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PREFACGE

To the Second Edition

In the second edition of this textbook, I have retained in Part I
substantially the same material that was contained in Part I of the
first edition. Chapter 2 has been reavised to give information on live
loads that is consistent with the most recent standards.

Part II, which deals with the design of simple structures, has been
completely rewritten to provide subject material that is consistent
with the most recent specifications for designing structures. One new
chapter, which relates to the design of light-gage steel construction, has
been added.

Data for problems have been added at the end of each chapter to
aid class instruction.

I acknowledge with gratitude the able assistance of Dr. Leo M.
Legatski, who helped with the preparation of problem material.

James H. Cissen

ANN ARBOR, MICHIGAN
January, 1948
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PREFACE

To the First Edition

In this textbook, I have attempted to collect and arrange in a logical
order the basic principles and procedures which relate to the stress
analysis and design of simple struct.ares. The presentation of material
is Lased on the assumption that the student has completed the study
of statics and of strength of materials. Except for the matters of selec-
tion of material and arrangement, no claim is made for originality since
data have been obtained from many sources.

Many courses of study outlined for fields of engineering other than
civil include a course in structures, and it is for such that this book is
primarily intended. Usually a limited time is available for such a
course, and therefore only a bare introduction or outline of elementary
structural analysis and design is possible. In view of this fact, I have
attempted to sclect fundamental, useful, and practical material, such as
would generally be of value to an engineer in any field. Courses of
study in civil engineering provide sufficient time allowance for the use
of more complete and extensive textbooks.

Through the courtesy of the American Institute of Steel Construc-
tion, the West Coast Lumberman’s Association, the Timber Engineering
Company, the American Railway Engineering Association, and others,
many tables of data, diagrams, and other material have been repro-
duced in this textbook. These data have been used with the object of
providing a self-contained working book which eliminates the need for
auxiliary handbooks. I believe, however, that teachers using this book
should advise students as to the utility and value of such handbooks.

I gratefully acknowledge the many helpful suggestions of my col-
leagues at the University of Michigan and in particular those made by
Professors R. H. Sherlock, G. L. Alt, and L. C. Maugh, each of whom
read and criticized portions of the manuscript.

James H. CissiL
ANN ARBOR, MICHIGAN

February, 1940
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Part 1
STRESS ANALYSIS

FOREWORD

Stress analysis is the determination of the magnitudes and kinds of
forces which must be resisted by the material used to form a structure.
For an existing structure, it involves a determination of the loads, in-
cluding the weight of the construction and of the internal forces resulting
from the action of these loads. It is assumed that the structure is capa-
ble of resisting such internal forces as may be created by the loads and
that it will thercfore maintain itself in a state of equilibrium. The
accuracy of this assumption must of course ultimately be checked and
will depend upon the physical properties of the material used in the
structure. Such final determinations and the resulting conclusions
which must be drawn from them will, for the purposes of this book, be
considered as a phase of design and will be discussed in Part 1I. For
a proposed structure, the entire stress analysis is hypothetical, and the
loads, weights of construction, and internal forces are those which would
exist if the assumed structure is built.

Stress analysis problems are therefore generally reduced to an abstract
form which involves only the correct application of mathematics and
physics. In solving such problems, however, the ultimate purpose of
the solution should be kept in mind, and needless refinement should be
avoided. Thus, while a solution producing a value 501,252 pounds for
the magnitude of force in a given member of a truss might represent a
fine example of mathematical accuracy, the last threc numbers might be
of no practical significance. The computer should therefore always
maintain a reasonable sense of proportion and attempt to secure values
sufficiently precise for the purpose for which they are intended.



Chapter 1
INTRODUCTION—DEFINITIONS

1 Structures in General

A structure is an assemblage of elements or parts so arranged and
connected as to carry loads and otherwise perform the service for which
the structure is intended. Thus a building structure furnishes protec-
tion from the elements and supports the loads which develop from its
occupancy. A bridge is an assembly which carries loads over a stream
or given space at the established roadway level.

The elements or units comprising a structure are called beams, slabs,
columns, girders, etc., each performing a special function. For the pur-
pose of analysis or design, a given structure is regarded as divided into
the several primary forms or units which comprise the assemblage, and
these are then separately studied or designed.

Various materials are used to form the units or elements of a struc-
ture, the choice of a given material generally depending on overall econ-
omy. The most commonly employed materials are timber, iron, steel,
and concrete, and the structures that will hereafter be discussed will be
limited to those structures fashioned of such materials.

2 Beams and Girders

Members subjected primarily to transverse forces which produce
flexure or bending are called beams or girders. They may have any con-
venient shape or cross section and may be made of such material as may
be suitable for the purpose. The term girder is commonly used to desig-
nate a beam which supports other beams; this term is also employed to
designate a beam made up of smaller pieces of material suitably fastened
together. Thus a plate girder is fashioned out of plates and angles,
riveted or welded together to form a cross section similar to the capital
letter 1.

In ordinary building construction, the beams which directly support
the flooring are usually called joists. The inclined beams which directly
support a roof surface are called rafters. The beams placed lengthwise
of a bridge to support the floor directly are usually called stringers and
the beams which are placed crosswise between main girders or trusses
and which directly support the stringers are named floor beams.

2



TENSION MEMBERS 3

3 Slabs

A relatively broad flat piece of material with substantial thickness is
called a slab. In buildiug constructiou, floors are frequently made by
supporting slabs of reinforced concrete on steel or reinforced concrete
beams, and highway bridge floors are usually built in this manner. Such
slabs are essentially broad flat beams. Stee! slabs are sometimes used
to distribute a heavy concentrated load or reaction over supporting
areas, and columns are frequently supported on slabs of concrete which
distribute the load over the foundation soil.

4 Tension Members

A member which resists the tendency of applied forces to extend or
increase its length is called a tension member. The term tie is sometimes
cmployed to indicate such a member. Structural steel is the material

Eyce-Bar Assembly Used in a Suspension Bridge Anchorage.

most commonly employed for tension members. Although timber per-
forms satisfactorily in tension, it is difficult to construct fastenings for
wooden tension members, and for this reason such members are not as a
rule as economical as steel. Concrete, unless it is properly reinforced
with steel bars, is entircly unsuitable because of its brittleness and
natural inability to satisfactorily resist tension.

A simple form of metal tension member is a round or square bar with
threads cut on the ends so that it may be held in place by means of a
nut. If it is of uniform cross section throughout its length, such a mem-



4 INTRODUCTION—DEFINITIONS

ber will have its critical section at the root of the threads in the threaded
portion. For a long member of this type, it is usually economical to
upset the ends so that the section at the root of the thread will be the
same as the remainder of the bar. Members of this type frequently
have clevises or loops forged on the ends and are fastened in the struc-
ture by means of pins. Such members are usually provided with turn-
buckles so that their length may be adjusted after they are in place.

Eye-bars are made from flat steel, bars or plates, by upsetting the
ends to form enlarged heads through which holes are bored to provide
for the pins which fasten-the eye-bar in the structure.

Butlt-up or riveted tension members must be employed for resisting
large forees and in places where simpler types are unsuitable.

6 Compression Members—Columns

Structural members acted upon by forces which tend to diminish their
length are called compression members or columns. Posts, struts, and
stanchions are terms also used to indicate members of this type.

Such members may be made of any suitable material, and the com-
mon materials such as timber, steel, and reinforced concrete are quite
satisfactory for this purpose. Cast iron is a material also frequently
employed for compression members.

The shape or form of compression members depends largely upon the
materials used in their construction, although their position and func-
tion in the assembly are also of real importance. Wooden columns are
most frequently rectangular or square in section. Reinforced-concrete
columns may be readily made either rectangular, square, or round in
section. Cast-iron columns are usually in the form of hollow cylinders
or pipes. Structural steel may be fashioned in various forms by fastening
together standard shapes, although the most common form is the solid
rolled member whose cross section, in the general pattern of a block

letter H. is called a wide-flange section and is designated by the symbol
W~

» 6 Trusses

A truss is a framework composed of tension and compression mem-
bers fastened to one another only at their ends. In its elemental form
the members are connected by single frictionless pins so that the forces
on all the members act in the direction of their lengths. Usually the
ends of the truss members are riveted or welded to a common connection
plate called a gusset plate. Such connections may introduce complica-
tions in the action of the truss due to the resistance to any change in the
angles between the members, and they must therefore be carefully pro-



STATICALLY DETERMINATE STRUCTURES 5

portioned and arranged so that errors introduced in this way are as
small as possible.

In general the memb. s comprising a truss are arranged in the form
of triangles, and the construction supported is usually fastened to the
truss at or near the joints of the several triangles thus formed.

7 Frames

In common usage a frane is an assembly of beams and columns such
as comprise the structural skeleton of a building.

When the columns, beams, and girders are constructed as a mono-
lith, such as js the common practice in reinforced concrete construction,
the frame is termed a rigid frame. The word rigid here does not mean
that there is no deflection of the component parts but rather that the
conneciions have such rigidity that the action of one part will induce
action or stress in the adjoining parts. The degree of rigidity of a frame
will depend upon the character of the connections of the members to
one another. The analysis or design of a rigid frame is a complicated
matter and requires a high degree of specialized technical skill.

A jointed frame is onc whose component parts are connected by
simple fastenings incapable of transmitting bending in one part to an
adjoining part. In such structures the portions are analyzed as simple
and separate units.

8 Connections

The manner in which a structural unit is supported or connected to
other units in an assembly plays an important part in the analysis and
design of structures, particularly for tension members, where the design
of the member may be controlled by the arrangement of the connection.
In the determination of load capacity of structures, careful considera-
tion must be given to the strength of the connections, for this will fre-
quently limit the loading which may be safely carried by the structure.

For fastening timber members, nails, screws, and bolts are commonly
used. Steel members are most frequently fastened by rivets or pins.
Electric-arc welding is also frequently used for connections of steel mem-
bers particularly when welding operations can be performed in the shop.

«9 Statically Determinate Structures

A structure is said to be statically determinate externally when the
external forces can be found by applying the simple laws of statics,
ZH =0, 2V =0, and ZM = 0. For many structures, assumptions
must be made regarding the nature or position of reactive forces in order
to reduce the problem to a statically determinate basis. When such
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STATICALLY INDETERMINATE STRUCTURES 7

assumptions are necessary, they should be made with due regard to the
magnitude of the errors introduced so that su~h errors will not produce
unsafe results. For example, a simple beam whose ends rest upon walls
which furnish simple bearing resistance is usually regarded as statically
determinate by assuming that the resultant of the reactive pressure
furnished by the wall is at the center of the bearing area. Obviously,
when the beam deflects, as it must under load, the pressures will increase
toward the inside edge of the support, and the resultant reactive pres-
sure will actually lic closer to the inside edge of the support than is
indicated by this assumption. Since the actual span is shorter than that
assumed, the assumption indicated will not produce an unsafe result.

10 Statically Indeterminate Structures

A stiucture is said to be statically indeterminate externally when the
external forces cannot be established or determined by the simple laws
of statics. For the analysis of such structures, additional equations
dealing with the performance of the structure or properties of the ex-
ternal forces must be derived. Usually such equations are determined
by considering the elastic behavior of the structure under loading and
involve, of course, a thorough understanding of the fundamental princi-
ples of elasticity. Beams rigidly attached to the supports and beams
continuous over several supports are examples of statically indeter-
minate structures.



Chapter 2
EXTERNAIL FORCES--LOADS

11 Definitions

The external forces which act on a structure are identified as dead
loads, live loads, and reactions.

The dead loads represent the weight of the materials of which the
structure is made; they are fixed in amount and location.

Photograph by Collins Studio, Mt. Pleasant, Michigan.
Variable Floor Load.

(Note that roof trusses are shaped to accommodate loading.)

The live loads arise out of the use of the structure and include forces
of natural origin such as wind pressure, weight of snow, or dynamic effect
of earthquake shock. Live loads vary in amount and character and

8



WEIGHT OF CONSTRUCTION 9

may be located in any position on the structure which is consistent with
the character of the load.

A distributed load is one which is spread over a considerable portion
of a structure, such as a layer of sand on a floor. A uniformly distributed
load is such a one as would be caused by a layer of sand uniform in
depth.

A concentrated load is one which is distributed over a very small area
of contact with the structure. In general, such loads are regarded as
applied at a point or along a line, but the actual distribution must be
considered in connection with detcrmination of local stresses on sections
in contact wich or in the immediate vicinity of such a load.

Conventional live loadings which simulate the actual loads that
will use the structure are generally used for purposes of design. While
investigations of the behavior or safety of a structure may be based on
an actual load, econventional or standard loads are also frequently used
for such studies. The most commonly employed conventional or stand-
ard load is the uniformly distributed load, and by general usage many
structures, particularly floor systems, are rated in terms of the uni-
formly distributed load which they will safely support. For railway
bridges the conventional load consists of a series of concentrated loads
typical of the axle loads of a locomotive, followed by a uniformly
distributed load representative of the train load hauled by a loco-
motive.

The reactions are the forces induced by the action of the supports in
preventing or retarding motion of the structure under the action of dead
and live loads.

12 Weight of Construction

The determination of the dead load acting on a given structure is
essentially a matter of computing the volume of material and applying
the proper unit weight to the quantities so computed. For a proposed
construction, allowance for the probable weight must be made. Such
computations require the exercise of good judgment and experience is a
useful asset. When a design has been completed, using estimated
weights, the dead-load allowances should be checked and corrections
made where such allowances are not in accord with the final results.
Usually no change is warranted if the assumed dead load is within
10 per cent of the actual weight.

Weights of the common materials of construction are given in Table 1.1

1 All tables appear in the Appendix.



10 EXTERNAL FORCES—LOADS

13 Weight of Trusses

Empirical formulae are useful for estimating the probable weight of
combinations of members forming roof or bridge trusses. Typical of
such formulae are the following,

where W = total weight of truss in pounds.

L = span of truss in feet.
a = distance between trusses in feet.
Wood Roof Trusses (Formula proposed by Ricker) 2
wo i o m
25 6000
Steel Roof Trusses (Formula proposed by Fowler)
W = 0.06aL? 4+ 0.6aL (for heavy loads) )
W = 0.04aL? + 0.4aL (for light loads) 3)

For purposes of stress analysis, the total weight of the truss is usually
assumed as spread uniformly over the surface which it supports. Thus
the weight of & roof truss would be represented by a load such as would
be caused by a uniform layer of snow covering the entire roof surface.

14 Floor Loads—Buildings

Loads on floors of buildings are generally caused by crowds of people,
furniture, or merchandise and may be closely approximated by a uni-
versally distributed load over the floor area. Building ordinances of
most cities specify the minimum uniform load which shall be used in
the design of floors intended for various purposes. Typical of such
requirements are those stipulated by the “1942 Building Laws of the
City of New York,” which are in part as follows:

(a) Live Loaps FOR RESIDENCES AND SLEEPING QUARTERS

For private dwellings, multiple dwellings, bedroom floors in hotels and club houses,
private and ward room floors in hospitals, dormitories, and for similar occupancies,
including corridors, the minimum live load shall be taken as forty pounds per square
foot uniformly distributed.

(b) Live Loaps For OFFICE SpACE

For office floors, including corridors, the minimum live load shall be taken as fifty
pounds per square foot uniformly distributed.

(¢) Live Loaps ForR PLacEs oF AsseEMBLY OTHER THAN THEATRES AND HALLS

For classrooms with fixed seats, including aisles and passageways between seats,
for churches with fixed seats, for reading rooms, and for classrooms not exceeding

? Bulletin 16, Illinois Experiment Station.



FLOOR LOADS—BUILDINGS 11

nine hundred square feet of floor area with movable seats, the minimum live load
uniformly distributed shall be taken as sixty pounds per square foot, provided that
such movable furniture consists; in addition to the ins.ructor’s equipment, of indi-
vidual seatings with or without attached desks.

(d) Live Loaps FoR THEATRES AND AsSEMBLY HALLS

For the seating space in theatres and assembly hails with fixed seats, including the
passageways between scats, except as provided in subdivision e of this section, the
minimum live load shall be taken as seventy-five pounds per square foot uniformly
distributed.

(e) Live Loaps ror PuBLic SPAceEs AND CONGESTED AREAS

The minimun: live load shall be taken as one hundred pounds per square foot,
uniformly distributed, for corridors unless otherwise provided for in this section, and
for halls, lobbies, public spaces in hotels and public structures, assembly halls with-
out fixed seats, theatre stages, cabarets, barrooms, art galleries and museums, for
the ground floors and basements of all hotels, stores, restaurants, shops and office
buildings, for skating rinks, grandstands, gymnasiums, dance halls, lodge rooms,
stairways, firc escapes and exit passageways, and other spaces where groups of people
are likely to assemble. This requirement shall be inapplicable to such spaces in
private dwellings, for which the minimum live load shall be taken as in subdivision a
of this section.

(f) Live Loaps For INDUSTRIAL OR COMMERCIAL OCCUPANCIES AND FOR (ARAGES

In designing floors for industrial or commercial purposes and for garages, the live
load shall be assumed to be the maximum caused by the use which the structure or
part of the structure is to serve. The following loads in pounds per square foot, uni-
formly distributed, shall be taken as the minimum live loads permissible for the
occupancies listed, and loads at least equal shall be assumed for uses similar in nature
to those listed in this section.

Floors to be used for:

1. The display and sale of light merchandise; incidental factory work in not

more than twenty-five percent of the floor area 75
2. Factory work, wholesale stores, storage, and stack rooms in libraries 120
3. Stables 75
4. Garages for private passenger cars only 75

When there is floor area sufficient for the accommodation of two or more
cars, the design of floors for such garages shall make provision for a con-
centrated load of two thousand pounds at any one point.

5. Garages for all types of vehicles, other than garages exclusively used for
private passenger cars, and for mixed car usage:

For floor construction : 175
For beams, columns, and girders 120

The design of floors for such garages shall also make provision for the
heaviest concentrated loads to which the floors may be subjected, but in
all cases these loads shall be assumed to be at least six thousand pounds

concentrated at any point.
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Photograph by Collins Studio, Mt. Pleasant, Michigan
Typical Floor Load in Sugar Warchouse.

6. Trucking spaces and driveways within the limits of a structure.

The design of floors for such trucking spaces or driveways shall also make
provision for the heaviest concentrated loads to which they may be sub-
jected, but in all cases these loads shall be assumed as at least twelve
thousand pounds concentrated at any point.

(9) Live Loaps FOR SIDEWALKS

The minimum live load for sidewalks shall be assumed to be three hundred pounds

" per square foot uniformly distributed. Driveways over sidewalks shall be designed

for the heaviest concentrated loads to which they may be subjected, but in all cases

these loads shall be assumed as at least twelve thousand pounds concentrated at any
point.

(h) Roor Loaps

Roofs having a rise of three inches or less per foot of horizontal projection shall be
proportioned for a vertical live load of forty pounds per square foot of horizontal
projection applied to any or all slopes. With a rise of between three inches and
twelve inches per foot, inclusive, a vertical live load of thirty pounds on the horizon-
tal projection shall be assumed. If the rise exceeds twelve inches per foot, no vertical
live load need be assumed, but provision shall be made for a wind force of twenty
pounds per square foot of roof surface acting normal to such surface on one slope at
a time.
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(3) RepuctioN oF Live Loaps

(1) In structures intended for storage purposes all columns, piers, or walls and
foundations may be designed for cighty-five percent ot the full assumed live load.
In structures intended for other uscs the assumed live load used in designing all
columns, piers, or walls and foundations may be as follows:

one hundred pereent of the live load on the roof
cighty-five percent of the live load on the top floor
seventy-five percent of the live load on the floor next below.

On each successive lower floor, there shall be a corresponding decrease in the per-
centage, provided that in all cases at least fifty percent of the live load shall be
assumed.

(2) Girder members, except in roofs and as specified in the following subdivision,
carrying a designed floor load the equivalent of two hundred square feet or more of
floor area may be designed for eighty-five percent, of the specified live load.

(3) Tn designing trusses and girders which support columns and in determining
the area of footings, the full dead loads plus the live loads may be taken with the
reductions figured as permitted above.

16 Roof Loads

Roofs serve to shelter the interior of a structure from the action of the
elements, and the character of the loading will depend largely upon the
degree of exposure and general climatic conditions at the given location.
In addition to resisting natural forces, roofs sometimes support interior
construction such as suspended balconies, and may carry shafting,
hoists, or other equipment.

The weight of snow which may accumulate on the roof surface will
depend upon the climatic conditions prevailing at the site of the struc-
ture. Data ? published by the American Standards Association, based
upon studies of United States Weather Bureau records, show probable
snow loads in various sections of the United States which vary from
2.5 pounds per square foot in the Southern portion to 40 pounds per
square foot in northern and mountainous sections. In particular local-
ities, such as the high Sierras in northern California, values as great as
363 pounds per square foot are recorded. Unfortunately for the pur-
pose of establishing probable snow loads, the records show only the
total annual cumulative snow fall. For example, in a locality where
twelve snow falls, each of 1-inch depth, might occur, the records would
show an annual snow fall of 12 inches, and there might actually be no
accumulation of more than 1-inch depth of snow on any roof surface at
any given time. In most localities, the maximum depth of snow that
may accumulate on a flat roof surface will seldom be more than the
maximum total snow fall in a month’s period of time.

3 “Minimum Design Loads in Buildings and Other Structures,” American Stand-
ards Association, 70 East 45th Street, New York, June 19, 1845,



14 EXTERNAL FORCES—LOADS

The weight of snow varies from about 5 pounds per cubic foot for
freshly fallen dry snow to about 10 for packed snow. The weather
bureau estimates that a depth of 6.5 inches corresponds to 1 inch of
water, and this assumption produces a snow weight of 9.6 pounds per
cubic foot.

Some localities are subject to sleet storms which may cause ice accumu-
lation. This will seldom be as great as 4 inch in thickness, for which
thickness the load would be 4 pounds per square foot of roof surface.

14R
03R+D 08R-2D O03R+D
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D = Assumed maximum snow accumulation on
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F1a. 1. Snow Loading on Cylindrical Roof Surface.

The shape of the roof or slopes of plane roof surfaces is a factor in
establishing roof loading since for steeply pitched surfaces, any sub-
stantial snow accumulation may slide off and thus relieve the roof of
such load. It is generally agreed that substantially no snow will accu-
mulate on a plane roof surface which slopes more than 45 degrees to the
horizontal. Aerodynamic considerations are also of major importance
in affecting snow accumulation’since air movement across the structure
may induce negative roof pressures which actually tend to remove the
snow from the surface. For this reason, it is nearly impossible to pro-
duce any snow accumulation on a cylindrical roof surface.

Most building codes specify minimum roof loads based upon the
horizontal projection of the roof area which are intended to provide for
snow load and other forms of possible vertical live load. Typical of
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such requirements are those of the National Board of Fire Underwriters 4
which provide as follows:

(@) Roofs having a rise of four inches or less per foot of horizontal projection shall

be designed for a vertical live load of not less than thirty pounds per square foot of
horizontal projection.

(b) Roofs having a rise of more than four inches and not more than twelve inches
per foot of horizontal projection shall be designed for a vertical live load of not less
than twenty pounds per square foot of horizontal projection.

(¢) Roofs having a rise of more than twelve inches per fout of horizontal projection
shall be designed to carry a wind foree acting normal to the roof surface, on one slope

at a time, of twenty pounds per square fool of such surface, and no vertical live load
need be assumed.

The foregoing provisions are obviously intended for roofs made up
of planc surfaces. For cylindrical or arch roofs the author recommends
the modified loading indicated in Fig. 1. It may be observed that
there are few localitics in the United States where the maximum accumu-
lation of snow on a level surface will exceed 24 inches.

Wind loads on roof structures are discussed in Article 18.

16 Live Loads for Highway Bridges

Highway bridges must carry loads of a widely divergent nature, such
as crowds of people, farm animals, wagons, tractors, automobiles, and
trucks. The modern motor truck with its relatively heavy wheel con-
centration constitutes a comparatively severe load on the floor system of
such structures, and such a loading in combination with a uniform load
distributed over the surrounding floor area represents the probable
maximum condition that is reasonable to impose on principal supporting
units such as main girders or trusses.

The 1944 Specifications of the American Association of State High-
way Officials specifies that highway live loadings on the roadway of
bridges or incidental structures shall consist of standard trucks or of
lane loads which are equivalent to truck trains. Two systems of loading
are provided, and designated as H loading and H-S loading.

The H loading consists of a two-axle truck or the corresponding lane
loading (Fig. 2). In designating this loading, the letter H is followed
by a number indicating the gross weight in tons of the standard truck
and by a second number which indicates the year of the specification.
Thus H20-44 indicates a 20-ton truck under the 1944 A.A.S.H.O. Speci-
fication. The lane loading in Fig. 2 is shown for a 20-ton truck. Values
for other truck weights may be obtained by proportion.

4 Building Code Recommended by the National Board of Fire Underwriters,
National Board of Fire Underwriters, New York, 1943.
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The H-S loadings are illustrated in Fig. 2¢c and consist of a tractor
truck with semi-trailer or of the corresponding lane loading. H-S lane
loading is the same as for H loading indicated above. These loadings

10°-0" Clearance and Lane Width
! .i
W=Total Weight of Truck and Load

N\, \L"— o ] . AW F.  Width of each
2-0" 2°-0* [:_;.ll W (02w} -} rear tire equals
o1 W one inch per ton
X of total weight
—CO— - ——-—{08W]=}" of loaded truck
[

(a) Standard H Trucks.

18,000 Lb. for Moment
Concentrated “"‘l»/‘! 26,000 Lb. for Shear

Uniform Load~, 640 Lb. per Lineal Foot of Lane
777 2 7Z

(b) H 20-44 Lane Loading.

,_:l- 10”0~ clearance and lane width

=] icurb
3 02W 08W 08 W
2.0y} | 60" | 220" |o1w 04 W loaw
= — HRo e
W = Combined weight ‘Width of each rear tire equals
on the first two axles I 1” per ton of total loaded weight
LO.IW 140" !0.4W v ;J'0.4W

~ Note: Distance V varies from 14’ to 30’. Use that value
which produces maximum stress.

(c) Standard H-8 truck
F16. 2. Standard Highway Loading.

are designated by the letter H followed by a number indicating the gross
weight in tons of the tractor truck and by the letter S followed by the
gross weight in tons of the single axle of the semi-trailer. The final
number indicates the year of the specification. Thus the designation
H20-816-44 indicates a 20-ton truck and a 16-ton trailer in accordance
with the 1944 A.A.8.H.O. Specification.
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The 1944 specifications state that highway loadings shall be of five
classes: H20, H15, H10, H20-816, and H15-S12. Loadings H15 and
H10 are 75 and 50 pcr ceni, respeciively, of loading H20. Loading
H15-812 is 75 per cent of loading H20-S16. For trunk highways, or for
other highways which carry or may carry heavy truck traffic, the mini-
mum live load is the H15-S12 loading.

The lane loadings or standard trucks are assumed to occupy traffic
lanes, each having a widih of 10 feet, corresponding to the standard
truck clearance width. Within the curb to curb width of the roadway,
the traffic lanes are assumed to occupy any position which will produce
the maximum stress but which wili not involve overlapping of adjacent
lanes nor place the center of the lane less than 5 feet from the roadway
face of the curb.

17 Live Loads for Railway Bridges

The live loadirg, carried by railway bridges is naturally quite defi-
nitely determined in its character by the purpose of the structure. The
usual standard loading for such structures is two heavy locomotives
followed by a train of cars, although occasionally it may be necessary to
consider loads of special or unusual character. The locomotives furnish
heavy concentrations at points corresponding to the axle spacings, and
the train load is usually simulated by a moving uniform load.

Because locomotives vary widely in weight and axle spacing, arbi-
trary standard artificial loadings are generally used instead of actual
loadings. These arbitrary loadings are designed to give equivalent or
greater effects than would be produced by actual loadings and have the
advantage of standardizing the design and analysis of railway structures.

The system of loads which has received the most general acceptance
was devised by Theodore Cooper and is known as Cooper’s Loading.
Cooper’s E-60 is shown in Fig. 3 where the loads are given in thousands

23230 RREF B B3:3 3R AR aem

I16. 3. Cooper's E-60 Loading.

of pounds on each rail, with axles spaced as shown, and the train load is
represented by a uniform load. Where a lighter or heavier loading is to
be used, the loads are all changed in the same proportion, but the axle
spacing remains constant. Thus for Cooper’s E-40 the axle loads and
uniform train load are four-sixths of those for the E-60 loading.
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The Specifications (1944) of the American Railway Engineering Asso-
ciation for design of steel railway bridges with spans not exceeding
400 feet recommend that the live load on each track be either Cooper’s
E-72 or two moving concentrated loads of 90,000 pounds each, spaced
7 feet apart and placed in position for maximum effect, whichever load-
ing gives maximum stress to be used.

18 Wind Forces

For determining the pressure on inclined roof surfaces, many building
codes use empirical formulae based upon experiments made by Hutton
in 1787-88 and Duchemin in 1829. These experiments were conducted
on relatively small plates, and the following formulae were deduced for
the intensity of pressure normal to the exposed surface.

Hutton’s formula:

Pn = p(sin a)l.842 cos a—1 (4)
Duchemin’s formula:
( 2 sin « > ®)
Pn=P 1+ sin®«

where p, = pressure normal to surface in pounds per square foot.
p = pressure on a plane surface normal to direction of wind in
pounds per square foot.
a = angle of inclination of surface to direction of wind.

When these formulae are used, the value of p is obtained from the
equation

p =t (6)

where v = wind velocity in miles per hour.
¢ = constant based principally upon the shape and size of the
exposed surface. This coefficient is commonly assumed as
equal to 0.0033.

The observations by Hutton and Duchemin were made upon small
plates isolated from the building structure to which they would necessar-
ily be attached in real practice. Tests in modern wind tunnels show
that the formulae are reasonably accurate for such unattached surfaces
but that they are grossly in error when applied to roof surfaces ® attached
to a building structure.

The general nature of wind pressure exerted on structures is discussed
in some detail in Scientific Paper 523 of the U. S. Bureau of Standards,

S Wind Pressures on Buildings (Second Series), Danmarks Naturvidenskabelige
Samfund, Copenhagen, 1936.
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“Wind Pressures on Structures,” from which the following has been
abstracted:

The nature of the reactivn between the wind and an obstacle to its progress is
extremely complicated even in the case of a uniform and steady wind. When the
air is at rest, there is a distribution of pressure over the surface due to the normal
atmospheric pressure. The effect of the motion of the air is a modification of this
normal pressure, at some points an increase in pressure, at others & decrease in pres-
sure. The magnitude of these changes is only a small pereentage of the normal
atmospheric pressure, and the words suction or vacuum as commonly used in this
connection do not imply any large change in density or pressure. The condition
indicated by these words is merely a decicase of the normal pressure by amounts
which are usually less than 2 per cent of the normal pressure.

"The maximum increase in pressure produced by the wind is equal to 3pV?, where
p is the density ® of the air and V the wind speed. This pressure is usually termed the
velocity pressure.

In aerodynamics it is convenient to express all observed pressure differences as
ratios of the pressure difference to the velocity pressure.  Although the maximum
inerease in pressure at any point is equal to the veloeity pressure, pressure decreases
of greater amount frequently ocenr and average wind pressures resulting from the sur-
face distribution over an object are frequently greater than the velocity pressure.
The advantage of expressing results in this form is that the ratios or coefficients are
independent of the units used so long as the units are self-consistent.

Expressed in this way, the wind pressure normal to any surface is
given by the following formula:

= Cq O]

where p, = wind pressure normal to surface in pounds per square foot.
C = coefficient determined by experiment.
q = velocity pressure 7 = 1pV2.

I

The pressures on the surfaces of a typical mill building, with the wind
direction making an angle of 90 degrees with the axis of the building, as
found by Dryden and Hill,® are shown in Fig. 4. The coefficient C to

weight density
acceleration due to gravity -

8 p = mass density =

7 For air weighing 0.07651 1b per cu ft corresponding to 15° C at sea level:

0.07651
=20 _ 0,002378
P T32 37

g = 3 X 0.002378V?% X [§338]*
= 0.002558¥2 in pounds per square foot

where V = true wind speed in miles per hour.
8 “Wind Pressure on a Model of a Mill Building,” Research Paper 301, U. S. Bureau
of Standards.
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be used in Equation 7 is given for each of the pressure lines shown in
this figure.

The pressure lines in Fig. 5 show that the vertical wall on the wind-
ward side is the only surface with positive pressure and that all other
surfaces are subjected to negative pressure, or suction. This would not
be true for a building with a much steeper roof where the windward
roof surface would also have a positive pressure. Likewise, if the wind

~ ., .
S .7

o NYS
\/

F1a. 4. Distribution of Pressure over the Model without the Monitor; Wind Normal
to Face A.

The pressures are measured from the static pressure as base and are expressed as ratios to velocity
pressure. Minus signs denote that the pressure is lower than the static pressure.

Reproduced from Research Paper 301, U. S. Department of Commerce.

direction were rotated through some angle, the distribution of pressures
would be entirely changed. It is very difficult, therefore, to write code
specifications which are reasonably simple and yet cover adequately
all variations of pressure on sloping or rounded roofs attached to
buildings of various proportions. Such an attempt has been made but
has not yet been adopted as a code provision.? Figure 5 is a diagram
by Haven ' showing uniformly distributed wind pressures on sloping
roofs. These pressures are based upon the reports of many investigators
and may be assumed to be safe for any reasonable proportions of build-
ing and roof slopes. Special consideration should be given to the area

? Fifth Progress Report of Subcommittee 31, Proc. Am. Soc. C. E., March, 1936,
p. 397.

10 A. F. Haven, thesis submitted in partial fulfillment of requirements for master's
degree, University of Michigan, June, 1934.
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numbered 3 in the diagram, since it is subjected to unusual intensities
of pressure or suction, depending on the slope of the roof.

The American Standards Assneciation ! in stundards sponsored by
the National Bureau of Standards recommends that buildings and other
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Fia. 5. Coefficient € for Gable Roofs.
Thesis by A. F. Haven, University of Michigan, 1934.

structures be designed to resist the following horizontal pressures for
wind from any direction:

Height less than 50 ft 20 Ib/sq ft

Height 50 to 99 ft 24 1b/sq ft
100 to 199 28 Ib/sq ft
200 to 299 30 Ib/sq ft

It is also recommended by these standards that all exterior walls be
designed to resist the above pressures acting either inward or outward.

1 “Minimum Design Loads in Buildings and Other Structures,” American Stand-
ards Association, 70 East 45th Street, New York, June 19, 1945.
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With respect to roofs, these standards provide that they shall be de-
signed to resist 1} times the foregoing pressures acting outward normal
to the surface, and roofs or sections of roofs with slopes greater than
30 degrees shall be designed to withstand these pressures acting inward
normal to the surface.

For roofs of semi-cylindrical form, tests made under the direction of
the author show that the maximum pressures should be taken as shown

¢
| W), = 0001964 RV *
7
W, = 0004192 RV\% / Resultant wind
r% /< W =0004629 RV 2
E wy = - 0003134V * /
[52]
g |
o
) < / w, = - 0.001637V
> 0
503 72
g
s % / e
v /
s °
% /
Ground line N
‘ L=2R i

V = Wind velocity in miles per hour
R = Radius of arch rib in feet
W = Pressure on roof surface in Ib/sq ft

Fra. 6.

in Fig. 6. It will be observed that inward pressure is produced over
only 48 degrees of the arc on the windward side and that suction is
induced over the major part of the roof surface.

19 Dynamic Effect of Live Load—Impact

The effect of live loading upon a structure is generally augmented by
the dynamic forces induced by motion of the given loading. Should the
live load be dropped through a distance and brought to rest by the
resistance of a structure, the energy forces so developed must be added
to the gravity forces induced by the load.
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Many factors must be considered in determining the dynamic effects
which must be taken into account. The nature of the loading, irregu-
larities of floor surface, incitia of the structure, the normal vibration
period of the structure, and other complex relationships all enter into a
precise solution of this problem. Because of its complexity, a mathe-
matical determination of the dynamic effect is seldom attempted, and
empirical formulae or allowances are commonly employed.

The American Railway Kogineering Association specifies 1* the fol-
lowing allowances to be made in the design of fixed span steel railway
bridges not exceeding 400 feet in length. These allowances for impact
are computed as percentages of the scatic live-load effect and are to be
added thereto.

(a) The rolling effect: Vertical foree< due to the rolling of the train from side to
side acting downward on one rail and upward on the other, the forces on each rail
being equal to 10 per cent of the axle load.

(b) The direct vertical «(fcet: Downward forees, distributed equally to the two rails
and acting normal to the top of rail plane.

With steam locomotives (hammer blow, track irregularities, and car
impact),

for L less than 100 ft,

I =100 — 0.6 (8)
for L 100 ft or more,

,_ 1800 i ©
L — 40

With electric locomotives (track irregularities and car impact),

360
=T + 12.5 (10

where L = length in feet, center to center, of supports for stringers,
longitudinal girders, and trusses (chords and main members).
Or
L = length of floor beams or transverse girders, in feet, for floor
beams, floor beam hangers, subdiagonals of trusses, trans-
verse girders, and supports for transverse girders.

In each case the impact shall not exceed 100 per cent of the static
live load.

2 American Railway Engincering Association Specifications for Steel Railway
Bridges, 1944.
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For members receiving load from more than one track, the impact
percentage shall be applied to the static live load on the number of
tracks shown below:

Load received from
Two tracks:

For L less than 175 ft: Full impact on two tracks.

For L from 175 to 225 ft: Full impact on one track and a per-
centage of full impact on the other
as given by the formula 450 — 2L.

For L greater than 225 ft: Full impact on one track and none on
the other.

More than two tracks:

For all values of L: Full impact on any two tracks.

For highway bridges, the Specifications of the American Association
of State Highway Officials (1944) give the following allowance:

I=8—— 1y
L+ 125
where I = impact stress.
S = stress due to live load considered as a static load.
L = length in feet of that portion of the span which is loaded to

produce the maximum stress in the member considered.

Impact allowances for live loads which occur in buildings are seldom
made except for crane loads, elevators, and similar loads.

Loads which move at comparatively high speed and are forced to
follow a curved path will induce centrifugal force which must be resisted
by the structure supporting them. A high railroad trestle supporting
a curved tack is an example of such a situation.

The 1944 A.R.E.A. Specifications for steel railway bridges state:
“On curves, a centrifugal force corresponding to each axle load shall
be applied horizontally through a point 6 feet above the top of rail
measured along a line perpendicular to the line joining the tops of the
rails and equi-distant from them. This force shall equal the percentage
0.001178%D of the specified axle load without impact,”

where S = speed in miles per hour.
D = degree of curve.

Tractive forces are those induced by the starting of a live load into
motion or the rapid deceleration of a load in motion across the structure.
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The starting of a traveling crane in a mill building would develop such a
force opposite to the direction of travel and would be the result of friction
developed between the wheels and the ctane rail; similarly the starting
or braking of a locomotive on a railway bridge would produce a tractive
force induced by friction at the top of the rail. The railroad specifica-
tions previously noted state that the force due to braking shall be
15 per cent of the live load without impact and that the force due to
traction shall be 25 per cent of the weight on the driving wheels, without
impact. These forces are assumed to act 6 feet above the top of the rail
and parallel thereto.

20 Earthquake Shock

Observers have noted that the effect of an earthquake appears to
consist of a sudden bump or shove immediately followed by a series of
vibrations which seem to produce a swinging motion. In alluvial soils
or filled ground there is also a noticeable wave motion.

In the Japanese earthquake of September 1, 1923, the principal vibra-
tion had a period of 1.35 seconds and a double amplitude of 3.46 inches.
It has been estimated that in the San Francisco earthquake of 1906 the
period was about 1 second and the amplitude 2 inches.!3

The force developed on a structure by virtue of a sudden displacement
as caused by an earthquake is a function of the mass of the structure, the
amount of the displacement, and the change in the velocity (accelera-
tion) of the movement. It is usually assumed that the motion is simple
harmonic," from which

{x%d 12
a=—5 (12)

where @ = maximum acceleration.
d = maximum deviation from normal position either way, or

amplitude.
t = time of one complete oscillation (from zero to maximum posi-
tive to maximum negative to zero).

The values of the amplitude and time may be determined from a con-
sideration of seismic records. It is customary to express the acceleration
in terms of that due to gravity; hence a stated acceleration of one-tenth
gravity means that a is taken at a value of 3.22 feet per second per
second.

13 Article by Dewell, Engg. News-Record, April 26, 1928, p. 650.
4 Robins Fleming, Wind Stresses in Buildings, p. 166. John Wiley and Sons,
1930.
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The magnitude of the force exerted on a structure, due to its sudden
displacement resulting from earthquake movement, is

Wa
F=— (13)
g
where F = maximum force applied to the structure due to the earth-
quake.
a = maximum acceleration of earthquake movement.
g = acceleration due to gravity = 32.2 ft per sec per sec.

W = weight affected (live and dead load).

It should be noted that the force ¥ is applied at the center of gravity of
the weight W. Thus the effect on any horizontal section through a
structure would be that of a force F applied at the center of gravity of
all loads above the given section.

A value for the acceleration equal to one-tenth gravity (3.22) is used
in Tokyo, where probably more severe shocks have been recorded than
in any other city on record; hence this may be regarded as a reasonably
high allowance. It should be noted, however, that this magnitude
applies particularly to rock foundation and that, for structures founded
in alluvial soils or on filled ground, the acceleration may reach values
three or four times as great.

Observations have shown that, although some vertical movement
may be produced, its magnitude is but a fraction of the lateral move-
ment and may be safely disregarded.

»21 Lateral Pressure

Structures designed to retain fluids or materials of granulaf character
are subjected to pressures induced by the tendency of the material to
flow laterally. For fluids, the pressure exerted on the sides of the con-
taining structure equals that induced on a horizontal plane at the same
depth and is computed by multiplying the weight per cubic foot of the
material by the depth or head.

For materials of a granular nature, such as sand, grain, ete., the
action is more complex owing to the presence of such internal resistance
to flow as the friction developed by particles sliding or rolling over one
another and cohesion, which may exist to a greater or less extent between
particles. In such materials as earth, the cohesive action introduces a
variable which makes a precise solution impossible.

The first rational theory for the lateral pressure of granular materials
was formulated by Coulomb in 1774. According to this theory, a wedge
of material, bounded on one side by the wall retaining the material and
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on the other by a plane of rupture, is assumed as tending to slide and
hence to exert pressure against the wall. The plane of rupture lies be-
tween that corresponding to the angle of repose of the given material
and the wall surface. When the surface of the material is horizontal
and the wall surface vertical, the plane of rupture bisects the angle
between the plane of repose and the vertical wall surface. For other
conditions graphical methods ® are generally employed in the deter-
mination. Once the sliding wedge is determined, various theories are
employed for computing the pressures exerted on the wall.

The Rankine theory, which was proposed in 1858, is still commonly
used for the solution of problems of lateral pressure. While it is essen-
tially an analytical method based upon the principle of conjugate stresses,
graphical solutions, using the properties of the ellipse of stress are fre-
quently employed. The principal elements of this theory are

1. In any granular, non-cohesive material the relationship between
principal stresses is

g 1 —-=xing

P B 1--:— sin ¢

(14)

where p = major principal stress.
¢ = minor principal stress.
¢ = angle of internal friction.

2. The pressure against a vertical plane will be parallel to the upper
surface of the material retained. The inclination of the surface of the
material retained must not exceed the angle ¢ with the horizontal.

The pressure of a mass of material whose surface is horizontal, against
a vertical plane, Fig. 7a is determined from Equation 14, where p = wh,

and
1 — sin ¢]
1 + sin ¢

where w = weight per cubic foot of material.
h = depth of material at point of pressure determination.

q = wh [ (15)

When the surface of the material is inclined at an angle « to the hori-
zontal (Fig. 7b) the intensity of pressure against a vertical plane is given

by the following formula:
‘ [cos a — Veos? a — cos® ¢]
t = wh cos «
.cosa + Veos? a — cos® ¢

18 Ketchum, The Design of Walls, Bins and Grain Elevators (3rd Ed.), McGraw-
Hill Book Co.

(16)
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In the case of a fluid it will be observed that, in the absence of internal
friction, ¢ = 0, and hence ¢ = wh. Materials in which internal friction
between particles is present may by this theory be regarded as imperfect
fluids, the friction serving to reduce the effective weight insofar as lateral

A _
A (]
~"' é L
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(a) (b)
Horizontal backfill Inclined backfill

Fig. 7. Earth Pressures According to the Rankine Theory.

pressure is concerned and the pressures determined as if for a fluid weigh-
ing w’ pounds per cubic foot, where

1 —sing
w o= w [__._.,_] a7
1 4+ sin¢

The value of ¢ as determined by various investigations !¢ varies from
10 to 50 degrees and depends largely upon the coarseness of the material
and its moisture content. In any event, the Rankine theory fails to
make any allowance for cohesion between the particles. For freshly piled
earth with normal water content, the value of ¢ is commonly taken as
30 degrees, and with this value it may be determined by Equation 14
that when the surface is level the lateral pressure is one-third the vertical
pressure; in other words, the pressures exerted will be the same as those
developed by a fluid whose specific gravity is one-third that of the actual
earth retained.

Full-size experiments reported by Feld 7 in 1923 indicated that the
actual forces may be considerably at variance with those found by apply-
ing the Rankine theory. These experiments were made with sand against
a vertical wall, and the following important conclusions were reached:

1. The resultant pressure is inclined to the wall, deviating from the

normal by an angle equal to the angle of friction between the fill and the
wall. !

18 E. P. Goodrich, “Lateral Earth Pressures and Related Phenomena,” Trans.
Am. Soc. C. E., Vol. 53, p. 272.

17 Trans. Am. Soc. C. E., 1923, p. 1448.
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2. The resultant acts above the third point and, for a heavy surcharge,
as high as the 0.4 point.

3. The horizontal component is given closest by the wedge theory,
taking as the angle ¢ the experimentally determined angle of internal
resistance of the fill.

The foregoing theories and principles are based on an unlimited
extent of material back of the wall and may be regarded as applicable
only to cases where the plane of rupture as determined by the Coulomb
theory cuts the upper surface of the fill material.

For relatively deep bins the magnitude of vertical and lateral pres-
sures will vary with the characteristics of the material and the character
of the wall surface. In such situations the arching action within the
material and the frictional resistance of the material to sliding on the
wall surface serve to reduce substantially the lateral and vertical pres-
sures. For grain in relatively high bins, the results given by a formula
proposed by Janssen !® have been found by experiment to produce
reliable results. Janssen’s formula is expressed as follows:

where w = weight of fill material in pounds per cubic foot.
V = vertical pressure per square foot at depth h.
L = lateral pressure per square foot at depth h.
k = ratio of lateral to vertical pressure.
u = coeflicient of friction of material on bin wall.
R = hydraulic radius of bin section.
¢ = base of Napierian logarithm system = 2.71828.
h = depth of material to pressure plane.

area of horizontal section of bin in square feet

inside perimeter of bin in feet

Let
kuh
—=m
R
Then
wR
V= —>0—e™ (18)
ku
L=kV 19)

Experiments by Pleissuer ¥ in 1905 indicated that k, the ratio of
lateral to vertical pressure, varies with the material and the depth but

18 “Versuche iiber Getreidedruck in Silozellen,’” Zeitschrift des Vereines deutscher
Ingenieure, 1895, p. 1045.

19 “Versuche zur Ermittlung der Boden und Seitenwanddrucke in Getreidesilos,”
Zeitschrift des Vereines deutscher Ingenieure, June 23, 1906, p. 976.
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increases very little after a depth of two and one-half to three times the
diameter of the bin is reached. The value of k as found by experiment
varied from about 0.3 to 0.6, depending upon the material and the
nature of the bin construction. Experiments made by Jamieson 2 in
1900 on wheat indicated values of about 0.375 to 0.450 for u.

PROBLEMS

2-1 A building floor is supported on Steel I-beams spaced 12 ft apart. The floor
consists of a reinforced concrete slab covered with a wood finish and supports a sus-
pended metal lath and plaster ceiling. The concrete slab is 6 in. thick. The wood
finish consists of Z-in. maple flooring fastened to screeds or nailing strips which are
embedded in a cinder concrete fill 2 in. thick. Determine the amount of dead floor
weight which each beam must carry, expressed in pounds per linear foot of beam.

2-2 The steel roof truss shown supports roof construction and loads as follows:

Trusses with a span of 48 ft are spaced 12 ft center to center and are supported
on side walls of building.

Roofing—wood shingles.

Sheathing—yellow pine.

Joists—2 in. x 8 in. at 16 in. center to center, yellow pine.

Purlins—5-in. x 9-1b channels at panel points.

Snow load—20 Ib per sq ft of roof surface.

Wind velocity—90 mph.

12°

6 @8’ =48’

Estimate the weight of the roof truss and calculate the panel loads for dead load,
snow load, and wind load.
2.3 Design Data
Trusses with a span of 80 ft are spaced 20 ft center to center and are supported
on side walls of building.
Channel purlins at panel points.

20’

80'

© Engg. News, 1904, p. 236.
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Roofing—24-gage corrugated steel spanning between purlins.
Snow load—10 Ib per sq ft of roof surface.
Wind velocity—90 mph.

Required: (a) Estimate the weight of truss by formula, and calculate the panel
loads for dead load and snow load. (b) Assume that the wind pressure on a surface
normal to the wind = 0.0033V2. Using Duchemin’s formula, find the normal pres-
sure on the roof and the panel concentrations for wind load.

2-4 A building with the gable roof shown in Problem 2-3 is to be designed for a
maximum wind velocity of 70 mph.

(a) The wind pressures on the wind and leeward slopes to be used for the design
of the main structural elements. (b) The wind pressure to be used for the design of
exterior roof panels and fastenings.

2:6 A vertical wall is used to retain a level fill of granular material which weighs
90 1b per sq ft and has an angle of internal friction of 45°. According to the Rankine
theory, what is the lateral pressure against the wall at a point 22 ft below the surface?
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GRAPHIC STATICS

22 Graphical Representation of Force

A force is represented graphically by a portion of a straight line. The
line represents the position and line of action of the force; its length
represents its relative magnitude; and an arrow point represents its dirce-
tion of action.

23 Resolution of a Force

A force may be resolved into any number of components. The rela-
tionship between the magnitude and direction of a force and its com-
ponents may be represented graphically by a force polygon.

The components must maintain a continuous line of action so that
they and the original force will form a closed polygon. The components
may all lie in the line of the force, in which case the force polygon will
lie entirely on the line representing the force.

Conversely to the foregoing, the resultant of a system of forces is the
single force of which the forces in the system are the components. When
the forces in the system are concurrent, i.e., intersect in a common point,
the resultant must pass through this point.

The equilibrant of a system of forces is that force which will neutralize
or counteract the resultant. It follows, therefore, that the equilibrant
is a force of the same value as the resultant, has the same line of action,
but acts in the opposite direction.

24 Couples

Two parallel forces of equal values but acting in opposite directions
constitute a couple. The magnitude of a couple is measured as a moment
equal to the product of either force and the distance separating the
forces.

A couple may be transferred to any other point in the plane of the
forces without disturbing the equilibrium or value of the system. Thus
in Fig. 8a assume that the couple Fz shown at (1) is to be transferred to
any position in the plane at (2) so that one of the forces passes through
any point a. Continue one of the forces along its line of action to any
point b on the proposed line of action through a. The force polygon

32
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beed resolves this force into two components, one having the magnitude
bc = F and the other the magnitude bd. These two components replace
the original force, which is assumed as removed from the force system.
Draw line fg parallel to ab and at a distance z from ab. Continue the
other force F to intersect fg at f and here resolve it into two components
fg and fm by means of the polygon fgkm, the component fg having the
magnitude F. Assume this force F replaced by its components fg and
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fm. The original couple has now been replaced by an equivalent set of
forces represented in magnitude and position by be, bd, fg, and fm. By
construction

<kfm = <ebd
<kfb = <ebf
fm = bd

Hence, components fm and bd cancel each other, leaving the couple Fz
with one force of the couple passing through point a.

Since the forces constituting a couple intersect only at infinity, their
resultant would be a force passing through infinity but with zero mag-
nitude.

A single force or a group of forces can be combined with a couple to
establish a single resultant.
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A force may be transferred parallel to itself to any other location in
the plane of the forces, provided a couple is added to the force system
whose magnitude is the product of the force and the distance through
which it is moved. Thus in Fig. 8b the force F at point a is moved
through the distance z by adding two equal and opposite forces at b
acting parallel to F and combining the original force F with one of the
added forces to form a couple of magnitude Fz.

26 Resultant of Force System

A system of co-planar forces is represent in Fig. 9 by Fy, F,, F3, and
Fs. The resultant of F; and F; is determined by continuing their lines
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of action to intersect at @ where a force polygon determines their result-
ant R; in magnitude and direction. The forces F; and F; may now be
replaced by their resultant R;.

R, is now continued along its line of action to intersect any one of the
remaining forces, such as Fy, at d, where the same process will deter-
mine a second resultant B,. This force is substituted for R, and F4 and
hence replaces forces Fy, Fy, and F, of the original force system. By
continuing this process, gk is determined as the resultant of the entire
system.

26 Force and Equilibrium Polygons

When the forces comprising a given system have such directions that
intersections are inconvenient or impossible of determination, as in the
case of parallel forces, they may be replaced by components so chosen as
to provide convenient intersections. Two separate diagrams are con-
structed to furnish the necessary data; one diagram, called the force
polygon, determines graphically the magnitude and direction of the
components of the forces; the other diagram, called the equilibrium
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polygon (or funicular polygon), shows the relative position of the several
forces and determines the lines of action of their components.

Thus in Fig. 10 the given force system is represented at a by the forces
Fy, Fy, F3, and F4. Force F, is resolved at b into components a0 and
0b, chosen of any convenient magnitudes, and these components are
located to intersect at any convenient point f on the line of action of F,.
Similarly force F is resolved into components bO and Oc, force F3 into
components cO and Od, and force F, into the components dO and Od.
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Fia. 10.

Force Fj, as shown at a, can be resolved into the selected components
b0 and Oc at any point on its line of action, and the point g which has
been selected for this purpose is located at the intersection of component
Ob with force F3. In the same manner point A is at the intersection of Oc
with F3, and point % is at the intersection of Od with Fy. The entire
system of forces Fy, Fa, F3, and F4 can now be replaced by an equivalent
system which consists of components a0, 0b, b0, Oc, cO, Od, dO, and
Oe, and, because of the manner of their selection, the forces of this sys-
tem will have convenient intersections. The lines of action of these
component forces will form the equilibrium polygon. Owing to the man-
ner of selecting their magnitude and location, Ob will cancel b0, Oc will
cancel ¢O, and Od will cancel dO, leaving only the two components aQ
and Oe, which must therefore be components of the resultant. By con-
tinuing a0 and Oe to intersect at m, a point on the resultant of the entire
force system is determined.
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It is obviously unnecessary to construct the force polygon (10b) so
that each individual resolution of the several forces into components is
indicated as shown in the figure. The load line a, b, c, d, ¢ can be laid off
as a continuous sequence of lines and the components, such as 0b, bO,
etc., represented by single lines with O as a common point or pole.

The forces F,, F5, etc., may be laid off in any desired order as in Fig.
11, but it is necessary that the equilibrium polygon be constructed to
represent properly the location of component forces thus selected.

When a force system is in equilibrium both polygons must close. This
requirement would be fulfilled in Fig. 11 if the resultant is replaced by
the equilibrant.

27 Passing an Equilibrium Polygon through Two Points

The conditions of a problem sometimes require that the equilibrium
polygon pass through two points of known location.

Let F,, F,, and F3 (Fig. 12a) represent any given system of forces
and points A and B the two known points through which the equilibrium
polygon must pass.

At b, select any convenient pole as O, and construct the correspond-
ing force and equilibrium polygons to determine the line of action of the
resultant of the forces.

At any convenient point on its line of action, resolve the resultant
into any two components which will pass through the given points A
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and B. These components of the resultant force, when drawn in the
force polygon, will intersect and determine a pole O which will fulfill the
given condition. Note that only the forces which pass between the points
A and B are involved in this problem.
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Fra. 12.

An infinite number of polygons can be drawn in the foregoing manner
through any two points. An interesting and useful relationship exists
between all such polygons in that the poles, infinite in number, will lie
on a line parallel to the line through the two given points. This is
proved in Fig. 13, where O; and O, are any two poles chosen in the
manner previously outlined.

Draw 0,e through poles 0, and O;. By construction Bk is parallel
to Oqa, and kg is parallel to de.

I1a. 13.

Assume the resultant ad to be replaced by its components a0, and
0,d acting along the lines fB and fA, respectively. Now if forces dO.
and Oqa, acting through points A4 and B, respectively, are added to the
force system, the resultant force will be cancelled since these two forces
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intersect at & on the line of action of the resultant, and their resultant
da is equal and opposite to the resultant ad. Forces dO; and 0,d acting
at A have 0,0, as their resultant acting through A ; forces Oqa and a0,
acting at B have as their resultant the force 0,0, acting through B.

F1a. 14. Cable Suspension.

Since forces 0,0; and 0,0, are equal they will cancel one another when
they lie in the same line of action, hence AB and O;¢ must be parallel.

As an example of a problem which can be solved graphically by aid of
the foregoing principles, let it be assumed that two weights are suspended
from a cable which is attached to walls as shown in Fig. 14a. The cable
is to be kept at the highest elevation consistent with a tensile force not to
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exceed 1200 pounds. Determine (a) the position of the cable, (b) the
length of cable between supports and (¢) the stress in all portions of the
cable.

The requirements of equilibrium will be met when the rope lies on the
line of an equilibrium polygon drawn for the given loads and passing
through the points of attachment at A and D. The force condition will
be met when no component force in the force polygon has a greater mag-
nitude than 1200 pounds.

The acting loads and points of support are located at a in their rela-
tive positions to any convenient scale. The force polygon is constructed
at b with any convenient pole, such as O, and the corresponding equi-
librium polygon Agk locates point h on the resultant of the loads. Draw
any two lines, such as Ah and hd, so as to intersect on the resultant and
pass, respectively, through A and D. At b, lines af and ¢f are drawn
parallel, respectively, to Ah and hd and will therefore serve to locate
point f on the locus of poles. This locus will be parallel to a line through
supports A and D, since the equilibrium polygon must pass through
these points. By observation it is apparent that the lower ray in the
force polygon will be the longest and, since a condition of the problem
requires this to not exceed 1200 pounds, an are with radius 1200 pounds
and center at ¢ is found to intersect the locus at O, which is the true
pole for the stated conditions. The true force and equilibrium polygons
are next constructed, and the required information relative to distance
and force is determined by scaling the diagrams.

28 Passing an Equilibrium Polygon through Three Points

An equilibrium polygon may be passed through three points, such as
A, B, and C, Fig. 15a, by finding first the locus of poles for polygons
through any two of the three points, and second the locus of poles for
polygons through either of the first two points selected, and the remain-
ing point. The intersection of these loci is the pole sought.

In Fig. 15a, let Fy, F,, F3, and Fy represent any set of given forces
and A, B, and C the points through which the equilibrium polygon is to
pass. If any convenient pole O, (Fig. 15b) is selected, the corresponding
force and equilibrium polygons will locate a point k on the resultant of
F; and F,. The direction of this resultant is parallel to a line through a
and ¢ in the force polygon. Any convenient point m is selected on the
line of this resultant and lines mA and mB determined. In the force
polygon, af is then drawn parallel to Am and ¢f parallel to mB, the inter-
section determining point f, which must lie on the locus of all poles
which produce equilibrium polygons passing through points A and B.
This locus is then drawn through point f, parallel to AB.
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Similarly the resultant of forces F3 and F; will pass through point p,
and any point n selected on the line of this resultant will determine lines
nB and nC. At b, line eg drawn parallel to nc and cg drawn parallel to
nc will then locate point g on the locus of poles which produce equilibrium
polygons passing through points B and C.
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Fia. 15. Equilibrium Polygon through Three Points.

Since the polygon is to pass through all three points, the pole must
lie on both of these loci, and it therefore coincides with their intersection
at 0.

A practical application of the problem of passing the equilibrium
polygon through three given points is that of determining the reactions
of a three-hinged arch. The solution of such a problem is shown in
Fig. 30.

29 Distributed Loads

Distributed loads are handled graphically by dividing them into a
number of small parts, each such part being then considered as a force.
Thus the variable loading shown in Fig. 16 is divided into small parts
whose magnitudes can each be conveniently determined, and these are
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then assumed to be forces acting at the centers of gravity of the several
divisions. The resultant of these assumed forces is then determined in
the usual manner. Theoretically the divisions chosen should be infinites-
imal in magnitude; practically they must be finite and of such geometric

F16. 16. Graphical Treatment of Distributed Load.

form as will permit easy determination of their magnitudes and centers
of gravity. As the number of divisions is increased, there is a corre-
sponding increase in the number of rays in the force polygon and lines
of force in the equilibrium polygon. When the divisions are infinitesimal
there will be an infinite number of rays and also an infinite number of
lines of force, and the corresponding equilibrium polygon, which is the
true and correct polygon for such a loading, will be a curve. The poly-
gon drawn for any number of finite divisions will represent the tangents to
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F1a. 17. Uniformly Distributed Load.

the true polygon. In the practical application of graphics to a loading of
this character, it is not necessary to employ more divisions than will pro-
vide for constructing a smooth inscribed curve such as will closely
approximate the true polygon.
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The equilibrium polygon for a uniformly distributed loading is a
parabolic curve. Some of the convenient properties of this polygon are
shown in Fig. 17.

30 Centroids of Areas

The centroid of an area is determined by the same principles that per-
tain to the finding of the resultant of a force system. The given area is
considered as a distributed load acting in any chosen direction. For
graphical treatment it is then divided into any number of convenient
parts of simple geometric form. The area of each of these parts is then
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Fia. 18. Centroid of I-shaped Area.

computed and the location of its centroid established. Each area is then
treated as a force having magnitude equivalent to the measure of the
area, and all such forces are assumed to constitute a parallel force sys-
tem. The line of action of the resultant of this assumed force system
will then pass through the centroid of the area. The determination of
the centroid requires two such solutions with the arca loads assumed to
act in such directions as will produce a satisfactory intersection of the
resultants.

Figure 18 illustrates the graphical determination of the centroid of an
L-shaped area.

31 Moment of Inertia

Graphical methods may be used to obtain the moment of inertia of

an area. The method developed by Professor Mohr of Aix-la-Chapelle
is as follows:

Assume the area shown in Fig. 19 to be subdivided into the elementary
areas a, ag, etc. These elementary areas are considered as loads, each
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acting at its own centroid and parallel to the axis Y'Y, with reference to
which the moment of inertia is to be determined. The force polygon at
a is then drawn with a pole distance p of any convenient magnitude.
Note that the pole distance represents an area to the same scale as is used
to lay off a;, as, etc. The corresponding equilibrium polygon is con-
structed at b and is represented by the polygon ghkmn. The tangent
lines representing the equilibrium polygon are produced to intersect the
axis Y'Y in the points ¢, p, ¢, r, s, and v.

F1a. 19. Moment of Inertia.

By construction triangles gtp and Oab are similar. Therefore
¢ d ad
r_a and tp = 2
a; P P

Hence the product of the intercept {p and the pole distance p gives the
statical moment of the area a; with respect to the axis YY.

imilar]
Similarly p X po = +asdy

pXq= —azy
pXrqg= —aydy
p X sr = —azds

(Counterclockwise moment considered positive.)
The total statical moment is

Zad = p(tp + pv — qu — rq — sr)
=p Xst
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Note that when p = unity, the intercepts on the YY" axis measure
statical moments directly. When p is of any other magnitude these
intercepts will measure the statical moment to some scale, depending
upon the value of p. Thus, when 1 inch equals n units of distance in the
equilibrium polygon, 1 inch of intercept on YY represents a statical
moment of np in (units of distance)3.

Considering again the similar triangles gtp and Oab, we find that

I

a(area gtp) = tp X d,

aldl x di = fl](l“lz

. | =

Similar relationships are evident for the other triangles.
Hence
> 92

2(area gtsnmkhg) = -
p

And, since Zad? = moment of inertia with respect to YV, it is apparent
that the moment of inertia is determined by multiplying twice the pole
distance by the area thus obtained from the equilibrium polygon.

Another graphical method, developed by Culmann, produces a value
for the moment of inertia by scaling an intercept on the axis of refer-
ence. In this method the intercepts tp, pv, vq, gr, ete., are considered as
loads applied at the centroid of the corresponding area divisions, a,, as,
etc. Thus tp is assumed to replace a;, pv replaces a,, etc. Force and
equilibrium polygons are then drawn for this second assumed force
system, and, by the same process of reasoning used in proving that inter-
cepts tp, pv, etc., represent statical moments of the area, it can be proved
that intercepts in this second equilibrium polygon represent moments
of inertia of the elemental arcas. The total intercept on the Y'Y axis
when multiplied by the product of the two pole distances will therefore
produce the moment of inertia sought.

The solution of a practical example by each of these methods is shown
in Fig. 20. The area is drawn to scale at a and divided into small con-
venient divisions as shown. These divisions are treated as loads, and
the force polygon is constructed at b, and the corresponding equilibrium
polygon is drawn at c.

By the Culmann method the intercepts on the axis as determined at
¢ are considered as loads applied at the centroids of the corresponding
area divisions. The total intercept ak is used as the load line for the
force polygon represented at d, and the loads, which will be positive on
one side of the axis and negative on the other, are represented by the
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several intercepts. The corresponding equilibrium polygon is repre-
sented in Fig. 20e, and the intercept mn is scaled. The product of this
intercept (measured to the samc scale used in laying out the area) with
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Fia. 20. Moment of Inertia of Channel Section.

the two pole distances gives the moment of inertia of the section with
respect to the axis.

It should be noted that theoretically the divisions of the area should
be of infinitesimal dimension in a direction normal to the axis. Since
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practically they must be finite in size, the resulting equilibrium polygons
will actually represent the tangents to the true polygons. The fact that
the true polygons are inscribed curves can be utilized in reducing to a
minimum the number of area divisions employed.

PROBLEMS

3-1 Find the center of gravity and the moment of inertia about the horizontal
axis through the center of gravity. (a) Solve graphically. (State scales used.) (b)
Solve analytically.

L L6"x6"x1”

. L~ Plate 15" x %~

“iIiS”x 3%"x%
L

8.2 (a) Find position and value of the resultant of the foree system A, B, C, and
D. Use scale 1 in. = 20 Ib, force polygon and 1 in. = 3 ft, equilibrium polygon.
(b) Check position of the resultant (intersection with line ad) analytically.

A=10# C=]15#

B =204 D=25#

45°

al 45°b ¢ d
4' 5' 5'

8.3 The loads are applied at the one-third points of lines AB and BC. Construct
the equilibrium polygon passing through points 4, B, and D. Use scale 1in. = 10 ft
for distances and 1 in. = 15 1b for forces.

B
15#\.80° 404
20#\50° 104

45°  45°

8
Y ¢
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8-4 Find the forces acting in members AB and BC. (a) Graphically. (b) Ana-
lytically.

10°

50

3:6 A system of forces is to be held in equilibrium by a rope passing through
points A and B, which are 20 ft apart. (a) Determine the length of the suspension
ordinates a, b, and ¢ when the tension in the rope at A is 10 b, (b) Determine stress

5# 5#
.5 5 5 5
! A4\ 453
A v B
| o _Fl
A%
Rope

in cach part of rope under the conditions of (a). (¢) Assuming that it is permissible
for the rope to take any desired form of suspension, what would be the smallest value
possible for tension in the rope at B? Use seales § in. = 1ft; 1in. = 4 Ib.

3.6 (a) Pass an equilibrium polygon through points G, H, and K. (b) Find reac-
tions in direction and amount, graphically. Use scales 1 in. = 10 ft; 1 in. = 10 lb.

204

15# H
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8.7 The forces shown are acting on a chord which is held at A and passes over
a pulley at F. Neglect weight of chord. (a) Find the form assumed by the chord
when W = 25 lb. Give ordinates from linc AF. (b) Find the necessary weight

15# 10# 104 5#
A%‘Q&B c_YD L% \F
LY 44

; \ 1
5" l 00 | 5| 100 |5 |
+G w

to cause the chord to pass through point (7, which is 10 ft below the middle of line
AF. Use scales 1in. = 10 ft and 1 in. = 10 lb.
3-8 Pass an equilibrium polygon through points S, M, and K.

S ¥ 204+ K
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Chapter 4
REACTIONS—SHEAR—BENDING MOMENT

32 Character of Reactions

The supports of a structure may be classed as either (a) simple.
(b) hinged, or (c) restrained. These three types are shown diagram-
matically in Fig. 21.

'_‘Hg — - 4 auis

Hinge

‘R;;ctio/n Vari;s Reaction
(a) (%) ()

Fra. 21, Reactions,

A simple support (Fig. 21a) is one which permits rotation in either
direction but prevents translation in one direction. The reaction is
therefore a force acting in a line normal to the plane of permitted trans-
lation.

A hinged support (Fig. 21b) is one which permits rotation in either
direction but prevents translation in any direction. The reaction must
pass through the center of the hinge, but it may have any line of action
through this point.

A restrained support (Fig. 21c) is one which provides resistance to
rotation and prevents translation in any direction. The resistance of
such a support may be regarded as consisting of three component parts:
a force to prevent translation in any one given direction, a force to pre-
vent translation in any other direction, and a couple to resist rotation.
Usually the two forces preventing translation are regarded in the hori-
zontal and vertical directions, and they are components of the true reac-
tion, which is the resultant of these components and the resisting couple.
A support is said to be fized when it develops a resisting couple which
prevents rotation of the end of the structure so supported.

If a set of active forces are assumed to act on a body as shown in Fig.
22a, the body can be maintained in a state of equilibrium by a force E,
which is equal in magnitude and opposite in direction to the resultant of

49
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the loads. If equilibrium is to be established by the application of two
or more forces, the force £ will be the resultant of such forces.

If the body rests on two simple supports as indicated in Fig. 22b,
equilibrium is possible only when these supports are capable of developing

Typical Support Details.

such resistances as will form the components of the resultant resisting
force E. The reactions shown are the only ones which can maintain
equilibrium of the body for two simple supports with bearing planes at
the given inclinations. Equilibrium is possible with additional simple
supports in other locations provided that the resultant of the reactive
forces developed at all supports is the force E. In addition to the fore-
going requirement for static equilibrium, the supports must have

Fia. 22.

sufficient strength to develop resistances of the necessary magnitudes
and directions. .

Should the supports be the hinged type as in Fig. 23, the reactions
may have any direction through the hinges but must intersect on the
line of action of the resultant of the loads. Since the static requirements
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for equilibrium can be fulfilled by an infinite number of pairs of reac-
tions, such a problem is termed statically indeterminate. For the solu-
tion of such problems it is necessary to take into account the elastic
behavior of the structure.

(b)

When the supports are of the fixed or partially fixed type, the problem
is also statically indeterminate, and neither reaction can be established
except through a consideration of the elastic behavior of the structure.

33 Graphical Determination of Reactions
Figure 24a represents a beam carrying loads F;, Fs, and F3 with a
hinged support at the right end and a roller bearing inclined at 45 degrees

N Line of action of R,

\\ determined by fand B
(RN
AY

Known direction of R,

Equilibrant

/ \ O / A of Loads
0, R, /K
2 |/ 0¢ 17
~ 0} | ” VAl ]

< e 4 o
~ N P rd F;
~ 7 e (
Equilibrant of Loads */ AN

9
(¢) Equilibrium Polygon

d
(b) Force Polygon
F1a. 24. Graphical Determination of Reactions.

to the horizontal at the other end. In accordance with the principles
and methods outlined in Chapter 3, the reactions may be determined
graphically as follows:

Lay off the forces Fy, Fy, and F3 to scale in the force polygon, Fig.
24b, as ab, be, and c¢d, and determine the magnitude and directions of
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their resultant as ad. Select a pole O at any convenient point, and con-
struct the force and equilibrium polygons in order to locate the resultant
force. Forces may be extended along their lines of action to any
convenient location for the equilibrium polygon. Point g locates the
equilibrant of the forces and is therefore a point on the resultant of the
reactions.

Line gf through g parallel to da represents the resultant of the reac-
tions which must intersect & common point on this line. The line of
action of R; is known so that this point of intersection is located by
producing R; to intersect line gf at f, and fB gives the dircction of R,.

Known point

F, F, \onR,
; f%@ 24, '

/

Ly
/ Oa ob /
Equilibrium Polygon R,/ — =

K B
&= 0=
L
\\

R\

-

¢

N
Force Polygon 4
Fre. 25. Reactions Determined by Equilibrium and Force Polygons.

With the direction of the reactions determined, their magnitudes are
determined by drawing de and ea parallel to fB and Af.

Figure 25 presents a more direct solution of the same problem and
the one which must be used when the reactions intersect at a point
inconveniently located on the drawing.

In this solution the equilibrium polygon is drawn so that strings Oa
and Od in the equilibrium polygon will represent components either of
R; and R, or of F; and F3, respectively. Since only one point on R is
known, it is obvious that Od must be drawn through this point, and the
remainder of the equilibrium polygon is thus located with respect to
this limited position of string Od.

String Oa is extended to intersect the known line of action of R,, and
a so-called closing line is then drawn from this point to the starting point
of the equilibrium polygon at B.

A line Oe is then drawn in the force polygon parallel to the closing
line, and the reactions will intersect on this line and are readily deter-
mined from the known direction of R;.
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The proof of this construction is as follows: Assume forces F,, F,,
and F3 replaced by their components a0 and Ob, bO and Oc, and ¢O and
Od, respectively, the equilibrium polygon locating these components in
space. Because of the arrangement all of these components will cancel
except component a0 of F; and Od of F3. Continue a0 to intersect R;,
and at this point assume R; resolved into components Oa and e0; com-
ponent Oa of K, will cancel component aO of Fy, leaving only the com-
ponent e0. Continue Od to intersect R,, and at this point assume R,
resolved into components dO and Oe; component dO of R, will cancel
component Od of F3, leaving component Oe. Since by construction
components e0 of R, and Oe of R, are of the same magnitude and have
the same line of action, they will cancel, proving equilibrium of the
beam when acted upon by forces thus determined.

34 Analytical Determination of Reactions

Reactions are usually determined by analytical methods. The exter-
nal forces, loads, couples, and reactions constitute a force system which
must be in equilibrium if the structure is to remain at rest. The condi-
tions which must be fulfilled when all the constituent parts of this force
system lie in the same plane are expressed by the static equations
ZF, =0, ZF, =0, and ZM = 0, where F, and F, represent com-
ponents of the forces in the directions of any convenient pair of coordi-
nate axes, and M represents either the moment of any force about any
point in the plane of the force system or the value of any couple included
in the system. When all the parts of the external force system do not
lie in the same plane, six equations of condition must be fulfilled, namely
2F,=0,2F,=0,2F,=0,2ZM,, =0, ZM,, =0, and ZM,, = 0.
For purposes of analysis and design, most structures can be divided into
parts such that the external force system on any part may be considered
as lying in a plane.

At each simple support the arrangement of the construction will estab-
lish the direction and location of the reactive force, hence there is but
one unknown left to be determined at each such point. This unknown
is the magnitude of the reaction. It should be noted that for such a
structure as a beam resting on a wall the reaction is distributed over the
area of contact or bearing area. Such a support is usually regarded as of
the simple type, and the reactive force, which is the resultant of the
distributed bearing pressures, is considered as acting at the centroid of
the bearing area. For an exceptionally long bearing area (measured in
the direction of the span) the distance from the inside edge of the sup-
port to the reaction is generally arbitrarily assumed to be not greater
than one-half the depth of the beam. The span length for a simply sup-
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ported beam is the distance between the reactions. The clear span is
the distance between the inside faces of the supports.

At each hinged support the reaction must act through the hinge, and
there are two unknowns to be determined at each such support. These
are the magnitude and the direction of the reaction. Since the hori-
zontal and vertical components of the reactions will completely deter-
mine these unknowns, they are the values usually computed. A struc-
ture with two hinged supports is statically indeterminate since there are
more unknowns than there are equations of static equilibrium. An
exception is noted for the three-hinged arch, as will be described later.

For each restrained or fired support there are three unknowns: the
horizontal component of the reaction, the vertical component, and the
couple necessary to restrain or prevent rotation. Hence a structure
with more than one fixed or restrained support is statically indeter-
minate.

As regands reaction determinations, statically determinate structures
are therefore limited to those supported by (a) two simple supports;
(b) one simple support and one hinged support; (¢) two hinged supports,
provided that an intermediate hinge is placed in the structure between
the supports, as for a three-hinged arch; (d) one fixed support.

35 Reactions for Fixed Loads

When the position of the loading has been established, the reactions
may be determined by solving the equations for static equilibrium.
The procedure is illustrated in the following examples:

Ezample 1 (Fig. 26a)
Beam simply supported at A and B; with B as center of moments, write
ZM =0.
20R, — (500 X 16) — (120 X 10 X 5) = 0

16
RA = §0(—)0"26—b”0(9 = 700 lb
From ZV =0
Rs— 500 — (120X 10) + Rg =0
Rg = 500 + 1200 — 700 = 1000 Ib
5004 5004 455
1204/1t. H
4 5 : 120/1t. Hy
4' _L 6’ I___ 10’ ) 4’ 6’ L 10’ P
Y S, SPTR BN Y
| ) g Sysn |
(a) ()

Fi1a. 26.



REACTIONS FOR FIXED LOADS 55

Ezxample 2 (Fig. 26b)
Beam simply supported at A and hinged at B.

Resolve 500-1b load into horizontai and vertical components at its intersec-
tion with line AB.

Horizontal‘component = 500 X 0.7 = 350 Ib

Vertical component = 350 1b
With B as center of moments, write ZM = 0.

20R4 — (350 X 16) — (120 X 10 X 5) = 0

5600 <+ 6000
Ra = T 580 1b
From ZV = 0,
Vg = 350 4+ 1200 — 580 = 970 Ib
From ZH = 0,

Hp = 350 1b

Ry = v/(350) + (970)* = 1030 Ib
Ezxample 3 (Fig. 27)
Truss simply supported at A, hinged at B, and with loads as shown. Note
that loads are given in kips.! The resultant load is 30K and will pass through
point D, where it is resolved into horizontal and vertical components.

o
Resultant\\ :8 5K
Load 30K \. |
10K c
\
10K \\
) 2
a2
5K \ .
A \ D &0 B Hp |
Hinge,
. 4Panesat9’-36" R
7N
Fo. 27. T
ZM = 0, center at B Ri= 26;; 18 = 13K
ZV =0 Ve = Ra = 13K
ZH =0 Hp = 15K

1The term kip is an abbreviation of kilo-pound and designates one thousand
pounds of force or load. In structural work loads are commonly expressed in kips as
designated by the symbol K.
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Erample 4 (Fig. 28)

Beam simply supported at A and B acted upon at section B by a clockwise
couple which has a magnitude of 1000 ft-lb.

fa 100* IMp =0 —20R4 + 1000 = 0
A!_,ﬁ 20’ i) R4 = 50 Ib (acting downward)
Fie. 28. : 3F, =0 Rp = 50 Ib (acting upward)
Ezxample 5

If the couple shown in Fig. 28 is applied to the beam in Fig. 26a, the reactions
may be found from the solutions of Examples 1 and 4, thus

R4 = 700 — 50 = 650 Ib (acting upward)
Rp = 1000 + 50 = 1050 Ib (acting upward)

Ezample 6 (Fig. 29)

Three-hing&i arch with loads as shown. Note that although the hinged reac-
tions at A and B involve four unknowns, the introduction of a hinge at C provides

331 F, =4004
C
Fi=3008 e
It Fy=3008
\ | //
A T
N 7
Ry
Wigs o, \ ’
\\ //
1
H, A N7 B Hp
m;.‘“‘““"‘“f““““"u;;. S
9o 9’ Y.
/] f B
18 |
Fia. 29.

an additional conditional requirement for equilibrium, namely that the forces
and reaction acting on segment AC (or segment BC) must have zero moment
about C as 4 center.

F; and F3; may be resolved into horizontal and vertical components at their
intersections with AB, thus

300 X 0.7 = 210 1b
210 1b
210 Ib
Vertical component Fj = 210 Ib

Horizontal component F,

Vertical component F,

Horizontal component F3
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ZM = 0 (moment center at hinge B)
18V4 — (210 X 9) — (210 X 9) — (400 X 6) =0
Va=3431b

\
i — \ ~ N
30#d T T~~~ S AN
Resultant Thrust on Section XX = 4354 (Scaled value of Oc). — ' R~—_ ~ N
Transverse Shear on XX is the radial component of Oe. TT—-—
Normal Thrust on XX is the tangential component of Oc.
Bending Moment on XX =435x0.9=+391.5'#

Fia. 30. Graphical Solution for Three-Hinged Arch.

2V =0
Ve + 343 — 210 — 400 — 210 = 0

Va=4771b
ZM. = 0 (forces on segment AC, hinge C as center)
—OH, + B43 X9 — (210X 9 =0
Hy=1331b
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2ZH = 0 (entire structure)
133 + 210 — 210 — Hz = 0
Hy =1331b

Ra = v/ (343) + (133)% = 368 Ib

Re = V(@77 + (133)2 = 495 Ib

The graphical solution of this problem, shown in Fig. 30, involves
passing an equilibrium polygon through the three points 4, B, and C in
accordance with the procedures given in Article 28. Oa will then
represent the magnitude and direction of the reaction at A, and dO the
magnitude and direction of the reaction at B.

To facilitate computations for a particular type of loading, data may
be prepared in the form of a so-called moment table, such as is shown
in Table 2 for Cooper’s E-60 engine loading. The following example
illustrates the use of this moment table for computing the reactions of a
simply supported span:

Ezample

Span, 150 ft; axle 7 at a point 100 ft from right support.

