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Abstract 

 

Only 3% of the earth's surface is covered by fresh water, with the remaining (97%) made up of 

saltwater water from the ocean. Groundwater is critical to our environment and economies 

since it accounts for 30% of fresh water. Groundwater, being a valuable resource, requires 

regulations to maintain and protect its quality and quantity. E. coli bacteria are associated with 

the coliform group and are a more precise indicator of faecal contamination than other coliform 

bacteria; its existence indicates the possible presence of harmful disease-causing bacteria. 

Physicochemical parameters are a significant element that influences bacteriological water 

quality and, as a result, the characterization of water and groundwater. 

 

In this research study, groundwater analysis of the Rajasthan region has been carried out. The 

groundwater samples were collected from eight districts of the state of Rajasthan, India, under 

the BITS-UVA (University of Virginia) groundwater contamination project, containing 1302 

water samples. These samples were collected from 348 villages and cities during the years 

2019–2021. Eight physico-chemical parameters such as pH, total dissolved solids (TDS, mg/l), 

oxidation-reduction potential (ORP, mg/l), dissolved oxygen (DO, mg/l), electrical 

conductivity (EC, s/m), turbidity (NTU), fluoride (mg/l), and nitrate (mg/l) were determined in 

the laboratory using the titration and spectroscopy method.  

 

Microbiological water quality analysis was performed to identify the bacteria present in water 

samples. The viable count analysis of the water samples showed E. coli bacterial strains with 

minimum cell counts of 4×107 CFU/100 mL and maximum cell counts of 132 × 107 CFU/100 

mL. A total of 99 groundwater samples were found positive for E. coli. The prediction of 

waterborne bacteria is crucial to prevent health risks. Hence, E. coli have been chosen for 

detailed studies as many diseases are associated with their presence. A superposition-based 

learning algorithm (SLA) was proposed to observe the patterns of ANN-based sensitivity 

analysis to determine the importance of each water quality parameter resulting in the prediction 

of E. coli in groundwater. Mean Square Error (MSE) and the Coefficient of determination (R2) 

were calculated using MATLAB (R2019b) software for model performance evaluation. The 

highest correlation was observed between E. coli and the pH values, whereas the lowest 

correlation was observed with Dissolved Oxygen. 
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The detection of Escherichia coli bacteria is essential to prevent health diseases. According to 

the laboratory-based methods, 12– 48 h is required to detect bacteria in water. The drawback 

of depending on laboratory-based methods for the detection of E. coli bacteria can be prone to 

human errors. Hence, the bacterial detection process must be automated to reduce error. We 

implement an automated E. coli bacteria detection process using a convolutional neural 

network (CNN) to address this issue. We have also proposed a mobile application to rapidly 

detect E. coli bacteria in water that uses CNN. The developed CNN model achieved an 

accuracy of 96% and an error (loss) of 0.10, predicting each sample in only 458ms. The 

performance of the model was validated using the F-score, precision, sensitivity, and accuracy 

statistical measures, which shows that the model is reliable and effective in detecting E. coli. 

 

Manual counting of the viable bacterial colony on agar plates is time-consuming and can be 

prone to human error. The method requires experts to identify and count colonies on agar plates 

using a microscope. Hence, the bacterial counting procedure must be automated to decrease 

error. We automated the process of E. coli bacteria identification using a convolutional neural 

network (CNN). We developed a smartphone application for the rapid detection of E. coli 

bacteria on agar plates using CNN. We also automated the process of bacteria colony counting 

using a faster region-based convolutional neural network (R-CNN) to overcome manual cell 

counting process limitations. A graphical user interface (GUI) application was created to 

rapidly count bacteria colony-forming units on agar plates using faster R-CNN. The developed 

faster R-CNN model achieved an overall accuracy of 97% and an error (loss) of 0.10. The 

performance of the CNN and faster R-CNN models were validated various statistical measures. 

The comparative analysis showed that the faster R-CNN model is reliable and effective in E. 

coli cell counting. The study developed a system for identifying and counting viable cells of E. 

coli bacteria in water that can be used to forecast hotspots of water contamination. 

 

Keywords: Escherichia coli, Bacteria, Detection, Viable but Nonculturable, Groundwater, 

Water quality, Prediction, Physico-chemical parameters, Artificial neural network, 

Superposition, Sensitivity analysis, Machine learning, Convolutional neural network (CNN), 

Agar plates, Colony counting, Faster R-CNN. 
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CHAPTER 1 

 

1. Introduction 

Water is more essential to human life. Adequate, accessible, and secure supply for consumers 

is needed. Water helps to maintain the moisture in the internal organs of the body (Gerald, 

2011). It also protects the volume and uniformity of blood and lymph fluids (Dooge, 2001), 

controls body temperature, and eliminates toxins from the body through urine, sweat, and 

respiration (Molden, 2013), which is essential for maintaining skin functions (Burton et al., 

1987). Water pollution is one of the most critical challenges for sustainable development. 

Water pollution can lead to kidney failure and can cause death (David et al., 2011). Improving 

access to clean drinking water would carry essential health benefits. Water quality 

measurement is an important stepping stone towards finding a solution to this problem. In the 

present situation, people are struggling to obtain access to water. Generally, the most harmful 

infectious diseases are caused due to bacterial contamination in water. 

 

This chapter deals with various aspects of water, including its quality parameters, sources, 

classification and health effects of bacterial contamination on human health. The importance 

and application of different modeling techniques employed in water quality monitoring are 

also discussed in detail. The significance of the prediction of bacterial contamination in 

groundwater has been discussed and problems associated with physico-chemical water quality 

parameters are also provided here. 

 

1.1 Background 

Water is a transparent fluid which we get from rain, also found in seas, streams and lakes across 

the world and it is a significant component of organism’s fluids having the chemical formula 

H2O. A water molecule is a chemical substance that comprises covalent bonding between one 

oxygen and two hydrogen atoms. Water is a liquid at standard pressure and temperature. On 

Earth, it often coexists with its solid-state (ice) and gaseous state (steam). It can also be found 

as snow, fog, mist, and cloud (Gleick, 1993; Clark et al., 2001). Water comprises 71% of the 

Earth's surface and is necessary for all known kinds of life (Gleick, 1993). Seas and oceans 

contain 96.5% of the world's water. Groundwater contains 1.7%. The glaciers and ice caps of 

Antarctica, Greenland contain the remaining 1.7%. A minor fraction in other significant bodies 

of water, and 0.001% in the atmosphere as clouds, precipitation and vapors. Freshwater 
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constitutes only 2.5% of the world's water, and 98.8% of this freshwater is in the form of 

icecaps and groundwater. Atmosphere, rivers and lakes contain less than 0.3% of total 

freshwater. An even smaller quantity (0.003%) is found in biological organisms and 

manufactured goods (Gleick, 1993; WHO, 1996; Clark et al., 2001). Figure 1.1 is a schematic 

representation of the global distribution of water (Clark et al., 2001). 

 

 

Figure 1.1: A graphical distribution of the water on Earth (Clark et al., 2001). 

 

Water is more essential to human life. Adequate, accessible, and secure supply for consumers 

is needed. Improving access to clean drinking water would carry essential health benefits. 

Efforts should be made to achieve the cleanest possible water quality for drinking (WHO, 

2011). In the present situation, people are struggling to obtain access to water. The infectious 

diseases associated with water consumption are usually polluted with human or animal faeces. 

Some of the significant health disorders are caused by micro-organisms such as bacteria, 

pathogens, viruses etc. because they can live, reproduce and disperse in water systems (Payus 

et al., 2018).  

 

The hydrological cycle includes groundwater as a significant constituent. Groundwater is a 

significant source of water and an essential component of our water supply. Groundwater 



3 
 

normally flows inside aquifers and remains below the water table. Water from extremely deep 

sources has been maintained for a long time, and these aquifers were produced a few million 

years ago, and this water has been held in these aquifers for a few million to hundreds of years. 

Groundwater enters rivers at periods of low river flow, maintaining river flow. Occasionally, 

groundwater comes back to the surface in the form of springs or, more spectacularly, hot 

springs and geysers (Ben et al., 2011). As a result, deep aquifer water is sometimes referred to 

as fossil water (US EPA, 2015).  

 

Water resources have significant environmental, social, and economic significance, and if 

water quality deteriorates, this resource will lose economic value. The physical, chemical and 

biological parameters of water are often used to determine its quality. Measurements of these 

water quality parameters can be used to determine and monitor changes in water quality. 

Conventional water quality measurement techniques include on-site sampling and subsequent 

laboratory-based tests. Water quality is defined as the composition of elements dissolved in 

water throughout the operation of natural processes and human activities. Chemical parameters 

are often used in determining water quality (UNEP, 2015). In general, water quality parameters 

can be classified as follows (IAEA, 2007): 

• Physical Parameters: Turbidity, Temperature, Color, Taste and Odour, Total Dissolved 

Solids (TDS), Total Suspended Solids (TSS), Electrical Conductivity (EC). 

• Chemical Parameters: pH, Chloride, Fluoride, Iron, Hardness, Dissolved Oxygen (DO), 

Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Nitrate. 

• Biological Parameters: Bacteria, Indicator organisms, Protozoa, Viruses, Algae. 

 

Groundwater is constantly prone to pollution as a result of the water cycle, and data on 

groundwater quality is scarce. Water quality is determined by several parameters rather than a 

single parameter (Eddy-Miller et al., 2007). Water quality is inextricably connected to the 

surrounding environment and land usage (Nicolau, 2001). Dams and weirs can also alter natural 

stream flows, which can have an impact on water quality. Weather can also significantly 

influence water quality, especially in a dry region where drought conditions are usually present 

(Nicolau, 2001). Water quality frequently deteriorates when rivers pass through areas with 

extensive land and water usage, and pollution from intensive agriculture, major towns, 

industry, and recreation areas rises.  
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According to Korngold et al. (1966), Mohamed et al. (2011), NFIS (2012), water quality can 

increase downstream, behind dams and weirs, at locations where tributaries or better quality 

groundwater meet the main stream and wetlands. Approximately 1.7 billion children under the 

age of five in developing countries died from diarrhea, primarily from consuming contaminated 

water reported by the World Health Organization in 2011. 525,000 children die worldwide 

annually in 2018 due to poor water quality, sanitation, and hygiene, mainly due to infectious 

diarrhoea. Worldwide, 1.9 billion people use contaminated water (WHO, 2017). Around 37.7 

million people in India suffer from waterborne diseases every year and 1.5 million children 

have died from diarrhea. Faecal matter is the primary source of water-borne bacteria causing 

the disease.  

 

As a result, in many regions of the world, water quality regulation is a high-priority policy 

agenda (WHO, 2011). Many factors impact water quality and have intricate nonlinear 

interactions with the parameters in water quality analysis. Water quality parameters must be 

assessed in order to establish optimal water resource planning and management ( Liu et al., 

2009; Najah et al., 2014). Many water quality models have been created and widely used to 

tackle water quality problems due to increased computer capabilities (Dogan et al., 2009; He 

et al., 2011; Lindim et al., 2011). Although deterministic models have been used to estimate 

water quality, the outcomes of these models need input data, model parameters, and a lot of 

information (Vieira et al., 2013).  

 

To guarantee that water is of excellent quality, different factors must be examined for all 

purposes of water quality evaluation. Physical, chemical, and biological parameters are the 

three types of factors that make up water quality. Colour, Temperature, pH, Taste, Odour, 

Salinity, Hardness, Turbidity, Electrical Conductivity (EC), Total Dissolved Solids (TDS) and 

Total Suspended Solids (TSS) are some of the physical parameters. Fluorides, metal irons, 

organics, nutrients, alkalinity, pesticides, dissolved oxygen (DO), biological oxygen demand 

(BOD), chemical oxygen demand (COD), and disinfection by-products (DBP) are some of the 

chemical parameters that may be found in water. Bacteria, viruses, and protozoa are all 

biological parameters of water. All three water quality parameters must be tested in accordance 

with the APHA standard for water quality (WHO, 2004; Baird et al., 2017). 

 

Contamination from anthropogenic or natural activities increases the sensitivity to groundwater 

consumption and well digging in unsuitable settings. The depth and type of well affect 
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groundwater degradation and pollution (Hynds, 2014). Due to a lack of groundwater quality 

monitoring and rules controlling well digging, the public consumes water that has not been 

properly treated. Water consumption without proper quality control is a public health problem 

since it is frequently used as a vehicle for disease transmission. Water may flow fast in aquifers, 

allowing microorganisms to be transported with little contact between them and the host rock. 

Permeability is determined by the pore space between grains in porous aquifers such as gravel 

or coarse sand aquifers (Azizullah, 2011). 

 

1.2 Escherichia coli bacteria 

Escherichia coli (E. coli) bacteria include gram-negative, non-spore, rod-shaped pathogenic 

bacteria that generate gas in prescribed growth media after fermentation within 48 hours at 

35℃. In 1982, E. coli was first recognized as a human pathogen. E.coli bacteria are found in 

the intestines of men and animals that released into the atmosphere as fecal material. E.coli is 

commonly used as an indicator of pollution impacting rivers, sea beaches, reservoirs, 

groundwater, surface water and recreational water. In the last five years since 2017, India has 

caused 10,738 deaths. The highest deaths from diarrhea were recorded in Uttar Pradesh, 

followed by Assam, West Bengal, Delhi and Madhya Pradesh (CBHI, 2018).  

 

In India, 19% of the population washes hands with soap and water associated with excreta. 

26% drink water that is generally polluted with E.coli (WHO, 2017). 44% of people have access 

to piped water, of which only 32% is treated. People have no access to water, thereby increasing 

the possibility of infection (India Water Portal, 2019). To facilitate the removal and control of 

water pollution, WHO, US EPA, and IS 10500: 2012 have established microbiological water 

quality. According to drinking water quality standards, E. coli bacteria shall not be detectable 

in 100 ml of water sample. The standards of water quality are summarized in Table 1.1 (IS 

10500: 2012). 

 

Table 1.1: Bacteriological drinking water quality (IS 10500: 2012) 

S. No Organisms Requirements 

1 E. coli or thermotolerant coliform bacteria Shall not be detectable in 

100 ml water sample 

2 Total coliform bacteria 

 

Shall not be detectable in 

100 ml water sample 
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1.3 Classification of E. coli bacteria 

Faecal coliform bacteria (FCB) can be categorized into three classes of commensal, 

diarrheagenic, and extraintestinal groups. The FCB is Citrobacter, Enterobacter, Hafnia, 

Klebsiella, and Escherichia coli, where Escherichia coli are the most common bacteria that 

usually survive in the gastrointestinal tract of warm-blooded animals. Some bacterial strains 

are harmless, like the commensal classes, but there are some infectious as well. Diarrheagenic 

strains can cause diseases such as diarrhea, hemorrhagic colitis, hemolytic uremic syndrome, 

inflammatory colitis, and dysentery. The extraintestinal strains can cause urinary tract 

infections, septicemia, and neonatal meningitis.  

 

E. coli is a non-spore forming and rod-shaped bacteria with a diameter of around 0.5 μm and a 

length between 1.0 and 3.0 μm. E. coli bacteria are capable of surviving 4 to 12 weeks in water. 

Faecal matter is the primary source of disease-causing agents in water, and E. coli bacteria are 

commonly used as an indicator of water contamination (Atlas, 1998). The bacteria can be 

exhibited to be undergoing different stresses, and they are well known to be able to live below 

freezing temperatures (Nevers et al., 2011). Various classifications have been established for 

coliform bacteria. The MacConkay (1909) identified 128 different types of coliform in 1909, 

and 256 types of coliform were identified in 1908 by Bergey and Deehan. However, in the 

1920s, coliform variation indicated reactions from indole and Voges-Proskauer that are among 

the most significant tests used to identify faecal contamination (Hendricks, 1978). These 

advancements resulted in the IMViC (Indole, Methyl red, Voges-Proskauer, and Citrate) tests 

for distinguishing faecal coliforms, E. coli and soil coliforms. Figure 1.2 (Monk et al., 2013) 

shows the characterization of E. coli pathotypes based on conditions that support growth. 
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Figure 1.2: Characterizing of E. coli pathotypes based on conditions that support growth 

(Monk, 2013) 

 

1.4 Sources of E. coli bacteria 

Sewage discharges are usually linked to the sources of E. coli bacteria, classified into three 

general categories: human, animal and plant. Human sources include failed septic systems, 

urban landfills, and sewage sludge land applications. E. coli also originates from diverse animal 

sources, including domestic animals, wildlife, poultry and manure land use, pasture and 

feedlots. Drinking water originates from groundwater and surface streams. Surface water 

sources consist of rivers, ponds, and lakes, where groundwater from wells or boreholes are 

drained and then drilled into aquifers. Safe water availability is almost inaccessible due to 

bacterial and chemical contamination (Cabral, 2010). Contamination is caused by water 

draining from the soil, animals and birds, as well as by waste leakage, sewer overflow due to 

storm events and contaminated water release into the water sources (Cornejova et al., 2015; 

Pandey et al., 2014). Sewage treatment plants (STP) are among the sources of pathogenic E. 

coli bacteria introduced into the river systems (Eichmiller et al., 2013; Anastasi et al., 2012). 

Low contact rates with contaminated water in rivers (Madoux‐Humery et al., 2016) or beaches 

(Boehm et al., 2014) can result in gastrointestinal disorders. E. coli bacteria are widely used as 

an indicator of contamination, affecting rivers, sea, beaches, lakes, groundwater, surface water, 

recreational water, and the actions associated with waterborne diseases (Rompré et al., 2012). 
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Although E. coli bacteria usually do not cause serious diseases but they should be used to 

indicate the possible presence of pathogenic bacteria and viruses (Dorevitch et al., 2012).  

 

1.5 Health Effects of E. coli bacteria 

Water helps to maintain the moisture in the internal organs of the body (Gerald, 2011). It also 

protects the volume and uniformity of blood and lymph fluids (Dooge, 2001), controls body 

temperature, and eliminates toxins from the body through urine, sweat, and respiration 

(Molden, 2013), which is essential for maintaining skin functions (Burton et al., 1987). Water 

pollution can lead to kidney failure and can cause death (David et al., 2011). In the present 

situation, people are struggling to obtain access to clean water. Generally, the most important 

infectious diseases are caused due to the presence of human or animal waste in groundwater. 

Some primary health diseases are caused by micro-organisms, including bacteria, pathogens, 

viruses, etc., because they can survive, reproduce, and spread in water (Payus et al., 2018). 

About 37.7 million people in India are affected by waterborne diseases annually, and 

1.5 million children have died from diarrhea (WHO, 2017). 

 

1.6 E. coli as an indicator of faecal contamination 

The presence of indicator bacteria shows the occurrence of contamination. They also show the 

extent and nature of the pollutants. Indicator bacteria do not cause diseases associated with 

pathogens. E. coli bacteria can be used as an indicator bacteria. It is a micro-organism whose 

presence indicates faecal contamination. E. coli bacteria can survive in water for 4 – 12 weeks. 

At present, due to the availability of accessible, cheap, fast, sensitive, and accurate detection 

methods, it is an active bacterial pollution indicator. Total coliform (TC) is not considered to 

be an indicator organism. The ideal indicator organism has the following characteristics (Tallon 

et al., 2005): 

• Indicator organisms should exist when there are pathogenic strains.  

• The number of indicator organism counts correlates with the extent of the pollution. 

• The number of indicator organism counts should be higher than that for pathogenic 

strains. Also, the indicator organism should not grow in water. 

• Indicator organisms should have a survival time greater than or equal to pathogenic 

strains. 

• The laboratory tests should detect indicator organisms easily and quickly.  

• The indicator organism should be harmless to humans. 
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1.7  Detection of E. coli bacteria in water 

1.7.1 Laboratory Methods of Bacteriological Examination of Water:  

E. coli bacteria can be identified in the laboratory using Conventional Methods (Co-ordination 

Action Food, 2007), Enzymatic Methods (Co-ordination Action Food, 2007), Molecular 

Methods (Tamerat et al., 2016; Saxena et al., 2015), and Biosensor based methods (Maas et al., 

2017). Basically, there are three methods of bacteriological analysis of water [57]:  

(a) Multiple Tube or Most Probable Number (MPN) method. 

(b) Membrane Filter (MF) method.  

(c) EC-MUG Test for confirmation of E. coli. 

 

(a) Multiple Tube/ Most Probable Number (MPN) method:  

MPN is a method used for predicting the density of viable cells of microorganisms in a test 

sample. It is based on applying probability theory to the number of reported positive growth 

samples to a standard dilution series of sample inoculums put into a predetermined number of 

culture medium tubes. Observations of gas generation in fermentation tubes or apparent 

turbidity in broth tubes depend on the type of medium used. It denotes a good growth response 

after incubation. 

 

(b) Membrane Filter (MF) Method:  

Unlike the multiple-tube (MT) approach, the membrane filter method provides a direct count 

of total coliforms and faecal coliforms in a given water sample. The procedure involved 

filtering a known amount of water through a membrane filter made of a cellulose composite 

with a consistent pore width of 0.45 μm. The bacteria are retained on the membrane filter's 

surface. When the bacteria-containing membrane is cultured in a sterile container with a 

selective differential culture medium at a suitable temperature, typical colonies of coliforms 

and faecal coliforms develop, which can be counted immediately. This technique proved 

ineffective in turbid waters. 

 

(c) EC-MUG Test for confirmation of E. coli 

This is a standard test for confirming the presence of E. coli bacteria in water samples and can be used 

as a confirmatory test into the Multiple Tube Fermentation (MTF) process. If the lab chose to employ 

the EC-MUG test, the BGLB and tryptone broth (indole test) would be replaced at 44.5℃. 



10 
 

 

1.7.2 Identification of E. coli bacteria 

The most significant bacteriological task is to classify water-borne pathogens. Generally, 

bacteria display three basic shapes: round, rod-shaped, and spiral. After water samples are 

collected, bacteria must be grown on culture media to be identified. Gram staining is the first 

step toward identifying bacteria (Tripathi et al. 2020). Staining is a method used to differentiate 

bacteria in the cell wall based on their different constituents. By coloring these cells violet or 

red, the gram staining method categorizes bacteria into two classes: gram-positive and gram-

negative.  

 

Eosin methylene blue (EMB) agar is a selective and differential medium used to isolate fecal 

coliform bacteria. It provides a rapid and accurate method of differentiating E. coli from other 

gram-negative pathogens. E. coli bacteria are the indicator of faecal contamination in water. 

The presence of E. coli bacteria indicates the possibility of the existence of pathogenic bacteria 

and viruses (Khan et al. 2020). Nobody can ferment lactose except E. coli. If E. coli bacteria 

are present in water. In this case, a colony will appear on an agar plate with a metallic sheen 

with a dark center. Gram-positive bacteria growth is typically hindered on EMB agar because 

of the toxicity of the methylene blue dye. Therefore, only colonies of E. coli will appear on 

agar plates. If no colony appears on the agar plates, it indicates that E. coli bacteria are absent 

in water. Consequently, it can be concluded that only E. coli bacteria will grow on agar plates; 

gram-positive bacteria will not grow on agar plates, so this method is only valid for E. coli 

bacteria. Figure 1.3 shows a Petri dish containing E. coli bacteria. 
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Figure 1.3: Petri dish containing E. coli bacteria. 

 

1.7.3 Viable count 

The USEPA approved gold standard methods for detecting E. coli and counting viable cells 

are based on culturing the water samples on solid agar plates or in liquid media. Viable cell 

count can be done by the plate count method (USEPA, 2010). In the plate count technique, 

serial dilution is made by aliquoting a certain volume of liquid culture and plating numerous 

serial dilutions onto culture plates. A glass spreader is used to spread the volume of culture 

over the surface of an agar plate, which is then incubated to develop colonies. The bacterial 

concentration in water sample can then be calculated assuming that each viable cell would form 

a single colony (Harrigan et al., 2014). The number of colonies is counted manually using the 

bacterial colony counter (Rompré et al., 2002).  

 

After the identification of bacteria, a viable count of E. coli bacteria can be performed to count 

the number of actively growing bacterial cells in terms of colony-forming units (CFU). It is a 

microscopically visible grouping of millions of bacteria from one single bacterial cell. The 

plate count method can be used in which serial dilution of the water sample is done to count 

the number of bacterial cells present in water. Colonies of faecal coliform bacteria appear on 

agar plates with a metallic sheen with a dark center. This metallic sheen either covers the whole 

colony or appears solely in the colony's core. Other types of colonies should not be counted. 

The digital colony counter is used to count the number of colonies of bacteria on a petri dish. 
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The number of cells of E. coli bacteria present per 1 ml of the water sample is then given by 

equation (1.1); 

E. coli   =                     Number of coliform colonies counted x 100   (1.1) 

(CFU/ 100 mL)             Amount of water sample filtered (mL) 

 

1.8 Fluoride  

Freshwater reserves comprise of fluoride in varying concentrations, from trace amounts to 

some mg/L and even toxic concentrations (Schmedt et al. 2012, Celinski et al. 2016, O'Donnel 

1973, Álvarez et al. 2011, Wenzel et al. 1992). High levels of fluoride are generally found at 

the foot of high mountains and in geological regions with marine deposits (Koblar et al., 2011). 

Fluoride is known to have beneficial effects on dental health within permissible limits. On the 

other hand, extreme fluoride ingestion above the allowable limit can lead to detrimental effects, 

including the accumulation of dental fluorosis or skeletal fluorosis in both adults and children. 

The acceptable consumption has been set at 0.05 mg/day/kg weight based on experimental 

observations. The frequency and intensity of this clinical incidence can differ between persons 

and communities because of the effects of environmental and physiological influences, the 

volume of fluoride absorbed, and the duration of exposure (Carvalho et al. 2011, Buzalaf et al. 

2006, Khairnar et al. 2015, Ando et al. 1998). 

 

Fluoride toxicity awareness remains relatively low (Ando et al. 1998). Millions of people 

worldwide are affected by adverse health effects with exposure to a high concentration of 

naturally occurring fluoride in potable water supplies (Moseley et al. 2003, Yi et al. 2008). 

Thus, fluoride has been called one of the top ten public health concern chemicals (WHO, 2006). 

A recent study of the US National Research Council has reported a range of possible health 

issues linked to elevated exposure to fluoride, including disrupted biochemical and 

physiological processes, cardiovascular, reproductive, endocrine, gastrointestinal, 

neurological, and bone fractures (Beir 2005). 

 

1.9 Biomarkers 

In order to get relevant results in a large population, a fluoride exposure biomarker should be 

easily collectable without donor objections, and there should be an accurate, reliable, and 

legitimate fluoride estimation tool. Samples of the nails and hair can be used as biomarkers to 

monitor fluoride contamination. Nails have been proposed as appropriate biomarkers for 
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fluoride intake (Pessan et al. 2011, Buzalaf et al., 2006). They can help to detect chronic and 

sub-chronic exposures to fluoride. The use of nails as fluoride markers is appealing, provided 

that the samples are easy to obtain (Fukushima et al., 2009), as nails can be collected non-

invasively. The user-friendly methodology for assessing nail fluoride and its fast use in an 

essential laboratory condition exhibits strong ability as a biomarker for epidemiological 

surveys. The fluoride concentration in nails reflects the total concentration of fluoride 

absorption and plasma during the processing of nail samples. The fluoride concentration in the 

nail samples is thus directly correlated to the average fluoride consumption that happened 

around three months ago (Whitford et al., 2005). 

 

1.10 Water Quality Measurement and Classification 

Water pollution is one of the most critical challenges for sustainable development. Water 

quality measurement is an important stepping stone towards finding a solution to this problem.  

Water quality parameters are currently measured using laboratory testing methods, where the 

standard laboratory sensors are stationary and water samples are brought in from the field for 

analysis. In this way, the current water quality monitoring system is a repetitive manual system. 

It is extremely tedious with the time-consuming procedure. The test sensor can be mounted in 

the water sample, and pollution detection can be performed remotely to improve device 

performance. There are some field usable devices, but those devices are large and cumbersome 

and way too costly. Basic water quality parameters like pH, Temperature, Turbidity, and TDS 

are taken as references, as the variations in the value of these parameters indicate the extent of 

water pollution.  

 

1.11 Organization of thesis 

The thesis is organized as follows: 

Chapter 2 discusses the research carried out by many scientists and researchers from India and 

abroad to detect and predict fecal coliform bacteria. 

 

Chapter 3 discusses the water sampling and laboratory testing for the study. A total of 1301 

groundwater samples were collected from 348 villages and cities in the pre- and post-monsoon 

season. Water samples were analyzed for various physical, chemical, and microbiological 

water quality tests in the laboratory. These parameters are as follows; pH, total dissolved solids 

(TDS, mg/l), oxidation-reduction potential (ORP, mg/l), dissolved oxygen (DO, mg/l), 
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electrical conductivity (EC, s/m), turbidity (NTU), fluoride (mg/l), nitrate (mg/l) and E. coli 

concentration (MPN/100 mL) were determined in the laboratory using the titration and 

spectroscopy method. Microbiological water quality analysis was done to identify the bacteria 

present in water using the gram staining culturing method. After identification, a viable count 

of bacteria was done to count the number of actively growing bacterial cells in terms of colony-

forming units (CFU).  

 

Chapter 4 discusses the different implementation of Artificial intelligence-based methods for 

the prediction of E. coli bacteria in groundwater. Artificial Neural Networks have been widely 

used for the classification of data where the boundaries are not clearly defined for the 

parameters involved. The study implements the Artificial Neural Networks and Superposition 

learning-based algorithm was proposed for the prediction of E. coli bacteria in groundwater 

using physico-chemical water quality parameters. Sensitivity analysis was also performed to 

study the importance of different water quality parameters on bacterial concentration. 

 

Chapter 5 discusses the implementation of Machine Learning for the prediction of E. coli 

bacteria in groundwater. We implement an automated E. coli bacteria detection process using 

Convolutional Neural Network (CNN). We have also proposed a mobile application to rapidly 

detect E. coli bacteria in water that uses CNN. 

 

Chapter 6 discusses the implementation of Machine Learning methods to develop an automatic 

system of bacterial colony counting on agar plates. We have automated the process of E. coli 

bacteria identification using Convolutional Neural Network (CNN). We have proposed a 

mobile application for the rapid detection of E. coli bacteria on agar plates using CNN. We 

have also automated the process of bacteria colony counting using Faster Region-based 

Convolutional Neural Network (Faster R-CNN). A Graphical user interface (GUI) application 

was created to rapidly count bacteria colony-forming units on agar plates using Faster R-CNN. 

 

Chapter 7 discusses the identification of significant water quality parameters and other factors 

that affect the fluoride content in nail samples. Apart from laboratory tests, different Artificial 

Intelligence (AI) methods were used to predict fluoride in nails, which will help identify the 

degree of fluoride exposure to children, females, and males. The proposed Hybrid Model (HM) 

combines Principal Component Analysis (PCA), Firefly Algorithm (FA), and Artificial Neural 

Network (ANN) to predict fluoride concentration in nails. 
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Chapter 8 discusses the implementation of the artificial neural network to measure water 

quality. The data has been collected and prepared for the artificial neural network. The data 

collection process is very important for the implementation of Artificial Neural Networks. The 

data was collected from various sources in and around the BITS Pilani campus area. A 

prototype was designed and calibrated using standard solutions. The collected water samples 

were tested, and the prototype readings were tested against the readings of YSI Sonde and/or 

standard laboratory procedures. This technology has been patented. 

 

Chapter 9 discusses the main finding of this study, conclusions and scope for further research. 
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CHAPTER 2 

 

2. Literature Review 

This chapter deals with the review of work from other authors globally from the year 1979 to 

the year 2021. The review is divided into 10 main components viz. (1) Groundwater quality, 

(2) Relationship between physico-chemical water quality parameters and E. coli growth, (3) 

Viable but Non-Cultural cells of E. coli, (4) Artificial Neural Networks, (5) Superposition-

based learning algorithm, (6) Convolutional Neural Networks, (7) Principal Component 

Analysis, (8) Firefly Algorithm, (9) Prediction of Fluoride, (10) Water Quality Measurement 

and Classification, (11) Identified research gaps, (12) Objectives of the study. 

 

2.1 Groundwater quality 

Water pollution is one of the most critical challenges for sustainable development. Water 

quality measurement is an important stepping stone towards finding a solution to this problem. 

Water quality parameters are currently measured using laboratory testing methods, where the 

standard laboratory sensors are stationary and water samples are brought in from the field for 

analysis. The monitoring of bacteriological drinking water quality relies mainly on the study 

of indicator bacteria. E. coli is a more precise indicator of water contamination than other fecal 

coliform bacteria due to the advancement in testing methods. E. coli bacteria can be identified 

in the laboratory using conventional methods (Co-ordination Action Food, 2007), enzymatic 

methods (Co-ordination Action Food, 2007), molecular methods (Tamerat et al., 2016; Saxena 

et al., 2015), and biosensor-based methods (Maas et al., 2017). According to the method based 

on laboratory experiments, it takes 12–48h for the concentration of bacterial cells to be 

recorded. The limitation of relying solely on sensor-based water quality analysis for 

identification is that it can lead to errors. Therefore, there is a need for real-time monitoring. 

 

2.2  Relationship between physicochemical water quality parameters and E. 

coli growth 

Recent studies have been reported significant relationships between various water quality 

parameters and E. coli bacteria. In a study reported by Doran and Linn (1979) in eastern 

Nebraska for three years, runoff from a cow-calf pasture was observed. The number of fecal 

streptococci was higher in runoff from the ungrazed region, exposing the wildlife contributions. 

Baudišová (1997) performed a comparative study on the survival of fecal coliforms, total 



25 
 

coliforms, and E. coli in polluted and unpolluted river water and found that all bacteria lived 

for several months under polluted water conditions. Still, the elimination of all types of bacteria 

was significantly faster under unpolluted water conditions. Total coliforms lasted the most 

prolonged and E. coli the shortest. The existence of bacteria in water sources usually increases 

with decreased temperature. The properties of electrolyzed oxidizing water and chemically 

modified solutions for the inactivation of E. coli O157: H7 bacteria were studied by Kim et al. 

(2000). Inactivation of E. coli occurred within 30 seconds after electrolyzed oxidizing water 

was added with solutions containing 1% of bromine and chlorine. Residual chlorine was added 

to reduce oxidation-reduction potential (ORP). Iron has been found to be the only effective 

solution for inactivating E. coli and then having high residual ORP readings. The study 

recommended that electrolyzed oxidizing water might be simulated by chemical modification 

of deionized water, whereas ORP of the solution was the critical factor affecting bacterial 

inactivation.  

