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Chapter 2

Fundamentals Tools and Methodology

In this chapter, we provide several useful tools of RDGs and rectangular duals that
would be helpful for subsequent chapters of this thesis. Most of the presented tools
are repeatedly used in the subsequent chapters of this thesis. We begin with general
statements for plane graphs in Section 2.1 and proceed with various properties, and
results of RDGs and rectangular duals in Sections 2.2-2.4. In Section 2.5, we describe
the methodology, we adapt to derive the results in this thesis.

2.1 Planar And Plane Graphs

In this thesis, we consider simple and finite graphs. A graph is simple if it is inde-
pendent of multiple edges (parallel edges) as well as loops. All the notations and
terminologies are standard unless it is stated [68]. A graph is called planar if it can
be drawn in the Euclidean plane without crossing its edges except endpoints. A plane
graph is a planar graph with a fixed planar drawing. It splits the Euclidean plane into
connected regions called faces; the unbounded region is the exterior face (the outer-
most face) and all other faces are interior faces. The vertices lying on the exterior face
are exterior vertices and all other vertices are interior vertices. A vertex v, of a graph
is called a cut-vertex if the removal of v, from the graph disconnects the graph. A
graph is said to be k—connected if it has at least k vertices and the removal of fever
than k vertices does not disconnect the graph. If a connected graph has a cut vertex,
then it is called a separable graph, otherwise it is called a nonseparable graph. Since
floorplans are concerned with connectivity, we only consider nonseparable (bicon-
nected) and separable connected graphs in this thesis. A plane block is a biconnected
graph. A maximal block of a graph G is a maximal biconnected subgraph. A plane

graph is called plane triangulated graph (PTG) if it has triangular faces. The exterior
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face may not be triangular in a PTG. In case, the exterior face is also triangular, then
the PTG is called plane triangulation. A wheel graph W, is a graph in which a single
vertex is adjacent to n — 1 vertices lying on a cycle.

Theorem 2.1.1. [68] A graph G is 4-connected if and only if there exist at least 4
vertex-disjoint paths between any two vertices of G.

2.2 Rectangularly Dualizable Graphs

A graph H is called dual of a plane graph G if there is one-to-one correspondence
between the vertices of G and the regions of H, and two vertices of G are adjacent if
and only if the corresponding regions of H are adjacent.

Definition 2.2.1. A plane graph is a rectangularly dualizable graph (RDG) if its dual

can be embedded as a rectangular partition.

Definition 2.2.2. A rectangular dual R of a plane graph G is a partition of a rectangle
into n-rectangles such that (i) no four rectangles of R meet at a point, (ii) rectangles in
R are mapped to vertices of G, and (iii) two rectangles in R share a common boundary

segment if and only if the corresponding vertices are adjacent in G.

Definition 2.2.3. [38] The block neighborhood graph (BNG) of a plane graph G is
a graph N whose vertex set is one-to-one corresponds with the set of biconnected
components of G and two vertices of N are adjacent if and only if the corresponding

biconnected components have a common vertex.

Definition 2.2.4. [38] A shortcut (chord) in a plane block G is an edge that is incident
to two vertices of the outermost cycle C of G and is not a part of C. A corner implying
path (CIP) in G is a vi — v, path on C such that it does not contain any vertices of a
shortcut other than v; and v, and then the shortcut (v1,vy) is called a critical shortcut.
A critical CIP in a biconnected component H, of a separable plane graph G is a CIP

of Hj, that contains no cut-vertex of G in its interior.

For instance, consider the graph shown in Fig. 2.2a. Edges (vi,v3), (v4,v9) and
(ve,vg) are shortcuts. Paths vivov3 and vgv7vg are CIPs while path vovivav3vy is not
a CIP because of containment of the endpoints of another shortcut (vq,v3) and hence

(vg,v4) is not a critical shortcut. Each of shortcuts (v, v3) and (vg,vg) is of length 2.
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Figure 2.1: R| and R4 are corner rectangles, R3 is an end rectangle, and R; is a through
rectangle.
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Figure 2.2: (a) Presence of CIPs v;v,v3 and (b) a separating triangle v4vgv7.

