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ABSTRACT

Identification of a query biometric sample aims to establish its identity by compar-

ing it with all the templates stored in the database and determining the most similar one.

The process is computationally expensive and becomes difficult to be carried out in a

reasonable time as the size of the database increases. To get the response in real-time,

the process needs to be accelerated, especially for large databases. Biometric database

indexing refers to narrowing down the search space for the identification of a query sam-

ple. This is accomplished by constructing a feature vector from a biometric sample and

associating it with an index in the index table. During retrieval, the most similar index to

the feature vector of the query sample is selected and the candidates lying in that index

are fetched for identification. This ensures that the search space is small as compared to

the total database size. This thesis proposes biometric database indexing techniques for

four modalities viz. iris, palmprint, finger knuckleprint and fingerprint. The true identity

of the query biometric sample is expected to be determined by retrieving only a small

percentage of the database (low penetration rate) with high confidence (high hit rate).

For Iris databases, we have proposed a novel indexing technique, called IrisIndexNet.

Iris is a ring of tissue found around the pupil. It is responsible for controlling the amount

of light entering the pupil. IrisIndexNet is a custom-designed Siamese-based network that

learns iris-specific features. The network utilizes larger filters to effectively capture the

variance present in different iris samples of the same subject while making the learned

features corresponding to different class samples distant in the embedding space. It en-

sures learning low-level textures effectively, which are the vital discriminating features

for the iris images. The learned features are subsequently clustered using k-means and

agglomerative clustering to generate an index table. The proposed technique is tested on

CASIA Interval and CASIA Lamp database.

We propose PalmHashNet for indexing the palmprint databases. Palmprint is an im-

pression acquired from the inner part of the hand lying between wrist and fingers. The



acquired palmprint images are fed to the feature extraction network which is initially

pre-trained using the softmax loss. The softmax loss ensures high inter-class disparity

but does not ensure high intra-class compactness. Therefore, a margin is added to the

softmax loss to minimize the intra-class distance between samples belonging to the same

class. The network outputs a 512-dimensional distinct compact feature embedding cor-

responding to every palmprint sample. k-means and locality sensitive hashing (LSH) are

investigated for index table creation. The proposed technique offers probabilistic guar-

antees for query identification in the selected bin. Experiments are conducted on four

widely used palmprint databases viz. CASIA, IITD-Touchless, Tongji-Contactless and

Hong Kong Polytechnic University Palmprint II (PolyU II) database. To accelerate the

identification process for finger knuckleprint (FKP) samples, we present FKPIndexNet,

that learns similarity-preserving hash codes for generating index table. FKP refers to the

impression obtained from the outer surface around the phalangeal joint of a finger. In our

knowledge, this is the first work to extract deep features from FKP images that are further

used for index table generation. Firstly, the dorsal finger images are given to the proposed

FKPSegNet which segments out the region of interest (RoI). Next, the feature extraction

network is trained using the RoI images of the FKP database. A custom loss function

has been proposed ensuring that the learned latent representations have high intra-class

and low inter-class similarity. It ascertains that the index space distribution is regular-

ized to be similar to the uniform distribution. The proposed feature extraction network

outputs a 512−dimensional feature embedding corresponding to every FKP sample. The

learned feature vectors are associated with an index and an index table is generated. Three

techniques viz. k-means clustering, BallTree hashing and locality sensitive hashing with

nearest neighbor search have been explored for index table generation. The proposed

technique is tested on two publicly available benchmark FKP databases viz., PolyU-FKP

and IITD-FKP.

An indexing technique for fingerprint databases is proposed by utilizing a feature vec-

tor constructed using the directional and spatial relationship between core and minutiae

points. A fingerprint is a skin pattern acquired from the tip of a finger. It is a widely

x



accepted biometric trait for access control. The proposed technique constructs a feature

vector for each fingerprint sample by encoding a spatial and directional relationship be-

tween minutiae and core point. Therefore, the first step in the proposed technique is to

extract the locations of the core and minutiae points. A novel deep learning based archi-

tecture is proposed for locating the coordinates of the core point in a given fingerprint

image. Minutiae points are extracted using a Mindtct library given by NIST Biomet-

ric Image Software (NBIS). The proposed feature vector, Coaxial Gaussian Track Code

(CGTC), is constructed for each minutiae point in the fingerprint and is inserted in the

index table exactly once, making the time complexity linear. The proposed approach has

been tested on FVC2002 DB2a and FVC2004 DB1a databases.

A biometric database indexing technique is considered to be effective if it is able

to achieve a higher hit rate at a lower value of penetration rate. IrisIndexNet requires

2.254% and 0.008% penetration rate at 99% hit rate on CASIA Interval and CASIA Lamp

database respectively. In other words, one needs to search only 2.254% and 0.008% of

the considered datasets to be 99% sure about the presence of a sample in the database.

PalmHashNet achieved a penetration rate of 0.022%, 1.032%, 4.555% and 0.39% at

100% hit rate on CASIA, IITD-Touchless, Tongji-Contactless and Hong Kong Polytech-

nic University Palmprint database. Therefore, to find the true match of a query sample

with 100% confidence, it is required to look for less than 1% of the CASIA and PolyU

II database and 1.03% and 4.55% of the IITD-Touchless and Tongji Contactless database

respectively. The proposed indexing technique for finger knuckleprint database (FKPIn-

dexNet) achieved 100% of hit rate at the penetration rate of only 3.42% and 0.32% on

PolyU-FKP and IITD FKP database, respectively. Lastly, the fingerprint indexing tech-

nique requires a penetration rate of 0.86% for a 100% hit rate for identification on the

FVC2004 DB1a database. The obtained results for the proposed indexing techniques re-

quire only a small percentage of the database instead of the whole for identification of a

query biometric sample. The proposed techniques output a fixed size candidate list for

comparison with the query biometric sample thereby, making identification a constant

time operation.

xi
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Chapter 1

Introduction

Personal authentication plays an important role in controlling access to high-security

areas and sensitive documents. Traditional authentication methods are either possession

or knowledge based. Possession-based authentication involves the use of a key or token

owned by the user. In contrast, knowledge-based authentication requires a user’s knowl-

edge such as a PIN or password [1]. Although these methods have been accepted and

widely used by society for a long time, some inherent issues are associated with them.

For instance, a key or token can be misplaced by the user. If found or stolen by an im-

poster, the same can be used to get illegitimate access to a system. The user often creates

a memorable text-based password, but it can be easily guessed by the imposter. However,

a password that satisfies stringent complexity requirements of a system is forgettable.

These limitations can be overcome by using personality characteristics. These character-

istics are broadly termed as biometrics and utilize physiological or behavioral traits of an

individual [2]. A biometric trait cannot be forgotten by the user and is nearly impossible

to be stolen.
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(f) Gait (g) Voice (i) Signature(h) Keyboard
 Stroke

(a) Face (c) Iris (d) Palmprint (e) Finger 

knuckleprint

(b) Fingerprint

(j) Mouse 

Dynamics

Physiological Traits

Behavioral Traits

Figure 1.1: Examples of some physiological and behavioral biometric traits

1.1 Biometrics
Biometrics provides an automated way to authenticate an individual’s identity by us-

ing their physiological and/or behavioral characteristics. Physiological traits refer to the

characteristics that an individual physically possesses and can be acquired from the hu-

man body. Fingerprint [3, 4], palmprint [5], iris [6], face [7],finger-knuckle-print [8],

hand geometry [9], hand vein pattern [10] etc. are some of the examples of physiological

biometric traits. Behavioral traits refer to how an individual performs a particular action

such as while signing, speaking, walking, typing etc. Therefore, signature [11], voice

[12], gait [13], mouse dynamics [14] and keyboard strokes [15, 16] respectively are con-

sidered as behavioral biometric traits [1]. Examples of some physiological and behavioral

biometric traits such as face, iris, palmprint, finger-knuckleprint, fingerprint, gait, voice,

signature, keyboard stroke and mouse dynamics are shown in Figure 1.1.

Nowadays, biometric authentication is being used in many applications and by many

organizations such as law enforcement (to identify the suspects in a crime scene), national

security (to grant/revoke entry to an individual), healthcare (to identify a patient), banking
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and finance (to authenticate banking transactions) and commercial application (recording

attendance of employees). Biometric authentication has many advantages over traditional

methods of authentication. A few of these are listed below.

1. Increased security: Adaptation of biometrics for authenticating an individual’s

identity has provided a high level of security as the passwords and PINs are likely

to get compromised. It is comparatively easy for a fraudster to guess someone’s

password than to circumnavigate a biometric authentication system.

2. User Convenience: The internal mechanism of a biometric authentication system

may be complex but is convenient and quick from the user’s point of view. For

instance, using a fingerprint for unlocking the phone is faster than typing long and

complex passwords. The users also do not need to remember their biometrics,

unlike passwords and PINs, which are easily forgettable.

3. Non-transferable: Individual’s biometric cannot be shared as it is intrinsic to the

user. It is compulsive for the user to be physically present to give their sample at

the time of authentication. This also brings an aspect of non-repudiation as the user

cannot later deny his participation in the authentication.

4. Hard to spoof: Spoofing happens when a fraudulent person disguises himself as

someone else to get access through an authentication system. Biometric traits are

hard to spoof as they are unique, even among identical twins.

The utility of a biometric trait for authentication is measured based on six properties

viz. uniqueness, universality, circumvention, collectability, permanence, and acceptabil-

ity. Uniqueness refers that the biometric traits of different persons should not be same.

Universality ensures that the considered biometric trait is obtainable from the majority

of the population. For example, a scar or mole may be unique to a person, but it is not

found in every person. Collectability refers to the amount of effort in terms of user co-

operation and extra hardware and software requirements to acquire a biometric trait. For

3



Chapter 1

instance, the fingerprint is relatively easy to acquire than footprint or iris. The users need

to remove their shoes and socks to register their footprint sample, and iris acquisition

may require extra user cooperation and hardware. Permanence measures the effect of

aging on the biometric trait. A trait that remains temporally invariant or depicts minimal

change is preferable. The face of a person undergoes variation with age. Acceptability

refers to the level of acceptance that the population has for a given biometric trait. For

example, people are comfortable providing their fingerprint samples, while a few may be

hesitant to give out their facial images. Circumvention determines the degree to which a

biometric trait is resilient to attack. Fingerprint, for instance, can be spoofed by showing

a gummy finger to the authentication device. Gummy fingers are developed using latent

fingerprints (acquired from a surface) and later put into a gelatin artificial finger mold.

However, no biometric trait can fulfill all the properties mentioned above with absolute

confidence. Therefore, a biometric trait that satisfies most properties with high confidence

can be utilized for authentication. The selection of suitable biometric traits can also be

made based on the targeted application type. The biometrics properties are described in

detail as follows. Some of the most widely used physiological and behavioral biometric

traits are discussed in detail as follows:

1. Face: Face recognition [7] refers to identifying a person using his/her face. It is

one of the most common and intrusive biometric traits used for authentication. Face

recognition involves three stages; 1) detecting the face from an acquired image,

2) facial feature extraction and 3) comparing the facial attributes of the acquired

sample with the template(s) stored in the database. A sample of acquired face

sample is shown in Figure 1.1(a).

2. Fingerprint: Fingerprint [2, 17] refers to an impression that can be obtained when

the inner part of a finger gets touched on a surface. A sample fingerprint is shown

in Figure 1.1 (b). It offers several advantages over other biometric traits such as,

uniqueness, permanence and acceptability. The curves present on fingerprint, called

ridge lines form unique patterns for every fingerprint. It is easy to acquire a finger-
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print and extract the ridge pattern. The probability of two fingerprints to be identical

is as low as 1.5× 10−15 [18]. It has been observed that fingerprints do not undergo

temporal changes. Fingerprints are the most expressible biometric traits as there ex-

ists a huge amount of discerning patterns such as loop, whorl and arch on it. Loop

and whorl are called fingerprint singularities that are generally treated as global

feature. Further, capturing and identifying a fingerprint is relatively inexpensive.

3. Iris: Iris [19] is an internally protected organ of the eye. It is located between

lens and cornea as shown in Figure 1.1 (c). It is one the most suitable biometric

traits for human authentication [2] as it contains rich textural information in the

form of fibrous muscles, color, minutia, spots, filaments, rifts, furrows, crypts etc.

Iris is found to be temporally invariant and is internally protected thus, cannot be

easily duplicated [20]. It has low false-matching rate as compared to other available

biometric traits [21].

4. Palmprint: Palmprint [5] is an impression that is acquired from the inner part of

the hand lying between wrist and fingers. It consists of complex and unique patterns

that are utilized as features for human authentication. The features can be classified

as high resolution and low resolution based on the quality of acquired image. The

low resolution features include wrinkles, texture and principal lines which can be

further sub-classified as heart, head and life line. These are visible with naked eye

as well. On the other hand, ridges, singular point(s) and minutiae points can only

be extracted from high resolution images [22]. A sample palmprint image is shown

in Figure 1.1 (d).

5. Finger Knuckleprint: Finger-knuckleprint (FKP) [23] refers to the impression

obtained from the outer surface around the phalangeal joint of a finger, as shown

in Figure 1.1 (e). The surface of FKP is rich in texture and consists of lines and

creases that form a unique pattern among the population. FKP pattern is small in

size and thus, it requires shorter processing time. The advantage of FKP is that the
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skin pattern around an FKP is less prone to damage as it lies on the outer surface

of the hand.

6. Gait: It is a behavioral biometric trait that refers to how an individual walks

[13, 24]. Gait possesses an advantage over other physiological traits in terms that

it does not require user cooperation during acquisition. It is therefore, ideal in sce-

narios where direct interaction or cooperation with the users is not possible such

as surveillance applications. Optic flow can be used by the systems to determine

gait of a person as shown in Figure 1.1 (f). But, it requires expensive hardware.

Also, the gait of a person is not very distinct among the population and it may eas-

ily affected by physical and circumstantial conditions of the user such as clothing,

surface, speed, type of shoes etc.

7. Voice: Voice [12, 25] of a person can be used to recognize the speaker as each

individual possesses distinct voice characteristics such as pronunciation style, voice

texture etc. Various voice properties such as inflection, cadence, frequency, nasal

tone etc. are used for voice recognition. Voice recognition is socially acceptable

and is non-intrusive. It does not require costly hardware as general purpose voice

recorders can be used to acquire voice data of an individual. However, voice of a

person gets affected due to illness, ageing, physical or emotional stress conditions

etc. Another disadvantage is that voice of a person can be easily acquired from

various sources such as podcasts, phone recordings etc. and can be used by an

imposter to gain illegitimate access to a system.

8. Keyboard Stroke: Keyboard stroke [15, 16] refers to the way a person types char-

acters on a keyboard, mobile phones or palmtops. The keyboard strokes of two

individuals are unique enough to distinguish between them. The features can be

extracted in the form of typing speed, elapse time between pressing two keys, the

sequence of keys followed by a person while typing an uppercase character of a

special character etc. Acquisition of keyboard stroke data is easy as it does not
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need any additional hardware and administration. The user can be himself and type

the characters during data acquisition.

9. Signature: Signatures [11] are widely used for authentication in banking organiza-

tions and law firms. Various features can be uniquely identified from the signature

of a person such as angle of writing, amount of pressure applied on the paper, num-

ber of connected components, letter formation etc. A sample signature is shown in

Figure 1.1 (i) However, signature of a person may change with time. It can also be

easily reproduced by the imposter.

10. Mouse Dynamics: This refers to assessing and measuring an individual’s mouse-

behavior characteristics for authentication. Mouse dynamics [26] is less intrusive

and does not require any additional hardware for acquisition. A user can be asked

to perform some mouse operations on a computer to record their mouse dynamics

for logging-in to a system. The behavior of the user is recorded in terms of mouse

movements and clicks.

1.2 Modes of Operation
A biometric system works in two modes viz. enrollment and authentication. Enrollment

refers to the process of capturing and storing biometric information from an individ-

ual. The acquired biometric samples from the individuals are registered in a biometric

database with a unique identifier. The authentication process compares a newly acquired

sample, known as query or probe, with an already enrolled biometric sample(s) stored

in the database. Authentication is further divided into two categories- verification and

identification on the basis of the number of comparisons required. The comparison be-

tween two biometric samples is accomplished by computing a distance metric between

their respective feature vectors. The system can output a similarity or dissimilarity score

based on the distance metric used i.e. the cosine similarity gives similarity score when

two feature vectors are compared. In contrast, the euclidean distance outputs the dissim-

ilarity score. In this work, we will refer to similarity scores whenever we are comparing
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two feature vectors. The similarity score is expected to be higher when two samples of

the same identity are compared with each other instead of two samples belonging to dif-

ferent identities. A comparison is called genuine if two biometric samples with the same

identity are compared with each other. On the other hand, if two samples belonging to

different identities are compared with each other, then it is referred to as an imposter

comparison. The feature vectors of two different samples of the same individual can be

different to some extent because of the presence of illumination, occlusion, pose vari-

ation, background noise etc. The variation observed between two samples of the same

individual is known as intra-class dissimilarity. While the difference found between two

samples of different individuals is known as inter-class dissimilarity.

1.2.1 Enrollment

Enrollment refers to the process of registering the biometric sample of an individual with

a biometric system. During enrollment, a new biometric sample is collected using an

acquisition device or a sensor. The raw biometric sample may contain unwanted back-

ground noise. Therefore, the region of interest (RoI) is segmented out from the acquired

image. It is followed by quality assessment of the acquired sample. Quality assessment is

an indicator of the usefulness of the biometric sample for recognition. Some of the popu-

lar quality assessment techniques make use of light convolutional neural network (CNN)

with the Max-Feature-Map units [27], 2D wavelets [28], face patches [29], likelihood

ratio based fusion method to fuse six quality parameters [30] etc. have been proposed

in literature. If the quality of the RoI is not as good as a pre-determined threshold, then

the sample is re-acquired. Otherwise, the RoI is sent for pre-processing. Pre-processing

aims at enhancing the RoI of the image to make authentication easier and efficient. Pre-

processing is followed by feature extraction, which works towards extracting salient fea-

tures from the biometric sample. The feature vector, also called a template, is stored in

the biometric database with a unique identifier (ID) of the user for later use. The block

diagram of an enrollment process is presented in Figure 1.2.
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Figure 1.2: Flow chart of enrollment process.

1.2.2 Verification

The verification system validates if the identity claimed by a user is genuine or not. The

input to a verification system is a newly acquired biometric sample and an identity that

the user claims for the sample. The same procedure involving RoI segmentation, quality

estimation and pre-processing is done on the input sample. This is followed by feature

extraction of the query biometric sample. Since a claimed identity is given as an input

to the verification system, the feature vector is only compared with the template stored

in the database against the claimed identity. Consequently, verification requires only

one-to-one comparison. In other words, if fq denotes the feature vector of the query

biometric sample and the template corresponding to the claimed identity is represented

by fID then, comparison between fq and fID is carried out by computing the similarity

score using the comparison module. The decision module compares the obtained score

with a pre-defined threshold. The comparison is treated as genuine if the score obtained

through the comparison module is greater than a threshold; otherwise, it is an imposter.

A genuine comparison implies that the query biometric sample belongs to the claimed

identity and the access is granted. A block diagram depicting the process of biometric

verification is shown in Figure 1.3.
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Figure 1.3: Flow chart of a biometric verification system

1.2.3 Identification

The objective of an identification system is to establish the identity of the newly acquired

biometric sample, also known as query or probe biometric sample. In other words, it an-

swers the question ‘whose biometric sample is this?’. This is useful in scenarios involving

investigation regarding a face captured in the camera footage or latent fingerprint recorded

from a crime scene. This can be accomplished by comparing the query sample with all

the templates stored in the database and finding the most similar one. The query sample is

pre-processed and its feature vector, denoted by fq, is extracted using the feature extrac-

tor module. The query feature vector fq is compared with all the templates stored in the

database and a similarity score is computed for each comparison. The identification sys-

tem outputs a list of k most-similar identities for the query sample. The performance of

an identification system can be evaluated by determining the rank of actual identity from

the list of identities. The block diagram of the identification process is shown in Fig-

ure 1.4. The query sample, denoted by fq, is compared with all the templates or feature

vectors in the database contained in the set F . Here, F = {fID1 , fID2 , . . . , fIDN
} which

further represents feature vectors corresponding to identity number ID1, ID2, . . . , IDN

respectively and N is the size of the database. The comparison module outputs a score list
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Figure 1.4: Block diagram of identification system

S, where S = {S1, S2, . . . , SN}. Here Si represents similarity score when fq is matched

with a feature vector fIDi
and 1 ≤ i ≤ N .

1.3 Indexing of Biometric Databases

A biometric verification system involves only one comparison because the new biomet-

ric sample is compared with the database template, which is stored corresponding to

the identity claimed by the user. On the other hand, an identification system compares

the query sample with all the templates stored in the database to find its most probable

match. Therefore, the number of comparisons required for the identification becomes

proportional to N , where N is the number of templates stored in the database. Hence, the

scalability of a large-scale identification becomes a challenge. There has been an increase

in the number of enrollments with digitization and an increase in deployment of biometric

authentication systems such as Aadhar in India [31] and MyKad in Malaysia [32]. This

affects the throughput and error rate of an identification system. Throughput refers to the

number of queries that the system can process in a particular period of time. Error rate is

defined by the number of false positives that a system amounts to. Identification in large

databases may suffer from poor throughput and a high error rate. Thus, there is a need to

reduce the number of comparisons to find the true identity of the biometric query sample
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Figure 1.5: Block diagram depicting the advantage of indexing a biometric database.

by narrowing down the search space. The technique that prunes the database and outputs

a small list of candidates for comparison with the query sample to facilitate faster and ef-

ficient identification is referred to as indexing in this case. Indexing a biometric database

eliminates the need of linear search in the database for finding the true match of the query

sample. Rather, the index table returns only a subset of database, also called as candidate

list {C1, C2, . . . , Cn} where n ≪ N . Thereby, reducing the number of comparisons and

accelerating the identification process. This is pictorially represented in Figure 1.5.

Indexing is generally carried out in three stages viz. feature extraction, index table

generation and retrieval. A feature extractor module is employed for learning feature

vectors for biometric samples that represent its salient yet discriminating characteristics.

During index table generation, each feature vector is associated with an index of the table.

The similar feature vectors tend to lie in the same bucket of the index table. Therefore,

the learned features should have high intra-class and low inter-class similarity so that the

similar ones go in the same bin of the index table [33]. Both the stages mentioned above

result in an indexed biometric database that is used for the identification of a biometric

query sample. The objective of the retrieval stage is to output a list of candidates that

can be used for comparison with the query sample to find its most probable match. So,

whenever a biometric query sample is fed to the identification system that uses an indexed
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table, its feature vector is learned using the same feature extractor module. The extracted

feature vector is compared with all the indices of the index table and the most similar

index is found. The candidates lying in the bucket of the selected index are fetched for

comparison with the query sample. The efficiency of a biometric indexing technique

depends on the retrieval of a suitable candidate list from the index table, which further

depends on the quality of the learned feature vectors. Therefore, the key idea is to find

a suitable feature vector and generate an index table that could remarkably reduce the

number of comparisons. Indexing biometric databases will narrow the search space thus,

producing high throughput and reducing the error rate of an identification system.

1.3.1 Challenges in Indexing

There are certain challenges [34] that need to be accounted for while designing an index-

ing technique for a biometric database. These challenges appear due to different biometric

sensors available for acquiring even the same modality or acquisition in an uncontrolled

environment.

1. High-dimensional features: A biometric template is represented by a feature vec-

tor of d−dimension where d is large in dimension. Therefore, an appropriate data

structure is required to store such large feature vectors. Multi-dimensional data

structures such as kd−tree and R−tree are prone to the problem of curse of dimen-

sionality. In other words, most of the nodes in these trees have to be traversed and

thus, the search is no better than an exhaustive search.

2. Variable number of features: The extracted feature vectors for the biometric sam-

ple are real-valued and closely distributed in the feature vector space. It is also not

necessary that the features extracted from a biometric sample at two different time

stamps would be same. It may happen that some features could be missing while

some false features could also appear. Hence, the features vary in number.

3. No order: There is no pre-defined order among the biometric features unlike some

structural data such as text or numeric data. Therefore, they may appear in different

13



Chapter 1

order which becomes a challenge.

4. Occlusion and illumination: Presence of occlusion and illumination variation in

the acquired samples may affect the feature extraction process and thus, the index-

ing.

5. Transformation: The acquired image may be rotated, zoomed-in, zoomed-out etc.

Therefore, the extracted features may vary even for the samples belonging to the

same subjects.

6. No Standardization: Features extracted from each modality is different. For ex-

ample, if minutiae and core-point is considered for fingerprints, they can’t be used

for iris. Hence, a generic indexing technique cannot be designed that works for all

modalities databases.

1.4 Evaluation Parameters
Authentication of an individual requires comparing their learned feature vectors with the

stored template(s) in the database. A one-vs-rest approach is followed to evaluate the per-

formance of the learned feature vectors. Therefore, each biometric sample is compared

with all the remaining samples, and a list comprising the similarity scores is generated.

Comparison of two biometric samples is referred to as genuine if they belong to the same

individuals. However, if the comparison is made between two samples belonging to dif-

ferent individuals, it is known as an imposter comparison. The authentication system

gives an incorrect decision if the computed similarity score of a genuine comparison is

below the threshold value or imposter comparison is above the threshold value. This sce-

nario is called as false rejection (FR) and false acceptance (FA) respectively. Probability

of the genuine and impostor score distribution for a biometric authentication system is

shown in Figure 1.6. It can be observed that by varying the threshold, FA and FR changes

and thus, the performance of a biometric recognition system depends on the threshold. A

biometric authentication system designed for user convenience, such as those employed
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Figure 1.6: Graph depicting genuine and impostor score distribution for a biometric au-
thentication system

in malls, can have a lower threshold value because it can afford a few genuine attempts to

get rejected. However, a high threshold value is advisable when high security is required

so that only a few imposter attempts are allowed by the system. The most common eval-

uation parameters for a biometric system are discussed as follows.

1. False Acceptance Rate (FAR) and False Rejection Rate (FRR): FAR is the per-

centage of the identification queries that got falsely accepted out of total number

of samples shown to the biometric authentication system. FRR refers to the ra-

tio of the genuine samples that got rejected by the system to the total number of

identification queries made to the system. To understand, let us suppose there are

four individuals {i1, i2, i3, i4} are enrolled in a biometric database. An individual

i5 is trying to gain access to the system. Out of four attempts that he made, he gets

identified as i3 and i1 in two attempts. Therefore, FAR = 2
4
× 100 = 50%. On

the other hand, if i1 is trying to gain access to the system and he gets rejected three

times out of the four attempts that he made. Then FRR = 1
4
× 100 = 25%.

2. Equal Error Rate: FAR and FRR changes with the threshold and are inversely

related with each other. One can get a point where FAR is equal to FRR by varying

the threshold value. This is a point where the imposter and genuine sample cause

equal amount of discomfort to the system. Therefore, a lower value of EER indicate
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a better identification system.

