, the solution is 

log[(x2+2/2)/(a-2+?/2)j_2[tan-i(2//x)—tan-i(2/o/a:o)] = 0. (12) 

Here again we see that the solution of a non-linear equation is a 

function of the initial condition. 

3^. Solve _ 9 
dx'^y 

which is non-linear in y. Write y — vx, then dyjdx 

and (1) becomes , , 
ic^ + » + --2-0, 

dx V 

(1) 

x{dvldx)-\-v 

(2) 
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or xv~-\-(v—l)^ ~ 0. 
doc 

(3) 

Thus J J ^ = log^, a constant, (4) 

so 
1 r cZ(?;—1)2 r dv r dx 

2 J 1)^ J {v—1)* J X 
-■ log^, (5) 

and, therefore, 

log(i;—l)-flogrr—log^ ^ l/(^“ -1). (6) 

Hence log[a:(?;—1)/J] = (7) 

which yields the implicit form 

(y—x) “ (8) 

A being the constant of integration. The equation 

dyl(lx-\-xly — 2/c (/c > 0) (9) 

should be solved by the reader, using the substitution y = vx. 

2.12. Bernoulli’s equation. This may be written 

+ = ^7(a;)^/^ (1) 

where/, g are continuous functions of x, but not of y, and yx 0 or 1, 

which entails non-linearity in y. Write u — y^~^ and we get 

Substituting for dyjdx into (1), and replacing y^-^^ by u leads to a 

standard form of linear equation of the first order, namely, 

+ (3) 

Now the general solution of 

'- + ^{x)u = x{x) 

X X X 

is J (5) 

A being an arbitrary constant. Hence the solution of (3) is 

y = u1la-li\ (7) and finally 



12 EQUATIONS READILY INTEGRABLE ch. ii 

2.130. Riccati’s equation. We omit the general form of the equation 

(see ref. 148) and deal with the integrable one, namely, 

^j^ay^-\-yf(x)-^g{x) = 0, (1) 

where f{x) and g{x) are continuous functions of x, independent of y. 
X 

Write u — e“then 

u' = ayu, u" ~ [ay'-\-ahj^)u. (2) 

Thus from (1), (2) we obtain the linear equation of the second order 

(3) 

whose solution may be derived by well-known methods. 

The form originally given by Riocati in 1724 was 

— 0. (4) 
dx 

The foregoing substitution transforms (4) to the second-order linear 

equation .. 
—-^abx^u — 0. (5) 

This may be solved in terms of Bessel functions as follows: 

The solution of , 

is [184, p. 39, ex. 60] 

where 

(6) 

(7) 

P = i(a+l). t' = (a+l)/{p+2), k = 2ki/{n+2), q = pjv = (ifi+l), 

and V is non-integral. The solution of (5) is derived by putting a — 0, 

if = —a6,thenp = = l/(/x+2),i = 2t’(a6)V(p+2),g' == (ija-fl). 

Now the modified Bessel function /„(z) = so the solution 

may be expressed in the form 

u = xi[Ai /_,(Zx«)] = a;iT, (8) 

where I = 2{ab)^j{fiA-2), and A^, B^ are arbitrary constants. But 

y — u'jau, so with T' = dTJdx we obtain from (8) 

y = ajlT'l/oariT (9) 
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a\2x'^ Y 

1 j 2Zgx^[/;+g/-.]l 
~-2aa:l [4+C/.J 

where (7 — is the, constant of integration of which ^ is a function. 

Since (4) is an equation of unit order, there is only one constant of 

integration. 

2^131, Solve I /ii2 I ni'vn(iy»\_rtf -A /1\ +y^+y^g{^)—g{^) == o, 

g{x) being a function of x. 

This is a Riccati equation of the type (1), § 2.130, with a = 1, 

f{x) — -~xg{x). Instead of the substitution in § 2.130, we use the fact 

that if 0^ particular solution of a Riccati equation is known, the general 

solution may be obtained by quadratures, as exemplified below. 

Writing (1) in the form 

^-\-y^-\rg(x)[yx-i\ = 0, (2) 

a particular solution is obviously Ijx, Accordingly we now put 

where is a once differentiable function of x, and obtain 

(3) 
ax \x J 

Applying (5), § 2.12, leads to 
X 

V ~ J[(2/x)+xfl'](fx J j [i2[x)-^xg]dx 

X 

^ AxhS^o^^+xhS^^^^ j dxjx^, (5) 

A being the constant of integration. Substituting for v in terms of 

X, y, yields the solution 
X 

l/x(x^—l) = /*«'<**+€/*<"** J dxjx^. (6) 
2.14. Simultaneous equations. Solve 

dyidx = z+y[(y2+2*)»—2a], (1) 

and dzjdx = ~y-\-z\{y'^-\-z^)^—2a\. (2) 

Multiplying (1) by y, (2) by z, and adding, gives 

yy'+zz' = (y*+2*)[(y*+2’*)*—2o], (3) 
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SO W 

Writing (y^-\-z^)^ — u and integrating, (4) becomes 

J duj{u^—2au) = j dx-\-A^, (5) 

or J duj\{u—aY‘—a^^ = (6) 

so ^log[M/(2«.—-a,)] = xi-A^ (2a > u). (7) 

Hence ul(2a—u) Ae^^^, («) 

and the solution has the implicit form 

(9) 

A being the constant of integration, and 2a > 

2.20. Equations of the second order. A linear difft^rential 

equation of the second order has two distinct or linearly independent 

solutions, i.e. they are not proportional. Suppose that are two 

distinct solutions of •• i 2 a y-\-ojHy 0, (1) 

then the complete or general solution is 

y = (2) 

where are arbitrary non-zero constant multipliers. 

If a term by^ is added to (1), we obtain the non-linear equation 

(see (1), § 3.10) yj^^y^by^ = 0 {a ^ <o^). (3) 

The general solution of (3) does not take the form at (2), since there 

cannot be linearly independent solutions of a non-linear differential 

equation. (3) may be considered to have a complete solution which 

is obtainable by integrating twice, thereby entailing two constants 

of integration. The general solution is a function of these constants 

which, in a physical problem, are determinable from the initial or 

the boundary conditions, as the case may be. 

In (2) A^, are mere multipliers, also determinable from the 

initial conditions. Their values do not affect the periodic time {27rj<jj) 

of the oscillation of the mechanical system to which (1) refers. But 

the period corresponding to (3) is a function of the initial conditions. 

This will be evident from (1), § 3.111, where Tq decreases with increase 

in the initial amplitude y^, which is a consequence of (3) being non¬ 

linear in y. 
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2.21. Solve 
d^y _ I2y—l\ IdyV 
dx^ \y^+^)\dx)' (1) 

Write V -- dyldx, i.e. dx = dyjv, and we get 

d'^yjdx^ = dvjdx ^ v dvldy. (2) 

Then the variables are separable, and (1) takes the form 

dy y+ij’ 
(3) 

so (4) 

and, therefore, logw = log(y2.|_i)__tan-i2/+Ji, (5) 

from which it follows that 

(1+2/-)“ ■ 
(6) 

Thus j gtan V ^ J (7) 

SO ^Ua-‘y ^ Ax+B, (8) 

and hence y ~ tan[log(Aa:-l-7i)]. (9) 

From (9) we see that ^ is a function of A, B, the two constants of 
integration, which are not mere multipliers as they would be in the 
case of a linear differential equation of the second order. As an 
exercise the reader may solve 

d^yjdx^ ~ al^dyjdxYA-^^- (10) 

2.220. Solve = 
dx^ \ fiy J \dx] 

(1) 

Put V — dyjdx, and (I) becomes 

V dv 

dy ~[ H- jy’ 
(2) 

the variables now being separable, so 

(3) 
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logy+^l, 

CLQC 

Integrating again, we have 

J yi//A)-i dy = A ^ dx-\-B, 

so =^t{Ax+B), (7) 

giving finally the solution 

y = {CxA-DY, (8) 

where G = D = By.~^ are the two constants of integration. 
As before, 2/ is a function of these constants. 

2.221, Solve 

Let xy'—y == then xy" = v\ and (1) becomes 

dv 
dx ax^ * 

C dv I C dx . . , , — == - I — 4-a constant, 
j a J x^ ^ 

so (4) 
V ax 

or V = axl(l-\-bx), (6) 

where b = aA. From (5), 

xij'—y = axHl-\-bx), (6) 

so y'—-y = al{l-\-bx). (7) 
X 

Applying (5), § 2.12, with ^(x) = —Ijx, x{x) — a/(l +6a:), we find that 

y = a:[J5+alog{a:/(l+aAa;)}]. (8) 

In (8) y is a function oi A, B the constants of integration. The reader 
should solve (1) using the substitution y = xz, x = e^, which gives 

y'+Syy'+y® = f(x). 2.23. Solve (1) 
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Write u = then 

du dH 

dx^ 

and 
d^u 

djfi = 'i^{y"+^yy'+y^)- 

(2) 

(3) 

Thus by (1), (3) we obtain a standard form of linear equation of the 

third order, namely, ,3 
^ 0. (4) 

If Uo, are hnearly indeijendcnt solutions of (4), and A^, A^ 

arbitrary constants, the complete solution is 

u A^'it^-\-A^'HoA'A^u^» (5) 

Since u we get y u'ju, and the solution may be expressed 

^ 1 2 ^2 "i~ 3 ^3 

in the form 

y =- 

where.4 A^jA^.B — A^jA^. Thus solution (7) is a rational function 

of the two constants of integration A, B. 

Particular case of (1). Let f{x) — 0, and we get 

y"+^yy'+y^ - o. (8) 

Also (4) becomes dhtldx^ 0, (9) 

so dhijdx^ “ Aq, dujd/x “ A^x-^B^, (10) 

and u “ IAqX-A-Bq^ -\-Cq. (11) 

Hence y ^ tdfa -- 2(AQX+BQ)/{AQX^+2B^^x+2CQ), 

2{x+A)/(x^+2Ax+B), (12) 

with A ~ BJAq, B = 2CJAq, these being the two constants of 

integration, of which ?/ is a rational function. 

2.24. Dynamical illustration of (8), § 2.23. Imagine a body of 

unit mass constrained by frictionless guides to move in a straight line 

on a frictionless horizontal plane as in Fig. 2, without the damping 

device. A displacement y from an equilibrium or zero position is 

opposed by a massless spring whose "characteristic’ is defined by 

restoring force = y^. To the body is attached a device which intro¬ 

duces a damping force ^yy, where y — dyjdti this being three times 
5077 c 
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the product of displacement and velocity. If the body is moved a 

distance from its equilibrium position and relea.sed at time t = Q, 

what is its subsequent motion ? 

The first step is to determine .4, i? in (12), § 2.23, using t instead of a-. 

Substituting y ~ y^, t =- 0, gives 

A ^ ^By,. (1) 

Differentiating (12), § 2.23, we obtain 

r, 
^ (P+2AH}1)[ iP+^Ai+B) 

Since the body starts from rest, y ~ 0 

at ^ “ 0, so (2) yields 

B -= 2^2 (3) 

Hence from (1), (3) 

A = 1/2/0, and B = 2/2/g. (4) 

Inserting these into (12), § 2.23, with 

t for X, leads to 

y ^ 2(^+l/yo)/[(^+1/1^0)“+(5) 

There are two cases to be con¬ 

sidered, namely, (i) when y^ > 0, (ii) 

when y^ < 0. 

(i) It is evident from (5) that y ~f 0 

nionotonically as -\-oo, and since y 0 when t =--= 0, the relationship 

between y and t has the form illustrated in .Fig. 3 a. The inflexional 

point, where ij — 0, occurs at -- (3^ — l)/2/o* Thus the larger the 

smaller because the damping increases with increase in y, 

(ii) Here we write —y^ for (> ^) (^)j thereby obtaining 

y = 2(2-l/yo)/[(<-1/2/0)^+l/^o]- (6) 

When / ™ 0,2/ = 0, ?/ — —y^, and when t = Ijy^, y ^ 0, after which 

y is positive. Moreover, the y-t relationship now takes the form 

depicted in Fig. 3 b, where y becomes positive and attains a maximum 

value 2/0 a-t ^ = 2/2/^, before tending monotonically to zero as t -> ~{-co. 

The curve P3P4 in Fig. 3 b is identical with that in Fig. 3 A, since (5) 

is obtained by writing (^+2/1/0) for t in (6). 

In (1) the damping term is much larger than would be expected in a 

practical application, where the motion would be more likely to have 

the form of a weakly damped oscillation. 

Fiq. 2. Schematic diagram of mass¬ 
spring system with viscous damping 
proportional to the velocity. 
'fn — mass, s ~ spring, d — damping 

device. 
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2.25. Derivation of non-linear equation. Conwider tlie linear 

third-order equation 

Fig. 3 a. Illustrating solution curve for (5), § 2.24. 
B. Illustrating solution curve for (6), § 2.24. When 

t > 4, curve (B) is identical with (A) for t > 0. 

where f(x), g{x) are functions of x independent of y. Then by aid of 

(2), (3), § 2.23, we have 

'U'iy"^-^yy'-\-y^)+uJ{x){y'-\-y^)-]-u g{x)y = 0, (2) 

and since u ^ 0, (2) yields the non-linear differential equation of the 

second order 

y"+[^y+I{x)]y--\-g{x)y-\-f{x)y^-\-y^ = o. (3) 
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Then if % are linearly independent solutions of (1), the general 

solution of (3) takes the form at (7), § 2.23. 

2.26. Solve (1) 
\dx^ 

subject to the conditions y y" = 0 when x 0, y' ~ 0 when 

x-> +00. This equation occurs in the theory of the plane jet in 

hydrodynamics [17]. 

The first step is to remove the constant £, so we write x = 3Uy 

y(x) = 2€1v{u)j where is a thrice differentiable function of u. Then 

(1) becomes 3 ,3.^^ 4 

— --€‘^W- 
9 du^^9 du^ 

or ^^;'"+2(^^"+^^;'“) ~ 0, (3) 

the accents denoting differentiation with respect to u, (3) may be 

written 

4^2/^’V _ Q 
9^ \du) 

(2) 

A 
du 

{w"-\-2ww') == 0, (4) 

SO w" -~2ww'-^Ay a constant. (5) 

By virtue of the above conditions, with e > 9, w ~ w" ^ 9 when 

-24 = 0, and w' 0 when u +00, so + — 0. Thus, from (5), 

t(;"+2i6’i4?' = 0, (6) 

or ~ (w'+w^) = 0, (7) 

so k/ = a^—w^y (8) 
R - a2 being a non-zero constant of integration. Hence 

J dwl{a--~w^) = u-\-Cy a constant. (9) 

giving ~ tanh“^(?^^/a) == u+C, 
CL 

(10) 

Since w “ 0 when = 0, it follows that (7 = 0, so 

w = atsivhauy (11) 

which satisfies the three conditions above. Restoring the original 

variables leads to the solution 

y — 2€atanh(aa:/3), (12) 

which is a function of the constant B = a^. Since the differential 

equation is of the third order, there are three constants of integration, 

namely, A — C ~ 9, and JS. 
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2.27. Solution of (1), § 2.26 when A, B, C ^ 0. We commence 

with (5), § 2.26, then 

^{w'+w^) A, (1) 

so w'-j-w^ = Au-\-B. (2) 

Writing z = Au-\-B, we get 

dw dw dz ^ dw 

du dz du dz ’ 

so (2) becomes ^+^1—"T — 
dz A A 

(3) 

(4) 

This is the Riccati type of equation at (4), § 2.130, with a = b = i/A, 

fj.= 1, SO mutatis muUindis the solution is (12), § 2.130. In the present 

case a — 0, ^ — 1/2, v — 1/3, ~ 3/2, I — 2/3^, which gives 

w(z) — (^/22)jl + (22lA4) 
'l\(2z^l^A) + C/lj (22V3^ )] 

, 4(22«/3^)+C7_i(2zV3J). 
(5) 

C being a constant of integration. Finally by § 2.26 with 

2 = [^(;r/3)+JS] 

in (5) above, we obtain 

ij = 2€w[A{xjZ)-\-B], (6) 

which is a function of the three constants of integration il, and G, 

2.30. Some astronomical equations. [150]. These arise in con¬ 

nexion with the gravitational equilibrium of a gaseous configuration 

in stellar structure. Here the total pressure is due to the usual gas 

pressure plus that in virtue of radiation. It is given by the formula 

jp ^ \aT^+RTIv, (1) 

where p — pressure, T ~ absolute temperature, a “ radiation con¬ 

stant, V ™ volume of unit mass, B ~ gas constant. The pressure p 

and density p = Ijv both vary with the radius r, the relationship 

between the two former being 

p = (2) 

K, pi being constants. If m is the mass of matter within a sphere of 

radius r, and G the gravitational constant, namely, 6*67 x dynes 

cm.2 gm.-2^ the equations of equilibrium for the configuration are 

_ 
dr'^ 

(3) 
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and = 0- dr 
(4) 

From (3) 'If+am = o, 
p dr 

(5) 

and by aid of (4), this becomes 

(6) 

Write p -- where A is, for the time being, an arbitrarj^ constant. 

Then from this and (2) we get 

21 - (7) 

Substituting from (7) into (6) yields 

u 
1 

dr \9f^ dr 

or L^U^] 
r" dr \ dr] 

K 

+ ^ 0, 

with k‘^ — 4776*A<'”’/'^y(/Lt+l)A'. Putting | ---- kr in (9) leads to 

1 d d L,dd\ 

r{(^«?) = 0, 

or 0. 

(8) 

(9) 

(10) 

(11) 

This is knowm as the Lane-Emden equation. Unless p, — 0 or 1, it is 

non-linear. So far A is arbitrary, but we now^ fix it by making 0=1 

at r = 0, the centre of the sphere, which gives A = p^, the central den¬ 

sity, and we have 0=1, and ddjd^ = 0 wdien ^ = 0. A solution which 

satisfies these boundary conditions is termed a Lane-Emden function 

of index p. Tabular values of some of the functions are given in 

reference [105]. 

2.31. Transformation of (10), § 2.30 [159]. The substitution 

^ — I lx, d/d^ — —xHjdx transforms the equation to 

+ = 0. (I) 

We shall consider the integrable case where fx = 5. Substituting 

6 == (D^x^y into (1) gives 

xY'+xy'—ly(l—y^) = 0, (2) 



23 § 2.31 EQUATIONS READILY INTEGRABLE 

while with a; — e“, (2) becomes 

du^ 
iy{^-y*) = 0, 

which is non-linear by virtue of the term ly^. 

(3) 

2.32. Solution of (3), § 2.31 [159]. Write v — dyjdu, du — dyjv, 
and we set , 

(1) 

so j V dv — I j (y—y^) dy-{-A, (2) 

or (3) 

When r —- 0, ^ -- ddjd^ — 0, and it may be shown that y — v — 0, 
so ^ = 0. Thus (3) gives 

v = ^^±\y{i~ly^f. (4) 

Either sign in (4) will ^ield the result at (11). We choose the lower 
sign, so that when ii -> -f oo, r -> 0. From (4) we have 

u--^ -2\{dyly)l(l-\y^)^-VB,. (5) 

Let single = \rj*, and (5) becomes 

«. = — J d^t)/sin^f;-^-^] (5) 

= -log(tan|ti;)+.Bi, (7) 

so tan^M) = Re-^ — (8) 

Now sin^tt; = 4tan® -)-tan^ ^ \y^, 

so y^ [12.B2^V(1+J52^2)2ji_ (9) 

But B — (\)^x^y, and a: — so B = {\)^y^~^, and on substituting for 

y from (9), we get ^ _ [3^7(1-}-(10) 

For the Lane-Emden function of index fx = 5, we take 0^1, 
ddjd^ 0 at ^ ~ 0, wdiich gives == ] /3. Hence the function of 

index 5 is + (H) 



CHAPTER III 

EQUATIONS INTEGRABLE BY ELLIPTIC 

INTEGRALS AND FUNCTIONS 

3.10. Solve — 0, (1) 
where a > 0, 6 ^ 0, and the initial conditions are y ~ ?/q, y “ 0, 

when ^ ~ 0. This equation refers to a mass-spring system of the type 

illustrated in Fig. 2, but the 'characteristic’ of the spring is 

and there is no damping. The differential equation of the system is 

-- 0, (2) 

so a ^ s^jm, and b ~ m being the mass. A spring control of the 

form s^y-^-s^y'^ may be obtained by using a flat bar and suitably 

shaped blocks, as shown in Fig. 4 A, provided 6*3 > 0. The effective 

length of the spring decreases with increase in the amplitude of 

vibration. The stiffness is defined to be the derivative of the restoring 

force, so ^ ^ (3) 

Thus the stiffness increases or decreases with increase in the displace¬ 

ment, according as .S3 > or < 0. A case where .93 > 0 is illustrated in 

Fig. 12 B, c. We shall see later that in the case of a simple pendulum 

53 < 0. Herein we take 53 > 0, so in (1) 6 > 0. 
Another example of a non-linear restoring force is that of a mass m 

at the centre of a taut uniform vertical wire, as illustrated in Fig. 4 b. 

It is left to the reader to show that if yjl <€ 1, and m moves in a hori¬ 

zontal straight fine, tlie approximate differential equation of motion 

takes the form at (1), with a — 2Tjml, b ~ EAjmP, T being the 

tension when y ~ 0, A the cross-sectional area, and E the modulus 

of elasticity. 

Solution of {!). Write v ~ dyjdt and (1) becomes 

= —{ay+by^), (4) 

so 
V y 

j V dv ~ —j {cf'y+by^) dy 
n 77/1 

(5) 

and 

yj yo 

= <^iyl—y^)-\-\Hyi—y% (6) 

Choosing the negative root, we have 

V = dyjdt = -ai{yl-y^)\l-V{bl2a)(yl-\-y^)]i, (7) 
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Fig. 4 a, b, c. Illustrating how a non-linear spring control may 
bo obtained, c is described in § 4.193. 

and, therefore, 
y 

t = —a-* J dwl{yl—w^f[l-\-{bl2a)(yl+w^)]K (8) 
2/0 

Let w = cos ifj, and we get 

t = a-i\ #/[l + (6/2a)yg(l+co8V)?, 

/„ 
6 

(9) 

with cos(p = y/yo, or ip = cos-^y/yo). Thus if = byl/2{a+byl), 
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(9) may be written 

0 

Apart from the external multiplier, the right-hand side of (10) is an 

incomplete elliptic integral of the first kind with modulus A. Thus in 

standard notation [173] we have 

t == 
1 

(o+%o)‘ 

where u — i^(A, cp) — J fZ^/(l—A^sin^i/r)^. 

If we put X ~ sini/f, (12) becomes 

sincp 

By definition u = sn~^sin9 — the right-hand side of (13), 

(11) 

(12) 

(13) 

(14) 

so sn'2^ = sin 9, (15) 

where sn u is the sine type of Jacobian elliptic function. This definition 

will be understood more readily if we make comparison with the in¬ 

verse function defined by 
y 

u = 8in“^y = J r7a;/(l—\y\ < 1, (16) 
0 

from which we obtain the well-known result 

or 

dujdy 1/(1—2/2)1, 

sin-w y- 

(17) 

(18) 

The Jacobian elliptic function corresponding to cos?^, which applies 

to our solution, is 

so by (15), (19) 

cn^ ~ cos 9, 

= 1, 
(19) 

(20) 

which compares with sin2'2i-|-cos2^ — 1. 

The solution (10), (11) is expressed in the form of an ‘inverse’ 

function, and the values of F corresponding to given values of 9° may 

be extracted from tables of elliptic integrals [173]. Then, as shown 

in §3.13, t may be computed from (11). The other coordinate is 

y “ 2/0 9 " 2/0 y~^ relationship may be plotted, the 
‘elliptic’ cosine being obtained. 
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3.110. The energy equation. Multiplying (6), § 3.10, throughout 

by \m and rearranging, we obtain 

lmv^+\may’^+lmby^ = Imayl+lmb'i/^, (1) 

or lrnv^+{¥iy^+iHy'^) = iHyl+lHyl^ (2) 

so Kinetic energy+Potential energy — Total energy (p.e. at ^ — 0). (3) 

Moreover, equations of the type (6), § 3.10, may be regarded as energy 

equations. 

3.111. Periodic time of oscillation. The dynamical system to 

which (1), § 3.10 refers, is devoid of damping, and the spring control is 

an anti-symmetrical or odd function of y (see Figs. 12 a, b). It follows 

that if the mass were displaced initially by an amount ij/o, after 

release it would execute a periodic oscillation about the central 

position y 0. The periodic nature of the motion follows from the 

relationship y = y^cosep obtained in § 3.10, since cos 9 is periodic in 

9, with period 277. The quarter period is the time taken for the mass 

to move from the initial position y = to the central or equilibrium 

position y = 0, and corresponds to the interval 9 = (0, Jtt). Thus by 

(10), (11), § 3.10, the complete period of the motion is given by 

irr 

To - im^byin J #/(l-A2sin2^)i = [ ]^’(A, ^r:), (1) 
0 

where F(A, Jtt) is a complete elliptic integral of the first kind with 

modulus A. By virtue of the multiplier {(i-\-byl)~^, it follows that the 

periodic time decreases with increase in a, b, y^ either individually or 

collectively. If y^ is fixed, an increase in a, 6, or both of them, entails 

a stiffer spring, and therefore a smaller period Tq, and higher funda¬ 

mental frequency 0^/277 = tq On the other hand, if a, b are fixed, an 

increase in y^ means greater initial acceleration by virtue of the 

enhanced average stiffnessf corresponding to (a \~byl) or (Si+^gy^). 

In this respect it is of interest to remark that 

tqOC (a+6yg)~* — — (mass/average stifiness)^ (2) 

or tq = (mass/average stiffness)* x a constant. (3) 

The constant is 4F(A, ^tt) which we shall now determine for certain 

values of a, 6. 
ro 

t Stiffness == Average stiffness == — + dy = 8i-\-s^yl. 
2/0 J 
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3.12. Numerical illustration of (1), § 3.111. Takey,, = 1, o = 10, 
b = 100, then the modulus 

A - [byll2{a+byl)y‘ - (100/2 x 110)* (1) 

= 0-674. (2) 

By (1), § 3.111, ^ (4/110*)i’(0-674, (3) 

= 4x 1-82/10-48 = 0-695, (4) 

by aid of elliptic integral tables [173]. It follows that the constant in 

§3.111 is 4x 1*82 ^ 7*28. In a system with linear spring control 

it would be 2tt ctl 6*28. The frequency of occurrence of the oscillation 

is, therefore, 
co/27r ~ c::± 1*44. (5) 

If fc — 0, y ~ y^cosaHy (6) 

so the frequency is 

co/27t a^j27T -3 10V27r 0*5. (7) 

Thus the influence of adding the term by^ to the stiffness control is 

almost to treble the frequency of the oscillation when = 1. The 

frequency ratio either increases or decreases, according as > or < 1, 

3.13. Graphical representation. To exhibit the relationship be¬ 

tween y and t we use the formula 

t = J^(0-674,cp)/110l, (1) 

i.e. (11), § 3.10, with the numerical values inserted, and a table of 

elliptic integrals of the first kind [173]. Then A := 0*674 = sin a, 

so a 42*5''. Also y — 2/qCOS9 = cos9. The data in Table 1 were 

obtained. 
Table 1 

9° t = r/]0-48 t {radians) y == cos 9 

0 0-000 0-0000 0-000 1-000 
10 0*175 0-0167 0-151 0-985 
20 0-352 1 0-0336 0-304 0-940 
30 0-635 0-0510 0-461 0-866 
40 0-724 0-0691 0-625 0-766 
50 0-923 0-0881 0-797 0-643 
60 M32 0-1080 0-976 0-500 
70 1-353 0-1292 1-168 0-342 
80 1-58: 0-1510 1-365 0-174 
90 1-82: 0-1738 1-571 0-000 

By plotting the points corresponding to the last two columns in 

Table 1 we obtain the first quarter period of the Jacobian eUiptic 
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function cni^ = cos 9, i.e. the elliptic cosine. A quarter period of the 

curve is depicted in Fig. 5, and the ordinary or circular cosine of equal 

period and amplitude is shown by the broken curve for comparison. 

There is no marked difference between the ordinates of the two curves. 

Thus although the spring control ay^by^ =102/4-100?/^ is sufficiently 

non-linear to increase the rate of oscillation nearly threefold when 

2/0=1, the motion is almost simple harmonic notwithstanding. 

3.14. Approximate solution of (1), § 3.10. It is evident from 

Fig. 5 that the solution curve y = cos9 — cut may be analysed into 

a Fourier series. Its sha})e is such that in a first approximation we may 

2/(^) 
where \A^\ ^ \A^\. Substituting (1) into (1), § 3.10, with tp — cot we 

get 
y— —aj2(^^COS«/r4-9^3COS3j/f) ^ 

ay cos 04-^3 cos 3(/f) 

by^ =: |6^J(3cOS04-COS3l/f)4-f6^f ^3COSl/r4-f6^1^3COS3l/f ^ 

(2) 

In the last line, terms involving A^ (except two) have been omitted 

as negligible. 

Equating the coefficient of costp to zero, gives 

0)2 = a-\-^bA\-\~^bAiA^j (3) 

since Ai ^ 0. It follows from (3) that the frequency is dependent 
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upon the amplitude of the motion, which is a characteristic of non¬ 

linear dynamical or other physical systems. When 6 == 0, ^3 = 0, 

the system is linear, and oj is independent of -4^, this being a feature 

of such a system. 

Equating the coefficient of cos 30 to zero, we have 

— ^cx)^A^-\'aA^-\-\bA\-\-^bA\A^ — 0. (4) 

Substituting for a from (3), and omitting the term in A^A\, yields 

^3 6^3/32 

Using (3), without the term in in (5) we get 

ci bAl/(32a-\-21bAl) (6) 

- l/[21 + (32a/Mf)],. (7) 

which is always 1, provided 6 > 0. 

Since y — when ^ = o, it follows that 

2/o "== -^2+^3, (8) 

with \A^\ > 1^3[. Substituting from (8) into (3) we obtain 

0)2 a+lbyl—lbyoA^. (9) 

Take a = 10, 6 = 100, y^ = 1, and neglect the term in >43. Then to a 

first approximation _ ^^+75 - 85. (10) 

Using this in (5) with cr: 1 we get 

^3-0-04, (11) 

so A^ 25^3. Substituting into (9) for the various quantities yields 

a;2 85-75 X 0*04 -= 82, (12) 

so the periodic time is 
Tq == 27r/a> — 0*69g, (13) 

which compares favourably with the more accurate value at (4), § 3.12. 

By (8), (11), A^ = (2/0—^3) ~ 1—0*04 = 0*96. Substituting into 

(1) we obtain the approximate solution 

y = 0*96 cos a>^-f 0*04 cos 3a)^, (14) 

so the amplitude of the third harmonic is only about gjth that of the 

fundamental, i.e. the motion is essentially simple harmonic. Using 

the data in the last two columns of Table 1 in § 3.13, the reader should 

compute the coefficients in the Fourier series for cn^, and compare 

them with those in (14). 
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3.15. Application of §§ 3.13,3.14. The results therein may be used 

for the following problem; A large mass m is dropped from a height h 

on a steel shell whose vertical force-displacement relationship is 

/ “ fhe two bodies interlocking at the instant of impact. 

Neglecting [a) the mass of the shell, {h) the displacement due to mg 

after impact, (c) damping, determine the subsequent motion of the 

system. 

The differential equation is 

+ = 0, (1) 

or ij-Yay^rhy^ = 0, (2) 

where a ™ s^lm, b ^ s.Jm. The maximum displacement may be 

calculated from the energy relation. Thus equating the strain energy 

to the loss in potential energy of m, we have 

2/0 2/0 

/ ydy-\-s.i f i/dy = = mg{h-]ryo). (3) 
0 0 

If A. > ?/o, (3) yields 

2/o=(^)^ (l+4w,sr/;,^)Ul t (4) 

After reaching y ^ y^, the motion is identical with that discussed in 

§§ 3.13, 3.14, so the y-t curve is the elliptic cosine cnL Since damping 

is absent, the initial part of the curve from y ^ 0 to ?/q is obtained by 

reflecting the first quadrant of cn^ in the y-axis, so that it comes 

behind the origin. In § 3.14 we assumed 

y cos(jji-\-A^cos 3cl>L (5) 

Thus if we commence at ~ 0 when the impact occurs, we must write 

(<j}t—\TT) for cot, wliich gives the approximate solution 

y ~ sin cot—A^ sin 3a;L (6) 

and A^ are calculated as in § 3.14, the value of y^ being that in (4) 

above. 

3.160. The simple pendulum. Referring to Fig. 6 a the equation 

of motion is 
mass X acceleration+restoring force = 0, (1) 

or m{ld^ldfi)-\-mgsva.d = 0, (2) 

so d20/d<2 + £sin0 - 0. 
V 

(3) 



32 EQUATIONS INTEGRABLE BY CH. m 

Since sin0 = + —•••> degree of the equation differs from 
3! 5! 

unity, so it is non-linear. Owing to the shape of a sine curve, the 

control ‘stiffness’ decreases with increase in 9 (Fig. 6 b). 

Fig. 6 a. Schematic diagram for simple pendulum. 
B, Restoring force and ‘stiffness* curves for simple 

pendulum, showing non-linearity. 

Write V = dOldt, gjl = a, and (3) becomes 

^+«sin6> = 0, (4) 

so ^ vdv = —a j" sind do(6) 

giving v* = 2acos0+A. (6) 

If the maximum swing (amplitude) ia 6 = ip, 

V — 0, and A — —2a cos 
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Thus V ±(2a)i(cos0--cosi/#)^ = ±2ai(sin2|0—(7) 

Put sin^i/f = k, sin — A; sin9, and (7) becomes 

ddjdt =:^ V == —2a^A:coscp, (8) 

the negative sign being chosen, since 6 decreases with increase in t, 

as reckoned from the instant of maximum deflexion. Also 

i cos hO dd ~ k cos 9 d(p, 

or dd = 2kcos(^ d(p/(l-~k-Bin\)K (9) 

Equating the expressions for dd from (8), (9) gives 

dt — —d(p/a^(l—k-sm^cp)^, (10) 

When t " 0, v - 0 and 9 Jtt, and when i ~ |tq, 0 ~ 0, 9 — 0. 

Accordingly on integrating (10) between the limits 9 —- (^tt, 0), we 

obtain the quarter period, so 

K = f C^9/(l-Psin2q>)* = {WF{k, \7r), (11) 
i) 

where F{k, In) is a complete elliptic integral of the first kind, modulus 

k -= sin li/j. Hence the time for a complete period is given by 

4{llgmfc,in). (12) 

From a table of elliptic integrals we find that F increases with increase 

in k, and, therefore, the greater the amplitude the longer the periodic 

time. Consequently the motion is not isochronous, i.e. the time of 

swing is a function of the amplitude, which is to be expected, since (3) 

is non-linear in 6. 

3.161. Approximate solution of (3), § 3.160. If |^| < ^tt, we may 

write sin0 6—16^, Theii the non-linear equation to be solved is 

d+ad+bd^ - 0, (1) 

with a — gjl and b — —gjiSl. In this case, as before, the ‘stiffness’ de¬ 

creases with increase in d. Then to a first approximation we have by 

(3), § 3.14, for an amplitude ijj, 

0.2 ~ (2) 

Thus the periodic time is approximately 

Tq = 27r/o. ~ 2TT{llg)^(l + -^tft^), (3) 

being a function of the amplitude 

3.17. Motion with viscous damping. If a term representing this 

is introduced into (1), § 3.10, it becomes 

y+2Ky+{ay+by^) = 0. (1) 
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When k: = 0, by (7), § 3.14, 

AJA, < 1, (2) 

and the motion is nearly cosinusoidal with angular frequency 

oj («+3M|/4)*. (3) 
Hence we may write 

y ~ approximately. (4) 

|Thus when /c > 0, but small enough, and (2) is satisfied, the equation 

to be solved takes the approximate equivalent linear form 

j/+2/C2/ + a>2y 0. (5) 

For the initial conditions y ~ y — 0 at ^ = 0, it follows that 

y — 6“^^ cos (6) 

is an approximate solution of (1). Since A^ from (3) we 

O) (o+36yge-2*74)i, (7) 

SO a> a* as ^ 

The behaviour of the system may be considered qualitatively when 

K is too large for (6) to hold. Suppose that the motion is oscillatory at 

the start with byl ^ ay^. When the amplitude decreases to a value y, 

say, the subsequent motion will be non-oscillatory, and y -> 0 mono- 

tonically as if -> +oo. For a still larger /c, if the control {(iy-\-by^) is 

inadequate to promote oscillation, y -> 0 monotonically from the start. 

If we change the signs of k and 6, (6), (7) become, respectively. 

y — y^e*^^ Go^cx)t, 

OJ {a—Sbyle^'^^j4:)^, 

Hence as t increases from zero, the amplitude builds up, but the rate 

of oscillation decreases by virtue of the decrease in stiffness with 

increase in amplitude. The function ay—by^ has a zero value when 

y = (a/6)^, so to avoid instability, y^e^^ < (a/b)^ in (8), (9). 

Equation (1) may be solved more accurately using the perturbation 

method exemplified in §§ 4.110, 4.131, and this is left as an exercise for 

the reader. 

3.180. The elastica. In the linear theory of elasticity it is assumed 

that (1) stress is proportional to strain, i.e. Hooke’s law is obeyed; 

(2) the deflexions are small so that in the formulae for the strain, 

squares and products of the deflexions and their derivatives may be 

neglected. The elastica is a thin strut deflected beyond the Euler 
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critical or buckling load. Here assumption (1) is maintained, but (2) 

is not. Consequently the differential equation for the strut is a non¬ 
linear type. 

