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PREFACE
This book is written primarily for undergraduates, though
Part I may be judged by some teachers to be suitable for

mathematicians during their last year at school. It includes

the convergence theory that is commonly required for a uni-

versity honours course in pure and applied mathematics, but

excludes topics appropriate to post-graduate or to highly

specialized courses of study. It has taken shape from sets of

lectures I have given at various times during some fifteen years

of university teaching.

The book develops the theory of convergence on the basis of

two fundamental assumptions (one about upper bounds, one

about irrational number as the limit of a sequence of rational

numbers). With these assumptions the theory of convergence

can be developed without appeal to the properties of Dedekind

cuts. The ‘real number’ appears in the appendix, where the

assumptions of the book are proved to be consequences of the

definition of ‘real number’.

The notation, or shorthand, used in the text is one that is

familiar to the professed analyst and is a commonplace of the

lecture-room. It is something of an experiment to employ it in

a text-book, but its almost universal adoption in recent years

by mathematical undergraduates at Oxford leads me to hope

that it wiU prove acceptable. My own teaching experience is

that students who use the notation acquire clear ideas of what

they have to prove and of how they may prove it.

Of the details, few call for mention in the preface. The treat-

ment of Tannery’s theorem in Chapter XVI grew out of (i)

Professor E. H. Neville’s note in the Mathematical Gazette, vol.

XV, p. 166, (ii) a remark once made to me by Professor Hardy,

and (iii) my own work on a special series. I cannot resolve how

much is due to each, but I am sure the chapter owes much

both to Professor Neville and to Professor Hardy, and I gladly

take this opportunity of acknowledging my indebtedness to

them. The brief chapter on Foiirier series will, I hope, prove

useful in spite of its brevity and many omissions. The appendix
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contains just so much of the ‘foundations of analysis' as is

necessary to the justification of the assumptions made in the

early chapters of the book. These ‘foundations' are prefaced

by a very brief historical sketch that tries to show why such a

complex structure as a Dedekind cut is necessary to the defini-

tion of ‘number'.

All theorems are numbered. Some references to previous

theorems are given in parentheses; if the reader can follow the

proofs without consulting these references, so much the better.

They are given so that readers may, if necessary, look up points

they have forgotten: it is not intended that proofs in conver-

gence theory should bristle with references to previous tlieorems

in the manner of the old Euclid books. Though, of course, the

order of proof is as important here as it is in the development

of Euclidean geometry: we must not use A to prove and then

use B to prove A .

The examples contain many questions set in university

examinations and many questions taken from my own notes;

of the latter, some are original and some are not. The majority

are reasonably straightforward; hints for their solution are

occasionally given. There are a few examples marked ‘Harder\

and the beginner is advised not to attempt them on a first

reading.

Professor A, L. Dixon and Professor E. T. Copson have

kindly read the proof sheets, and I am deeply grateful to them

both for their helpful criticisms. Professor Copson has road

and criticized all the text and has worked nearly all the

examples. I wish to thank him most sincerely for this evidence

of his friendship.

In conclusion, I should like to thank the staff of the Oxford

University Press for their work on the book and for their un-

failing courtesy towards me in all matters concerning it.

HEBTFOED COLLEGE,

OXFOBD

16 November 1937.

W.L.F
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CHAPTER I

PRELIMINARY DISCUSSION

1. Definition. A set of numbers in a definite order of occur-

rence,

is called a sequence.

Examples. 5, 6, 7: 1
2 4 8 2'*'

_1 1 _1
:U 7’ ”9’ *

If the sequence stojis, as in the first example, which has only-

three terms, it is called a ejnite sequence. If the sequence

does not stop, as in the second and third examples, it is called

an INFINITE SEQUENCE.

In what follows we shall be concerned chiefly with infinite

sequences. We shall use three notations for a sequence:

or simply («„).

The advantages of alternative notations soon become

apparent.

2. Preliminary discussion of convergence

2.1. Throughout the rest of this chapter we shall discuss,

with no attempt at final precision, some of the ideas which

are the subject of the more precise work in Chapter TI. We
begin with an elementary example of an infinite series, namely

f+ 2+ l+i+--'* (^)

If is the sum of the first n terms of this series, then

As n grows large, becomes small, and, in fact, we can make

as small as we please by taking n large enough. In other

words, approximates to 2 as n becomes large. We say, accord-

ingly, that 5
^^
converges to (i.e. approaches or approximates to) 2.

This is the genekal notion underlying convergence

—

CONVERGENCE IS 'APPROACHING’, OR 'APPROXIMATION’.
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Suppose we are given any infinite series

^l+ ^2+^3+-* (2)

Let ^ We say that the series (2) converges

if as 7^ becomes large, approaches some definite number 6\

This number s is called the sum oe the series; the series

itself is said to converge, or to be convergent.

Notice that this use of the word ‘sum’ is not the same as its

use when w^e say tliat ‘the sum of 1+ J+ | is 1|’. It is a special

use of the word ‘sum’ in its application to infinite series.

An exam/plt of a convergent series.

t _ +
1.2.3^2.3.4 ^ w(7i-|-l)(n+2)^""

Here, the nth term, m,„, is given by

_ 1 _ U 1 _ 1

n{n-{-l){n-\-2) 2{w(n+]) (n+l)(n4-2)

and ao «.+«,+...+»„ - ^
2,).

Accordingly, ^
approaches ^ as 7i becomes large: we say that the series (3)

converges and that its sum is | .

Note. This is a standard metliod of dealing with a standard

type of series, namely the type in which the nth term,

can be expressed in the form

Examples I

1. If U,. ” 1

, then + is ^ convergent
n(/i+ l)(n+ 2)(nH-3)

series and its sum is 1/18.

, , ,
1 M“*+^^+ -+“" = 2l2-n+l-n+2/’

+ i® convergent series, and its sum is J.

n

(n+I)(n+2)(n+3y
show, by using partial fractions, that
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llenco show that hi42+... is convergent, and its sum is J.

4. Find the sum of the series ... when is

... 2n+ 3 n2

(n+l)(n+ 2)(w+3)’ (n--'r)n(HTr)(»+ 2)’

..... V

(n-f r)(w-f-2)(n-r3)’

2.2. Series which diverge. Consider the series

1+ 2+3-I-...+71+.... (4)

Here ~ “ 1+ 2+.

In this example, if n is large, then so is

For our purposes we need some refinement of tlie last state-

ment. In discussing the series (1) we stressed the fact that

Sve can make the difference between and 2 as small as we

please’. Here, with series (4), we can make as large as we
please by taking n sufficiently large. The refinement we fasten

on, then, is this: The sequence s increases indefinitely ; that is to

say, whatever positive number A we care to put down, s^^ will

exceed, A if we choose n large enotigh.

The series (4) is said to diverge, or to be divergent.

Another example of a divergent series is

1+ 2+22+..
.+ 2^^-!+.... (5)

Here = l+ 2+...+ 2^^“^ — 2”— 1, and again s^^ increases

indefinitely.

2.3. The dependence of series on sequences. In the

foregoing discussion of the convergence or divergence of a given

series,

we have seen that it is the behaviour of the sequence

where ^ %+^^2+ **+^nj which is in question.

We shall, accordingly, leave aside infinite series for a while

and turn our attention to sequences.
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3. Sequences that converge to zero

(i) If 0 < X < 1, then the sequence

x^\...

converges to zero.

To see this, put y — {l/x), so that «/ > 1. Put

y = 1+p (2) > 0).

Then y^ ™ l+ > 1+
and, by induction, y^^ > l-{-np.

Accordingly , increases indefinitely and or v/~^, decreases

indefinitely in the sense that we can make its value as near

nothing as we please by taking n large enough.

(ii) This example is much more difficult: its result is often

useful. [It may be omitted on the first reading.]

If y is a fixed number greater than unity
^
and h is any fixed

positive integer, then the sequence

^kjyu ^ 1
,
2,...)

converges to zero.

Before we give the proof of this theoroiri wo try to explain some ol' the

ideas that lea<l to tlici proof.

(i) Numbers like 10®— 5, ]0®-f 7 are ‘about as big’ as 10®: in calcula-

tions involving numbers as big as 10®, a relatively small number like

0 or 7, when added to or subtracted from 10®, will hav e very little effect

on the result of the calculations.

If I is a fixed number and n is to be thought of as a very large number,

then n~-l is ‘about as big’ as n. Further, extending this idea a little, if

k is a fixed number and n is to be thought of as a very largo number,

n(n-l)(n~2)...{n-k)

is ‘about as big’ as

This idea is useful in many problems.

(ii) The ?/ of our problem exceeds unity and we can write

2/” = (l+p)” (P > 0).

The right-hand side can be expanded, when n is a positive integer, by
the binomial theorem, and, since each term of the expansion is positive,

the whole is greater than any single term of the expansion.

So, if we take n > k~\~\y

(1+p)" >
n(n—\)...(n— k) A+i
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(iii) Hence, when n is thought of as a large number,

fjcjyn

is divided by a number about as big as (or bigger than)

Now p and k arc fixed, and so is, for largo r?, comparable with a

fixed multiple of (1/n), and we can make its value as near zero as we
please by choosing n large enough.

Formal proof. We are concerned with wdiat ha])j)ens when

n is large; so we may confine our attention to values of n that

exceed When n > and y -- l+p, where 2> > 0,

If = (
1 +^5)"

n(n-])...{n~-k)

{k+l)l
^

(w
—

' +
1

)

!

Hence < (/;+ 1)!

yti ' pk-^i fi*

[Tliis stop arrives at the wliich our preliminary talk led us to

expect—we now get rid of n from all other terms.]

But, when n > k-\- 1,

1 > 1 -

n

k

¥+1
1

yt+P

and so
{k-\-^)\{k~\-l)^'^^ 1

and the theorem follows [jj, k are fixed numbers].

Note. Having isolated the of 'if\ we use the roughest

of inequalities to deal with the rest; the sole object of the

manipulations is to remove n from every place save the

one essential place where we w^ant it at the end, namely 1/n.



CHAPTER II

FORMAL DEFINITIONS

1. Formal definitions of convergence

1.1. Sequences which converge to zero. A sequence like

{w=l,2,...)

shows that the approach to zero need not be from one side only*

It is the absolute valiief of that is, in the usual notation,

|o:„|, which is in question.

A sequence like

1 1
^

1

2’ U’
though artificial in structure, is enough to show that a sequence

oc^ can approach zero without having its terms become steadily

smaller: the approach to zero need not be a steady one.

Finally, one is tempted to say that will converge to zero

if can be made as small as we please ‘by taking n sufficiently

large’. But this is not quite accurate. In the sequence

1
1

1
1 1 o 1 L /-

’4’ 5’
2l'’ 2/c+l’

we can make the nth term as small as we please by taking n

sufficiently large if we keep to values of n that are not multiples

of 3. The sequence as a whole does not converge to zero because,

in every third place, the sequence 1,2,3,... runs through it.

In our formal definition we use the phrase ‘by taking any n

that is sufficiently large’ instead of ‘by taking n sufficiently

large’. We cannot make the nth term of (A) as small as we

please by taking any n that is sufficiently large; we can do so

only by taldng certain n that are sufficiently large.

These preliminary remarks made, we give our first form of

the definition.

Definition. Fobm A. The sequence

is said to converge, or tend, to zero (in symbols, -) 0)

t If a is a real number, |a| « a when oe is positive and |a| = —a when <x is

negative; e.g.
[

—
6|

=» 6, |7| = 7.
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'if can be made as small as we please by talcing any n that

is sufficiently large'.

Let us examine this and put it wholly into symbols. Wo
‘can make |cy„

1

as small as we please’ if, on putting down any

positive number c whatsoever, we can make |a:,J < e. ‘By

taking any n that is sufficiently large’ means that the relation

in question, namely
|
< e, will hold for all values of n >

some definite number, N say.

Hence, our condition that -> 0 may be stated in the form

B, given below.

Form B. -> 0 ify hat:ing chosen any positive nuynber e what-

soever, we can then find a definite number N such iJuit

I

a,,! < € when n N.

The important point to notice is that, for a;,, to tend to zero,

we must be able to find our N no matter what positive c we
have chosen to start with: it is not enough to be able to find

N when we have taken € to be one particular very small number
like 10~^. We have to be able to make \af as small as we

please and not merely as small as 10~®.

1 .2. The definition in symbols. We now introduce a nota-

tion that is useful both in curtailing long-winded statements

and in heljiing one to handle the technique of convergence

questions.

We write down form B in this notation: it becomes

V Form C, ->0 if

€ > 0; 3 N . |a^J < € when n ^ N,

In reading this notation, what comes before the semicolon is

set down to begin with (and is subject to no limitation that

is not explicitly shown), what comes after the semicolon is

dependent on what comes before. In detail the notation is

read

(i) e > 0; ‘on putting down any positive number e whatsoever

to begin with’,

(ii) ; separates what is put down to begin with from what

can be said after it has been put down,
444» P
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(iii) 3 means ^there exists’, ‘there is (a number)’,

(iv) the point . means ‘such that’. [It is useful to have a

shorthand for this frequently used phrase.]

Thus the whole reads -> 0 if, on putting down any posi-

tive number e Avhatsoever to begin with, there is some number

N such that < e when n N\

1.3. The three definitions. The form A says all that is

necessary but, in the technique of later work, it is not so con-

venient as the form B, and this again is not so convenient as the

form C. All three say the same thing in a different form of

words.

In using C it must always be remembered that e > 0; means

‘putting dow n any positive number e ivhatsoever to begin with’.

The € is set down at the beginning, a fact that cannot be

stressed too much.

2. Sequences that converge, but not to zero

2.1. Form A. The sequence ao,..., is said to converge

or tend to I {in symbols, ^ 1) if the sequence

tends to zero.

If we use the forms B and C of the definition in § 1, this

becomes

Form B. -> I if, having chosen any positive number e

ivhatsoever, we can then find a definite numberN such that

.
^ when n ^ N.

' Form C. I, if

€ > 0; 3 < c when n N.

The form C is, of course, the shorthand or symbolic form of B.

2.2. Notation. We call I, above, the ‘limit’ of the sequence

M-
3. Properties of convergent sequences

3.1. Theorem 1. A convergent sequence is hounded, i.e. if

-» a, then there is a number K such that

la^l < K for ALL n.
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We shall use, here and later, the shorthand (or notation)

of §1.2.

Proof. Since -> a,

3 a| < 1 when n (1)

[In the forms B and C of our definition, e is any positive

number whatsoever: in the line (1) we choose to take e — 1:

we have a special object in vk^w and any definite choice of an e

will serve our present, very special, purpose.]

Hence,f when n Wj,

l«»l == l(a„—a)+a|

< |a„— a;|+|a|

(
2

)

The numbers \ai\, |a2 l>--*>

form a finite set of numbers and so one of them, \(x^\ == A\ say,

is greater than or equal to each and ever}' other one of the set.

.-. \qcJ^ < a definite when 7i < A\. (3)

From (2) and (3), if K is any number greater

l + |a|, then ^ j.

aiJiti

3.2. Theorem 2 . If a,

^

-> a mid > c for all n,

theM we can deduce that oc ^ c. We cAxVNOT,

/

rom the hypotheses,

deduce that a > c.

Proof. Let A be any number less than c. Tlien c—A is a

definite positive number and

a,,—A > c—A > 0.

Hence A|, which is a^^—A, is never less than a certain

positive number c—A and so, as we see from form B of §2,

cannot converge to A.

That is, cannot converge to any number less than c,

and so a > c.

t Note, for all work with absolute values,

|a+61 < W+|6l.

If the result is not known, it can easily bo verified when a and b are real

numbers.



12 FORMAL DEFINITIONS

An example to show that a ynay be equal to c.

Let a:„ == so that a,, -> 0, i.e. a = 0. Here, for each

value of n, > 0, but a ~ 0.

CoKOLLARY. // -> a and < c for all n, then ice can

deduce that a < r.

4. Formal definitions of divergence

4.1. Sequences which diverge through positive values.

We give three forms of the definition of a divergent secjuence;

each says the same thing in a different way. The three forms

A, B, G (correspond to the three forms used for convergent

sec^uences in §§ 1, 2.

Definition. The sequence

is saul to diverge through positive values

Form A. if increases indefinitely.

Form B. if. having chosen any positive number A icliatsoever^

we can then find a definite number N such that (x,^ > A ivheii

n ^ N.

Form C. A > 0; 3 N . «„ > A when n N.

Examples, (i) n. Whatev'cr positive number A w(‘ s(‘t down,

oiu > A A )i > \ ^ A.

(ii) oL.,i (J -f w here ]) > 0. Wo know (§ 3) tliat np, so

that oLn > A when 1 tup A, that is, wJien n > (A - l)/;>.

4.2. Sequences which diverge through negative values.

The sequencce / x
^ i.e. cxj, ao, ag,.,., ex,

is said to diverge through negative values if the sequence

(
he. eXj, CX2,..*j CXyj,...j

diverges through i)ositive values.

Examples, (i) a,, = — n
^

(ii)

4.3. Non-convergent sequences. There are certain

sequences that are neither convergent nor divergent. An
example is

0, 1, 0, 1, 0,...,

or again 1, 2, 3, J, 4,...

.

We call such sequences 'non-convergent* or 'oscillating*.
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5. Important properties of finite sequences

5.1. Least terms of sequences. If we have a finite

number of terms ^ ^ ^

n terms in all, then there must be one of them which is less

than or equal to eacli and every other term. For example, in

1, 2, 3, 3, 2, 1,

six terms in all, the first is less than or eciual to each of the

others.

If we have an infinite sequence

there may or may not be such a term. For example:

(i) 1, 2, 3,... is an infinite sequence and the first term is less

tlian any other,

(ii) 1, J, J,... is an infinite sequence and whatever term of it

we take we can always find a term less than it.

We cannot s^peak of the least term {or terms) of an infinite

sequence until we have shoum that there is one.

This simiile fact is one of the fundamental differences between

a ‘finite number of terms’ and ‘an infinity of terms’. The same

remark applies, of course, to the ‘greatest term’.

In the same order of ideas, if we have a finite sequence

n terms in all, then the sequence is necessarily bounded, that is,

there is some number K such that \ay\ < K for r ~ 1, 2,..., n.

With an infinite sequence this is not so, it may or may not

be bounded. For example, a divergent sequence is not bounded,

whereas (Theorem I) a convergent sequence is bounded.

6. A practical way of looking at convergence

Suppose 1. Then

€ > 0; 3 . \oL.n,—l\ < € when n > N. (1)

Think of the point I and the various points marked off on a

straight line, using distances from a fixed point 0. Then (1)

says WHATEVER marks we make at a distance e on each side of /,
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then, from and after some value N, ol,^^ will lie within these marks.

The value of N will depend, of course, on where we put the

marks.

If we know that -> I, we can sometimes get aU the facts

we want for our subsequent w^ork by making the marks in

special places. Thus, suppose Z > 0, as in Fig. A. We can

o I nr n I o
Fig. a. Fig. B.

put the marks at \l and 3Z and tlien, if -> Z, we can say that,

when n some definite N, > \l. Again, if Z < 0, as in

Fig. B, we can put the marks at 0 and 2Z, and so there is a

number N such that < 0 when n > N.

Readers will best see the force of these remarks when they

come to Theorem 12, though they are useful in many other

connexions.

Examples II

1. Prove that the sequence (a,^) converges to zero when q:„ is given by

(i) (-)>•-, (ii)
n !• 1

(iii)
V?i*

(iv)
71

- 1-3
(V)

n-hf)

I’he point of such example's is to sliow that form 13 (or C) is satisfii'd.

They are intended for practice only: a much more eflicieut method of

proving the results will be givnn in Chap. VI, § 2.2.

In approaching an example, such as the fourth, it is simplest to work

in this way.

First. Wo may expect (n2-f-3)/(n®— 1) to behave very mucli like

n^jn^ when n is a large number.

[In a numerical calculation where n — 10®, say, wo would never

concern ourselves with the diflorenco between 10^^ and 10^^+ 3.]

SecoTid. The actual work, which is guided by the thought contained

in the first
: a i o ^ o ^ ^ o

rr-\-3 < 2n- when n > 2,

n®~-l > Jn® when n > 2.

Hence 0 < when n > 2. Accordingly, € > 0; [or, in full,

on putting down any positive number € whatsoever]

jo^ni < € when n > l/4c and n > 2,

and so the condition that 0 is satisfied.
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Note. Actually, one could prove that when n is large enough

1
.

3-1 r 3-00...11

+^ r
blit there is no point here in doing anytliing more subtle than ‘get

the standing clear with some definite numerical multiplier’, such

as 4.

2.

Prove that *-> 1, 3, 4 according as is given by

n 3n“4-l
,... .

3n“4“l
/

n+l’ 1).

and so 0
;

3

13--

Wo work (ii). Wc^ may expect the scujuonee to approach the same

value as 3n‘^/ir, i.e. 3 [for will outweigh n when is large]. Now

^
3n2+l _15n fl

n^—^n 71^— bn'

and n’^ — bn > hi^ when n > 10. Hence, when n > 10,

3a2-flj I6n_32
n

*

3a2-f] ^
32

-— < e when n r> —

.

— on ' €

Hence c > 0; 3 . |:xyt— 3) < c wdien n > N,

3. Sliow that tlie sequence (cv„) given by (i) in Example 2 has a least

but not a gr(;atest member.

Harder. In Example 2 (iii), (a',J lias a greatest but not a least member.

[Write (Xn in the form 4-f (8n“+6yi~ 11); (n® —2/1,2 q-i).]

4. Sliow that the sequence (.r”) tends to zero when x is a fixed positive

number less than unity.

5. Show that, when y h a fixed nurnlxT that exceeds unity and h is

a fixed positive integer, the sequence (n^7.V^0 converges to zero.

[Cf. Chap. I, § 3, where, however, the formal definitions of con-

vergence were not used.]

6. Provo that, if c is a constant and if ocn -> ol, then -> a f-c and

Ca^ —> Col.

7. Prove that, if —> a, then lou^l —> |a|.

8. Show that the sequence («„) diverges through negative values

when OL^ is given by

(i) b-n\ (ii) -2«, (iii) (-3)2«^h



CHAPTER III

BOUNDS: MONOTONIC SEQUENCES

1 . The bounds of a sequence

1.1. A fundamental assumption. In the next section,

1.2, we make an assumption; namely, that a certain set of

numbers has in it a least number. The assumption is marked

with an asterisk. If we are prepared to make a thorough

examination of the definition and theory of real number, we can

prove that the assum})tion is justified. This examination is

made in the appendix (it is not altogether easy), and in the

course of that examination our assumption appears as a theorem.

1.2. The upper bound of a sequence. Let be any

sequence of real numbers. Then

EITHER (i) there is a number > every and so there is an

infinity of such numbers,

OR (ii) there is not a number ^ every oc^.

In case (i), having fixed on one such number, then every

greater number is also ^ every oc^, and possibly, though not

certainly, there may be a less number with this j)ro])erty

O every a^).

Assumption 1.* We assume that in case (i) there is a, least

number, U say, which is greater than or equal to each and every ocj^.

Definition. The upper bound, U, of a sequence (a^) 'is the

least number which is greater than or equal to each and every

It follows at once from the definition that if V' is any

number less than U, then there is at least one that exceeds

U\ We embody this important fact in the theorem which

follows.

Theorem 3. If U is the uqjper bound of (a,,), then, given any

number LT less than V
,
there is at least 07ie cx^ such that

U' < a, < U.

In case (ii) the sequence (ol^) has no upper bound (in the sense

of the previous definition). The definition that follows is an

alternative way of stating the same fact.
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Definition. If there is no number ^ each and every we say

that the upper bound of (a:„) is plus infinity [+oo].

This is merely a convenient way of saying 'whatever number
A we take, there is at least one that exceeds A\ The defini-

tion does not j)ostu]ate a number ‘infinity’.

When we arc dealing with case (i), and so with the definition

on p. 16, w’e shall refer to the upper bound as finite.

The LOWER BOUND of a sequence is similarly defined; it may be

finite or ‘minus infinity’.

1.3. It is convenient at this point, having introduced one

conventional use of the word ‘infinity’, to notice others of a like

character.

If diverges through positive (negative) values, then we say

that diverges, or tends, to plus (minus) infinity We write

+OC', — cc>, as the case may be.

If the sequence (aj converges to oc (compare the definitions

of Chap. II, §§1, 2), we sometimes, for convenience, say that

tends to a as n tends to infinity; in symbols, a as

n -> 00, or 1 -

’ lim oc,, ™ a.

1.4. Examples of upper and lower bounds. In many
examples it is easy enough to see what the upper and lower

bounds are.

With the (infinite) sequence of numbers

1 is clearly the least number that has the property of being

greater than or equal to each and every number in the sequence;

0 the greatest number that has the property of being less than

or equal to each and every number in the sequence. Hence, the

upper bound is 1 and the lower bound is 0.

[Notice that it is ‘greater than or equal to\ Assumption 1 would be

completely false if it said merely ‘greater than’. There cannot be a least

number greater than 1; for suppose x to be the least number greater

than 1; then jir > J and Kl-f-ar) > 1, while ^(1H".t) < x; and so x
cannot be the least number greater than 1.]

4449 Q



18 MONOTONIC SEQUENCES

Again, with the sequence

0, -1,-2, -3,...,

0 is clearh^ the least number greater than or equal to eacli and

every number of the sequence, and so the upper bound is 0; but

the numbers decrease indefinitely and the lower bound is —oo.

2, Monotonic sequences

2.1. Definition. 117/ c?? for all values of n, the

sequence is said to be monotonic iNCKEi^siNG, or, in abbrevi-

ated form, m.i.

When > q;^j for all values of the sequence is said to

be steadily increasing or monotonic incTcasing in the strict

sense. The difference lies in the exclusion of the possibility

^
r— a,, for some or all values of ?? : it is not often needed, but

is occasionally important.

A MONOTONic DECREASING (m.d.) sequcncc is similarly de-

fined; is m.d. if for all n.

Note. The whole theory of convergence of series of positive

terms depends on the stud}^ of monotonic sequences.

Theorem 4, which follow\s immediately, and Theorem 19,

which comes in a later chapter, are the two fundamental

theorems of convergence theory.

Theorem 4. If (a.„) is a 7nonotonic increasing sequence, then

EITHER it has a finite upper bound U, and a:„ U,

OR its upper bound is -f oo, and -f go.

The main point of this theorem lies in the proof of the fact

that a monotonic sequence either converges or diverges—it

cannot be merely non-convergent, as are the sequences of

Chap. II, §4.3.

We first consider the case w^hen is m.i. and has a finite

upper bound U, Put down any positive number € to begin

with
;
then U—e < U and, by Theorem 3, there is at least one

(Xju such that TT ^ YjU— e < oc^ ^ U.

[The reader will probably follow the subsequent argument more

easily from the figure.]
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But oLi^ for all k, and so

a Y when n N
;

while, by the definition of upi)er bound,

U for all values of n.

'• — -1 — '

,

lJ — € OCy (X,^ U

Hence, Z7— € < oiy < < U when n N,

and so 0 < U— a,^ < U-~(U—€) e.

That is, € > 0; 3 . |f7—

<

€ when 7i N,

and, by the fonnal definition of convergence, -> U.

[The explanation of c > 0; 3, etc., is given in Chap. II,

Now' suppose that the upper bound is ifius infinity. Then

A > 0; 3 an say ay, that exceeds A.

Moreover, ay when n N,

so that 3 N . > A when n N.

By the foiinal delhiition of divci-gence, diverges through

positive values, or, as we have agreed to write it (§1.3),

a„-~> +00.

CoROLLAKY 1. If (a,j) is mo7wio7iic increasing, and there is a

nu7nber M such that

a„ < M for all n,

then the sequence (a,J converges to some number U + M,

By the definition of upper bound, the upper bound, U say,

of is a number + M, Also, by the theorem, -> U

.

Corollary 2. If (a,J is monotonic decreasing, then

EITHER it has a finite lower bou7td L, and L,

OR its lower bound is ~oo, and — oc.

In the next chapter we shall make important, applications

of these results.

3. Rational and irrational numbers

3.1. When p and q are positive or negative integers, the

number piq is said to be a rational number.
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A monotonic increasing sequence, (cx^) say, of rational

mimbers with a finite upper bound U must, by Theorem 4,

converge to U. This number U may or may not be itself

a rational number. Our fundamental assumption supposes a

least number; it says nothing of a least rational number, and

would be a false and foolish one if it did. If the number is not

rational we call it an irrational number.

As irrational numbers may come into mathematics when they

arc not obviously derived in this way, w^e shall make an

assumption, easily proved as a theorem w^hen the theory of

real numbers has been considered in full.

Assumption 2.** Every irrational number is the Iwiil of a mA.

sequence of rational numbers.

The proof is given in the appendix.

Examples III

1.

Prove that (cx„) is a rnonotonic decreasing sequence wlien is

given by

2. Prove that (a^) is a monotonic increasing sequence when is

given by

(i) (ii) 3^2— n-j 2, (iii) an^— 2hn-\~c^

whore a, b, c are independent of n, a > 0, and 3a > 26.

3. Prove that an^— 26n -|- c, where a > 0, increases with n once n itself

exceeds (2b —a)/2a.

4. If (6,j) is a sequence of positive terms, and (a„) is a monotonic

increasing sequence, y^rove that

+ + + > ai6i-f a2^2+ --i"Ctn&»*

Hence show that, if is defined by

+ ~ u^bi-i-a^b^-l- •••'A^nbn*

then (w„) is a monotonic increasing sequence.

6. A worked example. If = +V(^+«n)» where ifc > 0, > 0,

then the sequence (aj is monotonic and converges to the positive root

of the equation x* = x-j-k.

Let a he the positive root, —k/a the negative root, of the equation.

Then = (a„-a)(a„+k/a).
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Hence, if a^^ > a, then for a„-|-A"/a is positive; and if < a,

then

Again, ^ k+a,,, k+ a,

and so «n~ct.

Hence > ol if > a, and < a if < a.

Let > cy; tlu^n {a„) is a rn.d. sequence and a„ > a for all n; the

lower bound of say Z, :> a, and (in-^l as n—> co.

Write so that 6^—> 0. Th(‘n

b\.^i — Z+6^ I A" for all n,

that is b -- jrs __ fQi> q^]| ^

Since 6^^
—> 0, we also have [pp. 36 et seq. consider such points more

fully] by^— bl^ I
— —>• 0 as n -> oo. Hence P— l— k must be zero

; for

if it were equal to y, where y 0, then would always

be equal to
|y| and could not be made less than

\y\ by any choice of n,

which would contradict the statement — i
0.

Hence I is a root of a.'^ =r x-\- k, and is tlu^ positive root since I
i>. a.

Similarl}^ if < a, then (a,j) is a m.i. sequence and < a for

all n; the upper bound of a„, say w, r:' a, and u. As before, we can

show that ~ U’\~ky and so w, being positive, is tlie positive root of

x-\-k,

64 If ” A'/(l f «
7j)»

where k > 0, > 0, the sequence (a,J con-

verges to the positive root of x^~i-x ~ k,

7. Prove that, if — > 0, and af^ tends to a finite

limit Z, then Z must be either k or 1 — A*.

8. Let (a^i) be defined as above, wuth k > J and > k. Prove that

^n-\-\ > ^'n hence show that <z„ -> -|-oo.

t Examples 5 and (5 are taken from Bromwich, Theory of Infinite Series

(London, 1908), p. 17.



CHAPTER IV

SERIES OF POSITIVE TERMS

1. Infinite series

1.1. An expression such as

+ (
1

)

is called an infinite series.

Definition. The infinite series (1) is said to converge, to

diverge, or to be non-convergent according as the sequence

^2'** *5

where r-

converges, diverges, or is non-convergent.

If s„ s, then s is called the sum of the series.

1.2. There are a few series whose sums can be determined

by elementary methods. Such are those given in Examples I.

Most readers will be familiar with the geometric scries, whiOi

can also be summed by elementary methods. We shall need

to refer to this series and so we formulate the following:

Theorem 5. The geometric series

(
2

)

is (i) convergent when -1 < r < 1 and its sum is then

(ii) divergent when r > 1;

(iii) non-convergent uhen r —1.

Proof. Let 5^^
=

(i) Take any definite value of r between —1 and +1. Then

__ 1

1 r^

By § 3, Chap. I, we can make |r"|, and so also |r"/(l— r)|, as

small as we please by taking any n that is sufficiently large.

Hence «„ -> j—

Hence the series (2) is convergent and its sum is (1—r)-^.
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(ii) Take r so that now

5,,.
-- n.

The sequence diverges to +qo.

Further, if we take a definite r > 1, ,9^, will be greater than n,

and again diverges to +oo.

Hence the series (2) is divergent when r > 1.

(iii) If we put —r = y and make r < —1, then y > 1.

r: 1 —
2/+ • .

