CHAPTER 3

MODELLING

3.1 Introduction

In the domain of numerical methods, finite element method is an efficient method to analyze a
complex structure. Discretization of the structure into small elements enables one to model
structures with various complexities. Due to this, finite element softwares in the recent years
have become more efficient in performing displacement and stress analysis in the linear and
non-linear field, detailed study of damage, geometric non-linear and material non-linear of
structures as well. Although the linear analysis requires lesser computational effort to produce
results, non-linear analyses are required to capture realistic behaviour of structures. In the
current study, non-linear explicit dynamic analyses are carried out using Abaqus/Explicit as
the main tool for the study of dynamic buckling behaviour and the failure of laminated
composite plates and cylindrical panels. Abaqus/Standard is used to calculate the static
buckling analysis, frequency analysis and the non-linear static analysis (Riks analysis). In this
chapter, first, the details of the finite element analysis used in the study are discussed and then,
the mathematical formulations are presented. The problem considered in the present
investigation is defined. The geometry, pulse loading function, material properties and the
boundary conditions of the laminated composite plate and cylindrical panel considered are
described. The dynamic buckling criterion considered in the investigation is also presented.

The chapter is divided into the following subsections:
¢ Finite Element Modelling
o Shell Element
o Modelling Composite Layup
e Governing Equations
o Static Buckling

o Vibration
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o Post-Buckling
o Dynamic Buckling
o Failure Studies
e Problem description
o Laminated Composite Plate
o Laminated Composite Cylindrical Panel
o Laminated Composite Cylindrical Panel with Cutout
o Laminated Composite Stiffened Cylindrical Panel

e Dynamic Buckling Criterion

3.2 Finite Element Modelling
The details of the finite element modelling and the procedure for the analysis are described in
this section. The shell element and the non-linear procedure used in the current investigation

are described.

3.2.1 Shell element

Based on the geometry of the structure, discretization can be done in many ways. For this, the
shape, size and arrangement are decided to simulate the model in the best possible manner. The
shells elements can have 3, 4, 6,8 and 9 nodes. Each shell element has at least one integration
point at which the stresses are calculated. The displacements are calculated at the nodes. In the
current investigation, the shell elements used are S4R and S3 elements. S4R is a four-node
quadrilateral element having reduced integration with hourglass control and finite membrane
strains. In Abaqus, S4R element is used to model thick shells using first-order shear
deformation theory, which is useful for large deformation analysis (Tarfaoui et al., 2008). This
element follows a reduced integration rule. Hourglass stabilization is achieved by using an
hourglass stabilization parameter, which is necessary when a reduced integration scheme is
involved (Laulusa et al., 2006). S3 element is a three noded triangular element with finite
membrane strains. At each node of the S4R and S3 elements, there are 6 degrees of freedom.

The S4R element and the S3 element are shown in Fig. 3.1(a) and Fig. 3.1(b) respectively.
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() (b)

Fig. 3.1 Shell elements (a) S4R element (b) S3 element

In the case of cylindrical panels without stiffeners and cutouts, only S4R elements are used.
The whole domain is divided into the same number of divisions for which the convergence and
validation studies are performed. In the case of panels with cutouts, both S4R and S3 elements
are used to model the cylindrical panel. Furthermore, in the case of stiffened cylindrical panels,
both S4R and S3 elements are used. The mesh density at the junction between the skin and the

stiffener is higher than at the edges, so that, the failure at the junction could be recognized.

3.2.2 Modelling composite layup

The laminated composite panels can be modelled in Abaqus/Standard and Abaqus/Explicit.
Figure 3.2 (a) shows a typical laminated composite plate. In this figure, ‘1°, ‘2” and ‘3 are the
principal material direction. Furthermore, ‘1’ direction aligns with the global Y-axis which is
the loading direction in the present investigation. Also, ‘3’ represents the normal direction and
the piles are oriented in counter-clockwise about ‘3’. This means, 0° plies align with ‘1’
direction and 90° plies align with ‘2’ direction. The stacking begins from the bottommost ply
in the increasing thickness direction. In each ply, three integration points are considered. In the
failure analysis, the failure index can be maximum at any of the plies and the maximum failure

index is considered in the first ply failure analysis of the plate and cylindrical panel.