In Fig. 7 A the axis of the strut CDEF is bent in the plane of the 

Fig. 7. a. Schematic diagram for the elastica CEF. c, d. Bent form 
of elastica. 

paper as shown, by two equal but opposite forces P acting along the 

axis OX, Let 

I ~ axial length of strut assumed constant, 

P = forces applied along the axis OX as in Fig. 7 a, 

s = arc length measured from C, 

0, 0 = angles of tangent to strut at C, and D, respectively, 

y — ordinate at D, 

B ~ El == flexural rigidity, 

/ = moment of inertia of cross-section, 

E — modulus of elasticity. 

The differential equation is [206] 

Bdd 
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with a ~ P/B, From Fig. 7 b, dy/ds = sin 0, so (2) becomes 

^+asin0=O, (3) 

which is identical with (3), § 3.160 if we write s for t. Consequently 

we take (10), § 3.160, and make this change, so 

ds = ~rf9/al(l—Psin2(p)i. (4) 

At C in Fig. 1 A, y = 0, ip 0, so 90 Itt, while at any point on the 

strut between G and E, 9^^ ™ sin~^(sini6/sin^^) by virtue of the 

substitutions in § 3.160. Also 

, ,, cos iO dO 

2k cos 9 ds 

which is negative since 0 decreases with increase in s. Hence the 

negative sign in (4) is correct. Then 

s ~~ ~a~l J c/9/(l—Z:-801^9)1 

in 
r i'rr 

=“-*[/-] 

= (7) 

where, as usual, F represents an elliptic integral of the first kind. 

When <pi = 0 at i^, (7) gives 

I = 2a-iF(k, in). (8) 

3.181. Maximum deflexion ^max* From (1), §3.180, and 

§ Ide 1 . 
y —-- = -2a*A:cos9, 

a ds a 

(8). 

(1) 

= 2ka-^ coscp. 

When 9 = 0, = 2ka-i = MjFik, in). 

(2) 

(3) 

3.182. Relationship between load and maximum deflexion. 
When the strut is about to buckle, ifi = 0, k = 0, — 0. Then in 

(8), § 3.180, F = in, so taking a = PJB, the Euler critical load is 

given by the well-known formula 

Pa = n^BIF lOP/P. (1) 

Writing (8^ § 3.180, in the form 

P = 4PPVP, (2) 
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i.e. in effect between load and contraction [206]. The curved nature 

of the graph is accounted for by (3), § 3.180, being a non-linear 

equation. 

3.19. Solve dhjjdx^-\-2ay\\-\-{dyldx)^'\^ — 0. (1) 

Put V = dyjdx and (1) becomes 

—+ 2ay(14-?;2)i = 0, (2) 

so 
j* V dv 

2a J ydy-\-A, (3) 

and, therefore. —ay'^^A. (4) 

Thus 7;2 ~ [A-ay’^Y- -1 (6) 

1 1 II (6) 

where ai+jSf = 2a^/(^^--l), andafj6f ~ From (6)weget 

* = J (7) 
0 

having arbitrarily chosen the positive sign, and taken y — (0, y^) as 

the limits in the integral. 

Write u oL-^y and (7) becomes 

OLxVl 

X = ^ J rfM/[(l-«^)(l-«*8in2Q£)P+^, (8) 

^ 0 

where sin a = < 1. 

Let u — sin(/f, then du = dijj, so (8) may be expressed in 

the form ^ 

== J (9) 
0 

with ociyi — sin9, and i: = sina. A, B are constants of integration. 

3.20. Solve g_^(l + 12y2) = 0. (1) 

Write V = dyjdx, dx = dyjv, and (1) becomes 

V dv 

dy 
1(1+ (2) 
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so J vdv ^ (1+I2y2) dy+lA, (3) 

giving (4) 

Thus ^ =z w = (4y3+y+.4)l, (5) 

from which we get 

X+B j dy/{i9/-\-y-\-A)K (6) 

We shall now express the solution in terms of the Weierstrassian 

elliptic function p{u) defined by the following integral [173] 
00 

«= J dyli^^y^-g^y-g^f, or y = g){u,g^,g^). (7) 
p(u) 

<72, gfg are called the invariants of §){u). The expansion for p(u) in 

terms of the invariants is 

!73M’ 

1200"'“ 6160 .(8) 

To express (6) in terms of p we have g^ 

Then 

--A,u = (x+B). 

y == p{x+B,—l,—A) (0) 

whose expansion may be obtained from (8). If in (1) the term —| is 

(By omitted, we get 

dx'^ 
= 0. (10) 

Thus in (6) the coefficient of y is zero, so g^^ — 0, and the solution is 

y =■= ^(x+JS,0, —(11) 

3.21. Solve 
d^y , 2 jj + 4y-«-y = C, (1) 

where a and c are positive non-zero constants. 

First we transform the equation to eliminate the term 4?/, by writing 

y = [w-\-2a). Then 

+ 4(w-l-2a)-(w2-f-4wa+4o^) = c, (2) 
dx^ a 

or 
d^w 

dx^ 
— = (c-4a) 
a 

= b. 

Writing v — dwjdx yields 
V dv 

~dw 

(3) 

(4) 
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so j V dv = f /fe-f— (5) 

2 2^3 
and, therefore, ^ + + - —, 

o (t (6) 

or (7) 

with <72 = — 12a6, <73 ^ --6<2^. Hence choosing the positive sign, 

173)^ (8) 

so j dwjiAw'^-g.^w—g^f = (9) 

and, therefore, w ~ p(«,?2..73)- (10) 

Since y = w-\-2a, the solution is given by 

y p(M,!72»<73)+2a, (11) 

A and B being constants of integration. 



CHAPTER IV 

EQUATIONS HAVING PERIODIC SOLUTIONS 

4.10. Self-oscillatory thermionic valve circuit. This is shown 

schematically in Fig. 9 A, but the applied potential difference 

cos(a)<-f <p) 

is replaced by a short circuit. The sum of the potential differences 

Fig. 9. a. Circuit diagram for thermionic valve oscillator, with oscillatory circuit 
between grid and cathode, together with ‘driving’ potential difference jE?(,cos(ajf+9) 
applied in series therewith, b. Assumed cubical-parabolic relation between anode 
current and grid potential. The working part of the curve lies between F and Q; 
O is the centre of oscillation. The ‘actual ’ curve beyond F, Q takes the form indicated 
by the broken lines, i.e. the current tends to zero at P, and to a saturation value at Q. 

round the grid circuit must vanish, so in the absence of grid current 

the differential equation is 

The sign of M is minus, this being a known condition for self-oscillation. 

Assume that the anode current is given by 

= a[E,-El/3EI], {2)t 

where a is the transconductance of the valve, and Eg is the grid 

potential corresponding to the anode saturation current. The 

t This relationship applies when the grid potential is adjusted so that the valve 
operates about the point of inflexion of the curve (see Fig. 9 b). Otherwise a term in 

must be included. (5) then takes the form y-~b{l~~y^ — biy*)y~\-ay ~ 0, which 
introduces unnecessary complication into the analysis. 
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relationship at (2) is shown graphically in Fig. 9 b. If we write 

— u, since Eg ^ (1/(7) J I dt, (I) becomes 

LCE,iL^RCE,u+E,u-aME,]^-Y^^'>^ = 0, (3) 

or 
dt 

(4) 

with 

U “ 

a = IjLC, b = {aMILC)-(RIL), c == aMlZLC. 

{bl3c)hj, (4) takes the form [122] 

Writing 

y—b{l—y^)y+ay = 0. (5) 

Replacing t by a-H, and a-^b by 6, (5) becomes 

y~e{l~y^)y+y == 0. (6) 

For a sustained self-oscillation, in (4) we must have b > 0 (see (8), 

§4.311 where \Aq\ > 0), 

so aMjLC > RIL, (7) 

or M > CR/a. (8) 

Thus the mutual inductance between the grid and anode coils must 

exceed a certain critical value. 

The factor —6(1—represents the damping coefficient, which 

alternates in sign during the steady oscillatory state. When positive, 

energy is dissipated in the circuit, but when negative, energy is 

supplied from the external source and compensates exactly for the 

loss, since the motion is periodic. If in (5) a'-^b I, as shown below 

y 2 sin ojq t, where ojq — a^, which gives 

—h(l—y^) —-6(2cos26^0^—1), 

so the damping changes sign at twice the frequency of the steady 

oscillation. When M is increased sufficiently to make 1 the 

circuit exhibits relaxation oscillations (see Fig. 63), which will be 

considered later. At the moment we shall take 0 < a-^b 1, and 

obtain an approximate periodic solution of (5). 

Let y AsinajQtj then substituting into (5), multiplying by 

cosojqt and integrating from ^ = 0 to 27r/wo, with iff — coqI, we get 

277-/ct>o 27r/a>o 

—Ao}\ j sin i/j cos «/f dt—coq bA J 
0 0 

27r/coo 

+aA f sin i/i cos tpdt = 0. (9) 
n 
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The first and third integrals vanish, and the second may be written 

—(x}^^bA 

2Tr/£Oo 

/(■ 
-M7t(1-^V4). (10) 

For this to vanish, we must have ^ — 2. 

Repeating the above procedure but multiplying by sincoQ^, we 

obtain 
27r/cuo 27r/a>o 

~Awq J dt~cx)QbA J (l-~A^ sin Ip dt A- 
0 0 

27r/a>o 
-{■aA J wi^xp dt = 0. (11) 

0 

The middle integral vanishes, the first and third giving 

—A<jL>Q7rja)Q-jraA7rJtOQ ~ 0, (12) 

so coq ^ a (13) 

is a rough approximation. Hence we obtain the approximate periodic 

solution rt • u /i^\ y -= 2sma®L (14) 

Alternative method, of determining A, In (6) write v ~ dyjdt and it 

becomes V dvldy—€{l —y^)v-\-y = 0. 

The steady motion has peiiod 2'tt nearly, so 

277 277 277 

J V dv—€ J {l—y^)v dy-\- \ y dy 0, 

(15) 

(16) 
0 0 

The first and third integrals vanish by virtue of periodicity, so with 

dy = V dt, y — A sin^, (16) gives 

277 277 

€ J {l—y^)v^dt — €A^ j (1—^®sin2^)cos^^ — 0. (17) 
0 0 

Hence nil-A^li) - 0, so .4 2, (18) 

as before. The physical meaning of (17) is that over a period 277 the 

energy loss due to circuital damping is equal to the energy obtained 

from the unidirectional supply source, the valve acting as an auto¬ 

matic regulator. 

4.110. Perturbation method applied to (5), § 4.10. We employ 

this method, which was used extensively by Lindstedt and Poincar6 

for the solution of perturbation problems in celestial mechanics, to 
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obtain a better approximation than (14), § 4.10 [90, 193]. Assume 
that the periodic solution may be expressed in the form 

y == 2/o+^yi+fcV2+- (1) 

where t/o? continuous twice-differentiable functions of t to be 
determined, and 0 < 6 1 is the perturbation parameter. Also let 

a — ocQ-{-bix^-\-b^oL2-\-(2) 

^0, being constants to be determined. We shall take the initial 
conditions y(0) -- 0, y(0) OJqA, 

Since these are to hold for 0 < 6 < b^, it follows that 

2/oW 2/i(0) -= ... =- 0, y^iO) = (xjqA, y^{0) - ^2(0) - ... 0. 

Substituting (1), (2) into (5), § 4.10, leads to 

(1-2/2) ^ (^i_y2)_2by,,yi~b%yl + 2yQy^)-..., 

-6(1-2/2)2/ z= ^by^{\-ijl)-b\y^{\-yl)-2y^y 

y = yo+^2/i+6^y2+-; 

ay = a:o2/o4"^(^i2/o+^o2/i)+^^('^o2/2+^22/o+^i?/i) + **-* (^) 

Equating coefficients of 6^ to zero for r = 0,1,2,..., w^e obtain 

6"; yo+«oyo = (■*) 

so 2/0 “ -40 sin a>Q cos coq t, (5) 

with olq coq. Since 2/o(0) = 0, y^ ~ cjq A, it follows that Bq ~ 0, 
Aq = A, so with i/j — cdqI, 

«/o = 4sin^. (6) 

b- yi+o^oVi = -ai2/o+2/o( 1-2/0) 0) 
= —A sini/f~[-Aa>QCosi/f(l—A2sin2j/f) (8) 

= — A sin(/f-|-AcuQ(l — JA^)cos</f+iA^ajoCos 3(/r. (9) 

The particular integrals of (9) corresponding to the terms in sinj/r, 
cos tp take the non-periodic form t cos ip, t sin ip, respectively. Since the 
solution is to be periodic, it follows that the coefficients of sin ip, cos ip 
must vanish independently. Hence 

= 0, A = 2, (10) 

SO y^ — 2 sin ifi. (11) 
Thus (9) becomes 

yi+o^oVi = 2wocos3^, (12) 
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of which the complete solution is 

— ^isin</t+jBjCosi/r—(l/4a>o)cos3i/t, (13) 

and since ^/^(O) = 2/i(0) = 0, we find that = 0, — Ificog. 

«/l — (l/46t>g)(C0Si/r —cos3^). (14) 
Thus we have 

fA: l/2+<Xo^2 “(a22/o+“ij'/i)+2/i(l—2/o) —2i/o2/o2/i- (15) 

Substituting from (11), (14) into the right-hand side of (15) gives 

^2+«o2/2 '“2a2siiii/^ + ( — |sini/r4-|sin3i//)(l--4sin2j/f)--- 

—sin 2^(cos^—cos3^), (16) 

— — (2Gt2“-]:)sin(/^--| sin 30-l-|sin 5i/f. (17) 

Since the solution is to be periodic, the coefficient of sini// must 

vanish, so 

Then (17) becomes 

?h + ^o?/2 —|sin3i/r-f ^sin5i/f, (19) 

of which the complete solution is 

1/8. (18) 

2/2 

Since 9/2(0) = 

therefore. 

3 5 
./I2 0+^2 ^ "1-2 ~~ " ‘'' 2 UojI 

2/2(0) = 0, we find that ylg 

(20) 

29/y6wg, Bg = 0, and, 

2!) 3 

OGcoq 
sin 5ifj. (21) 

Whence from (1), (11), (14), (21), to the second order in 5, the solution 

y = yo+by^-^b^y^, (22) 
of (5), §4.10, is 

U(2 ^ sint/f + (cosi/r—cos Zijj) + - —— (3 sin 3i/r—| sin 5i/f). 
4ajQ 16cl>5 

I 

OGcoq/ 
(23) 

Also by (2), (10), (18), to order two in 6, 

(24) 

so coq c:::i a^(\—b-ll0a). (25) 

From (23), (25) it is evident that when b is small enough and a large 

enough, the approximate solution (14), §4.10, is satisfactory. (25) 

shows that the influence of damping is to reduce the angular frequency 

of the oscillation by a small amount. In this respect it is of interest to 

compare (25) with the angular frequency obtained from the linear 

equation y^^yj^ay = 0. (26) 
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Here = (a—(27) 

so cdq 0:^ a^{l—b^/Sa). (28) 

The reduction in ojq due to damping in (28) is twice that in (25). 

It should be observed that the method of solution is one where 

successive approximations are found by solving linear differential 

equations, such that the initial conditions are satisfied. 

4.1 IL Remarks on amplitude limitation. Writing 6y for y in 

(5), § 4.10, 0 being a real constant, we obtain 

y~~b{l—ehj^)y+ay ^ 0. (1) 

Thus (5), § 4.10, is reproduced only if j0| ™ 1. It follows, therefore, 

that the solution of this non-linear differential equation cannot be 

multiplied by an arbitrary constant For given a, 6, the coefficients 

of the various terms in the solution are unique. When the differential 

equation has the form (5), § 4.10, the amphtude of the fundamental 

oscillation is nearly 2, 0 < a-^b <0*1. If the equation were (1) 

above, the solution would be (23), § 4.110, multiplied by 0. (1) may 

be derived from (4), § 4.10, by writing 6^ — 3c/b, 

Amplitude limitation may also be considered in the following way. 

During growth, when the amplitude is small, the c term in (4), § 4.10, 

is negligible, so the equation becomes 

il~bu-\-au == 0. (2) 

The solution of (2) takes the form e^^^sin(a)^-f 0), with co = {d—lb^)^. 

Under this condition the anode current-grid potential relationship 

is hnear. Moreover, a linear characteristic of unlimited 

extent would entail an amplitude which oo as ^ -\-oOy by virtue 

of the negative resistance property of the valve. Owing to curvature 

of the characteristic (Fig. 9 b), amplitude limitation occurs. By 

aid of the differential equations (4), (5), § 4.10, we see that non-linear 

damping represented by the term by^y is introduced as a consequence 

of the curved characteristic. Thus stabilization is effected by the 

inherent non-linear property of the valve. 

Frequently if a system, electrical, mechanical, etc., is unstable, it 

may be stabilized by introducing some form of non-linear element, 

e.g. the systems described in §§7.13, 7.14, 7.420, 7.422 where the 

damping is non-linear. The action of a non-linear spring-control 

element in a mechanical system may be compared with the detuning 
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of a resonant mass-spring arrangement, when either the mass or the 

spring stiffness varies with amphtude, e.g. §§ 7.20-7.22, 7.410. 

4.12. Self-oscillations with electric motor-generator com¬ 
bination. The schematic diagram of Fig. 10 a shows an electric 

motor with separately excited field, coupled mechanically and 

electrically to a dynamo having a series field. If I is the circuital 

(A) 
generator motor 

E(non'linearj Go; 

Fig. 10. A. Schematic diagram of series-wound D.C. generator and 
separately excited D.C. motor, b. Circuit diagram for a. 

current, the potential difference at the generator terminals is approxi- 

E^OLyl-OL^P, (1) 

cxg being positive constants. Since the sum of the potential differ¬ 

ences round a closed circuit is zero, we must have 

Ldl\dt-^El^Go^-E ^ 0, (2) 

where R are the total circuit inductance and resistance, respec¬ 

tively, and 0 is the back e.m.f. at the motor terminals per unit angular 

velocity co. Inserting (1) in (2) and differentiating with respect to t 

gives 
LdUldt^-{oi^-R) dljdt+oc^ d{P)ldt-^Q dcojdt - 0. (3) 

Apart from ohmic loss, the power to the motor is the product of back 

e.m.f. and current, i.e. Gcol, In absence of mechanical loss, this is 

equal to the rate of change of the kinetic energy of the rotating system. 

Thus if I is the moment of inertia, 

(4) 

doijdt = OI/i: so (5) 
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Substituting from (5) into the last term of (3), and dividing throughout 

by L, yields the equation 

l-ht^cd{P)ldt-\-al = 0, (6) 
witha = G’^jlL.b = {a^—R)jL,c ~ ocJL, (6) is identical in form with 

(4), § 4.10, for a thermionic valve circuit. Hence if 6 > 0, i.e. > R, 

the system will be self-oscillatory, but non-oscillatory if cx^ < R. 

When the former condition is satisfied, the motor-generator combina¬ 

tion rotates periodically in each direction. For a relaxation type 

oscillation (sudden reversal),f h must be large enough and a small 

enough. 

4.130. Solve y+(^y+by^ 0 (a > 0, b > 0). (1) 

This equation pertains to an undamped mass-spring system (see 

Fig. 2) in which the spring controlj takes the asymmetrical form 

ay-\-hy^, illustrated in Fig. 11a. If the spring is extended and the 

mass released, the ensuing motion is periodic. We write (1) in the form 

y+to~i/ {co^—iol)y—by^ (cog -= a) (2) 

and use the method of successive approximation (iteration). First 

we assume the right-hand side to be negligible, so with iff = wt, the 

complete solution is 

y = A^e^o^i}f-\- (3) 

Taking the initial conditions y ~ y^, y 0, we obtain the first 

approximation y = 2/„cos^. (4) 

Substituting this in the right-hand side of (2) yields 

y+ix)^y -- (ai2—c<j§)yocos(/r—i6yg(l+cos2vi). (5) 

Since the solution is to be periodic, the coefficient of cos0 must 

’ = C05 = a. (6) 

The complete solution of (5) is, therefore, 

y = ^cos0-l-£sin^+^cos2^ — ^. (7) 

t A relaxation oscillation is a self-excited type in which a physical quantity, e.g. 
current, velocity, alternates abruptly between two levels, where it remains approxi¬ 
mately constant for a relatively long time. This is illustrated by the curve in Fig. 63. 

t As in § 3.10, (1) is a suitable form for the equation md^yldt^-\-s^y-\-82y^ = 0, 
with a ~ Si/m, b — sjm. Although the actual spring control is s^y-j-s^y^, it is con¬ 
venient in analytical work to refer to ay-}-by^ as the spring control, and this is done 
throughout the text. It is the control corresponding to unit mass. 
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Now y y = 0, a>t t so it follows that 

= (2/o+^.Vo/3<^^)> and i? == 0. (8) 

Hence y =(yo+%o/3<w^)cosw^+ cos 2co< (9) 

with oj^ — cjq = a. If byj^a 1, the coefficient of cos2aj^ will be 

Fia. 11. A. Asymmetrical curve showing com¬ 
bination of linear and parabolic spring controls 
ay, hy"^, respectively: ay -f- by^ is neither an odd 
nor an even function of y, n. S tiff ness-dis- 

])lacement curve for case (A). 

small in comparison witli that of coscuL The remark at the end of 

§ 4.110 regarding the solution of linear differential equations applies 

here also. 

The constant term {—by\l2a) implies that the central point about 

which the oscillation occurs is displaced by this amount. In the 

language of the radio engineer, there is a rectification effect, since in an 

electrical circuit {~byll2a) would correspond to a unidirectional 

current. In §§ 3.111, 3.14 we found that, in the non-linear system 

considered, the frequency of the oscillation was dependent upon the 

amplitude, whereas in (6) tliis is not so, since in our first approxi¬ 

mation we neglected the term in b. We shall, therefore, obtain a 

better approximate value of co/27r using the method of perturbation. 
6077 
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4.131. More accurate solution of (1), §4.130. Let 

y = yo+ftyi+%2+- (1) 

and a — ,,, (2) 

with initial conditions y Ay ?/ — 0. From these it follows as in 
§ 4.110 that 

2/o(0) Ay 2/i(0) == 2/2W == ^ 2/o(^>) = VM = - 0. 

Substituting for y and a from (1), (2) into the differential equation, 
we get 

-^byl-\-2bhjQy^+b^(yl+2yQy^)... -- 0. (3) 

Equating the coefficients of 6*^,6,6^... to zero, we have 

= 0, (4) 

SO y^ ~ AGO^w^l'y (5) 

b-. yi-\-<^lyi=-{^\yo-]ryl) (6) 

— —[i.42-f cof^ costt>o/-l-^^2(>os2a)Q/], (7) 

by (5). To avoid a non-periodic term in the particular integral, we 
must have oif = 0, so the complete solution of (7) is 

^2 j[2 
=---f~^^COSa»Q/+ 2(jDnt. 

2aig 

With the above initial conditions, we find that 

A^ ~ A^j3(jo\ o> J8i — 0, 

so 2/i(^Vco2)[ —^ + Jcosaio/+^cos2a;o/]. 

^2 + ^o2/2 == -K2/i + C^22/o+%o2/i) 

(«) 

(9) 

(10) 

(11) 
[J3 J3 
g^~l“-4(aj| 5^^/6coq)cos Wq /cos 2ajQ/-j- 

J3 1 
+ —(12) 

To avoid a non-periodic term in the particular integral of (12), the 

coefficient of coswq^ must vanish, so 

oif = 5A^jGuil (13) 

Then the complete solution of (12) is 

11 A^ 
Vz = —^2Coswo<-|-.B2sina)o<+- — cos2a)o< + —-tCOsSojoL 

ocoj a oig 48 cog 
(14) 



§ 4.131 EQUATIONS HAVING PERIODIC SOLUTIONS 61 

Using the initial conditions above, we obtain 

A2 = 29A^ 114:4:00^, and = 0. (15) 

Hence by (1), (5), (10), (14), (15) to the second order in 6, the solution 

of (1),§ 4.130, is 

y = -[(6^V2a)g) + (5M3/3cog)]+ 

+[A + {bA^/3c^l)+{2%^A^/l44cot)] cosaj^t+ 

+ [(6^7^^o) + (^^'^^/^ujJ)]cos 2wQt-\-(b^A^/4ScL)^)cos (16) 

So long as .4 ^ bA^/Qa)Q, i.e. bAj^a 1, the second and third har¬ 

monics will be small in comparison with the fundamental. Also by 

(2), (13), since w\ ^ 0, to the second order in b 

0,1 = (a-562A2/6a>g). (17) 

If a ^ 56M766l»o, we obtain 

0)0 ai(l-552A2/12a2). (18) 

It follows from (18) that the frequency decreases with increase in 

amplitude, which is just the opposite to the result in § 3.14. At first 

sight the term in the equation might be expected to ensure an 

increase in the spring control with increase in amplitude. The stiff¬ 

ness, however, is {dldy){ay-\-by^) — a-^^by (see § 3.111 and Fig. 11 b), 

so it increases and decreases by equal amounts for ±2/. But the oscil¬ 

lation centre is now at the point defined by the constant term in (16), 

so the effective decrease in control exceeds numerically the increase, 

as the amplitude increases (see Fig. 11a). Thus the frequency 

reduction is explained by the ‘rectification’ effect. Referring to 

Fig. 11a, the two spring control terms ay, by^ are plotted separately 

and collectively (QFll). For the latter curve, we see that the oscilla¬ 

tion centre moves to the negative side of 0, where the slope is less 

than that at 0. Also |c| increases with increase in A owing to the 

curve QPR being asymmetrical. Thus coq decreases with increase in 

A. For a spring control ay-\~by^, the stiffness is {a+3by^) and increases 

with increase in y, whether di> i-^- if is an even function of y (see 

Fig, 12 0). The graph of ay-\-by^ is anti-symmetrical, so cdq increases 

with increase in amplitude. The minimum ordinate in Fig. 11 A 

occurs when y = —a/26, and for stabihty the negative swing must be 

less than —a/6, i.e. it/minl < ^1^- 
It is apposite to remark in connexion with the foregoing analysis 

that a tone of double frequency (the octave) is audible when a tuning- 
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fork vibrates with a large amplitude. As the latter decreases, the 

pitch of the fundamental tone rises. This is in accord with the analysis. 

Example. The reader should solve (1), § 3.10, by the perturbation 

method using the initial conditions y = A, y 0, The result to order 

three in b is: 

bA^ bU^ h^A’^ \ 
----J. cos CUa ^ + 
32w§ 256wJ 32768a)|/ ® 

36M7 \ 

32768a>®j 
cos 3aJo<-(- 

with 

'^\l024wj 

36M’ \ 

32768<o«j 
cos OCti01 

32768a)g 
COS 7ciJq t. 

a+lbA^ 
36M^ 

^ 128« 

2WA^ 
1024a2' 

(19) 

(20) 

4.132. Effect of viscous damping. The equation to be solved is 

ijA-^Ky+ay-^by^ = 0. (1) 

Write y — e~'^‘u{t), and we get 

■ii+(a—= 0. (2) 

If K is small enough, by § 4.131, writing be~‘^‘ for b, and oj^ for (a—k*), 

an approximate solution of (1) is 

L M 

bA^e-xi / 1 bA^e-'<i\ ^ , 1 6^26"'' „ 

2-i;r+(^+3 -zrn«-^r 0^ • 

(3) 

When t == 0,y = A,7j — —kA which is small enough to be neglected. 

A better approximate solution of (1) may be obtained using the per¬ 

turbation method. This is left as an exercise for the reader. 

4.140. Solve 

y+(^y+by^ ==f coscvt (a > 0,b ^ 0). (1) 

This is the equation for a loss-free mass-spring system, with control 

proportional to ay-{-by^, driven by a force/cosco^ as shown schemati¬ 

cally in Fig. 12 a. The inevitable transient follows the application 

of the driving force at ^ = 0, but we may suppose that there is sufficient 

damping to extinguish this and enable the periodic state to be attained 

after a short time interval. The damping is supposed to be small 

enough to have negligible influence on the amplitude of the motion. 

When a, b, co, / have appropriate values, a subharmonic of 
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l^undisturbcd position 

(A) 

Fig. 12. a. Schematic diagram of mass m and non-linear 
spring s, driven by an alternating force fcoBoit. b. Anti- 
symmetrical curve showing combination of linear and 
cubical springs ay, hy^, respectively. The restoring force is 
an odd function of y. c. Stiffness-displacement curve for 

case b: a-fSfty® is an even function of y. 

frequency co/Btt occurs. This aspect is considered in § 4.190 et soq. 

For the time being we shall assume that the conditions for the 

existence of a subharmonic are not satisfied. In analytical work 

herein, it is tacitly presumed that the reaction of the system on the 
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driving agent may be neglected. Thus the amplitude and functional 

form of the appUed force is invariable. 

For a periodic solution we may assume a Fourier series. Since 

ay-\-by^ is an odd function of y, the corresponding force-displacement 

graph in Fig. 12 B is anti-symmetrical about the force axis. It follows 

that the solution may take the form 

y = ^iCOS0+J[3OOs3^+^5CO8 5i/f+..., (2) 

(3) 

where ifj — a>t. We shall restrict ourselves to two terms in (2). Sub¬ 

stituting into (1), we get 

y ~ —a>2(x4j^COS0+9^3COS3^) 

ay — COS ^+-^13^^08 30) 

by^ = 6[J^f(3cos0+cos30) + 

^3(cos0+2 cos 30+cos 50)-f 

+ 1^1 Al{2 cos 0+cos 50+cos 70) + 

+ ^+3(3 cos 30+cos 90) J. 

Equating the coefficients of cos0 on each side of (1), by aid of (3), we 

have (a-co^+ibAl)A,+lbAlA,+lbA,Al=f, (4) 

or 0,2 = (a+lbAl-f/AMbAl^^ + 2l^^Jj. (5) 

This may be regarded as an approximation to the amplitude-frequency 

relation. 

For the coefficient of cos 30, we obtain 

(a-9co2)^3+J6+?+t6+f+3+|6+i == 0, (6) 

so A^ = lbA\l{^oj^--a-~lbA\~lbAl), (7) 

In (5) assume I+3/+1I 1, so that we may neglect the third member. 

Then co^ = (a+ibAf-f/Ai), (8) 

a condition which must be satisfied (approximately) for the solution of 

(1) to be periodic. Iff and Aj^ are fixed, co is given by (8). For fixed 

oj and /, the amplitude of the fundamental vibration may be ascer¬ 

tained if (8) is written in the form 

ibAf+(a—co^)Ai—f= 0. (9) 

If 6 — 0, we obtain the well-known formula for a linear system, 

=//(a-a>2). (10) 
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(9) is a cubic equation for which will, therefore, for fixed a, 

have three values: (i) all real, (ii) one real, two complex conjugate. 

The consequences of being multivalued will be discussed later. 

Next we consider (7). Substituting therein for from (8), and 

neglecting \bA\, leads to 

A^ = bA\l{z2a-\-2\bA\ — ^'^. (11) 

Thus A^jA^ l/[21+{32a-36//^,}/Mfj, (12) 

so |J3/^j|<l, if |21 + (32«-36//^i)/6^f| > 1, (13) 

which includes the two cases 6 > 0, 6 < 0. Hence if (13) is satisfied, 

the forced motion of the system is nearly cosinusoidal, the displacement 

of the fundamental being in phase with the driving force. In the fore¬ 

going procedure, the non-linear equation is solved directly, whereas 

the methods of iteration and perturbation entail the solution of linear 

differential equations. 

4.141. Energy considerations. Writing v 

takes the form 

so 

-^dyjdt, (1), §4.140, 

V dvjdy -4- ay -f by^ = f cos cot, (1) 

J V dv-\ a j y dy-{'b j y^ dy ~ f ^ cos cot dy, (2) 

By (2), §4.140, 

dy--- -~6o(^liSin^H-3^3sin30+...) (3) 

Substituting (3) into the right-hand side of (2), and integrating over a 

period t = (0, ^ttIco), the left-hand side vanishes by virtue of periodi¬ 

city, and the right-hand side by Aurtue of orthogonality of the circular 

functions. Hence during steady motion, no energy is supplied to the 

system from the driving mechanism, as we should expect, since there 

is no dissipation. 

4.142. Equivalent linear differential equation. By virtue of the 

motion being almost simple harmonic, the original equation may be 

replaced by what may be regarded as an equivalent linear approxima¬ 

tion. Then by (8) § 4.140, if is negligible, we have 

=/cosa>^ (1) 

the particular integral being 

y f cos cot I {a-\-lb Al—co^) = (2) 

4.15. Experimental illustration of analysis in § 4.140 [92]. The 

apparatus shown schematically in Fig. 13 a, b has been used to obtain 
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wave forms for a system akin to one represented symbolically by 

(1), § 4.140. A beam is mounted on a fulcrum so that oscillation occurs 

about the latter in a vertical plane. The mechanical construction is 

such as to reduce friction to a small amount. One end of the beam 

is constrained by a non-linear type of spring while a mass m rotates at 

Fia. 13. A. Schematic diagram of apparatus for investigating system with non-linear 
restoring force, b. Plan view of apparatus. 

radius r with angular velocity w about the other end of the beam, 

thereby causing imbalance. If I is the moment of inertia of the oscil¬ 

lating parts about the fulcrum, f{6) the spring-control torque, I the 

distance of the centre of rotation of m from the fulcrum, the equation 

of motion is 
I = Z(mcoVcoscu^), (1) 

where —m(a)VcoscuZ) is the accelerational force due to the rotation 

of m, and the right-hand side of (1) the corresponding driving torque. 

The motion of the lever was recorded photographically, and a record is 

reproduced in Fig. 14. The torque-deflexion curve/(0) for the spring 

is depicted in Fig. 15, being such that/{0) — —i.e. it is an odd 
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t • • • ♦ 
0 1 

• • ••<»«••••••• • 
\o sec. 

Fia. 14. Record of wave form obtained from apparatus in Fig. 13 
using load-deflexion curve of Fig. 16. 

Fig. 15. Load-deflexion curve pertaining to Fig. 14. 

function of 9, and the curve is anti-synimetrical about the torque 

axis. Despite appreciable departure from linearity everywhere in 

Fig. 15, the wave form in Fig. 14 is almost a simple harmonic type. 

4.16. Amplitude-frequency relation for 

y+2Ky+ay+by^ ^ fG08{ojt+(f). 

This equation is for a dynamical system of the type considered in 

§4.140, but with a term 2/cy representing viscous damping. The 
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driving force will now be out of phase with the displacement corre¬ 

sponding to the fundamental vibration, so to simplify the analysis we 

have introduced the constant phase angle 9. We may assume as an 

adequate approximation that with ip == wt 

y — ^iCOSj/f+^3COS3(/r. (1) 

Then ^Ky — 2aj/c(J[isin^+3^3sin3^), (2) 

while /cos(6o^+9) ™/(cos9Cosi/i—8in9sin^). (3) 

Using (2), (3), (3), § 4.140, and equating the coefficients of cosi/r, simp 

on each side of the above differential equation, we obtain 

= /cos<p I 

and 2co/cAi — /sin 9 

terms involving A^, Al being neglected by virtue of their relative 

smallness (see § 4.140). 

Squaring and adding, (4) yields 

[(a-co2+|6^2)2_,_4^2^2]^2 _ (5) 

which is the amplitude-frequency relation for the non-linear system 

with viscous damping. When k = 0, (5) degenerates to (8), § 4.140. 

4.170. Amplitude-frequency curves. These are obtained by 

plotting the relationship between cd and in (5), § 4.16, for given 

values of a, b, /c, and different values of /. The general trend of the 

curves will be gleaned from Figs. 16 a, b, c, which correspond to 

6 > 0, 6 < 0, and b = 0. The curve through co = a^, \Ai\ = 0, is 

given by (5), § 4.16, when f = k = 0, i.e. 

(1) 

and (2) 

It is evident from Figs. 16 a, b, c that the curves for 6 > or < 0 

correspond to those for 6 — 0 sheared over to the right or left, respec¬ 

tively. In Fig. 16 A with/ —/g, if co < co^, |^i| is single-valued so 

two roots of (5), § 4.16, are complex conjugate. If ^ co < cog, all 

the roots are real, and |^i| is triple-valued, there being coincident 

pairs at co^, <02. If cog < co, \Ai \ is again single-valued, and two roots 

are complex conjugate. The curves of Fig. 16 b may be considered 

similarly, but of course with the proviso that co > 0. When x — 0, 
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the amplitude-frequency relation is that at (8) or (9), § 4.140. The 

curves resemble those in Figs. 16 a, B except that they are not 

closed at their upper ends. They approach the curves (1), (2) for 

^ > 0) < 0- When to® ^ a, the amplitude-frequency curves for 6 > 0 

are asymptotic to the straight line [A^l = 2co/(36)^. 

Fig. 16. Amplitude-frequency curves for driven mass-spring system, with spring 
characteristic of the form ay-\-by^. For b <0 use |6| in formiilae. 

Jump phenomenon. Consider the mechanism of Fig. 13 whose 

motion is represented {mutatis mutandis) by the differential equation 

in § 4.16. Starting at P in Fig. 17 a with 6 > 0, let the frequency be 

increased gradually. The operating point will travel to Q, where 

drops suddenly to R and continues to move along to S with increase in 

o). From S suppose the frequency is decreased gradually. On reaching 

T, \A^\ jumps suddenly to U and then follows the curve down to P. 

