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Abstract

Prions are infectious proteins. These infectious prion proteins are responsible for the degenera-
tion of the central nervous system of humans and animals. These infectious agents are respon-
sible for fatal diseases known as scrapie for sheep, creutzfeld—jacob or kuru for humans and
bovine spongiform encephalopathy (BSE) for cattle. The prion proliferation dynamics is rec-
ognized as nucleated polymerization. In this theory, there are two essential forms of prions, one
of them is non-infectious monomer PrPC and the other is an infectious polymer PrP5¢. Poly-
mers are very stable above a critical size and have a trend to attach the non-infectious monomers
and transform them into the infectious form. Also, when polymers break into smaller proteins
below critical size they respond like normal prion proteins. Inclusion of chaperone leads to
an important role due to its impact on prion population. There are pharmacological, chemi-
cal and molecular chaperones that suppress the growth of prion proteins and therefore, can be
considered as a potential therapeutic agent. Several researchers have been worked on prion
proliferation models. Thus, it is interested to study the prion dynamics in the presence of chap-

erone.

We extend existing results on continuous models of prion dynamics by the presence of chaper-
one. The aim of the thesis is study of prion proliferation models in the presence of chaperone. In
this work, we investigate the existence of mild, classical and weak solutions of prion-chaperone
models. Moreover, we transform the model into a system of ODEs and study the global asymp-
totic stability of equilibrium points together with effect of chaperone on prion proliferation

numerically.

In the first goal, a prion equation together with chaperone equation is studied. We transform
the problem into a semilinear evolution equation under some assumptions and establish the ex-
istence of the unique mild solution in the Banach space R x L ((z9,°°); (¢ + z)dz) by using C

semigroup theory.

Our second aim is to study a model which includes monomer, polymer and chaperone equa-
tions. We discuss the existence and uniqueness of a positive global classical solution of the
model for the bounded degradation rates by using evolution system theory in the state space
R x R x Li(Z,zdz). Moreover, the existence of a global weak solution for unbounded degrada-

tion rates is based on weak compactness argument.
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Further, we extend the results of second goal and analyze the existence and uniqueness of weak
solutions of a prion proliferation model in the presence of a chaperone for a wide class of
degradation rates. In addition, the stability analysis results for disease, as well as disease-free
equilibrium points are aslo discussed. The effect of chaperone on prion population is also pre-

sented numerically.

Finally, the well-posedness of a prion proliferation model in the presence of a chaperone with
polymer coagulation and general incidence terms is established in the product space R x R x
L1(Z,zdz). Moreover, we study the global asymptotic stability for disease-free equilibrium and

effect of chaperone on prion proliferation numerically.
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Chapter 1

Introduction

1.1

Objectives of Thesis

Several researchers have worked on models of prion dynamics. Chaperones play an important

role in suppressing the production of prion polymers, and are called potential therapeutic agents

against a variety of degenerative diseases. Inclusion of chaperone leads to an interesting physi-

cal problem due to its impact on prion population. The objective of the thesis is to study prion

dynamic problems in the presence of chaperone. A prion proliferation model incorporating the

chaperone consists of two ODE’s and a partial integro-differential equation. The following ob-

jectives are fulfilled in this thesis by using semigroups operator theory and weak compactness

argument

@

(ii)

(iii)

(iv)

To study a prion equation together with chaperone term in a product space R x L ((zg, o)
; (¢ + z)dz) under different degradation rates and find the existence of classical and mild

solutions for associated different degradation rates.

To investigate the existence of classical and weak solutions of a prion proliferation model
in the presence of a chaperone for bounded and unbounded degradation rates, respec-

tively.

To analyze the existence and uniqueness of weak solutions of a prion proliferation model
in the presence of a chaperone for a wide class of degradation rates and study the stability
analysis for disease, as well as disease-free states together with effect of chaperone on

polymer population numerically.

To establish the well-posedness of a prion proliferation model in the presence of a chap-
erone including polymer coagulation in the product space R x R x L (Z,zdz). Moreover,
to study the effect of chaperone on prion proliferation numerically and the global asymp-

totic stability for disease-free equilibrium.
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Before discussing the mathematical form of a prion proliferation model in the presence of

chaperone, let us briefly explain some biological terms which are involved in the work.

Prion

Mathematics has influenced practically every aspect of biology today, from evolution to bio-
chemistry. Biology’s impact on mathematics has been transformational, and biology has acted
as a catalyst for the production of novel mathematics. At the end of the twentieth century, a
collection of unusual diseases has created confusion regarding everything that has known about
disease-causing agents. Biologists and mathematicians collaborated to identify and characterize
mechanisms to explain a host of fatal neurodegenerative diseases like Bovine Spongiform En-
cephalopathy (BSE or ‘mad cow disease’) in cattle, variant Creutzfeldt—Jakob disease (vCJID)
or Kuru in humans, and Scrapie in sheep. Initially, these studies were primarily focused on
identifying the infectious agent that caused the diseases. As a group, the above-mentioned dis-
eases are called transmissible spongiform encephalopathy (TSEs).

Before the 1980s, slow or unconventional viruses were assumed to be the source of TSEs. Car-
leton Gajdusek (Nobel Prize winner) [31] studied TSEs disease Kuru and explained in 1977
that such viruses keep many unusual properties. The discovery of the prion, a proteinaceous in-
fectious particle, posed a fundamental contradiction in the central dogma in molecular biology.
However, not just for mammalian diseases, but also for heritable phenotypes in yeast, protein-
only inheritance is becoming more widely accepted. Since prion diseases cover so many diverse
systems and time scales, these are an especially interesting biological phenomenon for mathe-
matical analysis. Prion disease can be studied at the population level such as in a herd of sheep
or a herd of deer, as a traditional epidemic model where infections are spread among an initially
uninfected (susceptible) population. All prion diseases are defined by misfolded protein aggre-
gates that act as templates to convert normally folded protein and amplify via fragmentation.
Several mathematical formulations have concentrated primarily on the dynamics of the aggre-
gates through modeling either discrete or continuous sizes using ordinary differential equations
(ODEs) or partial differential equations (PDEs), respectively. Experiments on Griffith’s pre-
dicted protein-only form of disease transmission prompted more research.

In 1982, Prusiner established that the infectious agent was not a virus but a protein of abnormal
shape and created the term prion to refer to a proteinaceous infectious particle, see [67]. Many
of the discrepancies between what was known about viruses and what was known about the
agent causing TSEs, as noticed by Gajdusek, were explained by his hypothesis. Soon after,

a group of researchers discovered the host gene coding for the prion protein, named PrP for
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prion protein, in mammals [64]. Nowak et al [63] were first to construct the nucleated polymer-
ization model (NPM), which is now considered as the standard prion aggregate kinetics. The
infectious units in this model aggregate above a critical size. Aggregates of the misfolded prion
form of the protein are thought to be unstable below this critical size and are quickly resolved
into monomers. Masel et al [59] conducted a comprehensive analysis of NPM in 1999.

Hence, it is concluded that a prion is an infectious protein. These infectious prion proteins are
responsible for the degeneration of the central nervous system of humans and animals. Be-
cause prion research is new, various notations for two essential proteins are currently in use.
We use the terms PrPC¢ and PrP5¢. In both cases, PrP refers to prion protein. The superscript
‘C’ refers to cellular, meaning the regular uninfectious protein produced by the body and ‘Sc’
refers to scrapie, meaning infectious protein. According to the nucleated polymerization [26,
41, 45], PrP%¢ is a polymeric form of PrP while PrPC is monomeric. Below a critical size, the
polymerization process is very slow. The polymer is stabilised above this size and subsequent
polymerization is comparably quick. These prion proteins are thought to be the cause of fatal
diseases like (vCJD) or Kuru for humans and BSE or ‘mad cow disease’ for cattle and Scrapie
for sheep, see [63]. These diseases occur when the prion protein PrP¢ misfolds to PrP5¢, which
is able to induce further misfolding in healthy PrPC proteins. It is now widely accepted that
the responsible agent for these diseases is a protein, known as prion, which can self-replicate

through an autocatalytic mechanism, see [40, 67].

Nucleated Polymerization

The nucleated polymerization theory was proposed in [45] as a PrPC to PrP5¢ conversion pro-
cess. A mathematical model consisting of an infinite number of coupled ordinary differential
equations (ODEs) was presented in [59] to better understand this mechanism on a qualitative
level. The construction of the models [28, 38, 48, 69] is based on the leading theory of nu-
cleated polymerization [16, 44]. Prions PrP5¢ are considered to be polymers form of normal
protein monomers PrP¢ according to the nucleated polymerization hypothesis. These PrP5¢
are very stable above some critical size zp, and polymerize sharply. The meaning of the word
polymerize is that PrP5¢ increases its size by attaching PrP¢ monomer unit in a string like
fashion. When a PrP¢ monomer is coupled with a PrP5¢ polymer, it gets transformed into the
infectious PrP5¢ form. Figure (1.1) depicts the polymerization process:

Another feature of nucleated polymerization is that PrP5¢ polymers may also break into
smaller polymers. Usually, one infectious PrP5¢ polymer breaks into two smaller infectious
PrP5¢ polymers and after that both PrP5¢ attach to PrP¢. When polymers fall below the critical

size zp, they act as normal PrP¢ monomers.
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Fig. 1.1: Interaction of PrP5¢ with PrPC(normal cellular proteins)

General Incidence and Polymer Coagulation

PrP5¢ attaches to PrPC and converts it to PrP5¢ through nucleated polymerization. Proteins are
frequently found as single units, hence they are often known as monomers. Each polymer can
attach to a PrP¢ monomer from either end and transforms it to the infectious form of PrP5¢
rapidly. Thus, the polymer can grow its length by one unit of protein and such process is said
to be lengthening. In [28, 38, 69], the prion proliferation models are studied with mass action
incidence for the lengthening process of infectious polymers attaching to and converting non-
infectious monomers. Greer et al [37] generalized this form of incidence in a way that reduces
lengthening when the total amount of infectious protein become large in proportion to the num-
ber of polymers. They introduced general incidence and polymer coagulation terms in the prion
proliferation model and studied the effect of both the terms on nucleated polymerization. The
meaning of polymer coagulation implies the combination of two polymers to form one larger

polymer.

Chaperone

Protein misfolding and aggregation are responsible for a vast range of neurodegenerative dis-
orders in humans and animals. The ubiquitous cellular molecular chaperones, which are stress-
induced proteins along with newly discovered pharmacological and chemical chaperones have
been found to be useful in preventing the misfolding of various diseases causing proteins, re-
ducing the intensity of various neurodegenerative diseases and several other protein-misfolding
diseases including prion disease. These pharmacological, chemical and molecular chaperones
inhibit the growth of prion proteins PrP*¢, and therefore, can be considered as a potential ther-
apeutic agent, see [22, 32]. The presence of chaperone leads to an interesting physical problem
due to its impact on prion population.

The above discussion shows that chaperone may help the protein to find correct conforma-

tion. Chaperones play an important role in suppressing the production of prion polymers and
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Table 1.1: Chaperone Concept

Name Function

1 Chaperone A class of proteins that prevent other proteins from
unfolding undesirably by providing a proper environ-
ment for folding.

2 Medical chaperone A class of small molecules that control the folding or
dynamical activities of proteins or RNAs by binding
to their specific sites.

