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Abstract

Prions are infectious proteins. These infectious prion proteins are responsible for the degenera-
tion of the central nervous system of humans and animals. These infectious agents are respon-
sible for fatal diseases known as scrapie for sheep, creutzfeld–jacob or kuru for humans and
bovine spongiform encephalopathy (BSE) for cattle. The prion proliferation dynamics is rec-
ognized as nucleated polymerization. In this theory, there are two essential forms of prions, one
of them is non-infectious monomer PrPC and the other is an infectious polymer PrPSc. Poly-
mers are very stable above a critical size and have a trend to attach the non-infectious monomers
and transform them into the infectious form. Also, when polymers break into smaller proteins
below critical size they respond like normal prion proteins. Inclusion of chaperone leads to
an important role due to its impact on prion population. There are pharmacological, chemi-
cal and molecular chaperones that suppress the growth of prion proteins and therefore, can be
considered as a potential therapeutic agent. Several researchers have been worked on prion
proliferation models. Thus, it is interested to study the prion dynamics in the presence of chap-
erone.

We extend existing results on continuous models of prion dynamics by the presence of chaper-
one. The aim of the thesis is study of prion proliferation models in the presence of chaperone. In
this work, we investigate the existence of mild, classical and weak solutions of prion-chaperone
models. Moreover, we transform the model into a system of ODEs and study the global asymp-
totic stability of equilibrium points together with effect of chaperone on prion proliferation
numerically.

In the first goal, a prion equation together with chaperone equation is studied. We transform
the problem into a semilinear evolution equation under some assumptions and establish the ex-
istence of the unique mild solution in the Banach space R×L1 ((z0,∞);(q+ z)dz) by using C0

semigroup theory.

Our second aim is to study a model which includes monomer, polymer and chaperone equa-
tions. We discuss the existence and uniqueness of a positive global classical solution of the
model for the bounded degradation rates by using evolution system theory in the state space
R×R×L1(Z,zdz). Moreover, the existence of a global weak solution for unbounded degrada-
tion rates is based on weak compactness argument.
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Further, we extend the results of second goal and analyze the existence and uniqueness of weak
solutions of a prion proliferation model in the presence of a chaperone for a wide class of
degradation rates. In addition, the stability analysis results for disease, as well as disease-free
equilibrium points are aslo discussed. The effect of chaperone on prion population is also pre-
sented numerically.

Finally, the well-posedness of a prion proliferation model in the presence of a chaperone with
polymer coagulation and general incidence terms is established in the product space R×R×
L1(Z,zdz). Moreover, we study the global asymptotic stability for disease-free equilibrium and
effect of chaperone on prion proliferation numerically.
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Chapter 1

Introduction

1.1 Objectives of Thesis

Several researchers have worked on models of prion dynamics. Chaperones play an important
role in suppressing the production of prion polymers, and are called potential therapeutic agents
against a variety of degenerative diseases. Inclusion of chaperone leads to an interesting physi-
cal problem due to its impact on prion population. The objective of the thesis is to study prion
dynamic problems in the presence of chaperone. A prion proliferation model incorporating the
chaperone consists of two ODE’s and a partial integro-differential equation. The following ob-
jectives are fulfilled in this thesis by using semigroups operator theory and weak compactness
argument

(i) To study a prion equation together with chaperone term in a product space R×L1((z0,∞)

;(q+ z)dz) under different degradation rates and find the existence of classical and mild
solutions for associated different degradation rates.

(ii) To investigate the existence of classical and weak solutions of a prion proliferation model
in the presence of a chaperone for bounded and unbounded degradation rates, respec-
tively.

(iii) To analyze the existence and uniqueness of weak solutions of a prion proliferation model
in the presence of a chaperone for a wide class of degradation rates and study the stability
analysis for disease, as well as disease-free states together with effect of chaperone on
polymer population numerically.

(iv) To establish the well-posedness of a prion proliferation model in the presence of a chap-
erone including polymer coagulation in the product space R×R×L1(Z,zdz). Moreover,
to study the effect of chaperone on prion proliferation numerically and the global asymp-
totic stability for disease-free equilibrium.
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Before discussing the mathematical form of a prion proliferation model in the presence of
chaperone, let us briefly explain some biological terms which are involved in the work.

Prion

Mathematics has influenced practically every aspect of biology today, from evolution to bio-
chemistry. Biology’s impact on mathematics has been transformational, and biology has acted
as a catalyst for the production of novel mathematics. At the end of the twentieth century, a
collection of unusual diseases has created confusion regarding everything that has known about
disease-causing agents. Biologists and mathematicians collaborated to identify and characterize
mechanisms to explain a host of fatal neurodegenerative diseases like Bovine Spongiform En-
cephalopathy (BSE or ‘mad cow disease’) in cattle, variant Creutzfeldt–Jakob disease (vCJD)
or Kuru in humans, and Scrapie in sheep. Initially, these studies were primarily focused on
identifying the infectious agent that caused the diseases. As a group, the above-mentioned dis-
eases are called transmissible spongiform encephalopathy (TSEs).
Before the 1980s, slow or unconventional viruses were assumed to be the source of TSEs. Car-
leton Gajdusek (Nobel Prize winner) [31] studied TSEs disease Kuru and explained in 1977
that such viruses keep many unusual properties. The discovery of the prion, a proteinaceous in-
fectious particle, posed a fundamental contradiction in the central dogma in molecular biology.
However, not just for mammalian diseases, but also for heritable phenotypes in yeast, protein-
only inheritance is becoming more widely accepted. Since prion diseases cover so many diverse
systems and time scales, these are an especially interesting biological phenomenon for mathe-
matical analysis. Prion disease can be studied at the population level such as in a herd of sheep
or a herd of deer, as a traditional epidemic model where infections are spread among an initially
uninfected (susceptible) population. All prion diseases are defined by misfolded protein aggre-
gates that act as templates to convert normally folded protein and amplify via fragmentation.
Several mathematical formulations have concentrated primarily on the dynamics of the aggre-
gates through modeling either discrete or continuous sizes using ordinary differential equations
(ODEs) or partial differential equations (PDEs), respectively. Experiments on Griffith’s pre-
dicted protein-only form of disease transmission prompted more research.
In 1982, Prusiner established that the infectious agent was not a virus but a protein of abnormal
shape and created the term prion to refer to a proteinaceous infectious particle, see [67]. Many
of the discrepancies between what was known about viruses and what was known about the
agent causing TSEs, as noticed by Gajdusek, were explained by his hypothesis. Soon after,
a group of researchers discovered the host gene coding for the prion protein, named PrP for
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prion protein, in mammals [64]. Nowak et al [63] were first to construct the nucleated polymer-
ization model (NPM), which is now considered as the standard prion aggregate kinetics. The
infectious units in this model aggregate above a critical size. Aggregates of the misfolded prion
form of the protein are thought to be unstable below this critical size and are quickly resolved
into monomers. Masel et al [59] conducted a comprehensive analysis of NPM in 1999.
Hence, it is concluded that a prion is an infectious protein. These infectious prion proteins are
responsible for the degeneration of the central nervous system of humans and animals. Be-
cause prion research is new, various notations for two essential proteins are currently in use.
We use the terms PrPC and PrPSc. In both cases, PrP refers to prion protein. The superscript
‘C’ refers to cellular, meaning the regular uninfectious protein produced by the body and ‘Sc’
refers to scrapie, meaning infectious protein. According to the nucleated polymerization [26,
41, 45], PrPSc is a polymeric form of PrP while PrPC is monomeric. Below a critical size, the
polymerization process is very slow. The polymer is stabilised above this size and subsequent
polymerization is comparably quick. These prion proteins are thought to be the cause of fatal
diseases like (vCJD) or Kuru for humans and BSE or ‘mad cow disease’ for cattle and Scrapie
for sheep, see [63]. These diseases occur when the prion protein PrPC misfolds to PrPSc, which
is able to induce further misfolding in healthy PrPC proteins. It is now widely accepted that
the responsible agent for these diseases is a protein, known as prion, which can self-replicate
through an autocatalytic mechanism, see [40, 67].

Nucleated Polymerization

The nucleated polymerization theory was proposed in [45] as a PrPC to PrPSc conversion pro-
cess. A mathematical model consisting of an infinite number of coupled ordinary differential
equations (ODEs) was presented in [59] to better understand this mechanism on a qualitative
level. The construction of the models [28, 38, 48, 69] is based on the leading theory of nu-
cleated polymerization [16, 44]. Prions PrPSc are considered to be polymers form of normal
protein monomers PrPC according to the nucleated polymerization hypothesis. These PrPSc

are very stable above some critical size z0, and polymerize sharply. The meaning of the word
polymerize is that PrPSc increases its size by attaching PrPC monomer unit in a string like
fashion. When a PrPC monomer is coupled with a PrPSc polymer, it gets transformed into the
infectious PrPSc form. Figure (1.1) depicts the polymerization process:

Another feature of nucleated polymerization is that PrPSc polymers may also break into
smaller polymers. Usually, one infectious PrPSc polymer breaks into two smaller infectious
PrPSc polymers and after that both PrPSc attach to PrPC. When polymers fall below the critical
size z0, they act as normal PrPC monomers.
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Fig. 1.1: Interaction of PrPSc with PrPC(normal cellular proteins)

General Incidence and Polymer Coagulation

PrPSc attaches to PrPC and converts it to PrPSc through nucleated polymerization. Proteins are
frequently found as single units, hence they are often known as monomers. Each polymer can
attach to a PrPC monomer from either end and transforms it to the infectious form of PrPSc

rapidly. Thus, the polymer can grow its length by one unit of protein and such process is said
to be lengthening. In [28, 38, 69], the prion proliferation models are studied with mass action
incidence for the lengthening process of infectious polymers attaching to and converting non-
infectious monomers. Greer et al [37] generalized this form of incidence in a way that reduces
lengthening when the total amount of infectious protein become large in proportion to the num-
ber of polymers. They introduced general incidence and polymer coagulation terms in the prion
proliferation model and studied the effect of both the terms on nucleated polymerization. The
meaning of polymer coagulation implies the combination of two polymers to form one larger
polymer.

Chaperone

Protein misfolding and aggregation are responsible for a vast range of neurodegenerative dis-
orders in humans and animals. The ubiquitous cellular molecular chaperones, which are stress-
induced proteins along with newly discovered pharmacological and chemical chaperones have
been found to be useful in preventing the misfolding of various diseases causing proteins, re-
ducing the intensity of various neurodegenerative diseases and several other protein-misfolding
diseases including prion disease. These pharmacological, chemical and molecular chaperones
inhibit the growth of prion proteins PrPSc, and therefore, can be considered as a potential ther-
apeutic agent, see [22, 32]. The presence of chaperone leads to an interesting physical problem
due to its impact on prion population.

The above discussion shows that chaperone may help the protein to find correct conforma-
tion. Chaperones play an important role in suppressing the production of prion polymers and
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Table 1.1: Chaperone Concept

Name Function

1 Chaperone A class of proteins that prevent other proteins from
unfolding undesirably by providing a proper environ-
ment for folding.

2 Medical chaperone A class of small molecules that control the folding or
dynamical activities of proteins or RNAs by binding
to their specific sites.

3 Chemical chaperone A class of osmolytes such as glycerol and trehalose:
they stabilize any protein nonspecifically.

4 Pharmaceutical chaperone A class of small enzyme inhibitors that bind to and
stabilize proteins and prevent their degradation by
the ubiquitin system.

called potential therapeutic agents against a variety of degenerative diseases, including neu-
rodegenerative disorders such as TSEs. The functional characteristics of the different types
of chaperones propose to their use as potential therapeutic agents for various degenerative dis-
eases, including neurodegenerative disorders. Calnexin is a special class of chaperone, see [79],
which recognize and target abnormally folded proteins for rapid degradation. Increased chap-
erone expression can suppress the neurotoxicity induced by protein misfolding, suggesting that
chaperones could be used as possible therapeutic agents [13].
Chaperones, whether natural, chemical, or pharmaceutical, have been shown to be promising
agents for the control of many protein conformational disorders. It is believed that chaperones
are important in preventing protein misfolding and thereby reducing the effectiveness of neu-
rodegenerative diseases. Chaperones are proteins that interact with nascent polypeptides dur-
ing their production and translocation to different cellular compartments. They can be found
throughout the cell. Molecular chaperones are proteins that facilitate folding and transport of
polypeptides into organelles during their biosynthesis and that help in preventing protein ag-
gregation during situations of cellular stress [74]. Chaperones can distinguish between native
and non-native states of targeted proteins. However, it is yet to be unclear how they distinguish
between correctly and incorrectly folded proteins, and how they retain and target the latter for
disintegration.
In [49], a logical drug design technique and its application to prion diseases is reviewed. The
probable mechanisms of various protein-misfolding diseases in humans, as well as the thera-
peutic approaches for countering them are reviewed in [19]. Also, the involvement of chemical,
molecular and pharmacological chaperones in suppressing the effect of protein misfolding-
induced consequences in humans is discussed in detail. Chemical chaperones have also been
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used as therapeutic agents in prion disease. In animal models [47, 60], a number of chemicals,
including anthracyclines, porphyrins, and diazo dyes prevent prion replication. Pharmacologi-
cal chaperones have been shown to be very effective in protecting certain receptor proteins from
proteasomal degradation. It is feasible that chemical, pharmacological and molecular chaper-
ones might change the mode of treatment in future and open a new door in clinical research
into the neurodegenerative diseases.

1.2 Model of Prion Dynamics and Literature Survey

In this section, the role of mathematical modelling in understanding the dynamics of prion dis-
ease is discussed. Eigen [26] provided the first mathematical description of the autocatalytic
proliferation of prion aggregates in 1996, which was influenced by Griffiths’ third hypothe-
sis [40] and observations of Prusiner [68] and Lansbury [18, 21, 52]. He formulated systems
of differential equation to analyze two theories on protein-only amplification. In Eigen’s first
model, he explored the possibility that heterodimers act to template misfolding suggested by
Prusiner [68]. He discussed a system with two protein species: A-normal conformation, and B-
prion conformation, in which proteins of type A can form heterodimers with proteins of type B
and are irreversibly transformed into type B. Eigen’s second model examined two mechanisms
where the infectious agents were not individual misfolded protein monomers: a cooperative
auto-catalytic mechanism, which generalized his first model and aggregates of misfolded pro-
teins according to the aggregation mechanism proposed from Lansbury [18, 21, 52]. These
assumptions lead to a complicated set of differential equations but steady-state analysis de-
clared important properties of the asymptotic dynamics as for the previous model.
Eigen’s analysis investigated that in prion proliferation aggregation is necessarily involved [26].
In 1998, Nowak et al expanded Eigen’s seminal work by including new experimental obser-
vations. Their mathematical model for prion infection dynamics was based on having prion
aggregates act in two ways. Nowak et al [63] were first construct the nucleated polymerization
model, which is now considered the standard prion aggregate kinetics. The infectious units
in this model are aggregates above a critical size. Aggregates of the misfolded prion form of
the protein are thought to be unstable below this critical size and are quickly resolved into
monomers. Masel et al [59] conducted a comprehensive analysis of the nucleated polymeriza-
tion model (NPM) in 1999. In particular, they recommended to link experimental observations
on the time for the appearance of prion disease symptoms with the kinetic parameters of the
NPM.
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Masel et al [59] and Greer et al [38] with a generalization showed that the dynamics of ag-
gregates under the NPM are consistent with the long-incubation time observed for prion phe-
notypes. In early twenty-first century, mathematicians continued formalizing the NPM. Prüss
et al [69] demonstrated that the prion phenotypes were globally asymptotically stable and not
merely locally stable, through deriving a Lyapunov function. Engler et al [28] analyzed the
well-posedness of the generalization of the NPM where aggregate sizes were continuous, in-
stead of discrete. In [59, 63], the NPM for PrPSc polymers and PrPC monomers containing
a discrete number of monomers are constructed and analyzed. Further, a model with contin-
uous polymer size is formulated in [39] and analyzed in [28, 38, 69]. The prion proliferation
model [28, 38, 69] is expressed by a coupled system consisting of one ODE for the number of
non-infectious PrPC monomers S which is given by

dS(t)
dt

= λ − γS(t)−S(t)
∫

∞

z0

τ(y)u(t,y)dy+2
∫ z0

0
z
∫

∞

z0

β (y) k(z,y) u(t,y) dydz. (1.1)

and a partial integro-differential equation for the population density function u of infectious
PrPSc polymers of size z, is described as

∂u(t,z)
∂ t

=−S(t)
∂ (τ(z)u(t,z))

∂ z
−
(
µ(z)+β (z)

)
u(t,z)+2

∫
∞

z
β (y) k(z,y) u(t,y) dy (1.2)

with the following initial and boundary data

S(0) = S0, u(0,z) = u0(z), u(t,z0) = 0, for t ≥ 0, z0 < z < ∞. (1.3)

The description of the parameters are given below in Table 1.2. Here, the last term on the
right hand side of equation (1.1) represents the monomers gained when a PrPSc polymer splits
with at least one polymer shorter than the minimum length z0. We assume that such polymer
piece degrades immediately into PrPC monomers. The factor 2 in the expression accounts for
the fact that a polymer of length z greater than z0 splits into two PrPSc polymers. The term
−S(t)∂ (τ(z)u(t,z))

∂ z in equation (1.2) denotes the loss of polymers of length z due to lengthening
and 2

∫
∞

z β (y) k(z,y) u(t,y) dy accounts the number of PrPSc which are added to the population
when longer polymers split into polymers of length z. The splitting density k(z′,z)≥ 0 defined
on K = {(z′,z) : z0 < z < ∞, 0 < z′ < z} satisfies

k(z′,z) = k(z− z′,z) for all (z′,z) ∈K (1.4)

and is normalized by

2
∫ z

0
z′k(z′,z)dz′ = z, a.e. z > z0. (1.5)
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Table 1.2: Parameters of the Prion Proliferation Model

Parameters Description

λ Source rate of production for normal PrPC

τ(z) Conversion rate of monomers PrPC to polymers PrPSc

γ Metabolic degradation rate of PrPC

µ(z) Degradation rate of PrPSc due to metabolism

β (z) Splitting rate of polymers to monomers

k(x,z) Probability density function for splitting a polymer of size z > z0
into two pieces of sizes z− x and x

S(t) Population of PrPC monomers at time t

u(z, t) Population of PrPSc polymers of length z at time t

Now, conservation of the number of monomers due to splitting and (1.4)-(1.5) implies that∫ z

0
k(z′,z)dz′ = 1, a.e. z > z0. (1.6)

It should be mentioned that these constraints are satisfied by the self-similar density k of the
form

k(z′,z) =
1
z

k0
(z′

z

)
, z > z0, 0 < z′ < z (1.7)

where k0 denotes a non-negative integrable function defined on (0,1) such that

k0(z) = k0(1− z), z ∈ (0,1) and
∫ 1

0
k0(z)dz = 1. (1.8)

Several researchers have worked on the monomer-polymer system (1.1)-(1.2), see [28, 38,
55, 69, 71, 77]. In [38], the problem (1.1)-(1.2) is transformed into a system of three ODEs
under the following assumptions on associated parameters

µ ≡ constant, τ ≡ constant and β (z) = β z, k(y,z) =
1
z
, z > z0, 0 < y < z (1.9)

and the stability results are proved for the disease steady-state and the disease-free steady-
state. Further, this stability study has been subsequently improved in [69] by including the
investigation of the global asymptotical stability issues for disease-free state and disease-state.
The global asymptotic stability of the steady states and well-posedness of the mild solutions
are demonstrated to the problem (1.2), see [28] under the assumptions considered in [38, 69].
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In [71], the existence of classical and weak solutions to the monomer-polymer system (1.1)-
(1.2) (with τ(z) = τ) are discussed for bounded kernels, namely

µ,β ∈ L+
∞(Z); Z = (z0,∞), (1.10)

and degradation rates µ,β ∈ L+
∞,loc(Z) such that there exists α ≥ 1 and ρ ∈ L+

∞(Z) such that

µ(z)+β (z)≤ ρ(z) zα , a.e. z ∈ Z and ρ(z)→ 0 as z → ∞,
(1.11)

and  for each ε > 0 there exists δ > 0 such that

sup|ξ |≤δ

β (z)
zα

∫ z
z0
1ξ (y)k(y,z) dy ≤ ε, a.e. z ∈ Z,

(1.12)

where 1ξ indicates the characteristic function on ξ and supremum is taken over all measurable
subsets ξ ⊂ Z with |ξ | ≤ δ , respectively. Moreover, they also discussed the global stability of
disease-free equilibrium. The well-posedness to the problem (1.1)-(1.2) is established in [55]
for a broad class of kernels, i.e., without placing growth conditions (1.11) on µ,β . Similar to
[71], the existence of classical and weak solutions to the monomer-polymer system (1.1)-(1.2)
are achieved in [77].

In [48], the authors are extended the prion proliferation model (1.1)-(1.2) by the presence
of a chaperone. The mathematical model which describes the dynamics of prion proliferation
in the presence of chaperone [48] is described by the following set of equations:
The monomer equation is described by

dS(t)
dt

= λ − γS(t)− τS(t)
∫

∞

z0

u(t,y)dy+2
∫ z0

0
z
∫

∞

z0

β (y) k(z,y) u(t,y) dydz. (1.13)

The polymer and chaperone equations are governed by

∂u(t,z)
∂ t

=−τS(t)
∂u(t,z)

∂ z
−
(
µ(z)+β (z)+δ2C(t)

)
u(t,z)+2

∫
∞

z
β (y) k(z,y) u(t,y) dy (1.14)

dC(t)
dt

= −δ0C(t)+δ1C(t)
∫

∞

z0

u(t,y) dy, (1.15)

respectively, where the initial and boundary conditions are as follows

S(0) = S0, C(0) =C0, u(0,z) = u0(z), u(t,z0) = 0, for t ≥ 0, z0 < z < ∞. (1.16)
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Here, all parameters γ, λ , τ, δ0, δ1,δ2 are positive constants and C(t) denotes the amount
of chaperone in the system at time t. The parameter δ2 represents the reducing rate of PrPSc

population due to presence of chaperone. Chaperone degradation rate due to metabolic process
is denoted by δ0 and the parameter δ1 denotes chaperone increasing rate in the system due to
absorption in the body. From [48], it is observed that the system (1.13)-(1.15) can be trans-
formed into a system of four ODEs and the stability analysis is discussed for the equilibrium
points along with the effect of the chaperone numerically.

Greer et al [37] studied the prion proliferation model which includes prion polymerization,
polymer coagulation and polymer splitting. In the general incidence and polymer coagulation
case, the prion proliferation model [37] is described by

dS(t)
dt

= λ − γS(t)− S(t)
1+ρ

∫
∞

z0
u(t,z)zdz

∫
∞

z0

τ(z)u(t,z)dz+2
∫ z0

0
z
∫

∞

z0

β (y) k(z,y) u(t,y) dydz

(1.17)
and

∂u(t,z)
∂ t

=− S(t)
1+ρ

∫
∞

z0
u(t,z)zdz

∂z(τ(z)u(t,z))−
(
µ(z)+β (z)

)
u(t,z)+2

∫
∞

z
β (y) k(z,y) u(t,y) dy

+1[z>2z0]

∫ z−z0

z0

η(z− y,y)u(t,z− y)u(t,y) dy−2u(t,z)
∫

∞

z0

η(z,y)u(t,z)dz

(1.18)

where the initial and boundary conditions are

S(0) = S0, u(0,z) = u0(z), u(t,z0) = 0, for t ≥ 0, z0 < z < ∞.

Here, the function η(y,z) denotes the rate at which two polymers of sizes y and z join
together and ρ is a parameter associated with polymer lengthening. The stability of disease-free
and endemic equilibriums are discussed in [37]. The existence of classical and weak solutions
are proved in [56] for bounded and unbounded degradation rates, respectively, to the monomer-
polymer system (1.17)-(1.18). Further, the uniqueness of weak solution is proved in [57].

1.3 Plan of the Thesis

As we know and evidenced by the preceding literature, mathematics plays an important role
in epidemiology. The emphasis of the work is on prion proliferation model in the presence of
chaperone. Based on literature survey and the gaps in research to this model, in the thesis, we
show the existence of classical, mild and weak solutions to the models of prion dynamics in
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the presence of chaperone. Also, we study the behaviour of the solutions of such dynamical
systems. For better understanding, let us summarize each chapter of the thesis.

The thesis is organised as follows: In chapter 2, we collect some basic mathematical definitions
and results that would be required for studying the different models. Some standard and pre-
liminary definitions from semigroups operator theory and the results on semilinear evolution
equation are illustrated. Also, the results for existence of solutions for linear and semilinear
evolution equations are given which help us to show the existence of mild and classical solu-
tions for prion-chaperone models. We also provide preliminary definitions and results for weak
compactness argument. The section is concluded with some standard and preliminary defini-
tions of stability analysis.

The aim of Chapter 3 is to investigate the mild and classical solutions of the partial integro-
differential equation (1.2), together with chaperone equation (1.3) for different kernels. We
transform the model into the semilinear evolution equation under assumptions (1.9) and estab-
lish the existence of the unique mild solution by semigroups operator theory. Moreover, the
existence of the classical solution is proved for associated bounded degradation rates by using
evolution operator theory.

In Chapter 4, evolution operator theory is used to show the existence and uniqueness of the
classical solution to the problem (1.1)-(1.3) under the assumption (1.10) while the existence
of a weak solution is discussed under the assumptions (1.11) and (1.12) by weak compactness
argument. This chapter extends the work of [71] from the presence of chaperone.

Chapter 5 discusses the existence of a weak solution to the problem (1.1)-(1.3) for a broad class
of kernels, i.e., without placing growth conditions (1.11) on µ,β which extends the results of
[55] in the presence of chaperone. Also, we transform the problem into a system of four ODEs
and it is demonstrated that there is a unique steady state, the disease-free equilibrium, that exists
below and at the threshold and is globally asymptotically stable. Above the threshold, there is
another steady state, the disease state, which is also global asymptotically stable.
Furthermore, in Chapter 6, the prion-chaperone model is studied together with general inci-
dence and polymer coagulation terms. The existence of classical and weak solutions to the
problem are proved for associated bounded and unbounded degradation rates, respectively.
Moreover, we convert the problem into a system of ODEs and the global asymptotic stabil-
ity is established for disease-free state.
At the end of the thesis, conclusions and some open problems are provided.
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Chapter 2

Mathematical Preliminaries

2.1 Theory of Semigroups

2.1.1 Introduction

The beginning of the theory of one-parameter semigroups of linear operators on Banach spaces
was in the first half of nineteenth century and reached its apex with Hille and Phillips “Semi-
groups and Functional Analysis” published in 1957, see [42]. In the 1970s and 80s, the theory
was presented very well in the monographs by E.B. Davies [23], J.A. Goldstein [36], A. Pazy
[66] and others.
Semigroups are useful for solving a wide range of problems known as evolution equations
which can be found in various fields, including physics, chemistry, biology, engineering, and
economics. They are usually described by an initial value problem (IVP) for a differential equa-
tion which can be either ordinary or partial. The theory of linear and nonlinear semigroups is
well developed, see [12, 15, 35, 36, 62, 65, 66]. Semigroup approaches have also been suc-
cessfully applied to problems, such as population dynamics or transport theory, see [4, 58, 78].
Semigroup theory is used to establish the existence of solutions of prion dynamics [28, 56, 71,
77] and coagulation-fragmentation [5, 6, 8, 9, 10, 51, 61] problems. Semigroup theory gives
both necessary and sufficient requirements for the well-posedness of the abstract cauchy prob-
lem (ACP). Let u(t) describes the state at time t and the time rate of change of u(t) is given by
some function of A. If, u(0) = u0 is the initial data, then abstract Cauchy problem is given by

du
dt = Au(t) ; t ≥ 0

u(0) = u0.
(2.1)

If the solution of (2.1) exists, then it is given by

u(t) = eAtu0.
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Definition 2.1.1. A mathematical problem is said to be well posed if it satisfies the following

conditions

(a) Existence, that is, there is atleast one solution,

(b) Uniqueness, that is, there is atmost one solution,

(c) Stability, that is, the solution depends continuously on the data.

The well-posedness of the ACP (2.1) is an interesting topic. Semigroup theory can be used
to identify the well posededness of the linear (or nonlinear) evolution problem. To apply the
theory, we must identify first that we have a semigroup. Further, to continue with the solution,
let T (t) maps the solution u(s) at time s to the solution u(t + s) at time t + s. If A is assumed to
be independent of time, then T (t) is independent of s. The solution u(t + s) at time t + s can be
computed as T (t + s)u0. If the procedure is broken down into two steps, then
Step−1 :

T (s)u0 = u(s)

Step−2 :

T (t)(u(s)) = T (t)T (s)u0 = u(t + s) = T (t + s)u0.

Semigroup Property

From the above steps, it is clear that the state of the system at time t + s can be reached by
either going straight from the initial condition to the state at time t + s or by allowing the state
to evolve over s time units, and then allowing it to evolve t more time units. Here, T (·) works
as a transition operator. The semigroup property which is given by

T (t + s) = T (t)T (s) t,s > 0 (2.2)

is revealed by uniqueness of the solution. The semigroup property of the family of functions
{T (t) : t ≥ 0} is a composition and not a multiplication. Note that T (0) is the identity operator
I, that is, there is no transition at time zero and the initial data exists. Now, to find out how A

and T relate to each other, it is noticed that

T (t)(u0) = T (t)(u(0)) = u(t) = eAtu0,

d
dt

T (t)(u0) = A(T (t)(u0))
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so that u(t) = T (t)(u(0)) solves (2.1).

Let us review some basic definitions, examples and results from operator theory.

Definition 2.1.2. (See, [66]) Let X be a Banach space. Then, a family {T (t) : t ≥ 0} of bounded

linear operators from X into X is said to be semigroup if

(a) T (0) = I, where I is the identity operator,

(b) T (t + s) = T (t)T (s) for every t,s ≥ 0 (the semigroup property).

Definition 2.1.3. (See, [66]) A family {T (t) : t ≥ 0} ∈ L(X) is said to be strongly continuous

semigroup or C0 semigroup on X if

(a) T (0) = I, where I is the identity operator,

(b) T (t + s) = T (t)T (s) for every t,s ≥ 0,

(c) for each fixed x ∈ X , T (t)x → x as t → 0+.

Definition 2.1.4. Let {T (t) : t ≥ 0} be a C0 semigroup of bounded linear operators on X . Then,

T (t) is called

(a) isometries if ∥T (t) f∥= ∥ f∥ for all t ≥ 0, f ∈ X ,

(b) contractions if ∥T (t)∥ ≤ 1 for all t ≥ 0.

Definition 2.1.5. (Infinitesimal generator, see [66]) The infinitesimal generator of a strongly

continuous semigroup {T (t) : t ≥ 0} on X is the operator A : D(A)⊆ X → X defined by

Ax = lim
t→0+

T (t)x− x
t

,

where D(A) = {x ∈ X : limt→0+
T (t)x−x

t exists}.

Definition 2.1.6. (See, [70]) Let X and Y be two Banach spaces. A linear operator A : D(A)⊆
X → Y is said to be

(a) closed if for any sequence (xn) ∈ D(A) such that xn → x and Axn → y, then x ∈ D(A) and

Ax = y,

(b) closable if A has a closed extension, i.e., if (xn) ∈ D(A) such that xn → 0 and Axn → y,

then y = 0.
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Example 2.1.1. (Non-Closable Operator, see [70]) Let H be a Hilbert space. Let M be a linear

subspace of H and e be a non-zero vector in H. Let F be a linear functional on M which is not

continuous in the Hilbert space norm. Define the operator T : D(T ) = M ⊆ H → H such that

T (x) = F(x)e for x ∈ M. Then T is not closable.

Given F is not cotinuous, then there exists a sequence (xn) in M such that xn → 0 in H

and F(xn) does not converge to zero. Now, there exists a subsequence (xnk) of (xn) such

that |F(xnk)| ≥ c for some c > 0. Define x′nk
= F(xnk)

−1xnk , then x′nk
→ 0 as k → ∞ and

T (x′nk
) = F(xnk)

−1T (xnk) = e ̸= 0. Hence, T is not closable.

Example 2.1.2. (Closable but not Closed Operator) Let H = L2(0,1) and A : D(A)⊂ H → H

is defined by A f = i f ′, where

D(A) =C1
0(0,1) = { f ∈C1(0,1) : f (0) = f (1) = 0}.

Then, A is closable operator but not closed. Since,

(A f ,g) =
∫ 1

0
i f ′(t) g(t) dt

=−i
∫ 1

0
f (t) g′dt

=
∫ 1

0
f (t) ig′dt

= ( f ,g∗).