Thus a form of hysteresis is exhibited. A similar behaviour is evinced 

when 6 < 0, as indicated in Fig. 17 b. Operation along TQ cannot be 

reahzed in practice, and the explanation is as follows: In Fig. 16 a 

there are three amplitude curves for forces > f2 > A- The point 

Pi lies on a curve A such that f2> > A- If ^ constant, an increase 
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Fig. 17 a, b. Diagrams illustrating ‘jump’ phenomenon in driven system having 
spring characteristic of the form ay-\-hy^. See [11] respecting b. 

Fig. 18. a. Load-deflexion curve pertaining to amplitude-frequency curve in Fig. 18 b. 
B. Amplitude-frequency curve obtained from apparatus of Fig. 13 using load- 

deflexion curve of Fig. 18 a. 

in/a entails anincreasein^i,8orf|^il/rf/ > 0, and the system is stable. 

But at Pg* constancy of co entails a decrease in \A^\ when/increases, 

so d\Ai\ldf < 0 and the system is unstable. 

Experimental illustration. Using the apparatus of Fig. 13, and a 

spring whose control-torque graph is shown in Fig. 18 a, the curve 

depicted in Fig. 18 b was obtained. The jump phenomenon is ex¬ 

hibited distinctly [92]. 
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4.171. Loci of vertical tangents in Figs. 16 a, b. The values of 

CO, \Ai\ for which the tangents of (5), § 4.16, are parallel to the |.4^| 

axis, satisfy dco/dAi ~ 0. Differentiating (5), § 4.10, with respect to 

A^, we get 

0, (1) 

2wco'Aj{4.K^--2{a-co^^+^bAl)}+3hAl{a-~aj^-+lbAl) + 2A ] - 0. 

If co' = = dcoldA-^ = 0, tiien (2) 

36+f(a-w2+|Mf)+2[(a- -a>2+|6+f)2+4/c2a,2] = 0, (3) 

so (a—tu^+ |Mf)[|6+f+(a- + = 0, (4) 

i.e. (fif—a»2+|Mf)(a—oi 2+»Mf) + 4/c2co2 = 0. (5) 

When K = 0, (5) gives 

a—w^+|7>+f — 0, or |+,| [(4/3/>)(a>2-ft.)]i, (6) 

and ft—a>2+®6+f = 0, or \A,\ = [(4/96)(a>2-ft)]i, (7) 

with b > 0. When b < 0, write (a~co^) for (a>- —a). The graphs 

corresponding to (6), (7) are marked accordingly in Figs. 10 a, B. 

There are no vertical tangents corresponding to the curve represented 

by (0), since the amplitudc-freqnency curves never cross it. However, 

we may consider the case to be that for /c -> 0 when the tangents exist. 

For K > 0, the graphs of (5) take the form of the broken line curves in 

Figs. 16 A, B. Referring back to § 4.170, we may infer that the region 

within the broken curve in Fig. 10a (also 10 b) is one where the motion 

of the system is unstable. This may be compared with the unstable 

region in Fig. 38 between 6j^ and which corresponds to equation 

(1),§7.10. 

4.18. Energy considerations. Proceeding as in § 4.141, we obtain 

J V dv-i~a j ^ d^-j-b j d^-j-2Kco^ j (Aj^sini//-j-3A^sin3i/f-i-...p dt 

~ —(ofj cos((/fd-?)(^isin(/r+3^3sin30+.,.) (1) 

Integrating over a period t — (0, 277/co), the first three integrals on the 

left-hand side of (1) vanish by virtue of periodicity. Thus 

27t/cd 

2/ccu^ ( {Aismtl/-\-SA^sin3ip+...}^ dt 
0 

2rr/ct> 

=z —ojf j cos(i/i4-9)(-4i sin 1/1+3^43 sin 30+...) (2) 
0 
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SO we obtain the relationship 

7rQ[a)Mf+(3w)M|+(5co)2^|+...] = vfA^sin^. (3) 

The expression on the left-hand side of (3) represents the work done 

in overcoming viscous loss per period. The right-hand side represents 

the energy supplied by the driving mechanism. Each term on the 

left-hand side represents the loss for the corresponding harmonic. 

The energy is supphed by the driving mechanism at the fundamental 

frequency a)/27r, since the only contribution from the right-hand side 

of (2) comes from the term involving (sini/f)‘^. This must be so from a 

physical viewpoint, since the driving force has no Iiigher harmonic 

components. 

Owing to the approximate nature of the analysis, the two sides of 

(3) are not equal. To demonstrate tliis, substitute sin 9 == 2coKAJf 

from (4), § 4.16, and we get 

for the left-hand side, and 
27Ta)KAi (5) 

for the right-hand side. Since [(2r4- lM2r+iMi]^ approxima¬ 

tion at (3) is in keeping with that in the rest of the analysis. 

4.190. Harmonic of order Under certain conditions a periodic 

solution of the differential equation 

y+ay+by^ = /cos wt {a, b,f >0) (1) 

has a term involving cosjco^. Since (1) is unaltered if (^+27i7r/a>) 

replaces t, it follows that if cos ^cot exists, so also do cosand 

cos ^(^^+477). Thus from a mathematical viewpoint, there are three 

subharmonics of order 3 having the same amplitude, but differing in 

phase by 27r/3 radians. 

The analysis given below does not prove the existence of a sub¬ 

harmonic. It is based on the hypothesis that (1) has a subharmonic 

solution if bja 1. An experimental demonstration for (1) with a 

small damping term 2/c?/, and 6/a^ 1, is reported in [92 b\ Moreover, 

it may happen that (2)-(6), (8), (9) are usable when 6/a is much larger 

than we have contemplated. 

As a first approximation we assume that 

y == A[|COs|a><-f^iCOscuL (2) 
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Substituting (2) into (1) and equating the coefficients of cos^cot, 

cos cat on each side, leads to 

{{a-\co^)^lb{A\^-A^A^^2Al)]A^ = 0, (3) 

and (a—= f. (4) 

Eliminating oj^ between (3), (4) gives 

^f~-Ji(2Uf+27^jJ,+r>U|+32a/i) ^ 4//6, (5) 

provided A^ ^ 0, for only then does the equation 

(a—\oj^)A'ih{A\-\-A^A^-\-2A\) ^ 0 (6) 

hold. When ~ 0, by (4) there is the single relationship (writing 

for A{) ^ 0. (7) 

(8) 

(9) 

(4), (6) must be compatible for the subharmonic to exist. 

Solving (6) for A^ gives the two values 

Since A^ must be real, it follows from (8) that 

0)2 > 9(a4-2L4f6/16), 

the equality sign corresponding to A^ ~ —lA^, when the subhar¬ 

monic starts. Substituting into (5), after reduction we obtain 

^iibAl+SaA,+f == 0, (10) 

which has only one real root, since a, b,f are positive. Neglecting the 

first term gives 

which is an adequate approximation if 

A\ < 256a/3436, or 0'02bfya^ < 1. (12) 

Inserting Af == — (//8a)^ into (10) and solving, yields the second 

approximation 

.// 
8a\ 

3436/2\ £ 
8a 

(l-0-026/2/a3), (13) 

which is the value when the subharmonic starts. Also 

w2 r- 9(a+216/2/1024a2), (14) 

80 u) ^ 3ai, provided 216/2/10240® 1. 

Using the equality sign in (9) and substituting into (7), we obtain 

the equation +/ = 0. (15) 
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From (10), (15) it follows that to the degree of approximation en¬ 

visaged, there is little alteration in when the subharmonic starts. 

The value of at (11) indicates that it is almost on curve 0 in Fig. 19. 

Solving (6) gives 

A, = (16) 

provided ^ 0. If in (5), (6) we put Aj^ — 0, 

9«)]l (17) 

Fio. 19. Curves showing amplitude of fundamental and J har¬ 
monic in the periodic solution of %+0-0r)(i/® = 2co8a>^. 
0 when ~ 0; (^) Aj, (J) A^ when A^ ^ 0. Wlien o) 4, 
Ai — OI\ and if co increases, |Ai| decreases until at R the sub- 
harmonic starts with cu Ctf 3al = 3V2. Thereafter A^ follows 
curve (J). 0 corresponds to the curve in Fig. 17 a to the right 

of Sf where Ai (not |Ai]) is negative. 

the negative sign being inadmissible, since (4) is not satisfied. When 

Ai = 0, and =::: (4//6)*, (6) gives 

a>2 = Qa+21(bf^l4)i, (18) 

and the solution of (1) is then 

y = (4:fib)i cos Icut. (19) 

These results enable us to obtain an equation which has a sub¬ 

harmonic solution A cos a)i. Writing 3co for a>, 4fjh = A^ in (18), gives 

a (oj'^—SfjA), so (1) becomes 

y+(co^--3f/A)y+4fy^jA^ =foos3ojt, (20) 

The other subharmonic solutions are^ cos(cu^+27r/3),^ cos(6u^-f 477/3). 

A similar equation is given in [27]. If 3/ — Aoj^, then A cos co^ is 

a subharmonic solution of 

y+(4co^/3A^)y^ == (Aca2/3)cos3coL (21) 
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4.191. Example. To illustrate the analysis in § 4.190, we take 
a = 2, b = 0*05, / ~ 2. When the subharmonic starts 

-//8a -= -0*125, and -^A^ 0*0625. (1) 

Using (9), § 4.190, we find that 

18*004, and a> == 4*24 3aK (2) 

Assigning values to A^, and using (5), (6), § 4.190, we obtain the data 
given in Table 2. These are exhibited graphically in Fig. 19. The 
graph corresponding to = 0 is inserted also. 

Table 2 

Data relating to J harmonic 

MiMil ix) 

0-0625 -0-125 0-5 4 24 
1-0000 -0-122 8-2 4-28 
4-0000 - - 0-0694 67-3 4-83 
5-43 1 0-0000 CO 6-29 

10-0000 0-24 41-6 7-25 

The relationship between and w is sensibly linear. An examina¬ 
tion of the case when 6 < 0 is left as an exercise for the reader. 

4.192. Effect of viscous damping. The differential equation is now 

y-\-2Ky-\-ay-^by^ =- fcosojt. (1) 

For a first approximation we assume that 

y ^ ^jcos |cu^+i?^sin |a>^+JiCOSa)^-f-BiSina>^ (2) 

= (J^cos{^cot—(^) 
In (3) 

— {A\-^B\)^, the amplitude of the subharmonie 
= {A\-\-B\)^, the amplitude of the fundamental 
= tan-i(J5|/A^), the phase angle of 

the subharmonic 
01 = tan“^(jSi/^i), the phase angle of 

the fimdamental 

Substituting either (2) or (3) into (1) and proceeding as in previous 
sections, we ultimately find that if 6 > 0, k 5? 0 are not too large, 
the I harmonic is present provided 

> 9(a+f^6Af)/(l-16/c2/36A|). (4) 

Referring to Fig. 19, curve ®, with k small, as cu increases beyond its 
value at R, the denominator of (4) increases due to reduction in 

6077 

due to viscous damp¬ 
ing; compare (2), 
§ 4.190. 

F 
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Ultimately a value of a; is reached when (4) is not satisfied, so the sub¬ 

harmonic ceases, and jumps to its value on curve e.g. to S. 

Since an alteration in the motion is associated with a change of 

energy, the ‘jumps’ must be interpreted accordingly. As co approaches 

a critical value, there will be a transition stage during which the 

amplitude of vibration either increases or decreases at a finite rate. 

In other words the diagrams showing ‘vertical jumps’ refer to the 

steady state. Diagrams having time bases are needed to show the 

nature of the vibration at either a ‘jump’, or at the initiation or 

the cessation of a subharmonic. Oscillograms for the two latter cases 

are reproduced in [926]. 

4.193. Experimental illustration of subharmonics of higher 
order. It seems likely that when the ‘spring control is representable 

by a polynomial of the form ay-{-by^-\-cy"^-\~ .,,y odd in y, there will be 

harmonics of order ^,... (see [38, p. 113]). This is illustrated by the 

oscillograms reproduced in Figs. 20 a, b. They show | and I harmonics 

which were obtained with the apparatus of Fig. 13 and a control 

characteristic of the form depicted in Fig. 20 c. In these experiments 

there was a small amount of damping, so k 0, The fundamental 

vibration is present in both cases, being of smaller amplitude than 

the subharmonic, and this agrees qualitatively with the data in 

Table 2. Subharmonics of this type may occur in aeroplane structures, 

the rate of vibration being a sub-multiple of the engine speed. 

Subharmonics down to ^^^th the fundamental frequency have been 

demonstrated with the apparatus described in reference [92 a]. 

The oscillating member is a bar of I-section pivoted at its lower end 

(see Fig. 4 a, c). A metal strip, anchored as shown, passes between two 

shaped blocks which cause a variation in its effective length when 

the bar oscillates. In this way a non-linear spring control may be 

obtained, whose characteristic is determined by the shape of the 

inner faces of the blocks. The oscillation is maintained by a harmonic 

force due to the rotation of an unbalanced mass near the upper end 

of the bar. 

4.194. Solution of y+ay-\-by^ =/coscoL We make the same basic 

assumptions relating to damping, subharmonics, etc., as in § 4.140, 

while the amplitude must be limited in accordance with the last 

paragraph of § 4.198. Writing cot ~ the equation becomes 

co^y^'+ay+by^ = fcosfi (a,b > 0), (1) 
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... 
0 1 Z 3 

Fig. 20. a. Record illustrating J harmonic, b. Record illustrating J harmonic, c. Load- 
deflexion curve used in apparatus of Fig. 13 to obtain records Fig. 20 a, b. 

differentiation being with regard to 0. We choose 6 (small) as the per¬ 

turbation parameter, put bF = f, and seek a solution having period 277 

in e/r, which satisfies the initial conditions 2/(0) A, y'(0) — 0. We 

now assume that 

(«) y = yo+%i+^'V2+- 

where the are twice differentiable functions of ^ to be deter¬ 

mined; 

(b) == ct>§4-6cuf-b6^cu2+... 

the being determinable constants. Here we expand co^ (not a) 

in ascending powers of 6 (see §§ 4.110, 4.131). 
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Substituting from (2) into (1) gives 

(wg+6wf+62aj|+...)(i/;+62/*4-622/2+...)+a(2/o+6?/i+ft2y2+...)+ 

+Hyl+^hQyi+-) = bFcos>p. (3) 

Equating the coefficients of 6^ r — 0, 1, 2,... on each side of (3) yields: 

o)lyo+ayo = 0, or y"o+(a/c4)yo = 0. (4) 

For period 2tt in ifs, we must have 

Oil = «. (5) 

SO the complete solution of (4) is 

yo -- ^osm0+5ocos0. (6) 

As in § 4.110, the initial conditions entail 

2/o(0) - -4, 2/i(0) ^ y,(0) == ... ^ 0 ^ ^^(O) y\{()) == ... 0, 

so the appropriate solution is 

j/o = ^cosi/r. (7) 

b: ojlyl-^ay^== FGo^ilf-{c4yl+yl^ (8) 

and by (5), (7) 

2/1+2/1 ^ [(F+colA)G08ifj---lA%l+cos2ifj)]/a. (9) 

To avoid a non-periodic term in the particular integral of (9), the 

coefficient of cos0 must vanish, so 

F-\-<j^iA = 0, giving wf — —F/A, (10) 

Thus the complete solution of (9) is 

A^ A^ 
y^ — ^isin</r-|-jS^cos^-I-cos2(/f-. (11) 

The initial conditions 2/i(0) = y!(0) — 0, necessitate A^ = 0, 

= A^jda, and, therefore, 

4^ /|2 
yi= + (12) 

b^: oilyl+ay^ = — (a»|yg-fa)f ^I+2«/o2/i), (13) 

and by (5), (7), (12) 

(14) 
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To avoid a non-periodic term in the particular integral, we must have 

(,5, 

by (10). Then the complete solution of (14) is 

A 
= ^2sin</-+i?2COS^ + —(^2_(.2J’)cos2!/< + -™cos3v!« —— 

(16) 
The initial conditions y^iO) = 2/2(0) = 0, necessitate 

^2 = 0, 

so the appropriate complete solution of (14) is 

J3 J A 

^ -^ + ^2(i^^-t^)«o«'A + ^2(^^+2i?’)cos2^ 

Hence to the second order in b 

48^2 
cos 3^. 

(17) 

y ^ 2/o+('2/i+^^2/2 

- AAill 
~ a \2 

+ 
3a/ 

V 

+ - 
M2/1 
3a 

/4^_4+_2/\ 
\2^3a ^‘daAj 

bA 2%^A^ 2bf] 

3a ' 

cos 2ajt 

144a2 

bU^ 

^48a2 

9a* 

cos 3cu/. 

cos 0)t-\- 

Also to order two in b 

OJ* = COQ-t-^^wf-f-i^Oll 
5b^A^ 

6a -/ /1-AV 
[a 3aj 

(18) 

(19) 

In virtue of the constant term in (18), what may be regarded as the 

‘centre of oscillation' is on the negative side of the origin of the force- 

displacement curve ay~{-by^ (Fig. 11 a). 

We showed in Chapter II that the solution of a non-linear differen¬ 

tial equation depends upon the initial conditions. If (1) is solved such 

that the coefficient of cos 0 is A for all t, the coefficients of the various 

terms will differ from those in (18), and the initial condition will not be 

2/(0) = A. Also the last term in (19) will not appear. The reader should 

verify these remarks as an exercise. 

4.195. Amplitude-frequency relation. (18), § 4.194, was derived 

subject to the conditions y = A, y' = 0 at t == 0, But (19), § 4.194, 

must be satisfied also, which means that for fixed values of a, 6, and/, 
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complies with this equation. Written in the form 

,1) 

it is a cubic equation for A, which may be compared with (9), § 4.140. 

The consequences of such a relation are examined in § 4.16 et seq. 

From the analysis therein it appears that a physical system operating 

in accordance with the equation 

^+2KiJ+ai/-j-bi/^ =fcosa>t (2) 

should exhibit the jump phenomenon described in § 4.170. Considera¬ 

tion of the signs of the terms in (1), w here 6 > 0, shows that it is of the 

same type as (0), § 4.140, with b < 0, so the {\A\^w) relationship for 

K > 0, should be akin to that in Figs. 16 b, 17 b. 

4.196. Harmonics of order h In this case we shall solve the equation 

_ ^^os 2cot (1) 

for subharmonics of order 2 (period 27r/a>), using the method of per¬ 

turbation. Let cot .= z, 2k = — bF, with a > 0, b, k > 0 small, 

and (1) becomes 
coh/'-\~€b^y'-\~ay-{-by^ — bFco^2z, (2) 

Assume that ^ = 2/o+^^2/i+6^2/2+..., (3) 

the being periodic twdce differentiable functions of z, and that 

CO = aJo-|-6a>i+62^2+***5 (*1) 

where the Wj. are to be determined. Substituting from (3), (4) into (2) 

gives 

{^o+26a>QajjL+^>"(ajf-f-2a>QW2) + -.}(yo+%i+^^^2/2 + ••') + 

-f €(6^0)0+...)(2/o+^2/i+--*)+^(2/o+^2/i+^^y2+**-)+ 

+ {byo+2b^yoyi+--) == bF(iOs2z, (5) 

Equating coefficients of b^, r = 0,1,2,..., on each side of (5), yields 

b^: ioly"+ay = 0, (6) 

so for a solution with period 27r, we must have cog a, and, therefore, 

2/q ~ ^ sins-fJScoss;. (7) 

A, B, are functions of a, b, f, k, co; to effect simplification of the 

algebra we shall keep them the same throughout. Since the equation 

is non-linear, the ultimate initial conditions (unknown at the present 

stage) differ slightly from y{0) = B, y'(0) ■== A. 

b: wgi/J+ayi = —2a)oWi2/2-2/g+J’cos2z, (8) 
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so 

2/1+2/1 = — 

To avoid non-periodic terms in we must have 0. Thus with 

g ™ h — F^{A^—B^)I2, we get 

2/1^ --{glci)-{-{ABI^a)mi2z-~{hlZa)co^2z. (10) 

b^- ‘^o2/2+«2/2 == —ewo2/i)—2woa>2 2/S-2yo2/i (H) 

= —€aJo(-4cos3—sin2) + 2cyoa>2(-<4 sinz+J5cosz)— 

— 2(A sinz-f- B cosz){—{gla)-^(ABJ3a}sin 2z—(k/3a)cos 2z} 

so (12) 

— Psinz+Qcos24-(^/3a^)(A—j52)sin3z4-(-B/3a^)(A-f^2)cos 3z 

(13) 

where P, Q are given below. To avoid non-periodic terms in y^, P 

and Q must vanish, and with A, B, non-zero we have 

PjA - 2KK)-f2(g/a2)_(A/3a2)_(52/3o2).|_(,_B/^^^) 0, (14) 

QjB - 2(aj2/a»o)+2((7/o2)+(A/3a^)-(^V3a2)-(eJK^) - 0. (15) 

Adding (14), (15) and multiplying throughout by a/2 = 60o/2, gives 

2^00^2 = -HA^+B^)l&a+{K<ji)Jb^){AIB~BlA). (16) 

Subtracting (14), (15), and multiplying throughout by 

ojo/e = b^oj(,l2K, 

we obtain (AjB-\-BjA) = bflSKcol — jS. (17) 

Solving (17) yields 
A/B = {^±(^2-4)i}/2, (18) 

so KcooiAjB-BIA] = ±{{bfJ3a)^—4K^a}K (19) 

By (4) oi^ = a>§-f26a)ocoi-f 6*(wf-f2ajoa>2)-t-..., (20) 

and since — a, — 0, by aid of (16), (19), we get 

io^ — a—562(A^-l-B2)/6ad:{(A//3a)®—4K2ap. (21) 
Thus 

Y = {A^+B^)i ^ ±{{Qa/5b%(a-cu^)±{{bf/3a)^-4:K^a}i]}i (22) 

which gives the amplitudes of the subharmonics. 

To order one in b (small) the solution is y = yoA-byi, so 

y = A sinz-|-J5cosz-f (6AJS/3a)8m2z—(6A/3a)cos2z—(6g/o) (23) 

= —(6/2a)F*-|-Fcos(2—^i)—(6/6o)F^cos(22-(-^2)~{//3®)cos2z, (24) 
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v^YievetdiXidy — —20^. Thissolu- 

tion is valid only for Y real > 0, i.e. when there are subharmonics. 

The first term represents a unidirectional displacement, and as in 

§ 4.195 the ‘centre of oscillation’ is on the left of the origin. The 

second and third terms represent, respectively, the subharmonic and 

its first overtone, while the last term gives the forced oscillation which 

has the same period as the driving force. 

4.197. Subharmonics and stability. The motion is defined to be 

stable (unstable), if after being subjected to a small disturbance it 

returns to (moves away from) its former state. In [131a], by aid of 

stability criteria given in [85], it is shown that the upper (lower) 

internal and the two external signs in (22), § 4.196 correspond to a pair 

of stable (unstable) subharmonics. Thus there are four subharmonics, 

two stable and two unstable. By virtue of the two external signs in 

(22), § 4.196, the components of each pair differ in phase by tt radians 

or tt/co sec. Under certain conditions specified in [131a], the forced 

oscillation of driving frequency becomes unstable (see remarks in 

§ 4.198). Nevertheless, there is still the oscillation due to the overtone 

of the subharmonic. The analysis pertaining to stability is beyond 

our present purview, so we shall merely state what results may be 

expected on the basis of reference [131a]. 

4.198. Forms of oscillation. For Y to be real, whatever the values 

of a and cu, we must have 
/> 6/caV/>. (1) 

This gives the threshold of/, below which subharmonics cannot occur. 

Also for the existence of the stable pair of subharmonics, we must have 

{(5//3a)2—4/c2a}^ > (co^—a), (2) 

and for the unstable pair, 

(a—0)2) > {(6//3a)2—4/<:2a}l. (3) 
Variation inf, 

(i) For < or > a, as / is increased from zero, there is a stable 

forced oscillation of amplitude X //(4a)2—a), but no subharmonics. 

(ii) For a > when / = ^Ka^jb the threshold is reached, and for 

/ > ^Ka^jb there is a pair of stable (unstable) subharmonics having 

amplitude given by (22), § 4.196 with the upper (lower) internal sign. 

When [a-a>2-{,(i//3a)2-4,<2a}J] = 0, (4) 

the unstable subharmonics vanish while the stable ones remain. At 
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this point, however, the forced oscillation becomes unstable and the 

amplitude jumpsf to that for one of the stable subharmonics, as given 

by (22), § 4.196 with the upper internal sign. Increase in / is accom¬ 

panied by that of Y and also in the amplitude of the subharmonic 

overtone. If/is now decreased, the stable subharmonic persists but 

with decreasing F, until the threshold / = ^KO^jb is reached. It then 

Fig. 21. a. OA ~ forced oscillation; CA — unstable subharmonics; CB = stable 
subharmonics. At A, B, f^ — (3a/6){(a--co2)^4-4K:^a}l; at (7, D, fi = 6Kal/6. For / 
increasing from O, the forced oscillation becomes unstable at A, and there is a jump 
to one of the stable subharmonics at B. b. OA ~ forced oscillation; AB = stable 
subharmonics, c. ABDF — forced oscillation which is unstable between B and D; 

BC == stable subharmonics; DE = unstable subharmonics. 

vanishes and the amplitude of the motion jumps! down to that for the 

forced oscillation (now stable), namely, X fl{4:aj^—a). The cycle 

of changes is portrayed in Fig. 21 a, and there is a type of 'hysteresis’ 

as in Fig. 16 a. In the first case two frequencies are involved, but only 

one in the second. 

If the system were started suddenly by applying a force / 

(A < / < /g in Fig. 21 a), the subsequent motion would entail either 

the forced oscillation or the subharmonic, depending upon the values 

of the initial displacement and velocity. Fig. 21a indicates that 

t See remarks on ‘jumps’ in §4.192. 
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conditions yielding a relatively small (large) displacement would be 

needed to initiate the forced oscillation (subharmonic). 

(iii) For > a, Y in (22), § 4.196 cannot be real with the lower 

internal sign, so there are no unstable subharmonics. The stable pair 

cannot occur unless (1), (2) are satisfied. As/in (2) increases from 

zero, there is the forced oscillation with X and when 

f = /q the stable subharmonics commence with amplitude Xq. The 

forced oscillation is now unstable, but there is the subharmonic over¬ 

tone. Increase in / is accompanied by that in Y. These remarks are 

illustrated in Fig. 21 b. There is no hysteresis effect [131a]. 

Variation m a>. 

(i) If (1) is not satisfied, there are no subharmonics, but there is a 

stable forced oscillation. 

(ii) If (1) is satisfied and cj- > a-l-{(6//3a)2—4/c%}^, there is a stable 

forced oscillation but no subharmonics, since Y is imaginary. But 

when ja—oi^l < {(/^//Sa)^—the forced oscillation is unstable 

and there is one pair of stable subharmonics, provided a is not too nearf 

to { }^. If a—((6//3a)2-—4/c%P > there is a stable forced 

oscillation, also the tivo pairs of subharmonics, provided a is not too 

nearf to }i. The trend of these remarks is illustrated in Fig. 

21 c. Subharmonic resonance does not occur. 

In general the forced oscillation is unstable when accompanied by a 

single pair of subharmonics, but remains stable if another pair of 

subharmonics is present to 'counteract’ the instabihty. This remark 

is exemplified in Figs. 21 a, b, c [131a]. 

Amplitude limitation. In Fig. 11a the slope of the force-displace¬ 

ment curve changes sign to the left of the minimum, and if 

l2/mlnl > 

the displacement increases continually with increase in time. Usually 

the characteristic for a physical system has no minimum, but it may 

have a point of inflexion. In the case considered in § 4.199, where the 

restoring force is pneumatic, neither a minimum nor an inflexion 

occurs. 

4.199. Example. Imagine a hollow circular cylinder, of working 

length Z, closed by a rigid disk of mass J m which is driven axially by a 

t The approximate analysis does not hold if o is too near to these values, 
t This includes ‘accession to inertia’ due to the external air [183]. 
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force/cos 2co/, such that the displacement ^ is ‘finite’. If Po 

atmospheric pressure, and Vq the corresponding undisturbed volume, 

for adiabatic operation we have 

'pvy z=:z Si constant. (1) 

If the displacement during expansion is then 

p{i+^)y - p^iy, (2) 

so p --=^ p,{i+^iiyy - (3) 

Thus the ‘spring control’ per unit cross-sectional area, due to the air 

within the cylinder, is given by 

- y^o^/^“y(y+i)i>o^72Z“+.... 

(4) 
Accordingly if < 1, the approximate equation of motion of the 

diskis /cos2cl>^, (5) 

with a = ypf^Ajl, b ^ —y{y-\-\)p^Aj2P, A being the cross-sectional 

area of the cylinder. Here the slope of the 2)-v curve is negative, and 

what may be regarded as the ‘centre of oscillation ’ moves down this 

curve (see (18), §4,194 with h < 0). The adiabatic curve has no 

minimum value, so | need not be limited as in § 4.198. A relatively 

large ^ would entail additional terms involving in (5). The 

solution of this equation on the lines of previous sections is left as an 

exercise for the reader. 

4.20. Intermodulation frequencies. Consider a loudspeaker 

diaphragm of the type illustrated in Fig. 22 and suppose the relation¬ 

ship between force and axial displacement takes the form F = ayA-by^ 

as shown graphically in Fig. 12 b. This relationship has been chosen 

in the interest of analytical simplification. In practice, especially 

when y is large, the relationship is likely to be complicated in an 

average loudspeaker. Usually it is asymmetrical about the force 

axis, and as in § 4.130 there is then a unidirectional displacement of 

the diaphragm. During the reproduction of speech or music a myriad 

of frequencies is present in the current which flows in the driving coil. 

However, to simplify the analysis, we shall consider only two fre¬ 

quencies, namely, a powerfulf low audio frequency a)J27T, and a 
comparatively weakf high audio frequency e.g. 100 c.p.s. and 

f These adjectives refer to amplitude of motion, not to the aural sensation, which 
varies considerably with change in frequency at normal soimd levels. 
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2,500 c.p.s., say. The latter will execute 25 oscillations in the same 

time as the former executes 1. We may visualize the higher component 

in action while the operating point on the characteristic of Fig. 12 b 

moves relatively slowly from 0 to N, On the approximately straight 

portion OM, the 2,500 c.p.s. oscillation of the diaphragm will be 

nearly sinusoidal, but as the operating point traverses the curved part 

Fig. 22. Schematic diagram for moving-coil loudspeaker. 

of the characteristic the wave form gets distorted. It follows thl 

alien frequencies are created, so the sound output is affected accord^ 

ingly. In the terminology of radio-acoustics, one frequency modulates 

the other, and the effect known as intermodulation occurs. The result 

in practice, if many audio frequencies in a wide band are present, 

may be aurally distressing. It is then imperative to reduce the input 

to the loudspeaker to bring the distortion below the limit of audibility. 

An effect of this type may occur in a much more marked degree with a 

certain class of thermionic valve, since the characteristic curve turns 

over at each end of the linear part much more abruptly than is indi¬ 

cated by the term by^, 

4.21. Simple analysis of intermodulation. We deal with a loss- 

free system whose differential equation may be written in the form 

+ =/l cos 4-/2 008^2, (1) 
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with i/f^ “ i/zg — <jj\ ^ As in § 4.140, we assume 

(i) that the conditions for subharmonic oscillations are not satisfied, 

(ii) that the damping is small enough to be neglected, although it 

ultimately extinguishes the initial transient. 

In (1) coqI^tt is approximately equal to the natural frequency of the 

effective diaphragm mass and the axial constraint, so b is small. In 

a ivell-designed speaker having a diaphragm 10 in. in diameter, ojq 

should be less than 27r X 20. Thus we take ^ a>f ^ co§, and seek 

a solution whose individual terms are periodic. The nature of the 

system contemplated is such that there will be components having 

angular frequencies cog. If/i,/2 fhe term by^ are not too large, 

we may assume as a first approximation that 

y = cos i/fi+A^ cos (2) 

which is the form of solution if 6 ™ 0. Inserting (2) into the term by^ 

in (1), we obtain the equation 

=/i cos 4-/2 cos ^t2+^(COSl/«i, COSl/ra), (3) 
where 

A(cosi/tj,cosi/t2) = —|6((3^f+6^i^|)cos^i+ 

+ (3AI+()AlA2)cosi/j2+SAfA2[cos(i/f2-i~2^^)+cos(i/f2—2i/f^)] + 

+ 3^42 ^|[cos(2(/f2-l cos(2^2—* 

cos Si/j^+Al cos 302}* (4) 

Using the inequalities given above, we find that a number of terms 

in that part of the particular integral of (3), which corresponds to 

(4), may be neglected. The approximate representation of this 

function (P.I.) is given by 

0^3 ^ 
i/p = -lb ^ g cos^i+ 2 t ■ 2-x<^os3^/>i+ 

L(‘"o—‘"1) (‘«o—■’^1) 

3AIA^ 

+ 

(‘^2+2wi)*] 

3AIA2 

cos(^2+2!Ai)- 

[wg—(ojg—2aji)2j 
C0s(l/r2 

QAIA2COS Ip2 

(cu§—w|) 

-2^1)]. (5)t 

Omitting the question of initial conditions which do not affect the 

point under discussion, (5) shows that there is a third harmonic 

3coi, also two additional components having angular frequencies 

t We omit consideration of the complementary function of (3) and the P.I. of the 
terms in/^, therein, as they are irrelevant to the point at issue. 
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(a>2+2coi) and (cog—2cji). These are classes of sum and diflPerence 

frequencies, respectively. If a>i/27r ~ 100, ~ 2,500 cycles per 

second, the first frequency is 2,700 and the second 2,300 c.p.s. The 

coefficient 3^f ^2/[ ] called a modulation product since it involves 

^2* solution also contains components of 4,900, 5,100, 

7,500 c.p.s., but their amplitudes are relatively small. Higher approxi¬ 

mations to the solution would reveal the presence of other com¬ 

ponents. 

1 

- 
p 

/■r Stn (i/,t Direction oF sound ^ 
Source • propagation 

Fig. 23. 

4.22. Additional example of intermodulation. The reader may 

find it interesting to confirm that an approximate solution of 

= fiOOBoj^t+f^cosco^t, (1) 

is given by 

Zo)^ 

bA\G0^2o}it bAloosZw^t bA^A^^^o^i^Jo^—oj^^Y 

2(4a,f-a)g) + ■2(4a>|-a>g) ' [K ^l] 

[(cu,+a>2)^-<«g] • ^ ’ 

Here =/^/(wg—cof), ^2 =/2/(‘"o—‘"i)> lyminl < "0/^ = «/6 in 
Fig. 11a, and it is assumed that the conditions for the existence of a 

subharmonic are not satisfied. There is a constant term as in § 4.130, 

which represents a unidirectional displacement of the diaphragm. 

Also there are double, sum, and difference frequencies. The above 

case is akin to the creation of alien tones in the ear, by virtue of its 

asymmetrical characteristic curve. This property of the ear was dis¬ 

cussed many years ago by Helmholtz [169]. 

4.23. Amplitude and frequency modulation in loudspeaker 
reproduction.! Referring to Fig. 23, 0 represents a very small 

t This is a linear problem, but has been included as a matter of interest. If fj 
were large enough, the curvature of the adiabatic characteristic for air would have to 
be taken into account as in [100, 101], § 4.199, Appendix I. 
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sound source which oscillates bodily with frequency ojJ27t along the 

line OP, the amplitude of the motion being Simultaneously the 

source executes a motion along OP of frequency a>/27r and amphtude 

such that CO > coj, but ^ Apart from the size of the source, 

this scheme corresponds to the case of a loudspeaker diaphragm. 

Since ^ the distance of the source from P at any instant, is 

Ti == r—lisinco^^ == r(l —esincojL^), (1) 

with € ~ 1, provided r ^ as it would be in practice. The 

instantaneous velocity potential at P due to a simple source of 

strength 4:77S and frequency co/277 is [183] 

g^-iikri-cot) ^(>-i(kr-k^i sin coit-coi) 
(2) 

r(l —csinco^/) 

~ikf 
[(1+ e sin cui (3) 

where z — k ~ co/c, c the velocity of sound. Then if p is the air 

density, the pressure at P is (assuming S to be unity for convenience) 

A-ikr 

= p-[i( 1 +e sin t){ZMi cos tUj <+w) + Wj C cos to^ 
r 

(4) 

= ^ ^ COS CO^ ^+i(l +e sin CO^ t)(Z0Ji COS COj^ ^ + Co)]. 

(5) 
Taking the real part of (5), we obtain 

p == -[co^ecoscoi^ cos(^:r—a^sincoi^—co^)4- 
T 

+ (1+e sin coi ^)(2:co3^ cos co^ ^+co)sin(/i:r—z sin co^ (6) 

Now [coiccoscoj^l |(l-[-esincoi<)(2:coiCOScoi<+co)|, SO to a close 

approximation we get 

p crif —^[(l+esincoj. ^)(2coiCOscoi^+^^)sin(co^-l-^sincoi^—A:r)]. (7) 

But CO ^ Z(x)^, so (7) may be written 

p ^[l+esincoi^+(2;coi/co)coscoj^]sin(co^+2:sincoi^—^r). (8) 

Putting € — ^i/r, zajjcu == 1, — wjc the [ ] in (8) becomes 

A(t) = {l+A:i^i(l + l/A;fr2)lcos[coi^—tan-^(l/jfcir)]}, (9) 
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so amplitude modulation (fluctuation with time) occurs at P, having 

a frequency coJ'Ztt, Using the formula in [184, p. 52, ex. 16], we obtain 

00 

n= —00 

Hence the sound pressure at P (apart from that due to a)J27T) is given 

CP 
by 2 •4(^^i)sin[(to+wwi)<—A:r]. (11) 

n’-= —OO 

Consequently it comprises an infinite line spectrum of discrete 

frequencies extending indefinitely in the range above co/27t, but 

finitely below it, since co < 0. 