For modelling the stiffened cylindrical panel, the geometry of the panel and the skin are
drawn as shells, and the geometry is extruded. For stacking scheme in the skin and the stiffener,
either parallel stacking scheme (Fig. 3.2(b)) or perpendicular stacking scheme (Fig. 3.2(¢)) can

be considered.
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The geometric non-linearity is incorporated in the analysis by considering the non-linear
kinematic relationship occurring due to large displacements in the structure. The analysis
results depend on the previous steps, which means that the calculations are performed at local
coordinates and are updated and used in the subsequent steps (Abaqus, 2013). The shell element

described in this section is used to solve the governing equations described in the next section.
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Fig. 3.2 Stacking scheme in (a) Laminated composite plate (b) Parallel stacking scheme in a stiffened
cylindrical panel (¢) Perpendicular stacking scheme in a stiffened cylindrical panel

3.3 Governing Equations

The governing equations solved using Abaqus software for static buckling, vibration, post-
buckling, dynamic buckling and failure studied are presented in this section. The governing
equation of motion is given in Eqn. (3.1). The damping is not considered in the study. This is
a general equation of motion which can be reduced to get the equations for static buckling,

vibration and dynamic buckling analysis.
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[M]{u} + [K {ub{u} = {F(6)} (3.1)
Where,

M] = fNTdexdydz

1
(K1 = [ (181, + (51101 (181, +5

. [B]NL> dxdydz

{F} = fNTb0 dV+fNTrds+fNTﬁdA

In Eqn. (3.1), [M] is the mass matrix,

[K] is the stiffness matrix,

{F(t)} is the load vector.

{ii} is the nodal acceleration vector,

{u} is the nodal displacement vector,

p 1s the mass density,

7 is the boundary traction over the surface,
by is the body force per unit volume,

p is the pressure acting on the surface,

N is the shape function matrix and

By is the linear strain-displacement matrix
By, 1s the non-linear strain-displacement matrix

The stiffness matrix is a function of deformation since geometric non-linearity is considered

in the current study.

3.3.1 Static buckling

The governing equation for static buckling problem is given in Eqn. (3.2), where [K;] is the

geometric stiffness matrix and P, is the critical buckling pressure.
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[[K] = Pr[K¢]]{w} = 0 (3.2)

The solution of Eqn. (3.2) in Abaqus/Standard provides the eigenvalue which multiplied by
the load factor gives the critical buckling load of the plate or the cylindrical panel. Before the
commencement of buckling analysis, the structure can have some preloads in the form of dead
loads or loads due to temperature change. This is considered as the base state of the structure
relative to which the buckling loads are calculated. Usually, if the structure is at rest, these
preloads are zero. The critical buckling pressure is the total of preloads and the eigenvalue in
the elastic range of the structure. For extracting the eigenvalue, subspace iteration technique is

used which is efficient for extracting eigenmodes lesser than 20.

3.3.2 Vibration

The governing equation for calculating the natural frequency is given in Eqn. (3.3), where,

the w,, is the natural frequency.
[[K] = wi[M]]{u} =0 3.3)

The solution of Eqn. (3.3) in Abaqus/Standard is a linear perturbation procedure to extract
the natural frequency and mode shapes of the structure. In the current study, the first natural
frequency is used to calculate the first natural period of plate and cylindrical panel, which is

utilized to fix the duration of loading in the dynamic buckling analysis.