Reading under load 7 in set 1, we see that load 1 is 37 ft from load 7 and is
therefore on the span. Reading under the end of the uniform load in set 7,
we see that the distance from axle 7 to the beginning of the uniform load is 72 ft,
and there are, therefore, 28 ft of uniform load on the span. The total moment
of all loads about the right support will equal the moment of all axle loads about
the last load (or end of the uniform load), plus the product of the sum of such
loads and the distance from the last load (or end of the uniform load) to the right
support, plus the moment of the uniform load about the right support. Thus

Total wheel loading, loads 1 to 18 inclusive = 426,000 Ib
Distance from end of uniform load to right sup-
port = 28 ft

Moment of wheel loads 1 to 18 inclusive about
the end of the uniform load (read under end

of uniform load set 1) = 24,546,000 ft-1b
426,000 X 28 = 11,928,000
Moment of uniform load = 3000 X 28 X 14 = 1,176,000
Total moment about right support = 37,650,000 ft-1b
R, = 37,650,000 _ 251,000 Ib

150
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36 Reactions Caused by Live Loads

The live loading applied to a structure is commonly of such character
that it may shift its position, ur move from point to point in the span;
hence it is necessary to place this loading in the position which produces
maximum effect on the structure. Since the live load may be changed
in position or even cntirely removed, whereas the dead load is fixed, it
is desirable to determine separately the effect of each loading, assuming
that each acts independently of the others. The results may then be
combined in accordance with the nature and probability of coincidence
of the several loadings considered.

The effect of the position of a load on the reaction can be studied by
considering a single load of unity moving across the span. Thus in
Fig. 31 the load F = 1 pound is assumed to move across the span from

| Resultant=80
10 30; 30 10

14 z 5.0 . 515" 1 5[5"A
t Ry
A B 25¢

T |
: (a) | 1# id
\ | B# on P 2%
bl | Y Y
A | Ry =(10X.2)+(30X.4)+(30%.6)+(10X.8)
A B oo
(b) R, =80x.5=40
F1a.31. Influence Line for Reaction. Fia. 32. Reaction Determined

from Influence Line.

B to A. The distance r will thus vary from x = 0, when the load is
directly over B, to r = L, when the load is directly over A. For the
load at any given point between B and A as shown at a, the value of
R4 = z/L. All the possible values of R4 are given by the graph at b,
where AB represents the span to scale, and the ordinate represents the
scale value of R4 when the unit load is at a corresponding point in the
span. This graph is called an influence line.

For a load of magnitude F, R4 = Fx/L; hence the reaction equals
the product of such a load and its corresponding influence line ordinate.
If several loads occupy the span, R4 = Z(Fz/L); hence the reaction is
the sum of the products of loads and their corresponding influence line
ordinates (Fig. 32). Since the ordinates jn this influence line are each
proportional to z, the value of R4 for a system of concentrated loads will
equal the product of the resultant of the loads and the influence line
ordinate corresponding to such resultant. The maximum value of R4
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will therefore be obtained when the resultant of the loads is located as
near A as possible; thus with the loads in Fig. 32 moved 5 feet to the
left, R4 = 80 X 0.7 = 56. With any further movement to the left,
F; will be removed from the span thus creating a new load system whose
resultant again must be placed as near A as possible. This condition
will place load Fz at A and R4 = (30 X 1) + (30 X 0.8) + (10 X 0.6)
= 60. To determine the maximum possible value of R4, all load posi-

tions must thus be studied.
The reaction for a partial uniform loading may be obtained from the
influence line as in Fig. 33. Thus the reaction at A produced by an ele-
ment of loading w dx is (w dz)y, and

W' o edx for the entire load
A +b +b
R, =fa wdx-y = wr ydz (20)
a a

> &y

1
el b
Ry

L

-+

% ,

Hence the reaction is equal to the
product of the load per unit of span
length and the area of the portion of
the influence line diagram that is in
Fic. 33. Uniformly Distributed Projection under the uniform load.
Load Applies to Influence Line. The maximum reaction for such a load

would be produced by placing the load
immediately adjacent to the support and, for a uniform load of
unlimited extent, by loading the entire span.

[ — _ﬂ_]L._

18

_——_L X

37 Internal Forces

The internal forces which exist at any point in a structure may be
determined by dividing the structure into two parts by a cutting section
at the point to be investigated and establishing the complete force
system necessary to produce equilibrium of either portion. Thus the
internal forces on a section located 6 feet from A in the beam shown in
Fig. 26b are determined by cutting the beam at this point and applying
the equations of static equilibrium to the force system acting on either
portion as in Fig. 34. Thus for the part on left of section

ZH =0 N = 500 X 0.7 = 350 Ib (horizontal)
ZV =0 V = 580 — (500 X 0.7) = 230 Ib (vertical)
ZM = 0 (moment center at intersection of N and V)

M = (580 X 6) — (500 X 0.7 X 2) = 2780 ft-lb
(counterclockwise)
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Thus the forces N and V, together with the couple M, will combine
with the loads and reaction on this part of the heam to provide a force
system in equilibrium. The resultant of the loads and reaction on this
part of the beam is the resultant force on the section. The resultant of

sw\#gJ Axi Beam axis\ 1204/ft
is
A-—AH{/_ 13._),” M@q-_xv -_f__étf_f?'f’“
u N 14 1 Vg =9704
& I 2 Cutting section—"1<4 | 10

R,=580
Fia. 34.

N, V', and the couple M must be equal and opposite to that for the loads
and reactions on this part. Similarly, considering portion on right,

IH=0 N = Hg =350 1b
V=0 V = (120 X 10) — 970 = 230 Ib
IM = 0 (moment center at intersection of N and V)
M = (970 X 14) — (1200 X 9) = 2780 ft-Ib (clockwise)

For beams, it is the conventional practice to pass the cutting section
in a direction normal to the axis of the beam and to determine the com-
ponents N and V, of the resultant force on the section, normal and
parallel respectively to this section. N is located at the intersection
of the axis of the beam with the cutting section (through the centroid of
the cffective cross section) and is called the normal thrust. V acts in the
plane of the section and is called the transverse shear or shear. When N
and V" are determined in accordance with the above convention, M is
known as the bending-moment.

For frames, such as the one represented in Fig. 27, the members are
assumed to be joined by pins in such a manner that the force in any
member will coincide with the axis of the member. The forces in such
members as are cut by the section which divides the structure into parts
will, together with the loads and reaction on any such part, cofistitute a
force system in equilibrium.

38 Shear and Bending-Moment Due to Fixed Loads

When all the forces on one side of the section are resolved into com-
ponents parallel and normal to the section, the shear will equal the
algebraic sum of the components parallel to the section. In a hori-
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zontal beam it will equal the algebraic sum of the vertical components
of those loads and the reaction, which are on one side of the section.
For convenience in identifying the direction of shearing action in a
horizontal structure, the shear is called positive when the resultant force
on the left of the section acts upward,
thus producing the tendency shown
at Fig. 35a; action in the opposite
direction is called negative shear

(a) (b) (Fig. 35b).
Positive Shear.  Negative Shear. A shear diagram is the graphical
Fic. 35. record of the shears which occur simul-

taneously on all sections of a structure
(Fig. 36a). Such diagrams are usually plotted on a base normal to the
direction of the cutting sections (for a beam, the base would be drawn
parallel to the axis) with positive shear plotted above the base line and
negative shear below.

Bending-moment was defined as the algebraic sum of the moments of
the forces (including N and V) on one side of a section with reference
to a selected moment center. For beams, the moment center is con-
veniently chosen at the intersection of the axis of the beam with the
cutting section; hence the bending-moment will equal the algebraic sum
of the moments of such loads and the reaction, which are on one side of
the section with respect to this center. For trusses, moment centers
are located at the truss joints.

For convenience in identifying the direction of bhending-moment
action, a resultant clockwise rotation of the forces and reaction on the
left of the section, with respect to the moment center, is called positive.
Negative bending-moment thus indicates a resultant tendency of the
loads and reaction to rotate that part of the structure on the left of the
section in a counterclockwise direction. In a horizontal beam, it will be
noted that positive bending-moment causes the beam to sag downward
or to assume a curvature which has its center above the axis of the beam.
Positive bending-moment will therefore tend to produce tension in the
bottom, fibers of a beam, and negative bending-moment will tend to
produce gompression in the bottom fibers.

Simultaneous values of the bending-moments on all sections of a
structure may be recorded graphically in the form of a bending-moment
diagram (Fig. 36b).

Values of the maximum bending-moment and form of the bending-
moment diagram for cases of simple loading on horizontal beams should
be memorized. Thus for a single concentrated load, the bending-mo-
ment diagram is a triangle with maximum ordinate under the load; the
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maximum bending-moment equals the product of the load with the
lengths of the two segments into which its position divides the span,
divided by the span length. For a uniformly distributed load of w 1b
per sq linear ft the bending-moment diagram is a parabola with maxi-
mum ordinate at the center of the span equal to wL?/8.

39 Relationship between Shear and Bending Moment

When a beam is acted upon by a system of loads perpendicular to its
axis, it can be shown ? that the shear is the first derivative of the hending-
moment (V = dM/dr). Since d3 /dr measures the slope of the bending-
moment curve, it follows that a maximum (or minimum) bending-
moment will occur at the points where dM /dx = 17 = 0. Thus sections
of zero shear identify locations of potential maximum bending-moment.

Another useful relationship is obtained by integrating the expression
dM = Vdx. Thus if M; and M, represent the values of the bending-
moments on two sections located at distances a; and a,, respectively,

from the left support,
Mo a9
f dM = f Vde
M 1 ay

and M, — M, = area of shear diagram between the two given sections.
Referring to Fig. 36a, we note that the bending-moment at a point
8 feet from the left support is 5760 foot-pounds; at 4 feet from the
support the bending-moment is $800-foot-pounds. The difference is
960 foot-pounds and equals the area of the shear diagram between these
two points, or 240 X 4 = 960 foot-pounds.

This relationship may he used to compute the bending-moment at
any section, since

M, = M, + (area of shear diagram between sections)

Thus the bending-motion at the left end of the uniform load is

M, = bending-moment at the concentrated load = 4800 ft-lb
Area of shear diagram bhetween concentrated load and uni-

form load = 240 X 4 = 960 ft-lb
M, = 4800 + 960 = 5760 ft-Ib

If section 1 is located adjacent to the support, where M, = 0, it will be
seen that the bending-moment on any other section equals the net area

? 8. Timoshenko, Strength of Materials, Part 1, p. 108, D. Van Nostrand Co., 1930.
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of that portion of the shear diagram which is on either side of such a
section. Thus for the section 8 feet from the right support

M = (1200 X 4) + (240 X 4) + (4 X 240 X 2.4) — ($ X 560 X 5.6)
= 4800 + 960 + 288 — 1568 + 4480 ft-lb

It should be noted that, for restrained or fixed beams, M; must be
included in the computation of bending-moment.

40 Superposing Shear or Bending-Moment Values

It is sometimes convenient to scparate the loads on a structure into
individual units or groups, calculating the value of the shear, bending-
moment, or other effect separately for each unit or group and finally
combining these separately determined results to obtain the effect of the
combined loading. Thus, for the beam shown in Fig. 36, if the concen-
trated load is considered as acting alone, the bending-moment under the
load is 3200 foot-pounds. For the uniform load acting alone, the
bending-moment on this same section is 1600 foot-pounds. When these
loads are applied simultaneously, the bending-moment is the algebraic
sum of these separately determined values, or 4800 foot-pounds.

The bending-moment diagram for one portion of the loading may be
superposed on that for another in such a manner that the ordinates com-
bine graphically to show the resultant effect of the combined loading.
The bending-moment diagram for the foregoing beam is thus con-
structed as shown at ¢. The effect produced by reversing the direction
of the concentrated load which would introduce negative bending-
moments, to be combined with the positive bending-moment, is as
shown at d.

41 Influence Line for Shear

The shear on a given scetion produced by live loading may be studied
by means of influence lines constructed in a similar manner to those for
reactions as discussed in Article 36. It is necessary to recognize two
types of structural conditions: (1) where the loads are applied directly
to the structure, and (2) where loads are applied to a floor system or
intermediate construction which is supported by the main structure.

The influence line for shear (Ifig. 37b) on any section of a structure
representing the first type is a combination of the influence lines for the
reactions at either end of the structure as shown at a. With a unit load
in the position shown, Ry = } pound, and, since there are no other
forces acting on the portion of the structure on the left. of xx, this is also
the value of the shear on this section and is represented by the ordinate
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in the influence line under the load. The influence line for shear may
be employed in finding the shear caused by a number of loads or by a
uniformly distributed load in the same manner as discussed in Article 36.
Thus in Fig. 37 assume two concentrated loads of 1000 pounds each
located at 8 feet and 12 feet, respectively, from B. The influence-line
ordinate under the load nearer the support is + 4 pound and under the

1# 8
1X \y

A —— B
6 1X :
Ry 1 24’ ) RB

|

| { |
|
1# |
|

|
] hear
14, a8
|
.|
i
Negative ~— :
h =~
Shear ~— n#
Influence Line for S~ |
Shear on XX (%) =~y

Fia. 37. Influence Line for Shear in Beam.

other load +3% pound. The shear is then equal to (1000 X %) +
(1000 X %) = +833 pounds. It will readily be seen from the influence
line that these loads will produce greater shear if moved toward the
section, since the influence-line ordinates will correspondingly increase.
The influence line is thus useful in visualizing load positions which pro-
duce maximum shear. For a uniformly distributed load, since the shear
equals the intensity of loading (load per unit of span length) multiplied
by the projected area of the influence line under the load, it will be noted
that maximum positive shear will occur on section zz when such a load
extends from B to the section. For a uniform load of 100 pounds per
foot, the maximum positive shear may then be computed as follows:

Influence-line ordinate at section =4 x1=4Db
Area of influence-line diagram under load = § X § X 18 = 2
Shear =100 X 4L = 4675 1b
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The second type of structural arrangement is illustrated in Fig. 38.
In this type, the live loading is applied to an intermediate construction
or superstructure whose reactions produce loads on the main structure at
a, b, ¢, d, and e. Usually this intermediate construction is an arrange-
ment of simple beams, and in such a case the reactive forces at these
panel points are determined in accordance with the principles previously
outlined for reactions. Thus, any loading applied on the superstructure
hetween ¢ and d would produce loads on the main structure only at
these two points. The reasoning applied to the construction of the
influence line in Fig. 38 is as follows: For a unit load acting on the super-
structure at any point between

¢ and e, the only force acting A r = I | PR
on that portion of the main 4 : : B
structure on the left of section RA) o ) Rp
xr is R4; therefore, the influ- 3 Panels at 67=24" >~

]
ence line corresponding with !

1
|
I
1

l}

! !

such load positions will coincide | ~~~-L _ I

|
|
|

with that for R4. Now if the 1#| Ve Positive
unit load is moved into panel b R#
be, starting from ¢, B4 will in- ” ™ Zero Point

. . . . Negative T~
crease as indicated by its influ- -~ n#

~

-~

-

ence-line ordinates, but a reac- TTe~a)
tive load will also be created Jya. 38. TInfluence Line for Shear in Girder.
at b which must be subtracted
from R4 to determine the shear on the section at xr. The joint load
at b varies directly with the position of the unit load in panel bc, from a
value of zero when the unit load is at ¢ to unity when it is placed at b.
This produces the sloping portion of the influence line between ¢ and b.
When the unit load arrives at b, the deduction is unity and the influence
line hence coincides with that for Rz. The zero point is a significant
feature of this influence line, any load to the right of this point causing
positive shear and to the left producing negative shear. It may readily
be located from point ¢ by the following proportion:

Let x = distance from ¢ to zero point.

Then by similar triangles

r 3
6 3+1i
6X3

ry

A uniform load will produce maximum positive shear on section xx when
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it extends from support B to the zero point; it will produce maximum
negative shear when it extends from support A to the zero point.

42 Influence Line for Bending-Moment
The influence line for bending-moment is developed by applying
principles previously discussed. Thus in Fig. 39 let a unit load act at
any point on the right of section xx. Since R4 = 2/L is the only force
on the left of rr, the bending-

A x = p Mmoment will equal xa/L and is

P plotted as an ordinate under the

Ry a \,JLA b »>{B8 given position of the unit load.
L

Other positions of the load pro-

H duce ordinates which define that

)} portion of the influence line cor-

e responding to segment b of the

- structure. When the unit load

acts on the left of section rz,

Rp = L — z/L and the bending-
moment equals (L — x)b/L.

From this influence line it is

readily seen that a load at any

Influence Line for B.M. on X X point causes positive bending-

Fia. 39. Influence Line for Bending moment on any given section;

Moment. that a single concentrated load

will produce maximum bending-

moment when placed at the section; and that a uniform load will produce

maximum positive bending-moment when it extends over the entire span.

za
L

43 Concentrated Load Systems—Maximum Shear

When a series of concentrated live loads is applied to a beam, it is
apparent from a consideration of the shear influence line that to produce
maximum shear the loads should be spaced as closely as permissible.
Let a, b, ¢, etc., represent those minimum distances, and consider the
condition where loads are applied directly to the structure as in Fig. 40.
If it is assumed that the loading moves across the structure from right
to left as at a, the positive shear will increase as the loads move toward
the left until load 1 arrives at a point immediately to the right of the
section as at b. If W, represents the total load on the structure and

Wiz1 the total moment of all loads about the right support, the shear
on the section is
Wiz,
Vl = I (2])
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Now if the loads are moved further to the left as at ¢, load 1 will produce
negative shear, and as the loads move further to the left the negative
shear caused by load 1 will diminish while the positive shear caused by
the remaining loads will increase. If the shear is increased by this shift
in position of the loading, the movement to the left should be continued

[ ST I I
| ®@@®15 (GAGNOXO)

Rl \ m l| (Section

L
(a)r Wll‘—‘z'\
(OXOXOXOXOROXONORO;
A m | L

(8)

OJI0IONOXONGRONOXO]

Fia. 40.

until load 2 reaches the section, as at d, when a second determination
of the shear must be made. With the loading in this position, the shear
on the section will be

Wozs P Wiz, + a) + Pef

Vo = —_ = — — - P
L ! L L !
Wlx, Wia Psf
= MATL ey 22
L + 7 + I 1 (22)

w Wb P
e -y Ty (23)
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Comparing these values, we see that

era P, 6. f
Vo > Vy when | — + > P, (24a)
L L
Wyb Pqg
V3 > Vg when T + ; > Py (24b)

In accordance with the foregoing procedurc the criterion for com-
paring values of shear produced, by any two positions of the loading,
is as follows. With the loading assumed to move across the structure
from right to left, let A refer to any position with a given load P, at
the section. Let B refer to a position with any succeeding load at the
section,

value of shear on section with loading in position 4.

value of shear on section with loading in position B.

sum of all loads on span when loading is in position A

(include loads over supports).

YP = sum of all loads, including P,, which cross the section in
shifting loading from position 4 to position B.

¢ = distance loading moves from right to left in shifting from

position A to position B.

M), = moment about the left support of all loads which run off
the span in shifting from position A to position B.

Mp = moment about the right support of all loads which come on

the span in shifting from position A to position B.

where V4
Vg
114

Then
We — ML + AIR

L

Ve > V4, when [ ] > ZP (25)

When the loads are transmitted to the structure through an inter-
mediate construction (Fig. 41) a more direct procedure may be used.
From a consideration of the influence line at b it is apparent that for
positive shear in panel ab, panel point b is the critical load point, and
the loads must be located with one of the loads at this point. With loads
arranged to meet this requirement as at a,

where W = total load on the span.
W, = total load in the panel where the section is located.
W2 = total load on that part of the structure on the left of the
given panel.
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The actual loads delivered by the floor system to the structure will be
those shown at ¢ and the shear on section zz is

V=R, —Wg—1r (26)
Wz WIZI
=— - - 27
7 2 > (27
. z
Wi >
w
@“@ O 0 06 6
L | I
o = =t b~ e
Rz,“ X L A
(a)
—— _ P
b= —— Positive 1
Negative &) TTme—— !
W, T TTme—— 3
[ B
O "
R | ¥ ¥
R4 e '{, b ITRR
(c)

l 10’ I 10 l 10 I 10 I 10 l 100 | 10’|| IO’,I
10K

10K 20K 10K 20K 10K 10] 10K

000 O0®6

) GNP G GRS O -

—a r'-_. b — ——— —— " - T T

" Panels at 16° = 96’

Fig. 41.

If this position of load produces maximum shear, the value dV/dx will
pass through zero as the load at b crosses panel point b; hence,

w W
T E N, (28)
dc L P
and W
—2=W1 (29)
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Note that dz; equals dx since the loads remain at fixed distances apart,
and that it is assumed that no loads come on or run off the span when
the loading is moved an infinitesimal distance right or left.

As the particular load at b moves across this point, the value of W,
will change from

W, (min) = total load in panel ab excluding the individual load at
point b
to
W, (max) = total load in panel ab including the individual load at
point b.

For maximum shear, therefore, the loads must be so arranged on the
span that

Wp : 3 (30)
> W, (min)

At d the live loading shown is spaced at 10-foot intervals and may
occupy any position on the span. When the loading is arranged on the
span in the manner shown, with load 3 at point b,

Wp 90 X 16 5 < W, (max) = 30

L 96 < W, (min) = 20

This position does not satisfy the criterion and hence will not cause
maximum shear in panel ab. Try placing the loading with load 2 at
point b.

Wp 80X 16 134 < W, (max) = 30
L 96  °> W, (min) = 10

This position satisfies the criterion, thus indicating a potential maximum,
and the corresponding shear must therefore be computed.
Try placing the loading with load 4 at point b.

30
= — )
L 96 S W, (min) = 10

Wp 100 X 16 1(.2'< Wi (max)

This position also satisfies the criterion and the corresponding shear
must also be computed. Since other positions will obviously produce
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less positive shear, the maximum positive shear is computed as follows:

Load 2 at b
Left reaction Ry, = 285 kips
Total load between R, and ¢ = 0
Joint load at ¢ = 10—;—(6& = 6.25
6.25
Shear on rz | = +22.25 kips
Load 4 at b
Left reaction R, = 478 kips
Total load between R, and a =30
. . 10 X 10
Joint load at a due to loads in panel = T 625
36.25
Shear on rx = +11.55 kips

Maximum shear is therefore obtained by placing load 2 at b.

The same principles apply for determining negative shear with a as
the critical point at which one of the loads must be placed.

44 Concentrated Load Systems—Maximum Bending-Moment

From a consideration of the influence line for bending-moment (Fig.
39), it is apparent that every load placed on the structure produces
positive bending-moment and that the loads should be spaced at mini-
mum distances apart. As the given system of concentrated loads moves
from right to left across the span, the bending-moment will steadily

Resuttant of it W < *
Loads on Span—>]
- "’l X .
O ® 6 & O
a Section
R L Rp
Fia. 42.

increase until the first load reaches the section. If the loading is moved
further to the left, the cffect of load 1 will diminish and that of the
remaining loads will increase. If the total bending-moment has been
increased by such additional movement of the loads, it is therefore
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obvious that this increase will continue until the next load arrives at the
section. It can therefore be concluded that the maximum bending-
moment will always occur when one of the loads is at the given section.
In Fig. 42, the loads are placed to fulfill this condition and

R, = * 31)
)
Wxa
M= RLa bt ‘Vl;l'l = T - Wlxl (32)

where W = total load on the span.
Wz = moment of all loads about right support.
W, = total load on left of section.
Wiz, = moment of all loads on left of section about a point on the
section.

In order for this position of loading to cause maximum bending-moment,
the value dM /dx must pass through zero as the individual concentrated
load at the section crosses this point; hence

dM Wa
—_—=— =W, = (33)
dx L
and
Wa _w (34)
A

As the individual concentrated load at the section moves across this
point in the span, the value of W, will successively equal all values
between W; (min), excluding the individual load at the section, to W,
(max), including the individual load at the section; therefore for max-
imum bending-moment

Wa < W, (max)

L > W, (min) (35)

Ezxample
For a practical application of this criterion, refer to Fig. 42 and assume that

L = 40 feet and a = 15 feet, with the loads spaced at 4-foot intervals and of

magnitudes, in kips, corresponding to the load numbers. For the loading in the
position shown

Wa=28X15

Wa > Wi (max) = 6 kips
L 40

= 10.5Kkips  y (min) = 3 kips

The criterion is not fulfilled, and therefore this position does not produce maxi-
mum bending-moment. It is also obvious that there is insufficient load on the
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left of the section. Try position with load 5 at section; load 1 will now be off

the span. .
Wa 27X 15 < W, (max) = 14 kips

T = a0~ 0Lkips g (min) = 9 kips

Observation indicates this to be the only position which will satisfy the criterion,
and therefore it will cause maximum bending-moment on the section.

When the loads are applied to the structure through an intermediate
construction, the greatest bending-moments will occur at the panel
points or joints, and usually they are computed only at such points. In
applying the criterion and computing the bending-moments at panel
points of structures of this type, the concentrated loads may be assumed
to be applied directly to the structure at the points where such loads act
on the superstructure. Referring to Fig. 41, it is easily computed that
the bending-moment on a section at b, determined from the actual loads
on the structure indicated at ¢, is the same as is obtained at this point
by using the original loads shown at a. If, however, the bending-moment
on an intermediate section, such as xr, is desired, the actual loads, as
at ¢, must be taken into account. The criterion previously developed
for placing loadings to produce maximum bending-moment will there-
fore not be applicable for such intermediate sections.

46 Absolute Maximum Bending-Moment

Let Fig. 42 represent a simply supported beam loaded with a system
of concentrated loads. Since maximum bending-moments will always
be obtained when the loads are as closely spaced as is permissible, it
will be assumed that the distances between loads are of minimum values
and that they remain constant when the loading is moved. From a
consideration of the bending-moment diagram which may be drawn
for the loading in any given position, it is scen that the greatest bending-
moment in the span will occur on a section taken at one of these concen-
trated loads. With respeet to a section at any one of the loads, the
value of the bending-moment can be expressed in the general form

Wra
M = "‘I—J- - "71.1’1

With reference to any given load, as for example load 3, the only vari-
ables in the above equation are x and a, hence the value of the bending-
moment on any section under this concentrated load will be maximum
only when x = a. Stated in other words, the loads must be so placed on
the span that the center of the span is midway between the given con-
centrated load and the resultant of all the loads then on the span. In
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addition to fulfilling this requirement, the arrangement must be such as
will satisfy the criterion (Equation 35) developed in Article 44; hence
W, must be equal to reaction Br. The greatest bending-moment in the
span will, therefore, occur on a section taken at one of the concentrated
loads adjacent to the resultant, when the loads are placed in accordance
with the foregoing rule.

Ezxample

Consider the loading shown at @ in Fig. 43, and determine the greatest possible
bending-moment that this loading can produce in a 40-ft simply supported span.

Resultant =86 K
3y 2
16 30K 20K 10K 10K
©) ® ON
‘l‘ ;

@ 3
1 e . 5 | 5
] - =T

=

O

Fic. 43.

The position of the resultant of the loads is first determined as shown. The
loading is now placed in accordance with the requirement & = a, and it will
be noted that two positions are possible as shown at b and ¢. Applying the
criterion for maximum bending-moment at a given section to each of these
positions, for position as in b, we have
Wa 85X 185 _ 30.4 < W, (max) = 46
L 40 777 > Wi(min) =
The criterion is therefore satisfied when the loading is in this position.
For position as in ¢,
Wa 85X 21 < W, (max) = 66

T =0~ M0 £ W (min) = 46
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This position will therefore be rejected. The position shown in b must therefore
produce the greatest hending-moment in the span, and it is then computed as

follows: 85 X 18.5
Bending-moment (under load 2) = [%O_?] X 18.5 — (16 X 6)
= 631 ft-kips
PROBLEMS

4-1 Find the reactions at A and B graphically.

600#  400#  600#
w.

X d J
/4 5’ 5 |3 7’ ‘:Ei;Bt:m

4-2 (a) Find reactions graphically. (b) Find reactions analytically.

4000+# 6000 #

I

i
.

10°
5’ 20’

12
@

4-8 (a) Find R; and Ry graphically. (» Find R, and I, analytically. (c)
Draw shear and bending-moment. diagrams.,

10# |15# 204

5] 6 8’ 5

20

4:4 Determine the reactions at 4 and B due to the fixed loads shown.

10K 10K 15K Rollers

Hinge 4
nﬁ: BER 3
A 100 10 12° 8’




78 REACTIONS—SHEAR—BENDING MOMENT

4.6 Determine the horizontal aud vertical components of the reactions at A
and B. (a) Analytical solution. (b) Graphical solution.

12004#/ft

/ c Rolle-rs

"

Varying load /

$
20°

‘ A 15° 30°

4.6 The member ABC is hinged at A and D and is loaded with a uniform of load
1 kip per ft. Draw the shear and bending-moment diagrams for ABC and give the
value of the controlling ordinates.

X 10° 4
<

iA W=1K/ft B _|lc

(EEEEAERAAEAAEEEARELITEE]

12°

4.7 Combut;e the resultant forces or components acting at hinges 4, B, and C
of the three-hinged arch shown. Solve both algebraically and graphically.

B
P,= 10,0004 ' P,= 80004

' R
C
|

4 )

3’ 20’
60’ 40°
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4:8 Determine graphically the reactions at hinges A and B of the three-hinged
arch due to the 6 loads shown. Use a scale of 1 in. = 60 ft and 1 in. = 60 kips.

150K /15
120K 100K
100K 1

1} <
: I

Hinge C IS
90K 60 K| K 3

Hinge 1
Hinge A 22"
6 @30’ = 180" 5 @30’ =150’

4.9 Dectermine reactions at 4 and B graphically, and check results analytically.

4:10 A three-hinged arch has forces acting on it as shown in the sketch. (a) Find

algebraically the forces acting at the hinges. (b) Calculate the maximum bending-
moment.
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4.11 In the three-hinged structure shown, determine the reactions at A and B.
Hinge C~!
10K

10K

10 10 100 | 10’
30’ 20°

4-12 (a) Calculate the reactions R; and Rs. (b) Draw the shear and bending-
moment diagrams,
96K 144K

4K/ft

16° 12° 12° l rl

481
Ry R,

4:13 (a) Draw the shear and bending-moment diagrams for the structure ACB
in Problem 4-5. (b) Calculate the shear, bending-moment, and normal (axial) foree
at a section 10 ft from A in member AC, Problem 4-5.

4-14 Draw the shear and bending-moment diagrams and give the numerical
values of the controlling ordinates.

20K 20K
4| e 16’ e |l o
' 2K/ft
Py TR ) _
T C "
«| R Hinge D
10K I“

4:16 (a) Calculate the reactions and draw the shear and bending-moment dia-
grams for the structure shown. (b) Make a graphical solution for the reactions.

E

o]
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4.168 (a) Determine the reactions at A and B both algebraically and graphically.
(b) Compute the value of the normal force, the shearing force, and bending-moment
at point C.

16K 20K

A y y
o

|12 | 12 | 160 |87 22 l

4-18 (a) Draw an influence diagram for the horizontal component at the hinge
A for a unit vertical load moving across AB. (b) Draw an influence diagram for the

Rollers
C B:

45°

40’

vertical component at A. (c) Draw an influence diagram for the bending-moment.
at C.

4.19 Draw the influence line for shear at point A, indicating the value of the
controlling ordinates. From this influence line, calculate the maximum positive

50° 10°

shear at A due to a moving uniform live load of 2 kips per ft. Also calculate the

maximum negative shear at A due to a moving uniform live load of 2 kips per ft.
4:20 For the beam in Problem 4:19 draw the influence line for moment at point

A, indicating the value of controlling ordinates. From this influence line determine

the maximum positive and negative bending moments at A due to a moving uniform
live load of 2 kips per ft.
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4.21 If the reactions at b and c act either up or down, draw influence diagrams
for the shear and moment at section 1-1.

1
. \L Y
a; b ¢ |d
le:]62! 14 ’
’ 1

4.22 (a) Draw influence line for shear on section aa located 8 ft from left sup-
port. (b) Draw influence line for moment on section aa. (¢) Using the diagram for

100# 100# 100#

(@), determine shear on section aa due to loading shown. (d) Using the diagram for
(), determine the bending-moment on section aa due to loading shown.

4-23 The reactions at R and R; can act cither downward or upward. (a) Draw
the influence lines for shear and bending-moment at sections m and n, and give values
of the controlling ordinates. (b) Determine the maximum positive and negative

2 mrs_'_ln

HE
L mAR,'n \R,
e 25 8

shear at sections m and n for a uniform live load of 1000 Ib per linear ft. (c) Deter-
mine the maximum positive and negative moment at sections m and » for a uniform
live load of 1000 Ib per linear ft.

4:24 A simply supported beam of 60-ft span carries the moving concentrated
load system shown. (Loading is not reversible.) For a section 15 ft from the left

20K 20K
15K 15K 15K 15K
e Wa N N N N2 N
! 8 .6 | 6’ 5 10’ 5’

end of the beam find: (a) The maximum bending-moment, and () The maximum
shear.

4:25 A Cooper’s E-60 loading is moved from right to left across a simply sup-
ported beam of 75-ft span. For a section 20 ft from the left end find the maximum
positive shear and also the maximum bending-moment.
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4.26 Determine the maximum bending-moment, due to the moving concentrated
loads shown, at a point 15 ft from the left end of a simply supported beam of 50-ft
span.

' 10K 0K 10K 10K

-4 . Y ay

5’ 6’ 5’

4-27 (@) Compute the maximum shear at section 1 for the moving live load shown.
(b) Compute the maximum bending-moment at section 1 for the same live load.

Tk 2K 1o 6K
A & . B
LI—WJ‘-Sectlonl 1

40’

4-28 (a) Compute the maximum shear that can occur for the same beam and
loads in Problem 4-27. (b) Compute the absolute maximum bending-moment for
the beams and loads in Problem 4-27.

4.29 For girder A: (a) Plot influence lines for shear in panels 0-1 and 1-2. (b)
From an inspection of the influence line, determine where a single concentrated load

Unit load

/ Stringers \

—
0 I I I I I I Floor beam
Girders l _L

é'.; Girder A
7 panels @ 12° = 84’ i

A

should lic to cause maximum positive shear in panel 1-2. (¢) Compute by the “in-
fluence-line method,™ the exact maximum positive shear produced in panel 1-2 by a
uniform live load of 2000 Ib per ft, and check this result by computing the shear
analytically.

4.30 Draw the influence line for shear in pancl 2-3, and from this determine the
maximum positive and maximum negative shear due to a uniform moving live load
of 2 kips per ft.

Stringer

~

.

6@15° =90’ 15’
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4.81. Draw the influence line for reaction at A. Draw the influence line for
shear in panel 34. Draw the influence line for moment at 5. From these influence
lines and using & movable uniform load of 4 K per ft, determine: The maximum

oJtJoJs Ja Is Jo J7 Je Jo JroJu Jrz
”ﬁA B

J, e
2@15'= 30° 7 @15°= 105’ 3@15°=45'

negative reaction at A. The maximum positive shear in panel 34. The maximum
negative moment at 5.

4.32 For the moving load system shown (a) Calculate the maximum positive
shear in panel 1-2 of girder AB. (b) Calculate the maximum moment in the girder
at panel point 3.

6 @5 =30’

Each load =10 K._ m -

It
3 5" |6

0 1 2

A B
6@12'=72’




Chapter 5
RESTRAINED AND CONTINUOUS BEAMS

46 Definitions

A beam is said to be restrained when its supports, or some other
external agency, prevent or restrict free rotation of the ends of the beam.
The terms fixed or partially fixed are frequently employed to indicate a
condition of restraint. A fully restrained or fixred beam is generally one
whose ends are rigidly attached to an

immovable support; a partially restrained P, P,
or partially fired beam is one whose l l
ends may rotate to a lesser extent than 4 B

the ends of a similar simply supported L

1

1
heam. : P‘}“}‘e‘ia"%";,"'

A conttnuous beam is one which is ! | Y ‘ !

supported at more thar‘x two pants. I T comod o'( el
Such a beam may be fixed, partially ! " o5 =
fixed, or simply supported at its ex- <=3f--—-3 B
treme ends. Any single span of a con-
tinuous beam may be partially or fully
restrained by the elastic resistance of
the adjoining spans.

47 Elastic Behavior of Simply Supported Beams

Consider the simply supported beam shown in Fig. 44 with any sys-
tem of loads,

I = moment of inertia of the beam section; assumed constant over the
span AB.

A = area of the bending-moment diagram produced by the transverse
loads, with the beam considered as simply supported.

g = distance from support A to the centroid of the bending-moment
diagram.

Under the action of the loading, the beam will bend and conform to the

elastic curve shown. In the study of strength of materials it is shown
85
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that the elemental angle between two successive tangents to the elastic
curve is given by the equation !
M dz

EI

d¢ = (36)

The magnitude of the total angle between the end tangents at A and B,
respectively, is obtained by integrating Equation 36 over the length L,
and, since E and I are constant,

A
¢ ZI 4+ 08 37

Since d¢ is infinitesimal, tan d¢ = d¢, and successive tangents will
subtend distances x d¢ on a vertical through A. We see that the total
of these will equal

L 1 L
Ay =]; zd¢ = 7 Mz dx (38)

0

M dz is an elemental area of the bending-moment curve and Mz dx
represents the moment of this elemental area bout the origin at 4, hence

L
f Mzdr = Ag
o

and
a, =0 (39)
4T EI
Similarly,
A(L — ¢)
=== 40
B Bl (40)
Since 84 and 65 are relatively small angles,
AB A(L - g)
O = — = ——— 41
) EIL (41)
Ay Ag
bp = —— = ——— 42
# L EIL 42
('] L —
Aa_t"9 (43)
6p g

18. Timoshenko, Strength of Materials, Part I, p. 150, D. Van Nostrand Co., 1930.
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For symmetrical loading,
Ax = a5 - AL (44
4708 omr )
04 = —0, ! ¢ = A (45)
4T T T % T omn

Note that positive values of 64 or 6 indicate a clockwise direction of rotation of
the respective end tangents. This convention for the signs of these angles will be
followed in the remaining derivations.

For a uniformly distributed load of w pounds per unit of span length,

wl? 2 wL?

A= —XZL=—
8 3 12
g =3L
wL? 16
® = Tl (46)
Ay = oy = K 47
P YY T4 “7)
8 0 = 2 48
AT T T )

When couples are combined with loads as is usually the condition in
problems involving restrained or continuous beams, it is necessary to
adopt a conventional system of signs to indicate the directions of rotation
of such couples. A positive couple will hereafter be considered as one
which acts on the beam in a clockwise direction and a negative couple
as one which acts on the beam in a counterclockwise direction. Such
couples are induced by resistance of the support to rotation for fixed or
partially restrained beams. It should be observed that the sign of a
couple may be opposite to the sign of the bending-moment which it
induces in the beam.

When the only external loading on a simply supported beam is a posi-
tive couple, acting at one of the supports, as at A in Fig. 45a, equilibrium
of the beam as a whole requires the development of a downward reaction
at A and an upward reaction at B as shown. These reactions constitute
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a couple whose magnitude equals that of the applied couple M4z and,

- MasL 49
DY (49)
_ Musl? "
4= TeEI ' (50)
M apL?
A = =
B BT 244 (51)
M ABL
04 =
47 3Rl (52)
Mgl 1
g = — = —29
B GEI 2 4 (53)

When M 45 acts on the beam in a counterclockwise (negative) direction,
or opposite in direction to that represented in Fig. 45a, the beam will be

P 4]

Yap Mup( 4 1 1 ;>MBA
r L \ L
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L Myp
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~
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bowed upward, and the deflections and rotations of the end tangents
will therefore be opposite in direction to those produced by the loading
shown in Fig. 44.

A positive (clockwise) couple Mg, acting at B will produce the fol-
lowing values:

MpsL

6EI
M BAL

3EI

(54)

04 =

(55)
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When the beam is acted upon simultaneously by a transverse loading
and a positive couple at each support, the separate effects expressed by
the foregoing equations will combine as follows:
_AlL -9 " M gL _ ML

EIL 3EI 6EI

A g M A BL M, B AL

EIL 6EI 3EI

48 Partially and Fully Restrained Beams

When a couple applied at either end acts in such a direction as to pro-
duce a direction of rotation of end tangents opposite to that induced by
the transverse loading, it will within certain limits of value constitute
a restraining couple. Thus, referring to Fig. 450, M 4p will serve to re-
strict the rotation of the tangent at A when

3A(L —g) + Mgy
L? 2

The beam will be fully restrained or fixed at 4 when 64 = 0 and there
is no rotation of the end tangent at A. For this condition,

BA(L —g) Mg
—_— 2 +

L 2

A restraining couple may be caused by some external force condition,
or it may be induced by resistance of the support to rotation when the
beam is rigidly attached to the support.

The following additional equations may be derived from Equations

56 and 57:
For a beam fixed at B and simply supported at A.

04

(56)

g =

(67)

Map < —

F
Mip =

(58)

03 =0
34g Mus
My = +— +—— 59
Ba =t 12 + 2 (59)
For a beam fixed at both ends,
04 =0 = 0,
and 24(2L — 3y)
— 9
Mip = - I (60)
24A(L — 3
Mfu = - __(—_g_) (61)

L2



90 RESTRAINED AND CONTINUOQOUS BEAMS
It should be noted that, for a symmetrical loading, g = 3L, and

A
Mip= —Mpy = — 7 (62)

When the loading consists of concentrated loads, for each concen-
trated load,

Pab
A =—2—, and g = 1(2a +b)

where a and b are the distances from any load to the left and right sup-
ports, respectively. For such a loading,

Pab?
Mia= -2 = (63)
~ Pa%b
Mba=+2 0 (64)

Values of fixed-end moments for various span and load conditions are
given in Fig. 46.

Uniform load w/ft N ME o wL®
AB 12
A B .
y L N Mg
Fixed Fixed
p < b
F _
A M B Mg=-"1
N
R = '! b F Pa’b
) L N Maa=+ 7
Fixed Fixed
Uniform load w/ft s
Mip=-4L
A B
T L Muao
N 1
Fixed Supported
F P(b+L)ad
Mae== "

M,A’O
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49 Relative Stiffness and Carry-Over Moment

When a beam fixed at one end is acted upon by a couple applied at the
free end, the value of restraining vouple at the fixed end is determined by
Equation 58 or 59. The effect of the couple applied at the free end is
represented by the second term, %M Ba OF M 4p, and is seen to be inde-
pendent of the loading. This term is known as the carry-over moment,
and its use will be explained later.

MABCA B)MBA

ZBY. T
G4m0 Tangent at 4
Fre. 47.

With reference to the beam shown in Fig. 47, which is fixed at 4,

g = — — i Map =3iM
i 6EI | 3EI 4B = 2784
Therefore Mol Modl ModL
palL pall BA
0g = — = 65
? oer T 3Er T aEn (65)
4ET
Mgy = + (T) 0 = +4E6gk (66)

The quantity 4EI/L measures the stiffness of the beam when one
end is fixed, and is the value of Mp4 when 65 = unity. When E is
constant, the relative stiffness may be measured by the ratio

I
k= Z = gtiffness factor (67)

Should the fixity at A be remov;ad, thus making the beam free to
rotate at this end, MYz = 0 and

3EI
Mps = + (T) 6 = +3E6pk (68)
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Such a beam would therefore have three-fourths the actual or relative
stiffness of a similar fixed end beam.

50 Moment Distribution at a Joint

Consider the frame shown at Fig. 48a, where the members 4B, BC,
and BD are rigidly connected at B. Assume that the members are

Simply kh=L/L, p k=DL/L,

sUpponed A C Z Fixed
Ll l L2

(c) Mg,
F1a. 48.

freely supported at A and D and that member BC is fixed at C. The
stiffness factors for each of these members, determined as outlined in
Article 49, will be as represented on the diagram of the frame.

Let a couple, of magnitude Usg, act on the frame at point B as shown
in Fig. 48b. Neglecting any translation of point B, the members at this
point will be rotated in the direction of Uz until sufficient resistance is
developed internally to produce equilibrium of the joint and when equi-
librium of the joint has been established, it will have rotated through
the angle 6. Passing a cutting section around joint B to produce the
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free body shown at (c¢), the moments on the cut sections must fulfill
the requirement that ZM = 0; hence

Mpa + Mpp + Mpe = Usp (69)

Now consider each of the beams separately, each as a free body pro-
duced by a cutting section adjacent to point B. Beam AB will be acted
upon by the clockwise couple Mp4, and from Equation 68

11IBA = 3E03k1

Similarly, beam BC will be acted upon by the clockwise couple Mpc,
and from Equation 66
Mpe = 4E0gk,

Beam BD will be acted upon by the clockwise couple Mpp, and from
Equation 68
Mpp = 3E0k;

therefore,
3E6gk, + 1Eb6gks + 3E0pk; = Up (70)
and
Mpy 3E6gk, 1)
UB 3EGB]\'1 + 4E03k2 + 3E01)k3
My =[Ny (72)
S E TSP TN oy
Mye = | i v (73)
e [ 3k + ko + 3ks ] g
M iy U (74)
P = . . a. /
R ETHIPRNIE Y R

Thus, when a couple, or unbalanced moment, acts at a joint in an elastic
frame, the sum of the relative stiffness factors of the several members
joined measures the total stiffness of the joint; members which are simply
supported at the end away from the joint are considered as having a
relative stiffness of $& when this is used in conjunction with members
which are fixed at their extremity. The total unbalanced moment, or
couple, applied to the joint distributes itself to the members in propor-
tion to their relative stiffness. It should be noted that the couples
distributed to the several members will all have the same direction of
rotation and that this direction will be the same as that of the unbal-
anced moment or couple.
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61 Continuous Beam Moments by Moment Distribution

The method of successive approximation known as the moment distri-
bution method is convenient for the analysis of continuous beams. This
method, which was developed by Professor Hardy Cross,? makes use of
the foregoing principles and by successive corrections produces results
within any desired percentage of error. It can best be explained in
connection with the solution of a simple problem.

Ezample

Consider the beam with loading shown at a in Fig. 49 resting without restraint
on supports A and B and fixed at C. Let I of all sections of span AB = 2.
Let I of all sections of span BC = 3. \

. 2K/t o 3K/f 7
Simply 37
Su rted = —" ¢
proried kA T=2 ¥ 7=3 el Fired
(@) 12 16
0 )'v R ”
A %K =¥ XY=l B K= c
240 +240 | ~64.0 +640

+240 +160 | +240 0
6 15t
0 <% +130] o P +120 | (1Y

(b)

0 - 48| ~72 < 0
0 >< 0 0 >< ~ 3§ 20d Orcl
0 0 0 0 nd Cycle
0 4472 | -472 +724

Fia. 49. Continuous Beam.

Step 1. Assume external couples applied to the beam at each point of sup-
port sufficient to fiz it at these points. The beam will then consist of two fixed
spans, and the end couples acting on these spans may be computed from Equa-
tion 62 or as shown in Fig. 46. ’

Mup = —24 ft-kips *

Mpy = +24 ft-kips.
Mpc = —64 ft-kips
MCB = +64 ft-klps

Step 2. 'The couples computed in Step 1 are now corrected to accord with
the true conditions relative to the fixity of supports. . Since actually no fixing
couples are developed by the supports, the values of the assumed external fixing
couples in Step 1 are not balanced by internal bending-moment at these points.
To correct the error of this assumption, an external couple equal in magnitude
to the unbalanced internal moment must be applied at each of the supports.
Each support is considered separately and corrections determined with the as-

" 2 Proc. Am. Concrete Institute, 1929; also Trans. Am. Soc. C. E., Vol. 196, 1932,
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sumption that the other supports will remain fixed. The values of the end
couples developed in the separate spans by these corrective couples are deter-
mined in accordance with the principles of distribution outlined in Article 50.
Since support C is in fact a fixed support, no error was made at this point.

Support A
Unbalanced moment = —24 ft-kips
Correction couple applied at A = 424 ft-kips
Correction applied to M 45 = +24 ft-kips
Support B
Unbalanced moment = (424 — 64) = —40 ft-kips
Total correction couple applied at B and to
be distributed between M4 and Mpe = +40 ft-kips
bi=vf=% k=P
3k k
" _ 2 =
Ttk =04 Tt T, 0.6

Correction applied to Mps = 0.4 X 40 = ‘+16.0 ft-kips
Correction applied to Mpe = 0.6 X 40 = +24.0 ft-kips

Support C
Unbalanced moment = 0 ft-kips
No correction couple is needed at this support

Step 3. Since the other supports were assumed to remain fixed when a cor-
rection couple is applied at a given support, the distributed correction couples
determined in Step 2 will develop carry-over moments at the opposite ends of
the span. These are determined as follows:

Carry-over moment at M 5 = 0.0 ft-kips *

Carry-over moment at Mp4 = § X 24.0 = +12.0 ft-kips ’
Carry-over moment at Mpc = 0 ft-kips

Carry-over moment at Mcp = 3K 24.0 = +12.0 ft-kips

Step 4. This step is a repetition of Step 2 for the unbalanced values again
produced by Step 3. Hence at

Support A
Unbalanced moment = 0 ft-kips
Correction applied to M 45 = 0 ft-kips
Support B
Unbalanced moment = —0 4+ 12.0 ft-kips = +12 ft-kips

Correction applied to Mps = 0.4 X —12.0 = —4.8 ft-kips
Correction applied to Mpc = 0.6 X —12.0 = —7.2 ft-kips

Support C

Unbalanced moment = 0 ft-kips
Correction applied to Mcs = 0 ft-kips
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Summation of the original fixed end couples and corrections determined in
steps 2, 3, and 4 will complete the first cycle and give approximate values of the
true couples at the supports as follows: M p = 0, Mp4 = +47.2, Mpe = —47.2,
Mcep = +76.0. The work may be concluded here if these approximate values
are sufficiently precise. If more accurate results are desired, however, the work
may be continued through as many additional cycles as necessary. Each sub-
sequent cycle will consist of two steps: (1) determination of carry-over moments
as in Step 3, and (2) applying correction couples and distributing them as in
Step 4. It is seldom necessary:to carry results beyond four cycles.

10,000 * 10.000 # 1,000 #

) 2,000 #/

7z
Fixed 7.
e I|= 480 ;-12000 =200

6—>te—10"- -
[

16' " 20 : 10° — > 5

Beam is fixed at A and simply supported at B, C, and D,
Fixed End Moments :
' Spon AB, M, = — 100008 8 X100 . _ 23 44frkips
M, = + 10000236610 414,06 rkips
Spon BC My, = — —2000.X 400 _ — _ 44 47 f1.kips
M, = + 66.67 f1-kips
SpanCh Mg, =— 10000 X 13823 _ 1575 hkips

Mg = zero for simply supported end support

Overhang DE MJ, = —1,000x5==  — 5.00fi-kips
c )
0] k=30 [oso 0.50] k=30 [067]033] uk—15[100] 0 k=0
2.4 F1406| —6667 16667 | -18.75 KT
+26.30 | +26.31~_~—31.95 | —15.97 )
+1:ns>/ o<1 ans |+ 250 g °
+ 790|379 7.83|— 0
+ 900N <G 0| oW o | o
0 ~_+ 196!+ 195. 247 - 133>< o | o
+ 098 0 |- 13"<Yoss| o o | o
0 + 0.67 |+ 067~ 065 |— o.:nx o |o
+ 034 0 |— o032+ L+ 034| o 0
) +016|+ 016~ 023]—om o |o
=497 5104 F51.14 14181 - 4181 75.00]=5.00

The bending-moments on beam sections taken o! the supports are:
At support A, Bending-moment = 4,970 ft-Ib, negative
B, Bending-moment - 51,140 ft-Ib, negative
C, Bending-moment - 41,810 f1-lb, negative
D, Bending-moment == 5,000 ft-Ib, negative

Fi1a. 50. Continuous Beam Solution by Method of Moment Distribution.

The solution of a continuous beam by moment distribution is most
conveniently done by arranging the computations in tabular form. A
tabular arrangement of the preceding computations is thus shown at b
in Fig. 49, and here it will be noted that a complete solution is obtained
at the end of two cycles. Another typical solution involving different
load and span conditions is given in Fig. 50.
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52 Theorem of Three Moments

This theorem for the solution of continuous beams was first published
by Clapeyron in 1857. Its dcrivation may be found in any standard
treatise on strength of materials ? and will not be repeated here.

**4m3+0+

[ e s

Fia. 51.

The theorem is expressed by the following general equation, appli-
cable to any pair of adjacent spans of a continuous beam (see Fig. 51).

L L L L 6A 642(Ly —
MA——1+2MB(—-1+—2)+MC-—2= _ 64y 6 2(Ly — g2)
I, I, Iy I, LI, LI,

(75)

where M4 = bending-moment on section at support A.
Mg = bending-moment on section at support B.
M¢ = bending-moment on section at support C.
L; = length of span AB.
Ly = length of span BC.
I, = moment of inertia of all sections of span AB.
I, = moment of inertia of all sections of span BC.

Ay, Ay = area-of-bending-moment diagram for spans AB and BC,
respectively, considering each as a simply supported beam.
distance from centroid of A; or A,, respectively, to support
A or B.

g1, g2

It is assumed in the derivation of this equation that the reactions at
A, B, C, ete., act either upward or downward to prevent vertical move-
ment of the beam at the supports.

This equation is most frequently written in the form

M L1+2M (L1+L2) L,
‘T AVARA

1 2 3 1 2 2, 12
= - I—'E[PILl(kl — k)] — I Z[PoL3(2kg — 3k3 + k3)]  (76)
1 2

3 Timoshenko and McCullough, Elements of Strength of Materials, D. Van Nostrand
Co.
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where (see Fig. 52) P, = any concentrated load in span AB.
k, = ratio of distance between A and load, to span
length L,.
Py = any concentrated load in span BC.
ks = ratio of distance from B to load, to span

length L.
ki ﬂ koLy 13
A B c
A L. ; L J
Fia. 52.
For uniform loading
Py =wdx
k ra
1= L
L sp 120 — 1) = — [wa 12("" l a7
_ ” —_ = — waxr 1s —_—— 3
Il 1441\ 1 Il 1 Ll L,I;

!sp L3(2ky — 32 + K) ! f dr L2 (—2I 3z* + —’”3) (78)
— Co =~ A > = — W axr L« —
L, T *\L, L, L}

where the limits are determined by the extent of the uniform load.
When the uniform load extends over the entire span, either integration
produces the result

1 wL3

- 79

., (79)
When a beam is fixed at the end support, an imaginary span Ly = 0 is
added, and the equation is then applied to this imaginary span and the
adjacent span; thus for the beam in Fig. 53a, noting that I is constant,

Ezample
(@) My =0
3
® 0 + 2M4(0 + 20) + 20M5 = —0 — 2% 4(20)

40M 4 + 20Mp = —4000

(©) 20M4 + 2M (20 + 16) + 16M¢ = —4000 — [12 X (16)2 X 32§
20M 4 + 72M 5 + 16M¢ = —5170

@ M¢ = —(4 X 4) = —16 ft-kips
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Combining (¢) and (d),

20M 4 4+ T2Mp = —4914
20M 4 + 10M 5 = —2000
62Mp = —2914
Mp = —47.0 ft-kips
My = :%EOM_B = —76.5 ft-kips

63 Continuous Beam Reactions

With the bending moments on sections at the supports established
in value and kind, the recactions are determined from principles of
statics. Thus, for the beam shown in Fig. 53a,

12K 4K

2K/ e85
Fixed )
A 20’ B 16I C
N L

Beam fixed at A, supported at B and C,
E and [ are constant over entire length.

(a)
™ WedoR ¥ 2148'x 0K 12K yo/
§ C f{“’ ! H C : Ve
' :? 765’K Z B Cc )16'K
T4 20° B t'“ " 200 A 16 )
g
) ©)
V]
]
%o BK o ws 6 12K 4 4
'; ' | ’ ’
VOB \ 1 . k(B l ¢
5(;5* T c )I6e'K 47 x{ r
Rp 16’ ’ 16’ ke
@) (e)
Fi1a. 53.
Ezample
My = —76.5 ft-kips
Mgy = —47.0 ft-kips
M¢ = —16.0 ft-kips
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Passing a cutting section immediately left of support B and considering por-
tion AB as a free body (Fig. 53b),

ZM = 0 (moment center at B)
20Vap — 76.5 — (40 X 10) + 47 =0

R4 = Vap = 21.48 kips (acting upward)
v

i
=]

Vap— 40+ Vpa =0
Vs = 40 — 21.48 = 18.52 kips (negative shear)

Passing a cutting section left of support C and considering portion A-C as a
free body (Fig. 53c) and writing ZM = 0 with moment center at C gives

16Rg — 76.5 4+ (21.48 X 36) — (40 X 26) — (12 X 10) + 16 =0
Rp = 27.96 kips (acting upward)

Note that the above computation for Rz could have been based on the free-body
diagram indicated in Fig. 53d in which case

16Rp — 47 — (18.52 X 16) — (12 X 10) + 16 = 0

Rgp = 27.96 kips
2K ‘12K aK
w4 B
o : L6 A
i o ! S0 |
g g g
s X i A
[} ! ] |
! ! [
| 1
+2148K Zero Shear | : : :
+9.44K ‘m.n.'l'O'QMK +40K |+40K
11078 -256 ~256 !
| -1852K { E !
: Shear Diagram. : [
. | | b
! | { Loy
| | I b
| [ o
! | H | J
4.51° | ! P
303;1499, ! ) b
170K (P | !
Positive
~16.0°K; i
X =] Negati |
0 . ;_' Negative
$ Negative . |1 4.43'1( |
Bending Moment Diagram..

Fia. 54. Continuous Beam. Shear and Bending-Moment Diagrams.
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Considering as a free body the portion on right of a section at B (Fig. 53¢),
writing ZM = 0 with moment center at B, gives

16Rc — (4 X 20) — (12X 6) + 47 =0
Rc¢ = 6.56 kips (acting upward)
Computing ZV = 0 for entire beam,

Forces (acting upward) = 21.48 4 27.96 + 6.56 = 56 kips
Loads (acting downwar_d) =40+12+ 4 = 56 kips

' Check 0

The shear and bending-moment Jiagrams may now be determined as out-
lined in Chapter 4. (See Fig. 54.)

64 Vertical Displacement of Supports

The procedures outlined in Articles 51, 52, and 53 were based upon
the condition that the supports remained at their initial elevation and
that the reactive forces at each support were sufficient to produce this
relationship. If any support moves vertically, when the loads are
applied, values based on this condition must be adjusted accordingly.
If it is assumed that any support movement will be relatively small
and that coincidental lateral effects may be neglected, the computations
based on the loading will not be changed, and the effect of support
movement may be studied by considering the behavior of the beam with
the loading removed.

Referring to Fig. 55a, we see that no moments will be induced in the
simply supported beam AB by a settlement of support B through a
very small distance d. If, however, the beam is fixed at 4, a couple
M4p will be induced at A sufficient in magnitude and direction to

rotate the tangent at A through the

yp— B angle 64, as illustrated at b. Since
|~ Jd 64 = —d/L, from Equation 52,
| =~
(a) = 3EId
- L 4B =~ 3 (80)

>
!
_ Tangentstd_ | "ABQ ———Tengentatd B

d (N | Ei
() B’ " TangemtatB B-D;!u
Fia. 5. Fra. 56.

Note that M4 is negative when the movement of support B is down-
ward and that the direction of M4z will be reversed should support B
move upward from its original position.
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For a beam fixed at both ends as shown in Fig. 56, the values of end
couples induced by a change in the relative elevation of the support may
be determined from Equations 56 and 57.

d
b= ~tp=— 81)
6EId
Mis = Mbs = ——3 (82)

It should be noted that both end couples are negative (counterclockwise)
when support B moves downward relative to support 4 and that these
couples will be positive when support B moves upward relative to
support 4.

Ezxample

The structural steel beam shown in Fig. 57 is to be computed for a 3-inch
settlement of support B, the other supports remaining at their original level.

12K 4K
2K per lin, 1. p<-— &' e 4*
Fixed |
LA B C J
te 20* 16t—————rt<-4

Bealn is of constant section (I = 310 in") ond is fixed ot
A and simply supported ot 8 and C

When supports remain at same level: *

0.00] k = 1.29 [0.52] 0.48] %k = 1.21[7.00 [ 0.00
667 1 66.7|—28.1 1169 =160
200|186 - 09 0
—loo>< - 05 0
+ 037 02 0
+ o.z > >< 0
0 o 0
“765 1470 —470 +160 2160
Correction for ¥ in. setilement of support B:
—397 —397] +310 9] o
0 + 45|+ 42 0
+ 2.3>< oo 0| 0
0 o] o
Final Moment 1139 -+ ll 8|--11.8 1 16.0) - 16.0

Fie. 57. Moments Caused by Settlement of Support.

For the first step in the solution, assume that all supports remain at the same
level, and determine the moments at the supports in the usual manner. The
results by moment distribution are shown in Fig. 57.

Now consider span AB, and assume that the beam is fixed at supports 4 and
B. From Equation 82,

_ 6X29,500 X 310 X 0.5 _

Miy = M5, =
45 = Vb4 = 240 X 240 X 12

—39.7 ft-kips
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Next, consider span BC with the beam fixed at B and simply supported at C.
From Equation 80,

3 X 20500 310 X 0.5

Mo =
B = o X 192 X 12

=+ 31.0

For the second step in the solution, these correction moments, which are due
to the settlement of support B, are added to the previous values, and the mo-
ments are adjusted by moment distribution to produce the final corrected values.
The solution of this part of the problem is shown in the lower tabulation of
Fig. 57.

PROBLEMS

5.1 Bending-moments (B.M.) at the supports of the continuous beam shown
have been computed and are of the values and sign indicated. Plot the shear and
bending-moment diagrams to the following scales:

Horizontal—1 in. = 6 ft
Vertical—(shear) 1 in. = 10,000 1b

(moment) 1 in. = 10,000 ft-1b

Y e 5
6704# 4500 # 12004/t
gz o
i Simply
Fixed B C D1 supported
12’ 15’ 10’

Bending-moments
At A, BM. = —1,460 ft-Ib

B, BM. = —4,370 ft-lb
C, B.M. = —11,360 ft-lb
D,BM. = 0 ft-Ib

Indicate magnitude and location of all controlling ordinates and points of zero shear
and bending-moment.
6-3 Compute the value of the fixed end moments for each of the spans shown.

1000# 5004 1000# 100 4 /1 1000#
N S VS Simply
. Ll L - |mp
Fixed Fixed § \ Fixed N supported
N 5| 5" ] 5" 5 | 5 6 | 6
N
R 15° N Y10 R 12’

Span 1 Span 2 Span 3
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6-83 E and I are constant. The moments at the supports of the above continuous
beam have been determined as follows:

Map = —76.4 ft-kips
Mgy = +47.0 ft-kips
Mpe = —47.0 ft-kips
Mcep = +16.0 ft-kips
Mcp = —16.0 ft-kips
12K 4K
2K/ft
Fixed % 7B C D
JA
D 6 10’
N 20’ 16° 4|

Determine the reactions and plot shear and bending-moment diagrams. Indicate

values of controlling and critical ordinates.

6-4 Span AB I = 30]
BC I = 10;E is constant
CD I =36
10004 5004 10004 1000 #
4004/t
Q 4
D
Fired A B & Supported
N.5 . .5 1.5 5'!5' 6 | 6
N 15° 10’ 12’
N

Determine moment at each support of the above continuous beam by method of
“moment distribution.” Express results in foot-kips.

6.6 (a) Determine the value of the bending moments at the supports. The
beam is simply supported at 4, continuous over B and C, and fixed at D. EI is
constant for all spans. (b) Draw the shear and bending-moment diagrams.

W=1K/ft

Supported
PPOI A

\
\‘ Fixed

B C

14

4 24

5.6 Determine the reactions at A and B, also the maximum positive and negative
moments. EI is constant.
5000 #

W=1K/ft
B |C
A 20° &

\Y 1
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5.7 I = 4800 in.* for all spans. (a) Compute the moments at the supports 4, B,
C, and D for the continuous beam shown. (b) Calculate the reactions at 4 and
B. (c) Draw the shear and bending-moment diagram for the span ab.

24K
12’ 12°

W=2K/ft

Fixed A B C D. 1\':‘oupported
28 16’ 24

N >

6:8 (a) Determine the bending moments at supports 4, B, and C by the moment
distribution method. Carry results through not more than two cycles, and express
values to the nearest tenth. (b) Determine the value of reaction E..

10K 1K
8’-0”
X /1 K/ft
éyﬂxed 7
A B C
10°-0” 16°-0” 5°-0"
I =2 IBC= 4

65:9 (a) Compute the moments at the supports of the continuous beam shown.
I is constant for all spans. (b) Calculate the reactions and draw the shear and
bending-moment diagrams. Record the values of the controlling ordinates on the
diagram.

10K 30K
W=2K/# &\
/7
N YO ¥ c D
e
16’ 20’ 24’

6-10 Compute the moments at the supports B, C, and D for the beam shown.
1 = 2000 in.* for both spans. There are no supports at A and E.

W=2K/ft
PLLLLL L L (,{/// L LI D//M
B

A E

4" 10" 20~ 6"

5-11 Determine the moments at supports A, B, C, and D using the moment-
distribution method carried through four cycles (ET is constant.)

5K
Q 2K/t ’15 N 1K/ft
W INN v
=4 B \C D
15 15° 30° 4

\ |
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512 In Problem 5-11, if the moments at the supports 4, B, C, and D are as
listed below, determine the reactions at the supports, and draw the shear and bend-
ing-moment diagrams for the beam.

My = —55996 ft-lb Mg = —76,603 it-lb
Mg = —508 ftlb Mp = —8,000 ft-lb

5:13 Determine the moments and reactions at supports A, B, and C. Assume
E and I as constant.

AK/ft

Fixed \&\\\\\\\\x Supported
N4 B Cc
N 60 30°

5-14 Find the positive bending moment at the centerline of span BC. The beam
is of constant section.

: g 1200 #/linear ft
. NN\ )
Fixed qa " B o %anj
N

5:16 EI is constant. Determine the moments at the supports 4, B, and C.

100 24K

6-16 If EI is a constant, determine the moments at each of the four supports
using the moment~distribution method carried through four cycles.

Ao 20K 5K
7 2K/ft
Ao 20’ 30’ &
74  pia ]

6-17 Draw the shear and moment diagrams for beam of Problem 5:16. Use
My = —58.94 ft-kips
Mp = —32.12 ft-kips
Mg = —162.58 ft-kips
Mp = —20.00 ft-kips
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56:18 Determine the moments and reactions at the supports. Assume E and I
a8 constant.

2K/t
Support w?\ NN NN QAR N\ Supported
30’

B c D
40’ 45

6-19 (a) Compute the moments at supports A and B by moment distribution.
I = 10 for all spans. (b) Compute the value of reaction k4.

1600#

1000 # h
3004#/ft

NN

15° 30° 20°

Supported

6-20 Assuming EI to be constant, determine the moments and reactions at
supports A, B, and C using the moment-distribution method.

150 80K
N _— 4K/ft S
ﬁxed%A j @li\\ 45'\ C Supported
N T

5-21 Assume EI constant. Draw the bending-moment diagram. Use moment-
distribution method for moments at supports.
50K 50K
A 20’ 10’ 20’

Fixed A B
50"

S e

1=

6:22 For spans AB and CD, I = 122 in.4, for span BC, I = 442 in.* (a) Deter-
mine the bending moments on sections at A, B, C, and D using the moment,-distribp-
tion method. Continue computations through two cycles only, and express values in

10,0004
N4 20004/t
L/
o 777777 Sonord
A B C D
\! 20’ 20’ 10’

ft-kips to onc decimal only. (b) Sketch form of bending-moment diagram for the
entire beam, showing values of controlling ordinates. (¢) Compute value of reaction
at D.



Chapter 6

TRUSSES

66 Definitions

A truss is an arrangement of tension and compression members fas-
tened together at their ends by pins or other suitable devices. The sim-
plest arrangement is three members in the form of a triangle as at a in
Fig. 58; if supported at A and B, such a frame will resist change in form

d B
c
A B
R TR
R (@) R L )
Fi1a. 58.

and will thus, within the limitation imposed by the strengths of its mem-
bers, be capable of carrying the load P. A truss may be regarded as an
assemblage of such triangles as at b in Fig. 58. The arrangement is
determined by the position and direction of the applied loads and reac-
tions; also by practical design limitation of the individual members
themselves.

Web ¢ Top Chord
Members
End Post
Botiom Chord—"
Fia. §9.

The series of top members (horizontal or inclined) of a truss (Fig. 59)
is called the top chord; the series of bottom members, usually horizontal,
is called the bottom chord; the members connecting the top and bottom

108
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chords are referred to collectively as web members and individually as
diagonals or verticals.
Some of the commor truss forms are illustrated in Fig. 60.

P P P

t 1

(a) King Post Truss (b) Queen Post Truss

Doy 0,

(¢) Howe Roof (d) Pratt Roof (e) ka Roof
Truss

I A B

(#2) Wm-en Roof (9) Howe Bndge (h) Pratt Bndge

(R

(%) Parker Truss (7) Baltimore Truss

Fig. 60. Types of Trusses.

66 Primary and Secondary Stress

The total axial force induced in any member of a truss is called stress.
Primary stresses are those which are computed in accordance with the
assumption that members of the truss are connected by frictionless pins
located at the intersections of the axes of the members; that the loads
are all applied initially to these pins; and that the truss will not deform
or deflect under the action of the loading. Secondary stress results
from errors in the foregoing assumptions. Thus, where the members
are rigidly connected by rivets to a common gusset plate, the change in
geometrical form of the truss due to its deflection will develop bending
in the members and induce secondary stress.- Transverse loads applied
directly to members will produce secondary stress in such members due
to bending.

In general, secondary stresses are computed only for large and im-
portant structures or for special obvious situations as, for example,



110 TRUSSES

‘&‘,“'“'——-——_‘,
Cebeececee, |
"‘-““‘

[ S

[
e

Typical Riveted Truss Joint.

where transverse loads are applied to members at intermediate points
in their length.

67 Joint Loads

As stated in Article 56, primary stresses are premised on the assump-
tion that the external forces acting on the truss are applied to the pins,
real or imaginary, which connect the members meeting at a common
point; thercfore, the first step in any stress analysis is the determination
of these external forces or joint loads. A truss generally supports sec-
ondary construction on which the loads are directly applied. The actual
loads acting on the truss, therefore, are the reactions developed by such
auxiliary construction.

Roof trusses are spaced at intervals over the length of the space that
is roofed over, and they support the weight of the roofing, beams, and
other construction which bridges the space between roof trusses. The
usual arrangement (Fig. 61), from the exterior surface inward, consists
of the roof covering, which is supported on sheathing, in turn supported
by rafters which run in a direction corresponding to the slope of the roof;
the rafters, in turn, are supported on purlins, which are beams spanning
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the space between trusses. The purlin reactions therefore constitute
the actual loads on the roof truss. To avoid excessive secondary bending
stresses in the top chord, purling are generally supported by the roof
truss at or near top-chord joints. Usually, for simplicity in construction,
the truss joints are arranged to divide the top chord of the truss into

F1a. 61. Details of Roof Construction.

equal spaces, and the trusses are spaced at equal intervals. Determina-
tion of joint loads for typical roof construction is illustrated in the
following problem:

Example 1
Construction Data
Roofing  Common shingles
Sheathing 1-in. yellow pine
Rajters 2 X 6 yellow pine at 16 in. on centers
Purlins 6 X 10 yellow pine at top-chord joints
Truss Wooden truss with steel ties, Howe type (Fig. 60c), span 50 ft;
pitch %; spacing of trusses 16 ft

Dimensions
Rise of roof =1X50=125ft
Length of rafter = vV (12.5)2 + (25)% = 27.95 ft

Spacing top-chord joints = % X 27.95 = 9.31 ft
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Weight per Square Foot of Roof (see Table 1 in the Appendix)

Shingles =251b
Sheathing =251b

2%X6 12
Raﬁﬁrs2£i%ﬁ—i§—'>(]6 = 3flb
Distributed load 7.0 Ib per sq ft
Purlins 2.5 X 6 >1<210 X 16 = 200 Ib each
Roof truss (see Article 13)

16 X 502 16 X 50°
W= 25 * 6000

= 1600 + 333 = 1933 1b
Joint Loads

For purposes of stress analysis or design, the weight of the roof truss is assumed
distributed over the roof surface. The joint loads are then computed as follows:

Intermediate J omts

Roof covering 7 X 9.31 X 16 = 1045 Ib

Purlin = 200

Roof truss 3 X 1933 = 320
Total = 1565 Ib

End Joints

Roof covering 7 X 9—;1 X 16 = 520 Ib

Purlin = 200

Roof truss 3 X 320 = 160
Total = 880 Ib

(These loads are shown as acting on the truss at a in Fig. 62.)

g -
- - - § -
s 87 8 3 $ 87 8 =

s 8 B+ o+ 8 -
T § i 3 g
KR \

4 ' A

Ry 2 Rp RLT Rp

(a) (%)
F1a. 62.

For practical purposes and for preliminary analysis made before the
actual sizes of members are established, it is sufficiently accurate to
estimate the total dead weight of the construction and assume this as a
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distributed load over the roof surface. On this basis, the joint loads
would be as follows:

Ezample 2
Total weight roof covering = 7 X 27.95 X 2 X 16 = 6250 Ib
Total weight purlins =7 X 200 = 1400
Total weight roof truss = 1930
. Total weight of construction = 9580 Ib
Joint Loads
Intermediate = § X 9580 = 1600 Ib
End 1 X 1600 = 800 1b

(These loads are shown as acting on the truss at b in Fig. 62.)

The loads computed in the foregoing are for the intermediate trusses
supporting the roof. The trusses at the ends would carry only one-half
as much roof surface, and their loads would therefore be correspondingly
less.

Any live load superimposed on the roof surface is carried to the top-
chord joints of the truss by the roof construction. Even though the
sheathing, rafters, and purlins are continuous over their supports, the
reactions developed on the truss by purlins are computed as though such
elements of the construction were non-continuous and simply supported.
Thus, in Fig. 61, if a load were placed in the roof arca bounded by purlins
ac and bd, it would create reactions or joint loads at a, b, ¢, and d in pro-
portion to its relative position in that area. A load at the center would
be equally divided among the four points; if closer to ac, joint loads at
a and ¢ would be proportionately larger than joint loads of b and d; if
closer to truss joints a and b, these joint loads would be proportionately
larger than joint loads of ¢ and d.

Loads are sometimes applied to or suspended from truss members.
In such cases, the member is regarded as acting first as a simply sup-
ported beam delivering reactions to the joints at its ends. Thus (Fig. 61)
a load suspended from member ¢f would cause that member to act as a
beam, and the joint loads at e and f would be equal to the reactions of
this beam.

It is generally necessary to determine the joint loads for any loading
applied to a truss before analyzing the internal stresses in the truss.

Bridge trusses are generally arranged in pairs with the floor of the
bridge passing between the trusses, in through bridges, and over the top
of the trusses in deck bridges. For either type bridge, the usual arrange-
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ment is to attach transverse floor beams to the trusses (Figs. 63 and 64)
with longitudinal stringers resting on or attached to these floor beams.

'3\"‘

/-\\ o

"x“" ’4b

e br‘» T ’ PR

Typical Roof Framing.

The flooring, which usually is a reinforced concrete slab for highway
bridges and cross ties for open-deck railroad bridges, rests on the longi-
tudinal stringers. Although variations in this general arrangement
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Fia. 63.

Sidewalk
Stab
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may at times be employed, they produce the same net result, namely
that the weight of the floor system and of the live load superimposed
on the floor is delivered to the trusses by the transverse floor beams,
and the reactions of these beams, therefore, constitute the loads applied
to the truss. To avoid secondary bending stress in truss members, floor
beams are preferably attached to the trusses at or near joints of the truss.
The effect of the weight of the trusses themselves plus the weight of
bracing and other auxiliary construction, which is not part of the floor
system, is usually allowed for by assuming a uniformly distributed load
of the same gross magnitude spread over the floor of the bridge. For
large trusses, where the distribution of truss weight may appreciably
affect member stresses, the weight of the truss may be assumed equally
divided between top- and bottom-chord joints and the weight of the
bracing and of the floor system applied to the truss at the joints to which
or near which such construction is attached. The vertical members are
the only ones which are affected by changing the load distribution
between the top and bottom chord joints.

The following examples illustrate the determination of dead-load
joint (panel) loads for a typical truss bridge:

Ezxample 3
Construction Data

Through highway truss bridge

Span, 110 ft center to center of truss bearings

Roadway, 24 ft curb to curb

Trusses, 5-panel Pratt (Fig. 594), spaced 29 ft apart. Total estimated
weight trusses and bracing is 90,000 Ib

Curb, 9 in. wide and 15 in. high (concrete)

Floor beams, 30 in. X 110 b

Stringers, 7 lines of 16-in. X 45-1b I-beams

Floor slab, reinforced concrete average ¢t = 71

Wearing surface, allow 20 Ib per sq ft for future

Intermediate-J oint Loads (see Fig. 65a)

Wearing surface and floor slab (20 + 94) X 142 X 24 X } = 30,100 Ib
Curb, 9 X 15 X +§¥ X 22 = 3,090
Stringers, 7 X 45 X 142 X 1 = 3,470
Floor beam, 110 X 29 X % = 1,600
Truss and bracing, 3 X 90,000 X £ = 9,000

Total = 47,260 Ib
End-Joint Load

3 X 47,260 = 23,630 Ib
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If the weight of truss and bracing is to be more accurately distributed,
the results would be as follows:

Ezample 4 (same data as for Example 3).
Intermediate-Joint Loads (see Fig. 65b)
Top-Chord Joints
Truss and bracing, § X 90,000 X § X ¥ = 4,500 Ib

236K 236K
w
RLT 473K 473K 473K 473K TRR
(a)
45K 45K 45K 45K
\ JL Y Y
236K 236K
R 1 \ \ 1 T
L 428K 428K 428K 428K Re
(b)
Fia. 65.
Bottom-Chord Joints
Wearing surface and floor slab = 30,100 Ib
Curb = 3,090
Stringers = 3,470
Floor beam = 1,600
Truss and bracing = 4,500
42,760 Ib

End~Joint Load
3 X 4500 = 225010
} X 42,760 = 21,380

23,630 1b

Live loads are transmitted to the trusses by the floor system, which
is generally assumed to act as a system of simply supported beams. In
accordance with this assumption, it is not necessary to compute indi-
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vidual slab and stringer reactions as any load will be distributed to the
joints of the two trusses proportionate to its position in the panel. To
produce maximum effect, a concentrated load should be placed near one
truss.

Example 6

Consider a standard H20 truck (see Fig. 2) placed on the foregoing highway
bridge floor (Example 3) with its rear axle over the floor beam at L, (Ffis. 66a).

Truck
6.3 /Q
U U. U, U, < 20T Truckl
g -
&
L, (0] L, %
t L, ‘ 14’ ‘Lz L, L, 1
R )
o 5 Panels at 22' =110’ Fr 2 SJ/L Q
EB 29’ c. to c. of Trusses
(a) (b)
Fia. 66.

The truck is placed with the wheel against the curb (Fig. 66b), and the joint
loads on truss A are computed as follows:

Weight of truck, 20 tons = 40 kips
Rear axle, 0.8 X 40 = 32 kips
Front axle, 0.2 X 40 = 8 kips
22.7
Proportion of load to truss A = 59
Joint Load L,
227 14 .
Front axle, 8 X 39 X 5= 4.0 kips
Joint Load L
22. 7 o L:
Front axle, 8 X —293— 5—2 = 2.3 kips
Rear axle, 32)(% = 25.0 kips
27.3 kips

These joint loads are used to determine the stresses in the truss for the truck in
the given position.
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For a uniformly distributed load over the floor surface the determina-
tion would be as follows for the structure of Example 3.

Ezample 6
Location of Load

Assume a uniformly distributed load of 100 b per sq ft covering the entire
width of roadway and extending from L; to a point midway between L; and L,.
Load per lineal foot of bridge = 100 X 24 = 2.4 kips

Load per lineal foot of truss = } X 2.4 = 1.2 kips

Joint Loads
1.2 X 11 X 5.5

At I —— = 3.3 kips
At Ly 1.2 X 1212>< 165 _ o4
12X22X 3 =132

23.1 kips

At Lyand Ly 1.2 X 22 = 26.4 kips

At Ly 12X2X3% = 13.2 kips

68 Truss Reactions

The truss reactions are determined in accordance with the principles
outlined in Chapter 4. Although they are produced by action of the
joint loads on the truss, they may be determined directly from the initial
loading and its relative position in the span.

Thus, for the roof truss shown in Fig. 62a, assuming it simply sup-
ported, B, = R = (3 X 1565 X 5) + 880 = 4790 Ib. For the bridge
truss shown in Fig. 65 B, = Rg = (2 X 47.3) + 23.6 = 118.2 kips.

For live loading it is sometimes convenient to compute separately
the amount contributed to the reaction by each joint load. Thus, for
the bridge truss given in Example 3 of Article 57,

Ezxzample 1
Using joint loads determined in Example 5, Article 57,

Truss reaction produced by joint load Ly = 4.0 X $ = 3.2 kips
Truss reaction produced by joint load Ly = 27.3 X $ = 16.4 kips

Total truss reaction, R, = 19.6 kips

Here, however, it would have been more convenient to compute the amounts
contributed to the reaction from the initial loading as shown in Fig. 66, without



120 TRUSSES

consideration of the individual joint loads. Thus, noting that the load on the
floor is transmitted to truss A in the proportion 22.7/29, the reaction R, is as
follows:

22.7 80

Truss reaction produced by front axle = 8 X 39 X 1o = 4.6 kips
. 22.7 3 .
Truss reaction produced by rear axle = 32 X 29 X g = 15.0 kips

Total truss reaction, R, = 19.6 kips
Ezample 2

The individual joint loads which result from the uniform loading used for
Example 6, Article 57, will each contribute the following amounts to the value
of Rr:

Load at L, 33X + = 2.64 kips
Load at L, 23.1 X § = 13.86
Load at Ly 264 X $ = 10.56
loadat Ly 264X % = 528
Load at Ly 132X 0 = 0

Total truss reaction, R, = 32.34 kips

It is much simpler here to compute the reactions directly from the initial loading:

Total load on span =24 X 77 = 184.8 kips
Load delivered to truss A =1 X 184.8 = 92.4 kips
Distance from resultant of load to right reaction = 4 X 77 = 38.5ft
38.5 .
Rp = 924 X 10 = 32.34 kips

Reactions may also be determined by graphical methods as outlined
in Chapter 4.