Frequency 

cu/27r the fundamental 
(ajdbtt>i)/2 two side frequencies 
(a>±2aji)/2 „ 

(aj±ncoi)/2 „ „ „ 

Amplitude (fluctuation at (x)iI27t) 

A(t)JMi) 
A(t)J2{k^i) 

A(t)JjJJc^{) (n < oi/o^i). 

When 71 > 0, co+7ia>i > w, and there is an unlimited series of fre¬ 

quencies coJ2it, 2cei/277,..., which occur at equal intervals coJ27t above 

a)/27r. When n < 0, there is a similar series terminating at mo}J27T, 

where m is the largest integer making {co—mcoi) > 0. For other n, 

there is an unlimited series of frequencies interlaced with those 

mentioned above. The reader should plot a diagram showing the 

frequency spectrum, taking ca/27r = 2,560 c.p.s., ojJ27t = 50 c.p.s., 

= 0*25 cm., c = 3*43 X 10^ cm. sec.~^ For the value of obtained 

from these data it is accurate enough to take J^iz) (^zY'jnl, 

4.310. Forced oscillation in self-oscillatory thermionic valve 
circuit [9, 119]. The arrangement is shown schematically in Fig. 9 a, 

the differential equation being (3), § 4.10, with EQGOH{o)t-\-^) on the 

right-hand side. Thus corresponding to (4), § 4.10, we have 

= Pocos(m^+(p), (1) 
dt 

with Fq — aiEJEg), and a, 6, c as before. There are two possible main 

oscillations, (1) free by virtue of the negative resistance property of 

the valve, (2) forced due to the applied potential difference 

PoCOs(w^-}-9). 
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4.311. Solution of (1), § 4,310. To find an approximation adequate 
to explain salient experimental results, during the steady state, we 

assume thatf ^ ™ ^qCos^q+^ cose/r, (1) 

with i/jq == co^ty ip = o)ty coq, CO being the angular frequencies of the free 
and forced oscillations, respectively. Substituting from (1) into (1), 
§4.310, yields: 

u= —cOqAqCOSiIjq—CO^AcOSiP 

—bu ~ 6[a)o^oSiiiv!^o+^^ 

= —c[(Pgajo+i^o^^‘^o)sin^o+ , (2) 

+ (|v4®w+lAlA )sin tp] 

au — a[^QCOsi/ro+^ cos«/f] 

i^oCOs(i/f+9) == i^o(cosi/f cos9~sin0sm(p), 

terms involving 2(/rQ, 3(/fo, etc., being omitted. 
Equating coefficients of cosj/f, sini/f, cos ^<3, sim/^o to zero indepen¬ 

dently, we get 
cosi/r: —o}^A-{-aA — jFoCos9, (3) 

sini/c bcoA — ^--^-^^AlAcoc — —i^pSiny, (4) 

cos^o^ (^) 
sin«/rQ: bcogAQ—^A^coQC—^AQA^coQC = 0. (6) 

From (6) we obtain 

\A,\ = (^^-2A^y, or ^0 = 0. (7) 

In absence of an applied potential difference, ^ — 0, and the ampli¬ 
tude of the free oscillation is given by 

11.1 - (D*. (8) 

The free oscillation vanishes when Aq = 0, so by (7) the amplitude of 
the forced oscillation is then 

\A\= |Jol/V2. (9) 

In (7) since Aq must be real, the forced oscillation exists alone if 

\A\ > |Jol/V2. 

From (5), wg = a == l/LC, (10) 

and by (3), (4) if the free oscillation is suppressed -do = 0, so 

(<o2-a,§)**+a>*(6-3^V4)^ = (FoM)^ (H) 
t It can be shown that no phase angle is required for the free oscillation. 

5077 Q 
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or (a»2-tog)2/a)%2+(l_3^2c/46)2 (12) 

Writing (to*—a>g)/a)6 = x, 3A^cj4i) = y, SF^cj^b^o)^ = E, (12) takes 

the form x^y-^{\-y)^ ^ E, (13) 

2 2 

20 

1-8 

I-6 

1-4 

y 
1-2 

1-0 

0-8 

0-6 

0-4 

0-2 

-5 -4 -3 -2 -1 0 1 2 3 4 5 
X 

Fig. 24. Amplitude-frequency curves for ‘driven’ thermionic valve oscillator. 

which is valid when there is no free oscillation. With the above 

substitution (6) yields 

2/0 = 3.4§c/46 = (1—2y), y^, y > 0. (14) 

Taking |a>—coqI ^ — 2|a>—cool/6, so if coq is the central 

frequency or tune point, x is nearly proportional to the amount of 

detuning. Since 3c/46 is constant, y oz A^, the square of the amplitude 

of the forced oscillation. 

4.312. The amplitude-frequency curves when == 0, These 

are shown in Fig. 24, being obtained by plotting (13), § 4.311, for 
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various values of E. They resemble the tuning curves of an LCR 

circuit, but from a physical viewpoint the broken line parts have 

no significance here. Imagine the curve marked — 0*2 to be followed 

for X increasing from zero. A value is reached where the tangent 

-5 -4 -B ‘2 “1 0 1 2 3 4 5 
X 

Fig. 25. Amplitude-frequency curves for ‘driven’ thermionic valve oscillator, illus¬ 
trating the phenomenon of ‘entrainment’, and depicting the ‘silent zone’. 

is vertical. The locus of the vertical tangents to the family of E curves 

represents a transition stage known from experiment to be that where 

the free oscillation sets in. When |a:| > \x-^^\, there are both free and 

forced oscillations in the circuit, so ^ oc (Al+A^). The corresponding 

x-y curves veer away from the a:-axis as illustrated in Fig. 25 [119]. 

Since \Aq\ is now > 0, the term —fAg Acoc in (4), § 4.311, must be 

incorporated in (11), § 4.311, so, using (7), § 4.311, we have 

(a;2-cug)24-a>2(6-9.42c/4)2 = {FJA)\ (1) 
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which is (11), § 4.311, with 9 written for 3 in the second member. Thus 

corresponding to (13), § 4.311, we get 

^ E, (2) 

When y ^ 0*5, {l—y)^ — (1 — %)^ so the curves corresponding to 

(13), § 4.311, and (2) above, meet at this point, provided |a;| is outside 

the locus of the vertical tangents. The two curves do not meet on the 

locus, since our approximate solution of (1), § 4.310, is not accurate 

enough for this to happen. Nevertheless the diagram of Fig. 25 agrees 

with experiment. Additional information on this topic is given in [28]. 

Suppose the circuit of Fig. 9 a were loosely coupled to a detector 

valve followed by an axidio-frequency amplifier with loudspeaker. 

Starting at co — i.e. a: = 0, on the curve E = 0-5, if ca and, there¬ 

fore, X were increased, silence would ensue up to the point P. There¬ 

after, there would be a beat tone of frequency ((a--caQ)/27r in the 

loudspeaker circuit. Tliis would be heard if it were in the range of 

audibihty of the human ear. PP^ is known as the silent zone corre¬ 

sponding to P = 0*5, where the free oscillation is suppressed by the 

forced one [9, 119J. 

4.313. Locus of vertical tangents. The ovals in Fig. 24 are given 

by (13), § 4,311. Differentiating with respect to y, we get 

2xy{dxjdy)-\-x‘^+{\—yY—2y{l—y) = 0, (1) 

so if dxjdy == 0, we must have 

*^+(1—2/)(l—32/) = 0, or 3a;2+9(?/—f)2 == 1. (2) 

This is an ellipse, centre (0, |), semi-axes 1/V3, | which represents the 

locus of the vertical tangents as shown in Figs. 24, 25. Using (13), 

§ 4.311, and (2) above, we find that y is triple-valued when E < 8/27. 

For E = 8/27, y = |, x = ±l/''^3. 

The parts of the curves in Fig. 25 corresponding to 

y ~ (2/0+y) ^ (-^0+-^*) (mean square basis) 

may be computed by aid of (2), § 4.312, and (14), § 4.311. The latter 

gives (2/0+2/) — (1—2/)> by the former y decreases with increase 

in \x\, so (yo+2/) cannot exceed unity. 

4.40. Subharmonics and relaxation oscillations. A study of 

(1), § 4.310, taken in the form 

y—e{l—y^)y+y — Fsinta/, (1) 
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has been made using a differential analyser [53], and curves are 

reproduced in Figs. 26, 27. The parameters are given in the captions; 

y is proportional to the potential difference across the capacitance in 

Fig. 9 A, and the time scale is arbitrary. The phenomenon of resonance 

is almost absent in the case of a circuit executing relaxation oscilla- 

Fig. 26. A. Free relaxation oscillation with e=8, F — 0. b. 6=^8, F = 25/32, 
ui ~ 1-25: oscillation of drifting type. c. c = 8, F = 25/8, w = 1*25: oscillation is 

J harmonic of driving force. 
Fig. 27. a. c — 8, F — 2, <*> = 2; oscillation is J harmonic of driving force. B. e — 8, 
F = 80, oj = 2; oscillation is J harmonic of driving force, c. c — 8, F ~ 160, a> — 2; 

oscillation has same period as driving force. 

tions, to which a potential difference F sin oj( is applied. The main 

influence of the latter is to alter the time period of the circuital 

relaxation oscillation. Thus a subharmonief of very hw order may 

I Since the oscillator wave form is far from sinusoidal, the term subharmonic 
merely signifies that the periodic time of the oscillation is an integral multiple of that 
of the applied potential difference Fsincu^. In experiments described in [120, 123], 
by increasing the frequency of the driving potential difference, all subharmonics as 
far as the 200th were obtained, i.e. the periodic time of the relaxation oscillation was 
200 times that of the driving potential difference. 
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occur. An increase in the driving potential difference reduces the order 

of the harmonic, but has little effect on the amplitude of the relaxa¬ 

tion oscillation (Fig. 27). Some of the ‘driven’ oscillations are of the 

‘drifting type’ (Fig. 26 b) and never attain the periodic synchronized 

state. Both the amplitude and the time interval between alternate 

zeros fluctuates (see [28, 29]). 

A relaxation oscillation for which e = 8, F = 0 is depicted in 

Fig. 26 A. The result of applying a sinusoidal potential difference 

having a frequency three times that of the relaxation oscillation is 

shown in Fig. 26 c. The main component of the latter is a synchronized 

J harmonic. The original paper should be consulted for curves ob¬ 

tained by making a large number and variety of parametric changes. 



CHAPTER V 

METHOD OF SLOWLY VARYING AMPLITUDE 

AND PHASE 

5.10. Introduction. The approximate method to be described may 

be applied to non-linear equations when the solution takes the form 

2^ = J(^)sin[tu<+(p(0], (1) 

where the amplitude A and the phase angle are functions of t 

whose rate of variation is small compared with the angular frequency 

o). In some cases A{t) may be variable but (p(^) constant, and vice 

versa. Also, after a short time interval, A{t) may be sensibly constant, 

i.e. A{t) -> Sb constant, or to zero asymptotically when t -> -f oo. As 

an example of the latter we cite the familiar case of the free oscillation 

of a linear electrical LCR circuit in which the current is given by 

I = (7e-'^^sin(a>^-f cp). (2) 

Here A{t) = Ce-^^ 0 as / +oo, while cp is a constant phase angle. 

Consider a differential equation of the form 

(3) 

in which the non-linear term €g{y,y) is relatively small, and is a 

function J of both the displacement y (or its equivalent) and its first 

time derivative y. Neglecting this term, the equation reduces to the 

linear one y+a>2y = 0, (4) 

of which the complete solution is 

y = ^iCOSco^+RiSina>^, (5) 

being arbitrary constants. In a sense this may be regarded 

as a first approximation, although it possesses no non-linear charac¬ 

teristics. (5) is expressible in the form (1), with A = 

9 = tan~i(Ai/jSi), these being constants. 

Writing (co^-f 9) = solution takes the form 

y^Aainx; (6) 

so y = A(jL)Coax> 

■f* Strictly ‘phase' pertains to sine waves, but it is convenient to use it here. 
j If terms of the form by^ occur, they are to be included in i.e. g comprises damp¬ 

ing and non-linear control terms. 
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We now suppose that A and 9 vary slowly with so by differen¬ 

tiating (6) we get [77, 175] 

y ~ A&inx+A(ca+9)cosx- (S) 

Substituting for y from (7) into (8) leads to 

A sin x+A^ cos y ~ 0. (9) 

Differentiating (7), we have 

y ~ ^ojcosy—^a)(a> + 9)siny. (10) 

Substituting from (6), (7), (10) into (3) yields 

A cos;^—J^tpsiny = — — g{Am\x^ ^ojcos^)* (11) 
CD 

Multiplying (9) by siny, (11) by cosy and adding, gives 

A = — ~^(^sinx, ^^cosy)cosx- (12) 
CD 

Multiplying (9) by cosy, (11) by —siny and adding, we get 

9 
CD^ 

g{A sin y. Aw cos y)sin y. (13) 

By hypothesis A and 9 vary but little in a period 27r/cD, which latter 

corresponds to a period 27r in = cdL We shall assume, therefore, 

that to the degree of approximation contemplated, the mean values 

of A and 9 over a period 2tt in tfj are adequately accurate. Then using 

(12), the mean value of 
2tt 

A = —-^-— I g{Asirn/j, AajcosiJj)cosilj dJj, (14) 
27rcD J 

0 

while by (13), the mean value of 
277 

0 

Since y = it follows that 

^ CD cos ip)sirnp di/j. (15) 

277 

y == CD- 
27rcD^ 

J ^(^sinj/f, ^cDCOs0)sin0 dip. (16) 

0 

When the restoring or spring control force (or its equivalent) 

contains terms of the form 2/^,2/^,..., A is unaffected, because the 

integrals corresponding to (14) vanish. These terms affect 9, however, 
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since the corresponding integrals do not vanish. For a similar reason 

the damping terms y, affect A but not 9. Hence in the first ajpproxi- 

mation, non-linear control terms affect the frequency but not the 

amphtude, whereas damping terms affect the amplitude but not the 

frequency. In higher approximations either type of term influences 

both frequency and amplitude. 

5.11. Solve 
= 0 (0<e<l). (1) 

This is the equation for a thermionic valve oscillator (see §4.10). Here 

y{y^y) = —(1—2/^)2/ = —(1—-42sin2x)-4a>cosx. (2) 

Substituting (2) into (14), § 5.10, with i/j for x, gives 

27T 

A — ^ dip (3) 
2tt J 

0 

= ieAil-iA^). (4) 

When the steady state prevails, ^ = 0, so ^ = 2, as in §§ 4.10, 

4.110, with 0 < e ^ 1. To determine ^ as a function of t during the 

growth of the oscillation, we have from (4) 

2AA = |e(4.42-^4) =r Je[4-(^2_2)2]. (5) 

Thus 

so 

or 

giving 

Be^, 

\o^A^j{4i—A'^)'\ 

A^ 
(4-^2) 

A^ = 45c‘V(l+5e*0- 

(6) 

(7) 

(8) 

(9) 

If .4 = ^0 when ^ = 0, B = ^g/(4—.4g), so from this and (9), we 

obtain A^ = Ale%l + lAl{e^*-\)], (10) 

and, therefore, A = (H) 

It should be observed that if 0 at ^ = 0, ^ — 0, which means 

that there is no oscillation. Hence it is necessary to start the oscillation 

by external means, so that Aq > 0. From (11) it follows that A 

increases monotonically with increase in t, and tends to the ultimate 

value 2 as ^ -foo. If we suppose,that A^ > 2, the amplitude will 

decay and -> 2 as ^ +oo. 
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By (2) above, with </r for y, and (15), § 5.10, 
2-7r 

<p = J (1—8in^i/f)cosi//sint/f dt/f = 0, 

Since oj = 1, X ^+9o> 

(12) 

(13) 

where 9^ is an arbitrary value of y when ^ = 0. Hence by (1), § 5.10, 
(11), (13) above, the solution of (1) to the degree of approximation en¬ 

visaged is ^ _ ^(/)sin(^+9Q) (14) 

■^oe^^^sin(/+9o) 2sin(^+9o) (15) 

as t -> +CO. 
The graphical representation of (15) is akin to the curve in Fig. 59. 
The foregoing is inapplicable when e > 0-25. It is then necessary to 
resort to a graphical method as exemplified in § 8.12. 

5.12. Solve y—2Ky-\-cy^-\-ay ~ 0, (1) 

a, c, K being positive non-zero constants [131]. 
This is the equation for an electrically (not electronically) driven 

tuning-fork. The term —2Ky may be regarded as introducing a 
negative resistance, equivalent to a driving force. After the initial 
(starting) transient has ceased, the motion is periodic. As in §§ 5.10, 
5.11 we assume that 

^ (2) 

is relatively small. Then by (14), § 5.10, with a = 

2k 

2'7T(jJ 

27r 27T 

r Ao} Qos^ip difj-^ f A^co^cosV (3) 
J 2tt(xj J 
0 0 

— kA—^cco^A^ — A{k—fcco^A^). (4) 

When the motion is periodic A = 0, so the ultimate amplitude is 
given by k—^coj^A^ — 0, 

To determine A{t) we have to solve (4) as a differential equation. 
Thus 

AA=^[p^-{A^-pn (6) 

where p — 4/f/3caj®, so 

2p f d(. 

J 
d{A^—p) 

[A'^-pY] 
2k dt~\- (7) 
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and, therefore, log[^V(2p—^2)] ,,,, 2«:<+J5,. (8) 

Hence A^l{2p-A^) = Be^K (9) 

If-4 — when t — 0, B = Alj{2p—Al). Expressing (9) in the form 

+ (10) 

and substituting into (10) for B, jr>, yields 

- Jge2^7[l + (3c/8/c)a)2^2(g2/c/_i)j^ (H) 

so A(0 - Jo^'^7[^+(3c/8/c)a>2^g(e2^^~l)P. (12) 

If — 0 at ^ 0, there is absence of motion, so the fork must be 

started initially. By (5) the ultimate amplitude is A^ — (2/a;)(2Ac/3e)^. 

If the amplitude grows, whereas if ^4^ > A^, the amplitude 

decays to the value A^ in a manner defined by (12). The growth stage 

is similar to that portrayed in Fig. 59. 

By (15), §5.10, 
277 277 

9 = — 2~~^ J ^ 'f' ^ 2^ A / cos®^ sin tfs dif/ 

0, 
so <p =- (p„, a constant, 

(13) 

(14) 

(15) 

which is an arbitrary value of y at < = 0. Thus 

X = w<+(po- (16) 

Hence by (1), § 5.10, (12), (16) above, an approximate solution of (1) is 

^ "" [1 + (3ccuV8/c)^g(e2'''-T)P * 
(17) 

When the supply of electrical energy is discontinued, ic = 0 and 

(17) reduces to the form 

^ ^oSin(a>^+(Po) ^ 

^ (l+icoj^Alt)^ 
0 as ^ 4-QO, (18) 

80 the tuning-fork comes to rest. 

5.13. Solve (1) 

the terms 2Ky, by^ being relatively small. 

This is the equation for the system mentioned in § 3.10, but having 
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viscous damping represented by 2/cy. Then from (14), § 5.10, with 

o) = a*, 

- f Aco COS^iIi dip — TT— 
27ra> J 27760 

2rr 

j sin^^ cos i/r dip 

0 

(2) 

- (3) 

Thus J ^ or log^ — —(4) 

so A = AqC-^^j (5) 

where ^ value of ^ at ^ = 0. 

Also by (15), § 5.10, 

. __ 2ac 

^ 27r6oA 

36^2 

27r 

J' 
^60 COS Ip sin ip dip - 

27T(joA 

2tt 

J di/t 

0 

8u) 

(6) 

(7) 

Thus, on the assumption that A is constant, 

9 = -^+<Po, 

and, therefore, by (16), § 5.10, 

(8) 

(9) 

Hence by (1), § 5.10, the approximate solution of (1) above with 

?o = is y ^ ^oe-'''cos[a>+(36^78cu)]< (10) 

— A^e-^^ Qo^\a^ -\-2bAle~'^'^^(^1) 
so the motion once started dies away exponentially. By virtue of 

^-2ac/ formula for the angular frequency, the latter decreases 

with increase in t. This corresponds to reduction in amplitude. The 

reader may find it interesting to compare (11) with (6), (7), §3.17. 

If 5 = 0, (11) reduces to the well-known solution for an oscillatory 

dissipative linear system. 

5.14. Solve 

0+[-.2K0+{a\0\e+pe^^-^ye^)]+ = 0, (1) 

where a, jS, y, k are real positive constants such that the part in [ ] 

is relatively small. This differential equation occurs in the problem 

of the rolling of a ship fitted with a stabilizing equipment, and it applies 
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when the phase of the control is reversed [108]. After reversal, the 

amplitude of the motion increases, reaching an ultimate value, the 

oscillation then being periodic. This occurs only if k > 0. The term 

2k6 may be written0, the first part being due to the stabihzer 

with reversed phase, and the second to rolling resistance, i.e. in the 

language of electronics to negative and positive damping, respectively. 

If then K > 0, so the damping is negative, and the stabilizer 

supplies the energy necessary to maintain the periodic oscillation. 

By (14), §5.10, 

Aoj cos^ dip — -— A^<jj^\cosip\co8^ dip-^ 
Zttoj J 

A^oj^ cos^j 

iJTT 

jAdi/r-f-—^ f ^^sin^cosi/f (ii/f (2) 
2770) J 

= A^K-^-§^co^Aj. 

When the motion is periodic ^ ~ 0, so by (3) 

o 0^0. 4:OL(JoA 
Wco^A^ + - ■K = 0. 

Solving (4), and choosing the positive root, yields 

Ott^Sco W 3 

If ^ 1, (S) is approximately 

. 16a: r 27tt^Pk 

r/ 27^u_ii 
L\ ^ 32a2 / J 

STTKj^aa). 

By (15), §5.10, 

y 
27TCjljA 

'ATT 

f A^sinUddj = 
J oca 

since the other three integrals corresponding to [ ] in (1) vanish. 

Thus during the steady state 

-I .r, 

since A is constant, having the value at (6), and 9^ is an arbitrary 

phase angle. 

Hence '* — ' * ^ = ca^+9 = (ca- H+?o» 
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and by aid of (6) the periodic solution is 

6 — (37r/c/4o^6D)sin[cL»(l—277r^/c^y/128a^6D^)/-l-9o]* 

The angular frequency of the oscillation coq — [cu--(3y^^/8a>)] 

decreases with increase in A, 

5.15. Solution of (3), § 5.14. To simplify the analysis we shall take 

the case when k: 0, and find the law of amplitude decay for the 

positively damped system. We have to solve 

(TA 
(it 

- + 28), 

where S = K^oc+Trpto. Then 

(1) 

(2) 

/ 
dA 

A-\A-{-2S) 

Now the integral may be written 

dA 

(3) 

1 r dA 1 rdA 1 CdA 1 M-t-2S\ 1 

488 J (^ + 28) ipj A I 28A' ^ ^ A I ‘2SA 

At the beginning of the decay, if 2S/A <c; 1, we have approximately 

1 (28 288\ 1 _ 
Llog(l+2SA4)-J-. 

Substituting (5) into (3) yields 

m 

If A ~ Aq when t — 0, B ^ 1/^^ and, therefore, 

A(t)c:^AJ(l+iAl^coH)K (7) 

so the oscillation decays according to this law if k is made zerof during 

the steady state. (7) show^s that the greater Aq, the more rapid the 

decay in amplitude. By (9), § 5.14, the rate of oscillation increases 

with decrease in A. Apart from the damping terms, the behaviour is 

akin to that of a simple pendulum, the restoring force in both cases 

being due to gravity. The ‘stiffness’, or derivative of the force with 

respect to angular displacement, decreases with increase in amplitude. 

5.16. Solve the simultaneous differential equations [107] 

^—b(j)+c^^+a(f> = 0, (1) 

and d+bi0+a^d = —K-^(p+K2(f>^, (2) 

t This means that the driving force due to reversal of phase of the stabilizer is 
neutralized by the resistance to rolling. 
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all constants being positive and non-zero. These equations occur in 

the theory of ship stabilization, and the problem is to investigate the 

motion. First we remark that if 6 = 2k, and (f> = y,(l)is identical with 

(1), § 5.12, the equation for an electrically maintained tuning-fork. 

The periodic solution may be obtained from (17), § 5.12, by letting 

t +00 taking a — b = 2k, cpQ — (arbitrary). Then 

(j> = A cos*//, (3) 

where A — (46/3a>2c)l, ijj — ojL 

Since k^Ik^ 1 usually, we omit the last term in (2), and substitute 

for <j> from (3) into (2). Thus the latter becomes 

— iisini/f, (4) 

where B ~ Ak^ox, In the solution of (4) we omit the complementary 

function, since it is an exj}onentially damped circular function which 

tends to zero as t -> +oo. Then the particular integral of (4) is 

. +CO/CiCOS(l/jr + e) , . 

with = cof, 6 — tan~^[(cuf—a>“)/6^co]. Thus the ultimate motion 

is periodic with period 27r/a> and amplitude 

l^ol =-= AoiK,l[{M\ — (u^)-\uj~hl\K (6) 

In the self-oscillatory mechanical system to which (1), (2) refer, the 

term —in (1) represents the driving force entailed by energy 

supplied from an external source (the stabilizer); and in electronic 

language it is equivalent to a negative resistance. If 6 < 0, the 

resistance is positive and the solution of (1) will then represent a 

damped oscillation of decreasing amplitude. Using the expression 

for this in (2) with /Cg “ obtain the equation of a dissipative 

system driven by an oscillatory force of gradually decreasing ampli¬ 

tude. Hence an oscillation once started will die away with increase 

in time. This is the desired practical result in the anti-rolling of ships. 

5.170. Surges in hydro-electric installation [30]. The general 

arrangement of a surge tank or chamber for a hydro-electric power 

plant is shown schematically in Fig. 28. The water is supplied from 

a reservoir at a level h above the turbo-generators. The function 

of the surge chamber is to relieve surges which travel up the pipe¬ 

line when the turbine load decreases and the water consumption is 

reduced, and to supply water when the load and, therefore, the water 
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consumption increases. If we imagine a quiescent condition corre¬ 

sponding to a constant load on the turbines, the water level in the 

surge chamber will be substantially constant. But when the water to 

the turbines is stopped suddenly by closure of the sluice valves, the 

momentum of that in the tunnel causes the level in the surge chamber 

to rise, resulting ultimately in a slow damped oscillation of the water 

in surge chamber, tunnel, and reservoir. When the valves are opened 

after a quiescent interval, the level in the surge chamber falls and a 

damped oscillation of the water in the system occurs as before. 

Remarks on friction. When water flows in a tunnel or pipe, the whole 

cross-section being utilized, the friction force has been shown experi¬ 

mentally to be proportional to some power of the velocity u. In an 

iron or steel pipe this power may be rather less than 2, and in a concrete 

pipe nearly 2. The loss of water head due to friction, i.e. the height 

of a column of water to cause the same pressure, varies as There 

is also a loss of head at the tunnel entrance which varies as and 

this may be represented by ku^j'lg. If v ~ 2, the loss in a tunnel of 

length I is lu^jr^ 0^, being the hydraulic mean radius of the tunnel, 

and C the Chezy constant. Thus the total loss of head due to friction 

isfu^, where the friction coefficient/= (A:/2g^)-|-(Z/r^ (7^). 

5.171. Derivation of differential equation [30]. We assume that 

the cross-section of the reservoir is much greater than that of the 

surge chamber; also that it, the pipe, and tunnel have uniform cross- 

sections. The force relationship is: 

mass X acceleration = (force due to water pressure at tunnel en¬ 

trance)-{-(component of weight of water in tunnel) —(force due 

to pressure at lower end of tunnel) —(frictional force). 

Thus if w is the weight of a cubic foot of water (62*4 lb.), and g the 

acceleration due to gravity (32-2 ft. sec. “2), we have 

= A^P^-^wlA^mioc-AtP^-wlAy|r^C^ (1) 
g at 

(2) 

where = Zsina. Now PJw = PJw = (Xi+y)- Sub¬ 

stituting these into (2) gives 

5077 H 

(3) 

(4) 
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since (Fg+Fg—= 0. The rate of flow of water into the surge 

chamber is the difference between the respective rates for tunnel and 

pipe-line. Hence if Q is the rate of flow in the latter, 

A,^l = A^u-Q. (5) 

Eliminating y between (4), (5) leads to the equation for the velocity, 

namely, 

(6) m ■ oj* Q 

This may be written in the form 

u-\-2KUU-{-au “ d, 

with K fgjl, a = A^g IA J, d= Qg/AJ. 

(7) 

(8) 

5.172. Solution of (7), § 5.171. Write (u—dja) = x, u = x, 11 = Xy 

and the equation transforms to 

x-{-2k(x+c)x-\-oj^x = 0, (1) 

where c = d/a, and = a. In practice if the damping term 2k{x-\-c)x 

is relatively small,I the method of § 5.10 may be applied. The co¬ 

efficient of the frictional damping is always positive, and we must 

write the damping term in the form 2k{\x\-\-c)x. Then by (14), §5.10, 
27r 

A = — f (^|sin0|-f c)cos^j/r diA (2) 
27TOJ j 

0 

2k A^ 

TT 

V 

J cos^i/f d(cos0) 

4^ 

Stt 
kcA 

(3) 

(4) 

=-:£[<,A+pf-p% (6) 

with 2p = 37rc/4. Thus 

J dAI[{A+pf-p^] = -^ + B„ (6) 

so ^\og[Aj{A-]r2p)] =(7) 

and A/(AA-2p) — (8) 

t In certain cases this may not be so. A numerical method of solution is then neces¬ 
sary (see [30]). 
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with = Kdja. If A — when / = 0, B = AJ{Aq-]-2p), and on 

inserting this in (8), we find that 

A(t) =r^ Aoe-P‘/[l + (^a/^‘^d)Aoil-e-^)l (9) 

Also from (1) above and (15), § 5.10, 
27r 

cp = ~ I (A\smtp\-{-c)coBi/jshn/j dip — Oy (10) 
J 
0 

so 9 = 9o, an arbitrary phase angle. 

5.173. Water level in surge chamber. After the water supply 

to the turbines is stopped by closing the sluice valves, Q = 0, so d — 0. 

Using this in (9), § 5.172, gives 

A(t)===Ao/(l+yth (1) 

where y = {^k/^tt)Aq. The water from the tunnel now enters the base 

of the surge chamber, and its velocity is 

M = —^A^sin(a>i+<po). (2) 
(i+yu 

Next we have to determine the two constants 9^, A^y using the initial 

conditions -w(O) — dja — A^, ~ 0. From (2) 

and when ^ == 0, we must have 

CO cos 9o = y sin 9q, or 9^ — tan~^co/y. 

With this value of 9q in (2), we get 

A, = AoSin^o — Aoa</(a>2+y2)l, 

so Ao = Ai{a>2+y2)J/co. 

Hence by (2), (6), 

A,(a>^4'y*)* -It, \ u = -A^ >' L sin(wt+(po). 
a)(l+yl) 

Using (4), § 5.171, in the form 

y = —(llg)u-fu^, 

and substituting from (7), leads to 

y = _A,(%)(a>2+y2)»[^ 
”cos(coiJd-9o) ysin(a»<+9o)' 

(l+y<) a,(l+ytf J 

/Af(a,^+y=^) 

oj\l+ytf 8in^(tu<-f <Po)' 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 
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This is an approximate expression for the water level in the surge 

chamber at any time after closure of the sluice valves. When ^ = 0, 

y = which is the loss of head between the reservoir and surge 

chamber, due to friction. Using the data in § 5.175, the reader should 

calculate and plot the y-t curve from ^ 0 to 210 seconds. The first 

2/max is of order 6 feet. 

5.174. Aperiodic case. From physical considerations it is evident 

that if friction in the tunnel were large enough compared with the 

gravitational restoring force, i.e. k large enough in comparison with a, 

there would be no oscillation. The method of solution used in § 5.172 

is inapplicable here, since it is based upon oscillatory motion, with 

slowly varying amplitude. The differential equation for / > 0 is 

u-\-2KUu-\-au ~ 0. (l)t 
The form of aperiodic solution which satisfies the initial conditions 

Uq = dja, Uq = 0, and vanishes when t -> +oo, is not obvious. We 

can, however, determine an upper limit for aperiodicity in the follow¬ 

ing way: u decreases with increase in time without oscillation, and 

2ku ^ 2/cd/a for / > 0. Now if 2ku = 2Kdla for all / 5? 0, the motion 

would certainly be aperiodic, provided 

Kdja > a^, or /c > (2) 

and this furnishes the upper limit. 

Substituting from (8), § 5.171, into (2) above gives the criterion that 

A,^Afl/PgQ\ (3) 

Hence for a specified tunnel, friction coefficient, and rate of flow in 

the pipe, the motion will be aperiodic provided A^, the cross-sectional 

area of the surge chamber, equals or exceeds a certain magnitude 

given by the right-hand side of (3). The main reason for this require¬ 

ment is that the restoring force corresponding to a decreases inversely 

as Ag. 

5.175. Numerical examples illustrating §§ 5.172, 5.174 [30] 
1®. In a hydro-electric surge-chamber system the tunnel is 3 ft. 

diameter, A^ = 7*07 sq. ft., its length I == 500 ft., the friction co¬ 

efficient/ ~ 0*027, and A^ == 56*5 sq. ft. What is the quasi-period of 

the oscillation ? 

I Since u does not change sign in aperiodic motion, there is no need to write |«|. 



§ 5.175 AMPLITUDE AND PHASE 101 

To a first approximation 

o) = so r ^ 27T/a> — 27r/ai (1) 

- 27T{AJIA,g)^ (2) 

70 seconds. (3) 

In this ultra high-frequency era, a periodic time of this magnitude 

seems ultra strange! 

2®. In P, what size of surge chamber would be required to prevent 

Fig. 20. Illustrating Coulomb damping. 

oscillation if the rate of flow of water in the pipe were Q = 33-7 cu. ft. 

per sec. ? 

By (3), §5.174, 

A, > 7-073 X 500/0-0272 X 32-2 X 33-72 (1) 

— 6,600 square feet. (2) 

Hence if the surge chamber were cylindrical, its diameter would have 

to be at least 92 feet to avoid oscillatory motion. 

5.18. Coulomb damping. In this case the damping is presumed 

to be independent of the velocity (magnitude and direction) when 

it is greater than zero, but vanishes with the velocity. The corre¬ 

sponding force always resists the motion independent of its direction. 

These points are illustrated in Fig. 29. 

Example. Solve i/+9{y)+^^y = (1) 

where g(y) = a constant when y > 0, ?/ < 0, but g{y) = 0 when 

2/ = 0 as in Fig. 29 [187]. By (14), § 5.10, dividing the interval (0, 2it) 
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in accordance with Fig. 29, 

iTT In 2n 

A= f cos.^#+-^ f cos>j>di}j-^ f cosifjdijj (2) 
27rCO J 2770) J 2770) J 

0 +i7r jTT 

= — 2//./77W. (3) 

Hence \A\ — AQ—2fitln(x), (4) 

Aq being the initial displacement. 

Now \A I cannot be negative, so the motion ceases when \A | vanishes, 

i,e. t = 7ra>j4o/2/x. Thus the solution is given by 

y = .4(/)sin(ttj<-|-(pQ) (0 ^ TrujAJ2[M). (5) 

Since 9 = 0,9 = <po, which in our case is Itt. The larger A^, the longer 

the motion persists. 



CHAPTER VI 

THE EQUIVALENT LINEAR EQUATION 

6.10. Theoretical considerations. The approximate solutions of 

non-linear equations obtained in Chap. V may be shovm to satisfy 

linear differential equations of the type [175j 

y+p{t)y-\-(i{t)y = o, (i) 

where ^(/), q{t) are either constants or continuous functions of t. The 

form of solution used in connexion with the approximations in 

Chap. V IS y ^ ^(Osinx, x = (2) 

where A(t) and 9(<) are slowly varying functions of t. Differentiating 

the first part of (2) with respect to t, we have 

2A\ . 
-r y = 

A siny 

XT = 

By addition (4) yields 

+Ay cosy. 

-l-2jy cos sin cosy ' 

lyCOSy 

y+x^y ^ A 

provided we neglect y, which is zero in all cases examined in Chap. V, 

except § 5.13, where it is ^(e^). By (14), § 6.10, A, A are both ^(e^), 

so the right-hand side of (5) may be neglected in an approximation of 

order e. Under this condition, the linear equation 

2/-(2i/J)y+yT = 0 (6) 

is the equivalent of the non-linear equation 

= 0. (7) 

In a general sense the coefficients 2AIA and are functions of <,t 

and we assume that g does not have terms with fractional indices. 

(6) may be put in the convenient form 

y+2Ry+whj 0, 

t This does not introduce nondinearity in y. 

(8) 
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where k = —AjA, w — x- By aid of (14), § 5.10, we have 

27tcoA 

'Zrr 

J g{A sin t/f, Aco cos tp)oos ip dip, 

while d) is given by the right-hand side of (16), § 5.10. 