 

In a comparative study on the growth of 10 different bacterial strains. E. coli, Citrobacter 

freundii, Klebsiella pneumonia, and Enterobacter cloacae subsp were identified by Boualam 

et al. (2002). After 96 hours of incubation, only cloacae remained cultivable. In a previous 

study, Boualam et al. (2003) found that only Citrobacter freundii and Enterobacter cloacae 

subsp. Cloacas were found alive after 28 days. Hughes (2003) studied the impacts of 

temperature, water salinity, solar radiation, sea ice conditions, and fecal contamination on the 

E. coli count around Rothera Point, Adelaide Island, and the Antarctic Peninsula from February 

1999 to September 1999. In summer, i.e., February, due to the effects of solar radiation and 

high station population, presumptive E. coli counts were low, the daily amount of solar 

radiation was high, and the estimated E. coli counts were low.  

 

In winter, i.e., April, E. coli counts were high because migrant wildlife had increased fecal 

matter and the intensity of solar radiation dropped by 95%. By late winter, i.e., September near 

the station sewage outfall, E. coli counts were high. However, the E. coli counts in North Cove 

were high as compared to February. Solar radiation was found to be the leading factor in the 

estimation of E. coli counts at sea. Water depth, temperature, and salinity also affect fecal 

bacterial viability by increasing cell inactivation. Some factors that affect the existence of E. 

coli include dissolved organic carbon content, the intensity of the sunlight (Medema et al., 

2003). Table 2.1 (Medema et al., 2003) shows the reduction times for E. coli in surface water. 
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Table 2.1: Times for reduction of fecal coliform in surface water (Medema et al., 2003) 

 

  

 

 

 

 

 

 

 

The existence of bacterial strains in groundwater is affected by various factors that are linked 

with soil. Bacteria have to infiltrate through the soil to enter the groundwater with low 

temperature, high soil humidity, acidic or alkaline soil pH, and organic carbon (Medema et al., 

2003). The pollutants carried in runoff originate from urban and sub-urban non-point sources 

(US EPA, 2001). Table 2.2 (Medema et al., 2003) shows the disappearance rates of E. coli in 

groundwater sources.  

 

Table 2.2: Disappearance rates of fecal coliform in groundwater sources (Medema et al., 

2003) 

    Bacterial group Disappearance rate (per day) 

E. coli  0.063 – 0.36 

Fecal streptococci 0.03 - 0.24 

Clostridium bifermentans spores 0.00 

Salmonella enterica subsp. 

enterica serovar Typhimurium 

0.23 – 0.22 

 

The effect of pH and chlorine on E. coli O157: H7 and Listeria monocytogenes was explained 

by Park et al. (2004). The results revealed that both Escherichia coli and Listeria 

monocytogenes were sensitive to the residual chlorine and chlorine level of electrolyzed water. 

Electrolyzed water bactericidal activity increased with decreased water pH for both 

Escherichia coli and Listeria monocytogenes. The study recommended the application of 

electrolyzed water with residual chlorine greater than 2 mg/l to achieve complete inactivation 

of E. coli and Listeria monocytogenes within a pH range between 2.6 and 7.0. Roslev et al. 

Bacterial group 

 

Time for 50% reduction 

in concentration (days) 

Total coliforms  0.9 

E. coli  1.5 – 3 

Enterococci  0.9 – 4 

Clostridium perfringens  60 - > 300 

Salmonella  0.1 – 0.67 

Shigella  1 
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(2004) studied the effect of oxygen on the survival of E. coli bacteria in drinking water that is 

not disinfected. E. coli ATCC 25922 bacteria shown a decline in growth, both reduced and 

biphasic. The survival of fecal enterococci, somatic coliphages, and coliforms were also seen 

to be reduced in aerobic conditions, and oxygen was found to be the main factor for E .coli 

growth in drinking water which is not disinfected. Juhna et al. (2007) studied the effects of 

phosphoric addition on E. coli bacteria survival. Higher concentrations of phosphorus increased 

the life of cultivable E. coli bacteria in water and biofilms. The study found that higher 

concentrations of phosphorus in water increased the cultivability of E. coli in the water 

distribution system. Ellie et al. (2007) showed a direct correlation with an R2 value of between 

0.6 and 0.8. Turbidity from the six sites ranged from 5.7 to 120 NTU, with an average of 12-

17 NTU. The E. coli ranged from 20 to 25000 CFU/100mL with 180 to 340 CFU/100mL as 

geometric mean. A direct correlation between E. coli and turbidity was observed. Higher 

standards of turbidity can be used to predict increased levels of E. coli bacteria.  

 

Kreske et al. (2008) identified E. coli O157: H7 ability to grow in acidified vegetable products 

at pH 3.2 and 3.7, with specific dissolved oxygen content and a range of ionic strengths between 

0.086 and 1.14. The study revealed that in acid solutions under anaerobic conditions, E .coli 

survived significantly better than under aerobic conditions. The E. coli strain decreased by 1.55 

log CFU/ml for all acid solutions that were evaluated without oxygen. Kalantari et al. (2008) 

investigated the effects of iron, cadmium, and chromium on E. coli bacteria growth. In the 

series of experiments, E. coli was cultivated for 5 hours at 37 ℃ in a nutrient broth added with 

Fe+2, Fe+3, Cr+3, Cd+2. After every half hour, the bacterial growth was measured using a 

spectrophotometer. Results indicated that bacterial growth decreased with a concentration of 1 

mM/L of Fe+3 and 0.5 mM/L Fe+2. However, the growth was completely affected by 1 mM/L 

concentration of iron (II). Chromium also exhibited growth effects, while cadmium exhibited 

poisonous effects. Cr+3 and Cd+ showed antagonism to the growth of bacteria with iron. Than 

(2011) reported the growth of E. coli in water under different temperatures ranges from 0-70ºC 

at the laboratory of microbiology in the Department of Zoology, University of Yangon. The 

bacteria cell growths were recorded as 1.28x108 CFU/ml at 20ºC, 3.25x108 CFU/ml at 30ºC 

and 4.85x108 CFU/ml at 40ºC on nutrient agar. The bacterial count at 37ºC was 4.98x108 

CFU/ml. Bacterial colonies were not observed under the temperatures of 50ºC, 60ºC, and 70ºC. 

The results revealed that E. coli was found to grow at temperatures between 20ºC and 40ºC.  
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Sinaga et al. (2016) observed the counts of E. coli in well water sources and the factors 

correlated with bacterial growth. Water samples from 5 wells were collected to test total E. coli 

bacteria concentrations, mercury inorganic nitrogen compounds, total phosphorus, dissolved 

oxygen, pH, and salinity. Results showed that E. coli and mercury contaminated the drinking 

water resources at the Sekotong regency and mercury and salinity showed an inverse 

correlation with E. coli growth. Whereas pH supports the E. coli survival at the range of 6.05– 

6.50, but no correlation to the growth of E. coli was found between total phosphorus and 

inorganic nitrogen compounds. However, the growth of E. coli was positively related to 

phosphorus concentration in water but negative to nitrate concentration. Kim et al. (2018) 

observed the growth features of foodborne pathogens in a laboratory medium incubated at a 

range of temperatures 25°C to 45°C and pH levels 3 to 10. Results showed that when subjected 

to pH 3 and 4 at any temperature measured, the concentration of all bacteria was restricted to 

about 3 log CFU/ml and all pH at 45 °C. The results showed that at pH 6, the growth rates of 

E. coli and Salmonella were approximately three and a half to four times faster than that of 

Listeria and at pH 7, the growing rates of Bacillus, E. coli and Salmonella were significantly 

higher than those of Listeria and Staphylococcus. At pH 8, the growth rate of Bacillus was the 

highest as compare to Salmonella, E. coli, Listeria and Staphylococcus. E. coli and Salmonella 

were less prone than other bacterial classes to acidic environments at pH 5-6, while Bacillus 

was the least prone to alkaline environments at pH 8-9. 

 

2.3 Viable but Non-Cultural cells of E. coli 

Laboratory-grown bacteria constitute only a minor part of the bacteria found in nature. It is 

found that on standard laboratory media, less than 1% of environmental bacteria can grow 

(Davey et al., 2011). The survival of microbial organisms depends mainly on their ability to 

exist in intimidating environments (Barcina et al., 2009; Keep et al., 2006). Bacteria should be 

able to withstand stress when environmental conditions are unfavorable and follow strategies 

that allow them to survive until sufficient conditions for growth are restored (Barcina et al., 

2009). Clinical laboratories often grow enriched-media bacteria, developed to upkeep the 

growth of specific pathogens. It is achieved by certain bacterial genera, for example, by 

evolving resistant structures such as endospores. While many bacterial cells enter a condition 

of deficient metabolic activity, it is generally called the viable but non-cultural condition, i.e., 

VBNC (Barcina et al., 2009; Keep et al., 2006). 
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Colwell and colleagues first described the VBNC condition in 1982 (Xu et al., 1982). When 

bacterial cells can grow and form colonies on conventional culture media, they are said to be 

'culturable', whereas if they are metabolically or physiologically active, they are 'viable' 

(Fakruddin et al., 2013). According to Oliver (1995), VBNC can be defined as a metabolically 

active bacterial cell that has crossed a threshold due to known or unknown causes and became 

unable to multiply in or on a medium that would normally support its growth. Under different 

stress conditions, various bacteria, including E. coli, are known to enter a viable but non-

cultural state (VBNC). Cells lose colony-forming units on Petri dishes during VBNC state 

while retaining the signs of viability. Various environmental stresses like starvation stimulate 

the VBNC state. Bacteria in the VBNC condition cannot be grown on conventional media, 

usually escape plate count detection and pose a severe risk to drinking water safety and public 

health (Oliver, 2005); nevertheless, they maintain metabolic activity, respiration, membrane 

integrity and slow transcription of genes (Chowdhury et al., 1995; Huq et al., 1996; Kinjo et 

al., 2011; Oliver, 2005; Roszak et al., 1987). Despite the low metabolic rate of bacteria in this 

state, they may become culturable once again after specific resuscitation processes (Oliver, 

2010). When exposed to adverse environmental conditions, many bacterial species use these 

conditions for long-term existence. Hence it can be recommended as a unique adaptation 

technique (Li et al., 2014; Ramamurthy et al., 2014). 

 

The VBNC condition is defined as a state of dormancy in which certain bacterial strains may 

enter when encountered with severe environmental conditions (Besnard et al., 2002; Oliver et 

al., 2005). Recent studies have been shown that E. coli and certain bacteria may become viable 

but nonculturable (VBNC) under sublethal stress, such as extreme temperature changes (Riley 

et al., 1983; Roszak et al., 1987; Barer et al., 1993; Chowdhury et al., 1995; Oliver et al., 1995; 

Ravel et al., 1995; Besnard et al., 2002;  Fakruddin et al., 2013; Ramamurthy et al., 2014), 

starvation (Chowdhury et al., 1995; Mascher et al., 2000; Nitta et al., 2000; Besnard et al., 

2002; Fakruddin et al., 2013), high osmotic pressure (Barer et al., 1993; Chowdhury et al., 

1995; Besnard et al., 2002; Oliver et al., 2010; Fakruddin et al., 2013), chlorine exposure 

(Chowdhury et al., 1995; Besnard et al., 2002;  Mason et al., 2015), changes in pH (Chowdhury 

et al., 1995; Nevers et al., 2010; Li et al., 2014), oxygen availability (Lonsane et al., 1967; Noor 

et al., 2009; Liu et al., 2010; Munna et al., 2014), heavy metals (Murata Li et al., 2012) or 

exposure to white light (Chowdhury et al., 1995; Na et al., 2006; Fakruddin et al., 2013). 

However, bacteria can resuscitate a culturable state under suitable conditions (Gourmelon et 

al., 1994; Grey et al., 2001; Greenwood et al., 2003; Cook et al., 2007; BIS, 2012; Harmel et 
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al., 2016). Apart from starvation, various severe environmental conditions such as changes in 

temperatures (Mary et al., 2002;  Leclair et al., 2009; Lee et al., 2012), salinity (Linder et al., 

1989; Noor et al., 2009), nutrient scarcity (McDaniels et al., 1985), incubation outside the 

normal growth temperature range (McKay et al., 1992; Mizunoe et al., 1999; Motion, 2009), 

osmotic pressure (Muela et al., 2008; Munna et al., 2013), UV radiation in combination with 

high salinity (Nilsson et al., 1991), low water availability (Noor et al., 2013), high 

concentration of copper (Noor et al., 2013), and severe environmental conditions (Dolezalova 

et al., 2015) induced the VBNC state. Earlier studies showed that temperature upshift with 

oxidative stress generation hinders the count of viable and culturable bacterial cells (Makino 

et al., 2000; Maalej et al., 2004; Maier et al., 2015; Lundquist, 2020). Such conditions could 

be lethal unless the organism has reached a VBNC state (Fakruddin et al., 2013).  

 

The non-culturability related to the VBNC state poses a possible problem to public health 

because the methods commonly used to identify and count E. coli depend on culturing (Ghezzi 

et al., 1999). All non-pathogenic and pathogenic strains of E. coli have been shown to persist 

in sublethal conditions of environmental stress by entering the VBNC state (Huq et al., 1996; 

Jones et al., 2004; Keep et al., 2006; Kana et al., 2008; Fakruddin et al., 2013). Infectious 

bacteria, for example, pathogenic E. coli, is a crucial public health concern capable of entering 

a VBNC state (Kinjo et al., 2011). Studies indicate that many pathogenic bacteria can persist 

and remain in pasteurized milk, processed food, and drinking water, as well as in the 

environment (Kinjo et al., 2011). There are various significant concerns regarding the 

involvement of cells in water in the VBNC environment. An example is that E. coli cannot be 

used as an indicator of fecal contamination when the cells are in VBNC state (Kolling et al., 

2001). However, except for E. coli and V. cholerae, other pathogens such as 

Aeromonashydrophil (Oliver, 2000; Oliver, 2005), Listeria monocytogenes (McKay et al., 

1992; Oliver, 2012) and Vibrio vulnificus (Pawlowski et al., 2011) are reported to have entered 

VBNC state (Dutka et al., 1980). Such pathogens present in the VBNC condition can easily 

evade testing by conventional plating methods while retaining or recovering toxic effects after 

achieving suitable conditions (Pommepuy et al., 1996; Mizunoe et al., 1999; Rahman et al., 

2001; Pope et al., 2003). So monitoring of E. coli VBNC cells is essential in drinking water 

due to the possible transmission of pathogens in water distribution. 

 

2.4 Artificial Neural Networks 
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Artificial Neural Networks (ANN) are a model of the Biological Neural Network. Biological 

Neural Networks help living beings interpret, classify, and learn from their environment 

patterns for future applications. Humans use these patterns and prior knowledge to process any 

information and thus come to an output (Fausett, 2006). ANNs lend this property to machines. 

ANNs provide the machines with a general and functional system of learning from examples 

and improvising their functioning. ANNs have proved especially useful in areas where a fixed 

mapping algorithm between input and output does not specify the output of the system (Gupta 

et al., 2018). Most commonly, ANNs are used when the mapping between the inputs and the 

outputs are not linear. An ANN neuron is modeled, as shown in Figure 2.1. 

 

Figure 2.1: Model of a neuron of an ANN. 

 

The input points in the above figure are analogous to synaptic connections on a nerve cell. For 

an n-dimension input vector (𝑥1, 𝑥2, 𝑥n), each input is multiplied by a synaptic weight (𝑤1, 

2,…𝑤𝑛). These products are hereafter summed up in the nerve center, and the final sum is 

passed through an activation function that defines the final output of the neuron. Many such 

neurons form a layer of parallel processing centers that can work on a vast range of inputs. The 

outputs of one such layer of neurons serve as the input to many such subsequent layers of 

neurons, thus implementing a hugely parallel processing capability to the system. The outputs 

are then compared with the expected outputs, and the errors are measured. The weights of the 

synapses are thus altered in accordance with the error. This is the basic learning process of a 

neuron. On most neural networks, each neuron has a hidden layer connected to each unit in the 

previous (input) layer and the subsequent (output) layers. ANNs can be implemented in a 

number of architectures. 
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In 1943, McCulloch and Pitts presented the first-ever model of an artificial neuron, called the 

perceptron. A layer of perceptrons can perform some tasks. Thus a single layer of perceptrons 

can form a network. We term such a network as a Single Layer Perceptron. An arrangement of 

a series of a Single Layer Perceptron is called a Multi-Layer Perceptron (MLP). MLPs are also 

called feed-forward networks. Backpropagation is the most common training methodology and 

is simpler to implement, which reduces the time to market and is also much more capable when 

it comes to supervised pattern matching. Backpropagation has its limitations, such as problems 

with convergence, and the time cost of backpropagation hardware is hugely variable. 

Mathematically, Hornik et al. (1989) proved that a multilayer neural network with finite hidden 

layers and enough hidden neurons is a universal approximator for any Borel measurable 

function from one finite-dimensional space to another. Several complicated multilayer neural 

network models have been proposed and used in different fields (Paliwal and Kumar, 2009). 

Applications of ANN in the groundwater, ecology, and environmental engineering fields were 

documented in the early 1990s. However, in recent years ANN has been intensively used for 

prediction and forecasting in a variety of engineering and water-related areas, including water 

resource analysis by Liong and Sivapragasam, 2002; Muttil and Chau, 2006; El-Shafie et al. 

2008; El-Shafie et al. 2011; Noureldin et al. 2011; Najah et al. 2009; oceanography by 

Makarynska et al. 2008 and environmental engineering by Grubert, 2003.  

 

Krishnamurti et al. (1951) studied simultaneous electrical conductivity and bacterial 

concentration measurements in glucose and peptone-containing solution. Results show that 

there was an appreciable increase in conductivity even before the multiplication of bacteria 

occurred. In a study reported by Doran and Linn (1979) in eastern Nebraska for three years, 

runoff from a cow-calf pasture was observed. The cell count of fecal streptococci was higher 

in runoff from the ungrazed region, exposing the wildlife contributions. The effects of 

temperature, pH, and water activity were studied, out of which temperature was found to be 

the most crucial parameter for the thermal inactivation of E. coli. The limitation of the model 

was that it could not provide a prediction equation for the inactivation rate of bacteria (Lou and 

Nakai, 2001). Some studies have reported a significant correlation between various water 

quality parameters and E. coli bacteria. The existence of bacterial strains in groundwater was 

affected by factors that were linked with soil. Bacteria have to infiltrate through the soil to enter 

the groundwater with low temperature, high soil humidity, acidic or alkaline soil pH, and 

organic carbon (Medema et al., 2003).  
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Initial research on E. coli bacteria prediction dates back to 2003, which included the analysis 

and development of the model to predict compliance of bathing waters along the Firth of Clyde 

coastline, located in the southwest of Scotland, UK. In this study, rainfall, river discharge, 

sunlight, and tidal conditions were used as inputs of networks, and E. coli was used as an 

output. River discharge was found to be the most significant parameter affecting bacterial 

concentration (Lin et al., 2003). A few studies have evaluated the correlation between E. coli 

bacteria and physico-chemical parameters in water samples. Results show that the growth of 

E. coli was correlated with pH, dissolved oxygen (DO), specific conductivity (SC), and water 

temperature (T). The correlation between the Kosi River's physicochemical water quality 

parameters was studied in the pre-monsoon, monsoon, and post-monsoon seasons by Bhandari 

et al. (2007). Results show a positive correlation for chloride with pH, Magnesium, Sodium, 

Hardness, and Total Suspended Solids with the highest positive correlation of 0.748, 0.821, 

0.7442, 0.8121, and 0.8774, respectively. Also, Electrical Conductivity was found to be 

negatively correlated with Total Suspended Solids, Total dissolved solids, and Hardness with 

a correlation of -0.8865, -0.9477, and -0.8979, respectively. Tufail et al. (2008) explained the 

application of AI-based models for the prediction of E. coli in surface water based on 

streamflow and other water quality parameters. Three classes of fecal bacteria were observed. 

The relationship between total suspended solids (TSS) and turbidity with E. coli was studied 

by Huey et al. (2010). In all four of the watersheds, a significant correlation was observed 

between turbidity and E. coli. 

 

Recent studies in the literature reported the correlation between biological, physical, and 

chemical water quality using the Pearson correlation coefficient. Jothivenkatachalam et al. 

(2010) collected groundwater samples from different Coimbatore district locations, Tamil 

Nadu, India, and studied the relationship between physico-chemical water quality parameters. 

The study shows a strong positive correlation for Electrical Conductivity with Total dissolved 

Solids, Total Hardness, Calcium ions, Magnesium ions, and Chloride ions with the highest 

positive correlation of 0.978, 0.852, 0.835, 0.68, and 0.84559, respectively. A few studies have 

been done to evaluate the relationship between physico-chemical water quality parameters and 

E. coli on the site. Chigor et al. (2011) studied the water quality of surface water sources in 

Zaria, Nigeria, using Pearson correlation analysis. A total of 228 water samples were collected 

and analyzed to observe the relationship between physico-chemical water quality parameters 

and E. coli bacteria. Results show a positive correlation of P<0.05 for E. coli with  Electrical 

Conductivity, Total Suspended Solids, Total dissolved Solids, Chloride ions, Potassium ions, 
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Nitrate, and Biochemical Oxygen Demand. No significant correlation was observed between 

E. coli with pH, Temperature, and Turbidity.  

 

An AI-based model on multiple regression analysis was developed to predict coliform bacteria 

concentrations at the selected sites based on available USGS NWIS data (David and Haggard, 

2011). Francy et al. (2013) proposed a model to evaluate the correlation between E. coli and 

other parameters based on water samples collected from eight inland recreational lakes in Ohio. 

The parameters used were rainfall, wind direction, speed, turbidity, and water temperature, but 

the model was not developed at sites where the E. coli concentration was exceeded. Cheng et 

al. (2013) studied the correlation between water quality parameters and E. coli growth 

by Pearson's correlation analysis. They observed that the density of bacteria varied negatively 

with pH and the removal of total suspended solids. The growth of E. coli in aeration pond was 

negatively correlated with the increased dissolved oxygen. Mouna et al. (2014) observed 

factors that have an impact on the growth of E. coli with a negative correlation of higher salinity 

(R=-0.97) and pH (R=-0.98) against a positive correlation of higher turbidity (R=0.93). The 

model was used to predict environmental quality along the Penchala River urban catchment 

area located in Kuala Lumpur, Malaysia, directly affected by human activities (Zamani and 

Saybani, 2014). The model provided the best training performance, with 70 neurons in the 

hidden layer.  

 

Shroff et al. (2015) collected groundwater samples from different locations of Valsad district, 

Gujarat, India. They studied the correlation between physico-chemical water quality 

parameters using the Pearson correlation coefficient. Results show that Electrical Conductivity 

was found to be significantly correlated with Total Hardness, Calcium ions, Total Alkalinity, 

Total dissolved Solids, Chloride ions, Sulphate ions, Sodium ions, and Sodium Absorption 

Ratio, with the highest correlation of 0.88, 0.94, 0.99, 0.98, 0.94, 0.95 and 0.90 respectively. 

Also, Electrical Conductivity was found to be the lowest correlated with Fluoride, Manganese, 

Chemical Oxygen Demand, and Silica. Wu et al. (2015) studied the relationship between 

microbial biofilm and physico-chemical water quality parameters using the Pearson correlation 

coefficient. Also, the study has considered the effect of sampling site distance on water quality. 

Shamsudin et al. (2016) observed E. coli growth using Pearson correlation, and the results 

showed a linear relationship with pH (R=0.971), time (R=0.958), turbidity (R=0.885), 

dissolved oxygen (R=-0.861), and temperature (R=0.763). Rao et al. (2015) examined the 

relationship between water quality and turbidity. Increased E. coli cell counts were 
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significantly associated with increased turbidity (β = 0.003; p < 0.0001) and decreased 

dissolved oxygen concentrations (β = −0.310; p < 0.0001). The water quality prediction model 

was developed with water samples from 4 different sampling stations on the Panchaganga 

River for modeling river quality with BOD and DO parameters (Mulla et al., 2016). Bisi-

Johnson et al. (2017) studied the physico-chemical and microbial properties of water. 

 

Islam et al. (2017) developed a linear regression model to evaluate the impact of the 

atmospheric conditions on bacterial counts. Precipitation and temperature of the water showed 

a positive correlation with the growth of bacteria. Raw water turbidity, colour, and alkalinity 

were found to have a significant influence on the growth of E. coli (Mohammed et al., 2018). 

In a few studies, statistical models were used for prediction (Katip, 2018). Mohammed et al. 

(2018) study was based on observed counts of bacteria and measured water quality parameters, 

including pH, temperature, conductivity, turbidity, colour, and alkalinity. Considerable 

improvement in the efficiency of the model was achieved when the input data was normalized 

before training. Vijayashanthar et al. (2018) developed a model for the prediction of bacteria 

using water temperature and turbidity. Results show that the accuracy of the developed model 

was 86.5%. The temperature was found to be the most crucial parameter of bacterial regrowth 

and death rates, and pH also showed effects on the decay rates. In the three perennial 

watersheds, a correlation was observed between TSS and E. coli. Pachepsky et al. (2018) 

studied the relationship of temperature, pH, dissolved oxygen (DO), turbidity, nitrate, 

ammonium with E. coli concentration, using Spearman's rank correlation coefficient of -0.247, 

-0.267, -0.246, -0.293, 0.015, -0.220 respectively. 

 

Singh et al. (2019) studied the seasonal effect on potable water sources of the Eastern 

Himalayan region. The relationship between physico-chemical and microbiological water 

quality parameters was determined using Pearson correlation analysis. Results show that the 

growth of E. coli was positively correlated with the rainy season with a possibility of water-

borne diseases. The microbiological standard of the municipal water supply system in the 

Osijek-Baranja district of Eastern Croatia was studied by Habuda-Stanić et al. (2013). The 

study showed that E. coli bacterial growth was negatively correlated with free residual chlorine 

and positively correlated with Turbidity. Seo et al. (2019) studied the relationship between 

coliform bacteria and physico-chemical water quality parameters in the Nakdong River, South 

Korea, using Pearson correlation and multiple regression analysis. Results show that the growth 

of coliform bacteria was affected by Phosphate Phosphorus and Total Suspended Solids. It was 
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also found that the growth of coliform bacteria was inversely correlated with organic matter 

and directly correlated with Phosphate Phosphorus.  

 

Bouharati et al. (2008) proposed a method for detecting micro bacterial pollution in freshwater 

using an ANFIS. The model produced instantaneous results by the measurement of the physical 

and chemical properties of the sensors. ANFIS based methods are based on the concept of 

Fuzzy set theory, which states that a variable can partially belong to a set and can have a 

membership value between 0 and 1. The number of rules depicted the number of fuzzy sets 

created. The author revealed the use of an artificial neural network model of three layers trained 

and tested on the collected water samples. ANFIS based model was used because it combines 

the advantages of fuzzy systems with transparent knowledge representation and those neural 

networks which deal with the implicit knowledge that can be acquired using learning.  Kamali 

and Binesh (2013) used ANN and ANFIS to study the diffusion of water through nanotubes 

using molecular dynamics data. They concluded that ANFIS outperformed ANN. 

 

Similarly, Azeez et al. (2013) compared the performance of ANN and ANFIS in the triage of 

emergency patients using various vital signs of patients as input parameters. Chandaran et al. 

(2012) explained the detection of sulphate-reducing bacteria (SRB) using ANFIS, which can 

be crucial in curbing the corrosion of iron material in the system. The author used three 

parameters: Voltage, Temperature, and humidity, for training the model. The membership 

functions were taken to be trapezoidal and bell-shaped. The ANFIS model used three inputs, 

which finally gives the output as either 1 or 0. The predicted results were obtained by the input 

parameters and the number of epochs was taken as 20. Lastly, the model was tested with testing 

data up to 250 epochs.The author compared the results and the best membership function was 

given by trapezoidal shape. Keshavarz et al. (2018) explained the application of ANFIS based 

method in determining the compressive strength of concrete. The model used 150 different 

concrete specimens with various mix design parameters. Five different concrete mix 

parameters, i.e., cement, water to cement ratio, gravel, sand, and micro-silica, were considered 

as the parameters. For results, two of the soft computing methods: ANN and ANFIS, were 

selected to detect the compressive strength of concrete. The results were computed in 

MATLAB, where the concrete mix parameters were used as input variables and the 

compressive strength of concrete was used as an output parameter. In order to compare the 

ANN and ANFIS based methods, the author used parameters like the R squared coefficient of 

both models. The higher values of the coefficient of determination would indicate the better 
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capability of the model in predicting the specific studied characteristics. Calp (2019) proposed 

a hybrid model for the estimation of the regional rainfall amount. The proposed model focused 

on providing efficient water resources management by estimating the amount of rainfall that 

can occur in the region. While creating the model, the MATLAB package program was used 

and regression values (R) or mean squared error (MSE) were taken into account. The error rate 

was obtained as 0.9920, 0.9840 and 0.0011, respectively, for the model. The author concludes 

by stating that this hybrid model is an important support tool for estimating the amount of 

annual rainfall and ensuring the effective management of water resources. 

 

2.5 Superposition-based learning algorithm 

The superposition-based learning algorithm (SLA) is based on the search algorithm of Grover 

(1996). The learning algorithm can be used for training neural networks. Grover’s algorithm 

(1997) is used for searching an unordered data linearly faster than any conventional method. 

The Grover’s learning algorithms for neural networks (Altaisky, 2001; Zhou et al., 2007; Silva 

et al., 2010; Panella et al., 2011) can be categorized as superposition based (Silva et al., 2010; 

Panella et al., 2011) or iterative (Altaisky, 2001; Zhou et al., 2007). This algorithm is a 

supervised learning algorithm for neural networks, where all training set patterns are introduced 

simultaneously to the network using a superposition state. The iteration number I of the 

algorithm is calculated from equation (2.1): 

I = [ 
𝜋

4
 √

𝑁

𝑀
 ]       (2.1) 

Where, 

            I = iteration number 

  M = Number of solutions 

  N = Number of parameters 

 

2.6 Convolutional Neural Network 

A Convolutional Neural Network (CNN) is a subset of the neural network mentioned 

previously. One or two convolutional layers are present in a CNN, always with a subsampling 

layer, accompanied by one or more fully connected layers (Khan et al. 2020). The conception 

of a CNN was sparked by the discovery of a sense system in the brain, the visual cortex. The 

visual cortex comprises many cells that sense light in small. Receptive fields are overlapping 

sub-regions of the visual field. The more complex cells have wider receptive fields, and they 
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serve as local filters over the input space. The convolution layer in a CNN has the same function 

as the cells in the visual cortex (Hubel et al. 1968). A hand-designed feature extractor collects 

essential information from the input. It extracts irrelevant variables in the conventional model 

of pattern recognition (Fukushima et al. 1983). After the extractor, a trainable classifier is used, 

which is a regular neural network that divides feature vectors into classes. Convolution layers 

serve as feature extractors in CNNs. They are not, however, handcrafted. The kernel weights 

for convolution filters are selected during the training phase. Since the receptive fields of the 

hidden layers are restricted to be local, convolutional layers can extract local features. The 

weights of the convolutional and fully connected layers are calculated in CNN during the 

training phase and used for feature extraction (Brownlee 2019) and classification (Huang et al. 

2018). The improved network architectures result in reduced memory and computing 

complexity. 

 

Machine learning algorithms for object detection are based on autonomous learning and have 

good detection accuracy. Object detection algorithms based on machine learning have been 

developed for various applications like face detection (Viola et al. 2004), pedestrian detection 

(Dollar et al. 2011), medical object detection (Zhu et al. 2016), military object detection (Hua 

et al. 2018), intelligent transportation systems (Zhang et al. 2011), and intelligent monitoring 

systems (Chen et al. 2014). An anchor is used in object detection for classification and 

regression. The algorithm replaces the preceding region proposal network (RPN), feature 

selection method, and selective search (Kulkarni et al., 2015) with the guided anchor method 

(Wang et al., 2019). The network module is obtained using function selection (Hu et al. 2018) 

to elucidate the object compression problem. The skip pooling method (Bell et al. 2016) is used 

to solve the problem of small object size to improve the detection efficiency of faster region-

based CNN (R-CNN) in complex scenes. 

 

The USEPA-approved gold-standard methods for detecting E. coli and counting viable cells 

are based on culturing water samples on solid agar plates or in liquid media. Viable cell counts 

can be done by the plate count method (USEPA 2010). In the plate count technique, serial 

dilutions are made by creating aliquots of a certain volume of liquid culture and plating 

numerous serial dilutions onto culture plates. A glass spreader is used to spread the volume of 

culture over the surface of an agar plate, which is then incubated to develop colonies. The 

bacterial concentration in a water sample can then be calculated, assuming that each viable cell 

forms a single colony (Harrigan et al., 2014). The number of colonies is counted manually 
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using a bacteria colony counter (Rompré et al. 2002). Manual counting of viable bacterial cells 

on agar plates is time-consuming and can be prone to human error. The method requires experts 

to identify and count viable cells. Furthermore, due to bacterial overcrowding, high numbers 

of colony-forming units on a plate will lead to inaccurate results (Breed et al. 1916). 

 

E. coli bacteria can be identified in the laboratory using Conventional Methods (Co-ordination 

Action Food, 2007), Enzymatic Methods (Co-ordination Action Food, 2007), Molecular 

Methods (Tamerat et al. 2016; Saxena et al. 2015), and Biosensor based methods (Maas et al. 

2017). According to the method based on laboratory experiments, it takes 12-48 hours for the 

concentration of bacterial cells to be recorded. The limitation of relying solely on sensor-based 

water quality analysis for identification is that it can lead to errors. Therefore, there is a need 

for real-time monitoring. Enzymatic methods of detection are color-based methods (Rice et al. 

1989). The amount of colour appearance can be used to determine the degree of bacterial 

contamination. The detection method is based on the concept that only E. coli bacteria are fed. 

No substrate is given for other bacteria. The specified substrate is used as an essential source 

of nutrients for bacteria. A chromogenic or fluorogenic substance is released from the specified 

substrate during the substrate utilization period, which indicates the presence of E. coli. 

Manually performing this process is highly time-consuming and difficult. This detection 

process is analytical. There is always a possibility of human error, which may result in a 

disastrous decision. The colours of each concentration can be scanned using conventional 

computer vision methods. It is, however, extremely difficult to determine the colour intensity 

for each concentration level. This is made simple with deep learning since the algorithm 

calculates these colour intensities using statistically generated training sets. 

