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PREFACE TO THE NINTH EDITION 

In preparing a new edition of this book for publication, attention 

has been given to the change in outlook in matliematical studies in 

Cambridge that began with the abolition of the order of merit in 

the Tripos. Hydrostatics is still a subject which all candidates 

are expected to study; but it belongs to the class of blind-alley 
subjects, and it is clearly not profitable for the average student to 

devote very much of his time either to the subject-matter or to 

working elaborate problems. In the interests of the average 

student, therefore, the amount of book-work has been substantially 

reduced, and a large number of examples have been removed from 

the book, while a few from recent Tripos papers have been inserted. 

July 1925. 

In this impression a few corrections have been made, particu¬ 

larly in Chapters VI and VII, but in other respects the book is 

unaltered. A. 8. R. 

May 1929. 
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HYDROSTATICS 

CHAPTER I 

1. We learn from common experience that such substances as 

air and water are cliaracterised by the ease with which portions of 

their mass can be removed, and by their extreme divisibility. These 

properties are illustrated by various common facts ; if, for instance, 

we consider the ease witli which fluids can be made to permeate 

each other, the extreme tenuity to which one fluid can be reduced 

by mixtine with a large portion of another fluid, the rarefaction of 

air w iiich can be effected by means of an air-pump, and other facts 

of a similar kind, it is clear that, practically, the divisibility of fluid 

is unlimited : we find, moreover, that in separating portions of fluids 

from each other, the resistance offered to the division is very slight, 

and in general almost inappreciable. By a generalisation from such 

observations, the conception naturally arises of a substance pos¬ 

sessing in the highest degree these properties, which exist, in a 

greater or less degree, in every fluid with which we are acquainted, 

and hence we are led to the following 

Definition of a Perfect Fluid 

2. A 'perfect fluid is an aggregation of particles which yield 

at once to the slightest effort made to separate them from each 
other. 

If then an indefinitely thin plane be made to divide such a fluid 

in any direction, no resistance will be offered to the division, and 

the pressure exerted by the fluid on the plane will be entirely normal 

to it; that is, a perfect fluid is assumed to have no viscosity,’’ 

no property of the nature of friction. 

The following fundamental property of a fluid is therefore ob¬ 

tained from the above definition. 
1 



2 DEFINITION OF A FLUID [chap. I 

The 'pressure of a perfect fluid is always normal to any surface 

with which it is in contact. 

As a matter of fact, all fluids do more or less offer a resistance 

to separation or division, but, just as tbe idea of a rigid body is 

obtained from the observation of bodies in nature which only change 

form slightly on the application of great force, so is the idea of a 

perfect fluid obtained from our experiences of substances which 

possess the characteristics of extremely easy separability and 

apparently unlimited divisibility. 

The following definition will include fluids of all degrees of 

viscosity. 

A fluid is an aggregation of particles which yield to the slightest 

effort made to separate them from each other^ if it be continued long 

enough. 

Hence it follows that, in a viscous fluid at rest, there can be no 

tangential action, or shearing stress, and therefore, as in the case 

of a perfect fluid, 

The pressure of a fluid at rest is always normal to any surface 

with which it is in contact. 

Thus all propositions in Hydrostatics are true for all fluids what¬ 

ever be the viscosity. 

In Hydrodynamics it will be found that the equations of motion 

are considerably modified by taking account of the viscpsity of a 

fluid. 

8, Fluids are divided into Liquids and Gases ; the former, such 

as water and mercury, are not sensibly compressible except under 

very great pressures ; the latter are easily compressible, and expand 

freely if permitted to do so. 

Hence the former are sometimes called inelastic, and the latter 

elastic fluids. 
0 

4. Fluids are acted upon by the force of gravity in the same 

way as solids ; with regard to liquids this is obvious ; and that air 

has weight can be shown directly by weighing a closed vessel, 

exhausted as far as possible ; moreover, the phenomena of the tides 

show that fluids are subject to the attractive forces of the sun and 

moon as well as of the earth, and it is assumed, from these and other 

similar facts, that fluids of all kinds are subject to the law of gravita¬ 

tion, that is, that they attract, and are attracted by, all other 

portions of matter, in accordance with that law. 
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Measure of the Pressure of Fluids 

6. Consider a mass of fluid at rest under the action of any 

forces, and let A be the area of a plane surface exposed to the 

action of tlie fluid, tliat is, in contact with it, and P the force which 

is required to counterbalance the action of the fluid upon A. If 

P . 
the action of the fluid upon A be uniform, then -r is the pressure 

A. 

on each unit of the area A. If the pressure be not uniform, it 

must be considered as varying continuously from point to point 

of the area A, and if cr be the force on a small portion a of the 

area about a given point, then — will approximately express the 
a 

rate of pressure over a. When a is indefinitely diminished let 
Tuy 
“ ultimately ~p, then p is defined to be the measure of the pressure 

at the point considered, p being the force which would be exerted 

on a unit of area, if the rate of pressure over the unit were uniform 

and tile same as at the point considered. 

Tile force upon any small area a about a point, the pres¬ 

sure at which is p, is therefore pa \-y, wdiere y vanishes ulti¬ 

mately in comparison with pa when a (and consequently pa) 

vanishes. 

6. The pressure at any point of a fluid at rest is the same in every 

direction. 

This is the most important of the characteristic properties of a 

fluid ; it can be deduced from the fundamental property of a fluid 

in the following manner. 

If we consider the equilibrium of a small tetrahedron of fluid, we 

observe that the pressures on its faces, and the impressed force on 

its mass, form a system of equilibrating forces. 

The former forces depending on the areas of the faces vary as 

the square, and the latter depending on the volume and density 

varies as the cube of one of the edges of the solid, which is con¬ 

sidered to be homogeneous, and therefore supposing the solid indefi¬ 

nitely diminished, while it retains always a similar form, the latter 

force vanishes in comparison with the pressures on the faces ; and 

these pressures consecjuently form of themselves a system of forces 

in equilibrium. 
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Let f, j)' be the rates of the pressure on the faces ABC, 

BCD, and resolve the forces parallel to the edge AD; then, 

^ since the projections of the areas ABC, BCD 

on a plane perpendicular to AD are the 

same (each equal to a suppose) we have ulti¬ 
mately, 

pa=p a, 

or p=p'. 

And similarly it may be shown that the 

pressures on the other two faces are each equal to p or p'. 

As the tetrahedron may be taken with its faces in any 

direction, it follows that the pressure at a point is the same in 

every direction. 

This proposition is also true if the fluid be in motion, for by 

D’Alembert’s Principle the reversed effective forces and the im¬ 

pressed forces which act upon the mass of fluid must balance the 

pressures on its faces, and the effective forces are of the same order 

of small quantities as the impressed forces and vanish in comparison 

with the pressures. 

Transmission of Fluid Pressure 

7. Any pressure, or additional pressure, applied to the surface 

or to any other part of a liquid at rest, is transmitted equally to all 

parts of the liquid. 
This property of liquids is a direct result of experiment, and, 

as such, is sometimes assumed. It is, however, deducible from the 

definition of a fluid. 
Let P be a point in the surface of a liquid at rest, and Q any 

other point in the liquid ; about the straight line PQ describe a 

cylinder, of very small radius, bounded by the surface at P and by 
a plane through Q, perpendicular to QP. 

If the pressure at P be increased by p, the additional force on 
the cylinder, resolved in the direction of its axis, is pa, a being the 

area of the section of the cylinder perpendicular to its axis, and 

this must be counteracted by an equal force pa at Q in the direction 

QP, since the pressure of the liquid on the curved surface is per¬ 
pendicular to the axis. The pressure at Q is therefore increased 

by p. 

If the straight line PQ do not lie entirely in the liquid, P and 

Q can be connected by a number of straight lines, all lying in tlic 
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li(|uid, and a repetition of the above reasoning will t?how that the 

jjressure p is transmitted, unchanged, to the point Q, 

8. In consequence of this property, a mass of liquid can be 

used as a “ machine ” for the purpose of multiplying power. 

Thus, if in a closed vessel full of water two apertures be made 

and pistons A, A' fitted in them, any force P applied to one piston 

must be counteracted by a force P' on the other piston, such that 

P': P in the ratio of the area A': A, for the increased rate of pressure 

at every point of A is transmitted to every point of A\ and the 

force upon A' depends therefore upon its area.* 

The action between the two is analogous to the action of a lever, 

and it is clear that by increasing A' and diminishing A, we can 

make the ratio P' : P as large as we please. 

9. The pressure of a gaseous fluid is found to depend upon its 

density and temperature, as well as upon the nature of the fluid 

itself. 

When the temperature is constant, experiment shows that the 

pressure varies inversely as the space occupied by the fluid, that is, 
directly as its density. 

This law was first stated by Boyle, but it is a consequence of 

the more general law that the pressure of a mixture of gases that 

do not act chemically on each other is the sum of the pressures the 

gases would exert if they filled the containing vessel separately. 

For doubling the quantity of gas in the vessel would double the 

pressure, and a similar proportionate change of pressure would take 

place for any other change of quantity. 

Hence if p be the density of a certain quantity of a gaseous 

fluid, and p its pressure, then, as long as the temperature remains 
the same, 

p=kp, 
where Z; is a constant, to be determined experimentally for the fluid 

at a given temperature. 

If V be the volume of the gas at the pressure j?, and v' the volume 
at the pressure p\ 

pv=p'v\ 

or pv is constant for a given temperature. 

10. The Elasticity of a fluid is measured by the ratio of a 

* Bramah’s press is an instance of the practical use of this property of liquids. 
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small increase of pressure to the cubical compression produced by 

it. 
dtv 

If V be the volume, the small cubical compression is ——, and 

the measure of the elasticity 

In the case of a gas at constant temperature pv is constant, 

and 

so that the measure of the elasticity is equal to that of the pressure. 

If the relation between the elasticity and the pressure is given, 

we can deduce the relation between the pressure and tlie volume. 

For instance, if we can imagine the existence of a fluid in which 

the elasticity is double the pressure, we have 

from which it follows that pv^ is constant. 

Measures of Weight, Mass, and Density 

11. The weight, mass, and density of a fluid are measured in 

the same way as for solid bodies. 

If W be the weight of a mass M of fluid, then, in accordance 

with tlie usual conventions which define the units of mass and force, 

W=Mg. 

If V be the volume of the mass M of fluid of density p, then 

M=pV, 

and W=^gpV, 

For the standard substance, p=l, and therefore the unit of 

mass is the mass of the unit of volume of the standard substance. 

If the unit of mass is a pound, the equation, W^Mg, shows 

that the action of gravity on a pound is equivalent to g units of 

force. The unit of force is therefore, roughly, equal to the weight 

of half an ounce, and it is called the Poundal. 

12. In the previous articles no account has been taken of fluids 

in which the density is variable; but it is easy to conceive the 
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density of a mass of liquid varying continuously from point to point, 

and it will be hereafter found that a mass of elastic fluid, at rest 

under the action of gravity, and having a constant temperature 

throughout, is necessarily heterogeneous : the density at a point 

of a fluid must therefore be measured in the same way as the pres¬ 

sure at a point, or any other continuously varying quantity. 

Measure of the density at any point of a heterogeneous fluid. 

Let m be the mass of a volume v of fluid enclosing a given 

point, and suppose p the density of a homogeneous fluid such that 

the mass of a volume v is equal to m, or such that 
m—pv ; 

then p may be defined as the mean density of the portion v of the 

heterogeneous fluid, and the ultimate value of p when v is indefi¬ 

nitely diminislied, supposing it always to enclose the point, is the 

density of the fluid at that point. 

EXAMPLES 

(In these Examples g is taken to bo 32, when a foot and a second are units.) 

1. ABGD is a rectangular area subject to fluid pressure ; AB is a fixed line, 
and the pressure on the area is a given function (P) of the length BC (:r); prove 

dP 
that the pressure at any point of CD is where a~AB, 

If A be a fixed point, and AR, AD fixed in direction, and if AB—x and 
d^P 

AD~y, the pressure at 

2. In the equation W—gqV, if the unit of force bo 100 lb. weight, the unit 
of length 2 feet, and the unit of time Jth of a second, find the density of water. 

3. If a minute be the imit of time, and a yard the unit of space, and if 
15 cubic inches of the standard substance contain 25 oz., determine the unit 
of force. 

4. In the equation, W—gpVy the number of seconds in the unit of time is 
equal to the number of feet in the unit pf length, the unit of force is 750 lb. 
weight, and a cubic foot of the standard substance contains 13500 ounces; 
find the unit of time. 

5. A velocity of 4 feet per second is the unit of velocity; water is the 
standard substance and the unit of force is 125 lb. weight; find the units of 
time and length. 

6. The number expressing the weight of a cubic foot of water is ^Jj^th of 
that expressing its volume, Jth of that expressing its mass, and yJ^jth of the 
number expressing the work done in lifting it 1 foot. Find the units of length, 
mass, and time. 

7. H a feet and 5 seconds be the units of space and time, and the density 
of water the standard density, find the relation between a and b in order that 
the equation, may give the weight of a substance in pounds, 
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8. A velocity of 8 foct per second is the unit of velocity, the unit of accelera¬ 
tion is that of a falling body, and the unit of mass is a ton; find the density of 
water. 

9. The density at any point of a liquid, contained in a cone having its axis 
vertical and vortex do\vnwards, is greater than the density at the sudace by a 
quantity varying as the depth of the i)oint. Show that the density of the 
liquid when mixed up so as to bo uniform will be that of the liquid originally at 
the depth of one-fourth of the axis of the cone. 

10. From a vessel full of liquid of density q is removed l/wth of the contents, 
and it is filled up with liquid of density a. If this operation bo repeated m 
times, find the resulting density in the vessel. 

Deduce the density in a vessel of volume F, originally filled with liquid of 
density after a volume U of liquid of density a has dripped into it by in¬ 
finitesimal drops. 



CHAPTER II 

THE CONDITIONS OF THE EQUILIBRIUM OF FLUIDS 

13. Taking the most general case, suppose a mass of fluid, 

elastic or non-elastic, homogeneous or heterogeneous, to be at rest 

under the action of given forces, and let it be required to determine 

the conditions of equilibrium, and the pressure at any point. 

Let X, y, z be the co-ordinates referred to rectangular axes, of 

any point P in the fluid, and let Q be a point near it, so taken 

that PQ is parallel to the axis of x. 
Take x~{-8x, y, z as the co-ordinates of Q; about PQ describe 

a small prism or cylinder terminated by planes perpendicular to PQ. 
Let a be the area of the section of the cylinder perpendicular 

to its axis, j) the pressure at P, and the pressure at Q. 
Then a may be taken so small that the thrust on the plane end 

at P is approximately pa, the difference being of a higher order of 

smallness. 

Similarly the thrust on the plane end at Q may be taken to be 

(p+8p)a. 

If p be the mean density of the cylinder PQ, its mass — paSx, 

and Xpahx will represent the force on PQ parallel to its axis, if 

X8m, Y8m, Z8m be the components of the forces acting on a particle 

Sm of fluid at the point [x, y, z). 
Hence, for the equilibrium of PQ, 

(p+8p) ct—pa=Zp aSa?, 

or Sp=pZSa;. 

Proceeding to the limit when 8a;, and therefore 8p, is indefinitely 

diminished, p will be the density at P, and we obtain 

9 
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By a similar process, 

But 

dp=p(Xdx -f r dy 4- Zdz) 

the equation which determines the pressure. 

/ 
^•^14. We now consider what condition must be satisfied by a 

given distribution of force in order that it may be capable of main¬ 

taining a fluid in equilibrium. The pressure is clearly a function 

of the independent variables a?, y, and z, and we know that 

d^p d‘^'p d^p_d^p d'^p d'^p 

dydz dzdij dzdx dxdz! dxdy dydx 

Hence we obtain from the preceding equations, 

|(pZ)=i(pY)' 

|(,z)=i(pZ). . . 

|(pr)=A(pZ)^ 

Performing the operations indicated we have 

dy dz ^\dz dy/ 

dz 8x ^\8x dz) 

(SX_dJ\ 

dx dy dy dx J 

Multiplying by X, ¥, Z, and adding, we obtain 

^(8Y dZ\ , yfdZ 8X\ (dX dY] , 
♦ 

as a necessary condition of equilibrium. 
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The geometrical interpretation of this equation is that tlie lines 

of force, 

can be intersected orthogonally by a system of surfaces. 

IS. Homogeneous Liquids. If the fluid be homogeneous and 

incompressible, p is constant, and it follows from (1) that 

Xdx+Ydy-i-Zdz must be a perfect differential in order that equili¬ 

brium may be possible. 
In other words, the system of forces must be a conservative 

system, and the forces can be represented by the space-variations 

of a potential function. 
We then have, if V be the potential function, 

djj~ —pd Vy 

and ^-+V=C. 
P 

If, for instance, the forces tend to or from fixed centres and are functions of 
the distances from those centres, we have 

where (a, b, c) are co-ordinates of the centre to which the force (r) tends. 

Now (r—6)^'f (z—c)^ 

.’. Xdx-\- Ydy-{-Zdz^Il<jy(r)dry 

and QX<f>{r)dr, 
In this case, since 

and 

Qy ( ) j. j. ^ j. 

dx ")■ 
it is obvious that the equation (3) is always satisfied, but it is not to be inferred 
that the equilibrium of a heterogeneous fluid is always possible with such a 
system of forces. 

When the density is constant, the equations (2) become 

By Bz* Bz Bx* By Bx* 

which are in this case always satisfied, and therefore the equilibrium of a 
homogeneous fluid under the action of such forces is always possible. 

16. Heterogeneous fluids. If the law of density be prescribed, 

that is, if p be a given function of x, y, Zy the conditions to be 
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satisfied in order tliat a given distribution of force, represented by 

X, Y, Z, may maintain the fluid in equilibrium are the equations (2). 

17. Elastic Fluids. When the fluid is elastic, an additional 

condition is introduced, for, as we have seen in Chapter I, if the 

temperature be constant, 
p=kp; 

.'.^—^j^Xdx-\-Ydy-\-Zdz) . . . (4) 

If the forces are derivable from a potential F, i.e, if 

Xdx+Ydy \ Zdz 

be a perfect differential - d F, 

V 

C -I 
or p~Ce and p~ 

A/ 

When the forces tend to fixed centres and are functions of the 

distances, Art. 15, this equation takes the form 

h^=S^[r)dr, 
p 

and p can be determined. 

If the temperature be variable, the relation between the pressure, 

density, and temperature is found to be 

p=kp{l-{-at), 

where t is the temperature, measured by a Centigrade thermo¬ 

meter, and 

From this we obtain 

f^=KpT, 

where K=^ka, and T=-+L 
a 

T is called the absolute temperature, the zero of which is 

-273^ C. 

In this case 
dp_Xdx+ Ydy+Zdz 

V”" KT 

and therefore T must be a function of a?, y, z. 

In any of these cases, if the pressure at any particular point be 

given, the constant can be determined. 
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In the case of elastic fluids, if the mass of fluid and the space 

within which it is contained be given, the constant is determined. 

18. The equation for determining p may also be obtained in the following 
manner. 

Lot PQ be the axis of a very small cylinder bounded by planes perpen¬ 
dicular ioPQ. 

Let p and p-{-dp bo the pressures at P and Q, a the areal section, and 6s 
the length of PQ. Then, if Sdrn bo the component, in the direction PQ-, of the 
forces acting on an element (5m, 

(p-{'6p)a—-pa~ QoSds, 

and therefore, proceeding to the limit. 

dp— qScU. 

That is, the rate of increase of the pressuie in any direction is equal to the 
product of the d(uisity and the resolved part of the force in that direction. 

If a*, y, z be the co-ordinates of P, and JT, T, Z the componcaats of S parallel 
to the axes, 

and dp—Q(Xdx-\- Ydy-\-Zdz) as in Art. 13. 

If tlf(' position of P be given by the cylimkical co-ordinates r, 0, and z, and 
if P, P, Z be the components of B in the directions of r, 0, 2, 

^ ^dr rdO dz 

and the equation for p becomes 

dp= Q{Pdr -f TrdO+Zdz), 

Again, if the position of P be given by the ordinary polar co-ordinates r, 0, 
0, and if the components of the force be P, Nj and T, in the directions of r, of 
the perpendicular to the plane of the angle 0, and of the line perpendicular to r 
in that plane, it will be found that 

dp 

Q 
—Rdr~\-Nr sin dd(f)~\-TrdO. 

In a similar manner the expression for dp may bo obtained for any other 
system of co-ordinates. 

19. Surfaces of Equal Pressure. In all cases, in which the 

equilibrium of the fluid is possible, we obtain by integration 

If be constant, <f>(x,y,z)^p .... (5) 

is the equation to a surface at all points of which the pressure is 

constant, and by giving different values to p we obtain a series of 

surfaces of equal pressure, and the external surface, or free surface, 
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is obtained by making f equal to the pressure external to the 

fluid. 
If the external pressure be zero, the free surface is therefore 

The quantities 

<f>{x, y, z)==0. 

c'j) d(f> d(l> 

'dx dy dz* 

which are proportional to the direction-cosines of the normal at the 

point (x, y, z) of the surface (5), are equal to 

d}) dp dp 

da/ d}j 'Fz 

respectively, i.e. to pX, pF, pZ, and are therefore proportional to 

Z, 7, Z. 
Hence the resultant force at any point is in direction of the 

normal to the surface of equal pressure passing through the point. 

The surfaces of equal pressure are therefore the surfaces intersectvng 

orthogonally the lines of force. 

It follows from this result that a necessary condition of equili¬ 

brium is the existence of a system of surfaces orthogonal to the 

lines of force, a conclusion derivable also from the equation (3) of 

Art. 14, for that equation is the known analytical condition requisite 

the existence of such a system. 

'if / 
^ If the fluid be a homogeneous liquid, that is, if p is con¬ 

stant, Xdx+Ydy \~Zdz must be a perfect differential, or in other 

words, the system of forces must be a conservative system. 

In general, when the force-system is conservative, p must be a 

function of the potential F. 

For (ip=~p(iF, and, dp being a perfect differential, p must be 

a function of F; hence F, and therefore p, is a function of and 

surfaces of equal pressure are equipotential surfaces, and are also 
surfaces of equal density.* 

♦ These results may also be obtained in the following manner: 
Consider two consecutive surfaces of equal pressure, containing between them a 

stratum of fluid, and let a small circle be described about a point P in one surface, 
and a portion of the fluid cut out by normals through the circumference. The 
portion of fluid is kept at rest by the impressed force, and by the pressures on its 
ends and on its oiroumferenoe. Being very nearly a small cylinder, and the 
pressures at all points of its circumference being equal, the difference of the pressures 
on its two faces must be due to the force, which must therefore act in the same 
direction as these pressures, f.c. in direction of the normal at P. 

if the forces are derivable from a potential, the resulting force is perpendiouhtf 
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If the fluid be elastic and the temperature variable 

dV 
KT 

Hence by a similar process of reasoning T is a function of p, and 
surfaces of equal pressure are also surfaces of equal temperature. 

If however Xdx-\-Ydy+Zdz be not a perfect differential, these 

surfaces will not in general coincide. J 
Let the fluid be heterogeneous and incompressible; then the 

surfaces of equal pressxire and of equal density are given respec¬ 
tively by the equations 

djo—Oy dp=0, 

Xdx-\- Ydy+Zdz—O or 

^dx+^:^dy-it^dz=0 
dX Oy (JZ 

(6) 

These then are the differential equations of surfaces which by 
their intersections determine curves of equal pressure and density. 

From (6) we obtain 

dx dy dz 

dy dy 

(7) 

dz dz dx dx 

But from the conditions of equilibrium we have 

dX , ^dp 

dz 

dZ, ydp 

■f~+ I'®'’ dx 

dZ 

dx 

dp 

ydp 

and therefore the equations (7) become 

dx dy dz 
^JdY dJL_dZ BY 
dy 

dX 
dy 

(8) 

dz dz dx dx 

the differential equations of the curves of equal pressure and density 

fco the equipotential surfaces, and the surfaces of equal pressure are therefore 
identical with the equipotential surfaces. 

Again, considering the equilibrium of the elemental cylinder, the force acting 
upon it, per imit of mass, is equal to the difference of potentials divided by the 
distance between the surfaces of equal pressure, and as the mass of the element is 
direetiy proportional to this distance, it follows that the density must be constant, 
that is, the surfaces of equal pressure are also surfaces of equal density. 
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21. We shall now show how to obtain the fujidamental pressure 

equation by considering the equilibrium of a finite mass of fluid. 

Let S be any closed surface drawn in the fluid, and I, m, n the 

direction-cosines of the normal at any point drawn outwards. The 
conditions of equilibrium of the mass of fluid within the surface S 

are summarised in the statement that the normal pressures on the 

boundary must counterbalance the effect of the given forces acting 

throughout the mass. Thus by resolving parallel to the axes we 

get three equations of the type 

jJlpdS—fJjpXdxdi/dz . . • (9) 

and by taking moments about the axes we get three other equations 

of the type 

jjp{ny—mz)dS=jfjp{yZ~zY)dxd7jdz . . (10) 

vvhere the double integrations extend to the whole surface S and 

the triple integrations are throughout the space enclosed. 

Now by Green’s Theorem,* we have 

\\lfdS=\\\fjlxdydz 

and 

SO that (9) and (10) become 

and wiu 'dp 

dz 
pZ 

J 
zi pY^rdxdydz~0; 

. / j 

and there are two other pairs of like equations. 

Since these equations must be satisfied for all ranges of integra¬ 

tion in the fluid, it is clear that the necessary and sufficient conditions 
of equilibrium are 

_ y rr ^^-pY, -^pZ. 

It is to be noted that since a perfect fluid is incapable of resisting 

shearing stress there can be no such stresses in a mass of fluid in 

equilibrium, and therefore it follows that the equations obtained 

by taking moments about the axes will of necessity be satisfied 

whenever the equations obtained by resolving parallel to the axes 

^ Vide any Cours d* Analyse, e.g. de la Valine Poussin, t. i. p. 381 (4th ed.). 
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are satisfied. For in equilibrium the latter equations are true for 

any portion of the fluid finite or infinitesimal, and this balancing 

of forces ensures that the equations of moments are true also. 

22. We can also prove that p(Xdx~l- Ydy+Zdz) must be a perfect 

differential, by condensing the equilibrium of a spherical element 

of fluid. 

For the pressures of the fluid on the surface of the element are 

all in direction of its centre, and therefore the moment of the acting 

forces about the centre must vanish. 

Let X, z be co-ordinates of the centre, and aj-f a, ^+i3, z+y 

of any point inside the small sphere. 

Then, p being the density at the centre, the expression 

Edm{Z^--Yy) becomes 

o, , dZ 
Pi 

[y.dY 81' BY 
- -r -- - * 

dz‘ 

Now fffadad^dy=0, the centre of the sphere being the centre 

of gravity of the volume, f ffPydadpdy=0, etc., and, if dr—dadpdy, 

IJJaHr^fJJP^dr^JfJyHr = P^+y^)dr 

==J . I 47rr'^c?/“Y*y7rr^. 
Jo 

The expression for the moment then becomes, neglecting higher 

powers of a, j3, y, 

and, in order that this may be evanescent, we must have 

~ipz)=l^pn 

23. Mnid at rest under the action of gravity. 

Taking the axis of z vertical, and measuring z downwards, 

Z=0, r-0, Z=g, 

and the equation (1) of Art. 13 becomes 

dp^gpdZy 

an equation which may also be obtained directly by considering 

the equilibrium of a small vertical cylinder. 

|(pZ)-|(p7) 
477/*^ 

IF’ 

2 
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In the case of homogeneous liquid, 

p^gpz+Cy 

and the surfaces of equal pressure are horizontal planes. 

Hence the free surface is a horizontal plane, and, taking the 

origin in the free surface, and II as the external pressure, 

p=gpz-[-lL 

If there be no pressure on the free surface, 

f^gpz, 

or the pressure at any point is proportional to the depth below the 

surface. 

In the case of heterogeneous liquid, the equation 

dp^gpdz 

shows that p must be a function of 2'. The density and pressure 

are therefore constant for all points in the same horizontal plane. 
As an example, let p oz z^^pz^^ 

then 
2;n + l 

n-\-\ 

24. Elastic fluid at rest under the action ot gravity. 

In this case, p~hp, 

and ^ dz, 
p k 

gB 

log p~Ce^. 
V k 

The surfaces of equal pressure are in this case also horizontal 

planes, and the constant C must be determined by a knowledge of 

the pressure for a given value of z, or by some other fact in con¬ 
nection with the particular case. 

Example. A dosed cylinder, the axis of which is vertical, contains a given 
mass of air. 

Measuring z from, the top of the cylinder. 

p 

.*. if if be the given mass, a the radius, and h the height of the cylinder, 

fh 
if= / gna^dz' 

0 ~ 

whence C Is determined. 
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Illustrations of the use of the general equation, 

*^1) Let a given volume V of liquid bo acted upon by forces 

respectively parallel to the axes ; 

then } 

and 
^ ^ 2 Va2 ^'62'+‘cV“ 

The surfaces of equal pressure are therefore similar ellipsoids, and the 
equation to the free surface is 

2C 
jiQ* 

assuming that there is no external pressure. 
The condition which determines the constant is that the volume of the 

fluid is given, and wo have 

and 

F= inabc, ( — 
\yQ 

r- & fJl V 
2 • UnabcJ ' 

^2) A given volume of liquid is at rest on a fixed plane^ under the action of a 
force, to a fixed point in the plane, varying as the distance. 

Taking the fixed point as origin, the expression for the pressure at any 
point is 

p==:C~ ipQ{x^-{-y^+z^)=^C— lygr^, 

where r is the distance from the origin ; and if ^Tia^ be the given volume, the 
free surface is a hemisphere of radius a, and 

p=i/ie{a^-r^). 

The portion of the plane in contact with fluid is a circle of radius a, and 
therefore the pressure upon it 

r2w r(I 
= 1 f pr dO dr 

Jo Jo 

This result may be written in the form p§a • f jrpa®, which is the expression 

for the attraction on the whole mass of fluid, supposed to be condensed into a 
material particle at its centre of gravity, and might in fact have been at once 
obtained by considering that the fluid is kept at rest by the attraction to the 
cen^e of force and the reaction of the plane. 