CH. VI 

(9) 

6.11. Principle of energy equality [77]. Since (6), (7), § 6.10, are 

equivalent, the work per cycle calculated from each must be equal (to 

the degree of approximation envisaged). In some cases the equations 

may refer to a damped oscillation, so a ‘cycle’ is defined to be the 

time interval tq == 277/a), or tq — 27r/a5, as the case may be. Putting 

V ~ y, (7), § 6.10, may be written 

^+eg{y,y)+<»^ = o. (i) 

Multiplying (!) hy dy = y dt and integrating over a cycle Tq, gives 

27rla) 2ttI(x) 2ttIo> 

I vdv+j oj^ydy+ef 9{y^y)y dt = a, constant C, (2) 

27r/a> 

SO + * / s'Cy. 

By virtue of periodicity! [ ] = 0, so we obtain 

27r/a> 

J g{y,y)ydt = c, 

(3) 

(4) 

which is the energy dissipated in heat during the cycle. In like 

manner from (6), § 6.10, we obtain 

27r/cu 

2k J y^dt = C^, (6)t 
0 

where k = —AlA. Substituting in (4) for y, y from (6), (7), § 5.10, 

gives 27r/ai 

C — € j g{A sin x, Aw cos x)Aoj cos x dt (6) 
0 

27r 

— eA j g{A sin x, Acd cos x)cos x dx- (7) 
0 

t A damped oscillation is not periodic, but if the damping is small enough, this 
term will be correspondingly small. 

t Strictly, the upper limit should be w, but in view of the degree of approximation 
contemplated, has been used. 



105 §6.11 THE EQUIVALENT LINEAR EQUATION 

Substituting y = ^cocos^ into (5), yields 

27r/a> 2Tr 

6\ ~ 2kA^u}^ J cos^x — 2kA^co J cos^x (®) 
0 0 

~ 27tcokA^, (9) 

If we equate C, C^y the value of k from (7), (9) is the same as that in 

(9), § 6.10. It follows that, to the degree of approximation envisaged, 

the energy dissipated per cycle is equal in the non-linear and the 

equivalent hnear systems. We selected the cycle (0, 27r/aj) for simpli¬ 

city. The same principle applies, however, to any cycle 

(27m/co, 27T(n-f-l)/a>), 

provided the appropriate value of A is used. With a damped oscilla¬ 

tion, A would decrease with increase in time, so (7, would do 

likewise. 

6.20. Example. Find the linear equation equivalent to 

y+2Ky+a)^y+by^ -= 0. 

J (2/c^cocosi/f-f-6^^sinY)cosi/f di/j 

From (9), §6.10, 

27TOjA 

1 

27T(JjA 
27TKCoA — K. 

(1) 

(2) 

(3) 

By (16), §5.10 

OJ ~ ^ ~ OJ ■ 

Zir 

~7 f (2f<Aco cost/f-j-bA^ sin^i/f)sini// di/f (4) 
27r(vA J 

, bA^ 3 , 36^2 
CO 4-^;^- _ 77 = ct> -f- (5) 

27TOJ 4 8co 

Substituting from (3), (5) into (8), § 6.10, the linear equation equiva 

lent to (1) is 
j/ + 2Ac7/4- 

. / , 3M2\2 
2/ = 0. (6) 

Here the coefficient of y is constant, but that of y is a function of t, 

and it has the value (co - 
3bAlY 

at ^ = 0, since by (5), § 5.13, 
8a» / 

A(t) = 

Thus as y (see (10), § 6.13) decreases with increase in [ to / , -> O). 
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6.21. Linearization of 
y+Hy) = 0, (1) 

h{y) being an odd function of y. We consider a periodic solution 

representable with adequate approximation (depending, of course, 

upon the nature of the function h(y)), by 

y AmicLt, (2) 

this being the dominant term of a Fourier series, with A constant. 

Multiplying (1) hy y dt and integrating over a period, we have 
27r/ai 2nj(u 

J y / Hy)y dt = o, (3) 
0 0 

since there is no loss and the motion is periodic. Taking the first 

integral by parts = 0, (4) 

27r/ai 2njw 

so j y^dt ^ j h{y)y dt. (5) 
0 0 

Substituting from (2) into (5) gives, with i/f — d>^. 
2tt 27r 

I" cos^ifi di/i = -4 J h{A silldtj/, 
d 0 

2ir 

SO = -L J sin i/t)sin ip dip. 

0 

Thus the linear equivalent of (1) is 

= 0. 

(6) 

(7) 

(8) 

6.22. Example. Find the linear equivalent of 

w+ay+hy® = 0. (1) 
Applying (7), § 6.21, 

27r 

j sini/r+i>^®sinY)sini/i dijj (2) 

0 

aA-lbA^ (3) 

where A is the constant amplitude of motion of the loss-free system. 

Then the equivalent linear equation for (1) is 

yA-^^ = 0, (4) 

this being satisfied by (2), § 6.21, io being given by (3) above. 

Suppose now we take the equation 

y+(^y+by^ == /cos (jt)t. (5) 
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a, 6,/, CO being such as to preclude a subharmonic. Then the equivalent 

linear equation is y+cI5^ = /cos (6) 

of which the periodic solution corresponding to the forced oscillation is 

/ cos co( 
y — f coscjotl(oj^—co^) = y (7) 

<- p d “ f(0 . 

non' 1 inwr Res. 

~©77 

(a+|642-£u2) 

This agrees with the result in §4.140, if A is written for 

obtained from (9), § 4.140, the term involving cosSoj^ being omitted. 

6.310. Linearization of electrical circuits with non-linear 
resistance [175]. Here we use the prin¬ 

ciple of energy equality in §0.11, and 

assume that as a first approximation the 

current is sinusoidal. Referring to Fig. 30 

suppose the potential difference across 

resistance i? is /(/), a function of I the t 

current. Then we calculate the value of Fio. 30. Electrical circuit with 

the constant equivalent resistance i?. such non-lmear resistance which is 
^ ^ a function of the current. 

that if I == Iq sin cot, the energy loss in R 

over a period is m This is reminiscent of measurement of the 

effective resistance of an iron-cored coil by a bridge method using 

sinusoidal current and a tuned detector selective to the frequency 

cu/27t, but not to the higher harmonics. 

We have 
27rfcjj 27r 

m Re = J /(/)/ = A J/(/osin^)sin0 d^, (1) 

with I = iosino)/, and if) “ a>L Thus 

2Tr 

-Rc = ^ I fik sin i/r)sin </. dip. (2) 

We remark that in a thermionic valve circuit, R^ may be negative. 

Suppose E ~f(l) RQl+bP, (3) 

Rq, b > 0, then (2) gives for the equivalent resistance 

Re = Ro+ii>n- (4) 

6.311. Equivalent linear inductance. The relationship between 

total magnetic flux interlinkage <I> and unidirectional current I in an 

iron-cored coil takes the form of the well-known B-H curve, provided 
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the iron is demagnetized initially. During magnetization by a sinu¬ 

soidal current / — 7^ sin a>/, the relationship per cycle between <E> and 

I takes the form of the familiar hysteresis loop of Fig. 31. The use 

of a suitable mathematical expression for this would complicate the 

Fig. 31. Magnetic hysteresis loop. 

Fig. 32. Assumed relationship between total magnetic flux 
interlinkage and current in coil with ferromagnetic core. 
The maximum current in circuit during operation must be 

less than (Xo/36)^. 

analysis, so for simplicity we assume absence of hysteresis and take 

the approximate relationship 

/(/) = 0 = ^0 7-6/3, (1) 

Lq being the inductance when 1 is small, and I < (LjSb)^, 6 > 0. 

The physical significance of this relationship (see Fig. 32) will be more 

readily grasped when we remember that inductance is total flux 

interlinkages per unit current, i.e. the inductance 

7) = <D// = L^-bP. (2) 
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Lq is the constant, and —bl^ the variable part of the inductance, 

which latter introduces non-linearity. By (2), § 6.310, the equivalent 

linear inductance is given by 

‘iTT 

= A J /(/q sin i/.)sin </< (3) 

^ 0 

JL 
tt/q 

27r 

(io /q sin sin®i/()sin tjj difs 

0 

(4) 

(5) 

Example. The circuit shown schematically in Fig. 33 contains 

an iron-cored coil. If L^, are the equivalent Hnear inductance and 

resistance, respectivelj'^, the current amplitude is given by 

cjC 
(6) 

Assuming for simplicity that is constant, by sub¬ 

stituting for from (5) into (6), we see that Iq is not 

a single-valued function of co. Thus if co is varied, 

the jump phenomenon described in §4.170 will be 

exhibited. Moreover, the relation between co and Iq 

will take a form such that over a restricted range of 

CO, Iq is multivalued (see Fig. 16 b). 

L 

Fig. 33. 

6.312. Inductive tuning. A circuit comprising an iron-cored induc¬ 

tance L, capacitance C, resistance R, and a supply source 

E = EQsinojt, 

may be brought to resonance by increasing Eq from zero. The ejfifect 

of so doing is to increase /, thereby decreasing L, until when Eq=^ E 

the reactance vanishes. The current now rises precipitately to many 

times its former value. With further increase in Eq, the current rises 

gradually. If Eq is reduced, the falling current exceeds the rising one, 

and when Eq < E, the current suddenly drops to a low value. This 

series of events (form of hysteresis) is illustrated by the part in Fig. 34 

marked R = 29-7 ohms. When R ^ 67, there is no loop, but the 

I-Eq curve has a point of inflexion (maximum slope), where ‘reso¬ 

nance’ may be considered to occur. Additional information will be 

found in reference [140], while the matter is treated analytically in 

[64, 65]. 
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6.313. Transconductance of thermionic valve. In § 6.310 the 

analysis was based upon the circuital current being sinusoidal. Here 

we take the potential difference across the resistance to be sinusoidal, 

i.e. E ~ JE'^sincuL The non-linearity of the resistance entails a non- 

sinusoidal current, and we have the relationsliip I — f{E), a function 

Fig. 34. Relationship between potential difference and 
current in circuit having capacitance, resistance, and coil 

with ferromagnetic core. 

of E, Accordingly it is expedient to deal with an equivalent linear 

conductance which is the reciprocal of the equivalent resistance 

Thus by (2), § 6.310, 
2tt 

^ 0 

For a thermionic valve, the relationship between anode current 7^ 

and grid potential may be expressed to an adequate approximation by 

~ la — + + + + (2) 
where Iq is the current when Eg — 0 (cathode and grid at the same 

potential) and otg are constants. Usually the first four terms of 

(2) are adequate, so if we apply (1) with Eg — 

2n 

Oe = J (/o+oKi JS'o8ini/r+a2'®oSin¥+“3-®oSinV)sin^ (3) 

= ai+fa3 jEg. (4) 

Now <X3 < 0,80 CTj decreases with increase in grid swing 2Eq. It should 
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be observed that terms of even order in Eq do not contribute to (4), 

since they cancel out (individually) over an interval (0,27r). 

6.314. Thermionic valve circuit. Referring to Fig. 35t we con¬ 

sider only the oscillatory component of the anode current. Then we 

4 = /+/i+4 (1) 

and Ldl 1 r r —kdt. 

f ^ 

^ i n 
i i*- 1 

—T^_ 
DC.Supply 

R«l/CRs 

Fig. 35. Schematic diagram of triode with 
oscillatory circuit. Hg, the series resistance of 
L is shown as an equivalent parallel resistance 
of value It ~ LjCItgf for sinusoidal current. 

(2) 

Also from (2) 
j L dl j. j 

^ R dt' - 
(3) 

Substituting from (3) into (1) leads to 

(4) 

The relationship between anode current and the grid and anode 

potentials Ey, E^^, respectively, is 

4 == (5) 

fjL ^ I being the amplification factor of the valve, and its equivalent 

linear transconductance. J The oscillatory part of the anode potential 

is — i dljdt, while Eg = M dljdt, so (5) maj^ be written 

(6) 

t For convenience, Eg the series resistance of L, has been represented by a parallel 
resistance E — LjCRgy it being assumed that the oscillatory current is sensibly 
sinusoidal, and Eg small enough for the potential drop across it due to unidirectional 
current to be negligible. Also grid current is assiuned negligible, 

t Or equivalent linear mutual conductance. 
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Substituting from (6) into (4) yields the equivalent linear equation 

For a periodic oscillation the damping coefficient in [ ] must vanish, so 

= 0. (8) 
or — LjR{M—L/fi). (9) 

Thus the critical value of 31, to maintain a steady oscillation is 

31 = LjRa^-\-Lj^i. (10) 

In terms of the series coil resistance R^ = LjCR, and the internal 

resistance of the valve Rg — fx/a^, (10) becomes 

^l3I = L{RJR+1) = CR,Rg+L. (11) 

In practice 31 would exceed the value at (10), (11). From (10) we see 

that, for a given coil, the greater the amplification factor and the 

transconductance of the valve, the more easily will oscillation be 

obtained. 

Using the expression for from (4), § 6.313, and R — LjCRg in 

(9), we find that the amplitude of the potential difference between 

grid and cathode is given by 

t^CRs 
fxM-L 

(12) 

where ag is expressed as a positive number (see below (4), § 6.313). 



CHAPTER VII 

EQUATIONS HAVING PERIODIC 

COEFFICIENTS 

7.10. Mathieu’s equation. We commence with this linear type, 

since it constitutes a suitable introduction to our later consideration 

of a non-linear modification thereof. The canonical form, i.e. ruled by 

general usage, is 2/"+(«-2^cos2z)2/ ^ 0, (1) 

where for our particular purpose a, q are real parameters. The co¬ 

efficient of y is the single-valued periodic function {a—2q cos 2z) 

having period 77 in 2;. With ojf ~ 2;, (1) may be regarded as the equation 

for a loss-free dynamical system having a variable spring control 

{a~-2qcos2z)y the variation being caused by a driving agent. For a 

damped system, the term 2/cy' must be added to the left-hand side of 

(1). Alternatively (1) may be written in the form 

y"-\-ay {2qcos2z)y. (2) 

Then with cxjt for z, (2) applies to a simple mass-spring dynamical 

system driven by a force {2q cos 2z)y, wdiich depends upon the displace¬ 

ment y. Absence of damping means that the mechanical impedances 

of the elements of the S3\stem are entirely ‘reactive’ in type, and one’s 

curiosity is aroused, therefore, as to the possibility of resonance. 

If a = 4 and y on the right-hand side is replaced by a constant /, 

the equation becomes 

2/"+4y -- 2fqcos2z, (3) 

the particular integral being 

2/p = (J/?)2sin2z. (4) 

Thus the amplitude -> ±00 sls z-> -f-oo, so the motion is unstable and 

non-periodic. If a damping term 2Ky' is introduced into equation (3), 

the particular integral is 

Vp = (/g'/2K)sm(2z+cpo). (5) 

The system operates at resonance, the amplitude of motion being 

(fql2K), The condition for resonance, namely, that a — 4, is indepen¬ 

dent of q. Although we shall encounter the form of solution at (4) 

later on, it is not possible to deduce results pertaining to (2) from either 
6077 I 
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Fig. 36. Stability chart for the Mathieu equation ^" + (0—2}cos22)y = 0. 

(4) or (5). The theory of Mathieu’s equation has been treated in detail 

elsewhere [185], and the reader should consult this reference for 

additional information. For present purposes we shall merely state 

established forms of solution of (1). 

7.11. Forms of solution of Mathieu’s equation. The particular 

form depends upon the values of a, q. To effect discrimination we use 

the stability chart of Fig. 36, where the (a, q) plane is divided by the 
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curves into regions of stability and instability. Herein we restrict 
ourselves to the range g ^ 0. 

1®. When {a, q) lies within a stable region, the two linearly indepen¬ 
dent solutions take the respective forms 

00 

2 c^cos(m+^)2, (1) 
r=" —00 

00 

and 2/2=2 c„sin(m+^)z, (2) 
r= —00 

the being real constants dependent upon a and q [185]. 

Fig. 37. Graph showing/orm of solution of Mathieu’s equation when (a, q) lies in a 
stable region of the plane. In conducting experimental work with (a, g) in a stable 
region, it is necessary to start the oscillation by external means. The damping should 

bo very small; eventually the system will come to rest [see 185, (2), (3), p. 97], 

(1) is an even and (2) an odd function of z. In (1), (2), 0<i3<l, 

m = 2r, (2r-f-l), when (a,g) lies between {a^n^lh^n^-i) («2n+i>^2n+2)> 
respectively. If j8 = pjs (in its lowest terms) is a rational fraction, 
0 < pjs < I, the solution is periodic in z with period 2s7t, 5^2. 
If j8 is irrational, the solution is non-periodic, i.e. it does not repeat 
itself exactly at any interval. In practice where p is calculated to a 
limited number of decimal places, the solution will be periodic. All 
solutions of above type are bounded, this feature being illustrated by 
the graph in Fig. 37. Some = constant curves for certain ranges of 
a, q are plotted in Fig. 38. 

2®. When (a, q) lies within an unstable region of the (a, q) plane, the 
two linearly independent solutions take the respective non-periodic 
forms 00 

2/1 = 2 PmCos(mz+.^„), 
r-0 

(1) 
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Fig. 39. Graph showing form of solution corresponding to (1), 2^^, § 7.11. 
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and = e-/^“ 2 p^cos(mz-(f>J, (2) 
r-0 

Pmy 4*m being real constants, dependent upon a, q. Here fi real > 0, 

and when m = 0, = 0. 7)i — 2r, (2r -[-l) according as (a, g) lies 

between (^>2n5^2n) (^2n+i>^'2n+i)> respectively. The solutions are 
neither odd nor even. They may be interchanged by writing —z for z 

in either of them, -> 0 as 2: -> +00, so is defined to 

be unstable, but y^ is stable in 0 < 2: < 00. In the range 

—00 < 2; < 00, 

both solutions are unstable. 

When {a, q) lies upon one of the curves of Fig. 36, the linearly 

independent solutions have the following forms: 

00 

Vi ™ m — 2r or {2r4-l) according as (a, g) is on 
r=-0 

^2,71 ^2rHl> (^) 

2/2 = C^(!Z)^2/i+/(^)> G{q) a function of g; (2) 

00 

7/j ™ 2 m — (2r+l) or (2r+2) according as (a,g) is 
r==0 

on 62„ ,i or 62«+2. (3) 

1h = 8{q)zy^-\-g{z), S{q) a function of q. (4) 

arc real constants dependent upon a and g, while/(2:), g{z) are 

periodic functions of z, whose period is that oiy^. When (a, g) lies upon 

^271’ ^2n+2j^ solutions havc period ^ Being neither stable 
^2/?+lJ ^2n+li 

nor unstable, such solutions may be classed as neutral. All the second 

solutions are non-periodic by virtue of the factor 2; in their first mem¬ 

bers. Also they are unstable and tend to ±00 as 2: -> -^cx). If the first 

solution is odd in 2:, the second is even, and vice versa. The complexity 

of the matter needs no comment. 

7,12. Experimental illustration of instability. In an apparatus 

which obeys Mathieu’s equation (1), § 7.10, suppose the parameters 

a, g are adjusted to lie in an unstable region of Fig. 36, e.g. between 

the curves and a^. In the absence of energy loss, the amplitude of 

the motion, or its equivalent, would increase exponentially with 
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time in accordance with the solution! 

Vi = 5 /°2r+i cos[(2r+ 1)2;+^2,+i] real > 0), (1) 
r'^O 

until it was curbed by virtue of some limiting property of the system. 
The limit is set either by an element exhibiting non-linearity at large 
amplitudes, or by rupture of some member (!). 

For a dissipative system, the linear differential equation has the 

y"+2Ky'-\-(a-2qcos2z)y = 0. (2) 

Writing y ~ e-^"u{z), Avhere u(z) is a twice differentiable function of 
z, (2) is transformed to the Mathieu equation 

u'~{-{a—2qGo^2z)u — 0, (3) 

with a — {d—K^). By aid of (1), the appropriate solution of (3) has 
the form oo 

= ef'* 2 /’2r+iCOs[(2r4-l)2+^2,+i], (4) 
r»=0 

the p and <f> differing from those in (1), by virtue of the value 

a ~ (d—K^), 

Thus if K > fij the motion will be stable in 0 < 2: < oo, since it tends 
to zero as 2; -> +00. On the other hand, if k < the motion will be 
unstable in 0 < 2: < 00. Accordingly in the first case, the amplitude 
of the motion (once started) will decay exponentially to zero as z, 
and, therefore, as ^ -f-oo, whereas in the second case it will increase 
exponentially without limit. When p ~ k, the motion will be neutral. 

The second case, with k < p, has been investigated experimentally 
as described below [95]. A set of eight equally spaced laminated iron- 
cored coils are arranged in circular fashion and connected in series. 
Another set of similar coils is placed coaxially with the first set. In 
the intervening gap there is a coaxial aluminium disk having eight 
equally spaced teeth. The two sets of coils are connected in series with 
a variable capacitance, as illustrated schematically in Fig. 40. Since 
there is some residual magnetism in the iron cores, motion of the teeth 
on the disk past the coils causes a fluctuation in the circuital indue- 
tance. Suppose the rate of variation to be 1,900 c.p.s., then if C in 
Fig. 40 is adjusted to make l/(LC)^ czi 950 c.p.s., a subharmonic 
current having this frequency flows in the circuit. Despite the absence 

t The second solution of the form (2) 2°, § 7.11, is omitted, since it would tend to 
zero in accordance with the factor It would of course be of relative importance 
at the start. To introduce the time element we may consider that z — cot. 
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of a source of electrical power in circuit, the voltage amplitude grows 

with increase in time. In the experiments described in reference [95], 

without a non-linear element in circuit, the voltage reached the range 

1-2 X 10^ to 1-5 X 10^ (12 to 15 kV), which was sufficient to rupture 

the insulation of the capacitance. This method of transforming 

mechanical energy from a rotating toothed disk to electrical energy 

in an electrical circuit has been called ‘parametric excitation', because 

Fia. 40. Circuit diagram for e^eriments with 
periodically varying inductance, including a non¬ 

linear element. 

Fig. 41 a, b. Oscillograms of cuiTent in circuit of Fig. 40 under different conditions. 

the building-up process depends upon variation of a parameter (L in 

this case) in the differential equation for the electrical oscillation. 

7.13. Influence of non-linear element in circuit. The voltage 

amplitude is now found to attain a limiting value after a short time 

interval from the start. The desired result may be obtained by con¬ 

necting a bank of lamps in series with the capacitance and variable 

inductance, or by using a unidirectional current in auxiliary windings 

on the coils, thereby causing magnetic saturation of the cores. The 

effect in either case resembles that in a valve oscillator where the 

ultimate amplitude of the periodic oscillation is determined by curva¬ 

ture of the valve characteristic curves. 

The oscillograms of Figs. 41 A, b show two types of wave form 

obtained during the steady state when fx > k, limitation being due to 

a non-linear element [95]. The non-sinusoidal form of the oscillations 
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is probably caused by the iron cores of the coils (see § 6.311). Fig. 42 

is an oscillogram of a decay transient following a steady oscillation 

with fji > K, the condition being changed to make /x < /c, so that 

damping preponderates. 

There is an essential difference between the maintenance of these 

oscillations and those in a triode circuit. In the parametric case, 

mechanical energy is supplied from an external source at frequency 

co/tt, and converted into electrical energy in the circuit at half this 

frequency, there being no internal negative damping. With the triode, 

Fig. 42. Decay transient for circuit of Fig. 40 
when damping is suddenly increased. 

electrical energy is supplied directly to the valve from a unidirectional 

source (zero frequency), and converted into electrical energy at 

frequency a)/27T (apart from harmonics), by virtue of the negative 

resistance property of the valve. 

7.14. Capacitive excitation. The results described in § 7.12 were 

obtained with fixed C, but varying L, It is obvious, however, that 

fixed L and varying C will yield similar effects. Experiments were 

conducted with C varying at a frequency of the order 900 c.p.s., the 

inherent circuital frequency being 450 c.p.s., i.e. half the parametric 

frequency. The insulation broke down unless the voltage amplitude 

was limited by inserting six 220-volt neon tubes in series with the 

circuit [95]. 

7.20. Melde’s experiment. One end of a horizontal thread is 

fixed, the other being attached to a prong of a massive low-frequency 

tuning-fork. When the fork moves along the thread and the tension is 

suitably adjusted, the thread vibrates perpendicularly to its length, 

i.e. transversely, at a frequency one-half that of the fork. If A, the ampli¬ 

tude of the prong is less than a certain value say, the oscillation 
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dies away. When A > Aq, the oscillation builds up to an ultimate 

value, and the motion is periodic to all intents and purposes, so long 

as A is sensibly constant. If the motion were described symbolically 

by Mathieu’s equation with a viscous damping term, e.g. (2), § 7.12, 

the amplitude would either increase until the thread broke or die 

away (all or nothing!). Since the amplitude is limited in practice, a 

non-linear effect must be present. The tension of the thread at any 

point increases with increase in amplitude, and the equation of motion 

takes a non-hnear form. W^e shall assume the presence of the non¬ 

linear term by^, and in § 7.232 show how it causes amplitude limitation. 

The equation for the vibrating thread then has the form 

y"-\-2Ky'~\~{a-]-b7j^~2qGOH2z)y = 0 (6 > 0,2: ™ tot) (1) 

which is (2), § 7.12, with the non-linear term by^ added thereto. This 

cannot be regarded as a non-linear Mathieu equation, since the latter 

is linear! It is a non-linear equation of the second order with a periodic 

coefficient. 

7.21. Numerical example. Consider the linear equation 

i/+0^}6y'+(h0064~0^S2cos2z)y = 0. (1) 

If we write y ~ er^^^^-u{z) therein, it becomes 

(1-0-32cos22)2^ = 0, (2) 

whose parametric point (1,0-16) hes in an unstable region of Fig. 38, 

between b^ and a^. From reference [185, p. 122] the solution of (2) 

which ±00 as 2: -> +oo, is 

— ce®*o®-(cos2:—0-021 cos32:+... + 0*94sin2:—0-0175sin32:+...), (3) 

c being any non-zero constant. From above and (3), 

= e~®*®®%i(2:) c(cos2;+0-94sin2:) 02^ T37ccos(2—43*25°). (4) 

The period of the oscillation represented by (4) is 277, whereas that of 

the variation in tension of the thread due to the reed (driving force) 

is 7r,t so a subharmonic of half-frequency occurs. 

Suppose we keep a = 1, but increase q from 0-16 to 0-162. Then by 

[185, p. 103, (4)], /X — 0-081, so {^i—k) = 0-001 and, therefore, we 

obtain the unstable solution 

y^ czL 1-370600®!-cos(:2~43-25°). 

t The actual period is, of course, tt/cu. 

(5) 
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Thus if z ~ 10^, the amplitude will be increased in the ratio 

e =- 2*718..., 

with reference to its value at 2; = 0. Now z = cof, so if ca = 277 X 50, 

the time taken for this amplitude change to occur is 

t ~ IO^/IOOtt 3*18 sec. 

On the other hand, if a ^ 1, and q is reduced from 0*16 to 0*158, 

^ = 0*079, (fJi—K) — —0*001 and 

?/i l*37ce-oooi«cos(s-43*25), (6) 

so the solution is stable. The oscillation will be extinguished ultimately 

by virtue of the factor 

From [185, p. 97] it may be deduced that the motion corresponding 

to (1) with 2k for 0*16, can take one of the following forms: 

(i) K = (ji = 0*08, neutral having period 277, (a^q) being on the 

curve fjL — 0*08; 

(ii) K < 0*08, unstable -> ±00 as 2; -> -foo, (a, q) on the right-hand 

side of the curve = 0*08; 

(hi) K > 0*08, stable -> 0 as 2; -> -f 00, (a, q) on the left-hand side of 

the curve /x = 0*08. 

7.22. Improved experimental procedure. A more versatile 

version of Melde’s experiment is as follows: Attach one end of a length 

of thin white nylon thread to a steel reed operated electromagnetically 

from the 50 c.p.s. electric supply mains. To the other end attach a 

small weight (variable in steps), and pass the thread over a pulley, 

the arrangement permitting variation in length. Make adjustments 

so that the thread (about 1 metre long) vibrates in its second mode 

(centre-point nodal) at 100 c.p.s. when driven transversely. By turning 

the reed through 90° about a vertical axis, the thread will be driven 

along its length, so the tension will vary at 100 c.p.s. The thread will 

now vibrate, without a central node, at half the reed frequency, i.e. 

50 c.p.s. It then appears to the eye as a symmetrical lens-shaped 

section, and the motion seems to be periodic with constant amplitude. 

The 50 c.p.s. tone can be heard by placing the ear in a suitable position 

relative to the thread. Comparison may be made with the octave 

above, which is the fundamental tone of the reed. A more elaborate 

investigation may, of course, be made by means of a microphone, 



§ 7.22 EQUATIONS HAVING PERIODIC COEFFICIENTS 123 

amplifier, and frequency analyser, but this is not justifiable unless 

the driving agent is devoid of harmonics. 

Now connect a variac in series with the magnet winding of the reed, 

and reduce the current below that required at the threshold of oscilla¬ 

tion. Increase the current slowly up to and just beyond the threshold, 

when the amplitude of motion will build up to an ultimate value. 

The length of the thread may be increased or decreased by a fraction 

of the original before oscillation stops. Cessation in the linear case 

may be explained by aid of [185, p. 286, Fig. 27], which applies to the 

differential equation 

d^yldz^-\-2K dyldz-{~(a—2qGos2z)y ^0 {z ~ cot) (1) 

provided k is small enough. When the line a = qjy passes through the 

stable region of the diagram between 6^, small damping quenches 

the oscillation. 

7.230. Approximate solution of y"-\-{a--2qcoB2z)y-\-by^==^0, 

This is (1), § 7.20, with k = 0. In the absence of an established theore¬ 

tical foundation for forms of solution of this equation, we base our 

assumptions upon the experiment described in § 7.22. The following 

salient features were observed: 

(i) The motion is periodic, the main comj^onent having half the 

frequency of the driving reed; 

(ii) The displacement is symmetrical about the equilibrium position 

of the thread. 

Accordingly—in point of time—the displacement may be repre¬ 

sented by Fourier series of the types (6 > or < 0) 

00 

^-2 
r=0 

-^2r+l 

i?2r+isin 
(2r+l)2 {z = cdQ. (1) 

To comply with (ii) we shall assume that non-linearity may be represen- 

ted by the odd function (2) 

where 6, c,... may be > or < 0. 

Case P, 6 > 0, c ~ = ... — 0. To obt^ain a first approximation 

when (a, q) lies in the unstable region of Fig. 38 between 6^ and 

b small, 0 < g' < 0*5, say, we take 

y — A;iC0S2:+^3C0s3z. (3) 
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Substituting (3) into the differential equation, we get 

1/" = — (-Aicos^+^^scos Sz) 

ay ™ a(A^QOSZ-\-A^co^Zz) 

— {2qco^2z)y = —g[^i(cos2;+cos32:)+^3(cos2:+cos52;)] 

^2^3 ™ i^[^3(3cos2;-]-cos32;)+-4^(3cos3;i;+cos92:)+ ^ ^ 

-]-AlA^(3 008 21+6 cos 32;+3 cos 52;) + 

++1 A\{^ cos 2;+3 cos 52;+3 cos 72;)]. 

Equating the coefficients of cos2:, cos 32; to zero: 

[a—1—g')+j+|M j^(+|++j^3+2^3)—g'ylg — 0, (5) 

(a—9)^3+|6(+J+6^j^3+3^3)—5^+1 ~ 0. (6) 

Since the observed motion is sensibly simple harmonic, w^e assume 

pro tern, that {A^jA^ I <1- Thus in (5) we neglect +3 and obtain 

=^^(l+2-a), (7) 

while from (6), we get 

{a^^)A^J^\hAl-qA^ = 0. (8) 

Substituting from (7) into (8) yields 

^3Mi-(2?+a~l)/3(a^9). (9) 

With a — \,q = 0-25, \A^IA^\ 2:2^ 1/48, so in this case the assumption 

I+3/+1I 1 is justifiable. It will be realized that if q is large enough, 

A^ will not be the dominant coefficient in (1). 

The value of A^ may be improved by using (9) in (5). Thus dividing 

out by A^, and neglecting 2{A^IA^Y, we get 

fMf(l+^3Mi) = 1+?-o.+2^3Mi. (10) 

so ^2 = l[l+?(l+J3/^l)-a]/(l+^3/^l) (11) 

- ^[1+9'-®+(®-1M3/^i]- (12) 

Substituting from (9) into (12) gives 

^[l+g'-a+(a—l)(2?+a—l)/3(a—9)], (13) 

which is a better approximation than (7). If a = (l-“2g), and 

A^ = +2(g/6)^, +J1COS2; are exact solutions of the equation, stable 

if 0 < g < 1, as shown in § 2, Appendix II. 
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Case 2®, 6 < 0, c ™ (Z — ... = 0. Here we use the second series in 

(1), and with —b for b in the D.E. {b now > 0), we take 

y = jBiSin;2;-(-^3sin 3:2:. (14) 

Proceeding as before leads to 

= 0, (15) 

(a-9)£3+16(-£?+6£f £3+3£i)-?i?i - 0. (16) 

From (15), neglecting terms in B^, we get 

(!-?-«), (17) 

and from (16), (17) 

B^jB^ - (22+l_.a)/3(a~9). (18) 

The improved value of B\ corresponding to (13) P, is 

B\ - A[l_g-a+(l-a)(2g+l-a)/3(a-9)]. (19) 

Formulae (7), (13) in U, show that the amplitude of motion of the 

thread is limited by virtue of the factor 6" ^. 

7.231. Additional considerations. The equation in § 7.230 may 

be written 22:]?/ = 0. (1) 

Taking y x4iCOS2; as a. first approximation, (1) gives 

?/"-f-[(^^+^^iCOS“2;)--2gcos22:]y ~ 0, (2) 

or y''-^-[{a-\-lbA\) — 2{q~lbAl)Q0^2z]y==^ 0, (3) 

which is a Mathieu equation with parametric point (a+|fc^f), 

{q—\bA\). Since the motion of the thread (see § 7.22) has period 27t 

in z ^ cot, it seems probable that the parametric point of (3) will lie 

on the curve a^ in Fig. 38, so we shall investigate this. Using (7), 

§ 7.230, we have = ^(2?+2+a), (4) 

and q—\bA\~\{2q—l-\-a). (5) 

If lyl 2, on curve in Fig. 38, 

«1 — 1+?! "= i(22+2+a), (6) 

by substituting for q^ from (5). Then (6) is the a^ value at (4). Hence 

for 6 > 0, in the first approximation we have shown that stabilization 

occurs because the ultimate motion is such that (1) becomes the 

Mathieu equation (3), whose parametric point lies on Moreover, 

for any (a, ^r) between b^ and 6 small > 0, 0 < g < 0-5, say, the 
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parametric point starts there when ?/ = 0. As the amplitude builds 

up, by virtue of inherent instability, the a value increases while the 

q value decreases, so the parametric point moves from (a, q) towards 

the curve on which the a, q values are given by (4), (5), In a higher 

approximation, using additional terms of the Fourier series (assuming 

periodic motion), the ultimate parametric point would he upon the 

characteristic curve for a Hill equation whose solution had period 

277 in z [185, p. 127]. 

When 6 < 0, similar analysis leads to the conclusion that in the 

first approximation the ultimate parametric point corresponding to 

that in (3) lies on the curve in Fig. 38. 

7,232. Influence of damping. The equation is now 

y"-\-2Ky'+[{a-\-btj^)—2qcos2z]y = 0. (1) 

With (a, q) between 6j: and crj in Fig. 38, we assume for a first approxi¬ 

mation that 

y = .<41 cos a-|-.Basins ~ .4 cos(z—tan“^J5i/.4i), (2) 

where A = Proceeding as in § 7.230, we find that 

{a-l-g-t-f6^2)4i-f 2/cPi = 0, (3) 

-2KA^+{a-\+q^lbA^)By^ = 0. (4) 

For 4i, Bi to be non-zero, we must have 

(a-l-fj-f |6^2)_j_4^2 ^ p, (5) 

so (a—1-f |6^2)2-l-(4K2_g2) == 0. (6) 

Solving (6), the square of the ultimate ampUtude is 

(7) 

The condition [ ] = 0 

corresponds to A = 0, so the oscillation once started will decay unless 

(4/36)[ ] > 0. (8) 

Also for the reality of A we must have Igl > 2k. 

7.233. Numerical example. Using the data a = 1-0009, q = 0-26, 

K — 0-03, b — 0-05 in (7), § 7.232, we find that 

\A \ c=L 2-54. (1) 
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From (8), § 7.232, ^ = 0 if 

q < 0-06, (2) 

so for maintenance of the oscillation, we must have q > 0-06. 

From (4), § 7.232, 

= |a-l+g- + ^ (3) 

8-22, (4) 

and c:::^ 7°. (5) 

Thus by (2), § 7.232, and (1), (5) above, the displacement of the thread 

y 2‘54cos(2;—7^). (6) 

Although the analysis in preceding sections has been associated 

specifically with a vibi^ating thread, it is applicable to any system 

which complies with (1) § 7.232 under the restrictions imposed, e.g. a 

long uniform column subjected to a constant axial load, having a 

superimposed sinusoidal ripple force due to imbalanced rotating 

machinery. There would need to be inherent non-linearity of adequate 

degree to prevent failure of the column, if with a linear constraint the 

motion were unstable. 

