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PREFACE 

The kinematics of machines and the study of mechanisms are 
subjects that are usually dealt with in books on the theory of 
machines,’* a title that covers a very wide field, including, as it 
does, not only the kinematics, but also the statics and dynamics 
of machines Consequently the treatment afforded to kinematics 
and mechanism in such books is unduly curtailed. On the other 
hand, narh books as Reuleaux« Kinematics of Machines and 
The Consirwcim besides being out of print and difficult to 
obtain, are too comprehensive and detailed to be of much use to 
students as textbooks. In this book the author has endeavoured 
to provide an adequate treatment of the kinematics of machines 
and the study oi mechanisms as mechanical contrivances, while 
avoiding excessive detail and encyclopaedic comprehensiveness ; 
he has endeavoured to steer a middle course between unduly 
aceulemic treatment on the one hand and excessiv^ detailed 
descriptive treatment on the other hand. It is there¬ 
fore, that the book will be of use not only t5 students at 
engineering colleges and technical institutes, but also to practising 
engineers, designers and draughtsmen. 

Considerable space has been devoted to the consideration of the 
freedom and constraint of bodies and the principles of geometric 
or kinematic design. The latter is a subject that is seldom dealt 
with in engineering textbooks—a defect that the author thinks 
should be remedied. The principles of geometric design can be 
applied not only to instruments where the forces acting are small, 
but also to machines where large forces are encountered, and a 
knowledge of those principles should be part of the mental 
equipment of all engineers engaged in the design of machines. 

The determination of the velocities and accelerations of points 
of mechanisms is of fundamental importance and receives what is 
thought to be adequate treatment. The derivation and applica¬ 
tion of Coriolis’s law are explained at some length, this being, in 
the author’s experience, one of the stumbling-blocks of most 
students. 

The theory of toothed gearing has b^en given fuller treatment 
than it receives in most textbool^ other than those devoted solely 
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to it, this being considered desirable in view of the very wide use 
of such gearing and the dearth of books on the subject. 

Numerous exercises are included throughout the book, and in 
many cases they are made to supplement the text by introducing 
variations of the mechanisms described in the text, and thus make 
the book more comprehensive without increasing its size. 

The scope of the book should make it suitable for use by 
students Btud3n[ng for the examinations of the British universities 
up to final examination standard, but it is hoped that less- 
advanced students will also be able to use it with advantage. 

Every endeavour has been made to avoid errors, but it is 
realised that complete absence of mistakes is improbable, and 
the author will be pleased if readers will notify him of any errors 
they may discover. 

W. S. 
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CHAPTER I 

MOTION OF A POINT 

!• Rest and Motion.—These are essentially relative terms, as it 
is not possible to tell whether any body is at rest in an absolute 
sense ; all that can be said is that one body is at rest relative to 
another body when the position of the one relative to the other 
remains unchanged. It is therefore necessary to consider how 
the position of one body relative to another may be determined 
and specified. For simplicity the position and motion of a point 
will first be considered. 

2. Position of a Point.—The position of one point relative to 
another may be specified by fixing one point at the intersection of 
three mutually perpendicnilar planes and then giving the perpen¬ 
dicular distances between the other point and tlie planes as shown 

Fia. 2 

in Fig. 1. The distances x, y and z arc the rejcUmyidar co¬ 
ordinates of the point P. The point O is the ornfin and OX, OY 
and OZ are the co-ordinate axes. The distance OP is clearly 
given by 

OP=Vx^+yH^z‘^ .(1) 

Alternativ ely the polar co-ordinates r, 6 and <f> may be specified 
as shown in Fig. 2, where r is the distance OP between tlie j^oints, 

1 1 
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(f> i8 the angle between the line OP and the axis OY and 0 is tHe 
angle between the plane POY, containing OP, and the plane 
XOY. C’learly the polar co-ordinates are related to the rect¬ 
angular co-ordinates by the equations 

x~r 8in <f) Cos B.(2) 

y—rCos</».(3) 
2:~rSin^Sin0 .(4) 

Whichever co-ordinates are used three quantities have to be 
specified in order to specify the position of the point P relative 
to the point 0. 

When the point P moves relative to O its motion may be 
regarded as consisting of three component motions parallel 
respectively to OX, OY and OZ. If these component motions are 
independent of each other, the point P is perfectly free and is said 
to possess three degrees of freedom. 

3. Plane Motion of a Point.—If the point P lies always in the 
plane XOY, Fig. 1, its 2 co-ordinate is always zero and its position 
may be specified by giving only the x and y co-ordinates. The 
motion of P, in the plane XOY, may be regarded as consisting of 
two component motions parallel respectively to OX and OY. If 
these component motions are quite independent, then the point 
is perfectly free in the phme and it possesses two degrees of 
freedom. . 

Thus a point that is confined to a plane possesses only two 
degrees of freedom ; this applies also to a point that is confined to 
any surface, for although the motion of a point that moves on a 
curved surface may be regarded as consisting of three component 
motions parallel to the three co-ordinate axes, yet those com¬ 
ponent motions are not independent, but are related in some way 
depending on the shape of the surface. Looked at in another way, 
if the axes OX and OY are imagined to be tangent4)0 the surface 
at the point O, then a point situated at O can move in the direction 
of either OX or OY, but not in the direction of OZ, that is, in the 
direction of a normal to the surface. 

4. Motion of a Point along a Line,—Lastly let the point P be 
confined to the line OX ; then its position is specified by the 
single co-ordinate x. The point possesses only one degree of 
freedom, and this applies also to a point that is confined to any 
line, straight or otherwise, for although the motion of a point 
along a curved line may be regarded as consisting of three com¬ 
ponent motions, yet those component motions are not independent, 
but are related in some way depending on the shape of the line. 
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Or, if the axis OX is imagined to be tangent to the h’ne at the 
origin O, then a point situated at O can move only in the direction 
OX and not in the direction of either OY or OZ, which are normals 
to the line. 

5. Frames of Reference.—The three mutually perpendicular 
planes intersecting in the axes OX, OY, OZ form a convenient 
frame of reference relative to which the position of a point or body 
may be specified. It is frequently useful to regard each of two 
bodies whose relative motion is to be studied as having such a 
frame fixed in it and then to study the relative motion of those 
frames. 

6. Displacement of a Point.—When the position of a point, , 
relative to a frame of reference, changes, then the point is said to 
receive a displacement. This can bf3 specified by giving the co¬ 
ordinates of the first and last positions of the point or by giving 
its magnitude and direction, that is, the length and direction of 
the line joining the first and last positions of the point. A dis¬ 
placement can also be represented by a line drawn 
parallel to it and of a length proportional to its 
magnitude. For example, if Pj and Pg, Fig. 3, are 
respectively the first and last positions of a point, 
then the line PiPo represents the displacement of 
the point, and it should be noted that an arrow¬ 
head is placed on the line in order to show the 
flense of the displacement—that it is from Pi to P2 and not from 
Po to Pi. The sense of a displacement can be indicated by the 
order of naming of the points; thus P1P2 represents a displace¬ 
ment from Pi to P2, while P2P1 would represent a displacement 
from P2 to Pi. 

7. Relative Displacements.—Suppose now that Pi and Pg repre¬ 
sent two separate •points both of which were originally at Pi, then 
the line PiP^ represents the displacement of Pg relative to Pi, that 
is, the displacement Pg would appear to have to an observer fixed 
to Pi. To an observer fixed to Pg the point Pi would appear to 
receive a displacement p2Pi^ Thus a line P1P2 represents either 
the displacement of Pg relative to Pi, or the displacement of Pj 
relative to Pg, according to the sense in which the line is traversed. 
Thus P1P2 with an arrowhead pointing from pi to pg represents 
the displacement of pg relative topi, while jpgpi with an arrowhead 
pointing from p2 to pi represeilts the displacement of pi relative 
topg. .i, 

8. Successive Displacements.—If a point receives successively 

Fig. 3 
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two displacements, relative to the same frame of reference, first 
from A to B and then from B to C, then clearly the final result is 
the same as if the point had received a single displacement from 
A to C. The displacement AC is equivalent to, and is called the 
resultant of, the successive displacements AB, BC. If the point 
receives more than two successive displacements, then the re¬ 
sultant is found by setting out the displacements in order and 

joining the first and last points as in Fig. 4, 
where ae is the resultant of ab, be, cd and de. 
The polygon abode is a polygon of displace¬ 
ments, and it is essential that the sides of the 
j)olygon be set out so that the arrows point 
in the directions in which the successive dis¬ 
placements are actually made, and that when 
this is done they point in the same direction 

round the polygon, that is, if the sides of the polygon%re traversed 
in the directions of the arrows, a continuous circuit of the polygon 
will be made, except that the arrow on the side representing 
the resultant will be in the opposite direction to all the others. 

It should be noted that the same resultant will be 
obtained if the displacements are set out in a 
different order from that in which they actually 
occur, provided that the condition with regard to 
the direction of the arrows round the polygon is 
complied with. This is shown in Fig. 5, where 
the sides 1, 2, 3 and 4 represent thedisplacements 

ab, cd, de and be respectively, but are placed in a different order. 
Clearly the displacements need not all lie in one plane. 

9. Simultaneous Displacements.—In the previous article the 
displacements considered were aU relative to the same franie of 
reference, but a point may receive a displacement relative to one 
frame of reference while that frame itself receives a displacement 
relative to a second frame. Thus a man might walk across the 
deck of a steamer and receive a displacement relative to the 
steamer while the steamer moved through the water, thus receiving 
a displacement relative to the water. With this meaning the 
man may be said to receive two simultaneous displacements, and 
clearly in the same manner it is possible for him to receive any 
number of simultaneous displacements ; these, however, are 
relative to different frames of reference. Relative to the steamer 
the man receives a perfectly definite displacement which in Fig. 6 
is represented by AB, and relative to the water the steamer 
receives a displacement AC. Clearly the first and lai^t*positions 
of the man relative to the water are A and D, and AD represents 
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his displacement relative to the water. AD is the resultant of 
AB and AC, and so we have the following rule. 

10. The Parallelogram Law.—If the adjacent sides AB and. AC 
of a parallelogram ABCD represent respectively the displacement 
of a body L relative to a body M, and the displacement of the body 
M relative to a third body N, then the diagonal AD represents the 
displacement of the body L relative to the body N. 

11. The Polygon Law.—Since CD in Fig. 6 is equal and parallel 
to AB, it may be taken to represent the displacement AB, and it 
will be seen that the resultant AD is obtained by drawing the 
triangle ACD, that is, by treating the displacements as if they were 
successive and not simultaneous. This method of finding the 
resultant is very convenient when the number of simultaneous 
displacements is greater than two, and gives rise to the following 
rule. 

If the sides ab, be, cd and de of a pol3"gon represent the displace¬ 
ments of a body B relative to a body A, a body C relative to B, a 

d 

body D relative to C and a body E relative to D respectively, 
then the closing side ac represents the displacement of E relative 
to A. This is shown in Fig. 7 ; as with successive displacements, 
care must be taken to get the arrows on the sides of the polygon 
pointing in the direction of the displacements and pointing, with 
the exception of the resultant, the same w ay round the pol\'gon. 
Again the sides of the polygon need not all lie in one j^lane. 

12. Vectors.—Displacements, as has been seen, ]jossess both 
magnitude, direction and sense, and the resultant of two dis¬ 
placements is a third displacement which can be found by means 
of either the parallelogram or polygon law ; these character¬ 
istics are also possessed by a number of other quantities such as 
velocities, forces, etc., and such (juantities are called Vectors^ 
w^hereas quantities such as areas, volumes, energy, etc., wiiich 
possess magnitude but not direction, are ('ailed Scalars. 

Two vectors are said to be added when their resultant, called 
their vector sum, is found by means of the parallelogram or polygon 
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Jaw. It should hardly be necessary to say that only vectors of 
the same kind can be added together. 

In printed works vector quantities are often distinguished by 
the use of Clarendon type; thus AB represents the “ vector AB ” 
and AB+CD the “ vector sum of AB and CD.” Tn written works 
the distinction is often made thus, AB and AB+CD. 

18. Speed of a Point.—Consider a point which is moving along 
a line OPQ and which at a particular instant occupies the position 
P. After an interval of time (1) the point arrives at the position 
Q, having travelled a distance (a) ajong the line. Then the ratio 
distance travelled ^ . s , , . , . j r 
—-, that 18 p 18 denned as the average speed oi the 

point along the line during that interval of time. It is convenient 
to make unit speed correspond to the traversing of unit distance 
in unit time, and clearly the unit of speed will depend on the 
units adopted for distance and time. If these are feet and seconds, 

fset 
then speeds will be measured in-or feet per second; this may 

be written ft./sec. or f.s. If miles and hours are adopted, 

then speeds will be in or miles per hour, which may be 

written miles/hr. or m.p.h. The change from one set of units to 
another is easily effected, thus ; 

Hiile 
30 m.p.h,=30 X r-=30 X 

^ hour 

5280 feet 

60x60 seconds' 
=44 ft./sec. 

14. Constant Speed.—When the magnitude of the average s^^ecd 
is the same whether the time interval considered is large or small, 
the speed is said to be constant or uniform. If a point is moving 
with a constant speed, then the distance traversed in any time 
interval is proportional to that interval, and the graph obtained 
by plotting the distance s against the time < is a straight line as 
shown in Fig. 8. The speed is then equal to the slope of the line, 

the distances and times being, of course, measured to 
h 12 

the appropriate scales. Thus we have, for constant speed, the 
following relations between the distance traversed, 5, the time 
taken, <, and the speed, v : 

s s 
, s=vxt, v=z, .(5) 

t v 

provided the units used are consistent, that is, if is in ft./sec., 
8 must be in feet and t in seconds. 
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15. Variable Speed.—When the speed is variable the graph 

corresponding to Fig. 8 will not be a straight line, but some curve 

as shown in Fig. 9, and the value of the average speed will be 

Fig. 8 

different for different time intervals. Tlie ac tual spc'ed at any 
instant during the interval ti might be widely different 1‘rom the 

average value but if the time interval is made smaller and 

smaller, then the likelihood of the actual speed at any instant 
during the interval being much different from tlie average speed 
for the interval will become less and less. Thus if a very small 
interval of time, S^, is <*onsidered, during which the clistance 

traversed is then the average speed 
av 
hi for that interval will not 

be very widely different from the acdual speed at any instant 
S* 8 S' 

during the interval. The ratios ~ and ^ are actually the slopes of 

(‘hords PQ and PR of the distanc*e-time curve, and as the time 
interval is made smaller and smaller so the slope of the chord 
gradually approaches tliat of the tangent PS ; and, finally, when 
the time interval is made indefinitely small the interval becomes 
an instant and the average speed becomes the actual speed at the 

8 s* 

instant. This cannot now be found trom the expression since 

this ratic^ assumes the indefinite form of but it can be found 
o 

since it is now equal to the slope of the tangent PS. Thus the 
speed at any pa'rticular instant during a variable motion may be 
found by drawing a tangent to the distance or space-time curve, 
at the instant, and measuring its slope. The process of drawing 
a tangent to a curve is not usually susceptible of very great 
accuracy, and so the result obtained by this method will be only 
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an approximation to the true speed; but for a great many practical 
purposes the accuracy is sufficient. 

Example.—The table below gives corresponding values of the 
distance {s) traversed and the time (t) taken for the motion of a 
motor car. Find the average speeds for the intervals t—2 to 
t~8, 6 and 4 respectively, and the instantaenous speed when 

t, secs. 0 1 2 3 4 5 6 7 8 
H, feet 25 32-5 52 81 119 102 210 265 325 

The distance traversed in the interval t=2 to t=8 is 325—52 
273 

— 273 feet; hence the average speed for this interval is -^—45*5 

ft./sec. Similarly for the other intervals the average speeds are 

^^^-^=39-5 ft./sec. and -~^---^=33-5 ft./sec. On plotting 

against t the graph, Fig. 10, is obtained, and by drawing the 

Fio. 10 

tangent PQ at the time t—2 the instantaneous speed is obtained 

as ft./sec. (The measurement of the slope of this 

tangent was actually made on a graph drawn to much larger 
scales than in the figure.) 

In the language of the differential calculus the limiting value of 

the ratio when is made indefinitely small, is called the 
of 

ds • 
differential coefficient of s with respect to t and is written If 
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the equation to the space-time curve, i.e. the equation connecting 
ds 

8 and t, is known, then the value of can be found, by differentia¬ 

tion, to any desired degree of accuracy. The differential co- 
ds 

efficient ^ is the rate of change of the distance s with respect to 

the time t or, shortly, the time rate of change of position. It is 
sometimes more convenient to use the Newtonian notation and 

ds dfS 
to denote ^ ^ (read as s dot). Thus =i=:the slope of the 

space-time graph. 
Example.—The height, h ft., fallen through by a body falling 

from rest under the action of gravity is related to the time, t secs., 
by the equation A = 16-l What is the speed of the body after 
5 seconds ? 

Speed =Tiine rate of displacement™^^ 

d 
=;t,(16-1 ^2)==32.2^ 

When 1=5 -t:-=32*2 x5 = 161 ft./sec. 
dt ' 

16.^ Velocity.—The ratio distance movedjtime taken does not take 
any account of the direction in which the motion takes place ; in 
the velocity of a point, however, the direction is considered. The 
velocity of a point is its speed in a stated directiony and it is fully 
specified only when both the speed and the direction are stated, 
e.g. 20 m.p.h. S.E. to N.W. 

Velocities are vectors and may be represented by straight lines 
in a similar manner to displacements, and also, being rates of dis¬ 
placement, they are, like displacements, relative. The statement 
that the velocity of a train is 20 m.p.h. S. to N. means that to an 
observer fixed to the earth the train appears to be moving from 
S. to N. at a speed of 20 m.p.h. To an observer fixed to the train 
the earth would appear to be moving from N. to S. at the same 
speed. Thus the velocity of the earth relative to the train is 
equal and opposite to the velocity of the train relative to the 
earth, and, as with displacements, both can be represented by 
the same line traversed in opposite directions. Thus if cf, with 
the arrow painting from e to t, represents the velocity of the train 
relative to the earth, then te, with the arrow pointing from t to e, 
represents the velocity of the earth relative to the train. It is 
convenient to write these velocities by tVe and eVt respectively, and 
we can write tVe^—eVt, the minus sign indicating that the two 
velocities are opposite in sense. 
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17. Simultaneous Velocities.—A point can have two or more 
simultaneous velocities, in the same manner as it can have two 
or more simultaneous displacements, and these can be dealt 
with by means of the parallelogram and polygon laws. Thus, 
using the same illustration as before, if niih represents the velocity 
of the man relative to the steamer and that of the steamer 
relative to the water, then the velocity of the man relative to 
the water is the resultant, or vector sum, of and gVw and is 
obtained as shown in Fig. 11 (a). This operation may be 

represented symbolically by the equation 
when there are more than two component velocities this becomes 
fl^n™<i^d+d^c+c^d+ • • • m^n the vector addition is most 
conveniently performed by means of the polygon law. Fig. 12 
shows the operation when there are four components. As with 
displacements, the order in which the sides of the polygon are 
set out is immaterial, but care must be used to ensure that the 
arrow on each side does point in the direction of the velocity that 

A 
Fig. 12 

side represents, and to ensure that the arrows follow on con¬ 
tinuously round the polygon except for the closing side. The 
sides of the polygon need not all lie in one plane. 

Example.—The velocity of an aeroplane {p) relative to the air 
(a) is 150 ft./sec. due N., while that of the air relative to the 
earth (e) is 50 ft./sec. due N.W. A bullet (6) is fired from the 
aeroplane at a speed of 1000 ft./sec. in a direction due N.E. 
relative to the aeroplane. What is the velocity of the bullet 
relative to the earth ? 

We have and on drawing the polygon 
shown in Fig. 13 it will be found that t,Ve==lll5 ft./sec. at an angle 
of 37° E. of N. (By calculation uVe^l 117 f.s. at 36° 58'.) 
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18. Relative Velocities.—Referring to P'ig. ll, it is clear that if 
and are given, then it is easy to find mVs ; it is merely neces¬ 

sary to set out and from a common point and to join their 
ends ; the joining line then represents Some difficulty may be 
experienced in deciding which way the arrow on the joining line 
should be placed, but this difficulty disappears if the velocities are 
labelled as described in Art. 16. If this is done as shown in Fig. 
11 (c), then rnVw is represented by the line wrn and by the line 
ws, so that both sides must be set out from the point w ; the ends 
of the joining line will then be labelled m and a, and m.s with the 
arrow pointing from m to 6^ represents the velocity of s relative to 
m. If the equation is treated algebraically, we 
may write rn^a~velocity of the man relative to the 
steamer being equal to the vector difference of the velocities of 
the man and the steamer relative to Ihe water, so that mn in 
Fig. 11 (c) represents the vector difference of wtn and wa. Thus if 
two vectors are set oat from a common point, then the line joining 
their ends represents their vector difference. This should be 
compared with the parallelogram law for 
finding the vector sum of two vectors. 

Example.—The velocities of the ends P 
and Q of the connecting-rod of an engine 
(relative to any point, say O, of the frame) 
are respectively 190 ft./min. in the direction 
PO and 300 ft./min. at right-angles to QO 
as shown in Fig. 14. What is the velocity 
of P relative to Q ? 

In the velocity diagram opq draw op 
parallel to PO and equal to 190 ft./min. to 
a convenient scale, also draw oq perpendicular to OQ and cepjal 
to 300 ft./min. to the same scale. Then qp re])resent8 the 
velocity of P relative to Q, and by measurement this will be 
found to be 264 ft./min. in a direction perpendicular to QP, as 
indicated by the dotted line. 

KJ(5. U 

19. Resolution of a Velocity.—By performing the reverse opera¬ 
tion to that of finding the resultant of two velocities it is possible 
to replace a single velocity by two other 
velocities, called its components, in any two 
chosen directions provided that those direc¬ 
tions and that of the original velocity all lie 
in one plane. Let OR, Fig. 15, be the velocity 
to be resolved and OA and OB the directions 
of the components; then on drawing from R 
lines parallel to OA and OB to intersect OB and 
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in P and Q the desired components are obtained as OP and OQ. 
When the angle AOB is a right angle, as is most usual, then 
OP=OR Cos 6 and OQ—OR Sin 6. 

This process can be extended to include the resolution of a 
vector in three directions not lying in one plane. The resultant 
OR of three velocities OP, PQ and QR as shown in Fig. 16 is 
obtained in the usual way by drawing the vector polygon OPQR 
(called a gauche polygon, since the sides do not all lie in one 
plane). If it is required to resolve OR into three components 
in the directions OX, OY and OZ, then clearly it is merely 
necessary to draw, on OR as diagonal, the parallelepiped 
OPQSTURV, whose sides are parallel to OX, OY and OZ, and the 
components are obtained as OP, OS and OT. When the directions 
OX, OY and OZ are mutually at right-angles, as shown in Fig. 17, 

Z 

then OP==OR Cos /IROX, since Z.RPO is a right angle ; similarly 
OS==OR Cos ZROY and OT=OR Cos Zl^OT ; these cosines are 
called the direction cosines of OR and are usually denoted by m 
and n respectively, thus OP=ORx?, OS=ORxm and OT 
=OR xn. 

20. Acceleration.—When the velocity of a point is not constant 

jg called the average acceleration of the 
time taken 

the ratio 

point. Accelerations are therefore measured in 
units of velocity 

units of time ' 
that is, as so many units of velocity per unit time. If the unit 
velocity is one foot per second and the unit of time one second, 

, , foot per sec. « , 
then the unit of acceleration is one - or one toot per 

sec. 
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second per second. This may be written ft./sec.2. If m.p.h. and 
seconds are the units, then the unit of acceleration is one m.p.h. 
per sec., but it is usual to have the same unit of time for the 
acceleration as for the velocity. The change from one set of 
units to another is easily effected, thus : 

^ / . 
60 m.p.h. per mm. =60 

5280 ft. / 
™60 Xrr——-/ 60 sec. 

60 X 60 sec./ 
= 1-467 ft./sec.2 

21. Constant Acceleration.—The acceleration of a point that 
moves in a straight line is due solely to the change of speed that 
occurs, and in this article and the next this kind of acceleration 
only is considered. It may be constant or variable ; if it is con¬ 
stant, then the graph of the speed plotted against the time will be 

a straight line as in Fig. 18. The average acceleration 0^ is the 

same whether the time interval is large or small and is equal to 

the slope of the line. If the constant acceleration is denoted by 
/, then we have 

.(6) 

where v is the change of speed that occurs in the time t. If the 
speed at the beginning of an interval of time t is Vj, then the speed 
at the end of that interval will be ; the speed-time 
graph is as shown in Fig. 19 and the average speed during the 

interval is — hence the distance s traversed in the interval is 
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j Xt=Vit + lft-. Thus we have, for constant accelera* 

tions, 
V2=^Vi-\-ft.(7) 

s=vit+lff^.(8) 

tK^=Vi^+2fs .   (9) 

the last being obtained by eliminating between (7) and (8). 

22. Variable Acceleration.—When the acceleration is variable, 
then the speed-time graph will be a curve and the actual accelera¬ 
tion at any instant may be obtained by drawing the tangent to 
the curve at that instant and measuring its slope. This gives the 

value of the time rate of change of velocity, that is, the 

acceleration, at the instant. If the equation to the curve is known, 
dv 

then ^ may be obtained by differentiation. In the Newtonian 

dv . . df^^') 
notation ^, being ^ , is written as s (read as s double dot). 

Referring to Fig. 19, it will be seen that the area of the quadri- 

■L._1 /''V A •_(Vi+V2)Xt 1 AO __ i-l.__ lateral OABC is given by so that that area, 

to some scale, is equal to the distance traversed by the point in 

Fig. 20 Fig. 21 

the time t. The same holds when the speed-time graph is a curve, 
as in Fig. 20, where the shaded area, to some scale, is equal to the 
distance traversed during the time interval <2'~‘^i- This will be 
understood if the curve is regarded as being of the stepped form 
shown in Fig. 21, the speed during each of the small time intervals 
represented by the width of the strips being constant. The 
distance travelled during each small interval will then be equal 
to the area of the rectangular strip, and thus the distance traversed 
in the interval (the sum of the small intervals) is equal to 
the sum of the areas of the strips, that is, to the afea under the 
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stepped curve. If now the number of strips is made infinitely 
large the stepped curve will coincide with t he actual curve and the 
distance travelled is equal to the area under the curve. 

If in Fig. 21 there are n strips each of width ht and the heights 
of the strips are Vi, the distance traversed, .9, is 
given by 27 where 27 stands for “the sum 
of.’’ This operation of finding the sum of a number of quantities 
of the same type, such as V2St, etc., is sometimes denoted 

symbolically by v8t. As long as the number of terms is finite 

their sum can be found by actual addition, but when the number 
becomes infinite this is no longer possible, but the sum can then 
be found by means of the integral calculus. Thus the shaded 
area of Fig. 20 is given by the integral of v with respect to t 

between the limits ti and (2, and this is written P“ vdt. When the 
J h 

equation connecting v and t is known, the value of this integral 
can usually be calculated. 

The scale to w^hich the area under the speed-time curve repre¬ 
sents the distance traversed may be obtained thus : Let the scale 
to which* the speeds are set out be 1 inch to m units of velocity 
and that for the times be 1 inch to n units of time, then the scale 
for the area is 1 sq. in. tomxv (units of velocity) x (units of time), 

, . . units of distance . ^ . 
that IS, 1 sq. in. to mxn--Xunits of time, that is, 

^ units ot time 
mXn units of distance. If the scale for speeds is 1 inch to 
20 ft./sec., and for times 1 inch to 10 seconds, then the scale for 

ft. 
areas is 1 sq. in. to 20 —^X 10 sec., that is, 1 sq. in. to 200 ft. 

sec. 

23. In the previous two articles the changes of velocity con¬ 
sidered were changes of magnitude or of speed, since the direction 
of the motion, being along a straight line, 
was unaltered. A change of velocity, and 
therefore an acceleration, occurs, however, 
if the direction of the motion of a point 
changes, even though the speed remains con¬ 
stant. If ea, Fig. 22, is the velocity of a point 
A relative to a frame of reference E at one 
instant, and eai is the coiresponding velocity after an interval of 
time t, then the change of velocity is represented by aaj, this being 
the velocity that when added to m produces eaj. The magnitude 

Fig. 22 

of the average acceleration for the intenral is then and ijts 
I 

direction is from a to a^. 
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Example.—^At one instant the velocity of a ship is 20 m.p.h. 
due N.E.. and 10 seconds later it is 10 m.p.h. due E. What is the 
average acceleration during the interval ? 

In Fig. 23 draw O5i==20 m.p.h. to any convenient scale and in 
the N.E. direction, and 0^2 = 1^ m.p.h. to the same scale; then 
tSp92 is the change of velocity during the interval. By measure¬ 
ment 5^,92 — 16*7 m.p.h., hence the average acceleration is 

16*7 m.p.h. 
= 16*7 X 

5280 1 ft./sec. 

10 secs. ' ""60x60 

in a direction 25° W. of S. 

X 
10 sec. 

::0*22 ft./sec.2 

When a point is moving along a curved path 
the velocity at any instant is in the direction 
of the tangent to the curve at the point occupied 
by the moving point at the instant, and as 
this direction will be continually changing, the 
point will be continually accelerated, even 
though the speed along the curve is constant. 
If that speed is changing, then the acceleration 

of the point is due partly to the changing speed and partly to the 
changing direction. This is considered more fully later. 

24. Simultaneous Accelerations.—A point may have two or 
more simultaneous accelerations in the same manner as it may 
have two or more simultaneous displacements or velocities ; these 
may be combined by means of the parallelogram or polygon law. 
Also, referring to Fig. II (c), if ws and wm represent the accelera¬ 
tions of 8 and m relative to w, then sm represents the acceleration 
of m relative to a and ms that of 8 relative to m* An acceleration 
may be resolved into components in the same way as is described 
for velocities in Art. 19. 

EXERCISES I 

1. The co-ordinates of a moving point are Xy y and 2, and the motion satisfies 
the single equation y=J{x). How many degrees of freedom does the point 
possess ? 

2. A point moves in such a way that its co-ordinates Xy y and z satisfy tho 
equation 2=x-|-y. How many degrees of freedom does the point possess ? 

3. A rod has a ball end which engages a fixed spherical socket. How many 
degrees of freedom does any particular point of the rod possess ? 

4. A nut engages a fixed screw on which it is free to turn. How many degrees 
of freedom does any point of the nut possess and what is the shape of the path 
described by the point in space ? 

• As will be seen later, this applies only to accelerations relative to frames of 
reference that remain always parallel to each other. See Arts. 106 and 107. 
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r>. If the screw in the previous question instead of being fixed is connected by a 
ball-and-socket joint to a fixed body, how many degrees of freedom does any 
point of the nut now possess ? 

6. A point moves in such a way that it always lies in the surfaces of two fixed 
spheres. How many degrees of freedom does it possess ? 

7. How many degrees of freedom does a point on the axle of a railway wagon 
f)08sos8, supposing the wheels to remain always in contact with the rails and slip 
to bo absent ? , 

8. The co-ordinates x, y and 2 of a moving point always satisfy the two equa¬ 
tions y ^f{x) and 2 =^F(a;). How many degrees of freedom does the point possess ? 

9. A point receives successively the following displacements, all in the hori¬ 
zontal plane : 1 yard from S.W. to N.E., yards from S.E. to N.W. and 1 yard 
from E. to W. What is the final displacement of the point ? 

10. An aeroiDlano receives a displacemor»t relative to the air of 1 mile from 
S. to N., and simultaneously the air receives a displacement relative to the earth 
of 0*5 mile from W. to E. What is the displacement of the aeroplane relative to 
the earth ? 

11. A wheel 2 ft. dia. rolls without slip along a horizontal line running W. to E. 
Lt the wheel turns through an angle of 45”, what is the displacement of that 
point of its rim which was initially in contact wuli the ground ? 

12. The table bolow gives the distances {«) of a motor car from a given point at 
various times (/). Plot a displacement-time curve and find, graphically, the 
instantaneous speed of the car when 4 secs. 

t, secs. . 0 1 2 3 4 5 6 7 

8y ft. * * 0 41 , 76 105 128 145 1 156 161 

13. Plot the displacement-time curve corresponding to the table below and find 
the instantaneous speeds when i = 2, and ( — 7 5 secs. 

t, secs. . . 0 1 1 2_ 3 4 1 5 6 7 8 9 10 
«, ft. * ‘ 1 2 1-1-02 1 -f 0 (•£ 1 -0-62 -1*62 -2 -1 G2 -l)*02 1 -fO 02 1 1 02 1 42 

14. A body A has a velocity of 20 m.p.h. from S. to N. relative to a body B, 
while the latter has a velocity of 30 m.p.h, from S.W. to N.E. relative to a body C. 
What is the velocity of A relative to C ? 

15. A body A has a velocity of 10 f.s. from S.W. to N.E. relative to the earth, 
while a body B has a velocity of 10 f.s. from S.E. to N.W. relative to the earth. 
What is the velocity of A relative to B ? 

16. A body which moves in a straight line has a constant acceleration of 1 ft. 
per sec. per sec. If it starts from rest, what is its speed in m.p.h, at the end of 
2 mins, and what distance will it have covered ? 

17. A body which moves in a straight line has a velocity at a given moment of 
18 m.p.h. If it has a constant acceleration of 60 yards per min. per sec., what is 
its speed after 20 secs., and what distance will it have covered in that time ? 

18. The table below gives the velocity (v) of a body, which moves in a straight 
line, at times t, Pldt a speed-time curve and find (a) the acceleration when 
t=S, (6) the distance covered between the times t=^l and and (c) the 
average speed over this latter period. 

/, secs. 0 1 2 3 4 5 6 7 8 
V, ft./sec. . 5 5*6 7*8 12-2 19*4 30*0 

1 

44*6 63*8 88*2 
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10. At one moment a body has a velooity of 10 m.p.h. from E. to W., and 
10 secs, fater it is moving with a velocity of 15 m.p.h. from S.E. to N.W. What 
was the average acceleration during the period ? 

20. A train starts from rest at a station A and moves with a constant accelera¬ 
tion /for a certain time, and then with a constant deceleration/j, so that it cpmes to 
rest at station B, which is at a distance d from A. Prove that the time taken for 

the journey is given by i ~/J - 

21. If in the previous question the maximum speed is limited to V, i)rove that 

the time for the journey is given by t -provided 



CHAPTER II 

ANGULAR MOTION 

25. Angular Speed.—Consider a point which moves in a circle, 
centre O, Fig. 24, and which at a given instant is at P and after 
a time t is at Q. Then the angle POQ —^ measures the angular 
displacement of the point about the centre 0 ; similarly the angle 
POjQ would measure the angular displacement 

0 
about any other point ()|. The ratio - is the 

t 
average angular speed about O, and the unit by 

. unit angle 
which this IS measured is-r-—-, so that 

unit time 
we commonly have radians per second (rads./sec.) 
or revolutions per minute (r.p.m.) as units oi‘ 
angular speed. The conversion from one unit to another is easily 
effected, thus : 

60 r.p.m. —60 X 
revolution 

minute 
60 X 

277 radians 

60 seconds 
277 rads./sec. 

If the average angular speed is the same for all time intervals, 
then the angular speed is constant and, denoting it by cu, we have 

0 6 
co — jy 6—a)t, t==— .(1) 

These relations should be compared with equations (5), page 6. 
The graph of d against t is a straight line the slope of which is 
equal to the angular speed. 

If the angular speed is not constant, then the angular-displace¬ 
ment-time graph is a curve and the angular speed at any instant 
may be obtained by measuring the slope of the tangent to the 
curve at the instant, or this may be obtained, if the equation 

do • 
connecting 6 and t is known, by differentiation, thus — 0. 

26. Relation between Angular and Linear Speed.—Referring to 
Fig. 24, the linear displacement of the point consequent on the 
angular displacement 6 is PQ and the average linear velocity of 

PQ 
the point is consequently -r- in the direction of the chord PQ. 

19 
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If the time interval is made smaller and smaller until ultimately 
it is indefinitely small, then the direction of the chord PQ will 
approach and ultimately coincide with that of the tangent to the 
curve at P, and thus the direction of the velocity of the point when 
it is at P is in the direction of the tangent at P, that is, perpen¬ 
dicular to the radius OP. If the time interval is very small, the 
chord PQ is approximately equal to the arc PQ, and sihee, if 6 is 
in radians, this is equal to OP.^, the average linear velocity of the 

point is ~j~ • When the time interval is indefinitely small the 

approximation becomes exact and the average angular speed 

j becomes the actual speed at the instant. Hence we have 

the relation v—rco .(2) 

between the linear velocity v, the angular velocity co and the 
radius r, for circular motion. In using this relation the units 
employed must be consistent; thus if w is in radians per second 

, . . ^ 1 Ml 1 . r* radians . . „ 
and r is m feet, then v will be in feet X-, i.e. in feet per sec., 

secs. ^ 
since a radian is merely a ratio of two lengths. 

27- Angular Acceleration.—When the angular speed is nut 
. . change of angular speed . , , 

constant the ratio-- is the average angular 
time taken ® ® 

acceleration during the interval. The most convenient unit for 
this is one radian per second per second (rad./sec.2), but r.p.m. per 
minute is sometimes convenient. The change from one unit to 
another is easily effected, thus : 

60 r.p.m. per min. =60 X 

=60 X 

/revolution\ 

\ minute / 
minute (27t radians\ 

60 secs. / 
60 secs. 

=— raciians/sec.2 

If the average angular acceleration is the same for all time 
intervals, then the angular acceleration is constant and is equal to 
the slope of the angular speed-time graph, which is a straight hne. 
Denoting the constant angular acceleration by a, we have the 
relations 

to OJ 
a = 7, w—at, t = — 

t a (3) 
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where co is the change of angular speed in the time interval t. 
Again the units used must be consistent. If the angular speed at 
the beginning of a time interval Hs coj, then the angular speed at 
the end of the interval is a>2=ci>i+a^, the average angular speed 

is 
CO Y 

9 and the angle turned through in the interval is 

tion, we have the relations 

Thus, for constant angular accelera- 

coo=oji-\-at •.(4) 
e=ajit + lat'^.(5) 

co.2^=a}i^-\-2a6.(6) 

the last being obtained by eliminating t between (4) and (5). 

28. Variable Acceleration.—If the angular acceleration is 
variable, then the graph of the angular speed against the time is a 
curve, and the angular acceleration at any instant may be 
obtained by measuring the slope of the tangent to the curve at 
that instant, or if the equation connecting the angular speed and 
the time is known, the angular acceleration at any instant may be 

obtained by differentiation. Thus a — 
dco d^d 

dt ~ dt- 

When the angular acceleration is variable, then the angle turned 
through in any time interval may be obtained by measuring the 
area under the angular speed-time curve in a similar manner to 
that described, for linear motion, in Art. 22. If the scale for 
angular speed is 1 inch to m rads,/sec. and that for time is 1 inch 
to n seconds, then the scale for the area is 1 sq. in. to 

rads. , » , . 
mn-Xsecs., that is, 1 sq. in. to mn radians. 

SOCkS. ^ 

29. Linear Acceleration of a Point having Circular Motion.— 
Consider a point which moves in a circle with an accelerated 
motion ; let its angular speed when it is at P (Fig. 25) be co^ and. 
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after an interval t, when it is at Q, be ojg. The corresponding 
linear velocities are Vi^rwi and and on setting these out 
from a common point o the change of velocity is represented by 
the line joining their ends (see Art. 23). On o'p^ take a 
point r such that or=opi; then the change of velocity 1^2 
be resolved into the copiponents piV and rp2, the latter being 
equal to The acceleration of the point may be regarded 
as being composed of two components corresponding to the two 
components of the change of velocity. Taking the component 
p^r first, if the time interval t is very small, then the chord p^r 
equals the arc pir approximately, hence the average acceleration 

due to the component j)ir is — ~. and its direction 

is along ppr. When the time interval is made indefinitely small 
the approximation above becomes exact, and the direction of 
piV becomes perpendicular to opi, that is, parallel to OP, and 
0 
- becomes coj, the angular speed at the instant when the point is at 

P. Hence one component of the acceleration of the point is 
equal to ViWi and is directed towards the centre of rotation; this 
component may be called the normal or centripetal component of 
the acceleration and, clearly, it is due simply to the changing 
direction of the velocity of the point. Since ?q=ra>|, the normal 

acceleration may be written or 

Coming now to the other component of the change of velocity, 

the average acceleration due to this is 
^2—r(aj2—a>i) 

t ~ i 
in the 

direction op^- When the time interval is made indefinitely small 
this direction coincides with qpi, that is, it becomes perpendicular 
to OP, arid the average acceleration becomes the actual accelera- 

COn—CUi 
lion at the instant. Since the value of the ratio —--when the 

t 
interval t is made indefinitely small is the angular acceleration a 
at the instant when the point is at P, the acceleration of the point 
due to the component rp2 is equal to ra. This component is 
c;alled the tangential component and clearly is due to the changing 
magnitude of the velocity of the point. 

80. Motion along any Curve.—These results can be applied to 
the motion of a point along any curve. Thus if O is the centre of 
curvature of the curve APB at the point P, Fig. 26, then OP(==r) 
is the radius of curvature at that point, and if v is the velocity of 
the point at the instant it is at P, then the angular speed of the 



ANGULAR MOTION 23 

point about O at the instant is -—ca. The normal acceleration 

of the point is — and is directed along PO. 

I'lie tangential acceleration is in the direction 
of the tangent at P and is given by »v being 
the distance of the point measured along the Kio. 2i) 
curve from any point on the curve as origin. 
Numerically i=v, the velocity at any instant, and hence tiie 

tangential acceleration S, being equal to » ii=^ equal to - 
dt‘ 

LNKKClSES 11 

1. A flywheel 2 ft. dia. rotates about a fixed axis at J()()() r.p.jii. AVhut is llio 
speed in ft. per sec. of a point on its circuniferonre ? 

2. A point on a wheel 3 ft. dia., whose axis is fixed, Jias a linear speed of 
1000 ft./min. What is the angular speed in rads./sec*. ? 

3. A wheel 30‘in. dia. roils without slip along the ground and its angular spc'cvl 
is 200 r.p.m. What is the speed in ft./sec. at any instant of (ri) the point of tla^ 
wheel that is in contact with the ground, (6) the point on the circunitereneci that 
is vertically above the axis, and (r) a iioint on tlio axis ? 

4. A shaft rotates about a fixed axis, and at a given instant its angular sjieed 
is 100 r.p.m. Ton seconds later its speed is 500 r.p.rn. What is llie average 
angular acceleration, in rads./sec.*, during the interval ? 

5. A flywheel is rotating with a constant angular acceleration of 2 rads./sec.*. 
What will be its angular speed at the end of 5 secs, if its angular speed at the 
c'ommonconiont is 150 r.p.m. ? What angular displacement will have occurrc'd 
during the interval ? 

0. A weight is attached to a cord which is coiled round a pulley 3 in. dia. If 
tlio weight falls 8 ft. in 10 secs., starting from rest and having constant accelera¬ 
tion, find (a) the angular acceleration of the shaft, (fe) the angular speed at tlic 
end of 8 secs., and (c) the angle turned through in the 10 secs. 

7. A flywheel 2 ft. dia. rotates at 1000 r.p.m. What is the acceleration of a 
point on its rim ? 

8. A wheel 1 ft. dia. starts from rest with a constant angular acceleration of 
1 rach/sec.*. What is (a) the normal component and (6) the tangential com- 
ponent of the acceleration of a point on its rim 5 secs, after the start ? 

9. A car moves along a curved path with a speed of 40 m.ji.h. If at a given 
moment the radius of curvature of the jiath is 120 ft., what is the normal accelera¬ 
tion t 



CHAPTER 111 

(This chapter may be omitted on a first reading.) 

ANALYTICAL KINEMATICS OF A POINT 

31. Axial Components of Velocity and Acceleration.—When the 
equation to the path of a point is given in terms of the rectangular 
co-ordinates of the point it is convenient to obtain the velocity 

and acceleration of the point in terms 
Y of its component velocities and accele¬ 

rations parallel to the axes. These 
components are sometimes called the 

i - axial components. Consider a point 
-p that moves along a fix^d curve as in 

Fig. 27. Let its position at time i 
be P and at time ^+8^ be Q. Then 

O ^ the change of position in the in- 
FiG. 27 terval ht is PQ=85 and the aver¬ 

age velocity during the interval is 
8,5 . 
^ in the direction PQ. When the interval St is made in- 

Ss ds 
definitely small the ratio becomes the actual velocity at the 

time /, and its direction is that of the tangent to the curve at P. 
The displacement Ss may be resolved into the components 8:c and 
Sy, and since these occur in the time 8f, the average velocities in 

Sx Sy 
the directions OX and OY respectively are and When 8^ 

• dtX d\t 
is made indefinitely small these velocities become ^ and the 

d/8 
components, in the directions OX and OY, of the velocity ^ of 

the point at the instant. Since 852~8a:2+8y2, we have 

and when St is made indefinitely small this becomes 
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from which the velocity ^ may be found in terms ©f its com- 

dx dy ds 
ponents ^ and The direction of the velocity is given by 

Tan ^-^Lim , 
hy 8.r 

' ti J( 

—Lim. 

6 being the angle between the velocity and the x axis. 

32. SimiJarly the components, parallel to OX and OY, 
of the acceleration of the point, being the time rates of 

1 r. 1 . . . dx ^ dy 
change oi the component \elocitie8 ^ and arc given 

d'^x d^y 
by ^ and ™ respectively. The acceleration of tlie point is 

^ (^) direction is given by Tan 

(f> being the angle between the direction of the acceleration and 
the X axis. It should be noted that the acceleration of the point 

is not which is only one component, the tangential, of its 

acceleration. 

33. Radial and Transverse Components.—When the equation 
to the path is given in polar co-ordinates it is convenient to obtain 
the velocity and acceleration of the point in 
terms of their components along, and per¬ 
pendicular to, the radius vector of the point 
at any instant. In Fig. 28 let the position 
of the moving point at time t be P, deter¬ 
mined by the co-ordinates r, d. After an 
interval of time let the point have moved 
a distance 85 along the curve to the position 
Q (co-ordinates r-|-8r and Draw 
the arc PR with centre 0 ; then OR=r, RQ=8r. The displace¬ 
ment PQ may be resolved into the components PR and RQ. 
Now if 8/, and therefore 8^, is very small, the chords PQ and PR 
may be assumed equal to the corresponding arcs ; the displace¬ 
ment of the point is then 8s in the direction PQ and its components 
are PR-=r8^ in the direction PR and Sr in the direction RQ. 
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Hence the average velocity of the point during the interval is ^ 

1 . _ Sr , . . , . 
and its components are and When the time interval is 

made indefinitely small the approximations made above become 

exact, “ becomes i, the actual velocity at the time and its 
of at 

components arc r— perpendicular to OP and ~ along OP. These 

are respectively the trav^^jerse and radial components. 

34. Turning now to the acceleration of the point, let the radial 
and transverse components of the velocity of the point at time t 

be denoted by u and v respectively 
as in Fig. 29. After an interval 
St these components have changed 
their magnitudes to u-]~Su and 
v+8?; and their directions have 
changed by the angle SO, Through 
Q draw QL and QM parallel and 
perpendicular respectively to OP. 
Then at time the component, 
in the direction QL, of the velocity 
of the point is 

(tf+8a) Cos 8^-“(i;+Si;) Sin SO ; 

hence the change of velocity in 
this direction is (ff 4"8w) (Jos 8^—(?;+8^;) Sin 8^~w. Now when 
8^ is very small Cos 8^ = 1 and Sin 8^=8^ approximately ; thus 
the change of velocity along QL is Su—vSO—SvSO and the last 
term is negligible in comparison with the others. Hence the 

average acceleration in the direction QL is — 
bt ot bt 

and when St is made indefinitely small the approximation becomes 
exact and the average acceleration in the direction of QL becomes 
the actual acceleration at the time t, along OP ; its value is then 

du dO 

Fig. 2D 

v-j. The first term is the rate of change of the radial velocity 

u and the second term is the acceleration due to the changing 

do 
direction of the velocity v; this will be clear if ^ is written as a> 

dr 
and reference is made to Art. 29. Since (by Art. 33) 
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we obtain for the radial component of the acceleration of 

• 1 • ^ 
the point the expression ^ 

^\dt} ’ 
or r—r{6y-. 

Similarly for the acceleration in the direction of QM, this is 
given by the limiting value, when St~o, of the ratio 

change of velocity in the direction QM 

that is by 
(r i Sr) tV)s bO t-(// f bu) Sin bO r 

Lim.g^ „--—---^-—- 

which is e(iual to 
dv dO 

The first term ot this is llic rate of 

change of the velocity r and the second term is the acceleration 

due to the changing direction of the velocity a. Since and 
dO 

we obtain for the transverse component of the acceleration 

of the point the expression 

dr dO d'^O dr dO 

dt ‘ dt ^ dt' dt 

d'^S dr dd 
, or rd I 2r0 

35. Motion of a Point that Moves in a Rotating Plane.—Con¬ 
sider a point P, Fig. 30, which is moving along the curve LM 
while the plane in which that curve lies 
rotates about the axis OY. Let the position 
of the plane XOY be specified by the angle 9 
between it and a fixed plane AOY, and let 
the position of the point in the plane be 
specified by the rectangular co-ordinates x', y. 
The velocity and acceleration of the point P 
at any instant can be resolved into three 
components, one parallel to OY, one parallel 
to OX and one perpendicular to the plane 
XOY. The components parallel to OY are 
unaffected by the rotation of the plane, and 
hence are y and y respectively. The other 
components are the same as the correspond¬ 
ing components of the velocity and accelera- Fig. 30 

tion of the projection Q of the point. The 
motion of Q being defined by the polar co-ordinates x, 9, we have, 
by Arts. 33 and 34, radial velocity parallel to OX=i, radial 
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acceleration—transverse velocity perpendicular to 

plane XOY—xd, transverse acceleration— 
If X is constant, then the point P moves on the surface of a 

cylinder whose axis is OY and it is said to have cylindrical motion. 
Then if x—r, the radius of the cylinder, x and i are zero, and on 
substituting these values in the expressions above the components 
of the velocity and acceleration in this type of motion are obtained. 
Again, if x=^y Tan a, where a is a constant, then the point moves 
on the surface of a cone having O as apex and OY as axis. Then 

dx dv 
x==~ . :£=Tana.y 

dy dt ^ 

i—Tan a)—y Tan a 

and on making these substitutions the components for this type 
of motion, conical motion, are obtained. Similarly if the curve 
LM is a circle, centre 0, the point P moves on the surface of a 
sphere and has spherical motion. The components may be 
obtained in a similar manner to that employed for conical motion, 
but this is left as an exercise for the student. 

86. Moving Axes.—Consider a point P, Fig. 31, that is moving 
along a curve LM, which is fixed relatively to the frame XjOiYi, 

^ while that frame itself moves re- 
y latively to the fixed frame XOY, 

Y but remains always in the plane - 
“[ "V.XOY. Then the velocity and 

/ ' Y' acceleration of P relative to the 
\ / frame XOY may be found as 

,, \ follows. Let the position of P 
I i i relative to XjOiYj be determined 
I Qra.- y- i--- co-ordinates Xi, yi, and let 

±_I_I_^ the position of XjOiY^ relative 
_X_to XOY be determined by x, y, 

Fio. 31 the co-ordinates of Oi, and the 
angle 6. Then the co-ordinates of 

P relative to XOY are given by 

x—x+xi Cos d~yi Sin $ 
j/~y+Xi Sin B+yi Cos 6 

and on differentiating these expressions with respect to time we 
, dx dy 

obtain ^ and the components of the velocity of P relative to 

the frame XOY. 
dx dx . dxi ^ ^ rxdO dyi ^ ^ ^dd 

^ 5/ - dT ^-2/1 Cos 0 ^ 
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andi^ 
(it 

dx dxi 

dy dy dy^ 

Sin 

^ Cos Sin 9—(y\ Sin d—Xi Cos 9^^. 

The term ^ is the component, parallel to OX, of the velocity of 

0, relative to O. The terms Cos Sin 9 are the com¬ 
at at 

poiients parallel to OX of the velocity of P relative to the frame 
...... .. . .dO , 
XiOjYi, while the remaining term (x’l Sill 9~\-yi Cos 0)~^^ is the 

component parallel to OX of the velocity of P relative to 0i due 
to the angular velocity of the axes about Oj. Similarly with the 

. n dy 
expression lor 

Thus it is seen that the velocity of P relative to XOY is the 
vector sum of the velocity P would have if the frame XiO^Yi 
were fixed and P moved along LM, and the velocity P would have 
if it were fixed relative to the frame XiOjYi while that frame 
performed its motion relative to XOY. Expressed in another 
way the velocity of P relative to XOY is the vector sum of the 
velocity of P relative to a frame X'OiY' that, while moving with the 
point Oi, does not rotate, and the velocity of Oj relative to XOY. 

dx d\i 
37. On differentiating the expressions for ^ and ^ with respect 

d'^x d^y 
to time we shall obtain ^ and ^, the components of the accelera¬ 

tion of P relative to the frame XOY. Thus, 

d^x d^x , d^xi ^ dxi ^ d9 d”-yi ^ ^ ^d9 
^ Sin fl Sin fl 

■ dt ^ ^ • dt dt^ ® -di^^dt 

Sin d+Xi Cos 6 . 
d9 dyi 

Idt • dt 
dW 

(xi Sin 9+yi Cos 9)-^ 

Cos 9—yi Sin 9 . 
d9^d9 

d^x.^ „ d^y.„. „ „ r. 

“(a:i Cos 6—yi Sin 
dd/dxi 
dt\dt 

Sin 9 + 

(4) (5) 
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(Similarly, 

^ ^ 
dt~ dt^^dt- 

Cos 61-+ 
d-X) 

li^ Sin 6 — {yi Sin 0—xj ('os 

(1) (2) (3) 

-(y, Cos e+x, Sin Sin Cos d) 

V-. M , ■■.M.l...—1.—. ■ I I.. ✓ ^ ■ ' .." -'’'-V". ■" 

(4) (5) 

TerniH (1), (3) a‘id (4) of these expressions together give the 
acceleration P would have if it were fixed to the frame XiOiYj 
while that frame performed its motion relative to XOY, while 
terms (2) give the acceleration P would have if the curve LM and 
its frame X^OiYi were fixed relative to XOY and the point 
performed its motion along the curve. Thus it is not true to say 
that the acceleration of P relative to XOY is the vector sum of 
the acceleration P would have if X^OiYi were fixed and the 
acceleration P would have if it were fixed to XjOiYi, since this 
does not bring in the acceleration represented by terms (5). 
These terms represent an acceleration 2ua) where u is the velocity 

of the point P along the curve LM and a> ^equal to is the 

angular velocity of that curve relative to XOY, and this accelera¬ 
tion is sometimes called the compound supplementary acceleration. 
Thus we have 

The acceleration of P relative to XOX 

=The acceleration P would have if the curve LM were fixed 
to XOX. 

+The acceleration P would have if it were fixed to the curve 
while that curve performed its motion relative to XOX. 

+The compound supplementary acceleration 2uw. 

This is usually called Coriolis's Law. The direction of the com¬ 
pound supplementary acceleration is perpendicular to that of the 
velocity u and its sense may be determined as described in 
Art. 107. 

38, Rotating Axes.—The results of the two previous articles are 
considerably simplified when the frame XiOiYi merely rotates, 
with a constant angular velocity, about the point 0, especially 
if the fixed axes OX, OY are chosen, as they usually can be, so 
that they coincide, at the instant under consideration, Vith the 

_ _ dy d^x d^y d^O 
moving axes. Then ^ ^ ^sero 
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and the expressions for the component velocities reduce to 

dx dxi dd 

and 

~u 

dj[ d^ dS 
dt ~ dt ^ ^ ' di 

while the expressions for the component accelerations become 

d'^x d%| ^dyy dd 
dV^ ^ dt 

du dO . 

dt-^^ iW 

and 
dt '^" 

"dl ^dt 

“ dt~ dt 

dv dd 

"dt'^'^Jt 

d£ 

dt !/i 

which brings out clearly the fact that the acceleration of P is due 
partly to the changing magnitude and partly to the changing 
direction (consequent on the rotation of the axes) of the velocity 
of P. 

EXERCISES 111 

1. The ends A and B of a rod 2 ft. long are constrained to lie in two lines OX 
and OY respectively, the angle YOX being 90°. If the end A moves with a 
constant velocity of 1 f.s. towards O, find, for the instant that OA— 1 ft., the 
components parallel to OX and OY of the velocity and acceleration of the x^oint 
of the rod distant 6 in. from A. 

and at any instant 
Prove that tho 

2. A rod AB moves relative to rectangular axes OX, OY, «,inj 
the component velocities of its ends A and B are Va Vb’ Jt'rove T>naL i.no 
components of the velocity of a point P distant a from A and 6 from B are 

and 
a-f 6 <z -f- 6 

3. A particle moves along the curve y—x^ with a constant speed of 10 f.s. 
What are the components parallel to the axes of the velocity and acceleration of 
the point when a: = 2 ft. ? 

4. A particle moves along a curve whose equation relative to i-ectaiigular axes 
Ox, Oy is y—x^ with constant speed of 10 f.s., while those axes rotate about O 
with constant angular siieed of 1 rad./sec. anticlockwise. At a given moment 
x~2 ft.; what are then the components, parallel to fixed axes which at that 
moment coincide with the moving ones, of the velocity and acceleration of the 
particle ? 

6. A particle moves round a circle radius 1 ft. with a constant speed of 10 f.s., 
while the circle rotates with constant speed of 5 rads./sec. about a vertical 
diameter. Taking the latter to be the y axis and the centre of the circle as origin. 

• These expressions camiot be obtained by differentiating those for u and v, 
because in those expressions terms whose values are zero have been omitted, but 
the differential coefficients of these zero terms are not necessarily zero. 
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find the a-, y and z components of the velocity of the particle when the plane of the 
circle makes an angle of 45° with the xy plane and the radius to the particle makes 
an angle of 45° with the xz plane. Take the sense of rotation of the circle to be 
from Ox to Oz and the sense of the rotation of the particle from Oy towards the 
xz plane. 

6. A particle slides with a constant acceleration of 2 ft./sec. * down the generator 
of a cone, semi*apox angle 30°, starting from rest et the apex, while the generator 
rotates about the axis with an angular acceleration of 0-5 rads./sec.'^. If the 
generator starts from rest in the xy plane, at the same moment as the partic le, and 
rotates towards the yz plane, find the x, y and z components of the velocity and 
acceleration of the particle at the end of 2 secs. 

7. A point P moves round a circle centre O, radius r, while the plane of the 
circle rotates about a vertical radius OY (Y being above O). Taking OY as the 
axis of y and O as the origin, derive expressions for the radial, transverse and axial 
components of the velocity and acceleration of the point. Let angle YOP bo a 
and take the angular spet'd and acceleration of the circle about OY to be co and 
w respectively. 

8. The figure shows a simple form of governor, and the 
w'hole mechanism is rotating about the axis OY with an 
angular velocity of 10 rads./sec. and an angular accelera¬ 
tion of 2 rads./sec.*. If OP~l ft., a = 30°, a —1 rad./sec. 
and a =^—0-6 rads./soc.^, find the components of the 
acceleration of the point P. 

Y 

9. In the jib crane shown diagrammatically in the figure 
the jib OP is 20 ft. long and is being raised with an angular 
velocity of 0*05 rads./sec. and is rotating about the axis OY at 
an angular speed of 0*2 rads./sec. If the rope is being hauled up 
with an acceleration of 2 ft./sec.* and the load W starts from 
rest when the distance PW is 10 ft. and the angle YOP is 45°, 
find the components of the acceleration of the load W. Neglect 
the diameter of the pulley at P. 

10. The figure shows the mechanism of a rotary 
engine (see Art. 122), and relative to axes OX, OY, 
fixed to the cylinder A, the position of the piston B is 

r* 
given approximately by a: = Z -f r Cos ^ ^ Sin ^ d. If 

the cylinder is rotating about O with an angular speed 
of 1000 r.p.m., find the components along and per¬ 
pendicular to OE when the angle ^—20°. Assume 
Z=- l ft. and r=0-25 ft. 

11. A rod OP, length 6, rotates with constant angular 
speed o) about a fixed centre O. A second rod OjL also 
rotates about a fixed centre Oj and is always parallel to 
OP. If PQ is drawn perpendicular to OP, prove that 
the components of the velocity of Q relative to the 
fixed frame XOY are oia Sin* d—taa Cos* B—uib Sin 6 
alon OX and 6<u Cos 6—2aw Sin 0 Cos 6 along OY. 



CHAPTER IV 

MOTION OF A LINE. PLANE MOTION OF A BODY 

39. This chapter commences with the consideration of the 
position and motion of a line ; but this also covers a tj^pe of 
motion of a body which is of very frequent occurrence in 
mechanisms—namely, plane motion. 

A body is said to have plane motion when three of its points 
that form a triangle lie always in a fixed plane, this plane being 
called the plane of motion. A cube which always keeps the same 
face in contact with a fixed flat table has plane motion. The 
plane of motion, or one parallel to it, will then always intersect the 
body in the same section, and that section may be used to repre¬ 
sent the body. Further, since the position of every point of "such 
a section is fixed relatively to the ends P and Q of any line of the 
section, the line PQ may be used to represent the section and 
therefore the body. 

40. Position of a Line.—The position of a line is fixed relative to 
a rectangular frame of reference when the positions of any two 
points of the line are fixed ; six co-ordinates must be given to 
specify the positions of these two points, but these co-ordinates 
are not independent. They are related by an equation of the 

form (a:2—a:i)2-f (^2—^1 )^+(252—2:1 )2—Z2, where I is the length of 
the line between the points XiyiZi and 

Alternatively the position of a line may be specified by giving 
the three co-ordinates of any point on it together with the three 
angles that it makes with the three axes. Again six quantities 
must be given, but again they are related by an equation. 

A line which is free in space has thus only five degrees of 
freedom. 

41. Motion of a Line.—^This may be of two distinct kinds, 
namely. Translation or Rotation, although it may have both kinds 
simultaneously. 

In motion of translation the line always remains parallel to its 
original position ; the paths described by all the points of the line 
are similar, as indicated in Fig. 32. 

In motion of rotation the paths of all the points of the line are 
concentric circles whose centres lie on a fixed straight line which 

3 33 
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is the axis of rotation. In Fig. 33 this axis is seen as the point O, 
since it is perpendicular to the plane of the paper because the 
first, last and all the intermediate positions of the line lie in that 

Fic. 32 Fig. 33 

plane. The point O is called the centre of rotation ; it should, 
however, always be remembered that rotations are about axes and 
not about points. 

A line that is free in space may have three independent trans¬ 
lations, parallel to the three axes. It can have, however, only 
two independent rotations, about any two of the axes. Any 
rotation about the third axis could be produced by giving the line 
suitable rotations about the other two axes, and so is not inde¬ 
pendent. These three translations and two rotations constitute 
the five degrees of freedom which, as stated in Art. 40, a line that 
is free in space possesses. 

If a line is confined to a particular plane, say that of the paper, 
then it has only three degrees of freedom, two translations and 
one rotation, the latter about any axis perpendicular to the plane 
of motion. 

If one point of a line is fixed the line has only two degrees of 
freedom, two rotations about any two axes passing through the 
fixed point. 

42. Translation produced by two Rotations.—The change of 
position produced by a translation can also be produced by means 
of two rotations, about two centres, one of which may be chosen 
arbitrarily. The translation from AB to AjBj in Fig. 34 may 
be produced by a rotation about any point Oj on the perpendicular 
through the mid-point of AAi and lying in the plane of AB and 
AiBi (which brings the line to A1B2) together with a rotation, 
about Ai, through the same angle as that about Oi, but in the 
opposite sense. 

Alternatively, as shown in Fig. 35, the first rotation may be 
about any point Oj, bringing the line to A2B2. The second 
rotation is again equal in magnitude, but opposite in sense to the 
first, and it must be about one particular point O2 lying on the 
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perpendicular bisector of A2AX and chosen so that ZA2O2A1 

=/.AOiA2. 
Fig. 35 shows also that a rotation, as, for example, from AB to 

Fig. 34 Fig. 35 

A2B2, may be produced by a translation, from AB to AjBj, 
together with a rotation, about another axis O2. 

43. Virtual Centres.—When a line is confined to a plane, then 
any displacement it may receive can also be produced by a single 
rotation about some particular centre, called the virtval centre for 
the displacement, which may be found as follows : 

Let the displacement be from AB to AjBj in Fig. 30. tJoin AAj 
and BBi, and from their mid-points draw perpendiculars to 
intersect in O, which is the required centre. 
Actually, of course, the rotation is about 
an axis, through O, perpendicular to the 
plane of motion. This axis may be called 
the virtual axis, and such an axis may be 
found for any displacement of a line, 
whether in a plane or not. Thus let AB • / 
and AjBi be the two positions of the line. 1/ 
Join A to Ai and at the mid-point L y 
erect a plane perpendicular to AAj. Join O 
B to Bj and at the mid-point M erect Fig. 36 

a plane perpendicular to BB^. These two 
planes will then intersect in a line which is the required axis. 
Should the two planes be parallel to each other, then the virtual 
axis lies at infinity and the displacement is a translation. 