3.3.3 Post-buckling

The non-linear static displacement is evaluated using post-buckling analysis. The governing

equation is given in Eqn. (3.4).
[K{u}l{u} = {F} (3.4)

The above equation (Eqn. 3.4) is solved in Abaqus/Standard using Riks analysis. Riks

analysis 1s used to investigate the geometric non-linear behaviour of the structure.
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Abaqus/Standard uses the arc-length method along the equilibrium path to solve for loads and

displacements in Eqn. (3.4) simultaneously.

3.3.4 Dynamic buckling

The equation used to solve the dynamic buckling problem is given in Eqn. (3.5). The damping

in the plate and cylindrical panel is not considered.

[M]{i} + [K ({uh{u} = {F(O)} (3.5)

The above equation (Eqn. 3.5) is solved using Abaqus/Explicit. In explicit dynamic analysis,
the displacements and velocities are calculated in terms of quantities that are known at the
beginning of an increment; therefore, the global mass and stiffness matrices need not be formed
and inverted, which means that each increment is relatively inexpensive compared to the
increments in an implicit integration scheme. The time integration is done using the central
difference method where Eqn. (3.5) is solved at the beginning of the increment ¢ the
accelerations calculated at time ¢ are used to advance the velocity solution to time (¢ + 4t/2)
and the displacement solution to time (¢ + A4¢). The central-difference integration operator is
explicit in the sense that the kinematic state is advanced using known values of velocity and

acceleration from the previous increment.

3.3.5 Failure studies

The first ply failure of the composite plate and cylindrical panel is calculated and compared
with the dynamic buckling load. The failure criteria used in the current study are Tsai -Wu
criterion, Tsai Hill criterion, Azzi-Tsai-Hill criterion and Maximum stress criterion. The
equations used for failure theories are discussed in the subsequent section. In these equations
(Eqn.3.6-3.9), o;; and o2, are the normal stresses in the principal material direction and

transverse-to material direction. Also, ;2 1s the shear stress.

3.3.5(a) Azzi-Tsai-Hill theory

The Azzi-Tsai-Hill failure is given by Eqn. (3.6).
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o? 0110 o? o
Failure Index = % —l 1)1(222| +% + % <1 (3.6)
3.3.5(b) Maximum Stress theory

If 01:>0, X=Xr; otherwise, X=Xc. If 22>0, Y=Y7; otherwise, Y=Y¢. The maximum stress failure

is given by Eqn. (3.7).

011 022 |012
|) <1

Failure Index = max (77 53

(3.7)

3.3.5(c) Tsai-Hill theory

If 611 >0, X=Xr; otherwise, X=Xc. If 02, >0, Y=Yr; otherwise, Y=Y¢. The Tsai-Hill Criterion is
given by Eqn. (3.8).

o? 0440 o. o
Failure Index = % - 1)1(222 + Yzzz 5122 (3.8)

3.3.5(d) Tsai-Wu theory

The Tsai-Wu failure criterion is given by Eqn. (3.9).

n-:1 PR SUNSS B 1 n ' n ' n A ) [He ) -1 /7 O\
raiure inuex = 1031 T 022 T 11011 T 220224066012 T 40612011022 < 1 (J3.7)

The coefficients are defined as:

F_1+1 F_1+1 F_—1
Y7TXr X 2T Y, XX,
-1 1 _

Fpy = — Feg = — Fi, = f\JFi.F
22 YTYC 66 52 12 f 11422
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In Eqn. (3.9), the value of f =—0.5 which is for the material considered in the current study

as suggested in Hinton et al. (2004).

3.4 Problem description
In the present investigation, the stability and the first ply failure of five cases are considered:
e Laminated composite plate
e Laminated composite cylindrical panel
e Laminated composite cylindrical panel with cutout

e Laminated composite stiffened cylindrical panel

In the succeeding sections, the geometry, pulse loading function, material properties and the
boundary conditions of the laminated composite plate and cylindrical panel considered are

described. The dynamic buckling criterion considered in the investigation is also presented.