.+ (
~

)

'^

'hj''

l^y
If 72 is even, ^ 2m say, then

this is zero if 2/
^ 1 and ~> — co if 2/ has a fixed value > I

.

On the other hand, if n is odd, = 2m+ 1 say, then

— ^2m+l ”

this is unity if 2/
— 1 and -> -| 00 if y has a fixed value > 1.

Hence, wken 2/ = 1 the sequence is merely

1
,
0

,
1

,
0 ,...,

and when 2/ > 1 the sequence has two distinct sets of terms

in it, one of which diverges to plus infinity and, the other to

minus infinity. In both cases the series is non-convergent.

2. Series of positive terms

2.1. Although there are comparatively few series whose

sums we can obtain by elementary methods, there are extensive

classes of series for which we can decide whether or not they

have a sum, i.e. decide whether their tends to a finite limit or

does not. It is with this problem that our work will be concerned.

2.2. If is positive for all n the series (1) is called a series

of positive terms. For such a series the sequence where

Sn ^ 2^i+2/2+”'+ 'W'n>

is monotonic increasing, since
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Theokem 6. (i) A series o/ positive tenns

Ui+ + . .
.+ •

is convergent if a number K can be found such that

s,,^ — K for all n.

In such a case 5
,,

s K.

(ii) If no such number K can be found, then the series is

divergent.

(i) As we have seen, is a monotonic increasing sequence.

If a number K can be found sucli that s^ < K for every n,

then this m.i. sequence has a finite upper bound s K. Also,

a m.i. sequence with a finite upper bound converges to that

bound (Theorem 4).

(ii) In this case the m.i. sequence (tS„) has upper bound +00
,

and fco (Theorem 4).

CoROLLARV 1. If u^-\~u<^-\- ... is a convergent series of positive

terms and if s is its sum, then s^^ < s.

For 6\, < and, since s is the upper bound of the complete

sequence (^J, 6?.

Corollary 2. If a series of positive terms

is divergent, and N is any given number, then the series

+]
+

'^^iV f2+%M-3+ • • •

is also divergent.

From the theorem, a series of positive terms must be either

convergent or divergent. If the second series were convergent

we could find A so that

% +iH-^^V42+-+^V4i; < all p.

We could then say that

< A:+%+^
2+- +%.-i for all n.

Since the R.H.S. of this would be a definite number independent

of n, the series would be convergent.

2.3. We go on to consider various ways offinding out whether,

in the case of a given series of positive terms, there is or is not

a number K such that s^ < K for all n. One of these ways is to
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prove, by special procedure, that certain standard series are

convergent, and then to compare other series with them.

We conclude this chapter by considering one such standard

series.

3. A standard series

3.1. Theorem 7. The series

is convergent if p > 1 ,
divergent if p 1

.

Let p > 1 . Tlien , , cy

- -I- - . < - 2^
2c ‘ 3P 2i^

'

1+1+1+i

8/J ‘ i)P ‘
‘

4

fp 4;'-

J. ' ^

15^ Si'
8'--",

and so on. Hence the sura of the first

(3)

terms of (3) is less than

l+ 2‘-J'+ 4*-'"+ ...+ (2"')i--".
(4)

If we write j)
~ 1+^'; so that k > 0 and 2“^' < 1, (4) becomes

14-lj_±_L 1

' 2^ ' 2“^^ '
**

' 1

If n is any given number, we can choose m so that

n < 1+ 2+4+.. .+ 2"^,

and hence, if 6’^^ is the sum of the first n terms of (3),

Since this last expression is independent of n, there is a number

K, namely such that

<C K for all n.

Therefore, by Theorem 6,*}* a limit s + K. That is, the

series (3) is convergent.

t Instead of referring to Theorem 6, we may say that (%) is m.i., and so,

by Theorem 4, < ii. Some teachers prefer the direct appeal to the

properties of monotonic sequences.
4449 E
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Now suppose p
~

1, so that the series in question is

1+R-I+....
Since

and so on,

’I’i+ I+ K > 4 . 1 —
u+ iu+-”'l" iV > =

l>

l + -J+(3+
|)
+ --- + (;j,7,T;I:pi

> I+ 1?H.

+ ...+ -

Now (6) contains tlie first

l_p 1 _|.2-[-2“-{' + --- 2"^

(5)

terms of (5). Hence, if c<f„ is the sum of the first n terms of (5),

^ when n 2^^*.

If we put down any positive number A
,
we can choose an integer

VI so that IH exceeds ^1. Then, if we take n ^ exceeds

A, Hence the series (5) is divergent.

Finally, li 'p < I, then
71-p >

Hence +
> 1+ 2-1+..

.+ 7^-1,

and whatever positive number A w^e put down, will exceed A
if 71 ^ 2"^ and in is chosen so that I+ It??. > A, Hence the

series (3) diverges if jp < 1.

3.2. Alternativeproof of Theorem?. Theorem 7 may also

be regarded as an example of the integral test (Chapter XIV),

The use of the integral test provides the simplest proof of the

theorem. But this proof uses properties of logarithms and

theorems in the calculus that we do not wish to use until we
have obtained an independent development of them. If we
used the integral test now, we should be in danger of employing

Theorem 7 to develop later theorems upon which the properties

of logarithms will depend—our argument would then complete

a circle.

At this stage, n~^ is defined only for rational values of p\
when r and s are integers, == 1



CHAPTER V

THE COMPARISON TEST; THE RATIO TESTS

1 . The comparison test

1.1. We shall, from now on, use the notations

CO

1 I
1

to denote the infinite series

In this section we compare two series

each and each is positive.

TheorExM 8. {a) If^ is a given co7ivergent series of positive

TERMS whose sum is \\ and the terms of ^ such that

0 < u,^ < Ki\^ for all n,

where K is a fixed 2)ositive rmynber, then ^ a is convergent and

its sum < A"F.

{h) If 2 ^’/i
is a given divergent series of positive terms, and

the terms of 2
^ Kv^ for all n,

where K is a fixed iiositive number^ then ^ is divergent.

Proof (a). If ee Vi+v^+.-.+v.^,, then is a monotonic

increasing sequence; by tlie h3q>othesis that ^

According^, by the hypothesis that

for all n,

< KV.

But {s.^) is a m.i. sequence, and so (Theorem 4) s,^->s AF.
That is, 2 '^n convergent and its sum < AF.

Proof (6). With the above notations s,^, we now have

Sn ^
By the hypothesis that 2 is divergent, cr,^ increases indefi-

nitelyf and hence s^^ does also.

I Compare the definitions in Chap. II, § 4.1.
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Examples IV

1. Tho series convergent, the series

divergent.

Hint.
1 ,

1

2(3n~])-^ is

and (Theorc'in 7) 2 convergent. Put ™
j-
J)~^»

^’n
”

and K - 1 in the tlu'crern just proved. Again,

1 J_
3a-1 3a’

and (Theoro'iii 7) 2^^ ~^ diverg('nt. Put -- (3;i— 1)“^, a”^,

and K - | in the theonan just prov^ed.

2. The series

are convergeait.

3. The series

are divx'rgerit.

2

2

1

n
(4?7^y"’

2

2

n

(3aT2r^

1

(2n-l)V*-i

1.2. The test in its practical form. In working most

examples that can be made to come within the conditions of

Theorem 8 it is simpler to use Theorem 9, which we shall now
prove. We begin with a lemma that extends the result of

Theorem 1.
^

Lemma. // eacA ie.rya of the sequence {o^^^) is positive and

a,, -> a finite ‘positive number oc, then there are positive numbers

H, K such that

H < a:„ < K for all n.

Since a,

c > 0; 3 N . < 6 when n ^ N.

Let be the value of N when we take e = ia > 0. Then,

when n ^ |a:— cx,J < loc, and so

a— Jot < (1)

From the finite set of positive numbers

«!, a2vj

we can choose a least (or equal least) and a greatest (or equal

greatest); let their respective values be k. Then we have

0 <h ^ a^^k (n = 1,2,..., Vi— 1).
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If we now choose positive numbers II, K so that

H is less than li and la,

and K is greater than Ic and |a:,

then 0 < 7/ < < K for all

Theokem 9. // 2 2 series of positive teems
such that

> 0
,

then the two series are either both convergent or both divergent.

The number L must he finite arid jNOT zero in all applications

of this theorem.

Proof. By the preceding lemma we can, if

-> L > 0,

determine positive numbers II, K such that

II < c__K foi' all

that is, sucli that Hv,^ < u,^ < for all n.

Hence, by Theorem 8 (a), if ^ converges, so does 2
by Theorem 8 (6), if^ diverges, so does ^ 2 ^nust

either converge or diverge, this proves the theorem. But if L
is zero, we cannot use the lemma and the argument fails.

1.3. It is clear, from the proof, tluit Tlieorem 9 is a particular case of

'I'heorem 8. It is a most useful practical form of Theorem 8, as tlie

following examples will show. On the other hand, from a theoretical

point of view^ Theorem 8 needs to bo mentioned explicitly because it

is not completely covereal 83^ Theon'in 9. Thei-e is no theorem that sa3"s

‘because remains less than a fixed mimber K for all the sequence

(uJVn) will converge’, and so Theorem 8 covers a wider ground than'

Theorem 9. Moreover, in theoretical questions (cf. Examples VIII) it is

Theorem 8 rather than Theorem 9 that is useful.

Examples V
[Defer the harder examples until pp. 3()"38 have been read.]

1. Prove that 2 i^ convergent when has any one of the values

n-j~l n-f-l n^+ n—l 1

n3-2’

“nH rr”
‘
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2. Provo that 2 is divergent when has any ono of the values

n4-l n—l I

n^— 2’ n® ’ 1’

1)^ n^+ Sa^—C
(n^- 2]*

’ “77-TTr~

Method roii Examples 1 and 2. Consider the first example,

u,i = (n-|-l)/(n3-f 2).

Wo see that is ‘about as big' as l/?i" (compare Examples II), and so

wo put v„ = ]/«S when

Apply Theorem 9, with ~ 1 /n^.

3. Prove that if 2 ^ convergent series of positive terms, > 0,

and 0, then 2 convergent.

4. Prove, by considering the particular case

Un = a-2, n-i,

tliat if 2 is ^ convergent series of positive terms, v.,^ > 0 and

u,Jt\n-> 0, then 2 necessarily convergent. Give an exainplo

to sliow that it may be convergent, === 7i~K]

2, The ratio tests

2.1. D’Alembert’s and Raabe’s tests. When we can

neither make use of Theorem 9 nor see fairly readily, by

examining the form of whether 2 converges, we use

Theorem 10 and if that fails, as it will when 1,

Theorem 11.

Theorem 10. J ^ series o/ positive terms:

'U'

if —> Z > 1 ,
then 2 is convergent;

ij —!L. z < 1, then 2 divergent.

This is often called d’Alembert’s test.

Theorem 11. '^u^isa series of positive terms :

if filJhh—
1

j

Z > 1, then 2 convergent;

W+i /

if nl̂ —— ij -> Z < 1, then 2 divergent.

This is often called Raabe’s test.
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2.2. These and other special tests involving the ratio n
can be proved, each one separately. But the problem of the

ratio tests goes rather deeply into the theory of convergence.

When, in the history of our subject, various tests had already

been devised, two hicts were discovered. One was that however

far the line of successive ratio tests was carried it could never be

exhaustive; it w'ould always be possible to write down a series

2 whose terms were such that no one of the tests already

established could say whether 2 were convergent or not.

This point we shall not pursue as it would take us too far

afield.

The other fact was that most of the ])roofs of known tests

ran along the same lines. Accordingly, a general test was

devised from which the special tests could be deduced. This

general test—or rather one that is a little short of it in generality

—we now give.

Theokem 12. Let a divergent series of 2^osUive terms

be given, ayul let the terms of a series of positive terms ^
such that

Then 2 '^n convergent if L > 0,

2 r(n is divergent if L < 0.

Proof {a). Suppose first that, with a given divergent series

of positive terms 2 terms of the series to be

investigated are such that

i)

Then, 3 N . for all n > N

(
1 )

^71+1

(compare Chap. II, § 6); Since is positive, we may multiply

throughout by and keep the inequality sign (if it were
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negative the inequality sign would be reversed after the

multiplication and become <). Hence, when N,

A/ +1 '*^74+1 ^
Write down this inequality for n ~~~ N, m—l (> N),

and add : we get

A-^V— A,«m > 5^('M.VH+«v,2+--+ M,J-

m iV O
Hence s,„ =-- 2 ”/• < 2 + yA

r I r^l ^

But, since N is a definite fixed number, the R.H.S. is fixed and

definite. Denote its value by A", say. Then, /or u// m,

s <r K,

Plence, by Theorem 0,1 -> c<? < K and 2 convergent.

Proof (b). Next suppose that the terms UJ^ of the series to be

investigated are sucli that

A,-' -A,i->^<o.
41

Then (compare Chap. 11, §6) 3 N . for all n N

7) — D 0

and so

Hence

and

fl

Aw« < A+l«n+l-

A% < A +1«A +1 <
1

n
Accordingly, if m > N,

m N 1

S,« =^2«r > I«r+A’M.V ^ J)
'

r N +

1

(^0

But, by hypothesis, ^ {DnY^ is divergent and so is a mono-

tonic sequence that increases indefinitely. Hence 2 '^n

divergent.

2.3. The theorem enunciated is all we need to know if we have in

view its application a.s a to.st to any serif^s 2 that we may encounter.

But we have, in fact, proved rather more than we have enunciated.

t Or, since (%) is a m.i. sequence, ^ < if , by Theorem 4.
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In (a) wo have nowhere used the divorgenee of our work in

the latter half of (a) is easily rewritten so as to prove the theorem :

If ^ series of positive terms
^ divergent or not, and there are

posiihe munhers k, N snch that

— > 0 v'hcn n > N,

then 2 is convergent.

tn {h) the latter half of our work proves the* theorem:

Jf is a divergent series of ])ositive terms, and therr is a nnynher N
such that O. when n " N,

then 2 is divergent.

3. Proofs of Theorems 10 and 11

3.1. In TJieorein 12 put 1. If

then

and llieorcm 10 follows.

Note. If, as soinetimes hap])cns, v

1 -{ Ij ,

n-hl

7/,,+^ for all values

of 71, then the series 2 clearly divergent. For, in such

a/ case,
i i

•

u
This fact is rrsE ful eor remembering that it is

LESS THAN ONE WHllCTI GIVES niVERGENCE.

3.2. In Theorem 12 put - n. If

I

71 n 4-1

71 -7l~

'^n-\ 1

and Theorem 11 follow%s.

1 -> L, then 7i

«-+i

L+\.

4. A simple explanation of Theorem 10

4.1. The following considerations led to the discover}^ of

Theorem 10 and also help one to remember it.

If -> L, then, when n is large, is 'about the same

as uJL, 7i^^^2 i^bout the same as uJL^, and so on: the terms of

the series 2 '^n once n is large, roughly the same as those of

Hence i > 1 will give convergence, L < 1 divergence

(Theorem 5).

4449
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Theorem 10 can, in fact, be proved refining the above

rough idea into a precise argument.

Examples VI

I. I^rovo that each of tlie series

2 (" + 1)-"- 2 d"2)rnT3)"’‘

coiiviages wlicn 0 < : 1, but diviTgcs when a; 1 (Theorem 9).

2. Provo tliat the series

‘ c.d ‘ c(c \-l)d{d-\'l)

converg('s wlieii 0 .r 1 (Theorem 10), that it converges wluni x 1

provided that c -j > a~\- b-{- J , and that it diverg(‘S when x - 1 })i‘o\ ided

that c-l-d a
I
b-}~ 1 (Tlieorern 11).

3. Pro\x' that each of the series

,
a‘2 .r»

,

converges fur all positive values of .r. [Use Example 10 (i).]

4. Show that 2 (;annot converge for any positive \ ahie of x.

5. Show that the series ^ eon\'erges when A' is any lixed numbtT
and 0 < .T ' : 1

.

(). Show that the seri<*s

i-i ' - ^

con\d’ges for any positive value of and that the sc^ries

also converges for any positive value of .r. [Use Example 10 (i)].

7. Show that the series

(aX>0)

converges when 0 < :r < 6 and diverges when x > b.

8. Show that ^ (a-j-rf)x^^/(b-j-n) is convergent when 0 < < 1,

divergent when ic > 1,

9. Prove, from § 2.3 or otherwise, that is divergent if > 0 and

either (i) u,, < or (ii) n{(u„/Un^i)-]} < 1,

when n a fixed N.
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](). Provo, from §2.3 or othorwiso, that 2 convergent (i) if

(ii) if — (iiO if either of these expres-

sions is always greater than a fixed number /j, i tself greater tlaan unity.

11.

Discuss the convergence of the series

1 1.3 , 1.3.5 ^ 1.3.5. 7 ,

2‘ ^ 2.5‘ ‘ 2.5.8 ' 2.5.8.11*

12.

Prove' tliat eacli ()f th(^ st'-ritis

V V i-2-(

3.r)...(2n+ 1)
’ Z.

converg(‘s wdu'ri 0 2 and divc'rgf's wlien :r

13.

Prov(' that eacli of tfu> seri('^

2
1.2... 71 NT 1.2...n

5T7...(2ni 3)'* '’ Z. 7.0...(2k

coTiv'orges when 0 <: x t-:: 2 and div^erges when x

14.

Prove that the series

2
1.2...r

4.7...(3a

oonv^e^rges when 0 ^ t x

conv'erges when 0 < x

^ 4.7...(3a 1-1)

3 and div erges wiien x 3, and that

V 1.2

7. 10.. .(Zw 7. 10.. .(3u h4)

3 and di verge's whem x

15.

Construct series that

(i) conv(Tgo when 0 < x < 4 and diverge wdien x > 4;

(ii) converge when 0 - : x < 4 and div^C'rgo when x 4.



CHAPTER VI

THEOREMS ON LIMITS

1 . Limit theorems

1.1. The following formal theorems on limits have been

deferred as long as possible. They woll be Irequently used from

now' on.

Lei two sequences {lxJ, be given; let

Then + -> a—

^ni^n, ^ provided /8 :/ 0.

The proofs are as follows:

By definition (Ohap. II, §2) /3,,— /3 ->0; that is,

and can each be made as small as we ])lease

by taking any vi that is sufficiently large (foian A of definition).

Hence (oc,^±P„)~-{oi:jzf^) can each be made as small as w'e

please by taking any 7i that is sufficiently large.

1.2. losing form of d(‘fuiition, wc may wriio the proof thus:

e 0; 3 Is\
. la',, — a

I

le \vlioii )i >

and 3 N2 . \^n < le when ?i . A'!,.

Let A^ exccH'd both A\ and A 2̂ * Then, if n
;

JS\

\{oc,r\ lev,,- (x\i\P„-fi\ < €.
_

Hence

€ > 0; 3 N . \{oCjt-] pn}~ € when n y. N,

and this proves that r a
j

1.3. Again, it is easy enough to see, in a rough sort of w^ay,

that if a,, approaches (('hap. I, § 2) a, and api)roaches j8, then

their product approaches ajS. We now give a careful proof

of this.

2, A useful detail of technique

We want to show that

€ > 0; 3 N . |aj3~a,^, < e when n ^ N,

that is to say, putting down any positiye e to begin with, we
can then find N such that, etc.

It is found, by experience, that in exercises of this sort it
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pays to ])iit clown two arbitrary positive numbers, e and k, to

begin with and then later on to give k a definite value.

In the present exercise the detail is as follows:

Since a,, -> a, 13, it follows that

€, k > 0; 3 . la— a,, I
< e/A: when n > N^,

and 3
i
< ejk when 7i Ao*

(Notice that we have put ejk instead of e in form (
^ of the

definition of convergence; Chap. 11, §2.)

Let N exceed both and Ky. Then, when n N,

< ^«)H- “«)l

But the sec^ucnce is convergent and therefore (Theorem 1) it

is bounded; that is, there is a number K such that

I
< K for all //.

Hence, when n N

,

Now give k a definite value greater than K-\~
|
\ |, and we have

at once
1

^^—

|

-< e when n N,

We have thus proved that

€ > 0; 3 N . \oc^~a,^P^^\ < € when n ^ X.

2 . 1 . We now prove the last of the four results stated in § 1, namely,

if CCnlPn—> OijP’

Let €, k, be the numbers in the beginning of § 2. Then, when

n Ni and iVo,

|o£ a„ 1

1^
W{^n~-p)~P{0Cn~0L)\

Since jS 9^- 0, it follows that \Pn\~> |/3| > 0 (see Examples II, 7).

Let 0 < // < |^|. Then |^„| > H whvn n > a certain M and, if N
exceeds A^2 > *^i^d ilf,

^ ^ IW ±Mlf
^ km "

A:

when 71 N.
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On cl loosing k { |oi;| -f |j81)/i/|^|, we have

^ l TVT

5 — ^ < € when 11 - N.
P Pn

Note that we could not choose k if |/S| were zero.

OOROLLARY. JJ ot, |— ^4 —> ol --> j4iXf' C'ic,

2 .2 . Method for Examples II. These limit theorems provide

a simple procedure for proving the results that were proved in

an elementary, but not very simple, wny in Chayiter IF.

The reader wall readily prove for himself that

h c h
a-\- -j—

-
4‘ ••• d

—

n n’’

Hence

\-k

a/ci unless a is zero.

We w^ork two ty])ical examples from Examples If.

71^—1 \?i ‘ 71^1/ \ fry

Tlie numerator -> 0, the denominator 1. Hence

71^—071

But 3+ i-->3,
71 n

and so
3n-+n

^
n^—bn

3. Some theorems about infinite series in general

3.1. It follows at once from § 1 that, if each of the series (not

necessarily series of positive terms)

is convergent, their sums being U, V respectively, then the

series ,
,

v
, , ,

v
,

('Mi+^h)T-('«^2+^2)+ *-

is convergent and its sum is ?7+F (Chap. IV, § 1.1, Definition).
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Similarly, ^ t)e convergent and have the

sum U~~V.

3.2. On the other hand, ^ or ^ be con-

vergent when both 2 2 divergent. Tims, we can write

Z -?’») 2 2 (^»-f ^’») == 2 “u+2 ««

only when we know that each of 2 2 convergent. We
shall come back to this point in the examples.

3.3. Theorp:m 13. lj\ for a given r)t, /he series

+ (1)

is convergent
,
then the series

(
2

)

is also convergent. If (1) has the sum s, then (2) has the sum

Let s,, denote the sum of the first n terms of (1) and ct„ the

sum of the first n terms of (2). Then, when n ; > m,

Also, since is a given number, n — ni ->crj as n -t-x.

If (I) has the sum s, then s^^ -> s, and so s as n ->cr:.

Hence + +
3.4. One of the occasions when Theorem 13 is useful is in

dealing with series of the type we now consider.

8up])ose that the series

ii^ y/o ~h • ’ *

is not one whose terms are all positive, but is one whose terms

are all positive after the ?y/th term, where m is some definite

number. We shall speak of such series as one v hose terms are

ultimately positive. (In examples it is rarely of interest to

know the value of m\ we merely want to know that, sooner

or later, such a value of m does occur.) W^e can apply to the

series
,

.

the tests for convergence for positive terms and so.

Theorem 13, Corollary. IFe can apply the tests for series of

positive terms to series whose terms are ultimately positive.

The following worked examples illustrate some of those points.
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Examples VJI

1. Discuss the convergence of tlie series

^
x-l

,

(x~-l)ix-~2) (.t™1)(.t-2)(x-3)

1 ! 2 ! 3!

for all real values of x.

In the first place, the series terminates if .t is a positive integer. The
question of convergence do(*s not tlteii arise.

SupjDose now that x is not a positive integer. Tlie rdh term of the

series, say, is given by

u„-. ( 1
) {n-ijl •

Tlion — = —^

.

'^^n+l X—n 71 —X
Hence and u„^i have the same sign wlien n > x. Tiiat is, the terms

arc ultlmatehf one-signed. If they are ultimati'ly positive, wo can apply

the ratio tests.

If the tonns are ultimately negative, say 0 wlnm n > m, then

1 Z f* • •

is convergent if (— Wrrt-+i)'i"(~"^m+2 )*h--- ^ conv('rgent series of positi\'(?

terms; for ii' s^^—>8 then —s^—> —s,

_(-^l 37

SO that the ratio t(‘sts of Clinph^r V can bo a}q>lied without- change to

series of negativ^o terms, or to series whose terms are ultwiaicly negative.

Hi’iiee, when the terms of a series are ultimately one-sigiuHl wc^ can

aj[)ply the ratio tests.

For an}^ fixed value of .r, not an integcir,

(M77/««-f-i) “> 1

and so Theorem 10 tells us nothing. We try Th('ori‘m 1 1 :

- 1
)

-^x.
J 71 --X

Hence the series is convergent if x ;> 1 and is divergent ifx < 1.

cr>

271 hi
2. Show that ^ n^(7i-hiy

71 -- 1

00

2
2a-f-

1

_ j
1

1 .

L--).
in ~h 1)^171^(71 -j-

i)'‘^

77 ~ T 71 1

Each of the series 2 2 convergent and so we may write

the last expression as

(1+22 + p +
•••) “ (^ + p + •••)•
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By Tliooreni 13, the first of tliose is

1 + (22 + 3s^'-)-

alternative method which avoids the minor difficulties,

N N

V ^ ^
I

^ ~
n 2(H-[-l )2 “ ^ In^ (n !-l)2j (jV f 1)2*

li l n l

IL'iico 11 le sum of N tonus of the? s(‘j-ios —^ 1 as N - > oc
; tliat is,

V 1

Zw 'ni^{n -\- 1)2
« 1

In all similar oxam2 )l(‘s this is tlio simplost in(?tlKKl to use.

3. Show that y _ L
zl/ n{n-\

Since 2 ^ convorgeni
, it would ho nonsense to say

^ i
i) zl^

- 1 V 1n -
1

oc ro

y

y

_L_
zlw Zw 4 1

'll - - 1 7< — 1

••= (1 + 1 1 M ...)-(| iM-...)- 1 -

Th(‘ separate brackets 1
[ ^4 J4 ••• 2 "l"i 1

••• right enough, but

they can have no meaning sinc<' tliese seric's are div(Tgent.

But the method of dealing with N terms is quit e sound, and gives

ZZ^d^H-l) Zw
V - 1 71 - 1

oi ?i4~l'
1 - ..N -e 1

Fi^rthkr Kxamrlks

4. Show that ^2 {{n \-l){n \ *)(?i - ti-

?<- 0

5. Prove that

00 00

6. Provo that 2 {n{n f l)y^ 10—
71 ~~ 3

[Assume that 2 --

7. Discuss the convergence of the series

71 1

for all real values of .r. (Cf. Exaniple 1.)
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3.5. A necessary, but by no means sufficient, condition for the

convergence of an infinite series.

Theorem 14. If the series is convergent, then

as n 00 .

Given only that 0, it does not follow that the series

2 is convergent.

Let

Then, since ^u^^ is convergent, -> some finite nnmber s as

n 00 . Equally, s as n -> oo. Accordingly, by § 1,

-- -- 0.

On the other hand,

I + i+.-. + V...
2 n

is a divergent series, although -> 0.

Examples VIII

1 . If 2 is a convorgfuit series of positive terms, so also is each of the

series

Since 2 i^^ convergent, n.^~> 0 as n—> oo. Hence (cf. Cliap. 11,5 1>)

3 A . 0 < < 1 when n N, Accordingly, when n : N,

ul and are each less than

TIk^ r('sults follow from the comparison test.

2. If 2 Ufi is convergent, then ^ i*^ convergent and its

snin is (Consid(.‘r the sum oi' N terms.)

3. Provo that if O'- 0 and if

— > 0 then a>, > 0.
1 j 0,J

By hypothesis (cf. introduction to §2)

€,k : 0; 3 N , - ^ when 7i > N.
Ha,, k

Hence, when n .. N,

or, on giving k the special value 1 4 c.

On < e.

Hence, c :> 0; 3 A . a,j < e when n > A.

(We put down two arbitrary numbers e, h to begin with, and, at

our convenience, make a special choice of k: this leaves the one number c

arbitrary, and so our final statement is: ‘On putting down any arbitrary

positive number e to begin with, there is a number A such that < €

when n > A'.’)
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4. Prove that if or,, - > 0, then 0.

If ~> 0, then 1 -> 1 and (§1) their quotient ~> 0.

5. Prove that if a^^ > 0 and if one of the scries

2«.,. Z “»/(!+“./)

is convergent, tlieii so is the other.

Hint. If the second series converges, then l and i \ J

wiien n is large enough. Use comparison test.

6. Jf one of the series in Example 5 is divergent, tlien so is tiie olhor.

Hint. First solution. A seri(‘s of positive terins must either diverge

or converge.

Second solution. UnJe^ss a„/(M-a„) —> 0, a,„ cannot - > 0, and neitlier

series can converge.

If «„—>(), then 1 < 1 f < | when n is large enough. Use com-
parison test.

7. Prove that in Examples 3-6 1 -f a,^ean be replaced by wliere

c > 0.

8. If c > 0, > 0, prove that the series

Z Z (a»+c)'‘

are either both convergent or both divergimt.

Hint. Either —> oo or it does not. Consider ('uch ease.

9. If 2 '^n
~~ 2 — cr» pi^vo that

8^ > 2g.

TO. Giv^o examples to show that 2 '^n diverge wliile V u^^ con-

verges.

11. If > 0 and 2 convergent, with sum s. prove that

^

when n is sufficiently large. Hence prove that 2 + +
convergent when 2 convergent.

12. Pringsheim’s theorem. If 0 and 2
vergent, then nw„-> 0.

Let 8 be the sum, and let s.^ = + w„.

Then s^ s and also ^an Hence

«IH-l+-+W2«-> 0.

But > ... > fl-nd so nu^^ ~ > 0. Hence

2nu2n 0.

But Wan+i < W2n» so that we also have 2/m2„4.i 0, and finally, since

{(2n+l)/2n}->l, -> 0.
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] 3. In Example 11, if 2 divergent, tlion so is 2
Solution. If 71 < m, then, since and is m.i.,

I j

^ l

If - > 00 as m -> 00
, the last expression -> 1 as 7n -> oo when 7i is

fixed.

Hence, with any given 7iy we can find an m such tliat

«» 2

and 2 i'^nl^n) consists of blocks of terms whose sums each exceed J.

4, Further tests for series of positive terms. Cauchy’s/ii'

test

- 4.1. Theokem 15. lJu„isalwaysvos\TWEand'\ju,^-> L,then

tlis series 2 'it,,, is convergent when L < 1, divergent when L > 1.

Proof, (i) Let L < I, and let Lj be any definite number

such that L < L, < 1. Then (compare Chap. II, § 6)

3 N . when n ^ N,

i.e. < L^.

But, since •< 1 ,
the series

is convergent, and so, by the comparison test,

is convergent.

Hence (Theorem 13) ^ convergent.

(ii) Let L > Then

3 N . > 1 when n > N.

That is, u.^> I when N, so that does not tend to zero.

Hence (Theorem 14) ^Un is not convergent. But a series of

POSITIVE terms must either converge or diverge, and so 2
is divergent.

CoBOLLARY. If > 0 and '*i;ja^ -> then 2 %
vergent when 0 < :r < J?.
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5. The condensation test >

5.1. Theorem 1G. If (f>{n) > 0 and the sequence is

monotonic decreasing, then the two series

OO TO

n ~ 1 n~l

where h is a positive integer greater than unity, converge or

diverge together.

Since ^{n) is m.d., we have

1) [r^-h)4>{h).

By adding these inequalities we get

(f){h) -\-f>{h H -
1 )+ . .

.+ ^{h'^ 1— 1

)

Suppose that '^}d^<j)(h'f is convergent and has the sum S.

Then (Theorem 6, Corollary 1), for all values of n,

Hence, whatever tlie value of w,

(l>{}i)~\-(f){h~\- ...-\~(l){h-\~m) <C {h— 1)>S^

(we can choose 7i to make > h"\-7n), and the con-

vergence of

^(l)+cf>(2)+ .,,+ ^h)+cl>(h+l)+ .^

follows.

Again, on making a slightly different start so as to re-

the inequality signs, we have

^ h)(j)(h^),

By adding these inequalities we get

-|- 1
)

+

2 )+ . .

.

+
> {{h-l)lh][h^{h^)+h^{h^)+ ^



46 THEOREMS ON LIMITS

Suppose that 2 is divergent. Then, as the last

inequality shows, the sum

i
) +*^(2)+ • • •

+

increases indefinitely. Hence (j)(n) is divergent.

We have thus .shown that the convergence or divergence of

2 h^‘<{>{h^') implies the corresponding property for ^ ^(^)-

Also, if 2 is convergent, then 2 h”(j){h'^‘) cannot be

divergent, for if it were, 2 4'W "would be divergent also; and

if 2 is divergent, then ^ cannot be convergent.