44. Instantaneous Centres. Plane Motion.—A line that is 
moving in any manner may be considered at any particular 
instant to be rotating about some centre. This centre,is called 
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the instantaneous centre and is the virtual centre for the move¬ 
ment of the line during an indefinitely small time interval in¬ 
cluding the instant under consideration. It cannot, however, be 
found by the methods used for virtual centres, but consideration 
will show that if the displacement AB to AjBi (Fig. 36) is in¬ 
definitely small, then the lines LO and MO become the normals 
to the paths of A and B, respectively, at the positions occupied by 
those points at the instant, so that the instantaneous centre may 
now be found by drawing the normals as shown in Fig. 37. 

Since the velocities of the points A and B are tangential to 
their respective paths, the normals AO and BO are perpendicular 
to those velocities ; hence if the directions of those velocities alone 
are known, the instantaneous centre may be found, as shown in 
Fig. 38, by drawing the perpendiculars AO and BO. 

B 

• • 

Fig, 37 

If the instantaneous angular velocity of AB about O is rads./ 
sec., then 

Vo_^ 

^‘'■“OA"“OB* 
Hence if the magnitude of Va is known, that of v?, can be calculated 
after OA and OB have been measured. 

The velocity of any other point C of, or attached to, the line 

can also be found, thus Vc^Q. OC=Va 
OC 
OA- 

The direction of 

Vc is, of course, perpendicular to OG and its sense is obtained by 
inspection. 

It should be noted, however, that the accelerations of the points 
A, B, etc., are not the same as those the points would have if O 
were a fixed centre ; instant j»neous centres should not be used to“ 
determine accelerations. 

The constructions of Figs. 37 and 38 fail when the velocities 
Va and Vf, are parallel. In this case, however, the velocities must 
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either be equal, when the motion is one bf translation, or, if they 
are unequal, must both be perpendicular to the line, otherwise it 
will be found that the components, along AB, of 0^. 
Va and vi, are unequal, which is impossible, since 
the distance AB is fixed. When Va and vi, are parallel 
and unequal the instantaneous centre can be found, 
if the magnitudes of Va and or at least their 
ratio, are known, as indicated in Fig. 39. 

45. Centrodes.—In Fig. 40, let the line AB be 
drawn on a sheet of paper 1, which is free to move 
relatively to the sheet 2, underneath it, and let the 
ends A and B of the line move along the paths aa 
and bh, respectively, drawn on the sheet 2, which is regarded 
as being fixed. At the instant that the fine occupies the position 
shown the instantaneous centre of AB will be some point O. 
Let this point O be marked on a third sheet 3, which, for the 
present, is at rest relative to 2. An instant later the instan¬ 
taneous centre will be some new point O], and as the line AB 
moves so the instantaneous 
centre traces out a path XX 
on the sheet 3. Let this 
sheet carry a line CD, then 
the curve XX is the centrode 
of AB relative to CD, and it 
may be regarded as being 
fixed to CD. Suppose now 
that AB is brought to rest 
in the position shown, but 
that by giving a suitable 
motion to the sheet 3 the 
relative motion between AB 
and CD is kept the same as 
before. The ends of the line 
CD will then trace out paths 
cc and dd relative to the 
fixed sheet 2, and at any 
instant there will be an in¬ 
stantaneous centre for CD. 
This centre will have a locus, 
some curve YY, which may 
be drawn on the sheet 1, 
which is now at rest. The curve YY is the centrode of CD relative 
to AB and it may be regarded as being fixed to AB. At any 
instant the two centrodes touch in a point which is the instan¬ 
taneous centre at the instant, and the relative motion between AB 

Fig. 40 



38 MECHANISM AND THE KINEMATICS OF MACHINES 

and CD may be produced by rolling the one centrode, without 
slip, on the* other. 

When considering the motion of a line in space the centrode XX 
which is fixed relatively to the space is sometimes called the 
space-centrode^ while the centrode YY which is fixed relative to 
the line or body AB is called the body-centrode. 

It is instructive to derive the centrodes in another way, as 
follows : Refening to Fig. 41, let AB, A^Bi, A2B2, etc., be a 

number of consecutive positions of 
B Q a hne moving in a plane, and let \\ / / * Oj, O2, O3, etc., be the virtual centres 

I / for the displacements AB to AjBj, 
\ / / A^Bj to A2B2, etc. Then O^, O2, 

O3, etc., form a polygon which may 
; / , be regarded as being fixed to the plane 

of motion. Now let a second polygon 
*• O3', etc., be constructed 

such that O1O2'—O1O2, a=zlAOAi; 
02'03'=0203, ^ = ZAi02A2~<^, etc. 
Then if the second polygon is im- 

Pia. 41 agined to be fixed to the line and to 
rotate about Oj until O1O2' coincides 

with O1O2, then about O2 until 02'03' coincides with O2O3, etc., 
the line will come successively into the positions AiB^, A2B2, etc. 
If now the successive positions of the line are taken closer and 
closer together, then the polygons will ultimately become smooth 
continuous curves and the motion of the line relative to the plane 
of motion could be produced by the rolling of the curve that is 
fixed to the line on that which is fixed to the plane of motion ; it 
will be seen that the curves are respectively the body and space 
centrodes. 

46. Axodes.—The instantaneous centres, 0|, O2, etc., are, of 
course, only the end views of instantaneous axes. These axes 
form a pair of ruled surfaces (surfaces which can be swept out by 
the continuous movement of a straight line), which are called 
axodes. The centrodes are thus merely the intersections of the 
axodes with the plane of motion. In plane motion all the instan¬ 
taneous axes are perpendicular to the plane of motion and form a 
cylindrical surface, but for other types of motion the axodes are 
either conical or of a general type of ruled surface, neither conical 
nor cylindrical. (It should be noted that the terms cylindrical 
and conical do not imply that the surfaces are circular cylinders 
or cones, although in many cases they are circular.) 

47. Instantaneous Axes. Non-plane Motion.—When the veloci¬ 
ties of the ends of a line are not co-planar, the instantaneous axis 
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may be found as follows : Let the line be labelled AB, and at A 
and B erect planes perpendicular respectively to the velocities of 
the points A and B. These planes will intersect in a line which is 
tlie instantaneous axis. 

The construction fails when the velocities are both perpen¬ 
dicular to the line, but, provided the magnitudes of the velocities 
are known, the instantaneous axis may 
be found as follows : Choose a plane (see 
Fig. 42) containing the line AB and such 
that the resolved parts of the velocities Va 
and Vh in this plane are equal in magnitude 
and the same in sense. The resolved parts 
of 7)a and Vb in a plane, also containing AB, 
but being perpendicular to the first plane, 
will then be either unequal in magnitude 
})ut the same in sense, as shown in the 
hgure, or they may have opposite senses 
and c‘an then be cither equal or unequal in 
magnitude. Join the ends 0 and D of these 
last velocity vectors and produce the line 
CT) to intersect the line AB, produced, if nec^essary, in O. Then a 
rotation about an axis 00j parallel to the equal components of 
Va and Vb will give A and B the unequal component velocities, 
while a translation along the axis through 0 will give A and B 
the equal component velocities. Hence a screw motion about 
OjO will give A and B their actual velocities The axis 001 is 
the instantaneous axis of the motion of AB. 

A screw motion about an instantaneous axis is the most compli - 
cated motion a line (or a rigid body) can have. 

The locus of the axis 00 j is the space-axode of the motion of 
AB and corresponding to it there is the body-axode fixed to the 
line. The motion of the line is then produced at any instant by 
a screw motion of the body-axode about the line in which, at the 
instant, it touches the space-axode. 

48. Spherical Motion.—^A body is said to have spherical motion 
when it moves so that a fixed spherical surface 
always intersects the body in the same section 
as indicated in Fig. 43. Since the position of 
any point of that section is fixed relatively to the 
ends, A and B, of a portion of a great circle * of 
the sphere, the arc AB may be used to represent 
the section and thus the body, just as a straight 
line may be used to represent a body having plane 

• A “ great circle ” of a sphere is any circle, lying on the surface of the sphere, 
whose plane contains the centre of the sphere. 

Fia. 43 

\ 

Fig. 42 
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motion; in fact, the latter is simply a special case of spherical 
motion, the sphere being infinitely large. Thus what has been 
said in Arts. 42 to 46 has a counterpart in spherical motion. For 
any displacement of the line AB virtual axis may be found about 
which a single rotation will produce the displacement. The 

method of finding this axis is analogous 
to that described in Art. 43. In 
Fig. 44, let the displacement be from 
AB to AjB^, and join A to A^ and B to 
Bj by arcs of great circles. Through 
the mid-point L of the arc AAj draw 
a plane OLR containing the centre O 
of the sphere and being perpendicular 
to the plane AOAj. A suitable rota¬ 
tion about any axis containing O and 
lying in the plane OLB will bring 
A to Aj. Similarly through the mid¬ 

point of the arc l^B] draw a plane OMR containing O and 
being perpendicular to the plane BOBj. A rotation about any 
axis containing O and lying in the plane OMR will bring B to Bj. 
The planes OLR and OMR will intersect in a line OR which is the 
required virtual axis. To jirove this join R to A, Aj, B and B^ 
by means of arcs of great circles; then the spherical triangles 
ARB and AjRBi are equal, having their corresponding sides 
equal, hence the angles ARB and AjRBi are equal, and on adding 
to each the angle BRA| the angles ARAj and BRBj are seen to 
be equal. Thus a rotation about OR through the angle ARA^ 
which will bring A to A^ will also bring B to Bj. 

When the displacement of the line is made indefinitely small 
the virtual axis becomes the instantaneous axis, and it may be 
found by drawing through A and B planes perpendicular to the 
velocities of A and B respectively. These planes will intersect 
in the instantaneous axis OR, which can always be found, without 
exception. The locus of the instantaneous axis OR is the space- 
axode and is a conical surface whose apex is at O. This conical 
surface intersects the sphere in a curve wliich is the space-centrode. 
Corresponding to the space-axode there is a conical surface having 
its apex at O and being fixed to the line AB ; this is the body- 
axode, cold the motion of the line may be produced by the rolling 
of the body-axode on the space-axode. 

49. Angular Velocity.—Just as the linear velocity of a point is 
its speed in a stated direction, so the angular velocity of a line or 
body is its angular speed in a stated direction, the direction being 
that of the axis about v^hich the motion takes place. Thus 
angular velocities, like linear velocities, possess magnitude, 
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direction and sense, and they also can be represented by lines, 
but whereas a portion of any line parallel to the direction of a 
hnear velocity may be used to represent that velocity, with angular 
velocities portions of the axes of the motions only may be used. 
This difference is sometimes expressed by the statement that a 
linear velocity is an unlocalised or free vector, v/hile an angular 
velocity is localised in a line, the axis of the motion, and is called 
a rotor or locor. An angular velocity is also called a sliding vector, 
since any portion of the axis may be used to represent it. 

To in^cate the sense of an angular velocity, clockwise or anti¬ 
clockwise, an arrowhead is placed on the line representing it, 
according to the following convention. The arrow¬ 
head is placed so that it points in the direction a 
right-handed screw would travel if it turned in a 
fixed nut in the same sense as the angular velocity, 
as shown in Fig. 45. The method of labelling linear Fig. 45 

velocities; stated in Art. 16 may also be used for 
angular velocities ; thus ab is the angular velocity of B relative 
to A, and ba is the angular velocity of A relative to B. 

50. Simultaneous Angular Velocities. Intersecting Axes.—A 
line or body may have two or more simultaneous angular veloci¬ 
ties ; this is illustrated by the arrangement shown in Fig. 46, 
where the bevel wheel Q is free to turn on the arm R of an axle S 
that rotates in fixed bearings. The wheel Q meshes with a fixed 
bevel wheel T. When the axle S is turned, then Q turns on the 
arm R about the axis YY and the axis YY rotates about XX. 

When the axes of these simultaneous motions intersect, the 
motions may be compounded by the parallelogram law. Thus if 
OA, Fig. 47, represents the angular velocity oja of a body about 
an axis OA and OB represents the angular velocity of the axis 
OA about an axis OB, which is fixed relatively to a frame of 
reference (X), then OC represents the angular velocity Q of the 
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body relative to the frame of reference (X). This may be proved 
as follows: Let P be any point on OC and draw PE and PD 
perpendicular to OA and OB respectively. Then due to the 
angular velocity OA the point P has a linear velocity OA X PE 
perpendicular to the paper and directed upwards, while due to 
the angular velocity OB the point P has a linear velocity OB x PD 
perpendicular to the paper and directed downwards. But 
OA X PE — OA X OP Sin a and OB X PD=OB x OP Sin /S and since 
OA Sin a —AC Sin jS—OB Sin jS, the two linear velocities of P are 
equal. Hence P is at rest and^OC is the axis- of the resultant 
motion. Now consider the point A and draw AG and AF perpen¬ 
dicular to OB and OC respectively. The linear velocity of A is 
due solely to the angular velocity OB and is equal to OB x GA, 
but this is equal to OC X AF, since each is equal to the area of the 
parallelogram OABC. Now OCxAF is equal to the linear 
velocity A would have due to an angular velocity OC. Hence 
OC is equal to the resultant angular velocity. 

Since OC—OF-j-FC=OA Cos a+AC Cos we have the relation 
Cos aCos j3, giving the magnitude of the resultant 

angular velocity, and since OA Sin a™OB Sin jS, the position of 

the axis of the resultant is given by the relation 
Sin a cDh 

Sin p coa 

51. Parallel Axes.—In Fig. 48^ let AB represent the angular 
velocity Wa of a body about the axis AB and let CD represent the 
angular velocity of the axis AB about a fixed axis CD. These 
motions are realised in the arrangement shown on the right in the 

Fia. 48 

figure, where the wheel Q turns 
on a pin carried by an arm R 
that rotates about an axis O. 
The wheel Q meshes with a fixed 
wheel S whose axis is also O. 
Then the resultant angular velo¬ 
city of the body relative to the 
fixed frame of reference is equal 
to Wa+oib a^nd is about an axis 
RR situated as shown. The 
sense of the resultant is the 

same as those of the components. When the components are 
opposite in sense the position of the resultant depends on the 
relative magnitudes of coa and co*,. When wa is greater than Wh the 
resultant is equal to tjoa—cob and is situated as in Fig. 49, its sense 
being the same as that of Wa. The sketch on the right in Fig. 49 
shows a realisation of this case, the wheel S now having internal 
teeth. When oja is less than wt, the resultant is equal to to*—cua, 
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and is situated as in Fig. 50, its sense being the same as that of aji>. 
The sketch on the right of the figure shows a realisation of this 

Fig. 49 Fig. 50 

case, the wheel Q now being an internal one. The student 
should easily be able to verify these results for himself. 

>1! 

52, Skew Axes.—When the axes AA and BB of the component 
motions are not parallel and do not intersect, then the resultant 
motion is a screw motion about an axis RR which may be found as 
follows : Fig. 51 shows the axes in elevation and plan, ST being 
the shortest distance between the axes ; 0 is the plan view of ST. 
Consider a line RR which intersects ST at right-angles and which 
makes angles a and ^ with OA and OB as shown. Let the shortest 
distances between RR and AA and BB be I and m respectively. 

Fig. 51 Fig. 52 

Resolve coa and co/, parallel and perpendicular to RR. The perpen¬ 
dicular components are wa Sin a and wf, Sin j8, and because of these 
any point Q of RR will have vertical velocities equal to cDa Sin a x OQ 
and 0)1, Sin jSxOQ, the former being directed downwards and the 
latter upwards. Let a and p be chosen so that these vertical 
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, , , . , Sin a (xib . ,, 
velocities are equal: to do this we must have —7;=— : then the 

^ Sip p ix>a 

point Q and thus the line RR will have no vertical velocity. The 
components of coa and parallel to RR are co^ Cos a and Cos jS, 
and because of these components the line RR will have linear 
velocities, perpendicular to RR and in the horizontal plane, of 
magnitudes Cos a X Z and a>6 Cos ^ X m, the senses of these 
velocities being opposite. Let I and m be chosen so that these 

, . . 11,. 1 I <^b Cos jS Tan a 
velocities are equal; to do this we must have ———7;- 

^ m cx)a Cos a ian p 
then the line RR will have no velocity perpendicular to itself in 
the horizontal plane Returning to the components coa Sin a and 
Wb Sin jS, because ol these components any point of RR will have 
velocities coaSinaxZ and cob Sin pxm along OR. Thus the 
resultant motion is a screw motion about RR as ^xis, the angular 
velocity of this screw motion being equal to a>a Cos Cos 
and its linear velocity being equal to loja Sin a-{-ma)b Sin jS. The 
student should verify these last results for himself by showing 
that the linear velocity of the point S, which is due solely to the 
angular velocity ojb, is also given by the resultant motion about 
RR. Fig. 52 shows a realisation of this case, the gears S and Q 
now being ‘‘ skew ” gears (see Art. 186). 

53. Angular Acceleration.—^The angular acceleration due to the 
changing angular speed about an axis whose direction is fixed has 
been considered in Arts. 27 and 28; there is, however, an angular 

acceleration when the direction of the axis of an angular motion 
is changed, and this will now be considered. In Fig. 53 lot Oa 
represent the angular velocity, of a body A at one instant, and 
let Oaj represent the angular velocity after an interval of time 
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The magnitude of the angular velocity has not been changed, but 
the direction has been changed by the angle 86. Complete the 
rectangle OaaiC, then the cha.nge in angular velocity during the 
interval 8t is represented by OC, since OC+Oa—Oai. Hence 

OC 
the average angular acceleration during the interval is about 

ot 
OC as axis. Now OC —. 86 approximately, so that the 

average angular acceleration is When the interval 8t is 

made indefinitely small the approximation becomes exact and 
d6 

the angular acceleration at the instant is Q . about an axis 

perpendicular to Oa, that is, perpendicular to the axis of the 
angular velocity. This result should be com¬ 
pared with that of Art. 29, where it is shown 
tliat if a linear velocity v is changing its direc- ^ 

d6 , . '‘'/a! 
tion, i.e. rotating, at a rate then there ^ 

is a normal acceleration perpendicular to the \ 

velocity and equal to The analogy 

is illustrated in Fig. 54, where the rotating velocities are in full 
lines and the corresponding accelerations in dotted lines. 

EXERCISES IV 

1. A line AB moves subject to the following restraints; stale for each case 
how many degrees of freedom the line possesses in general and what those 
freedoms are. 

(а) The end A lies always in a fixed plane. 
(б) It makes constant angles with two fixed lines that are not parallel to each 

other. 
(c) The ends A and B each lie on a fixed surface. 
(d) The end A lies always on a fixed line, and the end B always on a fixed 

surface. 

2. The ends A &nd B of a rod slide along two fixed intersecting lines OX and 
OY respectively. Find the instantaneous centre of the motion for any one 
position of the rod. 

3. What do you understand by the terms virtual centre, inutantancoua axis, 
centrode o/ A relative, to B and axode ? 

4. A line AB 6 in. long moves so that A describes a circle radius 2 in., centre O, 
with constant angular speed of 100 r.p.m., while B moves along a produced 
diameter of the circle. Find graphically the speed of a point of the rod distant 
1 in. from A when the angle AOB = 60°. 

5. A rod moves so that a point P on it slides along a line OY, while the rod 
always passes through a fixed point Q on a line OX perpendicular to OY. Find 
the l.C. for several positions of the rod, and hence sketch the shape of the centrode 
of the rod mlative to the frame XOY. If when OP = 6 in. and the angle OPQ = 60° 
the velocity of P along OY is 10 f.s., what is the angular speed of the rod ? 



46 MECHANISM AND TIIE KINEMATICS OF MACHINES 

6. One end P of a rod PQ is constrained to lie always on a line OY and the rod 
is in contact with a disc, radius 1 in., pivoted on a fixed pivot at a point R. The 
angle POR —90° and OR = 4 in. If there is no slip between the rod and the disc, 
find the velocity of P when the disc rotates at 1 r.p.s. and the angle OPQ is 45°. 
Take the point of contact of the rod and disc on the same side of OR as P. 

Vrf Y| 

CT X, 

7. In the figure the rod OA is 6 in. long and is rotating 
relative to XOY at 50 r.p.m. clockwise about O. The frame 
XOY has a motion of translation relative to the fixed frame 
XjOjYi such that O describes a circle 3 in. radius, centre Oj, at 
a speed of 100 r.p.m. anticlockwise. What is the velocity of A 
relative to XjOiYj when O^OA is a straight line ? 

8. A rod OA 6 in. long rotates clockwise about O at a speed of 50 r.p.m. relative 
to a frame of reference XOY. The latter, however, rotates at a speed of 100 r.p.m. 
clockwise about O relative to a fixed frame X^OYj. What is the velocity of A 
relative to X,OYj ? 

9. The figure shows a disc A, radius 1 in., which is rotating 
about an axis O^ relative to an urmB, 3in. long, which is rotating 
about Oj, both rotations being anticlockwise. If the speed of A 
relative to B is 200 r.p.m. and that of B relative to the earth is 100 
r.p.m., find the magnitude of the velocity of the point P on the edge 
of the disc and its inclination to the line 0^0^. Verify your result 
by finding the resultant of the velocity of P relative to the arm and 
the velocity of P regarded as a point fixed to the arm. 

10. In the grinding-mill mechanism indicated in the figure 
A is a conical roller carried in the fixed frame by a ball-and- 
socket joint at B, and it rolls without slip on the fixed 
conical surface C as shown, thus rotating about its axis 
BD while that axis rotates about BE. If the semi-apex 
angles are as shown and the speed of A about BD is 
100 r.p.m., find the speed of rotation of the axis BD about 
BE and the angular speed of A relative to the fixed frame. 

11. A body A rotates about an axis OA as shown in the figure 
while that axis rotates about OB. If a>a = 100 r.p.m. and 
<0^ — 50 r.p.m. and the shortest distance between the axes is 3 in., 
find the magnitude and the position of the axis of the resultant 
angular velocity of A and the magnitude of the velocity of 
translation along that axis. 

12. The flywheel of a motor car rotates about a horizontal axis at 2000 r.p.m. 
while the car moves in a horizontal circle radius 100 ft. at 60 m.p.h. Find (a) the 
resultant angular speed of the flywheel and {b) its angular acceleration. 



CHAPTER V 

MOTION OF A BODY. GEOMETRIC DESIGN 

54. Position of a Body.—To specify the })osition of a material 
body relative to a frame of reference it is necessary to specify the 
l)ositions of three points (not lying in a straight line) of the body. 
If only two points of the body were fixed, the body could pivot 
about the line joining those points, but if a third point, not lying 
on that line, is fixed, then no motion is possible. It would thus 
appear that nine co-ordinates must be given in order to fix the 
positions of three points of the body, and thus the body itself, but 
actually these nine co-ordinates are not all independent, because 
there are three equations conne(;tiiig them with the distances 
between the three points of the body, and so the body has only 
six degrees of freedom. It may be noted that since the j)osition 
of every point of the body is fixed relative to any three points 
of the body that form a triangle, this triangle may be used to 
represent the body. 

55. Motion of a Body.—The motion of a body in general is com¬ 
posed of motion of translation and motion of rotation. In the 
former any two lines (not being parallel to each other) fixed in 
the body remain always parallel to their initial positions. In the 
latter all the points of the body describe circles whose centres lie 
on a fixed straight line. A body perfectly free in space is able to 
have three independent translations parallel to three mutually 
perpendicular axes, and three independent rotations about those 
axes, and thus possesses six degrees of freedom. 

56. Motion of Body with One Point Fixed.—If one point of a 
body is fixed, then a sphere having that point as centre will always 
intersect the body in the same section, and this section has 
spheric motion. The position of any point of this section may 
be specified relative to the ends P and Q of the arc of a great 
circle by drawing a spherical triangle having the point as apex and 
PQ as base ; hence ihis arc may be used to represent the section 
and thus the body. Hence what has been said about the spheric 
motion of a line applies to the motion of a body of which one 
point is fixed ; in particular any displacement can be effected by 
a single rotation about some virtual axis passing through the fixed 
point. 

47 
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57. Coming now to the most general motion a body can 
have, when no point is fixed, it can easily be shown that any 
displacement can be produced by a simple translation together 
with a single rotation. Let the first and last positions of the 
body be represented by the triangles PQR, PiQiRj in Fig. 55. 

Join any two corresponding points, say P 
and Pi ; then a translation parallel to PPj 
will bring the body to the position P1Q2R2 

and the change of position from this to the 
^ final position PiQiRi is one in which one 

\ J\\ point of the body is fixed. Hence a virtual 
axis 00 can be found about which a 

O ' rotation will effect this change of position. 
Clearly there is an infinite number of ways 

Fig. 55 which this displacement, from PQR to 
PiQiRi, may be effected, but one of these 

ways is of special interest. It is that way for which the virtual 
axis is parallel to the direction of the translation; the displace¬ 
ment is then effected by a translation along, and a rotation 
about, a line, i.e. by a screw motion. 

If the displacement is made indefinitely small, the line about 
which a screw motion will effect the displacement becomes the 
instantaneous axis. As the body moves, so the position and 
direction of the instantaneous axis change, and it will sweep out 
a surface which is fixed in space ; this is the axode of the body 
relative to space, or the space-axode. ’ Corresponding to it there 
is another surface, which is fixed relative to the body ; this is 
the axode of the space relative to the body, or the body-axode. 
The two axodes will at any instant be in contact along a line 
which is the instantaneous axis at that instant. Thus the most 
general motion a body may have at any instant may be produced 
by a screw motion of an axode that is fixed to the body about the 
line in which, at the instant, that axode touches one that is fixed 
in space. If now a second body is substituted for the space, then 
the space-axode becomes an axode fixed in the second body, and 
the relative motion of the two bodies at any instant is a screw 
motion about the line in which the two axodes touch at the 
instant. 

58. The Constraint due to Contact between Two Bodies.—In 
practice bodies are never perfectly free, but are always constrained 
in some way ; for example, the links or parts of a machine almost 
invariably can move only in one way, that is, they have only one 
degree of freedom relative to any other link, while in structures 
the constraint is complete and the links have no degrees of freedom 
relative to each other. Now the simplest, and almost the only, 
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method of restricting the freedom of one body relative to another 
is to bring them into contact at a number of points, and so the 
constraint brought about by such contact will now be considered. 
At first the constraint of a body having only j)lane motion will 
be examined. The section of such a body by the plane of motion 
will always remain in that plane and may be taken to represent 
the body ; it has three degrees of freedom, two translations and 
one rotation. Suppose now that the body A in Fig. 56 is brought 
into contact, at a single point, with a body B that is regarded as 
being fixed, then, so long as co'iitact is maintained at one pointy one 
degree of freedom of A relative to B is destroyed. A can now liave 
a translation parallel to the outline of B, or it can move A\ith a 
rolling motion on B ; this last motion may be resolved into three 
components, but the components are not independent and so 

constitute only one degree of freedom. Tims a single contact, 
maintained^ between two bodies destroys one degree of freedom 
between them, leaving two. 

If a second contact is arranged and maintained between A 
and B as in Fig. 57, then a second degree of freedom is destroyed 
and only one remains ; A can now move in only one way, and 
although its motion can be resolved into three components, these 
are not independent and constitute only one degree of freedom. 
Thus two contacts maintained between two bodies destroy tw o 
degrees of freedom between them. 

If now a third contact is arranged and maintained between A 
and B, then, in general, a third degree of freedom will be destroyed 
and A will be fixed relative to B. The reader is advised* to cut 
out cardboard shapes to represent A and B and to prove the above 
statements by trial. Thus in general three contacts maintained 
between two bodies that are confined to a plane will destroy all 
three degrees of freedom between them and any further contacts 
are unnecessary or redundant as regards destroying the relative 
freedom between the bodies. 

Suppose now that, due to distortion of the body B, the third 
contact in Fig. 58 moves, relative to the other two, to the dotted 

4 
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position; then clearly the position of the body A will change 
slightly, but the body A will not be distorted in any way. But if 
a fourth contact is arranged as in Fig. 59, then clearly a movement 
of this fourth contact will result in the body A being distorted. 
Also in order to obtain the fourth contact the body B must be 
made accurately to fit the body A. Thus redundant constraints 
necessitate accurate workmanship and may cause distortion of 
the body whose freedom is restricted. Therefore unless some 
advantage is obtained from theiy use which outweighs the dis¬ 
advantages mentioned, redundant constraints should be avoided. 

Although in general three contacts will destroy three degrees of 
freedom, yet this is not always so ; let the body A be arranged with 
two contacts, P and Q, as in Fig. 60, and underneath it, fixed to the 

body B, let a sheet of paper be placed; let the outline of the corner 
XYZ of A be traced on this paper and then let the body A be 
moved slightly, while maintaining two contacts with B, and the 
comer be traced again, and so on. Then the successive curves 
drawn on the paper will in genial have an envelope and, clearly, 
if the body B is made to the shape of this envelope, then a third 
contact can be arranged without destroying the remaining degree 
of freedom of the body A. Similarly a fourth atid other contacts 
could be arranged while still leaving one degree of freedom, so 
that although three contacts are in general sufficient to destroy 
three degrees of freedom, yet it does not follow that because there 
are three contacts three degrees of freedom are destroyed. Clearly, 
if the shape of the body A is circular, then any number of contacts 
will still leave one degree of freedom. It should be clear, however, 
that all but two of these contacts are redundant and, besides 
necessitating accurate workmanship, introduce a likelihood of 
distortion. 

59. Extending this to three dimensions, it will be found again 
that, in general, each contact between two bodies will destroy 
one degree of freedom between them, and so six contacts, main¬ 
tained, are in general sufficient to destroy all six degrees of 
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freedom between the bodies. Again, it does not follow that 
because there are six contacts six degrees of freedom are de¬ 
stroyed. Also, if a body is fixed relative to another body b}^ 
means of six contacts, then any relative movement between 
the contact points of the one body, due to its distortion, will not 
involve distortion of the other body, but only a slight change of 
position ; but if there are more than six contacts, then all but six 
are redundant and, besides necessitating accurate workmanship, 
may involve distortion of the bodies. 

60. Geometric Design.—The princijiles (‘onsidered in the 
previous article find their application in the design of scientific 
instruments, the advantages obtained over ordinary design being, 
first a great reduction in the accuracy of the workmanship 
ictpiired in the manufacture of the instruments, with a conse¬ 
quent saving in the cost and time of manufacture, and, secondly, 
treedom from errors in the working of th(‘ instruments Errors 
ire frequently caused, in instruments of ordinary design, by 
slackness in \ he fit of mating parts, by wear of those parts and by 
the distortion of parts that have to be clamjied to other parts, and 
these sources of error are eliminated in geometric design. The 
underlying principle of geometric design is that only as many 
contacts are provided between tw^o mating parts as are necessary 
to destroy the required number of degrees of freedom between 
them ; for example, if one part is to have only one degree of 
freedom relative to another part, then five contacts will be arranged 
between them. Also the forms of the contacting portions of the 
parts are made such that the contacts occur at definite points. 

61. Examples of Geometric Design.—The slot, hole and 
plane ” method of fixing a stand to a base is an example of 
geometric design. The stand is provided with three legs, the ends 
of which are approximately hemispherical and the base is pro¬ 
vided with a trihedral hole, a vee slot and a plane surface as 
shown in Fig. 61. The hole gives three contacts 
with one leg, the slot two more with a second leg, 
and the plane surface and the third leg provide 
the sixth contact. The stand can then be re¬ 
moved from the base as often as is desired, and 
when it is replaced it will alw ays occupy the same ^lo. 61 

position relative to the base. An alternative form 
of base is one having three* radially disposed vee slots each of 
which provides two contacts with a leg of the stand. Such stands 
and bases are much used in physics laboratories, and although 
unmachined ceistings are employed, perfect “ fitting is obtained 
between any stand and any base. 
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The optical bench used in laboratories affords another example. 
It consists of a long rectangular base provided with a vee groove 
and a flat surface along its whole length. Three-legged stands are 
again used, two legs resting in the vee groove and the third on the 
flat surface ; thus five contacts are obtained and the stand is left 
with one degree of freedom, a translation parallel to the vee 
groove. 

62. The Conditioning of Contacts.—^There is a right and a wrong 
way of arranging contacts, and these are shown in Fig. 62a and b. 

The body A is supposed to have four con¬ 
tacts with a vee groove, leaving two degrees 
of freedom, and the fifth contact, at B, is 
required to destroy a fifth degree, namely, 
freedom to rotate about the axis 0. In a 
the fifth contact is ‘‘ well conditioned,’^ 
while in b it is badly conditioned. In the 
former the common tangent plane XX at 
the point of contact B is perpendicular to 
the direction in which the point B would 
move if the surface XX were removed, 

whereas in the latter this tangent plane is at an acute angle to 
that direction. The force exerted between the surfaces in a badly 
conditioned contact will be greater than that in a well-conditioned 
one, and also the displacement of the body A due to a layer of 
dirt or rust on the surface XX will be greater. 

68. Force and Body Closure.—^The contacts necessary between 
two bodies in order to limit their relative freedom can be main¬ 
tained in two ways, by using a force such as the weight of one of 
the bodies or the elastic force of a spring, or by providing further 
contacts to maintain the necessary ones. The first method is 
called “ Force-closure and is always 'used in geometric design, 
while the second method is called Body-closure, and is used, as 
will be spen later, in the joints of mechanisms. 

64. Further Examples of Geometric Design (1).—Anotherexample 
is given in Fig. 63, which shows some features of a measuring 
microscope manufactured by the Cambridge Instrument Com¬ 
pany, to whom the author is indebted for supplying the drawings 
from which this figure has been prepared. The microscope, 
indicated at A, is held in vees in a head which has vees to fit the 
tube B, suitable clamps being provided in both places to maintain 
the contacts. The tube B rests in vees in the base casting C, 
contact being maintained chiefly by the weight of the microscope, 
but partly by small spring-loaded plungers bearing on the top of 
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the tube immediately above the vees. The tube B is prevented 
Ironi rotating by the arm D, wliieh is fixed to it and which bears 
against the steel strip E fixed to the base. Contact is maintained 
by the overhanging weight of the microscope. The axial position 

end view of not 

Fig. 63 

of the tube B is determined by the micrometer screw F. This 
works in a specially formed nut G and is comiected at its end to 
the tube B by the round-ended strut H, which bears in conical 
holes in B and F. This avoids any unwanted constraint being 
applied to the tube B by the screw. Contact is maintained by the 
spring J inside the tube. The nut G bears on the screw F at six 
places only, three places spaced 120° apart at each end, and is 
made in halves which are held together by spring-loaded screws 
K. This arrangement gives a connexion in which slackness of fit 
is absent, but which is also quite free from undue friction ; it is 
sometimes called a “ geometric nut.” . 

The object being measured rests on a table L, and in order to 
bring the line of the object, along which the measurement is to 
be made, parallel to the travel of the microscope, the table is 
provided with adjustments as indicated at M and N. Thus a 
round-ended pin fixed to the table rests in a vee groove in an arm 
P, which can be turned about the axis 00 by the screw indicated. 
At N there are two round-ended pins, one resting in a conical hole 
in the plate Q and the other on a flat surface on that plate. The 
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plate Q can be rotated about the axis RR. The six contacts 
necessary to fix the table are thus obtained*, while each end of the 
table can be moved independently in a direction perpendicular to 
the travel of the tube B and microscope. 

Tlie clamp shown in Fig. 64 gives another example of the 

application of tlie fundamental principle of geometric design, i.e. 
the avoidaucje of redundant constraint. It is used on a machine, 
designed by Mr. G. A. Tomlinson, of the Metrology Department 
of the National Physical Laboratory, for the accurate measure¬ 
ment of the teeth of gear wheels. It was required to clamp a 
spindle against rotation, and so a disc, a portion of which is seen 
at A, was fixed to the spindle, and the clamp grips the rim of this 
disc when the two parts B and C are drawn together by turning 
the eccentric D. The part B carries a ball-ended pin F which 
engages a conical hole formed in the part C, and both B and C 
engage the disc A over small areas EE at each corner. The parts 
B and C are secured to the base by thin strips of steel (^G and are 
thus firmly held against any motion in the direction XX, but are 
not constrained against small movements in other directions. 
The disc A can thus be firmly held against rotation, but is not 
constrained in any unwanted manner. 

A second example from the same machine is shown in Fig. 65. 
The ball-ended stylus A, which is to bear on a tooth that is to be 
measured, is carried in a lever B that is connected to a frame C 
by a hinge formed of two pairs of thin flexible metal strips DD 
and EE secured at their ends to the frame 0 and to the lever B, 
and arranged to lie in perpendicular planes as shown. The strips 
destroy all freedom except that of rotation through small angles 
about the line of intersection of the planes of the strips, thus giving 
a hinge that is free from backlash and unwanted motions. The 
frame C is carried on the base casting H on a kinematic slide 
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consisting of two balls F and (jt running in vees in both the frame 
(y and the base casting H, and one ball J running in a vee on H and 
a fiat surface on C. Contact is maintained by the weight of the 
lever K, which applies a force, through a round-ended strut, to 
the frame C, so as to keep it in contact not only with the three 

END VIEW OF FRAME 

C. 
Fig. 65 

balls between it and the base casting, but also with the JiiicTo- 
meter spindle L. Measurements Avith an accuracy of 0 ()()()02 in. 
arc taken by bringing the micrometer spindle M into contact with 
the knife-edge end of the lever J^, the moment of contact being 
determined by observing the gap at N against an illuminated 
ground-glass screen. 

65. Further Examples of Geometric Design (2).—Extensive use 
is made of geometric design in the microtomes manufactured by 
the Cambridge Instrument Company, and one of them has been 
chosen as an example. {N.B.—microtome is an instrument for 
cutting very thin slices off specimens of physiological objects so 
that their cross-sectional structure may be examined by viewing 
the slices in a microscope.) 

Views showing the main features where geometric design is 
used are given in Fig. 66, which has been prepared from drawings 
kindly supplied by the manufacturers. All details that are not 
part of the geometric features under discussion have been omitted. 

The specimen block A is held in a suitable holder on the leg of 
a T-shaped casting B, the cylindrical trunnions C and D of which 
rest in vees formed in the base casting E. The member B is left 
therefore with two degrees of freedom, rotation about and trans¬ 
lation along the axis XX of the trunnions. The rotation is used 
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to cause the specimen to move past a stationary knife whose 
position is indicated at F, which enables slices to be out off the 
specimen. The translation is used, when the leg has been returned 
so that the specimen is clear of the knife, to move the whole 
member B along the axis XX by an amount equal to the thickness 
of slice required. 

The trunnions of B are kept in contact with the vees by a spring 
which applies a pull to a wire that encircles and is fixed to a 
circular portion of B. The other end Q of this wire goes round 
suitable guide pulleys and is attached to an actuating arm S 
which pulls the leg of B up by overcoming the pull P. The 
springy strips, m, m, also assist in maintaining contact with the 
vees. 

The axial position of B is determined by the bell-crank G, which 
is pivoted at H on a geometric hinge or knife-edge (described in 
detail below). The long arm of this bell-crank is attached by a 
geometric connexion (also described below) to a nut J working 
on a screw K, the lower end of which is hemispherical and bears 
on a conical hole in a part that is fixed to the base casting. Con¬ 
tact between the bell-crank and the knife-edge seating, between 
the bell-crank and the nut J and between the end of the screw K 
and its seating is maintained by the spring R. The short arm of 
the bell-crank is connected to the member B by hemispherically 
ended struts L and M, the strut M being spring-loaded. The last 
part of the return motion of the actuating arm S is arranged to 
give, through an adjustable ratchet mechanism that is not shown, 
suitable small rotations to the screw K, thus feeding the member B 
and the specimen along as required. 

The principle of the geometric hinge mentioned as being used 
at H is indicated in Fig. 67 (a) and (6). The base casting is formed 
with upwardly projecting lugs shaped, as shown at (a), so that 
there are two flat surfaces aa at right-angles to two flat surfaces 
66. The bell-crank (G of Fig. 66) is provided with “ knife-edge ’’ 
strips as indicated at (6). These are two pieces c and d screwed 
together so that the comers ee and ff (see inverted view) lie in one 
straight line. This is easily done by grinding the face ggg after 
the pieces c and d have been fixed together. When this assembly 
is placed on the lugs of the base casting the comers ee rest on the 
surfaces aa and the corners ff on the surfaces 66. Thus there are 
four contacts, and the piece cd (and the bell-crank which carries 
them) will have two degrees of freedom relative to the base, 
rotation about the line effe and translation along it. The latter 
may have to be destroyed by a fifth contact, but usually this is 
not necessaiy. The arrangement gives a pivot having a very 
precise motion and is comparatively easy to manufacture. If 
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the faces a and b were slightly rounded, then point contact would 
be obtained; they are, however, usually flat, thus giving (with 
careful machining) line contact, which, although not strictly 
geometric design, is better for many practical purposes. 

The connexion between the nut (J, Fig. 66) and the end of the 
bell-crank G takes the form of two rounded projections NN 
integral with the nut and which engage two vee-shaped grooves 
cut, on the slant relative to the axis of the screw K, in the end of 
the bell-crank G, giving four contacts. The nut thus has two 
degrees of freedom relative to G, freedom to rotate-about two axes 
perpendicular to each other and to the axis of the screw K, and 
is thus able to take up a position of repose while being held against 
turning about the axis of the screw. 

66. The Application of the Principle of Geometric Design when 
the Loads are Heavy.—Geometric design, involving as it does 
contact at points, is suitable only for instruments, etc., where the 
weights of the parts and the forces acting are not large, but the 
principle that redundant constraint should be avoided finds a 
wider application. Thus if redundant constraint is avoided by 
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using suitable connexions, each of which destroys a definite 
number of degrees of freedom, then relative movements between 
the points of support of a body will not distort the body. 

Consider an ordinary shaft carried at its ends in plain journal 
bearings ; there is redundant constraint, and if one bearing moves 
slightly relative to the other, the bearings may bind or seize. If, 

Fig. 68 

however, the bearings are self-aligning bearings arranged as shown 
in Fig. 68, then the constraint is only just sufficient and there will 
be no danger of binding or seizing if one bearing moves relative 
to the other. 

Fig. 69 Fig. 70 Fig. 71 

Among the coimexions available are the ball-and-socket joint, 
Fig, 69 ; the ball-and-socket slide, Fig. 70 ; and the ball-and-socket 
shackle, Fig. 71. These connexions destroy respectively three, 
two and one degrees of freedom between the bodies A and B that 
they connect. By using three ball-and-socket slides, as in Fig. 72, 
a motor-car engine can be securely held in the frame, but distortion 
of the latter, within limits, will not produce any distortion of the 
engine. Alternatively a ball-and-socket joint, a ball-and-sockct 
slide and a ball-ended shackle arranged as in Fig. 73 may be used. 
In either case redundant constraint is avoided. 

Fig. 72 Fig. 73 
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A further example is afforded by the arrangement, indicated 
diagrammatically in Fig. 74, of a chuck used on an axle-turning 

Fig. 74 

lathe. The axle A is held between centres BB and is operated 
on at both ends simultaneously; it is therefore driven from the 
centre, and to avoid redundant constraint the chuck C is left free 

to slide in a block D, which is itself 
free to slide, in a direction perpen¬ 
dicular to the first slide, in the driving 
wheel E. An alternative arrangement 
is shown in Fig. 75, where the chuck 
C is^ attached by the links FF to the 
floating ring D, which is itself attached 
to the driving wheel E by the links GG. 

A last example is the “ floating 
frame used in the Melville-Macalpine 
system of reduction gearing for large 

76 turbine-driven ships. Double helical 
gearing (see Art. 166) is used, and the 

two toothed portions of the pinion are seen at A and A^ in Fig. 76. 
They are integral with the shaft which is carried in bearings in the 
floating frame B. The shaft is allowed freedom to move axially. 
The toothed portions A and Aj engage toothed portions of the 

Fxa, 76 



MOTION OP A BODY. GEOMETRIC DESIGN 61 

wheel C, which is carried in bearings in the main casing surrounding 
the gears, and which is not allowed any axial freedom. The frame 
B is connected to the main casing by a short length of I joist D 
which, while being comparatively flexible as regards rotation of 
B about the axes XX and YY, is comparatively rigid against all 
other motions. The freedom of rotation about YY is desired in 
order that the teeth of the pinion shall be free to align themselves 
with those of the wheel, thus ensuring that contact shall occur 
along the wh(31e length of the teeth, and not merely at the ends, 
which is what happens when the pinion is carried in bearings 
directly mounted in the main casing, and that casing distorts. 
The freedom of rotation about XX is not wanted and is destroyed 
by round-ended struts EE that are provided between the ends of 
the frame B and portions of the main casing. In order that the 
stiffness of the pinion shaft, which has of course to be coupled to 
the turbine, shall not destroy or restrict unduly the freedom of 
rotation about YY, the connexion is made by a long shaft of 
small diameter. In order to save space this shaft is sometimes 
arranged to be inside the pinion shaft, which is made hollow. For 
a detailed description of this gear the reader is referred to 
Engineering, November 28th, 1919. 

It may be remarked that gearing using this floating frame can 
be designed to carry higher tooth loads than gearing arranged in 
the ordinary way; nevertheless, the arrangement is little used. 

EXERCISES V 

1. A body moves subject to the following constraints ; state in each case how 
many degrees of freedom the body possesses and what those freedoms are. 

(o) A line fixed in the body always makes a constant angle ^ith a fixed plane. 
(6) A point P of the body lies always on a fixed line AB, and a line of the body 

is always parallel to a fixed line CD, 
(c) A point P of the body lies always in one fixed surface, and a second point Q 

lies always in a second fixed surface. 
(d) One point P of the body is fixed, and a second point Q lies always in a fixed 

surface. 
(e) One point P of the body is fixed, and a second point ^ lies always in a fixed 

line. 

2. A cone is maintained in contact with four 
fixed balls A, B, C and D, as shown in the 
figure. How many degrees of freedom does 
the cone possess ? If it is desired to eliminate 
the freedom of translation, which of the points 
P and Q would be the better position for the 
fifth contact ? 

3. A circular cone rests in a vertical position (apex downwards) in a square 

hole. How many degrees of freedom does it possess and how many redundant 
constraints are tl^re ? 
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4. A cylindrioal bar is to rest in vee-shaped recesses so as to have two degrees of 
freedom, translation along and rotation about its axis. What, in general, would 
be the best angle for the vees ? 

.'5. Describe briefly the jirinciples of geometric design and give its advantages 
and disadvantages m comparison with ordinary design. Explain clearly the 
difference between “ well-conditioned and “ badly conditioned ” contacts and 
state the drawbacks of the latter. 

6. 'I’he figure shows an aiTaiigenient known as 
Mallocl^’s vibrator which has been used for the 
study of vibrations. The body A is to be supported 
by a single spring acting on an arm fixed to the 
body in such a position that the force of the 
spring in conjunction with the weight of the body 
keeps all the ball-ended struts B, C, D, E and F 
in contact with sockets on the body and on the 
fixed frame. Four alternative ]>ositions are 
shown, in dotted lines, for this arm. Which one 
is suitable for the attachment of the spring and, 
when the spring is attached to that arm, what 
freedom (for small displacements) will the body 
possess ? 

7. The figure shows diagrammatically the 
rear axle of a motor car. There is a ball- 
and-socket connexion between the torque 
tube (T) of the axle and the frame at O, and it 
is required to use the spring connexions to 
the axle to eliminate the freedom of rotation 
about the axis OY which at jiresent the axle 
possesses, but redundant constraint is to be 
avoided. The connexions between the springs 
and frame are to bo the usual pin shackles. 
I>evi8e suitable forms of connexion between 
the springs and axle and state whether pivots, 
or shackles should bo used for the spring to 
frame connexions. 

8. In Sarrut’s straight-line mechanism (see Art. 134) each of the six hinges 
destroys fi’^e degrees qf freedom. How many redundant constraints does the body 
B (Fig. 177) suffer, and which of its degrees of freedom are destroyed more than 
once ? Sketch a modification of the mechanism in which i-odundant constraint 
is avoided. 



CHAPTER VI 

THE KINEMATICS OF MACHINES 

67. Deiinition of a Machine.—liculcaux m his Kinematics of 
Machinery'^ defines a machijie fis ‘'A combination of resistant 
bodies so arranged that by their meajis tlie mechanical forces of 
Nature can be compelled to do work accompanied by certain 
determinate motions/’ In the Kinematics of Machines \^e con¬ 
sider machines from the point of view of the motions of the 
various parts, without regard to the forces tliat produce tliose 
motions or that arise from them. In doing this the a(‘tual forms 
of the parts of a machine may, to a great extent, be neglected, 
the parts being represented by geometric lines so that only the 
skeleton of the machine is considered. 

68. Kinematic Pairs.—A machine is made up of a number of 
members or liiihs which arc usually bars that are rigid in the 
sense that their deformations under the forces that act on them 
are negligibly small, but flexible bands, springs and fluids may be 
used in some (drcumstances. Each link is c‘onnected to at least 
two other links, and the connexions may conveniently be called 
joints, so that a machine may be said to be composed of links and 
joints. The form of the joint between a pair of links is usually 
such that there is only one degree of freedom between them, and 
such a pair of links is called a kinematic jyair. As will be seen 
later, joints which leave two or more degrees of freedom between 
the links they connect are sometimes used, but then the arrange¬ 
ment of the machine itself destroys some of those freedoms, so 
that, in effect, only one remains. Kinematic pairs are divided 
into two classes, Lower and Higher, the difference between wJiicli 
will now be explained. 

69. Lower and Higher Pairs.—If the member A of the kine¬ 
matic pair shown in Fig. 77 is regarded as fixed, then the member 
B has one degree of freedom, and when it moves any point P of 
it will describe some line ; this line is the point jpath of P relative 

♦ The KinermUics of Machinery, trarialatod by Alox. B. W. Kennedy, C.K., 
Macmillan & Co., 1876. 

63 



04 MECHANISM AND THE KINEMATICS OF MACHINES 

to B, and in the example shown is a circle. Now, with the links 
in the positions shown in the figure, suppose that B is fixed and 
A is moved. Then the end of a pointer attached to A and which 
was coincident with P will describe a point path relative to B. 
When the point path of P relative to A is coincident with that of 
P relative to B, as in the example shown, the pair is a lower pair. 
When the point paths are not coincident, as in Fig. 78, the pair is 

PATH OF P RELATIVE TO B 

Fig. 77 Fig. 78 

a higher pair. Usually the contact between the links of a higher 
pair is at a number of points or along a number of lines, whereas 
in the lower pairs the contact is usually over a surface, the 
geometrical forms of the surfaces forming the joint being identical; 
but higher pairs sometimes have surface contact and lower pairs 
may have point or line contact. 

70, The Lower Pairs.—^There are only three kinds of lower pairs, 
namely, the Turning Pair, Fig. 79, in which the relative motion 
is one of rotation about an axis ; the Sliding Pair, Fig. 80, in 

Fig. 79 Fig. 80 

which the relative motion is a translation along a|r traight line; 
and the Screw Pair, Fig. 81, in which the relative motion is a 
screw motion. 

It will be seen that each of these lower pairs consists of a solid 
member fitting inside a hollow member. It is purely a matter of 
convenience which of the two members is made the hollow one 
and which the solid one. Thus in Fig. 77 B has a solid shaft 
fitting in the hole in A, but the relative motion would be the same 
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if A had a cylindrical projection fitting inside a hole in B. When 
the hollow and the solid members of a kinematic pair are inter¬ 
changed in this way the pair is said to be inverted. Also the con¬ 
structional arrangement of a kinematic pair does not affect the 
relative motion that is possible. Thus a turning pair may consist 
of a block fitting in a circular groove as shown in Fig. 82, and the 

extent of the slot may be limited as in Fig. 83, wlien the con¬ 
struction resembles that of a sliding pair, ft may be noted here 
that a block, or slider, cannot be made to fit a slot in all positions 
unless the slot is either straight or circular. A cylindrical block 
or pin, however, may be made to touch the two sides of a slot 
having any shape, but the freedom between the members is not 
then limited to one .degree, since the pin can move bodily along the 
slot and can, quite independently, turn about its own axis. Pins 
fitting in slots in this manner are used frequently in machines, but 
the arrangement of the machine is then such that one of the 
freedoms is destroyed and only one remains. A body carrying 
two pins, both of which fit a slot, as in Fig. 84, is a true kinematic 
pair, there being only one degree of freedom between the members. 

Fio. 83 Fig. 84 

The principal higher kinematic pairs are I'ams, Toothed Gears, 
Belts and Chains, and these are considered subsequently. 

The fashioning of the pairs so as to give them the best form as 
regards cost of manufacture, ease of adjustment and replacement, 
etc., is part of the subject of Machine Design and Construction 
and is beyond the scope of this book. 

71. Kinematic Chains.—When a number of links A, B, i\ etc., 
are connected by joints so that A and B, B and C, etc., form kine¬ 
matic pairs the result is a kinematic chain. To be of any use as a 
mechanism or machine a kinematic chain must be closed, that is, 
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the last link must be joined to the firnt and the arrangement must 
be such that avy link has only one degree of freedom relative to any 
other link. If in a kinematic chain some of the links have more 
than one degree of freedom relative to any other link, the chain is 
said to be incornj)letely constrained and the relative motion of the 
links is ijideterminate. 

72. Mechanisms.—A mechanism is simply a Idnematic chain, 
one link of which is regarded as being fixed. Jn general the 
meclianism obtained by fixing any link of a kinematic chain is 
different from that obtained by fixing any of the other links, so 
that, in gcmeral, as many different mechanisms can be obtained 
from a closed kinematic chain as that chain lias links. Any one of 
these mechanisms is (‘ailed an immersion of any of the others. 

73. Machines."-When the parts of a mechanism arc so made 
tliat they are able to witlistand the forces that act on them when 
the mechanism is put to w'ork, the mechanism becomes a useful 
machine. It wdll be found that, whenever it is possible, lower 
pairs are used rather than higher pairs, because not only are they 
easier to manufacture, but also they are less subject to wear. 
The mechanisms therefore that will first be considered are those 
using lower pairs. 

74. Mechanisms Using Only Turning Pairs.—Clearly a closed 
chain of only three links joined by turning joints is rigid, and is 
thus not capable of forming a mechanism, although it is well 
adapted to form part of a structure. The simplest chain, using 
only turning joints, that can form a mechanism is one of four 
links joined by turning joints whose axes are parallel to each other. 
Such a chain is called a four-bar chain and will now be considered. 

75. Jhe Four-Bar Chain.—In Fig. 85 the link AB is taken to be 
thefixed link and the proportions are such that AD-f-b)C<AB-f-BC 

and BC+CD>BA+AD. The 
link AD can then make complete 
revolutions, and is called a crank, 
while CB can only oscillate be¬ 
tween the positions BCj and BCo, 
and is called a lever. Clearly ('i 
is found by drawing an arc with 
centre A and radius equal to 
DC—AD to cut the circle of 
motion of C. Similarly for C2, 
except that the radius of the arc 

This mechanism is very widely used in all • 
branches of engineering practice ; the relative velocities and 
accelerations of its parts are considered subsequently. 

will be AD+DC. 
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76. The Inversions of tho Four-Bar Chain.—When the link BC 
oi' the above (‘iiain is made the fixed link, as shown in Fig. S(>, 

then, the proportions being siieh iiiat { \) l-DA < f BA and 
JiA ^-A1)<B('+C1), neither AB nor 
(d) ean make (‘omplete revolutions 
and tlie meeluinism is a doubic-lercr 
one. The extreme positions are deter¬ 
mined by drawing arcs from B and 
C as centres and with radii BA-j AD 
and (^D+AD, respectively, to inter¬ 
sect the paths of f) and A. 

Fixing the link (d) gives anotla'i* 
lever-crank mechanism similar to 
that of Fig. So. 

Lastly, if AI) is made the fixed link, as in Fig. S7, then, sin(‘e 
Al^ i Br>AD I DC and 1)L f (’B>I)A I AB, both AB and 1)(.^ 
can make complete revolutions and the mechanism is a doftble- 
cttniJi mechanism, d'o avoid fouling between the links the actual 
construction must be on the lines indicated m Fig. 8S. 

C 

Eig. 87 Fig. 8S 

These differeut mechanisms may be regarded as being obtained 
by altering the proportions of the links of a mechanism whose 
nature remains uncVianged, and some people prefer to do this. 

Thus if the chain is expressed by means of the formula 

AB-T.P. -BD-T.P. -CD -T.P. -DA -T.P. -AB, 

where T.P. stands for “turning pair,” then whichever link is 
regarded as being fixed the formula is of exactly the same form. 
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and so the mechanisms can be regarded as being the same, their 
different properties being due to the different proportions of the 
links. 

77. Opposite Links Equal in Length. - When the opposite pairs 
of links are equal in length, as in Fig. 89, the chain assumes the 
familiar form in which it is widely used in locomotives to enable 
one driving shaft or axle to drive a second axle whose axis is 
parallel to the first. I'he coupling-rod Cd) has then a motion of 
translation alone, and any point attached to it will therefore move 
in a path parallel to those of C or D, thus tracing out a circle. 

Three shafts whose axes are parallel may therefore be connected 
by a single link as shown in Fig. 90, and this arrangement has 

Fra. 89 

been used in some petrol engines to enable two camshafts to be 
driven from a single shaft, (dearly any number of shafts might 
be connected in this manner. Similarly, when E lies in the same 
straight line as A and B a single coupling-rod DCF might be 

used as shown in Fig. 91, but it will 
be noticed that in both of these 
arrangements the constraint of the 
point F is redundant, since that point 
is constrained by being a point of DCF 
and also by being a point of EF, and, 
as pointed out in (chapter V, redundant 

constraint involves distortion of some of the links ilE* the other 
links either alter their size or shape from any cause or are made 
to incorrect dimensions. Thus unequal expansion of the link 
DCF and the frame ABE would set up severe stresses in the links, 
and this was found to be a serious trouble in the petrol-engine 
application. The redundant constraint is avoided in locomotive 
practice by the use of two separate coupling-rods DC and GF. 

78. Dead-Points.—Suppose the crank AD in Fig. 92 is being 
turned by some agency and is thus causing the crank B(J to turn, 
and let the mechanism be in the position ADjCiB, where all the 
links lie in one straight line. Then, in that position, the crank 
AD I is unable to cause the crank BC to turn, because AD can only 
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Qi- 

C.--, 

- 

C>, 

Fig. 92 

D^- 

B 

act on BC through the coupling-rod, and can only apply to BC a 

force whose direction is along DC, which in this position of the 
mechanism passes through the axis 
B. Hence the force transmitted by 
the coupling-rod has no tendency, 
in this position, to turn the crank 
BC and the mechanism is said to be 
at a dead-point or dead-centre. The 
position ADiCiB is clearly a dead- 
point, whether AD or BC is the 
driver, but in Fig. §5 the position ABt-iD^ is a dead-centre for 
BC as driver, but not for AD as driver. 

79. Change-Points.—When the mechanism of Fig. 92 arrives at 
the position ADjCjB, then, if ADj turns onwards to ADo, the 
crank BC is usually required to turn onward* to but clearly 

there is a possibility of its turning backwards to BC/2', the 
mechanism then becoming a “ crossed one, whereas previously 
it was an open chain. Hence the position ADjCiB is called a 
change-point. Dead-points and change-points frequently, but not 
necessarily, occur together, and a 
mechanism cannot, strictly speak¬ 
ing, be considered perfect kine¬ 
matically while such points exist. 
There are two methods of enabling 
d mechanism to pass through its 
dead-points and change-points. 
The first is to use the momentum, 
of some part of the mechanism ; 
thus a flywheel might be fixed to 
the crank BC, but this remedy is 
of no use at starting, when the 
speed, and therefore the momen¬ 
tum, of the flywheel is zero. The second method is to duplicate 
the chain as shown in Fig. 93 and to arrange that when one chain 
is at a dead-point the other is not. These two methods are 
sometimes referred to force-closure and chain-closure respectively. 

Other examples of kinematic chains composed of links con¬ 
nected solely by turning pairs are given later in connexion with 

straight-line motions. 

80. Alteration of the Four-Bar Chain.—In the four-bar chain 
show n in Fig. 94 the point C moves in the arc XX of a circle whose 
centre is at B, and the motion will be unchanged if the link 2 is 
replaced by a block 2 sliding in a gjaide wdiose axis is the arc XX, 
the links 3 and 4 being unchanged. If now the slot in which the 
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block 2 slides is made straight, as in Fig. 95, the mechanism on 
which practically all reciprocating engines, compressors, pumps, 

etc., are based is obtained. This mechan¬ 
ism is usually called the dider-crank chain 
or the direct-acting engine mechanimi and 
is extremely important; it is considered 
in some detail in a later chapter. It is 
the equivalent of the four-bar chain of 
Fig. 94, the link BC having been made 
infinitely long. 

81. The Double-Slider-Crank Chain.— 
In Fig. 95 the motion of the point 1) 
relative to the block 2 is in the arc of a 
circle, centre C, radius CD, and if the 
link C/D is replaced, as shown in Fig. 96, 

by a block 3 sliding in a guide formed in the link 2 and having (‘ 
as centre and a radius equal to the length of the connecting-rod 
CD of Fig, 95, the motion will be unchanged. 

Hr 
c 

D 

Kio. 95 

Again tiie slot may be made straight, which is equivalent to 
making the connecting-rod CD of Fig. 95 infinitely long ; the 
mechanism then appears as in Fig. 97, and is called either the 

Fio. 97 
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infinitely long connecting-rod mechanism or the double-'glider-crank 
chain. In most of the actual constructional forms of this 
mechanism the member 2 is supported on both sides of the 
crankshaft axis A as shown. 

The motion of the slider 2 is the same as that of the point X, 

the projection of the crank-pin axis 1) upon the line of stroke 
through A. If the crank AD rotates with constant angular speed, 
then the motion of the point X is the simplest lype of vibratory 
motion and is called Simple Harmonic Motion. 

82. Simple Harmonic Motion.—This ty])e of motion is of great 
importance and will now be considered in some detail. In Fig. 08 
let the crank AD (length r ft.) rotate about A with constant 
angular speed (cu rads, per sec.), and let X be the projection of D 
upon the diameter LM ; then the motion of X is simple harmonic. 
The displacement of the point X measured from A as origin is 

x~AX—ri'obO, being positive when to the right of A and 
negative when to the left. The velocity of X is at every instant 
equal to the component, parallel to LM, of the velocity 1), which 
is always perpendicular to AD and ecpial to ra>. Hence we have : 
Velocity of — u Sind~---ra) Sin the minus sigji being 
introduced because the velocity of X is to the left, while the 
displacement is positive when to the right. 

Similarly the acceleration of X is equal to tlie component, 
parallel to LM, of the acceleration of 1), which is along DA towards 
A and equal to roj- ; hence, from Fig. 99, we have : Acceleration of 
X = —rco- Cos 6, the minus sign again being introduced because 
the acceleration is in the opposite direction to the dis])lacement. 

Suppose now that the angular displacement of the crank is 
measured from some initial positiorr ADo (Fig. 98), and that w^e 
begin to measure time from the moment when the crank is at 

ADo. 
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Lot / —the time required for the crank to turn from ADo to AD. 

ZDoAM-0 
^4 d> 

Then 

d~o}t—(f> 

Hence tiie displacement of X~r Cos (a>/— 

,, ,, velocity of X z=z—raj Sin (ojt—(j>) 

,, ,, acceleration of X ~ —ra>2 Cos (co/—(j>) 

These results may he obtained more directly, by differentiation, 
as follows : 

We have x—/' Cos r Cos (ct>/—<^).(1) 

dx 

Tf 
~r Sin 6 . 

(10 

dt 
—roj Sin {cot—<i>) 

(V^x 
rco Cos 0 

dj 

dt 
-rco- Cos {(ot—cf)) 

(2) 

(3) 

If the displacement x is plotted against the time /, the graph 
obtained is as in Fig. 100. The maximum displacement from the 

centre A is clearly equal to the length r of the crank, and this is 
called the amplitude of the motion. The time T required for one 
complete vibration of the point X is the time required for one 

277 
revolution of the crank and is equal to — ; this is called the 

(O 

periodic time. The reciprocal of the periodic time, i.e. l^he 

number of vibrations per unit time and is called the frequency. 

The angle or its time equivalent is called the epoch. 

83. The Inversions of the Double-Slider-Crank Chain.—The 
formula for this chain is l—S.J.—2—S:J. — 3—T.J.—-4—T.J. — ], 
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and inspection shows that only three different mechanisms can 
be obtained from it, since the same mechanism is obtained by 
fixing link 3 as by fixing link 1, the fixed link in either case having 
a turning joint at one end and a sliding joint at the other. 