69 Stresses in Truss Members

The primary stress in an individual member of the truss is determined
by dividing the structure into parts as stated in Article 37 and computing
the force system necessary to maintain the equilibrium of any such part.
Since the members are assumed to be connected by frictionless pins, the
force in a member must coincide with its axis and pass through the pins
at each end. Thus, if a section is passed through panel L, L, of the truss
shown in Fig. 66, the force system acting on the portion on the left of
this section will be as represented at a in Fig. 67; the force system acting
on the portion on the right of this section is shown at b. In each system
it will be observed that the members cut by the section are represented
by the stresses in such members. The reaction, joint loads, and stresses
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in either of these groupings thus constitute a force system in equilibrium
and must fulfill the static conditions ZH = 0, ZV =0, and ZM = 0.

Sections are generally chosen in such a manner as to cut not more than
three members. When the arrangement of members is such that this
cannot be done, the structure is termed statically indeterminate internally,
and other methods of analysis must be employed. Such a condition may
be noted by sectioning the center panel of the above truss and consid-
ering the portion on the left of this section (Fig. 67c). For such an

Section Section
U S
‘ Sz
T
Lo Ly | Sy
|
4K
196K
(a)

TLO
19.6K 4K .27~3K
l‘ 16. 67.

arrangement, however, a solution by statics is made possible by so con-
structing the diagonals that they are incapable of resisting compressive
stress; thus 83 = 0, and the three remaining unknowns may be deter-
mined by staties. {

Tension stress in a member is generally indicated by the symbol +,
compression by the symbol —.

.-~ The force or stress in members may also be found from a considera-
tion of the individual joints. Since the pin (real or imaginary) connect-
ing the members at a given joint is in equilibrium, the forces in the
members acting on such a pin must form a concentric force system in
equilibrium and fulfill the equations EH = 0 and £V = 0. Obviously,
not more than two unknowns may be included in such a determination.
Typical joints of the foregoing truss are represented in Fig. 68. Analysis
of joint Ly (Fig. 68a) shows that the vertical component of stress in
LoL, equals the truss reaction, and, since £H = 0, the stress in Lol
must equal the horizontal component of the'stress in Lyl7,; analysis of
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joint L; (Fig. 68b) shows that the stress in L, L, must equal the stress in
LoL, and that the stress in U;L; must equal the load at L, ; proceeding
to joint U, (Fig. 68c), we find the stresses in U, U, and U, Ly by writing
ZH =0 and ZV = 0. This method of analysis is particularly useful
in determining stresses in hangers such as U,L; and vertical posts such
as UsLs. It also forms the basis of graphical solutions, since the forces
acting on a pin, laid out to scale and direction, must form a closed
polygon.

Stresses are usually computed for each separate loading or load
arrangement. The dead-load stresses are first computed and recorded;

U U, U,
LoU, U,L,
LyU,
Lo ULy
LiL, LL; |bL Ll UL,
196K 4K
(a) (%) (¢)
Fig. 68.

then each live loading is separately considered and stresses recorded for
such arrangements of this live loading as will produce maximum effects
on given members. Finally, the combined stress resulting from rational
load combinations is determined by adding the stresses obtained from
the separate ar alyses.

60 Roof Trusses—Dead-Load Stresses

Stresses in roof trusses are frequently obtained by graphical methods.
The truss diagram is laid out to convenient scale as at a in Fig. 69, and
all spaces are lettered or numbered. The forces acting on a given joint
are identified by reading the letters or numbers around the joint in a
clockwise ! direction. Thus the forces on the end joint are identified as
reaction AB, joint load BC, and stresses C1 and 14. Figure 69b is a
collection of force polygons drawn for each joint and superimposed upon
one another. Thus, the left end joint being considered, A B is laid off to
scale and direction and lettered ab to read in its direction of action;
be in similar manner indicates the joint load; forces cl1 and la must then
complete a closed force polygon and act on the pin in the direction
indicated by reading their identifying letters or numbers. Thus force

1 Forces may be read in a counterclockwise direction if preferred; however, the
same direction must be maintained throughout the solution.
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cl is a compression stress and la is tensile. Similar procediires are fol-
lowed for the other joints, and the values of all stresses are obtained by
scaling the diagram. .

In the construction of the force polygons which make up the force or
stress diagram, it will be noted that only two unknowns can be solved

24
24 24
E F
28, 22 c 24
o 10® 59 6
o 13 ¢ s N ¥ H 136
n o 'y 8
A 2, T 4 7
B 19| 2 9| 10 ;
¥120 +120 ¥96
7.36 A s 7.36

(a) Truss Diagram
(D. L. Stresses indicated in Kips) b

(b) Force Diagram

Fia. 69. Graphical Analysis of Stress. Howe Roof Truss.

at each joint, and the selection of the order in which joints are solved
must be in accordance with this limitation. For the Fink roof truss
shown in Fig. 70, joints Ly, U; and L, are solved in order without diffi-
culty. Because of the presence of three unknowns at each of the next
top- or bottom-chord joints, the order of progress is temporarily halted.
It will be noted, however, that although joint Uj has three unknowns,
two of these have the same line of action, which makes it possible to
solve for the third unknown and the resultant of the other two forces.
Thus the force polygon (Fig. 70b) ef6’5'¢ is drawn with stress 65 in
assumed or temporary location, but, since f6 and e5 are parallel, it will
be noted that 6’5’ represents the correct stress in truss member 6-5.
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Joint M3 now represents a similar situation, and the force polygon
5'6"7"4'5’ can be constructed with the length 4’5’ representing the cor-
rect stress in member 4-5. Joint U, can now be solved and forces 54’
and 56’ shifted to their correct positions.

50004

O 5000&# F Yy, g 50004
S000# £ Uy e 3 Uy H 5000#
° 50004 1 U, 5 7 9 U, ;| 50004
o Mﬂ ”.
= 4 10
c U 2/ 5 1 \12 Yoy
1 13
Lu L| Lz Ls L'I LU
250004 B 75008  Agoo- V7500 K 250004
(a) Truss Diagram
8
[
9 10
12 d

(b) Stress Diagram

F1ac. 70. Graphical Analysis of Stress. Fink Roof Truss.

Figure 71 represents another solution of this problem. In this solu-
tion, a temporary member mn is substituted for members 5— and 6-5,
and the solution proceeds to the finding of the stress in member F6. The
temporary member is then removed and stresses determined in the
actual members.

In these graphical constructions, the layout of the truss diagram
should be of such size as will permit accurate determination of the
slopes of all members. For the stress diagram, since stresses are com-
monly recorded to the nearest 500 pounds of value, a scale of 1 inch =
4000 pounds is usually satisfactory. When the truss and loading are
symmetrical, the stress diagram will also be symmetrical, and only one-



ROOF TRUSSES—LIVE-LOAD STRESSES 125

half of this diagram need be constructed; however, the stress in such a
member as A4 in Fig. 69 or A7 in Fig. 70 should then be computed ana-
lytically as a check on the accuracy of the graphical work.

9 10

13 ek

\f*"

n6

(b) Stress Diagram

Fig. 71. Graphical Analysis of Stress. Fink Roof Truss. Substitute Member
Method.

81 Roof Trusses—Live-Load Stresses

Live loads on roofs consist primarily of snow, ice, and wind pressure.
In addition, loads such as shafting, balconies, and hoists are frequently
suspended from the roof truss. The stresses must be determined for
each such load, and, if it is one which may vary in position on the struc-
ture, the effect of such changes in location must be taken into account.

Snow and ice loads are usually regarded as applied uniformly over

e entire roof surface and therefore produce effects similar to dead load.
The stresses due to these loads may, therefore, be found by proportion.
Thus, for the truss illustrated in Fig. 69 (see the typical roof problem in
Article 57 for construction data), stresses due to ice or snow loads may
be determined as in the following example.
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Ezample 1
Ice load = 10 b per sq ft of roof surface
Snow load = 8 1Ib per sq ft of roof surface
Total ice load = 10 X 27.95 X 2 X 16 = 8900 lb
Total snow load = 8 X 27.95 X 2 X 16 = 7200 Ib
Total dead load = 14,700 (see Article 58)
Ice-load stress = %% X (dead-load stress)

Snow-load stress = 15% X (dead-load stress).
For the given truss, the stresses in individual members are recorded in Fig. 74.

The force of the wind is generally expressed in terms of pressure
exerted against a vertical plane surface, and this in turn is reduced to an
equivalent pressure normal to the windward roof surface. Although
recognized as an erroneous practice, the suction present on the leeward
side is commonly neglected.? Based upon a wind intensity of 20 pounds
per square foot against a vertical plane (corresponding to a wind velocity
of about 80 mph), the pressure on the windward roof surface of the roof
of Example 1 would be as follows:

Example 2 Rise of roof truss = 12.5 ft
Length of rafter = 27.95 ft
. 12.
Sma = 5}65'5 = 0.45

Using Duchemin’s formula (see Article 18), the pressure on the windward roof
surface is

2 X 0.45
DPn = 20 (mﬁ) =151b per sq ft
Total wind force = 15 X 27.95 X 16 = 6.71 kips
Joint load = 15X 9.31 X 16 = 2.23 kips

If one end of the truss is free to move horizontally, the entire horizontal com-
ponent of the wind force must be resisted at the opposite support. The vertical
and horizontal components of the total wind force are

_ 25X 67

Wy = —2—‘7-55—_ = 6.0 klps
12.5 X 6.7 .
W}{ = '—-27——9‘5—— = 3.0 klps

. *8ee Fifth Progress Report of Subcommittee 31, Proceedings Am. Soc. C. E.,
March, 1936, p. 398.
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Wind acting left to right (Fig. 72a)
Right reaction
6.7 X 27.95]

Vertical component = [ 3

+ 50 = 1.9 kips

Horizontal component = 3 kips
Left reaction = 6.0 — 1.9 = 4.1 kips

Fia. 72. Wind Loads and Reactions.

Wind acting right to left (Fig. 72b)
Left reaction = 1.9 kips
Right reaction

Vertical component = 6.0 — 1.9 = 4.1 kips
Horizontal component = 3.0 kips

The graphical analysis of stresses is performed in the manner outlined in
Article 60 (Fig. 73), and the summary of stresses due to assumed combinations
of loading is shown in Fig. 74.

5
(a) (%)
Wind acting left to right. ~ Wind acting right to left.
Fig. 73. Stress Diagrams.

62 Roof Trusses—Combined Stresses

The stress in each member having been determined for each loading
which may act on the structure, consideration must then be given to the
manner in which these loadings and corresponding stresses may be com-
bined. This is a matter which entails the application of common sense
and judgment in order to arrive at logical results. Thus it would not
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Loads:
Uy Dead Load (D. L.) per joint = 2.4 kips
a.’ b Us Ice = 10/0' of roof surface
;: u\ Us 'm SIIOW = S/D’ “ “ ““
Exp. Ly Ln Ls Ly L¢ Ly |Ls Wind = 20/0’ on vertical plane
50 ft.
(Trusses spaced 16 ft. centers) Combinations:
Case I. D. L. + Ice 4 Snow
(Trusses spaced 16 ft centers) II. D. L. + Ice + Snow + 4} Wind
1I1. D. L. 4 Ice + Wind
1V. D. L. 4+ Wind
STRESS IN MEMBERS + Denotes Tension
(Kips) - “  Compression
Wind Combined Stresses
Mem-

ber D.L. | Ice Snow
LtoR|R to L| Case I | Case II|{CaselIII|Case IV

LoLy | +12.0| +7.3 | +5.9 | +5.7| +3.8 | +25.2| +28.1| +25.0| 4+17.7
Lils | +12.0| +7.3 | +5.9 | +5.7 | +3.8 | +25.2| +28.1| +25.0| +17.7
LoLs |+ 9.6| +5.8 | +4.7| +3.2 | +3.8 | +20.1| +22.0| +19.2| +13.4
LsaLs |+ 9.6| +5.8 | +4.7| 40.8 | +6.2 | +20.1| +23.2| +21.6| +15.8
Lils | +12.0| +7.3 | +5.9 | +0.8 | +8.7 | +25.2| +29.6| +28.0| +20.7
LsLs | +12.0| +7.3 | +5.9 | +0.8 | +8.7 | +25.2| +29.6| +28.0| +20.7
LUy | —13.4| —8.1| —6.6 | —6.9 | —4.2 | —28.1| —31.6| —28.4| —20.3
UU:|-10.8] —6.5| —5.3 | —5.3 | —4.2 | —22.6| —25.3| —22.6| —16.1
UUs | — 8.0| —4.8| —3.9| —3.6| —4.2|-16.7| —18.8| —17.0| —12.2
UsUs|— 8.0| —4.8| —3.9| —4.2| —3.6|—16.7| —18.8| —17.0]| —12.2
UdUs | —10.8| —6.5| —5.3 | —4.2 | —5.3 | —22.6| —25.3| —22.6| —16.1

UgsLg | —13.4| —8.1| —6.6 | —4.2 | —6.9 | —28.1] —31.6| —28.4| —20.3
ULy 0 0 0 0 0 0 0 0 0

ULy | — 2.7} -1.6 ] —1.3 | —2.8 0 - 56|—-70—-71]- 5.5
Uy | + 1.2] 40.7 | +0.6 | +1.3 0 + 25|+ 32|+ 32|+ 2.5
UL | — 3.4 —2.1| -1.7| —-3.b 0 - 72|-90|—-90|— 6.9
UsL; | + 4.8 +2.9 | +2.4| 4+2.5| 4+2.5 | 4+10.1| +11.4| +10.2| 4+ 7.3
LUy | — 3.4 —2.1 | —1.7 0 -35|—-72|—-90|—90|— 6.9
ULy |+ 1.2| 4+0.7 | +0.6 0 +1.3|+ 25|+ 32|+ 32|+ 2.5
LUs |— 2.7 -1.6 | —1.3 0 ~-28|—-56|—70|—71|— 8.5
UsLs 0 0 0 0 0 0 0 0 0

Fia. 74. Summary of Stresses in Roof Truss.
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be logical to combine wind forces of maximum intensity with full snow
load as such a wind would probably blow the snow off the roof.

Typical combinations of roof loads for the roof used in previous
examples and the resulting combined stresses due to these load com-
binations are shown in Fig. 74. The maximum combined stresses are
used in the design or final analysis of the structure, due consideration
being given to the symmetry of the structure. Careful consideration
must also be given to possible reversals of stress in members. Thus a
given member may for onc condition of loading carry tension while for
a different combination the stress may be compression. Such reversals
of stress must be noted and the members designed for the maximum of
each kind of stress.

In the given example, the maximum stress in each member occurs
under Case II loading except for {/; Ly which is determined by Case 111,
and there are no reversals. The stresses given by Case I will probably
control the design of this structure, however, since accepted practice
permits a 33} per cent increase in allowed unit stress when wind force
is included.

63 Mill Bent—Hinged Column Bases

In the construction illustrated in Fig. 61, the lateral or horizontal
component of the wind force must be resisted by one of the walls sup-
porting the roof. This means that a force of considerable magnitude
will be applied horizontally to the top of the wall, and the stability of
the entire construction will depend upon the ability of the wall to.resist
such a force. Walls of substantial construction, such as brick or con-
crete, will ordinarily be required, except for very short span roofs, and,
to increase their stability further, pilasters are frequently included in
the wall construction.

It is frequently desirable, particularly for shops and simvle mill con-
struction, to use relatively inexpensive wall construction and support
the trusses on columns designed to resist the horizontal wind forces.
The most common arrangement. is to attach the end of the truss to the
top of the column and connect the nearest lower-chord joint to the
column at a point near the top by a knee brace, as at a in Fig. 75. For a
flat roof as shown at b, the knee braces may be omitted. In this type of
construction, the columns are attached to footings which must be capable
of resisting the horizontal wind force in addition to supporting the verti-
cal loadings. Depending upon the rigidity of the connections of columns
to footings and the resistance of rootings to overturning, the columns
may be considered as either hinged or fixed at their bases. The criterion
is the rigidity of the base, and, since the fulfillment of the assumption of
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fixity requires that there be no movement whatsoever of the bases or
footings, the columns should be assumed to be hinged unless it is certain
that definite fixity exists.

A Knee Braces

_/Fooﬁng
(a) ()
Fia. 75. Mill Bent.

The action of a bent with hinged column bases under lateral force is
illustrated in Fig. 76. If we assume no lateral loading applied to the
columns and neglect any distortion of the truss and knee braces, the -
upper end of each column will remain vertical, and each hinge will de-
flect the same amount relative to the top of the column. If the windward
column is considered as a free body as at b, it will be acted upon by the
resistance offered by the truss, represented by components P; and Py;
by the force S in the knee brace; and by the reaction at the hinged base,
represented by components V1, and H,. The forces on the column may
be divided into two groups: force P; applied at a, S, applied at b, and
V. applied at ¢ are axial forces producing compression but not con-
tributing to the initial deflection; force P; acting at a, Sy acting at b,

w
W,

Wy

W ~

™
Dg 1,
h }.ﬂl‘ _8’1 L}_IR
v AL H ~inge

Hinge R

v (a) (b)

Fie. 76. Mill Bent. Hinged Column Bases.

and Hp, acting at c are transverse forces which induce bending. Usually
the distance &k will be less than one-fourth the length of the column, and
the elastic curve of the column may be assumed to remain vertical at b
without introducing excessive error for the comparative purpose here
employed. Based on this assumption, deflection Dy, will equal that of a
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cantilever fixed at b and loaded with a force H, at its extremity; hence,

for the left-hand column, where I;, = moment of inertia of column sec-
tion,

Dy, = ALl (approx.) (83)
L 3EI, pprox.
In a similar manner, for the right-hand column,
_ Hyl}
Dy = 3ET, (84)
and since
H, B,
— = 85
Hr Blg ®5)
Hp,+ Hp = Wy (86)
BI, ]
H, =W [———
v = Vi B+ an, 0
Bl ]
Hy = Wy | 57—
=W [JSIL T Eln 9

When the columns are of the same section and length,
H, = Hp = %IVH (89)

With the values of H; and Hgr determined as above, the values of
V1, and Vg are computed from the equation for M = 0, applied to the
entire structure choosing moment centers successively at the supports.
For the column as a free body (Fig. 76b)

With moment center at b

Hpl
P; = —,%1 (90)
With moment center at a oo L
+
k
From the known slope of the knee brace
k
Sy = Sy (—) (92)
m
FromZV =0
Pr=V,+8p 93)

A similar procedure is followed for the leeward column.
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Stresses in the roof truss may now be determined as described in
Article 60, noting that forces P; and P, constitute the components of
the reaction at the end joint of the truss, and the force S in the knee
brace acts as a load applied at the joint to which it connects. Unit
stresses in the column are determined from the bending-moments,

Reactions

16554 Columns are of equal section and length

W = 4 x 3310 = 13240#

160

Wy = 58 x 13240 = 73404
Wy = &% x 13240 = 110004

Hj = Hp=%x7340=3670# <=
- vy = (11000x36) - (7340%36) _ 2750,1

/

20’
&

Ve = (7340X36)+(11000x12) = g250#}
a8

2145608
82

3
J! 175¢ Pi=9175#|% 9175
AU I—p, = p=3670%20_ 91759“'%"‘—
18 RO i 3670 x 38 R
T /"(1 % B sy = 3670
——————— —— sy = X8R = ns104—— = 5175
.8 '8 § S = VSH-FSVI = 4174404 =
(# S, = -174404 —
36708 36704 Py = 1181042750 = 145604
VY el ) S T T T 36710
A Py = 11810-8250 = 3560# ' Bending
27508 82504 M " Shear
B.M. at foot of knee brace omen
Forces on Columns

= 3670%x20 73400'¢
Fia. 77. Mill Bent with Hinged Column Bases. Typical Solution.

shears, and axial stress in portions ab and of Fig. 76b. The complete
solution of a typical mill bent with hinged column bases is shown in
Figs. 77 and 78.

When the exterior walls are supported by girts attached to the col-
umns, the wind pressure on the windward wall is transmitted directly
to the column. It is usually considered as a horizontal uniformly dis-
tributed load over the length of the windward column, and account must

be taken of this load condition on the windward column in writing the
deflection equations.



MILL BENT—FIXED COLUMN BASES 133

9175

b 4 12,13 &
Force Polygons
2

Fig. 78. Mill Bent with Hinged Column Bases. Stresses in Roof Truss.

64 Mill Bent—Fixed Column Bases

The action of a bent whose columns are fixed at their bases is illus-
trated at @ in Fig. 79, where it is assumed that the column base and the
attachment of the column thereto are sufficiently rigid to hold the column
axis, at the bottom of the column, in its original position. Neglecting
the distortion of the truss and knee braces, points a and b will remain

W

DA

af
k k
3 b
I m
D> [le
i T Yo dhet
L Points of Contraflexure  { 1 ¥=Assymed
14 Hinge
j “
(a) v
H _d
Assumed
n Hinge
| _c|Fixed
(d)

Fra. 79. Mill Bent. Fixed Column Bases,
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in a vertical line and the column will be bent in the form of an S curve,
the bending-moment reversing at some point d, between the foot of the
knee brace at b, and the column base at ¢. At point d, therefore, the
bending-moment in the column must be zero, and this point is known
as the point of contraflexure. For purposes of analysis, the columns are
assumed cut at the points of contraflexure and hinges inserted as at b.
The portion of the structure above these imaginary hinges may then be
solved as a bent with hinged column bases and the portion of the columns
below the hinges solved as a vertical cantilever beam with forces H and
V applied at its free end.

If the column is considered as a free body (Fig. 80), the external
forces will consist of the components of the truss reaction P; and P,
acting at a; the stress S in the knee brace acting at b; and the shear H,
direct force V, and couple M, acting on the base section of the column.
These external forces and couple will produce the bending-moment and
shear diagram shown. If it is assumed that points a and b remain in a
vertical line and that the tangent to the elastic curve at ¢ remains verti-
cal, the deflection of points a and b, respectively, with respect to the
tangent at ¢ may be computed by area-moments as follows (column of
constant section):

D, = deflection of a with respect to tangent at ¢

Hml 1 Hmk , Hnl 2
=—@Gl+ k) +——Gk) — — Gl + k) (94)
2 2 2
D, = deflection of b with respect to tangent at ¢
Hml | Hnl ,
= -2— (§l) - _2‘ (il) . (95)
Since Dl = Dz
ml + mk  nl o (96)
2 3 2
Substituting n = I — m and solving for m gives
l 1 @)
M = — [ ——
()
3l

From Equation 97 it is seen that for a column of constant section, the
position of the point of contraflexure depends upon the ratio of & to I.
Since this ratio is usually small (generally less than one-fourth), it is
customary to neglect it entirely and assume that

m=n=3% (98)
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H
—
H
Reactions
° Columns of equal and constant section
o throughout
Points of contraflexure assumed as shown
a W =4x3310=13240#
W \ W= A X13240=73404
] 87 W, = 25 X 13240 = 110004
o =} H =H =1%x7340=3670#
Points of Contraflexure -~
Y b ™ v = - (11000%36) - (7340X26) _ 4754}
5| 4278 ,f “Toros 36704 48
] 67254 . (7340x26)+(11000x12) .
v 67254
36704 442759 36704 Y6725 R
>yd os, ¥ Me= 3670% 10=36700" D)
o [ s
. Fixed Truss Fixed| ™)
3670# 6725# K" 3670#
427
275% Y ps6700'¢  Divgram 36700"#
g 4590
Lt.; Py=p,= B0X10 = 45904 é
Y= =Y
a Y450 R 1 36700" # 3670
P /{ 2 Sym 2220 05w 4590
b “ O ]
NV s -:V.s +SE=¢11220% -
N A H¥Sv 5 —
= P m2l5+75%5=11804 & -
d 36704 Py =1535-6125=8104 —
1\‘ My, = 3670 10=36700" # -
42759 67254 \ [
Columns 36700"# 3670
Bending Shear
Moment
Fia. 81. Mill Bent with Fixed Column Bases. Typical Solution.
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The foregoing equations take no account of any lateral load on the
columns. When the construction is such that the side walls are sup-
ported directly by the columns, a uniformly distributed load must be
included in the forces acting on the column and the bending-moments,
shears, and deflection equations altered accordingly.

1213 k
5 a
2

Force Polygons
Fic. 82. Mill Bent with Fixed Column Bases. Stresses in Roof Truss.

The complete solution of a mill bent with column bases fixed is shown
in Figs. 81 and 82.

66 Parallel-Chord Truss—Dead-Load Stresses

Stresses in the members of a truss with parallel chords are best deter-
mined by analytical methods utilizing the principles outlined in Article
59. The application of these principles is illustrated in the solution of
the following typical bridge truss problem:

Ezample 1
Highway Bridge—Span 150 ft, roadway width 20 ft
Truss data—Riveted Pratt Truss, with parallel chords (Fig. 83)
Spacing of trusses, 25 ft center to center

Height of truss, 27 ft center to center of chords
Span 150 ft; 6 panels at 25 ft
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Estimated weights
Floor slab, stringers, and floor beams 258.0 kips

Bottom lateral bracing 1.3
Top lateral bracing 6.6
Trusses 94.1

Total weight of bridge = 360.0 kips = dead load

Assume all dead load applied at lower-chord joints.
Dead load (per truss) = 3 X 360 = 180 kips

Joint load = 180 X § = 30 kips
Reaction = 2} X 30 = 75 kips
U ~1111 U, —1250 U A U
xa:{&g x"’q o

L| Lz Lg L( Lb LC
Y
75 30 30 30 30 30 75
6 Panels at 25'=150"

Fi1c. 83. Pratt Bridge Truss.

It will be noted that the half-panel loads at joints L, and Lg¢ have
been omitted since they do not cause stress in truss members. They
must be included, however, in the total load on the support.

Because of the symmetry of both the truss and the loads it is neces-
sary to compute stress only in the members on one side of the center of
the span, since corresponding members on the other side will receive
the same stress in both kind and amount.

Chord stresses are determined by sectioning the structure successively
in each panel and writing =M = 0 for the forces acting on that part of
the structure on one side only of the section. For a section through
panel LyL3, and considering the part of the truss on the left of the sec-
tion (Fig. 84a), the force S is obtained by writing £ = 0 with moment
center at Lz. A similar result would be obtained by using the portion
of the truss on the right of the section as at b. It will also be observed
that the algebraic sum of the moments of the reaction and loads on
either portion about L; is the bending-moment on a-section through L,
and the force S must equal this bending-moment divided by the height
of the truss h. Similarly, the stress in LyL3 equals the bending-moment
on a section through U, divided by the height of truss. It can be stated
in general that, whenever three members are cut by a section as in
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Fig. 84, the stress in any member equals the algebraic sum of the moments
of truss loads and reaction about the point of intersection of the other two
members, divided by the normal distance from centerline of the member to
this point of infersection. It may also be observed that, should the
diagonal in this panel extend from L, to U; instead of as shown, the
moment centers for top- and bottom-chord stress will reverse, i.e., stress
in UyUs; equals bending-moment at L, divided by h, and stress in LyLg
equals bending-moment at U5 divided by h.

U, U, S__ e s U, U, Us
. h
AN

L \\
L, I P v - o L. -

Y F ] Y 1
75 30 30 30 30 30 75

(a) 0)
. Fia. 84.

Bending-moments are most readily computed by expressing values
algebraically. Thus, for the truss of Example 1 (Fig. 83),

Ezxample 2

Where W = joint load = 30 kips
p = panel length = 25 ft
h = truss height = 27 ft

Reaction at Lo = 24W
Bending-moments
at L;, BM. = 2iWp
at Lo, BM. = (21W X 2p) — Wp = 4Wp
at Lg, BM. = (23W X 3p) — 2Wp — Wp = 43Wp

Since w 30 x 25
—p = a =
B 97 27.78
The stresses are .
Member  Moment Center Stress
LoLy and LLe Uy 2% X 27.78 = +69.5 kips
LoLs Us 4 X 27.78 = +111.1 kips
U U, Lo 4 X 27.78 = —111.1 kips
UpUs Ly 414 X 27.78 = —125.0 kips

Stresses in the diagonals of parallel-chord trusses are usually deter-
mined by passing a section perpendicular to the chords and equating the
algebraic sum of reaction, loads, and stress components, parallel to this
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section, to zero. The algebraic sum of reaction and load components
parallel to such a section is the transverse shear and, in a truss with
horizontal chords, is the vertical shear.

Example 3

Passing a vertical section through panel L,L; of the truss in Fig. 83 and con-
sidering the part on the left of this section as in Fig. 85 gives

S, = vertical shear in panel LiL; = 75 — 30 = 45 kips

From similar triangles
k" 45 X 36.8
S=8,X P I
It is important to note the kind of shear as this determines the kind of
stress, tension, or compression produced in the diagonal. Positive shear
(down on right of section, Fig. 86) will cause tension in a diagonal

= +61.3 kips

| {Positive
| | Shear
[}
Y '
&
]
- [}
; i
| | Negative
L, T Shear
I—
|
Y
75{k pa25" ¥

Fia. 85. Fig. 86.

sloping downward to the right as does U;L,. Negative shear will pro-
duce stress of the opposite kind. These stresses will be reversed for
members sloping in the opposite direction.

Shears produced by vertical loads can be readily computed by start-
ing with the shear in the center panel or the one adjacent to the center
of the span and progressing toward the reaction.

Example 4 (Fig. 83)
Panel load, W = 30 K
Shears

Panel L:L; V= +3W = +15K
Panel Lle V= +1%W = + 45 K
Panel LoLy V = +2}W = + 75K

(Shears for a truss having an odd number of panels are shown in Fig. 87.)
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4~ Span
]
|
)
\ \ Y
3w
w w w w w w 3w
Shears: 3w 2w w 0
Fia. 87.
Ezample 5
Since Whr 30 X 36.8
T = —T = 4089
Stresses

LoUy = 2} X 40.89 = —102.2 kips
UiLs = 1% X 40.80 = +61.3 kips
Uwls = 3 X 40.80 = +20.4 kips

n

Stresses in the verticals are best determined by analysis of joints.
Thus, considering the forces acting at joint L,

Stress U7y, = 430 kips

If the forces acting at joint U, are considered, the magnitude of stress
UL, is the same as the vertical component of U3L3, and it acts on U,
in the opposite direction; hence

Stress UsLy = 3 X 30 = —15.0 kips

It should be noted that the above stress in UsLs would be increased by
the amount of the joint load, if any, at Us.

U —695 U —1111 Us U /A
03 E) »
< ¥/ o =] S/ o
& el el g
+ + +
69.5 +1111 +125.0
L, I, Ly v s L, VL‘ Le
\
75 30 30 30 30 30 75
6 Panels at 25’ = 150"
<
Fia. 88.

For a truss of the Howe type (Fig. 88), the chord stresses would be
computed from diffcrent moment centers, also the kind of stress in
diagonals would be reversed.
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66 Parallel-Chord Truss—Dead-Load Stress Coefficients

The method of coefficients is particularly useful and rapid for comput-
ing dead-load stresses in the members of horizontal-chord trusses when
the panels are of equal lengths. It is essentially one of individual joint
analysis, the horizontal and vertical components of stress in each mem-
ber being equal to the product of a cocfficient and a multiplier. 1Its con-
venience lies in the fact that, for any given stress, the coefficients for its
horizontal component, vertical component, and the stress itself are all

equal, the different values of these forces being
Stress U, ,‘1_15% determined by the use of different multipliers.

= All horizontal forces in the truss will hence have

£| a common multiplier; all vertical forces a com-

| mon multiplier; and all diagonal forces a common
- W multiplier.

ch . With reference to the truss in Fig. 83 it will

Fic. 89. be noted that, since the stress in each chord mem-

ber equals the bending-moment at a particular
joint divided by the height of truss, the quantity Wp/h will appear in
each stress computation and hence is a common multiplier for all chord
stresses; likewise the quantity Wh'/h appears in all diagonal stress
determinations and is a common multiplier for all diagonal stresses;
the quantity W is a common multiplier for the stress in all verticals.
If a typical diagonal is considered, as, for example, U;L; (Fig. 85), the
stress and its components will have the values shown in Fig. 89. Similar
relations will exist between the stress and components of stress for all
the other diagonals. The procedure is illustrated by the following
example.

Ezample

Starting with the diagonal in the center panel (in trusses with an even number
of panels, the panel nearest the center), we write the coefficients for stress suc-
cessively for U:Ls, U, L;, and LoU; (Fig. 90). The kind of stress, tension or

/\Un -4 U —4% U Us Us

By
%) X, X
i /4 A % o
+2% +2% +4
Lo Ly L, Ly L, Ls L
\ |
25W w w w w w 25W
n Panels at p

Fia. 90. Coefficients.
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compression, is indicated by the conventional signs + and —, réspectively,
placed before the coefficients. Individual joints are next considered as follows:

Joint Lo -
Stress LoL; = horizontal component of stress LoU; = 2} -hﬁ
Coefficient LoL; = +23

Joint Ly

 Wp
Stress LyL, = stress LoL; = 2} —— A
Coefficient LiLy = +2}
Stress U L, =load at Ly = W
Coefficient = 41

Joint U, (Fig. 91a)

Stress U,U, = sum of horizontal components of stress in LoU; and
w w
U1L2=2§——p'+] hp—’i—}g—,
Coefficient U Uy = 25 + 13 = —4
4# U, Stress U, Uy
11 W 1w
(b)
Fic. 91.
Joint Us (Fig. 91b)
Stress U,U; = stress U,U. plus horizontal component
7 7,
oLy = L'f‘ lﬂp = 4%‘-’;‘2
Coefficient UsUz = 4 + } = —4}
Stress UsL; = vertical component UsLs = 3W

Coefficient UL, = —3%

It should be observed that the coefficient for each member is obtained by
combining those for the several members meeting at a given joint. Stresses
are finally determined by multiplying these coefficients by the following com-
mon multipliers:

Chords _P[;lz
Diagonals u;—h

Verticals W
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67 Inclined-Chord Truss—Dead-Load Stresses

Stresses in the members of non-parallel-chord trusses are obtained by
cutting the structure and establishing the equilibrium of one of the por-
tions in the manner outlined in Article 59. Thus, if we consider the
truss in Fig. 92 and pass a cutting section through panel L, L,, the por-
tion on the left of this section will be acted upon by the reaction, loads,

n_—

4, £ G

-

<
1‘1,. ‘,L. +Lz Va V.. *L. Le
w |14 W w w

n Panels at p

Fia. 92.

and member stresses as shown in Fig. 93. Since these forces are in
equilibrium, the three equations of static equilibrium, ZH = 0, ZV = 0,
and ZM = 0, will furnish a solution for the unknown forces S;, S5, and
S3. Instead of these equations, however, it is best to use three separate
moment equations, noting that the equilibrium of any system of co-
planar forces is established when their moments, with respect to any
three separate moment centers, are respectively equal to zero. If one
of these moment centers is chosen at ¢, the moment of S, and S; will be
zero, and this will provide a direct solution for S ; with another moment

AN
,/ AN 9
N f -
yd N S, |
7/ 4 e\ _ |"
4w/ _ |
7 PR vl
/, /// S \\f : v
-~ <
VPPl Sl M
7/ P NV
//// \\'
ekl > _-Jc
i T 5
v ‘R 4
Fia. 93.

center chosen at d, S; and S; will be eliminated, and this will provide a
direct solution for S3; with the third moment center at a, S; and S; will
be eliminated, and a direct solution will be provided for S,. It will be
seen that the moment of the reaction and loads about moment center ¢
will be the bending-moment at this point; also the moment of the reac-
tion and loads with respect to moment center d will be the bending-
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Inclined Chord Truss.

moment at this point. It therefore follows that the chord stresses will
be based on bending-moments at the joints and are determined by
dividing the bending-moment by the perpendicular distance from the
chord to the joint. Similarly, the stress in the diagonal will be obtained
by dividing the moment of the reaction and loads ahout the point of
intersection of the chords by the perpendicular distance from the diago-
nal to this point. The distances needed for these computations are

Length of dg = Vp? + (hg — hy)? (99)
P Je ge
From similar triangles gfc and gkl — = —
dk dg
ha
r o= __,p_“____ (100)
length of
NP ab ac
From similar triangles abc and dec — = —
ed dc
hy X ac
2 = h Xae (101)
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The distance » is computed from the slope of the chord (h; — hg) per
panel. Typical dimension computations for a symmetrical truss with
inclined top chord are shown in Fig. 94.

/')\\
//
\
s
- \ |
Y
o\i}/ \\ t
", /'>\\ \ 'U,
4 (W7 Us
Ve ‘q,, N\
g i e 7
s w - A\ la
d =T -/ I\A\ g o
t// /”—’ J_/////‘ g ”
G =" ————— e

AL L Ly Ly

L vp=13p 75K 30K 30K 30K
6 Panels at 25' = 150"

Lengths : L
G5 |= V@ - s
ULy = \(300°+ (25)° = 39.1°

Ul =(25¢+ (5)F = 255

BU, =257+ ()7 = 251’

25%6
L2 -4P 3|= —3572- = 4.24]) f|

25x30
-
255

30x16p 2532
301 " 1228p | =y

Fic. 94. Inclined Chord Truss. Dimensions.

- 294’

vy =13p 2=

= 319°

Typical dead-load-stress determinations for the truss shown in Fig. 94
are as follows: The truss is symmetrical about center and carries a load
of 30 kips at each bottom-chord joint.

Ezxample
Stress LyU,

This is computed in the same manner as for the similar member of a parallel-
chord truss.

Shear in panel LoL; = 23W = 75 kips
Stress LyU, =175 X 1414 = —106.0 kips
Stress U U2
Bending-moment at L, = 4Wp
_4Wp _4X30X25

- Stress U;Uz " 20.4 = -102.0 klpﬂ
Stress LyLs
Bending-moment at U, = 4Wp
Stress L;Ls =AWp _4X30X25 _ | 100.0 kips

ha 30
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Stress UL,

Section taken through panel LiL.: consider forces on left of section as in
Fig. 93.

Moment about Gy = (21W X 4p) — (W X 3p)

5Wp
5Wp 5X30 .
Stress Ule = 4—% = —'m = +435.4 klps
Stress UsL,
Section taken through U Us, U,Ls, and L.L3; consider forces on left of section
as in Fig. 95. .
v )
AN\
/// \\ ‘g
- -7 \\
GE= === Ly VI L N,
L A leww W

Fig. 95.

Moment about Mg = — (23W X 4p) + (W X 5p) + (W X 6p)
= Wp (clockwise)

Stress Ung = — = 'T = +5'0 klps

Stress UsLs

Considering joint Usj, it will be seen that the stress in UsL; must equal the
sum of the vertical components of stresses in members UsUjz and U3Uy.  Since
U,Uj; and U3U, have equal dead-load stress, the stress in U3Ls will equal twice
the vertical component of UsU; and will be tension.

68 Parallel-Chord Truss—Live-Load Stresses in General

Stresses caused by a given live load are determined by the same funda-
mental methods that are employed for dead load, when the magnitude
and position of the live load have been established. The only new ele-
ment introduced in the problem is that of locating the live load on the
structure. It should always be remembered that the main objective of
a stress analysis is the determination of the maximum forece which is
exerted on each member of the truss due to any rational combination of
loads. It is important to note that not only is the numerical magnitude
of force essential, but the kind, tension or compression, must also be
determined, and the maximum stress of each kind is therefore the ulti-
mate aim. Some members will always be subjected to the same kind of
stress whatever the loading; others may carry tension for a given loading
or load position and compression for another loading or load position.
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In such cases the maximum numerical value of each kind of stress must
be found. These opposite kinds of stress in the same member are com-
monly called marimum and minimum stress.

In locating the live load on the structure, consideration must be given
to its position laterally with respect to the given truss as well as longi-
tudinally in the span. Obviously, the closer the loading is located to
the truss, the greater will be the loads delivered to the truss by the floor
system and the greater the effect on the members of the truss. Thus in
a highway bridge, the members of one truss will have maximum stress
from truck loading when the wheels are against the curb adjacent to that
truss. Having located the live loads laterally in order to produce maxi-
mum effect on the truss, the proportionate parts of the live loads may be
assumed as delivered directly to the truss and these truss loads are then
located in the span length of the truss in order to produce the desired
maximum effect on a given member.

As previously outlined for dead load, stresses in the members of
parallel-chord trusses are derived from the following sources: chords—
bending-moment at panel points (joints); web system—shears in the
several panels except particular types of members, such as hangers
(U1L,) and posts (UsL3), where the joint-load or floor-beam reaction
determines the stress. It therefore follows that, for maximum stress
in a given chord member, the live loading must be placed so as to pro-
duce maximum bending-moment at a particular section in the span.
For maximum stress in a web member, the loads must generally be placed
to produce either maximum positive shear, for one kind of stress, or maxi-
mum negative shear, for the opposite kind of stress. For members such
as hangers, the loads must be placed to produce maximum joint load at
the appropriate panel point. The principles relating to the placing of
loads for maximum bending-moment or shear at given sections of a
structure have been discussed in Chapter 4.

69 Parallel-Chord Truss—Uniform Live Loading

Consider the highway truss bridge described in Example 1 of Article
65 (Fig. 83), and assume the live load as a uniform load of 100 pounds
per square foot distributed over any part or all of the roadway. Obvi-
ously, maximum stresses in both trusses will occur when the load covers
the entire width of roadway. Since every load placed on the span pro-
duces positive bending-moment on all sections of the structure, the
maximum bending-moments on all sections will occur simultaneously
when the uniform load extends over the entire span. This will produce
a load condition similar to dead load, and the live-load stresses may be
computed in exactly the same manner as for dead load. If the dead-
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load stresses have been previously determined, the live-load stress can
be most readily found by multiplying the dead-load stress by the ratio
of live load per foot of span to the dead load per foot of span, thus

Ezample 1
Width of roadway = 20 ft curb to curb
Load on each truss =100 X 20 X } = 1000 ib per linear ft
Dead load per foot of span = $8§ = 2.4 kips
Live load per foot of span = 100 X 20 = 2.0 kips
Live load chord stress = ;—i—) X (D.L. stress)
Live load stress U,U, = 212“141_‘_] = —92.6 kips

Live-load stresses in other chord members are determined in a similar manner.

Maximum live-load stress in diagonal U,Ls will occur when the shear
in panel LyL3 is maximum. Since positive shear will produce tension in
this member and negative shear compressive stress, both conditions
must be investigated. For placing the load, influence lines as discussed
in Article 41 offer the best solution, and the influence line for shear in
this panel is shown at b in Fig. 96. The zero point in this influence line

/\ U, U, U, U, U,

27’

1K/t
7
4 Ly Le

1

Lz Ly L
' 6 Panels at 25’ =150’
F—— ~(a)_Uniform Loading for Maximum Tension U, Ls.

—————T

(b) Influence Line for Shear Panel LyLj.
Fi1a. 96.

is 15 ft from L3, and for maximum positive shear the uniform load should
extend from this point to Lg as shown on the truss diagram.

Ezxample 2
Maximum positive shear panel LeLs = 1 X § X 90 X } = 22.5 kips
Maximum live-load tension ULy = 22.5 X §6—8 = +430.7 kips

27
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Maximum negative shear will occur when the other segment of the span is loaded,
thus

Maximum negative shear in panel L:Ls = 1 X 1 X 60 X § = 10 kips

Maximum live-load compression ULz = 10 X §g—78 = —13.6 kips

When influence lines are used to compute the stress, it is of course
unnecessary to determine the individual joint loads. To compute the
stress directly from the loading shown at a in Fig. 96, it is necessary to
determine the truss reaction at Ly and the joint load at L,, since these
are the only external forces on the left of a section through panel LyLs,

Ezxample 3
Reaction at o = ~X 90X 45 _ o7 6 kips
150
.
Joint load at L, = LZ(—125—52<—1'R = 4.5 kips

Shear in panel L,L; = 22.5 kips

Live-load stresses in the other diagonals are found in a similar manner.
It may be noted that the end diagonal LoU, will always be in com-
pression and will receive maximum stress when the uniform load extends
over the entire span. The stress in this member may therefore be deter-
mined from the dead-load stress in the same manner as outlined for the
chord stresses.

The stresses in verticals such as UjsLy are best derived from the fact
that they carry the vertical component of the stress in that diagonal
with which they are paired at unloaded chord joints. Thus {/3L, carries
the vertical component of stress U3Lg, in this case the shear in panel
LyLs. Tension in UyLj produces compression in UsLs; compression in
UsL; produces tension in UzLy; therefore

Ezxample 4

Maximum compression /3L, = —22.5 kips

Maximum tension Usle +10.0 kips

The live-load stress in U,L; will always be tension and equal to the joint load
or floor beam reaction at L.

Maximum stress U;L; = 1 X 25 = +25.0 kips
The live-load stress for UsL; of the given truss will be zero.

Maximum and minimum stresses for all the members of this truss
are shown on the truss diagram in Fig. 97. It will be observed that,
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because of the symmetry of the truss, it is necessary to compute the
stress in one-half of the truss only.

A conventional method is sometimes employed for computing live-
load stress in the web members of comparatively small trusses for uni-
form loading. In this method panel loads are computed for the live load
extending over the entire span, and as many of these full panel loads are
placed at loaded chord joints as will produce maximum shear of either
kind. Thus for maximum positive shear in panel LyLs, joints Ly, Ly,

U —926 U, -1042U; —1042 U, -926 U;

A o .o
X n X . ) X N\

2/ 2 O N Sr0lo K4 [2\e:

o wl N\ 'Gg 2\1 Q)O X /70|~ %2/ 3 &)
AR ERANITR) 20 AP

+579 | +57.9 +92.6 +926 |/ +579 | +579

L, I, L, L, L, L, Le
Fia. 97.

and Ls would be loaded. Since the shear for such a loading will equal
the reaction at Lo, the value is most readily found by adding the amounts
contributed to this reaction by each of the joint loads;

Ezxample 5
W = panel load = 100 X 20 X 25 X } = 25 kips
Ry = W + §W + 3w
= 8W = 25 kips
The corresponding stress in UzL;z would be

36.8
27
Similarly, the maximum compressive stress would be obtained by placing panel

loads at joints L, and L.
Maximum negative shear = reaction at L

Re = G + W = 12.5 kips

36.8 .

Stress UsLg = 256 X

= +34.1 kips

Stress UsLz = 12.5 X

By comparison with the exact values previously determined, it will be
seen that this method produces stresses greater than the true maximum
values.

The conventional method lends itself to rapid computation through
the use of coefficients similar to those previously explained for dead-load
stress (Article 66). In this procedure, a load is placed at Ls and the
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corresponding stress coefficient written for LyUs; next a load is added
at L, and the coefficient due to both loads obtained for LzU,. The
successive coefficients are thus obtained by adding the simple fractions

U U Us U U
X% e N NG
/el' i & 3'- % ol ¢ ;I‘ i &
+
L. 141 Lg L; L( Lb LC
Fia. 98.

which represent the proportionate part of the joint loads transmitted
to Lo. When written clear across the truss, coefficients on members
right of the center of span will be for minimum stress; those for mem-
bers on the left half will be for maximum stress. Coefficients for verticals
may be obtained from the diagonals which they meet at the unloaded

Single Track R. R. Bridge
Coopers E60 Engine Loading

UL U U U U

S €ach truss carries lood
Le  on one rail or Y/ axle
loads.

Lo f L, L2 Ly Ly Ls
H 6 Panels @ 25' = 150°

Stress U, U,

Moment center is L2
Position of load for. Mox. B. M. ot L

Ase Loads on Span w m Wa ‘v1 g;f‘
ot i i
A el L e B e
H 1-18 4 468 135 156 105
7 1-18 28 510 174 170 154.5 [

8 1-18 34 528 1935 176 174 v
BM. ot L;

Ade 7ot Ly : Ry = 23 426 X ”a’st X 28X 1) _ 250 Kips

BM. = (251 X 50) — 3230 = 9320

Ade 8 of Ly : i) = 24546+ (426 X l’;)oﬁ' BX34XIT) _ 2718 Kips

BM. = (271.8 X 50] — 4280 = 9310
Masimom Stress Uy Uz = -’%:2 = —345.2 Kips
Fia. 99.
chord (except verticals U;L, and ULz, which are determined as pre-

viously noted). Conventional live-load coefficients for the foregoing
truss are written on the truss diagram in Fig. 98.
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70 Parallel-Chord Truss—Concentrated-Load Systems

Determination of stresses caused by systems of concentrated loads,
such as a train of motor trucks on a highway bridge or locomotive axle
loads on a railroad bridge, involve no new principles. Maximum stress

" [Same truss as in Fig. 99)
Stress UsLs

Length of diagonal = 36.8'
Position of Load for-Mox. 4 Shear Panel L,L;

Ao Loads on Span w | W Wp w Check
L | aiw [0 *e | | T | e | R
2 1-14 [} 348 45 58 15 v
3 1-15 0 3818 5 []] 45
Asle 3at Ly: RL= % = 108.1 Kips
Joint Load ot L ,= M5 _ e

3

Shear Ponel L.L;= 4943

Stress ULy == 94.3 X 1297! = 41285 Kips

Moximum compression U.Ly will be produced with engine reversed in
direction and will be the some os moximum compression in L3al/s with
engine heoded right to left.

Position of Load for Max, 4 Shear panel L ;L
Try Axle 2 ot L, — Axles | to 10 on spon.

,_ Wp < W) (mox) — 45
W=us 7-=38 Shimn) 158 A

No other position sotisfies criterion.

Ade 2at Ly: R= 4950 +I52°2l X7 49.4 kips

Joint load ot Ly = 15252- 48

Shear Panel LyL, = 444.6

Stress L3l = 446 xl_%!_—_ —60.8 Kips

Summary:
Max. Stress U/;Ly or L3Us: Tension 128.5 Kips
Compression 60.8 Kips

Stress U, L,
Stress = Shear Panel Ly
Max. Compression = Max. + Shear Panel L.L3 = —94.3
Maz. Tension = Max. — Shear Panel LiL;= +44.6

Fig. 100.

in the chords will occur when the loads are placed to produce maximum
bending-moment at particular sections, and the method of placing loads
for such effect has been discussed in Chapter 4. A typical stress com-
putation for a chord member of a railroad truss bridge is given in Fig. 99.
(For engine loading and use of moment table, see Article 17.) Maximum
stresses which are derived from the shear are also determined by methods
previously outlined. Typical stress computations for diagonal and ver-
tical members are given in Fig. 100.
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71 Inclined-Chord Truss—Uniform Live Load

Since in each case the stress in a chord member is proportional to the
bending-moment at a corresponding joint, it follows that, for a uni-
formly distributed load, maximum stress will occur simultaneously in
all chords when the loading extends over the entire span. This produces
a condition similar to dead loading, and the live-load stresses may be
computed in the same manner as previously outlined for dead load.
Chord stresses due to uniform live loading may also be obtained by
multiplying the previously computed dead-load stress by the ratio of
live to dead load.

The stress in such members as LoU; and U, L, in Fig. 94 is also deter-
mined in the same manner as outlined for similar members of parallel-
chord trusses.

Determination of the stress in diagonals such as U;L, and UjLs
requires a different procedure from that employed for dead-load stress,
since the stress in such members is not directly related to the shear in
the panel, and for uniform live loading the influence line offers a simple
solution. Thus, for the truss represented in Fig. 94, pass a cutting sec-
tion through panel L, L,, and consider the equilibrium of the part of the
truss on the left of this section as at a in Fig. 101. When a unit load is

U:
3 IJ‘ U‘
S
I_: ALy ’;‘ n Ly, L, Ly Abs
Ry =% Re=Z
(a) Unit Load on Right (b) Unit Load on Left
of Section of Section

Fia. 101.

placed on the structure at any point between Ly and Lg, the only force
on the left of the section will be the reaction at Ly, and

§=+— =+
h z | Lz

where z = distance from Lg to the unit load.

This is therefore the equation of the portion of the influence line for
stress in U;L, corresponding to the distance between L, and Lg.

When the unit load is placed on the left of the section, at any point
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from Lo to L, the forces on the part of the truss on the right of the
section are as represented at b, and

_ ' (L +v)
Lz

where z' = distance from Lq to unit load.

This, therefore, is the equation for that part of the influence line
between Lo and L.

When the unit load moves across the panel from L; to L, there will
be a straight-line transfer of load from one side of the section to the
other, and the two lines for which equations have been written must
therefore be joined by a straight line.

S =

Example

The complete influence line for stress in U1L2 of the given truss is shown at
a in Fig. 102.
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The zero point is computed to be 15.5 ft left of Ly, and for maximum tension
a uniform load should extend from this point to Lg. For a uniform live load of
one kip per lineal foot of truss, the maximum and minimum stresses would be
computed as follows:

Maximum tension U1Ls S =1X0.63X 1155 X § = +36.4 kips
Maximum compression UjL; 8 =1X 039 X 345X 3 = —6.7 kips
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Maximum and minimum stress in UszLy are obtained in a similar manner, the
section being made through U U and L,Ls. The influence line for stress in
this member is shown at b.

Maximum stress in U3Lg is derived from the chord stresses at Uz and will
equal twice the vertical component of the maximum live-load stress in U,Us.

Hammerhead Crane at Fairfield Shipbuilding Co., Clyde, England. Lifting Capacity
240 Tons.

72 Inclined-Chord Truss—Concentrated-Load Systems

The stresses in chord members are derived directly from bending
moments at the joints. and the procedure for determining the position
of a loading which consists of a series of concentrated loads is identical
with that previously discussed for parallel-chord trusses. Maximum
stress in such members as LyU; and UL, (Fig. 102) is also determined
in the same manner as for similar members of parallel-chord trusses.

Diagonals of the type of U,L3 and verticals such as UzLs require a
different procedure from that outlined for parallel-chord trusses. In
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Fig. 102a, the influence line for stress in UL, indicates that L, is the
critical joint for loadings producing maximum tension. Following the
same procedure as was given in Article 43, and placing one of the con-
centrated loads at joint L,,

Ry = Wz
L=
w
Joint load at L; = ——
p

where W = sum of loads on span.
W, = sum of loads in panel L;L,.
Wz = moment of all loads about Lg.
Wiz, = moment of loads in panel L;L; about Ls.

Let ¢t = distance from G, to L,.

= Wav lelt

Lz Pz
The stress will therefore be maximum when:
Wp fv\ < W; (max)
L (—t> ; Wi (min)

In a similar manner, it can be shown that, for maximum stress in
UsglL,, the loads must be placed in such position as to fulfill the same
criterion.

73 Counters

In all the trusses used in previous examples, the dead load produced
tension stress in the diagonals. It was also noted that, should the diag-
onals be reversed in direction (as in the Howe truss, Fig. 59¢), the dead-
load stress would also be reversed in kind. It has also been shown that
the live load may produce either kind of stress, depending upon its
location in the span. Should the live-load compression exceed the dead-
load tension, the resultant final stress in the member would be compres-
sion, and it would be necessary to design the member to meet this con-
dition. Where rods or diagonals of a type incapable of resisting any
appreciable compressive stress are used, it is important to determine if
there is any possibility of such stress reversal. If such reversal does
occur in trusses having diagonals of this type, it is necessary to intro-
duce counlers in those panels where such conditions prevail.

A counter is a simple tension member placed across the panel in the
opposite inclination to the main diagonal. Thus, in the truss shown in
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Fig. 96, a reversal of stress in U;L3 might indicate the need of a counter
LyUs; also in the truss shown in Fig. 102, a member LoUs would serve
as a counter.

It should be understood that counters are used only when the main
diagonals are of a type which is ineffective for compressive stress. Thus,
when the live load reverses the stress in such a member, it in effect re-
moves it from the truss, and the counter, if present, will then take its
place.

Stresses in main members and in counters will therefore always be
tension. Maximum stress in either is obtained by assuming the other
removed and placing the loading in position to produce maximum ten-
sion in the remaining diagonal. It should be noted that the dead-load
stress in a counter is computed as a potential compressive stress for
future combination with the live-load tension. If the resulting com-
bination of stresses is compression, the counter simply does not act;
otherwise the difference between live- and dead-load stress will represent
the maximum tension in the counter.

Ezample

For the truss shown in Fig. 83, the dead-load stress in U,L; was determined
to be +20.4 kips. The maximum live-load stress in this member for a load of
1 kip per lineal foot of truss is shown in Fig. 97. For a live loading of two kips
per foot, the live-load stresses would be

Maximum IL.L. tension®

+61.4 kips

—27.2 kips

The combined dead-load and live-load stress in the diagonal would be
20.4 + 61.4 = +81.8 kips
20.4 — 27.2 = —6.8 kips

Maximum L.L. compression

Now if UsL; is incapable of resisting this compression stress, a counter L.U;
would be needed and U,L; would be assumed to be removed when the counter
comes into action in tension. The dead-load stress in the counter (assuming
that it will ultimately act in tension and that U/;L; is removed from the truss)
would be computed as —20.4 kips; the live-load stress is +27.2 kips; and the
combined live- and dead-load stress, +6.8 kips.

For inclined chord trusses, the stress in the counter is also computed
with the main member removed both for dead- and live-load stress. It
should be noted that, although the moment center is at the same point
as for main member stress, the lever arm of the counter stress is dif-
ferent, and the stresses will not be of the same magnitude as those in
the main member.



DEFLECTION OF TRUSS BY ALGEBRAIC SUMMATION 159

74 Deflection of Truss by Algebraic Summation

Referring to the truss shown in Fig. 103, let it be assumed that the
solid lines represent the initial or unstressed form of the truss. Let p
represent the magnitude of an infinitesimal force applied at any joint C
and acting in the direction of any desired component of such movement
of point C' as may be produced by the actual loads. Since p is infinites-
imal, its contribution to the displacement of point C will also be infini-
tesimal and may be neglected. This force will, however, induce stresses
in the truss members which must be taken into account. With the
force p acting, the given loading is now applied to the truss and, owing

A —_—-H"— s
,’, :\\\ : s ‘\

i ! A€ e \ N~
4= ! NS L >p
Hinged =l A - 4==""B Rollers

p’ C’
Fic. 103.

to the resulting stress deformations of its members, it will change form
as indicated by the dotted lines in the figure with joint C moving to C’.

Let D = Any desired component of the distance CC’.
p = force of infinitesimal magnitude applied at C in the direction
of D.
u = stress in any truss member due to the force p.
S = stress in any truss member produced by the given loading.
I, A, and E represent the length, area of cross section, and modulus
of elasticity for any member subjected to the stress S.

Since any member with stress S will change in length an amount SL/AE,
the force u which was acting on the member during this change will
move through this same distance. The internal work in any member
on account of the force p acting at C will thus be SuL/AE. When the
structure finally attains a position of equilibrium with joint C at C’,
the force p will have moved through the distance D and will have per-
formed the total work pI). The total internal work is the sum of the
amounts determined for cach of the several truss members and, since
total external work must equal total internal work,

D SuL
. P AE
and, when p = unity,
SuL
p=> 2% (102)

AE
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It should be noted that the stresses u are determined from the load p
and are directly proportional to this load. The value of D is therefore
independent of the value of p, and any convenient value can be used
for this load, provided, however, that stresses u are determined there-
from.

To measure downward movement, the unit load p is assumed to act
downward; if the movement left to right is desired, it is assumed to act

h =12 Uz =12 Us U ~0.38 Uz —-0.38 Us
2, of
> 3 o N /°'> o W »"b
+1 +18 +6 +6 +0.19] +0.19 > 4+0.56 | +0.56
. 1 L2 La LJ,R lers Ly 3 3 7}
Bl R 4% el o lozse l‘y‘ o.7sf
4 Panels at 21’ =84’ |
(All members are Structural Steel — E = 30,000,000)

Truss L A S u SulL
Member inches sq in. kips pounds 1000 A
LyU, 420 17.5 —-30 —0.31 +223.2
LoLy 252 10.5 +18 +0.19 + 82.1
LiL, 252 10.5 +18 +0.19 + 82.1

UiLy 336 14.0 +32 0 0
U U, 252 10.5 —-12 -0.38 +109.4
UaUs 252 10.5 -12 -0.38 +109.4
UL 420 17.5 -10 +0.31 — 74.4

Usle 336 14.0 0 0 0
LyUs 420 17.5 - +10 —0.31 — 74.4
LoLs 252 10.5 + 6 +0.56 + 80.6
LsLy 252 10.5 + 6 +0.56 + 80.6

UsLs 336 14.0 0 +1.00 0
UsL, 420 17.5 —-10 -0.94 +225.6
b +844.2

4.2 X 1
Deflection L3 = %.3%9 = 0.02814 in.

F1a. 104. Truss Deflection.

from left to right. With the unit load acting in the assumed direction
of the movement, the corresponding stresses u are computed for each
member of the truss and the value of SuL/AE obtained for all members.
The algebraic summation of these values will then give the magnitude
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of the joint movement in the direction of the unit load. A negative
value of this summation indicates that the movement of the joint is
opposite in direction to that assumed. It should be noted that the
stresses S in each of the members must be the simultaneous values pro-
duced by the given loading in a fixed position on the structure. Par-
ticular attention must be given to the relative signs of S and u, since
unlike signs (stresses) will produce negative values of corresponding
terms in the summation. A typical computation for truss deflection is
given in Fig. 104.

Determination of the absolute maximum vertical deflection is a prob-
lem involving matters beyond the scope of this book. Considering the
general form of the deflection curve of the bottom chord, however, we
may observe that the joint nearest the center of the span will either
deflect the most or will have a deflection closely approximating the
greatest deflection. It will also be observed by reference to the values
shown in Fig. 104 that the chord members and end diagonals contribute
the major part of the deflection and, since bending-moment is the factor
producing stress in chords, the conditions of loading which produce
maximum bending-moment will closely approximate that which produces
maximum deflection. It is generally sufficiently accurate, therefore, to
place the loading on the span in such position as to produce maximum
stress in the center chord member (or chord member nearest the center
of the span) and determine the stress in all members of the truss for use
in coraputing maximum deflection.

PROBLEMS

8.1 Two trucks as shown have wheels 6 ft apart and axles 14 ft apart and with
values of wheel loads P = 16,000 Ib, and P’ = 4000 Ib. Determine the joint loads

PP PP

5 [T 19" [iT]1e]
l ‘ 8 Truss B _é}£§} .
N

Truss A —a . 1 2 4 5 6 7
&
20’ 6 @25'=150’
Cross Section Elevation

for truss A and truss B, and for joints 1 to 7 inclusive, when trucks are placed as
shown.
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62 Given: a through truss bridge with two lines of truck loading as shown.
Determine: (a) The proportion of the two lines of trucks carried by truss A. (b) The

/TrussB U, U, U, U, U,
¢
Truss A~ h 5 20T 157/ 157/ |
. ™
o) : r
L, L, . L, Lyt L ' |Ls Le
35> L. | ,
3" 14 30 14 16’ ‘17“13" 2

6 @30° = 180’

panel loads in tons at Lo to Le inclusive of truss 4 due to these trucks when placed
as shown.

6:3 Place diagonals in the panels in such a manner that they will be acting in
tension when a dead load of 1000 Ib per ft is on the top chord.

6@20" =120’ 3@20'=60’

6-4 Determine graphically the forces in the truss members. P = 4000 lb.
P\
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6-6 With the loading as shown, find the force in member L3U,.

I0K 10K 10K 10K 15K 20K

20K 20K 20K 20K

U yUL YU, yU; YU, U yU U; Uy y Uy
:n .‘f \\X//
- -~
x Lo Ly L L, N
Ly Lg Lg Lo Ly L
4 @10’ =40’ 5@15° =75

6.7 Compute the forces in members {72Lg and LyLe.

U,
U;
U, .
N
U, ~
20K 20K 20K
4@20" =80’

6:8 (a) Determine the maximum forces that may be induced in members L3Uy
and U4L4 by a single moving concentrated load of 10,000 1b acting on the lower

Ua
U, y,
1A Us &
LO Ll L2 Ls Ll LS LO
6@12 =72’

chord. (b) Find the force in LiLg due to a load of 10,000 lb acting horizontally to
the right at Us.
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8-9 Determine the maximum bending-moment in the left column, the force in
the left knee brace, and the forces in the members cut by section 1-1.

3
LN
|
\qu 1 /%' C
¥ Iy
. \9"'0 ! %n :
I &,
%p : 30'
/ 7 li P
6@10°=60"
]
_(-Hinge Hinge\
- . - ,. - —

6-10 (a) Determine the value of P for a normal wind pressure against the roof
of 18 Ib per sq ft of roof surface for an 18-ft bay. (b) Compute the maximum bend-
ing-moment in the column BEF. (c¢) Calculate the force in member GK.

b
a ®
E
% A
of |e 4@12 =48
=
Hinge 2
inge *
L_A go.su o
7
7
7
7
7

Hinge
32 0.4 H:
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8-11 Draw shear and moment diagrams for the members AB and CD for the
wind loads shown. Also find the force in member UsLs. Trusses are spaced at
15-ft centers.

«
a1 Ze,-op .
U, ’essl/re 9
A | C

& 3/ Ls 3t —
g =g
K=< o =ekd
> o~ — %
w[—> maln}

3 L

L 8@12%’ = 100’ i

6-12 Assume that the horizontal shear is distributed equally to the two columns
and a plane of contraflexure 15 ft above the bases A and ). (a) Determine the reac-
tions at A and D. (b) Draw the shear and bending-moment diagrams for columns

L\
x) b
) X
B ] ' C B
T w0y
==
eEla D
7 /4

3@10'=30" 10 @10’ = 100’ 3@10°=30’

AB and CD. (c) Determine the maximum direet force in column AB. (d) Deter-
mine the forces in members marked a, b, and c.

6:13 DBased upon the usual assumptions for mill bents, determine the force in
knee brace AB due to loads shown.

10K
4K
5K 2K i
/B .
=
5K —>14

4@15° =60’ .
e S

o e'_-/.I"Iinge Hing?_ 2
|
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6-14 (a) Find the maximum shear, normal force, and bending moment in the
left column. (b) Find the force in members UgU; and LoLs.

%K 1K 1K 1K 1K 1K XK

v yu {u. lu {u u
o)
- L, L, L, L, L, Ly Lg
§ £ 2
"= A * 10
6@5 =30 g -
~Hinge Hinge\

6:16 (a) Find the dead-load force in member UsUj if the dead load is 500 1b per
linear ft of truss. (b) Find the maximum live-load tension and compression in
member U"sU3. (c) Find the maximum combined force in the member.

o'
20 Kﬂf K

U u U: |Uy Ui |Us Us (U /NUs o
N
L, L, J\Lals Lo Ly Ly L, ',l:s
Hinge Hinge
|
Hinge
2020°=40" g anels @20° = 160"

6-16 Assuming columns fixed at the footings and points of contraflexure 10 ft
above footings, find the maximum possible live-load tension and compression in
member UzLj using vertical loads only.

10’
20K[*"]20K .
Uu U U U Yg U, Us |
o
~N
Lo Ll Lz La L4 Ls L6 . B
]
A B

v 7 z;//
l 6 panels @20° = 120’
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6:17 The general dimensions and arrangement of a highway truss bridge are

given in the sketch. Weights: trusses and bracing, 225,000 lb; reinforced concrete,
150 Ib per cu ft; stringers (each) 50 lb per linear ft; floor beams (each) 152 lb per

vy U U U U

28’

Lo L, L, L, L, L, L

6 panels @25’ = 150’
Truss Elevation !
!

T

Typical Bridge Section
}.F— ¢ of truss '

30°-0” c. to c. of trusses
T

L1 24°-0” curb to tl:urb o
I
| ——

e
J I T —L_—TLB" slab
207 Wj»ka»’hj»l 2'-0"

linear ft. Determine dead-load force in all truss members, and indicate values on a
diagram of the truss. (Note. All loads may be assumed applied at bottom-chord
joints.)

6:18 For the highway bridge given in Problem 6-17, determine the maximum
live-load force in members Uy’ and UsL; using an H20-44 lane loading.

6-19 If the dead load is 2000 1b per ft of truss assumed to act along the bottom
chord, what are the dead-load forces in members Usl’s, UsLg, LoUs, and UgLy?

u_ U Uy oy,
?
L, L, L, L, L, L, Lg
6 panels @30’ = 180"
>

6:20 If the live load on the truss in Problem 6-19 consists of ten concentrated
loads of 10,000 Ib each spaced at 10-ft intervals, what is the maximum live-load force
in UyUs, and what is the maximum live-load tension in Lel'g?
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6-21 Determine: (a) maximum tension, and (b) maximum compression caused
in member UsLs due to one standard H20 truck. The trusses are simply sup-
ported, and the truck may be headed in either direction on any part of the roadway.

Yy U U, Uy U, Uy Us {
L, L, L, L, L, L, Ly [
Spnels@30'=18° - | 2

~N

Truss Diagram
20" 0” roadway ,

Floor beam v

0 Cross Section

w0Tctoc, |

8-22 The Pratt truss shown is to be used for a single-track railroad bridge.
‘a) Using Cooper’s E-60 loading, determine the maximum live-load foree in member

U U, Uy U, Us Us Uy

32’

1L, L, L, L, L, Ly Lg L, Lg

8@24' =192’

UsUs. (b) With a dead load of 1500 Ib per ft of truss, determine the dead-load force
in UaLs. (c) Using a moving uniform live load of 3000 lb per ft of truss, determine
the maximum tension in UsLsj.

8-23 If the live load consists of a uniform moving load of 4000 Ib per linear ft
applied along the bottom chord, determine the maximum tension and maximum
compression in ULy, UsUy, ULy, Uzls, and ULy,

U, U, U U, Us Us U U Uy

Ly Lg L, Ly Ly Ly
8 @25’ = 200" 2 @25 = 50’

\LQ Ll Lg L3 L‘
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8-24 The following loads are applied at the bottom chord joints: D.L. = 1000 1b
per linear ft of truss; I..L. = 2000 Ib per linear ft of truss. (a) Compute the dead-
load foree in ULy, U Us, and UsLs. (b) Determine the maximum live-load force in

0, U, Uy U, » Us
g
Ly L, L, Ls L, Ly 1Lg
6 panels @ 30’ = 180’

LyUy, ULy, and Uy U,. (¢) Using influence line determine the maximum and mini-
mum live-load force in UsL;. (d) Based on computation in (a) and (c), indicate the
force for which UsLj should be designed.

6:26 Usc a moving live load consisting of four concentrated loads of 10 kips
cach spaced 10 ft apart. Compute the maximum compression in UsUsz and the
maximum tension in LeUs.

U, U, A U Us
3
LO Ll Lz La L4 L5 LG
6 @30’ = 180’

6:26 Determine the maximum tension in member U;Lg due to a uniform moving
live load of 2 kips per ft per truss.

U, U, U,

30°

L, I, L, L, L,

 4@30°=120"

6-27 All loads are applied to truss at upper panel points. (a) Calculate the
dead-load forces in members UsLg and UsLg for a dead load of 1000 Ib per ft of truss.

U U U U U U U U U U U U

5

20’

28’

L L, Ly Lg¢ L, Lsg Ly Ly 4Ly

Ly ALs L,

L 30200=60" | @ 8@N'=160

(d) Calculate the maximum live-load tension in member UsLg for a moving uniform
live load of 2000 Ib per linear ft of truss.
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6:28 Find the maximum force in the diagonals L3l/4 and UsLy for the moving
concentrated loads shown.

u Uy U Y
VA N
. / \
[=]
N / \ 20K 10K
/ \ él "in
AL, L, L, L, L, Lg Lg: H
6@15'=90" ‘ 8’ i
Loads are
reversible

8:29 Find the maximum live-load force in Ual’s, UsLs, and LaLj due to a uni-
formly distributed live load of 2 kips per ft.

Uy
A pe— —
U, Us . .
O 8 8 oxkm
N
L, Lg NN \S
p Ll Lﬂ L3 L4 L5
6 @20 =120’

6-30 Calculate the vertical deflection of point L: under the loading shown.
Gross areas of members are indicated by the figures in parentheses. E = 29,500,000.

U a0 U, ao Uy

) S o~
e \3 8 e &
6) | (6) 6) | (6)
AL, L, L, L, \L,
Yeo K 60K

4@30" =120




Chapter 7

STABILITY OF MASONRY STRUCTURES AND
FOUNDATIONS

76 Definitions

For the purposes of this book, masonry structures are defined to in-
clude constructions of brick, stone, concrete, and like materials wherein
units of these materials are arranged so as to be supported by other units
or upon the earth. Thus a brick wall consists of brick units placed one
upon the other to build up the desired form of construction; an ashlar
masonry wall consists of squared pieces of stone placed one on another
to form the wall; a voussoir arch is a more complex arrangement of
stonework held in place by the pressure of each piece or voussoir against
adjacent pieces. Bridge piers and abutments are generally built as
monoliths of concrete or reinforced concrete to support the superstruc-
ture and transmit the loads to the foundation soil. Simple footings as
placed under the columns of a building are generally masonry units of
concrete or reinforced concrete designed to distribute the column load
over the bed of the foundation. Retaining walls are masonry structures
designed to resist the lateral pressure of a wall of earth. Dams and
reservoir walls must resist lateral pressure of water or the liquid held
back by the construction.

76 Simple Spread Footings

The purpose of a simple column footing is to receive the load imposed
by the superstructure and distribute it over 4 sufficient area of the sup-
porting soil. Whenever possible, the base . |

area of the footing, in contact with the soil, is Col. and Base
made concentric with the axis of the column W = Total Weight
which is supported on the footing, and equi-

librium is obtained when the resultant of the "~ =¥
upward pressure against the base of the foot- 9

ing equals the sum of the downward forces j &= Resultant of Pressure
(including the weight of the footing). The Fia. 105.

average intensity of pressure over the base

area (Fig. 105) equals the sum of all the loads divided by the base area,

and this average pressure is generally used as a basis for determining
171
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the required plan size of the base. Tests? of the actual pressures show
that in general higher pressures exist at the center of the area, the rela-
tive magnitude depending upon the shape of the area and the character
.of the material supporting the footing (Fig. 106).

When the resultant of the loads acting on the footing does not pass
through the centroid of the base area, the footing is said to be eccentric-
ally loaded. This condition
may arise either through
placing the column off cen-
ter or because of applied
forces or moments which
may tend to overturn the
P footing. Thus in Fig. 107,
the force P is the resultant
of all superimposed loads,
moments, and weight of
P ) footing above the plane of
the base; the resultant of

(a) , 42 Tos per Sq. Ft the resisting forces, R, must
247ns  €qual P and act in the same
FourSa. it line of action; the compo-

nent of & in the plane of the
footing, H, represents the
resistance to sliding, while

36"

() feC$ 2 Tons per Sq. . the component, N is the re-
sultant of the vertical pres-
sure on the footing base.

0.5 Tons
' per Sq. Ft
é /
(¢) : -- --
Fia. 106. Distribution of Pressurc under a T Fiane of
Footing. :‘* N
(From article by F. J. Converse, Civil Engg., --4
April, 1933.) Fia. 107.

When no other means of preventing sliding is provided, friction of the
footing against the supporting soil must be depended upon.

*For determining the approximate distribution of pressure on the base,
it is convenient to move the force N to the centroid of the base area,

! Converse, “Distribution of Pressure under a Footing,” Civil Engg., April, 1933,
p. 207.
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adding, in accordance with the principles of statics, the couple Ne to the
force system as at a in Fig. 108. The force N will now produce the aver-
age uniform pressures f; = N/A shown at b, and the pressures induced
by the moment Ne are computed in the same manner as stresses in a
homogeneous beam, assuming that the

foundation material is elastic within the P
limits of the action. Hence, as shown at ¢, \
= i
Nem (@ | _,l el |
fa= N (103) ! \, ﬁ/{, i
and [
Nen (b) i N
fo = — (104) [t etttn=4
I U, . !
T
where I = moment of inertia of base f%]l‘;"’i":':':qf’
area about an axis through () : !
its centroid. ! 1
L+ g
The resultant approximate pressure ( d)l :
intensities at d are obtained by combin- Fia. 108.

ing the pressures indicated at b and e.
When the base area is rectangular with dimensions [ and b,

6Ne
f2 == = f3 (105)

Ib?
This method is limited to those cases where f3 is equal to or less than f,
since otherwise tension between the footing and the supporting soil
would be indicated by the combination, and this is obviously an absurd

result. This limitation can he expressed in terms of the eccentricity e
as follows:

32N
Nen _ N .
’T 2 1 (106)
_ I
" e ;Z
For a rectangular footing area
b

When the resultant P cuts the base within the limiting value of e as shown
by Equation 106 (within the middle third of the base width for rectan-
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gular footing areas), pressure will be developed over the entire area;
when P lies outside this limiting distance the pressure distribution must
be determined by another method.

p When e > I/nA, the approximate pressure
M g 5 distribution for a rectangular footing may be
=% computed as follows: Let g = distance from edge
(a) L_yH‘N : of base nearest the resultant to point where the
b I resultant cuts the base (Fig. 109). Assuminga
! linear distribution of pressures as at b, we have

@ 7 l 5

h | N = Resuitant N=2—X3g><l
] I 3 and
2N ,

Fro 100 =% (108

It is obvious from Equation 108 that the intensity of pressure at A
(Fig. 109) increases as the distance g decreases and that a condition of

instability results when g = 0. Footings are preferably designed so
that e is within the limits shown by Equation 106.

¢ Column ond Footing

LEEWARD COLUMN

T Column Load: D.L. = 7360
WL = _8250
Tot. = 15610

Wt. of Footing (concrete) 4300

T Total Vertical Load = 19910#

Moments about € base:
Dist. from ¢ to Resultant:

3870 % 3 .1
€= =550 =055" < s

4'-0
v et 2.0 & 6"

[}
>

L aer0e

*

o

2

—— ,.' € Check for sliding

b1 Assume coeff of friction = 0.5

< Assume factor of safety = 2
\ Safe resistonce = 13 X 0.5 X 19910

ol

0.55 = 4980% > 3670

"‘ 20"

Bose Pressures

= 19910 b X 19910 X 055
o= 1000 4 A XIBRX

= 1240 4 1030 = 2270#/C'
Si=fi= 140 — 1030 = 210872

o
™
8
=i WINDWARD COLUMN
Base Pressures -Leeward Column Column Load = 7360 4 2750 = 10110
g
$

210%. =

= 4 Wi4. of Footing = _4300
- Total Vertical Load = T4410#

3670 X 3 4
= o "0 >%

» Windword g= 2 — 0.76 = 124
Base Pressures - Windward Column 2 X 14410
, f= %z xs = 1

Fia. 110. Mill Bent Column Footing. Hinged-Column Base.
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Typical computations of base pressures under the footings of a mill
bent are shown in Figs. 110 and 111.

9.0" LEEWARD COLUMN
- Column Lood: DL = 7360
020" 30" 2010 WL = 128
14068
t Waight of Foofing 25615
< Totol Vertical Load = 39700#
22 - i . c=gwo><:7!+woo$ m,<%
e
2 - Check for Sliding
. Coeff. of Friction = 0.5
chmwmxlm“ Foctor of Sofety = 2
Safe Resistance = /3 X 0.5 X 39700
/i\“’":;’;” = 9930# > 3470
- N Base Pressures
w
2 _ 39700 6 X 39700 X 1.48
b, zl fh= T e
N 3 = 740 + 720 = 1450%/0°
5 ‘ fi-fi= 40 — 720 = 208/
- p
T }
w00 AT,
s/ |3
= 8
: 3
°§ 3
- Base Pressures

Fia. 111, Mill Bent Column Footing. Fixed-Column Basc.

77 Pile Foundations

When the subsoil material under a footing is unstable or will not
develop the required resistance to pressure without excessive settlement,
the load may be transmitted to a lower strata by means of piling. Piles
may consist of wooden poles or timbers, concrete, or structural steel
rolled sections. They are generally driven into the ground by means of
a mechanical hammer or pile driver until they reach the desired penetra-
tion or resistance to driving; piles may also be jetted into place by fore-
ing water under pressure through pipes placed alongside the pile. The
safe load that may be placed on a pile is based upon the resistance it
offers to being forced further downward into the subsoil. This resistance
may be furnished by friction of the soil on the surface of the pile, by the
resistance the point offers to being forced into a hard stratum, or by a
combination of these two factors.

Piles are preferably placed in a direction parallel to the resultant load
as their resistance to lateral component of forces is relatively low and
somewhat unreliable. Thus, to resist an inclined force most effectively,
batter piles or piles driven at an inclination to the vertical might be used.
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The extra expense of driving batter piles precludes their use except in
unusual cases.

To produce uniformity of loading, piles are preferably arranged sym-
metrically with respect to axes intersecting at the position of the result-
ant load. Driving conditions ordinarily require a minimum spacing of
at least 23 feet for wood or steel piles and 3 feet for concrete piles.

180 K
40K
w_ (N
ly Vertical Load on Piles:
40 Column Load = 180 Kips
> Woight of Pier = _44
Tob. = 724 Kips
] sl 4d Location of Resultant on plane AB:
® 3 (moment center ot A)
¥ (uox4)+(«x24.e)—(4xa|—4oSM,
rea r-q ,---, ¢. g of Pile Group from A:
B ld "I LJ K 13X'5|+13X45)+(1X75)+(|X|°5l,,4‘
Pile Résistance
Values of d
Row | d=33 d%= 1089
o 2 = 0.3 = .09
S E 1 =27 = 729
l—' 4 =57 = 3249
° Sd?= (3 % 10.89) + (3 X .09)
- + (2 X 7.29) 4 (1 X 32.49)
i Y = 80.0!
‘f’ e=48—-38=10
' 2| Load on Each Pile
[ 214 224 X 10 X 3.
AN Py Row | = == 4 .01
e =24n+(zuxaa)= M.13K
: Row 2 = 2489 + (28 X 03) = 25.73

D Row 3 = 2489 — (28 X 2.7} = 17.33
Row 4 = 2489 — (28 X 57) = 8.83
Check: {3 X 34.13) 4 [3 X 25.73) + (2 X 17.33) + (1 X 8.83) = 223.0%K

Fio. 112. Pile Footing Eccentrically Loaded.