This implies that, for all f ∈ D(A),(A f ,g) = ( f ,g∗) where A∗g = g∗ = ig′ and D(A∗) = {g ∈
H : g′ ∈ L2(0,1)}. Thus D(A) is a proper subset of D(A∗), i.e., A∗ is an extension of A and

hence, A is not self-adjoint operator. But A is a symmertic operator. Also, domain of A is

densely defined and hence, A is closable. Here, A is not closed operator.

Definition 2.1.7. (See, [70]) Let X, Y be two Banach spaces and A : D(A)⊆ X →Y is a linear

operator. Define the operator Ā : D(Ā)⊆ X → Y such that

(a) Ā is an extension of A.

(b) Ā is a linear closed operator.

(c) if S : D(S) ⊆ X → Y is any linear operator with properties (a) and (b), then S is an

extension of Ā.

Then, the operator Ā is said to be closure of A.
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Example 2.1.3. (Translation Semigroups, see [27]) Let E be one of the following function

spaces C0(R+) or Lp(R+) for p ∈ [1,∞). Define T (t) by

(T (t) f )(x) = f (x+ t)

as the (left) translation operator for x, t ∈R+ and f ∈ E. Then {T (t) : t ≥ 0} is a C0 semigroup.

Note: The generator of the translation semigroup on E =C0(R+) is

A f = lim
t→0+

T (t) f − f
t

=
d
dx

f = f ′

where

D(A) = { f ∈ E : f is differentiable and f ′ ∈ E}.

Note: The generator of the translation semigroup on E = Lp(R+),1 ≤ p < ∞, is

A f = lim
t→0+

T (t) f − f
t

=
d
dx

f = f ′

where

D(A) = { f ∈ E : f is absolutely continuous and f ′ ∈ E}.

Example 2.1.4. (See, [77]) Let X0 = L1(Z,zdz), Z = (z0,∞). The operator −A, defined by

Au = ∂z(τu), u ∈ D(A) = {u ∈ X0 : ∂z(τu) ∈ X0,u(z0) = 0},

generates a C0 semigroup {W (t) : t ≥ 0} on X0 defined by

(W (t) f )(z) = 1[t,∞) (Ψ(z))
τ
(
Ψ−1(Ψ(z)− t)

)
τ(z)

f
(
Ψ

−1(Ψ(z)− t)
)
, z ∈ Z, t ≥ 0,

with

∥W (t)∥L(X0)
≤ eτ0t , t ≥ 0,

where Ψ : Z → (0,∞) is a diffeomorphism defined by Ψ(z) =
∫ z

z0

dy
τ(y) and τ0 =

∥τ∥
∞

z0
so that

τ(z)≤ τ0z, z ∈ Z.

Definition 2.1.8. (See, [36]) Let A : D(A)⊂ X → X is linear, not necessary bounded operator

on a real or complex Banach space X , then the resolvent set of A is denoted by ρ(A) and defined

as ρ(A) = {λ ∈ C : (λ I −A)−1 exists and bounded}.

Theorem 2.1.1. (Hille-Yosida Theorem) A linear (unbounded) operator A : D(A) ⊂ X → X

generates a C0 semigroup of contractions {T (t) : t ≥ 0} iff
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(a) A is closed and D(A) = X .

(b) The resolvent set ρ(A) of A contains R+ and for every λ > 0

∥R(λ ,A)∥ ≤ 1
λ
·

Proof. See [[66], Theorem 1.3.1].

Theorem 2.1.2. Let {T (t) : t ≥ 0} is a C0 semigroup of bounded linear operators on X . Then,

there exists constants ω ≥ 0 and M ≥ 1 such that

∥T (t)∥ ≤ Meωt for all t ≥ 0.

Proof. See [[66], Theorem 1.2.2].

Theorem 2.1.3. (Well-posedness Theorem) Let A : D(A) ⊂ X → X is a linear operator. Then,

the initial value problem (2.1) is well-posed if and only if A is the generator of a C0 semigroup

{T (t) : t ≥ 0} on X . In this case, for each u0 ∈ D(A), the unique solution of (2.1) is expressed

by u(t) = T (t)u0.

Proof. See [[36], Theorem 2.1.2].

Definition 2.1.9. (Dissipative Operators, see [66]) Let H be a Hilbert space, then an operator

A : D(A)⊆ H → H is said to be dissipative operator if

Re(Au,u) ≤ 0 for all u ∈ D(A).

If Re(Au,u) ≥ 0, then A is said to be accretive.

Example 2.1.5. (See, [72]) Let H = L2(0,1) and A : D(A)⊂ H → H is defined by

A f = f ′ for f ∈ D(A)

where D(A) = { f ∈ H : f ∈W 1,2(0,1) and f (0) = 0}. Then,

Re⟨A f , f ⟩= Re
∫ 1

0
f (t) f ′(t)dt

=
1
2

∫ 1

0

d
dt

(
f (t) f (t)

)
dt

=
1
2
| f (1)|2 ≥ 0.

Therefore, A is accretive operator and −A is a dissipative operator on H.
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Definition 2.1.10. (m-Dissipative Operator, see [66]) A densely defined, dissipative operator

A : D(A) ⊂ H → H is called m-dissipative if the operator λ I −A is surjective, that is, R(λ I −
A) = H for some λ > 0.

Example 2.1.6. Let H = L2(Ω),Ω ⊆ R2 and A f = △ f for f ∈ H2(Ω)∩H1
0 (Ω). By Green’s

first identity, we have ∫
Ω

u▽2 v+
∫

Ω

▽u▽ v =
∫

∂Ω

v
∂u
∂η

ds.

Therefore, ∫
Ω

u▽2 u+
∫

Ω

▽u▽u = 0∫
Ω

u△u+
∫

Ω

|▽u|2 = 0∫
Ω

(−△u)u =
∫

Ω

|▽u|2 ≥ 0

⟨−△u,u⟩= ⟨▽u,▽u⟩ ≥ 0

Thus, −△ is an accretive operator.

2.1.2 Lumer-Phillips Theorem

Let X∗ be the dual space of Banach space X . Let us denote the value of f ∗ ∈ X∗ at f ∈ X by
⟨ f ∗, f ⟩ or ⟨ f , f ∗⟩. For every f ∈ X , the duality set, see [24, 66], is defined as

F( f ) = { f ∗ ∈ X∗ : ⟨ f ∗, f ⟩= ∥ f∥2 = ∥ f ∗∥2}.

It follows from Hahn-Banach theorem that F( f ) ̸= /0 for every f ∈ X .

Definition 2.1.11. (Dissipative Operator, see [46, 66]) Let A : D(A)⊂ X → X is a linear oper-

ator. Then, A is dissipative if for every f ∈ D(A) there is a f ∗ ∈ F( f ) such that Re ⟨A f , f ∗⟩ ≤ 0.

Theorem 2.1.4. The following two statements are equivalent for an operator A on X

(a) A is dissipative.

(b) ∥(λ I −A)x∥ ≥ λ ∥x∥ for all x ∈ D(A) and λ > 0.

Proof. See [[66], Theorem 1.4.2].

Theorem 2.1.5. Let A be a dissipative operator in X .

(a) If for some λ0 > 0, R(λ0I −A) = X then R(λ I −A) = X for all λ > 0.

(b) If A is closable then closure of A, i.e., Ā is also dissipative.



20 Chapter 2. Mathematical Preliminaries

(c) If D(A) = X , then A is closable.

Proof. See [[66], Theorem 1.4.5].

Theorem 2.1.6. (Lumer-Phillips Theorem) Let A : D(A) ⊂ X → X be a densely defind linear

operator. Then, the following statements are equivalent.

(a) If A is dissipative and there exists λ0 > 0 such that the range of λ0I −A is X , that is,

R(λ0I −A) = X . Then, A is the generator of a C0 semigroup of contractions on X .

(b) If A is the generator of a C0 semigroup of contractions on X , then R(λ I −A) = X for all

λ > 0 and A is dissipative.

or

A densely defined linear operator A is the generator of a C0 semigroup of contractions iff it is

m-dissipative.

Proof. See [[66], Theorem 1.4.3].

Example 2.1.7. (See, [72]) Let X = L2(0,1) and consider the operator A : D(A)⊂ X → X ,

A f = f ′

where D(A) = { f ∈ W 1,2(0,1) : f (0) = 0}. This is a closed operator with dense domain. Let

φ ∈ D(A), then for λ > 0 and f ∈ X ,

(λ I +A)φ = λφ +φ
′ = f

defines a linear ODE. After solving the differential equation, one gets,

φ(t) =
∫ t

0
e−λ (t−s) f (s)ds. (2.3)

Therefore, ∥(λ I +A)φ∥ ≥ λ ∥φ∥ for all λ > 0 and φ ∈ D(A). It follows that (λ I+A)D(A) = X

for all λ > 0, and hence (−A,D(A)) is m-dissipative. Thus, −A generates a C0 semigroup of

contractions on X .

Theorem 2.1.7. Let A is dissipative with R(I −A) = X and X is reflexive, then D(A) = X .

Proof. See [[66], Theorem 1.4.6].

Remark: We can not relax the condition of reflexivity in the Theorem 2.1.7. See the
following example.
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Example 2.1.8. (See, [66]) Let X =C[0,1] with the sup norm. Let

A f =− f ′ for f ∈ D(A)

where D(A) = { f : f ∈C1[0,1] and f (0) = 0}.
For every g ∈ X , the equation λ f −A f = g has a solution f given by

f (x) =
∫ x

0
eλ (ξ−x) f (ξ )dξ . (2.4)

This indicates that R(I −A) = X and from (1) we also have

λ | f (x)| ≤ (1− e−λx)∥g∥ ≤ ∥λ f −A f∥. (2.5)

This implies that λ∥ f∥ ≤ ∥λ f −A f∥ and therefore, A is dissipative. But D(A) = { f : f ∈
X and f (0) = 0} ̸= X =C[0,1].

Corollary 2.1.7.1. If A : D(A)⊂ X → X generates a C0 semigroup {T (t) : t ≥ 0} on X . Then,

A is a closed and densely defined linear operator.

Proof. See, [[66], Corollary 1.2.5].

2.1.3 Positive Semigroups

In this section, E is assumed to be a Banach lattice.

Definition 2.1.12. (Vector Lattice, see [14]) A vector lattice is a real vector space V that is

ordered by some order relation ‘ ≤ ’ if any two elements f ,g ∈ V have a least upper bound,

denoted by f ∨g = sup( f ,g)∈V, and a greatest upper bound, denoted by f ∧g = inf( f ,g)∈V,

and the following properties are satisfied

(a) if f ≤ g, then f +h ≤ g+h for all f ,g,h ∈V,

(b) if 0 ≤ f , then 0 ≤ t f for all f ∈V and t ≥ 0.

Let V be a vector lattice, then the positive cone of V is defined by

V+ = { f ∈V : 0 ≤ f}.

For f ∈V, let us define

f+ = f ∨0, f− = (− f )∨0 and | f |= f ∨ (− f ),

the positive part, the negative part and the absolute value of f , respectively.



22 Chapter 2. Mathematical Preliminaries

Definition 2.1.13. (Lattice norm, see [14]) A norm on a vector lattice V is called a lattice norm

if

| f | ≤ |g| implies ∥ f∥ ≤ ∥g∥ for f ,g ∈V.

Definition 2.1.14. (Banch Lattice, see [14]) A real Banach space E endowed with an ordering

‘ ≤ ’ is said to be Banach lattice if (E,≤) is a vector lattice and the norm on E is a lattice

norm.

Example 2.1.9. (See, [14]) All classical (real) Banach spaces lp,c0,C(K) are Banach lattices

for their usual norm and the point wise order.

Note: There are a large number of ordered function spaces that are not Banach lattices.

Example 2.1.10. (See, [14]) Consider the Banach space C1([0,1]) with the norm

∥ f∥= max
t∈[0,1]

| f (t)|+ max
t∈[0,1]

| f ′(t)|

and the natural order f ≥ 0 if f (t) ≥ 0 for all t ∈ [0,1]. Since, sup{s,1− s} /∈ C1([0,1]), the

space C1([0,1]) is not a vector lattice.

Definition 2.1.15. (Positive Operator, see [7, 14]) Let E and F are two Banach lattices. A

linear operator T : E → F is called positive if T (E+)⊂ F+ and it is denoted by T ≥ 0.

Definition 2.1.16. (Positive C0 Semigroup, see [14]) Let {T (t) : t ≥ 0} be a C0 semigroup on

E with generator A. Then, it is positive iff

T (t)E+ ⊆ E+,

where E+ = { f ∈ E : f ≥ 0 }.

Definition 2.1.17. (See, [14]) A C0 semigroup {T (t) : t ≥ 0} on E with generator A is positive

iff R(λ ,A)≥ 0 for all sufficiently large real λ .

Definition 2.1.18. (Dispersive Operator, see [3]) An operator A : D(A) ⊂ E → E is called

dispersive iff for every f ∈ D(A), there is Φ ∈ N+( f ) such that ⟨A f ,Φ⟩ ≤ 0, where

N+( f ) =
{

Φ ∈ (E+)∗ : ∥Φ∥ ≤ 1,⟨ f ,Φ⟩=
∥∥ f+

∥∥} .
Theorem 2.1.8. (See, [3]) Let A : D(A) ⊂ E → E be a linear operator. Then, the following

statements are equivalent

(a) A is the generator of a positive contraction C0 semigroup.
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(b) A is densely defined, R(λ I −A) = E for some λ > 0, and A is dispersive.

Example 2.1.11. (Example of Positive C0 Semigroup, see [3]) Let X = Lp[0,1], 1 ≤ p < ∞ and

the operator A is given by

A f = f ′′

where

D(A) = { f ∈ X : f ∈C1[0,1], f ′ ∈ AC[0,1], f ′′ ∈ Lp[0,1], f (0) = f (1) = 0}.

Then, A is the generator of a positive contraction semigroup.

Let f ∈ D(A). Define M = { x ∈ (0,1) : f (x) > 0}. Then, M is open set and hence, there

exists a countable collection of disjoint open intervals (an,bn) such that M = ∪∞
n=1(an,bn).

Case- (i) If p = 1, consider

Φ(x) =

{
1 for x ∈ M

0 for x ̸∈ M.

Then, Φ ∈ N+( f ) and ⟨A f ,Φ⟩= ∑
∞
n=1

∫ bn
an

f ′′ dx. This implies that

⟨A f ,Φ⟩=
∞

∑
n=1

(
f ′(bn)− f ′(an)

)
≤ 0.

Hence, A is dispersive.

Case- (ii) If p > 1
Let Φ ∈ N+( f ), then there exists c ≥ 0 such that

Φ(x) =

{
c f (x)p−1 for x ∈ M

0 for x ̸∈ M.

Further,

⟨A f ,Φ⟩=
∞

∑
n=1

∫ bn

an

f ′′(x) Φ(x) dx

=−c
∞

∑
n=1

∫ bn

an

(p−1)
(

f ′(x)
)2 dx

≤ 0.

So, A is dispersive. Also, I −A is surjective and hence, A generates a positive contraction C0

semigroup.
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Corollary 2.1.8.1. (See, [3]) Let A : D(A) ⊂ E → E be a densely defined dispersive operator

on E. If (λ I −A)D(A) is dense in E for some λ > 0, then A is closable and A is the generator

of a positive contraction C0 semigroup.

2.2 Perturbation Results

The evolution equation (or the corresponding linear operator) is frequently expressed as a (for-
mal) sum of several terms having physical meanings and mathematical features. While the
mathematical analysis may be simple for each individual term, it is unclear what happens once
the sums are formed.
Problem : Let {T (t) : t ≥ 0} be a C0 semigroup generated by A : D(A)⊆ X → X and consider
a second operator B : D(B) ⊆ X → X . Now, questions arise, under which conditions the sum
A+B generates a C0 semigroup? In this case, the generator A is said to be perturbed by the
operator B.

Theorem 2.2.1. (Bounded Perturbation Theorem) Let A : D(A)⊂ X → X generates a C0 semi-

group {T (t) : t ≥ 0} on X such that ∥T (t)∥ ≤ Meωt for all t ≥ 0 and some ω ∈ R,M ≥ 1. If

B ∈ L(X), then C = A+B also generates a C0 semigroup {S(t) : t ≥ 0} such that ∥S(t)∥ ≤
Me(w+M∥B∥)t for all t ≥ 0.

Proof. See [[66], Theorem 3.1.1].

Corollary 2.2.1.1. (See, [[27], Corollary 3.1.5]) Let us assume that (A,D(A)) is the generator

of a C0 semigroup on the Banach space X0. If B is a bounded operator on XA
1 = (D(A),∥·∥1),

then A+B with domain D(A+B) = D(A) generates a C0 semigroup on X0.

Example 2.2.1. (See, [27]) Let X =C0(R) and A : D(A)⊂ X → X is defined by

A f := f ′

where D(A) =C1
0(R). Define the operator B by

B f := f ′(0)×h for some h ∈C1
0(R) and f ∈C1

0(R).

Then, B is unbounded on X but bounded on D(A) =C1
0(R), and hence A+B is a generator on

X .

Theorem 2.2.2. Let A : D(A)⊆ X → X be a linear operator on X . A linear operator B : D(B)⊆
X → X is such that D(A)⊂ D(B) and A+ tB is dissipative for 0 ≤ t ≤ 1. If

∥Bx∥ ≤ α ∥Ax∥+β ∥x∥
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for x ∈ D(A) where 0 ≤ α < 1,β ≥ 0 and for some t0 ∈ [0,1],A+ t0B is m-dissipative. Then,

A+ tB is m-dissipative for all t ∈ [0,1].

Proof. See [[66], Theorem 3.3.2].

Corollary 2.2.2.1. Let A : D(A) ⊆ X → X be the infinitesimal generator of a C0 semigroup of

contractions. Let B be a dissipative operator suct that D(A) ⊂ D(B) and ∥Bx∥ ≤ α ∥Ax∥+
β ∥x∥ for x ∈ D(A) where 0 ≤ α < 1,β ≥ 0. Then A+B is the generator of a C0 semigroup of

contractions.

Proof. See [[66], Corollary 3.3.3].

Corollary 2.2.2.2. (See, [[14], Corollary 11.7]) Let A generates a positive C0 semigroup on a

Banach lattice E and B ∈ L(E) is a positive operator, then the semigroup generated by A+B

is positive.

2.3 Linear and Semilinear ACP

Suppose X is a Banach space and A : D(A) ⊆ X → X is a linear operator. Then, the abstract
Cauchy problem for A with initial condition u0 ∈ X is written as

du
dt = Au ; t ≥ 0

u(0) = u0

(2.6)

and a solution of (2.6) means that an X valued function u(t) such that u(t) is continuous for
t ≥ 0, continuously differentiable and u(t) ∈ D(A) for t > 0 and (2.6) is satisfied.

Theorem 2.3.1. Let A be a densely defined linear operator with a nonempty resolvent set ρ(A).

Then, u(t) = T (t)u0 is a unique solution of the IVP (2.6) which is continuously differentiable

on [0,∞) for every initial value u0 ∈ D(A) iff A is the infinitesimal generator of a C0 semigroup.

Proof. See [[66], Theorem 4.1.3].

The effectiveness of linear semigroup theory in solving linear evolution equations has
prompted the development of extensions of linear ideas that allow for the investigation of semi-
linear issues. Semilinear semigroup theory is not comprehensive comparison to linear semi-
group theory, but it remains a valuable and strong approach of evaluating more complicated
evolution equations.
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2.3.1 Semilinear Abstract Cauchy Problem

Let X be a Banach space and A : D(A)⊂X →X be a linear operator. Further, let F : [0,T ]×X →
X be a nonlinear operator, then the problem

du
dt = Au +F (t,u(t)) ; t > 0

u(0) = u0 ∈ D(A)
(2.7)

is called abstract semilinear Cauchy problem, where A generates a C0 semigroup {T (t) : t ≥ 0}
on X .

2.3.1.1 Classical and Mild Solutions

Definition 2.3.1. (Classical Solution, see [66] ) A function u : [0,T )→ X is a classical solution

of semilinear ACP (2.7) on [0,T ) if u is continuous on [0,T ), continuously differentiable on

(0,T ), u(t) ∈ D(A) for 0 < t < T and satisfies (2.7) on [0,T ).

Proposition 2.3.1. (See,[36]) Let u be a classical solution on [0,T ] to the semilinear ACP (2.7)

and {T (t) : t ≥ 0} is C0 semigroup associated with the linear operator (A,D(A)). Then, u

satisfies the integral equation

u(t) = T (t)u0 +
∫ t

0
T (t − s)F (s,u(s))ds. (2.8)

Definition 2.3.2. (Mild Solution, see [66]) A continuous solution u of the integral equation

u(t) = T (t)u0 +
∫ t

0
T (t − s)F (s,u(s))ds

is called a mild solution of the initial value problem (2.7) on [0,T ].

Note: Every classical solution is mild solution but the converse is not true because u given by
(2.8) is not necessarily differentiable.

Example 2.3.1. If A be the infinitesimal generator of a C0 semigroup of contractions on X and

f ∈C(R+,X) such that

v(t) =
∫ t

0
T (t − s) f (s) ds

is not differential. Then, a mild solution of
du
dt = Au + f (t) ; t ≥ 0

u(0) = u0

(2.9)



2.3. Linear and Semilinear ACP 27

need not be classical solution.

Let A be the generator of translation semigroup on C[0,∞) defined by

T (t) f (s) = f (t + s).

Choose f ∈C[0,∞) as

f (s) =

 3− s 0 ≤ s ≤ 2

s−1 2 < s < ∞

such that T (t) f (s) = f (t+s) /∈ D(A). Then, IVP (2.9) has a mild solution which is not classical

solution.

Definition 2.3.3. (Local Lipschitz Condition, see [66]) An operator F : R+×X → X is said to

satisfy a local Lipschitz condition in u, uniformly in t on bounded intervals if for every t ′ ≥ 0
and constant α ≥ 0, there is a constant M(α, t ′) such that

∥F(t,x)−F(t,y)∥ ≤ M(α)∥x− y∥

whenever x,y ∈ X , 0 ≤ t ≤ t ′, ∥x∥ ≤ α, ∥y∥ ≤ α.

The following Theorems 2.3.2 and 2.3.3 provide the existence of solution results for semi-
linear evolution equation.

2.3.2 Local and Global Existence Theorem

Theorem 2.3.2. (Local Existence Theorem) Suppose A generates a C0 semigroup {T (t) : t ≥ 0}
on X and F : R+×X → X is a nonlinear continuous operator satisfying the local Lipschitz

condition. Then, for any u0 ∈ X, there is a positive constant tmax ≤ ∞ such that the initial value

problem (2.7) admits a unique mild solution u on [0, tmax). Moreover, if tmax < ∞ then

lim
t→tmax

∥u(t)∥= ∞.

Proof. See [[66], Theorem 6.1.4].

Theorem 2.3.3. (Global Existence Theorem) Let u0 ∈ X and A generates a C0 semigroup

{T (t) : t ≥ 0} on X . Let the nonlinear operator F : R+×X → X satisfies the condition: for

each α > 0 there is a constant M = M(α) such that

∥F(t,x)−F(t,y)∥ ≤ M(α)∥x− y∥

whenever x,y ∈ X , 0 ≤ t ≤ α. Then, the problem (2.7) admits a unique mild solution on R+.
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Proof. See [[36], Theorem 2.2.5].

Theorem 2.3.4. Let A generates a C0 semigroup {T (t) : t ≥ 0} on X . Let u0 ∈ D(A), and the

nonlinear operator F : [0,T ]×X → X is continuously differentiable from [0,T ]×X into X , then

the mild solution of the problem (2.7) is a classical solution.

Proof. See [[66], Theorem 6.1.5].

2.4 Evolution System Theory

Let X be a Banach space. For every t, 0≤ t ≤ T, let A(t) : D(A(t))⊂X →X be a linear operator
in X . Consider the homogeneous IVP

du(t)
dt = A(t)u(t) ; 0 ≤ s ≤ t ≤ T

u(s) = ν .
(2.10)

Let us define the solution operator of the IVP (2.10) by

U(t,s)ν = u(t) for 0 ≤ s ≤ t ≤ T

where u is the solution of (2.10) and U(t,s) is a two parameter family of operators.

Definition 2.4.1. (See, [66]) Let U(t,s), 0 ≤ s ≤ t ≤ T, be a two parameter family of bounded

linear operators on a Banach space X . Then, it is called an evolution system if the following

two conditions are satisfied

(a) U(s,s) = I, U(t,r)U(r,s) =U(t,s) for 0 ≤ s ≤ r ≤ t ≤ T.

(b) (t,s)→U(t,s) is strongly continuous for 0 ≤ s ≤ r ≤ t ≤ T.

Stable Families

Definition 2.4.2. (See, [66]) A family {A(t)}t∈[0,T ] of infinitesimal generators of C0 semigroup

on X is called stable if there are constants M ≥ 1 and ω (stability constants) such that

(ω,∞)⊂ ρ(A(t)) for t ∈ [0,T ]

and ∥∥∥∥∥ k

∏
i=1

R(λ : A(ti))

∥∥∥∥∥≤ M(λ −ω)−k for λ > ω

and every finite sequence 0 ≤ t1 ≤ t2, · · · , tk ≤ T, k = 1,2, ... .
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Note: If for t ∈ [0,T ],A(t) ∈ G(1,ω), that is, A(t) is the infinitesimal generator of a C0

semigroup St(s), s ≥ 0, satisfying ∥St(s)∥ ≤ eωs then the family {A(t)}t∈[0,T ] is stable with
constants M = 1 and ω. In particular, any family {A(t)}t∈[0,T ] of infinitesimal generators of C0

semigroups of contractions is stable.

Theorem 2.4.1. Let A(t) be the infinitesimal generator of a C0 semigroup St(s) on X for t ∈
[0,T ]. The family of generators {A(t)}t∈[0,T ] is stable if and only if there are constants M ≥ 1
and ω such that (ω,∞) ⊂ ρ(A(t)) for t ∈ [0,T ] and either one of the following conditions is

satisfied ∥∥∥∥∥ k

∏
i=1

Sti(si)

∥∥∥∥∥≤ M exp(ω
k

∑
i=1

si) for si ≥ 0

or ∥∥∥∥∥ k

∏
i=1

R(λi : A(ti))

∥∥∥∥∥≤ M
k

∏
i=1

(λi −ω)−1 for λi > ω

and any finite sequence 0 ≤ t1 ≤ t2, · · · , tk ≤ T, k = 1,2, ... .

Proof. See [[66], Theorem 5.2.2].

Theorem 2.4.2. Let us assume that {A(t)}t∈[0,T ] is a stable family of infinitesimal generators

having stability constants M and ω. Let B(t),0 ≤ t ≤ T be a bounded linear operators on

X . If ∥B(t)∥ ≤ K for all t ∈ [0,T ], then {A(t)+B(t)}t∈[0,T ] is a stable family of infinitesimal

generators with stability constants M and ω +KM.

Proof. See [[66], Theorem 5.2.3].

For t ∈ [0,T ], let A(t) be the infinitesimal generator of a C0 semigroup St(s),s ≥ 0, on X .

We consider the following assumptions.
(H1) : {A(t)}t∈[0,T ] is a stable family with stability constants M and ω.

(H2) : Y is A(t)−admissible for t ∈ [0,T ] and the family {Ã(t)}t∈[0,T ] of parts Ã(t) of A(t) in
Y, is a stable family in Y with stability constants M̃, ω̃.

(H3) : For t ∈ [0,T ],Y ⊂ D(A(t)),A(t) is bounded operator from Y into X and t → A(t) is
continuous in the B(Y,X) norm ∥·∥Y→X .

Some Important Theorems

Theorem 2.4.3. Let A(t),0 ≤ t ≤ T, be the infinitesimal generator of a C0 semigroup St(s),s ≥
0, on X . If the conditions (H1)−(H3) hold for the family {A(t)}t∈[0,T ], then there exists a unique

evolution system U(t,s),0 ≤ s ≤ t ≤ T, in X satisfying

(E1) ∥U(t,s)∥ ≤ M exp{ω(t − s)} for 0 ≤ s ≤ t ≤ T,
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(E2)
∂+

∂ t
U(t,s)ν

∣∣∣
t=s

= A(s)ν for ν ∈ Y, 0 ≤ s ≤ t ≤ T,

(E3)
∂

∂ s
U(t,s)ν =−U(t,s)A(s)ν for ν ∈ Y, 0 ≤ s ≤ t ≤ T,

where the derivative from the right in (E2) and the derivative in (E3) are in the strong sense in

X .

Proof. See [[66], Theorem 5.3.1].

Theorem 2.4.4. Let A(t),0≤ t ≤ T satisfy the conditions of Theorem (2.4.3) and let U(t,s),0≤
s ≤ t ≤ T be the evolution system given in Theorem (2.4.3). If

(E4) U(t,s)Y ⊂ Y for 0 ≤ s ≤ t ≤ T,

and

(E5) for ν ∈ Y, U(t,s)ν is continuous in Y for 0 ≤ s ≤ t ≤ T,

then for every ν ∈ Y, U(t,s)ν is the unique Y−valued solution of the IVP (2.10).

Proof. See [[66], Theorem 5.4.3].

Now, to find an evolution system U(t,s) that satisfies (E1)− (E5), the condition (H2) of
Theorem (2.4.3) is replaced by the following condition:

(H+
2 ) : There is a family {Q(t)}t∈[0,T ] of isomorphisms of Y onto X such that for every ν ∈

Y, Q(t)ν is continuously differentiable in X on [0,T ] and

Q(t)A(t)Q(t)−1 = A(t)+B(t)

where B(t), 0 ≤ t ≤ T, is strongly continuous family of bounded operators on X .

Lemma 2.4.5. The conditions (H1) and (H2)
+ imply the condition (H2).

Proof. See [[66], Lemma 5.4.4].

Lemma 2.4.6. Let U(t,s), 0 ≤ s ≤ t ≤ T be an evolution system in X satisfying ∥U(t,s)∥ ≤ M

for 0 ≤ s ≤ t ≤ T. If H(t) is a strongly continuous family of bounded linear operators in X then

there exists a unique family of bounded linear operators V (t,s), 0 ≤ s ≤ t ≤ T in X such that

V (t,s)x =U(t,s)x+
∫ t

s
V (t,r)H(r)U(r,s)x dr for x ∈ X , (2.11)

and V (t,s)x is continuous in s, t for 0 ≤ s ≤ t ≤ T.
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Proof. See [[66], Lemma 5.4.5].

Theorem 2.4.7. Let A(t),0 ≤ t ≤ T, be the infinitesimal generator of a C0 semigroup on X . If

the family {A(t)}t∈[0,T ] satisfies the conditions (H1),(H2)
+ and (H3) then there exists a unique

evolution system U(t,s),0 ≤ s ≤ t ≤ T, in X satisfying (E1)− (E5).

Proof. See [[66], Theorem 5.4.6].

Corollary 2.4.7.1. Let {A(t)}t∈[0,T ] be a family of infinitesimal generator of a C0 semigroup on

X . If the family {A(t)}t∈[0,T ] satisfies the conditions (H1),(H2)
+ and (H3) then for every ν ∈Y

the IVP (2.10) has a unique Y−valued solution u on 0 ≤ s ≤ t ≤ T.

Proof. See [[66], Corollary 5.4.7].

2.5 Weak Compactness in L1 Space

It is interesting to identify the condition under which a family of functions in Lp(Ω), 1 ≤ p < ∞

has compact closure. We know that the Ascoli-Arzela theorem gives the answer for the same
question in C(K), the space of continuous functions over compact metric space K with values
in R.

Definition 2.5.1. (See, [17]) Let K be a compact metric space and F is a subset of C(K). Then,

F is said to be uniformly equicontinuous if for every ε > 0, there exists δ > 0 such that

| f (x)− f (y)|< ε for all f ∈ F

whenever d(x,y)< δ .

Theorem 2.5.1. (Arzela-Ascoli Theorem, see [17]) Let K be a compact metric space and F is

a subset of C(K). Then, the closure of F in C(K) is compact if F is bounded and uniformly

equicontinuous.

In the weak compactness sense, the properties of L1 spaces differ from properties of Lp, 1<
p < ∞, spaces. In particular, L1 being non-reflexive, its unit ball is not weakly compact. Kaku-
tani’s theorem [[17], Theorem 3.17] and the reflexivity of Lp(Ω), p∈ (1,∞), see [[17], Theorem
4.10] warrant that any bounded suquence in Lp(Ω) has a subsequence that converges weakly in
Lp(Ω). The bounded sets of L1 do not play an important role with respect to the weak topology
of L1 space because L1 is not reflexive. In the following, Dunford-Pettis theorem provides an
important characterization of weakly compact sets in L1. The weak compactness argument in
L1 space is used to prove the existence of weak solution to the age/size structured population
models, see [33, 34, 53, 54, 56, 71]
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Definition 2.5.2. (See, [11])

(a) Let p ∈ [1,∞). A sequence ( fn) in Lp(Ω) converges weakly to f (written as fn ⇀ f ) in

Lp(Ω) if

lim
n→∞

∫
Ω

fn(x)ϕ(x) dµ(x) =
∫

Ω

f (x)ϕ(x) dµ(x)

for all ϕ ∈ Lq, where q = ∞ when p = 1 and q = p
p−1 when p ∈ (1,∞).