7.234. Energy considerations. We deal with (1), § 7.232, on the 

same lines as in §§ 4.141, 4.18. Multiplying throughout by dy ~ y' dz, 

and integrating over a period (0, 27t), the first, tliird, and fourth 

integrals vanish, leaving 

277- 27r 

2k J (y')2 dz = 2q j {cos2z)y7/ dz, (1) 
0 0 

where the right-hand side represents (in effect) the product of force 

and velocity (power) integrated over the interval. Substituting into 

(1) for y from (2), § 7.232, leads to 

2tr 

2./ (-—Aisin2;+-Bi cos^:)^ dz 
0 

271 

= 2q j cos22(^iCoszH-5isinz)(—.4iSin2-l-£iCOS2) <^2, (2) 
0 

27r 277- 

so 2k j (AiSin2;2+JSf cos^^:) dz == 2q j cos 22;(Ai cos 2^;) dz, (3) 
0 0 

the other integrals vanishing by virtue of orthogonality of the circular 

functions. The left-hand side of (3) represents the energy loss per 
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period due to viscous damping, while the right-hand side represents 

an equal amount supplied by the driving mechanism. Ifz = cot, the 

energy must, on physical grounds, be supplied at angular frequency 

2a>. This is confirmed by the presence of cos 2z in the integrand of (3). 

Evaluating the integrals in (3) yields 

2K7r(Af~j-£f) = 2qnA^B^, (4) 

The reader should confirm that (4) may be derived from (3), (4), 

§ 7.232, also. 

Fig. 43. Illustrating a conical shell (loudspeaker diaphragm) 
having a curved generator. 

7.30. Subharmonics in loudspeaker diaphragms. The apparatus 

is shown schematically in Fig. 22. A sinusoidal current in the coil 

causes the diaphragm to vibrate axially about a central position. 

There is axial constraint due to the outer surround (marked crimp), 

and also the coil-centring device, which is omitted from the diagram. 

When the frequency of the driving current lies within a certain range, 

which is approximately 500 to 4,000 c.p.s. for straight conical paper 

diaphragms 8 to 10 inches in diameter, and the driving force at the 

coil exceeds a certain value, a subharmonic of half the frequency of 

the current occurs. If the side of the cone is curved, as illustrated in 

Fig, 43, it is difficult to obtain a subharmonic [102]. 

When a subharmonic occurs, two main frequencies are audible, 

(i) the fundamental, (ii) the subharnionic. The tone associated with 

the latter, however, is usually impure. This is due to the presence of 

higher frequencies which cause harshness, and it may arise in part from 

slight frequency variation of the subharmonic, such that it is not 

always an integral sub-multiple of the fundamental. The harsh tone 

effect was first noticed by Savart when exciting the longitudinal 

vibration of a straight uniform bar [202, p. 253]. This form of vibration 

was accompanied by a lateral one of approximately half frequency. 

It occurred because compression of the bar in longitudinal vibration 

caused bending. To this sound Savart gave the name ‘son rauque’. 
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For bars the effect is of the second order, being negligible if the longi¬ 

tudinal amplitude is small. 

The vibrational characteristics of loudspeaker diaphragms in rela¬ 

tion to subharmonics are similar, in certain respects, to those of a 

vibrating thread discussed hitherto. In Fig. 44 the abscissa repre¬ 

sents the root mean srniare value of a sinusoidal current in the coil. 

Fio. 44. Relation V)otwoon oloctrioal input 
(at constant freciueiic.y) to loudspeaker 
with straight-sided coiii{tal diapliragm.and 
the sound pressure due to subharmonic of 

half the input frequency. 

Fig. 45. Relation between total sound 
output from and ele(;trical })ower 
to loudspeaker, at constant fre¬ 

quency. 

The current is increased from zero and when the value at A is reached, 

the subharmonic commences. If the current is increased very slowly 

as A is approached, the subharmonic may take as long as 20 seconds 

to attain its ultimate amplitude. Moreover, A corresponds to the 

threshold for the vibrating thread. As shown in Fig. 44 the curve at 

A rises very suddenly. For instance with a coil current of 0-4 ampere 

there was no subharmonic, but when increased by 0-5 per cent. 

(0*002^), a strong subharmonic occurred, being almost unaltered in 

strength when the current was 0*5 ampere. 
The acoustical power output from the diaphragm is plotted against 

input in Fig. 45. Up to the value of output represented by AP, the 

relationship is Unear, but when the subharmonic occurs and is almost 

at full strength, the output drops suddenly (a discontinuity), after 

which the relationship is linear again, but with reduced slope. The 

latter and the sudden drop are explained in § 7.32. If the current 

is reduced below the threshold at A in Fig. 44 the subharmonic 
6077 K 
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disappears. The similarity between the behaviour of the loudspeaker 

diaphragm and the vibrating string will be evident. 

7.31, Mechanism exhibiting subharmonic. This is shown 

schematically in Fig. 46. A mass m slides over a frictionless horizontal 

plane. The links and spring are massless; the pin-joints at A, O, J5 are 

frictionless. AB, OA, are long enough for motion parallel to BD to 

be negligible in comparison with that along the axis of the spring. 

The driving force = Z/o cos 2cot is applied to the cross-head B. It 

(A) f 

Fig. 46. Schematic plan of mechanism illustrating Mathieu’s equation. 

may be resolved into two components, one along AB, the other along 

DA. The latter is nearly (/^ cos 2ix)t)y, and it causes m to slide along 

the line CD A. There are three forces associated with m, namely, 

(i) the inertia force mij, (ii) the constraint sy due to the spring, (iii) the 

driving force {fQCos2ajt)y. The equation of motion is 

^ (/o cos 2a)t)y. (1) 

Substituting z cut, a = sjcu^m, 2q = fjcuhn, (1) becomes 

^ + {a—2q cos 2z}y = 0, (2) 

which is the canonical form of Mathieu's equation. If we suppose that 

viscous damping is present, we get an equation like (2), § 7.12. Then 

introducing a non-Hnear element (the range of linear extension and 

contraction of the spring is limited), the equation may take the form 

(1), § 7,20. The behaviour of this system follows the lines already 

given. 

7.32. Simple alternative to mechanism in § 7.31. The arrange¬ 

ment depicted in Fig. 47 is a simplified version of the mechanism in 
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Fig. 46. The steel-strip-mass combination will execute a subharmonic 

oscillation of the driving force, the amplitude reaching a definite value, 

provided the proper conditions obtain. We now consider this device 

in its relation to a conical loudspeaker diaphragm. Imagine the 

straight-sided cone to be divided up into strips by a number of radial 

lines as illustrated in Fig. 48. Each of these strips may be regarded 

somewhat similarly to the steel strip in Fig. 47 if the central mass 

Spring steel strip 

cos loit. 
--["]__(driving force) 

Fig. 47. Simple device for showing subhannonic of half-frequency. 

were removed.| A strip on the cone has relatively great rigidity, 

because it is supported along each side. Thus the driving force must 

be comparatively large in order to incite the sub-harmonic vibration. 

Since the motion of the cone in this mode is mainly radial, appreciable 

bending occurs, and the circumferential stress is large. This is con¬ 

comitant with relatively large loss, to which the change of slope in 

Pig. 45 may be attributed. 

7.410. Simple pendulum with oscillating support. This may 

be demonstrated using the apparatus shown schematically in Fig. 49. 

A simple pendulum comprising a bob of mass m attached to a thin 

nylon thread is suspended from a point 0 on a long flexible cantilever 

with a large mass at its free end; m, and ^ 

where ^^e the respective maximum velocities. These 

conditions ensure that the reaction of the pendulum on the bar will be 

negligible. When the bar is set in vibration vertically, the motion of 

t A subharmonic is obtainable with non-uniform strips of the type into which 

the cone may be divided. 
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the point 0 is almost simple harmonic. If the periodic time of the pen¬ 

dulum is twice that of the bar, the amplitude of the former builds up 

with increase in time, reaching an ultimate value. Thereafter, so far 

as can be judged with the aid of a stop-watch and a scale, the motion 

is periodic; and apart from a slow decay due to damping, it appears 

Fig. 41). Simple pondiilum with oscillating support. 

T! -P® 
3 w r. 

7-: 
T", T! 77 ^ 14 

16 

— 

17 
rp 

18 19 

21 

Fig. 50. Photographs of apparatus of Fig. 49 illustrating 
subharmonic of half-frequency. 

probable that the amplitude would remain constant. The 2/1 period 

ratio is illustrated by the photographs reproduced in Fig. 50 [91], 

which depict instantaneous positions of the vibrating system. From 

squares 1 to 21 the bar has executed almost two complete oscillations, 

while the pendulum has completed nearly one. The amplitude (see 

square 19) is larger than that contemplated in the analysis which 

follows in § 7.411 et seq. 

When the reaction of the pendulum at the point 0 on the bar is not 
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negligible, i.e. the foregoing conditions are not fulfilled, the motion 

of the bar is affected by that of m, and vice versa. Moreover, the 

‘coupling ’ between the two oscillating members (two degrees of free¬ 

dom) is too large for the independent motion of either. If m is at rest 

and is set in vibration, the amplitude of m grows while that of 

decays with increase in time, ultimate maximum and minimum values 

being reached. Thereafter the phenomenon occurs in reverse, and this 

cycle of events contirmes until the initial energy has been dissipated 

in inherent loss. Moreover, the amplitude of m is ‘modulated and a 

form of ‘ beats ’ occurs, as in the case of two coupled electrical oscillatory 

circuits. The periodic times of m and nrix now differ from that for each 

vibrator independently. 

7.411. Differential equation for §7.410. Referring to Fig. 49, 

if 0 is stationary the non-linear differential equation for a loss-free 

pendulum of mass m and length I is, by § 3.160, 

™ 0. (1) 
(tv 

When 0 has a vertical motion defined by ^ — Iocos2a>^, the corre¬ 

sponding acceleration is ^ == — 4a>‘^^QCOs 2ojt. Assuming the pendulum 

thread to keep taut always, the external force acting on the bob is 

7^^((7~4co2|qCOs2co/), so the equation of motion becomes 

'mld-^7n{g—Awr^Q(i0^2ojt)^\nd — 0, (2) 

0 being referred to the moving support as origin. Writing gjl ^ a>g, 

a ^ (cjjco)^, q ™ wt == and introducing a damping term, we 

obtain the non-linear equation 

6" -\-2Kd' -\-(a—2qQOB2z)Bm0 = 0. (3) 

If \0\ < Jtt, we may put sin0 so (3) now takes the form 

0''+2Kd'-\-{a~-2q(io^2z){d-~\e^) - 0. (4) 

As in § 3.161 we remark that the derivative of the restoring force 

associated with {0—\0^) decreases with increase in 0, 

7.412. Approximate solution of (4), § 7.411. In accordance with 

§ 7.410 we suppose the motion is periodic, and we assume as a first 

approximation that « = (1) 
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JS^coss; being needed by virtue of damping loss. Substituting from 

(1) into (4), § 7.411, we obtain 

0" = — (^^sin^+^j^cosa:) 

2ac0' — 2/c(—sin ;2;+-^1^08 2;) 

aB — sin 21+^1 cos 2:) 

— (2g cos 221)0 — (/[^^(sin^:—sin32;)—jBi(co8 2:+cos32:)] 

— ^ —5\o{^f(3sin2;—sin3z)4- 

+ SAI B^icosz—cos 32;)+3^i ^^(sin ^i+sin 32;) + 

+ Bf(3 cos 21+008 32;)] 

(^9^cos22:)0^ = 2\g'[3+f(—8in2;+sin32;)—^f(sin2:+sin52:)+ 

+ 3^fiJi(cos 32;—cos 5z)+3+i JSf(sin 32;+sin 52;)+ 

+ 3 JSf (cos 2;+cos 32;) + jBf (cos 2;+cos 52;)]. 

Equating the coefficients of sin 2;, cos 2; to zero independently, we get 

sin2;: I+g) —Ja+i(.4f+i^f)—(V 

cosz: jBi(a—1—g)—|aJ5i(Jf+£f)+^g£?+2/c^i = 0. (4) 

If iqAf <^ia(Af+J3i), and iqBf < la(Af+Bf), the terms —iqAf, 
iqBf may be neglected. Then with + = (Af-j-Bf)^, this being the 

amphtude of vibration, (3), (4) reduce to 

[(a-i-iaA^)+g]A,-~2KB, == 0, (5) 

and [(a—1—g]i?i+2/c+i ~ b. (6) 

For +1, Bi to be non-zero, we must have 

(a-l-|a+2)2_g2_)_4^2 _ (7) 

so the ultimate amplitude is 

1^1 = |^^{(g2_4^2)i+(a_l)}j^. (8) 

A is real provided q > 2k and 

(g'2_4/c2)i+(a-l) > 0. (9) 

For a sustained oscillation, \A \ >0, and this obtains if (9) is satisfied. 

7.413. Stability considerations. For simplicity we take /c — 0, 

and (4), § 7.411, becomes 

0"+(a—2g'cos23)(0—^0^) — 0, (1) 

which may be put in the form 

9''+[a(l-^d^)-2q{l-ie^)co82z]d = 0. (2) 
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We use the approximate solution 6 = A^inz with A^== A, (since 

= 0 when k — 0), and proceed on the lines of § 7.231. By virtue 

of § 7.410, we have a = (ojqIcj)^ — 1, so (2) takes the form 

0"+[{l —^^2(l+g)} —2{g'—j^2^2(|+g)}cos22;"”j^2g^2cos42;]0 = 0, 

(3) 

which is a Hill type of equation [185, p. 127]. By (8), § 7.412, with 

Substituting from (4) into (3), and neglecting terms in we obtain 

the approximate equation 

^M“[(l—f^)—f^cos22;]0 — 0. (5) 

This is a Mathieu type whose parametric point (1—|g), lies on the 

characteristic curve in Fig. 38. Accordingly when q is small enough, 

the motion is periodic of period 2?? in z. 

In more accurate analytical work, it appears likely that stability of 

motion may ensue, by virtue of the parameters in the Hill type of 

equation corresponding to (3) having values such that the solution is 

periodic in z, with jjeriod 277. 

From a physical viewpoint the varying ‘spring’ control introduces 

an effect akin to progressive de-tuning as the amplitude of the pendu¬ 

lum increases. A phase change occurs between the driving force and 

the velocity, thereby ultimately limiting the amplitude. 

7.420. Self-excited oscillations due to solid friction. One of 
the oldest examples occurs in the bowing of stringed musical instru¬ 

ments, e.g. vioUn. The oscillation of the string is caused by uni¬ 

directional motion of the bow, so a driving force at zero frequency 

causes vibration at an audible frequency. This effect may be ex¬ 

plained by considering the variation in friction force between bow and 

string due to variation in the relative velocity of the two. The relation¬ 

ship between solid friction force and the relative velocity of a body 

moving over a rough horizontal surface has the form illustrated in 

Fig. 51. When the body is relatively at rest, the force to overcome 

static friction is represented by OA. As the relative velocity increases, 

the friction decreases, attaining a minimum value and increasing 

thereafter—up to a point. Thus from Ato E the slope of the curve is 

negative. Now the electrical quantities analogous to force and 

velocity are potential difference and current, respectively. Over a 
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certain range of the anode potential-anode current curve for a four- 

electrode screened grid thermionic valve, the slope is negative, as 

illustrated in Fig. 52 A. If a suitable LCR circuit is connected between 

anode and cathode (Fig. 52 b), oscillation at approximately the natural 

frequency of the circuit occurs, by virtue of the negative resistance 

Fig. 51. Showing form of relationsliip between 
relative velocity and Holid friction force. 

Fig. 52. a. Illustrating negative resistance characteristic of screened grid tliermionic 
valve. The internal resistance is =-- /?„. b. Screened grid valve with oscil¬ 

latory circuit. 

property of the valve. The amplitude of the oscillation is limited 

owing to curvature of the characteristic, the internal resistance 

becoming positive to the left of the maximum, and to the right of the 

minimum in Fig. 52 A. The negative resistance entails energy supply 

from the unidirectional source at zero frequency, which is converted 

into oscillations in the LCR circuit. During steady oscillation the 

energy supplied per cycle is equal to that dissipated per cycle in ohmic 

loss. 

The case of a violin string resembles that above, inasmuch as oscil¬ 

lation depends upon the characteristic curve having a negative slope. 

Referring to Fig. 51, suppose the forward velocity of the bow is ^;o. 
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If the string moves backwards with increasing velocity, the friction 

force decreases. It is least when the string has its maximum velocity 

|?;3| at D, the relative velocity being Vo+\v^\ v^. Thereafter the 

velocity of the string decreases until at the point of maximum back¬ 

ward displacement it is zero, with relative velocity at C. The string 

now moves forward with the bow, and attains a maximum velocity 

at-B, with relative velocity > 0, if the bow movies faster 

than the string. The relative velocity then increases fi*om to Vq, 

and BC is traversed. Thereafter the motion is along CI)CBC\.., 

Fig. 53. Schematic diagram of apparatus for obtaining self- 
excitod mechanical oscillations. 

When the bow and string move in the same direction, energy is 

supplied to the latter, but it is dissipated when they move in opposite 

directions. The ultimate amplitude is reached when the two energies 

are equal. 

7.421. Analytical considerations. For this purpose it is pre¬ 

ferable to deal with a system having discrete parameters, rather than 

one like a violin string where mass and stillness are distributed (a 

continuous system). Referring to Fig. 53, an endless belt travels 

at constant speed round two pulleys. A control spring is fixed to a 

mass m resting on the outer face of the upper side of the belt, whose 

inner face moves over a polished metal surface. Provided the speed 

of the belt is suitable, m will execute oscillations along the direction 

of motion. 

Let y — displacement of m from the unstrained position of the 

spring, 

s = stiffness of spring, i.e. force per unit axial displacement, 

8bndf{v) — functional representation of the curve in Fig. 51. 

There are three forces acting on m, namely, (a) accelerational 

m d'^yjdt^y (6) restoring due to spring sy, and (c) f(vQ—y)y the driving 
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force of the belt due to solid friction. Then we must have 

=/K-2/)- (1) 

Taking \y\ by Taylor’s theorem we get 

f(vo—y) '=^f{vo)—yf'{vo)+iyT(vo)—hyYi^o)y (2) 

differentiations being with respect to v. Thus, by (1), (2), we obtain 

the equation 

m^+[f'iVo)-W”(Vo)+Wf'"iVo)]y+^y ='"=/(*^o)- (3) 

Writing x ~ y~f{vQ)l8, and coq " s/m, (3) becomes 

x+{llm)[f'{Vo)—lxf"(Vo)+^xJ'''{Vo)]x+ailx == 0, (4) 

which is non-linear by virtue of the terms in x^. 

Initially when x is small, (l/m)[ ], the coefficient of x, is negative 

since f'{Vf^) < 0, so the oscillation grows with increase in time. But if 

^max ^ ^be coefficient of x is alternately positive and nega¬ 

tive. When it is such that the energy supplied from the belt, by virtue 

of the negative slope of the friction-relative velocity curve, is equal 

to that dissipated, the amplitude has its final value. 

Under suitable conditions relaxation oscillations will occur, as 

explained in [187]. If in a mechanical system, to which (4) applies, 

the coefficient of x were always negative, the oscillation would—in 

theory—build up indefinitely. In practice this cannot happen, but 

mechanical failure may occur. As a matter of interest it may be men¬ 

tioned that in conducting the experiment described in § 7.22, when 

the thread was removed (the vibrator functioning meanwhile), the 

small unlubricated pulley mounted on the same framework com¬ 

menced to rotate, and attained a speed of several hundred r.p.m. 

A drop of oil on the bearings reduced the friction such that rotation 

ceased. 

7.422. Froude’s pendulum. Fig. 54 represents a pendulum sus¬ 

pended from a dry horizontal shaft, of circular cross-section, by a 

ring or loop. It is well known that if the shaft rotates with suitable 

constant angular velocity coq, the pendulum oscillates with gradually 

increasing amplitude, which reaches an ultimate value. If the 

amplitude is not too large, the differential equation of motion with 
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stationary support is the linear type (see § 3.160 with sin^ 6) 

S+2Ke+ae = 0, (1) 

where for generality the viscous damping term 2k0 has been included. 

Moreover, once the motion is started, it will be extinguished ultimately 

by viscous damping. By virtue of §§ 7.420, 7.421, 

when the shaft rotates, a variable friction force at 

the suspension must be taken into account. Its 

value is a function of (ajQ—d)^ the difference in 

angular velocity of the shaft and pendulum. 

Representing the term for the frictional driving 

torque by 

x(a)o—0) — + — 

(2) 

the equation for the pendulum is j r ^ . 
^ ^ (iiagram lor r roude s 

S+2Ke+ae = xicoo-h (3) 

or 6+[2K+x'i^o)—l^x"i(^o)+-6^^x"'i<^o)]^+^^~xi<^o)> (4) 

which is non-linear owing to the terms in 6^, 6^. Putting 

X = 0—xi^o)l^> 
(4) becomes 

which has the same form as (6), § 4.10, and (4), § 7.421. In (5), /c > 0, 

x'i^o) < ^ (see Pig- 51)- Initially [ ] < 0, but when the amphtude 

attains its ultimate value, [ ] is alternately positive and negative, 

such that the energy supplied per cycle by the rotating shaft is equal 

to that dissipated in heat. 

When the amplitude of motion is large, ad in (4) must be replaced by 

a sin 0, so the equation now takes the form 

^+[2'c+x'(<"o)—l^x''(‘^o)+^^V'(‘"o)]^+®sin0 = x(«^o)- (6) 

To ensure amplitude limitation, the differential equation of a self- 

excited system must be non-linear. Nevertheless all non-linear 

equations of the second order do not possess this property. For 

instance the equation for a pendulum with negative damping, 

namely, d-2/ce+asin0 = 0 (/c> 0) (7) 

is non-linear. But it has a solution such that 6 is not hmited as in the 
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Froude pendulum. The point in question is illustrated vividly by the 
Tacoma suspension-bridge failure described in § 7.423. Another case 
is the vibration of electrical transmission lines when the cross-section 
is enlarged and non-circular due to the formation of ice. In both cases 
there is negative damping by virtue of aerodynamical forces. 

7.423. Self-excited oscillations due to aerodynamical forces. 
When a mechanical structure is subjected to an air stream, e.g. a 
steady wind, in addition to static forces, there are variable forces 
caused by the formation of eddie^s. In many cases the eddy or vortex 
motion is quasi-periodic, and if the quasi-period approximates to one 
of the natural peiiods of the structure, vibrations of large amplitude 
may occur. These are the ordinary forced oscillations. The motion 
is resisted by (a) frictional damping in the structure itself, (b) aero¬ 
dynamical damping. Both (a), (b) are positive, so when the energy 
derived per cycle from the wind is equal to that lost due to (<x) + (fc), 
the amplitude has a constant value. If the motion of the structure is 
appreciable, alternating eddies may be created such that the ampli¬ 
tude of the motion steadily mcredses until the structure fails. These 
oscillations are self-excited, and the resulting effect is equivalent to 
negative damping. Moreover, the oscillating system is able to extract 
energy from a constant unidirectional air-stream (co ~ 0), as in the 
case of the thermionic valve mentioned in § 7.420. 

The most interesting, and at the same time catastrophic, case on 
record is that of the Tacoma suspension bridge built across the Narrows 
at Paget Sound in the State of Wasliiiigton, U.S.A. It had a central 
span of 2,800 feet between the two tow^ers, and a width of 39 feet 
between the suspension cables. The torsional rigidity of the roadway 
was relatively low, owing to the high span/wddth ratio of 72/1. From 
the outset, the roadway was prone to oscillate vertically due to the 
aerodynamical action of the wind, the normal displacement of 50 
inches being much greater than that in other large suspension bridges. 
From I July 1940 until about 10 a.m. on 7 November 1940, only 
vertical oscillations seem to have been observed. But on the latter 
date, a cable band connected to the centre ties slipped, and thereafter 
torsional oscillations of the roadway occurred in a wind of 42 m.p.h. 
There was a node at mid-span, the deformation resembling that when 
a flat strip is held at each end and twisted alternately in opposite 
directions. The maximum inclination of the roadway was ±45° to 
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the horizontal, entailing a total vertical edge displacement of 28 

feet (!), the frequency being about 14 cycles per minute. Computation 

indicates that to maintain the torsional vibration, the horse-power 

supplied by the wind must have been of order 5,000. Failure occurred 

about an hour after the torsional oscillations started. 

An approximate differential equation for the above takes the form 

+ - 0, (1) 

where K^{d) > 0 is the damping coefficient for the mechanical structure 

and Koiv) is the aerodynamical damping, being a function of the wind 

velocity v. If v > Vq, say, then Ko(v) < 0, so with I/C2COI > 

oscillation will grow with increase in time. But K^{d) increases with 

increase in amplitude, so a point is reached when the damping vanishes, 

and a steady oscillation occurs, provided v is not too large. When v 

exceeds a certain value, the damping is always negative, so the ampli¬ 

tude grows until the structure fails. 

An account of the Tacoma bridge disaster appeared in Engineering, 

150, 481, 1940. On 28 March 1941 an exhaustive report entitled ‘The 

Failure of the Tacoma Narrows Bridge' was published by the Federal 

Works Agency, Washington, D.C. Amongst other things it contains 

mathematical analysis and experimental results ijertaining to vibra¬ 

tional modes and aerodynamical forces, together with data obtained 

from wind-tunnel tests on scale models. Curves are given illustrating 

the change from positive to negative aerodynamical damping due to 

altered conditions, e.g. higher wind velocity. 

7.43. Parametric oscillation. A variation of Melde’s experiment 

[95] may be performed by causing a cyclical alteration in the physical 

state of the vibrating element. A thin metal wire having a weight at 

its lower end is freely suspended, the arrangement being such that the 

lowest transverse mode of the wire is about 50 c.p.s. When a current 

of this frequency flows in the wire, its temperature varies at double 

this rate. Thus the wire extends and contracts at double the frequency 

of the transverse mode, thereby simulating the conditions in Melde’s 

experiment. If the current is large enough, the wire vibrates at 50 c.p.s. 

7.44. Oscillation due to non-linear coupling [187], If a mass m 

is fixed to the lower end of a uniform massless helical spring of stiffness 

s, the periodic time of vibration in a vertical direction is tq — 27r(m ls)^. 
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This motion constitutes one degree of freedom. If the mass is drawn 

aside and released, the system will oscillate as a simple pendulum. 

This signifies a second degree of freedom. Since the axial force on the 

spring varies with the angular displacement, there will be an axial 

oscillation also, and the two freedoms are simultaneous. There is a 

third freedom, namely, torsional oscillation about 

the axis, mentioned in 3^, § 7.45. Herein we shall 

consider the first two modes only. It is evident from 

what precedes that coupling exists between the two 

freedoms,! so that the modes may interact. For 

example, if the system were set in oscillation in one 

freedom, it might gradually pass over to the other, 

by virtue of the couphng effect. 

Analytical considerations. In Fig. 55, I is the 

length of the pendulum when vertical and station¬ 

ary, ^ the displacement (extension or contraction) 

pendulum comprising Side of /, 5 the spring stiffness, m the 
mass and uniform mass of the bob, 6 the angular displacement from 
massless coil-spring. 

the vertical. Assuming |^1 < Jtt, we may write 

cos 6 ~ 1—and it can be shown that the equations of motion are 

I+ojU = (1) 

and e-^wld ^-j(2^B^2id-\-wUe), (2) 

where cog = Ijg, (jj\ ~ sjm. When ^ 0, the right-hand 

side of (2) vanishes and 
e+<ol9=0, (3) 

The system then behaves as a simple pendulum of constant length. 

This would happen if cuf — s/m were very large, i.e. a stiff spring. 

When 6 = 0 = 9 ~ 0, the right-hand side of (1) vanishes and 

|+a>l^ = 0. (4) 

The system then behaves as a simple mass-spring combination, and 

executes a simple harmonic motion in a vertical direction, there being 

no transverse motion. In practice one motion would incite the other 

by virtue of the non-linear terms on the right-hand side of (1), (2). 

We now extend the analysis to include these coupling terms. 

t It follows, in a rigorous sense, that the modes are not entirely ‘free*. The system 
described in § 7.410 when is comparable with m, is somewhat similar to 
that described here. 
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7.45. Influence of non-linear coupling terms. 

P. Suppose that the pendulum, initially vertical and at rest, is 

drawn aside and released when |0| — |0q| < Jtt, ^ = 0. Then at the 

6 ^ 0Q cos io^t, (1) 

Substituting this into (1), § 7.44, we get 

== ia>§Z0g(l-3cos2a>oO. (2) 

If 2(jdq the complete solution of (2) is 

^ ^ sincoi^+^cosa>jL^ 
Scuo 161 2a>o t \161 

4(a;| — 4coo) 4cof 
(3) 

It follows from (3) that the axial motion has two periodic components 

of frequency coi/27r, 2a)J2rr, respectively, while the spring has a 

constant extension wq ldlj4tw\. When — 2a>Q, the particular integral 

of (2) has the non-periodic form <sin260of, so the oscillation in the ^ 

mode builds up with increase in time. Since the energy of the system 

is constant, the oscillation in the 0 mode must decay. 

2^. Suppose m is pulled down an amount I when the pendulum 

is vertical, and released at ^ = 0. The subsequent motion in the ^ 

mode will be defined initially by 

^ (1) 

Substituting this into the right-hand side of (2), § 7.44, leads to the 

equation 

[I — (2^q/Z)cos a>i t]d-\-[2aji(^Qll) sin t]0-{- 

+‘"o[l —(^o/Ocosa>i<]0 = 0. (2) 

By hypothesis 2^q I, so if we write oj^t ^ 2Zy a = (2a>o/cDi)2, 

q = 2^Jly (2) becomes 

0''-{-(2qsm2z)0'+a0 = 0. (3) 

Substituting 0 — where u(z) is a twice differentiable 

function of z, (3) is transformed to the Hill type of equation [185, 

p. 127] u’’+[ia-iq^)-2q cos 2z-{- \(^ cos ^z\a = 0. (4) 

By hypothesis g 1, so (4) has the approximate form 

u"" -\-{a--2qcos2z)u — 0, (5) 

which is the standard Mathieu equation. If (a, q) lies between and 

in Fig. 38, the solution of (5) is unstable, so the oscillation of the 

pendulum in the 0 mode will build up. Initially 0 has the form 

period 27r in z. (6) 
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By virtue of energy constancy of the system, the ^ mode will decay. 

In practice, owing to damping, the oscillations in both modes will 

cease ultimately. From the above analysis it appears that, by virtue 

of non-linearity of coupling, the d and ^ modes are mutually excitable. 

3". If a metal cylinder having a screwed cross-bar with adjustable 

masses is attached to the free end of the spring, the latter extends or 

contracts and twists simultaneously, when oscillating vertically. By 

screwing the masses on the cross-bar inwards or outwards (as required), 

the appropriate moment of inertia for the occurrence of torsional 

oscillations of large amplitude may be found. The energy of the 

system is transferred from one mode of oscillation to the other. 



CHAPTER VIII 

GRAPHICAL AND NUMERICAL SOLUTIONS 

8.10. Introduction. The principal graphical method is that of 

isoclines, i.e. lines of equal slope. Like other graphical procedures for 

solving differential equations, the degree of accuracy may be en¬ 

hanced (up to a point) by large-scale construction using paper sheets 

2 or more feet square. Once the technique has been acquired, the 

solution in graphical form may be obtained fairly quickly in a par¬ 

ticular case. Any graptiical construction or numerical integration 

process is tedious compared with a purely analytical method, but 

unless a differential analyser or an electronic calculating machine is 

available (even then the time taken to set the machine may not be 

inconsiderable, although this is immaterial if a large number of 

similar equations are to be solved), we are faced with Hobson’s choice! 

To illustrate the isocline method, we commence with the simple 

linear equation (l‘^yjdt^-\-y = 0. (1) 

Writing v dyjdt, (1) becomes 

1 II o
 

o
' 

II +
 (2) 

We take rectangular coordinates y, v, so that dvjdy is the slope of the 

curve depicting the relationship between y, v. Choose a value of 

dvjdy, say, unity, then (2) becomes 

V -y, (3) 

which is a straight line through the origin making an angle = 135° 

with the 2/-axi8. Draw a series of short lines whose slope dvjdy is unity, 

i.e. making 45° with the y-axis, to intersect the first line at equal 

intervals as shown in Fig. 56. Now choose dvjdy = +|, giving 

= -ly. (4) 

This represents a straight line through the origin with slope —-f. 

As before, draw a series of short lines with slope to intersect this 

line. Proceeding in this way for discrete values of dvjdy, the diagram 

of Fig. 56 is obtained. Suppose the initial conditions are y ~ 5,v ^ 0, 

when t = 0, then the starting-point is P on the i/-axis. Here the slope 

of the v-y curve is infinite. Commencing at P, a curve is drawn which 
5077 L 
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crosses each line radiating from the origin at the same angle as the 

short intersecting lines. Under this condition the relationship at (2) 

is satisfied. If the drawing is accurate enough, the curve, in the present 

instance, will return to P, being theoretically a circle of radius OP. 

Analytically from (2) 

J V dv-\- j ^ ^ a constant, (5) 

so 

which represents a family of circles with centre 0 and radius c. In 

the case above, c = OP, but c may have any positive value. This is the 

first step in the graphical solution. It may be remarked in regard to 

curves of this type that through every point in the (y, ?;) plane there 

passes one, but onl^ one, of them. 

The next step is to find t. Now v = dyjdt, so dyjv === dt, and, there¬ 

fore, y 

t = J dylv. (7) 
Vo 

To evaluate this integral, divide the first quadrant into a number of 
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parts by equally spaced ordinates, as shown in Fig. 57 a. The time 

taken for y to travel from P to is 

(8) 

being the average velocity in the interval, and in general to travel 

from P to ^ 

= (9) 
r=l 

To plot y and t, each must be calculated. The smaller h (up to a 

point) the greater the accuracy of the result. 

obtained by aid of integral procedure in a. 

8.11. Solution of (6), § 8.10. If the method of computing t out¬ 

lined in § 8.10 is followed, the solution will be obtained as a curve (see 

Fig. 57 b). After going once round the circle in Fig. 56, the starting- 

point P is regained, and the circuit recurs. Hence the curve is re¬ 

peated at interval 2?? in t, so the solution is periodic. 

Usually one resorts to a graphical construction under analytical 

duress! In general the symbolical form of the function represented by 

the solution curve will be unknown. The foregoing graphical con¬ 

struction has revealed the important foct that the solution is periodic. 

Solving (6), § 8.10, 

dyjdt = (c2—(1) 

so J dyl{c^—y^)^ = <+<p (a constant of integration). (2) 

Hence sin“^(y/c) — ^+9? (3) 

or y — csin(i^-]-9) “ A Boost, (4) 

where A, B are arbitrary constants. This will be recognized as the 

formal solution of (1), § 8.10. If in the latter we write w^y for y, it 

becomes d^y 
dP 

0, (5) 
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so V dvjdy~\-o)^y — 0. (6) 

Thus — cf, (7) 

or 
' c\ ’ 

(8) 

so the curves in the (i/, v) plane are ellipses with centre O and semi> 

axes Cl/co, Since these are closed curves, the solution of (5) is 

periodic, being 
y = ^iSinco^+J^^i^osa;/. (9) 

It is evident that so long as the differentia] equation to be solved may 

be expressed in the form 
v-^f{y,v'), (10) 

w'here f(y, v') is a function of y, v\ the curves with v' a constant may 

be plotted, and the y-v curve obtained by the graphical construction 

of § 8.10. Other graphical methods are given in § 8.13 and in [133, 

186]. The procedure in the latter is well worth a trial. 

Solve y~-€(l-y^)y+y ^ 0, for e0-1, 1*0, 10-0. The 

equation may be expressed in the forms 

vdvldy—€(l—y^)v+y -= 0, (1) 

or dvjdy ^ e(l~t/2)_y/^,, (2) 

or V ~ yl[€{l~-y'^)-~dvldy\ (3) 

Using (3), choose dvjdy ^ —i^ then with € = 0*1 we get 

v==t//[0*l(l-2/2)+l]. (4) 

The curve corresponding to (4) is marked — 1 in Fig. 58. The short lines 

cutting the curve have slope —1. Putting dvjdy = — 2 yields the 

curve so marked, the short lines having this slope. When dvjdy oo, 

V 0, so we have the ^/-axis. Writing = 0 in (2), we get 

dvjdy — e — 0*1, 

the value of dvjdy on the 2;'axis. With dvjdy = 0, (3) gives 

v=l0yj(l~y% (5) 

and the curve has three parts, a common central one and those on 

each side of the asymptotes y ±1. Proceeding in this way, the 

thin line curves of Fig. 58 are obtained. If we start at the origin where 

y — V ^ t 0, and draw a curve parallel to the short intersecting 

lines, the radius vector increases with increase in angle. Beyond a 

certain point the rate of increase diminishes, and ultimately the curve 
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spirals round with slowly increasing radius vector, being asymptotic 

(internally) to some closed curve. Consequently the solution of the 

equation is periodic. 

On the other hand, if we start at A in the second quadrant, say, the 

curve will spiral inwards with decreasing radius vector until finally 

it is asymptotic (externally) to the same closed curve. So far as the 

accuracy of geometrical construction is concerned, a closed curve will 

usually be obtained in practice. When the v-y curves take the form of 

increasing or decreasing spirals which merge into a closed curv^e 

encircling the origin, the motion of the system represented by the 

differential equation is stable and periodic. In the present case, since 

e = 0-1, the equation does not differ appreciably from (1), § 8.10, 

so the closed y—v curve is almost circular. For (1), 8.10, the radius is 

arbitrary, as also are the constant A, B multipliers in the solution 

(4), § 8.11. In §§ 2.21-2.23 it is pointed out that the constants in the 

solution of a non-linear equation although arbitrary, are functions of 

the initial conditions, while in § 4.111 the constant multiplier in the 
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solution of the equation under discussion is shown to have a unique 

value. Hence any radius vector of the closed curve in Fig. 58 is unique. 