^3) A given volume of heavy liquid is at rest under (he action of a force to a 
fixed point varying as the distance from that point 

Take the fixed point as origin, and measure z vertically downwards; 

then —px, F=—py, and Z^g— pz; 

dp^q{'-iJU£d^--fiydy~{-(g--pz)dz}, 
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and ~ = C—/A-s-\-gz. 
Q 2 

The surfaces of equal pressure are spheres, and the free surface, supposing 

the external pressure zero, is given by the equation 

2(7 2(7 
-2——, 

The volume of this sphere is 

\ p ^p^J * 
equating this to the given volume, the eonstant C is determined, and the 

pressure at any point is then given in terms of r and z. 

Rotating Fluids. 

\^28y If a quantity of fluid revolve uniformly and without any 

relative displacement of its particles {i.e. as if rigid) about a fixed 

axis, the preceding equations will enable us to determine the pres¬ 

sure at any point, and the nature of the surfaces of equal pressure. 

For, in such cases of relative equilibrium, every particle of the 

fluid moves uniformly in a circle, and the resultant of the external 

forces acting on any particle m of the fluid, and of the fluid pressure 

upon it, must be equal to a force mwV towards the axis, ct> being 

the angular velocity, and r the distance of m from the axis; it 

follows therefore that the external forces, combined with the fluid 

pressures and forces mw^r acting from the axis, form a system in 

statical equilibrium, to which the equations of the previous articles 
are applicable. 

A mass of homogeneous liquid, contained in a vessel, revolves 

uniformly about a vertical axis; required to determine the pressure 

at any point, and the surfaces of equal pressure. 

Take the vertical axis as the axis of z ; then, resolving the force 

mo)H parallel to the axes, its components are moj>H and moj^y, and 
the general equation of fluid equilibrium becomes 

dp ~ p{aj^xdx + w^ydy —gdz), 

and therefore P^p{\o}%^^+y^)~g^}+C. 

The surfaces of equal pressure are therefore paraboloids of 

revolution, and if the vessel be open at the top, the free surface is 

given by the equation 

w\x^-\-y^)—2gz-\-=—, 
P P 

where 11 is the external pressure. 

The constant must be determined by help of the data of each 

particular case. 
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For instance, let the vessel be closed at the top and be jnst 

filled with liquid, and let 11—0 ; then, taking the origin at the 

highest point of the axis, when x, and z vanish, and therefore 
(7=0, and 

v=^p{W{^^-\y^)--gz)^ 
Next consider the case of elastic fluid enclosed in a vessel 

which rotates about a vertical axis ; 

as before 

and 

dp—p{(jD^xdx+ydy) —gdz], 

p=^kp ; 
Jc log p--=lco^(x^+y^)-~gz+C, 

so that the surfaces of equal pressure and density are paraboloids^ 

Let the containing vessel be a cylinder rotating about its axis, 

and suppose the whole mass of fluid given ; then, to determine the 

constant, consider the fluid arranged in elementary horizontal 

rings each of uniform density : let r be the radius of one of these 

rings at a height 2;, 8r its horizontal and Sz its vertical thickness, 

the height, and a the radius of the cylinder : 

the mass of the Ting=2'rrpr8rSZy 

and the whole mass (ill) of the fluid =f f 2TTprdzdr^ 
Jo Jo 

the origin being taken at the base of the cylinder. 

Now 
c 

. e 
(i>V' -2gz 

2Jc 

and 
27Th 

gw^ 

€u®a* 

^n equation by which C is determined. 

28. In general the equation of equilibrium for a fluid revolving 
uniformly and acted upon by forces of any kind is 

dp^p{Xdx+ Ydy-\-Zdz-\-u)\xdx+ydy)}. 

In order that the equilibrium may be possible, three equations 

of condition must be satisfied, expressing that dp is a perfect 

differential, and, if these conditions are satisfied, the surfaces .of 

equal pressure, and, in certain cases, the free surface can be deter¬ 

mined j but it must be observed that a free surface is not always 

possible. In fact, in order that there may be a free surface, the 

surfaces of equal pressure must be symmetrical with respect to the 
axis of rotation. 
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EXAMPLES 

1. A closed tube in the form of an ellipse with its major axis vertical is 
filled with three different liquids of densities Qz respectivt^ly. If the 
distances of the surfaces of separation from either focus be rj, Tq respec 
tively, prove that 

2. Find the surfaces of equal pressure when the forces tend to fixed centres 
and vary as the distances from those centres. 

Prove that if the forces per unit of meiss at y, z parallel to the axes 
are 

y{a—z), x(a~z), xy, 

the surfaces of equal pressure are hyperbolic paraboloids and the curves of 
equal pressure and density are rectangular hyperbolas. 

4. In a sohd sphere two 8i)hcrical cavities, whose ra^i are equal to half 
the radius of the solid sphere, are filled with hquid ; the soUd and liquid 
particles attract each other with forces which vary as the distance : prove 
that the surfaces of equal pressure are spheres concentric with tlie solid sphere. 

.y5. Show that the forces represented by 

X:=n{if-\-yz~\-z% Y—f.t{z^-\-zx-\-x^),^ Z^n{x^-\-xy-\-y^) 

will keep a mass of liquid at rest, if the density oc ~ from the plane 
^ CllSu.) 

ic-hy-j-s—O ,♦ and the curves of equal pressure and density will bo circles. 

6. If a conical cup be filled with liquid, the mean pressure at a point in the 
volume of the liquid is to the mean pressure at a point in the surface of the cup 
as 3: 4. 

^7. A mass of fluid rests upon a plane subject to a central attractive force 
situated at a distance c from the plane on the side opposite to that on 

which the fluid is ; and a is the radius of the free spherical surface of the fluid : 
show that the pressure on the plane 

— 7tQfji(a—cYla, 

8. Find the surfaces of equal pressure for homogeneous fluid acted upon 
by two forces which vary as tlio inverse square of the distance from two fixed 
points. 

Prove that if the surface of no pressure be a sphere, the loci of points at 
which the pressure varies inversely as the distance from one of the centres of 
force are also spheres. 

'•^9. If the components parallel to the axes of the forces acting on an element 
of fluid at (x, y, z) be proportional to 

y^‘\'2kyz~\-z^f z^’]-2ijlzx-\-x^, x^-\-2vxy-\-y^^ 

show that if equilibrium be possible we must hayb 

2A—2/i=2v=l. 

10. A fluid is in equilibrium under a given system of forces ; if p 1= ^(a;, y, z) 
Qi^\l/(x, y, z) be two possible values of the density at any point, show that the 
equations of the surfaces of equal pressure in either case are given by 

V, y* »)—0, 

where A is an arbitrary parameter. 

11. A hollow sphere of radius a, just full of homogeneous liquid of \mit 
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density, is placed between two external centres of attractive force /u*/r* and 
distant c apart, in such a position that the attractions due to them at 

centre are equal and opposite. Prove that the pressure at any point is 

12. The density of a liquid, contained in a cylindrical vessel, varies as the 
depth; it is transferred to another vessel, in which the density varies as the 
square of the depth ; find the shape of the new vessel. 

13. A rigid spherical shell is filled with homogeneous inelastic fluid, every 
particle of which attracts every other with a force varying inversely as the 
square of the distance; show that the difference between the pressures at the 
surface and at any point within the fluid varies as the area of the least section 
of the sphere through the point. 

14. An open vessel containing liquid is made to revolve about a vertical 
axis with uniform angular velocity. Find the form of the vessel and its 
dimensions that it may be just emptied. 

15. An infinite mass of homogeneous fluid surrounds a closed surface and 
is attracted to a point (O) within the surface with a force which varies in¬ 
versely as the cube of the distance. If the pressure on any element of the 
surface about a point P be resolved along PO, prove that the whole radial 
pressure, thus estimated, is constant, whatever be the shape and size of the 
surface, it being given that the pressure of the fluid vanishes at an infinite 
di'tance from the point 0. 

16. All space being supposed filled with an elastic fluid the particles of 
which ai*0 attracted to a given point by a force varying as the distance, and 
the whole mass of the fluid being given, find the pressure on a circular disc 
plae^with its centre at the centre of force. 

mass m of elastic fluid is rotating about an axis with uniform angular 
velocity <n, and is acted on by an attraction towards a point in that axis equal 
to fi times the distance, pt being greater than ; prove that the equation of a 
surface of equal density q is 

/^(.x^+y^+z^)-c()*{a;Hy*)= k log | —-' 

18. A mass of seK-attracting liquid, of density q, is in equilibrium, the law 
of attraction being that of the inverse square : prove that the mean pressure 
throughout any sphere of the liquid, of radius r, is less by than the 
pressure at its centre. 

19. A fluid is slightly compressible according to the law 

iQ—Qo)lQo=^{p—Pi))IPo, 
where P is small: prove that a mass of the fluid will, under the action of 
its own gravitation with an external pressure assume a spherical form of 
approximate radius a(l—where m is the constant of gravita¬ 
tion, 

V/&. A mass M of gas at uniform temperature is diffused through all space, 
and at each point (x, z) the components of force per unit mass are —Ax, 
—• J5y, — Cz, The pressure and density at the origin are po and Qq respectively. 
Prove that 

ABCq 0 if 

21. A given mass of air is contained within a closed air-tight cylinder with 
its axis vertical. The air is rotating in relative equilibrium about the axis of 
the cylinder. The pressure at the highest point of its axis is P, and the 
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pressure at the highest points of its curved surface is p. Prove that, if the fluid 
were absolutely at rest, the pressure at the upper end of the axis would be 
(p—P)/(Iog p—log P} ; where the weight of the air is taken into account. 

w/22. A mass of gas at constant temperature is at rest under the action of 
forces of potential ^ at any point of space, with any boundary conditions. At 
the point where i|/ is zero, the pressure is n and the density po. The gas is now 
removed from the action of the forces and confined in a space so that it is at 
a uniform density Qq. Prove that the loss of intiinsic potential energy by the 
gas, due to the expansion, is 

11 dv; 

where the integrations are taken throughout the gas in its original state. 

23. A uniform spherical mass of liquid of density p + nand radius a is 
surrounded by another incompressible liquid of density p and external radius 
6. The whole is in equilibrium under its own gravitation, but with no external 
pressure. Show that the pressure at the centre is 

2 2 (2a^ 1 
^7i(p + cr)V f .^jrp ^ J (^—a). 

24. A uniform spherical mass of incompressible fluid, of density p and 
radius a, is surrounded by another incompressible fluid, of density n and 
external radius 6. The total fluid is in equilibrium under its gravitation, but 
with no external pressure or forces. The two fluids are now mixed into a 
homogeneous fluid of the same volume, and the mass is again in equilibrium 
in a spherical form. Prove that the pressure at the centre in the first case 
exceeds the pressure at the centre in the second case by 

8 
«7ror(p- cr)a’^( 1 

25. The boundary of a homogeneous gravitating solid, of density cr and 
mass M, is the surface r—a{14-aP^(co8 fl)}, where a is a quantity so small 
that its square may be neglected. The solid is surrounded by a mass M' of 
gravitating liquid, of density p. Show that the equation to the free surface is 
approximately 

r=:6{l-f/?PJcos 0)}, 
M' M\ 

where 
3 . 

and /?=3((r—p)a” l*’a/{(2w~-2)p63-l-(2w-fl) p)a®}&”. 

26. A uniform incompressible fluid is of mass M in gravitational units, 
and forms a sphere of radius a when undisturbed under the influence of its 
own attraction. It is placed in a weak field of force of gravitational potential 

jutl 

where r is measured from the centre of the mean spherical surface of the 
liquid, and the squares of quantities of the type can be neglected. Prove 
that the equation of the free surface is 

r 
a 

27. Prove that the pressure at the centre of the Earth, if it were a homo¬ 
geneous liquid, would be Jpa lb. per square foot, where p is the mass in pounds 
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of a cubic foot of the substance of the Earth and a is the Earth’s radius in 
feet. 

28. The density of a gravitating liquid sphere of radius a at any point 
increases uniformly as the point approaches the centre. I'he surface density 
is ^0 the moan density is q. Prove that the pressure at the centre is 

29. In a gravitating fluid sphere of radius a the surfaces of equal density 
are spheres concentric with the boundary, and the density increases from 
surface to centre according to any law. Prove that the pressure at the centre 
is greater than it would be if the density were uniform by 

^7iyj (Q'^—Q^)rdr, 

where q denote-s the moan density of the whole mass, q' the mean density of 
that portion which is within a distance r of the centre, and y is the constant 
of gravitation. 



CHAPTER III 

THE RESULTANT PRESSURE OF FLUIDS ON SURFACES 

29, In the preceding Chapter we have shown how to investi¬ 

gate the pressure at any point of a fluid at rest under the action 

of given forces ; we now proceed to determine the resultants of the 

pressures exerted by fluids upon surfaces with which they are in 

contact. 

We shall consider, first, the action of fluids on plane surfaces, 

secondly, of fluids under the action of gravity upon curved surfaces, 

and thirdly, of fluids at rest under any given forces upon curved 

surfaces. 

Fluid Pressures on Plane Surfaces 

The pressures at all points of a plane being perpendicular to it, 

and in the same direction, the resultant pressure is equal to the 

sum of these pressures. 

Hence, if the fluid be incompressible and acted upon by gravity 

only, the resultant pressure on a plane 

^SgpzdA, 

where z is the depth of a small element dA of the area of the plane 

=gpzAy 

where A is the whole area and z the depth of its centroid. 

In general, if the fluid be of any kind, and at rest under the 

action of any given forces, take the axes of x and y in the plane, 

and let p be the pressure at the point (a?, y). 

The pressiure on an element of area Sx8y=p8xhy : 

/. the resultant pressure=/fpdxdy, 

the integration extending over the whole of the area considered. 

If polar co-ordinates be used, the resultant pressure is given by 

the expression 
/fprdrdd. 

28 
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^ 80- Def. The centre of pressure is the point at which the 

direction of the single force, which is equivalent to the fluid pressures 

on the plane surface, meets the surface. 

The centre of pressure is here defined with respect to plane 

surfaces only; it will be seen afterwards that the resultant action 

ot fluid on a curved surface is not always reducible to a single 

force. 

In the case of a heavy fluid, it is clear that the centre of pressure 

of a horizontal area, the pressure on every point of which is the same, 

is its centroid ; and, since pressure increases with the depth, the 

centre of pressure of any plane area, not horizontal, is below its 

centroid. 

To obtain formulce for the determination of the centre of pressure 

of any plane area. 

Let p be the pressure at the point {x, y), referred to rectangular 

axes in the plane, x+bx, y+^y, the co-ordinates of an adjacent 

point, 
X, y, co-ordinates of the centre of pressure. 

Then y , jjpdydx^mommt of the resultant pressure about OX 

—the sum of the moments of the pressures on 

all the elements of area about OX 

— Ephy^x, y 

jjjdydx’ 

, . , - fjpxdydx 
and similarly x — , 

jjpdydx 

the integrals being taken so as to include the area considered. 
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If polar co-ordinates be employed, a similar process will give 

the equationvS 

fjpr^co^OdrdO i^h\ Odrdd 

fjprdrdO ’ ^ jjprdrdd 

31. If the fluid be homogeneous and inelastic, and if gravity be 

the only force in action, 
p-=gph, 

where h is the depth of the point P below the surface ; and we 

obtain 
_ _ // hxdydx - ydydx 

/jhdydx' ^ jjhdydx 
X (1) 

It is sometimes useful to take for one of the axes the line of 

intersection of the plane with the siuface of the fluid : if we take 

this line for the axis of x, and 9 as the inclination of the plane to 

the horizon, p—gpy sin 9, and therefore 

fjxydydx . JJy'dydx 

If ydydx ’ ^ Jfydydx (2) 

From these last equations (2) it appears that the position of 

the centre of pressure is independent of the inclination of the plane 

to the horizon, so that if a plane area be immersed in fluid, and 

then turned about its line of intersection with the surface as a 

fixed axis, the centre of pressure will remain unchanged. 

If in the equations (1) we make h constant, that is, if we sup¬ 

pose the plane horizontal, x and y are the co-ordinates of the centroid 

of the area, a result in accordance with Art. 30; but, in the equations 

(2), the values of x and y are independent of and are therefore 

unajEEected by the evanescence of 9, This apparent anomaly is 

explained by considering that, however small 9 be taken, the portion 

of fluid between the plane area and the surface of the fluid is always 

wedge-like in form, and the pressures at the different points of the 

plane, although they all vanish in the limit, do not vanish in ratios 

of equality, but in the constant ratios which they bear to one 

another for any finite value of 9. 

The equations of this article may also be obtained by the follow¬ 

ing reasoning. 

Through the boundary line of the plane area draw vertical lines 

to the surface enclosing a mass of fluid; then the reaction of the 

plane, resolved vertically, is equal to the weight of the fluid, which 
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acts in a vertical line through its centre of mass ; and the point in 
which this line meets the plane is the centre of pressure. 

Taking the same axes, the weight of an elementary prism, 

acting through the point (a?, y), is gphhxSy cos Oy where 0 is the in¬ 
clination of the plane to the horizon ; and therefore the centre of 

these parallel forces acting at points of the plane is given by the 

equations 

or 

-__jjgphx cos Bdydx 

j jgph cos Odydx ’ 

/fhxdydx 
X 

f j hdydx' 

^__J fgphy cos Bdydx 

^ jjgph cos Bdydx' 

^__fjhydydx 

^ jjhdydx' 

Hence it appears that the depth of the centre of pressure is 
double that of the centre of mass of the fluid enclosed. 

The following theorem determines geometrically the position 

of the centre of pressure for the case of a heavy liquid. 
If a straight line be talcen in the plane of the area^ parallel to the 

surface of the liquid and as far below the centroid of the area as the 

surface of the liquid is abovey the pole of this straight line with respect 

to the momental ellipse at the centroid whose semi-axes are equal to 

the principal radii of gyration at that point will be the centre of pressure 
of the area. 

Taking A for the area, and 6, a for the principal radii of gyration, 
these are determined by the equations 

Ab^=//yHxdy, Aa^ ~JJ xHxdy^ 

and the equation of the momental ellipse is 

a^^b^ 
1, 

then 
a 2 

the co-ordinate axes being the principal axes at the centroid. 

Let Xy y be the co-ordinates of the centre of pressure, and 
X cos B+y sin 

the equation to the line in the surface ; 

cc cos B—y sin 6)xdxdy 

cos B—y sin B)dxdy 

b^ 
and similarly, ^ sin 6 ; 

{x, y) is the pole of the line 

xcos 6-\-y sin B=--p 

with respect to the momental ellipse. 

— cos 0, 
P 
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v/SS, Examples of the determination of centres of ^pressure, 
(1) A quadrant of a circle just immersed vertically in a heavy homogeneous 

liquid, with one edge in the surface. 
If Ox, the edge in the surface, be the axis of x, 

II _ Jo Jo 
x——.— 

“a 
xydxdy 

^ \\ydxdif 
ydxdy 

0 JO 

the limits of the integrations for y being the same as for x, 

\\ydxdy— W(a^—x^)dx= la^, 

\\xydxdy= ^jx. {a^—x^)dx~ la*. 

jjy^dxdy= \l(d*—x^)Hx- 

X y y^na» 

7ia^ 
16 » 1 

Employing polar co-ordinates and taking the line Ox as the initial line, we 
should have 'p—ggr sin 6, and 

IT IT n2 fn y 
r^ cos 0 sin ddrdO . I / sin® OdrdO 

.3 , _ Jo Jo 3 
-U" 
f ® sin Odrdd r® sin ddrdO 

-jgjia. 

^ (2) A circular area, radius a, is immersed with its plane vertical, and its 
centre at a depth c. 

Take the centre as the origin, and the vertical downwards from the centre 
as the initial lino ; then if p be the pressure at the point (r, 6), 

p—gQ(c~}-r cos 0), 

and the depth below the centre of the centre of pressure 
a fir 

r® cos 0(c-{-r cos 0)drdd 

2j jr(c-}-r cos d)drdd 
Tc 

It will be seen that this result is at once given by the theorem of Art. 32. 

^ (Z) A vertical rectangle, exposed to the action of the atmosphere at a constant 
temperature. 

If n be tlie atmospheric pressure at the base of the rectangle, the pressure 
jSZ 

at a height 2; is lie Art. 24, and if h denote the breadth, the pressure upon 
a horizontal strip of the rectangle 

J!1 
= He 

the resultant pressure, if a be the height, 

bki 
tie tebdz=^Ti—{l—e 

A bhf 
:J He *6^8=5 
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and the height of the centre of pressure 

I ze f^ dz 
Jo k a 

^ fa 0 2^* 
/ e ^dz 6^ —1 

Jo 
.^4) A hollow cvhe is very nearly filled with liquid, and rotates uniformly 

about a diagonal which is vertical; required to find the 'pressures upon, and the 
centres of pressure of, its several faces. 

A 

I. For one of the upper faces A BOD, 
take AD, AB, oja axes of x and y; z, r, the vertical and horizontal distances 
of any point P {z, y) from A, 

P then 
l' 

x-\-y 
2= projecting the broken line A'NP on AE, 

the pressure (P) on ABCD- 
a fa 

pdydz 

.}. / 
The centre of pressure is given by the equations 

xP==ji/P==ef [ 

,% 5*« jfsssa 
36fir-f5V3€aV 
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II. For one of the lower faces ECDF, 
take EFf EG as axes, then, for a point Q, 

2= ay's— 
V3’ 

and the rest of the process is the same as in the first case. 

^5) A quadrant of a circle is just immersed verticallyy with one edge in the 
surface, in a liquid, the density of which varies as the depth. 

Taking Ox as the edge in the surface, Q=py and p~\pgy^; the centre of 
pressure is therefore given by the equations 

X— 9 

or, in polar co-ordinates, 

X- 

f-n 
Ja Jo 

r* sin^ 0 cos OdrdO 

, and y= 

r^ sin“ OdrdO 

r* sin* OdrdO 

r* sin* OdrdO 

and it will be found that 

^ 16a 

^""1571 
and y~ 

32a 

84. Let G be the ceatre of gravity and C the centre of pressure 

of a plane area A which is moved parallel to itself so that the depth 

of G is increased from z to 5+^^ and let G', O' be the new positions 

of G, C. Then the pre'ssur^f every point of A is increased by the 

same amount gph and the resultant pressure is therefore increased 

by adding a force gpJiA, acting at G\ to the original resultant 

gpzA which acts at O', so that the new centre of pressure C" is on 
G'G' and divides it so that 

G’C": G'C'=z : z+Ji. 

If a given plane area turn in its own plane about a fixed point, 

the centre of pressure changes its position and describes a curve 
on the area. 

If AB is the line of intersection of the plane area with the sur¬ 

face, the distance of the centre of pressure from AB is independent 
of the inclination of the area to the vertical (Art. 31). 

We may therefore take the area to be vertical. 
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Let h be the depth of the fixed point 0, and let Ox, Oy be axes 

fixed in the area. 

Then, if 0 is the inclination of Ox to the horizontal, 

f—gp{h~x sin d—y cos 6). 

^_ jfpxdxdy_a-\-h sin 9-\-c cos 6 
t , X — 

and 

/fpdxdy d-\-e sin 6 +/ cos 6 * 

- sill B+& cos 0 
^ d+e sin O+f cos 6 * 

a, b, d, etc., being known constants, and the elimination of 9 gives 
a conic section as the locus of the centre of pressure. 

Resultant Pressures on Curved Surfaces 

35. To jifid the resultant vertical pressure on any surface of a 

homogeneous liquid at rest under the action of gravity, 

PQ being a surface exposed to the action of a heavy liquid, let 
AB be the projection of PQ on the 

surface of the liquid. 

The mass AQ is supported by the 

horizontal pressure of the liquid and 

by the reaction of PQ; this reaction 

resolved vertically must be equal to 

the weight of AQ, and conversely, the 

vertical pressure on PQ is equal to the 

weight of AQ, and acts through its 

centre of mass. 

If PQ be pressed upwards by the 

liquid as in the next figure, produce the surface, project PQ on 
3 
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it as before, suppose the space AQ to be filled with liquid of the 

same kind, and remove the liquid from the inside. 
Then the pressures at all points of PQ are the same as before, 

but in the contrary direction, 

and since the vertical pressure 

“ in this hypothetical case is 

~ equal to the weight of AQ, it 

follows that in the actual case, 

the resultant vertical pressure 

Z upwards is equal to the weight 

r of AQ. 
If the surface be pressed 

partially upwards and partially 

downwards, draw through P, the 

highest point of the portion of surface considered, a vertical plane 

PR, and let AGE be the projection of PSQ on the surface of the 

liquid. 

Then the resultant vertical pressure on PSR 

=the weight of the liquid in PSR, 
and on RQ=.CQ, 

and the whole vertical pressure—the weight of the liquid in C©4- 
the weight of the liquid in PSR, 

This might also have been deduced from the two previous cases, 

for PR can be divided by the line of contact of vertical tangent 

planes into two portions PS, SR, on which the pressures are re¬ 

spectively upwards and downwards ; and since 

pressure on PS—weight of liquid APS, 
and.SP—.ASR, 

the difference of these, i,e, the vertical pressure on P/SP»weight of 

fluid PSR. 
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In a similar manner other cases may be discussed. 

It will be observed that this investigation applies also to the 

case of a heterogeneous liquid (in which the density must be a func¬ 

tion of the depth, since surfaces of equal pressure are surfaces of 

equal density), provided we consider that the liypothetical extension 

of the liquid follows the same law of density. 

88. To find the resultant horizontal pressure, in a given direction, 

on a surface PQ. 

Project PQ on a vertical plane perpendicular to the given direc¬ 

tion, and let pq be the projection. 

Then the mass Pq is kept at rest by the pressure on pq, the 

resultant horizontal pressure on PQ, and forces in vertical planes 

parallel to the plane pq. 

Hence the horizontal pressure on PQ is equal to that on pq, and 

acts in the same straight line, i.e, through the centre of pressure of pq. 

Hence, in general, to determine the resultant fluid pressure on 

any surface, find the vertical pressure, and the resultant horizontal 

pressures in two directions at right angles to each other. These 

three forces may in some cases be compounded into a single force, the 

condition for which may be determined by the usual methods of 

Stages. 

vExamplb. a hemisphere is filled with homogeneous liquid: required to find 
the resultant action on one of the four portions into which it is divided by two 
vertical planes through its centre at right angles to each other. 

Taking the centre 0 as origin, the bounding horizontal radii as axes of 
X and y, and the vertical radius as the axis of z, the pressure parallel to rc is 
equal to the pressure on the quadrant yOz, which is the projection, on a plane 
perpendicular to Ox, of the curved surface. 

Therefore, the pressure parallel to Ox 

4a 1 
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and the co-ordinates of its point of action are 

(0, |a, Art 33, Ex. 1; 

similarly, the pressure parallel to Oy~\gQa^, and acts through the point 

The resultant vertical pressure—the weight of the liquid — \gQ7ia^, and 

acts in the direction of the lino x=y—%a. 
The directions of the throe forces all pass through the point 

(^a, la, ^^na), 

and they are therefore equivalent to a single force 

lgQa^^/{7l^-\-^) 

3 3 2/ 3 \ 
in the line x— •-a=y— -a= - i z— ), 

8 8 jt\ Id / 

2 
or X"y—-z, 

7t 

a straight line through the centre, as must obviously be the case, since all the 
fluid pressures are normal to the surface. The point in which it meets the 
surface of the hemisphere may be called “ the centre of pressure.” 

To find the resultant 'pressure on the surface of a solid either 

wholly or partially immersed in a heavy liquid. 

Suppose the solid removed, and the space it occupied filled with 

liquid of the same kind ; the resultant pressure upon it will be the 

same as upon the original solid. But the liquid mass is at rest under 

the action of its own weight, and the pressure of the liquid surround¬ 

ing it: the resultant pressure is therefore equal to the weight of the 

liquid displaced, and acts in a vertical line through its centre of mass. 

The same reasoning evidently shows that the resultant pressure 

of an elastic fluid on any solid is equal to the weight of the elastic 

fluid displaced by the solid. 

This result may also be obtained by means of Arts. 35 and 36, 

as follows : Draw parallel horizontal lines touching the surface, 

and forming a cylinder which encloses it; the curve of contact 

divides the surface into two parts, on which the resultant horizontal 

pressures, parallel to the axis of the cylinder, are equal and opposite ; 

the horizontal pressures on the solid therefore balance each other 

and the resultant is wholly vertical. To determine the amount of 

the resultant vertical pressure, draw parallel vertical lines touching 

the surface, and dividing it into two portions on one of which the 

resultant vertical pressure acts upwards, and on the other down¬ 

wards ; the diflterence of the two is evidently the weight of the fluid 

displaced by the solid. 
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88. If a solid of given volume (F) be completely immersed in 

a heavy liquid, and if the surface of the solid consist partly of a 

curved surface and partly of known plane areas, the resulting 

pressure on the curved surface can be determined. 

For the plane areas being known in size and position, we can 

calculate the resultant horizontal and the resultant vertical pressure, 

X and Y, upon those areas ; and, since the resulting pressure on the 

whole surface is vertical and equal to gpV upwards, it follows that 

the resultant horizontal and vertical pressures on the curved surface 

are respectively equal to X and gpV—Y. 

Example. A solid is formed by turning a circular area round a tangent line 
through an angle 0, and this solid is held under water with its lower plane face 

horizontal and at a given depth h. 
In this case, 

V—7ia^0, X=gQ7ia^h—a sin 6) sin 0, 
and Y—gQ7ta\h—h cos 0-|-asin Q cos 0), 

89. To find the resultant pressure on any surface of a fluid at 

rest under the action of any given forces. 

Let p be the pressure, determined as in Chapter II, at any 

point (x, y, z) of a surface, /S, exposed to the action of a fluid. Let 

i, m, n be the direction-cosines of the normal at the point {x, y, z). 