(b) A sequence ( fn) in L∞(Ω) converges ∗- weakly to f (written as fn
∗
⇀ f ) in L∞(Ω) if

lim
n→∞

∫
Ω

fn(x)ϕ(x) dµ(x) =
∫

Ω

f (x)ϕ(x) dµ(x)

for all ϕ ∈ L1(Ω).

Example 2.5.1. (See [[17], page 122]) Consider the sequence (gn) of functions in L1(0,1) and

defined by gn(x) = ne−nx. Then,

(a) gn → 0 a.e.

(b) gn is bounded.

(c) gn ↛ 0 strongly

(d) gn ↛ 0 weakly σ(L1,L∞).

Example 2.5.2. (See [[17], page 122]) Consider the sequence ( fn) of functions in Lp(0,1), 1<
p < ∞, and defined by fn(x) = n1/pe−nx. Then,

(a) fn → 0 a.e.

(b) fn is bounded.

(c) fn ↛ 0 strongly

(d) fn ⇀ 0 weakly σ(Lp,Lq), where 1
p +

1
q = 1.

Definition 2.5.3. (Equi-integrable families, see [17]) A subset F ⊂ L1(Ω) is said to be equi-

integrable if it satisfies the following conditions:

(a) F is bounded in L1(Ω),

(b) ∀ε > 0, there exists δ > 0 such that∫
A
| f |dµ < ε, ∀A ⊂ Ω, A measurable |A|< δ , ∀ f ∈ F
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(c) ∀ε > 0, there exists ω ⊂ Ω measurable with |ω|< ∞ such that∫
Ω−ω

| f |dµ < ε, ∀ f ∈ F.

Theorem 2.5.2. (Dunford-Pettis Theorem) A subset F of L1(Ω) has compact closure in the

weak topology σ(L1,L∞) if and only if F is equi-integrable.

Proof. See [11, 17, 25, 75].

Corollary 2.5.2.1. For a given set F in L1(Ω), the following properties are equivalent:

(a) F is contained in a weakly σ(L1,L∞) compact set of L1(Ω)

(b) F is equi-integrable.

Lemma 2.5.3. (See [[17], page 468]) Let ϑ1,ϑ2 ∈ L1(Ω) such that ϑ1 ≤ ϑ2 a.e. Then, the set

K = { f ∈ L1(Ω) : ϑ1 ≤ f ≤ ϑ2 a.e. } is compact in weak topology σ(L1,L∞).

Lemma 2.5.4. (See [[17], page 468]) Let ( fn) be a bounded sequence in L1(Ω) such that∫
A fn converges to a finite limit ℓ(A), for every measurable set A ⊂ Ω. Then, there exists some

f ∈ L1(Ω) such that fn ⇀ f weakly σ(L1,L∞).

Lemma 2.5.5. (See [[17], page 125]) Let ( fn) be a sequence in L1(Ω) with |Ω| < ∞ and

f ∈ L1(Ω). Then, the following properties are equivalent:

(a) fn ⇀ f in σ(L1,L∞)

(b)
∫

Ω
| fn|<C and

∫
ω

fn →
∫

ω
f , ∀ω ⊂ Ω, ω measurable and |ω|< ∞.

Example 2.5.3. (See [[30], page 181]) Let X = L1([0,2π]). Then, the sequence fn(x) = sinnx

converges weakly to 0 in L1([0,2π]).

Lemma 2.5.6. (See [[17], page 125]) Let ( fn) be a sequence of functions in L1(Ω) with |Ω|=∞

and f (x) ∈ L1(Ω) such that

(a) fn ≥ 0 ∀n and f ≥ 0 a.e. on Ω,

(b)
∫

Ω
fn →

∫
Ω

f ,

(c)
∫

ω
fn →

∫
ω

f , ∀ω ⊂ Ω, ω measurable and |ω|< ∞.

Then, fn ⇀ f in L1(Ω) with respect to the weak topology σ(L1,L∞).
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Lemma 2.5.7. (See [[17], page 468]) Let F ⊂ L1(Ω) with |Ω|< ∞ and G : [0,∞)→ [0,∞) be a

continuous function such that limt→∞
G(t)

t = ∞. Assume that there exists a constant C such that∫
F(| f |)≤C ∀ f ∈ F.

Then, F is equi-integrable.

Definition 2.5.4. (Equicontinuity, see [76]) Let X be a Banach space. Then, a subset F in

C ([a,b];X) is equicontinuous at t0 ∈ [a,b] if for each ε > 0 there exists δ (ε, t0) > 0 such that

for each t ∈ [a,b] with |t − t0|< δ , we have

∥ f (t)− f (t0)∥ ≤ ε

uniformly with respect to f ∈ F.

Definition 2.5.5. (Weak Equicontinuity, see [11]) Let X be a Banach space. Then, a subset F

in C([a,b];Xw) is weakly equicontinuous at t0 ∈ [a,b] if for each ϕ ∈ X∗ and ε > 0 there exists

δ = δ (ϕ,ε, t0)> 0 such that for each t ∈ [a,b] with |t − t0|< δ , we have

|⟨ϕ, f (t)⟩−⟨ϕ, f (t0)⟩| ≤ ε

uniformly with respect to f ∈ F.

Theorem 2.5.8. (Arzela-Ascoli Theorem, see [[75], Theorem 1.3.1]) Let X be a Banach space.

A subset F in C ([a,b];X) is relatively compact iff

(a) F is equicontinuous on [a,b].

(b) There exists a dense subset D in [a,b] such that for each t ∈ D,

F(t) = { f (t) : f ∈ F}

is relatively compact in X .

Theorem 2.5.9. (The weak variant of Arzela-Ascoli Theorem, see [[75], Theorem 1.3.2]) A

subset F in C ([a,b];Xw) is relatively sequentially compact iff

(a) F is weakly equicontinuous on [a,b],

(b) there exists a dense subset D of [a,b] such that for each t ∈ D,

F(t) = { f (t) : f ∈ F}

is weakly relatively compact in X .
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2.6 Stability Theory

In this section, we recall a handful of results on dynamical systems which are to be used in
Chapter 5 and Chapter 6 to study qualitative properties of prion-chaperone equations. A dy-
namical system gives a functional description of the solution of a physical problem or a math-
ematical model describing the physical problem. For example, the motion of the undamped
pendulum is a dynamical system in the sense that the motion of the pendulum is described by
its position and velocity as functions of time and the initial conditions. Mathematically speak-
ing, a dynamical system is a function φ(t,x) defined for all t ∈ R and E ⊂ Rn which describes
how points x ∈ E move with respect to time.

Definition 2.6.1. (See, [20]) Let E be an open subset in Rn. A dynamical system on E is a

C1-map

φ : R×E → E

and if φt(x) = φ(t,x), then φt satisfies

1. φ0(x) = x for all x ∈ E and

2. φt ◦φs(x) = φt+s(x) for all s, t ∈ R and x ∈ E.

Definition 2.6.2. (See, [20]) Let E be an open subset in Rn and f ∈ C1(E). For x0 ∈ E, let

φ(t,x0) is the solution of initial value problem

ẋ = f (x), x(0) = x0 (2.12)

defined on its maximal interval of existence I(x0). Then, for t ∈ I(x0), the mapping φt : E → E

defined by

φt(x) = φ(t,x)

is called the flow of differential equation (2.12).

In many cases, mathematical models are used to describe physical phenomena and are rep-
resented by the autonomous differential equation of type (2.12) defined on an open set E ⊂ Rn

and its flow φt . It’s crucial to understand how slight perturbations in the initial data effect the
desired behaviour of solution (2.12). If a sufficiently modest modification in the initial data
leads to a significant departure in the associated solution, the solution derived from the given
initial data is unsuitable because it does not even approximate the desired phenomena.

Let us consider an equilibrium point x0 for the nonlinear autonomous system

ẋ = f (x), x ∈ Rn. (2.13)



36 Chapter 2. Mathematical Preliminaries

Definition 2.6.3 (Stable). An equilibrium point x0 of (2.13) is said to be stable if for each ε > 0,
there exists δ (ε)> 0 such that the inequality |φt(x)−φt(x0)|< ε holds whenever |x− x0|< δ

for all t ≥ 0.

Definition 2.6.4 (Asymptotically Stable). An equilibrium point x0 of (2.13) is said to be

asymptotically stable if it is stable and if there exists δ > 0 such that |x − x0| < δ implies

that |φt(x)−φt(x0)| → 0 as t → ∞.

Definition 2.6.5 (Unstable). An equilibrium point x0 of (2.13) is said to be unstable if it is not

stable.

A continuous function V : U → R where U ⊆ Rn is an open set with x0 ∈ U , is called a
Lyapunov function for the differential equation (2.13) at x0 provided that

(i) V (x0) = 0,

(ii) V (x)> 0 for x ∈U −{x0},

(iii) the function x → grad V (x) is continuous for x ∈ U −{x0}, and on this set, V̇ (x) :=
grad V (x) · f (x)≤ 0.

If, in addition,

(iv) V̇ (x)< 0 for x ∈U −{x0},

then V is called a strict Lyapunov function.

Theorem 2.6.1. (Lyapunov’s Stability Theorem, see [20]) If x0 is an equilibrium point for the

differential equation (2.13) and V is a Lyapunov function for the system at x0, then x0 is stable.

If, in addition, V is a strict Lyapunov function, then x0 is asymptotically stable.
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Chapter 3

Evolution Equation of a Prion Proliferation Model
in the Presence of Chaperone 1

3.1 Introduction

In this chapter, a mathematical model for the dynamics of prion proliferation in the presence
of chaperone involving a coupled system consisting of an ordinary differential equation and
a partial integro-differential equation is analyzed. For bounded reaction rates, we prove the
existence and uniqueness of positive classical solutions with the help of evolution operator
theory. In the case of unbounded reaction rates, the model is set up into a semilinear evolution
equation form in the product Banach space R× L1 ((z0,∞);(q+ z)dz) and the existence of a
unique positive local mild solution is established by using C0 semigroups theory of operators.
The prion proliferation model in the presence of chaperone, see Section 1.2, is described by the
following set of equations

dS(t)
dt

= λ − γS(t)− τS(t)
∫

∞

z0

u(t,z)dz+2
∫ z0

0
z
∫

∞

z0

β (z′) k(z,z′) u(t,z′) dz′dz, (3.1)

∂u(t,z)
∂ t

=−τS(t)
∂u(t,z)

∂ z
−
[
µ(z)+β (z)+δ2C(t)

]
u(t,z)+2

∫
∞

z
β (z′)k(z,z′)u(t,z′)dz′, (3.2)

dC(t)
dt

= −δ0C(t)+δ1C(t)
∫

∞

z0

u(t,z) dz, (3.3)

subject to the conditions

S(0) = S0, u(0,z) = u0(z), u(t,z0) = 0, C(0) =C0 for t ≥ 0, z0 < z < ∞ (3.4)

1A considerable part of this chapter is published in Mathematical Methods in the Applied Sciences, 44,
1942-1955, 2021.
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where all the constants λ , γ, τ, δ0, δ1 and δ2 are positive and the description of these param-
eters is given in Chapter 1. We assume that the splitting density function k(z,z′) satisfies the
conditions (1.4)-(1.8).
This chapter is assembled as follows: In Section 3.2, the system (3.2)-(3.4) is transformed into
a semilinear evolution equation in the product Banach space R×L1 ((z0,∞);(q+ z)dz) under
the assumption (1.9). Then, the existence of the unique positive local mild solution is proved by
using C0 semigroup theory. The positive global classical solution of the coupled system (3.2)-
(3.4) is discussed in Section 3.3 with the help of evolution system theory under the assumptions
that the reaction rates µ(z) and β (z) are bounded.

3.2 The Semilinear Autonomous Problem

To establish the existence and uniqueness of positive local mild solution, we first transform the
system (3.2)-(3.4) into a semilinear evolution equation in the suitable Banach space. For this,
assuming

µ(z) = µ, β (z) = β z and k(z′,z) =


1
z if z > z0 and 0 < z′ < z

0 otherwise.

The system (3.2)-(3.4) becomes

dC(t)
dt

= −δ0C(t)+δ1C(t)
∫

∞

z0

u(t,z)dz

∂tu(t,z)+ω∂zu(t,z)+
(

µ +β z+δ2C(t)
)

u(t,z) = 2β

∫
∞

z
u(t,z′)dz′ and

C(0) =C0, u(0,z) = u0(z), u(t,z0) = 0 for t > 0, z > z0.

Substitute ϑ(t,z) = u(t,z+ z0) for z ≥ 0, then the above system reduces to

dC(t)
dt

= −δ0C(t)+δ1C(t)
∫

∞

0
ϑ(t,z)dz (3.5)

∂tϑ(t,z)+ω∂zϑ(t,z)+
(

µ0 +β z+δ2C(t)
)

ϑ(t,z) = 2β

∫
∞

z
ϑ(t,z′)dz′ (3.6)

subject to the conditions

C(0) =C0, ϑ(0,z) = u0(z+ z0) = ϑ0(z), ϑ(t,0) = 0 for t > 0, z > 0 (3.7)
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where µ0 = µ +β z0 and ω plays the role of τS at ∞, i.e., ω = τS(∞) = λτ

γ
in the disease-free

case or ω = τS(∞) = (µ+β z0)
2

β
=

µ2
0

β
in the disease case, refer to [28]. Choose the state space

E =
{

V =

(
ℓ

ϑ

)
∈ R×L1

(
R+;(q+ z)dz

)
: ||V ||E < ∞

}
with the norm is defined as

∥V∥E =

∣∣∣∣∣
∣∣∣∣∣
(
ℓ

ϑ

)∣∣∣∣∣
∣∣∣∣∣
E

= q ||ϑ ||1 + ||zϑ ||1 + |ℓ| for q > 0

where ∥·∥1 denotes the norm in L1(R+). It is easy to verify that E is a Banach Space. Define
three operators A : D(A)⊂ E → E, B : D(B)⊂ E → E and F : E → E such as

A

(
ℓ

ϑ

)
=

(
0

ωϑ ′+(µ0 +β z)ϑ

)
, B

(
ℓ

ϑ

)
=

(
−δ0ℓ

2β
∫

∞

z ϑ(z′)dz′

)
for

(
ℓ

ϑ

)
∈ D(A) = D(B)

and F

(
ℓ

ϑ

)
=

(
δ1 ℓ

∫
∞

0 ϑ(z)dz

−δ2 ℓ ϑ

)
for

(
ℓ

ϑ

)
∈ E, where

D(A)=

{(
ℓ

ϑ

)
∈E : ϑ ∈W 1

1 (R+)∩L1

(
R+ ;(q+z)dz

)
, z2

ϑ ∈L1(R+), zϑ
′ ∈L1(R+), ϑ(0)= 0

}
.

Here, A and B are linear operators while F is a nonlinear operator. Finally, the system of
equations (3.5)-(3.7) can be written as a semilinear evolution equation in the Banach space E

as 
dV
dt =−(A−B)V +F(V ) ; t ≥ 0

V (0) =V0 =

(
C0

ϑ0(z)

)
.

(3.8)

Lemma 3.2.1. Let E = R× L1
(
R+;(q + z)dz

)
be a Banach space with q > 0, then ΦV =(

sgn(ℓ), sgn(ϑ)
)

is a duality map defined as

ΦV

(
ℓ

ϑ(z)

)
=
∫

∞

0
ϑ(z) sgn(ϑ) (q+ z) dz+ ℓ sgn(ℓ) for V =

(
ℓ

ϑ(z)

)
∈ E.

Proof. Clearly, ΦV

(
ℓ

ϑ(z)

)
=
∫

∞

0 ϑ(z) sgn(ϑ) (q+z) dz+ℓ sgn(ℓ)=

∥∥∥∥∥
(

ℓ

ϑ(z)

)∥∥∥∥∥
E

and ∥ΦV∥=

1. Hence, by the definition of duality, ΦV is a duality map for V ∈ E.
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Now, before proving the main result Theorem 3.2.2 of this section, the following Proposi-
tions 3.2.1−3.2.3 are required.

3.2.1 Positive Contraction Semigroup Generated by A−B

Proposition 3.2.1. The operator A : D(A)⊂ E → E is a m-Accretive on E.

Proof. Since,∫
∞

0
[ ωϑ

′(z)+(µ0 +β z)ϑ(z) ] sgn(ϑ) q dz = qµ0 ||ϑ ||1 +qβ ||zϑ ||1 (3.9)

and
∫

∞

0
[ ωϑ

′(z)+(µ0 +β z)ϑ(z) ] sgn(ϑ) z dz =−ω ||ϑ ||1 +µ0 ||zϑ ||1 +β
∣∣∣∣z2

ϑ
∣∣∣∣

1 ,

(3.10)
adding equations (3.9) and (3.10), yields

(AV,ΦV ) = (qµ0 −ω) ||ϑ ||1 +(qβ +µ0) ||zϑ ||1 +β
∣∣∣∣z2

ϑ
∣∣∣∣

1 .

This shows that (AV,ΦV )≥ (qµ0 −ω) ||ϑ ||1 +(qβ +µ0) ||zϑ ||1 ≥ 0 provided µ0 >
ω

q and for
such q, A is Accretive and hence closable.

To compute the resolvent of A, the equation (λ I +A)V =

(
m

f

)
is equivalent to solving(

λℓ

λϑ +ωϑ ′+(µ0 +β z)ϑ

)
=

(
m

f

)
that is, {

λϑ +ωϑ ′+(µ0 +β z)ϑ = f

λℓ= m.
(3.11)

Hence,

V = (λ I +A)−1

(
m

f

)
=

(
m
λ

1
ω

∫ z
0 e

−(λ+µ0)(z−y)
ω

− β (z2−y2)
2ω f (y)dy

)
.

Further, to show that V =

(
ℓ

ϑ

)
∈ D(A), we assume

(
m

f

)
∈R×L1(R+). Then, one can easily

obtain ||ϑ ||1 + |ℓ| ≤ || f ||1
λ+µ0

+ |ℓ| and

(
ℓ

ϑ

)
∈ R×L1(R+). Also, if

(
ℓ

z f

)
∈ R×L1(R+), then

∣∣∣∣z2
ϑ
∣∣∣∣

1 + |ℓ| ≤ 2
λ +µ0

[
ω ||z f ||1
λ +µ0

+
ω2 || f ||1
(λ +µ0)2

]
+

1
β
||z f ||1 + |ℓ|.
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This indicates that

(
ℓ

z2ϑ

)
∈ R×L1(R+) and similarly

(
ℓ

zϑ

)
∈ R×L1(R+). Due to (3.11),(

ℓ

ϑ ′

)
∈ R× L1(R+) as well as

(
ℓ

zϑ ′

)
∈ R× L1(R+). Finally, by the definition of D(A),(

ℓ

ϑ

)
∈ D(A) and consequently, A is m-Accretive operator on E.

Proposition 3.2.2. The operator A−B generates a C0 semigroup of contraction on Banach

space E.

Proof. From Theorem (2.1.6), the proof is divided into two parts. In the first segment, Accre-
tivity of A−B is proved while the second part deals with R

(
δ I+A−B

)
= E for some δ > 0.

It is easy to obtain the following estimates∣∣∣∣∫ ∞

z ϑ(y)dy
∣∣∣∣

1 ≤ ||zϑ ||1 ,
∣∣∣∣z∫ ∞

z ϑ(y)dy
∣∣∣∣

1 ≤
1
2

∣∣∣∣z2ϑ
∣∣∣∣

1 ,∫
∞

0

{
2β

∫
∞

z
ϑ(y)dy

}
sgn(ϑ) q dz−δ0ℓ sgn(ℓ) = 2qβ ||zϑ ||1 −δ0|ℓ| (3.12)

and ∫
∞

0

{
2β

∫
∞

z
ϑ(y)dy

}
sgn(ϑ) z dz = β

∣∣∣∣z2
ϑ
∣∣∣∣

1 . (3.13)

Adding equations (3.12) and (3.13), gives that

(BV,ΦV ) = 2qβ ||zϑ ||1 −δ0|ℓ|+β
∣∣∣∣z2

ϑ
∣∣∣∣

1 .

Consequently,

(
(A−B)V,ΦV

)
= (AV,ΦV )− (BV,ΦV ) = (qµ0 −ω) ||ϑ ||1 +(µ0 −qβ ) ||zϑ ||1 +δ0|ℓ|.

This indicates that A−B is Accretive provided µ0 > qβ , µ0 >
ω

q and hence, A−B is closable
which immediately yields the Accretivity of A−B, see Theorem (2.1.5).

To prove the second part, let

(
m

g

)
∈ R×L1

(
R+;(q+ z)dz

)
and

(
m

g

)
≥ 0. Set V1 = (λ0I +

A)−1

(
m

g

)
and define a sequence

Vn+1 =V1 +(λ0I +A)−1(B+δ0I)Vn.

Then, V1 ≥ 0 and V2−V1 = (λ0I+A)−1(B+δ0I)V1 ≥ 0, since (B+δ0I) is positive. Therefore,
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by the induction, Vn+1 ≥ Vn pointwise and which shows that the sequence {Vn}n≥1 is non-
negative and increasing pointwise. Now,

Vn+1 = (λ0I +A)−1

(
m

g

)
+(λ0I +A)−1(B+δ0I)Vn

and this yields

(λ0I +A)Vn =

(
m

g

)
+(B+δ0I)Vn−1,

i.e., (
λ0ℓn

ωϑ ′
n(z)+(λ0 +µ0 +β z)ϑn(z)

)
=

(
m

g

)
+

(
−δ0ℓn−1 +δ0ℓn−1

2β
∫

∞

z ϑn−1(y)dy+δ0ϑn−1

)
.

This is equivalent to,{
ωϑ ′

n(z)+(λ0 +µ0 +β z)ϑn = g+2β
∫

∞

z ϑn−1(y)dy+δ0ϑn−1

λ0ℓn = m

i.e., {
ωϑ ′

n(z)+(λ0 −δ0 +µ0 +β z)ϑn ≤ g+2β
∫

∞

z ϑn(y)dy

λ0ℓn = m

which allows to have
(λ0 −δ0 +µ0)∥ϑn∥1 ≤ ∥g∥1 +β ∥zϑn∥1 and −ω ∥ϑn∥1 +(λ0 −δ0 +µ0)∥zϑn∥1 ≤ ∥zg∥1.

If, in addition z2g ∈ L1(R+), then one can easily obtain the bound of z2g in E. Selecting q

as above gives the bound for the sequence {Vn}n≥1 as

∥Vn∥E =

∣∣∣∣∣
∣∣∣∣∣
(
ℓn

ϑn

)∣∣∣∣∣
∣∣∣∣∣
E

≤ M ∥g∥+ m
λ0

.

One can achieve by the monotone convergence theorem that Vn →V∞ as n → ∞.

Since, (λ0I +A)Vn =

(
m

g

)
+(B+δ0I)Vn−1, it means that

(λ0I +A−B−δ0I)Vn =

(
m

g

)
+(B+δ0I)(Vn−1 −Vn).

Therefore, ((λ0 −δ0)I +A−B)Vn →

(
m

g

)
as n → ∞ and hence V∞ ∈ D(A−B), with V∞ =
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(
δ I +A−B

)−1
(

m

g

)
, where δ = (λ0 −δ0). Also, L1 = L+

1 −L+
1 and R= R+−R+.

Thus, R
(
δ I +A−B

)
= E and consequently A−B is m-Accretive. From the above two parts,

it is concluded that A−B generates a C0 semigroup of contraction on E.

Proposition 3.2.3. The semigroup {T (t) : t ≥ 0} generated by A−B is a positive semigroup

on E.

Proof. Here, A−B is a densely defined operator. From Theorem 2.1.8, to prove the positivity
of {T (t) : t ≥ 0}, it is sufficient to prove that A−B is dispersive. If V = (p0, p1(z)) ∈ E, one
may choose

ΦV =

(
[p0]

+

p0
,
[p1(z)]+

p1(z)

)

where [p0]
+ =

{
p0 if p0 > 0
0 if p0 ≤ 0

and [p1(z)]+ =

{
p1(z) if p1(z)> 0
0 if p1(z)≤ 0.

((A−B)V,ΦV ) =

(
δ0 p0 ,

[p0]
+

p0

)
+

(
ω p′1(z)+(µ0 +β z)p1(z)−2β

∫
∞

z
p1(y)dy ,

[p1(z)]+

p1(z)

)
= δ0[p0]

++
∫

∞

0

{
ω p′1(z)+(µ0 +β z)p1(z)−2β

∫
∞

z
p1(y)dy

}
(q+ z)

[p1(z)]+

p1(z)
dz

= δ0[p0]
+−2qβ

∫
∞

0
z [p1(z)]+dz−qω[p1(0)]++q

∫
∞

0
(µ0 +β z) [p1(z)]+dz

−β

∫
∞

0
z2 [p1(z)]+dz+ω

∫
∞

0
z [p′1(z)]

+dz+
∫

∞

0
(µ0 +β z) z [p1(z)]+dz

= δ0[p0]
++(µ0 −qβ )

∫
∞

0
z [p1(z)]+dz+qµ0

∫
∞

0
[p1(z)]+dz.

This implies that
(
(A−B)V,ΦV

)
≥ 0 provided µ0 ≥ qβ , and hence, the operator A−B is

dispersive. Thus, A−B generates a positive C0 semigroup of contraction on E.

Finally, we are in position to prove the main result of this section below.

3.2.2 Existence of Mild Solution

Theorem 3.2.2. The dynamical system (3.8) has a unique non-negative local mild solution.

Proof. Due to the Propositions 3.2.3, the operator A−B generates a positive C0 semigroup
of contraction on E. To prove the existence of a unique local mild solution of the semilinear
problem (3.8), it is sufficient to show that F : R+ × E → E is continuous and F is locally
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Lipschitz with respect to the second component, refer to Theorem 2.3.2. Given,

F

(
t,

(
ℓ

φ(z)

))
=

(
δ1ℓ

∫
∞

0 φ(z)dz

−δ2 ℓ φ(z)

)
.

Let

(
ℓm

φm

)
→

(
ℓ

φ

)
that is,

∣∣∣∣∣
∣∣∣∣∣
(
ℓm − ℓ

φm −φ

)∣∣∣∣∣
∣∣∣∣∣
E

→ 0 as m → ∞

or,
q ||φm −φ ||1 + ||z(φm −φ)||1 + |ℓm − ℓ| → 0 as m → ∞.

Then, one can evaluate∣∣∣∣∣
∣∣∣∣∣F
(
ℓm

φm

)
−F

(
ℓ

φ

)∣∣∣∣∣
∣∣∣∣∣
E

=

∣∣∣∣∣
∣∣∣∣∣
(

δ1ℓm
∫

∞

0 φm dz−δ1 ℓ
∫

∞

0 φ dz

−δ2 ℓm φm +δ2 ℓ φ

)∣∣∣∣∣
∣∣∣∣∣
E

=

∣∣∣∣∣
∣∣∣∣∣
(

δ1ℓm
∫

∞

0 φm dz−δ1 ℓ
∫

∞

0 φm dz+δ1 ℓ
∫

∞

0 φm dz−δ1 ℓ
∫

∞

0 φ dz

−δ2 ℓm φm +δ2 ℓm φ −δ2 ℓm φ +δ2 ℓ φ

)∣∣∣∣∣
∣∣∣∣∣
E

=

∣∣∣∣∣
∣∣∣∣∣
(

δ1(ℓm − ℓ)
∫

∞

0 φm dz+δ1 ℓ
∫

∞

0 (φm −φ) dz

−δ2 ℓm(φm −φ)+δ2φ(ℓ− ℓm)

)∣∣∣∣∣
∣∣∣∣∣
E

≤
{

q δ2 |ℓm| ||φm −φ ||1 +q δ2 |ℓm − ℓ| ||φ ||1

+δ2 |ℓm| ||z(φm −φ)||1 +δ2 |ℓm − ℓ| ||zφ ||1

+δ1 |ℓm − ℓ|
∫

∞

0
|φm| dz+δ1ℓ

∫
∞

0
|φm −φ | dz

}
.

Therefore,

∣∣∣∣∣
∣∣∣∣∣F
(
ℓm

φm

)
−F

(
ℓ

φ

)∣∣∣∣∣
∣∣∣∣∣→ 0 as m→∞ and consequently F is continuous on R+×E.

Further, to show that F is locally Lipschitz in the second variable, we assume∣∣∣∣∣
∣∣∣∣∣
(
ℓ

φ

)∣∣∣∣∣
∣∣∣∣∣
E

≤ c and

∣∣∣∣∣
∣∣∣∣∣
(

m

ψ

)∣∣∣∣∣
∣∣∣∣∣
E

≤ c

i.e., q ||φ ||1 + ||zφ ||1 + |ℓ| ≤ c and q ||ψ||1 + ||zψ||1 + |m| ≤ c. Then,∣∣∣∣∣
∣∣∣∣∣F
(
ℓ

φ

)
−F

(
m

ψ

)∣∣∣∣∣
∣∣∣∣∣
E

=

∣∣∣∣∣
∣∣∣∣∣
(

δ1ℓ
∫

∞

0 φ(z) dz−δ1 m
∫

∞

0 ψ(z) dz

−δ2 ℓ φ +δ2 m ψ

)∣∣∣∣∣
∣∣∣∣∣

=

∣∣∣∣∣
∣∣∣∣∣
(

δ1(ℓ−m)
∫

∞

0 ψ dz+δ1 ℓ
∫

∞

0 (φ −ψ) dz

−δ2 (ℓ−m) φ −δ2 m (φ −ψ)

)∣∣∣∣∣
∣∣∣∣∣ .
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This implies that∣∣∣∣∣
∣∣∣∣∣F
(
ℓ

φ

)
−F

(
m

ψ

)∣∣∣∣∣
∣∣∣∣∣
E

≤
{

δ2 |ℓ−m| c+δ2 |m|
[
q ||(φ −ψ)||1 + ||z(φ −ψ)||1

]
+δ1 |ℓ| ||(φ −ψ)||1 +

δ1 |ℓ|
q

||z(φ −ψ)||1 +δ1 |ℓ−m| ||ψ||1
}

≤
{

δ2 |ℓ−m| c+δ2 c
[
q ||(φ −ψ)||1 + ||z(φ −ψ)||1

]
+

c δ1 q
q

||(φ −ψ)||1 +
δ1 c

q
||z(φ −ψ)||1 +δ1 |ℓ−m| c

q

}
≤

(
δ2c+

δ1c
q

)∣∣∣∣∣
∣∣∣∣∣
(
ℓ

φ

)
−

(
m

ψ

)∣∣∣∣∣
∣∣∣∣∣
E

.

Thus,

∣∣∣∣∣
∣∣∣∣∣F
(
ℓ

φ

)
−F

(
m

ψ

)∣∣∣∣∣
∣∣∣∣∣
E

≤ L(c)

∣∣∣∣∣
∣∣∣∣∣
(
ℓ

φ

)
−

(
m

ψ

)∣∣∣∣∣
∣∣∣∣∣
E

with L(c) =
(

δ2c+ δ1c
q

)
. This implies

that F is locally Lipschitz. Thus, Theorem (2.3.2) guarantees that, there exists tmax > 0 such
that the Problem (3.8) has a unique mild solution in [0, tmax) and the solution satisfies

V (t) = TP(t)V0 +
∫ t

0
TP(t − s)F

(
V
)
ds for t < tmax (3.14)

where {TP(t) : t ≥ 0} is the semigroup generated by P =A−B.

Since, F is not positive on E+, one can not claim that the constructed local mild solution is
non-negative. To accomplish it, the System (3.8) is written in an equivalent form as

dV
dt =−(A−B+ρI)V +(F+ρI)(V ); t ≥ 0

V (0) =V0

(3.15)

for some ρ ∈ R+ such that F+ρI is positive. Set Pρ = (A−B+ρI) and Q = F+ρI, then
{TPρ

(t) : t ≥ 0} = {e−ρtTP(t) : t ≥ 0} and hence {TPρ
: t ≥ 0} is positive C0 semigroup of

contraction on E.