3.4.1 Laminated composite plate

The geometry, material properties, pulse loading type and the boundary conditions of the
laminated composite plate are described in this section. The geometry of the plate is shown in
Fig. 3.3(a) where ‘a’is the length of the loaded edge, ‘b’ is the length of the unloaded edge and
‘h’ s the thickness of the plate. Simply supported boundary conditions are considered as shown
in Fig. 3.3(b). In Fig. 3.3(b), ‘u’, ‘v’ and ‘w’ are the displacements along X-axis, Y-axis and Z-
axis respectively; ‘Ox’ corresponds to the rotation about X-axis, ‘Oy’ corresponds to the rotation
about Y-axis and ‘Oz’ corresponds to the rotation about Z-axis. The material properties
considered are from Narita and Leissa (1990) and Hinton et al. (2004) shown in Table 3.1 and
Table 3.2 respectively.

In Table 3.1 and Table 3.2, E1; is the principal Young’s modulus in the material direction,
E2 is the principal Young’s modulus in the transverse-to material direction, Gi2 is the shear
modulus associated with plane 1-2, G23 is the shear modulus associated with plane 2-3 and Gi3
is the shear modulus associated with plane 1-3. Furthermore, vi2 is the major Poisson's ratio
and vz 1s the minor Poisson's ratio. Apart from these, Xrtis the tensile strength of the lamina in

the principal material direction, Xc is the compressive strength of the lamina in the principal
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material direction, Yis the tensile strength of the lamina in the transverse-to principal material
direction and Ycis the compressive strength of the lamina in the transverse-to principal material
direction. Si2 is the shear strength of the lamina in plane 1-2, S»3 is the shear strength of the

lamina in plane 2-3 and Si3 is the shear strength of the lamina in plane 1-3.

Perfect plates are very difficult to manufacture. Some amount of imperfection will always
be present in a plate and should be considered in the analysis. Measurement of imperfections
is a difficult process. In the current study, the value of the imperfection considered is a certain
percentage of the thickness of the plate. The shape of imperfection is the first buckling mode
the plate as shown in Fig. 3.4. With the change in stacking sequence or the geometry, the first
buckling mode of the plate changes. However, for uniformity, the same shape of imperfection

is considered for all cases of stacking sequences (Fig. 3.4).

Table 3.1 Material properties of Graphite/Epoxy  Table 3.2 Material properties of T300/BSL914C lamina

lamina (Narita and Leissa, 1990) (Hinton et al., 2004)
Property  Value Property Value
En 138 GPa En 138 GPa
Ex 8.96 GPa E2 11 GPa
G2 7.1 GPa G2 5.5 GPa
G23 7.1 GPa Gos 5.5 GPa
Gi3 7.1 GPa Gis 5.5 GPa
Vi2 0.3 V12 0.28
V21 0.0195 X 1500 MPa
Xc 900 MPa
Y 27 MPa
Yc 200 MPa
Si2 80 MPa
S23 80 MPa
Si3 80 MPa
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Fig. 3.3 Laminated composite plate (a) Geometry (b) Simply supported boundary conditions (¢) Geometry
of rectangular plate in Abaqus (d) Model analyzed in Abaqus

Fig. 3.4 Plate with imperfection in the form of first mode shape

The stacking sequence is (0°/-0°/ 6°) (Narita and Leissa, 1999). Another set of stacking
sequence considered is balanced symmetric cross-ply laminates (0°/90°/90°/0°) and balanced
symmetric angle ply laminates (45°/-45°/-45°/45°) from Hinton et al. (2004). The stacking
sequence from Narita and Leissa (1999) is used for dynamic buckling studies only. The second
set of stacking sequence from Hinton et al. (2004) is used to carry out both the dynamic
buckling analysis and the failure analysis. Three types of loading functions are considered:

Rectangular pulse loading (Fig. 3.5a), Sinusoidal pulse loading (Fig. 3.5b) and Triangular pulse
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loading (Fig. 3.5c). The magnitude of the dynamic load is the maximum amplitude of the
dynamic load for the corresponding pulse loading function considered as shown in Fig. 3.5(a)-

Fig.3.5(c).

