TABLE OF CONTENTS

CHAPTER	TITLE	PAGE NO.
	Acknowledgements	II
	Abstract	III
	Table of contents	V
	List of Figures	VIII
	List of Tables	XIV
	List of Symbols	XV
	Chapter 1 Introduction	
1.1	Background	1
1.2	Motivation	4
1.3	Aim of the Present Investigation	4
1.4	Organisation of the Thesis	4
	Chapter 2 Literature Review	
2.1	Introduction	6
2.2	Static Buckling	7
2.2.1	Plates	7
2.2.2	Cylindrical Panels	13
2.3	Parametric Instability	17
2.3.1	Plates	17
2.3.2	Cylindrical Panels	21
2.4	Dynamic Buckling	23
2.5	Failure Studies	27
2.6	Need for Further Research	28
2.7	Objectives of the Present Study Chapter 3 Theory and Finite Florent Formulation	29
3.1	Chapter 3 Theory and Finite Element Formulation Introduction	20
3.1	Finite element formulation	30 31
3.2.1	Shell element	31
3.2.1	Modelling composite layup	32
3.2.2	Governing Equations	33
3.3.1	Static buckling	35
3.3.2	Vibration	35
3.3.3	Post-buckling	35
3.3.4	Dynamic Buckling	36
3.3.5	Failure studies	36
3.3.5(a)	Azzi-Tsai-Hill theory	36
3.3.5(b)	Maximum Stress theory	37
3.3.5(c)	Tsai-Hill theory	37
3.3.5(d)	Tsai-Wu theory	37
3.4	Problem Dsescription	38
3.4.1	Laminated composite plate	38
3.4.2	Laminated composite cylindrical panel	41
3.4.3	Laminated composite cylindrical panel with cutout	43
3.4.4	Laminated composite stiffened cylindrical panel	45
3.5	Dynamic buckling criterion	46
3.6	Summary	47

	Chapter 4 Dynamic buckling of laminated compostie Plate	
4.1	Introduction	48
4.2	Convergence and Validation studies	48
4.2.1	Convergence and Validation of static buckling load	49
4.2.2	Validation of shock spectrum	52
4.2.3	Validation of dynamic buckling load of a plate	53
4.2.4	Validation of dynamic buckling load of an orthotorpic plate	54
4.3	Dynamic buckling studies	55
4.3.1	Effect of loading duration	61
4.3.2	Effect of loading function	62
4.3.3	Effect of imperfection	63
4.3.4	Effect of rectangular pulse load on a rectangular plate	65
4.3.5	Effect of sinusoidal pulse load on a rectangular plate	67
4.4	Summary	68
	Chapter 5 Dynamic buckling behavior of laminated composite cylindrical panel	
5.1	Introduction	69
5.2	Convergence and Validation studies	70
5.2.1	Convergence and Validation of static buckling load	70
5.2.2	Convergence of dynamic load	71
5.3	Dynamic buckling studies	72
5.3.1	Effect of loading duration	78
5.3.2	Failure of Cylindrical panel	79
5.3.3	Effect of aspect ratio	81
5.3.4	Effect of curvature	83
5.3.5	Effect fo loading function	85
5.3.6	Effect of boundary conditions	90
5.4	Shock Spectrum of a Cylindrical Panel	92
5.5	Summary	94
	Chapter 6 Dynamic buckling of laminated composite cylindrical panel with	
	cutout	
6.1	Introduction	95
6.2	Convergence and Validation studies	96
6.2.1	Convergence and validation of static buckling load of a plate with	96
**-*-	cutout	
6.2.2	Validation of static buckling load for a composite plate with cutout	97
6.2.3	Validation of natural frequency of a cylindrical panel with cutout	98
6.3	Dynamic buckling studies	100
6.3.1	Effect of loading duration	101
6.3.2	Failure of the cylindrical panel with cutout	103
6.3.3	Effect of loading function	105
6.3.4	Effect of curvature	106
6.3.5	Effect of size of the cutout	108
6.3.6	Effect of the shape of the cutout	112
6.3.7	Deformation of cylindrical panel with a cutout	117
6.4		125
0.4	Summary Chapter 7 Dynamic buckling of laminated composite stiffened cylindrical	123
	panel	
7.1	Introduction	126
7.2	Convergence and Validation studies	127
	Convergence and Validation studies of static buckling load of	
7.2.1	stiffened plate	127
7.2.2	Validation of static buckling load of a stiffened cylindrical panel	129

		Table of contents
7.2.3	Validation of natural frequency of a stiffened plate	130
7.3	Dynamic buckling studies	132
7.3.1	Effect of loading duration	133
7.3.2	Failure of stiffened cylindrical panel	135
7.3.3	Effect of loading function	137
7.3.4	Effect of curvature	139
7.3.5	Effect of aspect ratio of the stiffener	141
7.3.6	Effect of stacking sequence	143
7.3.7	Deformation of stiffened cylindrical panel	149
7.4	Summary	157
	Chapter 8 Conclusions	
8.1	Introduction	158
8.2	General conclusions	159
8.3	Laminated composite plates	160
8.4	Laminated composite cylidrical panels	162
8.5	Laminated composite cylidrical panels with cutouts	164
8.6	Laminated composite stiffened cylidrical panels	165
	Strengths of the investigation	167
	Limitations of the investigation	167
	Impact of the present investigation on the research community	169
	Future scope of the investigation	169
	List of Publications	170
	References	173
	Brief Biography of the Candidate	200
	Brief Biography of the Supervisor	201