Let us define Ca,b = Ia(t0)×Bb(V0) where Ia(t0) = {t : |t − t0| ≤ a} and Bb(V0) = {V ∈ E :
||V −V0||E ≤ b}. Let M = supCa,b

||Q|| . Here, Q is locally Lipschitz with respect to the second
variable, i.e.,

||Q(t,U)−Q(t,V )|| ≤ L2(c) ||U −V || for all U,V ∈ Bb(V0)

where L2(c) =
(

δ2c+ δ1c
q +ρ

)
, ||U || ≤ c and ||V || ≤ c.
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Introducing F : C
(
Ia(0),Bb(V0)

)
→C

(
Ia(0),Bb(V0)

)
by

F(φ(t)) = e−ρt TP(t)V0 +
∫ t

0
e−ρ(t−s)TP(t − s) Q(φ(s)) ds,

which implies that,

||F(φ(t))−V0||∞ ≤ 2 ||V0||+M|t| ≤ 2 ||V0||+Mh ≤ b

and hence F(φ(t)) ∈ Bb(V0). Also,

||F(φ1(t))−F(φ2(t))||∞ ≤ L2(c) |t| ||φ1 −φ2||∞ ≤ L2(c) h ||φ1 −φ2||∞ ,

where L2(c) h < 1. This shows that F is a contraction on C
(

Ia(0),Bb(V0)
)

and by the Banach
fixed point theorem, there exists ψ ∈Ca,b such that F(ψ) = ψ, i.e.,

ψ(t) = e−ρt TP(t)V0 +
∫ t

0
e−ρ(t−s)TP(t − s) Q(ψ(s)) ds

where |t|< h and h ≤ min
{

a, 1
L2(c)

, b−2||V0||
M

}
.

Thus, if V0 ∈ E+ and V : [0, tmax)→ E be the unique mild solution of (3.8), then this solution is
non-negative on the maximal interval of its existence.

Lemma 3.2.3. The nonlinear operator F : E → E is continuously differentiable.

Proof. The nonlinear operator F is given by

F

(
ℓ

ϑ

)
=

(
δ1 ℓ

∫
∞

0 ϑ(z)dz

−δ2 ℓ ϑ

)
.

Then, for fixed (ℓ0,ϑ0) ∈ E, the differential D(ℓ0,ϑ0)F of F is described by

(
D(ℓ0,ϑ0)F

)( ℓ

ϑ

)
=

(
δ1ℓ

∫
∞

0 ϑ0(z)dz+δ1ℓ0
∫

∞

0 ϑdz

−δ2ℓϑ0 −δ2ℓ0ϑ

)
.

Also, for (ℓ,ϑ) ∈ E, we have

∥∥D(ℓ,ϑ)F−D(ℓ0,ϑ0)F
∥∥≤ (δ1

q
+δ2

)∥∥∥∥∥
(
ℓ

ϑ

)
−

(
ℓ0

ϑ0

)∥∥∥∥∥ .
Thus, F is continuously differentiable from E into E for every (ℓ,ϑ) ∈ E.
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From Theorem 2.3.4 and Lemma 3.2.3, we can say the mild solution of the semilinear
problem (3.8) with (C0,ϑ0) ∈ D(A−B) is a classical solution.

3.3 Existence of Classical Solution

This part deals with the existence of a unique global classical solution of the system (3.2)-(3.4).
Some notations and assumptions that are needed in the present section are as follows.
Consider Z = (z0,∞) and reaction rates µ , β are bounded such that

µ, β ∈ L+
∞(Z) (3.16)

where L+
∞(Z) is the positive cone in L∞(Z).

Choose suitable spaces X = L1(Z,zdz) and Y = W̊ 1
1 (Z,zdz) = clW 1

1 (Z,zdz)T (Z), where T (Z)

represents the space of all test functions on Z. Also, X+ is the positive cone in X and Y+ =

Y ∩X+. Now, define

ℑL,B = {C ∈C1(IL) : B−1 ≤C(t)≤ ||C(t)||C1(IL)
≤ B} (3.17)

where IL = [0,L] and B > 1.
For given any interval J and any function C : J → R+, introducing

FC(t)u = ωAu+BC(t)u−S(u), u ∈ Y, t ∈ J (3.18)

where, S(u) =−
(
µ(z)+β (z)

)
u(z)+2

∫
∞

z β (z′)k(z,z′)u(z′) dz′, BC(t)u = δ2C(t)u and A : Y ⊂
X → X defined by Au = ∂u

∂ z . Here, A generates a C0-semigroup {e−At : t ≥ 0} that satisfies∣∣∣∣e−At
∣∣∣∣
L(X)

≤ et/z0 .

Then, writing the equations (3.2)-(3.3) as

u̇+FC(t)u = 0 for t > 0, u(0) = u0 (3.19)

Ċ =−δ0C+δ1C |u|1 for t > 0, C(0) =C0 (3.20)

where | · |1 denotes the norm in L1(Z).

To prove the main result Theorem 3.3.1, the following Proposition 3.3.1 is required.

Proposition 3.3.1. For given B > 0,L0 > 0 and 0 < L ≤ L0,
{
−FC(t) : t ∈ [0,L]

}
generates a

unique evolution system UC(t,s), 0 ≤ s ≤ t ≤ L in X for each C ∈ ℑL,B. Moreover, there exists

ω0 = ω0(L0,B)> 0 such that



48Chapter 3. Evolution Equation of a Prion Proliferation Model in the Presence of Chaperone

||UC(t,s)||L(X) ≤ eω0(t−s), 0 ≤ s ≤ t ≤ L, C ∈ ℑL,B (3.21)

||UC(t,s)||L(Y ) ≤ ω0, 0 ≤ s ≤ t ≤ L, C ∈ ℑL,B (3.22)

and for U,W ∈ ℑL,B

||UU(t,s)−UW (t,s)||L(Y,X) ≤ ω0(t − s) ||U −W ||C(IL)
, 0 ≤ s ≤ t ≤ L. (3.23)

Proof. Since, S and BC(s) are bounded operators on X for any fixed C ∈ ℑL,B and any s ∈ IL,

hence by the bounded perturbation theorem 2.2.1, −FC(s) is the infinitesimal generator of a
C0-semigroup {Ts(t) : t ≥ 0} on X and satisfies∣∣∣∣∣∣e−tFC(s)

∣∣∣∣∣∣
L(X)

≤ ew̃t , t ≥ 0 (3.24)

where w̃ = ω

z0
+δ2B+ ||S||L(X) .

From §2.4,
{
FC(s) : s ∈ [0,L]

}
is a stable family for each C ∈ ℑL,B. Now, for any s ∈ IL, define

QC(s) : Y → X by QC(s) = αI +FC(s), is an isomorphism that satisfies∣∣∣∣∣∣QC(s)
∣∣∣∣∣∣
L(Y,X)

≤ α +ω +δ2B+ ||S||L(X) , s ∈ IL, C ∈ ℑL,B (3.25)

where α = w̃+1 and I is the identity operator. Furthermore, for u ∈ Y

QC(t)u ∈C1(IL,X) with Q̇C(t)u =
d
dt
QC(t)u = δ2Ċ(t)u. (3.26)

Therefore, the assumptions (H1),(H2)
+ and (H3) of §2.4 are satisfied and hence, there exists a

unique evolution system UC(t,s),0 ≤ s ≤ t ≤ L, in X corresponding to
{
FC(s) : s ∈ [0,L]

}
for

each C ∈ ℑL,B which satisfies the statements (E1)− (E5) of §2.4, such that

||UC(t,s)||L(X) ≤ ew̃(t−s), 0 ≤ s ≤ t ≤ L, C ∈ ℑL,B. (3.27)

In particular, (3.21) holds if w̃ is replaced by ω0.

Again, following §2.4, for the evolution system UC(t,s), 0 ≤ s ≤ t ≤ L, there exists a unique
family of bounded linear operators WC(t,s), 0 ≤ s ≤ t ≤ L on X such that

UC(t,s) =QC(t)−1WC(t,s)QC(t), 0 ≤ s ≤ t ≤ L (3.28)

where WC(t,s) ∈ L(X) satisfies
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WC(t,s)u = UC(t,s)u+
∫ t

s
WC(t,r)DC(r)UC(r,s)u dr

for 0 ≤ s ≤ t ≤ L and u ∈ X with DC(t) = Q̇C(t)QC(t)−1 ∈ L(X), t ∈ IL.

Since, QC(t)−1 is the bounded operator, so there exists a constant c0(B) such that∣∣∣∣∣∣QC(t)−1
∣∣∣∣∣∣
L(X ,Y )

≤ c0(B) for t ∈ IL, C ∈ ℑL,B. (3.29)

Also, QC(t)−1 is the resolvent of −FC(t) on X . Therefore,∣∣∣∣∣∣QC(t)−1
∣∣∣∣∣∣
L(X)

≤ 1 for t ∈ IL, C ∈ ℑL,B.

Now, for u ∈ X and t ∈ IL∣∣∣∣∣∣QC(t)−1u
∣∣∣∣∣∣

Y
=
∣∣∣∣∣∣QC(t)−1u

∣∣∣∣∣∣
X
+

∣∣∣∣∣∣∣∣ ∂

∂ z
QC(t)−1u

∣∣∣∣∣∣∣∣
X

≤ ||u||X +
1
ω

∣∣∣∣∣∣u− (α +BC(t)−S
)
QC(t)−1u

∣∣∣∣∣∣
X

≤
[
1+

1
ω

(
1+α +B+ ||S||L(X)

)]
||u||X

and ∥∥∥DC(t)
∥∥∥
L(X)

≤
∥∥∥Q̇C(t)

∥∥∥
L(Y,X)

∥∥∥QC(t)−1
∥∥∥
L(X ,Y )

≤ δ2
∥∥Ċ∥∥C(IL)

c0(B)≤ c′0(B).

From above, one can obtain

∥WC(t,s)∥L(X) ≤ c0(L0,B), 0 ≤ s ≤ t ≤ L, C ∈ ℑL,B. (3.30)

Using estimates (3.25), (3.29) and (3.30) in (3.28), the inequality (3.22) is achieved.
Let U,W ∈ ℑL,B and u ∈ Y. Consider the map

ψ : [r 7→ UU(t,r)UW (r,s)u] ∈C1((s, t),X)∩C
(
[s, t],Y

)
,

where 0 ≤ s ≤ t ≤ L. Then from (E1)− (E5) in §2.4, it is noticed that
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ψ(s)−ψ(t) = UU(t,s)u−UW (t,s)u =−
∫ t

s

∂

∂ r
UU(t,r)UW (r,s)u dr

=
∫ t

s
UU(t,r)

(
FU(r)−FW (r)

)
UW (r,s)u dr.

Therefore, (3.21) and (3.22) provide

∥UU(t,s)u−UW (t,s)u∥X ≤
∫ t

s
∥UU(t,r)∥L(X)

∥∥FU(r)−FW (r)
∥∥
L(Y,X)

∥UW (r,s)∥L(Y ) ∥u∥Y dr

≤ c1(L0,B)(t − s)∥U −W∥C(IL)
∥u∥Y

for 0 ≤ s ≤ t ≤ L and hence statement (3.23) is proved.

Finally, in the following theorem the existence of a unique global classical solution is dis-
cussed. Moreover, the compact support of the solution is also established in Proposition 3.3.2.

3.3.1 Classical Solution Theorem

Theorem 3.3.1. Let us assume that (1.4)-(1.6) and (3.16) are satisfied, then for any given C0 >

0 and u0 ∈ Y+, the Problem (3.19)-(3.20) admits a unique global positive classical solution

(C,u) such that C ∈C1(R+), C(t)> 0 for t > 0, and u ∈C1(R+,X)∩C(R+,Y+).

Proof. We first show that for any M > 0, there exists L = L(M) ∈ (0,1] for which (3.19)-(3.20)
admits a unique solution (C,u) on IL with the assumptions as stated in theorem, provided that
(C0,u0) ∈ R+×Y+ such that

M−1 ≤C0 and C0 + ||u0||Y ≤ M.

Now, define a complete metric space

EL =
{

u ∈C(IL,X+) : ||u(t)||X ≤ M+1, t ∈ IL
}

and take an arbitrary ū ∈ EL, then |u(t)|1 ∈C(IL). If u is replaced by ū, then (3.20) possesses a
unique solution Cū ∈C1(IL) and is given by

Cū(t) =C0 e−δ0t+δ1
∫ t

0 |ū(σ)|1dσ , t ∈ IL. (3.31)

Since, Ċū =−δ0Cū +δ1Cū |ū(t)|1 for t ∈ IL, we have

Ċū ≤ c2(M) and Ċū ≥−δ0Cū ≥−c2(M),
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where c2(M)> 0 is a constant depending on M but not on L ∈ (0,1]. This follows that

− c2(M)≤ Ċū(t)≤ c2(M), t ∈ IL. (3.32)

Thus, (3.31)-(3.32) shows the existence of B = B(M)> 1 which depends on M > 0 but not on
L ∈ (0,1] such that Cū ∈ℑL,B whenever ū ∈ EL and ℑL,B is given by (3.17). Also, one can derive
that

|Cū1(t)−Cū2(t)| ≤ c2(M) ||ū1 − ū2||EL
for 0 ≤ t ≤ L ≤ 1 and ū1, ū2 ∈ EL. (3.33)

Define F : EL → EL by

F(ū)(t) = UCū(t,0)u0 for t ∈ IL, ū ∈ EL.

Let UCū(t,s), 0 ≤ s ≤ t ≤ L is a unique evolution system in X corresponding to {FC(t) : t ∈ IL}
and ω0 = ω0(1,B(M)). Then from §2.4, the equation

u̇(t)+FC(t)u = 0 for t > 0, u(0) = u0

admits a unique classical solution u ∈C1(IL,X)∩C(IL,Y ).

To show that F is a contraction which consequently implies our first claim. Choosing L =

L(M) ∈ (0,1] sufficiently small, the inequality (3.21) yields that for ū ∈ EL and t ∈ IL,

∥F(ū)(t)∥X ≤ eω0L ∥u0∥X ≤ M+1.

Equations (3.23) and (3.33) ensure that for ū1, ū2 and t ∈ IL,

||F(ū1)(t)−F(ū2)(t)||X =
∣∣∣∣∣∣UUū1

(t,0)u0 −UWū2
(t,0)u0

∣∣∣∣∣∣
X

≤ c1(L0,B) t ||Uū1 −Wū2||C(IL)
||u0||Y

≤ ω0 L c2(M) ||ū1 − ū2||EL

≤ 1
2
||ū1 − ū2||EL

.

Since, S is not positive on X+, it is not guaranteed that the constructed local classical solution
is non-negative and hence, rewriting (3.19) in the equivalent form as

du
dt

+
(
ωA+BC(t)+ rI

)
u =

(
S+ rI

)
u = L(u) for t ∈ [0,L], u(0) = u0. (3.34)

Then,
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L(u) ∈ X+ for u ∈ X+ (3.35)

due to the choice of the constant r. From Corollary 2.2.2.2, ωA+BC(t)+rI generates a positive
semigroup on X for each fixed t ∈ IL and hence the evolution system ŪC(t,s), 0 ≤ s ≤ t ≤ L

generated by {ωA+BC(t)+ rI : t ∈ IL} is positive as well.
Now, for fixed ū ∈ EL, the mapping û 7→ Λū(û) from a suitable closed ball C

(
[0, L̃],X

)
,

containing u0, into itself is defined as

Λū(û)(t) = Ūū(t,0)u0 +
∫ t

0
Ūū(t,s)L

(
û(s)

)
ds, t ∈ IL.

which is a contraction provided L̃ ∈ (0,L] for sufficiently small L ∈ (0,1].
Since, the choice of L = L(M) only depends on M, from [71, 56] the system (3.2)-(3.4) pos-
sesses a unique maximal solution (C,u)∈C1(J,R+×X)∩C(J,R+×Y+) on a maximal interval
J which is open in R+. Now, we claim that, if t+ := sup J < ∞, then

lim
t→t+

inf C(t) = 0 or lim
t→t+

sup
(
C(t)+∥u(t)∥Y

)
= ∞. (3.36)

From the equation (3.20), it is clear that

∥C∥C1(J) ≤ a(t+) and C(t)> 0 for t ∈ J. (3.37)

Consequently, there exists B
(
t+
)
> 0 such that for each 0 < L < t+, one has C ∈ ℑL,B and

hence, it follows from Proposition 3.3.1 that

∥UC(t,s)∥L(Y ) ≤ b(t+), 0 ≤ s ≤ t ≤ t+

and
∥u(t)∥Y = ∥UC(t,0)u0∥Y ≤ b(t+)∥u0∥Y . (3.38)

Thus, (3.36) can not true in the sense of (3.37)-(3.38). This contradiction proves that the solu-
tion (C,u) exists for all times.

Proposition 3.3.2. Let (C,u) be the unique global classical solution of the system (3.2)-(3.4)

for C0 > 0 and u0 ∈X+ with (1.4)-(1.6) and (3.16) hold. If supp (u0)⊂ [z0,R0] for some R0 > z0,

then supp (u)⊂ [z0,R(t)], t ≥ 0 where R(t) = R0 +ωt, t ≥ 0.

Proof. Define Φ ∈C1 (R+,L1(Z)) by Φ(t,z) =
∫

∞

z u(t,z′)dz′, z ∈ Z, t ≥ 0. Now,
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d
dt

Φ(t,z) =
∫

∞

z
u̇(t,z′)dz′

= ωu(t,z)−δ2C(t)
∫

∞

z
u(t,z′)dz′+

∫
∞

z
S[u(t)](z′)dz′

and

d
dt

∫
∞

R(t)
Φ(t,z)dz =

∫
∞

R(t)

d
dt

Φ(t,z)dz−R′(t)Φ
(
t,R(t)

)
≤
∫

∞

R(t)

∫
∞

z
S[u(t)](z′)dz′dz

≤ 2 ||β ||
∞

∫
∞

R(t)
Φ(t,z)dz.

Therefore, ∫
∞

R(t)
Φ(t,z)dz ≤ e2||β ||

∞

∫
∞

R0

∫
∞

z
u0(z′)dz′dz = 0, t ≥ 0,

and hence u(t,z) = 0 for z ∈ (R(t),∞) , t ≥ 0.
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Chapter 4

Existence of Solutions of a Prion proliferation Model
in the Presence of Chaperone 1

4.1 Introduction

The present chapter is based on the study of a prion proliferation system coupled with chap-
erone which consists of two ODEs and a partial integro-differential equation. The existence
and uniqueness of a positive global classical solution of the system is proved for the bounded
degradation rates by the idea of evolution system theory in the state space R×R×L1(Z,zdz).

Moreover, the global weak solutions for unbounded degradation rates are discussed by weak
compactness argument. Again by following Section 1.2, the monomer, polymer and chaperone
equations are described by

dS(t)
dt

= λ − γS(t)− τS(t)
∫

∞

z0

u(t,y)dy+2
∫ z0

0
z
∫

∞

z0

β (y) k(z,y) u(t,y) dydz (4.1)

∂u(t,z)
∂ t

=−τS(t)
∂u(t,z)

∂ z
−
(
µ(z)+β (z)+δ2C(t)

)
u(t,z)+2

∫
∞

z
β (y) k(z,y) u(t,y) dy (4.2)

and
dC(t)

dt
= −δ0C(t)+δ1C(t)

∫
∞

z0

u(t,y) dy (4.3)

respectively, under the conditions

S(0) = S0, C(0) =C0, u(0,z) = u0(z), u(t,z0) = 0, for t ≥ 0, z0 < z < ∞. (4.4)

Here, the parameters γ, λ , τ, δ0, δ1 and δ2 are positive constants and the description of these
parameters are given in Chapter 1. The function k(z,y) satisfies the assumptions (1.4)-(1.8).

1A considerable part of this chapter is published in Evolution Equations and Control Theory, 2022, doi:
10.3934/eect.2021039.
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This chapter is organized as follows: In Section 4.2, some auxiliary results are stated in-
cluding the existence and uniqueness of global classical solution of the problem (4.1)-(4.3) with
bounded kernels µ and β . For this, the idea is to solve the equations (4.1) and (4.3) for a fixed
suitable function ũ and then substitute the obtained solutions Sũ and Cũ into equation (4.2).
Further, by using evolution system theory, the equation (4.2) is solved for classical solution uũ

and a fixed point argument for the map ũ → uũ provides the local existence and uniqueness of
a solution (S,C,u) to the problem (4.1)-(4.3). In Section 4.3, the existence of a weak solution
of the system (4.1)-(4.3) is proved by using weak compactness technique under the assump-
tions that µ and β are unbounded. The finite speed of propagation for the classical and weak
solutions to the equation (4.2) is also demonstrated.

4.2 Well-Posedness of the Problem in the Classical Sense for
Bounded Kernels

4.2.1 Preliminaries

Consider Z = (z0,∞) and kernels β , µ are bounded. More precisely, let

β ,µ ∈ L+
∞(Z) (4.5)

for L+
∞(Z) being the positive cone in L∞(Z). Now, define the state space

X0 = L1(Z,zdz)

for the population density u, equipped with the norm ∥·∥0 := ∥·∥L1(Z, zdz) and

X1 = W̊ 1
1 (Z,zdz) = clW 1

1 (Z,zdz)D(Z),

where D(Z) be the space of all test functions on Z, equipped with the norm

∥u∥1 := ∥u∥0 +∥∂z(u)∥0 , u ∈ X1.

Also, the positive cone of X0 and X1 are represented by X+
0 and X+

1 = X1 ∩X+
0 , respectively.

To proceed further in obtaining the desired outcomes, the following two lemmas, Lemma 4.2.1
[[56], Lemma 3.1(a)] and Lemma 4.2.2 [[71], Lemma 2.1] are needed.
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Lemma 4.2.1. The operator E : X0 → X0, defined by

E[u](z) =−
(
µ(z)+β (z)

)
u(z)+2

∫
∞

z
β (y) k(z,y) u(y) dy

is a linear and bounded operator corresponding to (1.4)-(1.5) and (4.5) such that

∥E[u]∥0 ≤ b∗ (∥µ∥
∞
+∥β∥

∞
)∥u∥0 , u ∈ X0, b∗ ≥ 2.

Taking a weight function φ(z), one can have∫
∞

z0

φ(z)E[u](z) dz =−
∫

∞

z0

φ(z)µ(z)u(z) dz+
∫

∞

z0

u(z)β (z)
(
−φ(z)+2

∫ z

z0

φ(y)k(y,z) dy
)

dz. (4.6)

Lemma 4.2.2. The operator −A, defined by

Au = ∂zu, u ∈ X1,

generates a C0 semigroup {e−tA : t ≥ 0} on X0 and it is described by

[e−tAu](z) =

 u(z− t) ; z > z0 + t

0 ; z0 < z ≤ z0 + t,
t ≥ 0,

with ∥∥∥e−tAu
∥∥∥

X0
≤ e

t
z0 ∥u∥X0

, t ≥ 0. (4.7)

Also, this semigroup is stable in the sense of [§2.4].

Now, for given K > 1, T > 0, define JT = [0,T ] and

ℑT,K = {v ∈C1(JT ) : K−1 ≤ v(t)≤ ∥v(t)∥C1(JT )
≤ K}. (4.8)

Then, for given S,C ∈ ℑT,K, introduce the operator

HC
S (t)u = τS(t)Au+δ2C(t)u−E(u), u ∈ X1, t ∈ JT . (4.9)

According to Lemma 4.2.1 and Lemma 4.2.2, the operator family {−HC
S (s) : s ∈ [0,T ]} gener-

ates an evolution operator on X0, refer to [§2.4].
In order to obtain the main result, Theorem 4.2.3 in the next section, the following proposition
is required.

Proposition 4.2.1. Let K > 1,T0 > 0 and 0 < T ≤ T0. Then,
{
−HC

S (t) : t ∈ [0,T ]
}

generates

a unique evolution system UC
S (t,r), 0 ≤ r ≤ t ≤ T in X0 for each S,C ∈ ℑT,K. Moreover, there
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exists w0 = w0(T0,K)> 0 such that∥∥∥UC
S (t,r)

∥∥∥
L(X0)

≤ ew0(t−r), (4.10)

∥∥∥UC
S (t,r)

∥∥∥
L(X1)

≤ w0, (4.11)

and for S,C,S1,C1 ∈ ℑT,K∥∥∥UC
S (t,r)−UC1

S1
(t,r)

∥∥∥
L(X1,X0)

≤ w0(t − r)
(
∥S−S1∥C(JT )

+∥C−C1∥C(JT )

)
(4.12)

where 0 ≤ r ≤ t ≤ T.

Proof. From Lemma 4.2.1, Lemma 4.2.2 and a well-known Bounded Perturbation Theorem
2.2.1, −HC

S (r) generates a C0-semigroup on X0 for any r ∈ JT and any fixed S,C ∈ ℑT,K, that
satisfies ∥∥∥e−tHC

S (r)
∥∥∥
L(X0)

≤ ew̃t , t ≥ 0 (4.13)

where w̃ = τK
z0

+∥E∥L(X0)
+δ2K.

From Theorem 2.4.2,
{
−HC

S (r) : r ∈ [0,T ]
}

is a stable family for each S,C ∈ ℑT,K . Now,
for any t ∈ JT , define QC

S (t) : X1 → X0 by QC
S (t) = wI +HC

S (t) which is an isomorphism that
satisfies ∥∥∥QC

S (t)
∥∥∥
L(X1,X0)

≤ w+
τK
z0

+δ2K +∥E∥L(X0)
, t ∈ JT and S,C ∈ ℑT,K (4.14)

where I represents the identity operator and w = w̃+1. Furthermore, for u ∈ X1,

QC
S (t)u ∈C1(JT ,X0) and Q̇C

S (t)u =
d
dt

QC
S (t)u = τ Ṡ(t)∂zu+δ2Ċ(t)u. (4.15)

In consequence, the assumptions (H1),(H2)
+ and (H3) of [§2.4] are fulfilled. This implies that

a unique evolution system UC
S (t,r), 0≤ r ≤ t ≤T in X0 exists corresponding to

{
−HC

S (r) : r ∈ [0,T ]
}

for each S,C ∈ ℑT,K which satisfies the statements (E1)− (E5) of [§2.4], such that∥∥∥UC
S (t,r)

∥∥∥
L(X0)

≤ ew̃(t−r). (4.16)

In particular, if w̃ is replaced by w0, then the inequality (4.10) holds.
Moreover, for the evolution system UC

S (t,r), there exists a unique family of bounded linear
operators WC

S (t,r) in X0, refer to [§2.4], such that

UC
S (t,r) = QC

S (t)
−1WC

S (t,r)Q
C
S (r), 0 ≤ r ≤ t ≤ T, (4.17)
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where WC
S (t,r) ∈ L(X0) satisfies

WC
S (t,r)u = UC

S (t,r)u+
∫ t

r
WC

S (t,s)D
C
S (s)U

C
S (s,r)u ds

for 0 ≤ r ≤ t ≤ T and u ∈ X0 with DC
S (t) = Q̇C

S (t)Q
C
S (t)

−1 ∈ L(X0), t ∈ JT .

Since, QC
S (t)

−1 is a bounded operator, there exists a constant c1(K) such that∥∥∥QC
S (t)

−1
∥∥∥
L(X0,X1)

≤ c1(K) for t ∈ JT and S,C ∈ ℑT,K. (4.18)

Also, the resolvent of −HC
S (t) is QC

S (t)
−1 on X0. Therefore,∥∥∥QC

S (t)
−1
∥∥∥
L(X0)

≤ 1 for t ∈ JT and S,C ∈ ℑT,K.

Further, for t ∈ JT , S,C ∈ ℑT,K and u ∈ X0,∥∥∥QC
S (t)

−1u
∥∥∥

X1
=
∥∥∥QC

S (t)
−1u
∥∥∥

X0
+

∥∥∥∥ ∂

∂ z
QC

S (t)
−1u
∥∥∥∥

X0

≤
[

1+
K
τ

(
1+w+δ2K +∥E∥L(X0)

)]
∥u∥X0

and consequently,∥∥∥DC
S (t)

∥∥∥
L(X0)

≤
∥∥∥Q̇C

S (t)
∥∥∥
L(X1,X0)

∥∥∥QC
S (t)

−1
∥∥∥
L(X0,X1)

≤
(

τ
∥∥Ṡ(t)

∥∥
C(JT )

+δ2
∥∥Ċ(t)

∥∥
C(JT )

)
c1(K)≤ c2(K).

It is clear from the proof of Lemma 2.4.6 and inequality (4.10) that there exists a constant
c2(T0,K) such that∥∥∥WC

S (t,r)
∥∥∥
L(X0)

≤ c2(T0,K), 0 ≤ r ≤ t ≤ T, and S,C ∈ ℑT,K. (4.19)

Using estimates (4.14), (4.18) and (4.19) in (4.17), the inequality (4.11) is accomplished.
Finally, to obtain the bound (4.12), let u∈X1 and S,C,S1,C1 ∈ℑT,K. For 0≤ r ≤ t ≤ T, consider
the map

φ : [s 7→ UC
S (t,s)U

C1
S1
(s,r)u] ∈C1((r, t),X0

)
∩C
(
[r, t],X1

)
.

Then, from (E1)− (E5) in [§2.4], it is observed that
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φ(r)−φ(t) = UC
S (t,r)u−UC1

S1
(t,r)u =−

∫ t

r

∂

∂ s
UC

S (t,s)U
C1
S1
(s,r)u ds

=
∫ t

r
UC

S (t,s)
(
HC

S (s)−HC1
S1
(s)
)
UC1

S1
(s,r)u ds.

Therefore, (4.10) and (4.11) provide∥∥∥UC
S (t,r)u−UC1

S1
(t,r)u

∥∥∥
X0

≤
∫ t

r

∥∥UC
S (t,s)

∥∥
L(X0)

∥∥∥HC
S (s)−HC1

S1
(s)
∥∥∥
L(X1,X0)

∥∥∥UC1
S1
(s,r)

∥∥∥
L(X1)

∥u∥X1
ds

≤ c2 (T0,K)(t − r)
(
∥S−S1∥C(JT )

+∥C−C1∥C(JT )

)
∥u∥X1

for 0 ≤ r ≤ t ≤ T and hence, inequality (4.12) holds.

4.2.2 Classical Solution

This section deals with the global well-posedness of the system (4.1)-(4.3) in a classical sense
for bounded kernels µ and β . By substituting

2
∫ z0

0
z
∫

∞

z0

β (y) k(z,y) u(t,y) dydz := f (u),

the problem (4.1)-(4.3) can be rewritten, for t > 0, as

Ṡ = λ − γS− τS |u|1 + f (u), S(0) = S0, (4.20)

u̇+HC
S (t)u = 0, u(0) = u0, (4.21)

Ċ =−δ0C+δ1C |u|1, C(0) =C0, (4.22)

where | · |1 represents the norm in L1(Z).

Finally, the existence and uniqueness of a global classical solution are discussed in the follow-
ing theorem.

Theorem 4.2.3. Suppose (1.4)-(1.6) and (4.5) hold, then for any given S0,C0 > 0 and u0 ∈ X+
1 ,

the problem (4.1)-(4.3) possesses a unique globally positive classical solution (S,C,u) such

that S,C ∈C1(R+); S(t),C(t)> 0 for t > 0 and u ∈C1(R+,X0)∩C(R+,X+
1 ).

Proof. Let S0,C0 > 0 and u0 ∈ X+
0 ∩X1 be given and let P > 0 be such that

P−1 ≤ S0,C0 ≤ P and
∥∥u0∥∥

X1
≤ P. (4.23)

Construct a complete metric space
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ET =
{

u ∈C(JT ,X+
0 ) : ∥u(t)∥X0

≤ P+1, t ∈ JT
}
.

Let us choose an arbitrary ũ ∈ ET , then f (ũ), |ũ(t)|1 ∈ C(JT ). Hence, equation (4.20) with u

replaced by ũ possesses a unique solution Sũ ∈C1(JT ) and is given by

Sũ(t) = S0 e−γt−τ
∫ t

0 |ũ(σ)|1dσ +
∫ t

0
e−γ(t−s)−τ

∫ t
s |ũ(σ)|1dσ [λ + f (ũ(s))] ds. (4.24)

Clearly,
Sũ(t)≥ S0e−γt−τ

P+1
z0

t ≥ c1(P) for 0 ≤ t ≤ T ≤ 1. (4.25)

Since, S0 < P and f (ũ(t))≤ ∥β∥
∞
(P+1) for t ∈ JT , one has

Sũ(t)≤ c2(P). (4.26)

The above inequalities (4.25)-(4.26) together with equation (4.20) provide that

− c(P)≤ Ṡũ(t)≤ c(P), t ∈ JT . (4.27)

Therefore, (4.25)-(4.27) show the existence of K = K(P) > 1 which depends on P > 0 but
independent of T ∈ (0,1] such that Sũ ∈ ℑT,K(P) whenever ũ ∈ ET . Similarly, the equation
(4.22) with u replacing by ũ, possesses a unique solution Cũ ∈C1(JT ) which is expressed by

Cũ(t) =C0 e−δ0t+δ1
∫ t

0 |ũ(σ)|1dσ , (4.28)

and similarly one can also obtain

− c(P)≤ Ċũ(t)≤ c(P), t ∈ JT . (4.29)

Thus, (4.28)-(4.29) ensure the existence of K = K(P) > 1 depending on P > 0 but not on
T ∈ (0,1] such that Cũ ∈ ℑT,K(P) whenever ũ ∈ ET . Now, for ũ1, ũ2 ∈ ET and 0 ≤ t ≤ T ≤ 1,

|Sũ1(t)−Sũ2(t)| ≤ c(P)∥ũ1 − ũ2∥ET
, (4.30)

and

|Cũ1(t)−Cũ2(t)| ≤ c(P)∥ũ1 − ũ2∥ET
. (4.31)

Let UCũ
Sũ
(t,r), 0≤ r ≤ t ≤ T be a unique evolution system in X0 corresponding to {−HCũ

Sũ
(t) :

t ∈ JT} and w0 = w0(1,K(P)). Now, define G : ET → ET such as
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G(ũ)(t) = UCũ
Sũ
(t,0)u0 for t ∈ JT , ũ ∈ ET ,

which is the unique solution in C1(JT ,X0)∩C(JT ,X1), refer to [§2.4], corresponding to the
evolution equation,

u̇(t)+HCũ
Sũ
(t)u = 0 , u(0) = u0, t > 0.

