PILANI (Jaipur State)
(Engg Cellege Branch)
Class No:-690.0834
Book No:- B 6013
Accession No:- 30476

BUILDING AND STRUCTURAL TABLES

BUILDING

AND
STRUCTURAL TABLES?
for Architects, Builders and Engineers
\star
fREDERICK HYDE BLAKE B.Sc.(Eng.), M.I.C.E., M.I.Struct.E.

LONDON
CHAPMAN AND HALL LTD
37 ESSEX STREET, W.C. 2
1947

THIS BOOK IS PRODUCED IN COMPLEFE CONFORMITY WITH THE AUTHORYEED ECONOMY STANDARDS

PREFACE

The object of this volume of Tables is to present in convenient form the data most frequently required in the design and construction of buildings.

Formerly, the lack of standard specifications and corresponding permissible stresses for the numerous materials used in engineering and building construction resulted in a great waste of time, as each engineer and architect was obliged to concoct his own rules. To-day, the very multiplicity of regulations brings its own problem, and it is the aim of the compiler of the present volume to marshal and compare the data most often needed.

The requirements of the rival authorities generally differ only to a trivial extent, and it is earnestly hoped that the various Ministries now concerning themselves with building standards will come together and cause to be produced, by men who understand the subject, a comprehensive code which shall supplant all existing structural regulations and become a national code by force of law. Any special conditions peculiar to particular localities, unusual cases of design or the proposed use of new materials, could readily be provided for by local powers of waiver or addition to such a national code, and provision could be made for its periodical revision.

A number of codes have been in preparation since 1943 under the direction of the Codes of Practice Committee, Ministry of Works. The only one affecting the field of this book which has appeared at the time of going to press is Chapter V of the Code of Functional Requirements of Buildings. In the codes which have yet to appear, increased working stresses in concrete and structural steel are forecast, but the changes will not take effect unless and until they become incorporated in revised by-laws. The codes themselves are not mandatory and do not constitute a national code as envisaged in the preceding paragraph ; to the extent that their contents prove unacceptable to local authorities, they will provide yet another series of recommendations to bewilder the designer.

Building codes of practice, reports and by-laws and the invaluable specifications of the British Standards Institution have been examined for the purposes of this book, and abstracted wherever it appeared that the data could be presented with advantage in tabular form. In several cases Tables have been prepared to enable the rules to be applied without calculation. A list of the codes and regulations referred to will be found immediately preceding the Index.

The information has been grouped by subjects, and the general system of arrangement keeps to the same order as the designer normally follows in computing his loads, commencing with the roof and following through to the foundations.

The subject matter has been carefully arranged and indexed for rapid reference and care has been taken to ensure that the information is accurate and in accordance with current practice. Attention has been paid to the needs of those who, while not regularly engaged in designing, find themselves confronted from time to time with design problems.

The extensive information on steel design given in the well-known manufacturers' handbooks has been excluded, with one exception. Particulars of
rolled steel sections and beam loads are so frequently required as to be deemed worthy of repetition.

Tables of reinforced concrete solid and hollow floor slabs, of general application, have been computed ; they are arranged in direct-reading form and include constants to facilitate the preparation of calculations for submlssion to local authorities. Columns and beams are not included because of the great diversity of sizes at present in use. In this connection, attention is drawn to a pamphlet issued by the Reinforced Concrete Association Ltd., viz., " Recommended Dimensions of Reinforced Concrete Structural Members " (March 1946, price 6d.).

The Tables which are based on L.C.C. and other regulations do not claim to deal with every clause and must be read in conjunction with the originals.

In recent years there have been many forecasts of revolutionary methods of building. Notable improvements have indeed been introduced in the field of fittings and prefabricated internal plumbing, but as far as the structure is concerned there is as yet little indication that established methods and materials will be ousted by radically different technique, at least for the majority of permanent buildings.

Some information on plastics is included in the book, but it seems to be generally agreed that, with the possible exception of resin-bonded plywood as a surfacing material, no plastic has yet emerged which has all the qualities necessary for a structural member. Some plastics are, nevertheless, eminently suitable for internal fittings.

Most architects and engineers have experienced the annoyance and delay arising from the necessity to search for the weight of materials with which they are concerned. The book includes a comprehensive list of the densities of materials used in construction, or which may form a structural load, and although omissions are inevitable it is hoped that the collection will be found useful.

The Author records his thanks to the British Standards Institution, the London County Council, the Institution of Structural Engineers, and to certain other authorities mentioned in the text, for permission to quote from the publications named, and to professional friends for valuable suggestions and encouragement.

CONTENTS

Page
ROOFS
Roof Coverings allowed by By-laws 3
Weight and Minimum Pitch 3
Gauge and Lap. Steel Angle Purlin Spans and Spacing 5
Weights of Typical Roof Constructions 6
Equivalent Slopes and Length up Slope 7
Downpipes. Asbestos Cement Slates 8
Welsh Slates 9
Shingles. Footage of Tiling and Slating Battens 11
Corrugated Steel Sheets, Weight and Coverage 11
Asbestos Cement Sheets 12
Weight of Metal Sheet and Wire. Copper Sheet. Lead Sheet 13
Standard Wire Gauge 14
Birmingham and Zinc Gauges. Iron and Zinc Sheet 15
Hook Bolts, Roofing Nails, Sheeting Bolts, Washers 16
Wind, Snow and other Loading on Roofs and Walls 16
Timber Data 19
Timber Working Stresses 20
Standard and Cubic Foot Equivalents 21
Timber Roof Construction : Rafters, Purlins, Ceiling Joists 23
Loads and Stresses 25
Posts and Struts 26
Reactions at Roof Trusses 27
Reactions on Concrete Padstones ; Bearing Plates 29
WALLS, FLOORS AND BEAMS
Concrete Data 33
Proportions for Concrete Mixes 38
Mixes for Various Purposes 39
All-in Mixes. Batches 39
Quantities per Cubic Yard of Concrete 40
100 Sq. Yards of Concrete 42
Concrete Cost Charts 44
Permissible Stresses in Reinforced Concrete 46
Compressive Stresses in Beams 47
Pressures on Plain Concrete 47
Brick Data. Standard Bricks, Air Bricks, Glass Bricks 50
Number of Bricks in Brickwork. Mortar Quantities 51
Number of Facing Bricks. Brick Bonds 52
Quetta Bond Quantities. Properties of Brickwork 52
Mortar Mixes 54
Heights of Brick Courses 55
Walls and Piers of Brickwork, Masonry and Plain Concrete 58
Strength of Bricks. Local and Eccentric Loads 62
Properties of Building Stones 64
Imposed Loading on Floor Slabs 65
Weight of Finishes, Ceilings and Insulations 67
Weight of Partitions 68
FLOORS
Concrete Floors. Conditions of Support 71
Solid Reinforced Concrete Slabs. Section Area of Round Bars 72
Page
Safe Loads on Solid R.C. Slabs 73
80
Filler Joist Floors
Hollow Tile Floors 82
Weight of Round Mild Steel Bars 88
Working Stresses in Steel Reinforcement 88
Reinforced Concrete Data 89
Concentrated Loads on Slabs 90
Slabs Reinforced in both Directions 91
Weights of various Materials 92
BEAMS
Superimposed Loading on Beams 111
Bending Formulx 112
Bending Moments in Continuous Beams 113
Portals or Bents 118
Bending Moments, Thrusts and Reactions in Portals 119
Working Stresses in Structural Steel 136
Strength of Butt and Fillet Welds 138
Dimensions of British Standard Beams 139
Maximum Size of Rivets and Bolts 140
Dimensions of British Standard Channels 141
Properties of Equal Angles 142
Unequal Angles 143
Tee Bars 144
Deflection Coefficients. 144
Standard Backmarks. Rivet Spacing 145
Laterally Unsupported Steel Beams. Coefficients 146
Safe Loads on British Standard Beams 148
Channels 152
Broad Flanged Beams 154
Timber Floors. Joist Spacing 156
Superimposed Loading 160
FOUNDATIONS
Soil Definitions and Safe Loads 165
Comparative Weights of Earth, Gravel, etc. 166
Angles of Repose. Increase in Bulk of Excavated Material 167
Damp Courses 168
SERVICES AND FITTINGS
Meter Pits. Manhole Covers and Frames. Chequer Plates 171
Dimensions for Planning 172
Dimensions of Cast Iron Pipes 173
Asbestos Cement Pipes 178
Salt-glazed Ware Pipes 180
Wrought Iron and Steel Tubes 181
Copper Tubes 182
Lead Pipes 182
Plumbers' Wiped Joints. Identification of Pipes 185
Flow in Small Pipes. Hydraulic Data 186
Flow in Small Drains and Wood Flumes 187
Covering Power of Paints and Coatings 188
Domestic Electric Consumption. Electric Cables 189
Electric Conduits 190
Dimensions of Cisterns and Hot Water Cylinders 191
Heating Data 191
Small Boilers. Flue Sizes. Alr Temperatures 193
Page
Transmittance of Heat 194
Thermal Resistance of Materials 197
Gas Consumption and Flow 199
Whitworth Bolts, Nuts, Locknuts and Washers 200
Coach Screws, Lewis Bolts, Rivet Heads 201
Copper Roves, Wire Nails, Wood Screws 202
Flat Bottom and Bull Head Railway Rails 203
Weight and Strength of Manila Ropes 204
Steel Wire Ropes 204
Wrought Iron Chains 205
Strength of Shackles 206
GENERAL TABLES
Simpson's Rule. Areas of Small Circles 209
Regular Polygons 210
Properties of the Circle 210
Trigonometrical Functions 211
Imperial and other Measures 214
Decimal and Metric Equivalents 216
Sizes for Drawings 216
Properties of Metals 217
Composition of Common Alloys 222
Properties of Plastics 223
List of British Standard Specifications 224
List of Reports and Codes 226
Index to Pages 227

ABBREVIATIONS

B.S. British Standard Specification.
L.C.C. London County Council.
M.O.H. Ministry of Health.
M.W.B. Metropolitan Water Board.

ROOFS

TABLES I-44

ROOFS

ROOF COVERINGS ALLOWED BY BY-LAWS

Many local authorities have based their building requirements on the Ministry of Health Model By-laws, Series IV, but as numerous variations from the model have been made it is still necessary to consult the by-laws of the district concerned.

The following list gives the roof coverings which are generally acceptable.

TABLE I. Roof Coverings

I. Asbestos cement sheets.
2. Asphalt, not more than 17% bitumen
3. Copper sheet.
4. Galvanised corrugated steel sheet not thinner than 24 B.G.*
5. Glass, wired ; no restriction on area if in hard metal frames.
6. Lead sheet.
7. Macadam, not more than 7% bitumen, $\frac{1^{\prime \prime}}{}$ to $I^{\prime \prime}$ thick.
8. Mortar I" thick on boards.
9. Roofing felt laid in mastic, variously stipulated as not more than $\frac{8}{8 \prime \prime}$ and not less than $3^{3}{ }^{\prime \prime}$ "total thickness.
10. Shingles, permitted in some areas.
II. Slates, asbestos.
12. Slates, natural.
13. Stone slabs.
14. Thatch, permitted in some areas.
15. Tiles, clay.
16. Tiles, concrete.
17. Zinc sheet, not thinner than 14 Zinc Gauge according to B.S. 849. \dagger

[^0]
WEIGHT AND PITCH OF ROOF COVERINGS

The weights given are per sq. ft. of actual surface and to the nearest $\ddagger \mathrm{lb}$. To obtain the weight per sq. ft . covered in plan, for sloping roofs, multiply by the appropriate figure in column 3, Table 5. For relation between gauge and lap see page 5. For lining materials see Table 82.

TABLE 2

Material (see later Tables for detalls)	Weight lb. $/ \mathrm{sq}$. ft . of slope	Minimum Pitch (ordinary exposure)
Asbestos Cement $t^{\prime \prime}$ Sheets, $3^{\prime \prime}$ or $6^{\prime \prime}$ corrugations, including laps and fastenings. 153*" Diamond or Honeycomb Slating to B.S. 690	31	$\left\{\begin{array}{ll}1 & \text { in } 2, \\ \text { length, } \\ \text { (if in } & \text { in } 10\end{array}\right.$ one
(${ }^{\text {a }}$ ($3^{\text {n lap }}$	$2 \frac{1}{2}$	1 in $1.533 \frac{1}{}^{\circ}$
152" Rectangular Slating to B.S. $690 \quad 3^{\prime \prime \prime}$ "̈ap	3	$\begin{array}{llll} \\ 1 & \text { in } & 1.7 & 30^{\circ} \\ 1 & \text { in } & 1.7 & 30^{\circ}\end{array}$
	4	$\begin{array}{ll}1 \text { in } 1.7 & 30^{\circ} \\ 1 & \text { in } 26 \frac{1}{2}^{\circ}\end{array}$
Asphalt " per inch of thickness	11	1 in 50
Bitumen Macadam	11	
Bituminous Felt in layers	$1 \frac{1}{2}$	
Boards, softwood ${ }^{\text {and }}$	${ }_{2}^{21}$	-
Copper Sheet incl. laps and rolls, $\quad 24$ S.W.G.	17	$\left\{\begin{array}{l} 1 \text { in } 64 \text { with standing } \\ \text { seam, } 1 \text { in } 100 \text { with } \\ \text { drips. } \end{array}\right.$
Corrugated Sheets, see Asbestos: Galvanised. Felt, Roofing, in layers ,, Sarking	11	1 in 50
Galvanised Corrugated Steel Sheets incl. laps	114	$\left\{\begin{array}{l} 1 \text { in } 2 \frac{1}{2} \text { (if } \text { in one } \\ \text { length, } 1 \text { in } 10 \text {) } \end{array}\right.$
Glazing, patent, lead covered steel astragals	6	1 in 2.720°
Lead Sheet, including laps and rolls $\quad 3 \mathrm{lb}$.	31 4 4	$\left\{\begin{array}{l} 1 \text { in } 64 \text { plus drips or } \\ 1 \text { in } 8 \text { without drips } \\ \text { max. pitch } 10^{\circ} \end{array}\right.$
Macadam, tar or bitumen per inch of thickness Mortar Screeding	$\begin{aligned} & 11 \\ & 11 \end{aligned}$	$\left\{\begin{array}{l}\text { Any pitch if water- }\end{array}\right.$ proofed.
Perspex, corrugated, to fit asbestor or galvanised sheets	1	\{prooled.
Roofing Felt in layers	$1 \frac{1}{2}$	1 in 50
Ruberoid, 5 layer	13	
Shingles (cedar tiles) $16^{\prime \prime}$ long $\quad 8^{\prime \prime \prime}$ lap	${ }^{1 \frac{1}{2}}$	$\begin{array}{lll} 1 \text { in } 1.5 & 33 \frac{1}{}^{\circ} \\ 1 \text { in } 1.7 & 30^{2} \end{array}$
Slates, Welsh, 0.2" thick, $24^{\prime \prime}$ long ${ }^{\prime \prime}$	$6 \frac{1}{2}$	1 in 2.522°
Slates, Welsh, $22^{\prime \prime}$., $3^{\prime \prime}$	$7^{\frac{1}{2}}$	1 in 2 261 ${ }^{\circ}$
$16^{\prime \prime}$ ", $3^{\prime \prime}$ ",	74	1 in $1.533 \frac{1}{2}^{\circ}$
Steel, see Galvanised. Tarmac per inch of thickness	11	Any pitch if waterproofed.
Thatch, 12" thick, incl. battens	$8 \frac{1}{2}$	1 in 1.45°
Tlling, Clay : Marseilles	$6 \frac{1}{7}$	1 in 2 264 ${ }^{\circ}$
Pan ${ }^{\text {Pr overlap }}$	$8 \frac{81}{1}$	1 in $1.533 \frac{1}{2}^{\circ}$
	11	1 in 2 261 $\frac{1}{2}^{\circ}$
Paindmade $2 \frac{1}{3}{ }^{\prime \prime}$ lap		1 in 1.240°
	$16 \frac{1}{2}$	I in $1.337 \frac{1}{2}^{\circ}$
machine made $2 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$	13	1 in 1.240°
	15	1 in $1.533 \frac{1}{2}^{\circ}$
Plain $10 \frac{1}{2 \prime \prime} \times 6 \frac{1}{\frac{1}{2}^{\prime \prime}} \times \frac{77^{\prime \prime}}{10}\left(\right.$ B.S. 473) $\quad 2 \frac{1}{2}$ " lap Interlocking $15^{\prime \prime} \times 9^{\prime \prime} \times \mathbf{z}^{\prime \prime}$ (B.S. 550)	1418	$\begin{array}{lll} 1 \text { in } 1.2 & 40^{\circ} \\ 1 & \text { in } 1.7 & 30^{\circ} \end{array}$
Zinc Sheet, incl. laps and rolls 12 ZG 14 ., 	11	$\left\{\begin{array}{l} 1 \text { in } 64 \text { plus drips } \\ \text { or } 1 \text { in } 8 \text { without } \\ \text { drips. } \end{array}\right.$

The L.C.C. By-laws prohibit the slope of a roof exceeding 75°, and in warchouses $\mathbf{4 7}^{\circ}$ unless against a street or open space and of incombustible materials.

reLation between gauge and lap

The gauge is the spacing of slates or tiles measured from centre to centre up the slope, and is equal to the spacing of the battens. It is also equal to the width of the visible portion of each row of slates or tiles, as may be seen from the sketch.

$$
\begin{aligned}
& \text { Gauge } g=\frac{1}{2} \text { (length of slate-lap) } \\
& \text { Lap } \\
& =\text { length-2 (gauge) }
\end{aligned}
$$

Thus for a given length of slate, it is sufficient to specify either gauge or lap to control the degree of weathering and the number of slates per square.

In the case of diamond tiling the lap is measured differently, see the figure opposite Table 9.

TABLE 3. Maximum Span and Spacing of Steel Angle Purlins

$\underset{\text { (sea next Table) }}{\substack{\text { Rooring } \\ \text { (sea }}}$ (see next Table)	$\underset{\substack{\text { Usual } \\ \text { Maximum } \\ \text { Purlin } \\ \text { Spacing }}}{ }$	Size of Purlin			
		$3^{\prime \prime} \times 2^{\prime \prime} \times A^{\prime \prime}$	$4^{\prime \prime} \times 3^{\prime \prime} \times \mathbf{A}^{\prime \prime}$	$5^{\prime \prime} \times 3^{*} \times A^{\prime \prime}$	$6^{\prime \prime} \times 3^{\prime \prime} \times 8^{\prime \prime}$
24 B.G. galv. corrugated steel	$4^{\prime \prime}{ }^{\prime \prime}$	$9^{\prime \prime} 6^{\prime \prime}$	13'	16^{\prime}	
6heets $6^{\prime} 6^{\prime \prime}$ long	$6^{\prime \prime} 0^{\prime \prime}$	8^{\prime}	$11^{\prime \prime}{ }^{\prime \prime}$	14^{\prime}	
Boards and felt Asbestos sheets $6^{\prime \prime}$ corr.	$4^{\prime} 6^{\prime \prime}$	$9^{\prime} 3^{\prime \prime}$	$12^{\prime \prime}{ }^{\prime \prime}$	$15^{\prime \prime}{ }^{\prime \prime}$	
". ., $3^{\prime \prime}$ corr.	$3^{\prime \prime} 0^{\prime \prime}$	11^{\prime}	15'		
Patent glazing	$6^{\prime \prime} 0^{\prime \prime}$	$7^{\prime \prime} 6^{\prime \prime}$	10^{\prime}	$12^{\prime} 6^{\prime \prime}$	16^{\prime}
Asbestos slating and boards	$4^{\prime \prime} 6^{\prime \prime}$	$8^{\prime \prime} 6^{\prime \prime}$	$11^{\prime \prime}{ }^{\prime \prime}$	14^{\prime}	18^{\prime}
Welsh slating and boards	$4^{\prime} 6^{\prime \prime}$	8^{\prime}	$10^{\prime \prime} 6^{\prime \prime}$	13^{\prime}	17^{\prime}

The above are suitable for slopes not less than 20° and not more than 1 in 2 ; wind pressure $15 \mathrm{lb} . / \mathrm{sq}$. ft . normal to slope.

TABLE 4. Weights of Typical Roof Constructions

Construction	$\begin{aligned} & \text { lb. per } \\ & \text { sq. ft. } \\ & \text { on slope } \end{aligned}$	$\begin{aligned} & \text { lb. per } \\ & \text { s. f. } \\ & \text { on plan } \end{aligned}$	Construction	$\begin{aligned} & \text { lb. per } \\ & \text { s. fte. } \\ & \text { on slope } \end{aligned}$	
Asbestos rect. slating 154* ${ }^{\text {² }}$ long, $3^{\prime \prime}$ lap. Black sheathing felt I" Boards Common rafters 8^{\prime} span (size from Table 33) Purlin and ridge	$\begin{array}{r} 4.0 \\ .2 \\ 2.5 \\ 1.1 \\ .5 \end{array}$	*	Patent metal glazing Steel purlins 6' centres	$\begin{aligned} & 6.0 \\ & 1.3 \end{aligned}$	*
			Steel roof truss	$7 \cdot 3$	8.2 2.5
					10.7
	$8 \cdot 3$	9.3	Asbestos diamond slating $157^{\prime \prime}$ side, $4^{\prime \prime}$ lap.	2.9	
24 B.G. galv. corrugated sheets incl. laps, fixed. Steel purlins $4^{\prime \prime \prime} 9^{\prime \prime}$ centres	1.5	$\begin{aligned} & 3.3 \\ & 2.5 \end{aligned}$	I" Boards Steel purlins $4^{\prime} 6^{\prime \prime}$ centres Firring on purlins	2.5 1.6 .3	
	1.5		Steel roof truss	$7 \cdot 3$	8.2 2.5
Steel roof truss	3.0				10.7
		$5 \cdot 8$	Welsh slating $\cdot 2^{\prime \prime}$ thick,	7.5	
Asbestos corr. sheets incl. laps, fixed. Steel purlins 3' centres	$\begin{aligned} & 3 \cdot 3 \\ & 2 \cdot 4 \end{aligned}$	$\begin{aligned} & 6.4 \\ & 2.5 \end{aligned}$	I" Boards Stecl purlins $4^{\prime \prime} 6^{\prime \prime}$ centres Firring on purlins	2.5 1.7 .3	
Steel roof truss	$5 \cdot 7$		Steel roof truss	12.0	13.5 2.5
		8.9			$16 \cdot 0$
Bituminous felt 1" Boards Steel purlins $4^{\prime} 6^{\prime \prime}$ centres Firring on purlins Steel roof truss	$\begin{aligned} & 1.5 \\ & 2.5 \\ & 1.6 \\ & .3 \end{aligned}$	$\begin{aligned} & 6.6 \\ & 2.5 \end{aligned}$	Asbestos corr. sheets Reinforced concrete purlins Reinforced concrete 30^{\prime} truss.	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	
				8.3	${ }_{15}^{9.3}$
	5.9				$24 \cdot 3$
Steel roof truss		9.1	$2^{\prime \prime} \times 1$ ' Battens at $5^{\prime \prime}$ centres	1.0	1.2

* Calculated for 1 in 2 slope ; for other slopes convert total in previous column with approprlate value of S in Table 5.

The purlin weights and steel truss allowance are adequate for all ordinary spans; different purlin spacings do not materially affect the totals.

Other Typical Roof Constructions

Reinforced concrete roofs $25-40 \mathrm{ft}$. span :lb. per sq. ft.
Flat beams (T section) about 3 ft . centres . . 20
Precast coffered slabs on the above . . . 16
Bituminous felt 1.5
$37 \cdot 5$

Portal truss or 3 -pin arch, $10-12 \mathrm{ft}$. centres, excludIng part below eaves level $16 \cdot 5$
Precast purlins 5
Precast coffered slabs on 1 in 2 slope 18
Bituminous felt 1.7 41.2

For spans between 25 and 70 ft ., width of barrel 15 to 30 ft . : Barrel vault $2 \frac{1}{4} \mathrm{in}$. thick 30
Stiffening and edge beams 10
Bituminous felt 1.5
41.5

Asbestos-cement tubular members in truss and purlins, 20-24 ft. span :-

Rafters 1.7
Purlins 2.8
Asbestos corrugated sheets 3.9

TABLE 5. Equivalent Slopes and Length up Slope Exact figures are in bold type.

Slope I In H	Angle ${ }^{\circ}$	Length S	Slope $1 \operatorname{ln~H}$	Angle ${ }^{\circ}$	Length S
1 in 57.29	1	$1.0001 \times \mathrm{H}$	1 in $3 \frac{1}{2}$	16	$1.040 \times \mathrm{H}$
20	3	1.001	3	$18 \frac{1}{2}$	1.054
10	53	1.005	2.747	20	1.064
8	7	1.008	$2 \frac{1}{2}$	22	1.077
6	$9 \frac{1}{2}$	1.014	2	261	1.118
5.671	10	1.015	1.732	30	1.155
5	$11 \frac{1}{2}$	1.020	$1 \frac{1}{2}$	$33 \frac{1}{2}$	1. 202
	14^{2}	1.031	1.303	$37 \frac{1}{2}$	1.260
3.73	15	1.035	1.192	40^{2}	1.305
			1	45	1.414

MAXIMUM SPACING OF DOWNPIPES

Based on I sq. in. of downpipe cross-section for each $90 \mathrm{sq} . \mathrm{ft}$. of roof measure on slope, for slope 1 . in 2. For other slopes multiply result by $\frac{1.118 \text {, }}{3}$ obtaining s from table above. The smaller values for
 cast iron pipes arise from the bore being smaller than the nominal diameter, see table.

TABLE 6. Spacing of Downpipes, feet

For particulars of cast iron and asbestos pipes see tables 140, 14 i .

ASBESTOS CEMENT SLATES

As standardised in B.S. 690. The thicknesses are specified in mm., but are given here in approximate decimal equivalents.

TABLE 7. Rectangular Slates
The number per square can be obtained from the Welsh Slate Table.

Size	Av. Thickness in.	Dimension D	
		3" lap	$4 * 1.10 p$
$\begin{aligned} & 24 \times 12 \\ & 20 \times 10 \\ & 154 \times 77 \end{aligned}$.18 .16	132 11 91 91	$14 t$ $12 t$ 10
113×57	-	21" ${ }^{\prime \prime}$ lap, 7 ${ }^{\text {a }}$	

TABLE 8. Diamond Pattern Slates

Size	$\left\lvert\, \begin{gathered} \text { Av. Thick- } \\ \text { ness. } \\ \text { in. } \end{gathered}\right.$	Lip*.	chayge	in.	No. per square, nett
24×24	$\cdot 18$	4	$13 \frac{1}{2}$	291	37
$15 \frac{3}{4} \times 15 \frac{3}{4}$	16	$2 \frac{3}{4}$	87	1815	86
		3	$8 \frac{1}{2}$		90
י'	,	$3 \frac{1}{2}$	81	17+5	98
$113 \ddot{\times 113}$	",	4	${ }^{718}$		105 171
$11 \frac{3}{4} \times 11 \frac{3}{4}$	"	21	$6 \frac{1}{6}$	133	171

* The lap is measured diagonally between successive rows of slates, as shown in the sketch.

TABLE 9. Honeycomb Pattern Slates

Size in.	Av. Thick-	${ }_{\text {Lap* }}^{\text {Lin }}$ in.	${ }_{\substack{\text { Gauge } \\ \text { in. }}}$	F.	No. per square, nett.
24×24	. 18	4	12	321	37
$15 \frac{3}{4} \times 15 \frac{3}{4}$	$\cdot 16$	$2{ }^{3}$	$8{ }^{8}$	$20 \frac{1}{4}$	88
"	,	$3 \frac{1}{2}$	$7{ }^{3}$	$19 \frac{3}{4}$	99
$11 \frac{3}{4} \times 11 \frac{3}{4}$,	2 $\frac{1}{2}$	5훙	147	172

Each slate requires two nails and one rivet.

WELSH SLATES

The British Standards Institution gave, in B.S. 680-Welsh Roofing Slates, a test for quality and noted the wide variety of thicknesses produced (ranging from 16 in . to 45 in . per 100 slates), but found itself unable to obtain agreement from the quarries to lay down standard thicknesses. The weights given below are based on Welsh slate weighing $175 \mathrm{lb} . / \mathrm{cu} . \mathrm{ft}$. and 0.20 in . thick, i.e. light weights. Slates are sold by the "thousand " of 1200 pieces, and sometimes by weight.
[See overleaf.

TABLE 10

Name of Slates	$\underset{\substack{\text { Slze } \\ \text { lin. }}}{\text { S }}$	No. per 100 sq. ft.				$\left\lvert\, \begin{gathered} \text { Woizht } \\ \text { eck } \\ \text { lb } \end{gathered}\right.$	Weight per1200 cwt.	Weighe per sq. ft. of roof, lb.	
		${ }_{2}{ }_{2}$	${ }^{\text {Lip }}$	Lap ${ }_{3}$	${ }_{4}^{\text {Lap }}$			${ }^{\text {Lap }}$	${ }_{4}{ }^{\text {Lap }}$
Empresses	26×16	77	79	80	82	8.43	90	6.7	6.9
Princesses	24×14	96	98	101	103	6.81	73		7.0
Duchesses	24×12	112	115	118	120	5.84	63		
Small Duchesses	22×12	124	127	130	134	5.35	57	6.8	$7 \cdot 2$
Marchionesses	22×11	135	138	142	146	4.91	53		
Wide Countesses	20×12	138	142	146	150	4.87	52	6.9	7.3
Countesses	20×10	165	170	175	180	4.06	44		
Outsize Countesses	18×12	155	160	166	171	4.38	47	7.0	7.5
Viscountesses	18×9	207	214	221	229	3.28	35		
Outsize Viscountesses.	16×12	178	185	192	200	3.90	42	7.2	7.8
Wide Ladies	16×10	214	222	231	240	3.25	35		
Broad Ladies	16×9	237	246	256	267	2.92	31	,.	,
Ladies	16×8	267	277	288	300	2.60	28		
Wide Headers	14×12	209	219	229	240	3.41	37	7.5	8.2
Headers	14×10	251	262	275	288	2.84	30	,.	,
Small Ladies	14×8	314	328	343	360	2.27	24	,	,
Narrow Ladies	14×7	358	374	392	411	1.99	21		
Small Headers	13×10	275	288	304	320	2.64	28	7.6	8.4
Long Doubles	13×7	392	412	434	458	1.85	20		
Wide Doubles	12×10	304	320	339	360	2.44	26	7.8	8.8
Small Doubles	12×8	380	400	424	450	1.94	21	,	,

SHINGLES (cedar tiles)

Length 16 in ., widths random from 4 in . to 12 in .
Thickness 0.4 in. tapering towards the upper end.
When hung on walls, lap 3 in., i.e. gauge $6 \frac{1}{2} \mathrm{in}$. Is satisfactory.
Shingles are sold in bundles of about 100 and the quantitles required are as follow :-

TABLE II

Lap	$3^{\prime \prime}$	$6^{\prime \prime}$	$8 \frac{1}{n}^{\prime \prime}$
Gauge	$6 \frac{1}{2}^{\prime \prime}$	$5^{\prime \prime}$	$3 \frac{3}{4}^{\prime \prime}$
Bundles per square	$3^{\prime \prime}$	4	5^{\prime}

PLAIN TILES, Clay or Concrete

10 $\frac{1}{2} \mathrm{in} . \times 6 \frac{1}{2} \mathrm{in}$.:

Lap.	\cdot	\cdot	\cdot	$2 \frac{1}{2} \mathrm{in}$.	$3 \frac{1}{2} \mathrm{ln}$.
Gauge	\cdot	\cdot	\cdot	4 in.	$3 \frac{1}{2} \mathrm{ln}$.
No. per square	\cdot	\cdot	554	633	

Battens I in. $\times \frac{3}{4}$ in. Two nails to each tile In every third course. Two courses nailed next to eaves, hips and ridges. On vertical courses nall all tiles.

CONCRETE INTERLOCKING TILES

15 in. $\times 9$ in. :

Overlap	.	\cdot	\cdot
Gauge	2 in.		
No. per square	\cdot	\cdot	134
	in.		

Battens $1 \frac{1}{2} \mathrm{in} . \times \mathrm{I} \mathrm{in}$. One nail or wire to each tile in every third course. MARSEILLES TILES

Gauge $13 \frac{3}{4} \mathrm{in}$.
Battens I in. $\times \frac{3}{4} \mathrm{in}$. One nail or wire to each tile every third course.

WELSH SLATES

Sizes and quantities in Table 10.
Battens $1 \frac{1}{2} \mathrm{in} . \times \frac{3}{4} \mathrm{in}$. Two nails to each slate. TRAFFORD TILES
These are really sheets measuring 4 ft . by 3 ft .8 in ., and require purlins at 3 ft .6 in . centres. No. per square $8 \frac{1}{2}$

Wt., lb/sq. ft. $3 \cdot 4$
Longer sheets of the same width are also obtainable.
FOOTAGE OF SLATING OR TILING BATTENS PER SQUARE, nett
TABLE 12. Rectangular Slates or Tiles

Length of Slate	Lap			
	24*	3"	$33^{\prime \prime}$	$4 *$
26"	102	105	107	109
$24^{\prime \prime}$	112	115	118	120
$22^{\prime \prime}$	123	127	130	134
20"	138	142	146	150
$18^{\prime \prime}$	153	160	166	172
$16^{\prime \prime}$	178	185	192	200
$14^{\prime \prime}$	209	219	229	240
$13^{\prime \prime}$	229	240	253	266
$12^{\prime \prime}$	253	267	284	300

TABLE 13. Diamond or Honeycomb Slates
Obtain the gauge from Table 9 for the lap required.

Gauge In.	Feet per square	Gauge in.	Feet per square
12	100	75	158
$8 \frac{75}{81}$	135	78	163
$8 \frac{71}{2}$	141	61	196
$8 \frac{61}{81}$	145	$5 \frac{1}{8}$	214
88	148	5	240

GALVANISED CORRUGATED STEEL SHEETS
According to B.S. 798, the flat sheets for $8 / 3 \mathrm{in}$. corrugations (about 2 ft .2 in . wide) are to be from $29 \frac{1}{2} \mathrm{in}$. to $29 \frac{3}{4} \mathrm{in}$. wide, and for $10 / 3 \mathrm{in}$. corrugations (about 2 ft .8 in . wide) are to be from $35 \frac{1}{2} \mathrm{in}$. to $35 \frac{3}{4} \mathrm{in}$. wide, before corrugating. The effective widths with one corrugation overlap are 24 in . and 30 in . respectively. The weight of galvanising is to be not less than I $\frac{3}{4} \mathrm{oz} . / \mathrm{sq}$. ft., including both sides. The finished weight varies slightly.

TABLE 14. $8 / 3 \mathrm{in}$. Weight in lb . per sheet

Length of Sheet	Birmingham Gauge						
	16	18	20	22	24	26	28
$5{ }^{\prime}$	$32 \cdot 2$	25.9	19.6	16.1	13.3	10.7	8.7
$5^{\prime \prime} 6^{\prime \prime}$	$35 \cdot 4$	28.5	21.6	17.7	14.6	11.7	9.6
6^{\prime}	38.6	$31 \cdot 1$	23.6	19.3	16.0	12.9	$10 \cdot 5$
$6^{\prime} 6^{\prime \prime}$	41.8	33.7	25.6	$20 \cdot 9$	17.3	13.9	11.3
$7{ }^{\prime}$	45.0	$36 \cdot 3$	27.5	22.5	18.7	15.0	12.3
7' ${ }^{\prime \prime}$	48.2	$38 \cdot 9$	29.5	24.1	20.0	16.1	13.1
$8{ }^{\prime}$	51.5	41.5	31.4	25.7	21.3	17.1	14.0
$8^{\prime \prime} 6^{\prime \prime}$	54.7	$44 \cdot 1$	33.4	$27 \cdot 3$	22.6	18.2	14.8
$9{ }^{\prime}$	57.9	46.7	$35 \cdot 3$	28.9	24.0	19.3	15.7
$9{ }^{\prime \prime}{ }^{\prime \prime}$	61.1	49.3	$37 \cdot 3$	$30 \cdot 5$	25.3	$20 \cdot 4$	16.6
10^{\prime}	$64 \cdot 3$	51.9	39.2	$32 \cdot 2$	26.7	21.5	17.5

TABLE 15. $10 / 3 \mathrm{in}$. Weight in lb. per sheet

5^{\prime}	38.7	31.2	23.6	19.4	16.0	12.9	10.5
$5^{\prime} 6^{\prime \prime}$	42.5	34.3	26.0	21.3	17.5	14.1	11.5
6^{\prime}	46.4	37.5	28.4	23.2	19.2	15.5	12.6
$6^{\prime} 6^{\prime \prime}$	50.4	40.5	30.8	25.1	20.8	16.7	13.6
7^{\prime}	54.1	43.6	33.1	27.1	22.5	18.0	14.8
$7^{\prime} 6^{\prime \prime}$	58.0	46.7	35.5	29.0	24.1	19.4	15.7
8^{\prime}	62.0	49.9	37.8	30.9	25.6	20.6	16.8
$8^{\prime} 6^{\prime \prime}$	65.8	53.1	40.1	32.8	27.2	21.9	17.8
9^{\prime}	69.6	56.1	42.5	34.8	28.9	23.3	18.9
$9^{\prime} 6^{\prime \prime}$	73.5	59.3	44.8	36.7	30.4	24.6	20.0
10^{\prime}	77.4	62.4	47.1	38.7	32.1	25.8	21.1

GALVANISED STEEL SHEETS-Continued.

TABLE 16. Flat and Corrugated Sheets

Birmingham Gauge	16	18	20	22	24	26	28
Approx. thlckness after galvanising, in.	.065	.052	.042	.034	.028	.023	.019
Weight of flat sheet lb./sq. ft. Weight of corr. sheet lb./sq. ft.	2.62	2.09	1.68	1.35	1.09	.88	.71
Weight of corr. sheet allowing for laps* lb./sq. ft.	3.49	2.80	2.24	1.80	1.45	1.17	.96

* Based on 6 ft . sheels with 6 in . end lap and 2 in . side lap, exclusive of fastenings, for which add $0.04 \mathrm{lb} . / \mathrm{sq}$. ft.