Let SS be an element of the surface about the same point. 

The pressures on this element, parallel to the axes, are 

lp8S, mphS, nphS, 

.-. if X, Y, Z, and L, M, N, be the resultant pressures parallel to 

the axes, and the resultant couples, respectively. 

Y—^^mpdS, Z=^^npdS^ 

L^^^p{ny~-mz)dSy 

M == —nx)dSy 

N ^^^p(mx—ly)dS, 

the integrations being made to include the whole of the surface 

under consideration. 

These resultants are equivalent to a single force if 

XL+YM+ZN^O. 
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40. The surface may be divided into elements in three different 

ways by planes parallel to the co-ordinate planes. 

Thus, SxSy—projection of 8S on xy~nhS \ 

and Z~JJpdxdy; and similarly, X~jjj)dydz, and Y^^jj'pdzdx, 

ydxdy—zdzdx) 

—JJp{ydy—^dz)dx, 

M—Jj'p{zdz-—xdx)dy^ 

N=fj y{xdx—ydy)dz, 

41. If the fluid be at rest under the action of gravity only, 

and the axis of z be vertical, ^ is a function of z, <f> {z) suppose, and 

therefore 
X=jj^{z)dydz, 

which is evidently the expression for the pressure, parallel to x, 

upon the projection of the given surface on the plane yz ; and 

similarly Y is equal to the pressure upon the projection on xz. 

Again, if the fluid be incompressible and acted upon by gravity 

only, p8x8y is equal to the weight of the portion of fluid contained 

between SS and its projection on the surface of the fluid ; 

Z, or jjpdxdy, is the weight of the superincumbent fluid. 

These results accord with those previously obtained, Arts. 35 

and 36. 

42. When the surface S is closed, as for example the surface of a 

solid body, it is sometimes convenient to use Green’s I’heorem to 

transform the surface integrals of Art. 39 into volume integrals 

through the space bounded by S, The forces and couples then 

become 

and two similar equations, and 

and two similar equations; when j> is the value of the pressure 

function at the point {x, y, z) of the enclosed space supposed to con- 

tain fluid with the same law of pressure as the surrounding fluid. 

48. If a solid body be wholly or partially immersed in any 

fluid which is at rest under the action of given forces, the resultant 

fluid pressure on the body will be equal to the resultant of the forces 

which would act on the displaced fluid. 
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For we can imagine the solid removed and the gap filled up 

with the fluid, which will be in equilibrium under the action of 
the forces and the pressure of the surrounding fluid ; and the 

resultant pressure must be equal and opposite to the resultant of 

the forces. 

In filling up the gap with fluid, the law of density must be 

maintained, that is, the surfaces of equal density must be con¬ 

tinuous with those of the surrounding fluid. 

EXAMPLES 

1. A heavy thick rope, the density of which is double the density of water, 
is suspended by one end, outside the water, so as to bo partly immersed ; find 
the tension of the rope at the middle of the immersed portion. 

2. A hollow sphere of radius a is just filled with water ; find the resultant 
vertical pressures on the two portions of the surface divided by a plane at depth 
c below the centre. 

3. A vessel in the form of a regular pyramid, whose base is a plane polygon 
of n sides, is i)laced with its axis vertical and vertex downwards and is filled 
with fluid. Each side of the vessel is movable about a hinge at the vertex, 
and is kept in its place by a string fastened to the middle point of its base and 
to the centre of the polygon ; show that the tension of each string is to the 
whole weight of the fluid as 1 to w sin 2a, where a is the inclination of each side 
to the horizon. 

4. If an area is bounded by two concentric semicircles with their common 
bounding diameter in the free sui-faco, prove that the depth of the centre of 
pressure is 

62-fa6), 
where a and h are the radii. 

5. A square lamina A BCD, which is immersed in water, has the side AB 
in the surface ; draw a line BE to a point E in CD such that the pressures on 
the two portions may be equal. Prove that, if this be the case, the distance 

between the centres of pressure : the side of the square ; ; V505 : 48. 

6. A semicircular lamina is completely immersed in water with its plane 
vei^tical, so that the extremity A of its bounding diameter is in the surface, and 
the diameter makes with the surface an angle a. Prove that if JEr be the 
centre of pressure and d the angle between AE and the diameter. 

tan 0: 
3;r-f-16 tan a 

16-j-157i tan a 

7. A piano area immersed in a fluid moves parallel to itself and with its 
centre of gravity always in the same vertical straight line. Show (1) that the 
locus of the centres of pressure is a hyperbola, one asymptote of wlxich is the 
given vertical, and (2) that if a, a-i-h, a-i-h" be the depths of the c.g. in 
any positions, y+A?, y-fA;"' those of the centre of pressure in the same 
positions, then ‘ 

k, h, h(k-h) 

k\ r, h\k'~-h') 

h\ h\ 

^0. 
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8. A right cone is totally immersed in water, the depth of the centre of its 
base being given. Prove that, P, P', P" being the resultant pressures on its 
convex surface, when the sines of the inclination of its axis to the horizon are 
s, 8\ s" respectively, 

5')=0. 

9. A quantity of liquid acted upon by a central force varying as the distance 
is contained between two parallel planes; if P be the areas of the planes in 
contact with the fluid, show that the pressures upon them are in the ratio 

10. A solid sphere rests on a horizontal plane and is just totally immersed 
in a liquid. It is then divided by two planes drawn through its vertical 
diameter perpendicular to each other. Prove that if p be the density of the 
solid, o that of the fluid, the parts will not separate provided <!> Jp. 

11. A closed cylinder, very nearly filled with liquid, rotates uniformly 
about a generating Hne, which is vertical; find the resultant pressure on its 
curved surface. 

.Determine also the point of action of the pressure on its upper end. 

12. Show that the depth of the centre of pressure of the area included 
between the arc and the asymptote of the curve 

(r—a) cos 0—b 
4 ■ 3n6+4a ’ 

the asymptote being in the surface and the plane of the curve vertical. 

13. If a plane area immersed in a liquid revolve about any axis in its own 
plane, prove that the centre of pressure describes a straight hne in the plane. 

14. A solid is formed by turning a parabolic area, bounded by the latus 
rectum, about the latus rectum, through an angle 6; and this solid is held 
under water, just immersed, with its lower piano face horizontal. Prove that, 
if <f> bo the inclination to the horizon of the resultant pressure on the curved 
surface of the solid. 

3 sin** d tan <p—5 sin 0—3 sin 0 cos 0—20. 

15. A given area is immersed vertically in a heavy liquid and a cone is 
constructed on it as base, the cone being wholly immersed : find the locus of 
the vertex when the resultant pressure on the curved surface is constant, and 
show that this pressure is unaltered by turning the cone round the horizontal 
line drawn through the centre of gravity of the base perpendicular to the 
plane of the base. 

''^6. A vessel in the form of an elliptic paraboloid, whose axis is vertical, 

z 
and equation divided into four equal compartments by its 

principal planes. Into one of these water is poured to the depth h; prove 
that, if the resultant pressure on the curved portion be reduced to two forces, 
one vertical and the other horizontal, the lino of action of the latter will pass 
th^^gh the point (fga, ^h). 

17. A regular polygon wholly immersed in a liquid is movable about its 
centre of gravity ; prove that the locus of the centre of pressure is a sphere. 

A hemispherical bowl is filled with water, and two vertical planes are 
drawn through its central radius, cutting off a semi-lune of the surface ; if 2a 
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be the angle between the planes, prove that the angle which the resultant 
pressure on the surface makes with the vertical 

_i/8in a 
=tan - 

\ ct 

19. A volume of fluid of density q surrounds a fixed sphere of radius 
b and is attracted to a point at a distance c(<b) from its centre by a force /mr 
per unit mass ; supposing the external pressure zero, find the resultant pressure 
on the fixed sphere. 

20. A vessel in the form of a surface of revolution has the following 
property; if it be placed with its axis vertical, and any quantity of water 
be poured into it, the resultant vertical pressure has a constant ratio to the 
resultant horizontal pressure on either of the portions into which the surface 
is divided by a vertical plane through its axis ; find the form of the surface. 

21. Find the equation of a curve symmetrical about a vertical axis, such 
that, when it is immersed with its highest point at half the depth of its lowest, 
the centre of pressure may bisect the axis. 

22. A rectangular area is immersed in compressible liquid with its plane 
vertical and one side in the surface, where the pressure is zero. Show that, if 
the density is a linear function of the pressure, the depth of the centre of 
pressure is 

(m—l)gi+(l — 
m ei-(n»+l)e„ ’ 

whore a is the length of the vertical side, Po> s-rc the densities at the top and 
bottom of the area, and 

m=log (ei/go). 

23. A cubical box of side a has a heavy lid of weight W movable about 
one edge. It is filled with water, and held with the diagonal through one ' 
extremity of this edge vertical. If it be now made to rotate with uniform 
angular velocity ce, show that, in order that no water may be spilled, W must 
not be less than 

1 

2v3 t)-- 

if is the weight of the water in the box. 

24. A small solid body is held at rest in a fluid in which the pressure p 
at any point is a given function of the rectangular co-ordinates x, y^z; prove 
that the components of the couple which tends to make it rotate round the 
centre of gravity of its volume are 

(C-B) 
d^p 

dydz -D 
d^p 
dy^ 

gVN p gy , p 8‘p 
dz^J dydx^ dzdx* 

and two similar expressions, where A, B, O, 2>, E, F are the moments and 
products of inertia of the volume of the solid with respect to axes through the 
centre of gravity. 

25. A mass of homogeneous liquid is at rest under the action of forces whose 
potential is a quadratic function of rectangular co-ordinates, so that the 
surfaces of equipressure are ellipsoids. Show that, if a body of any shape is 
held inimersed in the liquid, the resultant thrust on the body may be repre¬ 
sented as a force acting through G, the centroid of its volume, and directed 
along the normal to the surface of equipressure through G, together with a 
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couple which depends on the orientation of the body but not on the position 
of O in the liquid. 

26. A rigid spherical shell of radius a contains a mass M of gas in which 
the pressure is k times the density, and the gas is repelled from a fixed external 
point O (distant c from the centre) with a force per unit of mass equal 
to »c/(distanoe). Provo that the resultant pressure of the gas on the shell is 

kM 5c^-a^ 

c 5c^-f 

27. A vessel full of water is in the form of an eighth part of an ellipsoid 
(axes a, 6, c), bounded by the three principal planes. The axis c is vertical, 
and the atmospheric pressure is neglected. Prove that the resultant fluid 
pressure on the curved surface is a force of intensity 

28. A hollow elhpsoid is filled with water and placed with its a-axis making 
an angle a with the horizontal and its c-axis horizontal. Prove that the fluid 
pressure on the curved surface on either side of the vertical piano through the 
a-axis is equivalent to a wrench of pitch 

3c sin a cos a 

2 4c^-j- 9(a“ siu^ cos^ a)‘ 
r 

y 29. The angular points of a triangle immersed in a liquid whoso density 
varies as the depth are at distances a, y respectively below the surface, show 
that the centre of pressure is at a depth 

3 ^ {a+P+y){a^-\-P^+y^)+apy 
5 

30. A plane area, completely submerged in a heavy heterogeneous fluid, 
rotates about a fixed horizontal axis at depth h perpendicular to its plane. If 
the density of the fluid at depth z be equal to /uz, and if the area bo symmetrical 
about each of two rectangular axes meeting at the point of intersection of the 
area with the axis of rotation, prove that the locus in space of the centre of 
pressure is an ellipse with its centre at a depth 

where hi and are the radii of gyration of the area with respect to the axes 
of symmetry and the atmospheric pressure is 

31. Show that the pressure on any plane area immersed in water can be 
reduced to a force at the centroid of the area, and a couple about an axis in 
the plane of the area, and that the axis of this couple is perpendicular to the 
tangent at the end of the horizontal diameter of a momontal ellipse at the 
centroid. 



CHAPTER IV 

THE EQUILIBRIUM OF FLOATING BODIES 
✓ 

44. To find the conditions of equilibrium of a fioati'ng body. 

We shall suppose that the fluid is at rest under the action of 

gravity only, and that the body, under the action of the same 

force, is floating freely in the fluid. The only forces then which act 

on the body are its weight, and the pressure of the surrounding 

fluid, and in order that equilibrium may exist, the resultant fluid 

pressure must be equal to the weight of the body, and must act in 

a vertical direction. 

Now we have shown that the resultant pressure of a heavy 

fluid on the surface of a solid, either wholly or partially immersed, 

is equal to the weight of the fluid displaced, and acts in a vertical 

line through its centre of mass. 

Hence it follows that the weight of the body must be equal to 

the weight of the fluid displaced, and that the centres of mass of 

the body, and of the fluid displaced, must lie in the same vertical 

line. 

These conditions are necessary and sufficient conditions of 

equilibrium, whatever be the nature of the fluid in which the 

body is floating. If it be heterogeneous, the displaced fluid must 

be looked upon as following the same law of density as the sur¬ 

rounding fluid; in other words, it must consist of strata of the 

same kind as, and continuous with, the horizontal strata of uniform 

density, in which the particles of the surrounding fluid are neces¬ 

sarily arranged. 

If for instance a solid body float in water, partially immersed, 

its weight will be equal to the weight of the water displaced, together 

with the weight of the air displaced; and if the air be removed, 

or its pressure diminished by a diminution of its density or tempera¬ 

ture, the solid will sink in the water through a space depending 

upon its own weight, and upon the densities of air and water. This 
i3 
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may be further explained by observing that the pressure of the air 
on the water is greater than at any point above it, and that this 
surface pressure of the air is transmitted by the water to the 
immersed portion of the floating body, and consequently the 
upward pressure of the air upon it is greater than the downward 
pressure. 

45. We now proceed to illustrate the application of the above 
conditions, by discussion of some particular cases. 

Example 1. A portion of a solid paraboloid^ of given height, floats with its 

axis vertical and vertex downwards in a homogeneous liquid : required to find its 

position of equilibrium. 

Taking 4a as the latus rectum of the generating parabola, h its height, and 

X the depth of its vertex, the volumes of the whole solid and of the portion 

immersed are respectively 2nah^ and 27iax^; and if g, a be the densities of 

the solid and liquid, one condition of equilibrium is 

Q . 2nah^— a . 2nax^; 

which determines the portion immersed, the other condition being obviously 

satisfied. 

Example 2. It is required to find the positions of equilibrium of a square 

lamina floating with its plane vertical, in a liquid of double its own density. 

The conditions of equilibrium are cleaily satisfied if the lamina float half 

immersed either with a diagonal vertical, 

or with two sides vertical. 

To examine whether there is any 

other position of equilibrium, let the 

lamina be held with the line DGC in the 

surface, in which case the first condition 

is satisfied. 

But, if the angle COA=d, and if 2a 

be the side of the square, the moment 

about 0 of the fluid pressure, which is 

the same as the difference between the 

moments of the rectangle AK, and of 

twice the triangle GBD, is proportional to 

2a®. Ja sin 0—a® tan d . |(a sec 0+a cos d), 

or to sin 0(1— tan® 0), 

and this vanishes only when 0=0 or Jjr. 

Hence there is no other position of equilibrium. 
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Example 3. A triangtdar prism floats with its edges horizontal, to find its 

positions of equilibrium. 

Let the figure be a section of the prism by a vertical plane through its 

centre of gravity. 

PQ is the line of flotation and H the centre c 

of gravity of the liquid displaced. When 

there is equilibrium the area APQ is to ABC 

in the ratio of the density of the prism to the 

density of the liquid, and therefore for all 

possible positions of PQ the area APQ is 

constant; hence PQ always touches, at its 

middle point, an hyperbola of which AB, AC ** 

are the asymptotes. 

Also HO must be perpendicular to PQ, 

and therefore since 

AH : HE=AO : OF, 

FE must be perpendicular to PQ, that is, 

FE is the normal at E to the hyperbola. 

The problem is therefore reduced to that of ^ 

drawing normals from F to the curve. 

Let .(1) 

be the equation of the curve referred to AB, AC as axes, and lot 

BAG^e, AB=2a, 40=26. 

Let X, y be the co-ordinates of E; the co-ordinates of F are o, 6, and the 

equation of the normal at E is 
y cos d— X 

And if this pass through F, the co-ordinates of which are a, h, 

(^~ cos 6— y)— (a— x)(y cos d—x), 

or a;*—(a-|-6 cos (a cos 0-f 6)y , • . (2) 

The equations (1) and (2) determine all the points of the hyperbola, the 

tangents at which can be lines of flotation. 

Also (2) is the equation to a rectangular hyperbola, referred to conjugate 

diameters parallel to AB, AG ; the points of intersection of the two hyperbolas 

are therefore the positions of E. 

To find X, we have 

x*—(a-i-b cos 6) 2c®-{-(a cos d-i-b)c^x—c*=0, 

an equation which has only one negative root, and one or three positive roots, 

and there may be therefore three positions of equilibrium or only one. 

If the densities of the liquid and the prism be g and a, we have, since the 

area PAQ 
== \AP. AQ sin d—2xy sin 0=2c* sin 0, 

2gc® sin 6=2<r«6 sin 6, 

or gc* ^aab, 
from which c is determined. 
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Suppose the prism to bo isosceles, then putting o= b, the equation for x 

becomes 
a(l-f cos 0){x^— c^x)—0 ; 

from which we obtain a;=c, which gives 2/==c, and makes BC horizontal, an 

obvious position of equihbrium, and also 

cos 0)± I j(l -f~cos 0)®—| ~a cos* i6±{a^ cos* Jl?—c*)i; 

the isosceles prism will therefore have only one position of equilibrium, unless 

a cos* J0>c; 

and since this is equivalent to 

cos* V((TIq)* 

46. If a solid float under constraint, the conditions of equi¬ 
librium depend on the nature of the constraining circumstances, 
but in any case the resultant of the constraining forces must act 
in a vertical direction, since the other forces, the weight of the 
body, and the fluid pressure, are vertical. 

If for instance one point of a solid be fixed, the condition of 
equilibrium is that the weight of the body and the weight of the 
fluid displaced should have equal moments about the fixed point; 
this condition being satisfied, the solid will be at rest, and the 
stress on the fixed point will be the difference of the two weights. 

As an additional illustration, consider the case of a solid floating 
in water and supported by a string fastened to a point above the 
surface ; in the position of equilibrium the string will be vertical, 
and the tension of the string, together with the resultant fluid 
pressure, which is equal to the weight of the displaced fluid, will 
counterbalance the weight of the body; the tension is therefore 
equal to the difference of the weights, and the weights are inversely 
in the ratio of the distances of their lines of action from the line of 
the string, these three lines being in the same vertical plane, 

47. For subsequent investigations, the following geometrical 
propositions will be found important. 

If a solid be cut by a planer and this plane he made to turn through 
a very small angle about a straight line in itself, the volume cut off 
will remain the same, provided the straight line pass through the 
centroid of the area of the plane section. 

To prove this, consider a right cylinder of any kind cut by 
a plane making with its base an angle 6, 

Let 5 be the distance from the base of the centroid of the section 
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8A an element of the area of the section and V the volume 
between the planes. Then 

. UiSA.PN) 
A ’ 

/. A cos 6z—E(8A cos 9 . PN)==V, 
or F—5(area of base). 

Now the centroid of the area A is also the centroid of all sections 
made by planes passing through it, as may be seen by projecting 
the sections on the base of the cylinder; it follows, 
therefore, that z being the same for all such 
sections, the volumes cut of! are the same. 

In the case of any solid, if the cutting plane 
be turned through a very small angle about the 
centroid of its section, the surface near the curves 
of section may be considered, without sensible 
error, cylindrical, and the above proposition is 
therefore established. 

In other words, the difference between the 
volume lost and the volume gained by the change 
in the position of the cutting plane will be indefinitely small com¬ 
pared with either. 

48. Definitions. If a body float in a homogeneous liquid, the 
plane in which the body is intersected by the surface of the liquid 
is the plane of flotation. 

The point H, the centre of mass of the liquid displaced, is the 
centre of buoyancy. 

If the body move so that the volume of liquid displaced remains 
unchanged, the envelope of the planes of flotation is the surface 
of flotation, and the locus of H is the surface of buoyancy. 

Curves of flotation and curves of buoyancy are the principal 
normal sections at corresponding points on a surface of flotation and 
a surface of buoyancy, 

49. If a plane move so as to cut from a solid a constant volume, 
and if H be the centroid of the volume cut off> the tangent plane at 
H to the surface which is the heus of H is parallel to the cutting plane. 

In other words, the tangent planes at any point of the surface 
of flotation, and at the corresponding point of the surface of 
buoyancy, are parallel to one another. 
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Turn the plane ACB, the cutting plane, through a small angle 
into the position aCb, the volumes of the wedges ACa, BCb being 

equal. 

Let G and be the centroids of these wedges. 

In GH produced take a point E such that 

EH : HG ; : Volume ACa : Volume aDB, 

Join EG' and take H' such that 

EH': H'G':: Volume BCb : Volume aDB; 

then H' is the centroid of aDb ; 

but EH :HG:: EH': H'G', 

and HH' is therefore parallel to GG'. 
Hence it follows that ultimately when the angle ACa is in¬ 

definitely diminished, 

HH' is parallel to ACB; 

and HH' is a tangent at H to the locus of H, 
This being true for any displacement of the plane ACB about 

its centroid, it follows that the tangent plane at H to the locus of 
H is parallel to the plane ACB, 

60. The positions of equilibrium of a body floating in a homo¬ 
geneous liquid are determined by drawing normals from G, the cerdre 
of mass of the body, to the surface of buoyancy. 

For if GH be a normal to the surface of buoyancy, the tangent 
plane at H, being parallel to the plane of flotation, is horizontal, 
and GH is therefore vertical. 

The two conditions of equilibrium are then satisfied, and a 
position of equilibrium is determined. 

The problem comes to the same thing as determining the posi- 
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tions of equilibrium of a heavy body, bounded by the surface of 

buoyancy, resting on a horizontal jilane. 

51. Particular cases of curves of buoyancy. 
For a triangular prism, as in Art. 45, the curve of flotation is 

the envelope of PQ, which is an hyperbola having AB, AC for 

asymptotes ; and, since AH=^AE^ the curve of buoyancy is a 
similar hyperbola. 

If the body be a plane lamina bounded by a parabola, the curves 

of flotation and buoyancy are equal parabolas. 

If the boundary be an elliptic arc, the curves are arcs of similar 

and similarly situated concentric ellipses. 

If the immersed portion of a lamina 
(or prism) be a rectangle, the curve 

of flotation is clearly a single point; 

and the curve of buoyancy is a 

parabola. 

To prove the last statement, let //, H' 
be positions of the centroid corresponding 

to the positions ACB, A'CB' of the line 

of flotation. 

Then, if AO=CB=a, BB'^^, CH=c, 
and the area cut off, 

2 2 0 
-3 

C — 

and Sy^~^a^x. 

In the case of Ex. (2), Art. 45, 8~2a^, and the curve of buoyancy 
is the parabola, Sy^~2ax. 

The radius of curvature at the vertex, H, of this parabola is Ja, 
which is less than HO. 

Hence it will be seen that three normals can be drawn to the 

curve of buoyancy, giving the three positions of equilibrium. 

62. In the case of a right circular cone floating with its vertex 
beneath the surface, the surfaces of flotation and buoyancy are 
hyperboloids of revolution. 

Sy=S . H'N=la^ . W- 

Sx=S . HN c+l' 
o 

4 
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If V is the vertex of the cone, ACB the major axis of a section, 
and VK the perpendicular upon AB, the volume VAB is equal to 

^VK . inAB . {AV . BV sin^ a}*. 

But VK. AB= VA . VB sin 2a, 

each expression being double the area VAB ; therefore, the volume 
being constant, it follows that the area VAB is constant. 

The locus of C', the centroid of the plane section, is therefore a 
hyperboloid of revolution, and, Fif being three-fourths of FC, the 
surface of buoyancy is a similar hyperboloid. 

53. Surfaces of buoyancy and flotation for an ellipsoid. 

If the ellipsoid have equation the substitutions 
x~a^, y—hr)j 2=cf reduce the problem to that of the sphere ; 

and if V denote the immersed volume of the ellipsoid, V/abc denotes the cor¬ 
responding volume of the sphere. It is clear that the plane which cuts off this 
volume touches a concentric sphere of radius r, such that 

j x^)dx~ VjahCy 

or Jjr(l-~r)^(2-f-r)= F/afec. 

Also the centroid of the volume cut off lies on a sphere of radius R, where 

R^ n(\—x^)dx— ^ nx{\—x'^)dx 

or R=i(l+r)V(2+r). 

Returning to the original problem, we see that the surface of flotation is a 
similar ellipsoid of semiaxes ra, rhy rc, where 

(1—r)2(2-fr)=^3F/:;ta6c . . . . (1) 

and the surface of buoyancy is another similar ellipsoid of semiaxes Ray Rb, 
Rcy whore 

i?=|(l-fr)V(2-fr) .... (2) 

Similar results hold good for a hyperboloid of two sheets. 

54. Elliptic Paraboloid. 

This case can be deduced from the results for an ellipsoid by making a, 6, 
c tend to infinity in such a way that a^jo-^a and 6*/c->/3, where a, ^ are the 
semi latera recta of the principal sections of the paraboloid. If, as before, V 

denotes the finite volume immersed, then Yjahc tends to zero, so that r and also 
R both tend to umty. Hence the surfaces, of flotation and buoyancy are equal 
paraboloids. Also the distances between their vertices and the vertex of the 
given paraboloid are the limiting values of c(l-—r) and c(l--i?). 

But from Art. 63 (1), we see that 

3Fo ^ F 

{2-\~r)7mb * 
c»(l-r)* 
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BO that the intercept on the axis between the given paraboloid and the surface 

of flotation is y, where _ 
y2~ Vfjt^/a/?. 

Similarly, from Art. 63 (2), 
c(l-r){5+3r) , 

c(i-i?)-—4^^—->5y. 

thus determining the corresponding intercept for the surface of buoyancy. 

55. Cylinder of any section. 
The surface of flotation is a point on the line of centroids Oz, given by Ac— F, 

where A is the cross-section and V the volume 
immersed. 

Let be the equation of the 
cutting plane, the origin being in the base. 

The co-ordinates (5, z) of the centre of 
buoyancy are given by 

Yx—\\xzdxdy integrated over the base 
—^\x{c-\-lx-\-'rf^y)dxdy 

Similarly 
Vy=llyzdxdy 

and Vz— \\\z^dxdy 

whore a—\\x^dxdy, h—\\xydxdy, h—‘]\y'^dxdy. 

If wo use the principal axes of the section as axes of x and y, we have 
h—0, and 

Vx—al, Vy—bm, V{z—\c)—^(al^-\~^m% 

Therefore the equation of the surface of buoyancy is 

x^ ^ y^ 2z—c 

O 

EXAMPLES 

1. A solid formed of two co-axial right cones, of the same vertical angle, 
connected at the vertices, is placed with one end in contact with the horizontal 
base of a vessel: water is then poured into the vessel; show that if the alti¬ 
tude of the upper cone be treble that of the lower, and the common density of 
the spindle four-sevenths that of the water, it will be upon the point of rising 
when the water reaches to the level of its upper end. 

2. A oone, of given weight and volm^e, float® with its vertex downwards ; 
prove that the surface of the cone in contact with the liquid is least when its 
vertical angle is 2 tan“U/v^2. 

3. A hollow hemispherical shell has a heavy particle fixed to its rim, and 
floats in water with the particle just above the surface, and with the plane of 
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the rim inclined at an angle of 45° to the surface ; show that the weight of the 
hemisphere : the weight of the water which it would contain 

;:4V2-5:6V2. 

4. A solid cone is divided into two parts by a plane through its axis, and 
the parts are connected by a hinge at the vertex ; the system being placed in 
water with its axis vertical and vertex downwards, show that, if it float with¬ 
out separation of the parts, the length of the axis immersed is greater than 
h sin® a, h being the height of the cone, and 2a its vortical angle. 

5. A cylinder floats in a liquid with its axis inclined at an angle tan~^2/5 
to the vertical, and its upper end just above the surface ; prove that the radius 
is 4/7 of the height of the cylinder. 

6. A cone floats, with vertex downwards, in a cylindrical basin of water, 
and is lifted just out of the water (without tilting); show that the work done is 

W(il~ JD, 

where W is the weight of the cone, I is the depth of the vertex below the sur¬ 
face in equilibrium, I' is the length of the cylinder which would bo filled by 
the water then displaced by the cone. 

7. If a given quantity of homogeneous matter be formed into a paraboloid 
of revolution and allowed to float with the vertex downwards, the square of 
the distance of the centre of gravity from the plane of flotation will be inversely 
proportional to the latus rectum. 

8. If the height of a right circular cone be equal to the diameter of the 
base, it will float, with its slant side horizontal, in any liquid of gniater density. 

v/ 9. A cone, whoso height is k and vertical angle 2a, has its vertex fixed at 
distance c beneath the surface of a liquid ; show that it will rest with its base 
just out of the liquid if 

(xc* COS'* a cos O—Qh* [cos (0— a) cos (0+a)]S, 

where a and q are the densities of the liquid and cone, and 6 is given by the 
equation c cos a—h cos (0-fa)* 

Y 19* A right circular cylinder, whose axis is vertical, contains a quantity of 
liquid, the density of which varies as the depth, and a right cone whose axis is 
coincident with that of the cylinder and which is of equal base, is allowed to 
sink slowly into the liquid with its vertex downwards. If the cone be in 
equilibrium when just immersed, prove that the density of the cone is equal 
to the initial density of the liquid at a depth equal to ^^th the length of the 
axjs of the cone. 

%/ 11. A solid cone, of height h, vertical angle 2a, and density q, is movable 
about its vei-tox, and its vertex is fixed at a depth c below the surface of a 
liquid, the density of which, at a depth z, is juz. The cone is in equilibrium with 
it/S axis inclined at an angle 0 to the vertical, and its base above the surface ; 
prove that 

^ /ic® cos® a cos d—bgh* {cos (0+a) cos (0— a)}J. 