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE NO.
Fig. 1.1	Load vs Time plot for Parametric Instability	2
Fig. 1.2	Load vs Time for Dynamic Buckling Analysis	2
Fig. 1.3	Change in deformation due to the action of rectangular pulse load on a typical	
FI 2.1	cylindrical panel	2
Fig. 3.1	Shell elements (a) S4R element (b) S3 element	32
Fig. 3.2	Stacking scheme in (a) Laminated composite plate (b) Parallel stacking scheme in a stiffened cylindrical panel (c) Perpendicular stacking scheme in a stiffened cylindrical	22
Fig. 3.3	panel Laminated composite plate (a) Geometry (b) Simply supported boundary conditions	33
rig. 3.3	(c) Geometry of rectangular plate in Abaqus (d) Model analyzed in Abaqus	40
Fig. 3.4	Plate with imperfection in the form of first mode shape	40
Fig. 3.5	Pulse loading functions (a) Rectangular (b) Sinusoidal (c) Triangular	41
Fig. 3.6	Laminated composite cylindrical panel (a) Geometry (b) Geometry of the curve	
8	extruded in Abaqus (c) Model analyzed in Abaqus	42
Fig. 3.7	Boundary conditions for the cylindrical panel (a) Simply supported boundary conditions (BC1). (b) Two edges simply supported and two clamped (BC2). (c) Three edges simply supported, and one edge clamped (BC3). (d) Three edges simply	43
Fig. 3.8	supported, and one edge free (BC4). Laminated composite cylindrical panel with a general shaped cutout (a) Geometry (b)	43
	Simply supported boundary conditions (c) Geometry of the panel with cutout drawn in	11
Fig. 3.9	Abaqus (d) model analyzed in Abaqus Plan of the cutout shape (a) Circular (b) Square (c) Square-Rotated	44 45
Fig. 3.10	Laminated composite stiffened cylindrical panel (a) Geometry (b) Simply supported	43
11g. 5.10	boundary conditions (c) Geometry of the panel with stiffener drawn in Abaqus (d)	
	model analyzed in Abaqus	46
Fig. 4.1	Pre-buckling boundary conditions for a composite plate	50
Fig. 4.2	Convergence study of a plate with $b/h=100$ (a) $b/a=2$ and stacking scheme ($\theta^{\circ}/-\theta^{\circ}/\theta^{\circ}$); $\theta=0^{\circ}$ (b) $b/a=2$ and stacking scheme ($\theta^{\circ}/-\theta^{\circ}/\theta^{\circ}$); $\theta=90^{\circ}$ (c) $b/a=1$ and stacking scheme ($\theta^{\circ}/-\theta^{\circ}/\theta^{$	50
Fig. 4.3	Plot for a plate with $b/a=1$, $a=0.5$ m, $h=0.005a$ and imperfection= $0.2h$ (a) transverse	
C	displacement vs in-plane load curve (b) Validation study of shock spectrum of the plate	
	subjected to dynamic loading (N _{dyn} =3×N _{st})	53
Fig. 4.4	Validation study of dynamic buckling behaviour of a plate with $b/a=1$, $b/h=200$,	
	imperfection=0.05h, subjected to sinusoidal pulse load	54
Fig. 4.5	Validation study of dynamic buckling behaviour of an orthotropic plate with $b/a=1$,	
E:- 4.6	b/h=200, imperfection=0.05h, subjected to rectangular pulse load	55
Fig. 4.6	Non-dimensional Time vs Non-dimentional Displacement for a plate with $b/a=1$, $b/b=100$ imperfection $=0.2b$ and stocking accurage $(0.000,000,000)$ when subjected to	
	b/h=100, imperfection=0.2h and stacking sequence (0°/90°/90°/0°), when subjected to rectangular pulse load.	58
Fig. 4.7	Non-dimensional Time vs Failure index (Tsai-Wu criterion) for a plate with $b/a=1$,	36
11g. 4.7	$b/h=100$, imperfection=0.2h and stacking sequence $(0^{\circ}/90^{\circ}/90^{\circ}/0^{\circ})$, when subjected to	58
Fig. 4.8	rectangular pulse load. Non-dimensional Load vs Non-dimensional Displacement along with the of	36
11g. 4.0	deformation for a plate with $b/a=1$, $b/h=100$, imperfection=0.2h and stacking sequence $(0^{\circ}/90^{\circ}/90^{\circ}/0^{\circ})$, when subjected to rectangular pulse load. Deformation scale	
	Factor=10.	59
Fig. 4.9	Non-dimensional Load vs Failure Index (Tsai-Wu criterion) along with the of deformation for a plate with $b/a=1$, $b/h=100$, imperfection=0.2 h and stacking sequence	
	(0°/90°/90°/0°), when subjected to rectangular pulse load. Deformation scale Factor=10	60
	Lacion To.	OU