Fixing link 2 gives what is known as the elliptic trammels shown 
in Fig. 101. Any point on link 4 traces out an ellipse relative 

Y 

Fig. 101 

to link 2. To prove this take OX and OY as axes and let 
/iOBA—6, Then the co-ordinates of P are 

a:=AF . Cos d 

.Sine 

• • AP^'^BP 
-=Cos2 <9+Sin2 0.^1 

and since AP and BP are constant, this is the equation to an 
ellipse. Clearly the semi-axes arc AP and BP. Similarly any 
point on AB produced will trace out an 
ellipse. Also it can be shown that an ^ 
ellipse is obtained when the angle between 
the slots has any value. ^ ^ 

If AP—BP, then the axes of the ellipse 
are equal and the ellipse becomes a circle; 
the point P could then be joined to the X 
point O by a link. It follows therefore Of ' ^ 
that in the mechanism shown in Fig. 102, h)2 
if AP—BP~OP, then the point A will 
describe a straight line, provided that B is confined to the straight 
line OX. This mechanism is known as the Scott-Jiussel straight- 

line mechanism. 
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Fixing link 4 gives the Oldham rovjding, used to connect shafts 
whose axes are parallel but not coincident, and shown in Fig. 103. 
The shafts 1 and 3 (corresponding to the blocks 1 and 3 of Fig. 101) 
t urn about their axes in the frame 4 and are provided with tongues 

r 1 

Fig. 103 

1^ and M. Ttie tongues engage grooves in the disc 2, the grooves 
being on opposite faces of the disc and at right-angles to each other. 
Clearly, if shaft 1 turns through an angle 6, then because of the 
tongues L and M the disc 2 and shaft 3 must turn through the 
same angle ; hence the angular speed of 3 is always equal to that 
of 1. As the shafts turn, so the disc 2 has to slide to and fro along 
the tongues L and M, and if this motion is not to be excessive, the 
distance between the axes of the shafts must be kept small. 

An examination of Fig. 101 will show that, since the angle 
AOB is constant and equal to 90*^, if the link 4 is fixed, then the 
point O will describe a cirt4e about AB as diameter, and no diffi¬ 
culty should be experienced in showing that in the Oldham 
coupling the centre of the disc 2 describes a complete circle for 
each half-turn of the shafts 1 and 3. 

84. The Crossed-Slide-Crank Chain.—The double-slider-crank 
chain was obtained from the slider-crank chain by replacing the 
turning joint between the links 2 and 3 by a sliding joint. If, 
instead, the turning joint between links 3 and 4 is replaced by a 
sliding joint, then the crossed-slide-crank chain is obtained. The 
derivation is shown in Fig. 104 (a), (b) and (c) ; to get the same 
extent of motion in each of the kinematically^ equivalent mechan¬ 
isms, Fig. 104 (a) and (6), the slot in the link 4 of the latter must 
be a Complete circle, and when this slot is made straight this is 
impossible and the motion is limited. The chain shown in 
Fig. 104 (c), with the link 4 fixed, has been used as a tiller actuating 
mechanism known as Rapson’s slide. The block 3 is actuated by 
chains or wire ropes and thus causes the tiller-bar 1 to be turned. 
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As the tiller moves away from the middle position shown, the 
turning moment acting on the tiller becomes greater in relation to 
the force applied to the block 3. The mechanism is also used in 
the steering-boxes of motor (‘,ars, the block 3 then being ac;tuated 

by a screw passing through it and carried in bearings in the Jink 4. 
The formula for this mechanism is 

1 „,s. J. -2 -T. J. -3 -8 J. -4 -T. J. -1, 

and inspection will show that all the inversions are similar 
mechanisms. 

EXEJICISES Vi 

1. J'Jxplain difforerK C' brtwcori lowrr and }iip:h<‘r kinpinatic pairK. arui M'hat 
iw meant by the inversion of a kineinalif* pair. Enuira’^rate tlio lower pairs and 
give two or tliroe exainjjleH of liigli<*r pairs. 

2. What is meant by the toniiK “ <lead-j)oiiit ” and change-point ” ? State 
the methods by which tFiey can be* obv iatofl. 

Hy means of simple diagrams show J^ow Ihe single-slicJer-crank ciinin can bo 
evolved from a four-bar chain. 

4. Sketch to scale a double-crank form of four-bar chain in which the cranks 
are unequal in length and longer than the fixed link, and show the position of the 
links for several positions of the driving crank, 

5. Describe brieflywith diagrammatic sketches, the inversions of (a) the 
single-slidor-crank chain and (6) the double-slider-crank chain. 

6. A point moving with S.H.M. has a period of 2 secs, and an amplitude of 1 ft. 
What are its accelerations 0-5 and 0-75 secs, after the moment when it has 
its greatest j>o8itive displacement ? 



(CHAPTER VII 

THE VELOCITIES OF POINTS IN MECHANISMS 

There are several ways in which the velocity of any point in a 
mechanism may be found when that of some other point is known. 
The chief of these methods are : 

1. By deriving a dispJacement-time graph and drawing 
tangents to it; 

2. By means of instantaneous centres ; 
3. By means of velocity diagrams ; 
4. Analytically ; 

the choice of method depending on the nature of the mechanism 
and the accuracy desired. The methods will be considered in the 
order named. 

85. Example of Displacement-Time Curve Method.—As an 
example of the first method, suppose it is desired to find the 
angular velocity of the link OD of the mechanism shown in 
Fig. 105 when the angle 6 equals 180^, the constant angular velocity 
tx) of the crank AB being given. 

X 

Fig. 105 Fio. 106 

Draw the mechanism to scale for a series of values of 6 increasing 
from 0° to 360° by equal steps. Measure off each drawing the 
vakie of the angle <f} and plot these values against the correspond¬ 
ing values of 6, tlius obtaining the graph shown in Fig. 106. 
Since the crank rotates at a constant speed the angles 0 are pro¬ 
portional to the times taken for the crank to turn through them. 

76 
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and the graph can be converted into a displacement-time graph 
simply by converting the ^ scale into a time one ; this, however, is 
not really necessary, as will be seen. At 0 = 180° draw the tangent 

, OX , 
XY and measure its slope If OX is measured on the <f) scale 

and OY on the time scale, then this slope gives the required 

angular velocity, directly. If, however, OY is measured on the 

___ ox _ d<i,_^ 
B scale, then gives and to get we must use the relation- 

d4> d(f> dd d(t> . dd 
ship ^ since ^ =cu. Clearly the greater number 

of values chosen for B the greater the accuracy of the displace¬ 
ment-time graph. 

86. Example of the Use of Instantaneous Centres.—In the four- 
bar chain ABCD (Fig. 107), if tlie 
velocity of the point D, relative ^ 
to the fixed link, is of known X 
magnitude then the velocity \ 

of point C, also relative to V4 ‘ 
the fixed link, may be found thus. \ • 2^ 
The direction of of course, 
perpendicular to AD and that of \ ’ 

is perpendicular to BC; hence \ • 
the intersection 3O1 of AD and BC \ • 
produced is the instantaneous \; 
centre of link 3 relative to link 1 
(see Art. 44). Let S? be the in- 
stantaneous angular velocity of Fio. 107 

link 3 about 3O1, 

=oj. Clearly the greater num her 

3O1D 3O1C 

hence c*'b=d*’axJ^ 

and so the magnitude of may be found, the lengths of 3O1C 
and 3O1D being measured off the diagram, which must, of course, 
be drawn to scale. 

The actual lengths of the radii 3O1C and 3O1D need not be known, 
only their ratio being necessary. Thus if the centre 3O1 lies at 
an inconvenient distance it may be dispensed with, the ratio 
3O1C 

being found by drawing from A a line parallel to BC to 
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intersect I)(‘J in X. Then triangles -jOiDC and ADX are similar and 
3(),r AX 

JyJ) Afy 
Similarly the v(‘Jo( ity of any j)oint J* tliat is attached to (d) is 

at the instant perpendicular to ^Oii^ and equal to or 

I 

The point A in Fig. 107 is the instantaneous centre 4O1 of link 4 
relative to link 1, in this c^ase a permanent centre, while I) is the 
instantaneous centre 304 of link'3 relative to link 4, also a perma¬ 
nent centre. Thus the th.rec instantaneous centres 304, 4O1 and 
3(14 associated with the links 1, 8 and 4 lie on a straight line. That 
this must be so is readily proved, as follows. 

87. The Principle of Three Centres.^—Let the three outlines 1, - 
and 3, in Fig. 108, represent three bodies moving in the plane of 

the j)aper, let 1 be regarded as fixed and let 2O1 and 3O1 be the 
instantaneous centres of 2 and 3, respectively, relative to 1. 
Then it is required to show that the instantaneous centre of 3 

relative to 2 lies on the line 3O1 2O1. Now the instantaneous 
centre of 3 relative to 2 is some point of 3 which coincides* with 
and is at rest relative to some point of 2, and it follows that if this 
point of 3 has a velocity relative to 1, then the coincident point of 
2 must have the same velocity relative to 1 in magnitude, direc¬ 
tion and sense. Let Q be any point; then Q may be regarded as 
belonging either to 2 or to 3 ; let it be labelled Q2 or Q3 accordingly. 
At the instant under consideration Qg has a velocity v perpen¬ 
dicular to 2O1Q, and Q3 a velocity* V perpendicular to 3O1Q, both 
velocities being relative to T. Now if Q is to be the instantaneous 
centre of 3 relative to 2, the velocities V and v must have the same 
direction, and clearly this can only occur if 2^iQ s^iQ 
coincide in direction, i.e. if 2©! Q 3O1 is a straight line; hence the 
three instantaneous centres lie on a straight line. 
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If 2^1 361)1 are respectively the instantaneous angular 
velocities of 2 and 3 relative to 1, then since v must be equal to V 
in magnitude, 2^1 X2O1Q—36^, X3O1Q, so that 

3601 2^1 Q 
2^1 3O1Q 

The instantaneous centre of 3 relative to 2 (the pohit Q) thus 
divides the distance 20‘i 3O1 in the inverse ratio of the angular 
velocities. Clearly if Q lies between 2^1 and 3O1, then the 
angular velocities must be opposite in sense as shown, while if 
the angular velocities have the same sense, then Q divides 2O1 3O1 

externally. 
The principle of three centres is of great help with complex 

mechanisms. As an example consider the mechanism shown in 
Fig. 109. This is the pencil mechanism of the Crosby steam- 
engine indicator, and it is arranged so that the end A of tlie link 

3 reproduces, with a sufficient degree of accuracy and to an 
enlarged scale, the motion of the piston rod 0. The instantaneous 
centres are : 

Oj .0, ,0^ P, ,0, 
3O1 4O2 5O3 ,,^4 

4O1 5O2 6^3 

,0; ,02 

60, 

That is, 5+4+3+^ +1—1*^ in all. Six of these (those in italics 
above) are permanent centres and their positions are obvious ; the 
others may be found as follows. Because the piston 6 moves in 
a straight line relative to 1, the centre ,0i will lie at infinity, and 
any line drawn to pass through it will be perpendicular to the line 
of stroke of 6, i.e. will be horizontal. Then the centre 4O1 must lie 
on 40, gOi, that is, on a horizontal through 40, ; it must also lie on 
5O4 5O1; hence the intersection of these lines gives 4O1. Then 
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3O1 must lie on gOj 3O2 and on 4O1 4O3 and is thus determined. 
The centre 4O2 must lie on 4O3 3O2 and on 4O1 2O1, being therefore 
at their intersection ; 5O2 must lie on 4O2 6O4 cn oOj 5O1 and 
is thus determined; 6O2 lies at the intersection of 4O0 4O2 and 

^he latter being horizontal, while 5O3 lies at the inter¬ 
section of 5O1 3O1 and 15O4 3O4 ; 063 lies on 4O6 4O3 and on 3O1 gOi, 

the latter being horizontal; and lastly gOg lies at the intersection 
of 4O0 5O4 and 5O1 qOi, the latter being horizontal. 

In many mechanisms some^ of the centres may be found by 
means of alternative intersections, and it is then possible to check 
the accuracy of the work. Thus ^02, 6O3 ^nd 3O2 should lie on 
a straight line, and if the work is accurate they will do so. 

Clearly if the pencil A is to describe a straight line parallel to 
the line of stroke of the piston, then the line joining A to the 
instantaneous centre 3O1 must be horizontal for all positions of 
the mechanism. This condition is not satisfied rigidly. (Note : 
In the figure the proportions of the links have been modified in 
order to bring as many as possible of the centres into the space 
available.) 

88. Another Example on the Use of Instantaneous Centres.—In 
the example given in Art. 86 the points C, D and P all belonged to 
the same link ; when they are on different links the process of 
finding the unknown velocities is a little longer. Suppose 
(Fig. 110) is known and qV^ is to be found. Then the velocity of 

Fig. 110 

D is easily found and, by the use of the instantaneous centre 3O1, 
that of C may be found, and hence that of Q, thus 

AD 3O1C BQ 
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but a slightly sliorter method may be used. The instantaneous 
centre 4O2 may be regarded as being attached to either of the 
links 2 or 4. Regarding it as belonging to 4, then it will have a 

A O 
velocity V, perpendicular to A4O2 and equal to pr^X-frr, 

relative to link 1. Now regarding it as belonging to 2 its velocity 
relative to 1 must again be equal to V and we have the relation 

xr EQ 

^^ "BQ"’ ^ ~AF ^ 

89. Centrodes.—It has been stated that the locus of the instan¬ 
taneous centre of one body relative to another is called the 
ccntrode of the one body relative to the other. In Fig. Ill the 

point 3O1 is the instantaneous centre of 3 relative to 1 for the full¬ 
line configuration of the mechanism. As the mechanism moves 
to new configurations so the instantaneous centre traces out the 
curve XX, which is therefore the centrode of 3 relative to 1. The 
curve XX having been drawn with the link 1 fixed may be 
regarded as being fixed to or carried by the link 1. 

Suppose now that the fink 3 is taken to be the fixed link of the 
mechanism, then in the full-line configuration 3O] is also the 
instantaneous centre of 1 relative to 3, but as the mechanism 
moves to new configurations this instantaneous centre will not 
trace out the curve XX, but some other curve YY. This is the 
centrode of 1 relative to 3, and may be regarded as being fixed to 
or carried by the link 3. If now the centrode YY, with the link 3 
• 6 
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attached to it, rolls without slip on the curve XX (regarded as at 
rest), then the link 3 will have the same motion relative to 1 as is 
given to it by the connexion afforded by the links 2 and 4. The 
latter could therefore be dispensed with if the cent rodes are rolled 
together without slip. 

90. The Centrodes for the Elliptic Trammel Mechanism.—As an 
exam})le consider the elliptic trammel mechanism shown in 
Fig. 112. The instantaneous centre of AB relative to the frame 

XY is the point P, where AP is perpendicular to GY and BP to 
OX. dearly the distance OP is always equal to AB; hence the 
point P will trace out a circle, centre O, ra^dius equal to AB, when 
AB moves. This circle is the centrode of AB relative to XY. 
If now AB is fixed and XOY is moved, then, since AP is always 
perpendicular to OY and BP to OX, ^APB--/_XOY—90°. 
Hence P will trace out a circle on AB as diameter. This circle is 
the centrode of XOY relative to AB. 

As another example of centrodes.consider the four-bar chain 
shown in Fig. 113, where opposite links are equal in length and 
the chain is crossed. Then if link 1 is fixed the centrode of 3 
relative to 1 is found to be the two branches AB and CD of a 
hyperbola, and when 3 is fixed the centrode of 1 relative to 3 is 
found to be the two branches LM and NO of an exactly similar 
hyperbola. 

91. As a further example consider two bodies A and B 
(Fig. 114) that rotate about fixed axes O^ and Og with con¬ 
stant angular velocities and cog. The instantaneous centre 
is then some point P lying on the line joining O^Ob and such 
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tliat 7;~p—; > since this ratio is constant, P is a fixed point 

Oil ()a^)b- B is fixed and the relative motion between 
A and B kept the same, then the line 0^0^ w^ill turn about ()j^ as 
centre witli an angular velocity equal to —and the locus of P 

Fic. 114 

will be a circle, centre Ob, radius OpP, as shown. This is the 
centrodc of A relative to B. Similarly the cfentrode of B relative 
to A is a circle, centre and radius O^P. Jf the ratio of the 
angular velocities had not been constant, then the loci of P (the 
centrodes) w^ould not have been circles, but some other curves; 
they would, however, always touch each other at some point, 
such as P, lying on the line of centres OaOb. Since the instan¬ 
taneous centre is only the point of intersection of the instan¬ 
taneous axis with the plane of the paper, it follow^s that the 
centrodes are only the intersections of the surfaces composed of 
all the successive instantaneous axes with the plane of the paper. 
These surfaces are, of course, the axodes. In the case under con¬ 
sideration, and in all cases of plane motion, the instantaneous axis 
is always parallel to the axes 0^0^ or perpendicular to the plane 
of motion. It follows that the axodes are cylinders, in the 
general sense, i.e. surfaces composed of straight lines all of which 
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are perpendicular to the plane of motion. When the angular 
velocity ratio is constant the centrodes are circles and the axodes 
are thus circular cylinders. 

92. Velocity Diagrams.—The method of drawing velocity 
diagrams will be explained by taking a number of examples, but 
it will be convenient to prove three simple propositions first. 
They are : 

1. If AB is a rigid link, then the velocity of B relative to A must 
be perpendicular to AB. For if4t were in any other direction, as 
in Fig. 115, then it would have a component in the direction AB, 
and the distance AB would therefore be changing, but, since 
the link is rigid, this is impossible; hence the proposition is 
proved. 

2. If A, Fig. 116, is a block constrained to slide along the slot 
in the link B, then the point P may be regarded as belonging to 
both A and B and may be denoted by Pa or P^, accordingly. 
Then the velocity of Pa relative to P/> is along the tangent (PX) to the 
slot as shown. For if it were in any other direction (PY) it 
would have a component perpendicular to the slot, and this is 
impossible. 

3. If two rigid bodies A and B (Fig. 117) move in the plane of 
the paper and are in contact at any instant at some point J^, then, 

in general, there is a common tangent XPX to the profiles of the 
bodies and also a common normal YPY perpendicular to XPX. 
The point P may be regarded as belonging to both A and B and 
may be denoted by Pa or P^ accordingly. Then, if the profiles of 
the bodies remain always in contact, the velocity of Pa relative to P* 
must be perpendicular to the commoh normal yP Y. For if it were 
in any other direction it would have a component along YPY, 
and the profiles would either be separating or the one woiild be 
penetrating the other, and since neither of these actions is per¬ 
mitted the proposition is proved. Tt follows that if PL and PM 
represent the velocities of Po and P^ respectively, relative to a 
third body, say the paper, then the components along the common 
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normal of these velocities must be equal in magnitude and sense ; 
hence LMZ is perpendicular to YPY. 

It may be remarked that XPX is the intersection of the plane 
that is tangent to both A and B at P with the plane of the paper. 
Any line lying in this common tangent plane and passing through 
P is a common tangent to A and B; hence there is an infinite 
number of common tangents at P. There is, however, only the 
one common normal. The proposition stated above, and its 

corollary, thus hold for any motions of the bodies, plane or non¬ 
plane. 

93. Example of a Velocity Diagram.—As a very simple example 
consider the four-bar chain in Fig. 118. Suppose it is required to 
find the velocity qV^, the velocity q 
being known. From any convenient 
point a as pole set out ad parallel to 

(and hence perpendicular to AD) 
and equal to it to any convenient scale. 
(In order to get the senses of the vectors 
correct it is helpful to memorise the 
form of statement used in Art. Jfi, thus 
“ ad with the .arrow pointing from a, to 
d is the velocity of D relative to A'f 
Since B is at rest relative to A, the 
point a also represents B and may be 
labelled b as shown. Now the velocity 
of C relative to B, if it were known, 
would be represented by a vector be 
perpendicular to BC, and then the vector cd would represent the 
velocity of D relative to C ; but this is perpendicular to CD, 
hence the point c may be determined by drawing from d a line 
perpendicular to CD to intersect the line drawn through b parallel 

to the direction of the velocity c^’b* 
A line joining the pole a to any point p of cd represents the 

velocity, relative to A, of the corresponding point P of the link 
CD ; hence cd is called the velocity image of CD. The position of 

cp CP 
p is determined from the relation Similarly to determine 

the velocity image of a point Q that is attached to CD it is merely 
necessary to erect on cd a triangle cdq similar to CDQ. Care must 
be taken to place the triangle cdq properly on erf, and this is 
facilitated if the triangle CDQ be imagined drawn on a piece of 
tracing paper and transferred, without being lifted up, so that 
C coincides with c and D with rf, the size of tlie triangle being 
reduced or increased as may be necessary. 
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94. Another Example of a Velocity Diagram.—Fig. 119 shows 
a mechanism that is used to operate the slide-valves of locomotives 
and which is known as Joy's Valve Gear. ABC is a slider-crank 
chain forming the main engine mechanism, AB being the crank, 
BC the connecting-rod and C the cross-head. At a point D of 
the connecting-rod is pivoted a link 1)E, the end E of which is 
connected to a link EF hinged at F to a point on the frame of the 
locomotive. In a similar way the link CiH is pivoted at U to a 

J 

( 'a 

V” 
t 

/ 

\ 

J 
c 

/ \ 

dV^ 
J 

1 
Kig. 119 

point on l)E and at H to the link HJ, which in turn is pivoted at 
fj to the frame. (Actually the point H is guided in a curved slot 
of radius JH, but this is, kinematically^, the same as the con¬ 
struction shown. The inclination of the slot can, however, bo 
changed in order to reverse the direction of rotation of the engine, 
which is not practicable when the rod JH is used.) The link GH 
is extended to K, which point is connected by the rod KL to the 
valve-rod, which moves in a guide in the frame. 

Supposing the velocity of the crank-pin B to be known, let 
it be recjuired to find, by means of a velocity diagram, the velocity 
of the valve-rod, i.e. of the point L. 

Choose any convenient point a to represent the fixed centre A ; 
then this point will also represent the fixed centres F and J. Set 
out ab perpendicular to AB and equal to b^a convenient 
scale, taking care to, get the sense of the vector the same as that 
of the velocity it represents. Through a draw a line parallel to 
the line of stroke of the cross-head C; then the point c, the velocity 
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BC and a point d (‘hoscii such tliat — 

image of (\ lies somewhere on this line. Since the velocity of C 
relative to B must be perpendicular to B(\ c must also lie on a 
line drawn through h perpendicular to BC, and its position is thus 
determined. Then he is the velocity image of the connecting-rod 

^vlll be the image ot I). 

The velocity of E relative to I) must be perpendicular to I)E, 
hence e must lie on a line tlirough d drawn jierpendicular to DE. 
Since the velocity of E relative to F must be perpendicular to 
EF, e must also lie on a line drawn through / |)er])endicular to 
EF and is thus determined ; de is then tlie velocity image of DE 

and g is fixed by making fhen h must lie on a line 

drawn through g ])erj)eiidicular to (iH, and ajso on a line drawn 
through j perpendicular to JH, being thus determined ; />• is found 

liy making andjiiajjy / mu^ lie on a line dxaMll thruugll 

L perpendicular to KL and also on,a line drawn through a parallel 
to the valve-rod guide. Then aJ is the velocity oi the valve-rod to 
the velocity scale chosen. In the contiguration of the mechanism 
show n the valve-rod is thus moving 
in the opposite direction to the 
cross-head (\ 

95. Third Example of a Velocity 
Diagram.--In Fig. 120 is shown a 
mechanism that is commonly used 
to give a reciprocating motion to 
the ram, 0, of shaping machines. 
('Idle ram carries a tool as indicated 
which operates on the work W on 
the forward, or right to left, stroke.) 
The links 1, 2, 3 and 4 comprise* 
an inversion of the slider-crank 
chain (sec Art. 80), added t(^ which 
are the links o and <>. If the 
crank 2 is rotating w4th an instan¬ 
taneous angular speed to, supposed 
known, then the instantaneous 
velocity of the ram may be found 
by drawing a velocity diagram. 
The linear velocity of B3 (B re¬ 
garded as belonging to link 3) is 
oj . AB, and this may be set out from any pole a to any (‘onvenient 
scale, giving the vector ab^ perpendicular to AB. The velocity 
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of B4 relative to C is perpendicular to CB ; hence from c {which is 
coincident with a, both C and A being at rest) draw a line perpen¬ 
dicular to CB. The velocity of B4 relative to B3 is along the slot 
in 4; hence from 63 draw a line parallel to this slot, thus settHng 
the point 64. Then C64 is the velocity image of CB and d is 

Since the obtained by producing cb^ to d such that ^ 
CO4 Uo 

velocity of E relative to D is perpendicular to DE, draw from d 
a line perpendicular to DE. Finally, since the velocity of E 
relative to A is along the ram-guide, draw from a a line parallel to 
this guide, thus obtaining the point e. Then ae, to the velocity 
scale chosen, is the velocity of E relative to A. 

96. The Angular Velocities of Links.—If a velocity diagram be 
drawn for any configuration of a mechanism, then each link of the 
mechanism will have its image in the diagram, this image repre¬ 
senting the velocity of one end of the link relative to the other end. 
Thus in Fig. 120 cd represents the velocity of D relative to C. 
Clearly then the magnitude of the instantaneous angular velocity 

cd 
of the link relative to either end is given by cd being measured 

to the velocity scale and CD being the actual length of the link CD. 
If this angular velocity is to be obtained in radians per unit time, 
as is desirable, the units used must be consistent, i.e. cd in say 
feet per sec. and CD in feet, the angular velocity being then in 
radians per sec. The sense of the angular velocity of the hnk 
relative to one end will of course be opposite to that of the angular 
velocity relative to the other end; the sense, however, is usually 
unimportant. The magnitudes of the instantaneous angular 
velocities of links relative to their ends are required when the 
acceleration diagrams of mechanisms are required, as will be seen 
later. 

97. Special Method for when the Above Method Fails.—With 
some mechanisms it will be found that the velocity diagram 
cannot be drawn by the straightforward method adopted in the 
previous examples, and special methods must be used. Consider 
the Stephenson link motion shown in Fig. 121. This cannot be 
set out on the drawing-board by ordinary line and circle con¬ 
structions ; thus, the position of the crank AOB being known, the 
points C and D must lie on circles centres B and A respectively, 
also E must lie on a circle centre F, but in order to find the position 
of the link CDE it is necessary to use a template cut out to the 
shape CED and to adjust it until each of the points C, E and D 
lies on its respective locus. Similarly when drawing the velocity 
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diagram the vectors oa and ob can be set out and then the lines 
ad^ and drawn respectively perpendicular to AD and BC, are 
the loci of the velocity images of C and D ; also a line through o 
perpendicular to EF is the locus of tha velocity image of E, but 
the points c, d and e cannot be determined in the ordinary way. 
Suppose, however, the position of the image c is guessed to be Cj, 
then the position di of the image of D may be determined by 
drawing c^di perpendicular to CD to intersect ad^ (the locus of d) 
in d], and then the position ei of the image e is determined by 

Fig. 121 Fig. 122 

drawing a triangle c^d^ei similar to CDE. Then should lie on 
the line oe, and if it does not the position selected for is wrong. 
Choose another position for c, say C2, and repeat the process, thus 
obtaining eg; then a line drawn through e^eg will intersect the 
line 06 in e, the true position of the velocity image of E, and c 
and d may be determined by drawing ec and ed perpendicular 
respectively to EC and ED. 

In the above problem, and in similar ones, where the loci of 
the velocity images of three points of a link are known, the actual 
positions of those images may be determined by means of the 
following construction. Suppose CED (Fig. 122) is a link, and 
that the velocity images of C, D and E are known to lie on the 
lines and respectively. To find the positions of c, d and e 
choose the intersection of any two of the Jines c', d* and c', say 
the point p, the intersection of and ; then through C draw 
CP perpendicular to and through E draw EP perpendicular to 
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thus determining the point P. Join PI). From p draw pd 
perpendicular to Pi) to intersect the line dWn d. Then d is the 
velocity image of D, and c and e may be determined by drawing 
dc and de perpendicular respectively to DC and DE to intersect 
the lines and as shown. (Note : If the work lias been 
accurately done ec should be perpendicular to E(^) 

The construction, which is sometimes called the three-line con- 
^Htruction, may be proved thus. If the point P is regarded as 
being attached to the link CED, then clearly its velocity image is 
p, since, by the construction, pc Is perpendicular to PC and pc is 
perpendicular to PE. d'hen the velocity of 1) relative to P must 
be perpendicular to 1"I), and lienee must lie at d. The points c and 
c are then determined in the usual manner. 

98. Revolved Velocity Diagrams.—If a velocity diagram, drawn 
in the usual way, is turned round through a right angle, then the 
velocity images of the various links will be parallel to those links 
instead of perpendicular to them as in the diagrams given above. 
It is considered by some that tlie diagrams arc easier to draw when 
thus revolved, but, in the writer’s ojiinion, it is better not to 
revolve the diagrams! Velocity diagrams are also sometimes 
called velocity polygons. 

99. Velocities by the Analytical Method.—An example of the 
analytical method has been given in Art. 82. from whicli it will be 
seen that the method consists in deriving, by algebraic and 
trigonometric*al means, an expression for the displacement of the 
point under consideration and then differentiating this expression 
with respect to time. The method is also illustrated in the chapter 
on the direct-acting engine mechanism. The drawback of this 
method is that with all but simple mechanisms the expressions for 
the displacement, are extremely (‘umbersome to use and tedious to 
(ierivc, but when workable expressions can be obtained the 
method is probably the best of all. 

C 
EXERCISES VIi 

I. Ill tlio four-bar chain rIiowu in tlu‘ figun' tiie link 
Ali oscilluloH so that tlic angle 0 varies from 20^ to 18(F. 
I’lot a graph showing the tlisplacoment of the point 
against 6 ami henee find tlie sjwod of that point when 
6 60°, assuming that the speed of AB is then 50 r.p.in. 
Clieck your result by using the instantaneous centre. 

2. Solve Question 1 by drawing the ’’■elocity diagram^ 

3. Find all the instantaneous centres belonging to the single-slider-crank chain. 

4. In a slidor-iTank chain the crank is 3 in. long and rotates at 1000 r.p.in. and 
the connect in g-rod is 12 in. long. Find, by drawing the velocity diagram, the* 
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\'('lfn ify of the piston whon tho crank has turned through an anple of 60"' from 
the inner (leiid-contro. Kind also the angular v^elocity of the connecting-rod 
rclativ'e to the tixcfl frame and, taking the diameter of the erank-j)in to bo 2 in., 
the rubbing speed between it and tlie connecting-rod, 

f). In the Marshall valve gear indicated in the figure the crank I rotates about 
a fixed (‘ontre O and the bloc ks 3 and 5 arc* guided along lines XX and VY 

rc'spectively. d'he fixed frame' (link 6) is not shown. Kind all the fit teen instan¬ 
taneous centres hxdonging to the mecdianisin. 

6. In the mechanism of Question r» the crank OA is 2 in. long and rotates at 
100 r.]i.m. antic loc'kwise. 'rhc' angle is 3(r, (‘ is vc'i tically above (), AI? 9 in., 
AC’ 11 in. and - T o in. Draw the velocity diagram for B 4r>'" and find tlie 
velocity of th<‘ slider o and thet angular velocity of link 2 relative to the frame 6. 

7. I^'md all the tiftcM'ii instantanoou.s c c'iitros belonging to the sha]>er mechanism 
shown in thc^ figure. 

8. In the mec*hanism of Question 7 the crank 2 is 3 in. long and rotates at 
20 r.p.m. anticlockAvise. Draw tlie velocity diagram for S 3(K and find tin' 
velocity of the ram 6, thc3 angular velocity of link 4 about O and the velocity of 
sliding of the block 3 along the link 4. The dimensions are link 1-^7 m., link 
4 13 in., link 3 — 4 in. and OA — H> in. 
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9. If in the mechanism shown in the figure the crank OA rotates at 100 r.p.m. 

clockwise, find, by drawing the velocity diagram, the velocity of the slider i), 
which is actuated by the rod (’D from the link BAC, which is rigid. 

10. I'he eccentric A in the figure rotates about the fixed 
centre O at 100 r.p.m. and actuates the follower B. Find, 
when d~4C)'\ the angular velocity of B about P and the 
mbbing speed of B on A. 

11. In the Peaucellier straight-line motion shown 
in the figure AB-^BC~3 in., AD^ AF —6 in. and 

CD=DK-EF=-FC==U in. Taking the angle DAB 
to be 45° and the velocity of 1) relative to AB to bo 
unity, draw the velocity diagram and tlius verify that 
the velocity of E relative to AB is perpendicular 
to AB. 

12. The figure shows a mechanism used in a mould¬ 
ing press to obtain great pressures at the ram D. The 
cTank OA rotates about the fixed centre O an^ gives an 
oscillatory motion to the crank CB, which turns about 
the fixed centre C and operates the ram D through the 
^•onnocting-rod BD. Draw the velocity diagram and 
find the velocity of the ram when 0“45° and the speed 
of rotation of the crank OA is 100 r.p.m. OA ~ 3*75 in., 
CB - 4-5 in., AB -15 in., BD=-15 in. 



CHAPTER VI11 

(Articles 105 to llO of this chapter may he omitted on a jii\st 
reading.) 

THE ACCELERATIONS OF POINTS IN MECHANISMS 

100. There arc two f)rincipal methods of tiiidiiig the rKcelera- 

tion of any point of a mechanism the motion of one link of w Inch 

is known ; they are : 

1. By means of acreleralio?! diagrams. 
2. Analytically. 

The analytical method is similar to that used for determining 
velocities and is illustrated in subsequent chapters. The present 
chapter is concerned with the tirst of the above methods. 

Examples will be used to explain the method of drawijig 
acceleration diagrams, but a few preliminary remarks will be 
made. 

101. If AB, Fig. 123, is a rigid link, moving In any manner, 
the acceleration of B relative to A is, of (‘ourse, the accelera¬ 
tion B would have if A were fixed, and if A 
were fixed, then the only motion possible to B 
B is one of rotation about A as centre. In 
general, this motion wdll be a variable one, / '' 
so that at any instant AB will have an 
angular velocity (co) and an angular accelera- ^ ^ ^ 
tion (a) about A. Because of the angular Fig. J23 

velocity, B will have a normal acceleratiov 
equal to AB . a»- directed from B towards A and, because of 
the angular acceleration, B w ill have a fangenfial acceleration e(]ual 
to AB . a in a direction perpendicular to AB. 'Phe sense of the 
tangential acceleration must conform to that of the angular 
acceleration. The acceleration of B relative to A is the vector 
sum of these two component accelerations, but usually this sum is 
not required, the components being kept separate. The following 
notation will be used in connexion with accelerations : 

“formal acceleration of A relative to B 

|ajg=tangential acceleration of A relative to B 
95 
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^acceleration of A relative to B 

=x+x 
If now A is joined to some point O by a second rigid link, then 

the acceleration of A relative to O will also, in general, be com¬ 
posed of a normal and a tangential component 
directed respectively along and perpendicular 
to AO. The acceleration of B relative to O is 
then given by the vector sum of the acceleration 
of B relative -to A and of A relative to O, each 
of these accelerations being composed of two 
components, as shown in Fig. 124, where ooi * 
is the normal componeiit and OiO the tangential 
component of the acceleration of A relative to 
0, and abi and bib are the corresponding com¬ 
ponents of the acceleration of B relative to A ; 
ob is then the acceleration of B relative to O, 

When a hnk AB is part of a mechanism, the magnitude of the 
normal acceleration of B relative to A can always be found if the 
velocity diagram can be drawm. Thus the angular velocity of 

AB about A, is equal where ab is the velocity image of 

AB, and hence the normal acceleration of B relative to A is given 

{ab)^ 
by AB . , it being understood that ab is measured 

off the velocity diagram to the proper scale ; consistent units 
must be used, e.g. if ab is in fb./sec., AB must be in feet, the 

(ft /sec 
acceleration then being in ^—^=ft./sec.2. The magnitudes 

of the tangential components are usually unknown (being found 
from the acceleration diagraihs), but their directions are always 
known, being perpendicular to the respective links. 

102. The acceleration of a point B of a block that slides along 
a slot in a fixed link ECF is composed of a normal component 

directed from B towards the centre 0 and equal to where r is 

the radius of curvature of the slot, and of a tangential component 
perpendicular to the radius BO and equal to If the slot is a 
straight one, then the radius r is infinite and the normal accelera¬ 
tion is zero ; hence the acceleration of a point of a block that slides 
along a straight slot in a fixed link is parallel to the slot. 

• Throughout this chapter heavy typo is used to indicate vectors appearing in 
the acceleration diagrams. 
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When the link E(T is not fixed, but has a motion of rotation 
about some centre, the acceleration of the point 13 relativ e to any 
fixed frame of reference must })e determined 
as shown in Art. 106, so that, for the present, 
juechani.^ins involving rotating slotted links 
will not be considered. 

103. Example of an Acceleration Diagram. 
- In the four-bar chain ABCD, Fig. 126, the 
link AB is fixed and AD rotates with a con¬ 
stant angular velocity to radiajis per sec. 
What is the angular acceleration of FB about 
B when the mechanism occupies the position sliovn ^ 

Having drawn the mechanism to scale in the gi\ on configui ation, 
the first step is to draw the velocity diagram ; this is shown in 
Fig. 127. The acceleration diagram can now be drawn, tlie undcr- 
lying jirinciple being that the acceleration of the point V relative 

Fia \2:> 

d 

Fig. 127 Fig. 128 

to the fixed link can be obtained by considering as a point of the 
link BC, when its acceleration will consist simply of a normal and 
a tangeiltial component, or by considering C as a point of the link 
DC, when its acceleration relative to the fixed link w ill be given 
by the vector sum of its acceleration relative to D and tlie 
acceleration of D relative to A. 

Thus take any point a (Fig. 128) to represent A (and thus also 
B, since both are fixed points) and set out ad parallel to DA and 
equal to AD . co^ ft./sec.2 to any convenient scale, io represent 
the acceleration of D relative to A. Since to is constant, D lias no 
tangential acceleration relative to A. Next the ai'celeration of 
C relative to D must be added to that of D ; from d draw dci 

parallel to CD and equal to ft./sec.^ to represent the 

normal accclpration of C relative to I). From Cj draw a line 
7 



98 MECHANISM AND THE KINEMATICS OF MACHINES 

perpendicular to CD, then c, the acceleration image of C, must lie 
on this line. Turning now to the link BC, the normal acceleration 

(6c)2 
of C relative to B may be set out parallel toCB as be' = jg-^ft./sec.^. 

From c' draw a line perpendicular to BC ; then c, the acceleration 
image of C, must lie on this line also and must therefore lie at the 
intersection c. 

The components of the acceleration of C relative to B are 
be' ft./sec.2, the normal component, and e'e ft./sec.2, the tangential 
component. The angular acceleration of BC about B is then given 

"J'angential acceleration of C relative to B 

e'e ft./sec.2 

""CB ft. 

c e 
^ rads./sec.2 

The sense of this angular acceleration must conform to that of 
the tangential acceleration e'e ; thus e'e with the sense e' to e is 
the tangential acceleration of C relative to B ; hence the sense 
of the angular acceleration a is clockwise, i.e. the angular velocity 
of BC about B is increasing. 

Similarly the angular acceleration of DC relative to C is given 
CiC 

rads./sec.2 in a clockwise sense. 
"CD 

104. Another Example.—Fig. 129 shows diagrammaticalJy a 
valve gear used for operating the slide-valves of steam engines. 
The crank AB may be taken to revolve at a constant speed. The 
end C of the link BC is constrained to move along a line XX the 
inclination of which is fixed, except that it can be altered for 
certain purposes such as reversing the direction of rotation of the 
engine. A point D of BC is coupled by a rod DE to a slider E 
guided in a fixed guide YY. The slider E is connected rigidly to 
the slide-valve. To find the acceleration of the valve, for the 
given configuration of the mechanism, being given the speed of 
the crank AB, the velocity diagram is first drawn, as shown at 
the bottom of the figure. 

The first step in drawing the acceleration diagram, which is 
shown in Fig. 130, is to set out ab, the acceleration of B relative to 

A. This is equal to 

sense is directed from B to A. Since the speed of AB is constant. 

/ a62\ 
(=-^1 and is parallel to AB, and in 



THE ACCELERATIONS OK POINTS IN MECHANISMS 09 

there is no tangential component- 

relative to B is next set out as be 

The normal acceleration of C 

and CjG is drawn 

perpendicular to BC and of indefinite length. The acceleration 
image (c) of C lies on CjG. But the acceleration of C relative to 

Fig. 129 Kif.. 130 

the fixed frame, i.e. relative to A, is parallel to XX ; licnce from 
a draw a line parallel to XX to intersect C|(i in c. Join be ; this 
is now the acceleration image of BC and the image of 1) is found 

by taking d such that normal component of the 

acceleration of E relative to D is next set out as de^ 
K?D 

JJE~ DE 
and eiH is drawn perpendicular to ED and of indefinite length. 
Then e, the acceleration image of E, lies on CjH. But the 
acceleration of E relative to A is along YY ; hence from a draw a 
line parallel to YY to intersect C|H in e. Then ae is the accelera¬ 
tion of E relative to the fixed frame. Since, from the velocity 
diagram, E is moving from right to left, the velocity of E is, at the 
moment, increasing. 

105. Special Method lor when the above Method Fails.—When 
the special method described in Art. 97 has to be used to draw the 
velocity diagram it becomes necessary to use a special method for 
the acceleration diagram. Considering the mechanism shown in 
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Fig. 131, the following accelerations can be calculated when the 
velocity diagram (shown at the bottom of the figure) has been 
dravn, e%- These may be set out as in 
Fig. 132, but to proceed any further the following method must 

Fic. i;u Fig. 132 

be adopted. Produce BC and FE to intersect at G and regard (i 
as a point attached to DEC. Now 

~G®c d" cAb “1“ B^O 

“G^C +G®C +C®B +C^B 

™G^C d“C®B “bB^O d" G^C d~C®B 

and of these components the first three are known in magnitude 

and direction etc.^, and, because G has been chosen to 

lie on BC produced, the directions of the last two comiionents 
^,2 

coincide. Hence from b set out bci^~~, parallel to BC and 
x>0 

,;2 

from Cl set put also parallel to BC. From gi draw 

giX perpendicular to BC. Then g, the image of G, lies on g^x. 

But G% — G^E d"E®F 

—G^E d~(j^E d~E^F d"E^% 

■^G^E d"E®F d~G^E d“E^F 

and the first two components are known completely, while, again, 
because of the choice of the point G, the directions of the last two 
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components coincide. Hence from /set out/c'~~~ parallel to 

EF and from c^set ^ ^parallel to EF. Draw g'y 

perpendicular to EF to intersect gix in g ; then g is the accelera¬ 
tion imago of G. The image of D may then be found, because 

and l/fo --A^O +D^^A + A 

and in each case the tirst two components are known completely, 
while the directions of the last components are known. Thus 

from g set out gd' parallel to GD and through d' draw a line 

pcr])endicnlar to (iJ) : d then lies on that line. Also, from n set 
^,2 

out parallel to AD and through c/| draw a line ])erpen- 

dicular to AD ; then d lies on this line and is established at the 
intersection. The remainder of the diagram is straightforward. 
Thus on gd a triangle similar to GOD is drawn and c is established 
and hence e. As checks on the accuracy of the drawing it should 
be noticed that c should lie on a perpendicular to BG drawn 
through Cl and e should lie on a perpendicular to FE drawn 
through e\ 

106. Rotating Slotted Links.—Let B, Fig. 133, be any point of 
a block that is sliding along the slot in the link DECF while that 
link itself is rotating about the fixed 
centre D. The point C of the link coin¬ 
cides with B at the moment under con¬ 
sideration. Let the velocity of B along 
the slot be u; this is the velocity of B 
relative to a frame of reference YCY 
fixed to the link and hence rotating w ith 
it. The acceleration of B relative to the 
link, i.e. relative to YCY, then consists of 

a normal component y directed from B 

towards the centre of curvature () and 
of a tangential component ii parallel to 
u. These components constitute the 
acceleration B would have if the link were fixed and the block 
moved along the slot, i.e. the act^eleration of B relative to the link. 
Let the angular velocity and acceleration of the link DECF be 
Q and a respectively. Then the acceleration of C relative to any 
li.vcd frame of reference X l)X is composed of a normal (component 
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directed from C towards D and equal to CD . and of a tangential 
component equal to CD . a perpendicular to CD. These com¬ 
ponents constitute the acceleration B would have if it were fixed 
to the link while the link rotated. Then, as shown analytically 
in Art. 37, 

The acceleration of ( acceleration of B relative to the link 
B relative to D ~ 1 +fhe acceleration of C relative to 1) 

( 

the term 2uQ being the compound supplementary acceleration 
due to the rotation of the frame YCY relative to the frame XDX. 
It is instructive to obtain this result by a non-analytical method, 
as follows. 

107. Coriolis’s Law.—Let EF and E,F, (Fig. 134) be the 
positions of the centre-line of the slot of the link at the beginning 

and end, respectively, of a small interval of time ht. During this 
interval the link will have rotated through the angle CDCi —h9, 
while the point B will have moved down the slot a little and will 
be at Bp In the first position the velocity of B relative to XDX 
is the vector sum of its velocity u relative to the link and the 
velocity v of the coincident point C of the link relative to XDX. 
In the second position the velocity of Bj is the vector sum of its 
velocity relative to Ci and the velocity v-f 8v of Cj relative to 
XDX. The velocity of Bi relative to Cj is -equal to the vector 
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sum of the velocity of Bi relative to the coincident point C' 
and the velocity of C' relative to C. In the first position the 
angular velocity of EF about D was a>, and in the second position 
it is oj -fScu. The velocity of C' relative to C is thus C^C' x (cd +8a>) 
perpendicular to CjC', while v-^co . CD and ^;-f-S^?~(a>+8a>) . Cjl) 
“-=(cz>+8aj) . CD, so that St;—CD . So). The changes in the 
velocity of the point B relative to XJ)X are thus : 

1. An increase 8 

2. The velocity u has been turned through the angle <f), 

3. An increase 8v. 

4. The velocity v has been turned through the angle CDCi —SO. 

5. The velocity (cc+Su;) . CiC' has been added. 

The corresponding average accelerations are then : 

8u 

2. ^ (see Art. 29):- 

the radius of the slot. 

o 

V . 80 
4. .^y- (see Art. 29). 

ot 

io . CiC' Sea . CiC' 
5. ' 

u.{8e-\ils) v80 C,C' 1 

8^ 
-f- u . . A\here r is 

r. 81 

8i 8t 

Let the interval 8l be made indefinitely small, then the actual 

accelerations become : 

1. 

2 

du 

dO u- 
^ _|—— since the Jimit ol 

dt r r 
definitely small is u. 

CjC' 
St 

when 8/ is in- 

a. 

d0 o 
4. V . —V . CO . —CD . Co2. 

CLt 

5. 
dm 

^ • ^+'37' • 0—^^co. 
dt 
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The directions of these are as follows : 

1. Parallel to a. 
2. Perpendicular to u and from B towards the centre of curva¬ 

ture of the slot. 
3. Perpendicular to CD. 
4. From C towards D. 
5. From B towards the centre of curvature of the slot (because 

the change of velocity (aj+8£o)CiC' is perpendicular to 
CiC' and in the limit this is perpendicular to u). 

These accelerations may be grouped as follows : 

, 
(a) u and —. 

' r 
(b) CD . and CD . a. 
(r), 2ua). 

Group (a) is then seen to comprise the acceleration of B relative 
to the link ; group (b) comprises the acceleration of the coincident 

point C of the link relative to XDX, while (c) is the 
compound supplementary acceleration. 

The direction of the compound supplementary 
acceleration is perpendicular to that of the velocity 
It; its sense may be determined by using the following 
rule. 

Set out cb (Fig. 135) to represent the velocity v. 
Rotate this vector, in the same sense as that of the 
angular velocity co, to the position cbi. Then bb^ 

is the sense of the compound supplementary acceleration. 

108. Equivalent Mechanisms.—Since the two mechanisms 
shown in Fig. 136 are kinematically identical (see Art. 80), the 

block and slotted link may be replaced by two links and a 
mechanism be thus obtained for which the acceleration diagram 
presents no difficulty. When the radius r is reasonably small 
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this is undoubtedly the best way to proceed, but when it is large, 
in particular when it is infinite and the slot is straight, the sub¬ 
stitution is impracticable and the method of the following article 
must be used. 

109. Example of Mechanism with Rotating Slotted Link.—Let 
the crank AB of the shaping machine mechanism vshown in 
Fig. 137 be rotating at a constant angular speed Q, and let it 
be required to draw the acceleration diagram for the given con¬ 
figuration. (The slot in the link CD has been placed at an angle 
to the line CD in order to clarify the acceleration diagram.) 

The velocity diagram is first drawn. It is shown, on the left, 
in Fig. 138. To draw the acceleration diagram choose any point 
a (Fig. 138, right) and set out ab=AB.Q^ to represent the 

Fig. 137 Fig. 138 

acceleration of B relative to A. The point b, the acceleration 
image of B, may also be arrived at by considering the acceleration 
of B relative to C, which consists of the vector sum of the accelera¬ 
tion of B relative to Bi, the acceleration of Bj relative to C and 
the compound supplementary acceleration ; this is indicated in 
Fig. 138, where cbi' and bi'bi axe respectively the normal and the 
tangential components of the acceleration of Bj relative to C ; 
bibi" is the compound supplementary acceleration (equal to 

acceleration of B relative to B^. The 
difficulty, however, is that the magnitude of bibi is unknown, 
and so the position of bi is unknown. The difficulty may, how¬ 
ever, be circumvented by setting out by equal in magnitude, but 
opposite in sense, to the compound supplementary acceleration 
and from y drawing a line yx (parallel to y the acceleration of 
B relative to Bi,and hence parallel to the slot in the link CD) to 
intersect a line drawn through bi' perpendicular to CBj in frj. 
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its sense is 

Then cbi is the acceleration image of CBi and the image of D may 
cb. CBi 

be obtained by extending cbi ^ such that qJJ• 

Next the normal acceleration of E relative to T> may be set out 

as dei P^^'rallel to ED and directed from E to D. Then 

e, the acceleration image of E, must lie on a line drawn through 
Cl perpendicular to DE ; also ei must lie on a line drawn through 
a parallel to the ram slide, andjbence is determined 

Then ae is the acceleration of E, which is thus speeding up. 
The angular acceleration of the link CD about C is given by 
Tangential acceleration of Bj relative to (> hj'6, 

CB^ ""cb7 
obtained from that of bi'bi, and hence is anticlockwise. The 
angular speed of CD is thus increasing. 

It should be noted that the acceleration of B relative to Bj is 
represented by h/'h or by and not by bib. 

110. Accelerations in Cams.—When two bodies are in contact 
and one has a combined rolhng and sliding motion relative to the 
other, a motion which commonly occurs in cams (see Chap. XIX), 

the acceleration of any point of the one 
body relative to the other body ^depends 
on the radii of curvature of the bodies at 
the point of contact, and it is not usually 
practicable to draw an acceleration diagram 
for a mechanism in which such contacts 
occur. The accelerations may be found 
either by plotting a space-time curve and 
differentiating it graphically twice or by 
the analytical method. The sliding-rolling 
contact can, however, be replaced at any 
instant by a link joining the two centres 
of curvature Oj, O2 (Eig. 139), when, in the 

example shown, a simple four-bar chain 00^02D is obtained, for 
which the acceleration diagram can easily be drawn. 

Fio. 139 

EXERCISES VIII 

1. Draw the acceleration diagram for the mechanism of Question 4, Exercises 
VII, ajid, assuming the crank speed to be constant, find the acceleration of the 
piston. Check your result by using Klein's construction and also by calculation, 
using the approximate expression for the piston acceleration. 

2. Draw the acceleration diagram for the mechanism of Question 6, Exercises 
VII, and find the acceleration of the slider 5, and the angular acceleration of 
link 4. 
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3. J)raw the acceleration diap^ram for the mechanism of Question 9, Exercjses 
Vll, and find the acceleration of tho slider D. 

4. Draw tho acceleration diagram for the Poaucellier mechanism of Question 11, 
Exercises VII, and verify that the acceleration of E is jierpendicular to the link 

AB. 

5. Draw the acceleration diagram for the aha[)er int>chanisrn of Question 8, 
Exercises VIJ, and find the ai'coleration of the rani, tlie acceleration of the slider 3 
relative to link 4 and the angular acceleration of tho latter. 

6. Draw the acceleration diagram for the Whitworth quick-return motion of 
Question 16, Exercises VII, and find the acceleration of the ram D. 

7. Draw the acceleration diagram for tho mechanism of Question 17, Exercises 
\T1, and find the acceleration of the door. 

8. Draw tho acceleration diagram for the mechanism of Question 1,2 Exercises 
VTI, and fiml the acceleration of tho ram D. 



(CHAPTER IX 

THE DIRECT-ACTING ENGINE MECHANISM 

111. The Piston Velocity.—In Fig. 140 the point O is clearly 
the instantaneous centre of the connecting-rod BC relative to the 

fixed frame; hence — where P is the intersection of 
i/Va OB AB 

BC, produced, with a line drawn through A perpendicular to the 
line of stroke XX. This gives a simple graphical method of 
finding the velocity of the piston in terms of the velocity of the 
crank-pin. Thus, 

AP 
Piston velocity Crank-pin velocity 

and this is true whether the line of stroke XX passes through the 
centre A or not. 

B 

Fig. 141 

112. An approximate expression for the velocity of the jiiston 
may be found analytically as follows. In Fig. 141, let AB=r, 
BC=Z, Z.CAB —/.BCA—Then the distance of the piston C 
from the centre A is given by 

Cos Cos ^.(1) 

but r Sin Sin <f) 
r 

Sin ^ 

*.•. Cos <}> I - 0 Sin ~ T • 

108 
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and on expanding this by means of the binomial theorem we 

obtain 

Cos 1 —Sin —etc. . (3) 

When r is small compared with I the third and subsequent terms 
of this expression for Cos ^ may be neglected without intro¬ 

ducing any appreciable inaccuracy. Thus, Cos Sin 

ai)prox.; hence 
r r2 -| 

. Sin approx. ... (4) x=^r Cos 6~\-l \ 1 
2/2 

and on differentiating this with respect to time we shall obtain an 
dx 

expression for —i, the velocity of the piston. Thus, 
di 

dx dx dO 

df ~d6 ' dt 
~r Sin Q- Sin Q Cos Q 

z=i—roy 

de 

Sin 6 Sin 26 

d£ 

di 

approx. (5) 

since —=.oj, the angular velocity of the crank AB. The minus 

sign appear^ because the velocity of the piston in the position of 
the mechanism shown in the figure is to the left, towards A, while 
the displacement x is to the right, from A. 

113, By substituting the exact expression, Eq. (2), for Cos <j6 
in the expression for the displacement Xy and then differentiating 
with respect to time, an exact expression for the piston velocity 

can be obtained. Thus, 

Cos 0+/j^l — 0 Sin j 

dx dx dO 

’ ‘ dt ~dd * dt 

j^—r Sin —0 Sin | X 

rsin»- 1 

-2^ Sin 6x^ Cos 6 

— —rw 

dt 

(6) 

T 
When the ratio j is less than about J, how ever, the error involved 

in the approximate expression is quite small, and for most 
praotical purposes that expression is used. 
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114. The piston velocity is plotted on a basis of piston dis- 
r . . 

placement for various values of the ratio in Fig. 142, while 

Fig. 143 gives similar curves, but on a crank-angle basis. 

A consideration of Fig. 140 will show that the piston velocity, 
which is proportional to AP, is a maximum approximately when 
the angle ABC between the crank and the connecting-rod is a 
right angle and is equal to the crank-pin velocity when the crank 
angle GAB is a right angle. 

Fig. 143 

115. The Piston Acceleration.—^There are several graphical 
methods of determining the piston acceleration, the best known 
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being probably Klein's construction, which is shown in Fig. 144, 
and is as follows. Produce CB to intersect a line through A 
perpendicular to the line of stroke XX in the point P, and with 
B as centre and BP as radius describe a circle. On BC as diameter 

describe a circle to intersect the first circle in L and M. Join LM 
and produce it, if necessary, to intersect a line drawji ihrougli A 
parallel to the line of stroke XX, in the point Q. Then AQ is 
proportional to the acceleration of the juston at the given instant. 
This may be proved as follows, 

Ua =b(la 

Now in the quadrilateral ABQN, AB is parallel to i,aa, BN to 
AB BN 

NQ to iat) and AQ to cO>a ; hence if it can be shown tliat — — 
()(la c^b 

it follows that ABNQ is the acceleration diagram, but with the 
vectors all reversed in direction, and AQ is proportional to 

Now 
„ cVh'^ 

but 

BN BN . BC 

' ■ X cVb^ 

BN . BC=BN(BN+NC) 

also 

=BN2+BN.NG 

BN. NC=NL2 

hence 

=BL2-BN2 

=BP2-BN2 

BN. BC=BN2+BP2-BN2 

=BP2 
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BN 

>b~ eVb^ 

Vf 
but A APB is similar to the 

velocity diagram for the 
mechanism 

BP2 AB2 

cVir ~ 

BN AB2 AB AB 

bVa-~~bVa^lAB~' baa 

hcncc ABNQ is the acceleration diagram for the mechanism and 
AQ is proportional to ,aa. Thus, 

AB_^ 

b^^a cflfa 

h r\ 
(fia—AQ X ^2^ 

and if the acceleration scale is chosen so that AB is equal to the 
acceleration then AQ is equal to the acceleration of the piston ; 

the acceleration scale is thus 1" to ft./sec.2. 
AB ' 

116. BennePs Construction.—Another construction isBennet’s, 
which is as follows. Set out the mechanism with the crank at 
right-angles to the line of stroke, as shown at ABiC] in Fig. 145, 

and draw AD^ perpendicular to BjCi to determine the point Dj 
on the connecting-rod. With the mechanism in the position for 
which the piston acceleration is required draw DE perpendicular 
to BC, draw EN perpendicular to AC and draw NQ perpendicular 
to BC. Then AQ is proportional to the acceleration of the piston, 
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ABNQ -again being the acceleration diagram reversed. Again, it 
IS necessary only to prove that 

1>N Normal acen. of C rel. B 

AB ~Nornnd acen. ol B rel. A 

BN 

AB ~AR0- 

i.c. ENy2=BCf‘! 

Now the preliminary construction gives 

BD . DC^AD2 

BD(BC-BD)=AB2=BD2 

BD . BC=AB2 

AB2 
BD = 

BO 

In any position of the mechanism 

bl'a Cos 0 —, C* Cos (f> 

AB0 Cos 0^BC<l> Cos 4, 

Axe^cx4> 

■ J, 0 

. AX2 
BC.^2^BC . 0^ . 

=BC . 0' 

=BC . 0 

=.02 BC 

„(AB2-BX2) 

CX^ 

„(AB2-BC2+CX2) 

CX2 

(BC2-AB2)BC 

CX2 ] 

I^BC 

--=02iBC 

BC2 . CD 

02 1 

CX-^ 

^ ^ t-D 
"DC • EC ^ 

-^s[BC-NC] 

-02 . BN 
8 
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117. Ritterhaus’s Construction.—Yet another construction is 
that due to Ritterhaus, which is as follows. Produce CB, 
Fig. 146/to intersect a perpendicular to the line of stroke through 

A in P. Draw PR parallel to the line of stroke to intersect the 
crank AB, produced, in R. Draw RN parallel to AP to meet the 
connecting-rod in N. Draw NQ perpendicular to BC to intersect 
a line through A parallel to the line of stroke XX in Q. Then 
AQ is proportional to the acceleration of the piston, AipNQ again 
being the acceleration diagram reversed. The scale for the 
acceleration is thus the same as in the previous constructions. 
The proof is simple ; as in the previous constructions it is merely 
necessary to show that 

bda r^b 

ab""bn 

Now 
‘““-AB 

, b'^a^ . b'^a b'^'c 

■ • AB ""AB2 ^BP, AB ""bp 

But triangles APB and BRN are similar 

BN BR 

• BP-AB 

also triangles ABC and BPR are similar 

BR BP 

• AB-BC 

BN_W» 

•• BP-BC 

BP2=:BN . BC 

, b^a r^b"^ t^^b 

• • ab""^""bn . BC“"BN 
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118. An apiiroximate expression for the acceleration of the 
piston may be obtained by differentiating the approximate 
expression, Eq. (5), with respect to time, thus: 

dx 

dl. Sin G+21 approx. 

d-x d (d<) do 

dO ‘ dt 

1 
and, assuming co I I to be constant, vve h 

d'^x . 2r ^d 
^ = -m[(,OH^+^Cos20j^ 

d^ 
dt 

Cos 0 4^ I'os 2^.(7) 

As with the approximate expression for the velocity, this 
expression is sufficiently accurate for all practical purposes for 

Fio. 147 
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T T 
ratios | less than ^ ; thus when —and 0^-4:^^ the error is only 

r 
I • t ])er eent.,and when -0 orlSO theerroris nil lorall valuesof^. 

Fig. 147 shows the piston acceleration, as given by the approxi 
. r 

mate expression, Eq. (7), for various values of the ratio 

An exact expression for the piston acceleration is obtained by 
differentiating the exact expression, E(j. (h), with respect to time, 
thus : 

and again assuming w to be constant, we obtain 

119. The Piston Motion as the Sum of Two S.H.M.s.—It is easily 
see^n that the motion of the piston in the slider-crank chain is, to 
a close approximation, composed of two simple harmonic motions 
and could be produced by means of a combination of tw o double¬ 
slider crank chains, as shown in Eig. 148. The crank AB of 

Fig. 148 

length r rotates about the fixed centre A with an angular velocity 
cj, thus giving simple harmonic motion to the slider XXX. The 
latter has mounted on it a second crank DE which rotates about 
the centre D with an angular velocity 2a>. The crank DE is of a 

length ^ and gives simple harmonic motion to the slider CC 

relative to its “ frame ” XXX. Let the cranks both start from 
the same inner dead-centre position at the same moment; then 
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when the crank AB has turned through an angle 6 the crank DE 
will have turned through an angle 2d. The acceleration of the 
slider XXX relative to (he tixed frame AM is — rco- (bs 6, 
while that of tlie slifler-CX' relative to its frame XXX is (r“\ r-a>“ 

- (V)s 20-^-j- C!os 26 

ddien tlie acceleration of the slider CC- relative to the lixed frame 
is given by and, since the accelerations are all in 
the same direction, the vectorial addition becomes merely 
algebraic addition, so tliat 

—Toj'^ CV)s ^ -f I —~ - Cos 26 j 

Cos 6 ~l j Cos 26 

which is, approximately, the acceleration of tlie piston o(*a slider- 
crank chain having a crank of length r rotating at an angular 
speed oj and a connecting-rod of length 1. 

That component of the piston acceleration which is due to the 
crank AB is called the primary component, while tliat. due to the 
crank DE is called the secondary component. The cranks them¬ 
selves may be referred to as the primary and secondary cranks 
respectively. It should be noted that the secondary crank 
rotates at twice the speed of the primary crank and that botli 
cranks start from the inner dead-centre position at the same 
moment. 

The primary and secondary components and their resultant are 
shown in Fig. 149, in which the resultant is the alegebraic sum of 
the two com])onents. 

Fig. 149 
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120. The Higher Harmonics in the Piston Motion.—The piston 
acceleration can be represented by a series of the form 

Cos 6-\-3 Cos 26-{-C Cos 40+D Cos 60+ , etc.] , 

and the values of the constants AB, etc., may be found as follows. 

Since x— r Cos 0+1 Cos </> 

and Cos^ = |^l-^Sin20j‘ 

we have, on expanding Cos ^ by*means of the binomial theorem, 

x—r Cos 0+^ Sin^ 0—Sin^ 0—Sin® 0 — , etc.] 

r 
where 7n—j, and, using the relations 

Sin2 0=^1-1 Cos 20 

Sin4 0.^3__| 20+-J Cos 40 

JSin® 0~'i%—if Cos 20-f^6 Cos 40—gV Cos 00, etc., 

we get 
X—r Cos 0-f-/[l—|m2——, etc.] 

+/ Cos 20[]m2-f-+ 5 etc.] 

+l Cos 40[~gV'64 —2-|em® —, etc.] 

+l Cos 60[5}^m6, etc.].(9) 

and on rearranging 

x=K+A Cos 0+B Cos 20+C Cos 40+J) Cos 60+ etc. . . (ID) 

where K=^r ——, etc.j 

A—r 

B--r[imf^m3 f^m^+, etc.] 

C^—/•[-eV'^^+^mS+, etc.] 

etc.] 
Hence 

i=-co[—A Sin 0—2B Sin 20-—4C Sin 40—6D Sin 60—, etc.] . (11) 

and 

i=—aj2[ACo80+4BCos20 + 16CCo840 + 36D Cos 60 + ,etc.] (12) 

— —ra>2[Cos 0+Bi Cos 20+Ci Cos 40+Di Cos 60 + , etc.] 

where B^—m+im3+Yl8m5 + , etc, 

Ci =—[im34-i%m5+, etc.] 