If the integration indicated in § 8.10 is carried out, the y-t solution 

Time t 
Fig. 59. Solution curve for y--€(\ —y-)y-\-y — 0, with c — 0-1. 

curve results. It takes the form illustrated in Fig. 59, quickly attaining 

an approximately sinusoidal form with amplitude about 2. This is in 

accord with the analysis in §§ 4.10, 4.110. 

The y-v curves and the corresponding solutions obtained in the 

above manner for 6 = 1*0, 10, are reproduced in Figs. 60, 61. When 
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€ ~ 1, the closed v-y curve departs appreciably from a circular form. 

Consequently the y-t solution curve, al¬ 

though periodic, is not sinusoidal. When _ 

€ ~ 10, the v-y curve in Fig. 61 begins to 15 a 

approach the limiting form for e-^+co, 1 M 

The y-t solution curves of Figs. 62, 63 are 

now far from sinusoidal, while the ultimate j 

periodic wave form is attained after one I 

oscillation. The curve in Fig. 63 is charac- - ,1 

terized by a sudden increase (or decrease) / 

in displacement at the beginning and end u , . 

of each half period, followed by a slow H 

decrease (or increase) in the intermediate I i 

stages. Also as e increases, the periodic time 5. I fi 

of the steady oscillation does likewise, as I //| ./o 

illustrated in Figs. 59, 62, 63. This type is ^0 0 ^ 

termed a ‘relaxation’ oscillation, and it -loVil , ^ 

occurs only when € is large enough [118,120J. MjU ■ 
As shown in §8.15, the periodic time is ^ \^\ > 

approximately iTll (Tlii ^ 

To- (3-log,4)6- 1-6126, (6) I /| 

and increases with increase in 6. / 

The closed curve to which the increasing 1 

and decreasing spirals are asymptotic was " I 

called a limit cycle by Poincare [116]. Thi s is I 

characteristic of all self-oscillatory systems I 

whose motion is periodic. Another example I if 1 , 

is a watch or a clock. If the balance wheel I ° 11 T 

(or pendulum) is given a small motion, it -10- I I 

will build up to an ultimate value with in- 1 f^o 

crease in time. On the other hand, if the I I 

initial impulse is large enough, the balance I / 

wheel (or pendulum) will gradually settle 

down to a periodic motion as above. Thus -15 - 

the balance wheel of a watch or the pen- -2 -1 012 

dulum of a clock may be regarded as a 6I. y-v curves for 
_ _ _ _ ^~c(l—v'‘*)v+V = 0, with 
form of stable self-oscillator. e == 10 0 ri22i. 

Pig. 61. y-^ curves for 

y~^{l—y^)y+y ^ 0, with 
e == 10-0 [122]. 

8.13. The Li^nard graphical construction [88]. This is another 
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method for solving certain types of differentia] equation which are 

reducible to an appropriate first-order form. Let the reduced form be 

dvjdy = [F(v)—y]lv, (1) 

-€ X r Ll \ k_ 
mmm x: ~~1 C ' 1 L 

3 1_ r n -ri.ni I I I 1 1 1 I I I I ■ I 1 I I I_I_i.„. j.I,_j 
^ 3-6 7-2 10-8 m. 18 0 2l-6 25-2 28-8 32-4 36 0 

Time t 

Fig. 62. Solution curve for y~-€{l—y^)y \~y — 0, with c " 1*0. 

Fig. 63. Solution curve for y — €{l~-y^)y-{-y 0, with € = 1()*0. 

Fig. 64. Lienard graphical construction. 

where we shall suppose that F{v) is an odd function of v, i.e. 

F(v) - -F{~v). 

The first step is to plot the F(v) curve as shown in Fig. 64, where an 

arbitrary one has been chosen. We use the initial conditions y ~ i/q, 

V = Vq, which define the point P on the y~v curve. Draw PR parallel 

to the y-axis, and PM, QN parallel to the z;-axis. Then NP is the 

radius vector of the v~y curve C at the point P, where its tangent is 
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perpendicular to PN. This is easily demonstrated: PR y, PM — v, 

—NMIPM = [F{v)—y']lv\ then (1) follows if dvjdy -- —NMjPM, 

By continuing this graphical construction a curve is obtained which 

either (i) spirals inwards or outwards, ultimately being asymptotic 

to a closed curve; or (ii) spirals continually outwards. In (i) the solu¬ 

tion of a differential equation of the second order is stable and periodic, 

and it may be shown that only one closed curve exists in the y-v plane. 

In (ii) the motion is unstable and increases without limit as t +oo. 

i [V (C) 
f 

6-10; , 
F(v)=10(v-^v” 

1 . 1 j _ 

1 
-J 

y 
t 

P'’iG. 65 A, B, c. v~y curves for thermionic valve oscillator 
using Lionard graphical construction. 

8,14. Relaxation oscillations. The equation for oscillations of 

this type, which occur in a thermionic valve circuit, is usually taken 

in the form (see § 4.10) 

u—e{l--u^)n-\-u — 0. (1) 

For present purposes it is more convenient to use 

--0. (2) 

(1) is derived from (2) by differentiating with respect to t and writing 

y — u. Taking v ™ dyjdt, (2) becomes 

V dvjdy—e{v—\v^)-\-y 0, (3) 

or dvjdy ==[e{v-\i^)~-y]lv. (4} 

In accordance with § 8.13 we plot the curves?/ = el?'—for e — 0-1, 

1-0, 10-0 and obtain the F{v) depicted in Figs. 65 a, b, c. Next we use 

the graphical construction in § 8.13 and get the integral curves marked 

C. When e — 0-1, the curve is almost a circle. Theoretically the curve 
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is approached asymptotically, but in each diagram it is shown closed. 

When 6—1, the curve is distinctly non-circular, while for e — 10, 

it is substantially a rectangle with 

rounded ends, but the shape depends 

upon the vertical scale, e.g. see the 

ultimate form in Fig. 66 as e -> +oo. It 

consists of two straight lines BG, AD 

joined by arcs AB, CD. By increasing 

the width in the ^-direction, this dia¬ 

gram would resemble Fig. 65 c in shape. 

Fig. 66. v~y curve (Lienard) for 
relaxation oscillator, e + oo. 

8.15. Periodic time of relaxation 
oscillation [122, 123]. An oscillation 

corresponds to the movement of a 

variable point {y,v) once round the 

closed curve ABC DA in Fig. 66. Now 

V = dyjdt, so dt = dyjv. Thus the 

periodic time is 

the integral being taken round the curve in Fig. 66. Since 

dy 

SO (1) becomes 

y = 

2€ 

J dylv, 

curve 

V \^ / 
dv, 

(1) 

(2) 

(3) 

The integration limits and the external 2 pertain to movement from 

^ to JS (twice) only, since BC and DA contribute nothing, by virtue 

of constancy of y. Thus 

To = 2e[^i;2-logeU]* = e(3-21oge2). (4) 

In deriving (1), § 8.14, t was written for ojt (cu^ — IjLC)^ so in the 

appropriate units 

tq = 6/£o(3—21ogg2) L6126/cu, (5) 

which tends to infinity with c. For an oscillatory circuit where e 0, 

Tq 27T/a>, SO the ratio of the periodic times of the relaxation and free 

oscillations is approximately 

l*6 1 26/27r 0-2566, (6) 

if 6 is large enough. In a self-oscillatory thermionic valve circuit, to 
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obtain relaxation oscillations € would be increased by using a larger 

inductance of low resistance. Consequently the amplitude of the grid 

potential variation would increase, thereby causing a greater pro¬ 

portion of the curved part of the valve characteristic to be used than 

before. Thus the increase in c would be accompanied by distortion 

of wave-form, as is demonstrated clearly by the curves in Figs. 62, 63. 

8.20. Impulse tests of curved steel shells. In certain heavy 

industries it is imperative that workers should wear boots having toe- 

* 

Fig. 67. Schematic diagram of apparatus for testing steel toe-puffs. 
Sides of puff should bo vortical. 

caps reinforced by spring steel toe-puffs. This precaution reduces the 

possibility of serious injury to the toes if a heavy body should fall on 

the boot. The general scheme will be understood from Fig. 67, which 

is self-explanatory. The steel puff is situated between the inner lining 

and the outer leather toe-cap. To test the efficacy of this form of 

construction, a flat bar surmounted by a cylindrical plunger, free to 

move in a vertical bearing, rests on the upper side of the toe-cap. At 

a certain instant a heavy weight W is released from a specified height, 

and hits the top of the plunger. The toe-puff is depressed an amount 

depending upon the mass of the weight W/g, the height it falls, wjg 

the mass of the plunger and cross-bar, the restoring or spring force 

exerted by the puff, and the internal frictional loss. Having attained 

maximum depression, the weight is forced upwards by virtue of the 

potential energy of the deformed cap, being thrown off ultimately. 

The main problem is to find the maximum deflexion of the cap under 

given conditions, so that the clearance between it and the insole at 

that instant may be known. To avoid injury to the toes, the clearance 

must have a minimum value. The measurement in question is readily 
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made by means of the simple yet efficacious device illustrated in Fig. 
68. It consists of a piston fitting closely in an outer cylindrical cap. 
The latter has three longitudinal slots, so that a spring effect is ob¬ 
tained when the cap is squeezed radially. This is effected by tightening 
an outer clamp over a thick rubber ring which distributes the pressure. 
The air above the piston can escape through holes in the outer cylinder. 
A small hole is drilled through the sole of the boot at the proper testing- 

Air oubkt in cap 

Ouber pressure clip 

Rubber 

Plunger 

Leather insole 
Bottom filler 

Leather oubsole 

nxmg screw 

Fig. 68. Sention through cai)sule for measuring 
maximum depression of toe-cap. 

point, and the capsule fitted in position, as illustrated in Fig. 68. 
The outer cylinder is drawn upwards until it touches the inner surface 
of the toe-cap. The capsule is then removed and its length measured 
by a micrometer, after which it is replaced in the boot. Preferably, 
but not necessarily, the outer cylinder is moved away from the toe- 
cap by an amount determinable from experimental data. This reduces 
the initial acceleration of the outer cylinder. It can be shown analyti¬ 
cally that if the frictional loss between the piston and outer cylinder 
exceeds a certain value, the correct depression will be obtained.! 
The outer cylinder comes to rest at the same instant as the toe-puff, 
provided the pressure between the two is always positive. The 
accuracy of the capsule has been confirmed experimentally. 

Tests conducted for general industrial purposes are such that the 
steel of the toe-puff is taken well beyond its elastic range, so there is 
appreciable permanent deformation. Under this condition, mathe¬ 
matical analysis must be discarded. Accordingly we shall limit our 

t From 1 to 2 lb. gives an adequate margin of safety. 
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analysis to sensibly elastic deformation. A static load curve (elastic) 

for a boot having a carbon steel puff is shown in Fig. 69. The relation¬ 

ship bt^tween load P in lb. and the depres¬ 

sion in inch units was found to be igC0 - 

P - (2L8y+2-73)3-21 g{y). (1) / 

8.21. The differential equation. This ^ j 

has the form " / 

^ , Ml , / X 

di^ 
W~]rW, 

Substituting for <j{y) from (1), § 8.20, and ^ooj^ 

neglecting we obtain 0 0 12 0-24 0 36 
-I • . Depression (inch) 

m^/-l r^/-4-(21*8y/4-2*73)^ - H +21. (2) k v / 
Fia. 69. Static load-deprosKion 

In (2) m is the mass of the moving parts, boot with stool too- 
. . puff, obtainedbvloading plunger 

namely, H /t/, while r is the resistance (per in Fig. 97 and using capsule of 

unit velocity) due to loss in the toe-cap, 

assumed to be a constant. With IT 60 lb., we have ni ~ 60/32*2 X 12, 

so 6*44 in. lb.“ ^ sec."^ units. Multiplying (2) throughout by 

we obtain j/-f2/c?/-f (40*6iy-hr)*09)*^ -- 521, (3) 

with 2k — rjvi, the viscous damping coefficient. Writing r = dyjdt, 

v' -- dvjdy, (3) takes the form 

V r.. [521--(40*6y-f 5*09)*'^]/('P' + 2/c). (4) 

We now assign a series of values to v\ and proceed as in § 8.10. The 

isocline diagram is reproduced in Fig. 70. First we consider the case 

/c =r 0. Suppose W falls a vertical distance of 6 f^/max hiches, so that 

Vq, its downward velocity, and that of the toe-cap at the instant of 

impact is 70 in. per sec. Then in (4) we take /c — 0, — 70, y = 0, 

and obtain 5*55. This is the slope of the curve marked k == 0, 

at 2/ — 0. Again from (4), with k ^ 0, v' -- 0, we find that 

521--(40*62/+5*09)3 0, so y = 0-013. (5) 

Also when 00, -> 0, i.e. on the 2/-axis. Performing the integration 
V 

j dyjv, as described in § 8.10, the curve marked /c — 0 in Fig. 71 may 
0 

be plotted. 

t Ci: 2 lb. which may be neglected from a practical viewpoint. As an exercise 
the reader should solve (2) if w; is included, m will be increased and decreased by 
about 3 per cent. The equivalent mass of the toe-cap is negligible. 
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8.22. Solution when /c > 0. Here we are faced with a difficulty, 

since K is unknown. We have recourse, therefore, to experimental 

data. The measured value of i/max corresponding to the data in § 8.21 

was 0*42 inch. Thus in Fig. 70 two points on the y-v curve are 2/ = 0, 

V — 10, and y = 0*42, = 0. When v' > 2k the curve for /c > 0 

will cross those already plotted from (4) with fc = 0, substantially 

at the angles already marked off. Accordingly we draw a trial curve 
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starting at ?/ “ 0*42, — 0 and extending to ~ 0, ?; = 70. Next 

we consider the energy relations by aid of (3), § 8.21, written in the 

form 
-67000(2/+0-1254)3. (1) v^-\-2kv — 521- 

dy 

Integrating (1) with respect to y yields 

0 0 

= 521«/„-16750(?/,„+0-1254)*+16750 X 0-1254^ (2) 

^max 

Thus 2/c J V dy ^?;§-j-the right-hand side of (2). (3) 
0 

Inserting — 70, y^ ^ 0*42, we obtain 

0-42 

2K^vdy=\U^, (4) 
0 

042 

Now j V dy is the area under the trial curve for /c > 0 in Fig. 70. 
0 

By numerical integration this has the value 22. Thus to a first 

approximation ^ _ 27. (5) 

Using this in (4), § 8.21, the slopes of the short crossing lines on the 

y-v curves of Fig. 70 may be corrected. Thus if v' = —100 for k ~ 0, 

the new slope of the short lines will be such that v'-\~2k = —100, 

i.e. v' ^ —154, and so on. In this way a new y-v curve for /c > 0 

may be drawn, and usually it will be accurate enough for practical 

purposes. For the second or improved curve so found, 

042 

j V dy = 21-5, giving k — 27-5. (6) 
0 

Performing the integration for ^ as in § 8.10, the curve marked k = 27-5 

in Fig. 71 was obtained. 

In practice we are not concerned with events which follow the 

maximum depression, so the curve in Fig. 71 marked k — 27*5 has 

not been continued beyond this value. 

As a matter of interest, test data for a steel toe-puff stiff er than that 

considered hitherto are set out in Table 3. Since a single impulse 

caused permanent set, a new puff was used for each experiment. 



160 GRAPHICAL AND NUMERICAL SOLUTIONS ch. vin 

Table 3 

Data for carbon steel toe-puff 

Initial clearance in boot 1*1 inch: distance W (60 lb.) falls = inch 

Height h 

{inch) 

Maximum 

deprcAision 

Vm 

Total energy 

expended 

{in. lb.) 

Permanent 

set 

{inch) 

2 0*15 129 0-014 
6 0*25 375 0-028 

12 0-34 740 0047 
18 0-43 1J06 0-130 
30 0-56 1,834 0-210 

The relatioiLship between and h found from the data in Table 3, 

in inch units, is h ^ 2. 

8.23. Damping loss. The emergy lost by W up to the time of 

maximum depression y^^ 0-42, is 

(I}7^)!i>4.1bx0*42 --- +60x0-42 407 in. lb. (1) 
2 6*43 

The loss due to damping is 

042 0-42 

r j V dy = 2/cm ^ v dy = 1185/6*44 (2) 
0 0 

--184 in. lb. (3) 

Hence the proportional loss due to damping is 184/407 ~ 0*45. This 

causes a reduction in the maximum depression of (0*51 — 0*42) = 0*09 

inch, or about 18 per cent., so that damping assists in protecting the 

workers’ feet to this extent. 

8.30. Stability of operation of synchronous electrical motors. 
A machine of this type comprises essentially a cylindrical rotor 

within a coaxial stator, the two being separated by a narrow air gap. 

The stator consists of laminated rings of ferromagnetic material in 

which slots are cut parallel to the common axis. Conductors are 

embedded in the slots, and connected to form a number of circuits, 

each of which is associated with one of the phases of a polyphase 

electric supply source. The system of stator windings, i.e. the arrange¬ 

ment of conductors in the slots, is such that at any instant during 

operation, alternate north and south poles (in the usual terminology) 

occur at equal intervals round the inner periphery. By virtue of the 
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different phase relations in the polyphase current supply, and the 

manner of connecting the stator windings, the magnetic field caused 

by the current rotates in the gap at the inner periphery. The rotor 

consists of disk laminations slotted at the edges, conductors being 

embedded in the slots. To start the motor, the stator circuits are 

connected to the polyphase supply source, and the rotor circuits are 

closed through variable resistances. The rotating magnetic field at 

the inner periphery of the stator induces a current in the rotor windings 

in such a sense that a repulsive force occurs between the two sets of 

windings, this being tangential to both stator and rotor. Thus the 

torque on the latter causes it to rotate in the same direction as the 

magnetic field. As the speed of the rotor increases, the resistances in 

series with its windings are gradually decreased until finally they are 

zero, i.e. the rotor is short-circuited on itself. The rotor speed is now 

slightly less than that of the magnetic field, the difference being 

called the ‘slip’. It is such that the driving torque due to the current 

induced in the rotor is sufficient to equal the no-load torque corre¬ 

sponding to friction and windage. To synchronize the rotor speed with 

that of the rotating magnetic field, the rotor circuits are opened and 

connected almost simultaneously to a source of unidirectional current, 

known as the exciter. Just after this happens, there is alternating 

current in the rotor circuits, by virtue of slip, on which is super¬ 

imposed a unidirectional current rising rapidly to an ultimate value. 

The effect of the latter current is to pull the rotor into step (synchron¬ 

ism) quickly with the rotating field. At a specific instant during the 

process. Fig. 72 a gives some idea of the relative configuration of rotor 

and stator. After synchronism is attained, the corresponding north 

and south poles, in rotor and stator, are not exactly opposite to each 

other, being displaced by 6q electrical degrees.f For in order to main¬ 

tain the torque on the rotor, there must be a tangential pull. Con¬ 

sequently the lines of force must pass obliquely from rotor to stator 

to provide a component of force tangential to the rotor. Since the 

torque depends upon 6, an increase in load is accompanied by one in 0. 

If the load is increased gradually, the relationship between it and 6 

takes the form shown in Fig. 73. When the rotor and stator are dis¬ 

placed by 90 electrical degrees, the position being that of Fig. 72 b, the 

load has its maximum value for synchronous running. If it is suddenly 

t 360 ‘electricar degrees is the equivalent angular distance between two consecu¬ 
tive north or south poles. 

6077 M 



72. A. Showing relative angular positions of rotor and stator of synchronous 
electric motor on ‘light’ load. b. As at a, but ‘heavy’ load. 

Robor displacement in electrical degrees 

Fio. 73. Experimental data for non-salient pole synchronous motor, 
the load being applied gradually. 
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increased beyond this value, the machine falls out of step, slows down, 

and stops. If, however, the load is gradually decreased, the curve 

bends over as in Fig. 73, the angle 6 increasing meanwhile, until 

finally it is 180°, the north poles being opposite to each other and the 

load zero. The motion is now unstable. 

In practical operation the load is usually applied suddenly. Under 

this condition instability occurs when 6 exceeds a certain value, so our 

problem is to calculate the magnitude of the suddenly applied load 

which will just cause the motor to fall out of step (synchronism), i.e. 

cause instability. 

8.31. The differential equation. In reference [93] it is shown that 

a simplified version of the equation pertaining to the stability of 

synchronous motors is 

+^f+ Cx8in0 = Po+P, = P, (1) 

where 

Uj — power per unit angular acceleration (electrical degrees 

sec.-2) at synchronous speed, 

6^ power per unit change of angular velocity (electrical 

degrees sec.~^) for small values of slip near synchronous 

speed, 

' = steady state pull-out synchronous power (see Fig. 73), 

Pq = initial load, — suddenly applied load. 

It may be remarked that (1) is a differential equation for power. By 

making the necessary alteration in the various parameters, (1) may 

be expressed in the form 

I0+r0+asinl? = T, (2) 

where I is the moment of inertia, r a resistive damping torque co¬ 

efficient, asin^ is the control torque, and T the load torque. As in 

§ 3.160, the above equations are non-Unear by virtue of sin 6, 

8.32. Numerical example. In reference [93] the following equation 

is given for a non-salient pole synchronous motor having a pull-out 

power of 16 kilowatts (nominal power 5 kW): 

0-0041 ^ +0-0128 —4-16 sin 0 = l-3+PiH{t), (1) 
dt^ dt 

where H{t) is Heaviside’s unit or step function which signifies that 
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the machine is running at synchronous speed with load 1*3 kW, 

and at < = 0 an additional load is appUed suddenly. In this case 

Pq == 1*3 kW represents the initial or no-load power absorbed in 

windage, friction, and iron loss of the synchronous motor, also in the 

machine supplying the ‘load’, and in an additional machine used to 

measure the angular displacement 0. The three machines were 

coupled together mechanically. We have now to find the smallest 

Fig. 74. v-O curves for (3), (4), § 8.32, obtained by isocline construction. 

value of the suddenly applied load P^, which will throw the motor 

out of synchronism. To accomplish this, it is expedient to solve (1) 

for several values of P^. From experiment it is known that 

(Pi+1-3) < 16 kW, so Pi < 14-7 kW. 

Before P^ is applied, the machine is running at s3aichronous speed, so 

0 = 0 = 0. Thus from (1) we have 

sin0 = 1*3/16, giving d — 4*66 electrical degrees, (2) 

as the condition at < = 0. Now (1) may be written 

3-12 ^+3900 sin 0 = 317+244P,, (3) 
Cut Cut 

SO with V == ddjdtj v' — dvjdd, we get 

V = (317+244Pi-39OO8in0)/(t;'+3*12). (4) 

Using the technique described in § 8.10, the curve in Fig. 74 marked 
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8-5 kW is obtained for this value of It spirals in towards the point 
^ = 0 = 0, d = sin~^(l*3+8*5)/16 37*8°, which is the value from 
(1) when synchronous speed is attained after application of the load. 
The corresponding values of t are found by the integration process 
described in § 8.10, and the d-t relationship is depicted by the curve 
in Fig. 75 marked 8*5 kW. It represents a damped oscillation of 

t Time in seconds 
Fig. 75. Curves for synchronous motor showing relation between angle in electrical 
degrees (see Fig. 72), and time after the application of sudden loads of 8*5, 13*2, and 

13*7 kW. 

the rotor which settles down to the new value of 0, namely, 37-8*^. 
The increase in angular displacement between rotor and stator, viz. 
(37*8—4*3) — 33*5°, is needed to provide the extra torque to give an 
additional power of 8*5 kW. 

Next we take Pj — 13*2 kW and repeat the above procedure. The 
resulting curve in Fig. 74 is marked 13*2 kW, and spirals towards the 
point V == 0 = 0, sin-^(14*5/16) 65°. The d-t relationship in Fig. 
75 is again a damped oscillation which settles down to 0 65°. An 
oscillogram pertaining to this case is reproduced in Fig. 76, where 
the variation in 0 is clearly shown, also the three-phase power input. 
The latter rises to a maximum exceeding 16 kW; it then falls and 
fluctuates slowly, the ultimate input being 14*5 kW. 

Finally the results for a suddenly applied load of 13*7 kW are 
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depicted in Figs. 74, 75 by the curves so marked. The v-d curve veers 

away from the 0-axis, which implies instability. In the d-t curve, 

6 ultimately increases with increase in t, while the angle-volts steadily 

increase to a maximum (90"^). Then 6 increases suddenly to 180®, 

following to 270°, and so on, the machine having fallen out of syn¬ 

chronism, the rotor now slowing down. The solution curves in 

reference [93] were obtained by a differential analyser, and agree 

Fig. 76. Oscillogram showing relation between electrical input power to synchronous 
motor and angle-volts, when load is applied suddenly. 

closely with the experimental results. Additional data useful for 

design purposes are given in [93]. 

8.33. Solution by method of finite differences. We take the 

equation in the form 

0-f-2«:0+asin0 = FH{t), (1) 

where 2k is the damping coefficient, asin0 the non-linear ‘spring’ 

control, and F a constant force applied at ^ — 0, by virtue of H(t) 

the unit or step function. Writing v — ddjdt, v' = dvjdd, (1) becomes 

?;v'+2/cv-f asin0 — F, or v' = [(F—asin0)/?;]—2/c, (2) 

the presence of H(t) being implied. Referring to Fig. 77 we see that the 

approximate slope at P is 

(yr+l-Vr-lV^h = y'r- (3) 

Applying (3) to (2), and writing 0 for x, v for y, we get 

K = (^r+i—= [{F—asme^)/v^]—2K, (4) 

so = [2h{F—a sin 6^)/v^]+Vr-I—^Kh. (6) 

To commence the computation we must know and correspond¬ 

ing to dp, 6p+i, where (dp+i—dp) — h, so we now introduce numerical 

values. Let /< = 0-l,a=l,jP = 0-605, then (1) becomes 

d+O-2^-l-sin0 = 0-505H{t). (6) 
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The initial conditions are 6 = 6 — 0, and 8 = 0-505 a,t t = +0. 

By Maclaurin’s theorem 

6{t} = ei0)+tm + *l8{0} + ^^6(0)+... . (7) 

Using the above initial conditions, (7) becomes 

m = (s) 

1 X 

P^iG. 77, Diagram used for method of finite 
differences in § 8.33. 

Differentiating (6) with respect to t gives 

fl+O-2^'+0cos0 = 0, (9) 

and since 0 = 0, we get 

0(0) = -0-20(0) = —0-2x0-505 = —0-101. (10) 

Also 0+0-20+^0080— 0^sin0 = 0, (11) 

so 0(0) = —[O-20(O)+0cos(O)], 

= -(-0-2x0-101 + 0-505) = —0-4848. (12) 

Proceeding thus we find that 

0<5)(O) = 0-198, 0<«)(O) = 0-4452. (13) 

Additional terms are obtainable by aid of the recurrence formula 

0(r+i)(o) == —[O-20<’')(O)+0(’'-i)(O)], (14) 

but usually the accuracy will decrease with increase in r. Substituting 

from (10), (12), (13) into (8) leads to the approximate solution 

0 0-2525<2—0-0168«®—0-0202l^+0-00165<«+0-000618<«. (15) 

This may be used to calculate 0 in 0 < < ^ 2. The accuracy decreases 

with increase in t in the interval, being about 1 per cent, at i = 2. 

If (16) is differentiated with respect to t, 6 may be calculated from 

0 =; 0-5051—0-0504<2—0-0808<®+0-00825^H0-003708<®. (16) 
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8.34. Application of (5), § 8.33. Using (15), (16), § 8.33, we 

calculate 6, d for t — 0-3, 0*4,..., and by interpolation find that when 

^2 “ 0*1, 03 = 0*15, we get ~ 0*285, — 0*345. Then h = 0*05 

and (5), § 8.33, becomes 

= [O*l(O*5O5~sin0,.)/i;J+i;^^i-~O*O2. (1) 

Substituting from above 

== [0*l(0*515-sin0*15")/0*345]+0*285---002 

0*369. (2) 

Also Vfi == [0*1(0*515—sin 0*2^)/0*369] + 0*345—0*02 

0*408. (3) 

As the computation proceeds, the points should be plotted. 

The occurrence of irregularities which might be corrected would then 

be revealed. To obtain greater accuracy, a smaller common interval, 

say, h — 0*025, would have to be used, especially for those parts of the 

d-v curve where the curvature is large. However, the above illustrates 

the method of procedure, and having obtained the two initial values, 

it is easy to apply. If the computation is continued, sufficient data 

will be accumulated to plot a decreasing d-v spiral of the form shown in 

Fig. 74, marked 8*5 kW. When v ^ 0, 6 attains its maximum value. 

Thereafter the curve spirals round, and gradually approaches 

e = sin“i0*505, v = 0. 

The motion of a synchronous motor obeying the differential equation 

would be stable. It is now necessary to integrate as in § 8.10 to cal¬ 

culate t. 

8.35. Numerical solution of (6), § 8.33. First we calculate 0, 
0, 0 when ^ = 0, 0*1, 0*2, using (15), (16), § 8.33, and the first derivative 

of the latter. This gives the first three rows of Table 4, and it is impor¬ 

tant that they should be fairly accurate, because errors once introduced 

are liable to be cumulative in any numerical process of the type given 

below. To compute additional rows in Table 4 we use the following 

formulae: If h is not too large 

(1) 

SO ^^+1 (2) 

Also by Simpson’s rule 

(3) 
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Table 4 

Common interval A = O-l in < 

r t 9 e e Ad A^e A%lh^ 

0 ()•() 0-0000 0-0000 0-5050 — — — 

1 01 0-0500 0-0025 0-4925 25 — 0-495O 
2 0*2 0-0085 O-OOOOfi 0-4754 74-5 49-. 0-4750 

3 0*3 
(-(0 1449) 

(0-145] O-O22I5 0-4539 122 47-. 0-4.550 

4 0*4 
(■(01891) 

(0-1803 0-0389 0-4283 167-6 45-6 0-4250 

5 0-5 (0-2307 0-0599 0-3990 210 42-6 0-4000 

6 0-6 
(-(0-2690) 

(0-2()91 0-0849 0-3661 250 40-0 — 

7 0-8 0-3357 0-1457 0-2029 608 — 0-2000 
8 10 0-3863 0-2181 0-2112 1 724 116 — 

which gives 

Further (5) 

where A^Oj. is the second difference in 0^.. Tliis formula may be used to 

make a rough check. 

To obtain row 4 in Table 4, put A — 0-1, r = 2 in (2), and use Sg? 

from the table. Then 

4 0-2X0-4754 + 0-05 0-1451. (6) 

From (4) and the tabular values already given 

03 =: 5^0-1451+ 4 x0-0985+0-05)+0*0025 

= 0-02215. (7) 

By (6), (7), and (6) § 8.33 

03 = 0-505—0-2 xO-1451-^sin 0-0221^ = 0-4539. (8) 

Rows 5-7 are computed in like manner. 

The last column of Table 4 calculated from (5) provides a rough 

check on The values of 0 may be (and should be!) checked as the 

computation proceeds, by aid of the Simpson’s rule formula (see (4)) 

^r+l ~ ^^(^r+l+40r+^r-l) + ^r-l- {^) 

Data so obtained are given in Table 4 in ( ). Also in place of (2), the 

formula 

^r+l = y {2^r-^-l + 2^-2)+0r-3> (10) 

may be used. 

The common interval in Table 4 may now be doubled to reduce 

labour, and the above process continued. The reader should extend 
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the tabular values beyond t = 1*0, and try the effect of using h — 0*4 

beyond t ^ 1-6. The method gives adequate accuracy for practical 

purposes, as may be verified by computing 0, 9, 6 from (15), (16), 

§ 8.33, up to ^ ~ 2-0. Small oscillations sometimes occur in 0, 0, 0 

which are detectable in differences. This may signify that the curva¬ 

ture of one or more of 0, 0, 0 changes too rapidly for the interval h 

which is being used. A smaller interval may be chosen, or the Runge- 

Kutta method applied over the range where oscillation occurs [190]. 

The procedure used above is a slight modification of that in reference 

[15], where A‘'^0^ is calculated from (5). A0,. is then obtained by adding 

A*^0^ to A0,,_i, and thence 0 is found. A correction technique follows, 

and the results are improved at each ‘cycle’. The original memoir 

should be consulted for further details. Other methods of numerical 

solution are set out in [190]. 

8.36. Analytical considerations. In (1), § 8.33, if the term 

2/C0 is relatively small, in a first approximation we may write 

0+asm0-: FH{t), (1) 
or with V = ddldt 

V dv/dd+asind — F, (2) 

H{t) being omitted. Hence 

asin0) dd-\-Ai (a constant of integration), (3) 

so — 2(jF0-l-acos0)-f-^. (4) 

Since v == 0 when 0 = 0, .4 ^ — 2a, and (4) becomes 

= 2(i^0-2asin2J0). (5) 

Fig. 78 a shows the curve 2a8in^i6 over the range 0 — (0,27r), and 

also three lines representing F6 for F ™ F^, F^, F^. Fig. 78 b shows 

±{2{F^ 6—2a sin^ |0)]i plotted against 0. So long as the Fd line inter¬ 

sects the curve 2asin2|0, the curve in Fig. 78b is closed. Thus the 

motion will be periodic and stable. When, however, this line does not 

intersect the curve 2a\6, e.g. F^d, v increases with increase in 0 

beyond a certain point in 0 < 0 < tt, so the motion is then unstable. 

The point P corresponds to the Fd line being tangential to 2asm210, 

and the motion may be regarded as neutral. Thus for stability we have 

V == ±[2(F0-2asin2|0)]i {0 ^ F < F^). (6) 

In practice damping occurs, so with 0 ^ F < Fg, a stable v-d curve 

in Fig. 78 b would take the form of the broken curve and pass through 
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Fig. 78. a. Illustrating (.5), § 8.36. b. Illustrating (6), § 8.36. 

P 

Fig. 79. Schematic diagram of pin-ended 
column with eccentric loading. 

the point v = 0, 6 = mn-^F/a, since as ^ +oo, 0 -> 0, 6 0 in (1), 

§ 8.33. 

8.40. Creep in eccentrically loaded columns [96]. When a long 

vertical column is loaded eccentrically within its elastic range, as 

shown schematically in Fig. 79, it assumes a curved shape. On 
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removal of the load, the column regains its initial shape. If the load 

is maintained, the deflexion increases slowly with increase in time, as 

illustrated in Fig. 80. This effect is called 'creep’. The usual concept 

of failure of columns by elastic instability must, therefore, be amended 

if the material is prone to creep. In this case the critical load is smaller 

than that calculated from Euler’s formula, owing to the greater ulti¬ 

mate deflexion arising from creep. Certain materials, e.g. aluminium, 

concrete, and plastics, exhibit creep at normal temperatures. 

Fig. 80. Deflexion-time graph for eccentrically loaded 
aluminium column. 

For convenience we assume the initial shape of the centre line of the 

deformed column to be (Fig. 79) 

= 7oSin(7ra:/Z), (1) 

where Fq is the central deflexion at ^ — 0. The deflexion at time ^ > 0 

is given by y ~ Vc being the contribution due to creep. Then 

it is found that the deflexion-time relationship may be expressed by 

the non-linear differential equation 

where P is the load, t time, and G corresponds to flexural rigidity in 

the elastic theory. For a rectangular cross-section, as in Fig. 81 A, 

G == (26)^((^/2)2^+V«(2+l/^)^ (3) 

where a, n are experimental creep numbers in the creep law c — 

p being the unit stress, and c the rate of creep strain assumed constant. 

For a bent column, this law must apply equally in tension and in com¬ 

pression, so n is an odd integer 1, 3,... . 
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8.41. Solution of (2), § 8.40. If n — 1, the equation takes the 

linear form 
—A&>m(7Txll), (1) 

where u = {y-\-e), e being the eccentricity of the load, A^ = PtjOy 

X 

A = Yq{ttII)^, The complete solution of (1), with a = tt/Z is 

. ^ . , jy > , -4sinax 
u — smAr+^OiCOsAa:-^-r—(2) 

(x^—A^ 

72. > 1. When 72-= 3,5,..., the method of finite differences in 

§§ 8.33, 8.34 may be used to solve (2), § 8.40. From (2), § 8.33, and 

Fig. 81 B it may be deduced that 

A2j//Ax2 = (yr+l-2/r-?/r+yr-l)/(^)‘‘ 

= {yr+i-^yr+yr-iW> (3) 

where h has been written for Aa:, the common interval. We now 
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replace d^yjdx^ in (2), § 8.40, by the right-hand side of (3), thereby 

obtaining ^ (4) 

with E, = hWo(-iTllfs\noa,, and F h^P^IO. 

Denoting the central deflexion by that at a: — 0 by and using 

(4) for each successive section beyond y^, we obtain the following [96]: 

Vi — 2/m~2[^m+^(^+ywr] 

Vi = ‘^Vz-yi—iEi+Fie+y^)^] 

2/r+i = 2i/;.-i/;._i-[4+-F’(e+i/,)"] 

(5) 

To apply (5) to determine the column deflexions y at any time 

^ > 0, proceed thus: 

(i) From known data compute F, 

(ii) Using the measured or calculated compute jE^i, 

(iii) Assume a value of ?/^ for t = and calculate Vs from 

(5). If the correct y„j is assumed, y^ = 0. If y^ ^ 0. 

(iv) Repeat (iii) with another value of y^^y so that y^ is now of 

opposite sign. Then obtain y^ by interpolation. 