Fig. 4.10	Non-dimensional Load vs non-dimensional Displacement for composite plate with $b/a=1$, $b/h=100$ imperfection = 20% subjected to rectangular pulse load.	61
Fig. 4.11	Plot for laminated composite plate with b/a=1 and imperfection =10% for various loading functions (a) Non-dimensional Load vs Non-dimensional Displacement (b)	62
Fig. 4.12	Non-dimensional Load vs Failure Index (Tsai-Wu criterion) Plot for laminated composite plate with $b/a=1$ and subjected to rectangular pulse load for various imperfections (a) Non-dimensional Load vs non-dimensional	62
Fig. 4.13	Displacement (b) Non-dimensional Load vs Failure Index (Tsai-Wu criterion) Plot for laminated composite plate with <i>b/a</i> =1 and subjected to sinusoidal pulse load for various imperfections (a) Non-dimensional Load vs non-dimensional	63
Fig. 4.14	Displacement (b) Non-dimensional Load vs Failure Index (Tsai-Wu criterion) Plot for laminated composite plate with $b/a=1$ and subjected to triangular pulse load	64
Fig. 4.15	for various imperfections (a) Non-dimensional Load vs non-dimensional Displacement (b) Non-dimensional Load vs Failure Index (Tsai-Wu criterion) Non-dimensional Load vs non-dimensional Displacement for laminated composite	64
	plate with $b/a = 2 b/h=100$ and for various imperfections subjected to rectangular pulse load (a) stacking sequence $(\theta/-\theta/\theta)$, $\theta=0^{\circ}$ (b) tacking sequence $(\theta/-\theta/\theta)$, $\theta=30^{\circ}$ (c) tacking sequence $(\theta/-\theta/\theta)$, $\theta=45^{\circ}$ (d) tacking sequence $(\theta/-\theta/\theta)$, $\theta=60^{\circ}$ (e) tacking	
	sequence $(\theta / - \theta / \theta)$, $\theta = 90^{\circ}$	66
Fig. 4.16	Deformed shape of the laminated composite plate with $b/a=2$, $b/h=100$, stacking sequence= $(\theta/-\theta/\theta)$ and subjected to rectangular loading function. imperfection =5%. Deformation scale factor = 10. (a) Imperfection =5% and $\theta=0^{\circ}$ (b) Imperfection =10%	
	and θ =30° (c) Imperfection =10% and θ =45° (d) Imperfection =20% and θ =60° (e)	
Fig. 4.17	Imperfection =5% and θ=90° Non-dimensional Load vs non-dimensional Displacement for laminated composite	66
rig. 4.17	plate with $b/a = 2 b/h = 100$ and for various imperfections subjected to sinusoidal pulse	
	load (a) stacking sequence $(\theta/-\theta/\theta)$, $\theta=0^{\circ}$ (b) tacking sequence $(\theta/-\theta/\theta)$, $\theta=30^{\circ}$ (c)	
	tacking sequence $(\theta/-\theta/\theta)$, $\theta=45^{\circ}$ (d) tacking sequence $(\theta/-\theta/\theta)$, $\theta=60^{\circ}$ (e) tacking	
	sequence $(\theta / - \theta / \theta)$, $\theta = 90^{\circ}$	67
Fig. 5.1	Pre-buckling boundary conditions for a composite cylindrical panel	71
Fig. 5.2	Convergence study of a laminated composite cylindrical panel (a) Non-dimensional	71
Fig. 5.3	static buckling load (b) Dynamic load Non-Dimensional Time vs non-dimensional Displacement for a panel with $b/a=1$,	71
Fig. 3.3	a/h=100, R/a =5 and stacking sequence (0°/90°/90°/0°) when subjected to various	
	magnitudes of rectangular pulse load.	74
Fig. 5.4	Non-Dimensional Time vs Failure Index (Tsai-Wu criterion) for a panel with $b/a=1$,	
Ü	$a/h = 100$, $R/a = 5$ and stacking sequence $(0^{\circ}/90^{\circ}/90^{\circ}/0^{\circ})$ when subjected to various	
	magnitudes of rectangular pulse load.	75
Fig. 5.5	Non-dimensional load vs non-dimensional Displacement for the panel with $b/a=1$, $a/h=100$, $R/a=5$ and stacking sequence $(0^{\circ}/90^{\circ}/90^{\circ})$ when subjected to rectangular pulse load along with the deformed shape of the panel at various magnitude of loads.	
	Scale Factor=7.	76
Fig. 5.6	Non-dimensional Load vs Failure Index (Tsai-Wu criterion) for the panel with $b/a=1$,	70
8	$a/h=100$, $R/a=5$ and stacking sequence $(0^{\circ}/90^{\circ}/90^{\circ}/0^{\circ})$ when subjected to rectangular	
	pulse load along with the deformed shape of the panel at various magnitude of loads.	
	Scale Factor=7.	77
Fig. 5.7	Non-dimensional Load vs non-dimensional Displacement for a panel with $b/a=1$,	
	$R/a=5$, $a/h=100$, stacking sequence $(0^{\circ}/90^{\circ}/90^{\circ}/0^{\circ})$ for various loading durations (a) subjected to sinusoidal pulse load (b) subjected to rectangular pulse load	78
Fig. 5.8	Plot for laminated composite cylindrical panel with $b/a=1$, $R/a=5$, $a/h=100$, stacking	70
115. 3.0	sequence (45°/–45°/–45°) subjected to rectangular pulse load. (a) Non-	
	dimensional Load vs non-dimensional Displacement (b) Non-dimensional Load vs	
	Failure index	80
Fig. 5.9	Location of node at which the variation of stress and strain with respect to time is	
T	observed in Fig. 5.10(a) and Fig. 5.10(b) respectively.	80
Fig. 5.10	Plot for a laminated composite cylindrical panel with $b/a=1$, $R/a=5$, $a/h=100$, stacking sequence $(.45^{\circ})-45^{\circ}/-45^{\circ}/$ subjected to rectangular pulse load corresponding to	80
	Securence (43)/-43/-43//43/ Sliplected to rectangular bulled load corresponding to	AU