Uj—-3V»®-l-j etc. 
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Numerical values of Bi, Cj and Dj for various values of m are 
given in the table below : 

. 2 3 3^ 4 41 5 
r m 
Bx . . 0*5325 0*4164 0*3428 0-2916 0*2540 0*2250 0*2020 
Cj (-) 0*0371 0*0178 0*0100 0*0062 0*0041 0*0028 0 0021 
Di . - 0 0005 0*0001 0*0000 0*0000 0*0000 0*0000 0*0000 

It will be seen that even for comparatively high values of the 

T 
ratio j the fourth and higher harmonics arfe negligibly small, and 

in practice they are almost invariably neglected. Occasionally, 
however, when resonance occ^rs, the higher harmonics, though 
very small in magnitude, may produce appreciable vibrations and 
may therefore have to be taken into consideration. 

121. Offset Cylinders.—Internal-combustion engines arc often 
arranged with their cylinders offset in relation to the crankshaft 
axis, i.e. the cylinder axis docs not pass through the crankshaft 
axis. Usually the amount of offset, the dimension c in Fig. 150, 

is small compared with the crank radius, bcmg of the order of 
one-quarter of that radius. The construction given in Art. Ill 
for the piston velocity, and those of Arts. 115, 116 and 117 for 
the piston acceleration, are true for,offset cylinders. Analytical 
expressions for the piston velocity and acceleration may easily be 
obtained; thus, referring to Fig! 150, we have 

x=r Cos 6-\-l Cos <f> 

r Sin d~l Sin 

r Sin d~-e 

l 

Cos </>- 
r Sill 

~~ir 

(r Sin 0—cy 
^1---approx. 

x—r Cos 
Sin d—cy 

2L \ 
(13) 
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dr 

dt' 

d^x 

r Sill 0- 
(r Sin e-e){r Cos 0)1 dO 

I 

Sin Co. e 

\dt 

I 

Cos Cos 26 8in 0 

(14) 

(15) 

and it is seen that the e£Eect of the ofEset is to modify the primary 
. t 

component of the acceleration by the addition of the term Sin 0. 

The curves given in Fig. 15^ are the piston velocity, for various 

amounts of offset, plotted on a crank-angle base, and they show 
that the magnitude of the piston velocity is not much affected by 
offsetting the cylinder. The corresponding curves for the piston 
acceleration are so close togethei; as to be indistinguishable. 

When the cyhiider is offset the piston stroke is no longer equal 
to twice the crank radius, and the inner and outer dead-centres 
no longer occur when the crank-angle 0 is respectively 0° and ISC'. 
Referring to Fig. 152, the inner dead-centre is obtained by striking 
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an arc with radius r~\-l from the crankshaft axis to intersect the 
line of stroke, similarly for the outer dead-centre, except that the 
radius of the arc is l—r. Tlic piston stroke is given by 

^- OA—OB~-V(r c-~V(r — l)- ~e- 

The angle turned through by the crank while the piston performs 
its outward stroke is a, and for the inward stroke ^ ; hence, 
assuming the crank to rotate at a constant angular speed, we have 

Time taken for outward stroke a 

Time taken for inward stroke 

The mechanism has thus been used as a quick-return motion for 
machine tools, the cutting tool being held in a tool-head which 
corresponds to the piston ; the mechanism is not a good quick- 
return motion, however, and is no longer used. 

122. The Inversions of the Slider-Crank Chain.—Four mechan¬ 
isms are obtainable from the slider-crank chain by fixing each of 
its links in turn ; the most important of these has been considered 
above, and the remaining ones will now be considered. I^y fixing 
the link 2, Fig. 153, a mechanism is obtained which is used for 

Fig. ir>r> 

two widely differing purposes, namely, as a rotary engine and as a 
(luick-return motion for machine tools. In the rotary engine tJie 
link 1, i.e. the cylinders, rotates about the centre A with approxi¬ 
mately constant speed, while links 3 and 4, i.e. the connecting-rod 
and piston, rotate about B with a variable angular speed. The 
motion of the piston relative to the cylinder is, of course, un¬ 
changed. Such engines were at one time extensively used in air¬ 
craft, and in order to secure a regular firing sequence and proper 
balance of the engine an odd number of cylinders was used, usually 
seven or nine, all in one plane and all working on one crank-pin. 
Only one connecting-rod, the ‘‘ master-rod,'' M, had its big-end 
bearing actually on the crankrpin B, the other rods N (only one 
of which is show n) having their big-ends pivoted on ])ins C carried 
by the big-end of the master-rod as shovm in Fig. 154. The 
advantages of the rotary engine over other types no longer obtain, 
and such engines are now practically obsolete. The radial engine. 
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which is of similar construction, but in which the cylinders are 
fixed, is still widely used. 

123. The Whitworth Quick-Return Motion.—Heferring to 
Jfig. 155, the link 5 is driven at a constant angular velocity and 
imparts a variable motion to the link 1. The latter is extended 
to D and is coupled by a link DE to the tool-head of the machine. 
Clearly, when the line of stroke of the tool-head passes through 
the centre A, as shown, the extreme positions of* the tool-head 

Fiu. 155 
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occur when D is at L and M, that is when the pin C is at X and 
Y. Hence we have 

Time taken for cutting stroke Arc XQY 

Time taken for return stroke ~Arc YRX 

If the proportions of the links are changed, another quick-return 
motion is obtained. It is used extensively in shaping machines 
and is shown in Fig. 156. Clearly, we have 

I'ime for cutting stroke Arc XQY 

Time for return stroke ”” Arc YRX 

The difference is that link 3 is now shorter than link 2, whereas in 
the Whitworth mechanism it was longer. Expressions for the 
angular velocity and acceleration of 
the slotted link are given in Question 7, 
Exercises IX. 

This inversion of the slider-crank 
chain also gives the “ Geneva stop ” 
mechanism described in Art. 273, and 
numerous blowers for pumping air and 
liquids. One of the latter is shown 
in Fig. 157. It consists of a cylindrical 
(casing A inside which is placed a rotor 
B provided with a number of slots to 
accommodate vanes C. The rotor is 
eccentric to the casing A, as shown, and the vanes are guided by 
blocks T) sliding in slots, concentric with A, formed in tlie end 
covers. Inlet and outlet ports are formed as indicated at I and 
O, and the pumping action is due to the variation in the volume 

Fig. 157 
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of the spaces enclosed between the casing, the rotor and a pair of 
adjacent vanes. Consideration will show that this is identical, 
kinematically, with the Whitworth.motion. 

For a comprehensive historical account of the use of this and 
other mechanisms as rotary engines, blowers and pumps, the 
reader should consult a series of articles published in 1939 in 
The Engineer. 

The mechanism resulting from fixing link 3 has been used as an 
engine having an oscillating cylinder and is sometimes known as 
the oscillating cylinder engine mechanism. It is now used as an 
engine only in toys and a few special applications, but it is still 
employed for minor purposes ; for example, as a pump to circulate 
the lubricating oil in internaheombustion engines. As will be 
seen from Fig. 158, the links 1 and 4 have their forms inverted, 
the male member, block 4, of (a) becoming the female member, 
cylinder 4, of {b). The mechanism is used for door-stops, link 2 
being the door, by filling the cylinder with fluid and arranging a 
small passage from one side of the piston to the other. It is also 
used as a quick throw-over mechanism as shown in Fig. 159. As 

the lever AB is moved towards the dead-centre position AX the 
spring S is compressed, and as soon as the lever gets over the 
dead-centre position the spring moves it rapidly to the extreme 
limit of its travel. 

On fixing the remaining link, 4, the pendulum-pump mechanism 
(Fig. 160) is obtained, the name arising from the motion of the 
link 3, which now swings to and fro about C as centre. Again the 
forms of links 1 and 4 are inverted, while link 1 is extended to 
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Fig. luO 

ioriti the ])uni]) plunger \). The mechanisin is no longer used as 
an engine mechanism, but finds occasional use in other forms. 

124. Adjustable-Throw Cranks.—In some applications of the 
slider-crank chain and its inversions it is desirable to be able to 
vary the tlirow of the crank and thus the stroke of the slider. 
Two methods of doing this are shown in Figs. 161 and 162. In 

the former the crank-pin P is part of a block that can be traversed 
along a slot formed in the face of a disc, by means of a screw S 
carried by the disc and engaging a nut fixed to the block. The 
effective length of the crank OP can thus be varied, and it will be 
noticed that its angular position relative to the crankshaft is not 
altered when this is done. In the second method the crank-pin 
P is made part of a disc or cylinder C which is eccentricaUy 
mounted in the disc B. By rotating C relative to B the effective 
length of the crank OP can be varied between the limits OAi^P. 
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In this metliod the angular position of the crank relative to the 
cranksliaft changes as the throw of the crank is varied. With 
both methods it is not difficult to arrange for the alteration of 
throw to be made while the crank rotat-es. 

EXERCISES IX 

I. I’rovo that tho piston velocity and acceleration in the singlo-slidcr-crank 
chain are given approximately by the expressions 

I — rail Sin 0-\- ~ Sin 
21 

and 

respectively. 

I^Sin Sin 2^j 

“I^Cos C’oG 

r —length of crank, Z —length of connecting-rod. 

2. Using a graphical method of finding the piston velocity draw, on a stroke 
basis, a diagram showing the variation of the piston velocity in a slider-crank chain 
having a crank/con.-rod ratio of 1/3. 

3. Repeat Question 2, taking the line of stroke to bo offset by an amount equal 
to one-sixth of the crank radius. 

4. Trove that tho components, in the directions OX and OY (see figure), of 

Y P 

Q 

the velocity of tliQ point G of the connecting-rod are 

X~ax -rath Sin 0 

and Y =--ra>6 Cos B 

respectively* / — length of connecting-rod —TQ, and at^ 
dt' 

5. Derive expressions, similar in form to those of Question 4, for tho cori*e- 
sponding components of the acceleration of the point G. 

6. In a Whitworth quick-return motion the fixed link is 4 in. long and is at 
right-angles to tho line of stroke of the ram which passes through the centre of 

rotation of the slotted link. If the ratio 2, find the length of the 
Return time 

driving crank and the value of tho ratio if the stroke of the ram 
° Max. cutting speed 

is 6 in. Negleot the eiSect of the obMqwty pf the connecting-rod. 

7. Prove that the angular velocity and acceleration of the slotted link of the 
shaper mechanism shown in the figure is given 
respectively by 

a(h Cos B~~a) • 

and 

Cos 9) ' 

Sin d{a^b~ah^) 

^ (a2-p62-2a6Cos0)=** 

where a^BC, 6==AB, ^-ZABC, ^-/.BAC. 



THE DIRECT-ACTING ENGINE MECHANISM 127 

8. Provo that the speed of rubbing at th6 crank-pin of a direct-acting engine 
mechanism is given by 

rJi+ 1 
I Vu Sin2 

where K —radius of crank pm, r —radius of crank, I len^tli of (oimectiug ro<I, 
<u—angular speed of crank and 0 —angle turned through by crank from inner 
doad-c entre. 

9. Find the magnitude of the ratio of the maximum values of the pnmaiy 
and secondary (Components of the piston acceleration for an engine having a 
crank/eon.-rod ratio of 1/3. 



CHAPTER X 

(This chapt>er may be omitted on a first reading.) 

STRAIGHT-LINE MOTIONS AND THE PANTOGRAPH 

125. The term “ straight-line motion ” is used to describe 
those mechanisms in which the paths of one or more points, not 
being directly guided by means of sliding pairs, are exactly, or to 
a close approximation, straight lines ; alternatively such mechan¬ 
isms are called ‘‘ parallel motions.” They may be divided into 
two classes : 

1. Those in which the line is mathematically straight. 
2. Those in which the line is only approximately straight. 

They may also be classified according as to whether the mechanism 
contains one or more sliding pairs of which the straight-line path 
is more or less directly a copy, or whether it is composed wholly 
of turning pairs, the straight line then being said to be 
“ generated ” as opposed to being ‘‘ copied.” 

in the early days before the advent of really accurate machine 
tools the production of accurate sliding pairs to give straight-line 
motions was difficult, whereas turning pairs could be produced 
comparatively easily; hence there was an incentive towards the 
invention of straight-line motions using only turning pairs. 
Nowadays sliding pairs can be produced so accurately and easily 
that they are used in preference to straight-line motions, which 
are now of little practical importance. It is, however, instructive 
to consider them briefly ; those who wish to go more deeply into 
this matter are referred to a pai)er by Mr. A. B. Kempe entitled 
“ On a General Method of Obtaining Exact Rectilinear Motion by 
Linkwork ” in the Proc. Roy. Soc., 1875, also to his lectures “ How 
to Draw a Straight Line ” (Macmillan, 1877). 

126. Peaucellier’s Cell.—This mechanism was invented in 1864 
by M. Peaucellier, a French engineer officer, and is shown in 
Figs. 163 and 164. The following equalities must hold between 
the various Links, CD=»DE=EF=FC, AD—AF and BC=AB, the 
latter being the fixed link. Then the path of the point E is a 
straight line perpendicular to AB. The proof is as follows. By 
symmetry the points A, C and E always lie on a straight line, also 

128 
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the diagonals CE and DF bisect each other at right-angles at L. 
Draw EM perpendicular to AB produced and describe the circle 

ill which C moves to intersect AB produced in N. Then AC'X 
(and hence /.NCE) is a right angle; hence in the quadrilateral 
CEMN the angles NCE and NME are right angles: hence a circle 
may be drawn through C, E, M and N, 

AMxAN-ACxAE 

AM X (AB + BN) - (AL -LC)) (A L -f L K) 
AMx2AB--AL2-LC2^ LE-=\A\ 

=-(AD2~DL2)_(CD2__^1)I/>) 

-AD2-~CD2 

AM 
AD2~CD2 

2AB 
constant ; 

An hence E describes a straight line perpendicular to AB. 
alternative arrangement of the cell is 
shown in Fig. 164. It may be noted 
that if the links AB and BC are vot 
quite equal, then E will describe the 
arc of a circle having a very large 
radius, a property of the mechanism 
which may be valuable. 

127. Fig. 165 shows a mechanism 
which is a particular case of a more 
general mechanism described by Mr. 
Kempe in the paper mentioiied above. 
to which the reader is referred for details of its derivation and a 

9 
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proof of its accuracy. The quadrilaterals ABCD and A'B'C'D' 
... ^ AB BC CD DA , 

are similar, so that -rTfr, =T7r^,==;=;7Fr,==^r7-r<, and they are 
AB' B'C CD' D'A' 

symmetrically placed with regard to the bisector of the angle 

I 

Fig. 16r» 

BAD. A1soBC-:(;D (heiK‘cBX!'=C'D'),CX--CDandC'X==C'B'. 
The joint at X is between the links C'X and CX, there being 
no connection at this point with the fixed hnk ADB'. Then X 
describes a straight line coinciding with ABB'. 

128. Hart’s Motion,—This consists essentially of a “ crossed 
parallelogram ” BEFG (Fig. 166) in which BE=FG and EF=BG, 

E G 

Fig. 166 

and of two equal links AB and AC, of which AB is fixed. The 
point B may be any point on DE, but C must be such that BC is 
parallel to EG and BF, which are clearly alwaya parallel. The 
point P, the intersection of BC, produced, with the link EF, will 
then describe a straight line perpendicular to AB. The proof is 
as follows. Draw PM perpendicular to AB and let the circle in 
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which C moves intersect AB produced in N. Then ^BCN (and 
hence /.PCN) and /^PMN are right angles; hence the quadrilateral 
MCPN may be circumscribed by a circle. 

BMxBN=:BCxBP 

BMx2BA=BCxBP 

^ , BC DB ^ BP EB 

EG“DE DF“ED 

BCxBP=EGxDFx 
DBxEB 

but, since a circle may be drawn through DEGF 

DG X EF -BE X GF +EG X DF 

EGxBF-BG2-DE2-con8tant: 

hence BC x BP—constant 

. X U ‘ BCxBP 
.. BM—constant, being — —’ 

hence P describes a straight line perpendicular to AB. 

129. The “ Grasshopper ** Motion.—This is a modification of 
the Scott-Russel motion described in Art. 83. Referring to 
Fig. 167, if the ends of the link AP are guided so as to move along 
the lines OX, OY respectively, 
then any point B of that link 
will describe an ellipse (see Art. 
83). Conversely, if the point A 
is made to move along OX and 
B to move in the elhpse, then P 
will describe the straight line 
OY. It is simpler, instead of 
guiding A in a straight hne, to 
guide it in the arc of a circle of 
large radius, by means of a link 
AC, the point C being fixed, and 
similarly instead of guiding B in 
the ellipse it is simpler to approxi¬ 
mate to the ellipse by a portion 
of a circle ; thus B is connected 
to the fixed pivot B by a link. The line described by P is then only 
approximately straight. The link BB should be made equal in 
length to the radius of curvature of the ellipse, in which B 
should move, at the end of the major axis, and this is equal to 

(major axis) . ^ BP made equal to BP, as in the 
minor axis AB 
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Scott-Russel motion, then the only inaccuracy in the line described 
by P is that due to A moving in the arc of a circle instead of in a 
straight line. 

130. Tchebichefl’s Motion.—^This is shown in Fig. 168. The 
links AD and BC are of equal length and 
are crossed as shown. The path of the 
point P is then approximately in a straight 
line parallel to the fixed link AB. 

If when the linkage occupies the position 
AD'C'B (i.e. when the hnk BC is perpen¬ 
dicular to AB) the distance P'B is to be 
equal to the distance PQ, then it can 
easily be shown that the following rela¬ 
tions must hold: 

Fig. 168 CD=:|AB and AD=BC=-liAB. 

131. Watt’s Motion.—^This is a four-bar chain consisting of 
two links AB and CD (Fig. 169) which are pivoted to the frame 
link AC (not shown in the figure) and are coupled by a link BD. 
If the mechanism is given a small displacement, then B will 
deviate to the left of the vertical BD, and D to the right; hence 
some point P of the coupler BD will not deviate at all. It can be 
shown that this point P is determined by the relationship 
BP CD 
DP~AB' path of the point P is a lemniscoid, part of which 

is shown dotted, and it will be seen that the portion BD is very 
closely a straight line. The links AB and CD may, if convenient, 

Fig. 169 Fig. 170 

both be situated on the same side of the coupler as shown in 
Fig. 170. The closest approximation to a straight line for the 
path of the point P can be shown to result from making AB 
parallel to CD when P is in the middle of its stroke and the inclina¬ 
tion of the coupler to the line of stroke in the middle position 
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(^1 in Fig. 171) equal, but of opposite sign, to the inclinations (6) 
in the extreme positions. These conditions can be shown to 
require that the line of stroke SS shall bisect the versed sines 

5 
Pig. 171 

i^q and i)r of the arcs B1BB2 and D1DD2 in which the ends of tlie 
links AB and CD travel. For further information about the 
design of this motion the reader is referred to Machinery and 
Millwork, by Professor Rankine, pubHshed by Charles Criffin 
& Co., London. 

132. Roberts’s Motion.—This is shown in Fig. 172. The links 
AB and CD are equal in length and the coupler BD is made half 
the length of the fixed link AC. The tracing point P is attached 
to the coupler and is the apex of an isosceles triangle with the 
coupler as base. It follows that AB=BP=DP=DC. The point 
P then traces out an approximate straight line coincident with 

Fig. 17:» Fig. 173 
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AC. The links AB and CD should be as long as possible in relation 
with the semi-bases AP and CP, the accuracy of the line described 
by P being thereby enhanced. It may be noted that if B and D 
(or any two points of the coupler) were guided in straight lines 

. GY, OX (Fig. 173), then the path of P would be exactly straight 
provided that P was chosen so as to lie on the circle Q, which is 
the centrode of the coupler BD relative to the fixed space. This 
follows since the centrode Q rolls on the other centrode, a circle R 
having a diameter twice that of Q ; hence any point of the circle 
Q describes a hypocycloid which is a diameter of R. 

133. Kempe’s Motions.—Fig. 174 shows a mechanism in which 
the Jink A'B' lies in and moves exactly along the axis of the link 

AB. The quadrilateral ABCD 
has the adjacent sides AB and 
BC equal, and also AD is equal 
to DC. Such a quadrilateral 
has been called a kite. A 
second and similar kite ADFE 
is combined with the first and 
then the whole mechanism is 
duplicated, the links FDC' and 

CDF' being rigid. The links AB and BC are made twice the 
length of the links AD and DC; hence it follows that 

AE=EF-|AD-JFD=iAB = iBC and A'B'=AB, etc. 

Fig. 175 shows a mechanism in which the link GKH is parallel 
to and moves exactly perpendicular to the fixed link AEB. The 
mechanism again consists of two double kites. ABCD and 
GHFD are equal kites, so that AB—GH—BC~HF and AD=:GD 
=^DC—DF=JAB; also AEFD and GKCD are equal kites, so 
that AD=GD=:DF=:DC and AE=:GK--EF=KC=JAD=iAB. 

Exactly the same relative motion is obtained between the Jinks 
AB and GH of the mechanism shown in Fig. 176 as between the 
corresponding links in Fig. 175. The kite ABCD is just twice the 
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size of the kite GECD and also BF-^FH^Al) and DF-GH-AB. 
These three mechanisms are due to Mr, Kempe. 

134. Sarrut’s Motion.—This motion is reputed to have been 
invented in 1853 and is probably the earliest exact straight-hne 
motion as well as being one of the simplest. It is shown in 
Fig. 177. The piece B has a straight-line motion perpendicular 

to the plane of the piece A. Two pieces G and B connect B to A 
at one end, all the axes of the joints being mutually parallel; 
similarly two other pieces E and F connect A and B at the other 
end, the axes of the joints of this second connexion being mutually 
parallel and all perpendicular to those of the first connexion. 
The first connexion, alone, would confine any point of B to a 
plane perpendicular to the axes of that connexion, while the 
second connexion, alone, would confine the same point of B to a 
plane perpendicular to the axes of the second connexion. The 
two connexions, together, therefore confine any point of B to the 
intersection of two planes, and this intersection is a line perpen¬ 
dicular to A. Clearly it is not necessary, though it may be 
desirable, to have the axes of the two sets of joints exactly perpen¬ 
dicular to one another ; they might be placed at any angle pro¬ 
vided it is not zero. This mechanism has been shown to be a 
special form of a more general mechanism, for details of which the 
reader is referred to Mechanism, by Dunkerley, published by 
Longmans, Green & Cb, It has recently been patented as an 
independent suspension for the wheels of motor cars. 

135. The Pantograph.—The pantograj)h is a mechanism having 
the property that if one point of it is made to trace a given outline, 
then some other point will trace an exactly similar outline, 
usually to a different scale, i.e. it is a copying mechanism. One 
arrangement of it is shown in Fig. 178, from which it is seen to 
consist of a four-bar chain ABCD having opposite links equal and 
the link DC extended to P. The point A is fixed. If P traces out 
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A 
Fig. 178 

the curve XX, then the point Q (the intersection of AP and the 
link BC) will trace out a similar’eurve xx, but reduced in the ratio 
AO 

This follows from the fact that, since the triangles PCQ and 

PDA are always similar and the ratio of their corresponding sides is 
constant, the points A, Q and P are always co-linear and any 
movement of P in the direction of AP produces a proportionate 
movement of Q in the same direction, and also any movement of 
P perpendicular to AP merely rotates the whole mechanism about 
A and produces a proportionate movement of Q also perpen¬ 
dicular to AP. Alternative arrangements are shown in Fig. 179. 

Fig. 179 



CHAPTER XI 

TOOTHED GEARING 

136. General.—Toothed gearing is used to transmit motion of 
rotation from one shaft to another and forms the most important 
example of the use of higher kinematic pairing in engineering 
practice, the only other examples of any importance being cams 
and belts. At the outset it is useful to classify toothed gearing 
according to the relative disposition of the axes of the shafts 
connected by the gearing. Thus, 

Spur gears connect shafts whose axes are parallel. 
Bevel gears connect shafts whose axes intersect. 

gears connect shafts whose axes are neither 
parallel nor intersecting. 

All these types of gearing may also be divided into the following 
classes : 

1. Constant velocity ratio gearing 
2. Variable velocity ratio gearing 

according as to whether the ratio of the angular velocities of the 
shafts connected is constant or variable. In the majority of 
toothed gearing the velocity ratio is required to be constant, and 
most of what follows is confined to such gearing. It is instructive 
to begin with a consideration of friction 
gearing, from which toothed gearing 
was probably developed, and spur 
gearing will first be dealt with, the 
other types being taken in the order 
given above. 

187. Friction Gearing.—Let Oa and 
Oft (Fig. 180) be the end view of the 
parallel axes of two shafts, and let A 
and B represent circular cylindrical drums, radii and ri, re¬ 
spectively, which are mounted on the shafts and pressed together 
by some means. If one of the drums is rotated, then the friction 

137 

bkew 
Skew-bevel 
Hypoid 
Screw and 
Worm 
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between the drums will cause the other drum to rotate also. 
Provided the resistance to the motion of the driven drum does not 
exceed a certain limit the-drums will roll together with very little 
shp occurring. Hence, if wa and wh are the angular speeds of the 
drums about their axes, we have 

.(1) 
0)6 Ta 

since the linear velocity of the point P of the drum A, viz. VaOJa, 
must be equal to that of the point P of the drum B, viz. if 
no slip occurs. The speeds of the drums are thus inversely as 
their radii. Clearly the drums turn in opposite directions. 

In addition to equation (1) wo have also 
ra+n=OaOi.(2) 

and these two equations enable Ta and to be calculated when the 

velocity ratio — and the centre distance 0«06 are given. 

It has been shown in Art. 91 that P is the instantaneous centre 
of A relative to B and that the circles A and B are the centrodes 
or, more accurately, P is the trace of the instantaneous axis, and 
the circles A and B are the traces of the axodes, on the plane of 
the paper. Thus in friction gearing we have an example of the 
rolling together of axodes. 

Friction gearing has only a limited use, its chief practical draw¬ 
backs being first that if the slip is to be kept reasonably small 
in amount the effort that can be transmitted is extremely limited 
and, secondly,* that since a small amount of slip always does 
occur, and also because of the distortion of the drums, the 
velocity ratio is often not sufficiently constant. In order to avoid 
such slip it seems an obvious step to form projections or teeth on 
the one drum and to make them engage corresponding teeth on 
the other drum, the effort that can be transmitted being then 
limited only by the strength of the teeth. The shapes of the teeth, 
however, become of importance and their action will now be 
examined. 

138. The Fundamental Action of Gear Teeth.—Let and 
(Fig. 181) be the traces on the .plane of the paper of two fixed 
parallel axes about which two bodies A and B respectively can 
revolve, and let the rotation of the one body be transmitted to the 
other by means of the contact between their outlines xx and yy. 
These outlines are the traces of corresponding surfaces of the 
bodies A and B on the plane of the paper and may be quite 
arbitrarily chosen. Let xx and yy be in contact at Q. Then at 
Q there will be a common normal NN, and a common tangent 
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T1\ to the curves. Let NN intersect the line of centres OaO^ in 
P and let the instantaneous angular speeds of A and B about ()« 
and Ob respectively be wa and wb. Then it will be proved that 

OftP 

The point Q may be considered to belong either to A or to 13 
and may be labelled Qa or Q& accordingly. The velocity of Qa is 
perpendicular to OaQ and equal to OaQXcua. Similarly the 
velocity of Qb is perpendicular to O^Q and equal to O^QXcoft. 
Let these velocities be represented by the vectors QR and QS 
respectively, and let them be resolved along and perpendicular 
to the common normal, the components being respectively QZ 
and QZi along the common normal and QX and QY perpen> 
dicular to it. Then, as has been stated in Art. 92, since the out¬ 
lines XX and yy are in contact at the instant under consideration, 
the components QZ and QZj along the common normal must be 
equal and Z must coincide with Zj, as shown. 

Vqa OaQ X U>a QR 
0/^Q X Wb QS 

Then 
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Draw 0«L and O^M perpendicular to NN. Then A’s OtLQ and 
QZR are similar 

QZ OflD 

Also A’s OfrMQ and QZS are similar 

• QS OtQ 
••QZ~06M 

QR 0«Q Oj.M 

•• QS~0.*L^06Q 

. u>„ 0»Q QR OM 

■■ CO,QS~OaL 

but A’y 0«Lr and 0/!,MP are similar 

OtM 0„P 
‘ • 0«L “OaP 

OJa OftP 
OJb OaP 

This result is of fundamental importance in connexion with 
toothed gears and may be stated in words thus. When two 
bodies are free to rotate about two fixed parallel axes, and one 
body drives the other by means of the contact between them, then 
the common normal at the point of contact of the traces of the 
teeth on any plane perpendicular to the axes divides the line 
joining the axes and lying in that plane inversely in the ratio of 
the angular speeds of the bodies. 

Now on any plane perpendicular to the axes the tooth surfaces 
will have traces corresponding to, but not necessarily the same as, 
XX and yy^ and the above proof may be applied. But since the 
ratio of the angular speeds can have only one value at any instant, 
it follows that the points corresponding to P are at the same 
distances from the axes for all such planes. Hence the locus of 
P (in the plane containing the axes) is a line lying in the plane of 
the axer'and parallel to them, and this line divides any line joining 
the axes in the inverse ratio of the angular speeds of the bodies. 

It can be shown that QP (Fig. 181) is the projection, on the 
plane of the paper, of the common normal to the tooth surfaces at 
Q, and hence this common normal intersects the line through P 
parallel to the axes. This line is, of course, the instantaneous 
axis of the one body relative to the other. We may now sum¬ 
marise the above arguments thus : 

When two bodies are free to rotate about two fixed parallel 
axes, and one body drives the other by means of the contact 
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between them, then, at every instant, the common normal at any 
point of contact between them must intersect the instantaneous 
axis of the one body relative to the other. 

In general, if-the traces xx and yy of Fig. 181 are any arbitrary 
curves, the point P wiU not be a fixed point on 0,70/>, but will move 
up and down as the traces xx and yy engage at different points, 
and the velocity ratio will not be constant. 

139. Condition for Constant Velocity Ratio.—If a constant 
velocity ratio is required, then the traces xx and 7jy must be such 
that for any point of contact between them the point P is the same 
point of the line of centres OaO^. 

The point P is called the pitch point, and thus we may say that 
in constant velocity ratio spur gearing the traces of the teeth on 
any plane perpendicular to the axes must be such that the common 
normal at the point of contact between them always passes 
through the pitch point. 

When each of the bodies has only one tooth,” as in Fig. 181, 
the above condition is the only one that has to be satisfied. For 
complete revolutions of the bodies to be possible, however, a 
number of teeth must be used, and then some minor conditions 
have to be satisfied as well; these will be dealt with later. 

In what follows, the action of the teeth is examined by means 
of the traces of the teeth on a plane perpendicular to the axes. 
The arguments and conclusions apply to any such plane, but for 
the present it is not desirable to consider the forms of the teeth 
in a direction parallel to the axes. We may, therefore, to fix our 
ideas, imagine that we are dealing with very thin discs. 

140. The Possible Shapes for Gear Teeth.—Theoretically any 
shape may be chosen for one of a pair of mating teeth and then 
the proper shape for the other tooth, in order that the funda¬ 
mental condition shall be satisfied, may be found as follows. 

Let Oa and (Fig. 182) be the fixed centres of rotation of the 
two bodies to be connected by the teeth, and let the constant 

velocity ratio to be maintained between them be ——k. Then 

the required relative motion between the bodies may be produced 
by rolling a disc A, centre Oa, radius r, without slip on a disc B, 

Bi ojfi 

centre 0^, radius R, the radii of the discs being such that — =— ~k 

and r+R=OaOft. 
Let the outline of the tooth of A be chosen quite arbitrarily as 

the curve oa, and let this curve be cut out in cardboard and 
mounted on the disc A. Next let a disc of stiff paper L (shown 
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shaded) be mounted on the disc B and be arranged to lie between 
the disc A and the toqth aa> as indicated. 

Now, starting with the tooth aa in the position shown in full 
line, draw round the curve aa with a pencil, thus marking that 

curve on the disc of paper M. Then turn the disc A through a 
small angle (say 6) until the tooth aa comes to the dotted position 

taking care that dming this motion the discs A and> B roll 
together without slip. (This may be checked by measuring the 

angle turned through by disc B, which should be equal to 0 X j 

In the new position draw round the tooth (now occupying the 
position aia{) again. Repeat the process a large number of times; 
turning the disc A (and B in unison) forward through a small 
angle each time. The result will be that a large number of 
similar curves will have been drawn on the paper M, and it will 
be found that these curves have an envelope bb as shown in 
Fig. 183. This envelope bb is the proper shape for the tooth of 
the body B to mate with the arbitrarily chosen tooth aa of A in 
order to satisfy the fundamental condition and to ensure that the 
constant velocity ratio k is obtained between the bodies. 
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Since there will be only the one envelope bb for the curves 
drawn on the disc M, it follows that there is only one possible 
shape for the tooth of B if it is to mesh properly with the given 
tooth of A. This one tooth shape for B is called the covjngate 

tooth to the tooth of A. Thus any given tooth has only one 
conjugate tooth for given conditions of velocity ratio and centre 
distance. Since, however, the tooth of A is quite arbitrary, there 
is clearly an infinite number of possible tooth shapes available ; 
many of these, however, will not be practicable, since they will be 
found to give looped shapes for the conjugate teeth, and clearly 
a looped tooth is not practicable. The method described above of 
deriving the conjugate tooth to any given tooth will be referred to 
as the envelope method. The method cannot be carried out with 
any high degree of accuracy in practice, and the errors of draughts¬ 
manship render the result of no practical use and thus the method 
is not used as a drafting process. It does^ however, form the basic 
principle of all the gear-generating machines actually used in practice 
for cutting gear teeth, and the student tkight therefore to understand 
it thoroughly before proceeding. 

The circumferences of the discs A and B, which are of course 
the centrodes, are often called the pitch lines ; in constant 
velocity gearing they are circles, but even if they are not circles 
the method described above can still be used to find the conjugate 
tooth to any arbitrarily chosen one. 

.-y 

141. Another Method of Obtaining Mating Tooth Shapes.—This 
method is really a double application of the envelope method. 
Let ah and cd (Fig. 184) be the 
pitch lines or centrodes of the 
wheels for which teeth are to be 
found, and let them be in contact 
at P. Let xy be any curve in 
contact with both ab and cd at P, 
and let Imn be a curve fixed to xy at m. Then, regarding Imn as 
a tooth outline as shown in Fig. 185, the conjugate tooth of ab 

Fig. 184 
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can be found by the envelope method. Let it be the curve st. 
Similarly the conjugate tooth of cd may be found; let it be the 
curve uv (Fig. 186). Thus both st and uv are conjugate to Imn, 

Fiq. 185 Fig. 186 

and the consideration that both st and uv may be derived simul¬ 
taneously by rolling ab and cd on xy so that all three curves are 
always in contact at one point at any instant will show that st 
and y,v are mutually conjugate. It will be noticed that when 
deriving uv the solid portion of the tooth Imn must be placed on 
the opposite side of Imn to that adopted when deriving st, and this 
means that two cutters wiU be required, one to cut st and the 
other to cut uv. If, however, xy is made a straight line, and if 
the curve Imn is chosen so that when it is revolved about m 
through an angle of 180° it coincides with its original position, 
then the two cutters wiU be identical and only one will be required 
to cut both st and uv. This extension of the envelope method of 
obtaining mating tooth outlines will be found of assistance when 
gear-cutting processes are considered. 

142. Roulettes as Tooth Shapes.—[A “ roulette is the path 
traced out by any point of, or attached to, any curve which rolls 
without slip on any other curve.] A third method of obtaining 

mating tooth shapes is the following. Let ab 
and M (Fig. 187) be the pitch lines of two 
wheels in contact at P, and let fg be any 
curve in contact with both ab and cd at P. 
Then if fg rolls without slip on ab, any point 
Q oifg will trace out a path st relative to ab. 
Similarly if/gr rolls on cd, Q will trace out a 
path uv relative to cd. Then if the curves 

st and uv are taken as the outlines of the teeth of ab and cd 
respectively, they will mate properly. This may be proved thus : 
since, in the position shown (which may be any position), fg is 
rolling about P as instantaneous centre, it follows that QP is the 
normal to at Q; similarly QP is the normal to uv at Q. Hence 
QP is the common normal to the tooth outlines st and uv at their 
point of contact Q, and this common normal passes through the 
pitch point P, the point of contact of the pitch lines ab and cd, 
so that the curves st and w satisfy the fundamental condition 
requisite for correct mating. 
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'I'his method has been described for the general case m hen aJb 
and cd are any curves, but one particular case is of special interest, 
namely, when ah, cd and jg are all circles. The teeth then 
obtained are known as cycloidal teeth, and at one time they were 
almost exclusively used; they have, however, been almost 
entirely displaced by involute teeth, and the latter will therefore 
be considered first. 

143. Tooth Outlines by Means of Secondary Centrodes.—Suppose 
A and B, Fig. 188, are the centrodes of two bodies which are 
rotating about fixed centres (’ and T> 
with angular velocities and to/, \ 

respectively. Then — =7^, where / \ ka ' Cl Vv^ A 7 
P is the point of contact of the X> - 
centrodes, which point of course lies \ r 
on (/T). Through P draw a line f^M LO ^ ^ 
making an angle ^ with CPD, aiirl ^ \ \ > 
draw C'M and DL perpendicular to / \ 

I oTv/r rpi I + / ' \ / 
LPM. Ihen 7Tir?=/iT> ——• ^ \ / CM CP co^ ' \ / 
the centrodes be rotated about C | | D 

and I) through a small angle, and '—=— - - " 
let the above process be repeated, Ejc. ish 
using the same value of 6 as before, 
thus establishing the new points L^Mi corresponding to L and M. 
Then the points L and Lj and M and Mj, and all points established 
in the same way, form curves, shown dotted, which have been 
called secondary centrodes, since they possess the property that if 
they are supposed to be connected by an inextensible cord (LM), 
then the relative motion between the bodies due to the constraint 
of the cord wrapped round the secondary centrodes will be identical 
with that produced by the rolling of the primary centrodes. 

If now any point, say Q, of the tangent LM be chosen as a 
describing point and be made to trace out paths on the bodies 
A and B as they move, then those paths will be the outlines of 
teeth which, when mating together, will give the bodies the same 
relative motion as they have when the primary centrodes roll 
together. For clearly, in the position shown, LQ is the normal to 
the tooth of B at Q and MQ is the normal to the tooth of A at Q. 
Hence LQM is the common normal to the teeth at their point of 
contact and, by the construction, LQM always passes through P, 
the point of contact of the centrodes. 

Secondary centrodes may also be derived by drawing through 
each point of the primary centrode a line making a fixed angle 

10 
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with the tangent to the primary centrode at the point. The 
envelope of all the lines is a secondary centrode. In the particular 
case where the centrodes are circles the secondary centrodes are 
also circles, and the tooth outlines become the involutes of circles, 
giving “ involute teeth.” These will now be considered in detail. 

144. Involutes.—Imagine an inextensible cord AB to be 
wrapped round the outside of a body as in Fig. 189, the end A 
being fixed to the body. Let the cord be now imwrapped, care 
being taken to keep it always taut, then the end of the cord will 
trace out some path BCDE and any other point F of the cord will 
trace out a path FGHI. The curves BCDE and FGHI are 
involutes of the base curve which is the outline of the body from 
off which the cord is imwrapped. 

It should be clear that if at any point, say C, of an involute a 
line, CT, is drawn tangent to the base curve, that line is the 
normal to the involute at that point. 

Fig. 189 Fig. 190 

It may be noted that the base curve of any involute is the 
envelope of all the normals which may be drawn to the involute. 
The base curve is called the evolute of the curve from which it is 
derived. Clearly any base curve will give an infinite number of 
involutes corresponding to the infinite number of points, on the 
cord, which may be selected as the describing point. On the other 
hand, any given curve will give only one base curve or evolute. 

The base curves of involute toothed gearing are almost in¬ 
variably circles and are called base circles. The involutes 
described by any two points of a cord which is unwrapped from a 
base circle are identical in shape, and the cord in any position is 
normal to both the involutes. If describing points are taken at 
equal intervals along the cord, that interval is the normal pitch of 
the involutes described and is equal to the distance, measured 
along the arc of the base circle, between consecutive involutes. 
This distance is called the base circle pitch of the involutes. Thus 
the base circle pitch in Fig. 190 is equal to the normal pitch x. 
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The radius of curvature of an involute at any point is equal tc 
the length of the line drawn from the point tangent to the base 
curve. In Fig. 190 TB is the radius of curvature of the involute 
AB at B, 

It will now be shown that gear teeth whose outlines are portions 
of involutes of base circles satisfy the fundamental condition for 
the transmission of motion with a constant velocity ratio. 

145. Involute Teeth.—Let and 0^ (Fig. 191) be the fixed 
centres of rotation of two gears A and B, and let the teeth, ef and 
gh, of those gears be made portions of involutes of the base circles 
a and b. Let the teeth be in contact at any point Q. Draw the 
tangents QL and QM. Then QL is the 
normal to the involute ef at Q and QM 
is the normal to the involute gh at Q. 
Hence LQM is the common normal of 
the teeth at their point of contact, and 
hence LQM is a straight line and is the 
common tangent to the base circles. 
Join OaO*,. Then LQM ihtersects the 
line of centres OaO^ in the fixed point 
P; hence the fundamental condition is 
satisfied. 

Now 
U)b OaP 

P is the pitch point and circles, centres Fio. 191 
Oo and Oft respectively, passing through 
P are the pitch circles. The radii of the pitch circles are there¬ 
fore OaP—Ra and OftP=Rft. Draw OaL and OftM perpendicular 
to LM. Then triangles OaLP and OftMP are similar. 

OaL OaP Ra 
OftM OftP Rft OJa 

Thus the ratio of the radii of the base circles is equal to the 
ratio of the radii of the pitch circles and to the inverse ratio of the 
angular speeds. 

Clearly OaL==OaPCo8^.(4) 

and OftM=OftPCos^.(5) 

Since the point of contact, Q, between the teeth always lies 
somewhere on the line ML, that line is called the line of cLction of 
the teeth. 

146. The Motion Unaffected by Alteration of the Centre Distance. 
—^If Oa and Oft are moved apart, or towards each other, 
slightly, then the teeth will come into contact at some new point 
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Q|. The argument used above applies equally well, however, and 
it is still true that the ratio of the angular speeds is the inverse 
ratio of the base circle radii. As the latter have not been altered, 
the velocity ratio is unchanged. The pitch point will, however, 
occupy a new position Pj, and the pitch circles will have different 
radii (OaPi and O^Pi); the angle 4> will also have a different value. 

This property of involute toothed gears gives them a distinct 
advantage over cycloidal teeth (see Chap. XIII), with which, if 
the centre distance is altered, the fundamental condition for the 
transmission of motion with a constant velocity ratio is no longer 
satisfied and the teeth will not work together properly. 

147. The Pressure Angle or Angle of Obliquity.—If the centre 

distance OaOh and the velocity ratio — are fixed, then the pitch 
a)b 

point and pitch circle radii are deterininod by the equations 

P'flt OflP COb 

r;""o7p'"c7„ . 

and i p7> OaO/> .(7) 

The radii of the base circles, however, are still open to (*hoicc and 
may have any values provided their ratio is equal to that of tlie 
pitch circle radii. If, however, a value is chosen for the angle 
<l>, Fig. 191, then the base circle radii are settled, being given by 
OaL=OaP Cos <f> and 0i,M=06P Cos <^. The angle (f) is called the 
pressure angle or the angle of obliquity. The name arises because, 
in the absence of friction, the force or pressure between the teeth 
acts along the common normal LM at the angle <!> to the ideal 
direction for the pressure, which is along the common tangent 
of the pitch circles. 

148. The First and Last Points of Contact between a Pair of 
Teeth.—Fig. 192 shows two involute teeth, abc and def, which 
will engage each other if the wheels are turned through suitable 
angles. The point of contact between the teeth will always lie 
on the line of action LM, and since (with the directions of rotation 
shown) d will be the first point of the profile def to intersect LM, it 
follows that d will be the first point of the tooth def to engage with 
any point of abc. This engagement will occur at R, where a 
circle, centre O2 and passing through d, intersects LM. Similarly, 
since c will be the last point of the profile abc to intersect LM, and 
will do so at S, where a circle, centre Oj and passing through c, 
intersects LM, it follows that S is the last point of contact between 
the teeth. Thus contact between the teeth occurs between R and 
S and RS is the length of the path of contact of the teeth. 
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If the directioiiH of rotation of the wheels be reversed, then S 
is the first, and R the last, point of contact between the teeth abc 
and def, and the latter is driving the former instead of vice versa. 
If with the original directions of rotation the wheel Oo is required 
to drive Oj, then the profile d'e'f must be made to engage o/b'r\ 
and the line of action will be L'M'; the first and last contacts are 
obtained as before. 

Fic. J92 Fig. JJ)3 

The })ositions of the points R and 8, and thus the length RS, 
arc determined solely by the heights of the teeth above the pitch 
circles, which dimensions are called the addenda of the teeth, 
assuming the pitch circle diameters and pressure angle to be 
constant. The length RS may be calculated by solving the two 
triangles OiSP and O2RP (Fig. 193), of which the sides OiP, 
OoP, OjS and O2R are known (being respectively the pitch circle 
radii and the pitch circle radii plus the addenda), in addition to 
the angles O^PS, ()2PR, which are equal to the pressure angle plus 
a right angle. 

149. The Arcs of Approach and Recess.—Fig. 194 shows one 
pair of teeth in engagement in three different positions, at the 
beginning (R) and end (S) of the engagement, and when the point 
of contact between the teeth is at the pitch point P. Clearly, 
while the point of contact moves from R to P the point b of the 
pitch circle 22 moves from b to P. During this time the teeth arc 
approaching each other and the arc ^^P is thus called the arc of 
approach. Similarly cP, which is equal to 6P, is the arc of 
approach. Again, while the point of contact moves from P to S, 
the point P of the pitch circle 22 moves from P to 6], and during 
this time the teeth are receding from each other. The arc P^j is 
thus the arc of recess; similarly Pci is also the arc of recess. 
Let d and di be the positions, corresponding to b and P, of 
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the intersection of the tooth outline Rfed with the base circle 22, 
then 

/,d02b= Z_di02^ j 

hence AdO^di = Z6O2P ; 

hence 
BiTcdd^ RmC'Osc^ ^ 

arc 6P ^ 

(f> being the pressure angle ; 

but iiTc ddi=^RP (see Art. 144) 

arc ddi KP 
arc bP 

Cos <f> Cos <f> 

The angle 6O2P is called the angle of approach or angle of 
incidence of the wheel 2, while the angle cO^P (not equal to 
Z^O^P) is the angle of approach or incidence for the wheel 1. 

150. Undercutting and Interference.—When either of the points 
R and S (Fig. 192) approaches the corresponding end L or M of 
the line of action, the teeth of one or both of the wheels will be 
undercut as shown in Fig. 195. When R (or S) lies beyond L (or 
M) the undercutting will be such that a portion of the involute 
flank of the tooth, which is required during the action of the teeth, 
will be cut away. In Fig. 196 the portion ab of the involute 
flank (which should extend down to the base circle) has been cut 
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away by the tips of the mating teeth. (Actually it would prob¬ 
ably be cut away by the cutter that produced the teeth, and if it 
were not it would cause the gears to jam when they were meshed 
together. This last condition is known as interference, and the 
points L and M are called the interference points. Interference 

Fig. 195 Fig.*^196 

can generally be avoided by one of the methods described in 
Art. 160. It occurs chiefly when wheels having few teeth are 
made to work together or, more frequently, when a small wheel 
works with a large one, in which case it is the teeth of the small 
wheel which are affected. 

EXERCISES XI 

1. The axes of two shafts are parallel and are 9 in. apart. They are to be 
connected by friction gears giving a ratio of 2 to 1. What are the diameters of 
the wheels (a) if the shafts are to rotate in opposite directions and (6) if they are 
to rotate in the same directions. 

2. Prove that the fundamental (jondition to be satisfied by the tooth profiles 
of spur gears having a constant velocity ratio is that the coriunon normal at the 
point of contcict of the teeth must always pass through a fixed point on the lino 
of centres. 

3. Being given the pitch lines and centres of rotation of two mating spur gears 
and the shape of the teeth of one of them, describe how the proper shape for the 
teeth of the other gear may be determined. 

4. When the conjugate tooth shapes for two spur gears are generated simul¬ 
taneously by means of an arbitrary tooth shape fixed to an aiixiliary pitch line, 
what is the condition that must be fulfilled by the arbitrary tooth shape if a single 
cutter is to be sufficient to cut the teeth of both wheels ? 

5. Describe the method of obtaining conjugate tooth shapes by the use of a 
rolling curve. 

6. What do you understand by a “ secondary centrodo ” ? Describe how a 
secondary centrode may be used to derive the conjugate tooth shapes for a pair 
of spur gears rotating about fixed axes. 

7. Find the radius of curvature of the involute tooth profiles of a wheel at the 
point of intersection of the profiles with the pitch circle whose diameter is 6 in. 
Pressure angle 20°. 

8. Show that teeth which are the involutes of circles will satisfy the funda¬ 
mental condition for the transmission of motion with a constant velocity ratio. 
Show also that the velocity ratio is unaffected by variation of the centre distance 
between the axes of rotation. 
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TOOTHED GEARING-CONTINUED. TOOTHED WHEELS 

151. The Normal Pitches of Involute Toothed Wheels that Mesh 
Together must be Equal.—In the previous chapter we have been 
concerned with the action of one tooth on another, but it is evident 
that when wheels are required to make complete revolutions they 
must be provided with a number of teeth, each of which must 
conform to the principles evolved in the last chapter. It is now 
necessary, however, to consider wheels having a number of teeth. 

Assuming that the teeth are involutes of base circles, then tlie 
fundamental condition that must be satisfied in order that two 

wheels shall mesh properly is that 
their normal or base circle pitches shall 
be the same and shall be equal to or 
less than the length of the path of con- 
tact. This will be clear on considering 
Fig. 197, which shows a pair of teeth 
just going out of engagement at S, it 
being evident that, if the motion is 
to be continued, a second pair of teeth 
must at least have just come into 
engagement at R. SR is thus the 
maximum permissible normal pitch, 
and it is evident that the normal 

pitches of the two wheels must be the same if the second pair of 
teeth are to engage properly. 

152. The Number of Teeth in Engagement.—The quotient 

Ijength of path of engagement RS 
Normal pitch ~N.P. 

gives the maximum and minimum number of 'pairs of teeth in 
engagement at any instant. When the normal pitch equals RS 
the quotient is unity, and the number of teeth in engagement 

RS 
varies from 2 to 1 ; if =2-7 say, then the number of teeth in 

engagement varies between 3 and 2. It is generally considered 
152 
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desirable to have as many pairs of teeth in engagement as possible, 

and this end is attained by making R8 as long as possible and the 
normal pitch as small as possible. The absolute limit to RS is 
LM, and in practice this limit is not always attainable, since it 
may involve excessive undercutting of the teeth ; the addenda 
should, however, be proportioned so tliat R and 8 approach as 
close to L and M as is possible without excessive undercutting. 
The normal pitch also cannot be made smaller than a certain 
amount, otherwise the teeth will be pointed and the addendum 
desirable from the first consideration will be unattainable. 'i1)e 

addenda and other proportions of gear teeth have, liowevcr, 

to a large extent become standardised, and it will be convenient 
to consider these standard proportions. 

153. Definitions, Circular and Diametral Pitch, -l^'ig. ibs shows 
the commonly used terms for the parts of gear-wheel teeth. Tiie 

circular jntch is the distance, measured round the aic of the pitch 
circle, between consecutive teeth, while chordal pitch is the chord 
corresponding to the circular pitch. It should be noted that the 
term “ face ” is used in two senses, to denote that portion of the 
tooth profile lying outside the pitch circle and to denote the axial 
length of the teeth. The following abbreviations will be used : 

P.C.D.=Pitch circle diameter. B.C.D. ^Base circle diameter. 
O.D.=Outside or blank diameter. C.P.—Circular pitch. N.P. 
=Normal or base circle pitch. D.P.=:Diametral pitch. M — 
Module. N—Number of teeth in the larger of a pair of wheels ; 

Number of teeth in the smaller wheel (pinion). C.D.—Centre 
distance between the axes of the shafts of a pair of wheels. 
Add»"—Addendum ; Ded"^=^Dedendum. 

The C.P. is determined chiefly by considerations of strengtli of 
the teeth and the number of ^>airs of teeth in engagement, but 
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even so is to a great extent arbitrary ; the addenda and dedenda 
are even more arbitrary, although considerations of the length of 
the path of contact and of interference cannot be neglected. At 
one time the addendum and dedendum were made definite pro¬ 
portions of the circular pitch, although almost every works chose 
a different proportion, and this practice is still quite common, 
though the proportions are expressed indirectly, since diametral 
pitch is now generally used instead of circular pitch. In modem 
practice the addenda and dedenda are frequently not made fixed 
proportions of the circular pitch, but are chosen to suit the con¬ 
ditions in each individual design. When circular pitches are used 
they range from about J in. up to 3 in. or more, usually advancing 
in steps of ^ in. up to 1 in., in steps of J in. from 1 in. to 2 in. 
and in steps of J in. from 2 in. to 3 in.; at least, these are regarded 
as standard pitches. Then 

P.C.D. 
NxC.P. 

TT 

C.D.: 
(N+n)xC.P. 

27r 

hence the pitch circle diameters and the centre distance always 
involve division by tt, and cannot therefore be given exactly, but 
only to as many decimal places as we choose. This difficulty is 
avoided by the use of the module, which is defined by the 
relation 

Module 
P.C.D. 

~No. teeth in the gear 
and it is always made a whole number ; hence, since the number 
of teeth in a wheel must be a whole number, it follows that pitch 
circle diameters and centre distances will always work out to exact 
numbers. It follows, of course, that the circular pitch will then 
be obtained in terms of tt, but since the circular pitch need never 
be measured, whereas the centre distances must be, it is advan¬ 
tageous to employ the module, and this is the standard practice 
on the Continent, the pitch circle diameters being expressed, 
of course, in millimetres. In England the module was used many 
years ago under the name Manchester Pitch, but is now little used; 
instead diametral pitch is used, this being the reciprocal of the 
module. Thus 

, No. teeth in the wheel 
Diametral pitch = ——;;—- 

^ P.C.D. m inches 
N 
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The following are regarded as standard diametral pitches : 1, IJ, 
N 

IJ, 1|, 2, 2^, 2|, 22, 3, 3|, 4, 5, etc. Since the pitch 

circle diameters will not always work out exactly, although they 
often will do so. Thus diametral pitch is not so convenient as the 
module, and the use of the latter is worthy of encouragement. 
However, diametral pitch is firmly established and is not likely to 
be displaced easily. 

154. Tooth Proportions.—Although, as stated above, the addenda 
and dedenda of gear teeth are nowadays frequently chosen 
arbitrarily and do not conform to any fixed standard, yet there 
are some advantages to be obtained from using fixed toothed 
proportions, e.g. the standardisation of cutters and the conse¬ 
quent reduction in the number that must be carried in stock ; 
facility in ordering gears and in interchangeability. Thus the 
old and established Brown and Sharpe standard tooth proportions 
are widely used. They are 

Addendum , l)edendum = 
t>,p: 

and pressure angle^HI"". 
Hence, the outside diameter is given by 

D.P. 

Outside or blank dia. 
N + 2 

"D.P. 

and as far as the teeth are concerned the only data that need be 
given in order that the wheel may be cut are the blank diameter, 
the diametral pitch and the number of teeth ; the pitch circle 
diameter is always given in addition, and other data are frequently 
supplied to facilitate manufacture and inspection. 

There is another standard for tooth proportions which is fairly 
widely used ; it is the Fellow’s Stub Tooth. In this the pressure 
angle is 20° and two numbers are used to designate any gear ; 
thus a gear may be said to be ^/g (read as six-eight) pitch. The 
first number (6) is the true diametral pitch as defined by the 

N 
relation D.P.—w , while the second number (8 in the example) 

x.O.D. 
is a false diametral pitch which is used only to give the addenda 
and dedenda from the relations 

1 , M57 
Add»*==g^ , Ded’»= 

The tooth thickness, measured along the pitch circle, is in all 
gears equal to half the circular pitch less half the backlash, and 
the latter varies from less than toVi) in. in accurately cut and 
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mounted gears of line pitch up to yq in., or even more, in un- 
machined gears ; the latter are not now much used, however. 

155. The Minimum Number of Teeth in a Wheel.—Consider 
two equal wheels having teeth of a fixed pitch and which mesh 
together. As the number of teeth is reduced the length of the 
line of contact is reduced also, and there is thus a limit to the 
number of teeth that can be used. This limit is set by the con¬ 
dition : Ixmgth of line of contact must not be less than the normal 
j)itch of the teelh. Referring to Fig. 199, 

hM-:LlHMP--20iP 8in (f>, 

but 0,P 
7i 

L.M.~jy-p \Hin (f> 

Now the normal pit(‘h C.P. a ('os (/> 

=j5;p- 

77 

hence j-y-jy X ( OvS cp <yyp" X iSm cp 

TrCot (j) 

when = say 13 

say 9 

When one wheel is larger than the other then the pinion could 
have fewer teeth than these numbers if the above condition were 
the only limitation, but in practice interference will occur and 
sets a higher limit to the size of the pinion, which limit is easily 
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loiiiid in any given case as follows : Let the wheel have oO 

teeth of 5 D.P. and be to the L. & S. standard. Then the 
P.(^.]).--^10 in., add"^-“0*2 in. in triangle OoPL (Fig. 200) 
(LP-5in., OoL-:5-2in., /.OoPL-J04|^ ; 

02L2^0oP2+PL2-20,PxPLxCos 0?VL 
5*22-1-PL2 -2 X 5 X PL X Cos 1 Otr 

Solving this for PL, we find 

PL---00474" 

OiP^ 
PL 

Sin J4.5 
-2-r>S()" 

WCA). of pinion--5* 172" 

No. of teeth in pinion—25*80 

say 26 

Jn ])ractice the smallest number of teeth used is generally 12, 
the tooth being corrected for interference as described later. 

156. Example of the Design of a Pair of Gears.—Except for the 
diametral pitch, which is determined cliiehy by considerations of 
strength, we can now design completely a pair of gears for a given 
duty; for example, the following. Gear ratio 4 to 1, centre 
distance 10 in., D.P. 5. 

Let V —number of teeth in pinion 
and N— ,, ,, wheel 

11ien 

ajid 

but 

P.C.D. of pinion^ jy-p — 

N N 
,, wheel 

Centre distance 

r).P.““r) 

n +N 

2X5 

N 
the gear ration——4 

® n 

N —4/?. 

Centre distance-^ 16 
5?/ 

Id 
7^-=-20 

N-80 

Thus the wheels have respectively 20 and 80 teeth; their 
pitch circle diameters are 4 in. and 16 in. and their blank 
diameters (if B. & S. teeth are used) are 4-4 in. and 16*4 in. 
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157. Another Example.—Let the data be as above except that 
the gear ratio is to be 4-5 to 1. 

ifh j 4* 5'W> 
Then the centre distance = 10" =—7;—r- 

2x5 

71=18*2 approx. 

But n must be a whole number. Let it be taken as 18. Then 
18-f-81 

N=4*57i=81, and the centre distance becomes ——=9*9 in. 

instead of 10 in. Thus a compromise must be made, and either 
the centre distance or the gear ratio must be varied slightly from 
that specified. As worked above the centre distance was varied 
and the gear ratio maintained exact. If the centre distance must 
be exact while the gear ratio need be only approximate, then, as 

before, we find n = 18*2 and make it 
18, but, since the C.D. must be exact. 

we now 
71 -j-N 

have -^r—-=10 
2X5 

hence 

N=82, and the gear ratio is ^=4*556 
instead of 4*5. 

In some cases it will be impossible 
to obtain either the gear ratio or the 
centre distance exactly if a standard 
diametral pitch is to be used. If a 
non-standard pitch is permissible, 
then any ratio can be obtained at any 
centre distance, but non-standard 
cutters will be required, and these 
generally imply increased costs. 

158. Effect of Number of Teeth in 
a Wheel on the Tooth Shape.—Con¬ 
sider a number of wheels having 
different numbers of teeth, say 15, 
30, 100 and qo , but all having a 
pressure angle of 14|°, a diametral 
pitch of 10 and B. & S. tooth pro¬ 
portions. The teeth of the 15-tooth 
wheel will be as shown in Fig. 201 (a). 
The P.C.D. = l-5 and the base circle 
diameter=l'5 Cos 14^ = 1*452 in. 
The radial distance between pitch 
circle and base circle is 0-024 in., 

while the dedendum is 0-1157 in. Since an involute cannot extend 
inside its base curve, it follows that the portion aft of the profile is 

Fig. 201 
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not an involute ; its shape is more or less arbitrary and usually it 
plays no part in the action of the teeth. The working profile is 
bed, of which be is inside the pitch circle and cd outside. If the 
wheel meshes with a similar 15-tooth wheel, then be will engage 
with a portion similar to cd; hence there will be considerable 
sliding between the teeth. The teeth are thinner at the root 
than at the pitch circle and are consequently weak. The involute 
portion bed has a relatively large average curvature. The 
30-tooth wheel is shown in Fig. 201 (6). The P.C.D.~3*0in. and 
the base circle diameter =^2-904 in. The portion be is now more 
nearly equal to ed; hence when meshing with a similar wheel the 
sliding will be less than with 15-tooth wheels. The form of the 
tooth and the curvature of its profile are also better. The 
100*tooth wheel is shown at c ; its P.C.D. = 10 in. and its base 
circle diameter==9*6815 in., so that pitch base 

the whole of the tooth profile is 
involute. The length of the working 
portion of ac is nearly equal to the 
length of ed, so that, with equal 
wheels, sliding will be less. The tooth 
form is stronger than before and the 
curvature is less. 

When the number of teeth is infinite 
the pitch circle diameter is infinite and 
the pitch circle becomes a straight line 
—the pitch line. The wheel is then 
called a rack, and the tooth profile, 
as shown in Fig. 201 {d), becomes a 
straight line inclined at the pressure 
angle, 14^*^, to the normal to the pitch 
line. 

Thus in general the greater the 
number of teeth in a wheel the better 
the tooth shape and strength and the 
less the sliding between mating teeth. 

159. Effect of Pressure Angle on 
Tooth Shape.—Fig. 202 (a to d) shows 
the teeth of wheels having 15, 30, 100 
and 00 teeth, of 10 D.P. and B. & S. 
standard proportions, except that the 
pressure angle is 20°. The pitch circle 
diameters are the same as in the corre¬ 
sponding 14J° wheels, but the base circle Fig. 202 

diameters are smaller. The involute portion of the flank is more 
nearly equal to the face portion, the tooth is a better shape and 
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the average curvature less. Thus an increase in pressure angle, 
other factors being unchanged, gives better-shaped teeth and less 
sliding between mating teeth. Angles greater than 14i° are being 
used to an increasing extent, but any increase beyond about 20"^ 
leads to difficulties, as will be seen later. 

160. Methods of Avoiding Interference.—The simplest method 
is to reduce the addenda of the teeth until the points R and S 
(Fig. 192) lie between L and M (alternatively the comers of the 
interfering teeth may be rounded off). These methods are indicated 
in Fig. 203 ; they have the disadvantage that the number of pairs 
of teeth in mesh may be reduced and that to avoid interference 
and undercutting during the manufacture of the teeth non¬ 
standard cutters with shortened addenda or having rounded-off 
corners must be used. Both methods are, however, used. A 
third method is to increase the pressure angle of the teeth ; this 
results in moving the points L and M so that the points R and S 
are less likely to come outside them ; this is shown in Fig. 204. 

In the Fellow’s stub teeth, as compared with the Brown and 
Sharpe standard, the risk of interference is lessened by reducing 
the addenda as well as by increasing the pressure angle. The 
fourth method is by the use of corrected teeth, and these will now 
be dealt with. 

161. Ck>rrected Teeth.—To understand the principle involved 
imagine the teeth of the two mating wheels to be generated 
simultaneously by a straight-sided rack by the method described 
in Art. 141, and as indicated on the left in Fig. 205. Now let this 
generating rack be shifted away from the centre of the pinion, on 
which the interference occurs, by an amount y, and at the same time 
let the blank radius of the pinion be increased and that of the wheel 
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decreased by the same amount y. The teeth generated will then 
be corrected teeth, as shown on the right in Fig. 205, the pinion 
having its addendum increased and its dedendum decreased, and 
the wheel having its addendum decreased and its dedendum 
increased, all by the amount y. The thickness of the pinion 
teeth has been increased and that of the wheel teeth decreased, 
but the pressure angle, pitch and base circles and centre distance 

are all unaltered. If the amount of correction ?/ is sufficient, then 
the interference will be eliminated and the pinion teeth will be 
considerably stronger than the uncorrected teeth. The number 
of pairs of teeth in engagement will be unchanged. The method 
can only be used when the interference occurs on one wheel only, 
and then only when the shifting of the 
generating rack to avoid interference 
on that wheel does not introduce it on 
the other. These conditions are only 
satisfied when a small wheel meshes 
with a considerably larger one. The 
method has the advantage that 
standard cutters can be used. 