^ 12. A hollow paraboloidal vessel floats in water with a heavy sphere lying 
in it. There being an opening at the vertex, the water occupies the whole of 
the space between the vessel and the sphere. If the resultant pressure on the 
sphei'O be equal to half the weight of the water which would fill it, show that 
the depth of the centre of the sphere below the surface of the water is 4aV3c, 
where 4(X is the latus rectum of the paraboloid, and c the distance of the plane 
of contact from the vertex. 
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A right-angled triangular prism floats in a fluid of which the density 
^ries as the depth with the right angle immersed and the edges horizontal; 
show that the curve of buoyancy is of the form 

sin^ 0 cos- 6= c®. 

14. A life-belt in the form of an anchor-ring generated by a circle of radius 
a floats in water with its equatorial plane horizontal; show that z, the depth 
immersed, is given by the equations 

2—a(l—cos 

2jt5“(2^—sin 2/5); 

where s is the specific gravity of the material of the belt. 

15. An indefinitely small piece of ice, the shape of which may be taken to 
be that of a right circular cylinder, is floating in water with its axis vertical. 
The part immersed receives deposits of ice in such a manner as to continue 
cylindrical, the radius and axis receiving equal increments in equal times. 
Find the ultimate shape of the part not immersed. 

If the specific gravity of ice be *96, prove that the surface is formed by the 
revolution of the curve 

^ 16. A solid bounded by the planes x— ?/= 2=0, and z—c floats in 
water with the base 2—0 wholly immersed. Show that for displacements such 
that the volume V immersed remains constant and the base is entirely imder 
water and the opposite face entirely out of the water, the equation of the sur¬ 
face of buoyancy is 

Sabz 1 

3* 

^17. A cylindrical vessel with its cross-section of any shape floats with a 
length 2c of its axis immersed when the axis is vertical. Prove that the 
equation of the surface of buoyancy is x^la^-\-y^lb‘^~zlc; where the origin is 
taken at the middle point of the portion of the axis immersed for the upright 
position, the axis of 2 is vertically upwards, and the axes of z, y parallel to the 
principal axes of moments of inertia of the plane of flotation for the upright 
position through its centre of gravity, and &, a are the radii of gyration for 
those axes of the plane of flotation. 



CHAPTER V 

THE STABILITY OF THE EQUILIBEIUM OF 
FLOATING BODIES 

66. If a floating body be slightly displaced it will in general 
either tend to return to its original position or will recede farther 
from that position ; in the former case the equilibrium is said to be 

stable, and in the latter unstable, for that particular direction of 
displacement. 

Consider first a small vertical displacement: it is clear that, if 

the body be floating partially immersed in homogeneous fluid, or 
if it be immersed, either wholly or partially, in a heterogeneous 

fluid of which the density increases with the depth, a depression 
will increase the weight of the fluid displaced, and on the contrary 
an elevation will diminish it; in either case the tendency of the 
fluid pressure is to restore the body to its position of rest, and 

the equilibrium is stable with regard to vertical displacements. 
This, it will be observed, is only shown to be true of rigid bodies; 
if the increased pressure, caused by depression, have the effect of 
compressing any portion of the floating body, the equilibrium is 
not necessarily stable, and in fact it may be unstable. 

An arbitrary displacement will in general involve both vertical 
and angular changes in the position of the body; if however the 
displacement be small, as we have supposed to be the case, the 
effects of the two changes of position can be treated independently ; 
and we proceed to consider the effect of a small angular displace- 
ment, on the supposition that the weight of fluid displaced remains 

unchanged, and consequently that the fluid pressure has no ten¬ 
dency to raise or depress the centre of mass of the body. 

67. A solid, floating at rest in a homogeneous liquid, is made 
to turn through a small angle in a given vertical jilane ; to determine 
whether the fluid 'pressure will tend to restore it to its original 'position 

or not. 
64 
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Suppose that the body is turned through a small angle 0 about 
an axis Oy in the plane of flotation AOB ; Oy being at right angles to 
the plane of the paper, Ox 
in the plane of flotation 
and Oz vertical in the 
original position ; and as 
the body is turned let the 
axes be carried with it. 

If dxdy denotes an 
element of area on the 
plane of flotation AOB, 
the volume of an ele¬ 
mentary column PQ is 
zdxdy, where z denotes the length PQ, In the displaced position 
the length of the corresponding column P'Q is z-]-xd and its volume 
is {z+xd)dxdy. Hence the volume V of liquid displaced will be 
the same in both cases if 

ii{z+x6)dxdy= V ==llzdxdy, 

where the integrations are over the section of the body made by 
the plane of flotation in the original position. 

This reduces to l^xdxdy—Q, which means that the centre of 
gravity of the surface section must lie on Oy, as was proved in 
Art. 47. 

Assume that this condition is satisfied. In the original position 
the centre of gravity 0 and centre of buoyancy H are in the same 
vertical, and we may denote the co-ordinates of the latter by {x, y, z) 
and note that G will have the same {x, y). In the displaced position 
there is a new centre of buoyancy H' whose co-ordinates referred 
to the original axes are {x', y', z'). 

Now Vx:=Jfxzdxdy, Vy=ffyzdxdy, Fz—fjjz^dxdy, 

These integrals being written down by taking the elementary 
column PQ of volume zdxdy with its centre of gravity at the middle 
point of its length. 

In the displaced position the corresponding elementary column 
is P'Q of length z+xO ; its centre of gravity is at a distance ^{z+xB) 
from P\ and therefore at a distance 1(2—a:6) from P, so that we 
have 

Vx'=^ iix{z+x6)dxdy, Vy' ==^Uy{z+xB)dxdy, 
^ll\{z--x6){z+xB)dQdy. 
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We observe that, to the first power of the small angle 0, we have 

z^=z, BO that the tangent plane to the surface of buoyancy is parallel 
to the plane of flotation, as was proved in Art. 49. 

Now in the displaced position the body is subject to two equal 

and opposite parallel forces, viz. its weight W or gpV vertically 

downwards through G and the force of buoyancy vertically up¬ 

wards through H\ These forces form a couple and the plane of 

this couple will be at right angles to the axis of rotation if, and 

only if, the points G, H' are in a vertical plane perpendicular to 

Oij, i.e. if 

or jjy{z+x9)dxdy=SSyzdxdy. 

This reduces to j^xydxdy=0^ 

which means that the axis of rotation Oy must be a principal axis 

of inertia of the section of the body made by the plane of flotation. 

When this condition is satisfied the 

vertical through H' intersects the line 

HG in a point M called the meta- 
centre. The couple acting on the body 

is W . G3i9, and it tends to restore the 

body to its former position or to in¬ 

crease the displacement according as M 
is above or below G. 

Also, we have HM . 9=HH'==x'~x 

__ 9jJxHxdy 

“ V ‘ 

Therefore HM—Ak^jV, where Ak’^ denotes the moment of inertia 

of the section of the body made by the plane of flotation about 

the axis of rotation. 

The couple tending to restore the body is therefore ^ 

gpeV{HM-HG)=gpe(Ah^~V. HG). | 
68. Since there are two principal axes through the centre of 

gravity of the surface section of the body with corresponding 

moments of inertia Ii and /g, it follows that a displacement about 

either of these axes would set up a couple in the plane of the dis- 

plal|^ent tending to restore equilibrium if GH < IJV and also 

< tjV. Hence these conditions necessary for stability of 

equilibrium. 
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69. Work done in producing a displacement. When the 
body has been displaced through a small angle 6 about either 
principal axis through the centre of gravity of the surface section, 
the couple acting on the body is 

gp{AJc^-~V, 110)6. 

Consequently the work that would have to be done by external 
agency in order to increase 9 by a small amount dO is 

gp{A1c^-V . IIG)9de, 

and, by integration, it follows that the work done in producing the 
angular displacement 6 is 

lgp{Ak^-V .HG)e\ 

60. Sufficiency of the conditions for stability. A small rotation 
about any axis in the plane of flotation through the centre 
of gravity of the water-section may be regarded as compounded of 
rotations dj, 62 about the principal axes of the section. Each of 
these separately sets up a restoring couple, and the total work that 
would have to be done by external agency, or the gain in potential 
energy, in producing the displacement is * 

\gp{h-V , HG)e^^+lgp{h-V . HG)9,2^. 

Whence it follows that the conditions HG < IJV and also < 12IV 
are sufficient to ensure stability for displacements which do not 
alter the volume of liquid displaced. 

61. The question of stability may also be treated somewhat 
differently. 

Defining a melacentre as the point of intersection with the 
line HG of the vertical line through the new centre of buoyancy 
after a slight displacement, we are led to the following theorem : 

A metacentre is a centre of curvature of the surface of buoyancy 
at the point in the same vertical line with G. 

This is at once obvious from the fact that the point M is the 
point of intersection of consecutive normals to the surface. 

Hence it appears that for any displacement, consistent with the 
conditions for the existence of a metacentre, the direction of the 
fluid pressure is always a vertical tangent to the evolute of the curve 
of buoyancy. 

That the expression for the work done in a displacement of this kind does not 
contain a term OiO^ may bo proved as in Art. 66 following. 
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62. A most important case naturally presents itself; that is, 
the question of the stability of equilibrium of a ship when displaced 
by rolling. 

In general it is impossible for a ship to roll without tossing, 
because the two ends of the ship are unsymmetrical; but in the 
case of a very long vessel, such as an Atlantic “ liner,’’ it may be 

assumed that the ship can be divided symmetrically by a plane 
perpendicular to its length, and in this case the ship has two vertical 
planes of symmetry, and consequently the vertical line HG passes 
through the centroid of the plane of flotation. 

The line HG also divides the curves of buoyancy symme¬ 
trically, and the point if is a point of maximum or minimum 
curvature. In the first of these two cases the cusp of the 
evolute is pointed downwards ; in the second case it is pointed 
upwards. 

The figures at once show the effects of displacement. 
In the first case the righting moment, which is the statical 

measure of stability for a given angle of displacement, is propor¬ 
tional to the perpendicular from G on the tangent PQ, and 
increases with an increase in the angle of displacement. 

In the second case the righting moment increases to a maximum 
value, and then diminishes, vanishing for the position given by 
the tangent GQ'P\ 

This is a position of equilibrium, but it is of unstable equili¬ 
brium, in accordance with the general mechanical law that positions 
of stable and unstable equilibrium occur alternately. 
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If the equation to the curve of buoyancy be obtained in the 
form G being the origin, 

GY=:djpld^, 

and the righting moment is 
Wdfjd^, 

if W be the weight of the ship. 

In general the curve of buoyancy, for moderate displacements, 
is approximately an arc of an hyperbola ; in the case of a “ wall¬ 
sided ’’ ship, that is of a ship with the sides vertical near the water¬ 
line, the curve is an arc of a parabola. 

In the case of a ship, if M is the metacentre for rolling, the 
product W . GM is called the stiffmss of the vessel. 

63. Dupin’s Theorem. In the case of a ship floating upright, 
the radius of curvature of a transverse section of the surface of 
flotation is 

tan adsfA, 

ds being an element of the perimeter, and A the area, of the water- 
section, and a the inclination of the side of the ship to tlie vertical; 
the axes of x and y being the longitudinal and transverse axes 
of the section of the vessel by 
the plane of flotation through its 
centroid C. 

To prove this let (7, C" be 
neighbouring points on the trans¬ 
verse section of the surjace of 
flotation, the tangent plane at C' 
making a small angle 0 with the 
water-section APQB, and let 
afqh be the projection on the 
water-section of the section of 
the ship made by this tangent 

plane, so that E, the projection of C\ is the centroid of the area 
ayj6. Let PQ, pq be corresponding elements, and PQ^ds, then 

area PQjpq^yO tan ads; 

CE. {A)==jly^d tan ads, 

and, since and CE=CC' ultimately, it follows that 

tan ads, 
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an expression first given by C. Dupiii, in a memoir presented to 

tJie Academic des Scienecs in ]814. A corresponding expression 

obviously exists for the radius of curvature (/iii) of the longitudinal 

section, 

64. Leclert’s Theorem. Calling rand i^the metacentric heights 

for transverse and longitudinal displacements, that is, the radii 

of curvature of transverse and longitudinal sections of the surface 

of buoyancy ; we know that 

r=and 

where i and I are the principal moments of inertia of the water- 

section. E. Leclert has established the following relations between 

these quantities : 
di , yjdr ^ dl ^ j.dR 

''-dV='+'^SV • 
A translation of Leclert’s paper is given by Mr Merrifield in 

the Proceedmgs, for 1870, of the Insti¬ 

tution of Naval Architects, and in the 

Messenger of Mathematics, March 1872. 

The following is the first of the two 

here for its historic interest, but a more 

rigorous treatment is given in Art. G7 

following. 

Taking a section parallel to the water- 

section, and at a distance dz from it, 

dV^Adz, 
Let apqh be tlie projection of this new section upon the water- 

section ; then di is the moment of inertia of the area between 
a'pqb and AFQB; 

di—Hif'dz . tan ads. 

and 

Hence 

or 

J2/2 tan ads. 

__ 1 di di 

di i -XT d f i 

r,=r+F— 
1 ^ dV 
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65. Surface of buoyancy in general. 
Let the origin be taken in the vertical through the centroid of 

the original water-line section. Then if 2—c be the original section, 
the plane in the slightly displaced position will be 

z=c-\-lx-\ my 
where I, m are small. 

If yoj ^0) (^5 .V? denote the co-ordinates of the centre 
of buoyancy in the two positions 

F( X—a^o) “ JJ ~ c)xdxdy—al+hm, 

1^(2/—2/0)=JJ(2^—c)ydxdy=A?+6m, 
V{z-- Zq) = JJi —c^)dxdy—\ (aZ^ 26?m+ftm®), 

where a—jjxHxdy, h—^^xydxdy, h=^^jyHxdy. 

Hence 2(2—;So)—Z(ir-—a;o)+m(2/—-^/o) 

or 2{2~2o) 
F 

ah~~ 
{h{x-Xof-2h{x-Xa){y-yn)-Va{y-yn)-} 

is the approximate form of surface of buoyancy. If the original 
axes of X and y are principal axcvS of the plane section, then A==0, 
and if the origin be now moved to the centre of buoyancy in the 
first position, the surface becomes 

22= V x^ j aVy^jb, 

If we now define the metacentres as the centres of curvature of 
the principal normal sections of the surface of buoyancy, the heights 
of the metacentres above the centre of buoyancy are the principal 

radii of curvature a/F or 6/F. 

66. Condition for stability. 
The tangent plane to the surface of buoyancy at a point (x, y, z) 

is given by 

And the perpendicular distance of the centre of gravity (0, 0, 2) of 
the solid from this plane is 

2—2 

y2^2 
+ 

^ 2a ^ 2b 

FV_ Vhf} 
2^ 262 

y'*‘262\T^ 
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Now by Art. 50 the positions of equilibrium correspond to those 
of a heavy body bounded by the surface of buoyancy resting on a 
horizontal plane, so that for stability the height of the centre of 
gravity above the plane must be a minimum. This requires that 

z should be less than ~ and or the centre of gravity must be 

below both metacentres. 

67. Surface of Flotation. Leclert’s Theorem. 
\ Suppose that the volume immersed is increased by a small 

amount SF by depressing the solid from the second position 
of Art. 65. 

If t are the co-ordinates of the centre of gravity of the 
thin slice, of volume 8F, since ai+Am—difEerence of a;-moments of 
volume displaced, therefore by Art. 65, 

ma+mhh=^hV. 

Similarly rfiV^Ihh+mhh; 

and PSa -f 2 Imhli d - m^Sb). 

Also as the thickness of the slice is diminished the point 
Vi 0 tends to coincide with the corresponding point on the 

surface of flotation, i.e. the centroid of the water-line area. 
Hence on the surface of flotation we have 

x'. dV~lda~\-mdh 

y'. dV=m+mdb 

z*. dV—\{lHa+2lmdh+mHb), 

and its equation is 

In the special case in which dh—0, this becomes 

2z'=x'2' 
dV 
da 

and the radii of curvature of the surface of flotation are 

^ as in Art. 64. 
dV 

da 
df 

and 

We observe that the principal axes of two parallel sections of 
the solid are not necessarily parallel, so that A=s0 does not imply 
that dA/rfF=0. The restdts of Art. 64 are thus seen to be true 
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only in the cases there implied in which there arc vertical planes 
of symmetry which contain all principal axes of horizontal sections.* 

68. We now append some examples of the determination of the meta¬ 
centre. 

Example 1. A solid cylinder of radius a and length h floating with its axis 

vertical. 

In this case the plane of flotation is a circular area, and 

Ak^—^7ta*; 

therefore, if h' be the length of the axis immersed, 

na%'. HM=i;7ia\ or HM=ay4:h\ 

and the equilibrium is stable if 
a® h h' 

4ft'^ 2“ 2 • 

Example 2. A cylinder floating with its axis horizontal and in the surface 

is displaced in the vertical plane through the axis. 

The plane of flotation is a rectangle, and 

h being the length of the cylinder, and a its radius ; 

HM- l—, 
3 Jia* 

and the equilibrium is stable, if 
4a 

3 na^ Sjt* 

or h> 2a. 

Example 3. A solid cone floating with its axis vertical and vertex downwards. 

Let h be the length of the axis, 

z the portion of the axis immersed, 

2a the vertical angle of the cone. 

Then Ak^—^nz* tan* a. 

and F=: tan* a; 

HM~\z tan* a ; 

also HO—^h—lZf 

and therefore the equilibrium is stable or imstable, according as 

z tan* a > or < h—z, 

or 2>or<Acos*a. 

But if a be the densities of the fluid and cone, 

* This correction to Leolert's Theorem and the method of treatment of the last 
few Articles, as well as Arta. 76-78 below, are due to Br Bromwich. 
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therefore the equilibrium is stable or unstable as 

a 
— >or< cos® a. 
Q 

Example 4. An isosceles triangular prism floating with its base not immersed^ 

and its edges horizontal. 

Referring to Art. 45, consider first the position of equilibrium in which 

the base is inclined to the horizon. 
In this case, if AQ~2y and AP=2x, and we put a—h in equation (2) on 

page 45, x and y are given by the equations 

x-\-y=2a cos^ ^ 

xy— c*. 

The co-ordinates of 0 and H referred to AB, AC as axes are respectively 

la, la, and lx, ly, 

nQ'^^^{(a—xf-]-(a—yf-\-2(a—x){a—y) cos 6} 

= i{x^~\ y^-i-2xy cos 0—2a(14-cos 0)(a:4-y)-f-2a2(l-f cos 0)}, 

from which, by means of the above equations, we obtain 

sin I0{a^ cos^ lO—c^)h 
O 

The area PAQ=2c^ sin 6, and if M bo the metacentre, and I the length of 

the prism, 
2lc^ Bind.HM^^\PQKl, 

PQ^ 

But 

• * 24c2 sin O' 

PQ^=^(x'^-\-y^~2xy cos 0) 

= 16 cos* \0(a^ cos* c*); 

cos* |0(a* cos* c*)?/c* sin* 

and HM>HG, if c* sin* J0<cos* \0{d^ cos* |0—c*), 

t.c. if cos*J0>c/a. 

Next, consider the case in which the base is horizontal, and PQ therefore 
parallel to BC. 

The area PAQ—2c^ sin 0, 

AP~AQ~2c, and PQ=4csin J0. 

4 4 
Hence, HM~^c sin* J0/cos ^0, and H0= c) cos J0, 

and HM> HG if cos* \0 <cla. 

Now in the Art. before referred to, we have shown that there are three 
positions of equilibrium, or one only, according as 

cos* J0>or<c/a. 

Hence it follows, that when there are three positions of equilibrium, the 
intermediate on©, in which CB is horizontal, is a position of unstable equi¬ 
librium, while in the other two positions the equilibrium is stable. 
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If there be only one position in which the prism will rest, its equilibrium 
is stable. 

It will bo a useful exercise for the student to obtain those results by in¬ 
vestigating the equation to the curve of buoyancy, and determining the 

/position of its centre of curvature. 

69. Finite displacements. If a solid body, floating in water, be 
turned through any given angle from its position of equilibrium, 
then, as before, the moment of the fluid pressure is restorative or 
not according as the point L at which the vertical through the new 
centre of buoyancy meets the line HG is above or below (r, assuming 
these lines to intersect. 

It is not to be inferred that if L is above G, the body will when 
set free return to its original position and oscillate through it, or 
even that the original position is one of stable equilibrium, accord¬ 
ing to our previous definition of stability : it is a general law of 
mechanics that positions of stable and unstable equilibrium occur 
alternately, and the body may have been displaced from its original 
position through other positions of equilibrium. 

As a particular example take the following. 

A solid cone, floating with its axis vertical and vertex downwardsy is turned 
through an angle Q in a vertical plane, 
the volume of fluid displaced remaining 
the same ; to determine the direction of 
the moment of the fluid pressure. 

Let AB be the major axis of the 
elliptic section made by the surface 
plane of the fluid, C its middle point, 
Aa, Bh, Cc lines at right angles to AB, 
and let the angle AVB—2a and 
VA—d, Then 

VAa—Q—a, 

and VBb=n—0- 

„ 1,,., 1 r_sin(0~a) 

cos (0—a) sin (0+a)t 
^ oos(0~|-a) sin 0 J 

d cos 0 

cos (0+a) * 

VL^ 7d 
cos 0 

4 cos (0+a)* 

6 
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The semi-minor axis of the ellipse is a mean proportional between the 

perpendiculars from A and B on the axis of the cone, 

its area=;rJ^jB(F^ . VB . sin® a)i 

TT sin a sin 2a fcos^O—a)ii 

^2 cos (04~ct) * (cos(0-{-a)/ ' 

therefore the volume of the fluid displaced 

— cos (O—a). (area of ellipse) 

I .J3 • ! fco8(0-a)\} 

Hence, if p, a bo the densities of the fluid and the cone, since the weight 

of the fluid displaced is equal to that of the cone, we have 

(cob (0—a)\^ 
q(B sin® a cos a{-—: )■ —crh^ tan® a, 
^ toos(u-f-a)i 

or 

And VL > VG if 

or if 

/dy <T/cos {0+a)) ^ 1 

\h/ Q \ cos (0— a) I COS'* a 

>h, d 
cos 0 

cos (0-f a) 

8/a cos a cos (0-1-a) / 008 (0—0)11 
> 

\co8(0-f a) Q COS 0 

Supposing 0 indefinitely small, we obtain the condition of stability for an 

infinitesimal displacement, 

s/o 4-. 
> COS® a ; as before. Ex. 3, Art. 68, 

Let the equilibrium of the cone be neutral for. small displacements, that is, 
let 

cr=p cos® a, 

then, after a finite displacement, the action of the fluid will tend to restore 

the cone to its original position, if 

cos a . cos 0 > Vfcos (0+a) • cos (0— a)}, 

a condition which is always true, a and 0 being each less than a right angle. 

In the case of neutral equilibrium of a cone, the equilibrium may therefore 

be characterised as stable for any finite displacement. 

70. When liquid is contained in a vessel, which is slightly dis¬ 
placed from its original position, the preceding investigations enable 
us to determine the line of action of the resultant downward 
pressure. 

The problem in fact in this case, as in the previous one, is the 
following. 

A given volume, the centroid of which is ff, is out from a solid 
ABO by a plane, and the line Off is perpendicular to the plane; 
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the same volume being cut o£E by a plane making a very small 

angle with the plane AB, to determine the position of the straight 

line perpendicular to the second plane, and passing through the 

centroid of the volume cut off by it. 

If the interior surface of the vessel is symmetrical with respect 

to the plane through H perpendicular to the line of intersection of 

the two planes, the line whose position is required will intersect 

CH in a point M, the metacentrey the position of which is deter¬ 
mined by our previous results. 

71* Vessel containing liquid. A hollow vessel containing liquid, 

floats in liquid ; required to deter¬ 

mine the stature of the equilibrium, 

supposing that the body is sym¬ 

metrical with respect to the vertical 

plane of displacement through its 

centre of mass, and that the centres 

of mass of the body a'nd of the liquid 

are in the same vertical line. 

Let M be the metacentre for 

the displaced fluid, and M' for the 

contained fluid, W, W', the weights 

of the displaced and contained 

fluid.* 

Taking moments about G, the centre of mass of the vessel, the 

resultant fluid pressures will tend to restore equilibrium, or the 

reverse, according as 
W ,GM-W\GM' 

is positive or negative, i,e, as 

W GW 

Examflis. a hollow com containing water floats in water with its axis 
vertical. 

Let A=the length of the axis of the cone, 

A'=the length of the axis in the contained fluid, 

2=the length beneath the surface of the external fluid. 

* This is the case of a leaky ship rolling; the next article discusses the pitching 
of a lealiy ship. 
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Taking 2a as the vertical angle of the cone, we have 

IIM—\z tan^ a. 

But HG~^h—lz; 

QM~\zbqq^ a~1h. 

Similarly OM'— sec® a— |A 

also W 

therefore the equilibrium is stable if 

/ 2 Y sec^ a—8^ 

Vi / ^ scc“ a— ’ 

z being given by the equation 

W~ W'~\gQn tan® a(2®—^'®)=weight of cone. 

72. In the case in which the centres of mass of the contained 

and of the displaced fluid are not in the same vertical, suppose the 

displacement to take place in direction of the vertical plane through 

Ihe centres of mass, and that the body is symmetrical with respect 
to that plane. 

Let G be the centre of mass of the body, H of the fluid displaced, 

ir of the contained fluid, and 

Mj M\ the metacentres. 

Also let GNN' be horizontal 

in the position of equilibrium, 

and GLL' the horizontal line 

through G in the displaced 

position. 

Then W, W', having the 

same meanings as before, and 

6 being the angle of displacement, the equilibrium is stable or 

unstable, as 
W .GL>ot<W\GL\ 

or W{GN cos O+MN sin 0)>oi< W'(GN' cos 0+M'N' sin 0), 

i.e. since W .GN=W' .GN\ 

as 
W M'N' 

MN^ 

78. Constraints. Stability of the equilibrium of bodies floating 

under constraird. 

Consider the case in which a body is free to turn about a hori¬ 

zontal axis fixed at a depth A. Draw GO at right angles to the 
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axis, and, if the centre of buoyancy is not in the vertical plane 

throuf^h GO, let H be its projection on this vertical plane. Let 

C, L, N be the juojections on the 

plane of flotation of 0, G, H, ---- 

Take an axis of y through C 

parallel to the axis of rotation 

and GLN as axis of x. Then if 

the body turns through a small 

angle 6 about the given axis so 

that G, H are displaced to (?', H\ 

the vertical displacement of C is 

of order 0^, and it is easy to see 

that the restorative moment due 

to the change in the displaced 

liquid is gpAk^d, correct to the first power of 6; where is the 

moment of inertia of the surface section about Cy. Also the loss 

of moment due to the displacement of H is 

gpV . NN'=gpV . HH' sin N'H'N==gpV{HN-h)d. 

Similarly there is a loss of moment of the weight of the body due 

to the displacement of G of amount W(GL—h)d, 

Hence the condition for stability is that 

gpAk^-gpV{HN-h) + W{GL~-h)9 

must be positive^ with the condition 

W . CL^gpV. CN. 

Cor. If a body, floating freely in homogeneous liquid, has a 

plane of symmetry and is turned through a small angle 0 about any 

horizontal axis in the plane of symmetry, the restorative couple is 

gp0{Ak^—V . EG), where Ak^ is the moment of inertia of the surface 

section about its intersection with the plane of symmetry. 

74. The equilibrium of a body floating partially immersed in two 

liquids. 

Let p be the density of the upper liquid, and p+p the density 

of the lower liquid. 

Also let F be the total volume immersed and F' the portion of 

F inomersed in the lower liquid, and let A, A' be the areas of the 

two planes of flotation. Then the forces which support the weight 

of the body are the weights of the masses of liquid pY and p'F', 

supposed to act upwards. 
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Take the case in which the body is symmetrical with regard to 

a vertical plane perpendicular to the plane of displacement, so that 

the centroids, (7, i7, of the body and of the masses pF, p'F' are 

in the same vertical line. 

Then, if the body is displaced through a small angle 0 about 

any horizontal axis in the plane of symmetry, the total moment 

about G of the forces tending to restore equilibrium is 

gp(Ak^-V . HG)9+gp\A'k'^-r . H'G) 0, 
or gpV . GM . 0+gp'V'. GM'. 0, 

in which the positive direction of GM, GM' is upwards. 

The equilibrium is clearly stable if M and M' are both above G ; 
but if M' is below G, for stability we must have 

pV . GM>p'V'. M'G, 

or p{Ak^-V . HG)>p'{V . H'G-A'k'% 

75. Heterogeneous liquid. 
The metacentric height in the case of heterogeneous liquid may 

be investigated by the method used for homogeneous liquid at the 

beginning of this chapter. Using the figures and notation of Art. 

57, let p^f(z) denote the density at depth z, where z is measured 

vertically. After the displacement the density at the point {x, y, z) 

of the liquid displaced is f{z-{-x0), or p+x0^, to the first power 

of 0, The condition that the mass displaced remains constant is 

where the volume integrals are taken through the original volume 

displaced, and the surface integral over the surface section refers 

to the wedges at the surface, and p^ is the value of p at the surface. 

This condition will be satisfied if at all levels jixdxdy—O, i.6. if the 

centroids of all horizontal sections in the original position are in 

the plane yz. - 

Again, if we suppose that the mass Mq of liquid displaced is con¬ 

stant, the co-ordinates of the centres of buoyancy H, H' in the two 

positions are given by 

MiP^^^pxdxdydz^ M(^y~^^^pydxdydz, ilfoS= 

p -f +^^pix^dxdy, 
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M^y' =-|j ^(^-\-xd^^ydxdydz+^^p^^^ 

Mi^z' ==: III +xd-^zdxdydz 

to the first order of 6. 
The condition that the vertical through ff' may intersect IIG 

is y'==y, as in Art. 57, 

or 

which is satisfied if at all depths the plane yz meets the horizontal 

section in a principal axis of that section. When conditions (1) 

and (2) are both satisfied we have 

HM .e=^HH'=x'--x 

~ j* I j 

And if AJc^ denotes the moment of inertia of the section at depth 

z about its axis in the yz plane, this gives 

HM^ 

or, integrating by parts, 

ffM= I I Mo 

= I PiAiJc^^-jpj^{Ak^)dz J jMo 

where the suffixes 1,2 refer to the top and bottom sections, and A^ 

is zero unless the body has a flat bottom. 
An alternative method will be given in the next Article. 