3 Chemical chaperone A class of osmolytes such as glycerol and trehalose:
they stabilize any protein nonspecifically.
4 Pharmaceutical chaperone A class of small enzyme inhibitors that bind to and

stabilize proteins and prevent their degradation by
the ubiquitin system.

called potential therapeutic agents against a variety of degenerative diseases, including neu-
rodegenerative disorders such as TSEs. The functional characteristics of the different types
of chaperones propose to their use as potential therapeutic agents for various degenerative dis-
eases, including neurodegenerative disorders. Calnexin is a special class of chaperone, see [79],
which recognize and target abnormally folded proteins for rapid degradation. Increased chap-
erone expression can suppress the neurotoxicity induced by protein misfolding, suggesting that
chaperones could be used as possible therapeutic agents [13].

Chaperones, whether natural, chemical, or pharmaceutical, have been shown to be promising
agents for the control of many protein conformational disorders. It is believed that chaperones
are important in preventing protein misfolding and thereby reducing the effectiveness of neu-
rodegenerative diseases. Chaperones are proteins that interact with nascent polypeptides dur-
ing their production and translocation to different cellular compartments. They can be found
throughout the cell. Molecular chaperones are proteins that facilitate folding and transport of
polypeptides into organelles during their biosynthesis and that help in preventing protein ag-
gregation during situations of cellular stress [74]. Chaperones can distinguish between native
and non-native states of targeted proteins. However, it is yet to be unclear how they distinguish
between correctly and incorrectly folded proteins, and how they retain and target the latter for
disintegration.

In [49], a logical drug design technique and its application to prion diseases is reviewed. The
probable mechanisms of various protein-misfolding diseases in humans, as well as the thera-
peutic approaches for countering them are reviewed in [19]. Also, the involvement of chemical,
molecular and pharmacological chaperones in suppressing the effect of protein misfolding-

induced consequences in humans is discussed in detail. Chemical chaperones have also been
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used as therapeutic agents in prion disease. In animal models [47, 60], a number of chemicals,
including anthracyclines, porphyrins, and diazo dyes prevent prion replication. Pharmacologi-
cal chaperones have been shown to be very effective in protecting certain receptor proteins from
proteasomal degradation. It is feasible that chemical, pharmacological and molecular chaper-
ones might change the mode of treatment in future and open a new door in clinical research

into the neurodegenerative diseases.

1.2 Model of Prion Dynamics and Literature Survey

In this section, the role of mathematical modelling in understanding the dynamics of prion dis-
ease is discussed. Eigen [26] provided the first mathematical description of the autocatalytic
proliferation of prion aggregates in 1996, which was influenced by Griffiths’ third hypothe-
sis [40] and observations of Prusiner [68] and Lansbury [18, 21, 52]. He formulated systems
of differential equation to analyze two theories on protein-only amplification. In Eigen’s first
model, he explored the possibility that heterodimers act to template misfolding suggested by
Prusiner [68]. He discussed a system with two protein species: A-normal conformation, and B-
prion conformation, in which proteins of type A can form heterodimers with proteins of type B
and are irreversibly transformed into type B. Eigen’s second model examined two mechanisms
where the infectious agents were not individual misfolded protein monomers: a cooperative
auto-catalytic mechanism, which generalized his first model and aggregates of misfolded pro-
teins according to the aggregation mechanism proposed from Lansbury [18, 21, 52]. These
assumptions lead to a complicated set of differential equations but steady-state analysis de-
clared important properties of the asymptotic dynamics as for the previous model.

Eigen’s analysis investigated that in prion proliferation aggregation is necessarily involved [26].
In 1998, Nowak et al expanded Eigen’s seminal work by including new experimental obser-
vations. Their mathematical model for prion infection dynamics was based on having prion
aggregates act in two ways. Nowak et al [63] were first construct the nucleated polymerization
model, which is now considered the standard prion aggregate kinetics. The infectious units
in this model are aggregates above a critical size. Aggregates of the misfolded prion form of
the protein are thought to be unstable below this critical size and are quickly resolved into
monomers. Masel et al [59] conducted a comprehensive analysis of the nucleated polymeriza-
tion model (NPM) in 1999. In particular, they recommended to link experimental observations
on the time for the appearance of prion disease symptoms with the kinetic parameters of the
NPM.
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Masel et al [59] and Greer et al [38] with a generalization showed that the dynamics of ag-
gregates under the NPM are consistent with the long-incubation time observed for prion phe-
notypes. In early twenty-first century, mathematicians continued formalizing the NPM. Priiss
et al [69] demonstrated that the prion phenotypes were globally asymptotically stable and not
merely locally stable, through deriving a Lyapunov function. Engler et al [28] analyzed the
well-posedness of the generalization of the NPM where aggregate sizes were continuous, in-
stead of discrete. In [59, 63], the NPM for PrPS¢ polymers and PrP€ monomers containing
a discrete number of monomers are constructed and analyzed. Further, a model with contin-
uous polymer size is formulated in [39] and analyzed in [28, 38, 69]. The prion proliferation
model [28, 38, 69] is expressed by a coupled system consisting of one ODE for the number of
non-infectious PrP¢ monomers S which is given by

ds(r) o W e

g A8 =S@) /ZO f(y)u(t,y)dy+2/0 Z/ZO BO) k(z,y) u(t,y) dydz. — (1.1)
and a partial integro-differential equation for the population density function u of infectious
PrP5¢ polymers of size z, is described as

augf) - _S(I)W — (1) +B(@))ult,2) +2/;B(y) k(z,y) u(t,y)dy (1.2)

with the following initial and boundary data
S(0) =8, u(0,2) = u®(z), u(t,z0) =0, for t >0, z9 < z < oo. (1.3)

The description of the parameters are given below in Table 1.2. Here, the last term on the
right hand side of equation (1.1) represents the monomers gained when a PrP5¢ polymer splits
with at least one polymer shorter than the minimum length zg. We assume that such polymer
piece degrades immediately into PrP¢ monomers. The factor 2 in the expression accounts for
the fact that a polymer of length z greater than zg splits into two PrP5¢ polymers. The term
-S (t)%l;(”)) in equation (1.2) denotes the loss of polymers of length z due to lengthening
and 2 [ B(y) k(z,y) u(t,y) dy accounts the number of PrP¢ which are added to the population
when longer polymers split into polymers of length z. The splitting density k(z’,z) > 0 defined

on K = {(,2) 120 <z <o, 0 <7 <z} satisfies
k(,2) =k(z—7,z) forall (Z,2)eK (1.4)

and is normalized by
Z
2/0 7k(,2)d7 =z, ae.z>z. (1.5)
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Table 1.2: Parameters of the Prion Proliferation Model

Parameters Description
A Source rate of production for normal PrP¢
7(2) Conversion rate of monomers PrPC to polymers PrP5
Y Metabolic degradation rate of PrPC¢
H(z) Degradation rate of PrP5¢ due to metabolism
B(z) Splitting rate of polymers to monomers
k(x,z) Probability density function for splitting a polymer of size z > zo
into two pieces of sizes z—x and x
S(t) Population of PrP¢ monomers at time ¢
u(z,1) Population of PrP5¢ polymers of length z at time ¢

Now, conservation of the number of monomers due to splitting and (1.4)-(1.5) implies that

Z
/ k(Z,z)d7 =1, ae. 7> z. (1.6)
0
It should be mentioned that these constraints are satisfied by the self-similar density k of the
form
/ 17 /
k(z,z)z;ko(;), 2>120,0<7 <z (1.7)

where k( denotes a non-negative integrable function defined on (0, 1) such that

1
ko(z) =ko(1—z), z€(0,1) and /0 ko(z)dz = 1. (1.8)

Several researchers have worked on the monomer-polymer system (1.1)-(1.2), see [28, 38,
55, 69, 71, 77]. In [38], the problem (1.1)-(1.2) is transformed into a system of three ODEs

under the following assumptions on associated parameters
1
U = constant, T=constant and B(z) =Bz, k(y,z2) =—-, z2>20,0<y<z (1.9)
b4

and the stability results are proved for the disease steady-state and the disease-free steady-
state. Further, this stability study has been subsequently improved in [69] by including the
investigation of the global asymptotical stability issues for disease-free state and disease-state.
The global asymptotic stability of the steady states and well-posedness of the mild solutions

are demonstrated to the problem (1.2), see [28] under the assumptions considered in [38, 69].
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In [71], the existence of classical and weak solutions to the monomer-polymer system (1.1)-

(1.2) (with 7(z) = 7) are discussed for bounded kernels, namely
w,B e LL(Z); Z=(20,%), (1.10)

and degradation rates i, 8 € LT, (Z) such that

0. loc

there exists o > 1 and p € L (Z) such that
(1.11)

H(z)+B(z) <p(z)z%, ae.z € Zand p(z) — 0asz — oo,

and

for each € > 0 there exists & > 0 such that
(1.12)

SUp|¢|<5 %f;o le(y)k(y,z) dy < €, ae. z €Z,
where 1¢ indicates the characteristic function on & and supremum is taken over all measurable
subsets & C Z with |E| < 9, respectively. Moreover, they also discussed the global stability of
disease-free equilibrium. The well-posedness to the problem (1.1)-(1.2) is established in [55]
for a broad class of kernels, i.e., without placing growth conditions (1.11) on u, . Similar to
[71], the existence of classical and weak solutions to the monomer-polymer system (1.1)-(1.2)
are achieved in [77].

In [48], the authors are extended the prion proliferation model (1.1)-(1.2) by the presence
of a chaperone. The mathematical model which describes the dynamics of prion proliferation
in the presence of chaperone [48] is described by the following set of equations:

The monomer equation is described by
ds(t)

e e LU0 /Z:u(t,y)dy—i—Z /O . /: BO) k(z,y) ult,y) dydz.  (1.13)

The polymer and chaperone equations are governed by

a”f;“) = —TS(ﬂaugz’Z) — (1) +B () +8C(1))ult,2) +2 / TBO) k(zy) ult,y) dy (1.14)

oo

= —60C(t)—|—61C(t)/ u(t,y) dy, (1.15)

20

dC(t)
dt

respectively, where the initial and boundary conditions are as follows

S(0) =5, €(0) =C° u(0,z) = u’(z), u(t,z0) =0, for ¢t >0, z9 < z < oo. (1.16)
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Here, all parameters ¥, A, 7, &, 01,8, are positive constants and C(¢) denotes the amount
of chaperone in the system at time . The parameter &, represents the reducing rate of PrP5¢
population due to presence of chaperone. Chaperone degradation rate due to metabolic process
is denoted by & and the parameter d; denotes chaperone increasing rate in the system due to
absorption in the body. From [48], it is observed that the system (1.13)-(1.15) can be trans-
formed into a system of four ODEs and the stability analysis is discussed for the equilibrium
points along with the effect of the chaperone numerically.

Greer et al [37] studied the prion proliferation model which includes prion polymerization,
polymer coagulation and polymer splitting. In the general incidence and polymer coagulation

case, the prion proliferation model [37] is described by

as(t) S(t) o S
5 =A—yS(t)— 1+pfz°;u(t,z)zdz /ZO T(z)u(t,z)dz+2/o Z/Z() B(y) k(z,y) u(t,y) dydz
(1.17)
and
= T ol s (FH0.9) ~ () B9 +2 [ B0) o) ) o
+ 10y /Z:_ZOn(z—y,y)u(t,z—y)u(t,y) dy —2ul(t,z) /:n(z,y)u(t,z)dz
(1.18)

where the initial and boundary conditions are
S(0) =8°, u(0,z) = u’(z), u(t,z0) =0, for t >0, z9 < z < oo.