5.2. The condensation test is particularly well adapted to

series that involve logarithms.

For the benefit of those readers who want the principal results as soon

as possible wo givx' here a theorem involving logarithms. We shall not

use it in this book until after our own treatment of logarithms.

Theorem 17. The series

cc ,

is convergent if k > 1, divergent if k 1.

If <f){n) ™ Ijnilognf and h > 1, then

™ i
^

log hj^ ?i^(Iog h)^
*

Theorem 17 now follows from Theorem 7.

Examples IX

1. Show that the convergence of X when A; > 1 follows from the

convergence of when r < 1.

2. Show that 2 log n)'“^(loglog n)“^ is convergent if Z: > 1 ,
divergent

if A: < 1.

3. Find for what sets of values of a, 6, c the series

2 n^(logn)^(loglogn)®

is convergent.



CHAPTER VII

ALTERNATING SERIES

1 . Alternating series

1 . 1 . There is one type of series other than series of positive

terms for which it is easy to decide whether or not it converges.

This type is +
where each is positive. Such a series is called an alternating

series, because the signs alternate.

Theorem 18. The alternating series (1) is convergent if

(i) is monoionic decreasing, i.e.

and (ii) 0 as n -> go.

We prove this theorem by considering separately the sum of

an even number of terms and the sum of an odd number of

terms.
^271

and so, by hypothesis (i), the sequence

^2’ ^4>

is m.i. (monotonic increasing)
;
but we may write

SO that s.

Corollary 1)

(
2

)

2„ is never greater tlian Hence (Theorem 4,

^2ti
' " ’^

1
*

Next consider an odd number of terms. We have

s,2r?41 +l/>

SO that the sequence
'^*2’ 5o2/<41v

(3)

(4)

is m.d. (monotonic decreasing); but we may write

«2«+l = («l-%)+ (M3-«4)+-+ (W2«-l-«2n)+ '«2H+l.

SO that S2n+i is never less than 7/^— m,- Hence

^2v+l u. "?/o (5)

Accordingly, without using hypothesis (ii), we have shown

(A) that the sequence formed by the sums of an even number

of terms
^2’

is m.i. and converges to a limit between u^—u^, (= tSg) and u^

;
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(B) that the sequence formed by the sums of an odd number

of terms
oj, S3 ,

is m.d. and converges to a limit between (— s^) and

Since L, ^2,^1 have (Chap. VI, § 1
)

2n il So2n n~ ^2n.

But, by hypothesis (ii), '^2,,-^ *-> 0 and so U - L. That is to

say, both the sequences tend to the same limit L.

Hence L as n -> 00 through all values.

Foraially, tlio last stop in the arguinont may bo sot out thus:

^2n '^2/?4l

TluToforo € > 0; 3 ]S\
. |7v

|

-
. e wlion n '

and 3 xVo . |y^—

-

e wlion ?/

Henco 3 N . |A— e when ?/

and so > L.

Examples X
1 . 8how that each of th(' sori('s

1 -J iT- ...

is oonvorgont.

2. iShow that — 2“^’
... is convergent if 0.

3. Use eacli of the two methods of Examples VI T, 2, to show that,

when p : - 1,

I

3-^'-... -
• (l ~2i~/>)(l i 2-i’-i 3-^^-| ...).

4. 8 I 10W that the scries

t ’ 4 ’ -...
r+l .rL2 j;43

is convergent for all real values of x other than negative integers.

(If X > ~ \ the seri(‘S is alternating; if ir — 1 the terms are xiltimatcly

alternating in sign; in the latter case use Theorem 13.)

5,

Prove that the series

^-2-+

converges if — 1 < ;r < 1. (If — 1 < x < 0, we have a scries of negative

terms; use Chapter V.)

6. Prove that ^ Tco

n(n+ 1)
-2 . 1

)«+

1

n
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2. Power series

We have found tests for 2 when a„ > 0 and a; > 0.

The easiest way of dealing with negative values of x is to use

the properties of absolute convergence that will be considered

in Chapter IX. But many examj^les can be dealt with by

Theorem 18. We shall work one of the examples of Chapter V,

Examples VI, and recommend the others as exercises.

Consider2 {(^+ 1 )/(^^+ when x is negative. Let x — — y.

The series becomes

+ + (
1

)

If = (n+l)/(n-f-2), we have

n~]~\ ^+2 1

71~\-2 71+3 (71+ -)(^+3)*

Hence the sequence (?;„) is monotonic increasing and we cannot

apply Theorem 18 directly. But we note that v.^-^ L So w^e

write
7?.+

1

n+2
1 — 1

71+2

and consider the two series

y—y^+y^—--

and ly—ly'-^-ly"^—--

By Theorem 18, the series (3) is convergent if

1 +1 <}jn

and -
977 —[- 2 "

71+ 3
0.

71-

(
2

)

(3)

These are both satisfied if ^ < 1

.

Also (Theorem 5), the series (2) is convergent when y < 1.

When we subtract the two convergent series (2) and (3) we
obtain a convergent series; but the series so obtained is (1).

Hence the series (1) is convergent when 0 < y < 1.

4449 H



MISCELLANEOUS EXAMPLES ON CHAPTERS I-VII

1. Tho sequences (a,J, (6„) are defined by moans of tli(3 formulae

I ~ i(^« f ^»?)» 1

Ox -- a, hi and a > Show that (o„) is m.d., is m.i., and that

o„, h.,^ each tend to tlie same limit.

Hint (to bo used only after failure).

If o„ > bn, then, from (i), > b,,, o„,,i : a,,; since o„.^j > b^,

^n+i > from (ii). Further,

"ill— ^«+i = iO?.

2. In Example 1, if o^ -- - cos^, 0 ^ ^ < Jtt, ?>x 1, find expressions

(by induction) for o„ and 6,^.

Prove that (a,J is m.i. and (6,J is m.d. Show also that b^ e>aeh tend

to .sin 6/6.

3. Finci expressions for the finite .sums

(i) lH22r-i-... + (n+l)'^.r”,

(ii) i (l+i^^)!r{r-i l)(r
I
2)(r

i 3).
r 1

Discuss tlie eon\'ergc‘noe of these sums as a —> oo.

4. Prove that each of the seri('s

2 n~^(loga)-% 2 i ^

)

i.s convergent.

5. Prove that if a > b > 0 the seri('s

....
' o-f 1 ' (o

}
J )(a 1-2)

converges to the sum al(a~b).

PliNT. The series is convergent and its terms are m.d., so that, by
Pringshcim’s theorem, min —> 0. Also (compare the stai*t of Example 17)

3 — 14._^ I ,

^•••(6 +n— 1 ) 6...(6 Fn ) 1

a~b (a-f l)...(aF^^) (a -f- l)...(a-}-7i) a—-6*

6. Show that the series

is convergent.
n --

1

1

2a 1 2n+ 2>

7.

Sura to n terms the series whose nth term.s are

n(n+ l)(n-f2)’ n{n+i)(n+ 3)’

(iii) n(n4-l)(n-l~2), (iv) (v)

Discuss the question of convergence of the corresponding infinite series.
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8. If tho successive tijrms of o, s(‘quenc(‘ of r(‘al uuiiil>ors are

coiinoctod by the relation 7^,1— 6, and if a is any root of the

equation x^—7x-j-6 -- 0, prove that 8^-—

a

has tho same sign for all

values of n.

Prove that

(i) it' Si > 2, Sn is in.d. and —> 2,

(ii) if 1 < < 2, is m.i. and -> 2,

(iii) if —3 < 8

1

c 1, 8J^ is ni.d. and —> — 3,

(iv) if < —3, 8y^ is in.i. and —^ — 3.

9. Discuss the convergence of 2 sechno:, 2 ^"soch na:.

1 0. Prove that 2 ( “ ^ )^/{^+ 2 f- (~ 1 )^} is convergent.

11. If > 0, Ui-r u„y prove that 2 2
both convc^rgent or both divergent.

12.

Discuss the convergence of the series

,
i 1-2

14- X - 4-
. , .

.

l+oc ( I I a)(2-t- a)

13.

If Un ^ — ^1- —y
- show tliat

7i+ 1 71 -f 2 71 '}' 3

(i) th(^ sequence is inonotonic,

(ii) ,..-U2,,^i 2nu2n-

14. Prove that 1)— n is ultimately monotonic and tends to

zero. JSIiow that 2 (~ ^ + convergent.

X® 1 3
15. Prove that |- +...

is convergent when 0 < x < 1.

10. Prove tliat

2
n(-a-t 3)(n + 5)

(‘n4 l)(n4-2)
X”’

are convergent when 0 < x <2 1, divergent when x 1.

17. Provo that, ifm > n and n- is a positive integer, then

m-hl 14-^^ ^
7ri—7i-{~ 1 ^

m

I .p -j-
-I- ... to (n 4- 1 )

terms.
m m(w— 1)

18. Prove that, when x > 1,

(i) n/x” and whore N == 2^, —> 0 as n -> oo,

(ii) (x~l)-i-(x4-l)*-' = 2(xa-l)-i,

converges to the sum l/(x~l).
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19. Provo that the sequence (an), where

is m.d. and 0.

20. Prove that, when 0 < a; < 1,

n « 1 ?t - 1

21, Prove that, if ?/ is a given positive number less than unity, the

sequence K), whore ^ +
is ultimately monotonic decreasing, and that 0.

22. Prove that the series

-a;2+...+
a-^-n— 1

is convergent when -- 1 < a: < 1. Prove, also, that the series is divergent

when X -- 1 and that it is non-convergent wlion .r ~ —1,
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CHAPTER VITI

THE GENERAL CONVERGENCE^ PRINCIPLE

l . The general convergence principle

1.1. In Chapter II we gave a formal definition of what is

meant by the plirase 'the sequence converges to ah In

Exam})]os II we sliowed that certain definite sequences v.on-

verged to certain definite numbers. But this gives no clue as

to how we are to answer the question 'does the sequence (a,J

converge?’ Chapter II will give the answer to the question

'does (a,,) (tonverge to a?’ only when we know what a is.

When we came to monotonic scc{uences we found a sim})le

answer to the question 'does a monotonic sequence converge?’

The answer was 'yes, if it is bounded’. For example, if (a^,) is

m. i. and a,, cC 100, then a,^ -> some limit that is not greater

than 100.

If the sequence (a,,) is not monotonic, then the test as to

whether a,, does or does not tend to a limit, the limit not being

specified, is contained in Theorem 19. This is a fundamental

theorem. Whether or not the proof is mastered on a first

reading is a matter of personal taste, but the theorem itself

must be.

Theorem 19. The riecessary and snfficient condition that the

sequence should converge {to sorne finite number a) is

e > 0; 3 A" . < c for all posit ire integers

1.2. The condition is necessary. This is relatively simple

to prove. Suppose that a„ -> a. Then (see Chap. VI, §2)

€, t > 0; 3 iV . [a— I
< e/Z: when v > A".

Hence, if j) is any positive integer, we have

l“A— “A'+pi = I(“A’— + — «AMp)l

< l«
—

“A-| + l«
— «A+pi

< 26/Z;.

Take k --- 2 and it follows that

€ > 0; 3 A^ . < e for all positive integers j).
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This proves that, if a, then the condition is necessarily

satisfied.

1.3. The condition is sufficient. Preliminary. The

proof of this is more difficult and depends ui)on the following

theorem.

Theorem 20. If the infinite sequence is bounded, it con-

tains at least one sub-sequence that converges to a finite limit.

Suppose that

a ^ (n 1,2,3,...),

and think of the points a, b and the various points marked

off on a straight line. Bisect ab: there is an infinity of points

in ab, and so there is an infinity in one at least of the two

halves.

Suppose there is an infinity in the left-hand half only. Put

= a, bi -= i(a+6),

so that contains an infinity of the Bisect afi)^: there is

an infinity of the in one at least of the tw^o halves.

Suppose there is an infinity in the right-hand half. Put

Continue this process and always make a part (right-

hand if possible) containing an infinity of The construction

of a^bj^ from is always such that

^n-V ^n~l'

Hence [afj is m.i. and, since each < 6, L <C 6; also

(6^,) is m.d. and, since each b^^ ^ a, b^^ -> > a.

It follows that u ^ T T

But = (6— a)2“^ and tends to zero, so that L — L^.

Since L from the left and b.^ -> L from the right,

we have
^ ^ ^ ^ {b-a)2-\

0 < h^—L < 6„-a„ < (6-a)2-”.

(Notice the sign < : from a certain stage onwards or may
stay fixed at L.)

Accordingly, if x is any point in b^, then

\L-x\ < (6-a)2‘^
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Now let Qiii t)e the first member of the sequence that

lies in dihi, the first other than that lies in ^33

the first other than and ^22 that lies in a^bn^\ and so on.

We then have a sequence (a partial or sub-sequence of the a,,)

*^22’ ^33 ’'**

such that |L—

I

< (6—

Hence, on writing ~
oc,,.,,, -> L as 7i->co.

Notice that, by its inode of construction, L must lie either

inside ab or, in extreme cases, at one or other of a and 6; it

cannot lie outside ab.

1.4. CorollarV* U infinite sequence {(x ,^)
is bounded^

then eith er it converges or it contains two sub-sequences that con-

verge to different limits.

As in the theorem, there is one sub-sequence {ff^) that con-

verges to L. Then

EITHER (i) for each and every € > 0, only a finite number

(or none) of the are such that \L—(xf > e,

OR (ii) for some c > 0
,
an infinity of are such that

\L— 0cf > €.

If (i) holds, then a,, -> L (by definition of convergence).

If (ii) holds, let A be a definite positive number such that

\L—(xf A for an infinity of

Let (y,,) be the sequence we get by omitting from (cx„) all the

terms such that |L--cx,„
|
< A. Then, if L is neither a nor b (if it

is, slight changes are necessary: these we leave to the reader),

the sequence (y„) lies in a,L—X and L+X,b. Moreover, by

hypothesis, (y„) is an infinite sequence.

Either in a, L—X or in L+A, b there is an infinity of y,^. We
can, as in the theorem, select a sub-sequence which converges

to some number and, as cannot be within L—X, L-f A,

Lji cannot be the same as L.

That is, ((x^) contains two sub-sequences, one of which con-

verges to L and the other to ^ L.
4449 -r
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1 .5. The condition in Theorem 19 is sufficient. Suppose

the condition is satisfied; that is,

e > 0; 3 . la;v~“jv+j)l < ^ positive integers p.

Then, when m > some definiteM (the value ofN when e = 1),

lav—“ml <
i.e. ttjy— 1 < «„, < a^+1.

The sequence aw+j, av+2>-" is bounded. Hence (Corollary,

Theorem 20) it must either converge or contain two sub-

sequences that converge to two distinct limits L and Xj. But

the latter is impossible when our condition js satisfied. For, if

possible, sui)pose there are two such sub-sequences and that

> L. Then, if k is a given positive number.

3 X .
1

OCy 0(y.^_p I

ii-x
k

for all positive integers p.

Since one sub-sequence -> L and the other -> X^, there are

positive numbers q, r such that

\v-t«

Xj—

X

~T
It follows that

\Li—L\=
I
(Xi- « V

,

-f (av+r- a:,v) -h (a v- « v+g)+ (“w+g- i)
1

< iX^-av -rM- l“v+r-“vi+ l“A’-“V+gl+ l“,V4g— -^'1

< 4(Xi-X)/^;.

That is to say, if there were two sub-sequences converging to

distinct limits, it would follow, on taking A = 4, that

Ly-L < Xi-X,

which is absurd. Hence the sequence (a„) must converge.

This completes the proof of Theorem 19.

1.6. Complex numbers. Complex numbers will be con-

sidered in a later chapter. In all other contexts numbers are

supposed to be real unless the contrary is stated.



CHAPTER IX

ABSOLUTE AND NON-ABSOLUTE CONVERGENCE

1, The convergence principle applied to series

The infinite series + '*^2+ • • •

is convergent if the sequence
(
5^), where

is convergent.

Theorem 21. The necessary and sufficient condition for the

series 2 io be convergent is

£ > 0; 3 V .
I

^

for all positive integers p.

This is an immediate corollary of Tlieorem 19, for

^N+p~~^N ^ ^A^+a+ •••+ %>/>•

2, Absolute convergence

2.1. Definition. The series is said to be absolutely

convergent if the series ^ \n^\ is convergent,

Theorejvi 22. If a series is absolutely convergent, then it is

also convergent. If a series is convergent it is not necessarily

absolutely convergent.

Suppose 2 conv(M'gent. Then

€ > 0; 3 V . ||%+i|+ ...+

^

for all positive integers p. But (modulus of sum sum of

moduli) ^ l^'v+il+ ---+

and so e > 0; 3 V . l%+i+ ••+% ^

for all positive integers p. Hence, by Theorem 21, 2
convergent.

On the other hand, particular examples show that 2
be convergent and 2 \'^n\

divergent: e.g. l~|+ i~ --- is con-

vergent, l+ |+ ^+“- is divergent. (Cf. Theorems 18, 7.)

2.2. Theorem 23. (i) If a series is absolutely convergent, then

the series formed by its positive terms alone is convergent, and

the series formed by its negative terms alone is convergent.
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(ii) if a series converges but is not absolutely convergent^ then

the series formed by its positive {negative) terms alone is divergent.

Let the series be ^ !^nl ^ “n* l^urthcr, let

1 /,. f \
when a „ is positive

when is negative,

when is negative

Avhen is ])Ositive,

Qh (7i+

With this notation we have, easy algebra,

+ (
1

)

But if 2 eonverges absolutely, then a,, -> a finite limit, a say,

and s^^ a finite limit, s say. Hence

I^n-^iis+ cr),
(
2 )

and (i) follov's, since Q.^ are formed respectively from the

positive, negative terms alone.

To prove (ii) suppose that the series formed by the positive

terms alone is convergent and that the original series is con-

vergent. Then -> a finite limit, P say, and s,^ a finite limit,

s say. It follows, from (1), that

i.e. the series of ab.solute values, ^ convergent.

Hence, if 2 convergent and ^ divergent, the series

of positive terms alone cannot converge.

2.3. The ratio tests. When, in Chapter V, Examples VI,

we considered powder series such as

l^2x+dx^+,.,,
(
1 )

we confined our attention to positive values of x. We now see

that this series will converge, whether x is positive or negative,

provided that
1+21x1+ 31x1==+...

is convergent. If we write u^== (w-fl)|a:l^,

^ (^+ 1
)

^71+1 (^+2)|a;| \x\'

Hence the series (1) is absolutely convergent when \x\ < 1.

in !(««-“«) =
[ q

"

i'n •••+;>«>



ABSOIAITIC AND NON-AHSOLIITK CONVBHX^ENCK 61

The exain])les that Ihllow deal with the same series as did

Examples VI, but negative values of x are now included.

Examples XI

. Prove that each of the scries

Zlrn-i~2 *
3)

converges when \x\ < 1, diverges when a; ^ J, and does not converge

when |.r| > 1. Show that the third scries is tlic only one of tho three

that converges when x = ~1.
Hint. When |a:| < 1, consider the series of absolnto values and use

tho ratio tests. When jir;| > 1. the nth term does not tend to zero,

and Theorem 14 proves tho result. Wlaai x - —I, only the terms of

tho last series tend to zero and the convergence of this series is proved

by Theorem ] 8.

J 2. Prove that the series

c,d^ c(c -f 1 )d(d-{- 1 )

‘^
'

(r, d > 0)

converges when |.rj < 1.

..15. Prove that each of tho scries

x^

21

/^3

3”!

X^ X'*

*+3!'''61+-

converges for all real values of x,

4. Show that 2 cannot converge for any real value of x.

Hint. is ultimately greater than \Uf^\, and so caimot tend

to zero.

5. Show that X converges when k is any fixed number and
|.r| < 1. Show that it does not convergt’s when |.r| > 1 and fmd for

what ranges of values of k it will converge when x — 1, when cc — ~1.

6. Show that each of the series

2
*^+

2.4 ^ ^
2 . 470

*^

a
,
2(a-hl)^2

I

3(a-f 2)^g
1+2* +-274-'-'*=+

2.4.8

is convergent for all real values of x.

7.

Show that the series

“ 2(a+l)^,^ 3(«+2) „,

x’>+ ...

l+^x +

converges when |a?] < |6|.
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3. Abel’s and Dirichlet’s tests

3.1. Let (a^), (i»„) be any two sequences, and let

^ ai+a2+-+ «^n*

Then, by simple algebra,

a^i\+a^v^+...+anV^ (1)

= ^l(«^l“^^2)+ ‘^2(^2-^'3)+ ---+ '5>n-lK-l^ (2)

That is, we have transformed (1) into another shape, namely (2),

wherein we ‘sum the a’s and difference the ?/s’.

Now suppose that

(i) (i;,J is a m.d. sequence of positive terms,

(ii) the numbers h, H are such that

h ^ Sy ^ H (r “ 1, 2,...,n).

Then w^e havef

that is, by the equality of (1) and (2),

hv^ < + +
Similarly, a^v^+a2 V2+ < Ilv^,

3.2. We now collect these results into an important lemma.

Abel’s lemma. If (v.^) is a monotonic decreasing sequence of

positive numbers, and h, H are such that

^ ®l+^
2 ^ “ Ij 2,..., n),

then hvj^ <
In this lemma h or H, or both, may be negative. The

notation a < b means that a is algebraically less than b; thus

•— 3 < — 2. When we use absolute values we need the following

result.

Corollary of Abel’s lemma. If (v^) is a monotonic decreas-

ing sequence of positive numbers, and K is such that

\a^+a
2
+...+a,[^ K (r = l,2,...,ti),

then !ai«^l+a2 ^2+-+«n^nl <
f Notice that the argument depends on Vn > Vn+j. If, for example, r* < v,,

then Vj—Vj is negative, and so

{v^—v^)h > when h < a*.
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This follows almost at once from the lemma itself. For we
can write the condition l«i+a 2+*--+^rl ^

—

K

^ ^
and so, by the lemma,

—Kvi < ai*7i+cr.W2+...+a„t>„

3,3. Theorem 24. If is a sequence of numbers such that,

for some fixed number K,

for all n,

and {v^) is a monotonic sequence that converges to zero, then

2 ^n. convergent.

Suppose, in the first place, that (?’„) is a monotonic decreasing

sequence of positive numbers, and that i\ -> 0. Then •

e, Z; > 0; 3 iV' . 0 < < he when n > N.

[It is a matter of indifference whether we use e times k ov e

divided by Z:.]

But, for all positive integers j?,

l%-H+%+2+ ••+%+;> I

=
I (<^i+^2+ • • •+ 47J~ (^ 1

4“
<^'2+ • • •+ ^.v) 1

< 2K.

Hence, by the corollary of AbeFs lemma,

< 2Kke.

On putting k = \K, we see that

c > 0; 3 A” • ^iVfpl ^

for all positive integers p. Hence, by Theorem 21,

convergent.

If (v^) is a monotonic increasing sequence (of negative terms)

that converges to zero, (—t',,) is a monotonic decreasing sequence

(of positive terms) that converges to zero. As we have proved,

2 is convergent: hence 2 i® convergent.

Definition. A series ^ bounded if there is

a constant K such that |<7i+a2+”*+^Hl ^
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A convergent scries is necessarily bounded (by Theorem 1),

though not all bounded series are convergent: for example, the

sum of any number of terms of the series

1-1 + 1-1+ ...

cannot exceed unity.

. 3.4. Theorem 25. Jf a convergent series and (?)^) is

a monotonic sequence that tends to a finite limit, then

also convergent.

The tlieoreiii has no intt^'est if ^ is absohit('-]y eorivergent, for (r^,)

is Ijoimded, by hypothesis, and so

|o„r„! < /v|a„!,

say. If 2 h^iil i^ convergent, the convergence of ^ from

the comparison test (Theorem 8).

If 2 a„ is convergent hut not absohitt4y convergent, tlien tlie positive,

negative tonns alone form two di\'('rgent s(a’ies. TJie conv(‘rgence of

2 «n so to speak, to t)ie nicety of balance between a diverging

positive and a diverging negativ(\ The theorem asserts that tin's jiicety

of balance between the positives and negatives is not upset by tlu;

introduction of the factors

Suppose that -> v, and that

s„ HI- a
j
-p r7.>+ • • • + •

Let — v—Vn- Then

aiVl+«2«2+-+«n’'« ??-(«i?<’i+ a2W’2+ -+ «« ”•’«)•

Let (7,^^ u\+

u

2 u\i+ . .
.+ u w

,^

.

The sequence {s,^) is bounded, since s^^^ •-> (Theorem 1). Hence

there is a number K such that

|Ui+U2+---+^><l K for all n.

Further, the sequence (w;^J is monotonic and converges to zero.

Hence, by Theorem 24, the series is convergent;

that is,
^ finite limit, o* say.

Accordingly,

+ ^'2 ^^2 • • •+ “ ^
7}

~~

-> sv—a.

Hence the series ^ is convergent.

3.5. Theorem 24 is usually called Dirichlet’s test, and

Theorem 25 Abel’s test. Before we give special examples we
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not© one result, an example on Theorem 24, which is of almost

sufficient importance to rank as a theorem.

Let be any monoionic sequence that converges to zero. Then

2 v^sinnd is convergent for all real values of 0, and 2 v^^^cosnO

is convergent for all real values of 6 other than zero and multiples

0f27T.

By elementary trigonometry, when 6 is real and sin|0 9^ 0
,

2 cos rS =
1

n I

2 sin rd =

sin ^nd cos \ {n-{~\)d

sin 10
<

|sin ^(9j

’

sin \n0 sin J(n+ 1)0

sin {0

1 ^

Isinpl"

Hence, if sin ^0 0, we may put K = jcosec 10
\

in Theorem 24

both when ^ co&n0 and when a^ ~ sinn0. But sin|^ ^ 0

unless 0 is zero or a multiple of 27r. Hence

2 Vn 2
are convergent unless 0 is zero or a multiple of 2tt.

When 0 is zero or a multiple of 277
,
the first series is merely

a series of zeros, while the second is 2 ^’n

be convergent.

j 1 .

Examples XII

Prove that, of the series

2
cosnd

2
sin nS

1
cos nO

n jL^ n
all save the first converge for all real values of 0.

vnS

2.

Prove that X cos nO is convergent for all real values of 0 if

k > I, and is convergent for all real values of 6 other than multiples of

277 (including zero) if 0 < /c < 1,

3. If X ®n converges, then 2 ®n converges when x > 0.

4. If X is not a positive integer, then

2
On 'V Qn
n * n—x

ore both convergent or both non-convergent.

Solution. If '^ajn converges, write — nj{n— x). Then

X
«n-«^«+i - (w_a:){nH-l-a:)’

K4440
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and, when n > [a;], this has the sign of x. Hence the sequence (v^) is

ultimately monotonic; also, > 1 as n-> oo. Hence, by Theorem 26,

2 n—x
is convergent.

The same method applies if wo suppose the second series to bo con-

vergent: we then prove that the convergence of the first series follows.

6. The series 2 is conv'ergent when x is not an

integer.

6. The series ^ (“ when x is not a negative

integer, are both convergent.

7. The series ^ (
— 1)”6„ is convergent provided that tends mono

tonically to zero. (Put = (
— 1)” in Theorem 24.)

8. Prove thatV
iL, n hi

is convergent for all real values of x.

3.6. The more general forms of Theorems 24 and 25.

The two theorems 24a, 25a that follow are more general than

the previous ones and are also applicable when are

complex numbers, but it is not so easy to see whether they

apply to any particular series. The new theorems are all but

self-evident if we return to the identity of § 3.1 and remember

that 2 converges if 2 does.

In § 3.1 we proved that

where ~ ai+a2+...+a„.
^

2 l^n~^n+il be convergent and let y a„ be bounded, i.e.

3 jfiT . |5„ I
< it for all n.

Then l^nK-^’n+l)! <
and each of the series

2 a„(r„-v„+i), 2 (^n-'^n-n) (3)

is convergent. Since 2 ^n(^n~^n+i) is convergent,

«iK-i^2)+a2{«'2-*’3)+-+»«-iK-i-t’»).

i.e. (aiVi+...+a„v„)-s„v„,

tends to a finite limit.

(4)
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Since 2 is convergent,

i.e. Vy-v^,

also tends to a finite limit; that is, v„-^v,& finite limit.

It follows from (4) that, if

EITHER ^

OR 5. a finite limit,

then tends to a finite limit; for in the first case

|s„l < K and 0, and in the second case -> sv. We
now enunciate the theorems that embody these results.

Theorem 24 a. If2 bounded, 2 |v„—v„+il is convergent,

and -> 0, then 2 is convergent.

Theorem 25 a. If ^o.n is convergent, and 2 bn“^n+il

convergent, then 2 «« i^ ^iso convergent.

3.7. Worked example. If {v„) is m.d. and 2 Vf, is convergent, then

2 v„^i) is convergent and its sum is 2 ^n-

To deal with problems of (his typo, use §3.1 with a„ = 1, so that

«„ = n. Thus,

+ = («’x-V2)+ 2(yj~Vj)-l-...+ (n-l)K-i-*'»)+wV
In the first place, v„->0 since 2] i® convergent and so, in the second

place, v„ must bo positive since (d„) is m.d. Finally, by Pringshoim’s

theorem (Examples VIII, 12) 0, and the result follows.



CHAPTER X

THE PRODUCT OF TWO SERIES

1 . The use of brackets in infinite series

Consider any sequence (a^) that is known to converge to a

limit a. Then, confining our attention to even values of n, we

are clearly justified in saying that the sequence

a2, 0^4,..., (
1

)

converges to a. On the other hand, if all we know is that the

sequence (1) converges to. a, then we are not justified in saying

that oc; we simply have no information about the odd

values of n.

Now’ consider an infinite series

and the same series with its terms bracketed

(%+%)+(%+<^4)+— (^)

Let ” cti+%+*“+^n-

In thinking of
(
3

)
as an infinite series, we consider

as one term, (^3+^4) as the next, and so on. To find the sum
of this series we consider the limit, as 7^ 00, of

(^'i+^2)+(%+«4)+--- to n terms

— ai+*--+«2n = '^2n*

As with the sequence (a:.,J above, if we know that 8
,

then we can at once say that So^ s: that is to say, if we know
that (2) is a convergent series and has a certain sum, then we
can at once say that the bracketed series

(3 )
is convergent and

has the same sum. But if all we know is that the bracketed

series
(3 ) is convergent and has a certain sum, then all our

information is limited to s^n^ odd values of n are unaccounted

for, and we are not justified in saying that the series (2) is con-

vergent until we have investigated the sequence (52n+i)-

In like manner, if 713,... is a sequence of steadily in-

creasing integers, then of the two statements

lim = a, hm = a
f^oo nf^oo

^



THE PRODUCT OF TWO SERIES 69

we can deduce the second from the first but not the first from

the second. So, in considering series, of the two statements

• is convergent and its sum is s,

is convergent and its sum is s,

we can deduce the second from the first but not the first from

the second.

Briefly, we may put brackets in and be sure of our results,

but if we take brackets out we must subject our work to

careful examination.

1. The series

has a general term

Examples XIII

(1 — — D-f...

1 i_ ^ i_
2n— 1 2n 2n(2n— 1)

and is convergent (the terms are comparable with those of ^ n~*).

It does not at once follow that

^ “14- i -"i-h-*'

is convergent: all we know from the previous work is that

i
2 + 3 4+"’ 2n

But we can easily complete our work: for

«s«+i -«2n = 2nVi
»nd -> 0 as n -> 00 .

But and so = (s2„+i—

#

2„)+«2n 0+s = «; honce «

whether n be odd or even.

2. The series + +
is the same as the series in Example 1. But if we remove the brackets,

we now get

We see that

JH--

^2n+l

2n^l
2n

'

^ 2 + 3 4
+ '' 2n’

2_? + ^_5 + ...+
2n+2

2^3 -4^ ^2n+ l

1 + 1

1 .

. 1+ 1 .2^3 •i+-+2;»^’

The series without brackets is not convergent.
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3. Prove that

4. Prove that

2. Change of order of the terms of a series

2,1 . In a finite number of terms, say

the algebraic sum is unaltered by writing the terms in a

different order.

In an infinite series we must first say what we mean by

‘writing the terms in a different order’.

Def^ition. The series

is the series <^i+« 2+^3+ • • •

with its terms in a different order if every bj. corner somewhere

in the a series and every comes somewhere in the b series;

2 b^ is also said to be a rearrangement of ^
Examples. (i)

and — 1+ 1—i+i—i+6+-’;

(ii) 1— ^+ 1—i+|— i+--, (5)

and 1+i—H^+Hi+--
The second example brings out a point that marks an important

difference between finite and infinite series, namely, we can

go on for as long as we like putting two positive terms to one

negative term. Ifwe were dealing with a finite number of terms,

say 20 terms, some of which were positive and some negative,

and began by putting two positive to one negative, we should

be obliged to stop when we had exhausted all of one sign and

fill in with those terms we had so far left out. For example,

the 20 terms

may be rearranged as

Here we have gone on as long as possible putting two positives
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to one negative, but at the end we have been obliged to redress

the balance by putting in all the negatives we had previously left

out.