ASBESTOS CEMENT SHEETS

Flat sheets $\frac{1}{}$ in. thick weigh
Corrugated sheets $\ddagger \mathrm{in}$. thick welgh
Ditto allowing for 6 in . end lap and side lap weigh
$2.3 \mathrm{lb} . / \mathrm{sq} . \mathrm{ft}$.
2.6 " "
3.3

Sheets with $10 \frac{1}{2} / 2 \frac{7}{8} \mathrm{in}$. corrugations are $29 \frac{1}{2}-30 \mathrm{in}$. wide and the effective width is $25 \frac{7}{8}$ or $28 \frac{3}{4} \mathrm{in}$. according to the side lap. The overall depth is $1 \frac{1}{8} \mathrm{in}$. Sheets with $7 \frac{1}{2} / 5 \frac{3}{4} \mathrm{in}$. corrugations are $41 \frac{1}{2}-43 \mathrm{in}$. wide and the effective width is $34 \frac{1}{2}$ or $40 \frac{1}{4} \mathrm{in}$. according to the side lap. The overall depth is 2 in . or $2 \frac{1}{8} \mathrm{in}$.

For tiles see Tables 7-9.

WEIGHTS OF METAL SHEET AND WIRE

For copper sheet see Table 18.
,, lead ., ,. 19
,, zinc ", ", ", 22.
,, Iron sheet and wire see Tables 20 (S.W.G.) and 21 (B.G.).
For other metals multiply the weight for iron sheet or wire in Tables 20 and 21 by the following conversion factors :-

TABLE 17

Metal	Factor	Metal	Factor
Aluminium	.350	Monel metal	1.14
Brass	1.11	Muntz metal	1.09
Copper	1.16	Steel	1.02
Gunmetal	1.10	Tungum	1.11
Lead	1.47	Zinc	.935

TABLE 18. Weight and Thickness of Copper Sheet
24 S.W.G. is the usual thickness for roofing. For gauges not given below see Tables 17 and 20.

s.w.g.	Thickness in.	$\underset{\text { Wb./sq. }}{\text { Weight }}$ ft.	$\begin{gathered} \text { Trade } \\ \text { Description } \end{gathered}$
20	. 036	1.67	
22	. 028	1.30	
23	. 024	1.11	"19 oz.".
24	. 022	1.02	" 1600. ."
Per inch of thickness		$46 \cdot 5$	

TABLE 19. Weight and Thickness of Lead Sheet

Weight lb./sq. ft	Thickness in.	Weight lb./sq. ft.	Thickness in.
2	. 034	5	. 085
$2 \frac{1}{2}$. 042	6	. 102
3	. 051	7	. 119
$3 \frac{1}{2}$. 059	8	-136
4	. 068	9	. 152
412	076	10	. 170
Per inch of thickness		59.0	

Lead sheet should not be used on slopes greater than 10°.
Copper nails should be used if nalling is unavoidable.
The usual weights in good-class work are as follows :-
(a) Roofs and maln gutters . $7 \mathrm{lb} . / \mathrm{sq} . \mathrm{ft}$.
(b) Hip, ridge and small gutters

6 ., ,
(c) Flashings and aprons . 5 " "
(d) Damp course and soakers . 4 , ,
For houses use $2 \mathrm{lb} . / \mathrm{sq}$. ft., lighter in classes (a) and (b). ,, ". " ," (c) and (d).

BRITISH GAUGES IN CURRENT USE

The Imperial Standard Wire Gauge was authorised in 1884 and is the only legal wire gauge in the U.K. It is also commonly used for sheets, although the Birmingham Gauge is still frequently used for sheet Iron and the Zinc Gauge for sheet zinc. It is to be hoped that these two gauges, and others seldom used, will become obsolete.

The Whitworth Decimal Gauge, used by the Admiralty and others, has the advantage that the gauge sizes denote the thickness in mils so that a table is unnecessary, e.g. No. 20 W.D.G. is 020 in. thick.

For sectional areas of S.W.G. sizes see Table 184.

TABLE 20. Standard Wire Gauge
Weight of Iron Wire and Sheet

s.W.G.	Diameter Thickness In.	Weight of 100 ft . of $\underset{\substack{\text { Ib } \\ \text { Iron Wire }}}{ }$ lb .	Weight per sq. foot Sheet Iron lb.	S.W.G.	Diameter Thickness in.	Weight of 100 ft . of Iron lb.	Weight per sq. foot Sheet Iron lb.
7/0	. 500			13	. 092		
$6 / 0$. 464			14	. 080	1.67	$3 \cdot 20$
5/0	. 432			15	. 072		
4/0	. 400			16	. 064	1.07	2.56
3/0	. 372			17	. 056		
2/0	. 348			18	. 048	. 603	1.92
0	. 324			19	. 040		
1	. 300			20	. 036	. 340	1.44
2	. 276			21	. 032		
3	252			22	. 028	- 205	1.12
4	. 232	14.09	9.28	23	. 024		
5	. 212			24	. 022	. 127	88
6	. 192	9.62	7.68	25	. 020		
7	.176 .160	7.39	6.40	26	.018 016	. 085	. 72
9	. 144			28	. 015	. 057	. 60
10	. 128	4.29	$5 \cdot 12$	29	. 014		
11	.116			30	. 012	. 040	. 48
12	.104	2.83	4.16		he last fo he gauge	sizes ap goes to	$\begin{aligned} & \text { ox. } \\ & \text { o. } 50 . \end{aligned}$

For other metals see Table 17.

TABLE 2I. Birmingham Gauge. Weight of Sheet Iron
This gauge (for Sheet and Hoops) differs from the Birmingham Wire Gauge and Birmingham Plate Gauge. Birmingham Wire Gauge between sizes 20 and 30 is almost identical with S.W.G.

B.G.	Thickness	Wt. par sq. ft.		Thickness	Wt. per sq. ft.
8	. 157	6.28	20	0392	1.57
9	. 1398	$5 \cdot 59$	21	. 0349	1.40
10	. 1250	5.00	22	0312	1.25
11	-1113	4.45	23	. 0278	1.11
12	.0991	3.96	24	. 0248	. 99
13	. 0882	3.53	25	. 0220	88
14	. 0785	3.14	26	. 0196	78
15	. 0699	2.80	27	. 0174	70
16	. 0625	2.50	28	. 0156	. 62
17	. 0556	2.24	29	. 0139	. 56
18	. 0495	1.98	30	. 0123	. 49
19	. 0440	1.76	31	. 0110	. 44

TABLE 22. Zinc Gauge. Weight of Sheet Zinc In accordance with B.S. 849-Plain Sheet Zinc Roofing

$\begin{gathered} \text { Zinc } \\ \text { Gavge } \\ \text { No. } \end{gathered}$	Thickness in.	Approx.Weight per sa. ft. lb .	$7 \mathrm{ft} \times 3 \mathrm{ft}$. Sheets		$8 \mathrm{ft} . \times 3 \mathrm{ft}$. Sheets.	
			Wt. per sheet tb .	No. per ton	Wt. per Sheet lb .	No. per Ton.
7	.011 .013	.41 .49	8.6 10.2	259 219	9.9 11.7	$\begin{aligned} & 227 \\ & 192 \end{aligned}$
8	. 015	. 56	11.8	190	13.5	166
9	017	. 64	13.4	168	15.3	147
10	. 019	. 71	14.9	150	17.1	131
11	. 022	. 82	17.3	129	19.7	113
12	. 025	. 94	19.7	114	22.5	100
13	. 028	1.05	22.0	102	25.2	
14	. 031	1.16	24.4	92	27.9	80
15	. 036	1.35	28.3	79	32.4	69
16	. 041	1.54	32.2	69	36.9	61
17	. 046	1.73	36.2	62	41.4	54
18	. 051	1.91	40.1	56	45.9	49
19	- 057	2.14	44.8	50	51.2	44
20	. 063	2.36	49.6	45	56.6	40
21	. 070	$2 \cdot 62$	55.1	41	62.9	36

TABLE 23. Hook Bolts $\frac{5}{18}$ in. diam.

Length		in.	34	4	4	5
Weight	Per 100	lb.	13.0	14.2	15.5	17.3
	Per gross	lb.	18.7	20.4	22.4	24.9

TABLE 24. Roofing Nalls and Screws

Length		in.	$2{ }^{\prime \prime}$	3"
Weight of nails	Per 100	lb .	3.5	4.1
	Per gross	lb .	5.1	5.9
Weight of screws	Per 100	lb .	3.7	4.9
	Per gross	lb .	5.3	7.0

TABLE 25. Sheeting Bolts $\frac{1}{4} \mathrm{in}$. diam.

Length	in.	i	1	$1 t$	$1 t$
Weight per 100	Ib.	2.5	2.9	3.2	3.5
$" \quad$ " gross	Ib.	3.6	4.1	4.6	5.1

CURVED DIAMOND WASHERS for roof bolts
Weight per $100-4.3 \mathrm{lb}$.
" per gross- 6.2 lb .
LIMPET WASHERS for roof bolts Weight per $100-1.0 \mathrm{lb}$.
", per gross- 1.4 lb .
For FLAT WASHERS see Table 170.

WIND, SNOW AND OTHER LOADING ON ROOFS WIND LOADS ON WALLS

For convenience, wind loading on portions of the structure other than the roof is considered here in addition to loading on roofs.

The Institution of Structural Engineers Technical Report No. 8 contains regulations for wind loading (repeated in Report No. 10) which are more detailed than and differ from the requirements of the L.C.C.

Post-War Building Study No. 8 of the Ministry of Works (" Reinforced Concrete Structures "') recommends the adoption of the above Technical Report for wind loading with the exception of the provisions relating to sloping roofs, for which the L.C.C. by-laws are to be retalned.
(I) Sloping Roofs, L.C.C. requirements, Including repair party and snow loads.
(a) Slope exceeding 20°. Minimum superimposed load, deemed to include the wind load, of $15 \mathrm{lb} . / \mathrm{sq}$. ft . of roof surface acting normal to the surface inwards on the windward side, and 10 lb ./sq. ft. outwards on the leeward side, the two loadings to be designed for separately and not simultaneously.
(b) Slope not exceeding 20° (including flat roofs). A minimum superImposed load of $50 \mathrm{lb} . / \mathrm{sq}$. ft. of covered area on slabs or $30 \mathrm{lb} . / \mathrm{sq}$. ft . on beams, e.g. purlins. Beams not spaced further apart than 30 in . are to be designed for slab loading.
(ii) Vertical Surfaces. Technical Report No. 8.

Wind pressure, acting normal to the surface, varies with the height and is to be taken as $5 \mathrm{lb} . / \mathrm{sq} . \mathrm{ft}$. at mean ground level, increasing at the rate of 1 lb . $/ \mathrm{sq}$. ft . for each 10 ft . of height up to a maximum of $15 \mathrm{lb} . / \mathrm{sq}$. ft . for heights of 100 ft . and over. The corresponding values are tabulated for various heights below.

TABLE 26. Wind Pressures at Various Heights.

Height above Ground, ft.	Lb./sq. ft.	Height above Ground. ft.	Lb./sq ft.
0	5	60	11
10	6	70	12
20	7	80	13
30	8	90	14
40	9	100	15
50	10	and over	

These pressures apply to areas where the wind velocity at a height of 50 ft . does not exceed 80 m.p.h. In more exposed situations the pressures shall be increased in the ratio of the square of the anticipated velocity (m.p.h.) to the square of 80 .
(iii) Isolated Projections, Technical Report No. 8.

On isolated projections, chimneys, etc., above the general roof level the pressure is to be taken as 50% greater than in (ii). See also (vii).
(iv) Gable Ends, Technical Report No. 8.

The pressure up to eaves level shall be taken as varying with the height, as in (iI). Above eaves level the pressure shall be taken as uniform, its value being as given in (ii) for a height midway between eaves and ridge.
(v) Wind Drag, Technical Report No. 8.

In addition to the pressures acting normal to the foregoing surfaces, all surfaces, whether vertical, inclined or horizontal, parallel to the direction of the wind shall be considered as subject to a drag tangential to the surface and equal to $2 \frac{1}{2} \%$ of the appropriate value given in (ii).
(vi) Multiple Spans, Technical Report No. 8.

Spans connected together and arranged so that the windward span shelters the others : relief of wind load on the structure supporting the spans may be allowed as follows :-

	Reduced
On the span adjoining the windward span	50\%
On the next span	75\%
On the remaining spans	872\%

The relief does not apply to the roof structure or valley beams.
(vil) Cylindrical Areas, Technical Report No. 8.
On cylindrical areas with axis vertical, e.g. chimneys, 60% of the pressures given in (II) shall be taken as acting on the projected area exposed to the wind.

The B.S. Code of Practice C.P. 4 (Chapter V) recommends the following loads:-
(i) Superimposed load, deemed to include snow :-
(a) On roofs sloping up to 10° (including flat roofs), $30 \mathrm{lb} . / \mathrm{sq}$. ft measured on plan ; for spans l less than $8 \mathrm{ft} ., \frac{240}{l} \mathrm{lb} . / \mathrm{sq}$. ft.
(b) On slopes greater than 10° and up to $65^{\circ}, 10 \mathrm{lb} . / \mathrm{sq}$. ft. measured on plan ; the roof also to be capable of carrying at any point a concentrated load of 200 lb . if workmen can stand directly on the roof, or 100 lb . If the slope is such that they would have to use a ladder or other support.
(c) On slopes greater than 65°, no allowance necessary.
(ii) Wind loads.

This section of Chapter V contains valuable information or the effect of wind on buildings, but as a design code is not very satisfactory. The process involves making two difficult decisions, viz., which of six different wind velocities shall be adopted for the site, and what part of the height of the building may be considered as shielded by permanent near-by obstacles. From these considerations the appropriate wind pressure p is obtained, and $0.5 p$ is taken as acting uniformly over the whole height of the windward vertical face of the building, with an equal suction on the lee side.

For roofs, various factors are applied to p according to the slope and other conditions. The salient points which emerge from the recommendations are that external pressure is considerably less than $15 \mathrm{lb} . / \mathrm{sq}$. ft , on most roofs, while the suction may exceed $10 \mathrm{lb} . / \mathrm{sq}$. ft . The latter figure is adequate for roofs, of any slope, not exceeding 60 ft . in effective height in localities where a $55 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. wind is appropriate, but the suction may reach $40 \mathrm{lb} . / \mathrm{sq}$. ft . on very high buildings in exposed sites.

It would appear that much simpler rules for wind loading could be devised within the Code for the majority of buildings in inland towns.

HOUSE CONSTRUCTION-Snow and Wind Loading

Post-War Building Study No. I of the Ministry of Works (" House Construction '') makes the following recommendations.
(I) Sloping Roofs.
(a) Slope of 10° and over. A snow load of $10 \mathrm{lb} . / \mathrm{sq}$. ft. measured on plan, and a negative pressure (suction) of $8^{*} \mathrm{lb} . / \mathrm{sq}$. ft . on the leeward slope, acting separately or in conjunction with the snow load.
(b) Slope of less than 10° (including flat roofs). A superimposed load including snow of $30 \mathrm{lb} . / \mathrm{sq}$. ft . measured on plan, alternatively an upward pressure of $10 \mathrm{lb} . / \mathrm{sq}$. ft.

The roof covering and framing should be able to withstand a concentrated load of 100 lb . at any point accessible by ladder, or 200 lb . If accessible without a ladder.
(II) Vertical Surfaces

For buildings not more than 20 ft . high to the eaves, a horizontal wind pressure of $8^{*} \mathrm{lb} . / \mathrm{sq}$. ft . When the bullding height does not exceed three times the width and there is reasonable stiffening by crosswalls calculations are unnecessary.

[^1]\quad TIMBER DATA
I Standard $=165 \mathrm{cu} . \mathrm{ft} .($ Petrograd standard) $=1980$ Board feet (U.S.).
I Load $=50 \mathrm{cu} . \mathrm{ft} . \quad$ I Square $=100 \mathrm{sq} . \mathrm{ft}$.
I Cord $=128 \mathrm{cu} . \mathrm{ft} . \quad$ I Stack $=108 \mathrm{cu} . \mathrm{ft}$.
B.S. 565-Terms and Definitions applicable to Hardwoods and Softwoods gives the following terms for different sizes of timber, but they are not yet in universal use :-

Batten	2 in . to 4 in. thick incl	5 m.
Board	Under 2 in. thick.	4 in . and over wide
Deal	2 in . to 4 in . thick incl.	Not under 9 in . but under II in. wide.
Plank	2 in. to 6 in. thick incl.	11 in . and over wide.
Scantling	2 in . to 4 in. thick incl.	2 in . to $4 \frac{1}{2} \mathrm{in}$. wide incl.
Strip	Under 2 in. thick.	Under 4 in . wide.
Square	Equal dimensions from	1 in . to $6 \mathrm{in} . \times 6 \mathrm{in}$.

The term " scantling " is also used in the sense of cross-section or size. Cost. $f l$ per standard $=1.454$ pence per $\mathrm{cu} . \mathrm{ft}$.
If the dimensions of a timber are d inches by b inches and the cost of timber is $£ N$ per standard, then

$$
\frac{d \times b \times N}{100}=\text { pence per foot run, within } 1 \% \text {. }
$$

PROPERTIES OF TIMBERS

English green timber contains in the case of hardwoods about 40% of its weight of water, in softwoods from 50% to 60%; from 8% to 12% is retained even when thoroughly seasoned. The difference in weight from the green state to normally dry and seasoned is therefore some $10-15 \mathrm{lb} . / \mathrm{cu} . \mathrm{ft}$. The weights given below and in the Table of Densities are for timber containing 15% water, that is, seasoned and apparently dry.

The distinction between hardwoods and softwoods has no relation to hardness. A former convention called timber weighing over $40 \mathrm{lb} . / \mathrm{cu} . \mathrm{ft}$. hardwood. The British Standards Institution adopts a distinction based solely on botanical type.

The safe working stress in timber is usually taken as one-sixth of the ultimate stress. For working stresses under L.C.C. by-laws see p. 25. For weight of other timbers see Table of Densities, Table 93.

TABLE 27.

Name	Weight lb./cu. ft.	Ultimate Stress lb. per sq. in.		Young's Modulus lb./sq. in.
		Tension	Compression	
Ash, English	43	5-15000	7-9000	
Beech	48	10-20000		1.4-1.8
Birch, yellow *	44	15000	7000	
Cedar, Western red	24	11000	6000	
Deal, see Yellow Pine				
Elm, English	36	5-7000	5000	1.0-1.2
Fir, Douglas	33	7000	6000	1.6
Greenheart	62-70	18000	15000	2-3.4
Hickory*	51	19000	9000	
Hornbeam	44	12000	7000	
Larch	37	4000		1.0-1.6
Lignum vitae	75-83	12000	11000	
Mahogany, Honduras	34	20000	8000	1.6-2.0
* Spanish	43	14000	8000	1.3-3.0
Maple *	43	15000	7500	
Oak, American red	45	7-10000	7-9000	2.1
English white	48	12000	10000	2.1
English	45	8-16000	6-10000	1.2-1.7
Oregon pine, see Fir, Douglas Pine, American yellow	27	2000	4000	1.6-2.5
Dantzig	36	3-10000	6000	$2 \cdot 3$
Kauri (N.Z.)	38	5000	5000	2.9
Pitch-	41	5-9000	7000	1.3-3.0
Riga	34-47	4-11000	4000	1.3-3.0
Poplar *	28	9000	5000	
Pyinkado	62	12000	11000	2.5
Redwood, non-graded		see	Table 37	
Spruce, Norway ${ }^{\text {graded }}$	33 or 41 29	9000	5000	
Teak	41	8-13000	8-11000	1.8-2.4
Whitewood	29	9000	5000	1.5

* The stresses given for these timbers apply to specimens for use in aircraft construction

WORKING STRESSES

For timber the working stress is generally taken at one-sixth of the ultimate stress. The following values may be adopted for selected seasoned timber. See p. 25 for L.C.C. requirements.

TABLE 28.
Working Stresses, lb./sq. in.

Timber	Fibre Stress in Bending	Compressive Streiss
Greenheart	3000	2500
Ash, Beech, Oak, Teak	1500	1200
Douglas Fir, Larch, Pitch-	1200	1000
Elm, Spruce, Redwood	1000	800

LENGTH OF TIMBER IN ONE STANDARD

The Petrograd standard of 165 cu . ft . is used in the tables below. The standard terminology recommended in B.S. 565 is indicated by the frames. Sizes printed in italics are termed "squares."

TABLE 29.
Feet Run per Standard

TABLE 30. Equivalents of One Standard of Flooring or Shuttering

Thickness	Sq. yds.	Sq. ft.
$1^{\prime \prime}$	440	3960
尔"	352	3170
*"	293	2640
I"	220	1980
11"	176	1580
11"	147	1320
2"	110	990

LENGTH OF TIMBER IN I CU. FT.
The standard terminology recommended in B.S. 565 is indicated by the frames. Sizes printed in italics are termed " squares."

TABLE 31. Feet Run per cu. ft.

EQUIVALENTS OF ONE SQUARE (100 sq. ft.) OF TONGUED AND GROOVED FLOORING

The effective width of T. \& G. boarding as laid is indefinite and should be checked with the supplier if ordering by length.

TABLE 32. Feet Run per Square

Nominal Width in.	Length ft.	Nominal Wideh in.	Length $\mathbf{f t .}$	Nominal Widdh in.	Length ft.
3	480	$4 \frac{1}{2}$	300	6	220
$3 \frac{1}{2}$	400	5	270	$6 \frac{1}{2}$	200
4	340	$5 \frac{1}{2}$	240	7	180

TIMBER ROOF CONSTRUCTION

The L.C.C. by-laws permit alternative methods of determining the sizes and spacing of timbers in roof construction.
(a) Provided that the construction and covering materials are not of abnormal weight, e.g. the covering of flat roofs is not heavier than I in. of asphalt, the size and spacing of timbers may be obtained by the use of a table of spacing factors.

The following three tables have been calculated to give this information direct ; they are based on the factors for " non-graded" timber (working fibre stress in bending 800 lb ./sq. in.), see Table 37.

The alternative (b) is discussed later.
Cantilevers may project clear of support by a distance not exceeding one-quarter of the supported span for which the timber would be permitted.

Non-graded timbers, supported at each end
(i) RAFTERS, PURLINS AND CEILING JOISTS

TÁBLE 33. Clear Spacing S in inches

$\begin{gathered} \text { Jolist Size } \\ \text { in. } \\ \text { In. } \end{gathered}$	Clear Span in Feet									
	6	7	8	9	10	11	12	13	14	15
3×2 4×2 41×2 5×14 5×2	11 26 34 34 39	181 18 23 26 30	11 18 18 21	8^{82} 11 13 15	83 9 11	74 84 8				
6×13	54	39	30	23	18	13	10	7		
6×2	62	45	34	26	21	15	11	8		
7×13	65	54	39	30	23	20	16	11	9	7
7×2	74	62	45	34	26	23	18	13	11	8
8×2	112	74	62	45	39	30	26	21	18	13
8×21	126	83	70	51	44	34	29	23	20	15
$8 \times 2 \frac{1}{2}$	140	92	77	56	48	37	32	26	22	16

(ii) JOISTS TO FLAT ROOFS

TABLE 34. Clear Spacing S in inches

$\begin{aligned} & \text { Jolst Size } \\ & \text { d } \times \text { © } \\ & \text { in. } \end{aligned}$	Clear Span in Feet.									
	6	7	8	9	10	11	12	13	14	15
5×13	14	10	7							
5×2	16	12	9							
6×13	23	16	12	9	7					
6×2	27	19	14	10	8					
7×2	32	27	19	14	10	9				
8×2	49	32	27	19	16	12	10	8		
$8 \times 2 \frac{1}{4}$	61	40	35	24	20	15	12	10		
$8 \times 2 \frac{1}{2}$	73	48	40	24	18	15	12			
9×2	56	39	32	27	19	16	14	10	9	8
$9 \times 2 \frac{1}{2}$	70	48	40	34	23	20	16	12	10	9
9×3	84	58	48	40	28	24	21	15	13	12
$11 \times 2 \frac{1}{2}$		70	61	48	40	34	27	20	17	15
11×3		84	73	58	48	40	33	24	21	18

(iii) BINDERS TO FLAT ROOFS

TABLE 35. (Also (iv) Joists and Binders to Residential Floors based on 50 lb . loading)

$\begin{gathered} \text { Joist Size } \\ \text { S } \times 6 \mathrm{i} \\ \text { in. } \end{gathered}$	Clear Spacing S in Inches.									
6×13	33	23	17	13	10	7				
6×2	38	27	20	15	12	8				
7×2	45	38	27	20	15	13	10	81		
8×2	69	45	38	27	23	18	15	12	10	$8{ }^{2}$
8×2 2	77	50	42	30	26	20	17	13	11	92
$8 \times 2 \frac{1}{4}$	86	56	47	33	29	22	19	15	12	10^{2}
9×2	79	54	45	38	27	23	20	15	13	12
$9 \times 2 \frac{1}{2}$	98	67	56	47	33	28	25	18	16	15
9×3	118	82	67	57	40	34	30	22	19	18
$11 \times 2 \frac{1}{2}$	112	99	86	68	56	47	40	28	25	22
11×3	135	118	103	82	67	57	48	34	30	27

Max. span: ${ }^{1} 12^{\prime}-10^{\prime \prime} .{ }^{2} 14^{\prime}-8^{\prime \prime}$.

Local by-laws sometimes specify the minimum dimensions of rafters and joists, without specifying the spacing. The above values are not necessarily in accordance with such dimensions.
(b) The aiternative to using the foregoing tables is to determine the size and spacing of timbers by calculation. In this event the following superimposed loadings are specified by the L.C.C. :-

TABLE 36.

Construction	Lb./sa. ft. of Horizontal Covered.	
Flat-roof :-- (slope not more than 20	boarding joists, firring binders, trusses	200
		50
		30

The deflection under the specified loading is not to exceed $\frac{1}{8} \overline{6} 0$ of the length of the member. The stresses under the specified loading are not to exceed the values given below (L.C.C.).

TABLE 37.

Nature of Stress.	Working Stress lb//sq. in.	
	Non-graded	$\text { Grade } 1200$ lb. f.
Extreme fibre stress in bending	800	1200
Shear stress in direction of grain	90	100
Compression perpendicular to grain	165	325
Compression in direction of grain in posts and struts with slenderness ratio not exceeding 10 (see Table 38)	800	1000
Tension in direction of grain	800	1200
Modulus of elasticity	1200000	1600000

Timber Roof Construction-Continued.

The compression stress in posts and struts of slenderness ratio greater than 10 is not to exceed the values given in table 38 (L.C.C.).

TABLE 38.

Slenderness Ratio					Lb. per sq. in.	
					Non.-graded	$\begin{aligned} & \text { Graded } \\ & 1200 \mathrm{lb} . \mathrm{f} . \end{aligned}$
Exceeding 10 but not exceeding 12					785	985
"	12	,			775	970
,	14	,"		16	755	950
",	16.	,	",	18	725	920
",	18	,"	,	20	690	875
"	20	"	"	22	635	820
,"	22	",	"	24	565	745
,	24	",	"	26	485	650
"	26	"	"	28	420	600
",	28	\cdots	",	30	365	485
"	30	,		32	320	430
"	32	"		34	285	380
"	34	,	"	36	255	340
"	36	"	"	38	225	300
,	38	"	"	40	205	275

The slenderness ratio shall not exceed 40 . Where bending loads are present the strut must be designed to withstand the combined bending and direct stress, for which see p. 113.

Note, the two foregoing tables apply generally to timber construction, including floors, q.v.

The formulæ to be used in designing timber beams are given on p. 161.
The accompanying figure gives the working loads, centrally supported, on timber columns of different sizes and lengths. The values are calculated from formulæ published by the Forest Products Laboratory, Madison, Wisconsin ; for each size shown the upper curve is for timber with a value for E of $1,600,000$ $\mathrm{lb} . / \mathrm{sq}$. in. and maximum safe compressive stress of $1200 \mathrm{lb} . / \mathrm{sq}$. in., while the corresponding values for the lower curve are $1,300,000$ and 1000 lb ./sq. in. Some English figures indicate considerably higher loads than those shown.

REACTIONS AT ROOF TRUSSES

(i) DEAD LOAD REACTIONS

The main table gives the reaction at each shoe for various spans and spacings of trusses, taking the combined weight of covering, purlins and truss at $9 \mathrm{lb} . / \mathrm{sq}$. ft . of area covered. Trusses up to 30 ft . span are usually spaced at about 12 ft . centres, for 45 ft . span at 14 ft . and over 60 ft . span, 16 ft . ; a truss allowance of $2 \frac{1}{2} \mathrm{lb} . / \mathrm{sq}$. ft . is sufficiently accurate. In accordance with the
 data on page 6 this table applies to asbestos sheets and to boards and felt.

TABLE 39. Vertical Reactions R, tons

Spacing of Trusses ft.	Spans (C. to C. of Shoes), feet								
	20	25	30	35	40	45	50	55	60
8	.32	.40	.48	.56					
9	.36	.45	.54	.63	.72				
10	.40	.50	.60	.70	.80	.90			
11	.44	.55	.66	.77	.88	.99	1.10		
12	.48	.60	.72	.84	.96	1.08	1.20	1.32	
13	.52	.65	.78	.91	1.04	1.17	1.30	1.43	
14	.56	.70	.84	.98	1.12	1.26	1.40	1.54	1.69
15		.75	.90	1.05	1.20	1.35	1.50	1.66	1.81
16			.96	1.13	1.29	1.45	1.61	1.77	1.93

For other covering materials multiply the above reactions by the factors given below.

TABLE 40.

Covering	Multiply Reaction by
24 B.G. galv. corrugated sheets on steel purlins	.65
Patent glazing on steel purlins	$1 \cdot 1$
Asbestos diamond slating, I" boards and steel purlins	1.1
Light Welsh slating $\cdot 2^{\prime \prime}$ thick, $1^{\prime \prime}$ boards and steel purlins.	1.8

(ii) WIND LOAD REACTIONS

In accordance with B.S. 449 and L.C.C. By-laws, viz., wind pressure $15 \mathrm{lb} . / \mathrm{sq}$. ft. normal to slope on windward side and 10 lb ./ sq. ft . suction on lee side. Table 41 gives the vertical reaction R under windward shoe, whether windward or lee shoe is free, without suction. These are the maximum vertical
 reactions possible.

TABLE 4I. Vertical Reaction R, tons

Spacing of Trusses ft.	20	25	30	35	40	45	50	55	60
8	.37	.46	.55	.65					
$\mathbf{9}$.41	.52	.62	.73	.83				
10	.46	.58	.69	.81	.92	1.04			
11	.51	.63	.76	.89	1.01	1.14	1.27		
12	.55	.69	.83	.97	1.10	1.24	1.38	1.52	
13	.60	.75	.90	1.05	1.20	1.35	1.50	1.65	1.80
14	.65	.81	.97	1.13	1.29	1.45	1.61	1.77	1.93
15		.86	1.04	1.21	1.38	1.56	1.73	1.90	2.07
16			1.10	1.29	1.47	1.66	1.84	2.02	21

To allow for expansion one shoe must be left free to slide, and it is assumed that the reaction under it is vertical. The horizontal component of the wind pressure and suction is resisted at the other shoe. Since the wind may blow from either side the worst combination at each shoe must be designed for. The reaction obtained from Table 41 must therefore be multiplied by the factors below to give the horizontal reactions and lee shoe reactions.

TABLE 42.

Conditions	Windward Shoe		Leeward Shoe		Leeward shoe free Windward shoe free
	Vertical Reaction	Horizontal Reaction	Vertical Reaction	Horizontal Reaction	
Pressure only	$\begin{aligned} & 1.00 \\ & 1.00 \end{aligned}$	$\begin{gathered} .727 \\ 0 \end{gathered}$	$\begin{aligned} & .454 \\ & .454 \end{aligned}$	$\begin{gathered} 0 \\ .727 \end{gathered}$	
Pressure and suction	.698 .698	1.21 0	-.211 -.211	$\begin{gathered} 0 \\ 1 \cdot 21 \end{gathered}$	Leeward shoe free Windward shoe free

DESIGN LOADS ON STRUCTURE BELOW ROOF

(i) DEAD LOADS. These may be obtained direct for typical roofs, pp. 6 and 7.
(ii) WIND LOADS. The vertical component is to be taken at $\mathrm{lO} \mathrm{lb} . / \mathrm{sq} . \mathrm{ft}$. of plan area covered (L.C.C.).

SAFE REACTIONS ON CONCRETE PADSTONES

Calculated for I : $2: 4$ concrete (L.C.C. Designation III) at 42 tons $/ \mathrm{sq}$. ft. For $1: 1 \frac{1}{2}: 3 \mathrm{mix}$, add one-sixth to reactions tabulated, see Table 61.

The length L should be not less than 4 in . ; it may be approximately equal to the depth of beam for depths up to 8 in . and two-thirds of the depth for deep beams.

When the reaction does not exceed the product of $L \times B$ times the permissible pressure in Table 61 or 63, no padstone is required.

(a)

TABLE 43. Safe Reactions in tons

Width of BearingBin.	Length of Bearing Lin.								
	4	5	6	7	8	9	10	12	14
$1 \frac{1}{2}$	1.5	1.87							
$1 \frac{13}{4}$	1.75	2.19	2.62	3.06	3.50				
3	3.00	3.75	4.50	$5 \cdot 25$	6.00	6.75	7.50	9.00	10.5
4	4.00	5.00	6.00	7.00	8.00	9.00	10.0	12.0	14.0
41	4.50	5.62	6.75	7.87	9.00	10.1	11.2	13.5	15.7
5	5.00	6.25	7.50	8.75	10.0	11.2	12.5	15.0	17.5
$5 \frac{1}{2}$	5.50	6.87	8.25	9.62	11.0	12.4	13.7	16.5	19.2
6	6.00	7.50	9.00	10.5	12.0	13.5	15.0	18.0	21.0
7	7.00	8.75	10.5	12.2	$14: 0$	$15 \cdot 7$	17.5	21.0	24.4
$7 \frac{1}{2}$	7.50	9.37	11.2	13.1	150	16.8	18.7	22.5	$26 \cdot 2$
8	8.00	10.0	12.0	14.0	16.0	18.0	20.0	24.0	28.0
10	10.0	12.5	15.0	17.5	20.0	22.5	25.0	30.0	35.0
11	11.0	13.7	16.5	19.2	22.0	24.7	27.5	33.0	38.4
12	12.0	15.0	18.0	21.0	24.0	27.0	$30 \cdot 0$	36.0	42.0

BEARING PLATES

The reaction as given in the above table may be increased by improving the concrete mix, by increasing L or by adding bearing plates to increase B, as in Fig. (b). The thickness of plate required, for different loads and projections beyond the flange of the joist, is given in the next table, calculated on the usual assumption that the maximum B.M. in the plate occurs under the middle of the flange which applies the load.

THICKNESS OF BEARING PLATES

TABLE 44. See notes on preceding page.

$\begin{aligned} & \text { Length } \\ & \text { of } \\ & \text { Bearing } \\ & \text { itin } \end{aligned}$Lin.	Projectionof Plate (each (eachside) in.	Thickness of Plate, in.					
		\pm	\dagger	1	\%	1	$1 \pm$
		Reactions in Tons					
4	$\begin{aligned} & 1 \\ & 1 \frac{1}{2} \\ & 2 \\ & 2 \frac{1}{2} \\ & 3^{2} \end{aligned}$	$\begin{aligned} & 5.3 \\ & 3.6 \\ & 2.7 \\ & 2.1 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 8.3 \\ & 5.6 \\ & 4.2 \\ & 3.3 \\ & 2.8 \end{aligned}$	$\begin{array}{r} 12.0 \\ 8.0 \\ 6.0 \\ 4.8 \\ 3.4 \end{array}$	$\begin{array}{r} 16.3 \\ 10.9 \\ 8.2 \\ 6.5 \\ 4.0 \end{array}$		
6	$\begin{aligned} & 1 \\ & 1 \frac{1}{2} \\ & 2 \\ & 2 \frac{1}{2} \\ & 3 \end{aligned}$	8.0 5.3 4.0 3.2 2.7	$\begin{array}{r} 12.5 \\ 8.3 \\ 6.2 \\ 5.0 \\ 4.2 \end{array}$	$\begin{array}{r} 18.0 \\ 12.0 \\ 9.0 \\ 7.2 \\ 6.0 \end{array}$	$\begin{array}{r} 24.5 \\ 16.3 \\ 12.2 \\ 9.8 \\ 8.2 \end{array}$		
8	$\begin{aligned} & 1 \\ & 1 \frac{1}{2} \\ & 2 \\ & 2 \frac{1}{2} \\ & 3 \\ & 3 \frac{1}{2} \end{aligned}$	$\begin{array}{r} 10.7 \\ 7.1 \\ 5.3 \\ 4.3 \\ 3.6 \end{array}$	$\begin{array}{r} 16.7 \\ 11.1 \\ 8.3 \\ 6.7 \\ 5.6 \\ 4.8 \end{array}$	$\begin{array}{r} 24.0 \\ 16.0 \\ 12.0 \\ 9.6 \\ 8.0 \\ 6.9 \end{array}$	$\begin{array}{r} 32.7 \\ 21.8 \\ 16.3 \\ 13.0 \\ 10.9 \\ 9.3 \end{array}$	$\begin{aligned} & 42.7 \\ & 28.4 \\ & 21.3 \\ & 17.1 \\ & 14.2 \\ & 12.2 \end{aligned}$	
10	$\begin{aligned} & 1 \frac{1}{2} \\ & 2 \\ & 2 \frac{1}{2} \\ & 3 \\ & 3 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 8.9 \\ & 6.7 \\ & 5.3 \\ & 4.5 \end{aligned}$	$\begin{array}{r} 14.8 \\ 11.1 \\ 8.9 \\ 7.4 \\ 6.3 \end{array}$	$\begin{array}{r} 20.0 \\ 15.0 \\ 12.0 \\ 10.0 \\ 8.6 \end{array}$	$\begin{aligned} & 27.2 \\ & 20.4 \\ & 16.3 \\ & 13.6 \\ & 11.6 \end{aligned}$	35.5 26.6 21.3 17.8 15.2	
12	$\begin{aligned} & 1 \frac{1}{2} \\ & 2 \\ & 2 \frac{1}{2} \\ & 3^{2} \\ & 3 \frac{1}{2} \end{aligned}$	$\begin{array}{r} 10.7 \\ 8.0 \\ 6.4 \\ 5.3 \end{array}$	$\begin{array}{r} 16.7 \\ 12.5 \\ 10.0 \\ 8.3 \\ 7.2 \end{array}$	$\begin{aligned} & 24.0 \\ & 18.0 \\ & 14.4 \\ & 12.0 \\ & 10.3 \end{aligned}$	$\begin{aligned} & 32.7 \\ & 24.5 \\ & 19.6 \\ & 16.3 \\ & 14.0 \end{aligned}$	$\begin{aligned} & 42.7 \\ & 32.0 \\ & 25.6 \\ & 21.3 \\ & 18.3 \end{aligned}$	66.7 50.0 40.0 33.3 28.6
14	$\begin{aligned} & 1 \frac{1}{2} \\ & 2 \\ & 2 \frac{1}{2} \\ & 3 \\ & 3 \frac{1}{2} \end{aligned}$	$\begin{array}{r} 12.4 \\ 9.3 \\ 7.5 \\ 6.2 \end{array}$	$\begin{array}{r} 19.4 \\ 14.6 \\ 11.7 \\ 9.7 \\ 8.3 \end{array}$	$\begin{aligned} & 28.0 \\ & 21.0 \\ & 16.9 \\ & 14.0 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 38.1 \\ & 28.6 \\ & 22.9 \\ & 19.1 \\ & 16.3 \end{aligned}$	49.8 37.4 29.8 24.9 21.4	77.7 58.3 46.7 38.9 33.3

Example

A $12 \mathrm{in} . \times 5 \mathrm{in}$. joist carrying a symmetrical load of 28 tons is to be supported on a 9 in . brick wall. Allowing for chamfer on the padstones the length of bearing will not exceed 8 in . The reaction is 14 tons. From Table 43 the width of bearing required, for 8 in . length is 7 in ., whereas the joist flange width is 5 in . A plate giving a projection of 1 in . on each side is therefore required. From Table 44, for length of bearing 8 in. and projection I in., the least thickness for a reaction of 14 tons is $\frac{5}{8}$ in .(16.7 tons). The bearing plate required is therefore $7 \mathrm{in} . \times \frac{5}{8} \mathrm{in} . \times 8 \mathrm{in}$. long

WALLS, FLOORS AND BEAMS

WALLS, FLOORSANDBEAMS

CONCRETE DATA

Concrete is usually required to reach its designed strength within 28 days or less, and compressive failure at this age occurs in the mortar and not in the coarse aggregate. For a given quantity of cement per cubic yard, provided that well-graded aggregate is used, maximum concrete strength will be achieved when
(a) the largest maximum size of aggregate which will suit the work is chosen, as such aggregate has the lowest proportion of voids, less mortar is required and therefore it may be richer; and
(b) no more water is used in the mix than is necessary to enable the concrete to be worked compactly into place.