3. Decidability Index (DI): It refers to the separation between genuine and imposter

scores. DI is defined as given in the equation below, where µ(.) and σ(.) denotes

mean and standard deviation of either genuine or imposter scores.

DI =
µG − µI

σ2
G − σ2

I

(1.1)

4. Accuracy: Accuracy of a recognition system is defined as number of correctly

recognized samples out of total queries made to the system. Mathematically it can

be expressed as,

Accuracy = max
(
100− FAR + FRR

2

)
(1.2)

5. Receiver Operating Characteristic (ROC) curve: The ROC curve depicts the

trade-off between false acceptance rate (FAR) and false reject rate (FRR) at differ-

ent threshold values. It depicts the performance of a classification system at various

classification threshold values in a comprehensive manner.

6. Correct Recognition Rate: CRR is defined as the rank-1 recognition rate i.e.

number of queries that have got their true match at the rank-1. If q1 is the number

of correctly recognized queries at rank-1 out of total Q queries made to the system,

then CRR can be defined as given in (1.3)

CRR =
q1
Q
× 100 (1.3)

7. Hit Rate: During identification, a query or probe image is referred to as correctly

identified if one of the retrieved candidates belongs to the same identity as that of

probe image. Therefore, Hit Rate (HR) is defined as the ratio of correctly identified

queries (q) with respect to the total number of queries made to the system (Q), as
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given in (1.4).

Hit Rate =
q

Q
× 100 (1.4)

8. Penetration Rate: It is the percentage of the database that needs to be retrieved for

correct identification of the query image. If Q number of queries are made to the

system and for each query i, Ci number of candidates are retrieved from a total of

N templates, where N corresponds to the size of the database. Then, penetration

rate (PR) can be defined as,

Penetration Rate =
1

Q

Q∑
i=1

Ci

N
× 100. (1.5)

9. Cumulative Match Curve: CMC is a rank-based metric that shows relationship

between identification probability at a given rank. That is, what ratio of total queries

got correctly identified till a particular rank.

A good biometric database indexing technique is expected to achieve high hit rate

at low penetration rate. The relationship between these parameters can be understood

from the graph shown in Figure 1.7. The graph shows relationship between hit rate and

penetration rate for three hypothetical indexing techniques A, B and C. It is clearly

evident that indexing technique A performs best among the three techniques. It is so

because high hit rate is achievable at lower value of penetration rate.

1.5 Motivation
Biometric authentication is a widely used mechanism for access control. During identifi-

cation it aims to determine identity of a biometric query sample by comparing it with all

the samples in the database and using the most probable match. Identification is highly

beneficial in scenarios requiring investigations. For instance, a fingerprint recovered from

a crime scene or the suspect’s face captured in CCTV cameras [7] must be identified in
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Figure 1.7: Graph showing relationship between hit rate and penetration rate for three
biometric database indexing techniques.

order to get a lead. Identification is similar to finding nearest neighbors for a given bio-

metric sample. This requires comparing the biometric sample with all the templates in

the database using a similarity metric and finding the top-k matches like KNN [35]. The

number of comparisons are proportional to the size of the database which makes this

process computationally expensive with increase in the size of the database [36]. Identi-

fication can be accelerated by indexing the biometric databases to produce a small list of

candidates for comparison against the query sample.

This thesis aims to fasten the process of biometric identification through indexing.

Feature vectors play an important role in the performance of any indexing technique.

For very long, hand-crafted feature extraction approaches such as SIFT [37], SURF [38],

ORB [39], Local Binary Pattern (LBP) [40] are in use. However, these approaches try

to maintain a trade-off between accuracy and computational efficiency [41] they are brit-

tle for complex samples and large databases. Recently, a few automatic feature learning

approaches have emerged involving deep learning (DL) that uses specialized neural net-

works such as Convolutional Neural Network (CNN) [42], Autoencoders [43], Siamese

networks [44] etc. These approaches consider the complete images as input and learn

discriminating and salient features of the sample. New approaches discover representa-

tions at multiple levels such that the learned feature vectors have high intra-class and low
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inter-class similarity [45]. These approaches instead of learning features from segmented

images or using the developer’s domain knowledge to construct hand-crafted features,

consider raw images for the feature vector construction. Additionally, these approaches

tend to improve with an increase in the number of training samples therefore, are more

scalable and robust.

The research work in this thesis aims to develop novel deep learning based special-

ized indexing techniques for the biometric databases. We have considered four popular

biometric traits viz. iris, palmprint,finger-knuckle-print and fingerprint for the indexing.

There are three components of our approach, feature extraction, index table generation,

and retrieval. Specialized deep learning based network architectures are devised for learn-

ing feature vectors that are further used for indexing to facilitate faster identification. The

architectures have been designed from scratch by keeping the targeted biometric modality

in mind.

1.6 Research Gaps
Feature vector plays a significant role in the design of the index table and further, dictates

the performance of the identification process. Handcrafted feature extraction approaches

have been mainly used in the literature. These approaches tend to subside with increase

in the size of the database as they try to maintain the trade-off between computational ef-

ficiency and accuracy. Moreover, the handcrafted features do not work well for biometric

databases due to presence of large intra-class variance among the samples of the same

subject. Advancements in deep learning have shown a way to automatically learn salient

and discriminating features from the input samples. These techniques are data hungry

and get better with increase in the size of the database. They are also capable to model

complex non-linear structure from the high-dimensional data [46]. Although the deep

learning models [42] proved to be efficient in many computer vision tasks but a limited

attention has been paid to its applications in biometric database indexing. We found a

research gap in obtaining deep features for indexing the biometric databases to accelerate

the identification process. The proposed research work aims to design specialized deep
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neural networks for learning feature embeddings from the biometric databases of four

modalities viz. iris, palmprint, finger-knuckleprint and fingerprint.

1.7 Research Objectives
The objectives of this research work are listed down as follows.

• The aim of this research work is to investigate the usefulness of deep features in

indexing of biometric databases.

• Design specialized deep neural networks for learning discriminating feature em-

beddings for different biometric modalities in such a way that they have high intra-

class and low inter-class similarity.

• Devise a corresponding retrieval strategy to produce a small and fixed sized candi-

date list for a given query such that the true match could be found in the retrieved

list of candidates.

• This thesis investigates biometric databases of four modalities viz. iris, palmprint,

finger-knuckleprint and fingerprint.

1.8 Thesis Contribution
This thesis proposes indexing techniques for biometric databases to facilitate a faster and

efficient identification process. The main contribution of the thesis can be categorized

based on the biometric database modality, which is indexed and used for the identification.

Four modalities viz. iris, palmprint, fingerprint, and finger-knuckleprint are considered

in this work.

1. Iris Database Indexing: Iris is one of the most accurate biometric traits for hu-

man authentication due to its reliability, uniqueness, and stability. A novel indexing

technique that targets an effective reduction of identification search space for the

iris database is proposed in this thesis. A specialized convolutional neural network
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architecture is designed, trained as a siamese network to construct compact fea-

ture vectors for iris images. The features are trained to have low inter-class and

high intra-class similarity in the latent space representation. Extracted features are

subsequently clustered using k-means and agglomerative clustering to generate an

index table. Experiments have been conducted on widely used public iris databases

viz. CASIA Interval and CASIA Lamp.

2. Palmprint Database Indexing: A palmprint database indexing technique called

PalmHashNet is proposed. It generates highly discriminative embeddings to cre-

ate a fixed-size candidate list for comparison to make identification a constant time

operation. Acquired palmprint images are fed to the feature extraction network,

which is pre-trained using softmax loss. A margin is added to the softmax loss

to minimize the intra-class distance between samples belonging to the same class.

This ensures that the features have high intra-class and low inter-class similarity.

k-means and locality sensitive hashing (LSH) is explored for index table creation.

Experiments are conducted on four widely used palmprint databases viz. CASIA,

IITD-Touchless, Tongji-Contactless and Hong Kong Polytechnic University Palm-

print II (PolyU II) database.

3. Finger knuckleprint Database Indexing: Finger-knuckle-print (FKP) is a skin

pattern that appears on the backside of a finger around distal inter-phalangeal joints

found over intermediate and third phalanges. An indexing technique for the FKP

database, FKPIndexNet, is proposed to learn similarity-preserving hash codes for

generating index tables. It proposes a specialized autoencoder network and a cus-

tom loss function to produce fixed dimensional feature embeddings used for in-

dexing. The embeddings are regularized to ensure that they have high intra-class

and low inter-class similarity. BallTree hashing, k-means clustering, and locality-

sensitive hashing are investigated for index table creation. The proposed technique

is tested on two publicly available FKP databases viz., PolyU-FKP and IITD-FKP.

21



Chapter 1

4. Fingerprint Database Indexing: A fingerprint database indexing is proposed that

extracts softmax on Coaxial Gaussian Track Code (CGTC) for each fingerprint.

CGTC is a fixed-length feature vector obtained for every minutia point based on its

location in the fingerprint. This is followed by core point detection. The core point

is the highest curvature point in the fingerprint. A stacked hourglass-based U-Net

is proposed that outputs the coordinates of the core point in an input fingerprint.

After getting the coordinates of the core point, its Euclidean distance from each

minutia point is computed. This distance dictates the generation of the index table.

The proposed technique is tested on FVC2004 database.

1.9 Thesis Organization
This thesis comprises of total six chapters. The following four chapters i.e. Chapter 2

to Chapter 5 address indexing of iris, palmprint, finger-knuckle-print and fingerprint

databases respectively. Each chapter starts by introducing the respective biometric modal-

ity followed by a literature survey and then proposes a novel deep learning based method

for indexing. Results are obtained on popular widely used open biometric databases and

is compared with the state-of-the-art techniques.

Chapter 2 presents an indexing technique for iris databases. The proposed technique

uses a specialized convolutional neural network architecture to learn a 1024-dimensional

compact feature vector for iris images. k-means and agglomerative clustering are inves-

tigated for index table generation. The proposed technique is tested on two popular iris

databases, CASIA Interval [47] and CASIA Lamp [48] and is found to achieve lower

penetration rate as compared to the state-of-the-art techniques.

In Chapter 3, an efficient indexing technique for palmprint databases has been pro-

posed. A metric-based deep learning network, called PalmHashNet, is proposed for fea-

ture extraction. It learns discriminative feature vectors of 512-dimension for a given

palmprint images. An index table is generated by implementing k-means clustering and

Locality-Sensitive Hashing (LSH) on the leaned feature vector space. The proposed tech-

nique is tested on four popular publicly available palmprint databases viz. CASIA [49],
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IIT Delhi Touchless [50], Tongji Contactless [51] and PolyU II [52] palmprint dataset.

All the databases contain palmprint images collected in an unconstrained environment.

The results demonstrate the efficiency of the learned features in the identification process.

Chapter 4 proposes a novel approach for indexing the FKP database. A novel seg-

mentation network for segmenting out the region of interest (RoI) from the acquired dor-

sal finger images is proposed. The extracted RoI is fed to the novel feature extraction

network that outputs a 512-dimensional feature embedding for input FKP samples. This

network uses a custom loss function to ensure high intra-class and low inter-class simi-

larity among the learned feature vectors. Three techniques viz. k-means clustering, Ball-

Tree hashing, and locality sensitive hashing with nearest neighbor search are explored

for index table construction. The proposed technique shows its efficacy when tested on

two publicly available databases viz., PolyU-FKP [53] and IIT Delhi Finger Knuckle

Database [54].

Chapter 5 presents an efficient technique to index a fingerprint database. A novel

autoencoder-based architecture with a stacked hourglass is proposed to detect the location

of the core points from the fingerprint images. The minutiae points and the detected

core point is used to create feature vectors such that they encode spatial and directional

relationship between the core point and every minutia point. The feature vectors are used

to generate a 2-dimensional index table. The proposed technique is tested on FVC2004

DB1 A database and was found to perform better than other techniques proposed in the

literature.

Lastly, the thesis is concluded by presenting the overall summary and future scope of

this research work in Chapter 6.
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IrisIndexNet: Indexing on Iris

Databases

Iris is one the most accurate biometric traits for human authentication [2]. It is a ring

of tissue observed around the pupil. The dilator and the sphincter muscles are responsible

for controlling the size of the iris which further controls the amount of light entering the

pupil [55]. A white region called sclera, that consists of connective tissues and blood

vessels, surrounds the iris. The iris and pupil are covered by a clear layer called cornea.

Figure 2.1 depicts the elements in the acquired iris sample. Iris contains rich pattern

of ridges, furrows and pigment spots [56]. The minute details of the iris texture are

developed during the fetal development of the eye. Therefore, these are believed to be

unique between two individuals and also between different eyes of the same person. The

iris patterns remain constant for most of a human’s lifespan and thus, it is considered to

be temporally invariant. Another advantage of using iris as a biometric trait is that is

is an internally protected organ and therefore, it is difficult to forge [20]. It has a low

false-matching rate as compared to other available biometric traits [19, 21].

Iris identification determines the identity of an input iris sample by comparing the

probe iris image with all the templates stored in the database and finding the most similar
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Figure 2.1: Image depicting (a) elements in a human eye and (b) acquired iris samples.

one. Therefore, requiring N number of comparisons where N is the size of the database.

Consequently, the time required to claim a person’s identity becomes directly propor-

tional to the size of the database. Iris indexing aims to make the identification process

efficient by narrowing down the search space and reducing the number of comparisons.

This expedites the identification process. An iris database indexing technique is expected

to effectively prune the search space and provide probabilistic guarantees for a query to

be identified in the selected bucket of the generated index table. The number of com-

parisons becomes bounded since the size of the bin is constant. The major challenge in

the iris database indexing arises due to fuzziness among the samples. It may happen that

the probe and gallery image belonging to the same subject may not be identical despite

appearing similar. Another challenge is the trade-off between speed and accuracy.

The key contributions of this chapter is as follows. This chapter proposes a novel

technique that aims at indexing the iris database to accelerate the identification process.

It includes learning iris-specific features by employing a custom-designed siamese-based

network. The proposed network is shallow and employs large-sized and more filters.

Such an architecture design helps capture the variance present in different iris samples of

the same subject while making the learned features corresponding to different class sam-

ples distant in the embedding space. It ensures learning of low-level textures effectively,
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which are the vital discriminating features for the iris images. The use of contrastive loss

instead of triplet loss has further improved the captured variance by allowing us to train

the network on more diverse comparisons through a larger sample size for comparable

training time. The index table is generated using two techniques, k-means and agglom-

erative clustering, separately on two publicly available standard databases viz. CASIA

Interval and CASIA Lamp. The rest of the chapter is organized as follows. The next sec-

tion gives an overview of the related work that has been done in iris database indexing.

Section 2.2 describes the proposed technique in detail. Experimental setting and results

are analyzed in Section 2.3.

2.1 Literature Survey
Many studies have made a significant contribution in investigating techniques for iris

recognition, but there is a limited amount of work in iris database indexing. The pioneer-

ing work by Daugman et al. [19] uses beacon guided search utilizing multiple colliding

segments. Mukherjee et al. proposed iris indexing technique using two different methods

[57]. The first one uses Iris Codes generated from iris images. In contrast, the second

one uses textural patterns in iris images using Signed Pixel Level Difference Histogram

(SPLDH) of the raw pixel intensities. Gadde et al. [58] proposed an indexing technique

by utilizing the clustering property of the Burrows-Wheeler Transform (BWT). The nor-

malized iris image is initially converted to a binary image. A horizontal n-bit pattern

is selected and the locations containing this pattern are searched for in the iris image.

The image is segmented into vertical partitions and based on the presence of the selected

pattern; it is assigned an index code. Another work by Mehrotra et al. [59] uses scale-

invariant feature transform (SIFT) [37] and the generated keypoints are indexed using

geometric hashing. Si et al. [60] proposed a technique for eyelash detection using direc-

tional filters. The paper further proposes an indexing technique by analyzing the texture

information in the blocks of normalized iris images. This is done by detecting corners

using Harris corner detection and analyzing the distribution of corners to get textural in-

formation. The index code is generated by dividing the normalized iris image into blocks
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and labeling each block. Jayaraman et al. proposed an iris indexing technique using both

color and texture [61]. It uses color for index table generation and texture to find simi-

lar candidates to query images. The features are extracted using SURF and Kd-tree has

been utilized to index high dimensional features obtained from color histograms. Dey et

al. [6] proposed a 12-d index key generation from Gabour energy features. The paper

extracts textural features from normalized iris images using a multiresolution Gabor filter

applied across various scales and orientations. Drozdowski et al. [62] proposed an iris

indexing technique using bloom filters and binary search trees. In this method, the iris

image is divided into blocks and each block is passed through bloom filters. This results

in a representation of the iris sample as a fixed-length sequence of bloom filters. Two

samples are compared by computing the Hamming distance between the generated rep-

resentation. A B-tree is created from all the enrolled samples and the search begins from

the root of the tree. Khalaf et al. [63] divides the iris image into 8× 8 blocks and extracts

features from them by applying DWT, DCT and SVD. K-means++ algorithm is applied

to the features for partitioning the embedding space. The search is carried out by dividing

the database into two groups and creating two B-trees. Both the trees are searched, and

the two most similar bins are retrieved for comparison. Another notable technique, pro-

posed in [64], computes feature deviation that arises due to the presence of noise in the

iris images. The feature deviation determines the search threshold for iris images based

on which the index table is generated. Recently, Singh et al. [65] proposed patch level

ordinal features for establishing relations between different iris images. The real-valued

features are discretized and multi-index hashing is utilized for index table creation.

2.2 Proposed Technique
Iris is one of a reliable biometric modalities for pattern matching because of its highly

distributed texture patterns. Nevertheless, due to obstructions like eyelids and eyelashes,

it becomes difficult to detect the textural patterns present in the iris. However, it has been

seen recently that Convolutional Neural Networks (CNN) [66] perform better in feature

learning than the traditional handcrafted methods such as Gabor filter bank [67], Local
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Figure 2.2: Block diagram of the proposed technique. The feature extraction module
consists of training two identical networks as siamese architecture. The extracted features
are clustered for index table generation.

Binary Pattern (LBP) [40], Laplacian of Gaussian (LoG) [68] etc. CNNs learn distinctive

and salient features that best represent an iris image. The proposed technique learns a

robust iris feature descriptor that aims to reduce the candidate list size for comparison

to facilitate faster identification of a query iris sample. The proposed technique has four

components, 1)RoI segmentation and Pre-processing, 2) feature extraction, 3) index table

generation, and 4) retrieval. A block diagram of the proposed technique is shown in

Figure 2.2. The raw iris images are subject to PixISegNet [20] for extracting region of

interest. The RoI images are fed to feature extractor, IrisIndexNet, which consists of two

similar Iris Descriptor Network (IDN1 and IDN2). After training, the feature vectors are

extracted for the complete database of size N and the query iris sample (q). The feature

vector set (F ) is clustered for index table generation. Each index in the generated index

table represent the cluster center and all the feature vectors lying in that cluster are put in

the index’s bucket. The query feature vector (fq) is compared with all the indices and the

candidates lying in the most similar index are retrieved for identification. All the modules

are discussed in detail in the following subsections.

2.2.1 RoI Segmentation and Pre-processing

The iris samples may contain off-angles, specular reflection, motion blurs, noise, eye-

lashes, and eyelids when acquired in an unconstrained and non-cooperative environment
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[69]. This dramatically affects the performance of an iris authentication system because

the iris features are visible near the pupil boundary. Therefore, an accurate iris region of

interest (RoI) segmentation is required for better feature extraction and, thus, iris identi-

fication [70].

In this work, iris images are initially pre-processed to segment out the region of inter-

est (RoI) containing iris pattern using the technique proposed in [20]. This technique uses

a U-Net architecture [71] that consists of a contacting and an expansive path. The con-

tracting path consists of a series of convolutional layers followed by the max-pool layer.

On the other hand, the expansive path takes the output of the contracting path and puts

it through a series of transposed convolutional and up-sampling layers. The high-level

features from the contracting path are concatenated with the corresponding up-sampled

features in the decoder using merge connections. U-Net is commonly used in applica-

tions involving the segmentation of medical images. The observed output was irregular

and blurry when the standard U-Net was used for segmentation RoI from iris images.

It was due to occlusion, pose and scale variation that gets introduced in the iris images

during acquisition in an uncontrolled environment. This limitation is addressed by in-

troducing a stacked hourglass network in between the contracting and expansive path.

Hourglass network [72] includes a residual module that works on the feature vector, un-

like the U-Net, which takes a complete image as an input. The residual module uses

convolutional operation to learn high-level features, but it is also capable of retaining the

original information with the use of skip connections. It has a symmetric topology so that

the features are extracted and consolidated across various image scales and resolutions.

The output of the hourglass network is of the same size as that of its input feature vec-

tor. Therefore, we can say that the hourglass network only changes the depth of the data

without altering its size.

The iris RoI segmentation network has three components viz., contracting path, ex-

pansive path and the hourglass network. The contracting path aims to learn salient and

discriminating features corresponding to the input iris images. The contracting path con-

sists of a pair of convolutional layers with a filter size of 3 × 3 and stride of 1, followed
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Figure 2.3: Iris Normalization procedure.

by ReLU activation and lastly, a maxpool layer with size = 2× 2 and stride of two. This

block is repeated three times with different filter sizes of 16, 32, and 64. Unlike the stan-

dard U-Net, three hourglass networks are stacked over each other and are introduced in

the bottleneck of U-Net for better RoI segmentation. Therefore, the output of contact-

ing path is passed to the hourglass network. Each hourglass consists of an encoder and

decoder that has four residual modules connected in a sequential manner. After passing

the feature vector through three hourglass networks, the output is given to the expansive

path. The expansive path consists of a pair of transposed convolution layers with filter

size of 3 × 3 followed by an up-sampling layer. This block is repeated three times fol-

lowed by a 1 × 1 convolutional layer. The output of each block is concatenated with the

corresponding feature map in the contracting path using a merge connection. The output

of 1 × 1 layer in the expansive path is the segmented region of interest (RoI) containing

the iris image.

The segmented iris images are normalized. The images are transformed from nor-

mal coordinate system to polar coordinate system. It makes the iris images of a fixed

dimension which further allow comparison of the images. The inconsistency between the

same subject’s iris image arise due to varying size of the iris due to pupil dilation. The

mapping of iris image to polar coordinates (r, θ) is achieved by using Daugman’s rubber

sheet model [73]. As per the model, r moves in distance range of [0, 1] and θ moves in the

angular range of 0, 2π, as shown in Figure 2.3. Mapping to polar coordinates is achieved

by,

I(x(r, θ), y(r, θ)) = I(r, θ) (2.1)
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Figure 2.4: Figure showing Region of Interest Segmentation and normalization of an
acquired iris image taken from CASIA Interval database.

x(r, θ) = (1− r)xp(θ) + rxl(θ)

y(r, θ) = (1− r)yp(θ) + ryl(θ)
(2.2)

Here, the coordinates of the pupil and iris boundaries along the θ direction are xp, yp

and xl, yl. This model is robust to pupil dilation and size inconsistencies. The stages of

iris segmentation and normalization with respect to an acquired iris image are shown in

Figure 2.4.

2.2.2 Feature Extraction

The normalized images are fed to the proposed feature extraction network, called IrisIn-

dexNet, to learn a compressed representation for an iris image. The key idea is to learn

a feature representation function that maps similar iris images i.e the ones belonging to

the same subject closer in the feature-embedding space. While, the images belonging

to different subjects should have dis-similar feature vectors and should be far from each

other in the feature embedding space.

IrisIndexNet is a siamese network [44] based architecture. Siamese network is a cat-

egory of neural networks that consists of two identical networks. Two networks are iden-

tical if they have the same configuration, parameters, and weights. The parameters are

updated for both networks simultaneously. Different images are fed to the networks that

learn feature vectors corresponding to them. The networks are trained to minimize the

distance between feature vectors belonging to images of the same subjects, and the dis-

tance between feature vectors of different images is maximized in the feature embed-

ding space. The weights are updated for both networks simultaneously. In other words,
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Figure 2.5: Architecture diagram of the proposed IrisIndexNet consisting of two iris De-
scriptor Networks (IDN1 and IDN2).

siamese networks learn a similarity function that outputs if two input images are similar

or not. When two images belong to the same subject, it is referred to as a positive pair.

While a negative pair refers to two images belonging to different subjects. Training a

siamese network poses an advantage if there is a class imbalance in the training dataset.

Class imbalance refers to when the number of positive pairs is quite less than the number

of negative pairs or vice versa.

Iris Descriptor Network (IDN): IrisIndexNet is a feature extraction network that has two

branches of the replicated Iris Descriptor Network (IDN), IDN1 and IDN2. The feature

vectors obtained from IDN for two different iris images are compared by computing

cosine similarity between the two. IDN maps an input image xi to a latent representation

f(xi) as given,

f(xi) = IDN(xi) = ϕ(W IDN
2 ⊛ (ϕ(W IDN

1 ⊛ xi))) (2.3)
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where, W IDN
1 and W IDN

2 are the weights of the filters at the first and second layer, re-

spectively. The operator ⊛ refers to the convolution operation. xi is the input image

vector, and ϕ denotes the ReLU activation function applied to introduce non-linearity on

the output of both layers. IDN architecture consists of convolution layers followed by a

flattening and dense layer that outputs a feature vector corresponding to the input iris im-

age. The input image is passed through convolution layers having 32 and 256 filters with

a kernel size of 9× 9 and 7× 7 and stride length of 4 and 2 respectively. It was observed

that adding a max-pool layer after convolution layers resulted in the loss of the captured

texture information. Therefore, strides of 4 and 2 have been used in convolutional layers

as an alternative. These strides are compensated by the large size of filters i.e. 9× 9 and

7× 7, which helps capture patterns of a larger locality. Lastly, the number of channels is

increased from 32 to 256 from the first to the second layer as there was a huge amount

of variance in the iris images, which was better captured using a large number of filters.

These are followed by feature flattening and a fully connected dense layer. The fully con-

nected layer acts as the feature embedding of size 1024 dimension. Cosine similarity is

computed between the feature vectors coming from IDN1 and IDN2. The output value

lies in the range of [−1, 1], but the network outputs an absolute value for training the IDN.

The architecture of the IrisIndexNet consisting of two IDNs is shown in Figure 2.5. In

the figure, x1 and x2 refer to two normalized iris images.

2.2.3 Indexing

The objective of this phase is to associate each feature vector generated by IrisIndexNet,

to an index. The output of IrisIndexNet is a feature vector set F comprising of feature

vectors {f(x1), f(x2), . . . , f(xN)} of all the input iris images xi where, i = 1, 2, . . . , N .