‘When the resultant vertical load passes through the center of gravity
of the pile group, the load on eath pile will equal the total load divided
by the number of piles. For eccentric loads or moments tending to
overturn the footing, pile loads are determined in the same manner as
noted in Article 76 for simple spread footings under similar conditions.

p- N, N (109)
n  Zd?
where N = total vertical load on tops of piles.
¢ = eccentricity of resultant load with respect to center of gravity
of pile group.
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d = normal distance from center of any pile to center of gravity
of pile group.

P = total load on any pile.

n = number of piles in group.

Tt should be noted that Equation 109 would indicate an uplift on piles
when
Ned N

_—
32 T n

Therefore the limiting effective distance of any pile on the negative
(heel) side of the center of the group is

=d?
d<3 — (110)
en
A typical computation of loads on a group of piles carrying an eccentric
loading is given in Fig. 112.

+78 Stability of Retaining Walls for Earth

Retaining walls for earth must resist the lateral pressure of the re-
tained material in addition to supporting the weight of masonry com-
posing the wall and such other forces as may be imposed on it. Deter-
mination of the stability of a retaining wall embodies the application of
the same principles as were outlined for a rectangular footing in Article 76.

We
Earth Surface

Earth Pressure

/ (a)

Fia. 113.

For such a wall as is shown in Fig. 113, the earth pressure is deter-
mined on a vertical plane through the heel of the footing as at a. The
earth between this imaginary plane and the wall is regarded as inert
filling which adds to the vertical load. The resultant pressure R on the
foundation soil is determined as the resultant of the force system above
the plane of the foundation. The vertical component N of this resultant
is resisted by earth pressures acting upward against the base of the wall.
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The horizontal component must be resisted by friction between the base
of the wall and the supporting earth, unless other means of resisting
the tendency of the wall to slide laterally are provided.

Typical Gravity Retaining Wall,

When the resultant cuts the base within the middle third of its width
(e Z b/6), the pressure at the edge nearest the resultant may be deter-

mined from the equation
f__N+6Ne_N(1+6e) m
b b2 b b (1D
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and for the pressure at the edge farthest from the resultant

N ©6Ne N 6e
=____=_(1___ (112)

When R falls outside the middle third, ¢ > b/6, and
2N
J= 30 (see Fig. 109) (113)
g

For stability against overturning, the wall must be so proportioned
that R falls within the limits of the base width, and, in order to provide
a suitable factor of safety, it is preferable for it to pass within the middle
third of the base.

The stability of any section such as zz in Fig. 113 is determined in
the same manner as above, for that part of the construction (Fig. 113b)
above such section. A gravity type wall is one where no tension can be
resisted on such a section, and such walls must be so formed that the
resultant on any such section will remain within the wall, preferably
within the middle third, to furnish an additional factor of safety against
overturning of the upper section and to furnish pressure over the entire
joint to prevent water seepage. Reinforced concrete walls are designed
to resist tension on such sections and are hence rendered internally stable.

Example
For the plain concrete gravity wall shown in Fig. 114, the computation for
stability would be as follows:
Data: Weight of concrete: 150 1b per cu ft
Weight of earth fill: 100 Ib per cu ft
Angle of internal friction of earth fill: 30 degrees
Lateral earth pressure at base of wall (see Article 21, Equation 15)

q=100X15>(( ')=5001bpersqft

1—-05
1405

'Earth Surface

15°
12°

Fia. 114
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For 1 lineal ft of wall .

Weight of wall = 13,950 Ib
Weight of earth fill on back of wall = 4,800 Ib
Total vertical load = N = 18,750 b

Total horizontal earth pressure = 500 X 15 X 3 = 3,750 Ib

Moments about center of base
(clockwise moment indicated by +)

3,750 X 5 = —18750
13,950 X 0.5 = —6,975

—25,725
4,800 X 3.1 = +14,880

Resultant moment = —10,845 ft-1b

Since the resultant moment is negative, the resultant will cut the base to the
left of the center, and

10,845 11
e= 18,750 — 0.6 < 6
> .6

Toe pressure (at A) = 185150 [1 + 6 >;10 ] = 2250 Ib per sq ft
) 6 .6

Heel pressure (at B) = ]8’1715( [l - )>;10 ] = 1150 Ib per sq ft

If the wall is founded upon a clay subsoil and it is assumed that the coefficient
of friction of the wall masonry on moist clay is about 0.3, the factor of safety
against sliding would be

18,750 X 0.3 _ 15
3750 )
The stability of the portion above any given plane is determined by similar

procedure. Considering a section 6 ft below the top of the wall, the forces acting
are as shown at b.

N = 4050 1b

(600 X 2) + (3150 X 0.6) — (900 X 1.5) 5
e = 050 =043 < g

The resultant therefore passes within the middle third of the section and

4050, 6 X 043
—5—[1 +—5—] = 1230 Ib per sq ft

Pressure at a =

Pressure at b = 40_2__:)0[1 -—g—><—5-0—4:—3] = 390 Ib per sq ft
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79 Reinforced Concrete Retaining Walls

Reinforced concrete retaining walls (Fig. 115) are generaliy either of
the cantilever type as at a or of the counferfort type as at b. For either

Fig. 115.

type, the stability of the wall as a whole and the pressures on the founda-
tions are determined in the same manner as outlined in Article 78. For
the counterfort-type wall, it is gencrally convenient to make the analysis
for a length of wall corresponding to the spacing of counterforts. Since
such walls are designed to resist internal bending-moment and shear, the

. Cepe o n R e gt .
~ . WA - RE S R

Counterfort-Type Reinforced Conerete Retaining Wall,

stabiiity of sections is based upon the internal strength of the materials
composing the wall.

Computations for the stability of a typical cantilever-type wall are
shown in Fig. 116. Bending-moments and shears on various sections are
computed in the usual manner. Thus the bending-moments carried by
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the vertical wall or stem are produced by the lateral earth pressure and
(Fig. 117) are computed as if this portion of the wall were a cantilever
beam fixed at the top of the base slab. The portion of the base extending

Earth
Surface

Earth
Pressure

15
13°

w

~

o

o

2.

25904 /0°
290#

For One Lineal Foot of Wall:
Vertical Forces:
Earth Backfill: 4x13x100 = 52004
Concrete Wall: 2x13x 150 = 3900
2x 8 X150 = 2400
N = 115004
Taking moments about center of base:
o= (3750% 5) + (3900 1.0) = (5200% 2.0)

11500
12250 e
11500 = 1.07°<%
."Resultant is inside the middle third.
Toe Pressure:
11500 . 6%11500%1.07
f="g t 64

= 1440 + 1150 = 2590#/0°
Heel Pressure:

f = 1440 = 1150 = 290#/0’

Fig. 116. Stability of Cantilever Type Wall.

in front of the stem is called the foe, and this is also assumed to be a

cantilever fixed at the face of the vertical wall (Fig. 118).

The weight

of earth which may be applied on top of the toe is omitted since it may
not always be present. Similarly, the portion of the base extending to
the rear of the stem, known as the heel, is computed as a cantilever fixed

at the rear face of the vertical
wall (Fig. 118). The upward
pressure against the lower sur-
face of the heel is frequently
omitted.

430%13x13 P
2%3 =1210'#

Fia. 117.

80 Masonry Dams

8’

130;]#/'

2

25904/0°

B.M. Sectiona b*
Due to Base Pressure 2015x2x1 = 4+ 4030°’¢
575%X3X2X3xX2m 4+ 7,

+
Oue to Concrete  2X2xX150%1 = —

Total =

- 600
{ ¥ 7200°
B.M. Section ¢ d:
(Neglect upward pressure)
(1300+300) X 4 X 2= 12800°#)

Fic. 118.

Masonry dams have the same essential characteristics as the retaining
walls previously discussed. Since it is their function to retain water, it is
important that they be impervious at all sections, and they should there-
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fore be so proportioned that pressure will exist over all portions of joints
in the construction. To meet this condition, the line of resultant pres-
sure under any condition of loading must lie- within the middle third of

8’
|:,'{-jl A— — ——
—
R Fon }}% —
eservoir Fu M1
(g H Water Pressure
L1 (Reservoir Full)
Middle Third I / H
- ) ! 7
o | Pressure Line "
< | Reservoir Empty’ ,/,4

Fra. 119.

the wall section. Thus, in Fig. 119, the middle-third zone has been out-
lined for a typical dam section and resultant pressure lines indicated for
two cases of loading.

81 Voussoir Arches

The stability of masonry arches of stone or brickwork, not reinforced
to resist internal tensile stress, is determined by application of the fore-
going principles and methods. The voussoir stone arch is the most com-
mon example of this type of construc-
tion and generally consists of individ-
ual stone blocks or voussoirs properly
shaped and placed to form the arch.
The stability of each individual voussoir
is dependent upon the resisting pressure
furnished by the voussoirs on either
side, and the stability of the entire arch
depends upon the resisting pressure of
the abutments. Fia. 120.

For an individual voussoir, the con-
ditions will be as represented in Fig. 120, where W represents the force
on the voussoir and 7'; and T’ the resultant thrusts on faces AB and CD,
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respectively. The stability of the voussoir requires that the following
conditions be fulfilled:

(a) Rotation. For stability against rotation, the resultant thrusts
T, and 7' must lie within the limits of sections AB and CD, respectively.
It is generally preferable that these forces pass within the middle third
of the respective sections in order to provide a suitable factor of safety;
to provide pressure over the entire section and thus deter entry of water
into the joint; and to reduce the
intensity of pressure on the
masonry or mortar forming the
joint.

(b) Crushing. The intensity of
pressure must not exceed the safe
resistance to crushing of the
masonry or mortar in the joint.

(c) Sliding. Components V,
and V, in the plane of the re-
spective sections must not exceed
the safe shear resistance of the
joint.

Since the resisting thrusts T,
and T, are furnished by the ad-
joining voussoirs, their values and
locations must be consistent with
the equilibrium of the entire as-
semblage in the given construction.
Thus Fig. 121a represents such an
assembly where the line of resistance and location of any such thrusts
as T and T, are seen to conform with the equilibrium polygon,
drawn from the force polygon at b. In the force polygon at b, the
pole O was chosen at random, and it will be noted that an infinite
number of such equilibrium polygons representing lines of resistance
for the entire assembly could therefore be drawn. It therefore re-
mains to determine the most probable or true line of resistance. The
most generally accepted hypothesis for the true line of resistance is
that it will be represented by the equilibrium polygon drawn with
minimum thrust values consistent with equilibrium of the arch. Thus
the middle-third zone would be outlined throughout the arch and a pole
chosen to pass a polygon inside this zone maintaining at the same time
minimum values of the forces R;, Ty, T, etc. Such a polygon would
pass through the lower middle-third limits at the supports and would
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touch the outer-third point at or near the crown, and the problem thus
is reduced to passing an equilibrium polygon through these points as
discussed in Article 28.

PROBLEMS

7-1 Calculate the base pressures under the concrete column footing, and draw
the pressure-distribution diagram.

<
—
<
—
. N
N o
<
—
<
—

, ’ ’
2 4 2

T-2 The weight of the retained carth is 100 1b per cu ft, and the assumed lateral
pressure is 0.3wh. Each 8 ft length of concrete retaining wall is supported on six
piles as shown. Determine the maximum and minimum load per pile.

T~

16’

4 2’ 3’

27

L
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T7-8 (a) Find the intensities of earth pressure beneath the heel and toe, and draw

the pressure-distribution diagram for the reaction beneath the base. (b) Compute
bending-moments on sections a-b, a-d, b-c.

3
~

18°

<
gConcrete @ 150#/ft

[2'.

7-4 The angle of internal friction, ¢ = 30°. The weight of earth is taken as 100 Ib
per cu ft and of concrete 150 1b per cu ft. (a) According to the Rankine theory, what

>

16’

is the pressure distribution on a vertical surface through the retained earth? (b) De-
termine the magnitude and direction of the resultant pressure on the back of the
wall. (c) Find the distribution of pressures on the base.



Part 11
DESIGN OF SIMPLE STRUCTURES

FOREWORD

The design of a structure involves the selection of suitable materials,
the determination of the dimension of individual parts, and the arrang-
ing of the component elements of the construction into an assembly
which will be structurally sound and which will provide properly for the
intended usage of the completed work. The designer must not only be
competent to analyze the behavior of a structure in accordance with the
principles of mechanics and to perform the necessary mathematical
solutions incidental to this work, but he must also have knowledge of
materials of construction, their physical properties, cost, utility for
service under various conditions, and methods of construction and
erection. Ability to visualize the completed structure in advance of its
technical design is imperative, for all structures have their inception in
the imagination of their designer.

The design of a structure starts with the determination of its need and
the utility which must be provided. With these established, the designer
evolves from his imagination, backed by his knowledge of the elements
previously noted, a structural arrangement which he hopes will be satis-
factory. He then makes an analysis of this arrangement and determines
the forces to be resisted and finally computes the necessary dimensions
of the component parts so that sufficient material will be provided in all
parts to meet the computed stress conditions. The final results of this
work are recorded in the form of drawings and written specifications
which show the work to be done, materials to be provided, and arrange-
ment of parts. Frequently several structural arrangements may be
considered, and the best arrangement from the standpoint of cost,
appearance, or other considerations may he selected after tentative or
preliminary designs and estimates have been prepared.

It should be observed that designing a structure is essentially a process
of trial and error. The first step is invariably the assumption of the
material, general arrangement of parts, and probable dimensions. The
second step is the determination of dead load and the structural analysis
of the assumed arrangement under all loading conditions. The third
step involves the determination of sizes and dimensions in accordance
with the results of the second operation. When the results of the third
step are at variance with the original assumptions, the original assump-
tions are accordingly revised, and the process is repeated until the final
design is evolved.

187



Chapter 8
STRUCTURAL FASTENINGS AND CONNECTIONS

82 Nails and Screws

Wire nails are formed from steel wire which is cut to the desired
length and a head and point formed on opposite ends. In size they are
designated as ten-penny (10d), twenty-penny (20d), etc., the designa-
tion determining the diameter of the wire and the length of the nail.
The sizes of common wire nails is given in Table 3.

Nails are generally used to resist transverse shearing force between
two pieces of wood, and the force on the nail is thus applied in a direc-
tion normal to the length of the nail. When used in this manner in
seasoned wood, the safc lateral load in pounds per nail may be deter-
mined by the following formula reccommended by the U. S. Forest Prod-
ucts Laboratory:

P = KD*% (114)

where P = safe lateral load in pounds per nail.
D = diameter of nail in inches.
K = a constant depending upon the species of wood.

Values recommended by the Forest Products Laboratory for use in
Equation 114 are as follows:

Eastern hemlock, spruce, white pine K = 900
Cypress, western hemlock, Norway pine K = 1125
Douglas fir (coast), southern yellow pine K = 1375
White ash, hickory, maple, oak K = 1700

Nails should be driven so that the penetration of the point into the
base timber is not less than one-half the length of the nail for dense
hardwoods to two-thirds the length of the nail for the softer woods.
When nails are driven parallel to the grain of the wood, that is, into the
end grain, the safe lateral load for softwoods should be taken not more
than 60 per cent of the value obtained by Equation 114.

The Forest Products Laboratory recommends that the safe resistance
of nails to withdrawal be computed from the following formula:

P, = 1150 G*D (115)
188
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where P; = safe longitudinal load in pounds per lineal inch of pene-
tration.
G = specific gravity of timber based on oven dry weight and
volume.
D = diameter of nail.

When nails are driven into green wood and seasoning takes place, most
types of nails lose a large part of their holding power and safe values are
practically impossible of determination.

A boat spike is made from square steel or wrought-iron bars with a
head forged on one end and a point on the other. They may be of any
desired size and are used when larger and stronger fastenings, than can
be provided by means of wire nails, are required. They are obtainable
commercially in sizes varying from % inch X 38 inches to % inch X 12
inches long.

A drift pin or drift bolt is made from round metal with a head forged
on one end and a point on the other. They may be made any desired
length or diameter and are used in fastening together large timbers.

When the applied forces are parallel to the length of the screw, wood
screws are generally used in place of nails, since the resistance of nails to
a pulling-out force is exceedingly unreliable.

A lag screw is essentially a large wood screw made with a square head

and a gimlet point. They are obtainable commercially in sizes as shown
in Table 4.

83 Special Devices for Connecting Timbers

Modern connections ! for timber construction have been extensively
used abroad and were introduced into the United States in 1933.

The Teco Toothed-Ring ? (Fig. 122) is made of sheet steel with four
sizes commercially available, 2 inches, 2§ inches, 3§ inches, and 4 inches
in diameter adapted to use in 3-, 4-, 5-, and 6-inch nominal widths of tim-
ber. In making the connection, holes are bored through the timbers to
be joined, the timbers are separated and the toothed ring connector
placed between them. High-strength alloy steel bolts, with ball-bearing
washers and double-depth nuts, are then placed through the holes and
the timbers drawn tightly together, forcing the connector one-half its
width into each adjoining timber. The special bolts are then replaced
by ordinary machine bolts.

1 “Modern Connections for Timber Construction,” Bulletin prepared jointly by
National Committee on Wood Utilization and U. 8. Forest Products Laboratory,
published by U. S. Government Printing Office.

2 Manufactured under patents controlled by Timber Engineering Co., Washing-
ton, D. C.



: Courtesy Timber Engincering Co.
Fi1a. 122. Teco Toothed Ring.
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Courtesy Timber Engineering Co.

ng.

Fia. 123. Teco Split
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The Teco Split-Ring ? is a plain steel ring (Fig. 123) of rectangular
cross section with a grooved break in the perimeter. Two sizes, 2}
inches and 4 inches, in diameter, are commercially available. The ring
is placed in grooves cut by a special grooving tool in the timbers to be
joined, and the assembly is then bolted together with ordinary machine
bolts. Data for Teco Split-Ring Connectors are given in Table 5, and
required spacing may be determined from Design Charts I, II, ITI, and

Ry

Courtesy Timber Engineering Co.

A. Spike Grid.
B. Clamping Plate.

Fi6. 124, Teco Spike Grid and Clamping Plates.

IV. Tables 6 and 7 show permissible increases of load based upon load
duration and required decreases in load based upon moisture conditions.
When more than three connectors are used in a group, the load per
connector must be reduced in accordance with data given in Table 8.

The Teco Spike-Grid * is a malleable casting in the form of a grid or
frame (Fig. 124) with sharp spikes projecting from both faces. Grids
are placed between timbers to be connected and the points imbedded
in the adjoining timbers in substantially the same manner ag employed
for the Toothed-Ring.

¥ Manufactured and distributed under patents controlled by the Timber Engineer-
ing Co., Washington, D. C.

¢ Manufactured and distributed under patents controlled by the Timber Engineer-
ing Co., Washington, D. C.
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The Teco Claw-Plate Connector 5 is used either in pairs for timber to
timber connections or singly for connections between wood and steel.
It is a circular, malleable cast-iron plate with teeth on one face (Fig. 125)
and is installed by forcing the teeth into the wood beyond the depth of
the circular notch cut to receive the rim and plate portions.

Courtesy Timber Engineering Co.
A. Teeo Claw Plate. B. Teco Shear Plate.
Fia. 125. Teco Claw and Shear Plates.

84 Bolts in Timber Construction

Bolts are manufactured from round bars of structural steel or wrought
iron with threads formed on one end and a head upset on the other. The
length is measured from the inside face of the head to the extreme end of
the threaded portion. Bolts are usually furnished with square heads and
square nuts, but hexagonal heads or nuts can be obtained on special
order. Standard dimensions of bolt heads and nuts are shown in Table 9;
standards for screw threads are shown in Table 10. The threaded por-
tion will ordinarily be furnished to lengths specified in Table 11, but
it can be made any specified length. The threaded portion of cut-
thread bolts is formed by machine cutting, and the net area at the root of
the thread is therefore less than that of the shank or unthreaded portion.
Rolled-thread or pressed-thread Lolts have the threaded portion formed
by squeezing or pressing the form of the thread on the end of the bolt;
the rolling or pressing process upsets the end of the bar so that the out-
side diameter of the threaded portion is slightly larger than the shank
of the bolt, and the net area at the root of the thread is the same as the
original bar. It is apparent that rolled-thread bolts cannot be inserted
in holes of the nominal size of the bolt and should not be used where
tight-fit bolts are required.

Bolts are generally regarded 2s more reliable than nails when
shearing force between two pieces of timber is to be resisted, as at b in
Fig. 126.

§ Manufactured and distributed undor patents controlled by the Timber Engincer-
ing Co., Washington, D. C.
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Tests made by the U. S. Forest Products Laboratory and reported in
Technical Bulletin 332 of the United States Department of Agriculture
show that the safe load on a bolt can be determined in the following
manner: :

A. Force on bolt in direction parallel to grain

f = basic unit stress on projected area of bolt parallel to grain.
L = length of bolt (thickness of main member).

D = diameter of bolt.

K = percentage factor determined by test.

p = safe unit bearing stress on projected bolt bearing area.

= fK for metal side plates.
= 0.8 fK for wood side plates.
S = safe load on one bolt = pLD (116)
Use one-half this value for arrangement as at ¢ or d in Fig. 126.
T -/
7'/2 etalﬂate /2 —— <
"-fM\ NS ~= ~\] I T
2 H SIS g L [N
28 Cem e %«/‘u’ 2]
(a) (b)
It
I  Metal Plate . }&Q-ﬂ ~
~— T =
IS G
i o
() (d)

Fig. 126. Bolts in Timber.

B. Force on bolt in direction normal to grain

f = basic unit stress on projected area of bolt perpendicular to grain.
L = length of bolt (thickness of main member).
D = diameter of bolt.
m = percentage factor determined by test.
n = diameter factor determined by test.
g = safe unit bearing stress on projected bolt bearing area.
= fmn (for either metal or wood side plates).
S = safe load on one bolt = ¢LD (117)

Use one-half this value for arrangement as at ¢ or d in Fig. 126.
Values of the basic stresses p and ¢ for various species of wood are
given in Table 12; percentage factors K and m are given in Table 13;
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diameter factors n are given in Table 14. With these tables, assuming
the arrangement at a in Fig. 126 (two-end load with metal side plates),
the safe load T for a F-inch diameter common bolt through a 51-inch
thick southern yellow pine timber would be computed as follows:

Ezxample 1
Basic stress f (Group 3, Table 12) = 1300 psi.
5.5
L/D = 085 = 6.3

Percentage factor K from Table 13 = 64.1
p = 1300 X 0.641 = 835 Ib per sq in.
S =835X 53 X §=40201b

Example 2

For the arrangement shown at b in Fig. 126, the value of S would be 809 of
that computed above, or 3220 Ib. For the arrangement at ¢, a value of 2010 Ib
would be used; for the arrangement at d, the value is 1610 1b.

For each bolt in member B of the arrangement at ¢ in Fig. 127, assuming
western hemlock, L = 5% in., D = § in., using common bolts and either metal
or wood side plates.

Basic stress f (Group 2, Table 12) = 200 Ib per sq in. L/D = 05—755 =73
Percentage factor m (Table 14) = 99.5

Diameter factor n (Table 14) = 1.41

g = 200 X 0.995 X 1.41 = 280 Ib per sq in.

S =280 X5%x% = 1150 Ib

When the applied force on a belt is at an angle to the grain, the allowed
stress on the projected area of bearing of bolt on timber may be deter-
mined from the Hankinson formula,

pq
n=—
psin® 0 4 g cos? @

(118)

where n = allowed unit stress in a direction 8 with the grain.
p = allowed unit stress in compression parallel to grain.
g = allowed unit stress in compression normal to grain.
6 = angle of inclination (less than 90 degrees) of applied force to
the direction of grain.

For the arrangement at ¢ in Fig. 127, assuming timber to be coast type
Douglas fir, wood side plates, § inch diameter common bolts, member B
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5% inches thick (parallel to length of bolt), the safe load on each bolt in
member B when 6 is 20 degrees would be computed as follows:

Ezxample 3
Basic stress (Table 12)

Parallel to grain, f = 1300 1b per sq in.
Normal to grain, f = 275 lb per sq in.

L/D=5}+3=13

Percentage factor K (Table 13) = 55.3
For wood side plates p = 0.8 X 1300 X 0.553 = 575 Ib per sq in.

Percentage factor m (Table 14) = 94.9
Diameter factor n (Table 14) = 141
Attt

p
(Compression Note: Spacing in main
-i[- - me:nbc?x l(:d)lvliﬂ
i1 S . 1 fates as in
_'_' D P % D= Diam. of Bolt No Linitx, § _J '_t . plates s in (a
. "o - 2 26D fuff=2)3 ] - i
%D<3 S84 4 é i ‘cm"’% (©)
Slie-o-4i4-4 $ s tg=63 4p +
T | Governed by critca ' “S-Main Member B
] (a) section, edge marging 4D for wood splice plates
Main Member (Tension) and number of rows 1 Metal splice plates - No limit
= Main Member A
P S S ‘:‘ : ; [” " (Tension)
o % D= Diam. of Bolt Note: Spacing In main
r‘ ["ID -)1 L member A and splice
s - 1-¢- 235D for =2 plates as in (b)
U { +-4 B t\ §D forL =6 i Main Membar B
> H* 3 Ki 9| Gnin d
—} D section nb:ms 4 d)
(b) andm'umbgtofrm T
No Limit rl\,lemmm«
{(Member B) No limit - Metal splice plates

Fia. 127. Bolted Joints in Timber Construction.

q = 275 X 0.949 X 1.41 = 370 Ib per gq in.

sinf = 0.342 sin?f = 0.117
cosf = 0.94 cos?f = 0.9
n 578 X 370 = 530 Ib per sq in.

= (575 X 0.117) + (370 X 0.9)
8 = 530 X 5} X 2 = 2190 Ib per bolt

In choosing the bolt diameter for a given design, it is recommended
that the diameter be made such that L/D is 6 or more. Recommenda-
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tions for spacing of bolts under various conditions are illustrated in Fig.
127. For splices of the types shown at @ and b in Fig. 127, it is recom-
mended that bolts be arranged in rows and not staggered. In tension
splices (Fig. 127b), the area of the net section of timber shotld be not
less than 80 per cent of the combined bearing area of all the bolts in the
particular timber for softwoods and 100 per cent of the combined bolt
bearing area for hardwoods. The use of cross bolts to prevent splitting
of the timber is also recommended, especially when the L/D ratio is
small.

*86 Structural Rivets and Bolts

Steel rivets are generally used for fastening together steel members.
Rivets are forged from round steel bars with a round or button head on
one end and are sufficiently long to pass through the parts to be con-
nected and allow exeess length to be upset to form a head on the end
originally left blank. Dimensions of structural rivets are given in Table
15. When rivet heads may interfere with adjoining construction they
may be flattened, countersunk, or countersunk and chipped (see Fig.
132).

Rivets are placed red hot in the holes provided and are then squeezed
by presses or hammered by riveters to form the head on the blank end
and force the metal to fill the hole completely. Owing to erection and
assembly requirements some rivets are driven in the field and are termed
field rivets; those placed in the fabricating shop are termed shop rivets.
Shearing and bearing values of power-driven rivets and turned bolts in
reamed holes are given in Table 16. Similar values for unfinished bolts
are given in Table 17.

+In order to provide entry of the rivet the holes in the parts to be fas-
tened must be made Iz inch larger than the nominal diameter of the
rivet. After driving, therefore, the rivet is actually increased in size by
this amount, but this is not taken into account in computing the cross
section of the rivet, the nominal diameter being regarded as the final rivet
size. Where rivet holes are punched, severe local stresses are developed
around the periphery of the hole resulting in damage to the metal. On
this account the holes are computed as if they were § inch larger than
the nominal size of the rivet. To reduce the amount of this damage and
provide better work, holes may be drilled to the required size or may be
subpunched to a size smaller than the rivet and reamed to a diameter
1 inch larger.

The strength of a rivet is based on (a) its resistance to shear, and (b)
its resistance to the bearing pressure on the contact area between the
rivet and the parts fastened. The action of a rivet in single shear is illus-
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trated at a in Fig. 128, and its resistance to this action equals the product
of the unit shearing resistance of the rivet material and the cross-sec-
tional area of the rivet shank. The action of a rivet in double shear is
illustrated at b in Fig. 128, where it is noted that the rivet is sheared on
two planes simultaneously; hence the double shear value is twice the
single shear value. The bearing value of a rivet is measured as the prod-
uct of the allowed unit bearing stress and the projected contact area
(nominal rivet diameter X thickness of plate) of rivet and plate. Thus
at @ in Fig. 128 the bearing area for plate A is tjd. This type is termed

Fia. 128. Rivets in Single and Double Shear.

single shear bearing. Double shear bearing is the type which occurs on
plate B in Fig. 128b. For the arrangement shown at a, the safe value of
one rivet would be computed as follows:

u = allowed intensity of hearing stress
d = nominal diameter or rivet
R = value of rivet

As determined by plate A, R = ut,d
As determined by plate B, I = utsd

The smaller of these values of B would control.
For the arrangement shown at b, the value of one rivet in bearing
would be as follows:

As determined by plate 4, Ry = ut;d
As determined by plate A, Ry = utyd

R =Ry + Ry = ud (t; + t2)
As determined by plate B, R = utyd

The smaller of these values of R controls. (Note that double shear bear-
ing is considered on plate B.)

When rivets are used in a group, as for example to splice a tension
member or to fasten the end of a tension or compression number, it is
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assumed that the force is equally divided among the rivets in the group.
For small rivet groups, little error is introduced by this assumption, but
in large groups there may be considerable variance in the force distribu-
tion. Rivets in any group should be as compactly arranged as possible
and preferably with the center of gravity of the rivet group on the line
of action of the applied force. As between the arrangements shown in
Fig. 129, the rivets in a will not be equally stressed, the end rivets receiv-
ing substantially more load than the ones between; the rivets shown at b

(a)

Fia. 129.

will, on the other hand, be practically equally stressed. The arrange-
ment at a is, however, more economical of plate material since only one
hole is deducted to obtain the net section whereas four holes must be
deducted from the plate section in b. As a result, the adopted arrange-
ment of rivets in such a connection is usually a compromise of these con-
ditions.

The following is an example of the computations for a tension splice.

Example
Main plates, 9 in. X % in.
Total stress in plates, 94 kips
Rivets, { in. diam.

If the rivets are arranged in three lines (see Fig. 130), three holes 1 in. in diameter
will be taken out of the main plate to obtain the net section.

Gross section main plate = 9 X § = 7.875 sq in.
Deduct 3 rivet holes 1 X § X 3 = 2.625 sq in.

Net area main plate 525 sq in.

94,000
5.25

This is regarded as satisfactory, and the splice plates will be made y% in. thick.

Unit stress main plate = = 17,900 psi
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Value of one rivet

Double shear (Table 16) = 18,040 Ib

Bearing on 1%-in. splice plate = 2 X 1% X ¥ X 32,000 = 24,500
Bearing on main plate = § X § X 40,000 = 30,600

Double shear controls and B = 18,040

. . . . 94,000 _
Number rivets required each side of splice = 18,040 ~ 6
U - 4 3 usr_
! L
- 1—o—o
N
S 1
=
f 4T —

X X

]
Fic. 130. Riveted Tension Splice.

=T

In arranging rivets, consideration must be given to the necessary
clearances for placing and driving. Standard driving clearances are
indicated in Table 18. For convenience, standard location lines called
gage lines are adopted for rolled sections, and, unless specifically indicated
otherwise, rivet holes are located on these lines. Standard gages for
angles are shown in Fig. 131. Standard gages for I-beams, channels,

UsuaL GAGEs FOR ANGLES, INCHEsS CriMps

b=t+135"
rl Legl 8 | 7| 6| 5|4 (334 3 (234 2 134124134/124| 1| ppin = 27

9,
|0 [ prp (22 ldudud L\ % e % T,
. 3 2
3 1

g 2141214 »
g2 3 (214134 231154

Fia. 131. Standard Gages for Angles.
(From “Steel Construction,” by courtesy of the American Institute of Steel Construction.)

and other rolled sections will be found in structural-steel handbooks.
Conventional signs used on structural drawings are shown in Fig. 132.

Rivets are preferably not used where tension is developed in the rivet,
and, when this is unavoidable, relatively low unit stresses are allowed.
Bolts are generally preferred to rivets for carrying tensile stress.
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Structural bolts (see Tables 9, 10, and 11) are made of structural steel
and act in the same manner as rivets. Unfinished bolts are generally
assigned the same values as rivets of the same size. Turned bolts made
to a driving fit in reamed holes are assigned the same values as power-
driven rivets. >
Shop Rivets . Fieid Rivets

Countersunk C P Flattened to%” | FI dtok” ]
and Chipped | Not over % * high w and %" Rivets | % ~ Rivets and over

§3133 &3 53
& B -

Countersunk

Both
Sides
Side

Side

] Far
/ Side

3 [
1% 5% 88

%5 A

LR
w

- -é— Two Fuil Heads
7—# Two Full Heads
Near
Side
| O Far
Side
| ﬂ Both
Sides

HN .

_$ Far

Side

N - _$_ .
ol

Ja oo Near
1 Side

yanN /“\ - ™ D - puy
Sii=i=1: HHMMﬁIZlI:IE%
‘\V X - \= = \J L™= ﬂ !J ‘1 .

Fic. 132. Conventional Signs for Riveting.
(From “‘Steel Construction,’ by courtesy of the American Institute of Steel Construction.)

86 Eccentric Riveted Connections

When the applied force does not pass through the center of gravity of
the rivet group, the rivets must resist the torsional effect as well as the
direct force. Such a riveted joint is said to be eccentric, and the eccen-
tricity is measured as the distance from the line of action of the resultant
force to the center of gravity of the rivet group. The moment acting
on the rivet group is the product of the resultant force and the eccen-
tricity, and each rivet must contribute its share to the resisting moment.

(a)

Fia. 133.

The force on each rivet in an eccentrie joint is the resultant of the mo-
ment stress on the rivet and the direct force (total force divided by the
number of rivets).

In the analyses of such rivet groups, it is commonly assumed that the
center of rotation (corresponding to the neutral axis of a beam section)
coincides with the center of gravity of the rivet group and that each rivet
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acts as an elastic unit. The moment of resistance of the rivet group is
therefore (see Fig. 133a)
RZa?

a

M

(119)

where B = moment force on any rivet acting normal to a line from the
center of the rivet to the center of gravity of the group.
a = distance of any rivet from the center gravity of the group.

A '/z"l 4" | Rivet a? e a/}:‘,
[ NS v | 4050 | 636 | 00252
1 Vz 2 | 2250 | 474 | ooies
O & 3 | 2250 | 474 | o088
N -i—-— A — 15 s | 4050 | 636 | cous2
1 — 5 | 4050 | 636 | o028
W] [ (acgotRivels Q 6 | 2250 | 474 | o088
& —P 7 | 2250 | 474 | oo0108
pon v Joocos L8 | %050 | 636 | oo
‘ v 3 | 25200

Moment = 8000 X 12.5 = 100000"#
Moment Stress:
Rivets, |, 4, 5 ond 8; 0.0252 X 100000 = 2520#
Rivets, 2, 3, 6 oand 7; 0.0188 X 100000 = 1880#%
Direct Stress (All rivets) = /g X 8000 = 1000#
Rivets 5 and 8 will receive maximum force

Vertical Component = 1000 4 (252(: 5 4.5) = 2780¥

N L _ 2520 X 45 _
4 | Component = ~=r3%

R= =\[[Z780F + (1760F = 3300#
Fi6. 134. Eccentric Riveted Connection.

1780

In addition to the moment force which is computed from Equation
119, each rivet must carry its share of the direct force, and these two
forces (Fig. 133) are components of the resultant force on the rivet.

A typical computation for an eccentric riveted connection is shown
in Fig. 134.

87 Pins

Short heavy pins are sometimes used to fasten steel members together.
Pins are computed as beams, and consideration must be given to the
bearing of the parts fastened on the pin as well as the shears and bend-
ing-moments developed in the pin.

Figure 135 shows a typical arrangement of pieces bearing on a pin,
connecting the members of a truss bridge. The forces are resolved into
horizontal and vertical components, and, with the pin acting as a beam,
ag in Fig. 136, the bending-moments and shears in each direction are
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Top Pl. 22%3%
Side Pls. 18 X%

A 2454%X3%x%

Ui 2483 %3 x3%

77

" 1 L
260 x25” ' Grarhx %

Truss Diagram

Force Diagram
(Simultaneous Stresses)

%" Pin PL"

6” Pin

G-

4 L -Web 24

ZUII'l

4%”

"
%" Pin PI.—7
%" Web Pl

% Hinge i’l.%E

4" Pin P,
LoU,

¢ Truss—

8~

Pin Packing
Forces in members connected.

F1a. 135. Stress Analysis of Pin Connection.

determined. These bending-moments and shears are then combined to
obtain the resultant effects. The unit stresses are as follows:

Example

Bearing on pin of
Member LyU; = é—;?—]-%:&———% = 13,850 Ib per sq in.
Member U;Us = 23’5’2‘!——% = 13,750 Ib per sq in.
Member U,L; = 2_><21_:i’_120—0>2-(_5 = 10,550 b per sq in.
Member UsL, = %;%‘é = 7000 Ib per sq in.
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N E
s|8 .
Horizontal
0 - Forces
|%§ §T§ (Kips)
=
soa-ls | 1875% l1351- 4.18~ \3
< 3
Y :
R A X ™ Yertical
- orces
{5]3 : [ (Kips)
S |
l | | ]
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f 1
1 : > > e
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| ! [ !
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§ |§ | Shear
o I - |
~“U 8
Pt > Vertical
g]ﬁ nﬁ % Shear
> @
~UTI

B.M. and shear diagram.
F1c. 136. Stress Analysis of Pin Connection.

Bending in pin
Max BM. = 368,000 in.-lb
368,000 .
f = 21—6—;<—m8—2 = 17,350 b per 8q 1n.
Shear in pin
Max shear = 165,400 Ib
Average shear = 165400 _ 5850 Ib per sq in.

36 X 0.7854
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88 Welded Connections

-Although extensively used for machine work, automobile construc-
tion, and miscellaneous purposes, welding is not so freely employed for
making connections in bridge and building work. This is due in part to
the necessity of providing temporary fastenings to hold the work to-
gether during assembly, which necessitates such shop handling and
punching as to obviate most of the economic advantage which might
otherwise accrue through the use of welded connections. Welding is,
however, extensively used in the shop for minor details and fastenings
and also in the field where noise elimination during construction is essen-
tial and for repairs and alterations to existing structures.

For structural purposes the electric-arc welding method is generally
preferred to others. In this method, the pieces to be welded are brought

Fia. 137. Diagrammatic Sketch of Arc in Process of Welding.

(Reprinted from the ‘‘Procedure Handbook of Arc Welding Design and Practice,” published by the
Lincoln Electric Co., Cleveland, Ohio.)

to the proper temperature by heat liberated at the terminals and in the
stream of an electric arc so that the metals are completely fused. The
arc is formed between the work to be welded and an electrode held in a
suitable holder (Fig. 137). The electrode may be either metal or carbon
depending upon the work to be done, the metallic electrode generally
being employed for structural welding. Metallic electrodes commonly
used vary from % inch to § inch in diameter and are 14 inches or 18
inches long. They may be bare wire of the specified size and composi-
tion or they may be coated with chemicals which form gases to protect
the molten metal during the welding process (Fig. 137). The use of
coated electrodes is generally preferred as producmg more uniform and
reliable welds.

Welds are classified according to location as flat, vertical, overhead, and
horizontal; and according to type as butt welds, fillet welds, lap welds,
edge welds, and plug welds. These are illustrated in Fig. 138.

A flat weld is one in a plane inclined at an angle of 45 degrees or less
to the horizontal, the weld being made from the top side of the plane.
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A vertical weld has its linear direction inclined at an angle of less than
45 degrees to the vertical.

An overhead weld is the same as a flat weld except that the weld is made
from beneath the plane of the weld.

A horizontal weld has its linear direction inclined at an angle less than
45 degrees to the horizontal in planes which are inclined less than 45 de-
grees to the vertical.

An intermittent weld is one of broken continuity and generally consists
of relatively short lengths of bead spaced at uniform distances along the
length of the pieces welded.

Honizontal

s
Y

)
()

(eeeeeceeeeeceuteec

(R

Double Butt Weld

Overhead

Fi1c. 138.  Examples of Welds and Locations.

(Reprinted from the “Procedure Handbook of Are Welding Design and Practice,” published by the
Lincoln Electric Company, Cleveland, Ohio.)

A tack weld is an intermittent weld used to hold parts together for
assembly purposes.

In order to promote uniformity of practice in the conveying of infor-
mation by means of drawings, the American Welding Society has pro-
posed the use of conventional symbols (Fig. 139) to indicate needed
information to construct welds of various types. For more detailed
information relative to the use of these symbols the reader is referred
to publications of the American Welding Society.

The American Welding Society Code for Fusion Welding in Building
Construction (1937) defines the elements and dimensions of the section
of a weld as indicated in Fig. 140. The effective length of a fillet weld is
under this code 4 inch less than the overall length of the weld.

The internal stress in a weld is determined from its size and length
and depends upon the magnitude and manner of application of the ex-
ternal load. The cross-sectional area of weld metal under stress is
always considered as the product of the throat dimension and the effective
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Arc and Gas Welding Symbols

ﬂush—S-

Opening

Type of Weld Field Weld

Bead i Groove Plug Weld Al Flush

Filt g ae | v Bevel U ] & Slot Around
~IN| | WV VIV e |O|—

Location of welds
Arrow (or near) Other (or far) Both sides
side of joint side of joint of joint

Field Weld < |0.C|Uded Angle 0= Weld All

See Note 5 )
Saze\ j \5:0 }?.0 Silﬁ\*o
o] o)

Root R

Opening

Note 5

Size \ Size

ncrement

\ \ Length Around
Offset it \ Pitch of

Staggered Increments

1 The side of the joint to which the arrow points 1s the arrow (or near) side.

2 Both-sides welds of same type are of same size unless otherwise shown.

3 Symbols apply between abrupt changes in direction of joint or as dimensioned (except where
all-around symbol is used).

4 All welds are continuous and of users standard proportions unless otherwise shown.

5 Tail of arrow used for specification reference (tail may be omitted when reference is not used).

6 Dimensions of weld sizes, increment lengths, and spacings, in inches.

Courtesy American Welding Soctety.

Fia. 139. Symbols Used to Indicate Welds.

Size

Root 4

Throat Dimension

(a) Right Fillet Weld

(¢) Single Bevel

Size

Throat Dimension

(b) Oblique Fillet Weld

Angle of V
60° Min.

Throat Dimension
\ = Size

&
L] Reinforcement
§» Angle of Bevel
$ 5° Min.
E
: i
g
L_ Shoulder about {,”
'\ Root Spacing Shoulder
U to A" about 1

Butt Weld

\ Root Spacing

Yo to A"

(d) Single V
Butt Weld

Fia. 140. Elements and Dimensions of Welds.
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length. Formulae for unit stress in typical welds may be expressed as
follows,*

where P = external load in pounds (tension or compression).
f = unit stress in weld (tension or compression)
V = external shear on weld. )
v = unit stress in shear.
t = size of weld in inches,
L = effective length of weld.

P [N //
Y,
"\t = Throat Dimension = Size
Fig. 141. Butt Weld.

Butt Welds

For a simple butt weld, as in Figs. 140c, 140d. or 141, either in tension

or compression,

f= il (120)
L

With the external forees applied to produce transverse shear (either
vertical or longitudinal),
v
v = E (121)
Transverse Fillet Welds

It is the generally accepted practice to assume that the stress on the
throat section of a transverse fillet weld is a normal tensile or compressive
stress. For the arrangement as shown at a or b in Fig. 142,

Throat dimension of weld = 0.707¢ (122)

ip P

F = oaonL = 1aaL

(123)

SFor a more complete discussion of stresses in a weld, see paper, “Welding
Design” by Chas. H. Jennings, A.S.M.E. Transactions, Qctober, 1936.
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When two plates of unequal thickness are welded, as shown at Fig.
142¢, assuming welds of the same dignensions,

-

b P
(% 124
for the top weld, f (a + b) 0.707:L ah
for the b 1d ( : ) ; s
or the bottom weld, f = 2 )=

‘_:_J_)_) p-4 P
i3 Ta
{ E — 5% t=Size of Weld
t = Size of Weld la

(a) ®)

“l J , EI-Size of Weld P
] AN ~ ]
¥ =3¢= Size of Weld (d)
(¢)
Fia. 142, Transverse Fillet Welds,

The arrangement shown at Fig. 142d is non-symmetrical with the
result that bending stresses are induced in the weld. The stress at the
root of the weld is in this case ecritical and

3.414P

I==

(126)

Transverse fillet welds of the type shown at ¢ in Fig. 143 are most
often found in machines and

Pl

7
— [2e2 d 21%
tL(d-l- )l2 + 3(d + 1)?) (127)

Longitudinal Fillet Welds

Referring to Fig. 143 we see that, for parallel or transverse fillet welds

of the types shown at a or b, the stress on the throat section is shear and
ir r

T 0.707iL  1.4141L

(128)
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For longitudinal fillet welds in bending as at d

4.24Pe

e (129)

The safe working stress depends upon the quality of the weld metal
and the characteristics of the loading. Typical physical properties of
metal deposited in welds by bare and coated electrodes are shown in
Table 19.

Permissible unit stresses as given in the American Welding Society
Committee Code for Fusion Welding in Building Construction (1937)
are given in Table 20. Working stresses recommended by Jennings for

v,

1 i
P L ! P P
| ] t = Size of Weld

¢t = Size of Weld
(a)

t = Size of Weld

Y, t = Size of Weld
(d)

Fic. 143. Miscellancous Fillet Welds.

bare and coated electrodes are given in Table 21; also stress concentra-
tion factors to be used where dynamic loads are encountered.

For a more complete discussion of the design of welded joints the
reader is referred to a paper by H. M. Priest, “The Practical Design of
Welded Steel Structures,” published in the August, 1933, issue of the
Journal of the American Welding Society. Typical stress and design
computations as presented in this paper are reproduced in Figs. 144, 145,
146, and 147.
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yANLZA

Weld Size
Unit Stress 3000

Ratio 1.00 133 167 2,00
Area 070 125 195 .281 J [ ‘J |L
Ratio 1.00 1.78 2.78 4.00 GOOD
Electrode
%
4 \ Actual
45° ALY Throat
v
:g I
3
[] [4]
, WELDING SYMBOLS
FILLET WELDS BUTT WELDS
Show section through
weld, giving necessary
information for preparatuon
of the joint, its y
and welding
Near Side Far Side Both Sides E
218 34 x2% %X, Area =3.56 Sq. Inches
% Stress in One Angle = 1.78x18 = 32.0 Kips
L3
* ~ _320x114
< WELD A Stress = 350 =104
< ‘ X¢ Weld = 2500 Lbs. per Inch
N 104
N Length = 25 =415 Usedi~
236 |a—vhf 114 5 320%2.36 _
3% WELD Stress = 380 = 216
3 Weld = 3000 Lbs. per Inch
Length = 23106 =720 Use7%"
e
¢
Fic. 144.

(From “The Practical Design of Welded Steel Structures,” by H. M. Priest, J. Am. Welding Soe.,
August, 1933.)
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1L4x4xX,

%
3y,
g
4 .

One- Half 16CB58 A

7-9%"
—_— NOTE Al We'ds % Unless Noted
EXAMPLE
T Tension Diagonal Stress =74 Kips
74%2.74
Heel =S =845 Use8%
SECTION A A 2x4x30
74X 1.26
Toe Fxaxzs 466 UseS
SECTION BB

Fic. 145. Typical Welded Truss Joint.

(Reprinted from “The Practical Design of Welded Steel Structures,” by H. M. Priest, J. Am. Welding
Soc., August, 1933.)

Pl 12x% Vertical Shear = V' =190 Kips

= omases  Honsonl Shear = K m 10 x 01548= 234/
Two 3 Welds af 3.0 Kips per Inch = 6.0K/~
9 =o1548 29x12
No. Inches of Welding per Ft. = = =59~
1.=16574 &0
S =666.3
Web PI. 3 3
:‘—J=b,: 8xXs lgaﬁgd ‘de
c

Pl 12X %

Bl

1’-0~ 1'-0"

in
| P 10X X _666.3 18000 ~
aewm2500- ST 1020 60 /O
3% Weld X Total Stressin Cov. =
Stiffeners 1.5%11.76 =88.2K
1=26138 4 | End Weid 10%3.0 =30.0

S$=10200 S Stress on Side Welds =582

X 58.2 -
170_, Longth of ek = 5385 =97
w Pl 10X % Use 107

)

Fia. 146.

(From “The Practical Design of Welded Steel Structures,” by H. M, Priest, J. Am. Welding Soc.,
August, 1933.)



Beam Connections

Y-
kelina W = Beam Reaction - Kips
© b R = Unit Working Stress on Weld - Kips
; per In.
;= Allow Umit Shear on Web - Kips per
g ~ Sq. In.
i A= X For Welds on Beam Web
- GXxXt
t=Beam Web R not to exceed e
> 3k Same for Girder Beams
‘ when Beams Frame Opp. I"—
«
Wa 6.25
M = —_— - -
on =2 I=rys =3/
Mom. = Px6A W
H= 2P Mom =M= Ta
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H= Wa Mxd
3 5}; A® Polar 1
V= — A
=24 V= 31+
R = Resultant Stress
» - P 3 3 + 2 3
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Beam Brackets
C‘.‘..;‘.? F’_-..‘_'_'_‘:-I c :,7_'.1
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i" ! a ] n
1 ! H
U . n Ny —L
L_ \Beaving Plate
Spht Beam Section
Web acts as the Bar Stiffener
Stiffener 4
Al
Assume a =84 Assume ¢ =84
[] ?‘{ [«

W = Beam Reaction - Kips
R = Unit Working Stress on Weld - Kips per In.

H w
'-& V=z2uw+d
L
H= Wab
P Lo
2(L+4d)
R=yVis+H?
3 3
I,= b;; + 2db* (For two Welds)
[7]
Fra. 147.
(From “The Practical Design of Welded Steel Structures,” by H. M. Priest, J. Am. Welding Soc.,
August, 1933.)

214



PROBLEMS 215

PROBLEMS

8.1 All members are 2-in. X 10-in. (nominal size) southern yellow pine. How many
16d nails are required for the adequatc dusigu of thic splice if the total force trans-
mitted is 1500 1b compression?

8.2 If the material is southern yellow pine, how many Teco No. 1 Split-Ring Con-
nectors are required to transmit the force of 10,000 1b into the horizontal member?

iy
7 R x 10
Y2072 /4

8.3 (a) Two pieces of Rocky Mountain Douglas fir, 3-in. X10-in. nominal size,
are fastened together by bolts as in Fig. 126d. The pull on each piece is 30,000 Ib.
How many 1-in. diam. bolts will be required? (b) How many Teco Split-Ring Con-
nectors No. 3 will be required if the angle of load with grain is 10°

8-4 Two yecllow pine pieces, each 2 in. x 6 in., are to be fastened together as in
Fig. 126d. The pull on the picces is 10,000 Ib. How many 3-in. bolts will be re-

quired? How many Teco Split-Rings No. 2 would be required if the grain makes an
angle of 20° with the load?

8.6 Find the unit shearing stress in each rivet.

]

P = 5000 #

4”7 4"

Rivets "¢
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8.8 Determine the magnitude and direction of the maximum shearing force per
rivet for each rivet group. .

P=15K

4”
S,
N
2
8
w
o,
3
©

4"

Y

|2@3=6~/

8-7 Using the allowable rivet stresses in Table 16 and assuming the allowable

tension in the plates to be 20,000 psi, find the allowable load, P, on the tension
splice.

» L d » L4 » 18"
o

- &

p " P
B e ennd *

o

®

<

2 sp. plates - 157 x %" x 1-7".
%" plate Rivets X" ¢

8:8 Check the adequacy of the rivets in the connection shown according to
A.L.8.C. Specifications.

215 4"x3%"x %" 215 4"x 3% x %"

62,500#
Rivets %" ¢

%” plate

IL-2%"x2"x %"
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8.9 What is the shearing stress and the bearing stress in psi on these rivets at a
point in the span where the transverse shearing force is 100,000 1b?

W‘*ﬁ-‘ ¥ %" ¢ rivets in pairs
b Spacing along the channel 4”

:
) o
o ] I, = 2664”4 (total section)
Area channel = 6.03 sq in.

043" =

—{l<—0.3"

K

—>-| r—0.7"c. g.k

V._

g~

8:10 Two 8-in.X2-in. steel plates are welded together as shown in Fig. 142b,
using %-in. welds. The allowable unit stress on the weld is 13,600 psi, and the allow-
able tension in the plates is 18,000 psi. What is the safe tensile strength of splice?



Chapter 9
TIMBER BEAMS AND COLUMNS

89 Grades and Sizes of Timber

Differing from most structural materials, wood is of organic origin
and is used in its natural state. It is cut to specific shapes and sizes and
is properly seasoned before use, and under particular conditions it may
be impregnated with preservative material. Trees made into lumber
and timbers are broadly divided into two groups, softwoods and hard-
woods. The coniferous evergreen trees are customarily called softwoods
and the broad-leaved or deciduous trees hardwoods.

As a result of its natural growth, wood may contain many defects !
when considered for structural purposes. When manufactured into the
ordinary commercial sizes, these defects will remain in the finished
pieces, and the quality of a given piece will depend upon their extent,
size, and location. In order to standardize material in classes for various
usages, manufacturers have established grading rules 2 which limit these
defects in various types of wood products.

Lumber is defined as the product of the saw and planing mill not
further manufactured than by sawing, resawing, and passing lengthwise
through a standard planing machine, crosscut to length, and matched.
Softwood lumber is classified into three main groups, yard lumber,
structural timbers (often referred to under the general term timbers), and
factory and shop lumber. The general classification shown in Fig. 148
gives the grade names used by lumber manufacturers’ associations for
the various classes of material.

Softwood yard lumber is lumber less than 5 inches in thickness and is
intended for general building purposes. Strips are yard lumber less
than 2 inches thick and under 8 inches wide. Boards are yard lumber
less than 2 inches thick and 8 inches or over in width. Dimension is all
yard lumber except strips, boards, and timbers; that is, yard lumber
over 2 inches and under 5 inches in thickness and of any width. Planks

1 See “Wood Handbook,” published by United States Department of Agriculture;
also Standard Definition D9-30, American Society for Testing Materials.

2 8ee “Wood Structural Design Data,” published by the Natural Lumber Manu-
facturers’ Assoc.; also Basic Laws for Structural Grades in ‘“Douglas Fir Use Book,”
published by West Coast Lumberman’s Assoc.

218
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are dimension lumber over 2 inches, and under 4 inches, in thickness and
8 inches or more in width. Scantlings are dimension lumber over 2 inches
and under 5 inches thick and under 8 inches in width. Heavy joists are
dimension lumber 4 inches thick and 8 inches or over in width. The
grading of yard lumber is based upon the use of the entire piece except

Grades
A select
Yard lumber (lumber [ Finish (less than 3 inches thick and 12 ] B select
less than 5 inches| inches and under in width) C select
thick, intended for D select
general building pur- No. 1 boards
poses; grading based | Boards (less than 2 inches thick and 8 | No. 2 boarc
on use of the entire | inches or over in width). Strips (under { No. 3 boarc
piece) 8 inches in width) g . g ard
0.
Planks (2 inches i
and under 4| No. 1 dimension
inches thick } No. 2 dimension
and 8 inches| No. 3 dimension
) and over wide)
Dim;nsio‘;n (25 meee Scm;ltlingd (2
Softwood lumber and under 5 inches | inches and un-
(this classifica- th&cli)and of any d}a::-ks i:lwhee gg';mg:
tion applies to L widt thick and un- .
bl der 8 inches | No- 3 dimension
reu«rlumber. St(ll'uct}:rals gna}t‘erinl H“ jolate (4
sises given are umber § inches or eavy jois :
nomm‘al) over in thickness and inches thick gg' ; gﬁ::ﬁ:}gﬁ
width, except joist and 8 mdc};u or ' No. 3 dimension
wide

and plank; grading
based on strength
and on use of entire
piece)

over
Joist and J)lnnk (2 inches to 4 inches thick and 4 inches and

over wi

and over wide)

Fia. 148.

LPost.s and timbers (8 by 6 inches and larger)

Beams snd stringers (5 inches and over thick and 8 inches

Factory plank Nos 1 ;nd 2 clear
for door, sash, and F;cto;y °|d°;“{
other cuttings 1 pper gra No. 3clenfa.ctory
Ft(seu‘;lry and shop itx}l]ghk tod45 §ncll:es No. 1sh
grading on ick and 5 inches 0. op
area of piece suitable | and over wide 8 gz&l owe ’{ No. 2 shop
for cuttinga of certain > . 3 shop
sizge and quality) 1inch thick
(northern and | ga1a0
3 western Dpine, Sh
Shop lumber graded| and Pacifio| %P
. for general cut up| coast woads)
purposes All  thicknesses (Tank and boat
(cypress, red-| stock, firsts and
wood, an seconds,
NorthCarolina | No. 1 shop
| pine) No. 2 shop, box

(From ‘“Wood Handbook,” published by U. S. Dept. of Agriculture.)

that dimension planks and joists to be used where working stresses are

required should be graded as structural material.

dimensions of yard lumber are given in Table 22.
Softwood yard lumber is graded on the basis of quality into two main
classes: (a) select lumber, and (b) common lumber; these are again sub-
divided into classes or grades depending upon the size, extent, and char-
acter of defects (see Fig. 149).
Structural timbers are softwood lumber 5 inches or larger in least

dimension.

Standard nominal

This material is intended for use in carrying calculated

stress and is graded with regard both to the strength and to the use of
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the entire piece. Structural timbers, including dimension yard lumber
intended for structural use, are further classified as joists and planks,
beams and stringers, and posts and timbers.

Structural timbers are graded for quality in accordance with their
safe principal working stress. Thus 1600f joist and plank indicates
material suitable for carrying up to 1600 pounds per square inch tension
or extreme fiber in bending; 1200c posts and timbers would indicate .

Suitable for natural ] defects:
finishes ra.do B (allows a few small defects
or blemishes)
Finish items (lumber of Grade C (allows a limited number
appearance and of small defects or blemishes that
ing) can be covered with paint)
Suitable for paint{Grade D (allows any number of
finishes defects or blemishes which do not
detract from the ap‘;:esrance of

{ rade A (practically free from

'otal products of the finish especially when painted)
Ta ty;:ml log ar- No. 1 bosmﬁe (sound and tight-
in unu* knotted stock ; size of defects and
according to blemishes hxmted may be con-
quality as de- Lumber suitable for mdered water-tl ht lumber)
termined by ap- use without waste | No. 2 ows ln.rge and
pearance Boards (lumber con- coarse defect.a {e consid-
taining defects or blem-{ ered grmnt.:ght lumber)
ishes which detract No. 3 hoards (allows larger and
from the appearance of coarser defects than No. 2 and
the finish T)uc suitable occasional knot holes)
for general-utility and | Lumber permitting{ No. 4 boards (low-quality lumber
construction purposes) | waste admitting the coarsest defects,

such as decay and holes)

No. 5 boards (must hold together
under ordinary handling)

Fia. 149.

(From *“Wood Handbook,'* published by U. 8. Dept. of Agriculture.)

material suitable for carrying up to 1200 pounds per square inch com-
pression as a short column. Lumber grades are specified by their com-
mercial grade names as given in Table 25. The basis of stress grading
for structural timbers was developed by the Forest Products Laboratory.?

Manufactured lumber is classified as rough, surfaced, or worked.

Rough lumber is undressed material as it comes from the saw, where
it is cut to the nominal dimensions in green condition. Errors in sawing
and the shrinkage due to seasoning may produce variations in the actual
size of rough material from the nominal dimensions.

Surfaced lumber is that which has been dressed by passing it through
a standard planing machine. It may be surfaced on one side (S18), two
sides (S2S), one edge (S1E), or combinations of side and edges (S1S1E),
(S2S1E), ete.

3 “Guide to the Grading of Structural Timbers and the Determination of Working
Stresses,” Miscellaneous Publication 185 of the U. 8. Dept. Agriculture. See also,
“Douglas Fir Use Book,” published by West Coast Lumberman’s Assoc.; “Wood
Structural Design Data,” publication of National Lumber Manufacturers’ Assoc.;
Specifications for Structural Timbers (1936), “American Ry. Engg. Assoc. Manual.”
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Standard nominal dimensions for rough and surfaced yard lumber
and structural timbers are given in Tables 22, 23, and 24. Lumber is
indicated by its nominal dimensions, and its quantity is determined in
board feet. A board foot is a piece 1 inch thick by 12 inches wide by 1
foot long, and the number of board feet in any piece will be one-twelfth
the product of its cross-sectional dimensions (in inches) with its length

Flooring (Standard Match)
Ceiling (Edge Beading)

CL
- -

Drop Siding (Shiplapped)

Bevel Siding

1\ =

Dressed and Matched (Center Matched)

S | —

Shiplap

Fig. 150. Six Typical Patterns of Lumber.
(From ‘“Wood Handbook,” published by U. S. Dept. of Agriculture.)

(in feet). Actual minimum dimensions must be used in computations
for strength. Lumber is cut to standard lengths, which are multiples of
2 feet, except for the following odd lengths which are allowed.

2X4, and 2X6 9 and 11 feet
2X8 ) 9, 11, and 13 feet
2X10 13 and 15 feet.

8X8, 10X10, and 12X12 |
14X 14, 16X16, and 18x 18] 11 2nd 13 feet
6X6, 6X18, 8X16, and 8X18 15 and 17 feet
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Worked lumber is that which has been run through a machine to pro-
duce a particular form of cross section and may be matched, ship-
lapped, or patterned. Matched lumber is edge dressed and shaped to
make s close tongue and groove joint at the edges or ends when laid
edge to edge or end to end. Shiplapped lumber is edge dressed to make a
close rabbeted or lapped joint when laid edge to edge. Patterned lumber
is worked lumber that is shaped to a pattern or mold form. Standard
shapes of worked lumber may be obtained from various manufacturers’
associations upon request. Typical forms of standard workings are
shown in Fig. 150.

For more complete information relative to grades and sizes of lumber
the reader is referred to the “Wood Handbook” published by the United
States Department of Agriculture, the “Manual of the American Rail-
way Engineering Association,” and the publications of various lumber
manufacturers’ associations.

90 Working Stresses for Structural Timbers

Determination of a safe working stress for material of such variable
qualities as wood requires consideration of many factors. Defects
inherent in the material will, in accordance with their size and extent,
tend to decrease its strength; conditions of exposure and particularly the
presence of moisture will reduce further the capacity of the material to
resist stress safely. The basis for determination of allowed working
stress is the basic unit stress permissible on clear material under ideal or
dry conditions of exposure; these are then reduced in accordance with
effect of defects permissible in material of the given class and further
reduced to allow for the effect of adverse conditions of exposure.* Allow-
able working stresses recommended by the National Lumber Manufac-
turers’ Association are given in Table 25.

Limitation of defects in material of a given stress grade is in accord-
ance with specification > standards; no material having defects in excess
of these limitations is permitted in a given grade. For material con-
tinuously dry and covered, Table 25 indicates directly the safe working
stress for such material, and the amount by which these stresses must
be reduced,® or the size of timbers increased to allow for adverse condi-
tion of exposure, is dependent upon the judgment of the engineer.

4 See Miscellaneous Publication 185, U. 8. Dept. Agriculture.

8 See Specifications for Structural Timbers, 1941, “American Railway Engg.
Assoc.,” Manual A.A.8.H.O. Standard Specifications for Highway Bridges, 1944.

¢ See Specifications for Structural Timbers, 1941, “A.R.E.A. Manual.”



WOOD BEAMS AND JOISTS 223

91 Wood Beams and Joists

The safe load-carrying capacity of a rectangular wood beam is deter-
mined by (1) the stress on the extreme fiber due to flexure; (2) the
maximum horizontal shear stress; (3) the stress in compression across
the grain at end bearings and under concentrated loads; and (4) the
deflection permitted in the finished construction.

The stress f on the extreme fiber in flexure is obtained from the flexure
formula for homogeneous beams, f = Mc//, and

6M M (130)
b 8
where b = depth of section (actual size).
b = width of section (actual size).
. 21
S = section modulus = ;= = —-
sh h

Properties for designing rectangular timber sections are given in
Table 26.

The total shear per inch of span length on any horizontal plane in a
homogeneous beam is given by the equation

VQ
vh = ya (131)

where V = change in bending-moment per inch of span at the given

point in the span = total vertical shear at this point.

I = moment of inertia of a vertical cross section taken at the
given point in the span.

Q = statical moment of that part of the cross section on one side
of the horizontal plane with respect to the neutral axis.

b = width of beam cut by the horizontal plane.

v = intensity of shearing stress.

For a rectangular section, the intensity of horizontal shear stress at any
depth y from the top of the beam (where y 2 h/2) is, therefore,
6Vy(h — y)
V= ——
. bha
For a rectangular section, Equation 132 indicates a parabolic variation

of the intensity of shear stress from 0 at y = 0 to & maximum, when
y = h/2, at the midpoint of the depth where
3V

= — 133
" T %d (133)

(132)
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For sections at the support, Equation 132 will produce results greatly
in error, owing to the fact that timber checking will produce essentially
a two-beam action,” and the reaction will be carried by the upper and
lower parts of the beam acting as two independent beams. For such a
condition, the following solution has been recommended:

(a) Use the equation

i (134)
v=—
2bh

where R = reaction in pounds.

(b) Use the customary allowable shear stress.
(¢) In calculating the reaction for use in the formula:

(1) Take into account any relief to the beam as a result of load
distribution to adjacent parallel beams by flooring or other
parts of the construction;

(2) Neglect all loads within a distance equal to the height of
beam from both supports;

(3) If there are moving loads, place the largest at a distance
three times the height of the beam, from the support;

(4) Treat all other loads in the usual manner.

(d) If a timber does not qualify under the above recommendation,
which under certain conditions may be overconservative, the reactions
for the concentrated loads should be determined by the following equa-

tion:
a 2
10P(L — a) (Z)

R = - 135
=) o
' h
where P = any concentrated load on span.
L = span in inches.

a = distance from reaction to load P in inches.
h = height of beam in inches.

The intensity of bearing stress across the grain at the support is equal
to the reaction divided by the bearing area. No account is taken of the
fact that the intensity is higher at the edge of the support due to the

7“Wood Beam Design Method Promises Economies,” by J. A. Newlin, G. E.
Heck, and H. W. March, Engg. News-Record, May 11, 1933; “Shear in Checked
Beams,” by J. A. Newlin, Bulletins of A.R.E.A., February, 1934; “Wood Hand-
book,” U. 8. Dept. Agriculture.
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deflection of the beam. Similar computations apply to concentrated
loads which may occur at intermediate points.

Deflection computations are made using formulae and methods
applicable to homogeneous beams and a modulus of elasticity corre-
sponding with the given quality and species of wood. Deflection limi-
tations usually depend upon the usage of the completed structure. For
plastered ceilings, deflection is usually limited to 5} 5 of the span. Wood
beams acquire a permanent set or sag, under long-continued loading,
which is approximately equal to the dead-load deflection using the modu-
lus given in Table 25. In order to make allowance for this it is customary
to double the dead load but not the live load in computing deflection.

Typical computations of critical stress in a wood-floor construction
are shown in Fig. 151. The data given in Table 26 are useful in making
such computations. The joist computations show that the maximum
stresses are well within the safe capacity of the grade specified. The
deflection, computed on the basis of twice the dead load plus the live
load, is slightly in excess of the customary limit for plastered ceilings
but not sufficiently so to require a change in the design. The beams are
seen to be satisfactory as regards horizontal shear and bearing but will
have excessive deflection. This condition cannot be corrected by speci-
fying a higher grade timber and henee, to hold deflection to not more
than 5} of the span, the beam must be increased in size. Computation
of a 10X 12 beam will show a deflection of

165 L

-=- X 0.56 = 0.45 inch = —

209 360
and hence would be satisfactory in this respect. An 8X14 timber,
having a still*larger I, will give still less deflection.

Typical design computations are shown in Fig. 152. Such problems
start with the assumption of the proposed layout and arrangement of
members including estimated sizes. These assumptions are then revised
as the design proceeds in case changes are necessary. It should be
observed that many alternative arrangements and selections will be
available, and the final design should select the best and most economical
construction labor and material. It is frequently necessary to deter-
mine several possible arrangements and base the choice on estimates of
cost. In the example shown in Fig. 152 no attempt has been made to
select the most economical design. In the computation relating to the
laminated floor it will be observed that the thickness used would permit
a beam spacing of 5 feet. The 4-foot spacing chosen was selected because
it would provide a regular and uniform spacing of beams with respect to
the column centers. Further design study should be made for a 23-inch
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34" Moaple Flooring
1" Y. P. Subfloor

Section through Joists

Materials
Joists: No. | Dim. Short Leaf S.P
Beams Dense Structural Short Leaf S.P.
Live Load 40#,."

Loads
Floor Load Joists: "
Flooring 254,00 Floor Load = 55 X 73 = 73#/lin.ft.
Sub Floor 25 W1, of Joist = _5
Lath & Plaster 100 Total per fin. #. 7%/ lin. b,
Live Load -%:—. o Beams:
/ Joist Reaction = 78 X 7 = 5458
Lood to Beam = 1x 84612 5:: X 12 - 820#
Wit. of Beam = 24
Total Load per ft. = 844 ¥
Joists .
(Spon = 14)

]
Mox. BM, = ’—’—5-‘%)—"-—'1 = 22900#

Mox. Shear = Reaction = 546#

Flexure: f=222::°= Q40 # =
Horiz. Shear : (criticol section at support) . V= ﬁ_s)—:%% = 78#/0"

Beoring : [on Beam) q= = 103#/0"

__546
1% X W
Deflection: .

Total L.L. on joist = 40218 = 53/

Dead Load = 78 —53 = 25 #/°

For deflection, use 10 = (2 x 25) + 53 = 103 #/"

5103 x (18 L .
&= [mxnxuooooooxm_j"’ % =08

Beoms (Span = 13'—4")
Mox. BM. = 844 X([13.5)2 X 1.5 = 23200"#
Mox. Sheor = 844 X 13.5 X I/3 = 5700#

Flexure: f-mﬂ 1410# /0"

* 165
, e 3 X570 _ "
Horiz. Shear: 1= TRV X 1 = 99# /C"

) 5700 "
Bearing on Column Cop: (= sz-‘ = 1908 /C'

Deflection.
Total D.L. = 844 —(40 x 14) = 284 ¥/
For deflection, use 1w = (2 x 284) + (40 x 14) = 11288/

5 X 1128 X (16 R
T 60000 98 L = 755 = 086

F1a. 151. Typical Stress Computations for Wood Floor Construction.

A=
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floor to determine if this could be used on the smaller span. If the deflec-
tion must be limited to 545 of the span, an 8 X 14 size beam is required.

Columns @ 1
8 ""\ 16 f¢. centers B_
160 |

Live Load 150 pounds per sq. ft.

AN
T

Plank Floor
D.L. 1" Finish Flooring 2540 Assume #2 Med. Grain, Stress Dim.
2" Plank Floor 45 Shortleaf S.P.
LL 150 Allowed f = 1100#/0°
Total Lood 157#,/0' E = 1,600,000

Actual thickness = 1%"
For 12" width of floor:

Safe Resisting M. ¢ =10 X 12X ('%)-2= 5,800"#

6
8 X 5,800 3 Use 4 ft.
Mas, Safe Span = LX380_ I o 4 . l
ox. Sole Span 12X 157 Spacing of Beams

Deadlood = 7#/*

For deflection, use v = (2x 7) + 150 = 164 # "

5 164 X (48X 12 X L L
Approx. Max. Def. = TR |2>(1600000x IIX(TVF 35

lUu 2 X 6 D & M Med. Grain, Stress Dim. Short lufs;l
Floor Beams
(Beams spaced @ 4 ft. ctrs. — Span, 16 ft.)

Floor Load to each beam = 157 X 4 = 630#/lin, ft.
Wt. of beom — (Assumed) 30
Totol Load 680% , lin. f.

Whtre B Mem==-1/y X 660 X (16)2 X 12 = 254,000"#
for f=1700 Reqd. S= 150 Reqd. Size = 8 X 12 (S =168)

I Use 8 XX 12 Dense No. 1 Structural B. & S. Short leaf S.P.

-~ Dead Load = 660 —(4 x 150) = 60#/ lin. 1.
For deflection, use 1 — (2 x 60) - 600 = 720 #/ lin. f1.
__SXTnox(9'XL __ [
Max. Def. = S50 12 X 1600000 X 951~ — 280
Horizontal Shear: 1)- 3860 x8 92

TITX W, X 1

Min. Length of bearing —.:"/_Xxﬁ— 2 inches

F1a. 152. Typical Design Computations for a Timber Floor.

Tables published by various manufacturers’ associations are useful in
the design of timber beam and joist construction.®

8 4“Wood Structural Design Data,” Natural Lumber Manufacturers’ Assoc.;
“Douglas Fir Use Book,” West Coast Lumberman’s Assoc.; “Maximum Spans for
Joists and Rafters,” Natural Lumber Manufacturers’ Assoc.
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92 Built-Up Beams and Girders

When solid timber of the required size is not available, wood beams
and girders may be built up of smaller sections.

Laminated beams with the laminations vertical and bolted together
were found in tests ? at the Forest Products Laboratory to be as strong
as solid beams of the same external dimensions. The pieces should be
fastened thoroughly to prevent buckling of individual planks, and if
spikes are used it is good practice to provide also some through bolts or
bolts and connectors. It should be observed that a built-up beam of
this type will contain more material (measured in board feet) than one
of equivalent solid section; thus a solid 12X 12 beam will have actual
dimensions 113 X111 and contain 12 board feet per foot of length; an

Fig. 153. Built-Up Beam with Diagonal Boards.
(From “Wood Handbook," published by U. S. Dept. of Agriculture.)

equivalent section made of 7 planks 2X12 will have the actual dimen-
sions 11§ X 11} and will contain 14 board feet per foot of length. Built-
up beams of this type should always be placed with laminations vertical.

Built-up beams may also be constructed with two timbers placed one
on the other and either with diagonal boards (Fig. 153) spiked to the
sides of the timbers, or else the timbers should be bolted and keyed
(Fig. 154) to provide shear resistance on the plane between the timbers.
Tests ® have indicated that, as compared with beams of solid section,
an efficiency of 70 per cent may be obtained for the type shown in
Fig. 153 and 80 per cent for the type in Fig. 154 when cast-iron keys
are used.

In the design of the type with rectangular keys, the bending-moment
and shear diagrams are determined in the usual manner for the pre-
scribed loading. The designing moment is then found by dividing the
maximum bending-moment by the assumed efficiency percentage (80
for cast-iron keys and 75 for white oak keys), and the theoretical size of
required solid timber is determined in the usual way. Two equal tim-

9 “Built-Up Southern Yellow Pine Timbers Tested for Strength,” Natural Lumber
Manufacturers’ Assoc., Wood Construction Information Service, Ser. E2b.

10 Tests by Edward Kidwell, Trans. Am. Soc. Mining Engineers, Vol. 27; “Resist~
ance of Timber Joints,” by Alvarez, Engg. Record, Vol. 70, No. 5.
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bers are then selected whose actual dimension, when placed one on the
other, will correspond with the theoretical size. The number and size
of keys to be used are determined by trial. The forces acting on a key
are shown in Fig. 155, and it will be noted vhat P; represents the total

Bolts
A
_ - M — | _’/ — '/u»/ L -
L — _ A .
%y J-Zﬁ' @/M( //n/; -,
=~ —0~ o - h N
== K’i\:’;\%} e SN
\J
(a) Cast iron or Hardwood Keys

Fia. 154, Bullt—Up Beam with Keys or Shear-Pins.

horizontal shear over a length of beam corresponding to the spacing of
keys; therefore

P1 = (il) $ (136)
2h

P2 = 3_Pl_t (137)
H

where V' = total vertical shear on beam section at center of key.
h = overall depth of beam.
s"= spacing of keys.
t = vertical thickness of key.
! = length of key in direction of span of beam.
b = breadth of beam.

2P, . . .

i = ry = compression unit stress on end of grain (138)
4P, . .

fa = lb = compressive stress normal to grain (139)

Bolts on either side of the key must be provided to resist the forces P,
in tension. Consideration must also be given to the horizontal shear
parallel to the grain of timber on the section between keys (Fig. 156).
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The size and spacing of keys are adjusted until unit stresses are within
prescribed limits for the materials. More complete information on the
design of this type of construction may be found in various treatises !
on timber designing.

53
Y
/ gl 4
Joimta«m«;e:1~mﬂmL ///Z/r/' (% R ”
7 %//“77‘ e
i |

Fi. 155. Forces Acting on Rectangular Key.

Deflections in built-up beams are likely to be excessive unless great
care is used in‘their construction. Deflections of beams of the type
shown in Fig. 153 are reported to be about double those of solid heams
of the same size. Special care must be employed in framing keyed beams
to obtain tight keys, and only thoroughly scasoned timber should be

FiG. 156. Spacing of Rectangular Keys.

used. Keys are sometimes made in two parts and are tapered like
wedges so that a driving fit may be obtained.

93 Trussed Beams

When spans are too great for a single timber section and the head-
room permits, a trussed beam (Fig. 157) may be used.

In the approximate design of such a structure, joint loads are com-
puted for joints A, C, D, and B as for a truss of like form and using
center line dimensions. Stresses in the members of this truss are assumed
to constitute the direct stress in the several parts of the assembly. A

u Henry D. Dewell, Timber Framing, Dewey Publishing Co., 1918; Hool and
Johnson, “Handbook of Building Construction,” McGraw-Hill Book Co., 1929.
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metal rod is selected to resist the direct stress in members AD and DB,
and a timber or metal post or strut is provided for the direct stress in
member CD. The force on the post will equal two *imes the vertical
component of the stress in the rod, and a saddle must be provided to
distribute this over the bottom of the post. The bending moment in the
beam is computed as if it were simply supported at 4 and B and a sec-
tion selected using a reduced allowable stress to allow for the average
direct stress from truss action. The foregcing computation for the beam
assumes that it acts as two individual beams of length AC and CB,

/ Timber Beam

Steel or Wrought Iron Rod

Cast lron Saddle

FiG. 157. Trussed Timber Beam.

respectively; actually there will be some continuous action which will
tend to increase the stiffness of the construction and reduce the unit
stress. To take this into account, however, requires a solution using
methods applicable to statically indeterminate structures.

94 Timber Columns—Axial Loads

Solid wood columns are classified into three groups: short columns,
intermediate columns, and long columns. Short columns are those whose
strength is dependent upon the crushing or compressive resistance of the
material only. Intermediate columns are those of such proportion of
length to cross section that resistance to both crushing and lateral buck-
ling determines their strength. Long columns are those of relatively
slender proportions whose strength depends almost entirely upon their
resistance to lateral deflection or buckling.

It is customary to measure the slenderness of a rectangular timber
column by the ratio of its length to its least transverse dimension, thus

L/d = slenderness ratio

where L = unsupported length in inches.
d = dimension in inches normal to axis of bending.

It should be noted that I represents the length over which bending may
occur. The slenderness ratio is an inverse measure of the resistance to
lateral buckling; hence the maximum value of L/d for a given column
should be used. This will usually be obtained when d represents the
dimension of the least side.
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Tests ? made by the Forest Products Laboratory on Douglas fir and
southern yellow pine timbers indicate that, when the slenderness ratio
does not exceed 11, the strength of the column is measured entirely by
the resistance of the material to compressive stress parallel to the grain.
Thus

P=jA (140)

where P = safe total axial load on column.
f = allowed stress in compression parallel to grain for short
columns (indicated by stress grade).
A = area of cross section in square inches.

For timber columns in the intermediate classification, the tests indi-
cated that the law of strength is closely represented by a fourth power
parabola which becomes tangent to the Euler curve at a point corre-
sponding to two-thirds of the ultimate crushing strength. The equation
of this parabola, known as the Forest Products Laboratory Fourth-
Power Parabolic Formula, is as follows:

When
L/d > 11

<K

L]

The value of K, which is the value of L/d corresponding to the point of
tangency with the Euler curve, is obtained from the Euler formula
(Equation 143) as follows:

. Let f = } of ultimate crushing strength.

Then, when
1)—2X3f—2f
4 3
L E
K=—=f\/: (142)
d 2 V6f

The value of K is thus seen to be a constant for any species and grade
of timber. .

Long columns are those where the value of L/d equals or exceeds
the value of K as expressed in Equation 142. When L/d = K, the allow-
able axial unit stress in the column section is P/A = %f. The Timber

12 Technical Bulletin 167, U. 8. Dept. Agriculture.
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Products Laboratory found that within the elastic limit of the material
the best interpretation of the behavior of long columns is the Euler
formula.
P = E n’E
R (143)

O @)
- 12(=
T d
Based on a safety factor of 3 and with pir ends assumed, the safe axial
load as determined by this formula is as follows:

0.274E"
| 4

L 2
G |

It is generally recommended that no column be used in structural
work with a slenderness ratio in excess of 50. The majority of columns
used in actual construction are included in the short and intermediate
classes. Design Chart V can be used for obtaining values of the allowed
unit stress on the column, based on Equation 141.

Round columns will carry the same loads in both bending and com-
pression  as square columns of the same sectional area. The procedure
in the design of a round column is first to obtain the size required for a
square column and then to use a diameter of round column which will
give the same sectional area, thus

, 2d
D=— 145
> (145)
where D = required diameter (actual) of round column.
d = required side (actual) of square column.

(144)

For tapered round columns the diameter should be measured at a sec-
tion one-third of the column length from the small end, and the stress on
the small end must not exceed that permitted on a short column.

96 Timber Columns—Bending and Direct Stress

Columns are sometimes subjected to lateral loads or known eccen-
tricities of longitudinal loading which produce determinable bending-
moments and corresponding stresses in addition to those incident to
column action. It should be observed that this additional bending

13 Newlin and Grayer, “The Influence of the Form of a Wooden Beam on Its
Stiffness and Strength,” National Advisory Committee for Aeronautics; Annual
Reprint 9, Technical Report 181, pp. 377-393; Annual Report 10, Technical Report
188, pp. 95-105.