Enriching a mix by additional cement only improves the strength and other properties, in so far as a lower ratio of water to cement is needed to obtain the same consistency.

The three mixes below, if mixed to the consistencies appropriate to their respective classes of work, will have approximately equal strength. The decreasing proportions of fine to coarse aggregate reflect the reduction in voids as the range of coarse aggregate size increases. (See note to Table 52.)

TABLE 45.

Range of Size of Coarse Aggregate	Proportions
$\begin{aligned} & \frac{3}{16^{\prime \prime}} \text { to } \frac{3^{\prime \prime}}{8^{\prime \prime}} \\ & \frac{3}{16^{\prime \prime}} \text { to } \frac{31}{3^{\prime \prime}} \\ & \frac{3}{16^{\prime \prime}} \text { to } \frac{1}{2}^{\prime \prime} \end{aligned}$	$\begin{aligned} & 1: 2 \frac{3}{4}: 4 \\ & 1: 2 \frac{1}{2}: 5 \\ & 1: 2: 6 \end{aligned}$

TABLE 46. Usual Maximum Size of Coarse Aggregate

Purpose	Size.
Hollow reinforced concrete floors	\% ${ }^{\prime \prime}$
Precast fence posts, window frames, lintols	2
Normal reinforced concrete in beams, slabs and columns.	$\frac{1}{2}{ }^{\prime \prime}-\frac{3}{4}{ }^{\prime \prime}$
Reinforced concrete when cover and clearance between bars exceed $\mathbf{2}^{\prime \prime}$.	$11^{\prime \prime}$
Mass concrete in roads and paths	$1 \frac{1}{2}{ }^{\prime \prime}$
" ", up to 12"thick ${ }^{\prime \prime}$ not less than $12^{\prime \prime}$ thick	2"1

The accompanying diagrams show the effect of varying conditions on the properties of concrete.

Water/cement ratio is always calculated by weight, thus $0.5 \mathrm{w} / \mathrm{c}$ ratio means $\frac{1}{2}$ cwt. (56 lb . or 5.6 gals.) of water to 1 cwt . of cement. In American units I U.S. gallon per sack $=0.833$ Imperial gals. per 94 lb . $=1$ Imperial gallon per cwt. very nearly.

The relation between slump and water ratio varies with the mix and with different aggregates; the curve given is typical. Slump is usually defined as the subsidence of the mix when it has been filled into a metal cone 12 in . high and of standard proportions and the cone is removed. A 9-in. cone will show a slump approximately three-quarters of that obtained with a $12-\mathrm{In}$. cone.

Slumps commonly necessary in practice are given below for ordinary hand placing conditions. The last column gives an indication of the water/ cement ratio.

TABLE 47.

Nature of Work	Slump	Description	Water/Cement Ratio
Road slabs and paths well rammed	$2^{\prime \prime}$	Stiff	0.6
Mass concrete foundations and thick walls	$3^{\prime \prime}$	Plastic	0.7
Reinforced concrete beams and columns	$3^{\prime \prime}$	Rather wet	0.8
Narrow reinforced beams	$4^{\prime \prime}$	Rather	
Walls and partitions less than 6" thick	$4^{\prime \prime}$		
Heavily reinforced beams and columns	$4^{\prime \prime}-5^{\prime \prime}$		
Thin horizontal sections between shutters	$5^{\prime \prime}-6^{\prime \prime}$	Sloppy	0.9

These slumps can be reduced by about a half when mechanical vibration is employed. The table should be read in conjunction with the preceding notes and with Table 53.

Miscellaneous Properties.
Compressive strength-see the diagrams.
Tensile strength-usually about 8% of compressive strength.
Elastic Modulus (Young's Modulus) in compression E_{c}-usually about 1000 times the compressive strength.

Elastic Modulus in tension $\mathbf{E}_{\mathbf{t}}$-usually about 89% of the value of E in compression (for mortar 91%).

Shrinkage during hardening-about $\cdot 00025$ at 28 days, per unit le ngth (more for wet or rich mixes)
.00035 at 3 months \quad ". ",

Shrinkage from wet to dry-about .0006 (reversible) ", ",
Poisson's Ratio-1 : $1 \frac{1}{2}: 3,0.15 ; 1: 2: 4,0.13 ; 1: 2 \frac{1}{2}: 5,0.11$.
Temperature Coefficient- $0 \cdot 000,006$ per unit length per degree F.

Expansion Joints

A shrinkage of 0006 corresponds to about $\frac{3}{4} \mathrm{in}$. In 100 ft ., and a temperature coefficient of 000,006 represents $\frac{8}{8}$ in. per 100 ft . for a change of temperature of $50^{\circ} \mathrm{F}$. If the ends were fully restrained a bar of concrete with a value of 4 million $\mathrm{lb} . / \mathrm{sq}$. in . for E would have induced in it a stress of 24 lb ./sq. in. for each degree F. change in its temperature.

In practice these figures are never realised because of the effects of restraint along the length, imperfect fixity at the ends and relief due to creep in the concrete. None the less expansion joints are necessary when considerable lengths of concrete are to be built ; a common rule is to provide such joints at intervals of 40 ft . A greater length is permissible when the concrete is protected from rain, where it is adequately bonded to the structure beneath or where its temperature is not likely to differ widely from the construction of which it forms a part. Concreting in alternate bays and similar precautions reduce the shrinkage stresses during the early life of the work but do not reduce the tendency to movement due to subsequent temperature and moisture changes.

Sulphate Corrosion

Pozzolana and Trass cements are obtainable for use in concrete to be subject to the action of sulphate waters, peat, etc. The strength of concrete made with these cements is appreciably less and the cost more than for normal Portland cement. The makers should be consulted for details.

Influence of Temperature on Strength

Representative figures for good quality concretes cured at different temperatures are given below. These are from laboratory tests and the water-cement ratio (about 0.5) is too low for works use without mechanical consolidation.

TABLE 48. Strength of $1: 2: 4$ Concrete,
$5 \frac{1}{2}$ gals. of Water/cu. ft. of Cement, Normal Portland Cement
Compressive Strength of 6-in. Cubes, Ib./sq. in.

$\begin{aligned} & \text { Age in } \\ & \text { Days. } \end{aligned}$	Temperature during Curing, Fahr.					
	36°	50°	64°	80°	95°	Steam
1	-	-	550			2000
3	-	1100	1700	2100	2200	3100
7	920	1900	2500	2800	2880	3600
14	2050	2600	3000	3150	3200	3800
28	3300	3500	3700	3850	3900	3950

TABLE 49. Strength of $1: 2: 4$ Concrete, $5 \frac{1}{2}$ gals. of Water/cu. ft. of Cement, Rapid Hardening Cement Compressive strength of 6 -in. Cubes, $\mathrm{lb} . / \mathrm{sq}$. in.

Age in	Temperature during Curing, Fahr.			
	36°	50°	64°	80°
1	100	550	900	1100
3	400	1900	2600	2850
7	1200	3100	3300	3400
28	4200	4500	4700	4800

TABLE 50. Removal of Shuttering (Days after placing concrete)

Construction	Normal Portland Cemene		Rapid-hardening P.C.	
	$\begin{array}{\|c\|} \text { Cold, } \\ \text { about frezing } \end{array}$	Normal, about 60°	$\begin{array}{\|c\|} \text { Cold, } \\ \text { aboutfreezing } \end{array}$	$\begin{aligned} & \text { Normal, } \\ & \text { about } 60^{\circ} \end{aligned}$
Beam sides, walls, columns Slabs, leaving props	8 10	3 4	7 10	${ }_{3}^{2 \frac{1}{2}}$
', props	14	8	14	5
Beam soffits, leaving props	12	6	12	4
., ., props	28	16	21	7

The removal of shuttering from reinforced concrete work must be judged according to the general temperature prevailing.

The shuttering of concrete made with aluminous cement may be struck in 24 hours in all the above cases provided the concrete temperature is kept below $80^{\circ} \mathrm{F}$. The best curing temperature is about $61^{\circ} \mathrm{F}$. No lime or Portland cement must be allowed to contaminate aluminous cement.

TABLE 51. Typical Weights /cu. ft. of Concrete.

Aggregate and Mix		lb./cu. ft.	Aggregate and Mix		$\mathrm{lb}, \mathrm{cu} . \mathrm{ft}$.
Granite, whinstone Ballast	1:2:4	155 145	Clinker Coke breeze	1:2:4	$100(90)$ $90(70)$
	1: $\ddot{1}: 2$	141	Foamed slag		
'Limestone	1:2:4	130-145	-	1: $2 \frac{1}{2}: 7 \frac{1}{2}$	
- Slag, gran. blast furnace		110 (90)	Aerocrete usually		50-60
'Brick	1:2:4	110-120	Pumice	$\begin{aligned} & 1: 2: 4 \\ & 1: 2 \frac{1}{2}: 7 \frac{1}{2} \end{aligned}$	488 (70)

The values in brackets are the maximum densities permitted for concrete partitions in B.S. 492 ; the mix is not specified.

The presence of 1% of main reinforcement adds nearly $4 \mathrm{lb} . / \mathrm{cu} . \mathrm{ft}$. to the weight of concrete. The weight of reinforced concrete is taken for design purposes, however, at 144 lb ./cu. ft., from which the following simple rules derive :-

A beam b in. wide and d in. deep weighs $b d \mathrm{lb}$./ft. run.
A slab D in. thick weighs 12 lb ./sq. ft .

PROPORTIONS FOR CONCRETE MIXES

Specifications should always stipulate a mix to be so many volumes of fine and coarse aggregate to I cwt. of cement, so that a definite quantity of cement is added to each batch ; measuring cement by volume is unsatisfactory.

The following table gives the mixes recognised by the L.C.C. by-laws and the corresponding nominal proportions by which they are generally described.

TABLE 52.

Designa-tion of tion of Concret	$\underset{\text { Mix }}{\text { Nominal }}$	Cu. ft. of Aggregate per 112 lb . Cement.		Minimum Crushing Resistance, $6^{\prime \prime}$ Cubes at Age of 28 Days.	
		Fine	Coarse		
$\begin{aligned} & 1 \\ & 11 \\ & \text { III } \end{aligned}$	$\begin{aligned} & 1: 1: 2 \\ & 1: 1 \frac{1}{2}: 3 \\ & 1: 2: 4 \end{aligned}$	$\begin{aligned} & 1 \frac{1}{4} \\ & 1 \frac{7}{2} \\ & 2 \frac{1}{2} \end{aligned}$	$2 \frac{1}{2}$ 3 5 5	$\begin{gathered} \text { lb. } / \mathrm{sa} 9 . \mathrm{ln} \mathrm{ln} \\ 295 \\ 2550 \\ 2250 \end{gathered}$	
$\begin{aligned} & \text { IV } \\ & \text { V } \\ & \text { VII } \\ & \text { VI } \end{aligned}$	$1: 6$ $1: 8$ $1: 10$ $1: 12$	$\begin{aligned} & 7 \frac{1}{2} \\ & 10 \\ & 12 \frac{1}{2} \\ & 15 \end{aligned}$		$\begin{array}{r} 1480 \\ 1110 \\ 740 \\ 370 \end{array}$	
				Prelim.	Works
$\begin{aligned} & \text { IA } \\ & \text { IIA } \\ & I I I A \end{aligned}$	$\begin{aligned} & 1: 1: 2 \\ & 1: 1 \frac{1}{2}: 3 \\ & 1: 2: 4 \end{aligned}$	14 17 17 $2 \frac{1}{2}$	$2 \frac{1}{1}$ 3 5 5	$\begin{aligned} & 5625 \\ & 4850 \\ & 4275 \end{aligned}$	$\begin{aligned} & 3750 \\ & 3300 \\ & 2850 \end{aligned}$

NOTE. Mixes intermediate between those stated may be used, provided that the ratio of fine to coarse is 1 to 2 , and the propertles of such intermediate mixes may be taken, on the basis of the combined volumes of fine and coarse aggregate, as pro roto between the two nearest mixes tabulated. The District Surveyor may approve ratios of fine to coarse aggregate between I to $1 \frac{1}{2}$ and I to $2 \frac{1}{2}$.

Fine aggregate is defined as that which will pass a $\frac{3}{16}$ in. mesh, and coarse aggregate that which will be retained on a $\frac{8}{18} \mathrm{in}$. mesh. The maximum size of coarse aggregate is not limited by the by-laws except for reinforced work, in which it shall pass a mesh $\frac{1}{4} \mathrm{in}$. smaller than the minimum lateral distance between the bars. The size should not exceed one-quarter of the smallest dimension of the concrete work.

TABLE 53.

| Purpose | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |

* Unseparated aggregate, e.g. ballast " all-ups " or " crusher run " stone. Local by-laws items are shown in italics.

BATCHES USING I CWT. BAG OF CEMENT

TABLE 54.

$\begin{aligned} & \text { Nominal } \\ & \text { Mix } \end{aligned}$	Volume of Dry Materials cu. ft.	Gallons of Water per Batch \dagger	Smallest Mixer Size	Volume of Finished Concrete cu. ft.
1:1:2	5.0	$4 \frac{1}{4}$	5/31	$3 \cdot 2$
$1: 1 \frac{1}{2}: 3$	6.9	5	7/5	4.5
1:2:4	8.7	6	9/7	$5 \cdot 8$
1:6	8.7	8		$7 \cdot 0$
1:21: ${ }^{2}$: 5	10.6	8	14/10	7.1
$1: 3: 6$	12.5	10	"	8.4
i:8	11.2	$11 \frac{1}{2}$,"	9.2
1:10	13.7	14^{2}	"	11.2

* Sum of separate volumes before mixing.
\dagger Approximate total mixing water including water in the aggregates, to give a slump of 3 in . with crushed or angular aggregate or 4 in . with rounded aggregate.

ALL-IN MIXES

When neither strength nor impermeability is important it is unnecessary to gauge the coarse and fine aggregate separately.

Unseparated ballast all-ups or crusher-run stone is then used. Such materials vary considerably in grading and figures relating to them are necessarily rough. The following table may be used, with reserve, for either class of material.

TABLE 55.

Nomina Mix by vol. Cem. Agg	$\mathrm{Cu} . \mathrm{ft}$. of All-in Aggregate to 1 cwt . Cement	Cwt. Cement per cu. yd. of All-in Aggregate	Per Cuble Yard of Concrete		
			Cement		All-in Aggregate cu. yd.
			lb.	ton	
1:3	$3 \frac{3}{4}$	7.25	740	. 33	. 91
1:4	5	$5 \cdot 46$	600	. 27	. 98
1:5	$6 t$	$4 \cdot 38$	500	. 22	1.04
1:6	$7 \frac{1}{2}$	$3 \cdot 62$	430	. 19	1.06
1:7	83 ${ }^{\frac{3}{4}}$	$3 \cdot 13$	380	. 17	1.09
1:8	10	$2 \cdot 67$	330	- 15	1.10
1:9	$11 \frac{1}{4}$	2.42	300	$\cdot 13$	1.11
1:10	$12 \frac{1}{2}$	$2 \cdot 17$	270	$\cdot 12$	1.11

CONCRETE QUANTITIES

The quantities given in the next two tables are based on proportions by volume of fine and coarse aggregate as ordinarily measured in gauge boxes, the weight of cement being calculated at the standard equivalent of $90 \mathrm{lb} / / \mathrm{cu}$. ft . ; this assumes that whole cwt. bags are used in each batch. Ordinary Portland cement measured in a box weighs only about 80 lb ., and rapldhardening cement $70-75 \mathrm{lb} . / \mathrm{cu}$. ft.

The coarse aggregate is taken as graded material from $\frac{3}{18} \mathrm{in}$. up, with usual percentages of voids, viz., for shingle 40%, broken stone 45%.

- In view of the wide variation in the volume of sand through bulking (p. 92) the sand quantities can only be a rough guide to the purchaser: sometimes 20% more than the volume stated is required to give a good mix.

The weight figures for sand are adequate for estimating purposes. The weight figures for broken stone aggregate apply to stone of density 150 lb ./ cu . ft., i.e., average sandstone. For granite add 0.10 ton and for most limestones deduct 0.07 ton, in last column of Table 56.

The quantities in the tables include appropriate allowances for waste.
Typical weights of aggregates per cu. yd.:-

Wet sand	$1 \frac{1}{4}$ tons
Shingle, graded	18
Broken stone	1 ton
Ballast all-ups	$1 \frac{1}{4}$ tons
Crusher run granite.	

MATERIALS REQUIRED PER CUBIC YARD OF FINISHED CONCRETE
TABLE 56.

$\underset{\text { Mix }}{\text { Nominal }}$	Type of Aggregate	Portland Cement		Sand See note above		Coarse Aggregate	
		lb.	ton	cu. yd.	ton	cu. yd.	ton
1:1:2	Shingle	950	. 425	.39	. 49	. 78	. 90
	Broken Stone	1000	. 447	. 41	. 51	. 82	. 82
1: $1 \frac{1}{2}: 3$	Shingle	670	-300	. 42	. 52	. 83	. 96
	Broken Stone	710	. 318	. 44	. 55	. 87	. 87
1:2:3	Shingle	620	- 278	. 51	. 64	. 76	. 86
	Broken Stone	650	. 291	. 53	. 65	. 80	. 80
1: $1 \frac{2}{3}: 3 \frac{1}{3}$	Shingle	610	- 273	. 42	. 52	. 84	. 97
	Broken Stone	640	. 286	. 44	. 55	. 88	. 88
1:2:4	Shingle	520	. 233	. 44	. 55	. 87	1.00
	Broken Stone	550	. 246	. 46	. 57	. 91	. 91
1: $2 \frac{1}{2}: 5$	Shingle	430	- 192	. 44	. 55	. 88	1.01
	Broken Stone	450	. 201	. 46	. 57	. 92	. 92
1:3:6	Shingle	360	.161	. 45	. 56	. 90	1.03
	Broken Stone	380	. 170	. 47	. 59	. 94	. 94
1:4:8	Shingle	280	.125	. 46	. 57	. 92	1.06
	Broken Stone	295	. 132	. 49	.61	. 97	. 97

MATERIALS REQUIRED PER 100 SQ. YDS.
TABLE 57. See notes on page 40.

Nominal Mix	Material	Unit	Thickness of					
			$1 \times$	$1{ }^{\prime \prime}$	2"	3^{*}	$4 *$	
1:1:2 Shingle 1:1:2 Broken Stone	Cement Sand Shingle Cement Sand Stone	$\begin{aligned} & \text { ton } \\ & \text { cu. yd. } \\ & \text { cu. yd. } \\ & \text { ton } \\ & \text { cu. yd. } \\ & \text { cu. yd. } \end{aligned}$	$\begin{aligned} & 1.17 \\ & 1.08 \\ & 2.16 \\ & 1.24 \\ & 1.14 \\ & 2.28 \end{aligned}$	$\begin{aligned} & 1.76 \\ & 1.62 \\ & 3.24 \\ & 1.86 \\ & 1.70 \\ & 3.41 \end{aligned}$	$\begin{aligned} & 2.35 \\ & 2.16 \\ & 4.32 \\ & 2.48 \\ & 2.27 \\ & 4.55 \end{aligned}$			
$1: 1 \frac{1}{2}: 3$ Shingle $1: 1 \frac{1}{2}: 3$ Broken Stone	Cement Sand Shingle Cement Sand Stone	$\begin{gathered} \text { ton } \\ \text { cu. yd. } \\ \text { cu. yd. } \\ \text { ton } \\ \text { cu. yd. } \\ \text { cu. yd. } \end{gathered}$	$\begin{gathered} .83 \\ 1 \cdot 2 \\ 2 \cdot 3 \\ .88 \\ 1 \cdot 2 \\ 2 \cdot 4 \end{gathered}$	$\begin{aligned} & 1.24 \\ & 1.7 \\ & 3.4 \\ & 1.32 \\ & 1.8 \\ & 3.6 \end{aligned}$	$\begin{aligned} & 1.66 \\ & 2.3 \\ & 4.6 \\ & 1.76 \\ & 2.4 \\ & 4.8 \end{aligned}$	$\begin{aligned} & 2.49 \\ & 3.4 \\ & 6.9 \\ & 2.64 \\ & 3.6 \\ & 7.3 \end{aligned}$	$\begin{aligned} & 3 \cdot 32 \\ & 4.6 \\ & 9.2 \\ & 3.52 \\ & 4.8 \\ & 9.7 \end{aligned}$	
1:2:4 Shingle 1:2:4 Broken Stone	Cement Sand Shingle Cement Sand Stone	$\begin{aligned} & \text { ton } \\ & \text { cu. yd. } \\ & \text { cu. yd. } \\ & \text { ton } \\ & \text { cu. yd. } \\ & \text { cu. yd. } \end{aligned}$				$\begin{aligned} & 1.94 \\ & 3.7 \\ & 7.3 \\ & 2.04 \\ & 3.8 \\ & 7.6 \end{aligned}$	$\begin{aligned} & 2.58 \\ & 4.9 \\ & 9.7 \\ & 2.72 \\ & 5.1 \\ & 10.1 \end{aligned}$	
1:21 $: 5$ Shingle 1:21 $: 5$ Broken Stone	Cement Sand Shingle Cement Sand Stone	ton $\mathrm{cu} . \mathrm{yd}$. cu. yd. ton cu. yd. cu. yd.				$\begin{aligned} & 1.60 \\ & 3.7 \\ & 7.3 \\ & 1.68 \\ & 3.8 \\ & 7.7 \end{aligned}$	$\begin{aligned} & 2.14 \\ & 4.9 \\ & 9.8 \\ & 2.24 \\ & 5.1 \\ & 10.2 \end{aligned}$	
1:3:6 Shingle 1:3:6 Broken Stone	Cement Sand Shingle Cement Sand Stone	$\begin{aligned} & \text { ton } \\ & \text { cu. yd. } \\ & \text { cu. yd. } \\ & \text { ton } \\ & \text { cu. yd. } \\ & \text { cu. yd. } \end{aligned}$	$\begin{aligned} & .45 \\ & 1.3 \\ & 2.5 \\ & .48 \\ & 1.3 \\ & 2.6 \end{aligned}$	$\begin{aligned} & .63 \\ & 1.9 \\ & 3.8 \\ & .71 \\ & 2.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & \hline .91 \\ & 2.5 \\ & 5.0 \\ & .95 \\ & 2.7 \\ & 5.3 \end{aligned}$	$\begin{aligned} & 1.35 \\ & 3.8 \\ & 7.6 \\ & 1.42 \\ & 3.9 \\ & 7.9 \end{aligned}$	$\begin{gathered} 1.81 \\ 500 \\ 10.0 \\ 1.90 \\ 5.3 \\ 10.5 \end{gathered}$	
$\begin{aligned} & \text { 1:6 } \\ & \text { All-in } \end{aligned}$ Aggregate	Cement Aggregate "	$\begin{aligned} & \text { ton } \\ & \text { cu. yd. } \\ & \text { ton } \end{aligned}$	$\begin{aligned} & .53 \\ & 2.9 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline .80 \\ & 4.4 \\ & 5.9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.07 \\ & 5.9 \\ & 7.9 \\ & \hline \end{aligned}$	1.60 8.8 11.8	2.14 11.8 15.8	

OF CONCRETE SLAB, FINISH OR BLINDING

(i) L.C.C. by-laws.

TABLE 58.

Designation of Concrote (see Table 52)	$\begin{aligned} & \text { Nominal } \\ & \text { Mix } \end{aligned}$	Modular Ratio m.	Permissible Concrete Stresses lb. per sq. in.			
			Compression		Shear	Bond
			Bending	Direct		
$\begin{array}{lr}\text { "Ordinary } & \text { I } \\ \text { Concrete" } & \text { II } \\ & \text { III }\end{array}$	$\begin{aligned} & 1: 1: 2 \\ & 1: 1 \frac{1}{2}: 3 \\ & 1: 2: 4 \end{aligned}$	15	$\begin{aligned} & 975 \\ & 850 \\ & 750 \end{aligned}$	$\begin{aligned} & 780 \\ & 680 \\ & 600 \end{aligned}$	98 85 75	123 110 100
"Quality A IA Concrete" IIA IIIA	$\begin{aligned} & 1: 1: 2 \\ & 1: 1 \frac{1}{2}: 3 \\ & 1: 2: 4 \end{aligned}$	",	$\begin{array}{r} 1250 \\ 1100 \\ 950 \end{array}$	$\begin{array}{r} 1000 \\ 880 \\ 760 \end{array}$	$\begin{array}{r} 125 \\ 110 \\ 95 \end{array}$	150 135 120

Punching shear in footings is not to exceed twice the value given in the column headed " Shear."

Institution of Structural Engineers Report No. IO, Part IV, "Hollow Floors," recommends that the above stresses be reduced by 10% if $\frac{3}{8} \mathrm{in}$. aggregate is used.
(ii) Code of Practice : Reinforced Concrete Structures Research Committee, Department of Scientific and Industrial Research. See remarks on p. 226.

TABLE 59.

Mix Reference		Nominal Mix	Modular Ratio m.	Permissible Concrete Stresses lb. per sq. in.			
				Compression		Shear	Bond
				Bending	Direct		
"Ordinary Grade '	$\begin{gathered} \text { I } \\ \text { II } \\ \text { III } \\ \text { IV } \end{gathered}$	$\left\lvert\, \begin{aligned} & 1: 1: 2 \\ & 1: 1 \cdot 2: 2 \cdot 4 \\ & 1: 1 \frac{1}{2}: 3 \\ & 1: 2: 4 \end{aligned}\right.$	$\begin{aligned} & 14 \\ & 14 \\ & 16 \\ & 18 \end{aligned}$	$\begin{aligned} & 975 \\ & 925 \\ & 850 \\ & 750 \end{aligned}$	$\begin{aligned} & 780 \\ & 740 \\ & 680 \\ & 600 \end{aligned}$	$\begin{aligned} & 98 \\ & 93 \\ & 85 \\ & 75 \end{aligned}$	123 118 110 100
" High Grade '	$\begin{aligned} & \text { I } \\ & \text { II } \\ & \text { III } \\ & \text { IV } \end{aligned}$	$\left\lvert\, \begin{aligned} & 1: 1: 2 \\ & 1: 1 \cdot 2: 2 \cdot 4 \\ & 1: 1 \frac{1}{2}: 3 \\ & 1: 2^{2}: 4 \end{aligned}\right.$	$\begin{aligned} & 11 \\ & 11 \\ & 12 \\ & 14 \end{aligned}$	$\begin{array}{r} 1250 \\ 1200 \\ 1100 \\ 950 \end{array}$	$\begin{array}{r} 1000 \\ 960 \\ 880 \\ 760 \end{array}$	$\begin{array}{r} 125 \\ 120 \\ 110 \\ 95 \end{array}$	150 145 135 120

The minimum 28-day cube strength requirements are :
Preliminary tests- -4.5 times the value in Col. 4 (bending stress).
Works tests -3
A Special Grade is also recognised, with permissible stresses based on the test results.

PERMISSIBLE COMPRESSIVE STRESS IN R.C. BEAMS

The concrete compressive stress in bending permitted in Tables 58 and 59 can be used for beams only when the length I between adequate lateral restraints does not exceed 20 times the breadth b of the compression flange. When the ratio exceeds 20 , the calculated compressive stress is to be limited so that $\frac{1}{b}$ does not exceed $20\left\{3-2\left(\frac{\text { calculated compressive stress }}{\text { permissible compressive stress }}\right)\right\}$. Code of Practice ; L.C.C. Memorandum on Computation of Stresses.

The stress allowed may be obtained directly in the table below.

TABLE 60. Permissible Compressive Stress, lb./sq. In.

$\frac{1}{b}$	Concrete Designation, L.C.C.						Propartion
	1	\cdots	III	IA	IIA	IIIA	
20	975	850	750	1250	1100	950	1.0
22	926	807	712	1187	1045	902	. 95
24	877	765	675	1125	990	855	. 90
26	829	722	637	1062	935	807	85
28	780	680	600	1000	880	760	. 80
30	731	637	562	937	825	712	. 75
32	682	595	525	875	770	665	. 70
34	634	552	487	812	715	617	. 65
36	585	510	450	750	660	570	. 60
38	536	467	412	687	605	522	. 55
40	487	425	375	625	550	475	. 50
42	439	382	337.	562	495	427	. 45
44	390	340	300	500	440	380	. 40
46	341	297	262	437	385	332	. 35
48	292	255	225	375	330	285	30
50	243	212	187	312	275	237	25
52	195	170	150	250	220	190	. 20
54	146	127	112	187	165	142	. 15
56	97	85	75	125	110	95	. 10
58	48	42	37	62	'55	47	. 05
60	0	0	0	0	0	0	-

PERMISSIBLE PRESSURES ON PLAIN CONCRETE

Four types of construction in plain concrete are distinguished in the L.C.C. by-laws, viz. : Filling, Foundations (" concrete supporting walls or plers '"), Walls and Piers.

It is stipulated that concrete supporting walls and piers shall be adequately restrained at its upper and lower extremities, and if not also restrained between the extremities the permissible pressure is reduced according to figures based on the ratio of height to least horizontal dimension.

In the case of walls and piers a similar reduction of permissible pressure is made, and rules are given defining the height ("effective height "') to be taken in different cases.

These regulations have been re-arranged and are presented in a more convenient form in the two tables following :-

TABLE 6I. Maximum Permissible Pressures on Plain Concrete. L.C.C.
Tons per sq. ft.

$\begin{aligned} & \text { Designation } \\ & \text { of } \\ & \text { Concrete } \end{aligned}$	Nominal Mix	Filling	Foundations	Walls and Plers	Local Pressure in Walls \& Piers
$\begin{gathered} \text { I } \\ \text { II } \\ \text { III } \\ \text { IV } \\ \text { V } \\ \text { VI } \\ \text { VII } \end{gathered}$	$\begin{gathered} 1: 1: 2 \\ 1: 1 \frac{1}{2}: 3 \\ 1: 2: 4 \\ 1: 6 \\ 1: 8 \\ 1: 10 \\ 1: 12 \end{gathered}$	$\begin{array}{r} 20 \\ 15 \\ 10 \\ 5 \end{array}$	40	40	48
			35	35	42
			30	30	36
			20	20	24
			15	15	18
			Concrete weaker than Class V is not allowed in any part of the construction		

[^2]
Slenderness Ratio and Conditions of Lateral Support :-

See notes on previous page. The reductions in permissible pressure are given below.
H is the actual storey height or height between lateral restraints (feet).
d is the least horizontal thickness measured in the direction of restraint (feet).

TABLE 62.

$\frac{\mathrm{H}}{\mathrm{d}}$	Foundations	Walls Horizontally restraine at the To	Walls not restrained at the Top \qquad	Piers - Horizontally restrained at the Top	$\begin{aligned} & \text { Piers not } \\ & \text { restrained } \\ & \text { at the Top } \end{aligned}$
	Multiply pressures in Table 61 by :				
Up to 2 3 4 5 5 6 7 8 8 10 11 12 13 14 15 16	$\begin{array}{r} 1.0 \\ .9 \\ .8 \\ .7 \\ .6 \\ .5 \\ .4 \\ .3 \\ .2 \\ .1 \\ 0 \end{array}$	$\begin{aligned} & 1.0 \\ & \because \\ & \because, \\ & \because \\ & \because \\ & \because .925 \\ & .85 \\ & .775 \\ & .7 \\ & .625 \\ & .55 \\ & .475 \\ & .4 \end{aligned}$	1.0 "', .85 .55 .4	$\begin{aligned} & 1.0 \\ & \because, \\ & \because, \\ & \because .9 \\ & .8 \\ & .7 \\ & .6 \\ & .5 \\ & .4 \end{aligned}$	$\begin{gathered} 1.0 \\ \because 8 \\ .8 \\ .4 \end{gathered}$

B.S. 449 recognises two cases only, viz., general load-bearing concrete and foundations for column bases, but includes an extra allowance for local pressure as at girder bearings, Column 4, and also provides for a higher pressure in foundations under column bases where the depth is not greater than $1 \frac{1}{2}$ times the least width, Column 5.

TABLE 63. Maximum Permissible Pressures on Plain Concrete. B.S. 449

Tons per sq. ft.

Type of	$\underset{\text { Mix }}{\text { Nominal }}$	$\stackrel{3}{\text { General }_{n}}$	$\stackrel{4}{\text { Local }}$		$\begin{aligned} & \text { Under } \\ & \text { Column } \\ & \text { Bases } \dagger \end{aligned}$
Fine Concrete 1:1:2					
II	1:1:2	40	48	$53 \frac{1}{7}$	57
III		35 30	42 36	${ }_{40} 46$	50 43
Mass Concrete $1: 2: 4$ 30 36 40 43					
IV	1:6	20	24	$26 \frac{2}{3}$	28
v	1:8	15	18	20	21
VII	1:10	10	12	$13 \frac{1}{4}$	14
VII	1:12	5	6	63	7

The pressures in Column 5 may be increased, where the loaded area A_{1} is smaller than the total area A of the upper surface of the concrete, by multiplying by the ratio $3 \sqrt{\frac{A}{A_{1}}}$; A shall not be taken larger than the greatest square which can be symmetrically placed round the loaded area and wholly within the area of the upper surface, and the maximum pressure shall not exceed double the value in Column 3.

* The pressures in Columns 3 and 4 apply only to cases where the Slenderness Ratio, i.e. actual height divided by least horizontal dimension is not greater than 6. The following percentage reductions are to be made in other cases :-
$\begin{array}{ccccccccccccc}\text { Slenderness ratio over } & 6 \text { but not more than } 8 & . & . & . & 20 \% \\ \text { over } 8 & 8 & , & 10 & . & . & 40 \%\end{array}$ over $10 \quad$ ", $\quad 12 \quad . \quad .60 \%$
The slenderness ratio shall not exceed 12. No distinction is made between plers and walls.
\dagger Institution of Structural Engineers Report No. 8.
B.S. 1145 repeats Col. 3 with additional mixes, but differs for local loading and slenderness ratio.

BRICK DATA

Three sizes of brick have been standardised in B.S. 657, Common Building Bricks. They are :-

$$
\begin{aligned}
& \text { Type I }-8 \frac{3}{4} \times 4 \frac{8}{16} \times 2 \mathrm{in} . \\
& \text { Type } I I-8 \frac{3}{3} \times 4 \frac{3}{16} \times 2 \frac{5}{8} \mathrm{in} . \\
& \text { Type III-8 } \times 4 \frac{8}{16} \times 2 \frac{7}{8} \mathrm{in} .
\end{aligned}
$$

A tolerance of $\pm \frac{1}{8} \mathrm{in}$. is allowed in the length and of $\pm \frac{1}{18} \mathrm{in}$. in the other dimensions.

Sand lime (or calcium silicate) bricks are standardised in B.S. 187, the sizes being Types II and III as above.

Cast iron Air Bricks and Gratings, B.S. 493, are standardised as follows :-

TABLE 64

Overall Size in.	Air Bricks		Gratings
	Heavy Grade	Medium Grade	
	Minimum We.	lb. per dozen	
9×3	36	12	21
9×6	57	21	36
9×9	78	33	54
9×12	102	45	66
Depth	13"	$1 \chi^{\prime \prime}$	$\frac{5}{16}{ }^{\prime \prime}$

Glass Bricks (non load bearing) given in B.S. 952, Glass for Glazing are as follow:-

TABLE 65

Size, in.	Weight. lb. oz.
$\begin{aligned} & 8 \times 4 \frac{7}{8} \times 37 \\ & 5 \frac{3}{4} \times 5 \frac{3}{4} \times 37 \\ & 7 \frac{3}{4} \times 7 \frac{3}{4} \times 37 \end{aligned}$	

BRICKWORK QUANTITIES

I Rod of brickwork $=30 \frac{1}{4}$ sq. yds. or 272 sq. ft. of brickwork $1 \frac{1}{2}$ bricks thick.

$$
\begin{aligned}
& =45.4 \text {,, } 408 \text {, " } 1 \text { brick , } \\
& =90.8 \text {, , } 816 \text {, } \quad \frac{1}{2} \text {. ., } \\
& =1 \|_{\frac{1}{3}} \mathrm{cu} . \mathrm{yds} \text {. or } 306 \mathrm{cu} . \mathrm{ft} \text {. of brickwork. }
\end{aligned}
$$

Area of reduced brickwork $=$ area of equivalent work $1 \frac{1}{2}$ bricks ($13 \frac{1}{2} \mathrm{in}$.) thick.