Two types of clustering techniques namely, agglomerative [74] and k-means [75] are

implemented on the feature vector set F . Class impurity and size deviation are utilized to

evaluate the clustering quality. Class impurity linearly depends on the number of clusters

in which the samples of a particular class are split in. Size deviation refers to the standard

deviation in the distribution size of the clusters.
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Algorithm 1 Indexing the extracted feature vectors
Require: Embedded feature vector set F
Ensure: Index table IT

1: for every iris image xi, i ∈ {1, 2, . . . , N} do
2: Extract the feature vector, f(xi) using IrisIndexNet
3: Append f(xi) to F

4: Apply k-means or Agglomerative clustering on feature embedding space F till con-
vergence

5: for each cluster center or hash index hj , j ∈ {1, 2, . . . , k} do
6: Create an index with hj in the index table IT .
7: Put the members of the cluster or partition in the bucket corresponding to hj

8: return IT

Agglomerative Clustering [74]: As the name suggests, agglomerative clustering refer

to aggregation or merging the clusters at various levels based on a similarity metric [76].

It is a bottom up approach which means that initially, each data point is treated as a

different cluster. The similar clusters are later merged by computing a distance metric

between them and this process continues till all the data points are grouped together in a

single cluster. There are different types of linkages that describe the different approaches

to measure the distance between two clusters. These are single, complete, average and

ward linkage. Suppose there are two clusters C1 and C2. The single and complete linkage

outputs the minimum and maximum distance respectively between two data points p1 and

p2 such that p1 ∈ C1 and p2 ∈ C2. The average linkage between two clusters, C1 and

C2, computes the average distance between all the pair of points contained in both the

clusters. In this work, the affinity between clusters is calculated using cosine similarity

for the above mentioned linkages [77]. On the other hand, Euclidean distance is employed

for Ward linkage [78]. Class impurity and size deviation are computed for all the linkages

at different distance threshold values as shown in Table 2.1. It was observed that complete

linkage produces similar sized clusters for most threshold values without much reduction

of class impurity. Whereas the single linkage quickly merges nearby clusters causing it

to get to zero impurity at the cost of skewed cluster distributions. The average linkage

strikes a balance in merging of clusters as the size deviation does not increase abruptly

while the class impurity reduces consistently. On the other hand, ward linkage method
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Table 2.1: Agglomerative clustering trials using absolute cosine similarity for CASIA
Interval and CASIA Lamp dataset.

D.T. Complete Linkage Single Linkage Average Linkage
S.D. C.I. S.D. C.I. S.D. C.I.

CASIA Interval
0.2 1.63 1.46 2.29 0.91 1.99 1.18
0.4 2.04 0.36 192.58 0.01 2.20 0.21
0.6 3.06 0.24 - - 16.93 0.13
0.8 10.33 0.22 - - 623.69 0.01

CASIA Lamp
0.2 3.22 5.54 5.17 3.69 4.26 4.66
0.4 5.36 3.99 7.29 1.05 6.68 1.52
0.6 7.67 2.05 10.52 0.20 6.58 0.49
0.8 3454.15 1.26 4100.91 0.00 6.28 0.11

Table 2.2: Agglomerative clustering trials using Euclidean distance with ward linkage.

D.T. 0.2 0.6 1.0 1.4 1.8 2.0 2.2
CASIA Interval

S.D. 0.07 1.42 1.68 1.83 3.55 4.56 6.94
C.I. 4.43 1.78 0.30 0.17 0.14 0.14 0.13

CASIA Lamp
D.T. 0.2 0.6 1.0 1.4 1.8 2.0 2.2
S.D. 0.009 2.01 5.51 5.32 3.76 3.60 3.25
C.I. 14.99 6.89 1.64 0.43 0.19 0.14 0.12

gave better result. The value of size deviation and class impurity is optimal at 2.0 and 1.8

for CASIA Interval and CASIA Lamp database respectively, which is better than other

linkage types. It is shown in Table 2.2. Euclidean distance threshold of 2.0 and 1.8 are

chosen that gives 229 and 881 clusters for CASIA Interval and Lamp respectively. In

both the tables Table 2.1 and Table 2.2, D.T., S.D. and C.I. refer to distance threshold,

size deviation and class impurity respectively.

k-means Clustering [75]: The objective of k-means clustering algorithm is to partition

a set of feature vectors F into ’k’ disjoint groups. Each group or cluster has a represen-

tative data point also known as mean of all the feature vectors. The algorithm starts by

initializing ’k’ centers using k-means++ initialization. Euclidean distance of each feature
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Table 2.3: Size deviation and class impurity with k-Means Clustering for different number
of clusters for CASIA Interval dataset.

Clusters 3 30 60 90 99 111
S.D. 67.72 26.92 20.03 15.53 12.68 12.34
C.I. 0.66 0.83 0.71 0.61 0.61 0.59

Table 2.4: Size deviation and class impurity with k-Means Clustering for different number
of clusters for CASIA Lamp dataset.

Clusters 3 15 30 60 70 78
S.D. 560 248.01 213.14 137.07 126.60 101.39
C.I. 0.52 0.63 0.67 0.60 0.62 0.58

vector is computed from all the centers and it is assigned to a cluster with least Euclidean

distance. The cluster centers are updated after every iteration. It is found out by comput-

ing the mean of all the candidates assigned to that cluster. This is repeated till no further

change in cluster assignment is observed or maximum number of iterations have been

exhausted.

Class impurity and size deviation are computed for different values of k to determine

appropriate number of clusters. It was observed that size deviation was considerably

higher in k-means clustering as compared to agglomerative clustering and the class im-

purity saturated at relatively higher values. k-means was found to perform optimally at k

values of 111 and 78 for CASIA Interval and CASIA Lamp dataset respectively, before

the metrics saturated. The same is shown in Table 2.3 and Table 2.4. Cluster labels de-

termined by these techniques need to be trained on a classifier before it can be used for

predictions. In this work, Support Vector Machine is used. The computed clusters serve

as class labels for training an SVM classifier for the feature vectors. Since the feature

space is representative and has a large training data, a linear kernel is selected for the

SVM classifier.

2.2.4 Retrieval

During the retrieval phase, the probe iris image (qj), where j = {1, 2, . . . ,m} is fed to

the trained Iris Descriptor Network for feature vector extraction. This feature vector is
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Algorithm 2 Retrieval (IT, q)
Require: IT : Index table, q: probe iris image

1: Extract the latent representation, f(q)
2: for every index ind ∈ IT do
3: Determine the cosine similarity between ind and f(q)
4: Find the most similar index
5: Retrieve candidates from the most similar index
6: return Candidate list

then passed through the classifier to determine the label for the most similar cluster. The

candidates lying in the selected cluster would be used for comparison with the probe iris

image, qj using cosine similarity. A score list S is created which consists similarity score

of a query feature vector with the candidates lying in the selected index of the index table.

The list is used to find the rank of the qj’s true match. This is repeated for every probe

iris image. The proposed technique reduces the search space by a huge margin thus,

implementing a constant time search complexity for identification process. The retrieval

process is explained through Algorithm 2.

2.3 Experimental Results
This section demonstrates the recognition as well as the indexing performance of the

proposed technique on two standard iris databases. The details regarding the databases

and the results obtained is given in the subsections to follow.

2.3.1 Datasets

The proposed model is tested on two publicly available standard datasets viz., CASIA

Interval [47] and CASIA Lamp [79]. The datasets are split in two different manners i.e.

horizontally and vertically. Horizontal split refers to when all samples of the selected

subjects are used to train feature extraction. Vertical split is done by selecting the fixed

number of samples from all the subjects to train the clustering module for indexing. Since

there is no standard training and testing protocol associated with the considered datasets;

both are partitioned in 80-20% train and test split. In both the datasets, 80% of the

samples are used as gallery images while the remaining 20% are treated as probe iris
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Figure 2.6: Iris Samples Images from CASIA Interval and CASIA Lamp Database in first
and second row respectively.

samples. Some iris samples from both the datasets are shown in Figure 2.6.

CASIA Interval [47]: There are 2555 iris collected from 349 subjects. The images were

acquired from a special close-up iris camera and have a resolution of 320 × 280 pixels.

The images are good for extracting textural patterns.

CASIA Lamp [79]: CASIA Lamp is a larger dataset with 15,660 iris images collected

from 819 subjects using a hand-held iris sensor. During acquisition, a lamp is kept near

the subject and it was switched on and off in order to introduce more variations in the

samples of the same subject. Due to illumination variation, pupil tends to expand and

contract and the images in this database capture that. Thereby, making it a good database

to test the robustness of extracted features. The images are collected in single session and

have a resolution of 640× 480 pixels.

2.3.2 Training and Testing Protocol

The Siamese network replicates the IDN and generates two feature vectors. The network

generally needs to be trained for all N ×N combinations of images and should output a

binary value. The value is one if the input patterns belong to the same subject and zero in

case the images are of different subjects. But, the number of positive pairs are quite less

than the number of negative pairs. Due to this massive class imbalance there could be

an increase in the number of false positives and this may lead to poor training of IrisIn-

dexNet. To address this problem, the proposed technique samples out some random r

39



Chapter 2

Figure 2.7: Receiver Operating Characteristic Curve, plotted on the log scale, for the
considered databases.

images of the same subject and l images of other subjects resulting in (r+ l)×N combi-

nations for training. The network is trained using a binary cross-entropy loss function as

the output produced from the network lies between [0, 1]. Adam optimizer with a steady

learning rate of 0.00006 has been used for training with a mini-batch of size 40. Weights

of the convolutional layers have been initialized as per the zero-mean Xavier normal ini-

tialization. The training produces two gradients corresponding to each input pattern on

the same weights because the same IDN has been used to produce the feature vectors for

two images.

2.3.3 Recognition performance

The feature vectors generated using the proposed IrisIndexNet are tested for their recog-

nition performance to validate the objective of obtaining ‘high intra-class and low inter-

class similarity’. Recognition performance is evaluated in terms of correct recognition

rate (CRR), equal error rate (EER), discriminative index (DI) [34] and Accuracy. To

compute these parameters, each test image is matched with all the images in the training
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Table 2.5: Recognition performance of the proposed approach

Parameter CASIA Interval [47] CASIA Lamp [79]
CRR 96.45% 99.64%
EER 3.90% 2.36%
DI 2.63 2.69
Accuracy 96.55% 98.12%

(a) t-SNE CASIA Interval (b) t-SNE CASIA Lamp

Figure 2.8: t-SNE plot showing 50 randomly chosen classes for (a) CASIA Interval and
(b) CASIA Lamp dataset

partition and similarity score is obtained.

Two types of comparisons are possible, viz. Genuine and Imposter. For CASIA In-

terval dataset, the number of genuine comparisons were 3739 while the imposter compar-

isons were 1231997. The number of genuine and imposter comparisons for CASIA Lamp

dataset were 50122 and 39183739 respectively. Receiver Operating Characteristic Curve

(RoC) is plotted for both the datasets Figure 4.7. It depicts the classification performance

at various thresholds. Area Under the Curve (AUC) refers to the degree of separability

i.e it depicts the capability of the model in distinguishing between classes. Higher AUC

indicate better model. The proposed approach achieved AUC of 0.9999 and and 0.9998

in CASIA Interval and CASIA Lamp Database.

The proposed technique achieved CRR = 96.49% and 99.64% and EER = 3.90% and

2.36% on CASIA Interval and CASIA Lamp dataset respectively. The same has been

tabulated in Table 2.5. The learned features can be visualized using t-SNE plots. t-SNE
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Table 2.6: Penetration rates(%) corresponding to various values of hit rate for CASIA
Interval and CASIA Lamp database

Agglomerative k-means
Hit Rate (%) Interval Lamp Interval Lamp

95 - - 0.104 -
96 0.052 - 0.681 -
97 0.104 - 2.097 -
98 0.734 - 3.775 0.008
99 2.254 0.008 7.236 0.255

is a probabilistic technique for dimensionality reduction and is well suited for the visual-

ization of high-dimensional feature vectors in a 2-D plot. Figure 2.8 shows t-SNE plots

[80] for the learned features from CASIA Interval and CASIA Lamp database. Every

color in t-SNE plot represents a class or subjects. It is clearly evident that the same class

features are close to each other in the feature representation space while different ones

are farther. This validates the performance of the extracted features using the proposed

technique. Although, recognition performance is not the main aim of this study but the

proposed technique is able to achieve good results thus, indicating the high discriminating

and representative ability of the learned feature vectors.

2.3.4 Indexing performance

The learned feature vectors are clustered using k-means and Agglomerative clustering to

generate an index table. Whenever a query iris image is given to the iris identification

system, its feature vector is extracted using the trained IrisIndexNet. It is then compared

with all the indices and the candidates lying in the most similar index are retrieved for

comparison. The proposed technique achieves a hit rate of 99% at 7.236% and 0.255%

penetration rate in CASIA Interval and CASIA Lamp dataset respectively. However, the

penetration rate further reduced to 2.254% and 0.008% respectively for the considered

datasets when Agglomerative clustering is applied. A 100% hit rate was achieved at

24.383% and 38.210% for CASIA Interval and CASIA Lamp respectively in case of

k-means clustering. On the other hand, the penetration rate was 19.507% and 3.248%

respectively when agglomerative clustering is applied. The penetration rate achieved by
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Figure 2.9: Hit rate vs. penetration rate on the considered datasets when agglomerative
(A.C.) and k-means clustering has been used for indexing.

the proposed technique corresponding to different values of hit rates is shown in Table 2.6.

The same is graphically represented in Figure 2.9. It can be observed that agglomerative

clustering performs better than k-means clustering. This can be justified as agglomerative

clustering defines clusters based on distance thresholds and thus, produces uniformly

sized clusters.

2.3.5 Time analysis

The time-based performance of the proposed technique is evaluated in terms of speed-up.

It refers to how fast the identification process has become by using the proposed technique

for indexing as compared to the naive approach for identification that uses linear scan

in the database. Speedup is calculated by the time taken to find a suitable candidate

set from the created index table for matching with the query image. Table 2.7 shows a

comparison of the query time taken for iris identification with and without indexing for

both the types of clustering techniques on the considered datasets. The time taken by

the query set is shown in seconds for both the datasets when k-means and agglomerative
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Table 2.7: Identification time analysis of the proposed approach with non-indexed ap-
proach. The cell values show the time taken (in seconds) by the test set in both the
datasets by k-means and agglomerative clustering.

Database Without Indexing k-means A.C.
CASIA Interval 138.04 33.748 33.378
CASIA Lamp 35416.65 1280.711 1303.08

Table 2.8: Comparison with existing state-of-the-art techniques.

Technique Features HR(%) PR(%)
Database: CASIA Lamp [79]
Singh [65] POFNet 99.82 0.62
Proposed IrisIndexNet 99.90 0.03
Database: CASIA Interval [47]
Mukherjee [57] Iris texture & Iris codes 80.00 8.00
Gadde [58] BWT 99.83 17.23
Dey [6] Gabor features 91.1 14.5
Drozdowski [62] 1D Log Gabor 98.00 10.0
Khalaf [63] DCT, DWT & SVD 69.63 0.98
Ahmed [64] Deviation Features 98.77 3.40
Singh [65] POFNet 98.73 2.11
Proposed IrisIndexNet 98.73 1.17

clustering are applied for indexing the database prior to identification. It can be observed

that the speedup is around 4 and 27 times in CASIA Interval and CASIA Lamp dataset

respectively, if the proposed technique is applied for indexing the iris database.

2.3.6 Indexing Performance Comparative Analysis

The proposed technique is compared with the state-of-the-art iris indexing techniques for

CASIA Interval and CASIA Lamp database. Effectiveness of the proposed technique can

be seen from Table 2.8. The proposed technique achieves better penetration rate of 0.03%

at a hit rate of 99.90% on CASIA Lamp database. Whereas, on the same database, the

state-of-the-art technique proposed by Singh et al. [65] achieves a comparatively higher

penetration rate of 0.62% at 99.82% hit rate. Table 2.8 also compares the proposed tech-

nique with state-of-the-art techniques with respect to the CASIA Interval database. Gadde

et al. [58] uses clustering property of Burrows-Wheeler Transform (BWT) and achieves
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a high hit rate of 99.83% on CASIA Interval dataset but at a higher penetration rate of

17.83%. The recently proposed techniques in [64] and [65] achieves a hit rate of 98.77%

and 98.73% at 3.40% and 2.11% respectively. The proposed technique achieves a hit rate

of 99% at 2.25% penetration rate. For comparison with [65], the penetration rate of the

proposed technique for 98.73% hit rate is computed and it came out to be 1.17%. Lower

penetration is expected from an efficient indexing technique. Therefore, the proposed

technique outperforms the techniques proposed in literature for the considered databases.

It can also be seen that the there is significant reduction in the search space for searching

the true match of a query iris sample.

2.4 Summary
This chapter addresses the problem of iris based human identification process in large

databases. A specialized convolutional neural network architecture has been proposed

which is trained as a Siamese architecture to learn compact feature vectors for iris images

such that they have low inter-class and high intra-class similarity in the latent represen-

tation space. The extracted feature vectors are clustered using two techniques, k-means

and agglomerative clustering to generate an index table. During retrieval, the candidates

lying in the most similar index as that of the query image are fetched out for comparison.

The generated candidate set is quite small in size as compared to the original database.

The proposed technique has been tested on CASIA Interval and CASIA Lamp datasets

and has been found to achieve 99% hit rate at just 2.254% and 0.008% penetration rate

respectively. In other words, one needs to search only 2.254% and 0.008% of the consid-

ered datasets to be 99% sure about the presence of a sample in the database. A speedup of

4 and 27 times has been achieved when the CASIA Interval and CASIA Lamp have been

indexed using the proposed method as compared to the naive approach for identification.

The next chapter discusses a novel deep learning based indexing technique for palmprint

databases.
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PalmHashNet: Palmprint Database

Hashing Network

Palmprint is an impression procured from the inner part of the hand extending be-

tween the wrist and ends of fingers. Recently, palmprint-based biometric authentication

gained wide popularity due to its non-intrusive nature, easy acquisition, and robust textu-

ral features [81]. A palmprint consists of complex and unique patterns which are utilized

for human authentication. The features are classified as high resolution and low resolution

based on the quality of the acquired image. High-resolution image refers to having 400

dpi or more, while low resolution refers to having 150 dpi or less [5]. The low-resolution

features include wrinkles, texture, and principal lines. There are three principal lines in

the palmprint viz. heart, head, and life line. The low-resolution features are visible to

the naked eye as well. On the other hand, ridges, singular point, and minutiae points

can only be extracted from high-resolution images [22]. The high-resolution images are

required in high-security areas or for criminal investigation. Low-resolution images are

more suitable for civil and commercial applications for access control. These features are

illustrated in Figure 3.1.
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Figure 3.1: Palm image, ROI and features. The red box in first image represents the
region of interest (RoI) of palmprint extracted from the hand image. The second and
third image shows features on low and high resolution image.

Palmprint identification system [82] determines the identity of a given palmprint by

comparing it with all the templates stored in a database. To reduce the number of com-

parisons for identification, the palmprint database is indexed such that feature vector of

each palmprint image is associated with an index in the index table. The index table is

generated such that the similar feature vector should lie in the bucket and the different

feature vectors should be in separate buckets. Therefore, the learned feature vectors are

expected to have high intra-class and low inter-class similarity. Hence, the performance

of any biometric indexing technique is determined by the quality of the extracted features.

The feature extraction process is carried out by training the network for a classification

problem using softmax cross entropy loss [42]. The features are extracted from the layer

connected just before the fully connected layer. It is believed that the learned feature vec-

tors are good if they are able to classify the input image correctly. But, the learned features

may not turn out to be optimal if no explicit constraint is applied on feature vector distri-

bution which may lead to a general spread of the learned feature vectors. To address this,

metric-based methods have been introduced that uses distance-based criterion to separate

feature embeddings from different classes and bring them closer otherwise.

This chapter proposes a novel metric-based palmprint feature extraction network that

uses ‘additive margin loss’ [83] to supervise the training process. The softmax loss is
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capable of maximizing the inter-class distance among samples of different classes but

unable to minimize the intra-class dissimilarity among the samples of the same class.

Therefore, a margin is added to the loss function to handle the intra-class variation better.

It ascertains that the index space distribution is regularized to be similar to the uniform

distribution. The network learns a 512-dimensional distinct compact feature embedding

corresponding to every palmprint sample and is associated with an index in the index

table. Two different techniques viz. k-means clustering and locality sensitive hashing

(LSH) with k-nearest neighbor search have been explored for index table creation. The

generated index is used for the retrieval of top-k matches for identification. The index-

ing performance of both the considered techniques has been compared. The proposed

technique is evaluated on four publicly available databases viz., CASIA [49], IIT Delhi

Touchless [50], Tongji Contactless [51] and PolyU II [52] palmprint dataset. All the

databases contain palmprint images collected in an unconstrained environment. The re-

sults show the efficiency of the learned features in the identification process.

Next section in this chapter overviews state-of-the-art techniques that are proposed in

the literature for palmprint recognition and palmprint database indexing. It is followed by

the proposed technique, which further consists of three subsections i.e., feature extrac-

tion, indexing, and retrieval. The last section gives details about the experimental setting

to evaluate the proposed palmprint database indexing technique. It includes databases

specifications, training and testing protocol, evaluation parameters and system specifica-

tion. Lastly, the section discusses the obtained results for recognition and identification

when indexing is applied on the considered palmprint databases.

3.1 Literature Survey

This section surveys various techniques for palmprint recognition and palmprint database

indexing. Recognition performance of the system has also been evaluated to assess the

quality of the learned features.
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3.1.1 Palmprint Recognition

Palmprint recognition started with Boles et al. [84], wherein the authors proposed that

palm shape and palm lines can be used for human authentication. Zhang et al. [85]

claimed that using principal lines only for matching palmprint samples is not a good idea

as some people may have similar patterns of principal lines. Therefore, they utilized a

circular Gabor filter to extract features from low-resolution palmprint images. Kong et al.

[86] proposed a palmprint verification system based on orientation information in palm-

print lines. The paper presented a competitive code by extracting orientation information

using 2-D Gabor filters. Angular matching was used to compare the generated codes. An

improvised version of competitive code called robust line orientation code (RLOC) was

proposed by Jia et al. [87]. Feature extraction was performed using a modified version

of radon transform. The features were matched using pixel-to-area comparison. Zuo et

al. [88] extended competitive code and proposed multi-scale orientation palmprint fea-

ture extraction called sparse multi-scale competitive code (SMCC). The proposed method

is robust to illumination and scale variation. A palmprint verification method combin-

ing dominant orientation code and side code (DRCC) has been proposed in [89]. The

proposed technique extracted both the codes by applying weights on the Gabor filter re-

sponses to improve the results. A local binary pattern-based feature descriptor (LLDP)

to extract local features from palmprint images has been proposed in [90]. Li et al. [91]

proposed a local feature descriptor that takes into account the direction and thickness

information, making it robust to translation and rotation. Zhong et al. [92] proposed

a siamese network utilizing two weights sharing VGG-16 networks to learn discrimina-

tive features for palmprint images. A histogram feature descriptor has been proposed in

[93]. The paper suggested using apparent direction and latent direction computed from

the energy map of the apparent direction. These directions are combined to form a sin-

gle feature descriptor for palmprint images. Zhao et al. [94] proposed a CNN-based local

feature extraction network in which a palmprint image is divided into five parts, and these

parts along with the complete palmprint image is given to the proposed network. Zhong
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et al. [95] proposed a palmprint recognition system by combining large margin cosine

loss and center loss.

3.1.2 Palmprint Indexing

The first technique for palmprint identification was proposed by You et al. [96], where a

hierarchy of four-level features were used. The paper used different matching strategies

at different stages while reducing the search space. Li et al. [97] proposed a palmprint

retrieval technique by using texture features. The searching was performed in two stages;

firstly, global features were used to find a small-sized candidate list, and then local fea-

tures were used to output the final result from the selected candidates. Paliwal et al.

[98] made use of the Vector Approximation (VA+) file database to generate score based

indexing scheme. A ridge features-based indexing technique was proposed by Yang et

al. [99]. The paper first aligns all the palmprint images in a unified coordinate system

and then uses ridge density and orientation information for indexing. Chen et al. [100]

proposed a technique that outputs a binary feature vector and applied spectral hashing

technique to index the feature embeddings. Yue et al. [101] proposed two techniques

that used different features for hash-table creation. The first one is based on orientation

pattern (OP), which refers to orientation features. While the other one used principal ori-

entation patterns (POP) i.e., orientation patterns that lie in the region of principal lines.

An accelerated and improvised indexing technique that uses features generated from POP

was proposed in [102]. A convolutional neural network (CNN) based feature extractor

was proposed in [103]. The proposed network outputs a 128-d feature vector, and later,

implemented supervised hashing. A method using the difference of block means has

been proposed by Almagtuf et al. [104]. In this method, no feature extraction was per-

formed. Rather, simple operations such as adding and subtracting overlapping blocks

are used to compute palmprint code in each direction. Chen et al. [105] proposed a

double-orientation feature to account for unstable orientation fields. It further used a

window-based feature measurement for faster retrieval. A distillation-based loss function

has been proposed in [106] that generates binary feature vectors for palmprint images.
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Zhu et al. [107] proposed an adversarial metric learning technique to make the palm-

print embeddings uniformly distributed over a hypersphere. This is done by utilizing dis-

tance metrics and confusion terms. The paper also introduced a new palmprint database

that was collected in an unconstrained environment. Zhao et al. [108] proposed a deep

convolutional neural network based technique that extracted features from the palmprint

image and its patches separately. All the features were then combined to form a com-

pact feature. Jia et al. [52] evaluated the performance of various hashing techniques

for retrieval of palmprint images. The paper considered four supervised, unsupervised,

and deep hashing methods each and PolyU II, PolyU M B, HFUT, TJU, and PolyU 3D

databases for evaluation. It was reported that column sampling based discrete supervised

hashing (COSDISH) [109] performs best among other considered hashing techniques.

Recently, an end-to-end CNN-based network that learns binary hash values for palmprint

images has been proposed in [110]. It used structural and pixel-level features by adding

a similarity measurement module after the last fully connected layer.

3.2 Proposed Technique
This chapter proposes a novel technique to index a palmprint database to accelerate the

identification process. There are three stages in the proposed technique viz. feature ex-

traction, indexing of the extracted features, and lastly, retrieval of the suitable candidate

list for comparison with the probe sample. A metric-based learning deep learning net-

work, called PalmHashNet, is proposed for feature extraction. It learns discriminative

feature vectors for given palmprint images. An index table is generated by implementing

k-means clustering and Locality Sensitive Hashing (LSH) on the learned feature vector

space. When a query palmprint is shown to an identification system that uses an indexed

database, its feature vector is first extracted using the trained PalmHashNet. The query

feature vector is compared with all the indices i.e., cluster centers, or hash values of the

index table to find the most similar bucket. All the candidates lying in that bucket are

retrieved for comparison with the query feature vector. Therefore, the query palmprint

image is compared with the retrieved candidate list, which is smaller than the complete
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Figure 3.2: Block diagram of the proposed approach. There are three phases; PalmHash-
Net is the proposed feature extraction network that is trained using L

′
SM . The learned

features are given to indexing module for index table creation. The feature of query
palmprint sample is extracted using the trained PalmHashNet which is then compared
with all the bin numbers and the most similar one is selected for candidate set generation.

database. The following subsections discuss the stages of the proposed technique.