The necessary correction y may be 
found graphically by drawing a circle, 
centre O2 (Fig. 206), to pass through L 
and then measuring the radial distance 
between this circle, and one passing 
through the tips of the standard teeth. It may be calculated b\ 
solving the triangle O2PL (in which LP=OiP Sin Sin <f> and 
is thus known, being the pressure angle) for O2L, which is then 
subtracted from O2R. 

11 
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Messrs. David Brown & Sons, of Huddersfield, make y—jy-p- 

where k is the correction coefficient, and is standardised by them 
in steps of 0*02. In their book on gear teeth (entitled Spur, 
Spiral and Bevel Gearing) they give charts from which the 
minimum correction hecessar}^ to avoid interference in any 
combination of wheels may quickly be found. 

162. Internal Gears.—When one of the pitch circles rolls on 
the inside of the other, as in Fig. 207, the larger wheel must have 
internal teeth, thus becoming an internal or ring gear. The pinion 
is an ordinary external gear, and the profiles^of the internal teeth 
are exactly the same as those of %n external gear having the same 
pitch circle and pressure angle. With internal gears, however, 
the metal is now situated outside the tooth profiles instead of 
inside, and the addendum is measured inside and the dedendum 
outside the pitch circle. The line of action is the common 
tangent (PLM, Fig. 208) to the base circles, passing, of course, 

through the pitch point. The relations between the pitch circle 
radii and the base circle radii are unaltered, so that 

O^L OjP 0)2 

02M"“02P COi 

and OiL=OiPCos<^ 

02M-02P Cos <f> 

<f> being the pressure angle. , 
The chief advantage of internal gearing is that for a given gear 

ratio and pinion diameter the centre distance between the shafts is 
much less than with external gearing, being equal to the difference, 
instead of the sum, of the pitch circle radii. There is also less 
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sliding between the teeth and, since a convex tooth engages with 
a concave one, the surface stresses in the teeth are less. The 
disadvantages are that a gear ratio of less than about 2| to 1 is 
impracticable, and that it is a little more difficult to arrange the 
bearings supporting the shafts. The latter difficulty becomes 
serious when two or more pairs of gears are required between the 
same pair of shafts, as, for example, in a change-speed gear-box. 

Interference occurs on the pinion teeth if the inside circle of 
the internal gear intersects the line of action on that side of L 
opposite to P. It can be dealt with as in external gearing. 
Another form of interference arises if the pinion has too many 
teeth relative to the wheel, since the paths of the corners of the 
pinion teeth as the latter rolls inside the wheel then intersect the 
corners of the wlieel teeth, so that unless these were removed 
during manufacture the gears would foul, and if they are removed 
the tooth action is affected. 

163. Helical-Toothed Spur Gears.—All the figures used to 
illustrate the preceding articles on toothed gearing are views taken 
parallel to the axes of the gears, i.e. they are projections on planes 
perpendicular to those axes, the action of the teeth thus being 
examined by means of the action between the profiles given by 
the intersections of the teeth and a surface which is everywhere 
perpendicular to the pitch surfaces ; it has not been necessary to 

consider the axial thickness of the gears. When the latter is 
taken into account, however, it is at once apparent that spur gears 
are of two types. In the first type the teeth are disposed parallel 
to the axes of the gears as in Fig, 209 (a), while in the second type 
they form parts of helices as indicated in Pig. 209 (6), although 
the sections of the teeth by the planes SS might be identical. The 
two types are known as Straight-toothed and Helical-toothed spur 
gears or, shortly, as Spur and Helical gears. The latter are 
sometimes referred to as “ spiral gears, but the term is a bad one 
and should not be used. 
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Helical gears are used because quiet, smooth running at high 
speeds can be more easily obtained than with straight teeth. 
This is chiefly because the engagement between any two teeth is 
a gradual process, starting at one end and gradually spreading 
across the whole tooth, while disengagement is equally gradual; 
whereas with straight teeth engagement and disengagement occur 
instantaneously across the whole of the teeth, also, as will be seen 
later, it is possible to use finer pitches (higher D.P. numbers) with 
helical teeth than with straight teeth, and this is conducive to 
smooth running. They are generally supposed to be evolved 
from the stepped geaVy originated by Dr. Hooke, which is, in effect, 
a straight-toothed gear cut into a number of slices which are then 
turned about their axis so that each one is slightly in advance of 
the preceding one. 

164. Spiral Angle, Real and Normal Pitches.—In Fig. 210 
bib{ is the intersection of the helical tooth seen in the end view 

Fro. 210 
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as abc, a'b'c' with the pitch cylinder, and is part of the right- 
handed helix dibibi'ei. The angle 6 between the axis of the gear 
and a tangent to this helix at any point is called the Spiral angle 
of the tooth, though a better name would be helix angle, and a 
little consideration will show that a tooth that is to mate with the 
tooth abc must have a spiral angle also equal to 6 and must be of 
the opposite hand, i.e. left-handed, as indicated by the dotted 
line, thus tJie teeth of mating helical wheels must have the same spiral 
angles and must be of opposite hands. If the pitch cylinder be 
developed out into a plane surface the hehx dibib^ei will appear 
as the straight line de, and in the right-angled triangle dfe, df is 
equal to the circumference of the pitch cylinder, while/e 
is the distance a point would advance, ])arallel to the axis of the 
helix, in moving round the hehx for one revolution, and is called 
the lead (pronounced leed) of the helix Then 

Tan 0^ 
/e 

ttT) 

17 
where i)=pitch diameter 

L=lead of helix 

The tooth next to abc would develop in a similar way into the 
line gh, and then fcZ, drawn perpendicular to e/, is the (developed) 
distance, measured along a pitch circle, between two consecutive 
teeth, i.e. H==the circular pitch. It is convenient to call Id the 
Real Circular Pitch (abbreviated to R.C.P.). 

77D 

Then kl='^ where N is the number of teeth in the wheel. 
N 

The pitch of the teeth can, however, be measured along a line 
drawn perpendicular to the developed tooth lines de, gh, being then 
represented by km^ The pitch km is the development of the pitch 
of the teeth as measured in the pitch cylinder along a helix that 
intersects the tooth helix at right-angles, i.e. normally ; it is there¬ 
fore called the Normal Circular Pitch or shortly the Normal Pitch. 
(This normal pitch is an entirely different thing from the normal 
or base circle pitch mentioned in Arts. 144 and 151, and the 
distinction must always be borne in mind.) 

Then km—klxCos d. 

Normal Circular Pitch 
=Real Circular Pitch x Cosine of Spiral Angle. 

N 
Now -rt =:the Diametral Pitch of the teeth =^P 

and P== 
77 

Circular Pitch 
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Corresponding to the diametral pitch given by this relation, and 
which will be called the Real Diametral Pitchy there is a diametral 
pitch given by the relation 

TT 

^'^ “"Normal Circular Pitch 

this will be called the Normal Diametral Pitch (N.D.P.). 

Then Pn=N.D.P. 
TT TT R.D.P. 

N.CT^^^R.C P. xCos e 

The Normal Diametral Pitch— 
The Real Diametral Pitch—Cosine of Spiral Angle. 

Now, in order that the same cutters may be used to cut helical 
teeth as are used for straight teeth, it is frequently necessary to 
make the R.D.P. a standard pitch, and this is usually done by 
adjusting the spiral angle to a suitable value. The spiral angle 
is otherwise settled either quite arbitrarily or, in conjunction with 

the axial thickness of the gear, is chosen to 
give an arbitrary number of teeth always 
in engagement at the pitch point. , This 

^ latter consideration will now be dealt with, 
.p J_ The pitch point is merely the end view of 

the line of contact of the pitch cylinders, 
I and this is shown in Fig. 211, as PP. At 

^ every point of intersection of a tooth line 
with PP there is a pair of teeth in engage¬ 
ment at the pitch point; thus in the figure 
there are four such engagements, and the 

number can be increased at will by increasing the axial thickness 
of the gear. Let the pitch of the tooth lines measured along PP 
be called the axial pitch and be denoted by A. Then 

Fio. 211 

PP 
No. teeth in engagement at the pitch point 

A. 

PPTang 

“ R.C.P. 

PPSin(? PPSin 0XN.JJ.P. 
~ N.C.P. " TT 

R.C.P. N.C.P. • TT 

~ Tan 0 “ Sin ~N.D.P. Sin 6 

If a line RR is drawn at a distance a equal to the length of the 
arc of approach, and another line SS at a distance 6 equal to the 
arc of recess, then all the teeth or portions of teeth whose tooth 
lines are between RR and SS are in engagement. 



TOOl^HED GEARING—TOOTHED WHEELS 167 

165. Example of Calculation of Helical-Toothed Gears.—Let 
two wheels be required to work at a centre distance of 18 in. with 
a gear ratio of 5 to 1 and to be cut with a 5 D.P. cutter at a spiral 
angle of about 23°, and let the number of teeth in engagement at 
the pitch point be required to be 4. 

Let 

Then 

and 

J) —P.C.D. of wheel N- -No. teeth in wheel 
d~ ,, ,, pinion n— ,, ,, pinion 

d I 
I)“"5 

the centre distance- 
d+V 

2 ' 
-IH in 

3d = l8 d~i) in. 
/. 1)—3(> in. 

Now the N.JD.P. must be 3 to enable a 3 D.P. cutter to be used ; 

hence K.l).i\---N.D.P. xCos spiral angle 
- 3 X0*l)2(>3—4-6025 approx. 

X4-6=27-6, say 28 

N =:5n = 140. 

The actual R.D.P. is thus 

^=4-666' 

N.D.P.=5 = 

Cos 6= 

R.D.P. 4-666' 

Cos 0 
4-666' 

Cos 19 

=0-9333' 

0=21° 2|', 

The axial pitch ^ 
77 

5X0-39T4 
= 1-6 approx. 

Face width of wheel=3 X l-6=4-8 in., say 5 in. 

Thus the cutting data for the wheels are : pitch circle diameters = 
6 in. and 30 in., numbers of teeth=28 and 140, spiral angle = 
21° 2J', face width of wheels =5 in., blank diameters=6-4 in. and 
30-4 in. (for B. & S. tooth proportions, since the addenda 

166. Double Helical-Toothed Gears.—When helical-toothed 
gears are transmitting power the force between the teeth has an 
axial component tending to move the gears along their axes, and 
which necessitates the provision of suitable thrust bearings. To 
avoid this necessity double helical teeth are used, the axial com¬ 
ponents of the tooth forces then cancelling each other. The two 
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halves of the teeth may be one continuous piece of metal or may 
be separated by a gap at the centre or be made separately and 
bolted together. The spiral angles of the two halves are of course 
equal. To ensure equal contact between the two halves of the 
teeth of wheel and pinion the latter (usually) is left free axially, 
being then positioned by the contact between the teeth. 

EXERCISES XII 

1. With gears having involute teeth what is the essential condition that must 
bo satisfied if consecutive teeth are to engage properly ? 

2. A gear has 20 teeth of 5 D.P. What is the pitch circle diameter ? If the 
teeth are B. & S. standard, what is the outside diameter ? 

3. Two parallel shafts are to be connected by gears of 6 D.P. with a gear ratio 
of 4 to 1. If the centre distance between the shaft axes is 10 in., find the numbers 
of teeth in the wheels, their pitch circle diameters and, assuming B. & S. 
standard, tooth proportions, their blank diameters. 

4. Two shafts are to be connected by spur gears, the gear ratio and centre 
distance being resi>ectively 2^ to 1 and 7^ in. as nearly as possible. If the D.P. 
is 8, find the best numbers of teeth for the wheels and the exact centre distance 
or gear ratio. 

5. Describe the methods by which interference in gear teeth may be obviated. 

6. Prove that Base Circle Pitch=Circular Pitch X Cos (Pressure angle). 
7. Two wheels having respectively 20 and 70 teeth mesh together at a centre 

distance of 4 J in. with a pressure angle of 14^°. If the centre distance is increased 
to 4‘6 in., find the new pressure angle. 

8. Two spur gears, having 30 and 60 teeth respectively, mesh together at tho 
standard centre distance corresponding to a D.P. of 10. If the teeth are to B. & S. 
standard proportions, find (a) the length of the path of contact, (6) the bcise circle 
pitch and (c) the maximum and minimum numbers of teeth in contact at any 
moment. 

9. Find the number of teeth in the smallest wheel that can mesh, without 
interference occurring, with a wheel having 60 teeth if the teeth are of B. & S. 
standard proportions. 

10. Repeat Question 9, but take the teeth to be Fellow's stub tooth standard 
and of ‘/g pitch. 

11. Two wheels having respectively 30 and 60 teeth of B. & S. standard pro¬ 
portions mesh together at the standard centre distance of 4 in. If the smaller 
wheel is the driver and rotates at 1000 r.p.m., find the speed of sliding between a 
pair of teeth.when they first come into contact. 

12. A wheel having 30 teeth is cut with a cutter of 10 D.P. and 14pressure 
angle, at the standcu'd centre distance. It is meshed with a rack having straight¬ 
sided teeth at an angle of 70° to the pitch line. If the wheel rotates at 60 r.p.m., 
find the linear speed of the rack. 

13. Find Hie amount of correction necessary just to obviate interference when 
a wheel ha^^ng 60 teeth meshes, at the standard centre distance, with a pinion 
having 16 teeth, the D.P. being 6 and the tooth proportions being B. & S. Find 
also the blank diameters of the corrected gears. 

14. Two helical-toothed gears have respectively 20 and 60 teeth, the normal 
diametral pitch being 10 and the spiral angle 20°. Find the centre distance 
between the‘shaft axes and the blank diameters of the gears if B.and S. tooth 
proportions are used. If the axial thickness of the gears is 3 in., find how many 
teeth are always in engagement at the pitch point. 

16. Using the relevant data of Question 14, find the value of the spiral angle 
if the gears are required to work at a centre distemee of 6 in. exactly. 



CHAPTER Xlll ' 

(This chapter may be omitted on a first reading.) 

CYCLOIDAL TEETH. SPECIAL FORMS OF GEAR 

r Cycloid "I 

167. Definitions.—A< Epicycloid mb the curve described l)yany 

yHypocycloid J {a straight line 1 

the outside of a circle >. 

the inside of a (‘ircle J 
Fig; 212 shows the three types of curve. The epicycloid EPl may 
be described by a point of either the full line rolling circle r (dia. d) 

CYCLOID 

'"OeSCRIBINC POINT 

Fia. 212 

or the dotted rolling circle r' (dia. d'), the former touching the 
fixed circle (dia. D) externally and the latter internally, while 

or D=d'—d. 
169 
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If the diameter of the rolling circle be made infinitely large, the 
rolling circle becomes a straight line and the epicycloid becomes 
an involute. If the diameter of the rolling circle r be made zero, 
the rolling circle becomes a point and the epicycloid becomes a 
point also. 

Similarly the hypocycloid HPO may be described either by the 
rolling circle r (dia. d^or the rolling circle r' (dia. d') and 

D=d+d' 

D 
If d is made equal to the hypocycloid becomes a straight Une, 

a diameter of the fixed circle. If d—o (ord'~D), then the hypo¬ 
cycloid becomes a point. 

168. Cycloidal Teeth.—In Fig. 213 Oa and are the centres of 
the pitch circles A and B of two wheels, P is the pitch point and 
r is a rolling circle which when rolled on the inside of A gives a 
hypocycloid, a portion eQf of which is used as the outline of a 
tooth of A, while when r is rolled on the outside of B it gives an 
epicycloid, a portion gQJi of which is used as the outhne of a tooth 
of B. The two teeth are in contact at Q.^ Let the two pitch 

circles and the rolling circle be revolved about their respective 
centres so that all three roU together without slip, then Q will 
trace out the two tooth outlines simultaneously. It follows that 
the point of contact between the teeth is always somewhere on 
the circumference of the circle r, and that circle is thus the pcdh 
of contact. That the teeth will satisfy the fundamental condition 
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for the transmission of motion with a constant velocity ratio will 
be clear when it is observed that at any instant P is the instan¬ 
taneous centre of the rolling circle r relativeto either pitch circle, 
and hence PQ is the normal to the epicj^oid eQ/ and to the 
hypocycloid gQfi at Q ; PQ is thus the common normal to the 
teeth at their point of contact and it always passes through 
the pitch point P. 

The first point of contact (for the directions of rotation shown) 
is at R (Fig. 214), the point of intersection of a circle, centre 0^, 
and passing through h, the tip of the tooth gh, with the path of 
contact. Clearly the last point of contact is at P. Thus contact 
lasts while the point of contact between the teeth moves round 
the arc RP. During this time both pitch circles will move through 

angles subtending arcs equal to RP, thus the arcs P6 and Vb' 
(made equal to RP) are the arcs of approach and ZJbOa^ and 
ZJb^OiP are the (unequal) angles of approach. If the directions 
of rotation are reversed the action is wholly during recess and 
P6 and P6' are the arcs of recess. With teeth as shown, therefore, 
the action is wholly during either approach or recess ; to obtain 
action during both approach and recess the teeth must be made 
to project outside as well as to lie inside the pitch circles. To do 
this a second rolling circle r' must be used, as shown in Fig. 215. 
This is arranged to roll outside A and inside B and portions eQA; 
and gQjL of the resulting epicycloid and hypocycloid are used as 
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the continuations of the teeth of A and B respectively. The 
circle r' need not be the same size as r. Thus one rolling circle 
generates the face of the tooth of one wheel and the flank of the 
tooth of the other wheel, while the second rolling circle generates 
the flank of the tooth of the first wheel and the face of that of the 
second wheel. 

169. Interchangeable Wheels must have a Common Rolling 
Circle.—Suppose any two of three wheels A, B and C have to 
mesh together, then since the faces of the teeth of A will engage 
the flanks of the teeth of B and C, it follows that the latter must 
be generated by equal rolling circles, and since the flank of B 
engages with the face of C, these must be generated by equal 
rolling circles ; hence it follows that the face and flank of the teeth 
of C must be generated by equal rolling circles and similarly for 
A and B, In practice the diameter of the rolling circle common 
to a set of interchangeable wheels was usually made equal to the 
radius of the pitch circle of the smallest wheel in the set. The 
flanks of the teeth of that wheel were then radial lines. 

170. The Condition for Continuity of Action.—For continuity 
of action a second pair of teeth must come into contact at least 
just as the previous pair go out of contact, and a little considera¬ 
tion will show that this implies that the circular pitch of the teeth 
must be not greater than the sum of the arcs of approach and 
recess. 

171. The Line of Action and the Pressure Angle.—The common 
normal at the point of contact between the teeth is the direction 
in which the force between the teeth acts (excluding friction) and 

may be termed the line'' of action. 
Clearly it is not fixed in position, but 
changes as the point of contact be¬ 
tween the teeth changes. The angle 
between the line of action and the 
common tangent to the pitch circles 
is the pressure angle, and this also is 
a variable quantity, its maximum 
values being at the beginning and end 
of the contact, while when the teeth 
are in contact at the pitch point its 
value is zero. The maximum value 
of the pressure angle in cycloidal teeth 
may be made greater than the con¬ 
stant value adopted in involute teeth. 

172. Internal Teeth.—Fig. 216 shows a pinion meshing with an 
internally toothed wheel. The face of the tooth of the latter is 
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now inside the pitch circle and the flank outside. The mating 
portions of the teeth. are now both epicycloids or both hypo- 
cycloids. The path of contact is composed of those portions of 
the rolling circles that are cut off by the addendum circles as with 
external gears. 

173. Secondary Contact.—If, keeping the size of the pinion 
fixed, the size of the annular wheel is gradually reduced, a point 
will be reached when what is called secondary contact will occur. 
This secondary contact arises because of the fact, mentioned in 
Art. 167, that any epicycloid or hypocycloid can be generated by 
two different rolling circles. In Fig. 217 0i and Oo are the 

centres of the pitch circles of the wheels. The tooth outline abc 
of the tooth of the wheel is obtained by rolling on the outside 
and dJg on the inside of the pitch circle giving respectively the 
flank be and the face ab. The latter, however, could equally well 
be generated by the rolling circle d, provided that the condition 
d 4-^2—pitch circle diameter of wheel =D„, is satisfied. The same 
rolling circles dj and d^ are, of course, used to generate the tooth 
outline de/ of the pinion, d2 giving the flank de and d^ the face c/. 
The latter, however, could equally well be generated by the 
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rolling circle d' provided that the condition —pitch circle 
diameter of pinion =Dp is satisfied. And if d and d' are made 
to coincide, then the faces ab and e/will both be generated by the 
same rolling circle and will mate together. For this to happen we 
must have 

d~=d'~Dp-\ di~ L)„,—f/o 

l^tt>—J-)/) —dj-f-do 

and 

Secondary contact is shown between the teeth a'b'c' and d'e'f'; 
it will commence at the point of intersection of the addendum 
circle of either the pinion or the wheel and the path of secondary 
contact (the rolling circle d)y whichever intersection is nearer to 
the pitch point, and it will continue (theoretically) up to the 
pitch point. It follows that so soon as primary contact com¬ 
mences there will be (theoretically) two contacts between the 
teeth. Since secondary contact is between the faces of the teeth 
and primary contact is between face and flank,, if the flanks of 
the teeth of both pinion and wheel are made to lie inside the 
hypocycloids giving the primary contact, the latter will be 
eliminated and secondary contact alone will remain. 

If the centre distance between the wheels is reduced beyond 

the value given by O1O2 (which gives secondary contact), 

then interference will occur between the faces of the teeth and 
the gears will not turn. 

174. Pin Gearing.—Pin teeth may be regarded as being an 
arbitrary tooth shape for which the conjugate tooth can be found 
by the envelope method of Art. 140. i^t A (Fig. 218) be tlie 
pitch circle of a pinion having pin teeth, one of which is shown 
(shaded). The outline of the teeth of the mating wheel B must 
then be the envelope of the circles representing the successive 
positions of the pin as the pitch circle A rolls on that of the wheel 
B. Clearly the path of the centre C of the pin is the epicycloid 
dCe and the wheel tooth outline is therefore the envelope fg of 
circles equal in diameter to the pin and having their centres on 
dCe. In general this envelope will be of the form shown at klm, 
coming down inside the pitch circle to I and then up again to m. 
The portion Im will therefore be eliminated by interference. 
Reference should be made to Art. 249, dealing with interference 
in cams. 

The path of contact is the locus of the point of intersection q 
(Fig. 219) of the circle representing the pin in any position and 
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tlie line CP joining the centre of the pin to the pitch point. CJ^ is 
the common normal at the point of contact between the teeth and 
also, of course, is the normal to the epicycloid described by the 
centre V. The path of contact thus lies inside the pitch circle of 
the pinion ; it may conveniently be traced by means of a template 
consisting of a straight-edge having the points C and q marked on 

it. U'his template is placed with C lying on the pitch circle A 
and its edge passing through P and then q is marked off, the 
process being repeated in a number of different positions. The 
same template will serve to determine the first (or last) point of 
contact q* by setting it so that C lies on the pitch circle A, g on the 
addendum circle of B and the edge passes through P. The last 
(or first) contact would occur when the pin centre reached P were 
it not for the interference mentioned in the preceding jiaragraph. 
Because of that interference it actually occurs when the pin 
centre is slightly nearer to ("'. The arc of afiproach or recess is 
the arc and this must be not less than the circular path of 
the teeth. 

Pin teeth may also be derived from cycloidal teeth by using 
particular sizes of rolling circles. Thus let the rolling circle used 
to generate the faces of the teeth of B be made equal in diameter 
to the pitch circle A. The hypocycloidal flanks of the latter will 
then degenerate into points lying on the pitch circle, and these 
points will engage the epicycloidal faces of B, being actually the 
tracing points of the latter. Since actual points cannot be used, 
they are expanded into pins and the teeth of B are made 
“ parallels ’’ to the original epicycloids. 

Pin teeth are used fairly extensively in clocks and mechanisms 
where the loads and speeds are low; they are usually arranged 
with the pin teeth driven, since then the action is wholly during 
recess and is smoother than when it is wholly during approach. 
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If the diameter of the pin wheel is made infinite the pitch circle 
becomes a straight line and the pin wheel becomes a pin rack as 
shown in Fig. 220. The epicycloids described by the pin centres 
become involutes of the 'pitch circle B and the teeth of B are 
parallels to those involutes. 

Pin gearing can be arranged as internal gearing, the wheel teeth 
then becoming parallels to hypocycloids. If the gear ratio is 
made 1 to 2 these hypocycloids become straight lines, diameters of 

e 

Fig. 220 

the pitch circle of the wheel, and this enables blocks to be pivoted 
on the pins as shown in Fig. 221, where only two pins are em¬ 
ployed. The teeth of the wheel then take the form of grooves 
cut in the face of a disc. Since surface contact is now obtained, 
the mechanism can be designed to deal with heavy loads. It is 
used, epicyoKcally, in the “ Bum ” reduction gear which has been 
successfully used in many land and marine applications. The 
mechanism has also been used as a camshaft drive in motor-car 
engines. It should not be confused with the Oldham coupling 
(Art. 83). 



CHAP^'ER XIV 

(x\rticles 176 to 183 of this chapter may be omitted on a first 
reading.) 

BEVEL GEARING 

175. As with spur gearing so with bevel gearing it is con 
v(mient to begin with the equivalent friction gearing. To 
transmit motion from one shaft to another, when their axes inter¬ 
sect, conical friction wheels must be used, as shown in Fig. 222. 

If the velocity ratio between the shafts is variable, then the wheels 
will be cones in the general sense, but if, as is usually l equired, the 
velocity ratio is to be constant, then the cones must be circular. 
These cones are of course the axodes. Imagine a s})liere to be 
described with the intersection O of the axes as centre ; this 
sphere wiU intersect the two cones in the circles HK and HL. 
which are in contact at H. If the cones roll together without 
slip, then the circles HK and HL also roll without slip. Hence if 
o) is the angular velocity of the cone OHK about its axis OX and 
Q that of OHL about its axis OY, w^e have, 

to HL HN OHSin^S Sin^S 

i3~HK~HM~"OH Sin a "Sin a 

177 12 

(1) 
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wliere a and p are the senii-apcx angles of the cones. Also if 6 is 
the angle between the shafts 

a+^^0.(2) 

These two equations enable a and jS to be determined when the 
a> 

gear ratio ^ and the angle 0 are given. 

In practice frustrums only of the cones would be used, but as 
such friction gearing suffers from the same limitations as that 
between parallel shafts, it is little used. Instead, teeth are formed 
on the cones, thus giving bevel gearing. Now, in examining the 
action of spur gear teeth the intersections of the teeth with a 
surface which intersected the pitch surfaces everywhere at right- 
angles were used, and a similar method is adopted with bevel gear 
teeth. The surface which intersects the pitch surfaces every¬ 

where at right angles is clearly a sphere having its centre at the 
intersection 0 of the axes. Such a sphere may be called a sphere 
of reference, and provided that everything we do is done, or 
imagined to be done, on the surface of this sphere, we can apply 
most of what has been done in connexion with spur gears to bevel 
gears also. For the present we shall confine our attention to 
constant-velocity bevel gearing and shall not consider the forms 
of the teeth in the directions of the axes. 

176. The Fundamental Condition to be Satisfied by Bevel Gear 
Teeth.—This is the same as with spur gears—namely, that at any 
point of contact between the tooth surfaces the common normal 
to those surfaces shall intersect the instantaneous axis. Referring 
to Fig. 222, it follows that in the view along the line HO, which is 
the instantaneous axis, the common normal at any point of 
contact will appear as a line which must pass through the point 
Hj ; this point on the surface of the sphere of reference may. thus 
be called the pitch point by analogy with spur gears. 

This line, the projection of the common normal, is also the 
projection of a great circle passing through H, The condition 
may therefore be stated thus : In any section of a pair of bevel 
gear teeth by a sphere having its centre at the intersection of the 
axes, a great circle of that sphere, drawn through the point of 
contact of the teeth, and whose plane contains the common 
normal to the tooth outlines, must pass through a fixed point on 
that great circle of the sphere which joins the axes. 

177. The Possible Shapes for Bevel Gear Teeth.—As with spur 
gears so with bevel gears any shape may be chosen for one of a 
pair of mating teeth and the conjugate tooth may be found by 
the envelope method, provided this is carried out on the surface 
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of the sphere of reference. Since the surface of a sphere cannot 
be developed on to a plane, the process cannot be performed 
practically, but only in theory ; again, however, the basic principle 
underlying the action of bevel gear generating machines is this 
envelope method of deriving the conjugate tooth. 

Suitable tooth shapes may also be found by a method which is 
analogous to that described in Art. 141, and it is useful to describe 
this method. Thus let ab and cd (Fig. 184) be the intersections of 
the centrodes with the sphere of reference; these curves may by 
analogy be called the pitch lines, and in the case of constant 
velocity gearing will be circles. Let them be in contact at P and 
let xy be any curve lying in the surface of the sphere of reference 
and being in contact with both ab and cd at P. Let Inin be a 
curve lying in the sphere of reference and fixed to xy at m. Then 
regarding Imn as a tooth outline, the conjugate tooth of ab may be 
found by the envelope method; let it be the curve si (Fig. 185). 
Similarly the conjugate tooth of cd may be found: let it be the 
curve uv (Fig. 186). Then, since both st and w could be generated 
simultaneously by rolling all three curves ab, xy and cd together 
without slip and so that they are all in contact at a single point at 
aU times, it follows that st and uv are conjugate tooth outlines. 
If the curve xy be made a portion of a great circle of the sphere 
of reference, and if the curve Imn be made a portion of a second 
great circle of the sphere of reference, then the resulting tooth 
outlines will be of the type that is actually used for bevel gear 
teeth at the present time. Such teeth are known by the name 
Octoid teeth. The cutter corresponding to the portion of a great 
circle is actually a straight-sided one, and thus one cutter can be 
used to cut both of the wheels. When it is remembered that the 
pitch lines ab and cd are merely the intersections of the pitch 
cones or axodes with the sphere of reference it will be seen that 
the curve xy is the intersection of some conical surface, having its 
apex at the centre of the sphere of reference, with that sphere. 
When xy is made a portion of a great circle the conical surface 
whose trace it is becomes a flat disc whose centre coincides with 
that of the sphere of reference. Similarly the curve Imn when it 
is made a portion of a great circle is the trace of a similar disc. 
Fig. 223 shows in perspective the relative disposition of the 
pitch cones and the discs corresponding to xy and Imn, As the 
pitch cones turn about their axes OX and OY so the disc Oxy 
turns about its axis VV, and the portion Olmn of another disc fixed 
to the disc Oxy generates the tooth surfaces of the two wheels. 

It should be clear that the angle between the discs Olmn and 
Oxy is the pressure angle of the resultant teeth, which angle is thus 
constant. 
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V 

178. Roulettes as Bevel Gear Teeth Shapes.—No difficulty 
should be experienced in seeing that the process described in 
Art, 144, and which was there supposed to be carried out on a 
plane surface, can be carried out on th,e sphere of reference, thus 
giving pairs of conjugate bevel gear tooth outlines. In particular 

when the rolling curves fg are 
K made circles the resulting tooth 

outlines are similar to the family 
of cycloidal curves ; they may 
be called spherical cycloidal 
curves. The rolling curves are, 
of course, only the traces on the 
sphere of reference of rolling 
cones which, when the curves are 
circles, are circular cones. Fig. 224 
indicates in perspective the pro¬ 
cess of generation of cycloidal 
bevel gear teeth. OX and OY 
are the axes of the pitch cones 
OHK and OHL, and OZ the axis 
of the rolling cone OH/. AU 

three of these cones are in contact along the line OH. If now all 
three cones are revolved about their respective axes in such a 
manner that they all remain in contact along OH and that no slij) 
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occurs, then any line OQ of the rolling cone will trace out the 
spherical epicycloidal tooth surface OuQ, relative to the pitch cone 
OHL, and the same line will trace out the spherical hypocycloidal 
tooth surface relative to the pitch cone OHK. The two 
tooth surfaces will be in contact along the line OQ, and since OH 
is the instantaneous axis of the rolling cone relative to either 
pitch cone, it should be clear that the normals to both tooth 
surfaces at any point of OQ must pass through OH, and the 
fundamental condition is satisfied. To obtain tooth surfaces 
that lie partly inside and partly outside the pitch cones two 
roUing cones must be used; these need not be equal cones unless 
the teeth belong to wheels any one of which must mesh with any 
other, in which case all the rolling cones generating the teeth must 
be equal. Some years ago cycloidal bevel gear teeth were much 
used and they are still used to some extent. 

179. Bevel Tooth Outlines by means of Secondary Centrodes.— 
By an analogous method to that described in Art. 143 it is possible 
to derive, from the axodes corresponding to the relative motion 
of two bodies that revolve about fixed intersecting axes, secondary 
axodes. These, like the primary axodes, will be cones, in the 
general sense, having their apexes at the intersection of the axes. 
Let the curves A and B (Fig. 225) be the traces, on any sphere of 

reference, of the primary axodes wliich arc in contact along a 
radius OP of that sphere. The view being along the radius OP, 
the latter is seen as a point. Then at each point ol* the line OP 
the axode A will have a definite centre oi curvature and thc^c 
(centres will lie on an axis of curvature which will be a radius OC 
of the sphere of reference and will intersect that sphei'e in some 
point C. Similarly along the line OP the axode B will have an 
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axis of curvature OD which will intersect the sphere of reference 
in D. It should scarcely need pointing out that OC, OP and OD 
are co-planar. Also through OP may be erected the common 
tangent plane of the axodes A and B ; this plane will intersect the 
sphere of reference in a great circle which is seen as the line xx, 
and may be thought of as a disc bounded by that circle and with 
its centre at 0. Through OP erect a plane OLM making any 
convenient angle with the plane Oxx. This plane will intersect 
the sphere of reference in a great circle which is seen as the line 
LPM and may also be thought of as a disc. Through the axes of 
curvature OC and OP erect planes perpendicular to the plane 
OLM. These planes will intersect the sphere of reference in great 
circles of which the portions CM and DL are shown, and they will 
intersect the plane OLM in lines OL and OM. Then these lines 
are lines of the secondary axodes given by the plane OLM. By 
turning the primary axodes through small angles and repeating 
the whole process the secondary axodes may be derived as conical 
surfaces, whose traces on the sphere of reference will be curves 
such as G and H. They have the property that if they are sup¬ 
posed to roll together with the disc OLM without slip then the 
relative motion between them will be exactly the same as that 
between the primary axodes. If the traces on the sphere of 
reference of the primary axodes, i.e. the curves A and B, are 
called the primary centrodes, then the corresponding traces of 
the secondary axodes, i.e. the curves G and H, may be called the 
secondary centrodes. Also the portion LM of the trace of the 
disc OLM on the sphere of reference may be thought of as an 
inextensible string that is wrapped round the secondary centrodes 
and which passes from the one to the other along a portion LM 
of a great circle of the sphere of reference. The relative motion 
of the secondary centrodes is then communicated by this string. 
If any point of this string be chosen as a tracing point, then as the 
secondary centrodes revolve about the fixed axes this tracing 
point will trace out, on the surface of the sphere of reference, a 
pair of conjugate tooth outlines. These outlines will always be 
in contact at the point of LM that is occupied by,the tracing point 
at the instant under consideration. Thus LM is the path of 
contact. When the velocity ratio is constant the primary and 
secondary axodes are circular cones and the corresponding 
centrodes are circles. The tooth outlines are then spherical 
involutes. These outlines are of course only the traces on the 
sphere of reference of corresponding tooth surfaces which may be 
obtained by joining every point of the outlines to the centre of 
the sphere of reference. It is, however, instructive to derive 
these tooth surfaces directly instead of first deriving their traces 
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uii the sphere of referenee. Jii Fig. 220, ()(;1M and OHL are the 
secondary axodevS and OaLM6 is a {)ortion of the disc tliat rolls 
together with them to give the required relative motion. OQ is 
any line drawn on the disc. Then as the axodes and the disc are 
rolled together OQ will sweep out the tooth surfaces Ost and 

These surfaces will al^vays be in contact along the line OQ vviierever 
that line may be. Thus contact is always along a line lying in 
the common tangent plane of the secondary centrodes. When 
the latter are circular cones the}' are called tlu‘ h(rse coves, and the 

Th T 
reader should have no difficulty in proving that where /•/, 

i\i, K 

and are the radii of the base circles given by any sphere of 
reference and r and K are the pitch circles given by the same 
sphere. Some people find it easier to imagine a flexible sheet 
wrapping off one base cone and on to the other, as those cones 
revolve, rather than to imagine a disc rolling with the cones as 
described above. The line OQ drawn on this flexible sheet will 
then describe the spherical involute tooth surface. 

The spherical involute tooth outlines obtained in this way are 
very similar to the octoid tooth outlines obtained by the method 
of Art. 177, and many writers state that bevel gear teeth as used 
at the present are spherical involute teeth, but that is not so. 
The spherical involute tooth is not quite the same as* the octoid 
tooth, although the difference is usually extremely small, and 
modern bevel gear teeth are undoubtedly octoid teeth.* 

* In motor-c ar axlcH bevol gemrs are now biMiig used in which tho tooth of tho 
wheel (which is not a true' crown wheel) are made straight-sided and the teeth 
of the pinion are gc'nerated to tho conjugate shape. Such teeth are neither 
involute nor octoid. 
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180, Crown Wheels.—As the semi-apex angle of the pitch cone 
or axode of a bevel gear is gradually increased from zero up to 
1)0°, so the pitch cone itself gradually changes from a mere line 
to a flat disc. A bevel wheel whose pitch cone is a flat disc is 
called a crown wheel, and it corresponds, in bevel gearing, to the 
rack in spur gearing. The name arises from the resemblance of 
such a wheel to a crown, and it is often misapplied to any large 

bevel wheel whose semi-apex pitch cone angle approaches 90°. 
The term should be, however, and in this book is, restricted to 
wheels having discs as pitch cones. It will shortly be seen that 
the traces on a sphere of reference of the teeth of crown wheels 
when of the spherical involute fprm are very nearly portions of 
great circles, and it should be clear from a consideration of 
Art. 177 that in octoid teeth the traces of the teeth of a croAvn 
wheel are definitely made portions of great circles. 

181. Definitions.—Having settled on the form of tooth outline 
to be used, it becomes necessary to consider such matters as 
continuity of action, the number of teeth in mesh, interference, 
etc., and as these things depend upon the proportions adopted 
for the teeth, it is necessary to deal with these. It will be con¬ 
venient, however, to give definitions of some of the practical 
terms used in connexion with bevel gears. Let HKVW (Fig. 227) 

be a frustrum of a cone, axis OX, that forms the pitch cone of a 
bevel gear. Then the circle HK is taken aS the pitch circle. Let 

the number of teeth in the wheel be N, then 
N 

HK 
is the diametral 

pitch, HK being measured in inches. As with spur gears, this is 
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usually made a whole number. The pitch of the teetli measured 
round the pitcli circle is the circular jntch (C.P.) and clearly 

7T 

C.P. — . The semi-apex angle a is called the pitch cone angle 

and the length OH the cone distance. Clearly OH is the radius of 
the sphere of reference that intersects the pitch cone in the pitch 
circle HK. Draw HG and KG perpendicular to OH and OK 
respectively. Then GKH represents a cone, called the back cove, 
which intersects the pitch cone normally in the pitch circle, and 
it should be clear that this back cone is tangent to the sphere of 
reference that intersects the pitch cone in the pitch circle HK. 
The teeth of the gear will extend, on the pitch cone, from H to V, 
and this length I is called the face width. Let HL, measured on 
the surface of the back cone, be the height of the teeth above tlic 
pitcli cone, then HL is the addendum ; similarly HM is the 
dedendum. The angle e subtended by HL is called the addendum 
or top angle, and the angle 6 subtended by the dedendum 
is called the dedendum or block angle. The angle LOX—a+e is 

called the face cone angle. Clearly Tan € = ^ ^ ^ ^ 
OH HK 

2xHLxSin a 

' N 
X(D.P.). Similarly for Tan The thickness 

of the teeth measured round the pitch circle is made, as in spur 
gears, equal to half the circular pitch less a very small clearance. 
The addenda and dedenda and pressure angles of bevel gears are 
usually made the same as those of spur gears of the same pitch. 
Thus if Brown & Sharpe proportions are used the addendum is 

and the dedendum while the pressure angle is 14.i^. 

Since bevel gears practically never have to be intercliangeable in 
the sense that any one of a set shall work with any other of the 
set, there is even less reason for having fixed standard tooth pro¬ 
portions than there is with spur gears, and departures from the 
recognised standards are much more frequent. The face widths 
of bevel gears are usually made not greater than one-third of tlic 

cone distance. 

182, Tredgold’s Approximation.—Tn order to draw out the 
proper shapes for templates by means of which bevel gear teeth 
could be marked out on the patterns from which the gears were to 
be cast, Tredgold assumed that the surfaces of the back cones 
could be taken to coincide with the surface of the sphere of’ 
reference in the vicinity of the pitch circles. By means of this 
assumption Tredgold was able to derive for any pair of bevel 
gears a pair of equivalent spur gears the tooth action of which was 
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for all practical purposes identical with that of the bevel gears. 
Such matters as the number of teeth in contact at any instant, 
the amount of interference and the correction necessary to avoid 
it, etc., could then be examined, by the methods described in 

Chapter XII, as if the action was between a pair of spur gears 
instead of between bevel gears. The method of deriving the 
equivalent spur gears will now be explained. 

In Fig. 228 let OHK and OHL be the pitch cones of a pair of 
bevel gears, and let XHK and YHL be the corresponding back 

cones, HK and HL being thus the pitch circles, while the arc 
KHL represents the sphere of reference. Now, by assuming that 
in the region of the pitch circles the back cones are coincident 
with the sphere of reference, the traces of the teeth on the latter 
may be transferred to the back cones. The surfaces of the latter 
may then be developed out into a plane, when they will become 
sectors of flat discs. Thus in the view on the right of Fig. 228 
the arcs KiH^K' and L^HiL' are the developments of the pitch 
circles HK and HL, and these arcs are the pitch circles of the 
equivalent spur gears. Clearly the circular pitch (and hence the 
diametral pitch also) of the equivalent spur gears is the same as 
that of the bevel gears. Also since the addendum and dedendum 
of the bevel gears are measured on the back cones, the addendum 
and dedendum of the equivalent spur gears will be equal to those 
of the bevel gears. It should also be clear that the straight line 
XyXi is the development of the circumference of the disc Oxy 
(Pig. 223) used in obtaining octoid teeth and the straight line 

development of the portion Imn of the great circle 
shown in that figure and which gave the octoid teeth. When the 
pitch lines KiHiK' and LiHiL' are rolled together with the line 
x^xi the line Ixmirii will generate involute teeth on the equivalent 
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spur gears. The base circles of these involutes will be circles 
abc and def, which are tangent to tJie line bUJ, which is perpen¬ 
dicular to These base circles are approximately the 
developments of the base circles of spherical involute teeth of the 
bevel gears whose pressure angle is <f>. Thus in the equivalent 
spur gear involute tooth outlines represent either octoid or 
spherical involute bevel gear teeth. 

The pitch diameters of the equivalent spur gears are 

2X,H,-2XH 
KH 

(vOS ct 

and 

Since the diametral pitch is the same as in tlie bevel gears, the 
numbers of teeth in the equivalent spur gears are 

HK 

Cos a 
X D.P. 

n 

Cos a 

and 
HL 

C>os ^ 
xD.P. 

N 

Cos jS 
---N, 

n and N being the numbers of teeth in the bevel gears. Nj and 
Til are called the equivalent or virtual numbers of teeth, and as 
they are rarely whole numbers, the nearest whole number is 
usually taken. 

Clearly for continuity of action in a pair of bevel gears the base 
circle pitch of the equivalent spur gears must not be greater than 
the length of the path of contact of those gears. Similarly if 
interference occurs in the equivalent spur gears it will occur in 
the bevel gears, and if the addenda and dedenda of the equivalent 
spur gears are altered by certain amounts in correcting the teeth 
for interference, the same alterations will be required in the bevel 
gears. Lastly the strengths of bevel gear teeth are expressed in 
terms of the strengths of the equivalent spur gear teeth. 

188. Spiral Bevel Gear Teeth.—In Fig. 223 the portion of the 
disc Olmn that generated the octoid teeth intersects the disc Oxy 
in a radial line. No difficulty should be experienced in seeing that 
the surface Olmn could be some other shape than a flat disc without 
affecting the generation of the teeth. Of course, if the teeth are 
to be octoid teeth any sphere of reference must intersect the 
surface Olmn in a portion of a great circle, but this is not in¬ 
compatible with the surface Olmn being such as to intersect the 
disc Oxy in a curve, in particular in a circular arc. If the latter 
condition holds, then the teeth of the bevel gears will be curved in 
the direction of a generating- line of the pitch cone. Gears using 
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such teeth are called Spiral Bevd Gears and are used very ex¬ 
tensively, so much so that they tend to displace straight bevel 
gears altogether. The reason is chiefly that it is actually easier 
and cheaper to manufacture spiral bevel gears than straight bevel 
gears and in addition the former are stronger and quieter. 

It should be clear that by taking a curved line on the rolling 
cone OH/ in Fig. 224 to be the describing line of the teeth, spiral 
spherical cycloidal teeth will result. Similarly, by taking a 
curved line of the disc Oab in Fig. 226 as the describing line, spiral 
spherical involute teeth w^ill result. 

EXERCISES XIV 

J. Two shafts whoso axes intersect at right-angles are to he connected gears 
with a ratio of 3 to 1. Find the semi-apex angles of the pitch cones. 

2. Two shafts whose axes intersect at an angle of 70° are to be connected by 
gears, meshing externally, and having a ratio of 3 to 1. Find the semi-apex 
angles of the pitch cones. 

3. Describe briefly the various methods by which pairs of conjugate tooth may 
be obtained for bevel gears. 

4. If the gears of Question 1 are of 5 D.P. and tlie pinion has 20 teeth, And the 
pitch circle diameters and the numbers of teeth in the equivalent spur gears. 

5. If the gears of Question 2 have 24 and 72 teeth of 8 D.P. and are to B. & S. 
proportions, what are the fac’e cone angles of the gears ? 



CHAPTER XV 

(This chapter may be omitted on a first reading.) 

GEARING CONNECTING NON-PARALLEL 
NON-INTERSECTING AXES 

Axes that are not parallel and do not intersect may conveniently 
be called skew axes, and although in practice several different 
types of gearing are used to connect such axes, these different 
types are Idnematically identical. What follows therefore applies 
to all such gearing. 

184. Suppose that bodies A and B rotate about axes A A and 
BB (Fig. 229) with angular speeds Wa and respectively ; then 
the motion of A relative to B is obtained by bringing B to rest by 
giving the whole system an angular velocity about the axis 
BB. The body A will then have a motion of rotation Wa about 
AA, while that axis will have a motion 
of rotation -j-wi, about BB, Now, it 
has been proved in Art. 52 that the 
resultant motion of A under these 
conditions is a screw motion about 
an axis RR as shown and which 
satisfies the conditions 

Sin a coh 

Sin p~~o}a 

I Tan a 

m Tan 

The line RR is, of course, the in¬ 
stantaneous axis of A relative to 
B or of B relative to A. If the ratio of the angular speeds remains 
constant, then the position of RR relative to AA and BB will be 
fixed. It follows that when B is fixed and AA rotates about BB, 
then RR rotates about BB also, thus sweeping out an hyperboloid 
of revolution having BB as axis. This surface is the axode of A 
relative to B. Similarly, when A is fixed the axis RR will rotate 
about AA, thus sweeping out another hyperboloid of revolution, 
but having AA as axis. This is the axode of B relative to A. 

189 
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The two axodes will touch at any instant along the line RH; the 
instantaneous axis and the relative motion between A and B is 
obtained by a screw motion of the one axode relative to the other 
about the line in which those axodes touch at any instant. 

185. Possible Shapes for Skew Gear Teeth.—In investigating 
the possible shapes for the teeth of spur and bevel gears it was 
possible to find a surface which intersected the pitch surfaces of 
the wheels normally at every point, and it was thus possible to 
reduce the problem from one concerning the action of two surfaces 
in contact to one concerning the action of two lines in contact, a 
great simplification. With skew axes this is no longer possible, 
and so the investigation of the possible shapes for skew gears is 
much more difficult than the corresponding problem with spur or 
bevel gears; so much more difficult, in fact, that, in view of the 

limited field of usefulness of skew 
gears, it will not here be attempted. 
The subject has been considered in 
detail by Prof. Charles William Mac- 
Cord in his book Kinematics, published 
by John Wiley & Sons, New York, 
which is a most stimulating book and 
one that should be read by all who 
wish to pursue the subject of toothed 
gearing further than can be done in 
this book. In engineering practice, 
however, when skew axes are con¬ 
nected by a pair of toothed wheels, 
the gears employed are either identical 
with helical-toothed spur gears or are 
worm gears, and it will suffice to con¬ 
sider these from a practical standpoint. 
Helical-toothed spur wheels when used 
to connect skew axes are generally 
called skew gears or spiral gears, and 
these will now be dealt with. 

186. Skew Gears.—Let AA and BB 
(Fig. 230) be a pair of skew axes and 
let the outlines a and b be the pitch 
cylinders of a pair of helical-toothed 
spur wheels. It should be noted, at 
the outset, that these cylinders are not 
intended to be portions of the hyper- 

boloidal axodes, a fact which will become evident shortly when 
it will be seen that another pair of helical-toothed spur gears. 
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having quite different pitch cylinders, could be used to connect 
the axes AA an(^ BB without any alteration in the velocity ratio 
or the relative motion, i.e. without any change in the axodes. 
Now imagine these pitch cylinders to be developed out into the 
plane of the paper, which is to be imagined as their common 
tangent plane, seen as the line SS in the lower view. They will 
develop into the rectangles a' and h\ portions only of whicli are 
shown. Now, if the teeth of the wheel A had had a spiral angle a 
their traces on the pitch cylinder would develop into straight lines 
inclined at the angle a to the axis AA, as sliown. Now let the 
spiral angle jS of the teeth of B be made equal to Q~a ; then the 
developed traces of the teeth of B will coincide m ith those of A 
where the pitch cylinders overlap, as shown. The wheels A and 
B would then mesh correctly and transmit motion between the 
shafts with a constant velocity ratio. Clearly the normal circular 
pitches (and hence the N.D.P.s) of the two gears must be the 
same. When it is remembered that the pitch cylinder of A has 
been rolled down on to the upper suface 
of the paper while that of B has been 
rolled up on to the under surface it will 
be clear that the teeth of A are lej't- 
handed and the teeth of B are also left- 
handed. Suppose, however, that the 
teeth of A had been made right-handed; 
the developed pitch cylinders would 
then be as in Fig. 231, and it will be seen 
that the teeth of B are still left-handed, 
but that we now have the relationship 

— between the spiral angles and 
the shaft angle. Thus we may say that when the wheel teeth 
have the same hand the sum of the spiral angles must equal the 
shaft angle, and when the wheel teeth have opposite hands then 
the difference of the spiral angles must equal the shaft angle. 

Now, by Art. 164 the real diametral pitches of the wheels are 
given by 

R.D.P. of A=N.D.P. xCos a 

R.D.P. of B=N.D.P. xCos ^ 

N.D.P. being the common normal diametral pitch. Let the 
numbers of teeth in the wheels be Na and N^ respectively, then 
the pitch cylinder diameters Da and D^, are given by 

Na Na 
^"■^R.D.P. of A "“N.D.P. Cos a 

^ N, N, 
“■R.D.P. of B “■N.D.P. Cos /3 
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and the gear ratio is 
Cos tt 

Nfe~Dft Cos p 

Ntt and N/, must, of course, be whole numbers. 

Also, if L is the shortest distance between the shaft axes, then 

Da+D5 = 2L. 
For practical reasons it is generally necessary that tlie N.D.P. 
shall be a standard pitch. Collecting the equations, we have 

a -{-p=d or a =6.(J) 

Cos^ 

a>/> ]lC Da Cos a 

“ N.D.P. Cos a • • • • 

^"""n.D.R Cof^ .... (4) 

Da-f"D(<=2L.(5) 

Now, in any practical problem the shaft angle $ will be specified, 
and also gear ratio, the distance L, and the N.D.P., and the pro¬ 
blem is to determine the numbers of teeth in the wheels, the 
spiral angles, and the pitch cylinder diameters. As there are six 
quantities to be determined and only five equations, it is necessary 
to assume a value for one of the unknowm quantities. Usually it 
is best to assume a value for the number of teeth in the pinion. 
The other quantities may then be determined. Obviously by 
selecting different values for the arbitrarily assumed quantity 
other solutions could be found. As an example, let us determine 
the dimensions of two skew gears to connect shafts at an angle of 
50°, the gear ratio being 2 to 1, the shortest distance between the 
shafts in., and the N.D.P. 10. 

Assume No=20. Then Ni.=40. 

From (3), (4) and (5), D„+D,= =2L=7 
10 Cos a 10 Cos jS 

.'. Cos/3-[-2 Cos a =3-5 Cos a Cos 

And by (1) Cos (50—a)-f-2Coso=3-5CosaCos (50- a) 

This equation determines a ; it is best solved by plotting the tw'o 
sides against a and finding the intersection of the resulting curves, 
and to reduce the amount of computation it is advisable to derive 
the approximate value of a by a graphical method to be described 

later. Thevalueofaisthusfoundtobe 14°6', whence)8=35° 54'. 
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«> 
Da-- 

D,= 
Cos 14^6'" 

4 

C’os 35^’ 54' 

~-2‘i)62 in. 

-4-9:3S in. 

(Since the N.D.I\ is JO the addenda (assuming B, & S. standard 
proportions) arc 0-1 in. and the outside or blank diameters are 
thus 2*262 in. and 5*138 in. ^ 

Assuming Nrt==2J gives, as the equation for a. 

2*1 (^os (50--a)4 4*2 (V\s a —7 C^os (50- a) t o^ a. 

from which a is found to be 39^ 42'. Hence ^ — 10^ 18'. The 
pitch cylinder diameters then are D„-^2*729 in.. D/,:-^4*271 in., 
and by taking Na —19 a third pair of gears can be found for which 
the spiral angles are 9’ and 41 ' approx-mately. 

Any of these pairs of gears will connect tlie siiafts at the 
s])ecified centre distance, gear ratio and N.D.P., and the choice 
between them turns on the amount of sliding between the teeth, 
which will be dealt with later, or on some other requirement, such 
as that the gears musi be ap})roximately the same size. 

is then drawn such that 

187. Graphical Determination of the Spiral Angles. Probably 
the bef^t graphical method of determining tlie spiral angles is 
the follow ing : Referring to Fig. 232, 
the lines OA, OB represent the shaft 
axes ; thus Z BOA —The line OC 

CE N// 
being any point on OC., and CD and 
CE being perpendiculars on to OA 
and OB respectively. Then, having 
assumed a value for Na, the value of 

Na 

N.D.P. 
sents the pitch diameter of a spur 
wheel having teeth and having 
a real diametral pitch equal to the N.D.P. of the skew gear ; 
this spur gear is sometimes called the ecpiivalent spur gear 

and its diameter equivalent diametei*. A point C is 

N 
then found on OC such that C'D== - Next an accurately 

N.D.P. 
divided scale is taken and is manipulated until its zero lies on OA. 
its edge passes through and the reading where it intersects OB 
is equal to twice the rccpiired shortest distance between the 

13 

is calculated. This repre- 

ViG. 232 
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shafts. Let FCG be the position found for the straight edge. 
Then CF is the pitch cylinder diameter of the pinion, Z.DCF its 
spiral angle a, while CG is the pitch cylinder diameter of the wheel 
and ZECG its spiral angle. The construction is easily proved. 

ThusCD:=CF Cosa andCE^OCJCos^; thus 
CL CG Cos p iMfe 

by construction. l’hu.s the lengths CF and (Yjf and the angles 
a and^ satisfy equation (2). Also by construction FC=CF +CG = 
twice the required centre distance —2L. Thus CF and CCr satisfy 
equation {.")). Also ZACD + ZECG = 18()'' —^ECD = ^I)OE = 0; 
thus a and p satisfy equation (1). Lastly, by construction, 

ci:)= N„ 

N.D.l*. 

(!1) ^ N„ 

(tos a N.D.P.xCosa 

188. The Sliding of the Teeth.—In Fig. 233, OA and OB are 

the axes of two skew gears whose velocity ratio ^“=r. The 
0)1, 

shortest distance between the shafts is 
L and the spiral angles are a and )8 
respectively. Then O is the point of 
contact of the pitch cylinders and, 
considering it as a point of A, it 

has a velocity OL—as shown. 

Similarly, wlicn considered as a point 

of B it has a velocity OM—— 

Now by equation (2) 

OL Cos 

OM Cos a 

Let OL and OM be drawn in this pro- 
jiortion, and resolved along and per¬ 
pendicular to the developed trace of 

the teeth, drawn as a chain-dotted line in the figure. The per¬ 
pendicular components will then be equal (an obvious necessity), 
while the vector difference of the components along the tooth line 
is the velocity of sliding of the teeth in the direction of their 
length. Thus, 

Velocity of sliding Sin a-f Sin jS. 

189. The Spiral Angle for Least Sliding.—It has been seen that 
for a given gear ratio, centre distance and N.D.P. many pairs of 
gears can be found, having different spiral angles and pitch 
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diameters ; now, one of these pairs will have a lower velocity of 
sliding between the teeth than any of the others, and the spiral 
angles of this pair will now be found. 

("os a 

fSin a (os ^ ("os a] 

Since Wit Dft = 

r — 

Now 

and 

also Da -j D/, — 

(^n J If/1 

a)j\)a Sin (a+/5) 

Cos p 

OJaDa Sin 0 

Cos p 

N.D.P. Cos a 

N, 

(’os jS 

rNa 

N.D.P. Cos j8 N.D.P. ("os (^—a) 

2L. 

1 

N.D.P.\("os a ("os (^ —a) 
-2L 

. N«: 

D„. 

2 X N.D.P. X L X{("os a ("os a)} 

Cos (^—a)-l r Cos a 

2L Cos (O—a) 2lj Cos p 

Cos (^—a)+r Cos a~~Cos (6—a)-^r Cos a 

2(OaL Sin B 

Cos (^—a)+r (yos a 

Now, the numerator of this is independent of the spiral angles ; 
hence for the minimum sliding the denominator must be a 
maximum. 

{0—a)-j-r Cos a}=o 
da 

/. Sin (B-~a)~r Sin a 

Sin 6 Cot a—Cos B~r 

Cot a 
r+Cos 0 

Sin 6 
(7) 

and this gives a maximum for the denominator, since the second 
derivative is negative. Hence the spiral angle for least sliding is 
given by equation (7). 

It may be pointed out that if (he pitch diamefer,s are assumed to 
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e 
be constant, then the minimum sliding occurs when a = -, and this 

value for a is given in many textbooks as resulting in the minimum 
sliding ; but this assumption is not in accordance with practical 
considerations, since it implies variations in the gear ratio and this 
has a fixed value. 

The spiral angle given by equation (7) may result in the number 
of teeth in the pinion being fractional, and then, of course, all that 
can be done is to take the nearest whole number. In the example 

^ 2-1-Cos 50° 
considered above equation (7) gives Cot a— —q—, whence 

a—10° and on putting this value in equation (6) Na is found to 
be 20-3 ; hence the solution found by assuming Na = 20 happens to 
be the one giving least sliding. 

Now, the axodes of the relative motion are given by the equa- 

_ Sin a cDb I Tan a ^ ^ ^ ^ i . 
tionsTT;;—I a+p = ^ and Z-f m=L, a and D being 

Sm p cx)a m Tan p ^ ^ ® 
the angles between the respective generating lines of the axodes 
and the axes and I and m being the radii of those axodes at their 
gorges. Then, 

Sin a cuft 1 

Sin p~~coa~~r 

Sin Sin a 

Sin (9—a)=r Sin a 

r+Cos 6 
Coti 

Sin 9 

and the solution that gives the minimum sliding is that one for 
which the pitch surfaces of the wheels coincide at the gorges with 
the axodes of the motion. 

By the methods given above the principal dimensions (that is, 
the numbers of teeth, pitch diameters and spiral angles) of a pair 
of skew gears may be determined. Each of the wheels may then 
be regarded as a helical-toothed spur gear, and the addenda, 
dedenda, etc., may be made the standard amounts according to 
the system in use for spur gears. The wheels may then be cut in 
exactly the same way as helical-toothed spur gears, and it is not 
until the two gears are meshed together with their axes in the 
skew relationshij) that they can be distinguished from helical¬ 
toothed geai^ and definitely said to be “ skew gears.” The wheels 
may, however, be cut by the method adopted for worm gears, 
which will be described later ; gears cut in this manner should, 
however, be regarded as worm gears^ and these will now be 
considered. 
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190. Worm Gears.—There are two types of worm gearing in 
general use; namely, 

1. Straight or Parallel worm gears, 

2. Globoidal or Hour-glass worm gears, 

and the fundamental difference between the types lies in the form 
of the worm and can best be explained by describing .how the 
worms could be produced. (In practice the method adopted is 
not that described, but is the same in principle.) Dealing first 
with the jmrallel worm, this is cut like an ordinary screw thread ; 
thus a cylinder (the “ blank ”) is mounted so that it can revolve 
about its axis, and a cutting tool of suitable shape is mounted so 
as to be able to slide parallel to that axis. '^Ilie relative motion 
between the cutting tool and the blank is controlled by external 
gearing between them in such a way that the cutting tool travels 
a fixed distance for a given angular motion of the blank. The 
motion of the cutting tool across the face of the blank in con¬ 
junction with the rotation of the latter results in a helical thread 
on the blank. 

The globoidal worm is made by turning a blank to the shape 
shown in P^ig. 231, the surface aa a'a' of which is a surface of revolu¬ 

tion obtained by revolving the curve aa 
about the axis XX. The curve aa is an 
arc of a circle whose centre O lies on the 
axis of the worm wheel which ultimately 
will mesh with the worm being cut. This 
blank is then mounted so that it can 
revolve about its axis XX and a cutting 
tool of suitable shape is mounted so that 
it can revolve about the centre O. The 
relative motion between the cutting tool 
and the blank is controlled by external 
gearing so that the angular motion of the 
cutting tool is proportional to the angular 
motion of the blank. The motion of the 
cutting tool across the face of the blank in conjunction with the 
rotation of the blank results in a thread being formed on the 
blank. 

For both types of gear the worm wheel is made by making a 
cutter or “ hob ” which is, in all except minor details, a replica of 
the worm. This hob is gashed so as to form a number of cutting 
edges round its threads and is, of course, suitably hardened and 
tempered. The method of using tlie hob differs, however, for the 
two types, (kmsidering tlio globoidal ty[)e lirst, the hob is 
mounted with its axis in the same angular position relative to 
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the wheel blank as the axis of worm will ultimately be when 
working with the wheel after the latter has been cut. The 
perpendicular distance between the hob axis and the blank axis 
is made, however, greater than the corresponding distance between 
the worm and wheel axes. The hob is connected to the blank by 
external gearing having the same ratio as that of the worm and 
wheel under consideration. The hob is then rotated at a suitable 
speed (thus causing the wheel blank to rotate at the proper speed 
also) and is gradually moved towards the blank in a direction per¬ 
pendicular to the blank axis until the shortest distance between the 
hob and blank axes is equal to the required distance between 
the worm and wheel axes. As the rotating hob is moved towards 
the blank it gradually cuts the tooth spaces of the latter and 
ultimately leaves the teeth the right shape to engage the worm 
threads. 

There is sometimes a difficulty arising from the fact that while 
the hob is being fed inwards towards the blank it cuts away some 
of the metal of the latter which would not be removed if the hob 
axis could be maintained at all times at the correct distance from 
the blank axis. Where metal has been removed in this way the 
wheel teeth cannot engage the worm threads when the two are 
meshed together, and unless this interference between the hob 
and the wheel is kept within reasonable limits, the contact between 
the worm and wheel may be reduced to such an extent that the 
load the gears can safely carry will be unduly diminished. This 
generally necessitates the use of a comparatively short worm. 

The parallel type worm hob is used in a similar manner to the 
above except that the hob axis is, at all times, at the same distance 
from the blank axis as the worm axis is when the worm ultimately 

meshes with the wheel. The hob 
starts in the position 1 in Fig. 235 
and is fed tangentially, relative to 
the blank, until it reaches position 2. 
The hob and blank are of course 
geared together externally and the 
hob is rotated at a suitable speed. 
The gear ratio between the hob and 
blank is now not the same as that of 
the worm and wheel, but must allow 
for the axial motion of the hob. 

Clearly either rotation or axial translation of the hob, separately, 
will result in rotation of the wheel, and when the hob both rotates 
and moves axially the wheel must receive both rotations simul¬ 
taneously, and the gear ratio between hob and blank must be 
arranged accordingly. 

2 
Fig. 23,5 
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The hob is usually tapered, as shown, to facilitate the com¬ 
mencement of the cutting action. 

The axial feed of the hob eliminates interference between the 
hob and the blank, thus giving the best possible contact between 
the worm and wheel. 

The parallel type of worm is much more uidely used than the 
globoidal type, and the next feu articles deal more fully with the 
parallel type. 