Choosing T = T (P) ∈ (0,1] sufficiently small, the inequality (4.10) yields that for ũ ∈ ET and
t ∈ JT ,

∥G(ũ)(t)∥X0
≤ ew0T ∥∥u0∥∥

X0
≤ P+1.

Inequalities (4.12), (4.30) and (4.31) ensure that for ũ1, ũ2 ∈ ET and t ∈ JT ,

∥G(ũ1)(t)−G(ũ2)(t)∥X0
≤ w0T c(P)∥ũ1 − ũ2∥ET

≤ 1
2
∥ũ1 − ũ2∥ET

.

Since, E is not positive on X+
0 , one can not say that G(ũ)(t) is non-negative. Hence, in order to

prove the non-negativity of G(ũ)(t), we observe that G(ũ) also solves

u̇+
(
ASũ(t)+BCũ(t)+ pI

)
u =

(
E + pI

)
u = Q(u), u(0) = u0, t ∈ [0,T ], (4.32)

with ASũ(t) = τSũ(t)∂z and BCũ(t) = δ2Cũ(t)I, where I is an identity operator and p = ∥µ∥
∞
+

∥β∥
∞
> 0. Then,

Q(u) ∈ X+
0 for u ∈ X+

0 . (4.33)

Since, Lemma 4.2.2 ensures that −ASũ(t) generates a positive C0 semigroup on X0, it readily
follows from Corollary 2.2.2.2 that −(ASũ(t)+BCũ(t)+ pI) generates a positive semigroup
on X0 for each fixed t ∈ JT . Hence, from [§2.4] the evolution system Ū(t,r), 0 ≤ r ≤ t ≤ T

generated by {−(ASũ(t)+BCũ(t)+ pI) : t ∈ JT} is positive as well.
Let us define a mapping Λ from a suitable closed ball in C

(
[0, T̂ ],X0

)
, containing u0, into

itself such that
Λ(ū)(t) = Ū(t,0)u0 +

∫ t

0
Ū(t,s)Q

(
ū(s)

)
ds.

It is easy to check that Λ is a contraction for sufficiently small T̂ ∈ (0,T ]. Consequently, u0 =

u0, un =Λ(un−1), n∈N is a sequence in C
(
[0, T̂ ],X+

0
)

that converges to G(ũ)|[0,T̂ ]. This implies
that

T ′ = sup{T ∗ ∈ (0,T ] : G(ũ)(t) ∈ X+
0 , 0 ≤ t ≤ T ∗} ≥ T̂ .

Assuming T ′ < T, then a repetition of the above arguments with u0 substituted by G(ũ)(T ′) ∈
X+

1 leads to T ′ = T, which gives that G : ET → ET is a contraction. Since, the choice of
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T = T (P) depends only on P, therefore according to [56, 71], the system (4.1)-(4.3) admits a
unique maximal solution (S,C,u) ∈ C1(I0,R×R×X0)∩C(I0,R+×R+×X+

1 ) on a maximal
interval I0 which is open in R+.

Now, we claim that, if τ∗ := sup (I0)< ∞, then

limt→τ∗ S(t) = 0, limt→τ∗ C(t) = 0 or limt→τ∗
(
S(t)+C(t)+∥u(t)∥X1

)
= ∞. (4.34)

For the global existence, we show that (4.34) does not occur in finite time. Using equations
(1.5) and (4.6), we have

Ṡ(t)+Ċ(t)+
d
dt

∫
∞

z0

zu(t,z) dz = λ − γS(t)+2
∫

∞

z0

u(t,z)β (z)
∫ z0

0
yk(y,z) dy dz

−δ0C(t)+δ1C(t)
∫

∞

z0

u(t,z) dz

−δ2C(t)
∫

∞

z0

zu(t,z) dz+
∫

∞

z0

zE[u(t)](z) dz

= λ − γS(t)−δ0C(t)−
∫

∞

z0

zµ(z)u(t,z) dz

+δ1C(t)
∫

∞

z0

u(t,z) dz−δ2C(t)
∫

∞

z0

zu(t,z) dz.

This implies that,

S(t)+C(t)+∥u(t)∥X0
≤ S0 +C0 +

∥∥u0∥∥
X0
+λ t, for t ∈ JT , δ2 >

δ1

z0
· (4.35)

Using (4.20) and (4.35), the following estimates hold

∥S∥C1(I0)
≤ h(τ∗) and S(t)> 0, for t ∈ I0. (4.36)

Also, the equation (4.22) and inequality (4.35) lead to the following

∥C∥C1(I0)
≤ h(τ∗) and C(t)> 0, for t ∈ I0. (4.37)

Consequently, there exists K
(
h(τ∗)

)
> 0 such that for each 0 < T < τ∗, one has S,C ∈ ℑT,K

and hence, it is obvious from Proposition 4.2.1 that∥∥∥UC
S (t,r)

∥∥∥
L(X1)

≤ h(τ∗), 0 ≤ r ≤ t ≤ τ
∗

and then,
∥u(t)∥X1

=
∥∥∥UC

S (t,0)u
0
∥∥∥

X1
≤ h(τ∗)

∥∥u0∥∥
X1
, t ∈ I0. (4.38)
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Thus, (4.34) can not hold in the sense of (4.36)-(4.38). This contradiction shows that the clas-
sical solution (S,C,u) exists for all times.

Finally, in the next proposition, we consider compactly supported initial data and prove that
u enjoys the property of finite speed of propagation, refer to [50], where (S,C,u) represents the
solution of the system (4.1)-(4.3).

Proposition 4.2.2. Let us assume (1.4)-(1.6) and (4.5) hold. If S0 > 0,C0 > 0 and if u0 ∈
X+

1 such that supp (u0) ⊂ [z0,V0] for some V0 > z0, then classical solution (S,C,u) of the

problem (4.1)-(4.3) proved in Theorem 4.2.3 satisfies supp (u)⊂ [z0,V (t)], where V (t) =V0 +

τ
∫ t

0 S(s) ds, t ≥ 0.

Proof. Let us introduce Ψ ∈ C1(R+,L1(Z)
)

such that Ψ(t,z) =
∫

∞

z u(t,y) dy, z ∈ Z, t ≥ 0.
Then, from (4.2) and (1.6) the following estimates can be easily obtained

d
dt

Ψ(t,z) =
∫

∞

z
u̇(t,y) dy

= τS(t)u(t,z)−δ2C(t)
∫

∞

z
u(t,y) dy+

∫
∞

z
E[u(t)](y) dy

and

d
dt

∫
∞

V (t)
Ψ(t,z) dz =

∫
∞

V (t)

d
dt

Ψ(t,z)dz−V ′(t)Ψ
(
t,V (t)

)
≤
∫

∞

V (t)

∫
∞

z
E[u(t)](y) dy dz

≤ 2∥β∥
∞

∫
∞

V (t)
Ψ(t,z) dz.

Hence, ∫
∞

V (t)
Ψ(t,z) dz ≤ e2t∥β∥

∞

∫
∞

V0

∫
∞

z
u0(y) dydz = 0,

which provides that u(t,z) = 0 for z ∈
(
V (t),∞

)
, t ≥ 0.

4.3 Existence of Weak Solution for Unbounded Kernels

The main motivation of this section is to prove the existence of weak solution to the problem
(4.1)-(4.3) under some relaxation in condition (4.5) such as kernels µ and β are unbounded.
More precisely, in the following, we assume that there exists α ≥ 1 and ρ ∈ L+

∞(Z) such that

µ(z)+β (z)≤ ρ(z) zα , a.e. z ∈ Z and ρ(z)→ 0 as z → ∞.
(4.39)
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In addition, we also require for each ε > 0 there exists δ > 0 such that

sup|ξ |≤δ

β (z)
zα

∫ z
z0
1ξ (y)k(y,z) dy ≤ ε, a.e. z ∈ Z,

(4.40)

where the supremum is taken over all measurable subsets ξ ⊂ Z with |ξ | ≤ δ and 1ξ represents
the characteristic function on ξ .

In the following, L1,w(Z) represents the weak topological space of L1(Z).

Definition 4.3.1. For given S0,C0 > 0 and u ∈ L+
1 (Z,zdz), the triplet (S,C,u) is called a weak

solution corresponding to (4.1)-(4.3) if the following hold

(a) f (u) ∈C(R+),

(b) S,C ∈C1(R+) are non-negative solutions of (4.1) and (4.3), respectively,

(c) u ∈C (R+,L1,w(Z))∩L∞,loc
(
R+,L+

1 (Z,zdz)
)
,

(d) For all φ ∈W 1
∞(Z) and t > 0, it follows that E[u] ∈ L1

(
(0, t)×Z

)
and

∫
∞

z0

φ(z)u(t,z) dz =
∫

∞

z0

φ(z)u0(z) dz+ τ

∫ t

0
S(σ)

∫
∞

z0

φ
′(z)u(σ ,z) dz dσ

−δ2

∫ t

0
C(σ)

∫
∞

z0

φ(z)u(σ ,z) dz dσ +
∫ t

0

∫
∞

z0

φ(z)E[u(σ)](z) dz dσ .

For the existence of weak solution, the following lemmas are needed.

Lemma 4.3.1. Let AC
S (t) = τS(t)A + δ2C(t), for S,C ∈ C(JT ) with S(t),C(t) > 0 and t ∈

JT . Then, there is an evolution system UAC
S
(t,r),0 ≤ r ≤ t ≤ T in L1(Z) corresponding to

−AC
S (t), t ∈ JT and for any δ > 0, it satisfies

sup
|ξ |≤δ

∫
ξ

UAC
S
(t,r)φ dz ≤ sup

|ξ |≤δ

∫
ξ

φ dz, 0 ≤ r ≤ t ≤ T, φ ∈ L+
1 (Z),

where the supremum is taken over all measurable sets ξ ⊂ Z with |ξ | ≤ δ .

Proof. According to Lemma 4.2.2, it is clear that the operator −∂z with domain W̊ 1
1 (Z) gener-

ates a positive C0-semigroups of contractions on L1(Z) and it allows that∥∥∥e−tAC
S (r)
∥∥∥
L(L1(Z))

≤ 1,
∥∥∥e−tAC

S (r)
∥∥∥
L(W̊ 1

1 (Z))
≤ 1, t ≥ 0, r ∈ JT .

From Theorems [2.4.1, 2.4.2 ,2.4.3], there exists a unique evolution system UAC
S
(t,r),0 ≤ r ≤

t ≤ T in L1(Z) corresponding to −AC
S (t), t ∈ JT . Let ξ is any measurable subset of Z such that
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|ξ | ≤ δ and choose φ ∈ L+
1 (Z). Then,∫

ξ

[
e−tAC

S (r)φ
]
(z)dz =

∫
∞

z0

1ξ−tτS(r)(z) e−δ2C(r)t
φ(z) dz ≤ sup

|ξ ′|≤δ

∫
ξ ′

φ(z) dz

for t ≥ 0 and r ∈ JT . From equations (3.5) and (3.15) in [ §5, [66] ], we have∫
ξ

UAC
S
(t,r)φ dz ≤ sup

|ξ ′|≤δ

∫
ξ ′

φ dz, 0 ≤ r ≤ t ≤ T,

which provides the required assertion.

Lemma 4.3.2. Let us assume gn and g are measurable functions on Z such that gn → g a.e.

and let un → u in L+
1,w(Z).

(a) If ∥gn∥∞
≤ c, then gnun → gu in L1,w(Z).

(b) If ρ and α are as in (4.39) and if |gn(z)| ≤ ρ(z)zα for a.e. z ∈ Z and∫
∞

z0

zαun(z) dz ≤ c, n ∈ N,

then gnun → gu in L1,w(Z).

For the proof of Lemma 4.3.2, see [71]. In the following theorem, we relax the boundedness
conditions on µ , β and discuss the existence of a weak solution.

4.3.1 Weak Solution Theorem

Theorem 4.3.3. Let us assume that (1.4)-(1.6) and (4.39)-(4.40) hold. Then, for any given

S0,C0 > 0 and u0 ∈ L+
1 (Z,z

αdz), the system (4.1)-(4.3) possesses at least one global weak so-

lution (S,C,u) in the sense of Definition 4.3.1. Moreover, u belongs to L∞,loc (R+,L1(Z,zαdz)) .

Proof. Suppose u0
n ∈ D+(Z) be such that u0

n → u0 in L1(Z,zαdz). Define µn := min{µ,n} and
βn := min{β ,n}. This implies that µn,βn satisfy (4.39) and (4.40). Hence, Theorem 4.2.3
provides the existence of

(Sn,Cn,un) ∈C1(R+,R×R×X0
)
∩C
(
R+,R+×R+×X+

1
)

such that, for t > 0,

Ṡn = λ − γSn − τSn |un|1 + fn(un), Sn(0) = S0 (4.41)

∂tun + τSn(t)∂zun +δ2Cn(t)un = En[un], un(0) = u0
n (4.42)
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Ċn =−δ0Cn +δ1Cn |un|1, Cn(0) =C0 (4.43)

where
fn(un) = 2

∫ z0

0
z
∫

∞

z0

βn(y) k(z,y) un(t,y) dy dz,

and
En[un](z) =−

(
µn(z)+βn(z)

)
un(z)+2

∫
∞

z
βn(y) k(z,y) un(y) dy.

Let T > 0 be arbitrary, then from (4.35) there exists b0(T ) > 0 which is independent of n ≥ 1
such that

Sn(t)+Cn(t)+∥un(t)∥X0
≤ b0(T ), t ∈ JT , n ≥ 1, δ2 > δ1/z0. (4.44)

Equation (1.5) entails that,

2
∫ z

z0

(y)αk(y,z) dy ≤ (z)α , a.e. z > z0. (4.45)

Recall that un(t) has compact support due to Proposition 4.2.2. Hence, (4.42) and (4.45) yield,

d
dt

∫
∞

z0

zαun(t,z) dz =
[
α τSn(t)

∫
∞

z0

zα−1un(t,z) dz−δ2Cn(t)
∫

∞

z0

zαun(t,z) dz

−
∫

∞

z0

zα
(
µn(z)+βn(z)

)
un(t,z) dz

+2
∫

∞

z0

un(t,z)βn(z)
∫ z

z0

(y)αk(y,z) dy dz
]

≤ α τ

z0
Sn(t)

∫
∞

z0

zαun(t,z) dz.

Therefore, Gronwall’s inequality and estimate (4.44) ensure that

∥un(t)∥L1(Z,zα dz) ≤ b0(T ), t ∈ JT , n ≥ 1. (4.46)

Further, (4.43) and (4.44) imply that

Ċn ≤
δ1Cn(t)

z0

∫
∞

z0

zun(t,z) dz ≤ δ1b0(T )
z0

∥un(t)∥X0
≤ b(T ), t ∈ JT ,

which provides that

|Cn(t)−Cn(s)| ≤ b(T ) |t − s|, t,s ∈ JT , n ≥ 1, (4.47)

where b(T )> 0 is independent of n ≥ 1. Thus, from (4.44), (4.47) and the Arzela-Ascoli The-
orem 2.5.1, the sequence (Cn)n≥1 is relatively compact in C(JT ).
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Now, using (1.6), (4.39) and (4.46) for fn(un), we have

fn
(
un(t)

)
≤ 2z0 ∥ρ∥

∞
∥un(t)∥L1(Z,zα dz) ≤ b(T ), t ∈ JT , n ≥ 1.

Therefore, equation (4.41) and the estimate on fn
(
un(t)

)
warrant that

|Sn(t)−Sn(s)| ≤ b(T ) |t − s|, t,s ∈ JT , n ≥ 1 (4.48)

where b(T )> 0 is independent of n ≥ 1. Due to (4.44) and (4.48), the Arzela-Ascoli Theorem
2.5.1 guarantees that the sequence (Sn)n≥1 is relatively compact in C(JT ).

Next, to prove that (un) is relatively sequentially compact in C (JT ,L1,w(Z)) , it is sufficient
to show from Theorem 2.5.9 that the set (un)n≥1 is weakly equicontinuous on JT and for each
t ∈ JT , the set {un(t) : n ≥ 1} is weakly relatively compact in L1,w(Z).

To prove the second part, let UCn
Sn
(t,r) be the evolution system in L1(Z) corresponding to the

operator ACn
Sn
(t) = τSn(t)A+δ2Cn(t), then

un(t) = UCn
Sn
(t,0)u0

n +
∫ t

0
UCn

Sn
(t,r)En[un(r)] dr, t ∈ JT .

Therefore, for given δ > 0, the positivity of un(t) and Lemma 4.3.1 guarantee that

sup
|ξ |≤δ

∫
ξ

un(t,z) dz ≤ sup
|ξ |≤δ

∫
ξ

uo
n(z) dz+2

∫ t

0
sup
|ξ |≤δ

∫
∞

z0

un(σ ,z)βn(z)
∫ z

z0

1ξ (y)k(y,z) dy dz dσ .

Since, u0
n → u0 in L1(Z,zαdz) and due to (4.40) and (4.46), one can conclude that

lim
|ξ |→0

sup
n≥1,t∈JT

∫
ξ

un(t,z) dz = 0. (4.49)

Also, inequality (4.44) provides

lim
R→0

sup
n≥1,t∈JT

∫
∞

R
un(t,z) dz = 0. (4.50)

Thanks to Dunford-Pettis Theorem 2.5.2, the equations (4.49) and (4.50) together with (4.44)
ensure that {un(t) ; t ∈ JT , n ≥ 1} is relatively compact in L1,w(Z).

To prove the first part, let φ ∈ D(Z) be arbitrary and testing (4.42) by φ provides,
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∣∣∣∣∫ ∞

z0

φ(z)[un(t,z)−un(s,z)] dz
∣∣∣∣≤ τ

∫ t

s
Sn(σ)

∫
∞

z0

|φ ′(z)|un(σ ,z) dz dσ

+δ2

∫ t

s
Cn(σ)

∫
∞

z0

φ(z)un(σ ,z) dz dσ

+
∫ t

s

∫
∞

z0

|φ(z)|(µn(z)+βn(z))un(σ ,z) dz dσ

+2
∫ t

s

∫
∞

z0

un(σ ,z)βn(z)
∫ z

z0

|φ ′(z)|k(y,z) dy dz dσ

for 0 ≤ s ≤ t ≤ T. This implies together with (1.6), (4.39), (4.44) and (4.46) that,∣∣∣∣∫ ∞

z0

φ(z)[un(t,z)−un(s,z)] dz
∣∣∣∣≤ b(T,φ) |t − s|, s, t ∈ JT . (4.51)

Now, for φ ∈ L∞(Z), there exists φ j ∈ D(Z) such that φ j → φ a.e. and
∥∥φ j
∥∥

∞
≤ ∥φ∥

∞
, see in

[1]. Then, Egorov’s theorem warrant that there is a measurable subset ξ of (z0,R) where R > z0

such that ∥∥φ −φ j
∥∥

L∞((z0,R)\ξ )
≤ ε

6 b0(T )
,

where b0(T ) stems from (4.44).
Since, {un(t) ; t ∈ JT , n ≥ 1} is relatively compact in L1,w(Z), there is a measurable subset ξ

of (z0,R) where R > z0 such that∫
∞

R
un(t,z) dz+

∫
ξ

un(t,z) dz ≤ ε

12 ∥φ∥
∞

, t ∈ JT , n ≥ 1.

Therefore, (4.51) provides,∣∣∣∣∫ ∞

z0

φ(z)[un(t,z)−un(s,z)] dz
∣∣∣∣≤ ∥∥φ −φ j

∥∥
L∞((z0,R)\ξ )

(
|un(t)|1 + |un(s)|1

)
+
(∥∥φ j

∥∥
∞
+∥φ∥

∞

)∫ ∞

R

(
un(t,z)+un(s,z)

)
dz

+
(∥∥φ j

∥∥
∞
+∥φ∥

∞

)∫
ξ

(
un(t,z)+un(s,z)

)
dz

+b(T,φ j) |t − s|

≤ ε +b(T,φ j) |t − s|

for t,s ∈ JT and n ≥ 1. Consequently,

lim
s→t

sup
n≥1

∣∣∣∣∫ ∞

z0

φ(z)[un(t,z)−un(s,z)] dz
∣∣∣∣= 0, (4.52)
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which shows that for every t ∈ JT , {un : n ≥ 1} is equicontinuous in L1,w(Z).

Thus, for each T > 0, (Sn,Cn,un) is relatively compact in C
(
JT ,R×R×L1,w(Z)

)
and hence,

one can find a subsequence (again denoted by (Sn,Cn,un)n≥1) and a function (S,C,u)∈C
(
R+,R×

R×L1,w(Z)
)

such that for each T > 0,

(Sn,Cn,un)→ (S,C,u) in C
(
JT ,R×R×L1,w(Z)

)
. (4.53)

Now, we claim that (S,C,u) be a weak solution corresponding to (4.1)-(4.3) and it follows that(
S(t),C(t),u(t)

)
∈R+×R+×L+

1 (Z) for t > 0 due to
(
Sn(t),Cn(t),un(t)

)
∈R+×R+×L+

1 (Z).

Again, for fixed T > 0, (4.46) and (4.53) provide that

∥u(t)∥L1(Z,zα dz) ≤ b0(T ), t ∈ JT , (4.54)

and in particular, u ∈ L∞,loc
(
R+,L1(Z,zαdz)

)
. Let φ ∈ W 1

∞(Z) be an arbitrary. Then, (4.53)
entails that

lim
n→∞

∫
∞

z0

φ(z)un(t,z) dz =
∫

∞

z0

φ(z)u(t,z) dz, t ∈ JT . (4.55)

Furthermore, for t ∈ JT ,∣∣∣∣∫ t

0
Cn(σ)

∫
∞

z0

φ(z)un(σ ,z) dz dσ −
∫ t

0
C(σ)

∫
∞

z0

φ(z)u(σ ,z) dz dσ

∣∣∣∣
≤
∫ t

0
Cn(σ)

∣∣∣∣∫ ∞

z0

φ(z)[un(σ ,z)−u(σ ,z)] dz
∣∣∣∣ dσ

+
∫ t

0
|Cn(σ)−C(σ)|

∫
∞

z0

|φ(z)|u(σ ,z) dz dσ .

By applying Lebesgue’s dominated convergence theorem and having (4.44) and (4.53), one can
obtain that

lim
n→∞

∫ t

0
Cn(σ)

∫
∞

z0

φ(z)un(σ ,z) dz dσ =
∫ t

0
C(σ)

∫
∞

z0

φ(z)u(σ ,z) dz dσ (4.56)

for t ∈ JT . Similarly, for t ∈ JT , it is easy to show that

lim
n→∞

∫ t

0
Sn(σ)

∫
∞

z0

φ
′(z)un(σ ,z) dz dσ =

∫ t

0
S(σ)

∫
∞

z0

φ
′(z)u(σ ,z) dz dσ . (4.57)

As µn(z) + βn(z) ≤ ρ(z) zα , a.e. z ∈ Z, then Lemma 4.3.2, (4.46), (4.53) and Lebesgue’s
dominated convergence theorem imply that

lim
n→∞

∫ t

0

∫
∞

z0

φ(z)
(
µn(z)+βn(z)

)
un(σ ,z) dz dσ =

∫ t

0

∫
∞

z0

φ(z)
(
µ(z)+β (z)

)
u(σ ,z) dz dσ
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as well as

lim
n→∞

∫ t

0

∫
∞

z0

φ(z)
∫

∞

z
un(σ ,y)βn(y)k(z,y) dy dz dσ =

∫ t

0

∫
∞

z0

φ(z)
∫

∞

z
u(σ ,y)β (y)k(z,y) dy dz dσ

where Fubini’s theorem is used for the second limit. Consequently, both the above equations
lead to,

lim
n→∞

∫ t

0

∫
∞

z0

φ(z)En[un(σ)] dz dσ =
∫ t

0

∫
∞

z0

φ(z)E[u(σ)] dz dσ . (4.58)

As, (S,C,u) is a weak solution corresponding to (4.1)-(4.3), equations (4.55)-(4.58) provide the
fourth part of Definition 4.3.1. Further, from Lemma 4.3.2, it is easy to verify that

lim
n→∞

fn
(
un(t)

)
= f
(
u(t)

)
, t ∈ JT .

Further, (4.44) and (4.53) lead to,

lim
n→∞

∫ t

0
|un(σ)|1 dσ =

∫ t

0
|u(σ)|1 dσ , t ∈ JT .

Thus, equation (4.41) warrants that

S(t) = S0 e−γt−τ
∫ t

0 |u(σ)|1dσ +
∫ t

0
e−γ(t−s)−τ

∫ t
s |u(σ)|1dσ [λ + f (u(s))] ds,

and equation (4.43) yields,
C(t) =C0 e−δ0t+δ1

∫ t
0 |u(σ)|1dσ ,

for t ∈ JT . Since, u ∈C
(
R+,L1,w(Z)

)
, Lemma 4.3.2 and (4.54) imply that f (u) ∈C(JT ). Also,

|u|1 ∈C(JT ), therefore we conclude that S,C ∈C1(JT ) solve (4.1) and (4.3), respectively.

The finite speed of propagation for the weak solution corresponding to (4.2) is established
in the following proposition.

Proposition 4.3.1. Let us assume (1.4)-(1.6) and (4.39)-(4.40) hold and let (S,C,u) is a global

weak solution to the problem (4.1)-(4.3) for S0,C0 > 0 and u0 ∈ L+
1 (Z,z

αdz). If supp (u0) ⊂
[z0,V0] for some V0 > z0, then supp u(t)⊂ [z0,V (t)], where V (t) =V0 + τ

∫ t
0 S(s) ds, t ≥ 0.

Proof. First of all, choose the sequence (u0
n) ⊂ D+(Z) as in the proof of Theorem 4.3.3 such

that supp (u0
n) ⊂ (z0,V0). Then, Proposition 4.2.2 guarantees that the approximate sequence

(Sn,Cn,un)n≥1 described by equations (4.41)-(4.43) satisfies

supp (un(t))⊂ [z0,Vn(t)],
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where Vn(t) =V0 + τ
∫ t

0 Sn(s) ds, t ≥ 0.
Therefore,

lim
n→∞

Vn(t) =V (t)

and due to (4.53) and Lemma 4.3.2(b) the following holds∫
∞

V (t)
u(t,z) dz = lim

n→∞

∫
∞

Vn(t)
un(t,z) dz = 0.

This provides that u(t,z) = 0 for z ∈ (V (t),∞) , and so supp u(t)⊂ [z0,V (t)], for t ≥ 0.
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Chapter 5

Weak Solution and Qualitative Behavior of Prion-
Chaperone Equations 1

5.1 Introduction

In this chapter, we look at a prion proliferation system in the presence of a chaperone which
consists of two ODEs and an integro-partial differential equation. The existence of weak solu-
tion results obtained in [55] is extended by incorporating chaperone by using a weak compact-
ness argument. Further, we study the uniqueness of solutions under the sufficient conditions
proposed in [55]. In addition, it is demonstrated that there is a unique steady state, the disease-
free equilibrium, that exists below and at the threshold and is globally asymptotically stable.
Above the threshold, there is another steady state, the disease state, which is globally asymptot-
ically stable. At the end, we study the effect of chaperone on polymer population numerically.
The mathematical model of monomer, polymer and chaperone terms is expressed by a system
consisting of two ODEs and an integro-partial differential equation as

dS(t)
dt

= λ − γS(t)− τS(t)
∫

∞

z0

u(t,y)dy+2
∫ z0

0
z
∫

∞

z0

β (y) k(z,y) u(t,y) dydz (5.1)

∂u(t,z)
∂ t

=−τS(t)
∂u(t,z)

∂ z
−
(
µ(z)+β (z)+δ2C(t)

)
u(t,z)+2

∫
∞

z
β (y) k(z,y) u(t,y) dy (5.2)

and
dC(t)

dt
= −δ0C(t)+δ1C(t)

∫
∞

z0

u(t,y) dy (5.3)

respectively, under the conditions

S(0) = S0, C(0) =C0, u(0,z) = u0(z), u(t,z0) = 0, for t ≥ 0, z0 < z < ∞. (5.4)

1A considerable part of this chapter is published in Acta Applicandae Mathematicae, 2022, doi:
https://link.springer.com/content/pdf/10.1007/s10440-022-00512-y.
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Here, the parameters γ, λ , τ, δ0, δ1 and δ2 > δ1/z0 are positive constants and the description
of these parameters are given in Chapter 1. The function k(z,y) satisfies the assumptions (1.4)-
(1.8). The function U(t) =

∫
∞

z0
u(t,z)dz denotes the number of PrPSc polymers at time t and

P(t) =
∫

∞

z0
u(t,z)zdz is the total number of PrPSc monomers in polymers at time t. Therefore,

under the assumptions (1.9), the problem (5.1)-(5.3) is transformed into a system of four ODEs

U̇ = βP−µU −2β z0U −δ2CU

Ṡ = λ − γS− τUS+β z2
0U

Ṗ = τUS−µP−δ2CP−β z2
0U

Ċ =−δ0C+δ1CU

(5.5)

with initial values

U(0) =U0 ≥ 0, S(0) = S0 ≥ 0, P(0) = P0 ≥ 0 and C(0) =C0 ≥ 0.

The main goal of present chapter is to extend the existence of weak solution results obtained in
[55] in the presence of chaperone and to show the uniqueness of weak solution to the problem
(5.1)-(5.3) under the sufficient conditions provided in [55]. Moreover, we study the stability
results for disease-free as well as disease equilibrium points to the system (5.5). Finally, the
effect of chaperone on polymer is also discuss numerically.

Theorem 5.1.1. Suppose that λ ,µ,β ,τ,γ,δ0,δ1,δ2,z0 > 0. The system (5.5) induces a global

semiflow on Q =
{
(U,S,P,C) ∈ R4 : U,S,P− z0U,C ≥ 0

}
. There exists precisely one disease-

free equilibrium (0,λ/γ,0,0) which is globally asymptotically stable iff βλτ ≤ γ(µ + β z0)
2

and δ1 < τ. Also, if βλτ > γ(µ +β z0)
2, then there exists precisely one disease equilibrium(

(µ +β z0)
2

βτ
,
βλτ − γ(µ +β z0)

2

µτ(µ +2β z0)
,
βλτ − γ(µ +β z0)

2

β µτ
,0
)

which is globally asymptotically stable in Q\[{0}×R+×{0}×{0}].

The basic reproduction number, i.e., the number of new infections produced by a single in-
fective prion is R0 = βλτ/γ(µ +β z0)

2. The disease dies out and disease-free state is globally
asymtotically stable if R0 ≤ 1. For R0 > 1, there exists a unique nontrivial steady state, the
disease state, which is also globally asymtotically stable.

This chapter is assembled as follows: Section 5.2 deals with the existence of weak solution
for a broad class of kernels, i.e., without placing growth conditions (1.11) on µ,β which extends
the results of Chapter 4. Section 5.3 collects some fundamental properties of weak solutions
provided in [55] and Section 5.4 presents the precise version of the uniqueness result of weak
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solution as well as the proof. In the last Section 5.5, we provide the proof of Theorem 5.1.1.
Before we start next section, let us mention the definition of weak solution to the problem
(5.1)-(5.3). Finally, the effect of chaperone on polymer population is discussed numerically.