Definition 2.2.5. [52] A component rectangle of a rectangular dual is called a corner
rectangle if its two adjacent sides share two common boundary segments with the
exterior. A component rectangle of a rectangular dual is called an end rectangle if it
shares the three boundary segments with the exterior. A through rectangle shares two

sides to the exterior, but they are opposite sides (refer to Fig. 2.1).

Definition 2.2.6. A separating cycle is a cycle in a plane graph G that encloses vertices
inside as well as outside. A separating cycle of length 3 is called a separating triangle
(complex triangle) while a separating cycle of length 4 is called a separating 4-cycle.
A 4-cycle is maximal if it is not contained in any other 4-cycle. We say a separating
triangle in a plane graph is critical separating triangle if it does not contain any other

separating triangle in its interior.

For instance, in Fig. 2.2b, the cycles v4vgv7v4, vivavivgv) and vavgvyvy are a
separating triangle, a separating 4-cycle, and a critical separating triangle respectively.
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Theorem 2.2.1. [38, Theorem 3] A nonseparable plane graph G with triangular inte-
rior faces except exterior one is an RDG if and only if it has at most 4 CIPs and has

no separating triangle.

Theorem 2.2.2. [38, Theorem 5] Let G be a separable connected planar graph with
all triangular faces except the exterior one. Then G is an RDG if and only if

i. it has no separating triangle,
ii. BNG is a path,

iii. each of its maximal blocks corresponding to the endpoints of the BNG contains

at most 2 critical CIPs,

iv. no other maximal block contains a critical CIP.

Theorem 2.2.3. [74, Theorem 1] If an RDG contains no complex 4-cycle, then it is

slicible.

Theorem 2.2.4. [19, Theorem 1] An RDG G of n vertices (n > 4) is slicible if it

satisfies either of the following two conditions:

* the outermost cycle is the only complex 4-cycle in G and at least one of its four

vertices is a non-distinct corner,

* each of the complex 4-cycles are maximal.

2.3 Concept of Regular Edge Labeling

An extended graph (4-completion) E(G) of an RDG is obtained by inserting a cycle
of length 4 at the exterior of the RDG and then connecting vertices of the cycle to the
exterior vertices of the RDG (see Fig. 2.3).
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Figure 2.3: (a) An RDG G, (b) an extended graph E(G) and (c) a rectangular dual of E(G)
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A rectangular dual R naturally induces a labeling of its extended dual graph E(G).
If two rectangles of R share a vertical segment, then we assign blue color to the corre-
sponding edge in E(G) and direct it from left to right otherwise if they share a horizon-
tal segment, we assign red color to the corresponding edge in E(G) and direct it from
bottom to top (see Fig. 2.4). If we consider the orientations of all edges incident to
some vertex v; of an RDG G, there is a clockwise sequence of these edges composed
of four subsequences: vertical edges directed into v;, followed by horizontal edges di-
rected into v; and then vertical and horizontal from v;. Such labeling is called regular
edge labeling and v; is called a well formed vertex. If each vertex of G is well formed,

then G is called a well formed graph (an oriented graph).

Definition 2.3.1. Two rectangular duals R’ and R” of an RDG G are said to be combi-
natorially equivalent (topologically equivalent) if they induce the same regular edge

labeling of E(G), otherwise they are said to be topologically distinct.

For instance, the rectangular duals shown in Fig. 2.6 are topological distinct since
they induce different regular edge labelings of their extended graph while the rectan-
gular duals shown in Fig. 2.5 are combinatorially equivalent since they induce the
same regular edge labeling where R; is dualized to v;. The only difference is of differ-
ent dimensions of the component rectangles of the rectangular duals.

Note that every regular edge labelings of E(G) generates an equivalence class of
rectangular duals of the same graph G. In other words, there is a bijection between the
regular edge labelings of E(G) and equivalence classes rectangular duals of G. More

precisely, regular edge labelings of E(G) are in bijection with topologically distinct

NN

Figure 2.4: (a) Regular edge labeling of an extended graph E(G)
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An interior face f of an RDG is towards a vertex v if two edges of f with the same
orientation are incident to v. A corner vertex in an RDG is a vertex that corresponds a

corner rectangle in the corresponding rectangular dual.