Here, the function 7n(y,z) denotes the rate at which two polymers of sizes y and z join
together and p is a parameter associated with polymer lengthening. The stability of disease-free
and endemic equilibriums are discussed in [37]. The existence of classical and weak solutions
are proved in [56] for bounded and unbounded degradation rates, respectively, to the monomer-

polymer system (1.17)-(1.18). Further, the uniqueness of weak solution is proved in [57].

1.3 Plan of the Thesis

As we know and evidenced by the preceding literature, mathematics plays an important role
in epidemiology. The emphasis of the work is on prion proliferation model in the presence of
chaperone. Based on literature survey and the gaps in research to this model, in the thesis, we

show the existence of classical, mild and weak solutions to the models of prion dynamics in
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the presence of chaperone. Also, we study the behaviour of the solutions of such dynamical

systems. For better understanding, let us summarize each chapter of the thesis.

The thesis is organised as follows: In chapter 2, we collect some basic mathematical definitions
and results that would be required for studying the different models. Some standard and pre-
liminary definitions from semigroups operator theory and the results on semilinear evolution
equation are illustrated. Also, the results for existence of solutions for linear and semilinear
evolution equations are given which help us to show the existence of mild and classical solu-
tions for prion-chaperone models. We also provide preliminary definitions and results for weak
compactness argument. The section is concluded with some standard and preliminary defini-

tions of stability analysis.

The aim of Chapter 3 is to investigate the mild and classical solutions of the partial integro-
differential equation (1.2), together with chaperone equation (1.3) for different kernels. We
transform the model into the semilinear evolution equation under assumptions (1.9) and estab-
lish the existence of the unique mild solution by semigroups operator theory. Moreover, the
existence of the classical solution is proved for associated bounded degradation rates by using

evolution operator theory.

In Chapter 4, evolution operator theory is used to show the existence and uniqueness of the
classical solution to the problem (1.1)-(1.3) under the assumption (1.10) while the existence
of a weak solution is discussed under the assumptions (1.11) and (1.12) by weak compactness

argument. This chapter extends the work of [71] from the presence of chaperone.

Chapter 5 discusses the existence of a weak solution to the problem (1.1)-(1.3) for a broad class
of kernels, i.e., without placing growth conditions (1.11) on u, 8 which extends the results of
[55] in the presence of chaperone. Also, we transform the problem into a system of four ODEs
and it is demonstrated that there is a unique steady state, the disease-free equilibrium, that exists
below and at the threshold and is globally asymptotically stable. Above the threshold, there is
another steady state, the disease state, which is also global asymptotically stable.

Furthermore, in Chapter 6, the prion-chaperone model is studied together with general inci-
dence and polymer coagulation terms. The existence of classical and weak solutions to the
problem are proved for associated bounded and unbounded degradation rates, respectively.
Moreover, we convert the problem into a system of ODEs and the global asymptotic stabil-
ity is established for disease-free state.

At the end of the thesis, conclusions and some open problems are provided.
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Chapter 2

Mathematical Preliminaries

2.1 Theory of Semigroups

2.1.1 Introduction

The beginning of the theory of one-parameter semigroups of linear operators on Banach spaces
was in the first half of nineteenth century and reached its apex with Hille and Phillips “Semi-
groups and Functional Analysis” published in 1957, see [42]. In the 1970s and 80s, the theory
was presented very well in the monographs by E.B. Davies [23], J.A. Goldstein [36], A. Pazy
[66] and others.

Semigroups are useful for solving a wide range of problems known as evolution equations
which can be found in various fields, including physics, chemistry, biology, engineering, and
economics. They are usually described by an initial value problem (IVP) for a differential equa-
tion which can be either ordinary or partial. The theory of linear and nonlinear semigroups is
well developed, see [12, 15, 35, 36, 62, 65, 66]. Semigroup approaches have also been suc-
cessfully applied to problems, such as population dynamics or transport theory, see [4, 58, 78].
Semigroup theory is used to establish the existence of solutions of prion dynamics [28, 56, 71,
77] and coagulation-fragmentation [5, 6, 8, 9, 10, 51, 61] problems. Semigroup theory gives
both necessary and sufficient requirements for the well-posedness of the abstract cauchy prob-
lem (ACP). Let u(t) describes the state at time ¢ and the time rate of change of u(z) is given by
some function of A. If, u(0) = uy is the initial data, then abstract Cauchy problem is given by

du— Au(t) 5 t>0 o
u(0) = uy. '

If the solution of (2.1) exists, then it is given by
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Definition 2.1.1. A mathematical problem is said to be well posed if it satisfies the following

conditions
(a) Existence, that is, there is atleast one solution,
(b) Uniqueness, that is, there is atmost one solution,
(c) Stability, that is, the solution depends continuously on the data.

The well-posedness of the ACP (2.1) is an interesting topic. Semigroup theory can be used
to identify the well posededness of the linear (or nonlinear) evolution problem. To apply the
theory, we must identify first that we have a semigroup. Further, to continue with the solution,
let 7'(¢) maps the solution u(s) at time s to the solution u(z + s) at time ¢ + s. If A is assumed to
be independent of time, then 7'(¢) is independent of s. The solution u(z + s) at time ¢ + s can be
computed as T (¢ + s)ug. If the procedure is broken down into two steps, then
Step—1:

Step—2:

Semigroup Property

From the above steps, it is clear that the state of the system at time ¢ + s can be reached by
either going straight from the initial condition to the state at time 7 + s or by allowing the state
to evolve over s time units, and then allowing it to evolve ¢ more time units. Here, T'(-) works

as a transition operator. The semigroup property which is given by
T(t+s)=T(@)T(s) t,5>0 (2.2)

is revealed by uniqueness of the solution. The semigroup property of the family of functions
{T(t) :t > 0} is a composition and not a multiplication. Note that 7'(0) is the identity operator
I, that is, there is no transition at time zero and the initial data exists. Now, to find out how A

and T relate to each other, it is noticed that

T(1)(uo) = T(1)(u(0)) = u(r) = ' uo,

d

27 L (1) (o) = A(T (¢)(uo))
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so that u(t) = T(¢)(u(0)) solves (2.1).

Let us review some basic definitions, examples and results from operator theory.

Definition 2.1.2. (See, [66]) Let X be a Banach space. Then, a family {T (t) :t > 0} of bounded

linear operators from X into X is said to be semigroup if
(a) T(0) =1, where I is the identity operator,
(b) T(t+s)=T(t)T(s) for everyt,s > 0 (the semigroup property).

Definition 2.1.3. (See, [66]) A family {T(t) :t > 0} € L(X) is said to be strongly continuous

semigroup or Cy semigroup on X if
(a) T(0) =1, where I is the identity operator,
(b) T(t+s5)=T()T(s) for everyt,s >0,
(c) foreach fixedx € X, T(t)x —xast— 0T,

Definition 2.1.4. Let {T(t) :t > 0} be a Cy semigroup of bounded linear operators on X . Then,
T(t) is called

(a) isometries if ||T(¢)f|| = || f|| forall t>0, feX,
(b) contractions if |T(¢)|| <1 forall t>0.

Definition 2.1.5. (Infinitesimal generator, see [66]) The infinitesimal generator of a strongly
continuous semigroup {T(t) :t > 0} on X is the operator A : D(A) C X — X defined by
T(t)x—x

Ax= lim —— =
t—07t t

where D(A) = {x € X : lim,_,(+ T(t)txfx exists}.

Definition 2.1.6. (See, [70]) Let X and Y be two Banach spaces. A linear operator A : D(A) C
X — Y is said to be

(a) closed if for any sequence (x,) € D(A) such that x, — x and Ax,, — y, then x € D(A) and
Ax =Yy,

(b) closable if A has a closed extension, i.e., if (x,) € D(A) such that x, — 0 and Ax, — Yy,
then y = 0.
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Example 2.1.1. (Non-Closable Operator, see [70]) Let H be a Hilbert space. Let M be a linear
subspace of H and e be a non-zero vector in H. Let F be a linear functional on M which is not
continuous in the Hilbert space norm. Define the operator T : D(T) =M C H — H such that
T(x) = F(x)eforx € M. Then T is not closable.

Given F is not cotinuous, then there exists a sequence (x,) in M such that x, — 0 in H
and F(x,) does not converge to zero. Now, there exists a subsequence (xn.) of (x,) such
that |F(xy,)| > c for some ¢ > 0. Define x, = F(xn) "Xy, then x, — 0 as k — o and
T(xy,) = F(xn,) 1T (xy,) = € # 0. Hence, T is not closable.

Example 2.1.2. (Closable but not Closed Operator) Let H = L,(0,1) and A: D(A) CH — H
is defined by Af = if’, where

D(A) =C;y(0,1) ={ f € C'(0,1): f(0) = f(1) = 0}.

Then, A is closable operator but not closed. Since,

(are)= [ i) s ar

This implies that, for all f € D(A),(Af,g) = (f,g%) where A*g = g* = ig’ and D(A*) = {g €
H:g €1,(0,1)}. Thus D(A) is a proper subset of D(A*), i.e., A* is an extension of A and
hence, A is not self-adjoint operator. But A is a symmertic operator. Also, domain of A is

densely defined and hence, A is closable. Here, A is not closed operator.

Definition 2.1.7. (See, [70]) Let X, Y be two Banach spaces and A : D(A) C X — Y is a linear
operator. Define the operator A : D(A) C X — Y such that

(a) A is an extension of A.
(b) A is a linear closed operator.

(c) if S:D(S) C X — Y is any linear operator with properties (a) and (b), then S is an

extension of A.

Then, the operator A is said to be closure of A.
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Example 2.1.3. (Translation Semigroups, see [27]) Let E be one of the following function
spaces Co(R1) or L,(R™) for p € [1,). Define T (1) by

(T(0)f)(x) = f(x+1)

as the (left) translation operator for x,t € R* and f € E. Then {T (t) : t > 0} is a Cy semigroup.

Note: The generator of the translation semigroup on E = Cy(R™") is

T0)f—f _d
t

Af =1
f im e

t—0t

f=r
where
D(A) = {f € E : f is differentiable and ' € E}.
Note: The generator of the translation semigroup on E = L,(RT),1 < p < oo, is

o TOf=f _d
Af_tl—l}(%f_dx

f=r

where
D(A) = {f € E : f is absolutely continuous and ' € E}.

Example 2.1.4. (See, [77]) Let Xo = L1(Z,zdz), Z = (20,%0). The operator —A, defined by
Au = 9d,(tu), ue€ D(A) ={u € Xy : d;(tu) € Xo,u(z0) =0},

generates a Cy semigroup {W (t) :t > 0} on Xy defined by

T(P(P() 1))

@) FP (PR -1), z€Z, t>0,

(W ()f) (2) = 1jpe0) (¥(2))

with
W@ < €™, 120,

where ¥ : Z — (0,0) is a diffeomorphism defined by ¥(z) = [ % and Ty = % so that
7(z) < 10z, zE€ Z.