234 TIMBER BEAMS AND COLUMNS

action imposed on the column will tend to emphasize its tendency to
buckle laterally under the axial or direct load, and the column will
therefore be more critical in its behavior. Neglecting the secondary
bending-moment induced by the lateral deflection, the fiber stress on the
extreme fiber of the column section will be given by the equation

S P + Mad (146)
T AT 2l
where P = longitudinal or axial load.
A = area of cross section.
M = bending-moment at the midlength of column.
d = dimension of section normal to axis of bending (diameter of
round column).
I = moment of inertia of section.

(Note that the bending stress given by the second term will be tension
on one side and compression on the other side of the section.)

There appears to be no uniformity of opinion as to what unit stress
should be permitted on columns subject to such action. It is considered
conservative practice to limit the value of the unit stress as obtained
from Equation 146 to the value obtained for P/4 in Equation 141 or 144.

96 Timber Tension Members

Timber is rarely used for tension members, as better and cheaper
construction usually can be obtained by using structural steel shapes or
rods. When wood members are designed for tension, the details of con-
nections will usually control the design. Tensile stress computations
are made on the basis of the net section of timber obtained by deducting
the area removed from the gross section by bolt holes and cuts necessary
for the connection of the end of the member, or for splicing. Allowable
working stresses in tension are taken as the same values as allowed for
flexural stress on the extreme fiber.

97 Timber Trusses

Since a truss is in general an assemblage of tension and compression
members, the design of the individual members embodies the principles
and methods which have previously been stated. The determination of
joint details involves the exercise of ingenuity and understanding of the
mechanics involved and an appreciation of the limitations of workman-
ship. Typical joint details for timber roof trusses are shown in Fig. 158.
A typical truss assembly is shown in Fig. 159. For further details the
reader is referred to standard textbooks on timber design.
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13" # Bolts
2 Plate Washers

%~ ¢ Boit ’ %" ¢ Bolt
2 Cut Washers

6X8Y.P

White Oak Key Bolster - 6* X 6~ Y. P
(a)

(b)

Special
Casting

17 Rod 1%~ #Rod (Upsed) -
(¢)

F1c. 158. Typical Timber Truss Joints.
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Fia, 159, Typical Timber Truss Construction.

PROBLEMS

9:1 The elements of the wood beam shown are fastened together by nails driven
at 2-in. infervals. Determine the maximum shear and the maximum bending-
moment that the section can safely resist if the following conditions are imposed:
(a) Maximum tensile or compressive stresses shall not exceed 1400 psi. (b)) Maxi-
mum shearing stress shall not exceed 200 psi. (c) Maximum horizontal shearing
force on one nail shall not exceed 400 lb.

an

3:;

—— R

10"

2"

9-2 (a) A 3-in.X12-in. wood joist (actual size 2§ X 113) of 12-ft span, simply sup-
ported, must carry a uniform dead load of 200 Ib per ft (including its own weight)
and a concentrated movable live load, P. What is the maximum safe value of P
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for the following allowable unit stresses: tension and compression 1600 psi and hori-
zontal shear 140 psi? (b) Check deflection conditions to see whether maximum
deflection is more than 3}5 of the span.

9:3 Find the depth of the Doungles fir heam required to support the traveling
hoist shown. Check shear stress. Dead load = 25 1b per linear ft including the
track. Use Paragraph 218a grade Douglas fir, Coast Region.

2, 000 e

—

Monorail track

ATI
L3 12 4

} i Section A- A

9.4 A timber beam 12 in. X 20 in. in cross section is formed from two 10-in. X 12-
in. sections by passing the horizontal shear through hardwood keys whose horizontal
resistance H = 5000 lb. If the beam is subjected to two concentrated loads, P, as

P P

H, _H H-I
— O D —& B
s | 1l o

' 4 P
8‘ 4' 8!

shown, what spacing S of the horizontal keys is required to develop a maximum
normal fiber stress due to bending of 1600 psi? Base calculation on sizes given and
negleet dead weight of beam.

9.6 Nails and friction between the two elements of the timber beam shown can
develop a horizontal shear of 40 psi. The allowable cxtreme fiber stress in tension

4~
X *
N o~
N,
4 %
AV,
2 ~

or compression is 1000 psi. Neglecting the weight of the beam, calculate the max-
imum allowable concentrated load which the beam will carry at the center of (a) an
8-ft span, and (b) a 6-ft span.
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9-6 A timber beam is to be designed to carry a total uniform load (includes
weight of beam) of 2500 Ib per ft over a simple span of 20 ft. It has been decided to
use longleaf southern pine, of Select Structural grade (B and 8). Determine the
minimum standard size timber required and the length of bearing at the ends.

9-7 A timber beam, 3 in.X14. in nominal size, carries a total uniform load of
175 1b per linear ft over a simple span of 20 ft. The allowable stresses are: in bend-
ing, 1800 psi; in shear, 150 psi; in bearing on support, 350 psi; and deflection, 33w
of span. Is the beam safe?

9.8 A square timber column 24 ft long is required to carry an axial load of 90,000
Ib. Using No. 1 Structural, P and T, long-leaf southern pine, what size timber is
required? .

9:9 Find the maximum load P which can be raised by the boom under its worst
condition of operation. Assume that the lines of force are concurrent at a point
20 ft from the bottom pin. Assume that all pulleys are frictionless.

Guy
G§ A — e — -— =
| - )
~e— Boom fine
' : e |
|
‘\(\Q// b ‘|||
&7 0l
s > il
. / o 1
9 7 “\‘&0
e c
+—t=8 & |
A
\"‘ P
o ' >
) \\-
N




Chapter 10

STEEL TENSION MEMBERS, COLUMNS, BEAMS,
AND GIRDERS

98 Physical and Chemical Properties of Steel

« Steel is manufactured from scrap and pig iron in either an open-hearth
furnace, a Bessemer converter, or an electric furnace. Practically all
steel intended for structural use is made by either the open-hearth or
the Bessemer methods. Open-hearth steel is generally preferred to the
Bessemer, as the method of manufacturing affords better control of such
injurious elements as phosphorus and sulphur. The electric furnace is
used in making alloy steels. Steel is also generally classified as carbon
steel or alloy steel. Carbon steel is steel which owes its distinctive prop-
erties to the carbon rather than to the other elements which it contains.
Alloy steel is steel which owes its particular qualities to some element
or elements other than carbon.

-Practically all steel used in general construction is carbon steel, which
is further divided into three classes or grades, structural grade,! inter-
mediate grade,® and hard grade. The carbon content of structural grade
steel is generally less than 0.25 per cent, for intermediate grade 0.25 to
0.50 per cent, and for the hard grade more than 0.50 per cent. Increas-
ing the carbon content tends to increase the tensile strength, hardness,
and brittleness and to decrease the ductility.

The specifications of the American Society for Testing Materials
require that steel intended for bridges or buildings * shall be made by
either or both the open-hearth or electric-furnace processes, except that
steel for plates and sections 1% in. and under in thickness, intended for
use in buildings and other structures subject to static loads only, may be

1 Also referred to as soft or mild steel.
2 Also referred to as medium steel.
3 Standard Specifications for Steel for Bridges and Buildings, A.8.T.M., Serial
Designation A7-39.
239
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made by the acid-Bessemer process. These specifications also limit the
chemical composition of such steel as follows:

Phosphorus, maximum percentage
Open hearth or electric furnace

Acid 0.06
Basic 0.04
Acid Bessemer 0.10
Sulphur, maximum percentage (open hearth or electric
furnace) 0.05
Copper, when copper steel is specified, minimum per-
centage 0.20

Specified Physical Properties of Steel for Bridges and Buildings,
Structural Rivet Steel, and Structural Silicon Steel, according to Stand-
ard A.S.T.M. Specifications, are given in Table 27.

The A.S.T.M. Specifications * require that structural silicon steel be
made by either or both the open hearth or the electric furnace. The
chemical composition of such steel is limited as follows:

Ladle Check
Analysis Analysis
Carbon, maximum percentage 0.40 0.44
Phosphorus, maximum percentage
Acid 0.06 0.075
Basic 0.04 0.05
Sulphur, maximum percentage 0.05 0.063
Silicon, minimum percentage 0.20 0.18

For structural rivet steel, the A.S.T.M. Specifications ® require that
it be made by either or both the open-hearth or electric-furnace processes.
The chemical composition is limited in the same amounts as specified
for steel intended for bridges and buildings. The physical properties
specified are also given in Table 30.

A small percentage of copper is sometimes added to structural steel
to increase its resistance to corrosion.® Such material is known as

¢ Standard Specifications for Structural Silicon Steel, A.S.T.M., Serial Designation
A 94-39. )

5 Standard Specifications for Structural Rivet Steel, A.8.T.M., Serial Designation
A 141-39.

¢ “Copper in Steel, Its Influence on Corrosion,” by 1. M. Buck, J. of Ind. Engg.
Chem., 1913, p. 447; “Symposium on the Outdoor Weathering of Mctals and Metallic
Coatings,” Proceedings A.S.T.M., March 7, 1934; ““A Critical Study of the A.8.T.M
Corrosion Data on Uncoated Commercial Iron and Steel Sheets,” Proceedings
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copper steel or copper bearing steel. Its principal use is for steel struc-
tures serving under extreme conditions of exposure and where the
construction will be inaccessible after erection. The addition of less than
2 per cent of copper does not materially chauge the physical properties
of the steel as regards its strength and elastic behavior.

Alloy steels are seldom used in ordinary structural work since their
higher cost renders such use uneconomical. For structures of great mag-
nitude, where dead weight plays an import ant part, and for other situa-
tions where high strength is necessary, such steels may be desirable.”
The alloy steels most frequently used in such structures are silicon
steel ® and nickel steel.

- The physical properties of steel which are of primary concern to the
engineer engaged in the design of a steel structure are its strength in
tension, compression or shear, its elasticity, and its ductility. As noted
in Table 27, structural steel used in bridge and building construction has
a yield point strength in tension of not less than 33,000 pounds per
square inch. Within this unit-stress limit, the material has almost per-
fect elasticity, that is, the ability to regain its original form when the
stress is released. For unit stresses less than the yield point (propor-
tional limit), the material obeys Hooke’s law, and the ratio of unit stress
to corresponding unit strain (elongation in inches per inch) is constant.
This ratio measures the elasticity of the material or modulus of elasticity
and is denoted by the symbol E. The value of E for all types of steel
varies within relatively narrow limits and is usually taken at 29,500,000
pounds per square inch. Comparative stress-strain curves for several
types of steel and other metals are shown in Fig. 160. It will be noted
that, for unit stress beyond the proportional limit, the value of E has no
significance since the material no longer follows Hooke’s law and, when
stressed beyond the yield point it will retain a permanent deformation
or set. Compression and shear behavior are similar to tensile behavior
for stresses within the magnitude of the proportional limit in tension.
Ductility of the material used for structures is an important quality
since it measures the ability of the material to adjust itself to changes in
form, without rupture. Iocal stress concentrations which have a mag-
nitude beyond the elastic limit will cause the material to flow away

A.8.T.M., 1929; British Iron and Steel Institute, Report of the Corrosion Commit-
tee, First Report, 1931, Sccond Report, 1934; “Durability of Light Weight Steel
Construction,” J. H. Cissel, and W. E. Quinsey, University of Michigan, Engineering
Research Bulletin 30, 1942.

78ee “Structural Application of Steel and Light Weight Alloys, A Symposium,”
Transactions Am. Soc. C. E., 1937, p. 1179.

8 See American Society for Testing Materials Standards, A94-36.
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from such points of concentration, and with ductile material this may be

accomplished, to a limited degree, without destruction of the parts.
Fatigue strength is not as a rule important in structures such as build-

ings and bridges since maximum load conditions are not frequently
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Fia. 160. Comparative Stress-Strain Curves.
(From “Modern Stress Theories,”” by A. V. Karpov, Trans. Am. Soc, Civ. Eng., 1937, p. 1192.)

repeated. Fatigue properties must of course be considered when a
structural element must resist frequent applications of loadings as in
machinery or movable structures.

Working stresses are determined from a consideration of the elastic
limit and ultimate strength of the material, the refinements possible in
the caleulation of stresses, and the probability of load combinations pro-
ducing maximum effects, with allowance of reasonable margins or fac-
tors of safety to provide for errors in assumptions, calculations, and
construction.
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99 Rolled-Steel Structural Sections

For use in construction, structural steel is rolled into shapes, plates,
and bars. Shapes are made by passing steel ingots through rolls which
squeeze the metal into the desired form. Shapes most commonly used
in structures, illustrated in Fig. 161, are called wide-flange sections,
I-beams, channels, angles, zees, tees, etc. The American Institute of
Steel Construction publishes a manual ? containing data on steel shapes

e
I
[
e
e > -

L4
(a) Wide Flange Sections
Designated thus: (Depth) W (wt. per ft)
Typical: 24 W 110

- o — ——

(b) Standard Beams (c) Standard Channels
Designated thus: (Depth) I (wt. per ft) Designated thus: (Depth) Ls (wt. per ft.)
Typical: 12145 Typical: 1035

Note: Dotted lines indicate

methods of spreading
rolls to increase the area
(d) Angles and weight of sections.
Designated thus:
(Long Leg) X (Short Leg) % (Thickness)
Typical: 6 X4 X %
or: 4xX4x%,

Fia. 161. Typical Rolled-Steel Sections.

and plates indispensable to the user of such steel products. This manual
also contains other data and information of value to engineers. Tables
28 to 34 inclusive have been extracted from this manual with the per-
mission of the Institute.

Wide-flange sections, American standard I-beams, and American
standard channels are the section types most commonly employed for
ordinary beam construction. Other shapes may be used for special pur-
poses. For example, angles may be employed as lintels over windows
or door openings, and zees may be used for purlins or girts in light steel
framing,

9 Obtainable from the American Institute of Steel Construction at a nominal
charge.
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100 Structural-Steel Tension Members

Steel may be fashioned into a variety of forms for use in carrying
tensile stress. The nature and purpose of the construction and require-
‘ments to be met in fastening the member to adjacent construction will
determine the most suitable form. To avoid undesirable stress concen-
trations and to insure uniform stress distribution over the sections of a
tension member, it is preferable to provide as compact a section as pos-
sible. Since the strength is controlled by the area of the net section, the
design of the connection will generally determine the arrangement and
dimensions of the member.

The simplest form of tension member is a round or square bar. When
threaded at the ends to provide attachment to adjacent construction,
the area of cross section at the root of the thread constitutes the net
area available to resist tension, and the ends are sometimes upset so
that the area at the root of the thread is the same as that of the main

_body of the bar. Standard clevises are available to fit the threaded end
of the bar and thus transfer the force to pins passing through the holes
provided in the clevis. Loop rods are formed by bending and forging
one end into a loop which can engage a pin connection. Bars to be used
with a clevis and also loop rods are usually made in two sections with a
turnbuckle which may be adjusted to tighten the member after it is in
place. Standard dimensions and details of plain and upset screw ends,
clevises, and loop rods may he obtained from the ‘“Steel Manual.”
Members of this type are most frequently used in temporary construc-
tion, for bracing and tie rods, and in small roof trusses.

Eye-bars are relatively thick plates with heads forged on each end
and the heads drilled to provide for a pin connection. They are prin-
cipally used in pin-connected trusses of relatively large size. In large
work, eye-bars are frequently made of alloy steel or are specially heat-
treated to provide high strength. Standard dimensions for eye-bar
heads are given in the “Steel Manual.” ,

*Rolled-steel angles are frequently used for carrying tension stresses
in riveted trusses and similar construction. They may be used singly or
in pairs and are fastened at their ends by rivets or holts to gusset plates
which form a common connector for all members meeting at a joint.
When used in pairs, angles are usually fastened together by stitch rivets

fat intervals of 2 or 3 feet. In using angles for tension members, diffi-

“culty is encountered in providing a concentric connection and a uniform
distribution of stress over the entire cross section of the angle. Usually

" the angle is connected to the gusset plate by rivets in one leg only, thus
developing eccentricity and producing stress concentration in the
attached leg. For this reason, the American Railway Engineering
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Association specifications * for railway bridges require that, when
angles are connected on one side to a gusset plate, the effective section
shall be the net section of the connected leg plus cne-h~If the section of
the unconnected leg. Therefore, unequal leg angles with the longer leg
contacting the gusset plate are generally preferred.
~ Built-up sections consisting of plates and angles or other rolled sec-
tions may also be employed as tension members where such use is eco-

PR
—
N\ 2"
[IAN 4
—t- B
| AN | ——6X4X e 2"
: + Rivets ¥" ¢
vets
'"/2-. e ) 4
Chain ABC: Groswidth =6+ 4—1= 95 in.
Deduct — 3 holes @ %" = 263
Additions —
AB, g= (22 + 2a—"h) =4 } s?
- =043
S= 1 49
BC, g= 24 } <
_ = 0.22
S= 17 035
Total deduction 2.28
Net width 1.22in.
Chain AD: Grosswidth = 64 4—1; = 95
Deduct 2 holes @ 73 = 1.78
Additions — none —
Net width 7.75

Area Net Section. [Chain ABC) = 7.22 X /2 = 3.61 sq. in.

Fig. 162. Determination of Net Section.

nomic or otherwise desirable. In the design of such members, considera-
tion must be given to the reduction in section by the holes required for
the rivets used to fasten the parts together. Standard rules for deter-
mining the net section of a riveted tension member are as follows:

(@) The net section of a built-up riveted tension member is obtained

by adding the net section of the parts composing the member.

least net width.

\

10 A R.E.A. Specifications (1944) for Steel Railway Bridges.

(b) The net section of any part is the product of its thickness and its

(¢) The gross width of a part is the width of a right section. The net
width is obtained from the gross width by deducting the sum of diame-



246 STEEL TENSION MEMBERS, COLUMNS, BEAMS, AND GIRDERS

ters of all rivet holes in any chain across the section and adding for
. each gage space in such chain the quantity
S2
— (147)
19
where S = pitch of any two successive holes in the chain.
g = gage of the same holes.

(d) The gross width of an angle is the sum of the widths of the legs

- less the thickness. For holes in opposite legs, the gage is considered to

be the sum of the gages from the back of the angle less the thickness.

A typical example of the application of the foregoing rules is given in
Fig. 162.

101 Steel Columns—Safe Axial Loading
A member js said to be axially loaded when the resultant of the applied
external loading acts in the direction of the longitudinal axis of the
member and passes through the centroid of all sections of the member.
Under such an ideal condition, no bending could occur on any section
and all parts would be subject to purely compressive stress. It is, how-
ever, physically impossible to apply external loading with such theoret-
ical accuracy; moreover, the variations in straightness of the elements of
the column, inaccuracies in cross-sectional dimensions, variation in the
material and other factors will produce unintentional eccentricities with
the result that bending-moments will actually develop, and the member
will deflect accordingly. If unbraced against lateral deflection, the
column must resist the resultant tendency to deflect through the develop-
ment of internal resisting stresses which will combine with the axial
stresses. For relatively short heavy sections, the magnitude of such
deflection as may be induced by bending is relatively small, and the
strength of the column will be limited by the compressive resistance or
crushing strength of the material. For extremely long slender columns
which have small resistance to bending, the lack of stiffness may per-
mit comparatively large lateral deflections with correspondingly high
flexural stresses so that the ultimate failure of the column would be the
result of flexural action instead of crushing of the material. Between
these two extremes lies a range of conditions wherein failure may be due
to a combination of crushing and flexural action and the determination of
safe load requires an accurate appraisal of the probable magnitudes of
these actions.
In accordance with the foregoing conception of column behavior and
{! to provide a convenient classification for column analysis and design,
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columns are classified in three groups, short columns, intermediate col-
umns, and long columns. Short columns include those whose propor-
tions are such that their load capacity is dependent solely upon the
crushing resistance of the material. Intermediate columns are those
whose safe capacity depends upon a combination of erushing and bend-
ing resistance. Long columns are those whosc capacity depends almost
entirely upon their resistance to bending.

The comparative stiffness of a ~olumn is measured by its slenderness
ratio, which for steel columns is defined as the ratio of the unsupported
length to the radius of gyration of the column section; hence

L/r = slenderness ratio

where L = unsupported length of column or length over which bending
: must be resisted by the column section.
r = radius of gyration of cross section = 4/I/4.
I = moment of inertia of cross section.
A = area of cross section.

In computing the value of L/r, such axis of the cross section is chosen
as will produce the maximum value of this ratio and r is therefore usually
the least radius of gyration of the section. Approximate limiting values
of the slenderness ratio which define the three classes of columns are as
follows:

Short columns L/r =0to40
Intermediate columns L/r = 40 to 170
Long columns L/r = greater than 170

The axial load which will produce failure of a long column is expressed
by the Euler " formula as follows:

Columns with pin ends P=fA= EA (148)
(L/r)?
o 1r?EA

Columns with fixedends P =fA4 = _(L—/52— (149)

where A = area of cross section.
f = average unit stress on section.
E = modulus of elasticity.
L/r = slenderness ratio.

It should be noted that the Euler formula is applicable only to stresses
within the elastic limit of the material. Therefore, since the elastic

1 For derivation, sce any standard text on strength of materials.
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limit stress and modulus of elasticity of structural steel are about 33,000
and 29,000,000 pounds per square inch, respectively, Equation 148 is
not applicable to steel sections whose L/r ratio is less than 93 since, for
smaller values, a breaking unit stress greater than the elastic limit would
be indicated. The Euler formula takes no account of the crushing
strength of the material and will therefore give inaccurate values of the
breaking strength of the column when L/r is less than a value of about
170. When used for columns having an L/r greater than about 170,
tests indicate that the Euler formula accurately determines the break-
ing strength. Safe working strengths for long columns can therefore be
obtained by dividing the value of f as given by the Euler formula by a
suitable factor of safety, usually not less than 2.

The theoretical expression or formula which at present appears to best
represent the behavior of columns in the intermediate and short classifica-
tions is the so-called secant formula,?

T (A

where P = load on column (parallel to longitudinal axis of column).

A = area of cross section.

e = eccentricity of load P from the neutral axis of the column
section at the ends of the column.

¢ = distance from neutral axis of section to extreme fiber.

r = radius of gyration of column section.

L = unsupported length of column.

E = modulus of elasticity of material.

f = maximum compressive unit stress developed on the section.

In the derivation of Equation 150, the load P is assumed to have a small,
even if unintended, eccentricity, and the final unit stress on the extreme
fiber is computed as the sum of the average direct stress P/A and the
stress due to a bending-moment P(e + A), where A is the resultant final
deflection of the column. Equation 150 expresses the sum of these unit
stresses. It should also be noted that the term L/2r\/(P/EA) is ex-
pressed int radians (one radian = 57.2958 degrees). The term ec/7% is a
constant for a given cross section and can be used as a measure of the
actual or unintentional eccentricity of axial loading, crookedness of the

column, and other conditions which may promote lateral deflection. In

12 For complete derivation, the reader is referred to current textbooks on strength
of materials; also Proceedings Am. Soc. C. E., February, 1929, p. 416; also Transac-
tions Am. Soc. C. E., 1936, pp. 422-500, for discussions of column theories.
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the Final Report of the Steel Column Research Committee of the Amer-
ican Society of Civil Engineers,® a value of ec/r* = 0.25 is recommended
as a rational allowance for this term. This committee also proposed the
following general formula for the working stress to be used for all classes
of steel columns:

S,
m
p= T (151)
L+ : pm]
asec| —Af[—
2r VE
where p = working stress.
8, = yield point of material.
m = factor of safety.

a = eccentric ratio assumed.
I' = assumed free length of column.

In addition to recommending that the eccentric ratio be taken equal to
0.25, the committee proposed that for riveted connected members, as in
the case of compression members in riveted trusses, the value of I’ be
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Fic. 163. Comparison of Secant and Parabolic Formulas for —:; = 0.25.

(From Final Report of Special Committee on Steel Column Recsearch, Trans. 4. S. C. E.,
933, p. 1456.)

taken as three-fourths the full length of member. In view of objections
to the secant formula on the grounds of its complexity for practical use,
the studies of the committee showed that a formula of the parabolic
type gave practically the same values as the secant formula for all values

13 T'ransactions Am. Soc. C. E., 1933, pp. 1376-1462.
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of L/r up to 160 (Fig. 163). In view of this fact, the following form-
ulae were proposed:

Members with riveted ends p = 15,000 — }(L/r)? (152)
Members with pin ends p = 15,000 — 3(L/r)? (153)

These formulae provide a factor of safety of about 1.7 when results are
compared with those obtained from Equation 151 using S, = 32,000,

= 025, and ' = L.

The A.A.S.H.O. Specifications (1944) for highway bridges and the
A.R.E.A. Specifications (1944) for steel railway bridges require the use
of Equations 152 and 153 for designing compression members up to
values of L/r = 140. For larger values of L/r, the A.R.E.A. Specifica-
tions require the use of Equation 151 with the following values:

S, = 33,000 for structural steel
= 45,000 for silicon steel
= 50,000 for nickel steel
m = 1.76 for structural steel
= 1.80 for silicon steel
= 1.78 for nickel steel
a =025
U = %L for riveted ends
= %L for pin ends
E = 29,400,000

For practical use with columns of structural-grade steel, Equation 151
can be more conveniently arranged as follows:

_ 18,700 (154)
TRy
where K. = sec (0.007L/r.\/p)(in degrees) (155)

L = # total length for riveted ends.
= § total length for pin ends.
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The value of p can be obtained from Equation 155 by successive approx-
imations, and the chart given in Fig. 164 is useful in estimating values
of (3K) for substitutions in the formula. Note that, since p must not
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Fia. 164. Value of K in terms of L/r.

exceed 33,000/m = 18,700, the value of 1K must always be positive;
hence the formula can be used only when

L
0.007 = Vp < 90 (156)
;

The A.I.S.C. Specifications (1946) for steel buildings require the fol-
lowing formulae for determining the working stress on the gross section

of steel columns.
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For axially loaded columns
L/r not greater than 120  p = 17,000 — 0.485(L/r)> (157)

18,000
L/r greater than 120 p= (158)

1
14— — (L/r)?
+ 15000 &

Examples of computations to determine the safe load on a compres-
sion member are as follows:

Example 1
Determine the safe axial load on the following column:
Column section 10 X 10 wide-flange rolled section 60 Ib per ft.

Unsupported length 12 ft.
From Table 28, A = 17.66 sq in., least » = 2.57 in.

Lir=% _ 56 and (L/r)? = 3136
2.57
A.1.S.C. Specifications (Equation 157), safe p = 17,000 — (0.485 X 3136)
= 15,480 psi.

Safe axial load = 15,480 X 17.66 = 273,000 lb

Ezxample 2

A 4 X 4 X £ structural-steel angle is to be used as a column to carry axial
loading and will have an unsupported length of 10 ft, 6 in. Determine the safe
axial load in accordance with both the A.1.S.C. and A.R.E.A. Specifications.

Unsupported length = 10 ft 6 in. = 126 in.

Least r (from Table 33) = 0.79 in., 4 = 2.86 sq in.

L/r =160 and (L/r)? = 25,600
A.1S.C. Specifications:

Allowed unit stress (Equation 158) = —-2%052%)—0 = 7420 psi
14 2277
*+ 18,000

Safe axial load = 7420 X 2.86 = 21,200 Ib
A.R.E.A. Specifications:
L/r = 160 > 140 (use Equation 151 modified as shown by Equation 154)

Try p = 5000
From Fig. 164,
K =155
18790 — 7900

P= 23T
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Since the computed value of p does not agree with the assumed value, further
trials must be made.

Try p = 5500,
K -&
p= 18’—79—9 = 6200
3
Try p = 5700,
K=9
18,700
p= ‘3—2—5 = 5750

Therefore, since the assumed and computed values of p are in substantial
agreement, the allowable p = 5750 psi and safe axial load = 5750 X 2.86 =
16,500 Ib.

102 Shear in Built-Up Steel Columns

Built-up columns are composed of shapes and plates so fastened
together that the composite section may be considered to act as a unit.
Unless the fastening is adequate, the strength of the column will be
merely the sum of the column strengths of the individual parts used in
its make-up. The bending or buckling of the column under axial loading
induces shearing forces * which tend to separate the elements making up
the section. For solid column sections, such as H-beams, these shear
stresses are of neglibile magnitude, but built-up columns must be de-
signed to resist such stresses.
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Fi1a. 165. Lacing for Steel Columns.

The A.L.S.C. Specifications (1946) for steel buildings require lacing
bars to be placed on the open sides of all compression members with te
or batten plates at each end of the member and at intermediate points if
lacing is interrupted (Fig. 165). The spacing of lacing bars should be

4 For a more complete discussion, see “Rational Design of Steel Columns,” by
Young, Transactions Am. Soc. C. E., 1936, p. 440.



254 STEEL TENSION MEMBERS, COLUMNS, BEAMS, AND GIRDERS

such that the L/r ratio of the flange between connections is not more
than three-fourths that of the member as a whole, and the inclination
to the axis of the member should be not less than 45 degrees for double
lacing and 60 degrees for single lacing. These specifications require
further that the lacing be proportioned to resist a shearing stress, normal
to the axis of the member, equal to 2 per cent of the total compressive
stress in the member. The lacing acts as a truss in resisting this total
shear, and the force in an individual bar is therefore given by the follow-
ing expression:

= %[0.021) sec (90 — a)] (159)

where F' = force in lacing bar (compression).
P = axial column load.
a = inclination of bar to axis of member.
N = number of planes of lacing.

The bar is designed as a column to resist the axial force F, and the L/r of
the bar is limited to a maximum of 140 for single lacing and 200 for
double lacing. For further details, the reader should consult the speci-
fications referred to.

The A.R.E.A. Specifications (1944) for steel railway bridges require
that the spacing be such that the slenderness ratio of the flange between
connections shall not be more than 40 or more than two-thirds the slen-
derness ratio of the whole member. The angle of inclination of lacing
bars to the axis of the member should be approximately 60 degrees for
single lacing and 45 degrees for double lacing. The shearing force normal
to the axis of the member and in the plane of the lacing is determined
from the following formula:

P[ 100 IL@:]

= — 1
100 L/r+10+100 (160)

This shear is assumed to be equally divided among all parallel planes in
which there are shear resisting elements whether continuous plates or
lacing and the force in individual lacing bars computed as for the diago-
nal of a parallel chord truss. Further details of construction may be
obtained by reference to the specifications.

103 Selection and Design of Steel Columns

In common with previously discussed problems of structural design,
columns are designed by successive approximations. The load delivered
to the top of the column is estimated from the previously established
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design of the construction to he supported, and the estimated weight of
the column itself is generally added to this load. The choice of type of
section to be used is a matter of judgment with due consideration for the
details of connections to adjaceui or supported construction and econ-
omy of material and labor in the construction of the column itself. Since
the buckling resistance is a function of the least radius of gyration, it
follows that an ideal column section would be one which had equal radii
of gyration with respect to all axes through the centroid of the section,
and a hollow cylmdrlcal section such as g pipe would therefore furnish
such an ideal section, The difficulty of making connections to such a
member, however, usually prevents its use. A hollow square section
could be regarded as an approximation of the cylinder and, while a
section of this type might present difficulties in fabrication, it will be
observed that most column seétions tend toward such a form. Typical
arrangements used for compression members are shown in Fig. 166.

T JIL JT
— e | B T | S

(a) H Section. () Chanels with  {c) Bridge Chord  (d) Four

Cover Plates or Section. Angles with
Lattice Lattice or Web
Plate

Fi1a. 166. Typical Column Sections.

Several such arrangements are generally available for use in any par-
ticular situation, and the designer should choose the one which best
meets the requirement of overall economy. Usually alternate designs are
prepared and their advantages compared before a final selection is made.

Tables such as those given in the “Steel Manual” are necessary for
the selection of column sections of standard types. For column sections
built-up of plates and shapes, the design is started by assuming the
probable unit stress which will be allowed on the final column. Then
a tentative required area is determined and a section is arranged to fur-
nish this area. The least radius of gyration (maximum L/r) of this sec-
tion determines the allowed working stress and with this working stress,
the required area is again computed and the section revised accordingly.
This process is repeated until the section and allowable unit stress are
in complete agreement.

In the typical design problem solved in Fig. 167 two sections have
been selected which will meet the given requirements. Type A weighs
100 pounds per linear foot, whereas the weight of Type B is computed
to be 93.94 pounds per linear foot. Thus about 6 pounds per foot or
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90 pounds for each column could be saved by using Type B. It is prob-
able, however, that this saving would be more than offset by the addi-
tional cost of fabricating column Type B.

DESIGN OF STRUCTURAL STEEL COLUMN

Axial Column Load = 400,000 Ib.

Unsupported Length = 15 ft.

Column must not exceed 11" X 11" in overall dimensions and
because of connections to other construction either an H
Section or built up plate and angle section must be selected.

Specification requirements:

% must not exceed 120

Working stress = 17000 — 0.485 (1,4)’

Two types will be designed os follows:
TYPE A — Wide Flange Beam — H Section
Assume P = 15000 #,/C"
Reqd. A = 400000 _ 54 7
15000

10 W 100 (Size 10 X 10) A= 29.43, 7=24§

L _15x 12 _ 8
TETag —
P = 17000 — [.485 X (68F] = 14760
— 400000 _
Reqd. 4 = 14760 = 271 <2943
TYPE B —  Plate and Angle Section —

Triol Section 3y Section—2 Cov. Ple. 11 X % Area 825

7 4LsS5X3Ia Xl 16.00
l I | Web9 X % 3.38
il = A= 27.63
N f O—H—0
=« Moment of Inertia —
L_, ais © - O A Q-Q
Cov. Pis., 4.12 X 494 = 101 2 % 41.6 = 83.2
" Angles |4]4.1 4+ (4 X 3.847] = 252|4{10 - (4 X 1.85%] = 94.8
Web =_23 omit, —
376 178
Least 7, Axis 2 - 2 = VM” =254
L _1sx12 _
F=Sat=n

P = 17000 — [.485 X (71F] = 14550

Reqd. 4=3000 = 275 <2703

Fia. 167. Design of Structural Steel Column,

104 Eccentric Loads—Bending and Direct Stress

When columns are subject to a known eccentricity of loading, the
stress on the extreme fiber can be computed from the secant formula
(Equation 150), which is derived for such a condition of loading. It

L |P
should be noted that the term [e_c sec (— —)] represents the bend-
r? 2r YEA

ing stress which is, of course, tension on the side opposite the eccentricity
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5and compression on the other side. The allowable working stress for
»such columns should be determined from Equation 151, using the fol-
| lowing value for a:

U

'+ 0.0017/r (161)

T2

When columns are subjected to transverse loading or bending-mo-
ments, including those produced by a known eccentricity of axial load,

S ——
NGO — 2
o8 \\\\\: ? \\\43%
07 NN e \I\\
&g \\‘ N RN
0 06 Py P
e N
‘%o‘s \\\\\\:\‘\\solo ™~
3 o SONNEASE
§ 03 \\\\\\‘\%\ \
~ 02 \%x,%\/,%xi% \\
o1 \\\\\\ \\
% e 70 8 % wt:l Ll/20 A\ 14} AN 160 180
alue of 14
Fia. 168.

Equation 150 may be expressed in the following form by substituting M
for Pe, where M is the bending-moment on a section at the middle of the
column length due to all external forces including eccentricity of axial

loading,.
P Pec 1 [|P1?
J=|—%—sec- —]
A A2 2 VEI
P M 1 [PL?
= — —sec - \/—
A I 2 VEI
PoMe (162)
" A KI
where

K (28 65 \}PLZ) (163)
cos | 28. T,

(units for term in parentheses are degrees)
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Values of K may be taken from Fig. 168. It should be noted that K
= unity when L/r = 0; hence for relatively short stiff members this

factor can be omitted. Equation 162 is also sometimes written in
the form

p b M (164)
A PL?
I+ ——
CE

where C = a constant based upon the condition of end restraint and
nature of loading.

97000%
T |
- 4 - —X ‘ I | | Areo 9.70"
L Column Asis L ' :, x= n;::’
18] @ : ‘_ﬂt X X X
% l' Section X X
i BM. = (97000 X 4) _(m‘_u_ﬂ)
PR Hinged = 244000"#
T L_16X12_ g
T 349
° %: ",—i——.;’o = 10000
Using Eq. 162

From Chort (Fig. 168) K = 0.88
Me _ 2444000 X 4 _ o400
KI — 88 x 1119
= 10000 4 9400 = 19400 #/0" [left foce)
f = 10000 — 9400 = 600 #/C" [right face)
Using Eq. 164
c=1n
PL _ 97000 X i92® _ o
12ZE 12 X 29400000

PL: _ — 1085 =
1=t =119 — 105 = 1074

M _ 244000 X 4
7- PL? 107.4

J = 10000 4 9050 = 19050% /0" (left foce)
[ = 10000 — 9050 = 950#/0" [right face)

*F1a. 169. Structural Steel Column—Eccentric Load.

For a concentrated transverse load acting at the middle of the column
length

Column with hinged ends C = 12
Column with fixed ends C = 24
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For a uniform transverse load over the length of the column

Column with hinged ends C = 10
Column with fived cnds C =32

The + sign is applied to the second term in Equations 162 and 164 to
determine the maximum compressive stress in the extreme fiber on one

100000# /s Plate Yo' Platey . o 1000%0*
= ] _=r
. s "
H.é.::a 2L 20); X % I Hinged End So€ticn

?;: e—l7l+ 25 = 2.03"
- - —\c g. of Angles

Area of 243 = 2 X 8.44 = 16.88
of 2Ls = 2 X 282 = 56.4
WongM of 2L = 2 X 28.7 = 57.4% ft.

Bending Moment {at center of Length)

Direct Stress 100000 X 2.03 = - 203000"#
Weight of £s 57.4 X 20°X Yy X 12 = + 34500
Totel M = — 168500
Use Equation 164 C = 10
PLT _ 100000 X 2807 _ o
CE ~ 10 X 29500000 —
' — 100000 168500 X .78
Top fiber [ = —Sos 554 + 195

= 5930 + 3950 = 8880%,.." {tension)

" __ _100000 168500 X 4.22
Bottom fiber f= 1588~ — 564 & 195

= 5930 — 9400 = 3470% /C" (compression)

F16. 170. Steel Angles in Tension—Bending and Direct Stress.

side of the section, and the — sign is used to determine the unit stress
on the opposite face of the column. The — sign applies to the term
PL?/CE in Equation 164 when P is a compressive force. When Equa-
tion 164 is used for tension members subject to bending and direct stress,
the signs noted above are reversed.

Typical solutions of problems in bending and direct stress are shown
in Figs. 169 and 170.

<106 Rolled-Steel Beams—Safe Loads

The load-carrying capacity of a rolled-steel beam is determined by its
ability to resist bending-moment, shear, crippling of the web, and deflec-
tion. Unit stresses developed in all parts of the beam must not exceed
commonly accepted safe working values. Bending-moments and shears
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are computed in the usual manner, based upon the given loading with
proper allowance for the weight of the beam. Tables in the “Steel
Manual” (see Appendix) give the physical dimensions and other data
used in strength computations.

The stress on the extreme fiber due to bending is obtained from the
formula for homogeneous beams:

s Me M
18
where M = bending-moment on a given section.
f = unit stress at extreme fiber.
¢ = distance from neutral axis to f.
d = overall depth of beam.
I = moment of inertia of cross section (given in tables).
S = section modulus (given in tables).

When the section is constant over the entire span, the unit stress is com-
puted from the greatest bending-moment. When holes are punched in
the flanges or web for connections to adjacent construction or where the
section may be altered for any purpose, consideration must be given to a
possible critical strength at such points. With respect to the necessary
deductions for rivet holes, the American Institute of Steel Construction
“Specifications for the Design, Fabrication, and Erection of Structural
Steel for Buildings,” 1946, provides as follows:

Riveted and welded plate girders, cover plated beams and rolled beams shall in
general be proportioned by the moment of inertia of the gross section. No deduc-
tion shall be made for standard shop or field rivet holes in cither flange; except that
in special cases where the reduction of the area of either flange by such rivet holes

. . exceeds 159, of the gross flange area, the excess shall be deducted. If such
members contain other holes, as for bolts, pins, countersunk rivets, or plug or slot-
welds, the full deduction for such holes shall be made. The deductions thus appli-
cable to either flange shall be made also for the opposite flange if the corresponding
holes are there present.

The A.A.8.H.O. Specifications (1944) for the design and construction
of steel railway bridges provide that plate girders, I-beams, and other
members subject to bending that produces tension on one face shall be
proportioned by the moment-of-inertia method. The neutral axis is
taken along the center of gravity of the gross section; tensile stress is
computed from the moment of inertia of the entire net section; and the
compressive stress is computed from the moment of inertia of the entire
gross section.
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For design of building construction, the A.I.S.C. Specifications (1946)
permit unit stresses on rolled I-beams as follows:

Tension on extreme fiber 20,000 psi
Compression on extreme fiber
with Ld/bt not in excess of 600 20,000 psi
. 2,000, .
with Ld/bt in excess of 600 1 ;)g(/)b(:@ psi (165)

L is the unsupported length and d the depth of the member; b is the
width and ¢ the thickness of its compression flange; all are in inches,
except that L shall be taken as twice the length of the compression
flange of a cantilever beam not fully stayed at its outer end against
translation or rotation.

For railway bridges, the A.R.E.A. Specifications (1944) permit the
following unit stresses on rolled I-beams:

Tension on extreme fiber 18,000 psi
Compression on extreme fiber
when L/b is less than 40 18,000 — 5(L/b)? (166)

L is the unsupported length, and b is the width of the compression
flange.
For highway bridges, the A.A.S.H.Q. Specifications (1944) provide
the same allowable stresses as noted above for railway bridges.
«Vertical shear is seldom ecritical in rolled-beam sections except for
very short spans with heavy loading. Even for such sections, the chief
danger is the probability of the web

buckling (Fig. 171a) rather than of the —ﬁ—— —_
material failing in shear. The intensity 'y E
of shear stress at any point in the depth | ¢ A — v —
may be determined from the general e
equation for homogeneous beams (see —L

Equation 131), and a typical distribu- K

tion for an I-section is shown at Fig. (@) (®)

. 171,
171b. It is seen that the flange areas Fia. 17

contribute little to the total shear resistance and that the intensity of
stress is fairly uniform over the depth of the web proper. For practical
purposes, therefore,

v=— (167
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where v = average intensity of vertical shear stress.
V = total shear on section.
t = web thickness.
h = depth of web proper = d — 2k.
d = overall depth of beam.
k = distance from outer face of flange, to toe of fillet.

For American Standard I-beams, the distance k is approximately
equal to 0.56 4 0.0625 (d — 3). For wide flange beams the distance k is
approximately equal to twice the flange thickness. Actual values of
this dimension are given in the “Steel Manual” for all beam and channel
sections.

In building construction, the A.I.S.C. Specifications (1946) require
that the average shear on the gross section of the webs of rolled I-beams
and plate girders, as given by Equation 167, be not greater than 13,000
pounds per square inch. For steel railway and highway bridges, the
AR.E.A. and the A.A.S.H.O. Specifications (1944) each limit this value
to 11,000 pounds per square inch.

Except for unusual loading conditions, stiffeners are not required on
rolled I-beams. When stiffeners are needed, the design is made in accord-
ance with requirements specified for plate girders (see Article 108).

Crippling of the web due to stress concentration under concentrated
loads and at the supports is avoided either by reinforcing the web with
stiffeners or by distributing such loads or reactions over a sufficient
length of beam to reduce the stress intensity to safe values. A concen-
trated load on the top flange, extending over a length of beam a (Fig.
172), is assumed to be uniformly distributed over an area t(a; + 2k)

Fia. 172,

at the junction of the flange and web. Similarly, the reaction applied
over a length a is assumed to be uniformly distributed over an area
t(a + k). It is recommended that the unit stress on these areas be
limited to a value not in excess of 24,000 pounds per square inch, and,
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based on such working stress, the required length of distribution may be
computed as follows:

_ R
s —k 168
24,000¢ (168)
s — % 169
= 91000t (169)

where R = reaction in pounds.
P = concentrated load in pounds. .
a = required length of bearing at support in inches.
a; = required length of distribution of concentrated load in inches.
t = thickness of web in inches.
k = distance from outer face of flange to toe of fillet in inches.

The deflection of a rolled beam is computed in the usual manner for
beams of homogeneous material. The limit of permissible deflection
depends upon the nature and use of the construction and is determined
by judgment and experience. For beams carrying plastered ceilings,
the customary deflection limit is 544 of the span of the beam.

Typical computations for beams in an existing floor construction are
shown in Fig. 173.

106 Design of Rolled-Beam Construction—Beam Selection

- Since the shape and dimensions of the beam cross section is deter-
mined by the manufacturer, the design of a rolled-steel beam is a matter
of selecting, from those available, the section which will most econom-
ically serve the purpose at hand. Steel is usually purchased by weight,
and therefore the lightest-weight section that will safely carry the load
will generally be selected. Consideration must be given to the avail-
ability of sections and lengths in dealers’ yards or warehouses, as the
selection of sections which are not carried in stock and which are infre-
quently rolled may lead to delay and thus offset any saving due to reduc-
tion in weight.

Regardless of theoretical strength for building construction it is custom-
ary to specify a minimum thickness of } inch; for highway bridges
1% inch; and for railway bridges § inch.

The design starts with an assumed layout or arrangement of beams.
This is subject to revision as the design proceeds, and frequently com-
plete alternate arrangements are designed and compared on the basis of
probable cost. Assuming a given arrangement, the weight of the con-
struction is estimated, proper allowance being made for the probable
weight of the beams that will be selected. Bending-moments and shears
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Floor Construction
I— 3* Plank floor on 2"x10" joists
which are 16" apart and rest on
< the top flange of the 12* beams.
12w 27 Rk Beams have a 4" bearing on
the concrete wall and are
connected to the web of the
girder by standard connection
J —) angles.
Live Load
The floor carries a uniformly

- distributed load of 100 # /03*

t Columns Check beams for compliance with A.LS.C.
Specification (1946) and for deflection not
greater than L/360

Floor Load Beom Load
Plank flooring 7.5#/0 From joists, 110.5 x 10 = 1105#/ lin. f&.
Joists 30 Weight of beam 27
Live Lood 100.0 Total 11324/ lin. .
Total 1105 #/0°

12W 27

=
100

Girder ~».]
12w27

AN
I
IO‘-OJ
>

Concrete Woll

\\N

m
160"

Dimensions and Properties of 12 W-27
S =341 1=204. d=nNn
+ Flanges, b=65in., t=04
Web, 1=0.24in, h=10.

95 in.
375 in., k=0.8125in.

Bending Stresses:

Allowable Unit Stress:
Tension, f = 20,000# /L.
Compression, neglecting any loteral suppon by joists,
Unsupported length of flange == 192iin
Ld_192x1195 _
bt 65204 0827600

Hence, from Equation 165, f = 12000000 . 13 6004/

Actuol unit stress:

Span of beam = 16.12 k.
Moximum B.M. = 1132 x (16.12)' x %4 x 12 = 441,200 in. lb,

£ =412 - 129408/ 0"

Shear Stress:
Allowable unit stress:
Slendernessratio of web, & = 10373 _ 43 70
Allowable v = 13,000#/0"
Actual average web shear,
9120
- 624 « 10375 ~ 660#/0"
Bearing on Wall:

Required length = [zm]—osl = 2.39in.
Actual length = 4in.
Deflection:

D _ 5x1132x(192)
L ‘2!3“!29,5&”!20‘.‘ 69‘

Fia. 173. Typical Computations for Steel Beams Supporting Floor.
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are then computed for the total load, these being subject to revision as
design computations produce more accurate data.

The tentative beam section is determined by computing the required
section modulus, S = M/f. Some specifications and building codes
limit the permissible depth of beam in terms of the span length. Thus
the A.A.S.H.O. Specifications (1944) for highway bridges require that
the depth of rolled beams be not less than one-twenty-fifth of the span.
(For continuous beams, the span is considered as the distance between

*‘ﬂu'ig

i ] .'l;}m

Typical Steel Framing.

dead-load points of contraflexure.) The A.R.E.A. Specifications (1944)
for steel railway bridges require that the depth of rolled-steel beams be
not less than one-fifteenth of the span. Many building code ordinances
of cities require that rolled beams have a depth of not less than one-
twentieth of the span when used in floor construction and one-fortieth
when used in roofs. Such limitations on the depth ratio are intended
as a means of limiting the deflection and providing reasonable stiffness
in the construction. The allowable unit stress in compression is deter-
mined from Equation 165 or 166 and will control the design for flexure.
A tentative value of f is selected, the corresponding value of the section
modulus is computed, and the beam or beams which will furnish this
section modulus noted. The permissible compressive unit stress is then
determined for the beam selected, with the lateral support of the com-
pression flange, being taken into consideration, and a revised value of
the section modulus is obtained. This process is repeated, if necessary,
until a satisfactory section is obtained. The actual weight of the beam
finally selected is then compared with the weight allowance previously



266 STEEL TENSION MEMBERS, COLUMNS, BEAMS, AND GIRDERS

{ 12w 27 I 12w 27 ]

Girder Girder—s
Floor Construction :
2w | 12w or (i i73)
Girder Live Load .
See (Fig. 173)
12WF27 3 12W27 _ ification:
—-{—-———-.._. Use ALS.C.(1946)
I 16'.0" 160"

T
Spon of Girder = 20,0 f1. (assume as simply supported)
Floor Lood = 110.5 #/0" (Fig. 173)
Beom Lood = 1,132#/0" (Fig. 173)
Girder
Concentrated load at middle of span = 2x 1132x 16 x %
=18,1121b.
Uniform load: weight of girder estimated as 40 # / fin. ft.
Maximum bending-moment:
Concentrated load, B.M. = 18,112x20 x % x 12 = 1,086,720" #
Uniform load, BM =40x20x20x% x12= _ 24,000* #
Total B.M. = 1,110,720 #
Required Section:
Assume allowable unit stress at 20,000 # /0%

Required section modulus = Lz%%a?g = 55.6
From Table, the following vections might be considered.

16 W3 w=236#/
W43 PERT]
12W45 w=45#/

Since there are no stated limitations on depth, the
lightest section, which is the 16 W 36, will be selected
for further triol. Hence, for this beam,

Flonge width, b = 6.992in.,

Flonge thickness, t = 0.428 in.,

Actuol height, d = 15.85 in.
Unsupported length of compression flange = 120 in.
Ld_ 120x1585 _ o0

bt 699 x0.428
pnd, since this exceeds 600, the allowoble unit siress
on the extreme fiber of the compression flange must
be obtained from Equotion 165.

Alowable f = 12900000 - 1g 4704/ -

) . 110720 _ .
Required S ~ 18.670 58.9 > 5635
ond the 16 W-36 beam is unsatisfactory.

The next hghtest beam was the 14 W-43 which
will now be selected for trial,

Flongewidth, b= 80 in,
flonge thickness, ¢t = 0.528 .,
Actual depth,

d —13.68 in.
Ld. 120x1368_ .
B~ 80x 0528 ~ 389 <600
and hence, ollowable / = 20,000 # / 0" os originally ossumed.
Since the actual weight per ft. is only 3 Ib more than
that assumed for computing the bending-moment,
no change in the computed volue need be mode.
For the 14 W 43 beam,
t = wab thickness -~ 0.308 in.
h = clear depth between flanges = 11,375 in.,
(from Stee! Construction Manual)
f— : Jol.':%'ls— = 36 hence no web stiffeners are required.
Maximum end shear = % [18,112 + (43 x 20)) = 18,972 b,
Averoge shear siress on gross section of web,
=18972 _ _
= {1375 » 0308 = 34054/ 0"
Allowoble v = 13,000#/ 0"
DEFLECTION: (neglect deflection due to weight of beam as negligible)
1=429in
18112 x (240)°
D= %55 429 x (107

L _ "
= - 0667 In.

Fia. 174. Typical Rolled-Steel-Beam Design.

= 0.412in.
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made, and, if necessary, the entire computation is revised to accord
with these later data. The result of these computations is the selection
of a section which will have the requisite resisting-moment. This sec-
tion is then checked for shear, crippling of the web, and deflection, and
if inadequate in any of these particulars a different section is chosen and
previous computations repeated.

A typical example of beam selection is given in Fig. 174. With ref-
erence to this design, it should he noted that the wide-flange section
finally chosen is the lightest available section of adequate strength. Web
crippling is not a critical matter here since the concentrated load is
applied through standard connection angles (see “Steel Manual”) to
the web of the girder, and the girder reaction is delivered to the column
through similar standard connection angles. These connection angles
will act as stiffeners and reinforce the web of the girder against buckling.
There will be no concentration of stress on a horizontal section at the
toe of the fillet joint, the flange and web. Should the girder rest on a
bearing wall, then the necessary minimum length of bearing would be
computed from Equation 168.

107 Rolled-Steel Beams with Flange Plates

The resisting moment of a rolled-steel beam is sometimes supple-
mented by plates riveted or welded to the flanges of the beam as in
Fig. 175. Thus, if the clearance limits the beam depth or if additional

F16.175. Rolled-Stecl Beam with Flange Plates.

flange width is needed to support other construction, this procedure
affords a possible solution. The analysis of such a beam can best be
discussed through the medium of numerical examples.

Ezample 1

Given an American Standard 12 I 31.8 which is reinforced by flange plates
8 X } riveted to the top and bottom flanges as shown in Fig. 175a. The beam
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is simply supported on a span of 15 ft, and the compression flange is braced
against lateral movement at the supports only. The rivets fastening the plates
to the beam are $-in. rivets in pairs spaced at 6-in. intervals.

Determine the safe total uniformly distributed load that this beam may carry,
according to the A.I.S.C. Specifications (1946) based upon the resisting moment
of the section.

Gross area of section:
2 Plates, 8 X }
I-beam

8.00 sq in.
9.26

17.26 sq in.

From tables given in the “Steel Construction Manual,” the depth of web between
fillets is 9.75 in., and its thickness is 0.35 in. Hence the web area is approxi-

mately
0.35 X 9.75 = 3.41 gq in.

Gross Area of each flange = 17.26 2_ 341 = 6.98 sq in.

The length of grip (see Fig. 176) for rivets connecting the plates to the flanges
is } in. plus the plate thickness. For 2-in. rivets the diameter of holes to be

¢ %~ PRivets at 6 cts. in each line
/3 . ”x 15 Plate
L |

X-1- PG — — — x
. Rivet Grip= %" + %" = 1"
o

Neutral Axis Symmetrical about ¢

Fia. 176.

deducted is § in. + § in. = % in. The area of two rivet holes in each flange is
thus

2X §X1=175sqin.
This area is 1.75/6.98 = 25 per cent of the gross flange area, and in accordance
with the specifications the area of rivet holes in excess of 15 per cent must be
deducted in determining the moment of inertia of the section.

Moment of inertia:

Gross section, I-beam, I = 215.8
Plates, I = 2 X 4 X (6.25) = 312.5
(I of plates neglected) 528.3

Rivet holes, 2 X 1.75 X (6)2 = 126.0
Excess to be deducted = 3§ X 126.0 = 50.4

I= 4779
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Allowable unit stress:

For tension, allowable f = 20,000 psi
For compression

Unsupported length of flange = 15 X 12 = 180 in.
Width of flange = & in.

Depth of beam = 12 4+ (2 X 1) = 13in.
Thickness of flange = 4 + 3 = 1 in.

Lb 180X 8

@< oo

and, since this is less than 600, the allowable unit stress is 20,000 psi.

Resisting moment:

20,000 X 477.9
M = 20000 X 4779 _ 4 470,500 inb
6.5
Safe load:
. 8X 1,470,500 _
Total load, W = Zx15 65,350 1b
Example 2

Determine the safe total uniformly distributed load for the beam given in
Example 1, based upon the strength of rivets connecting the flange plates to the
I-beam.

Rivet value (Table 16):

Single shear valve of 3-in. rivet 6,630 Ib
Bearing on 3-in. plate (or flange) = § X } X 32,000 = 12,000 Ib

Therefore single shear controls, and R = 6630 1b

Horizontal shear:

Since there are 2 rivets in a 6-in. length of beam, the total horizontal shear in
a 6-in. length may safely equal 2 X 6630 = 13,260 Ib. From Equation 131,
VQ/I = 13,260/6

where Q = moment of connected plate area about neutral axis
=8X 3} X625=250

I =4779
13,260 X 477.9 _
. Safe V = m“6‘—5<—25— = 42,250 ll)
Safe load:
Total load, W = 2 X 42,250 = 84,500 lb

Note that the safe load as determined by flexure in Example 1 will govern.

Crippling of the web is determined in the usual manner for the I-beam sec-
tion. Deflection is computed in the usual manner, the net moment of inertia
of the built-up section, as previously computed, being used.
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108 Plate Girders

Plate girders are beams built up of plates and shapes. While any
desired arrangement may be provided, the one most commonly em-
ployed consists of a vertical web plate with flanges, made up of angles
and cover plates, attached to its edges (Fig. 177). The parts are fas-
tened together by rivets or by welding in such a manner as to resist the
internal shear stresses developed on the planes of contact. The designer
is not limited to a particular series of cross sections, as was true for rolled-
steel beams and hence may compose the built-up section to meet his
particular needs. It is possible, moreover, to provide for some varia-
tion in the cross section and thus furnish resisting-moments more nearly

equal to the bending-moments on

Top Fl overal sections

} et Piotes and Angles the several sections of the beam.
3 Because of the added labor needed
: o5 Pots to fasten the parts together, plate
£ girders will cost more per pound
8_ Bottom Flange than rolled-steel sections; hence for
Cover Plates and Angles  oconomy rolled sections' will gen-

Fia. 177.  Plate Girder. erally be chosen whenever adequate

sections are available.

The stresses produced in a plate girder due to a given loading are
determined in accordance with the same principles and procedures as
previously outlined for rolled-steel sections (see typical computations,
Fig. 178). Critical sections for investigation will obviously include the
one on which the bending-moment is greatest, also those which are
reduced by cuts, holes, or absence of cover plates. When the section is
unsymmetrical, the neutral axis must be located and the moment of
inertia computed for such axis. Opinions differ as to whether the neutral
axis should be located at the centroid of the net section or at the centroid
of the gross section. In view of the fact that its location is primarily a
function of the deflection and that this is determined largely by the
gross section, it is believed by the author that the centroid of the gross
section more accurately locates the neutral axis. In considering the
behavior of a plate girder, it should be noted that the principal func-
tion of the flange areas is to resist the bending-moment; the principal
function of the web plate is to resist the vertical shear. Critical sections
as regards bending-moment may therefore be determined by the charac-
ter of the flange area and should be taken through such combinations of
rivet holes as may most seriously reduce the strength of the section.
Allowable working unit stresses on the extreme fibers of the tension and
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compression flanges of plate girders are the same as for rolled-steel
sections (see Article 105).

PLATE GIRDER

Resisting Moment — Safe Web Shear Top flange braced laterally ot 10-ft. intervale

- Cover Plate 12" X 3" X Y

% T MM- L 2234x4xH
:: ‘ 4" l4"
:-{‘ , l ' Web 54 X Y2
3 N I

T s g g g reexex

¥ S R I
Cover Plate 12" X v/,--/ X

Plate Girder — Structural Steel—

Rivets ¥ "¢
A.REA. Specifications (1944}

Resisting Moment (Section XX)
Net Section is symmetrical — N.A. is ot center of web

Gross 1: Cover plates: 12 X Yy X (215 X 2 = 9075
Flonge ongles: [4.4 + (2.86 X 26.17)] X 4 = 7817

Web Plate: 2 X {54 X 1/12 = 8561

23453

Deduct rivet holes (Holes 743" diam. for ¥, rivets)
Cov. Pls.and £5:4 [ X Yp X (27.8—7/16]%] = 22084
&3 and web: 2 [7 X 10/8 X (24.8F] = 1340
3624
Netl = 19829
Allowable siress in tension flange = 18,000 # /0"

Allowable stress in compression flange is

L _12 .
Fo2 50

Hence from Equation 186, f = 18,000 —(5 x 100) = 17,500 #,/0"
Safe Resishng Moment:
based on tension, M = !‘a“mgfy}'—z‘m = 12,862,000"#
. 17, 453 _ M
based on compression. .= 1 5027‘7? 453 _ 14,790,000+ #

The moxi Howable bendi
Shear _

Unwpported depth of web = 54, —8 = 48, + &=

This is within max. limit of -?- S 170 but since ratio exceeds 60, inter

mediate stiffeners are required.

Max. Shear bated on Gross Web Area = 11000 X 54 X !/3 = 297000#

g moment is therefore 12,860,000" #

Fig. 178. Analysis of Plate Girder.

The principal function of the web plate is to resist the vertical shear.
Vertical shear stress in the web is seldom critical, but its effect in pro-
ducing buckling of the web under the resultant diagonal compression
is a matter requiring careful consideration. Permissible working stresses
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for average intensity of vertical shear (total shear divided by the gross
area of the web plate) on the gross section of the web plate are as follows:

Building construction 13,000 psi
Highway bridges 11,000 psi
Railway bridges 11,000 psi

Web stiffeners to prevent buckling of the web plate between the flanges
are always required at the reactions and under concentrated loads. Web
stiffeners are usually pairs of angles with the web plate between and are
riveted or welded to the web plate (Fig. 179). Stiffener angles must be

F1c. 179. Stiffeners.

of such length as to fit tightly between the flange angles. In order that
a tight connection can be made to the web, they must be crimped to fit
over the flange angles as at ¢ or else filler plates of the same thickness
as the flange angles must be used as at d to fill the spaces which would
otherwise exist. It is considered best practice not to erimp the end
stiffeners nor those under concentrated loads. The A.I.S.C. Specifica-~
tions (1944) for the design, fabrication, and erection of structural steel
for buildings require that when A/t equals or exceeds 70, intermediate
stiffeners shall be used at all points where

64,000,000

h 2
9
where h = unsupported depth of web (Fig. 177).
= thickness of web plate.

v = greatest unit shear in panel in pounds per square inch under
any condition of complete or partial loading.

v exceeds, (170)
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These specifications further provide that the clear distance between
intermediate stiffeners, when stiffeners are required, shall not exceed
84 inches or that given by the following formula:

11,000¢
= 1
Vo (171a)

The A.R.E.A. Specifications (1944) for railway bridges require stiffeners
at end bearings of plate girders and beams and at points of bearing of

d

Deck Plate Girder Railroad Bridge over Woodward Ave., Detroit, Michigan.

concentrated loads. Thesc specifications also require intermediate
stiffencrs whenever 1/t exceeds 60 and limits the spacing to 72 inches or
that given by the following formula:

10,500¢
’ 1
Vi (171b)

The A.A.S.H.O. Specifications (1944) for highway bridges require that
the webs of plate girders be stiffened at end bearings and at points of
concentrated loading and whenever h/t exceeds 60. The spacing of
intermediate stiffeners is limited to a maximum of 72 inches or that given
by the following formula:

d =

9,000¢

d= Vo (171¢)
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End stiffener angles and those under concentrated loads are designed for
bearing of their outstanding legs against the flange angles, only that
part of the leg outside the fillet of the flange angle being used. The con-
nection to the web must have sufficient strength to transmit the total
load or reaction to the web plate. The A.S.I.C. Specifications (1946)
allow 30,000 pounds per square inch bearing stress for milled stiffeners
and 27,000 for fitted stiffeners. The A.A.S.H.O. Specifications (1944)
for highway bridges and the A.R.E.A. Specifications (1944) for steel
railway bridges allow 27,000 pounds per square inch bearing on milled
stiffeners and 18,000 pounds per square inch axial compression on the
stiffener assembly.

The A.I.S.C. Specifications (1946) for buildings require that bearing
stiffeners at the ends and at concentrated loads have a close bearing
against the loaded flanges and that they shall extend as closely as pos-
sible to the edge of the flange plates or flange angles. Such stiffeners are
designed as columns, assuming that the column section consists of the
pair of stiffeners and a centrally located strip of the web equal to not
more than 25 times the web thickness, for interior stiffeners, or a strip
equal to not more than 12 times the web thickness for stiffeners located
at the ends of the web. The column length is taken as § the length of
the stiffeners in computing the ratio L/r. Only that portion of the
stiffeners outside of the angle fillet or the flange to web welds is con-
sidered effective in bearing. Intermediate stiffeners which are not at
the ends of the girder or at points of concentrated load are required by
these specifications to have a section not less than that required by the
formula

I, = 0.00000016H* (172)

where H = total depth of web.
I, = moment of inertia of the stiffeners or stiffener (figured with
a common axis at the centerline of web for stiffeners in pairs
and with the axis at the interface between stiffener and web
for single stiffeners).

The A.R.E.A. and A.A.S.H.O. Specifications (1944) for railway and
highway bridges, respectively, require that stiffeners at the ends and at
points of concentrated loading be proportioned for bearing on the out-
standing legs of the flange angles with no allowance made for the por-
tions of the legs fitted to the fillets of the flange angle. They must
extend as nearly as practicable to the edges of the flange and be con-
nected to the web with enough rivets to transmit the load. The width
of the outstanding leg of intermediate stiffeners must be not more than



PLATE GIRDERS 275

16 times its thickness and not less than 2 inches plus & of the depth of
the web.

Typical computations of stiffeners are shown in Fig. 180.

PLATE GIRDER
Web Stiffeners

Data—Same os in Fig. 178
End Stiffeners 4433V X 33 X Vs
Intermediate Stiffeners 2L 3V, % 32 X %
Spaced @ 4'-6"
Applied Loading is uniformly distributed.
A.R.E.A. Specifications (1944)

End Stiffeners

|
© wl o,

Gross Areca—4/,.s =4 X 3.25 =975 "
Allowed Axial Compression on Gross Area == 18000 X 9.75
= 175,500#
Allowed Bearing Valve = 4 X 1.51 X 27000 =163000#
Bearing of Stiffeners governs Reaction.
Note:—Reaction must not exceed aggregate value of
rivets of connecting stiffeners to web.

Intermediate Stiffeners

Width of outstanding leg:
must not exceed 16 X thickness = 16 X ¥ = b6 in.

must not be less thon 2 4 -5% =38 in.
Note: Width of ongles used is insufficient.

Required Spacing:

permissible spacing = 72 in.
h __ 465 _
T = 0% =93> &0 use Eq. 154.
End shear = 130,000 (computed from loading).
_ 130000 — #/0"
U= gexos 0/

Required distance (min) to first intermediate
stiffener = d = ———-x—nso::m 9.5 \;—x—“w“_s 0.5 =9
< factory.

ing given is

P

Fig. 180. Plate Girder Analysis—Web Stiffeners.

The connection of flange to web and, when cover plates are used, of
cover plates to flange angles must have sufficient strength to resist the
horizontal shear on the planes of contact. Thus the horizontal shear
on aa, Fig. 181, a section between the flange angles and the web plate,
is determined from the equation

14
Ry = (—IQ P (173)
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where ¥V = maximum vertical shear in any portion p of span length.
Q = statical moment of the net area of cover plates and angles
connected about the neutral axis of the girder.
I = moment of inertia as determined for bending,.
p = spacing (pitch) of rivets A.
Ry = total force on one rivet.

GIIII].  ITIIIIPITIIISI IPAIM
ANARANRANNY - AN

N &>

When a vertical load is also applied on the flange (Fig. 182), the total
force on a rivet is the resultant of Ry, as computed from Equation 173
and the vertical load per rivet.

The rivets connecting the cover plates to the flange angles must
resist the horizontal shear on the plane of contact (plane bb Fig. 181).

P o o0 ]
RN
e

Fia. 182,

The force on each such rivet is determined from the following equation:

= E. ) 4 B (174)
1 n
where R = force on one rivet.
V = maximum vertical shear in space p.
@ = statical moment of the net area of cover plates outside shear
plane, about the neutral axis.
I = moment of inertia as determined for bending.
= gpacing of rivets B in either line.
number of longitudinal rivet lines.

S
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Typical plate girder rivet computations are shown in Fig. 183.

For more complete data and discussion of the behavior of plate girders
and theory of action, the reader is referred to the several specifications
quoted and to more complete textbooks on design.

PLATE GIRDER
Flange Riveting

Data—Same as in Fig. 178
Rivets ¥," Spaced as shown throughout spon.

Note: Since rivets are equally spdced over entire span maximum
force on rivet will occur ot end of span where V is max.
Force will be determined for V' = 130000

RIVETS — FLANGE TO WEB

12 X Y, Pl Statical Moment of Net Flange Area—:
r_t . Cov. Pl. (Gross) 12 X /3 X 27.5 = 165
1 = T L (Gross) 2 X 288 X 2611 = 150
-,7_ 315

c.g. = 2L354 X 4 X ¥ Deduct Holes:
X XY X223 =4
Yy 2X 7 X Y% X245 =16
Neutral Axis ’ 58
Q= 257

27"

s= 130000 X 257 X 4 4740
19829
Value of Rivet (Double Shear governs) = 13250 Ibs.
Note: Above computation applies to bottom flange rivets.
Force on top flange rivets is resultont of Horiz. and
Vertical force on rivet.

RIVETS — COVER PLATE TO FLANGE ANGLES
12 X /2 Pl Net Width of Plate = 12 — (2 X %) = 10.25
—-Cl£-=‘ Q=10.25 X Y; X 21.5 = 141

130000 X 141

4 _ *
S= "o 80

YA |

Neutral Axis

Volue of one rivet (Single Shear governs) = 6630#

Fi1a. 183. Plate Girder Riveting.

109 Plate Girders—Design Procedure

The procedure followed in the design of a plate girder is usually that
of successive approximation. By assumption, a trial section is set up
which is then investigated and adjusted until the designer is satisfied no
further changes are necessary or desirable. The investigation of such
trial section is carried out in accordance with principles and methods
previously outlined so that there remains for further discussion only the
matter of determining rational trial sections.

The first step is the determination of a suitable layout and the estab-
lishment of the controlling dimensions such as the span length and the
available clearance to provide for the girder depth. The probable weight
of the supported construction is then estimated, and a reasonable allow-
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ance is made for the weight of the girder. The maximum bending-
moment and shear are then computed using these estimated weights
and the live load which is expected to occupy the structure. When the
make-up of the section has been more definitely determined, it will
usually be necessary to determine the maximum bending-moment and
the maximum shear on each of several sections in the span, but at the
outset merely the greatest bending-moment in the span and maximum
end shear will suffice.

The next step in the design is the determination of the tentative
girder depth and width of the web plate. For maximum economy of
material, the depth of a plate girder (back to back of angles) should be
about one-twelfth to one-fifteenth of the span. Some building code
ordinances and specifications !® place definite limitations on the depth
ratios. The distance back to back of angles establishes the width of the
web plate and, when cover plates are used, this distance should be 1 to 3
inch more than the width of the web plate to provide allowance for
possible overrun in web-plate width. It should also be noted that pre-
ferred variation in plate widths is by inches although 1-inch variations
may be obtained.

When the width of the web plate has been established, its required
thickness may then be determined. In order to conform with accept-
able standards as represented by current design specifications, the web
thickness should satisfy the following conditions:

(1) It should be not less than the specified minimum allowable thick-
ness of material, 1 inch in buildings, 1% inch in highway bridges, and
# inch in railway bridges.

(2) It should have a thickness not less than 34 of the unsupported
distance between flange angles. (An estimated size of flange angle may
be used pending a later check.)

(3) The average unit-shear stress on the gross web area should not
exceed 13,000 pounds per square inch in buildings and 11,000 pounds
per square inch in bridges.

(4) If no stiffeners are to be used, the thickness should be at least one-
seventieth of the unsupported distance between flange angles for build-
ing construction and one-sixtieth in bridges. If it is expected that stif-
feners will be used, the first three requirements will establish the neces-

¥ A.A.8.H.0. Specifications (1944) for Highway Bridges state that plate girders
shall have a depth preferably not less than one-twenty-fifth of span. The A.R.E.A.
Specifications (1944) for Steel Railway Bridges state that the depth shall be pref-
erably not less than one-twelfth of the span.
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sary minimum thickness, and stiffencrs should then bhe provided in
accordance with given specifications.

The next step in the design is the determination of the required flange
section which is generally a combination of flange angles and cover
plates but may include other suitable structural shapes. Tables pub-
lished in the “Stecl Manual” and in other engineering handbooks which
give properties of plate-girder sections are extremely useful for this
purpose. Lacking such tabular data, the approximate or chord-stress
method may be used to determine a trial section. This method is as
follows:

First, the girder section is assumed to be divided into three parts
(Fig. 184), the top flange (or top chord), the bottom flange (or bottom

Centroid of

Flange Ar? Top Flange (
< %
d t

—rradss

Bottom Flange (Chord)
Centroid of Flange Area

Fia. 184.

Chord)

chord), and the web. The flanges are assumed to act jointly to furnish
a resisting couple represented by the forces C and 7', and the unit stress
is assumed to be uniformly distributed over each flange area; the web is
assumed to act as a rectangular beam. Proper allowance must be made
for reductions in section due to rivet holes. The approximate resisting
moment of the section is then determined as follows:

1l

Where M = resisting moment of section = Mp + My.
Mp = resisting moment of flanges (net section).
My = resisting moment of web plate (net scction).
d = effective depth of girder. (Distance between centroids of -
flange areas.)
t = thickness of web plate.
h = width of web plate.
J = allowable working stress.
Ar = net area of one flange.
Aw = gross area of web plate = th.
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Since
C=T-= fAF

the resisting moment of the net flange area will be
Mp = fApd

In determining the resisting moment of the net web plate, it is custom-
ary to assume that this will be three-fourths the value obtained for the
gross section; also no material error is introduced by assuming h? = hd;
hence

M —3Xfthd°‘1fA P
Y717 g
therefore,
M = Mr + My = fd(Ar + §4w) (175)

To determine the approximate required net area of the flange, Iquation
175 is arranged in the following form:

A M lA (176)
= -7 — - )
F PR w )

A tentative solution of Equation 176 is obtained by assuming M to be
equal to the computed maximum bending-moment, f equal to the allowed
unit stress on the extreme fiber, and d equal to the distance back to back
of angles, less 1% inches for girders without cover plates and less 1 inch
for cover-plated girders. A combination of shapes and plates is then
chosen whose net area after allowing for probable rivet holes is equal to
or greater than this computed value. When the flange is composed of
angles and cover plates it is good practice to provide at least one-half of
the combined area in the angles, and some specifications require that the
centroid of the combined area must lic inside the backs of angles. With
a tentative combination of shapes and plates selected, the centroid of
their gross section is located, and a corrected value is obtained for d.
The preceding computation is then repeated, and the section is revised
until all factors are in substantial agreement.

At this point it is advisable to check the weight, allowing for stiffeners
and other details, and make such revision in the original assumed value
as may be necessary or desirable.

Details of the design, such as stiffener spacing, pitch of rivets, and
length and location of cover plates, are then developed and the sections
finally checked, using the moment of inertia of the section in accordance
with the procedure outlined in Article 109.
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Typical design computations for a plate girder are illustrated by the
following example:

Ezxample
Design of Plate Girder
Data

Span 45 ft center to center of supports.

Top flange is imbedded in a concrete slab which gives it full lateral support
at all points.

Total load (except weight of girder) delivered on top of top flange =
3900 1b per linear ft.

Use A.I.S.C. Specifications (1944) for steel buildings.

Design Computations

Estimated weight of girder = 200 Ib per ft
Load delivered to top of girder 3900

Total 4100 1 per ft

Maximum bending-moment = 4100 X (45)? X § X 12 = 12,500 in.-kips
Maximum shear = 4100 X } X 45 = 92.2 kips

Assumed depth of girder about {5 X 45 = 3 ft

Make back to back of angles = 36} in.

Width of web plate = 36 in.

Assuming flange angles with 4-in. vertical legs, unsupported width of web is
36} — 8 = 28% in.
Minimum thickness of web plate
Minimum thickness of metal permitted by specifications for interior con-
struction = 1 in.
Based on the unsupported depth of web plate,
tS 1he X 28} = 0.168 in.
Based on average unit shear stress,

= 922 .
= 922 _ .
t> 13 % 36 0.197 in.
Use plate 36 X } for web.
h 285
7= 095 114

Therefore stiffeners are required.

Overall depth of girder (assuming 3-in. cover plates) = 37} in.

Effective depth (approximate) = 36} — 2 = 34} in.

Approximate allowable average working stress on flange = 34.5/37.5 X 20
=183
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Assuming d = 34} in. and f = 18.3 kips per sq in.,

1 12,500
p =T = 1¢ 1 1 .
Ar+ 54w = g3 x s = 198
w =§X36X1= 11

Required Ap = 18.7 sq in.

One-half or more of this area should be in the flange angles so that each angle
should have an effective area of not less than 3 X 18.7 X } = 4.68 sq in.
On this basis, the following trial section is determined.

Gross area:
2 angles 6 X 4 X § ;11.72 sq in.
1 cover plate 14 X % ; 7.00

Total gross area = 18.72 sq in.

Assuming 3-in. diameter rivets, two rivet holes in each angle and two out of the
cover plate, the area of rivet holes in the section would be

IX3X4=219sqin.
FXEX2=088
3.07 sq in.
3.07

220 =16,
isgs =~ 104%

The reduction in effective area, in accordance with the specifications (see
Article 105), is

(16.4 — 15) X 18.72 .
AT L T 2 0.26 s .
100 0.26 sq in

Revised flange area required = 18.7 4 0.26 = 18.96 sq in.

Gross area:
2angles6 X 4 X § ;11.725q in.
1 cover plate 14 X -%; 7.88

Total gross area

I

19.60 sq in.

Rivet holes (2.19 + 0.98) = 3.17 sq in.
15% of 19.6 = 2.94
Excess = 0.23
Net area = 19.37 sq in.
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The centroid of the gross flange area is computed as follows (Fig. 185), taking
moments about the center of gravity of the angles:

. i. 2 .
c.g. angles to c.g. flange arca = 78 X (19%3 + 57) = 0.53 in.

back of angles to c.g. flange = 1.03 — 0.53 = 0.5 in.
effective depth, d = 36.5 — (2 X 0.5) = 35.5 in.

14X %{, Cover Plate
£ " T103~

x —— —
-f T cg. of angles

8

2
<«
' é < =" 6% 4 x % Angle
X b
83 @
g o x;

Fia. 185

With this computed value of d, the preceding computations are revised as follows:

5 R
Approximate allowed f = 339(2)—,) X 20 = 18.8 kips per sq in. (average on
DY V4

flange)
Required (A + SAw) = TS—%%)% = 18.7 sq in.
Aw = L1

Required Ay = 17.6 sq in.

Revised seetion
(iross area
2 angles 6 X 4 X 3; 11.72 5q in.
1 cover plate 14 X %; 6.13

17.85 sq in.

- (= @+
Rivet holes = iss 16%

Required increase in required area = (%5015)) 17.85 = 0.18 sq in.

Required flange area = 17.6 + 0.18 = 17.78 sq in. < 17.85

It is not deemed necessary to make further revision, and the trial section will be

made up as follows:
2 cover plates 14 X 1

4angles6 X 4 X §
1 web 36 X }
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The girder section will now be checked using the moment of inertia. In com-
puting the moment of inertia, the I, of cover plates will be regarded as negligible.
Tabular values as given in the “Steel Manual” are used where possible.

Moment of inertia (gross section)

Web, 36 X 1" 970 in.4
4 angles, 6 X 4 X § at 36} in. back to back

4[7.5 + (5.86 X 17.22%] = 7,010
2 plates, 14 X {5

2[14 X 5 X (18.47)3 = 4,180

Total 12,160 in.4

Deduction of 0.18 sq in. in each flange due to rivet holes,

2
2[0.18 %:,) ] = 115
Effective I = 12,045 in.*
Unit stress on extreme fiber,
- 12,500 X 37.88 ;
f= 2% 12,045 = 19,700 psi

Since the allowable stress is 20,000 psi, the section will be deemed satisfactory,
and no further revision is required.
The weight of the girder is now estimated as follows:

2 cover plates, 14 X %, weight per ft  41.6 1b

4 angles, 6 X 4 X § 80.0
1 web, 36 X 1 30.6
152.2
Allow 209, for rivet heads, stiffener angles, and
other details 30.8

Total 183 Ib per ft

Since 200 1b per ft was originally allowed, it is possible to make a reduction on
the basis of this new estimation; however, the difference is only 109, of the
original assumed weight and is less than one-half of 1%, of the total load; hence
no revision in load will be made.

The required length and position of cover plates may be either determined
graphically from the diagram of maximum bending-moments (Fig. 186) or estab-
lished by computation. When more than one cover plate is used, the thick-
nesses of plates used should either be equal or should diminish from the flange
angles outward. No cover plate should be thicker than the thickness of the
flangle angles, and it is considered to be the best practice to extend at least one
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plate over the entire length of the girder. Some specifications require the cover
plate to extend past the theoretical allowed end to provide for specified rivet
strength. In the given example, it is assumed that all cover plates will extend
over the entire length of the girder.

Since the section in this example is ‘constant over the span, the minimum
rivet pitch will be obtained from the maximum value of V at the support.
For rivets fastening the flange to the web plate, considering the top or loaded
flange we see that the value of one rivet (bearing on web governs) is 7500 lb.

Theoretical Ends Theoretical Ends
of Cover Plates ~ Cov_e;r  Plate No. _2 of Cover Plates
g \.
S\ N\ T S
§ Cover Plate No. 1
A !__ ___________________
s l
£ I
£ l Resisting Moment of |
g | Flange Angles and Web |
F, '
§ Span

Fig. 186. Lengths of Cover Plates.

With vertical load per rivet being neglected, the required maximum spacing
at the end of the girder is computed from Equation 173 as follows:
.85 — 0.1 .
Q= (17.85 — 0.18) X 35.5 _ 313
2
_ BI_ 7500 X 12,045
P= 74 T 92,200 x 313

= 3.1in.

Assuming p = 3 in., and taking into account the vertical load on each rivet, we
have
3900 X 3

Vertical load per rivet = T = 980 Ib

Horizontal force on rivet = 3 1 X 7500 = 7250

Resultant force on rivet = 4/(7250)2 + (980)% = 7320 Ib

This rivet stress is satisfactory and 3-in. spacing will be adopted for both flanges
at the end of the girder. The spacing may be made greater at other points in
accordance with similar computations made for sections nearer the center of
span but should never exceed 16 times the thickness of the angles.