 

A Convolutional Neural Network (CNN) is a subset of the neural network mentioned 

previously. One or two convolutional layers are present in a CNN, always with a subsampling 

layer, accompanied by one or more fully connected layers (Khan et al., 2020). The conception 

of a CNN was sparked by the discovery of a sense system in the brain, the visual cortex. The 

visual cortex comprises many cells that sense light in small. Receptive fields are overlapping 

sub-regions of the visual field. The more complex cells have wider receptive fields, and they 

serve as local filters over the input space. The convolution layer in a CNN has the same function 

as the cells in the visual cortex (Hubel et al. 1968). A hand-designed feature extractor collects 

essential information from the input. It extracts irrelevant variables in the conventional model 

of pattern recognition (Fukushima et al. 1983). After the extractor, a trainable classifier is used, 
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which is a regular neural network that divides feature vectors into classes. Convolution layers 

serve as feature extractors in CNNs. They are not, however, handcrafted. The kernel weights 

for convolution filters are selected during the training phase. Since the receptive fields of the 

hidden layers are restricted to be local, convolutional layers can extract local features. The 

weights of the convolutional and fully connected layers are calculated in CNN during the 

training phase and used for feature extraction (Brownlee 2019) and classification (Huang et al., 

2018). The improved network architectures result in reduced memory and computing 

complexity. 

 

Mohanty et al. (2016) used a public dataset containing 54,306 images of healthy and diseased 

plant leaves. They developed a deep CNN to identify 26 diseases and 14 crop species with an 

accuracy of 99%. Turra et al. (2017) developed a hyperspectral image based on the acquisition 

of spectral signs from bacterial colonies growing on blood agar plates and bacteria 

identification using machine learning methods. PCA+SVM and RSIMCA methods were used 

to differentiate five selected UTI bacteria. The RSIMCA method outperformed the PCA+SVM 

method in terms of Sensitivity, Precision and F-Score for the classification of E. coli bacteria. 

The study shows that this method is time-consuming as it requires 16h of incubation compared 

to the currently available EPA-approved gold-standard analytical methods (USEPA 2010). 

Arrigoni et al. (2017) developed an HSI processing and classification system to rapidly identify 

UTI bacteria. The sheep blood agar plate samples were collected from American Type Culture 

Collection (ATCC) for the study. This method is time-consuming as it requires 18h of 

incubation compared to EPA-approved gold-standard methods (USEPA 2010). Further 

research is needed for rapid, accurate identification of bacteria and bacterial cell counting on 

agar plates using hyperspectral image analysis.  

 

Zieliński et al. (2017) used the deep learning method for bacterial colony classification using 

publicly available datasets collected from the Chair of Microbiology of the Jagiellonian 

University in Krakow, Poland. The data collection comprises 33 bacterial species, each with 

20 pictures. The developed FC-CNN model achieved an accuracy of 0.82. However, the 

developed model has not been verified by the authors using other statistical measures. Ferrari 

et al. (2017) used two different machine learning methods for automatic bacterial colony 

counting. The authors have developed Support Vector Machines and Convolutional Neural 

Networks model using publicly available datasets of urine samples. The model performance 

was validated using Accuracy, Sensitivity, and Precision statistical measures. The Sensitivity 
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and Precision of the CNN model were found to be 0.73 and 0.71. Thus, we cannot rely on this 

study for bacteria colony counting. Hay et al. (2018) developed a Convolutional Neural 

Network to identify bacteria in light-sheet fluorescence microscopy images of larval zebrafish 

intestines. The authors have used Google’s open-source Tensorflow to create convolutional 

neural networks. The accuracy of the developed CNN model was 0.90, but the authors have 

not validated the model performance using other statistical measures. Huang L et al. (2018) 

developed a convolutional neural network (CNN) for bacterial colony classification using 

digital images. The data from Peking University First Hospital was used for the classification 

of bacterial colonies. Results show that the network was able to classify 18 bacterial colonies 

with an accuracy of 73%.  

 

Alaslani et al. (2018) extracted the learned features from a pre-trained CNN and Support Vector 

Machine (SVM) algorithm for image classification. The Alex Net pre-trained CNN model was 

used for feature extraction, and the SVM algorithm was used for classification. The Iris public 

images were used for the development of an iris recognition system. Results show that the 

recognition accuracy of the Iris database was 98.3%. Nehal et al. (2019) developed an AI-based 

lab-on-chip for the detection of bacterial contamination using the Photonic Crystal-based 

optical biosensor. These biosensors came up with a few limitations of using separate sensors 

to measure physical, chemical, and bacteriological parameters of water quality which affect 

sensitivity and accuracy of the results. The method is cost-intensive and requires maintenance. 

Gunda et al. (2019) developed an AI-based mobile application for water quality monitoring 

with an accuracy of 99%. The authors have not validated the proposed model with performance 

functions. Hence, this model is not reliable for bacterial detection. Wang et al. (2020) 

developed a Deep Neural Network to rapidly detect bacterial growth and classify the 

corresponding species. The authors have developed a model that captures coherent microscopy 

images of bacterial growth inside a 60-mm-diameter agar plate and analyzes these time-lapsed 

holograms using two different DNNs. The first DNN is used to detect bacterial growth. The 

second DNN was utilized to categorize bacteria based on spatial and temporal characteristics 

extracted from incubated agar plate coherent pictures. The dataset used in this study contains 

71 images of agar plates. Six agar plate images were used for validation of the classification 

model with an accuracy of 0.90. Hence, we cannot rely on this study for bacteria colony 

counting.  
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Various unsupervised learning methods were also used to automate counting and classification 

of images in various environmental applications like Wheat ear counting using K‑means 

clustering segmentation and convolutional neural network (Xu et al. 2020), White blood cells 

segmentation using the K-means algorithm (Sarrafzadeh et al. 2015), Application of the t-SNE 

method for creating urban microbial fingerprints (Ryan 2019), Nonlinear machine learning 

pattern recognition and bacteria-metabolite multilayer network analysis of perturbed gastric 

microbiome (Durán et al. 2021). Unsupervised learning methods can be used for Clustering 

and Association. It works on uncategorized and unlabeled data, which makes it more important. 

The limitation of unsupervised learning is that it is a more time-consuming procedure than 

supervised learning because there is no matching output (Karim et al., 2020). Unsupervised 

learning methods do not predict the result of a new sample as there is no notation of the output 

along the training process (Caballé-Cervigón et al. 2020). Also, the accuracy of the 

unsupervised learning algorithm is less as compared to the supervised learning algorithm since 

input data is not categorized and systems do not know the exact response in advance (Chen et 

al. 2016; Li et al. 2020). Further research is needed to automate colony counting using 

unsupervised learning methods.  

 

Recent studies used publicly available datasets and platforms for colony counting. Torelli et al. 

(2018) used publicly available OpenCV and CellProfiler software platforms for automatic 

bacterial cell counting. Albaradei et al. (2020) used the CSRNet transfer learning application 

for cell counting. The training of the model was performed using Python with the Keras library. 

The model performance was validated using Root mean squared error (RMSE) values. The 

average RMSE value of the developed model was 22.38, which is very high. We cannot rely 

on the model for viable cell counting. The aforementioned studies indicate that the prediction 

models are based on public datasets, research reports that have been published, and testing data 

that is freely available on the internet, making it impossible to assess the model's accuracy. As 

a result, we cannot depend entirely on these studies to count bacteria colonies. However, no 

study has been done to identify and count E. coli bacterial cells on agar plates with great 

accuracy using experimental laboratory data. 

 

2.7 Principal Component Analysis (PCA) 

The principal component analysis is a multivariate method used to reduce the dimension of 

input variables when we have a vast amount of observations and an improved understanding 
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of variables (Lu et al., 2003). The PCA algorithm helps to reduce the dimension of the data 

into limited numbers of variables for data interpretation and then create basic plots to display 

essential statistics, including score plot and loading plot, to study the correlation between the 

broad clustered data set (Stojanovic et al. 2012, Beltran et al. 2006). Such associated variables 

are known as principal components (Shinde et al., 2009). PCA has its mathematical algorithm 

in linear algebra, which describes the association between the data containing the variables as 

columns and the observations or samples as rows. The fundamental purpose is to create a 

transformed matrix using coefficients of principal components that includes the maximum 

amount of information and then plot the data using a 2-dimensional plot in MATLAB software 

(Bell et al. 1997). 

 

2.8 Firefly Algorithm (FA) 

The firefly algorithm is used to improve the performance of machine learning models by 

optimizing the weights and bias between the input layer and the hidden layer of the ANN 

model. Firefly algorithm is one of the swarm intelligent algorithms developed by Yang. It is a 

metaheuristic algorithm that is inspired by nature and, based on the flashing behavior of 

fireflies, used to solve complex problems and non-linear optimization problems (Moazenzadeh 

et al. 2018). The brightness of the fireflies is the main criterion for the optimization of the 

fitness function (Gandomi et al. 2011, Yang et al., 2011). Yang developed the algorithm based 

on the following assumptions: 

1. The attraction of firefly is independent of gender due to unisexuality, and it is directly 

proportional to the brightness of the emitted light, but it is indirectly proportional to the 

distance between the fireflies(𝑥𝑖, 𝑥𝑗). The firefly can move in any direction if the 

brightness of the neighboring firefly is same. 

2. The brightness of the light is associated with the optimization of objective function 

𝑓(𝑥) in the algorithm. 

 

2.9 Prediction of Fluoride 

Recent studies examined the concentration of fluoride in water by the usage of urine (Buzalaf 

et al. 2012, Antonijevic et al. 2016, Akpata et al. 2014) and nail samples (Buzalaf et al. 2012, 

Lima-Arsati et al. 2010, Amaral et al. 2014, Linhares et al. 2016, Sousa et al. 2018). Still, no 

study has been done to examine the correlation between physico-chemical water quality 

parameters and fluoride concentration in nail samples. Fluoride fingernail analysis has been 
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widely used to determine low-level concentrations in water fluoridation, toothpaste, salt, and 

milk (Whitford et al. 1999, Buzalaf et al., 2012, Lima-Arsati et al. 2010, De Almeida et al. 

2007, Buzalaf et al., 2009, Pessan et al. 2005, Levy et al., 2004).  

 

Fukushima et al. 2009 have used nails for investigating the correlation between fluoride 

exposure biomarkers and total daily intake of fluoride with significant fluoride exposure in 

drinking water. They studied the impact of age, gender, nail growth rate, and geographic area 

on the absorption of fluorides in the fingernails and toenails (Elekdag-Turk et al., 2019). They 

obtained drinking water and nail samples and used an ion-selective electrode to examine 

fluoride concentration. A comparison mark was created on each nail, and growth levels were 

calculated. The analysis was done by ANOVA and linear regression. All the factors they 

considered were directly associated with the fluoride concentration in nail samples. The study 

recommended that nails should be used as biomarkers of fluoride contamination, with the 

advantage of being easily obtained. But they do not consider water characteristics. At present, 

none of the studies on nails as biomarkers of fluoride exposure have examined the impact of 

age, gender, and factors affecting the bioavailability of fluoride (Clarkson et al., 2000). There 

is a need to study the effect of age, weight, gender, water fluoride, nitrate, turbidity, dissolved 

oxygen, electrical conductivity, and pH levels on fluoride concentration in nail samples since 

water characteristics might also impact fluoride.  

 

2.10 Water Quality Measurement and Classification 

Ranković et al. (2010) used ANN to predict the Dissolved Oxygen concentration (DO). The 

limitation of this study is that it can’t be used for real-time monitoring since the parameter 

involved are chemical parameters and can only be detected in a laboratory setup. Gazzaz et al. 

(2012) used 23 water quality parameters for the prediction of WQI using ANN. The model 

cannot be used for real-time monitoring as it turns out to be expensive given the price of the 

sensors involved. Menon et al. (2012) developed a wireless sensor network-based river water 

quality monitoring system for continuous and remote monitoring of water quality data in India. 

The wireless sensor node in the device was intended for water pH monitoring purposes. The 

device was restricted in that it could not be used to control the contamination of water in a 

region. Meanwhile, Ali et al. (2013) classified the water quality into three classes using the 

unsupervised machine learning method. The limitation of this study is that they have not 

considered the various parameters which are correlated with Water Quality Indexing (WQI).  
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Faustine et al. (2014) developed a solar-powered system for monitoring water quality in the 

Lake Victoria Basin using WSN was developed by Sensor nodes used an Arduino core which 

was further used by sensor nodes to process measured data. Then it was sent to the gateway via 

ZigBee. The gateway gathered all the information and, using GPRS, transferred it to the 

application program. The authors demonstrated the proper functionality and implementation of 

the proposed system in the real world based on field test results. Nevertheless, the device had 

no local data analysis provision. It will thus be offline any time a mobile network interruption 

is encountered. These technologies typically work in the free band of the 2.4 GHz ISM license, 

which is often crowded and susceptible to interference and security attacks. Vijayakumar et al. 

(2015) developed a low-cost, real-time water quality monitoring system using Internet of 

Things (IoT) technologies. A Raspberry Pi model B+ microprocessor was operated by the node, 

with several water quality sensors connected to it. The water quality parameters such as 

temperature, pH, turbidity, conductivity, and dissolved oxygen can be measured using this 

system. The Raspberry Pi platform was used as a central controller. The proposed device was 

able to demonstrate water quality parameters on the Internet from experimental data. This 

approach incorporated vulnerabilities that can affect the authenticity, credibility, and 

confidentiality of measurement data due to cyber-attacks. Kalpana et al., 2016 developed a 

water monitoring device consisted of conductivity, turbidity, and pH sensor. The parameters 

can be automatically detected under the Raspberry Pi3 Model B single-board computer. The 

single-board computer receives the data from the three sensors, and the data is sent via the 

internet to the webserver. This device can be used for commercial as well as domestic purposes. 

The system can be extended to track hydrology, air pollution, the development of an industrial 

and agricultural product, etc. 

 

Amruta et al. (2017) proposed a regulated water supply system using a board arranged with the 

sun. The device includes the center and base station in which the center point is connected to 

the base station via the Zigbee advance that is operated by the board based on daylight. If the 

panel located in the sun cannot be charged due to any reason, the mechanism would cease to 

work. Previous studies used basic water quality parameters like pH, Temperature, Turbidity 

and TDS as a reference, as the variations in the value of these water quality parameters indicate 

the extent of water pollution. Therefore, overcoming this restriction leads us to prepare a new 

system that will make a negligible effort, improvement, and be user-friendly. Gopavanitha et 

al., 2017 developed a system for the monitoring and control of water quality in real-time using 
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IoT. The device consists of sensors capable of measuring the physical and chemical parameters 

of water, including temperature, turbidity, conductivity, pH, and flow. The sensor takes the 

output value from Raspberry Pi and sends it to the cloud. Using cloud computing, the sensed 

data is finally visible on the cloud, and IoT controls the water flow in the pipeline. Puneeth et 

al., 2018 proposed an application using the concept of WSN and IoT to monitor parameters via 

every node, including pH, turbidity, and temperature, which were stored and made available 

on the cloud. The system runs on solar power.  

 

Lin et al. (2018) developed a water quality monitoring system using wireless sensor network 

technology and powered by a solar panel. The prototype device was developed and 

implemented using one node powered by a solar cell and WSN technology. Data was collected 

from various node-side sensors, such as pH, turbidity, and oxygen density, and was sent to the 

base station via WSN. Kumar et al., 2019 proposed a smart sensor interface device for water 

quality monitoring systems in an IoT environment. The inventors used sensors such as CO2, 

temperature sensor, pH sensor, water level sensor, and turbidity sensor. This sensor system 

controls the entire process and is controlled by wireless communication devices centered on 

the cloud. The water level sensor is used to sense the water level within the tank and show it. 

The sensors can automatically monitor the water quality. Amareshwar et al. (2019) developed 

a sensor-based water quality monitoring system that uses MEMS sensors to assess physical 

parameters of water quality like temperature, pH, and Water Humidity. The Raspberry Pi 

model can be used as a controller for the center. The sensor information can finally be viewed 

on the web using API.  

 

A low-cost, real-time water quality monitoring system was developed by Demetillo et al. 

(2019). It can be used in remote rivers, reservoirs, coastal areas, and other water bodies. The 6 

V/3.5 amp-hour (Ah) lead-acid battery was used in the device to power the nodes. Minu et al. 

(2019) developed an IOT-based sensor that measures the pH, temperature, conductivity, 

dissolved oxygen, turbidity, bacteria, etc., in the water sample. Data were obtained by the 

sensors and sent through a network. The server would then upload the details to the cloud. The 

remote water station will read the gathered data and assess the water quality. Ahmed et al. 

(2019) predicted and classified the Water Quality of Rawal Lake, Pakistan, using various 

Machine Learning algorithms. They have taken 12 parameters – Alkalinity, Appearance, 

Calcium, Chlorides, Conductance, Fecal Coliforms, Hardness as CaCO3, Nitrate as NO2
-, pH, 

Temperature, Total Dissolved Solids, and Turbidity. The maximum accuracy reached by any 
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algorithm in their study was about 85%, and also, they didn’t propose any practical 

implementation of the algorithms for field usage. Abyaneh, 2006 used ANN and multivariate 

linear regression to predict Biological Oxygen Demand (BOD) and Chemical Oxygen Demand 

(COD) using four parameters, viz, pH, temperature, Total Suspended Solids (TSS), and Total 

Suspended (TS).  

 

Conventional water quality measurement techniques include on-site sampling and subsequent 

laboratory-based tests; both are labor-intensive and cost-intensive processes.  The 

measurements are not in real-time. Therefore there is a need for real-time monitoring of water 

quality for drinking applications to reduce labor costs and time usage.  With the help of Zigbee 

boards, recorded data is uploaded to the remote data storage in the traditional system. It requires 

more hardware to set up this technology and is very expensive. There's also no alert indication 

in that system when parameters are abnormal.  In the Solar Powered Water Quality Monitoring 

System using remote Sensor Network, the advancement of the water sensing network is 

controlled using sun board. If the sun board is not charged, then the system will not switch on, 

which is the restriction associated with this method.  

 

2.11 Research Gaps 

According to the laboratory experiment based on the conventional analysis method, 24-48 

hours are required before the bacteria concentration get reported (Gautam et al., 2011). As a 

result of limitations associated with laboratory quantification of microbial water quality, 

studies have been done to develop real-time or near real-time predictive models to aid in water 

management decisions. At present, it is not possible to measure bacterial concentrations in 

water and to obtain an immediate quantitative result to evaluate and prevent human health risks. 

This study would be supportive of data management and it could be the basis for ground water 

management in the early warning system studies for public health. Early warning systems, 

which are based on modeling, aims at obtaining real-time data for risk management. It is also 

based on real-time observation in which the information is immediately sent to a computer that 

will analyze the information, but if the parameter exceeds defined values, then the system 

moves into an alarm mode (Gourmelon et al., 2011). The gaps identified for this study can be 

listed as follows: 
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• The majority of the existing techniques are limited to most of the substantial features 

of water to limit pH, Temperature, Turbidity, Conductivity and Colour of water, but 

few major parameters were not considered which have direct effects on the growth of 

faecal coliform bacteria. The parameters such as DO, TDS, ORP, Nitrate and Fluoride 

are to be considered.   

 

• No study has been carried out to predict faecal coliform bacteria in ground water using 

various physical and chemical parameters which have a direct effect on the growth of 

bacteria. So, the aim of this study is focused on this main parameter through the study 

of the influence of water quality parameters. 

 

• Limited studies are available to evaluate the sensitivities of each input parameter to 

determine their respective influences on the predictive abilities of the models. It is 

essential to determine which physical or chemical parameters of water affect the 

variations in the faecal coliform bacteria concentrations. So the model sensitivity 

analysis should be done to evaluate the sensitivities of various physico- chemical 

parameters. 

 

• Previous studies show that the predictive models are based on published research 

reports, public datasets, and open-source testing data, so it is difficult to check the 

accuracy of the model. Thus, we cannot rely solely on these studies for bacterial 

detection. 

 

• Manual counting of viable bacterial cells on agar plates is time-consuming and can be 

prone to human errors. The method requires experts to identify and count viable cells. 

Furthermore, due to bacterial overcrowding, high numbers of colony-forming units on 

a plate will lead to inaccurate results (Breed et al. 1916). 

 

• None of the studies on nails as biomarkers of fluoride exposure have examined the 

impact of age, gender, and factors affecting the bioavailability of fluoride (Clarkson 

and McLoughlin 2000). There is a need to study the effect of age, weight, gender, water 

fluoride, nitrate, turbidity, dissolved oxygen, electrical conductivity, and pH levels on 
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fluoride concentration in nail samples since water characteristics might also impact 

fluoride. 

 

• Conventional water quality measurement techniques include on-site sampling and 

subsequent laboratory-based tests; both are labor-intensive and cost-intensive 

processes. The measurements are not in real-time. Therefore there is a need for real-

time monitoring of water quality for drinking applications to reduce labor costs and 

time usage. Previous studies cannot fulfill the objective of real-time monitoring of water 

quality parameters. There is a need for a portable system, the output is legible for people 

with limited or no literacy and it will work in all environmental conditions. 

 

2.12 Objectives of the study 

The purpose of this work is to describe the characterization of water quality in Rajasthan state, 

using the data collected during the year 2019-2021. A total of 1301 groundwater samples are 

collected from 348 villages and cities in the pre-and post-monsoon seasons. These water 

samples are tested for various physical, chemical, and microbiological water quality parameters 

in laboratories at Birla Institute of Technology and Science, Pilani, India. Data from pre and 

post-monsoon seasons of the study were compared with national water quality standards. 

 

The objective of this study is to develop a model based on laboratory experiments to predict 

the count of faecal coliform bacteria for cost-effective water quality management. This study 

would evaluate the accuracy of the modeling approach to predict faecal coliform bacteria 

concentrations. In recent studies where the process-based models based on laboratory 

experiments are difficult to develop, the proposed model would provide quick and accurate 

predictions of bacterial concentrations in water. This work would also include the limited 

amount of research on the use of data-driven modeling methods for bacteria prediction in water. 

There are various methods available for fecal coliform identification, which is associated with 

environmental effects include to the challenges in accurately modeling fecal coliform 

concentrations in surface waters. According to recent studies, comprehensive process-based 

models are neither possible nor available for use in site-specific models based on water quality 

monitoring data. As real-time water quality monitoring and stream gauges become more widely 

available in watersheds, there is a necessity to find effective models that will be highly 

beneficial in applications such as analyzing water bodies for current water quality 
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requirements, developing a faecal coliform, giving early warnings to the public, and enforcing 

groundwater recommendations. It is intended for human contact recreation activities and 

provides rapid estimations of bacterial contamination. Water infections caused by pathogen 

exposure in ground water sources continue to be a major public health problem. The ability to 

swiftly assess bacterial cell quantities will be highly useful in preventing individuals from 

coming into contact with contaminated water and, therefore, limiting health risks associated 

with bacterial infection contamination. 

 

The study focuses on developing a laboratory experimental-based model to get the accurate 

time-based prediction of fecal coliform bacteria in water using the various physical, chemical, 

and bacteriological parameters. In order to accomplish this objective, the following issues need 

to be addressed. 

 

• Water Sampling, Testing and Identification of concentration for different physical, 

chemical and biological water quality parameters in groundwater of Rajasthan. 

 

• To identify the correlations between fecal coliform bacteria (FCB) concentrations and 

physico-chemical water quality parameters. Sensitivity analysis will be performed to 

study the importance of different water quality parameters on bacterial concentration. 

 

• To automate the process of bacterial detection using Artificial Intelligence. 

 

• To automate the process of bacterial colony counting using Machine Learning. 

 

• Comparing the experimental laboratory results with the model performance in terms of 

the predictive ability. So, the error and correlation analysis will be done to get the 

accurate model and to develop an AI model based on laboratory experimental results to 

predict fecal coliform bacteria in water. 

 

• Apart from laboratories test, the application of different artificial intelligence (AI) 

methods will be used to predict fluoride in nails, which will help identify the degree of 

fluoride exposure to children, females, and males. 
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• To develop a low-cost system for real-time monitoring of water quality. A system that 

is portable, output is legible for people with limited or no literacy and it will work in 

all environmental conditions. 
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CHAPTER 3 

 

3. Analysis of increase in cell counts of E. coli in groundwater of Rajasthan: 

Possible presence of VBNC cells 

E. coli bacteria are associated with the coliform group and is a more precise indicator of faecal 

contamination than other coliform bacteria; its existence indicates the possible presence of 

harmful disease-causing bacteria. This chapter discusses the water sampling and laboratory 

testing for the study. A study is carried out to analyze the groundwater quality of the Rajasthan 

region. The experimental laboratory results are synthesized to test the physical, chemical, and 

microbiological parameters of water. Detection of E. coli bacteria in groundwater samples is 

performed. The detection of waterborne bacteria is crucial to prevent health risks. We 

developed an automated process of waterborne bacterial detection using AI. 

 

3.1 Introduction 

Water pollution is one of the most critical challenges for sustainable development. Water 

quality measurement is an important stepping stone towards finding a solution to this problem. 

Water quality parameters are currently measured using laboratory testing methods. The 

standard laboratory sensors are stationary and water samples are brought in from the field for 

analysis. The monitoring of bacteriological drinking water quality relies mainly on the study 

of indicator bacteria. E. coli is a more precise indicator of water contamination than other fecal 

coliform bacteria due to the advancement in testing methods. E. coli bacteria can be identified 

in the laboratory using conventional methods (Co-ordination Action Food, 2007), enzymatic 

methods (Co-ordination Action Food, 2007), molecular methods (Tamerat et al., 2016; Saxena 

et al., 2015), and biosensor-based methods (Maas et al., 2017). 

 

3.2 Study Area 

The study was carried out in Rajasthan, India (Figure 3.1). This study focused on costs and 

remediation of groundwater contamination in India, with an emphasis on Rajasthan. During 

the years 2019–2021, 1,301 groundwater samples were collected from 348 villages and towns. 

The water samples were examined in the laboratory with different physical, chemical, and 

microbiological water quality tests utilizing titration and spectroscopy. Laboratory testing was 

carried out at the environmental engineering laboratory in the department of civil engineering 

at BITS Pilani, Rajasthan. The water quality parameters are as follows; pH, total dissolved 
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solids (TDS, mg/l), oxidation-reduction potential (ORP, mg/l), dissolved oxygen (DO, mg/l), 

electrical conductivity (EC, s/m), turbidity (NTU), fluoride (mg/l), and nitrate (mg/l) are 

measured in the laboratory using the titration and spectroscopy method. 

 

Figure 3.1: Location of the study area. 
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3.3 Methodology 

The following methodology has been adopted to characterize the groundwater: 

• Physico-chemical analysis of water samples for identification pH, total dissolved solids, 

oxidation-reduction potential, dissolved oxygen, electrical conductivity, turbidity, 

fluoride and nitrate concentration in groundwater of Rajasthan. 

• Detection of the presence or absence of bacteria in groundwater samples is performed. 

• Identification of bacteria present in groundwater samples. 

• Viable count. 

• Detection of E. coli bacteria using Adaptive Neuro-Fuzzy Inference System. 

 

3.4 Groundwater quality 

The groundwater samples were collected from eight districts of Rajasthan, India, under the 

BITS-UVA (University of Virginia) groundwater contamination project, containing 1302 

water samples used in this study. Microbiological water quality analysis was performed to 

identify the bacteria present in water using the gram staining culturing method. After 

identification, a viable count of E. coli bacteria was performed to count the number of actively 

growing bacterial cells in terms of colony-forming units (CFU). The laboratory testing is 

carried out at Environmental Engineering Lab, Department of Civil Engineering, BITS Pilani, 

Rajasthan. Table 3.1 provides the summary of the water quality parameters of the groundwater 

samples. 

 

Table 3.1: Summary of water quality parameters of the groundwater samples. 

Parameter Minimum Maximum  

pH 5.5 9.65 

Electrical conductivity (μs/cm) 0 8.81 

Total dissolved solids (TDS, mg/l) 42 3820 

Dissolved oxygen (DO, mg/l) 16 1.7 

Oxidation-reduction potential (ORP, mg/l) 4 760 

Turbidity (NTU) 0 62 

Fluoride (mg/l) 0.007 4.696 

Nitrate (mg/l) 0.71 357.678 
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The standards established by the Bureau of Indian standard (IS 10500: 2012) were used to 

characterize the groundwater of the study area. The various standards adopted in India are given 

in Table 3.2 (IS 10500: 2012). 

 

Table 3.2: Standard limits for physico-chemical parameters under study. 

Parameter Acceptable Limit 

pH 6.5-8.5 

Electrical conductivity (s/cm) 0.005-0.05 

Total dissolved solids (TDS, mg/l) 500-2000 

Dissolved oxygen (DO, mg/l) 4-6 

Oxidation-reduction potential (ORP, mg/l) 200-600 

Turbidity (NTU) 5-10 

Nitrate 0-45 

Fluoride 0-1.0 

 

3.4.1 Present/Absent test (PA test) 

The enzymatic method is used in this study to determine the presence or absence of E. coli 

bacteria in groundwater samples (Olstadt et al., 2007). Present/Absent test is a substrate method 

developed to overcome some constraints of the multiple tube fermentation method (Oshiro 

2002) and membrane filter method (Jagals et al. 2000). The detection method is based on the 

concept that only E. coli bacteria are fed. No substrate is given for other bacteria. Firstly 100 

ml water sample is added to the sterile disposable bottle. The powder medium (PA broth) is 

then swirled into water so that it gets dissolved completely. Once dissolved, water samples can 

be incubated for 24-48 hours at 35 °C. After the incubation period, the transition in the colour 

of the medium from reddish-purple (Figure 3.2a) to yellow (Figure 3.2b) indicates the presence 

of E. coli. Figure 3.2 shows the change in colour of the culture medium due to the presence of 

bacteria.  
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a) The initial state of culture medium  b) Final state of culture medium (if bacteria is present) 

Figure 3.2: Colour change in culture medium due to the presence of bacteria. 

 

3.4.2 Identification of bacteria  

The most significant bacteriological task is to classify water-borne pathogens. Generally, 

bacteria display three basic shapes: round, rod-shaped, and spiral. After water samples are 

collected, bacteria must be grown on culture media for identification. Gram staining is the first 

step towards identifying bacteria. Staining is a method used for the differentiation of bacteria 

in the cell wall based on their different constituents. By coloring these cells violet or red, the 

gram staining method categorizes bacteria into two classes: gram-positive and gram-negative.  

 

Eosin methylene blue (EMB) agar is a selective and differential medium used to isolate fecal 

coliform bacteria. It provides a rapid and accurate method of differentiating E. coli from other 

gram-negative pathogens. E. coli bacteria is an indicator of fecal contamination in water. The 

presence of E. coli bacteria indicates the possibility of the presence of pathogenic bacteria and 

viruses (Khan et al. 2020). Nobody can ferment lactose except E. coli. If E. coli bacteria are 

present in water. In this case, a colony will appear on an agar plate with a metallic sheen with 

a dark center. Gram-positive bacteria growth is typically hindered on EMB agar because of the 

toxicity of the methylene blue dye. Therefore, only colonies of E. coli will appear on agar 

plates. If no colony appears on the agar plates, it indicates that E. coli bacteria are absent in 

water. Consequently, it can be concluded that only E. coli bacteria will grow on agar plates; 

gram-positive bacteria will not grow on agar plates, so this method is only valid for E. coli 

bacteria. Figure 3.3 shows a petri dish containing E. coli bacteria. 
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Figure 3.3: Petri dish containing E. coli bacteria. 

 

3.4.3 Viable count 

Viable cell counts were performed using the plate count method (USEPA 2002). EMB agar 

(Leininger et al. 2001) was used as a growth media for the identification of E. coli. Using 1-

mL water samples, serial dilution was performed so that dilution two had a concentration one-

tenth that of dilution one and one hundredth that of the water sample. Next, 20 mL of molten 

cooled agar solution and diluted water samples were mixed well and poured into a sterile petri 

dish with a diameter of 90 mm. The agar plates were placed in an incubator at 35°C for 24–48 

h to distribute the colonies throughout the depth of the medium. Colony-forming units present 

in the petri dish were counted using a microscope at 10× magnification. The colony-forming 

units present in a water sample can be determined by multiplying the number of colonies 

present on the agar plate by the sample’s dilution factor (Bartram et al. 1996), as shown in 

Equation (3.1) 

CFU/mL = number of colonies * dilution factor     (3.1) 

 

The viable count analysis of the water samples showed E. coli bacterial strains with minimum 

cell counts of 4×107 CFU/100 mL and maximum cell counts of 132 × 107 CFU/100 mL, as 

shown in Figure 3.4. A total of 99 groundwater samples were found positive for E. coli. 
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Figure 3.4: Viable cell count of E. coli in groundwater samples. 

 

According to laboratory-based culture methods, 12-48 hours are required for bacteria to be 

reported. After plating, water samples are kept in an incubator at 35℃ for 48 hours. The time 

of incubation depends on the organism and medium of growth. However, every viable cell that 

has been spread on the petri dish containing agar must grow and divide several times during 

the incubation to form a detectable colony of microorganisms. The growth of the bacteria is 

observed after 48 hours of incubation. No changes are observed in any of the water samples 

after 48 hours of incubation. The sterile disposable bottles are stored in the laboratory at room 

temperature for preservation after analysis. After 30 days of water testing for detection of 

presence or absence of E. coli bacteria, the presence of bacteria was observed in 99 samples 

due to a change in colour of the medium from reddish-purple to yellow, indicating the presence 

of E. coli. According to WHO, USEPA and IS 10500: 2012, E. coli bacteria shall not be 

detectable in 100 mL of the water sample. The viable count analysis of water samples showed 

the presence of E. coli with minimum cell counts of 4x102 CFU/100mL and maximum cell 

counts of 132x102  CFU/100mL. It indicates that there may be a possible presence of viable but 

not culturable (VBNC) cells of E. coli induced by diverse environmental stresses that restricted 

the growth of bacteria under controlled laboratory conditions. When samples were kept at room 

temperature under anaerobic conditions, the bacterial cells become culturable once again after 

specific resuscitation protocols.  
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The limitation of only relying on sensor-based water quality analysis for detection can be prone 

to human errors. Hence, there is a need to automate real-time bacterial monitoring to minimize 

the error, as mentioned above. To address this issue, we implement an automated process of 

water-borne bacterial detection using a hybrid technique called Adaptive Neuro-fuzzy 

Inference System (ANFIS) that integrates the advantage of learning in an ANN and a set of 

fuzzy if-then rules with appropriate membership functions. 