	point A in Fig. 5.8(b) (a) True Stress (σ_{XX}) vs non-dimensional Time (b) Logarithmic	
TH. # 44	Strain (ε_{XX}) vs non-dimensional Time	
Fig. 5.11	Non-dimensional Load vs non-dimensional Displacement of a cylindrical panel with	
	$R/a=5$ and $a/h=100$ subjected to rectangular pulse load for various aspect ratios. (a) stacking sequence is $(45^{\circ}/-45^{\circ}/-45^{\circ}/45^{\circ})$ (b) stacking sequence is $(0^{\circ}/90^{\circ}/90^{\circ}/90^{\circ})$	82
Fig. 5.12	Non-dimensional Load vs non-dimensional Displacement of a cylindrical panel with	62
Fig. 3.12	R/a=5 and $a/h=100$ subjected to sinusoidal pulse load for various aspect ratios. (a)	
	stacking sequence is $(45^{\circ}/-45^{\circ}/-45^{\circ})$ (b) stacking sequence is $(0^{\circ}/90^{\circ}/90^{\circ})$	82
Fig. 5.13	Plot for a laminated composite cylindrical panel with $b/a=1$, $a/h=100$, stacking	02
g	sequence $(45^{\circ}/-45^{\circ}/45^{\circ})$ and $(0^{\circ}/90^{\circ}/90^{\circ})$ subjected to rectangular pulse load	
	for various R/a ratios (a) Non-dimensional Load vs non-dimensional Displacement (b)	
	Non-dimensional Load vs Failure index (Tsai-Wu criterion)	84
Fig. 5.14	Plot for a laminated composite cylindrical panel with $b/a=1$, $a/h=100$, stacking	
	sequence (45°/-45°/-45°/45°) and (0°/90°/90°/0°) subjected to sinusoidal pulse load	
	for various R/a ratios (a) Non-dimensional Load vs non-dimensional Displacement (b)	
	Non-dimensional Load vs Failure index (Tsai-Wu criterion)	84
Fig. 5.15	Plot for a laminated composite cylindrical panel with R/a=5, a/h=100, stacking	
	sequence (45°/-45°/-45°/45°) subjected to rectangular and sinusoidal pulse load for	
	various b/a ratios. (a) Non-dimensional Load vs non-dimensional Displacement (b)	0.6
E: 5.16	Non-dimensional Load vs Failure Index (Tsai-Wu criterion)	86
Fig. 5.16	Plot for a laminated composite cylindrical panel with $R/a=5$, $a/h=100$, stacking sequence $(0^{\circ}/90^{\circ}/90^{\circ})$ subjected to rectangular and sinusoidal pulse load for various	
	b/a ratios. (a) Non-dimensional Load vs non-dimensional Displacement (b) Non-	
	dimensional Load vs Failure Index (Tsai-Wu criterion)	87
Fig. 5.17	Deformed shape of the laminated composite cylindrical panel with $b/a=1$, $R/a=10$,	07
g	a/h=100, subjected to rectangular pulse load. (a) maximum displacement at the center	
	corresponding to loading at which dynamic buckling occurs for a cross-ply laminate	
	(b) maximum failure index (Tsai-Wu criterion) corresponding to loading at which first	
	ply failure occurs for a cross-ply laminate (c) maximum displacement at the center	
	corresponding to loading at which dynamic buckling occurs for an angle-ply laminate	
	(d) maximum failure index (Tsai-Wu criterion) at the corners corresponding to loading	
	at which first ply failure occurs for an angle-ply laminate.	89
Fig. 5.18	Deformed shape of the laminated composite cylindrical panel with $b/a=1$, $R/a=10$,	
	a/h=100, subjected to sinusoidal pulse load. (a) maximum displacement at the center	
	corresponding to loading at which dynamic buckling occurs for a cross-ply laminate	
	(b) maximum failure index (Tsai-Wu criterion) near the edges corresponding to loading at which first ply failure occurs for a cross-ply laminate (c) maximum	
	displacement at the center corresponding to loading at which dynamic buckling occurs	
	for an angle-ply laminate (d) maximum failure index (Tsai-Wu criterion) at the corners	
	corresponding to loading at which first ply failure occurs for an angle-ply laminate	89
Fig. 5.19	Plot for of the panel with $b/a=1$, $R/a=5$, $a/h=100$, subjected to rectangular pulse load	
	for various stacking sequence and boundary conditions. (a)Non-dimensional Load vs	
	non-dimensional Displacement (b) Non-dimensional Load vs Failure index (Tsai-Wu	
	criterion)	91
Fig. 5.20	Plot for of the panel with $b/a=1$, $R/a=5$, $a/h=100$, subjected to sinusoidal pulse load for	
	various stacking sequence and boundary conditions. (a)Non-dimensional Load vs non-	
	dimensional Displacement (b) Non-dimensional Load vs Failure index (Tsai-Wu	0.1
E: ~ 5 21	criterion) Leading functions considered for sheek greatness (a) Europeantial mules lead (b)	91
Fig. 5.21	Loading functions considered for shock spectrum (a) Exponential pulse load (b) Triangular pulse load (c) Sinusoidal pulse load (d) Rectangular pulse load	93
Fig. 5.22	Plot for laminated composite cylindrical panel with $R/a=10$ and stacking sequence	93
Fig. 3.22	(0°/90°/90°) (a) transverse displacement vs in-plane load (b) Shock Spectrum of the	
	subjected to various pulse loads	93
Fig. 6.1	Plate with a square cutout for validation study (a) Geometry (b) Pre-buckling boundary	,,
e	conditions (c) Buckling boundary conditions	96
Fig. 6.2	Plot of static buckling load vs Mesh size of a plate with cutout	97
Fig. 6.3	Cylindrical panel with central cutout for the validation study (a) Geometry (b)	
	boundary conditions	99