The rod is still widely used as a unit for pricing, but the custom is growing of measuring brickwork in square yards of a stated thickness.

NUMBER OF BRICKS IN BRICKWORK

The thickness of vertical joints on face is taken as $\frac{1}{4} \mathrm{in}$.; in the case of English and English Garden Wall Bonds, vertical joints in header courses must be $\frac{5}{16} \mathrm{in}$. If the stretcher course vertical joints are $\frac{1}{4}$ in.

No allowance has been made for waste. The volume in yards cube is to be calculated on the nominal thickness, viz., $4 \frac{1}{2} \mathrm{in}$., 9 in ., $13 \frac{1}{2} \mathrm{in}$., etc.

TABLE 66

Brick Size in.	Bed Joints in.	Number of Bricks				
		Per Yd. Super of			Per Yd. Cube	Por Rod
		$4{ }^{\prime \prime}$	$9 *$	131"		
$\begin{gathered} \text { Type I } \\ 8 \frac{3}{4} \times 4 \frac{3}{16} \times 2 \end{gathered}$	$\begin{aligned} & \frac{1}{4} \\ & \frac{3}{8} \\ & \frac{1}{2} \end{aligned}$	$\begin{aligned} & 64 \\ & 61 \\ & 59 \end{aligned}$	$\begin{aligned} & 128 \\ & 121 \\ & 117 \end{aligned}$	$\begin{aligned} & 192 \\ & 182 \\ & 176 \end{aligned}$	$\begin{aligned} & 512 \\ & 484 \\ & 468 \end{aligned}$	$\begin{aligned} & 5800 \\ & 5500 \\ & 5310 \end{aligned}$
$\begin{gathered} \text { Type II } \\ 8 \frac{3}{4} \times 4 \frac{3}{16} \times 2 \frac{5}{8} \end{gathered}$	1 $\frac{1}{4}$ $\frac{3}{8}$ $\frac{1}{2}$	50 48 46	100 96 92	150 144 138	400 384 368	$\begin{aligned} & 4530 \\ & 4350 \\ & 4170 \end{aligned}$
Type III $8 \frac{3}{4} \times 4 \frac{3}{16} \times 2 \frac{7}{6}$	$\frac{1}{4}$ $\frac{3}{8}$ $\frac{1}{2}$ $\frac{1}{2}$	46 44 43	92 89 85	138 133 128	$\begin{aligned} & 368 \\ & 356 \\ & 340 \end{aligned}$	$\begin{aligned} & 4170 \\ & 4020 \\ & 3870 \end{aligned}$

The number of bricks required is the same for all solid bonds.

QUANTITY OF MORTAR IN BRICKWORK

The notes at the head of the table above apply here also.

TABLE 67. For mortar data see page 54.

Brick Sizein.	Bed Joints in.	Cu. Ft. of Mortar (nett)				
		Per Yd. Super of			Per Yd. 1 Cube	Per Rod
		41°	$9 *$	131*		
$\begin{gathered} \text { Type } 1 \\ 8 \frac{3}{4} \times 4 \frac{3}{16} \times 2 \end{gathered}$	$\frac{1}{4}$ $\frac{3}{8}$ $\frac{1}{2}$.8 .9 1.0	1.6 1.8 2.0	2.3 2.8 3.0	6.2 7.4 8.0	70 84 90
$\begin{gathered} \text { Type ll } \\ 83 \times 4 \frac{3}{3} \times 2 \frac{5}{6} \end{gathered}$	$\frac{1}{4}$ $\frac{3}{8}$ $\frac{1}{2}$.6 .8 .9	1.3 1.6 1.8	2.0 2.3 2.6	5.3 6.2 7.0	60 70 79
$\begin{gathered} \text { Type III } \\ 8 \frac{4}{4} \times 4 \frac{3}{16} \times 2 \frac{1}{8} \end{gathered}$	1 $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{2}$.6 .7 .8	1.3 1.4 1.7	1.9 2.1 2.5	5.1 5.7 6.6	57 65 75

NUMBER OF FACING BRICKS IN BRICKWORK Headers are counted as whole bricks. No allowance has been made for waste.

TABLE 68.
Facing Bricks per yard super

Brick Size	BedJolnts in.	Bond				
		English,	English Wall.	$\begin{aligned} & \text { Flemish } \\ & \text { or } \\ & \text { Quetta } \end{aligned}$	Flemish Garden Wall	Stretcher
$\begin{gathered} \text { Type } 1 \\ 8 \frac{7}{4} \times 4 \frac{3}{16} \times 2 \end{gathered}$	-	$\begin{aligned} & 96 \\ & 91 \\ & 88 \end{aligned}$	$\begin{aligned} & 80 \\ & 76 \\ & 73 \end{aligned}$	$\begin{aligned} & 86 \\ & 81 \\ & 78 \end{aligned}$	$\begin{aligned} & 74 \\ & 69 \\ & 67 \end{aligned}$	$\begin{aligned} & 64 \\ & 61 \\ & 58 \end{aligned}$
$\begin{gathered} \text { Type ll } \\ 8 \frac{3}{4} \times 4 \frac{3}{16} \times 2 \frac{7}{8} \end{gathered}$	($\begin{aligned} & 75 \\ & 72 \\ & 69 \end{aligned}$	$\begin{aligned} & 63 \\ & 60 \\ & 58 \end{aligned}$	$\begin{aligned} & 67 \\ & 65 \\ & 62 \end{aligned}$	$\begin{aligned} & 57 \\ & 55 \\ & 53 \end{aligned}$	50 48 46
$\begin{gathered} \text { Type III } \\ 8 \frac{3}{2} \times 4 \frac{3}{16} \times 2 \frac{7}{6} \end{gathered}$	(69 67 64	$\begin{aligned} & 58 \\ & 56 \\ & 53 \end{aligned}$	$\begin{aligned} & 62 \\ & 60 \\ & 57 \end{aligned}$	$\begin{aligned} & 53 \\ & 51 \\ & 49 \end{aligned}$	46 44 43

COMMON BRICK BONDS

English

English Garden Wall

Flemish ; Quetta

Flemish Garden Wall

Stretcher

QUETTA BOND QUANTITIES

This useful construction costs little more than plain brickwork but has much of the strength and resistance to destruction of reinforced concrete. In common with engineering brickwork its joints are best made $\frac{1}{4}$ in. thick.

By omitting the concrete and reinforcement,

PLAN Bergen Hollow Bond is obtained.

TABLE 69

Brick Size in.	BedJoint	Number of Bricks		
		Per Yd. Super	Per Yd. Cube	Per Rod
$8 \frac{3}{4} \times 4 \frac{3}{16} \times 2$ $8 \frac{3}{4} \times 4 \frac{3}{16} \times 2 \frac{5}{8}$ $8 \frac{3}{4} \times 4 \frac{3}{16} \times 28$	交"	171 133 123	471 356 327	5160 4030 3710
	Cu. Ft. of Concrete			
All sizes of brick		1.36	3.63	41.1
	Weight of Steel, Ib.			
		2.68 4.19	$\begin{aligned} & 7 \cdot 16 \\ & 11 \cdot 2 \end{aligned}$	$\begin{gathered} 81 \cdot 1 \\ 127 \end{gathered}$

PROPERTIES OF BRICKWORK

(Stock bricks in cement mortar)
$\mathrm{E}=\mathrm{I}, 000,000 \mathrm{lb} . / \mathrm{sq}$. in.
Temperature coefficient $0 \cdot 000,003 /$ degree F.
Safe loads, pages 62 and 64. Ultimate loads, next page.
Heat transmittance, Tables 166 and 168.
Weight, Table 70.
Strength of individual bricks, Table 78.

TYPICAL WEIGHTS OF BRICKWORK (DRY)

TABLE 70

Type of Brick	Weight, lb./cu. ft.	Weight, lb./sq. ft.		
		42"	9"	131"
Blue	150	56	112	169
Diatomaceous	30			
Engineering	135	51	101	152
Firebrick	110-125			
Flettons	110-115	42	84	126
,, cavity	90	34	68	101
London stocks	115	43	86	129
Red	100-120	41	83	124
Sand-cement	130	49	98	146
Sand-lime	115	43	86	129

Plaster I in. thick weighs $9 \mathrm{lb} . / \mathrm{sq} . \mathrm{ft}$.

ULTIMATE STRENGTH OF BRICK PIERS

The figure below shows the compressive strength at failure of brick piers laid in mortars with varying proportions of lime and cement. The mortar in all cases is composed of 3 parts sand to 1 part of cementing material, i.e. lime and cement combined. The data on which the figure is based were given in the Building Research Board Annual Report, 1934.

It will be seen that the strength of brickwork laid in mortar containing equal parts of cement and lime is practically as great as when laid in cement mortar, although the strength of the mortar is less than one-half as great ; this is attributed to the improvement in workability which accompanies the admixture of lime. The strength of the bricks was $2685 \mathrm{lb} . / \mathrm{sq}$. in.

MORTARS

For quantities of mortar in brickwork see Table 67.
Tensile strength of mortar at 28 days:-

$$
\text { Icement } 33 \text { sand } 450 \mathrm{lb} . / \mathrm{sq} . \mathrm{in} .=29 \mathrm{tons} / \mathrm{sq} . \mathrm{ft} .
$$

Compressive strength of mortars, see previous paragraph.
TABLE 7I. Materials for $1 \mathrm{cu} . \mathrm{yd}$. of mortar

Proportions by vol.			Cement orLime cu.ft.		Coment or Lime		Sand		
Coment or		Sand			lb.	lb .	cu.f.	cu. yd.	ton
I		1 2 3 4	2	0 3 0 8	$\begin{array}{r} 1750 \\ 1150 \\ 870 \\ 700 \end{array}$	$\begin{aligned} & 720 \\ & 470 \\ & 360 \\ & 290 \end{aligned}$	20 26 30 32	.70 .96 1.11 1.18	.87 1.20 1.38 1.47
Coment	Lime	Sand	Com.	Lime	Coment	Lime			
1	1	9	5		430	180	30	1.11	1.38
1	3	9 12	$\stackrel{3}{3}$	7 7	${ }_{215}^{287}$	240	",	\cdots	\cdots
1	4 4 5	15	2	8	172	288	",	"	".,
1	5	18	12	84	143	300	"	"	"

Rendering and Plastering

I cu. yd. of mortar will cover the following areas:-

TABLE 72

Surface	Minimum Thickness in.	Area Covered yd. sup.	Surface	Minimum Thickness in.	Area Covered yd. sup.
Concrete or plaster 11 01 10 10		$\begin{array}{r} 288 \\ 144 \\ 96 \\ 72 \\ 57 \\ 48 \end{array}$	Brickwork Rubb̈le Laths	$\begin{aligned} & \frac{3}{8} \\ & \frac{3}{8} \\ & \frac{5}{8} \\ & \frac{3}{8} \\ & \frac{5}{2} \\ & \frac{3}{6} \\ & \frac{5}{8} \end{aligned}$	$\begin{aligned} & 72 \\ & 48 \\ & 57 \\ & 41 \\ & 50 \\ & 37 \end{aligned}$

Mixes
Cement stucco, I cement : $2 \frac{1}{2}$ or 3 sand.
" (waterproof) render, I cement $: 2$ sand.
," dampcourse, I cement: I sand.
Coarse stuff, I lime putty : 2 or 3 sand.
Fine stuff, I lime putty: I sanci.
I ton of chalk lime makes about $2 \mathrm{cu} . \mathrm{yds}$. lime putty.

HEIGHTS OF BRICK COURSES

For standard bricks, measured from top of footing to top of brick course

TABLE 73

	2* Bricks			2f* Bricks			21* Bricks	
	Bed. Joints : $\boldsymbol{f}^{\prime \prime}$	$t^{\prime \prime}$	$1{ }^{\prime \prime}$	${ }^{*}$	8"	$\mathbf{1}^{\prime \prime} \mathbf{t}^{\prime \prime}$	$t^{\prime \prime}$	${ }^{\circ}$
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	ft.ln. $2 \dot{4}$ $4 \frac{1}{2}$ $6 \frac{3}{4}$ 9 11 	ft. $\begin{aligned} & \text { ln } \\ & 2 \frac{3}{8} \\ & 4 \frac{1}{2} \\ & 71 \\ & 9 \frac{1}{2} \\ & 11 \frac{7}{8} \\ & \\ & \end{aligned}$	ft. $\begin{gathered}\mathrm{in}_{2} \\ 2 \frac{1}{2} \\ 5 \\ 7 \frac{1}{2} \\ 10 \\ 10 \frac{1}{2}\end{gathered}$					
$\begin{array}{r} 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{array}$	$\begin{gathered} 11 \frac{1}{4} \\ 3 \frac{3}{4} \\ 6 \\ 8 \frac{1}{4} \\ 10 \frac{1}{2} \end{gathered}$	$\begin{array}{rr} 1 & 2 \frac{1}{2} \\ 4 \frac{2}{8} \\ & 7 \\ & 9 \frac{3}{4} \\ & 11 \frac{3}{4} \end{array}$	$\begin{gathered} 3 \\ 5 \frac{1}{2} \\ 8 \\ 10 \frac{1}{2} \end{gathered}$		2	$2 \begin{aligned} & \\ & 4\end{aligned} \begin{aligned} & 6 \frac{3}{4} \\ & 9 \frac{7}{8} \\ & 1 \\ & 4 \\ & 4 \frac{1}{8} \\ & \\ & 7 \frac{1}{4}\end{aligned}$		
11 12 13 14 15	$\begin{array}{ll} 20 \frac{3}{4} \\ 3 \\ & 5 \frac{1}{4} \\ & 7 \frac{1}{2} \\ & 9 \frac{3}{4} \end{array}$	$\begin{array}{rr} 24 \frac{1}{2} \\ 4 \frac{1}{2} \\ 6 \frac{1}{4} \\ 9 \frac{1}{2} \\ 115 \end{array}$	$\begin{array}{r} 3 \frac{1}{2} \\ 6 \\ 8 \frac{1}{2} \\ 3 \quad 11 \frac{1}{2} \end{array}$	3 $\begin{array}{r}7 \frac{5}{8} \\ 10 \frac{1}{2} \\ 1 \\ 1 \frac{3}{8} \\ 4 \frac{1}{4} \\ 7 \frac{1}{8} \\ \\ \end{array}$	$\begin{array}{ll} & \\ 3 & 9 \\ & 0 \\ 3 \\ & 6 \\ & 9\end{array}$			3 $1 \frac{1}{6}$ 4 $4 \frac{1}{2}$ 7 $7 \frac{1}{6}$ 4 11 4 285

Table 73-Continued.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} \& \multicolumn{3}{|c|}{$2{ }^{\prime \prime}$ Bricks} \& \multicolumn{2}{|r|}{24'Bricks} \& \multicolumn{3}{|c|}{2iz Bricks}

\hline \& \& 7* \& 1* \& ま゙ \& *" \& 1* ${ }^{\text {² }}$ \& E" \& \%"

\hline $$
\begin{aligned}
& 16 \\
& 17 \\
& 18 \\
& 19 \\
& 20
\end{aligned}
$$ \& $$
\begin{array}{cc}
\text { fr. } & \text { In. } \\
3 & 0 \\
2 t \\
2 t \\
4 \frac{1}{2} \\
& 6 \frac{1}{4} \\
&
\end{array}
$$ \& $$
\begin{array}{cc}
\text { ft. } & \text { in. } \\
3 & 2 \\
41 \\
& 6 \frac{3}{2} \\
96 \\
& 11 \frac{1}{2}
\end{array}
$$ \& $$
\begin{array}{cc}
\text { f.. } & \text { in. } \\
3 & 4 \\
& 6 \frac{1}{2} \\
9 & 11 \frac{1}{2} \\
4 & 2
\end{array}
$$ \& \& $$
\begin{array}{lc}
\text { ft. } & \text { in. } \\
4 & 0 \\
& 3 \\
& 6 \\
& 9 \\
50
\end{array}
$$ \& $$
\begin{array}{cc}
\text { ft. } & 1 \mathrm{n} . \\
4 & 2 \\
& 5 \frac{1}{8} \\
& 8 \frac{d}{4} \\
& 11 \frac{2}{2} \\
5 & 2 \frac{1}{2}
\end{array}
$$ \& $$
\begin{array}{cc}
\text { ft. } & \text { in. } \\
4 & 4 \\
74 \\
& 10 \frac{1}{4} \\
5 & 1 \frac{1}{2} \\
& \\
\hline
\end{array}
$$ \& $$
\begin{array}{ll}
\text { f.c. } & \text { in. } \\
4 & 6 \\
& 9 \frac{3}{3} \\
5 & 0 \frac{3}{4} \\
& 4 \frac{1}{2} \\
& 7 \frac{1}{2}
\end{array}
$$

\hline $$
\begin{aligned}
& 21 \\
& 22 \\
& 23 \\
& 24 \\
& 25
\end{aligned}
$$ \& $$
\begin{array}{r}
11 \frac{1}{4} \\
41 \frac{1}{4} \\
34 \\
6 \\
8 t
\end{array}
$$ \& $$
\begin{array}{rl}
4 & 17 \\
4 \frac{1}{4} \\
6 \frac{2}{2} \\
9 \\
11 \frac{3}{8}
\end{array}
$$ \& \& $$
\begin{array}{r}
50 \frac{1}{5} \\
3 \frac{1}{4} \\
6 \frac{1}{8} \\
9 \\
11 \frac{7}{8}
\end{array}
$$ \& $$
\begin{array}{r}
3 \\
\\
\\
\\
6 \\
6 \\
6 \\
\\
\hline
\end{array}
$$ \& \& \&

\hline $$
\begin{aligned}
& 26 \\
& 27 \\
& 28 \\
& 29 \\
& 30
\end{aligned}
$$ \& $10 \frac{1}{2}$
$50 \frac{2}{4}$
3
$5 \frac{1}{4}$

$7 \frac{1}{2}$ \& \& 5
$7 \frac{1}{2}$
10
$600 \frac{1}{2}$

3 \& $$
\begin{array}{r}
6 \quad 2 \frac{3}{6} \\
58 \\
8 \frac{1}{2} \\
\\
7 \\
7 \\
\hline
\end{array}
$$ \& 7

7
9
0
3

6 \& \& $$
\begin{array}{rr}
7 & 0 \frac{1}{2} \\
& 3 \frac{3}{4} \\
7 & 104 \\
8 & 1 \frac{1}{2}
\end{array}
$$ \&

\hline $$
\begin{aligned}
& 31 \\
& 32 \\
& 33 \\
& 34 \\
& 35
\end{aligned}
$$ \& \& \& $5 \frac{1}{2}$

8
8
$70 \frac{1}{2}$
7

$3 \frac{1}{2}$ \& \[
$$
\begin{array}{r}
5 \frac{1}{8} \\
8 \\
10 \frac{1}{107} \\
8 \quad 1 \frac{3}{8} \\
48
\end{array}
$$

\] \& $\begin{array}{r} \\ \\ \hline 8 \\ \hline\end{array}$ \& | 8 | 07 |
| :---: | ---: |
| 4 | |
| 4 | |
| | $7 \frac{1}{6}$ |
| | $10 \frac{1}{4}$ |
| 9 | 188 | \& \[

$$
\begin{array}{r}
4 \frac{3}{4} \\
8 \\
\\
\hline 9 \\
9 \\
9 \frac{1}{2} \\
5 \frac{1}{4}
\end{array}
$$
\] \&

\hline $$
\begin{aligned}
& \mathbf{3 6} \\
& 37 \\
& 38 \\
& 39 \\
& 40
\end{aligned}
$$ \& \& \[

$$
\begin{array}{rl}
7 & 1 \frac{1}{2} \\
3 \frac{7}{6} \\
6 t \\
85 \\
11
\end{array}
$$

\] \& \& \& \[

$$
\begin{array}{r}
9 \\
\\
\\
\\
\\
\\
3 \\
6 \\
\\
\hline
\end{array}
$$ 0
\] \& \& $10 \begin{array}{cc} & 9 \\ 10 & 04 \\ & 3 \frac{1}{2} \\ & 6 \frac{3}{4} \\ & 10\end{array}$ \&

\hline $$
\begin{aligned}
& 41 \\
& 42 \\
& 43 \\
& 44 \\
& 45
\end{aligned}
$$ \& 84

81
$10 \frac{1}{4}$
$80 \frac{3}{4}$
3
54

54 \& \[
$$
\begin{array}{rr}
8 & 13 \\
3 \frac{3}{2} \\
64 \\
81 \\
10 \frac{2}{2}
\end{array}
$$

\] \& | $6 \frac{1}{2}$ |
| ---: |
| 9 |
| 9 |
| 9 |
| $1 \frac{1}{2}$ |
| 4 |
| $4 \frac{1}{2}$ | \& \& | | |
| :--- | :--- |
| | |
| | |
| | 3 |
| | |
| 11 | |
| 11 | |
| | 0 |
| | 3 | \& \& $\begin{array}{ccc}11 & 1 \frac{1}{4} \\ & 4 \frac{1}{2} \\ & 7 \frac{3}{4} \\ 12 & 11 \\ 12 & 2 \frac{1}{4}\end{array}$ \&

\hline $$
\begin{aligned}
& 46 \\
& 47 \\
& 48 \\
& 49 \\
& 50
\end{aligned}
$$ \& \& \[

$$
\begin{array}{rl}
9 & 18 \\
3 \frac{3}{8} \\
6 \\
8 \frac{1}{2} \\
10 \frac{3}{4}
\end{array}
$$

\] \& \& \[

$$
\begin{array}{ll}
11 & 04 \\
3 \frac{1}{8} \\
& 6 \\
& 8 \frac{7}{2} \\
& 11 \frac{3}{4}
\end{array}
$$
\] \& 12

12

9
0

3

6 \& \& \&

\hline $$
\begin{aligned}
& 51 \\
& 52 \\
& 53 \\
& 54 \\
& 55
\end{aligned}
$$ \& \& \[

$$
\begin{array}{lr}
10 & 18 \\
31 \\
& 52 \\
& 81 \\
& 10 \%
\end{array}
$$
\] \& \& \& 13

9
0
3

6 \& \& \&

\hline $$
\begin{aligned}
& 56 \\
& 57 \\
& 58 \\
& 59 \\
& 60
\end{aligned}
$$ \& \& \[

$$
\begin{array}{ll}
11 & 1 \\
37 \\
54 \\
84 \\
81 \\
& 10 \frac{1}{2}
\end{array}
$$
\] \& $12 \begin{gathered}8 \\ 12 \\ 10 \frac{1}{2} \\ 1 \\ 3 \frac{1}{2} \\ \\ 6\end{gathered}$ \& \& $\begin{array}{rr}14 & 0 \\ & 3 \\ & 6 \\ & 9 \\ 150\end{array}$ \& (\& $\begin{array}{cc}15 & 2 \\ & 54 \\ & 8 \frac{7}{2} \\ & 11 \\ 16 & 3\end{array}$ \&

\hline $$
\begin{aligned}
& 61 \\
& 62 \\
& 63 \\
& 64
\end{aligned}
$$ \& \& \[

$$
\begin{array}{ll}
1207 \\
& 07 \\
& 54 \\
& 54 \\
& 8
\end{array}
$$
\] \& $13{ }^{4} \begin{gathered}8 \frac{1}{2} \\ 11 \\ 4 \\ 4\end{gathered}$ \& $15 \begin{gathered}7 \% \\ 10 \frac{1}{4} \\ 17 \\ 4\end{gathered}$ \& 6

9

16 \& \& $17 \begin{aligned} & 64 \\ & 94 \\ & 91 \\ & 07 \\ & 4\end{aligned}$ \& $$
\begin{array}{ll}
17 & 17 \\
& 54 \\
& 8 \\
& 8 \\
18 & 0
\end{array}
$$

\hline
\end{tabular}

Table 73-Continued.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} \& \multicolumn{3}{|c|}{2" Bricks} \& \multicolumn{3}{|c|}{2f" Bricks} \& \multicolumn{2}{|l|}{2li" Bricks} \\
\hline \& \[
\begin{aligned}
\& \text { Bed } \\
\& \text { Joints : } i^{\prime \prime}
\end{aligned}
\] \& 8" \& 立" \& i゙ \& \(\mathrm{B}^{*}\) \& \(\mathrm{l}^{\prime \prime} \mathrm{l}^{\prime \prime}\) \& \#" \& \(\frac{1}{}{ }^{\prime \prime}\) \\
\hline 65 \& \(\mathrm{ft.}_{12} \stackrel{\mathrm{in}}{2 \mathrm{i}}\) \& \[
\begin{aligned}
\& \text { ft. in. } \\
\& 1210 \frac{3}{8}
\end{aligned}
\] \& \[
{ }^{\text {ft. }} \mathrm{in} .
\] \& \& ft. \({ }^{\text {in. }}\) \& \& \& \\
\hline \[
\begin{aligned}
\& 66 \\
\& 67 \\
\& 68 \\
\& 69 \\
\& 70
\end{aligned}
\] \& \[
\begin{array}{r}
4 \frac{1}{2} \\
6 \frac{2}{4} \\
131 \frac{1}{1} \\
1 \frac{1}{2}
\end{array}
\] \& \(\begin{array}{ll}13 \& 0 \frac{3}{4} \\ 3 \frac{1}{4} \\ \& 5 \frac{1}{4} \\ \& 7 \frac{2}{8} \\ \& 10 \frac{1}{4} \\ \& \end{array}\) \& \({ }^{14} \begin{gathered}17 \frac{9}{2} \\ 2 \\ 4 \frac{1}{2} \\ \\ \\ 7\end{gathered}\) \& \& \(17 \begin{array}{r} \\ 17 \\ \\ \\ 9 \\ 0 \\ 0 \\ 3 \\ \\ \\ \\ \end{array}\) \& \& \& \\
\hline \[
\begin{aligned}
\& 71 \\
\& 72 \\
\& 73 \\
\& 74 \\
\& 75
\end{aligned}
\] \& \[
\begin{array}{r}
3 \frac{3}{4} \\
6 \\
8 \frac{1}{4} \\
140 \frac{1}{4}
\end{array}
\] \& \begin{tabular}{ll}
14 \& \(0 \frac{5}{3}\) \\
\\
3 \\
\& \(5 \frac{3}{8}\) \\
\& \(7 \frac{3}{4}\) \\
\& \(10 \frac{1}{8}\) \\
\& \\
\hline
\end{tabular} \& \& \[
\begin{array}{ll}
17 \& 0 \frac{1}{8} \\
\& 3 \\
\& 5 \frac{7}{6} \\
8 \frac{3}{5} \\
\& 11 \frac{5}{8}
\end{array}
\] \& 18

18

0
3

6

9 \& \& $\begin{array}{ll}19 & 23 \\ & 6 \\ \\ 20 \\ 20 & 9 \frac{1}{4} \\ & 0 \frac{1}{2} \\ & 3 \frac{3}{4}\end{array}$ \&

\hline $$
\begin{aligned}
& 76 \\
& 77 \\
& 78 \\
& 79 \\
& 80
\end{aligned}
$$ \& \& $\begin{array}{ll}15 & 0 \frac{1}{2} \\ & 2 \frac{8}{2} \\ & 5 \frac{1}{4} \\ & 7 \\ & 10 \\ & 10\end{array}$ \& \& \& $\begin{array}{ll}19 & 0 \\ & 3 \\ & 6 \\ & 9 \\ 20 & 0\end{array}$ \& $20 \begin{array}{r}9 \frac{1}{2} \\ 0 \frac{8}{8} \\ 3 \frac{8}{4} \\ 6 \frac{6}{8} \\ 10\end{array}$ \& 7

21
$10 \frac{1}{4}$
$1 \frac{1}{2}$

8 \&

\hline $$
\begin{aligned}
& 81 \\
& 82 \\
& 83 \\
& 84 \\
& 85
\end{aligned}
$$ \& \[

$$
\begin{array}{r}
2 \frac{1}{4} \\
4 \frac{1}{2} \\
6 \frac{2}{4} \\
911 \frac{1}{4} \\
\hline
\end{array}
$$
\] \& $16 \begin{array}{ll}16 & 0 \frac{3}{3} \\ & 2 \frac{3}{2} \\ & 5 \frac{1}{4} \\ & 7 \frac{1}{2} \\ & 9 \frac{2}{8} \\ & \end{array}$ \& \& \& $\begin{array}{ll} \\ \\ & 3 \\ \\ \\ 21 \\ 21 \\ \\ & 0 \\ & 0 \\ & 3\end{array}$ \& \& \&

\hline $$
\begin{aligned}
& 86 \\
& 87 \\
& 88 \\
& 89 \\
& 90
\end{aligned}
$$ \& \[

16 $$
\begin{aligned}
& 1 \frac{1}{4} \\
& 3 \frac{4}{6} \\
& 6 \\
& 8 \frac{1}{2} \\
& 10 \frac{1}{2}
\end{aligned}
$$

\] \& \[

$$
\begin{array}{ll}
17 & 0 \frac{1}{2} \\
& 28 \\
& 5 \\
& 7 \frac{8}{3} \\
& 9 \frac{3}{4}
\end{array}
$$
\] \& \& \& \& \& \&

\hline 91
92
93
94

95 \& | 17 | $0 \frac{3}{4}$ |
| :--- | :--- |
| 3 | |
| | $5 \frac{1}{4}$ |
| $7 \frac{1}{2}$ | |
| | $9 \frac{2}{4}$ | \& \[

18 $$
\begin{array}{ll}
18 & 0 \frac{1}{6} \\
& 2 \frac{1}{2} \\
& 4 \frac{7}{8} \\
& 7 \frac{1}{4} \\
& 9 \frac{5}{8}
\end{array}
$$
\] \& $19 \begin{gathered}11 \frac{1}{2} \\ \\ \\ \\ 4 \\ 4 \frac{1}{2} \\ \\ \\ \\ \\ 9 \frac{1}{2}\end{gathered}$ \& \& 23 $23 \begin{array}{r}9 \\ 0 \\ 3 \\ \\ \\ \\ \\ \\ \\ \\ \end{array}$ \& \& \&

\hline
\end{tabular}

LINTOL BEAMS CARRYING BRICKWORK

British Standard Beams as in Table 103, encased in concrete with a minimum cover of 2 in . and supported at each end.

B.s.B.	41" Brickwork		9" Brickwork		
$3^{\prime \prime} \times 3^{\prime \prime} \times 8 \frac{1}{2} \mathrm{lb}$.	Max. clear span 8 ft .		Max. clear span 7 ft .		
$4^{\prime \prime} \times 3^{\prime \prime} \times 10 \mathrm{lb}$.	"	" $\quad 10 \mathrm{ft}$.	"	", "	9 ft .
$5^{\prime \prime} \times 3^{\prime \prime} \times 11 \mathrm{lb}$.	"	", $\quad 12 \mathrm{ft}$.	"	",	10 ft .
$6^{\prime \prime} \times 3^{\prime \prime} \times 12 \mathrm{lb}$.	,	", 13 ft .	"	" ${ }^{\text {, }}$	12 ft .
$7^{\prime \prime \prime} \times 4^{\prime \prime} \times 16 \mathrm{lb}$.		, , 16 ft .	",	",	14 ft 15 ft
$9^{\prime \prime} \times 4^{\prime \prime} \times 2 \mathrm{lb}$.			'	"	16 ft .

WALLS AND PIERS

of Brickwork, Masonry or Plain Concrete

L.C.C. by-laws

(i) Definition of Walls and Piers.

Where a pier is built integrally with a wall and projects on one side of it for a distance not exceeding $\frac{1}{4}$ of the wall thickness (or projects on both sides so that the sum of the projections does not exceed $\frac{1}{3}$ of the wall thickness) the combination is deemed to be a wall. Where the projections exceed these limits the combination is deemed to be a pier.
(ii) Definition of Length of Wall.

The length of a wall is taken as the clear distance between any buttressing walls or piers (see (i) above) which are bonded to it ; the buttressing walls or piers must extend to the top of the wall in single storey buildings, or to the underside of floor of the topmost storey when there is more than one storey.
(iii) Rules for Thickness.

The thickness of walls and piers of brickwork, masonry or plain concrete may be decided under the L.C.C. by-laws either from a set of rules prescribing the thickness in various circumstances, or by calculation of the pressures. In either case, certain minimum thicknesses are laid down, and these are reproduced shortly in Table 74 and paragraphs (b) to (e) below. Thickness is always exclusive of rendering, stone facing or other finishes. The regulations may only be applied to walls carrying distributed loads, including joists up to 42 in . centres. In general, openings in the walls are limited to one-half of the elevation area in any storey. Isolated piers come under column regulations. Certain single-storey buildings are exempted from the rules.
(a) Minimum Wall Thicknesses in general.

TABLE 74

Type of Wall	Material	Warehouses	Bulldings Oent Ohar than Warehouses
External wall or buttressing wall	R ${ }_{\text {R }}$	${ }_{4}^{84^{\prime \prime}}$	${ }^{817}{ }^{17}$
Party wall : Not exceeding 30^{\prime} high	$\stackrel{B}{\mathrm{RC}}$	${ }_{17 \times} 8^{\prime \prime}$	$8_{88^{8 \prime}}{ }^{\prime \prime}$
Exceeding 30^{\prime} and not exthe length is not over 35^{\prime})	${ }_{\text {R }}^{\text {R }}$	$13^{\prime \prime}$	$8_{88^{\prime \prime}}$
Any other height	R ${ }_{\text {R }}$	",	${ }^{13}{ }^{\prime \prime}$

B $=$ brickwork, masonry or plain concrete.
$R C=$ reinforced concrete .
(b) Party Walls.

Every party wall and pier combined with it must be of a thickness at any level not less than one-fortieth of the height from that level to the top of the wall.
(c) Panels.

When a part of a wall is so constructed that it does not aid in sustaining any of the loads on the rest of the wall, e.g. a panel in a framed structure, such part or panel may be deemed to be a separate wall for the purpose of determining the thickness.
(d) Other Walls.

In every other wall and pier the thickness at any level must not be less than one-sixtieth of the height from that level to the top of the wall.
(e) Cavity Walls.

These must consist of two leaves each not less than 4 in . thick, and the cavity must be from 2 in . to 6 in . wide. Iron ties not less than $\frac{3}{4} \mathrm{in} . \times \frac{3}{16} \mathrm{in}$. in cross-section are required at the rate of two per square yard for cavities up to 3 in . wide, increasing proportionately up to four per square yard for a 6 -in. cavity. Local by-laws sometimes limit the cavity width to $3 \frac{1}{2} \mathrm{in}$.

For walls of brickwork, masonry or plain concrete where calculations of pressure are not made, the following stipulations must also be met.
(iv) External and Party Walls.
(a) Tables 75 and 76 give in summary form the minimum thicknesses for these two classes of walls. They are also subject to a further condition, viz. :-

In buildings other than public buildings and warehouses, where in any storey height the thickness of wall as determined by Table 75 is less than one-sixteenth of the storey height, the thickness shall be increased to one-sixteenth and the thickness below that storey shall be increased to a like extent.

In warehouses, the fraction stated above is to be one-fourteenth. The increased thickness may be confined to piers, the combined widths of which amount to not less than $\frac{1}{4}$ of the wall length. An external wall not over 25 ft . high and not more than 30 ft . long may be constructed as a cavity wall in accordance with paragraph iii (e) and the thickness given in Tables 75 and 76 shall then be the sum of the thicknesses of the two leaves.
(b) See Tables 75 and 76 ; for lengths exceeding 45 ft ., the thickness in the two uppermost storeys is to be as stated for lengths not exceeding 45 ft ., and $4 \frac{1}{2} \mathrm{in}$. greater in the remaining storeys. The increase may be confined to piers as above defined.
(c) See Table 76 ; for cases below the thick line, the thickness at any level between the base and 16 ft . from the top shall be not less than is indicated by joining with straight lines the specified thicknesses at the base and at 16 ft . from the top, as shown in the sketch.