3.2.1 Feature Extraction

The objective of feature extraction is to learn salient yet discriminative features that best

represent a palmprint image. The performance of any biometric indexing technique is

determined by the discriminatory ability of the extracted features. The features are ex-

pected to have a low inter-class and high intra-class similarity. The features belonging to

the images of the same class should be closer to each other than the features belonging to

the images of different classes in the feature embedding space. This condition is essential

to improve search accuracy using the nearest neighbor approach. This results in making

indexing and, further, the identification process efficient.

Generally, the feature extraction process is carried out by training a classification

network using softmax loss [42]. Softmax loss is defined as an amalgamation of softmax

function, cross-entropy loss, and the last layer of a convolutional neural network [111].

Different subjects or individuals are treated as different classes and the layer connected

just before the fully connected layer serve as the feature embedding layer for the input

image samples. Mathematically, softmax loss LSM is defined as,
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LSM = − 1

N

N∑
i=1

log
eayi∑C
j=1 e

aj
(3.1)

where N and C are the total number of samples and number of classes respectively.

Activation of jth neuron in the last fully connected layer having weight Wj and bias bj

for the ith palmprint sample with feature fi is given as aj = W T
j ∗ fi + bj . There are

C number of activations, one corresponding to each class. Let the ground truth for the

ith palmprint sample be the class yi where i ∈ {1, 2, ..., C}, then the activation of the

corresponding neuron can be given as ayi = W T
yi
∗ fi + byi . Using this, the Eq.(3.1) can

be written as,

LSM = − 1

N

N∑
i=1

log
eW

T
yi
∗fi+byi∑C

j=1 e
WT

j ∗fi+bj
(3.2)

Considering a binary classifier, the posterior probabilities of a palmprint having the

feature vector fi belonging to the class C1 or C2 can be obtained by using the softmax as

shown in Eq.(3.3) and Eq.(3.4) respectively.

p(C1) =
eW

T
1 ∗fi+b1

eW
T
1 ∗fi+b1 + eW

T
2 ∗fi+b2

(3.3)

p(C2) =
eW

T
2 ∗fi+b2

eW
T
1 ∗fi+b1 + eW

T
2 ∗fi+b2

(3.4)

where (W T
1 , b1) and (W T

2 , b2) are the weight and bias corresponding to the class C1 and

C2. The classifier outputs C1 as the class of the query palmprint if p(C1) > p(C2)

and the output is C2, otherwise. The classification solely depends upon the weight and

bias term and uses W T
j ∗ fi + bj for deciding the class. Element wise multiplication in

W T
j ∗ fi is equivalent to the dot product therefore, the activation can be re-written as

aj = ||W T
j || ||fi|| cos θj + bj , where θj is the angle between vectors Wj and fi. It can

be observed that the activation depends on both the angle θj and the weight vector norm

Wj . If the weights are normalized to unity, the classification becomes directly dependent
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on the angle between fi and Wj’s. Therefore, weight vectors and feature vectors are

normalized as shown in Eq 3.5. Here, fi and Wj are original feature and weight vector

respectively. The values of ||fi|| and ||Wj|| are set to unity using Eq 3.5.

fi =
f ⋆
i

∥f ⋆
i ∥

and Wj =
W ⋆

j∥∥W ⋆
j

∥∥ (3.5)

After normalization, the posterior probabilities given in Eq 3.3 and Eq 3.4 can be

equivalently changed to p(Cj) = cos θj where j = {1, 2}. Therefore, the decision bound-

ary becomes cos θ1 − cos θ2 = 0. Normalized features can be plotted on a hypersphere

manifold with fixed radius, say ‘r’ as in shown in Figure 3.3. Softmax loss in the Eq.( 3.2)

can now be represented as,

LSM = − 1

N

N∑
i=1

log
er cos θyi

er cos θyi +
∑C

j=1,j ̸=yi
er cos θj

(3.6)

While training, if the sample belongs to class C1, the angle between fi and W1 is

smaller than the angle between fi and W2. Although this kind of decision boundary

works well for classification, it does not enforce high intra-class similarity as the compact

localization of the same class features is not mandatory. Therefore, features obtained from

different samples of the same class covering usual variation are scattered around feature

space. This is a more visible phenomenon if samples contain high intra-class variations

because of the presence of occlusion, pose, illumination etc.

In order to make the decision boundary more stringent, a margin m is added to θ. Con-

sider a sample belonging to class C1. This would imply that cos θ1 > cos θ2. By adding a

margin m in θ1, the equation changes to cos(θ1−m) > cos θ2. The expression cos(θ1−m)

is larger than cos θ1 which in turn is greater than cosθ2. The same relationship exists be-

tween θ1 and θ2. The decision boundary for class C1 becomes cos(θ1 − m) = cos(θ2).

Similarly, to correctly classify the another feature belonging to class C2, it is required that

cos(θ2−m) > cos(θ1) and the decision boundary becomes cos(θ2−m) = cos(θ1). Due

to the margin, lower bound of cosθ1 becomes much greater than cosθ2 thereby, enforcing

higher intra-class compactness. The modified softmax function is written as below.
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Figure 3.3: Geometrical Representation of (a) softmax loss and (b) additive margin loss.
DB0 is the decision boundary created by the softmax loss whereas DB1 and DB2 are
the decision boundaries learned by additive margin loss for class C1 and C2 respectively.
The boundary becomes a regional margin instead of single vector when additive margin
is applied.

L
′

SM = − 1

N

N∑
i=1

log
er (cos θyi −m)

er (cos θyi −m) +
∑C

j=1 , j ̸=yi
er(cos θj)

(3.7)

The geometrical representation of additive margin loss is shown in Figure 3.3. It

shows that the initial decision boundary i.e. the one created by softmax is now changed

to DB1 and DB2 respectively for class C1 and C2 respectively. Therefore, we can con-

clude from the figure that intra-class difference among the samples of the same class is

minimized by adding this extra marginal region to the angle.

3.2.2 PalmHashNet

This chapter utilizes a deep convolutional network named PalmHashNet as a feature ex-

tractor for palmprint images. The network is trained using the modified softmax loss

function, given in Eq.(3.7). It has been observed that deeper networks result in loss of in-

formation resulting in stagnation of accuracy. To understand this problem, let us consider

two networks, shallow and deep. The deep network is a superset of the shallow one i.e.,

it consists of a shallow network with some additional layers that act as an identity func-

tion. This ensures that the deeper network acts just like its shallower counterpart in the

worst-case scenario. However, it may happen that the deep network would learn better

features and reduce the error significantly. Such networks are called residual networks,

which are widely popular for image classification, and they consist of a series of residual
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units. Residual connections are added in the network to retain information of the previous

layers to eliminate the problem of vanishing gradients in deeper networks. The proposed

technique uses ResNet-18 as the backbone architecture to learn important yet discrim-

inative features from palmprint images for indexing. The feature extraction process is

carried out by training the ResNet-18 with the softmax loss. There are 16 convolution

layers, two max-pooling layers, and a fully connected layer in ResNet-18 architecture.

The filter size of the first convolution layer is 7× 7 while in other layers, it is 3× 3. This

is followed by a global average pooling layer and a batch normalization layer. The global

average pooling (GAP) layer aggregates the input features by taking an average across

the channels. This consolidation brings down the requirement of the number of parame-

ters and thus, reduces the chances of over-fitting. The output feature becomes robust to

spatial translations of the input images [112]. Activations of the GAP layer output are

fed to the batch-normalization (BN) layer [113] which normalizes the input by subtract-

ing it by mini-batch mean and diving by the mini-batch standard deviation. Mini-batch

refers to a subset of the training data that is given to the network in one epoch. Batch

normalization smoothens the landscape of the loss function by bringing the spread of all

the input dimensions to the neurons to the same distribution, resulting in faster training of

the model. A dropout layer of 512 neurons has been introduced, followed by a fully con-

nected layer to avoid over-fitting in the network. The last fully-connected layer serves as

the feature embedding. The weights of this layer, along with the feature embeddings, are

normalized. This makes the classification process solely dependent on the angle θ formed

between the feature vector and weight vector. PalmHashNet is then trained in an end-to-

end manner using the modified softmax loss, mentioned in Eq.(3.7). The architecture is

shown in Table 3.1. PalmHashNet learns feature embeddings that have more intra-class

and less inter-class similarity. The learned feature vectors are fed to the indexing module

for index-table creation explained in the next sub-section.
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Table 3.1: Architecture of the proposed feature extraction network (PalmHashNet) with
respect to PolyU II database images as input.

Layer # Filters Output Shape # of Param
Input - 128× 128× 3 0
Conv2D - BN - PRelu 64 128× 128× 64 705
Maxpool 2D - BN - 64× 64× 64 128
(Conv2D - BN - PRelu)*2 64 64× 64× 64 73986
Residual Block -BN - 64× 64× 64 128
(Conv2D - BN - PRelu)*2 64 64× 64× 64 73986
Residual Block -BN - 64× 64× 64 128
Conv2D - BN - PRelu 64 64× 64× 64 36993
Conv2D - BN 128 32× 32× 128 73984
Conv2D - BN - PRelu 128 32× 32× 128 8349
Residual Block -BN - 32× 32× 128 256
(Conv2D - BN - PRelu)*2 128 32× 32× 128 295426
Residual Block -BN - 32× 32× 128 256
Conv2D - BN - PRelu 128 32× 32× 128 147713
Conv2D - BN 256 16× 16× 256 295424
Conv2D - BN - PRelu 256 16× 16× 256 33281
Residual Block -BN - 16× 16× 256 512
(Conv2D - BN - PRelu)*2 256 16× 16× 256 1180674
Residual Block -BN - 16× 16× 256 512
Conv2D - BN - PRelu 256 16× 16× 256 590337
Conv2D - BN 512 8× 8× 512 1180672
Conv2D - BN - PRelu 512 8× 8× 512 132097
Residual Block -BN - 8× 8× 512 1024
(Conv2D - BN - PRelu)*2 512 8× 8× 512 4720642
Residual Block -BN - 8× 8× 512 1024
Dropout - 8× 8× 512 0
MaxPool 2D - 4× 4× 512 0
GAP - BN - 512× 1 0
Dropout - BN - 512× 1 0
Fully Connected - 512× 1 0
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3.2.3 Indexing

Identification aims at finding the closest or most similar sample from the database for a

query palmprint sample. The naive approach for identification involves comparing the

query sample with all the images in the database and sorting the similarity score list to

find the most suitable match. However, this process becomes computationally expensive

with an increase in the size of the database. Therefore, there is a need to reduce the num-

ber of comparisons by reducing the search space for efficient identification. The database

is indexed by associating the extracted feature vectors to an index. The query sample is

compared with all the indices of the index table and the candidates belonging to the most

similar index are retrieved for comparison. This proposed technique uses k-means clus-

tering [114] and Locality Sensitive Hashing [115] for indexing the considered palmprint

databases. The algorithm for feature extraction and indexing is given in Algorithm 3.

1. k-means Clustering: The objective of k-means clustering algorithm is to parti-

tion a set of feature vectors into a specified number of disjoint groups. Let there

be a feature vector set F = {fP1 , fP2 , . . . , fPN
} where, P1, P2, . . . , PN represent

N palmprint samples. k-means results in splitting F into ‘k’ disjoint clusters

c1, c2, ..., ck such that similar feature vectors lie in the same cluster while separat-

ing those that are different from each other in the feature vector space. Each cluster

has a representative data point that is also known as mean of the feature vectors

lying in that particular cluster. The algorithm starts by initializing ‘k’ centers us-

ing k-means++ initialization [75]. Let the centers of ‘k’ clusters are represented by

m1,m2, . . . ,mk. k-means is a distance-based clustering algorithm which computes

euclidean distance between a feature vector fPi
where, i = {1, N}, and every clus-

ter center. This helps in determining the closest cluster and fPi
is assigned to that

cluster. The cluster centers get updated after every iteration by computing the mean

of all the feature vectors assigned to it. The process of assigning feature vectors to

a cluster center and updating the cluster centers after each iteration is repeated till

no further change in cluster assignment is observed or maximum number of itera-
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tions have been exhausted. The goodness of clustering, that refers to how well k

clusters approximate the feature vectors set, is evaluated by computing intra-cluster

variance. Intra-cluster variance measures the amount of spread observed among the

feature vectors lying in a particular cluster. It is computed using,

Ek−means =
k∑

j=1

N∑
i=1

||fPi
−mj|| (3.8)

where, j and i denote number of clusters and feature vectors respectively. mj is

the center of cluster ‘j’. After convergence, the cluster centers are stored as hash

values in the index table and the palmprint IDs along with their feature vectors that

lie in a particular cluster are stored in the bucket corresponding to it.

2. Locality Sensitive Hashing A Locality Sensitive Hashing (LSH) function maps the

feature vectors to a lower-dimensional representation such that the feature vectors

that are similar to each other are mapped in the same bucket with a high probability

in the lower-dimensional space. The main objective of LSH is to maximize the

probability of collision of similar items i.e, the probability of two similar feature

vectors lying in the same bucket should be high. The hash function for an input

feature vector fPi
is computed by using two random values, r⃗ and x. Here, r is

a d-dimensional vector whose entries are randomly chosen from a set of vectors

following the Gaussian distribution. The dot product is quantized into a set of hash

bins with the objective that all the nearby feature vectors should lie in the same

bucket as shown,

hr,x(fPi
) =

⌊
r⃗ · fPi

+ x

w

⌋
(3.9)

In this equation, w is the quantization width and x is a random variable lying be-

tween 0 and w. Quantization width determines the number of entries or candidates

that would lie in each bucket of the hash table. Increasing the quantization width
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results in compact table as each bucket will have more number of entries. On the

other hand, lower value of w results in larger table with lesser number of candidates

in each bucket of the hash table. The search for true match for the query image is

accomplished in a linear manner i.e., the query image is compared with all the can-

didates lying in the selected bucket of the index table. Therefore, there is a trade-off

between the table size and final number of comparisons.

Two conditions must be satisfied to serve the purpose of reducing number of com-

parisons for identification of a query palmprint sample. These are,

• The probability of two feature vectors lying in the same bucket of index table

should be high if they are close to each other in the feature embedding space.

Let there are two feature vectors represented by fP1 and fP2 . Let the euclidean

distance between the two feature vectors is < d1. This distance is ≤ d1 which

is the threshold distance value that determines if the given two feature vectors

are close to each other in the feature embedding space. In this case, both fP1

and fP2 will lie in the same bucket. This is mathematically represented as,

P [h(fP1) = h(fP2)] ≥ p1 if ∥fP1 , fP2∥ = d1 ≤ d (3.10)

• Contrary to the previous condition, this condition states that the probability of

two dis-similar feature vectors, fP1 and fP3 , lying in the same bucket should

be low. Let d1 and d2 be the euclidean distance between fP1 and fP2 and fP1

and fP3 respectively. Since fP1 and fP3 are dis-similar feature vectors, the

distance between them should be greater than d i.e., d2 ≥ a × d, where a is

any constant. Therefore, the probability of them lying in the same bucket of

the index table will be less. Mathematically, it can be shown as,

P [h(fP1) = h(fP3)] ≤ p1 for ∥fP1 , fP3∥ = d2 ≥ a× d (3.11)

To further increase or reduce the probability given in the conditions respectively, a
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Algorithm 3 Feature Extraction and Indexing
Input: Set of palmprint images (P = P1, P2, ..., PN )
Output: Index table I

1: for each palmprint sample Pi do
2: Extract feature fPi

using the trained PalmHashNet.
3: Append fPi

to feature set fP i.e. fP ← fPi

4: Apply k-means clustering or Locality Sensitive Hashing on the feature vector set fP .
5: for each cluster center cci (k-means) or hash value hi (LSH) do
6: Create an entry in index table I with cci or hi.
7: Put ID and feature vectors of all the candidates in I lying in cci or hi.

return I

hash function of t- bits can be generated by performing t dot products in parallel

using Eq.(4.16). A t−bit hash value of a feature vector belonging to palmprint sam-

ple P1 can be computed by concatenating t values determined using the Eq.(4.16).

h(f t
P1
) can be written as = h1(fP1), h2(fP1), . . . , ht(fP1). After implementing LSH

on the set of feature vectors generated by the trained model, we get a data structure

that consists of hash value and the candidate IDs in its corresponding bucket.

3.2.4 Retrieval

The objective of the retrieval stage is to return a list of candidates that could be probable

matches of a query palmprint image. This starts off by extracting feature vector of the

query image qi using the proposed PalmHashNet. In case of index table generated through

k-means, the centers of each cluster act as indices. Therefore, the query feature vector

is compared with all the cluster centers or indices of the index table. The one which has

the highest similarity is selected and candidates contained in that cluster are retrieved for

identification. On the other hand, in case of locality sensitive hashing, a t−bit hash func-

tion corresponding to the query feature vector is computed using Eq.(4.16). The hash

bucket which is the most similar with the computed hash function is selected from the

generated index table. The process is explained in Algorithm 4. This is followed by iden-

tification that aims at finding true match of the query sample from the retrieved candidate

set. All the retrieved candidate IDs’ feature vectors are matched with the query feature

vector and their similarity scores are obtained. The rank of true match is determined from
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Algorithm 4 Retrieval
Input: Index table I
Output: Candidate Set X

1: for each query palmprint sample qj do
2: Extract feature fqj using the trained PalmHashNet.
3: for each index i in I do
4: Compute cosine similarity between hash value (hi) and fqj .
5: Create a table S with hi and cosine similarity.
6: Find the maximum score value.
7: Retrieve IDs stored in the most similar bin to get candidate list X for matching.

return X

the sorted score list file to evaluate the performance of the proposed indexing approach.

This process makes identification a constant time operation as the size of the retrieved

candidate list is fixed.

3.3 Experimental Results
This section gives details about databases specifications, experimental setting and training

and testing protocol considered for palmprint database indexing. The results are obtained

for both palmprint recognition and palmprint identification with indexed database.

3.3.1 Database Specifications

Four publicly available standard databases namely, CASIA Palmprint Image Database,

IIT Delhi Touchless Palmprint Database, Tongji Contactless Palmprint Dataset and Hong

Kong Polytechnic University Palmprint II Database (PolyU II) have been used to evaluate

the performance of the proposed technique. The details of the databases are given below.

Region of interest (RoI) samples from each database is shown in Figure 3.4.

• CASIA Palmprint Image Database [49]: This database, also referred to as CASIA-

Palmprint, consists of 5502 palmprint images collected from both left and right

hand of 312 individuals. Eight images from each subject were collected in single

session. The individuals were not instructed regarding positioning their hands in

a specific way during acquisition. Therefore, the acquired images have huge pose
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variance. Palmprint RoI of size 128×128 pixels is segmented out from the acquired

images for experimentation.

• IIT Delhi Touchless Palmprint Database [50]: IITD palmprint database was col-

lected from students and staff of Indian Institute of Technology Delhi, India in

June 2006 and July 2007. A total of 2600 images were collected from 460 palms

of 230 subjects. All the images are in bitmap format and the RoI has a resolution

of 150× 150 pixels.

• Tongji Contactless Palmprint Dataset [51]: This dataset is comparatively larger

in size than the aforementioned two databases. It consists of palmprint images col-

lected from both hands of 300 individuals. Ten images of each palm per individual

were acquired in two separate sessions, making it a dataset of total 12000 images.

The extracted RoI has a resolution of 128× 128 pixels.

• Hong Kong Polytechnic University Palmprint II Database (PolyU II) [52]: This

database consists of 7752 palmprint samples that were collected from 193 individ-

uals. The samples have been collected in two different sessions with a gap of 2

months. Ten palmprint samples from each palm of all the individuals were ac-

quired. The extracted RoI has a size of 128× 128 pixels.

3.3.2 Training and Testing Protocol

The images contained in the considered datasets are not uniform and there is no standard

training and testing protocol that is associated with the datasets. Therefore, the pro-

posed technique adopts the mostly followed training and testing partition for the consid-

ered databases. The training partition refers to the gallery images or the samples stored

in database. On the other hand, testing partition contains the query images on which

identification needs to be performed. The CASIA-palmprint database is partitioned into

80%−20% split for training and testing respectively. In IIT Delhi palmprint database,

each subject has either given five or six images. Hence, we have used 4 images for train-

ing and the remaining 1 or 2 images are used as query samples for testing. For the Tongji
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Figure 3.4: Sample palmprint region of interest (RoI) images from the CASIA-Palmprint,
IIT Delhi Touchless, Tongji Contactless, and PolyU II Palmprint Dataset (row wise re-
spectively).

contactless and PolyU II database, the training and testing split is done session-wise i.e.

10 images from session 1 are used as gallery images while the remaining 10 images col-

lected in session 2 are used as query images.

3.3.3 Experimental Setting

The proposed PalmHashNet has been implemented using Pytorch library of Python pro-

gramming language. Lately, the palmprint acquisition is usually accomplished in an un-

constrained environment for better user experience. The acquired images tend to have

occlusion, illumination, pose variation etc. To make PalmHashNet robust to such vari-

ations, data augmentation is applied on the training partition of the databases. It helps

in making the deep neural network more robust by training it on different variations of

the palmprint samples. Python Augmentor library [116] has been used to augment the

training partition by applying image transformation operations such as zoom, distortion,

rotation and illumination. With these four operations applied on each image, four new

images were created. Thereby, making training partition grow by five times. Hence, the

size of the training partition became 12480, 9205, 19300 and 30000 for CASIA, IITD-
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Table 3.2: Database specification with the number of comparisons during verification.

CASIA [49] IITD [50] PolyU II [52] Tongji [51]
No. of subjects 312 460 193 300
Gallery samples 2496 1841 3860 6000
Probe samples 3006 760 3860 6000
Genuine comparisons 24048 3041 38600 60000
Imposter comparisons 7478928 1396118 14861000 35921592
Total comparisons 7481376 1399159 14899600 35981592

Touchless, PolyU II and Tongji Contactless databases respectively. The test partition has

not been augmented as the test needs to be performed on the original images only.

For training the network and evaluating the indexing and retrieval performance, a

computer with Xenon (R) processor with 32 GB RAM and 12 GB on card RAM on

NVIDIA Tesla K40C GPU has been used. For index table creation, k-means and LSH

have been utilized for partitioning the set of learned feature vectors. k-means is used to

cluster similar feature vectors based on similarity for the purpose of index table creation.

The ideal number of clusters, denoted by k, for a particular dataset is determined by using

a metric called silhouette coefficient [117]. Silhouette coefficient evaluates the goodness

of a clustering technique when the data is split in k clusters. Mathematically, it is defined

as,

Silhouette Coefficient =
q − p

max(p, q)
(3.12)

where, p and q refer to the average intra-cluster and inter-cluster distance respectively.

Intra-class distance is the distance between each point within the same cluster. On the

other hand, inter-class distance is computed between data points lying in different clus-

ters. The value of silhouette coefficient lies between −1 to +1 with +1 indicating well

separated clusters and −1 indicating the opposite. To determine the appropriate value of

k, the silhouette coefficient for various values of k is computed and it was experimentally

observed that the its value is highest at k = 60. This became the initial point for find-

ing the suitable value k for the indexing approach. Further, k-means was implemented

for all values in the range interval of [5, 100] with a difference of 5. It was empirically
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Table 3.3: Recognition performance of PalmHashNet on the considered databases.
Higher accuracy and DI are better, however EER is better when lower.

CASIA [50] IITD [49] Tongji [51] PolyU II [52]
Accuracy 99.98% 99.62% 97.85% 99.83%

EER 0.031% 0.39% 0.53% 0.011%
DI 4.71 3.94 2.82 4.10

determined that the performance of indexing achieved best results when k = 65 for the

considered datasets. For LSH, a hash code of 5 bits is generated for each palmprint sam-

ple. This value is empirically determined after various experiments.

3.3.4 Results

To validate the performance of the proposed technique, results are computed for both

verification and identification system. Firstly, the quality of the learned features are com-

puted because it is their discriminating ability that determines the performance of the

indexing module. Therefore, the recognition results are listed followed by indexing per-

formance based on two different techniques namely, k-means clustering and Locality

Sensitive Hashing (LSH).

3.3.4.1 Recognition Performance

To evaluate the verification performance of the proposed approach, we have computed

Accuracy, EER and DI of the system. To compute these parameters, each sample in

the test partition is compared with all the samples in the training partition. The total

number of comparisons which comprise of genuine and imposter comparisons is given

in Table 3.2. In the table, gallery images refer to training split as these are the images

that are indexed while probe samples refer to the testing split as these images would be

sent to the identification system for querying. The proposed technique obtained > 99%

accuracy for three databases namely CASIA, IITD Touchless and PolyU II database.

However, 97.85% accuracy is achieved for Tongji Contactless database. The obtained

EER is < 1% for all the considered datasets. The obtained values of these parameters for

the considered databases is shown in Table 3.3. With low values of EER and high values

of accuracy, it is clearly evident that the proposed technique performs quite well in case
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Figure 3.5: ROC of the proposed approach on the considered datasets.

of palmprint recognition. The Receiver Operating Characteristics curve of the proposed

approach for all the considered datasets is shown in Figure 3.5. Here, FAR = FRR

line is not straight because FRR is plotted on log scale. The log scaling brings the focus

towards more meaningful lower side of the curve. The area under the ROC curve depicts

error and a system having lesser area is considered to be better in general. Different

ROC curves shown in Figure 3.5 compare the classification performance of the proposed

feature on the four databases viz. CASIA, IITD-Touchless, Tongji Contactless and PolyU

II databases. The recognition performance of the proposed technique is compared with

various palmprint recognition techniques proposed in the literature. The same is shown

in Table 3.4 and it is clearly evident that PalmHashNet performs best in terms of equal

error rate when tested on CASIA, IITD Touchless and PolyU II database.

3.3.4.2 Indexing Performance

Indexing performance is evaluated in terms of hit rate and penetration rate. It is expected

from a good indexing technique to achieve lower penetration rate at high hit rate. Ta-

ble 3.5 and Table 3.6 show penetration rate required for different values of hit rate on
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Table 3.4: Table showing Equal Error Rate (EER) comparison of the proposed approach
(PalmHashNet) with state-of-the-art palmprint recognition techniques.