In order to model the laminated composite plate, the geometry of the plate is drawn after
which the material properties and the required property assignments are done. Depending upon
the type of analysis, either buckling analysis, frequency analysis or dynamic analysis are
defined. The loading conditions (amplitude and duration for dynamic analysis) and the
boundary conditions are defined. The analysis is carried out and the post-processing of the
results is done. The geometry of the plate drawn in Abaqus is shown in Fig. 3.3(c) and the
model with applied loads and the boundary conditions are shown in Fig. 3.3(d).

Load
Load

Time Time

(@) (b)

Load
H \

Fig. 3.5 Pulse loading functions (a) Rectangular (b) Sinusoidal (¢) Triangular

3.4.2 Laminated composite cylindrical panel

The geometry, material properties, pulse loading type and the boundary conditions of the

composite cylindrical panel are described in this section. The geometry of the panel is shown

in Fig. 3.6. The material properties considered are from Hinton et al. (2004) shown in Table

3.2. Four types of boundary conditions are considered: Simply supported on all four sides (Fig.

3.7(a)), two clamped edges on the non-loaded edges and simply supported on the other edges
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(Fig. 3.7(b)), one non-loaded edge clamped, and three edges simply-supported (Fig. 3.7(c)) and
one non-loaded edge free and other edges simply-supported (Fig. 3.7(d)). The panel is
subjected to rectangular and sinusoidal pulse loads (Fig. 3.5(a) and Fig. 3.5(b)).

In Abaqus, the geometry of the cylindrical panel is drawn with the help of the circle and
trimmed to the appropriate chord length. The central rise of the panel is calculated based on the
length of the side a (Fig. 3.6(a)). The geometry of the arc is then extruded to the required length
so as to get the panel with required dimensions. After the geometry of the panel is drawn, the
material properties and the required property assignments are done. Depending upon the type
of analysis, either buckling analysis, frequency analysis or dynamic analysis are defined. The
loading conditions (amplitude and duration for dynamic analysis) and the boundary conditions
are defined. The analysis is carried out and the post-processing of the results is done. The
geometry of the cylindrical panel drawn in Abaqus is shown in Fig. 3.6(b) and the model with

applied loads and the boundary conditions are shown in Fig. 3.6(c).

(b) (©)

Fig. 3.6 Laminated composite cylindrical panel (a) Geometry (b) Geometry of the curve extruded in Abaqus
(¢) Model analyzed in Abaqus
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Fig. 3.7 Boundary conditions for the cylindrical panel (a) Simply supported boundary conditions (BC1). (b)
Two edges simply supported and two clamped (BC2). (¢) Three edges simply supported, and one edge
clamped (BC3). (d) Three edges simply supported, and one edge free (BC4).

3.4.3 Laminated composite cylindrical panel with cutout

The geometry, material properties, pulse loading type, cutout geometry and the boundary
conditions of the composite cylindrical panel with cutouts are described in this section. The
geometry of the panel with a general cutout is shown in Fig. 3.8(a). The material properties
considered are from Hinton et al. (2004) shown in Table 3.2. Simply supported boundary
conditions are considered (Fig. 3.8(b)). The panel is subjected to rectangular and sinusoidal
pulse loads. Three shapes of the cutout are considered. The plans of circular, square and square-

rotated shape cutouts are shown in Fig. 3.9(a)-3.9(¢c).