(i) Buildings other than Public Buildings or Warehouses (See notes iii, iv (a))

TABLE 75

Height		Length not exceeding				$\begin{aligned} & \text { Length } \\ & \text { exceeding } \\ & 45^{\prime} \end{aligned}$
Exceeding	Not exceeding	20'	30'	35'	45'	
	12'	$8 \frac{1}{2}{ }^{\prime \prime}$	$8 \frac{1}{2}{ }^{\prime \prime}$	$8 \frac{1}{2}{ }^{\prime \prime}$	$8 \frac{1}{2}^{\prime \prime}$	$8 \frac{1}{}{ }^{\prime \prime}$
12'	25'	"	"	Lowest storey $13^{\prime \prime}$, others $8 \frac{1}{2 \prime \prime}$		
25^{\prime}	30^{\prime}	"	Lowest 13" Others $8 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$	Lowest two storeys $13^{\prime \prime}$, others $8 \frac{1}{2}{ }^{\prime \prime}$		
30^{\prime}	40^{\prime}	Top storey $8 \frac{1}{2}{ }^{\prime \prime}$, others $13^{\prime \prime}$			Lowest 171 ${ }^{\prime \prime}$, top $8 \frac{1}{2}{ }^{\prime \prime}$, others $13^{\prime \prime}$	
40^{\prime}	50'	Lowest 171 ${ }^{\prime \prime}$, top $8 \frac{1}{2}{ }^{\prime \prime}$, others $13^{\prime \prime}$			Lowest two 17 $\frac{1}{2}^{\prime \prime}$ Others $13^{\prime \prime}$	Lowest $21 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$ Next $17 \frac{1^{\prime \prime}}{}$ Others 13
50^{\prime}	60^{\prime}	Lowest two storeys 171 ${ }^{\prime \prime}$, others 13"				Lowest $21 \frac{1}{2}{ }^{\prime \prime}$ Next two $17 \frac{1}{2}$ Others $13^{\prime \prime}$
$\begin{array}{r} 60^{\prime} \\ 70^{\prime} \\ 80^{\prime} \\ 90^{\prime} \\ 100^{\prime} \end{array}$	$\begin{array}{r} 70^{\prime} \\ 80^{\prime} \\ 90^{\prime} \\ 100^{\prime} \\ 120^{\prime} \end{array}$	Lowest storey $21 \frac{1^{\prime \prime}}{2}$, next two $17 \frac{1_{2}^{\prime \prime}}{2}$, others $13^{\prime \prime}$ Lowest $21 \frac{1}{2}^{\prime \prime}$, next three $17 \frac{1}{2}^{\prime \prime}$, others $13^{\prime \prime}$ Lowest $26^{\prime \prime}$, next $21 \frac{1}{2}^{\prime \prime}$, next three $17 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$, others $13^{\prime \prime}$ Lowest $26^{\prime \prime}$, next two $21 \frac{1}{2}^{\prime \prime}$, next three $17 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$, others $13^{\prime \prime}$ Lowest $30^{\prime \prime}$, next two $26^{\prime \prime \prime}$, next two $21 \frac{1}{2}^{\prime \prime}$, next three $17 \frac{1^{\prime \prime}}{}$, others $13^{\prime \prime}$				See note iv(b)

(ii) Warehouses. (See notes lii, iv (a) ; for cases below the thick line see also note iv (c))
TABLE 76

Height		Length not exceeding			$\begin{aligned} & \text { Length } \\ & \text { exceeding } \\ & 45^{\prime} \end{aligned}$
$\begin{array}{\|c} \text { Exceed- } \\ \text { ing } \end{array}$	$\begin{gathered} \text { Not } \\ \text { exceed- } \\ \text { ing } \end{gathered}$	30'	35'	45^{\prime}	
	25^{\prime}	Top storey $8 \frac{1}{2}{ }^{\prime \prime}$, others 131			
25^{\prime}	30^{\prime}	Top storey $8 \frac{1}{2}{ }^{\prime \prime}$, others $13^{\prime \prime}$			Top storey $8 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$ To 16^{\prime} from top $13^{\prime \prime}$ At base $17 \frac{1}{2}{ }^{\prime \prime}$
30^{\prime}	40^{\prime}	$13^{\prime \prime}$ throughout		For 16^{\prime} from top, $13^{\prime \prime}$ At base, $17 \frac{1^{\prime \prime}}{}$	For 16^{\prime} from top, $13^{\prime \prime}$ At base, $21 \frac{1}{2}^{\prime \prime}$
40^{\prime}	50^{\prime}	For 16^{\prime} from top, $13^{\prime \prime}$ At base, $17 \frac{1_{2}^{\prime \prime}}{}$ For 16^{\prime} from top, $13^{\prime \prime}$ At base, $21 \frac{1_{2}^{\prime \prime}}{\prime \prime}$			For 16^{\prime} from top, $13^{\prime \prime}$ At base, $26^{\prime \prime}$
50'	60^{\prime}	For 16^{\prime} from top, $13^{\prime \prime}$ At base, $21 \frac{1}{2}^{\prime \prime}$			As above
60^{\prime}	80^{\prime}	As above			See note iv (b)
80^{\prime}	$10{ }^{\prime}$	For 16^{\prime} from top, $13^{\prime \prime}$ At base, 26"			" "
$10{ }^{\prime}$	120^{\prime}	For 16^{\prime} from top, $13^{\prime \prime}$ At base, 31"			" ${ }^{\text {, }}$

(v) Buttressing Walls (other than external or party walls).

The thickness of buttressing walls is to be not less than two-thirds of the thickness specified for external and party walls of the same height, length and class of building.
(vi) Partition Walls.

Partition walls and walls buttressing partition walls shall be of a thickness not less than half of the thickness specified for external and party walls of the same height, length and class of building; provided that a non-loadbearing partition wall adequately restrained on all four edges may be of less than the above thickness so long as the sum of its length and three times its height does not exceed 200 times its thickness.

Where the thickness is not determined in accordance with regulations iv to vi, or where exceptional circumstances make it necessary, calculation of the pressures on walls and piers must be made.

The following table gives the maximum permissible pressures on walls and piers for various qualities of brick or block and of mortar mixture.

The reductions in permissible pressure on brick walls and piers for different conditions of lateral support and slenderness ratio are the same as those for concrete, and are given in Table 62.

The permissible stresses in plain concrete are given in Tables 61 and 63 and in reinforced concrete in Tables 58 and 59.

TABLE 77. Permissible Pressures on Brickwork or Masonry (L.C.C.) (Slenderness Ratio not exceeding 6)

Ref. No.	Test Load on Brick or Block (see note below) lb . per sq. In.	Mortar Proportions by Volume			Maximum " Pressure tons per sq. ft.
		Cement	Lime	Sand	
$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\left.\begin{array}{r} 15000 \\ 10000 \end{array}\right\}$ Not less than :-	1	-	2	$\left\{\begin{array}{l}40 \\ 30\end{array}\right.$
3	. 7500	1	-	$2 \frac{1}{2}$	23
4	5000	1	--	3	16
5	4000	1	-	3	$13 \frac{1}{2}$
6	3000	1	-	4	$11{ }^{2}$
7		1	1	6	10
8	1500	1	-	4	8
9	"	1	1	6	7
10	"	1	2	9.	6
11	"	1	3	12	$5 \frac{1}{2}$
12	"	1	4	15	5
13	"	1	5	18	$4 \frac{1}{2}$
14	"	-	1	3	4

For local loading under beams, etc., see p. 63.

Note. The test load is defined as the maximum load which the brick or block can withstand, when saturated with water, without cracking or breaking. It follows that bricks which fail at less than $1500 \mathrm{lb} . / \mathrm{sq}$. in. are not permitted for load-bearing walls; that if the test gives a value between 1500 and 3000 lb . the permissible pressure must be taken, according to the mortar proportions, from the figures in the 1500 lb . group, and so on.

Bricks or blocks in parts of the structure other than load-bearing walls or piers must have a test value of not less than 1000 lb ./sq. in., with the exception that the value may be not less than $200 \mathrm{lb} . / \mathrm{sq}$. in . for non-loadbearing partitions built in accordance with the proviso in paragraph vi.

For test load values between 10,000 and 15,000 , the permissible pressure may be taken as the appropriate proportionate value between 30 and 40 tons/ sq. ft. ; for example with bricks failing at $12,500 \mathrm{lb} . / \mathrm{sq}$. in. the permitted pressure is 35 , provided that the mortar is $1: 2$ cement mortar.

The permissible pressure on brickwork is seen to be based on the crushing strength of the bricks and on the proportions of the mortar, the general rule being that strong bricks should be laid in strong mortar.

Test results on a particular brand of brick vary widely, and it would be necessary in practice to obtain from the supplier an undertaking that the bricks to be supplied for work designed in accordance with these permissible pressures will exceed the stipulated test strength.

The list below gives an indication of the classification to be expected of various well-known types of brick, based on tests at the Building Research Station and elsewhere.

TABLE 78

Test Load lb. per sq. in.	Type of Brick
Over: 10000 Not less than : $\begin{aligned} & 7500 \\ & 5000 \\ & 4000 \\ & 3000 \\ & 1500 \end{aligned}$	Stafford blue Stafford blue, engineering bricks Engineering bricks, brindles Phorpres Fletton, Leicester red Pressed common Fletton, best sand-lime Sand-lime, hand-made multi-stocks, Aylesford pink, Hard London stocks.
Not permitted in load-bearing brickwork	London stocks (backings), multi-stocks

For weight of brickwork, see Table 70.

Local loading under beam or column (L.C.C.)

The pressures permitted in Table 77 may be increased by 20% under beams, columns or similar local loads, provided the stresses are immediately distributed over material not so stressed.

Local loading, Eccentric and Lateral Forces (B.S. 449)

More elaborate allowances for these loads are provided in B.S. 449. The same test loads and mortars are covered, and "Column A" of Table 77 gives the permitted pressures " due to combined live and dead loads where considered as uniformly distributed," on piers and bearing walls which have a slenderness ratio (i.e. actual height divided by least lateral dimension) not greater than 6.

The stresses due to eccentric loading (see page I||3) and lateral forces are to be calculated and added to the uniformly distributed pressures, and the total so obtained is not to exceed the values given in Column B in the next table.

Local pressures under beams and columns are to be calculated, and the combination of such pressures with either of the two foregoing types of loading is not to exceed the values given in Column C .

Where the slenderness ratio exceeds 6 , the following percentage reductions are to be made to the pressures permitted in Columns A, B and C :-

Slenderness ratio over 6 but not more than 8
over 8 " , " 10 20\% over $10 \quad, \quad, \quad, 12 . \quad . \quad . \quad 60 \%$ over 12 not permitted

TABLE 79. Permissible Pressures, B.S. 449 (see foregoing notes)

${ }_{\text {Ref. }}^{\text {Table } 77}$ (${ }^{\text {R }}$	Maximum Pressures tons per sq. ft.	
	Column B	Column C
$\left.\begin{array}{l}1 \\ 2\end{array}\right\}$	40	48
3	34.5	34.5
4	24	24
5	20.25	20.25
6	16.5	16.5
7	15	15
8	12	12
9	10.5	10.5
10	9	9
11	8.25	8.25
12	7.5	7.5
13 14	6.75	6.75
14	6	6

PROPERTIES OF BUILDING STONES

For a good list of weights of English stones see
B.S. 648-Unit Weights of Building Materials

TABLE 80

Stone	Weight $\mathrm{lb} . / \mathrm{cu} . \mathrm{ft}$.	$\left\|\begin{array}{c} \text { Working } \\ \text { Lonsad } \\ \text { (tens } \\ \text { (see Tabie tit } \end{array}\right\|$	Ultimate Strength tons/sq. ft.		Young'sModulustonss/sq. f.$\times 1000$	Temperature Coefficient per deg. F parts pemillion million
			Compn.	Shear		
Ancaster* Bath *	156 130	4	$\begin{gathered} 200 \\ \text { up to } 200 \end{gathered}$			
Darley Dale \dagger	148					
Forest of Dean \dagger	152 165					
Granite ${ }^{\text {a }}$	165	48	1300-1600	150	450	3.6
Ham Hill yellow*	135	10				
Hopton Wood * Limestones	158	18 if				
			than 150	90	380-510	2.9
Mansfield stone * Marble	141. 170	11		90	510	3.9
Millstone grit \dagger *	145		400-500			
Portland stone * Sondstones	140	30 if				
			than 250	110	160-210	
Slate, Welsh	175	22	900	low	900	
Westmor-	187	'	..	,		
Terra Cotta York stone \dagger	$110-140$ 140	17	250-560	110-250	150-500	1.1

Limestones. † Sàndstones.

If saturated add, for granite, marble or slate I lb./cu. ft. sandstones

7 , , Portland stone

11 " " Bath stone 15 ,, ., other limestones 7-12 ,, ,
For permissible pressures on masonry see also Tables 77 and 79.

LOADS ON SLABS

The load to be provided for includes
(i) Specified imposed load.
(ii) Weight of finish, filling and ceiling.
(iii) Allowance for partitions.
(iv) Self-weight of slab.

Regulations covering (i) make a distinction between slabs and beams, on the ground that slabs must be able to withstand local excessive loading while beams are able to average the load over an appreciable area. (The model by-laws of the Ministry of Health make no such distinction.)

Load regulations for beams are given on page III.
The following table gives the L.C.C. requirements and is accompanied by references to B.S. 449-1937, Institution of Structural Engineers Report No. 8 (Report No. 10 is nearly identical on the subject of floor loads), the model by-laws, Post-War Building Study No. 8, 1944 and the Housing Manual 1944 of the Ministries of Health and Works.
The B.S. Code of Practice C.P. 4 (Chapter V) proposes imposed loads some of which are considerably lower than those in Table 81.

The class load per sq. ft. recommended for private dwellings of not more than two storeys is 30 lb .; for rooms in other dwellings, hospitals and hotels, 40 lb .; offices, 50 lb .; classrooms, 60 lb .; banking halls and offices where the public may congregate, 70 lb .; churches, restaurants and garages for vehicles up to $2 \frac{1}{2}$ tons gross weight, 80 lb .; other garages and light workshops generally, 100 lb .

An appendix will give a comprehensive list of occupancies and the appropriate class.

The distinction between beam and slab loading is dropped, except in respect of the strip load requirements which are as follows :-

The minimum load on slabs (applying only to spans of less than 8 ft .) is 8 times the class load distributed over the span on a strip 1 ft . wide; the load on short spans in the 50 lb . class, for example, is $\frac{8 \times 50}{l} \mathrm{lb}$./sq. ft.

The minimum load on beams (applying only to beams carrying less than 64 sq . ft . of floor) is 64 times the class load distributed along the span.

(i) IMPOSED LOADING ON FLOOR SLABS

Load classes in accordance with L.C.C. by-laws; the $\frac{1}{4}$ ton and $\frac{8}{8}$ ton uniformly distributed strip load requirements are expressed below in terms of the span I, so that no separate check need be made for those requirements.

TABLE 81

Class	Type of Building or Floor	Lb./sq. ft. of Slab
I	Rooms used for residential purposes ; and corridors, stairs and landings within the curtllage of a flat or residence.	For spans $\} 560$ up to $\left.11 \cdot 2^{\prime}\right\} \overline{\mathrm{ft}}$. For greater spans, 50
*	Bedrooms, dormitories and wards in hotels, hospitals, infirmaries, workhouses and sanatoria. (For public spaces, corridors and staircases, see starred Classes 4, 5 and 6.).'	As Class 1
$\begin{aligned} & 2 \\ & 3 \end{aligned}$	Offices, floors above entrance floor Offices, entrance floor and floors below; retail shops ; garages for cars not over $2 \downarrow$ tons in weight. (Report No. 8 gives 60 lb . for Class 2, and 2 tons instead of 2t tons.)	For spans $\}^{840}$ up to $\left.10 \cdot 5^{\prime}\right\} \overline{\mathrm{ft}}$. For greater spans, 80
*	Churches; classrooms and lecture rooms in schools; reading and writing rooms in libraries, clubs and hotels; art galleries ; show-rooms for light goods.	As Class 3
4	Corridors, stairs and landings not provided for in Class 1. (Report No. 8 stipulates 300 lb . point load on each step or landing.)	$\begin{aligned} & \left.\begin{array}{l} \text { For spans } \\ \text { up to } 8 \cdot 4^{\prime} \end{array}\right\} \frac{840}{1 \mathrm{ft} .} \\ & \text { For greater spans, } 100 \end{aligned}$
\star	Dance and drill halls, restaurants, cafés, concert halls, grandstands, gymnasia, light workshops ; public spaces in hotels, hospitals, restaurants, auction-rooms ; theatres, cinemas, assembly halls. (The last three if with permanent seating accommodation are put in Class 3 by Report No. 8).	As Class 4
5	Workshops and factories; garages for motor vehicles other than those in Class 3 (vehicles from 2 to 3 tons loaded weight, Report No. 8).	$\begin{aligned} & \left.\begin{array}{l} \text { For spans } \\ \text { up to } 5 \cdot 6^{\prime} \end{array}\right\} \frac{840}{1 \mathrm{ft} .} \\ & \text { For greater spans, } 150 \\ & \text { (See also footnote) } \end{aligned}$
*	Storage rooms, factories, workshops, retail and book shops where the average load does not exceed $150 \mathrm{lb} . / \mathrm{sq}$. ft . Staircases and corridors in this Class. (Report No. 8 stipulates a $360-\mathrm{lb}$. point load on each step or landing.)	As Class 5
6	Warehouses, book stores, stationery stores and the like	$\left.\begin{array}{l} \text { For spans } \\ \text { up to } 4 \cdot 2^{\prime} \end{array}\right\} \frac{840}{1 \mathrm{ft} .}$ For greater spans, 200
\star	Pavements surrounding building but not adjoining a roadway. Staircases and corridors in this Class. (Report No. 8 stipulates a 600 lb . point load on each step or landing.)	As Class 6

Notes on Table 81

\star These cases are not specifically referred to in the L.C.C. by-laws, but District Surveyors and local authorities will normally accept the class loadings stated. For classes I and 2 see also below.

The actual loading on classes 4 to 6 is to be ascertained and is not to be taken as less than the values in the table.

The L.C.C. requires in addition, for garage floors in Class 5, that the slab shall be designed to carry 1.5 times the maximum possible combination of wheel loads, but each wheel load not less than I ton.

Beams and ribs spaced not further apart than 2 ft .6 in . centre to centre are to be designed for these loads and not for beam loads.
B.S. 449 and the model by-laws of the Ministry of Health omit Class 5 and place garages for vehicles over 2 tons in weight in Class 6 , but without a wheel load stipulation. In addition, the model by-laws omit the strip load requirements, and specify the loading on Class I at 40 lb . instead of 50, and on Class 2 at 50 lb . instead of 80.

Report No. 8 omits the strip load requirements.
Post-War Building Study No. I and Housing Manual 1944 of the Ministries of Health and Works suggest an even further reduction for floors in Class 1, for dwellings of not more than two storeys, to $30 \mathrm{lb} . / \mathrm{sq}$. ft. for spans over 8 ft . $\left(\frac{240}{I \mathrm{ft}}\right.$ for spans not over 8 ft . $)$ on slabs or floor boards.

(ii) WEIGHT OF SLAB FINISHES, CEILINGS AND INSULATIONS

For other materials see Table 93.

TABLE 82

Table 82-Continued.

(iii) ALLOWANCE FOR PARTITIONS

Partition loads may be dealt with either by fixing the position and details of the partition on plan and designing to suit, or by making a general allowance by way of adding to the superimposed load on the whole floor.

TABLE 83. Typical weights are as follows :-

Construction	Lb. per sq. ft. of Partition
Breeze blocks $4^{\prime \prime}$ thick	30
Brickwork $4 \frac{1}{2}{ }^{\prime \prime}$ thick (See Table 70).	42
Hollow clay blocks $3^{\prime \prime}$ thick plus plaster	23
	27
Timber studding plastered	20
Plaster, per inch of thickness	9

According to the L.C.C. by-laws, the minimum allowance for partitions or the floors of rooms used as offices, where the positions of partitions are not definitely located in the design, shall be at the rate of $20 \mathrm{lb} . / \mathrm{sq}$. ft. of floor area.
Report No. 8 Institution of Structural Engineers stipulates the allowance to be 10% of the weight per foot run of partitions if this amount exceeds $20 \mathrm{lb} . / \mathrm{sq} . \mathrm{ft}$. B.S. C.P. 4 agrees, and adds that if the 10% so obtained is less than one-fifth of the imposed load, the weight of the partition may be neglected.

CONCRETE FLOORS

TABLES 84-93

CONCRETE FLOORS

CONDITIONS OF SUPPORT

The following tables for reinforced concrete solid, filler joist and hollow floors are calculated for simply supported spans as in Fig. (a). The main reinforcement tabulated is in the direction of the span and is the quantity required at mid-span A, where the bending moment is $w{ }^{2} / 8$.

When adjacent spans are continuous over supports, as in Figs. (b) and (c)* for example, the B.M. is less than in a simply supported span of the same length. When using the tables, adjustment for conditions of support is made by reducing the span and not the load; the latter cannot be done directly since the slabs carry their own weight in addition to the imposed loads tabulated.

The method of using the tables for continuous spans (under L.C.C. rules) is then as follows:-

For End Spans, reduce the actual effective span by 10% before entering the tables to obtain the steel at B, Figs. (b) and (c), where $M=w l^{2} / I O$.
(In the case of two spans, Fig. (b), the B.M. over the centre support is - $w 1^{2} / 8$ and therefore the full actual span must be used to find the steel at $\mathrm{B}^{\prime \prime}$.

In the case of three or more spans, the B.M. at B^{\prime} over the support next to the end is - $w \mathrm{l}^{2} / 10$ so that the span reduced by 10% should be used.)

For Interior Spans, reduce the actual span by 18% before entering the tables to obtain the steel at C, where $M=\left.w\right|^{2} / 12$. Use the same amount over Interior supports as at C^{\prime}.

The effective span is to be taken as the distance between centres of supports, or as the clear span plus the effective depth of the slab. The moments quoted above, viz ., $\mathrm{w} /{ }^{2} / 10$ and $\mathrm{w}^{2} / 12$ are allowable under the L.C.C. rules only If adjacent spans are of approximately equal length, I.e. when they do not differ by more than 15% of the longer span.

Reinforcement.

The continulty steel indicated in the diagrams over the supports should extend for one-fifth of the span in each direction. When the reinforcement is in the form of bars, it is customary to bend up half the bottom bars at this position in the span and carry them over the support, and to add sufficient top bars to make up the quantity required over the support.

Distribution bars transverse to the main bars are required by L.C.C., to the extent of 10% of the weight or cross-section of the main bars.

The tables of solid reinforced concrete slabs are followed by notes on the effect of concentrated loads (page 90) and on the bending moments in slabs which are supported at all four edges (page 91).

SOLID REINFORCED CONCRETE SLABS

Selection of Slab. For a given superimposed load and span (the latter adjusted for conditions of fixity if required), the most economical slab will usually be found by trying the second or third line in each table and taking the thinnest slab which will carry the required load in the appropriate span. column. The slabs below the third line are not efficiently reinforced and are only tabulated because slab thickness is often dictated in practice by other considerations, e.g. when a light span adjoins a heavily loaded one and the thickness is kept the same for convenience.

Neutral Axis and Lever Arm Factors. The columns headed n_{1} and a_{1} are not required for selecting a slab but are included to assist when calculations have to be submitted to the local authority, and are used as follows :-

When an entry appears under n_{1}, the resistance moment of slabs on that line is limited by concrete stress, and is given by (for Class III concrete) :-

- $R M_{\text {(concrete) }}=\frac{1}{2}$ c.b.n.a. $=375 \times 12 \times n_{1} d \times a_{1} d \mathrm{in}$. $/ \mathrm{lb}$. or $375 n_{1} a_{1} d^{2} \mathrm{ft}$. $/ \mathrm{lb}$.

When no entry appears under n_{1}, the steel stress limits the resistance moment, which is then given by :-

$$
R M_{(\text {steel) }}=A_{T} \cdot t . a=A_{T} .18000 a_{1} d \text { in. } / \mathrm{lb} . \text { or } A_{T} .1500 a_{1} d \mathrm{ft} . / \mathrm{lb} .
$$

In the above, $n=$ depth of neutral axis, $a=$ lever arm, $A_{T}=$ sectional area of main steel per foot width as tabulated below, $d=$ effective depth : in accordance with usual office practice d is to be taken as overall thickness of slab less $\frac{3}{4} \mathrm{in}$. except in the case of $\frac{5}{8} \mathrm{in}$. bars when $\mathrm{d}=$ actual depth from top of slab to centre of bars. The tables have been calculated with the exact value of d in all cases, but the values of n_{1} and a_{1} apply to the approximate values stated above. $a=\sigma_{1} d \quad n=n_{1} d$

SECTION AREA OF ROUND BARS

TABLE 84. $\quad A_{T} \mathrm{sq}$. in. per ft. width of slab

Diam.	Spacing Centre to Centre of Bars									
	3^{*}	$4 "$	5*	$6{ }^{\prime \prime}$	7"	$8{ }^{\prime \prime}$	9	10^{*}	${ }^{12}$	15"
	. 110	. 083	. 066	. 055	. 047	. 041	. 037	. 033	. 028	. 022
${ }^{\frac{1}{6}}$. 196	. 147	. 118	. 098	. 084	. 074	. 036	. 059	. 049	. 032
${ }^{1 / 2}$. 307	- 230	. 184	. 153	. 132	. 115	. 102	. 092	. 077	. 061
		. 331	. 265	. 221	. 190	. 166		. 133	. 110	. 088
\%	. 785	. 589	. 471	. 393	. 337	. 295	- 262	- 236	. 196	. 157
\%	1.23	. 920	. 736	. 614	. 526	. 460	. 409	. 368	. 307	. 245

(i) SIMPLY SUPPORTED SOLID
 REINFORCED CONCRETE SLABS

Calculated in accordance with L.C.C. by-laws, for concrete designation III ($1: 2: 4 \mathrm{mix}$), max. steel stress 18,000 , max. concrete stress $750 \mathrm{lb} . / \mathrm{sq}$. in., modular ratio 15, concrete cover not less than $\frac{1}{2}$ in. or diameter of bar.

See notes opposite for n_{1}, a_{1} and effective span and for other conditions of support.

The self-weight of the slabs has been deducted.

SAFE DISTRIBUTED IMPOSED LOADS

TABLE 85.
Lb. per sq. ft.

$$
3^{\prime \prime} \text { SLAB }
$$

$3 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$ SLAB

4" SLAB

. 48	. 84	$\frac{1}{2}$	4			310	258	215	181	153	130	111
. 45	. 85	$\frac{1}{2}$	$5\}$			290	240	200	168	142	120	102
. 44	. 87	$\frac{8}{8}$	$3\}$									
. 40	. 89	\%	4		322	264	218	181	152	127	107	91
	. 90	$\frac{5}{10}$	3	382	307	252	208	172	144	120	101	85
	,	$\frac{1}{8}$	5	322	258	210	172	141	117	97	80	67
	19	$\frac{3}{10}$	4	278	221	178	145	119	98	80	65	53
	,	\%	6	266	218	170	138	112	91	74	60	49
	. 92	$\frac{5}{10}$	5	218	172	136	109	87	70	56	44	
	. 93	16	6	174	135	107	84	65	50			

SIMPLY SUPPORTED SOLID REINFORCED CONCRETE SLABS The self-weight of slab has been deducted.

SAFE DISTRIBUTED
TABLE 85-Continued.
Lb. per

n_{1}	a_{1}	Main Steel		Effective					
		Diam. in.	Spacing in.	$5 \prime$	5' ${ }^{\prime \prime}$	6^{\prime}	$6^{\prime \prime} 6^{\prime \prime}$	$7{ }^{\prime}$	
$41^{\prime \prime}$ SLAB									
$\begin{aligned} & .46 \\ & .42 \\ & .40 \end{aligned}$	$\begin{aligned} & .85 \\ & .86 \\ & .87 \\ & .89 \\ & .87 \\ & .90 \\ & .91 \\ & .92 \\ & .93 \\ & .94 \end{aligned}$		$\left.\begin{array}{l} 4 \\ 5 \\ 6 \\ 4 \\ 7 \\ 3 \\ 5 \\ 6 \\ 7 \\ 7 \\ 6 \\ 7 \end{array}\right\}$	374 307 260 203 168	300 244 205 158 129	372 350 316 292 244 197 164 125 101	310 290 262 241 200 160 132 99 78	$\begin{aligned} & 280 \\ & 260 \\ & 242 \\ & 217 \\ & 200 \\ & 165 \\ & 130 \\ & 106 \\ & 77 \\ & 60 \end{aligned}$	

$5^{\prime \prime}$ SLAB

.44 .48 .40 .0	.85 .84* .88 .87 .90 .88 .91 .92		$\left.\begin{array}{l}4 \\ 5 \\ 3 \\ 5 \\ 6 \\ 4 \\ 7 \\ 3 \\ 5 \\ 6 \\ 7 \\ 8\end{array}\right\}$	352 294 254	$\begin{aligned} & 280 \\ & 232 \\ & 199 \end{aligned}$	360 333 280 226 186 158	298 276 230 184 150 126	352 348 330 328 298 248 229 190 150 121 100

* $d=4.06^{\prime \prime}$.

$$
\begin{aligned}
& c=750 \\
& t=18,000
\end{aligned}
$$

IMPOSED LOADS

sq. ft.

Span

237	202	173	148	128	110			
220	186	158	135	116	99			
204	173	147	125	107	92			
183	153	129	110	93	79			
168	141	119	100	84	71			
137	113	94	78	64	53			
106	87	71	57	46	36			
85	68	54	43					
60	46							
45	33							

300	256	220	190	165	142	123	107	93
295	252	216	187	162	140	121	105	91
280	238	204	176	152	131	113	98	84
278	236	202	174	150	130	112	97	83
252	214	182	156	134	115	98	85	73
209	176	149	127	108	91	77	65	54
192	161	136	115	97	82	69	57	47
158	131	109	91	76	62	50	41	
123	101	82	67	54	43	34		
98	79	63	50	38				
79	62	48	37					

SIMPLY SUPPORTED SOLID REINFORCED CONCRETE SLABS

The self-weight of slab has been deducted.
SAFE DISTRIBUTED
TABLE 85-Continued Lb. per

${ }^{n_{1}}$	a_{1}	Main Stoel		Effective							
		Diam.	$\underset{\substack{\text { Spacing } \\ \text { in. }}}{\text { Ster }}$	5^{\prime}	$5^{6} 6^{\circ}$	6^{\prime}	$6^{6} 6^{\prime \prime}$	$7{ }^{\prime}$	$7^{7} 6^{\prime \prime}$	${ }^{8}$	$6^{\prime \prime}$

$5 \frac{1}{2}$ SLAB

$\begin{aligned} & .46 \\ & .42 \\ & .39 \end{aligned}$	$\begin{aligned} & .85 * \\ & .86 \\ & .87 \\ & .88 \\ & .90 \\ & .91 \\ & .92 \\ & .93 \end{aligned}$		$\left.\begin{array}{l}5 \\ 4 \\ 5 \\ 3 \\ 6 \\ 7 \\ 7 \\ 4 \\ 5 \\ 6 \\ 7 \\ 9\end{array}\right\}$	$\begin{aligned} & 394 \\ & 334 \\ & 246 \end{aligned}$	$\begin{aligned} & 314 \\ & 265 \\ & 192 \end{aligned}$	$\begin{aligned} & 406 \\ & 315 \\ & 254 \\ & 212 \\ & 150 \end{aligned}$	$\begin{aligned} & 338 \\ & 259 \\ & 207 \\ & 171 \\ & 118 \end{aligned}$	390 337 286 280 214 169 138 93	332 286 241 236 178 139 112 73	316 292 283 242 204 199 148 114 90 56	272 251 243 207 173 169 124 93 72 42

* $d=4.56^{*}$

6" SLAB

* $d=5.06$ "

$$
\begin{aligned}
& c=750 \\
& t=18,000
\end{aligned}
$$

IMPOSED LOADS

sq. ft.

236	206	178	156	136	119	104	91	79		
216	188	163	142	123	107	93	81	69		
210	182	157	136	118	102	89	77	66		
178	153	131	113	97	83	71	60	51		
147	125	107	91	77	65	54	45	36		
143	122	104	88	74	62	52	43	34		
103	86	71	58	47						
76	61	49								
57	44	34								
30										

288	252	220	193	169	149	130	114	100	87	76
249	216	188	164	143	125	108	94	82	71	61
234	203	176	153	133	116	100	87	73	62	54
198	171	147	127	109	94	80	68	57	47	
162	138	117	99	84	71	59	49	40		
160	137	116	98	83	70	58	48	39		
116	97	80	66	54	43	34				
111	92	77	63	51	40					
86	70	56	44	34						
65	51	39								
35										

SIMPLY SUPPORTED SOLID REINFORCED CONCRETE SLABS

The self-weight of slab has been deducted.
SAFE DISTRIBUTED
TABLE 85-Continued.
Lb. per

* $\mathrm{d}=7.06^{\prime \prime}$

$$
\begin{aligned}
& c=750 \\
& t=18,000
\end{aligned}
$$

IMPOSED LOADS
sq. ft.

Span

11^{\prime}	$11^{\prime} 6^{\prime \prime}$	12^{\prime}	$12^{\prime} 6^{\prime \prime}$	13^{\prime}	$13^{\prime} 6^{\prime \prime}$	14^{\prime}	$14^{\prime} 6^{\prime \prime}$	15^{\prime}	$15^{\prime} 6^{\prime \prime}$	16^{\prime}	$16^{\prime} 6^{\prime \prime}$	17^{\prime}	$17^{\prime} 6^{\prime \prime}$

244	216	192	170	151	134	118	104	92	81	71	61	53	
234	207	184	164	144	128	112	99	87	76	66	57	49	
174	152	133	116	101	88	74	63	55	46				
133	115	98	84	71	60	50							
102	86	73	61	49									
79	65	53	42										
67	54	43											
64	51	40											
50													
42													

358	319	286	256	229	206	184	165	148	133	118	105	94	83
328	292	260	232	208	186	166	148	122	108	96	84	74	64
280	248	220	195	174	154	136	121	106	93	82	72	62	53
277	246	217	193	171	152	134	119	104	91	80	69	60	51
205	180	157	138	120	104	90	77	66	56				
158	136	117	101	86	73	61	50						
123	104	88	74	61	50								
97	81	66	53										
76	61	49											

(ii) FILLER JOIST FLOORS (Simply Supported)

In accordance with B.S. 449 and L.C.C. by-laws. Concrete I: $2: 4$ designation III. I in. cover to sides and bottom of joists. The cases selected require no transverse reinforcement in the slab.

The self-weight of floor has been deducted.
For adjustment when the span is continuous over a support see notes on page 71.

SAFE DISTRIBUTED
TABLE 85A.
Lb. per

Based on data given in their steel Handbook by permission of Messrs. Redpath Brown \& Co. Ltd.

The loads tabulated refer to this type of floor.

* If the slab is built with flush soffit, the dead weight is increased. Deduct from tabular load the figure on same line in the last column.

IMPOSED LOADS

sq. ft.

Spans of Joists in Feet										See Note above *
11	12	13	14	15	16	17	. 18	19	20	
121	95	74								29
185	147	118								26
187	149	120	97	78	62					38
295	239	195	161	133	110					35
280	227	186	153	126	105	87	72			45
	363	299	249	208	175	148	125	105	88	48
	427	354	297	250	211	180	154	131	112	50
			410	348	296	255	219	189	163	54
				445	381	330	286	248	216	63

(iii) HOLLOW TILE FLOORS

These floors consist structurally of a serles of reinforced concrete T-beams, which are so closely spaced as to require to be designed for slab loading. They are much weaker in shear than solid floors of the same thickness, for the ribs alone are taken as resisting shear and the ribs represent only $\frac{1}{}$ or $\frac{1}{8}$ th of the whole cross-section.

In consequence, the safe span of a hollow floor as determined by shear stress in the rib concrete is usually less than the safe span calculated from the bending resistance. In these cases it is customary to omit the hollow blocks In the end portions of the span where the shear exceeds the value which can be taken by the ribs. The remainder of the span is called the "Hollow Span " in Table 86, the whole span being termed the "Effective Span," as defined on page 71.

The usual concrete mix is $1: 1 \frac{1}{2}: 3$ nominal, and small aggregate, e.g. $\frac{8}{8} \mathrm{in}$., is used as the concrete must be worked round reinforcement in narrow ribs. The conditions also call for a fluid mix.

(I) Simply Supported Spans

Table 86 gives directly the safe distributed imposed load in lb. per sq. ft. on various floors and effective spans. Where an entry for the Hollow Span occurs under the safe load figure, this entry gives the length which may be built hollow, and the remainder of the span must be solid. If there is no entry the whole span may be hollow.

(ii) Continuous Spans

(a) The permissible length of the hollow portion is the same for continuous as for simple spans, when fully loaded, but it may not be equidistant from the two supports, and its position varies for different arrangements of partial loading.
(b) If no entry appears for H, the whole span may be hollow with the exception of a few inches over a support. This is to take care of reverse bending, because the plain rib even when doubly reinforced is not quite so strong in bending as the T section at mid-span : but the $B M$ is falling rapidly near the support and within a few inches the rib is capable of taking it. For the floors included in the table, a length of solid over each support equal to ${ }_{\frac{1}{8}}^{\frac{1}{8}}$ th of the span is sufficient when no value of H is tabulated.
(c) In accordance with L.C.C. by-laws and usual practice, the BM in continuous spans is taken as $\frac{W l}{10}$ or $\frac{W l}{12}$ as on page 71 . The shear at the supports varies according to the arrangement of spans and affects the position of the hollow portions. The procedure in using the table for continuous spans is as follows :-

Two Spans

Reduce the actual span by 10% before entering the table. Select a suitable floor to carry the required superimposed load on the reduced span, and note the hollow span H tabulated. The distance x_{1} is $\cdot 44 l-\cdot 50 \mathrm{H}$, subject to note (b), and H_{1} is $\mathrm{H}_{-} .06 l$

$$
\mathrm{H} \text { as tabulated }
$$

$$
l=\text { actual span (not reduced) }
$$

Three Spans

The end span is reduced by 10% and the centre span by 18% before entering the table. The distance x_{2} is $\cdot 45 \mathrm{l}-.50 \mathrm{H}$, subject to note (b).

$$
H_{2}=H^{x_{3} \text { is } .58 l l}-.07 l H_{3}=H-.16 l
$$

Four Spans

The end span is reduced by 10% and all inner spans by 18% before entering the table. The distance $\left.\begin{array}{rl}x_{4} & =.45 l-.50 \mathrm{H} \\ x_{5} & =.60 l-.50 \mathrm{H}\end{array}\right\}$ subject to note (b).
$H_{4}=H-.07 l$
$H_{5}=H-\cdot 17 l$

The continuity steel over the supports is dealt with on page 71. In columns 1 and 2 are tabulated for reference the depth of neutral axis n and depth to c.g. of compression z. Column 3 gives the number and diameter of bars in each rib. The concrete cover is the same as for solid slabs (page 73).

SIMPLY SUPPORTED HOLLOW REINFORCED CONCRETE SLABS

Calculated in accordance with L.C.C. by-laws, concrete designation II ($1: 1 \frac{1}{2}: 3 \mathrm{mix}$), viz., maximum steel stress 18,000 , maximum concrete stress $850, m=15, q=85 \mathrm{lb} . / \mathrm{sq}$. in. For continuous slabs see notes. The selfweight has been deducted.

TABLE 86.