But, as we have seen, when rearranging the infinite series (5)

we can continue ad infinitum with two positives to one negative.

We cannot expect that the sum of the series will remain the

same as it was before.

2.2. Suppose that

is a given series and that

61+62+...

is a rearrangement of it. The sum of the first series is the limit,

if it exist, of a sequence

5i, where hze cfi+...+cf„;

the sum of the second series is the limit, if it exist, of a sequence

(Tj, CTg,..., where hje 61+.. .+6^.

The two sequences may well be quite dissimilar and it is,

on the face of it, as likely as not that their limits will be

different.

There is one important general theorem that deals with

rearrangements of infinite series, namely,

Theorem 2G. If a series is absolutely convergent, then its sum
is unaffected by any change in the order of its terms,

2.3. Proof of Theorem 26 for a series of positive terms.

We first prove the theorem for a series of positive terms. Let

each Un be positive, and let

^l+^2+-+^n+-
be a rearrangement of the series

%+'^2+--*+'^n+*-- •

As yet, we make no assumption that either series is convergent.

Let s^^u^+.,.+u^, (7,, ^ ri+...+iv

For any definite value of n, s^ contains n terms each of which

comes, sooner or later, in the v series, and so we can find a

corresponding m such that contains all the terms of (and
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possibly others not contained in Since each term is positive,

(Tjn ^ Hence

given w, 3 a corresponding m , s^.

Suppose now that the v series is convergent. Then the

sequence (cr„) has a finite upper bound a, say. Since > 5,^,

Hence the upper bound (cf. the definition of Chap. Ill, §1.2)

of the sequence (5,^), say 5, cannot exceed a: hence the u series

is convergent and
a s.

(6 )

But, for any definite value of n, contains n terms each of

wliich comes, sooner or later, in the u series, and so we can find

a correspondingM such that contains all the terms of (and

possibly others not contained in or„). Since each term is positive,

Since s 5^ 5^, it follows that 8 ^ a,,, and so a, the upper bound

of the a^, cannot exceed s: hence

8^ a. (7)

By (6) and (7), 5 = cr,

and the u series has the same sum as the v series.

Suppose now that the v series is divergent. Then increases

indefinitely and, since we can find an to exceed any given

8^ must also increase indefinitely and hence the %i series is

also divergent.

Alternative treatment of divergence. Suppose the v series is

divergent. Then

A > 0; 3 N . a„ > A when n^ N.

But, as we have seen, 3 M . Sj^ ^ and hence

3 M . 8^ > A when m ^ M.

Hence the u series is also divergent.

2.4, Proof of Theorem 26 for absolutely convergent

series. Let ^ absolutely convergent series; let P be

the sum of its positive terms alone, Q the sum of its negative

terms alone. Then (Theorem 23) if 8 is the sum of 2
s = P+Q (Q is, of course, negative).
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Any change in the order of the terms of ^ gives a new
series which, by § 2.3, is such that

its positive terms alone converge to P,

its negative terms alone converge to Q.

Hence (Theorem 23) the new series is absolutely convergent

and its sum is P+Q> series has the same sum
as the old one.

Example. The two series

22^32 42
^***’ ^32 22^52^^72 42^*“

are absolutely convergent and have the same sum. This should

be contrasted with the example given in § 2,5.

2.5. Further results about rearrangements of series.

If we rearrange the order of the terms of a non-absolutely con-

vergent series 2 may or may not change the sum of the

series. Roughly speaking, the sum will be changed if w^e

interfere too much with the balance between positive and

negative terms.

In the follow^ing example the new series gives more weight to

the positive terms than the original series does.

Example. The series

J+ 3
“

1:
+ •••> (^)

(9)

are convergent and their sums are log 2, Slog 2 respectively.

For the purpose of working this example we assume the

result, which will be proved in Chapter XIV, that as ->oo,

where y is a constant (Euler’s constant).

Assuming this result, we see that we may write

i +5+^+-+^ = log«+y«.
2 o n

where y„ y as n 00
. (This procedure reduces the difficulty

of handling limit problems connected with 1+^+ J+ -- •)

The series (8) is an alternating series whose terms tend
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steadily to zero and so (Theorem 18) the series is convergent.

Let denote the algebraic sum of its first n terms; s the sum
of the series. Then

lirn^v. = ^ — 1+ -

)

n—>00 n—>00 n—>c!0\

(i+^+J+-+^)-(i+^+ -+^)

lim
n ~->rT..

“ lim
n~^oo

= lira (log 2n+y
2
„-Iog»-y„)

71->0Q

= lira (l<-)g 2 -fy2„— y„)
71->00

log 2,

since y2„-y„ y-y == 0.

The series (9) is not obviously convergent by any of the

standard tests. We begin by considering the sum of 3n terms

(equivalent to first considering the series where the terms are

bracketed in groups of three). Let cr,, denote the sum of the

first n terms of (9). Then

^3n (l + ^- 1)+ (;
+ 1-

j)
+ - + 3

+ -
2^)

('+‘3+5+- + 4;;-:.i)“i(‘+l+ -+i)

'+i+-+i)
= log 4n+y4„- ^(log 27i+Yi„)-Wog n+y„)

--= f log2+ (l-J-|)Iogn+y4„-iy3„-iy„ -s. |log2.

Further

«^3„42 = ‘^3n+ 4-^pj+|^^P3->|l0g2.
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Hence, not only the bracketed series

but also the series, without brackets,

1+ -

3—|+ 5+ 7”~1+ '"’

is convergent and has the sum | log 2.

3. The multiplication of two infinite series

3.1. Suppose, for a moment, that we disregard all questions

of convergence and see what form of answer we should get if

we were to multiply together

ai+aoX+a^x^+,.,+a^^x^-^+ ...

and b^-\-b2X+b^x^-{-...-\-b,,/x^^-^-\-

.

The form of answer is, clearly,

^1 bi ~\-
{
a^ 61)0:+ ... -j- (a^ 6^^+ ^2 ^h-i+ ' • • + • • • •

We state our theorems about the multiplication of series

in such a form tliat they can be used easily for power series.

Tlie coefficient of x^^-^ in the previous work gives the reason

for our choice of in the subsequent work.

3.2. Thkorem 27. 2 ('O'^iverge absolutely, and

then 2 <^n
absolutely convergent and ^ ™ (2 ^n)-

Let

^'/i.
~

^^l+^2+---+^n> l^ll+

and let ->A, B, A^ -> A\ B^ -> B\
Write down the terras of the product A^^B^^ thus:

«l^l a.yb^ , . a^b,.

a^ ^2 2 ^3 a^

«3 ^»l b^ a3 63 ttg b^ (S)

««*»3 • . a^
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Consider set out in the form

^l+ (^2 ^i)+
+ (^ 3 ^3 ^ 2 ^2 )+ • • •+ (-4 J

1 ,

that is, aj^ 6i+(a2 ^i+« 2 ^2+®i^2 )+ * * terms. ( 1 )

Now remove the brackets from
(
1

)
and consider the infinite

%i^l+ ^2^1~i"®2^2“t~^1^2'^~^3^1“l"^3^2“)“ -- • (^)

First step. The sum of the moduli of any number, say m, of

its terms < some for we can choose n big enough to

ensure that all the m terms are in the square (S) and the sum
of the moduli of all the terms in (S) is A'^B'^.

But -4', is a m.i. sequence and so -.4'^ < A' and, similarly,

Bj^ < B', Hence A'^ B'„ < A'B\ Hence (Theorem 6
)
the series

formed by taking the absolute values of the terms in
(
2

)
is

convergent; that is,
(
2

)
is absolutely convergent.

Second step. The sum of the series
(
2 ), which has no brackets,

is equal to the sum of the series, with brackets,

^ l "i~ (^^2 + ^^2 ^2 “i“ ^^
2 ) “f* • • • "i" ^^

2 "i" • • •+ )
4" • • •

= lim A,, B^,
W->00

as we see by looking at
(
1 ), which is another way of writing

Aj^Bj^. But A^^ A, B,^ -> B. Hence
(
2

)
has the sum AB.

Third step. Since
(
2

)
is absolutely convergent, any series

got from it by rearranging its terms is also absolutely convergent

and has the same sum. Hence

ai 6
|^+^

2 ^1 ~l"% ••• (3)

is absolutely convergent and has the sum AB.
Finally, the series got by putting brackets in (3), namely,

^1^1+ (^2 ^2)+ • • •+ (®/t ^2+ • • )+ • • •
» (^)

i.e.

is absolutely convergent and has the sum AB.

Examples XIV
Questions 1-6 may be made to depend on the fact that

l + 'i+l +••• + “ “logn -> y as n -H»- 00,
z 6 n *

Jl. l+ |
+

-J
+ ...+ ^q:|-^logn->ly+log 2 .
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1+2“3-|-7+k~^ +—+
1

^-1 3n
[logn-^ ^y+log3.

1— i f J — i-f-... is convergent: its sum is log2.

-4. V
Zrf n( 16n2- J)
W 1

=— — 2 3 log 2.

>'5. The series obtained by rearranging the series

so tliat 3 positives alternate with 2 negatives, that is,

1+i -fj“i— J-f 7 “1 •••»

has the sum \ log 6.

6, If, in Example 5, p po.siti\'es alternate with q negatives, the sum
is log2-f-ilog(p/^).

y7. If

A{x) = ao-l-aia;+ a2:r2+ ..., B{x) = boi-b^^x ] ....

each series being absolutely convergent, and if

then A{x)B{x) ~ CQ 4-Cia;+C2 a;
2 -|-...

.

j/ 8. If aQ-\~aiX-\- is absolutely convergent when \x\ < 1,

and if A{x) is its sum, prove that, when |wt’| < 1,

w 0

where == ag fai f a„.

9.

Prove that, if AL ~ and Al -- 1, then
n!r!

2
v= 0

Al^K

v«0
*:(

Hint. One method is to write

n{n~ 1)

n-{-r ' (n+ r)(n^r-^ i)

and to use (cf. Misc. Exx. on Chaps. I-VII) the fact that

^+ ^ 1 .
^ /i 1

n-fr-D
-1 ^n+rl n+r—1’ r-fl r

10.

Prove, by induction (using Example 9), that when la;| < 1

n+r+I ^ j
,

r+l
**

11.

By writing (1—

=

(I—x)”^~^(l— prove that

: I Al,X\
n=0

2
v«0
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12. Prove that the series

l+^+2l + 3!
+ -

is absolutely convergent for all real values of x. If E{x) denotes its

sum, prove that E(x)E(y) — E(x-[-y). (Prove the result by means of

Theorem 27, not by quoting e®.e^ -- e®+^.)

4. Abel’s continuity theoremf

4.1. Before we obtain the next theorem about the multi-

plication of infinite series we establish two preliminary theorems

about power series, a topic we shall not discuss systematically

until later.

Theorem 28. If ^ convergent {not necessarily absolutely

convergent), then is absolutely convergent when |.r| < 1.

Since ^ convergent, a^ 0. Hence

3 N . |a,J < I when 7i ^ N,

When ja:| < 1, 2 1*^1” convergent. By the comparison test,

is therefore convergent when |a:| < 1. Hence (Theorem 13)
00

is absolutely convergent when |;rl < 1.

4.2. In the enunciation of our next theorem we employ the

idea of a function of x tending to a definite limit as x tends to

a definite value. The formal definitions are

Definition. E’orm B. A function f{x) is said to tend to the

limit I as x tends to a certain value a from values less than a if,

having chosen any positive number c whatsoever, tve can then find

an X such that

\f(x)—l\ < € when X < x < a.

We write asx->a—0.

Notice that we are completely uninterested in what the value

of /(a) may be: we want the, behaviour of f{x) for values of x

a little less than a.

t Some readers will prefer to omit all save the result of Theorem 30 on a
first reading.
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Definition. Form C. A function f{x) is said to tend to the

limit I as X tends to a certain value a from, values less than a, if

€ > 0; 3 X . \f(x)—l\ < e when X <C x < a.

We shall use, without the formality of a separate proof,

theorems analogous to those given in Chapter VI, § 1.1.

There is a similar definition dealing with values of x greater

than a.

Definition, f(x) I as x -> a from values greater than a if

£ > 0; 3 X . \f{x)-—l\ < € when X > x > a.

We write f{x)~>l asx~>a+0.

Finally, if f{x) -> I both as x a~0 and as a: -> a+0, then

we say that f{x) -> I as x a.

rf)

Theorem 29.f Jf ^ coiwergent and s is its sum, and if
n — 0

oo

f(x) denotes the sum of ^ a^x^^ ivhen |:r| < 1 (r/. Theorem 28),
n = 0

then f(x) -> s as x I from values less than 1.

Let 5,, Then, since s,^ -> ^9, two facts may
be stated about s^,. First, by Theorem 1,

3 K .
I
< X for all 7i,

so that (Theorem 2) |.9| < K, and

|5— < ki+i < 2X for all n. (1)

Next, on using the device introduced in Chapter VI, §2,

€, k '> 0; 3 X . \s— < ck when n ^ N. (2)

We now consider
l—x

When |a:| < 1, we have

f{x) = a^-\-a^x+a^x-+,.,-]ra,^x^^+..,,

(1— a:)“^ = l+x+ar^-f

the two series being absolutely convergent. Hence, by Theorem

27, we may multiply them, collecting like powers of x, and so

obtain

(l—x)-^f{x) = ao+K+a'i)i»^+K+^i+«2)^^+

t For an alt€>rnativo proof see Examples XVI, 8.
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Hence, when 0 < a; < 1,.

= (So-«)+K—s)a;+...+(s„-«)x»+...,

and so, by (1) and (2), and by the use of Theorem 8,

< 2K(I +X+... 4-a;‘V-i
)+ eA;(a:^+a;^+i+ . .

.

)

1 /ytN /yN

==2K^ ^ +ek~^—.
l-x ^ 1-a:

Accordingly, when 0 < x < 1

,

l/(x)-s| < 2A'(1— .r^’)+ €A-. (4)

But, N being fixed, as also are e and 1%

3 X . 1 —x^' < €^• when X < x < 1

.

In (2) take h ~ 1/(2X+1). We then see tliat

£ > 0; 3 X . \f{x)—s\ < € when X < < 1,

that is, f(x) as X “> 1— 0.

4.3. The reader will see that the proof in 4.2 consists of

writing down (3)—which is simple algebra apart from the use

of Theorem 27—getting an €17(1—^) out of (2) for n ^ N and

getting a multiple of ek for the terms not so dealt with by taking

X sufficiently near to 1.

5. Multiplication of series (continued)

Theorem 30. // is defined as

(

00 \ / 00 \ 00

2 ^
7i)( 2 ~ 2 ^11 all three series are con^

n-l ''71= 1 ' n — 1

vergeni.

Let each of the series convergent; let

their sums be A, C. Then the series

n 1 n *= 1

are absolutely convergent (Theorem 28) when 0 < a; < 1, and

their product (Theorem 27) is then

f c„a:«-i.

n= l
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But, by Theorem 29, A, and
as a;“>l— 0. Hence, by the analogue of

Chapter VI, § 1.1, AB — C.

Examples XV

1.

Prove that

n — 'l

(a) when |3;| < 1, (b) w^hen x -- 1.

[Assume in (6) that ^ ,
(l 4-^4 ••• + —)—> 0.1

2. Assuming the expansion

tan~^c .r~ — ...,

provo that

2<-'>'r+3(‘ l-3 + -+2«‘+l)'
n 1

Provo that tho series are absolutely convergent when |ar| < 1 and are

convergent when a; 1

.

3. By first putting x - —y in Examples XIV, 10, show that

2-^-* - f
n -

' 0

when r is a positive integer,

4. Prove that each of the series

a:- Ja;2-f

a:~ia;3+i:r5— ...

is absolutely convergent when |a:| < 1 and that the functions they

represent tend to the sums of the series

1 —i+J— i-f •••»

I~ J-f 6
— •••

as X tends to 1 from values less than 1.

6. Consider the validity of (2 ®n)(X bn) “ X ^n» where

c„ == a2 6,i_i4-...+ a„6i,
in the three cases

(i) a„ =- 6,^ -- n-2, (ii) a„ =- 6,, == (-1^71-^

(iii) o„ - hn = (-l)«ri-i/2.

4449 M



CHAPTER XI

UNIFORM CONVERGENCE

Fokewobd. TJlis chapter is ratlier long. The reader may find the

following plan useful on a first reading. Master §§ 1 , 2 ; got a first, rough

idea of the theorems in §§ 3, 4, 5 ; see how those theorems apjdy to some
of the examples at the end of the chapter ; make a more careful study

of §§ 3, 4, 5 . Theorems 30, 37 should be omitted on a first reading.

1. Preliminary discussion

We have proved that we can add and subtract (Chap. VI, § 3)

convergent series, and that we can multiply them togetlier when

certain conditions are satisfied (Chap. X). We now start on the

problem ‘When can we integrate and differentiate infinite series?’

Suppose we know that, for each and every x such that

a ^ X ^ bj the sequence

oc„{x) {n 1,2,3,...)

tends to a limit. This limit depends upon x; let it be denoted

by a(a:). Then what we know is this: if we first fix x, then

€ > 0; 3 N . |a(a:)— a:^(a;)| < e when oi ^ N, (1)

If we move to another x and keep the same c, then the state-

|a(a;)-a„(x)l < c when n > N
may cease to be true if w e keep the same N : we may need to

take a larger N for the statement to be true. This possibility

that N will grow bigger and bigger as we move to different x

will lead to difficulty in many problems. So, to cut out all such

difficulty, we consider a different type of convergence, namely,

uniform convergence in an interval (a, 6). We say that olJx)

converges uniformly in the interval (a, h) to the limit (x{x) if

e > 0; 3 N . |a(a:)— a,^(a;)l < e when w > N and a ^x ^b,

(2 )

In (2) there is no question of first fixing a:; we fix the interval

(a,b) and not any special x in it, and then (2) says Tf we put

down any positive number c whatsoever, there is some number

N such that \a(x)---an{x)\ < e when n ^ Ny no matter what

;r of a < a; < 6 we consider’.
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2. Formal definitions

2.1. It will be convenient to make precise the meaning of

‘intervar. Geometrically, an interval on a straight line con-

sists of all points lying between two fixed points, the ends of

the interval: sometimes we want to think of the end-points

as belonging to the interval (a closed interval), sometimes we

want to exclude the end-points from our consideration (an

open interval). Analytically, the definitions are

The closed interval (ayb) consists of all numbers x such that

a ^ X ^ b. The open^; interval )a, b{ consists of all numbers x

such thal a < X < b.

In this book 'intervaV will mean ‘closed intervaV unless the

contrary is stated. The x^irase ‘all x in {a, by will mean ‘all

numbers x such that a x b\

Uniform convergence can be defined with respect to a closed

interval, an open interval, or indeed with respect to any set

of values of the variable x. But we shall, for simplicity, confine

our attention to closed intervals.

Definition of uniform convergence in an interval. The

sequence a^fx) is said to converge uniformly to the limit (x{x) in

the interval (a, b) if

€>0; 3 N . for all X in (a, b), |cx(a:)--a,,(.r)| < e whenn > N,

A less emphatic form of the last line is

e > 0; 3 A" . |a(a:)-— a^(x)| < € when n'^ N and a ^x ^ b.

The reader may use either so long as he holds firmly to the

fact that e having been set down, it is possible to find an N that

governs the whole interval.

The series +
is said to converge uniformly to the sum s(a:) in the interval (a, 6)

if, with sjx) ™ Ui(x)+...+uJx),

€ > 0; 3 A . for all X in (a, b), 5,^(a;)| < e whenn ^ A.

That is, the sequence s^fx) converges uniformly to s{x) in (a, 6).

t The brackets open outwards to denote an open interval.
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2,2. An example. Consider the sequence

(71
= 1

,
2

,
3 ,...)

when 0 < a: < 1. If we fix x, then 0 as 77 oo. If we
fix a definite number S, as near 1 as we please but less than it,

8” when 0 ^ x 8.

Since 8” -> 0 as ti -> oo,

£ > 0; 3 . 8^^ < € when n ^ N,

and so 3 N . for all x in (0, 8), 1
< e when n ^ N, That

is to say, the sequence (x^) converges uniformly in (0, 8) to the

limit zero.

The reader will see for himself that the argument breaks

down completely if 8 = 1 : there is not uniform convergence in

(0, 1), though there is in any (0,8) where 0 < 8 < 1.

3. Properties of uniformly convergent series

3.1. Integration. Theorem 31. If the series

'Ui(x)+ 'U2(^)+ .‘.+'W„(‘0+ ---

converges uniformly to the sum ^(x) in the interval (a, 6), then

h ^ b

I

t9(x) dx == ]£ j
Ujfx) dx

J w — 1 •'

(
1
)

(
2

)

provided 8{x) and each u^fx) can be integrated over (a, 6).

The process of forming the R.H.S. of (2) is usually called

integrating the series (1) term by term; the theorem itself may
be expressed in the form 'A uniformly convergent series may be

integrated term by term, over a finite range!

Consider the graphs

0 a 6 X
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wherein the curves y = 8(x), y = 8.^{x) are shown in typical

relative positions;

Since the series converges uniformly to the sum A*(a:) in (a, 6),

€ > 0; 3 Y . for all x in {a, b).

^
^
^

when n > N.

That is, the vertical distance between the two graphs is less

that ejib—a) at every point, and so the area between the two

graphs is less than e. Hence, ii n N, then
b b

J
s{x) dx — J

s^{x)dx\,

a (I

which is less than (Fig. 1) or equal to (Fig. 2) the area between

the graphs oi y ~ 5
(0-) and y — s^^(x), is less than 6. Hence

b . b

€ > 0; 3 N
J

5
(
0;) dx — ^ ^

Uj.{x) dx < € when 71 ^ N,

that is, the series of integrals converges to the integral of s(x).

For readers whose knowledge of integral calculus is sufficiently

advanced the following proof is given.

By hypothesis,

e, yfc > 0; 3 N , ls(iP)~«n(^)| < when n > N and a < a: < 6.

When n ^ N
.h b

I

' ^
!

J
8{x) dx — j

8„(x) dx\ — J
— dx\

a a ' * o

b

< J
\s{x)—Sn(x)\dx < (6— a)A;e.

a

(The modulus of the integral ofJ{x) < the integral of |/(a?)|.)
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Take k --- 1/(6 — a), and we have

b b

€ > 0; 3 N”
. J

8(x) dx —
^ ^n(^) dx < e when ?i N,

'a a

and so the series of integrals converges to the integral of s{x).

3.2. Continuity. A function f(x) is said to be continuous

at X ™ Xq if

c > 0; 3 S . \f{x)—f(xQ)\ < € when \x~-Xq\ < 8.

That is to say, given €, there is a S such that f(x) is within

e of f{xf) whenever x is within 8 of or, again, on using the

notation of Chapter X, §4.2, f(x) ~>f(xQ) as x Xq.

We shall make only occasional use of continuity, but it is

impossible to give clear enunciations and proofs of some

theorems without using it. We shall assume, without proof,

that if f(x) is continuous at every Xq in (a,b), then f(x) can be

integrated over the whole or any part of (a, 6), and, if

X

F(x) = J
f{t) dt (a < X < b),

a

then F'(x) =f(x). We assume also (wdiat can be proved as an

exercise) that the sum of a finite number of continuous functions

is itself a continuous function.

Theorem 32. If each u^(x) is continuous in {a,b) [that is,

continuous at each Xq in (a,b)] and ^Uffx) converges uniformly

to a sum s{x) in (a, 6), the7i s{x) is continuous in )a, b
{ ;

also

s{x) “> 5(a) as X a+0, and s{x) s{b) as x~> 6—0.

Let Xq be any given x in (a, 6). By hypothesis,

€, k > 0; 3 iV . l5(^)~%(^)| < ck when a ^ a; < 6.

Hence, for any x in (a, 6) other than Xq,

l«(x)-s{a;o)| < |s(x)-«jv(a:)l+l%(a;)— SA-(a;o)l+ i«jv(a;o)-«K)l

But iV' is a definite, finite number and so, by hypothesis, Sj^{x)

is continuous in (a, 6). Hence

3 8 . l%(ir)— 5;^r(aro)| < ek when \x--Xq\ < 8.

Hence, on taking k =
€ > 0; 3 8. l5(a;)— 5(X(,)1 < c when ia:— < 8.
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3 .21 . Problem, In the proof of Theorem 32 wo have used nearly

the full force, but not quite the full force, of our hypothesis

that 2 converges imiformly to the sum s{x). What have
we found it umiecessary to use?

3.3. Differentiation. Theorem 33. If^u^ (x) converges for

all X in {a,b), and if each Uf^{x) has a continuous differential

coefficient in (a,b), then

^S = 1 <(^) {a < h),

provided the series of differential coefficients is uni-

formly convergent.

Let 2 ~ ” F{x). By Theorem 32,

G{x) is continuous and so, if a < x < 6,

X

A
J

Oil) dt = Q{x). (1)

a

By Theorem 31, since 2 '^^(0 converges uniformly in (a, x),

X X

I'

a{t) 2 J <(0
dt

a a

= 2 K(^)—««(«)}

= F(x)-F(a)

(by the subtraction of two convergent series)

.

By(l), fjF{x)) ^ G(x).

3.4. General Note on Theorems 31, 33. The conditions

we have given are sufficient to prove the theorems. It is not

necessary that a series should be uniformly convergent for

term-by-term integration to be valid: nor is a continuous

differential coefficient necessary to the truth of Theorem 33.

We have confined ourselves to the simplest and most common
circumstances.

The following examples, taken from Bromwich, Theory of

Infinite Series^ illustrate the fact that not all series can be

integrated or differentiated term by term.
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Example 1. For the sequence

Sn{x) = {n 1,2,

s(x) limit of when n—> oo, x being fixed, ~ 0. The graphs of

y — have the general form shown:

the larger n is, the steeper and the closer to the y-axis is the ascent.

The top of the peak is at a height ^JUner^) and its abscissa is

For each fixed positive x the sequence tends to zero

as n tends to infinity. But the nearer x is to zero, the larger must we take

N if, for n :> all s^ix) are to be small. [5„(a:) only settles down to being

small after it has passed its peak and it will be no good considering any
N which does not make V( Hence there is not uniform con-

vergence of 8n(x) to its limit zero in (0, 1).

]

j
s(x) dx ~ 0, since s{x) is itself zero.

6

1

But ^Sn{x)dx =
6

and this —> ^ as n —> oo.

Example 2. For the sequence

s{x) ~ 0 and so 8'{x) ~ 0. Also

'”'1
(l+ nV)'.“'

When X ~f~ 0, 8'^{x) —> 0 as n -> oo and the formula

8\x) ~ lim 8'^{x)

n~^<X)

is true. But, when a: = 0, — n and -> oo as n -> oo.

Here it is that does not converge uniformly in an interval that

contains sc == 0.
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4. The general convergence principle

We now state the condition for uniform convergence in a

form that does not presuppose a knowledge of what 5 (0:) is.

The theorem that follows is an extension of Theorem 1 9.

Theoeem 34. The necessary and sufficient condition that the

sequence should converge uniformly to a limit in the interval

(a, b) is that 0 0; 3 N . for all X in (a,b)

^ positive integers p.

To prove that the condition is necessary: In Chapter VIII,

§ 1.2 replace ‘3 iV’ by ‘3 N for all x in {a,by
;
the remaining

details are unaltered.

To prove that the condition is sufficient: If the condition is

satisfied, then, for each fixed x in (u, 6), the sequence must

converge to some limit (Theorem 19). Let this limit be denoted

by 5
(
0;). By hypothesis,

€ > 0; 3 . for all x in (a,b) < h' (^)

That is,

and so 2 ^ ^ < 5Y(:r)+i£ (Theorem 2). (2)

By (1) and (2), |5(2:)— 5,Y4.p(a:)| < e when is a positive integer.

Hence the condition is sufficient to ensure the uniform con-

vergence of s^{x) to some limit s{x) in (a, b).

Corollary 1. If s^(x) is the sum of the first n terms of an

infinite series 2 then

= Kv4l(a;)+ "-+WA+j>(*)I-

Hence the necessary and sufficient condition for the uniform con-

vergence in (a, b) of the series

+ • • •+^ + . . •

is that € > 0; 3 N . for all x in (a,b)

^ for all positive integers p.

Corollary 2. If the series of absolute values ^ con-

verges uniformly in (a, 6), then so does the series 2 ^n(^)*
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5. Tests for uniform convergence

5.1. The if test of Weierstrass. Theorem 35. The series

2 is uniformly convergent in (a, h) if we can find a con-

vergent series of positive constants ^ that

\u^Xoc)\ ^ when a ^ x ^ b. (1)

Since ^ convergent, we know' tliat

€ > 0; 3 N ,
I
^ ^

for every positive integer p (Theorem 21). But

+ +

< -34^1+ •..+34-4^ when a < x < b,

by hypothesis. Hence

€ > 0; 3 . for all x in («, 6),

+ ^ every positive integer p,

and so ^ is uniformly convergent in (a, 5).

5.2. Notice that, by using (1), the onus of finding an N has

been removed from 2 altogether; the onus of finding N is

placed on 2 ^ny ^ series of constants.

5.3. Dirichlet’s test. Theorem 36. Let

s,fx) - ai(:r)+a2(^)+ ...+orn(^r);

let v^^fx) be monotonic decreasing in n for each fixed x in an interval

{a,b). Then ^an{x)v^{x) is uniformly convergent in (a, 6) pro-

vided that

(i) 3 iv . ^ K for all n when a ^ x ^ b,

(ii) Vn(x) -> 0 uniformly in (a, 6).

By hypothesis (ii),

€, i; > 0; 3 N . for all x in (a, 6), i?^,j.(a:)| < ek when n N.

Also, by Abel’s lemma (cf. the proof of Theorem 24),

l«.VM(^)%-fi(^)+-+aiv+j,(3:)%+p(a:)l < 2fi’i%+i(x)| < 2Kk€.

The uniform convergence of 2 follows from

Theorem 34 if we take k = IjiK.

CoBOLLABY. The theorem is also true when v„{x) is monotonic

increasing in n for each fixed x and tends uniformly to zero

{through negative values) in {a, b).
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5.4. Abel’s test. Theorem 37. Let vj^x) be either monotonic

decreasing in n for each fixed x in (a, 6) or monotonic increasing

in n for each fixed x in (a, 6). Then 2 uniformly

convergent in (a,b) provided that

(i) ^a^{x) is uniformly convergent in (a, 6),

(ii) 3 K . |^v(^)l < for all n when a ^ x ^ b.

Since v^{x) is bounded and monotonic in 7i for each fixed

X in (a, b), it must converge to a limit, v(.x) say. Write

M„(x) == v{x)-vjx) or v,Xx)~v{x)

according as v^fx) is m.i. or m.d. Then ufix) is positive (or

zero) and is m.d. Also, by hypothesis (ii),

|i’(a:)| ^ K when a x < b.

Hence l^n(^)l < ^ when a < x < 6.

By hypothesis (i),

e,h>0; a iV . Ky+i(^)+-+ «V+j>W1 < «/-

wlienever p is a positive integer and a :r < 6.

Hence, by Abel’s lemma,

l«iv+i(^K'+i(^)+-..+aA'+,,(^Kv+;.(a:)l < ni^) <

On taking k = Ij'lK we see that (Tlieorem 34) ^ ®n(^')Wn(^)

uniformly convergent in (a, 6).

Also, since |^;(a:)| < K, it is easily shown (by Theorem 34)

that 2 uniformly convergent. The uniform con-

vergence of 2 o,.h{x)v^{x) follows by the analogue for uniform

convergence of Chapter VI, § 3.

5.5. In many applications of these theorems either a^^ or

v^^ does not vary with x. Suppose 2 ^ convergent series

of constants; then, for the purposes of Theorem 37, it is to

be thought of as a series that is uniformly convergent in any

interval whatsoever.

5.6. We shall state the analogues of Theorems 24 a and 25 a,

and leave to the reader the task of amending the proofs so as

to cover uniform convergence.
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Theorem 36a. Let 8^{x) ^ Then

is miiformly convergent in an interval (a, b) if

(i) 3 K . |5,,(a;)| < K for all n when a ^ x ^ b,

(ii) 2 is uniformly convergent in {a,b),

(iii) Vn{x) 0 uniformly in {a,b).