In Abaqus, the geometry of the cylindrical panel is drawn first and extruded to the required

length. Then a plane at which the cutout is required is placed and the required geometry of the
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cutout is drawn. In the present investigation, the cutout is provided at the center of the panel,
so the geometry of the pane is drawn at the plane passing through the entire thickness of the
panel. After the geometry of the panel is drawn, the material properties and the required
property assignments are done. Depending upon the type of analysis, either buckling analysis,
frequency analysis or dynamic analysis are defined. The loading conditions (amplitude and
duration for dynamic analysis) and the boundary conditions are defined. The analysis is carried
out and the post-processing of the results is done. The geometry of the cylindrical panel with
circular cutout drawn in Abaqus is shown in Fig. 3.8(c) and the model with applied loads and

the boundary conditions are shown in Fig. 3.8(d).
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Plane at which
geometry of the
cutout is drawn

Fig. 3.8 Laminated composite cylindrical panel with a general shaped cutout (a) Geometry (b) Simply
supported boundary conditions (¢) Geometry of the panel with cutout drawn in Abaqus (d) model analyzed in
Abaqus
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Fig. 3.9 Plan of the cutout shape (a) Circular (b) Square (c) Square-Rotated

3.4.4 Laminated composite stiffened cylindrical panel

The geometry, material properties, pulse loading type and the boundary conditions of the
stiffened cylindrical panel are described in this section. The geometry of the stiffened panel is
shown in Fig. 3.10(a). The stacking sequence in the skin and the stiffeners are perpendicular to
each other as shown in Fig. 3.2(b). In Fig. 3.2(b), ‘n’ represents the normal direction and the
piles are oriented in counter-clockwise about ‘n’. This means, 0° aligns with ‘1” direction and
90° aligns with ‘2’ direction. The material properties considered are from Hinton et al. (2004)
shown in Table 3.2. Simply supported boundary conditions are considered (Fig. 3.10(b)). The
boundary conditions are applied for both the skin edges and the stiffener ends parallel to Y-
axis. The panel is subjected to rectangular and sinusoidal pulse loads (Fig. 3.5(a) and Fig.
3.5(b)).

In Abaqus, the geometry of the cylindrical panel along with the stiffener is drawn with both
the skin and the stiffener in contact with each other and extruded to the required length. After
the geometry of the panel is drawn, the material properties and the required property
assignments are done. Depending upon the type of analysis, either buckling analysis, frequency
analysis or dynamic analysis are defined. The loading conditions (amplitude and duration for

dynamic analysis) and the boundary conditions are defined. The analysis is carried out and the
45



Modelling

post-processing of the results is done. The geometry of the stiffened cylindrical panel drawn in
Abaqus is shown in Fig. 3.10(c) and the model with applied loads and the boundary conditions
are shown in Fig. 3.10(d).
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Fig. 3.10 Laminated composite stiffened cylindrical panel (a) Geometry (b) Simply supported boundary
conditions (¢) Geometry of the panel with stiffener drawn in Abaqus (d) model analyzed in Abaqus

3.5 Dynamic Buckling criterion

The dynamic buckling load is calculated using Vol’mir criterion where the dynamic buckling
load is the in-plane dynamic load at which the transverse displacement is equal to the thickness
of the panel (Vol’mir, 1974). The results obtained from this criterion are within 10% variation
with the results obtained from Budiansky-Hutchinson criterion (Kubiak, 2013; Kowal-
Michalska, 2010). Also, in the case of stiffened cylindrical panels, it is not possible to apply
Budiansky-Hutchinson criterion as rapid growth in displacements is not observed (Patel ef al.,
2011). Furthermore, for large imperfections in the stiffened plate, Budiansky-Roth criterion is
not suitable as the dynamic buckling criterion (Tao et al., 2004b). Hence, Vol’mir’s criterion

is considered in the present investigation. In the current study, the ratio w/A=1 is critical and

the magnitude of load at which this ratio is reached is the non-linear dynamic buckling load.
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3.6 Summary

The finite element model and the governing equations described in this chapter are used to
analyze the static buckling, vibration, post-buckling, dynamic buckling behaviour and failure
of the laminated composite plates and cylindrical panels. The details of the present
investigation including the geometry, pulse loading conditions, material properties and the
boundary conditions are described in this chapter. In Chapters 4-7, the results of the
convergence study, validation study and the results of the present study are presented. The

conclusions drawn from each chapter is described in Chapter 8.
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