76. Sutface of buoyancy for a solid floating in a liquid of variable 

density. 
Consider first the case of a body floating in a liquid formed of 

layers of different densities p^, p^. . . p„ in de.scending order. 

Let v„ denote the total volume of the solid immersed below the 

upper surface of the layer of density p„. 
As in Art. 66 let z=c be the original water-line section, and 
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let z—c+lx-\-my denote the plane in a slightly displaced position, 

then we have 

{/5l'^h + (p2“Pl)^ +fp3'“p2)^’3+ +(Pn“Pri-l)^’n}(^”^o) 

= {Pl^l+{P2”Pl)^2 + * • • +{Pn“/^n-l)^n}^ 

+ {pi^^l + (P2~~Pl)^2+- • • 4-(Pn J 

and corresponding equations for {y—y^) and {z—Zq) when {xo, y^,, 2:0)> 

{x, y, z) are the centres of buoyancy in the two positions, and a,., hr 

denote 
r r 

) 
j j 

taken over the corresponding section. 

Proceeding to the case of a continuous fluid we get 

^^xydxdy, J yHxdy 

and 

where 

and 

M{x—Xf^=Al~\rHmy 

M{y-yQ)--=HlABm, 

M{z~z^ — l{AP‘-{-2Hlm+Bm^)y 
Cn 

M=piViA-^^'^'dp 

= 1 pdv, 
J n 

rn 
A=pia^~\-\adp In 

pda 

■Pn®n+f 
Jn 

and a like expression for B, the sufiixes 1, n referring to the top and 

bottom sections of the immersed solid, being in this case clearly 

zero, and a„ is also zero except when the solid has a flat bottom. 

The surface of buoyancy is obtained from three equations as in 

Art. 65, and, in the special case in which H=0, and the origin is 

at the equilibrium position of the centre of buoyancy, the equation 

becomes 
2z=Mx^jA-\-My^jB, 

and the metacentric heights are AjM and J5/M. 

77. Solid floating wholly immersed. 

In this case we have similar equations, with 

lf=f pdv, and A^{ adp ox {prPn~~Pi^i)~^ f 
Jl Jn 
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there being no displacement of the centre of buoyancy with a solid 
immersed in homogeneous fluid, 

78. Examples. (1) Cone of semiangle a vertex downwards. 

If X is the distance of a section from the vertex 0, we have 

a~ ^Tix* tan* a, 

da~7ix^ tan* adx. 

Also dv~7ix^ tan^ adx^ so that da~x tan® adv, 

and A/M—jQda/jQdv—tajOL^ ajxQdv/jgdv 

~x tan® a, 

where x is the height of the centre of buoyancy above O, and thus the height 
of the motacentre above 0 is S sec® a. 

(2) Paraboloid of latus rectum Zq, vertex downwards. 

Hero a—lnlo^x^f da—^TilQ^xdx. 

Also dv—jilQxdx, so that da^^^l^dv^ 

and AIM=\QdaljQdv—\lQ, 

(3) Cylinder with axis vertical. 

Here a= constant, so that AIM—g^aJM. 

79. Potential Energy. The theory of the stability of the 

equilibrium of floating bodies may also be based on the principle 

of energy and the subject may be treated from this point of view by 

direct calculation of the changes in the potential energy. 

To find the work done in inserting a body in a sea of heavy liquid ; 

neglecting the alteration in the level of the liquid^ and the disturbance 
caused by the insertion of the body. 

If a vertical prism of cross section dxdy cuts the boundary of 

the body in contact with the liquid in elements dS^, at depths 

Zi, Z2, at which the pressures are respectively, and dj, 02 
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the acute angles which the normals to dSi, dS^ make wjth the 

vertical; then the work done against the thrusts on these elements, 

as the depth is increased by a small amount dz^ is 

ip ids I cos 0i"-p2dS2 cos 0^dz—(pi~p^dxdydz, 

Therefore the work done in placing the body in the position under 
consideration 

where the integration extends to the volume immersed. 
If the liquid be homogeneous p~gpz and the work done 

^gpVz, 

where V is the volume of liquid displaced, and z the depth of its 

centroid. 

When a body floats in a liquid it possesses potential energy in 

virtue of the work that has been done in placing it in the liquid; 

and if the liquid be homogeneous, and G, H the centres of mass of 

the body and of the liquid displaced, and ^ and z their depths, the 

measure of the potential energy of the body may be taken to be 

gpV{z—Qj or, when the body floats in equilibrium, gpV . HG* 

80. To find the work done in turning a floating body through a 
small angle 6 about any axis in the plane of flotation. 

Let Oy be the axis of rotation, Oz vertically downwards, and let 

the plane xOz contain the centre of mass G of the body and the 

centre of buoyancy H, Let the co-ordinates of H and G be 0, 5) 

and (f, 0,1) respectively, so that in equilibrium 

In the initial position the potential energy due to the displaced 

liquid 
^gpV2 or \gpllzHxdy, 

Turn the body about Oy through a small angle d and let the 

axes Ox, Oz move with the body. 

* The zero configuration is a hypothetical one, in which the space occupied by 
the body in the liquid is filled with liquid of the same kind, and the whole mass of 
the body is at the level of the free surface of the liquid. 
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The length to the surface of the prism of cross-section doi^y 

immersed in the liquid becomes 2:-|-a;tan B~z-\-xd, and the depth 

of its centre of mass is \{z-{~x6) cos 9; therefore the increase in 

the potential energy due to the displaced liquid 

=Jfl'pf —I0^)dxdy~lgp 

(x®—\z^)dxdy+^/5 xzdxdy. 

But the loss of potential energy due to displacement of the body 

^gpva cos e+i sin e-Q^-igpem+gpOV^, 
therefore the total gain in potential energy is 

^=l9pd^^\ —\^^)dxdy+l9pd^ TI 

^\gpe^{Ak-^-Vz+Vi) 

=lgp&^{A¥-V .HG).(1), 

where A is the area of the surface section of the body and k is its 

radius of gyration about Oy, 

From this it follows that the equilibrium is stable if Ah^> V . j?(?, 

and that the restorative couple is 

^^=gp9iAk^-V. HG). 

The conditions previously obtained for the stability of a body 

floating under constraint and of a body floating in heterogeneous 

liquid may also be found by evaluating the changes in potential energy 

as far as the second power of 0. The work is to be found in earlier 

editions of this book, but is not regarded as of sufficient importance 

to be reproduced. 
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81. Potential energy where a body floats in liquid contained in 

a cylindrical vesscL 

Take the zero of reckoning to be the undisturbed level of the 

liquid in the vessel before the body is immersed. Let B be the 

cross-section of the vessel and S the water-section of the body when 

floating. Let Vq be the volume immersed in the equilibrium 

position ; taking ^p=l, Vq also denotes the weight of the body. 

Let V be the volume immersed in any other position. In this 

latter position the level of the water is raised a height V/B, so that 

if the centre of buoyancy is at a depth p below the zero level, a 

weight V has been raised a height p+Vj^B and the work done is 

Vp+V^tlB, Hence if q denote the height of the centre of gravity 

of the body above the zero level, the whole potential energy is 

V,q+Vp+V^I2B. 

Now let F=Fo+^’, and let p^ be the depth of the centroid of 

the volume Fo of the body in the displaced position, so that 

Vp^VqPq+v^ where, provided that v is small, ^=^vl2S—VIB, 

Then the potential energy is 

/ V F\ F2 
T^o(9'+Po)+^'^^-^j+^ 

/ V Fo4-v\ , (Fo+v) 2 
h 

2B 

FoC4-ir^( constant, 

where ^ denotes the vertical distance between the centre of buoy¬ 

ancy and the centre of gravity. 

82. Example. A cylinder floating in a cylinder, 

/ Take the origin 0 at the centroid of the base 
of the floating cylinder, which is of area A, Let 
the plane cf the surface of the liquid be ,, 

lx-\-my-\-nz^p^ 

where 2, m, n are direction cosines of the upward 

vertical. 
Then Y^^Apfn^ and the projection on the 

upward vertical of the line whore 

is the equilibrium position of the centre of buoyancy, is 



81-82] POTENTIAL ENERGY 77 

j(lz-i':ny-{-^nz)zdxdy 

= fof f 

I ip^-(^^+'>^y)^}dxdy 

^,^;^{Ap^—(al^-hPm^+2ylm)) ; 

where a~fjz^dxdy, p=\\yHxdy, y—\\xydxdy integrated over the cross- 

section. 

Also, if a, 6, c arc the co-ordinates of the centre of gravity Q of the body, 

wo see that 

and S—Afn, so that the potential energy is 

/ Yt W 1 TlrT^ ^ 

^j + Fo(Za4-w&+wc)+^(a?M-/?w2+2>^?m)—^-2^+const. 

Suppose, for example, that a=b—0, so that G is on the line of centroids 

Oz, and write Vq~ Ah so that h is the draught in the vertical position ; then 

the potential energy is 

/n W 1 
V^ — gj + inAh{2c— pm^i-2ylm). 

In the case in which the cylinder is nearly vertical we put w=l— 

approximately, and the coefficients of Z® and w® become 

\{a~~\Ah(2c-~h)} and \{p~\Ah{2c—h)}, 

so that for stability we must have \Ah{2c—h) less than the least moment of 

inertia of the section. 

If, further, the section is a circle or any form for which a— p, y—0, then 

the potential energy in a position in which the axis makes an angle 0 with the 

vertical is 
cos 0 

~X" 
cos QAh(2c~h)-{-\o. 

sin^ Q 
cos d ’ 

Taking the volume displaced as constant, we put v=0, so that for equi¬ 

librium in an oblique position we must have 

—AZi(2c—A)4-a(2-f tan® 0)=O, 

which gives a real value for 6, when 

^Ah{2c—h)>a, 

i.e. when the vertical position is unstable. 

EXAMPLES 

1/ 1. If a solid paraboloid, bounded by a plane perpendicular to its axis, float 
with its axis vertical and vertex immersed, the height of the metacentre above 
the centre of gravity of the displaced liquid is equal to half the latus rectum. 
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' 2. A cone, whose vertical angle is 60°, floats in water with its axis vertical 
and vertex downwards; show that its metacentre lies in the plane of flota¬ 
tion ; and that its equilibrium will be stable provided its specific gravity>|J. 

3. An isosceles wedge floats with its base horizontal, and its edge immersed; 
show that the equilibrium is stable for displacement in a plane perpendicular 
to the edge, if the ratio of the density of the wedge to that of the fluid is greater 
than the ratio cos* a: 1; 2a being the angle of the wedge. 

4. A closed cylindrical vessel, quarter-filled with ice, is placed floating in 
water with its axis vertical; the weight of the vessel is one-fourth of the weight 
of the water which it can contain; examine the nature of the equilibrium 
before and after the ice melts, neglecting the change of volume consequent on 
the change of temperature. 

6. A solid in the shape of a double cone bounded by two equal circular 
ends floats in a liquid of twice its density with its axis horizontal: prove that 
the equilibrium is stable or unstable according as the semivertical angle is less 
or greater than 60°. 

6. The cross-section of a cylindrical ship is two equal arcs of equal parabolas 
of latus rectum I which touch at the keel, the common vertex of the two 
parabolas, so that the sides of the ship are concave to the water. The ship is 
floating upright with its keel at a depth h. Prove that the height of the meta¬ 
centre above the keel is 

/.3 
Ki+I* 

7. Find a solid of revolution such that, when a segment of it is immersed 
in liquid, the distance between the centre of buoyancy and the raetacentre 
may be constant, whatever be the height of the segment. 

8. Water rests upon mercury, and a cone is too heavy to rest without its 
vertex penetrating the mercury ; find the density of the cone that the equili¬ 
brium may be stable assuming the cone to be completely immersed. 

\/9. If the floating solid be a cylinder, with its axis vertical, the ratio of 
whose specific gravity to that of the fluid is a, prove that the equilibrium 
will be stable, if the ratio of the radius of the base to the height be greater 

than {2(y(l—cr)}^ . 

10. A hemispherical shell, containing liquid, is placed on the vertex of a 
fixed rough sphere of twice its diameter; prove that the equilibrium will be 
stable or unstable, according as the weight of the shell is greater or less than 
twice the weight of the liquid. 

11. A solid of revolution floats with its vertex downwards, determine its 
form when the position of the metacentre is independent of the density of the 
liquid.' 

^ 12. A solid cone is placed in a liquid with its axis vertical, and with its 
vertex downwards and resting on the base of the vessel containing the liquid. 
If the depth of the liquid be half the height of the cone, and its density four 
times the density of the cone, prove that the equilibrium will be stable if the 
yertical angle of the cone exceeds 120°. 

Replacing the solid cone by a thin conical shell of the same height, of 
vertical angle 60°, containing liquid, up to the level of the middle point of its 
axis, of half the density of the liquid outside, prove that the equilibrium will 
be stable if the weight of the shell be less than three-fourths of the weight of 
the liquid inside. 
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13. A cylindrical vessel, the weight of which may be neglected, contains 
water, and the vessel is placed on the vertex of a fixed rough sphere with the 
centre of its base in contact with the sphere. Find the condition of stability 
for infinitesimal displacements, and prove that, if the equilibrium be neutral 
for such displacements, it will be unstable for small finite displacements. 

V 14. A cylindrical vessel is movable about a horizontal axis passing through 
its centre of gravity, and is placed so as to have its axis vertical; if water be 
poured in, show that the equilibrium is at first unstable; and find the con¬ 
dition which must be satisfied, in order that it may be possible to make the 
equilibrium stable by pouring in enough .water. 

V 15. A thin conical vessel of given weight is movable about a diameter of 
its base, which is horizontal, and is partly filled with a heavy fluid ; show that 
the equilibrium is always stable if the semivertical angle of the cone is < 30° ; 
and if it be greater than this, determine when the equilibrium is stable or 
unstable. 

V 16. A paraboloidal cup, the weight of which is W, standing on a horizontal 
table, contains a quantity of water, the weight of which is wflT; if ^ bo the 
height of the centre of gravity of the cup and the contained water, the equili¬ 
brium will be stable provided the latus rectum of the parabola bo 

17. A solid cone whose axis is vertical and vertex downwards is movable 
about an axis coincident with a generating lino ; to what depth must the 
system bo immersed in water, in order that the equilibrium of the cone may bo 
stable ? 

18. Prove that the work done in turning a floating body through a small 
angle 0 round its centre of gravity is 

\gQ{Ak'^-\-Ah^—cV)0^f 

where c is the distance between the centres of gravity of the body and the 
liquid displaced, and 6 is the horizontal distance between the centre of gravity 
of the body and that of the area of the plane of flotation. 

19. A paraboloidal cup, whose latus rectum is 4a and whose centre of 
mass is at a distance from the vertex equal to 2a, floats in two liquids of 
densities a and q (a>g); prove that the work required to •turn the body 
through a small angle 6 about a horizontal axis is 

where h, h' are the lengths of the axis immersed in the fluids. 

^ 20. A thin metal circular cylinder contains water to a depth h and floats in 
water with its axis vertical immersed to a depth h\ Show that the vertical 
position is stable if the height of the centre of gravity of the cylinder above its 
base is less than 

21. A uniform liquid of density overlies another of greater density Oj, 
and a body with a plane of symmetry floats with its plane vertical so os to be in 
contact with both liquids. Prove that its metacentric height from the bottom 
of the body is 

a~f'A2*A2)Cfg 

when Fi is the volume submerged in the lower liquid, Zx the height of the 
oenti^ of buoyancy of this volume above the lowest point of the body, Ax^ ki 
the area and radius of gyration of the lower “water-line ”; and F* is the 
whole volume below the upper “ water-line,” is the height of the centre of 
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buoyancy which this volume would have if it were submerged in a single liquid, 
and A 2, «2 refer to the upper “ water-line.” 

22. A right-angled isosceles wedge floats vertex downwards in a fluid 
with its base horizontal and J of its volume immersed, so tJiat its centre of 
gravity and metacentre coincide. Determine whether the equilibrium is 
really stable or unstable. 

23. A solid in the form of a paraboloid of revolution floats with its axis 
vertical ; if the centre of inertia coincides with the metacentre, prove that the 
equilibrium is stable. 

^ 24. A right circular cylinder of radius a rests in a liquid with its axis 
vertical and a length c immersed. The density at a depth z being <P (z), show 
that the depth of the raetacentro is 

z<p(z)dz—- la^<P(c) 

, 25. A paraboloid of revolution floats with its axis vertical and vertex 
downwards in a liquid, the density of which varies as the depth ; the equili¬ 
brium will be stable or unstable, according as 4c is less or greater than 
3{m-f a), where c is the length of the axis, a the length immersed, and m the 
latus rectum of the generating parabola. 

t. 26. An oblate spheroid floats half immersed, with its axis vertical, in a 
liquid, the density of which varies as the square of the depth ; prove that the 
height of the metacentre above the surface is 

5 a^—6® 

8 '“T”’ 

, 27. A solid paraboloid of revolution floats with its axis vertical, vertex 
downwards, and focus in the surface of a liquid, the density of which at the 
depth z is ju(a-i-z), 4a being the latus rectum of the generating parabola; 
prove that the distance of the metaoontre from the vertex is 

, / 28. A right circular solid cone of semi vertical angle a floats, wholly 
immersed, with’its vertex upwards and axis vertical, in a liquid the density 
of which varies as the depth. If h is the height of the cone, and 6 the depth 
of its vertex below the surface, the distance of the metaoontre from the vertex 
is equal to 

3 564-tan® a 

6^ 46+36 • 

29. A. cylindrical tub of sheet iron of uniform thickness, of radius a feet 
and weight w pounds, floats upright in water ; show that its centre of gravity 
cannot be higher above the lower end than 

w , 49a* 

393a>'*‘ir' 

Prove also that, whatever be its weight, its metacentre is always more than 
•7a feet above the lower end. 

30. A cylindrical cup is made of thin uniform sheet-metal; the cup has 
a circular section, a flat base and an open top; its length is 4| times the 
radius of the base, and the weight of water which would fill the cup ia W* 
Prove that the cup cannot float in water in stable equilibrium with its 
generators vertical, if its weight is between (*029) W and (‘871) W, 
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If the weight of the cup is f W, it can be steadied by pouring in water, so 
as to float with its generators vertical, provided that the weight of the water 
poured in lies between JTF and IlF. 

31. A twin steamer is formed of two equal and similar ships united along¬ 
side one another and similarly loaded. Show that, if d is the height of the 
metacentre above the centre of gravity in the case of the separate ships for 
rolling, the height in the twin ship is d-f-6®A/F, where A is the area of the 
plane of flotation, V the volume immersed of either, and 26 the distance 
between the medial planes. 

32. Prove that the equilibrium of a prismatic body with vertical sides 
near the water-line, which is so loaded that its centre of gravity coincides 
with its metacentre for displacement by rotation about a line parallel to its 
edges, is stable. 

33. A cylindrical water-tank is free to swing on a horizontal axis which is a 
diameter of one of its cross-sections, situated below the middle of its height. 
Show that it will hold less water before it tips over, if the surface of the water 
is free, than if it is held by a lid fixed to the tank. If in the former case the 
water may rise to a height II above the axis of free rotation, show that in the 
latter it may rise an additional height (H^~\-2k^)l — II, where the moment of 
inertia of the cross-section, of area A, with respect to the axis of rotation, is 

34. A uniform right circular cylinder of height A, radius a, and specific 
gravity «(< 1) is placed with one of the circular ends below the surface of a 
large sheet of water ; the volume of water displaced is naH and the axis of the 
cylinder makes an angle Q with the vertical. Prove that the potential energy 
of the system is equal to 

\w7ia^{(x^—2}i8x-^}i^s) cos 0-f Ja® sin d tan 6}, 

where w is the weight of unit volume of water. 
Apply this to show that, if an oblique position of equilibrium does exist 

with one circular end above and one below the water surface, it is a stable 
position. 

35. Prove that a ship after passing from fresh to salt water has, in addition 
to change of draught, a very slight change of trim (measured by change of differ¬ 
ence of draught fore and aft); calculate the amount in inches for a ship 300 
feet long, longitudinal metacentric height 350 feet, distance of centre of gravity 
of area of water section from vertical through centre of gravity of ship 10 feet, 
increase of density ^^^th part. 

36. Assuming the stability of a floating body for a certain type of displace¬ 
ment to be measured by the height of the corresponding metacentte above the 
centre of gravity, show that, if a wall-sided ship is moving slowly from fresh 
water into salt water, this stability increases at a rate proportional to the height 
of the metaoentre above the plane of flotation and to the rate of increase of the 
logarithm of the density of the water. 

37. Show that, if the position of a floating body be unstable, the centre of 
gravity being over both metacentres, the fixing of a line in the body in the 
plane of the water surface gives a stable position for rotation about the line 
if the line lie outside a definite ellipse. 

•38. A heavy hoimogeneous cube is completely immersed with two faces 
horizontal in a fluid whose density=« times the cube of the depth. Prove 

t icO^ 

that the metacentric height is where M is the mass and a the length of 

an edge of the cube. 
6 
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39. A thin vessel in the form of a right circular cone, whose weight is 
negligible, floats with axis vertical in liquid whose density is iJL{a~{-z), z being 
the depth below the surface and h the length of the axis immersed. Prove 

that, if it contain liquid of density the equilibrium will be stable 

provided 

iKp) ^ 6a+A' 

40. A cube, whose edge is a, floats with two faces horizontal, a length I of 
the vertical edges being under water. Show that the work done in turning the 
cube through a finite angle 0 about an axis parallel to one of the horizontal 
edges without altering the volume of water displaced or immersing any part 
of the upper face of the cube is 

W 
a* 6 

sin 6 tan 0—{a—l) sin** ^ 

where W is the weight of the cube, (See Art. 82.) 

41. A ship contains water in its hold and floats in the sea. A solid is held 
partially immersed in the hold by a machine on land, so as to displace a weight 
w of water ; it is then depressed so that a small extra length 8x is immersed. 
Prove that the gain in the potential energy of the ship and contained water is 

where W is the weight of the ship and the contained water, A is the area of 
the water section of the held solid, C is that of the ship, and B is the area of 
the surface of the contained water. 

42. Show how to determine the effect on the trim of a ship of the displace¬ 
ment of a weight small compared to the total weight: prove that, if the dis¬ 
placement be across the horizontal deck in a direction making an angle 6 with 
the medial line, the resulting slope of the deck is such that the lino of greatest 
slope makes an angle tan tan 6) with the medial line, where m is the ratio 
of the metacentric heights, 

43. A log of square section floats in water with the two square faces vertical 
and three of the edges perpendicular to them wholly immersed. Show that 
there are three positions of equilibrium with a given edge not immersed, pro¬ 
vided the specific gravity of the substance of the log lies between 23/32 and 
3/4 ; and that if this condition be satisfied the two unsymmetrical positions 
are stable for rolling displacement, and the symmetrical position is unstable. 

44. A homogeneous body is floating freely in stable equilibrium. Show 
that, if the body be turned upside down, so as to float with the same plane of 
flotation in a liquid of suitable density, the equilibrium will be stable. 

46. Form an estimate of the effective increase in metacentric height when 
a ship is steadied by a rapidly spinning flywheel. 

46. A uniform solid body, in the form of the portion of the paraboloid 
cut off by the plane z—l, is floating freely in a liquid with 

its vertex downwards. A small weight is placed at the point f} on its plane 
base, prove that these points in the plane base which suffer no vertical displace¬ 
ment lie on the line whose equation is 

where is the ratio of the density of the solid to that of the liquid. 



CHAPTER VI 

PRESSURE OF THE ATMOSPHERE 

83. If a glass tube, about three feet in length, having one end 

closed, be filled with mercury, and then inverted in a vessel of 

mercury so as to immerse its open end, it will be found that the 

mercury will descend in the tube, and rest with its upper surface 

at a height of about 29 inches above the surface of the mercury in 

the vessel: this experiment, first made by Torricelli, has suggested 

the use of the Barometer, for the purpose of measuring 

the atmospheric pressure. 

The Barometer, in its simplest form, is a straight 

glass tube AB, containing mercury, and having its 

lower end immersed in a small cistern of mercury; 

the end A is hermetically sealed, and there is no air in 

the branch AB. 

It is found that the height of the surface P of the 

mercury above the surface C is about 29 inches, and, as 

there is no pressure on the surface P, it is clear that 

the pressure of the air on C is the force which sustains 

the column of mercury PQ. 

We have shown that the pressure of a fluid at rest 

is the same at all points of the same horizontal plane; 

pressure at C is equal to the pressure of the mercury at Q. 

Let a be the density of mercury, and H the atmospheric pressure 

at C, then 

and the height PQ measures the atmospheric pressure. 

On account of its great density, mercury is the most convenient 

fluid which can be employed in the construction of barometers, 

but the pressure of the air may be measured by using any kind of 

liquid. The density of mercury is about 13*568 times that of water, 
83 

An 

i 

hence the 
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and therefore the height of the column of water in the water- 
barometer would be about 33f feet. 

The density of mercury changes with the temperature, and 
a must therefore be expressed as a function of the temperature. 

Experiment shows that, for an increase of 1° centigrade, the 
expansion of mercury is volume; hence if at be the 
density at a temperature and Oo at a temperature 0°, 

a„=a/l + ^) = (T*(H-00018018<); 

ai=,7„(l-0() if 0=-OOO]8O18, 

and JI=ffao(l — 6t)PQ. 

By means of the formula, II~gao(l — 0t)h, the atmospheric 
pressure at any place can be calculated, making due allowance for 
the change in the value of g consequent on a change of latitude. 
It is found that this pressure is variable at the same place, with or 
without changes of temperature, and that in ascending mountains, 
or in any way rising above the level of the place, the pressure 
diminishes. This is in accordance with the theory of the equili¬ 
brium of fluids, for, in ascending, the height of the column of air 
above the barometer is diminished, and the pressure of the air upon 
C, which is equal to the weight of the superincumbent column of air, 
is therefore diminished, and the mercury must descend in the tube. 

If then a relation be found between the height of the mercury 
and the height through which an ascent has been made, it is 
clear that by observations, at the same time, of the barometric 
columns at two stations, we shall be able to determine the difference 
of their altitudes. 

We shall investigate a formula for this purpose; but it is first 
necessary to state the laws which regulate the pressures of the air 
and gases at different temperatures, and also the laws of the mixture 
of gases. 

84. We have before stated the relation 

between the pressure, density, and temperature of an elastic fluid ; 
it is deduced from the two following results of experiment: 

(1) If the temperature he constant, the pressure of air varies in¬ 
versely as its volume. {Boyle's Law.) 

(2) If the pressure remain constant, an increase of temperature 
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of C. produces in a mass of air an expansion *003605 of its volume 
at 0° C. (Dalton^s and Gay-Lussac's Law.) 

Hence, if p be the pressure and the density of air, at a tem¬ 
perature zero, 

p=-kpa. 

Suppose now the temperature increased to t, the pressure re¬ 
maining the same : the conception of this may be assisted by 
considering the air to be contained in a cylinder in which a movable 
piston fits closely, and has applied to it a constant force, so that 
an increase of the elastic force of the air would have the effect of 
pushing out the piston, until the equilibrium is restored by the 
diminution of density, and consequent diminution of pressure: 
we shall then have from the 2nd law, 

taking p as the new density and a=*003665 ; 

p—kp(l-{-at). 

If p\ p be the pressure and density of the same fluid at a tem¬ 
perature 

= a//), 

p p 1 + at 
and 

;/ p' l-^-af 

The quantity a is very nearly the same for gases of all kinds, 
but k has different values for different gases, and must of course 
be determined experimentally in every case. 

85. Absolute Temperature. If we imagine the temperature 
of a gas lowered until its pressure vanishes, without any change 
of volume, we arrive at what is called the absolute zero of tempera¬ 
ture, and absolute temperature is measured from this point. 

Assuming represent this temperature on the centigrade 
thermometer, we obtain, from the equation l+afo=0, 

-273°. 
a 

In Fahrenheit’s scale the reading for absolute zero is -*459®. 
The equations, p=kp{\-{-at), 

lead to p~kpa{t—t^ 

=fcpaT, 

if T be the absolute temperature. 



86 PRESSURE OF THE ATMOSPHERE [chap. VI 

Since pF is constant, it follows that pVjT is constant, and 
this law expresses, in the absolute scale, the relation between 
pressure, volume, and temperature. 

86. Biixtures. The pressure of a mixture of different elastic fluids. 
Consider two different gases, contained in vessels of which the 

volumes are V and F', and let their pressures and temperatures, 
p and t, be the same. 

Let a communication be established between the two vessels, 
or transfer both the gases to a closed vessel, the volume of which 
is F+ F': it is found in the case in which no chemical action takes 
place, that the two gases do not remain separate, but permeate 
each other until they are completely mixed, and that, when equili¬ 
brium is attained, the pressure and temperature are the same as 
before. From this important experimental fact we can deduce the 
following proposition. 

If two gases having the same temperature he mixed together in a 
vessel, the volume of which is V, and if the pressure of the two gases, 
alone filling the volume V, be p and p', the pressure of the mixture 
will 66 p+p'. 

Suppose the two gases separated; let the gas, of which the 
pressure is p, have its volume changed, without any alteration of 
temperature, until its pressure becomes p'; its volume will be, by 
Boyle’s law, pVjp'. 

Let the two gases be now mixed in a vessel, of which the volume 
is 

y+^,F,or 
P 

the pressure of the mixture will still be p\ and the temperature 
will be unaltered. If the mixture be then compressed into a volume 
F, its pressure will become, by the application again of Boyle’s 

law, p+p'. 
This result is obviously true for a mixture of any number of gases. 