 

3.5 Detection of E. coli bacteria using Adaptive Neuro-Fuzzy Inference 

System 

Artificial neural networks (ANN) mimic the biological neural network of the visual cortex in 

the brain. The brain consists of a densely interconnected set of information-processing units 

called neurons. Information is stored and processed in the brain by the involvement of each 

neuron, which subsequently helps in human learning. Similarly, an ANN model trains itself for 

learning by connecting with different nodes (Negnevitsky 2005). The ANFIS incorporates the 

self-learning ability of neural networks with the linguistic expression function of fuzzy 

inference. ANFIS is a multilayer feed-forward network. Each node performs a particular 

function on receiving signals and has a set of parameters about this node. Like ANN, ANFIS 

can convert unseen inputs to their respective outputs by learning the rules from previously 

observed data (Bouharati et al., 2008). An ANFIS model can adjust the parameters better in 

any series and takes into consideration all the edge cases in a rule-viewer interface. ANN model 

may not take the probabilistic values, but using ANFIS, we can make a set of rules for the 

same. While ANFIS integrates with fuzzy inference systems and ANNs, it helps to solve non-

linear and complex problems within a frame (Okwu et al., 2018). Hybrid-based methods like 

ANN and fuzzy or ANFIS-GA (Genetic Algorithm) can prove to be extremely useful in dealing 

with missing data (Keshavarz et al., 2018). Hybrid models significantly increase the accuracy 

of estimation, especially in non-linear problems (Calp 2019). 

 

Bouharati et al. (2008) proposed a method to detect micro bacterial pollution in freshwater 

using an ANFIS. The model produced instantaneous results by the measurement of the physical 

and chemical properties of the sensors. ANFIS methods are based on the concept of Fuzzy set 

theory, which states that a variable can partially belong to a set and can have a membership 

value between 0 and 1. In this study, three parameters were selected as an input, i.e., pH, 

temperature, electrical potential, and the output is considered as the number of bacteria. The 
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author revealed the use of an artificial neural network model of three layers trained and tested 

on the collected water samples. ANFIS model was used because it combines the advantages of 

fuzzy systems with transparent knowledge representation and those neural networks which deal 

with the implicit knowledge that can be acquired using learning. Azeez et al. (2008) compared 

the performance of ANN and ANFIS in the triage of emergency patients using various vital 

signs of patients as input parameters.  

 

Chandaran et al. (2012) explained the detection of sulphate reducing bacteria (SRB) using 

ANFIS, which can be crucial in curbing the corrosion of iron material in the system. The author 

used three parameters: Voltage, Temperature, and humidity, for training the model. The 

membership functions were taken to be trapezoidal and bell-shaped. The ANFIS model used 

three inputs, which finally give the output as either 1 or 0. The predicted results were obtained 

by the input parameters and the number of epochs was taken as 20. Lastly, the model was tested 

with testing data up to 250 epochs. The author compared the results and the best membership 

function was given by trapezoidal shape. Calp (2019) proposed a hybrid model for the 

estimation of the regional rainfall amount. The proposed model focused on providing efficient 

water resources management by estimating the amount of rainfall that can occur in the region. 

While creating the model, the MATLAB package program was used and regression values (R2) 

or mean squared error (MSE) were taken into account. The error rate was obtained as 0.9920, 

0.9840 and 0.0011, respectively, for the model. The author concludes by stating that this hybrid 

model is an important support tool for estimating annual rainfall and ensuring the effective 

management of water resources. 

 

The detection of waterborne bacteria is crucial to prevent health risks. This study uses soft 

computing techniques based on Artificial Neural Networks (ANN) to detect bacterial pollution 

in water. The limitation of only relying on sensor-based water quality analysis for detection 

can be prone to human errors. Hence, there is a need to automate real-time bacterial monitoring 

to minimize the error, as mentioned above. To address this issue, we implement an automated 

process of water-borne bacterial detection using a hybrid technique called Adaptive Neuro-

fuzzy Inference System (ANFIS) that integrates the advantage of learning in an ANN and a set 

of fuzzy if-then rules with appropriate membership functions. 

 

In the first part of this section, we explain the design of a fuzzy expert system based on 

membership functions. Subsequently, an ANFIS model will be introduced based on the fuzzy 
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rule base. This study assigned three fuzzy sets to each water quality parameter, namely 

desirable, undesirable, and highly undesirable. The individual membership function is assigned 

to each parameter, as described in Table 3.3. 

 

Table 3.3: Groups defined for water quality parameters 

Parameters Range 

 Undesirable Desirable Highly Undesirable 

Temperature 0-10 5–41 35-48 

Dissolved oxygen 0-5 2-14 10-20 

pH 0-7.5 6.5-8.5 8-14 

Electrical conductivity 0-300 200-1000 800-1000 

 

3.5.1 Data pre-processing 

A series of experimental data is obtained from the BITS-UVA project. The detection of 

bacterial presence is based on four basic water quality parameters, i.e., Temperature, Dissolved 

Oxygen (DO), pH, and Electrical Conductivity (EC). There are four inputs and one output for 

each set of data. The output, ‘1’ represents the existence of bacteria, and ‘0’ indicates absence. 

These four inputs are used to model the ANFIS system, which gives an output that gives output 

in between 1 and 0.  The computation of data for ANFIS is conducted using MATLAB 2019a. 

However, the ANFIS training algorithms are embedded in MATLAB’s fuzzy logic toolbox 

(MathWorks). There are four steps for computation. The first step is data input and 

normalization. After normalization, the total experimental data are divided randomly into 70% 

for training, 15% for testing, and 15% for validation. The next step is to assign membership 

functions for data, then train the input using the ANFIS training function. Finally, the predicted 

result can be obtained by inputting the parameters. Figure 3.5 shows the structure of the ANFIS 

model. 
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Figure 3.5: Structure of the ANFIS model. 

 

3.5.2 Assigning membership function 

In this study, three types of membership functions (Triangular, Trapezoidal, Bell-shaped) are 

tested to get the best function for the prediction model.  The interval contains three fuzzy sets 

as: “Desirable”, “Undesirable” and “Highly undesirable” Input parameters of the Fuzzy 

Inference System (FIS) are: Temperature, Dissolved Oxygen, pH, and Conductivity. 

Temperature accepts values in [0 48] ℃. Mathematical equations of membership expressions 

for temperature are shown from Eq. (1, 2, and 3). Dissolved Oxygen accepts values in [0 20] 

ppm. Mathematical equations of membership expressions for DO are shown from Eq. (4, 5, 

and 6). pH accepts values in [0 14]. Membership equations of membership expressions for pH 

are shown from Eq. (7, 8, and 9). Conductivity accepts values in [0 1000] µS/cm. Membership 

equations for conductivity are shown from Eq. (10, 11, and 12).  
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a) Triangular Membership Function 

By setting the number of membership functions to three for input data and using a triangular 

function, the parameters for each input’s membership function are tabulated for epochs 1-50. 

Figure 3.6 and Figure 3.7 show the initial and final membership functions of the input data 

derived by training via the triangular function. Table 3.4 shows the label of results that are used 

and their representative of the membership functions. 

 

Table 3.4: Labels of results showing membership function (Where in=input, mf=membership 

function) 

Labels of 

results 

Temperature Dissolved 

oxygen 

pH Electrical 

conductivity 

Desirable 

limits 

in1mf1 in2mf1 in3mf1 in4mf1 

Undesirable 

limits 

in1mf2 in2mf2 in3mf2 in4mf2 

Highly 

undesirable 

limits 

in1mf3 in2mf3 in3mf3 in4mf3 

 



88 
 

 

(a) Temperature. 

 

 

(b) Dissolved oxygen. 

 

 

(c) pH. 
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(d) Electrical Conductivity. 

Figure 3.6: Initial membership function (Triangular) of Temperature, Dissolved oxygen, pH, 

and Electrical conductivity. 

 

 

(a) Temperature 

 

 

(b) Dissolved oxygen 
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(c) pH 

 

 

(d) Electrical Conductivity. 

Figure 3.7: Final membership function (Triangular) of Temperature, Dissolved oxygen, pH, 

and Electrical conductivity. 

 

b) Trapezoidal Membership Function 

By setting the number of membership functions to three for input data and using a trapezoidal 

function, the parameters for each input’s membership function are recorded and tabulated for 

epochs 1-20. Figure 3.8 and Figure 3.9 show the initial and final membership functions of the 

input data derived by training via the trapezoidal function.  
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(a) Temperature 

 

 

(b) Dissolved Oxygen 

 

 

(c) pH 
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(d) Electrical conductivity. 

Figure 3.8: Initial membership function (Trapezoidal) of Temperature, Dissolved oxygen, 

pH, and Electrical conductivity. 

 

 

(a) Temperature 

 

 

(b) Dissolved Oxygen 
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(c) pH 

 

 

(d) Electrical conductivity. 

Figure 3.9: Final membership function (Trapezoidal) of Temperature, Dissolved oxygen, pH, 

and Electrical conductivity. 

 

c) Generalized bell-shaped Membership Function 

By setting the number of membership functions to three for input data and using a generalized 

bell function, the parameters for each input’s membership function are recorded and tabulated 

for epochs 1-100. Figure 3.10 and Figure 3.11 show the initial and final membership functions 

of the input data derived by training via the trapezoidal function.  
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(a) Temperature 

 

 

(b) Dissolved Oxygen 

 

 

(c) pH 
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(d) Electrical conductivity. 

Figure 3.10: Initial membership function (Bell-shaped) of Temperature, Dissolved oxygen, 

pH, and Electrical conductivity. 

 

 

(a) Temperature. 

 

 

(b) Dissolved Oxygen. 

 



96 
 

 

(c) pH 

 

 

(d) Electrical conductivity. 

Figure 3.11: Final membership function (Bell-shaped) of Temperature, Dissolved oxygen, 

pH, and Electrical conductivity. 

 

3.5.3 Predicted output for ANFIS 

The testing data was used to check the capability of the model. We compare the results obtained 

from three membership functions (triangle, trapezoidal, and bell-shaped) for output prediction. 

The error rate and parameters for every single membership function are plotted. The resulted 

FIS was tested using testing data for a hundred epochs. We tabulate the error analysis for each 

membership function type. Figure 3.12 shows the proposed ANFIS for the detection of 

bacteria. 
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Figure 3.12: Proposed ANFIS for the detection of bacteria in terms of temperature, dissolved  

oxygen, pH, and electrical conductivity as the model inputs. 

 

3.5.3.1 Error rate 

The training error of three membership functions was tested and shown in Figure 3.13. For 

each type of membership function, the error rate after every single epoch has been recorded. 

The rate is tabulated in Table 3.5. 

 

 

(a) Triangle 
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(b) Trapezoidal. 

 

 

(c) Bell-shaped. 

Figure 3.13: ANFIS training error of triangle, trapezoidal and bell-shaped as membership 

function. 

 

Table 3.5: Error rate 

  Error 

Epoch Triangle Trapezoidal Bell-shaped 

1 0.0789 0.07678 0.06645 

10 0.0707 0.06321 0.05775 

20 0.0628 0.05665 0.04838 
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50 0.0623 0.05665 0.02036 

100 0.0623 0.05665 0.00619 

  

From Table 3.5, it can be seen that the error rate of using bell-shaped membership function is 

lesser from the starting if compared to triangular and trapezoidal function. The differenced 

becomes more noticeable when epochs are equal to 100. The error rate is only 0.006 (bell-

shaped), which is lesser than 0.06 (triangular) and 0.05 (trapezoidal), and the results show that 

the bell-shaped function always gives the least error. 

 

3.6 Summary 

Due to both biotic and abiotic factors such as starvation, exposure to chlorine, pH, oxygen 

availability, heavy metals, exposure to white light, temperature changes, salinity, nutrient 

scarcity, incubation beyond normal growth temperature range, osmotic pressure, copper, harsh 

environmental conditions, nutrient scarcity and many other factors induced the VBNC state. 

Specific parameters, such as the method of storage, holding time, and temperature, also 

influenced the concentration of E. coli. It can be concluded that culture-based methods are not 

accurate for the detection of E. coli bacteria in water. Further research is needed to detect the 

VBNC cells of bacteria in water. E. coli entering the VBNC condition could have a detrimental 

effect on public health. The number of viable cells could be underestimated, and at any time, 

the VBNC cells could still produce toxins or be resuscitated to become virulent again and again. 

Various studies have found that resuscitation of E. coli post-VBNC may be possible. Some 

pathogenic E. coli strains can produce toxins in VBNC conditions, while others are non-toxic 

but can regain virulence after regeneration. The results showed that the units forming the 

colony grew over time. The cell wall of E. coli remained intact after one month of laboratory 

incubation.  

 

The detection of waterborne bacteria is crucial to prevent health risks. The current study uses 

soft computing techniques based on Artificial Neural Networks (ANN) for the detection of 

bacterial pollution in water. The limitation of only relying on sensor-based water quality 

analysis for detection can be prone to human errors. Hence, there is a need to automate real-

time bacterial monitoring to minimize the error, as mentioned above. To address this issue, we 

implement an automated process of water-borne bacterial detection using a hybrid technique 

called Adaptive Neuro-fuzzy Inference System (ANFIS) that integrates the advantage of 
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learning in an ANN and a set of fuzzy if-then rules with appropriate membership functions. An 

ANFIS model for the detection of bacteria in drinking water sources has been developed with 

81 fuzzy set rules, and the predictive ability of the model is compared with three membership 

functions. The membership function changes automatically with every iteration during the 

model training.  

 

The results show that ANFIS with a generalized bell-shaped membership function is the most 

suitable membership function to model bacterial detection. The least error obtained at epoch 

100 is 0.00619 by applying a bell-shaped function through the testing data verification. ANFIS 

with a bell-shaped membership function gives precisely the same output as experimental 

output. It can be concluded that culture-based methods are not accurate for detecting E. coli 

bacteria in water. Further research is needed to detect the VBNC cells of water-borne bacteria 

using sensitive, reliable, and cost-effective methods. The study recommended that E. coli 

bacteria not be used as an indicator organism when the cells are viable but non-culturable. 
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CHAPTER 4 

 

4. Superposition learning-based model for prediction of E. coli in 

groundwater using physico-chemical water quality parameters 

The prediction of waterborne bacteria is crucial to prevent health risks. Therefore, there is a 

need to study groundwater quality by predicting the presence of E. coli. The experimental data 

for prediction was obtained from BITS-UVA (University of Virginia) groundwater 

contamination project, having 1301 experimental laboratory results synthesized to test the 

physical, chemical, and microbiological parameters of water. Sensitivity analysis is performed 

to study the importance of physico-chemical water quality parameters on E. coli concentration. 

The superposition-based learning algorithm (SLA) is proposed to study the importance of 

water quality parameters to predict E. coli in groundwater. The predictive models were 

developed using MATLAB (R2019b) software. 

 

4.1 Introduction 

Water is crucial for human sustenance. An adequate, accessible, and safe supply is needed to 

be available to the consumers. By improving access to clean drinking water, it will result in 

substantial health benefits. Efforts should be made to attain groundwater quality as clean as 

possible for drinking (WHO, 2017). Water helps to maintain the moisture in the internal organs 

of the body (Gerald, 2011). It also protects the volume and uniformity of blood and lymph 

fluids (Dooge, 2001), controls body temperature, and eliminates toxins from the body through 

urine, sweat, and respiration (Molden, 2013), which is essential for maintaining skin functions 

(Burton et al., 1987). Water pollution can lead to kidney failure and can cause death (David et 

al., 2011). In the present situation, people are struggling to obtain access to clean water. 

Generally, infectious diseases are caused due to the presence of human or animal waste in 

groundwater. Some primary health diseases are caused by micro-organisms, including bacteria, 

pathogens, viruses, etc., because they can survive, reproduce, and spread in water (Payus et al., 

2018). About 37.7 million people in India are affected by waterborne diseases annually, and 

1.5 million children have died from diarrhea (WHO, 2017). India had recorded 10,738 deaths 

from 2012-2017. Uttar Pradesh had recorded the highest deaths due to diarrhea, followed by 

Assam, West Bengal, Delhi, and Madhya Pradesh (CBHI, 2018; WHO, 2017; India Water 

Portal, 2019).  
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4.2 Artificial Intelligence (AI) 

Applications of artificial intelligence (AI) in water, ecology and environmental engineering 

were reported at the beginning of the 1990s. However, in recent years, Artificial Neural 

Networks (ANNs) have been used intensively for prediction and forecasting in several 

engineering and water-related areas, including water resource studies by Liong and 

Sivapragasam, 2002; Muttil and Chau, 2006; El-Shafie et al. 2008; El-Shafie et al. 2011; 

Noureldin et al. 2011; Najah et al. 2009; oceanography by Makarynska et al. 2008 and 

environmental engineering by Grubert, 2003. The initial research in coliform bacteria 

prediction dates back to 2003, which includes analyzing and developing a model to predict 

bathing waters compliance along the coastline of the Firth of Clyde, situated in the southwest 

of Scotland, UK. This study used rainfall, river discharge, sunlight, and tidal conditions as 

inputs of these networks, and fecal coliforms were used as an output. River discharge was 

found to be the most significant input variable to the bacterial concentration, and the height of 

the high tide was found to be relatively significant (Lin et al., 2003). 

  

A few studies have evaluated the relation between E. coli bacteria and physic-chemical 

parameters in water samples. The effects of temperature, pH, and water activity were studied, 

out of which temperature was found to be the most crucial parameter for the thermal 

inactivation of E. coli. The limitation of the model was that it could not provide a prediction 

equation for the inactivation rate of bacteria (Lou and Nakai, 2001). Results show that the 

growth of E. coli was correlated with pH, dissolved oxygen (DO), specific conductivity (SC), 

and water temperature (T). An AI-based model on multiple regression analysis was developed 

to predict coliform bacteria concentrations at the selected sites based on available USGS NWIS 

data (David and Haggard, 2011). Francy et al. (2013) proposed a model to evaluate the 

correlation between E. coli and other parameters based on water samples collected from eight 

inland recreational lakes in Ohio. The parameters used were rainfall, wind direction, speed, 

turbidity, and water temperature, but the model was not developed at sites where the E. coli 

concentration was exceeded. The model was used to predict environmental quality along the 

Penchala River urban catchment area in Kuala Lumpur, Malaysia, directly affected by human 

activities (Zamani and Saybani, 2014). The model provided the best training performance, with 

70 neurons in the hidden layer.  
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Mouna et al. (2014) observed factors that have an impact on the growth of E. coli with a 

negative correlation of higher salinity (R=-0.97) and pH (R=-0.98) against a positive 

correlation of higher turbidity (R=0.93). Islam et al. (2017) developed a linear regression model 

to evaluate the impact of the atmospheric conditions on bacterial counts. Precipitation and 

temperature of the water showed a positive correlation with the growth of bacteria. Cheng et 

al. (2013) studied the correlation between water quality parameters and E. coli growth 

by Pearson's correlation analysis. They observed that the density of bacteria varied negatively 

with pH and the removal of total suspended solids. The growth of E. coli in aeration pond was 

negatively correlated with the increased dissolved oxygen. Shamsudin et al. (2016) observed 

E. coli growth using Pearson correlation. The results showed a linear relationship with pH 

(R=0.971), time (R=0.958), turbidity (R=0.885), dissolved oxygen (R=-0.861), and 

temperature (R=0.763). Rao et al. (2015) examined the relationship between water quality and 

turbidity. Increased E. coli cell counts were significantly associated with increased turbidity (β 

= 0.003; p < 0.0001) and decreased dissolved oxygen concentrations (β = −0.310; p < 0.0001). 

The water quality prediction model was developed with water samples from 4 different 

sampling stations on the Panchaganga River for modeling river quality with BOD and DO 

parameters (Mulla et al., 2016).  

 

Bisi-Johnson et al. (2017) studied the physico-chemical and microbial properties of water. The 

relationship between total suspended solids (TSS) and turbidity with E. coli was studied by 

Huey et al. (2010). In all four of the watersheds, a significant correlation was observed between 

turbidity and E. coli. In the three perennial watersheds, a correlation was observed between 

TSS and E. coli. Pachepsky et al. (2018) studied the relationship of temperature, pH, dissolved 

oxygen (DO), turbidity, nitrate, ammonium with E. coli concentration, using Spearman's rank 

correlation coefficient of -0.247, -0.267, -0.246, -0.293, 0.015, -0.220 respectively. In a few 

studies, statistical models were used for prediction (Katip, 2018). Mohammed et al. (2018) 

study was based on observed counts of bacteria and measured water quality parameters, 

including pH, temperature, conductivity, turbidity, colour, and alkalinity. Considerable 

improvement in the efficiency of the model was achieved when the input data was normalized 

before training. Raw water turbidity, colour, and alkalinity were found to have a significant 

influence on the growth of E. coli (Mohammed et al., 2018). Recent studies examined the 

effects of physico-chemical water quality parameters on the growth of E. coli in surface water 

sources, rivers, beaches, etc. However, no study has been done to examine the effects of 
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physico-chemical water quality parameters on on the growth of E. coli in groundwater sources. 

There is a need to study the impact on E. coli growth in groundwater sources. 

 

4.3 Methodology 

In this study, we create our dataset using water samples collected from eight districts of 

Rajasthan, India, under the BITS-UVA groundwater contamination project. The objective of 

this study is to identify the significant water quality parameters that affect the E. coli 

concentration in groundwater. The dataset was fed into an ANN model using MATLAB 

(R2019b) software. The model performance was assessed by using two evaluation measures, 

such as MSE and R2.  We have proposed a superposition-based learning algorithm (SLA) to 

observe the patterns of ANN models and improve the performance of ANN models to predict 

E. coli in groundwater. 

 

The following methodology has been adopted for the prediction of E. coli: 

• Water sampling and laboratory testing. 

• ANN modeling was performed to obtain a correlation between physico-chemical water 

quality parameters and E. coli. 

• Sensitivity analysis was performed to study the importance of different water quality 

parameters on E. coli concentration. 

• The randomness of the ANN model was reduced with the application of the SLA 

algorithm by optimization of weights and bias between the input layer and the output 

layer of the model. 

• ANN modeling was performed using a Superposition-based learning algorithm for the 

prediction of E. coli in groundwater. 

 

4.4 Artificial Neural Networks (ANN) 

Artificial intelligence (AI) is a computer science branch mainly concerned with using 

computational models to understand how humans think and behave (Tanimoto 1987). AI 

techniques play a leading role in data modeling and providing high-speed computational tools 

and methods (Rykiel 1989). Many AI-based techniques are used for relationship, estimation, 

classification, prediction, and segmentation. Each AI technique has its advantages in particular 

applications. Various factors affect the quality of water and have nonlinear relationships with 

each other. However, it can be challenging to analyze water without extensive, accurate, and 
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detailed data (Moustakis et al., 1996). Many models have been developed and widely used to 

resolve water quality analysis problems. Although the models have been adopted for modeling 

water quality, they require large amounts of data, multiple parameters, and detailed information 

on the source environment to obtain reliable results (Adriaans et al., 1996). 

 

A feed-forward neural network is the most commonly used supervised learning method in 

which signals are allowed to travel in the forward direction from input nodes to output nodes. 

A feed-forward neural network is generally governed by equation (4.1): 

𝑦𝑗 =  𝑓𝑗(∑ 𝑤𝑗,𝑖
𝑚
𝑖=1 . 𝑦𝑖 + 𝑏𝑖)      (4.1) 

 

Where, 

 𝑦𝑗  = output 

 𝑓𝑗 = Transfer function of the 𝑗𝑡ℎ  neuron in a layer 

𝑤𝑗,𝑖 = Weight that connects the output 𝑦𝑖  of the 𝑖𝑡ℎneuron from one layer to the input  

  of the 𝑗𝑡ℎ neuron in the next layer 

𝑏𝑖 = Bias weight on the 𝑗𝑡ℎneuron of each layer. 

 

4.4.1 Data Normalization 

It is a critical step in the preprocessing level as the machine learning algorithms majorly show 

improved performance when they deal with features that lie on the same scales. One way of 

doing this is by normalization. This method works by rescaling the features to a range of (0, 

1), which is a particular case of min-max scaling. To normalize the data, we applied the min-

max scaling method to each parameter. We checked if the data collected has some missing 

values which may occur due to improper collection of data, blank values, or NaN or 

measurements not applicable. Min-max normalization is given by equation (4.2): 

𝑋𝑛=
𝑋𝑟−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
        (4.2) 

 

Where,   

 𝑋𝑛 = normalized value 

 𝑋𝑟 = raw value 

 𝑋𝑚𝑖𝑛 = minimum observed values of X 

 𝑋𝑚𝑎𝑥 = maximum observed values of X 
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4.4.2 Splitting the datasets into subsets 

Initially, a total of 1301 data was divided into training (70%), testing (15%), and validation 

(15%). For an ANN to generate an output vector that is as close as possible to the target vector, 

a training procedure was employed, the objective of which was to minimize the mean square. 

Training is a mechanism by which ANN connection weights are adjusted using a continuous 

stimulation process. The training process includes the involved modification of the synaptic 

weights and the bias terms to achieve the primary function of decreasing the error rate. The 

training algorithms are techniques of optimization which help to fulfill the objective function. 

Finally, the goal is to make the model generalized to unseen data. 

 

4.4.3 Training functions 

Backpropagation applies a gradient descent search through a space of potential network weight, 

reducing the error (MSE) between training example and target value and network output 

iteratively. It allowed merely converging to some local minima.  Neurons are structured in one 

layer, with inputs connecting to each neuron and weights. Training in such a network starts by 

changing the weights connected with the inputs so that the network can identify the input 

arrangements. There are numerous backpropagation training algorithms in MATLAB (Beale 

et al., 1992) with this input-output relationship pattern and neural network architecture. In this 

analysis, two training functions, Levenberg-Marquardt backpropagation (Hayati et al., 2007) 

and Bayesian regularization backpropagation (MacKay, 1992), were used for training and 

validation steps. 

 

Levenberg-Marquardt is a network training function that updates the weights and bias values 

according to Levenberg-Marquardt optimization (trainlm) (Hayati et al., 2007; Foresee et al., 

1997; Hagan et al., 1994). If the output function is a subset of the squares, equation (4.3) can 

be approximate to the Hessian matrix: 

𝐻 =  𝐽𝑇𝐽                 (4.3) 

 

The gradient can be computed by equation (4.4); 

 𝑔 =  𝐽𝑇𝑒                  (4.4) 
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Equation (4.5) uses this approximation to the Hessian matrix, used by the Levenberg-

Marquardt algorithm: 

𝑋𝑘+1 =  𝑋𝑘 −  [𝐽𝑇𝐽 +  𝜇𝑙]−1 𝐽𝑇𝑒            (4.5) 

 

Where,  

𝐽 = Jacobian matrix 

𝑒 = vector of network errors. 

 

Bayesian regularization backpropagation (trainbr) is a network training function that updates 

the Levenberg-Marquardt optimization weight and bias values (MacKay, 1992; Torrecilla et 

al., 2008; Singh et al., 2011). The performance index for the Bayesian regularization method 

is given by equation (4.6):  

𝐹 =  𝛽. 𝐸𝑑 +  𝛼. 𝐸𝑤                                (4.6) 

 

Where, 

𝛼, 𝛽 = parameters to be optimized. 

𝐸𝑑  = mean sum of the squared network errors. 

𝐸𝑤 = sum of the squares of the network weights. 

 

4.4.4 Adaption learning functions 

The optimized weight values function across artificial neural networks. The method by which 

we obtain the optimized weight values is called learning. When the equivalent input is 

presented, the learning process teaches the network to produce the output. Learning is achieved 

if the trained neural network produces the output within the desired accuracy equivalent to an 

input pattern with the updated weights. The whole learning method is composed of the 

following three computations; input layer, hidden layer, and output layer computation.  

 

Gradient descent with momentum weight and bias learning function and gradient weight and 

bias learning function was used to study the neural network input-output relationship and 

architecture pattern. The goal of gradient descent (learngd) is to find the values of weight to 

minimize error. A neural network with one hidden layer, the weight update was determined by 

the partial derivatives chain rule. Individually, the adjustment of the weight 𝛥𝑤 can be 

calculated using equation (4.7): 
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𝛥𝑤 =  −𝜂 
𝜕𝐸

𝜕𝑤
        (4.7) 

 

Where,  

𝐸 = classification error on iteration 

𝜂 = learning rate  

𝑤 = weights 

 

Gradient descent with momentum weight and bias learning function (learngdm) is an advanced 

gradient descent method that adds an impulse element to the GD algorithm's weight adjustment 

formula. The equation for weight adjustment of the GDM algorithm on iteration r is given by 

equation (4.8): 

𝛥𝑤𝑟 =  −𝜂 
𝜕𝐸

𝜕𝑤
+  𝛼𝛥𝑤𝑟−1                         (4.8) 

 

4.4.5 Activation functions 

Activation functions are used in neural networks to calculate the weighted sum of inputs and 

biases and decide whether a neuron may or may not be fired. It usually manipulates the data 

presented through gradient descent and then produces an output for the neural network 

containing the data parameters. The sigmoid activation function is called the logistic function 

or squashing function (Turian et al., 2009). The Sigmoid is a non-linear activation function 

with positive derivate and some degree of smoothness (Han and Moraga, 1995), primarily used 

in feedforward neural networks. The equation (4.9) gives the sigmoid function: 

𝑓𝑥 =  (
1

(1+ 𝑒𝑥𝑝−𝑥)
)        (4.9) 

 

4.4.6 Performance functions 

The model performance was evaluated using the value of the coefficient of determination (R2) 

and mean square error (MSE). The mean squared error (MSE) quantifies the difference 

between the predicted and actual values of the measured quantity. The value of R2 reflects the 

proportion of variance in the dependent parameter described by the independent parameter. 

The higher value of R2 indicates that the model explains variation in the dependent parameter. 

The value of R2 and MSE can be calculated using equation (4.10) and equation (4.11), 

respectively: 
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R2 = 
 ∑ (𝑡𝑝𝑖− 𝑡𝑝𝑖

𝑚
𝑗=1 ) (𝑦𝑝𝑖 − 𝑦

𝑝𝑖′  )

[√∑  (𝑡𝑝𝑖− 𝑡𝑝𝑖′  )2  ∑ (𝑦𝑝𝑖− 𝑦𝑝𝑖)2𝑛
𝑖=1

𝑛
𝑗=1 ]½ 

                          (4.10) 

MSE = 
1

2
∑ (𝑡𝑝𝑖 −  𝑦𝑝𝑖)

2𝑚
𝑗=1

                  (4.11) 

           

Where, 

𝑡𝑝𝑗  = Target or real value p. 

𝑦𝑝𝑗 = 𝑖𝑡ℎ  output of the final layer or predicted value. 

𝑡𝑝𝑗′ = mean of targeted or real value. 

𝑦𝑝𝑗′ = mean of the predicted value. 

n = number of datasets. 

 

4.4.7 Model Architecture 

A trial and error procedure was adopted to obtain the optimum structure of the network. A 

rigorous analysis was carried out with one, two, and three hidden layers. The architecture of 

the feed-forward neural network (Figure 4.1). The back-propagation of error was carried out 

by the Bayesian regularization (BR), a standard second-order nonlinear least-squares technique 

using the back-propagation process to increase the speed and efficiency of the training.  

 

Figure 4.1: The architecture of a feed-forward neural network. 

 

4.4.8 Prediction of E. coli 

Linear square fitting was used to study the relationship between physico-chemical water quality 

parameters and E. coli. The coefficient of correlation (R2) was calculated between input 
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parameters and E. coli. Let A and B be the two parameters, the values of the constants A and 

B can be calculated by the equation (4.12), according to the method of least squares:  

B = X.A + Y         (4.12) 

 

A feed-forward neural network with multiple hidden layers and physico-chemical water quality 

parameters as input was optimized using the Levenberg Marquardt Training Algorithm (LM), 

Bayesian regularization backpropagation (BR), and sigmoid activation function had 

outperformed all other combinations. Figure 4.2 shows the correlation of E. coli with physico-

chemical water quality parameters. ANN model was optimized by the Levenberg-Marquardt 

(LM) training function using the sigmoid activation function had outperformed all other 

combinations. Highest overall correlation was observed between E. coli and pH (R2 = 0.84, 

MSE= 0.0204) with 15 neurons in one hidden layer, Turbidity (R2 = 0.83, MSE= 0.0081) with 

15 neurons in one hidden layer, TDS (R2 = 0.70, MSE= 0.0275) with 10 neurons in one hidden 

layer, Electrical Conductivity (R2 = 0.37, MSE= 0.0503) with 20 neurons in one hidden layer, 

Fluoride (R2 = 0.37, MSE= 0.0462) with 20 neurons in one hidden layer, ORP (R2 = 0.28, 

MSE= 0.0282) with 15 neurons in one hidden layer, and Nitrate (R2 = 0.26, MSE= 0.0437) 

with 15 neurons in one hidden layer. The lowest overall correlation was observed between E. 

coli and Dissolved Oxygen (R2 = -0.05, MSE= 0.0333) with 15 neurons in one hidden layer.  

 

Figure 4.3 shows the performance of the models using the Levenberg-Marquardt (LM) training 

function having multiple hidden layers and the number of neurons. ANN model using pH as 

an input parameter displayed the best performance (R2 = 0.70) with three hidden layers and 15 

neurons in each layer. ANN model using Turbidity as an input parameter displayed the best 

performance (R2 = 0.83) with three hidden layers and 15 neurons in each layer. ANN model 

using TDS as an input parameter displayed the best performance (R2 = 0.66) with three hidden 

layers and 15 neurons in each layer. ANN model using Electrical Conductivity as an input 

parameter displayed the best performance (R2 = 0.37) with one hidden layer and 20 neurons. 

ANN model using ORP as input parameter displayed the best performance (R2 = 0.25) with 

one hidden layer and 20 neurons. ANN model using Fluoride as an input parameter displayed 

the best performance (R2 = 0.37) with two hidden layers and 20 neurons in each layer. ANN 

model using Nitrate as an input parameter displayed the best performance (R2 = 0.26) with 

three hidden layers and 20 neurons in each layer. ANN model using DO as an input parameter 

the best performance (R2 = -0.03) with two hidden layers and 20 neurons in each layer. 
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Figure 4.4 shows the performance of the models using the Bayesian regularization (BR) 

training function having multiple hidden layers and the number of neurons. ANN model using 

pH as input parameter displayed the best performance (R2 = 0.87) with three hidden layers and 

20 neurons in each layer. ANN modeling using Turbidity as an input parameter showed the 

best performance (R2 = 0.83) with three hidden layers and 20 neurons in each layer. ANN 

model using TDS as input parameter showed the best performance (R2 = 0.70) with three 

hidden layers and 20 neurons in each layer. ANN model using Electrical Conductivity as an 

input parameter displayed the best performance (R2 = 0.31) with two hidden layers and 20 

neurons in each layer. ANN model using ORP as an input parameter showed the best 

performance (R2 = 0.28) with two hidden layers and 20 neurons in each layer. ANN model 

using Fluoride as an input parameter displayed the best performance (R2 = 0.29) with three 

hidden layers and 20 neurons in each layer. ANN model using Nitrate as an input parameter 

showed the best performance (R2 = 0.26) with two hidden layers and 20 neurons in each layer. 