Theorem 2.3.1. [64, Theorem 2] An edge ¢ or a block B formed by the four edges
incident at an interior vertex of degree 4 of an oriented RDG is a changeable edge set

if and if one of the following is true:

i. the four boundary edges of e or of B have alternating orientations,

ii. eisaboundary edge and the interior face containing e is towards a corner vertex.
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Figure 2.5: Two combinatorially equivalent rectangular duals induce the same regular
edge labeling of their extended graph
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Figure 2.6: Two topologically distinct rectangular duals induce the different regular edge
labelings of their extended graph
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Definition 2.3.2. [37] A single edge in a rectangular dual R (or in its RDG) is a turn-
able structure (T-structure) if it occurs in any one of the four configurations shown
in Fig. 2.7a-2.7d (or in Fig. 2.7e-2.7h). The red edges in Fig. 2.7 are T-structures.
A T-structure may consist of more than one edge. A simple T-structure T in R is de-
fined as a T-structure for which there exist 4 edges in R that do not belong to 7', but
share endpoints with 7. Correspondingly in the RDG, a simple T-structure is a 4-cycle
enclosing atleast one vertex. For more clarification, refer to Fig. 2.8.

Theorem 2.3.2. [37, Theorem 6] A necessary and sufficient condition for a set T
of edges in a rectangular dual R to be a simple T-structure is that the subgraph T*
consisting of edges that are dual to 7 in the oriented extended graph E(G) representing

R is the subgraph contained in the interior of a 4-cycle C.
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Figure 2.7: (a-d) Single edge simple T-structures in a rectangular dual and (e-h) corre-
sponding single edge simple T-structures in its RDG
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Figure 2.8: Multiple edge simple T-structures in G
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2.4 Area-Universality

Definition 2.4.1. [22] A rectangular dual is called area-universal if each assignment
of areas to its rectangles can be realized by a combinatorially equivalent rectangular
dual.

a b

Figure 2.9: (a) An area-universal rectangular dual and (b) an rectangular dual that is not
area-universal.

Definition 2.4.2. [22] A line segment in a rectangular dual is formed by a sequence
of consecutive inner edges of the rectangular dual. A segment is maximal if it is not

contained in any other segment.

Theorem 2.4.1. [22, Theorem 2] A rectangular dual is area-universal if and only if
every maximal internal line segment is the side of atleast rectangle of the rectangular

dual.

The rectangular dual shown in Fig. 2.9a is area-universal since every maximal in-
ternal line segment is the side of its rectangles (for example, the red color line segment
p in Fig. 2.9a is the side of a rectangle) whereas the rectangular dual shown in Fig.
2.9b is not area-universal since the maximal line segment s (the red color line segment

in Fig. 2.9b) is not the side of any of its rectangles.

2.5 Methodology

Methodology in this thesis we adapt, is the well known rectangular dualization method.
Rectangular partitions are well studied in the context of graph notion. Such partitions
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are rectangular dual of planar graphs and the process of finding rectangular partitions
is known as rectangular dualization method. To visualize this method, consider a
plane graph G shown in Fig. 2.10a. An extended graph (Fig. 2.10b.) is constructed
by inserting a 4-cycle at the exterior of G and then connecting vertices of the cycle to
the exterior vertices of G. Then it is dualized in Fig. 2.10c where R; is dualized to v;.
After assigning horizontal or vertical orientation to each of its edges, an embedding
as shown in Fig. 2.10d is obtained. In fact, it is a rectangular dual of G. Thus G is
rectangularly dualized to a rectangular partition (floorplan). This dualization method
is known as the rectangular dualization method which is first theoretically studied by
Kozminski and Kinnen [38].
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Figure 2.10: Rectangular dualization: (a) A plane graph G, (b) its extended graph, (c)
dual of the extended graph, and (d) a rectangular dual of G.



[%] Win JPDF

This document was created with the Win2PDF “print to PDF” printer available at
http://www.win2pdf.com

This version of Win2PDF 10 is for evaluation and non-commercial use only.
This page will not be added after purchasing Win2PDF.

http://www.win2pdf.com/purchase/