Author (s) Technique CASIA IITD PolyUII Tongji
Lu et al. [85] Competitive Code (CC) 0.55 7.72 0.6 -
Jia et al. [87] Robust line orientation code 0.81 7.44 0.16 -
Zuo et al. [88] Sparse multiscale CC 0.48 - 0.01 -
Luo et al. [90] LBP based feature descriptor - 4.07 0.02 -

Li et al. [91] Direction and thickness - 0.87 - -
Zhong et al. [92] Siamese network - - 0.28 -
Zhong et al. [95] Large margin cosine loss - - 0.08 0.25
Zhu et al. [107] Adversarial metric learning - 1.73 0.86 1.21
Proposed PalmHashNet 0.03 0.39 0.01 0.53

the considered four databases when k-means and LSH are implemented respectively for

indexing. The proposed approach achieves a hit rate of 95% at 0.022% and 0.025% pen-

etration rate for CASIA and PolyU II database irrespective of which technique has been

applied for indexing. But for the other two databases, the penetration rate is manifold

for k-means as compared to LSH. The penetration rate for k-means is increasing very

fast while it remains low for LSH at even high hit rates. Therefore, it can be concluded

that LSH performs better than k-means clustering for index table creation. Hence by

considering LSH, we can conclude that 100%, 98.81%, 97.08% and 100% hit rate is

achieved at rank-1 for CASIA-Palmprint, IITD Touchless, Tongji Contactless and PolyU

II palmprint databases respectively. The results signify that to achieve true match in these

databases with 100% confidence, it is required to compare the query image with only

0.800%, 1.032%, 4.555% and 0.39% of the respective databases. Cumulative Match

Curve (CMC) is a rank-based metric that shows relationship between identification prob-

ability at a given rank. That is, what ratio of total queries got correctly identified till a

particular rank. The CMC showing relationship between probability of identification and

rank for the proposed technique with both k-means and LSH is shown in Figure 4.9.

3.3.4.3 Time analysis

The time-based performance of the proposed approach is evaluated in terms of speed-up.

It refers to how fast the identification process has become by using the proposed approach
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Table 3.5: Penetration rates (%) for different values of Hit Rate (HR) for the proposed
approach when k-means clustering is applied for indexing.

HR(%) CASIA [50] IITD [49] Tongji [51] PolyU II [87]
90 0.022 0.054 6.55 0.025
95 0.022 2.39 13.15 0.025
96 0.022 3.096 15.633 0.025
97 0.022 4.943 19.166 0.025
98 0.022 7.17 23.089 1.295
99 0.022 17.599 32.866 2.875

100 3.367 34.818 69.983 20.777

Table 3.6: Penetration rates (%) for different values of Hit Rate (HR) for the proposed
approach when LSH is applied for indexing.

HR(%) CASIA [50] IITD [49] Tongji [51] PolyU II [87]
90 0.022 0.054 0.016 0.025
95 0.022 0.054 0.016 0.025
96 0.022 0.054 0.016 0.025
97 0.022 0.054 0.02 0.025
98 0.022 0.054 0.12 0.025
99 0.022 0.162 0.87 0.025

100 0.800 1.032 4.555 0.39

for indexing as compared to the naive approach for identification (without indexing). It

is calculated by the total time taken to find a suitable candidate set from the created index

table for matching and identifying a query image. The time is measured in seconds (s).

The proposed approach takes 0.0013s, 0.018s, 0.040s and 0.010s for identification on

CASIA, IITD Touchless, Tongji Contactless and PolyU II database respectively using the

traditional approach. However, this time reduced to only 0.0008s, 0.006s, 0.020s and

0.0037s respectively when the proposed indexing technique is applied. Table 3.7 shows a

comparison of the average query time taken for palmprint identification with and without

indexing (using LSH) on the considered datasets. It can be observed that the average

speedup is 6 times if the proposed approach is used for identification on the considered

four databases.
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Figure 3.6: CMC curve showing relationship between Identification probability and rank
in case of k-means clustering and locality sensitive hashing.

Table 3.7: Query time (in seconds) comparison of the proposed approach against non-
indexed process for identification on the four databases.

Database Without Indexing With Indexing
CASIA [50] 0.013 0.0008
IITD [49] 0.018 0.006
Tongji [51] 0.040 0.020
PolyU II [87] 0.010 0.0037

3.3.4.4 Comparative analysis

Rank-1 identification rate has been used to compare the proposed technique with state-of-

the-art techniques. One comparison is made with the available supervised, unsupervised

and deep hashing techniques on Tongji Contactless and PolyU II databases [52]. The

study [52] demonstrates the performance of different hashing techniques on palmprint

databases. It was reported that rank-1 identification rate for KNNH [118], DSH [119]

and ADSH [120] was 96.25%, 91.4% and 96.05% for Tongji Contactless database while

the values were 98.30%, 93.35% and 94.86% for PolyU II palmprint database. How-

ever, COSDISH [52] achieved best results with 96.38% and 99.25% rank-1 identifica-

tion rate on these two databases respectively. However, the proposed approach achieves

rank-1 identification rate equal to 97.08% and 100% on Tongji contactless and PolyU II

database, surpassing other hashing techniques. Another comparison is made with state-
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Table 3.8: Table showing Rank-1 identification rate (I.R.) comparison of the proposed
approach (PalmHashNet) with state-of-the-art techniques on various databases.

Author Feature CASIA IITD Tongji PolyU II
Paliwal et al. [98] Vector Approxi-

mation (VA+) file
database

- - - 96.01 %

Almaghtuf et al.
[104]

Difference of
block means

94.17% 99.02% - 99.40%

Zhu et al. [107] Adversarial met-
ric learning

- 99.02% 97.71% 99.02%

Zhao et al. [108] Deep feature by
combining local
and global fea-
tures

97.06% 97.25% - -

Jia et al. [52] Column sampling
based discrete su-
pervised hashing

- - 96.38% 99.25%

Chen et al. [105] Double-
orientation
feature from
orientation fields

- - - 99.25%

Liu et al. [110] Similarity Metric
Hashing Network

- - 97.65% -

Proposed PalmHashNet 100% 99.42% 97.08% 100%

of-the-art palmprint indexing techniques in Table 3.8. The cell values in the table indicate

Rank-1 identification rate achieved by various techniques on the considered databases. A

blank entry indicate that the corresponding technique is not evaluated on the mentioned

database. The best rank-1 identification rate for CASIA was achieved by Zhao et al.

[51]. For IITD Touchless and Tongji Contactless databases, the approach proposed by

Zhu et al. [107] was giving best results till now. However, approach proposed in [104]

performed best on PolyU II database. It is clearly evident from the Table 3.8 that our

approach achieves best value of rank-1 identification rate for CASIA, IITD Touchless

and PolyU II databases. Therefore, by considering both the comparisons, the proposed

approach outperforms other techniques proposed in literature.
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3.3.4.5 Ablation Study
The proposed approach solely depends on the feature extraction process and thus, it was

required to find the best features that could perform well for recognition process as well

as for identification. Therefore, two different ablation studies have been done in this

chapter. The objective of first study is to check the effect of adding margin to the softmax

loss for training the feature extraction model. The other aims to analyze the effect of

different dimensions (sizes) of feature vectors to find the most appropriate size that best

represents a palmprint image. To accomplish the first study, features extraction model

was trained using only the softmax loss and then margin was added to see if there was

any improvement with respect to the quality of the extracted feature vectors that further

affects indexing and identification. Rank-1 identification rate was computed for the con-

sidered databases on the extracted features using only the softmax loss. Table 4.6 shows

the comparison with respect to the rank-1 identification rate obtained by the proposed

approach and the model trained with the softmax loss. It was observed that the Rank-

1 identification rate improved by 10.29%, 14.53%, 4.59% and 2.75% times on CASIA,

IITD-Touchless, Tongji Contactless and PolyU II databases respectively when additive

margin loss was introduced in the feature extraction network.

Different dimensions of feature vectors such as 128, 256 and 512 have been consid-

ered to find the suitable feature vector size that best represents a palmprint image taken

from the considered databases. Indexing is performed on the databases with respect to all

the aforementioned feature vector dimensions using Algorithm 3 evaluates the identifica-

tion performance. It was empirically determined that the system achieves higher accuracy

with 512-dimensional feature vector. The same is shown in Table 3.10. A relationship

between hit rate and penetration rate was established for all the combinations. A set

of candidates for a query palmprint image is retrieved for comparison from the indexed

palmprint database. Hit rate determines the confidence by which a query image can find

its true match in the retrieved set of candidates. Penetration rate refers to the ratio of

the database required to be retrieved for finding the true match of a query image. The

true identity of a query sample is expected to be established by retrieving only a small
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Table 3.9: Table comparing Rank-1 identification rate of model trained using softmax
loss and model trained using the proposed methodology.

CASIA IITD Tongji PolyU II
W/o additive margin 89.71% 84.89% 92.49% 97.25%
Proposed 100% 99.42% 97.08% 100%

percentage of the database (low penetration rate) with high confidence (high hit rate). An

efficient biometric indexing approach is expected to achieve high hit rate at lower value

of penetration rate. The same has been shown in Table 3.10. It is clearly evident that

512-d feature vector performs best on mostly all the considered datasets. Hence, we have

considered 512-d feature vector in this study. The graphs showing hit rate vs. penetration

rate for all the experiments are shown in Figure 3.7.

3.4 Summary
This chapter proposes a palmprint database indexing approach called PalmHashNet that

generates highly discriminative embeddings to create a fixed-size candidate list for com-

parison to make identification a constant time operation. Softmax loss with additive mar-

gin has been used to train the model for palmprint database indexing and to learn the

feature vector embeddings simultaneously. This loss function ensures that the learned fea-

ture embeddings have low inter-class along with high intra-class similarity. The learned

embeddings have been indexed using k-means Clustering and Locality Sensitive Hash-

ing technique to create an index table. Identification experiments are conducted on four

publicly available popular palmprint databases viz. CASIA, IITD-Touchless, Tongji-

Contactless and PolyU II palmprint databases. The proposed approach achieved a pen-

etration rate of 0.022%, 1.032%, 4.555% and 0.39% at 100% hit rate for the respective

databases. Therefore, it can be concluded that to find the true match of a query sample

with 100% confidence, it is required to look out for < 1% of the CASIA and PolyU II

database and 1.03% and 4.55% of the IITD-Touchless and Tongji Contactless database

respectively. The proposed approach outperforms other state-of-the-art recognition and

indexing techniques proposed in the literature.
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Table 3.10: Ablation study: The table showing Penetration Rate (%) at various Hit
Rate (%) w.r.t. different feature vector sizes (128-d, 256-d and 512-d) for the considered
datasets.

Hit Rate (%)

Database
Indexing
Scheme

Feature 90% 95% 96% 97% 98% 99% 100%

IITD
[50]

k-means 128 0.054 1.684 2.227 2.390 3.313 12.710 39.109
256 1.683 3.747 5.268 8.636 12.873 19.391 33.134
512 0.054 2.390 3.096 4.943 7.170 17.599 34.818

LSH 128 0.054 0.054 0.054 0.054 0.054 0.054 4.940
256 0.054 0.054 0.054 0.054 0.054 0.054 4.562
512 0.054 0.054 0.054 0.054 0.054 0.162 1.032

CASIA
[49]

k-means 128 0.070 0.070 0.070 0.070 3.132 3.132 73.337
256 0.070 0.070 0.070 0.070 0.070 0.070 13.254
512 0.070 0.070 0.070 0.070 0.070 0.070 9.678

LSH 128 0.054 0.054 0.054 0.054 0.380 1.980 6.930
256 0.054 0.054 0.054 0.054 0.380 1.730 7.827
512 0.054 0.054 0.054 0.054 0.054 0.162 1.032

Tongji
[51]

k-means 128 7.083 15.233 18.550 24.066 31.266 43.683 99.666
256 7.016 15.680 18.833 24.150 31.266 45.033 89.550
512 6.550 13.150 15.633 19.166 23.083 32.866 69.983

LSH 128 0.016 0.016 0.016 0.036 0.238 0.827 5.645
256 0.016 0.016 0.016 0.020 0.140 0.970 6.435
512 0.016 0.016 0.016 0.020 0.120 0.870 4.555

PolyU
[52]

k-means 128 0.025 0.025 0.025 0.025 1.554 2.927 28.626
256 0.025 0.025 0.025 0.025 1.813 2.772 97.642
512 0.025 0.025 0.025 0.025 1.295 2.875 20.777

LSH 128 0.025 0.025 0.025 0.025 0.025 0.025 0.783
256 0.025 0.025 0.025 0.025 0.025 0.025 0.310
512 0.025 0.025 0.025 0.025 0.025 0.025 0.390
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Figure 3.7: Ablation Study for different feature size on the considered datasets using k-
means clustering and LSH for index table creation.
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FKPIndexNet: Indexing

Finger-Knuckle-Print Database

Hand-based biometric traits such as fingerprint and palmprint are easy to acquire and are

more widely used in authentication applications. However, in countries like India, where

a significant amount of the population is involved in agriculture or labor activities, severe

damage happens to the inner part of the hand. This results in deterioration in the quality

of the acquired fingerprint or palmprint sample, leading to poor feature extraction and

ultimately failure in the identification process [121, 122]. Finger-knuckleprint (FKP) is a

better alternative for hand-based biometric authentication. FKP refers to the impression

obtained from the outer surface around the phalangeal joint of a finger. It contains a

rich texture that is unique among the population. FKP acquisition is easy as it needs

less user cooperation and can be acquired from a distance with low-resolution cameras.

Considering the present situation where the world is hit by a pandemic, a biometric trait

acquired in a contact-less manner is more suitable. Therefore, finger-knuckleprint appears

as a suitable alternate among hand-based biometric traits for authentication applications.

An FKP identification system aims at establishing the identity of a given FKP sample

by comparing the input image with all the templates stored in the database. A similarity

score is computed for every match, and the scores are sorted to find the true match of
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Figure 4.1: First row: Manually annotated finger-knuckleprint images from PolyU-FKP
database. Second row: Output of FKPSegNet; Extracted region of interest gray-scale
FKP images.

the query FKP sample. Hence, identification involves 1:N comparisons, where N is the

number of templates stored in the database. The number of comparisons needs to be

reduced by narrowing the search space to make the identification system faster and more

efficient. This process of filtering out a subset of suitable candidates for comparison with

the probe image to facilitate faster identification is known as Indexing. Indexing of a

biometric database involves associating the feature vector corresponding to FKP samples

with an index in the index table. A latent representation of an FKP image consists of its

most salient and discriminating features. This step results in generating an index table

consisting of FKP feature vectors and their subject IDs bind to an index.

This chapter proposes a novel approach for indexing the FKP database to facilitate

faster and efficient identification. To our knowledge, this is the first work that aims to

extract deep features from FKP images to be used for index table generation. Firstly, the

dorsal finger images are given to the proposed FKPSegNet, which segments the region of

interest (RoI) from it. Next, the feature extraction network is trained using the RoI images

of the FKP database. A custom loss function is proposed that ensures that the learned la-

tent representations have high intra-class and low inter-class similarity. It ascertains that

the index space distribution is regularized to be similar to the uniform distribution. The

proposed feature extraction network outputs a 512−dimensional feature embedding cor-

responding to every FKP sample. The learned feature vectors are associated with an in-
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dex, and an index table is generated. Three techniques viz. k-means clustering, BallTree

hashing, and locality sensitive hashing with the nearest neighbor search are explored for

index table construction. The features are extracted for the query FKP sample using the

trained feature extraction network. The extracted feature is compared with all the indices

of the index table, and the candidates lying in the most similar one are retrieved for com-

parison. The proposed technique is evaluated on two publicly available databases viz.,

PolyU-FKP [53] and IIT Delhi Finger Knuckle Database [54]. The proposed technique

facilitates learning efficient latent representations that ensure fast and accurate retrieval

during identification without compromising recognition accuracy. The rest of the chapter

is organized as follows. The next section gives an overview of the related work that has

been done in FKP recognition. Section 4.2 describes the proposed technique in detail.

Experimental setting and results have been analyzed in Section 4.3.

4.1 Literature Survey
Automated human identification using finger-knuckleprint has gained a lot of research

interest in the recent past. Woodward et al. [123] proposed for the first time that the sur-

face of fingers can be used for biometric authentication. The authors also concluded that

a finger surface is effective as a 2D face image for authentication. However, Kumar et al.

[124] proposed that the back surface of the image consists of a unique texture and inves-

tigated its usage for authentication. The approach uses peg-free imaging and exploits the

features from hand geometry to improve the recognition system’s performance. Zhang et

al. proposed an FKP recognition approach that uses Gabor filters to extract orientation

features in [8]. The authors also set up an acquisition device for FKP data collection

and collected 5760 images from 480 fingers. Another approach proposed by Zhang et

al. [125] uses band-limited phase only correlation that eliminates high-frequency com-

ponents which can be prone to noise. The authors also acquired a knuckleprint database

consisting of 7,920 images from 660 fingers. An approach that uses local binary pattern

(LBP) histograms for FKP recognition has been proposed in [126]. The approach divides

the FKP image into several blocks and then devices Gabor filters over those blocks to
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generate LBP histograms. To address the large intra-class distance between the FKP sam-

ples, a reconstruction-based approach for FKP recognition has been proposed in [127].

The approach aims to learn a dictionary from the gallery FKP images, and each query

sample is represented as a linear combination of the values in that dictionary. Later, the

Competitive Coding technique is used to extract orientation features from the FKP im-

ages. Yu et al. proposed an LBP-based feature extraction technique for FKP matching in

[128]. The image is divided into blocks, and LBP histograms are extracted and concate-

nated to represent the full FKP image. An integration technique that uses both orientation

and texture features has been proposed in [129]. The paper addressed the possibility of

multiple orientations by using multi-level thresholding that performs orientation coding

corresponding to each Gabor filter response. The texture features are extracted using

LBP. Lastly, both texture and orientation features are integrated using score-level fusion.

Nigam et al. proposed curved Gabor filters for feature extraction from FKP images [23].

In the paper, two encoding schemes, namely, Gradient Ordinal Relation Pattern (GORP)

and STAR GORP (SGORP), have been proposed to represent each FKP image. In GORP,

each pixel is not represented by its gray value, and a code is obtained using the gradient

of its eight neighboring pixels computed using x and y directions Scharr kernels. On the

other hand, SGORP encodes the relationship between the top and bottom pixels along

with the diagonally opposite ones. Usha et al. proposed an FKP recognition technique

that uses shape-oriented features, as well as texture information [130]. The shape features

are extracted using angular geometric analysis while the texture information is extracted

using multi-resolution transform, also called Curvelet transform. In [131], a fast matrix

projection method for extracting line features is used for verification. Support Vector Ma-

chine (SVM) has been employed with extracted long and short Gabor features to improve

the recognition performance in [132]. To our knowledge, there has been only one work

that aims at indexing the finger-knuckleprint database. Umarani proposed a boosted geo-

metric hashing-based technique for index table creation [133]. It extracts SIFT and SURF

features and generates geometric features, which are points in a coordinate system to rep-

resent an image. The geometric hashing is boosted so that the geometric information is
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Figure 4.2: Proposed technique. Part 1 depicts the feature vector construction module
(FKPIndexNet) responsible for extracting real valued 512-d latent representation. Part
2 represents indexing module that partitions the original database and associates each
extracted feature with an index.

used to generate the index, and the feature descriptor is used to recognize FKP images.

4.2 Proposed Technique
This section discusses the proposed technique for indexing an FKP database. The tech-

nique consists of four main components viz., Region of Interest (RoI) segmentation, fea-

ture vector construction, indexing, and retrieval. RoI segmentation aims at extracting the

valuable and relevant part from the acquired image by removing the unnecessary back-

ground. The RoI and its label are given as an input to the proposed network for feature

extraction. It is followed by indexing, in which each feature vector is associated with

an index in the generated index table. During retrieval, the query FKP image is passed

through the segmentation network for RoI extraction. A feature vector is constructed

from the extracted RoI using the trained FKPIndexNet. The feature vector is compared

with all the indices of the index table, and the candidates belonging to the most similar in-

dex are retrieved for comparison. All the steps are discussed in detail in the sub-sections

to follow. A block diagram depicting all the stages of the proposed technique is shown in

Figure 4.2.

4.2.1 FKPSegNet: Finger-Knuckleprint RoI Segmentation Network

The FKP samples can be acquired in a contactless and unconstrained environment. Ac-

quired samples in such an environment generally contain the image of the whole finger,
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Figure 4.3: Architecture of the FKPSegNet. The orange blocks depict the pair of Con-
volutional layers of size 3 × 3 with the number of filters indicated by ‘f’. The output
of max-pool and transposed convolutional layer is concatenated in the decoder, using a
merge connection denoted by dashed arrows.

and unnecessary background information may also get captured. Therefore, the relevant

part of the image, also known as Region of Interest (RoI), containing the knuckle area

with no or minimal background noise, is expected for better feature extraction. This chap-

ter employs a novel segmentation network, FKPSegNet, to extract the desirable RoI from

FKP images. The input to FKPSegNet is the acquired full finger image and a masked

image depicting the desirable region of interest. The output of the network is the pre-

dicted coordinates of the RoI. The network is trained by minimizing the distance between

ground truth coordinates and predicted coordinates. All the images are manually anno-

tated to prepare the ground truth by drawing a bounding box over the knuckle area in the

finger. The coordinates of the bounding box are recorded for the training of FKPSegNet.

Some acquired samples with the annotated bounding boxes over the image are shown in

the first row of Figure 4.1.

FKPSegNet follows the U-Net architecture [71] that consists of a contracting and an

expansive path. The contracting path consists of a series of convolutional layers followed

by the max-pool layer. On the other hand, the expansive path takes the output of the

contracting path and puts it through a series of transposed convolutional and up-sampling

layers. The high-level features from the contracting path are concatenated with the cor-
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Figure 4.4: Architecture of the hourglass network (H)

responding up-sampled features in the decoder using merge connections. U-Net is com-

monly used in applications involving the segmentation of medical images. When FKP

images are given to the standard U-Net for segmenting out the RoI, the observed output

is irregular and blurry. This was due to occlusion, pose, and scale variation introduced

in the images while acquiring them in an uncontrolled environment. This limitation is

addressed in this chapter by proposing a stacked hourglass network between the contract-

ing and expansive path. Hourglass network [72] includes a residual module that works

on the feature vector, unlike the U-Net, which takes a complete image as an input. The

residual module uses convolutional operation to learn high-level features, but it is also

capable of retaining the original information using skip connections. It has a symmetric

topology so that the features are extracted and consolidated across various image scales

and resolutions. The output of the hourglass network is of the same size as its input fea-

ture vector. Therefore, we can say that the hourglass network only changes the depth of

the data without altering its size.

FKPSegNet has three parts viz., contracting path (CP ), expansive path (EP ) and the

hourglass network (H). The contracting path (CP ) aims to learn salient and discriminat-
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ing features (f ) corresponding to its input i.e., the masked image (M ). The CP consists

of a pair of convolutional layers with a filter size of 3 × 3 and a stride of 1, followed

by ReLU activation, and lastly, a max pool layer having size = 2 × 2 and stride=2. This

block is repeated three times with different filter sizes of 16, 32, and 64. Unlike the

standard U-Net, three hourglass networks are stacked over each other and are introduced

in the bottleneck of U-Net for better RoI segmentation. Therefore, the output of CP is

then passed to the hourglass network (H). Each hourglass consists of an encoder and de-

coder that has four residual modules connected in a sequential manner. The architecture

of a single hourglass network is shown in Figure 5.6. After passing the feature vector

f through three hourglass networks, the output is given to the EP . The expansive path

consists of pair of transposed convolution layers with a filter size of 3× 3 followed by an

up-sampling layer. This block is repeated three times, followed by a 1× 1 convolutional

layer. The output of each block is concatenated with the corresponding feature map in

the contracting path using a merge connection. The output of 1× 1 layer in the expansive

path is a probable area that is likely to contain the knuckle area or RoI. The block diagram

of FKPSegNet is shown in Figure 4.3.

FKPSegNet Training and Architecture Justification. The training of the proposed

FKPSegNet initiates with U-Net training without any hourglass networks in the bottle-

neck. As mentioned, the prediction of this network was irregular and blurred. Therefore,

three stacked hourglass networks are introduced one by one in the bottleneck of the U-

Net. The hourglass network compresses the feature representation to more scales to give

a more precise segmentation of the RoI. The network uses long skip connections between

the contracting and expansive path to facilitate easy gradient flow, which may vanish be-

cause of the deep network design. Each hourglass captures the scale, viewpoint, and oc-

clusion invariant features. Introducing multiple hourglass networks enabled the learning

of such features more effectively thus, making the RoI prediction more accurate. There-

fore, to improve the segmentation capabilities, a stacked design has been used. However,

using a stacked hourglass can result in a vanishing gradient problem as the network gets

deeper. To avoid that, residual units have been utilized in the hourglass to allow easy
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flow of gradient. Since the hourglass network is very deep, it shrinks the feature vector

to a very small size, which may result in the loss of spatial information. To account for

this problem, long and short skip connections are used in the hourglass network. The

U-Net weights with stacked hourglass are fine-tuned with the pre-trained weights of the

previously trained network.

4.2.2 Feature Vector Construction

Feature vector construction is an important step before indexing of a biometric database

is carried out because discriminating ability of the feature vector decides the performance

of indexing and further, the identification process. The key here is that the feature vectors

of the same class should be closer to each other in the latent space representation than the

feature vectors belonging to different classes. This work makes use of specialized autoen-

coders for learning feature vectors from FKP images. Autoencoders [43] are feed-forward

networks that aim at learning a feature vector representation such that when up-sampled,

it is able to reconstruct the original image. It is achieved by minimizing the pixel-wise

reconstruction loss that is computed between the output and the original image. However,

it has been seen that the reconstruction loss does not ensure the discriminating ability of

the learned representations [134]. Therefore, we propose an autoencoder based learning

technique that aims not just at minimizing the reconstruction loss but also ensures that

the mutual information between the input sample and its corresponding latent represen-

tation is also preserved. The proposed technique also incorporates classification loss that

further ascertains that the learned feature vector has high inter-class and low intra-class

dissimilarity.

The proposed technique consists of three sub-networks viz. Encoder, Decoder and

Classification network. The encoder takes FKP images as input and passes it through

a series of convolutional layers followed by max-pool layer to learn a latent represen-

tation that has its salient and discriminating features. The latent representation is given

to the decoder which up-samples them and tries to reconstruct the original image. But,

as mentioned before that the reconstruction loss has no considerable impact on making

85



Chapter 4

the latent representations discriminating [135]. Also, reconstructing the original image

from the latent representation is not sole purpose of this study. The aim is to learn such

feature vectors that have high intra-class and low inter-class similarity. Therefore, some

other parameters should be also be considered along with reconstruction loss to make

the learned latent representations more discriminating. To do so, a relationship is estab-

lished between the input FKP sample and its corresponding latent representation. This

ensures that the learned latent representations preserves the discriminating features and

the decoder could be used as a discriminator that tells if the latent representation is dis-

tinctive or not. Lastly, a classification network is added with the autoencoder that aims at

developing a relationship between the latent representation and its label or class so that

intra-class distance among samples is reduced and the intra-class distance is enhanced.

This ensures that the relationship between samples in the database is effectively utilized.