Theorem 37 a. 2 uniformly converge7it in an

interval {a,b) if

(i) uniformly co7ivergent in {a,b),

(ii) 2 a(^')l is convergent and its sum is bounded in

{a,b),

(iii) 3 K . |i\,(xO| < K for all n when a x ^ 6.

Examples XVJ

1. On Theorem 35. (i) Prove that

2
xn ^ iprt ^

are uniformly convergent in
(
— 1,1).

(ii) Prove that, if 8 is any fixed number gi*eator than unity,

a’*"

2r^~2

VI V-L- V ^

^x’‘' Zwl-ha:”’ jL,x"(\+x”)

converge uniformly with regard to all x 8, i.e. prove that

c > 0; 3 V . |«s(«?:‘)“-5n(a;)j < e when 7i N and x ^
(iii) Provo that, if 8 is any fixed positive number less than unity,

X 2 + 1 )~^x”, X 1 2
converge uniformly with regard to x in

(
— 8,8).

(iv) Prove that

2
1

n^-i-n^x^* 2
1

n^~l-n*x*

converge uniformly in (—A, A) whatever real value A has.

Hints, (i) > n^, when |x| < 1.

(ii) < 8~" and 2 is convergent.

(iv) n^-j-nV > 11^,

2. On Theorem 36. If (v^) is a monotonic sequence of positive con-

stants that converges to zero, then each of the series 2 si^

2v„cosn^ is uniformly convergent with regard to ^ in the interval

(8, 27r— 8), where 8 is any fixed positive number less than 2Tr.
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Prove that each of the series

^ sin nQ

2
sin ny

n ’ 2^
cos nQ

n n

is uniformly convergent with regard to 6 in (S, 27r~8), where 8 is any
fixed positive number less than 27t, and that each of the series

NT sinnff \^cosn0

z- 2
cosr

is uniformly convergent with regard to d in (0, 27r).

4.

On Theorem 35. Prove that the series

1 + 2,-i

C“
42:

1 02-

1

is uniformly convergent with regard to x in x > 0.

5.

On Theorem 33. If the sum of the scries in Example 4 is j{x)^

prove that f\x) is given correctly by differentiating the series twice

term by term when x > 8 > 0.

C. On Theorem 31. Prove that

1

^n2(n+l)’

7. On Theorem 37. By considering v^(x) = x”, prove that 2 is

uniformly convergent in (0, 1) provided that 2 is convergent.

8. On Theorem 32. Prove Theorem 29 by using the result of

Example 7.

9. O71 Theorem 35. Prove that the series

1

a

2a 2a
cos X+ —— cos 2;r- . .

.

a-— P — 2*

is uniformly convergent in any finito interval of values of x. (Hint.

n^l = \n^~a^\ > when n exceeds a certain N.)

10.

Discuss the uniform convergence of

Z {—x)'^ln(l-\-x'^)

for real values of x.

11.

Extension of Theorem 31. If the conditions of Theorem 31 are

satisfied and |F(x)| < 1 for all a; in (a, 5), then

r ^ r

j

8(x)F(x) dx ~ ^
J
Un(x)F(x) dx

provided 8(x)F{x) and u^(x)F(x) are integrable over (a, 6).



CHAPTER XII

BINOMIAL, LOGARITHMIC, EXPONENTIAL
EXPANSIONS

1 . The binomial theorem

1 . 1 . We assume the elementary theorem that

^1 ^ f

a:^’+...+.r^ (1)

when n is a positive integer. It can be proved by induction.

We use the notation

to denote )

when r is a positive integer, whether n is an integer or not.

Sometimes, for convenience, we use

to denote 1.

Notice that, if n is a positive integer less than r, then

is zero.

1 .2 . As a preliminary to our first proof of the binomial

theorem when the index is not a positive integer, we now prove

an identity usually known as Vandermonde’s theorem.

Theorem 38 . If r is a 2>ositive integer, then, for all values of

m and n,

('“r)-(:)+(z.)(”)+-+(T)(,!.)+(:)-

When m and n are both positive integers, (2) follows by

assuming (1) and equating coefficients of in the identity

m-hn , . ^

2 = (l+a:)»«+» = (l+x)’",(l+a:)™
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Now consider r to be fixed positive integers. Then

(:)+(,”i)(:)+-+(T)C!,)+(:)-(”r)

is, as we see by writing out the terms in full, a polynomial of

degree r in m. But, by (3), wherein m and n are any positive

integers, it vanishes when m = 1,2, 3,...,r+l. That is, the

polynomial (4), of degree r in m, vanishes for r-f I values of m.

Hence (4) is identically zero when n, r are fixed positive integers.

Now let r be a fixed positive integer and let m be fixed

(integer or not). Then (4) is a polynomial, of degree r in n, that

vanishes when n ™ l,2,...,r+l, that is, for r-j-1 values of n.

Hence (4) is identically zero when m is fixed and r is a fixed

positive integer.

Hence, when r is a fixed positive integer, (4) is zero for all

values of m and n.

1.3. Theorem 39. // — 1 < a; < 1. the series

fix, n)
.

, ,

n{n—l)
...+

converges for all real values of n {it stops at the {n-i-l)th term if

n is a positive integer) and its sum is the reM p)ositive value of

{l+x}”:

e.g. when n — \ the sum. of the series is the posithe fourth root

of 1+x.

By d’Alembert’s ratio test, the series

on

2
r= 0

is convergent for all real n when |a:| < 1 . By the multiplication

of absolutely convergent series (Theorem 27),

00

f{x,n).f{x,m)= X
r= 0

whenever m, n are real and |ct;| < 1.
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But, by Vandermonde’s theorem, Cy =

f{x,n).f{x,m) --

By induction

Hence, when

^f(x,m+n). (5)

f{x, n) . f{x, m.)...f{x. A) = f{x, m+«+ ...+A),

{f{x,n)}'‘ — f{x,nk) (^' a positive integer). (0)

Further, f{x,n)
.
f(x,--n) ^ f{x,0) = 1, (7)

since the series for f{x, n) reduces to 1 when n =- 0.

If n is a positive fraction j)lq, then (6) gives

= (1-f a;)"

since p is a positive integer. Hence, when kl < 1 [(5), (6), (7)

have been proved only when this condition is satisfied],

f{x,plq) is a value of

Moreover, if 0 < 8 < 1, the series for f{x,n) is (by the 31 test)

uniformly convergent in 0 < |a:| < 8: each term is continuous

in X, and so, by theorem 32, }{x,n) is continuous in (—8,8).

But/(0, w) = 1, and sof(x,plq) is that value of {l+xy^!^ which

tends to 1 as a: tends to zero; and this value is the positive gth

root of (1 +.t)^^

In virtue of (7) the same result holds whenp is replaced by

~p. Hence, if is a positive or negative rational number,

and — 1 < a; < 1, then

+ + - (l+x)» (|x| < 1),

the positive root being taken.

The proof of the theorem for n not rational, by means of a

limiting process, is not an easy proof. A proof by a dififerent

method will be given after we have dealt with the exponential

function.

2. The exponential function

2.1. We define e to be the sum of the series

l+l+|+ |j
+ -+^!+ .... (

8
)
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and consider tlie series
/j«3 /v3 /yti

+ + + + (9)

The series (9) is

(i) absolutely convergent for all values of x,

(ii) uniformly convergent in any finite interval {—A, A).

(The series ^A'^^/nl converges, by Theorem 10, and (ii) follows

by the M test (Theorem 35).)

Let E(x) denote the sum of the series (9), so that £'(1) = e,

E{0) - 1.

2.2. The relation between E{x) and Rational

numbers. By Ihe multiplication of absolute^ convergent

series (Theorem 27),

E{x).E{y)
x^hj

(r-1)! 1!
+

Qrr-2y2

+ ...+
If]

2L r\
r -0

for all real \’alues of x and y.

exi)ansion, this gives

- E{x+y),

As in tlie ])roof of the binomial

E{n) e”, (10 a)

j

a value of ^(c^^) i.e. of (10b)

. 7
<j|

_
L'J

.-n EiO) = 1
.

(10 c)

That is to say, when a; is a rational number, E{x) is a value of

and, by continuity, it is that value of v Inch -> 1 as x 0.

Irrational numbers. Since the series (9) is unaltered when

it is differentiated with regard to x, the differentiated series

converges uniformly in any finite interval (~A,A). Hence, by

Theorem 33, t

^E{x) ^ E(x);

also, for any given x, E{x) is a finite number. That is to say,

a finite limit as h -> 0.
h

Accordingly, E{x~[-^ must tend to E{x) as h 0; for if it did
4449 n
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not, tlien [Ei^x-{-h)— E{x)}lh could not tend to a finite limit.

(Ill words, a function wdtli a finite differential coefficient must

be continuous.)

If X is irra tional and is a m.i. sequence of rational numbers

that tends to x, then, by what we have proved,

E(;x) — limj&((\:,,) ~ lim e^”. (II)
OLn-^X Oin-yx

It is now a matter of indifference wlicther

(i) we define r/ as E{x) and deduce - lim
Oin >r.

or (ii) we define as lim cA" and dediK^e E{x).
OL,t yx

With eitlier definition we have x cA > when

X > ?/,
---> e/' wlien x,^ x, and so on.

3. Logarithms

It foliow\s from (10) and (11) of §2 that

is positiv^e if ?/ is real. (12)

If e?/ -- X, we write ?/
— logu*, thus defining the logarithm of

any positive number. By the differential calculus

Also, log 1

1
dy

or
dx'

0 since E{{)) ™

1

x'

1, so that, when x > 0,

an equation which is frequently taken as the definition of a

logarithm.

From § 2 it follows that, when x^ are positive,

log 0^

1
+ log a:2 ,

and so on. There is one detail wdiich should be noted particu-

larly, and that is

‘if logx^^ -> y, then x„

To see the truth of this statement, let log x^^ “
,
so that y^ y

and x^, But, as we saw in § 2.2, E{y-^-}i) E(y) as h 0,

and so E{y^^) -> E(y) as y^^ -> y\ that is, ->
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4. The function when a is positive

Rational index. If x is a rational number, pjq say, then

— (^e^oga'^piQ definition of logaritlim)

-- {E{loga)y^k

E{(plq)\oga} “
by the results established in §2.

Irrational index. If x is an irrational number we take
^xioga definition of a’^. Thus, whether x is rational or

irrational, ^x\oga
(13)

If X is an irrational number and (a,,) is a m.i. sequence of

rational numbers that tends to x, then, by (11),

lim (a^) -- lim
<X,^->X <Xn- >-x

We also have X -- cC’ ' and so on, whetlier x, y are rational

or irrational.

A point in the differential calculus. When x is positive

and 71 is any real constant we have, using the equation (13),

dx dx

™ ,n^{\ogx)
dx

n ,
rrt:

.
— ~ .

X

Thus if 2 > 1 ,
and if fx is any real constant, then

= f,(]+zy-\ (14)

a result of fundamental importance to the work that follows.

5. The binomial theorem for any real index ^

The proof we are about to give is one that depends, essen-

tially, on a prior establishment of (14). The point is of some

logical interest: we can, if we so wdsh, find a proof of the

binomial theorem for any index and then use the binomial

theorem in proving (14) for any index; alternatively, we can
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make our proof of (14) independent of the binomial theorem and

then use (14) to prove the binomial theorem. Some care is

necessary to ensure that we do not use each to prove the other.

Consider the scries

l-f/x:r+ ^^+-+ ;k+->

where /x is any fixed real number.

If h is any fixed positive number less than unity, and if

— /j X k\ then
I / X i

i / \ i

r4-lll 1
--- - as r GO.

f.i—r\h h

Hence, by Theorem 10 and the M test, tlie series (15) converges

uniformly in {—k, k) for any fixed

The series obtained by differentiating (15) term by term is

fx l + (^— l)x+...-|-

and so converges uniform]}" in (~k, k). Hence, by Theorem 33,

if f(x) denotes the sum of (15), and if —k < x < k, then

But, if r ^ 1 ,
then

GVt-l
Hence ^ »

that is, {l~{~x)f{x)-~fjif{x) = 0.

Hence, assuming that (14) is true (as we have proved it is),

±LMA „ 0 .

dx\(l-\-xy)

Hence f(x) — A{l-\-xy,
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where A is a constant, independent of x\ But /(O) 1. Hence,

if by (1+x)^ we mean the real positive value of (1+*^)^, which

reduces to 1 when x 0, then A 1; and so

(l+a;)^= + + (16)

for all real values of /x.

Finally, (10) has been proved when —k < x <. h and k is

any fixed number less than unity. Hence (10) is true for every

X such that —1 < .r < 1. For, if we take any definite x in

)— 1, 1(, we can choose a k less than unity so that this x lies

in )—k,k{> (The statement becomes obvious on drawing a line

and marking the points — 1, x, 1 on it.)

6. General remarks on §§1-5

We have tried to give a logical framework for the develo])-

ment and interdependence of the binomial, exponential, and

logarithmic functions. We have made no attempt to develop

all the properties of exponential and log«arithmic functions from

the definitions. The reader will ])ro1)ably be familiar with these

])roperties. He can, if he so wishes, develo]) them, and that

without any serious difficulty, from the definitions here adopted.

7. The binomial series when x I and when x - —1

We have seen that, when -~1 < a: < 1 and /x is real,

+ + (
1

)

is (absolutely) convergent and that its sum is the positive value

of (l+x)/^. When x I, the series becomes

+••• +
nl

^ + •• (2 )

When n exceeds /x+1, the factors /x— ^—71+2,... are all

negative, so that the terms of (2) are ultimately of alternate

signs. Write

nl

Then wfe have

(- 1 )-

n+

1

n+l /x-f-

1

^n+l ~n n-
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Hence, if /u-j-l > 0, the sequence (v^,) is m.d. when n > fi.

Also, when n > > —I,

71—11 < n+l and —-— > —
n—jx n-^l

so that >
' n -hp n+

> l + (/i+ ])

M+l \

n+p)

1
J +...+^

71+ 2
^ ^ ‘-V (3)

Now let p CO, keeping n fixed. Since ^ (^/n) is divergent, tlie

expression (3) -> oo as ^ oc-^ and so 0 as p -> oo.

Hence the sequence is ultimately m.d. and 7;^ 0 as

n->co. Hence, by Theorem 18, ^ convergent; that

is, the series (2) is convergent if ^i-fl > 0. Further, when
0 < X < 1, the sum of the series (1) is (1+^)^ and -> 2^ as

X -> 1 from values less tlian 1. Hence, by Theorem 29, the sum
of the series (2) is 2^ wlien p.+ l > 0.

We have thus proved that, when fx > —I,

- 2^ (
4 )

When X ~ —I the series (1) becomes

1 — /x-f-
1)

2!
(5)

This series we have considered in Examples VII, 1. It is con-

vergent when fx > 0. By Theorem 29, its sum is given by

lim (1— i.e. 0.

Hence, when jx > 0,

8. The logarithmic expansion

As we have seen in § 3,

/ e
= logo: (x > 0).
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Put X = 1+^, 9 1+ ^, ^5ind we get

?/

J 1^^
= log(l4-2/)

0

By elementary algebra.

or

On writing —i, this becomes

I

1+^
^ . V y 1 V y

Hence

log(l+2/) - + +-+ +
0

But, when y > 0, so that 1+ ^ > 1 throughout the range of

integration,
1/ y

</' dt -
yV i 1

and this —> 0 as -> co if 0 < y 1

.

Also, if 0 > y > —1, so that

1+ / > 1+y > 0

throughout the range of integration, we have

I

r (-V'F rfij 1

lJ !+<
j

i+yj (w+ i)(i-f-«/)’
0 ' 0

which 0 as 72 -> 00
.
(Notice that the argument breaks down if

y- -1.)

Hence, if —1 <. y ^ 1, the series

y~-ly^+iy^—h/+--

converges to log(l -j-y)-
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9. Some useful inequalities

Consider the graph y = P the point (1,1) on it, and Q

the point on it, where x > 1. Since becomes steadily

less as t increases, it is clear that

rect. NQ < area PNRQ < rec t. NT.

That is, when x > 1

,

i.e.

a; J t

1

^
^ < log a; < X— 1

•-1,

(:r> ]), (1)

or
! ,
< log(l+a^) < a ^ (a:;>0). (2)

In (1) put X (1 where 0 < ^ < 1; we get

(0<^<1). (3)

The inequalities (2) and (3) enable us to show that

lim(l+ -V‘ = e* (4)
n-^oo\ 71.

1

for all real values of x. For, if a; > 0, then (2) gives

x+n m) n’

^ <nlog(l+-)<x.
n-{-x \ 7i]

i.e. (5)
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Since —^

—

> x mn->oo,
n-^x

it follows that n\og{l-\-xjn) -> a: as and so, by § 3, (4)

follows when x > 0.

When x is negative, equal to — f say, and we take n large

enough to make {tin) < 1, (3) gives

i.e. on multiplying throughout by —n,

x>/ilog(l+ -] > , (6)

\ n) n-^-x

which is (5) with the inequality signs reversed.

We conclude with an ‘inequality theorem’ that has frequent

and diverse aj)plications.

Theokem 40. If k is any fixed positive 7iwnber^ tlmi

--->00 »6
* X ~> 00

,

as X X'.

In the first j)lace, if x is ])ositive and M is an integer that

exceeds 1% say M—k = ql '> 0,

ex>l+.+^+ ...+_.

Hence
* ^ Ml m {(X 0> 0).

As X increases indefinitely, so does and, M being fixed, the

first part of the theorem follows.

Next, if X > 1, then (1) gives

0 < logx < X— 1 < X,

so that, if n is positive, and x > 1,

71 logx ™ logx" < x".

Hence
logx ^ x’*^

x^ nx^ ’

4449
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or, on taking n - - \lc,

log a* ^ 2

But, k being fixed and positive, the last expression tends to zero

as X tends to infinity, and the second part of the theorem follows.

Notice that logo: -> oo as a* -> oo; for if .r > e^,

logo: > logc’^ “ n.

Theorem 40 is often useful in the forms

(i) tends to infinity faster than any power of x,

(ii) \ogx tends to infinity more slowly than any power of x.

Note. The formal definitions for convergence, divergence when
X >“> 00 through values which are not necessarily the integers

1, 2, 3,..., are, in the notation introduced in Chapter II,

(i) f{x) —> I as a; —> 00 if

€ > 0; 3 X . \f{x)— l\ < € when x > X,

(ii) f{x) —> 00 as a; 00 if

A > 0; 3 X . f{x) > A when x > X,

Examples XVII

1. Expand (2 as a power series in x.

The binomial theorem when the index is not a positive integer refers

only to the exj)ansion of (1 \-x)^. To expand (2-fa;)~^ we proceed as

follows:
(2i:r)-*=2->(l + Jx)-i

when < 1, that is, when |a:| < 2.

2. Prove that, when
|.^•l

< 1.

1 I ]L3^..(2n-3)

2.4...2n

Note. It is worth while to be able to recognize the R.H.S. as the

series which represents the L.H.S.

3.

Provo that, when |a:| < 1,

(!_;,)-« = 1+ y n\
n = l
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4. Provo that, when |u:| < 1,

5. Prove that, when |ar| < 1,

= 1-f + ,

(l~a;)“3 == l + 3a;+ 6.rH...+ i(n+l)(n+ 2)x»^+....

6. Various identities can be obtained in a manner similar to the

following:
(1-x)”

Hence

=‘-rr>+rr>-'+'-)-(”:>+-
when |a:| < 1. Multiply the first two series: Theorem 27 gives, on
equating coefficients,

1

Note. See Theorem 47, which justifies the stop of equating coefficients

in two power series.

7.

Establish identities by considering

(l-a:)'

(l~x)

8.

When n is a positive integer, prove that

and prove also that

2 0 when m = 1, 2,..., n~ 1.

9.

If f{x) = fj {x—Gf), a product of n different factors, and is of

degree less than n, prove that

= V 1

/(x) 2-,f'{ar) x—a/

and hence show that when \z\ is sufficiently small
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and that wlicn |a’| ia sufficiontly largo

00

“ 2 "

V-- X

10. Show, by using partial fractions, that

5:r2~16x+13

(x- l)(x-2Y3:i““5)

can bo expanded in a series of ascending powers of x when |a’| < 1, and

find the coefficient of in this exptmsion.

n. Prove (i) that the series whos(^ nth tc'nn is

1 1 1_
71 271 1- i 2//-}-

2

is convergent, (ii) that its sum is f— log 2.

12. Expand log(l -f;r'*) and log(l— .r+A'^) ixi powers of ;r.

13. If n is a positive integer, expand iog(l as a power series in

{l/(2n+l)}.

14. Show that, if powers of x above the sixth can be neglected,

(120+ 60r J 2r2

+

x^)+ (120- 60.r+ 1 2.^2- x^)

is equal to e^.

15. Multiply the expansions of (1 — and log(l— .r), and deduce by

integration that

Klog(l-.T)P = +
16. Determine the expansion of log(l ~f ^*)-log(l — ;r) either by direct

multiplication, or by expanding the differential coefficient.

17. Prove that, when x > 1,

1 1.3



CHAPTER XIII

POWER SERIES

1. Series of complex terms

1.1. We assume that the reader is familiar with the complex

number z — x-{-iy, or, on writing x rcos0 and y — rsind,

z r(cos «ii^ ^); ^t^d that he is familiar with the representa-

tion of complex numbers in an Argand diagram.

Definition. A sequence of complex ^mrnbers

(w = 1,2,...),

is said to converge to z x-i- iy^ 'if x,^ -> x and y^^ -> y.

Definition. A series of complex numbers

2 M„, where u„ ^ v„+iw„,

is said to converge if the sequence (s,^) converges^ ichere

’V + +
Thus a necessary and sufficient condition for the convergence

of2 '^n fh® convergence of each of the series ^
Definition. If z x-\-iy r(coB6-\-isin6), then

\z\ r called the modulus of z,

and arg z ^ 6 is called the akgument of z.

1.2. We shall not go very fully into the theory of series of

complex terms,! t)ut we develop certain results which are

necessary in the theory of power series.

Theorem 41. If u^^ ~ that

|wj == V(»'n+M'«),

and if ^ W,i\ convergent, then ^ convergent. ifl |w,J is

convergent, then ^ «» is said to be absolutely convergent.

For jvj = +VK) < and so, by Theorem 8 (the com-

parison test), 2 converges when 2 l^nl converges. Similarly,

2 l^nl converges when^ l^nl converges.

Hence, when ^ |

is convergent, both ^ ^
convergent.

t The topic is more fully treated in E. T. Copson’s book on Functions of a
Complex Variable (Oxford University Press, 1935).
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Theorem 42. If ^ is convergent, then as n-->co.

Because \Uj^
\

0 it does i:^ot follow that 2 convergent.

If if 2 '^n is convergent, then both ^
and 2 '^'ti

convergent. By Theorem 14, -> 0 and 0,

so that \u^^
\

-> 0.

The series 2 (;+ j^)

is not convergent; its 7^th term 0 as -> oo.

2. Power series

2.1. We shall use a^^ to denote a number that depends on

n but not on and the power series we shaD consider is

f = ao+«i2+-+“».2’'+ -- (1)
n -- 0

This series we shall usually denote by ^
The most important fact about such a series is that cither

(i) it converges for no value of other than z " 0,

or (ii) it converges for all values of z,

or (iii) there is a finite number R, dependent on the coefficients

such that

2 l«n and so, also, 2
is convergent when [^l < J?, and

2 is divergent when > i?.

We first establish the theorem on which this fact depends.

Theorem 43. If, for a given Zq, is convergent, then

^ay^z^ is absolutely convergent when \z\ < I^q],

Since ^ i® convergent, we have (by Theorem 42)

ctsn->co.

Hence 3 N . \a^zTS;\ < \ when n ^ N,

and when n^ N.

But2 is convergent when l^/^o I
< 1, and so (by Theorems

8 and 13) ^ i® convergent when < [

2Jo|.
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2 .2 . Now suppose converges for at least one value

of z other than — 0, so that the alternative (i) of § 2.1 is ruled

out. Let the series converge when z = Zq, and let \zq\ ~ Tq.

Then, by Theorem 43
,
it converges when \z\ — r if r <

Now suppose, further, that 2 converge for all

values of a:, so that the alternative (ii) of § 2.1 is ruled out.

Let the series be non-convergent when 2;
— z^, and Jet r^.

Then the numbers r such that ^ convergent when

\z\ ~ r must Jiave a finite upper bound ^ r^. Let this upper

bound be R.

This number R is, by definition of upper bound, the least

number that is greater than or equal to each and every r for

which 2 is convergent when \z\ — r.

It may be that R is actually greater than every such r; it

may be that R is itself a possible value of r. Thus, always,

2 is absolutely convergent wlicn \z\ < R, and, possibly,

2 is absolutely convergent when \z\ -- R.

Finally, cannot converge for any wliose modulus

exceeds R, For, suppose it converges for a z whose modulus

is R+oc, where oc > 0; then, by Theorem 43
, J is

vergent whenever \z\ = jR-f-ia, so that is a possible

value of the r, and R is not tlie upper bound of the r.

We have thus proved that, corresponding to every power

series, which converges for some non-zero value of z

but not for all values of z, there is a number R such tliat

2 is convergent when
|

2;| < i?,

2 is divergent when |;:| > R.

This number R is called the radius of convergence of the

power series.

Whether or not 2 kbi^^l converges when \z\ — R depends

entirely upon the character of the sequence (a,J. For example,

both the series

2
^n

n

converge when |2|< 1 and diverge when \z\ > 1 (as is seen by

Theorem 10, the ratio test). W’^hen
|

2:|
= 1, the first series

converges, while the second diverges.
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2.3. The radius of convergence is given by

lim

but we shall not go into the proof of this, as hm is outside the

scope of our present treatment of convergence.

In examples we confine our attention to j)ower series (and

these are by far the most common type) whose radii of con-

vergence can be determined by other means, usually by the

ratio tests.

2.4. Theorem 44. The series obtained by differentiating or

integrating a power series term by term have the same radius of

convergence as the original series.

If the original series converges for all z, so do the differentiated

and integrated series.

Let E be the radius of (convergence of J ^ be any

complex number (not zero) whose modulus, r, is less than B.

Choose so that r < \z^\ < R [say, for example,

|2,| == |(r+7?).]

Then ^ convergent, so that \a^^Zi
\

-> 0, and

3 N . \a^,z^l
\ < \

when n > N.

When n > N,
1

1
IzV

na,.z'^~^\ ~ —I nl—]
!^l

But the series ^np'^ is convergent when |p| < 1, so that,

since \z\ < [z^l, ^n\z/z^\^^' is convergent. Hence (by Theorems

8 and 13) ^ is convergent, and so ^ ua^^z^^~^ is abso-

lutely convergent whenever \z\ < E.

Similarly, ^ a,^^ z^^'^'^l(n-\~l) is absolutely convergent when-

ever \z\ < E.

Now suppose that the radius of convergence of ^ na^^z^^-^ is

greater than E and equal to say. Then, on integrating this

series, the series 2 absolutely convergent when \z\ < B^,

But this is incompatible with the assumption that 2



POWER SERIES 113

diverges when !^1 > R. Hence the radius of convergence of

2 cannot exceed R,

Similarly, the radius of convergence of the integrated scries

cannot exceed R.
*

This proves the theorem when the original series has a finite

radius of convergence. If the original series converges for all

values of we may, by the previous work, show that ^
and 2 C'onverge absolutely when

|

2;| <. A, where

A is any number we choose. Hence these series also converge

for all values of c.

2 .5 . For our remaining theorems we shall confine ourselves

to real values oi z.

Theorem 45. If the raAius of convergence of is R,

then is uniformly convergent in R^, Rfj, where R^ is

any fixed positive number less than R.

In special cases it may he uniformly convergent in {~R,R):
in general, it is not.

Let Ri be any fixed positive number less tlian R. Then

2 convergent. But

when j.r| < R^,

and the M test proves the theorem.

In the sjiecial case when ^ convergent, the M test

proves uniform convergence in {—R,R). We have only to

consider the series 2 see that {--R,R) is not, in general,

an interval of uniform convergence; for then R ^ \ and the

series diverges when x = 1.

Corollary. If ^ radius of convergence R, and

if f{x) denotes the sum of the series when \x\ < R, then

/'(*) =

whenever |^| < i?.

^71+1

n+1

Let X have any definite value whose modulus, r, is less than

R. In Theorem 45 take R^ — |(r+i?), so that \x\ < R^;
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2 (by Theorem 44) 2 nanX^^~^ are uniformly conver-

gent in (— J?!, i?i). The two parts of the corollary follow by

Theorems 33, 31 respectively.

2.6. The result just given about integrating a power series

term by term is all that we can obtain from a straightforward

ap])lication of Theorem 31 to the general case. If the series

is one which is absolutely convergent when |.r| ~ JR,

then

j
/(/) dt = 2 ^

when jo:] < R,

since there is then uniform convergence in (— i?, R).

But by far the most useful result about the integration of

power series is contained in Theorem 4(), which follows. Its

proof uses most of the facts we have proved concerning power

series.

Theorem 40. If fit) denotes the sum of the series ^ then

//((),/< = 2 ».“ti
u

provided only that the latter series is convergent.

We shall first prove that

0 n= 0

whenever the series on the right is convergent.

If 2 is convergent, then, by Theorem 43,

2 |6„.r’V(w+l)|

converges when \x\ < 1. Hence, by Theorem 44, con-

verges absolutely when |a:| < 1 and, by Theorem 45, it con-

verges uniformly with respect to a; in (0, S), where 8 is any fixed

positive number less than 1.

Let cf>{x) denote the sum of ^b^x'^ when |x[ < 1, and let

8 be any number between 0 and 1. Then, on integrating a

uniformly convergent series,

^ ^ ^ §71+1

J
#(*)*: = 2

n— 0
71-fl

(
1

)
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But, whether (f)(x) remains finite or does not remain finite as

J
^(x) dx lim

I*

(j){x) dx (2)

0 u

as S -> 1 from values less than 1.

Also, by Theorem 29, whenever ^bj{n+l) is convergent

h
^ = lim % (3)Z. n+l Z, n+l ^ ^

n- 0 n-0

as 8 -> 1 from values less than 1.

By (1), the R.H.S. of (2) the R.H.S. of (3) for every

positive 8 < 1. Heme they have the same limit as 8 1, and

/( i,

i

n~ 0

whenever the latter series is convergent.

Now put ' ^ and, in the integral, x -- tjix; we get

:: Vi- o ' 7<.-o
‘

provided only that the latter series is convergent. The theorem

follows on simplifying the L.H.S. of the last equation.

2.7. We conclude with a theorem which justifies the device

usually known as ‘equating coefficients’.

Theoeem 47. If one and the same function f{x) can be ex-

panded in a power series in two distinct ways, so that

CO oo

f{x) = 2 a„x->‘ = 2
W = 0 71= 0

both series being co7ivergent tvhen |ir| < R, theri for all

values of n.

If we write at^^—b,^ = then, when \x\ < R,

oo

0=2 (
1

)

71 = 0

and our theorem is equivalent to saying that a power series

cannot represent zero unless all its coefficients are zero.

Let Ri be any positive number less than i?. Then, by
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Theorem 45, 2 is uniformly convergent in (— B^) and

so, by Theorem 32, its sum is a continuous function of x in

Bj). Hence, if denotes its sum,

— ^(0) = lim^(a:) ~ liniO — 0.

Hence Cq is zero; when x:^ 0 we have, on dividing (1) by x,

no

0 = J (ja-j < B, X 0). (2)
n 1

If if^(x) denotes ^ b the previous argument gives

Cl ^ i/j{0) h'm ifj{x).

X- -i)

But, by (2), ip{x) ™ 0 wlien x 0, and therefore the limit of

il/{x) as X tends to zero is also 0. Hence " 0, and so on for

the coefficients Co, r3 ,...,r,^

3. The behaviour of a power series on its circle of con-

vergence

In all the preceding discussion we have considered the

question of convergence for points ^3; that lie on the circle

of convergence, |z| — JS, only in the very easy case when

2 convergent. Then, of course, 2 is convergent

when
|

2:|
-- B,

If 2 is not convergent, then almost anything may
happen to the series when \z\ ~~ B. There are series

that converge, but not absolutely, for all 2: whose modulus is

B; there are series that do not converge at all. As an example

of the latter take ^ ^^um to n terms when z “ cos 0+i sin 6

is given by

1 — cos nd i sin nd

I~cos0--isin6^

HinlnOt . . n~l A
cos-

^
0+^sin—^(9|,

sin \d

and, B being fixed, this does not tend to a definite limit as n
tends to infinity.

Again, there are scries that converge at all points save one
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of their circle of convergence, some at all points save two, and

so on. For example
5.2

^+^+2+-+i:+-
has |sl

“ 1 for its circle of convergence. It does not converge

when ^ ~ - 1. But, when 2; -- cos^-l-^sin0 and 0 < 6 < 277
,

each of the series

2
cos nO

2
sinn6

n

is convergent (Chap. IX, §3.5). That is, the series

converges at all ]K)ints save one of its circle of convergence.