8.50. The heavy elastica. The problem of the elastica mentioned 

in Chapter I and solved in §§ 3.180-3.183 was originally an academic 

one. It has, however, emerged from the academical archives, and the 

basic idea is now of service in industry. Herein we shall consider an 

application to determine the ‘handle’ of cloth in the clothing trade, 

and the ‘feel’ of leather in the leather trade. In years gone by, the 

essential qualities of these materials have been assessed entirely by 

persons with considerable aptitude, and experience in their purchase 

and use in manufacture. Instruments now exist for measuring and 

comparing cloths or leathers to a high degree of accuracy. The 

mathematical problem is to calculate particulars pertaining to the 

shape of a strip of material, uniform in breadth and thickness, when 

supported in certain ways and deformed by its own weight. Two 

arrangements are illustrated in Figs. 82, 83, namely, the cantilever 
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Fig. 82. Illustrating form taken when material clamped in a ‘flexometer’ bends 
due to its own weight. 

Fig. 83. Illustrating ‘heart’ loop used in testing flimsy fabrics. 

and the heart loop. Herein we shall consider the former only. The 

latter is used for flimsy materials like thin silk. 

8.51. The differential equation [16]. Let 

B = El = flexural rigidity of strip, 

w — weight per unit length, 

c = defined as the ‘bending length’, 

8 == arc length measured from a convenient origin, 
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6 ~ angle between tangent to bent strip and the horizontal, 

X, y ~ rectangular coordinates 

at any point in the strip width. 
S “ shearing force 

T “ tension 

M = bending moment 

We also take the non-dimensional quantities cr = ^/c, ^ ~ xjc, rj ~ yjc, 

T = T jew, fji = M jehv. The subscript 0 denotes the value of a quantity 

Fio. 84. Forces and moments diagram for element of heavy elastica. 

at the origin of coordinates. It has been found by experiment that 

the curvature of the strip is directly proportional to the bending 

moment. Thus we have 
dd/ds - MjB. (1) 

The forces acting on an elemental length of strip are depicted in 

Fig. 84. One condition for equilibrium is that the algebraic sum of the 

horizontal and vertical forces must vanish independently. For the 

lormer S(Tcos0)-S(^f8in<9) == 0, (2) 

so T cos 0—aS sin 0 = Tq, a constant, (3) 

namely, the tension at the origin. For the vertical forces 

8{TBm0)+S{8coQd) = wSs, (4) 

so Taind+Sco&d — ws+Sq, (5) 

where 8q is the shearing force at the origin. The other condition for 

equilibrium is that the algebraic sum of the moments about any 
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point in a cross-section must vanish. Taking moments about P in 

Fig. 84, = (6) 

so —8 — dMjds. (7) 

Multiplying (5) by cos Q, (3) by sin0, and subtracting the second from 

the first yields -8 = sin 0-(^o+m;s)cosd. (8) 

Equating the right-hand sides of (7), (8) leads to 

dMjds ~ TQm\d—{SQ-\-ws)Qosd. (9) 

Then from (1), (9) we obtain the general differential equation for the 

bent strip, namely, 

B y^sin0+(>J?Q-fm‘)cos0 = 0. (10) 

In the cases considered hereafter, Sq ~ 0, so in 

terms of the non-dimensional symbols given 

above, the non-linear equation to be solved is 

dW 
— Tnsin0+acos0 ~ 0. (11) 

da^ 

Having found 0 as a function of a, numerically 

or otherwise, the values of | and r] may be cal¬ 

culated as follows: from Fig. 85 we have 

dxjds ~ cos 6, (12) 

and since a = s/Cy ^ == xjc ~ j cos 6 da. 

Also dy/ds = sin^, 

so 7) ~ yjc = r sin 9 da. 

(13) 

(14) 

(15) 

8.52. Solution for cantilever. The specimen is clamped as shown 

diagrammatically in Fig. 82, the centre line of the clamp being horizon¬ 

tal. The specimen is allowed to sag freely, and the angle a between 

the chord and the horizontal is measured. Taking the origin as shown, 

™ Bo = 0, so (11), § 8.51, reduces to 

dWlda^-{-a cos 9 0. (1) 

Also Mq — 0, so {d9lds)^^Q = 0, and, therefore, {d9lda)fj=^ = 0. This 

is one boundary condition at the free end of the strip, the other being 

9 ~ 9^^ a ~ 0, By Maclaurin’s theorem 

%) = 0(o)+(70'(o)+~0''(o)+^r(o)+.... (2) 

6077 N 
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Inserting the second boundary condition into (1), gives 

0''(O) = 0. (3) 

Differentiating (1), we have 

O'" — — (4) 

Inserting both boundary conditions into (4), we get 

r(0) -cos00. (5) 

Continuing in this way, we find that 0^^^(()) — 0, and 

e(6)(0) -= —2 sin 200. (6) 

Substituting from above into (2) yields the approximate solution 

^ ~ ^0—^ cos 00—sin 200. (7) 

Taking 0o — 10° 0-1745^, we find that cos 0o 0-9848, and 

sin 200 0-3424. Inserting these in (7), with 0 = 0 at the clamp, 

we obtain of ~ 1-059, so ~ 1-019. (8) 

The next step is to make a table of values of a and 0 using (7). From 

this table, the integrals (13), (15), § 8.51, for andij^ may be computed 

by aid of Simpson’s rule. Then in Fig. 82 the clamping point can be 

located, giving a = tan“^(')]^/|i). In the above case a 7-5°, a value 

which should be checked by the reader as an exercise. 

The angle at Oin Fig, 82 is 0o, and at P it is zero. The shape of the 

curve dehneating the strip is unknown, but its length I is always 

measured before the bending test is made, and since a ~ sjc, we have 

<^1 

I — c ^ da ^ ca^, (9) 
0 

Hence the bending length is given by 

c -= l/a^, (10) 

8.53. Solution for larger values of 6q. An additional term in¬ 

volving a® in the series for 0 at (7), § 8.62, may be found as shown in 

that section. This will enable a^ to be calculated up to 0q — 70° 

with an accuracy of 1 per cent, thereat, the accuracy increasing with 

decrease in 6q, For greater accuracy a method of numerical integra¬ 

tion may be used, e.g. that demonstrated in § 8.35 (see also references 

15, 190, 211). The data in Table 5 are taken from reference [16], 

the computation being to an accuracy greater than that needed in 

practice, where 1 per cent, is probably adequate. 
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Table 5 

Showing </» for various values of 

<^1 a 

10 1-0582 I-OI9O5 7° 30-4' 
20 2-1850 1-29764 15° 2-9' 
30 3-4632 l-5129e 22° 39-9' 
40 5-0113 l-7112e 30° 24-5' 
60 7-0257 1-91527 38° 21-0' 
60 9-8896 2-1464g 46° 35-2' 
70 14-5246 2-43988 65° 20-6' 

Fig. 86. Graph for obtaining the ‘bending length’ of a piece 
of fabric or leather. 

Having obtained a series of values of and a graph of crp^ — 

and a is plotted as illustrated in Fig. 86. Then for a given if the angle 

measured on the testing machine is the corresponding value of c^^ 

may be read off the graph. The ‘bending length' 

is an index of the quality of the material. 

(1) 
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Sound Waves of Finite Amplitude in a Loudspeaker Horn 

1, Introduction. In Chapter I we mentioned that the classical theory of sound 
is based upon infinitesimal pressure variation and, therefore, infinitesimal 
amplitude of longitudinal vibration. But in modem loudspeaking apparatus, 
and in all musical instruments such as the pedal organ, which generate high 
soimd pressure, the amplitude at the source is certainly not in the infinitesimal 
category! The pressures employed in fog-signalling apparatus, and in public 
address loudspeakers used in cinemas and at open-air events, are colossal from 

the viewpoint of the classical theory. For example the pressure at the throat of a 
horn-type loudspeaker radiating 500 watts of sound power might be 100 dynes 

Fig. 87. Illustrating distortion of plane sinusoidal 
sound wave of finite amplitude, with increase in 

distance from source. 

per cm.2 Since a pressure of 3 dynes cm."^ in the ear canal is perceived as a loud 
sound, the great strength of the modern acoustical source will be realized. 

At any instant during the propagation of a plane sound wave of finite ampli¬ 

tude, the density of the air varies from a maximum at a crest to a minimum at 

a trough, so the crests gradually gain on the troughs, as the distance from some 
arbitrary origin increases. This is illustrated in Fig. 87, which indicates a 
change in wave form, it being accompanied by the creation of higher harmonic 

tones. The shape of the distorted wave is such that the second harmonic pre¬ 
dominates over those of higher order. Since there is absence of lateral expansion 
in plane-wave propagation, the alteration in wave form is much more marked 

than that in waves emitted from a loudspeaker horn or a large conical dia¬ 
phragm. Expansion is accompanied by a gradual reduction in pressure ampli¬ 

tude, which implies smaller variations in density and, therefore, less distortion 
than in a plane wave under comparable conditions. The smaller the throat 

of a horn loudspeaker, the greater the pressure amplitude thereat for a given 
acoustical power output, and the greater the distortion arising from the creation 

of alien tones. There is a limit to the degree of distortion which the ear can 
tolerate. For sports events and the like this is appreciably higher than that for 

the reproduction of speech and music indoors! In the analytical work which 
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follows we shall obtain formulae whereby horn loudspeakers may be designed 

so that the power associated with alien tones does not exceed a prescribed level. 

To avoid undue complication, transmission loss in the air will be omitted. It is 

of importance chiefly at the higher audio frequencies. Apart from introducing 

the type of distortion mentioned above, a small horn throat causes appreciable 

frictional loss, since the air velocity at the entrance to the horn is then rela¬ 

tively high. 

2, The differential equation. This is derived in [183, p. 199] to which 

reference may be made. The horn is assumed to have a long linear axis, to be 

rigid and frictionless, the size at the mouth being large enough to avoid appreci¬ 

able reflection at the lowest frequency to be adequately reproduced. The law 

Fig. 88. Illustrating ‘channelized’ expone^ntial loudspeaker horn. 

of variation of the cross-section with distance is unrestricted, except that for 

obvious reasons there must be no abrupt changes, while from an analytical 

viewpoint the expansion must follow a law which makes the analysis tractable. 

In addition we suppose the horn to bo subdivided into a large number of channels 

or conduits whose cross-sectional dimensions are small compared with the 

wave-length of the highest frequency to bo reproduced. By so doing we avoid 

the untenable assumption that the wave front is plane, wliile transverse modes 

of vibration in the horn are rendered innocuous. In practice a non-channelized 

bom exhibits objectionable directional properties, which are mitigated by the 

above construction. At a distance x from the horn throat, the wave front will 

be a sectionized curved surface, the soimd pressure being equal at all points 

thereon. The periphery of the outer cross-section is usually circular, rectan¬ 

gular, or square. 

Referring to Fig. 88, the non-linear equation with which we have to deal is 

= 0. (1) 

where ^ is the particle displacement at a distance x from the throat measured 

along the curved axis of a channel, x — 
cross-sectional area at 

cross-sectional area at x 

velocity of soxmd waves of infinitesimal amplitude, and y = 1-4 for air. 

, c is the 
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3. Exponential homf [41], From the viewpoint of design, the problem is to 

calculate the smallest throat, so that the horn will transmit an assigned acoustical 

power over a given frequency band, the degree of distortion due to the medium, 

by virtue of its non-linear characteristic (adiabatic curve), being less than a 

stipulated value. In practice it is usually adequate to confine consideration to 

some fundamental frequency t and its second harmonic. 

From Fig. 88 the area at any x is 

0
 

1! (1) 

Aq being the throat area, and 2/8 the flare index.§ Thus 

X = A(x+i)/A(x) = (2) 

so (3) 

and, therefore, x'lx = m'- (4) 

Substituting (2), (4) into (1), § 2, we obtain tlie non-linear equation for the 

propagation of soimd waves of finite amplitude in an exponential horn, namely, 

r+2j3f(l+^') - (5) 

with ~ f -- On the assumption that ff1, 

we expand the right-hand side of (5) and obtain 

(f/c*)[( 1 + (y + l)r(l + (y- 

= (^7c*)[l 4-(y--1 )2jS^-f (y4- terms of higher orders in f, (6) 

Neglecting the higher order terms, since < 1, and also taking 

2(y-l)j3^<l, 
(6) yields the approximation 

(i/c2)[l -f 2(y~ (y-f 1 )n (7) 

Replacing the right-hand side of (5) by (7), and rearranging, leads to 

r + 2^f-(^7c^) (f7c2)[2(y-l)j8^+(y+l)n-2/Sr. (8) 

All terms on the left-hand side of (8) are of order while those on the right- 

hand side are of order ^2, so the equation is non-linear. 

4. First approximation to solution of (8), § 3. We neglect the right-hand 

side and then the equation to be solved is the linear type 

r+2iSf-(i/c^) = 0. (1) 

At the horn throat where a; == 0, we suppose there is a diaphragm of area 

vibrating axially so that | cos cot, i.e. the particle amplitude is This is 

the boundary condition at the throat. We shall deal with steady oscillations, 

so the necessity to specify initial conditions at« = 0 does not arise. We assume 

(2) 

t Spherical sound waves of finite amplitude are dealt with in [100], 
t Two different frequencies are considered in [101]. 

§ 2p has been chosen instead of the usual jS to avoid the fraction J in subsequent 
analysis. 
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^ being a function of x. Substituting (2) into (1) gives 

0, (3) 

with k = w/c ^■= 277/A, A being the wave-length, and in practice k > The 

formal solution of (3) is 
ifj (4) 

A, B being arbitrary constants, and m\ ~ — Then by (2), (4) 

By hypothesis there is no reflection at the horn mouth, so we require a solution 

for outward transmission of power. Thus 

= Be-^^condi, (6) 

with 61 ~ (ojt — m>ix)y and assuming B real. If R = ^q, 

ft = (7) 

and the boundary condition ^ = fjcostoi at x = - 0 is satisfied. Then (7) is the 

first approximation to the solution of (8), § 3, being in fact the solution for the 

linear case of inflnitefSimal amplitude. The attenuation factor is due to 

expansion of the sound waves as they travel down tlie horn, there being no 

power loss over a cross-section. 

5. Second approximation. To derive this we substitute (7), § 4, into the 

right-hand side of (8), § 3 and obtain the linear equation 

r + ~(^/c2) i5jCos2^, + f7isin2ei], (1) 

where - ^k^(y- \). B^ - jS{/b2(y-6) + 4j32}, Oj - m^{k\y-l)~^^}. The 

complementary function of (1)—right-hand side zero—for the second harmonic 

of frequency cu/tt, may be found from (6), § 4, by writing 2a> for a>, for wii, and 

B^ for B. Thus 

with Wa ~ 4A:2—and 6^ -- (2(jji — 7n^x). To derive the particular integral of 

(1) , we use (2) in the formula 

fjp = f^o /fFo^e-JI f,,edx] dx, (3) 

where Pi is the coc'iflcient of in (1), and S is the right-hand side of (1) [167]. 

We find that _ |Je-^3-[(4x/4j8)x+Re(J5;e»«».)], (4) 

withj; = (Di-iEi), Dr - (l/8j3pV+l)-2^Vl,j;i = iwi(2-y). Hence by 
(2) , (4) the solution of (1) for the second harmonic is 

f* = fsc+fsp = e-^*{Re[B,e<9.]+^?e-^*[(4i/4j3)^:+Re(^l e“<»i)]}. (6) 

At the ttiroat x — 0 and = 0* so we must have 

= 0, (6) 
giving Rj = — f?Rx. (7) 

Substituting this into (5) yields 

fs = f?{e-“>»®(Ai/4^)a;+e-»*Re[(e*<»i-^*-e2‘»t)Fx]}. (8) 
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Hence by (7), § 4, and (8) above, to the second approximation, the solution of 

(5), § 3, for outgoing waves is [41] 

^ (fundamental)+^^2 (second harmonic)+unidirectional displacement (9) 

— ^0 cos(6t>^ — a;) ^ cos 2(<ot—x) -|- sin 2{(x)t — — 

— ^e~^\I\coB{2o}t—in2x)-{-E-i^^m(2(x)t—m2xy\-\-^^k^{y— 1 )xe~^^^. (10) 

In the solution of (1) there is also a complementary function — 

independent of t which vanishes at or = 0, this being a solution of + ' = 0. 

Any multiple of (1 — may bo added to (10), but in the present case it is not 

required. Thus the solution, without prescribed initial conditions (in which we 

have no interest hero), is indeterminate in the above respect, but this is incon¬ 

sequential. 

The last terra in (10) repre^sonts a unidirectional particle displacement. It is 

due to the adiabatic curve for air not being antisymmetrical (see §§ 4.130, 4.140) 

about the operating point thereon, so the pressure variations for differ¬ 

ent. In radio terminology it is in the nature of a ‘rectification’ effect. The 

unidirectional displacement increases with increase in x from x -- 0, and attains 

a maximum value at a; == Thereafter it decreases monotonically with in¬ 

crease in X. 

6. Sound pressure. In [41, 183] it is shown that the excess pressure at 

variable distance (a:4-^) from the horn throat to the second order in ^ is given by 

p = /C)„c2[-2^^-^' + 2jSy^f+ +J(y+l)n. (1) 
provided 1> ^ ^ > Po being the undisturbed air density. Substituting 

from (10), § 5, for into (1), and rejecting terms of orders higher than 

we find the excess pressure at (a;-]-^) to be 

(2) 
where oci = tan”^(j3/mi); ag ~ tan‘~^(ilf2/^i)j 

Ml = cos 2mi x-^Hi sin 2mi x] — [ J^ cos m^x—Ki sin mg x]; 

M2 = e~^^[ — Gi sin 2m^i x+cos 2mi x] -f [ sin mg x+Xj cos mg x]; 

(Ml+Ml) = (*7?+X?)-f6-2^^(a?+H?)- 

-2e~^^[(JHi^)(^??+H?)]lsin{(2mi--mg)x4-a3} 

(JJ+X?) ~ 4fc2(2)2_|_^2j when x is large enough so that 1; 

ag :== tan--i[((?iJ,-HiX,)/((?,Xi-(-Hi jrj]; ^ 2mi A” Mi8(y-1); 

Hi - i(y+l)(A;2-2j82)_2miXi; Ji =:== mgA+iSA; X’l = mgXi-^SA- 

The last term in (2) represents a unidirectional excess pressure which decays 

exponentially with increase in x. It may bo explained as in the last paragraph 

of §5. 

7. Particle velocity. At variable distance {x~\-^) from the horn throat, this is 

found by differentiating (10), § 5, with respect to t. Thus 

—coc-^*fo[sin0i-f-2fo(iV^-f-X|)l8in(2cu«+^2)], (1) 

with Ni = e”^®[Aoos2miir—Xism2mia;] —[Acosmgo;—Xisinmgx]; 

Hg = e“^^[—A sin 2mi x—E^ cos 2mi x] -j- [A sin mg ar E^ cos mg x]; 

= (DHH?)[l+e~2^«^-2e~^«^cos(2mi-m2)a;] (Dl+Ef), 

when X is large enough so that 1; ^2 = tan~^(H2/Xi). 
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8. Acoustical power transmitted down horn. We may imagine the air 

particles (so called) over the wave front at any x to bo replaced by a massless 

vibrating curved lamina. The area varies with it is A i being 

given by (10), § 5. The alternating sound pressure on the fictitious diaphragm 

is represented by (2), § 6, and the velocity by (1), § 7. The power associated 

with the diaphragm is the mean value of over a 

period of the fxmdamcmtal frequency. When x is largo enough, <! 1, and 

^ gQ ^(3 }]ave to calculate the mean value of p^A^e^^^ in ^ (0y2Trlco), 

Thus the power is given by onlw 

P = pidt. (1) 

0 

Substituting from (2), § 6, for p, and from (1), § 7, for ^ into (J) above, we find that 

L cos J 

= P, + P2. (3) 

where I\ — power in fundamental — -IpqcAqOj^^Icosai^ (4) 

and Pg ” power in second harmonic 

= pJ(2^/*){(M?+Mi)(JV?H (6) 
L cos J 

= Pi9h- (6) 

cosaj is the acoustical power factor for the fundamental, while co,s(aj—yirj) is 

that for the harmonic. The pressure and particle velocity are out of phase by 

Oil for the first, and by (ag— j/'2) f«r fbt’ second. 

Now Pi represents the power supplied at furidann'iital frequency by the dia¬ 

phragm at the throat, while Pi^ph is the power in the harmonic. It appears, 

therefore, that the total power in the horn increases with increase in distance 

from the throat. This apparent paradox is due to the analysis being restricted 

to terms of order 2 in If carried further and terms in w€)re introduced, 

terms involving 2^i, would appear. The not result would bo that as x 

increased, the pressure and particle velocity of the fundamental would gradually 

fall below the values given at (2), § 6, (1), § 7, the amplitudes approaching limit¬ 

ing values asymptotically. As the waves travel down the horn, the power lost 

by the fimdamental is transferred to the harmonics. At a certain distance from 

the throat the transfer of power to the harmonics is substantially complete. 

That is to say, further transfer is prevented owing to the increased rate of 

expansion of the cross-sectional area. The ratio cp/j has then attained its ultimate 

value and may be evaluated with 1. Under this condition terms in¬ 

volving in the expressions for Aij, ilfg* negligible and we obtain 

9a == il2[(ifcV4i3^)(y+l)*-^"(5y-4) + 4^2(y_i)]eos(a2- (7) 

Since — tan~^()3/mi), cosa^ — also when 

^ ^ tan’-i(j8/m2), 

so cos(a2—^2) mjk. Substituting in (7) for cosaj, cos(a2 —^2)* we find that 

9a W8^i)[(W^)(y+ l)2-P(6y-4)-f 4i9^iy- 1)]. (8) 

It will bo evident that calculation of the power in the second harmonic must be 

restricted by the condition 1. 
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Since cosaj = (mijk), (4) gives 

^ — 2JFj/PqC^A;w2«2 Aq. (9) 

Substituting from (9) into (8) yields 

9/, = Fjm,t(fc*/4i3*)(y+l)»-fc"(6y-4) + 4i3^(y- l)]/4poc'>fcmMo. (10) 

~ l-48xlO-‘(Pi/4o)(‘«K)*. (11) 

provided a> ^ C0c» <C 1* In (11) is in watts, Aq in cm.a>/27T the funda¬ 

mental frequency in c.p.s., while a>c/27r = j8c/27r is the cut-off frequency of the 

horn below which (in the hypothetical case) power cannot be transmitted.! 

For high-quality reproduction of speech and music, the level of the second 

harmonic should be not less than 30 decibels (db.) below that of the fundamental. 

In other words, the power in the harmonic must not exceed 10“^ that in the 

fundamental, so < 10“^. Using this in (11), we obtain the simple but impor- 

tant design formula > 0-148A(a>K)^ (12) 

It will be seen from (11) that if Pj remains constant for a given horn, the power 

in the second harmonic increases as the square of the frequency. 

9. Numerical example [41]* To illustrate application of the foregoing 

analysis, we shall calculate the throat area of an adequately long horn, having 

a cut-off frequency of 30 c.p.s., to transmit 30 watts at a> 27rX200, the 

second harmonic of 400 c.p.s. being at least 30 db. below the level of the funda¬ 

mental. Inserting these data in (12), § 8, we get 

^0 > 0-148 X 30 X (200/30)®, (1) 

so ^0 > cm.® (2) 
Thus the throat radius 

ro > (177/7r)* = 7-52 cm., (3) 

or about 6 inches in diameter. 

Suppose the throat radius were 0-85 cm., the area then being about 1/80 

its value at (2). The level of the second harmonic would be much higher than 

— 30 db. Using (11), § 8, we have 

9^ = 1-48X 10-^30/2-265)(200/30)2, (4) 

= 0-087. (5) 

The ultimate level of the second harmonic relative to that of the fundamental is 

101ogio9;^ =: —10-6db. (6) 

instead of — 30 db. with the proper size of throat. The growth of the harmonic 

in the small tliroat horn is depicted in Fig. 89 a. 

10. Influence of flare in reducing second harmonic. In § 1 we remarked 

on this property of a loudspeaker horn, so we now illustrate the point numeri¬ 

cally. By taking the limiting values of (2), § 6, and (1), § 7, when )3 -> 0, and 

proceeding on the lines of § 8, we obtain 

l*3xlO”i3PixW/Ao, (1) 

t The ‘phase’ velocity is then infinite, but the ‘group* velocity is zero, so power is 
not transmitted down the horn. In practice, horns are of limited length, and the 
general conditions such that the ‘cut-off’ is not absolute. 
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Fig. 89. a. Showing increase in level of second harmonic with distance from throat 
of exponential loudspeaker horn, for finite pressure amplitude, b. As at a, but for 

uniform frictionless tube. 

provided x This formula gives the ratio of the power in the harmonic to 

that in the fundamental in a long imiform tube of cross-section A^. To compare 

the level of the harmonic in the exponential horn having a throat area 

Ay -= 2*206 cm.® (Tq 0*85 cm.) 

with that in a tube of like area, we take 101ogio{9;i/9i)- This gives the level of 

the harmonic in the horn below that in the tube, as illustrated in Fig. 89 b, 

600 cm, from the throat. The effect of flare is to reduce the second harmonic by 

9*6 db., i.e. it has approximately one-tenth the power of that in the tube. 
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Mathieu's Equation as a Stability Criterioyi 

1, Consider the equation 
y+ocy^-^y^ /cos (1)t 

a, i8,/ > 0, which (as shown in §4.190) has an exact subharmonic solution 

(4//^)lcosco^ provided a>® = cx4-3(/^/3/4)i. We wish to ascertain whether or 

not this solution is stable. 

Let y be increased or decreased by a very small amount hy ^ v, such that 

terms in may be neglected. Then with (y'\~v) for y in (1), we get 

y-^v+oc(y-\-v)-\-P{,y+vf = fcoB^wt, (2) 

so [y+ay+i82/’-/cos3toi] + {^«7a{3y+i>)}+ji+(o£4-3j32/*)v = 0. (3) 

By (1) the part in [ ] is zero, by hypothesis that in { } is negligible, so we arc left 

with the variational equation, linear in i?, namely, 

v-{-(a-\-SPy^)v — 0. (4) 

Now y ~ (4//)3)*cosca<, giving 3^y^ 6{f^^/4)^l-{-cos2oJt); also from above 

oi = Substituting these into (4), yields 

v + [{ai2 + 3(/2j8/4)^} + 6(/2j3/4)icos2ai^]y - 0. (5) 

If the solution of (5) is stable, so also is that of (1), since the procedure is 

equivalent to determining whether or not the physical system represented by 

(1) moves towards or away from its original configuration, after being disturbed. 

Writing ojt = {in—z) in (5), and dividing throughout by ce*, yields the stan¬ 

dard Mathieu equation 
v"-{-{a—2qcos2z)v — 0. (6) 

In (6) a = l + {3/w^)(PPl4)i, and q = (3/a>»)(/»i3/4)*, so 

a = 1+g. (7) 
From above we have also 

q = (3K)(/2j3/4)i - (l-a/oi^), (8) 

and since > a, q lies within the range (0,1). Now the characteristic curve 

Gi in Figs. 36, 38 is given by 

Oj = l+g-—JgH-. (9) 

so the segment of the line a = < q < 1, lies in a stable region. Hence 

the subharmonic solution is stable, 

2. As a second example we shall consider the case of the vibrating thread with 

non-linear control discussed in § 7.20 et seq., when the parameters are such that 

the D.E. in § 7.230 has an exact subharmonic solution. The D.E. is 

y"+{(x—2fy cos 2z)y+Py^ == 0, (l)t 

a,j8,y > 0, its solution being y = ±2{y/j3)*cos*, provided that a = (1 —2y), 

t The change in parameters from a, b to a, p, is to permit the use of o in (6) and 
other Mathieu equations, since it is standard. 
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With the foregoing restrictions on a, y, it is evident from Fig. 38 that when 

P = 0, the line a ~ (1 — 2y) lies in the stable region between aot and jSjt nf the 

corresponding oc-y stability diagram. •It corresponds to the segment of the 

line between a — 1, g ~ 0, and a — 0, g — 0-5in Fig. 38, so y lies in the range 

0 < y < 0*6. The variational equation, linear in v, is 

2ycos22:)?; = 0. (2) 

Writing — 6y(l+cos22), a = (1 —2y) in (2), loads to 

v^ + {(l-f 4y)-f 4ycos 2z}^; = 0, (3) 

and with Htt — z) for s, this takes the standard Mathieu form 

v"-{-{a-2qco8 2z)v = 0, (4) 

whore a — (1 -f 4y), q ~ 2y, giving a = l-f-2g, 0 < g < 1. If we imagine this 

line to be drawn in Fig. 38, it will Ho in the stable region between and 62* 

Hence the solution y ~ ±_ 2(ylP)^ cos z is stable. The reader may deal with the 

case P < Of for which the solution is y — dt^(ylp)^ sinz, provided a “ (1 -f 2y). 

3. By substituting y - C-\-A cos2z into the D.E. 

+ = feosiz, (1) 

> 0, and equating coefficients of like terms on both sides, we find that it 

is satisfied if A - ±(2f/P)K C - {(4-a)/2^} < 0, 16+ 4)3/, so a > 4. 

The variational equation is 
v^+((x+2py)v = 0. (2) 

Then (a + 2^y) ^ a+2p[{{4-cc)m±(20)icos2z] (3) 

-- 4±2(2/^)*cos 2z. (4) 

Ins6)rting this into (2) leads to the Mathieu equations 

t/'~{-{a±:2qcos2z)v = 0, (6) 

where a = 4, and q = (2fp)^. Now in its complete form Fig. 36, § 7.10, is sym¬ 

metrical about the a-axis, and it is seen that the line a — 4 passes through wide 

unstable, but narrow stable regions, for ig' “ di(2/j3)i. Accordingly the sub- 

harmonic solutions have these attributes in the corresponding ranges of q. 

4. By (6), § 4.10, the D.E. for a thermionic valve oscillator in the range 

0 < e < 1 is d^yjdz^+€{y^-l)dyjdz+y = 0. (1) 

The cii’cuit damping is positive or negative according as [y | > 1 or < 1. The 

variational equation, linear in v, is 

v"-\-€(y^-~l)v'-\-(l-h2€yy')v == 0. (2) 

In accordance with § 4.10 we take the approximate solution y ^ A sinz, and 

we shall determine A for stability. Substituting for y into (2) gives 

v^-f€[{(AV2)-l}-(A2/2)cos2zK-f(H-eA2sin2z)t) - 0. (3) 

Let V = e^u(z)f where 9 — — |€[{(AV2)—l}2:--(AV4)sin 2z] to remove the 

term in v'. Neglecting terms in c* and writing z = (a:—Jtt), we obtain the 

Mathieu equation 
u"-\-[1 — {€A^/2)cos2x~\u ~ 0. (4) 

t These correspond to the curves Op, in Fig. 38. 
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By [185, p. 78, (3)], (4) has an unstable solution of the form 

u(x) “ X bounded periodic function, period 2rr (/x > 0). (5) 

Thus X b.p.f. (6) 

so X b.p.f., (7) 

where G = a constant, and 

p,2; + 9 = /jls—j€[{(AV2)“‘l}2:—(A2/4)sin22:]. (8) 

For stability we are concerned with the non-periodic part of (8), namely, 

(9) 

In (4), q and by [185, (3) § 4.92J, since e is small, 

- {€AV8)-^0(6^). (10) 

Substituting from (10) into (9), yields 

0- («/8){4~A2--.0(c2)}. (11) 

Then the solution at (7) will be either stable or unstable, according as 0 < 0 or 
> 0. Thus for 

(i) stability 4 —O(e^) < 0, so A‘^ > 4 — 0(6^); (12) 

(ii) instability 4—^^--^(e^) > 0, so < 4~-0(€^); (13) 

(iii) neutrality — 4 —0(€^). (14) 

Hence the amplitude decreases or increases according as (i) or (ii) is satisfied, 
but it is stabilized for (iii). The form at (14) agrec^s with that of the coefficient 
of sin^ in (23), § 4.110, wfiere (6/coo)® 

In (4) if terms were included, the variational equation would be a Hill 
type [(3), § 7.413 and ref, 185, p. 127]. The index /x could be found by aid of 
[(1), (4), § 6.12 in 185]. For stability the real non-periodic part of (fiz + (p) < 0. 
This is left as an exercise for the reader, as also is consideration of the D.E. 
(1), § 5.12 which pertains to an electrically maintained tuning fork. 
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Acoustical power transmitted in loud¬ 
speaker hom» 185. 

Adiabatic curve, non-linearity due to, 1, 
75, 180. 

Aerod\TiaTnical forces, self-oscillation 
due to, 140. 

Amj)litude-frequen(*y nOation for non¬ 
linear mass-spring system, 57, 70. 
- tliermionic valve cinniit, 82. 
curves, 50, GO. 

— modulation in loudspeaker reproduc¬ 
tion, 78. 

Astronomy, diflferential equations in, 21. 

Bending length of fabric (tlie heavy 
elastica), 175, 178, 179. 

Bernoulli’s equation, 11. 

ont (Jacobian elliptic cosine), 26. 
Combination (sum and dih'erentte) tones, 

78. 
Coulomb damping, JOl. 
Creep in eccentrically loaded columns, 

171. 
Curved steel shells, impulse tests of, 155. 

DitTerences, method of, for solving non¬ 
linear D.E„ 166, 17:i. 

Differential equations, methods of solving 
non-linear, 8. 

Elastica, 34. 
heavy, 174. 

Electrically maintained timing fork, 90. 
Electrical motor-generator, self-oscilla¬ 

tions, 47. 
Elliptic cosine, 26, 
— graph of, 29. 
— function p{u), 39, 40. 
— integral, 26, 36-8. 
— sine, 26. 
Energy equality, principle of, 104. 
— equation, 27, 55, 61. 
Entrainment (silent zone in valve osiul- 

lator), 83 (caption to Fig. 25). 
Equivalent linear differential equation, 

103. 
Exponential loudspeaker horn, sound 

waves of finite amplitude in, 180. 

Finite differences, method for solving 
non-linear D.E., 166, 173. 

Flare in loudspeaker horn, influence of, 
186. 

Flexometer for testing fabrics, leather, 
175 (Fig. 82). 

Fourier series solution of non-linear D.E., 
29, 54. 

Frequency modulation in loudspeaker 
reproduction, 78. 

Froude’s pendulum, 138. 

Craphioal method of solving non-linear 
D.E., 145. 

Heart-loop for testing flimsy fabrics, 175. 
Hydro-electric installation, surges in, 95. 

Impulse tests of steel shells, 155. 
lialuctive tuning, 109. 
Interinodulation frequencies, 75. 
Isocline method of solving non-linear 

D.E., 145, 158, 1(;4. 
Iteration method of solving non-linear 

D.E., 48. 

Jacobian elliptic cosine, 26. 
-sine, 26. 
Jump phenomenon, 59, 70. 

Linear equivalent of non-linear D.E., 
106, 

Linearization of electrical circuits having 
non-linear elements, 107. 

J^oudspeaker horn, sound waves of finite 
amplitude in, 180. 

Maclaurin's theorem, used for solving 
non-linear D.fk, 167, 177. 

Ma.ss-spring system, non-linear, 17, 24, 
48, 52. 

Mathieu's equation, 113. 
-, as stability criterion, 188. 

— , experimental illustration of un¬ 
stable solution, 117, 118, 120. 
- , solution graphs, 115, 116. 

— , stability chart for, 114, 116. 
Melde’s exj)erimerit, 120. 

Negative resistance, 136. 
Non-linear coupling, oscillation due to, 

141. 
Non-linear differential equation, defini¬ 

tion of, 9. 
— - element in physical system, stabiliza¬ 

tion due to, 119, 121, 138, 139. 
— spring control, method of obtaining, 

25. 
Numerical solution of non-linear D.E., 

168. 

Parametric excitation of oscillations, 6, 
119, 120. 

Periodic coefficients, differential equa¬ 
tions having, 113. 
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Porttirbation method for solving non¬ 
linear D.E., 43, 50. 

Plano jet in lij^drodynarnies, 20. 
Prineii)le of energy et|uality, 104. 

Relaxation ostnllations, 6, l.'hS, 151, 153. 
—periodic time of, J54. 

-, waveform of, 152. 
Ric(uiti’s equation, 12. 

KSelf-oseillation of motor-generator com¬ 
bination, 47. 

— - - due to aerodynamical forces, 140. 
— .— solid friction, 135. 
Ship stabilization, 92, 95. 
Simple pendulum, 31. 
— — with oscillating sup]iort, 131. 
Simpson’s rule, apjihcation to numerical 

solution of non-linear D.E., 109, 
Slowly varying am])htude and ])hase, 

method for solving non-linear D.E., 87. 
snf (Jacobian elliptic sine), 26. 
Sound waves of Unite anqilitude, 1. 

— jii^ loudspeaker horn, 180. 

Stability tJiart for Mathieu’s o(]uation, 
114, il6. 

Stiffness, delinition of, 24. 
Subharmonic, 62 (order 3), 66 (higher 

* orders), 70 (order 2). 
—, mechanism exhibiting, 130-2. 

, stability of, 72 (order 2), 188 (order 3). 
Subharmonics and relaxation oscilla¬ 

tions, 84, 85 (to order 200). 
in loudspeaker diaj)hragms, 128. 

Surges in hydro-electric iiLstallation, 95. 
Synchronous electrical motor, stability 
‘of, 160. 

Therrnionk^ v^alve oscillator, 41, 111. 
I , silent, zone (entrainment), 83. 

, transconductance of, 41, 110. 

Unstable subharmouics, 72, 189. 
1 

i Valve, thermionic;, oscillatory circuit, 41. 
I 111. 
; — . forced oscillation in, 80. 
I - - --- . silent zone, 83. 
> Vibrating thread with periodi(^ally vari- 
I able tension, 120. 
I Vibrating thread with periodically vari- 
I able tension, stability of, 125. 
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