From the system (5.1)-(5.3), we have

C(t)+S(t)+
∫

∞

z0

z u(t,z) dz−C0 −S0 −
∫

∞

z0

z u0(z) dz

= λ t − γ

∫ t

0
S(s) ds−δ0

∫ t

0
C(s) ds+δ1

∫ t

0
C(s)

∫
∞

z0

u(s,z) dz ds

−
∫ t

0

∫
∞

z0

zµ(z)u(s,z) dz ds−δ2

∫ t

0
C(s)

∫
∞

z0

zu(s,z) dz ds. (5.6)

The definition of weak solutions to the problem (5.1)-(5.3) is given as:

Definition 5.1.1. For given S0 > 0,C0 > 0 and u0 ∈ L+
1 (Z,zdz), the triplet (S,C,u) is called a

weak solution corresponding to the problem (5.1)-(5.3) if the following hold

(a) S,C ∈C1(R+) are non-negative solutions of (5.1) and (5.3), respectively,

(b) u ∈ L∞,loc
(
R+,L+

1 (Z,zdz)
)

is such that for all φ ∈W 1,∞(Z) and t > 0, it follows that

[(s,z) 7−→ (µ(z)+β (z))u(s,z)] ∈ L1 ((0, t)×Z) , (5.7)

and ∫
∞

z0

φ(z)u(t,z) dz =
∫

∞

z0

φ(z)u0(z) dz+ τ

∫ t

0
S(s)

∫
∞

z0

φ
′(z)u(s,z) dz ds

−δ2

∫ t

0
C(s)

∫
∞

z0

φ(z)u(s,z) dz ds−
∫ t

0

∫
∞

z0

φ(z)µ(z)u(s,z) dz ds

−2
∫ t

0

∫
∞

z0

β (z)u(s,z)
∫ z

z0

(
φ(z)

z
− φ(y)

y

)
yk(y,z) dy dz ds

−2
∫ t

0

∫
∞

z0

β (z)u(s,z)
φ(z)

z

∫ z0

0
yk(y,z) dy dz ds,

(c) (S,C,u) satisfies (5.6).

5.2 Existence of Weak Solutions

Similar to [55], we require besides (1.4)-(1.6) that k satisfies the following properties: for any
given R > z0, there holds

lim
δ→0

sup
E⊂(z0,R),|E|≤δ

ess sup
z∈(z0,R)

β (z)
∫ z

z0

1E(y)k(y,z) dy = 0, (5.8)
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where |E| represents the Lebesgue measure of E and there exists any z1 ∈ Z and δ∗ > 0 such
that ∫ z

z1

(
1− y

z

)
k(y,z) dy ≥ δ∗, z ≥ 2z1. (5.9)

In case of k subject to (1.7) and (1.8), it is noticed that

∫ z

z0

1E(y)k(y,z) dy =
∫ 1

z0/z
1 1

z E(y)k0(y) dy,

so that (5.8) is automatically true for β ∈ L∞,loc(Z) due to z0 > 0 and integrability of k0. In such
situation, the following estimate also holds for z > 2z1∫ z

z1

(
1− y

z

)
k(y,z) dy ≥ 1

2

(∫ 1/2

0
zk0(z) dz+

∫ 1

1/2
(1− z)k0(z) dz

)
and (5.9) holds thanks to (1.8). To state the existence result Theorem 5.2.1, we shall adopt the
notation L1,w(Z,zdz) for the space L1(Z,zdz) equipped with its weak topology.

Theorem 5.2.1. Let k satisfies above mentioned properties (1.4)-(1.6), (5.8) and (5.9). Also, as-

sume that µ,β ∈L+
∞,loc(Z) then there exists a weak solution (S,C,u) with u∈C(R+,L1,w(Z,zdz))

for given initial data S0 > 0,C0 > 0 and u0 ∈ L+
1 (Z,zdz).

Before proceeding to prove the theorem, let us briefly mention the idea of the proof along
with important Lemmas and Propositions which are needed.
The weak compactness argument is imposed to prove the existence of a global weak solution.
We first obtain a sequence (Sn,Cn,un) of global classical solutions from Theorem 4.2.3 for
suitably approximated bounded kernels. Then, for any T > 0, Arzelà-Ascoli theorem 2.5.1 and
Dunford-Pettis theorem 2.5.2 are used to study the compactness of the sequence in the space
C ([0,T ],R+×R+×L1,w(Z,zdz)) . Then, any cluster point of the sequence represents a global
weak solution to the problem (5.1)-(5.3) for unbounded kernels.

For u0 ∈ L+
1 (Z,zdz), a refined form of De la Vallée-Poussin theorem, see [43], provides the

existence of a non-decreasing and non-negative convex function Φ ∈ C∞(R+) with Φ(0) = 0
such that Φ′ is concave, ∫

∞

z0

Φ(z)u0(z) dz < ∞,

and
lim
s→∞

Φ
′(s) = lim

s→∞

Φ(s)
s

= ∞. (5.10)

This allows to take a sequence (u0
n)n∈N of compactly supported non-negative smooth functions

such that
sup
n∈N

∫
∞

z0

Φ(z)u0
n(z) dz < ∞ and u0

n → u0 in L+
1 (Z). (5.11)
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Let µn = 1[z0,n]µ and βn = 1[z0,n]β for n > z0. Then, it ensures from Theorem 4.2.3 that
there exist non-negative classical solutions

(Sn,Cn,un) ∈C1 (R+,R×R×L1(Z,zdz)
)
,

corresponding to the problem (5.1)-(5.3) when (µ,β ,u0) is replaced by (µn,βn,u0
n). Also,

supp un(t) is a compact subset of [z0,∞) for each t ≥ 0 and Sn > 0,Cn > 0,un(t) ≥ 0. This
allows to test (5.2) with any φ ∈W 1,∞

loc (Z) and to obtain the weak formulation stated in Defini-
tion 5.1.1. Let T > 0 be fixed. It is noticed from (5.6) that

Sn(t)+Cn(t)+
∫

∞

z0

zun(t,z) dz+
∫ t

0

∫
∞

z0

zµn(z)un(s,z) dzds

+(δ2 −δ1/z0)
∫ t

0
Cn(s)

∫
∞

z0

zun(s,z) dzds ≤ b(T ), (5.12)

for δ2 >
δ1
z0
, t ∈ [0,T ] and n > z0.

Lemma 5.2.2. For t ∈ [0,T ], there exists a constant b(T ) independent of n > z0 such as∫
∞

z0

Φ(z)un(t,z) dz ≤ b(T ), (5.13)

∫ t

0

∫
∞

z0

Φ(z)µn(z)un(σ ,z) dzdσ ≤ b(T ), (5.14)

∫ t

0
I1,n(σ)dσ ≤ b(T ), (5.15)∫ t

0
I2,n(σ)dσ ≤ b(T ), (5.16)∫ t

0
Cn(σ)

∫
∞

z0

Φ(z)un(σ ,z) dzdσ ≤ b(T ) (5.17)

where

I1,n(σ) =
∫

∞

z0

un(σ ,z)βn(z)
∫ z

z0

(
Φ(z)

z
− Φ(y)

y

)
yk(y,z) dydz,

and

I2,n(σ) =
∫

∞

z0

un(σ ,z)βn(z)
Φ(z)

z

∫ z0

0
yk(y,z) dydz.
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Proof. Considering φ = Φ in the definition 5.1.1 for un yields∫
∞

z0

Φ(z)un(t,z) dz+δ2

∫ t

0
Cn(σ)

∫
∞

z0

Φ(z)un(σ ,z) dzdσ

+
∫ t

0

∫
∞

z0

Φ(z)µn(z)un(σ ,z) dzdσ +2
∫ t

0
(I1,n(σ)+ I2,n(σ)) dσ

=
∫

∞

z0

Φ(z)u0
n(z) dz+ τ

∫ t

0
Sn(σ)

∫
∞

z0

Φ
′(z)un(σ ,z) dzdσ . (5.18)

The function z → Φ(z)
z is non-decreasing because Φ is convex. This provides that I1,n is non-

negative. Also, I2,n and the third term on the left hand side of (5.18) are non-negative due to
the non-negativity of µn,βn and Φ. On the other hand, since Φ′ is concave with Φ′(0)≥ 0, we
have −Φ′(z) ≤ Φ′(0)−Φ′(z) ≤ −zΦ′′(z). This implies after integration with respect to z and
using Φ(0) = 0 that zΦ′(z)≤ 2Φ(z) for z ∈ Z. One can deduce from (5.12) that

∫ t

0
Sn(s)

∫
∞

z0

Φ
′(z)un(s,z) dzds ≤ (1/z0)b(T )

∫ t

0

∫
∞

z0

zΦ
′(z)un(s,z) dzds

≤ b(T )
∫ t

0

∫
∞

z0

Φ(z)un(s,z) dzds, (5.19)

for t ∈ [0,T ] and n > z0. From (5.18), (5.19) and Gronwall’s inequality, the required assertions
hold.

The estimates mentioned in Lemma 5.2.2 will be used to establish the weak compactness
properties of the sequence (Sn,Cn,un).

Proposition 5.2.1. There exists a weakly compact subset KT of L1(Z,zdz) such that un(t) ∈ KT

for n > z0 and t ∈ [0,T ]. Moreover,

∫ T

0

∫
∞

z0

βn(z)un(σ ,z) dzdσ ≤ b(T ), (5.20)

where b(T )> 0 being a constant independent of n > z0.

Proof. This Proposition can be proved by [[55], Lemma 4.1] together with Lemma 4.3.1.

Lemma 5.2.3. The family {un : n > z0} is weakly equicontinuous in L1(Z,zdz) for every t ∈
[0,T ].

Proof. According to Theorem 4.3.3, for φ ∈ L∞(Z), we have

lim
s→t

sup
n≥z0

∣∣∣∣∫ ∞

z0

φ(z)[un(t,z)−un(s,z)] dz
∣∣∣∣= 0,
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for t ∈ JT . This implies together with (5.10) that, for t ∈ JT ,

lim
s→t

sup
n≥z0

∣∣∣∣∫ ∞

z0

φ(z)[un(t,z)−un(s,z)] zdz
∣∣∣∣= 0.

Lemma 5.2.4. The family {Cn : n > z0} is relatively compact in C ([0,T ]) .

Proof. It follows from (5.3) and (5.12) that

|Cn(t)−Cn(s)| ≤ δ0

∣∣∣∣∫ t

s
Cn(σ) dσ

∣∣∣∣+δ1

∣∣∣∣∫ t

s
Cn(σ)

∫
∞

z0

un(σ ,z) dzdσ

∣∣∣∣
≤ δ0b(T ) |t − s|+ δ1

z0
b(T ) |t − s| .

Therefore,
lim
s→t

sup
n>z0

|Cn(t)−Cn(s)|= 0,

and the required result follows from the Arzelà-Ascoli theorem 2.5.1.

Lemma 5.2.5. The family {Sn : n > z0} is relatively compact in C ([0,T ]) .

Proof. For the function φ(z) = z, the truncated equation (5.2) together with (1.5) and positivity
of un(t) provides

2
∫

∞

z0

un(t,z)βn(z)
∫ z0

0
yk(y,z) dydz = τSn(t)

∫
∞

z0

un(t,z)dz− d
dt

∫
∞

z0

zun(t,z) dz

−δ2Cn(t)
∫

∞

z0

zun(t,z)−
∫

∞

z0

zµn(z)un(t,z) dz,

and this implies that∣∣∣∣2∫ t

s

∫
∞

z0

un(σ ,z)βn(z)
∫ z0

0
yk(y,z) dydzdσ

∣∣∣∣≤ b(T )|t − s|+
∣∣∣∣∫ ∞

z0

z[un(t,z)−un(s,z)]dz
∣∣∣∣ .

Thus, it follows from (5.1), (5.12) and Lemma 5.2.3 that

lim
s→t

sup
n>z0

|Sn(t)−Sn(s)|= 0,

and the assertion is complete from the Arzelà-Ascoli theorem 2.5.1.

Proposition 5.2.1, Lemmas 5.2.3-5.2.5 and Arzelà-Ascoli theorem [2.5.9, 2.5.1] imply that
there exists a subsequence (again denoted by (Sn),(Cn),(un) and functions S,C ∈ C(R+),u ∈
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C (R+,L1,w(Z,zdz)) such that for each T > 0,

Sn → S in C([0,T ]), (5.21)

Cn →C in C([0,T ]), (5.22)

un → u in C([0,T ],L1,w(Z,zdz)). (5.23)

It is clear that S(t)≥ 0,C(t)≥ 0 and u(t)≥ 0. According to [55], it is easy to show that (S,C,u)

is a weak solution corresponding to the system (5.1)-(5.3).
It should be noted that the differentiability of µ and β is not necessary for the existence of

weak solution but for the uniqueness result, the (weak) differentiability of µ and β is essential,
see Theorem 5.4.1 in Section 5.4.

5.3 Ansatz of Weak Solutions

Here, we discuss the required properties of weak solutions for the uniqueness. In the work here,
the function k is measurable and non-negative which satisfies (1.4)-(1.6). We also additionally
assume, similar to [55], that

lim
y↘z

∫ y

z
k(x,y)dx = 0, z > z0, (5.24)

and
µ,β ∈W 1,∞

loc (Z) with µ,β ≥ 0. (5.25)

Defining

G(z) =
∫ z

z0

g(y) dy, z > z0,

there holds for some constant c0 > 0,

(µ +β )(z)≤ c0 ((µ +β )(y)+G(y)+ y) , y > z > z0, (5.26)

and
|µ ′(z)|+ |β ′(z)| ≤ c0 g(z), z > z0, (5.27)

as well as ∣∣∣∣∂z

(
β (z)

∫ z0

0
xk(x,z) dx

)∣∣∣∣+ |B2(y,z)| ≤ c0 g(z), z > y ≥ z0, (5.28)

where
B2(y,z) = ∂z

(
β (z)

∫ z

y
k(x,z) dx

)
for z > y ≥ z0, (5.29)
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and g ∈ W 1,∞
loc (Z) is a strictly positive function such that τg′(z) ≤ c0g(z), z > z0. In addition,

we shall need to make the crucial assumption that∫ z

z0

g(y)
∣∣2B2(y,z)− (µ ′+β

′)(z)
∣∣dy ≤ g(z)(c0 +(µ +β )(z)) (5.30)

for z > z0. Also, we assume that there exists δ > 0 with

∫ z

0

y
z

(
1− y

z

)
k(y,z) dy ≥ δ , z > z0. (5.31)

Clearly (5.24) and (5.31) hold for k subject to (1.7), (1.8). It is also noticed that (5.26) permits

lim
z→∞

(µ +β )(z)
∫

∞

z
| f (y)| dy = 0, for f ∈ L1(Z,v(z)dz), (5.32)

together with v(y) = (µ +β )(z)+G(z)+ z for z ∈ Z.

Lemma 5.3.1. Suppose that (S,C,u) is a weak solution corresponding to a fixed initial value

(S0,C0,u0) ∈ R+×R+×L+
1 (Z,zdz). Then

[(s,z) 7−→ z(1+µ(z))u(s,z)] ∈ L1 ((0, t)×Z) , t > 0, (5.33)

and if (5.24)-(5.31) are true, then

lim
R→∞

R
∫ t

0

∫
∞

R
β (z)u(s,z) dz ds = 0, t > 0. (5.34)

Proof. The property (5.33) can be easily obtained from (5.6) and the non-negativity of µ,S,C

and u. To verify (5.34), we consider φ(z) = R∧ z = min{R,z} in definition 5.1.1 with R > z0

and using equations (5.1) and (5.3). Then, one has

C(t)−C0 +S(t)−S0 +
∫

∞

z0

(R∧ z)
(
u(t,z)−u0(z)

)
dz

= λ t − γ

∫ t

0
S(s) ds−δ0

∫ t

0
C(s) ds+δ1

∫ t

0
C(s)

∫
∞

z0

u(s,z) dz ds

−
∫ t

0

∫
∞

z0

(R∧ z)µ(z)u(s,z) dz ds−δ2

∫ t

0
C(s)

∫
∞

z0

(R∧ z)u(s,z) dz ds

+2
∫ t

0

∫
∞

R
β (z)u(s,z)

∫ z

z0

(
R∧ y

y
− R

z

)
yk(y,z) dy dz ds− τ

∫ t

0
S(s)

∫
∞

R
u(s,z) dz ds

+2
∫ t

0

∫
∞

R
β (z)u(s,z)

(
1− R

z

)∫ z0

0
yk(y,z) dy dz ds
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for t > 0. Now, (5.33) indicates that (5.6) is true iff the last two integral terms on the right-hand-
side in above equation tend to 0 as R → ∞. Hence, writing(

1− R
z

)∫ z0

0
yk(y,z) dy =

(
1− R

z

)∫ R

0
yk(y,z) dy−

∫ R

z0

(
R∧ y

y
− R

z

)
yk(y,z) dy

it is concluded that

lim
R→∞

∫ t

0

∫
∞

R
β (z)u(s,z)

{
(z−R)

∫ R

0

y
z

k(y,z) dy+R
∫ z

R

(
1− y

z

)
k(y,z) dy

}
dz ds = 0.

Inequality (5.31) guarantees that the part in curly bracket is bounded below by

R
∫ z

0

y
z

(
1− y

z

)
k(y,z) dy ≥ Rδ

for z > 2R and the required assertion (5.34) follows.

Lemma 5.3.2. Let us assume (5.24)-(5.30) hold and (S,C,u),(Ŝ,Ĉ, û) are two weak solutions

corresponding to the same initial data (S0,C0,u0)∈ (0,∞)×(0,∞)×L+
1 (Z,zdz) such that u, û∈

L1,loc (R+,L1(Z,G(z)dz)) . Defining

E(t,z) =
∫

∞

z
(u− û)(t,y) dy, (t,z) ∈ R+×Z,

leads to

∂tE(t,z)+ τS(t)∂zE(t,z) =τ û(t,z)(S− Ŝ)(t)+(µ +β )(z)E(t,z)+
∫

∞

z
(µ ′+β

′)(y)E(t,y) dy

−δ2C(t)E(t,z)−δ2
(
C(t)−Ĉ(t)

)∫ ∞

z
û(t,y) dy

−2
∫

∞

z
B2(z,y)E(t,y) dy. (5.35)

5.4 Uniqueness

In this section, we discuss the uniqueness result. In addition to (5.24)-(5.30), consider∫ z

y

∣∣(µ ′+β
′)(x)

∣∣dx ≤ c1(1+(µ +β )(z)), z > y > z0, (5.36)

as well as ∫ z

z′

∣∣B2(z′,y)(y)
∣∣dy ≤ c1(1+(µ +β )(z)), z > z′ > z0, (5.37)



5.4. Uniqueness 83

for some c1 > 0. We then have the following uniqueness result.

Theorem 5.4.1. Let (5.24)-(5.30), (5.36) and (5.37) hold. Then, in the sense of definition 5.1.1

there exists at most one weak solution (S,C,u) with

u ∈ L∞,loc
(
R+,L1(Z,G(z)dz)

)
∩L1,loc

(
R+,L1(Z,(µ +β )(z)G(z)dz)

)
for given any initial data S0 > 0,C0 > 0 and u0 ∈ L+

1 (Z,zdz)∩L1(Z,(µ +β )(z)G(z)dz).

The proof is presented in the following section.

5.4.1 Estimates on Difference of Solutions

This subsection deals with reasonable estimates on the primitive of the difference of two solu-
tions which help to prove Theorem 5.4.1.

Lemma 5.4.2. There exists b(T )> 0 such that the following estimates hold for 0 < t < T,

(i)

|(C−Ĉ)(t)| ≤ b(T )
∫ t

0
|E(s,z0)| ds,

(ii)

|(S− Ŝ)(t)| ≤ b(T )
∫ t

0

∫
∞

z0

g(z) |E(s,z)| dz ds,

(iii)

|E(t,z0)| ≤ b(T )
∫ t

0

∫
∞

z0

g(z) |E(s,z)| dz ds.

Proof. To prove part (i), it follows from (5.3) that

|C(t)−Ĉ(t)| ≤
∫ t

0

(
δ0 +δ1

∫
∞

z0

û(s,z) dz
)
|C(s)−Ĉ(s)| ds

+δ1 ∥C∥L∞(0,T )

∫ t

0

∣∣∣∣∫ ∞

z0

(u− û)(s,z) dz
∣∣∣∣ ds

≤ b(T )
∫ t

0
|C(s)−Ĉ(s)| ds+ c

∫ t

0
|E(s,z0)| ds.

Applying Gronwall’s inequality, we have

|C(t)−Ĉ(t)| ≤ b(T )
∫ t

0
|E(s,z0)| ds.

The proof of the part (ii) follows from [[55], Lemma 3.3]. Finally, to establish the part (iii), we
proceed as follows. Considering φ ≡ 1 in definition (5.1.1) and applying integration by parts,
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one can obtain by using (1.5) and ∂zE = û−u,

|E(t,z0)|=
∣∣∣∣∫ ∞

z0

(u− û)(t,z) dz
∣∣∣∣

= |
∫ t

0

∫
∞

z0

(
2β (z)

∫ z

z0

k(y,z)dy− (β +µ)(z)
)
(u− û)(s,z) dz ds

−δ2

∫ t

0
C(s)

∫
∞

z0

(u− û)(s,z) dz ds−δ2

∫ t

0
(C(s)−Ĉ(s))

∫
∞

z0

û(s,z) dz ds|

≤ |
∫ t

0

∫
∞

z0

(
2β (z)

∫ z

z0

k(y,z)dy− (β +µ)(z)
)
(u− û)(s,z) dz ds|

+δ2 ∥C∥L∞(0,T )

∫ t

0
|E(s,z0)| ds+b(T )

∫ t

0
|C(s)−Ĉ(s)| ds

≤ c
∫ t

0
|E(s,z0)| ds+ c

∫ t

0

∫
∞

z0

g(z) |E(s,z)| dz ds+b(T )
∫ t

0
|C(s)−Ĉ(s)| ds

≤ b(T )
∫ t

0
|E(s,z0)| ds+b(T )

∫ t

0

∫
∞

z0

g(z) |E(s,z)| dz ds.

Thus, Gronwall’s inequality provides the required assertion.

Further, let R > z0 be arbitrary and multiplying the equation (5.35) by g(z)signE(t,z), we
have

g(z) sign(E)(t,z)∂tE(t,z) =−τg(z)sign(E)(t,z)S(t)∂zE(t,z)− Ŝ(t))g(z) sign(E)(t,z)

+g(z) sign(E)(t,z)(µ +β )(z)E(t,z)−δ2C(t)g(z) sign(E)(t,z)E(t,z)

+g(z) sign(E)(t,z)
∫

∞

z
(µ ′+β

′)(y)E(t,y)dy+ τ û(t,z)(S(t)

−2g(z) sign(E)(t,z)
∫

∞

z
B2(z,y)E(t,y)dy

−δ2(C(t)−Ĉ(t))g(z) sign(E)(t,z)
∫

∞

z
û(t,y)dy

and this leads to∫ R

z0

g(z)|E(t,z)|dz ≤ b(T )
∫ t

0
|E(t,z0)ds+b(T )

∫ t

0

∫ R

z0

g(z)|E(s,z)|dzds

+ c
∫ t

0
|S(t)− Ŝ(t)|

∫ R

z0

(1+G(y))û(s,z)dzds

+δ2

∫ t

0
C(s)

∫ R

z0

g(z)|E(t,z)|dzds+V (t,R)

+δ2

∫ t

0
|C(s)−Ĉ(s)|

∫ R

z0

g(z) sign(E)(s,z)
∫

∞

z
û(s,y)dydzds
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where

V (t,R) = G(R)
∫ t

0

∫
∞

R

∣∣(µ ′+β
′)(z)

∣∣ |E(s,z)| dzds

+2
∫ t

0

∫
∞

R
|E(s,z)|

∫ R

z0

g(y)|B2(y,z)| dydzds.

This implies that

∫ R

z0

g(z)|E(t,z)|dz ≤ b(T )
∫ t

0
|E(t,z0)ds+b(T )

∫ t

0

∫ R

z0

g(z)|E(s,z)|dzds

+ c
∫ t

0
|S(t)− Ŝ(t)|

∫ R

z0

(1+G(z))û(s,z)dzds+V (t,R)

+δ2

∫ t

0
|C(s)−Ĉ(s)|

∫ R

z0

û(s,z)(1+G(z))dzds (5.38)

for R > z0 and 0 < t < T. Further, it can be claimed according to [55] that E ≡ 0 and so u ≡ û.

This completes the proof of Theorem 5.4.1.

5.5 Stability Results and Effect of Chaperone

In this section, we discuss the proof of Theorem 5.1.1 as well as effect of chaperone on prion
population numerically. We replace P(t) by W (t) = P(t)− z0U(t) in the system (5.5). The
resulting system of equations is

z0U̇ = β z0W − (µ +β z0)(z0U)−δ2C(z0U)

Ṡ = λ − γS− τS
z0

(z0U)+β z0(z0U)

Ẇ =
τS
z0

(z0U)− (µ +β z0)W −δ2CW

Ċ =−δ0C+δ1CU

(5.39)

with initial conditions

U(0) =U0 ≥ 0,S(0) = S0 ≥ 0,W (0) =W 0 = P0 − z0U0 ≥ 0 and C(0) =C0.

Further, performing a scaling of the variables for the system (5.39) by setting

z0U(t) = eE(αt), S(t) = f F(αt), W (t) = gG(αt), C(t) = hH(αt)
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where α = µ + β z0,e = (µ+β z0)z0
τ

, f = g = (µ+β z0)
2

βτ
,σ = 1,k = βλτ

(µ+β z0)3 > 0,ξ = γ

µ+β z0
>

0,ρ =
(

β z0
µ+β z0

)2
∈ (0,1),h = µ+β z0

δ2
> 0,ν = δ0

µ+β z0
> 0,ψ = δ1

τ
> 0, we have

Ė = G−σE −EH

Ḟ = k−ξ F −FE +ρE

Ġ = FE −G−HG

Ḣ =−νH +ψEH

(5.40)

with initial values E(0) = E0 ≥ 0,F(0) = F0 ≥ 0,G(0) = G0 ≥ 0 and H(0) = H0 ≥ 0. We
compute the steady state solutions for the above system. For this, set Ė = Ḟ = Ġ = Ḣ = 0.
Then, H = 0 or E = ν

ψ
· For H = 0, the system becomes

G−σE = 0

k−ξ F −FE +ρE = 0

FE −G = 0.

(5.41)

Solving the above, the disease free equilibrium point is obtained as

ε1 = (0,
k
ξ
,0,0) = (Ē, F̄ , Ḡ, H̄)

and the disease state equilibrium point is given by

ε2 = (Ê, F̂ , Ĝ, Ĥ) =

(
k−σξ

σ −ρ
,σ ,σ

k−σξ

σ −ρ
,0
)
.

Proposition 5.5.1. Let k, σ , ξ , ν , ψ > 0 and ρ ∈ (0,1). Then, for each (E(0),F(0),G(0),H(0))∈
(R+)4, the system (5.40) possesses a unique bounded solution in (R+)4 defined for all positive

times.

Proof. Let f : (R+)4 → (R+)4 is defined by

f (E,F,G,H) = ( f1, f2, f3, f4)

= (G−σE −EH,k−ξ F −FE +ρE,FE −G−HG,−νH +ψEH).

We noticed that f is Lipschitz continuous on bounded sets of (R+)4. Now, for (E,F,G,H) ∈
(R+)4 and t ≥ 0, it holds that f1 ≥ 0 when E = 0, f2 ≥ 0 when F = 0,, f3 ≥ 0 when G = 0,
and f4 ≥ 0 when H = 0. From [Corollary A.5, [73]], there exists a unique positive solution of
(5.40) in (R+)4 for t ≥ 0.
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From the function φ =
(

σ+ρ

2σ

)
E +F +G+

(
σ+ρ

2σψ

)
H, we get

φ̇ = k−
(

σ +ρ

2σ

)
G−

(
σ −ρ

2

)
E −ξ F −GH −ν

(
σ +ρ

2σψ

)
H ≤ k−b∗φ ,

where b∗ = min {σ−ρ

2 ,ξ , ν(σ+ρ)
2σψ

}. This implies that

0 ≤ φ(t)≤ k
b∗

+φ(0)e−tb∗

whenever (E0,F0,G0,H0) ∈ (R+)4 and t ≥ 0. This indicates that the solution is bounded and
hence existence of a unique bounded positive global solution is proved.

Theorem 5.5.1. The disease free-state equilibrium (0, k
ξ
,0,0) is locally asymptotically stable

in the positive octant iff k < σξ .

Proof. The Jacobian matrix of the system about the equilibrium point (0, k
ξ
,0,0) is


−σ 0 1 0

− k
ξ
+ρ −ξ 0 0

k
ξ

0 −1 0

0 0 0 −ν

 .

The eigenvalues of above matrix are
√

k
ξ
−σ , −

√
k
ξ
−σ ,−ξ and −ν . The equilibrium point is

locally asymptotically stable iff all eigenvalues of the Jacobian matrix have negative real part.
Here, all eigenvalues will have negative real part iff k < σξ .

Theorem 5.5.2. The disease state equilibrium ε2 = (Ê, F̂ , Ĝ, Ĥ) is locally asymptotically stable

in the positive octant iff Ê < ν

ψ
·

Proof. The Jacobian matrix of the system about the equilibrium point ε2 is
−σ 0 1 Ê

−σ +ρ −ξ − Ê 0 0
σ −Ê −1 σ Ê

0 0 0 −ν +ψÊ

 .

The characteristic equation of the Jacobian matrix is given by

(ν −ψÊ +λ )(λ 3 +a1λ
2 +a2λ +a3) = 0,
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where
a1 = Ê +ξ +1+σ , a2 = (Ê +ξ )(1+σ), a3 = (σ −ρ)Ê. (5.42)

One eigenvalue of Jacobian matrix is −ν +ψÊ and this eigenvalue has negative real part if
Ê < ν

ψ
. Here, a1 > 0, a2 > 0, a3 > 0 and a1a2 −a3 > 0, then by Routh-Hurwitz criterion, the

other eigenvalues have negative real parts. Thus, the proof of lemma is complete.

5.5.1 Global Stability of Equilibrium Points

Theorem 5.5.3. Suppose k > 0,σ > 0,ξ > 0 and ρ > 0. The disease free steady state (0, k
ξ
,0,0)

of the system (5.40) is globally asymptotically stable in the positive octant if ρ < σ , k ≤ σξ

and ψ < 1.

Proof. For this purpose, we construct a Lyapunov functional

Ψ(E,F,G,H) =
1
2
(F − F̄)2 +(2σ −ρ − F̄)(E +G+H).

Since ρ < σ and k
ξ
≤ σ , then 2σ −ρ − F̄ > 0. Now,

Ψ̇ = (2σ −ρ − F̄)(Ė + Ġ+ Ḣ)+(F − F̄)Ḟ

=−ξ (F − F̄)2 +EH(1−ψ)(−2σ +ρ + F̄)+GH(−2σ +ρ + F̄)+νH(−2σ +ρ + F̄)

+(F − F̄)(ρE −EF)+(2σ −ρ − F̄)(EF −σE)

=−ξ (F − F̄)2 +EH(1−ψ)(−2σ +ρ + F̄)+GH(−2σ +ρ + F̄)+νH(−2σ +ρ + F̄)

−E(F −σ)2 +(ρσ −σ
2)E

< 0.

Thus, Ψ is a Lyapunov function for (5.40) in the positive octant. Also, Ψ̇ = 0 only if F̄ =
k
ξ
, Ē = Ḡ = H̄ = 0. Now, the only invariant subset of the set F = F̄ is the disease free steady

state, hence it is globally asymptotically stable in the positive octant from LaSalle’s invariance
principle, see [2].

Theorem 5.5.4. Suppose k > 0,σ > 0,ξ > 0 and ρ ∈ [0,σ). For k > σξ , the disease state(
k−σξ

σ−ρ
,σ ,σ k−σξ

σ−ρ
,0
)

of the system (5.40) is globally asymptotically stable in (R+)4 − [{0}×
R+×{0}×{0}] if −ν +(1+σ)(1+ψ)Ê ≤ 0.
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Proof. Set u = E − Ê, v = F − F̂ , w = G− Ĝ and x = H − Ĥ. We compute the derivatives of
the following functions:

d
dt

(
u− Ê log(E/Ê)

)
=

Ė

Ê
(E − Ê)

= (G−σE −EH)(E − Ê)/E

= G−σE −EH − GÊ
E

+σ Ê +HÊ, (5.43)

d
dt

(
v− F̂ log(F/F̂)

)
=

Ḟ

F̂
(F − F̂) =

−ξ v2

F
+

ρuv
F

−EF +σE − σ2Ê
F

+σ Ê, (5.44)

d
dt

(
w− Ĝ log(G/Ĝ)

)
=

Ġ

Ĝ
(G− Ĝ) = EF −G−GH − EFĜ

G
+ Ĝ+ ĜH, (5.45)

and
d
dt

(
x− Ĥ log(H/Ĥ)

)
=

Ḣ

Ĥ
(H − Ĥ) =−νH +ψEH −ψEĤ +νĤ. (5.46)

Now, we construct a Lyapunov function

ϒ0(E,F,G,H) = (1+ψ)
(

u− Ê log(E/Ê)
)
+(1+ψ)

(
v− F̂ log(F/F̂)

)
+(1+ψ)

(
w− Ĝ log(G/Ĝ)

)
+
(

x− Ĥ log(H/Ĥ)
)
,

so that

ϒ̇0 = (1+ψ)

(
−ξ v2

F
−GH

)
+(1+ψ)

ρuv
F

−EH −νH

− (1+ψ)Ê
[

G
E
+

σ2

F
+

σEF
G

− (σ +1)H −3σ

]
.