87. Ttvo volumes V, V' of different gases, at pressures p, p' re¬ 
spectively, are mixed together, so that the volume of the mixture is 
U ; to find the pressure of the mixture. 

The pressures of the two gases, reduced to the volxime V, are 
respectively Y yt 
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and therefore, by the preceding article, the pressure of the mixture 
is 

F , F' , 
; 

and if be this pressure, we have 

77Tj7=pF+p'F'. 

If the absolute temperatures of the gases before mixture are 
T and T', and if after mixture the absolute temperature is r, and 
the volume the pressures of the gases will be respectively 

T U T V 

Hence trr, the pressure of the mixture, is the sum oi these two 
quantities, and therefore 

p'F' 
r ~ T T ‘ 

In the case of the mixture of any number of gases, we have 

^ rp * 
T 1 

88. The laws and results of the preceding articles are equally 
true of vapours, the only difference between the mechanical qualities 
of vapours and gases, irrespective of their chemical characteristics, 
being that the former are easily condensed into liquid by lowering 
the temperature, while the latter can only be condensed by the 
application either of great pressure or extreme cold, or a combination 
of both.* 

89. Vapour. If water be introduced into a space containing 
dry air, vapour is immediately formed, and it is found that the 
pressure and density of the vapour are dependent only on the 
temperature, and are quite independent of the density of the air, 
and indeed are exactly the same if the air be removed. If the 

• Professor Faraday suooeodod in condensing carbonic acid gas, and other gases 
requiring a considerable pressure for the purpose, and jj^e result of his experiments 
led to the conclusion that, in all probability, all gases are the vapours of liqtiids. 
This conclusion was remarkably supported in 1877, when M. Pictet, in the early part 
of the year, liquefied oxygen by applying to it a pressure of 300 atmospheres, and, 
in December of the same year, M. Cailletet liquefied nitrogen, and atmospheric air. 
In 1884 hydrogen was liquefied by Wroblow^ki, in 1899 Dewar obtained solid 
hydrogen, and now liquid air and various other gases in liquid form are articles of 
comyneroe. 
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temperature be increased or the space enlarged, an additional 
quantity of vapour will be formed, but if the temperature be lowered 
or the space diminished, some portion of the vapour will be 
condensed. 

While a sufficient quantity of water remains, as a source from 
which vapour is supplied, the space will be always saturated with 
vapour, that is, there will be as much vapour as the temperature 
admits of; but if the temperature be so raised that all the water 
is turned into vapour, then for that, and all higher temperatures, 
the pressure of the vapour will follow the same law as the pressure 
of the air. 

In any case, whether the space be saturated or not, if p be the 
pressure of the air, and trr of the vapour, the pressure of the 
mixture is jp+cr. 

90. The atmosphere always contains aqueous vapour, the 
quantity being greater or less at different times ; if any portion 
of the space occupied by the atmosphere be saturated with vapour, 
that is, if the density of the vapour be as great as it can be for 
the temperature, then any reduction of temperature will produce 
condensation oi sonie portion of the vapour, but if the density of 
the vapour be not at its maximum for that temperature, no con¬ 
densation will take place until the temperature is lowered below 
the point corresponding to the saturation of the space. 

Formation of Dew. If any surface, in contact with the atmo¬ 
sphere, be cooled down below the temperature corresponding to 
the saturation of the space near it, condensation of the aqueous 
vapour will ensue, and the condensed vapour will be deposited in 
the form of dew upon the surface. The formation of dew on the 
ground depends therefore on the cooling of its surface, and this is 
in general greater and more quickly effected when the sky is free 
from clouds, and when, consequently, the loss of heat by radiation 
is greater than under other circumstances. 

The Dew Point is the temperature at which dew first begins 
to be formed, and muat be determined by actual observation. 

The pressure of vapour corresponding to its saturating densities 
for different temperatures must also be determined experimentally, 
and, if this be effected, an observation of the dew point at once 
determines the pressure of the vapour in the atmosphere. For 
if V be the dew point, and p' the known corresponding pressure, 
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then at any other temperature t above the pressure f is given by 
the equation 

91. Effect of compression or dilatation on the pressure and tern- 
perature of a gas. 

It is found by experiment that if a quantity of air, enclosed 
in a vessel impervious to heat, be compressed, its temperature is 
raised; and that, if a quantity of air, enclosed in any kind of 
vessel, be suddenly compressed, so that there is no time for the 
heat to escape, the temperature is similarly raised. 

92. Thermal Capacity. The thermal capacity of a body is 
measured by the amount of heat required to raise the temperature 
one degree. 

The unit of heat which is actually employed is the quantity of 
heat required to raise by one degree the temperature of one unit 
of mass of water, supposed to be between 0"^ C. and 40° C. 

Specific Heat* The specific heat of a body is the thermal 
capacity of one unit of mass, or, which is the same thing, it is the 
ratio of the amount of heat required to increase by 1° the temperature 
of the body to the amount of heat required to increase by 1° the 
temperature of an equal weight of water. 

If an amount of heat dQ produce in the unit of mass a change 

dQ 
dt' 

In gases it is necessary to consider two cases: (1) when the 
pressure remains constant, the gas being allowed to expand, (2) 
when the volume remains constant. 

We shall denote the specific heat in these two cases by the 
symbols c^, and 

It is easy to see that Cj, is greater than c^, for in the fijst case 
the heat imparted does work in expanding the gas as well as in 

raising its temperature. 

98. Intemal Energy. A mass of gas in a given state possesses 
internal energy depending upon the configuration and motion of its 
molecules. The difference between the energies in two given states 

of temperature dt, the measure of the specific heat is 



90 PRESSUBE OF THE ATMOSPHERE [OHAP. VI 

depends only upon those states, and not upon the mode of change 
from the one to the other. If we denote by TJ the difference between 
the internal energies in any assigned state and in some standard 
state, then is a perfect differential of a function determined by 
the state of the gas. 

For a gas the first law of thermodynamics may be expressed by 
the relation 

dQ~dU+fdv . . . . (1) 

or the quantity of heat imparted is equal to the increase in internal 
energy together with the work done by the pressure as the gas 
expands, 

A 'perfect gas is an ideal substance which is assumed to obey the 
relation pv=KT for all ranges of temperature, where T denotes 
absolute temperature and jK is a constant. There are experimental 
reasons for concluding that for such a gas the internal energy U is 
a function of T only. 

If we suppose the volume to be kept constant while heat is im¬ 
parted, then c^=dQldT, Hence it follows from (1) that c^=d! VIdT; 
but is a function of T alone, therefore is a function of T alone. 
Now it is found that for the permanent gases and for all but very 
high or very low temperatures, is independent of T, consequently 
it is assumed that for a perfect gas is independent of T, i.e. is a 
constant and d TJ =c^dT. 

Hence, for a perfect gas, (1) may be written 

dQ~c^dT+pdv .... (2) 

where pv=KT, 

Therefore pdv+vdp = Kd T, 

so that dQ—c^dT+KdT-vdp ... (3) 

Now, suppose that the pressure is kept constant while a quantity 
of heat dQ is imparted, so that Cj^—dQjdT or dQ=CpdT. Sub¬ 
stituting this value in (3) and putting c?p==0, we get 

Cjf JK, • . • • (4) 
Consequently Cj, is also a constant for a perfect gas and, as stated 

in the last article, it is greater than 

94. Adiabatic Expansion. Let a change of state take place 

without any heat being imparted to or lost from the gast Such an 
expansion or compression is called an oMabatic dhmge. 



93-95] PRESSUBE OF THE ATMOSPHERE 91 

In this case, since no heat is supplied or lost, we have 

therefore, from (2) 
Q^c^dT-^-fdv. 

But pv"KTy and from (4) K—Cj,—c^, 

therefore 'pdv-\-vd'p~{Cj,~c^dTi 

and eliminating dT gives 

pdv~\^vdp -f - —l^pdv=0, 

or 
p V 

On integration we find that 

^Y=const., 

where y denotes the constant ratio cjc^. 
The equation pt)>'=constant is, in thermodynamics, the equation 

of the adiabatic, or isentropic lines, and it represents the relation 

between the pressure and volume of a mass of gas, when, during 

a change of volume, no heat is lost or imparted. 

The equation is true in the case of a sudden compression or 

dilatation of a mass of air, because there is no time for any sensible 

loss of heat, or for any addition of heat from external sources. It 

will be found that this relation is of great importance in the theory 

of sound. 

95. To find the work done in compressing a gas isothermally. 
Let V be the volume of a gas at the pressure p, dS an element 

of the surface of the vessel containing it, and dn an element of the 

normal to dS drawn inwards. 

Then the work done in a small compression 

=pIldSdn= ~pdv, 

and the work done in compressing from volume F to F' 

since pv^C, 

If the compression takes place in a vessel surrounded by the 

atmosphere, as for example if the gas is confined in a cylinder by 

a piston, the pressure of the atmosphere assists in the work of com- 
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pression. Thus if the initial volume is V at atmos])herie pressure 11, 

the external work done in compressing it to volume F' 

where pv—HV 

=nFiog^,-n(F-F'). 

96. The work done during an adiabatic compression of a gas. 

In the last paragraph we have assumed that the compression is 

isothermal. 

This state of things can be secured by performing the operation 

so slowly that any heat which may be generated is dissipated 

during the process. 

If the compression is adiabatic, that is, if the process is so 

arranged that no heat is lost or imparted, which is practically the case 

when the compression is very rapid, we have from Art. 94 the 

relation 
^1)7—constant == 0. 

Hence it follows that the work done in compressing from volume 

F to volume U 

^ / TT'l_ 

Cv^dv 

1 
•(Fi-v-J/i-v). 

97. Isothermal Atmosphere. 
On the hypothesis of uniform temperature the law of pressure is 

given by 
dp~ —gpdzy 

where p, p denote pressure and density at a height z. If j?o, pQ 

denote the values at a height Zq, we have 

P Po 
and k log p=0—gz ; 

whence log ^=—^{z—Zq) . . . (1) 

If we take Zq^O and suppose H to be the height of a homo¬ 

geneous atmosphere of density po> would produce the pressure 

Po, we have Po^gpoH, so that k^gH, and log plpa^ —zJH, 

or 
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This shows that, as the altitude increases in arithmetical progression, 

the pressure decreases in geometrical progression. 

Formula (1) may be used for comparing differences of level by 

observing barometric pressure. Thus we have 

2—2:0= 

on the hypothesis that the temperature is constant. If the tempera¬ 

ture be not constant, the relation between p and p is p~kp{\ -{-at), 

and if r, tq be the temperatures at the two stations and we proceed 

on the hypothesis of a mean uniform temperature t=|(To+T), 

we have 

z-2o=-^{l+ia(To+T)} log-^. 
y ro 

This formula may be further corrected by allowing for the 

difference in the value of gravity at different altitudes ; thus, if g 

is the measure of gravity at sea level and r is the earth’s radius, the 

attractive force at a height z is measured by gr^j{r-{-z)‘^. For 

accurate results corrections must be made to the barometer readings 

so as to allow for the difference of temperature of the mercury at 

different levels and for the aqueous vapour in the atmosphere, but 

a more detailed discussion is beyond the scope of our present 

purpose. 

98. Convective Equilibrium. An alternative hypothesis is that 

of the convective equilibrium of temperature in the atmosphere. 

As explained by Lord Kelvin,* “ when all the parts of a fluid are 

freely interchanged and not sensibly influenced by radiation and 

conduction, the temperature of the fluid is said to be in a state of 

convective equilibrium.” This state implies that if equal masses 

of air at different levels were interchanged without gain or loss of 

heat, i.c. adiabatically, they would merely interchange pressure, 

density and temperature so that on the whole there would be no 

change. In this case therefore the equations are 

dp^—gpdz . . . . (1) 
p=^kp'^ and p~KpT, 

where T denotes absolute temperature at the height z; 

kyp'^'^^dp^—gdz, 

* Collected Papers, toI, iii. p. 255. 
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and by integration 

V V 
y-lp 

... JL.K{T-T,) 
V—i 

C~gz; 

where denotes the absolute temperature at sea-level; 

• ‘ To y * KT^ 

And if H is the height of the homogeneous atmosphere 

Kpo'^o^Po^gpo^^ > 

- To y ' H • * • ^ ^ 

If in equation (1) we take gT^I(r-\-z)^ instead of g, as before, we get 

on integration and substitution as above 

rz 

To~ y ^H{r+z) 
(3) 

99. The following problem is illustrative of the principles of 

this chapter. 

A piston without weight fits into a vertical cylinder, closed at its base and 
filled with atmospheric air, and is initially at the top of the cylinder; water being 
poured slowly on the top of the piston, find how much can he poured in before it 
will run aver. 

Let a be the height of the cylinder, and z the depth to which the piston 
will sink; then in the position of equilibrium the pressure of the air in the 
cylinder is Ti~{-gQZ, whore n is the atmospheric pressure, and q the density of 
water; but 

this pressure: n=a: a—z ; 

na 
a—z 

—n+gQz, 

Let h be the height of the water-barometer, 

and 

/. u—ggh, 

ha—(a’-z){h-\-z), 

2=0 or a—h. 

Unless then the height of the cylinder is greater than h, no water can be 
poured in, for, even if the piston be forced down and water then poured on it, 
the pressure of the air beneath will raise the piston. 

The negative solution, when a <h, can however be ejcplained as the solution 
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of a different problem leading to the same algebraic equation. Suppose the 
cylinder to be continued above the piston, and let it be required to raise the 
piston through a space z by a force which shall be equal to the weight of the 
cyhndrical space z of water. 

This leads to the equation 

u—gQz^ a 

n ~~a-\-z* 

or z—h—a. 

EXAMPLES 

1. The readings of a perfect mercurial barometer are a and while the 
corresponding readings of a faulty one, in which there is some air, are a and b ; 
prove that the correction to be applied to any reading c of the faulty baro¬ 
meter is 

(a— a){p— h)(a— h) 

(a— c)(a~ a)— (b— c){fi—by 

2. If a thermometer, plunged incompletely in a liquid whose temperature 
is required, indicate a temperature t, and t be that of the air, the column not 
immersed being m degrees, prove that the cori'ection to be applied is 

6840-fr-m’ 

1/6840 being the expansion of mercury in glass for 1° of temperature, assuming 
that the temperature of the mercury in each part is that of the medium which 
surrounds it. 

3. A closed vertical cylinder of unit sectional area contains a piston, 
weight W, The piston is originally halfway up the cylinder, and the space 
above and below is filled with saturated air. On being left to itself the piston 
sinks to half its former height; prove that the tension of the saturated vapour 
is 3ir—4n where n is the pressure of the atmosphere : the temperature being 
supposed the same at the end and beginning of the process. 

4. A vertical barometer tube is constructed, of which the upper portion 
is closed at the top, and has a sectional area a\ the middle portion is a bulb 
of volume 6®, and the lower portion has a section c*, and is open at the bottom ; 
the mercury fills the bulb and part of the upper and lower portions of the 
tube, and is prevented from running out below by means of a float against 
which the air presses ; the upper part of the tube is a vacuum : find the change 
of position of the upper and lower ends of the mercurial column, due to a given 
alteration of the pressure of the atmosphere. 

Show also that, if the whole volume of the mercury in the instrument be 
where H is the height of the barometer, the upper surface will be un¬ 

affected by changes of temperature. 

6. A cylindrical diving-bell sinks in water until a certain portion V remains 
occupied by air, and in this position a quantity of air, whose volume under the 
atmospheric pressure was 2F, is forced into it. Show how far the bell must 
sink in order that the air may occupy the same space as in the first position. 

Find also the condition that when the air is forced in at the first position 
no air may escape from beneath the bell. 

6. A vessel, in the form of the surface generated by the revolution about 
Its ajps of an. arc of a parabola terminated by the vertex, is immersed, mouth 



96 EXAMPLES [chap. VI 

downwards, in a trough of mercury; show that the pressure of the air con¬ 
tained in the vessel varies inversely as the square of the distance of the vertex 
of the vessel from the surface of the mercury within it. Supposing the length 
of the axis of the vessel to be to the height of the barometer as 45 is to 64, 
find the depth of the surface of the mercury within the vessel, when the whole 
vessel is just immersed. 

7. A piston without weight fits into a vertical cylinder, closed at its base 
and filled with air, and is initially at the top of the cylinder ; if water be slowly 
poured on the top of the piston, show that the upper surface of the water will 
be lowest when the depth of the water is '\/(ah)-~h, whore h is the height of 
the water-barometer, and a the height of the cylinder. 

8. A cylindrical well of depth h and section A is maintained at constant 
temperature ; if and are the densities of the air at the top and bottom, 
show that the total amount of air contained is ^o)/(log ^i~-log go) • 
if the barometer at the top stand at 30 inches, and at the bottom at 31 inches, 
show that the mean density of the air in the weU will differ from that due to a 
pressure of 30*5 inches by about 1 part in 11,000. 

9. A straight tube, closed at one end and open at the other, revolves with 
a constant angular velocity about an axis meeting the tube at right angles ; 
neglecting the action of gravity, find the density of the air within the tube at 
any point. 

10. A bent tube of uniform bore, the arms of which are at right angles, 
revolves with constant angular velocity m about the axis of one of its arms, 
which is vertical and has its extremity immersed in water. Prove that the 
height to which the water will rise in the vertical arm is 

a being the length of the horizontal arm, n the atmospheric pressure, and g 
the density of water, and h the ratio of the pressure of the atmosphere to its 
density. 

11. A thin uniform circular tube of radius a contains air and rotates with 
angular velocity m about an axis in its plane, distant c from the centre ; find 
the pressure at any point neglecting the weight of the air. If c is less than a, 
and if p and p' are the greatest and least pressures, prove that 

P CO® 

12. Two bulbs containing air are connected by a horizontal glass tube of 
uniform bore, and a bubble of liquid in this tube separates the air into two 
equal quantities. The bubble is then displaced by heating the bulbs to 
temperatures t degrees and t' degrees : prove that, if the temperature of each 
bulb be decreased t degrees, the bubble will receive an additional displacement 
which bears to the original displacement the ratio of 

2aT: 

where a is the coefficient of expansion. 

13. A conical shell, vertical angle 3?/2, and height J7, ban hold double its 
own weight of water. It is inverted and immersed, axis vertical, in a mass of 
water. The water is now made to rotate with angular velocity (7g*/2H®)l and 

cone sinks till its vertex hes in the surface; profe that the height of the 

water-bitrometer is to that of the cone as 3 :>^28. 
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M>r4. If the pressure of the air varied as the power of the density, 
show that, neglecting variations of temperature and gravity, the height of the 
atmosphere would bo equal to (w-1-1) times the height of the homogeneous 
atmosphere. 

16. A piston of weight w rests in a vertical cylinder of transverse section 
k, being supported by a depth a of air. The piston rod receives a vertical blow 
P, which forces the piston down through a distance h : prove that 

(«)+nfc)|A+o j+1^=0, 

n being the atmospheric pressure. 

16. Prove that, if the temperature in the atmosphere fall uniformly with 
the height ascended, the height of a station above sea level is given by 

z=a{l— 
where hy Jiq are the readings of the barometer at the station and at sea level 
respectively, and a, m are constants. 

17. Show that in an atmosphere in “ convective equilibrium ” the tempera¬ 
ture would diminish upwards with a uniform gradient; and calculate this 
gradient in degrees centigi’ado per 100 metres, assuming the following data 
(in O.G.S. units); 

height of barometer =76*0, 
temperature (absolute) —272° C., 
density of air =*00129, 
density of mercury =13*60, 
ratio of specific heats (y)=l*42. 

18. In a vortical column of perfect gas the pressure and absolute tem¬ 
perature at any height z are p and T, Provo that 

Po fPoTdp 

QogToJp p ’ 

where Po» (?o> a-ro pressure, density and absolute temperature at the bottom. 
Height is measured in an aeroplane by means of a specially graduated 

aneroid barometer. The graduations are such that the true height would be 
read direct if the temperature of the atmosphere wore uniformly at 10° C. 
Show that the instrument will read differences of height correctly whatever 
the barometric pressure at ground level. 

To find the true height when the temperature is not uniform, it is necessary 
to read the temperature during the ascent. Show that the true height corre- 

r* T 
spending to a recorded height z is dz', where is the reading at ground 

level and T the absolute temperature when the reading is z', 

19. A perfectly flexible balloon contains a light gas of total mass m. At the 
ground level it is at the same temperature as the surrounding air. Prove that 
it will exert the same lift at all heights if it remains at the same temperature 
as the air round it, but that, if the gas inside expands adiabatically, the lift 
at height z will be less than the lift at the ground level by the amount 

gj(v -wj, 

where or is the ratio of the density of air to that of the gas under standard 
conditions, y, Y are the ratio of the specific heats for air and for the gas and H 
is the height of the atmosphere, Lt, the height at which pressure, temperature, 
and density vanish. It is supposed that balloon is never fuUy extended. 

7 



CHAPTER VII 

CAPILLARITY 

100. It is a well-known fact that if a glass tube of small bore 

be dipped in water, the water inside the tube rises to a higher level 

than that of the water outside. 

It is equally well known that if the tube be dipped in mercury, 

the mercury inside is depressed to a lower level than that of the 

mercury outside.. 

If a glass tumbler contain water it will be seen that at the line 

of contact the surface is curved upwards and appears to cling to 

the glass at a definite angle. 

If the tumbler be carefully filled, the level of the water will 

rise above the plane of the top of the tumbler, the water bulging 

over the round edge of the top. 

If water be spilt on a table, it has a definite boundary, and the 

curved edges cling to the table. 

These facts, and many others, are explained by the existence 

of forces between the molecules of the fluids, and of the solids 

and fluids, in contact; the field of action of the force exerted 

by any particular molecule being infinitely small.* And since 

these molecidar forces are only 

exerted at very small distances, 

it follows that as far as mole¬ 

cular forces are concerned, 

every element of a homogene¬ 

ous body, not near its bound¬ 

ing surface, is under the same conditions ; but that at the surface 

itself the sphere of action of a particular molecule is incomplete, 

and the molecule also falls within the field of action of molecules 

of whatever matter is on the other side of the bounding surface. 

♦ Til© iSeld through which capillaiy forces are exerted is extremely smalL In 
Quincke’s experiments the same phenomena were observed with water in a glass 
tube silvered with a coating *0000542 mm. thick, as in a silver tube of the same 
diameter. An%,^ cxxxix. (1870), p. 1. 

08 
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Also if we assume that the linear dimensions of the field of action 

are infinitely small as compared with the radii of curvature of the 

surface, then all parts of the surface of separation of two homo¬ 

geneous substances are under similar conditions as far as molecular 

forces are concerned, and the surface potential energy due to mole¬ 

cular forces must be in a constant ratio to the area of the surface, the 

constant depending on the nature of the substances in contact. 

101. Surface Tension. 
We shall see shortly that the surface potential energy is such as 

would exist if the surface were in a state of uniform tension T, so 

that the tension in the surface across any short line of length Ss in 

the surface is TSs at right angles to the line Ss. 

We proceed to show that, if such a surface tension exists, then 

there is a relation between the surface tension T, the curvatures 

of the surface, and the difierence CT of the pressures on opposite 

sides of the surface. 

Let the equation of the surface be z==f{x, y)» Consider the 

equilibrium of any portion S of the surface bounded by a curve s 

without singularities. The resultant of the tensions TSs across all 

the elements 8s of the curve s must balance the resultant of the 

pressure difierences crSS on the various elements SS of the surface S. 

Let A, fi, V denote the direction cosines of the normal to the 

surface at the point {x, y, z), and let I, m, n denote the direction 

cosines of the tension TSs across Ss, The direction cosines of the 

tangent to the element Ss at {x, y, z) are dx/ds, dyfds, dzjds^ or 

x\ y\ z*; and, since the tension is at right angles to Ss and to the 

normal to the surface, therefore (I, m, n), (A, /x, v), and (x', y\ z') are 

the direction cosines of three mutually perpendicular lines, and 

I _^ ^ 

fjLz'~vy' vx'—Az' Ay'—fxa?' 

The equation of equilibrium obtained by resolving parallel to the 

axis of z is 

f[nrvd;S-frnrfs=0, 

which is equivalent to 

J T(Xdy—ijdx) =0, 

where the integrations are over the projection of 8 on the xy plane 

and round the boundary of this projection. By using Green’s 
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Theorem *** for transforming the line integral into a surface integral 
this becomes 

[dx^8i/J 
I dxdy=0. 

Since this integral must vanish for all such ranges of integration, th( 

integrand must be zero. Hence we have 

\dx By) 

Now, in the ordinary notation, with^, q, r, s, t as partial difierentia 

coefficients of z with regard to x and y, we have 

. ®, O', —1 

From this we find that 

dX diJL_r{l-\-q^)—2pqs-{-t()+p^) 

dx dy 

Pi P2 

where pj, pg jirincipal radii of curvature of the surface a1 

(x, y, 2).f Therefore 
1 1 

zs=tI —h- 

\pl P2, 

and resolution parallel to either of the other axes would have led 

to the same result. 

102. Application of the principle of energy to the case of a homo¬ 
geneous liquid at rest in a vessel under the action of gravity.% 

In equilibrium the value of the potential energy must be 

stationary, and it is composed of four parts : the gravitational 

energy where z is the height of an element dxdydz ; 

and the energy of the surfaces separating (a) liquid and air, (j3) liquid 

and vessel, (y) air and vessel. 

Hence we require that 

gp^^^zdoodydz+ASi+BS^+CS^ 

should be stationary, where /Sj, 8^, 8^ denote the surfaces (a), (j8), (y) 

♦ See any Cours d*Analyset e.g. de la Valine Poussin, t. i. p. 348 (4th ed.). 
t See C. Smith, Solid Geometry, p. 225. 
I This discussion of the theoiy of capillarity is taken from Mathieu, Thiorie de 

la CapiUariU, 1883. 
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and A, B, C their energies per unit area respectively; subject to 

the condition that the volume ydz is constant. 

For a slight displacement of the surface between the liquid 
and air, if hn denote the element of the normal 

to the surface Si between corresponding ele¬ 

ments of Si in the old and new positions, the 

variation of the first term is clearly gp^^z^ndSi* 

Suppose, in the first place, that the line of 

contact of the liquid with the vessel does not 

vary, then S2 and S^ are constant and Si 

changes to Si\ Consider an element dsids2 of 

Si bounded by lines of curvature ; the normals 

through the boundaries of this element cut the 

surface S^' in an element dsids^^ and if are the principal 
radii of curvature, 

^\dsi, dsj- 
PiJ 

dsi'—J 1 
8h\ 7 
— jdSi^ I 
P2J 

dSi—dSi^dsI ds2—dsids. 

or 8dSi 

But we require that 

2 -f-- 

,Pi P2J 

. dSi. 
\Pl p2/ 

gpz—AI 2+2^ 1 8ndSi=0, 
\pi P2 ( 

(1) or, that JJ I 

subject to the condition of constant volume, viz. ; and 

this is equivalent to 

where A is a constant and 8n is arbitrary. 

\Pl P2/ 

♦ It is probable that the density of the liquid infinitely near the surface varies 
owing to the molecular action, but as the thiokness of the layer of variable density 
is infinitely small compared with <5w, w© may neglect this variation without affecting 
the argument. 
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If we wish to take account of the atmospheric pressure 11 above 

the liquid, we can do so by observing that, in the displacement con¬ 

sidered, an amount of work — would be done by this 

pressure, and regarding this as a loss of potential energy we must 

subtract this term from the first member of equation (1), and we 

then obtain the result /I i \ 
Al-+~-)=gp{z^h)+Il, 

\pi P2J 
and this is the result that would hold good if the surface were 

in a state of imiform tension A and the pressure difference on 

opposite sides of the surface were 

ll-gp{h-z). 

Secondly, suppose that the line of 

contact of the liquid with the vessel 

is displaced from s to s\ If we 

draw normals to the suidace at 

all points of the line s, they will 

meet the surface in a line cr, and 

the surface may be considered 

as composed of two parts, the one S enclosed by the line cr, and 

the other H' between the lines or and 5'.* As before, we get 
\ 

\SndSi; 
Pi pJ 

and, if 8A denote the distance between the elements ds, ds', 27' may 

be considered as the projection of the elements SAds of the surface 

of the vessel on the surface S^', so that if i is the angle between 

the normals to the surfaces and then 

Also 

cos iSXds, 

Now since the potential energy is stationary we have 

8 I gp^^^zdxdydzA-ASi^^-BS^A-CS^ | =0 

subject to the condition that the mass is constant; or 

* In the figure, PQ is an element ds of the line of contact a of the liquid with 
the vessel, and P'Q't pq are corresponding elements of the lines a respectively s 

is an element of the surface X* The variation in the mass represented by 
the wedge-shaped elements PP'g round the line of contact of the liquid and the 
vessel is of e higher order of small quantities than the rest and may be neglected. 
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or j"! I <irp2—+—I 8n(?;Si+|(4 cos i-\-B—C)BMs=0 

subject to the condition 

SndS 1=0, 

and, since SA is arbitrary, this gives equation (1) as before, and also 

A cos i+B—(7==0 . . . . (2) 

or the angle between the surfaces of the liquid and the vessel is 

constant along the line of their intersection. 

103. From the foregoing considerations combined with the results 

of experiment we are led to two laws which may be stated as follows: 

(1) At the hounding surface separating air from a liquid, or 

between two liquids, there is a surface tension which is the same at every 

point and in every direction, 

(2) At the line of junction of the hounding surface of a gas and 

a liquid with a solid body, or of the bounding surface of two liquids 

with a solid body, the surface is inclined to the surface of the body at a 

definite angle, depending upon the nature of the solid and of the fluids. 

In the case of water in a glass vessel the angle is acute ; in the 

case of mercury it is obtuse. 

Assuming these laws we can account for many of the pheno¬ 

mena of capillarity and of liquid films. 