191. Single and Multiple Thread Worms.- A worm having two 
threads is shown in Fig. 230. Jf, starting from the point A, a 

thread is followed for one complete revolution about the axis XX, 
the point B will be reached. It will be seen that between A and 
B, which are corresponding points of the same -thread, a second 
thread is situated. If, starting from A and making one revolution, 
the point C had been reached, then the worm would have been a 
three-thread worm. Multi-thread worms are commonly referred 
to as multi-start worms, since in the end view the start of each 
thread is clearly seen. 

The distance AB, measured parallel to the axis XX, Is called 
the lead of the thread or worm, while the distance AI), between 
corresponding points of consecutwe threads, is called the pitch. 
Thus Lead==Number of threads x Pitch. On a single-start worm 
the lead and pitch are equal. 

192. Thread Shapes and Proportions. —The section of a parallel 
worm by a plane containing the axis has the appearance of a 
rack, as shown in Fig. 237, and in the early days of worm gearing 
this rack section was made identical with the racks used in spur 
gearing; that is, the threads were made sfraight-sided as showji 
and the pressure angle <f> was made either 14^° according to the 
B. & S. standard or 20° according to the Fellow’s standard. 
Similarly, the height of the thread was given by means of the 
addendum and dcdcndum measured respectively above and below 
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a line corresponding to the pitch line of the rack, as shown. The 
cylinder (diameter d) of which this pitch line is a generator is 

usually called the pitch cylinder of the 
worm, but, as in skew gears, the pitch 
cylinder is merely a surface on whicli 
the pitch of the teeth is measured 
and is not an axode. The addendum 
and dedendum were usually given the 
same values as for spur gears and thus 
were given in terms of a diametral 
])itch. Nowadays the threads of 
worms a JO freijuently not made 
straigiit-sided, and even when 
straight-sided are not made similar to 
spur gear racks ; in particular the 

pressure angle is made greater than is usual with s])ur gears, and 
the dedendum is made smaller than the addendum, or may be 
made zero. 

193. The Action of a Worm with a Wheel.—(bnsideiatioti will 
show that if the worm of Fig. 237 is revolved about its axis the 
ra(*k section AB(T)EF given by the intersection of the worm 
threads witli the plane of the paper will appear to travel along the* 
})itch line Vl\ If tlie worm threads are right-handed and the 
worm is rotated in the clockwise direction when viewed from its 
right-hand end, then the rack section will appear to travel from 
left to right. Jf the direction of rotation of the worm or the hand 
of its threads is reversed, tlien the direction of travel of the rack 
section wdll alsc^ be reversed. The speed of travel of the rack 
section is given by 

►Speed of travel (inches/min.) 
4r ==^R.p.m. of worm X l^ead of worm threads (inches), 

and if the angular speeds of the worm and its lead are constant, 
then the speed of travel of the rack section will also be constant. 
Suppose the worm to mesh with a very thin wheel; then, provided 
the teeth of this wheel are conjugate teeth to tlie rack section, the 
travel of the latter at constant speed will result in rotation of 
the w^heel with constant angular speed. The number of teeth of the 
rack section that will pass the pitch point per minute is given by 

Xumber of teeth per min. 
►Speed of travel of rack section 

IMtch ot worm teeth 
R.p.m. of worm xLead of w orm 

iMtch ol worm teeth 
R.p.m. of worm ANumlxu* of tlixeads 

of worm 
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Also the number of teeth of the wheel passing the pitch point per 
minute is given by—R.p.m. of wheel X Number of teeth in wheel— 
and this number must be the same as for the rack section. Hence, 

R.p.m. of wheel Number of threads of worm 

R.p.m. of worm Number of teeth of wlieel 

and the worm may be regarded as a wheel having a number of 
teeth equal to the number of its threads. 

The action of the worm and wheel as examined above by means 
of the central section (given by the central plane containing the 
worm axis and being perpendicular to the wlieel axis) is seen to 
be that of a rack with a wheel. Thus any shape may be chosen 
for the rack teeth, the choice being restricted, of course, by con¬ 
siderations of interference, as with spur gears. The proper shape 
for the wheel teeth to mesh with the arbitrarily chosen central 
rack section of the worm is obtained automatically by reason of 
the bobbing process used to cut the wheel teeth, in which process 
the wheel-tooth shape is generated by the rack section to which it 
has to be conjugate. 

If the action of the worm and wheel is examined by means of a 
section by any plane parallel to the central plane, the action will 
again be found to be that of a rack and wheel. This is shown in 
Fig. 238, where ABCDEF is the rack section given by the inter¬ 
section of the plane MN with the worm. Rotation of the worm 

produces a translation of this rack section equal to that of the 
central section. The section of the wheel by the plane MN will 
give teeth that are conjugate to those of the rack, w^hich, of course, 
actually generates them. The actual shape of the teeth of the 
rack given by a side section such as MN depends on the shape of 
the teeth of the central rack and on the pitch diameter and lead 
of the threads. If these factors are settled, then the shape of the 
side-section rack teetli is automatically settled also. Alternatively 
(he sliape of the teeth of the side-section rack can be chosen aihi- 
trarily, thus settling automatu'ally the shape of the central r.ick 
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teeth. In practice the central section is usually the arbitrarily 
chosen one, but some makers choose the side section. 

The ‘‘ x^itch lines ” of all the rack sections given by planes like 
MN may be thought of as rolling with corresponding “ pitch 
circles ” of the wheel sections. Since all the pitch lines of the 
racks travel at the same linear speed, it follows that all the “ 
circles ” have the same diameter. The rack pitch lines will form 
a plane XY (Fig. 239), parallel to both the worm and the wheel 
axes, and the pitch circles will form a cylinder, concentric with 
the wheel axis and tangent to the plane XY as shown. These 
surfaces are sometimes referred to as pitch surfaces ; they are not, 
of course, axodes. 

194. The Contact between the Teeth.—Each of the teeth of the 
rack section given by a plane such as MN in Fig. 238 will in general 
make contact with the conjugate tooth of the wheel section at one 
point, which point will, of course, move along the tooth profiles as 
the action proceeds. The sum of all these point-contacts between 
the teeth is a line of contact whose shape and position at a par¬ 
ticular moment might be as shown at ab in Fig. 240. If the worm, 
and thus, of course, the wheel also, be rotated through a small 

angle, the new line of contact might be such as aibi. If the line 
ab had been marked on the worm in the original position, it would 
be seen, after the worm had been rotated through the small angle, 
as a'b'. Then the point of intersection c of the lines aibi and 
tt'6' is a point which has contact with the wheel teeth at two 
separate instants. It is considered by some authorities that such 
double contacts should be avoided, since the first contact tends 
to disperse the lubricant from the region of the contact and the 
subsequent second contact then occurs without the presence of 
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the lubricant, which distributes the pressure between the surfaces 
over an area sufficiently large to keep the intensity of pressure 
within safe limits and which reduces the friction and consequent 
heating. The result is that the surface of the metal of the wheel 
teeth is overstressed and breaks down and the gear fails. It 
would follow therefore that one of the primary considerations in 
settling on a suitable thread section for a worm is the avoidance 
of these multiple contacts, the shape being chosen so that the 
successive lines of contact fire as shown in Fig. 241, and some 
manufacturers claim to achieve this result. 

The determination of these lines of contact is not difficult for a 
parallel worm if a graphical method, or a combination of analytical 
and graphical methods, is used, but it has not been thought 
advisable to give the methods here. For further information the 
reader is referred to a paper by W. Abbot! entitled Worm Oear 
Contacts,” Proc. l.Mech.E., Vol. 133, 193b. 

195. Tooth Contact with Globoidal Worms.—The central section 
of a globoidal type worm is as shown in Fig. 242, having the 
appearance of a rack lying round the arc .ry of a circle. If the 
worm be rotated slightly, then this section will move round the 

arc xy a small amount, but will be otherwise unclianged. iSince 
the wheel teeth can be made the exact counterpart of tlie thread 
section, it follows that on the central section there is line contact 
between any thread of the worm and its mating wheel tooth. 

A side’section of the worm will also have the appearance of a 
rack, with unsymmetrical teeth, lying round a circular arc, but if 
the worm is rotated through a small angle, then not only will this 
rack section move round the arc by a small amount, but the actual 
shape of its teeth will change. If the tooth sections are drawn 
for a large number of successive small rotations of the worm, it 
will be found in some cases that the successive tooth shapes, when 
“ set back ” to allow for the rotation of the rack section l ound the 
arc of the circle, will have an envelope. When this is so this 
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envelope will be the shape of the wheel tooth in the plane of the 
section, and this wheel tooth will, in general, touch the worm rack 
section in a point for every position of the worm. Then, con¬ 
sidering all the possible side sections on which a similar contact 

occurs, it will be seen that the worm threads will be in contact 
with the wheel teeth along a second line of contact (cd. Fig. 243) 
roughly at right-angles to the line of contact ab given by the 

central section. The position of this second line of contact will 
change as the worm rotates. It is claimed by some upholders of 
the globoidal type of worm that this double line contact, enables 
a greater load to be carried than is possible with the parallel type 

worm under comparable conditions as to size, speed, etc. In 
some investigations made by the author the successive tooth 
sections of the worm did not have an envelope at all, one section 
lying outside all the others. This being so, it followed that the 

second line of contact cd was entirely absent. 
The load-carrying capacity of a w^orm gear cannot, however, be 

predicted, with any degree of certainty, from an investigation of 
the tooth contact, but must be settled by experiment; and experi¬ 

ments show that there is little to choose between the types on the 
score of efficiency and that the globoidal type can carry rather 
higher loads than the parallel type. Consideration of this aspect 
of worm gearing is beyond the scope of this book. 

EXERCISES XV 

1. Tho axes of two shafts are at right-angles, and the shortest distance between 
them is 4^ in. The shafts are to be connected by skew gears having a ratio of 
2 to 1. If the N.D.P. is 10 and the pinion has 20 teeth, find the pitch circle 
tliaineters and the spiral angles of tlie teeth, which are to bo of opposite hands. 

2. If the pinion in Question I rotates at 1000 r.p.rn., what is the speed of rubbing 
between the teeth ? 

3. Using the relevant data of Question 1, find the numbers of teeth in the 
wheels, the pitch circle diameters, spiral angles and exact centre distance when 
the gears are designed for minimum sliding. 

4. Describe briefly the essential differences between tho parallel and globoidal 
types of worm. 

5. A parallel worm has throe starts and its lead is 6 in. It inoshos with a wheel 
having 30 twth. If the pitch cylinder diameter of the woriA is 4 in., what is tho 
centre distance between tho shaft axes ? 

G. Describe briefly the action that occurs between (a) a parallel worm and 
worm wheel and (6) a globoidal worm and wheel. What are the three most 
important factors to be considered in clioosing the shape of thrtmd section for a 
worm ? 

7. A two-start ])arallel w’orm has a lead of 3 in. It rotates at o r.p.rn. and 
meshes with a wheel having 20 tooth. Simultaneously it travels in the direction 
of its axis at a linear speed of G in./min. Find the speed of rotation of the wheel 
if the linear motion of tlie worfii (a) irnau'ases and {h) d(*(*rcas(‘s tlu* rotatioji of 
the wheel. 



CHAPTER XVi 

GEAR TRAINS 

196. Definition.—Two or more gear wbezels of any type when 
used to transmit motion from one shaft to another constitute a 
train of gears. It is convenient at the outset to divide gear trains 
into two classes : ordinary frams in whictj all the wheels merely 
revolve about their own axes, whieli are fixed, and epicycJic trairus 
in which some of the wdieeis liesides revolving about their own 
axes have also a bodily motion about some other axis. 

197. Ordinary Gear Trains.—These may be subdivided into 
two classes, .simple and compomid, the difference being show^n by 
Fig. 244 {a) and (6). In the simple train (a) the wheel A on the 
driving shaft drives the wheel B, which 
in turn drives C, which in turn drives 
the wheel D on the driven shaft. The (a) 
velocity ratio betw een A and T> is easily 

seen to be D and A representing 

the numbers of teeth in the resjiective 
wheels. » The wheels B and C are idlersy 
the numbers of teeth in them do not 
affect the velocity ratio at all, and they 
are used either because the centre dis- 
tande between the shafts A and D is too great for the wheels A 
and D to be meshed directly together, if tliosc wheels are to be of 
a reasonable size, or because direct mesliing of A and D would 
result in the wrong direction of rotation of the driven wheel, or 
for both of these reasons. In a simple train of gearing all the 
wheels are usually of the same type, but when helical-toothed 
gears are used it becomes possible to arrange some of them as 
spur gears and some as skew gears. In the compound train {b) the 
wheel A on the driving shaft drives the wheel B on an inter¬ 
mediate shaft or layshaft, which also carries a second wheel C, 
which melshes with'* the wheel D carried by the second layshaft, to 
which is also fixed\he wheel E, which drives tlu* wheel F on the 
driven shaff. Kach intciniediate shaft carries two wheels, a 
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driven and a driving wheel, both being fixed to the shaft. The 
gears need not all be of the same type, and, if they are, need not 
be all of the same pitch, etc. 

The velocity ratio between A and F is 

a>a B X I) X F 
that is, 

cxjf~~AxCxE 

Speed of 1st driving wheel Product of teeth in driven wheels 

Speed of last driven wheel Product of teeth in driving wheels 

The intermediate wheels thus affect the velocity ratio. 

197a. Reverted or Co-axial Trains.—When the axes of the first and 
last wheels of a gear train are nlade to coincide the train is some¬ 
times referred to as a revexted or co-arial train. An example is 
given in Fig. 245. Since if A, B, C and T> are the numbers of 
teetli 

A+B C + 1) 

^~2l).P.a~2D.P., 

it follows that if the wheels are to be all of the same pitch then 

A + B=C+1> 

and this equation, together with that for the centre distance L and 

that for the gear ratio will enable the numbers of 
^ \(x)d AxC/’ 

teeth to be determined (for the given centre distance, gear ratio 
and D.P.) only wdien the number of teeth in one wheel has b^en 
chosen arbitrarily. 

It is not always possible to get exactly the gear ratio required 
at the exact centre distance if standard pitches only arc used, and 
an approximate solution must then be accepted. 

A very compact form of co-axial drive is obtained by using 
internal gears as shown in Fig. 246. The intermediate shaft C 
revolves in fixed bearings (not shown) about the axis XX, and the 
shafts A and B have the common axis YY. • 
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198. Epicyclic Trains.—These also may be divided into simple 
and compou7}d trains. A simple epicyclic train is shown in 
Fig. 247. It consists of an annulus A, having internal teeth, an 

“ arm ” R free to revolve independently of, but coaxially with, 
the annulus, a “ planet ” wheel P carried by, but free to revolve 
on, the pin of the arm, and lastly a sun ” wheel S coaxial with 
the annulus and arm, but independent of them. The frame which 
serves to support the members A, R and 8 is not shown. 

Such a train may be employed in several ways, a common one 
being to couple the sun S to the driving motor or engine and the 
arm R to the machine to be driven and to bold the annulus 
stationary. The arm will then revolve in the same direction as 

the sun, but at a lower speed. 
The velocity ratio may be found by considering the motions of 

the various members relative to the arm as* follows. I^et the 
numbers of teeth iu the annulus and sun be respectively A and S. 
Then 

Speed of annulus relative to arm =Speed of annulus relative 

to earth—Speed of arm relative to earth, 

i.e. 

and since 

this gives 

Now 

aO)r —aO)e 

aix)e — O 

aO)r ~ —rOiv 

A 

because, both motions being relative to the arm, the relations 
between them are as in ordinary gearing. The minus sign 
indicates that, relative to the arm, the sun turns in the opposite 
sense to the annulus. Substituting for aOir we Save 

A 
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but ,a)e^t,(^r+rCiy€ 

X ^ "i >a>, 

and Velocity ratio — 

The velocity ratio may also be found very quickly by a tabular 
method in which the proper relative motion between the members 
(annulus, sun and arm in the example) is arrived at as the sum of 
two component motions given ^ two separate steps. 

In the first step the arm is given the motion it is to have in the 
result and all the other members are given the same motion. It 
follows that in the second step the arm receives no motion, i.e 
it is fixed; hence in the second step we have to deal only with 
ordinary gearing. The motion that must be given to one of the 
remaining members (sun or annulus) is now settled, since it must 
be such that when added to the motion given in the first step the 
result is the required motion for that member. The motion 
received by the remaining member in the second step can now be 
calculated as for ordinary gearing (because in the second step the 
arm is fixed), and on adding this motion to that given in the first 
step the resultant motion is obtained. 

Suppose it is required to find, in the example given above, what 
motion the sun receives when the arm is turned once while the 
annulus is held stationary. The working is as follows : 

1 

Moinher Ann K | Annulus \ Sun S Keinaiks 

1st Step . f 1 ' 1 1 f 1 All mombery re( eivo the 

A 

's 

same motion. 

2n<l St(*p 0 1 
1 

1 The arm is fixed 

Kosult ' ‘ ! 

1 

Mistakes will be avoided if the result, so far as it is known, is 
written down first, and if secondly a nought is .placed for the 
motion of the arm in the second ste}). 

199. Another Example.—Fig. 248 shows a type of epicyclic 
gear in which two sun wheels Sj and S2 are employed. They 
mesh with the toothed portions and Po of the compound planet, 
wliich is free to turn on the pin of tlie arm R. In one common use 
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of suoli a train the arm is coupled to the driving motor or engine, 
one sun is coupled to the driven machine and the otlier sun is 
fixed. (The frame supporting the members Sj, So and R is not 
shown.) 

Supfiose the arm R to be driven at 1000 r ]).m and the sun So 
to be fixed, and let the numbers of teeth be Si=^30, Pi =20, 
p2 = 2(), So =-24, Then the speed of 8j is found, using the tabular 
method, as shown in the table belf5\v. 

Ji 

1000 
0 

^ 1000 

I 1000 
-1000 

0 

1000 

looox^^/js , 384/3 

Thus the sun Si is driven in the same sense as the arm, but at 
lower speed. 

If, in the same gear, the sun Sj is made the fixed member, so 
that So is driven, it will be found that S2 is driven in the opposite 
sense to the arm, the working being given below. 

R kS, 

1 1000 flOOO 1 f 1000 

0 -1000 i — 1000x^2^^^ -1023 
-f iOOO i 

1 

0 j 023 

This form of epicyclic gear is thus available as a forward or a 
reverse gear according as to whether the fixed sun is smaller or 
bigger than the driven sun. 

14 
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200. Example When Motion of Arm is Unknown.—In this case 
the procedure has to be modified slightly. The simplest method 
is to find the gear ratio of the train by giving the arm one turn 
and finding, by the tabular method, the motion of the other 
moving member. The motion of the arm consequent to the 
actual motion of that member may then be found by simple 
proportion. 

I'hus, considering the double sun train of Fig. 248, let the sun 
S2 be fixed and 81 be rotated at 1000 r.p.ni. What is then the 
speed of the arm ^ The gear ratio is found thus : 

R , ^ s, 

f I I . M 
o - 1 

81 

I 
24 , iO H 
26 30 13 

Hence, if 8j rotates at 1000 r.fi.ni , the arm H rotates at 1000 x 5” 
= 2G0i) r.p.m in the same sense. 

201. Epicyclic Trains having No Fixed Member.—It is not 
essential that one member of an epicyclic train should be fixed; 
all the members may rotate, ^^hus m the trajn shown in Fig. 247 
the annulus A might be driven from an external source, as well as 
the arm R. The resulting motion of tlie remaining member, the 
sun 8 in the example, may then be thought of as the sum of two 
component motions, one due to the motion of the arm R, the 
annulus being regarded as fixed, and the other due to the motion 
of the annulus, the arm being regarded as fixed. 

As an example let 8 have 50 teeth, let the arm R rotate at 
1000 r.p.m. clockwise and let A have 100 teeth and rotate at 
hOO r.p.m. anticlockwise. Then the motion of 8 consequent on 
+ 1000 r.p.m. of R, the annulus being regarded as fixed, isTound 
to be +3000 r.p.m. and the motion of 8 consequent^n —500 r.p.m. 
of the annulus, the arm being regarded as fixed, is +1000 r.p.m. 
The total motion of 8 is thus 4000 r.p.m. This may be found 
directly thus : 

R 

luoo 
0 

- 1000 

A 

] 1000 
~l.f)00 
— 500 

8 

T 1(M)0 
} 1500X-V’6^ 

-f 4000 

When the motion of the arm is to be found it will generally be 
simplest to find the component motions separately and to add 
them afterwards. 
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202. Bevel Epicyclic Trains.—These are frequently used, an 
example being shown in Fig. 249. The bevel wheel A meshes 
with the planet bevel wheel B, which is free to turn on the arm R. 
The planet B also meshes with a bevel wheel C. In one use of 
the train the wheel C is held stationary, A is the driving member 
and the arm is the driven member. The gear ratio is easily found 
by the tabular method. 

B 

122^ 

Inal 
1 |l ^ 
1 ml 
1 laiii: 

Fig. 2S0 

203. The Differential.—Referring to Fig. 24^ if the wheels A 
and C are made equal in size, the train becomes the common 
differential used on motor cars and in many machines. As used 
in motor cars the arm R is driven by the engine and A and C are 
coupled to the driving wheels, the construction being on the lines 
of Fig. 250. The arm R takes the form of a drum-like casing, 
usually made in two parts for convenience in manufacture and 
assembly. The planets B and Bi are carried by a pin running 
radially across the casing, two planets (and sometimes three or 
four) being used to reduce the loads on the teeth and to give 
rotational balance. The planets mesh with the wheels A and C, 
which are fixed rotationally to the road-wheel shafts E and F. 

It will easily be seen that if the casing is revolving at say 
400 r.p.m. and A is revolving in the same sense at say 390 r.p.rn., 
then the speed of C will be 410 r.p.m. in the same sense also. This 
is the action when rounding a corner; when the car is going in a 
straight line A, C and R all revolve at the same speed, and there 
is no relative motion between the planets and the pin that 

carries them. 

204. The Differential as an Adding Mechanism.—A differential 
forms a convenient mechanism for adding or subtracting two 
motions, and it is used for this purpose in gear-cutting machines 
and in various forms of calculating machines. Referring to 
Fig. 250, if the C is held stationary and A is turned through an 
angle 6, then the arm R^ will be turned in the same direction 
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through If HOW A is held stationary and C is turned through 

an angle (f>, then the arm R will be turned through - and its 

total motion will be 
2 

, being thus proportional to the sum of 

the motions of A and C. The motions of A and C may of course 
be given simultaneously instead of consecutively. 

A differential also affords a convenient method of changing the 
phase relationship between a driving and a driven shaft whilst 
they are running. If the casing R in Fig. 2*50 is held stationary, 
then rotation of A will drive C. at the same speed, but in the 
opposite direction. If now R is turned through any angle the 
phase relationship between A and C will be altered by twice that 
angle. 

205. Compound Epicyclic Trains.—A compound epicyclic train 
consists of a combination of two simple epicyclic trains, some of 
the members of one train being integral with some of the members 
of the other train. Usually one of the trains may be regarded as 

the main train and the other as the 
auxiliary train, the function of the 
latter being to give motion to some 
member of the main train. An ex¬ 
ample is shown in Fig. 251, the main 
train being numbered 1 and the 
auxiliary train 2, both trains being 
of the sun and annulus type. They 
are compounded by making the sun 
S2 integral with the annulus Aj and 
the arm R2 integral with thb arm Rj. 
The annulus A2 is field stationary, and 

then rotation of Si causes R1R2 to rotate, and vice versa. The main 
train 1 may be regarded as having two driving members, the sun Sj, 
which is coupled to some external motor, and the annulus Aj, which 
receives its motion from the auxiliary train ; the arm Ri then 
receives simultaneously the sum of two motions, one that due to the 
motion of the sun Si and the other that due to the motion of the 
annulus Aj. The gear ratio between the sun Si and the arm Ri 
may be found by giving the arm R2 of the auxiliary train (the 
only train having a fixed member) one turn. The resulting motion 
of S2 may then be found. Using the tabular method and taking 
the numbers of teeth to be 80=40, A2—8O, Si=30, Ai=90, the 
working is shown in Table 1 and the motion of S2 is seen to be 
+3 turns. Next consider the main train. In this the arm R|, 
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Jio 1 
r 1 

1 1 

1 I * '40 

1 

1 

being integral with Ro, lias received ~\ 1 turn, and the annulus Aj, 
being integral with S2, has received -\~S turns; the resultant 
motion of Si may therefore be found. Using the tabular method, 
the working is shown in Table 2. It is seen to be —5 turns ; hence 
the gear ratio between Si and Ri is —5 to 1 and the train gives 
a reverse drive. 

iiy li. 

H 1 
0 

i I 

A, S, I S, 

II I 11 
, I V 

Tvbli-. 2 

In the above example the driving member of the auxiliary 
train, the arm R2, received motion because it was made integral 
with the driven member, the arm Rj, of 
the main train ; in the example shown 
in Fig. 252 the driving member of the 
auxiliary train is the sun S2, and this 
receives its motion by being integral ‘ 
with the sun Si, the driving member of 
the main train. The annulus Ai of the 
main train is driven by the auxiliary 
train, with the arm R2 of which it is 
integral. The annulus A2 is fixed. The 
gear ratio may be found as follows : Let Fig. 252 

the numbers of teeth be Si —25, Ai —75, 
82=30, A2=90, and let the arm of the auxiliary train be given 
one turn. The resulting motion of S2 is then found by the tabular 

method, thus : 

Kg A. S2 

1 1 I 1 ^ 1 
0 - 1 1 00 

' 30 
1 1 1 • 1 
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Therefore, in the main train, the motions of Aj and Si are known, 
being respectively +J and +4 turns. The resulting motion of Ri 
may then be found, thus . Let it be jr turns and let the motion of 
Si when receives x turns and Ai receives +1 turns be found 
(in terms of x); then on equating the result to the actual motion 
of Si, i.e. f 4 turns, .r may be found, in tabular form we have : 

A, 

1 1 
I 1 -( t \)xli 

4.r-3 

Then 4x — 'S -4, .r--l^,aiid the gearratio between Sj and Kj 
is 4 to 11 or 1() to 7. 

206. Doubly Compounded Trains.—The process of com|)ound- 
ing epicyclic trains maybe carried on indefinitely, thus we might 

add to the gear of Fig. 2o2 a third 
train whose function is to give 
motion to the annulus of the 
second train. The resulting gear 
might then be arranged as in 
Fig. 253. The sun S3 is the fixed 
member, being held stationary by 
a brake applied to the drum i) 
fixed to it. Tlie gear ratio may 
be found by giving the arm R3 of 
the auxiliary train having a fixed 
member one turn, and finding 

the resulting motion of Aj. If the numbers of teeth in S3 and A3 
are 25 and 75 respectively, the motion of A3 will be +3. Then in 
train No. 2 the arm being integral with A3, has been given 
-fs turns, and the annulus Ag, being integral with R3, has been 
given +1 turn ;* the resulting motion of So is then found to be 

Lastly, in train No. 1, the annulus Ai, being integral with 
R2 and A3, lias received 4"l turns, and the sun Si, being integral 
v'ith S2, Las received turns; the resulting motion of the 
arm Ri is then found to be 4-}| turns. The gear ratio between 
Si and Ri is therefore +| to +{2 lr» k 

207. Condition for the Assembly of Epicyclic Trains having 
more than One Set of Planet Pinions.—It has been mentioned in 
connexion with differentials that two, three or more planet wheels 
or sets of planet wheels are generally used, principally to reduce 

FiC! 2">:i 
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the tooth loads and sef^ondarily to obtain rotational balance, and 
this is also done in most epicyclie trains. This introduces a 
limitation in the design because tljc numbers of teetli in the 
various wheels must satisfy a certain condition it all the planet 
gears are to mesh properly or even 
be assembled. This condition for 
a sun and annulus train will now 

be established. Suppose the train 
in Fig. 254 is to have n planet gears 
spaced at equal intervals (equal 
spacing is assumed throughout this 
section), then the angle between the 
arms R and Ro carrying any two 

consecutive planets is-. With 
71 

the arm R in the position shown 
in full line let the pfanet P, be 
meshed with the annulus and sun ; tlien, keeping the sun station¬ 

ary, let the arm Rj be turned througli the angle — - so that 

the arm R2 conies to the full-line position. Jt will obviously 
now be possible to mesh the planet P2 with the sun, but it will only 
be possible to mesh it with the annulus if the latter has moved 
through a whole number of pitches so that one of its tootli spaces 
now occupies the same position relative to the sun and arm as 
one did w^hen the first planet was meshed. The annulus has, 

however, moved through an angle which corresponds 

360/ S\ 360 . , S , , , 
to 11 I -i-pitches. 1 heretore 1 -f ^ must equal a whole 

number or A-f where k is an integer, and this is the con¬ 
dition. It can also be expressed in the form A-f S—AqS, w here Aq 
is an integer. Another condition is that if D^, and are 
respectively the pitch diameters of the* annulus, sun and ])lanet, 
then Drt=D**-|-2D;,, which on multiplying by the diametral pitch 
becomes A™S-|-2P: If the amount of backlash between the 
teeth can be varied, this condition need only be satisfied ajiproxi- 

A S 
mately. A third condition of course is that 1 -fy or 1 (accord¬ 

ing as to whether the annulus or sun is the fixed member) shall 
equal either exactly or approximately, the required gear ratio. 
Lastly, the diametral pitch of the teeth is determined by con¬ 
siderations of the power to be transmitted, the speeds and the 
space available, etc. ^ 
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Jn a manner similar to that used above tlie corresponding com 
ditions for a double-sun type epicyclic train can be shown to be 

first h being an integer and Si^oPi and P2 tlic numbers 

of teeth in the suns and planets; secondly, S|+Pi“S2+p2 
if all the teeth are of the same pitch ; and tliirdly, that the 
numbers of teetli give the required gear ratio. It may be noted 
that the first condition is based on the assumption that the 
position of one toothed position of a planet wlieel relative to 
the other toothed portion is the same for all tlie planets. If the 
toothed portions of the planets can be moved relatively, then the 
condition need not be satisfied. 

ENKIICISKS x\ 1 

I. Iti a simple ^(?ar train the driver has 20 teeth and tht‘ final diivon gear 
has 40 teeth. 'Phero are three idlers. If the speed of the driver is 100 r.p.rn. 
e]oekwi.s<', what are the speed and direction of rotation of the driven gear ? 

2. Jn the compound train shown in the figure 
the worm A has 2 starts and is right-handed, 
and the wheels B, C, D and E have respectively 
.‘10, 20, .50 and 40 teeth. 1’he worm F lias 3 
starts and is left-handed. If A rotates at 
100 r.p.rn. in the direction shown by the arrow, 
what are the speed and direction of rotation of 
E (live the direction as seen when viewed 
from right to left. 

3. A reverted train in wliieh all the t(5eth are to he of 10 D.K. is to have an 
ov(*rall ratio of 3 to 1. if the eentre distance between the driving and lay.shaft 
axes is to he 4 in. and the gear ratio between them is to be to 1, find the 
numbers of teeth for all the wheel.s, {a) if the eentre distance is to bo kept exact, 
and (b) if the gear ratio is to he exa<*t. Find also the actual gear ratio in case {a) 
tiiid the actual centre distance in case {b). 

4. A .sun and annulus typo of epicyclic train is used Muth the annulus fixed. 
If the arm is rotated at d-lOOO r.p.rn., what will be the speed of the sun if it has 
25 teeth and the annulus has 100 tooth ? 

5. 'Phe annulus of an epicyclic train has 80 teeth and rotates at 4 500 r.p.rn., 
tile sun being fixed and having teeth. What is the speed of the arm ? 

0. In a d()uhIo-8un type epicyclic gear the suns Si and Sa have 28 and 35 teeth 
aiid are of the same pitch. Sj is fixed and meshes with a planet having 30 teeth. 
What is the gear ratio between arm and S2 ? 

7. 'Pho arm H of the epicyclic train shown in 
the figure rotates at 1000 r.p.rn. arid the sun S 
rotates in the same direction at 500 r.p.rn. If 
the number.s of teeth are as shown, wliat is the 
mot ion of the annul us ? Si ““2.5, Pj—20, “30. 
A 75. 
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8. Jn the inoehaiiLsin shown in the the 
planet P which meshes with the annulus A is 
proven tod from rotating by the link Q and crank 
Kj. If the arm R rotates at 100 r.p.m., what is 
the speed of rotation of the annulus? Numbers 
of teeth: A —100, P — 30. 

0. Find the gear ratio of the eoinpound 
opieyelic gear shown m the tigure. The annulus 
Agin fixed. Numbers of teeth : Sj- 25, Aj - 100, 
83=-30, As 90, 

10. Find tlie speed of the annulus in the 
compound epieyelie gear ‘<hown when the sun 8^ 
rotates at 1000 r.p.m. and the annulus A| 
rotates at —500 r.p.m. Numbor.s of teeth : 

8a^30, Ag - 90, Si = 35, A^-^-lOfi. 

II. Deduce the relationship that must obtain between the nuinbors of teetli 
in the bevel gears A and C of Fig, 249 if n equally spaced planet wheels are to be 
used. 

12. The wheels A and 13 in tlu> tigure have 
the same number of teeth, and A is fixed. B 
carries a pointer whose length OP equals the 
centre distance OQ between A and B. Prove 
that when the arm R rotates the point P de¬ 
scribes a straight line XX with simple harmonic 
motion. 

1.3. Find th<' gear ratio of the doubly compounded epi< y< li(' g(*ar shown in 
Fig. 253. The Min 8., is fixed by intmns of the brake drum 1) anil tlio numliers of 
teeth are: 8j—31, Aj—93, 82 -25, Ag -75, S., 20, Aj —00. N.H. The arm 
is integral with the annuli A, and A^. 
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14. The figure showK the Avamore ” reduetioii gear in which the planet P is 
coupled to the input shaft B by means of an Oldham coupling. Find the gear 
ratio. Numbers of teeth : planet 40, annulus 90. 
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WRAPPING CONNECTORS-BELTS, ROPES AND CHAINS 

208. General.—A wrapping connc(!tor is one wliieh is flexible 
enough to wrap round tw^o or more pulleys or wheels, and so can 
be used to transmit motion between them. When the eonnector 
takes the form of a band of material such as leather, fabric*, rubber 
or steel whose lliickness is small in comparison with its widtii it 
is called a belt or strap ; if its eross-seetion is circular, or ap})roxi- 
mately (‘ircular, it is a cord or rope ; w hile if it is com})osed of' links 
hinged together it is generally called a chain. C’hains are gene¬ 
rally used in conjunction with wheels of suc'li a form that no relitt|ice 
has to be placed on friction to prevent slij) between them, wi|^ 
belts and ropes generally rely on friction to })revent slip. Chains 
will be considered more })artieularly at the end of tliis (*ha])ter. 

The pulleys that are connected by belts and ro])es are usually, 
but not necessarily, circular, and the belts and ropes themselves 
are usually endless, either by virtue of their manufacture or 
because their ends arc joined by a fastener. 

209. The Velocity Ratio of Wrapping Connectors.Fig. 200 
shows two non-circular pulleys pivoted res}>ectivcly at A and H 
and connected by a belt or c*ord 
which (if the motion of the 
pulleys is not rec^uired to be 
continuous) may be secured to 
the pulleys at points such as (1 
and D, thus making the con¬ 
nexion independent of friction 
between the belt and the 
pulleys. If continuous motion 
is required the belt must be 
endless; it cannot, of course, be 
secured to the pulleys, and it wdll generally have to be j)assed over 
some spring or gravity-loaded tightening ])ulley in order to keep the 
tension in it approximately constant and to maintain sutheienf 
frictional forces between it and the pulleys to prevent slij). Let 
the instantaneous angular velocities of the pulleys be and oji, 
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as indicated, and let E and F be the points of tangency of the belt 
and pulleys. From A and B drop perpendiculars AG and BH on 
to EF produced if necessary. Let the angles GAE and FBH be 
a and respectively. The instantaneous velocity of E is AE . 
perpendicular to AE, and the component of this along EF *i8 
AE . coa Cos a “AG . oja. Similarly the component along EF of 
the velocity of F is BH . a>fc. Now, if the belt is regarded as 
inextensible, these components must be equal; hence 

AG . co^^^BH . ojf, 

• cos~AG ~AP 

where P is the intersection of EF with the line joining the centres 
A and B. The connexion is thus equivalent, at the instant under 
consideration, to a four-bar chain AEFB. 

It follows that if the velocity ratio is required to be constant 
the point P must be fixed. This condition can be complied with 
by non-circular pulleys, but when a constant velocity ratio is 
required circular pulleys are always used, and these only will be 
considered in what follows. 

210. Constant Velocity Ratio Belt Gearing.—Tlie condition for 
constant velocity ratio is obviously fulfilled by a belt connecting 

circular pulleys as in Fig. 256, 
the ratio being 

-^P 

a>fr"~AP~AC'”Da 

where Da and D^ are the pulley 
diameters. The ratio may also be 

found from the consideration that if the belt is inextensible its 
speed in the direction of its length at every point must be constant, 
and if no slip occurs between the belt and the pulleys, and if the 
belt is thin in relation to the pulley diameters, the speed of the 
belt must be the same as the peripheral speeds of the pulleys. 
Hence these peripheral speeds are equal anc’ 

TrDaNa =7rDe,Ni, 

so that 
N^a Df> COa 

N^, Da 

211. The Effect of the Thickness of a Belt.—When a thick belt 
is wrapped round a pulley the outer layers of its fibres are ex¬ 
tended and the inner layers are compressed, while one layer at the 
middle is unaltered in lengtJi, and it is the speed of this layer 
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which is constant throughout its length. Let this speed be r, 
and let the thickness of the belt be t. Then Fig. 257 shows that 

and similarly 

hence 

!)«+/ 

* 
V tr- ~ — . a>o 

co(i Nfi 13/^ -| f 

In })ractice this corrcclioii for the belt thickness is hardly ever 
applied. 

212. The Run of a Cord on a Pulley. Kig. 25S shows a i)ortio]i 

of a cord running round a cylindrical pulley : the part AB is 
approaching, the part Bt'D is in contact with, and DP] lias left the 
pulley. Clearly T)E can have no influence on the way the cord 
wraps on to the pulley if the friction between the part B(^I) and 
the pulley is sufficient to prevent slip, but the part AB has a con- 
trolling influence. If AB is perpendicular to tlie axis of the pulley, 
then the cord will wrap itself on to the pulley in a circle and the 
belt will run steadily, the portion AB(d) always lying in the same 
plane ; but if the approaching portion of the belt makes an angle 
1)0—(/> with the pulley axis as showii by the dotted lijie, then each 

successive portion of the cord will come on to the pulley a little 
to one side of the preceding portion and the c‘ord will wrap on to 
the pulley in a helix whose spiral angle is 90—^. If the speed of 
the cord is then the cord will 1 ravel along the pulley in the 
direction of the axis with a speed Sin (f>. Thus if a cord runs 
round two pulleys whose axes are co«p]anar but not parallel, as in 
Fig. 259, it will travel towards the point of intersection of the 
axes unless it is prevented by guides, because if the portion AB at 
the top runs on to the toj) pulley perpendicular to the axis, the 
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portion CD underneath must necessarily run on to the bottom 
pulley at the angle jS, equal to the angle between the axes. It; 
howevei, the axes do not intersect, i.e, are skew axes, it is possible 
to arrange the pulleys so that a cord will run steadily on them for 
one direction of rotation. 

213. Cords Connecting Pulleys on Skew Axes.—Let the axes be 
1 1 and 2 2 in plan and 1' 1' and 2' 2' in elevation, the plan view 

being taken along the common normal or 
shortest distance between the shafts, as in 
Fig. 260. The pulleys must be arranged so 
that each portion of the cord that is advancing 
towards a pulley shall lie in the central plane 
of that pulley. Thus the portion AB which is 
advancing towards the upper pulley must lie 
in the plane of that pulley, and the portion 
CD which is advancing towards the lower 
pulley must lie in the plane of that pulley. 
This condition for steady running of the cord 
can be stated in the form : the point of delivery 
of the cord from the first pulley must lie in the 
central plane of the second pulley and the point 
of delivery of the cord from the second pulley must 
lie in the plane of the first pulley. Alternatively 
that the central planes of the pulleys must 
intersect in the line joining the points of 
delivery of the pulleys. 

Cylindrical pulleys are, however, little used 
with cords, for which V pulleys are generally 
provided, and in this case it becomes possible 
to arrange a skew drive that will run steadily 

in both directions. Fig. 261 shows a portion of a cord em¬ 
bracing a pulley having a V-shaped rim. The portion AB of 

Fig. 261 Fig. 262 
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the cord which is advancing towards the pulley lies in a plane 

tangential to the bottom of the groove at B, and this plane inter¬ 
sects the V surfaces of tli*' pulley in a hyperbola, one branch of 
which, EBF, is shown. The cord AB is straight between A and G, 
at winch point it touches the pulley ; between G and B the cord 
f(>|]pws the hyperbolic* section of the pulley. Provided the angle 
if iD ^vhich the cc»rci af)proaches the pulley is less than the limiting 
value 0 for which th puiut G coincides with E, the cord will run 
sU adily on to the pulley. A thew drive arranged as in Fig. 262, 
ueing symmetrical, will therefore run equally well in either 
direction. The arrangement brings the common normal or 
shortest distance (OP) betwee n the axes to lie in the central planes 
of both pulleys. 

214. Pulley Camber or Crowning.—What has been said in 
Arts. 212 and 213 about the* run of a cord on a pulley applies also 
to flat belts, but the latter possess considerable lateral stiffness, 
which a cord does not, and this stiffness is utilised to help a belt 
to run steadily. Thus the pulleys used with flat belts are fre¬ 
quently cambered or croimed as indicated in Fig. 263, being made 

Fig. 263 Fig. 264 

larger in diameter at the centre than at the edges. The manner 
in which this camber helps the belt to run truly is shown in 
Fig. -264, where the belt is shown lying on one side of the pulley. 
Because of the lateral stiffness of the belt, and because the natural 
path of a flat ihextensible belt which is wrapped on to a conical 
surface is a spiral, the free portion of the belt is deflected towards 
the centre of the pulley, and as the belt advances on to the pulley 
it moves towards the centre until finally it runs truly on the 
middle of the pulley. This action can only occur if no slip occurs 
between the belt and the pulley over an arc towards the advancing 
side, since if slip did occur the portion of the belt on the pulley 
could not control the free advancing portion. It has been shown * 
that slip or creep occurs between a belt and a pulley over an arc 
starting at the point of delivery of the belt and extending over an 

• '■ Power TrausmisHion by Belts : An Investigation of Fundamentals,” by 
H. W. Swift, M.A.. D.Sc., Proc. I.Mech.tS., No. 3, 1928. 
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angle which depends on the ratio of the forces in the advancing 
and receding parts of the belt and on the coefficient of friction. 
As long as the arc over which creep occurs is less than the whole 
arc of contact of the belt and pulley there will be an arc, at the 
advancing side, over which creep does not occur, and the self¬ 
centring action described above will take place if the belt is dis¬ 
placed to one side of the pulley. When, however, the ratio of the 
forces in the two sides of the belt reaches a certain limit, such that 
the arc over which creep occurs is approximately equal to the 
whole arc of contact, there will be no “ idle ” arc, and the self¬ 
centring action will not take place. The belt will then probably 
slip bodily off the pulley. For a full discussion of pulley camber 
the reader is referred to a paper entitled “ Chambers for Belt 
Pulleys,” by H. W. Swift, M.A., D.Sc., Proc. I.Mech.E., Vol. 122, 
p. 627. 

'215, Fast and Loose Pulleys.—When a belt is used to drive a 
machine which may have to be stopped while the driving shaft 
continues to revolve, fast and loose pulleys are frequently used 

either on the machine itself or, more often, on an 
intermediate or comiter shaft. 'i'he arrangement 
is indicated in Fig. 26.7, where A is a wide cylin¬ 
drical pulley fixed to the driving shaft, B is a 
pulley which is free to rotate on the driven shaft, 
being provided with either a phosphor bronze bush 
or some form of ball or roller bearing to reduce 
friction and wear, and C is a pulley that is fixed to 
the driven shaft 1). Pulley B is fixed axially and 
is sometimes made slightly smaller in diameter than 

Eiq. 265 fbe fixed pulley in order to reduce the pull in 
the belt and the loads on the bearings when the 

belt is idling. Both pulleys B and C are frequently crowned. In 
the position shown the belt is idling and the shaft D is at rest; if, 
however, the belt is moved along to the dotted position, D will be 
driven by the belt. To shift the belt some form of belt-shifting 
or striking mechanism is provided. 

216. Belt-Shifting Mechanisms.—The simplest shifting mechan¬ 
ism consists of a rectangular-section bar carried in guides so that 
it can slide parallel to the axis of the pulley on which the belt to 
be shifted runs. This bar carries two prongs or fingers in between 
which the belt lies, the fingers being arranged to be as close to the 
pulley as is convenient and, of course, on the advancing side of 
the belt. When the bar is slid along the belt is shifted. This 
simple arrangement can only be used when the fast and loose 
])ulleys are at a convenient height. Usually they are near to the 



VVKAPriNCl CONNECTORS HKLT8, HOPES AND CHAINS 226 

ceiling, and some lever or other arrangement must be provided 
to enable the sliding bar carrying the shifting fork or fingers to be 
moved along. 

Two pairs of fast and loose ])ullcys are frequently used to enabJe 
/I countershaft or machine to be driven at two different s})eeds or 
in different directions, and Fig. 2()() sho^^ s a form of striking gCtar 

used in this connexion to ensure that one belt is on its loose 
pulley before the other can be shifted on to its fast pulley, thus 
obviating trouble due to the belts coming off because both are 
trying to drive the driven shaft. The fingers A controlli)ig one 
belt are secured to a sliding bar B which has a projecting pin C 
engaging the slot D in the lever E. and similarly the fingers F 
controlling the other belt are secured to another sliding bar (1 

which also has a projecting pin H engaging a second lever J. Both 
levers E and J are secured to a shaft K which can be turned 
through an angle of from 30^ to 00° by a lever. The slots in the 
levers are similar, consisting of a radial portion merging into a 
jHirtion concentric with the axis of the shaft K. In the position 
shown both belts are on their loose pulleys, and, clearly, if the 
shaft K is turned in the clockwise direction the lever E will cause 
the pin C' and thus the fingers A to move to the left, thus bringing 
one belt on to its fast pulley. The other pin H is not moved, since 
it is engaged with the circular portion of the slot in the lever J, 
and it cannot be moved without first bringing the pin C, and thus 
the belt controlled by the fingers A, back to the neutral position 
shown. 

217. Speed Cones and Stepped Pulleys.—These are used to enable 
a shaft running at a constant speed to drive another shaft at any 
desired speed within a certain range. By varying the position of 
the belt on the conical pulleys shown in Fig. 267 the speed of the 
driven shaft can be varied from a minimum,,-when the belt is in 
the position shown, to a majdmurn when it occupies the dotted 
position. Owing to the tejidency of a belt tb move towards the 

15 
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larger diameter of a coned pulley, guides must be provided to 
control the belt, and, unless some tensioning device is used, the 
profile of the pulleys must be such that the tension in the belt is 
maintained a})proximately constant. The arraTigement is not 

Fig. 267 - Kic,. 268 

very satisfactory except for very light loads and is rarely used ; 
its chief attraction is that it gives an infinite number of speeds 
between the maximum and minimum. 

Fig. 2b8 shows an example of stepped pulleys. The number of 
speeds available at the driven shaft is equal to the number of 
steps, namely four, so that the fine adjustment possible with 
coned pulleys is lost, but the arrangement is nevertheless much 
more satisfactory and consequently much more widely used, 
although it is being displaced by gear-boxes such as are described 
in the next chapter. The diameters of the steps must be arranged 
so that the tension in the belt remains approximately constant, 
which implies that the length of the belt required for each step 
must be the same, and this will now be considered, expressions 
being derived for the length of a belt in terms of the pulley 
diameters and the centre distance between the shaft axes. Of 
course, if the length of a belt to run on a pair of existing pulleys is 
required the practical method of obtaining the necessary length 
for the belt is to wrap a cord round the pulleys and then to 
measure fhe cord. 

218. The Length of a Belt. (1) Open.—Let the diameters of 
the pulleys be d and D, as in Fig. 269, and let the distance between 
the shaft axes be L. Draw AC parallel to the belt DE. Then, 

D-rf 

“ 2L 
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Now the total length of the belt is given by 

Kl) + Arc DF+F(^f Arc GE 

^ 21. CoH LArc 1>F |-Arc GE 

d 1) 
---2L Coti (/) ~\-~{7T - 20) -f —(tt i~2cf)) 

~ \/‘lL-~-(D—f d) Siir (1) 

E 

W'lien (f) is small, that is, when D—d is small in comparison with L, 
the above expression may be simplified by WTiting Sin instead 
of </> and by expanding the expression under the root sign and 
retaining only the first two terms. Thus : 

/D-d\21 , (D-d)2 
2L-^ 1 

:-2J.-f 
4L (2) 

In the design of a stepped pulley one step may be settled 
arbitrarily and the necessary length of belt calculated by means 
of the above expressions. The remaining steps must then be 
determined by solving the two equations giving respectively the 
required velocity ratio and the required length of belt, in terms 
of the two unknown pulley diameters. 

If the approximate expression, Eq. (2), for the length of belt 
will suffice, the solution is simple, but if the accurate expression, 
Eq. (1), has to be used the solution is involved. Reuleaux in his 
The Constructor, published by H. H. Suplee, Philadelphia, 
U.S.A., page 189, gives a graphical method of solution to which 
the reader is referred for further information. As Reuleaux’s 
book is out of print, it may be mentioned that his construction is 
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given in 11. J. Durley's Kinematics of Machines, John Wiley & 

Sons, New York, page 247. 

219. (2) Crossed Belts.— Fig. 270 shows that Sin f and 

1 he length of belt is given by 

/ Are DF + AreOF f2I)K 

.,(’T I '24>) !-.y(7r + 2(j!>)-| 2L(;os(^ 

—j—d 2L Cos </>; 

hence the length of belt is constant if 1) | d is constant, and a 

C 
^ \ 

Kio. 270 

stepped i)ulley for use with a erossed belt may bo designed by 

solving the equations l)+d—eonstant and ^“required velo<'*ity 

ratio. 
It may be mentioned, liOAvcver, that stepped pulleys are 

generally designed for open belts. 

220. Jockey*Pulleys.—It ean be shown that the difference that 
can be maintained between the tensions in the advancing and 
receding parts of a belt without serious slip occurring between 
the belt and the pulley depends on the length-of the arc over 
which the belt makes contact with the pulley, and this qrc of 
contact should be as large as possible. In general it should never 
be less than about 120°. Now, when the velocity ratio is high, so 
that the pulleys are very dissimilar in size, and when the centre 
distance is small in comparison with the larger pulley diameter, 
it is often not possible to obtain a sufficiently long arc of contact 
with open belts without resorting to the use of di jockey pulley as 
indicated in Fig. 271, where A is the jockey pulley, carried on 
bearings on the end ol‘ a lever pivoted at B, in such a mamier 
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that the jockey pulley runs on the slack side of the belt and in¬ 
creases the arc of contact of the belt on the smaller pulley. Some¬ 
times the weight of the jockey pulley and lever may be sufficient to 
give the necessary tensioning effect, but often additional dead 
weights, or a spring as shown, must be used for this purpose. 
Obviously if a belt fastener is used it must be of such a type that tlic 
jockey pulley caji run proy)erly on the back of the belt. A jockey 
pulley should never be made to act on the tight side of a ])elt. 

221. Skew Belt Drives.-Skew drives are as practicable with 
flat belts as with cords, and the same fundamental condition must 
be fulfilled ; namely, that the point of departure of the belt from 
one pulley must lie in the central plane of the other pulley anrl 
vice versa. Some slight complication arises because the belt 
deviates from the central planes of the pulleys before losing 
contact with the pulley surfaces, as is shown in Fig. 272, where B 
is the actual point of departure of the belt and is the point w hich 
must lie in the central plane of the other pulley. Prof. J. B. Webb 
has shown * that the port ion AB of the belt would be a catenary 
if the pulley surface were developed into a plane, and has shown 
how to determine the proper relative positions for the pulleys 
when allowance is made for this deviation of the belt. With most 
skew^ drives in practice the points of departure may be assumed 
to lie in the central planes of the pulleys in order to arrive at a 
first approximation to the proper positions for the pulleys whose 
final positions may be determined by trial after the drive has been 
erected, when it will generally be found that only small adjust¬ 
ments of the pulleys will be required in order to make the belt run 
truly. 

222. Guide Pulleys.—By the use of suitably placed guide 
])ulleys a skew drive may be made reversible. Thus referring to 
Fig. 273, two points, a and 6, arc chosen in the. line of intersection 
XX of the planes of the ])ulleys and the tangents oc, ad, he and bf 
are drawn. The guide pulleys arc then placed so that their planes 

* Sor. Mivh. Ktu].. Vol. 1\', 18S2 .‘1. 
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contain respectively the tangents ac, ad and be, hf. J'he use of 
guide pulleys often simplifies the design of skew drives which are 
not required to be reversible. 

223. V Belts.—Belts of V section arc sometimes used ; they are 
generally made either from a number of links, usually of metal 
faced with leather, or rubber, which are hinged together, or in the 
form of a continuous endless band of rubberised fabric. Such 
belts can transmit somewhat higher powers than flat belts. They 
can, of course, be used only for open drives between parallel 
shafts. 

224. Rope Drives.—Ropes made from hemp or similar material 
were once extensively used for transmitting high powers, but they 
are now not so widely used. Two systems, known respectively 
as the Multiple rope or English system and the Single rope or 
American system, have been evolved. In the former the pulley 
surfaces are provided with a number of V grooves and an equal 
number of separate endless ropes are used. In the latter a single 
rope is used, as indicated in Fig. 274, its path from the point A 
being round the end groove in the pulley B across to the end groove 
of C, back to the second groove of B, and so on until it leaves the 
last groove of C and passes round the guide pulley D to the 
tensioning pulley E, and thence round the guide pulley F back to 
A again. The tensioning pulley E is mounted in a carriage which 
is free to slide in fixed guides and which is pulled on by a weight 
W so as to maintain the correct tension. Fig. 275 (5) shows the 
rope in a groove of a driving or driven pulley, the contact being on 
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E_ 

Fig. 274 Kjg. 27r» 

the sides of the V so as to secure a wedging action, while (a) shows 
t he groove of a guide pulley in which the rope seats on the bottom. 
When the ropes are made of wire they are always made to seat on 
the bottom of the groove, which is then usually lined with some 
material which will provide a high coefficient of friction. 

225. Chain Drives.— The common oval-link chain is not suitable 
for transmitting motion and power at any but extremely low 
speeds, and is consequently used only in such applications as in 
hoisting tackle, etc., where the speeds are low. The chain shown 
in Fig. 276, whi(ffi is commonly known as the rnalleahle chain (its 
links being malleable iron castings), is also suitable only for low 
speeds. It is used in agricultural and in conveying machinery. 
The block chain of Fig. 277 can be used at moderate speeds, but 

Fig. 276 Fig. 277 

for high speeds either the roller chain (Fig. 278) or the inverted- 
tooth or silent chain (Fig. 279) must be used. In the latter the link 

Fig. 278 Fio. 27il 
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plates are all exactly alike, the working faces, a, a, being straight, 
and the chain may be made up in various widths by using more or 
less plates side by side. The angle 0 between the faces aa is 
usually either 60° or 75°. This type of chain has the property of 
automatically accommodating any increase in pitch due to wear 
in the pivot pins. It does this by seating itself higher on the 
wheel teeth and, as a result, it is not normally much noisier when 
worn than when new, whereas the roller chain is usually very 
noisy when worn. In the Renold inverted-tooth chain the pins 
connecting the links engage half-bushes instead of complete* 

bushes : the initial fit of pins and bushes can 
consequently be made closer and much less 
initial “ stretch ” occurs. In the Morse 
chain the type of joint shown in Fig. 280 is 
used, with the object of substituting rolling 
friction for the sliding friction that occurs in 
the ordinary pin joint. The half-pin a is 

fixed in the link A and rolls on the half-pin b which is fixed in the 
link B, holes of suitable shape being provided in the links so that 
a clears B and 6 clears A. 

22&. Variation of Velocity Ratio in Chain Drives.—A chain drive 
can be considered to be, at any instant, a four-bar chain, if the 
free portion of chain between the sprockets is assumed to be rigid 
or inextensible. It follows that the angular velocity ratio between 
the sprockets is continually varying between the maximum when 
the relative position of the sprocket teeth is as in Fig. 281 (a) and 

Fio. 280 

the minimum when the teeth are as in Fig. 281 (6). O1ABO2 and 
O1A1B1O2 are the equivalent four-bar chains, AB and AjBi being 
the free portions of the chain. Unless wheels having very few 
teeth are used this variation is generally negligible, and probably 
is less than the variation due to the flap of the free portion of the 
chain. 
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EXERCISES XVU 

1. Derive an approximate expression for the longUi of an open Ix'll in terms of 
the pulley diameters and the centre distance. 

2. The smallest steps of a four-step pulley are to be (i in. dia, ainl tlie largest 
12 in. dia. If the intermediate steps are such that the four latios form a 
geometric progression, lind the diameters of the intermediate stc'ps. Centre 
distance 8 ft. open belt. 

3. Repeat Question 2, but assuming the belt to be crossoil. 

4. State the principle governing the laying out of skew belt diivi's and make a 
sketch showing the application of the principle when the shafts coiiiiectod art? at 
right-angles. 

5. The diameters of the steps of a pulley are tii, t/.,, and and the diameters 
of the corresponding steps of a second pulley are Dj, Dg, D^ and D^. If dj — D^ 
and — Dj and the four ratios form a geometric progression, prove that dg -- D3 

and dg —Dg are necessary conditions if an open belt is to have the same tt?nsion 
on all four steps. 



CHAPTER XVIIl 

MECHANICAL VARIABLE-SPEED GEARS 

It is often necessary to be able to adjust the velocity ratio or 
gear ratio between a driving and a driven shaft over a range 

of values. For example, in machine tools the driving motor or 
pulley generally runs at a constant speed, while the speed of the 
work or cutting tool has to be altered to suit the prevailing con¬ 
ditions. For this purpose variable-speed mechanisms or gears 
are used, and these may be divided into two classes : 

(1) Mechanisms capable of giving an infinite number of ratios ; 
and 

(2) Mechanisms giving only a finite number of ratios. 

Variable-speed gears may also be classified according to the 
principle of operation ; thus : (a) Mechanical, (b) Hydraulic, and 
(c) Electric. The last type is beyond the scope of this book. 
The mechanical aspects of the mechanisms used in the second 
type are considered in other chapters. 

227. Mechanical Infinitely Variable Gears.—Very many forms 
of mechanical infinitely variable gear have been invented, but few 
have proved successful in practice, and then usually only for low 

powers. One of the simplest 
is the ordinary friction gear 
as shown diagrammatically in 
Fig. 282. The disc A is fixed 
rotationally to its shaft, but can 
be slid along so as to make 
contact with -the disc B at any 
point on the diameter CD, so 
that the velocity ratio, which 

r 
is clearly equal to can be 

varied by infinitely small steps 

R^ Rb 
between the limits to +^r~* Since the drive is by means of 

Ra 
the friction between the discs, the latter have to be pressed together 
by a force, usually that of a spring, and the reactions of this force 

234 # 
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c‘ome upon the bearings of the shafts. The gear thus tends to be 
somewhat massive even for small powers. Also it is generally not 
possible to slide the disc A while it is pressed against B, and the 
discs must be separated when it is required to alter the velocity 
ratio. A small amount of slip always occurs with friction gears 
however small the loads transmitted may be, but if the force 
pressing the discs together is not great enough, or if the coefficient 
of friction between them is reduced by any cause, serious slip may 
occur and this usually results in irregular wear, flats being worn 
on the disc A and depressions on the face of B, and these set up 
vibration and noise. Theoretically the disc* A should be infinitely 
thin, or its edge should be 
crowned slightly so as to give 
point contact with the disc B, 
but actually, of course, contact 
alw ays o(*cur8 over an area and 
some slip must always occur. 
The discs are sometimes both 
of metal, but often the disc A 
(and/or the disc B) is lined with a fabric or com})osition lining 
which affords a high coefficient of friction. 

A variation of the above gear is shown in Fig. 283. Theoretically 
the velocity ratio can be varied between zero and infinity accorcl- 
ing to the position of the disc A. Practically the upper limit is 
restricted to about 20. 

228. Other Forms of Friction Gear.—Much ingenuity has been 
spent in trying to obviate the difficulties that arise when the shaft 
bearings have to support the force which presses the friction 
members together, and in many of the gears now to be described 
one of the objects of the inventor has been to free the bearings of 
this force. This has been done successfully in the Dorman gear 
which is shown in Fig. 284. The disc A is fixed to one of the shafts 
to be connected and drives the disc B, which is fixed to the other 
shaft, directly through the frictional contact at F and indirectly 
through the idler C, the ring D and the disc E. 'The force necessary 
to produce the frictional force required is provided initially by 
making the internal diameter of the ring D a little less than the sum 
of the diameters of the discs A, C and E and the thickness of the 
disc B, so that the ring D has to be sprung into position. When 
the gear is running the tangential forces between the discs C and E 
and the ring D tend to move the latter into a position such as Ls 
shown by the dotted lines in Fig. 285, thereby increasing the 
pressure between the discs. This increase of pressure is approxi¬ 
mately proportional to the torque acting on the disc A so that 
the pressure between the discs is adjusted automatically in 
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accordance with the torque to be transmitted. The discs A, C and 
E are carried by a member, shown in black in the plan view of 
Fig. 284, which can be moved in or out in order to adjust the 

velocity ratio to the required value. The 
mean value of the velocity ratio may be 
varied by varying the size of the disc A or 
by making E the driving disc. 

The gear shown in Fig. 286 is known as the 
Sellers gear. The discs A and B are fixed to 
their shafts, and their slightly thickened rims 
make contact with the coned discs C and D 

through which the drive is transmitted from A to B or vice versa. 
The discs C and D are pressed together by the springs shown, 
spherical seatings being provided at E and F to enable the discs 
C and D to tilt as the gear ratio is varied. This is done by 
moving the axis of the discs Cl) parallel to itself so as to cause A 
to make contact nearer to that axis and B to make contact farther 
from it or vice versa. 
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229. The Hayes Friction Gear.—This consists essentially of a 
friction gear whose principle is indicated in Fig. 287. The (iriving 
shaft A has two discs B and mounted on splines on it so that 
they are fixed rotationally but free to slide axially upon it. 
Between these discs is a third one, D, which is fixed to the driven 

shaft. The faces of all three discs have suitable tracks formed 
on them, and rollers EEEE run on these tracks and transmit the 
drive from the discs B and C to the disc D. To provide the 
necessary friction the discs B and C are pressed towards each 
other by a spring F. The rollers are ground spherical on their 
working faces and revolve on bearings on pins which are fixed for 
any particular velocity ratio, but whose inclination can be varied 
in order to vary the velocity ratio. Clearly when the rollers are 

r 
in the full line positions the ratio is p, while when they are in the 
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dotted positions it is In the application of this gear to the 

motor car the inclination of the rollers is controlled partly by the 
speed of the driving shaft and partly by the torque acting on 
the driven shaft so as to give an ‘‘ automatic ’’ transmission, but 
the details of this part of the mechanism do not now concern us. 
The method of altering the incUnation of the rollers is, however, 
rather ingenious and may be described. It consists in moving the 

axes of the rollers slightly so that the rollers 
occupy positions as shown in Fig. 288, their 
natural path relative to the discs then being 
a spiral as indicated by the dotted line. Re¬ 
lative to one of the discs the roller will move 
along this spiral so that its point of contact 
with the disc gets farther and farther away 
from the axis of the disc, but relative to 
the other disc the roller will move along the 

spiral so that its point of contact approaches the axis and thus 
the result is that the roller is tilted. When the alteration of 
incUnation thus brought about is suflScient to give the required 
alteration in velocity ratio the axis of the roller is restored to its 
normal position in which its axis intersects the axis of the discs. 
Comparatively small forces are required to move the rollers in 
this way, whereas very large ones would be required to effect a 
direct alteration of the incUnation of the rollers. Another feature 
of this gear is that the force that presses the discs into contact 
with the rollers is arranged to be proportional to the torque acting 

on the driving shaft. This is done by 
transmitting the driving torque to the 
disc C (and thus through the spUnes 
and shaft A to the disc B) through the 
connexion shown in Fig. 289. The 
driving shaft G engages the ring H by 
dogs so that H is driven, and it in turn 
drives the disc C through the balls K, 
which run on tracks on the ring H that 
are helices of small pitch. Clearly if 
relatively to the disc C the ring H turns 
sUghtly, the baUsin rolling on their 

helical tracks will tend to' force the ring H and the disc C apart 
axiaUy, but as the ring H abuts against the thrust bearing L 
and nut M, which is screwed on to the shfiifft A, the forcing apart 
of C and H results in the rollers being pressed against the discs as 
is required. Since the axial force acting on the disc C is the com¬ 
ponent, parallel to the axis of the discs, of the force transmitted 

Fio. 289 
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by the balls K and the torque transmitted to the disc C is pro¬ 
portional to the component, perpendicular to that axis, of the 
same force, the force pressing the discs into contact with the 
rollers is proportional to the torque acting on the driving shaft G. 