Definition 2.1.8. (See, [36]) Let A : D(A) C X — X is linear, not necessary bounded operator

on a real or complex Banach space X , then the resolvent set of A is denoted by p(A) and defined
as p(A) = {4 € C: (AT —A) ! exists and bounded}.

Theorem 2.1.1. (Hille-Yosida Theorem) A linear (unbounded) operator A : D(A) C X — X
generates a Cy semigroup of contractions {T(t) : t > 0} iff



18 Chapter 2. Mathematical Preliminaries

(a) Ais closed and D(A) = X.
(b) The resolvent set p(A) of A contains RY and for every A >0

1

< .

IR, A)] < 7
Proof. See [[66], Theorem 1.3.1]. O

Theorem 2.1.2. Let {T(t) : t > 0} is a Cy semigroup of bounded linear operators on X. Then,
there exists constants @ > 0 and M > 1 such that

IT(2)|| < Me® forall t>0.

Proof. See [[66], Theorem 1.2.2]. L]

Theorem 2.1.3. (Well-posedness Theorem) Let A : D(A) C X — X is a linear operator. Then,
the initial value problem (2.1) is well-posed if and only if A is the generator of a Cy semigroup
{T(t):t >0} on X. In this case, for each uy € D(A), the unique solution of (2.1) is expressed

by u(t) = T (t)uo.
Proof. See [[36], Theorem 2.1.2]. O

Definition 2.1.9. (Dissipative Operators, see [66]) Let H be a Hilbert space, then an operator
A:D(A) C H — H is said to be dissipative operator if

Re(Au,u) < 0 forall u e D(A).

If Re(Au,u) > 0, then A is said to be accretive.

Example 2.1.5. (See, [72]) Let H = L(0,1) and A : D(A) C H — H is defined by
Af=f" for feD(A)

where D(A) = {f € H: f ¢ W'2(0,1) and £(0) = 0}. Then,

Re(A.f) = Re [ /()70
1 .
- / < (raf@) a
= SIFP >0

Therefore, A is accretive operator and —A is a dissipative operator on H.
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Definition 2.1.10. (m-Dissipative Operator, see [66]) A densely defined, dissipative operator
A:D(A) C H — H is called m-dissipative if the operator Al — A is surjective, that is, R(AI —
A) = H for some A > 0.

Example 2.1.6. Let H = [,(Q),Q C R? and Af = Af for f € H*(Q)NH(Q). By Green’s

first identity, we have
/uvzv—l—/vuvv—/ v%ds
Q Q a0 on

/uvzu—l—/vuvu:O

Q Q
/uAu+/|vu|2:0
Q Q

_ 2
| =awu= [ |gu =0
(— ANuyuy = (Ju,s7u) >0

Therefore,

Thus, —/\ is an accretive operator.

2.1.2 Lumer-Phillips Theorem

Let X* be the dual space of Banach space X. Let us denote the value of f* € X* at f € X by
(f*, f)or (f,f*). For every f € X, the duality set, see [24, 66], is defined as

F(f)={f ex (== I}

It follows from Hahn-Banach theorem that F(f) # 0 for every f € X.

Definition 2.1.11. (Dissipative Operator, see [46, 66]) Let A : D(A) C X — X is a linear oper-
ator. Then, A is dissipative if for every f € D(A) there is a f* € F(f) such that Re (Af, f*) <O0.

Theorem 2.1.4. The following two statements are equivalent for an operator A on X

(a) A is dissipative.

(b) ||(AI—A)x|| > A x| forallx € D(A) and A > 0.
Proof. See [[66], Theorem 1.4.2]. OJ
Theorem 2.1.5. Let A be a dissipative operator in X.

(a) If for some Ay > 0, R(Al —A) = X then R(AI —A) =X forall L > 0.

(b) If A is closable then closure of A, i.e., A is also dissipative.
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(c) If D(A) =X, then A is closable.
Proof. See [[66], Theorem 1.4.5]. O

Theorem 2.1.6. (Lumer-Phillips Theorem) Let A : D(A) C X — X be a densely defind linear

operator. Then, the following statements are equivalent.

(a) If A is dissipative and there exists Ay > 0 such that the range of Ayl — A is X, that is,
R(AI —A) = X. Then, A is the generator of a Cy semigroup of contractions on X .

(b) If A is the generator of a Cy semigroup of contractions on X, then R(AI — A) = X for all
A > 0and A is dissipative.

or

A densely defined linear operator A is the generator of a Cy semigroup of contractions iff it is

m-dissipative.
Proof. See [[66], Theorem 1.4.3]. OJ

Example 2.1.7. (See, [72]) Let X = L,(0, 1) and consider the operator A : D(A) C X — X,

where D(A) = {f € W'2(0,1) : £(0) = 0}. This is a closed operator with dense domain. Let
0 €D(A), then for A >0and f € X,

(AM+A)p=Ap+¢'=f
defines a linear ODE. After solving the differential equation, one gets,
t
0(t) = / =) £(5)ds. 2.3)
0

Therefore, ||(AL+A)@|| > A||@|| forall A >0 and ¢ € D(A). It follows that (Al +A)D(A) =X
forall A > 0, and hence (—A,D(A)) is m-dissipative. Thus, —A generates a Cy semigroup of

contractions on X .

Theorem 2.1.7. Let A is dissipative with R(I —A) = X and X is reflexive, then D(A) = X.
Proof. See [[66], Theorem 1.4.6]. O

Remark: We can not relax the condition of reflexivity in the Theorem 2.1.7. See the

following example.



2.1. Theory of Semigroups 21

Example 2.1.8. (See, [66]) Let X = C|0, 1] with the sup norm. Let
Af = —f for f € D(A)

where D(A) = {f : f € C'[0,1] and f(0) = 0}.
For every g € X, the equation A f —Af = g has a solution f given by

o= " A f(8)dE. 2.4)

This indicates that R(I —A) = X and from (1) we also have

Alf()| < (1—e™™)|gll < IAf—Af].- (2.5)

This implies that A||f|| < ||Af —Af|| and therefore, A is dissipative. But D(A) ={f: f €
X and f(0) =0} #X = C[0,1].

Corollary 2.1.7.1. IfA: D(A) C X — X generates a Cy semigroup {T(t) :t >0} on X. Then,

A is a closed and densely defined linear operator.

Proof. See, [[66], Corollary 1.2.5]. O

2.1.3 Positive Semigroups
In this section, E is assumed to be a Banach lattice.

Definition 2.1.12. (Vector Lattice, see [14]) A vector lattice is a real vector space V that is
ordered by some order relation * <’ if any two elements f,g € V have a least upper bound,
denoted by fV g =sup(f,g) €V, and a greatest upper bound, denoted by f Ng =inf(f,g) €V,

and the following properties are satisfied
(a) if f<g,then f+h<g-+h forall f,g,heV,
(b) if 0L f,then0<tf forall f€V andt > 0.

Let V be a vector lattice, then the positive cone of V' is defined by
Vi={fev:0<f}.
For f € V, let us define
fr=fv0, f7=(=f)VO0 and |f|=fV(-f),

the positive part, the negative part and the absolute value of f, respectively.
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Definition 2.1.13. (Lattice norm, see [14]) A norm on a vector lattice V is called a lattice norm
if
|fI < |g| implies [ f[| < [lg|| for f,g€V.

Definition 2.1.14. (Banch Lattice, see [14]) A real Banach space E endowed with an ordering
* < is said to be Banach lattice if (E,<) is a vector lattice and the norm on E is a lattice

normi.

Example 2.1.9. (See, [14]) All classical (real) Banach spaces 1,,co,C(K) are Banach lattices

for their usual norm and the point wise order.
Note: There are a large number of ordered function spaces that are not Banach lattices.

Example 2.1.10. (See, [14]) Consider the Banach space C'(]0,1]) with the norm

I£1l = max |f()|+ max |f'(¢)]

t€[0,1] t€[0,1]

and the natural order f > 0 if f(t) > 0 for all t € [0,1]. Since, sup{s,1 —s} ¢ C'([0,1]), the

space C'([0,1]) is not a vector lattice.

Definition 2.1.15. (Positive Operator, see [7, 14]) Let E and F are two Banach lattices. A
linear operator T : E — F is called positive if T(E™T) C F and it is denoted by T > 0.

Definition 2.1.16. (Positive Cy Semigroup, see [14]) Let {T(t) : t > 0} be a Cy semigroup on
E with generator A. Then, it is positive iff

T(t)ET CE™,

where E¥ ={f€E : f>0}.

Definition 2.1.17. (See, [14]) A Cy semigroup {T (t) : t > 0} on E with generator A is positive
iff R(A,A) > 0 for all sufficiently large real A.

Definition 2.1.18. (Dispersive Operator, see [3]) An operator A : D(A) C E — E is called
dispersive iff for every f € D(A), there is ® € N (f) such that (Af,®) <0, where

N (f)y={@ecET) o] <1(f,2) = |||}

Theorem 2.1.8. (See, [3]) Let A : D(A) C E — E be a linear operator. Then, the following

statements are equivalent

(a) A is the generator of a positive contraction Cy semigroup.
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(b) A is densely defined, R(AI —A) = E for some A > 0, and A is dispersive.

Example 2.1.11. (Example of Positive Cy Semigroup, see [3]) Let X = L,[0,1], 1 < p < oo and
the operator A is given by

Af:f//

where
D(A)={feX: feC'[0,1],f € AC[0,1], " € L,[0,1], £(0) = f(1) = 0}.

Then, A is the generator of a positive contraction semigroup.
Let f € D(A). Define M = { x € (0,1) : f(x) > 0}. Then, M is open set and hence, there
exists a countable collection of disjoint open intervals (a,,by) such that M = U>_ (ay,by).

Case- (i) If p=1, consider

CID(x):{l for xeM

0 for x ¢ M.

Then, ® € N*(f) and (Af,®) =Y, f:: f" dx. This implies that
AF,®) = Y (F(ba)— f(an)) <O.

n=1

Hence, A is dispersive.
Case- (ii) If p>1
Let ® € Nt (f), then there exists ¢ > 0 such that

c f(x)P~1 forxeM
0 forx¢ M.

Further,

— Y [T - (f0)

So, A is dispersive. Also, I — A is surjective and hence, A generates a positive contraction C

semigroup.
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Corollary 2.1.8.1. (See, [3]) Let A: D(A) C E — E be a densely defined dispersive operator
on E. If (A —A)D(A) is dense in E for some A > 0, then A is closable and A is the generator

of a positive contraction Cy semigroup.

2.2 Perturbation Results

The evolution equation (or the corresponding linear operator) is frequently expressed as a (for-
mal) sum of several terms having physical meanings and mathematical features. While the
mathematical analysis may be simple for each individual term, it is unclear what happens once
the sums are formed.

Problem : Let {T'(¢) : t > 0} be a Cp semigroup generated by A : D(A) C X — X and consider
a second operator B : D(B) C X — X. Now, questions arise, under which conditions the sum
A + B generates a Cy semigroup? In this case, the generator A is said to be perturbed by the

operator B.