To understand the working of these three networks, let us assume X = {x1, x2, ..., xn}

be a set of input FKP images and Z = {z1, z2, ..., zn} denotes a set of learned latent

representations corresponding to the input images.

4.2.2.1 Encoder

Let EwE
be the encoder that learns feature vector zi for an FKP image xi. As discussed

earlier, the encoder in the autoencoder network learns a compressed feature representation

of the input image to minimize the reconstruction loss between the input and the recon-

structed image. Minimizing the reconstruction loss encourages the latent representation

to retain salient representations of any input image. However, it does not fundamentally

imply that the learned representation contains the optimal number of unique characteris-

tics to the sample. Therefore, the autoencoder is regularized by considering the mutual

information between the input sample and the latent representation along with the recon-

struction loss in the objective function. The mutual information (MI) between xi and zi

is maximum when the distribution of X and Z is the same. We can utilize any distribu-

tion similarity measure to compute the mutual information. In this work, we compute the

mutual information between X and Z as,
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MI(X,Z) =

∫
Z

∫
X

p(x, z) log
p(x, z)

p(x) p(z)
dx dz (4.1)

where, p(x, z) is the joint probability density function, and p(x) and p(z) is the marginal

probability density function respectively. The joint probability p(x, z) is equivalent to

p(z|x) p(x), where p(x) and p(z|x) denote distribution of input images and latent repre-

sentations generated with respect to the input samples respectively. By substituting this

value to Eq.(4.1) we get,

MI(X,Z) =

∫
Z

∫
X

p(z|x) p(x) log p(z|x) p(x)
p(x) p(z)

dx dz (4.2)

The above equation is equivalent to computing the KL-divergence [136] between the

two probability distributions p(z|x) p(x) and p(x) p(z). Therefore mutual information in

terms of KL-divergence is as below.

MI(X,Z) = KL(p(z|x) p(x) || p(x) p(z)) (4.3)

KL-divergence can take any value between zero to infinity. Zero value indicates that

the two distributions are similar, while the infinity denotes entangled distributions. The

upper bound of KL-divergence tends to infinity [137] especially for the MI term where the

distribution of X can be unpredictable. To handle this during the optimization, a bounded

measure of distribution similarity, such as JS-divergence [138], is a better choice. By

replacing KL-divergence with JS-divergence, Eq.(4.3) takes the following form.

MI(X,Z) = JS(p(z|x) p(x)||p(x) p(z)) (4.4)

Mathematically, the JS-divergence between any two probability distributions a(t)

and b(t) is defined as,

JS(a(t)||b(t)) =
1

2

∫
T

[
a(t) log

2 a(t)

a(t) + b(t)
+ b(t) log

2 b(t)

a(t) + b(t))

]
dt (4.5)
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The variational estimation of JS-divergence has been proposed in [139]. It is intro-

duced to utilize a discriminator, D(x), in the autoencoder that can determine the relation-

ship between the latent representation and the input sample. The discriminator is trained

by showing a negative association of an input FKP sample with the learned representa-

tion. For that, a negative association is generated, denoted by ẑi, by shuffling xi’s learned

latent representation zi. This is inspired from negative sampling estimation [140] which

uses a discriminator to understand the underlying distribution of the input samples. The

discriminator takes a tuple containing the input FKP image and a latent representation

which could be its learned one or the generated fake one. The pair of xi and zi is referred

to as a positive pair while that of xi and ẑi is a negative pair. The discriminator is trained

to differentiate between the positive and the negative pair. Let a(t) and b(t) denote real

and fake distributions respectively, then variational estimation of Eq.(4.5) changes to,

JS(a(t)||b(t)) = max
D

(E(t∼a(t))[log D(t)] + E
(t∼b(t))[log(1− D(t))]) (4.6)

Replacing a(t) and b(t) with p(z|x) p(x) and p(z) p(x) respectively in the above equation

and substituting value of JS(.) in Eq.(4.4). This loss term, given in Eq.(4.7), needs to

be maximized as it represents the mutual information between the input sample and the

learned latent representation. Here, the first term, (x, z) ∼ p(z|x)p(x), denotes that x and

z form a positive pair i.e. z is coming from x. While, the second term (x, z) ∼ p(z)p(x),

indicates that they are not correlated and coming from different distributions and thus,

forms a negative pair.

L
MI

= max
(
E

(x,z)∼p(z|x) p(x)[log D(x, z)] + E
(x,z)∼p(z) p(x)[log(1− D(x, z))]

)
(4.7)

The intra-class similarity among the feature representations also plays a major role in

increasing their discriminating ability. Therefore, along with maximization of the mutual

information, the localization of the learned feature representations should be maximized.
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Figure 4.5: Architecture of the encoder network in FKPIndexNet

It can be achieved by making them obey a prior known distribution function, such as

Gaussian distribution. Let the Gaussian distribution be denoted by q(z). The distribution

of feature representation space p(z) is regularized by minimizing the KL-divergence be-

tween p(z) and q(z). Therefore, the second component of the loss function, L
KL

, that

needs to be minimized, is given as below.

L
KL

= min

(∫
Z

p(z) log
p(z)

q(z)
dz

)
(4.8)

Both the requirements mentioned above need to be addressed by the encoder. How-

ever, the optimization objectives of both the terms is opposite. The first component, L
MI

,

that denotes mutual information between the input sample and the learned latent repre-

sentation, needs to be maximized. While the second component, L
KL

, that regularizes the

latent representation space has to be minimized. The total loss function of the encoder

LE is devised by having a linear combination of L
MI

and L
KL

. Constant values of γ and

β are used to weigh both the loss components and thus, loss function becomes,
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LE = −γ(E
(x,z)∼p(z|x) p(x)[log D(x, z)] + E

(x,z)∼p(z) p(x)[log(1− D(x, z))])

+β(Ez∼p[KL(p(z) || q(z))]) (4.9)

Encoder Architecture: The encoder in the FKPIndexNet consists of two components.

The first component has three blocks having a series of convolutional layers. These layers

make use of large sized asymmetric filters instead of the conventional symmetric filters.

Small sized kernels produced varying activation maps and the learned feature embeddings

were showing high inter-class similarity. Therefore, large sized filters are used to capture

the non-rigid distortions in the FKP images. The reason of using asymmetrical filters

is to facilitate the learning of line-based features found in a finger-knuckle-print sample.

The lines in the FKP sample are horizontally aligned. Therefore, horizontal kernels of

size 3 × 9, 3 × 7 and 3 × 5 are used to learn features from the knuckle lines. However,

vertical filters of size 9 × 3, 7 × 3 and 5 × 3 are used to establish spatial relationship

between the knuckle lines. The input image is passed through first convolutional layer

that has one horizontal and one vertical filter of size 3 × 9 and 9 × 3 respectively. The

output feature vectors from both the filters are concatenated to form a combined output.

The concatenated feature vector is subject to a max-pool layer. Three such blocks with

varying filter sizes are used in a sequence. After the third block, the output feature vector

is capable of capturing discriminating yet salient features from the finger-knuckle-print

and the distortions are no longer prominent. Therefore, this is followed by a series of

convolutional layers with smaller filter size and lastly, a global average pooling layer.

The output of global average pooling layer is flattened to output a 512-d feature vector

that best represents the input FKP sample. This feature vector is fed to the decoder. The

architectural diagram of the encoder network is shown in Figure 4.5.

4.2.2.2 Decoder

The aim of the decoder network is to reconstruct the original image corresponding to the

input latent representation. The input to the decoder network is the latent representation
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(zi ∈ Z) and the output is a reconstructed image (x̂i). The network is trained to minimize

the pixel-wise mean squared error, also known as the reconstruction loss, between xi and

x̂i over all the image samples. If there are N number of samples in the training set, the

reconstruction loss (Lr) is defined as given in Eq.(4.10).

Lr =
1

N

N∑
i=1

∥DwD
(EwE

(xi))− xi∥22

=
1

N

N∑
i=1

∥x̂i − xi∥22

(4.10)

where, wD and wE are the weights of decoder and encoder respectively and ||.||22 denotes

the euclidean distance between both the inputs. The reconstruction loss depends on two

factors which are, distribution of the latent representations and the reconstruction ability

of the decoder network. However, the discriminative ability of the features is more impor-

tant for indexing than their reconstruction ability. It has been seen that more often the data

contains nuisance factors such as, illumination and occlusion in the FKP images. These

factors are not relevant in the prediction process but they may interfere with the feature

extraction process. This may result in the less efficient feature embeddings because of

capturing unnecessary information which could be in the form of associating illumina-

tion with a class of images etc. One solution to this problem is to make the network learn

a set of such factors that are irrelevant to the prediction. This can be done by training the

network on augmented dataset that covers all the irrelevant information. This is a good

solution but it would make the network robust to only the seen variations which would be

limited in number. Therefore, the network performs poorly on the data containing unseen

nuisances. Another solution is to train the network to get rid of the nuisance factors from

the learned latent representations [141]. Models trained in this way become robust by

exclusion rather than inclusion thus, performing well even on the unseen nuisances. Let

fxi
be a set of features that defines the predictability of xi and f̂xi

denotes the set that

contains irrelevant features. Then, the latent representation (zi) contains all the informa-

tion that is required to predict the class of xi and ẑi contains all the irrelevant information
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which is not presented to the system thus, avoiding learning of inaccurate associations.

A noisy transformer (ω) is incorporated in the autoencoder network to generate a

noisy latent representation (ẑi), corresponding to each zi. Both the representations are

then passed to the decoder network that constructs xzi and xẑi . The decoder network is

trained by minimizing the relative reconstruction loss between both the outputs. Along

with this, the standard reconstruction loss is also minimized between xi and xzi to ensure

the correct working of the decoder network. The total loss of the decoder can be written

as given in Eq.(4.11).

LD =
1

N

N∑
i=1

(
∥xẑi − xzi∥

2
2 + ∥xzi − xi∥22

)
(4.11)

The autoencoder is trained by minimizing the summation of LE , reconstruction loss

and relative reconstruction loss as explained above. Let wE and wD be the parameters

of encoder and decoder respectively, the total loss of autoencoder network Lae can be

defined as:

Lae = min
wE ,wD

(LE + LD) (4.12)

4.2.2.3 Classification Network

The loss function Lae results in learning of feature embeddings for FKP samples that

have high inter-class dissimilarity. However, this does not ensure that the intra-class

similarity among the embeddings is maximized. The classification network is utilized in

order to reduce the intra-class distance among the latent representations. This is achieved

by associating the latent representation with a class i.e. labelling a latent representation

with a subject ID to which it belongs. After training the autoencoder to minimize the

loss given in Eq.(4.12), the parameters wE and wD are taken as initial parameters for the

classification network. Further, the classification network is trained with the parameters

of the autoencoder. The classification loss can be written in terms of latent representation
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by modifying the last term in Eq.(4.9) as,

LC == Ex∼p(x)[KL(p(l, z)|x)||q(l, z)] (4.13)

where l is the label of the feature vector z, p((l, z)|x) = p(l|z)p(z|x) and q(l, z) =

q(z|l)q(l). It should be noted that the distribution q(z|l) is a normal distribution with

mean and variance being equal to µl and 1 respectively. The three networks are combined

and trained together in an end-to-end manner by minimizing the linear combination of

LE , LD and LC respectively.

LFKPIndexNet = min
wE ,wD,wC

(LE + LD + LC) (4.14)

4.2.3 Indexing

In the proposed technique, each FKP image is represented by a feature vector of fixed

length extracted from the proposed network (FKPIndexNet). The indexing phase asso-

ciates the extracted feature vectors to an index and stores them with their similar samples

in an index table. To create the index table IT for an FKP database, three techniques

viz. k-means clustering [142], BallTree hashing [143] and Locality Sensitive Hashing

[115] have been explored and implemented on the obtained feature vectors set. These

techniques would group the samples so that the similar ones stay together in the same

group, and the dissimilar ones would lie in different groups. k-means outputs clusters

while BallTree and locality sensitive hashing partitions the search space. Therefore, the

cluster centers or the hash of a group would serve as the index and all the samples be-

longing to that index would lie in the bucket of that index. All three indexing techniques

are explained below. Algorithm 5 shows the pseudo-code for the indexing process.

1. k-means Clustering: The objective of k-means clustering algorithm is to parti-

tion a set of feature vectors, fx1 , fx2 , ..., fxN
into ‘k’ disjoint groups c1, c2, ..., ck.

It brings the similar feature vectors together while separating those that are dif-

ferent. Each group or cluster would have a representative data point also known
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Algorithm 5 Indexing the extracted feature vectors
Require: Embedded feature space F
Ensure: Index table IT

1: for every FKP image xi do
2: Extract feature fxi

= ewe(xi) using the trained network
3: Append fxi

to F

4: Apply clustering (k-means) or hashing (BallTree/LSH) on embedded feature space
F till convergence

5: for each cluster cente (k-means) or hash value (BallTree/LSH) do
6: Create an entry in index table IT .
7: Put ID of all FKP samples with their corresponding feature vectors, lying in the

cluster or hash, in the bucket of IT
8: return IT

as mean of all the feature vectors. The algorithm starts by initializing ‘k’ centers

using k-means++ initialization. k-means is a distance-based clustering and there-

fore, computes euclidean distance of each feature vector fxi
from all the centers

m1,m2, ...,mk. A point fxi
is assigned the closest cluster i.e. one with the least

euclidean distance. The cluster centers are calculated by finding the mean of all

the feature vectors assigned to it and it is updated after every iteration. The error is

computed in each iteration using Eq.(4.15). This is repeated till no further change

in cluster assignment is observed or maximum number of iterations have been ex-

hausted. After convergence, the cluster centers are stored as hash values in the

index table and the FKP IDs along with their feature vectors that lie in a particular

cluster are stored corresponding to it.

Ek−means =
k∑

j=1

∑
(fxi )ϵ cj

∥fxi
−mj∥ (4.15)

2. BallTree Hashing: BallTree is a space-partitioning algorithm that divides the data

points in hyperspheres or 2-D circular space. A partition is represented by center

(centerj) and diameter (dj) of the circular segment. A data point (xi) is said to be

belonging to a segment (sj) if the euclidean distance between xi and centerj is less

than the radius i.e. ||xi − centerj|| < dj
2

. Graphically, a ball-tree is represented as
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a binary tree in which each node depicts a partition. Considering two nodes n1 and

n2, if n1 is child of n2, then the segment s2 is sub-segment of s1. Initially, ball-tree

contains just one node and all the data points are assigned to this node. After that,

partitioning of tree is initiated by following a divide and conquer approach. For a

segment (sj), the partitioning procedure works as follows.

(a) The farthest data point from centerj is selected and is assigned to the left node

of sj . It is denoted by sj
L.

(b) Now, the farthest data point from sj
L is found out and it becomes right child

(sjR) of sj .

(c) The data points in sj are assigned to either of the left and right segment based

on which of sjL or sjR is closer to the considered data point.

(d) These sub-partitions are allocated to child nodes of nj , nj
L and nj

R respec-

tively.

3. Locality Sensitive Hashing (LSH): A Locality Sensitive Hashing (LSH) function

maps the feature vectors to a lower-dimensional representation such that the fea-

ture vectors that are similar to each other are mapped in the same bucket with a

high probability in the lower-dimensional space. The main objective of LSH is to

maximize the probability of collision of similar items i.e, the probability of two

similar feature vectors lying in the same bucket should be high. The hash function

for an input feature vector fxi
is computed by using two random values, r⃗ and u.

Here, r is a d-dimensional vector whose entries are randomly chosen from a set of

vectors following the Gaussian distribution. The dot product is quantized into a set

of hash bins with the objective that all the nearby feature vectors should lie in the

same bucket as shown,

hr,u(fxi
) =

⌊
r⃗ · fxi

+ u

w

⌋
(4.16)
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In this equation, w is the quantization width and u is a random variable lying be-

tween 0 and w. Quantization width determines the number of entries or candidates

that would lie in each bucket of the hash table. Increasing the quantization width

results in compact table as each bucket will have more number of entries. On the

other hand, lower value of w results in larger table with lesser number of candidates

in each bucket of the hash table. The search for true match for the query image is

accomplished in a linear manner i.e., the query image is compared with all the can-

didates lying in the selected bucket of the index table. Therefore, there is a trade-off

between the table size and final number of comparisons. Two conditions must be

satisfied to serve the purpose of reducing number of comparisons for identification

of a query FKP sample. These are,

• The probability of two feature vectors lying in the same bucket of index table

should be high if they are close to each other in the feature embedding space.

Let there are two feature vectors represented by fx1 and fx2 . Let the euclidean

distance between the two feature vectors is < d1. This distance is ≤ d1 which

is the threshold distance value that determines if the given two feature vectors

are close to each other in the feature embedding space. In this case, both fx1

and fx2 will lie in the same bucket. This is mathematically represented as,

P [h(fx1) = h(fx2)] ≥ p1 if ∥fx1 , fx2∥ = d1 ≤ d (4.17)

• Contrary to the previous condition, this condition states that the probability of

two dis-similar feature vectors, fx1 and fx3 , lying in the same bucket should

be low. Let d1 be the euclidean distance between fx1 and fx2 and d2 is the

euclidean distance between fx1 and fx3 . Since fx1 and fx3 are dis-similar

feature vectors, the distance between them should be greater than d i.e., d2 ≥

a× d, where a is any constant. Therefore, the probability of them lying in the

same bucket of the index table will be less. Mathematically, it can be shown
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Algorithm 6 Retrieval IT, qi
Require: IT : Index table, Q: probe FKP images set

1: for each query FKP sample qi ∈ Q do
2: Extract the latent representation, fqi
3: for each bucket representative in IT do
4: Compute cosine similarity between hash value and fqi .
5: Create a table S with index and its corresponding cosine similarity score with

fqi .
6: Find the maximum score value in S.
7: Retrieve IDs stored in the selected bin to get candidate list C for matching.
8: return C

Figure 4.6: Segmented finger-knuckleprint images taken from IITD FKP database.

as,

P [h(fx1) = h(fx3)] ≤ p1 for ∥fx1 , fx3∥ = d2 ≥ a× d (4.18)

To further increase or reduce the probability given in the conditions respectively, a

hash function of t- bits can be generated by performing t dot products in parallel

using Eq.(4.16). A t−bit hash value of a feature vector belonging to FKP sample x1

can be computed by concatenating t values determined using the Eq.(4.16). h(f t
x1
)

can be written as = h1(fx1), h2(fx1), . . . , ht(fx1). After implementing LSH on the

set of feature vectors generated by the trained model, we get a data structure that

consists of hash value and the candidate IDs in its corresponding bucket.

4.2.4 Retrieval

The output of the indexing component is an index table, with each feature vector being

associated with an index in the table. The table is created such that similar feature vectors
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tend to fall in the same bucket, and different ones lie in different buckets. The objective

of the retrieval stage is to output a suitable list of candidates for comparison with the

probe FKP image. The output candidate list is expected to be small compared to the

database’s size for an efficient identification process. When a query FKP image, qi, is

shown to the identification system, it is fed to the FKPIndexNet for feature extraction.

The obtained feature vector, denoted by, fqi , is compared with every index in IT . The

index table size equals the number of clusters in k-means clustering or the number of

partitions in BallTree or locality-sensitive hashing. The index having maximum similarity

with the probe feature vector is selected for candidate set generation. Hence, all the

candidates’ IDs and their feature vectors lying in the selected index are retrieved for

similarity computation with the probe image feature vector. A score list (S) consisting of

a similarity score for qi with the candidates in the list is formed. S is sorted in descending

order, and the rank of qi’s true match is obtained. A probe’s true match may not be

found in the selected index. To handle this issue, the retrieval algorithm will refer to the

neighboring buckets in the index table. The next best cluster center or partition will be

selected, and its candidates are fetched for similarity computation with the probe image.

It is repeated till a true match is found. The size of the retrieved candidate list is fixed,

making the identification a constant time operation.

4.3 Experimental Results

This section details the experimental setting, such as the databases’ specifications and

an overview of the training and testing protocol. The proposed technique is evaluated

for both the recognition and identification process. First, the extracted features are used

for evaluating the verification system, followed by identification performance after the

database was indexed using the proposed technique.

4.3.1 Database

To validate the performance of proposed technique for indexing FKP datasets, exper-

iments are conducted on two publicly available datasets viz. Hong Kong PolyU Finger
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Table 4.1: Database specification with their recognition performance achieved by the
proposed technique.

Parameters PolyU-FKP [53] IITD FKP [54]
No. of subjects 660 158
Gallery samples 3960 316
Probe samples 3960 473
Genuine comparisons 23763 948
Imposter comparisons 15661794 148836
Total comparisons 15685557 149784
Equal Error Rate 2.76% 1.72%
Accuracy 97.25% 93.67%
Discriminative Index 2.68 3.27

Knuckle Print (PolyU-FKP) [53, 144] and IIT Delhi Finger Knuckle database (IITD FKP)

[54, 124]. Details about the two databases are provided below. Some sample images from

PolyU-FKP database and IITD FKP are shown in Figure 4.1 (first row) and Figure 4.6

respectively.

1. PolyU-FKP [144]: Hong Kong PolyU Finger Knuckle Print database (PolyU-FKP)

is a large scale knuckle image database that has been acquired in contactless setup

using a simple hand-held camera. There are 503 subjects, out of which some have

provided FKP samples from both the hands resulting in 660 classes. This work

considers twelve FKP images per class and utilized first six for training and the re-

maining for testing. Therefore, in total there are 7,920 FKP images in this database.

All the images are in bitmap format and the resolution of RoI samples is 50× 100

pixels.

2. IITD FKP [54]: IITD FKP Database consists of 790 FKP images collected from

158 individuals between August 2006 and June 2007. All the subjects are aged be-

tween 16 to 55 years. The images are in bitmap (.bmp) format and have resolution

of 80× 100 pixels.
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Figure 4.7: Receiver Operating Characteristic (RoC) Curve of the proposed technique
(plotted on log scale) on the considered datasets.

4.3.2 Testing Protocol

Different training-testing strategies are employed for FKP identification since both the

databases contain different number of images. For PolyU-FKP database, images collected

during the first session i.e. first six images are used for training the network while the

remaining six images are used as query images for testing. On the other hand, first two

images from the IITD FKP database are used for training and remaining 3 images are

used as probe samples. The details regarding the training and testing split is also given in

Table 4.1.

4.3.3 Results

To validate the performance of the proposed approach, results are computed for both veri-

fication and identification system. Firstly, the quality of the learned features are computed

because it is their discriminative ability that determines the performance of the indexing

module. Therefore, the recognition results are listed followed by indexing performance

based on two different techniques namely, k-means clustering, BallTree hashing and Lo-

cality Sensitive Hashing (LSH).
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Table 4.2: Penetration rates (%) at different hit rate (HR) values when BallTree and LSH
have been applied on PolyU-FKP database and IITD FKP database (Lower is better).

BallTree Hashing
HR (%) PolyU-FKP IITD FKP

70 15.70 46.20
75 20.50 49.78
80 26.13 54.00
85 33.96 57.17
90 44.92 60.33
95 63.18 62.86
100 98.96 66.45

Locality Sensitive Hashing
HR (%) PolyU-FKP IITD FKP
70 - -
75 - -
80 0.025 -
85 0.05 -
90 0.23 -
95 1.21 -
100 3.42 0.316

4.3.3.1 Recognition Performance

To evaluate the verification performance of the proposed approach, Accuracy, EER, and

DI of the system are computed. These are computed by comparing each sample in the test

partition with all the samples in the training partition. The details regarding the number

of comparisons involving genuine and imposter comparisons are given in Table 4.1. In

the table, gallery images refer to training split as these are the images that are indexed. In

contrast, probe samples refer to the testing split as these images are used as query images

for identification. The proposed technique achieved Accuracy = 97.25%, EER = 2.76%

and DI = 2.68 on PolyU-FKP and Accuracy=93.67%, EER = 1.72% and DI = 3.27 on

IITD FKP dataset. Although the verification performance is not the main aim of this

study, the proposed technique achieves high accuracy with low EER thus, indicating high

discriminating and representative ability of the learned feature vectors. The ROC Curve

of the recognition system using the features extracted by the proposed technique on all

the considered datasets is shown in Figure 4.7.

4.3.3.2 Indexing Performance

Indexing performance of the proposed technique on PolyU-FKP and IITD FKP database

has been evaluated in terms of hit rate and penetration rate. A high value of hit rate with

lower value of penetration rate is expected for a good indexing technique. k-means clus-

tering, BallTree hashing and LSH have been utilized for index table creation. BallTree

hashing performs poorly as compared to other two techniques. It achieves 63.18% and
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Table 4.3: Penetration rates (%) at different hit rate (HR) for when k-means clustering
is used for indexing features of PolyU-FKP database and IITD FKP database (Lower is
better).

PolyU-FKP
HR k=5 k=25 k=65 k=85
70 0.90 4.59 2.97 3.10
75 1.79 5.60 3.88 3.90
80 5.37 7.19 5.40 5.05
85 16.74 10.22 7.77 7.22
90 23.81 14.89 11.64 10.83
95 38.81 23.61 21.81 19.45

100 89.97 95.75 85.30 86.21

IITD FKP
HR (%) k=5 k=25 k=65 k=85

70 11.07 12.02 11.39 12.02
75 13.92 14.24 13.92 14.24
80 18.98 16.45 16.45 17.08
85 21.83 20.25 20.25 19.93
90 25.63 24.36 25.31 24.68
95 37.02 34.17 34.17 34.17

100 60.44 57.59 57.91 58.86

62.86% penetration rate at 95% hit rate on PolyU-FKP and IITD FKP database respec-

tively. The results are shown in Table 4.2. In k-means clustering, the number of clusters

have been varied between 5 to 85 with a difference of 10 to observe the effect of clus-

ter number on hit rate and penetration rate. Hit rate and penetration rate w.r.t. different

number of clusters, when k-means has been implemented for indexing, are reported in

Table 4.3. It can be observed that the optimal value of penetration rates for different hit

rate can be attained when number of clusters were fixed at 65. After this value, the pen-

etration rate again started to increase. It can be observed that to get 100% hit rate, only

85.30% and 57.91% of the PolyU-FKP and IITD FKP database needs to be retrieved.

FKPIndexNet with LSH gives the best performance among the three techniques. When

index table is created using LSH, a penetration rate of 3.42% and 0.32% for PolyU-FKP

and IITD FKP database respectively is required at 100% hit rate. This means only 3.42%

and 0.32% of the considered databases are required to be 100% sure that the true match

can be found in the retrieved candidate list. The results have been documented in a table

for both the datasets as shown in Table 4.2.