230. Fig. 290 ¥;hows a type of mechanism that has had a con¬ 
siderable amount of success in practice. The shafts are connected 

t rf S i 
f-'C A I 

*1T 

i H 
1 F 1 

Vie. 290 

by an endless belt A whicli runs on V pulleys whose effective 
diameters can be varied by moving their flanges relatively to each 
other in an axial direction as indicated by the arrows, one pair 
moving together and the other pair apart. If the axial movements 
of the flanges of the two pulleys are of equal magnitude, some 
tensioning device will be required to maintain the necessary 
tension in the belt, since the sum of the effective diameters will be 
constant and, as explained in Art. 218, this condition does not 
give a constant tension with an open belt. The difficulty is some¬ 
times overcome by controlling only one pair of flanges positively, 
the other pair being controlled by springs which tend to force 
them together. Alternatively the flanges are controlled by a cam 
mechanism so that their effective diameters satisfy the condition 
for a constant belt tension. Occasionally only one of the pulleys 
is adjustable, and the belt tension is maintained by varying the 
distance between the shaft axes. In a recent application the belt 
is replaced by a hardened steel ring. 

281. The P.I.V. Gear.—In this gear, which is manufactured by 
J. Stone & Co., Ltd., of Deptford, London, to whom the writer 
is indebted for the supply of drawings, etc., the variation of 
velocity ratio is obtained by expanding pulleys on the same 
principle as with the gear just described, but the drive is made a 
positive one by using a special form of chain whose “ teeth ’’ 
engage grooves cut in the faces of the pulley flanges. The 
principal pieces which go to form a link of the chain are shown 
separately in Fig. 291 and assembled in Fig. 292. The link plates 
A are hinged together by pins B on the lines of an inverted-tooth 
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Fig. 291 

chain, tlic holes in llie plates A being provided with hardened 
bushes. These link ])lales, however, are slotted and house the 
liner three views of whi(*h are given and which is formed of a 
])iec‘e of sheet metal bent up into the shape shown. It is kept in 
place by the tongue F, which is bent up between the link plates 

after the liner has been inserted. The 
liner C serves to carry a pack of thin, 
slightly tapered sliding plates 1). Finally 
the curved ends of the slots in the link 
plates are filled by the end plates EE. 
The thin plates D are quite free to slide 
relative to each other and also re¬ 
lative to the link plates, in a direction 

perpendicular to the length of the chain, ancl in Fig. 292 some are 
seen to be slid over to one side and some to the other side. By 
sliding transversely in this way the sliding plates accommodate 
themselves to the grooved faces of the pulley flanges, a developed 
view of the outer edges of which is shown in Fig. 293, from whicli 

it will be seen that the recesses in one flange 
are placed opposite the raised portions of the 
other flange, these relative positions being 
maintained because both flanges are keyed to 
their shaft, although, of course, being free to 
slide along that shaft. The profiles of both of 
the pulley flanges being the same, the distances 

T*r, yy, zz are all equal and the sliding plates can be accommodated 
satisfactorily between the flanges. Thus a positive drive is 
obtained at all times. Theoretically the radius of curvature of 
the slots in the link plates A should be variable and made equal 
to the effective radius of the pulleys in the position occupied 
by the chain at any instant, but this, of course, is not possible, 
and so the slot radius is made equal to the mean effective radius 
of the pulleys, and the ends of the sliding plates are slightly curved 

Fi«. 292 
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an shown in the figure. Also the sliding plates should, ideally, be 
infinitely thin, hut since this is not [)ossible the grooves in the 
pulley flanges are made slightly wider than the raised portions. 
(The axial movements of the pulley flanges are controlled by two 
levers, one at each side, which are fulcrumed on fixed cam surfaces 
midway between the pulley axes, the cam surfaces being such that 
the tension in the chain, u hen the gear is just idling, is approxi¬ 
mately constant for all positions of the chain. Spring-loaded 
slippers are also arranged to bear on the back oTthe cliain so as to 
prevent any flapjnng.) 1"his gear has been very suc(*essful in 
practice and large numbers are in use, 

232. Mechanical Gears Giving a Finite Number of Velocity 
Ratios.—The majority of these are ' gear-boxes using toothed 
gears, or sometimes chains, which provide a number of trains 
of .gears which can be brought into operation eitlier separately or 
in various combinations in <jrder to give the recjuireil number of 
velocity ratios. The gear-))oxes that are now to be described have 
been selected to illustrate the various ways m which tlie trains of 
gears can be arranged and the methods adopted for bringing the 
trains into operation v hen required. 

233. Gear-boxes Using Sliding Keys.—The esscmiial features of 
Huch a gear-box are indicated in Fig. One of the siiafts has 
a number of gears fixed to it, and 
these mesh constantly with an 
equal number of gears which are 
free rotationally on the other shaft, 
but which can be brought into 
driving connexion w ith it by inean.^ 
of the sliding key A. This is free 
to slide in the keyway in the shaft 
and is shown locking the gear B to 
the shaft so that the middle pair 
of gears is transmitting the drive. 
To prevent two gears being engaged 
simultaneously as the key is slid 
from one gear to the next, rings O 
are fitted between the gears and the end of the key is pivoted as 
shown so that on moving it endways it is jiressed down into the 
key way and held there until it is clear of the one gear and it is 
safe for it to be engaged with the next. The speed of the wheel 
B relative to its shaft at the moment of engagement of the key 
must be kept low, otherwise the parts will be damaged by the 
impact on engagement, and in- practice it is necessary to bring 
the shafts to rest before sliding the key to change the gear ratio. 

IG 
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This type of gear still finds a place in many machine toolSv, 
generally in the feed mechanism, but is not so widely used as 
formerly, because of the loss of time in changing from one ratio 
to another. 

234. The TumWer Type of Oear.—This is shown in Fig. 295, 
und comprises a nest of gears of gradually increasing size, which 

are fixed to the shaft that carries them, and the tumbler A which 
is free to slide along the shaft B along which the gear C is free to 
shde, though it is fixed rotationally by a feather or spline. The 
gear C meshes constantly with an idler gear D carried by the 
tumbler, and this idler gear can be made to engage with any of the 
gears of the nest of gears by sliding the tumbler along the shaft B 
to the appropriate position and then pivoting it about that shaft 
until the end of the tumbler frame comes up against the stepped 
edge of the cover plate E which determines the correct meshing 
of the gears. The tumbler is provided with a spring-loaded knob 
F, a pin on which engages holes drilled in the cover plate, and this 
serves to keep the tumbler in position when a gear has been 
engaged. The change from one gear to another can only be made 
satisfactorily at low speeds. 

235. Motor-Car Type Gear-boxes—The Sliding-Mesh Type.— 
Gear-boxes have been developed along special lines for motor cars, 
and it is beyond the scope of this book to do mpre than describe 
the principal types used. They may be classified as sliding-mesh, 
constant^mesh and epicyclic gear-boxes, but many gear-boxes are 
a combination of the first two types. A sliding-mesh gear-box is 
shown diagrammatically in Fig. 296. The shaft A is coupled to 
the engine and is free to revolve in bearings in the casing, which 
is not shown. Integral with this shaft or fixed to it is a pinion B 
which meshes constantly with the larger wheel C. This gear is 
fixed to the “ layshaft ” D to which the gears E, F and G are also 
fixed, and the whole assembly is free to turn about the axis XX, 
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suitable bearings being provided. Co-axial with the engine shaft 
A is a third shaft H, which is coupled to the propeller shaft of the 
car. This shaft is supported in bearings in the casing at the right- 
hand end, and at the left-hand end has a short cylindrical spigot 
which is free to revolve in a bearing inside the shaft A. The 
shaft H is splined throughout its length and carries the sliding 
gears J and K, which are thus fixed rotationally to the shaft, but 

are free to slide along it. If K is slid to the left so that it meshes 
with F, a drive is obtained between A and H via B, C, F and K. 
Another gear ratio is obtained by sliding J along to mesh with F, 
while a direct drive is obtained between A and H by sliding J to 
the left until the dog-clutch teeth M engage those (N) on the 
wheel B. A reverse gear is obtained by sliding K to the right 
until it comes into line with C. As G is made smaller than F, it 
does not mesh directly with K, but drives K through the medium 
of the reverse idler L, which is constantly in mesh with G and 
positioned so as to engage with K. The reverse idler is free to 
revolve on a shaft lying slightly below the plane of the other 
shafts as shown in the end view, and its effect, of course, is to 
reverse the direction of rotation of H relative to A. 

236. The Constant-Mesh Type.—The principle of this type will 
be clear on consideration of Fig. 297. The three shafts are 
situated exactly as in the gear-box just described and the gears 
are similar on both the engine shaft A and the layshaft 1), but 
those on H are free rotationally and fixed endways so that they 
are always in mesh with the corresponding gears on the layshaft. 
To obtain a drive one of the dog-clutch members M or N is slid 
to right or left so as to engage with the corresponding dog-clutch 
teeth on one of the wheels B, J, K or P, thereby fixing that w heel 
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to the shaft H rotationally and causing the latter to be driven 
by A. A reverse idler connects G to P and gives a reverse gear. 

237. Epicyclic Gear-boxes.—There are two methods by which a 
gear-box giving the choice of a number of ratios may be obtained 
when epicyclic trains are used. The first method is to use 
separate epicyclic trains for each ratio and to arrange to bring 
each one into action when required. Usually some of the 
members of these trains can be made common to all the trains, 
thus simplifying the construction. The other method is to use a 
simple train to give one ratio and to compound it with other 
trains in various ways to obtain the other ratios. With both 
methods a direct drive is obtained by locking the gear so that it 
can only rotate ‘‘ solid,” i.e. as a whole. 

238. The first method is illustrated in Fig. 298. The arm of 
the epicyclic trains is formed by the web A of the engine flywheel, 

Fig. 298 
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into which are screwed pins B which carry the planet gears P1P2 

and P3. These are fixed together. The sun 81 is, in effect, 
integral with the output shaft F. There are two epicyclic trains, 
each of the double-sun type. One train, consisting of S1P1P2 

S2, gives the low * forward gear when its sun So, which is smaller 
than Si, is held stationary by applying a brake to the drum 1)2. 
The second train, consisting of S1P1P3 and S3, gives the reverse 
gear when its sun S3, which is bigger than Sj, is held stationary by 
applying a brake to the drum 1)3. The gears Sj aud Pi and the 
arm are thus common to both trains. 

A direct drive is obtained by engaging the plate clutch G, tlic 
inner plates of which are splined to the drum H. The latter is 
keyed to an extension of the crankshaft. The outer plates are 
splined to the drum E and the plates are pressed together, to 
engage the clutch, by the levers K actuated by the sleeve L. 

The control of the brakes and the sleeve L must be such that 
two brakes, or a brake and the clutch, can never be actuated 
simultaneously. 

239. An example of the second method is the Wilson gear used 
on many motor vehicles. The epicyclic ])art of this gear is shown, 
diagrammatically, in Fig. 299. The drive enters at the shaft A, 

Fio. 299 

to which are fixed the two sun wheels 81 and 82 and the cone- 
clutch member B, the latter being free to slide axially. The sun 
Sj meshes with planets carried by the arm Rj which is the driven 
member and which is fixed to the output shaft C. The planets 
mesh with an annulus Ai which can be held stationary by means 
of a brake. If this is done then 8^, Aj and form a simple train 
and Rj will rotate in the same direction as Si, but at a lower speed. 
This gives the lowest gear. The next higher gear is obtained by 
compounding the tr€j,in SiPiRi with the train S2R2A2, whose arm 

* In motor-car practice a “ low gear *’ is one which makes the speed of the 
output shaft low relative to that of the input shaft. 
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Ro is fixed to the annulus A|. If Ao is held at rest by a brake, 

then the train S2R2^2 cause the arm R2, and thus the annulus 
Ai, to turn in the same direction as S1S2. The arm R^ will now 
receive motion not only from but also from A^, both com¬ 
ponents being in the same sense and therefore additive. Thus a 
higher gear is obtained. The third gear is obtained by com¬ 
pounding the train S2R2A2 with the train S3R3A3 of which the 
arm R3 is integral with A2 and the annulus A3 is integral with the 
arm R2 and thus with Aj. When the sun S3 is fixed by applying 
a brake to the drum D3 the train S3R3A3 constrains the annulus 
A2 to rotate in the same direction as S1S2 so that in train S2R2A2 
the arm is receiving motion from both 82 and Ao and rotates faster 
(for a given speed of A) than when the annulus A2 was fixed. 
Since R2 is fixed to Aj the latter is also moving faster than it did 
on second gear, and so Rj also moves faster; thus a higher gear 
than second is obtained. A direct drive is obtained by engaging 
the cone-clutch member B with the female cone formed in D3. 
This locks the gear so that it can only rotate solid.’’ The 
reverse gear is obtained by compounding the train S^RiAi with 
the train S4R4A4 of which the sun S4 is integral with the annulus 
A] and the arm R4 with R]. On fixing A4 the train S4R4A4 causes 
the sun S4 and thus the annulus A^ to rotate in the opposite sense 
to the sun S2, and the numbers of teeth are chosen so that the 
backward component of the motion of Rj due to the backward 
motion of A^ is greater than the forward component due to S^, 
so that Ri rotates backwards and a reverse gear is obtained. 

240. Synchronising Devices.—In sliding-mesh and in constant- 
mesh gear-boxes using dog clutches it is possible to change from 
one ratio to another while the shafts are rotating at high speeds 
only if the actual movement bringing about the engagement of 
the gears or dog clutches is timed correctly so that it coincides 
with the instant at which the members being engaged are moving 
at approximately the proper relative speed (i.e. the speed they 
would have immediately after the engagement had been effected). 
The necessary manipulative skill for this is quickly acquired by 
most people. When, for any reason, the engagement is attempted 
at the wrong moment great stresses are set up by the resulting 
impact ^and damage often results. To eliminate this trouble 
devices to ensure proper synchronisation of the members prior to 
their engagement have been developed and one design is shown 
in Fig. 300. It is for use with a constant-mesh box and the wheels 
A and B are free to revolve (but are fixed axially) on the shaft C 
and are in permanent mesh with gears on the lay shaft. To obtain 
a drive through either gear the dog-clutch member D must be 
slid along the sphnes (that fix it rotationally to C) until the teeth 
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Fig. 300 

E or F engage the teeth (;! or H. Tlie member 1) is shifted by 
means of the ring K, which is fixed by screws to the projecting 
portions L (usually three in number). The projecting portions L 
work in slots M formed in a sleeve _ 
N, which is free to slide on the out¬ 
side of the member D except that 
spring-loaded balls J\ engaging 
recesses in the sleeve, tend to pre¬ 
vent any relative movement. The 
sleeve N has cones formed in its 
ends and there is a small clearanc;e 
between these cones and the male 
cones formed on the gears A and B. 
The action is as follows : 

Suppose the shaft C is stationary 
and gear A is rotating, and that 
it is desired to engage the dog 
teeth E and (1. The ring K is 
pressed to the left, thus bringing 
the cone in N into contact with 
the cone on A (because the balls 
P tend to make N, D and K move 
as one). If a ])ressure towards the left is maintained on K, then 
the fri(Tion set up between the cones will tend to bring A and N 
(which is the same thing as I)) to the same speed. When such 
synchronism has been obtained a somewhat greater pressure on 
K will overcome the resistance of the balls and will move 1) 
relative to N, tliereby enabling the dog teeth to be engaged. 

As described above tlic mechanism is not foolproof, since if K 
is pressed too hard D will move along and the dog teeth may 
engage before synchronisation has been established. To obviate 
this the slots in which the projections L slide are sometimes 
shaped as shown in the part plan view^ Until synchronisation is 
established either gear A is accelerating the sleeve N (and U and 
C) or it is slowing it dowm, and in either event N will tend to move 
rotationally relative to L and the latter wdll enter the recesses in 
the slots M, and this will prevent axial movement of L. At the 
moment of synchronisation the tendency to relative rotation 
between N and L will reverse in direction and consequently the 
projections L will tend to move a(*ross from one side of the slot 
in M to the other side, and as there is an axial pressure on L, 
when it comes to the central position it wdll move along to the 

end of the slot. 

241. Pre-selective Gear-boxes.—These are gear-boxes in which 
any particular ratio can be selected at any instant simply by 
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moving a lever or dial to the appropriate position, but in which 
the train otgears giving that ratio is not brought into action until 
an operating lever or pedal is actuated. Two examples will be 
descTibed. 

Jn the Wilson epicyclic gear-box the gears (except tlie direct 
drive) are obtained by applying brakes to the annuli, each of 
which is provided with a set of parts such as are shown in Fig. 301. 

There is a similar set of parts, with the exception of the brake 
])ands A, for the direct-drive clutch. The brake bands A are 
anchored by the links B and their free ends are pulled up by the 
rods 1) when the levers E are turned about the fulcra F. This is 
done by a spring, shown diagrammatically at K, through the 
medium of a “ bus-bar ” lever L. common to all the sets of parts, 
and struts H hinged at G to the levers. The bus-bar pivots on a 
knife-edge at M. The light springs N tend to pull the struts out 
of engagement with the bus-bar and the more powerful springs 0, 
through the links U, tend to push them in. All the springs O 
except one are prevented from acting, however, by cams P on a 
shaft that is connected to the pre-selector lever. The operating 
pedal, which engages a gear after it has been selected, merely 
controls the bus-bar L. 

The action is as follows: Suppose the brake A is “ on,” and a 
gear is thus engaged, and the pre-selector lever is turned to select 
another gear of which the mechanism will be denoted by letters 
to correspond to Fig. 301, but with the suffix 1. All that happens 
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ift that the camshaft is turned to a new position, the cam P presses 
the link U back and the cam Pj allows the link \Ji to move forward. 
This latter movement does not, however, bring the strut Hj into 
engagement with the bus-bar, because the relative positions are as 
shown by the dotted outline. Nor is the spring N strong enough 
to pull the strut H out of engagement. Nothing more happens 
until the operating pedal is actuated and the bus-bar thereby 
pressed down against the action of the spring K. When this is 
done the strut H is lowered and the brake A released, and when 
the bus-bar is right down the spring N pulls that strut out of 
engagement. Simultaneously the spring Oj pushes the strut H| 
into engagejiient, so that when the bus-bar is released the selected 
brake A| is applied. For more detailed description of the Wilson 
box the reader is referred to a paper ])y W. (h Wilson, Proc. 

J.A.E., Vol. XXVI. 

242. The Herbert Pre-optive Gear-box. - This is a constant-mesh 
gear-box the gear trains of which are brought into action by 
means of friction clutches. It was developed by Alfred Herbert, 

Ltd., and is used on many of their machine tools. The })rineiple 
of the pre-selective mechanism is illustrated by Fig. 302. AB is 
a ‘‘ striking fork ” of which there are as many as thcj c are friction 
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clutches to be operated. The clutches are of the type tliat once 
engaged remain so until forcibly disengaged. The striking forks 
move along suitable fixed guide rods G and the fork parts B 
engage the actuating parts of the clutches. The arms A project 
between the ends of two cylindrical members C and D which are 
formed with a number of projecting fingers and corresponding slots 
as shown. The drums C and D can slide along the shaft E, but 
must rotate with the latter when it is rotated by the pre-selection 
lever, and the action of pre-selecting a gear merely rotates the 
drums C and D to the proper position. The operating lever, by 
means of which the selected gear is actually obtained, enables the 
drums C and D to be slid towards each other along the shaft E. 
When this is done the finger F will force the arm A to the left, thus 
engaging the clutch to which AB belongs. Simultaneously other 
fingers similar to F will engage any of tlie other clutches as may 
be necessary in order to bring the recjuired train of gears into 
operation, while the arms (A) of any clutches that may have been 
engaged previously, and which arc no longer required to be 
engaged, will be brought back to the central or disengaged 
position. Having in this way engaged the selected ratio, if the 
operating lever is released a spring will bring the drums C and H 
back to the position shown, when they may again be rotated to a 
new position in order to pre-select another ratio. 



CHAPTER XIX 

(Arts. 252 to 257 of this chapter may be omitted on a first 
reading.) 

CAMS 

243. A c*am is a piece which is given a rotary or reciprocating 

motion and which, because of the shape of its edge, or face, or of 
a groove formed in it, causes a follower, which bears against it, to 
move in the required manner. They are very widely used, being 
the most convenient method of producing irregular and inter¬ 

mittent motions. 
Examines of cams are shown in Fig. 303, whicli also serves to 

show different types of follower ; most of the latter, however, 
could be adapted for use with any of the cams shown. 

At a is shown a disc cam with a roller follower constrained to 
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move in a straight line which in this example passes through the 
axis of rotation, O, of the follower. 

The cam shown at b is also a disc cam, but now the follower is 
a flat-footed one. CJearly with such a follower the cam should be 
entirely convex. 

The cam show^n at c is a disc in the face of w^hich a groove is cut 
to receive tlie roller A, W'hich is carried on the end of the follower 
B, which is now an arm pivoted on a fixed centre at P. 

The next example d is a face cam, the surface C being formed 
on the end of a hollow^ cylinder which rotates about its axis. The 
follower ]) is free to slide in guides parallel to the axis of the 
cylinder. A similar cam of slightly different construction is 
show n at e ; here the cam surface is formed by pieces E which may 
be bolted to the surface of the cylinder and thus be easily changed 
for others giving a different motion. Suc^h cams are extensively 
used in automatic machine tools. 

At/ is shown a cam that has a reciprocating motion in a straight 
line. 

It will be noticed that in all the examples, except c, force 
closure is used, the weight of the follower, or more often the force 
of a spring, being used to keep the follower in contact with the 
cam, and this is common practice, body closure as shown at c 
being generally used only in lightly loaded slow-speed machines. 

The object of using roller followers is to substitute rolling for 
sliding motion between the cam and follower. The motion of the 
follower would be quite unaffected if the roller were prevented 
from rotating. 

244. Form of Roller for Cylindrical Cams.—It is common prac¬ 
tice with cylindrical cams of large size to use cylindrical rollers 
for the followers, but it is obvious that the action cannot be one 
of pure rolling, for the peripheral speeds of the ends of the roller 
arc equal, whereas those of the corresponding portions of the cam 
are unequal. It can be shown * that if the cam has a constant 
pitch then the proper form of roller to obtain pure rolling is part 
of an hyperboloid of revolution and that the axis of the roller 
must be offset from that of the cam. If the pitch of the cam is 
not constant, then no form of roller can give pure rolling and the 
best compromise is probably a conical roller. 

245. Multi-turn Cylindrical Cams.—yuch cams consist of a shaft 
or drum in which is formed a groove that, starting at one end of 
the shaft travels to the other end and there, reversing its direction, 
returns to the starting-point, the return groove thus intersecting 

* Soc' Applied Mcdianics, by D. A. Low, published by Longmans, Green & 
Co., Ltd. 
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the forward groove at a number of points. In order to ensure 
that the follower shall continue in the proper groove at the inter¬ 
section points it has to be made longer than the gap formed by 
the groove intersected, as is indicated in Fig. 304, which shows an 

intersection. The follower shoo A is ])ivoted on a pin B, and tlic 
motion between it and the cam is ])iirely sliding. In such a case 
a roller follower is not practicable. It is .<^omctimes feasible, how¬ 
ever, to use cylindrical rollers in conjunction with spring-loaded 
latches at the intersections as shown in Fig. 305. 

246. Almost any motion can be produced by means of a cam, 
the only limitation being that the acceleration of the follower 
must not at any moment be too high or the forces between the 
cam and follower will be so great as to damage the parts or, 
alternatively, the force of the spring or other constraint keeping 
the follower in contact with the ca>m may be insufficient and the 
follower may lose contact with the cam, when its motion will not 
be the required motion. In slow-speed machinery this limitation 
does not have to be considered very much, provided that it is 
kept in mind that the velocity of the follower cannot be changed 
instantaneously, either in magnitude or direction, because such a 
change would involve infinite acceleration and correspondingly 
infinite forces. In high-speed machinery the acceleration will 
use ally have to be determined in order to design the spring for 
keeping the follower in contact with the cam, or so that if it is too 
high the design may be altered. 

Thus the problems that present themselves in connexion with 
cams are roughly of two kinds : Firstly the motion of the follower 
is specified and the shape of the cam has to be determined so that 
it will produce this motion; and secondly, the cam shape and speed 
being given, the acceleration of the follower at any moment has 
to be determined. These problems will now be considered. 

247. Design of Cam to Produce a Specified Motion.—Suppose 
that the follower A (Fig. 306) is required to occupy consecutively, 
and at equal intervals of time, the positions numbered 0-12 as 
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the shaft B, which is to carry the cam, turns at constant speed 
through one complete revolution about its axis O. Let the 
smallest radius of the cam he settled as R, the radius of the 
follower roller as r and its line of stroke as OX. Then clearly 
the distance OO must be R+r and the centre O can be marked 
off along XO at that distance from the position 0. 

X 

Now, since the camshaft is to rotate at constant speed it Avill 
turn through equal angles in equal intervals of time. Thus it 

360° 

would turn through an angle ~30° while the follower moved 

from position 0 to position 1. It is, however, more convenient to 
imagine the cam to be stationary and the follower to rotate round 
it. If this is done, then the consecutive positions occupied by the 
line of stroke OX will be the lines OXj, OXg, etc., which are set 
out at equal angles of 30°. But when the cam has tuimed 
through 30° relative to the line of stroke OX the follower will have 
reached position 1, and since we are imagining the cam to be 
stationary, the follower will be at 1', where 01'—01. Similarly 
the positions 2', 3', 4', etc., corresponding to 2, 3, 4, etc., are found 
by marking off along OXj, OX2, OX3, etc., distances equal 
respectively to 02, 03, 04, etc. 
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Next, with the points T, 2', etc., as (cntres, circles, radii r, 
may be drawn to represent the follower roller, and lastly a curve 
drawn to touch all these circles as shown. This is the shape to 
which the cam must be formed to give to the follower the required 
motion. 

The process is essentially the same as the envelope method of 
determining the conjugate tooth to a given tooth described in 

Art. 140. 

248. Design of Cam with Pivoted Follower. The principle is 
essentially the same as that just described, but the process is 
slightly more complicated. Let the consecaitive positions of the 
centre of the follower roller be the points numbered 0 to 12 on 
the arc YY (Fig. 307), u hose (cut re is at P and Jet () })e the centre 

Fkj. 307 

of rotation of the cam, the shaf>c of which is then found as 
follows : 

Join O to 1 and set out OX^ such that the angle lOXj equals 
30^^ (i.e. 36O712). Make 01' equal to Ol. Then 1' is the position 
of the centre of the follower roller when the centre of rotation P 
has rotated through an angle of 30"^ relative to the cam. Join O 
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to 2 and set out OXo such that the angle 2OX2 equals 60^, Make 
02' equal to 02. Proceed in a similar manner for all the other 
points. The circles representing the follower roller can then be 
drawn with the points 1', 2', etc., as centres, and a curve drawn to 
touch them as shown. This curve is the required cam shape. 

249. Interference in Cams.—ft will s^^metimes be found that 
the envelope to all the circles repre¬ 
senting the consecutive positions of the 
follower roller is a looped curve. As an 
example of this suppose the curve AH 
(Fig. 308) is the locus of the centre of 
the follower roller, then, when the roller 
circles are drawn in, if the radius of the 
roller exceeds a certain amount it will be 
found that the envelope is looped as 
shown by CDEF. The cam could not, 
of course, be made this shape, and if 
it were made to the shape CGF there 
would be a discontinuity in the motion 

Kig. 308 of the follower due to the absence of the 
position GDEG. This interference could 

be obviated in the example shown by using a smaller roller. 

250. Determination of the Acceleration of the Follower.—There 
are several methods that may be used.to determine the velocity 
and acceleration of the follower when the shape and speed of 
rotation of the cam are known and the actual method to be 
adopted will depend upon personal preferences, the accuracy 
required, etc. First, the process described in Arts. 247 and 248 
may be reversed and the positions of the follower for assumed 
rotations of the cam may be found. A displacement-time curve 
may thus be drawn for the follower, and this may be differentiated 
graphically by drawing tangents, thus giving the velocity of the 
follower at a number of instants. The resulting velocity-time 
curve may then be differentiated graphically to give the accelera¬ 
tion-time curve. This method, however, is not usually a very 
accurate one—on the contrary, it is usually hiost inaccurate, the 
curves obtained from most cams being such as do not lend them¬ 
selves to the accurate drawing of tangents. Second, if the 
centres of curvature of the cam and follower at the point of 
contact can be determined accurately, then an equivalent four- 
bar chain or slider-crank chain may be substituted for the cam 
mechanism ; the velocity and acceleration of the follower may 
then be found by any of the methods described in Chapters VI1 
and Vlll respectively. As an example of this, suppose the centre 
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of curvature of the flank ab of the cam shown in Fig. 309 is Oo 
and that O3 is the centre of the roller follower. Join O2O3 and 
O1O2. Then a slider-crank chain having 0]02 

as crank and O2O3 as connecting-rod would give 
the follower, at the moment under consideration, 
exactly the same motion as it receives from 
the cam. The velocity and acceleration are 
thus easily found. It sliould be noted, however, 
that the approximate analytical expressions for 
the velocity and acceleration of the slider of a 
slider-crank chain derived in Arts. 112 and 118 
cannot be used here, because the “ crank 
O1O2 will usually be approximately the same 
length as, or it may be greater than, the It^iigtli 
of the connecting-rod OwO.j. Quite accurate 
results can, however, be obtained from graphical 
methods. This method is almost the only one available when 
a pivoted follower or rocker follower is used, since then the 
analytical method, which is the chief alternative, becomes 
hopelessly cumbersome. 

Thirdly, if the common normal at the yioint of contact of cam 
and follower can be drawn with sufficient accuracy, the velocity 
of the follower may sometimes be found by using the proposition 
proved in Art. 138. The acceleration remains, however, to be 
found by the other methods given. 

Lastly, if the cam is made up of definite geometric curves such 
as arcs of circles, straight lines, logarithmic spirals, etc., the lift, 
velocity and acceleration may be found analytically, although the 
expressions obtained may often be somewhat unwieldy. The 
cams used for operating the valves of internal-combustion engines 
are usually of this type, and thus may be used as examples of the 
method. 

251. Internal Combustion Engine Cams.—The symbols and 
notation that will be used are as follows : Referring to Fig. 310, 

17 
Fig. 310 
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fa is the base circle, radius rj ; ab is the flank, radius T2 \ be is the 
nose, radius ; cd is the dwell and is concentric with Oj; de (radius 
r^) and ef (radius r^) are also respectively nose and flank, but may 
be distinguished from ab and be by the use of the adjectives 
advancing and receding according to the direction of rotation, e.g. 
for the counter-clockwise direction of rotation ab is the advancing 
flank and de is the receding nose. If the cam is symmetrical, as 
is often the case, then r^—r^ and r^—r^. Also the dwell cd is 
frequently dispensed with, so that O3 and O4 coincide. It is 
convenient to measure the angular rotation of the cam in terms 
of the angle between Oia and a line through 0i parallel to the line 
of stroke of the follower. If the latter passes through O^, then the 
cam is a central cam, otherwise It is an offset cam. When the 
point of contact between the cam and follower is on the base 
circle the follower is at rest, when it is on the advancing flank the 
follower is moving upwards and has an upwards or positive 
acceleration, i.e. its velocity is increasing. When the contact is 
on the advancing nose the follower, although still moving upwards, 
has a negative or downwards acceleration, i.e., its velocity is 
decreasing. When the contact is on the dwell the follower is at 
rest, and when it is on the receding nose the follower again has a 
negative acceleration, i.e. its downwards velocity is increasing. 
Finally, when the contact is on the receding flank the follower 
once more has a positive acceleration, i.e. its downwards velocity 
is decreasing. The upwards or positive accelerations are pro¬ 
duced by the force exerted on the follower by the cam, while the 
negative or downwards accelerations are produced by the force 
exerted on the follower by the valve spring. 

For an offset cam, symmetrical or otherwise, four sets of 
equations will have to be found, each set applying while the con¬ 
tact is on the portion of the cam for which it was derived, e.g. 
advancing or receding flank or nose. For a symmetrical central 
cam the equations for the receding side are identical with those 
for the advancing side. 

282. Convex Cam with Offset Roller Follower.—(1) Contact on 
advancing flank.—Referring to Fig. 311, we have 

Lift=if=P06-PR 
R beirjg the position occupied by the roller centre Oq when the 
contact is on the base circle. 

PR=OiR Cos a=(fi -t-re) Cos a 

where a is given by 

Sin a 
ri +rQ (1) 
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Fig. 311 

Now P0e=Q06~QP 

<f>~{r.,~ri) Cos 0 
~6 Cos <f> —a Cos 9 

where ^=r2+r6 and a=~r2—r,. 

Also 6 Sin (f)-\-e~a Sin 9, 

e being the offset of the line of stroke of the follower. 

Th™ 

«.d 

Hence 
l^{b--—(a Sin 9—e)^}^~a Cos (rj+re) Cos a 

dl dl d9 [ -a (/Os 9{a Sin 9—e) 

• drd9 * 

dH \a Sin 9(a Sin 9~e)~a^ Cos^ 9 

-f-a Sin 9 . 

{b^—{a Sin e)^}* 

a- Cos2 gin 9—e)- ^ ^ ^ 

■ {62-(a Sin 0-fe)2}-'/- +“ ^ 

a -6- Cos 2 9 -\-ab^e Sin 9 -\-a Sin 9(a Sin 9 — ey^ 
{b^ — (a Sin 0— 

-aCos^ 
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These equations hold only while the contact is on the flank ab, 
and the corresponding limiting values of 6 must now be found. 
When contact is at a then clearly 6 ——a, and when contact is at 
6, as shown in Fig. 312, then where di depends on 

the geometry of the cam alone and is either given, or may be 
settled more or less arbitrarily, while ? can be found by solving 
the triangle O1O3O6' of which the sides O1O3 and 0305' are known, 
and the angle between them can be found by solving the triangle 

O1O2O3 (of which the three sides are known), for (5i0^2 ; and 

lastly is given by Sin P — ^ and OiOe' is found when the 
UiUg 

triangle O1O3O6' is solved. 
However, it is probably easier to determine a, j3, (9 and ^ from 

carefully made drawings. 
Thus the limits oiM for contact to be on the flank of the cam arc 

0=—a to 

(2) Contact on advancing nose.—From Fig. 313 it will be seen 
that 

POg—(ri+re) Cos a 

P0(j=0j03 Cos {61 —6) “|~030q Cos ifj 

- d Cos € +/ Cos i/j 

and 
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Now 

Hence 

f Sin ip-\-e~d Sin e 

r/2—((Z Sin €—e)-] 
■ Co,#=|L-L^-' J 

l:=d Cos e+{/2 —(d Sin €)2}^~(ri+7*0) Cos a 

dl dl de d6 f Sin e—e)c^ . Cos cl/(/^\ 
(■>) 

(6) 

[ J i'-t I —Cos2 €+d^ Sin c(ei Sin e—e) 
•’• dP"" [“® {/2-(dSin€-e)2}* 

^Sin_£-e)2d^t^I /(m2 

{f~—{d Sin €—e)2}2/2 J yrf/j 

r, ■ /2rf2C'os2c+/2erfSm«+(iSin€(dSin€-e)31/rf6»\2 
=-^rfC0S6+--\\It) • 

These equations hold while contact is on the nose, and the 
corresponding limits for 6 are 6—6i~-C~-^ to d~di—8 where S, 
as will be seen from Fig. 314, is given by 

Sin S “ 
e 

d+r;i+r^i 
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This figure also shows that the maximum lift of the follower is 
given by 

/mox—Oipe Cob S—(ri+^e) a 

-=(^+^3+^6) Cos 8 —(ri+r^;) Co^ a 

which on substituting for Cos 8 and Cos a and writing k for 

^+^3+^6 becomes 

.... (8) 

(3) Contact on receding nose.—If an analysis similar to the above 
is (tarried out when the contact is on the receding nose it will be 

found that the equations giving the lift and 
the acceleration are identical with equa¬ 
tions (5) and (7) respectively, except that 
e is replaced by t/, where T7 = 0i+/a-~0 
(/X being the angle of dwell), and that if the 
receding nose radius differs from the ad¬ 
vancing nose radius, then the constants d 
and / will have different numerical values. 
If there is no dwell, then 

/x==o and ri — d\—d—€y 

so that the expressions are identical. The 
equation giving the velocity of the follower 
when the contact is on the receding nose 
differs from equation (6) above, not only 
in having rj instead of c and possibly 
different numerical values for the con¬ 
stants d and /, but also in that the second 

Fig. 314 term has a minus sign instead of a plus 
sign in front of it. 

With these differences the equations then hold while contact is 

on the receding nose, i.e. for values of 0 from 0 = ^2“^+/^ 
(Fig. 316), where 0^ and 0^ are either given or 

can be settled more or less arbitrarily; f is found by solving 
triangle O1O4O6'" of which the sides O1O4 and 6405 are known, 
and the angle between them can be found by solving the triangle 
O1O5O4, of which the three sides are known, for angle O1O4O5. 

In a symmetrical cam f=5 and y—P, so that the limits can be 
written down without further computation. 

(4) Contact on receding flank,—Analysis will show that the 
equations giving the lift, velocity and acceleration are identical 
with equations (2), (3) and (4) respectively, except that —e has 
to be written for e wherever the latter occurs, that 0^ — 0 replaces 
d, and that a minus sign must be placed in front of the whole 
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expression for the velocitv. The equations then hold loj’ values 
of 6 from ^ —^o~^3+^--y to 0=r=d.^- a. 

253. Central Convex Cam with Roller Follower.—equations 
for a central convex cam can he obtained by putting r -0 in the 
equations derived above. If this is done we get : 

1. Contact on flank- 
hift=l~{fy^ —a'^ Sin- d}^~a Cos 6~(r^ 

. dl { ~a^Sin2e 
Velocity - [2(^,2 _a2 ,sin2 0)i 

fa^Khs20+a*Sh)‘‘0 
(^) 

Accleration =r 
dV. 

{62_a2Sin2 5i}j/2 

a Sin B 

—aCob^ 
• 

which equations hold for values of B from B- 0 to B — B^ — l. 

('•*) 

(1(») 

(11) 

2. Contact on nose. 
Lift =/=d Cos Sin^ ^ 

Velocity = 

Acceleration = 

d Sin' 
dt~ 

dt'^ 

B. These 

d2SJ^2e_/( 
2 Sm2e}jjV 2{p-d 

('•i l-n;) 

dl 

dCos 
/"d'^^Cos 2e -} </' Sin 1 '€ 

= ^2- 

{/2_rf2 Sin2 c}> 

equations hold for values of 0 

(12) 

(13) 

(14) 

from where € = ^i- 
0=:=Oi-^tO0 

The same equations will hold for the receding side as fur the 
advancing side, except that for an unsymmetrical cam the numeri¬ 
cal values of the constants will be different, and that a minus 
sign must precede the expression for the velocity in any case. 
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254. Concave Cam.—The equations for a concave cam may bo 
obtained from those derived for the convex cam by treating the 
radius as negative (which has the effect of making the constants 
a and h negative) and by taking the negative root whenever roots 
have to be extracted. The equations when the contact is on the 
nose are, of course, the same as for the convex cam. 

255. Straight or Tangential Cam.—When the contact is on the 
flank, as in Fig. 316, then 

Lift=Z=POG —(r^-f rg) Cos a 
where a, as before, is given by 

Fig. 316 P'lG. 317 

Hence +e Tan d~(ri +rQ) Cos a.(15) 

dl r(r,4r6)Sin ^ e \/de\ 
dt~{ Cos2 0 +0082 0] (d<)-. 

(in r I J 1 2Sin2 0) 2cSin0]/rf0\2 

dt2-^ 0+ Cos3 0 J+ CosS 0 J\d</ 

■(n+^6)(M-«in 20)+2c Sin 0] /dOy- 1 ~ Oo82 0 ■ • • • 
These equations hold for values of 0 from 0=—a to 

0«=0i—^1—J3j, where Ci, as is seen from Fig. 317, is found by 
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solving the triangle O1O3O5', of which the sides O1O3 and 030(5' 
are known, and the angle between them is equal to 180 — 0, 

while is given by Sin /{■, and OjOg' is also obtained from 
UiUg 

triangle 0i030e'. 
Again the equations when contact is on the nose are identical 

with those for the convex cam. 
When contact is on the receding flank the equations giving the 

lift and acceleration are obtained by putting —e in (15)and(17), 
while the equation for the velocity is obtained by putting e=^—e 
in (16) and placing a minus sign in front of the whole expression. 

256. Convex Cam with Flat-Footed Follower.—The amount tlie 
follower has lifted from its lowest position when the cam occupies 
the position shown in Fig. 318 is given bv 

Z=02P-QOi~ri 
=:r2"-0i02 Cos O—Ti 

but O1O2— 
/ —(r2~ri)(l—Cos 0).(18) 

Hence the follower velocity is given by 

and the acceleration by 

df^ 
— (r^—ri) Coa 6 . 

(19) 

(20) 
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These expressions hold while the contact is on the flank, 
i.e, for values of 6 from to 6—a. The angle a is found 
by solving the triangle O1O2O3, of which the sides 0i02(=y‘3—rj), 
0203(=r2—rg) and O1O3 are known; this may be done quite 
accurately enough by drawing the triangle to an enlarged scale. 

When the contact is on the nose, as in Fig. 319, we have © 

/—OjQ “f-QR—Ti 

=0i03 (bs (6^1—6>)+/-3—ri 

—rf Cos (01 —.(21) 

|=c^.Sin(0i-0)Q.(22) 

S = . 
These expressions hold while the contact is on the nose of the 

cam, i.e. for values of 6 from 9—a to 6~9j. 
It will be seen that the follower has simple harmonic motion 

whenever it is moving, 

257. Comparison of the Various Types.—It is beyond the scope 
of this book to go at all fully into the relative merits of the above 
types of cam for use in engines, and for a full comparison the 
reader is.referred to an article by B. B. Low, M.A., in Engineering, 
May, 25, 1923. Briefly it may be said that the convex cam with 
flat-footed follower gives the greatest value for the average valve 
lift, the concave cam with roller follower is only slightly inferior, 
the straight cam comes next, and the convex cam is the worst. 
The cam with flat-footed follower also gives by far the lowest 
value for the maximum negative acceleration, i.e. it requires the 
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weakest valve springs, the straight cam coming next in order, the 
concave next, while the convex cam with roller follower is worst 
in this respect. On the other hand, the cam with flat-footed 
follower gives a much greater maximum positive acceleration 
than the others, the concave cam coming next, then the straight 
cam, while the convex cam with roller follower is the best in this 
respect. The cam with flat-footed follower is also worst as 
regards noise, if the latter is assumed proportional to the velocity 
of the follower at the moment that the necessary tappet (dearance 
is taken up, this velocity being more than twice that with the 
other cams. 

Mr. Low, in his article, has also shown that any type of cam will 
give smaller values of the maximum negative acceleration if there 
is no dwell than if a dwell is used, even though the maximum lift 
is increased by the elimination of the dwell; this is because the 
elimination of any dwell enables a greater nose radius to be used. 

KXEJICISKS XIX 

1. A reciprocating cam han a stroke of 6 in., which is p('rforme(i at constant 
«peed. It actuates a follower with a roller foot 1 in. dia. which inovt's in a 
straight line perpendicular to the lino of stroke of tht^ earn. During llie first 
third of the stroke the cam lifts the follower, with S.Jl.M., a distance of 1 in. 
I’he middle third is a dwell and the last third brings the follower to the initial 
position with constant and equal acceleration and retardation. Design the earn. 

2. Design a disc earn to give the following motion to a roller follower. Lift of 
2 in. with S.H.M. followed by dwell for ^ revolution of cam, return to initial 
position with S.H.M. followed by dwell for | revolution. Minimum radius of 
cam H in. Central follower, roller 1 in. dia. 

3. Determine the shape of the cam that will give 
the pivoted follower, shown in the figure, S.H.M. 
from A to B and back to A during each revolution. 

4. Repeat Question 2, but taking the line of stroke 
of the follower to be offset as shown in the figure. 
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5. The base circle dia. of a symmetrical, convex, I.C. engine cam is 1-2 in. It 
gives a lift of 0*4 in. to a central roller follower whose dia. is 1*0 in. The angle 
of opening is to be 120'' and the nose radius is 0*1 in. There is to be no dwell. 
Determine the dimensions of the cam and the angular limits for contact to be 
on (a) the flank and (b) the nose. 

6. If the angular speed of the cam of Question 5 is ^ rads./sec., find the accelera¬ 
tion of the follower when ^—39°. Check your answer by drawing an acceleration 
diagram. 

7. Repeat Question 5, but assuming an offset as shown in the 
figure. 

8. If the angular speed of the cam of Question 7 is 6 rads./sec., find the accelera¬ 
tion of the follower at the moment that contact (a) first occurs on the nose of the 
cam, (b) last. 

9. A tangential cam works with a central roller follower. The lift —0*4 in., 
base circle dia. = 1*2 in., angle of opening — 120'', and there is no dwell. Find the 
remaining dimensions of the cam and the limiting angles for contact on (a) flank 
and (b) nose. 

10. If the angular speed of the cam of Question 9 is 5 rads./sec., find the 
acceleration when contact first occurs on the nose of the cam. 

11. If the cam of Question 9 is offset as shown in the figure given in Question 7, 
find (1) the nose radius and the limiting angles for contact on flank and nose 
and (2) the acceleration of the follower when contact on the nose (a) commences 

and (b) finishes. Speed of rotation —0 rads./sec. 

12. A convex cam with a flat-footed follower has a base circle dia. of 1*2 in. 
The lift is 0*4 in., the nose radius =0* 1, and the angle of opening is 120°, there being 
no dwell. Determine the flank radius and the acceleration of the follower when 
contact first occurs on the nose. 



CHAPTER XX 

SPHERIC MECHANISMS ; UNIVERSAL JOINTS 

258. Spheric mechanisms are those whose })oirits have spheric 
motion as described in Art. 48. With a fe\\ exceptions they are 
of little practical importance. One of the exceptions is bevel 
gearing, which has already been dealt w'th, and another is the 
universal joint, which will be considered shortly. However, most 
of the link mechanisms described in Chapter VI have a spherical 
counterpart; in fact, the plane mechaiiisuis of Chapter VI may be 
considered as special cases of spherical mechanisms, the radius of 
the sphere being infinite 

259. The Spheric Four-bar Chain.—Such a chain is shown in 
Fig, 320, from which it will be seen that the only difference 
between it and an ordinary plain 
four-bar chain is that the axes of 
the turning pairs between the links 
converge on the point 0. The links 
are shown curved so as to lie on a 
sphere having O as centre, but clearly 
this is not essential; they could 
equally well be straight. 

It has been proved in Art. 48 that tlie instantaneous motion 
of any body having spheric motion can be produced by a rotation 
about an instantaneous axis which passes through the centre of 
the sphere; hence the instantaneous axis of the link 3 of the 
mechanism of Pig. 320 relative to link 1 is some line (the inter¬ 
section of the planes OBC and OAD) passing through O. Conse¬ 
quently the axode of 3 relative to i is a conical surface in the 
general sense of the word “ conical,” i.e. it is a surface that can be 
swept out by a straight line which always passes through one fixed 
point. This axode can be considered to be fixed to the link 7. 
Similarly the axode of 1 relative to 3 is also a conical surface 
which may be considered to be fixed to 3, The motion of 3 
relative to 1 due to the connexion provided by. the links 2 and 4 
could then equally well be produced by the rolling without slijj 
of the one axode on the other. 

260 
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Because the axodes are conical surfaces spheric mechanisms 
are sometimes referred to as conic mechanisms.* Thus corre¬ 
sponding to the lever-crank, double-crank and double-lever 
piechanisms of Chapter VI there are conic lever-crank, conic 
double-crank and conic double-lever mechanisms. 

The effective size of a link of a spheric mechanism is no longer 
measurable by the length of the link, but now must be measured 
by the angle between the axes of the joints at its ends. Thus the 
“ length ” of CD in Fig. 320 is defined by the angle a. It should 
be clear that two links subtending angles a and 180—a are 
identical so far as the kinematics of any mechanism of which they 
are part are concerned, but, of course, their appearance may be 
quite different. 

260. Disc Engines.—The spheric four-bar chain can be, and 
has been, constructed as an engine using a fluid such as water or 
steam as a working medium. Such engines have not been 
successful commercially for numerous reasons and so they will 
not be described here. Any reader who is interested in such 
engines is referred to The Mechanics of Machinery by Alex. 
B. W. Kennedy, published by Macmillan & Co., Ltd., and to 
Reuleaux’s Kinematics of Machinery. A disc engine designed 
by Beauchamp Tower (famous for his experiments on the lubrica¬ 
tion of bearings) is described in a paper by R. H. Heenan, in 
Proc. Inst. Mech. E., 1885. 

261. Universal Joints.—These are mechanisms that enable 
motion to be transmitted between two shafts whose axes intersect, 
and they are extensively used in many different kinds of 
machinery. The commonest form of universal joint is frequently 
referred to as a “ Hooke’s ” or ‘‘ Cardan ” joint, after the sup¬ 
posed inventor of it, but according to Prof. Willis (who gives an 
account of the history of the joint in his book The Principles of 
Mechanism) neither Hooke nor Cardan was the actual inventor. 

As will be seen subsequently, the velocity ratio between two 
shafts connected by a Hooke’s joint is not constant, and the 
irregularity in the motion is a great disadvantage in many applica¬ 
tions ; consequently many people have sought after a universal 
joint which would have a constant velocity ratio, and at the 
present ^time two or three forms of such joint are being manu¬ 
factured. Such joints will be referred to as “ constant-velocity 
universal joints,” although a more correct appellation would be 
‘‘ constant-velocity-ratio universal joints.” 

262. Hooke’s or Cardan’s Universal Joint.—This joint is 
made in several different constructional forms, two of the most 
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important of which are shown in Figs. 321 and 322. In both those 
figures the shafts A and B are free to turn in bearings in the 

Fia. 321 

Fig. 322 

frame C, and each has a “ fork ” (D and E respectively) fixed to 
it. In Fig. 321 the forks are connected by the ring F, which is 
provided with suitable bearings in which the pins GG and HH 
integral with the forks D and E respectively) project and are free 
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to turn. In Fig. 322 the forks are connected by the cross¬ 
member F, whose arms are pivoted in holes formed in the prongs 

of the forks. Kinematically the 
two forms are identical and are 
merely a special form of spheric 
four-bar chain, as will be seen 
on reference to Fig. 323, which 
shows the chain in skeleton form, 
with the corresponding links simi¬ 
larly lettered. The constructional 
forms of Figs. 321 and 322 are 
merely duplications of the mech¬ 
anism of Fig. 323. Three of the 
links, namely, D, E and F, sub¬ 
tend angles of 90° at the centre 
O, the remaining link C sub¬ 
tending the angle a, which, as 

previously mentioned, may have any value up to about 60°. 

263. The Velocity Ratio of the Hooke's Joint.^—Fig. 324 shows 
two views of the joint. In that on the left both the shaft axes 

Y 

Fig. 323 

Fig. 324 

Oa and Ob lie in the plane of the paper so that aOb is the true 
value of the angle a between the axes. The right-hand view is 
taken along the axis 06 in the direction of the arrow shown. 
Clearly in the latter view the path of the points Y,Y of the fork 
E, when that fork rotates about its axis, will be seen as a circle 
Y',Y'. The corresponding points X,X of the other fork D will 
also describe a circle, but as the plane of that circle (XqOXo in 
the left-hand view) is inclined at the angle a to the line of sight of 
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the Tight-hand view, the circular path of X,X will appear in the 
latter view as the ellipse Xq'X'Xq'X'. In the initial position of 
the joint shown the cross-member F is seen in the right-hand viev 
as the lines Y'Y'X'X'. 

Suppose now that the fork E is turned through an angle d as 
shown in the right-hand view. Then the new jiosition of the 
cross-member is Yi'Y/X/X/, and a little consideration will show 
that X|'X,' is still at right-angles to Y^'Y/, so that the angle 
Xj'O'X', the angle through which the fork f) has apparcmtly 
moved, is also equal to 0. But since Xi' does not really lie in tin; 
plane of the paper, this apparent angle Xi'O'X' is not the true 
value of the angle that D has turned through. IV) find that true 
value it is necessary to swing the plane of the elli])se Xq'X'Xq'X' 
into the plane of the fiaper. When this is done, by swinging it 
about X'X'jthc point X/ will come to Xand X|"0'X' is then 
the true value of the angle {<j>) through which the fork D has 
turned as the result of turning the fork E through the angle 0. 

XO X,0(V)sa 
Now 

(1 

Tan 0 -Viu\ X/O'X' 

hence 

and 

Tan (fy 

Tan 6 

Tan cf) 

Tan 0- 

Tan X/'O'X' 

(V)S a 

Tan <l> ( V>s a. 

Xi;z 
O'Z 

X/'Z 

O'Z 

O'Z ~ 

X"0 

“O'Z 

O'Z 

^,o 

O'Z ’ 

(1) 

Differentiating with respect to time, we gel 

Sec- 0 ^ -C os a . Sec- ^ 
dt' 

dO . d<f> 
or, writing wi, lor ^ and wa lor we have 

COa Sec2 0 
cvo Cos a . Sec2 (/> 

1 f Tan2 0 

Cos a Sec2 (f) 

1 4-Tan 2 (f) Cos2 a 

(Jos a . Sec2 (f> 

Cos2 Sin2 ^ Cos2 a 

since Tan ^~Tan ff> CJos a 

1 

Cos a 

-Sin2 0 

Cos a 

18 
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giving the velocity ratio in terms of <!> and a.* Similarly by sub¬ 
stituting for <f> instead of 6 it can be shown that 

_Cos g 
cuft 1 —Cos^ 8 Sin 2 a 

giving the velocity ratio in terms of 8 and a. 
The ratio will be a maximum when Sin </>—0, i.e. when 0, tt, 

7T StT 
etc., and a minimum when Sin or —1, i.e. when -17, 

etc., the values then being 
1 

and Cos a respectively. 
Cos a 

The ratio will be unity when Cos a~l — Sin- <f> Sin^ a ; that is, 

when Sin2(A= —-4-. Thus there will be four values of 6 
Sin2 a 

during each revolution when the angular velocities of the shafts 
will be equal. A polar diagram of the velocity of the shaft B, 
assuming that of A to be constant, and for a value of a—30°, is 
given in Fig. 325, the circle, radius unity, representing the con¬ 

stant velocity of A. The ratio is unity for ^ = ±47° 18', and 
±(180-47° 18'). 

264. The Acceleration of the Driven Shaft.—Since 
Cos a d<l> 

‘"“ = 1_Co82 ^Sin2a ’ ' 

on differentiating with respect to time we get, assuming cui, to be 
constant, 

d^if) coft2 Cos a(2 Cos 6 Sin 6 Sin^ a) 

1^^ (l-Cos* 0 Sin2 a)2 

ct)j2 Sin a Sin 2a Sin 2ff 

"" 2{l-Cos2 flSin® a)2 (4) 



SPHERIC MECHANISMS; UNIVERSAL JOINTS 275 

This acceleration will be a maximum for a certain value of 0 
which will now be determined. Since ojb and a are both constants, 

the acceleration will bQ a maximum when 7;—is a 
(1—Cos-^ 0 Sm2 a)2 

maximum, and to find the value of 0 for this the differential of 
the expression with respect to 0 must be equated to zero. 

Hence for maximum acceleration 

2 Cos2^ 

d f Sin 2d ] 
=0 

dd' [(1-0o82 6ISin2 a)2] 

2 Sm2 26 . Sin2 a 
,=0 

^2 (1-Co82 0Sin2a)3 

Cos2^(l-Cos2 0 Sm2 a)--Sin2 20 Sin2 a-O 

which reduces to 

(.'os^ fl-B (k)s2 61-C - 0 where 
2 oin- a 

and this gives 

and C- 
1 

2 Sin2 

C/Os2 
B + VB2+4C 

(5) 

from which Cos 0 and hence 0 may be found. 
When a=30° it will be found that the value of 0 for maximum 

acceleration is 37° and the corresponding value of (f> is 29° 30'. It 
^vill be noticed that this value is not the same as that for w^hich 
the angular velocities of the shafts are equal. The value of the 
maximum acceleration in the example taken (a = 30°) is 0*2945 
so that if co& = 1000 r.p.m. the maximum acceleration is 3229 
rads./sec.2. 

265. Other Forms of Universal Joint.—Professor Reuleaux has 
proposed a variation of Hooke’s joint on the lines of Fig. 326. 
The shafts A and B are carried in bearings in the frame (not 
shown) and B is provided with a fork in the prongs of which the 
“ cross-member ” F is pivoted, the axis of the pivot being perpen¬ 
dicular to that of the shaft. The axis is seen in the left-hand view 
as the point M. The other arm of cross-member is perpendicular 
to the first and is free to turn (about the axis MN) in the arm LN, 
which corresponds to the fork of a Hooke’s joint so far as the 
shaft A is concerned. It will be seen that the construction differs 
from that of Hooke’s joint only in that the axis MN is inclined at 

to the axis of A instead of at 90°. 
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The relation between the angles turned through by the shafts 
may be found as follows. Starting from the position shown, let 
the shaft A be turned through an angle 6 about its own axis. 
Then the projection OV of the arm will turn to OU through an 

apparent angle 9, as showm. As in Hooke’s joint, the relation 
between 9 and 9i is Tan ^—Tan 9i Cos a, a being the angle 
between the shaft axes. The new position of the arm MN will 
now be RU, and since the arms of the cross are perpendicular, it 
will be seen that the angle URV—is the true angle through 
which the shaft B has turned. 

Now 

but 

Tan <f) - 
QU QU QU 

'RQ "OQ-OR ~OQ~LN Tan ^ Sin a 

PT QU 
LN-OS-OT^ 

Sin 9 Sin 9 

and 

hence 

OQ = 
QU QU . Cos a 

Tan 9 1 

Tan (f)- 

Tan 9 

QU 
QU . Cos g QU 

Tan 9 Sin 9 
Tan j8 Sin a 

_Sin 9_ 

Cos 6 Cos a—Tan p Sin a (6) 

If p is put equal to zero, i.e. if LMN=90°, then the above 
expression reduces to that obtained for Hooke’s joint. 

The irregularit}" in the motion transmitted by this joint is 
greater than that produced by a Hooke’s joint for the same shaft 



SPHERIC MECHANISMS; UNIVERSAL JOINTS 277 

angle, and the joint is consequently of little practical importance 
except that by duplication it can be turned into a constant- 
velocity joint. Thus the joint shown in Fig. 327 is in reality two 

joints, each similar to that of Fig. 326, but liaving the member 
LN in common. Provided the angles a and aj are equal, the 
motion of the shafts A and B will be identical. In an actual joint 
of this type the members F and F^ were made hollow and the 
common member LN had two solid arms to fit into F and Fj. 
These two arms were actually pivoted to each other as indicated 
on the right in Fig. 327, but they might, kinematically, have been 
integral. 

A variation of this joint was patented in the U.S.A. by (Clemens 
in 1869. The member LN was dispensed with altogether, F being 
joined to F^ by a ball-and-socket joint. 

266. Constant-Velocity-Ratio Drives Using Hooke’s Joints.— 
Although the Hooke’s joint transmits an irregular motion, the 
irregularity can be eliminated by the use of two joints properly 
arranged. Thus in Fig. 328, provided the angles, a and p, 

Fig. 328 

between the intermediate shaft C and the shafts A and B are 
equal, and provided also that thfe axes of the turning joints 
between the shaft C and the cross—or ring—members connecting 
it to A and B are parallel, then the velocity ratio between A and B 
will be unity at every instant, the irregularity introduced by one 
joint being cancelled out by the other joint. Jf the axes at the 
ends of the intermediate shaft are perpendicular instead ol‘ 
parallel, then the irregularity of the motion will be doubled instead 
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of being eliminated. This arrangement has been used successfully 
as a drive to the front (steering) wheels of motor cars and lorries. 

A constant velocity ratio will also be obtained if in the above 
arrangement the shaft B is maintained parallel to A. 

267. Constant-Velocity-Ratio Universal Joints.—Many efforts 
have been made to produce a single universal joint having a 
constant velocity ratio, and at the present time there are two or 

One such joint is derived from the 
arrangement of Fig. 328, by making 
the intermediate shaft C of zero 
length and using an old and im¬ 
perfect form of Hooke/s joint shown 
in„Fig. 329. In this imperfect joint 
the axes, XX and Y, of the turning 
joints between the forks and the 
cross-member are perpendicular, as 
in a true Hooke’s joint, but they 
do not intersect, being separated 
by a distance a. If two such joints 

are arranged as in Fig. 327, and then the intermediate shaft 
is made of zero length, the joint shown in Fig. 330 is derived, in 
which the irregularity is cancelled out and a constant velocity 
ratio is obtained. The only drawback of this joint, other than 
its complication, is that as the shafts turn they receive a slight 
axial motion which must be allowed for. This axial motion is due 
to the distance between the points L and M of the joint in the 
position shown in Fig. 330 being less than the corresponding 

three such joints available. 

Fig. 329 

distance after the joint has been turned through a quarter of a 
turn when the new distance between L and M will be equal to 
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LO -COM. This joint has also been used successfully in a front- 
wheel-driven motor car, and the axial motions of tlie shafts arc 
eliminated by leaving out the pin connecting JJ and E. '^fhc 
frame supporting the shafts (not shown in the figure) is used to 
constrain the shafts not only as regards the angular relation 
between their axes, but also as regards their axial positions. 

268. The Weiss and Rzeppa Joints.—These joints, which are in 
extensive production, are based on the same principle, which is 
illustrated by the arrangement 
shown in Fig. 331. The shafts A 
and B are provided with arms C 
and D having grooves formed in 
their faces ; these grooves accom¬ 
modate a ball E which consequently 
must always lie at the intersection 
of the grooves. Jf the latter are 
similarly arranged with respect to 
the shafts A and B, the hall will 
have its centre in the plane KK which 
bisects the angle between the shaft 
axes. Provided this latter condition 
is always fulfilled, then any motion 
of the shaft A about its axis will produce an exactly equal motion 
of the shaft B, and thus motion with a constant velocity ratio 
can be transmitted. It can be shown that the grooves in the arm 
A (and that in B) must be such that if the ball is rolled along it 
the centre of the ball will move in a plane containing the axis of 
the shaft, otherwise an irregularity in the motion will occur. 

To enable motion to be transmitted from either shaft to the 
other in either direction 
the arrangement must 
be duplicated. 

The Weiss joint is a 
practical adaptation of 
the above arrangement, 
while the Rzeppa joint 
differs only in that the 
grooves C and T> are 
made concentric with 
the intersection, O, of 
the axes of the shafts, 
and consequently the ball has to be controlled by additional 
mechanism so that its centre always lies in the plane KK. 
This additional mechanism is shown in the drawing of the 
joint in Fig. 332. The balls E are controlled by a cage F whose 

Eig. 332 
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position is determined by the ball-ended rod G. The end P ol this 
rod engages a socket in the end of the shaft B, while the other end 
Q works in a cylindrical hole in the shaft A. The rod G has an 
enlargement at R which engages a hole in the cage F. The 

mechanism is shown in diagram¬ 
matic form in Fig. 333, from 
which it is clear that OP and PQ 
are the crank and connecting-rod 
of a shder-crank chain. Provided 
the point R is suitably chosen, 

the angle a that the member OR (the cage F) turns through can be 
made very nearly equal to half the angle 0 that the crank OP (the 
shaft B) turns through, for values of 0 up to about 50°. Thus 
the control in the Rzeppa joint is only approximate, but the error 
is quite small and the joint has proved satisfactory in practice. 

O 
Fig. 333 

EXERCISES XX 

1. A Hooke’s joint connects a shaft running at 1000 r.p.m. to a second shaft, 
t he angle between the axes being 16®. Find the angular velocity and acceleration 
of the driven shaft at the instant when the fork of the driving shaft has turned 
through an angle of 10° from the plane containing the shaft axes. 

2. Derive expressions for the angular velocity and acceleration of a shaft 
connected by a Hooke’s joint to a shaft that rotates at constant speed. 

3. Find the maximum angular acceleration of a shaft that is connected by a 
Hooke’s joint to a shaft rotating at a constant speed of 1000 r.p.m. Anglo 
between shaft axes 10°. 

4. The figure shows part of a linkage used for operating the front-wheel brakes 
Xof a motor car. The shaft A is carried in bearings in the axle beam, while B is 

carried by the stub axle (part of which is indicated at C), which is turned about 
the axis XX to steer the car. A is connected to B by a modified Hooke’s joint, the 

X 

modification being that the axis xx o{ the connexion between the fork 1) and 
the cross E is at an angle of 86° to the axis of A instead of being at right-angles. 
When the brakes are off the axis xx coincides with XX, and in the straight-ahead 
position the axis of B coincides with that of A. In this position let A be turned 
through an angle of 10°, and then, keeping A fixed, let C be turned about XX 
through an angle of 20°. Find the angle the shaft B turns through about its 
axis. 