Theorem 2.2.1. (Bounded Perturbation Theorem) Let A : D(A) C X — X generates a Cy semi-
group {T(t) : t > 0} on X such that ||T(t)|] < Me® for all t > 0 and some ® € R,M > 1. If
B € L(X), then C = A+ B also generates a Cy semigroup {S(t) : t > 0} such that ||S(¢)| <
MeWHMIBIE for ail t > 0.

Proof. See [[66], Theorem 3.1.1]. O

Corollary 2.2.1.1. (See, [[27], Corollary 3.1.5]) Let us assume that (A,D(A)) is the generator
of a Cy semigroup on the Banach space Xo. If B is a bounded operator on X{* = (D(A), ||-||),
then A + B with domain D(A+ B) = D(A) generates a Cy semigroup on Xy.

Example 2.2.1. (See, [27]) Let X = Cy(R) and A : D(A) C X — X is defined by

where D(A) = C}(R). Define the operator B by
Bf := f'(0) x h for some i € C}(R) and f € C}(R).

Then, B is unbounded on X but bounded on D(A) = C}(R), and hence A+ B is a generator on
X.

Theorem 2.2.2. Let A: D(A) C X — X be a linear operator on X . A linear operator B: D(B) C
X — X is such that D(A) C D(B) and A+tB is dissipative for 0 <t < 1. If

[1Bx]| < of|Ax]| + B ]
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for x € D(A) where 0 < a < 1, > 0 and for some ty € [0, 1],A +toB is m-dissipative. Then,
A +1B is m-dissipative for all t € [0,1].

Proof. See [[66], Theorem 3.3.2]. OJ

Corollary 2.2.2.1. Let A: D(A) C X — X be the infinitesimal generator of a Cy semigroup of
contractions. Let B be a dissipative operator suct that D(A) C D(B) and ||Bx|| < a||Ax|| +
B ||x|| for x € D(A) where 0 < o < 1, > 0. Then A+ B is the generator of a Cy semigroup of

contractions.
Proof. See [[66], Corollary 3.3.3]. ]

Corollary 2.2.2.2. (See, [[14], Corollary 11.7]) Let A generates a positive Cy semigroup on a
Banach lattice E and B € L(E) is a positive operator, then the semigroup generated by A+ B

is positive.

2.3 Linear and Semilinear ACP

Suppose X is a Banach space and A : D(A) C X — X is a linear operator. Then, the abstract

Cauchy problem for A with initial condition uy € X is written as

‘fi—;‘:Au ;>0 2.6)
u(0) = up

and a solution of (2.6) means that an X valued function u(r) such that u(z) is continuous for
t > 0, continuously differentiable and u(z) € D(A) for ¢t > 0 and (2.6) is satisfied.

Theorem 2.3.1. Let A be a densely defined linear operator with a nonempty resolvent set p(A).
Then, u(t) = T (t)ug is a unique solution of the IVP (2.6) which is continuously differentiable
on [0,0) for every initial value ug € D(A) iff A is the infinitesimal generator of a Cy semigroup.

Proof. See [[66], Theorem 4.1.3]. L]

The effectiveness of linear semigroup theory in solving linear evolution equations has
prompted the development of extensions of linear ideas that allow for the investigation of semi-
linear issues. Semilinear semigroup theory is not comprehensive comparison to linear semi-
group theory, but it remains a valuable and strong approach of evaluating more complicated

evolution equations.
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2.3.1 Semilinear Abstract Cauchy Problem

Let X be a Banach space and A : D(A) C X — X be a linear operator. Further, let F : [0,T] x X —

X be a nonlinear operator, then the problem

d — Au +F (t,u(t)) ; t>0 (2.7)
u(0) =ug € D(A) |

is called abstract semilinear Cauchy problem, where A generates a Cy semigroup {7'(¢) : ¢ > 0}
on X.
2.3.1.1 Classical and Mild Solutions

Definition 2.3.1. (Classical Solution, see [66] ) A functionu: [0,T) — X is a classical solution

of semilinear ACP (2.7) on [0,T) if u is continuous on [0,T), continuously differentiable on
(0,T), u(t) € D(A) for 0 <t < T and satisfies (2.7) on [0,T).

Proposition 2.3.1. (See,[36]) Let u be a classical solution on [0,T| to the semilinear ACP (2.7)
and {T(t) : t > 0} is Cy semigroup associated with the linear operator (A,D(A)). Then, u

satisfies the integral equation

u(t) = T(t)up + /O Tt —$)F (5, u(s)) ds. 2.8)

Definition 2.3.2. (Mild Solution, see [66]) A continuous solution u of the integral equation

u(t) = T(1)uo +/Ot T(t —$)F (s,u(s)) ds

is called a mild solution of the initial value problem (2.7) on [0, T].

Note: Every classical solution is mild solution but the converse is not true because u given by

(2.8) is not necessarily differentiable.
Example 2.3.1. If A be the infinitesimal generator of a Cy semigroup of contractions on X and
f € C(R",X) such that
t
v(t) = / T(t —s5)f(s) ds
0

is not differential. Then, a mild solution of

D— Au+£(t); t>0 (2.9)
u(0) = ug |
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need not be classical solution.

Let A be the generator of translation semigroup on C[0,0) defined by

T(1)f(s) = f(t+s).

Choose f € C[0,0) as

3—s 0<s<2
f(s) =

s—1 2<s<oo

suchthat T(t)f(s) = f(t+s) ¢ D(A). Then, IVP (2.9) has a mild solution which is not classical

solution.

Definition 2.3.3. (Local Lipschitz Condition, see [66]) An operator F : R™ x X — X is said to
satisfy a local Lipschitz condition in u, uniformly in t on bounded intervals if for everyt' >0

and constant o0 > 0, there is a constant M(a.,t") such that
|F(2,2) = F(2,y)[| < M(c) [lx =y

whenever x,y € X, 0<t <7, ||x| < a, |y < .

The following Theorems 2.3.2 and 2.3.3 provide the existence of solution results for semi-

linear evolution equation.

2.3.2 Local and Global Existence Theorem

Theorem 2.3.2. (Local Existence Theorem) Suppose A generates a Cy semigroup {T (t) :t >0}
on X and F : RY x X — X is a nonlinear continuous operator satisfying the local Lipschitz
condition. Then, for any uy € X, there is a positive constant t,,;; < o such that the initial value

problem (2.7) admits a unique mild solution u on [0, t,,y ). Moreover, if tyax < oo then

Jim [u(r) | = .

Proof. See [[66], Theorem 6.1.4]. L]

Theorem 2.3.3. (Global Existence Theorem) Let uy € X and A generates a Cy semigroup
{T(t) :t > 0} on X. Let the nonlinear operator F : R™ x X — X satisfies the condition: for
each o > 0 there is a constant M = M () such that

17 (2,2) = F(2,y)[| < M(c) [lx =y

whenever x,y € X, 0 <t < a. Then, the problem (2.7) admits a unique mild solution on R™.
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Proof. See [[36], Theorem 2.2.5]. O

Theorem 2.3.4. Let A generates a Cy semigroup {T(t) :t > 0} on X. Let ug € D(A), and the
nonlinear operator F : [0,T| x X — X is continuously differentiable from [0,T] x X into X , then

the mild solution of the problem (2.7) is a classical solution.

Proof. See [[66], Theorem 6.1.5]. O

2.4 Evolution System Theory

Let X be a Banach space. Forevery#, 0 <t <T,letA(t) : D(A(t)) C X — X be alinear operator

in X. Consider the homogeneous IVP

W) — A(tyu(r) ; 0<s<t<T .10
u(s)=v .

Let us define the solution operator of the IVP (2.10) by
U(t,s)v=u(t) for 0<s<t<T

where u is the solution of (2.10) and U (z,s) is a two parameter family of operators.

Definition 2.4.1. (See, [66]) Let U (t,s), 0 < s <t <T, be a two parameter family of bounded
linear operators on a Banach space X. Then, it is called an evolution system if the following

two conditions are satisfied
(a) U(s,s) =1, U(t,r)U(r,s) =U(t,s) for 0<s<r<r<T.

(b) (t,s) = U(t,s) is strongly continuous for 0 <s <r <t <T.

Stable Families

Definition 2.4.2. (See, [66]) A family {A(t)};c(o,r) of infinitesimal generators of Co semigroup
on X is called stable if there are constants M > 1 and ® (stability constants) such that

(w,) C p(A(t)) forte[0,T]

and
k

[TR:: Aw))

i=1

<MA—-w)* ford>o

and every finite sequence 0 <t; <tp,--- t <T, k=1,2,....
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Note: If for r € [0,T],A(t) € G(1,®), that is, A(z) is the infinitesimal generator of a Cy
semigroup S;(s), s > 0, satisfying [|S;(s)[| < e®* then the family {A(#)};c(o.7) is stable with
constants M = 1 and @. In particular, any family {A(t) },c[o,7] of infinitesimal generators of Cy

semigroups of contractions is stable.

Theorem 2.4.1. Let A(t) be the infinitesimal generator of a Cy semigroup S;(s) on X fort €
[0,T]. The family of generators {A(t) }cjo,r] is stable if and only if there are constants M > 1
and ® such that (@,o0) C p(A(t)) for t € [0,T] and either one of the following conditions is

satisfied
k
<M exp(a)Zsi) for 5; >0
i=1

k
HSH (si)

or

k
< MH(A,I'— (D)il forA; > o
i=1

and any finite sequence 0 <t <tp,--- {1 <T, k=1,2,....
Proof. See [[66], Theorem 5.2.2]. []

Theorem 2.4.2. Let us assume that {A(t) }c(o 1] is a stable family of infinitesimal generators
having stability constants M and ®. Let B(t),0 <t < T be a bounded linear operators on
X If[|B(t)|| <K forallt €[0,T], then {A(t) + B(t) }1c[o,r] is a stable family of infinitesimal
generators with stability constants M and ® + KM.

Proof. See [[66], Theorem 5.2.3]. O

For ¢ € [0,T], let A(r) be the infinitesimal generator of a Cy semigroup S;(s),s > 0, on X.
We consider the following assumptions.
(Hi): {A(t)}epo,7) is a stable family with stability constants M and @.
(Hy): Y is A(t)—admissible for ¢ € [0,7] and the family {A(t)},c[o 7] of parts A(t) of A(t) in
Y, is a stable family in Y with stability constants M, @.
(H3): Forte[0,T],Y C D(A(t)),A(r) is bounded operator from Y into X and r — A(r) is

continuous in the B(Y,X) norm ||-||y_x

Some Important Theorems

Theorem 2.4.3. Let A(t),0 <t < T, be the infinitesimal generator of a Cy semigroup S;(s),s >
0, on X. If the conditions (Hy) — (H3) hold for the family {A(t) },c[o,r], then there exists a unique
evolution system U (t,s5),0 < s <t < T, in X satisfying

(E1) U(t,5)]| < M exp{o(t —s)} for 0<s<t<T,
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J’_
(E2) aa—tU(t,s)v =A(s)v for veY,0<s<r<T,
1=s
)
(E3) a—U(t,s)v:—U(t,s)A(s)v for veY,0<s<r<T,
s

where the derivative from the right in (E) and the derivative in (E3) are in the strong sense in
X.