(i) 3 in. RIBS, $1 \frac{1}{2} \operatorname{in}$. TOPPING:-

SAFE DISTRIBUTED

nIn.	$\begin{gathered} z \\ \mathrm{In} . \end{gathered}$	Reinforcement in each Rib	Effective							
			5'	5' ${ }^{\prime \prime}$	$6^{\prime \prime}$	$6^{\prime} 6^{\prime \prime}$	$7{ }^{\prime}$	7' 6"	$8{ }^{\prime}$	$8^{\prime} 6^{\prime \prime}$

$4 \frac{1}{2}{ }^{\prime \prime}$ SLAB

1.03	. 34	$1-\frac{1}{2}{ }^{\prime \prime}$	Safe Load	216	172	138	111	90	74	60	49
			Hollow Span								
1.36	. 45	$2-\frac{1}{2}{ }^{\prime \prime}$	Safe Load Hollow Span	$\begin{aligned} & 456 \\ & 2 / 9 \end{aligned}$	370 $3 / 3$	$\left\lvert\, \begin{gathered}305 \\ 3 / 11\end{gathered}\right.$	252 $4 / 7$	212 $5 / 4$	181 $6 / 1$	154 $6 / 11$	$\begin{aligned} & 132 \\ & 7 / 10 \end{aligned}$
1.56	. 52	2-5"	Safe Load Hollow Span			412 $2 / 9$	343 $3 / 3$	290 $3 / 9$	249 $4 / 3$	214 $4 / 10$	186 $5 / 6$

5" SLAB

$\begin{aligned} & 1.47 \\ & 1.71 \end{aligned}$	$\begin{aligned} & .49 \\ & .55 \end{aligned}$	$\begin{aligned} & 2-\frac{1}{2} \\ & 2-\frac{5^{\prime \prime}}{} \end{aligned}$	Safe Load Hollow Span Safe Load Hollow Span	$\begin{aligned} & 425 \\ & 3 / 3 \end{aligned}$	362	$\begin{aligned} & 293 \\ & 47 \\ & 436 \\ & 3 / 0 \end{aligned}$	247$5 / 3$370$3 / 6$	209$6 / 1$316$4 / 0$	$\begin{aligned} & 179 \\ & 6 / 11 \\ & 273 \\ & 4 / 6 \end{aligned}$	$\begin{aligned} & 153 \\ & 7 / 10 \\ & 236 \\ & 5 / 2 \end{aligned}$

$5 \frac{1}{2}{ }^{\prime \prime}$ SLAB

1.57	. 52	$2-\frac{1}{2}$	Safe Load	387	332	280	238	204	175
			Hollow Span	4/0	4/7	5/4	6/1	7/0	7/10
1.71	. 55	1-1/2", 1-5"	Safe Load		417	353	301	260	224
			Hollow Span		3/6	411	4/9	514	6/1
1.86	. 58	2 - ${ }^{\text {\% }}$	Safe Load Hollow Span			435 $3 / 5$	373 $3 / 10$	323	280 $5 / 0$

6" SLAB

7" SLAB (see also next page)

2.29	.65	$2-\frac{8}{3}$	Safe Load Hollow Span							449 $4 / 5$

IMPOSED LOADS. Lb. per sq. ft.

Spans 1

152	132	115	100	87	76	66	58	50			
$8 / 9$					103	91	81	71			
196	172	151	132	116	$10 / 1$	91					
$6 / 9$	$7 / 6$	$8 / 4$	$9 / 4$	$10 / 3$	$11 / 1$	119	107	95			
246	216	191	169	150	133	119	$10 / 9$	$11 / 8$			
$5 / 7$	$6 / 3$	$6 / 11$	$7 / 7$	$8 / 4$	$9 / 2$	$10 / 0$					

221	194	170	151	132	118	104	92	82	72	64		
$6 / 10$	$7 / 7$	$8 / 5$	$9 / 3$	$10 / 3$	$11 / 1$	136	122	109	98	88		
279	245	217	193	172	153	136	$10 / 0$					
$5 / 7$	$6 / 3$	$6 / 1$	$7 / 7$	$8 / 4$	$9 / 1$	$10 / 0$	$10 / 9$	$11 / 9$	$12 / 7$	$13 / 6$		

| 345
 $5 / 7$ | 305 | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $6 / 3$ | 270 | | | | | | | | | |
| $6 / 11$ | 2417 | 215 | 192
 $9 / 4$ | 173
 $9 / 2$ | 155
 $10 / 10$ | 140
 $11 / 8$ | 126
 $12 / 7$ | 114
 $13 / 6$ | 109 | 93 |

Simply Supported Hollow Reinforced Concrete Slabs-Continued.

$$
t=18000, c=850, m=15, q=85 \mathrm{lb} . / \mathrm{sq} . \mathrm{ln} .
$$

The self-weight has been deducted. For notes on n and z see page 89 . Column 3 gives the number and diameter of bars in each rib.
TABLE 86-Continued.
(ii) 4 in. RIBS, 2 in. TOPPING :-

SAFE DISTRIBUTED

n in.	2 in.	Reinforcement in each Rib								fective
			$8 \prime$	8' $6^{\prime \prime}$	$9 \times$	9'6'	10'	$10^{\prime \prime} 6^{\prime \prime}$	$1{ }^{\prime \prime}$	11'6"

7" SLAB

$8^{\prime \prime}$ SLAB

$2 \cdot 35$. 75	2-5"	Safe Load	372	327	290	259	229	205	
			Hollow Span	7/6	8/4	9/3	10/1			
2.53	. 78	1-5", 1-3/4	Safe Load	410	362	321	287	255	225	
			Hollow Span	6/8	7/5	8/2	$9 / 0$	9/11	$10 / 9$	
2.72	. 80	2-4**	Safe Load		403	358	320	286	257	
			Hollow Span		6/8	7/5	8/2	910	9/10	

9" SLAB

2.59	. 78	2-5"	Safe Load				383	340	304	270	242	
			Hollow Span				$8 / 4$	9/3	10/1			
2.79	. 81	1-5" ${ }^{\prime \prime}$, 1-3" ${ }^{\prime \prime}$	Safe Load				436	387	346	309	278	
2.01	. 81	Br^{10}	Hollow Span				7/3	8/0	8/10	918	10/6	
3.01	. 84	2-3**	Safe Load Hollow Span							373 $8 / 3$	$\begin{aligned} & 335 \\ & 9 / 0 \end{aligned}$	

10" SLAB

IMPOSED LOADS. Lb. per sq. ft.

152	136	121	108	97	87	78					
186	168	151	136	123	111	100					
$10 / 11$	$11 / 9$	$12 / 9$	$13 / 9$	$14 / 10$	$15 / 10$	$17 / 0$					
228	206	187	169	153	139	126					
$9 / 3$	$10 / 0$	$10 / 9$	$11 / 9$	$12 / 7$	$13 / 6$	$14 / 6$					

183	162	148	132	119	107	96	86	77		
209	184	166	150	135	122	110	100	90		
$11 / 9$ 231 $10 / 8$	207	$11 / 8$	$12 / 6$	170	153	139	127	115	104	

217	195	176	158	143	129	116	105	95	86	77	
250	224	203	184	167	151	137	125	113	109	93	
$11 / 6$											
313	274	249	226	206	188	172	157	143	131	120	
$9 / 7$	$10 / 8$	$11 / 6$	$12 / 5$	$13 / 4$	$14 / 4$						

309	279	253	229	209	190	173	158	144	132	120	110	100
$10 / 8$	$11 / 10$	$12 / 9$										
374	339	309	281	257	235	215	197	181	167	153	141	129
$9 / 3$	$10 / 0$	$10 / 10$	$11 / 9$	$12 / 6$	$13 / 6$	$14 / 5$	$15 / 5$					
400	362	331	301	276	252	231	212	196	180	165	153	140
$8 / 4$	$9 / 1$	$9 / 10$	$10 / 7$	$11 / 4$	$12 / 2$	$13 / 1$	$14 / 0$	$14 / 10$	$15 / 10$	$16 / 10$		

WEIGHT OF ROUND MILD STEEL BARS

TABLE 87

Diameter	L．b．perft．	Diameter	Lb．per ft．
$\frac{1}{8 \prime \prime}$	． 042	音＂	1.043
${ }^{\frac{3}{16}}$	． 094	$\frac{3}{4}$	1.502
$\frac{T^{\prime \prime}}{4}$	． 167	${ }^{\frac{7}{8}}$	2.044
$\frac{3}{16}{ }^{\prime \prime}$	－261	1＂	2.670
\％	． 376	$1{ }^{\prime \prime}$	3.380
$\frac{8}{1 / 6}$	． 511	$14^{\prime \prime}$	4.172
$\frac{1}{\frac{1}{2 \prime}}$	． 668	11／＇	6.008

For small sizes see also S．W．G．，Table 20.
For cross－section areas see Circles，Table 184.

WEIGHT OF ROUND MILD STEEL BARS AT DIFFERENT SPACINGS （one direction only）
TABLE 88．Lb．per sq．yd．

忘	Spacing Centre to Centre，in．											忘
	3	4	5	6	7	8	9	10	12	15	18	
$t^{\prime \prime}$	1.50	1.12	． 90	． 75	64	． 56	． 50	． 45	． 37	． 30	25	$t^{\prime \prime}$
$3^{3 \prime \prime}$	3.38	2.53	2.03	1.69	1.45	1.27	1.13	1.01	． 84	． 68	． 56	＋1＂
$\chi^{\prime \prime}$	6.00	4.50	3.61	3.00	2.58	2.25	2.00	1.80	1.50	1.20	1.00	${ }^{\prime \prime}$
$\square_{10}{ }^{\prime \prime}$	9.39	7.04	5.63	4.70	4.03	3.52	3.13	2.82	2.34	1.88	1.56	晨＂
$\frac{1}{4}$	13.5	10.1	8.11	6.77	5.79	5.07	4.50	4.08	3.38	2.70	2.25	年＂
$\frac{7}{17}$	18.4	13.8	11.0	9.19	7.87	6.89	6.12	5.51	4.59	3.67	3.06	7＂
$\frac{1}{2}$	24.0	18.0	14.4	12.0	10.3	9.01	8.01	7.21	6.01	4.80	4.00	$\frac{1}{\frac{1}{2}}$
${ }^{\prime \prime}$	37.5	28.2	22.5	18.8	16.1	14.1	12.5	11.3	9.39	7.50	$6 \cdot 25$	部
㨞＂	54.1	40.5	32.4	27.0	23.2	20.3	18.0	16.2	13.5	10.8	9.00	${ }^{\frac{3}{4}}$
$i^{\prime \prime}$	73.6	55.2	44.2	36.8	31.5	27.6	24.5	22.1	18.4	14.7	12.3	$\mathrm{t}^{\prime \prime}$
$\mathrm{i}^{\prime \prime}$	96.1	72.1	57.7	48.1	41.2	36.0	32.0	28.8	24.0	19.2	16.0	I＂

WORKING STRESSES IN STEEL REINFORCEMENT

（i）Ordinary mild steel．

$$
\text { Bars in tension generally } \quad . \quad . \quad . \quad 18,000 \mathrm{lb} . / \mathrm{sq} . \mathrm{in} .
$$

Tension in column helical reinforcement
13，500
Compression in beams where the resistance of the concrete is not counted ．

18，000
，，，
（ii）Cold－worked mild steel（e．g．fabric，etc．of hard－drawn wires，or bars twisted together）．

Bars in tension ．．．．．． $25,000 \mathrm{lb} . / \mathrm{sq}$ ．In．
This value is generally accepted for commercial reinforcements falling in this class．Post－War Building Study No． 8 recommends a working stress of half the guaranteed yield point with a maximum permitted stress of $25,000 \mathrm{lb}$ ． in beams and $27,000 \mathrm{lb}$ ．in slabs．

REINFOṘCED CONCRETE DATA

Symbols :
A_{T} Cross-sectional area of tension steel in width b, sq. in.
a Lever arm, inches.
b Width, inches.
c Max. concrete compressive stress, lb./sq. in.
d Effective depth, i.e. from compression surface to c.g. of tension steel, inches.
M_{R} Moment of resistance, inch-lb.
m Modular ratio $\frac{E_{\text {steel }}}{E_{\text {concrete }}}$
n Depth of neutral axis from compression surface, inches.
t Tensile stress in steel, lb./sq. in.
(I) Neutral axis within concrete area :-

$$
\begin{aligned}
& a=d-\frac{n}{3} ; p=\frac{100 A_{T}}{b d} ; n_{1}=\frac{n}{d}=\sqrt{(.01 \mathrm{mp})^{2}+.02 \mathrm{mp}}-.01 \mathrm{mp} \\
& M_{R}=\frac{1}{2} \text { c.b.n. }\left(d-\frac{n}{3}\right) \ldots \text {..failure on concrete. } \\
& \quad \text { or t.A } A_{T}\left(d-\begin{array}{l}
n \\
3
\end{array}\right) \ldots \ldots . . \text { failure on steel. }
\end{aligned}
$$

For $m=15$:

$p \%$	$\frac{n}{d}$
.2	.217
.3	.258
.4	.222
.5	.320
.6	.333
.675	.359
.7	.365
.8	.384
. .0	.4017
1.2	.477
1.4	.440
1.6	.492

The effect of increasing m is to increase the depth of neutral axis, therefore to increase the concrete compression area and to reduce the lever arm. The moment of resistance is reduced for failure on steel and increased for failure on concrete, but the effect is small for values of p less than 1%.
(ii) Neutral axis below slab :-
d_{s} Thickness of slab, Inches.
z Depth from compression surface to c.g. of concrete compression, inches.

$$
\begin{aligned}
a= & d-z ; z=\frac{d_{s}}{3}\left(\frac{3 n-2 d_{s}}{2 n-d_{s}}\right) \\
M_{R}= & \frac{b c d_{s}}{2 n}\left(2 n-d_{s}\right)(d-z) \ldots \text { failure on concrete } \\
& \quad \text { or } t . A_{T}(d-z) \ldots \ldots \text { failure on steel. }
\end{aligned}
$$

Shear
Maximum shear stress in concrete beam or slab $=\frac{S}{b a}$ where S is the total shearing force at section.

CONCENTRATED LOADS ON SLABS
 (Slabs reinforced in one direction)

Institution of Structural Engineers Report No. 10 contains rules for dealing with concentrated loads.

If the load is in contact over a rectangular area $g \times h, g$ being measured along the span and h transversely :-
(i) The width of slab to be taken as supporting the load is $x+h$ where x is the distance of load from nearest support.
(ii) Provision must also be made for resisting a transverse $B M$ in the slab of value $\frac{W x}{8}$, taken as resisted by a strip of width $g+2 D$, where D is the effective depth of slab plus any solid finish or filling.

When h is small compared with x, the design data may be obtained from the table below for different positions of a concentrated load W lb . on a span / ft.

TABLE 89

Distance of Load W from nearest Support.	In direction of Span		Transversely
	Equivalent Distributed Load lb./sq. ft.	Width of Strip exposed to Loading given in Col. ii	BM on strip of width $g+2 D$ $\mathrm{lb} . / \mathrm{ft}$.
i	i	iii	iv
0.51	$\frac{W}{12} \times 4.0$	0.51	WI $\times 0.062$
0.41	4.8	0.41	. 050
0.31	$5 \cdot 6$	0.31	. 037
0.21	$6 \cdot 4$	0.21	. 025

The self-weight of slab and any distributed loading must be added to Column ii. Appropriate allowances may be made for conditions of fixity at the supports.

For the treatment of concentrated loads on slabs which are supported on all four sides, see Reinforced Concrete Bridges by W. L. Scott.

SLABS REINFORCED IN BOTH DIRECTIONS and supported on all four sides

The tables below have been calculated from the regulations given in the Institution of Structural Engineers Technical Report No. 10, Part I, for ratios of span, in two directions, up to 1.5 and for any combination of end fixity conditions.

In each case the balance of total load is to be taken in the direction at right angles to that stated in the tables. Total load $=$ self-weight plus imposed load.

TABLE 90. Square Slabs.

End Conditions	$\left.\begin{array}{l}\text { Proportion of Total Load } \\ \hline \begin{array}{l}\text { End conditions similar } \\ \text { One span fixed both ends } \\ \text { Other span free both ends }\end{array} \\ \left.\begin{array}{l}\text { One } \\ \text { One span fixed both ends } \\ \text { Other span fixed one end }\end{array}\right\}\end{array}\right\}$0.5 on each span 0.625 on fixed span

TABLE 91. Rectangular Slabs

End Conditions	Proportion of Total Load on Shorter Span									
	Ratio of Spans									
	1.05	$1 \cdot 10$	$1 \cdot 15$	$1 \cdot 20$	1.25	1.30	1.35	1.40	1.45	1.50
End conditions similar	. 548	. 594	. 636	. 675	. 709	. 741	. 769	. 794	. 815	. 835
Short span fixed both ends	. 669	. 709	. 745	. 776	. 803	. 827	- 847	. 865	-880	. 894
Short span fixed both ends $\}$. 603	. 647	. 685	. 720	. 753	. 781	. 806	. 827	. 846	. 863
Short span free both ends $\}$. 422	. 468	. 512	. 554	. 593	. 632	. 666	. 697	. 726	. 752
Short span fixed one end $\}$ Long span fixed both ends $\}$. 492	. 539	. 583	. 624	. 661	. 696	. 727	. 754	. 779	- 802

If the above proportions are applied to the imposed load only (i.e. selfweight of slab excluded) the result when used in conjunction with Table 84 will be on the safe side. For greater economy, deduct the proportion of self-weight which is carried in the other direction.

WEIGHTS OF VARIOUS MATERIALS

Table 93 gives the densities in $\mathrm{lb} . / \mathrm{cu}$. ft. of a variety of materials which enter into construction or may form a structural load, either on a floor slab or in bins.

The designer will generally be able to obtain reliable data from the client on the weight of the material in the actual form in which it is to be stored, but the information is not always available when preliminary designs are being made.

Minimum design loads for floors are laid down in building by-laws, but there is an obligation on the part of architect or engineer to ensure that the strength provided is adequate to support the goods concerned when stacked to the intended height, and in these days of conveyors and mobile cranes storage spaces are likely to be filled to the ceiling.

Materials in Bulk

The figure given for stone, minerals, etc., is the density of the solid material unless otherwise stated; to obtain the weight in a broken or powdered condition a reduction must be made to allow for the voids.

Granular Materials

Broken material consisting of particles all of about the same size usually contains from 55% to 60% of voids, i.e., it will weigh from 0.4 to 0.45 of the solid weight. Material graded from $\frac{1}{4} \mathrm{in}$. to $\frac{3}{4} \mathrm{in}$. will contain from 40% to 45% voids, while a mixture of all sizes including sand or similar particles may have as little as 25% volds.

Fine Granular Materials

Materials of grain size equivalent to sand are markedly affected by the presence of moisture. Thus if a cubic foot of dry sand is mixed with 1% of its weight of water and then refilled into a measure it will be found to occupy appreciably more than a cubic foot. The effect, called " bulking," increases with further additions of water and in the case of loosely gauged sand usually attains a maximum with 4% to 5% of water, when the volume will be from 30% to 35% more than that of the dry sand. When further additions of water are made the volume begins to decrease, and when saturated the sand will again occupy its original volume. Changes of water content of sand are not accompanied by volume changes if the material remains undisturbed.

Powders

The proportion of voids in fine powders is affected by air cushioning and is usually greater than in coarse materials. Thus, the density of Portland cement particles is about $190 \mathrm{lb} . / \mathrm{cu}$. ft., but cement as loosely gauged weighs only some $80 \mathrm{lb} . / \mathrm{cu}$. ft., so that it contains 58% of voids, although graded. By applying pressure or tamping the density can be increased to $110^{\circ} \mathrm{lb}$. or more, a much greater increase than is possible with coarse material.

Timber

The weights of timber are given for 15% moisture content, that is, average apparently dry condition; see notes on page 19.

Materials in Containers

The effective weights of many substances normally stored in containers are given direct in the table; in other cases a suitable factor may be applied to the bulk density tabulated without serious inaccuracy.

TABLE 92

	Condition of Storage	Multiply Bulk Density by
$\begin{aligned} & 8000000 \\ & 8000000 \\ & 8000000 \\ & 8000 \times 00 \end{aligned}$	i Cylindrical drums stored on end, or rolled on separating battens, as in A ii Cylindrical drums stored as in B iii Cylindrical cans in wooden cases iv Barrels or casks arranged as in A v ." \quad " \quad, B vi Bags piled in mounds, lump material vii " ", \quad granular material	$\begin{aligned} & .70 \\ & .81 \\ & .74 \\ & .60 \\ & .70 \\ & .85 \\ & .95 \end{aligned}$

The bulk density must of course be the value for the actual form of the material, that is, in lumps, granular or powdered.

WEIGHTS OF MATERIALS, TABLE 93

The density given is in lb./cu. ft. for both solids and liquids. See the preceding notes on different types of material and the effect of containers.

When information appears elsewhere in the book, a page reference is given immediately after the name of the material.

TABLE 93. Weights of Materials

Material	$\mathrm{lb} . / \mathrm{cu} . \mathrm{ft}$.	Material	lb./cu.ft.
ACACIA ACANTHITE	46 450	ANDALUSITE ANDESITE	$\begin{gathered} 190-205 \\ 166 \end{gathered}$
ACETALDEHYDE	50	ANDRADITE	240
ACETIC ACID	66	ANGLESITE	395
ACETONE	51	ANILINE	64
ACIDS, carboys, cased	24	ANIMAL FOOD, cased	25
ACTINOLITE	193	- GUTS, casks	45
ADAMANTINE CLINKERS		ANISEED, bags	20
stacked	130	ANISEED OIL	61
AEROCRETE p. 37		ANORTHITE	172
AGAR-AGAR	45	ANTHOPHYLLITE	195
AGATE	161	ANTHRACITE, broken	54
AJOWAN OIL	57	ANTIMONY, pure	417
ALABASTER	168	ore, bags	90
ALBITE	165	APATITE	200
ALCOHOL, ABSOLUTE	49	APPLES, barrels	25
Commercial	51	APRICOTS, preserved, cases	40
\ddot{Y} proof spirit	57	ARACHIS OIL	57
ETHYL-	49	ARECA NUTS, bags	37
METHYL- WOOD-, barrels	49	ARGENTITE	450 56
ALDEHYDE WOOD-, barrels	28	ARNICA	56
ALDEHYDE ALE. See BEER	50	ARROWROOT, bags	43 32
ALE. See BEER ALLUVIUM, undisturbed	100	ARSENIC comml cases	100
ALMANDITE	260	ARSENO-PYRITES	380
ALMOND OIL, sweet	57	ARTICHOKES	35
ALMONDS, bitter	66	ASBESTOS, crude	56
ALMONDS, hogsheads	20	fibre, cases	42
ALPAX cast	164	natural	190
ALUM	106	pressed	60
casks	40	CEMENT pp. 4, 6, 67	$120-130$
pulverised ALUMINIUM	68	SAND	
ALUMINIUM cast	159	- SLATES p. 8	
rolled	67 64	ASH, English Canadian	$\begin{aligned} & 43 \\ & 46 \end{aligned}$
BRONZE	471	ASHES, dry	40
- manufactured, cases	20	ASPHALT, natural	63
- DTD alloys	167-174	paving	130
- PAINT	75	ASSAFOETIDA, cases	56
PASTE	92	ATACAMITE MACHINES	235
- POWDER	45-50	AUTOMATIC MACHINES, cases	10
- SHEET, weight p. 13		AUTOMOBILES, cases	8
- SULPHATE, bags	45	AVIATION SPIRIT	47
ALUNDUM	250	AXLES and WHEELS	32
AMATOL	87, 97	AZURITE	238
AMMONIA liq. fort.	55		
AMMUNITION, S/A, cases	90		
AMOSITE	140		
AMPHIBOLITE	188 55	BABBITT'S METAL	460 34
AMYL ACETATE ANALCITE		BACON, barrels BAGGAGE	$\begin{gathered} 34 \\ 8 \end{gathered}$
ANALCITE ANCASTER stone	141	BAGGAGE BAKELITE	$80-120$

Table 93-Continued.

Material	lb./cu.ft	Material	Ib.;cu.ft.
BALLAST p. 166 BALSA WOOD	7	BITUMEN, natural	68 85
BALSAM, Copaiba	60	- EMULSION	70
Peru	71	BLACK POWDER	64
BAMBOO	22	cases	28
BARBED WIRE	24	BLACKWOOD, bags	35
BARIUM OXIDE, solid	290-340	BLANKETS, bales	20
BARK, coppice, bags	22	BLASTFURNACE OIL	57
, oak, ",	41	BLASTING GELATINE	100
BARLEY grain	44	BLEACH, barrels	32
(${ }_{\text {bags }}^{\substack{\text { baund } \\ \text { groun }}}$	37 33	solution	72
BARRELS, empty ${ }_{\text {ground }}$	33 8	BLEACHING POWDER. See	
BARS, steel, bundled	170	BLOOD	66
BARYTES	260-290	dried, casks	35
broken	180	BLUE GUM	68
BASALT	180	BLUE VITRIOL, powdered	84
BASIC SLAG, crushed	112	BOILED OIL	59
BASSWOOD	26	BOLTS and NUTS, bags	75
BATH STONE	130	Whitworth p. 200	
BATHS, iron, cases	13	BONE	110-125
BATTERIUM	478	- FAT	56
BAUXITE	160	- MANURE, bags	32
crushed	80	- MEAL, bags	50
Ol ore, bags	75	- OIL	59
BAY OIL BEAN MEAL	61 39	BONES, loose calcined, crushed	72 23
BEANS, Broad	28	BOOKS, on shelves	40
French, Kidney	31	BOOK, bulk	60
Haricot	36	BOOTS and SHOES, cases	24
- CANNED	43	BORACIC ACID, bags	50
BEECH	48	casks	35
BEEF, dressed, cases	20	BORATE OF LIME	43
tierces	43	BORAX	106
BEER bottled, cases	28	BORIC. See BORACIC.	320
barrels	33	BOTTLED GOODS, cases	56
BEESWAX	60	BOTTLES, empty, crates	26
BEET, bags	20	BOURNONITE	360
BELL METAL	530	BOX WOOD	58
BELTING, hair, bales	30	BRAN	13
leather, cases	34	ERANDY	52
BEN OIL	57	bottles, cases	37
BENTONITE	133	casks	28
BENZENE	55	BRASS, cast	520
BENZOL	55	rolled p . 13	535
BERYL	170	perforated sheets, casks	45
BERYLLIUM BRONZE	512	tubes, bundles	56
BICYCLES, crates	8	BRAUNITE	300
BIOTITE	180	BRAZIL NUT OIL	57
BIRCH, American	40	BRAZIL NUTS, barrels	25
logs	28	BREAD, cased	14
squares yellow	39 44	BREEZE CONCRETE p. 37 BREWER'S GRAINS, wet	31
BIRMABRIGHT	167	desiccated	16
BIRMASIL	167	BRICKS, old, stacked	100
BISCUITS, cases	14	BRICKWORK p. 53	
BISMITE	270	BRINE, common salt, comml.	75
BISMUTH	610	calcium chloride	73-78
BISMUTHIMITE	400	BRITANNIA METAL goods, cases	32
BISMUTITE	460	BRITISH COLUMBIA PINE	33

Table 93-Continued.

Material	lb./cu.ft.	Material	lb./cu.ft.
BROCHANTITE	245	CARPETS, rolls	16 30
BRONZE, cast drawn, sheet	520 549	CARROTS	30 84
- ALUMINIUM-	471	CASHEW NUTS, bags	30
BERYLLIUM-	512	CASKS, empty	8
DELTA-	537	CASSIA, bundles	17
ANGANESE-	537	- OIL	66
PHOSPHOR-, cast	540	CASSITERITE	400-440
BROOKITE	240-260	CASTANHA OIL	57
BROOMS, cases	9	CASTINGS, cases	30-60
BRUCITE	145	CASTOR OIL	60
BULBS, planting, cases	70	CASTORS, casks	64
BUTTER	59	CAUSTIC SODA, drums	74
cases	32	(eEDAR WESTER lye (max.)	94
tubs	30	CEDAR, WESTERN RED	24
BUTYL ACETATE	55	CEDARWOOD OIL	59
		CELERY OIL	55
		-- SEED, bags	30
CADE OIL	61-66	CELLULOID	$78-85$ $84-100$
CADMIUM	538	- GOODS, cases	10
CALAMINE	220	CELLULOSE ACETATE p. 223	
CALAVERITE	565	- NITRATE p. 223	
CALCITE	170	CEMENT, bags	80
CALCIUM CARBIDE, solid	138	bulk	80-90
drums	50	ks	60
CARBONATE. See Lime Marble		drums	80 62
CHLORIDE, solid	138	LURRY	90
drums	45	CERALUMIN "C	170
brine	73-78	CERARGYRITE	350
PHOSPHATE, bags	53	CERESINE	58
CAMPHOR	62	CERUSSITE	405
cas	33	CERVANTITE	260-330
OIL	54-62	CHAINS	160
CAMWOOD	28	CHALCANTHITE	140
CANARY SEED, bags	37	CHALCEDONY	165
CANDIED FRUIT, cases	28	CHALCOCITE	340-360
CANDLENUT OIL	58	CHALCOPYRITES	260
CANDLES, cases	32	CHALK	100-170
CANES, bundles	15	broken, barrels	60
CANNED GOODS, cases	30	CHARCOAL	20-35
CANTON MATTING, rolls	14	CHEESE, cases	32
CANVAS, bales	48	CHERRY WOOD	45
CAPERS, kegs	32	CHERT	160
CARAMEL LIQ., casks	45	CHESTNUT, Horse	32
CARAWAY OIL	57	CHICORY Sweet	35
- SEEDS, bags	37	CHICORY, dried roots	22
CARBOLIC ACID, comml.	67	raw roots	30
CARBON, GAS-	120	ground	30
graphite	140	CHILLIES, bags	15
- DISULPHIDE	101 99	CHINA GRASS, bales	
CARBONATE OF LIME, barrels	80	- Ware, cases	26-40
- MAGNESIA, bags	11	CHLORIDE OF LIME, leadlined	
- SODA, solution	72	cases	28
CARBORUNDUM	195	CHLORITE	170
CARDAMOM OIL	58	CHLOROFORM	92
CARDBOARD	30	CHOCOLATE, cases	34
CARPET SWEEPERS, cases	10	CHOW CHOW, cases	37

Table 93-Continued.

Material	lb./cu.ft.	Material	lb./cu.f.
CHRISTOBALITE CHROMADOR	$\begin{aligned} & 145 \\ & 489 \end{aligned}$	COPPERAS, powdered CORAL, bags or barrels	70 25
CHROMITE	270-290	CORD, bales	30
CHROMIUM	443	CORK p. 67	8-14
CHRYSOCOLLA	130	bales	5
CHRYSOLITE	210	CORKBOARD	7-16
CHRYSOTILE	140	CORN, bulk	45
CIDER	64	CORNELIAN	163
casks	35	CORUNDUM	250
CIGARETTES, cases	15	COTTON, raw, compressed	25-36
CIGARS, cased	12	American, pressed	
CIMENT FONDU, bags	80	bales	17
CINCHONA, bales	15	Duck, pressed bales	36
CINDERS	40	Egyptian or Indian,	
CINNABAR	510	pressed bales	33
- OIL	65	waste, bales	12
CISTERNS p. 191		- SEED CAKE, bags	43
CITRONELLA OIL	56	-- SEED MEAL, .,	44
CLAY p. 166		- SEED OIL	58
CLINKER, FURNACE	64	- WOOL, packed	10
CLOTH, AMERICAN, rolls	30	COVELLITE	290
- GOODS, cases	25	CRACKED SPIRIT	47
- LEATHER, rolls	30	CREAM	59-63
CLOVER SEED, bags	50	CREAM OF TARTAR, hogsheads	37
CLOVES, bales	20	CREOSOTE	66
- OIL OF	67	CRESOL, ORTHO-	64
COACHSCREWS, bags	90	Cresylic META-	66
COAL, loose lumps	56	CRESYLIC ACID. See CRESOL	
COBALT ${ }^{\text {slurry }}$	62 536	CROCIDOLITE	205
COBALTITE	375-390	CROCOISITE	375
COCA, bags	9	CRYOLITE	185
COCHINEAL, tinlined cases	25	CUCUMBER OIL	57
COCOA, bags or bulk	30	CUPRITE	375
tins in cases	17	CUPRO-NICKEL ($60-80 \%$. Cu)	558
- BEANS		CURRANTS, boxes	44
- BUTTER	60	CUSTARD POWDER, cases	45
COCONUT FIBRE, bales	20	CUTCH, baskets	33
- OIL	58	CUTLERY, cases	37
COCOONS, boxes	11	CYPRESS WOOD	37
CODLIVER OIL	58		
COFFEE, bags	28-32		
- BEANS	40		
COIR FIBRE, bales	20	DAMMAR GUM, cases	26
COKE YARN, "	[33	DARI DARLEY DALE STONE	47 148
COLEMANITE	150 150	DARLEY DALE STONE	
COLOPHONY. See Resin.		DEAL, YELLOW	27
COLUMBIAN PINE	33	DEKALIN	56
COLZA OIL	57	DELTA METAL	537
COMPOSITION PIPE p. 184		DESICCATED COCONUT, cases	32
CONCRETE p. 37		DEXONITE	80
CONDUITS, VITRIFIED	56	DHOLL, bags	45
COPAL	65	DIABASE	180
COPPER, cast	547	DIAKON	74
drawn or sheet p. 13	558	DIASPORE	220
- SULPHATE, crystals	224 84	DIATOMACEOUS BRICK DIESEL OIL	30 55

Table 93-Continued.

Material	Ib./cu.ft.	Material	lb./cu. ft.
DIORITE	179	FERRO-SILICON	437
DOLOMITE	180	FIBRE BOARD	10-25
DOORS, crates	20	FIBRE, BRISTLE, bags	28
DOUGLAS FIR	33	FIGS, boxes	40
DRIPPING, tins in cases	32	FILBERTS	22
DRUGS, cases	26	FILES, etc., cases	56
DRY GOODS, average	30	FINNINGS, casks	45
DURALUMIN	174	FIR CONES, cases	47
DUTCH CLINKERS, stacked	100	FIR, DOUGLAS	33
DYES, jars in cases	28	- SILVER	30
DYNAMITE	77	FIREBRICK, Stourbridge	125
		FISH, boxes	45 34
EARTH p. 166 EARTHENWARE, packed	20	- MANURE, bags	34 39
EBONITE	75-80	FLAX, bales	14
EBONY	74-83	- MEAL, bags	28
ECLOGITE	194	- SEED	43
EGGS, crates	22	- STRAW, bulk	7
preserved, jars in cases	65	- WAX	61
ELECTRIC CONDUIT		FLINT	160
ELEKTRON	110	FLINT-GLASS. See Glass.	
ELM, American	42	FLOUR	44
Canadian	42	sacks	40
Dutch	36	barrels	34
English	36	FLUID, BRAKE, cartons	35
Wych	43	FLUORITE	200
EMERY	250	FLUORSPAR	200
EMERY WHEELS, cases	37	FOREST OF DEAN STONE	152
ENARGITE	275	FORMIC ACID, pure	76
EPIDOTE	210	FRANKINCENSE OIL	55
EPSOM SALTS, bulk	42	FRANKLINITE	320
ERYTHRITE	185	FREESTONE	140-155
ESSENTIAL OILS, bottles in cases	11	masonry, dressed	150
ETHER	46	rubble	140
ETHYL ACETATE	57	FRUIT JUICES, bulk	65
ETHYL FLUID	107	FRUIT, DRIED, cases	60
ETHYL LACTATE	65	- STONE-, boxes	44
- SILICATE	58	FULLER'S EARTH, natural	110-150
ETHYLENE GLYCOL	70	FUR CLIPPINGS, bales	10
EUCALYPTUS OILS	53-58	FURFURAL	72
EVERDUR	533	FURS, cases or bundles	17
EXTRACT, bottles in cases :		FUSEL OIL FUSTIC	52
Malt and Oil Meat or Vegetable	41 25	FUSTIC	19
bulk Malt and Oil	88		
		GABBRO GALENA	$\begin{aligned} & 185 \\ & 470 \end{aligned}$
FANCY GOODS, mixed	12	GALILITH	84
FARINA, bags	42	GALL NUTS, bags	50
FATTY ACIDS, barrels	40	GALVANISED SHEETS, bundles	56
FEED GENTON, bags	22	GAMBIER, bags	22
FETSPAR MARSDEN,	24	GAMBOGE	76 33
FELSPAR FELT, HAIR	168 17	GARNET cases	33 240
- ROOFING, rolls	37	GARNIERITE	140-175
FENNEL SEED, bags	24	GAS OIL	53
FERBERITE OIL	55-61	GAULTHERIA OIL	74
FERRIC OXIDE, solid	305-330	- BLASTING	100

Table 93-Continued.

Material	lb./cu.ft.	Material	lb./cu.ft.
GELIGNITE	100	GUANO	30-55
GENTIAN ROOT, bales	17	GUM, cased	26
GIBBSITE	150	GUM ARABIC	90
GILSONITE	68	GUM, BLUE	68
GINGER, cases	28	- RED	56
GIRDERS, STEEL, nested	140-200	GUNMETAL, cast	528
GLASS, Bottle	170	rolled p. 13	549
Common green	157	GUNNIE, bags	39
Crown, extra white	153	GUNPOWDER	56
Flint best silicate	137	GURJUN	46
Flint, best	$\begin{gathered} 192 \\ 310-370 \end{gathered}$	GUTTA PERCHA	68
Optical	220	GYPSUM, crushed	65-100
Plate p. 4	174	solid	160
crates	50	bags	52
Pyrex	140	PLASTER	46
- BOTHLES, crates	$\begin{aligned} & 26 \\ & 95 \end{aligned}$		
- SILK	10-13		
GLASSPAPER, cases	40	HADDOCKS, cases	25
GLASSWARE, cases	11	HAEMATITE, crushed	150
GLAUBERITE	170	solid	300-330
GLUCOSE liq. (43 Beaumé)	89	HAIR, HORSE, pressed in bales	14
barrels	50		11
GLUE, casks	22	HALIBUT LIVER OIL	58
GLUTEN MEAL	37	HALITE	155
GLYCERINE (GLYCEROL)	79	HALLOYSITE	130
drums	50	HAM HILL STONE	135
GLYCOL	70	HAMS, barrels	34
GNEISS	172	HARDCORE	120
GOLD	1206	HARDWARE, DOMESTIC (not	
GOMA LACA	56	hollow-ware), crates	20
GOOSEBERRIES, cases	57	HAUSMANNITE	295
GOURD OIL	57	HAVEG	125
GRAIN, Barley	39	HAY, chaffed	${ }^{6}$
Beans	51	pressed	12
Brewer's dried, bags	25 36	HEMLOCK, WESTERN	31
Clover	37	HEMP, bales	20-30
Linseed	40	- OIL	58
Oats	26	HERRING OIL	58
Rye	45	HERRINGS, Fresh, barrels	37
GRAMOPHONES, cases	10	Hessian Salted, "	50
GRANECORDS	50	HESSIAN, bales	52
GRANITE	165	HESSITE	520
chippings	90	HICKORY	51
dressed, cases	140	HIDES, dry, bales	28
GRANOLITHIC p. 67	140	HIDUMINIUM ${ }^{\text {sales }}$	+ 175
GRAPESEED OIL	58 140	HIDUMINIUM HOGGIN	175 110
GRAPHITE GRAVEL p. 166	140	HOGLIN	110
GREASE, tierces	34	cases	12
GREEN VITRIOL, powdered	70	HONE, Razor	180
GREENHEART, Demerara	62-70	HONEY	90
㑑 Burma	48	HOPS, pressed bales	26
GRINDSTONE	133	HORNBEAM	44
GROCERIES. See separate items		HORNBLENDE	200-220
GROSSULARITE	220	HORNS, Animal, loose	
GROUND NUT OIL	57	HORSEHAIR, pressed bales	14
GROUND NUTS, bags	39	HOSIERY, cased	14

Table 93-Continued.