ANN model using DO as an input parameter displayed the best performance (R2 = -0.05) with 

three hidden layers and 20 neurons in each layer.  
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Figure 4.2: The performance of models using Levenberg-Marquardt training function. 
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Figure 4.3: The performance of models using Bayesian regularization training function. 
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Figure 4.4: Correlation between physico-chemical water quality parameters and E. coli. 

 

Using the method of least square, prediction of E. coli using equation (4.12): 

• E. coli = 0.7*Turbidity + 0.04      (4.13) 

• E. coli = 0.16*Electrical Conductivity + 0.033    (4.14) 

• E. coli = -2.2e-07*Dissolved Oxygen + 0.5    (4.15) 

• E. coli = 0.14*Fluoride + 0.13      (4.16) 

• E. coli = 0.066*Nitrate + 0.14      (4.17) 

• E. coli = 0.083*ORP + 0.078      (4.18) 

• E. coli = 0.88*pH + 0.023       (4.19) 

• E. coli = 0.50*TDS + 0.077      (4.20) 

 

No study has been done to predict E. coli in groundwater using pH, total dissolved solids, 

oxidation-reduction potential, dissolved oxygen, electrical conductivity, turbidity, fluoride and 

nitrate. The majority of the existing techniques are limited to most of the substantial water 

features to restrict the pH, temperature, turbidity, conductivity, and colour of the water. 

However, few significant water quality parameters are not considered, which have direct 
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effects on the growth of E. coli bacteria. Our study examined the impact of various physico-

chemical parameters of water quality on the growth of E. coli, and correlation was observed 

between E. coli and water quality parameters. 

 

4.5 Sensitivity analysis 

A sensitivity analysis was performed to study the effect on the output parameter when the input 

parameters are taken as average values. The input parameters were subjected to variability in a 

range of -10% to +10% of the average measured values. Each of the model input parameters 

was tested one at a time by keeping the others at their average values. Furthermore, the relative 

significance of these input parameters was ranked based on a sensitivity index. The first model 

was developed using all parameters as input parameters and named artificial neural network-

E. coli-all parameters (ANN-E. coli-AP), which serve as a reference model. In order to evaluate 

the significance of all physico-chemical water quality parameters as input parameters for the 

ANN-E. coli-AP model, a sensitivity analysis was performed by excluding one parameter from 

eight parameters, and the performance of the ANN output model was evaluated using 

correlation coefficient (R2) and mean squared error (MSE). Moreover, sensitivity analysis is 

instrumental and reliable when sufficient data is available and to assesses the relative 

importance of the parameter. The second model was developed, referred to as artificial neural 

network-E. coli-leave DO (ANN-E. coli-LD), which means DO was excluded in predicting the 

E. coli counts. The third model was developed, referred to as artificial neural network-E. coli-

leave DO, fluoride (ANN-E. coli-LDF), which means DO and fluoride, were excluded for the 

prediction of E. coli.  

 

The fourth model was developed, referred to as artificial neural network-E. coli-leave DO, 

fluoride, nitrate (ANN-E. coli-LDFN), which means DO, fluoride, and nitrate were excluded 

for the prediction. The fifth model was developed, referred to as artificial neural network-E. 

coli-leave DO, fluoride, nitrate, ORP (ANN-E. coli-LDFNO) means DO, fluoride, nitrate and 

ORP, were excluded for the prediction. The sixth model was developed, referred to as artificial 

neural network-E. coli-leave DO, fluoride, nitrate, ORP, conductivity (ANN-E. coli-LDFNOC) 

means DO, fluoride, nitrate, ORP and conductivity were excluded for the prediction. The 

seventh model was developed, referred to as artificial neural network-E. coli-leave DO, 

fluoride, nitrate, ORP, conductivity, and TDS (ANN-E. coli-LDFNOCT) which means DO, 

fluoride, nitrate, ORP, conductivity, and TDS were excluded for the prediction. The ANN-E. 
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coli-AP model with 1301 experimental values from 2016 to 2019 was taken as an input dataset, 

and models were developed using MATLAB R2019b software. The sensitivity index was 

calculated by equation (4.21): 

𝑆𝐼 =  (
Ý𝑖

𝑌
− 1) × 100       (4.21) 

 

Where, 

 𝑆𝐼 = sensitivity index. 

 Ý𝑖 = predicted output value when input value varied. 

 𝑌  = average output value. 

 

In order to evaluate the significance of all physico-chemical water quality parameters as input 

parameters for the ANN-E. coli-AP model, a sensitivity analysis was performed for seven 

models by excluding one parameter from eight parameters. The performance of the output 

model was evaluated using coefficient correlation (R2) and mean squared error (MSE). Results 

from the sensitivity analysis showed that ANN-E. coli-AP, ANN-E. coli-LD, ANN-E. coli-

LDF, ANN-E. coli-LDFN, ANN-E. coli-LDFNO, ANN-E. coli-LDFNOC, and ANN-E. coli-

LDFNOCT have overall highest R2 values of 0.87, 0.87, 0.86, 0.87, 0.90, 0.86 and 0.86 

respectively; minimum lowest MSE values of 0.0315, 0.0215, 0.0587, 0.0298, 0.0892, 0.0179 

and 0.1069 respectively. The performance of the sensitivity analysis-based ANN model with 

multiple hidden layers and the number of neurons using the Levenberg-Marquardt (LM) 

training functions (Figure 4.5) and Bayesian regularization (BR) training functions (Figure 

4.6), respectively. 
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Figure 4.5: The performance of sensitivity analysis-based ANN models using Levenberg-

Marquardt (LM) training function. 
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Figure 4.6: The performance of sensitivity analysis based ANN models using Bayesian 

regularization (BR) training function. 

 

4.6 Analysis of ANN models using Superposition-based learning algorithm 

This subsection proposed a learning algorithm that effectively used a superposition algorithm 

to train an ANN model. The performance of ANN models in superposition was associated with 

its representation. A non-linear algorithm was used to recover the best neural network 

configuration. The proposed algorithm was named the superposition-based learning algorithm. 

In the SLA, the superposition of trained neural networks stored its output for performance 

evaluation. A comparative analysis was performed using sensitivity analysis for a fixed model 

architecture with maximum values of coefficient of determining (R2). The model contains a 

learning set that was parallel to the ANN-based physico-chemical water quality parameter 

model. After modeling the architecture of the model, the summation of weights was recorded 

for an individual network. The connection weights after each iteration for a network were 

extracted using the MATLAB Neural Network Toolbox. Subsequently, the difference in the 

weights was calculated for each model after every iteration. The pattern was observed between 

the difference in weights and iteration in a superposition of a trained neural network. After each 

iteration for ANN models and sensitivity analysis-based models, the connection weights were 

extracted and compared with the patterns in a superposition of a trained neural network to 

validate the proposed SLA. Such superposition-based learning algorithms (SLA) have a 

polynomial computational cost in the number of features in the training set. The quantum neural 

networks do not use nonlinear activation functions such as sigmoid or tangent hyperbolic. 

Hence, this learning phase of the SLA will store the output of the network. 
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The summation of weights was recorded for an individual network with the overall highest R2 

value. The connection weights after each iteration for ANN models were extracted. 

Subsequently, the difference in the weights was calculated for each model after every iteration. 

For validation of the model, the patterns observed between the differences in weights after each 

iteration for ANN were compared with the patterns in a superposition of a trained neural 

network (Figure 4.7). Results showed that SLA algorithms are non-unitary and non-linear for 

weighted neural networks. The patterns observed between the differences in weights after each 

iteration for ANN and sensitivity analysis based models were compared with the patterns in a 

superposition of a trained neural network for the validation of proposed superposition learning-

based algorithms, as shown in Figure 4.7 (4.7a- 4.7g) for Superposition-E.coli-AP, 

Superposition-E.coli-LD, Superposition-E.coli-LDF, Superposition-E.coli-LDFN, 

Superposition-E.coli-LDFNO, Superposition-E.coli-LDFNOC, and Superposition-E.coli-

LDFNOCT models respectively. Results showed that SLA algorithms are non-unitary and non-

linear for weighted neural networks. 

 

 

Figure 4.7: Superposition of a trained ANN model. 

 

Prediction of E. coli using ANN and SLA-based models is shown in Figure 4.8. The SLA 

model showed the best performance with the highest R2 value of 0.92. In contrast, the ANN 

model showed the best performance with the highest R2 value of 0.87. 
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Figure 4.8: Prediction of E. coli. 

 

The highlights of the results related to the proposed study are: 

• The study generates a novel methodology for predicting E. coli concentration in 

groundwater, which can be used to predict hotspots in terms of continuous exposure of E. 

coli. 

• E. coli in groundwater samples were highly positively correlated with pH and highly 

negatively correlated with Dissolved Oxygen. 

• The randomness of the ANN model was reduced with the application of the SLA algorithm 

by optimization of weights and bias between the input layer and the output layer of the 

model. 

 

4.7 Summary 

The limitation of relying on laboratory analysis to detect bacteria can be prone to human errors, 

which can affect the model’s performance and results. The majority of the existing techniques 

are limited to most of the substantial features of water to limit pH, temperature, turbidity, 

conductivity, and colour of the water. However, few significant physico-chemical parameters 

are not considered, which directly affect the growth of E. coli bacteria. To overcome the 

limitations, the artificial intelligence (AI) based technique is used in this study as an alternative 

to traditional models for predicting E. coli to improve accuracy, performance, and cost-

effective results. This paper studied the effects of various physico-chemical parameters of 

water quality on the growth E. coli, and a correlation was observed between E. coli and water 
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quality parameters. Previous studies show that the predictive models are based on published 

research reports and testing data, so it is difficult to check their accuracy.  

 

In this study, we create our dataset by using water samples collected from eight districts of the 

state of Rajasthan under the BITS-UVA (University of Virginia) groundwater contamination 

project. The field study covers a collection of 1301 groundwater samples. This experimental 

data set was used to train, test, and validate the results using AI techniques. A superposition-

based learning algorithm (SLA) is proposed to observe the patterns of ANN-based sensitivity 

analysis for automating the prediction process of E. coli bacteria in groundwater. The concept 

of presenting an input pattern for all feasible neural network architectures is unrealistic in 

classical neural networks. For this concept to be implemented classically, one would need to 

create multiple neural networks for each configuration and architecture to obtain all the inputs 

and simulate the related outputs in parallel. After computing the efficiency of each pattern for 

each configuration of the neural network, one can check the configuration of a trained neural 

network with the best performance.  

 

The concept of SLA describing a possible configuration of weights in superposition for any 

architecture. Using SLA, we can obtain all possible neural network configurations in 

superposition for the specified architectures. The critical property of Grover's algorithms 

discussed in this paper is the ability to obtain all correlations from the training set in 

superposition. The result shows that the superposition models based on Grover’s algorithm are 

more efficient in predicting all patterns in the counts of E. coli in groundwater with higher 

efficiency and low error. We will create a hybrid model of ANN with a fuzzy set theory or 

genetic algorithms (GA) to get better accuracy for future modifications. We aim to take the AI-

enhanced model further to provide a fully automated E. coli classification system. Another 

possible future work is to develop a probabilistic SLA model. We only need to run the neural 

network twice, one forward and one backward, by modifying Grover’s algorithm. 
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CHAPTER 5 

 

5. A Convolutional Neural Network Approach for Detection of E. coli 

Bacteria in Water 

The monitoring of bacteriological drinking water quality relies mainly on the analysis of 

indicator bacteria. E. coli is a more precise indicator of water contamination than other fecal 

coliform bacteria due to the advancement in testing methods. We implement an automated E. 

coli bacteria detection process using Convolutional Neural Network (CNN) to address this 

issue. We have also proposed a mobile application for the rapid detection of E. coli bacteria 

in water that uses CNN. 

 

5.1 Introduction 

Escherichia coli (E. coli) bacteria are gram-negative, non-spore, rod-shaped pathogens that 

produce gas in the prescribed growth media after fermentation at 35 °C within 48 hours 

(Greenwood et al., 2003).  E. coli was first recognized as a pathogen in 1982 (Riley et al. 1983). 

E. coli bacteria should not be present in 100 ml of the water sample, according to WHO (2011), 

BIS (2012) and USEPA protocols (2007). According to a WHO report (2017), 1.9 billion 

people worldwide use water that is polluted. About 37.7 million Indians are infected annually 

by waterborne diseases. Waterborne diseases are still prevalent in India and have resulted in 

10,738 deaths in the last five years, as per the Central Bureau of Health Intelligence report 

(2018). The monitoring of bacteriological drinking water quality relies mainly on the analysis 

of indicator bacteria. E. coli is a more precise indicator of water contamination than other fecal 

coliform bacteria due to the advancement in testing methods. E. coli bacteria can be identified 

in the laboratory using conventional methods (Co-ordination Action Food 2007), enzymatic 

methods (Co-ordination Action Food 2007), molecular methods (Tamerat et al. 2016; Saxena 

et al. 2015), and biosensor-based methods (Maas et al. 2017). 

 

According to the method based on laboratory experiments, it takes 12-48 hours for the 

concentration of bacterial cells to be recorded. The limitation of relying solely on sensor-based 

water quality analysis for identification is that it can lead to errors. Therefore, there is a need 

for real-time monitoring. Enzymatic methods of detection are color-based methods (Rice et al. 

1989). The amount of colour appearance can be used to determine the degree of bacterial 

contamination. The detection method is based on the concept that only E. coli bacteria are fed. 
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No substrate is given for other bacteria. The specified substrate is used as an essential source 

of nutrients for bacteria. A chromogenic or fluorogenic substance is released from the specified 

substrate during the substrate utilization period, which indicates the presence of E. coli. 

Manually performing this process is highly time-consuming and difficult. This detection 

process is analytical. There is always a possibility of human error, which may result in a 

disastrous decision. The colours of each concentration can be scanned using conventional 

computer vision methods. It is, however, extremely difficult to determine the colour intensity 

for each concentration level. This is made simple with deep learning since the algorithm 

calculates these colour intensities using statistically generated training sets. 

 

Huang L et al. (2018) developed a convolutional neural network (CNN) for bacterial colony 

classification using digital images. The data from Peking University First Hospital was used 

for the classification of bacterial colonies. Results show that the network was able to classify 

18 bacterial colonies with an accuracy of 73%. Alaslani MG et al. (2018) extracted the learned 

features from a pre-trained CNN and Support Vector Machine (SVM) algorithm for image 

classification. The Alex Net pre-trained CNN model was used for feature extraction, and the 

SVM algorithm was used for classification. The Iris public images were used for the 

development of an iris recognition system. Results show that the recognition accuracy of the 

Iris database was 98.3%.  

 

Mohanty SP et al. (2016) used a public dataset containing 54,306 images of healthy and 

diseased plant leaves. They developed a deep CNN to identify 26 diseases and 14 crop species 

with an accuracy of 99%. Nehal SA et al. (2019) developed an AI-based lab-on-chip for the 

detection of bacterial contamination using the Photonic Crystal-based optical biosensor. These 

biosensors came up with a few limitations of using separate sensors to measure physical, 

chemical, and bacteriological parameters of water quality which affect sensitivity and accuracy 

of the results. The method is cost-intensive and requires maintenance. Gunda NSK et al. (2019) 

developed an AI-based mobile application for water quality monitoring with an accuracy of 

99%. The authors have not validated the proposed model with performance functions. Hence, 

this model is not reliable for bacterial detection. 

 

Previous studies show that the predictive models are based on published research reports, 

public datasets, and open source testing data, so it is difficult to check the accuracy of the 

model. Thus, we cannot rely solely on these studies for bacterial detection. However, no study 
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has been conducted to detect E. coli bacteria in water using experimental laboratory data with 

high accuracy and precision. In this paper, we have created our dataset using water samples 

collected from eight districts of Rajasthan under the BITS-UVA groundwater contamination 

project. We have also developed an AI-based smartphone application to rapidly detect E. coli 

in water using laboratory experiment data. 

 

5.2 Artificial Neural Networks 

Artificial Neural Networks (ANN) are a model of the Biological Neural Network. Biological 

Neural Networks assist living organisms to interpret, identify and learn from their 

environmental patterns for future applications. Humans use these patterns and prior knowledge 

to process any information and thus come to an output (Fausett 2006). ANNs lend this property 

to machines. ANNs enable a standard and practical methodology for machines to adapt from 

instances and modify their operation. ANNs have been shown to be useful, especially in areas 

where the output of the system is not determined by a specific mapping algorithm between 

input and output (Gupta et al., 2018). ANNs are most widely used when mapping between 

inputs and outputs is not linear. McCulloch and Pitts (1943) presented the first-ever model of 

an artificial neuron, called the perceptron. A layer of perceptrons can perform some tasks. Thus 

a single layer of perceptrons can form a network. We term such a network as a Single Layer 

Perceptron. An arrangement of a series of a Single Layer Perceptron is called a Multi-Layer 

Perceptron (MLP). MLPs are also called feedforward networks. 

 

5.3 Convolutional Neural Networks 

A Convolutional Neural Network (CNN) is a subset of the neural network mentioned 

previously. One or two convolutional layers are present in a CNN, always with a subsampling 

layer, accompanied by one or more fully connected layers (Khan et al. 2020). The conception 

of a CNN was sparked by the discovery of a sense system in the brain, the visual cortex. The 

visual cortex comprises many cells that sense light. Receptive fields are overlapping sub-

regions of the visual field. The more complex cells have wider receptive fields, and they serve 

as local filters over the input space. The convolution layer in a CNN has the same function as 

the cells in the visual cortex (Hubel et al. 1968). A hand-designed feature extractor collects 

essential information from the input. It extracts irrelevant variables in the conventional model 

of pattern recognition (Fukushima et al. 1983). After the extractor, a trainable classifier is used, 

which is a regular neural network that divides feature vectors into classes. Convolution layers 
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serve as feature extractors in CNNs. They are not, however, handcrafted. The kernel weights 

for convolution filters are selected during the training phase. Since the receptive fields of the 

hidden layers are restricted to be local, convolutional layers can extract local features. The 

weights of the convolutional and fully connected layers are calculated in CNN during the 

training phase and used for feature extraction (Brownlee 2019) and classification (Huang et al. 

2018). The improved network architectures result in reduced memory and computing 

complexity. 

 

5.4 Methodology 

The detection of E. coli bacteria is essential to prevent health diseases. According to the 

laboratory-based methods, 12-48 hours are required to detect bacteria in water. The drawback 

of depending on laboratory-based methods for the detection of E. coli bacteria can be prone to 

human errors. Hence, the bacterial detection process must be automated to reduce error. The 

performance of the model was validated using the F-Score, Precision, Sensitivity and Accuracy 

statistical measures. The following methodology has been adopted for the prediction of bacteria 

in water. 

• Detection of bacteria in water using laboratory experiment method. 

• Convolutional Neural Network for prediction of bacteria. 

• Mobile application for rapid detection of E. coli. 

 

5.5  Present/Absent test (PA test) 

The enzymatic method was used to determine the presence or absence of E. coli bacteria in 

groundwater samples (Olstadt et al., 2007). Present/Absent test is a substrate method developed 

to overcome some constraints of the multiple tube fermentation method (Oshiro 2002) and 

membrane filter method (Jagals et al. 2000). The detection method is based on the concept that 

only E. coli bacteria are fed. No substrate is given for other bacteria. Firstly 100 ml of water 

sample was added to the sterile disposable bottle. The powder medium (PA broth) was then 

swirled into water so that it got dissolved completely. Once dissolved, water samples were 

incubated for 24-48 hours at 35 °C. After the incubation period, the transition in the colour of 

the medium from reddish-purple (Figure 5.1a) to yellow (Figure 5.2b) indicated E. coli. Figure 

5.1 shows the change in colour of the culture medium due to the presence of bacteria.  
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b) The initial state of culture medium            b) Final state of culture medium (if bacteria is present) 

Figure 5.1: Colour change in culture medium due to the presence of bacteria. 

 

5.6  Convolutional Neural Network for prediction of bacteria  

A total of 1301 images obtained from laboratory testing (Present/Absent test) were used as an 

input of the CNN model. Image manipulation procedure was used to resize, crop, and rotate 

the input photos so as to increase the classifier’s accuracy in training sets. The pictures were 

divided into two groups based on the presence or absence of E. coli. The experimental data 

were divided into three sets: training (70%), testing (15%), and validation (15%). We trained 

the CNN using MATLAB Deep Network Designer 2020b (MathWorks) to distinguish between 

pictures with E. coli present and E. coli absent. The CNN model was trained on a machine with 

16 gigabytes (GB) of RAM. To detect E. coli bacteria on agar plates, the CNN employed image 

color, red green blue (RGB), and black and white (BW) values. On a scale of 0 to 1, predictions 

were given for each image. If the predicted value was adjusted to zero, that is, less than 0.5, 

the final forecast for that picture was E. coli absent. If the predicted value was adjusted to 1, 

that is, a value larger than 0.5, the final forecast for that picture was E. coli present. 

Consequently, the closer the model went to 0, the more certain it was that a picture was an E. 

coli absent image. The nearer it got to 1, the more certain it was that a picture was an E. coli 

absent image. The dataset used in this study contains a total of 1301 images to predict the 

presence or absence of E. coli bacteria in groundwater. All images have a size of 2180x960 
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pixels. Colour images were used in this study to classify images using colour and texture 

features. Images from the dataset used for the study are shown in Figure 5.2.  

 

 

Figure 5.2: A few sample images from E. coli dataset. 

 

The CNN model’s performance was validated using F-score, precision, sensitivity, and 

accuracy statistical measures (Dalianis 2018; Prabha et al. 2016). The CNN model used cross-

validation to test the networks more thoroughly. This means that all images of the data were 

used as both training and test data, split into iterations. TP stands for true positive (appropriately 

recognizing an E. coli present image as E. coli present). TN stands for true negative 

(appropriately recognizing an E. coli absent image as E. coli absent). FP stands for false 

positive (inappropriately recognizing an E. coli present image as E. coli absent). FN stands for 

false negative (inappropriately recognizing an E. coli absent image as E. coli present). 

Accuracy was defined as the proportion of properly recognized samples (both present and 

absent) among all samples (see Equation (5.1)). The ratio of all recognized positive samples to 

all positive samples is the sensitivity (see Equation (5.2)). If sensitivity is strong, the class was 

accurately detected. The value of high sensitivity implies that a class has been appropriately 

recognized. Precision was defined as the ratio of all positively detected positive samples to all 

positively predicted positive samples (see Equation (5.3)). High precision suggests that a 

sample classified as positive is, in fact, positive. The weighted average of sensitivity and 

accuracy was used to get the F-score. In the F-score, the harmonic mean replaces the arithmetic 

mean. This metric punishes high values much more (see Equation (5.4)). The following 

equations (Equations (5.1)– (5.4)) can be used to compute F-Score, precision, sensitivity, and 

accuracy: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
    (5.1) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
     (5.2) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
     (5.3) 

𝐹 − 𝑆𝑐𝑜𝑟𝑒 =
2∗𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
   (5.4) 
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Deep Learning was used in the current study to train a CNN model to detect E. coli. The CNN 

model was trained to compare all E. coli concentrations to a binary output that stated whether 

E. coli was present or not. The CNN model was developed using MATLAB (R2020b) software. 

Figure 5.3 shows the architecture of the proposed CNN model for rapid detection of E. coli in 

water.  

 

Figure 5.3: Overview of the CNN model. 

 

The developed CNN architecture consisted of six convolution layers and two fully connected 

layers. Each layer had a different weight, bias, and Rectified Linear Unit (ReLU) linked with 

it. Weights and bias were assigned based on the number of filters in the first convolutional 

layer (conv1). The number of filters used in conv1 was 96, and the size of filters were 11x11x3, 

so the initial weights 11x11x3x96 and bias 1x1x96 were assigned. The first layer was padded 

with 3x3 kernels with a stride of 4. The next two layers were padded with 3x3 kernels with a 

stride of 2, while the last three layers were padded with 1x1 kernels with a stride of 1. These 

convolutional layers were accompanied by two fully connected layers, which were non-strided 

to prevent overfitting. A detailed summary of the CNN architecture is shown below in Figure 

5.4. Before training the data, we optimized the batch size, learning rate, and the maximum 

number of epochs using grid search, as shown in Table 5.1. 
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Figure 5.4: Detailed structure of CNN model. 
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  Table 5.1: Grid search of hyperparameters for backend tuning 

Hyperparameters Values 

Optimizer SGDM with learning rate (0.001, 0.0001, 0.00001) 

Batch size (4,16,32,64) 

Epoch (10,30,50) 

 

The hyperparameters highlighted in bold in Table 5.1 indicate the best performance. The best 

hyperparameters were used to train the CNN model on training sets. The input images have a 

size of 2180x960x3 pixels. These numbers correspond to the height, width, and channel size. 

For a colour image, the channel size is 3, corresponding to the RGB values. Convolution is 

performed on input images to extract features. The filter size of the convolution layer (conv1) 

was 11x11, which corresponds to the height and width of the filters used by the training feature 

when scanning through the images. The number of filters used in the conv1 layer was 96, 

representing the number of neurons connected to the same input region. The gradients and 

activations were normalized using a cross-channel normalization layer. After the normalization 

layer, a nonlinear activation function, i.e., rectified linear unit (ReLU), was applied. After 

convolution, max pooling was used to downsample each feature map. Since the number of 

parameters was reduced, it retains only the most essential information from the images and 

prevents overfitting. The rectangular area was (2, 2) in dimension. Two fully connected layers 

were added after the convolutional and down-sampling layers.  

 

A fully connected layer has all of its neurons coupled to the neurons of the preceding layer. 

Such a layer combines all characteristics from the preceding layers to categorize all trends in 

the picture. The fully connected (FC) layer connected all of the features that were used to 

identify the pictures. As a consequence, the output parameters in the fully connected layer 

equaled the number of classes in the predicted data, which in this case was two. The softmax 

activation function was used to normalize the output of the fully connected layer. The softmax 

layer generated a series of positive numbers that sum to 1. These values were subsequently 

used as categorization probabilities by the classification layer. The classification layer was the 

final layer. Each input was assigned to one of the mutually distinct groups by this layer. It 

computed the error (loss) based on the probability obtained from the softmax activation 

function. Our model had an accuracy of 96 percent (1239/1301 images) and an error (loss) of 

0.10 after evaluating it on our image dataset, as shown in Figure 5.5. A confusion matrix was 
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used to show the performance of a CNN model in Figure 5.6. The F-Score, Precision, 

Sensitivity, and Accuracy results calculated using the confusion matrix are shown in Table 5.2. 

 

 

Figure 5.5: The performance of the CNN model. 

 

Figure 5.6: The confusion matrix obtained using E. coli datasets. 

 



149 
 

Table 5.2: The statistical results for performance evaluation. 

Performance Measure Results 

Accuracy 0.96 

Sensitivity 0.92 

Precision 0.98 

F-Score 0.95 

 

As a result, as seen in Figure 5.6, the CNN had a reasonably high level of confidence in its 

forecasts. This reliability is reflected in the high accuracy value of 97%. Remarkably, more 

false negatives were predicted by the CNN than false positives (forty eight E. coli present 

pictures were classified as E. coli absent, and thirteen E. coli absent pictures were classified as 

E. coli present). Because of the varying levels of blackness in the E. coli present photos, the 

CNN may have misidentified the lesser-brightness E. coli present photos as E. coli absent. 

Overall, the pictures were darker, and the water appeared to be more turbid. These findings are 

crucial to the issue we are considering because 96% accuracy means that people who do not 

have access to modern technology or complex water testing kits will be able to determine much 

more efficiently if water is polluted. Increased exposure to accurate testing procedures will 

assist persons in determining whether water is safe and avoiding the negative repercussions of 

water contamination. Additionally, with a sensitivity of 0.92 and an accuracy of 0.98, this 

method has been proven reliable for future applications. Moreover, as the number of sample 

photos in our data set grows, the machine learning model will develop and results in fewer 

categorization errors and higher reliability.  

 

5.7  Mobile application for rapid detection of E. coli 

TensorFlow 2.5.0 (Abadi et al. 2016) from Google was chosen as the machine learning 

platform for building an AI-based smartphone application to quickly identify E. coli on agar 

plates. TensorFlow was selected because it enables easy deployment on a smartphone system 

and offers a user-friendly graphical user interface. The CNN model was created utilizing 1301 

images from laboratory experiments and a TensorFlow Lite (.tflite) model. We created the 

mobile app with Android Studio v. 4.1.1 (Studio 2017; Zapata 2013) and the TensorFlow (. 

tflite) model (Alsing 2018). The smartphone app allows users to capture photos with their 

smartphone’s built-in camera. The captured pictures are then categorized by interacting with a 
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CNN. The E. coli detection smartphone app that was developed using the model is seen below 

in Figure 5.7. 

 

 

Figure 5.7: E. coli Detection App. 

 

5.8 Summary 

The developed CNN model for rapid detection of E. coli in water achieved an accuracy of 96% 

and an error (loss) of 0.10. The developed model was able to predict E. coli bacteria in each 

water sample within 458ms. The approach was considerably more successful than alternative 

methods such as polymerase chain reaction (PCR) and traditional techniques. The performance 

of the model was validated using various statistical measures, which shows that the model is 

reliable and effective in detecting E. coli. We have also developed an AI-based smartphone 

application using CNN that captures the images using an inbuilt smartphone camera and 

predicts the bacteria in water based on colour intensity. We demonstrated the effectiveness of 

our AI-based smartphone application by using it to monitor water quality for bacterial pollution 

and improve precision over laboratory results. This detection of E. coli bacteria in water allows 

the public health engineering department technicians to use this innovative app without prior 

knowledge. In the future, we want to expand and expand our study on real-time monitoring of 

microbiological water quality without complicated testing procedures. Given more time and 
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resources, we could develop a system that can work more effectively upon projects such as 

Intel Clean Water AI (2018). 
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CHAPTER 6 

 

6. Automated Bacteria Colony Counting on Agar Plates Using Machine 

Learning 

The identification of E. coli bacteria is critical for the prevention of health risks. According to 

EPA-approved gold standard methods, 24-48 h are required to count viable cells in water. 

Manual counting of the viable bacterial colony on agar plates is time-consuming and can be 

prone to human error. The method requires experts to identify and count colonies on agar 

plates using a microscope. Hence, the bacterial counting procedure must be automated in 

order to decrease error. The main objective of this study was to develop an automatic system 

for bacterial colony counting. 

 

6.1 Introduction  

In 1982, E. coli bacteria was discovered as a human pathogen (Riley et al. 1983). Escherichia 

coli (E. coli) bacteria are gram-negative, non-spore, rod-shaped pathogens that generate gas 

after 48 h of fermentation at 35°C in the specified growth environment (Greenwood et al., 

2003). E. coli bacteria should not be present in 100 mL of a water sample according to World 

Health Organization (WHO) (WHO 2011), IS 10500 (BIS 2012), and USEPA protocols 

(USEPA 2007). According to a WHO study, 1.9 billion people consume contaminated water 

throughout the world (Diarrhoeal disease 2017). Waterborne diseases are still widespread in 

India and have resulted in 10,738 fatalities in the last five years, as per a Central Bureau of 

Health Intelligence report (CBHI 2018). Waterborne diseases affect around 37.7 million 

Indians each year. The examination of indicator organisms is mainly used to assess 

bacteriological drinking water quality. Because of advancements in testing technologies, E. 

coli is a more exact indication of water pollution than other fecal coliform bacteria. E. coli 

bacteria can be identified in the laboratory using conventional methods (Bolton et al. 2007), 

enzymatic methods (George et al. 2000), molecular methods (Tamerat et al. 2016; Saxena et 

al. 2015), and biosensor-based methods (Maas et al. 2017). Gram staining (Smith et al. 2005) 

is a method used to differentiate bacteria on the basis of their cell wall constituents. Staining 

categorizes bacteria into two classes, that is, gram-positive and gram-negative. Agar is a growth 

medium used for selective differentiation and detection of E. coli bacteria in water samples. 

The viable cell count method (Jennison et al. 1937) is used to detect and count the number of 

actively growing bacterial cells in water in terms of colony-forming units (CFUs). 
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The USEPA-approved gold-standard methods for detecting E. coli and counting viable cells 

are based on culturing water samples on solid agar plates or in liquid media. Viable cell counts 

can be done by the plate count method (USEPA 2010). In the plate count technique, serial 

dilutions are made by creating aliquots of a certain volume of liquid culture and plating 

numerous serial dilutions onto culture plates. A glass spreader is used to spread the volume of 

culture over the surface of an agar plate, which is then incubated to develop colonies. The 

bacterial concentration in a water sample can then be calculated, assuming that each viable cell 

forms a single colony (Harrigan et al., 2014). The number of colonies is counted manually 

using a bacteria colony counter (Rompré et al. 2002). Manual counting of viable bacterial cells 

on agar plates is time-consuming and can be prone to human error. The method requires experts 

to identify and count viable cells. Furthermore, due to bacterial overcrowding, high numbers 

of colony-forming units on a plate will lead to inaccurate results (Breed et al. 1916). 

 

Eosin methylene blue (EMB) agar is a selective and differential medium used to isolate fecal 

coliform bacteria. It provides a rapid and accurate method of differentiating E. coli from other 

gram-negative pathogens. E. coli bacteria is an indicator of fecal contamination in water. The 

presence of E. coli bacteria indicates the possibility of the presence of pathogenic bacteria and 

viruses (Khan et al. 2020). Nobody can ferment lactose except E. coli. If E. coli bacteria are 

present in water. In this case, a colony will appear on an agar plate with a metallic sheen with 

a dark center. Gram-positive bacteria growth is typically hindered on EMB agar because of the 

toxicity of the methylene blue dye. Therefore, only colonies of E. coli will appear on agar 

plates. If no colony appears on the agar plates, it indicates that E. coli bacteria are absent in 

water. Consequently, it can be concluded that only E. coli bacteria will grow on agar plates; 

gram-positive bacteria will not grow on agar plates, so this method is only valid for E. coli 

bacteria. 

 

6.2 Artificial neural networks 

Artificial neural networks (ANN) are a kind of biological neural network model. Biological 

neural networks aid living beings in interpreting, identifying, and learning from their patterns 

for future applications (Fausett 2006). ANNs are most commonly used when the correlation 

between inputs and outputs is not linear (Khan et al. 2021a, b). The utility of ANNs has been 

demonstrated especially in cases in which a system’s output is not specified by a unique 
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correlation method between input and output (Gupta et al. 2018).  A convolutional neural 

network (CNN) is a type of neural network. The discovery of a sensory system in the brain, the 

visual cortex, prompted the idea for CNNs. A CNN has one or two convolutional layers, always 

with one or more fully connected layers and a subsampling layer (Khan et al. 2020). 

 

 The function of a CNN’s convolution layer is the same as that of visual cortex cells (Hubel et 

al. 1968). A handcrafted feature extractor gathers vital information from input. It removes 

insignificant features from the typical pattern recognition model (Fukushima et al. 1983). 