It can be noticed that ϒ0 tends to infinity at the boundary of the positive octant of R4. Since, the
second term of ϒ̇0 does not have negative sign and to remove this term, we consider modified
Lyapunov function as

ϒ(E,F,G,H) = ϒ0(E,F,G,H)+
ρ

σ −ρ
(v−σ logF)(1+ψ).

Here, ϒ(E,F,G,H) tends to infinity at the boundary of the positive octant of R4 and is bounded
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below. This implies that

ϒ̇ = ϒ̇0 +

(
ρ

σ −ρ

)
v̇
F
(F − F̂)(1+ψ)

= ϒ̇0 −
ρ(ξ +E)v2(1+ψ)

(σ −ρ)F
− ρuv(1+ψ)

F

=−(1+ψ)

(
ξ v2

F
+GH

)
− (1+ψ)Ê

(
G
E
+

σ2

F
+

σEF
G

−3σ

)
+H(1+ψ)(σ +1)Ê −EH −νH − ρ(ξ +E)v2(1+ψ)

(σ −ρ)F

< 0,

where −ν +(1+σ)(1+ψ)Ê ≤ 0 and ρ < σ . In the second term Ê > 0 in the disease case and
set p = G

E > 0,q = σ2

F > 0. Consider the function

φ(p,q) = p+q+
σ3

pq
−3σ

on (0,∞)× (0,∞) which is strictly positive for p+ q ≥ 3σ and for pq ≤ σ2

3 . Therefore, φ has
an absolute minimum in (0,∞)× (0,∞) and one can find after computing the derivative that
(p,q) = (σ ,σ) is the unique absolute minimum. Thus, for all k > σξ and ρ ∈ [0,σ), the
function ϒ is a Lyapunov function for system (5.40) and ϒ̇ = 0 only if E = σ ,G = σE,H = 0.
The only invariant set contained in the set ϒ̇= 0 is the disease equilibrium (Ê,σ ,σ Ê,0). Hence,
La Salle’s theorem [2] implies convergence of the solutions to this equilibrium, for all initial
conditions not in the set [{0}×R+×{0}×{0}]. This shows that the disease-state is globally
asymptotically stable in (R+)4 − [{0}×R+×{0}×{0}]. The solution obviously converges to
the disease-free state if the initial condition is in [{0}×R+×{0}×{0}].

Thus, Theorems 5.5.3 and 5.5.4 complete the proof of Theorem 5.1.1.

5.5.2 Numerical Illustration

For the simulations, we used the experimental data for prion proliferation. The model includes
nine parameters: λ ,γ,µ,β ,τ,z0,δ0,δ1 and δ2.

The critical size z0 of polymer is estimated as 6−30, see [59]. The value of parameters are
taken from [38, 59] and are follows as: z0 = 6,λ = 4400 day−1, τ = 0.3 (SAF/sq)−1 day−1,β =

0.0001 (SAF/sq)−1 day−1,µ = 0.04 day−1,γ = 5.0 day−1,δ0 = 0.1 day−1,δ1 = 0.0002 day−1

and δ2 = 0.002 day−1, where SAF/sq represents scripe associated fibrils per squre unit of mea-
surement. Figure 5.2 shows that the solutions (E(t),F(t),G(t),H(t)) corresponding to the
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different initial values converge to the globally attracting disease steady state. Effect of the
chaperone is obtained when we study the polymers population along with chaperone concen-
tration. Figure (5.1a) indicates the polymer population for different chaperone dosages and
as expected we observed that polymers population decrease along with increasing chaperone
doses. From the Figure (5.1b), it is noticed that the polymer population decreases as chaperone
increasing rate δ1 increases in the system.
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(a) Polymer population U for varying
amounts of chaperone C (200, 400, 600,
800 and 1000 units of chaperone)
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(b) Polymer population U for different
δ1(chaperone increasing rate in the system)

Fig. 5.1: Effect of chaperone on polymer population

Fig. 5.2: Global stability of disease state equilibrium
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Chapter 6

Analysis of a Prion-Chaperone Model with Polymer
Coagulation

6.1 The Model

This chapter deals a mathematical model which consists of a non-linear partial integro-differential
equation coupled with two ODEs. This model describes the relation between infectious, non-
infectious prion proteins and chaperone. The well-posedness of the system is proved for
bounded kernels by using evolution operator theory in the state space R×R×L1(Z,zdz). The
existence of a global weak solution for unbounded kernels is also discussed with the help of
a weak compactness argument. In addition, we investigated the stability analysis results theo-
retically and effect of chaperone on prion proliferation numerically. Here, a prion proliferation
model with general incidence, polymer coagulation and chaperone is analyzed which is an ex-
tension of the model taken into account in [37, 56]. The meaning of polymer coagulation and
general incidence terms are given in Chapter 1. The model can mathematically be expressed by
a coupled system consisting of two ODEs, for the number of non-infectious monomers S and
chaperone population C, which are given by

dS(t)
dt

= λ − γS(t)− S(t)
1+ρ

∫
∞

z0
u(t,z)zdz

∫
∞

z0

τ(z)u(t,z)dz

+2
∫ z0

0
z
∫

∞

z0

β (y) k(z,y) u(t,y) dydz (6.1)

dC(t)
dt

= −δ0C(t)+δ1C(t)
∫

∞

z0

u(t,y) dy (6.2)

and a partial integro-differential equation for the population density function u of infectious
polymers of size z, is described as
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∂u(t,z)
∂ t

=− S(t)
1+ρ

∫
∞

z0
u(t,z)zdz

∂z(τ(z)u(t,z))−
(
µ(z)+β (z)+δ2C(t)

)
u(t,z)

+2
∫

∞

z
β (y) k(z,y) u(t,y) dy+1[z>2z0]

∫ z−z0

z0

η(z− y,y)u(t,z− y)u(t,y) dy

−2u(t,z)
∫

∞

z0

η(z,y)u(t,y)dy (6.3)

for z ∈ Z = (z0,∞). The following initial conditions are taken

S(0) = S0, C(0) =C0, u(0,z) = u0(z), z0 < z < ∞ (6.4)

together with the boundary data
u(t,z0) = 0, t > 0. (6.5)

The function k satisfies the following

k(y,z)≥ 0, k(y,z) = k(z− y,z),
∫ z

0
k(y,z)dy = 1 (6.6)

for all z > z0, y ≥ 0 and k(y,z) = 0 if z ≤ z0 or y > z.

These conditions immediately entail

2
∫ z

0
yk(y,z) dy = z, z > z0. (6.7)

Also, k is assumed of the form

k(y,z) =
1
z

k0
(y

z

)
, z > z0, 0 < y < z (6.8)

with an integrable function k0 ≥ 0 defined on (0,1) such that

k0(z) = k0(1− z), z ∈ (0,1) and
∫ 1

0
k0(z)dz = 1. (6.9)

For a particular case of k0 = 1, equation (6.8) leads to the equidistribution rule

k(y,z) =
1
z
, z > z0, 0 < y < z. (6.10)

Further, the rate η is assumed to be symmetric and non-negative, that is,

η(y,z) = η(z,y), η(y,z)≥ 0 for y,z ∈ Z. (6.11)
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The function U(t) =
∫

∞

z0
u(t,z)dz and P(t) =

∫
∞

z0
u(t,z)zdz denote the number of PrPSc polymers

at time t and the total number of PrPSc monomers in polymers at time t, respectively. According
to [37], the coagulation integral terms from (6.3) provide∫

∞

z0

u(t,z)
∫

∞

z0

u(t,y) dy dz =U2(t),
∫

∞

z0

∫ z

z0

u(t,y) u(t,z− y) dy dz =U2(t).

Therefore, under the assumptions

µ(z) = µ,τ(z) = τ,η(y,z) = η ,β (z) = β z and k(y,z) =


1
z if z > z0 and 0 < y < z

0 otherwise,
(6.12)

the problem (6.1)-(6.5) transformed into a system of four ODEs

U ′ = βP−µU −2β z0U −δ2CU −ηU2

S′ = λ − γS− τUS
1+ρP

+β z2
0U

P′ =
τUS

1+ρP
−µP−δ2CP−β z2

0U

C′ =−δ0C+δ1CU

(6.13)

with initial conditions

U(0) =U0 ≥ 0, S(0) = S0 ≥ 0, P(0) = P0 ≥ 0,C(0) =C0 ≥ 0.

In the absence of chaperone, that is, C = 0, the system (6.1)-(6.5) is discussed in [37, 56]. In
[37], the global qualitative outcomes for the disease-free and disease equilibria are analytically
studied under the assumptions (6.12). In [56], the existence and uniqueness of the classical
solution of the system are investigated for the bounded kernels, that are,

η ∈ BC1(Z ×Z,R+), β ,µ ∈ L+
∞(Z) (6.14)

and
τ ∈ BC1(Z,R+), τ(z)≥ τ∗, z ∈ Z, (6.15)

while the existence of a global weak solution is proved for unbounded kernels, that is,

β ,µ ∈ L+
∞,loc(Z) (6.16)
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and
τ ∈C ([z0,∞)) such that τ∗ ≤ τ(z)≤ τ0z, z ≥ z0, (6.17)

for some constants τ0,τ∗ > 0. Inclusion of chaperone leads to an interesting physical problem
due to its impact on the prion population. Therefore, the main motivation of this chapter is to
study a prion equation together with polymer coagulation and general incidence terms in the
presence of chaperone. We are interested to deal with a partial integro-differential equation
coupled with two ODEs and to show the well-posedness of the system in the product space
R×R×L1(Z,zdz). In Section 6.2, We prove the well-posedness in the classical sense to the
problem (6.1)-(6.5) under the assumption (6.14)-(6.15). Further, in Section 6.3, the existence
of a weak solution to the problem is discussed under the conditions (6.16)-(6.17). The model
is transformed into a system of ordinary differential equations. The equilibrium points are
computed and their local and global stability analysis (via Lyapunov function) is studied in
Section 6.4. Finally, effect of chaperone on prion proliferation is presented numerically.

6.2 Well-posedness in the Classical Sense for Bounded Degra-
dation Rates

This section deals with the well-posedness to the problem (6.1)-(6.5) for bounded kernels with
the help of evolution operator theory. In the whole work, it is assumed that

λ ,γ,δ0,δ1 > 0 and ρ ≥ 0, δ2 > δ1/z0. (6.18)

It is easy to find the following identities, see in [56],∫
∞

z0

φ(z)E[u](z) dz =−
∫

∞

z0

φ(z)µ(z)u(z) dz+
∫

∞

z0

u(z)β (z)
(
−φ(z)+2

∫ z

z0

φ(y)k(y,z) dy
)

dz (6.19)

and ∫
∞

z0

φ(z)Q[u,u](z) dz =
∫

∞

z0

∫
∞

z0

(φ(z+ y)−φ(z)−φ(y)) η(z,y) u(z) u(y) dydz (6.20)

where
E[u](z) =−

(
µ(z)+β (z)

)
u(z)+2

∫
∞

z
β (y) k(z,y) u(y) dy

and

Q[u,w](z) = 1[z>2z0]

∫ z−z0

z0

η(z− y,y)u(z− y)w(y) dy−2u(z)
∫

∞

z0

η(y,z)w(y) dy.
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For φ(z) = z, Eqs. (6.7), (6.19) and (6.20) imply that a solution (S,C,u) corresponding to
(6.1)-(6.5) satisfies

S(t)+C(t)+
∫

∞

z0

zu(t,z) dz =C0 +S0 +
∫

∞

z0

zu0(z) dz+λ t

− γ

∫ t

0
S(s) ds−δ0

∫ t

0
C(s) ds−

∫ t

0

∫
∞

z0

zµ(z)u(s,z) dzds

+δ1

∫ t

0
C(s)

∫
∞

z0

u(s,z) dzds−δ2

∫ t

0
C(s)

∫
∞

z0

zu(s,z) dzds.

(6.21)

Now, define the state space
X0 = L1(Z,zdz)

for the population density u, where the norm is defined by ∥·∥0 := ∥·∥L1(Z, zdz) and its positive
cone is represented by L+

1 (Z,zdz) and putting

X1 = {u ∈ X0 : ∂z(τu) ∈ X0,u(z0) = 0}

equipped with the norm ∥u∥1 := ∥u∥0 +∥∂z(τu)∥0 , u ∈ X1.

Theorem 6.2.1. Let us assume (6.6), (6.7), (6.11), (6.14), (6.15) and (6.18) hold. Then, for any

given S0,C0 > 0 and u0 ∈ X+
0 with ∂zu0 ∈ X0 and u0(z0) = 0, the problem (6.1)-(6.5) admits

a unique global classical solution (S,C,u) such that S,C ∈ C1(R+) and u ∈ C1(R+,X0) with

∂zu ∈ C(R+,X0). Also, the solution is positive, i.e., S(t),C(t) > 0 and u(t) ∈ L+
1 (Z,zdz) for

t ≥ 0, and satisfies (6.21).

6.2.1 Proof of Classical Solution

The following lemmas are useful and can be readily obtained. Additionally all the assumptions
mentioned in Theorem 6.2.1 hold.

Lemma 6.2.2. (See, [56]) (i) The operator E : X0 → X0, defined by

E[u](z) =−
(
µ(z)+β (z)

)
u(z)+2

∫
∞

z
β (y) k(z,y) u(y) dy

is linear and bounded corresponding to (6.6)-(6.7) such that

∥E[u]∥0 ≤ b∗ (∥β∥
∞
+∥µ∥

∞
)∥u∥0 , u ∈ X0.
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(ii) The operator Q : X j ×X0 → X j is bilinear and bounded, refer to [56], with

∥Q[u,v]∥ j ≤ b∗ ∥η∥ j,∞ ∥u∥ j ∥v∥0 , u ∈ X j,v ∈ X0,

for j ∈ {0,1} where ∥η∥0,∞ = ∥η∥
∞

and ∥η∥1,∞ = ∥η∥
∞
+∥ηz∥∞

.

When v ∈ X0 is fixed, it is worthwhile pointing out the property of Q[·,v] mapping X j into
itself for j ∈ {0,1}. For the existence of classical solution, this property is crucial.

Lemma 6.2.3. (See, [77]) The operator −A, defined by

Au = ∂z(τu), u ∈ X1,

generates a positive C0 semigroup {W (t) : t ≥ 0} on X0, defined by

(W (t) f )(z) = 1[t,∞) (Ψ(z))
τ
(
Ψ−1(Ψ(z)− t)

)
τ(z)

f
(
Ψ

−1(Ψ(z)− t)
)
, z ∈ Z, t ≥ 0,

with

∥W (t)∥L(X0)
≤ eτ0t , t ≥ 0,

where Ψ : Z → (0,∞) is a diffeomorphism defined by Ψ(z) =
∫ z

z0

dy
τ(y) and τ0 =

∥τ∥
∞

z0
so that

τ(z)≤ τ0z, z ∈ Z. Also, this semigroup is stable in the sense of [§2.4].

Now, for given K > 1, T ∈ (0,1], define JT = [0,T ] and

ℑT,K = {v ∈C1(JT ) : K−1 ≤ v(t)≤ ∥v(t)∥C1(JT )
≤ K}. (6.22)

Then, for given V,C ∈ ℑT,K, introduce the operator

AC
V (t)u =V (t)Au+δ2C(t)u−E(u), u ∈ X1, t ∈ JT . (6.23)

According to Lemmas 6.2.2 and 6.2.3, the operator family {−AC
V (s) : s ∈ [0,T ]} generates an

evolution operator on X0, refer to [§2.4].

Proposition 6.2.1. Let K > 1,T0 > 0 and 0 < T ≤ T0. Then,
{
−AC

V (t) : t ∈ [0,T ]
}

generates

a unique evolution system UC
V (t,s), 0 ≤ s ≤ t ≤ T in X0 for each V,C ∈ ℑT,K. Moreover, there

exists w0 = w0(T0,K)> 0 such that∥∥∥UC
V (t,s)

∥∥∥
L(X0)

≤ ew0(t−s), V,C ∈ ℑT,K, (6.24)

∥∥∥UC
V (t,s)

∥∥∥
L(X1)

≤ w0, V,C ∈ ℑT,K, (6.25)
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and for V,C,V1,C1 ∈ ℑT,K∥∥∥UC
V (t,s)−UC1

V1
(t,s)

∥∥∥
L(X1,X0)

≤ w0(t − s)
(
∥V −V1∥C(JT )

+∥C−C1∥C(JT )

)
(6.26)

where 0 ≤ s ≤ t ≤ T.

One can achieve the estimates of proposition 6.2.1 according to Proposition 4.2.1. If (S,C,u)

is a solution of the system (6.1)-(6.5), then u component can be expressed as

u(t) = UC
Vu
(t,0)u0 +

∫ t

0
UC

Vu
(t,s)Q[u(s),u(s)] ds.

The above can be considered as a fixed point equation for u, where

Vu(t) =
S(t)

1+ρ
∫

∞

z0
zu(t,z) dz

.

Now, we proceed further and discuss the local and global existence of the classical solution by
using Leis and Walker’s approach, see [56].

6.2.1.1 Proof of Local Existence

Let S0,C0 > 0 and u0 ∈ X+
0 ∩X1 be given and let P > 0 be such that

P−1 ≤ S0,C0 ≤ P and
∥∥u0∥∥

1 ≤ P. (6.27)

Construct a complete metric space for δ ∈ {0,ρ},

Eδ
T =

{
u ∈C(JT ,X+

0 ) : [t 7→ δ ∥u(t)∥0] ∈C1(JT ),∥u(t)∥0 ≤ 2P,∣∣∣∣ d
dt

δ ∥u(t)∥0

∣∣∣∣≤ r(P), t ∈ JT , u(0) = u0}
where the metric is defined by

dEδ
T
(u,v) = ∥u− v∥C(JT ,X0)

+δ ∥∥u∥0 −∥v∥0∥C1(JT )
, u,v ∈ Eδ

T ,

and r(P) = 2ρP
[
(P+2P∥β∥

∞
+λ )∥τ∥

∞

z0
+∥µ∥

∞
+∥β∥

∞
+δ2Pe2P/z0

]
.

Let ũ ∈ Eδ
T be fixed and put

2
∫ z0

0
z
∫

∞

z0

β (y) k(z,y) ũ(t,y) dydz := f (ũ) (6.28)
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and
g(ũ(t)) =

1
1+ρ ∥ũ(t)∥0

∫
∞

z0

τ(z)ũ(t,z) dz. (6.29)

Here, both f (ũ) and g(ũ) are non-negative functions. Then, Sũ ∈C1(JT ) given by

Sũ(t) = S0 e−γt−
∫ t

0 g(ũ(σ))dσ +
∫ t

0
e−γ(t−s)−

∫ t
s g(ũ(σ))dσ [λ + f (ũ(s))] ds, t ∈ JT , (6.30)

represents the unique solution corresponding to (6.1) with Sũ(0) = S0, when u is replaced by ũ.

Also, replacing u by ũ in (6.2),

Cũ(t) =C0 e−δ0t+δ1
∫ t

0 |ũ(σ)|1dσ , t ∈ JT , (6.31)

is the unique solution for the Eq. (6.2) with Cũ(0) =C0, where | · |1 denotes the norm in L1(Z).

Eq. (6.7) and the assumptions on β ,τ, imply that

f (ũ(t))≤ ∥β∥
∞
∥ũ(t)∥0 and g(ũ(t))≤ ∥τ∥

∞

z0
∥ũ(t)∥0 (6.32)

for 0 ≤ t ≤ T. Now, introduce

Vũ(t) =
Sũ(t)

1+ρ
∫

∞

z0
zũ(t,z) dz

, (6.33)

and

V̇ũ(t) =
Ṡũ(t)

1+ρ ∥ũ(t)∥0
− ρSũ(t)

(1+ρ ∥ũ(t)∥0)
2

d
dt

∥ũ(t)∥0 , ũ ∈ Eδ
T , t ∈ JT .

From (6.1) and (6.30), it readily follows that a constant K(P) > 1 exists independent of T ∈
(0,1] (and ũ) such that Vũ ∈ ℑT,K(P) for ũ ∈ Eδ

T . Also, it follows from (6.2) and (6.31) that there
exists a constant K(P)> 1 independent of T ∈ (0,1] (and ũ) such that Cũ ∈ ℑT,K(P) for ũ ∈ Eδ

T .

On the other hand, one can easily obtain the following estimates

|Vũ1(t)−Vũ2(t)| ≤ T b(P) dEδ
T
(ũ1, ũ2) (6.34)

and
|Cũ1(t)−Cũ2(t)| ≤ T b(P) dEδ

T
(ũ1, ũ2) (6.35)

for 0 ≤ t ≤ T ≤ 1 and ũ1, ũ2 ∈ Eδ
T . Now, for fixed ũ ∈ Eδ

T and û ∈ E0
T , we consider the equation

u̇+ACũ
Vũ
(t)u = Q[u, û(t)], u(0) = u0, t ∈ JT , (6.36)
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where
−ACũ

Vũ
(t)u =−Vũ(t)Au−δ2Cũ(t)u+E(u), u ∈ X1, t ∈ JT ,

is meaningful since Vũ,Cũ ∈ ℑT,K(P) and generates an evolution system on X0 with properties
as mentioned in Proposition 6.2.1. Here, ũ ∈ Eδ

T and û ∈ E0
T are still fixed, then according to

Lemma 6.2.2(ii), the right-hand side of (6.36) is a bounded linear operator from X1 into itself
with respect to u which continuously depends on t. It is ensured from [§2.4] that equation (6.36)
possesses a unique classical solution

u := u(ũ, û) ∈C(JT ,X1)∩C1(JT ,X0). (6.37)

For non-negativity of this solution, we introduce the constant

p = ∥µ∥
∞
+∥β∥

∞
+

4P
z0

∥η∥1,∞ .

Then, the problem

ẇ+(AVũ(t)+δ2Cũ(t)+ pI)w = P(t)[w], w(0) = u0, t ∈ JT , (6.38)

is also solved by u, where the operator

−AVũ(t)w :=−Vũ(t)∂z(τw), w ∈ X1, t ∈ JT

generates an evolution system on X0 according to Proposition 6.2.1 and the bounded operator
P(t) ∈ L(X0), given by

P(t)[w] = Q[w, û(t)]+E[w]+ pw, w ∈ X0,

which is continuously depending on t and warrants that

P(t)[w] ∈ X+
0 , w ∈ X+

0 (6.39)

for the suitable choice of the constant p > 0. From Lemma 6.2.3, the semigroup {W (t) : t ≥ 0}
on X0 generated by −Au = −∂z(τu), u ∈ X1, is a positive C0 semigroup. Therefore, for each
fixed t ∈ JT , the operator −(AVũ(t)+ δ2Cũ(t)+ pI) generates a positive semigroup on X0, see
Corollary 2.2.2.2. The construction of evolution systems, see Theorem 2.4.3, yields that the
evolution system generated by −(AVũ + δ2Cũ + pI) is positive as well. Then, the equation
(6.39) and u0 ∈ X+

0 imply that u(t) ∈ X+
0 for t ∈ JT .

Next, for sufficiently small T ∈ (0,1], we exhibit that the mapping û 7→ Λũ[û] := u(ũ, û) is
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contraction on E0
T keeping ũ ∈ Eδ

T still fixed. For this, note that

Λũ[û] := u(ũ, û) ∈C(JT ,X+
1 )∩C1(JT ,X0)

satisfies
u̇+ACũ

Vũ
(t)u = Q[u, û(t)], u(0) = u0, t ∈ JT , (6.40)

and can be written as

Λũ[û](t) = UCũ
Vũ
(t,0)u0 +

∫ t

0
UCũ

Vũ
(t,s) Q[Λũ[û](s), û(s)] ds, t ∈ JT , (6.41)

where the evolution system UCũ
Vũ
(t,s) fulfills the properties mentioned in Proposition 6.2.1 with

w0 = w0(1,K(P)). Consequently, Lemma 6.2.2 and Proposition 6.2.1 allow that

∥Λũ[û](t)∥q ≤ ew0[T (1−q)+q]∥∥u0∥∥
q +2Pb∗ ∥η∥q,∞ ew0

∫ t

0
∥Λũ[û](s)∥q ds, (6.42)

for q = 0,1 and 0 ≤ t ≤ T ≤ 1. Taking q = 0 in (6.42), Eq. (6.27) and Gronwall’s lemma
warrant that

∥Λũ[û](t)∥0 ≤ 2P, 0 ≤ t ≤ T, (6.43)

given that T = T (P)∈ (0,1] is picked sufficiently small which implies that Λũ[û](t) = u(ũ, û)∈
E0

T for û ∈ E0
T . Moreover, putting q = 1 in (6.42), Gronwall’s lemma leads to

∥Λũ[û](t)∥0 ≤ m(P), 0 ≤ t ≤ T, (6.44)

for some constant m(P) > 0. Now, to show that Λũ : E0
T → E0

T is contractive, let û1, û2 ∈ E0
T .

Then, for 0 ≤ t ≤ T, Eq. (6.41) with (6.43), Lemma 6.2.2, Proposition 6.2.1 and Gronwall’s
lemma provide that

∥Λũ[û1](t)−Λũ[û2](t)∥0 ≤ T b(P)∥û1 − û2∥C(JT ,X0)
,

which shows that the mapping Λũ is contraction on E0
T for each ũ ∈ Eρ

T and T = T (P) ∈ (0,1]
is picked sufficiently small . Hence Λũ admits a unique fixed point Γ(ũ) ∈ E0

T . According to
(6.37), Γ(ũ) ∈C(JT ,X1)∩C1(JT ,X0).

Further, we consider the mapping Γ= [ũ 7→Γ(ũ)] and prove that it is contraction on Eρ

T provided
T = T (P)∈ (0,1] is small enough. Then, together with the corresponding solutions to (6.1) and
(6.2), the corresponding unique fixed point will describe the local solution to (6.1)-(6.5). Eq.
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(6.41) reads for fixed point u = Γ(ũ) of Λũ as

u(t) = UCũ
Vũ
(t,0)u0 +

∫ t

0
UCũ

Vũ
(t,s) Q[u(s),u(s)] ds, t ∈ JT . (6.45)

Now, take ũ1, ũ2 ∈ Eρ

T and put u1 = Γ(ũ1) and u2 = Γ(ũ2). Then, for t ∈ JT , Eq.(6.45) entails
with Lemma 6.2.2, Proposition 6.2.1 and Eq.(6.44) that

∥u1(t)−u2(t)∥0 ≤w0T
[
∥Vũ1 −Vũ2∥C(JT )

+∥Cũ1 −Cũ2∥C(JT )

]∥∥u0∥∥
X1

+2Pb∗ ∥η∥1,∞ m(P)w0T
[
∥Vũ1 −Vũ2∥C(JT )

+∥Cũ1 −Cũ2∥C(JT )

]
+4Pew0b∗ ∥η∥1,∞

∫ t

0
∥u1(s)−u2(s)∥0 ds

and then by Gronwall’s lemma, we have

∥u1(t)−u2(t)∥0 ≤ T b(P)
[
∥Vũ1 −Vũ2∥C(JT )

+∥Cũ1 −Cũ2∥C(JT )

]
, t ∈ JT .

Therefore, Eqs. (6.34) and (6.35) yield,

∥u1(t)−u2(t)∥0 ≤ T b(P)∥ũ1 − ũ2∥C(JT ,X0)
, t ∈ JT (6.46)

for some constant b(P) > 0. Further, for u = Γ(ũ) with ũ ∈ Eρ

T , Eq. (6.45) can also be
written as

u̇+Vũ(t)∂z(τu)+δ2Cũ(t)u = E[u(t)]+Q
[
u(t),u(t)

]
, 0 ≤ t ≤ T. (6.47)

Since u(t) ∈ X1, the assumption (6.15) on τ implies that∫
∞

z0

z∂z(τu(t,z)) dz =−
∫

∞

z0

τ(z)u(t,z) dz. (6.48)

Using equations (6.7), (6.19) and (6.20), one can obtain∫
∞

z0

zE[u(t)](z) dz+
∫

∞

z0

zQ
[
u(t),u(t)

]
(z) dz =−

∫
∞

z0

zµ(z)u(t,z) dz− f (u(t)). (6.49)

Consequently, for 0 ≤ t ≤ T and u = Γ(ũ) with ũ ∈ Eρ

T , it is observed from (6.47)-(6.49) that

d
dt

∫
∞

z0

zu(t,z) dz =Vũ(t)
∫

∞

z0

τ(z)u(t,z) dz−δ2Cũ(t)
∫

∞

z0

zu(t,z) dz

−
∫

∞

z0

zµ(z)u(t,z) dz− f (u(t)).
(6.50)
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Also, equation (6.50) yields,∣∣∣∣ d
dt

ρ ∥u(t)∥0

∣∣∣∣≤ ρ
[
Vũ(t)

∥τ∥
∞

z0
+∥µ∥

∞
+∥β∥

∞
+δ2Cũ(t)

]
∥u(t)∥0 ≤ r(P), t ∈ JT .

Now, Eqs. (6.27), (6.30) and (6.32) guarantee that

Vũ(t)≤ Sũ(t)≤ λ +P+2P∥β∥
∞
, t ∈ JT ,

and Eqs. (6.27), (6.31) imply that,

Cũ(t)≤ Pe2P/z0 , t ∈ JT ,

and hence u=Γ(ũ)∈Eρ

T for ũ∈Eρ

T . Now, again considering ũ1, ũ2 ∈Eρ

T and putting u1 =Γ(ũ1)

and u2 = Γ(ũ2), Eq. (6.50) deduce that

∣∣∣∣ d
dt

∫
∞

z0

z[u1(t,z)−u2(t,z)] dz
∣∣∣∣≤ |Vũ1(t)−Vũ2(t)|

∫
∞

z0

τ(z)u1(t,z) dz

+δ2Cũ(t)
∣∣∣∣∫ ∞

z0

z [u1(t,z)−u2(t,z)] dz
∣∣∣∣

+δ2 |Cũ1(t)−Cũ2(t)|
∫

∞

z0

z u1(t,z) dz

+Vũ2(t)
∣∣∣∣∫ ∞

z0

τ(z)[u1(t,z)−u2(t,z)] dz
∣∣∣∣

+

∣∣∣∣∫ ∞

z0

z τ(z)[u1(t,z)−u2(t,z)] dz
∣∣∣∣

+ | f [u1(t)−u2(t)]| .

Therefore, for 0 ≤ t ≤ T,∣∣∣∣ d
dt

∫
∞

z0

z[u1(t,z)−u2(t,z)] dz
∣∣∣∣≤ b(P) |Vũ1(t)−Vũ2(t)|+b(P) ∥u1(t)−u2(t)∥0

+∥β∥
∞
∥u1(t)−u2(t)∥0 +b(P) |Cũ1(t)−Cũ2(t)|

≤ T b(P) dEρ

T
(ũ1, ũ2),

and thus,
dEρ

T
(Γ(ũ1),Γ(ũ2))≤ T b(P) dEρ

T
(ũ1, ũ2), ũ1, ũ2 ∈ Eρ

T ,

which indicates that the mapping ũ 7→ Γ(ũ) is a contraction on Eρ

T provided that T = T (P) ∈
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(0,1] is picked small enough. Thus, there exists a unique fixed point u and along this u, the
triplet (Su,Cu,u) represents the unique solution corresponding to (6.1)-(6.5) on the interval
[0,T ]. Since the choice of T = T (P) depends only on P from (6.27), the following proposition
is immediate.

Proposition 6.2.2. For given assumptions stated in Theorem 6.2.1, the problem (6.1)-(6.5)

admits a unique maximal solution (S,C,u) belonging to C(J,R+×R+×X+
1 )∩C1(J,R×R×

X0) on a maximal interval J which is open in R+. If t∗ = sup J < ∞, then

limt→t∗ S(t) = 0, limt→t∗ C(t) = 0 or limt→t∗
(
S(t)+C(t)+∥u(t)∥X1

)
= ∞. (6.51)

Let us emphasize here that the solution (S,C,u) fulfills

u′+ACu
Vu
(t)u = Q[u,u], u(0) = u0, t ∈ J,

and u can be written as

u(t) = UCu
Vu
(t,0)u0 +

∫ t

0
UCu

Vu
(t,s) Q[u(s),u(s)] ds, t ∈ J.

6.2.1.2 Proof of Global Existence

We are now showing that (6.51) can not occur and the solution given by Proposition 6.2.2 exists
on J = R+. One can obtain that,

Ṡ(t)+Ċ(t)+
d
dt

∫
∞

z0

zu(t,z) dz = λ − γS(t)+2
∫

∞

z0

u(t,z)β (z)
∫ z0

0
yk(y,z) dy dz

−δ0C(t)+δ1C(t)
∫

∞

z0

u(t,z) dz

−δ2C(t)
∫

∞

z0

zu(t,z) dz+
∫

∞

z0

zE[u(t)](z) dz

= λ − γS(t)−δ0C(t)−
∫

∞

z0

zµ(z)u(t,z) dz

+δ1C(t)
∫

∞

z0

u(t,z) dz−δ2C(t)
∫

∞

z0

zu(t,z) dz.