Proof. See [[66], Theorem 5.3.1]. O

Theorem 2.4.4. Let A(t),0 <t < T satisfy the conditions of Theorem (2.4.3) and let U (t,s),0 <
s <t <T be the evolution system given in Theorem (2.4.3). If

(Ey) Ut,s)Y CY for 0<s<t<T,

and
(Es) for veY, U(t,s)viscontinuousinY for 0 <s<t<T,

then for every v € Y, U(t,s)V is the unique Y —valued solution of the IVP (2.10).
Proof. See [[66], Theorem 5.4.3]. O

Now, to find an evolution system U(z,s) that satisfies (E;) — (Es), the condition (Hj) of
Theorem (2.4.3) is replaced by the following condition:

(Hy") : There is a family {Q(r)}c[o,7] of isomorphisms of ¥ onto X such that for every v €
Y, Q(t)v is continuously differentiable in X on [0, 7] and

Q(ANQ(1) ™" =A(r) +B(r)
where B(t), 0 <t < T, is strongly continuous family of bounded operators on X.
Lemma 2.4.5. The conditions (Hy) and (Hy)" imply the condition (H,).

Proof. See [[66], Lemma 5.4.4]. L]

Lemma 2.4.6. Let U(t,s), 0 < s <t < T be an evolution system in X satisfying |U (t,s)|| < M
for0<s <t <T.IfH(t) is a strongly continuous family of bounded linear operators in X then
there exists a unique family of bounded linear operators V (t,s), 0 <s <t < T in X such that

V(t,s)x = U(t,s)x+/tV(t,r)H(r)U(r, s)xdr for xe€X, (2.11)

and V (t,s)x is continuous in s,t for 0 <s <t <T.
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Proof. See [[66], Lemma 5.4.5]. ]

Theorem 2.4.7. Let A(t),0 <t < T, be the infinitesimal generator of a Cy semigroup on X. If
the family {A(t) },c(o,17 satisfies the conditions (Hy),(H)™ and (H3) then there exists a unique
evolution system U (t,s),0 < s <t < T, in X satisfying (E;) — (Es).

Proof. See [[66], Theorem 5.4.6]. O

Corollary 2.4.7.1. Let {A(t)},c(0,7) be a family of infinitesimal generator of a Co semigroup on
X. If the family {A(t) },c(0,r) satisfies the conditions (Hy),(Ha)" and (H3) then for every v € Y
the IVP (2.10) has a unique Y —valued solution uon 0 <s <t <T.

Proof. See [[66], Corollary 5.4.7]. O

2.5 Weak Compactness in L; Space

It is interesting to identify the condition under which a family of functions in L,(Q), 1 < p <o
has compact closure. We know that the Ascoli-Arzela theorem gives the answer for the same
question in C(K), the space of continuous functions over compact metric space K with values
in R.

Definition 2.5.1. (See, [17]) Let K be a compact metric space and F is a subset of C(K). Then,
F is said to be uniformly equicontinuous if for every € > 0, there exists 6 > 0 such that

lf(x)—f(y)| <€ forall feF

whenever d(x,y) < §.

Theorem 2.5.1. (Arzela-Ascoli Theorem, see [17]) Let K be a compact metric space and F is
a subset of C(K). Then, the closure of F in C(K) is compact if F is bounded and uniformly

equicontinuous.

In the weak compactness sense, the properties of L spaces differ from properties of L, 1 <
p < oo, spaces. In particular, L; being non-reflexive, its unit ball is not weakly compact. Kaku-
tani’s theorem [[17], Theorem 3.17] and the reflexivity of L, (), p € (1,0), see [[17], Theorem
4.10] warrant that any bounded suquence in L, () has a subsequence that converges weakly in
L,(€2). The bounded sets of L; do not play an important role with respect to the weak topology
of Ly space because L, is not reflexive. In the following, Dunford-Pettis theorem provides an
important characterization of weakly compact sets in L;. The weak compactness argument in
L; space is used to prove the existence of weak solution to the age/size structured population
models, see [33, 34, 53, 54, 56, 71]
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Definition 2.5.2. (See, [11])

(a) Let p € [1,). A sequence (f,) in L,(Q) converges weakly to f (written as f, — f) in

Ly(Q) if
tim [ 7,()0(x) di(x) = | F000(x) due)
forall € Ly, where g = o when p =1 andq— —£5 when p € (1,00).

(b) A sequence (f,) in Lo.(Q) converges x- weakly to f (written as f, — f) in Le(Q) if
lim [ £,(09() du(x) = [ F@0() dutx)
forall € L1(Q).

Example 2.5.1. (See [[17], page 122]) Consider the sequence (gy) of functions in L (0,1) and
defined by g,(x) = ne™™. Then,

(a) gn — 0 a.e.

(b) gn is bounded.

(c) gn— 0 strongly

(d) gn - 0weakly 6(L,Ls).

Example 2.5.2. (See [[17], page 122]) Consider the sequence () of functions in L,(0,1), 1 <
p < oo, and defined by f,(x) = n'/Pe"% Then,

(a) fn—=0 ae

(D) f, is bounded.

(¢c) fn—* 0 strongly

(d) fn— 0weakly 6(Lp,L,), where %—l—é =1.

Definition 2.5.3. (Equi-integrable families, see [17]) A subset F C Li() is said to be equi-

integrable if it satisfies the following conditions:
(a) F is bounded in L (),

(b) Ve > 0, there exists & > 0 such that

/ |fldu < €, YA C Q, A measurable |A| <8, VfE€F
A
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(c) Ve >0, there exists @ C Q measurable with |®| < oo such that
/ |fldu < €, Yf€eF.
Q-

Theorem 2.5.2. (Dunford-Pettis Theorem) A subset F of L1(Q) has compact closure in the
weak topology 6 (L1, L) if and only if F is equi-integrable.
Proof. See[11, 17, 25, 75]. OJ
Corollary 2.5.2.1. For a given set F in L1(Q), the following properties are equivalent:

(a) F is contained in a weakly 6(L;,L.) compact set of L ()

(b) F is equi-integrable.

Lemma 2.5.3. (See [[17], page 468]) Let ¥y, € L1(Q) such that ¥ < O, a.e. Then, the set
K={feL(Q): 9 <f<ae. }iscompactinweak topology 6(Ly,Ls).

Lemma 2.54. (See [[17], page 468]) Let (f,) be a bounded sequence in Li(Q) such that
[ fn converges to a finite limit {(A), for every measurable set A C Q. Then, there exists some
f € Li(Q) such that f, — f weakly 6(L;,Lc).

Lemma 2.5.5. (See [[17], page 125]) Let (f,) be a sequence in Li(Q) with |Q| < « and
f € L1(Q). Then, the following properties are equivalent:

(a) fo— fino(Li,Le)
(b) [olful <Cand [, fu— [,f, YO CQ, @ measurable and |®| < oo.

Example 2.5.3. (See [[30], page 181]) Let X = L([0,27x]). Then, the sequence f,(x) = sinnx
converges weakly to 0 in Ly (]0,27]).

Lemma 2.5.6. (See [[17], page 125]) Let () be a sequence of functions in L1 (Q) with |Q| = oo
and f(x) € L1(Q) such that

(a) >0 Vnand f >0 a.e. on Q,
(b) Jofn— Jof
(c) [ofn—= [ofs YO CQ, @ measurable and |®| < oo.

Then, f, — f in L1(Q) with respect to the weak topology (L, L).
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Lemma 2.5.7. (See [[17], page 468]) Let F C L;(Q) with |Q| < e and G : [0,0) — [0,0) be a
G(r)

continuous function such that 1im;_,. =~ = 0. Assume that there exists a constant C such that

[Fim<c vrer

Then, F is equi-integrable.

Definition 2.5.4. (Equicontinuity, see [76]) Let X be a Banach space. Then, a subset F in
C ([a,b]; X) is equicontinuous at ty € |a,b] if for each € > O there exists 8(&,ty) > 0 such that
foreacht € [a,b] with |t —ty| < 8, we have

1F(5) = f(o)l < €

uniformly with respect to f € F.

Definition 2.5.5. (Weak Equicontinuity, see [11]) Let X be a Banach space. Then, a subset F
in C(la,b];X,) is weakly equicontinuous at ty € [a,b] if for each ¢ € X* and € > O there exists
0 = 0(@,¢&,10) > 0 such that for each t € [a,b] with |t —ty| < 8, we have

(@, (1) — (@, f(0))| < €

uniformly with respect to f € F.

Theorem 2.5.8. (Arzela-Ascoli Theorem, see [[75], Theorem 1.3.1]) Let X be a Banach space.
A subset F in C([a,b];X) is relatively compact iff

(a) F is equicontinuous on |a,b).

(b) There exists a dense subset D in [a,b] such that for eacht € D,

F(t)={f@): feF}

is relatively compact in X .

Theorem 2.5.9. (The weak variant of Arzela-Ascoli Theorem, see [[75], Theorem 1.3.2]) A
subset F in C (|a,b]; Xy) is relatively sequentially compact iff

(a) F is weakly equicontinuous on [a,b],

(b) there exists a dense subset D of |a,b] such that for each t € D,

F(t)={f@): feF}

is weakly relatively compact in X .
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2.6 Stability Theory

In this section, we recall a handful of results on dynamical systems which are to be used in
Chapter 5 and Chapter 6 to study qualitative properties of prion-chaperone equations. A dy-
namical system gives a functional description of the solution of a physical problem or a math-
ematical model describing the physical problem. For example, the motion of the undamped
pendulum is a dynamical system in the sense that the motion of the pendulum is described by
its position and velocity as functions of time and the initial conditions. Mathematically speak-
ing, a dynamical system is a function ¢ (¢,x) defined for all 7 € R and E C R” which describes

how points x € E move with respect to time.

Definition 2.6.1. (See, [20]) Let E be an open subset in R". A dynamical system on E is a
C'-map
O:RxE—FE

and if ¢;(x) = @(,x), then ¢ satisfies
1. ¢o(x) =xforall x € E and
2. ¢rodg(x) = ¢yi5(x) forall s,s € Rand x € E.

Definition 2.6.2. (See, [20]) Let E be an open subset in R" and f € C'(E). For xo € E, let

O (t,x0) is the solution of initial value problem
x=f(x), x(0)=xp (2.12)

defined on its maximal interval of existence I(xq). Then, fort € I(xg), the mapping ¢; : E — E
defined by

¢ (x) = 0(1,x)
is called the flow of differential equation (2.12).

In many cases, mathematical models are used to describe physical phenomena and are rep-
resented by the autonomous differential equation of type (2.12) defined on an open set E C R”
and its flow ¢;. It’s crucial to understand how slight perturbations in the initial data effect the
desired behaviour of solution (2.12). If a sufficiently modest modification in the initial data
leads to a significant departure in the associated solution, the solution derived from the given
initial data is unsuitable because it does not even approximate the desired phenomena.

Let us consider an equilibrium point xq for the nonlinear autonomous system

x=f(x), xeR" (2.13)
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Definition 2.6.3 (Stable). An equilibrium point xy of (2.13) is said to be stable if for each € > 0,
there exists 6 (&) > 0 such that the inequality |, (x) — @ (xo)| < € holds whenever |x — x| < &
forallt > 0.

Definition 2.6.4 (Asymptotically Stable). An equilibrium point xy of (2.13) is said to be
asymptotically stable if it is stable and if there exists 6 > 0 such that |x — x| < & implies
that |¢;(x) — ¢ (x0)| — 0 as t — oo.