A graph depicting hit rate vs. penetration rate relationship for all the three techniques

corresponding to both the datasets is shown in Figure 4.8. The graph clearly shows that

LSH performs better than the remaining two approaches and attains a very low penetra-

tion rate on both the datasets. Therefore, LSH is selected for index table creation and
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Figure 4.8: Graph showing hit rate (%) vs. penetration rate (%) achieved by different
indexing techniques on the considered databases.

further, for identification process. The performance of closed set identification system

can be summarized using CMC. The CMCs are plotted for PolyU-FKP and IITD FKP

databases and is shown in Figure 4.9(a) and Figure 4.9(b) respectively. The graphs por-

tray the relationship between identification probability obtained at various ranks by the

proposed technique. It is evident from the graphs that LSH gives better identification

probability than k-means clustering and BallTree hashing when the features are extracted

using the proposed technique. Rank-1 identification rate was also computed to determine

the number of correctly identified queries at the top most rank. It was found out that

rank-1 identification rate of PolyU-FKP database was 61.9%, 17.65% and 89.69% when

BallTree hashing, k-means clustering and LSH respectively were implemented. However,

the obtained values on IITD-FKP was 1.2%, 16.45% and 17.41% respectively. Therefore,

we can conclude that the maximum number of queries were correctly identified at rank-1

when FKPIndexNet with LSH is implemented to index the considered databases. The

proposed indexing technique generates a fixed size candidate list. Therefore, the time

required for identification becomes constant.
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Figure 4.9: CMC showing relationship between identification probability and rank for
PolyU-FKP and IITD FKP datasets when identification is done using the proposed in-
dexing technique.

Indexing Performance Comparative Analysis: A geometric hashing based technique

that uses SIFT features for indexing FKP database has been proposed by Jayaraman et

al. [133]. This technique has used a different training-testing protocol i.e. 11 images of

each subject have been used for training and the last image has been used as the probe

image. The comparison between both the techniques is shown in Table ??. The values

in the cells refers to the penetration rate for different values of Hit Rate for both the

techniques. It can be seen that even though the proposed technique (FKPIndexNet) uses a

more strict training-testing protocol, it performs better than the state-of-the-art technique.

The proposed technique with LSH requires 3.33% penetration rate at 97% hit rate on

PolyU-FKP database. While, it has been seen that geometric hashing requires 40.41% of

the database for 97% hit rate. This is 12 times less database that needs to be seen for 97%

hit rate. The time required for identification is also an important measure to gauge the

performance of the proposed method. To do so, the retrieval time has been computed in

two scenarios- without indexing and with indexing the database. It has been observed that

the time required for identification for a probe image Qi with indexing is approximately

21 times lesser than the time required using the linear search.

Time analysis: A time-based analysis is conducted to evaluate the performance of the

identification process while using the indexed database and with exhaustive search, in
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Table 4.4: Comparison of penetration rate (%) at specific hit rates with existing work on
PolyU-FKP database. (Lower is better)

Technique / Hit Rate 97% 99% 100%
Database: PolyU-FKP

BallTree hashing [143] 74.01% 90.17% 98.96%
Geometric Hashing (SIFT) [133] 40.41% 94.07% -
k-means clustering [142] 32.56% 67.03% 85.3%
Proposed: FKPIndexNet 2.46% 2.91% 3.42%

Database: IITD-FKP
BallTree hashing [143] 65.61% 66.03% 66.45%
k-means clustering [142] 43.67% 46.83% 49.05%
Proposed: FKPIndexNet 0.32% 0.32% 0.32%

which the query sample is compared with all the templates of the database. The compar-

ison is done in terms of speedup to determine the reduction in identification time while

using generated candidate list over the complete database. Running time is computed for

only the retrieval stage wherein the suitable candidates are retrieved for comparison with

the query image. The time required for RoI segmentation, pre-processing and feature

extraction are common even for exhaustive search. Additionally, the index table genera-

tion is an offline and one-time process and therefore, time for these components are not

taken into account for computing the speedup. The proposed technique requires 168.98

seconds and 2.16 seconds when identification is performed with the naive approach i.e.

exhaustive search on PolyU-FKP and IITD FKP database respectively. However, this

time reduced to only 14.64 seconds and 0.47 seconds, respectively, when the considered

FKP databases are indexed using FKPIndexNet with LSH. BallTree hashing and k-means

clustering required 18.76 and 0.54 seconds on PolyU-FKP and 20.31 and 0.80 seconds

on IITD-FKP database respectively. Table 4.5 shows a comparison of the identification

time taken for a query FKP with and without indexing on the considered databases. It

can be observed that a speedup of 11 and 4 times is obtained when identification is done

using the indexed PolyU-FKP and IITD FKP database respectively.
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Table 4.5: Time required (in seconds) for the query FKP identification using the proposed
indexing technique and exhaustive search (PC comparison).

Database Non-Indexed k-means [142] BallTree [143] LSH [115]
PolyU-FKP [53] 168.98 20.31 18.76 14.64
IITD FKP [54] 2.16 0.80 0.54 0.47

4.3.3.3 Ablation Study

The proposed technique generates an index table using the learned features of the FKP

images. The quality of extracted features determines the performance of any biometric

indexing technique during the identification process. Therefore, an ablation study is done

to analyze the effect of varying feature dimension on hit rate and penetration rate. Feature

vectors having three different dimensions 128, 256 and 512 have been analyzed to deter-

mine the suitable feature vector dimension for indexing the FKP databases. Subsequently,

separate index tables are generated for the three sets of feature vectors. Penetration rate is

computed for different values of hit rate for the query images from PolyU-FKP database.

The obtained result is shown in Table 4.6. Hit rate refers to the confidence with which

true match of the query image can be found out from the retrieved subset of the database.

On the other hand, penetration rate determines the percentage of the database required to

find true match of a query sample. A good indexing technique is expected to achieve high

hit rate from a small list of candidates i.e. at lower value of penetration rate. It can be em-

pirically determined from the Table 4.6 that the 512-d performs best on the PolyU-FKP

database. Therefore, 512-d feature vectors are used throughout the experimentation.

4.4 Summary

This chapter proposes a novel technique for indexing FKP databases that learns a fixed-

length and discriminative feature vector for FKP images. The first part of the chapter

proposes a novel segmentation network, FKPSegNet, to extract the Region-of-Interest

(knuckle region) from an acquired finger-dorsal image. It is a U-Net based network that

employs three stacked hourglass networks in the bottleneck. Later, a specialized autoen-

coder network that learns feature embeddings from the FKP images has been proposed. It
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Table 4.6: Ablation study showing the effect of feature dimension on hit rate and penetra-
tion rate for PolyU-FKP database. The cell values denote penetration rate(%) at various
hit rate.

Indexing Feature Hit Rate
70% 75% 80% 85% 90% 95% 100%

128-d 4.14 5.43 7.32 11.01 16.59 28.16 97.55
k-means 256-d 4.7 6.14 8.36 11.52 17.22 29.55 96.67

512-d 2.97 3.88 5.4 7.77 11.64 21.81 85.3
128-d 14.26 21.37 30.58 39.44 58.63 67.21 99.15

BallTree 256-d 15.7 20.5 26.13 33.96 44.92 63.18 98.96
512-d 9.14 11.99 16.33 22.47 31.64 48.25 97.57
128-d - - - - 0.02 14.57 56.98

LSH 256-d - - - - - 0.02 44.67
512-d - - - - - - 0.02

is trained by using a novel custom loss function which minimizes the reconstruction loss

and maximizes the mutual information between the input sample and its learned latent

representation. It also incorporates classification loss to increase intra-class compact-

ness among the feature vectors. The encoder in the proposed feature extraction network

employs asymmetric filters instead of symmetric ones to learn line-based FKP features

and establish a spatial relationship among them. Three different techniques viz. k-means

Clustering, BallTree hashing and LSH have been explored for index table generation.

Experiments are performed for verification and identification of the proposed technique

on two publicly available benchmark FKP databases viz. PolyU-FKP and IITD FKP. The

proposed technique achieved 100% of hit rate at the penetration rate of only 3.42% and

0.32% for PolyU-FKP and IITD FKP database respectively. Hence, by using FKPIn-

dexNet, we need to search only a small percentage of the database instead of the whole

database for identification and that too without compromising on the accuracy. The next

chapter addresses indexing of fingerprint database.
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Fingerprint Indexing

Fingerprint [3] is a skin pattern acquired from the tip of a finger. It is a widely ac-

cepted biometric trait for access control because of several advantages in terms of unique-

ness, temporally invariant, easy acquisition, and acceptability among the population. The

curves present on a fingerprint, called ridge lines, form unique patterns in every finger-

print. A fingerprint is a quite expressible biometric trait as there exists a considerable

amount of discerning patterns such as loops, whorls, and arches on it [145]. A ridge line

either terminates or bifurcates in two ridge lines. Minutiae points that refer to the irreg-

ularities in the ridge structure i.e. the points of termination and bifurcation of the ridge

line. A minutiae point is represented as a tuple containing three values viz. its (x, y)

coordinates and its orientation in degrees. The orientation of the detected minutiae point

is determined by the direction of the ridge line. A fingerprint is unique among the popu-

lation as the probability of two fingerprints being identical is as low as 1.5× 10−15 [18].

A fingerprint is easy to acquire and requires less user cooperation.

The Automatic Fingerprint Identification System (AFIS) identifies humans based on

their fingerprints. Fingerprint comparison algorithms that run behind AFIS works ac-

curately and speedily for small databases [146]. However, as the size of the fingerprint

database grows, identification becomes computationally expensive, and despite taking
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considerable time and memory, AFIS is unable to provide an accurate result [147]. In

order to reduce the time taken in identification, the search space needs to be reduced to

lower the number of candidates for comparison without compromising on the accuracy

of identification. It is achievable by indexing the fingerprint databases. The process starts

by constructing a feature vector that consists of a fingerprint’s essential yet distinguishing

characteristics. Each feature vector is then associated with an index that closely resem-

bles it. An index table is generated by putting similar feature vectors in the same index.

Retrieval works by finding the most similar index for the query sample’s feature vector

and fetching the feature vectors lying in that index for comparison. The underlying idea

is to highlight a few fingerprints from the database to compare the query image with only

those fingerprints.

This chapter presents an effective technique to index fingerprint databases. The pro-

posed indexing technique encodes the spatial and directional relationship between the

minutiae points and the core point. Therefore, the initial step is to locate the core and

minutiae points in the fingerprints. A novel U-Net-based deep learning architecture with

a stacked hourglass is proposed for core point detection from fingerprint images. The

minutiae points are extracted using a minutiae detector, called MINDTCT, contained in

NIST Biometric Image Software [148]. A feature vector is constructed by learning the

relationship between each minutiae point and core point. This feature vector is used

for index table generation. The rest of the chapter is organized as follows. Section 5.1

presents a literature review of the fingerprint indexing techniques. Section 5.2 discusses

the proposed technique for core point detection and indexing. Results are discussed in

Section 5.3.

5.1 Literature Survey
Fingerprint indexing techniques differ based on the features used to construct the index

table, such as core, delta, ridge endings, ridge bifurcations etc. Different fingerprint fea-

tures are shown in Figure 5.1 (a). The literature review of fingerprint techniques is clas-

sified into four categories viz. texture-based, minutiae-based, hybrid, and deep learning
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(a) Fingerprint Features (b) Scar on fingerprint (c) Partial fingerprint

Figure 5.1: Figures showing: (a) fingerprint features, (b) scarred fingerprint and (c) partial
fingerprint with missing core point

based techniques depending on the type of feature used for the index table generation.

5.1.1 Texture Based Indexing Techniques

These indexing techniques involve using global features such as ridge orientation field,

ridge frequency field, ridge pattern types, ridge flow structure, core, and delta points for

index table construction. The global features portray fingerprints in a global view. An

indexing approach based on scalar and vector features acquired from ridge-line orienta-

tion and frequency has been proposed in [149]. The technique has been tested over six

databases: NIST DB4, NIST DB4 (natural), NIST DB14, FVC2000 DB2, FVC2002

DB3, and FVC2002 DB1. In [150], a clustering-based indexing technique in which

polar complex moments (PCMs) were employed to construct feature vectors has been

proposed. The extracted fingerprint representation is rotation invariant. The proposed

approach has been tested on FVC2002 DB1a and NIST DB4 databases. An indexing

algorithm that uses pores on fingerprint has been proposed by [151]. The features of

pores have been extracted by applying Delaunay triangulation. These feature vectors

have been clustered using unsupervised k-means algorithm. During retrieval, some clus-

ters are short-listed based on their Euclidean distance with the query fingerprint. The

limitation with these approaches is that the global features are not suitable for handling
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distortions such as occlusion, shear, translation, rotation, scale etc. Also, texture-based

techniques require the fingerprint to be aligned prior in the database and that the locations

of singular points can be used. However, in low-quality images, it is challenging to locate

such points, and hence, these kinds of images get rejected [152].

5.1.2 Minutiae Based Indexing Techniques

This section discusses those indexing techniques that use local features such as minutiae

points to construct feature vectors. Each minutia is represented as a triplet containing

{xm, ym, θm} where, the location is represented by x and y coordinate and θ gives the

direction of minutiae in terms of angular value ranging between [0, 2π]. These techniques

are further classified into five sub-categories as below.

1. Single Minutia Based Techniques:

These techniques use single minutia for feature vector construction. A minutiae-

based geometric hashing has been proposed in [153]. It includes two stages, index-

ing, and searching which is performed with linear time complexity. This approach

builds a fixed-length feature vector from minutia, called as Minutia Binary Pattern.

Every minutia and feature vector are inserted into the hash table exactly once, re-

ducing memory and computational cost. The proposed technique has been tested

on FVC2004 DB1 A. Single minutia-based techniques are invariant to global dis-

tortions such as translation and rotation, and the complexity of the proposed algo-

rithms is also linear.

2. Minutiae Pair Based Techniques:

A lone minutia is not tolerant to elastic deformation. On the other hand, minutiae

pair does not suffer from rigid transformations. Exploiting redundant combinations

of minutiae pair also provide immunity against noise [154]. A fingerprint indexing

technique based on minutiae pair has been proposed in [154]. The features used

are the distance between the points, the difference between their angles, and the

other two angles formed between their orientation and the line joining them. The
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technique has been tested on the FVC2004 DB1 A database. An indexing tech-

nique in which features were extracted from minutiae pair has been presented in

[155]. The generated feature vector is alignment-free and holds multiple template

independence, non-invertibility, and revocability properties. The technique uses

densely infinite-to-one mapping (DITOM) in order to achieve these properties. Al-

though both of these techniques are secure, they are not highly accurate. Barman et

al. [156] proposed an indexing technique in which the feature vector is generated

by computing Euclidean distance between pairs of minutiae points to account for

increasing computational complexity. Due to this reason, this technique requires

less memory and low computation cost. It was evaluated on FVC2004 DB2 A,

DB3 A, and DB4 A databases.

3. Minutiae Triplet Based Techniques:

These techniques consider three minutiae or triangles formed using three minutiae

for feature vector construction to index the database. The concept of triangles for

fingerprint indexing is given in [157]. The authors considered all possible minutiae

triangles, and pairwise matching is done using transformation parameter clustering

to increase accuracy. An attempt was made to improve the previous approach by

employing new features to minutiae triplets in [158]. It has used handedness, angle,

direction, type, maximum side, and geometric constraints based on minutiae char-

acteristics to remove false correspondences. The drawback with these techniques is

their high time complexity of O(n3), where n is the number of minutiae, triangles

need to be considered during matching, which makes it computationally expensive.

A Delaunay Triangles-based technique has been proposed in [159] to reduce the

number of minutiae triangles under consideration and hence, save memory. De-

launay triangles are unique and can be computed efficiently. The proposed tech-

nique consideres only n minutiae triangles thereby, reducing the time complexity

from O(n3) to O(n). The presence of missing or spurious minutiae in delaunay

triangles can lead to the introduction of spurious triangles or missing the impor-
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tant ones [160]. To overcome this problem, a hierarchical indexing technique has

been proposed in [160] which divides minutiae into levels based on their quality,

and matching is performed starting from the higher level of hierarchy to the lower

level. Finally, it accounts for missing and spurious minutiae by combining differ-

ent enrollment feature sets into a super-template. Another hierarchical indexing

technique using barycenter has been proposed by [161] to account for false iden-

tification. In this technique, two fingerprints are matched by comparing the angles

of triangles extracted from both templates. This ensures that matching is robust

to change in orientation. However, the problem here is that some similar triangles

may be found that do not belong to the same minutia points. To overcome this

problem, the authors have extracted the barycenter of each triangle to ensure that at

least three similar triangles are correctly located.

It is known that any slight shift in minutiae points may result in a change of Delau-

nay triangles, making it sensitive to distortions. A new indexing technique based

on features of low-order (order-0 and 1) delaunay (LoD) triangles such as hand-

edness, maximum edge, angles, and related angle between edges and orientation

field has been proposed in [162]. In this technique, an extended set of triangles

is proposed, containing minutiae points that constitute the LoD. The use of both

minutiae and LoD makes it insensitive to elastic distortions. However, the main

drawback is that it generates significantly less number of triangles which may be

insufficient for fingerprint indexing. Also, some geometric features get lost, making

it less accurate [163]. To overcome this limitation, a strategy that is an extension of

Delaunay triangles has been proposed in [163]. It uses Delaunay triangles with or-

ders greater than one so that the triangles contain sufficient geometric information.

This ensures that even if the number of generated triangles is less in number, the

geometric information would be enough to identify a fingerprint. An improvisation

of this technique has been presented in [164]. The relative position between core

point and all minutiae points is added in the feature vector set. The addition of the
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new feature resulted in a reduction in the number of erroneous matches and thus,

increased accuracy. However, this technique fails to deal with partial fingerprints,

in which the core point is missing. A partial fingerprint is shown in Figure5.1(c).

The problem with these techniques is that their feature vector is constructed based

on ridge counting, which gets incorrect based on the presence of ridge gaps/scars

(shown in Figure5.1(b)) at crossing of ridge-counting line and ridge.

4. Minutiae Quadruplet Based Techniques

Minutiae quadruplets get formed by joining four minutiae points. This structure

provides features that are robust to distortions as compared to minutiae triplets. An

indexing approach based on minutiae quadruplets proposed by [165] uses seven

geometric features such as height, the difference of opposite internal angles, diag-

onals, and area for feature vector construction. k-means clustering is implemented

on the feature vector set, and an indexing string is obtained for every image. An in-

dexing string is created for the query image during retrieval, and the table is sorted

in decreasing order of the number of quadruplets. All the clusters that contain at

least 60% of the quadruplets are considered for matching. This work is extended

in [166] by using minutiae quadruplets along with k-means clustering for multi-

fingerprint indexing. Indexing techniques based on minutiae quadruplets may be

accurate, but they suffer from high computational complexity of O(n4).

5. MCC Based Techniques:

The minutiae cylinder code is a 3-D data structure that shows the spatial relation-

ship between the distance and orientation of neighboring minutiae. Many tech-

niques consider minutia orientation and other features such as singularities, ridge

curvature etc. However, since minutia information is commonly used and is most

robust, it is considered favorable to extract features through minutia in the case of

large databases [167]. A Locality Sensitive Hashing (LSH) [115], based on minu-

tia cylinder code (MCC) [168], has been proposed in [169] for indexing fingerprint

database. Another MCC-based indexing technique has been proposed in [170] that
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is based on pose estimation. It is assumed that the poses remain invariant among

different images of the same fingerprint. Therefore, it is viable to align fingerprints

efficiently. The technique has been tested on FVC and NIST databases. Being high

dimensional and redundant, MCC does not have a discriminative representation.

An indexing technique using a feature mapping matrix to map a real-valued high

dimensional version of MCC into a low dimensional binary code has been proposed

in [147]. The main objective is to remove redundant information by minimizing

inter-bit variation and maximizing intra-bit variation. To reduce the search space,

authors have used multi-index hashing, which finds exact k-nearest neighbors on

the binary codes.

5.1.3 Hybrid Indexing Techniques

An indexing technique based on both local and global features, ridgeline orientation, fre-

quency aligned across core points has been proposed in [149]. This technique has been

tested on FVC2002 DB1 database. An indexing technique that works for partial finger-

print has been proposed in [171]. This technique has been tested on FVC2002 DB1a and

DB2a databases. An indexing technique that uses MCC and minutiae vicinity to con-

struct the feature vector has been propounded in [172]. The algorithm then uses support

vector machines (SVM) to classify the feature vector into five distinct classes: arch, right

loop, left loop, whorl, and tented arch. An indexing technique based on minutiae points

and locality sensitivity hashing has been proposed in [173]. After the creation of the fea-

ture vector, spectral clustering [174] has been applied, which automatically divides NIST

4 special dataset into 25 classes. For matching, the authors used Euclidean distance,

Minkowski distance, and cosine similarity. [175] combined minutiae triplets (Delaunay

triangles) and minutiae vicinity to the index fingerprint database. The authors used the

direction and location of minutiae points and the density of ridge, and the average value

of ridge curvature around minutiae to form a feature vector. The authors also combined

this indexing technique with MCC based indexing technique to attain better accuracy and

called it score-level fusion.
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5.1.4 Deep Neural Network Based Fingerprint Indexing Techniques

A deep convolutional neural network (CNN) is an architecture suitable for filtering an

image in a parallel way. They are used in image processing and have contributed sig-

nificantly to image classification, object detection, image segmentation etc. [176]. To

overcome the limitation of minutiae-based indexing techniques, a CNN based indexing

approach has been proposed in [177] that generates a fixed-length feature vector without

extracting the minutiae points explicitly. It has also used an orientation field dictionary

to align the fingerprints into a combined coordinate system. The CNN has been trained

using a longitudinal fingerprint database whose last fully connected layer outputs a fixed-

length feature vector that forms the index. Due to its fixed length, the feature vector

is also useful for template protection. Experimental results over two rolled fingerprint

databases, NIST SD4 [178] and NIST SD14 show an error rate of 0.40% and 0.26% at

a Penetration Rate of 10%. Another deep neural network-based indexing approach has

been proposed in [179], in which real-valued MCC structure is given to the network, and

the network outputs a compact binary MCC. The advantage of these binary codes is that

they can be directly used as addresses of the hash table, increasing search speed. Then, a

multi-index hashing technique is used to speed up the process further.

5.2 Proposed Technique

The proposed technique involves four components. The first component aims to extract

core point and minutiae points from a fingerprint image. The second component is feature

extraction that involves Coaxial Gaussian Track Code (CGTC) vector construction for ev-

ery minutia point. The third component is index table generation followed by retrieval of

small-sized candidate list in the last component. A block diagram depicting the proposed

technique is shown in Figure 5.2. Therefore, the first step in the proposed technique is to

extract core point and minutiae points from an input fingerprint. Minutiae points are the

points where a ridge ends or bifurcates. These points may vary with sample collection

at different points in time. Therefore, to use minutia information for classification and
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Figure 5.2: Block diagram of the proposed fingerprint indexing technique.

indexing, it is localized with respect to a reference point that remains invariant to rotation

and translation. Core point acts as the reference point in a fingerprint [180]. The spatial

and directional relationship between the core point and each minutia point is encoded to

construct the feature vector. The generated fixed length feature vector is used to generate

a quantized look up table. The proposed indexing technique is rotation and translation

invariant.

5.2.1 Core-point Detection and Minutiae Extraction

The core point is a particular location in a fingerprint that has high curvature properties.

It is a point where the innermost ridge loops are at their steepest [181]. Some fingerprint

samples with marked core-point are shown in Figure 5.3. Accurate and efficient detection

of the core point plays a significant role in successful feature vector construction. This

section proposes a novel deep learning-based architecture for end-to-end core point de-

tection in a fingerprint image. The advantage of the proposed model is that it determines

the core point efficiently and in one go.

5.2.1.1 Macro-Localization Network

Macro-Localization Network (MLN) is a U-Net [71] based architecture that maps the in-

put fingerprint image to an image containing the segmented area having the highest prob-

ability of containing the core point. The U-Net consists of a contracting and an expansive
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Figure 5.3: Core points shown in fingerprint images taken FVC2004 DB1 A and
FVC2002 DB2 A databases (three images each).

path. The contracting path consists of a series of convolutional layers followed by the

max-pool layer. On the other hand, the expansive path takes the output of the contracting

path and puts it through a series of transposed convolutional and up-sampling layers. The

high-level features from the contracting path are concatenated with the corresponding

up-sampled features in the decoder using merge connections. U-Net is commonly used

in applications involving the segmentation of medical images. When fingerprint images

were passed through the standard U-Net for segmenting out the RoI, the observed output

is irregular and blurry. This was due to occlusion, pose, and scale variation introduced

in the images while acquiring them in an uncontrolled environment. This limitation is

addressed in this work by proposing the use of stacked hourglass networks between the

contracting and expansive path. Hourglass network [72] includes a residual module that

works on the feature vector, unlike the U-Net, which takes a complete image as an input.

The residual module uses convolutional operation to learn high-level features, but it is

also capable of retaining the original information using skip connections. It has a sym-

metric topology so that the features are extracted and consolidated across various image

scales and resolutions. The output of the hourglass network is of the same size as its input

feature vector. Therefore, we can say that the hourglass network only changes the depth

of the data without altering its size.

MLN has three parts viz., contracting path (CP ), expansive path (EP ) and the hour-

glass network (H). The CP consists of pairs of 3 × 3 convolutional layer having filter

size of 16, 64 and 128 respectively. Every pair of convolutional layer is followed by a
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Figure 5.4: Block diagram of the proposed core point detection network.

2×2 max-pool layer. The bottleneck is introduced in the form of three-stacked hourglass

networks between the CP and EP . An hourglass network has the ability to capture fea-

tures at multiple scales and combine them to make pixel-wise predictions. This is made

possible by the use of skip-connections that conserve information at every scale. An hour-

glass network consists of a series of convolution layers followed by a max-pool. This is

repeated to process features till a very low scale. The lowest resolution features are then

up-sampled. Skip connections are introduced to merge the feature maps at two different

scales. The architecture of the single hourglass network is separately shown in Figure 5.6.

Adding hourglass modules subsequently one after the other allows for re-assessment of

the features across the whole image. It also allows for going to-and-fro between the scales

which further helps in conserving spatial relationship among features. Directly passing

the encoded image to the EP may result in an inappropriate localization, especially in

the noisy images. Adding a stacked hourglass network makes the network robust to such

situations. MLN was first trained with only one hourglass network as a bottleneck. The

network showed improvement in result when two and then three hourglass networks were

added. However, there was not much improvement when fourth hourglass network was

stacked in the bottleneck. Hence, MLN has three stacked hourglass networks as the bot-

tleneck. The output of the bottleneck is passed to the EP that performs segmentation

on the input image. The EP network first performs up-sampling using a 3 × 3 trans-

posed convolution layer. Its output is concatenated with the corresponding feature map

of the CP using the merge connections. The merge connections preserve the essential
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Figure 5.5: Architecture of Proposed Macro Localization Network

spatial information of the input image that may have got lost in the encoder. Using merge

connections also eliminates the problem of vanishing gradient during learning. The con-

catenated feature map is passed to a pair of 3 × 3 convolution layer followed by ReLU

activation. This is repeated for different filters of size 128, 64 and 16. The complete

architecture of the network is shown in Figure 5.5.