Material	lb./cu.ft.	Material	lb./cu. f.
HÜBNERITE	425 38	KAINITE, natural	130 60
HYDRALIME, bags	38 76	KAOLIN ground	60 140
HYDROZINCITE	230	KAOLINITE	165
HYPERSTHENE	215	KAPOK, pressed bales	12
		KARRI	59
		KAURI, New Zealand	38
		, Queensland	30
	57	KAURI GUM	66
ILMENITE	280-310	KENTISH RAG	167
IMPLEMENTS, Agricultural,		KERNELS crushed	100 47
M bundles	16	KERNELS, cases KEROSENE	47 50
IMPROVED WOOD p. 223		KIESELGUHR, insulation	50 30
INCONEL	533	KUPFERNICKEL	450-475
INDIARUBBER	70	KUPLUS	450-475
INDIGO	63		
cased	36		
INK, PRINTERS', barrels	50		
IRIDIUM	1400	LACQUER, tins in cases	37
IRIDOSMINE IROKO	$12-1300$ 41	LAMPBLACK, bags	16
IROKO	41 450	hogsheads	20
IRON, cast malleable cast	$\begin{array}{r} 450 \\ 460-468 \end{array}$	LAMPS, ELECTRIC, cartons	5
wrought P. 14	$460-468$ 480	LARCH	37
- CORRUGATED, bundles	56	LARD	58 37
PIG, random	170	- OIL	57
stacked	280	LAVENDER OIL	57
- PIPESITES, ground		LEAD, cast or rolled p. 13	707
- PYRITES, solid ($60 \% \mathrm{Fe}$)	300-320	pigs	224
- SULPHATE, powdered	70	- RED, powder	610 130
- WIRE, coils	56	WHITE, powder	86
lumps	135	EATHER paste in drums	174
- SPANISH	150	Leather bales or bundles	60 20
IRONMONDISH	230	hides, compressed	23
IRONMONGERY, packages IRONWOOD	76	rolls	10
ISINGLASS	69	scrap, bales	12
packed	25	LEATHEROID, cases	34
IVORINE	84	LEMON PEEL, casks	35
IVORY loose	115	LEMONS, boxes	26
IZAL, drums	80 45	LEEUTITE, bulk	49 160
IZAL, drums	45	LEWIS BOLTS p. 201	160
		LIGNUM VITE	75-83
		LIME, ACETATE OF, bags - BLUE LIAS, ground	80
JAGGERY, bags	56	lump	62
JAM, bottles in cases	36	CARBONATE OF, barrels	80
JARRAH	56	CHLORIDE OF, lead lined	
JELLIES, cased	30	cres cases	28
JET	80	- GREY CHALK, lump	44
JICWOOD p. 223		GREY STONE, lump	55
JOINTING COMPO. for tanks	50	HYDRATE, bags	32
JOISTS, STEEL, nested	140-200	- HYZDRAULIC	45
JUNIPER BERRIES, bags	28	- QUICK-, ground	64
- TAR OIL	$61-66$ 30	- SLAKED, ground, dry	35
JUTE, bales ", compressed	40	LIME MORTAR, drÿ wet	95 103

Table 93-Continued.

Material	lb./cu.ft.	Material	lb./cu.ft.
LIME MORTAR-continued	109	MANGOLDS MANILA, bales	35 26
LIME WOOD	35	- ROPE, coils	32
LIMES OIL Of American	$\begin{aligned} & 26 \\ & 55 \end{aligned}$	MAPLE, Canadian	$4{ }_{43}^{46}$
LIMESTONE P. 64		MARbLE	2-17
LIMONITE	230-260	MARCASITE	310
LINEN, Damask, bales	50	MARGARINE	57
Goods, cases	35	tubs	32
LINNAITE	310 30	RJoram oil	57
LINSED CAKE, broken	${ }_{33}$	MARL Pi ${ }^{166}$	35
- GRAIN ${ }^{\text {a }}$	44	MASONRY p. 64	
- OIL, boiled	59	MASTIC	70
${ }^{\text {raw }}$	58 58 8	MATCHES, cases	${ }_{20}^{20}$
LIQUORICE, ${ }_{\text {refined }}^{\text {reses }}$	58 26	MATS and MATING, rolls MATTRESSES, WIRE, bundles	-14
THARGE, dry	130	MEAL, BEAN	39
LITHOPHONE, solid	270	- cotton cake	40
LLOYD BOARD, hard	35	- Gluten	
insulating	17	- OAT, bags	34
LOAM p. 166		- RYE	25
LOCUST BEANS	47	MEIACONITE	370
LOESS	90	MELONS, boxes	28
LOGWOOD	57	MERANTI	35
LUBRICATING OIL	57	MERCURY	845
		METERS, GAS, cases	28 75
		METHYL ACETATE	58
MACADAM	130	METHACRYLATE p. 223	
MACASSAR OIL	54	METHYLATED SPIRIT	52
MACE, cases MACE OIL	28 58	MEXICAN POPPY OIL	
MACHINERY, AGRICULTURAL,	28	blea bass	32
cases		scrap	20
MAGNALIUM	120	MICANITE	$\begin{array}{r}130 \\ \\ \hline 5\end{array}$
MAGNESIA, solid	190	MILK	64
MAGNESIUM	108	condensed, cases	38
- ALLOYS, about	115	malted, powder	23
MAGNETIC OXIDE OFIRON	310 310	powdered tins	19 19
MAHOGANY, African	35	skimimed	$64 \frac{1}{2}$
Honduras	34	MILL BOARD	70
MAll, bags Spanish	43 12	MILLERITE	340
MAIZE, grain	47	MILLSTONE GRIT	145
husked ears	30	minium	570
- OIL	58	MISPICKEL	380
MALT	250 33	MOLASSES ${ }^{\text {M }}$	110
- coombs	11	casks	80
EXTRACT and CODLIVER		MOLYBDENITE	290
OIL bottles in cases	${ }_{41}^{88}$	MOLYBDENUM	${ }_{310-330}^{623}$
MANGANESE	460	MONEL	548
MANG BRONZE	53 530 5	MORTAR, CEMENT, set	120-130
MANGANIN MANGANITE	$\begin{aligned} & 530 \\ & 270 \end{aligned}$	MOWRAHE, SEED, bags	${ }_{37}^{100-110}$
MANGANITE	270	MOWRAH SEED, bags	37

Table 93-Continued.

Material	lb. /cu.ft.	Material	lb./cu. ft.
MUD P. 166 MUNTZ METAL, cast	524	ONYX OOLITE	$\begin{gathered} 165 \\ 120-160 \end{gathered}$
MUN 2 METAL, sheet p. 13	557	OPIUM, chests	23
MURIATE OF LIME, cases	28	ORANGES, cases	25
MURIATIC ACID (HCl) conc.	76	ORE. See individual kinds	
MUSCOVITE	170-190	OREGON PINE	33
MUSIC ROLLS, cases	28	ORPIMENT	220
MYRRH OIL	63	ORRIS ROOT, bags	28
		ORTHOCLASE	160
		OSIERS, bundles	15
		OSMIUM	1400
NAILS, WIRE, bags	75	OXIDE OF IRON, casks	45
NAPHTHA, Heavy	59	OYSTERS, barrels	37
Whit White	55	OYSTER SHELL, solid	130
NAPHTHALENE	71	OZOKERITE WAX	53-58
NEATS FOOT OIL	57		
NEOPRENE	75		
NEPHELITE	60		
NICCOLITE	460-480	PADAUK	49
NICKEL	550	PAINT, Aluminium	75
- SILVER	545	Bituminous emulsion	70
NITRATE OF SODA	70	Red Lead	195
NITRE, solid	120	Red Lead dispersed	95
NITRIC ACID, 100%	95	White Lead	175
NITROBENZENE ${ }^{68 \%}$	88	Zinc	150
NITROBENZENE	76	PALLADIUM	711 58
NTROCHALK, bags	30	PALM OIL	25
NUT OIL	57	PAPER, Printing, reels	56
NUTS, Whitworth p. 200		Wall, rolls	24
Brazil, casks	25	Writing	60
shelled, cased	28	PARAFFIN OIL	50
Filberts	22	- WAX	56
NUX VOMICA	30	PARSNIPS	31
		PEANUT OIL	57
		PEANUTS, bags	14
		PEARL ALUM, bags	43
OAK, African	60	PEARLASH, pots	45
American red	45	PEARS	57
white	48	PEAS	50
Austrian	45	in pod	35
English	50-55	PEAT p. 166	
OATMEAL, bags	34	PENTANE	${ }_{295}^{39}$
OATS	33	PENTLANDITE	285-310
bags	27	PEPPER, bags	28
ground	23	PEPPERMINT, cases	32
OCHRE, solid	250	PERFUMERY, cases	28
(${ }^{\text {a }}$ barrels	45	PERIDOTITE	182
OCTANE	44	PERILLA OIL	58
OILCAKE, bags	41	PERSPEX p. 4	84
OILS. See individual kinds :		PERUVIAN BARK, bales	15
Usually : bulk	57	PETRIFYING LIQUID	-58
OLIGOCLASE barrels	37	PETROL	43-48
OLIVENITE	270	PETROLEUM	45-50
OLIVE OIL	57	PETROLEUM barrels	35
OLIVES, casks	33	PEWTER	453
OLIVINE	210	PHENOLFORMALDEHYDEp. 223	
ONIONS	50	PHOSPHATES, ground	75
boxes	30	bags	53

Table 93-Continued.

Material	lb./cu. ft.	Material	lb./cu.ft.
PHOSPHOR-BRONZE, cast	540 550	POTATOES barrels	40 37
PHOSPHORUS, RED, pure	137	PRESSPAHN	78
- YELLOW, pure	114	PRINTING INK, barrels	50
- cases	35	PROOF SPIRIT	57
PICRIC ACID, cast	100	PROUSTITE	350
PINE, American Red	33	PROVISIONS, cases	28
British Columbian	33	PRUNES, DRIED, casks	43
Christiania	43	PSILOMELANE	230-290
Columbian	33	PULP, WOOD, dry	35
Dantzig	36	PUMICE STONE ${ }^{\text {wet }}$	45 $30-57$
Kauri, Queensland New Zealand	30 38	PUMICE STONE PURBECK STONE	$\begin{gathered} 30-57 \\ 169 \end{gathered}$
Memel	34	PYINKADO	62
Oregon	33	PYRARGYRITE	360
Pitch	41	PYREX	
Riga	34-47	PYRITES, IRON, ground	180
PINE OIL	58	, solid ($60 \% \mathrm{Fe)}$	300-320
Heavy	64	- COPPER, solid	255-270
PINE SEEDS, cases	37	PYROLUSITE	300 430
PINS, SPLIT, barrels	56	PYROMORPHITE	430
PIPES. See Tables 134 to 149.		PYROPE	230
- BRASS, bundles	56	PYROPHYLLITE	180
- CAST IRON, stacked	60-80	PYROXENE	210
- EARTHENWARE, loose	20	PYRRHOTITE	290
- SALT-GLAZED, stacked	25		
$\text { stacked } \frac{2_{1}^{\prime \prime}}{2}$	200		
	90	QUARTZ	165
	50	loose	90-105
PISEE BLOCKWORK	100-120	QUARTZITE	170
PITCH	68	QUEBRACHO	80
barrels	50	QUICKLIME, ground, dry	64
- MINERAL	100	QUILT, Eel grass	11
PLAGIOCLASE	168		
PLANE	40		
PLASTER BOARD p. 68 PLASTER OF PARIS, loose	58	RABBIT SKINS, bales	16
PLATER Set	80	RAGBOLTS P. 201	
PLATINUM	1340	RAGS, baled	13
PLUMBAGO	130	RAGSTONE	150
casks	48	RAILS, RAILWAY	150
PLUMS	44	RAISINS, cases	43
PLYWOOD	30-40	RAPE-SEED OIL	57
- PLASTIC-BONDED	45-90	REALGAR	220
POLYBASITE	380	RED FIBRE, Vulcanized	90
POLYSTYRENE P. 223		RED GUM	56
POLYVINYL CHLOR.		RED LEAD powder, dry	132
ACETATE p. 223		REDRUTHITE	340-360
POPLAR	28	REDWOOD, American	33
PORCELAIN	145	Baltic	31
\bigcirc Electrical	160-220	Non-graded	27
PORK, tierces	34	Rhodesian	57
PORPHYRY	175	RESIN, lumps	67
PORPOISE OIL	58	barrels	48
PORTLAND CEMENT, loose	75-85	- BONDED PLYWOOD	45-85
p. 92 bags	70-80	RESIN OIL	62
PORTLAND STONE drums	75	RHEA FIBRE, bales	37
POTASH	140	RHODOCHROSITE	220

Table 93-Continued.

Material	lb./cu. ft.	Material	lb. /cu.ft.
RHODONITE	210-230	SEEDS-continued.	
RHYOLITE RICE, bags	160 50	- CLOVER - COCKSFOOT	$50-52$ 14
polished, bags	36	- CRESTED DOGSTAIL	30
- BRAN, bags	25	- ITALIAN RYE GRASS	12-18
- MEAL, bags	37	- LUCERNE	48
RIPIDOLITE	170	- MEADOW FESCUE	23
ROAD METAL	80-100	- PERENNIAL RYE GRASS	16-22
ROCK. See individual kinds and Table 80.		- RAPE	37
ROCK CRYSTAL	170	MEADOW	22
- SALT, solid	125	- SAINFOIN, rough	23
broken	60	milled	47
ROOFING MATERIALS		TALL FESCUE	19
ROPE, bundles	17	TIMOTHY	37
Manila, coils	32	- TURNIPS	39
Wire, coils	90	- VETCHES	50
ROSIN. See RESIN.		SEMOLINA, bags	37
ROTTEN-STONE	125	SENARMONTITE	330
ROVES, COPPER		SENECA ROOT, bags	18
RUBBER, Crepe, cases	25	SENNA LEAVES, bales	18
Processed sheet	70	SERPENTINE	160
Raw	58	SESAME OIL	58
Sponge-	3-10	SEWING MACHINES, cases	28
Vulcanized	75	SHALE	160
RUM, bottles in cases	34	granulated	70
RUTILE hogsheads	32	- OIL, Scottish	59
RUTILE	265	SHARK OIL	58
RYE	45	SHEEP CARCASES, frozen	20
- MEAL	25	SHEEPSKINS, pressed	28 15
		SHEET, COTTON, cases - METALS p. 13	23
SADDLERY, cases	28	SHELLAC, solid.	68
SAGO, bags	42	flake, cases	20
boxes	40	SHELLS, bags	28
SAL AMMONIAC	90	SHINGLE p. 166	
SALMON, cans in cases	32	SHINGLES P. 10	
SAL SODA, barrels	46	SIDERITE	240
SALT, bulk	60	SILAGE, at top surface	35
bags	45	Add I lb./ft. of depth.	
- EPSOM, kegs	41	SILICA, fused transparent	138
- ROCK-, solid broken	125 60	SILICATE COTTON	$\begin{aligned} & 128 \\ & 14-18 \end{aligned}$
SALT-GLAZED WARE	140	- OF SODA	106
SALTPETRE, barrels	60	barrels	53
SAND PP. 92, 166		SILICON, pure	143
SANDPAPER. See GLASSPAPER SANDSTONE p 64		SILK, bales	10-13
SANDSTONE p. 64 SASSAFRAS OIL		$\text { SILT p. } 166$	10-13
SATINWOOD	60	SILUMIN	165
SAUCES, bottles in cases	25	SILVER, cast	652
SAWDUST	13	pure	655
SCHEELITE	380	- GLANCE	450
SCHIST	180	SINDANYO	120
SCREWS, IRON, packages	100	SIRAPITE, powder	64
SEA WATER	63-65	SISAL, bales	20
SEAL OIL	58	SIZE	20
SEALSKINS, bales SEEDS. See also Grain.	70	SLAG, coarse granulated	90 60

Table 93-Continued.

\begin{tabular}{|c|c|c|c|}
\hline Material \& lb./cu. ft. \& Material \& lb./cu. ft.

\hline SLAGWOOL \& 14.18 \& STONE \&

\hline SLATE, Welsh p. 9 \& 175 \& - ANCASTER \& 156

\hline SLATES, cases \& 187

93 \& - CAEN \& 125

\hline SLUDGE CAKE, pressed, 50\% \& \& DARLEY DALE \& 148

\hline water CAKE, pressed, 50 \& 58 \& FOREST OF DEAN \& 152

\hline SMALTITE \& 410 \& FREE- \& 140-155

\hline SNOW, fresh \& 6 \& GRANITE \& 165

\hline wet compact \& 20 \& - HAM HILL \& 135

\hline SOAP, boxed \& 57 \& - HOPTON WOOD \& 158

\hline - POWDER, cases \& 38 \& - KENTISH RAG \& 167

\hline - SOFT, cases \& 44 \& -- LIME-p. 64 \&

\hline SOAPSTONE \& 170 \& - MANSFIELD \& 141

\hline SODA, bags \& 41 \& MARBLE \& 170

\hline - ASH, barrels \& 62 \& MILLSTONE GRIT \& 145

\hline powdered, bulk \& 62 \& PORTLAND \& 140

\hline - BICARBONATE, casks \& 39 \& PURBECK \& 169

\hline - CARBONATE OF, solution \& 72 \& - SAND-p. 64 \& 175

\hline - CAUSTIC, drums \& 74 \& Westmorland \& 187

\hline (max.) \& 94 \& YORK \& 140

\hline - NITRATE OF \& 70 \& STONEWARE \& 140

\hline SILICATE OF \& 106 \& STRAW, pressed \& 6

\hline barrels \& 53 \& compressed bales \& 19

\hline SOFT DRINKS, cases \& 27 \& STRAWBOARDS, bundles \& 37

\hline SOIL p. 166 \& \& STRONTIUM WHITE, solid \& 240

\hline SOLDER, pigs \& 170 \& ground \& 110

\hline SOOT from \& 22 \& SUGAR, bags \& 45-50

\hline SOYA BEAN OIL \& 58 \& SULPHATE OF ALUMINIUM, \&

\hline - FLOUR \& 36 \& AMMONIA bags bags \& 45

\hline SPAR, CALCAREOUS \& 170 \& - AMMONIA, bags \& 40
84

\hline - FELD- \& 168 \& - COPPER, cryst. \& 84
70

\hline SPATHIC ORE \& 210-240 \& SULPHUR, pure solid \& 120-130

\hline SPECULUM METAL \& 465 \& sticks in cases \& 56

\hline SPELTER, loose \& 170 \& SULPHURIC ACID, 100\% \& 123

\hline SPERM OIL \& 55 \& Commercial \& 105-112

\hline SPERMACETI \& 59 \& jars, cases \& 25

\hline SPESSARTITE \& 260 \& SUNFLOWER OIL \& 58

\hline SPHALERITE \& 250 \& SUPERPHOSPHATE, bags \& 40

\hline SPIEGELEISEN \& 460 \& SWEDES \& 35

\hline SPINEL \& 220-250 \& SYCAMORE \& 38

\hline SPIRITS OF WINE \& 49 \& SYENITE \& 165-170

\hline SPODUMENE \& 200 \& SYLVANITE \& 490-520

\hline SPONGE, bundies \& 15 \& SYRUP up to \& 83

\hline SPONGE RUBBER \& $3-10$ \& barrels \& 45
55

\hline SPRING WASHERS, cases \& 40 \& Golden, cases \& 55

\hline SPRUCE, Canadian \& 29 \& \&

\hline Norway \& 29 \& \&

\hline Sitka \& 28 \& \&

\hline STANNITE \& 280 \& TALC \& 170

\hline STARCH boxes or barrels \& 59

28 \& | casks |
| :--- |
| TALLOW | \& 40

59

\hline STATIONERY, cases \& 32 \& tierces \& 32

\hline STEATITE \& 170 \& - OIL \& 57

\hline STEEL PP. 4, 12 \& 489 \& TAMARINDS, cases \& 48

\hline - BALLS, barrels \& 75 \& TAN EXTRA崖 \& 41

\hline - PUNCHINGS \& 300 \& TAN EXTRACT, casks \& 47

\hline STEPHANITE \& 390 \& TAPIOCA, barrels \& ${ }_{71} 37$

\hline STIBNITE \& 290 \& TAR \& 71-77

\hline
\end{tabular}

Table 93-Continued.

Material	lb./cu.ft.	Material	lb./cu.ft.
TAR-continued. - barrels TARES bags	$\begin{aligned} & 50 \\ & 53 \\ & 45 \end{aligned}$	UVAROVITE	220
TARMACADAM	130	VALENTINITE	350
TARPAULINS, bundles	45	VALERIAN, OIL OF	59
TARTAR, casks	37	VANADIUM	374
TEA, chests	22	VAPOURISING OIL	51
TEAK, Burma, African	41	VARNISH, barrels	37
TENNANTITE	${ }^{280}$	VEGETABI tins in cases	45
TENORITE	360-390	VEGETABLES. See individual	
TERNARY ALLOY LEAD	707	kinds.	
TERRA ALBA, solid	143	VERDIGRIS, barrels	40
TERRA COTTA ${ }^{\text {groun }}$	112	VERMILION, solid	510
TETRACHLORETHANE	100	VETCHES, seed	50
TETRA ETHYL LEAD	100	VINEGAR	64
TETRAHEDRITE	280-320	VITREOSIL	170
TETRALIN	61	VITRIOL, OIL OF, 100\%	123
THYME, bales	16	Commercial	105-112
TILES, bulk	47	- BLUE, powder	84
TIMBERS. See individual kinds and Table 27.		GREEN, powder	70
TIN	454		
TNNNED			
TINPLATE boxes	200-280	WALNUT	$190-260$ 41
TINPLATE, boxes TINSTONE	$\left\lvert\, \begin{aligned} & 200-280 \\ & 400-440 \end{aligned}\right.$	WALNUT	48
TINWARE, cases	12	WASHERS, Flat, bags	90
TITANITE	220	Spring, cases	40
TITANIUM	280	WASTE PAPER	22
- OXIDE, solid	230	WATER presh pressed packed	28-32
TOBACCO, packets	18	WATER, Fresh	$62 \cdot 3$ $63-75$
- pressed leaf	28		63-75
TOLUENE (TOLUOL)	54	WATERGLASS	106
TOMATO PASTE, casks TOOLS, HAND, cases	37 56	WAX, Bees barre	53 60
TOWELS, cases	40	Brazil	62
TOYS, cases	8	cases or barrels	37
TRACHYTE	170	Paraffin	56
TRAIN OIL	47	WHALE OIL	58
TRAP	170	WHEAT	49
TREACLE	110	bags	39
TREETEX	13	- MEAL	42
TREMOLITE	190	WHISKY	
TROLITOL P. 223	66	bottles in cases	37
TUBES. See PIPES.		casks	28
TUFNOL p. 223	85	WHITE LEAD, powder	86
TUNG OIL	59	paste in drums	174
TUNGUM	533	paint	175
TUNGSTEN	1200 33	W- METAL WHITING) casks	460
TURNIPS - SEED	33 39	WHITENING (WHITING), casks WHITEWOOD	56 29
TURPENTINE	54	WILLOW, American	36
barrels	37	English	28
TYPE METAL, varies	650	WILMIL	170
TYRES, rubber	11-16	WINE, bulk bottles in cases	61 37
		casks	28
UNIONMELT POWDER	97	WINTERGREEN, OIL OF	74

Table 93-Continued.

Material	lb./cu.ft.	Material	lb./cu. ft.
WILLEMITE	250	XYLONITE	84
WIRE p. 13 Iron, coils	74		
Nails, bags	75		
Rod, coils	50	Y ALLOY	174
Rope, coils	90	YARN, bales	25
WITHERITE	270	YELLOW METAL, sheets or bars	
WOLFRAM (WOLFRAMITE)	460	packed	56
WOLLASTONITE	175	YEW	42-50
WOOD BLOCK PAVING p. 67	56	YORK STONE	140
WOOD WASTE, pressed bales	30		
WOOL, compressed bales	48		
piece goods, cases	27 13		
Uncompressed	13 27	ZINC, cast	427
WULFENITE	430	sheets packed pp. 4, 13	56
		ZINCBLENDE	255
		ZINCITE	330-360
XYLENE (XYLOL)	54	ZIRCON	290

BEAMS

BEAMS

SUPERIMPOSED LOADING ON BEAMS

See loading regulations on slabs. The following table gives the L.C.C. requirements for beams and references to the Institution of Structural Engineers Report No. 8. Every beam must be capable of supporting the load given in the 4th column, uniformly distributed along its length but not acting with the floor load. For timber joists see Tables IIS-I24.

TABLE 94

Class	Type of Bullding or Floor	Lb./sq. ft. of Floor Area	Uniform Load
*	Rooms used for residential purposes; and corridors, stairs and landings within the curtilage of a flat or residence Bedrooms, dormitories and wards in hotels, hospitals, infirmaries, workhouses and sanatoria.	40	I ton
2	For public corridors spaces and stairs see below Offices, floors above entrance floor	$\text { As Class } 1$	$\begin{aligned} & 1 \text { ton } \\ & 2 \text { ton } \end{aligned}$
*	Restaurants, cafes, theatres, cinemas ; concert and assembly halls with permanent seating accommodation ; churches ; classrooms and lecture rooms in schools; reading and writing rooms in libraries, clubs and hotels ; art galleries, showrooms	70	2 ton
3	Offices, entrance floor and floors below ; retail shops; garages for cars not over $2 \downarrow$ tons weight	80	$2 \text { ton }$
4 \times	Corridors, stairs and landings not provided for in Class 1 (Report No. 8 gives 80 lb . for corridors to offices on entrance floor and floors below, and 50 lb . on floors above.) Assembly, auction and concert halls without permanent seating accommodation ; dance and drill halls ; grandstands, gymnasia, light work-	Not less than 100 As Class 4	2 ton
5 \star	Workshops and factories; and garages for motor vehicles other than those in Class 3 Storage rooms, retail shops, bookshops and llbraries where the average load does not exceed $120 \mathrm{lb} . / \mathrm{sq}$. ft. (The L.C.C. require 200 lb . in	Not less than 120	See footnotes
\star	ing a roadway Report No. 8 requlres corridors and stairs in Class 6 to be designed for 200 lb . loading; and requires the loading on retail shops (see Class 3) to be ascertained and the floor placed in Class 4 or 5 if necessary. B.S. 449 is substantially in agreement with the above provisions.	As Class 6	2 ton

[^3]The actual loading on floors in Classes 4 to 6 is to be ascertained, and is not to be taken as less than the above figures.

Class 5. The uniform load stipulated is 2 tons for workshops and factories; for garages a loading equal to 1.5 times the maximum possible combination of wheel loads shall be taken. Report No. 8 gives a more elaborate regulation for garages.

BENDING FORMULAE

For reinforced concrete see page 89.
For timber see page 161.
Symbols :-
A Cross-sectional area of member, sq. in.
b Breadth of member, in.
d Depth of member, in.
E Young's Modulus, tons/sq. in.
f Fibre stress, tons $/ \mathrm{sq}$. in.
I Moment of Inertia, in. ${ }^{4}$
k Radius of gyration, in.
l Span, in.
z Section Modulus, in. ${ }^{3}$
M Bending moment, inch-tons.
q Shear stress, tons/sq. in.
R Radius of curvature, in.
S Total shearing force at section.
W Total load distributed along the span, tons.
y Dist. from neutral axis to extreme fibres, in.

$$
\frac{f}{y}=\frac{M}{l}=\frac{E}{R} ; \quad M=\frac{f l}{y}=f z ; z=\frac{1}{y} ; I=A k^{2}
$$

For rectangular sections, $I=\frac{b d^{3}}{12} ; z=\frac{b d^{2}}{6} ; q_{\text {max }}=1.5 \frac{\mathrm{~S}}{b d}$

TABLE 95

Deflections of Beams (in inches)

Type of Beam	Distributed Load W	Central Load W
Simply supported	$\frac{5}{384} \cdot \frac{W l^{3}}{E l}$	$\frac{1}{48} \cdot \frac{W l^{3}}{E l}$
Fixed both ends	$\frac{1}{384} \cdot \frac{W l^{3}}{E l}$	$\frac{1}{192} \cdot \frac{W l^{3}}{E I}$
One end fixed, the other simply supported	$\frac{1}{185} \cdot \frac{W l^{3}}{E l}$	$\frac{2}{215} \cdot \frac{W l^{3}}{E l}$
Cantileverl	$\frac{1}{8} \cdot \frac{W l^{3}}{E l}$	Load W at end :

Combined Bending and Direct Stress
P Direct load acting at distance e from c.g.
f Max. fibre stress $=\frac{P}{A}+\frac{P e y}{A k^{2}}$
$=\frac{P}{A}+\frac{P e y}{I}$
$=\frac{P}{A}+\frac{P e}{Z}$ for symmetrical section.

BENDING MOMENTS IN CONTINUOUS BEAMS
Approximate positive and negative design BM's in beams subjected to uniformly distributed loads may be obtained from the next table which is derived from data in the Institution of Structural Engineers Report No. 10. These values make allowance for unloaded spans.

More exact calculations are to be made unless the following conditions are fulfilled :-

The ratio of adjacent beam lengths shall not exceed $1 \cdot 20$.
The ratio of imposed to dead load shall not exceed 2.
$w=$ imposed plus dead load, in lb. per foot run.
For support moments, $I=$ mean of the effective spans adjacent to the support, in feet.
For mid-span moments, $I=$ effective length of span concerned, in feet.

TABLE 96. Bending Moments, lb. feet.

Beams continuous over	EACH SPAN			
	Positive near Centre		Negative at Support	
TWO SPANS	$\frac{w / 2}{10.7}$	$\left(\frac{w /{ }^{2}}{10}\right)$	$\frac{w /{ }^{2}}{8}$	
THREE SPANS	INTERIOR SPANS		END SPANS	
	Pos. near centre	Neg. at support	Pos. near centro	Neg. at support
	$\begin{aligned} & \frac{w 1^{2}}{13 \cdot 3} \\ & \left(\frac{w 1^{2}}{12}\right) \end{aligned}$	$\frac{w 1^{2}}{10}$	$\frac{\left.w\right\|^{2}}{10}$	
FOUR SPANS Centre support Support next to end support	$\begin{aligned} & \frac{w 1^{2}}{12 \cdot 6} \\ & \left(\frac{\left.w\right\|^{2}}{12}\right) \end{aligned}$	$\frac{w l^{2}}{12}$	$\frac{w 1^{2}}{10}$	$\frac{w 1^{2}}{10}$
FIVE or more SPANS End span Span next to end span Other spans	$\begin{gathered} \frac{w 1^{2}}{12 \cdot 6} \\ \left(\frac{w 1^{2}}{12}\right) \\ \frac{w 1^{2}}{12} \end{gathered}$	$\frac{w /^{2}}{12}$ $\frac{w l^{2}}{12}$	$\frac{w / 2}{10}$	$\frac{w 11^{2}}{10}$

L.C.C. values are given in brackets where they differ from Report No. 10.

The by-law constants on the previous page are adequate to cover the worst possible incidence of loading which, according to the position considered, will be either when two adjacent spans are loaded and all others unloaded, or when alternate spans are loaded and the others unloaded.

The total load, i.e. self-weight plus imposed load, used in conjunction with the constants gives results on the safe side since the self-weight cannot be arranged in the manner stated above. It is sometimes worth while to separate the effects of dead and imposed loading, and for this purpose the two following tables derived from data in Report No. 10 are convenient. The ratio of adjoining span lengths must not exceed I-20.
$w=$ uniformly distributed dead load, in $\mathrm{lb} . / \mathrm{ft}$.
$w_{1}=$ uniformly distributed imposed load, in lb ./ft.
$W=$ concentrated dead load at each point named, in lb.
$\mathrm{W}_{1}=$ concentrated imposed load at the same points, in Ib .

TABLE 97. TWO SPANS (End Supports Free)
Bending Moments in lb . ft .

Nature and Position of Load	Each Span			
	Positive near Centre		Neg. at Internal Support	
	Dead Load	Imposed Load	Dead Load	Imposed Load
Uniformly distributed	$\frac{\mathrm{w} /{ }^{2}}{14 \cdot 25}$	$\frac{\mathrm{w}_{1} / 2}{10}$	$\frac{w / 2}{8}$	$\frac{W_{1} / 2}{8}$
Concentrated loads at middle points	$\frac{W I}{6 \cdot 25}$	$\frac{W_{1} 1}{5}$	$\frac{\text { WI }}{5 \cdot 25}$	$\frac{W_{1} 1}{5 \cdot 25}$
Concentrated loads at third points	$\frac{W I}{4 \cdot 5}$	$\frac{W_{1} 1}{3 \cdot 5}$	$\frac{W I}{3}$	$\frac{W_{1} 1}{3}$
Concentrated loads at middle and quarter points	$\frac{W I}{3.75}$	$\frac{W_{1} I}{2.75}$	$\frac{\text { WI }}{2}$	$\frac{W_{1} I}{2}$

TABLE 98. THREE OR MORE SPANS (End Supports Free)
Bending Moments in lb . ft.

Nature and Position of Load	Intermediate Spans				End Spans			
	Positive near Centre		Negative at Support		Positive near Centre		Negative at Support	
	$\begin{aligned} & \text { Dead } \\ & \text { Lead } \end{aligned}$	$\left\|\begin{array}{c} \text { Imposed } \\ \text { Load } \end{array}\right\|$	$\begin{aligned} & \text { Dead } \\ & \text { Load } \end{aligned}$	$\begin{gathered} \text { Imposed } \\ \text { Load } \end{gathered}$	$\begin{aligned} & \text { Dead } \\ & \text { Load } \end{aligned}$	$\left\|\begin{array}{c} \text { Imposedd } \\ \text { Load } \end{array}\right\|$	$\begin{aligned} & \text { Dead } \\ & \text { Load } \end{aligned}$	$\left.\begin{array}{\|c} \mid \text { Imposed } \\ \text { Load } \end{array} \right\rvert\,$
Uniformly distributed	$\frac{w l^{2}}{24}$	$\frac{w_{1} I^{2}}{12}$	$\frac{w 1^{2}}{12}$	$\frac{w_{1} / 2}{12}$	$\frac{w /{ }^{2}}{12}$	$\frac{w_{1} / 2}{10}$	$\frac{w / 2}{10}$	$\frac{w_{1} / 2}{10}$
Concentrated loads at middle points	$\frac{W 1}{7.5}$	$\frac{W_{1} I}{5 \cdot 25}$	$\frac{\text { WI }}{8.25}$	$\frac{W_{1} I}{6 \cdot 25}$	$\frac{\text { WI }}{5.75}$	$\frac{W_{1} 1}{4.75}$	$\frac{\text { WI }}{6.25}$	$\frac{W_{1} 1}{5 \cdot 5}$
Concentrated loads at third points	$\frac{\text { WI }}{8.25}$	$\frac{W_{1} I}{4 \cdot 25}$	$\frac{\text { WI }}{4.75}$	$\frac{W}{} \frac{1}{3 \cdot 5}$	$\frac{\mathrm{WI}}{4}$	$\frac{W_{1} 1}{3 \cdot 5}$	$\frac{\text { WI }}{3 \cdot 5}$	$\frac{W_{1} 1}{3 \cdot 25}$
Concentrated loads at middle and quarter points	$\frac{W I}{5 \cdot 25}$	$\frac{W_{1} 1}{3}$	$\frac{\text { WI }}{3 \cdot 25}$	$\frac{W_{1} 1}{2 \cdot 5}$	$\frac{W I}{3}$	$\frac{W_{1} 1}{2 \cdot 5}$	$\frac{\mathrm{W} 1}{2 \cdot 5}$	$\frac{W_{1} 1}{2 \cdot 25}$

CONTINUOUS BEAMS OR SLABS WITH CANTILEVER ENDS

Uniformly distributed loads $w \mathrm{lb}$./ft.
Effective length of cantilever $I_{1} \mathrm{ft}$.
Effective length of inner spans / ft.
TABLE 99. Bending Moments in $\mathrm{lb} . \mathrm{ft}$.

Ratio $\frac{I_{1}}{1}$	Negative Moments			Positive Moments
	At Support next to Cantilever	At next adjacent Support	At other internal Supports	Near middle of end Span*
. 225	$\frac{W / l^{2}}{2}$	$\frac{w l^{2}}{10}$	$\frac{w / 2}{12}$	$\frac{w 1^{2}}{10.7}$
25	"	$\frac{w 1{ }^{2}}{10 \cdot 2}$	"	$\frac{w{ }^{12}}{10.8}$
$\cdot 30$	"	$\frac{w /{ }^{2}}{10.6}$	"	$\frac{w 1{ }^{2}}{11.1}$
. 35	"	$\frac{w 1{ }^{2}}{11.0}$	"	$\frac{\mathrm{w}}{}{ }^{1}{ }^{1.5}$
. 40	"	$\frac{w 1{ }^{2}}{11.5}$	"	$\frac{w w^{2}}{12}$
. 45	"	$\frac{w / 2}{12}$	"	$\frac{w 1^{2}}{12.6}$

* This column is calculated in accordance with the provisions of Report No. 10 which allow the fixing moments at the ends of the span to be taken at one-half of the values tabulated in columns 2 and 3 above.

CONTINUOUS BEAMS

Bending moments, shear forces and deflections for various conditions of loading and arrangements of beams are also given in the steel manufacturers' handbooks.

Other cases of continuous beams may be worked out by Clapeyron's Theorem of Three Moments, applicable to any number of continuous spans and any loading. With the signs given in the three cases following the fixing moments are negative; this is the usual designer's convention although the opposite of that given in many text-books.
(i) Distributed loads:-

If w_{1} and w_{2} are the evenly distributed loads (lb./ft. run) on the spans of length I_{1} and I_{2} ft., the moments M_{A}, M_{B} and M_{C} at A, B and C respectively, in lb . ft., are given by

$$
M_{A} \cdot I_{1}+2 M_{B}\left(I_{1}+I_{2}\right)+M_{C} I_{2}=-\frac{1}{4}\left(w_{1} I_{1}{ }^{3}+w_{2} I_{2}{ }^{3}\right)
$$

This expression enables M_{B} to be found only if A and C are simple supports and the beam does not continue beyond them, so that $M_{A}=M_{C}=O$. When there are several spans $l_{1} l_{2} l_{3}$ etc. similar equations can be written for the pairs $l_{2} l_{3}, l_{3} l_{4}$ and so on. Thus n equations are available for $n+1$ spans, i.e. $n+2$ supports, and the moments at the end supports must be found separately.