Fig. 6.4	Non-dimensional Load vs non-dimensional Displacement for a panel with $R/a=10$, stacking sequence $(0^{\circ}/90^{\circ}/90^{\circ})$ for various durations of rectangular pulse loading (a) 5% circular cutout area at the centre (b) 20% circular cutout area at the centre	102
Fig. 6.5	Plot for a panel with $R/a=10$, stacking sequence $(0^{\circ}/90^{\circ}/90^{\circ})$ and 10° circular cutout area subjected to rectangular pulse load (a) Non-dimensional Load vs non-dimensional Dimensional Dimensional Dimension	104
Fig. 6.6	dimensional Displacement (b) Non-dimensional Load vs Failure index Deformed shape of the panel with R/a =10, stacking sequence (0°/90°/90°/0°) and 10% circular cutout area. Scale factor=10. (a) $N_{dyn}/N_{st} = 0.6$ showing the maximum transverse displacement (b) $N_{dyn}/N_{st} = 0.6$ showing the Tsai-Wu Failure Criterion (c) $N_{dyn}/N_{st} = 0.8$ showing the maximum transverse displacement (d) $N_{dyn}/N_{st} = 0.8$ showing the Tsai-Wu Failure Criterion.	104
Fig. 6.7	Plot for a panel with $R/a=10$, $b/a=1$, $b/h=100$ and stacking sequence $(0^{\circ}/90^{\circ}/90^{\circ}/0^{\circ})$ for various loading functions and central cutout areas (a) Non-dimensional Load vs non-dimensional Displacement (b) Non-dimensional Load vs Failure index (Tsai-Wu criterion)	104
Fig. 6.8	Plot for a panel with $b/a=1$, $b/h=100$, stacking sequence $(0^{\circ}/90^{\circ}/90^{\circ}/0^{\circ})$, subjected to rectangular pulse load and 5% circular cutout area for various radius of curvatures (a) Non-dimensional Load vs non-dimensional Displacement (b) Non-dimensional Load vs Failure Index (Tsai-Wu criterion)	107
Fig. 6.9	Plot for a panel with $b/a=1$, $b/h=100$, stacking sequence $(0^{\circ}/90^{\circ}/90^{\circ}/0^{\circ})$, subjected to rectangular pulse load and 10% circular cutout area for various radius of curvatures. (a) Non-dimensional Load vs non-dimensional Displacement (b) Non-dimensional	
Fig. 6.10	Load vs Failure Index (Tsai-Wu criterion) Plot for a cylindrical panel with $b/a=1$, $b/h=100$ and stacking sequence $(0^{\circ}/90^{\circ}/90^{\circ}/0^{\circ})$ for various cutout areas subjected to rectangular pulse load (a) Non-dimensional Load vs non-dimensional Displacement for panel with $R/a=10$, (b) Non-dimensional Load vs Failure Index (Tsai-Wu criterion) for panel with $R/a=10$ (c) Non-dimensional Load	107
Fig. 6.11	vs non-dimensional Displacement for panel with $R/a = 5$, (d) for panel with $R/a = 5$ Plot for a cylindrical panel with $b/a = 1$, $b/h = 100$ and stacking sequence (45°/-45°/-45°/45°) for various cutout areas subjected to rectangular pulse load (a) Non-dimensional Load vs non-dimensional Displacement for panel with $R/a = 10$, (b) Non-dimensional Load vs Failure Index (Tsai-Wu criterion) for panel with $R/a = 10$ (c) Non-dimensional Load vs non-dimensional Displacement for panel with $R/a = 5$, (d) for	110
Fig. 6.12	panel with $R/a = 5$ Plot for a panel with $R/a = 10$, $b/a = 1$, $b/h = 100$, stacking sequence $(0^{\circ}/90^{\circ}/90^{\circ}/0^{\circ})$ and subjected to rectangular pulse load for various cutout shapes. (a) Non-dimensional Load vs non-dimensional Displacement for panel with 5% cutout area (b) Non-dimensional Load vs non-dimensional Displacement for panel with 10% cutout area (c) Non-dimensional Load vs non-dimensional Displacement for panel with 20% cutout area (d) Non-dimensional Load vs Failure Index for panel with 5% cutout area	111
Fig. 6.13	(e) Non-dimensional Load vs Failure Index for panel with 10% cutout area (f) Non-dimensional Load vs Failure Index for panel with 20% cutout area Plot for a panel with $R/a = 10$, $b/a = 1$, $b/h = 100$, stacking sequence $(45^{\circ}/-45^{\circ}/-45^{\circ}/45^{\circ})$ and subjected to rectangular pulse load for various cutout shapes. (a) Non-dimensional Load vs non-dimensional Displacement for panel with 5% cutout area (b) Non-dimensional Load vs non-dimensional Displacement for panel with 10% cutout area (c) Non-dimensional Load vs non-dimensional Displacement for panel with 20% cutout area (d) Non-dimensional Load vs Failure Index for panel with 5% cutout area (e) Non-dimensional Load vs Failure Index for panel with 10% cutout area (f) Non-	113
Fig. 6.14	dimensional Load vs Failure Index for panel with 20% cutout area (1) Non-dimensional Load vs Failure Index for panel with 20% cutout area Deformed shape of the panel with R/a=10, stacking sequence (0°/90°/90°/0°), 10% cutout area and subjected to rectangular pulse load (a) $N_{dyn}/N_{st} = 0.6$ showing the maximum transverse displacement (b) $N_{dyn}/N_{st} = 0.6$ showing the maximum transverse displacement (c) $N_{dyn}/N_{st} = 0.9$ showing the failure index for Tsai-Wu criterion (d)	114
Fig. 6.15	$N_{\rm dyn}/N_{\rm st}=0.7$ showing the failure index for Tsai-Wu criterion Deformed shape of the panel with $R/a=10$, stacking sequence (45°/-45°/-45°), 10% cutout area and subjected to rectangular pulse load (a) $N_{\rm dyn}/N_{\rm st}=0.4$ showing the	115
	maximum transverse displacement (b) $N_{dyn}/N_{st} = 0.45$ showing the maximum	115