104. Rise of liquid between two plates. 

If t be the surface tension, a the constant angle at which the 
surface meets either 

plate, called the angle 

of capillarity, h the 

mean rise, and d the 

distance between the 

plates, we have, for the 

equilibrium of the unit 

breadth of the liquid, 

2t cos a=gphd, 

so that the rise in¬ 

creases with the dimi¬ 

nution of the distance 

between the plates. 
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It will be seen that the pressure at any point Q is less than the 

pressure at N hy gp . QN, 

and .\~Tl~gpQN, 

The atmospheric pressure at P being sensibly equal to the 

pressure at the water level outside, it follows that the weight PN 

is supported by the resultant of the surface tensions on its upper 

boundary. 

105, Rise of a liquid in a circular tube. 

In this case the column of liquid is supported by the tension 

round the periphery of its upper boundary, and therefore, if r be 

the internal radius, 
27Trt cos a=^gp7rr%, 

or 2t cos a~gprh. 

The pressure at any point of the suspended column being less 

than the atmospheric pressure, it follows that if the column were 

high enough, the pressure would merge into a state of tension, 

which would still follow the law of fluid pressure of being the same 

in every direction. 

It may be observed that the potential energy, due to the ascent 

of the column, is independent of the radius. 

106. The Capillary Curve. The form of the surface assumed 

by a liquid in contact with a vertical wall can be investigated if we 

assume that the surface is cylindrical with horizontal generators. The 

cross-section of such a cylindrical surface is called the capillary curve. 

We shall take the case in which the angle of contact of the liquid 

contact with a vertical plane of glass. 



104-106] CAPILLARITY 105 

Let EF be the wall which the liquid meets at an angle a. Take 

a horizontal axis Ox at right angles to the wall at the natural level 

of the liquid, ix. the level at which the pressure in the liquid is equal 

to the atmospheric pressure n. 

Let r be the radius of curvature at P {x, y) on the capillary curve, 

and let t be the surface tension. Then the theorem of Art. 101 

gives 
t „ 

Hence, putting ii~gpc^, we get 

ry=lc^.(1) 

If iff denote the acute angle between the tangent at P and the 

axis of X as in the figure, and the arc s be measured from the wall, 

we have r=—dsldiff, and dsjdy ==—co&ec ip. 

Therefore ydy—^c^ sin ipdip .... (2) 

Hence, since y and tp vanish together 

y^=}^c^(l—cos ip)—c^ sin^ \ipy 

therefore y==db<^ sin |t/f .... (3) 

and in the case considered the upper sign must be taken. Again, 

dyldx=^—tsiii ip, so that 

dx== “I c cos lip cot ipdip 

= “~ic(cosec lip—2 sin lip)dip. 

Therefore x=|c log cot c cos . . . (4) 

provided that the origin be chosen so that x—0 when ip=7T. The 

capillary curve is represented by equations (3) and (4). It has a 

loop as in the figure and is asymptotic to the axis of x. 

The height above the natural level at which the liquid meets the 

wall is given by (3) in the form EF—c sin [\7r—\a). 

In the case of a liquid, such as mercury, for which the angle of 

contact is obtuse, it is convenient to measure y downwards, and the 

figure is inverted. 

The differential equation (1) is also the equation of equilibrium 

of a flexible rod bent by terminal forces. The integration in finite 

terms obtained above depends on our being able to assume that 

y and ^ vanish together. With any other constant of integration in 

the integral form of (2) we shall find that x is expressed by elliptic 

integrals ; and the curve may assume a variety of forms, and is 

known as the elastic curve or the elastica. 
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107. Drop of Liquid. If a drop of liquid be placed on a 
horizontal plane, the equation of equilibriiun will be 

1 1 CT 
-+-=7, 
Pi P2 ^ 

where t is the surface tension, and cr is the difference between 

the internal pressure and the atmospheric pressure. 

In general the drop 

will assume the form of 

a surface of revolution. 

The only case, how¬ 

ever, which is capable 

of simple treatment is 

that in which we may 

regard the drop as so 

large that it may be 

considered to have a 

flat top and that cur¬ 

vature in a horizontal sense is negligible. Thus, measuring y down¬ 

wards from the top when the pressure is atmospheric, we have 
zy~gpy, and putting 4^=^/)c2, we get as in Art. 106 

ry=lc% 

and the vertical section is the capillary curve. 

With axes as in the figure we shall find that 

y=c sin 

and log tan cos lift + const., 

where tft is the inclination of the tangent to Ox, 

Thus, if a be the angle of contact of the liquid with the plane 

measured in the liquid, the height of the drop is csin ^a. 

This would hold good for the case of mercury upon glass or water 

upon steel. 

108. Floating needle. The well-known experiment of floating 

a needle on the surface of water can be explained by aid of the 

laws of surface tension. 

The figure representing a section of the needle and the surface 

of the water at right angles to the axis of the needle, the forces in 

action on the needle are the tensions on P and Q, and the water 

pressure on PAQ^ which is equal to the weight of the volume 

NPAQM of water; these forces counterbalance the weight of the 

needle. 
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Further, the horizontal component of the tension at P, together 

with the horizontal water pressure on BD, is equal to tlie tension 

at P, PD being horizontal and BD vertical. 

These conditions determine the equilibrium, and lead to the 

equations 

2i sin {0—a)+gpc{c6-\-c sin d cos d-~2h sin 0)~Wy 

4.1 sin^ l{B~a)=gp(c cos 6~h)^, 

where a is the angle of capillarity, w the weight of unit length of 

the needle c its radius, h the lieight of its axis above the natural 

level of the water, and 20 the angle POQ. 

109. Liquid films. Liquid films are produced in various 

ways; a soap bubble is a familiar instance, and liquid films may 

be formed, and their characteristics observed, by shaking a clear 

glass bottle containing some viscous fluid, or by dipping a wire 

frame into a solution of soap and water, or glycerine, and slowly 

drawing it out. 

The fact that films apparently plane can be obtained, shows 

that the action of gravity may be neglected in comparison with 

the tension of the film. 

It is found that a very small tangential action will tear the 

film, and it is therefore inferred that the stress across any line is 

entirely normal to that line. From this it follows that the tension 

is the same in every direction. 

For if we consider a small triangular element of the surface, 

the equilibrium in the tangent plane is entirely determined by the 

tensions across the sides of the triangle, for the tangential impressed 

forces, if there be any, will xiltimately vanish in comparison with 

the tensions; and since these tensions are at right angles to the 

sides, they must be in the ratio of their lengths, and therefore the 

measures of tension in all directions are the same. 

Further, the tension will be the same at all points of the surface, 

for, if a small rectangular element be considered, the tensions on 

opposite sides must be equal. 
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110. Energy of a plane film. If a plane film be drawn out 

from a reservoir of viscous liquid, a certain amount of work is 

expended, and the work thus expended represents the potential 

energy of the film. 

Imagine a rectangular film ABCD, bounded by straight wires 

AD, BC; AB being in the surface of the liquid, and CD a movable 

wire. 

The work done in pulling out the film is equal to r. AB. AD, and 

therefore, if S be the superficial energy, per unit of area, it follows that 

S=T. 

It should be observed that what we have here called the tension 

of the film is equal to twice the surface tension of either side of 

the film. 

111. Energy of a spherical soap-bubble. The energy of a 

soap-bubble is the work done in producing it. This consists of 

two parts, viz. the work done in pulling out the film and the work 

done in compressing the air in the bubble. 

If t be the surface tension, the former part is tS, where S denotes 

the area of the surface, for the energy of a small plane element is thS. 

For the latter part, let p denote the pressure of the air inside when 
2t 

the radius is r, and 11 the atmospheric pressure, then ; 

and, if the bubble contains a mass of air which at pressure 11 would 

occupy a volume F, then 

UV—^TTT^p—pV', say, 

and by Art. 95 the work done in compressing the air from volume 

V to volume F' 

=nFlog^-n(F-F') 

If we assume that the difference between the pressures inside 

and outside the bubble is small compared with the atmospheric 

2t 
pressure, we may take — as small, and the last 
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so that the work done in compressing the air is to that done in 

pulling out the film as : 3rn. 

112. The forms of liquid films. Minimal surfaces. If the air 

pressure be the same on both sides of a film, the condition of equili¬ 

brium is that 

Pi P2 

or that the mean curvature is zero. 

This condition is satisfied in the cases of the catenoid and the 

helicoid, which are therefore possible forms of liquid films. 

In Cartesian co-ordinates the equation becomes 

/i 1 ^^dzdz dH , 

as in Art. 101. 

The discussion of this equation is the subject of many memoirs 

by eminent mathematicians, and several very remarkable special 

solutions have been obtained. 

For instance, the surfaces 

e*=cos y sec x and sin z=sinh x sinh y 

will be each found to possess the property that its mean curvature 

is zero. 

In Plateau’s work, Sur les liquides soumis aux seules forces 

mol4culaires (2 vols. 1873), will be found an elaborate account of 

the labours of mathematicians on this subject, and of his own 

extensive series of experiments ; and, in Darboux’s Thhrie GSnerale 

des Surfacesy tome i., livre iii., there is a full discussion of minimal 

surfaces, that is, of surfaces which satisfy the condition given 

above. 

113. If the form of the film be that of a surface of revolution 

about the axis of a?, and at any point {x, y) on the meridian curve 

the tangent makes an angle ^ with the axis of x, by resolving parallel 

to this axis for the equilibrium of a portion of the film between 

planes perpendicular to the axis, we get 

27Tt/. t cos ^=con8t. 

y=^c sec f/. or 
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Thus dyjds or sin 0=c sec ^ tan t/jdifflds, 

and s=c tan t/j, 

provided we measure 5 and ip so that they vanish together. Hence 

the meridian curve must be a catenary; and a catenoid, or the 

surface obtained by revolving a catenary about its directrix, is the 

only possible form of revolution of a film when the pressure is the 

same on both sides. 

In the case of a surface of revolution, one of the principal radii 

of curvature at a point is the normal intercepted between the point 

and the axis of revolution. It is easy to see that in the catenary 

the intercept on the normal between the curve and its directrix 

is equal in length to the radius of curvature, and the catenoid 

being an anticlastic surface the relation 

Pi Pz 

is satisfied. We may also show conversely that this relation leads 

to the catenoid as the only solution. 

114. The same result is obtained by the principle of energy, 

for the area 
j27Tyds 

is then a maximum or a minimum, and, by the Calculus of Varia¬ 

tions, this leads to a catenary as the generating curve, the axis of 

revolution being the directrix of the catenary. 

In Todhunter’s Researches in the Calculus of Variations it is 

shown that it is not always possible, when a straight line and two 

points in the same plane are given, to draw a catenary which shall 

pass through the two points and have the straight line for its 

directrix. 

It is also shown that, under certain conditions, two such 

catenaries can be drawn, and that, in a particular case, only one 

such catenary can be drawn. The two catenaries, when they 

exist, correspond to the figure formed by a uniform endless string 

hanging over two smooth pegs. v 

When there are two catenaries the surface generated by the 

revolution of the upper one about the directrix is a minimum, but 

the surface generated by the lower one is not a minimum. When 

there is only one catenary, it is not a minimum. 
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Hence it appears that if a framework be formed of two circular 
wires, the planes of which are parallel to each other and perpendicular 

to the line joining their centres, it is not always possible to connect 

the wires by a liquid film. In certain cases it is possible to connect 

the wires by one of two catenoids, but, in the case of the catenoid 

formed by the revolution of the upper catenary, the equilibrium is 

stable, while the other catenoid is unstable. 

When there is only one catenoid it is unstable. 

There is also a discontinuous solution of the problem, consisting 

of the two circles formed by the revolution of the ordinates of the 

points, and an infinitesimally slender cylinder connecting their 

centres. 

In the article on Capillarity in the Encychpcedia Britannica'^ 

by Clerk Maxwell, the question is discussed in the following 

manner. 

When two catenaries, having the same directrix, can be drawn 

through two given points, and the catenoids are formed by 

revolution about the directrix, the mean curvature of each 

catenoid is zero. 

If another catenary be drawn between the two catenaries, 

passing through the same two points, its directrix will be above 

the directrix of the other two, and therefore its radius of curvature 

at any point will be less than the distance, along the normal, of 

the point from the first directrix. 

The mean curvature of the surface of revolution is therefore 

convex to the axis, and it follows that if either catenoid is displaced 

into another catenoid between the two, the film will move away 

irom the axis. 

Again, if a catenoid be taken outside the two, its mean curvature 

will be concave to the axis, and therefore if the upper catenoid be 

displaced upwards and the lower one downwards the film will, in 

each case, move towards the axis. 

Hence it follows that the outer of the two catenoids is stable, 

and that the inner one is unstable. 

This argument, however, does not apply to any other form of 

displacement, and therefore, for a complete proof of the case of 

stability, it is necessary to have recourse to the methods of the 

Calculus of Variations. 

* Tills article wa4B revised by Lord Rayleigh in the eleventh edition of the 
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115. If the pressure on the two sides of a film be different, 

and if CT be the difference, the condition of equilibrium is 

Pi P2 ^ 
or that the mean curvature is constant. 

If the film be in the form of a surface of revolution, we can show 

that the meridian curve is the path of the focus of a conic rolling 

on a straight line. 

Let S be the focus of the conic and P its point of contact with the 

given line. 

Let SP=r and let p be the perpendicular SY from 8 to the line. 

The {p, r) equation of a conic is of the form 

— ==F>orzero . . • (1) 
p^ r a 

according as the conic is an ellipse, hyperbola, or parabola ; where 

I denotes the semi-latus rectum and a the semi-major axis. 

Hence, if p be the radius of curvature of the locus of 8 and ip 

the angle Y/SP, we have 

1 

P 

dip dip 
sin ip- 

d /p\ 

dp dp\r 

Also, if the locus of 8 is rotated round the fixed line, the normal 

SP is one of the principal radii of curvature of the surface of revolu¬ 

tion, and 
2 p dr 1+1,_ 

p r r r^dp 

But from (1) 

whence we get 

J 
p 3 

I dr 

r^dp’ 

1,1 ,1 
or zero, 

p r a 

according as the rolling curve is an ellipse, hyperbola, or parabola. 
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The third is the Catenoid ; the first and second are called by 
Plateau the Unduloid and the Nodoid, the former being a sinuous 

curve, and the latter pre¬ 

senting a succession of 
nodes. 

To obtain a clear view 

of the generation of the 
nodoid, it must be con¬ 

sidered that, as one 

branch of the hyperbola 
rolls, the point of con¬ 
tact moves off to an infinite distance; the line then becomes 

asymptotic to both branches, and the other branch begins to roll, 

thereby producing a perfect continuity of the figure.* 

Of the numerous works and papers on the subject of liquid 

films the student will find full accounts in Plateau’s work, and in 

Professor Clerk Maxwell’s article in the Encyclopcedia Britannica; 

and on the subject of Capillarity generally the following works 

and references may be useful: 

Mathieu, Th4orie de la Capillarile, 1883. 

F. Neumann, VorUsungen ilber die Theorie der Capillaritdt^ 1894. 

Poincare, Capillariie, 1895. 

The articles Kapillaritdt by H. Minkowski in Encyhlop, der 

Math, Wissensch., Bd. v., 1907, and by F. Pockels in Winkelmann’s 

Handbuch der Physik, Bd. i., 1908, both of which contain a full 

bibliography of the subject. 

116. Example. A soap bubble extends from fixed boundaries, so as with 
them to form a closed space whose volume is Vq, and contains a gas at pressure Pq 
and absolute iemperature Oq, The temperature of the gas is gradually raised. If 
A be the area of the film when the temperature is 6, and pressure Pt show that 

td^ 
dA 

dd ■PoVoS 
6 dp^ 
pdd, 

where t is the surface tension supposed constant, and the external pressure is 
neglected. Deduce the relation between p and 6 when the bubble is spherical. 

The change of energy 
s=tdA 

But 

^pdv, 
pv^kd; 

pdv^^kdO—vdp; 

* Plateau, vol, i. p. 136. See also an article by Delaunay, Liouvillds Journal, 
1841, and an article by Lamarle, Bulletins de PAc^emte Belgique, 1857. 

8 
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dA 

dO 
dp 

^0 

For a sphere 

Hence from above 

but 

and » 

dp 
32^— 

dO 
M 1 

0 dp\ 

pdOj* 

• p do~ \ pdej’ 
pv=kO ; 

^prA — kO or f^tA~kB ; 

3k0 djy kO dp 

*• J To* 

• 4 
20 dp 

4-l==0; 
p dO 

EXAMPLES 

1. Two spherical soap-bubbles are blown, one from water, and the other 
from a mixture of watei' and alcohol: if the tensions per linear inch are equal 
to the weights of one grain and grain respectively, and if the radii be J inch 
and IJ inch respectively, compare the excess, in the two cases, of the total 
internal over the total external pressure. 

2. If two soap-bubbles of radii r and r', are blown from the same liquid, 
and if the two coalesce into a single bubble of radius E, prove that, if n be the 
atmospheric pressure, the tension is equal to 

n E^—r^—r'^ 

2 • r*-f r'2-jR»‘ 

3. The superficial tensions of the surfaces separating water and air being 
8*25, water and mercury 42-6, mercury and air 65, what will be the effect of 
placing a drop of water upon a surface of mercury ? 

4. Show that if a light thread with its ends tied together form part of the 
internal boundary of a liquid film, the curvature of the thread at every point 
will be constant. 

If the thread have weight, and if the film be a surface of revolution about 
a vertical axis, prove that, in the position of equilibrium, the tension of the 
thread is 

I /- 

I b^g its length, w its weight per umt bngth, and r the tension of th^ film* 
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5. A plane liquid film is drawn out from a soap-sud reservoir ; prove that 
the numerical value of the energy per unit of area (e) is equal to that of the 
tension (T) per unit of length. 

If the film bo removed from the reservoir, and if a denote subsequently 
the mass of unit of area, prove that 

T=:e- (Clerh Maxwell.) 

6. Any number of soap-bubbles are blown from the same liquid and then 
allowed to combine with one another. Find an equation for determining the 
radius of the resulting bubble, and prove that the decrease of surface bears a 
constant ratio to the increase of volume. 

7. If a film under unequal internal and external pressure form a surface of 
revolution, prove that the inclination of the tangent plane at P to the axis 
is given by the equation 

cos 0=-4--: 
a X 

X being the perpendicular from P on the axis and a, b constants. 

8. Two soap-bubbles are in contact;; if r2 be the radii of the outer sur¬ 
faces, and r the radius of the circle in which the three surfaces intersect. 

9. If water be introduced between two parallel plates of glass, at a very 
small distance d from each other, prove that the plates are pulled together 
with a force equal to 

2At cos a , 
--- 

A being the area of the film and B its periphery. 

10. A needle floats on water with its axis in the natural level of the surface ; 
if or be the specific gravity of steel referred to water, (i the angle of capillarity, 
and 2a the angle subtended at the axis by the arc of a cross-section in contact 
with the water, prove that 

(na—a) sin J(a— /?)“00s a cos J(a-f j5). 

11. A soap-bubble is filled with a mass m of a gas whose pressure is (its 
density) at the temperature considered. The radius of the bubble is a, when 
it is first placed in air. The barometer then rises, the temperature remaining 
unaltered. Show that the radius of the bubble increases or diminishes accord- 

9 km 
ing as the tension of the film is greater or less than - — 

O 71Q» 

12. Prove that the equation 

y=x tan (azA-b) 

represents a possible form of a liquid film, the pressure on both sides being 
the same. 

13. If two needles floating on water be placed symmetrically parallel to 
each other, show that they will be apparently attracted to each other, and that 
this is due to the surface tension. 

14. A small cube floats with its upper face horizontal, in a liquid such that 
its angle of contact with the surface of the cube is obtuse and equal to n— a. 
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If Q is the density of the liquid, and a that of the cube, and if ggc^ is the surface 
tension, prove that the cube will float if 

(7 c® c 
-<14-4—cos a+2-sin 
Q a 

15. Two equal circular discs of radius a are placed with their planes per¬ 
pendicular to the line which joins their centres, and their edges are connected 
by a soap-film which encloses a mass of air that would be just sufficient in the 
same atmosphere to fill a spherical soap-bubble of radius c. If the film be 
cyhndrical when the distance between the discs is 6, prove that in order that 
it may become spherical the distance between the discs must be lessened to 2z, 
where 

z{3a^~\~2z^)l Sc^—3ab-\-—-\==^abc^2a—c). 
I > 

16. A liquid film of total surface tension T is in the form of a cylinder 
joining two equal parallel circular discs of radius 2a, with their centres at a 
distance 2a apart on a line perpendicular to their planes. A pin-hole is made 
in one of the discs so that the air slowly escapes ; show that a total quantity 

Po7ra[8a2{l + T/(2an)}—c^{l-f 2 sinh (a/c)}] 

will escape, where Qq and n are atmospheric density and pressure, and c is given 
by cosh (a/c)=2a/c. 

17. A plane plate is partly immersed in a liquid of density q and surface 
tension t. The angle of capillarity for the hquid and substance of the plate is 
P, and the plate is inclined at an angle a to the horizontal. Prove that the 
difference of the heights of the liquid on the two sides of the plate above the 
undisturbed surface level is 

n a\ 

4” 2/ 

71—28 . 71—2a 
^ cos —^ sm —-—. 

18. A volume ^tic^ of gravitating liquid of astronomical density q is 
surrounded by an atmosphere at pressure n and contains a concentric cavity 
filled with air, whose volume at this atmospheric pressure is J^ra®. The surface 
tension of the liquid is t Prove that the radius x of the cavity in the con¬ 
figuration of equilibrium is given by the equation 

1 f c=+3a:* 
-3*" 

19. A liquid film hangs in the form of a surface of revolution with its axis 
vertical. The upper boundary of the film is a circular wire held horizontally, 
the lower boundary is a heavy elastic thread, hanging freely in the form of a 
horizontal circle of radius r. The natural length of the thread is 2;ra, its 
modulus of elasticity is A, and its weight is 27iaw, The tension of the film is t 
Prove that r satisfies the equation 

(A«-a*^*)r2-2A*or+(A®+w^aV=0. 

20. A wire circle (radius a) is placed in the surface of soapy water and 
raised gently, so as to draw after it a film. Prove that, neglecting its weight, 
the meridian section of the film is a catenary, and investigate the angle at 
which the film meets the undisturbed surface of the water. Also prove that 
the parameter of the meridian catenary, when the area of the film is equal to 
7m\ is where z is given by 

cosh~^ 1)*=*2®. 
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21. Two circular rings with a common axis at right angles to their planes 
support a closed liquid film containing air at a greater pressure than the ex- 

2T 
ternal air: show that the ends of the film are spheres of radius a— —, and 

that the surface between the rings is a surface of revolution of which the 
X h 

meridian curve has an intrinsic equation sin where ^ is the in- 
Q/ X 

clination of the normal to the axis and x is the distance from the axis. 

22. A long circular cylinder of radius r entirely immersed in liquid, whose 
acute angle of contact with it is a, is gradually made to emerge, its axis being 
kept horizontal. Show that contact with the liquid finally ceases when the 
axis reaches a height h above the original and ultimate level of the fiquid given 
by the equations 

h=r COB cos 
0 
2* 

2r (p <p 
— sin (0—a)+2 sin tanh-^ sin~=2 sin - —tanh~^ sin 

71 

4’ 

the ratio of the surface tension to the density of the liquid being Jgfc®. 

23. A long wedge of vertical angle 2a, floats in water with its base hori¬ 
zontal and its top edge in the natural level of the surface. Prove that, if the 
capillary action at the ends be neglected, 

w—w'=2T sec a(sin a+cos y), 

where w is the weight of the wedge per unit length, w' that of an equal volume 
of water, T the surface tension, and y the supplement of the angle of capillarity. 

24. A drop of fluid under no forces except uniform external pressure and 
surface tension rotates as a rigid body about an axis ; show that on the surface 
3/i?2— is constant, where Ri, R2 are the principal radii of curvature of the 
surface. 

25. Prove that, when the axis of 2 is along a downward vortical, and the 
origin suitably chosen, the surface of separation of two fluids of densities /Zi, 

satisfies the relation 

where p, q' are the principal radii of curvature taken positive when the con¬ 
cavity is downwards, a^—2TI{g{fii—/X2)}, and T is the capillary constant of 
the interface. 

K the surface is one of revolution about the z axis, show that the approxi¬ 
mate equation (in cylindrical co-ordinates) of the part near the axis is of the 
form 

2(2—2o)=2(^'“V*+J{2oa*+22o®)a“V, 

and indicate how, in the case of liquid in a tube, Zq can be expressed in terms 
of the angle of contact. 



CHAPTER VIII 

THE EQUILIBRIUM OE REVOLVING LIQUID, THE 
PARTICLES OP WHICH ARE MUTUALLY ATTRACTIVE 

117. If a liquid mass, the particles of which attract each other 
according to a definite law, revolve uniformly about a fixed axis, it 
is conceivable that, for a certain form of the free surface, the liquid 
particles may be in a state of relative equilibrium ; since, however, 
the resultant attraction of the mass upon any particle depends in 
general upon its form, which is unknown, a complete solution of the 
problem cannot be obtained. 

For any arbitrarily assigned law of attraction, the question is 
one of purely abstract interest, and it is only when the law is that 
of gravitation that it becomes of importance, from its relation to 
one of the problems of physical astronomy. 

We shall consider the fluid homogeneous, and confine our atten¬ 
tion to two cases ; in the first of these the attractive forces are 
supposed to vary directly as the distance, and, in the second, to 
follow the Newtonian law. 

118. A homogeneous liquid mass, the f articles of which attract 
each other with a force varying directly as the distance, rotates uni¬ 
formly about an axis through its centre of mass ; required to determine 
the form of the free surface. 

The resultant attraction on any particle is in the direction of, 
and proportional to, the distance of the particle from the centre of 
mass ; and if /a be a measure of the whole mass of fluid, jxx, fxy, fiz 
may represent the components of the attraction, parallel to the axis, 
on a particle of fluid about the point x, y, z. 

Taking the origin at the centre of gravity, and axis of rotation 
as the axis of z, the equation of equilibrium is 

dp==^p{{w^x--fj^)dx+{w^--lMy)dy--fjizdz^ ; 

and therefore 

118 
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At the free surface 'p is zero or constant, and the equation to 

the free surface is 

the constant D dei)ending upon a>, and upon the mass of the fluid. 
When (JO is very small, the free surface is nearly spherical, and as 

(jo^ increases from 0 to /x, the spheroidal surface becomes more oblate. 

When (jo^=iJL, the free surface consists of two planes ; to render 

this possible we may conceive the fluid enclosed within a cylindrical 

surface, the axis of which coincides with the axis of rotation. 

When a>2>/x, the free surface is a hyperboloid of two sheets, 

which for a certain value (o)') of co becomes a cone, the fluid filling 

the space between the cone and the cylinder. Taking account of the 

volume of the fluid, the value of w' can be determined by putting 

D==0, since the pressure in this case vanishes at the origin. 

If co>co\ the surface is a hyperboloid of one sheet, which, as co 
increases, approximates to the form of a cylinder, and it is therefore 

necessar}’’, for large values of a>, to conceive the containing cylinder 

closed at its ends. 

The results of this article, it may be observed, are equally true 

of heterogeneous fluid, whatever be the law of variation of density 

in the successive strata. 

119. A mass of homogeneous liquid, the particles of which attract 
each other according to the Newtonian law, rotates uniformly, in a 
state of relative equilibrium, about an axis through its centre of mass; 
required to determine a possible form of the surface. 

For the reason previously mentioned a direct solution of this 

problem cannot be obtained, but it can be shown that an oblate 

spheroid is a possible form of equilibrium. 

Let the equation to the spheroid be 

c2'^c2(l+A2) ’ 

the a3ds of rotation being the axis of z. 
Then the resultant attractions, towards the origin, on a particle 

at the point {x, y, z) will be represented by 

tan-i A-A}, 

r=?:^I{(l+A®) tan-iA-A}, 
■A ^ tti 
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A- tan-iA}{l+A®), 
A® 

parallel, respectively, to the axes.* 

The equation of equilibrium is 

df~p{{(i)H~~X)dx-\-{cx}^y~ Y)dy—Zdz}. 

But from the equation to the spheroid, 

xdx-\-ydy+{l+X^)zdz^0, 

and as this must be a surface of equipressure, we must have 

Yly= -Zl(l+X^)z. 

Hence we get 

_(1+A^) tan“^A—A 2(A -tan^^A) 

27rp X^ A® ^ 

or 
0)2 (3+A2)tan-iA-3A 

(a) 
27rp A3 ... 

If CO and p are given, this equation determines A and thence the 

ratio of the semiaxes of the spheroid is known. 

To investigate the real solutions, let 

(3+a;2) tan"^a;--3a; 
y- X' 

0) 

Substituting the series for tan ^x, which is known to be con¬ 
vergent when x<lj we get 

d.>n. 
^2n 

Also 

where 

^ ^ {27i+l)(2n+3) 

* (r^ 
dx £t;3(a:;2_|.2) 

a;2+9 ( 7x3+9a; 

x^ \(x2-|-l)(aj24-9) 
tan' 

x^ 

f(^) 
Ix^+^x 

-tan“"^cc. 

(y) 

(S) 

(x^-\-l)(x^+d) 

The forms (y) and (j9) show that y vanishes for x~0, and a?=oo , 

* These expressions will be found in Laplace’s Mecanique Celeste, Poisson’s 
Mecanique, Buhamel’s Mecanique, and Todhunter’s Staiics. In the last named, the 
equation to the spheroid is + + hut the expressions used in 
the text will result from the expressions there given by putting 

l-e*=l/{l+x*). 

By the use of A, irrational quantities are avoided. Equivalent forms are given 
in Kelvin and Tait’s Natural Philosophy, § 627, and Routh’s Analytical Statics, 
vol. ii. § 210. * 
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respectively ; we shall show that as x increases from zero y has one 

maximum value and only one. 

The sign of ^ depends only on that of/(x), 

also when 

and when 

Again, we find that 

f(x)=0, 

fix) 
8x^(3— 

and this is positive from x=0 to x=V3, and negative for all greater 

values of x, so that f{x) begins by being positive and increases as x 
increases to Vs and then decreases continuously; f(x) therefore 

vanishes for a value of x greater than Vs. By the help of tables 

we can easily show that/(2) is positive and /(3) negative, so that 

the value lies between 2 and 3. Also/(2-5) ==*0025 approximately, 

and Newton’s method of approximation gives for the root 

2*5 
/(2-5) 
/'(2-5) 

=2-5+-0293=2-6293. ♦ • 

maximum and its value is *2247. 