5.2.1.2 Micro Regression Network

The output of MLN is the segmented image that has a white region depicting the probable

region that contains the core point. Micro Regression Network (MRN) takes the original

fingerprint image and the output of the MLN concatenated along channel dimension as

the input and outputs two values depicting the coordinates of the core point. The original

image is passed because the output of MLN is a white area and the corresponding finger-

print patch is required to further trace down the location of the core point in that region.

MLN consists of three convolutional blocks of 3× 3 filters with varying number of filters

i.e. 16, 64 and 128. Each block is followed by ReLU activation and a 2 × 2 max-pool

layer. The feature map of the last maxpool layer is flattened and fed through four fully

connected layers. The last fully connected layer outputs two values corresponding to the

predicted (x, y) coordinates of the core point. This network mainly performs regression

on the proposed segmented region and outputs the location of the core point in a given

fingerprint image. The architecture of the Micro Regression network is graphically shown
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Figure 5.6: Hourglass Network Used in Proposed Model (Dotted lines represents skip
connections)

in Figure 5.7.

All these network components are stacked one over the other after training them in-

dividually to build a single network that predicts the location of the singular point in a

given fingerprint image. Binary cross entropy and mean squared error are used to train the

proposed network. The cross entropy loss is back-propagated by the macro-localization

network to learn the proposed region for singular point presence while the mean squared

error is back-propagated to the regression network for learning core point localization.

5.2.1.3 Network Training

Training of this network is broadly divided into two steps. First, the MLN is trained

that takes a fingerprint image as input and produces a segmented mask containing the

core point of the fingerprint. This network is trained using cross entropy loss function

that computes the pixel-wise difference between the ground truth mask and the predicted

mask. Finally, the computed loss is averaged over all the pixels in the image. Let, for a

given fingerprint image Y of size h×w, the ground truth and predicted mask is denoted by

Ym and Ŷm respectively. The loss between Ym and Ŷm is defined as given in the equation

below.
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LCE(Ŷm, Ym) =
−1
h ∗ w

h∑
j=1

w∑
i=1

[
Ym(i, j) ∗ log(Ŷm(i, j))

+(1− Ym(i, j)) ∗ log(1− Ŷm(i, j))
]

(5.1)

In the second step, the MRN is trained separately by minimizing the mean squared

error (MSE) between the actual coordinates of the core point and the one predicted by the

proposed network. The loss function in mathematically expressed in Eq.(5.2). Here, Y(x,y)

and Ŷ(x,y) denote the actual and predicted (x, y) coordinates of the actual and predicted

core point. The loss is averaged for all the fingerprint images, denoted by N . After

training both the networks separately, they are combined by stacking to form a single

end-to-end core point detection network. This network is then trained in an end-to-end

manner.

LMSE(Y(x,y), Ŷ(x,y)) =
1

N

N∑
i=1

||Y(x,y) − Ŷ(x,y)||
2

(5.2)

5.2.2 Feature Extraction and Indexing

Coaxial Gaussian Track Code (CGTC) is a fixed length feature vector that is constructed

using the location and angle information of a minutia point contained in a fingerprint.

Given a fingerprint template M that has n minutiae points, {m1,m2, . . . ,mn}; the CGTC

vector of length p is constructed for a given minutia point mi by accommodating binary
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Algorithm 7 CGTC (M, i)

Require: minutiae template M
Ensure: p bit CGTC vector for a minutia point mi ∈M

1: for t = 1 to p do
2: mi(CGTC)

[t] = 0

3: for t ∈ {1, 2, ..., i− 1, i+ 1, ..., n} do
4: d =

√
(mi.x−mt.x)2 + (mi.y −mt.y)2

5: for j = d− a to d+ a do
6: mi(CGTC)

[j] += 1√
2πσ2

e−b( j−d
σ

)2

return mi(CGTC)

information of minutiae points in its p-pixels neighborhood. The process starts off by

geometrically rotating the fingerprint template such that the orientation of core point be-

comes parallel to the horizontal or x−axis. The fingerprint is then partitioned into 72

sectors around the core point after every 5◦. The spatial and directional information about

a minutia point mi in M is obtainable by figuring out the sector in which mi lies and its

Euclidean distance from the core point. Each minutia point is now uniquely identifiable

by the sector number and distance, denoted by mi.s and mi.d respectively.

A p-bit CGTC vector for each minutiae mi in M is constructed by computing Eu-

clidean distance between mi and every other minutia point, say mt, where t = {1, 2, . . . , n}.

Gaussian is applied on the computed distance lying in the ‘a’ neighborhood pixels. The

process is also described in Algorithm 7. The constructed CGTC vector for mi minutia

is inserted into the lookup table at location (mi.s, mi.d). This technique is rotation and

translation invariant as the minutia point can be uniquely identified with respect to the

core point. This process is described in Algorithm 8.

5.2.3 Retrieval

During retrieval, the minutiae points and the core point are extracted from the query fin-

gerprint, denoted by Q. Let MQ denotes the set of k minutiae points extracted from the

query fingerprint, where MQ = {m1,m2, . . . ,mk}. The query fingerprint is geometri-

cally rotated to align it parallel to the horizontal axis. The CGTC vector for the query

fingerprint is constructed using the Algorithm 7. Then we compute the sector and dis-
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Algorithm 8 Indexing (H,M)

Require: A 2D lookup table H and a fingerprint image M
Ensure: Updated H

1: Extract minutiae points from M
2: Detect the core point C = (c.x, c.y, c.θ) of M
3: Rotate the fingerprint template to make the core point parallel to x-axis
4: Geometrically transform the minutiae points
5: Divide M into 72 sectors
6: for minutiae point mi, i = {1, 2, . . . , n} do
7: Construct CGTC vector of p length
8: Determine sector mi.s and distance mi.d
9: Insert ID(M) and mi(CGTC)

at (mi.s,mi.d) into H
return H

tance of each minutia point lying in MQ with respect to the core point. Let mk.s and mk.d

be the sector and distance respectively of a minutia point mk. The index table is referred

to at location (mk.s,mk.d) and the fingerprint IDs and CGTC vectors of the minutiae

points lying in that location are retrieved for comparison. The query fingerprint may

have translated, missed, spurious or rotated minutiae points. Therefore, along with the

selected bin in the index table, i.e.(mk.s,mk.d), neighboring bins δs×δd are also consid-

ered for similarity computation and candidate set generation. The similarity is computed

between mk’s CGTC vector and the CGTC vectors of all the retrieved candidate finger-

print IDs. A separate score list is generated for each minutia point in Q. Hence, this

process results in k score lists, one for each minutia point. Finally, we select only those

fingerprint IDs that have similarity score greater than a specific threshold value. All the

k lists are concatenated to form a single score list S for a fingerprint query image Q i.e.,

S = {S1, S2, . . . , Sk}. Top t fingerprint IDs with respect to the score in S are selected for

identification. The process is also explained through Algorithm 9.

5.3 Experimental Results

This section discusses the specifications of the fingerprint databases used followed by

a brief overview of the evaluation parameter utilized for evaluating the performance of

the proposed core point detection model. The proposed technique starts by extracting
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Algorithm 9 Retrieval (H,Q)

Require: A 2D lookup table H and a query fingerprint image Q
Ensure: Candidate list for Q

1: Extract minutiae points
2: Detect the core point
3: Rotate the fingerprint template to make the core point parallel to x-axis
4: Geometrically transform the minutiae points
5: Divide Q into 72 sectors
6: for minutiae point mk, k = {1, 2, . . . ,m} do
7: Construct CGTC vector of p length
8: Determine sector mk.s and distance mk.d
9: Smk

= ϕ
10: for all mj ∈ δd× δs neighbours of (mk.s,mk.d) do
11: Extract CGTC vector mjCGTC

of mj from H
12: if dist(mk,mj) < Th then
13: Smk

[ID(Q)j].score = Smk
[ID(Q)j].score× w

14: for all mj ∈ δd× δs neighbors of (mk.s,mk.d) do
15: Smk

[ID(Q)].score += Smk
[ID(Q)j].score

16: Arrange ID(Q)s in decreasing order of score, for each minutia point mk in Q
17: Concatenate Smk

’s for k minutiae points in Q
return Candidate List

core and minutia points from the fingerprint images. Minutiae points are extracted using

a standard library but the location of the core point is detected by using the proposed

model. Therefore, this section states the obtained experimental results for the 1) proposed

core-point detection model and 2) proposed indexing algorithm on two publicly available

fingerprint databases viz. FVC2002 DB2 A [182] and FVC2004 DB1 A [183].

5.3.1 Database

Two publicly available fingerprint databases are used to evaluate the proposed technique.

The databases were originally collected and used to host fingerprint verification compe-

tition. The specifications of the databases are given as follows.

FVC2002 DB2 A [182]: This database contains 800 fingerprint images collected from

100 subjects. Eight fingerprint impressions of the same finger were collected from each

individual using FX2000 sensor by Biometrika. The images have a size of 296 × 560

pixels with a resolution of 560 dpi. The images in this database have a huge intra-class
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Figure 5.8: Sample fingerprint images from FVC2002 DB2 A (first row) and FVC2004
DB1 A database (second row).

variation among different impressions of the same subject due to external factors such as

placement of fingerprint, pressure etc. Some sample images are shown in the first row of

Figure 5.8

FVC2004 DB1 A [183]: This is a publicly available database. It consists of 800 finger-

print images collected from 100 subjects using ”U.are.U 4000” sensor by Digital Persona.

The images have a size of 640×480 pixels and a resolution of 500 dpi. Some of the finger-

print images from FVC2004 DB1 A database are shown in the second row of Figure 5.8.

5.3.2 Experimental Setting

The implementation of the proposed network has been done on a Linux based operating

system with NVIDIA GeForce GTX 1080 Ti graphics card with graphics memory of 11

GB. Adam optimizer with a learning rate of 0.0005 has been used to train the core point

detection model. The network is trained for 100 epochs with a mini-batch of 8 images,

each of size 256× 320. The parameters considered for the indexing technique are CGTC

vector length of 50, neighborhood bin value δd = 6 and δs = 3 and lastly the radius for

CGTC vector is 3.
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5.3.3 Results

This section shows the results obtained for core point detection and indexing of fingerprint

databases using the proposed technique. True Detection Rate (TDR) is used for evaluating

the performance of the core point detection model. The indexing technique is evaluated

in terms of Hit Rate and Penetration Rate which are described in Chapter 1. Both the

results are discussed separately in the following sub-sections.

5.3.3.1 Core Point Detection

True Detection Rate (TDR) is used as a measurement index to gauge the performance of

the proposed technique. The trained model outputs (x, y) coordinates of the core point

in the fingerprint sample. The coordinates will be considered accurate if the euclidean

distance between the original and predicted coordinate is less than or equal to 20 pixels.

This can be formulated as given in the equation below. Here, (Ĉ.x,Ĉ.y) and (C.x,C.y)

refer to the (x, y) coordinates of the ground truth and the predicted core point respectively.

√
[C.x− Ĉ.x]2 + [C.y − Ĉ.y]2 ≤ 20 pixels (5.3)

The proposed model is trained on 80% of both the datasets and tested on the remain-

ing 20%. The core point is manually annotated in all the images for preparing ground

truth for training the proposed model. The first result shows the values of TDR achieved

when the Euclidean distance between predicted and ground truth coordinate is 20 pix-

els. The proposed technique achieved true detection rate (TDR) of 98.75% for FVC2002

DB2 A database. The proposed technique shows a detection rate of 96.25% on FVC2002

DB2 A database when the difference in distance between the ground truth and the pre-

dicted coordinates is not more then 10 pixels.

The obtained values are compared with other state-of-the-art techniques. Zhou et

al. [184] proposed a singular point detection technique for deltas and core points. The

technique uses Differences of the ORIentation values along a Circle (DORIC) features

which is an extension of Poincare index [185]. Xie et al. [186] proposed an inconsistency

feature to detect core point from fingerprint images. The feature is obtained by deter-
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Table 5.1: Comparison of core point detection results on FVC2002 DB2 A database with
state-of-the-art techniques

Technique Description TDR
Zhou et al. [190] Orientation values along a circle (DORIC) 95.78%
Xie et al. [186] Inconsistency feature 90.00%

Tiwari et al.[187] Meandering energy potential (MEP) 95.75%
Liu et al. [188] Faster R-CNN 96.03%

Proposed MLN and MRN 96.25%

mining the relationship between ridge lines and curves present in a fingerprint sample.

The proposed technique enhances the fingerprint images using a method that combines

Short Time Fourier Transform (STFT) Analysis with a quality estimation method. It is

followed by core point detection in the enhanced images using the posterior probability.

An approach utilizing Meandering Energy Potential (MEP) for detection of core point

has been proposed in [187]. MEP refers to the amount of shield at a particular pixel in

the fingerprint image. The advantage of this approach is that it does not require any prior

knowledge of the fingerprint structure under evaluation. A deep learning based core point

detection approach based on Faster-RCNN has been proposed in [188]. Faster-RCNN

[189] generates region proposals that potentially contain a singular point. The approach

then considered top-100 region proposals for singular point detection. Table 5.1 presents

the comparison of TDR of the proposed technique with other techniques proposed in lit-

erature taking 10 pixels in consideration. It is clearly evident that the proposed technique

outperforms all other techniques.

5.3.3.2 Indexing

Indexing performance is evaluated in terms of hit rate and penetration rate. It is expected

from a good indexing technique to achieve lower penetration rate at high hit rate. The

penetration rate is computed for the proposed technique at various values of hit rate.

Figure 5.9 is a graph showing the relationship between hit rate and penetration rate. The

proposed technique achieves a penetration rate of 0.79% for 99% hit rate. While, only

0.86% of the database is required to find the true match of the query fingerprint sample

with 100% confidence.
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Figure 5.9: Graph showing relationship between hit rate and penetration rate obtained for
FVC2004 DB1 A database using the proposed technique.

The proposed technique is compared with other state-of-the-art techniques to demon-

strate its efficiency. The comparison is made with respect to two parameters. First one

being the hit rate and penetration rate. Table 5.2 compares the penetration rate achieved

by various fingerprint indexing techniques on different values of hit rate. The techniques

considered in table are minutiae based techniques. Bhanu et al. [191] proposed a minu-

tiae triplet based technique. On the other hand, Bebis et al. [159] and Liand et al. [192]

used Delaunay and Low order Delaunay triangles respectively for indexing fingerprint

database. These two techniques performed better in terms of low penetration rate. Lastly,

Iloanusi et al. used minutiae quadruplets and achieved an even lower penetration rate.

However, it is clearly evident that the proposed technique achieves the lowest penetration

rate at all the three values of hit rate. The proposed technique requires only 0.86% of the

FVC2004 DB1 A database to identify a query fingerprint with 100% confidence.
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Table 5.2: Comparison of the proposed technique with state-of-the-art techniques in terms
of Penetration Rate obtained at various values of Hit Rate.

Database Penetration Rate at Hit Rate (HR)
FVC2004 DB1 A HR = 95% HR = 99% HR = 100%
Minutiae Triplets [191] 8.1 % 27.2 % 40.09 %
Delaunay [159] 7.2 % 18.1 % 32.7 %
LoD Triangles [162] 3.6 % 10.0 % 20.9 %
Quadruplets [165] - 11.8 % 12.0 %
Proposed method 0.61 % 0.79 % 0.86 %

Table 5.3: Comparison in terms of Average Penetration Rate (APR) of the proposed
technique with other state-of-the-art techniques

Author Technique APR (%)
Bai et al. [147] Binary Fingerprint Descriptor 4.83
Bai et al. [179] Deep Compact Binary Minutia Cylinder Code 4.58
Kavati et al. [193] Hierarchical Decomposition of Extended Triangulation 9.70
Lee et al. [194] Extended Triangulation 4.31
Proposed CGTC 0.56

Another comparison of the proposed technique with the state-of-the-art techniques is

done in terms of average penetration rate (APR). APR is computed by stopping the search

as soon as the true match of the query fingerprint is found out and determining its rank.

Table 5.3 compares the proposed technique on the basis of APR (%). Bai et al. proposed

two techniques in [147] and [179] that overcome the limitation of MCC by converting the

real-valued MCC into a low-dimensional binary code. The technique proposed in [147]

achieves an APR of 4.82% while the other technique [179] that proposed a deep learning

based binary minutiae cylinder code (DCBMCC) achieved a lower APR of 4.58%. Lee

et al. proposed an improvisation to the technique proposed in [194] by presenting a

new index vector that has un-correlated elements so that the index values are uniformly

distributed over the search space. This reduces the number of comparisons by retrieving

only a small list of candidates. The technique achieved an APR of 4.305% which is better

than the technique proposed in [193]. It can be seen from the results shown in Table 5.2
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and Table 5.3 that the proposed technique achieves lowest penetration rate and APR and

therefore, is the most efficient as compared to the techniques proposed in the literature.

5.4 Summary
This chapter proposes an efficient technique to index a fingerprint database by learning

a feature vector that makes use of directional and spatial information between the core

point and minutiae points. The first component aims at detecting the location of the core

point for which a novel autoencoder-based architecture with a stacked hourglass has been

proposed. Later, the fingerprint is divided into 72 sectors of five degrees each. The sector

number of each minutia point along with its distance from the core point is recorded to

construct its feature vector. The constructed feature vectors are stored in (x,y) location of

the index table, where x denote the sector in which the minutia point lies and y represents

its distance from the core point. During retrieval, the same procedure is followed for the

query fingerprint. The location of each minutia point in the query fingerprint is decoded

and all the feature vectors lying in that location are retrieved for similarity comparison.

This is repeated for each minutiae point and a similarity list is maintained showing the

most similar ones at the top. A cumulative similarity list is generated by combining all the

lists generated for the minutiae points to retrieve top-k candidates for identification. The

proposed technique is tested on FVC2004 DB1 A database and was found to achieve an

Average Penetration Rate (APR) of 0.56% which is better than other techniques proposed

in the literature.
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Conclusions and Future Directions

6.1 Conclusion

This thesis addresses the problem of accelerating the identification process in biomet-

ric databases. It is vital to get identification responses in real-time, especially for large

databases. The objective of identification is to establish the identity of a query sample

by comparing it with all the templates stored in the database by finding the most similar

one. The presented indexing techniques output a candidate list for comparison against the

given query biometric sample. The generated candidate list is small and fixed in size with

respect to the database under consideration. This results in making the identification pro-

cess a constant time operation. We have considered biometric databases of four biometric

modalities viz. iris, palmprint, finger knuckleprint, and fingerprint. Deep learning-based

approaches have been proposed for feature extraction and to generate hash codes for bio-

metric samples. The network architectures and loss functions used in the proposed tech-

niques are customized according to the modality. The results obtained in each chapter for

the considered databases are summarized in Table 6.1. The value of the penetration rate

with respect to various values of hit rate have been reported for the considered benchmark

databases. However, the results can vary (improve or worsen) for different databases. In
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view of the wide variety of possible application scenarios and databases, no theoretical

guarantees should be drawn. The efficiency of the proposed techniques can be derived

from the comparison made with the state-of-the-art indexing techniques proposed for the

corresponding modality. The conclusion inferred from each chapter, followed by the fu-

ture scope of this research work, is discussed in the following paragraphs.

The first indexing technique is proposed for iris databases that uses a specialized

convolutional neural network architecture trained as a siamese architecture to output a

compact feature vector for iris images. The network is trained so that the learned feature

vectors have low inter-class and high intra-class similarity in the latent representation

space. The proposed technique is an end-to-end pipeline that aims at learning feature

vectors to index the iris database for faster identification. k-means and agglomerative

clustering are explored to generate an index table. During retrieval, the candidates lying

in the most similar index as the query image are fetched for comparison. The proposed

technique has been tested on CASIA Interval [47] and CASIA Lamp [79] database and

achieved a 99% hit rate at just 2.254% and 0.008% penetration rate, respectively. In other

words, one needs to search only 2.254% and 0.008% of the considered datasets to be 99%

sure about finding the true match of the query sample. A speedup of ∼ 4 and ∼ 27 times

is achieved when the CASIA Interval and CASIA Lamp are indexed using the proposed

method compared to the naive approach for identification. A comparison of the proposed

technique with the state-of-the-art techniques is made in Table 2.8 which indicates the

effectiveness of the proposed technique.

The next technique, called PalmHashNet, presents a palmprint database indexing

technique to learn discriminative embeddings for palmprint images. The generated em-

beddings have high intra-class and low inter-class similarity and are indexed using k-

means clustering and Locality Sensitive Hashing (LSH) technique to create an index

table. Whenever a query image is given to the identification system, its features are

extracted using the trained PalmHashNet. The generated feature vector is compared

with all the indices of the index table, and the candidates lying in the most similar index

are retrieved for comparison. Identification experiments are conducted on four publicly
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available popular palmprint databases viz. CASIA, IITD-Touchless, Tongji-Contactless

and PolyU II palmprint databases. PalmHashNet achieved a penetration rate of 0.022%,

1.032%, 4.555% and 0.39% at 100% hit rate on the considered databases respectively.

This implies that we need to only look out for less than 1% of the CASIA Palmprint Im-

age Database [49] and Hong Kong Polytechnic University Palmprint II Database (PolyU

II) [52] while 1.03% and 4.55% of the IIT Delhi Touchless Palmprint Database [50] and

Tongji Contactless Palmprint Dataset [51] to find the true match of a query sample with

100% confidence. Hence, using PalmHashNet, we need to search only a small percentage

of the database instead of the whole database for identification without compromising the

recognition accuracy. The proposed technique outperforms other state-of-the-art recog-

nition as well as indexing techniques given in the literature. The proposed technique can

create an efficient fixed-size candidate list for comparison, thereby making identification

a constant time operation.

An indexing technique called FKPIndexNet that learns discriminative embeddings

for finger-knuckleprint images is proposed in Chapter 4. The generated embeddings have

high intra-class and low inter-class similarity. Three different techniques viz. k-means

Clustering, BallTree hashing and LSH have been explored for index table generation.

Whenever a query image is shown to the system, the features are extracted using the

same method for query FKP image as well. The generated feature vector is matched with

all the indices of the index table and the candidates lying in the most similar index are

retrieved for comparison. Experiments are performed for verification and identification of

the proposed technique on two publicly available benchmark FKP databases viz. PolyU-

FKP and IITD FKP. A thorough evaluation of the extracted features is presented and

analysed in a comprehensive manner. Proposed technique has achieved 100% of hit rate

at the penetration rate of only 3.42% and 0.32% for PolyU-FKP and IITD FKP database

respectively. Hence, by using FKPIndexNet, we need to search only a small percentage

of the database instead of whole database for identification and that too without compro-

mising on the accuracy. Identification using indexed database also provides a speedup of

∼ 11 and ∼ 4 times on PolyU-FKP and IITD FKP database respectively.
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Table 6.1: Summary of the achieved penetration rate (%) at different hit rates after index-
ing the considered databases using the proposed techniques.

Trait Feature Extractor Database(s) PR at HR = 95% PR at HR = 100%

Iris IrisIndexNet
CASIA Interval [47]
CASIA Lamp [79]

0.052%
0.008%

2.254%
0.008%

Palmprint PalmHashNet

CASIA Palmprint [49]
IITD Touchless [50]
Tongji Contactless [51]
PolyU II [87]

0.022%
0.054%
0.016%
0.025%

0.022%
0.162%
0.87%
0.025%

FKP FKPIndexNet
PolyU-FKP [53]
IITD FKP [54]

0.02%
0.02%

0.32%
0.32%

Fingerprint CGTC FVC2004 DB1 A [183] 0.61% 0.86%

Chapter 5 presents a novel indexing technique for fingerprint databases. A feature

vector representing a given fingerprint is constructed by encoding the relationship be-

tween the core point and each minutiae point. Hence, the first and foremost step is to ex-

tract the locations of core and minutiae points from every fingerprint. A novel end-to-end

U-Net based network with three stacked hourglass networks has been proposed to detect

the core point from a fingerprint image. The model takes a fingerprint image as an input

and outputs the core point’s location coordinates (x,y). The proposed model consists of

two components, a Macro-Localization Network and a Micro-Regression Network. The

Macro-Localization Network (MLN) applies segmentation over the entire fingerprint im-

age and learns the probable area containing the core point. The second network, called

Micro-Regression Network (MRN), takes the output of MLN along with the original in-

put fingerprint image to regress the segmented area to localize the coordinates of the core

point. The minutiae points are extracted using a minutiae detector, called MINDTCT,

contained in NIST Biometric Image Software. The proposed work constructs a softmax-

based Coaxial Gaussian Track Code (CGTC) technique for fingerprint database indexing.

The CGTC vector is constructed for each minutiae point in a fingerprint and these are

added to the index table exactly once, making its time complexity linear. The retrieval

algorithm returns a small, fixed-size candidate list for comparison with the query finger-

print. This makes the search time a constant-time operation. The proposed approach

has been tested on FVC2004 DB1 A [183], and it achieves a 100% hit rate with 0.86%

penetration rate.
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6.2 Future Work
1. Acquisition of Large Databases: This research work aims at designing indexing

techniques for biometric databases to facilitate faster identification. However, the

benchmark databases that are publicly available and are widely used for experimen-

tation are smaller in size as compared to the actual biometric databases in real world

scenarios. Therefore, there is a need to collect a large database for experimentation.

2. Multimodal Systems: Biometric authentication systems can be classified as Uni-

modal or Multimodal based on the number of modalities considered. Unimodal

systems involve the use of only one biometric trait while multimodal systems use

two or more biometric traits together for authentication. However, to combine dif-

ferent biometric traits into one system require fusion which can be done at sensor,

feature, matching score or decision level. In this work, indexing techniques are

proposed for unimodal systems. The work can be extended by combining multiple

modalities for indexing and identification.

3. Presentation Attack Detection: Biometric authentication systems are susceptible

to external attacks. The attacks that happen at sensor level by showing an artifact of

a biometric sample, such as wooden glue fingerprint or a photo of palmprint or iris

or finger dorsal, are known as presentation attacks. With an increase in availability

of images and videos online, it is not difficult for the attacker to acquire an individ-

ual’s personal data. Moreover, no extra knowledge of software or internal working

of the system is required to break the authentication system as the attack happens

at the hardware level. Therefore, presentation attack detection can be addressed as

an extension to this work.

4. Template Security: With increase in adaptation of biometric authentication system

in almost every device, it has become vulnerable to attacks. The attack can be made

on the biometric database. One possibility is to overwrite the original template

with an illegitimate sample to get unauthorized access. Other could be stealing
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a template from the database and later, spoofing it to be shown to the sensor or

using the stolen template to get access to some other device or functionality. The

traditional modes of authentication such as passwords or PINs can be cancelled or

revoked when they are compromised but biometric templates can’t be cancelled.

Therefore, there is a need of biometric template security. Various methods are used

for template protection but they are mainly classified into feature transformation

methods and biometric cryptosystems [195]. Template security is beyond the scope

of this work and can be pursued as an extension of the same.
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