Fig. 6.16	transverse displacement (c) $N_{dyn}/N_{st} = 0.45$ showing the failure index for Tsai-Wu criterion (d) $N_{dyn}/N_{st} = 0.55$ showing the failure index for Tsai-Wu criterion Non-dimensional Load vs Displacement for a panel with $b/a=1$, $b/h=100$, $R/a=10$, stacking sequence $(0^{\circ}/90^{\circ}/90^{\circ}/0^{\circ})$ and $10^{\circ}/6$ Circular cutout area when subjected to	
	rectangular pulse load along with deformed shape of the panel at various magnitude of	110
Fig. 6.17	loads. Scale factor=10. Non-dimensional Load vs Failure Index (Tsai-Wu criterion) for a panel with $b/a=1$, $b/h=100$, $R/a=10$, stacking sequence $(0^{\circ}/90^{\circ}/90^{\circ})$ and 10% Circular cutout area	119
	when subjected to rectangular pulse load along with deformed shape of the panel at various magnitude of loads. Scale factor=10.	120
Fig. 6.18	Non-dimensional Load vs Displacement for a panel with $b/a=1$, $b/h=100$, $R/a=10$, stacking sequence $(0^{\circ}/90^{\circ}/90^{\circ}/0^{\circ})$ and 10° Square cutout area when subjected to rectangular pulse load along with deformed shape of the panel at various magnitude of loads. Scale factor=10.	121
Fig. 6.19	Non-dimensional Load vs Failure Index (Tsai-Wu criterion) for a panel with $b/a=1$, $b/h=100$, $R/a=10$, stacking sequence $(0^{\circ}/90^{\circ}/90^{\circ}/0^{\circ})$ and 10° Square cutout area when	121
Fig. 6.20	subjected to rectangular pulse load along with deformed shape of the panel at various magnitude of loads. Scale factor=10. Non-dimensional Load vs Displacement for a panel with $b/a=1$, $b/h=100$, $R/a=10$,	122
	stacking sequence (0°/90°/90°/0°) and 10% Square-Rotated cutout area when subjected to rectangular pulse load along with deformed shape of the panel at various magnitude of loads. Scale factor=10.	123
Fig. 6.21	Non-dimensional Load vs Failure Index (Tsai-Wu criterion) for a panel with $b/a=1$, $b/h=100$, $R/a=10$, stacking sequence $(0^{\circ}/90^{\circ}/90^{\circ}/0^{\circ})$ and 10% Square-Rotated cutout area when subjected to rectangular pulse load along with deformed shape of the panel	
Fig. 7.1	at various magnitude of loads. Scale factor=10. Stiffened plate with a stiffener along the direction of loading (a) Geometry (b) Pre buckling boundary conditions (c) Buckling boundary conditions	124 128
Fig. 7.2	Stiffened plate with a stiffener in the perpendicular direction of loading (a) Geometry (b) Pre buckling boundary conditions (c) Buckling boundary conditions	128
Fig. 7.3	Non-dimensional static buckling load for various mesh sizes for a stiffened plate (a) Stiffener in the perpendicular direction of loading (b) Stiffener along the direction of loading	129
Fig. 7.4	Stiffened cylindrical panel for the validation study (a) Geometry (b) Pre-buckling boundary conditions (c) Buckling boundary conditions	130
Fig. 7.5	Non-dimensional Load vs Non-dimensional Displacement for panel with $R/a=10$, $d_s/b_s=1$ and subjected to rectangular pulse load for various durations of loading (a) Stacking sequence $(0^\circ/90^\circ/90^\circ/0^\circ)$ (b) Stacking sequence $(45^\circ/-45^\circ/-45^\circ)$	134
Fig. 7.6	Plot for a panel with $R/a=10$, $d_s/b_s=1$ and stacking sequence $(0^\circ/90^\circ/90^\circ/90^\circ)$ subjected to rectangular pulse load (a) Non-dimensional Load vs non-dimensional Displacement (b) Non-dimensional Load vs Failure Index	136
Fig. 7.7	Deformed shape of the stiffened cylindrical panel with $R/a=10$, $d_{s'}/b_{s}=1$ and stacking sequence $(0^{\circ}/90^{\circ}/90^{\circ}/0^{\circ})$ subjected to rectangular pulse load. Scale Factor = 3 (a) For maximum transverse displacement at $N_{dyn}/N_{st}=0.7$ (b) For maximum failure index (Tsai-Wu criterion) at $N_{dyn}/N_{st}=0.7$. (c) For maximum transverse displacement at $N_{dyn}/N_{st}=1$ (d) For maximum failure index (Tsai-Wu criterion) at $N_{dyn}/N_{st}=1$	136
Fig. 7.8	Plot for a stiffened cylindrical panel with d_s/b_s =1 and stacking sequence $(0^\circ/90^\circ/90^\circ)$ for both pulse loading functions. (a) Non-dimensional Load vs non-dimensional Displacement for panel with R/a =20 (b) Non-dimensional Load vs non-dimensional Displacement for panel with R/a =10 (c) Non-dimensional Load vs Failure Index (Tsai-Wu criterion) for panel with R/a =20 (d) Non-dimensional Load vs Failure	130
Fig. 7.9	Index (Tsai-Wu criterion) for panel with $R/a=10$ Plot for the stiffened panel with $d_s/b_s=1$ and subjected to rectangular pulse load for various radius of curvatures (a) Non-dimensional Load vs non-dimensional Displacement for panel with stacking sequence $(0^\circ/90^\circ/90^\circ/0^\circ)$ (b) Non-dimensional Load vs non-dimensional Displacement for panel with stacking sequence $(45^\circ/-45^\circ/45^\circ)$ (c) Non-dimensional Load vs Failure Index (Tsai-Wu criterion) for panel with stacking sequence $(0^\circ/90^\circ/90^\circ/0^\circ)$ (d) Non-dimensional Load vs Failure Index (Tsai-	138
	Wu criterion) for panel with stacking sequence(45°/-45°/-45°/45°)	141