The required spacing of rivets connecting the cover plate to the flange angle
is determined from Equation 174, as follows. Here again the minimum spacing
will be obtained at the end of the girder.
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R = 6630 b (single shear governs)

Q = [6.13 — (¥Fr X 0.18)] X 1847 = 112

p o RIn_0630X12045x2 o

Ve 92,200 X 112 oo
This computation indicates that the spacing of these rivets is not eritical since,
in conformance with the specifications for compression members (applicable to
top flange), the maximum spacing in each line with staggered rivets must not
exceed 24 times the thickness of the plate connected, with a maximum limit of
18 in. Hence the pitch in each line, assuming rivets staggered, should be not
more than 24 X 1% = 10} in. The actual spacing should provide for convenient
fabrication and conform with this requirement.

The specifications require that the, outstanding legs of bearing stiffeners extend
as nearly as possible to the edge of the flange plates or angles. Allowing } in.
for the radius of fillet at the toe of the angle and £ in. for the flange angle thick-
ness, the width of stiffener should be 6 — § — } = 4] in. to meet this require-
ment, and therefore an angle with a 4-in. outstanding leg will be used. The
rivets connecting the stiffeners to the web transmit the end reaction, hence
92,200/7500 =13 rivets will be required. To provide space for these rivets,
the four-angle arrangement shown in Fig. 179h will be adopted, each pair of
angles transmitting one-half the reaction and requiring 7 rivets in the depth of
the girder.

Assuming fitted stiffeners, each of the four outstanding legs must have a bear-
ing area of 92,200/(4 X 27,000) = 0.85 sq in. on the flange angles. Deducting
width occupied by the 3-in. fillet of the flange angle, the bearing width is 3} in.,
hence the required thickness is 0.85/3.5 = 0.24 in.

The specifications also require that projecting elements under compression,
such as outstanding legs of stiffener angles, have a ratio of width to thickness not
more than 16. To meet this requirement for a 4-in. angle, the thickness must
be not less than % in. Assuming 4 X 3 X 1 stiffener angles, the assembly will
next be checked for column action. Each pair of angles, together with a strip
of web 12 X 1 = 3 in. wide are considered to act as a column with a length of
2 X 35.25 = 27 in. and a general area of cross section of 4.13 sq in. The angles
are spaced (2 X §) + } = 1} in. back to back, and the radius of gyration of
the assembly about the axis along the center of the web is 2.14. According to
the provision for columns outlined in Article 101,

27 _
214

Allowable f = 17,000 — [0.485 X (13)?] = 16,920
Safe load = 16,920 X 4.13 = 70,000 Ib

Actual load = %52——00 = 46,100 Ib

IJ/T = 13

Therefore the assembly of 4 angles 4 X 3 X 1 appears to be satisfactory.
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Since the value of h/¢ for the web of the girder is 114 thus exceeding 70, inter-
mediate stiffeners are required at all points where v exceeds the value given by
Equation 170, or

64,000,500
(118)2

The total vertical shear on this section will equal 4,900 X 36 X 1 = 44,100 Ib,
and its distance from the center of the span is 44,100,3,900 = 11.3 ft. The
specifications therefore require stiffeners for a distance of (22.5 — 11.3) = 11.2 ft
from each end reaction. The spacing in these zones must not exceed 84 in. or
that given by Equation 171a.

= 4900 psi

End panel 92.200
=35y - 1020 ol
11,0 i . .
Required d = T’/TO.(%_—;_O‘— = 27 in. to first stiffener

Second panel (section 2 [t 3 in. from end of girder)
» = 92,200 — (2.3 X 3900)

B 36 X 1
11,000 X %

1V 9250

Use spacing of 27 in. between first and second stiffeners.
Third panel (section 4 {t 6 in. from end of girder)

92,200 — (4.5 X 3900)

= 9250 psi

Required d = = 29 in.

v 36 X1 = 8300 psi
. 11,000 X ¢ ..
Required d = ——— = 30 in.
o /8300
Use 2 ft 6 in. between second and third stiffeners.
Fourth panel (section 7 ft from end of girder)
_ 92,200 — (7 X 3900) .
v = 36 X 1 = 7200 psi
1
Required d = 1000 X4 _ 455,
/7200
TUse 2 ft 6 in. between third and fourth stiffeners.
Fifth panel (section 9 ft 6 in. from end of girder)
_ 92,200 — (9.5 X 3900) .
= 6 X1 = 6127 psi
Required d = 100X 3 _ a0

1/6127

Use 2 ft 6 in. between fourth and fifth stiffeners.
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The foregoing stiffener spacings provide a total of 12 ft, which covers the
distance over which stiffeners are required.

The required size of the intermediate stiffeners is determined in accordance
with Equation 172, as follows:

H = 36 in.
Required 7, = 0.00000016 X (36)* = 0.2687

For a 4 X 3 X } single angle, crimped over the flange angles with the 3-in.
leg against the web,

Actual I, = 1.0(1.69 X 1.24 X 1.24) = 3.6

These stiffeners therefore satisfy the requirements of the specifications.

PROBLEMS

10:1 A rolled-steel beam is to be designed to carry a load of 2000 1b per ft (not
including its own weight) uniformly distributed over a simple span of 20 ft. Assum-
ing the beam to have full lateral support and using the allowable stresses for build-
ings as specified by the A.I.S.C. (1946), sclect the minimum weight beam required
(wide flange or American Standard).

10-2 A floor slab is supported on 12/31.8 I-beams spaced at 3-ft centers and hav-
ing a span of 12 ft. The dead weight of the floor is 100 Ib per sq ft. (a) What is the
safe live load per square foot of floor for a maximum fiber stress in the I-beams of
15,000 psi? (b) What live load will cause the I-beams to deflect a total amount of
w45 of the span?

10-3 The continuous steel beam shown is to carry the front wall of a building
over two store fronts. Assume that the load shown includes the dead weight of the
beam. Select the most economical beam (American Standard) that can be used.

5000+#/ ft

/72222777777

150~ W 15%-0”

| T 1

Common
brick wall

Assume that the floor at this beam level furnishes full lateral support. What length
of bearing plate would be required at the support to prevent crippling of the web?
What area of bearing plate is required at the brick walls to prevent crushing of the
brick, if the allowable bearing stress is 200 psi (A.1.8.C. Specifications, 1946)?

10.4 An 18 WF 50 steel beam carries a total uniform load of 300 ib per linear ft
over a simple span of 20 ft. The beam is supported laterally only at the center and
ends. Is the beam satisfactory in the light of the A.I.S.C. Specifications (1946) for
buildings, for tension and compression on extreme fiber, for shear, and for web
crippling with ends bearing on 8-in. walls? Show computations.
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106 The beam ABC is simply supported at A and rests on a bearing plate at
B. A concentrated load of 100,000 1b is applied at C. If the allowable unit stresses
are

18,000 psi for isurmai fiber siscss
12,000 psi for average shearing stress
15,000 psi for vertical buckling of web

sclect an I-beam section (either wide flange or standard) based on (a) the required
section modulus, and (b) the required web thickncss for shear and vertical buckling,
(¢) check compressive stress in web over support.

>
&
N

100,000 #

6’0" 3-0”

,O.JHL

10-6 A 16 WF 36 beam is simply supported at A, overhangs the support at B,
and is laterally supported throughout. Neglecting the weight of the beam, if the
allowable unit stresses are

Tension and compression—20,000 psi
Average shear on web—13,000 psi
Direct compression causing web crippling—24,000 psi

can the beam safely carry a concentrated load P of 40,000 Ib?

P =40,000#
12".0" 2-0"

I
A iB_yC
uj] 16" W.F. 36 # I

-

10-7 Is the beam shown satisfactory as judged by the following allowable unit
stresses:

Tension and compression on extreme fibers, 18,000 psi
18,000
h2

1 ——

+ 72008

Average unit shearing stress in web, , but not to exceed 12,000 psi.
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d
Vertical compression on web, 16,000-170 7 but not to exceed 14,000 psi.
Direct compression between flange and web over support is 24,000 psi.

10,0004
14" WF.x43# : 1 i
B [=]
- g
120" 60" |

10-8 A beam of the section shown is assembled from four standard channcls.
If the span length is 40 ft, determine the maximum allowable moment and the
corresponding uniformly distributed live load. Consider the compression flange as
being effectively supported against lateral deflection only at its ends and midpoint.

X" rivets
4.15" c @339#

What is the maximum allowable spacing of 2-in. rivets in pairs at a point where the
transverse shear force is 73,000 Ib? Use the American Institute of Steel Construc-
tion “Specification for the Design Fabrication and Erection of Structural Steel for
Buildings,” 1946.

10-9 A 12in. X 25 Ib channel is riveted with -in. rivets in pairs to a 21 WF 63
beam as shown. (a) Using the A.I.S.C. Specifications (1946), determine the safe re-
sisting moment of this beam which is carrying a uniform load over a span of 20 ft

N
lf_"“ Y “I\m"c X 254

| 12

e
. ~21"W.F.x63#

=y

laterally supported only at the ends. (b) If the allowable stresses on rivets are 15,000
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psi in shear and 32,000 psi in bearing, what should be the theoretical spacing of the
rivets at a point where the vertical or transverse shear is 40,000 1b?
10-10 A plate-girder section is composed of the following:

1 web plate, 58X &

4 flange angles, 6X6X %
2 cover plates, 14 X3
Rivets, % in. as shown

The distance back to back of angles is 583 in. If the allowable stress is 18,000 psi,
what is the safe resisting moment of the girder section according to the A.R.E.A.

58%"

Specifications (1944)? If the allowable intensity of stress on rivets is 13,500 psi in
shear and 32,000 psi in bearing, what spacing of rivets connecting the flange to the
web will be required at a point where the vertical shear, v, is 140,000 1b?

10-11 Two 10 in. X 15 lb channels are fastened to a 14 WF 34 beam by 2 in.
diameter rivets, as shown. The beam thus formed carries a uniform load over a
simple span of 16 ft with lateral support at the ends only. (a) Using the A.R.E.A.

14~

Specifications (1944) for the design and construction of steel railway bridges, find the
maximum permissible total uniform load for this beam. (b) If the allowable rivet
stresses are 15,000 psi in shear and 32,000 psi in bearing, determine the theoretical
spacing of flange rivets at a section where the shear is 25,000 Ib.
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10-12 For the girder section shown, using the approximate method, and assuming
one-eighth the web effective as flange area, determine the safe resisting moment
based on a tensile flange stress of 16,000 psi.

24 67"x6"x %"

diameter Web plate 50" x %~

50%"

26°6"x6"x %"

10.18 A plate girder is composed of the following section:

2 cover plates, 10)(%

4 flange angles, 4)(4)(-;
1 web plate, 42X 3
Rivets—7% in. as shown.

Using net section in both flanges and the moment of inertia method, what is the safe
resisting moment of this girder if the allowable fiber stress is 18,000 psi?

—h——

o
S
9

A

423" bottom to bottom of angles

A1
f-ﬂb-—j t—dbx

€ re os o
g S

10-14 A 10 WF 49 scction is to be used as an axially loaded, pin-end column
with a length of 20 ft. Find the allowable load for such a column (a) according to
the A.I.S.C. Specifications (1946), and (b) according to the A.R.E.A. Specifications
(1944).

10-16 If a 10 WF 49 section is subjected to an axial load of 100,000 1b, what
concentrated transverse load can be carried at the center of the effective span of
20 ft if the ends are free to rotate? The bending occurs about the major axis, and
the allowable combined stresses are

Tension 18,000 psi
R 20,000
Compression 72
1+

2000b*
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10-16 This column is a 14 WF 202 section. It carries a load of 400,000 1b acting
through pins 4 in. from the midaxis of the column as shown. Check the design

ip = 400,000 #

%

20%-0"

49
j

against the A.I.S.C. Specifications (1946) for buildings, using the following formula
as the criterion for safe stress conditions:

fa fb
28 2
F a + F b

10-17 A load of 3 tons moves along the 12-ft arm of the post crane. Assume no
impact. Design column 4B in accordance with A.I.S.C. Specifications (1946).

B
I
e
©
120" ‘
L3
<
2




Chapter 11
LIGHT-GAGE STEEL CONSTRUCTION

110 Description

Structural members formed from light-gage sheet and strip steel are
now frequently used for light building construction. Since sheet and
strip steel can be readily cold formed into a wide variety of shapes, its
usefulness is limited only by the ingenuity of the designer and the

(2

r_

6= 89

L

Half stud Narrow stud Standard stud Standard joist
Fr1c. 187. Stran-Steel Sections.

economy of the resulting construction. Typical of the structural mem-
bers which can be made in this manner are those produced by the Stran-
Steel Division of Great Lakes Steel Corporation and whose dimensions
and general properties are shown in Fig. 187 and Table 35. A dis-
tinctive feature of Stran-Steel members is the patented nailing groove
(Fig. 188), which permits the fastening of collateral material to wall
studs or joists by ordinary nailing methods. Typical Stran-Steel roof
framing is shown in Fig. 189.

111 Properties of Sheet and Strip Steel

The base material, from which light-gage members are formed, is
usually steel strip produced on a continuous strip-steel mill which is
mechanically equipped to govern both the width and gage of the mate-
rial and thus insure uniformity of the resulting product. The steel may

294
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have such physical and chemical properties as are desired, and, as a
safeguard against corrosion, copper-bearing steel is commonly used.
The steel is produced by the strip mill in the form of continuous coils
scveral thousand feet in length. These coils are then passed through a

Fic. 188. Stran-Steel Nailing Groove.

straightening roll and slitter, which cuts the material to the required
width for forming, after which shears cut it to the specified lengths.
The picces are then passed through forming rolls or other cold-forming
devices which produce the desired shape of section and are spot-welded
together to make the desired assembly.

The A.S.T.M. Specifications ! for light-gage structural quality flat-
rolled carbon steel specifies chemical composition and tensile properties

! American Society for Testing Materials, Serial Designation A 246-41T.
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for four grades of steel of thicknesses varying from 0.0477 to 0.0225 inch
corresponding to the United States Standard Gage 18 to 24. Grade C
steel by this specification has a minimum tensile strength of 52,000
pounds per square inch and a yield point of 33,000. Strip steel fur-
nished in accordance with this specification may not vary more than
0.003 inch from the specified gage thickness.

S WIS WY N S .M,m, . = !
Courtesy Stran Steel Division Great Lakes Steel Corp.

Fia. 189. Typical Roof Framing with Stran-Steel Sections.

Another A.S.T.M. Specification ? for light-gage structural quality
flat-rolled carbon steel specifies chemical composition and tensile prop-
erties for four grades of steel of thicknesses varying from 0.2499 to
0.0478 inch corresponding to the United States Standard Gage 3 to 18.
Grade C steel by this specification has a minimum tensile strength of
55,000 pounds per square inch and a yield point of 33,000. Strip steel
over 3} inches wide, furnished in accordance with this specification, may
not vary more than 0.003 to 0.006 inch from the specified gage thickness.

112 Elastic Stability

The distinguishing characteristic of light-gage steel members as com-
pared with hot-rolled structural sections is the large ratio of width to

2 American Society for Testing Materials, Serial Designation A 245-41T.
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thickness of webs and outstanding elements of the sections. A cold-
formed C-shaped section, 8 in. X 4 in. X # in., made of 15-gage material
will have b/t ratios of 11 for the lips. 59 for the flanges, and 119 for the
web, whereas the A.I.S.C. Specifications for the design, fabrication, and
erection of structural steel for buildings,? covering the use of hot-rolled
sections, specifies that projecting elements of members shall not have a
greater ratio of width to thickness than 12 for single angle struts and 16
for other members including compression flanges of beams and girders.

A member is elastically stable when it is able to retain its alignment
under compressive buckling load without aid from outside stabilizing
influence. Consideration of elastic stability is of particular importance
for such material as steel which at the yield stress may suffer relatively
large deformation without corresponding increase in load. It is, how-
ever, of importance only for material in compression since tensile force
tends to pull the material into the line of action of the applied force.

The elastic stability of material acted upon by a compressive force
was first discussed by L. Euler in 1744 with respect to the overall buck-
ling of columns. Thus, when an axial compressive force is applied to a
pin-ended bar, some bending-moment will be induced by unintentional
eccentricity of loading or crookedness of the bar with the result that
it will bend out of its original alignment. If a small lateral force is now
applied to the bar its deflection will increase, but the bar will return to
its original deflected form when the lateral force is removed, provided
the axial load is less than that defined as the critical load. At the critical
value of the axial load P, however, any small lateral force will cause
deflection from which the bar will not recover, and it is said to become
elastically unstable at this point. For a bar with pin ends, Euler 4 deter-
mined the critical axial load to be

pP., = @ 177)
cr IJ2

The average unit stress over the cross section, under this condition of
loading, is obtained from Equation 177 as

P (178)
a4 Wy
It should be observed that the assumptions used in the derivation of
Equations 177 and 178 are valid only within the proportional limit for
the material and that the bar always becomes unstable when f., equals
the yield stress of the material.

3 Revised Edition, February, 1946.
4 8. Timoshenko, Theory of Elastic Stability, McGraw-Hill Book Company, 1936.
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113 Elastic Stability of Thin Plates in Compression

The Euler theory, discussed in Article 112, is based upon the assump-
tions ordinarily made for pure bending; that cross sections of the bar
remain plane and rotate only so as to remain normal to the deflection
curve; that the deflection is quite small compared with the dimension
of the section in the direction of the deflection; and that the differential
equation of the elastic curve is

day

dx?

M =EI

(179)

Equation 179 takes into account only the resistance of the material
to bending in one direction, and the term £ is the measure of the resist-
ance of the material to deformation from stress in one direction only.
For thin wide plates with restrained or supported edges, the material
between the edge supports will be bent simultancously in two direc-
tions by buckling action, and the term E must therefore be modified in
such a manner as to take into account the resistance to change in form
produced by this condition. Thus, for such a condition, the term E
should be replaced ® by "

B =
(1=

(180)

where E = Young’s modulus = 29.5 X (10)® for steel.
u = Poisson’s ratio = 0.3 for steel.

With this interpretation of the value of E’, Equation 178 would be
written in the form
w2 Et?

fi T12(1 — wA)I2

(181)

The Bryan-Timoshenko formula is the most generally accepted ex-
pression for the critical compressive stress on thin plates with restrained
or supported edges. The theoretical analysis from which this formula
was derived is accredited to G. H. Bryan,® and the discussion has becn
extended principally by Timoshenko but also by others. Expressed in
general form, for steel plates, this formula gives the following valve for

the critical stress.

2 KEt?
fcr = Kfl

\2

8 Timoshenko and Lessels, A pplied Elasticity, p. 52, Westinghouse Technical Night
School Press, 1925.

¢ “London Mathematical Society,” Proc., Vol. XXII, 1891, p. 54.
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critical buckling unit stress.

critical compressive stress as regards buckling in the direc-

tion of the width of the plate as given by the Kuler formula

(Equation 181) when L = b.

= thickness of plate.
b = width of plate.

K = a coefficient depending upon the ratio of the length to the
width of the plate and upon an integer m which represents
the number of half waves into which the plate buckles.

= (L/mb + mb/L)? (183)

It has been established by several investigators 7 that for plates whose
length in the direction of the applied compression force exceeds two to
three times the width, the value of K may be taken as follows:

where f.,

N

One edge supported, other edge free K =05

One edge clamped, other edge free K =133
Both edges supported K =40
Both edges clamped K =170

A supported edge is one which is prevented by some suitable means
from deflecting in a direction perpendicular to the width of the plate; a
clamped edge represents one which iy, in addition, restrained against
rotation. According to the A.1.S.1. Specifications,® an element which is
stiffened at only one edge parallel to the direction of stress is defined as
an unstiffened element; elements which are stiffened along both edges by
connections to a stiffening means, such as a web, flange, or stiffening lip,
are regarded as stiffened elements. These specifications require that
the stiffener running along the edge of the element have the following
minimum moment of inertia:

. \2
Imin = 1.83t% \f(;) — 144 (184)

where b = width of the element.
t = thickness of the element.

When the stiffener consists of a simple lip, bent at right angles to the
stiffened element, the required depth d of such lip may be approximated

by the formula 3
b\?2 %
d = 2.8 [(—t) - 144] (185)

7 Timoshenko and Lesscls, Applied Elasticity, p. 292: “The Problem of Elastic
Stability,” by L. Donnell, Aeronautical Engy., Vol. 5, No. 4, October-December, 1933,
p. 141.

8 American Iron and Steel Institute Specifications for the Design of Light-Gage
Structural Members, 1946.
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It is of course often impossible to establish precisely the condition or
degree of support or restraint furnished the edges of the plate by adja-
cent elements of construction; therefore the value of K to be used for a
particular condition must depend largely upon judgment and should be
chosen to provide reasonable and safe limitations on design.

Since the basic conditions assumed in the derivation of the Bryan-
Timoshenko formula are the same as were noted for the Euler formula,
Equation 182 is invalid beyond the proportional limit, and the critical
stress will never be greater than the yield stress of the material. The
proportional limit is that point at which the stress-strain curve deviates
from a straight line, and the determination of its value requires precise
instrumentation and testing procedure. Tests reported by various
investigators have shown values of the proportional limit for steel rang-
ing from 30 to 100 per cent of the tensile yield stress. The lower values
were obtained with exceptionally precise instruments and with the
loading applied slowly; whereas the large values were determined with
rapidly applied loading and by measuring instruments incapable of
detecting minute deformations. The higher values are also generally
applied to high-carbon steels. For steels with a yield point of 25 to
40,000 pounds per square inch, the proportional limit will generally be
definite at a stress of about five-eighths of the yield stress.

Various procedures ? have been proposed for estimating values of the
critical stress when its value is between the proportional limit and the
yield stress. The method adopted for the following derivations is based
on the assumption that the proportional limit is five-eighths of the yield
stress, Young’s modulus of elasticity equals 29.5 X (10)® and that
between the proportional limit and the yield point the value of E in
Equation 182 varies in accordance with the relationship shown by the
following equation:

E = [f v=J ] 20.5 X (10)° (186)
Jy — It
where f, = yield stress.
fp1 = proportional limit.
fer = critical stress (between f,; and f,).

Based upon this interpretation of E, Equation 182 would be replaced by
two equations, one covering the range where f., is greater than f,; and
the other the range where f., is less than f,,.

% 8. Timoshenko, Theory of Elastic Stability, p. 157, McGraw-Hill Book Company,
1936.
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When f., is greater than f,;,

71,100,000 K
Jer = (187)
( \? 71,100,000 K
)t

When f, is less than f,;,
26,662,000 K

(’-2)2

Values of f., as given by Equations 187 and 188 are represented graph-
ically by the solid line curves in Fig. 190 for steel having a yield stress
of 33,000 pounds per square inch. For plates supported along one edge
K = 0.5 and supported along both edges K = 4.0.

cr =

(188)
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114 Ultimate Compressive Load

As a result of research on Dural sheets to which stiffening elements
are attached, as commonly used in the aeronautical industry, it has
been established that the contribution of the sheet to the combination
is somewhat greater than that obtained by computing the ultimate
resistance of the sheet as that produced by the critical stress. This
condition is more pronounced for sheets whose b/t ratio is large (in
excess of 100) than for sheets with smaller values of b/t. lquations 187
and 188 are based upon a uniform distribution of the load over the area
of the section and up to the value of f,, given by these equations, the
usual assumptions made in flexural analysis hold with satisfactory
accuracy. If, however, the load is increased, some portions of the
section will develop no further resistance, and the local buckles will
become more pronounced as the load is increased further. Portions of
the section adjacent to supported edges will be prevented from develop-
ing local buckles by the support, and these areas will thus continue to
develop increased resistance to the load. The ultimate value of P will
be reached when these areas develop a unit stress approaching, f, and
the value of P, will generally be greater than P.,. At the ultimate
stage of loading, however, the unit stress on the section will not be uni-
form; near supported edges it may approach closely the value f,; at the
outer edge of a plate supported along one edge only or at the center of a
plate supported along two edges, it may likely be less than the value of
fer given by Equation 182. For a plate supported along two edges it is
sometimes assumed that at the ultimate load the stress in the section
is distributed in the form of a sine curve ¥ with the unit stress equal to
fer at the center of the width and represented by f. (not greater than f,)
at the supported edges. The resulting ultimate load is then expressed as

Puu = %bt(fe +fcr) (189)

The foregoing analysis of the value of the ultimate load gives rise to the
employment of a so-called effective width with P,;, expressed in the form

Py = febet (190)
where 1b, = width of cffective strip along supported edge.
Equating the values of P, as given by Equations 189 and 190 we
have
3be = 0.25b(1 + f../f.) (191)

The value of f../f. will vary from a maximum of unity when f, = f,
to a minimum of f.,/f, when f. = f,.

10 Sechler and Dunn, Airplane Structural Analysis and Design, John Wiley and
Sons, 1942,
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When f, has the limiting value of f, from Equation 190

Pult fubct (be>
wlp = — == = — 192
Jute bt bi Jy b (192)

Based upon laboratory tests of stiffened Dural sheets, ¥. E. Sechler !*
proposed the use of the following empirical equation for the effective

width:

1 fer
—be = 0.447b \| — (193)
2 e
Substituting the appropriate values for Dural in Equation 182 gives
E =103 X (10)® ’
u = 0.3

]

1.0 for plate supported along two edges
37.2366 X (10)°

b 2
()
Based on the limiting value of f. = f, = 40,000 pounds per square inch,
the effective width from Equation 193 is b, = 27.3t.

The Amecrican Institute of Steel Construction Specification (1946)
for the design, fabrication, and erecction of structural steel for buildings
permits b/t ratios of 12 to 16 for projecting elements of members under
compression and states that, when a projecting element exceeds the
width-to-thickness ratio prescribed and would satisfy the stress re-
quirements with a portion of its width removed, the member will be
considered acceptable without the actual removal of the excess width.
According to this specification, therefore, the limiting value of P,
would be determined from Equation 190 when f. = f, and b, = 12 to
16¢.

The A.I.S.C. Specification further states that for compression mem-
bers the unsupported width of web, cover, or diaphragm plates shall
not exceed 40 times the thickness but that when the width exceeds the
limit and a portion of its width no greater than 40 times the thickness
would satisfy the stress requirements, the member will be considered as
acceptable. According to this specification the limiting value of P,
would be determined from Equation 190 when f, = f, and b, = 40t.

1 “The Strength of Thin Plates in Compression,” by T. von Kérmin, E. E. Sechler,
and L. H. Donnell, Trans. A.S.M.E. Vol. 54, No. 2, January 30, 1932.

cr
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While the foregoing limits of effective width may be satisfactory for
structural steel members composed of material more than 1% inch thick,
the author recommends more conservative limits for light-gage material
less than % inch thick and suggests a limiting value of 12t for plates
supported along one edge and 32t for plates supported along both edges.

Values of f.,, as given by Equation 192, corresponding to b. equal to
12t and 32¢, respectively, are shown graphically by the dotted line curves
in Fig. 190 for steel with a yield stress of 33,000 pounds per square inch.

1156 Critical Stress

In structural design, working stresses and loads are based upon the
yield stress of the material despite the fact that members may with-
stand ultimate loads considerably beyond this limit. For tension mem-
bers this practice is perhaps conservative, since stress beyond the yield
point may possibly do no harm other than producing some permanent
elongation or perhaps excessive deflection of the structure. In tests of
rolled-structural-steel I-beams, conducted at the University of Illinois,!?
it was found that, for nearly all the beams tested, “excessive deforma-
tion, large permanent set, or other signs of structural damage was ob-
served at computed fiber stresses not much higher, if any, than the
yield strength of the material.”” For this reason, the report of these
tests states, “It is unsafe practice to regard as the ultimate stress in
flexure any value higher than the yield point strength of the material
of the beam.” For material in compression elastic instability will
always be encountered when the unit stress equals the yield stress;
local wrinkles will develop when the average unit stress reaches the
values determined by Equations 187 and 188, and the limit of resistance
will be reached when the unit stress reaches the value determined by
Equation 190. For thin plates subject to the condition of elastic insta-
bility, the critical stress should be used in place of the yield stress of the
material, to determine working stresses.

For practical design purposes, the author recommends that the
critical stress be determined by the use of a straight-line equation
coupled with the provision that f.r be considered not less than the value
given by Equation 192 when b, equals 12¢ for elements supported along
one edge and 32t for elements supported along both edges. Thus, when
Jer = kfy, for elements supported along one edge,

fc" fll f
Y 103,000 1,270,000

2 “The Strength of Steel I-Beams in Flexure,” by Herbert F. Moore, University
of Illinois, Engineering Experiment Station, Bulletin No. 68.

[105+ ] [00048+ ]9 (194)
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Fia. 191,

but not less than 12/(b/t) and not greater than unity. For elements
supported along both edges,

T [ - ] [ . ] b
k=— =1.062 —10.0019 + ————— |- (195
Ju + 121,000 + 3,846,000 ¢ (199)

but not less than 32/(b/¢) and not greater than unity. When f, =
33,000, Equation 194 reduces to the form
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For elements supported along one edge

b
k = 1371 — 0.0308 (—t) (196)

but not less than 12/(b/t) and not greater than unity. When f, =
33,000, Equation 195 reduces to the form

For elements supported along both edges

b
k = 1.335 — 0.0105 (—) (197)

but not less than 32/(b/t) and not greater than unity. Values of %
as given by Equations 194 and 195 are shown graphically in Fig. 191
for various values of f,.

In determining the b/t ratios of elements composing the section, the
author recommends that b equal the width of the flat portion of the
element exclusive of curved edge fillets, and ¢ is the thickness of the
element.

116 Form Factor for Sections in Compression

The ultimate compressive load resisted by a section made up of rec-
tangular elements will be a composite of the strength of the elements
comprising the section. Let such a section be divided into rectangular
elements which have the respective areas ay, as, etc. Let the values of
k = fer/fy for each of these elements be indicated as ky, k2, etc. Then,
if ky is the least of these values of k, element a; will reach its limit of
resistance when the total load on the section has the value

Py = kifyai +az + a3 - + ag)

This element will be prevented from actually failing at this point by
virtue of the greater resistance of the other elements of the section, and,
if the total load on the section is increased, its resistance will remain
nearly constant until substantial deformation of other elements has
occurred. Now if the load is increased to a value P,, assuming element
a; to offer no additional resistance, element ap will reach its limit of its
resistance when

Py = kyfay + kofy(az + a3 -+ + az)

As the load on the section is increased further, each additional element
will, in a similar manner, successively reach the limit of its resistance,
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and the limit of load will be reached when

Puy = knfyas + kafyos + kafyas - + kufyon
= f,Zka = Ff,A, where
Zka _ Zkbt

F = form factor of section = — = —— 198
Jorm f section n ST (198)

A = gross area of section.

k = fe/f, determined from Equations 194 and 195.
b = flat width of any element (exclusive of fillets).
¢t = thickness of any element.

. 4” @ 4" .y
\ 0.12">] |-3<l§>| ‘«0.12"

6 L

0.63 -

”

22 ©
@6 23 50
3 063"

f\ Spot welds

3’1‘ _5§ F o
t=006" (l@

Fic. 192.

The determination of the form factor of the section shown in Fig. 192
is as follows:

Example

The section will be considered as made up of rectangular elements having the
following flat width to thickness ratios.

2 webs 't' = 6—0?5 = 96
b 3.76
4 flanges 7= 006" 62.5
. b 0.63
4 flange stiffeners 1= 006" 10.5

The webs are supported along both edges by the outstanding flanges; the flange
stiffening lips are supported along one edge; the flanges are supported along one



308 LIGHT-GAGE STEEL CONSTRUCTION

edge by the web and may also be considered as supported along the other edge
since (Equation 185)

3 in. > 2.8 X 0.06[(62.5)2 — 144]* = 0.662 in.

Assuming the section to be made of structural grade steel (f, = 33,000) values
of the k factors for the several elements are obtained from Equations 196 and
197 as follows:

Webs k = 1.335 — (0.0105 X 96) = 0.33
use k = 3% = 0.33

Flanges k = 1.335 — (0.0105 X 62.5) = 0.68

Stiffening lips &k = 1.371 — (0.0308 X 10.5) = 1.047
use k = 1.0

_ (2X0.33 X 5.76) + (4 X'0.68 X 3.76) + (4 X 1 X 0.63)
- (2 X 5.76) + (4 X 3.76) + (4 X 0.63)
16.55

= §9-O_§ = 057

F

It will be noted that F measures the ultimate unit stress on the com-
posite section in terms of the yield stress of the material and that for
the section used in the above example, the effective yield stress is
57 per cent of the yield stress of the material. It will also be observed
that, since the value of F never exceeds unity, only sections composed
entirely of elements, which are elastically stable at unit stresses equal
to the yield stress, have a form factor of unity.

This procedure can be applied only to sections which may be divided
into rectangular elements; curved elements have a much greater buck-
ling resistance, but no data is yet available for theoretical analysis of
their behavior.

When sections are comprised of elements which have a wide diver-
gence in their values of k, considerable distortion of the more elastically
unstable elements may occur before actual failure of the composite
section. For such members the factor of safety should be chosen with
due regard to these more unstable elements.

117 Allowable Unit Stress on Light-Gage Steel

For hot-rolled structural shapes made of steel with a yield stress of
33,000 pounds per square inch, the basic unit stress allowed by the
A.1.8.C. Specification is 20,000 pounds per square inch, which corre-
sponds to f,/1.65. Since the permissible underrun in thickness is 0.01
inch, a %-inch plate designed for 20,000 pounds per square inch might
actually be stressed to 21,200 pounds per square inch.
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Tolerance in thickness of strip steel is a greater percentage of the
thickness than for hot rolled plates; hence, for the same limiting stress
on material with maximum underrun in thickness, the basic unit stress
should be decreased accordingly. On this account, a safety factor of
1.85 based on the yield stress is recommended for light-gage steel, and
the basic unit stress would therefore be expressed as follows:

For material in tension,

B
J= 185 (199)
For material in compression,
/= ﬁ (200)
1.85

where F = form factor.

The American Tron and Steel Institute Specifications (1946) for the
design of light-gage structural members specifies a basic tensile stress
of f,/1.85 and the same value in compression for elements supported on
one edge when b/t is not greater than 12. When b/t is greater than 12
but less than 30, these specifications allow a value of unit stress given
by the following formula:

5 1 b
.= \-frn — 5430 ) — — — 8150) - 201
J <3 In ) 5 o ) ; (201)
where b = flat width of projecting element, exclusive of fillets.
= thickness.
Jo = fu/1.85.

When b/t is greater than 30 but not more than 60,

b
fo = 12,600 — 148.5 (-t) (202)

For elements supported along both edges, the A.L.S.I. Specifications
allow the basie stress of f,/1.85 on an ¢ffective design width, computed as
follows: For stress determinations for b/t equal or less than

175 X (10)° + V[17.5 X (10)%]2 — [436 X (10)®)[76001/F — 25f]
h 7600/f — 251

lm.s X (10)°] (g - 25)

m?

M

(203)

b =

4+ 25| ¢ (204)
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When b/t is greater than M,

600t
o T, )
For deflection determinations, when b/ is equal or less than

v _ 822X (10 +V132.2 X (10)*]* — [805 X (10)%]{10,320/f — 25f]

10,320/ — 25f
(206)
b
|[32.2 X (10)8] [E - 25]
b = e + 25| ¢ (207)
For b/t greater than N,
b, = 10;3/2]0t 1 — ;3120 (208)
)V

where b = flat width of compression element (exclusive of curved fillets).
b = effective design width used in determining the area, moment
of inertia, etc., of the effective section.
f = unit stress on the compression element computed on the
basis of the effective design width.
The portion of the width considered as removed to arrive at the effec-
tive design width is located symmetrically about the centerline of the
element.

118 Light-Gage Steel Beams

The load capacity of light-gage steel beams will usually be controlled
by the allowable unit stress on the compression flange. Shear stress in
the web at the supports and at concentrated loads must also be given
careful consideration.

When the elements of the compression flange have such proportions
that the flange is elastically unstable at stresses corresponding to the
yield stress of the material, consideration must be given to the form fac-
tor of the flange. The effective-yield stress may be considered as equal
to Ff,, where F is the form factor of the elements comprising the flange
area, if the flange is secured against lateral deflection.

When the compression flange is not fully secured against lateral bend-
ing, the allowable stress for vertical bending must be further reduced to
allow for the additional stress induced by such lateral bending action.
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The A.L.S.I. Specifications (1946) require that the maximum com-
pression in pounds per square inch on the extreme fiber of laterally
unsupported compression flanges of straight I-shaped members shall
not exceed

_ 250,000,000
f - L 2
¢)

where 7 is the radius of gyration of the entire sectinn about the gravity
axis parallel to the web.

Web stresses in light-gage beams are frequently critical under concen-
trated loads and at bearing on supports. The A.LI.S.I. Specifications
(1946) require that the maximum average shear stress on the gross area

of a flat web shall not exceed
64,000,000

()

where h = clear distance between flanges.
t = web thickness.

(209)

(210)

with a maximum of ¢ X f,/1.85

In webs consisting of two or more sheets, each sheet is to be considered
as a separate member carrying its share of the stress.

To avoid crippling of flat webs, the A.I.S.I. Specifications (1946)
require lengths of bearing as follows:

(a) For concentrated load at any point in the span or for the reaction
of continuous supports

1.85P 2
t — 4.62 (211)
2.414%f,

= minimum length of bearing (inches)

(b) For concentrated loads on the outer end of cantilevers or simple
end reaction of beams

1.85P 2
B=t [ - 8] (212)
0.93¢f,

= minimum length of bearing (inches)

The following examples illustrate the procedures discussed in this
article.



312 LIGHT-GAGE STEEL CONSTRUCTION

Ezample 1

Using the form factor procedure discussed in Article 116, determine the safe
total uniformly distributed load for a simply supported beam of 12-ft span.
The beam is made of structural-grade steel and has the cross section shown in
Fig. 193. The top flange is continuously supported against lateral deflection
at all points in the span.

ln . l» .S

" 0.88~ o

0.12 ->‘ - Y
/\ NN

23 N\ 8 :

B0 2 ©

© T3 3 P
g %

t=0.06" ‘ﬁl

o
Fia. 193.

The properties of the gross section are computed by the usual methods, with
the following results: Neutral axis at mid-point of depth

I=415in4 S =138
Allowable unit stress:
Tension flange

7=185= 185 — '18000psl

Compression flange. Flange is assumed to consist of the outstanding flat
elements supported along one edge only by the web.

b 0.88
1= 006 - M7
From Equation 196,

= 1.371 — (0.0308 X 14.7)
= 0.92
Allowable f = 0.92 X 18,000 = 16,600 psi

Safe W = 1:38 X 16,600

T5xiz %70k
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Ezample 2

Given the same beam and span as in Example 1, determine the safe load in
accordance with the A.I.S.I. Specifications {1946): (2) when the top flange is con-
tinuously supported against lateral deflection, and (b) when the top flange is
braced laterally only at the supports and at mid-span. Properties of the section
are the same as determined for Example 1.

Allowable unit stresses:

Tension flange
_ Sy _ 33,000

=185~ 1s5 — 18,000 psi

Compression flange. For case (a), Aange is assumed to consist of the out-
standing flat elements, supported along one edge only by the web.

b 088
2 =17
and from Kquation 201
fo = (5 X ]38’000 - 5430) — 15 (18,000 - 8150)14.7
= 16,530 psi

For case (b); unsupported length of flange = 72 in. Radius of gyration of
entire section about axis parallel to web, computed by usual methods, is

r = 0.292in. and % = 246.6

From Equation 209,

250,000,000 .
. = (24() ())2 = 4110 psi
. 1.38 X 16,530 _
(@) Safe W = ‘-~—-——1 5% 12 12,600 1b
1.38 X 4110
(b) Safe W = —r5—>—<—i2— = 3150 Ib

Ezxample 3

Given the beam section shown in Fig. 192 to determine the safe resisting
moment based upon the form factor of the compression flange. The material
is structural-grade steel (f, = 33,000 psi). The compression flange is continu-
ously supported against lateral deflection.

Properties of gross section (computed in accordance with usual methods):

Area = 1.83 sq in.
I =11.93
S= 397
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Compression flange will be assumed to consist of the outstanding elements,
4 in. wide with 3-in. stiffening lips. Check adequacy of stiffening lips.
b . 13.76
1 of outstanding flange element = 006 = 62.5
From Equation 185,
min d = 2.8 X 0.06[(62.5)2 — 144]*%
= 0.662 in. < § in.
Stiffening lips are therefore adequate, and outstanding flange elements may
be considered as supported along both edges.

Allowable unit stresses:
Tension flange

_ v _ 33000 i
F= 185~ 185 — 8000
Compression flange. Horizontal elements b/t = 62.5; hence, from Equa-
tion 197, -
k= 1.335 — (0.0105 X 62.5) = 0.68 > b—:—o

Stiffening lips b/t = 0.69/0.06 = 1L1.5, hence, from Equation 196,
k = 1.371 — (0.0308 X 11.5) = 1.01 (use 1.00)

Form factor (Equation 198) is

_ (068 X 3.76 X 0.06 X 2) + (1.00 X 0.69 X 0.06 X 2)
(3.76 X 0.06 X 2) 4+ (0.69 X 0.06 X 2)
_ 03068 + 0.0828 _ 0.3896
0.4512 + 0.0828  0.5340
=0.73
Hence, from Equation 209, the allowable unit stress is,
f = 0.545 X 0.73 X 33,000 = 13,130 psi

F

Safe resisting moment.
M = 13,130 X 3.97

52,130 in.-1b

Example 4
For the same data given for Example 3, compute the safe resisting moment
according to the requirements of the A.1.S.1. Specifications (1946). (See Exam-
ple 3 for properties of gross section, and for check of adequacy of stiffening lips.)
Effective design width, compression flange. From Equation 203, f = 18,000,

[[17.5 X (10)%] |
o = L+ V7.5 X (10)°]2 — [436 X (10)F][7600~,/18,000 — (25 X 18,000)] |
76001/18,000 — (25 X 18,000)

=41
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Since b/t = 62.5 > 44.1, use Equation 205.

b = 1000 X 0061 2300 ]
Visew | 62.5v/18,000
=247

The width to be deducted from gross flange width = 4 — 247 = 1,563 in. The
effective section will be as shown in Fig. 194a.

Areas
deducted
1.53” 1.53” 1.53”
™

2 ?

S B

] i c. g. of gross

section
- - - - deducted
! \Neutral axis

153" 153"

(a) )
Fra. 194,

268"
s
I‘[

Properties of effective section.  Deduction of the areas indicated in Fig. 194a
will reduce the area by 2 X 1.53 X 0.06 = 0.18 sq in. The neutral axis of the
effective section will be located

0.18 X 2.97 _ 0.5346 _ 0.32 in

(183 -018) 165
below the axis of the gross section. The moment of inertia of the effective sec-
tion is computed as follows:

11.93
0.19

I, of gross section
1.83 X (0.32)?

I of gross section about neutral
axis of effective section = 12.12
Deduct 0.18 X (2.97)? 1.59

I of effective section = 10.53
_ !_8_,000 X 10.53
- 3.32

Safe resisting moment, = 57,060 in.-lb
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119 Light-Gage Steel Columns

Considering the elastic stability of the elements comprising a section
in compression, it was shown in Article 116 that Py,;, = Ff,A. This
would therefore represent the limit of compressive load which could be
placed on a very short compression member (L/r approaching zero)
with no eccentricity of loading. The quantity Ff, represents the modi-
fied or effective yield stress which should therefore be substituted for f,
in column load determinations. For a member with L/r = 0, no eccen-
tricity of loading and based on a safety factor of 1.85, the value of the
average compressive stress should never exceed

P
f= 1 = 0.54Ff, {(213)

Since some eccentricity of loading and crookedness of member is unavoid-

able, the column formula must allow for such conditions and provide a

rational reduction in the allowable load. The author therefore recom-

mends the following working formulae for light-gage stecl members:
When L/r is less than 24,000/\/F,,,

s=F = 04648 (Ff,? (L)"’ (214)
T4 Y 2100 x (1008 \ r
When L/r is greater than 24,000/V Ff,,
P 131 X (10)°

R
r
For structural-grade steel members (f, = 33,000), Equation 214 may be

expressed in the following form:
When L/r is less than 132/+/F,

(215)

P Ly?
J = = 15300F — 0.437F" (-~ (216)
T

When L/r is greater than 132/+/F, use Equation 215,

The foregoing column formulae are determined from a consideration
of the secant formula (see Equation 150, Chapter 10) when the uninten-
tional eccentricity of loading is e¢; = 0.257%/c, the eccentricity due to
crookedness of member is e; = L/480, and the total eccentricity is
e = e; + e5. The results given by the formula will approximate those
given by the secant formula for a member with r/c = 0.8. It will also
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be observed that Equation 214 is the Johnson-type parabolic formula
where Ff,, representing the effective yield stress of the section based on
its elastic stability, has been substituted for f,,.

The determination of the safe axial load on a typical section is as
follows:

Ezample 1

Consider the section shown in Fig. 192 to le used as a column having an
unsupported length of 8 ft. Properties of gross section (computed in the usual
manner) are

.

Area = 1.83 sq in.
For axis (1)-(1), I =11.93,r = 2.55

For axis (2)-(2), I = 2.08, r = 1.06
Form factor (see Article 116) F =057

L 96 132 .
I =0l < - =175 (Use Equation 216)

1.06 T A/0.57

= (15,300 X 0.57) — 0.437(0.57 X 91)2

»
-

8721 — 1176 = 7545 psi
Safe axial load = 7545 X 1.83 = 13,810 1b

The A.I.S.I. Specifications (1946) specify column formulae similar to
Equations 214, 215, and 216 except that a term @ is substituted for the
form factor . The factor Q is defined by these specifications as follows:

(a) For members composed entirely of stiffened elements, Q is the
ratio between the effective design area as determined from the effective
design widths of such elements (Iquation 204 or 205) and the full or
gross arca of the cross section. The effective design area used in deter-
mining @ is to be based upon the basic design stress f,/1.85.

(b) For members composed entirely of unstiffened elements, @ is the
ratio between the allowable stress f. (Equation 201 or 202), for the
weakest element of the cross section (the element having the largest
flat-width ratio), and the basic design stress f,/1.85.

(¢) For members composed of both stiffened and unstiffened elements,
the factor Q is to be the product of a stress factor Q, computed as out-
lined in (b) and an area factor Q, computed as outlined in (a), except
that the stress upon which Q, is to be based shall be that value of the
unit stress f, which is used in computing Q,, noting that the effective
area to be used in computing Q, is to include the full area of all unstiff-
ened elements. The following example illustrates the application of
the A.I.S.I. Specifications to a typical problem.
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Example 2

Same problem as Example 1, computed in accordance with the A.IS.I.
Specification. The effective section, according to this specification, is represented
in Fig. 194b.

Since the section is composed of both stiffened and unstiffened elements, the
procedure outlined in (¢) will apply. The stiffening lips arc the only unstiffened
elements of the section and, since b/t = 10.5 < 12, f, = 18,000, and @, = 1.0.

The value of @, is determined in accordanee with the provisions stated in (a)
as follows: From Equation 203, when f = 18,000, M = 44.1 and since b/t for
both the web and the flanges exceeds this value, the values of b, are given by
Equation 205.

For the flanges,

_ 7600 X 0.06[ 2300
©T 4/18,000 [ 62.5\/1‘5,600‘]
= 2.47 in.
For the webs,
5. — 7600 X 0.06 [l 2300 ]
/18,000 964,/18,000

= 2.79 in.

To determine the effective section (Fig. 194b), the following widths must
therefore be deducted.

Flanges 4 — 247 = 1.53 in.
Webs 6 — 2.79 = 3.21 in.
Giross area = 1.83
Deduct 4 X 1.53 X 0.06 = 0.37
2 X 3.21 X 0.06 = 0.38
0.75

Effective area = 1.08 sq in.

1.08
= e = ¢
Qa 153 0.59

The @ factor used to replace F in the column formula (Kquation 216) is
therefore
Q= 0,0 =1X0.59 = 0.59

'}I) = (15,300 X 0.59) — 0.437(0.59 X 91)?
<.

It

9027 — 1260 = 7767 psi

Safe axial load = 7767 X 1.83 = 14,210 1b

I
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PROBLEMS

11.1 The section shown is to be used as a beam. bending shout axis 1-1.  What
is the minimum value of ¢ for which the compression flange can be considered elas-
tically stable?

UL
R=0.16" b,
1. =

o~

- 3
1

11-2 Using a value of ¢ = 0.08 in. for the beam section in Problem 11-1, calcu-
late the form factor of the compression flange and the allowable stress in compres-
sion. Assume grade C steel (f; = 33,000 psi).

11.8 The scction shown is to be used as a simple beam 12 in. wide, on a span of
7 ft. Determine the safe uniformly distributed load (@) using the form factor to find
allowable stress, and (b) according to the A.L.S.I. Specifications (1946).

LS 0.08"—{|—

.(—D L—l;g"‘ 12” ng"—J e—

11.4 For the beam section shown calculate the allowable stress in compression
and the resisting moment of the section (a) using the form factor, and (b) using the
A.LS.IL Specifications (1946). Neglect fillets in finding properties of section, and
assume full lateral support for compression flange.

2" 2"

T

10*

11.5 A rectangular steel plate 10 in. wide, 0.10 in. thick, and 3 ft long is uni-
formly loaded in compression in the direction of its length. The longitudinal edges
are clamped (fixed). f, = 33,000 psi. (a) According to the Bryan-Timoshenko
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formula for the buckling of thin plates, calculate the critical buckling unit stress and
also the total load on the plate at that stress. (b) s the total load calculated in
(a) the maximum load the plate will resist? Expldin.

11.6 The section shown in Problem 11-1, with ¢ = 0.08 in., is used as a beam on
an 18-ft span. The compression flange is braced laterally at the ends and at mid-
span. Calculate the allowable stress in compression (f, = 33,000 psi) () using the
form factor of the compression flange, and (b) according to the A.LS.I. Specifica-
tions (1946).

11.7 According to the A.I.S.I. Specifications (1946) calculate for the section in
Problem 11-4 (a) the maximum allowable reaction for a simply supported beam,
bearing length 3 in. (b) the allowable concentrated load on a bearing plate 2 in. long.

11-8 A column of length 8 ft has the section shown. f, = 33,000 psi. (2) Find
the allowable load using the form factor of the section. (b) Find the allowable load

3” .
| ¥

—

0064" ™
) I

according to the A.I.S.1. Specifications (1946). (c) At what load would failure by
local buckling be expected in a very short column having this section?

11-9 An axially loaded strut is made up of two angles arranged as shown. Fy
= 33,000 psi. Calculate the allowable load if the length is 10 ft.

11.10 A column is made up of two C-sections placed as shown with the lips
welded together at 2-ft intervals. If L/r = 45 and f, = 33,000 psi, calculate the
safe axial load.




Chapter 12

REINFORCED CONCRETE BEAMS, SLABS, AND
COLUMNS

120 Physical Properties of Concrete

Concrete is an artificial stone consisting of a mixture of particles of
stone, Portland cement, and water. This mixture in plastic or liquid
condition is poured into molds or forms which give it the desired shape,
and it is then allowed to set for such time as is necessary for it to harden
and attain necessary strength. The forms and their supports are then
removed and the exposed surface of the concrete left rough or finished
as may be desired.

The active ingredients in the concrete mixture are the Portland
ccment and the water. These combine chemically,' forming a stone-
like matrix in which the particles of stone in the concrete mixture are
imbedded. The richness of the mixture is determined by the percentage
of cement in the resulting concrete, and the mix is expressed by the ratio
of the parts of cement to parts of stone particles (aggregatc). Thus a
mix 1:3 means one part cement to three parts of aggregate, and a 1:4
mix is a leaner mix because of the reduced percentage of cement. Mixes
are sometimes expressed in the form 1:2:4, meaning 1 part cement to
2 parts fine aggregate to 4 parts coarse aggregate.

*The mixture of cement and water forms a paste which fills the spaces
or voids between the particles of stone, and the volume of these voids
determines the quantity of cement paste required for a unit volume of
finished concrete. The strength of the concrete is proportional to the
quality of this cement paste as measured by the water-cement ratio or
ratio between the quantity of cement and quantity of water per unit
volume of concrete. (See Fig. 195.) The cement paste also acts as a
lubricant applied to the stone particles and gives the resultant concrete
mixture plasticity which permits it to flow into place. Increasing the
quantity of water will also increase the fluidity of the concrete, but if

1 See “Digest of the Literature on the Nature of the Setting and Hardening Process
in Portland Cement,” by R. H. Bogue, Paper 1617 of the Portland Cement Fellow-
ship at the Bureau of Standards, Washington, D. C.

321
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water alone is added without corresponding increase in the cement, the
resultant concrete will have impaired strength.

The stone particles contained in the mixture are called aggregate and
classified as fine aggregate and coarse aggregate. 'The fine aggregate
includes particles less than about 4 inch in diameter; the coarse aggre-
gate includes the remainder of the stone particles. The maximum size
of stone in the coarse aggregate is determined by the massiveness of the

100 L L~ Pn;per consistency for mass c'oncvete.
¢ "] concrete highway pavements, etc.
90[ o £ t + t + —t
;'E: 88 This range of consistency should be
sol & §E _= used for cast products, renforced ____|
Ess , \ ] , etc; thin bers require
8 f‘,§ b N the greater amount of water
0 z% £
§rete s
5. 2s2 /| ¢
60} & o3 7 8
g 88§, - \ With this consistency about
g |-€8/ § \ // one- half the strength 1s lost.
§%01& § \<
: 5
s N
- 40 £
3 g N
[
$30 % :
( e “sloppy" concrete some - \\
S times used in roadwork and in P
20 E]l  building contruction, two- thirds ———1 .
é to three - fourths of the possible i
° strength of the concrete is lost.
10 £ ‘
l
“70 80 90 100 110 120 130 140 150 160 170 180 190 200

Water Used - Figures are PerCent of Quantity Giving Maximum Strength.
Fia. 195. Effect of Quantity of Mixing Waler on Strength of Concrete.

finished construction and the necessity for complete imbedment of all
stone particles. Aggregate should be reasonably well graded from fine
to coarse in order to provide the most dense mixture and therefore reduce
the required quantity of cement paste to & minimum. It should be com-
prised of sound, strong, and durable pieces of stone or stones and should
be free from organic matter, loam, and material which would reduce the
strength or durability of the concrete.

The combining of cement and water constitutes the hardening process
and requires an appreciable interval of time, during which setting or
curing period the fresh concrete must be supported. The temperature
maintained during this period is also important, as reduced temperatures
will retard, and increased temperatures accelerate, the setting process.
The period of time which must be allowed for curing must therefore be
adjusted accordingly. (See Fig. 196.) On the basis of strength, the
quality of concrete is defined by the crushing strength of concrete cylin-
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ders made and tested under laboratory conditions at the age of 28 days.?
The test cylinders are stored and cured under ideal conditions and main-
tained at a temperature of 70° ¥ during this period. This strength
forms the basis for establishing working stresses used in reinforced con-
crete structures, and, in all cases where loads may be applied to the struc-
ture before the expiration of this 28-day period, either the green con-
struction must be adequately supported or clse the design adjusted to

120, T T
§l Temperatures given are 90°F
10 the mean temp -
§ of moist curing room. //7(!:
100)
- L
& % -
k3 L~ °F|
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Age at Test in Days.

Fia. 196. Percentages of Strength for Different Temperatures.

(From Bulletin 81, University of Illinois Engineering Experiment Station.)

provide for the reduced strength of the conerete. The same conclusions
apply for concrete cured under temperature conditions lower than the
normal of 70 degrees. Freezing temperatures are likely to produce per-
manent mechanical damage to the concrete and are never permitted.
Most specifications require that concrete be maintained at temperatures
in excess of 50 degrees during the curing period.

‘Long-time tests (Fig. 197) indicate that concrete continues to gain
in strength with age. The rate of increase depends upon the quality of
the concrete and the moisture conditions surrounding it. This fact is of
importance in considering the strength of existing concrete structures.

Concrete is used primarily for resisting compressive stress, and its
behavior in compression is reasonably reliable and predictable. Quite

? “Standard Method of Making and Storing Compression Test Specimens of Con-

crete in the Field,” A.S.T.M., Serial Designation C 31-39; “Standard Method of
Test for Compressive Strength of Conerete,” A.S.T.M., Serial Designation C 39-39.
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the reverse is true of its resistance to tension; hence its tensile strength
is rarely utilized in design. Concrete is not perfectly elastic even under
low unit stresses and continues to deform slowly over a long period of
time under sustained stress.®> Stresses caused by fixed loading should
therefore be kept relatively small. For the purpose of computing prob-
able values of internal stress and required dimensions of concrete mem-
bers it is necessary to establish the ratio between unit stress and corre-
sponding deformations of the material. For so-called elastic materials,
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Fic. 197. Strength-Age Curves for Concrete Cured in Various Manners.

(From paper, “Some Long Time Tests of Congrete,” by M, O. Withey, J.

Am, Concrete Inat.,
February, 1931.)

such as steel, this ratio (modulus of elasticity) is constant up to the pro-
portional limit and the stress-strain diagram is practically a straight
line for unit stresses from zero to the proportional limit. For concrete,
the stress-strain ratio varies (Fig. 198) and diminishes in value as the
unit stress increases. The ratio of unit axial stress to corresponding
unit axial deformation in concrete is called the secant modulus and is
what is meant when the term modulus of elasticity is used.

The selection of a proper modulus * for use in computations of internal
stress is a matter which involves careful consideration of all the factors

38ee “Flow of Concrete under the Action of Sustained Loads,” by Davis and
Davis, J. Am. Concrete Institute, March, 1931.

4 See “Modulus of Elasticity dnd Poisson’s Ratio for Concrete and the Influence
of Age and Other Factors upon These Values,” by Davis and Troxell, Proceedings
A.8.T.M., 1929, Part II, p. 678.
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relating to the behavior of concrete. Particular consideration must be
given to such factors as the quality of the concrete, its age, moisture
conditions, and magnitude of sustained stress (Fig. 199).

121 Reinforcing Steel

Steel is imbedded in concrete for the purpose of carrying tensile
stresses and the two materials, steel and concrete, must cffectively
cooperate to resist such internal compressive and tensile stresses as may
be developed in the structure. Steel used for reinforcement may be of
any convenient form, but, since the surface of the steel is a natural
cleavage plane, the necessary cooperation between steel and concrete
will not exist unless there is adequate resistance to the shearing forces
which may be developed on the steel surfaces; moreover it is necessary
that the steel areas be well distributed over the tensile stress zones.
To meet these conditions steel in the form of round or square bars is
usually preferable. Wire mesh, welded-wire fabric, and expanded metal
are also all useful products.

Steel used in the manufacture of round and square reinforcement bars
is designated as billet steel (A.8.T.M. Serial Designation A 15-39), rail
steel (A.S.T.M. Serial Designation A 16-35), or axle steel (A.S.T.M.
Serial Designation A 160-39).

Billet steel used in the manufacture of plain, deformed, or cold-
twisted concrete reinforcement bars may be made by either the open-
hearth, electric-furnace, or acid-Bessemer process. Bars must be rolled
from new billets, and rerolled material is not acceptable under this desig-
nation. Plain and deformed bars are made in three grades, structural,
intermediate, and hard. Tension and bend test requirements for billet
steel are given in Tables 36 and 37. Cold-twisted bars are made from stecl
conforming to the requirements of plain bars of structural grade. Plain
bars, either round or square, are those with relatively smooth surface.
Deformed bars are rolled with rolls which have corrugations of some
particular pattern. These produce irregularities or deformations on
the bar surface for the purpose of increasing the resistance to slipping
of the bar through concrete in which it may be imbedded. While there
are no prevailing specifications for the character of these deformations,
it should be noted that usual design allowances assume 25 per cent
higher resistance to bond (shear on the surface of the bar) for deformed
bars than for plain bars; the character of the deformation should there-
fore be such as to justify such increased allowance (see Fig. 200). Billet
steel is regarded as more reliable than other steels used in the manufac-
ture of reinforcement bars.and is therefore generally preferred. Inter-
mediate-grade billet steel is more commonly used than the other grades.



REINFORCING STEEL 327

Where the reinforcement must be severely bent to meet design require-
ments, structural grade may be preferred, owing to its greater ductility
(see Table 37).

Rail-steel concrete reinforcement bars are rolled from standard section
T-rails, and material known by the terms rerolled, rail-steel equivalent,
or rail-steel quality is not acceptable. Three classes of bars are made
from this material, plain, deformed, and hot-twisted. The tensile and bend
test requirements for plain bars correspond with those for billet-steel
plain bars of hard grade; the requirements for deformed and hot-twisted
bars are the same as hard-grade deformed bars of billet steel.

Axle-steel reinforcement bars are rolled from carbon-steel axles for
cars and locomotive tenders of specified journal sizes. They are either
plain or deformed and in three grades, structural, intermediate, and
hard. Tensile and bend-test requirements are the same as for billet steel.

The Building Regulations for Reinforced Concrete (A.C.I. 318-41T)
of the American Concrete Institute permit the following allowable unit
stresses in reinforcement.

(a) Tension. (fs = tensile unit stress in longitudual reinforcement) and (f,
= tensile unit stress in web reinforcement) 20,000 pounds per square inch for rail-
steel concrete reinforcement bars, billet-steel concrete reinforcement bars (of inter-
mediate and hard grades), axle-steel concrete reinforcement bars (of intermediate
and hard grades), and cold-drawn steel wire for concrete reinforcement. 18,000
pounds per square inch for billet-steel concrete reinforcement bars (of structural
grade) and axle-stecl concrete reinforcement bars (of structural grade).

(b) Tension in one-way slabs of not more than 12-foot span. (fs = tensile unit
stress in main reinforeement.) For the main reinforcement, § inch or less in diam-
eter in one-way slabs, 50 per cent of the minimum yield point specified in the Stand-
ard Specifications of the American Society for Testing Materials for the particular
kind and grade of reinforecement used, but never to exeeed 30,000 pounds per square
inch.

(¢) Compression, vertical column reinforcement. (fs = nominal working stress
in vertical reinforcement.) Forty per cent of the minimum yield point specified in
the Standard Specifications of the American Society for Testing Materials for the
particular kind and grade used but never to exceed 30,000 pounds per square inch.

The A.A.S8.H.O. Specifications (1944) for highway bridges require all
reinforcement to be deformed bars made of billet steel of structural or
intermediate grade made by the open-hearth process. The use of cold
twisted bars is prohibited. Tensile unit stress of 18,000 pounds per
square inch is permitted for structural grade steel and 20,000 pounds
per square inch on intermediate grade steel in flexural members. For
web reinforcement the allowed tensile stress is 16,000 for structural-
grade steel and 18,000 pounds per square inch for intermediate grade
steel.
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Corrugated Square (Type B)

E& S i

"
Corrugated Round (Type C)

HE THE

C 000000 O

Twisted Square Bar

Fig. 200. Deformed Bars—Load-Slip

(From Bulletin 71, Engineering Experiment
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The American Railway Engineering Association Specifications (1944)
for concrete and reinforced concrete railroad bridges and trestles require
that all steel bars used for reinforcement, and which carry calculated
stress, shall be of structural or intermediate grade billet steel. Steel
bars which are used for temperature reinforcement, and do not carry
calculated stress, may be made of rail or axle steel. These specifications
permit both plain and deformed bars and define an approved deformed
bar as one which will develop at least 25 per cent greater bond stress
than a plain round bar of equivalent cross section. The permitted unit
tensile stresses are 18,000 pounds per square inch on structural grade
steel bars and 20,000 pounds per square inch on intermediate- and hard-
grade steel bars.

Standard sizes of deformed reinforcement bars ordinarily carried in
stock order are given in Table 38.

122 Reinforced Concrete Beams—Theory of Flexure

The analysis of internal stresses in a reinforced concrete beam is
made in accordance with the accepted theory of flexure and under the
assumption that the stresses do not materially exceed the values indi-
cated hereafter as safe working stresses. It is further assumed that all
tensile stress is taken by the steel reinforcement. It is also customary
to use the following values for the modulii of elasticity:

E. = 1000 f, psi
E, = 30,000,000 psi
n = E,/E, = —J’,,--— (217)

where E, = modulus of clasticity of concrete.
E, = modulus of elasticity of steel.
f. = crushing strength of concrete at 28 days.
n = ratio of modulii.

Since the concrete is assumed to carry no tension, steel reinforcement
must be imbedded in the lower part of the beam to resist the tensile
stresses induced by flexure. Figure 201 represents a beam with a right
section zz taken at any intermediate point in the span length. In
accordance with the accepted theory of flexure, plane sections before
bending are assumed to remain plane sections after bending. This
means that unit deformations must be proportional to distances from
the neutral axis as indicated at b. The unit stresses resulting from these
deformations are shown at ¢ where it will be noted that the compressive
unit stresses on the concrete vary from zero at the neutral axis to a
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maximum at the extreme fiber, in accordance with the assumption of

constant proportionality of unit stress to unit strain for concrete. At
the extreme fiber in compression

Je = ek,

where e, = unit deformation of extreme fiber.

Below the neutral axis the unit stresses produced in the concrete are
omitted, in accordance with the assumption of zero tensile stress on con-
crete, and the actual section which resists bending-moment in aceordance

Load P Plane Section
X before Bending
ec l I

d kd Neutral ﬁr;c “

|
!
.. Steel _Ba;__j Axis w
it j———‘.f.‘i ‘\___.__ | T=f,A,

| Plane Section A,
Rea;:etion Span X after Bending
(a) (%) (c) (d)
Fia. 201.

with these assumptions is indicated at d. The steel will have a unit
stress,
Jo = el

where e, = unit deformation of steel.
From similar triangles (Fig. 201b),

o _ fﬁﬁf_f = ffﬁ = __Ifd_ (218)
€q J.E. Js d — kd
The loads, reaction and unit stresses acting on the part of the beam
on one side of the given section, constitute a force system in equilibrium
and must fulfill the general conditions for static equilibrium, £H = 0
and ZM = 0. The shear on the section is for the present omitted as it
will be made the basis of a special stress determination; therefore (Fig.
201¢) v
4

C=T=">=- 219
W (219)

M = Cjd = Tjd

where

where C = total resultant compressive foree on concrete.
T = total resultant tensile force on concrete.
M = bending-moment.
jd = lever arm of couple CT'.
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It will be observed that the effective section shown at d is the same
as one which might have been taken through a crack in the lower part
of the beam.

123 Reinforced Concrete Beams—Transformed Section

The actual determination of the location of the neutral axis and
calculation of the values of unit stresses, or the safe resisting moment,
can most readily be accomplished through the medium of the trans-
formed section. This is an imaginary cross section obtained by substi-
tuting an imaginary material for the stecl area. This material is assumed
to have the same modulus of elasticity as the concrete, and the substi-
tution must be made in such a manner as not to disturb the internal
stress relationship outlined in Article 122. The comparison of the actual
and transformed section is shown in Fig. 202 where it will be seen that
the transformed section at b is obtained by replacing the steel arca with
the imaginary area nA,; the unit stress on this imaginary area is

8E0 8
f=ek:. = f—,~ e (220)
E, n
and from Equation 218,
kd Je
—— = (221)
d—kd f

This shows that line ab (Fig. 202b), indicating the stress distribution
across the section, is a straight line such as would be found for a homo-
geneous beam. In accordance therefore with the laws of internal unit-
stress distribution developed for homogencous beams, the ncutral axis
must coincide with the centroid of the transformed area, and the statical
moment of the compressive area with respect to the neutral axis equals
the statical moment of the transformed tensile area with respect to the
same axis. Moreover, the resisting moment of the section may be
expressed as follows:

. J' Jol
M, =Tjd = = (222)
d—kd n(d— kd)
M, = cid =% (223)
¢ T T
where M, = resisting moment based on unit stress in steel.
M, = resisting moment based on unit stress in concrete.
I = moment of inertia of transformed section.

For sections of irregular outline, the determination of the location of
the neutral axis and value of the moment of inertia of the transformed
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Neutral Axis

Fia. 203.

Rectangular Beom — B. M. = 480000 #

18
¥

N
Rap
nnn
s
Xy
[

2 X Neutral Adis
.i—‘ Pr-{- 27 72223
A et 7
L SRS T ™ 7AY S

. Transformed
Actual Section Section
E g statical t of C i
Area fo statical moment of * Oramlomud
Steel Area:
lO 1

=27(18—y ) =486 — 27y

Sy' + 27Ty =486
24 5.4 2.7 = 97.2 2.7 = 104.49
v v+ gt |o§s + e

y= 155"
# of Inertia (transformed section]
Concrete 10 X (7.55)* X Y3 = 1435
Transf. Steel 27 X (1045) = 2960
I= 4395 indt
— 430000 X 7S5  _  goce/on
fo= X = 826#/

f.= _.1‘“2&2!4.3;_05-&&5 = 17150#/0"

F1a. 204. Analysis of Rectangular Beam.
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section is a somewhat complicated matter. For such sections a semi-
graphical solution may be made as follows: The transformed section is
determined as outlined above and as indicated in Fig. 203. Line AR is
laid off to scale representing the distance d. Curve AC is plotted with

Rectangular Beam

With Notch on Compressive Side Ag= 3 X 0.6 = 1.80"
BM = 480000 "# n =15
. nAs= 15X 1.8 = 270"
10 et
L-H 2" |-
& 7/
f 1]
B E = s
g = L Neutral Axis
~ ’,* v=7a) wAie2?
C3Bars %" !
Actual Section Transformed
Section

-'.g—z + ’_l_yz;’l =27(18—y)

4yt oyt —4y A8 —21y
Sy* 4+ 23y =482
Yt 46y + (23 = 96.4 + (2.3P = 101.69
¥+ 23 =101
y= 18"
Moment of Inertia (Transformed Section)

Concrete: 8 X (1.8 X YA = 1265
2X (58X 5= 130

Transf. Steel 27 X (10.2)* = 2810
1= 4205 in*
Unit Stresses
— 480000 X 7.8 _ /0"
Jo= N000OXTE 890 #/

f= moooxn;:.z X5 _ 17400 #/0"

F1a. 205.

intercepts representing the statical moment of areas X with respect to
their bases mn. This is done by assuming successive locations for mn,
dividing the corresponding area X into areas of convenient geometric
form and computing the sum of the moments of these areas about mn.
Line BC is drawn to represent the equation y, = nA,xz. The neutral
axis will then be located at C, the intersection of curve AC with line
BC, and the distance kd may be scaled. It should be noted that for
steel in more than a single layer the line BC will be a broken line with
s representing the sum of the moments of transformed steel areas about
a given point in the depth. The moment of inertia of the transformed
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section will be the area A BC with intercepts y scaled as statical moments
and distances along A B scaled in inches.

For rectangular shaped beam sections it is easier tu locate the neutral
axis, by equating the statical moment of the area in compression to the

T-Beam
Determine Safe B.M.
Alomable Work Je=1000
wable Working Stresses: 'f.=120000
20" 20"
. {
;4 ] %
= g
) . Centroid of _ |= _— Q —_
= N ;5‘ "3, JSOetl Area 10 —&Nowd Axis
~ — ———
Wi e
S e ] Vax.exas nA=12 X 1.0 = 360="

" =10" ’ '
5 Bors %" ¢ L_O__J TXE Transformed Section

A=5X.6=130 {Assuming y > 4")

Actual Section

Location of N.A.

2 2
_’gL_..’_xﬂ’!l:L =311 =)
10* — S5y’ + 40, — 80 = 6156 — 36y
Sy 4+ 76y = 6956
we 17.2y 4 (8.6)2 = 139.12 4 (8.6)° = 213.08
y= 14.6 — 8.6 = 60"
{Assumed transformed section it correct since y > 4")

Moment of Inertia

Concrete 20 X (8 X ' = 1440

deduct WX @PXYs= _2

1413
Trans, Steel 36 X (1) = 4440
I= 5853 int
Resisting Moment

Concrote a1, = 120 X 5853 _ ors000"#

. _ 20000 X 5853 _ .
Stesl M= igxinr - = 877000

Safe B.M. [is determined by Steel) = 877000" #
Fic. 206. Safe Load for Reinforced Concrete T-Beams.

statical moment of the transformed steel area. Typical solutions of
such beams are shown in Figs. 204, 205, and 206.

124 Bond Stress

The bond stress on the reinforcing steel is the shear developed on the
surface of the bars due to changes in tensile force in the length of the
bar. Thus for two successive sections (Fig. 207) a differential distance
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apart, assumed as unity, the bending-moments will in general differ in
magnitude and from Equation 219

M,
Ty=—
jd
M
Ty = —
Jjd
O S B B (224)
1o id jd -
©) ®
_c__‘s§ ?__ca.
i e ——— i
4' T — 7'>
Unity
® )
Fia. 207.

The building regulations of the American Concrete Institute (ACI
318-41) permit an increase in the allowable shear and bond stress when
special anchorage of the longitudinal steel is provided. To meet the
requirement for special anchorage, every bar must be terminated in a
standard hook in a region of compression or else bent across the web at
an angle of not less than 15 degrees with the longitudinal portion of the
bar and made continuous with the negative or positive reinforcement.
A standard hook means either (a) a complete semicircular turn with a
radius of bend on the axis of the bar of not less than 3 and not more than
6 bar diameters at the free end of the bar, or (b) a 90-degree bend having
a radius of not less than 4 bar diameters plus an extension of 12 bar
diameters.

This difference in force must be resisted by the unit shear stresses or
bond on the surface of the reinforcement; hence

Y (225)
U=—
Zojd
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where % = unit bond stress in pounds per square inch.
V = total vertical shear on the given section.
Yo = sum of perimeters of the bars.
jd = lever arm of the internal couple, CT.

From Equation 222, substituting T' = f,4,, gives
1
nd,(d — kd)

Thus for the beam in Fig. 204, the bond stress on the reinforcement
at a section where the vertical shear is 12,800 pounds would be com-
puted as in the following example.

jd (226)

Ezample V = 12,800 Ib
d — kd = 10.45 in.
nA, = 27 sq in.
I = 4395 sq in.
A 4395 .
]d = ma—g = 15.51n.
2o = 3 X 2.749 = 8.247 in.
12,800 :
= g247 x 155~ 10

When the compressive area is rectangular as in Fig. 204, C is located
at the center of gravity of the triangular stress distribution in compres-
sion, and .

jd=d— }kd (227)
For irregular-shaped compressive areas, such as are represented in Figs.
205 and 206, the value of jd is obtained from Equation 226.

125 Shear and Diagonal Tension

The intensity of the horizontal shearing stress at any point in the
depth of a beam may be computed from the general formula developed
for homogeneous beams, using the transformed section. The intensity
will be maximum at the neutral axis, and, noting that the statical mo-
ment of the area on the compression side about the neutral axis equals
the statical moment of the transformed steel, with respect to the neutral

axis: Vedd— ki) V
pm e T 228)
Ib byd

where b = breadth of beam at the neutral axis.
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As established in the accepted theory of flexure, the intensity of
vertical shear on any element of a beam equals the intensity of the hori-
zontal shear determined by Equation 228. At the neutral axis these
. shearing stresses will induce diagonal tension stress in the material (Fig.
208) which will be inclined at 45 degrees to the horizontal and equal in

intensity to the horizontal shear stress. In ac-

vx141 cordance with the assumption of no flexural stress
on concrete below the neutral axes, this diagonal

vXUnity  tension stress will remain constant over the lower

part of the beam. Above the neutral axis,

particles of concrete are acted upon by a com-

vX Unity pressive unit flexural stress in addition to the
Fia. 208. horizontal and vertical shear stresses, and the

direction and magnitude of diagonal tension
stress will vary accordingly. This variation in stress is, however, not
computed, and it is assumed that the diagonal tension stress computed
at the neutral axis exists over the entire section. To take care of diag-
onal tension stresses, steel reinforcing must be arranged either in a
vertical or inclined position so that it will traverse all diagonal planes
on which such diagonal tension stress may exist. Contrary to the
assumption made in connection with flexural stresses, the concrete is

allowed to carry part of the diagonal tension stress, the remainder being
cared for by the steel reinforcement. J

For the arrangement shown at a in Fig. 209 the total tension on in-
clined bars B would be determined as follows:

3 (v — v")bs

sin 45°

= fudy (229)
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where v’ = diagonal tension unit stress allowed on the concrete.

b = breadth of beam at the section corresponding to the location
of bars B.
s = spacing of bars in the span.
f» = unit tensile stress on steel bars.
A, = total steel area in width b.

When the inclined bars are at an angle o to the axis of the beam, the
total tension is computed by the following formula

T=————=/d, (230)
sin a + cos a
For the arrangement shown at b in Fig. 209, the total tension in the

vertical bars is the component of the diagonal tension on the area
sb/sin 45°; hence

(v —)bs |
T=——-—.sin45°
sin 45°
= (@ —bs = f.4, (231)

For more complete details and discussion of web reinforcement the
reader is referred to standard textbooks and reference books on rein-
forced conerete; also to standard specifications such as the “Building
Regulations for Reinforced Concrete’” adopted by the American Con-
crete Institute. Typical web reinforcement computations are shown in
Figs. 217 and 218.

126 Design of Rectangular Beams

Working stresses in reinforced concrete building construction as
recommended in the Building Regulations for Reinforced Concrete of
the American Conerete Institute (ACI 318-41) are given in Table 39.

While it would be possible to determine the required section and
arrangement of reinforcement in a concrete beam from the general
relationships stated in Articles 122 and 123, these can, for a rectangular
section, be expressed in more convenient form for practical use. In the
expressions which follow, it should be clearly understood that they are
applicable only to beams having a rectangular cross section in com-
pression, and in general they oannot be used for any other type of
section.
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£ i phskd
7
V4
d C
[
““Neutral Axis
jd
Tefde
Fic. 210.

Standard design formulae for rectangular beam may be derived as

follows (Fig. 210):

E,
n=—
E,
A,
P =%
k= V2 + (p)® — pn
i=1-13%k
C = Lf.kbd

T = fsAs = fopbd

oM [ M
d = —Q or -0
kgdf. pibfs
For simultaneous stresses f, and f,,

2
TG

Equation 238 may also be arranged in the form

normal p =

W = %fckj or fipj =K

M ’
d= \/——-
Kb

(232)

(233)

(234)
(235)
(236)
(237)

(238)

(239)

(240)

(241)
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In designing a concrete beam, the bending-moments and shears are
computed in the usual way with proper allowance, assumed in the load-
ing, for the weight of the beam. The computaticus ar: therefore sub-
ject to adjustment when a more accurate estimate of the weight of the
beam is available and the design is on this account one of successive
approximations. Materials of suitable quality are then decided upon
and the allowable working stresses established. If it is assumed that the
concrete and steel will be simultancously stressed to these working
stresses, the normal steel ratio p is
obtained from Equation 239. Corre-
sponding values of k£ and j are com-
puted from Equations 234 and 235.
The values of p (normal), k, j, and
corresponding value of K are all con-

2D

AN

7

rz7
o e

77

¥ Min.a =1%"
.ﬂ,‘ Min. b =11; Diam. of Round Bar or
iz Side of Square Bar
s ) (Not Less Than 1”)
Fia. 211, Fia. 212.

stant for the given materials. The value of d is obtained from
Equation 238 or 241 by assuming practical values for b and computing
the corresponding values of d. Values of b should be chosen with proper
consideration for the economy of form construction and in conformance
with limitations imposed by the supporting construction at the ends of
the beam; sufficient width must be provided to enable the bars to be
arranged without crowding and to furnish sufficient section for shear or
diagonal tension resistance. Beam forms are usually made with longi-
tudinal planks which form the bottom and sides (Fig. 211) and in gen-
eral, maximum overall economy of forms and of concrete will be obtained
when the width is approximately six-tenths of the overall depth of the
beam.

Tables and diagrams can be prepared from the foregoing design
formulae and are useful aids in the computing work. Table 40 gives
values of p, k, j, and K for various commonly used combinations of unit
stresses.

The value of d finally selected should be based on making the overall
depth a practical dimension (preferably in 3-inch variations) sufficient
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to allow for proper imbedment of the steel. The area of steel required
is computed from Equation 233, using the normal value of p and the
theoretical depth; it may also be computed from the formula

M
Jfsid

8

where d = theoretical depth.

Bars are then selected to furnish this area in conformance with the
required spacing of reinforcing bars (sce Fig. 212). Finally the shear,
diagonal tension, and bond stresses are checked and such adjustments
made as may be indicated by these computations.

A typical design of a rectangular beam is given in Fig. 213.

DESIGN OF RECTANGULAR
REINFORCED CONCRETE BEAM
Dato: Spen 20'-0", simply supported.
Total Live Load == 600#, lin. #.
Allowable unit stress

Je =1,000#/0"
fe =20,000#/0"
rn =12
Moxi Bending M t:
Live Load 600# .
Deod Load (Assume beam 10V, X 18) 170

770# #.

BM. = 770 X 20% X /4 X 12 = 462000 in. Ib.
Required Section for B.M.

From table normal P = 00111
k = 0.400
] = 0.867
K= 113
For. b = 10, in.
462000
Reqd. d = —_— = 186,
ead: d Vw.zs X 173 62
Allow for protection 23
Overall 18.5

Revised total load. = 600 4 198 = 798# fi.

Revised BM. = ;’Tg X 462000 = 480,000 in. lb.

480000 _
Reqd. d = Vio.zs x 173 =168

Reqd. A = 0.111 X 10.25 X 16.5 = 1.88 "
Use 2 bors 73" ¢ ond | bar 1" ¢ A4 = 1.99.")

bor spacing:

T Lzu S
Mox. end sheor = 798 X 10 = 7980#

7980
8.64 % 0.867 X 165

Fia. 213. Typical Design Computation—Rectangular Beam.