Examples XVIII

1 . If X convergent, then is uniformly con\'ergent in

(0, 1) (P^xainples XVI, 7), and if X (— i« convergent, then X
is uniformly convengeiit in (—1, 0).

2. If /(;r) ~ X<^n^” when |.r| Rj, and if g{x) when
|a:| < j^2 » then f{x)g{x) -- X wJiere

c„ -- — '^’hen \x\ <: i?i, Rg.

3. Differentiate; {^'i'

+

and hence prove that its expansion is

j

(n-J)!ln 'n-f l"‘’2!(a-fl)

4. Determine the radius of convergence of (uieh of the series

1

71 “I”
-j“ 3)

2 n.-z”’. 2
nz^

and find the sum of each series. (The ratio tests for absolute eonvergenco

give unity as radius of convergence.) Show that the second and fourth

series converge when z = — 1

.

5. Prove that ^ ^
o(a“M + 1

) ^2 I

l.'2.c(c+ i)"
^

has unit radius of convergence.

6. If F(ayb\c\z) denotes the sum of the series in Example 5, prove

that

(i) ~F(a,bic;z) = - jF’(a+ 1,6+ 1 ; c+ 1 ; 2 )

;

az c

(ii) F(ayb;c;z) ~ (l—zy^^''^F(c— b,c— a;c;z).
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l + (n- 2)f

'

7. By considering the coefficient of x^~'^ in the expansion of

prove that
(n-3)(n-4) _

2 !

" '

where a, ^ are the roots of the equation u^—u— 1 = 0 .

8. Prove that if («(,

+

when |j;| is suffi-

ciently small, then

OoPn+«i;'n-i+ -+aiP«-fc = 0 (n > 1
)

provided that ^1*0 interju-cted to be zero.

9. Prove that each of the scries

^ 2 . 3 ^ 2 . 3 . 5. (5
*"'

4x* 4.7.10..T’
,

^
^ 3 4^ 3 4 6 7

***

is convergent when |4a:=| < 1 . If y denotes the sum of cither series, then

10. (Harder.) By considering the expansion of

x^^\x-\-lY^\2x-^l)~x'^(x-l)^^(2x-l)

in powers of x, determine and ^4 when Sj. = P+ 2^4- + and show
that «2m» where m is a positive integer, is equal to l)( 2n“|- 1 )

multiplied by a polynomial in n(n-hl).

11 . Prove that the series

1 a;3 1 1.3 a;’

9 3~‘2 4 5
"^

2 4 6 7
'***

is convergent (i) when 0 < a; < 1 , (ii) when a; == 1 .

Find, in each case, the sum of the scries.

1 2. Prove that the series

2 ! 3!

converges if \x\ < e.

13.

Show that

6^9 13 ' 17 ^2 + 2^2

14.

Prove that the radius of convergence of the series

I^+L.3^2. Lil-5
2 ^2.6 +2.5.8

15,

Prove that the series where

An = 3
*"‘»+" 1

/(9
- 1 )(9

’-
1 )-(2

"- 1
)
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and
Ig'l

< 1, converges for all values of z. If F{z) is the sum of the

series, prove that F{z) == (l—qz)F{qz),

Find the value of if

1 + Bi2+...+ R„z«+ ...

and prove that tin’s series converges when \zq\ < 1.

16. Provo that, if F{a,b;c;z) is the sum of series in Example 5, then

<72 Jp

F{a,b;c;z)-F(a,b;c--l;z) F(a+ l,6fl;c4- Ijs).
C[C 1 ;



CHAPTER XIV

THE INTEGRAL TEST

1 . The integral test for series of positive terms

1.1. Theorem 48. If f(x) > 0 wheji x > 0, and if fix)

decreases as x increases, then the sequences

- /(l)+/(2)+...+/(«) in 1
,
2 ,...),

n

4- J/(.r)r7x («- 1,2,...)

i

are either both converfjeni or both divergent.

Since f{x) > 0 when x > 0, the sequence (6*^,) is monotonic

increasing and the sequence (/,,) is monotonic increasing.

Let P, Q be points on the graph y ~~ f{x) such that x ~ n,

n-{-l respectively. Then, from tlie graph,

rect. NRQS < area NRQP < root. NRTP.

Hence, since NR — 1, NP RQ z:=/(n+l),

71 + 1

fin+l) <
J

fix) dx </(n). (1)

n

If we write down (1) with the special values n = 1, 2,..., »— 1,

and add, we have

«n—/(I) < 4 < s,—fin). (2)

Now suppose that 4 finite limit I &s n-^ oo. Since (7„)

is m.i., we have 4 ^ 4 ^nid so, from (2),

Sn < 4+/(l) ^ -^+/(!)• (3)
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But /4-/(l) is independent of n, so that, by (3), is a m.i.

sequence wJiose upper bound < /+/(!). Hence a finite

limit, s say, such that s ^
Similarly, if -> a finite limit 5

, (
2

)
gives

4 < ^n-fM <««,<«
and < s.

If -Zyj^ then, since I
\ J

*

^ >
and li -> 00,

then, since /„ > /(I), 7„ ->oo.

Notes. 1. A better proof of tho last two linos is ‘A in.i. sequence

must converge or diverge: tlio convergence of either one of (/„)

implies tho convergence of ilio other; hence tho div^orgenco of either

imidies tho divergence of the other*.

But not every one finds it easy to follow.

2. For readers whoso knowledge of integral calculus is sufficiently

advanced, (1) may be proved without any appeal to graphical considera-

tions thus:

When 77 < X < n~\-l,f{n) ^f{x) > /(Ti-j-l), and

n + l wM n + 1

J
f(n)dx^

J
f(x)dx^

J
/(n-l-l)dx,

11 n n

n+1
i.e. fM> J f(x) dx f{n -{-}).

n

Tlie = sign covers tlio case when f{x) remains constant from x -- 7i to

X — 71 “f* 1,

Corollary. ^ is convergent if > 1> divergent ifp 1.

For, when/(7i) -- n~'^\

n^~^—l

i-p
1

according as p 7^ 1 or ^ = 1 .

or log n,

1 .2 . There are numerous occasions when the comparison

of a series with an integral is a useful step. Esj)ecially is this

tho case when the integral can be evaluated.

If f(cc) decreases as x increases we have, from
(
1 ),

/(n+l)+ ---4'/(^+^)

w+fc n+k—l

< J f¥) dx <f{n)+...+f{n-\-k—\) < J f{x) dx.

n n— \

4449 R
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For example, when n and h are integers,

n{n+k) 1)2+
•••+ {n+k- 1 )2 (n- l)(w- l+k)’

1
I

1
I ,

1

(»r+])^+i (w+

1

)2+

1

< tan""^/ - ^ ].

I
(Ti— 1 ~ 1 )+ 1 j

If we keep n fixed and let k ~>cc, we see from the second of

these examples that

-+ ' +...
n2^{w+])2^

lies between l/n and 1/(72.— !).

2. Euler’s constant

Theohem 49. lff{x) > 0 when x >* 0
,
and iff{x) decreases as

X increases, then
V

f(})+f(2)+ ...i-/(v.)-^ Jf(x)dx (4)

1

fends to a fi7iite limit as n ->cc.

Write
(f),^

to represent (4). Then, by (2),

Further,

<f>n
= >/(«) > 0 .

nil

= /(«+!)—
I f{^) Ax

n
< 0

,

by (1). Hence

^ ^2 ^ ^ ^ ^ ^

(5)

(6 )

that is, (ff,^ is a m.d. sequence whose lower bound ^ 0. Hence
finite limit.
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COKOLLARY. In imHicular

1

tJicit %s
j

1 —|— " —1~ ... —j— —— n^
2 n

tends to a finite limit C, called. Euler's constant.

The constant C (or, in an equally common nota tion
, y) is of

frequent occurrence in analysis. The corollary itself expresses

precisely what is often useful in the less jirecise form

‘1 + •••+“ about as big as logn’.
Jd n

Examples XJX
1 . Examples XIV, 1-6.

2. Prove by tlio integral test that tlie series ^ l/n(log?i)^* is con-
--- *2

vergont if p > 1, divergent if p < 1. (Compare Tlieorem 17.)

3. Provo that if p > 1 the sum of the inOnite series 1~^’
i 2“^^ f ... is

less than p/(p 1).

4. (Harder,) Prove that the series wliose ?/th t('rin is

is convergent, and tliat tlie sum of p terms of this series after the nth

lies between

1 J? __ d - - i
2 n(n4"p) 2 (n -f- 1)(^ f 1 +p) ^

[When a; > 0, < ir~log(l-|-a;) <
6. Find the limits as n —> oo of

1 1

] 2n-! H~p\
3 n“-4“r?p /

J + _L , i.
4- 1 n 4" 2 2n

6. If X is real, show that

a; +(1-3+4'3 +1*-3 + 5~7 + 9/T +-

converges when |a;| < 1 but not otherwise. Show that its sum is

(tan~^a; )(tanli“^a; )

.

7. Prove that, when 0 > p > — 1,
«r+i

ir4.23>4-...4-n*^-
p+1

tends to a finite limit as n —> oo, and hence that

{( ir 4_ 2*> 4- ..
.
4-n*^)/n»»+q -> l/(p 4- 1 ).



CHAPTEK XV

THE ORDER NOTATION

1 . Gauss’s ratio test

1 . 1 . If is a series of positive terms, and if the ratio

f^nds to a limit other than unity, then Theorem 10

decides at once whether the series is convergent or divergent.

Eor a large number of series whose terms are such that

tends to unity, the following theorem will decide whether the

series is convergent or divergent.

Tiieokem 50. If is real, and if the ratio can,

ivhen n ^ some fixed N, be expressed in the form

n
(
1

)

where \A,^\ < a fixed number K, and A > 0, ilmi 2
vergent ivlmi > 1 ,

divergent when /x 1

.

We sec at once that is eventually of constant sign and

that r ^

nl — 1 1
u as 71 GO,

K+i /

and so (Theorem 11) the scries converges when /x > 1 and

diverges when /x < 1.

When /X -- 1 we ap])ly Theorem 12 with = nlog7i; by
Tlieorem 17, ^ then divergent. When /a 1 and

A ^ ^ log 71,

+1 = w log n ( 1+ 1 - (w+ 1 )log(w+ 1

)

\
n n

]

But, by Theorem 40, 7i~^log7x->0 when A > 0, and so, since

[ 44,^1 remains less than a fixed K, A^^n~^logn 0 when A > 0.

Also (by Chap. XII, § 9 (2))

1

71-f-l
<log < 1

~ >

n
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SO that
(
71+ l)h)g[ 1 +^ 1. Hence

nj

IX
u

u
ri

•Ah-1- 1 ,

'n41

and 2 is divergent when yu —
1.2. In many examples it is not difficult to see that the

ratio {'(< \i) expressed in the form (1). Consider the

scries
I 1'. I I

Here

1 2 !

n-^ 1

1
-f-

3!

l){x+2)

1

(
2

)

1 +

and if we write
x—l

X

71+1

X—l
7t

a:~-l

7^(71+ 1)’

7?(7if 1)

then < +— 1|. Hence if is fixed, the ratio can

be ex])ressed in the form (1) with p, — x~l, and the series (2)

converges w^heii x—l > 1, diverges when ;r— 1 1.

1.3. The test contained in Theorem 50 becomes more power-

ful when it is combined with the technique of using the order

notation, which we shall now exifiain.

2. The order notation

2.1. Let /(7?.) be a given function of 71 , a variable i^ositive

integer. If the sequence {f{n)/7i^} is bounded, that is, if there

is a number K such that

f{n)

n’-
C K or, what is the same, \f{n)\ < Krf (3 )

for all 71, w’e write f{7i) =-- 0{n^), If (3) holds when r - 0, that

is, if the sequence {f(n)} is bounded, we write f{n) — 0(1).

Examples.

(i) {n+2f ^ 0{7i^),

^ (n+2)2 4,4
For — ~~ iq —-->1 as7i->oo.

n rr
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By Theorem 1 ,
a convergent sequence is bounded, and so the

sequence {{n-\-2YjnP] is bounded.

(ii) = 0(71-3).

For
y/(7i^+r0 \7r

4.

For the sequence -^3 and so, by Theorem 1 ,
is bounded.

71+ 3

2 ,2 . Sometimes the fumTion /(/?-) is coMi])arable to some func-

tion other than a power of ?«. For exam})le, the notations

f{n) 0{e-"), /('«) = O(wlog2?i)

mean respectively that

/(«)^ fin)
’ 7iiog2n

are bounded sequences.

Sometimes, too, 71 must be restricted if the relation imi)lied

by the O symbol is to be true. Tlius

(71- 1,2,...)

1

71— i

- 01 when 71 + 2.

For 1 ^ 1 _ n
7^— 1

*

71 71— I
'

which takes the values 2, |,... when — 2, 3, and each of these

values + 2: but we cannot admit the value 77—1.

Similarly,

- — = 0+ when N > a, b,
(n—a){n—b) {n-j

and, more generally,

0(77^“«) when 71 ^ N,
a^n^+ain^-^+. ..+aj,

6o77^+-6i77«-H...+6^

where N is greater than every real root of the equation

6o^^+-“+6^ — 0.

2.3. When one is thoroughly practised in the use of the 0 notation,

it is convenient to modify it. Usually, one is not interested in the

behaviour off (
71

) save when n co, and the limitations n > 1, n > JV
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are merely irksome details without real relevance to the problem in

hand. The common practice is to write

/(n) = 0(n-‘)

to mean that * if we fix suitably, there is a constant K such that

|/(^)| < when n > tiq’.

Tliis practice is recommended to the reader only after ho has worked
for some time with the notation in which the limitations n l,n > |a|,

etc., are taken into account.

3. The limit notation

In miicli the same way the notations

f(?i) = o(n), f(7l) -- 0{7l ^3)

denote respectively the facts that

-> 0, -> 0 as 71 -> cc),

while the notation f{n) = o(])

denotes that /(n) 0 as n -> oo.

4. Applications of the order notation

4,1. Theorem 51. If,
for 1,

f{n) = “<*+^ +
“

2
+-’

where the ols are mdciycMdent of n and the series is absohtehj con-

vergent when n — then

f(n) =

/(«) = “0+5+ ^(-2)’

and so 07i,

By hypothesis, 2 l^rl convergent, and so the series

converges iiniformly in |x| < 1. Hence its sum is a con-

tinuous function of a: in |a:| < 1. In particular, its sum -> olj

as a; -> 0. Hence the sequence

«{/(«)— «o} (n = 1,2,3,...)
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tends to the finite limit oc^ as 7i oo. Accordingly, this sequence

is bounded and there is a K such that

Ool <

i.e. /(w)-«o -

In order to prove that

o(l)

we repeat the same argument, beginning now with the series

OCo “l~ *^3 ^ ~f“ • • • •

Corollary. // f{n) — absolufely

C07ivergent 07ily icliem n somejixed N, then

f(n) = (XQ-i-0(n~^), f{n) = (XQ~{-(Xj^n-^-\-0{n--) whenn > N,

and so on.

In this case the sequence

n{f{n)-^c.,] (n... iV,iV+l,...)

is bounded.

Examples.

(ii) = iq-^-j-o/JL^ when n N > ki|,

\
n/ n \n^l

(iii) logfl + i] — when 7i > 2,

\ n) n \n^J

(iv) 1 _L _j_

n \n^j

In (i) our method gives the result when n ^ 2 and not when
n ^ I because, unless A:+l > 0, the binomial series does not

converge when n = I,

4.2. Theorem 52. If a, 6 are fixed, and if

fin) = 1+ 5+ o/lV 4>{n) = 1 +-+ 0(1) when n^^N,
n \n^) n \rrj

then f{n)<f>{n) = 1+ + o( when n^N.
n \n^/
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By hypothesis, when n N,

where \A„l < and \B,^\ < K^. Hence

+i)+'’"(‘ +3)'

Moreover, the sequences

1+
n̂

1+ [n = iV,iV+l,...)

are convergent and so there are constants, A"3 and say, such

that
I #1 I \ rt \

< 7Q (n 55 iV).1 +^- < A'a, l +
“

n\ n

Hence, wlien n ^ N,

n
~(|a6|+A\ A 2 A^J,

and the latter is a constant multiple of (1/n^).

4.3. The result of Theorem 52 may be written

n w i+z+O'
n

(n 55iV^)

1 +“±''+o(l\
% \?^7

{71 > N),

It includes as a special case {A^^^ = 0 in § 4.2)

='+-?+Ki)
4.4. Applications to Theorem 50.

(i) The series

l+:
2 ! 3!

X x{x-{-l) a:(xd-l)(a:4-2)
“o\+ —

4449
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is convergent when x—1 > 1, divergent when x—1 ^ 1.

««+i n+\ \ nj\ n)

{n >. 2)

1

4

*
X-

n

and Theorem 50 jvroves the result.

Or the work ma}^ be set out as in § 1 .2.

/ 2 4 2?^ \“
(ii) The series / -

)
is divergent.^ \ 3. 5... 2??,4-1/

/2n-|-3\2

u
11 f 1 2n,-|-2

1 -
1
- 1 +:

= \l+-' + 0
n

/ 1 \w 2 / r
A 1- +0-^,
\«7 j (

n
{n

= l+i + 0(-i.),
)i \n^)

and the divergence of2 I)rovcd by Theorem 50.

Or, on the lines of § 1.2,

(“"+^V=(i+ -4 Y
\-2n+2) \ ^2n+2) ~^7i-}-l ^4(7?, -[-])“’

and, if we write this as

i+-+^>
n 71-

then
1

n-\-l 71*^ 4(71 -f~ 1)2

1

4(7^4-l)2 7l(77-f-l)’

= 5*

and the divergence of ^ is proved by Theorem 50.
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5, Series of complex terms

Lei and let

where
|, |

are bounded for all n some fixed N.

If we recall the fact that, when ~ x-\riy,

|-|- ^ {x-^iy)(:x-iy),

we see tliat (1) gives (on using Theorem 52 extended to com-

plexf a, h)

and so, by the binomial expansion for (1

1 +2+0n (
2

)

Hence if the terms of a series 2 (1) J^elds,

then the series is absolutely convergent when a: 1; that is,

for absolute convergence, the real part of oi-\-ifS must exceed

unity.

Examples XX
1. Prove that, wlien b is neither zero nor a negative integer,

a a(a+l)

6 + 6 (6+ 1
)'^-

is absolutely convergent if 6— a > 1.

2. Prove that the hypergeometric series

1 I I
,.2

I

^+l.y-"+T:2.y(y+iy

has unit radius of convergence and converges absolutely when |.r| 1 if

(i) y > OL-i-pt or (ii), assuming a, y to bo complex, if the null part of

y~0L~~P is positive.

f The only now fact wanted is ‘if — an-i-i^n i^ ^ sequence that conv^orgos

to a finite limit a+ then |a„| is bounded’. This follows at once from Theorem

1: for a„->a, ^^^d so ja^l* \Pn\ Q-r® bounded. Hence |o„| — is

bounded.
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3. Prove that, when a and h are positive,

a a (2a-]^\) a(2a4-l)(3a4-l)

b b(2b \-l) ^ 6(26+ r)(36+“l)

is convergent if and only if 6 > a (Theorem 10).

4. Pro\'o that the infinite series

-l)(/x-2)

3!

is absolutely convergent if the real part of /x > — I .

5.

The sequence (a.;^) is such that

Prove that the series

an+ b-i- o(i).

V «»

^ a (.r+ l)..,(a;+ n

is absolutely convergent when |o| < 1 and also whvn a -- 1 provided

that X > b.

In the following examples use th(? 0 notation as oxi)lain(;d in § 2.3.

6.

Prove that, when A > 0,

and hence that

'“ei'+s+yyi “.-i-’ty'
where fx > 0.

7. Prove that, when A > 0,

expj^^ + o(-y) - I +
where v > 0.

8. Use Example 6, part (i), to prove that

1 + - + 0
n Li+J)

where 0 > 0.



CHAPTER XVI

TANNERY’S THEOREM

1. Tannery’s theorem

1 . 1 . We first prove what is usually known as Tannery’s

theorem in a form that differs from the original form given by

Tannery himself. The new form accentuates the relation of the

theorem to the idea of uniform convergence.

Tiieokem 53. Lei ^
F(x) = 2

n— l

the series being uniformly convergent ivith regard to xfor all positive

X. Further, for each fixed n, let

(x) -> as x~> CO.

Then the series ^ convergent and

CO

X~>CO.
n — 1

(i) We first prove that ^ converges.

By the uniform convergence of ^ positive x,

€, h > 0; 3 N , for all j)ositive x
N I p
y vfix) < eA: when = 1

,
2 ,....

N-\-l

As ;r->co, + Hence

N+p
y < ek when ^ 1, 2,...

.

N + l

On taking k ==
|, we see that

jVH
I

6 > 0; 3 N . ^ when_25 = 1,2,...,

which is the condition that ^ ^Vd should converge.

(ii) The convergence of ^ having been established, we
make a fresh start. Let W ~ Then, since ^vfix) con-

verges uniformly to its sum F(x) for all positive x, and since

2 converges to the sum W,

€, k > 0; 3 N . ji^(:r)— ^ ?v(^) < ek for all positive a',

n=*l
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N
and W~ 2 < ek.

ri = 1

Hence, for all positive x,

W'l < 2 l’„(-'*;)|4-{ 2 V„(x)— 2 W„ +j 2 U’n—W
! 71^-1 I lw--l 71^1 in^l

< 2ek+\

2

^ wj.
n^l 71-^1 I

But as X -> 00
,
each i\^{x) and so, since N is finite,

N N
2 2
n ~ 1 71^1

I Y
IHence 3 X .

j ^ 2 ^ when a: > X.
in — 1 n— 1 i

Finally, then, we have |F(‘^)—

<

^eA- when x > X. Hence,

on taking k — J, we have proved that

c > 0; 3 X . lF(a:)~ir| < £ when x > .Y,

which is the condition that F{x) -> IF as :r -> oo.

Note. The result is unaltered if there is uniform convergence,

not for all positive x, but only for x > X^, a fixed constant.

1.2. There is a particular case of Theorem 53 corresponding

to each of the tests for uniform convergence established in

Chapter XI, §5. We shall enunciate two such particular cases.

Theorem 54. Let ^
F{X) = 2 ^n(*)>

and let ^ be a convergent series of positive constants such that

l^n(^)l positive X, Further, for each fixed n, let

v^fx)~>w.^ as CO.

Then the series 2^ iv^ is convergent and

oo

F{x)-^^w^ as x-> CO.
n= l

By an easy extension of Theorem 35, since 2
vergent and \v^{x)\ < for all positive x, the series 2 ^w(^)

is uniformly convergent for all positive x.
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Theorem 55. Let ^
F(X) =

n= l

v^here is a convergent series of constants. Let v^fx) be mono-

tonic decreasing {increasing) for each fixed x that is j)Ositive and

let < K for all n and for all positive x. Further, for each

-> 1 asx~>oo.

Then F{x)~>'^ a^^ as x-^co.

By an easy extension of Theorem 37, ^ uniformly

convergent for all positive x. Further, a^^v^fx) a.^ as x ~>co,

and so, by Theorem 53, F{x) -> J
1.3. Tannery’s original theorem is a particular case of

Theorem 54. If vfix) has zero values when 7i > k{x) we have

the following result.

TheorExM 56. Tannery’s theorem. Let

kix)

F{x) = 2
vdiere

(i) k
{
x

)
-> GO as X

(ii) ^ udiere is mdependent of x,

and 2 is convergent,

(iii) for each fixed n, v^fx) as x -> oo.

Then F{x) 2 '^'n x ~>qo.

There is a corresponding particular case of Theorem 55 in

which the value of v.fix) is zero when n exceeds k{x),

2. Examples of Tannery’s theorem

/ 1\^
(i) 1+-) ^ as 71 -> 00 .

\ W
If we write F{n) {l+ (l/^)}’b then, n being a positive

integer, the elementary form of the binomial theorem gives

F(;n) — ~d- ... to Ti-f-l terms
n 2 ! 72

.-^
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Then, for each fixed r ^ 2,

\Vr{n)\ < for all n

as n -> 00 .

Moreover, 2 (1/^0 convergent. Hence, by Theorem 5G,

1+1+I+I+ ...+I4-....

(ii) If ;r->GO, not necessarily through integer values,

The binomial theorem for any index shows that

whenever x > I, But, when x is positive.

\x{x— l)...(a:—

?

2.+ 1) 1

\x{x+\)...{x^n-~ \) ]

If we write u,^ to denote this last expression, then

'^n {n-\-\)x

x-\^n l+ n/^*

When X 2, ^ 1+^ i , 2^
1

-J 72/

and when n 2 the last expression ^ f

.

Hence ^ so on. Also, when x

X{X+^) 1/,
,

1\ ^ 1 o ^ o

Hence when « ^ 2, so that

when n'^ 2 and a; Js 2.
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It is now a fairly straightforward application of Theorem 54

to show that -> e as a: ->oo.

Examples XXI
1

.

Provo tliat , when a is a real number,

/
(

i

) ^
1 + —

j
c® as n —> oo,

ii) (i+?)’ --> as X CO.

2.

Show that

and h('nce that F{ti) cannot tc'nd to zero as n —> oc, altliough (a
[

> 0

for eacli fixiut r as n oo.

3.

Theorem 54. Provo that

00
^

no

]

2 2 as X - > OC'.

ri = i n -
' 1

4. Tfieokem 55 (with x —> l-{ 0 instead of x - > oc ).

^ 1
yi~ifi~x log 2 as .r 1 -j- 0.

•-

1

5. Theorem 55 (with some ?\,(.r) zero). Provo that, as k oo,

,

7,-2
, ^

1

«i-l- «3“r

tends to X vvdienev^er the latter stTies is convergent.

Hence j)rovo that

+
_

n

6. Theorem 55 (with some v\(^) zero). The limit as n -> oo of

- s whenever s.. 8.

r=-l

is given by the sum of tho infinite series

(n— r)! (/t+ r)! x— r

1'

whenever the latter series is convergent.

4440 T



CHAPTER XVII

DOUBLE SERIES

1 . Double series

1.1. Consider the doubly infinite array

an
^21 O 22

«i«

^27?

am n

Suppose that, for eaeh fixed w, the infinite series formed by the

terms in the mth row. that is,

has a finite sum, say. Suppose further that the infinite

has a finite sum, B say. Then B is called the su7n by rows of

the doul)le series ^ V
Similarly, if, for eacdi fixed n (i.e. each column),

^'
1/7+ ^hn+ • • .+ ^>/7 77,+ • • •

has a finite sum and if

C — C\+ (^2+ ^ 3+ • • •+ (^‘n ~f • • J

then C is called the sum by columns,

1.2. Let denote the sum of all terms that are to be

found in the rectangle formed by the common part of the first

m rows and the first n columns. If there is a number S such that

€ > 0; BN. [tS- < £ when m,n ^ N,

then S is called the sum by rectangles, or simply the sum, of

the double series.

1.3. Double limits. When we consider a doubly infinite

set of numbers

(/^ ^7 ^ I> ^>***)>

it is fairly obvious from the definition of ‘limit’ that the two

numbers / v , x

lim lim a \

,

lim lim a
j

>00 ' v^-»00 '
'
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are not necessarily equal. It is easy to construct examples

where the two numbers are equal and to construct examples

where they are not equal. For example, if

_ (;.+ l)(^+l)

(.+ 2)(^+2)’
then, for each fixed r,

limflimoc,,,,] lim

^

and so

and a similar calculation shows that

lim |liinfY^^,,| ~ lim '

I
/*'

I I o
fJL—XXj I/—> CO ' ,^00 fl -f

- ^

On the other hand, if

ix—v

then, for each fixed /a,

lim a = ,

and, for each fixed r, lim

.

Hence lim (lima: lim — “ —1,

and lim|lima:^^| -- lim^ ^ - 1.

v- >00 '|ti—^00 ' v—y'X) V

Going back to the sum by rows and the sum by columns of

§ 1.1, we see that if
^ j,

^fiv m -

1

n~ 1

then lim>S^y “ 2
V-^co 7U l

and so lim [limASJ^^j 2 ^

the sum by rows.

Similarly, lim|lim/fi^^| ™
V->00 ' fl—XX) ' W= 1

the sum by columns.
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As we have seen by examples, C and R need not be equal.

1.4. We shall not attempt a discussion of the general theory

of double series. All we do here is to state simple conditions

which will ensure that the sum by rows is equal to the sum by

columns.

2. Double series of positive terms

Theorem 57. If each is j)osi1ive or zero in the array

«!! . . Cii,, . .

^'21 ^22 • ^'2n

^^‘m\ ^'m2 • * ^mn

and if there is a finite sum by rows, then there is a finite sum by

columns and the two sums are equal.

First step. We c<ii\ arrange the terms of the array as terms in

a single sequence in a number of different ways: for example,

we can write a^p, then all terms the sum of whose suffixes is 3,

namely and terms a^^, a^o^ each with suffixes

whose sum is 4; and so on. Civen any term in the array, we
can assign to it a definite place in the single sequence. We write

~ ^12' ^^4 “ ^31 V-

•

no

and consider ^
n 1

OO 00

Let iC - 2 ««.». K = IK,
7J = 1 7/i — 1

Whatever value we give N, we can find a corresponding M such

that i?i+/?2 d + will contain all the terms of and

others besides. Thus for each N there is a corresponding M
such that

m^l

Hence ^ is a convergent series and, if B is its sum,

( 1 )
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Second stej). Again, if A is any number less than R, then

i(A4--K) < R, which is the sum of 2 Hence there is (by

Theorem 3) a suffix k such that

+ (
2

)

This mimberi* having been fixed, there is (again by Theorem 3)

a suffix 71 such that

> ^1—

^'
21+ •••+^2/1 > ^2—

But, the numbers k and n having been fixed, there is a number
N sucli that + contains all the terms on the left

of these inequalities and others besides. Hence, there is an

N for whicli

CTy Ri-\~ R2~{~ Rj-

> J(i^-f A)-|(i?-A), by (2).

It follows that j5, which is the upper bound of the sequence

(cr,J, exceeds i(i^-|-A)— 4(i?— A), that is, A. Hence B exceeds

any number less than R. Hence

R. (3)

From (1) and (3), JS “ J?.

Third stej). We now prove that if B is finite, then the sum by

columns, C, is finite and equal to B.

Consider

The sum of the first n terms, where n is any given number, is

less than if we choose N large enough; also, a,Y < B, Hence

series (4) has a finite sum, C\ say.

Similarly, each column has a finite sum. Let the sums be

Gv ^2vj •

Let M be an arbitrary positive integer. Then, as in the
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second step, there is, given any positive 8, a number n such that

^ 11+ •••+ 0^;^ > 2M

«']2+"-+“h2 >

+ • • •+ CtnM > ~ S •

The sum of all the terms on the left of these inequalities is less

than B. Hence
B>C,+a+...+C,j~UB.

Hence the infinite series 2 ^ whic^h is less than

5(1+ 8) for every positive 8. That is, (J + B.

But we can repeat the argument of the first step to show that

B < C. Hence B = C\

COROLLAEY, // each in the array is positive, and if we

know that 2 has a finite sum B, then the array has a sum by rows

and a sum by columns, each equal to B.

By the argument of the third step, we obtain B " C] and

by the same argument aj)p]ied to rows we obtain B — R.

A convenient name for B is ‘the sum by diagonals’.

3. Absolutely convergent double series

Theorem 58. If the array

«11

^•21

ai 2

«22 • • •

^In

«,«1 ^m2 , . , ^mn

is such that the array got by replacing by its absolute value,

has a finite sum by rows, then the original array has a

finite sum by rows R, a finite sum by columns C, and a finite

sum by diagonals B
;
moreover, R C = B,

Consider two arrays, of which the first consists of the positive

terms of the given array, and zeros in the places of all the nega-
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live terms. This array will have a finite sum by rows, It' say.

By Theorem 57, it has a finite sum by columns, C' say, and a

finite sum by diagonals, B' say. Moreover, again by Theorem 57,

J?' ^ C" - B'.

Let the second array consist of the negative terms of the

given array, but with the sign changed, and zeros in the

places of all the positive terms. Then, with an obvious notation,

W' C" B"
as before.

It is easy to prove that R = R'~R", that C — C'~C", and

that B B'-B".

(k)KOLLARY. The result of Theorem 58 also holds when the

a,,,,, are complex numbers.

AVe merely need to write + consider

the real and imaginary parts separately.

4. An example
ly

1+32"’"1+Z«“*'1+26
+ -

can be considered as the sum by row- s of

s — -\-z^ —z?
+^10 ,

(
1
)

The array with absolute values has a finite sum by rows if

has a finite sum. But, if S is any positive number less than

unity, and if [z] < 1— S, then 1— 12:| ^ S, and so

1-1^12 >s, ..., 1-|^|2^>8.