Fig. 7.10	Non-dimensional Load vs non-dimensional Displacement for the stiffened panel with $R/a = 10$, $b_s/h=2$ and stacking sequence $(0^{\circ}/90^{\circ}/90^{\circ})$ subjected to rectangular pulse load for various expect ratios of stiffeness.	1.42
Fig. 7.11	load for various aspect ratios of stiffeners Non-dimensional Load vs Failure Index (Tsai-Wu criterion) for the stiffened panel with $R/a=10$, $b_0/h=2$, and stacking sequence $(0^\circ/90^\circ/90^\circ)$ subjected to rectangular	143
Fig. 7.12	pulse load for various aspect ratios of stiffeners. Plot for the stiffened panel with stacking sequence $(0^{\circ}/90^{\circ}/90^{\circ}/0^{\circ})$ for various stiffener aspect ratios. (a) Non-dimensional Load vs non-dimensional Displacement for panel with R/a =20 (b) Non-dimensional Load vs non-dimensional Displacement for panel with R/a =10 (c) Non-dimensional Load vs non-dimensional Displacement for panel with R/a =5 (d) Non-dimensional Load vs Failure Index (Tsai-Wu criterion) for panel with R/a =20 (e) Non-dimensional Load vs Failure Index (Tsai-Wu criterion) for panel with R/a =10 (f) Non-dimensional Load vs Failure Index (Tsai-Wu criterion) for panel	143
Fig. 7.13	with $R/a=5$ Plot for the stiffened panel with stacking sequence $(45^{\circ}/-45^{\circ}/-45^{\circ}/45^{\circ})$ for various stiffener aspect ratios. (a) Non-dimensional Load vs non-dimensional Displacement for panel with $R/a=20$ (b) Non-dimensional Load vs non-dimensional Displacement for panel with $R/a=10$ (c) Non-dimensional Load vs non-dimensional Displacement for panel with $R/a=5$ (d) Non-dimensional Load vs Failure Index (Tsai-Wu criterion) for panel with $R/a=20$ (e) Non-dimensional Load vs Failure Index (Tsai-Wu criterion) for panel with $R/a=10$ (f) Non-dimensional Load vs Failure Index (Tsai-Wu criterion) for panel with $R/a=5$	145 146
Fig. 7.14	Deformed shape of the stiffened panel for maximum transverse displacement having $R/a=10$ and stacking sequence (45°/-45°/-45°) (a) Panel with $d_s/b_s=1$ at $N_{dyn}/N_{st}=0.4$ (b) Panel with $d_s/b_s=4$ at $N_{dyn}/N_{st}=0.325$ (c) Panel with $d_s/b_s=8$ at $N_{dyn}/N_{st}=0.5$	149
Fig. 7.15	Deformed shape of the stiffened panel for Tsai-Wu failure criterion having $R/a=10$ and stacking sequence (45°/-45°/-45°) (a) Panel with $d_s/b_s=1$ at $N_{dyn}/N_{st}=0.45$ (b) Panel with $d_s/b_s=4$ at $N_{dyn}/N_{st}=0.275$ (c) Panel with $d_s/b_s=8$ at $N_{dyn}/N_{st}=0.3$	149
Fig. 7.16	Non-dimensional Load vs non-dimensional Displacement for the stiffened panel with $R/a=10$, $d_s/b_s=1$ and stacking sequence $(0^\circ/90^\circ/90^\circ/0^\circ)$ subjected to rectangular pulse load along with deformed shape of the stiffened panel at various magnitude of loads. Scale Factor=5.	151
Fig. 7.17	Non-dimensional Load vs Failure Index (Tsai-Wu criterion) for the stiffened panel with $R/a=10$, $d_s/b_s=1$ and stacking sequence $(0^\circ/90^\circ/90^\circ/0^\circ)$ subjected to rectangular pulse load along with deformed shape of the stiffened panel at various magnitude of loads. Scale Factor=5.	152
Fig. 7.18	Non-dimensional Load vs non-dimensional Displacement for the stiffened panel with $R/a=10$, $d_s/b_s=4$ and stacking sequence $(0^\circ/90^\circ/90^\circ)$ subjected to rectangular pulse load along with deformed shape of the stiffened panel at various magnitude of loads. Scale Factor=5.	153
Fig. 7.19	Non-dimensional Load vs Failure Index (Tsai-Wu criterion) for the stiffened panel with $R/a=10$, $d_s/b_s=4$ and stacking sequence $(0^\circ/90^\circ/90^\circ/0^\circ)$ subjected to rectangular pulse load along with deformed shape of the stiffened panel at various magnitude of	
Fig. 7.20	loads. Scale Factor=5. Non-dimensional Displacement for the stiffened panel with $R/a=10$, $d_s/b_s=8$ and stacking sequence $(0^\circ/90^\circ/90^\circ)$ subjected to rectangular pulse load along with deformed shape of the stiffened panel at various magnitude of loads.	154
Fig. 7.21	Scale Factor=3.5. Non-dimensional Load vs Failure Index (Tsai-Wu criterion) for the stiffened panel with $R/a=10$, $d_s/b_s=8$ and stacking sequence $(0^\circ/90^\circ/90^\circ/0^\circ)$ subjected to rectangular pulse load along with deformed shape of the stiffened panel at various magnitude of loads. Scale Factor=3.5.	155 156