CHAPTER XXI 

RATCHETS, ESCAPEMENTS, ETC. 

269, Ratchet mechanisms are kinematic chains in which, for 
some positions of one of the links, relative motion of the links is 
either impossible or is possible in one direction only. Simple 
examples of the two kinds are shown in Fig. 334 (a) and (6) ; 

these types Jiavc been called respectively stationary ratchets and 
running ratchets. In order that the pawl, detent or click A shall 
not be forced out of engagement with the ratchet wheel the line of 
thrust XX must be arranged to fall on the proper side of the axis 
of rotation of the pawl. 

Such ratchets are very widely used in all kinds of machinery. 
In machine tools they are used to give an intermittent motion to 
the work or cutter and are arranged as indicated in Fig. 336, 

281 
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where the pawl A is carried by the arm B which forms one link 
of a four-bar chain B, C, D, E, of which the crank D rotates con¬ 
tinuously, thereby giving an oscillating motion to B. For anti¬ 
clockwise motion of the latter the pawl A imparts the motion to 

the ratchet wheel F, which is fixed 
to the screw controlling the work¬ 
table or cutter-head. If the crank 
D is made adjustable, as shown, 
then the amount of the feed per 
revolution of the crank can be 
varied. A variable feed can also 

be obtained using a fixed crank as shown in Fig. 336 and arranging 
an adjustable shield G to keep the pawl out of engagement with 
the ratchet wheel for variable portions of its stroke. 

If the motion imparted to the lever B in Fig. 335 is less than a 
certain amount, approximately equal 
to the angle 6 subtended by the 
ratchet-wheel teeth, the pawl will 
not come into engagement with a 
fresh tooth at the end of its stroke ; 
thus 6 is the smallest angular move¬ 
ment which can be imparted to the 
ratchet wheel. This minimum move¬ 
ment could, of course, be made as 
small as desired by reducing the 
pitch of the ratchet-wheel teeth; 
this, however, makes those teeth 
weak. The difficulty can be circum¬ 
vented by using multiple pawls as 
shown in Fig. 337, where three 

pawls. A, B and C, are used. Clearly the minimum motion of the 
ratchet wheel is now 6/^ and the pawls will act in turn. 

Alternatively a pawl with multiple teeth may be used as shown 
in Fig. 338. 

It is sometimes required that the motion of the ratchet wheel 
shall be in either direction at will, and this can be 
done by using symmetrical ratchet-wheel teeth and 
a reversible pawl as shown in Fig. 339. The common 

Fio. normal at the point of contact P must be arranged 
to pass between the axis of the shaft and the centre 

A as shown, in order that the force acting may keep the pawl in 
engagement. 

The pawl can also be connected to the arm by a sliding joint 
instead of a turning joint. Such a pawl is shown in Fig. 340. 
When the ratchet wheel overruns the pawl the latter falls off the 
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h'lG. 339 Fig. 340 

tip of each successive tooth and thus makes a chattering noise 
winch is sometimes objectionable. This can be obviated by 
using a silent ratchet, the principle of which will be clear from 
Pig. 341, The ring A is free on the boss of the ratchet wheel, but 
the fit is such that considerable friction exists and the ring tends 
to turn with the boss, thereby moving the pawl away from the 
ratchet teeth. As soon as the ratchet wheel reverses its motion 
the ring A brings the pawl back into contact again. The engage¬ 
ment and disengagement of the pawl can be made positive by 
using the arrangement shown in Fig. 342. The member A 

Fia. 341 Via. 342 

carrying the pawl is free on the shaftof the ratchet wheel, as is also 
the actuating lever B; the latter can move independently of A 
through an angle 6 determined by the stops CC, and this angle is 
made sufficient to allow of engagement and disengagement of the 
pawl. Motion of B after the angle 0 has been described is either 
communicated to the ratchet wheel or is free return motion of 
the pawl. 

270. Friction Ratchets.—It is not essential that the pawl should 
make positive engagement with the ratchet wheel; frictional 
contact can be equally as effective, and friction ratchets of the 
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type shown in Fig. 343 are frequently used. The pawl A, pivoted 
at B to the arm C, has a cam face aa which is in frictional contact 
with the circular face of the wheel D. Supposing the arm to be 

Fig. 343 

fixed, then anticlockwise motion of D will simply cause the pawl 
to swing clear, but clockwise motion will cause it to jam against 
the wheel, thus locking it. 

Friction ratchets besides being silent can be made so that the 
minimum motion possible to the wheel is less 
than with toothed ratchets, unless very fine 
pitches are used for the teeth, with the atten¬ 
dant disadvantages of weakness and high cost 
of manufacture. 

An improved form of friction ratchet -is 
shown in Fig. 344, where a pad E is interposed 
between the cam face of the pawl A and the 
wheel D. 

Friction ratchets in which the pawl takes the fornT of a ball or 
roller are commonly used in the “ free wheels ” of bicycles and 

motor cars, four different arrange¬ 
ments being shown in Fig. 345. 
For anticlockwise rotation of the 
member A relative to B the balls 
or rollers C roll towards the con¬ 
verging end of their pockets and 
jam, thus locking A and B to¬ 
gether ; for clockwise rotation of 
A relative to B the balls or rollers 
run towards the large end of their 
pockets, where they are free of the 
member B. Springs of various 
forms may be used as at I) to 
keep the balls or rollers in a posi¬ 

tion such that they can act immediately A begins to turn anti- 
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clockwise relative to B. A number of balls or rollers of varying 
sizes is sometimes used, as shown at E, and a pad may also be 
placed between the balls or rollers and the outer drum as shown at 
F, Sometimes also the inner member is made circular and the 
outer member is shaped so that the balls or rollers jam for one 
direction of relative rotation. Also, by making the pockets in 
the shaped member symmetrical, the balls or rollers may be made 
to jam for both directions of relative 
rotation, but the rollers must then be 
controlled in some way so that the 
direction of rotation for which they will 
jam may be selected at will. In Fig. 340, 
for examj)le, the rollers are prevented 
by the cage A, which is fixed relative to 
the outer member, from moving to¬ 
wards the jamming ])osition when the 
inner member turns in the clockwise 
direction relative to the outer member, 
but they can jam for anti-clockwise 
motion. If the cage w(re released from the outer member and 
1 urned through an angle a,and again locked, then tJie inner member 
would jam for clockwise mofion relative to the outer member. 

In the Humphrey-Sandeberg roller ratchet the inner and outer 
members (A and B) are parts of hyperboloids of revolution, and 
parallel rollers, with their axes making a suitable angle witli the 
common axis of A and B, are arranged between the latter. 4'hen 
for one direction of rotation of A relative to B the rollers w ill tend 
to cause axial motion of A relative to B, so that jamming ensues 
and causes the two members to revolve as one. For the opposite 
direction of rotation the rollers will tend to cause axial motion 
such as to free the members. By controlling the axial position 
of the inner member relative to the outer the mechanism cjan be 
made to function as a friction clutch and to slip when the torque 
acting exceeds a predetermined figure. 

271. Spring Ratchets.—A coil spring can be used as a ratchet 
as is shown in Fig. 347. The plate A 
is quite free to turn on the member B, 
whereas the plate C is mounted so 
that there is a certain amount of friction 
tending to keep it from turning relative 
to B. The spring D is coiled round B 
and at its ends is anchored to A and 

respectively. If now A is turned 
in a clockwise direction when looked 
on in plan view, then since C will tend to remain at rest relative 
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to B, the spring will be coiled up round B and will grip it 
so that all three members A, B and C turn as one. But if A 
is turned in the opposite direction, then the spring uncoils and 
does not grip B. Then only the friction between C and B will be 
tending to make B turn, and provided this friction is less than the 
torque tending to hold B at rest, the members A and C, and the 
spring D, will be able to turn independently of B. 

272. Lock Mechanisms.—An example of a rather different 
kind of ratchet is afforded by the ordinary lever lock, a simple form 
of which is shown diagrammatically in Fig. 348. The bolt A is 
free to slide in the frame B, but in the position shown is locked by 
the lever C, which is engaging the projecting tongue D, which is 
part of A. When the key is inserted and turned in a clockwise 
direction the land E first comes into contact with the face Im of 
the lever and raises the latter so that subsequently when the land 
F of the key engages the slot H in the bolt the latter can be slid 
back, the tongue D passing through the gap K of the lever. 

Fio. 348 Fig. 349 

Clearly unless the land E is just big enough then the tongue D 
will catch on the lever and the key will be prevented from sliding 
the bolt. By using a number of levers whose faces Im are 
•differently shaped the lock can be made more difficult to pick. 

The Yale lock consists of two separate metchanisms; one is 
shown on the top in Fig. 349, where the bolt A is locked by the 
cam B in the position shown. When B is turned it first of all 
unlocks the bolt and then, on engaging the slot C, it slides the bolt 
back. The second mechanism serves to lock the cam B and is 
shown at the bottom of the figure. The cam B is part of the 
cylinder D, which can only turn when all the plungers E (which 
are of different lengths) are brought into the positions shown, by 
the insertion of the proper-shaped key. When the key is removed 
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the plungers E enter holes drilled in the cylinder and thus lock the 
latter, and the cam B, against rotation. 

The Bramah Jock is the simplest of all and is shown in Eig. 350. 
The bolt A carries a lug in which is 
formed a slot whose shape is as shown. 
Projecting into this slot is a pin which is 
part of a shaft that can turn about the 
axis O. In the position shown this pin 
is locking the bolt. When the pin is 
turned it engages the portion B of the 
slot and shdes the bolt. When the bolt 
has been slid back the pin csn go on 
turning, moving the while along the semicircular portion C of 
the slot. 

273. The “ Geneva Stop ’’ Mechanism.—The principle of this 
is shown by Fig. 351. The shaft A turns about its axis and 

Fin. 350 

has a projecting arm wliich carries a pin B, which is shown just 
entering a slot in the wheel C, so as to rotate the latter through 
the angle 6. During this action the wheel C is free to rotate, 
because the shaft A is cut away as indicated by the unshaded 
portion so as to allow the corners D of the wheel to clear. As the 
pin B leaves the slot in the position B' the portion E of the shaft 
A comes round and engages the circular portion F of the wheel C, 
which has now arrived in the position F'. The shaft then locks 
the wheel against rotation until the pin arrives at the position B 
once again. Thus the wheel C gets an intermittent motion 
through the angle 6 for each revolution of the shaft A, and if the 
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latter revolves at a constant speed, then the time during whicJi 
the wheel C is moving is proportional to the angle ip and the time 
during which it is stationary is proportional to p. This mechanism 
is fairly widely used in machine tools. 

During the engagement of the pin B with the slot in the wheel 
C the mechanism is a reduced form of slider-crank chain. If the 
pin B were reduced in diameter and provided with a block 
that fitted the slot, the mechanism would be identical with the 
first inversion of the slider-crank chain as described in Art. 122, 
Chapter IX. 

Expressions for the angular velocity and acceleration of tlic 
wheel C in terms of the (constant) angular velocity of A are 
given in Question 7 of Exercises IX. 

274. The Mauser Revolver Mechanism.—This also gives an 
intermittent motion to the driven member and is shown diagram- 

matically in Fig. 352. The piece A can 
slide up and down the rod B and carries 
the pin lever C. Supposing the action 
to commence in the position shown, then 
as A moves upward the pin shdes in 
the slot D and causes the member E to 
rotate about its axis XX. The pin C 
eventually falls over the ledge F into the 
slot G, so that when A goes down again 
the member E is held stationary. To¬ 
wards the bottom of the stroke of A 

Fig. 352 the pin C falls over another ledge into 
the slot H and the cycle of operations 

may be repeated. This mechanism is used also in machine tools. 

Escapements.—The number of different forms of escapement is 
very large, and it is possible to give here only a few of them. 
For details of the types not described the reader is referred to 
books on clockwork and to Reuleaux’s Der Constructor. 

275. Graham’s Escapement.—^This is shown in Fig. 353 and is 
actuated by a pendulum which in swinging to and fro swings the 
anchor A. The pendulum is supposed to be swinging to the left, 
and the tip B of a tooth of the escape wheel has just escaped from 
the pallet C of the anchor ; the escape wheel now turns imder the 
influence of the clock spring or weights until it is checked by 
another tooth coming into contact with the surface DE of the 
other pallet. When the pendulum and anchor swing back to the 
right the escape-wheel will again be freed and will turn until 
the tooth F is checked against the surface GH of the pallet C. As 
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the tips of the escape-wheel teeth move across the surfaces HC and 
DK of the pallets they give an impulse to the anchor and thus to 
the pendulum, and this keeps the 
latter swinging. This impulse 
occurs when the pendulum is near 
to the middle of its swing and is 
an essential feature of all such 
escapements. 

Graham’s escapement is an im¬ 
provement of an older form known 
as the Anchor or Recoil escape¬ 
ment, in which the pallets were 
shaped as shown at the bottom of 
Fig. 353. The tips of the escape- 
wheel teeth on being released by 
the tips of the pallets were checked 
by the surfaces ab or cd. The pressure (^f the teeth on these 
surfaces tended to bring the pendulum to rest, but as this 
could not be done instantaneously, the anchor forced the esca})e 
wheel to revolve backwards slightly, i.e. to recoil. After the 
pendulum had come to rest and started on its return it received 
the necessary impulse from the pressure of the teeth on the 
surfaces ab and cd. The recoil of the escape wheel and its action 
against the motion of the pendulum have been proved to be bad. 
One important difference. between the recoil escapement and 
Graham’s is that, supposing the pendulum to be removed, then in 
the former the escape wheel can force the anchor to vibrate, 
whereas in the latter it cannot. 

276. The Chronometer Escapement.—This is used in conjunc¬ 
tion with a balance wheel, controlled by a hair spring, which 
oscillates and, being fixed to the sanTe shaft or stem as the 
members P and Q (Fig. 354), which carry projecting pieces L and 

Fig. 354 

Kig. 3.*>3 

M as shown, oscillates them also. In the position shown the 
escape-wheel tooth A is held against the locking stone B and the 

19 



21M) MECHANISM AND THE KINEMATICS OF MACHINES 

balance wheel is turning in a clockwise direction, so that eventually 
L strikes the light spring C, which deflects and allows it to pass 
and the balance wheel to travel on to the end of its swing. On its 
return L again strikes (\ but the latter is now backed up by the 
stiff arm D, and so the whole ^rssembly has to deflect by bending 
the thin portion E. This allows the tooth A to escape and the 
w heel begins to turn ; this brings a tooth up against the pro¬ 
jection M, and the latter, and thus the balance wheel, receive the 
necessary impulse to keep them vibrating. The projection L 
having passed the spring C, the latter and the arm D return in 
time for the locking stone B to check the next tooth of the escape 
wheel. 

277. The Lever Escapement.—This is sketched in Pig. 355, 
where A is a disc fixed to the stem of the balance wheel and C is 

,o o'G 

Fj(.. .355 

the lever, pivoted at O. When the balance wheel is nearing the 
centre of its swing the pin B, carried by A, enters a slot in the 
lever, turns the latter, and thus releases a tooth of the escape 
wheel which has hitherto been locked against the corner E of the 
pallet F, or against the corresponding corner of H. Tn the figure 
the balance wheel is shown moving anticlockwise and the above 
action has been completed. When the escape wheel, having been 
unlocked, commences to move, its tooth presses against the face 
of the pallet F (or the corresponding face of H) and imparts an 
impulse to the lever and, through the pin B, to the balance wheel. 
Thus, when the unlocking action has been completed by the pin 
bearing against one side of the slot and turning the lever, the lever 
moves ahead of the y)in and the other side of the slot comes 
against the pin so as to impart the impulse. Stops (f limit the 
motion of the lever. The angle turned through by the balance 
wheel during the unlocking action is about oile-third of that 
during w hich the impulse is given and the sum of these angles is 
about one-twentieth of the total angle of swing of the balance 
wheel. 

278. The Geneva or Cylinder Escapement.—This is also known 
as Graham’s cylinder escapement and is shown in Fig. 356. A is 
a portion of a thin cylinder which is attached, coaxially, to the 
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balance wheel. The tooth B having just escaped past the edge 
of the cylinder, which is ro'tating in a clockwise direction, gives 
the cylinder and balance wheel the necessary impidse through 
the action of the face (' of the tooth against the edge of the 

Fig. 356 

cylinder. The tooth is subsequently checked against the inside 
of the cylinder at I) and the escape w^heel remains at rest until 
on the return swing of the balance wheel the tooth is released by 
the other edge of the cylinder. 



CHAPTER XXll 

MISCELLANEOUS MECHANISMS 

279. Mechanisms Using Only Sliding Pairs.—What is probably 
the simplest of all mechanisms consists of only three links joined 
by three sliding joints, and is shown in Fig. 357. The links B and 

C are free to slide in the frame A, and clearly motion of B produces 
motion of C and vice versa. A somewhat similar mechanism has 
four links joined by four sliding pairs. Such mechanisms seem to 
bo of very little practical value. 

280. Mechanisms Using Screw Pairs.—Mechanisms in which one 
or more screw pairs are used are in quite common use, but as 
these mechanisms are relatively simple, little need be said about 

them. The simplest consists of 
three links joined by three screw 
joints as shown in Fig. 358. Link 
A is connected to B by the screw 
thread a and to C by the thread 
c, while B is connected to C by the 
thread 6. The threads must be 

of different pitches or, if two equal pitches be used, they must 
be of opposite hand. Let the pitches of the three threads bo 
represented by a, 6 and r respectively, all being of the same 

292 

Fig. 368 
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hand, and let 6 and (f> be the angles turned through by A and C 
relative to B. 

Then the axial motion of A relative to B is ad 
and C ,, B ,, h<j> 

■ , ■, (-! A,, b<f>—ad 

but this is equal to c(if> — d). Henee ^ = —~ . d, and if a and c 
0 c 

are small and b is large, then a large rotation of A will produce a 
small rotation of C. The writer has never come across this 
mechanism in his practical experience, but a mechanism in which 
A is connected to B by a turning joint (i.e. in which the pitch a is 
zero) has been used as a reduction gear for the steering of motor 
lorries, the steering wheel being fixed to A and C being connected 
to the drag link of the steering linkage (see The Motor Vehicle, 
by Newton and Steeds, page 321). 

Another simple mechanism, and one that is widely used, coU' 
sists of three links joined by a turning joint, a sliding joint and 
a screw joint; an example is an 
ordinary vice. 

A common application of a screw 
pair in a mechanism is shown in 
Fig. 359. It consists of five links 
A, B, C, D and E joined by one 
screw joint and four turning joints. 
The mechanism can be reduced 
to one of four links by joining A to 
D by a ball-and socket joint, the link E being eliminated. In 
both of these forms this mechanism has been used as a steering 
reduction gear for motor cars. The lover C, which is usually 
forked so as to straddle the nut B, is generally used to keep the 
nut from turning. 

Two more mechanisms using screw pairs arc shown in Figs. 360 
and 361. In the former the nut is prevented from turning by the 

casing and is coupled to the lever B by a comiecting link (or links) 
C. In the latter the casing again prevents the nut from turning, 
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but the nut is connected to the lever B by the link C, which is 
free to turn in the nut A and to slide along the lever B. Both of 
these mechanisms are commonly used as steering reduction gears 
in motor cars. Another mechanism used for this purpose is 
similar to that of Fig. 361, but the lever B carries a ball-ended 
pin, the ball of which fits in a parallel hole drilled in the nut A at 
right-angles to the axis of the screw ; this construction eliminates 
the link C. 

Mechanisms using two screws of the same pitch, but of different 
hands, are also used in steering gears, and two examples are shown 
in Figs. 362 and 363. The former has been used in ships. The 

Fig. 362 

double-threaded screw A has to be allowed a slight axial freedom 
in the bearings by which it is carried in the frame B, because 
otherwise the mechanism would be locked. This will be clear 
when it is reahsed that, because of the differing angularities of the 
connecting links F and G, a given angular movement of the link 
C will move the nuts D and E unequal amounts relative to the 
frame B, and if the screw" were fixed axially this would be im¬ 
possible. This difficulty is avoided in the mechanism shown in 
Fig. 363, where the nuts A and B (which are guided and prevented 

from rotating by the frame, which is not shown in the diagram) 
are provided with extensions which bear directly on rollers C and 
D carried by the lever E. This form of the mechanism is used in 
motor cars ; it has the advantage that backlash in the screw 
joints can be eliminated by an axial adjustment of the screw, 
which, ofi course, must be fixed axially when the mechanism is 
working. 

281, Skew or Crossed Kinematic Chains.—In the ordinary four- 
bar chain the axes of the four turning joints are parallel, and in 
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‘the spherical fq>ur-bar chain they converge to a point, tliese being 
the only possible arrangements ; but if more than four links are 
used it becomes possible to have mechanisms in Avhicii the axes 
of the turning joints are neither parallel nor intersecting. Also 
by the use^of joints that allow more than one degree of Irec'dom 
the number of links may be reduced to tour. Such mechanisms 
are termed skew or crossed mechanisms, and for a 1 idler discussion 
of them than is possible in this book the reader is referred to 
Reuleaux’s Kwematics of Machine.^ (Macmillan, 1870), page 549. 
A few of these mechanisms only can be here' considered. 

In Fig. 364 is shown the mechanism of Robertson's steam engine, 
which was invented some time prior to 1870. The crank A is 

Eic.. 361 Fir, 365 

connected to the member R (the piston lod) by the piece r',\vhi(‘h 
is free both to slide and to turn on the crank-pin A and is free to 
turn aboift the pin D carried by the lugs E integral with B. As 
the crank A revolves the member B is moved with a screw motion, 
a combination of an axial motion up and down and a rotary 
oscillation about the axis XX. This does not seem a very sound 
arrangement mechanically, but it has worked satisfactorily as a 
mechanism for driving the sleeves of single-sleeve-valve internal 
combustion engines running at fairly high speeds. A sounder 
mechanical arrangement results from making the axes of the pin 
D and the crank-pin A intersect as shown in Fig. 365, where also, 
in the joint between V and A, C has been made the solid member 
and A the hollow member instead of the opposite arrangement 
of Fig. 364. This also has been successful in high-speed internal 
combustion engines. 
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A much sounder mechanical design is obtained, however, by 
duplicating the cranks A of the above mechanism (Fig. 364) and 
making the link C double-ended, as shown in Fig. 366. This also 
has been successfully used for the purpose mentioned above. 

Robertson also proposed an alternative mechanism on the 
lines of Fig. 367. The link C is now prevented from sliding along 
the crank-pin A and instead of being pivoted directly to B is 
connected by the link D, to which it is pivoted. The link T) is 
free to slide and to turn in the member B. 

What is probably the best mechanism for driving the sleeve of 
single-sleeve-valve engines is a reduction of the mechanism shown 
in Fig. S66, It is shown in Fig. 368, where the crank A is coupled 
to the sleeve B by the bait C, which is free to turn and to slide on 
the crank-pin A, and which fits in a socket in the sleeve. 

Another good arrangement is shown in Fig. 369. A single 
crank A is used and the connecting-rod C couples this crank to a 
lever E. The connexion between the rod C and the sleeve B is 
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by the ball D, which works in a socket formed in C and which is 
free to slide along the pin of the sleeve. In an alternative con¬ 
struction the end P of the rod C is guided along a straight line by 
a sliding block ; this, of course, is equivalent to making the lever 
E infinitely long. 

A variation of the mechanism shown in Fig. 365 is given in 
Fig. 370. The members A and B are free to turn, about the axes 

OX a]id Oy respectively, in the frame C, and are connected by 
the L-shaped pistons D which slide and turn in holes bored in 
A and B. To avoid dead-centres a number of pistons are used. 
The radii of the pitch circles of the cylinders in both members 
must be exactly equal or the members will not both be able to 
make complete revolutions. This mechanism is now used as a 
))ump (the cylinder blocks A and B being positively driven) for 
o})erating the retractable undercarriages of aeroplanes. It has 
also been used as an engine, but not with any great commercial 
success. 

282. The Swash-Plate Mechanism.—^The term “ swash-plate ” 
is loosely applied to several mechanisms, but that to which it 
should, in the writer's opinion, be restricted is shown in Fig. 371. 
The actual swash-plate A is a slice of a circular cylinder, the faces 
a and b being parallel planes inclined at some angle a to the axis 
of the cylinder. The swash-plate is integral with its shaft and a 
turning joint connects it with the frame B. The member C is 
connected to the frame B by a sliding joint and to the pads D by 
ball-and-socket joints. The pads D slide on, and the centres O 
of their spherical portions are usually arranged to lie in, the faces 
of the swash-plate. If the latter condition holds, then it is easily 
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seen that the motion of the plunger C is simple harmonic and its 
2R 

stroke is ^-, R being the distance between the axes of the swash- 

plate and plunger. Usually several plungers are actuated by the 
single swash-plate. 

Jn this form the swash-plate has been successfully used as an 
engine mechanism and for air compressors, but only since the 
invention of the Michel thrust bearing and the application of its 

D and the swash-plate. For detailed descriptions of these 
applications the reader is referred to the technical Press. 

If force closure is permissible, then contact need be made on 
one side of the swash-plate only. The speed and amount of sliding 
between the swash-plate and the pads T> are reduced in the con¬ 
struction shown in Fig. 372, where the portion (E) of the swash- 
plate, against which the pads J) bear, is made separate from and 
left free to turn on the body of the swash-piate A. Most of the 
sliding now occurs at this bearing (between E and A), but this 
can now be made a ball or roller bearing. The mechanism is, 
however, no longer a swash-plate, but has become a Z-crank. 

283. The Z-Crank Mechanisms.—One form of this mechanism 
is shown in Fig. 373. The axis of the pin of the crankshaft A is 
inclined to the axis of rotation at some angle a, a^nd the resulting 
shape of the shaft gives the name to the mechanism. The 
connecting link B, which is free to turn on the crank-pin, is 
connected by a ball-and-socket joint to the shder C, which is free 
to slide in the plunger D. The latter forms a shding pair with the 
frame E. As the crankshaft rotates in the frame the plunger D 
receives a reciprocating motion. The link B is kept from rotating 
by its connexion with the slider C, which keeps the point P in the 
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plane containing the axes of the crankshaft and plunger. In 
this form the mechanism has only rarely been used. Since the 

axis of the crank-pin describes a cone, this kinematic chain is 
sometimes referred to as a conic-crank chain. 

If this mechanism is used in a multi-cylinder form, i.e. with a 
number of plungers, D, Dj, D2, etc., all o])erated by the single 
Z-crank, then the members B operating the plungers must bo 
independent of each other, because during a revolution of the 
Z-crank the angles between the lines OP, OP], etc., will not be 
constant, but will vary slightly, and this would jiot be possible 
if a rigid member B, common to all the plungers, was used. As 
it is not very convenient to allow each of the members B to bear 
directly on the crank-pin, one of these members can be made a 
master member, embracing the crank-pin, while the others can 
embrace auxiliary pins, carried by the master member, and whose 
axes are parallel to that of the crank-pin. 

284. The Motion of the Piston.—In Fig. 374 the front elevation 
shows the mechanism when the crank has turned through an 

angle 6, as seen in the end view, from the position in which it lies 
in the plane of the paper. The angle aj of the cranli is thus not 
the true angle between the crank and the axis of rotation. If the 
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crank is swung back into the plane of the paper, it will be seen as 
and the angle A'^OC will be the true angle a between the 

crank and the axis of rotation. Since the rod OP lies in the plane 
of the paper and is perpendicular to the crank, the angle POA is a 

right angle. 

Then Tan ai = 
AC 

CO 
and AC-=E'C'=C'A' Cos 0-OF Cos d=kX) Cos 0. 

Tan aj: 
^C 

"CO" 
Cos e 

=Tan a Cos 6. 

Then a:=OP Sin ai 
OP Tan a Co^ 0 

“\/l+Tan2aCos2”0 

and by differentiation and simplification it will be found that 

, —OP Tan a Sin 0 d0 
'Tt. 

, ..de. 
and, if -3- IS constant, 

at 

—OP Tan a Cos 0(1+3 Tan^ a—2 Tan^ a Cos^ 

~ pTTan2 a Co82 0)^1'^ • 

(1) 

(2) 

(3) 

285. A simplified form of this mechanism is shown in Fig. 375. 
In this form it has been and still is used occasionally. A some¬ 

what different and more widely used form of Z-crank mechanism 
is shown in Fig. 376, where the connexion between the link B and 
the plunger D is by a connecting-rod C with ball-and-socket joints 
at both ends. It is now necessary to anchor the link B against 
rotation, since clearly the rod C cannot supply the necessary con¬ 
straint. This may be done as shown in the figure by providing 
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the link B with an arm F, the end of which engages a block G 
that works in circular guides H fixed to the frame E. The axis 
OP of the link B is thereby constrained to lie in the plane contain¬ 
ing the axis of the plunger D and the axis of rotation of the crank¬ 
shaft. An alternative method is to connect the end of the arm P 

to the frame by a rod (using a ball-and-socket joint at each end) 
whose axis, when the plunger D is in mid-stroke, is approximately 
perpendicular to the plane of the paper. If this is done the point 
P will no longer move in the plane of the paper, but will describe a 
figure of eight on a spherical surface, centre O. 

The member B can also be controlled by making it integral 
with a'bevel gear (axis YY) which is meshed with a similar bevel 
gear (axis XX) that is fixed to the frame. The pitch-cone angles 
of the two bevel gears must thus be each equal to half the obtuse 
angle between the axes XX and YY. 

Whichever method of anchorage is adopted it is not essential 
to use a ball-and-socket joint between C and D—an ordinary 
turning pair is kinematically sufficient; but with the second form 
of anchorage (and also with the first form if the point P does not 
lie in the plane of the guide H) the plunger would receive a screw 
motion, and it was found that in the Bristol axial engine, * in 
which this construction was used, the torsional stresses set up 
in the rod C by the rotational component of the motion of the 
plunger brought about fracture of that rod. The trouble was 
obviated by using a ball-and-socket joint. 

Usually in practical applications of this mechanism several 
plungers are operated by the single-Z-crank, and the link B takes 

*■ Soo The Engineer, May 24th, 1936. 
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the form of a disc or star-shaped member connected at a number 
of points to the various plungers by the connecting-rods. Only 
the point P of the link B that lies in the plane of the guide H will 
move in a plane ; the other points corresponding to P will describe 
figures of eight as described above. The motions of the various 
plungers will not be identical, but the variations will be, in most 
practical applications, extremely small and may be neglected. 

The motion of the plunger D will be very closely the same as 
the horizontal component of the motion of P, because the altera¬ 
tion in the angularity of the connecting-rod C will be quite small. 
The displacement, velocity and acceleration of the plunger will 
thus be given approximately by the equations (1), (2) and (3), 
page 300. As those expiessions refer only to the point P, which 
moves in the plane of the guide H, expressions for the horizontal 
motion of a point Pj. not so situated, will now be derived. 

286. In Fig. 377 the plane of the guide H of Fig. 370 is the plane 
of the paper in the elevation on the left and is seen as the line VOV' 

V 

in the end view. The point of the member B that lies in the plane 
of the guide is thus constrained to lie-always in the line VOV and 
is seen at P. The member B, a circular plate on the circum¬ 
ference of which lie the points P, Pj, P2, etc., is seen in the end view 
as the ellipse LPiPM, the major axis LM of which lies in the plane 
of the end view and is perpendicular to the plane of the crank¬ 
shaft. The latter is shown as COC, making an angle 6 with the 
vertical plane. In a view along the line LM the member B will 
be seen as a line B'B' inclined to the vertical at the angle a, the 
true angle between the crank-pin and the axis of rotation of the 
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irankshaft. 1'he point Pj on the circumference of B is the point 
whose motion parallel to the axis of rotation is being investigated. 
It does not lie in the plane of the elevation, nor does the axis of 
the plunger Dj, which is actuated by the point Pj through the 
connecting-rod (Jj. Since the points P, Pj, Pg, etc., will generally 
be situated at equal distances round the circumference of the 

360° 
member B, the true angle between P and Pi will be ~i/j, where 

n — the number of cylinders. In the end view this angle appears 
as POPi, while the true value is obtained by swinging the member 
B about the line LM until it lies in the plane of the paper. It will 
then appear as the circle LQSM and the angle QOS will be the 
true angle 0. If Pi is projected to P/ and Pj'T' is drawn perpen¬ 
dicular to O'X', then O'T' —x is the distance, measured parallel to 
the axis of rotation, of the point Pj from the origin O, the inter¬ 
section of the axis of the crank-pin and the axis of rotation. 
Also PjW - y is the height of the i>oint Pi above the horizontal 
plane tlirough the axis of rotation, and WO =2: is its distance out 
from the \eitical plane through the axis of rotation. 

Then * O'T'-^Pi'T'Tan a 

=PiT Tan a 

= TQ Cos a Tan a 

~OQ Sin ^ Sin a 

=-r Sin a Cos (^+r) .(4) 

where r is the radius of the circle on which the points P lie, and 
Tan y~Tan 0 Cos a. 

If i/f is put equal to zero, then the expression will refer to the 
point P and reduces to 

.r^r Sin a Cos a 

r Sin a 

Vl+Tan^ 0 Cos^ a 

r Tan a Cos 6 

■~\/lT^an2 a Co^ 6 

which agrees with equation (1), page 300, r being equal to the 01^ 

of that equation. 
It can easily be shown that 

y=P|W=r Sin (^+y) Sin B-\-r Cos (0+y) Cos 8 Cos a . (5) 

and that 

s=OW ~r Sin (0+y) Cos 6—r Cos (^+y) Sin 6 Cos a . (6) 
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Since the angle between the planes of the cylinders will be it 
will be seen that the co-ordinates of the end F" of the connecting- 
rod C are yi ”R Cos =R Sin xfs and which is the unknown 
quantity, R being the distance between the axes of the cylinders 
and the axis of rotation. Then if L is the actual length of the 

connecting-rod C, we have 

from which — 

If the expressions for x, y, z, Zi and y derived above are sub¬ 
stituted in this equation, it will then give in terms of 6, but will 
be so complicated as to be practically unmanageable. 

As stated previously, however, the motions of the plungers I) 
will be very closely the same as the motions, parallel to the axis 
of rotation, of the points P, and.thus may be taken to be given by 
the equation 

x==r Sin a Cos (^+y)- 

dy do 
'i'hen i = —r Sin a Sin (*A+y)^ • ^ .... (7) 

^dO 
and, if is constant, 

x=-rShia|c!o8W/+y)(^) +Sin(^+y)^|(^^ . . (8) 

where Tan y=Tan 0 Cos a 

dy Sec2 0 Cos a 

^""l-fTan2 ^Cos2 a 

d^y 2 Sec2 0 Tan 0 Cos a Sin2 a 

d^^ (I4-Tan2 ^Cos2 a)2 

287, The position of the plunger Dj when the crank is in the 
position shown, i.e. having turned through an angle 6 from the 
plane of the guide, may be found exactly by graphical means as 
follows. The views on the right of Fig. 377 having been drawn, 
the point Vi" in the elevation may be found by setting out 
GPi''—a:=0'T' along the projection line through Pj. Then with 

centre Pj'' and radius an arc is struck to intersect 
the line of stroke of Di (projected from F, which is the end view 
of it) in F", L being the actual length of the connecting-rod C and 
a (equal to Zi —z) being the dimension shown in the end view, i.e. 
the difference between the distances of Pi and F in front of the 
plane VOV. Clearly k may be obtained graphically by the 
construction shown in the left-hand comer of the figure. 
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288. The “ Janney ** Mechanism.—Another mechanism that is 
eommonly referred to as a swash-plate mechanism, but which is 
actually an inversion of the Z-crank mechanism shown in Fig. 376, 
SB shown in Fig. 378. The Z-crank is now the fixed member and 

Fig. 378 

is the frame AAAj. The member B now revolves about the 
inclined axis OY of the Z-crank. This member is commonly 
referred to as the swash-plate of the mechanism. The member E 
now rotates about the axis XX of the Z-crank and is connected to 
the member B by a universal joint of which O is the cross and 
which corresponds to the guide FGH of Fig. 376. Since the 
mechanism is an inversion of that of Fig. 376, the motions of the 
pistons D parallel to the axis of rotation XX are the same as in 
that mechanism and are given approximately by the equations 
of Art. 284. 

By varying the angle a the stroke of the pistons may be varied. 
To do this the member AAAj is made in two parts, AA and Aj, and 
Aj is arranged to be able to turn about an axis, passing through the 
point O, relative to AA. Except during the actual alteration of 
the stroke the part Aj is fixed relative to the part AA. 

This mechanism has been used for many years as a variable- 
speed hydraulic drive, one of. its first applications being in war¬ 
ships, where it was used to rotate the gun turrets. It was 
particularly suitable for this purpose, because, due to its ability 
to exert high torques at very low speeds, it gave a very precise 
control of the motion. It has since been used for many other 
purposes, such as actuating the rudders of ships, driving machine 
tools, in mine haulage gear, etc. It is known under several names, 
e.g. Williams-Janney, Wateringbury, Vickers-Janney, and is 
maniifactured in England by Variable-Speed-Gears, Ltd. 

289. The Wobble-Crank.—This is similar to the Z-crank, but 
whereas in the latter the axis of the crank-pin intersects the axis 

20 
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of rotation, in the wobble-crank it does not do so, the crank-pin 
axis and the axis of rotation being in a skew relationship. One 
application of this is as a drive to the sleeve valve of single-sleeve- 
valve internal combustion engines and is shown diagrammatically 
in Fig. 379. The member B, which is free to turn on the crank- 
pin, now receives an up-and-down motion in addition to a sideways 

Fig. 379 

rocking motion, and the ball-end P is thus able to impart an up- 
and-down motion along, combined with an angular oscillation 
about, the axis LM, which is the motion required with this valve. 
For a description of this application the reader is referred to The 
Motor Vehicle, 1st Edition, page 67. 

MISCELLANEOUS EXERCISES 

1. The figure sViows a luechanibm used in a marlune for wrapping caramels. 
If consists of a four-bar chain AB(’D of which AD is fixed and AB rotates at a 
constant speed. The point E of the link BC is connected as shown to one arm of 
a bell Clank FGH pivoted on a fixed pivot at G. The other arm H is connected 

by a link to a slider K. Plot a diagram showing the displacement of the slider K 
for any position of the crank AB. Take the displacement to be zero when the 
angle ^ is zero. AB~1 in., BC^6*5 in., CD —2*0 in., AD —6*5 in., BE —4*25 in., 
EF = l-25 in., FG==l-76 in., GH===3-25 in., HK = 6 0 in. 
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2. The figure shows a simplified version of the Geneva-stop m(K3hanism. If 
OA is rotating about O with a constant angular velocity a», prove that 

rf/5 _ a{6Co8a~a) 

dt a*-f-6* — 2a6 Cos a ’ ^ 

(a*6 —o6*) Sin a 

rf«‘"'(o*f6»-2o6Co8a)2 ' 

and that the maximum acceleration of X occurs when 

Cos a — 
4a6 V V 4o6 7 

3. The figure shows an element of a mechanism used in an automatic steering 
gear for ships, A is a disc driven at a constant speed Q, B and C are friction 
discs running on the face of A and coupled to the wheels of a differential D. The 

arm of the differential is fixed to the shaft E carrying the wheel F, which meshes 
with an equal wheel H. The latter is fixed to a nut J free to turn in the casing K 
and engaging a thread on the shaft M. At time t let the displacement of the 
casing K from the central position be a;, let the angular displacement of M from 
the zero position be d> and the angular displacement of the nut J from the initial 

dd 
position be Prove that, when a state of equilibrium obtains, — 

where fc is a constant. 

4. The figure shows a mechanism used for turning approximately elliptical 
holes in boiler plates. The head A rotates about the centre O, concentric with 
which is a fixed gear B, which meshes with a gear C half the size of B. The gear 
C is fixed to the shaft of a crankshaft D carried by the head A, and whose crank- 
pin is coupled by a connecting-rod to a slider E working in a radial slot in A. 
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The slider E carncH ♦he cutting tool. If the speed of rotation of A is 30 r.p.ni.. 
find the acceleration of the slider K for the position shown. Note.—When d- i) 
the crank I) is on a dead-contre. 

o. The mochanism shown in the figure is used in a knitting machine. ABC is 
a Whitworth quick-return motion. A second sliding block is pivoted on the pin 

at C and engages the slotted link X pivoted at D. The slotted link BC rotates at 
a uniform speed. Find the necessary condition to make the times of the forward 
and return strokes of X equal. 

6. The figure shows a modified form of Geneva-stop motion designed to reduce 
the acceleration of the slotted wheel at the commencement of its motion. OV is 
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a craiik that rotates at a constant speed; it is pivoted at V to the link VW, which 
carries the actuating pin at W. The link VW slides through the block P, which is 
pivoted on a fixed pivot at X. What is the necessary condition for the pin W to 
engage the slotted member without shock ? Plot the complete path of the pin W. 

7. A construction, due to Prof. C. L. Guillet, for determining the velocity and 
tangential acceleration of the centre of the roller of a pivoted follower actuated 
by a tangential cam is shown in the figure. OC is drawn perpendicular to OB, 

CS perpendicular to BA, SM perpendicular to OB and HM perpendicular to HA, 
OH being parallel to XX. Prove that . AC in./se>c. and tliat the tangential 
acceleration of A is given by • HM in./aec.". where tuc—angular velocity 
of cam in radians/sec., and AC and HM are measured in inches on a full-size 
diagram. 

8. The figure shows a mechanism that has been used as an alternative to a 
Geneva motion for giving an intermittent motion to the wheel 1). D, E and F 

ire toothed wheels and OABC is a four-bar chain, OC being the fixed link. The 
^heel F is fia^d to the link CB, which rotates at 30 r.p.m. Draw the velocity 
iiagram and find the angular velocity of the wheel D at the instant that the angle 
3CO equals 46*’. 

9. Beferring to the mechanism of Question 8, if P and Q are the pitch points of 
and F and E and D respectively, and if X is the intersection of CP, produced, 

irith OA, prove that when the gear D has zero speed, X coincides with Q. Also 
f B is the intersection of CO and AB, and I is the instantaneous centre of AB 
elative to OC, prove that when D has zero speed, IB is perpendicular to CPQ. 
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10. The figure shows a meohanism that is used in a gunnery instrument. The 
equal four-bar chains ahrd, and efgh, are coupled by the double-slider P, which 
can slide along be and fg. The bell-crank PRS is pivoted on a fixed pivot at R, and 

the arm RP engages a slider that is pivoted to the double-slider at I\ The slotted 
arm RS carries a block that actuates the rod T. If the movement of the rod 
T is measured from the positioq when RS coincides with od, prove that it is 

Sin 6 
proportional to 

11. The figure shows another mechanism used in the same instrument (see 

Question 10). The sliders A and B move perpendicular to their respective slots 
and actuate the rod C through the slotted linkD, which is pivoted at E. Prove 

that the movement of C is proportional to 
y 

12. In the mechanism shown in the figure A and B are cylinders of equal 
diameters free to rotate about their common axis XX, while C is a disc free to 

rotate about its axis YY, E and F are rollers interposed between the cylinders 

y 
and the disc. Prove tliat the rotation of A is equal to ^ 



ANSWERS 'I’O EXERCISES 

Kxercisks 1 

1. Two. 2. Two. 3. Two. 4. One. A holixr. 5. Three. 6. One. 7. One 
8, One. 9. 2-225 yards at angle 37'^ 22' W. of N. 10, Ill S mile.s at angle 2(i .34' 
E. of N. 11. 0-078 ft. due E. and 0-2!)3 ft. vertically upwards. 12. 20 ft. per 
see. 13. 1-2 f.s.; 0; 1-26 f.s. 14. 46-3 in.p.h. ; 27 ’ 14'E. of N. 15. 1414f.s. 
from W. to E. 16. 81-82 m.p.h. : l-3(> miles. 17. 58-01 m.p.h. ; 0-214 miles. 
18. 5-7 ft./soc.-; 56-2 ft., 14-0 ft./sec. 19. 1-56 ft./sec.“ in direction .3’ l8' 
W. of N. 

Exercises J 1 

1. 104-72 ft./sec. 2. IMl rads./see. 3. {'-) 0; (6) r>2-36 ft./sec. ; (r) 2(>1S 
ft./sec. 4. 4-19 rads./sec.5. 24.5-5 r.p.m. ; 10-48 nna. 6. 1-28 ivnis./sec.",- 
10-04 rads./sec. ; 04 radians. 7. 10,007 ft,/sec.8. 12-5 ft ./sec.-; 0-5 ft./sec.^ 
9. 28-08 ft./sec.2. 

Exercises III 

1. y--0144; .v-0-102 ; i-- 0-75;.r-0. 3. i--2-425;y 0-701 ; x -2-708; 
.y--0-003. 4. x=~l-575; y^-11-701; ir-- -24-171 ; V--J-54.3. 5. > 2-5; 
^---2-829; C--7-5. 6. a? - ~ 0 0025 ; //-—3-404; i- 2-704 ; .‘r 5-828; 
y--—1*7321; z-0-177. 7. Radial velocity x- ra ('os a ; axial v-elocity y 
-- —ra Sin a ; transver.se velocity z ~rw Sin a ; radial acccleiation .r - r'a (’os a 
— r Sin a {a- oj^) ; axial acceleration y— -ra^ ('os a-ra Sni a ; transviuse 
acceleration z — rw Sin a-f 2ra»d ('os a. 8. Ka<lial accelcTation— 55-033 towards 
axis; axial acceleration-0-011 upwards; transverse acceleration - 18-32. 
9. Radial acceleration0-57 ; transverse acceleration —0-297; axial 
acceleration — I-003. 10. Along Ol), -7850; along OE — 14,800. 

Exercj.ses 1\’ 

1. (a) 4, 2 translations and 2 rotations ; {b) 3 translations; (c) .3, 1 rotation 
and 2 compound motions, consisting of translations and rotations, in perjien- 
dicular planes ; (d) 2, 1 combined translation and rotation and 1 rotation. 
2. The l.C. lies at the intersection of the perpendiculars to OX and OY drawn 
tlu'ough A and B respectively. 4. 1-72 f.s. 5. 7'he l.C. lies at the intersection 
of a perpendicular to OY through P and a perpendicular to the rod through Q. 
Centrode is a parabola, axis OX vortex at Q. 8 66 rads./sec. 6. 8-80 in./sec. 
7. Zero. 8. 04-25 in./sec. perpendicular to OA. 9. .3-70 f..s., 4.5'. 10. 48-37 
r.p.m. anticlockwise looking from B to E ; 50-77 r.p.m. about BK, (lot-kwise 
looking from B to F. 11. 145-466 r.p.m. ; axis at 9' 54' to OA, 0-960 in. from 
OA ; 323-9 in./sec. 12. 3-60 rads./Sec. ; 3-07 rads./sec.-. 

Exerci.ses V 

1, (a) 6, 3 translations and 2 rotations, one about a normal to tlie plane and the 
other about the line of the body ; (b) 2, 1 translation along AB and 1 rofation 
about a line thi’ough P parallel tt) C15 ; (r) 4, 1 rotation about PQ and .3 com¬ 
pound motions ; (^) 2, 1 rotation about PQ and 1 compound motion ; (c) 1 
rotation about PQ. 2. 2, P. 3. 3,1. 4- 90'. 6. No. 4, translation in vertical 
plane. 7. Ball and socket for one spring, ball-and-socket slide for the other. 
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Shackley at both ends of both springs. 8. One. Freedom of rotation about an 
axis parallel to the line of translation of B, see figure. 

translation of b 

Exercises VI 
6. -6-98 f.s.*; 0; +6*98 f.s.^. 

ExERcienss VJl 

1. 753 in./inin. by l.C. ; 747 by calculation. 2. 751 in./mm. by velocity diagram. 

It 

4. 25-6 ft./sec. ; 13-9 rads./sec.; 91 in./sec. 
» 

T 
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6. 152 ft./mill. ; IIS rads./sof. 

t. 

.O* 

8. 50y in./min. ; .3() 1 iwlK./niin ; 135 in./min. 9. 25-7 in./soi . 10. I 15 
rads./ser. ; 9-9 m/sor. 12. SO-" ii /nc(*. 13. 4*29 ft./sec. 14. 3 1 f.s. 16. \ ol I] 
-l-39f.s. ; Vel. of sliding of C--0-694 f.s. ; of D-0*576 f.s. 16. 9*74 f.s. 17.120 
ft./mill 

Exercises VIII 

1. 1050 ft./sec,^ by velocity diagram ; 1095 ft./.sec.^ by Klein’s constiuction. 
2. 88*4 in./hoc.2 ; 8*6 rads./sec.clockwise. 3. 315 in./sec.'**. 5. 4*85 in./.sec.-; 
8*8 in./soc.'** ; 0*21 rads./sec.®, anticlockwise. 6. 18*3 jft./sec.®. 7. 1 97 ft./sec.®. 
8. 230 in./sec.2. 

Exercises IX 

5. X —a»®r5 Cos 0 ; Y 

9 Max, primary 3 
Max. secondary 1’ 

1. (a) 6 in. and 12 in. ; (6) 18 in. and 36 in. (annulus). 4, The arbitrary tooth 
bliape when revolved through 180° about the point of intersection with the 
auxiliary pitch line must coincide with its original outline. 7. 1 026 in. 

Exercises Xll 

1. The base circle pitches of the teeth of the two gears must bo equal. 2. 4 in.; 
4*4 in. 3. 20 and 80 ; 4 in. and 16 in. ; 4*4 in. and 16*4 in. 4. Gear ratio exact, 
teeth are 34 and 85 ; C.D, -7*4375 in. ; C.D. exact, teeth arc 34 and 86 ; gear 
ratio 2*529:1. 7. Now pressure angle- 18° 40'. 8. (n) 0*5665 in. ; (6)0*3042; 
(r) Max. -2, Min. 1. 9. 27. 10. 12. 11. 4-533 in./soc. 12. 10-783 in./sec, 
13. 0-0793 in. ; 2*9919 in. ; 10*1747 in. 14. C.D.-4*257 m. ; 1*9028 in. ; and 
7*0112 in. ; 6. 15. 33° 33'. 

-co®6r Sin 6. 8 in. ; 
Max. return speed 3 

Max. cutting speed 1 

Exercises XI 

Exercises XIV 

1. 71° 33'and 18° 27'. 2. 54’17'and 15° 43'. 4. 4 in. and I2in., 21 and 189. 
5. 17° 1' and 65° 35'. 
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Exercises XV 

1, 2-,‘)50 in. and ()-450 in. ; 38 ' 19-4' and 51"’ 40't)'. 2. 1075 ft./min. 3. 16 and 
32; 1-789 in. and 7184 in. ; 26° 33' and 63" 27'; 4-486 in. 5. 11-550 in. 
7. 0-7 r.p.m. ; 0-3 r.p.m. 

Exercises XVI 

1. 50 r.p.m., clockwise. 2. 1 r.p.m., anticlockwise. 3. Centre distance exact. 
Teeth are 32x48 and 27x53. Ratio = 2-844 : 1. Ratio exact. Teeth are 
30x46 and 26x50. Centre distance—3-75 in. 4. -f-^OOO r.p.m. 5. +400 

r.p.m. 6. I 7. 1 1250 r.p.m. 8. +70 r.p.m. 9. Ratio is 

10. —615-4 r.p.111. 11, - ^ — - integer. 13. 1-145:1. 14. — 

E\ekcise.s XVU 

2. Steps are 12, 10-10, 8-00 and 6 in. 3. Steps are 12, 10-04, 7-9G and 6 in. 

Exercises XIX 

5. Flank radius —6-2 in.; {a) 0—0 to —39° 19'; (h) 39° 19' lo 80' 11'. 

6. +1-937 61*, by acceleration diagram—+1-97 7. Dimension d—0-895 in. 

Flank rad. =6-86 in, (o) 0= -10° 29' to ^--30° 52'; (6) 0=-3O° 52' to 4'. 

8. (a) —1-91 6^ (acceleration diagram —1-93 b“) ; (6) -3-58 (acceleration 

diagram—3-6 9*). 9. d—0-8. Nose rad.—0-2. (a) 6 — 0 to 0 — 32° 12'; (6) 0 
= 32°12'to0==::87°48', 10. -1-650*. 11. d--0-7902in. Nose rad.-0-2049 in. 

0--10° 29'to 0 = 23° O'; 0 = 23° 0'to 0 = 79° 14'. (a) =1-15 0*; (6) -1-37 0*. 

12. 6-2 in. ; -0*646 5*. 

Exercises XX 

1. 1033*1 r.p.m. ; —277*6 rads./sec.*. 3. —335*8 rads./sec.*. 4. 41° 51'. 
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Acceleration 12 

—angular 20, 44 

—, constant 13 

— diagrams 95 

— due to change of direction 15 

— in cams 106, 256 

—, normal 22, 95 

— of j)oints in mechanisms 95 

-piston 108 

—, tangential 22, 95 
— variable 14 

Accelerations, simultaneous 16 

Addendum 149, 153 

Anchor escapement 289 

Angle of approach 150, 171 

-incidence 150 

-obliquity 148 

Angular acceleration, 20, 44 

— velocity 49 

-of links 88 

— velocities, resultant of 41 

Annulus 207 

Arc of approach 149, 171, 175 

-recess 149, 171, 175 

Assembly of epicyclic trains 214 

Avamore gear 218 

Axes, instantaneous 38 

—, moving 28 

—, rotating 30 
—, skew 43, 189 

Axial components 24 

— pitch 166 

Axode 38, 40, 138, 177, 189, 196 

Back cone 185 

Base eircle 146, 258 

-piU'h 146 

— cone 183 

- curve 146 

B.C.D. 153 
Belt drive, skew 229 

— length of 226 

— striking gear 225 

V 230 

Belts 219 

BenneVs construction 112 

Bevel gears 137, 177, 211 

— - gear teeth 178 

Block angle 185 

— chain 23 J 

Body closurt' 52 

— , motion of 47 

position of 47 

Branuik lock 287 

Bristol axial engmo 301 

Biovni and Sharpe sta/idard 155 

Buiiv reduction gt'ar 176 

Cams 251 

—, acceleration jii 106, 256 

—, design of 253 

Cardan's joint 270 

C.D. 153 

Centro distance 138, 153, 157, J92 

—, instantaneous 35, 77, 80 

—, virtual 35 

(^entres, principle of three 78 

('entrode 37, 81, 134, 143 

—, secondary 145 

Chain closure 69 

— drives 231 

Chains 219 

Change-point 68 

Chronometer escapi'inout 289 

Circular pitch 153 

Clemens' joint 277 

Click 281 

Co-axial train 206 • 

Compound epicyclic train 212 

Concave cam 264 

Cone distance 185 
Conic mechanisms 270, 299 

Conjugate tooth 143, 179 

Constant mesh gearbox 243 

— velocity drive 277 
-universal joints 278 

Constraint due to contacts 48 

—, redundant 50, 68 

Contact of worm gear teeth 202 

Contacts, conditioning of 52 

Continuity of action 152, 172, 187 

I Convex cam 258 
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Co-ordinates 1 
Coriolis's Law 30, 102 
Oorreoiod teeth 161, 187 
(’orrection coeflicicnt 162 
(\r. ]r>3 
Crank 66 

, adjustable 125 
Z 208 

Crosby indicator 79 
(’rossed slide crank chaui 74 
Crown wheel 184 
Cycloid 169 
Cycloidal bevel gear teeth i80 

~ teeth 170 
Cylinder escapement 290 
Cylindrical cam 252 

l)ead'j)oij4t 68 
I)egr(>os of freedom 2, 33, 34, 49 
Design, geomcjtric 51 
— - of gears 157 
Detent 281 
Diametral pitch 153, 184 
Differential 211 
Direct-acting engine mechanimn 70, 

108 
Disc cam 251 
-- engines 270 
Displacement of a point 3 
— relative 3 
Disj)lacements, polygon of 

simultaneous 4 
-, resultant of 4 

, successive 3 
— - I’esultant of 3 
Displacement-time curve 6, 76 
Dorman friction gear 235 
Double-crank mechanism 67 
— helical gears 60, 167 
— lover mechanism 67 
— slider crank chain 70 
D.P. 153 
Dwell 258 

Eccentric vane blower 123 
Elliptic trammel 73 
-, centrodes of 82 
Engine, Bristol axial 301 
—, disc 270 
— mechanism, direct acting 70, 108 
—, oscillating cylinder 124 
—, radial 121 
—, rotary 121 
Envelope 142, 174, 256 
Epioyclic gearbox 244 
— gearing 207 

I Epicycloid 169 
I Equivalent diameter 193 

— mechanisms 104 
— spur gear 185, 193 
Escapements 288 
Escape wheel 288 
E volute 146 

Face 153 
- cam 252 

— cone angle 186 
~ width 185 
F*xst and loose pulleys 224 
Fellow's stub tooth 165 
Flank 153, 258 
Flat-footed follower 265 
Flexible strip hinge 54 

* Follower 261 
Force-closure 52, 69 
Fom--bar chain 66 
Frames of reference' 3 
Freedom, degrees of 2, 33, 34, 49 
Free-wheel 284 
Friction gearing 137 
— gears 234 
— ratchet 283 

(h'ar gejierating machines 143 
dear ratio 157, 178, 192, 207 
Gear teeth 138 
-, bevel 178 
-, cycloidal 170 
--, involute 147 
-skew 190 
— -^ sliding of 194 
— trains 205 
Gearing, friction 137 
—, toothed 137 
Gears, bevel 137, 177 
—, double helical 60, 167 
—, internal 162, 172 
—, hypoid 137 
—, pin 174 
—, screw 137 
—, skew 137, 190 
—, — bevel 137 
—, spur 137, 163 
—, worm 137, 197 
Geneva escapement 290 
— stop 123, 287 
Geometric flesign 51 
— hinge 57 
— nut 53 
Globoidal worm gear 197 
Graham's escapemeitt 288 
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Graphical determination of sjnral 
angles 187 

Grasshopper motion 13 J 
Great circle of sphere 39 
(hiide pulleys 229 

Hart's motion 130 
Hayes friction gear 237 
Helical teeth 163 
Higher harmonics in piston motion 

118 
- pairs 63 

Hinge, flexible strip 54 
geometric 57 

Hob 107 
Hooker's joint 270 

velocity ratio of 272 
Hour-glass worm 197 
Humphrey-Sandeberg ratchet 285 
Hypoeycloid 169 
Hypoid gears 137 

l.C. engiiwi cams 257 
Idler 205 
Infinitely long connecting rod 71 
Instantaneous centre 35, 77, 80 
Interchangeable wheels 172 
Interference 150, 198 
—, avoidance of 160 
— in cams 256 
Internal gears 162, 172, 176 
Inversion of double slider crank 

chain 72 
-four-bar chain 67 
-kinematic pair 65 
— -slider crank chain 121 
Inverted tooth chains 231 
Involutes 146 
Involute teeth 147 

“ Jaimey ” mechanism 305 
Jockey pulley 228 
Joy's valve gear 

Kempe's mechanisms 129, 134 
Kinematic chain 65 
—- - pairs 63 
Klein's construction 111 

Layshaft 205 
Lead 165, 199 
Length of belt 226 
Lever 66 

— escapement 290 
IJne of action 147, 172 
-conta,ct 202 

Lock mediallisms 286 
Lower pairs 63 

MachinO’ 66 
Malleable chain 231 
Manchester pitch 154 
Marshall valve gear 91, 98 
Mauser mechanism 288 
Mechanism, definition of 66 
Melville-Macalpine floating fraint' 

60 
Module 153 
Morse chain 232 
Motion of a body 47 
-line 33 * 
-point 2 

- - piston 116 
Motor car gearbox 242 
Moving axes 28 
Multi-thread worm 199 
— turn cam 252 

N.D.P. 166 
Normal acceleration 22, 95 
— circular pitch 165 
— diametral pitch 166 
— pitch 146, 152 
N. P. 153 

Obliquity, angle of 148 
Octoid teeth 179 
O. D. 153 
Offset cam 258 
— cylinders 119 
Oldham coupling 74 
Oscillating cylinder engine 124 

Pairs, kinematic 63 
Pallet 288 
Pantograph 135 
Parallel motions 128 
Parallelogram law 4 
Parallel worm gear 197 
Path of contact 149, 170, 174 
Pawl 281 
P. C.D. 153 
PeauceUier's coll 128 
Pendulum pximp 124 
Pin gearing 174 
Piston acceleration 110, 115, 1J7, 

118 
— motion 116 
-, harmonics in 118 
Piston velocity 108 
Pitch, axial 166 
—, base circle 146 
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Pitch, chordal 153 
~ fircle 147, 184 

, circular 153 
~ cone angle 185 
~ - cylinder 200 
— diametral 153, 184 

linos 143, 202 
normal 146 
normal circular 165 

~ of worm thread 199 
— point 141 

real circular 165 
, —diametral 166 
surfaces 202 

gear 239 • 
Plano motion 33 
Planet wheel 207 
Point, displaceiru'iit- of 3 
—, motion of 2 
— path 63 

— ])Osition of 1 
Polar co-ordinates 1 
Polygon, gauche 12 
- of displacements 4 

— law 5 
Position of a body 47 
-line 33 
-point 1 
Pre-optive gearbox 249 
Pre-selective gearbox 247 
Pressure-angle 148, 155, 172, 179, 

200 
Primary component of piston 

acceleration 117 
Principle of three centres 78 
Pulley, guide 229 
—, jockey 228 
—, stepped 225 

Quick-return motion 121 
-, Whitworth 94, 122 
— throw-over mechanism 124 

Radial components 25 
— engine 121 
Rap8on\8 slide 74 
Ratchets 281 
Real circular pitch (R.C.P.) 165 
— diametral pitch (R.D.P.J 165 
Rectangular co-ordinates 1 
Redundant constraint 50, 68 
Relative displacement 3 
— velocity 11 
Resolution of velocity 11 
Resultant of angular velocities 41 
-displacements 3 

Resultant of vectors 5 
Reverted train 206 
Ring gear 207 
RitterhaiLs's construction 114 
Roberts's motion 133 
Robertson's mechanism 295 
Roller chain 231 
Root circle 153 
Rope drives 230 
Ropes 219 
Rotary engine 121 
Rotating axes 30 

— - plane, motion of point m 27 
slotted links 101 

Rotation 33 
Roulettes 144, 180 
Rzeppa joint 279 

Sarrut'a motion 135 
Scalars 5 
Scott-Russel linkage 73, 131 
Screw gears 137 
— mechanisms 292 
— pair 64 
Secondary centrodes 145, 181 
— component of piston motion 11’ 
— contact 173 
Shaper mechanism 87, 105, 123 
Silent chain 231 
— ratchet 283 
Simple harmonic motion 71 
Simultaneous accelerations 16 
— angular velocities 41 
— - displacements 4 
— velocities 10 
Skew axes 43, 189 
— -in belt drives 222, 229 
— bevel gears 137 
— gears 137, 190 
— kinematic chain 294 
Slider crank chain 70, 108 
-, inversions of 121 
Sliding key 241 
Sliding-mesh gearbox 242 
— of gear teeth 194 

— pair 64 
Speed 6 

, angular 19 
— cones 225 
—, constant 6 
—, variable 7 
Sphere of reference 178 
Spheric mechanisms 269 
Spherical involutes 182 
— motion 39 
Spiral angle 164, 191 
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ipiral angle for least sliding J94 
bevel teeth 187 

ipring" ratchet 285 
Ipur gears 137, 11)3 
itepped gears 164 
- pulleys 225 
"teveyison link motion 93, 99, JOO 
itraight earn 264 
~ line motions 73, 128 
t ub teeth 155 
uc(3('ssive displacements 3 
un wheel 267 
\N ash plat(' 297 
ynchronising devices 246 

abular nietliod 208 
'angential acceli'ration 22, 95 
- cam 264 
\hcbirheff8 motion 132 
'hive-line construct ion 89, 90 
'ip ciivle 153 
'ootli t>roi>ortions 155 
'oothed gearing sec (cviring. 
'ransiation 33 
- fi’om two rotations 34 
'rain, reverted 206 
'rains of gears 205 
'ruiisviTsc cornjioiH'nts 25 
'redgolcV^ ajiproximat iuri 185 
uriibler gear 242 
timing pair 64 

'ndercuttiiig 150 
niversal joints 270 

I Variable speed gears 234 
‘ V belt 230 

Vectors, resultant of 5 
Velocities of f)oints in mechanisms 76 

, relative 11 
~ , simultaneous 10 

, - - luigiilar 41 
Velocity' 9 
— angular 49 

I diagram 84 
I -- of piston 108 
j ratio 138, 141 
I - of opicyclic gear 207 

-- - -- belt g(‘aring 219 
— - “ (‘hain gearing 232 

Hook e fi joint 272 
, rcsolut ion of 11 

Virtual (-(‘iitn 25 

I Waifs iriotion 132 
joint 279 

Wfiihrorth (juiek-n»turn mot ion 94. 
122 

1 Wilson gearbox 245, 248 
1 Wobble crank 305 
I Worm gears 137, 107 

, tooth action of 200 
I \\'rapj)ing comiectors 219 

Vole lock 286 
I 

Z-Crank 298 