Following the extractor, a trainable classifier, which is a normal neural network that categorizes 

feature vectors, is employed. CNN's use convolution layers as feature extractors. However, 

they are not handcrafted. The visual cortex is made up of numerous cells that detect light in 

tiny amounts. The visual field is divided by overlapping subregions called receptive fields. 

More complicated cells have larger receptive fields and act as local filters in the input space. 

During the training phase of a CNN, weights of both fully connected layers and convolutional 

layers are calculated and utilized for classification (Huang et al. 2018) and feature extraction 

(Brownlee 2019). Convolution filter kernel weights are selected during the training phase. 

Convolutional layers can retrieve image patterns because the hidden layer’s receptive fields are 

constrained to be confined. 

 

6.3 Machine Learning 

Machine learning algorithms for object detection are based on autonomous learning and have 

good detection accuracy. Object detection algorithms based on machine learning have been 

developed for various applications like face detection (Viola et al. 2004), pedestrian detection 

(Dollar et al. 2011), medical object detection (Zhu et al. 2016), military object detection (Hua 

et al. 2018), intelligent transportation systems (Zhang et al. 2011), and intelligent monitoring 

systems (Chen et al. 2014). An anchor is used in object detection for classification and 

regression. The algorithm replaces the preceding region proposal network (RPN), feature 

selection method, and selective search (Kulkarni et al., 2015) with the guided anchor method 

(Wang et al., 2019). The network module is obtained using function selection (Hu et al. 2018) 

to elucidate the object compression problem. The skip pooling method (Bell et al. 2016) is used 

to solve the problem of small object size so as to improve the detection efficiency of faster 

region-based CNN (R-CNN) in complex scenes. 
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A public data set comprising 54,306 pictures of healthy and diseased plant leaves was used by 

Mohanty et al. (2016). They developed a deep CNN that accurately detected images with 99% 

accuracy. Alaslani et al. (2018) extracted learned features from a support vector machine 

(SVM) and pre-trained CNN algorithm for image classification. The SVM method was utilized 

for classification, and an AlexNet pre-trained CNN model was utilized for extracting features. 

Public pictures of irises were utilized to create an iris recognition system. According to the 

results, the recognition precision of the database was 98.3%. Huang et al. (2018) used digital 

pictures to construct a convolutional neural network (CNN) for bacteria colony recognition. 

The categorization of bacteria colonies was carried out using data from Peking University First 

Hospital. According to the results, the network was able to classify 18 bacteria colonies with a 

73% accuracy.  

 

Gunda et al. (2019) created an AI-based smartphone application for water quality monitoring. 

The accuracy of the developed model was 99%. However, the developed model was not 

verified by the authors using performance functions. Using a photonic crystal-based optical 

biosensor, Nehal et al. (2019) created an AI-based lab-on-chip for detecting bacterial 

contamination. The limits of employing separate sensors to assess physical, chemical, and 

bacteriological parameters of water quality, which impact the sensitivity and accuracy of the 

results, were discovered using these biosensors. The procedure is expensive and time-

consuming. Recent studies have used publicly available data sets and platforms for colony 

counting. Torelli et al. (2018) used the publicly available OpenCV and CellProfiler software 

platforms for automatic bacterial cell counting. Albaradei et al. (2020) used the CSRNet 

transfer learning application for cell counting. The training of the model was carried out using 

Python with the Keras library. Model performance was validated using root-mean-square error 

(RMSE) values. The average RMSE value of the developed model was 22.38, which is very 

high. We cannot rely on this model for viable cell counting. The aforementioned studies 

indicate that prediction models have been based on public data sets, published research reports, 

and testing data that is freely available on the internet, making it impossible to assess model 

accuracy. As a result, we cannot depend entirely on these studies to count bacteria colonies. 

However, no study has been done to identify and count E. coli bacterial cells on agar plates 

with great accuracy using experimental laboratory data.  

 

In order to deal with the problems associated with manual cell counting, this study developed 

a machine-learning algorithm based on a faster region-based convolutional neural network with 



160 
 

higher accuracy. We developed two different networks to detect and count bacterial growth 

because the developed CNN can always identify an image, not an object. Therefore, it cannot 

draw bounding boxes around them. To identify objects in an image, we developed a faster R-

CNN model to count bacteria colonies using a region proposal network. An RPN generates 

region proposals by predicting the class and box offsets to collect predetermined bounding box 

templates known as anchor boxes. The proposed faster R-CNN algorithm combined with the 

region proposal network, anchor box, region of interest (ROI) pooling layer, convolution layer, 

and classification output layer. This method can provide improved classification and detection 

accuracy compared to existing methods.  

 

6.4 Methodology 

We built our data set in this study using water samples obtained from eight districts in Rajasthan 

as part of the Birla Institute of Technology and Science and the University of Virginia (BITS-

UVA) groundwater contamination project. We also developed a graphical user interface (GUI) 

application to rapidly count E. coli colony-forming units on agar plates using laboratory 

experiment data. The main contributions of this paper are as follows:  

• A total of 1,301 groundwater samples were collected and analyzed using various water 

quality tests in the laboratory. This experimental data set was validated using AI 

techniques.  

• A convolutional neural network algorithm was developed to identify and predict E. coli 

bacteria on agar plates.  

• A mobile application was developed for the rapid detection of E. coli bacteria in water 

using CNN.  

• A faster region-based convolutional neural network algorithm was developed to 

automate the process of manual cell counting of E. coli bacteria on agar plates.  

• A graphical user interface application was created to rapidly count E. coli colony-

forming units on agar plates using faster R-CNN. 

 

6.5 Identification of bacteria and viable cell counting 

The most significant bacteriological task is to classify water-borne pathogens. Generally, 

bacteria display three basic shapes: round, rod-shaped, and spiral. After water samples are 

collected, bacteria must be grown on culture media to be identified. Gram staining is the first 

step toward identifying bacteria (Tripathi et al. 2020). Staining is a method used to differentiate 
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bacteria in the cell wall based on their different constituents. By coloring these cells violet or 

red, the gram staining method categorizes bacteria into two classes: gram-positive and gram-

negative. Agar is a growth medium that is used for selective identification and differentiation 

of E. coli in water (Frampton 1993). 

 

Viable cell counts were performed using the plate count method (USEPA 2002). EMB agar 

(Leininger et al. 2001) was used as a growth media for the identification of E. coli. Using 1-

mL water samples, serial dilution was performed so that dilution two had a concentration one-

tenth that of dilution one and one hundredth that of the water sample. Next, 20 mL of molten 

cooled agar solution and diluted water samples were mixed well and poured into a sterile petri 

dish with a diameter of 90 mm. The agar plates were placed in an incubator at 35°C for 24–48 

h to distribute the colonies throughout the depth of the medium. Colony-forming units present 

in the petri dish were counted using a microscope at 10× magnification. The colony-forming 

units present in a water sample can be determined by multiplying the number of colonies 

present on the agar plate by the sample’s dilution factor (Bartram et al. 1996), as shown in 

Equation (6.1) 

CFU/mL = number of colonies × dilution factor     (6.1) 

 

The viable count analysis of the water samples showed E. coli bacterial strains with minimum 

cell counts of 4×107 CFU/100 mL and maximum cell counts of 132 × 107 CFU/100 mL, as 

shown in Figure 6.1. A total of 99 groundwater samples were found positive for E. coli. 

 

Figure 6.1: Viable cell count of E. coli in groundwater samples. 
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Image segments were obtained from high-resolution images of agar plates using a Canon EOS 

3000D (Canon India) digital single-lens reflex (SLR) camera with a resolution of 18 

megapixels (MP) and a Sigma 70–300 mm F/4–5.6 DG macro telephoto zoom lens (Sigma). 

The camera’s assembly height was 300 mm above the dish. A universal serial bus (USB) cable 

was used to connect the camera to the device. A transition in the color of the medium with a 

metallic sheen with a dark center indicated the presence of E. coli bacteria, as shown in Figure 

6.2. Image segmentation was performed using thresholding techniques (Zaitoun and Aqel 

2015). Each segment was classified into one of five groups based on the number of colonies it 

included, ranging from 1 to 5, or categorized as an outlier if it contained no colonies but had 

bubbles, dust, or dirt on the agar surface (Figure 6.3). Segments were labeled manually using 

a dedicated GUI, and a custom database format was used to store the labeling data. 

 

Figure 6.2: Colour change in culture medium with a metallic sheen with a dark center due to 

the presence of bacteria. 

 

 

(a)                     (b)       (c)                   (d)                  (e)  

Figure 6.3: A few of E. coli dataset images representing a certain number of colonies, from 1 

(a) to 5 (e) 
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6.6 Convolutional Neural Network for identification of E. coli bacteria on 

Petri dishes  

The CNN model was fed 200 pictures collected from laboratory testing (plate count test). Image 

manipulation procedure was used to resize, crop, and rotate the input photos so as to increase 

the classifier’s accuracy in training sets. The pictures were divided into two groups based on 

the presence or absence of E. coli. The experimental data were divided into three sets: training 

(70%), testing (15%), and validation (15%). We trained the CNN using MATLAB Deep 

Network Designer 2020b (MathWorks) to distinguish between pictures with E. coli present and 

E. coli absent. The CNN model was trained on a machine with 16 gigabytes (GB) of RAM. To 

detect E. coli bacteria on agar plates, the CNN employed image color, red green blue (RGB), 

and black and white (BW) values. On a scale of 0 to 1, predictions were given for each image. 

If the predicted value was adjusted to zero, that is, less than 0.5, the final forecast for that 

picture was E. coli absent. If the predicted value was adjusted to 1, that is, a value larger than 

0.5, the final forecast for that picture was E. coli present. Consequently, the closer the model 

went to 0, the more certain it was that a picture was an E. coli absent image. The nearer it got 

to 1, the more certain it was that a picture was an E. coli absent image. This study employed a 

data set of 200 photos to determine whether E. coli bacteria were present on agar plates. All 

pictures were 3,228 × 3,215 pixels in size. In this study, color, RGB, and BW pictures were 

utilized to categorize images based on color and texture characteristics. Figure 6.4 depicts 

images from the data set used in the study. 

 

 

Figure 6.4: A few sample images from the E. coli dataset. 

 

The CNN model’s performance was validated using F-score, precision, sensitivity, and 

accuracy statistical measures (Dalianis 2018; Prabha et al. 2016). The CNN model used cross 

validation to test the networks more thoroughly. This means that all images of the data were 

used as both training and test data, split into iterations. TP stands for true positive (appropriately 
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recognizing an E. coli present image as E. coli present). TN stands for true negative 

(appropriately recognizing an E. coli absent image as E. coli absent). FP stands for false 

positive (inappropriately recognizing an E. coli present image as E. coli absent). FN stands for 

false negative (inappropriately recognizing an E. coli absent image as E. coli present). 

Accuracy was defined as the proportion of properly recognized samples (both present and 

absent) among all samples [see Equation (6.2)]. The ratio of all recognized positive samples to 

all positive samples is the sensitivity [see Equation (6.3)]. If sensitivity is strong, the class was 

accurately detected. The value of high sensitivity implies that a class has been appropriately 

recognized. Precision was defined as the ratio of all positively detected positive samples to all 

positively predicted positive samples [see Equation (6.4)]. High precision suggests that a 

sample classified as positive is, in fact, positive. The weighted average of sensitivity and 

accuracy was used to get the F-score. In the F-score, the harmonic mean replaces the arithmetic 

mean. This metric punishes high values much more [see Equation (6.5)]. Intersection-over-

union (IoU), also known as the Jaccard index, is a popular metric for measuring how accurate 

a proposed image segmentation is in comparison to a known/ground-truth segmentation. In 

segmentation tasks, IoU is recommended over accuracy because it is less impacted by class 

imbalances that exist in foreground/background segmentation tasks [see Equation (6.6)]. The 

ratio of genuine negatives to total negatives in the data is defined as specificity [see Equation 

(6.7)]. The proportion of expected negatives that are true negatives is denoted as the negative 

predictive value. It expresses the likelihood that a projected negative is a genuine negative [see 

Equation (6.8)]. The fraction of negative instances wrongly classified as positive cases in the 

data is referred to as the false positive rate [see Equation (6.9)]. The predicted proportion of 

type I mistakes is referred to as the false discovery rate (FDR). A type I mistake occurs when 

we wrongly reject the null hypothesis, resulting in a false positive [see Equation (6.10)]. A false 

negative is an outcome in which the model forecasts the negative class inaccurately [see 

Equation (6.11)]. The following equations [Equations (6.2)–(6.11)] can be used to compute F-

Score, precision, sensitivity, and accuracy: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
    (6.2) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
     (6.3) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
     (6.4) 

𝐹 − 𝑆𝑐𝑜𝑟𝑒 =
2∗𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
   (6.5) 

𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃+𝐹𝑁+𝐹𝑃
     (6.6) 
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𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
      (6.7) 

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 =
𝑇𝑁

𝑇𝑁+𝐹𝑁
     (6.8) 

𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
     (6.9) 

𝐹𝑎𝑙𝑠𝑒 𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑦 𝑟𝑎𝑡𝑒 =
𝐹𝑃

𝑇𝑃+𝐹𝑃
     (6.10) 

𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 =
𝐹𝑁

𝑇𝑃+𝐹𝑁
     (6.11) 

 

In the current study, machine learning was utilized to train a CNN model to recognize E. coli 

bacteria on agar plates. The CNN model was trained to match all E. coli concentrations to a 

binary output indicating whether E. coli was present. MATLAB R2020b (MathWorks) 

software was used to create the CNN model. The CNN model’s performance was compared 

using original, RGB, and BW filtering pictures. As demonstrated in Figure 6.5, the CNN model 

with BW filtered pictures outperformed the other models, with an accuracy of 93.33%, 

compared to original images (84.44%) and RGB filtered images (86.67%). Figure 6.6 depicts 

the architecture of the proposed CNN model for detecting E. coli on agar plates.  

 

 

(a) Original Images  
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(b) RGB filtering images 

 

(c) BW filtering images 

Figure 6.5: The performance of the CNN model using (a) Original, (b) RGB filter, and (c) 

BW filter images. 
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Figure 6.6: Overview of the CNN model. 

 

Convolutional neural networks are a subgroup of artificial neural networks, as discussed 

previously. Typical CNN architecture consists of one or two convolutional layers with a 

subsampling layer complemented by one or more fully connected layers. Various regulatory 

functions like batch normalization and dropout layers are also used to optimize the performance 

of CNNs (Bouvrie 2006). We trained our CNN model from scratch using MATLAB Deep 

Network Designer 2020b (MathWorks). The developed model can be modified in case needed 

as per the requirements. Our developed CNN model consisted of eight layers, and it was more 

efficient in terms of training time and architecture because it contained fewer layers than other 

models trained for more than one purpose, like visual geometry group VGG (2014) (19 layers), 

GoogLeNet (2014) (22 layers) and Inception (2016) (70 layers) (Simonyan et al. 2014; Szegedy 

et al. 2015, 2017). 

 

The developed CNN model comprised six convolution layers and two fully connected layers. 

A different weight, bias, and rectified linear unit (ReLU) were applied to each layer. The 

number of filters in the initial convolutional layer determined the weights and bias (conv1). 

The first layer was padded using 3 × 3 kernels with a stride of 4. The number of filters utilized 

in conv1 was 96, and the filter size was 11 × 11 × 3. Therefore, initial weights 11 × 11 × 3 × 

96 and bias 1 × 1 × 96 were assigned. The following two layers were padded with 3 × 3 kernels 

with a stride of 2, and the final three layers with 1 × 1 kernels with a stride of 1. The 

convolutional layers (conv1) were supplemented by two fully connected layers that were not 

strided in order to prevent overfitting. Table 6.1 presents a thorough description of the CNN 
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architecture. We used grid search to optimize the batch size, learning rate, and the maximum 

number of epochs before training the data, as shown in Table 6.2. 

 

Table 6.1: Detailed structure of CNN model. 

S. 

No 

Name Type Activations Learnables 

1 imageinput 

3228x3215x3 images with ‘zerocenter’ 

normalization 

Image Input 3228x3215x3 - 

2 conv1 

96 11x11 convolutions with stride (4 4) 

and padding (3 3 3 3) 

 

Convolution 806x803x96 Weights 

11x11x33x96 

 

Bias 1x1x96 

3 relu1 

ReLU 

ReLu 806x803x96 - 

4 crossnorm1 

cross channel normalization with 5 

channels per element. 

Cross Channel 

Normalization 

806x803x96 - 

5 maxpool1 

3x3 max pooling with stride (2 2) and 

padding (0 0 0 0) 

Max Pooling 402x401x96 - 

6 conv2 

128 5x5 convolutions with stride (2 2) 

and padding (3 3 3 3) 

 

Convolution 202x202x128 Weights 

5x5x96x128 

 

Bias 1x1x128 

7 relu2 

ReLU 

ReLu 202x202x128 - 

8 crossnorm2 

cross channel normalization with 5 

channels per element. 

Cross Channel 

Normalization 

202x202x128 - 

9 maxpool2 

3x3 max pooling with stride (2 2) and 

padding (0 0 0 0) 

Max Pooling 100x100x128 - 

10 conv3 

256 3x3 convolutions with stride (2 2) 

and padding (3 3 3 3) 

 

Convolution 52x52x256 Weights 

3x3x128x256 

 

Bias 1x1x256 

11 relu3 

ReLU 

ReLu 52x52x256 - 

12 crossnorm3 

cross channel normalization with 5 

channels per element. 

Cross Channel 

Normalization 

52x52x256 - 

13 maxpool3 

3x3 max pooling with stride (2 2) and 

padding (0 0 0 0) 

Max Pooling 25x25x256 - 

14 conv4 

384 3x3 convolutions with stride (1 1) 

and padding (1 1 1 1) 

 

Convolution 25x25x384 Weights 

3x3x256x384 

 

Bias 1x1x384 
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15 relu4 

ReLU 

ReLu 25x25x384 - 

16 crossnorm4 

cross channel normalization with 5 

channels per element. 

Cross Channel 

Normalization 

25x25x384 - 

17 maxpool4 

3x3 max pooling with stride (2 2) and 

padding (0 0 0 0) 

Max Pooling 12x12x384 - 

18 conv5 

128 3x3 convolutions with stride (1 1) 

and padding (1 1 1 1) 

 

Convolution 12x12x128 Weights 

3x3x384x128 

 

Bias 1x1x128 

19 Relu5 

ReLU 

ReLu 12x12x128 - 

20 crossnorm5 

cross channel normalization with 5 

channels per element. 

Cross Channel 

Normalization 

12x12x128 - 

21 maxpool5 

3x3 max pooling with stride (2 2) and 

padding (0 0 0 0) 

Max Pooling 5x5x128 - 

22 conv6 

96 3x3 convolutions with stride (2 2) and 

padding (1 1 1 1) 

 

Convolution 3x3x96 Weights 

3x3x128x96 

 

Bias 1x1x96 

23 relu6 

ReLU 

ReLu 3x3x96 - 

24 crossnorm6 

cross channel normalization with 5 

channels per element. 

Cross Channel 

Normalization 

3x3x96 - 

25 maxpool6 

3x3 max pooling with stride (2 2) and 

padding (1 1 1 1) 

Max Pooling 2x2x96 - 

26 Relu7 

ReLU 

ReLu 2x2x96 - 

27 dropout1 

50% dropout 

Dropout 2x2x96 - 

28 fc1 

2 fully connected layer 

Fully Connected 1x1x2 Weights 2x384 

Bias       2x1 

29 relu8 

ReLU 

ReLu 1x1x2 - 

30 dropout2 

50% dropout 

Dropout 1x1x2 - 

31 fc2 

2 fully connected layer 

Fully Connected 1x1x2 Weights 2x2 

Bias       2x1 

32 softmax 

softmax 

Softmax 1x1x2 - 

33 classoutput 

crossentropyex 

Classification 

Output 

- - 
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Table 6.2: Grid search of hyperparameters for backend tuning 

Hyperparameters Values 

Optimizer SGDM with learning rate (0.001, 0.0001, 0.00001) 

Batch size (4,16,32,64) 

Epoch (10,30,60) 

 

In Table 5.2, the hyperparameters underlined in bold represent the best performance. On 

training sets, the best hyperparameters were utilized for training the CNN model. The input 

pictures were 2,180 × 960 × 3 pixels in size. These values represented a channel’s height, 

breadth, and length. The channel size for a color picture was 3, corresponding to RGB values. 

Convolution was used to extract features from input pictures. The convolution layer (conv1) 

had a filter size of 11 × 11, corresponding to the height and breadth of the filters employed by 

the training feature while scanning over the pictures. In the conv1 layer, 96 filters were 

employed, indicating the number of neurons linked to the same input area. A cross-channel 

normalization layer was used to normalize the gradients and activations. A nonlinear activation 

function, that is, a ReLU, was used after the normalization layer. After convolution, each 

feature map was downsampled using max pooling. Because the number of parameters was 

decreased, it maintained only the most important information from the pictures and avoided 

overfitting. The rectangular region had dimensions of (2, 2).  

 

A fully connected layer has all of its neurons coupled to the neurons of the preceding layer. 

Such a layer combines all characteristics from the preceding layers to categorize all trends in 

the picture. The fully connected (FC) layer connected all of the features that were used to 

identify the pictures. As a consequence, the output parameters in the fully connected layer 

equaled the number of classes in the predicted data, which in this case was two. The softmax 

activation function was used to normalize the output of the fully connected layer. The softmax 

layer generated a series of positive numbers that sum to 1. These values were subsequently 

used as categorization probabilities by the classification layer. The classification layer was the 

final layer. Each input was assigned to one of the mutually distinct groups by this layer. It 

computed the error (loss) based on the probability obtained from the softmax activation 

function. The CNN model was validated using cross-validation with an iteration size of 60. 

Figure 6.7 depicts the performance of a CNN model using a confusion matrix. Table 6.3 

displays the F-score, precision, sensitivity, and accuracy results obtained using the confusion 
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matrix. Assessing it on our image data set, our model had an accuracy of 97% (194/200 photos) 

and an error (loss) of 0.15, as shown in Figure 6.7. 

 

Figure 6.7: The confusion matrix obtained using E. coli datasets. 

 

Table 6.3: The statistical results for performance evaluation of CNN. 

Performance Measure Results 

Accuracy 0.97 

Sensitivity 0.96            

Precision 0.98 

F-Score 0.97 

 

As a result, as seen in Figure 6.7, CNN had a reasonably high level of confidence in its 

forecasts. This reliability is reflected in the high accuracy value of 97%. Surprisingly, more 

false negatives were predicted by the CNN than false positives (four E. coli present pictures 

were classified as E. coli absent, and two E. coli absent pictures were classified as E. coli 

present). Because of the varying levels of blackness in the E. coli present photos, the CNN may 

have misidentified the lesser-brightness E. coli present photos as E. coli absent. Overall, the 

pictures were darker, and the water appeared to be more turbid.  

 

These findings are crucial to the issue we are considering because 97% accuracy means that 

people who do not have access to modern technology or complex water testing kits will be able 

to determine much more efficiently if water is polluted. Increased exposure to accurate testing 
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procedures will assist persons in determining whether water is safe and avoiding the negative 

repercussions of water contamination. Additionally, with a sensitivity of 0.96 and an accuracy 

of 0.98, this method has been proven reliable for future applications. Moreover, as the number 

of sample photos in our data set grows, the machine learning model will develop and results in 

fewer categorization errors and higher reliability.  

 

6.7 Mobile application for rapid detection of E. coli 

TensorFlow 2.5.0 (Abadi et al. 2016, Alsing 2018) from Google was chosen as the machine 

learning platform for building an AI-based smartphone application to quickly identify E. coli 

on agar plates. TensorFlow was selected because it enables easy deployment on a smartphone 

system and offers a user-friendly graphical user interface. The CNN model was created 

utilizing 200 images from laboratory experiments and a TensorFlow Lite (.tflite) model. We 

created the mobile app with Android Studio v. 4.1.1 (Studio 2017; Zapata 2013) and the 

TensorFlow (. tflite) model (58). The smartphone app allows users to capture photos with their 

smartphone’s built-in camera. The captured pictures are then categorized by interacting with a 

CNN. Figure 6.8 shows the E. coli identification mobile app that was created using the CNN 

model. 

 

Figure 6.8: Smartphone App for Identification of E. coli on Agar Plates. 



173 
 

 

6.8 Faster Region-based Convolutional Neural Network (Faster R-CNN) for 

bacteria colony counting  

Manual counting of viable bacterial cells on agar plates is time-consuming and can be prone to 

human error. The method requires experts to detect and count viable cells. We developed an 

algorithm based on a faster R-CNN for automatic bacteria CFU counting with improved 

detection efficiency to address the aforementioned issues. A total of 200 images obtained from 

plate count tests were utilized as input for the Faster R-CNN model. We used the ResNet-50 

network (Amjoud et al. 2020) for the training of the model. The data set utilized in this study 

comprised 200 pictures in total. All images had a size of 3,228 × 3,215 pixels. Each segment 

obtained was assigned to a class based on the number of colonies it included, ranging from 1 

to 5, or classified as an outlier if it contained dust, bubbles, or dirt on the agar instead of 

colonies. A horizontal flip, a BW filter, and image normalization were used to perform data 

enhancement.  

 

Image manipulation procedure was used to resize, crop, and rotate the input photos so as to 

increase the classifier’s accuracy in training sets. Broad associated areas appeared on the 

boundary of the agar plate as a result of the binarization procedure. The colonies that came into 

contact with these boundary sections and areas were excluded. The images were separated by 

the number of colonies present on the agar plates. The experimental data were divided into 

three sets: training (70%), testing (15%), and validation (15%). We trained the faster R-CNN 

to distinguish pictures using MATLAB Deep Network Designer 2020b (MathWorks). The 

faster R-CNN used BW values of images for the cell counting. The faster R-CNN model used 

cross-validation to test the networks more thoroughly. This meant that all data images were 

used as both training and test data, split into iterations. CNN model performance was validated 

using F-score, precision, sensitivity, and accuracy statistical measures. The methodology 

presented in Figure 6.9 indicates the application of the faster R-CNN model for bacteria colony 

counting. 
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Figure 6.9: Methodology to apply Faster R-CNN algorithm for bacteria colony counting. 

 

The developed CNN-based smartphone app detects bacteria on agar plates. It gives output in 

the form of present/absent. If E. coli bacteria are present on an agar plate, then a second CNN, 

that is, the faster R-CNN model is proposed for counting the number of actively growing 

bacterial cells of E. coli using an agar plate image. The faster R-CNN model was developed 

using MATLAB R2020b (MathWorks) software. We used grid search to optimize the learning 

rate, batch size, and maximum iterations before training the data. The change in the learning 

rate of the faster R-CNN algorithm was observed iteratively. The learning rate distribution was 

plotted after every iteration. The learning rate decreased exponentially by three to four times 

of magnitude. As Figure 6.10 shows, the learning rate continuously decreased exponentially 

until learning terminated at epoch 80. These trials showed that the learning rate decreased, and 

it became stationary at epoch 40. 

 



175 
 

 

Figure 6.10: Change of learning rate with the Faster R-CNN model. 

 

The pre-trained ResNet-50 network was used to develop the faster R-CNN model for the 

identification and colony counting of bacteria. The ResNet-50 network was converted into an 

object detection model using transfer learning. The last three classification layers were replaced 

with new layers for the nine classes to count bacteria cells. The FC, Softmax, and Classification 

layers were replaced with rcnnFC, rcnnSoftmax, and rcnnClassification layers, respectively. 

The faster R-CNN generates region proposals using a region proposal network. An RPN 

predicts the object or background class as well as the box offsets for a collection of predefined 

bounding box templates called anchor boxes. The size of anchor boxes is usually calculated 

based on preliminary information of the scale and aspect ratio of objects in the training data 

set. The RPN's convolution layers were added to the feature extraction layer, and then the 

output of the RPN classification layer was added. The classification layer classified each 

anchor as colony-forming units or CFUs, and then the RPN regression output layers were 

added. The regression layer predicts the offsets of each anchor box. For each anchor box, the 

regression layer predicts four box offsets.  

 

Finally, the classification and regression layers were connected to the inputs of the region 

proposal layer. The ROI pooling layer was connected to the output of the region proposal layer. 

The input images had a size of 2,180 × 960 × 3 pixels. The faster R-CNN model was optimized 

using stochastic gradient descent with momentum (SGDM) optimizer with a learning rate of 
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0.0001, batch size 32, and maximum epochs 30. Our model had a training accuracy of 95.22% 

and an error (loss) of 0.10 after putting it to the test on a collection of images, as shown in 

Figure 6.11. The architecture of the developed faster R-CNN model for rapid colony counting 

of E. coli on agar plates is shown in Figure 6.12.  

 

 

Figure 6.11: The performance of the Faster R-CNN model. 

 

 

Figure 6.12: Overview of the Faster R-CNN model. 
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The performance of the model was tested on an image, as shown in Figure 6.13. The 

identification of E. coli bacteria on agar plates was performed using anchor boxes. The faster 

R-CNN was able to identify almost all colony-forming units on agar plates. Figure 6.14 shows 

the performance of the faster R-CNN model using a confusion matrix. Our model had an overall 

accuracy of 97% (193/200 images) and an error (loss) of 0.10 after analyzing it on our picture 

data set, as shown in Figure 6.14. The validation of the Faster R-CNN model was performed 

using cross-validation with an iteration size of 30. Table 6.4 shows the F-score, precision, 

sensitivity, and accuracy results calculated using the confusion matrix. The developed faster 

R-CNN algorithm exhibited a high degree of certainty in its colony-forming unit predictions, 

as shown in Figure 6.14. The high precision value of 97% reveals its reliability. Surprisingly, 

the faster R-CNN predicted more false negatives than false positives due to the varying degrees 

of darkness in the images. The accuracy of 0.88 and sensitivity of 0.98 show that this method 

has been proven reliable for future applications. Moreover, as the number of sample pictures 

in our data set grows, so does the machine learning model, resulting in fewer categorization 

errors and higher reliability. 

 

 

Figure 6.13: Faster R-CNN model prediction on testing data. 
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Figure 6.14: The confusion matrix obtained using E. coli datasets. 

 

Table 6.4: The statistical results for performance evaluation of Faster R-CNN. 

Performance Measure Results 

Accuracy 0.97 

Sensitivity 0.98 

Precision 0.88 

F-Score 0.93 

IoU 0.48 

Specificity 0.04 

Negative predictive value 0.67 

False positive rate 0.97 

False discovery rate 1 

False negative rate 0.02 

 

6.9 Graphical user interface (GUI) for automatic cell counting on agar plates 

A graphical user interface (GUI) was developed in MATLAB 2020b (Smith 2006) for the 

system to automatically count colony-forming units on agar plates using images captured by a 

built-in smartphone-based sensor. Various components used for developing the GUI included 

push button, edit text, and axes. When a user presses the push button, axes are used to represent 
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a picture in the space available. Furthermore, when a user clicks on the push button labeled 

“Browse Agar Plate Image,” all available images are displayed. The user must select a 

smartphone-captured image of an agar plate from the set of available images. The faster R-

CNN algorithm uses the selected input image to count colony-forming units. The output image 

is shown on the push button labeled “Count CFU,” and the number of colonies in Petri dishes 

is shown on the push button labeled “Number of CFU.” A GUI application was developed to 

rapidly count E. coli colony-forming units on agar plates using faster R-CNN. The developed 

MATLAB GUI is shown in Figure 6.15. 

 

 

Figure 6.15: Graphical user interface (GUI) of the automated E. coli bacteria colony counter. 

 

6.10 Comparison of models  

A comparative analysis of the predictive models (CNN, faster R-CNN) is shown in Figures 

6.16 and 6.17. The faster R-CNN method surpassed all the other configurations with the lowest 

error (loss) value (0.10) and the highest accuracy (95.22%). The results of the comparative 

analysis show that predictions obtained using the faster R-CNN method had higher decision-

making precision and that it can, therefore, be used as a useful method in machine learning.  
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Figure 6.16: Error comparison of CNN and Faster R-CNN models. 

 

 

Figure 6.17: Accuracy comparison of CNN and Faster R-CNN models. 

 

Two benchmark techniques were used to perform comparison tests in order to illustrate the 

performance of the proposed faster R-CNN method. The proposed faster R-CNN method was 

compared with the CNN methods developed by Huang et al. (2018), Ferrari et al. (2017), and 

Hay et al. (2018), the DNN method developed by Wang et al. (2020), and the FC-CNN 

developed by Zieliński et al. (2017). Table 6.5 shows that the proposed faster R-CNN method 

in this study outperformed the other methods in the detection of E. coli with the highest 

accuracy of 97%. 
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Table 6.5: Accuracy of detection on E. coli datasets 

Method 

 

References Number 

of Images 

Accuracy Sensitivity Precision F-

Score 

CNN  

 

Huang, L et 

al. (2018) 

404 0.96 0.73 0.78 0.98 

AlexNet pre-trained 

neural network 

404 0.96 0.90 0.72 0.97 

Unsupervised 

Autoencoder neural 

network 

404 0.96 0.74 0.84 0.98 

CNN  Ferrari, A et 

al. (2017) 

17000 0.92 0.73 0.71 - 

CNN  

 

Hay, E. A et 

al. (2018) 

482 0.90 - - - 

DNN  

 

Wang, H et 

al. (2020) 

71 0.90 0.98 0.99 - 

FC-CNN Zieliński, B 

et al. (2017) 

20 0.82 - - - 

Proposed Faster R-

CNN method 

- 200 0.97 0.98 0.88 0.93 

 

6.11 Summary 

The bacteria colony counting technique is time-consuming, laborious, and prone to errors. 

However, experimental biologists often use manual or partially automatic counting methods to 

count viable cells. As a result, work that automates colony counting or provides labeled data 

sets for training machine learning models is needed. There is no defined technique for colony 

counting at the moment, despite the fact that machine learning is popularizing many areas of 

image processing. This may be due to a lack of annotated picture sets large enough to train 

artificial neural networks for colony counts on agar plates. We conclude that our proposed 

method could help solve this issue by using models that have already proficient in other 

applications and fine-tuning them for this task.   
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It is feasible to refine a model using a small group of photos in biological studies comprising 

several colony developments and then count the remaining pictures using our method. While 

this may accelerate the counting procedure, we feel that the most significant advantage is in 

making the procedure more precise and reliable. Pretrained models, such as the one we created, 

may also be used effectively to count CFUs in new pictures without any additional 

modification. We used a unique data set that we produced via laboratory experimental testing 

to demonstrate the feasibility of our technique for the first time. The developed faster R-CNN 

model for rapid counting of E. coli colonies on agar plates achieved an overall accuracy of 97% 

and an error (loss) of 0.10. 