The graph of equation (jS) is therefore as in the figure, in which 
however the ordinate is drawn on a larger scale than the abscissa. 

We conclude that if o}^l2rrp>'22i7 the oblate spheroid is not 

a possible form of equilibrium, but if a>®/27rp<-2247 there are two 

spheroidal forms possible, for there are two real values Ai, Ag of the 
abscissa corresponding to every value of the ordinate less than *2247. 

120. The ellipticity o! the spheroidal forms. When there are 

two real values Ax, Ag of A, one is greater and the other less than 

2*5293. Let Ag be >Ax, then as <o*/27rp is diminished we see from 
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the graph that decreases and Ag increases, and since A2>2*6293 

therefore Vl+A2^>2*72 ; but the ratio of the semiaxes is VI: 1, 

so that the larger value of A always represents a much flattened 

spheroid, and the smaller we take the flatter does the 

spheroid become that corresponds to the root A2. On the other 

hand, for small values of co^l^Trp the root Ai will be small, and if e 

denote the ellipticity of the spheroid, we have 

c(14-e)==cVl+Ai^ so that £=|Ai^ approximately. 

and therefore from (y) 

a>V27rp=l*(-)-i- 
(2w+l)(2w+3) ‘ 15’ 

as far as the first power of € ; or 

approximately.* 

Maclaurin was the first to prove that an oblate spheroid is a 

possible form of equilibrium of a rotating mass of homogeneous 

fluid, and the spheroids are therefore commonly called Maclaurin’s 
Spheroids. 

121. Application to the case of a fluid, the density of which is 
equal to the earth’s mean density. 

Assuming for the moment that the earth is a sphere of radius 

r and mean density p, the attraction at the surface, which also 

measures the force of gravity {g) at the pole, is j^irpr. In c*g.s. units 

p=980 approximately and 27rr=4 X10® cm. 

Therefore in astronomical units 

p=3^/477r=367*5xl0~® 

If we make io^j^irp equal to its limiting value *2247 for the 

spheroidal form, and use the value just found for p, we obtain for 

the time of rotation 27t/co=2 hrs. 25 mins. This is therefore the 

smallest time in which a homogeneous mass, of density equal to the 

earth’s mean density, could rotate uniformly in the form of an 

oblate spheroid. 
27T 

Again, if we take for w the earth’s angular velocity 

we obtain 
_ 27rxl0® 

^‘"^24® xGO^X 367-5 
-0023 approximately, 

which is less than the critical value -2247, so that for this density 

For a discussion in which the value of a>*/2vp is obtained correct to the third 
power of the elliptioity, see Darwin’s Sckn^fic Papers^ voL iii p. 423. 
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and angular velocity two spheroidal forms are possible, there being 

two real values for A as explained in Art. 120. The larger value 

corresponds to a very flat spheroid, and the smaller gives a spheroid 

whose ellipticity is by Art. 120 

==^ X *0023=*0043 or nearly. 
IGttp 8 232 ^ 

The earth, as is known by geodetic measurements, differs very 

slightly in its form from a sphere, its ellipticity being —that 
* JLtJ 

is, the axes of the spheroid are in the ratio 300-15 :299-15. The 

fact that the axes of the homogeneous fluid spheroid, of the same 

mean density as the earth and rotating in the same time, are, as 

we have just seen, in the ratio 233 : 232 shows that it is extremely 

unlikely that the earth was at any period of its history a homo¬ 

geneous fluid mass. 

122. The prolate spheroid not a possible form. It must be 

observed that we have not solved the general problem of the form 

of a mass of rotating fluid in relative equilibrium, but merely shown 

that if ai^/27rp<-2247 an oblate spheroid is a possible form. And 

we notice that this result is independent of the mass of the fluid and 

depends only on the density and angular velocity. If a>^/27Tp>-2247, 

it does not follow that equilibrium is impossible but only that there 

is no oblate spheroidal form possible in this case. 

To examine whether a prolate spheroid is a possible form we 

may write instead of A^ in Art. 119, where A is to be <1. 

Equations (a) and (y) of that Article then give 

.2 Qo ^71 CO' 

27rp f(2n+l)(2rt+3) 
A'2", 

wliich is impossible because the opposite sides of the equation are 

of unlike signs. Hence a prolate spheroid is not a possible form of 

equilibrium. 

128. An important distinction has been pointed out by Poisson 

(tome ii. p. 647) between the surfaces of equal pressure in a fluid 

at rest under the action of extraneous forces, and in a fluid at rest, 

or revolving uniformly about a fixed axis, under the action of the 

mutually attractive foicee of its particles, 

Let ABC be the free surface, and DBF any surface of equal 

* See Encyc» Brit, article, “ Figure of the Earth,’^ by A. R. Clarke and F. R, 
Helmert 
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pressure ; then, in the former case, the resultant force at any point 

of DEF is perpendicular to the surface at that point, and is un¬ 

affected by the existence of the fluid between ABO and DEF ; this 

fluid could therefore be removed without affecting the equilibrium 

of the fluid mass bounded by DEF, In the latter case, the force at 

any point of DEF, although perpendicular to the surface at that 

point, is the resultant of the attractions of the mass of fluid con¬ 

tained by DEF, and of the mass contained between DEF and ABC ; 

these two components of the resultant force are not necessarily 

perpendicular to the surface, and the fluid external to DEF cannot 

in general be removed without affecting the equilibrium of the 

remainder. 

If, however, the fluid be homogeneous, and the particles attract 

each other according to the Newtonian law, so that the free surface 

may be spheroidal, the surfaces of equal pressure will be similar 

spheroids ; and in this case, since the resultant attraction of an 

ellipsoidal shell, bounded by two concentric, similar, and similarly 

situated ellipsoids, on an internal particle is zero, the portion of fluid 

between ABC and DEF may be removed, provided the rate of 

rotation remain unaltered. 

Moreover we have shown, Art. 120, that for a given value of 

oi not exceeding a determined limit, there are two possible spheroidal 

forms : let ABC, the free surface, have one of these forms, and 

describe within the fluid mass a concentric spheroid, GHK, similar 

to the other spheroid ; then the fluid between ABC and GHK may 

be removed without affecting the fluid mass GHK. 
The action of the shell upon a particle at a point P of the sur¬ 

face GHK is not perpendicular to the surface at P, but this action, 

combined with the attraction of the mass GHK, and the hypo¬ 

thetical force measured by <x)^r, is perpendicular to the surface, at P, 
of the spheroid passing through P, which is concentric with, and 

similar to, the surface ABC. 
In other words, the direction of sensible gravity, that is, of the 

weight, of a particle on the surface is normal to the surface, and of 

a particle inside, normal to the surface of equal pressure which 

passes through the particle. 

In the same manner if the free surface, ABC, have one of the 

possible forms, we can imagine a concentric shell of liquid added to 

the mass, and having its outer surface of the same form, or of the 

other possible form. 
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In tlie former case, ABC will still be a surface of equal pressure, 

but, in the latter case, ABC will cease to be a surface of equal 

pressure, since the new surfaces of equal pressure will be similar 

and similarly situated to the outer surface. 

124, If a fluid mass be set in motion, about an axis through its 

centre of mass, with an angular velocity such as to make the value 

of oj^l^irp greater than the limit obtained in Art. 119, it does not 

follow that the fluid cannot be in equilibrium in the form of a 

spheroid, for it may be conceived that the mass will expand laterally 

with reference to the axis, taking a more flattened shape, until its 

angular velocity is so far diminished as to render the spheroidal 

form possible. 

If the mass consist of perfect fluid, its form will oscillate through 

the spheroid of equilibrium, but if, as is the case in all known fluids, 

friction be called into play by the relative displacement of the par¬ 

ticles, the oscillations will gradually diminish and at length a posi¬ 

tion of equilibrium will be attained. Employing the principle that 

the angular momentum of the system, relative to the axis, will 

remain constant, we can determine the final angular velocity, and 

the form ultimately assumed. 

Considering the question generally, suppose the mass of fluid 

set in motion in any way, and then left to itself ; the centre of mass 

will be either at rest or moving uniformly in a straight line, and all 

we have to consider is the motion relative to the centre of mass. 

Draw through the centre of mass the plane, in the direction of 

which the angular momentum is a maximum ; then, however diuing 

the subsequent motion the fluid particles act on each other, this 

plane, which may be called the ‘‘ momental ’’ plane, will remain fixed, 

and when the motion of the particles relative to each other has been 

destroyed by their mutual friction, the axis perpendicular to this 

plane will be the axis of rotation of the fluid mass in its state of 

relative equilibrium. 

Let H be the given angular momentum of the system, and co 

its ultimate angular velocity. 

Taking c and c\/(l+A2) for the axes of the spheroid of equili¬ 

brium, and M for the mass, the expression for the angular momen¬ 

tum is fMc2(l+A^)a>; 

we have also inpc^l+A®)=Jlf, 
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and from these two equations, combined with the equation 

■a (S+A*) tan-iA-3A 
• • • 

27Tp A* 

the values of c, w, and A can be determined. 
From the first two we obtain 

Art. 119, 

o)^_2hH^{^7rp)^ 
(l+A^)- 

J(3+A2)tan ^A—3AK. .g., _25ffY47rpY 
••• \ 

is the equation which determines A. 
The equation always has a root, for the left-hand member van¬ 

ishes and becomes infinite with A, so that it ought to take a value 
equal to the positive constant on the right-hand side for some value 
of A between zero and oo . It can be shown, moreover, that there is 
only one positive root, for the derivative of the left-hand member 
can be shown to be positive always. Therefore, regarding H and M 
as given quantities, there is one spheroidal form and only one,towards 
which the oscillating fluid mass continually approximates. 

This discussion may be found in Laplace's M^anique CShste, 
tome ii. p. 61 ; Pontecoulant's Systeme du Monde, tome ii. p. 409 ; 
and in Tisserand's Micanique Cileste, tome ii. p. 96. 

125. Jacobi’s Ellipsoid. It was discovered by Jacobi that an 
ellipsoid with three unequal axes is a possible form of relative 
equilibrium for a mass of rotating liquid. 

If a mass of liquid revolves, as if rigid, about the axis of z with 
the angular velocity cj, and if X, Y, Z are the components of the 
attraction at the point {x, y, z), the equation of the free surface is 

{X—oy^x)dx+{Y—a}^y)dy+Zdz=0. 

Now, if the free surface is an ellipsoid, 

X=Ax, Y^By, Z^Cz, 

where A, B, C are independent of x, y, z. 
Hence, if a, 6, c are the semi-axes of the ellipsoid, we have if 

possible to identify the equations 

[A—a)^)xdx-\- {B—ii)^)ydy~\-Czdz^% 

^+^dy+~dz=0. 
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We must therefore satisfy the equations 

,2_P— — 
^ ^ -oJ 

from 'Which, by the eliminatioii of A and to^, we obtain 

a^b%B-A)~(a^-b^)c^C==0 
Now, if D==:{(a^+u)(b^~i-u)(c^+u)}\ 

and if M is the mass of the liquid, 

A=%M 
•CO 7 

du 
lo {a^+u)D' 

” du 
0 (b‘^-\-u)D' 

poo 
■4mI 

{c^~\-u)D' 

The equation (1) then becomes 

Jq D \.{a^'\-u){b^+u) c^+uJ 

If a is different from b, the relation between the axes must 

satisfy the equation 

'"^iiduf 1,1 ^ _L ^ 

0 D^\d^ a^b'^ 
0 . 

If a and 6 are given, this is an equation for determining c, and, 

since the left-hand member is negative when c=0, and positive 

when c=oo, there must be one real value of c which satisfies the 

equation. 

Since ujD^ is positive, and since 

i+l_i+JL 

is positive if u is large enough, it follows that, when u is small, this 

last expression must be negative. 

Hence it appears that 

~2^~2"f'72 • . • • \0) 

and therefore that c is less than the least of the two quantities a 
and 6. 

To find the angular velocity, we have. 

o "■ n a f Av f UdU 

" '}o(a^+u)(b^+u)D’ 

* See Kelvin and Tait’s Natural Philosophyf Art. 494 or Minchin^s Statics, 
vol. ii. p. 308. 
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and therefore, if a is different from h, 
^00 

IM 
iidu 

Jo (a^-\-u)(b^+u)D ' ■ ■ 

and, this expression being a positive quantity, a possible value of 
o) is obtained, and it is established that an ellipsoid with three 
unequal axes is a possible form of a mass of liquid rotating about the 
smallest axis. 

126, That c must be the least axis may also be seen as follows : 

co^=- 
a2 

__3Mpr ^du 

2a^]o c^+uj D 

Jo {a^-\-u){c^+u)D' 

which shows that for oj to be real, we must have c<a, and similarly 

c<b. 

127. It was pointed out by Mr Todhunter, and demonstrated 
in the following manner, that the relative equilibrium of the rotating 
ellipsoid cannot subsist when the axis of rotation does not coincide 
with a principal axis. 

Referred to the principal axes, let ?, m, n be the direction cosines 
of the axis of rotation, M any point (Xy y, z) of the mass, and N the 
foot of the perpendicular from M upon the axis. 

Then ON—lx-^my+nz, 

and, if ON—v^ the co-ordinates of N are fo, mv, nv. 
The acceleration co^MN, when resolved parallel to the axes, gives 

rise to the components 

a}%x—lv), o)\y--mv), o)\z—nv); 

therefoTjp the differential equation of the free surface is 
*■ 

{(ji}\x--lv)—Ax}dx-\-{<A)\y—mv)—By)dy+{u}\z—nv)—Cz}dz^O\ 

hence the form of the free surface is given by the equation 

u>\x^-{-y^+z^)—€x}\lx+my -\~nz)^—Ax^—By^—Cz^ == constant, 

and this cannot represent an ellipsoid referred to its principal axes, 
unless two of the quantities Z, m, n vanish, 

Mr Greenhill remarks that a particle of the liquid at the end of 
the axis of rotation will be at rest under the action of the attraction 
of the liquid alone, since the expression cuV vanishes at that point. 
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Hence the attraction on the particle must be normal to the 

surface, which is only the case at the end of an axis. 

128. We notice that if the mass of the fluid M be given, we have 

also an equation %7Tpabc=^M, and this equation together with 
(2), (4) of Art. 125 may be regarded as determining a, b, c in terms 

of M, p, and a>. 

These equations were investigated by C. 0. Meyer,* and a full 
discussion will also be found in Tisserand’s TraiU de Mecanique 
Celeste, tome ii., chap. vii.,t showing that the maximum value of 

oj^l^TTp that will make a Jacobian ellii)soid a possible form of equi¬ 

librium is *18709, and that for this particular value the ellipsoid is 

one of rotation coinciding with one of Maclaurin’s spheroids. It is 

further shown that this value gives a unique maximum to the 

function on the right-hand side of equation (4) of Art. 125, and that 
for smaller values of cj^j^irp there is one and only one ellipsoid. 

To summarise our results relating to Maclaurin’s spheroids and 

Jacobi’s ellipsoids, we have : 

if ajy27Tp>*2247, no spheroidal or ellipsoidal form, 

if •2247>cu^/27rp>* 18709, two oblate spheroids, 

and if *18709> 60^/27rp, two oblate spheroids and one ellipsoid 

with three unequal axes. 

129. It follows from Art. 125 (3) that the ellipticities of a Jacobian 

ellipsoid cannot be small, in fact that one of the axes is, in every 

case, at least V2 times the axis of rotation. In a complete dis¬ 

cussion of the Jacobian ellipsoids containing numerical tables and 

diagrams, J Darwin remarks that the longer the ellipsoid the slower 

it rotates; that, while the angular velocity continually diminishes, 

the moment of momentum continually increases, and that the long 

ellipsoids are very nearly ellipsoids of revolution about an axis 

perpendicular to that of rotation. 

180. Elliptic cylinder* It can also be shown that, theoretically, 

an elliptic cylinder is a possible form of the surface of an infinite 

mass of homogeneous gravitating liquid, rotating, as if rigid, about 
the axis of the cylinder. 

<ir 

♦ Crdh^a Journal, tome xxiv. (1842). 
t For an abstract of the analysis see Appell, Traill de Mlcanique Eationnelle, 

tome iii p. 170. 
J “ On Jacobi’s Figure of Equilibrium for a rotating mass of fluid,” Proc. Royal 

Soc., vol. xli. (1887), p. 319 ; or Scientific Papers, vol. iii. p. 119. 
9 
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If a and b are the semiaxes, the components of the attraction 

at the internal point x, y are 

AiTTphx AiTTpay 

a+6 a-\-b 

(Kelvin and Tait, Art. 494 ^), and the equation of the free surface 
is therefore 

%TTpb 

a~{ b 
\ 

Identifying this equation with 

xdx ydy 

xdx+~ 

a* 
+ 62 

0, 

we find that 
=4:Trpabl (a+6)2. 

This determines oj when p, a, 6 are given ; but if a>, p are given 
we see that since 

#■ -—- .2 A 
a+6 V 

60' 

TTp 

an elliptic cylinder will not be a possible form of equilibrium unless 

CL)^<7rp, 

131, Poincare’s Theorem, We have seen that a Jacobian 

ellipsoid is an impossible form of relative equilibrium if 

60^/2 7rp> *18709, 

an oblate spheroid is impossible if co2/27rp>*2247, and an elliptic 
cylinder is not a possible form if m^j27rp>'b ; Poincare has proved 
that if 60^/2 77p>l there is no figure of equilibrium possible.^ For a 

necessary condition of equilibrium is that at every point of the free 

surface the resultant of the attraction and centrifugal force should 

be directed towards the interior, otherwise a part would be detached. 

Let F be the potential of the attracting forces and r the distance 

from the axis, and let 
C7=F+Jcu2r2. 

btj 
The resultant outward normal force is — and, for equilibrium, 

dn 
dU 

at every point of the free surface ^ must be negative. By Green’s 

Theorem ^^^^V^lJdxdydz, where the first integral is taken 

♦ BnUeUn Jsiron,, tome ii. p. 117, or Figures d'iquilibre iFune masse fiuide, 
p.ii 
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over the surface and the second throughout the volume of the 

fluid. And 
y2f7-\-2co^= —47r/0+2a>^. 

Therefore ||^(Z/S==2(a>2—27rp) X volume, 

and if a)^>27rp, the left-hand member is positive, which implies 

that at some points on the surface the resultant force is directed 

outwards and therefore equilibrium is impossible. 

132. Other equilibrium forms. In addition to the forms that 

we have considered, the annulus was first considered by Laplace * 

in connection with the theory of Saturn’s rings, and has since been 

the subject of much investigation. 

In the second edition of Kelvin and Tait’s Natural Philosophy^ 
§ 778'', a number of results relating to the stability of the forms 

already discussed were announced without proof. In attempting to 

establish these results, Poincar6 was led to write a celebrated paper 

which appeared in the Acta Mathematica, 7, Stockholm, 1885. In 

this paper the problem of figures of equilibrium is discussed In a 

more general manner. It is shown that possible figures of equili- 

brhim form linear series, that is, series depending on a single para- 

meter, such as the angular velocity, and such that to each value of 

the parameter corresponds either one and one only, or else a finite 

number of figures, and such that these figures vary in a continuous 

manner when the parameter is varied. Thus the Maclaurin’s 

spheroids form a linear series, and Jacobi’s ellipsoids form another. 

It may happen that the same figure belongs to two distinct linear 

series ; such a figure is called a form of “ bifurcation.” Thus there 

is a particular member of the series of spheroids which at the same 

time belongs to the series of Jacobi’s ellipsoids. Poincar6 also 

considered, in this paper, the question of the stability of forms of 

equilibrium, and showed that if a series of figures are stable up to a 

form of bifurcation, then beyond that point the figures are unstable, 

the stable figures now belonging to the other series involved in the 

form of bifurcation. Thus Maclaurin’s spheroid is stable only so 

long as its eccentricity is less than *8127, which is the point of 

bifurcation, and at this point Jacobi’s ellipsoids become stable. In 

attempting to find points of bifurcation in the series of Jacobi’s 

* Mkanique CMeste, tome it p. 1S5. See also Tisserand, Monique CMeste, 
tome ii. ohaps. ix. x. xli, where the reBearohes ot Laplace, Qerk Maxwell, and 
Mme. Kowalewski are discussed. 
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ellipsoids by the use of Lamp’s functions, Poincar6 found that there 
are an infinite number of series of figures of equilibrium. All the 
figures are symmetrical with regard to a plane perpendicular to the 
axis of rotation ; they all have at least one plane of symmetry pass¬ 
ing through the axis and some of them are figures of revolution. 
Among these figures only one is stable and it has only two planes 
of symmetry ; it is the form that arises from the first bifurcation in 
the series of Jacobi’s ellipsoids and has been called the pear-shaped 
figure of equilibrium, because of the resemblance to a pear of the 
figure sketched in Poincare’s paper.* Further investigation, how¬ 
ever, has shown that the true form has less resemblance to a pear 
than was at first supposed ; it has been discussed by Darwin in two 
papers,f and its form determined to a second approximation. At 
the point of bifurcation the axes of the Jacobian ellipsoid are as 
65066 : 81498 : 188583, and 14200 ; and the pear-shaped 
figure represents a small departure from this Jacobian ellipsoid, 

B 

A 

which takes the form of a protuberance at one end of its longest 
axis, and a blunting of the other end. 

In the accompanpng figures, taken by permission from the 
second of Darwin’s papers just referred to, the dotted line represents 

* Loe, cit, p. 347, also Figures d'iquilibre d^une masse fluide^ p. 161. 
t On the pear-shaped figure of equilibrium of a rotating mass of liquid,” Phil, 

Trans,f vol. 198 A (1901), p. 301, or Scientific Papers, vol. iii p. 288; and The 
stability of the pear-shaped figure of equilibrium of a rotating mass of liquid,” 
Trans,, vol. 200 A (1902), p. 261, or Scientific Papers, vol. iii. p. 317. For a simple 
account of the stability of these figures see also an interesting paper by the same 
author on “ The Genesis of Double Stars,” being chap, xxviii, in the volume J)armn 
and Modem Science. 
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the Jacobian ellipsoid, and the other curve the pear-shaped figure ; 

the upper is the equatorial section, and the lower is the meridional 

section in the plane of symmetry. 

183. The following expressions for the attraction of a solid 

homogeneous ellipsoid of small ellipticities are often of use in dis¬ 

cussing the forms assumed by masses of rotating liquid ; viz. if a, 

6, c, the semiaxes, are such that h—a{\ — €) and C”a(l—17), then 

the component attractions at an internal point [x, y, z) are 

Apx, Bpy, Cpz, 

where 

0=irr{l~l€+irj)* 

These expressions may also be written in the symmetrical form 

2 2a—b—c 
A=i7r 1 

5 a 
L etc. 

or as 

where 

6 a~-k\ 
5“F/ 

etc. 

134. Example. A mass m of hoTnogenwus liquid and a distant sphere of 

mass M revolve in relative equilibrium about their centre of gravity with a small 

uniform angular velocity o) ; show that the free surface of the liquid is an ellipsoid 

of small ellipticities with its longest axis pointing to M aiid its smallest axis at 

right angles to the plane of motion^ and that the ratio of the ellipticities of the 

principal sections passing through the line joining the centres of gravity of the 

bodies is ; SM.f (Math. Tripos, 1888.) 
If d is tho distance between the bodies, the centre of gravity 0 of the 

. uM „ _ 
mass m has an acceleration -^r-, and O may p 
be reduced to rest if we apply this acceler¬ 
ation reversed to every element of the 
liquid mass. 

If A is the centre of gravity of the 

mass Jf, and P any point in the liquid 

mass, the forces at P are towards Ay 
PA^ 

the self-attraction of the liquid and the centrifugal force. Now along 

PA is equivalent to . PO along PO and . OA parallel to OA, 

* See Routh’s Analytical Statics^ vol. ii. § 221 (2nd edition), 
t Problems of this class were discussed by Laplace in the third book of the 

Micanique CHeste, 
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The former 

to the first order of r/d. 

IxMr fiMr 
{d^-\-r^—2dr d® 

The latter combined with 

fjiMd 

fxM 
A0» 

2dr cos 

ZfiMr cos 0 

uM ^ 3r ^ 

d^ 
parallel to OA. 

If we assume an ellipsoidal form and take the axis of x along OA, and Oz 

for axis of rotation, we have 

dp fiMr ZpMx 
—— m\Qcdx-\-ydy)^ Agxdx— Bgydy— Ggzdz-dr + o 0/ a 

And the free surface must be of the form 

ZpM yM\ 

»'^c‘( Ce+^ ) 
Now since the masses are rotating about their centre of gravity Q with 

angular velocity <w, 
p . M 

but 

w*. 00— ^2 , 

(M-^m)OQ==Mdi 

|a«( 1 + 

/i(Jf-f-m) 

2M 
~bH I 

M 
M-\-m )} 

, 3i/ 
-a®- 

q" if+w* 

since and a— h are small. 

So also 
/ 2if \ ^ M \ 

a*^-c*c=- {»V+3r:;:^)+‘’’^} 

CD* 4if-fwi 
a® 

p" if+m‘ 

But from the last Article, 

a*A— |(a'— j 

j5i:(a-6)|a+6-f^' 
a*-fa64-6* 
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and to get a result correct to the first order of the small difference a— 6 we may 
put k=^b=a in the last factor, so that 

Similarly 

Hence 

a^A~ I lMa(a— h), 

a^A—~c^C=:^ j ^na(a— c). 

a—h a^A — h^B ZM 

a—c~~ a^A—c^G ~ 4i/ -f- m 

EXAMPLES 

1. A thin spherical shell of radius a is just not filled with gravitating 
liquid of density q. If the liquid be rotating in relative equilibrium with 
angular velocity cu about a diameter, prove that the tension in the shell across 
the great circle at right angles to the axis of rotation is at any point in that 
circle equal to co*pa®/8. 

2. A mass of liquid of density is surrounded by a mass of liquid of 
density q and the whole completely fills a case in the form of an oblate spheroid 
of small ellipticity e ; if the case rotates about its axis with small uniform 
angular velocity m, prove that a possible form of the common surface is an 
oblate spheroid of ellipticity Si given by 

15mV16^== (^1— e)Q, 
3. A case in the form of a prolate spheroid of small ellipticity e is filled by 

a fluid nucleus of density ^+cr surrounded by a fluid of density p. Show that, 

if it rotates round its axis of figure with angular velocity (gJige)*. «• possible 

form of the common surface is a sphere. 

4. A mass of homogeneous liquid of density q completely fills a case in the 
form of the ellipsoid and rotates as a rigid body about 
the line xfl—yjm^zln with uniform angular velocity <o; show that if \Xq is 
the greatest excess of the pressure at the centre over the pressure at a point 
on the surface. 

Z* 

I 1 

A—A/a* ttj* 

+' 1 

B-A/6* (7-A/c* 

where Axy By^ Cz are the components of the attraction at an internal point. 

6. Two gravitating liquids which do not mix, and whose densities are g, 
or(p> a), are enclosed in a rigid spherical envelope, and the whole rotates in 
relative equilibrium with a small uniform angular velocity m about a diameter 
of the sphere. Show that a possible form of the common surface of the two 
liquids is an oblate spheroid of ellipticity 

6. A given mass of gravitating fluid of density q can rotate in relative 
equilibrium with angular velocity a with its free surface in the form of an 
elhpsoid with three unequal axes, the greatest semiaxis being a, A rigid 
ve^^ of this form is now made and the fluid in it is set rotating with the vessel 
in relative equihbrium with angular velocity m about the least axis. Prove 
that the pressure at any point of the surface is 

n®)(a?*-f y*) or xi*Ka^+y*—a*), 

according as m is greater or less than n. 
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7. A solid sphere of mean density q is covered by a thin layer of liquid 
of uniform density a. The whole rotates with small uniform angular velocity 
0} about an axis through the centre of the sphere ; the solid sphere attracts 
according to the law of tlio inverse squa^ as if concentrated at a point on the 
axis at a small distance c from its centre, and the liquid also attracts according 
to the law of the inverse square. Show that the outer surface of the liquid is 
approximately a spheroid of ellipticity 15ft>V87r(5^—3cr), with its centre at 
a distance qc/{q—g) from the centre of the sphere. 

8. A solid gravitating sphere of radius a and density q is surrounded by 
a gravitating liquid of volume and density a. The whole is made 
to rotate with small angular velocity co. Show that the form of the free surface 
of the liquid is the spheroid of small ellipticity e given by 

where 
871 {r)( Q — a)d'^-] 2oh''^y 

and Pa is Legendre’s coefficient of the second order. 

9. A homogeneous gravitating fluid just does not fill a rigid envelope in 
the form of an oblate ellipsoid. The fluid is rotating in relative equilibrium 
round the polar axis with kinetic energy E. If it rotates with kinetic (mergy Pj 
the envelope is a free surface of zero pressure. Prove that, for all values of E 
whether greater or less than Pj, the tension per unit length across the 
equatorial section of the envelope is 

15 P<-wPj 

32 

whore A is the area of a polar section of the ellipsoid. 

10. A nearly spherical solid of mass M, the equation to whose surface is 
r—a{\-\-aPy)f has a mass m of liquid on its surface, the solid and liquid 
attracting according to the Newtonian law, and the whole rotates about the 
axis of the harmonic with angular velocity a>. Show that the equator will be 
uncovered if w<9aJf/(12A—4)—5co''*a^/(10A--6), and that the poles will be 
uncovered if m<6aAr/(3A—3), where A is the ratio of the 
density of the solid to that of the liquid. 

11. Assuming the Earth to consist of a fluid surrounding a solid spherical 
nucleus, prove that the ellipticity, supposed small, is given by 

DIq 

^ '%5+2(D/Q-iy 

where m is the ratio of the centrifugal force at the equator to the gravity there, 
D is the mean density of the whole Earth, and q the density of the fluid. 