Definition 2.6.5 (Unstable). An equilibrium point xy of (2.13) is said to be unstable if it is not
stable.

A continuous function V : U — R where U C R" is an open set with xo € U, is called a

Lyapunov function for the differential equation (2.13) at xo provided that
(i) V(xo) =0,
(ii)) V(x) >0 for xe U —{xp},

(iii) the function x — grad V(x) is continuous for x € U — {x¢}, and on this set, V(x) :=
grad V(x)- f(x) <O.

If, in addition,
(iv) V(x) <0 for xe U —{xo},
then V is called a strict Lyapunov function.

Theorem 2.6.1. (Lyapunov’s Stability Theorem, see [20]) If xq is an equilibrium point for the
differential equation (2.13) and V is a Lyapunov function for the system at xq, then x is stable.

If, in addition, V is a strict Lyapunov function, then xq is asymptotically stable.
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Chapter 3

Evolution Equation of a Prion Proliferation Model

in the Presence of Chaperone '

3.1 Introduction

In this chapter, a mathematical model for the dynamics of prion proliferation in the presence
of chaperone involving a coupled system consisting of an ordinary differential equation and
a partial integro-differential equation is analyzed. For bounded reaction rates, we prove the
existence and uniqueness of positive classical solutions with the help of evolution operator
theory. In the case of unbounded reaction rates, the model is set up into a semilinear evolution
equation form in the product Banach space R x L; ((zp,); (g +z)dz) and the existence of a
unique positive local mild solution is established by using Cy semigroups theory of operators.

The prion proliferation model in the presence of chaperone, see Section 1.2, is described by the

following set of equations

dfl—(tt) =A—yS(t) - T5<f)/Z:u(t,z)dz-i—Z/Ozoz/Z:B(z') k(z,7) u(t,7) d'dz, (3.1
20— a5 2D — [u(2)+ B+ BxCW]ule ) +2 [ BEke D ule e, G2
%EZ) = —50C(f)+5lc(l‘)/:u(t,z) dz, (3.3)

subject to the conditions

§(0) = So, u(0,2) = uo(z), u(t,20) =0, C(0) =Cp for >0, z0 <z <o (34)

I'A considerable part of this chapter is published in Mathematical Methods in the Applied Sciences, 44,
1942-1955, 2021.
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where all the constants A, ¥, T, &), 0; and O, are positive and the description of these param-
eters is given in Chapter 1. We assume that the splitting density function k(z,7’) satisfies the
conditions (1.4)-(1.8).

This chapter is assembled as follows: In Section 3.2, the system (3.2)-(3.4) is transformed into
a semilinear evolution equation in the product Banach space R x L ((z9,°); (¢ + z)dz) under
the assumption (1.9). Then, the existence of the unique positive local mild solution is proved by
using Cy semigroup theory. The positive global classical solution of the coupled system (3.2)-
(3.4) is discussed in Section 3.3 with the help of evolution system theory under the assumptions
that the reaction rates 1 (z) and fB(z) are bounded.

3.2 The Semilinear Autonomous Problem

To establish the existence and uniqueness of positive local mild solution, we first transform the
system (3.2)-(3.4) into a semilinear evolution equation in the suitable Banach space. For this,

assuming

ifz>z0 and0 <7 <z

w(z) =, B(z) =Pzand k(,z) =
0 otherwise.

The system (3.2)-(3.4) becomes

act) _ —&C(1)+6:C(1) /wu(m)dz

dt 20

u(r,2) + 0d.u(t,2) + (4 B2+ 8:C(1) u(t,2) =2 | u(r, )’ and
C(O) = Co, M(O,Z) = l/l()(Z), M(I,Z()) =0 for7 >0, z> z.

Substitute ¥ (t,z) = u(t,z+z9) for z > 0, then the above system reduces to

%’) — &)+ 8C() /0 " 9(t,2)dz (3.5)
O0(t,2) + 09,9 (t,2) + (Ho + Bz + 52C(t)> O (t,2) =2B /w O(t,7)d? (3.6)

subject to the conditions

C(0) =Co, 9(0,z) =up(z+z0) = Vo(z), ¥(¢,0) =0 for t >0,z>0 (3.7)
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where [y = 1 + Bz and @ plays the role of 7S at oo, i.e., @ = TS(e0) = A—YT in the disease-free

(1+PBz0)*
B

2
case or @ = TS(o0) = = %0 in the disease case, refer to [28]. Choose the state space

E:{V: (f}) eRxL (R";(qg+2)dz) : HVHE<00}

with the norm is defined as

Ve = H (f;)

where ||-||; denotes the norm in L; (R™). It is easy to verify that E is a Banach Space. Define
three operators A : D(A) CE - E, B:D(B) CE — E and F: E — E such as

s o + (1o + Pz)V s 2B 7 0()dZ 9
andff"<€> = <61 Ewaﬁ(Z)dZ) for <€> € E, where
) -5l ()

D(A)= { (2) cE: 9 eW!(RMNL, (R+ ;(q-l—z)dz), 29 eLi(RY), 2 e Li(RT), ©(0) :0}.

= ql[Ol, +[z8][, +1¢] for g >0
E

Here, A and B are linear operators while J is a nonlinear operator. Finally, the system of
equations (3.5)-(3.7) can be written as a semilinear evolution equation in the Banach space E
as

D =—(A-B)WV +F(V); t>0

(3.8)
wm:%:<£g>.

Lemma 3.2.1. Let E =R X L (R*;(q +Z)dz) be a Banach space with q > 0, then ®y =
('sgn(?), sgn()) is a duality map defined as

Dy <19€Z)) = /()ooﬁ(z) sgn(¥) (¢+z) dz+¢sgn(¢) for V= (19?2) €E.

Proof. Clearly, ®y <19fz)) = Jo O(z) sgn(®) (¢+z) dz+{sgn(l) = || (19fz)> ‘ and || Py || =

1. Hence, by the definition of duality, ®y is a duality map for V € E. [
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Now, before proving the main result Theorem 3.2.2 of this section, the following Proposi-

tions 3.2.1 — 3.2.3 are required.
3.2.1 Positive Contraction Semigroup Generated by A — B

Proposition 3.2.1. The operator A : D(A) CE — E is a m-Accretive on E

(3.9)

Proof. Since,
/Ow[wf}() (o-+B2)() | sen(®)  dz = qpuo |8, +3B 1201

and/ [ @' (z) + (1o + B2)B(2) | sgn(d) zdz = —o |9, + 1o |[z0]], + B |[>9]],,
(3.10)

adding equations (3.9) and (3.10), yields

(AV,®y) = (qpo — @) |[0]]; + (aB +po) ||z01]; + B || 3]
(gB + o) [[z8]]; > 0 provided po > ¢ and for

This shows that (AV,®y) > (quo — o) ||9|], +

such ¢, A is Accretive and hence closable
To compute the resolvent of A, the equation (A1 +A)V = <f> is equivalent to solving

AL _[(m

AY + 0¥ + (1o + Bz) 0 f

that is,
A0+ ot D=
OV (Ho+F2) 3.11)
Al =m.

PIS

2.2

— (A +A)"! <m> ( e g )
£) o \L e 8P p)ay

l
Further, to show that V = (ﬁ) € D(A), we assume (?) € Rx Li(RT). Then, one can easily

14 l
+|¢| and (0) € Rx Li(R™). Also, if ( f) € R x Li(R"), then
z

N

Hence,

< Al

obtain ||¥|]; + || < T
2
® ® |
leflly @11l +gllef Il +1e

2
A+t (A+uo)

2
R
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20

14
This indicates that (
70

12
) € R x Li(R") and similarly ( ) € Rx Li(RT). Due to (3.11),

l L
(0,) € R x Li(R") as well as (219/) € R x L1 (R"). Finally, by the definition of D(A),

14

o € D(A) and consequently, A is m-Accretive operator on E. ]

Proposition 3.2.2. The operator A — B generates a Cy semigroup of contraction on Banach

space E.

Proof. From Theorem (2.1.6), the proof is divided into two parts. In the first segment, Accre-
tivity of A — B is proved while the second part deals with R(8I+.A —B) = E for some & > 0.

It is easy to obtain the following estimates
1Bl <llz0lls [l 790yl < 5[|28]],

| {28 [ 00y} sen(0) g dz - ot sen0) = 20B 01l -l (312
Z

and N N

/0 {2[3/ 9(y)dy} sen(®) zdz = B|[29]] . (3.13)

Z
Adding equations (3.12) and (3.13), gives that
(B, ®y) =2qPB |20l — Solt| + B || 0], -

Consequently,

(A=B)V,@v) = (AV,®y) — (BV,Py) = (quo — @) |[9]]; + (1o — gB) [120|]; + Sol].

This indicates that A — B is Accretive provided o > ¢f, to > % and hence, A — B is closable
which immediately yields the Accretivity of A — B, see Theorem (2.1.5).

)20. Set Vi = (Aol +

m

To prove the second part, let (m) ceRxL; (R*; (g+ g)dz) and (
8 8

A)~! (m) and define a sequence
g

Vit = Vi+ (Aol +A) " (B + 8l)Vi.

Then, Vi > 0and V, —Vj = (Aol +A) =1 (B+ 8 1)V} >0, since (B + &yl is positive. Therefore,
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by the induction, V| >V, pointwise and which shows that the sequence {V, },>; is non-

negative and increasing pointwise. Now,

Vi1 = (Aol +A) ™! (IZ

) + (Aol +A) Y B+ 81V,

and this yields
(Aol + AV, = (m) + (B + &IV 1,
8

1.e.,

( Aoty > _ (m) 4 ( —80ln—1+ Soln—1 >
(1)19,/1(2)+(7L,0+‘I,L0—|—BZ)19H(Z) 8 213 fzoo ﬁn—l(y)d)""éoﬁn—l '

This is equivalent to,

0)7.9,/1(2) + ()‘0 +HO+BZ)19H = g+2ﬁ fzoo ﬁnfl(y)d)"f‘ 507-9an
Al, =m

1.e.,
@B, (z) + (Ao — 8+ Mo+ B2) O < g +2B [ O(y)dy
)'Ogn =m

which allows to have

(A0 — 8o+ to) | B ll1 < llgll1 + B [|z8ull; and = [[Gal[1s + (Ao — S0+ po) |21 < [lzg]l1-
If, in addition z%g € L (R™"), then one can easily obtain the bound of z>g in E. Selecting ¢

as above gives the bound for the sequence {V,},> as

Valls = H (g)

One can achieve by the monotone convergence theorem that V,, — V., as n — oo.

m

<M |g| +
s

E

Since, (Aol +A)V, = (m) + (B + 6ol)V,,—1, it means that
8

(AOI‘J"-A_B_%I)Vn = (?) +(B+501)(Vn—1 —Vn)-

Therefore, ((Ag— &)+ A —B)V, — (m
8

) as n — oo and hence V., € D(A —B), with V., =
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(5I+A—B)7l (m) , where 6 = (Ag— &). Also, Ly =L —L] and R=R* —R*.
4

Thus, R(SI +A - iB) = E and consequently A — B is m-Accretive. From the above two parts,

it is concluded that A — B generates a Cy semigroup of contraction on E. [

Proposition 3.2.3. The semigroup {T(t) :t > 0} generated by A — B is a positive semigroup
onE.