 

We created an AI-based smartphone application utilizing a CNN that takes pictures with the 

smartphone’s built-in camera and forecasts bacteria on agar plates based on color intensity. We 

demonstrated its applicability for bacterial contamination and increased accuracy over 

laboratory results by utilizing our AI-powered smartphone app to check water quality. Within 

1,032 ms, the developed CNN model predicted the presence of E. coli bacteria. The approach 

was considerably more successful than alternative methods such as polymerase chain reaction 

(PCR) and traditional techniques. The faster R-CNN model’s performance was validated using 

a variety of statistical metrics, demonstrating that it is accurate and reliable in counting E. coli 

colony-forming units. We also developed a GUI interface to rapidly count E. coli colony-

forming units on agar plates using faster R-CNN. The automated counting of E. coli bacterial 

cells on agar plates will enable technicians from public health engineering departments to 

utilize this innovative application without prior expertise. 

 

However, further validation is needed to determine the model’s ability to generalize through 

various experiments. As a result, we want to gather more data and assess the model’s capacity 

for counting in a variety of situations, including higher-quality images with visible cellular 

components. This would also necessitate a further investigation of network architecture 

functionality, as well as potentially training additional layers, which will be possible with 

further input data. Exploring those possibilities will be the primary objective of our future 

efforts. Faster-RCNN has significant advantages in detection accuracy. However, faster-R-

CNN has certain limitations, such as not being capable of real-time detection. The method for 

obtaining region boxes before classification necessitates a large amount of computation. 

Because of this limitation, another advanced technique known as mask R-CNN (He et al. 2017) 

has been developed. Furthermore, the performance of CNNs can be improved by tuning 



183 
 

parameters like learning rate, epoch, and the number of layers. All these parameters affect the 

performance of a CNN. Image augmentation can be used to increase the data sample count 

using shear, zoom, rotation, and preprocessing functions. CNN model performance is also 

affected by overfitting and underfitting, which can be solved by training with more data, early 

stopping, and cross-validation. In the future, we want to expand and expand our study on real-

time monitoring of microbiological water quality without the use of laboratory testing 

procedures. We could create a system that could operate more successfully on initiatives like 

Intel Clean Water AI if we had more time and resources. 
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CHAPTER 7 

 

7. A Novel PCA-FA-ANN based Hybrid Model for Prediction of Fluoride 

Fluoride plays an essential role in terms of the health of human beings. Persistent exposure to 

fluoride, which is present in drinking water mainly, may result in dental, skeletal, and non-

skeletal fluorosis. However, being consumed presently, drinking water is not sufficient to 

indicate the degree of exposure to fluoride. The existing literature indicates that nails can be 

used as indicative (biomarkers) of not only to exposure of fluoride but also the degree of the 

same. However, because of differential metabolism rate depending on a number of factors like 

age, gender, nutritional status, water characteristics, etc., exposure to fluoride is not easily 

detectable in human beings by just testing the fluoride content in nails. Moreover, due to 

sensitive chemical analysis and lack of facilities, it is difficult to identify the exact concentration 

of fluoride in nails. The objective of this study is to identify the significant parameters that 

affect the fluoride content in nail samples. Apart from laboratories test, the application of 

different Artificial Intelligence (AI) methods is used to predict fluoride in nails, which will help 

identify the degree of fluoride exposure to children, females, and males. 

 

7.1 Introduction 

Freshwater reserves comprise of fluoride in varying concentrations, from trace amounts to 

some mg/l and even toxic concentrations (Schmedt et al. 2012, Celinski et al. 2016, O'Donnel 

1973, Álvarez et al. 2011, Wenzel et al. 1992). High levels of fluoride are generally found at 

the foot of high mountains and in geological regions with marine deposits (Koblar et al., 2011). 

Fluoride is known to have beneficial effects on dental health within permissible limits. On the 

other hand, extreme fluoride ingestion above the allowable limit can lead to detrimental effects, 

including the accumulation of dental fluorosis or skeletal fluorosis in both adults and children. 

The acceptable consumption has been set at 0.05 mg/day/kg weight based on experimental 

observations. The frequency and intensity of this clinical incidence can differ between persons 

and communities because of the effects of environmental and physiological influences, the 

volume of fluoride absorbed, and the duration of exposure (De Carvalho et al. 2011, Buzalaf 

et al. 2006, Khairnar et al. 2015, Ando et al. 1998). 

 

Fluoride toxicity awareness remains relatively low (Ando et al. 1998). Millions of people 

around the world are affected by adverse health effects with exposure to a high concentration 
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of naturally occurring fluoride in potable water supplies (Moseley et al. 2003, Yi et al., 2008). 

Thus, fluoride has been called one of the top ten public health concern chemicals (WHO, 2006). 

A recent study of the US National Research Council has reported a range of possible health 

issues linked to elevated exposure to fluoride, including disrupted biochemical and 

physiological processes, cardiovascular, reproductive, endocrine, gastrointestinal, 

neurological, and bone fractures (Beir 2005). 

 

7.2 Biomarkers 

In order to get relevant results in a large population, a fluoride exposure biomarker should be 

easily collectable without donor objections, and there should be an accurate, reliable, and 

legitimate fluoride estimation tool. Samples of the nails and hair can be used as biomarkers to 

monitor fluoride contamination. Nails have been proposed as appropriate biomarkers for 

fluoride intake (Pessan et al. 2011, Buzalaf et al., 2006). They can help to detect chronic and 

sub-chronic exposures to fluoride. The use of nails as fluoride markers is appealing, provided 

that the samples are easy to obtain (Fukushima et al., 2009), as nails can be collected non-

invasively. The user-friendly methodology for assessing nail fluoride and its fast use in an 

essential laboratory condition exhibits strong ability as a biomarker for epidemiological 

surveys. The fluoride concentration in nails reflects the total concentration of fluoride 

absorption and plasma during the processing of nail samples. The concentration of fluoride in 

the nail samples is thus directly correlated to the average fluoride consumption that happened 

around three months ago (Whitford et al., 2005). 

 

Recent studies examined the concentration of fluoride in water by the usage of urine (Buzalaf 

et al. 2012, Antonijevic et al. 2016, Akpata et al. 2014) and nail samples (Buzalaf et al. 2012, 

Lima-Arsati et al. 2010, Amaral et al. 2014, Linhares et al. 2016, Sousa et al. 2018). Still, no 

study has been done to examine the correlation between physico-chemical water quality 

parameters and fluoride concentration in nail samples. Fluoride fingernail analysis has been 

widely used to determine low-level concentrations in water fluoridation, toothpaste, salt, and 

milk (Whitford et al. 1999, Buzalaf et al., 2012, Lima-Arsati et al. 2010, De Almeida et al. 

2007, Buzalaf et al., 2009, Pessan et al. 2005, Levy et al., 2004). Fukushima et al. 2009 have 

used nails for investigating the correlation between fluoride exposure biomarkers and total 

daily intake of fluoride with significant fluoride exposure in drinking water. They studied the 

impact of age, gender, nail growth rate, and geographic area on the absorption of fluorides in 



194 
 

the fingernails and toenails (Elekdag-Turk et al., 2019). They obtained drinking water and nail 

samples and used an ion-selective electrode to examine fluoride concentration. A comparison 

mark was created on each nail, and growth levels were calculated. The analysis was done by 

ANOVA and linear regression. All the factors they considered were directly associated with 

the fluoride concentration in nail samples. The study recommended that nails should be used 

as biomarkers of fluoride contamination, with the advantage of being easily obtained. But they 

do not consider water characteristics. At present, none of the studies on nails as biomarkers of 

fluoride exposure have examined the impact of age, gender, and factors affecting the 

bioavailability of fluoride (Clarkson et al., 2000). 

 

There is a need to study the effect of age, weight, gender, water fluoride, nitrate, turbidity, 

dissolved oxygen, electrical conductivity, and pH levels on fluoride concentration in nail 

samples since water characteristics might also impact fluoride. 

 

7.3 Methodology 

This study focused on costs and remediation of groundwater contamination in India, with 

particular reference to Rajasthan. 2401 groundwater and fingernail samples were collected 

from 348 villages and cities in pre and post-monsoon seasons during 2016-2019. 1024 water 

samples were also collected from the same households from where the nails samples were 

collected. These water samples were tested for various physical, chemical, and microbiological 

water quality parameters in laboratories at Birla Institute of Technology and Science, Pilani, 

India. These parameters are as follows; pH, dissolved oxygen (DO, mg/l), electrical 

conductivity (EC, s/m), turbidity (NTU), fluoride (mg/l), and nitrate (mg/l) were tested using 

the titration and spectroscopy method. Nail samples were collected from the various villages, 

and the data contains the individual weight, height, age, and gender of the family members. 

The concentration of fluoride in nail samples was measured using an ion-selective electrode. 

 

The objective of this study is to identify the significant water quality parameters and other 

factors that affect the fluoride content in nail samples. Apart from laboratory tests, different 

Artificial Intelligence (AI) methods were used to predict fluoride in nails, which will help 

identify the degree of fluoride exposure to children, females, and males. As a point of reference, 

we show the relationship between fluoride in drinking water and in nails that we collected and 
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tested in Figure 7.1. We observe no correlation among these two variables though both had 

elevated levels of fluoride in them. 

 

 

Figure 7.1: Relationship between fluoride in drinking water and nails. 

 

If fluoride monitoring and mitigation policy were based solely on biomarker fluoride 

concentration such as nails, we would miss the community exposure. Nails fluoride is 

potentially affected by age, gender, and chemical properties of water. In order to shed light on 

this relationship, we developed a machine learning model that can help make informed policy 

choices. This model uses water fluoride levels in conjunction with nails to establish exposure.  

To this end, it predicts the fluoride in nails using water fluoride, individual, and water 

characteristics as inputs.  

 

The advantage of the machine learning models is that they provide better prediction accuracy 

than other mathematical models, including those combined with the PCA algorithm (Reddy et 

al., 2014). Models do not produce reliable results when both linear and non-linear variables are 

present in the dataset (Pao 2006). Hence, we rely on hybrid methods to circumvent this issue. 

We also establish the best architecture of the hybrid model for the prediction of fluoride in nail 

samples. 

 

In this study, we have proposed a hybrid model (HM) that combines Principal Component 

Analysis (PCA), Firefly Algorithm (FA), and Artificial Neural Network (ANN) to predict 

fluoride concentration in nails. In this method, PCA was used for dimensionality reduction of 
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the dataset. FA was applied to optimize the weights and bias between the input and hidden 

layers of ANN models. The performance of the model was evaluated using five evaluation 

measures such as MSE, RMSE, MAE, MAPE, and R2. The prediction includes the 

development of 3 models: 

1. Model 1: ANN with all original input parameters. 

2. Model 2: ANN with principal components (PC) as input variables, obtained by the PCA 

algorithm. 

3. Model 3: ANN with reduced dataset as input variables, obtained by the PCA-FA 

algorithm. 

 

7.4 Principal Component Analysis (PCA) 

The principal component analysis is a multivariate method used to reduce the dimension of 

input variables when we have a vast amount of observations and an improved understanding 

of variables (Lu et al., 2003). The PCA algorithm helps to reduce the dimension of the data 

into limited numbers of variables for data interpretation and then create basic plots to display 

essential statistics, including score plot and loading plot, to study the correlation between the 

broad clustered data set (Stojanovic et al. 2012, Beltran et al. 2006). Such associated variables 

are known as principal components (Shinde et al., 2009). PCA has its mathematical algorithm 

in linear algebra, which describes the association between the data containing the variables as 

columns and the observations or samples as rows. The fundamental purpose is to create a 

transformed matrix using coefficients of principal components that includes the maximum 

amount of information and then plot the data using a 2-dimensional plot in MATLAB software 

(Bell et al. 1997). 

 

After laboratory testing, 2401 experimental observations were used to predict the concentration 

of fluoride in fingernail samples. The effect of age, weight, height, gender and different water 

quality parameters like pH, dissolved oxygen, electrical conductivity, turbidity fluoride, and 

nitrate were taken as input parameters to predict the effects on the concentration of fluorides in 

the fingernails and toenails. The fundamental purpose of the analysis was to define the 

interdependence of a large number of variables with a smaller number of simple variables with 

computing the commonality, then pre-process the factors according to the PCA and extract the 

principal components to minimize the measurements of the datasets. After normalizing the 
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data, the principal components of the final matrix were calculated when the cumulative 

variance contribution was more than 85%. 

 

The relationship between Eigenvalues and Eigenvector numbers is plotted in Figure 7.2, which 

gives the scree plot of PCA. 

 

 

Figure 7.2: Scree plot of the Eigenvalues. 

 

The three coefficients of principal component scores derived from the principal component 

analysis were used as input for prediction, which reduced the calculation dimension of the 

model and improved the operation efficiency. When three principal components were taken, 

the trend began to stabilize. The principal components PC1, PC2, and PC3 were arranged 

according to their amount of variance in the decreasing order. Also, for the top three principal 

components, their total cumulative contribution rate had reached 72.64%, as illustrated in 

Figure 7.3. Hence, we have selected the top three principal components for analysis, as shown 

in Table 7.1. 
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Figure 7.3: The bars display the variance accounted by the first ten principal components. 

 

Table 7.1: The Coefficient of Principal Component Score of Variables 

 

 

 

 

 

 

 

 

 

 

 

 

Principal components expressions are given in equation’s (7.2-7.4): 

𝑃𝐶1 = 0.3660𝑋1 + 0.4230𝑋2 + 0.1999𝑋3 + 0.3494𝑋3 + 0.3218𝑋5 + 0.2354𝑋6 +

0.1562𝑋7 + 0.3541𝑋8 + 0.2875𝑋9 + 0.3657𝑋10               (7.2) 

𝑃𝐶2 = 0.3858𝑋1 + 0.1926𝑋2 − 0.2094𝑋3 + 0.3920𝑋3 − 0.2819𝑋5 − 0.5249𝑋6 +

0.1550𝑋7 + 0.1197𝑋8 − 0.4612𝑋9 − 0.1026𝑋10               (7.3) 

Variable PC1 PC2 PC3 

Weight 0.3660 0.3858 0.2296 

Height 0.4230 0.1926 0.0618 

Gender 0.1999 -0.2094 -0.3554 

Age 0.3494 0.3920 0.2578 

Fluoride 0.3218 -0.2819 0.0723 

Nitrates 0.2354 -0.5249 0.1909 

Turbidity 0.1562 0.1550 -0.8114 

Dissolved Oxygen 0.3541 0.1197 -0.2237 

Electrical Conductivity 0.2874 -0.4612 0.0012 

pH 0.3657 -0.1026 0.0224 
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𝑃𝐶3 = 0.2296𝑋1 + 0.0618𝑋2 − 0.3554𝑋3 + 0.2578𝑋3 − 0.0723 − 0.1909𝑋6 −

0.8114𝑋7 − 0.2237𝑋8 + 0.0012𝑋9 + 0.0224𝑋10                          (7.4) 

 

The description of the principal components: 

• Height (0.423), Weight (0.366), pH (0.3657), Dissolved oxygen (0.3541), Age 

(0.3494), and Fluoride (0.3218) have significant positive loadings on principal 

component 1 (PC1). 

• Nitrates (-0.5249) and Electrical Conductivity (-0.4612) have significant negative 

loadings on principal component 2 (PC2). 

• Turbidity (-0.8114) and Gender (-0.3554) have significant negative loadings on 

principal component 3 (PC3). 

 

7.5 Artificial Neural Networks (ANN) 

An artificial neural network is a machine-learning algorithm commonly used in multiple 

problem domains for classification, prediction, and correlation (Bell et al. 1997). ANNs have 

the potential to estimate any non-linear mathematical function, which is most useful when the 

correlation between variables is uncertain or complex (Paliwal et al., 2009). ANNs are widely 

used to extract hidden patterns from complex data (Masters et al. 1995, Haykin et al. 2007). 

McCulloch et al. 1943 study was inspired by neuronal activity, introduced the idea of 

considering neural networks as computing machines. Mathematically, Hornik et al. 1989 

proved that a multilayer neural network with finite hidden layers and enough hidden neurons 

is a universal approximator for any Borel measurable function from one finite-dimensional 

space to another. Several complicated multilayer neural network models have been proposed 

and used in different fields. Applications of ANN in the groundwater, ecology, and 

environmental engineering fields were documented in the early 1990s. However, in recent 

years ANN has been intensively used for prediction and forecasting in a variety of engineering 

and water-related areas, including water resource analysis by Liong et al. 1999, 2001, Muttil 

and Chau 2006, El-Shafie et al. 2008, El-Shafie et al. 2011, Najah et al. 2009, oceanography 

by Makarynskyy, 2004, and environmental engineering by Grubert, 2003. 

 

The principal components extracted by the principal component analysis were used as input 

datasets of the prediction model. A feed-forward backpropagation neural network was 

developed, and it used the principal components as inputs to predict the concentration of 



200 
 

fluoride in nail samples. The experimental results were compared with the PCA-ANN model 

results, which use as regressors the original variables.  

 

i. Splitting the datasets into subsets: 

Initially, a total of 2401 data was divided into training (70%), testing (15%), and validation 

(15%).   

 

ii. Training functions 

In this analysis, the Bayesian regularization backpropagation (Hayati et al. 2007, MacKay et 

al. 1992) training function was used to perform training and validation steps.  

 

iii. Adaption learning functions 

Gradient descent with momentum weight and bias learning function was used to explain this 

pattern of neural network input-output relationship and architecture.  

 

iv. Activation functions 

A sigmoid activation function was used (Turian et al. 2009). 

 

v. Performance functions 

The model performance was evaluated using the value of the coefficient of determination (R2), 

mean square error (MSE), root mean square error (RMSE), mean absolute error (MAE), and 

mean absolute percentage error (MAPE). 

 

A feed-forward neural network with multiple hidden layers was optimized using the Bayesian 

regularization backpropagation (BR) training function, and the sigmoid activation function had 

outperformed all other combinations. Figure 7.4 illustrated the effect of the number of neurons 

on the value of R2 for one, two, and three hidden layers. The model with two hidden layers and 

40 neurons shows the best performance with the overall highest R2 values of 0.85 and lowest 

errors with MSE values of 0.1, RMSE values of 0.1, MAE values of 0.08, and MAPE values 

of 0.05, as illustrated in Figure 7.5. Increasing the number of hidden layers led to improved 

performance; however, this method requires more computational time and does not 

substantially alter model accuracy. In this study, the maximum number of neurons that could 

be considered in the ANN model was set at 50 due to the extreme computational time required 

for the improvement to model accuracy. The response plot was used to visualize the correlation 
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between input and output variables. Figure 7.6(a) shows the response plot of the ANN model, 

and Figure 7.6(b) shows the plot between predicted output and actual output; a perfect 

regression model has predicted output equal to actual output with a regression value of 0.85. 

 

 

Figure 7.4: Accuracy comparison of ANN models. 

 

 

Figure 7.5: Error comparison of ANN models. 
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a) Response plot                                         b) Actual vs. predicted value  

Figure 7.6: a) Response plot of ANN, b) Actual vs. predicted value using ANN. 

 

7.6 PCA-ANN model 

The data was analysed using the PCA algorithm, and based upon the principal component 

scores, feed-forward backpropagation artificial neural network was developed to predict the 

concentration of fluoride in fingernail samples. The data were divided into training (70%), 

testing (15%), and validation (15%) and used for fitting and simulation of the model.  We have 

tested the model in the neural network toolbox in MATLAB R2019b. With the selected 

network type, the input and target data were fixed. With this, we had used fourteen different 

training functions, two adaptation learning functions, five performance functions, and three 

transfer functions. Out of all these networks, only one network had completed the process of 

generating regression plots. The ANN model was optimized by the Bayesian regularization 

backpropagation (BR) using the sigmoid activation function that has outperformed all other 

combinations. Figure 7.7 shows the effect of the number of neurons on the value of R2 for one, 

two, and three hidden layers. The model with two hidden layers and 30 neurons shows the best 

performance with the overall highest R2 values of 0.90 and lowest errors with MSE values of 

0.05, RMSE values of 0.08, MAE values of 0.12, and MAPE values of 0.06, as illustrated in 

Figure 7.8. Figure 7.9(a) shows the response plot of the PCA-ANN model. Figure 7.9(b) shows 

the plot between predicted output and actual output; a perfect regression model has predicted 

output equal to accurate output with a regression value of 0.90. 
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Figure 7.7: Accuracy comparison of PCA-ANN models. 

 

 

Figure 7.8: Error comparison of PCA-ANN models. 
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a) Response plot                         b) Actual vs. predicted value 

Figure 7.9: a) Response plot of PCA-ANN, b) Actual vs. predicted value using PCA-ANN. 

 

7.7 Firefly Algorithm (FA) 

The firefly algorithm is used in this study to improve the performance of machine learning 

models by optimizing the weights and bias between the input layer and the hidden layer of the 

ANN model. Firefly algorithm is one of the swarm intelligent algorithms developed by Yang. 

It is a metaheuristic algorithm that is inspired by nature and, based on the flashing behavior of 

fireflies, used to solve complex problems and non-linear optimization problems (Moazenzadeh 

et al. 2018). The brightness of the fireflies is the main criterion for the optimization of the 

fitness function (Gandomi et al. 2011, Yang et al., 2011). Yang developed the algorithm based 

on the following assumptions: 

• The attraction of firefly is independent of gender due to unisexuality, and it is directly 

proportional to the brightness of the emitted light, but it is indirectly proportional to the 

distance between the fireflies (𝑥𝑖, 𝑥𝑗). The firefly can move in any direction if the 

brightness of the neighboring firefly is same. 

• The brightness of the light is associated with the optimization of objective function f(x) 

in the algorithm. 

 

The principal components (PC) extracted by principal component analysis (PCA) were used as 

input datasets of the hybrid PCA-FA-ANN hybrid model. The firefly algorithm (FA) was 

applied to select the best attributes from the reduced dataset for optimization of the weights 

and bias between layers of the ANN model. The same phenomenon was used for 
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dimensionality reduction. The ANN models were developed by training and testing of the 

dataset. The datasets were divided into subsets using the Firefly algorithm, and each subset was 

grouped at a single node. The algorithm corrects the errors generated by the ANN model to 

achieve optimized results for prediction. The model performance was evaluated using the value 

of the coefficient of determination (R2), mean square error (MSE), root mean square error 

(RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE). The 

methodology presented in Figure 7.10 indicates the application of the hybrid model (HM) to 

predict fluoride in nail samples. 

 

 

Figure 7.10: Methodology to apply PCA-FA-ANN algorithm for prediction. 
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The dataset used for prediction was enormous. Hence, the proposed model was developed in a 

personal computer with 16 GB RAM using MATLAB 2019b software. The PCA algorithm 

was applied to the dataset for dimensionality reduction. Further analysis was done on the 

reduced dataset to reduce the randomness using the proposed firefly algorithm. The optimized 

dataset was used as input of the ANN model for prediction. The principal components (PC) 

were fed into the firefly algorithm to generate a random number of solutions (N). The fitness 

value can be calculated using equation (7.55). The updated solution based on fitness value can 

be calculated using equation (7.6). 

 

𝐹 =  𝑃𝐶𝑃𝐶𝐴 +  𝑂𝐹 + 𝐶     (7.5)  

Where, 

 𝐹 = Fitness value used in the proposed algorithm. 

 𝑃𝐶𝑃𝐶𝐴= Principal components obtained by applying PCA algorithm. 

 𝑂𝐹= Objective function used for accuracy evaluation. 

 𝐶 = Constant ranging between 0 and 1. 

 

𝐹𝐴𝑖
𝑡+1 =  𝐹𝐴𝑖

𝑡 −  𝜆𝑜
𝑥𝑡𝑒−𝛼𝐶𝑎

2
(𝐹𝐴𝑗

𝑡 + 𝐹𝐴𝑖
𝑡) +  𝜉𝑡𝜓𝑖

𝑡                   (7.6) 

Where, 

             𝐹𝐴𝑖
𝑡 = The real 𝑖𝑡ℎ solution. 

𝐹𝐴𝑖
𝑡+1 = The updated 𝑖𝑡ℎ solution. 

𝐹𝐴𝑗
𝑡 = The real 𝑗𝑡ℎ solution of the brighter firefly. 

𝜉𝑡 = Randomized parameter. 

𝜓𝑖
𝑡  = Random number generated from Gaussian distribution. 

𝑡 = Time interval. 

𝜆𝑜
𝑥𝑡= Factor of size scaling. 

𝛼 = Coefficient of light absorption 

 

In the firefly algorithm, the fitness values were generated using the above equation for each, 

and the significant parameters were selected using the fitness function. The initial weights were 

randomly created by the ANN model, and the input data values were multiplied by the suitable 

weights (𝑤𝑖𝑗) to get output. In the PCA-FA-ANN model, the initial weights were obtained 

using the firefly algorithm to get optimized weights and bias using the minimal fitness value, 

as illustrated in Figure 7.11. 
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Figure 7.11: Description of initial weights. 

 

The population size was 2401, and the maximum number of iterations was 1000. The FA 

parameters were set as; the factor of size scaling, the randomized parameter, and the coefficient 

of light absorption was taken as 0.2, 0.9, and 0.9, respectively. The reduced dataset was trained 

and tested using ANN. A total of 2401 data was divided into training (70%), testing (15%), and 

validation (15%). The model performance was evaluated using the value of the coefficient of 

determination (R2), mean square error (MSE), root mean square error (RMSE), mean absolute 

error (MAE), and mean absolute percentage error (MAPE). Trial and error procedures were 

adopted to obtain the optimum structure of the network in which a rigorous analysis is carried 

out with one, two, and three hidden layers.  The ANN model was optimized using the Bayesian 

regularization backpropagation (BR), and the sigmoid activation function has outperformed all 

other combinations. Figure 7.12 shows the effect of the number of neurons on the value of R2 

for one, two, and three hidden layers. The model with three hidden layers and 20 neurons shows 

the best performance with the overall highest R2 values of 0.94 and lowest errors with MSE 

values of 0.07, RMSE values of 0.05, MAE values of 0.04, and MAPE values of 0.03, as 

illustrated in Figure 7.13. Figure 7.14(a) shows the response plot of the PCA-ANN model. 

Figure 7.14(b) shows the plot between predicted output and actual output; a perfect regression 

model has predicted output equal to actual output with a regression value of 0.94. 
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Figure 7.12: Accuracy comparison of PCA-FA-ANN models.  

 

 

Figure 7.13: Error comparison of PCA-FA-ANN models. 

 



209 
 

 

a) Response plot                                         b) Actual vs. predicted value  

Figure 7.14: a) Response plot of PCA-FA-ANN, b) Actual vs. predicted value using PCA-

FA-ANN. 

 

7.8 Comparison of models 

The comparative analysis of predictive models (ANN, PCA-ANN, PCA-FA-ANN) is 

illustrated in Figure 7.15 and Figure 7.16. The PCA-FA-ANN algorithm outperforms all the 

other combinations with the lowest MSE values of 0.07, RMSE values of 0.05, MAE values of 

0.04, MAPE values of 0.03, and overall highest R2 of 0.94. The results from the comparative 

analysis show that the predictions generated from the application of the PCA-FA-ANN 

algorithm have higher accuracy in decision making and hence can be relied upon as a 

constructive method in machine learning. 

 

 

Figure 7.15: Error comparison of ANN, PCA-ANN, and PCA-FA-ANN. 
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Figure 7.16: Accuracy comparison of ANN, PCA-ANN, and PCA-FA-ANN. 

 

7.9 Sensitivity analysis 

A sensitivity analysis was performed to study the effect on the output parameter when the input 

parameters were taken as average values. The input parameters were subjected to variability in 

a range of -10% to +10% of the average measured values. Each of the model input parameters 

was tested one at a time by keeping the others at their average values. Furthermore, the relative 

significance of these input parameters was ranked on the basis of the sensitivity index. The first 

model was developed using all ten principal components as input parameters and named AP, 

which serves as a reference model. In order to evaluate the significance of all input parameters 

for the AP model, a sensitivity analysis was performed, and the performance of the output 

model was evaluated using coefficient correlation (R2) and mean squared error (MSE).  

 

The second model was developed, referred to as AWFpE, used age, weight, water fluoride, pH, 

and Electrical conductivity as input parameters in predicting the fluoride concentration in 

fingernail samples. The third model (AFpE) used age, water fluoride, pH, and Electrical 

conductivity as input parameters. The fourth model AFp, used age, water fluoride, and pH as 

input parameters. The fifth model, named F, used water fluoride as an input parameter. The 

sensitivity analysis-based models were compared using ANN, PCA-ANN, and PCA-FA-ANN 

algorithms, and the model performance was assessed using evaluation measures such as MSE 

and R2. The dataset with 2401 experimental values was used for the analysis, and models were 

developed using MATLAB R2019b software. The sensitivity index was calculated by equation 

(7.1): 
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𝑆𝐼 =  (
Ý𝑖

𝑌
− 1) × 100   (7.1) 

Where, 

 𝑆𝐼 = sensitivity index. 

 Ý𝑖 = predicted output value when input value varied. 

 𝑌  = average output value. 

 

In order to evaluate the significance of all input parameters (AP), a sensitivity analysis was 

carried out, and the output of the model was assessed using correlation coefficient (R2) and 

Mean Squared Error (MSE) values. Models were developed using ANN, PCA-ANN, and PCA-

FA-ANN algorithms and compared for predictive analysis. The PCA-FA-ANN-AWFpE model 

with five input parameters with 2 hidden layers and 20 neurons in each layer had outperformed 

all other combinations with the overall highest R2 of 0.95 and the lowest MSE of 0.002, as 

illustrated in Figure 7.17 and Figure 7.18, respectively. Figure 7.19 shows the comparative 

response plot of models using ANN, PCA-ANN, and PCA-FA-ANN algorithm, and Figure 

7.20 shows the plot between predicted output and actual output. 

 

 

Figure 7.17: Accuracy comparison of AWFpE models.  

 

 

Figure 7.18: Error comparison of AWFpE models.  
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Figure 7.19:  Response plot of AWFpE models. 

 

 

Figure 7.20:  Actual vs. predicted value of AWFpE models. 

 

The AFpE model having four input parameters was developed using ANN, PCA-ANN, and 

PCA-FA-ANN algorithm. The PCA-FA-ANN-AFpE model with 3 hidden layers and 15 

neurons in each layer had outperformed all other combinations with the overall highest R2 of 

0.97 and lowest MSE of 0.008, as illustrated in Figure 7.21 and Figure 7.22, respectively. 

Figure 7.23 shows the comparative response plot of models using ANN, PCA-ANN, and PCA-

FA-ANN algorithm, and Figure 7.24 shows the plot between predicted output and actual 

output. 

 

 

Figure 7.21: Accuracy comparison of AFpE models.  



213 
 

 

 

Figure 7.22: Error comparison of AFpE models.  

 

 

Figure 7.23:  Response plot of AFpE models. 

 

 

Figure 7.24:  Actual vs. predicted value of AFpE models. 

 

The AFp model having three input parameters, was developed using ANN, PCA-ANN, and 

PCA-FA-ANN algorithm. The PCA-FA-ANN-AFp model with 3 hidden layers and 25 neurons 

in each layer outperformed all other combinations with the overall highest R2 of 0.95 and 

lowest MSE of 0.004, as illustrated in Figure 7.25 Figure 7.26, respectively. Figure 7.27 shows 
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the comparative response plot of models using ANN, PCA-ANN, and PCA-FA-ANN 

algorithm, and Figure 7.28 shows the plot between predicted output and actual output. 

 

 

Figure 7.25: Accuracy comparison of AFp models.  

 

 

Figure 7.26: Error comparison of AFp models.  

 

 

Figure 7.27:  Response plot of AFp models. 
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Figure 7.28:  Actual vs. predicted value of AFp models. 

 

The F model having one input parameter was developed using ANN, PCA-ANN, and PCA-

FA-ANN algorithms. The PCA-FA-ANN-F model with 3 hidden layers and 20 neurons in each 

layer had outperformed all other combinations with the overall highest R2 of 0.97 and lowest 

MSE of 0.007, as illustrated in Figure 7.29 and Figure 7.30, respectively. Figure 7.31 shows 

the comparative response plot of models using ANN, PCA-ANN, and PCA-FA-ANN 

algorithm, and Figure 7.32 shows the plot between predicted output and actual output. 

 

 

Figure 7.29: Accuracy comparison of F models.  

 

 

Figure 7.30: Error comparison of F models.  
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Figure 7.31:  Response plot of F models. 

 

 

Figure 7.32:  Actual vs. predicted value of F models. 

 

The significant fluoride source for human bodies is drinking water, whereas cooking water and 

food are not so many significant sources. About 90 % of the fluoride content of drinking water 

is absorbed in the digestive tract. Comparatively, only about 30 – 60% of the fluoride contents 

of food are absorbed (WHO, 1996). Cerklewski (1997) estimated that 80-95% of fluoride 

intake in the human body is consumed, 52.6-72.7% of which is excreted by the urine. Assuming 

a water consumption of 2 L/capita/day for an average body weight of 60 kg, the World Health 

Organization (WHO) has set the acceptable fluoride value in drinking water at 1.5 mg/L. 

However, the WHO has proposed that each nation set its acceptable value based on its citizen's 

water consumption, which depends on the region's environment (WHO, 2017).  Since India is 

situated in a tropical area, its inhabitants prefer to drink more water than those living in 

temperate or cold regions (Hossain et al., 2013).  Thus, for fluorosis prevention, the acceptable 

value of fluoride in drinking water in India was revised from 1.5 mg/L to no more than 1.0 

mg/L (IS 10500; IS 3025 [Part 60]). Also, each person's water consumption within a population 

varies based on their lifestyle and physical characteristics, such as age, body weight, height, 



217 
 

and gender. Therefore, fluoride intake in the body can differ significantly in areas affected by 

fluoride.  

 

Our study shows that various individual parameters (age, weight, height, and gender) 

significantly affect fluoride concentration in nail samples. Correlation between nail fluoride 

concentration with water fluoride, pH, and electrical conductivity as illustrated in Figure 7.33. 

Height (0.423), Weight (0.366), Age (0.3494) have substantial positive loadings on principal 

component 1 (PC1), and Gender (-0.3554) have significant negative loadings on principal 

component 3 (PC3). For the Gender classification, the number of females in the household was 

taken as the number correlation factor. A negative correlation shows a skew towards the males 

of the family in fluoride consumption. Therefore, to conduct a risk assessment of fluoride 

ingestion, people's water consumption in fluoride-affected areas must be correctly measured. 

So we can conclude that the inclusion of individual water consumption patterns can indeed 

have a positive correlation to this predictive model. This can be appreciated in the case of 

Indian standards being set lower than the global standards for fluoride content owing to 

increased water consumption as a consequence of environmental conditions. 