Bond. stress, (no bars bent up) = = 65#/0
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The formulae derived for the design of rectangular beams may also
be used for analysis of stresses in an existing beam. Here, however,
Equation 239 cannot be used since the simultaneous stresses in steel
and concrete are unknown, and therefore Equation 233, which expresses
the uctual value of p, must be employed. Values of k and j are then
obtained from Equations 234 and 235, and the unit stresses in concrete
and steel obtained from Equation 240. The safe resisting moment
determined separately for the concrete or for the steel may be deter-
mined from Equation 240 as follows:

M, = 1f.kjbd?
M, = f,Ajd

where M, = safe bending-moment based on strength of concrete.
M, = safe bending-moment based on strength of steel.
Je = safe working stress in concrete.
J« = safe working stress on steel.

Ag, k, j, b, and d are actual values for the given beam. The smaller
of these two resisting moment values will control the value of the safe
load.

Design Charts VI and VII are useful in determining unit stresses in
rectangular beams. These are used by locating a point on the chart
from the computed values of M /bd? and p, and the corresponding simul-
taneous stresses in concrete and steel determined by interpolation
between the curves which are shown for the various values of f, and f..

127 Solid Slabs—One-Way Reinforcement

A solid reinforced conerete slab with one-way reinforcement is essen-
tially a wide shallow beam. Such slabs are frequently used for floors
and to support distributed loads over area openings. The analysis or
design of such slabs is based upon the same principles and relationships
as have been previously outlined for rectangular beams. It will usually
be found convenient to assume the slab divided into parallel strips and
to consider each strip as constituting a rectangular beam carrying its
prorated share of the loading. When the slab carries a uniformly dis-
tributed loading it is convenient to assume these strips as 1 foot
(12 inches) in width, and then the load per lineal foot on a beam strip
will equal the uniform load per square foot on the slab. The reinforce-
ment may not be evenly spaced in these 1-foot strips, since there is no
actual physical division, and the amount in any one strip is assumed
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to equal the total area of steel in the entire slab width, multiplied by
the ratio of the strip width to the slab width. The modifications which

Safe Load on Solid Slab
Span 14'—0 in.  Simply Supported
Slab thickness 8//,"
Reinforcement ¥," ¢ @ 9" cts. — Deformed Bars
Bottom of Slab to center of bars = 1Y/"
Allowable unit stresses:
n=15; fy=16000; fo =800; v=40; u= 100

For each 12" of slab width:

Ay= ‘ﬁ,ﬁﬁ = 0.5850"
nAs = 15 X 585 = 8.80"
2y —ss—v):

{ Neutrol Axis { VI
L e
(€0 $ @ 9" Centers AL

y= kd = 258"
jd =7 — 1/3(2.56) = 6.15"

~

Max. Safe B.M.
I of Concrete above N. A. = 12 X (2.56)’ X 1/3= &7
1 of Transf. Steal Area = 8.8 X (4.44)° = 174
I of 12" strip—Transf. Section = 241

M = BOXCIM = 75300"4 for 12" width of slab.

My = 00X — 54000 # for 12" width of dab.

.".Max. Safe B. M. = 58000"#

Max. Safe Shear — (for 9" width of slab)
Based on Diagonal Tension = 40 XX 9 X 6.15 = 2210#

Based on Bond = 100 X 2.356 X 6.15 = 1450#
.". Max. Safe v = 1450#
Safe Total Distributed Load
= DX _ oy
Based on B. M. = TS AL AT 197# /0

= 2X 12X 1450 _ ,
Based on Shear = CEvaT) = 277#/0

.". Max. Safe Total Load = 197#/C"

Safe Live Load

Safe Total Load = 197#/0°
_ 825 X 12X 150 _

Wht. of Slab = 4 = 103

Safe Live Lood = 94# /0"

Fia. 214, Safe Load on Solid Slab.

for convenience may be made in the formulae previously given for rec-
tangular beams are as follows:

2M M
4= Nz, = Viza, 242)
A, = 12pd (243)
12a¢, a,
=== (244)

4, pd
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whefe d = distance from top of slab to center of steel.
A, = area of steel per foot of slab width.
8 = spacing of parallel reinforcement bars in inches.
a, = area of one bar.

DESIGN OF SOLID SLAB

Data: Span 16'—0", Simply supported
Live Lood 150# /11"
Allowable unit st css
Je =1000#/0"
fs =20000#/0"
n =12
v =350
u =125

Design for Flexure:
Assume + = & D. L 54,0
Lt 150
Totol 2254 /0
Mox. B. M. (12" strip) = 225 X 16 X 16 X /3 X 12 = 86400"#
From Tables:
Required p = 0.0094
k =164

_ 16400
Reqd. d = V———-n X 164

Concrete protection
t

[

~

{to center of bar)

nn
-

o
g8

Revised D. L. { { = 8)
Lt

|

~!

Total 50

=250 = 95000"#
B.M =233 X 86400 = 94000

_-V 000 _ 408 — Use 7"
Reqd. d = 7 164 =698 — Use 7"

Concrete Protection "
t= [

Reqd. A = .0094 X 6.98 X 12 =079

Use 3/3"® bars @ 413" cts.

Check for Shear
Mox. End Shear (415" sirip) = % X 4% X 16 X Yy = 750%

) =10875 (Table 35)  jd = 6.13"

= 150 — 274/0" (Allowed v = 50# O
TS T a3 = A0 Wlow L

Check for Bond

Assume no bars bent up

= 50 __ _ em/0n (A 125# /0"
u—l.be.lS_o /0" (Allowed 125#/01")

Adopted Design
8" Slab ( d = 77)
5/3"$ bars @ 413" chs.

F1e. 215. Typical Design Computations—Solid Slab.

Design Chart VIII may be used to determine the required spacing of
bars to produce a given value of A,.
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The bond stress may be computed from Equation 225, using the shear
on a strip of width equivalent to the spacing of bars. In making this
computation, the following values are substituted for V and 2y in Equa-
tion 235.

s
V= o X (vertical shear computed for 12-in. strip).

Zo = perimeter of one bar.

It is preferable to use relatively small bars in order to provide well-
distributed reinforcement. Bars should be protected by at least $ inch
of concrete and should be spaced not further apart than 3 times the
thickness of the slab nor closer together than 23 times the diameter
or side of the bar. A typical computation of the safe live load on a solid
slab is given in Fig. 214. The design of a solid slab is illustrated in
Fig. 215.

128 Reinforced Concrete T-Beams

In ordinary building construction, the concrete in floor slabs, beams,
girders, and columns is usually placed in such a manner as to make the
entire construction as nearly monolithic as possible. The slab reinforce-
ment extends across the tops of the beams and is arranged to provide

b b
I SR 3}5 ‘}-L e
d T T d a,

,..b

Maximum b= 3¢ Span length of beam
Maximum a,= { ?flur distance between beams

XaSpan length of beam
Maximum a,= { 35Clear distance between beams
6¢

Fr1a. 216. Reinforced Concrete T-Beams.

for resisting the negative moment at the points of support. The con-
crete at the junction of slab and beam serves in a dual capacity, carrying
stresses at right angles to the beam as a part of the slab and also forming
the upper or compressive portion of the beam. The effective cross
section of the beam will therefore include parts of the adjoining slab,
and the dimensions of the beam for purposes of analysis are determined
in accordance with the accepted standards indicated in Fig. 216. Build-
ing ordinances of cities may require the use of dimensions at variance

with those indicated.
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Reinforeed Concrete Beam and Girder Construction.
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For solid-slab construction, the flange width is assumed as wide as
the foregoing limitations will permit, since there is no physical division
between the beam flange and the slab. In ribbed-slab construction,

WEB REINFORCEMENT
Data:
T-Beam — 12" X 27" — Span 24'-0" 2%
Uniform loading (fixed) V = 30000# ng U-§
None of main bars to be bent up #"p U-Stips
Working Stresses:
Jo = 16000; u= 100; v =120; v'=40
jd = 216"

Max. Diagonal Tension Stress = = |16#/0"

30000
12 X 21.6

Max. dllowed spacing of vertical stirrups = 15 X 24 = 12"
Diagonal tension carried by stirrups:

Spacing 12 : 1000 X 022 _ o5y /e

12X 12
Spacing IO' 1 12/10 X 25 = 29#/0"
Spacing 8" : 12/8 X 25 = 37#/0"
Spacing 7" : 12/7 X 25 = 43#/0"
Spacing 6" : 12/6 X 25 = 50#/0"
Spacing 5" : 12/5 X 25 = 40#/0"
Spacing 4" :  12/4 X 25 = 75#/0"

Corried by Spacing 4"

)
~
:
& d
’ f’/."fU‘S’inups
R R T T S e
Do 1+ {
TEERE I/ i .[
? [ oo i
Ill g |' H Hi
[ R [ | 1] |
A=Y= ks -'-I B Sttt
=t-d4 =i s et L
P70 | sevlolrl e o
24"
Support

Fig. 217. Web Reinforcement, Reinforeced Concrete T-Beam, Vertical Stirrups.

the width of solid slab necessary to form the T must be determined,
and this will establish the location of the ends of the tile or steel-pan
forms which shape the ribs of the slab.

When the dimensions and reinforcement area of a T-beam have been
established, the flexural stresses or resisting moment may be computed
by using the transformed section as discussed in Article 124.

It should be noted that, when the neutral axis of the section is in the
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flange (kd < ), the analysis is the same as for a rectangular section, and
the same design procedure may be followed. When the neutral axis is
below the flange (kd > t), the design formulac used for rectangular

WEB REINFORCEMENT
Data:
T-Beom 12" X 27" — Span 24' - 0" Simply Supp.
Total Load 2500# /lin. ft.
Working Stresses
Jo = 16000 f, =650 n=15
% =100 v=120 v =40
Max. B. M. = 2,185,000 #
Max. End Shear = 30,000#
jd = 21.6"

3]

R. M. of Steel —>

— — —— s ]

’»‘.- \TSPG" 2,165,000 #

| @e"z@a"l z@lz"i I/%'v U-Stirrups ?
R R RS PN e REES
S
T
4Bars I"$ SN N B
““”""\ID*——- e e e e e

p ied b
70°% 18 X 12 X .707 = 10750# /0/“';:" s
16000 X 2 X .78 = 25000% up bars
100 X 6 X 21 X 1.41 X 628 = |1150%

Carried by Vertical Stirrups
7777
254 /0"

Diag. Tens. carried by Stirrups @ 12" Spac = 16000 X 22 . 254/0"

s0# /0"

O\
/7
37'/0é»

a
X
*
(<4
~
" 18"
/I;’ 2 \

v=TiarE =" g

Carried by Concrete

0% /3"

12X 12
8" Spoc = 12/8 X 25 = 37#/0"
8" Spac = 12/6 X 25 = 50#/0"
Fra. 218. Web Reinforcement, Reinforced Concrete T-Beam, Inclined Bars and
Vertical Stirrups.

beams will not be applicable and special formulae based on this condi-
tion must be employed. For such formulae, the reader is referred to
standard textbooks on reinforced concrete.

The width of stem b’ must be sufficient to provide adequately for
spacing the reinforcing steel, and the stem section b’h must be sufficient
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to resist the shear and diagonal tension. The approximate steel area
required for bending-moment may be obtained closely by assuming
j = %, from which

A, = ﬂl (approx.) (245)
s
The diagonal tension stress (over the section b’h) is
14 8V
v = E{E = Tva (approx.) (246)

B
E :-4'i|¢=4~||
|

N||

ll ﬁal Q'

] 7413}1__11_24&.___&52_&22_“__ c3.
Exterior

707 7:-07| 7-07]7"-077"-07 70"

N]I

Wall bt Sl — 3l
21'-0" 21'-0"
Floor Finish 1” Granolithic
Ceiling Three Coat Plaster

Exterior Walls 8 Brick

Story Height 12’-0” (9 -0~ Clear)

Live Load 350#4/0°

Concrete 2000 # at 28 days

Steel Deformed Bars
Structural Grade

Fi1a. 219. Framing Plan.

Typical computations of web reinforcement in T-beams are shown in
Figs. 217 and 218. The design of a solid slab, beam, and girder floor
panel is shown in Figs. 219, 220, and 221.

129 Reinforced Concrete Columns

Reinforced concrete column construction is gencrally confined to
short columns where the compressive resistance of the concrete controls
the strength of the column. ‘“The Building Regulations for Reinforced
Concrete” of the American Concrete Institute (ACI 318-41) specify
that “principal columns in buildings shall have a minimum diameter
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Beam B2 at G1

® Negati? 8- M g Positive Keststing “ioment
= - s@c««&«\v&:\vz\mmw-
o - g & Negative Resisting
%‘ o Moment
~N
s g - — — st A >
171 9 ;g\w\«\& ————— -1
= ~e a
| :
ZMWMZE ”
koosed —/~————————— s
Positive Bending, Moment ‘%
2 bars "¢ oo %
2 bars % "¢ ¥ =

4'-6"

- . =

3 raduusl Hook (2 ba )
( MY \36% \Q"% | L.
‘G1] 2 bars % N\gFa T- NE» i~

] 2 b 9
i I

SRS AN 6" 1-6~ 6'-3" Bent Bars
At least 10 __' yd 6 Sp. at 10" =5'-0" ~f 1°-37 |  Stirrups
into G1

Resisting Capacity

2
é a Stirrups and Bent Bars

1164/0°

Fra. 220,

294/0"
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Max. Positive B. M. 1536000 *#

Beam B2 at G3

2 bars ""‘

Max. Negative B. M. 1536000 “#

NS

e

1 Q p
N 3

TN

2 bars %* ¢ .
meu%,‘,bm,‘., 4-9
1 - : »
5578 U Stirrupsy \ 2 bars 15 Top Bars
3 SRS YRR TN TR . -"‘-x' = TR 2

Bent Bars 6°-0”
Stirrups 6 Sp. at 10" =5’-0"~

'7/77/77’/777/7’/7/’//7/)7/77%/77/77/77?

7/7‘/77/77/77;7/17/7 156

2

Resisting Capacity
Stirrups and Bent Bars

77

ol

L)

294#/0~

e
Extend at least
10” into G3

120

v=116#/0~

77
Carried by Concrete /

%/ 2

Fia. 221.

)
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of 12 inches or rectangular columns, a minimum thickness of 10 inches
and a minimum gross area of 120 square inches; posts that are not con-
tinuous from story to story shall have a minimura dis:aeter or thickness
of 6 inches.” Short columns are defined as those whose unsupported
length does not exceed 10 times the diameter or least lateral dimension
of the column. The two principal types of reinforced concrete columns
are referred to as tied columns and spirally reinforced columns.

Tied columns may be round, square, 1ectangular, or of any desired
cross section and are reinforced with not less than four bars at the
corners and evenly spaced around the periphery of the column; in addi-
tion lateral ties are placed at specified intervals in the length of the
column to tie in and brace the longitudinal steel (see Fig. 222).

T ===H Longitudinal | 7T "'1'4
A = ; :“/ Bars sz : ! o j— -Longitudinal Bars
i (o
FF?_—.'_-Jﬁ } }_ 11 _l | | [ (T2 o ,Spiral
0 e T T Tt
] Vil Ties (b h Pitch of = T T
Fr===} o L Soral | 137345
LLILML\ ll.-_"l.‘:i& :_~ !
s i
Fig. 222. Tied Column. Fig. 223. Spiral Column,

Spirally reinforced columns, are those in which closely spaced spirals
enclose a circular core (Fig. 223), which is reinforced with longitudinal
bars. To qualify as a spirally reinforced column in accordance with the
above noted building regulations, there must be provided not less than
six vertical bars with a minimum diameter of § inch to provide an area
of not less than 1 per cent or more than 8 per cent of the gross area of
the column section. The spiral reinforcement must consist of evenly
spaced continuous spirals held firmly in place and true to line by at
least three vertical spacer bars. The required ratio of the volume of
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spiral reinforcement to the volume of the concrete core (out to out of
spirals) is as follows:
A fe
! =045 (—‘ - 1) = 247
where 4, = gross area of column section
A, = area of core of spirally reinforced column, measured to the
outside diameter of spiral.
f+ = useful limit stress of spiral reinforcement to be taken as
40,000 psi for hot-rolled rods of intermediate grade, 50,000

psi for rods of hard grade, and 60,000 psi for cold drawn
wire.

The center-to-center spacing (pitech) of spirals must not exceed one-
sixth the core diameter, and the clear spacing between spirals must not
exceed 3 inches or be less than 14 inches or 13 times the maximum size
of coarse aggregate used.

The value of the spiral steel ratio, in terms of the size of spiral bar, the
pitch of the spiral, and the diameter of the core is expressed as follows:

, volume of spiral bar for one turn
volume of enclosed core for length s
= a,wD/iﬂrDzs = 4a,/D, (248)

where D = diameter of core, out to out of spiral.
a, = area of section of spiral bar.
d = diameter of spiral bar.
8 = spacing or pitch of spiral.

The required piteh of a given-sized diameter of spiral bar then equals,

rd” (219)
§=—
D
Since there is no bending in a short column, the stresses produced by
axial loading are uniformly distributed over the section, and

P = fA, + .4, (250)

where P = total axial load on column.
A, = gross area of concrete in cross section.
A, = area of longitudinal bars in cross section.
fe = unit stress on concrete.
f+ = unit stress on longitudinal steel.
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Assuming that the steel bars are properly bonded to the concrete so
that their deformation is the same as that of the concrete, the unit

deformation of concrete, f./E., equals the unit deformation of steel,
Jo/E, and,

Py E’_
fs "ch,—c" 'nfc

Substitute this value of f, in Equation 250 and note that
A, =4, - A4,
P =f(A; — As) + nfed,
=Jflde + (n — DA,
P
T A+ (n— DA,

In accordance with the previously quoted building regulations, the
safe load on axially loaded short spirally reinforced columns is given
by the following formula:

P = A, (0.225/; + f,p) (252)

where P = safe axial load.

A, = gross area of column section.

fo. = compressive strength of concrete (crushing strength at
28 days).

fe = 13,200 psi for structural-grade steel, 16,000 psi for inter-
mediate-grade steel, and 20,000 psi for hard-grade steel.

p = ratio of the effective cross-sectional area of the vertical

reinforcement to the gross area A.

Je (251)

The safe load on tied columns is 80 per cent of that given by Equation
248. The steel ratio p to be considered in tied columns shall not be less
than 0.01 or more than 0.04. (In other words, the steel is neglected if
p is less than 0.01 and is never to be taken greater than p = 0.04.) In
a spirally reinforced column this ratio must be at least 0.01 and never
taken greater than 0.08.

130 Design of Tied Columns

For the purpose of designing short tied columns to carry axial loading,
a factor of 80 per cent is applied to Equation 252, and

P
f= = 0.8(0.225f; + f.p) : (253)

']



DESIGN OF SPIRALLY REINFORCED COLUMNS 357

where f = allowable working stress on gross area of column.

(f. and f, are given values in accordance with provisions of Article
129.)

For such columns the allowable working stress and also the correspond-
ing required value of 4, depend on the percentage of vertical steel, and
in accordance with the ACI regulations the value of p must lie between
0.01 and 0.04. The main purpose in using longitudinal steel is to give
additional toughness and resilience to the column; the steel will, in
general, work inefficiently as regards compression since its stress cannot
exceed nf.. Usually, therefore, a minimum of longitudinal steel will
be used except where the column size is limited or when it is desired to
produce a size to meet framing requirements. The design procedure is
as follows: Calculate the value of the axial load including an allowance
for the weight of the column. Assume a value for p (usually 0.01), and
determine the allowable f from Equation 253. When intermediate grade
steel is used, Equation 253 reduces to the following form:

f = 0.180f; + 16,000p (254)

The required area and reinforcement of column section are then deter-
mined from the relationships A, = P/f and A, = p4, and practical
dimensions and bar sizes are selected in accordance with these require-
ments. If it is necessary or desirable to make the column conform to
given outside dimensions, the required value of p may be obtained from
the following equation, which is derived from Equation 254.

_ P/A, — 0.18f,

16,000 (255)

Tied columns must have lateral ties which are at least } inch in diam-
eter and which are.spaced at not over 16 vertical-bar diameters or 48
tie diameters or the least dimension of the column.

131 Design of Spirally Reinforced Columns

This type of column is more reliable than the type with lateral ties
and hence is preferred for important loads. In the design of a spirally
reinforced column, the steel ratio p for vertical steel is assumed at a
value between 0.01 and 0.08, and the value of A, is determined from
Equation 252. The outside dimensions or diameter of the column is
then established in order to produce this gross area, and the core diameter
is fixed in order to provide suitable protection for the steel. To con-
form to the requirements of the ACI Building Regulations (ACI 318-41),
the column reinforcement must be protected everywhere by a covering
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of concrete cast monolithically with the core and with a thickness of
not less than 1} in. or 13 times the maximum size of the coarse aggre-
gate. This protective covering determines the diameter of the core,
and the required ratio of spiral reinforcement is then found from Equa-
tion 247. The required size of the spiral bar and its pitch are then
computed from Equations 248 and 249. Tt will be found convenient
to assume the pitch at a suitable value and then to compute the required
value of 4, from Equation 248. The nearest size diameter of spiral
bar is then substituted in Equation 249 to determine its required pitch.

PROBLEMS

12:1 Determine the safe resisting moment of this re- -
inforced concrete beam if the allowable stresses are o[
fe = 1000 psi
fs = 20,000 psi

n =12

Note. The moment of inertia of a triangle about its grav- LA
ity axis is 'gbh3. R RRs
\4 bars 170

12:2 If A, =3 sq in. and the allowable unit
stresses are

f» = 18,000 psi
fe = 1000 psi
n =12

What is the maximum safe resisting moment for the A
reinforced concrete section shown? i

.9,

A,=30"

12.3 Given: the reinforced concrete beam section shown. i} =3
Je = 1200 psi
fe = 18,000 psi

n =10

37}
Yﬁ' P

20:1

Find distance of neutral axis from top surface and the resisting
moments as controlled by the steel and concrete.

-®"

A Enasy

A
N bars ¥"¢
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12-4 A reinforced concrete beam of the section shown contains four bars, each
1 in. square. This beam is required to carry a total maximum bending-moment of
125,000 ft~lb. (@) If n = 15, what are the maximum fiber stresses in the steel and

15”7
| 12” ~

27"

concrete? (b)) What is the maximum total tension on the steel bars? (¢) What is
the maximum total compression on the concrete? (d) What is the intensity of bond
on the steel at a point where the shear is 25,000 1b?

12.6 Determine the maximum safe resisting moment of reinforced concrete
beam, the cross section of which is shown in the sketch.

n =12
fs = 20,000 psi
fe = 1,000 psi

4 6" .44-‘
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127
3" 6" 3"

12.6 A duct 6 in. square runs lengthwise in a concrete
beam as shown. Allowable stresses same as Problem 12-5
(a) What is the safe resisting moment of the beam?

*
(b) What is the maximum intensity of shear at a point in ]
the span where V' = 10,000 Ib?
N ]
'.?.%?‘?: ——
LA
\4bars1”¢

12.7 Given a beam with cross section as shown.
Using specifications ACI 318-41, f. = 3000 psi, and in-
termediate grade steel, find the maximum permissible
positive bending-moment.

12.8 Find the maximum permissible negative bending-moment for the beam
given in Problem 12-7.

12.9 Determine the safe resisting moment of this section using transformed sec-
tion method if the allowable fiber stresses are

n =12
fe = 1000 psi
fs = 20,000 psi
601'
19
JE Y
¥
L3
&

..’

el 0
8 bars %" ;,%gg 3
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L3
(U]
®
- N
-~

Neutral axis

12:10 (a) What area of
tension steel is required for the
reinforced concrete beam
shown in order to have the
theoretical position of the neu-
tral axis 12 in. from the top?
Use n =15 and the trans-
formed area method. (b) If
the allowable unit stress in the
steel is 18,000 psi and in the
concrete 800 psi, what is the
maximum safe resisting mo-
ment?

T—[

35'

P

16"
12-11 Allowable stresses:
Je = 1000 psi
fa = 20,000 psi
n =12

(@) What is the safe resisting moment of this section? (b) What is the maximum
intensity of shear at a point in the span where V' = 100,000 1b?

e
- 110 bars 1"¢
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12:12 Determine the maximum safe resisting moment and the maximum safe
vertical shear for the rectangular reinforced concrete beam section shown. Allow-
able stresses:

fe = 1200 psi
fa = 20,000 psi
v = 60 psi

n =10

12~

20

3bars 170
B .

12.13 The reinforced concrete beam shown is simply supported on a span of
20 ft. It is reinforced with four 1-in. diameter round bars. Determine the safe
live load per lineal foot of span based on flexural stresses not to exceed

Js = 18,000 psi
fc = 700 psi
n =15

12~

AR ‘1}".
e
J4bars1"g] 3

9,090\

12-14 A rectangular reinforced concrete beam is to be designed to carry a total
uniform load (includes its own weight) of 1800 Ib per ft over a simple span of 18 ft.
If the allowable stresses are the same as in Problem 12-12, calculate the depth re-
quired for a 12-in. width and the number of 1-in. round bars required.

12.18 f. = 3000 psi; intermediate-grade steel; and ACI Specification 318-41.
A rectangular beam is 15 in. wide and 24 in. effective depth and carries a bending-
moment of 2,200,000 in.-lb. If six bars are used, all the same size, for reinforcing the
tension side only, what size must they be? (b) What is the maximum transverse
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shearing force which this beam will carry as limited by bond and by diagonal tension
if no stirrups are used? The bars are not hooked at the ends.

12-16 A rectangular reinforced concrete beam must resist a bending-moment of
2,000,000 in.-lb. The overall depth of the beam is fixed at 30 in. Determine the

width, b, and the area of steel, A,, which would be required to produce a balanced
beam design.

n =12
Ss = 20,000 psi
fe = 1000 psi

12-17 A reinforced concrete floor slab is simply supported over an opening of
12 ft. The slab is 8 in. thick and is reinforced with }-in. round bars at 5-in. spacing,
located 1% in. above the bottom of the slab. Based on n = 15 and allowable unit
stresses of 16,000 psi in steel, and 650 psi in concrete, what safe live load (Ib per sqft)
may be placed on this slab?

12.18 Design a simply supported slab to carry a live load of 150 1b per sq ft over
a span of 10 ft if the allowable fiber stresses are the same as in Problem 12-17,

12-19 Design a square tied column 20 ft long, to carry an axial load of 215,000 Ib.
Make a free-hand sketch showing arrangement of steel. Use specifications AC1
318-41.

12.20 Use ACI Specifications 318-41; f¢ = 3000 psi; and intermediate-grade
steel.  Design a square tied column to carry an axial load of 290,000 1b, and to occupy
minimum amount of space. The column is 12 ft long. (a) What is the minimum
outside dimension, avoiding fractions of inches? (b) What is the minimum required
number of 1}-in. square bars which may be used? () Make a free-hand sketch
showing the size, spacing, and arrangement of ties to meet the minimum requirement
of the specifications.

12.21 A spirally reinforced square concrete column is required to carry an axial
load of 650,000 1b. The column is 28 ft. long. Use cold-drawn steel wire for the spiral
reinforcement. Design the column in accordance with the ACI Specifications (318-
41). f. = 2500 psi. (@) What is the outside dimension, avoiding fractional inches?
(b) What is the required pitch of the spiral wire, using No. 7/0 wire and the minimum
permissible thickness of concrete outside the spiral wire? (c¢) What is the required
number, size, and spacing of longitudinal bars? Compare with minimum specifica-
tion requirements, using intermediate-grade steel.

12.22 A spirally reinforced conerete column is 36 in. in diameter and is reinforced
with 12 bars cach 1 in. square. The spirals are protected by a covering of concrete
2 in. thick. Length equals 12 ft. (a) What is the maximum allowable axial load?
(b) Determine the required size and pitch of spiral reinforcement, making the spirals
of cold-drawn intermediate-grade steel wire, according to the ACI Specifications
(318-41), when f; = 3000 psi.

12.23 A spirally reinforced column is 30 in. in outside diameter and is reinforced
with 20 vertical bars cach 1 in. in diameter. The spiral reinforcement is a 3-in. round
intermediate-grade steel bar, with a pitch of 2% in. The concrete protection is 2 in.
thick. According to the ACI Regulations (ACI 318-41) and with f, = 3000 psi,
determine the maximum permissible axial load. Is the spiral reinforcement adequate?

12.24 (a) Design a round spirally reinforced column to have a minimum diam-
eter and to carry an axial load of 485,000 Ib. Length = 12 ft. f; = 2500 psi. Use
1}-in. square bars of hard-grade stecl. Usc maximum permissible spacing of spirals.
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Show all computations and specification references. (b) What is the safe load on
this column if the length is increased to 22 £t?

12.26 A spirally reinforced concrete column is 30 in. in diameter and 20 ft long.
It is reinforced with intermediate-grade longitudinal steel and cold-drawn spiral
wire. The maximum size of coarse aggregate is 2 in. f¢ = 3500 psi. Find (a) The
permissible axial load if the column is designed for the least amount of steel reinforce-
ment. (b) What is the required size of spiral wire if the maximum permissible pitch
of the spirals is used?



Roofs

Yellow pine sheathing (1” thick)
Corrugated iron or steel

Felt and
Slate (4
Book tile

Cement tile (114" thick)

APPENDIX

TABLE 1

WeiGHTS OF CONSTRUCTION MATERIALS

......................................................

gravel Gply).................... e e
thick). . .
(2" thick)

.......................................

Floors and Ceilings

Tn

g’/ maple, finish flooring
Screeds or nailing strips
Cinder concrete fill (1” thick)
Cement finish (1 thick)
Reinforced concrete slabs (per inch thick)
Plaster ceiling on wood lath

........................................

Suspended metal lath and plaster. . ............. ... .. ... . L

Plaster on brick, tile, or concrete

Walls and partitions

4" pressed brick........ ... i
9” common brick........... ... i e

......................................................

......................................................

Earth (moist-packed)..........c...ooiviiiiiiii
Timber—L. L. yellow pine (dry)................. ... ...,

Douglas fir (dry). . ......cviiiiiiii

Wgt. in lb
per sq ft

._.

—

GRoognw
- o

Wgt. in lb
per sq ft

-
NN N

—
oo

Wgt. in ib

per sq ft

of surface
47

Wgt. in lb
per cu ft
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B 2

TAB
MoMENT TABLE—CooPER’s E-60
Note: Loads and moments are given in thousands of pounds and foot-pounds for

one rail.
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TABLE 3
CommoN Briaur WIRe NaiLs
Dimensions
Diameter* Approx.
Length Wire (inches) per Lb
(inches) Gage

2 1 15 .0720 .0193 876

3 1Y 14 .0800 .0227 568

4 114 1214 0985 .0309 316

5 134 1214 .0985 .0309 271

6 2 1114 .1130 .0380 181

7 21 1114 .1130 .0380 161

8 214 10y 1314 .0474 106

9 234 1014 1314 .0474 96
10 3 9 .1483 .0570 69
12 3Y 9 . 1483 .0570 63
16 3% 8 .1620 .0652 49
20 4 6 .1920 .0841 3
30 414 5 .2070 .0942 24
40 5 4 .2253 .1068 18
50 514 3 .2437 .1205 14
60 6 2 .2625 .1349 11

* Gage of American Stcel and Wire Co. and John A. Roebling Sons.

TABLE 4
L.AG ScREWs—SQUARE HEAD AND GIMLET POINT—MANUFACTURERS’ STANDARD LiIsT
Length and Weight per 100
Size
114 2 214 3 3 4 5 6 7 8 10

546 3.5] 44| 63| 6.2 ...l
3% 5.8 7.1 8.5 9.8 11.1112.56114.9]17.2({20.0......|.....
9% l..... 15.0(17.3119.5]|21.6 | 23.828.8]33.8}...... 44.01).....
8 |..... 26.3{...... 23.5137.1|140.7{|...... 55.7|...... 69.3 | 83.5
720 PUUU PO FURR IUUUU I 57.1...... 80.5 [......0..... ...
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TABLE 5
Teco SpuiT-RING Data
Nominal Size 215 4
Split-ring—dimensions
Inside diameter at center when closed, inches 213 4
Depth, inches % 1
Weight, per 100 rings, pounds 28 70
Lumber, minimum dimensions allowed
Width, inches : 35 5%
Thickness, rings in one face, inches 1
Thickness, rings opposite in both faces, inches 15¢ 15
Bolt, diameter, minimum, inches 15 34
(With rings of different size, use minimum for larger ring)
Bolt hole, maximum diameter, inches %6 13{6
Projected area for portion of one ring within a member,
square inches 1.19 2.25
Washers, minimum
Round, cast or malleable iron, diameter, inches 21 3
Square plate
Length of side, inches 2 3
Thickness, inches 14 e
(For trussed rafters and similar light construction stand-
ard wrought washers may be used)

Reprinted from **Teco Design Manual for Teco Timber Connector Construction,” by courtesy of the
Timber Engineering Co.

TABLE 6
PermissiBLe INCREAsES FOR Loap DuratioN oN SpuiT Rings
Wind or
Perma-  Three Earth-
nent Months’  Snow quake  Impact
Loading I.oading Loading Loading Loading
Split-rings 0% 159, 15% 50% 100%,

Reprinted from ‘“Teco Design Manual for Teco Timber C: tor Construction,’”’ by ocourtesy of
the Timber Engineering Co.
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TABLE 7

DEecrEAsEs FOR MoisTuURE CoNTENT CONDITIONS

Condition when fabricated Scasoned Unscasoned Unseasoned
Condition when used Seasoned Seasoned Unseasoned or wet,
Split-rings 0% 20%, 33%

Reprinted from *“Teco Design Manual for Teco Timber Connector Coastruction,” by courtesy of
the Timber Engineering Co.

TABLE 8

MaxiMuM RECOMMENDED VALUES FOR 4 Group oF CONNECTORS AcTiNG 45 To 90
DrGrees wiTH THE GRAIN

(% of Allowable Loads on One Connector)

Thickness of Loaded Member, Inches
Type and Size
of

Connector s ” 5 3" and
1% 2 26" | Thicker

214-in. Split-ring 300% 300% 300% 300%
4-in. Split-ring 233% 2489, 269% 300%

For each additional connector exceeding 4, add 33 per cent of the allowable load for one connector.
Reprinted from ‘‘Teco Design Manual for Teco Timber Connector Construction,” by courtesy of
the Timber Engineering Co.
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TECO SPLIT RING CONNECTORS

ANGLE o LOAD vo GRAIN
¢ 10 o 30 40 50" 60" ®° &d 9%°
4000

v

II%’I

8

g

g
LOAD in POUNDS

LOAD in POUNDS

1500

2000

! . 1500

F 600w T 0T T

ANGLE or LOAD 7o GRAIN

Group A

Species
Douglas fir (dense)
QOak, red and white
Pine, southern (dense)

Group B
Species
Douglas fir (coast region)
Larch, western
Pine, southern

Group C
Species
Cypress, southern and tide-
water red
Hemlock, West Coast
Pine, Norway
Redwood

Desion Cuart 1. Safe Load on One 23-in. Split Ring and Bolt in Single Shear.

(From “Teco Design Manual for Teco Timber Connector Construction,” by courtesy of the Timber

Engineering Co.)
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TECO SPLIT RING CONNECTORS
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Parallel-to-Grain Spacing
DesioN Cuart II.  Spacing Chart for 23-in. Split Ring Connectors.

(From “Teco Design Manual for Teco Timber C'onnector C'onstruction,” by courtesy of the Timber
Engineering Co.)
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TECO SPLIT RING CONNECTORS

ANGLE of LOAD 1o GRAIN
7ooo°. 0 20 30 4 s 60 W 8d 9:‘7000
= 1:
6500 L 6500
X GROUP A
fu TN
6000 N 6000
o
5500 N - 5500
NN =
5 A AN s000
N
ASOOE: ",i— . 4500
Lampi % ',;
eSS 4000
I~ A .
7. ¢, )
== 95 f—u_& — 3500
a T ‘,‘Vc e :F
Z SO0 GROUP B AN o]
o - N
o 4500 T A ’:‘Q‘
2 - YT 1
= 4000 =t~ 1;._\“?'} 4000
% - S : 3500
@] + P )
e B = =17 G } =
4s00 |5 R 3000
(@ 'Q.J
4000 1N '5/'@;1— = 2500
1 -~
T :,. A4S ?’4('5
3500 4+ > 3500
5 — - . T
3000 E et Rkl 3000
T 7
4
2500 FGROUP CEF e 2500
1 e
- B 5000
R R T

ANGLE of LOAD 7o GRAIN
DesiagN CHART II1. * Safe Load on one 4-in. Split Ring and Bolt in Single Shear.

(From “Teco Design Manual for Teco Timber Connector Construction,” by courtesy of the Timber
Engineering Co.)

w  POUNDS

LOAD

Group A

Species
Douglas fir (dense)
Oak, red and white
Pine, southern (dense)

Group B
Species
Douglas fir (coast region)
Larch, western
Pine, southern

Group C
Species
Cypress, southern and tide-
water red
Hemlock, West Coast
Pine, Norway
Redwood
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TECO SPLIT RING CONNECTORS
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Parallel-to-Grain Spacing

DesiaN Cuarr IV. Spacing Chart for 4-in. Split Ring Connectors.

(From “Teco Design Manual for Teco Timber Connector Construction,” by courtesy of the Timber
Engineering Co.)



TABLE 9

Borr Heaps aNpD Nuts

=]

O

American Standard Bolt and Nut
Dimensions, rounded to the nearest
1{s in., are those adopted by Amer-

ican Institute of Bolt, Nut and Rivet
Munufncturcrs, American Standard
B 18.2, 1941. “American Standard

American American
Heads and Nuts Standard Standard
Regular Heavy
Head | Height, I 24D 4D + Lie in.
Short Dia., F 15D 153D + 4 in.
Nut | Height, N 4D D
Short Dia., F | 152D + lis in. 1D + 4 in.

5

(
l&éD

(

D greater than %4 in.)

= 3y in. or less)

Re s:ular formerly called Manufac-
turers Stundard American Standard,
ete. ‘‘American Standard Heavy"
formerly called United States Stand-
urd. Some fabricators have stand-

heads and nuts differing only
shgh(ly from the tuble. For bolts
with countersunk heads the included
angle is 78 degrees, the same as for
rivets.

Standard Dimensions

Head Nut
Dia. Hexagon Square Dia. Hexagon Square
B",f Series | ~——— - e e B?;{l Series | ~—-—  —— — =
olt, Diamecter, In. | Height,| Diameter, In. t. Diameter, In. | Height,| Diameter, In,
In 1 In I
. n, . n
Long | Short Long | Short Tong | Short Long | Short
b 0 | 36 | e N wl 2 e | e | n 56| 746
4% 34 9ie 14 3 L0 44 F thia| 9% S1a R 54
b % 3 1] 1 3y & 15| Yie | 7is 14 1416
2% 1118 3ie 7ie 15ia 134e g 114 1 916 14%
3 1318 | 116 ba e | 116 s 3 12 | 1'4 Mis | 17 | 134
7% 145 13ie 9ie 11330 | 1318 7% g 112 15316 34 11316 | 1546
L0 = |ty 1ss |36 |2 [ Nl L E | pie| 1t | % | 236 |13
134 -1 1tiig | 1l}1e i 2316 e || 14| 8 11514 11%je | 1 2%1a 1114q
1| 3 214 174 1346 | 2918 | 174 1% 5 218 174 1'% 2%ie | 17
16| § | 2% | 2e | tsie | 2300 |2vie || 16| B | 206 |2 |13y | 2isjs | 2ife
1L, | &= 2% | 2V 3lie | 24 1} d 290 | 24 131e 34 214
134 5 234 274g | 1lie 344 27ie |[——
13s| 2 254 1316 334 254 136 243 231s 13¢ 3 234¢
174 33{e | 2136 | 14 374 2134e || 112 2134 | 274 1) 3% 234
16| 5 | 2i5is| 2%0 | 15 |3); | 2%e
2 3748 | 3 151e 414 3 13 § 314 234 144 344 234
23 37 334 144 454 338 1% | m 334 21346 [ 174 4lie | 2134e
243 44 334 1ilie | 54 3% .
234 4ibie | 416 | 11516 | 5ii4e | 4 2 | e |26 |2 4510 | 36
514 414 63ie | 4 244 31y 21 4144a | 34
J— 216 | § bie | % 2le | 8310 | 374
3% 5%is | 474 234s B1l4s | 474 25| @ /ﬁ 433 234 5ltie | 414
3| B | 6 8% | 25 | THe |5li |I3 g | 54 |48 |3 636 | 436
35| 8 | ome |5% |24 | 7H | 5% :
5 3 g stye |5 law | e
4 | B | 6w |e 245 | 8% |6 |31 816 |36 |3l | 754 |83
44 i 63§ 21349 | 8% 634 334 6910 | 5% 334 7% 534
4% 7114e | 634 3 94 634 4 7 (127 4 87is | 616
434 g % 3%e 93e | 7W4
< 4% B 7%ie | 6% 4% 8154e | 63
5 g 8%4e | 746 3%1e 0316 | 734 412 -a 7134e | 678 41 97{a | 674
514 2 9 776 31 101346 | 774 434 j 8% %4 434 91546 | TV
5% 9% 814 31lie | 11346 | 8% o
534 9134e | 854 31446 | 111346 | 8 5 o 81l4e | 756 5 103 756
544 o 94 8 5% 1 8
6 = 10% 9 4 1234 9 814 9%e | 834 81 1% 836
834 E 10 834 531 12 834
4 2 9
(] 1034 914 8 1234 36

Reprinted from ‘“‘Steel Construction,” by courtesy of the American Institute of Steel Construction.
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TABLE 10
Screw THREADS
American Mitional Form

American Standard, B 1.1, 1935

I N
60 —

H=0.866p
h=0.6495p

Diameter Area Number Diameter Area Number
of - of
Total Net Total Net Threads Total Net Total Net Threads

D, K, |Dia, D, |Dia, K, | P% D, K, | Diw,D, | Dia, K, | %
In. In, S, Ing Sq. In. In. In. Sq. In. Sq. In.

14 0.185 0.049 0.027 20 : 2.675 7.069 5.621 4

34 0.294 0.110 0.068 16 31 2,925 8.296 6.720 4

v, 0.400 0.196 0.126 13 3L 3.175 9.621 7.918 4

9% 0.507 0.307 2 11 334 3.425 11.045 9.214 4

34 0.620 0.142 0.302 10 4 3.675 12.566 10.608 4

7% 0.731 0.601 0.419 9
1 0.838 0.785 0.551 8 41 3.708 14.186 11.330 274
14 0.939 0.994 0.693 7 41, 4.028 15.904 12.741 234
14 1.064 1.227 0.890 7 434 4.255 17.721 14,221 254
134 1.158 1.485 1.054 6
1%¢ 1.283 1..67 1.204 6 5 4.480 19.635 15.766 215
13§ 1.490 2.405 1.744 5 534 4.730 21.648 17.574 2}

512 4.953 23.758 19.268 234

2 1.711 3.142 2.300 4% 534 5.203 25.967 21.262 23¢
213 1.961 3.976 3.021 4y
2)» 2.175 4.909 3.716 4 6 5.423 28.274 23.095 344
234 2.425 5.940 4.619 4

Sizes over 4 in. are old U. 8. Standard; there is no American Standard.

Dimensions are maximum; specify *‘Free Fit, Class 2."" For Bolts from 2%¢ in. to 6 in. in diameter it
is always necessary to bill the number of threads per inch.

Reprinted from ‘“‘Steel Construction,” by courtesy of the American Institute of Steel Construction,
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TABLE 11
LeNgt oF BoLT THREADS

American Standard, B 18.2, 1941

Diameter of Bolt, In.

Length 1 3 5 7
of Bolt, | 1o | w6 | v | se [ai | v | o (US| EEIUEIUEG Ha loi | o3
In 4 1. [ 18 |2

Minimum Thread Length

1 3y 3] 3

1% 3y 1 1 1

11 w1 1% 114 | 11§

134 s |1 146 | 186 | 136 | I3%

2 1 14 | 14 13§ | 1916 | 19& | 134

21, 1 115 | 1) 1he | 196 | 134 | 2 2

3 1 1he | 1L 144 | 144 134 | 214 | 218 | 215

1 1 1Ly | 14 132 2y, [ 21y )2, | 274 ] 34 | 34 | 3L

3 1316 | 184 | 1) 13 |2 20y | 237 | 24, 1276130 | 356 | 4 414 | 4%
6 14ie | 112 | 112 T3 | 2 Ay [ 2% | 318 | 304 [ 34a | 396 [ 4 416 | 434
8 13ie | 135 | 1134 | 2 2 2 1234 |34 [ 3% | 4 4 4 438 | 434
10 13i¢ | 132 | 1'35s | 234 | 27da | 202 £ 234 | 33e | 390 [ 400 | 430 [ 430 | 430 | 4%
12 1316 | 105 | 1134e | 206 | 2706 | 234 | 234 | 340 | 3% | 414 | 431 | 610 [ 534 | 6L4
16 1346 | 1%2 | 113{e | 26 | 2746 | 230 | 334 | 8L | 330 [ 411 | 4% | 5L | 534 | 6%
20 134 134 | 113g | 206 | 2740 | 237 | 336 | 4 454 | 444 | 435 | 55 | 534 | 6L
30 130 | 113 [ 206 | 2700 | 240 | 336 [ 4 45 | by [ 376 | 6L | 633 | 613

i

For intermediate bolt lengths, same minimum thread length as for next shorter tabulated length.
Reprinted from ‘‘Steel Construction’ by courtesy of the American Institute of Steel Construction.
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TABLE 12
Basie StresseEs FOR CALCULATING SArE LLoaps For BoLTED JoinTs !

T

Basic Stress

Group Species of Wood Perpendic-
ular to the

grain

Parallel to
the grain

Pounds per | Pounds per
Softwoods: square inch | square inch

Hemlock, eastern..........................
Pine, ponderosa, sugar, northern white, and
western white........... ... o o
Spruce, Engelmann, red, Sitka, and white. . ..
Cedar, Alaska, Port Orford, and western red. .
Douglas fir (Rocky Mountain type).........
Hemloek, western. . .......................
Pine, Norway.............................
Cypress, southern. . .......................
Douglas fir (coast type). ...................
Tarch, western............................
Pine, southern yellow. . .............. ... ..
Redwood. .......... ...
Tamarack.. ...
Hardwoods:
Ashyblack.......... ... ... .. ool
Aspen and largetooth aspen. . ..............
Basswood. . ...
14| Birch,paper................... ... r 925 175
Chestnut.......... ...,
Cottonwood, black and eastern. . ...........
Yellow poplar. .. .......... ... . ...
Maple (soft), red and silver.................
Elm, American and slippery...............
Gum, black, red, and tupelo. ..............
Syeamore.............. i
Ash, commercial white.................. ...

800 150

1,000 200

[ 1,300 275

1,200 250

Birch, sweet and yellow....................
34| Elm,rock.........ooiiiiiiiiiiii 1,500 400
Hickory, trueand pecan....................
Maple (hard), black and sugar..............
Oak, commercial red and white..............

1 Thene stresses, when used in conjunction with Tables 13 and 14, give safe bolt-bearing stresses.
They apply to seasoned timbers used in a dry, inside location. For other conditions, reduce each
stress as follows: When the timbers are occasionally wet but quickly dried, use three-fourths of the
stress listed; if damp or wet most of the time, use two-thirds.

From U. 8. Dept. of Agriculture Technical Bulletin 332.
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TABLE 13

PERCENTAGE OF Basic STRESS PARALLEL T0 THE GRAIN ! FOR CALCULATING
Sare Bearing Stresses Unper Bowrrs

Length of Percentage of Basic Siress for
Bolt in Mair
Member Common bolts ? Iligh-strength bolts 3

Divided by

Its Diam- Group 1 | Group 2 | Group 3 | Group 1 | Group 2 { Group 3

eter (L/D)

woods woods woods woods woods woods

1.0 100.0 100.0 100.0 100.0 100.0 100.0
1.5 100.0 100.0 100.0 100.0 100.0 100.0
2.0 100.0 100.0 100.0 100.0 100.0 100.0
2.5 100.0 100.0 99.7 100.0 100.0 100.0
3.0 100.0 100.0 99.0 100.0 100.0 100.0
3.5 100.0 99.3 96.7 100.0 100.0 99.7
4.0 99.5 97.4 92.5 100.0 100.0 99.0
4.5 97.9 93.8 86.8 100.0 100.0 97.8
5.0 95.4 88.3 80.0 100.0 99.8 96.0
5.5 91.4 82.2 73.0 100.0 98.2 93.0
6.0 85.6 75.8 67.2 100.0 95.4 89.5
6.5 79.0 70.0 62.0 98.5 92.2 85.2
7.0 73.4 65.0 57.6 95.8 88.8 81.0
7.5 68.5 60.6 53.7 92.7 85.0 76.8
8.0 64.2 56.9 50.4 89.3 81.2 73.0
8.5 60.4 53.5 47 .4 85.9 7.7 69.6
9.0 57.1 50.6 44 .8 82.5 74.2 66.4
9.5 54.1 47.9 42.4 79.0 71.0 63.2
10.0 51.4 45.5 40.3 75.8 68.0 60.2
10.5 48.9 43.3 38.4 72.5 64.8 57.4
11.0 46.7 41 .4 36.6 69.7 61.9 54.8
11.5 44.7 39.6 35.0 66.8 59.2 52.4
12.0 42.8 37.9 33.6 64.0 56.7 50.2
12.5 41.1 36.4 32.2 61.4 54 .4 48 .2
13.0 39.5 35.0 31.0 59.1 52.4 46.3

1 The product of the basic stress parallel to the grain selected from Table 12.and the percentage
for the particular L/D ratio and species group, taken from this table, is the safe working stress at
that ratio for joints with metal splice plates. When wood splice plates are used, each one-half the
thickness of the main timber, 80 per cent of this product is the safe working stress.

2 Bolts having a yield point of approximately 45,000 pounds per square inch.

3 Bolts having a yield point of approximately 125,000 pounds per square inch.

From U. 8. Dept. of Agriculture Technical Bulletin 332.
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TABLE 14

379

PERCENTAGES OF Basic STREss PERPENDICULAR TO THE GraIiN Usep 1IN
CALCULATING SAFE BrarmGc StrEscFs UNDER Bouts!

Percentage
Percentage for Common Bolis 2 fé‘):ri]::;
Bolts 3
Tength of Bolt in Main
Member Divided by Its
Diameter (L/D) Group 1 Group 2
conifers nardwoods | Group 3
and group | Group 2 | and group | hardwoods| All groups
1 hard- conifers | 3 conifers
woods
1.0 to 5.0, inclusive....| 100.0 100.0 100.0 100.0 100.0
5.5, 100.0 100.0 100.0 99.0 100.0
6.0......0ciiiiin 100 0 100.0 100.0 96.3 100.0
6.5.. . i 100.0 100.0 99.5 92.3 100.0
7.0 i 100.0 100.0 97.3 86.9 100.0
A% T 100.0 99.1 93.3 81.2 100.0
8.0.. ...t 100.0 96.1 88.1 75.0 100.0
[ 3 J 98.1 91.7 82.1 69.9 99.8
90.. ... it 94.6 86.3 76.7 64.6 97.7
0.5, .. . i 90.0 80.9 71.9 60.0 94 .2
100, ...ccivvivinnnn, 85.0 76.2 67.2 55.4 90.0
105, . 00vviiiinnnnn. 80.1 71.6 62.9 51.6 85.7
11.0. ... 76.1 67.6 59.3 48 .4 81.5
L T T 72.1 64.1 55.6 45.4 77.4
120, .. 0ceenveeenn 68.6 61.0 62.0 42.5 73.6
12.5. e 65.3 58.0 49.0 40.0 70.2
130,00 62.2 55.3 45.9 37.5 66.9
Diameter of bolt,
inches........| Y4 | 3| 15| % | 34| %8| 1 |1}4]|135]|184| 2 {2}5|3and
over
Diameter factor.|2.50(1.95|1.68|1.52{1.41{1.33|1.27|1.19{1.14{1.101.07|1.03|1.00

1 The safe working stress for a given value of L ‘D is the product of three factors: (1) the basic
stress perpendicular to the grain taken from Table 12, (2) the percentage from this table, and (3) the

factor for bolt diameter, also from this table.

No reduction need be made when wood splice plates

are used except that the safe load perpendicular to the grain should never exceed the safe load par-
allel to the grain for any given size and quality of bolt and timber.
2 Bolts having a yield point of approximately 45,000 pounds per square inch,
3 Bolts having a yield point of approximately 125,000 pounds per square inch.
From U. 8. Dept. of Agriculture Technical Bulletin 332,



380 APPENDIX

TABLE 15

DIMENSIONS OF STRUCTURAL RIVETS

30° G

B 2 T

TATI Iy

D 4] { Dtg;-l N PN
p___K 2 — <

Lc;‘gg' L*c:f;:‘r g~ A

Driven Heads Manufactured Heads Die Driving Clearance

“Basic Dimensions,” High Button (Acorn) Heads, American Institute of Bolt, Nut
and Rivet Manufacturers, 1937

Dia. of Rivet, In. 1y 5% 4y Ty 1 114 11% 14¢ 114
g ~ |4 l 1.5D + 1§ 74 1lie 10 17ie 134 11346 | 2 2318 234

g E H 0.4254 3 7ie 1742 | %4 e | % 2742 | 13jg |1
= F | 151 916 | Vhis | 316 | '3 | 1lu2 | Tiux | 1942 | 11352 | 1%
g5
g - — — SN S SN
E é-g (o] 1.81D 2982 | 1'4 Ttz | 11942 | 13,4 | 2Ly | 21§ 215 2234,
A ga K 0.5D b | sie | a6 | Zie | b | %ie | 26 | thie | %

- A | 1L.5D + Y52 2549 | 3149 [ 1842 | 11142 | 11742 | 12342 | 12982 | 2342 | 2942
E H | 0.75D + % 2 1982 [ 1lie 2542 1 7% 3142 | 1lie 1342 | 144
4] = F 075D + %42 | 2442 | 3§ 27482 | 19{s | 1442 | 1'% 1742 | 15§a 11342
'g BERR 0.50 133 123 8 2 2 133 133 b Iz
38 N 0.094 342 342 342 352 342 152 342 142 342
é G [0.75D — 942 342 3e 942 38 1532 | 9ie 2042 | 3i 2732
S . e ]

1
K] é-’n‘ C 1.81D 2942 (1% 13032 | 11942 | 1136 | 2042 | 214 2)% 22349
< ga K| osD Yo ovie | 36 | Tie [ b | tae | 36 | Mis | 3

Die, In. | B 134 2 243 2% 234 3 3L 3 334

Driving E (min) 34 7% 1 118 114 134 113 134 134
Clearance E (pref.) 1 14 114 134 11 13¢ 134 17¢ 2
Inches

Reprinted from “Steel Construction,” by courtesy of the American Institute of Steel Construction,
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TABLE 16
ALLowaBLE WORKING VALUES FOR PowER-DRIVEN RIVETS
Unit Shearing Stress = 15,0004 /in"
. . Single Bearing = 32,0004/in®
Unit Bearing Stress{ | . ¢ .
g Double Bearing = 40,0004 /in*
1
Diameter Yy , ”
of Rivet 5% 3 74" 1” 114
Area of
Rivet 0.3068 0.4418 0.6013 0.7854 0.9940 [
Single
Shear,
Pounds 4,600 6,630 9,020 11,780 14,910
Double
Shear,
Pounds 9,200 13,250 18,040 23,560 29,820
Bearing Single,| Double,|Single,| Double, | Single,| Double,| Single, | Double,| Single, |Double,
Lb Lb Lb Lb Lb Lb Lb Lb Lb Lb
4 6,250 | 6,000 | 7,500 | 7,000 | 8,750 | 8,000 | 10,000 | 9,000 | 11,250
o |%218] ... | 7.810 9,380 | 8,750 | 10,900 | 10,000 | 12,500 | 11,300 | 14,100
; e | e — e
a 8 3% 9,380 11,300 13,100 | 12,000 { 15,000 | 13,500 | 16,900
e
S .5
ga (Mol -] ons . 13,100 15300 | ..... 17,500 | ..... 19,700
%'5 I I T R 17,500 | .. ... 20,000 { ..... 22,500
E 9UMe} ... | o o e e 22,500 | ..... 25,300
I R N . e | ool | 28,100

Compiled from data in “Manual of Steel Construction.”” by permission of the American
Institute of Steel Construction.
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TABLE 17

UNrINISHED BoLTs
Allowable Loads in Kips
Shear 10,000 psi
Bearing: S. S. 20,000 psi
D. S. 25,000 psi

For bolts with washers under nuts and with unthreaded shanks extending com-
pletely through joined parts, values may be increased by 12.5 percent

Bolt. Dia. 3o 34 3 % 1 1}$ 144
Area 0.1963 0.3068 0.4418 0.6013 0.7854 0.9940 1.2272
Single Shear 1.96 3.07 4.42 6.01 7.85 9.94 12,27
Double Shear | 3.93 6.14 8.84 12,03 15.71 19.88 24.54
Bearing Rearing Bearing Bearing Bearing Bearing RBearing
Thickfm-ss —
O
Plate 20.0 | 25.0 | 20.0 | 25.0 | 20.0 | 25.0 | 20.0 { 25.0 | 20.0| 25.0 | 20.0| 25.0 | 20.0 |25.0
0.125 ¢ 1.25( 1.56 | 1.56 | 1.95 | 1.88 | 2.35
0.140 140|175} 1.75]2.19 |1 2,101 263 | 2.45 | 3.06
0.160 1.60 | 2.00 | 2.00 | 2.50 | 2.40 | 3.00 | 2.R0 | 3.50
0.180 1.80}2.2512.25]281|270|3.38|3.15]| 3.94
0.1875 318 1.8812.38|234(293|28113523.28; 4.10
0.200 2.00 { 2.50 { 2.50 { 3.13 | 3.00 { 3.75 { 3.50 | 4.38 {4.00| 5.00
0.220 .. [2.75012.7513.44(3.30(4.13[3.85| 4.81|4.40( 5.50
0.240 3.0013.003.753.60 | 4.50 | 4.20 | 5.25[4.80 6.00
0.250 . 3.13(3.13]3.91(3.75] 4.69 | 4.38| 5.47 | 5.00| 6.25
0.260 3.25 4.0613.90 | 4.88[4.55| 5.69)5.20| 6.50|5.85] 7.31
0.280 3.50 4.3814.2015.25)|4.90| 6.13|5.60| 7.00|6.30( 7.88
0.300 3.75 4.69 1 4.50]5.63 [ 5.25| 6.56 | 6.00 | 7.50|6.75] 8.44
0.3125 3%is 3.91 . .. |586|547| 6.84)6.25| 7.817.03| 8.79
0.320 1.00 6.00|5.60| 7.00(6.40| 8.00(7.20| 9.00| 8.00]10.0
0.340 A 6.38 595 7.44(16.80| 850|7.65( 9.56| 8.50|10.6
0.360 6.75] ... | 7.8817.20] 9.00|8.10]10.1 9.00111.3
0.375 #¢ 7.03 8.20[7.50| 9.38)8.44}10.6 9.38 | 11.7
0.380 7.13 831 17.60| 9.50 | 8.5510.7 9.50 | 11.9
0.400 7.50 8.7518.00{10.0 {9.00|11.3 | 100 |12.5
0.420 7.88 9191 ... {105 [9.45(11.8 1105 |13.1
0.4375 Tis 8.20 9.57 109 |9.84 (123 |[10.9 |13.7
0.440 8.25 9.63 11.0 |9.90|12.4 |11.0 |13.8
0.460 8.63 10.1 115 | ... 129 |1L5 | 144
0.480 9.00 10.5 12.0 13.5 | 12,0 |15.0
0.500 ). e 10.9 12.5 141 | 125 [ 156
0.520 11.4 13.0 14.6 16.3
0.540 11.8 13.5 15.2 16.9
0.560 12.3 14.0 15.7 17.5
0.5625 %is .} 14.1 15.8 17.6
0.580 P I T A IO (RN ET A B I & 1 16.3 . 18.1
0.600 A R PR R I EPRE R A IPRO I 1 X1} 16.9 18.8
0.620 R B e I T e PP R B 1Y) 17.4 19.4
0.625 3% 15.6 17.6 . 19.5
06875 %e | ... | ... ... e e e {172 L {193 ... {205
0.750 %4 P R P A R T I R I I I 12 15 U R 1 X
081256 1fe | ... | ... f .o bbb e b e el 264

Reprinted from *‘Steel Construction” by courtesy of the American Institute of Steel Construction.
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TABLE 18
ErectioN CLEARANCES FOR INSERTING AND DRiviNGg Rivers
A B All hammers except No. 130 and
Diam No. 11 can be fitted with inverted
No. Max. D | Str. | Wit., handles. These are for crowded work
Rivet Ins Ins.| Lb [Length |Clear. | Length | Clear. | and are ounly provided by special ar-
) L C L C  |[rangement. No. 130 is a jam riveter
In. In. In. I'. |for close-quarte: work.
130 3%e 4115 9 12 P
50| 34 2546 51 20 o - 14 7 }Used only to drive in close quarters
60] 34 | 276 | 6] 23 | 191 24 1534 19 Rarely used
801 2% 8| 25 | 214 26 1715 21 Used for all except heaviest riveting
90| 144 2% 9| 26 2334 28 1934 23 . I
11 136 2%4e | 11 | 32 2615 31 o }Used for heaviest riveting

o

L 70

T

E F

3~ 2”
4 2%
5 2%
6 2%
7 2%
8 3

If hammer can be “rolled,” easier driving and more symmetrical heads are
obtained. To permit this, distance “F'”’ must be as given here and field rivets
must have a perfect stagger with shop rivets.

(a) Standard Open Handle

(b) Inverted Handle

Reprinted from “Steel Construction,” by courtesy of the American Institute of Steel Construction.
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TABLE 19
PrysicAL PrOPERTIES OF METAL DEpPosiTED BY BARE AND COATED
ELECTRODES
Bare Electrode Coated Electrode
Property
Min Max Min Max
Yield point, lb persqin........... 35,000 40,000 42,000 55,000
Ultimate strength, lb per sq in..... 45,000 55,000 60,000 70,000
Elongation in 2 in., per cent....... 8 15 25 35
Reduction of area, per cent........ . 15 20 45 65
Endurance limit, Ib per sq in....... 16,000 20,000 26,000 30,000
Impact strength, Izod, ft-lb........ 5 15 40 50
Density, gperce................ 7.5 7.6 7.81 7.85

From paper oh welding design, by Chas. H, Jennings, 4.S.M.E. Transactions for October, 1936,

TABLE 20

PERMISSIBLE UNIT STRESSES
(Values in Kips per sq in.)

For Welds Made with
Filler Metal of
Kind of Stress
Grade 2, Grade 20, 30,
4,10, or 15 or 40
Shear on section through weld throat. ........... 13.6 11.3
Tension on section through weld throat....... .. 15.6 13.0
Compression (crushing) on section through throat
ofbuttweld................... .. ..., 18.0 18.0

Note that this code specifies that the stress in a fillet weld shall be considered as shear, for any
direction of the applied stress.
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TABLE 21

WORKING STRESSES AND STRESS-CONCENTRATION FacTors FOrR WELDS
oN Low-CARBON STEELS

~Working Stresses—

Bare Electrodes ~Coated Electrodes—

Type of Weld Static Dyvnamic Static Dynamic
Loads, Loads, Loads, Loads,
Ih per sq in. | Ib per sq in. | Ib per sq in. | 1b per sq in.

Butt welds:
Tension.......covvvuvenne.. 13,000 5,000 16,000 8,000
Compression. .............. 15,000 5,000 18,000 8,000
SBEAT. .. v, 8,000 3,000 10,000 5,000
Fillet welds:
Transverse and parallel welds | 11,300 3,000 14,000 5,000

Stress-Concentration Factors

Stress-
Concentration
Factor, K

Location

Reinforced butt welds

....................................... 1.2
Toe of transverse fillet weld................................ ... 1.5
End of parallel fillet weld................ ... ..o 2.7
T butt joint with sharp corners............ ... ... ... ......... .. 2.0

From paper on welding design by Chas. H. Jennings, A.S.M.E. Transactions for October, 1936,
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APPENDIX

TABLE 22

Finish, Common Boards and Strips, Dimension and Heavy Joist

Rough Size Dressed Dimensions
Product :
Thickness, | Width, | o Yo" ,{,’;l‘.’“lfm“l Width,
inches inches uekness, yiekness, inches
inches inches
......... 3 e 254
......... 4 U6 3%
......... 5 e 414
......... 6 146 514
1 7 2342 2842 614
Finish 114 8 1e | ......... 7Y
1% 9 1546 | coeennn.. 8Y
1% 10 %6 | ooonnnn. 914
2 11 15% 184 104
213 12 2% | ... 11Y
3 P2 A T R
1 3 2349 2949 254
1% 4 Mg | oiiinn. 35
1% 5 7P 484
......... 6 5%
Common boards | ......... T o 654
and strips | ......... 8 o} ] Y
......... 9 814
......... 10 914
......... 11 1014
......... 12 113
2 2 154 164 1823
214 4 2% | 3%
Dimension and 3 6 2% | ... 5%
heavy joist 4 8 3% | ......... 7%
......... 10 915
......... 12 e 11%

Note: Thicknesses apply to all widths and widtha to all thicknesses.
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TABLE 23

STANDARD S1ZEs OF STRUCTURAL TIMBERS

387

Nominai Width

Nominal Length

4in. and up in mul-
tiples of 2 in.

6, 8, 9, and 10 ft to
40 ft, in multiples
of 2 ft

Item Nominal Thickness
Joists and planks...| 2,3 and 4in.
Beams and stringers | 5, 6 in. and up in

multiples of 2 in.

8in. and up in mul-
tiples of 2 in.

6, 8, 9, and 10 ft
and up in multi-
ples of 2 ft

Posts and timbers. .

5, 6 in. and up in
multiples of 2 in.

5, 6 in. and up in
multiples of 2 in.

6, 8 9, and 10 ft
and up in multi-
ples of 2 ft

TABLE 24

STRUCTURAL TIMBERS—STANDARD S1zES JoisT AND PLANK, BEAMS AND STRINGERS,
Posts AND TIMBERS

Tolerances and Surfacing Allowances

Thickness Width
!
Minimum | Minimum
Product B I
Nominal, Nominal,
inches SIS or inches S1E or
l.lnugh, 28, Bough, 2,
inches . inches .
inches inches
Joist and plank 2 1§ off 3¢ off 4 3,6 off 3¢ off
3 316 off 35 off 6 3,6 off 34 off
4 3{¢ off 3¢off |8andup| 1; off 15 off
Beams and 5 {6 off 1;0ff |8andup| 1y off 15 off
stringers 6 31¢ off Loff | ....o.o | oo
8and up| 1i off Loff | ....... | . ... oL
Posts and timbers 5 3{¢ off 13 off 5 3,6 off 14 off
6 3{g off 145 off 6 3{¢g off 15 off
8and up| Li off L off [8andup| 1y off 15 off

Note: Thicknesses apply to all widths and widths to all thicknesses.
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TABLE 25

ALLowaBLE UNIT STRESSES—STRESS-GRADE LUMBER

The allowable unit stresses below are for permanent loading.

Allowable Unit Stresses in Pounds
per Squarc Inch
Extreme Com- Modulus
. . Rules Under Which | Fiber in pres- ome of
Species and Commercial Grade ! Graded Bending | Hori- | sion pl(-(::?on Elasticity
fand | zoutal | Per- Parallel E
Tension | Shear |pendie- to Cirain®
Parallel H | ular to ¢
toGrain? Grain
t cl
1 2 3 4 5 6 7
Cypress, southern: National Hurdwood 360 1.200.000
1700 f Grade J.&P.-B.&S. Lumber Association 1.700 145 1.425
1300 f Grade J.&P-B.&S. 1.300 120 1.125
1450 ¢ Grade ¢ L 1 o 1,450
1200 ¢ Grade P.&T. 1,200
Cypress, tidewater red: Southern (‘ypress 360 1,200.000
1700 f Grade J.&P.-B.&S. Manufacturers Asso- | 1.700 145 1,425
1300 f Grade J.&P-B.&S. | ciation 1.300 120 1.125
1450 ¢ Grade P.&T. 1,450
1200 ¢ Grade P.&T. 1,200
Douglas fir coast region: 4 West (‘oast Bureau of 1,600.000
Par. 214a Grade 5 J.&P. Lumber Grades and | 2.150 145 455 1,550
Par. 218a Grade 8 B.&S. Inspection 2,150 145 455 1,550
Par. 214 Grade J.&P. 1.900 120 415 1.450
Par. 218 Grade B.&S. 1.900 120 415 1,450
Par. 215a GGrade & J.&P. 1.700 145 455 1.325
Par. 219a Grade 3 B.&S. 1.700 145 455 1.325
Par. 215 Grade J.&P. 1,450 120 390 1,200
Par. 219 Grade B.&S. 1.450 12 390 1,200
Par. 216 (irade J.&P. 1.100 110 390 1,075
Par. 210a Grade 3 P&T. .. . 455 1,550
Par. 210 Grade P.&T. 415 1,450
Par. 200 Grade P.&T. . 390 1.3256
Douglas fir, inland empire: Western Pine Associa-
Select structural & J.&P. tion 2,150 145 455 1,750 | 1,600,000
Structural J.&P. 1.900 100 400 1,400 1,500,000
Common structural J.&P. 1.450 95 380 1,250 | 1,500.000
Select structural 8 P&T. 0 455 1,750 | 1,600,000
Structural pe&etT. ] 400 1,400 | 1,500.000
Common structural p&r. 380 ,250 | 1,500,000
Hemlock, eastern: Northern Hemlock and 360 1,100.000
Select structural J.&P.-B.&S. | Hardwood Manufac-| 1.300 85 850
Prime structural J.&P7 turers Association 1,200 60 775
Common structural J.&P7 1.100 60 650
Utility structural J.&PT 950 60 600
Select structural P&, | Ll 850
Hemlock, West Coast: 4 West Coast Bureau of 360 1,400,000
Par. 498 Grade J.&P. Lumber Grades and | 1,450 100 1,075
Par. 500 Grade B.&S. Inspection 1,450 100 1,075
Par. 499 Grade J.&P. 1,100 90 850
Par. 503 Grade P&T. |} L . 1,0756

See footnotes at end of table.
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TABLE 25—Continued
ALLowaBLE UNIT STRESSES—STRESS-GRADE LUMBER
The allowable unit stresses Lolow are for pcrmanent loading.
Allowable Unit Stresses in Pounds
per Square Inch
Extreme Com- Modulus
. s Rules Under Which | Fiber in pres- of
Species sad Commercial Grade ! Graded Bending | Hori- | sion | OO | Elatiity
fand | zontal | Per- Parallel E
Teusion | Shear |pendic-| ¢ (3raind
Parallel H ularto ¢
toCrain2 Grain
i el
1 2 3 4 5 6 7
Maple, hard: National Hardwood 600 1,600,000
2150 f Grade J.&P. Lumber Association 2,150 145 1,750
1900 f Grade J.&P.-B.&S. 1. 1,526
1700 f Grade J.&P.-B.&S. 1 1,350
1450 f Grade J.&P.-B.&S. 1 1,150
1550 ¢ Grade P.&T. 1,550
1450 ¢ Grade P.&T. 1,450
1200 ¢ Grade P&T. 1,200
Oak, red and white: National Hardwood 600 1,500,000
2150 f Grade J.&P. Lumber Association | 2,150 145 1,550
1900 f Grade J.&P-B.&S. 1,900 145 1,375
1700 f Grade J.&P.-B.&S. 1,700 145 1,200
1450 f Grade J.&P.-B.&S. 1,450 120 1,050
1300 f Grade B.&S. 1,300 120 950
1325 ¢ Grade DX A .. 1,325
1200 ¢ Grade p&T. | ] Ll 1,200
1075 ¢ Grade P&T. Ll .. 1,075
Pine, Norway: Northern Hemlock and 360 1,200,000
Prime structural J.&P.7 Hardwood Manufac- | 1,200 75 900
Common structural J.&P.7 turers Association 1.100 75 775
Utility structural J.&P7 950 75 650
Pine, southern longleaf: Southern Pine Inspec- 455 1,600,000
Select structural & J.&P.-B.&S. | tion Bureau of the| 2,400 1208 1,750
Prime structural J.&P.~B.&S. | Southern Pine Asso- | 2,150 1208 1,550
Merchantable structurald | J.&P.-B.&S. | ciation 1,900 1208 1,450
Structural S.E.&S. 8 J.&P.-B.&S. 1,900 1208 1,450
No. 1 structural & J.&P.-B.&S. 1,700 1208 1,200
No. 1 dimension & J.&P.7 1,700 cen 1,200
No. 2 stress dimension 8 | J.&P.7 1,250 1,025
Select structural & P&, o 1,750
Prime structural 8 p&r. L 1.550
Merchantable strue-| P.&T. | | ... 1,450
tural &
Structural S.E.&8.5 pger. | 1,450
No. 1 structural & D A 1,200
Pine, southern shortleaf: Southern Pine Inspec- 1,600,000
Dense select structural 8 | J.&P.-B.&S. | tion Bureau of the| 2,400 1208 | 455 1,750
Dense Structural ® J.&P-B.&8. | Southern Pine Asso-| 2,150 1208 | 455 1,550
Desnse ;tg\;ctural J.&P.-B.&S. | ciation 1,900 1208 | 455 1,450

See footnotes at end of table.
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TABLE 25—Conlinued
AvrLowaBLE UNIT STRESSES—STRESS-GRADE LUMBER

The allowable unit stresses below are for permanent loading.

Allowable Unit Stresses in Pounds
per Square Inch
Extreme Com- Modulus
: . Rules Under Which | Fiber in pres- of
Species and Commercial Grade ! Graded Bending | Hori- | sion C(::i:n Elasticity
fand | zontal | Per- ‘l)’rarallel E
Tension | Shear |pendic- to Grain®
Parallel H lularto .
toGrain? Grain
t cl
1 2 3 4 5 6 7
Pine, southern shartleaf:
Contiued
Dens2 No. 1 structural | J.&P.-B.&S. 1,700 12081 455 1,200
No. 1 dens> dimension ® | J.&P.7 1,700 ... 455 1,200
No. 1 dimension J.&P7 1,450 N 3%0 (. 1,075
No. 2 dense stress dimen- | J.&P.7 1,250 ... 455 1,025
sion &
No. 2 medium grain | J.&P.7 1,100 . 390 875
stress dimension
Dens: sclect structural® | P&AT. | | . . 455 1,750
Dense structural & P.&T. . AN 455 1,550
Dense structural S.E. & | P.&T. . . 455 1,450
88
Dense No. 1 structurald | P.&T. . . 455 1,200
Redwood: California Redwood 320 1, 200,000
Dense select all-heart | J.&P.-B.&S. | Association 1,700 110 1,450
structural 8
Select all-heart struc- | J.&P.-B.&S. 1,450 95 1,325
tural
Bulkhead structural & J.&P. 1,300 95 1,325
Heart structural J.&P. 1,300 95 1,325
Dense select allheart|{ PAT. | | ... e 1,450
structural®
Select all-heart struc- | P.&T. R . 1,325
tural &
Spruce, eastern: Northeastern Lumber 300 1,200,000
1450 f structural grade | J.&P. Manufacturers Asso- | 1,450 110 1,050
1300 f structural grade | J.&P. ciation, Inc. 1,300 95 976
1200 f structural grade | J.&P. 1,200 95 900

1 Abbreviations: J.&P., Joists and Planks; B.&S., Beams and Stringers; P.&T., Posts and Timbers; S.E.&S., Square
Edge and Sound.

3 When graded in accordance with specification.

3 When graded according to specification and when the I/d ratio is 11 or less,

4 These paragraph numbers refer to paragraphs in the Standard Grading and Dressing Rules of the Weet Coast Bureau
of Lumber Grades and Inspection.

5 These grades include requirements for density.

€ When slope of grain is not more than 1 in 10,

7 Available in thickness of 2 in. only.

8 Allowable unit shearing stresses of 145, 170, and 190 pei may be used when these grades are specified to conform to
the standard 120, 140, and 160 Ib shear grades respectively in the grading rules.
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TABLE 26
TiMBER
AMERICAN STANDARD SI1ZES
Propertics fur Designine
National Lumber Manufacturers’ Association
American | Area Mo- | Sec- American | Area Sec-
I‘.Iom- Standard | of Wt | ment | tion || Nominal| Standard of | Wt |Moment tion
inol | Dressed | Sec- | P' | of |Mod|| Size | Dressed | sec-| Per - {Mod-
Size Size tion 00t |1nertial| ulus Size tion | Foot | Inertia ulus
In. In. In.2 Lb In4 | In3 In. In. In.2 Ib In¢ In3
2x 4| 15x3% | 5.80| 1.64| 6.45 | 3.56|| 10x10 | 934 x93 [90.3 | 25.0 679 | 143
6 58| 9.14] 2.54f24.1 | 8.57 12 113 | 109 {30.3 | 1,204 | 209
% 7% | 12.2 | 3.39(57.1 [15.3 14 13% | 128 {356 | 1,048 | 289
10 0 | 15.4 | 4.29| 116 [24.4 16 153 | 147 | 40.9 | 2,948 | 380
12 134 | 18.7 | 5.19 206 [35.8 18 1734 | 166 | 46.1 | 4,243 | 485
14 1316 | 21.9 | 6.09| 333 [49.4 20 1935 | 185 | 51.4 | 5870 | 602
16 15% | 25.2 | 6.99] 504 [65.1 22 213 | 204 | 56.7 | 7,868 | 732
18 173 | 28.4 | 7.90] 726 |82.9 24 2334 | 223 | 62.0 | 10,274 | 874
3x 4 | 254X35¢ 9.52| 2.64[10.4 5.75 12X12 | 1134X11% | 132 | 36.7 1,458 253
6 555 | 14.8 | 4.1038.9 [13.8 14 13}4 | 155 | 43.1 | 2,358 | 349
8 734 | 19.7 | 5.47)92.3 [24.8 16 1534 | 178 1 49.5 | 3,569 | 460
10 93| 24.9 6.93] 188 {39.5 18 1734 | 201 | 55.9 5,136 587
12 113 | 30.2 | 8.39 333 |57.9 20 1034 | 224 | 62.3 | 7,106 | 729
14 133 | 35.4 | 9.84] 538 [79.7 22 2134 | 247 ) 68.7 | 9,524 | 886
16 1534 | 40.7 | 11.3 815 | 105 24 233 | 270 | 75.0 | 12,437 | 1058
18 17341 45.9 | 12.8 | 1172 | 134 |} 404 | 1334x1334 | 182 | 50.6 | 2,768 | 410
ax4|3%x35% | 13.1| 3.6514.4 | 7.04 16 15341 209 ) 58.11 4,189 1 54l
o 55 | 204 | 5e0/s38 191 18 17% | 236 | 65.6 | 6,020 | 689
: : : : 20 1934 | 263 | 73.1| 8,342 856
8 7% | 27.2 | 7.55| 127 [34.0
0 ° 22 2114 | 200 | 80.6 | 11,181 | 1040
10 935 | 34.4 | 9.57| 259 [54.5
2 1154 | 31,7 [ 116 | 450 190 24 233 | 317 | 88.1 | 14,600 | 1243
14 13% | 48.9 | 13.6 | 743 | 110 || 1616 | 15341534 | 240 | 66.7 | 4,810 | 621
16 1534 | 56.2 | 15.6 | 1125 | 145 18 17% | 271 | 75.3 | 6,923 | 791
18 17% | 63.4 | 17.6 | 1619 | 185 20 193 | 302 | 83.9 | 9,578 | 982
22 2114 | 333 | 92.5 | 12,837 | 1194
66| 5%x5%% | 30.3 | 8.40[76.3 [27.7 24 2314 | 364 | 101 | 16,763 | 1427
8 7% | 41.3 [ 11.4 | 193 |51.6
10 91 | 52.3 | 14.5 393 I82.7 18X 18 | 1714X17% | 306 | 85.0 7,816 893
12 113 | 63.3]|17.5 697 | 121 20 193% | 311 94.8 | 10,813 | 1109
14 1334 | 74.3 | 2006 | 1128 | 167 22 2134 | 376 | 105 | 14,493 | 1348
16 155 | 85.3 | 23.6 | 1707 | 220 24 2314 | 411 | 114 | 18,926 | 1611
18 1734 | 96.3 | 26.7 | 2456 | 281 26 2514 | 446 | 124 | 24,181 | 1897
20 1034 [107.3 | 20.8 | 3308 | 349 || 50520 | 19341934 | 380 | 106 | 12,049 | 1236
. 22 2134 | 419 | 116 | 16,150 | 1502
8X 8| 7W¥X7¥ | 56.3|15.6 264 {70.3 24 2314 | 458 127 | 21,089 | 1795
10 9% | 71.3 1 19.8 | 530 ;‘3 26 253 | 497 | 138 | 26,945 | 2113
14 1334 [101.3 | 28.0 | 1538 | 228
16 1514 [116.3 | 32.0 | 2327 | 300 || 24 x24 | 2314x2334 | 552 | 133 | 25415 | 2163
18 17% [131.3 | 36.4 | 3350 | 383 26 2534 | 599 | 166 | 32,472 | 2547
20 1934 [146.3 | 40.6 | 4634 | 475 28 2735 | 646 | 180 | 40,727 | 2062
22 2134 (161.3 | 44.8 | 6211 | 578 30 2934 | 693 | 193 | 50,275 | 3108

All properties and weights given are for dressed size only.

The weights given above are based on assumed average weight of 40 pounds per cubic foot.

Reproduced from ** Manual of Steel Construction,”” by courtesy of the American Institute of Steel
Construction.
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(From Douglas Fir Use Book, by permission of West Coast Lumberman’s Assoc.)
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TABLE 27

PHYSICAL PROPERTIES FOR STEEL

Steel for Bridges and Buildings ASTM A 7-39
ASTM A 141-39

Structural Rivet Steel
Structural Silicon Steel ASTM A 94-39
Steel for Bridge-
and Buildings
Structural | Structural
Property Rivet Silicon
Plates, Eye-Bar Steel Steel
Sections, Flats,
and Bars | Unannealed
Tensile strength, psi 60,000 to 67,000 to 52,000 to 80,000 to
72,000 82,000 62,000 95,000
Yield point, psi, 0.5 tens. str. | 0.5 tens. str. | 0.5 tens. str.
but never less than 33,000 36,000 28,000 45,000
I‘Ilongation ill 8~m ])500»000 1 11500y000 1 1,500,0(» 11500)0001
minimum percentage tens. str. tens. str. tens. str. tens. str.
Elongation in 2-in. 99 2 1,600,000
minimum percentage o tens. str.