Proof. Here, A — B is a densely defined operator. From Theorem 2.1.8, to prove the positivity
of {T'(¢) : t > 0}, it is sufficient to prove that A — B is dispersive. If V = (pg, p1(z)) € E, one

may choose
oy — (2o @]
po  pi12)

~_J po  if pp>0 N _ ) @@ if pi(2) >0
where [po] ™ —{ 0 it po <0 and [pi(2)]" = { 0 if p1(z) <0.
+
(=20 = (& 0. ) + (0910 + (0 Bapa()-26 [ miiiay, L)
g -
:50[p0]++/0 {a)pll( + (U0 + Bz)p1(2) 2[3/ p1(y d)’} (g+ )[p;](fz)g dz
= 5o[po]+—2qﬁ/ z[p1(2)] T dz—qo[p1(0)]* +‘1/0 (o +B2) [p1(2)] "dz

B[ 2nE o [ b et [ 0B 2] ez
= &0l + (Ho—aB) |z lpr() dztapo [ (2] e

This implies that ((.A — BV, CIDV) >0 provided uy > ¢f, and hence, the operator A — B is

dispersive. Thus, A — B generates a positive Cp semigroup of contraction on E. [

Finally, we are in position to prove the main result of this section below.

3.2.2 Existence of Mild Solution

Theorem 3.2.2. The dynamical system (3.8) has a unique non-negative local mild solution.

Proof. Due to the Propositions 3.2.3, the operator A — B generates a positive Cp semigroup
of contraction on E. To prove the existence of a unique local mild solution of the semilinear

problem (3.8), it is sufficient to show that F : Rt x E — E is continuous and J is locally
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Lipschitz with respect to the second component, refer to Theorem 2.3.2. Given,

§<t’< ¢ )) _ (51€f6°¢(z)dz>.
0(z) —5 L 9(z)
Let <€m> — <£> that is, H <€m_€>

Om (0 On— 0
(0)¢

b

—0 as m— oo
E

q110n = @1+ [1z(9n = Q)| + [l — €] = 0 as m — o,

Then, one can evaluate

(o) ()

| S1m J5” Om dz—81 €[5 ¢ dz

N 61lm fy Omdz—81 L[y dudz+ 01 L [y Gudz—01 L[5 ¢ dz
_52€m¢m+52£m¢_62€m¢+62£¢

_ 51<em—e>f5°¢mdz+61ffa’°<¢m—¢>dz>
_52 Em((pm - (P) + 52¢<£_€m)

<{ a8 Vel 10— 611, +4 8 |6~ €I]]9]]
82 £l [12(0m = 0, + 821 — 41120,
+5 w,,,—a/o \¢m\dz+51€/0 gm0 dz }.

E

E

E

Therefore,

(o) (0)

Further, to show that J is locally Lipschitz in the second variable, we assume

[, == 16

ie. qllofl, +lzgll; +1¢] < ¢ and g|yll; +[zwll; +|m| < c. Then,

(o) ()

‘ — 0 as m — o and consequently F is continuous on R™ x E.

< ¢ and

E E

_ (51”6” ¢(z) dz— 6 m [ w(z) dz)
—QHlo+Hmy
_ (51(€—m)f5°wdz+6lﬁfg"((p—w)dz)H
~& ({—m) ¢~ m(¢—v) '

E
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This implies that
g(@ _g(’:’j) <{ & [e—mlc+8 ml [gll(o—wll, + (0~ WII,]

E
o1 |/]
q

#8100 110 =)l + == 120 =)l + 8 [ =m] [yl }
<{ &lt—mlc+&cqllo-wil +I0—v)ll,]

S 10—+ L N0~ )l e & )
(+)-C)
() y
o) C)l == l0)-()
¢ V/ e ¢ 4

that J is locally Lipschitz. Thus, Theorem (2.3.2) guarantees that, there exists 7,5, > 0 such

_|_

E

Thus, <L(c)

with L(c) = (52c n %) . This implies

that the Problem (3.8) has a unique mild solution in [0, 7,,,) and the solution satisfies
t
V(t) = Tp(t)Vy +/ Tp(t —5)F(V)ds for t < tyax (3.14)
0

where {Tp(t) : t > 0} is the semigroup generated by P = A — B.
Since, J is not positive on E*, one can not claim that the constructed local mild solution is

non-negative. To accomplish it, the System (3.8) is written in an equivalent form as

N — _(A—B+p)V+(F+pl)(V); t>0
(3.15)
V(0) =WV

for some p € R such that F + pl is positive. Set P, = (A — B+ pl) and Q = F+ pl, then
{Tp,(¢) : 1 > 0} = {e P'Tp(t) : t > 0} and hence {7p, : t > 0} is positive Cy semigroup of

contraction on E.

Let us define C,, = I,(to) x Bp(Vo) where I,(tg) = {t : |t —to| < a} and B,(Vp) ={V € E:
[V —=Vollg < b}. Let M = sup , ||Q|| . Here, Q is locally Lipschitz with respect to the second

variable, i.e.,

10, U)—Q(t,V)|| < Ly(c)||U—V|| forall U,V € By(Vp)

where L(c) = (&c+ 2 +p) U] < cand |[V]| <.
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Introducing F : C(1,(0),B,(Vo)) — C(1.(0),B,(Vp)) by

FOW) = ToWo+ [ Pt Toli—5) Q(0() d,
which implies that,

1E(9(1)) = Vollw <2|[Voll +Mlt| <2][Vol| +Mh < b

and hence F(¢(t)) € Bp(Vp). Also,

1F(91(1)) = F(92(1)) oo < La(c) [t] ||¢1 = @2l < La(c) I [|$1 — 2]l

where Ly(c) h < 1. This shows that F is a contraction on C(Ia(O),Bb(VO)) and by the Banach
fixed point theorem, there exists ¥ € C,;, such that F(y) =y, i.e.,
t
W) =e P ToleVo + [ e PUIT(—5) Q) ds
0

; 1 b=2|V
where |¢t| < hand h < mm{a,m,%}.

Thus, if Vo € ET and V : [0, t,4¢) — E be the unique mild solution of (3.8), then this solution is
non-negative on the maximal interval of its existence. [

Lemma 3.2.3. The nonlinear operator F : E — E is continuously differentiable.

Proof. The nonlinear operator J is given by

F(0) 81 L [0 (2)dz
Sy R ‘

Then, for fixed (£o, %) € E, the differential Dy, ,)F of J is described by

(D 9‘“) l _ 515[50 ﬁo(z)dz—f— 51&)[: Vdz
(o %0)" ) 3 — 508 — S0 '

Also, for (¢,9) € E, we have

1P.0)7 = Dito.on 1| < <%+62) H (’Q ! <§;> H

Thus, JF is continuously differentiable from E into E for every (¢,9) € E. O
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From Theorem 2.3.4 and Lemma 3.2.3, we can say the mild solution of the semilinear
problem (3.8) with (Cp, ¥y) € D(A — B) is a classical solution.

3.3 Existence of Classical Solution

This part deals with the existence of a unique global classical solution of the system (3.2)-(3.4).
Some notations and assumptions that are needed in the present section are as follows.

Consider Z = (z9,°) and reaction rates i, 8 are bounded such that
u, BeLi(z) (3.16)

where L1 (Z) is the positive cone in Le.(Z).

Choose suitable spaces X = Li(Z,zdz) and Y = W] (Z,zdz) = Cly (2,2a2) T (Z), where T(Z)
represents the space of all test functions on Z. Also, X is the positive cone in X and Y =
Y NX . Now, define

Spp={CeC' () : B <C() < [ICW)llerg,) < BY (3.17)

where I, = [0,L] and B > 1.

For given any interval J and any function C : J — R™, introducing
FC(t)u= oAu+BC(t)u—S(u), ucy, tcJ (3.18)

where, S(u) = — ((z) + B (2))u(z) + 2 [° B(2)k(z, 2 )u(Z) dZ, B¢ (t)u= 8,C(t)uand A:Y C

X — X defined by Au = g—z. Here, A generates a Cyp-semigroup {e‘Af .t > 0} that satisfies
—A

[le™]] ) < €.

Then, writing the equations (3.2)-(3.3) as

i+FC(H)u=0 for t >0, u(0) =ug (3.19)

C=—8C+6,C |u|; for t >0, C(0)=Cy (3.20)

where |- |; denotes the norm in L (Z).

To prove the main result Theorem 3.3.1, the following Proposition 3.3.1 is required.

Proposition 3.3.1. For given B > 0,Ly > 0and 0 < L < Ly, {—Fc(t) ‘e [O,L]} generates a
unique evolution system Uc(t,s), 0 <s <t < Lin X for each C € 31 . Moreover, there exists
wy = wy(Lo,B) > 0 such that
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1Uc(t,9)]] px) < eP ™, 0<s<t<L CeSpp (3.21)
||UC<I,S>||£(Y)§(D0, OSSSISL,CGSLB (322)

and forU,W € 31 p
Uy (2,5) = Uw (t,9)| £ v,x) < @0 =5) [[U =W/, 0<s<t<L. (3.23)

Proof. Since, S and B (s) are bounded operators on X for any fixed C € 3. p and any s € I,
hence by the bounded perturbation theorem 2.2.1, —F€(s) is the infinitesimal generator of a
Co-semigroup {7;(¢) : ¢t > 0} on X and satisfies

He—”FC(S) <" 1>0 (3.24)

where w = 2+ &B +|[S|[z(x) -
From §2.4, {F(s) : s € [0,L]} is a stable family for each C € 3, 5. Now, for any s € I, define
Q€(s) : Y — X by Q°(s) = ol +FC(s), is an isomorphism that satisfies

H@C(S)Ha <a+0+8B+S|lgx), s€L, CESLp (3.25)

Y.X)

where ¢ = W+ 1 and [ is the identity operator. Furthermore, for u € Y
. d .
Q(ue (I, X) with Q(t)u= E@C (Hu = &C(t)u. (3.26)

Therefore, the assumptions (H ), (H»)" and (H3) of §2.4 are satisfied and hence, there exists a
unique evolution system Uc(#,s),0 < s <t < L, in X corresponding to {F(s) : s € [0,L]} for
each C € 3 p which satisfies the statements (E;) — (Es) of §2.4, such that

Ut )|l g <™, 0<s<t<L CeSLp. (3.27)

In particular, (3.21) holds if w is replaced by ay.
Again, following §2.4, for the evolution system Uc(z,s), 0 < s <7 < L, there exists a unique
family of bounded linear operators We(z,s), 0 < s <t < L on X such that

Uc(t,s) = Q°(1) ' We(t,5)Q°(1), 0<s<t<L (3.28)

where We(z,s) € L(X) satisfies
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Welt,s)u=Uc(t,s)u+ /St Welt, r)]DC(r)UC(r,s)u dr

for0 <s<t<Landuc X withD(¢) = Q°(1)Q () ' € L(X), t 1.
Since, Q€(¢)~! is the bounded operator, so there exists a constant co(B) such that

<co(B) for rel, CeSpp. (3.29)

Cr-1
t
1007, <
Also, Q€(r)~! is the resolvent of —F€(r) on X. Therefore,
Cr-1
t <1 fortel, CeS3p.
H@ ®) Hz:(x)— ortelL LB