Thus the terms of the series (2) are less than those of

S-l{|2l+l2l2+l2l3+...}.

Hence (2) has a finite sum whenever |2| < 1.
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The sum by columns of the original array is

Hence (1) and (3) are equal when \z\ < 1.

(3 )

Examples XXII

Some of those examples are taken from Brornwicli, Theory of Infinite

Series,

1.

Given that, when i > 0,

i- -1 ' -- +. '-2
--

writcj down tlK' array whoso sum by rows is

and henc(i sliow that this series is equal to

i+ ..A
. + .

Hint. - I ^.if 1 -- ^ - ].

2.

(Harder.) Provo that, when |x| <1,

a: a;2 3-“
,

l+x jl+.r=
, ic

i

1 - X + i +
1 ^ 1 - 3. 1 -3.^ 1 - 3.3 1

- •

[An extension of Theorem 57 is required in that the right-hand side

is not a sum by colunms.]

3.

Prove that, when |,r| < 1,

X X^ ^ .T® X a;® .T®
* ""

l- x^' i_.^ro
~ •

X
__ ^ x® X iC®

' l+o;® 1 -j-o; l -ha;® 1 -f-a;®

4. Show that, if
l^’l <1,

X 23.3 33.3 X .^2 x^

i-f X 1+3.3 l-j-a;3 (l-f.'r®)®'

X 3a;® 5a;® :r(l-f.t;2) a;3(l

(l-x®)® (1~
+ a:«)

3.0)3

5. Show that, when
Ig] <1,

1 + r' +l-g
16(7® 24g3

lq.gr2 1— ^3
i+-

(l-S)
+ .

1?'
3 ^(l+ ?3)

+ .
83’

3 + (l-g’
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6. Prove that, when 0 < c < 1,

00

1

c(c-f 1)

2 ! 2 -
c(c-}- l)(c±_2) n;-

3!
=- 1.

7. If the terms of a doubly infinite array can be arranged in a
single sequence (b^) such that ^ |

is convergent, prov^e {vide Theorems
57, Corollary, and 58) that the double series has a sum by rows or

columns equal to 2
8. (Harder.) In the double series

ni.n

where both la and n run from — oo to -f-oo, and the dash denotes the

omission of the term m 7i = 0, show that the number of terms for

wliich |'a?>|-[-
I

—= r, a positive integer, is 4r; that for each such term
r'i m^-\ Hence show that the double? series converges if and
only if 2 docs.

4440 u



CHAPTER XVIII

INFINITE PRODUCTS

1 . The convergence of infinite products

1 . 1 . We recall three properties that were proved in

Cliapter XII. These are:

(i) if oc, then

(ii) log(l-[“-r) < X when x is positive
;

1 ^
(ill) ^ < log

^
, when 0 < | < 1.

1—f

1 .2 . We say that the infinite product
00

XT ^'n
n-^ 1

is convergent if ziz tends to a finite limit as n

tends to infinity; v is called the 'value’ of the product.

If all the are positive, we may write

^log III 4 W2 +... Wn

,

J^y (i) above, if J logi/„ is convergent and u is its sum, then

as7i~>oo.

Moreover, if ^ diverges to plus infinity, then

and if ^ log diverges to minus infinity, then -> 0.

1 .3 . Tjieohem 59 . Lei (a^J be a sequence of j^ositive numbers

less than unity. Then, as ??i -> oo,

VI m.

n (l+«n). IT (l-«n)
n-=l 71=1

converge to finite, non-zero, limits if ^ is convergent; if ^ <^n

is divergent, then the first product +oo, and the second pro-

duct 0.

We note first that, by the hypothesis 0 < < 1,

log(l+a„), {_log(l-a„)}

are positive numbers.

Let 2 be convergent. Then, by (ii) of § 1.1,

log{l+a„) < o„
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and 2ilog(l+«„) is therefore convergent. Hence, by (i) of

§1.1, the first product converges to a finite, non-zero, limit.

Again, by (hi) of §1.1,

{-log(l-a„)} < < Ka,^,

because (1—

^

is a sequence that -> 1.

-> 0 since 2 convergent.]

Hence ^ convergent; so also is ^ log(l-~a,J,

and the second product converges to a finite, non-zero, limit.

Now let 2 divergent. Then, without recourse to

logarithms,

(
1

1

C/o) --- 1 -j-Uj-j- ^2

and (I-(- aj)(l -|-a
2)...(l+u,J >

Hence the product

(l-f-ai)(l-fa2)...(l-faj

increases indefinitely.

Further, l-a„ < . >

as we see by cross-multiplication. Hence

is less than the reciprocal of (1 +ai)...(l and so tends to zero.

1.4. As in the case of series, -> 0 is a necessary but by no

means sufficient condition that JJ (l~fa,J should converge. For,

if the product has a finite, non-zero, value, P say, then

(l+ai)-(l+a„-i) and (l+ai)...(l+a„)

each converges to P as oo. Hence l+a^^ 1.

2. Absolute convergence

2.1. The series 2 have a sum independent of

the order of its terms, and so n (l-fa^J will have a value

independent of the order of its terms, if 2 |Jc>g(l+^?,J| is

convergent.

Before we give a formal definition of the absolute convergence

of a product we prove that

A necessary and sufficient condition for ^
convergent is that ^ \(^n\ convergent.
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If the first series is convergent, then so is

so that log(l-f a„) -> 0, and 1. Hence -> 0 and

^ N , \^j,\ <\ when n N,

When n ^ N we have

and so

Hence

log(l+a„) = a„-lal+la^„-

log(I4-«„)

a-n
t> “T o

1+1
2^

1

2'

log(l+^J
(
1
)

Accordingly, |a,J < 2|log(l“pa„)| when n ^ N, and so ^ \^'n\

is convergent.

If 2 l^>, I

is convergent, then again *-> 0, and (1) proves

that |log(l+a,Jl < f|a,J when n > W. Hence ^ |iog(i+^/i)i

is convergent.

2.2. Definition. The product J][ (l+a„) is said to be abso-

lutely convergent if ^ a,^ is absolutely convergent.

By what we have jiroved in § 2.1, this definition is equivalent

to saying that the product is absolutely convergent when

2 log(14-<^„) is absolutely convergent. Sometimes the one and

sometimes the other definition will be found in more advanced

work.

3. Uniform convergence

If the are functions of a variable x, and

Tni^) = {l+«l(^)}-{l+ Gfn(^)}>

tKe product is said to be uniformly convergent if the sequence

Pjfx) is. The properties ofuniformly convergent sequences have

been considered in Chapter XI.

The one test that is adapted to products is the analogue of

the M test for series.

Theorem 60. If when a^x^b, and if

2 ^ convergent aeries of positive constants^ then the sequence

pj,x) converges uniformly in a < x < 6.
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By the Iftest (Theorem 35), 2 i

uniformly convergent

in {a,b). Hence, by an adaptation of §2.1, 2
and so also 2 converges uniformly in (a, 6). If

the latter series converges uniformly to the sum u{x), it follows

that converges uniformly to

4. A test for non-absolute convergence

Theorem 61. // — 1 < < 1, and if 2 convergent,

then

(i) n (1-f converges when 2 <^n.
converges,

(ii) n (1+U/J “> +00 7vhe7i 2 +00,

(i») n (1 + a,,) -> 0 v)hen 2 “OO.

7/ - 1 < a„ <l,and if 2 On is divergent, then n (l+^'^^) ^

when 2 cin bounded.

The proof depends upon the identity

^
r.- 1 — 0

1+/. 1+t’

which, upon integration, gives

?/

J
tdt

r+<
»/-log(l+2/) ( 1 )

when —1 <y< 1. Moreover, the left-hand side of (1) is

clearly positive when y is positive
;
when y is negative, equal

to — 2; say, the substitution t = —6 gives

V
C tdt _ C b

J l+^“ J 1

Ode

~e
>0,

0 0

and again the left-hand side of (1) is positive.

Hence, for any integers N and p,
NN-Vp

0 < 2r^N
N-^ p

- 2 log(l+a^)
r^N fjr

dt

I+ i5

(
2
)

Suppose now that 2 convergent. Then -> 0,

1+a^ 1 and, since 1+a^ > 0 for each n, there is a positive

K such that (Chap. V, § 1.2, lemma)

1+^^^w ^ K > 0 for all n.

Moreover, since some are negative, A < 1

.
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It follows that

when < 0,
J
0

Hence, from (2),

iN

0 <

tdt
~

\\
tdt = M 1 ,< —TV®:

1 +^ J1 2/s:
‘

0

1"/I \ar\

t (It
1[

e (Id 1

f OdeKl+^“ J i-e" J

X ] p iV f 1

2 1 log(l+a.) < T
r^N r=.V

r̂^-N

Hence, by the general convergence principle (Theorem 21), if

both 2 convergent, then

convergent, and (i) is proved.

If 2 convergent, and if ^ +oo, then (3) shows that

2 log(l+<3f;.) must also --j- oo, and (ii) is proved.

If2 is convergent, and if2 ~oo, then (3) shows that

y log(l+a^) must —00
,
and (iii) is proved.

The last part of the theorem follows from (2) on observing

that, in each integral, 0 < 1+^ < 2 throughout the range of

integration, so that

N-ip N + p N^-p N + p

2 ffr- 2 log(l+a,) > i 2 ( i I, «?•
r-.V r-.V r =V • r=V

Examples XXIII

1. Prove that each of the products

fl(-i). n(‘+-rJ
n=l n=2 n~l

converges to a finite, non-zero, limit.

2. Prove that

fl ('-;)• fl('-3
w = 2 »=

1

each tends to zero as N-> oo.

3. Prove that the second product in Example 2 tends to infinity when
0? < 0.
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4. Prove that

llog(l + ^)-.
2n^ 3n®

Hcnco show that, if

H—,— • l + + .

|log(l <^[l+i+ i + ...

when n > 2A.

5.

Provo that

CO

ni'+S'""
is (i) absolutely convergent for any fixed Xy

(ii) uniformly convergent for \x\ < Jl, where A is any fixed number.

6.

Prove that
n(--,s.)

is (i) absolutely convergent for any fixed r,

(ii) uniformly convergent for |x’| < Ay where A is any fixed number.

7. Verify the identify

-—+"V’-
Prove that, when x > 0, the product 0 as n —> cc.

8. By means of Example 7 sliow that

when a; > 0.

9. Prov’o that, when |^| < 1, each of the products

9o = n(i-9'"). gx=-- n(i+9“").
1

, ,9
9. = n(i+9^"-^). 93 = n(i-9‘'"-'). >

’

is absolutely convergent.

Prove also that

9093 == n(l-2”)> 9i 93 = n(l+ 9").

and 9i9393 = 1;

further that

(l+ g)(l+ g5Kl+3>)... = l/(l-g)(l-g»)(l-g%..

10. Provo that, when \x\ < 1,

(l+a:)(l+x»)(l+**)(l+a:»)... = (l-ar)-i.
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12. {Harder.) Find tlie limit as n —> oo of

when 0 < g < 1.

13. Prove that

m ^ 0

] 1 ]

t /-fi /{?+])’

i t+l {r+l)(Z-h2)
“

t(^Tj)(i+2)’

and, more senerally, tlint

2(.tt ^^-l (^-f i 1)
r-l

14. Use Examples 3 and 13 to prov(' that

i j-
-I- y

t < fi ' z.

1 5. Prove that if b > then

n(o -I !)...(« -I n)^

l')(6d-l).::(6 j-n)
^

provided that 6 is neither zero nor a negative integer.

-r-r b-\-n , h— a
Hint. —

. H ,

a-f n a \ n

and the series {a -j-n) ^ is a divergent series whoso terms are ulti-

mately positive.



CHAPTER XIX

THEOREMS ON LIMITS: CESARO SUMS

1 . A general theorem on limits

1 . 1 . Thkorkm 02. If {b,^) is a sequence of positive numbers

that increase steadily to H-oc*, and if the sequence {a^^) is such that

n
^ finite limit I, ( 1

)

+1

then also ^ 1. (2)

In the first instance, suppose that I - - 0 . Then, by hypo-

thesis,

e,/; > 0
; 3 N . -ek < < el: when n > N.

K+i-K
Since b,^ positive, we have

Write clown tJiis inequality for n N, N -| 1 ,..., N -4-p— 1
,
and

add: we obtain

A fortiori

Hence , , , ,

<ek+p'.
A p

But, if N is kept fixed and p 6 vf;> ->oo (by hypothesis).

Hence 3 P . \a^\lb^yj^j^ < ei: when p ^ P, If, then, we take

Jc i at the start, we have proved that

6 > 0
;

3 numbers N, P . 7
^ < € when n N-\-P,

1

and the theorem, with Z — 0
,
is proved.

Now suppose that Z 9=^ 0 in
(
1 ). Write

Ajf ^'n

so that ^
» +1 ^ y±i“y — l-^o.

^71+1 ^71

4449
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Then, by what we have already proved,

i.e. ^—K K
and the theorem is proved when I has any value.

1.2. The converse of the theorem is not true as a general

proposition. Because (2) holds it does not follow that

will tend to a limit. For examjde, if

then 0; but

^2/? __ 2
^2n ^2/?- 1 j

^2rt4l ^2^ ^2n-l

SO that (a,,
\

cannot tend to a limit.

2. Particular cases of Theorem 62

2.1. When ??, the theorem takes the form

(i) if ^3r».a—

L

then also — L
n

When we put — Q:i+a2+-*-+ ^>^n
iu (i), we have

(ii) if oCr,.ii->l, then also
+

n

a theorem that is frequcuitly used in advanced work on series.

Turning now to products, we have, on putting

--- Icg^^
(ft,, > 0),

(hi) if ft, /3, then also !^(ft ft...ft,)

Again, if we put

Pi == Pn == I'W'hK-iI > 1),

we have

(iv) if
\

-> p, then also p.

Finally, as a numerical example, put

so that -> e. Since

op p (?l-f-l)’^

PlP^-'Pn —

»
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the form (iii) shows that

n+l
or

n

2.2. In each of the particular cases (i)“(iv) tlie remark made
in §1.2 about the general theorem still holds. The first limit

need not exist because the second does.

3. Conventional sums of non -convergent series

3.1. Suppose a sequence is given. Then the sequence of

its arithmetic means

+
n

1,2,3,...)

cannot fluctuate with greater violence than does the sequence

it may well fluctuate with less violence. Modern mathe-

matics makes considerable use of non-convergent series by

means of a technique that began with this simple considera-

tion.

The ‘sum’ of a series, as w’c have hitherto used the w^ord, is

defined thus:

The sum of ^ ~ s,^->s.

There are many series met with in analysis for which (.•?„) is

not a convergent se(]uence, although its fluctuations are mild

enough to be ‘ironed out’ by the process of taking arithmetic

means; that is to say, (s^^) is not a convergent secj[uence, but

is. It is natural to take the limit of as the ‘sum’, in a

sx)ccial sense, of the series in question. Such a sum is called

the (C, 1) sum of the scries, the C recalling its inventor Cesaro

and the I denoting the first of such sums (the second, third,...

being derived from similar, but less simple, considerations).

Definition. The series 2 to have a (C, 1
)
sum s if

s as n -> 00
y
where

tn n
™ Wi+ 'Z/2+*--+ ^71*

3.2. It would lead to intolerable complications if it so

happened that a series might have one sum in the ordinary



15C> THEOREMS ON LIMITS: CESARO SUMS

(convergent series) sense and another sum in the ((7, 1) sense.

But, as we see by Theorem 62, particular case (ii),

if .9, then -> s]

that is to say, if a series is convergent, then its {C, 1 )
sum is the

same as its sum in the ordinary sense.

As it is rather unsatisfactory to have such an indirect proof

as tlie one we have just given, we shall give a direct ])roof.

Thkorem 63. If s, and if

' n
~

5

n
then s.

Wc have at once

tv

The sequence and so, by Theorem 1, is bounded.

Hence

(i) 3 K . — cvj < K for all

(ii) € > 0; 3 N . when n N,

Take a definite such value of xV
( > 1) and let n > K. Then

<-'?l

{N-~\)K {n—N-\~l)e

n 2n

(N~l)K
n -+k

But A\ K are fixed, and we can make the last expression less

than € by taking 7i 2(iV— 1)A€^^. Hence

€ > 0; 3 Ni . 6*1 < € when 71 > A^.

4. The more general form of Theorem 62

The full force of Theorem 62 cannot be realized from the

elementary point of view, which confines itself to sequences

that tend to a limit. The two limits

lim oL^ and lim

are necessary to a full statement of Theorem 62.

We refer the reader to the appendix for a definition of these

;
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meanwhile, we note that, if (b.^) is a sequence of positive

numbers that increase steadily to +oo, then

^n+1

and a sequence converges to a finite limit a if, and only if,

liin -- lim —- a.

If the two extremes of (1) are equal, the middle terms must

be equal and have the same value as the extremes; but the

converse is not necessarily true, since the middle terms may be

eq\ial and the extremes unequal.

Examples XXIV

1.

Prove that, if

r(rfl) r(r -f ] ).,,{r-\~7i — 1)

^o»

and yl5[’ (r-l- I )(;•
I
2)...(c+ H)/n!,

and if ""/d j[' - > Z, tlinn, provided fhiit r : 0,

-'’r/.-i::’ -> i.

2. If —> s as n —^ cc\ prov e tliat each of the sequences

(i) 2/i.-2(s„-i-2,v -I nui),

also tends to s.

3. {Harder.) P{n) denotes the sum of the products, in pairs, of the

ptli powers of the first n positive integers; j^rove that, it />+! > 0,

Pin) ]

(/vr+lp+2 ^2(p+l)2

4. Prove that the (0,1) sum of the series

is

5. If “> a and 6,^^
-> b, then

- («! 6„+a26^1+ ... +a„ &i) ah.

Hint. Prove the theorem first when a — 6 = 0. To do this, note that
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one of the s\iffixes r, n— r must exceedN if n > 2A^. Lot |a „ |

< ^ < B
for all n. We have

€, /j > 0; 3 N , < e/t, < ek when n > N,

Hence*, when n > 2JV and K is any fixed number > A, B,

— (^1 ••• ^i) <Z Kekf
m

and the result follows on taking k 1 /iC.

6. If 2 is a divergent series of positive terms and (djc.f^) -> s, then

also {(di-fdj.4 4- d,J/(Ci-f C
2+ ..- + (^J}

->

Hint, Put ...4 in Theorem G2.

7, Ifp „ is positive and {p„/(Po 1' ••• +Fii)} 0, prove that -> s implies

?hr'>o+Jh>-i^ i + - ±VpJj, ^
l^n+Pn-l+ --i-pO

Hint. Cf. the method of proving Theorem C3.



CHAPTER XX

FOURIER SERIES

I. Periodic functions

A function f(x) such that f{x) f{x+Q) for all values of

Xy where is a constant, is called a j)eriodic function of Xy

and Q is called the period of the function. For exami)le, sinx

and cosx are periodic functions.

If we are given a series

oo

71 -1

that converges for all values of Xy then its sum is necessarily a

j)eriodic function of Xy for each term is unaltered when 0*4-277

replaces x.

The problem of this chapter is to find when, given a periodic

function f{x), of period 277, the function can be exiiressed as the

sum of a scries of type (1).

2 . Elementary properties

The following facts in integral calculus form the basis of all

tlic subsequent work. Throughout we use m, n to denote positive

integers or zero.

TT TT

J
cosmxcosnx dx ~

| J
{cos(m4-^)^i^4-cc)s(7a--?i).T} c/o:

~-7T — TT

“ 0, 77 according as m n, m = n;

tr TT

J
sin 7TO* sin n.r rfo: = i

J
(cos(m“?i)o:— cos(m4-w)^}

= 0, 77 according asm ^ n,m ^ n\

TT rr

J
COS mo: sin wo: do: “ I J

{sin{w4-wi)o:4-sin(w--m)o:} d^o:
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TT

I*

COS mx dx ™ 0, 277

— TT

according as m > 0, vi — 0;

TT

I*

sin m.r — 0.

— TT

3. Fourier series

3.1. If numbers ^re derived

from a function f{x) by means of the equat ions

TT TT

TTcr^^ —
j
f{t)cosnf di, 'TTb,^^

^
f{t)iim7it dt, (2)

— TT - TT

then the series
00

2 (^^/t
sin nx) (3)

w — 1

is called tlie Fourier series of/(:r).

The series (3) is not necessarily (‘onvergent because the

numbers b,^ are so defined; even if the series is convergent

its sum is not necessarily /(a::), though it often will be.

The numbers b^^ are called the Fourier coefficients of

/(^)-

3.2. The relations between a function f{x), its Fourier

coefficients, and its Fourier series have been the subject of

extensive research.*}*

We shall here prove only two theorems, Theorems 64 and 65,

both concerned with stating conditions under which a Fourier

series can be used to represent the function from which it is

derived.

Theorem 64. If the series

CO

2 + bn sin nx)y
n~l

where the a„, b,^^ are constants, is uniformly convergent in (— 77
,
77 ),

and iff(x) is its sum, then it is the Fourier series off{x).

t See, for example, A, Zygmiind, Trigonometrical Series (Math. Monographs,
Warsaw, 1936), where the theory of Fourier series is developed.
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The proof of this theorem is a straightforward deduction

from the properties we have given in § 2. We have

00

f[x) = 1^0+ 2 + b^sinnx). (4)
n = l

Since the series is uniformly convergent in (—77,77), we may
multiply by cosm:r (m ^ 1) and integrate term by term. When
the integration is from —77 to 77, all the terms of the resulting

series are zero (by § 2) excepting only

rr

^
coshnx dx,

~7T

whose value is Tra^. Hence

rr

=
I*

f(x)cosmx dx (m = 1,2,...).

— 7T

Similarly, „

Trh,^ = J
f{x)smmx dx (m = 1

,
2 ,...).

— TT

Finally, on integrating (4) as it stands, the results of § 2 give

rr rr

J
f(x) dx = 1% j

dx = TTa„.

— n — TT

This last step shows that the term (and not a^^) is necessary

if the definition of by means of (2) is to hold for n == 0 as

well as for n ^ 1.

3.3, The other theorem we shall prove is much more difficult

to establish. It will form the basis of the examples we shall

give and is, par excellence, the practical form of Fourier’s expan-

sion of a function in a series of sines and cosines.

We need a preliminary definition.

Definition . Iff{x+ h) tends to a definite limit as h tends to zero

through positive values, then this limit is denoted by f{x-\-Q),

If f{x—h) tends to a definite limit as h tends to zero through

positive values, then this limit is denoted by f{x—0).

If a function is continuous at x, then

f(x+0) = fix-0) =fix).
Y4449
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Examples.

In Fig. 1 we have the graph of a (‘ontinuoiLs function.

If we take any definite x, say x ~ - I
,
then

f(l+h) ->/(l) as h 0, so that /(I +0) --/(I);

/( 1 -- h) -->/(!) as h 0, so tliat /( 1— 0) ~
^ /( 1 ).

In Fig. 2 we have the graph of a function that is discon-

tinuous at X — 1, 2,— When h is small and positive the

point {l—h,f{l—h)} lies in OA; as A -> 0, f{l ~—h) -> 1. That is,

/(l-O)^ 1.

On the other hand, the point lies in CB; as

}i 0, jf(l-|“7i') —> 0. That is,

/(l+ O) - 0.

3.4. Theoeem 65. Letf(x) be a periodic function of period 277,

80 that f(x-\-^n) = f(x); let \f(x)\ be integrable in (—77,77) and let

a^, b^ be its Fourier coefficients. Then

+ 2 (o„co8»a; + 6„sinna;) = l{f{x+0)+f{x—0)} (6)
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tvheiiever

(i) the series is convergent

and (ii) the limits on the right of (5) exist.

The limits /(.r+0) will not exist for all functions; for example,

does not ap])roach a definite limit as h -> 0,

3 .5 . We return to a proof of Theorem 65 later. We first

dispose of more elementary considerations, assuming mean-

while the main result of Theorem 65, namely, that with the

given (ionditious

'eguation (5) holds whenever both sides make sense'.

Let a function /(;r) be given, not necessarily periodic. Define

a new function thus:

When —77 < X < tt, define F{x) to be f{x)\ for other values

of X let F{x) be defined by the relation

Fi(x-\-2TT) ^ F{x).

Then, if |/^(.r)[ is integrable in (—77,77), its Fourier series, when

convergent, has for its sum

|{F(;r+0)+ F(;r-0)}.

We assume, of course, that these last limits do exist.

In the interval — 77 < x < 77, this is |(/(x-|-0)-f-/(x— 0)}. But

F(77-|-7^) — ^(77+^^

—

277
)
— F{— 7T-\-h) = f{

— 7T~{-h)y

and F{7T~h) =f{7T—h),

so that F(77+0)+ F(77-0) =/(-77+0)+/(7T-0).

Hence the sum of the Fourier series of F(x) at x = 77 is

2{/(—^+0)+/(Tr— 0)}.

Outside the interval (-—77,77) the Fourier series is related to

F(x) and not to/(x).

3 .6 . A worked example. Find the Fourier series that represents

e^ in —77 < .X < 77.

The function is not periodic and so, in order to have an

appropriate periodic function, we define a function thus:

Let /(x) EE when — 77 < x < tt,
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and let f{x) be defined for all other values of x by means of the

equation = f(x).

For example, the value off{x) when x = would be given by

/(Itt— 27r), i.c.

The Fourier coefficients off{x) are given by
TT

ttUq ~ j
dx — 2 sinh tt,

7T

J
e^cos mx dx

(- 1
)- 2 sinh TT,

, r r • J (“1) • 17Tb„.~ e^miinxdx — „ - 2smh77.
J m^-j-

1

— TT

Hence the Fourier scries of f(x) is

(cos 7ix 71 sin 7?a:)|
. (0)

77 12 Zw I

^ 71=1 ‘ ^

Each of the series

2 (— l)^* cosna*/(n2+l)) 2 (— l)”^^sinnx7(7i-+l)

is convergent [cf. Chap. IX, §3.5: (— l)^^sin?la: = sm7i(a’+7r)].

Moreover, when ~tt < x < tt,

f(x-\-0) ~ lim == e*^,

A->0

f{x—0) = lim = e^.

?i-^0

Hence (6) is equal to when —tt < x < tt.

When X -- tt or — tt we must consider carefully how f(x) is

defined. By definition, when h > 0,

/(TT-j-h) = f(7r-i~h—27r) = so that/(7r+0) — e-'^,

f(iT~h) = so that/(7r— 0) =
Hence, when x = tt, the sum of the series (6) is not but is

Similarly,

/(— TT+ZO = and /(—tt+O) =
Zi-) =/(—77—^+277) = and /(— 77— 0)

=
The sum of (6) when x == — tt is, therefore, i{e~‘^+e^).
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4. Sine series and cosine series

4.1. If/(a;) is an evenf function of x, then

TT

J
f{x)siiimx dx = 0

— TT

and the Fourier series off{x) is a series of cosines only.

Similarly, if f{x) is an odd function of x, then its Fourier

series is one of sines only.

4.2. We can find series of sines or cosines, as we wish, that

are related to a given function f{x) in (0,77), though not

necessarily so related outside this interval.

Take any function /(:c) that is integrable in (0 ,
77

)
and define

two new functions thus:

in 0 < a; < 77
,

let cl)(x) = f(x), ^x) = /(x);

in —77 < a: < 0
,

let (f>{x) =r= f(--x), tp{x) = —/(—
for other values of x let be defined by the periodicity

equations
^(^^ 077

) (f){x)y ifj{x+27r) = tp(x).

Then the Fourier series of the even function <f){x) is

00

I% COS nx, ( 7

)

TT rr

where 77^^ = |' ^{x)cosk'x dx = 2 j
f{x)cosk'x dx.

0

Assuming the Fourier series of (f){x) to be convergent, its sum
will be when these two limits exist. This

sum is:

for 0 < a: < 77, l{f{x+0)-{-f{x-0)} ;

for x = 0, l{f{+0)+f(+0)} i.e. /(+0)

;

for a; =- 77
,

|{/(7r— 0)H-/(77— 0)} i.e./(7T— 0).

For other values of x the sum is related to and not to f{x),

t Definition. f{x) is an even function of x iff{~x) = f{x);

J(x) is an odd function of x if/(— a?)
==

When f{x) is an even function.

It ^ Tt

J
J(x)^\ixmxdx = J

J{x)8,mmx dx —
J

/(i)sinm< df = 0,

-tt 0 0

as we see by putting ^ — a; in the interval —tt < a; < 0.
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The Fourier series of the odd function iIj(x) is

00

2 sin 7ix, (8)
11 — i

rr 7T

wliere Trbj. ----=

j
0(.r)sin ^ J

— tt 0

The function -1-0) — 0)} is i[f{x+i))+f(x—0)} when

0 <C ir <' 7T.

AVlien X ^ ^ (),7r the sum of (8) is (‘learly zero. For values of

X outside (0, tt) tljc series is related to ip{x) and not necessarily

to/(a^).

4.3. A tvarked exam pie. Tofind the series of sines that reijresents

x^ in, 0 -c X <: 77.

Let f{x) --- XX when 0 x < tt,

f[x)
— —r- when — tt x < 0,

and Iet/(.r) be defined by the periodicity equation

/(x+ 27t) ---/(;r)

for values of x other tlian — tt < x tt.

The Fourier coefficients off{x) are given by

-- 0, since /(:r) is an odd function,

TT

ttI)^^ ~~
2

I'

rr^sin va: r/:r

0

‘>7r2/_ 1 V<-ll 4

n nx
(
9

)

The Fourier series off{x) is 2 where is defined by (9).

This series is convergent (Chap, IX, §3.5proves2 ^

^

to be convergent) and its sum is l{f{x-{-0)-\-f(^— 9)}*

When 0 < .r < tt, f{x-\ 0) ~ f{x~{)) ^ x-, and so the sum
of the series is x^.

When X --- 0 or tt the sum is zero: outside (0, tt) the series does

not represent rr-.

5. Intervals other than (— 77 , 77 )

5.1. If we require a Fourier series to represent f(x) in

(0,277) we proceed as in §3.5, but we use
(
0

,
277

)
instead of
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(—77, 77 ). Thus, to re])rcsent x in the interval (0, 277
)
we calculate

'^TT ZTT

Zq = X dx, = - a: cos nx dx,
77 J 77 J

0 0

2tt

6^^ = -
j
x^mzhx dx,

^ J

and so obtain

X -- 77- ^2 sin7w:

71
(0 < .r < 277 ).

5.2. We (Uin iriake the interval {a.h) correspond to the

interval
(
— 77,77) by means of tlie transformation

x~a X-\-7r

b--a

i.e.
277X— 77(a -[-/>)

b—a

To represent /(cT) by a Fourier series in (a, b), let J{x) zn F{X)

and let ^

77r;;^, ^
J

F{t)QOS k'f di

— TT

^

7Tk{26—a— b)

b—a
V/?,

'nbj,
I

.F(/)sin kt dt

— TT

h

')~a} b-a
h

)
(W.

Then, assuming the convergence of the series and the existence

of the limits, wo find that
Cf)

sinnX)
n -

1

represents J-{F(X+0)-l-F(X— 0)} in —77 < X < 77; and so

GU p

2 ‘|oo+
I
«« cos (2x-a-b) + b„ sin (2,

b~a
x—a—b)

represents k{f{x+0)-\~f(x—0} in a < x < b.
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6, Proof of Theorem 65

6.1. Theorem 65a. Let \f(x)\ be iniegrable in (—tt, tt) and

let f{x) hai)e a period 2tt; let

TT TT

TTaj.
J

f{t)cosl't dt, Trbj. ~ J
f{t)<sinkt dt, (1)

and let

m—

1

+ +

The?i,for any x such that the limits /(-^-fO), /(.r— O) are defilled,

First step. By (1) and (2),

COS 7n{x—t)f{t) dt

r sin{(n+|)(.r— /)}

27r J sin
fit) di,

on summing the series |4-cos(a:— /) + • •+ cos7?(3:~-/).

Now put t—x — 7/; we get

TT —X
1 r sin{n+|)w.,

,

. ,

«« = • -

1

/(“+^
277 J siniw

— TT —X

But the integrand has a period 27r, and so its values from

— 77~.r to —TT are repeated in its values from tt—x to tt. Hence

I r sin(7i+|)?^

277 J sin|u
'
f(u-i-x) du

1 8in(?i+|)i^

277 J sin ku
{f{x+u)-\-f{z-u)) du,

on writing —u for u in (—77, 0).
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On summing sin|'Z^4-sin|w-f---+sini(2n--l)t^, we get

0

But we also have, on taking the particular case /(a:) ^ 1 (when

2 is the only Fourier (coefficient that does not vanish, and

so ,9,,
r:“ 1 and 1),

TT

, 1 C ^inHnu^ yr sin^J^

ITT J sin^J

If s is any given numl)er, then, by (5) and (li),

7T

0

where (f){u) --- f(;x~{-u)+f{x~u)— 2s. (8)

Parenthesis. What we have to prove is that (7) will tend

to zero as n tends to infinity ifwe take 6’ to be 0)+/(‘t^“0)}-

The first step has been concerned solely with arriving at a

suitable form for

Second sfej). Let 8 be any fixed positive number less than tt.