 

The highlights of the results related to the proposed model are: 

• Reducing the dimensions of the dataset using the PCA algorithm had improved the 

performance of the ANN model. 

• The randomness of the ANN model was reduced with the application of the PCA-FA 

algorithm by optimization of weights and bias between the input layer and the output 

layer of the model. 

• The PCA-FA-ANN model outperforms ANN and PCA-ANN hybrid models in terms 

of R2, MSE, RMSE, MAE, and MAPE. 

• The concentration of fluoride in nail samples is highly correlated with age, water 

fluoride, pH, and electrical conductivity of water. 
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Figure 7.33: Correlation between nail fluoride concentration with water fluoride, pH, and 

electrical conductivity. 

 

7.10 Summary 

Due to environmental, nutritional, dietary, physiological, and cultural factors, fluoride 

bioavailability may vary among individuals.  In this study, we have proposed a hybrid principal 

component analysis (PCA)- firefly algorithm (FA)- artificial neural network (ANN) machine 

learning model for establishing the relationship between water fluoride and nails. In this paper, 

we create our dataset by using water samples collected from eight districts of the state of 
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Rajasthan under the BITS-UVA groundwater contamination project. We presented a PCA 

algorithm that would be used to reduce the dimension of the initial data used for data analysis 

from 2401-dimensions to the 3-dimensional data set. The objective of the algorithm was to 

restrict the maximum information only in the first three columns named as principal 

components and ignoring the rest of the columns holding the negligible amount of information. 

The transformed data were then exposed to a hybrid PCA-FA model with the purpose of 

reducing the dataset by selecting significant parameters using the fitness value generated by 

the firefly algorithm. The ANN models were developed on the reduced dataset and compared 

for performance evaluation. The results obtained from the analysis suggest that the proposed 

model is more accurate and reliable in comparison to ANN and PCA-ANN models. 

Furthermore, as these parameters are represented in the 2D plot in MATLAB software, we can 

view the correlation between the parameters. This study indicates that the concentration of nail 

fluoride was correlated with age, weight, height, gender, and water quality parameters like pH, 

dissolved oxygen, electrical conductivity, turbidity, fluoride, and nitrate. In conclusion, our 

new methodology can be used for the prediction of hotspots of exposure based on a 

combination of water samples and nail samples testing.   
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CHAPTER 8 

 

8. Portable Hand-Held Smart device for real-time Water Quality 

Measurement and Water Quality Classification 

Conventional water quality measurement techniques include on-site sampling and subsequent 

laboratory-based tests; both are labor-intensive and cost-intensive processes. The objective of 

this study is to develop a low-cost system for real-time monitoring of water quality. This ability 

of an Artificial Neural Network to predict based on some knowledge base is utilized to reduce 

the number of expensive sensing electrodes and learn the relation between those parameters 

and the parameters being measured. The device is portable, cost-effective, and usable in all 

weather conditions. Owing to its portability and frequency of operation, the device enables 

real-time monitoring of water quality. 

 

8.1  Introduction 

Water pollution is one of the most critical challenges for sustainable development. According 

to a WHO report (World Health Organisation 2017), 1.9 billion people worldwide use water 

that is polluted. Annually about 37.7 million Indians are affected by waterborne diseases. 

According to the National Health Profile (Central Bureau of Health Intelligence, 2018) 

waterborne diseases continue to be prevalent in India and have caused 10,738 deaths over the 

last five years since 2017. Water quality measurement is an important stepping stone towards 

finding a solution to this problem.  Currently, water quality parameters are measured using 

methods based on laboratory testing, where the standard laboratory sensors are stationary and 

water samples are brought in from the field for analysis. In this way, the current water quality 

monitoring system is a repetitive manual system. It is incredibly tedious with the time-

consuming procedure. The test sensor can be mounted in the water sample, and pollution 

detection can be performed remotely to improve device performance. There are some field 

usable devices, but those devices are large and cumbersome and way too costly. Basic water 

quality parameters like pH, Temperature, Turbidity, and TDS are taken as references, as the 

variations in the value of these parameters indicate the extent of water pollution.  

 

8.1.1 Raspberry Pi  

Raspberry Pi is a small single-board computer. It can be used as a fully functional computer by 

connecting peripherals like a keyboard, a mouse, and a display unit. The performance may not 
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be quite that of a laptop or a desktop, but it is relatively capable a computer. The raspberry pi 

foundation provides a Debian-based Raspbian OS, which can be loaded onto a micro SD card 

that can be slotted into the provided slot on the board. The Raspberry Pi board can function as 

a Linux based computing device (Sangjan et al. 2021). The Raspberry Pi board can be used as 

a computer to do Image processing, IoT-based applications, Browsing, Python Programming, 

etc. Raspberry Pi offers more than just computing powers on a small board. The Raspberry Pi 

provides access to GPIOs, which can be connected to sensors, motors, LEDs, etc., and control 

them too. Raspberry Pi also provides access to I2C and UART modules, which can 

communicate with other embedded boards like Arduino Uno, etc (Pi-Teach, 2016). 

 

8.1.2 Arduino Uno 

The Arduino Uno is a microcontroller-based embedded board with an onboard Analog-to-

Digital Converter (ADC) that can be used to communicate with analog sensors such as the 

electro-chemical sensors for water quality measurement. Further, the microcontroller can be 

programmed to convert the analog voltage readings of these sensors into actual parameter 

readings that can be used to make decisions to control some other signals, or the data can be 

sent to other devices for further usage. To send the data to other computing devices, the I2C or 

UART ports available onboard can be used. The Uno board also provides on board power pins 

for both 5V and 3.3V output, which can be used to drive a variety of sensors (Badamasi et al. 

2014). 

 

8.1.3 Artificial Neural Networks 

Artificial Neural Networks (ANN) are a model of the Biological Neural Network. Biological 

Neural Networks help living beings perceive the patterns in their environment, classify them 

and learn from them for future applications. Humans use these patterns and prior knowledge to 

process any information and thus come to an output (Fausett, 2006). Applications of ANN in 

the groundwater, ecology, and environmental engineering fields were documented in the early 

1990s. However, in recent years ANN has been intensively used for prediction and forecasting 

in a variety of engineering and water-related areas, including water resource analysis by Liong 

and Sivapragasam, 2002; Muttil and Chau, 2006; El-Shafie et al. 2008; El-Shafie et al. 2011; 

Noureldin et al. 2011; Najah et al. 2009; oceanography by Makarynska et al. 2008 and 

environmental engineering by Grubert, 2003. 
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Conventional water quality measurement techniques include on-site sampling and subsequent 

laboratory-based tests; both are labor-intensive and cost-intensive processes. The 

measurements are not in real-time. Therefore, there is a need for real-time monitoring of water 

quality for drinking applications to reduce labor costs and time usage.  With the help of Zigbee 

boards, recorded data is uploaded to the remote data storage in the traditional system. It requires 

more hardware to set up this technology and is very expensive. There's also no alert indication 

in that system when parameters are abnormal.  In the Solar Powered Water Quality Monitoring 

System using remote Sensor Network, the advancement of the water sensing network is 

controlled using sun board. If the sun board is not charged, then the system will not switch on, 

which is the restriction associated with this method. The system cannot fulfill the objective of 

real-time monitoring of water quality parameters. This study aims to design and develop a low-

cost Raspberry Pi and Arduino Uno-based water quality monitoring system for real-time 

monitoring using artificial intelligence. A system that is portable, the output is legible for 

people with limited or no literacy, and it will work in all environmental conditions, unlike a 

solar-powered water quality network monitoring system. 

 

8.2 Methodology 

Groundwater samples were collected from various sources in and around the Birla Institute of 

Technology and Science, Pilani, Rajasthan, India. The water samples were analyzed in the 

laboratory using titration and spectroscopy methods. It has been used as the “gold standard” 

against which the parameter values of the respective electrodes and the predicted parameter 

values of ANN A1 have been validated. The experimental data were used as the training, 

testing, and validation data for two Artificial Neural Networks (ANN) A1 and A2. 

 

A Prototype of the device was made using Arduino Uno and the sensor circuits and multi-

sensor “Tentacle Shield” (Atlas Scientific, n.d.) from ATLAS Scientific. The parameters 

measured were pH, DO, ORP, and Electrical Conductivity. The Prototype was tested against 

the Laboratory experiment results. The prototype was powered by a 10,000mAh Li-ion battery 

pack as a power supply. This makes the prototype portable.  

 

In order to strictly control the cost of the device, the sensing circuits of DO and EC were done 

away with. Only the pH and ORP electrodes were used. The respective electrodes were 

connected to the analog input ports of the Arduino Uno Board. The analog voltage readings 
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from the electrodes measuring pH and ORP were converted into digital readings using the 10-

bit ADC present onboard the Arduino Uno microcontroller board (Arduino Inc., n.d.). The 

other two parameters, DO and EC, are predicted using an ANN. 

 

In order to get pH readings, the voltage readings from the pH Electrode are read by Arduino 

Uno. These voltages are analog voltage readings. Thus they are connected to the analog input 

ports. These analog inputs are digitized by the 10-bit ADC on-board the Arduino Uno R3 board 

before they are displayed on the Serial monitor for Arduino. To convert them back to pH 

readings, first, the readings are re-quantized to voltage values from 10-bit digital values. Since 

the voltage swing is between 0V – 5.0V and the quantization is 10-bit. Thus the input voltage 

values are multiplied by the voltage range and divided by the quantization value: -  

𝑉𝑖𝑛 = 𝑥 ×  
5.0

1023
                   (8.1) 

 

This voltage value is now converted into pH reading by the Nernst equation: - 

𝐸 =  𝐸𝑟 + (
2.303𝑅𝑇

𝑛𝐹
) log (

𝑢𝑛𝑘𝑛𝑜𝑤𝑛 [𝐻+]

𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 [𝐻−]
)                                                                               (8.2) 

 

For our electrode equation (2) comes out to be: - 

𝑝𝐻 =
((𝑉𝑖𝑛−512)×9.65)

8.31 × 2.302 × 298
+ 7                                                                                                       (8.3) 

 

7 has been added in the above equation to offset the zero voltage to neutral pH reading of 7. 

 

For measurement of ORP, equation (1) is reused to convert digital readings into voltages 

(potentials). 2.25 is subtracted from the readings to offset the voltage readings by -225mV to 

obtain the ORP readings. 

𝑂𝑅𝑃 =  𝑥 × 
5.0

1023
− 2.25                                                                                                    (8.4) 

 

Measurement of DO and Electrical Conductivity – the sensors for these parameters are 

prohibitively costly. Hence, to reduce the cost of the final device, these parameters were 

predicted against pH and ORP values. For the prediction of DO and Electrical Conductivity 

(EC), an ANN was designed with pH and ORP as input parameters. The electrodes and sensor 

circuits of two of the four desired parameters are prohibitively expensive, making it impractical 

to include them in such a low-cost device. Thus, we designed ANN A1, which takes the two 
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parameters, pH and ORP readings from the electrodes via the Arduino Uno Board, and predicts 

DO and EC values based on the data generated from the laboratory. This aforementioned sensor 

readings are taken from Arduino Uno into Raspberry Pi (Raspberry Pi Foundation, n.d.) over 

the Serial connection. The experimental data is stored on the secondary memory (a microSD 

card) attached to the Raspberry Pi board. The ANN is also coded in Raspberry Pi memory.  

 

The input parameter taken for the ANN A1 were pH and ORP. The outputs of the A1 were DO 

and EC. The experimental data were divided into training, testing, and validation sets. 

Randomly selected 70% data points were allocated to the training of the ANN model, 15% 

each for validation and testing, respectively. The ANN was trained using the experimental data 

obtained using the Arduino Uno-based prototype.   

 

A Second ANN model, A2, was implemented to determine water quality. The output of ANN 

A1 along with pH and ORP readings were taken as the input parameters to A2. A2 is designed 

to classify water quality into three categories, viz. - 1. Potable; 2. Irrigational; 3. Waste Water. 

The output of A2 has been encoded in a way that it is easily legible by people with limited 

literacy, which is the target audience of the device.  A trial and error-based method were 

adopted to select the ANN architecture for both the ANN’s, A1 and A2, with maximum 

accuracy using different training functions, activation functions, and performance functions. 

The ANN results were validated using the coefficient of determination (R2) values and Root-

Mean-Squared Error (RMSE) values. 

 

Both Arduino Uno and Raspberry Pi are very power-efficient devices and can be used to work 

on a very low power supply. The capabilities of the boards have been put together to use them 

in tandem to make a handheld device that can deliver real-time water quality readings in the 

field without having to take the water samples back to the lab for testing of multiple parameters 

that help to decide the usage of water. The system uses Artificial Neural Networks (ANN) to 

classify water quality into three categories – Potable, Agricultural usage, and wastewater. To 

measure the parameters, two primary parameters are selected – pH and Oxidation-Reduction 

Potential (ORP). Keeping stringent cost control in mind, the raspberry pi is programmed with 

ANN to predict the values of Dissolved Oxygen (DO) and Electrical Conductivity (EC). The 

Arduino Uno board has been used as a sensor circuit (Figure 1). The 10-bit ADC on-board the 

Arduino Uno has been used to convert the analog voltage signals into 10-bit digital signals. 

These 10-bit strings were thence converted to respective sensor readings as per their voltage-
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sensor reading mathematical relationships. These readings are then given as output via Serial 

Output ports. The Serial outputs are then given to the Raspberry Pi board (Figure 2).  

 

The Raspberry Pi has ANN’s programmed in python to utilize the inputs pH (Figure 3) and 

ORP (Figure 4) to predict the values of Dissolved Oxygen (DO) and Electrical Conductivity 

(EC) in the water sample. Another ANN takes the values of the pH, DO, ORP and EC and 

classifies the water quality sampling at that point of time into one of the three categories – 

potable, agricultural and wastewater. Since the Arduino Uno Board has been set up to take 

samples every second and send one set of data at the same rate, we can sample data every 

second. The block diagram of the proposed device is shown in Figure 5. The construction of 

the device is such that it is packed in a box style with electrodes protruding. The complete setup 

can be boxed in a handheld device form (Figure 6). The device, thus, can be used in a handheld 

manner and in any weather condition. 

 

     Figure 8.1: Arduino Uno       Figure 8.2:  Raspberry Pi 3 

Figure 8.3: pH Probe 
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Figure 8.4: ORP Probe 

 

 

Figure 8.5: Block Diagram of Proposed Device. 
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Figure 8.6: Proposed Device Prototype 

 

The study proposes a portable device consisting of 2 electrodes – pH and ORP, an Arduino 

Uno microcontroller board RaspBerry Pi 3 single-board minicomputer, and a Li-ion battery 

pack. The RaspBerry Pi 3 board runs Artificial Neural Network and classifies the water sample 

into three classes, viz, Potable, Agricultural, and Waste Water. The output is generated as 

illumination of 3 LEDs. The device is portable, cost-effective, and usable in all weather 

conditions. Owing to its portability and frequency of operation, the device enables real-time 

monitoring of water quality. The box diagram of the original experimental data sample is 

illustrated in Figure 7. 

 

Figure 8.7: Box diagram. 
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Table 8.1: Cost comparison of the conventional and proposed device 

Device Name Parameter 

Cost 

(Conventional Device) 

Cost  

(Proposed Device) 

Atlas Scientific 

DO  Probe Dissolved Oxygen 

INR 21,240 (Atlas 

Scientific, n.d.) NA 

Atlas Scientific 

DO Sensor Dissolved Oxygen 

INR 4,299 (Atlas 

Scientific, n.d.) NA 

Aquasol ORP 

Electrode 

Oxidation-Reduction 

Potential INR 1200 INR 1200 

Atlas Scientific 

ORP Sensor 

Oxidation-Reduction 

Potential 

INR 3,739 (Atlas 

Scientific, n.d.) NA 

Aquasol pH 

Electrode pH INR 900 INR 900 

Atlas Scientific 

pH Sensor pH 

INR 3,739 (Atlas 

Scientific, n.d.) NA 

Atlas Scientific 

EC Electrode Electrical Conductivity 

INR 11,200 (Atlas 

Scientific, n.d.) NA 

Atlas Scientific 

EC Sensor Electrical Conductivity 

INR 5,600 (Atlas 

Scientific, n.d.) NA 

Battery Pack  INR 1,000 INR 1,000 

Memory Card  NA INR 300 

Multiplexer 

Board  

INR 11,869 (Atlas 

Scientific, n.d.) NA 

Arduino Uno 

Board  INR 330 INR 330 

Raspberry Pi 3 

Board  NA INR 3,000 

Total  INR 75,116/- INR 6,730/- 

 

The ANN model’s performance was validated using the F-Score, Precision, Sensitivity, and 

Accuracy (Dalianis 2018; Prabha et al. 2016). The ANN model uses cross-validation to test the 

networks more thoroughly. This means that all experimental data is used as both training, 

testing and validation data, split into iterations. TP stands for true positive (appropriately 
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recognizing a Potable water sample as Potable). TN stands for true negative (appropriately 

recognizing an Agricultural or Wastewater sample as Agricultural or Wastewater). FP stands 

for false positive (inappropriately recognizing a Potable water sample as Agricultural or 

Wastewater). FN stands for false negative (inappropriately recognizing Agricultural or 

Wastewater sample as Potable). Accuracy is defined as the proportion of properly recognized 

samples (Potable, Agricultural or Wastewater) among all samples; see Equation (8.5). The ratio 

of all recognized positive samples to all positive samples is described as sensitivity; see 

Equation (8.6). If the sensitivity is strong, the class is accurately detected. The value of high 

sensitivity implies that the class has been appropriately recognized. Precision is defined as the 

ratio of all positively detected positive samples to all positively predicted positive samples; see 

Equation (8.7). A high precision suggests that a sample classified as positive is, in fact, positive. 

The weighted average of sensitivity and accuracy is used to get the F-score. In F-Score, 

Harmonic Mean replaces the Arithmetic Mean. It punishes high values much more; see 

Equation (8.8). The following Equations (8.5-8.8) can be used to compute the F-Score, 

Precision, Sensitivity, and Accuracy: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
    (8.5) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
     (8.6) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
     (8.7) 

𝐹 − 𝑆𝑐𝑜𝑟𝑒 =
2∗𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
   (8.8) 

 

A total of 14 training functions were tested. From these 14 functions, only one training function 

(trainLM), has completed the task of regression plot and error plots. Hence, a Feedforward-

Backpropagation Neural Network (ANN A1) with 2 hidden layers and 16 neurons in each layer 

was optimized using Lavenberg-Marquardt training function and a sigmoidal activation 

function (logistic function) had outperformed all other architectures with the highest R2 value 

of 0.98 and the lowest RMSE values of 0.00232. Figure 8 shows the effect of the number of 

neurons on the value of R2 for one, two, and three hidden layers. Prediction accuracy has been 

evaluated using the mean square error (MSE) functions, as shown in Figure 9. We can see that 

there is a significant change in the accuracy of ANN. The model with two hidden layers and 

32 neurons shows the best performance with the overall highest R2 values of 0.99 and the 

lowest errors with MSE values of 0.04. Figure 10 shows the plot between predicted output and 

actual output; a perfect regression model has predicted output equal to actual output with a 
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regression value of 0.99. Figure 11(a) and 12(a) shows the response plot of the ANN model for 

prediction of DO and EC respectively. Figure 11(b) and 12(b) shows the plot between predicted 

value and actual value DO and EC respectively. 

 

 

Figure 8.8: Accuracy of A1. 

 

Figure 8.9: Mean Squared Error of ANN A1. 
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Figure 8.10: Predictions of ANN A1. 

 

 

 

b) Response plot                                         b) Actual vs. predicted value  

Figure 8.11: a) Response plot of ANN, b) Actual vs. predicted DO value using ANN. 
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a) Response plot                                         b) Actual vs. predicted value  

Figure 8.12: a) Response plot of ANN, b) Actual vs. predicted EC value using ANN. 

 

A Feedforward-Backpropagation Neural Network (ANN A2) with 3 hidden layers and 32 

neurons in each layer was optimized using Lavenberg-Marquardt training function and a 

sigmoidal activation function (logistic function) had outperformed all other architectures with 

the highest R2 value of 0.9958 and the lowest RMSE values of 0.00981. Figure 13 shows the 

architecture of the ANN A2.  

 

Figure 8.13: ANN A2 Architecture. 

 

Figure 14 shows the effect of the number of neurons on the value of R2 for one, two, and three 

hidden layers. Prediction accuracy has been evaluated using the mean square error (MSE) 

functions as shown in Figure 15. We can see that there is a significant change in the accuracy 

of ANN. The model with three hidden layers and 64 neurons shows the best performance with 

the overall highest R2 values of 0.98 and lowest errors with MSE values of 0.15. Figure 16 

shows the plot between predicted output and actual output; a perfect regression model has 

predicted output equal to actual output with a regression value of 0.98. 



239 
 

 

Figure 8.14: Accuracy of ANN A2. 

 

 

Figure 8.15: Mean Squared Error of ANN A2. 

 

Figure 8.16: Predictions of ANN A2. 
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A confusion matrix was used to show the performance of an ANN model in Figure 17. The F-

Score, Precision, Sensitivity, and Accuracy results calculated using the confusion matrix are 

shown in Table 2. 

 

Figure 8.17: The confusion matrix obtained using experimental datasets. 

 

Table 8.2: The statistical results for performance evaluation. 

Performance Measure Results 

Accuracy 0.98 

Sensitivity 0.96 

Precision 0.97 

F-Score 0.97 

 

As a result, as seen in Figure 17, ANN had a reasonably high level of confidence in its 

classification. This reliability is reflected in the high accuracy value of 98%. However, more 

false negatives were predicted by ANN than false positives. These findings are crucial to the 

issue we're looking at since 98% accuracy means that people who don't have access to modern 

technology or complex water testing kits will be able to determine whether the water is polluted 

or not, much more efficiently. Increased exposure to accurate testing procedures will assist 
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persons in determining whether water is safe and avoiding the negative repercussions of water 

contamination. 

 

8.3 Validation of proposed device 

According to the conventional water quality monitoring method, separate sensors are used to 

measure the various parameters of water quality. It can be prone to human error, and the 

electrodes such as Dissolved Oxygen and Electrical Conductivity are sensitive to 

environmental changes. The electrodes in question need careful storage, and their readings can 

fluctuate depending on the proper usage and storage of the electrodes. Moreover, the electrodes 

are expensive. These parameters come with a few limitations of using separate sensors to 

measure water quality which affects the sensitivity and accuracy of the results. Consequently, 

it becomes difficult to develop a cheap and portable device for real-time monitoring of drinking 

water quality. After the aforementioned critical literature review, there is a need to automate 

the process of real-time water quality monitoring needed for minimizing errors caused by these 

sensors. To overcome the limitations associated with these parameters, we have proposed a 

device that can measure and classify water quality into three groups using AI. 100 water 

samples further were collected from different locations in and around BITS Pilani campus. The 

water samples were analyzed in laboratory and compared using proposed device for validation. 

The data samples were divided into training (50 %) and validation (50 %) sets. The developed 

ANN model is used for training of device. The model gains accuracy with each usage as the 

every new reading is appended to the training data set.  

 

Figure 18(a) and 19(a) shows the response plot of the developed ANN model for prediction of 

DO and EC respectively, from training data set. Figure 18(b) and 19(b) shows the plot between 

predicted value and actual value DO and EC respectively. Figure 20 shows the performance 

graph obtained for the model; the best validation performance of the model was 0.0001 

obtained at epoch 291. Error histogram is plotted in Figure 21, error histogram is the histogram 

of the errors between target values and predicted values after a neural network has been trained. 

These error values reflect how the expected values vary from the target values, and they may 

also be negative. The results from the error histogram show that the maximum correlations at 

18.31 instances. 
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a) Response plot                                         b) Actual vs. predicted value  

Figure 8.18: a) Response plot of proposed device, b) Actual vs. predicted DO value using 

proposed device. 

 

 

a) Response plot                                         b) Actual vs. predicted value  

Figure 8.19: a) Response plot of proposed device, b) Actual vs. predicted EC value using 

proposed device. 

 



243 
 

 

Figure 8.20: Performance of trained neural network. 

 

Figure 8.21: Error Histogram of trained neural network. 

 

The remaining 50 water samples were used for validation of device performance and detection 

accuracy. We have compared the accuracy of our proposed model with lab-based experimental 

methods, as shown in Table 3.  
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Table 8.3: Validation of proposed device for real-time water quality measurement  

Sample 

No 

DO 

(Experimental) 

DO (Measured using 

Proposed device) 

EC 

(Experimental) 

EC (Measured using 

Proposed device) 

1 9.36 9.3 1777 1745 

2 9.32 9.3 1407 1407 

3 9.35 9.3 912 912 

4 9.36 9.3 1450 1450 

5 3.81 3.8 1640 1640 

6 7.36 7.3 928 928 

7 6.82 6.8 1482 1482 

8 7.89 7.8 915 915 

9 7.13 7.1 1525 1525 

10 5.82 5.8 1225 1225 

11 6.34 6.3 1560 1524 

12 5.56 5.5 857 857 

13 7.31 7.3 1362 1362 

14 5.18 5.1 1090 1090 

15 8.13 8.1 1402 1402 

16 8.37 8.3 1488 1474 

17 5.13 5.1 1332 1332 

18 7.27 7.2 225 225 

19 5.82 5.8 1175 1175 

20 5.57 5.5 1036 1036 

21 6.15 6.1 1082 1082 

22 4.51 4.5 1190 1190 

23 8.37 8.3 1180 1180 

24 8.54 8.5 577 577 

25 5.32 5.3 1322 1322 

26 8.72 8.7 1321 1321 

27 5.78 5.7 1190 1190 

28 7.34 7.3 1126 1126 

29 5.76 5.7 1093 1093 
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30 5.03 5.0 340 340 

31 4.41 4.4 550 550 

32 6.21 6.2 405 405 

33 5.24 5.2 390 390 

34 5.46 5.5 305 305 

35 4.99 5.0 435 435 

36 4.33 4.3 420 420 

37 4.01 4.0 555 555 

38 6.74 6.7 350 350 

39 5.95 6.0 345 345 

40 4.26 4.3 360 360 

41 5.80 5.8 450 450 

42 4.07 4.1 550 550 

43 5.06 5.1 490 490 

44 5.84 5.8 450 450 

45 6.71 6.7 410 410 

46 4.97 5.0 560 560 

47 6.76 6.7 545 545 

48 4.69 4.6 475 475 

49 4.91 4.9 505 505 

50 6.78 6.7 515 515 

 

It can be seen that the results that the device proposed are accurate, reliable and the readings 

are repeatable. We have also done cost to performance comparison with the following 

conventional water testing kits available in the market- YSI Sonde (YSI Incorporated, n.d.), 

Labtornics LT-59, Atlas Scientific electrodes with sensor IC, Multiplexer unit and Arduino 

Uno board (Atlas Scientific, n.d.). 

 

8.4 Summary 

In this study, we have proposed a low-cost, portable, all weathered ANN-based smart water 

quality monitoring device for real-time monitoring of water quality in rural arid regions of 

North-Western India. This technology centers predominantly around the quality checking of 

water. The study presents a device to test the water quality with the goal that it intent be 
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continuous to protect humankind from polluted water. The proposed device will check the 

estimation of pH, ORP, DO, and Conductivity of water and decide if the water is reasonable 

for the usage classes, reducing the entire package cost to 1/10th of the cost of measuring all the 

parameters. It will work in all environmental conditions. The device can monitor water quality 

automatically, and it is low in cost and does not require personnel appointments. The proposed 

device can be maintained and reconfigured both in terms of peripheral hardware and internal 

software.  

 

The ANN designed can be changed by simple coding in python for Raspberry Pi. The attached 

sensors can be replaced by any other two sensors, and corresponding changes in training data 

can reconfigure the device for use on other parameters. The device can be used in many fields 

like water distribution systems, industries, agricultural fields and can also be used to measure 

the water quality parameters of lakes & rivers. However, the primary usage is to classify surface 

water quality. This study lays a foundation for real-time water quality monitoring in rural areas 

for people with limited or no literacy without the intervention of technical personnel. It can be 

concluded that AI-based methods can be used for water quality monitoring and also to control 

hardware costs in the development of Water Quality measuring devices. In future, we hope to 

elaborate our research for real-time monitoring of water quality without chemical testing 

methods. Given more time and resources, we could develop a system that can work more 

effectively upon projects such as Intel Clean Water AI. 
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CHAPTER 9 

9. Conclusions and Future scope 

This chapter includes the final outcome of the work and provides the scope for future work. 

 

9.1 Conclusions 

According to the laboratory experiment based on the conventional analysis method, 24-48 

hours are required before the bacteria concentration gets reported (Gautam et al., 2011). As a 

result of limitations associated with laboratory quantification of microbial water quality, 

studies have been done to develop real-time or near real-time predictive models to aid in water 

management decisions. At present, it is not possible to measure bacterial concentrations in 

water and to obtain an immediate quantitative result to evaluate and prevent human health risks. 

This study aims to develop a model based on laboratory experiments to predict the count of 

faecal coliform bacteria for cost-effective water quality management studies. This study 

evaluated the accuracy of an AI-based modeling approach to predict faecal coliform bacteria 

concentrations.  

 

The groundwater samples are collected from eight districts of Rajasthan, India, under the BITS-

UVA (University of Virginia) groundwater contamination project, containing 1302 water 

samples used in this study. The viable count analysis of the water samples showed E. coli 

bacterial strains with minimum cell counts of 4×107 CFU/100 mL and maximum cell counts 

of 132 × 107 CFU/100 mL. A total of 99 groundwater samples were found positive for E. coli. 

The limitation of relying on laboratory analysis to detect bacteria can be prone to human errors, 

affecting the model’s performance and results. The majority of the existing techniques are 

limited to most of the substantial features of water to limit pH, temperature, turbidity, 

conductivity, and colour of the water. However, few significant physico-chemical parameters 

are not considered, which directly affect the growth of E. coli bacteria. To overcome the 

limitations, the artificial intelligence (AI) based technique is used in this study as an alternative 

to traditional models for predicting E. coli to improve accuracy, performance, and cost-

effective results. This experimental data set was used to train, test, and validate the results using 

AI techniques.  

 

A superposition-based learning algorithm (SLA) is proposed to observe the patterns of ANN-

based sensitivity analysis for automating the prediction process of E. coli bacteria in 



253 
 

groundwater. The result shows that the superposition models based on Grover’s algorithm are 

more efficient in predicting all patterns in the counts of E. coli in groundwater with higher 

efficiency and low error. The highest correlation is observed between E. coli and the pH values, 

whereas the lowest correlation is observed with Dissolved Oxygen. It can be concluded that 

culture-based methods are not accurate for detecting E. coli bacteria in water. Further research 

is needed to detect the VBNC cells of bacteria in water. E. coli entering the VBNC condition 

could have a detrimental effect on public health. The number of viable cells could be 

underestimated. At any time, the VBNC cells could still produce toxins or be resuscitated to 

become virulent again and again. The study recommended that E. coli bacteria should not be 

used as an indicator organism when the cells are viable but non-culturable. 

 

Enzymatic methods of detection are color-based methods. The amount of colour appearance 

can be used to determine the degree of bacterial contamination. Manually performing this 

process is highly time-consuming and challenging. This detection process is analytical. There 

is always a possibility of human error, which may result in a disastrous decision. The colours 

of each concentration can be scanned using conventional computer vision methods. It is, 

however, extremely difficult to determine the colour intensity for each concentration level. We 

have developed an AI-based smartphone application using CNN to capture images using an 

inbuilt smartphone camera and predict the bacteria in water based on color intensity. We 

demonstrated the effectiveness of our AI-based smartphone application by using it to monitor 

water quality for bacterial pollution and improve precision over laboratory results. The 

developed CNN model for rapid detection of E. coli in water achieved an accuracy of 96% and 

an error (loss) of 0.10. The developed model was able to predict E. coli bacteria in each water 

sample within 458ms. The approach was considerably more successful than alternative 

methods such as polymerase chain reaction (PCR) and traditional techniques. 

 

The USEPA-approved gold-standard methods for detecting E. coli and counting viable cells 

are based on culturing water samples on solid agar plates or liquid media. The number of 

colonies is counted manually using a bacteria colony counter. Manual counting of viable 

bacterial cells on agar plates is time-consuming and can be prone to human error. The method 

requires experts to identify and count viable cells. Furthermore, due to bacterial overcrowding, 

high numbers of colony-forming units on a plate will lead to inaccurate results. In order to deal 

with the problems associated with manual cell counting, this study developed a machine-

learning algorithm based on a faster region-based convolutional neural network with higher 
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accuracy. We automated the process of E. coli bacteria identification using a convolutional 

neural network (CNN). We developed a smartphone application for the rapid detection of E. 

coli bacteria on agar plates using CNN. We also automated the process of bacteria colony 

counting using a faster region-based convolutional neural network (R-CNN) to overcome 

manual cell counting process limitations. A graphical user interface (GUI) application was 

created to rapidly count bacteria colony-forming units on agar plates using faster R-CNN. The 

developed faster R-CNN model achieved an overall accuracy of 97% and an error (loss) of 

0.10. The performance of the CNN and faster R-CNN models were validated using F-score, 

precision, sensitivity, and accuracy statistical measures. The comparative analysis showed that 

the faster R-CNN model is reliable and effective in E. coli cell counting. The study developed 

a system for identifying and counting viable cells of E. coli bacteria in water that can be used 

to forecast hotspots of water contamination. 

 

However, further validation is needed to determine the model’s ability to generalize through 

various experiments. As a result, we want to gather more data and assess the model’s capacity 

for counting in various situations, including higher-quality images with visible cellular 

components. This would also necessitate a further investigation of network architecture 

functionality and potentially training additional layers, which will be possible with further input 

data. Exploring those possibilities will be the primary objective of our future efforts. 

Furthermore, the performance of CNNs can be improved by tuning parameters like learning 

rate, epoch, and the number of layers. All these parameters affect the performance of a CNN. 

Image augmentation can be used to increase the data sample count using shear, zoom, rotation, 

and preprocessing functions. CNN model performance is also affected by overfitting and 

underfitting, which can be solved by training with more data, early stopping, and cross-

validation. 

 

9.2 Further scope of the work: 

There is a possibility to undertake the following work in the future as an extension of this study. 

• Further studies for the VBNC bacteria, which can be done using molecular technology, 

such as high-throughput sequencing and qPCR. 

• Probabilistic superposition learning algorithm-based modeling can be done by 

modifying Grover’s algorithm. We only need to run the neural network twice, one 

forward and one backward. 
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• Development of the low cost optical fiber based water quality monitoring system for 

rural communities. The system will distinguish between dangerous and harmless 

bacteria. 

• Validation of sensors using simulated and field samples. 
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