1 The specifications permit a modification of this requirement for material over 3i in. in thickness or

under %ie in.
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TABLE 28
WF SHaPES x—ll__x
_J_ Properties for Designing
Y
Flange Axis X-X Axis Y-Y
X Weight Web
N(g.‘l::ﬂ per | Area | Depth Thick-
Foot Width Thick- | ness 1 S r 1 S r
ness
In. Lb In2 In. In. In. In. Ind In3 In. Ind In3 | In
36X 16%:| 300 | 88.17 | 36.72 | 16.655 | 1.680 | 0.945 |20290.2 |1105.1 |15.17 |1225.2 | 147.1 | 3.73
280 | 82.32 | 36.50 | 16.595 | 1.570 | 0.885 {18819.3 [1031.2 |15.12 {1127.5 | 135.9 | 3.70
260 76.56 | 36.24 | 16.555 | 1.440 | 0.845 [17233.8 | 951.1 |15.00 {1020.6 | 123.3 | 3.65
245 ¢| 72.03 | 36.06 | 16.512 | 1.350 | 0.802 |16092.2 | 892.5 |14.95 | 944.7 | 114.4 | 3.67
230 67.73 | 35.88 | 16.475 | 1.260 | 0.765 | 14988.4 | 835.5 |14.88 | 870.9 | 105.7 | 3.59
36 X 12 194 57.11 | 36.48 | 12,117 | 1.260 | 0.770 | 12103.4 | 663.6 |14.56 | 355.4 58.7 | 2.49
182 | 53.54 | 36.32 | 12.072 | 1.180 | 0.725 |[11281.5 | 621.2 |14.52 | 327.7 54.3 | 2.47
170 | 49.98 | 36.16 | 12.027 | 1.100 | 0.680 |10470.0 | 579.1 |14.47 | 300.6 | 50.0 | 2.45
160 | 47.09 | 36.00 | 12.000 | 1.020 | 0.653 | 9738.8 | 541.0 (14.38 | 275.4 | 45.9 | 2.42
150 | 44.16 | 35.84 | 11.972 | 0.940 | 0.625 | 9012.1 | 502.9 |14.29 | 250.4 41.8 | 2.38
33 X 1533 ] 240 70.52 | 33.50 | 15.865 | 1.400 | 0.830 | 13585.1 | 811.1 [13.88 | 874.3 | 110.2 | 3.52
220 | 64.73 | 33.25 | 15.810 | 1.275 | 0.775 [12312.1 | 740.6 |13.79 | 782.4 | 99.0 | 3.48
200 | 58.79 | 33.00 | 15.750 | 1.150 | 0.715 [ 11048.2 | 669.6 |[13.71 | 691.7 | 87.8 | 3.43
33 X 114a] 152 44.71 | 33.50 | 11.565 | 1.055 | 0.635 | 8147.6 | 486.4 |13.50 | 256.1 44.3 | 2.39
141 41.51 | 33.31 | 11.535 | 0.960 | 0.605 | 7442.2 | 446.8 |13.39 | 229.7 39.8 | 2.35
130 | 38.26 | 33.10 | 11.510 [ 0.855 | 0.580 | 6699.0 | 404.8 |13.23 | 201.4 35.0 | 2.29
30 X 15 210 | 61.78 | 30.38 | 15.105 | 1.315 | 0.775 | 9872.4 | 649.9 |12.64 | 707.9 93.7 | 3.38
190 | 55.90 | 30.12 | 15.040 | 1.185 | 0.710 | 8825.9 | 586.1 [12.57 | 624.6 | 83.1| 3.34
172 | 50.65 | 20.88 | 14.985 | 1.065 | 0.655 | 7891.5 { 528.2 [12.48 | 650.1 73.4 | 3.30
30 X 10%6| 132 | 38.83 | 30.30 | 10.551 | 1.000 | 0.615 | 5753.1 | 379.7 {12.17 | 185.0 | 35.1 | 2.18
124 | 36.45 | 30.16 | 10.521 | 0.930 | 0.585 | 5347.1 | 354.6 |12.11 | 169.7 32,3216
116 | 34.13 | 30.00 { 10.500 | 0.850 | 0.564 | 4919.1 { 327.9 (12.00 | 153.2 29.2 | 2,12
108 | 31.77 | 20.82 | 10.484 | 0.760 | 0.548 | 4461.0 | 299.2 |11.85 | 135.1 | 25.8 | 2.06
27X 14 177 | 52.10 | 27.31 | 14.090 | 1.190 | 0.725 | 6728.6 | 492.8 {11.36 | 518.9 73.7 ] 3.16
160 47.04 | 27.08 | 14.023 | 1.075 | 0.658 | 6018.6 | 444.5 [11.31 | 458.0 65.3 | 3.12
145 42.68 | 26.88 | 13.965 | 0.975 | 0.600 | 5414.3 | 402.9 |11.26 | 406.9 58.3 | 3.09
27X 10 114 | 33.53 | 27.28 | 10.070 | 0.932 | 0.570 | 4080.5 | 290.2 {11.03 | 149.6 | 29.7 | 2.11
102 | 30.01 | 27.07 | 10.018 | 0.827 | 0.518 | 3604.1 | 266.3 110.96 | 120.5 25.9 | 2.08
94 27.65 | 26.91 | 9.990 | 0.747 | 0.490 | 3266.7 | 242.8 |10.87 | 115.1 23.0 | 2.04
24 X 14 160 | 47.04 | 24.72 | 14.001 | 1.135 | 0.656 | 5110.3 | 413.5 |10.42 | 492.6 | 69.9 | 3.23
145 | 42.62 | 24.49 | 14.043 | 1.020 | 0.608 | 4561.0 | 372.5 [10.34 | 434.3 | 61.8 | 3.19
130 | 38.21 | 24.25 | 14.000 | 0.900 | 0.565 | 4009.5 | 330.7 (10.24 | 375.2 | 53.6 | 3.13
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- TABLE 28 (Continued)
WF SHaPES X —x
-L Properties for Designing
Y
Flange Axis X-X Axis Y-Y
. Weight| Web
N‘g;::.’ per Area | Depth Thick-
Foot Width Thick- | ness 1 S r 1 8 r
ness
In. Lb In2 In. In, In. In. Int In3 In. In4 In3 | In
24X 12 120 | 35.29 | 24.31 | 12,088 | 0.930 | 0.556 | 3635.3 | 299.1 {10.15 | 254.0 | 42.0 | 2.68
110 | 32.36 | 24.16 | 12.042 | 0.855 | 0.510 | 3315.0 | 274.4 |10.12 | 229.1 | 38.0 | 2.66
100 | 29.43 | 24.00 | 12.000 | 0.775 | 0.468 | 2987.3 | 248.9 {10.08 | 203.5 33.9 | 2.63
24 X9 94 27.63 | 24.29 9.061 | 0.872 | 0.516 | 2683.0 | 220.9 | 9.85 | 102.2 22.6 | 1.02
84 | 24,71 | 24.09 | 9.015 | 0.772 | 0.470 | 2364.3 | 196.3 | 0.78 88.3 19.6 | 1.89
76 | 22.37 | 23.91 | 8.985 | 0.682 [ 0.440 | 2096.4 | 175.4 | 9.68 76.5 17.0 | 1.85
21 X 13 142 | 41.76 | 21.46 | 13.132 | 1.095 | 0.659 | 3403.1 | 317.2 | 9.03 | 385.9 58.8 | 3.04
127 37.34 | 21.24 | 13.061 | 0.985 | 0.588 | 3017.2 | 284.1 | 8.99 | 338.6 51.8 | 3.01
112 | 32.93 | 21.00 | 13.000 | 0.865 | 0.527 | 2620.6 | 249.6 | 8.92 | 289.7 | 44.6 | 2.96
21 X9 96 [ 28.21 | 21.14 | 9.038 | 0.935 | 0.575 | 2088.9 | 197.6 | 8.60 | 109.3 24.2 | 1.97
82 24.10 | 20.86 | 8.962 | 0.795 | 0.499 | 1752.4 | 168.0 | 8.53 89.6 20.0 | 1.93
21 X 8§ 73 | 21.46 | 21.24 | 8.295 | 0.740 | 0.455 | 1600.3 | 150.7 | 8.64 66.2 18.0 | 1.76
68 20.02 ) 21.13 | 8.270 | 0.685 | 0.430 | 1478.3 | 139.9 | 8.59 60.4 14.6 | 1.74
62 18.23 | 20.99 | 8.240 | 0.615 | 0.400 | 1326.8 | 126.4 | 8.53 53.1 12.9 | 1.71
18X 1135 | 114 33.51 | 18.48 | 11.833 | 0.991 | 0.595 | 2033.8 | 220.1 | 7.79 | 255.6 | 43.2| 2.76
105 | 30.86 | 18.32 | 11.792 | 0.911 | 0.554 | 1852.5 | 202.2 | 7.75 | 231.0 | 39.2 | 2.78
96 28.22 | 18.16 | 11.750 | 0.831 | 0.512 | 1674.7 | 184.4 | 7.70 | 206.8 | 35.2 | 2.71
18 X 834 85 24.97 | 18.32 | 8.838 | 0.911 | 0.526 | 1429.9 | 156.1 | 7.57 99.4 22.5 | 2.00
7 22.63 | 18.16 | 8.787 | 0.831 | 0.475 | 1286.8 | 141.7 | 7.54 88.6 20.2 | 1.98
70 20.56 | 18.00 | 8.750 | 0.751 | 0.438 | 1153.9 | 128.2 | 7.49 78.5 17.9 | 1.95
64 18.80 | 17.87 | 8.715 | 0.686 | 0.403 | 1045.8 | 117.0 | 7.46 70.3 16.1 | 1.93
18 X 734 60 | 17.64 | 18.25 | 7.558 [ 0.695 | 0.416 | 984.0 | 107.8 | 7.47 47.1 12.5 | 1.63
55 16.19 | 18,12 | 7.532 | 0.630 | 0.3%0 | 889.9 98.2 | 7.41 42,0 | 11.1 ] L.61
50 14.71 | 18.00 | 7.500 | 0.570 | 0.358 | 800.6 89.0 | 7.38 37.2 9.9 | 1.59
16 X 1134 96 | 28.22 | 16.32 | 11.533 | 0.875 | 0.535 | 1355.1 | 166.1 | 6.93 | 207.2 35.9 | 2.7
88 | 25.87 | 16.16 | 11.502 | 0.795 | 0.504 | 1222.6 | 151.3 | 6.87 | 185.2 | 32.2 | 2.67
16 X 834 78 22.92 | 16.32 | 8.586 { 0.875 ( 0.529 | 1042.6 | 127.8 | 6.74 87.5 20.4{ 1.95
71 20.86 | 16.16 | 8.543 | 0.795 | 0.486 036.9 | 115.9 | 6.70 77.9 18.2 | 1.93
64 18.80 | 16.00 | 8.500 | 0.715 | 0.443 833.8 | 104.2 | 6.66 68.4 16.1 { 1.91
58 17.04 | 15.86 | 8.464 | 0.645 | 0.407 746.4 94.1 | 6.62 60.5 | 14.3 | 1.88
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TABLE 28 (Continued)
WF SuaPEs x —-——x
Properties for Designing
Flange Axis X-X Axis Y-Y
. Weight Web
th;::\sl per Area | Depth Thick-
Foot Width Thick- | ness 14 S r 1 S r
ness
In. Lb In2 In. In. In. In. Int In3 In. Indt In3 In.
18X7 50 14.70 | 16.25 | 7.073 | 0.628 | 0.380 655.4 80.7 | 6.68 34.8 9.8 | 1.54
45 13.24 | 16.12 | 7.039 | 0.563 | 0.346 | 583.3 72.4 | 6.64 30.5 8.7 | 1.52
40 11.77 | 16.00 | 7.000 | 0.503 | 0.307 515.5 64.4 | 6.62 26.5 7.6 1.50
36 10.59 | 15.85 6.992 | 0.428 | 0.299 446.3 56.3 | 6.49 22,1 6.3 | 1.45

14X 16 426 |125.25 | 18.69 | 16.695 | 3.033 | 1.875 | 6610.3 | 707.4 | 7.26 |2359.5 | 282.7 | 4.34
398 [116.98 | 18.31 | 16.590 | 2.843 | 1.770 | 6013.7 | 656.9 | 7.17 |2169.7 | 261.6 | 4.31
370 |108.78 | 17.94 | 16.475 | 2.658 | 1.655 | 5454.2 | 608.1 | 7.08 |1986.0 | 241.1 | 4.27
342 |100.59 | 17.56 | 16.365 | 2.468 | 1.545 | 4011.5 | 550.4 | 6.99 |1806.9 | 220.8 | 4.24
314 | 92.30 | 17.19 | 16.235 | 2.283 | 1.415 | 4399.4 | 511.9 | 6.90 |1631.4 | 201.0 | 4.20
287 | 84.37 | 16.81 | 16.130 | 2.093 | 1.310 | 3912.1 | 465.5 | 6.81 |1466.5 | 181.8 | 4.17
264 | 77.63 | 16.50 | 16.025 | 1.938 | 1.205 | 3526.0 | 427.4 | 6.74 |1331.2 | 166.1 | 4.14
246 | 72.33 | 16.25 | 15.945 | 1.813 | 1.125 | 3228.9 | 397.4 | 6.68 |1226.6 | 153.9 | 4.12
237 | 69.69 | 16.12 | 15.910 | 1.748 | 1.090 | 3080.9 | 382.2 | 6.65 11174.8 | 147.7 | 4.11

228 | 67.06 | 16.00 | 15.865 | 1.688 | 1.045 | 2042.4 | 367.8 | 6.62 |1124.8 | 141.8 } 4.10
219 | 64.36 | 15.87 | 15.825 | 1.623 | 1.005 | 2798.2 | 352.6 | 6.59 |1073.2 | 135.8 | 4.08
211 | 62.07 | 15.75 | 15.800 | 1.563 | 0.980 | 2671.4 | 339.2 | 6.56 |1028.6 | 130.2 | 4.07
202 | 59.39 | 15.83 | 15.750 | 1.503 | 0.930 | 2538.8 | 324.9 | 6.54 | 979.7 | 124.4 | 4.06
193 | 56.73 | 15.50 | 15.710 | 1.438 | 0.890 | 2402.4 | 310.0 | 6.51 | 930.1 | 118.4 | 4.05
184 | 54.07 | 15.38 | 15.660 | 1.378 | 0.840 | 2274.8 | 295.8 | 6.49 | 882.7 | 112.7 | 4.04
176 | 51.73 | 15.25 | 15.640 | 1.313 | 0.820 | 2149.6 | 281.9 | 6.45 | 837.9 | 107.1 | 4.02
167 | 49.09 | 15.12 | 15.600 | 1.248 | 0.780 | 2020.8 | 267.3 | 6.42 | 760.2 | 101.3 | 4.01
158 | 46.47 | 15.00 | 15.550 | 1.188 | 0.730 | 1900.6 | 253.4 | 6.40 | 745.0 | 95.8 | 4.00
150 | 44.08 | 14.88 | 15.515 | 1.128 | 0.695 | 1786.9 | 240.2 | 6.37 | 702.5 | 90.6 | 3.99
142 | 41.85 | 14.75 | 15.500 | 1.063 | 0.680 | 1672.2 | 226.7 | 6.32 | 660.1 | 85.2 | 3.97
3201| 94.12 | 16.81 | 16.710 | 2.093 | 1.890 | 4141.7 | 402.8 | 6.63 |1635.1 | 195.7 | 4.17

14X 14%%) 136 | 30.98 | 14.75 | 14.740 | 1.063 | 0.660 | 1593.0 | 216.0 | 6.31 | 567.7 | 77.0 | 3.77
127 | 37.33 | 14.62 | 14.600 | 0.998 | 0.610 | 1476.7 | 202.0 | 6.20 | 527.6 | 71.8 | 3.78
119 | 34.99 | 14.50 | 14.650 | 0.938 | 0.570 | 1373.1 | 189.4 | 6.26 | 491.8 | 67.1]3.75
111 | 32.65 | 14.37 | 14.620 | 0.873 | 0.540 | 1266.5 | 176.3 | 6.23 | 454.9 | 62.2 | 3.73
103 | 30.26 | 14.25 | 14.575 | 0.813 | 0.495 | 1165.8 | 163.6 | 6.21 | 419.7 | 57.6 | 3.72
95 | 27.94 | 14.12 | 14.545 | 0.748 | 0.465 | 1063.5 | 150.6 | 6.17 | 383.7 | 52.8 | 3.71
87 | 25.56 | 14.00 | 14.500 | 0.688 | 0.420 | 966.9 | 138.1 | 6.15 | 349.7 | 48.2 | 3.70

14X 12 84 | 24.71 | 14.18 | 12.023 | 0.778 | 0.451 | ©28.4 | 130.9 | 6.13 | 225.5 | 37.5 | 3.02
78 | 22.94 | 14.06 | 12.000 | 0.718 | 0.428 | 851.2 | 121.1 | 6.09 | 206.9 | 34.5 ] 3.00

4 x10 74 | 21.76 | 14.19 | 10.072 | 0.783 | 0.450 | 796.8 | 112.3 | 6.05 | 133.5 | 26.5 | 2.48
68 | 20.00 | 14.06 | 10.040 | 0.718 | 0.418 | 724.1 | 103.0 | 6.02 | 121.2 | 24.1] 2.48
61 | 17.94 | 13.91 ] 10.000 | 0.643 | 0.378 | 641.5 | 92.2 | 5.98 | 107.3 | 21.5 | 2.48
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TABLE 28 (Continued)
Q .
WF Quarges x __x
_J_ Properties for Designing
Y
Flange Axis X-X Axis Y-Y
. Weight e | Web |
Nominal | “per | Area | Depth Thick-
Foot Width Thick- | ness 1 S r I N r
ness
In. Lb In2 In. In. In. In. Ins In3 In, Ind In3 | In.
14 X8 53 15.59 | 13.94 | 8.062 | 0.658 | 0.370 542.1 77.8 | 5.90 57.5 14.3 | 1.92
48 14.11 | 13.81 | 8.031 | 0.593 | 0.339 484.9 70.2 | 5.86 51.3 12.8 | 1.91
43 12.65 | 13.68 | 8.000 | 0.528 | 0.308 429.0 62.7 | 5.82 45.1 11.3 | 1.89
14 X 634 38 11,17 | 14,12 | 6.776 | 0.513 | 0.313 385.3 54.6 | 5.87 24.6 7.3 1.49
34 | 10.00 | 14.00 | 6.750 | 0.453 | 0.287 | 339.2 48.5 | 5.83 21.3 6.3 | 1.46
30 8.81 | 13.86 | 6.733 | 0.383 | 0.270 289.6 41.8 | 5.73 17.6 5.2 | 1.41
12X12 190 55.86 | 14.38 | 12.670 | 1.736 | 1.060 | 1892.5 | 263.2 | 5.82 | 589.7 93.1 1 3.25
161 | 47.38 | 13.88 | 12.515 | 1.486 | 0.905 | 1541.8 | 222.2 | 5.70 | 486.2 | 77.7 | 3.20
133 39.11 | 13.38 | 12.365 | 1.236 | 0.755 | 1221.2 | 182.5 | 5.59 | 389.9 63.1]3.16
120 35.31 | 13.12 | 12.320 | 1.106 | 0.710 | 1071.7 | 163.4 | 5.51 | 345.1 56.0 | 3.13
106 | 31.19 | 12.88 | 12.230 | 0.986 | 0.620 930.7 | 144.5 | 5.46 | 300.9 49.2 | 3.11
99 29.09 | 12.75 | 12.190 | 0.921 | 0.580 858.5 | 134.7 | 5.43 | 278.2 45.7 | 3.09
92 | 27.08 | 12.62 | 12.155 | 0.856 | 0.545 | 788.9 | 125.0 | 5.40 | 256.4 | 42.2 | 3.08
85 | 24.98 | 12.50 | 12.105 | 0.796 | 0.495 | 723.3 | 115.7 | 5.38 | 235.5 | 38.9 | 3.07
79 23.22 | 12.38 | 12.080 | 0.736 | 0.470 663.0 | 107.1 | 5.34 | 216.4 35.8 | 3.05
72 21.16 | 12.25 | 12.040 | 0.671 | 0.430 597.4 97.5 | 5.31 | 195.3 32.4 | 3.04
65 19.11 | 12.12 | 12.000 { 0.606 | 0.390 | 533.4 88.0 | 5.28 | 174.6 | 29.1 3.02
12X 10 58 | 17.06 | 12.19 | 10.014 | 0.641 | 0.359 | 476.1 78.1 ) 5.28 | 107.4 | 21.4 ] 2.51
53 15.59 | 12.06 | 10.000 | 0.576 | 0.345 426.2 70.7 | 5.23 96.1 19.2 | 2.48
12X8 50 14.71 | 12,19 | 8.077 | 0.641 | 0.371 | 394.5 64.7 | 5.18 56.4 14.0 | 1.96
45 13.24 | 12.06 | 8.042 | 0.576 | 0.336 | 350.8 58.2 | 5.15 50.0 | 12.4 | 1.94
40 11.77 | 11,94 | 8.000 ) 0.516 | 0.294 | 310.1 51.9 4.1 11.0 | 1.94
12 X 8%s 36 10.59 | 12.24 | 6.565 | 0.540 | 0.305 280.8 45.9 | 5.15 23.7 7.2 | 1.50
31 9.12 [ 12.00 | 6.525 { 0.465 | 0.265 | 238.4 39.4 | 5.11 19.8 6.1 | 1.47
27 7.97 | 11.95 | 5.500 | 0.400 | 0.240 | 204.1 34.1 | 5.0 16.6 5.1 1.44
10X10 112 32.92 | 11.38 | 10.415 | 1.248 | 0.755 718.7 | 126.3 | 4.67 | 235.4 45.2 | 2.67
100 29.43 | 11.12 | 10.345 | 1.118 | 0.685 625.0 | 112.4 | 4.61 | 206.6 | 39.9 | 2.65
89 | 26.19 | 10.88 | 10.275 | 0.998 | 0.615 | 542.4 | 99.7 | 4.55 | 180.6 | 35.2 | 2.63
77 | 22.67 | 10.62 | 10.195 | 0.868 | 0.535 | 457.2 86.1 | 4.49 | 153.4 | 30.1 | 2.60
72 | 21.18 | 10.50 | 10.170 | 0.808 | 0.510 | 420.7 80.1 | 4.46 | 141.8 | 27.9 | 2.59
66 | 19.41 | 10.38 | 10.117 | 0.748 | 0.457 | 382.5 73.7 | 4.44 | 129.2 | 25.5 | 2.58
60 | 17.66 | 10.25 | 10.075 | 0.683 | 0.415 | 343.7 67.1 | 4.41 | 116.5 | 23.1 | 2,57
54 15.88 1 10.12 | 10.028 | 0.618 | 0.368 | 305.7 60.4 | 4.39 | 103.9 | 20.7 | 2.56
49 | 14.40 | 10.00 | 10.000 | 0.558 | 0.340 | 272.9 54.6 | 4.35 93.0 | 18.6 | 2.54
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TABLE 28 (Continued)
W SuapEs x—l—x
Properties for Designing
Y
Flange Axis X-X Axis Y-Y
. Weight| Web
N"Si";'e"" per | Area | Depth Thick-
Foot Width Thick- | ness 1 8 r 1 N r
ness
In. Lb In2 In, In. In, In, Int In3 In. Int In3 | In
10X8 45 13.24 | 10.12 | 8.022 | 0.618 | 0.350 248.6 49.1 | 4.33 53.2 13.3 | 2.00
39 11.48 9.94 | 7.990 | 0.528 | 0.318 209.7 42.2 | 4.27 4.9 11.2 | 1.98
33 9.71 9.75 | 7.964 | 0.433 | 0.292 170.9 35.0 | 4.20 36.5 9.2 1.94
10 X 534 29 8.53 | 10.22 | 5.799 | 0.500 | 0.289 157.3 30.8 | 4.29 15.2 5.2 1.34
25 7.35 | 10.08 | 5.762 | 0.430 | 0.252 133.2 26.4 | 4.26 12.7 4.4 | 1.31
21 6.19 9.90 | 5.750 | 0.340 | 0.240 106.3 21.5 | 4.14 9.7 3.4 1.25
8X8 67 19.70 9.00 | 8.287 | 0.933 | 0.575 271.8 60.4 | 3.711 88.6 21.4 | 2,12
58 | 17.06 | 8.75{ 8.222 | 0.808 | 0.510 | 227.3 52.0 | 3.65 74.9 18.2 { 2.10
48 14.11 8.50 | 8.117 | 0.683 | 0.405 183.7 43.2 | 3.61 60.9 15.0 | 2.08
40 11.76 8.25 | 8.077 | 0.558 | 0.365 146.3 35.5 | 3.53 49.0 12.1 | 2.04
35 10.30 8.12 | 8.027 | 0.493 | 0.315 126.5 31.1 | 3.50 42.5 10.6 | 2.03
31 9.12 | 8.00( 8.000 | 0.433 { 0.288 109.7 27.4 | 3.47 37.0 9.2 { 2.01
8 X 6% 28 8.23 8.06 | 6.540 | 0.463 | 0.285 97.8 24.3 | 3.45 21.6 6.6 1.62
24 7.08 7.93 | 6.500 | 0.398 | 0.245 82.5 20.8 | 3.42 18.2 5.6 | 1.61
8 X 5% 20 5.88 | 8.14 | 5.268 | 0.378 | 0.248 69.2 17.0 | 3.43 8.5 3.21 12
17 5.00 8.00 | 5.250 | 0.308 | 0.230 56.4 14.1 | 3.36 6.7 2.6 | 1.16

Reprinted from

“Steel Construction,” by courtesy of the American Institute of Steel Construction.
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Y
TABLE 29
WS SuaPES
X —X
MisceLLanious (B) CoLuMNs anD Beams
Properties for Designing
Y
Flange Axis X-X Axis Y-Y
Nominal Weight Web
Sizo per | Area | Depth Thick-
Foot Width Thick-| ness I S r I S r
ness
In. Ib In?2 In. In, In. In, InA In3 | In. | Ind | In3 | In.

WF Shapes and Light Columns

6 W 25 7.37 6.37 | 6.080 | 0.456 | 0.320 | 53.5 | 168 |2.69|17.1 | 56 | 1.52
6 X6 | 20 5.90 | 6.20 | 6.018 | 0.367 | 0.258 | 41.7 | 134 | 266 | 13.3 | 4.4 | 1.50
15.5 4.62 | 6.00 | 6.000 | 0.269 | 0.240 | 30.3 | 10.1 | 2.56 | 9.69 | 3.2 | 1.45

5 W 18.5 545 | 5.12 | 5.025 | 0.420 | 0.265 | 25.4 9.94 | 2.16 | 8.89 | 3.54 | 1.28
5X5| 16 4.70 | 5.00 | 5.000 | 0.360 | 0.240 | 21.3 8531213 7.51) 3.00 | 1.26

4 W 13 3.82 | 4.16 | 4.060 | 0.345 | 0.280 113 545 ] 1.72 | 3.76 | 1.85 | 0.99
4X41 10 2,93 | 4.00 | 4.000 | 0.265 | 0.220 831 | 4.16{ 1.68| 2.74| 1.37 | 0.97

Light Beams

12X 4] 22 6.47 | 12,31 | 4.030 | 0.424 | 0.260 | 155.7 | 253 | 491 | 4.55 | 2.26 | 0.84
19 5.62 | 12.16 | 4.010 | 0.349 | 0.240 | 130.1 | 21.4 | 481 | 3.67 | 1.83 | 0.81
1636 | 4.86 | 12.00 | 4.000 | 0.269 | 0.230 | 1053 | 17.5 | 4.65 | 2.79 | 1.39 | 0.76

10x4 )| 19 5.61 | 10.25 | 4.020 | 0.394 | 0.250 96.2 | 188 | 4.14| 4.19 | 2.08 | 0.86
17 4.98 | 10.12 | 4,010 | 0.329 | 0.240 | 81.8 [ 16.2 | 405 | 3.45| 1.72 | 0.83
15 4.40 | 10.00 | 4.000 | 0.269 | 0.230 | 688 | 13.8 |3.95| 2.79 | 1.39 [ 0.80

8X4] 15 443 | 812 | 4.015 | 0314 | 0.245 | 480 |11.8 |3.29 | 3.30 | 1.65 ] 0.86
13 3.83 | 8.00 | 4.000 | 0.254 | 0.230 | 39.5 9.88 13.21 | 262131083

6X4] 10 4.72 | 6.25 | 4.030 | 0.404 | 0.260 | 31.7 | 10.1 |2.59 | 4.32 ] 2.14 | 0.96
12 3.53 | 6.00 | 4.000 | 0.279 | 0.230 | 21.7 |7.24 | 248 | 2.89 | 144 | 0.90

Joists

12X4 ) 14 4.14 | 11,91 | 3970 | 0.224 | 0.200 | 882 | 148 | 4.61 ) 2.25] 1.13 | 0.74
10X 4| 11} |3.39| 9.87 ] 3.950 | 0.204 | 0.180 | 51.9 | 10.5 | 3.92| 2.01] 1.02]0.77
8X4| 10 2.95 | 7.90 | 3.940 | 0.204 | 0.170 | 30.8 7.7913.23 | 199|101/} 0.82
6 X4 8¢ | 2.50 | 5.83 ] 3.940 | 0.194 | 0.170 | 14.8 5.07 | 243 | 1.89 | 0.96 | 0.87

Above shapes are all rolled by Bethlehem Steel Co. and Carnegie-Illinois Steel Corp., except 4 WF 13
which is rolled by Bethlehem Steel Co. only.

Reprinted from *‘Steel Construction,” by courtesy of the American Insti of Steel C ti
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TABLE 30
MISCELLANEOUS SHAPES x—ll—x
Properties for Designing
Y
Nominal | Weight Width | Web Axis X-X Axis Y-V
Size l‘pel' Area | ponth of Thick-
oot P! Flange | ness I S , I S r
In. Lb In.2 In, In. In. In4 | In3 | In. Ind | In3 | In.
Light Columns
8 X 81 34.3 10.09 8.00 | 8.000 0.375 | 115.5 | 28.9 | 3.40 | 35.1 8.8 1.87
6X61 25.0 7.35 6.00 | 5.938 0.313 47.0 | 15.7 | 2.53 | 14.9 5.0 1.43
20.0 5.88 6.00 | 5.938 0.250 388 | 129 | 257 | 11.4 3.8 1.39
5X52 189 5.56 5.00 | 5.000 0.313 23.8 9.5 | 2.08 7.8 3.1 1.20
443 13.0 3.82 4.00 | 3.937 0.250 10.4 5.2 | 1.65 3.4 1.7 0.94
Standard Mill Beams
10 X 53 4 25 7.35 9.90 | 5.86 0.35 117.0 | 23.6 | 3.99 9. 3.36 | 1.16
21 6.18 9.90 | 5.74 0.24 107.5 | 2L.7 | 4.17 9.30 | 3.24 | 1.22
8 X 6344 28 8.23 8.00 | 6.65 0.39 90.1 | 22.5 | 3.31 | 17.73 | 5.33 | 1.47
24 7.06 8.00 | 6.50 0.24 83.8 | 21.0 | 3.45 | 16.52 | 5.08 | 1.53
8 X 5% ¢ 20 5.88 8.00 | 5.36 0.35 60.7 | 15.2 | 3.22 2.46 | 1.06
17 5.00 8.00 5.25 0.24 56.0 | 14.0 | 3.35 2.35 | 1.11
Junior Beams
12 X358 11.8 3.45 | 12.00 | 3.063 0.175 72.2 | 12.0 | 4.57 0.98 | 0.64 | 0.53
11 X 2748 10.3 3.01 | 11.00 | 2.844 0.165 53.1 9.6 | 4.20 0.75 | 0.52 | 0.50
10 X 2346 9.0 2.64 | 10.00 | 2.688 0.155 39.0 7.8 [ 3.85 0.61 | 0.45 | 0.48
9 X 2368 7.5 2.20 9.00 | 2.375 0.145 26.2 5.8 | 345 0.39 | 0.33 | 0.42
8 X 2445 6.5 1.92 8.00 | 2.281 0.135 18.7 4.7 | 3.12 0.34 | 0.30 | 0.42
7 X 2K8 5.5 1.81 7.00 | 2.078 0.126 12.1 3.5 | 2.74 0.25 | 0.24 | 0.39
8 X 1748 4.4 1.30 6.00 | 1.844 0.114 7.3 2.4 | 2.37 0.17 | 0.18 | 0.36
Y
Junior Channels xfb-—x
z
Y
Weight Width | Web Axis X-X Axis Y-Y
Nos?’i:’l ﬁ)er Area | Depth of Thick-
oot Flange | ness I s - I s , z
In. Lb In2 | In. In. In. Ind4 | In3| In, [In4|In3 | In | In.
12 X 1148 10.6 3.12 | 12.00 1.500 0.180 | 55.8 | 9.3 | 4.23 | 0.39 | 0.32 | 0.35 | 0.27
10X 114 8 8.4 2.47 | 10.00 1.500 0.170 ) 32.3 | 6.5 | 3.61 |0.33 |0.28 | 0.37 | 0.29
10 X 11465 6.5 1.91 | 10.00 1.125 0.150 |} 22.1 | 4.4 | 3.47 |0.12 |0.13 ] 0.25 | 0.19

Rolled by Carnegie-Illinois Steel Corp., Inland Bteel Co., and The Phoenix Iron Co.-M.

1
:Rolled by Carnegie-Illinois Steel

Rolled by
4 Rolled by

8 Rolled by Jones & Lau,
Reprinted from *'Steel

Carnegie-Illinois Steel Corp.-B.
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Iron Co.-M,
lin Stee

1 (‘;orp.-Jr.
nstruction,” by courtesy of the American I
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TABLE 31

AMERICAN STANDARD

Beams

Properties for Designing

Flang- Web Axis X-X
. ¢
N"s'?;emd Area | Depth Thick Thick- I s T
N ick- | ness r r
Width | © o

In. Lb In.2 In. In. In, In. In4 | In3 | In. | In# In.
24 X 77 | 120.0 |35.13} 24.00 | 8.048 | 1.102 | 0.798 |3010.8 | 250.9 | 9.26 | 84.9 1.56
105.9 30.98 | 24.00 | 7.875 | 1.102 | 0.625 | 2811.5 | 234.3 | 9.53 | 78.9 1.60
24 X7 100.0 129.25( 24.00 | 7.247 | 0.871 | 0.747 |2371.8197.6 |9.05 | 48.4 1.29
90.0 |26.30 | 24.00 | 7.124 | 0.871 | 0.624 |2230.1|185.8/9.21 | 45.5 1.32
79.9 23.33| 24.00 | 7 0.871 | 0.500 |2087.2)173.99.46 | 42.9 1.36
20X 7 95.0 |27.74| 20.00 | 7.200 | 0.916 | 0.800 |1599.7 [ 160.0 | 7.59 | 50.5 |14.0 | 1.35
85.0 |24.80| 20.00 | 7.053 | 0.916 | 0.653 | 1501.7 | 150.2 | 7.78 1 47.0 |13.3 |1.38
20 X 644 75.0 |21.90| 20.00 | 6.391 | 0.789 | 0.641 | 1263.5|126.3 |7.60 | 30.1 94 |[1.17
65.4 19.08 | 20.00 | 6.250 | 0.789 | 0.500 |1169.5|116.9 | 7.83 { 27.9 89 [1.21
18 X 6 70.0 |20.46| 18.00 | 6.251 | 0.691 | 0.711 917.5(101.9 | 6.70 | 24.5 7.8 | 109
54.7 15.94 | 18.00 | 6.000 | 0.691 | 0.460 | 795.5|88.4 |7.07|21.2 7.1 |1.15
15 X 5)e 50.0 |14.59 | 15.00 | 5.640 | 0.622 | 0.550 | 481.1| 64.25.74|16.0 5.7 |1.05
429 1249 15.00 R 0.622 | 0.410 | 441.8| 58.9(5.95 | 14.6 53 [1.08
12 X 5% 50.0 |14.57 | 12.00 | 5.477 | 0.659 | 0.687 301.6 | 50.3 | 4.55 | 16.0 58 [1.05
40.8 i 12.00 .250 | 0.659 | 0.460 | 268.9 | 44.8|4.77 |13.8 53 |1.08
12 X5 35.0 |10.20( 12.00 | 5.078 | 0.544 | 0.428 | 227.0| 37.814.72|10.0 3.9 [0.99
31.8 9.26 | 12.00 | 5.000 | 0.544 | 0.350 | 215.8| 36.0|4.83]| 9.5 | 3.8 |1.01
10 X 456 35.0 |10.22] 10.00 | 4.944 | 0.491 | 0.594 145.8| 290.213.78| 8.5 3.4 (091
25.4 7.38 10.00 | 4.660 | 0.491 { 0.310 122.1| 24.4|4.07| 6.9 3.0 {0.97
8X4 23.0 6.71] 8.00 | 4.171 | 0.425 | 0.441 6421 16.0!3.09| 44 | 2.1 |0.81
18.4 5.34| 8.00 | 4.000 | 0.425 | 0.270 569 142326 3.8 | 1.9 {0.84
7 X 33 20.0 5.83] 7.00 | 3.860 | 0.392 | 0.450 419 12.0|2.68| 3.1 1.6 |0.74
15.3 443 7.00 | 3.660 | 0.392 | 0.250 36.2| 104 {2.86| 2.7 1.5 |0.78
6 X 33| 17.25 | 5.02| 6.00 | 3.565 | 0.359 | 0.465 260| 87]228| 23 | 1.3 [0.68
12.5 3.61| 6.00 | 3.330 | 0.359 | 0.230 21.8] 73|246| 1.8 | 1.1 |0.72
5X3 14.75 | 4.29| 5.00 | 3.284 | 0.326 | 0.494 15.0 60187 1.7 1.0 |0.63
10.0 2.87 5.00 | 3.000 | 0.326 | 0.210 12.1 48)205) 1.2 0.82 | 0.65
4 X 25 9.5 2.76 | 4.00 | 2.796 | 0.293 | 0.326 6.7 33|156( 0.91| 0.65|0.58
7.7 221 4.00 | 2.660 | 0.293 | 0.190 60| 30|1.64( 0.77| 0.580.59
3 X 234 7.8 2.17| 3.00 | 2.509 | 0.260 | 0.349 2.9 1.9|1.15| 0.59| 0.47|0.52
5.7 1.64| 3.00 | 2.330 | 0.260 | 0.170 2.5 1.7 (123 | 0.46 | 0.40]0.53

Reprinted from ““Steel Construction,” by courtesy of the American Institute of Steel Construction.
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TABLE 32
AMERICAN STANDARD
CHANNELS

Properties for Designing

Flange Axis X-X Axis Y-Y
. Weight Web
Nominal Thi
S?le l?er Area | Depth Average Thick- 7 s s
oot Width | Thick- | Dess r I L
ness
In. Lb In? In. In. In In, Ind | In3 | In. | In# | In3 | In. | In
18X 41 | 580 [16.98] 18.00 | 4.200 | 0.625 | 0.700 |670.7 [74.5|6.20[18.5 |5.6 |1.0%]0.88
51.9 15.18] 18.00 | 4.100 | 0.625 0.600 [622.1169.116.40(17.1 [5.3 |1.06)|0.87
45.8 13.38| 18.00 | 4.000 | 0.625 0.500 {573.5]|63.7/6.55(15.8 [5.1 |1.09]0.89
42.7 12.48 | 18.00 | 3.950 0.625 0.450 {549.2161.016.64]15.0 {4.9 |1.10]0.90
15 X 338 | 50.0 14.64 | 15.00 | 3.716 0.650 0.716 {401.4[53.6]5.24]11.2 |3.8 |0.87|0.80
40.0 11.70| 15.00 | 3.520 | 0.650 0.520 {346.3146.21544| 9.3 |3.4 |0.89]|0.78
33.9 9.90| 15.00 | 3.400 | 0.650 | 0.400 |312.6|41.7|5.62| 8.2 (3.2 |0.91{0.79
12X3 30.0 879} 12.00 | 3.170 | 0.501 | 0.510 {161.2]26.914.28{ 5.2 |2.1 [0.77{0.68
25.0 7.32] 12.00 | 3.047 0.501 0.387 1143.5123.914.43( 4.5 |1.9 10.79]0.68
20.7 6.03] 12.00 | 2.940 0.501 0.280 {128.1]21.4(4.61] 3.9 |1.7 ]0.81]/0.70
10 X 256 | 30.0 8.801 10.00 | 3.033 | 0.436 | 0.673 |103.0|20.6|3.42| 4.0 [1.7 |0.67|0.65
25.0 7.331 10.00 | 2.886 | 0.436 0.526 | 90.7{18.113.52| 34 [1.5 [0.68]0.62
20.0 5.86{ 10.00 | 2.739 | 0.436 0379 | 78.5(15.7[3.66| 2.8 |1.3 [0.70]0.61
5.3 4.47 ] 10.00 | 2.600 0.436 0.240 | 66.9113.43.87] 2.3 |1.2 10.72]0.64
9 X 2% | 20.0 5.86| 9.00 | 2.648 0.413 0.448 | 60.6{13.5|3.22] 2.4 |1.2 |0.65|0.59
15.0 439 9.00 | 2.485 [ 0.413 | 0.285 | 50.7|11.313.40{ 1.9 |1.0 |0.67|0.59
13.4 3.89| 9.00 | 2.430 | 0.413 | 0.230 | 47.3|10.5({3.49| 1.8 {0.97 {0.67 | 0.61
8 X 234 | 1875 5.49] 8.00 | 2.527 0.390 0.487 | 43.7(10.912.82}| 2.0 (1.0 [0.60|0.57
13.75 4.02) 8.00 | 2.343 0.390 0.303 35.8f 9.012.99] 1.5 |0.86]|0.62]0.56
11.5 3.36| 8.00 | 2.260 | 0.390 0.220 | 32.3| 8.13.10| 1.3 |0.79(0.63]0.58
7 X 2| 1475 4.32| 7.00 | 2.299 0.366 0419 | 27.1| 7.7(2.51| 1.4 [0.79]0.57|0.53
12.25 3.581 7.00 | 2.194 0.366 0.314 24.1( 6.912.59| 1.2 |0.71]0.58]0.53
9.8 2.85| 7.00 | 2.090 | 0.366 0.210 | 21.1{ 6.0({2.72]| 0.98|0.63 | 0.59 | 0.55
6X2 13.0 3.81| 6.00 | 2.157 0.343 0.437 17.3] 5.8]2.13| 1.1 10.65]0.53|0.52
10.5 3.07]| 6.00 | 2.034 0.343 0.314 15.11 5.0(2.22| 0.870.57 | 0.563]0.50
8.2 2.39| 6.00 | 1.920 | 0.343 | 0.200 | 13.0| 4.3|2.34| 0.70|0.500.54 | 0.52
5X 13| 9.0 2.63| 5.00 | 1.885 | 0.320 | 0.325 88| 3.5|1.83| 0.64]0.45]0.49]0.48
6.7 1.95] 5.00 | 1.750 0.320 0.190 7.4 3.0/1.95| 0.48|0.380.500.49
4 X 1% 7.25 2.12| 4.00 | 1.720 | 0.296 0.320 45| 2.3(/1.47| 0.44{0.35|0.46]0.46
5.4 1.56| 4.00 | 1.580 | 0.296 | 0.180 38| 1.91.56( 0.32]0.29|0.45|0.46
3X 15| 6.0 1.75( 3.00 | 1.596 | 0.273 | 0.356 2,11 1.4]1.08( 0.31]0.27(0.42|0.46
5.0 1.46] 3.00 | 1.498 | 0.273 0.258 1.8} 1.2{1.12| 0.25{0.24|0.41|0.44
4.1 1.19| 3.00 | 1.410 0.273 0.170 1.6} 1.1]1.17} 0.20/0.210.41]0.44

1Car and Shipbuilding Channel; not an American Standard.
Reprinted from ‘‘Steel Construction,” by courtesy of the American Institute of Steel Construction.



APPENDIX 403
TABLE 33
ANGLES
Z
rQuAaL Leas x x
Properties for Designing AN — Iu
Z

. Vo Axis
. Weight Axis X-X and Axis Y-Y 77

Size Thick- per Area

ness Foot
1 S zory T

In. In. Lb In.2 Ins In3 In In In.
X8 134 56.9 16.73 | 98.0 | 17.5 | 2. 2.41 | 1.56
1 51.0 15.00 | 89.0 15.8 | 2. 2.37 1.56
7% 45.0 13.23 | 79.6 14.0 | 2. 2.32 1.57
34 38.9 11.44 | 69.7 | 12.2 | 2. 2.28 | 1.57
bZ3 32.7 9.61 | 59.5 | 10.3 | 2. 2.23 | 1.58
%e | 29.6 | 8.68 | 54.1 | 9.3 | 2. 2.21 | 1.58
15 26.4 | 7.75 | 48.6 | 8.4 | 2. 2.19 | 1.59
X 6 1 37.4 11.00 | 35.5 8.6 | 1. 1.86 | 1.17
% 33.1 9.73 | 31.9 7.6 | 1. 1.82 | 1.17
34 28.7 8.44 | 28.2 6.7 1. 1.78 1.17
58 24.2 7.11 24.2 5.7 1. 1.73 1.18
He 21.9 6.43 | 22.1 5.1 | 1. 1.71 | 1.18
15 19.6 5.75 | 19.9 4.6 | 1. 1.68 | 1.18
2% | 17.2 | 5.06 | 17.7 | 4.1 | 1. 1.66 | 1.19
38 14.9 4.36 15.4 3.5 1. 1.64 1.19
3¢ | 12.5 | 3.66 | 13.0 | 3.0 | 1. 1.61 | 1.19
X5 74 27.2 7.98 17.8 5.2 1. 1.57 | 0.97
34 23.6 6.94 15.7 4.5 1. 1.52 | 0.97
5 20.0 5.86 | 13.6 3.9 | 1. 1.48 | 0.98
1 16.2 4.75 | 11.3 3.2 | 1. 1.43 | 0.98
e 14.3 4.18 | 10.0 2.8 | 1. 1.41 | 0.98
34 12.3 3.61 8.7 2.4 1. 1.39 | 0.99
546 10.3 3.03 7.4 2.0 | 1. 1.37 | 0.99
X4 34 18.5 5.44 7.7 2.8 | 1. 1.27 | 0.78
5¢ 15.7 4.61 6.7 2.4 1. 1.23 | 0.78
14 12.8 3.75 5.6 2.0 | 1. 1.18 | 0.78
e 11.3 3.31 5.0 1.8 | 1. 1.16 | 0.78
3% 9.8 2.86 4.4 1.5 | 1. 1.14 | 0.79
e 8.2 2.40 3.7 1.3 1. 1.12 | 0.79
A 6.6 1.94 3.0 1.1 | 1. 1.09 | 0.80
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TABLE 33 (Continued)
Properties for Designing

Weight
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3

2} X 21

134 X134

Reprinted from *‘Steel Conatruction,” by courtesy of the American Institute of Steel Construction.
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Y
TABLE 34 o e
o
ANGLES A\l
i
UNEQUAL Leas X1 ——y X
Properties for Designing l‘ﬁ\ i
Y 2
X Weight Axis X-X Axis Y-Y Axis Z-Z
Size Thick-
per Area
ness Foot
I S r v I S r z r |Tana
In, In. Lb In2 { In4 | In3 | In. | In. | Iné4 |In3 | In. | In. | In. | In.
X 4 1 40.8 12.00 | 97.0 |17.6 |2.84 13.50|12.0 |4.0 |1,00|1.00}0.83 | 0.203
74 36.1 10.61 | 86.8 |15.7 |2.86|3.45)|10.8 {3.6 |1.01]0.95]0.84 | 0.208
#§ 313 9.19|76.1 |136 |2.8813.41| 9.6 3.1 |1.02]|0.91]0.84 |0.212
54 26.3 7.73164.9 |11.5 1290(|3.36| 83 [2.6 |1.04]0.86|0.85]|0.216
9 23.8 7.00 [ 59.1 |10.4 |2.91(333| 7.6 |24 |1.04]0.83]0.85]0.218
15 213 6.25 | 53.2 9.3 (2921331 6.9 |2.2 |1.05]0.81}0.85 |0.220
X 6 1 44.2 13.00 | 80.8 |15.1 [249|2.65|38.8 (89 |1.73(1.65|1.28|0.543
7% 39.1 11.48 | 723 |13.4 [2.51[2.61(34.9 |79 |1.74|1.611.28|0.547
kN 33.8 9.94 {63.4 |11.7 |25312.56(30.7 |69 |1.76(1.56{1.29 | 0.551
58 28.5 8.36 | 54.1 99 (2.54(252263 {59 |1.77{1.52]1.29 | 0.554
%6 25.7 7.56 {49.3 9.0 |2.55({250(24.0 {53 {1.78]1.50|1.30 | 0.556
13 23.0 6.75 1443 8.0 (256247 (21.7 {48 [1.79{1.47}{1.30]0.558
Tie 20.2 5.93 | 39.2 7.1 (25712451193 [4.2 [1.80]1.45(1.31]0.560
X 4 1 374 11.00 {69.6 |14.1 [2.523.05[11.6 |3.9 |1.03|1.05|0.85]0.247
74 33.1 9.73162.5 {125 |2.53(13.00(10.5 {3.5 |1.04|1.00|0.85|0.253
44 28.7 844 [54.9 [109 |2.55(295| 9.4 [3.1 |1.05]0.95|0.85 (0.258
34 24.2 7.11 1 46.9 9.2 |257 (291 81 {26 |1.07[0.91]|0.86|0.262
% 21.9 6.43 | 42.8 84 (2581288 74 |24 [1.07]0.880.86 |0.265
1y 19.6 5.75 | 38.5 7.5 [2.59]286| 6.7 {22 |1.08]0.86 |0.86 | 0.267
7ie 17.2 5.06 | 34.1 6.6 [2.60]|283]| 60 [19 |1.09]0.83|0.87 [ 0.269
X 4 74 30.2 8.86 | 42.9 9.7 12.20,2.55110.2 |3.5 [1.07]1.05]|0.86 |0.318
34 26.2 7.69|37.8 84 [2.221251] 9.1 |3.0 [1.09}1.01]0.86]0.324
3% 22.1 6.48 | 32.4 7.1 |2241246| 7.8 |2.6 [1.100.96 | 0.86 | 0.329
96 20.0 5.87 | 29.6 6.5 |224(244| 7.2 |24 [1.11]0.94|0.87 | 0.332
14 17.9 5.25 | 26.7 58 (225|242| 6.5 |21 |1.11]0.92]0.87 | 0.335
e 15.8 4.62 | 23.7 51 |2.26(239| 58 |1.9 [1.12]|0.89|0.88 |0.337
38 13.6 3.98 | 20.6 4.4 |2.27(1237] 5.1 |1.6 |1.13|0.87 |0.88|0.339
X 4 7% 27.2 7908 |27.7 | 7.2 |1.86{212| 9.8 |3.4 |1.11]1.12|0.86 | 0.421
34 23.6 6.94 | 24.5 6.3 1.88 (2.08| 8.7 3.0 |1.12(1.080.86 | 0.428
54 20.0 5.86 | 21.1 5.3 1.90}203| 7.5 |2.5 |1.13|1.03]|0.86 |0.435
%1e 18.1 531 {193 | 48 [190}201| 69 |23 |[1.141.01]|0.87 | 0.438
12 16.2 475 1174 | 43 |191(199]| 63 |2.1 |1.15]0.99 | 0.87 | 0.440
e 14.3 4.18 | 15.5 38 192196 | 56 |19 |1.16|0.96 | 0.87 | 0.443
3% 12.3 3.61 |13.5 33 1931194} 49 |1.6 |1.17|0.94 | 0.88 | 0.446
54e 10.3 3.03 | 114 2.8 1941192 | 42 |14 |1.17 0.92 | 0.88 | 0.449
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TABLE 34 (Continued) - 'I..x
z 1
ANGLES A
| b
UnEQuUAL LEGs x—mk——y X
Properties for Designing 2 T
Yy 2
. Axis X-X Axis Y-Y Axis Z-Z
) Thick- | Y ei8ht
Size per Area
ness Foot
I S r Y I S r z r {Tana
In, In. Lb In2 { In4 | Ind | In. [ In. | In4 | In3| In. { In. | In. | In.
6 X3¥| 3¢ 153 | 4.50 {166 | 4.2 |1.92|208| 43 |1.6 |0.97 |0.83|0.76 | 0.344

38 1.7 342 {129 |32 |194)|204| 33 |1.2 |0.99|0.79 | 0.77 | 0.350
3e 9.8 287 1109 | 27 |1.95(201| 29 |10 [1.00|0.76 | 0.77 | 0.352
¥ 7.9 231 | 89 |22 |196[199| 23 |0.85]|1.01]0.74|0.78 | 0.355

5 X3 i 19.8 | 5.81 {139 | 43 [1.55(175( 56 |2.2 [0.981.00|0.75|0.464
36 168 | 492 | 120 | 3.7 156|170 4.8 |19 10.99{0.95]0.75)0.472

74e 12.0 353 | 89 |26 |159[163f 3.6 [1.4 |1.01[0.880.76 | 0.482
3% 10.4 305 | 78 |23 |160|161} 3.2 [1.2 |1.02]0.86{0.76 | 0.486
3is 8.7 256 | 6.6 | 1.9 |1.611159| 27 |1.0 |1.03|0.84|0.76 | 0.489

bi 7.0 206 | 5.4 1.6 [1.61[1.56| 2.2 [0.83|1.04 [0.81 |0.76 | 0.492
5 X3 4 12.8 375 | 95 |29 |{159(175| 2.6 |1.1 |0.83]0.75|0.65 | 0.357
7ie 11.3 331 | 84 (26 (160|173 23 |10 [0.84]0.73 [0.65 | 0.361
3¢ 9.8 286 | 7.4 | 22 [161]170| 2.0 |0.89 [0.840.70 [ 0.65 | 0.364
e 8.2 240 | 63 | 1.9 |161]|168]| 1.8 |0.75]|0.85|0.68 |0.66 | 0.368
¥ 6.6 194 | 51 |15 [1.62]1.66| 1.4 |0.610.86|0.66 |0.66 |0.371

4 X3 b23 147 430 | 6.4 |24 |122(129] 45 |18 |1.03|1.04|0.72|0.745
3] 11.9 350 | 53 (19 |123|125( 3.8 |15 [1.04]1.00}0.72[0.750
7ie 106 | 309 | 48 | 1.7 |1.24]|1.23| 3.4 |14 |1.05]|0.98|0.72]0.753

3% 9.1 267 | 42 | 15 [125)|121| 3.0 |12 |1.06]|0.96}0.73 |0.755
5e 7.7 225 | 36 |13 |126(118| 26 |10 |1.07|0.93|0.73 |0.757
¥ 6.2 1.81 | 29 | 10 {127(1.16| 2.1 |0.811.07|0.91{0.73 | 0.759
4 X3 5¢ 136 | 398 | 60 | 23 [1.23]137| 2.9 |14 |0.85]|0.87 |0.64 | 0.534

b6 11.1 325 ] 61 |19 [125)133} 24 {1.1 |0.860.83 | 0.64 | 0.543
7ie 98 | 287 | 45 | 1.7 [1.25{1.30| 2.2 |1.0 |0.87 |0.80 | 0.64 | 0.547
3% 8.5 248 | 40 | 1.5 |1.26(1.28] 1.9 [0.87 |0.88|0.78 [ 0.64 | 0.551
516 7.2 209 | 34 | 1.2 |127}126] 1.7 [0.73|0.89|0.76 | 0.065 | 0.554

Y4 58 | 1690 | 28 | 1.0 |1.28)124| 1.4 |0.60|0.90|0.74 | 0.65 | 0.558
3’6 X3 123 102 {300 35 |15 107113 23 [1.1 [0.88/0.880.62]0.714
%o 9.1 2656 31 |13 |[108]|1.10]| 2.1 |0.98]0.80 |0.85]0.62 |0.718
34 79 230 27 |11 |109)|1.08]| 1.9 |0.85]0.90|0.83|0.62|0.721

546 6.6 193 | 23 | 095 [1.10{1.06] 1.6 |0.720.00 {0.81 | 0.63 | 0.724
3 5.4 156 | 1.9 | 0.78 [1.11 |1.04 | 1.3 |0.59 |0.91|0.79 | 0.63 | 0.727
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TABLE 34 (Continued) -~ 'r-z
Z
ANGLES A
l_ 4
UNEQUAL LEGs x—F——y X
Properties for Designing - T
Yy 2

: Axis X-X Axis Y- ¥ Axis Z-Z

. Thick- | W eieht .

Size ness per Area
Foot

I S r ] I S r z r |Tana
In. In. Lb In2 [ In4 [ In3 | In. | In. | Ind4 {In3 | In, | In. { In. | In.
3hy X 2%3| i 9.4 275 | 3.2 | 1.4 [1.09|1.20] 1.4 [0.76 [0.70 [ 0.70 | 0.53 | 0.486
74e | 83 243 [ 29 [ 1.3 [109|1.18] 1.2 |0.68|0.71 | 0.68 | 0.54 | 0.491
34 7.2 211 26 |11 [110]|116]| 1.1 [0.59 [0.72 | 0.66 | 0.54 | 0.496
5ie | 6.1 178 | 2.2 [ 093 {1.11]|1.14| 0.94 |0.50 | 0.73 | 0.64 | 0.54 | 0.501
1 4.9 144 | 1.8 | 075 [112|1.11] 0.78 | 0.41 | 0.74 [ 0.61 | 0.54 | 0.506
3 x2h| 14 8.5 250 | 21 | 1.0 |091]1.00| 1.3 |0.74[0.72|0.75 | 0.52 | 0.667
{6 | 7.6 221 | 1.9 | 093 [092]098] 1.2 |0.66|0.73 |0.73 | 0.52 | 0.672
% 6.6 192 | 1.7 | 0.81 |093]0.96| 1.0 [0.58|0.74 |0.71 | 0.52 | 0.676
3ie | 5.6 1.62 | 1.4 ] 0.69 |0.94]0.93 | 0.90 [9.49|0.74 | 0.68 | 0.53 | 0.680
1 1.5 131 1.2 | 0.56 |0.95]0.91| 0.74 |0.40 | 0.75 | 0.66 | 0.53 | 0.684
3 X2 14 7.7 225 | 1.9 | 1.0 [092|1.08] 0.67 |0.47 |0.55 | 0.58 | 0.43 | 0.414
7ie | 6.8 2.00 | 1.7 | 0.89 [0.93|1.06 | 0.61 |0.42 |0.55]0.56 | 0.43 | 0.421
34 5.9 173 | 1.5 | 0.78 |0.94 | 1.04 | 0.54 |0.37 | 0.56 | 0.54 { 0.43 | 0.428
3ie | 5.0 147 | 1.3 | 0.66 |0.95 | 1.02 | 0.47 |0.32|0.57 | 0.52 | 0.43 | 0.435
1 4.1 119 | 1.1 | 0.54 |0.95]0.99 | 0.39 |0.26 | 0.57 | 0.49 | 0.43 | 0.440
3i6¢ | 3.07 | 0.90 | 0.84 | 0.41 [0.97 |0.97 | 0.31 |0.20 [0.58 | 0.47 | 0.44 | 0.446
21 X 2 34 5.3 1.55 | 0.91 | 0.55 |0.77 | 0.83 | 0.51 |0.36 | 0.58 | 0.58 | 0.42 | 0.614
5ie | 4.5 1.31 | 0.79 | 0.47 |0.78 | 0.81 | 0.45 | 0.31 | 0.58 | 0.56 | 0.42 | 0.620
1 362 | 1.06 | 0.65 | 0.38 |0.78 | 0.79 | 0.37 | 0.25 | 0.59 | 0.54 | 0g2 | 0.626
3is | 2.75 | 0.81 | 0.51 | 0.29 |0.79 |0.76 | 0.29 | 0.20 | 0.60 | 0.51 | 0.43 | 0.631
236 X 132 36 4.7 1.36 | 0.82 | 0.52 |0.78 | 0.92 | 0.22 | 0.20 | 0.40 | 0.42 | 0.32 | 0.340
56 | 3.92 | 1.15 | 0.71 | 0.44 |0.79 | 0.90 | 0.19 | 0.17 [ 0.41 | 0.40 | 0.32 | 0.349
1§ 3.19 | 0.94 | 0.59 | 0.36 |0.79 |0.88 | 0.16 | 0.14 | 0.41 | 0.38 | 0.32 | 0.357
316 | 244 | 072 | 0.46 | 0.28 |0.80 |0.85 | 0.13 | 0.11 | 0.42 | 0.35 | 0.33 | 0.364
2 X1| W 277 | 0.81 | 0.32 | 0.24 {0.62[0.66 | 0.15 {0.14 | 0.43 | 0.41 | 0.32 | 0.543
3{¢ | 2.12 | 0.62 | 0.25 | 0.18 {0.63 |0.64 | 0.12 [0.11 {0.44 | 0.39 { 0.32 | 0.551
14 144 | 0.42 | 0.17 | 0.13 | 0.64 {0.62 | 0.09 {0.08 | 0.45|0.37 | 0.33 | 0.558
134 X 1% | %4 234 | 0.69 | 0.20 | 0.18 {0.54 [0.60 | 0.09 [0.10 |0.35 | 0.35 | 0.27 | 0.486
3¢ | 1.80 | 0.53 | 0.16 | 0.14 [0.55 | 0.58 | 0.07 | 0.08 | 0.36 | 0.33 | 0.27 | 0.496
16 1.23 | 0.36 | 0.11 | 0.09 |0.56 {0.56 [ 0.05 |0.05 [0.37 |0.31{0.27 | 0.506

Reprinted from “Steel Construction,” by courtesy of the American Institute of Steel Construction.
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TABLE 35
PROPERTIES OF STRAN-STEEL MEMBERS
Nom- Area About Msjor Axis About Minor Axis
Properties inal | Metal (Weight
Overall . of
of N N Gage | Thick- Sec per
Member 8100 | Num-| ness G ~ | Foot
ber lon 4 N r z 1 8 r z
6-in. joist [2X 6 14 {0.0781|0.982 | 3.339 | 4.855|1.618}2.225 0.1147 | 0.1122 | 0.338
2X6 16 | 0.0625 { 0.7930 | 2.696 | 3.928 | 1.309 | 2.228 0.0916 | 0.0895 | 0.336
8-in. joist |2 X 8 12 |0.1094 | 1.573 | 5327 | 140 |3.50 |2.970 0.163 }0.160 | 0.320
2X8 14 |0.0781 | 1.140 | 3.870 | 10.178 | 2.545 | 2.984 0.113 j0.112 | 0315
2X8 16 |0.0625 | 0.918 | 3.121 | 8.219 | 2.055 | 2.992 0.090 [0.089 |0.313
@-in. joist [2X 9 12 10.1094 | 1.729 | 5.878 | 18.845 | 4.188 | 3.301 0.162 {0.152 | 0.306
2X9 14 [0.07811.218 | 4.135 | 13.620 | 3.027 | 3.341 0.118 ]0.117 {0.308
2X9 16 10.0625 | 0.981 | 3.333 | 10.992 | 2.443 | 3.348 0.093 10.093 |0.306
394-in.
stud 2X 3% 16 |0.0625(0.660 | 2.244 | 1.163 | 0.641 | 1.327 0.090 |0.086 |0.368
25{e-in.
stud 2 X 251e 16 |0.0625 | 0.500 | 1.700 | 0.393 | 0.340 | 0.886 0.090 | 0.085 |0.423
Half stud |2 X 11}{e 16 |0.0625|0.313 | 1.062 | 0.098 | 0.089 | 0.561 | 0.580 | 0.045 | 0.043 |0.378
Standard
channel
plate 31346 X 156| 16 |0.0625|0.368 | 1.461 | 0.842 | 0.442 | 1.504 0.080 |0.063 {0.465|0.343
Narrow
channel
plate 216 X 134 16 |0.0625 | 0.286 | 1.182 | 0.309 | 0.247 | 1.030 0.070 |0.059 | 0.491 | 0.431
TABLE 36
TENSILE REQUIREMENTS
Plain Bars Deformed Bars
Properties 'l‘(v:v?:td
Considered Strue- Inter- Hard Struc- Inter- Hard Bars
tural-Steel | mediate Grade tural-Steel | mediate Grad
Grade Grade Grade Grade ©
Tensile strength, 55,000 to | 70,000 to 80,000 | 55,000 to | 70,000 to 80,000 | Recorded
pei 75,000 90,000 min 75,000 90,000 min only
Yield point, min,
psi 33,000 40,000 50,000 33,000 40,000 50,000 55,000
Elongation in 8in., | 1,400,000 | 1,300,000 {1,200,000] 1,250,000 | 1,125,000 | 1,000,000 5
min percentage | Tens,str. | Tens.str. |Tens.str.| Tens.atr. | Tens.str. | Tens.str.
but not |but not less but not | but not less
less than | than 169, less than | than 149,
20% 20%

From “Standard Specifications for Billet-Steel Concrete Reinforcement Bars,” ASTM Designation

A 15-39.
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TABLE 37
BEND-TEST REQUIREMENTS
Plain Bars Deformed Bars
Thicknees or lp?ltd
Diameter of Bar Struc- Inter- Hard Struc- Inter- Hard gls
tural-Steel | mediate Gr:.de tural-Steel | mediate G :d s

Grade Grade (irade Grade race
Under 34 in. 180 deg. 180 deg. | 180 deg. { 180 deg. 180 deg. ; 180 deg. | 180 deg.

d=t d=2t d =3t d=t d =3t d = 4t d =2t
34 in. or over 180 deg. 90 deg. 90 deg. | 180 deg. 90 deg. 90 deg. | 180 deg.

d=1 d=2t d =3t d =2t d =3t d = 4t d=3t

Explanatory note. d = the diameter of pin about which the specimen is bent.
¢t = the thickness or diameter of the specimen.

From “Standard Specifications for Billet-Stecl Conerete Reinforcement Bars,” ASTM Designation
A 15-39.

TABLE 38
REINFORCING STEEL BArs
Size*  |ShapeofSection| Area (sqin.) | Perimeter (in.) We‘ghag’)‘” foot
% Round 0.11 1.178 0.376
b3 Round 0.20 1.571 0.668
% Square 0.25 2.000 0.850
84 Round 0.31 1.963 1.043
84 Round 0.4 2.356 1.502
%% Round 0.60 2.749 2.044
1 Round 0.79 3.142 2.670
1 Square 1.00 4.000 3.400
1% Square 1.27 4.500 4.303
1Y Square 1.56 5.000 5.313

* Diameter or side in inches.
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TABLE 39

ALLowABLE UNIT STRESSES IN CONCRETE *
Allowable Unit Stresses

stf":lig:g{)f When strength of concrete is fixed by the
concrete water-content
Description as fixed by
test fle= flo = fle=

¢ =
30,000 |2,0004/in?|2,5004/in2|3,0004/in?|3,7504/in?

n-*—f’r n=15| a=12 | n =10 n=8
Flexure: fc
Extreme fiber stress in com-
Pression.........ocevvunen Je| 0.45f¢ 900 1,125 1,350 1,688
Shear: »

Beams with no web reinforce-
mentand withoutspecial an-
chorage of longitudinal steel | ve | 0.02f¢ 40 50 60 75

Beams with no web reinforce-
ment but with special an-
chorage of longitudinal steel | vc | 0.03f’¢ 60 75 920 113

Beams with properly designed
web reinforcement but with-
out special anchorage of
longitudinal steel.......... v 0.06f"¢ 120 150 180 225

Beams with properly designed
web  reinforcement and
with special anchorage of
longitudinal steel.......... v 0.12f'¢ 240 300 360 450

Flat slabs at distance d from
edge of column capital or

droppanel............... te| 0.03f¢ 60 75 20 113
Footings. . ..........ovvennn ve| 0.03f¢ 60 75 75 75
but not
to exceed
754/in?
Bond t: »
In beams and slabs and one-
way footings:
Plainbars. ............... u 0.04fc 80 100 120 150
but not
to exceed
160#/in2
Deformed bars............ u 0.05f¢ 100 125 150 188
but not
to exceed
2004/in2?
In two-way footings:
Plain bars (hooked)....... u | 0.045f¢ 90 113 135 160
but not
to exceed
1604/in?
Deformed bars (hooked)...| u | 0.056f¢ 112 140 168 200
but not
to exceed
200#/in?
Bearing: f¢
Onfullarea................ fe| 0.25f¢ 500 825 750 938
On one-third area or less t Afe |l 0.375(¢ 750 938 1,125 1,405
* Taken by permission from *“Building Regulations for Reinforced Concrete,” published by

the American Concrete Institute.

1 Where special anchorage is provided, one and one-half times these values in bond may be
used in beams, slabs and one-way footings, but in no case to exceed 200}/1:1’ for plain bars
and 2504/in? for deformed bars. The values given for two-way footings include an allo
for special anchorage.

1 The allowable bearing stress on an area greater than one-third but less than the full area

shall be interpolated between the values given.
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TABLE 40
-REINFORCED CONCERETE BEAMS
Design Constants for Rectangular Beams
&3 nfe . M . .
= M k = . = 1 — k; K = —— ==
P é(£+1), ra ¥ pas = Jopd or Jefcki
jb' nfc
fs = 18,000 f» = 20,000
n Je

P k J K P k J K
1315 | 0.0134 | 0.368 | 0.877 { 212 | 0.0103 | 0.345 | 0.885 | 182
8 1500 | 0.0167 | 0.400 | 0.867 | 261 | 0.0140 | 0.375 | 0.875 | 246
1688 | 0.0201 | 0.428 | 0.857 | 311 | 0.0170 | 0.403 | 0.866 | 294
1050 | 0.0108 | 0.368 | 0.877 | 170 | 0.0090 | 0.345 | 0.885 | 160
10 1200 | 0.0133 | 0.400 | 0.867 | 208 | 0.0113 | 0.375 | 0.875 | 197
1350 | 0.0161 | 0.428 | 0.857 | 248 | 0.0136 | 0.403 | 0.866 | 236
875 | 0.0089 | 0.368 | 0.877 | 140 | 0.0076 | 0.345 | 0.885 | 134
12 1000 | 0.0111 | 0.400 | 0.867 | 173 | 0.0094 | 0.375 | 0.875 | 164
1125 { 0.0133 | 0.428 | 0.857 | 206 | 0.0113 | 0.403 | 0.866 | 194
700 | 0.0072 | 0.368 | 0.877 | 113 | 0.0060 | 0.345 | 0.885 | 107
15 800 | 0.0089 | 0.400 | 0.867 | 139 | 0.0075 | 0.375 | 0.875 | 131
900 | 0.0107 | 0.428 | 0.857 | 165 | 0.0091 | 0.403 | 0.866 | 157
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Design Chart VI for Analysis of Rectangular Reinforced Concrete Beams; n = 12,
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Aggregate, 322
Allowable unit stresses, for light-gage
stecl, 308
for reinforced concrete, 410
for reinforcing steel, 327
for timber construction, 388
American Association of State Highway
Officials, specifications for live loads
for highway bridges, 15
American Concrete Institute, building
regulations, for allowable unit
stress in reinforcement, 327
for columns spirally reinforced, 356
for design of web reinforeement, 339
for tied columns, 357
American Iron and Steel Institute, speci-
fications, for columns and compres-
sion members formed of light-gage
steel, 317
for crippling of flat webs, 311
for cffective design width, beam
flanges, 309
for lateral unsupported flanges, 311
for light-gage steel construction, 309
American Railway Engineering Associa-
tion, specifications, for dynamic
effects of live load, 23
for live loads on railway bridges,
18
American Society for Testing Matcrials,
specifications for light-gage steel
quality, 295
American standard beam scctions, 401
Amcrican Standards Association, mini-
mum design loads, 13
recommended wind pressures, 21
Amcrican Welding Society, allowable
unit stress on welds, 385
weld dimensions, 207
welding symbols, 208
Angle of repose, 27
Angles, rolled-stecl, 403
Arc welding, 206

Batten plate, 253
Battc - piles, 175
Bay, 111
Beams, 2
deflection by area-moment, 86
fixed at supports, 89
fixed end moments, 90
Beams and stringers, wood construction,
standard sizes, 387
Bending and direct stress on steel mem-
bers, 256
Bending-moment, 61
diagram for, 62
due to concentrated load system, 73
due to fixed loads, 61
influence line for, 68
Billet steel, 326
Board measure, 221
Boat spike, 189
Bolt heads and nuts, dimensions, 374
Bolt threads, dimensions, 376
Bolted joints in timber construction,
basic stresses on timber, 377, 379
Bolts, 193
allowable load on unfinished, 382
in timber structures, safe loads, 194
Bond stress on reinforcement, 335
Bottom chord, 108
Bridge, 2
Bryan-Timoshenko formula, 298
Built-up timber beams and girders, 228
Bureau of Standards, wind pressures on
structures, 19

Cantilever-type retaining wall, 181

Carry-over moment, 91

Centroids of arcas, graphical determina-
tion, 42

Channels, properties of rolled steel, 402

Chord of truss, 108

Clapcyron, theorem of three moments, 97

Cocfficients for dead-load stress in
parallel-chord trusses, 142

415
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Columns, 4
axial load on timber, 231
light-gage steel, 316
reinforced concrete, 350
structural steel, 246
Combined stresses in roof truss, 127
Compression member, 4
Concentrated load, 9
Concentrated load systems, absolute
maximum bending-moment, 75
maximum bending-moment, 73
maximum shear, 68
Concrete, physical properties of, 321
Continuous beams, 85
bending-moments, 94
reactions, 99
vertical displacement of supports, 101
Conventional live load, 9
Cooper’s loading for railway bridges, 17
Counterfort-type retaining wall, 181
Counters, 157
stress determination, 158
Couples, 32
combined with loads, 87
conventional signs for, 87
Criterion for placing live loading, to pro-
duce maximum bending-moment,
73,75
to produce maximum shear, 68, 70
Critical load, light-gage clements, 297
Critical stress for thin steel plates in
compression, 304
Cylindrical roof surfaces, wind pressures,
22

Dams, masonry, 182

Dead load, 8

Deck bridge, 113

Deflection of trusses, 159

Diagonal tension in reinforced concrete
beams, 337

Distributed load, 9

Distributed loads, graphics of, 40

Drift pin, 189

Duchemin’s formula for wind pressure,
18

Dynamic effect of live load, 23

Earth, pressure of, 28
weight of, 9

INDEX

Earthquake shock, 25
Eccentric loads on steel columns, 256
Eceentric riveted connections, 201
Effective depth of plate girders, 279
Effective design width for light-gage steel
beams, 309
Effective yicld stress, 316
Elastic behavior of simply supported
beams, 85
Elastic stability, 297
Electrodes, properties of, 384
Equilibrium polygon, 34
through three points, 39
through two points, 36
Euler formula for columns, 233
External forces, 8
Eye-bar, 4

Field rivets, 197
Fink roof truss, 109
graphical stress analysis, 124
Fixed beam, 85
end moments, 90
Floor beam, 2
Floor loads in buildings, 10
Footing, simple spread, 171
pressure distribution under, 172
Force and equilibrium polygons, 34
Forest Products Laboratory, basic work-
ing stresses for calculating bolted
joints, 377
Form factor for sections in compression,
306

Gages for angles, 200

Girder, 2

Grades and sizes of timber, 218
Graphical representation of force, 32
Gravity retaining wall, 178

Gusset plate, 4

Highway bridge loads, 15

Hinged support, 49

Howe truss, 109

Hutton’s formula for wind pressure, 18

Impact, 23
Inclined chord truss, concentrated load
systems, 156
dead-load stresses, 144
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Inclined chord truss, dimension deter-
minations, 144
influence lines, 155
uniform live load, 154
Influence line, 59
for bending-moment, 68
for reactions, 59
for shear, 65
Internal forces, 60

Joint loads, 110
Joist, 2
Joist and plank, standard sizes, 387

Kip, 55

Lacing for steel columns, 253
Lag screw, 189

dimension and weights, 367
Lane loading for highway bridges, 15
Lateral pressure, in high bins, 29

on walls, 26
Light-gage steel beams, 310
Light-gage steel columns, 311
Light-gage steel construction, 294
Live loads, 8

for floors of buildings, 10, 11

for highway bridges, 15

for railway bridges, 17

for roofs, 12

for sidewalks, 11
Lumber, 218

standard sizcs, 386

Masonry dams, 182
Mill bent, 129
fixed column bases, 133
hinged column bases, 129
Moment distribution at a joint, 92
Moment of inertia, graphical determina-
tion, 42
Moment table Cooper’s E60, 366

Nails, 188
dimensions of, 367
National Board of Fire Underwriters,
specifications for roof loads, 15
Net section of steel tension members, 244
Normal thrust, 61

Panel load, 116
Parallel chord truss, chord stresses, 137

417

Parallel chord truss, concentrated load
systems, 153
dead-load stress coefficients, 142
dead-load stresse.., 136
influence lines for, 149
live-load stresses, 147
stress, in diagonals, 138
in verticals, 141
uniform live loading, 148
Pile foundations, 175
Piling, 175
Pins, 202
Plate girder, 270
design procedure, 277
riveting, 275
web stiffeners, 272
Posts and timbers, standard sizes, 387
Pratt truss, 109
Primary stress, 109
Purlin, 110
Rafter, 2 '
Railway bridge loading, 17
Rankine theory for lateral pressure, 27
Reaction, 9
character of, 49
determined analytically, 53
determined graphically, 51
due to live loads, 59
for continuous beams, 99
for fixed loads, 54
for three-hinged arch, 56
influence line for, 59
Reduction of live loads, 13
Reinforced concrete, allowable unit
stresses, 410
Reinforced conerete beams, bond stress,
335
design charts, 412, 413
design constants, 411
design of rectangular sections, 339
shear and diagonal tension, 337
theory of flexure, 330
transformed scction, 332
Reinforced concrete columns, 350
Reinforced concrete retaining walls, 181
Reinforced concrete slabs, 343
Reinforced concrete T-beams, 346
Reinforcing steel, allowable unit stress,
327
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Reinforcing steel, bend test require-
ments, 409
dimensions of bars, 409
properties of, 326
tensile requirements, 408
Relative stiffiness, 91
Resolution of a force, 32
Restrained beam, 85
Restrained support, 49
Retaining walls for carth, 177
Rigid frame, 5
Rivets, dimensions of, 380
allowable working values, 381
conventional symbols for, 201
crection clearances, 383
gage lines for, in angles, 200
safc load on, 198
size of hole for, 197
structural, 197
Rolled-steel beams, American standard,
401
beam selection, 263
safe loads, 259
wide flange sections, 394
with flange plates, 267
Rolled-steel structural sections, 243
Roof loads, 13
Roof truss, dead-load stresses determined
graphically, 122
live-load stresses, 125

Screw threads, dimensions, 375
Screws, 188
Secant formula for columns, 248
Secondary stress, 109
Settlement of continuous beam supports,
101
Shear, and diagonal tension, 337
due to fixed loads, 61
due to moving live loads, 68
Shear diagram, 62
Shop rivets, 197
Simple support, 49
Slab, 3
Slabs, solid reinforced concrete, 343
Slenderness ratio, 231
Snow loads, 14
Spirally reinforced concrete columns, 353
design of, 357
Split-ring data, 368~-373

INDEX

Split-ring timber connector, 192
Stability of retaining walls, 177
Stanchion, 4
Statically determinate structures, 5
Statically indeterminate structures, 7
Steel columns, design and selection, 254
eccentric loads on, 256
safe axial loading, 246
secant formula, 248
shear in built-up, 253
Steel, physical and chemical propertics
of, 239, 393
Stiffened elements of thin steel members,
299
Stran-Steel sections, 294
properties of, 408
Stress analysis, 1
Stresses in truss members, 120
Stress-grade lumber, allowable
stress, 388
Stringer, 2
Strip steel, propertics of, 294
Structural steel rolled sections, American
standard beams, 401
American standard channels, 402
angles, equal leg, 403
unequal leg, 405
junior channels, 400
miscellaneous shapes, 400
wide flange shapes, 394
Structural steel tension members, 244
net section of, 245
Structural timbers, standard sizes, 387
Structure, 2
Strut, 4
Symbols to indicate kind of stress, 121

unit

Teco conncctors, claw-plate connector,
193
spike-grid, 192
split-ring, 192
toothed-ring, 189
Tension member, 3
Theorem of three moments, 97
Thin plates in compression, 298
Through bridge, 113
Tied columns, reinforced concrete, 356
Timber beams and stringers, standard
sizes, 387
Timber columns, allowable unit stress, 302
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Timber columns, axial loads, 231
bending and direct stress, 233
tension members, 234
trusses, 234

Timber, grades and sizes, 218
structural, standard sizes of, 387, 391
working stresses for, 272

Top chord, 108

Transformed section of reinforced con-

crete beams, 332

Transverse shear, 61

Truck loading for highway bridges, 15

Truss, 4
forms of, 108

Truss 1eaction, determination of, 119

Trussed timber beams, 230

Ultimate compressive load for thin steel
members, 302

Uniformly distributed load, 9

Unit stresses, allowable on stress-grade
lumber, 388

419

Vertical displacement of supports of con-
tinuous beams, 101
Voussoir arches, 183

‘Web members, 108
‘Weight, of construction, 9
of construction materials, 365
of trusses, 10
Welding electrodes, propertics of, 384
Weids, allowable working stresses, 385
description and classification of, 206
permissible unit stress on, 211
symbols used to indicate, 208
Wide flange beams, properties of, 394
Wind forces, 18
Wood beams and joists, calculations for,
223
Wood members, standard sizes, 391
Working stresses for structural timbers,
222

Yard lumber, standard sizes, 386
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