LIST OF TABLES

Table No.	Title	Page No.
Table 3.1	Material properties of Graphite/Epoxy lamina (Narita and Leissa, 1990)	39
Table 3.2	Material properties of T300/BSL914C lamina (Hinton et al., 2004)	39
Table 4.1	Non-dimensional static buckling load of a plate with $b/a=2$, $b/h=100$ and stacking scheme ($\theta^{\circ}/-\theta^{\circ}/\theta^{\circ}$); $\theta=0^{\circ}$.	51
Table 4.2	Non-dimensional static buckling load of a plate with $b/a=2$, $b/h=100$ and stacking scheme ($\theta^{\circ}/-\theta^{\circ}/\theta^{\circ}$); $\theta=90^{\circ}$.	51
Table 4.3	Non-dimensional static buckling load of a plate with $b/a=1$, $b/h=100$ and stacking scheme ($\theta^{\circ}/-\theta^{\circ}/\theta^{\circ}$); $\theta=0^{\circ}$.	51
Table 4.4	Non-dimensional static buckling load of a plate with $b/a=1$, $b/h=100$ and stacking scheme ($\theta^{\circ}/-\theta^{\circ}/\theta^{\circ}/-\theta^{\circ}/\theta^{\circ}$); $\theta=45^{\circ}$.	51
Table 4.5	Static buckling load and first natural period for the plate with $b/a=2$, $b/h=100$ with $b=0.2$ m and stacking sequence $(\theta^{\circ}/-\theta^{\circ}/\theta^{\circ})$	57
Table 5.1	Non-dimensional static buckling load for a panel with $b/a=1$, $b/h=100$, $R/a=20$ and stacking sequence $(0^{\circ}/90^{\circ}/0^{\circ}/90^{\circ}/0^{\circ})$.	70
Table 5.2	Static buckling load and first natural period of the cylindrical panel with $a/h=100$ and $a=0.1$ m for various radius of curvatures and ply orientations	73
Table 5.3	Codes used to represent aspect ratio and loading function in Figs. 6.23-6.26.	86
Table 6.1	Static buckling load for an isotropic square plate with a central square cutout for various length of cutout side to length of plate ratios	97
Table 6.2	Static buckling load for a laminated composite square plate with a central square cutout for various ratios of cutout side to length of the plate	98
Table 6.3	Static buckling load for a laminated composite rectangular plate with stacking sequence is $(90^{\circ}/45^{\circ}/-45^{\circ}/0^{\circ})_{s}$ and a central circular cutout.	98
Table 6.4	Natural frequency for a cylindrical panel with central square cutout for various length of cutout side to length of panel ratios.	99
Table 6.5	Static buckling load and first natural period of the cylindrical panel with cutout having $b/a=1$, $b/h=100$ with $a=0.1$ m with various radius of curvatures and stacking schemes.	100
Table 7.1	Non-dimensional static buckling load for a stiffened plate with $b/a=1$, $b/h=100$, $b_s/h=2$ and $d_s/b_s=2$	129
Table 7.2	Non-dimensional static buckling load for the stiffened cylindrical panel with $R/a=2$, $b/a=1$, $b/h=100$, $b_s/h=2$ and $d_s/b_s=2$	130
Table 7.3	Natural frequency of a stiffened plate with all edges clamped	131
Table 7.4	Static buckling load and first natural period of the stiffened cylindrical panel having $b/a=1$, $b/h=100$, $d_s/b_s=2$ with $a=0.1$ m with various radius of curvatures and stacking	
	schemes.	132

LIST OF SYMBOLS

Length of the loaded edge of plate/cylindrical panel	a
Length of the non-loaded edge of plate/cylindrical panel	b
Width of the stiffener	b_s
Linear Strain-displacement matrix	B_L
Non-linear Strain-displacement matrix	B_{NL}
Length of the side of the cutout	С
Depth of the stiffener	d_s
Principal Young's modulus in the material direction	E_{11}
Principal Young's modulus in the material direction	E_{22}
Shear modulus associated with palne 1-2	G_{12}
Shear modulus associated with palne 2-3	G_{23}
Shear modulus associated with palne 1-3	G_{13}
Force vector	${F(t)}$
Thickness of the plate/cylindrical panel	h
Stiffness Matrix	[K]
Geometric Stiffness Matrix	$[K_G]$
Mass Matrix	[<i>M</i>]
Major Poisson's ratio	v_{12}
Minor Poisson's ratio	v_{21}
Shape function matrix	N
Amplitude of the maximum dynamic load applied to the plate/ cylindrical panel	N_{dyn}
Static buckling load of the plate/ cylindrical panel	N_{st}
Critical buckling pressure	P_{cr}
Mass density	ho
Boundary traction over the surface	τ
First natural period of the plate/cylindrical panel	T_n

T_b	Duration of the applied load for plate/cylindrical panel
{ <i>u</i> }	Displacement vector
{ü}	Acceleration vector
и	Displacement along X-axis
v	Displacement along Y-axis
w	Displacement along Z-axis
θ_X	Rotation about X-axis
θ_Y	Rotation about Y-axis
θ_Z	Rotation about Z-axis
ω_n	Natural Frequency
X_T	Tensile strength in the principal material direction
X_C	Compressive strength in the principal material direction
Y_T	Tensile strength in transverse-to material direction
Y_C	Compressive strength in transverse-to material direction
S_{12}	Shear strength in the plane 1-2
S_{23}	Shear strength in the plane 2-3
S_{I3}	Shear strength in the plane 1-3
σ_{11}	Normal stress component in the principal material direction'1'
σ_{22}	Normal stress component in the principal material direction'2'
σ_{12}	Shear stress component in the principal material plane 1-2

This document was created with the Win2PDF "print to PDF" printer available at http://www.win2pdf.com

This version of Win2PDF 10 is for evaluation and non-commercial use only.

This page will not be added after purchasing Win2PDF.

http://www.win2pdf.com/purchase/