Then
TT

I

TT

1 [ dit cosecr?>(8 f Wu)] du. (9)
n j n " J

a
"

8

By hyjiothesis, |/(a:)| is integrable, and so the integral on the

right of (9) is a finite number, independent of ?i. Hence (9)

tends to zero as n tends to infinity.

This disposes of the interval (8, tt). We begin our attack on

the interval (0, 8) by noting that

cosec-J — ( I u)

is bounded in (0,8) (expand (sin |?/)“^ and use the analogue of

Chap. XV, §4). It follows that

<l>{u)
\

du 0.
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But the expression (9) also tends to zero, so that (7) will tend

to zero if, with a definite positive 8 less than tt,

8

1 r BinHnu

-fn J u-
<f)(u) dll -> 0.

(
10

)

Third step. Suppose now that x is a value for whieh

¥J + iO+/(^*— fi)}

is defined—i.e. the limits exist—and put cS

<f>{u) f{x+u)+f{x—u)—f{x+0)—f{z—0),

SO that, by the definition of ^(u)y ^ 0 as u~> 0. Hence

e '> 0, A > 0; 3 rj . < ^/A when \u\ a rj.

We now take a definite rj, choosing it to be less than 8.

Then, for all ??,

I

O

iif
\nj

!1 r sin--in?^ j

€ r HinHim j ,1 r s

Tnj .V
1 r sin^^m/^

A
6

- A+4
say. But, on putting v hm in the first integral,

\(l>{u)
\

du

T? \nj] oo

1 r sin'^in?/ , 1 r sin-?; , If sin^?;
o - du ~ -

I - „ dv < -
I

- „ dv,
n J 2 J 2 J

0 0 0

which is a positive constant; if we take

CO

we have, at this point, 0 < 7, < .ie.

Again, 0

<

n}
du,

u

j
\^{u)\ du.
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Since tj, 8 are fixed, we can find an N for which

0 < /2 < 2 ^ when n ^ N,
Hence

s

0; 3 iV . r du
J u-

€ when n N.

That is, (10) is true and, by the second step, (7) -> 0 as cc;

;

l{/(-r+ 0)+/(rc- 0)}.

6.2. If, further, tends to a finite limit, that is, if the series

-f 2 («,„cos»«a:+ 6,„smmx)
Uk 1

is Iconvergent, then (Theorem 63) tends to the same limit as

does Hence Tlieorem 65 follows from Theorem 65 a.

1 . Provo that

rr— x

2

Examples XXV

II .r Hin2:r sin 3.r

1

- r -2 + 3
- r... (0 27t).

2. Prov(‘ that the function /(^), wliero

J(6) -- ld{7T— (x) when —oc < 0 < oc (< tt),

f(d) ~ lain— 6) wlien a < 6 < 27r— a,

can be representiMl in ( — ci^, 277— a) by the serit's

X J^in nOsin Jta.

3. Prove that, wlien 0 < x < tt.

- - (cos X -
f- cos 3x f “ cos 5x 4 - . .

.
)

.

77 \ 5^ /

4. Find the cosine series that represents x- in (—77,77).

5. Show that 2 6„ sin /i,r, where

,
H 7l7r . niT . 7177
cos-^sm-sm---

represents in (0,7r) the function 2 {/(.i!^ p0 )-{ /(j: - 0)}, whore /(a;) is J 77

when 0 < x < J 77 , is zero when ^77 < a: <§ 77 ,
and is —^77 when

§77 < X < 77.

6 . Prove that, in —77 < x <77,

a;-f = |77^4-4(— cosa;-|-isina;)-|-(cos

2

j:— sin 2u;)4 ...

.

7. Provo that, if — 77 < x < 77, then

|7r2 4_4(cosir— Jcos2a; 4~ J eos3x’— ...).



MISCELLANEOUS EXAMPLES1.

Prove that ^ is convergent wlien \z\ < 1. If Fj.(z) is its siun,

show that 1

and that, when h is a positive integer,

trn = (-YAr
,(i-zY-’'+^’

wlu'ro the A, are positive constants. (Use induction.)

2.

From the formula
I

9 SF Bin

1 ji^COi^O — C30s2rL\:’

wliere a — 7r/a, deduce that
n -

1

r= 1

3. Given that 2 divergent series of positive terms, show that

2 convergent and 2 divergent.

4. Show tliat the double series

y y (m,n = 0,1,2,...)
Zw ^ mlfil

converges by rows or by columns to (1 — a’)“^ provided that —2 < a* < 1.

5. The series 2 conv^ergont, and

n-fl n-\-2

Transform by Abel’s identity (sum the a’s, and difference tiio

l/(a+r)
; see p. 62) and prove that —> 0 as n oo.

Show further that, if =:^ + — + + + +
then — (n+ and hence sliow that 2

6. Discuss, for all real values of x, the convergence, and in particular

the ranges of uniform convergence, of

2 n~^(l -f

7. Find the suras of the series

CO 00

2 (W-n)-\ 2 {(n+l)(2n+l)}-i.
n « 1 71 0

8. If y+y~^ = ^+iT]y prove that {(1 — f2/)(l — ^2/“^)}“^ may bo ex-

panded as a power series in t convergent when |^
|

< ce, where 0 < a> <1,
provided that the point lies either on the ellipse

^2 ,^2

(a»+ca‘"^j* — ca)*

or inside this ellipse.
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9. If a„ is m.d. and -> 0, and if ^(n) == 0(n^^), prove that the con-

vergence of 2 |a„0(n)| implies (Compare Pringshcim’s

theorem, Examples VIII, 12.)

10. If absolutely convergent when \x\ <; R and R > 0,

show that 2 a^^x'^jul conv^crgcs for all values of .t.

11. Find the radius of convergence of the power series

2
1.3...(2/i~l)

2.4...2n

and discuss the behaviour of the series on its circle of convergence.

12.

Prove, by using })art-ial fractions or by any other method, tliat

1 — r cos 0

1 — 2r cos ^4- ^
r- 1 -|-r cos cos 2^ f- ... (|r| < 1),

1 2r cos 6 4

r sin 6

1 — 2r cos 6 H

l4-2rcos^4-2r2cos2^4-... (|r| <: 1),

r sin 6^4*^^«in 2^-|- ... (|r] < 1).

[(l-2rcos6/-hr2) (i_rc*^)(l.--rc-'^).]

13. Find the series of cosines that represents

^ log( 1 — 2r cos 6 4- r- )

,

and hence prove that

— J log(l ~2r cos^ l'^*) == rcos^4~i^^cos2^4---- (|^1 < !)•

14. Use 13 and Abel’s theorem to prove that, when 0 < 6 < 27r,

cos^-|-| cos2^ {-Jcos3^4~--- “ --log(2sin |0).

15. Wlien |.r| < 1, prove that

I log( 1 4 2.r sin 6 4- ^ sin 6 4- cos 26— si n 3^— ...

.

Prove that, when is a positive odd integer,

sin?i^ ?i(n2— P) . P){n2— 3^) . .«
- . = n - A y smW 4-

J; sin^6>- . . .

.

sm 6 3 ! 5

!

10. If2 is convergent, then so is

and its sum —> 0 as n —> oo.

17. Prove that, in the usual binomial coefTicient notation.
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18. Prove that

2/
-= 1 +

L3...2n~l\

2.4...2n /

2

satisfies the differential equation

0,

and find the radius of convergence of the series that defines ij.

19. Prove that 1 —i+J- J H-..., 1 — H J +H 1 “J ” —
scries containing blocks of 1, 2, 3. 4,... equal terms) are convergent series;

but that + +
(with blocks of 1,2,4, 8,... equal terms) is not convergent.

20.

If 6 > 0 and 2 i^ divergent series of positive terms, prove that

n — 1

i_l-_ V (^1-

b Xi
n — 1

21.

The function f(x) is defined by

m --= 2
n = 0

{ix)^

n\

Deduce from the series, and without quoting properties of trigonometrical

functions, that

(i) f(x)j(y) -- f{x+ y), (ii) |/(;i;)| = ], (iii) ~ arg/(.r) .

Prove that/(.r) is a p(*riodic function of .r.

[Note; \a~\~ib\^ - {a~\-ib)((i— ib).\

22.

Use the inequality to show that
00 QO 00

2 «n when 2 2 are convergent. Provo
n~ — QO «= — 00 n — 00

that its sum —> 0 as k—> oo.

23.

The number of sets of values. of (integers not all

zero) whose absolute value < x is (2a;4- 1)^— 1- The number of seds

where these absolute valuers <x is (2.t— 1)^—1. (The m’s may be

positive or negative.) IfS — 2 (^i+^2 4----+ ^’^4)““»arnultiplesum,and

Sg, is the sum of the terms wherein at least one |m| has the value then

^2cc ^ ^ •
~^2(x

”

QO

Hence show that S converges when 2 converges.
*=1
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24. When n is a positive integer, prove that

.

-t

**
... 4

1
(

X a-sn-i >

if |xlis 1-^'\l-x^ <1

and is .._A.
j\

^ +
1-x*”*'"

•+ '
1

if |t| > 1.

25. Sliow that the series

is equal to (1— 2)~^

1*1 >1-

2
^n-1

when |zl < 1 and is ecjual to 2~^(1—2)“^ when

26.t F{z) .

s
,

(1-9)*^ (i-^)(i-g2 ).»

(l-g)(l-2) (I_f/)(1-S)(l_52)

wlicre |2| < 1 and If?! <1. Show that

F(z)-F(qz) =
= (

J

I

(^-g)*
I

(l-9)(l-9=)s=

1-211-32"^ (1-32){1-3*2)^(1-32)(1-3»2)(1-?“2)'^'

: 2(l-2)-».

F(z) = zil-z)~Hqz{l-qz)-^+ ...

00

n^l

27. Difforontiate the result of Example 26 with respect to z and put

z qt to obtain

2
«.= 1

qn
00

1
I

,
, 1

1 - V
1-3 '“1-3=''’ 1-3"/ “ Z, 1-3”'

t Examples 26, 27 are taken from a paper by W. N. Bailey, Journal London

Math.Soc. n (1936), 157.
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1 . The definition of a real number, given in §2, is abstruse

and far removed from ‘common sense’. Some such definition

is a necessity and not a matter of choice. It is ‘common

sense’ to suppose that some ‘number’ corresponds to each

‘length’ of line in a geometrical figure. In each of the two

great constructive i)eriods of mathematics this ‘common-sense’

view has been found unsatisfactory.

In the ancient period the Greeks found that

(a) their theory of numbers dealt only witli integers and the

ratio of integers;

(h) their geometry introduced lengths that (*oul(l not be

represented by such numbers, e.g. the diagonal of a unit square.

Their solution was to accept (a), to build up a geometrical

theory of incommensurables, and to make all geometrical pro-

positions independent of any results discovered by means of

(a). For example, it is almost certain that Pythagoras’ theorem

was discovered by some variant of the argument

The proof usuallj^ given in Book I of Euclid (even in modern

geometries!) is one that deliberately avoids arithmetical

arguments.

In the modern period analysis reached the stage of very

careful discussion of continuity, convergence, and so on, without

any close examination of what it meant by an irrational

number. Cauchy (p. 4 of Cours d'Analyse, 1821) merely says:

‘an irrational number is the limit of diverse fractions which

furnish more and more approximate values of it’, and it is

much later in the book that he builds up his technique of c

and N, now so familiar in the definition of what a limit is.

That is, Cauchy takes the ‘common-sense’ view of what an
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irrational is and then builds up his theory of limits (in the strict

mathematical sense) for both rational and irrational numbers.

Later on, when people were familiar with the idea of limit in

the strict mathematical sense, it was inevitable that some one

should ask, ‘what does limit mean on page 4 of Cauchy’s Cours

d'AnalyseV Whatever answer is given, the result is unsatis-

factory: either ‘limit’ is used before it is defined, or the word
‘limit’ is used in two different ways, i.e. in the first instance

it expresses a vague notion and not a definite one.

All attempts to build up a theory of limits, which shall bo

applicable both to rational and to irrational numbers, are bound

to fail unless they are prefaced by an exact arithmetical defini-

tion of rational and irrational number.

Further, some of the work of 1800-60 showed that geometrical

intuitions, though frequently useful and reliable as guides to

analytical results, were not invariably so. Analysis sometimes

deals with functions y, of a variable x, that cannot be rejire-

sented graphically. Thus, ef. Coursat, Cours d'Analyse, i. 75,

ro

y ^ cos(a”7Ta;),
n --0

where b < 1 and a is an odd integer, has the properties

(i) it is a continuous function of x,

(ii) it has a differential coefficient if a6 < 1, but not if

oh > I+ Itt.

If > 1+ Itt", then any notion of a graph or geometrical picture

of the function is bound to be false: we cannot think of a graj)h

that nowhere has a tangent.

The net result of the logical difficulties into which the older

point of view had led is that modern analysis aims at being

purely arithmetical: even when it deals with geometrical facts

it deals with them in an arithmetical fashion.

Note. There is one important note to be made in this

connexion. The arithmetical argument is often doing nothing

more than state, in the requisite forms, facts which are indicated

by geometry. It is frequently useful to draw a figure and see

what geometrical intuitions are being arithmetized.

4449 ^ a
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2. Real numbers

We shall assume the notions of

unity, aggregate or set, order, correspondence.

We shall assume that the theory of positive and negative

integers and fractions has been developed and tliat rules for

their comparison
(

their addition, subtraction, multi-

plication, and division have been given. f These are the rational

numbers, or, to distinguish them from what we shall later call

rational real numbers, the elementary rational numbers (e.b.)

Anent these, we notice three results that will be particular!}^

useful.

(i) Any set of e.r. that contains 1 and is such that it must

contain if it contains k contains the unending sequence

1, 2, 3,... . This is called the Principle of Mathematical Induction,

(ii) If a, b are two positive e.k. and a ab, then we can find

positive integers n such that na > b. This is sometimes called

Archimedes' Axiom from the fact that Archimedes set it out in

a form concerning lengths of lines.

(iii) If a is an e,b,, then there is no least e.r. which exceeds a.

Proof, If b is a7iy e.r. greater than a, then so is |(a-f 6): it is

less than b, and so b cannot be the least e.r. which exceeds a.

Dedekind cuts or sections

Definition. Two sets L, R of elementury rational numbers are

said to form a cut when

(a) there is at least one e.r. in each set,

(b) each and every e.r. belongs either to L or to R, hut not to both,

(c) each and every member ofL < each and every member of R.

A real number is a cut of the elementary rational numbers.

The notation {L, R) will be used to denote a cut; alterna-

tively, in discussing particular cuts, a single letter or symbol,

such as a, V2 will be used.

t Cf. Hobson, Functions of a Real Variable, vol. i (1921), pp. 1-18. Any one

who is really interested in the logical foundations of analysis will fin(l this

well worth reading.
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Lemma. {L, R) is a cut and a is an e.r. of R: then any e.k.

h that exceeds a is also in R.

Proof, If b is in L, then (c) of the definition is not satisfied.

Geometrical picture

If we think of the e.r. i)lotted along a line, a cut will be

given if we take a point P on that line, put all e.r. to the left

^ ^

in L, all to the right in R, and, in case P itself corresponds to an

E.R., tlien that e.r. may be put either in L or in R, but not in

both. The rough geometrical picture will help to keep clear the

implications of the aritlimetical arguments which come later.

Classification of real numbers

There are tw’-o simple types of cut which are, quite naturally,

called rational real numbers.

(i) When L contains all e.r. a given e.r. a,

and R contains all e.r. :> a,

then the cut (L, R) is denoted by a and is called a rational real

number. Occasionally, to avoid confusion, we shall use a' for

the rational real number, a for the e.r.

(ii) When L contains all e.r. < a given e.r. a,

and R contains all e.r. > a,

then the cut (L, R) is denoted by a and is called a rational real

number.

We shall refer to either of these cuts as the rational real

number 'corresponding to the e.r. a’ or 'derived from the

E.R. a\

Note. We ought strictly, at this point, to use different

symbols to denote the cuts of (i) and (ii) : we shall see later that,

with our definition of 'equals’, the two real numbers or cuts

(i) and (ii) are 'equal’ when they are derived from one and the

same e.r. a.

The chief characteristic to be noticed about (i) and (ii) before
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we proceed is that in them either L has a greatest member or

R has a least.

We now ask ‘Can wc have cuts either

(iii) such that L has a greatest and R a least member, or

(iv) such that L has no greatest and R no least member?’

We see at once that the type (iii) is not possible. If possible,

let a be the greatest L and the least R\ then lies

between the two: being an e.r., it belongs either to L or to R
if (L, R) is a cut. It follows that either j8 is not the least R or a

is not the greatest L.

On the other hand, we have only to consider the cut that is

indicated as the obvious way of defining v2 to see that tyi)e (iv)

is possible. Define two sets jL, R of e.r. in the following way:

every negative e.r. and

every positive e.r. whose square < 2 belongs to L,

every positive e.r. whose square > 2 belongs to R.

We want to sliow that (i, R) is a cut. To do this we have to

show that the conditions (a), (h), (c) are satisfied. Now it is

clear at once from (A) that {a) there is at least one e.r. in each

of L and R and that (c) each and every member of L < each

and every member of R. Further, provided that there is no

E.R. whose square is actually equal to 2, each and every e.r.

belongs either to L or to 72, but not to both.

Hence all we need do to show that L, R give a cut is to show

that there is no elementary rational number whose square

is 2. This was shown by the Greeks at the time when they

encountered the logical difficulty referred to in § 1. Many
proofs are known both of this and of such theorems as ‘There

is no rational number whose square is mjn (where this fraction

is expressed in its lowest terms) unless m and n are the squares

of integers’. There is some interest, however, in recalling the

traditional Greek proof. In geometrical guise (i.e. it used

lengths of lines) it ran on the following lines: If x:y is a ratio

in its lowest terms, then its square cannot be 2.

For if == 2?/2, then is even and, since the square of every

odd number is odd, x is even. But now two things follow:
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(i) since x, y have no common factor, y is odd;

(ii) since x is even, x’^ contains 4 as a factor; so y'^ is even, and

y is also even because the square of every odd number is odd.

Hence y is both even and odd, which is absurd.

We now show that the cut given by (A) is one in which L
has no least, R no greatest member. Let x be any e.r. in L and

let x^ 2-™/r, where k > 0. If c is a positive e.k. such that

€ <i x, € < k/3x,

then
.

2~~k+2x€+e-

2— e(2a:-j-e)

and so a:-l-e also belongs to L. Hence x cannot be the greatest

member of L.

Hence L has no greatest, and similarly R has no least,

member.

Irrational numbers. We have just established two facts:

(i) there is no cut (L, R) having a greatest member in L and

a least member in R
;

(ii) it is possible to have a cut (L, R) in which L has no

greatest and R no least member.

Definition. A cut {L, R) in which L has no greatest and R no

least member is called an irrational real number.

3. The comparison of real numbers

Suppose two numbers a, b are given by cuts, say R^,

i?2 )- We use ‘number’ to denote ‘real number’ unless e.r.

is expressly mentioned in the context.

For convenience, we shall use l^ to denote any particular

E.R. that belongs to Lj, and so on. Sometimes we use the

phrase ‘an I of a’ instead of l^.

The symbols >, =, < between real numbers.

Either (i) all r’s of a ^ all Z’s of 6,

or (ii) some r of a < some Z of 6; when we say a < 6.
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When (i) holds, then

either (i a) some Z of a > some r of 6; when we say a > b,

or (ib) all Z’s of rx all r’s of b; when we say a ^ b.

In (i b) it may happen that a and b are rational and that the

greatest Z of a ^ the least r of 6, i.e. the cuts are tlie same save

that ill one the e.r. corresponding to the real number goes into

L and in the other it goes into R.

Note. Draw a figure to see how obvious the above pro-

cedure is.

Positive and negative real numbers

Positive numbers arc those that are greater than zero,

negative numbers are those that are less than zero, zero (as a

real number) being defined as the cut that has positive e.r.

in its R class and negative e.r. in its L class. (Positive e.r.

refers to what is meant by positive in the domain of the

elementary rational numbers.)

Exercise. If x is a j)ositive real mimber, then some Vs of x are

positive E.R.

Definition. If x denotes the cut {L, R), then —x is denoted

symbolically by {~~R, ~L); if the e.r. c is an r of x, — c is an I

of —X, and if the e.r, c is an I of x, ~~c is an r of ~~x.

There is one concluding result that will exercise the reader

in thinking about these definitions; it will be used in Theorem II.

It is

'If a, b are e.r. and a > b, and if a\ b' are the rational real

numbers derived from them, then, in the sense in which > is

defined for real mimbers, a' > 6'.’

4. Operations with real numbers

Theorem I. Given an arbitrary e.r. e > 0, we canfind, for any

given cut {L, R), an I and an r such that r—l < c.

If the cut {L, R) is a rational real number, the theorem is

all but obvious. For then either L has a greatest member, say

Z^, and Z^+le is necessarily an R, or R has a least, say r^, and

is an L.
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If the cut (L, jR) is an irrational real number, let ly be any

I and r-y any r: let Vy— ly ^ «. Either ol < \e and ly.Ty are

numbers which satisfy ly—Ty < e or, by Archimedes’ axiom,

we can find an integer n such that len > a. In the latter case,

consider the r?-fl e.r.

The last exceeds Vy and so is in R\ the first is in X; each must

be either in L or in J?, since each is an e.k. Hence one of the

sequence is the last to be in L and the next is the first to be

in R: their difference is ie and we have found an I and an r

such tliat r—l < e.

Note. The theorem is 'obvious’ from the geometrical picture

of § 2 .

The sum of real numbers

Let X, y denote the real numbers or cuts {Ly,Ry), {L^,R^.

Divide the e.r. into two sets A, p in this way: an e.k. c belongs

to A if we can find an ly and an such that

otherwise c belongs to p.

Then, examining the conditions for a cut, we see that
(
6

)

each e.k. is either a A or a p number, and (c) each and every

member of A < each and every member of p.

The one thing needed to prove that (A, p) is a cut is to show

that there is at least one e.r. belonging to A and at least one

to p. To show this, take

hy other than the greatest member of Ly

(if there is such a greatest),

other than the greatest member of Xo

(if there is such a greatest).

Then, if c = h ^2 such that

^1+^2 ^ hence this c belongs to A.

Moreover, any c of the form belongs to p.

Hence (A,p) is a cut; it is called the sum of x and y and is

written x-\-y.

An alternative method of defining x~\-y is given in Whittaker
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and Watson's Modern Analysis (pp. 5, 6): it is more intuitive,

but leads to minor difficulties of detail.

A COROLLARY TO THE DEFINITION OF SUM. If y is posi-

tive, then A {above) contains e.r. that exceed some of the e.r.

of ^1-

0 y ^ x+y

This result, needed for future reference, is geometrically

obvious. The arithmetic proof is as follows:

Since y y> 0, contains some positive e.r. If is one such,

then, by Theorem I, we can find an and an such that

Moreover,
^i+/2 ^ member of A.

The difference of real numbers. The number x—y is

defined to be x-\-{—y).

The product of real numbers

In the first place, suppose x and y to be positive real numbers.

We then proceed much as we did in defining a sum; put the

E.R. cm L if we can find a povsitive and a positive such that

/
1
Z
2

c; otherwise piit c in R. Then {L, R) may be proved to

be a cut, called the product of x and y, and written xy.

If x or j/ (or both) is negative, then we frame the definition

so that the familiar 'rule of signs’ for elementary rational

numbers will still hold for real numbers; e.g. if x is negative

and y is positive, then xy is defined as —{—x)y.

The reciprocal of a number. If x denotes the positive

number {L,R), then its reciprocal, Ijx, is the number {L-^,R-f),

where R^ consists of the reciprocals of all positive Vs of x and

of all e.r. that are not reciprocals of positive Vs of x.

If X denotes a negative number, then 1/a; is defined to be

-(l/-x).

Further operations. Division by x is multiplication by

{I lx). The reader can, if he so wishes, fill in the details of defin-

ing x^^ (n an integer), Vo:, etc. The details present no difficulty,

though some care will be necessary.
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5* The manipulation of real numbers

To make a complete preparation for manipulating real

numbers with the same confidence as we did before the abstract

definition by means of cuts was known to us, we ought at this

stage to set up a lengthy formal scheme. For cxamj)le, the

proposition ia < a when a > 0, though easily proved, is not so

obvious that it can be dismissed as silly when we are discuss-

ing real numbers. Again, the theorems in proportion must be

proved for real numbers, e.g. if a/b ™ c/d then ad be.

The definitions of real numbers, their sums, x)roducts, etc.,

are, in fact, such that the ordinary aritli metical manipulations

hold for them as for the elementary rational s. If we begin to

X^rove this for particular stex^s, it soon becomes obvious that

such is the case generally, and we shall not attemx)t to prove up

to the hilt for real numbers any ])rox)erty that is reasonably

obvious from our experience in dealing with numbers as we
understood them belbrc we considered cuts.

6. Upper and lower bounds

We shall use the notation introduced in CUiapter IJ.

Theorem II. If {L, R) is a cut denoted by (?, then’\

e > 0; 3 an r of G . r' <C G-\~e;

also, 3 an I of G . V > G-c.

By the corollary to the definition of a sum,

3 an Z of 6r+e > some r of G. (1)

But G~\-€ ^ each and every V derived from an e.r. that is an

I of the cut G-{-€.

[Note. We cannot say Cr+e ^ I, because O+e is a real

number, while I is an e.r., and we have set up no machinery

for comparing a cut of the e.r. with one single e.r.]

Hence

(r-f e the particular V derived from the I

that has been found in (1)

> the r' derived from the r found in (1).

t r' is the rational real ‘derived from r\

B b4449
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This proves the first part of the theorem
;
the second part may

be proved in similar fashion.

First fundamental assumption of Chapter III

In the work on convergence that preceded the present dis-

cussion of real numbers we built iip our theory on the following

assumption

:

If (ly„) is a sequence of numbers and there is one number

A every a,,, then there is a least number, U, that is greater

than or equal to every

We are now in a position to prove that tliis assumption is a

consequence of our definition of real number.

Theorem III. Let {a] denote an arbitrary set of real numbers.

Let there be a. number ^ each and every member of {«}. Let

{A} denote the set of all numbers that are greater than or equal to

each and every member of (a). Then [^4} possesses a least element

V, which is called the upper bound of {a},

Elvery rational real number is or is not an A. Define two sets

L, R of E.R. thus:—the e.r. c belongs to L if the rational real

number derived from it is not an A, and otherwise it belongs

to R.

Then there are e.r.’s that belong to L and, since A^ ^ each

and every a, there are e.r. s that belong to R. Also, every e.r.

goes either into L or into i?, and each and every I < each and

every r, so that (L, R) is a cut. Denote this cut by U. By
Theorem II,

e > 0; 3 r of U such that fZ+e > r',

where r' is the rational real derived from r. Hence

f/+ e > each and every a. (i)

This is true for every positive c, and therefore

U > each and every a. (ii)

N.B. Tlio argument used to derive (ii) from (i) is of frequent occur-

rence in analysis.

If the argument is not at once clear, consider the following. If (ii)

does not hold, then there must be at least one a, say that exceeds U.

In that case — U) C — U) ” Gfj,

i.e. when € = l{a^— (7), 17 -fe < a certain a, and (i) is denied.
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It follows, then, that U belongs to [A],

Moreover, if [/' < 3 an r of f7' < anZ of U, and so LV <
some a (by the way in which L was formed). Hence U is in

{A} and any number less than U is not.

7. Greatest and least limits

We recall, from Chapter XI, §2, the formal definition of an

‘interval’.

Let {a] denote any set of numbers. If a: is such that in each

and every open interval containing x there is at least one a

other than x itself, then x is called a limit j^oint of (a). The

number x itself may or may not belong to {a}—see exam})les

below.

If X is a limit point of {a}, then each open interval con-

taining X contains an infinity of a. For, if a given 8^. contained

only a finite number of a, then there would be a greatest a

that was less than x and a leavSt a that was greater than X]

there would be no a other than, possibly, x itself between them.

That is, there would be an interval about x with no r/, save

possibly X, in it. This is contrary to the supi:)osition that x is

a limit point of (a).

Examples. If {«} consists of all y such that 0 < y < 1,

then every x such that 0 r 1 is a limit point of {a}.

If (a} consists of the sequence

1 i 1 1 ,3 14

then 0 and 1 are the only limit points.

We now consider the greatest limit of a sequence

In the first place we suppose that is a bounded sequence

;

i.e. 3 K . < K for all n.

Divide the e.r. into L, R thus: the e.r. c goes in R if only a

finite number (or none) of the are greater than or equal to c',

the rational real derived from c; otherwise c goes in L, Then,

as is readily verified, (L, R) is a cut. Denote it by (?. We shall

show that 6^ is a limit point of (x^^), By Theorem II,

€>0; G+e > r\
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But, by definition,

V < for an infinity of values of 7i,

r' > for all save, possibly, a finite number of values of n.

Hence
G—c < < Cr+ € for an infinity of values of 71

,

so that, since e was any positive number whatsoever, is a

limit point of the sequence.

Moreover, no limit point of (a-„) cmi exceed G. For, \ip -- G-\-ol,

where a > 0, then 3 an r of G such that r' < Hence,

there is at most a finite number of values of 71 for which

G-j-ict "
- fj— la. Hence p is not a limit point.

G is called the greatest limit and is denoted by lima',,.

In the course of the preceding work we have proved the

following fact. When G' > G, there is at most a finite number

of the that exceed G'

.

Thus, if G “ lima:,,, then

G' >G\ 3 N . a:,, < G' when n N.

This is a most useful proj)erty and enters into most applications

of the notation lima:,,.

The statements lima:,^ — lima',^ ~ Suppose now
that the sequence (a:,,) is not bounded. If, however large we
take the e.r. c, x,^ c' for an infinity of values of n, then

we write lirna:,^ ™ -^-oo. If, however large and negative we
take c, only a finite number of a:,, > (and there is an infinity

of a:,j altogether), we write lima:,^ ~ —oc^.

Exampi.es.

1, 1,2, 1,3, i.,.; lima:,,,^ +00 .

— 1, —2, —3,...; lima:,^ ^ —OD.

The least limit

The least limit, written lima:,,, is similarly defined. f No limit

point can be less than it. Also, if lima:,
^

=== L, then

L' <. L] 3 . a:,^ > U when n N.

t An alternative definition is effected by ‘reflection in the origin’ thus:

hmx,^ ~ — lim(--;r,d. A diagi-am of points and — will show the reason

for this definition.
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The statement — x. As in Chapter II, we say that

lim.T^ “ X if

€ > 0; IN. \x—x^^\ < e when n > N, (1)

It follows, almost directly from the definitions, that limo:,^

and lima?,, are then both equal to a?. For, if (1) is satisfied, and

X is other than a:, then only a finite number of the can lie

in a closed interval that contains X but excludes x
;
hence X

cannot be a limit point of the a;„.

8. The second fundamental assumption

At the conclusion of §7 we stated formally the condition that

a sequence (a:,,) of real numbers should have x as its limit. We
now show that

Any irrational real 7iu7nber may he expressed as the limit of a

sequence of rational real mwihers.

By Theorem II, if G denotes a given real number, then

€ : - U; 3 a rational real r' . r' < G+f-

If G is irrational, then this r' (?annot be G and we have r' > G,

First take c — 1 ;
then there is an r' that satisfies

G < r' <
Let r'—G ~ rj, and let be any number that is less than both

7] and

There is then a rational real r[ that satisfies G < r[ < G-\-^v

Also r[ < (?+7^ ~ r'. Let r[—G ~ and let Co be any

number that is less than both rj^ and

There is then a rational real r^ that satisfies

G < ?2 <
Also rg < GA-r]i ^ r[.

Proceeding in this way, we determine a sequence of rational

real numbers r{,r2 ,,,.,r!,^,..., such that

(i) < r-;, (ii) r'^ > G, (iii) rl—G < 2-«.

That is to say, we have determined a monotonic decreasing

sequence of rational real numbers whose limit is G.
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By using the V of Theorem II instead of the r' we may
express 0 as the limit of a monotonic increasing sequence of

rational real numbers.

Thus the assumption of Chapter III, § 3, is proved to be a

consequence of the definition of real number.
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