This implies that,

S(t)+C(t)+∥u(t)∥X0
≤ S0 +C0 +

∥∥u0∥∥
X0
+λ t, for t ∈ J and δ2 >

δ1

z0
· (6.52)
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Now, it is easy to find the following estimates

S(t)> 0, ∥S∥C1(J) ≤ h(t∗), for t ∈ J, (6.53)

and
C(t)> 0, ∥C∥C1(J) ≤ h(t∗), for t ∈ J. (6.54)

Consequently, there exists P = P(h(T ∗))> 0 such that for each 0 < T < t∗, one has S,C ∈ ℑT,K

and hence, it is obvious from Proposition 6.2.1 that∥∥∥UCu
Su
(t,s)

∥∥∥
L(X1)

≤ h(t∗), 0 ≤ s ≤ t ≤ t∗.

Lemma 6.2.2(ii) with Eq.(6.52) imply that

∥Q[u(t),u(t)]∥1 ≤ h(t∗)∥u(t)∥1 , t ∈ J.

Therefore,

∥u(t)∥1 ≤
∥∥∥UCu

Su
(t,0)

∥∥∥
L(X1)

∥∥u0∥∥
1 +

∫ t

0

∥∥∥UCu
Su
(t,s)

∥∥∥
L(X1)

∥Q[u(t),u(t)]∥1 ds

≤ h(t∗)
∥∥u0∥∥

1 +h(t∗)
∫ t

0
∥u(t)∥1 ds, t ∈ J,

so that Gronwall’s lemma warrants

∥u(t)∥1 ≤ h(t∗), t ∈ J. (6.55)

Thus (6.51) can not be true in view of (6.53)-(6.55). This contradiction shows that the solution
(S,C,u) exists for all times.
If we consider compactly supported initial data and coagulation kernel η(z,y), then u enjoys
the property of finite speed of propagation [50] according to [56], where (S,C,u) represents the
solution of the system (6.1)-(6.5).

6.3 Existence of a Weak Solution for Unbounded Degrada-
tion Rates

We prove the existence of weak solutions to the problem (6.1)-(6.5) under the conditions (6.16)
and (6.17).
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Definition 6.3.1. For given S0,C0 > 0 and u0 ∈ L+
1 (Z,zdz), the triplet (S,C,u) is called a global

weak solution corresponding to (6.1)-(6.5) if the following hold

(a) S,C ∈C1(R+) are non-negative solutions to (6.1) and (6.2), respectively,

(b) u ∈ L∞,loc
(
R+,L+

1 (Z,zdz)
)

is a weak solution corresponding to (6.3), more precisely, it

satisfies

[(σ ,z) 7→ (µ(z)+β (z))u(σ ,z)] ∈ L1 ((0, t)×Z) (6.56)

[(σ ,z,y) 7→ η(z,y)u(σ ,z)u(σ ,y)] ∈ L1 ((0, t)×Z ×Z) (6.57)

for all t > 0 and

∫
∞

z0

φ(z)u(t,z) dz =
∫

∞

z0

φ(z)u0(z) dz+
∫ t

0

S(σ)

1+ρ ∥u(σ)∥0

∫
∞

z0

φ
′(z)τ(z)u(σ ,z) dzdσ

−δ2

∫ t

0
C(σ)

∫
∞

z0

φ(z)u(σ ,z) dzdσ −
∫ t

0

∫
∞

z0

φ(z)µ(z)u(σ ,z) dzdσ

+
∫ t

0

∫
∞

z0

β (z)u(σ ,z)
(
−φ(z)+2

∫ z

z0

φ(y)k(y,z) dy
)

dzdσ

+
∫ t

0

∫
∞

z0

∫
∞

z0

(
φ(z+ y)−φ(z)−φ(y)

)
η(z,y)u(σ ,z)u(σ ,y) dydzdσ

for any φ ∈W 1,∞(Z),

(c) Eq. (6.21) holds.

To discuss the existence of a weak solution, we also assume that for the measurable function
k which satisfy to (6.6)-(6.7) and given any R > z0, it holds that

lim
δ→0

sup
ξ⊂(z0,R), |ξ |≤δ

ess sup
z∈(z0,R)

β (z)
∫ z

z0

1ξ (y)k(y,z) dy = 0 (6.58)

where |ξ | represents the Lebesgue measure of a measurable set ξ ⊂ Z. Moreover, let z1 ∈ Z and
δ∗ > 0 such that ∫ z

z1

(
1− y

z

)
k(y,z) dy ≥ δ∗, z ≥ 2z1. (6.59)

The symmetric kernel η should be continuous function from Z ×Z into R+ and satisfies

η(z,y)≤ K(yαzν + zαyν), (z,y) ∈ Z ×Z, (6.60)

for some constant K ≥ 1 and (α,ν) with

0 ≤ α ≤ ν ≤ 1, θ = α +ν ∈ [0,2], (6.61)
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providing the integrability of Q. If θ = α +ν ∈ (1,2], there are 0 < a < 1, B > 0 and ζ > θ −1
such that

β (z)≥ Bzζ , 2
∫ z

z0

yk(y,z) dy ≤ az, z ∈ Z. (6.62)

Theorem 6.3.1. Let us assume that (6.6), (6.7), (6.11), (6.16), (6.17), (6.18) and (6.58)-(6.61)

hold. If θ = α +ν ∈ (1,2], then also (6.62) holds. Let S0,C0 > 0 and u0 ∈ L+
1 (Z,zdz). Then,

the system (6.1)-(6.5) possesses at least one global weak solution (S,C,u) within the context of

Definition 6.3.1 and u belongs to C (R+,L1,w(Z,zdz)) .

The existence of a global weak solution is based on a weak compactness argument. We first
obtain a sequence (Sn,Cn,un)n∈N of global classical solutions from Theorem 6.2.1 for suitably
approximated bounded kernels. Then, Arzelà-Ascoli theorem [2.5.1, 2.5.9] and Dunford-Pettis
theorem 2.5.2 are used to study the compactness of the sequence in the space C([0,T ],R+

×R+×L1,w(Z,zdz)) for any T > 0. Any cluster point of the sequence represents a global weak
solution to (6.1)-(6.5) for unbounded kernels.

6.3.1 Proof of Weak Solution

For u0 ∈ L+
1 (Z,zdz), we can apply a refined version of the De la Vallée-Poussin theorem [43]

which provides the existence of non-decreasing and non-negative convex function Φ ∈C∞(R+)

with Φ(0) = 0 such that Φ′ is concave and

lim
s→∞

Φ
′(s) = lim

s→∞

Φ(s)
s

= ∞ (6.63)

with ∫
∞

z0

Φ(z)u0(z) dz < ∞.

Then, one can choose a sequence (u0
n)n∈N of smooth and compactly supported non-negative

functions such that

sup
n∈N

∫
∞

z0

Φ(z)u0
n(z) dz < ∞ and u0

n → u0 in L+
1 (Z). (6.64)

Further, with the help of a mollifiers argument, we choose a sequence (τn)n∈N in BUC∞([z0,∞))

such that
0 <

τ∗
2

≤ τn(z)≤ τ0z, z ≥ z0, (6.65)

and
τn → τ uniformly on compact subsets of Z. (6.66)
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Also, we construct a sequence (ηn)n∈N in BUC∞(Z ×Z) which satisfies

ηn(y,z)≤ K(yαzν + zαyν), (y,z) ∈ Z ×Z, (6.67)

for constants α,ν and K stemming from (6.60) and

ηn(z,y) = 0 for (z,y) ∈ Z ×Z with y+ z > Rn, 2z0 < Rn → ∞, (6.68)

and so on compact subsets of Z ×Z,

ηn → η uniformly. (6.69)

For n ∈ N, we put
P0

n = sup{z ∈ Z : z ∈ supp u0
n}

and
Hn(T ) = φ

−1
n

(∫ T

0

(
S0 +

∫
∞

z0

zu0
n(z) dz+λ t

)
dt
)
,

φn(s) =
∫ s

max{S0
n,Rn}

dz
τn(z)

and then introduce

Pn(T ) = max{Pn−1(T ),Hn(T ),n}, n ≥ 1, P0(T ) = H0(T ).

Let µn = 1[z0,Pn(T )]µ and βn = 1[z0,Pn(T )]β for n ∈ N. Therefore, Theorem 6.2.1 warrants the
existence of a global non-negative classical solution

(Sn,Cn,un) ∈C1 (R+,R×R×X0
)
∩C
(
R+,R×R×X1

)
to (6.1)-(6.5) when (µ,β ,τ,η ,u0) is replaced by (µn,βn,τn,ηn,u0

n). Further, the construction
of Pn according to [56] and β > 0 imply that

supp un(t)⊂ [z0,Pn(T )] = supp βn, t ∈ [0,T ].

Also, Eqs. (6.21) and (6.64) lead to

Sn(t)+Cn(t)+
∫

∞

z0

zun(t,z) dz+
∫ t

0

∫
∞

z0

zµn(z)un(s,z) dzds ≤ b(T ), (6.70)
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for δ2 >
δ1
z0
, t ∈ [0,T ] and n ∈ N, where b(T ) is independent of n. We use later the following

notations
En[u](z) =−

(
µn(z)+βn(z)

)
u(z)+2

∫
∞

z
βn(y) k(z,y) u(y) dy

and

Qn[u,w](z) = 1[z>2z0]

∫ z−z0

z0

ηn(z− y,y)u(z− y)w(y) dy−2u(z)
∫

∞

z0

ηn(z,y)w(z) dz.

Note that the bilinear polymer coagulation term can be dealt from [29, 56] and the estimates on
the moments can be derived as

Ms,n(t) =
∫

∞

z0

zsun(t,z) dz, t ∈ [0,T ],

for s > 0 and n ∈ N. Due to the compact support of un(t, ·), all moments are well-defined. For
the existence of a weak solution, the following auxiliary results are required.

Lemma 6.3.2. Let us assume that θ = α +ν ∈ (1,2] in (6.60) and the condition (6.62) holds.

Then, there exists a constant b(T ) independent of n with

∫ T

0
Mθ ,n(t) dt ≤ b(T ), n ∈ N, t ∈ [0,T ]. (6.71)

Proof. One can prove the lemma according to [[56], Corollary 4.2].

Lemma 6.3.3. For t ∈ [0,T ], there exists a constant b(T ) independent of n with∫
∞

z0

Φ(z)un(t,z) dz ≤ b(T ), (6.72)

∫ t

0

∫
∞

z0

Φ(z)µn(z)un(σ ,z) dzdσ ≤ b(T ), (6.73)

∫ t

0
I1,n(σ)dσ +

∫ t

0
I2,n(σ)dσ ≤ b(T ), (6.74)

where

I1,n(σ) =
∫

∞

z0

un(σ ,z)βn(z)
∫ z

z0

(
Φ(z)

z
− Φ(y)

y

)
yk(y,z) dydz,

I2,n(σ) =
∫

∞

z0

un(σ ,z)βn(z)
Φ(z)

z

∫ z0

0
yk(y,z) dydz.

Proof. As we know that un(t, ·) is compactly supported and thus we may test the corresponding
Eq. (6.3) with Φ. By using (6.7) and (6.19)-(6.20) we obtain, for t ∈ [0,T ], n ∈ N
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∫
∞

z0

Φ(z)un(t,z) dz =
∫

∞

z0

Φ(z)u0
n(z) dz

+
∫ t

0

Sn(s)
1+ρ ∥un(σ)∥0

∫
∞

z0

Φ
′(z)τn(z)un(s,z) dzdσ

+
∫ t

0

∫
∞

z0

∫
∞

z0

Φ̄(y,z)ηn(y,z)un(z)un(y) dydzdσ

−δ2

∫ t

0
Cn(σ)

∫
∞

z0

Φ(z)un(σ ,z) dzdσ

−
∫ t

0

∫
∞

z0

Φ(z)µn(z)un(σ ,z) dzdσ

−2
∫ t

0
(I1,n(σ)+ I2,n(σ)) dσ ,

where Φ̄(y,z) = Φ(y + z)− Φ(z)− Φ(y) for y,z ∈ Z. According to [[56], Lemma 4.3], the
following estimate holds∫

∞

z0

Φ(z)un(t,z) dz+
∫ t

0

∫
∞

z0

Φ(z)µn(z)un(σ ,z) dzdσ +
∫ t

0
I1,n(σ) dσ +

∫ t

0
I2,n(σ) dσ ≤ b(T )

and so assertion follows.

Lemma 6.3.4. Let us assume AC
V (t) = V (t)A+ δ2C(t), for V,C ∈ C(JT ) with V (t),C(t) > 0

and τ satisfies (6.17). Let, UAC
V
(t,s), 0 ≤ s ≤ t ≤ T represents the unique evolution system

corresponding to −AC
V (t), t ∈ JT in L1(Z) and for any M > z0,δ > 0, put

λM(δ ) = τ∗M sup
ξ⊂(z0,M), |ξ |≤δ

∫
ξ

dz
τ(z)

.

Then,

sup
ξ⊂(z0,M), |ξ |≤δ

∫
ξ

UAC
V
(t,s)φ dz ≤ sup

F⊂(z0,M), |F |≤λM(δ )

∫
F

φ dz, 0 ≤ s ≤ t ≤ T, φ ∈ L+
1 (Z),

where the supremum is taken over all measurable sets ξ ⊂ Z with |ξ | ≤ δ .

Proof. For any given measurable subset ξ of (z0,M) and any f ∈ L1(Z), it follows from Lemma
6.2.3 that

∫
ξ

W (t) f dz =
∫

∞

Ψ−1(t)
1ξ (z)(Ψ(z))

τ
(
Ψ−1(Ψ(z)− t)

)
τ(z)

f
(
Ψ

−1(Ψ(z)− t)
)
dz

=
∫

∞

z0

1Ψ−1((Ψ(ξ )−t)∩(0,∞))(z) f (z)dz
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where Ψ is taken as in Lemma 6.2.3. Also, Ψ−1 ((Ψ(ξ )− t)∩ (0,∞)) ⊂ (z0,M) and thus due
to (6.17),

|Ψ−1 ((Ψ(ξ )− t)∩ (0,∞)) | ≤ λM(δ ).

The unique evolution system to
(
−AC

V (t)
)

t∈JT
is given by

UAC
V
(t,s) = eδ2

∫ t
s C(σ)dσ W

(∫ t

s
V (σ)dσ

)
, 0 ≤ s ≤ t ≤ T,

and the required assertion follows.

Proposition 6.3.1. There exists a weakly compact subset KT of L1(Z,zdz) such that un(t) ∈ KT

for n ∈ N and t ∈ [0,T ]. Moreover,

∫ T

0

∫
∞

z0

βn(z)un(σ ,z) dzdσ ≤ b(T ), n ∈ N, (6.75)

where b(T )> 0 being a constant independent of n ∈ N.

Proof. This lemma can be proved according to [[56], Proposition 4.4] and using Lemma 6.3.4.

Lemma 6.3.5. The family {un : n ∈ N} is weakly equicontinuous in L1(Z,zdz) for every t ∈
[0,T ].

Proof. According to Theorem 4.3.3, for φ ∈ L∞(Z), we have

lim
s→t

sup
n∈N

∣∣∣∣∫ ∞

z0

φ(z)[un(t,z)−un(s,z)] dz
∣∣∣∣= 0,

for t ∈ JT . This implies together with (6.63) that, for t ∈ JT ,

lim
s→t

sup
n∈N

∣∣∣∣∫ ∞

z0

φ(z)[un(t,z)−un(s,z)] zdz
∣∣∣∣= 0.

Lemma 6.3.6. The family {Cn : n ∈ N} is relatively compact in C ([0,T ]) .

Proof. From Eqs. (6.2) and (6.70), it follows that

|Cn(t)−Cn(s)| ≤ δ0

∣∣∣∣∫ t

s
Cn(σ) dσ

∣∣∣∣+δ1

∣∣∣∣∫ t

s
Cn(σ)

∫
∞

z0

un(σ ,z) dzdσ

∣∣∣∣
≤ δ0b(T ) |t − s|+ δ1

z0
b(T ) |t − s| .
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Therefore,
lim
s→t

sup
n∈N

|Cn(t)−Cn(s)|= 0,

and the assertion is complete from the Arzelà-Ascoli theorem 2.5.1.

Lemma 6.3.7. The family {Sn : n ∈ N} is relatively compact in C ([0,T ]) .

Proof. For the test function φ(z) = z, the truncated Eq.(6.3) with (6.6), (6.20) and positivity of
un(t),Cn(t) provide

2
∫

∞

z0

un(t,z)βn(z)
∫ z0

0
yk(y,z) dydz =

Sn(t)
1+ρ ∥un(t)∥0

∫
∞

z0

τn(z)un(t,z)dz− d
dt

∫
∞

z0

zun(t,z) dz

−δ2Cn(t)
∫

∞

z0

zun(t,z)−
∫

∞

z0

zµn(z)un(t,z) dz,

and then Eqs. (6.65) and (6.70) warrant∣∣∣∣2∫ ∞

z0

un(t,z)βn(z)
∫ z0

0
yk(y,z) dydz

∣∣∣∣≤ b(T )|t − s|+
∣∣∣∣∫ ∞

z0

z[un(t,z)−un(s,z)]dz
∣∣∣∣ .

Thus, Eq. (6.1) allows with (6.65), (6.70) and Lemma 6.3.5 that

lim
s→t

sup
n∈N

|Sn(t)−Sn(s)|= 0,

and the required result follows from the Arzelà-Ascoli theorem 2.5.1.

By Proposition 6.3.1, Lemmas 6.3.5-6.3.7 and Arzelà-Ascoli theorem [2.5.1, 2.5.9], it fol-
lows that there exists a subsequence (again denoted by (Sn),(Cn),(un) and functions S,C ∈
C(R+),u ∈C

(
R+,L1,w(Z,zdz)

)
such that for each T > 0,

Sn → S, Cn →C in C([0,T ]), (6.76)

un → u, in C([0,T ],L1,w(Z,zdz)). (6.77)

It is clear that S(t)≥ 0, C(t)≥ 0 and u(t)≥ 0. Now (S,C,u) remains to be seen as a weak solu-
tion to (6.1)-(6.5). In each of the corresponding terms, we proceed to the limit, since (Sn,Cn,un)

satisfies the weak formulation provided in Definition 6.3.1. Except for the chaperone term, this
is very ordinary and similar to [56]. By applying Lebesgue’s dominated convergence theorem
and having Eqs. (6.70), (6.76) and (6.77), one can obtain that

lim
n→∞

∫ t

0
Cn(σ)

∫
∞

z0

φ(z)un(σ ,z) dz dσ =
∫ t

0
C(σ)

∫
∞

z0

φ(z)u(σ ,z) dz dσ (6.78)
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for t ∈ JT . Also, Eqs. (6.63), (6.73) and (6.77) entail that

lim
n→∞

∫
∞

z0

φ(z)µn(z)un(t,z) dz =
∫

∞

z0

φ(z)µ(z)u(t,z) dz, t ∈ JT . (6.79)

According to [56], it is easy to show that u satisfies the weak formulation. Also, it follows from
(6.70), (6.74), (6.76), (6.77) that S and C satisfy Eqs. (6.1) and (6.2), respectively. Finally Eqs.
(6.76)-(6.79) ensure that (6.21) also holds for (S,C,u).

6.4 Stability Analysis and Effect of Chaperone

In this section, we discuss stability issues and effect of chaperone on prion proliferation nu-
merically. We replace P(t) by W (t) = P(t)− z0U(t) (the number of PrPSc units not accounted
for within the minimal polymer lengths) in the system (6.13). Then, the resulting system of
equations is

(z0U)′ = β z0W − (µ +β z0)(z0U)−δ2C(z0U)− η

z0
(z0U)2

S′ = λ − γS− τS(z0U)

z0(1+ρ(W + z0U))
+β z0(z0U)

W ′ =
τS(z0U)

z0(1+ρ(W + z0U))
− (µ +β z0)W −δ2CW +

η

z0
(z0U)2

C′ =−δ0C+δ1CU

(6.80)

with initial conditions

U(0) =U0 ≥ 0,S(0) = S0 ≥ 0,W (0) =W 0 = P0 − z0U0 ≥ 0 and C(0) =C0.

Next, performing a scaling of the variables for the system of equations (6.80) by setting

z0U(t) = eE(αt), S(t) = f F(αt), W (t) = gG(αt), C(t) = hH(αt)

where α = µ+β z0,e=
(µ+β z0)z0

τ
, f = g= (µ+β z0)

2

βτ
,k= βλτ

(µ+β z0)3 ,ξ = γ

µ+β z0
,δ = β z0

µ+β z0
,h=

µ+β z0
δ2

,ω = ρ(µ+β z0)
2

βτ
,ν = δ0

µ+β z0
,ψ = δ1

τ
and φ = η

τ
. Then,
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E ′ = G−E −EH −φE2

F ′ = k−ξ F − FE
1+ω(G+δE)

+δ
2E

G′ =
FE

1+ω(G+δE)
−G−HG+φδE2

H ′ =−νH +ψEH

(6.81)

subject to the conditions

E(0) = E0 ≥ 0,F(0) = F0 ≥ 0,G(0) = G0 ≥ 0,H(0) = H0 ≥ 0.

Proposition 6.4.1. Let φ ,ω ≥ 0, k,ξ > 0 and δ ∈ (0,1). Then, for each
(
E0,F0,G0,H0) ∈

(R+)4, the system (6.81) possesses a unique bounded solution in (R+)4 defined for all positive

time t.

Proof. Let f : (R+)4 → (R+)4 is defined by

f (E,F,G,H) = ( f1, f2, f3, f4)

=

(
G−E −EH −φE2,k−ξ F − FE

1+ω(G+δE)
+δ

2E,
FE

1+ω(G+δE)
−G−HG+φδE2,−νH +ψEH

)
.

It is clear that f is Lipschitz continuous on bounded sets of (R+)4. Now, for (E,F,G,H) ∈
(R+)4 and t ≥ 0, it holds that f1 = G ≥ 0 when E = 0, f2 = k+ δ 2E ≥ 0 when F = 0, f3 =

EF
1+ωδE + φδE2 ≥ 0 when G = 0, and f4 ≥ 0 when H = 0. From [Corollary A.5, [73]], there
exists a unique positive solution of (6.81) in (R+)4 for t ≥ 0.
From the function φ =

(
1+δ 2

2

)
E +F +G+

(
1+δ 2

2ψ

)
H, we get

φ
′= k−

(
1−δ 2

2

)
G−

(
1−δ 2

2

)
E−ξ F−GH−

(
1+δ 2 −2δ

2

)
φE2−ν

(
1+δ 2

2ψ

)
H ≤ k−b∗φ ,

where b∗ = min
{

1−δ 2

2 ,ξ ,ν
}
. This implies that

0 ≤ φ(t)≤ k
b∗

+φ(0)e−tb∗

whenever (E0,F0,G0,H0)∈ (R+)4 and t ≥ 0. This indicates that the solution exists and bounded
for all positive times.

The basic reproduction number, i.e., the number of new infections produced by a single infec-
tive prion is R0 = k/ξ .
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Lemma 6.4.1. The disease free state (0,k/ξ ,0,0) of the system (6.81) is locally asymptotically

stable if R0 < 1 and unstable if R0 > 1.

Proof. The Jacobian matrix of (6.81) at disease free equilibrium is given by
−1 0 1 0

− k
ξ
+δ 2 −ξ 0 0
k
ξ

0 −1 0

0 0 0 −ν

 .

Eigenvalues of this matrix are 1√
ξ
(−

√
k−
√

ξ ), 1√
ξ
(
√

k−
√

ξ ),−ξ and −ν . The eigenvalues

have negative real parts if R0 < 1. Thus, by the Routh-Hurwitz criterion, the proof is complete.

Lemma 6.4.2. The disease free state (0,k/ξ ,0,0) of the system

E ′ = G−E −EH −φE2

F ′ = k−ξ F −FE +δ
2E

G′ = FE −G−HG+φδE2

H ′ =−νH +ψEH

is globally asymptotically stable if R0 = k/ξ ≤ 1 and ψ < 1.

Proof. We construct a Lyapunov functional

ϒ(E,F,G,H) =
1
2
(F − F̄)2 +(2−δ

2 − F̄)(E +G+H).

Since δ < 1 and R0 = F̄ = k
ξ
≤ 1, we have 2−ρ2 − F̄ > 0. Now,

ϒ
′ = (2−δ

2 − F̄)Ė +(F − F̄)Ḟ +(2−δ
2 − F̄)(Ġ+ Ḣ)

= (2−δ
2 − F̄)

[
(−1+ψ)EH +(δ −1)φE2 +(F −1)E − (G+ν)H

]
+(F − F̄)(ξ F̄ −ξ F −FE +δ

2E)

=−ξ (F − F̄)2 −νH(2−δ
2 − F̄)−EH(2−δ

2 − F̄)(1−ψ)+GH(−2+δ
2 + F̄)

−φ(1−δ )(2−δ
2 − F̄)E2 −E

[
(1−δ

2)(1− F̄)+(F −1)2] .
Thus, ϒ′ is non-positive if R0 = k

ξ
≤ 1,ψ < 1 and ϒ′ = 0 only if F = F̄ ,E = G = H = 0.

From LaSalle’s invariance principle, the disease-free equilibrium is globally asymptotically
stable.
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Theorem 6.4.3. The disease free state (0,k/ξ ,0,0) of the system (6.81) is globally asymptoti-

cally stable if R0 = k/ξ ≤ 1−δ 2 and ψ < 1.

Proof. Construct the function

ϒ(E,F,G,H) = E +G+H +(F − F̄)− F̄ ln(F/F̄),

and then the derivative of ϒ is given by

ϒ
′ =−ξ

(F − F̄)2

F
−δ

2E
F̄
F
+E

(
δ

2 −1+
F̄

1+ω(G+δE)

)
−HG− (1−δ )φE2 − (1−ψ)EH −νH

≤−ξ
(F − F̄)2

F
−δ

2E
F̄
F
+E

(
δ

2 −1+ F̄
)

−HG− (1−δ )φE2 − (1−ψ)EH −νH.

Thus, ϒ′ is non-positive if R0 = k/ξ ≤ 1−δ 2,ψ < 1 and ϒ′ = 0 only if F = F̄ ,E = G = H = 0.
Thanks to LaSalle’s invariance principle, the disease-free equilibrium is globally asymptotically
stable.

Theorem 6.4.4. If R0 > 1, then the disease state equilibrium

(
Ê, F̂ , Ĝ, Ĥ

)
=

(
k−ξ

(1+δ )(1−δ +ξ ω)
,

1−δ +ωk
1−δ +ωξ

,
k−ξ

(1+δ )(1−δ +ξ ω)
,0
)

of the system (6.81) with φ = 0 is locally asymptotically stable.

Proof. We consider the equivalent system corresponding to the system (6.81) such as

E ′ = G−E −EH −φE2

G′ =
FE

1+ω(G+δE)
−G−HG+φδE2

(F +G)′ = k−ξ (F +G)+(ξ −1)G+δ
2E −HG+φδE2

H ′ =−νH +ψEH.

(6.82)

For the case φ = 0, the Jacobian matrix of the system (6.82) at disease equilibrium is given by
−1 1 0 −Ê

1− ωδ Ê
r −1− Ê(1+ω)

r
Ê
r −Ĝ

δ 2 ξ −1 −ξ −Ĝ

0 0 0 −ν
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where r = 1+ωÊ(1+δ ). The characteristic equation of the Jacobian matrix is given by

(ν +λ )(λ 3 +a1λ
2 +a2λ +a3) = 0,

where

a1 = 2+
Ê
r
+

ωÊ
r

+ξ , a2 = 2
Ê
r
+

ωÊ
r

(1+δ +ξ ), a3 =
Ê
r
(1−δ

2)+
ωξ Ê

r
(1+δ ).

One eigenvalue of the Jacobian matrix is −ν . Here, a1 > 0, a2 > 0, a3 > 0 and a1a2 −a3 > 0,
then by the Routh-Hurwitz criterion, the other eigenvalues have negative real parts. Thus, the
proof is complete.

6.4.1 Numerical Illustration

For the simulations, we take the experimental data as considered in [37, 48, 59] for prion
proliferation. The model includes eleven parameters: λ ,γ,µ,β ,τ,z0,η ,ρ,δ0,δ1 and δ2.

The critical size z0 of polymer is estimated as 6−30, see [59]. The model parameters values
are taken from [37, 38, 59] and are follows as: z0 = 6,λ = 4400 day−1, τ = 0.3 (SAF/sq)−1

day−1,β = 0.0001 (SAF/sq)−1 day−1,µ = 0.04 day−1,γ = 5.0 day−1,η = 0−0.1 (SAF/sq)−1

day−1,ρ = 0−0.01,δ0 = 0.1 day−1,δ1 = 0.0002 day−1 and δ2 = 0.002 day−1, where SAF/sq
represents scripe associated fibrils per squre unit of measurement. Figures 6.1 and 6.2 show
the effect of the chaperone on population of U,S and P for varying η(ρ = 0) and ρ(η = 0),
respectively. As expected, a comparison of these numerical simulations from Figures 4 and 2
of [37] indicates that the population of U and P take time to grow and the population of S takes
time to grow while the population of S takes time to decrease due to the presence of chaperone.
Thus, it is clear that chaperone is used to suppress the growth of prions. Further, the numerical
results of polymer population for different chaperone dosages are plotted in Figure (6.3a). It is
visible that the polymers population decrease along with increasing chaperone doses. Finally,
from the Figures (6.3b) and (6.3c), we observe that the population of U and P decrease as
chaperone increasing rate δ1 increases in the system.
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Fig. 6.1: In the presence of chaperone, population of U,S and P for varying η
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Fig. 6.2: In the presence of chaperone, population of U,S and P for varying ρ
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Fig. 6.3: (a) Polymer population U for varing amount of chaperone C (200, 400, 600,
800 and 1000 units of chaperone). (b) Polymer population U for different δ1. (c) Popula-
tion P for different δ1.



Conclusions and Future Directions

Conclusions

In this thesis, we studied the solutions of prion proliferation models in the presence of chaper-
one. The existence of classical and weak solutions was established using semigroups operator
theory and weak compactness argument, respectively. Moreover, we transformed the model
into a system of ordinary differential equations and investigated the global asymptotic stability
for equilibrium points. The effect of chaperone on prion proliferation is also discussed numer-
ically.

We first discussed the solutions of a mathematical model which consists polymer and chaperone
terms. The existence of a unique positive local mild solution under the certain assumptions on
associated parameters was proved by using C0 semigroups theory. Further, for bounded reac-
tion rates, a unique positive classical solution was obtained with the help of evolution operator
theory.

In our second aim, the well-posedness in the classical sense of a mathematical model which
consists the relation between infectious and non-infectious prion proteins together with chaper-
one was discussed in a suitable space R×R×L1(Z,zdz) for bounded kernels. The proof relies
on the fact of using evolution operator theory. Moreover, for unbounded kernels, the existence
of a weak solution was proved by using weak compactness argument.

In the third goal, the existence of weak solution results, obtained in [55], was extended by in-
corporating chaperone, thanks to weak compactness argument. Further, we demonstrated the
uniqueness of the solution under the sufficient conditions proposed in [55]. In addition, we
studied that there is a unique steady state, the disease-free equilibrium, that exists below and at
the threshold and is globally asymptotically stable. Above the threshold, there is another steady
state, the disease state, which is globally asymptotically stable as well. The effect of chaperone
on prion concentration was also shown numerically.

Finally, a mathematical model which consists of a non-linear partial integro-differential equa-
tion coupled with two ODEs was analyzed. The model includes prion polymerization, polymer
splitting, polymer coagulation and chaperone. The well-posedness of the system was proved
for bounded kernels by using evolution operator theory in the state space R×R×L1(Z,zdz).
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The existence of a global weak solution for unbounded kernels was also discussed by weak
compactness argument. Also, the model was transformed into a system of ordinary differential
equations. The global stability (via Lyapunov function) was studied for disease-free equilib-
rium. Moreover, the effect of chaperone on prion proliferation was presented numerically.

Future Directions

Here, I want to note a biological term ‘Interferon’, see [32]. Interferon also works similar to
chaperone. Thus, chaperone and interferon are useful to control polymer population. Now, in
the following, I would like to mention some open problems related to our work for the future
developments.

• It would be interesting to study a prion proliferation model under the presence of chaper-
one and interferon.

• Analysis of a prion proliferation model with polymer coagulation and general incidence
terms under combined treatments chaperone and interferon.

• Existence of solutions and asymptotic behavior of new age/size structured population
models by C0 Semigroups/Integrated Semigroups theory are open tasks which are worth
to work on.
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