If one end overhangs, say at A, M_{A} can be found by calculation of the cantilever.

If the beam is built in at A so that its slope is zero,

$$
2 M_{A}+M_{B}=-\frac{w_{1} l_{1}{ }^{2}}{4} .
$$

If the end C is similarly built in

$$
M_{B}+2 M_{C}=-\frac{w_{2} l_{2}^{2}}{4}
$$

and from these simultaneous equations all the fixing moments can be obtained.
(ii) Concentrated loads:-

$$
M_{A} l_{1}+2 M_{B}\left(l_{1}+l_{2}\right)+M_{C} l_{2}=-\frac{W_{1} a}{l_{1}}\left(l_{1}^{2}-a^{2}\right)-\frac{W_{2} b}{l_{2}}\left(l_{2}{ }^{2}-b^{2}\right)
$$

If there are several loads on a span, a similar term involving either W_{1} and a or W_{2} and b is written down for each load on the right-hand side of the equation. If the beam is fixed at A or C additional equations are found by the method given in (iii).
(iii) Any loading:-

Draw the B.M. curves for the loading concerned, as for simply supported spans. If A_{1} and A_{2} are the areas under these curves and the centroids of the areas are distant a and b from the left and right-hand supports respectively,

$$
M_{A} l_{1}+2 M_{B}\left(l_{1}+l_{2}\right)+M_{C} l_{2}=-\frac{6 A_{1} a}{l_{1}}-\frac{6 A_{2} b}{l_{2}}
$$

The areas A_{1} and A_{2} are positive for the B.M. signs shown in the figure. If the end A is fixed and horizontal,

$$
2 M_{A}+M_{B}=-\frac{6 A_{1}\left(l_{1}-a\right)}{l_{1}^{2}}
$$

If the end C is fixed and horizontal

$$
M_{B}+2 M_{C}=-\frac{6 A_{2}\left(l_{2}-b\right)}{l_{2}^{2}}
$$

Shears and Reactions in Continuous Spans (equal spans and equal loads) :-

Section	Shear
1	$\frac{W}{2}$
2	$\frac{3 W}{8}$
3	$\frac{5 W}{8}$
4	.4 W
5	.6 W
6	.5 W

PORTALS OR BENTS

The increasing employment of welding in steelwork is encouraging the replacement of braced frames by bents, which depend for their stability on the stiffness of the members and the rigidity of the connections between them.

A collection of the cases most commonly met is given in the following pages; it includes examples of rectangular frames such as are encountered in basements and deep culverts.

The moment of inertia of each member is constant along the length.

BENDING MOMENTS, THRUSTS AND REACTIONS IN PORTALS

Symbols :
$A=$ Area of free B.M. diagram of loaded member.
E.D. = Evenly distributed.
$F_{A B}=$ Axial thrust in member $A B$, etc.
$H=$ Horizontal thrust at feet.
$I=$ Moment of inertia of section of member.
$I_{b}=$, ", " , ", ,, beam or rafter.
$I_{c}=$ " " " , " , each column if columns equal
$I_{c 1}=\quad$, ", ", ", ,L.H. ", ", ", unequal
$I_{c 2}=\quad, \quad, \quad, \quad, \quad, \quad$ R.H.
$K=$ Stiffness coefficient of member $=\frac{I}{\text { Length }}\left[\begin{array}{c}\text { Length in inches if } \\ I \text { in in }{ }^{4} .\end{array}\right]$
$K_{b} K_{c} K_{c 1} K_{c 2}$ correspond to $I_{b} I_{c} I_{c 1} I_{c 2}$
$K_{b}=\frac{I_{b}}{l}$ for beams $=\frac{I_{b}}{s}$ for rafters For l, s and h see the figures
$K_{c}=\frac{I_{c}}{h}$ for columns
l_{1}, l_{2} see page 124.
$M=$ External moment applied to portal.
$M_{A} M_{B} M_{C} M_{D} M_{E}=$ Bending moments induced at $A B C D$ and E.
(Where only one value is given the moment is the same in both the members at the point considered. Where an external moment M is applied at the point, two values are given and they differ by M.)
$N N_{1} N_{2} N_{3}$ see below.
$P \quad=$ Concentrated side load.
$R_{A} R_{B}=$ Vertical reactions at A and B.
$W=$ Concentrated load or total distributed load.
w = Distributed load per unit length.
$\mu=$ Free B.M. in loaded member, e.g. $\frac{w l^{2}}{8}$ for load w on length l.

$$
\begin{aligned}
& \text { Feet Hinged, Columns Unequal :- } \\
& N=\frac{K_{b}}{K_{c 1}}+3+\frac{K_{b}}{K_{c 2}}
\end{aligned}
$$

Feet Fixed :-

$$
\begin{aligned}
N_{1}= & \frac{K_{b}}{K_{c}}\left(\frac{K_{b}}{K_{c}}+4\right)+\frac{2 K_{b} \phi}{K_{c}}(3+2 \phi)+\phi^{2} \\
& \text { where } \phi=\frac{r}{h}
\end{aligned}
$$

$N_{2}=\frac{I_{b}}{I}\left(\frac{2 K_{b}}{K_{c}}+3\right)+\frac{K_{b}}{K_{c}}\left(\frac{K_{b}}{K_{c}}+2\right)$
$N_{z}=1+\frac{I_{b}}{I}+\frac{6 K_{b}}{K_{c}}$

RECTANGULAR PORTALS—FEET HINGED
E.D. LOAD ON BEAM (i) Columns Equal

10^0

$R_{A}=R_{B}=\frac{w l}{2} \quad H=\frac{w l^{2}}{4 h} \cdot \frac{K_{c}}{2 K_{b}+3 K_{c}}$
$M_{C}=M_{D}=--H h$
$M_{1}=\mu+M_{c}=\frac{w l^{2}}{8} \cdot \frac{2 K_{b}+K_{c}}{2 K_{b}+3 K_{c}}$
(ii) Columns Unequal
$H=\frac{w l^{2}}{4 h N} \quad M_{1}=\mu+M_{c}$
Other values as above

IRREGULAR DISTRIBUTED LOAD ON BEAM
(i) Columns Equal
$R_{A}=\frac{\text { Moment of load about } B}{l}=W-R_{B}$
$R_{B}=\frac{\text { Moment of load about } A}{l}=W-R_{A}$
$H=\frac{3}{l h} \cdot \frac{K_{c}}{2 K_{b}+3 K_{c}} \cdot\binom{$ Area of free B.M. }{ diagram }
$M_{C}=M_{D}=-H h \quad M_{1}=\mu+M_{c}$
(ii) Columns Unequal
$H=\frac{3}{l \mathrm{hN}}$. (Area of free B.M. diagram)
Other values as above

$$
\begin{aligned}
& \text { E.D. SIDE LOAD } \quad \text { (i) Columns Equal } \\
& R_{A}=R_{B}=\frac{w h^{2}}{2 l} \\
& H=\frac{w h}{8} \cdot \frac{5 K_{b}+6 K_{c}}{2 K_{b}+3 K_{c}} \\
& M_{C}=-H h \quad M_{D}=\frac{w h^{2}}{2}-H h=\frac{w h^{2}}{8} \cdot \frac{3 K_{b}+6 K_{c}}{2 K_{b}+3 K_{c}} \\
& h^{\prime}=h-\frac{H}{w} \quad M_{1}=\frac{(w h-H)^{2}}{2 w} \\
& H=\frac{w h}{8} \cdot \frac{5 K_{b}+6 K_{c 1}}{N \cdot K_{c 1}} \begin{array}{l}
\text { (ii) Columns Unequal } \\
\text { Other values as above }
\end{array}
\end{aligned}
$$

IRREGULAR DISTRIBUTED SIDE LOAD

(i) Columns Equal

$R_{A}=R_{B}=\frac{\text { Moment of load about } A}{l}=\frac{W a}{l}$
$H=\frac{W a}{l}+\frac{3 K_{b}}{2 h^{2}\left(2 K_{b}+3 K_{c}\right)}$
(Area of free B.M. diagram)
$M_{C}=\cdots$ Hh $\quad M_{D}=$ (Moment of load about A) - Hh
(ii) Columns Unequal

$$
\begin{aligned}
H=\frac{1}{2 h N K_{c 1}}\left\{\left(2 K_{b}+3 K_{c 1}\right)\right. & (\text { Moment of load about } A) \\
& +\frac{6 K_{b}}{h^{2}} .(\text { Moment of free B.M. diagram about A) }\} \\
& \text { Other values as above }
\end{aligned}
$$

CONCENTRATED LOAD ON BEAM

Columns Equal

$$
\begin{aligned}
& R_{A}=\frac{W b}{l} \quad R_{B}=\frac{W a}{l} \\
& H=\frac{W a b}{l h} \cdot \frac{3 K_{c}}{4 K_{b}+6 K_{c}} \\
& M_{C}=M_{D}=-H h \\
& M_{1}=\frac{W a b}{l}+M_{C}=\frac{W a b}{l} \cdot \frac{4 K_{b}+3 K_{c}}{4 K_{b}+6 K_{c}}
\end{aligned}
$$

RECTANGULAR PORTALS-FEET HINGED-Continued.
SIDE LOAD AT BEAM (i) Columns Equal

EXTERNAL MOMENT AT BEAM
(i) Columns Equal

$R_{\Delta}=R_{B}=\frac{M}{l} \quad H=\frac{3 M}{2 h} \cdot \frac{K_{c}}{2 K_{b}+3 K_{c}}$
$M_{C}=M_{D}=H h$
$M_{D}^{\prime}=M_{D}-M$
(ii) Columns Unequal
$H=\frac{3 M}{2 h N}$ Other values as above

EXTERNAL MOMENT AT HINGE
(i) Columns Equal

Other values as above

RECTANGULAR PORTALS_FEET FIXED

E.D. LOAD ON BEAM

$$
\begin{aligned}
& R_{A}=R_{B}=\frac{w l}{2} \quad H=\frac{w l^{2}}{4 h} \cdot \frac{K_{c}}{K_{b}+2 K_{c}} \\
& M_{A}=M_{B}=-\frac{M_{D}}{2}=\frac{H h}{3}=\frac{w l^{2}}{12} \cdot \frac{K_{c}}{K_{b}+2 K_{c}} \\
& M_{C}=M_{D}=-2 M_{A}=-\frac{w l^{2}}{6} \cdot \frac{K_{c}}{K_{b}+2 K_{c}} \\
& \text { ANY SYMMETRICAL DISTRIBUTED } \\
& \text { LOAD ON BEAM }
\end{aligned}
$$

E.D. SIDE LOAD

$$
\begin{aligned}
& R_{A}= R_{B}=w h^{2} \frac{K_{b}}{6 K_{b}+K_{c}} \quad H=\frac{w h}{8} \cdot \frac{2 K_{b}+3 K_{c}}{K_{b}+2 K_{c}} \\
& M_{A}=-\frac{w h^{2}}{4} \cdot\left(\frac{4 K_{b}+K_{c}}{6 K_{b}+K_{c}}+\frac{K_{b}+3 K_{c}}{6 K_{b}+12 K_{c}}\right) \\
& M_{B}= M_{C}+H h=\frac{w h^{2}}{4} \cdot \\
& \quad\left(\frac{4 K_{b}+K_{c}}{6 K_{b}+K_{c}}-\frac{K_{b}+3 K_{c}}{6 K_{b}+12 K_{c}}\right) \\
& M_{C}=M_{B}-H h=-\frac{w h^{2}}{4} . \\
& \quad\left(\frac{2 K_{b}}{6 K_{b}+K_{c}}+\frac{K_{b}}{6 K_{b}+12 K_{c}}\right) \\
& M_{D}= \frac{w h^{2}}{4}\left(\frac{2 K_{b}}{6 K_{b}+K_{c}}-\frac{K_{b}}{6 K_{b}+12 K_{c}}\right)
\end{aligned}
$$

RECTANGULAR PORTALS-FEET FIXED-Continued.
CENTRAL CONCENTRATED LOAD ON BEAM

$$
\begin{aligned}
& R_{A}=R_{B}=\frac{W}{2} \quad . H=\frac{3 W l}{8 h} \cdot \frac{K_{c}}{K_{b}+2 K_{c}} \\
& M_{A}=M_{B}=\frac{H h}{3}=\frac{W l}{8} \cdot \frac{K_{c}}{K_{b}+2 K_{c}} \\
& M_{C}=M_{D}=-\frac{W l}{4} \cdot \frac{K_{c}}{K_{b}+2 K_{c}} \\
& M_{1}=M_{C}+\frac{W l}{4}=\frac{W l}{4} \cdot \frac{K_{b}+K_{c}}{K_{b}+2 K_{c}}
\end{aligned}
$$

CONCENTRATED SIDE LOAD

PITCHED BENTS—FEET HINGED. EQUAL COLUMNS, EQUAL RAFTERS

General Note :-
$W=$ Total load
$A=$ Area of free B.M. diagram on loaded member
$G=$ Centroid of free B.M. diagram
$l_{1}=$ Distance of G from
$l_{2}=\underset{\text { Distance of }}{\text { R.H. end }} \mathrm{G}$ from
$\phi=\frac{r}{h}$

IRREGULAR DISTRIBUTED VERTICAL

LOAD
$R_{A}=W-R_{B} \quad R_{B}=\frac{W \cdot a}{l}$
$H=\frac{W a(3+2 \phi)+\frac{6 A l_{2}}{\left(\frac{1}{2} l\right)^{2}}+\frac{6 A l_{1}}{\left(\frac{1}{2} l\right)^{2}}(I+\phi)}{4 h\left(\frac{K_{b}}{K_{c}}+3+3 \phi+\phi^{2}\right)}$
$M_{C}=M_{E}=-H h$
$M_{D}=\frac{W a}{2}-H h(I+\phi)$

E.D. VERTICAL LOAD

$\mu=$ Max. free B.M. $=\frac{w}{8}\left(\frac{l}{2}\right)^{2}$ and A $=\frac{2}{3} \cdot \frac{l}{2} \cdot \frac{w}{8}\left(\frac{l}{2}\right)^{2}=\frac{w l^{3}}{96}$ for each rafter

$R_{A}=R_{B}=\frac{w l}{2}$
$H=\frac{w l^{2}}{32 h} \cdot \frac{8+5 \phi}{\frac{K_{b}}{K_{c}}+3+3 \phi+\phi^{2}}$
$M_{C}=M_{E}=-H h$
$M_{D}=\frac{w l^{2}}{8}-H h(1+\phi)$

$$
\begin{aligned}
& \begin{array}{l}
\text { IRREGULAR DISTRIBUTED } \\
\text { HORIZONTAL LOAD } \\
R_{A}=
\end{array} \\
& R_{B}=\frac{\text { Moment of load about } A}{l} \\
&=\frac{W(h+a)}{l} \\
& W h\left(\frac{2 K_{b}}{K_{c}}+6+3 \phi\right)+W a(3+2 \phi) \\
&+\frac{6 A l_{2}}{r^{2}}+\frac{6 A l_{1}}{r^{2}}(1+\phi) \\
& H= 4 h\left(\frac{K_{b}}{K_{c}}+3+3 \phi+\phi^{2}\right) \\
& M_{C}= \frac{H h}{W(h+a)} \\
& M_{D}= \frac{W h(I+\phi)}{2}-H \\
& M_{E}=(W-H) h
\end{aligned}
$$

 EQUAL RAFTERS-Continued.

See notes on p . 124.

E.D. HORIZONTAL LOAD

$$
\mu=\text { Max. free B.M. }=\frac{w r^{2}}{8}
$$

$$
A=\frac{2}{3} \cdot r \cdot \frac{w r^{2}}{8}=\frac{w r^{3}}{12}
$$

$$
R_{A}=R_{B}=\frac{w r}{l}\left(h+\frac{r}{2}\right)
$$

$$
H=\frac{w r}{16} \cdot \frac{\frac{8 K_{b}}{K_{c}}+24+20 \phi+5 \phi^{2}}{\frac{K_{b}}{K_{c}}+3+3 \phi+\phi^{2}}
$$

$M_{c}=-H h$
$M_{D}=\frac{R_{A} \cdot l}{2}-H h(1+\phi)$
$M_{E}=(w r-H) h$
IRREGULAR DISTRIBUTED HORIZONTAL LOAD

E.D. HORIZONTAL LOAD

$R_{A}=R_{B}=\frac{w h^{2}}{2 l}$
$H=\frac{w h}{16} \cdot \frac{\frac{5 K_{b}}{K_{c}}+12+6 \phi}{\frac{K_{b}}{K_{c}}+3+3 \phi+\phi^{2}}$
$M_{C}=-H h$
$M_{D}=\frac{w h^{2}}{4}-H h(1+\phi)$
$M_{E}=\frac{w h^{2}}{2}-H h$

CONCENTRATED LOAD

CONCENTRATED LOAD

$R_{A}=R_{E}=\frac{P h}{l}$
$\begin{aligned} H & =\frac{p}{4} \cdot \frac{\frac{2 K_{b}}{K_{c}}+6+3 \phi}{\frac{K_{b}}{K_{c}}+3+3 \phi+\phi^{2}} \\ M_{c} & =-H h\end{aligned}$
$M_{D}=\frac{P h}{2}-H h(1+\phi) \quad M_{E}=(P-H) h$

PITCHED BENTS-FEET HINGED. EQUAL COLUMNS, EQUAL RAFTERS-Continued.

CONCENTRATED LOAD

$$
\begin{aligned}
& R_{A}=R_{B}=\frac{W}{2} \\
& H=\frac{W l}{8 h} \cdot \frac{3+2 \phi}{\frac{K_{b}}{K_{C}}+3+3 \phi+\phi^{2}} \\
& M_{C}=M_{E}=-H h \quad M_{D}=\frac{W l}{4}-H h(1+\phi)
\end{aligned}
$$

EXTERNAL MOMENT

$R_{A}=R_{B}=\frac{M}{l}$
$H=\frac{3 M}{4 h} \cdot \frac{2+\phi}{\frac{K_{b}}{K_{c}}+3+3 \phi+\phi^{2}}$
$M_{C}=H h \quad M_{D}=-\frac{M}{2}+H h(I+\phi)$
$M_{E}=H h \quad M_{E}^{\prime}=-M+H h$
PITCHED BENTS-FEET FIXED. EQUAL COLUMNS, EQUAL RAFTERS

CONCENTRATED LOAD

$$
\begin{aligned}
& R_{A}=R_{B}=\frac{W}{2} \quad \phi=\frac{r}{h} \\
& H=\frac{W l}{4 h N_{1}} \cdot\left(\frac{3 K_{b}}{K_{c}}+\frac{4 K_{b} \phi}{K_{c}}+\phi\right) \\
& M_{A}=M_{B}=\frac{W l}{4 N_{1}}\left(K_{b} K_{c}+\frac{2 K_{b} \phi}{K_{c}}+\phi\right) \\
& M_{C}=M_{E}=-H h+M_{A} \\
& M_{D}=\frac{W l}{4}+M_{A}-H h(I+\phi)
\end{aligned}
$$

CONCENTRATED LOAD

$R_{A}=R_{B}=\frac{P h}{l}(1+\phi)+\frac{2 M_{A}}{l}$
$H=\frac{P}{2}$
$M_{E}=-M_{C}=\frac{P h}{2}+M_{A}$
$M_{A}=-\frac{P h}{4} \cdot \frac{3 K_{b}+2 K_{c}}{3 K_{b}+\overline{K_{c}}}$ $M_{B}=-M_{A}$
$M_{C}=-\frac{P h}{2}+M_{B}$ $M_{D}=0$

CONCENTRATED LOAD
$R_{A}=R_{B}=\frac{P h}{l}-\frac{M_{E}-M_{A}}{l}$

$H=\frac{P}{2 N_{1}} \cdot \frac{K_{b}}{K_{c}}\left(\frac{K_{b}}{K_{c}}+4+3 \phi\right)$
$\left.\begin{array}{l}M_{A} \\ M_{B}\end{array}\right\rangle=\frac{P h}{4}\left\{-\frac{2 \phi\left(\frac{K_{b}}{K_{c}}+\frac{2 K_{b} \phi}{K_{c}}+\phi\right)}{N_{1} \mp \frac{3 K_{b}+2 K_{c}}{3 K_{b}+K_{c}}}\right\}$
$M_{C}=-H h+M_{E}$
$M_{D}=\frac{P h+M_{A}+M_{E}}{2}-H h(1+\phi)$
$M_{E}=(P-H) h+M_{A}$

E.D. LOAD

$$
\begin{aligned}
& R_{A}=R_{B}=\frac{w l}{2} \\
& H=\frac{w l^{2}}{8 h} \cdot \frac{4 K_{b}}{K_{c}}+\frac{5 K_{b} \phi}{K_{c}}+\phi \\
& N_{1} \\
& M_{A}=M_{B}=\frac{w l^{2}}{48 N_{1}}\left\{\frac{K_{b}}{K_{c}}(8+15 \phi)+\phi(6-\phi)\right\} \\
& M_{C}=M_{E}=-H h+M_{A} \\
& M_{D}=\frac{w l^{2}}{8}+M_{A}-H h(l+\phi)
\end{aligned}
$$

PITCHED BENTS-FEET FIXED. EQUAL COLUMNS, EQUAL RAFTERS-Continued.

EXTERNAL MOMENT

$$
\begin{aligned}
& R_{A}=R_{B}=\frac{3 M \cdot K_{b}}{l\left(3 K_{b}+K_{c}\right)} \quad H=\frac{3 M}{h N_{1}} \cdot \frac{K_{b}}{K_{c}}(1+\phi) \\
& \left.M_{A}\right\rangle=-\frac{M}{2 N_{1}} \cdot\left(\frac{2 K_{b}}{K_{c}}+\frac{3 K_{b} \phi}{K_{c}}-\phi^{2}\right) \\
& M_{B} \\
& \pm \frac{M \cdot K_{c}}{6 K_{b}+2 K_{c}} \\
& M_{C}=M_{B}+H h \\
& M_{D}=\frac{-M+M_{A}+M_{B}}{2}+H h(1+\phi) \\
& M_{E}=H h+M_{A} \quad M_{E}^{\prime}=-M+M_{E}
\end{aligned}
$$

RECTANGULAR FRAMES. COLUMNS OF EQUAL K.

Typical free B.M. diagrams
$\mathrm{G}=$ Centrold of diagram
$A=$ Area of diagram
$F_{A B}=A x i a l$ force in $A B$, etc.
For N_{2} and N_{3} see page 120.

IRREGULAR DISTRIBUTED LOAD ON BEAM

$\begin{aligned} & M_{A} \\ & M_{D}\end{aligned}=-\frac{W l l_{b}^{I}\left(\frac{2 K_{b}}{K_{c}}+3\right)-\frac{12 A}{l} \cdot \frac{K_{b}}{K_{c}} \mp \frac{W(b-a) \frac{I_{b}}{I}+\frac{60 A}{l^{2}}\left(l_{2}-l_{1}\right)}{20 N_{3}}}{12 N_{2}}$
$\left.\begin{array}{l}M_{B} \\ M_{C}\end{array}\right\rangle=-\frac{\frac{12 A}{l}\left(\frac{3 I_{b}}{I}+\frac{2 K_{b}}{K_{c}}\right)-W l \frac{I_{b}}{I} \cdot \frac{K_{b}}{K_{c}}}{12 N_{2}} \mp \frac{W(b-a) \frac{I_{b}}{I}+\frac{60 A}{l^{2}}\left(l_{2}-l_{1}\right)}{20 N_{3}}$
$F_{A D}=\frac{W b}{l}+\frac{W(b-a) \frac{I_{b}}{I}+600_{\bar{l}^{2}}^{A}\left(l_{2}-l_{1}\right)}{10 l N_{3}}$
$F_{B C}=\frac{W a}{l}-\frac{W(b \cdots a) \frac{I_{b}}{I}+600_{l^{2}}^{A}\left(l_{2} \cdots l_{1}\right)}{10 l N_{3}}$
$\left.\begin{array}{l}F_{D C} \\ F_{A B}\end{array}\right\rangle= \pm \frac{M_{A}-M_{D}}{h}= \pm \frac{M_{B}-M_{C}}{h}= \pm \frac{l}{4 h N_{2}} \cdot\left\{\frac{12 A}{l}\left(\frac{I_{b}}{I}+\frac{K_{b}}{K_{c}}\right)\right.$
$\left.-W l \cdot \frac{I_{b}}{I_{d}}\left(\frac{K_{b}}{K_{c}}+1\right)\right\}$
rectangular frames. COLUMNS OF EQUAL K.-Continued. sYmmetrical distributed load on beam

$$
\begin{aligned}
& a=b \quad w_{1}=w_{2}=\frac{W}{l} \quad \begin{array}{l}
\text { B.M. diagram as before, but sym- } \\
\text { metrical about vertical C.L. }
\end{array} \\
& M_{A}-M_{D}=M_{B}-M_{C} \\
& M_{A}=M_{B}=-\frac{1}{12 N_{2}} \cdot\left\{W I_{\bar{b}}^{I}\left(\frac{2 K_{b}}{K_{c}}+3\right)-\frac{12 A}{l} \cdot \frac{K_{b}}{K_{c}}\right\} \\
& M_{C}=M_{D}=-\frac{1}{12 N_{2}} \cdot\left\{\frac{12 A}{l}\left(\frac{3 I_{b}}{I}+\frac{2 K_{b}}{K_{c}}\right)-W l \cdot \frac{I_{b}}{I} \cdot \frac{K_{b}}{K_{c}}\right\} \\
& F_{A D}=F_{B C}=\frac{W}{2} \quad F_{D C}=\frac{M_{A}-M_{D}}{h} \quad F_{A B}=-\frac{M_{A}-M_{D}}{h}=-F_{D C}
\end{aligned}
$$

Note.-The loads in most of these cases are assumed to be resisted by distributed loads, e.g. w_{1}, w_{2} such as would be caused by earth pressure ; in some cases a concentrated reaction is shown.

E.D. LOAD ON BEAM

IRREGULAR DISTRIBUTED SIDE LOAD resisted at base

$\left.\begin{array}{l}M_{A} \\ M_{B}\end{array}\right\rangle=-\frac{K_{b}}{6 K_{c} N_{2}} \cdot\left\{\frac{6 A l_{2}}{h^{2}}\left(\frac{2 K_{b}}{K_{c}}+3\right)-\frac{6 A l_{1}}{h^{2}} \cdot \frac{K_{b}}{K_{c}}\right\}$ $\mp \frac{1}{2 N_{3}} \cdot\left\{W a\left(\frac{3 K_{b}}{K_{c}}+1-\frac{I_{b}}{5 I}\right)+\frac{6 A}{h} \cdot \frac{K_{b}}{K_{c}}\right\}$
$\left.\begin{array}{l}M_{C} \\ M_{D}\end{array}\right\rangle=-\frac{K_{b}}{6 K_{c} N_{2}} \cdot\left\{\frac{6 A l_{1}}{h^{2}}\left(\frac{3 I_{b}}{I}+\frac{2 K_{b}}{K_{c}}\right)-\frac{6 A l_{2}}{h^{2}} \cdot \frac{K_{b}}{K_{c}}\right\}$

$$
\mp \frac{1}{2 N_{3}} \cdot\left\{W a\left(\frac{6 I_{b}}{5 I}+\frac{3 K_{b}}{K_{c}}\right)-\frac{6 A}{h} \cdot \frac{K_{b}}{K_{c}}\right\}
$$

$\left.\begin{array}{l}F_{A D} \\ F_{B C}\end{array}\right\rangle=\mp \frac{M_{D}-M_{C}}{l} \quad F_{D C}=\frac{M_{B}-M_{C}}{h} \quad F_{A B}=-\frac{M_{B}-M_{C}}{h}=-F_{D C}$

RECTANGULAR FRAMES, COLUMNS OF EQUAL K.-Continued.

EQUAL IRREGULAR DISTRIBUTED SIDE LOADS

$M_{A}=M_{B}=-\frac{K_{b}}{3 K_{c} N_{2}} \cdot\left\{\frac{6 A l_{2}}{h^{2}}\left(\frac{2 K_{b}}{K_{c}}+3\right)-\frac{6 A l_{1}}{h^{2}} \cdot \frac{K_{b}}{K_{c}}\right\}$
$M_{C}=M_{D}=-\frac{K_{b}}{3 K_{c} N_{2}} \cdot\left\{\frac{6 A l_{1}}{h^{2}}\left(\frac{3 I_{b}}{I}+\frac{2 K_{b}}{K_{c}}\right)-\frac{6 A l_{2}}{h^{2}} \cdot \frac{K_{b}}{K_{c}}\right\}$
$F_{A D}=F_{B C}=0 \quad F_{D C}=\frac{W a}{h}+\frac{M_{A}-M_{D}}{h} \quad F_{A B}=\frac{W b}{h}+\frac{M_{D}-M_{A}}{h}$

CONCENTRATED VERTICAL LOAD

$\left.\begin{array}{l}M_{A} \\ M_{B}\end{array}\right\rangle=\frac{W I I_{b}}{4 I}\left\{-\frac{2 K_{b}+3 K_{c}}{3 K_{c} N_{2}} \mp \frac{1}{5 N_{3}}\right\}$
For concentrated loads between C and D use the expressions for Irregular Distributed Load on Beam.
$\left.\begin{array}{l}M_{C} \\ M_{D}\end{array}\right\rangle=\frac{W l I_{b}}{4 I}\left\{\frac{K_{b}}{3 K_{c} N_{2}} \pm \frac{1}{5 N_{3}}\right\}$
$F_{A D}=\frac{W I_{b}}{10 I N_{3}} \quad F_{B C}=-F_{A D}=-\frac{W I_{b}}{10 I N_{3}}$

$$
F_{D C}>\mp \frac{W I I_{b}}{4 h I N_{a}}\left(\frac{K_{b}}{K_{c}}+1\right)
$$

CONCENTRATED SIDE LOAD

$\left.\begin{array}{lr}M_{A} \\ M_{B} \\ M_{B} & \frac{P h}{2 N_{3}}\left\{\frac{3 K_{b}}{K_{c}}+1-\frac{I_{b}}{5 I}\right\}\end{array} \quad \begin{array}{l}M_{C} \\ F_{B C}=-\frac{2 M_{c}}{l}\end{array} \quad M_{D}\right\rangle=\mp \frac{P h}{2 N_{3}}\left\{\frac{6 I_{b}}{5 I}+\frac{3 K_{b}}{K_{c}}\right\}$

EXTERNAL MOMENT

$$
\begin{aligned}
& \left.\begin{array}{l}
M_{A} \\
M_{B}
\end{array}\right\rangle=-\frac{M \cdot K_{b}}{2 K_{c} N_{2}} \pm \frac{M}{2 N_{3}}\left(1-\frac{I_{b}}{5 I}\right) \\
& \left.\begin{array}{l}
M_{c} \\
M_{D}
\end{array}\right\rangle=\frac{M}{2 N_{2}}\left(\frac{3 I_{b}}{I}+\frac{2 K_{b}}{K_{c}}\right) \mp \frac{M}{2 N_{3}}\left(1-\frac{I_{b}}{5 I}\right) \\
& M_{D}^{\prime}=-M+M_{D} \\
& F_{A D}=\frac{M}{l N_{3}}\left(\frac{6 I_{b}}{5 I}+\frac{6 K_{b}}{K_{c}}\right) \quad F_{B C}=-F_{A D} \\
& F_{A B}=\frac{3 M}{2 h N_{a}}\left(\frac{I_{b}}{I}+\frac{K_{b}}{K_{c}}\right) \quad F_{D C}=-F_{A B}
\end{aligned}
$$

WORKING STRESSES IN STRUCTURAL STEEL

For steel reinforcement stresses see page 88.
Note I. In grillages, provided the beams are spaced not less than 3 in . apart, and have 4 in . of concrete cover all round except where they cross each other, all the stresses given in Table 100 may be increased as follows :-

	1. Struct. EReportNo. 8	B.S. 449	
		Mild Steel to B.S. 15	$\begin{gathered} \text { High Tensile } \\ \text { Steel to } \\ \text { B.S. } 548 \end{gathered}$
Single grillage .	1212\%	50\%	33t\%
Other grillages : top tier	25\%	"	"
other tiers	50\%	"	"

Note 2. The tensile and compressive fibre stresses in beams encased in good concrete, with 2 in . cover on each side and with the top flange at least $i_{\frac{1}{2}} \mathrm{in}$. below the top level of concrete, may be increased by one-eighth (Report No. 8). B.S. 449 allows an increase of one-sixteenth.

TABLE 100. Permissible Working Stresses, tons/sq. in.

Structural Steel in Building	B.S. 449 and Report No. 8	
	$\begin{aligned} & \text { Mild Steel to } \\ & \text { B.S.15 } \end{aligned}$	High Tenslle Stee to B.S. 548
(a) Parts in Tension Axial stresses on net area of section Extreme fibre stress in beams Shop rivets Field rivets Bolts "今 " ${ }^{\prime \prime}$ and over (B.S. 449) $\frac{3^{\prime \prime}}{3^{\prime \prime}}$ and over (Report No. 8) under $\frac{3}{4}^{\prime \prime}$ (b) Parts in Compression Axial stress in columns, special rules . Extreme fibre stress in beams with adequate lateral support B.S. 449 : Where the laterally unsupported length L is greater than 20 times the width b of compression flange Report No. 8: Rule based on radius of gyration and "effective length " specified in detail.	$\begin{gathered} 8 \\ 8 \\ 5 \\ 4 \\ 5 \\ \ddot{4} \\ * 11 \cdot 0-0.15 \frac{L}{b} \end{gathered}$	$\begin{gathered} 12 \\ 12 \\ 7 \frac{1}{2} \\ 6 \\ 7 \frac{1}{2} \\ 76 \\ - \\ 12 \\ 16 \cdot 5-0.25 \frac{L}{b} \end{gathered}$

Table 100-Continued.

Structural Steel in Bullding	B.S. 449 and Report No. 8	
	$\begin{aligned} & \text { Mild Steel to } \\ & \text { B.S. } 15 \end{aligned}$	High Tensile Steel to B.S. 548
(c) Parts in Shear On gross section of web Report No. 8: When the distance L between flanges or web stiffeners exceeds for mild steel 80 or for high tensile steel 60 times the thickness t of web . but never to exceed, on net area B.S. 449 limits $\frac{L}{t}$ to 60 Shop rivets and turned fitted bolts Field rivets Black bolts (d) Parts in Bearing Shop rivets and turned fitted bolts Field rivets Black bolts Report No. 8 permits, for rivets or bolts in double shear, the bearing stress on the central thickness of metal to be taken at $2 \frac{1}{2}$ times the permissible stress in shear given under (c).	$9.44-\frac{L}{18 t}$ 6 6 5 4 $\begin{array}{r} 12 \\ 10 \\ 8 \end{array}$	$\begin{gathered} 7 \frac{1}{2} \\ 11.5-\frac{L}{15 t} \\ 9 \\ 9 \\ 7 \frac{1}{2} \\ 6 \\ \\ 18 \\ 15 \\ 12 \end{gathered}$

* These values for the standard flange widths of beams and channels are given direct in Table III.

Permissible Working Stresses, tons/sq. In.

Structural Steel in Girder Bridges	B.S. 153
Tension members (on nett section) Tension or compression flanges of plate girders and I beams with comp. flange and web solidly embedded. Compression flanges (width b, unsupported length l) in plate girders and I beams:- Outside edges adequately stiffened " ," unstiffened. Compression members (radius of gyration k, unbraced length l) in truss and lattice girders:- With riveted connections , pin connections (\dagger Not to exceed 7.65 tons/sq. in.)	$\begin{gathered} 9 \\ 10 \\ 9\left(1-.0075 \frac{l}{b}\right) \\ 9\left(1-.01 \frac{l}{b}\right) \\ 9\left(1-.0038 \frac{l}{k}\right)^{\dagger} \\ 9\left(1-.0054 \frac{l}{k}\right)^{\dagger} \end{gathered}$

Permissible tensile stress in wrought iron is 75%, and compressive stress 85%, of values for structural steel.

STRENGTH OF BUTT WELDS

TABLE 101

Section	Thickness ofPlates	Safe Load per inch, tons.	
		Tension	Shear
\longrightarrow	$8^{\prime \prime}$	1.00	. 62
	$\frac{3}{16}{ }^{\prime \prime}$	1.50	. 94
	$\mathbf{1}^{\prime \prime}$	2.00	1.25
	$\frac{5}{16}$	2.50	1.56
	${ }^{3 \prime \prime}$	3.00	1.87
	$\frac{1}{2^{\prime \prime}}$	4.00	2.50
	$\stackrel{5}{8}^{\prime \prime}$	5.00	3.12
	$3^{\prime \prime}$	6.00	3.75

STRENGTH OF FILLET WELDS

TABLE 102. In accordance with B.S. 538-Metal Arc Welding in Mild Steel

SIDE FILLET

Size of Fillet	Safe Load per inch, tons	
	End Fillets	Side Fillets
	$\begin{array}{r} .61 \\ .92 \\ 1.23 \\ 1.53 \\ 1.84 \\ 2.45 \\ 3.06 \\ 3.68 \\ 4.29 \\ 4.90 \end{array}$.44 .66 .87 1.09 1.31 1.75 2.19 2.63 3.06 3.50
Stress tons per sq. in.	7	5

Values for butt and fillet welds usually permitted by L.C.C.:-
tons/sq. in.
Butt welds: Tension or compression Shearing in webs of plate girders and joists ,, other than the above

Fillet welds: End fillets 6
Side, diagonal and T fillets
5

DIMENSIONS OF BRITISH STANDARD BEAMS B.S. 4 Channels and Beams for Structural Purposes When a size is rolled in two weights designers must specify size and welght.

TABLE 103. (For section modull, see Table 112)

Size	Weight	Thickness		Distance		Area sq. In.	Size in.
		Web t_{1} in.	Flange $t_{\text {, }}$ in.	Clear of Root Fillets r, in.	Centres of Holes C in.		
$3 \times 1 \frac{1}{2}$	4	. 16	. 25	2.0	$\frac{8}{4}$	1.18	$3 \times 1 \frac{1}{2}$
3×3	$8 \frac{1}{2}$. 20	. 33	1.5	$1 \frac{1}{2}$	$2 \cdot 52$	3×3
$4 \times 1 \frac{3}{4}$	5	.17	. 24	2.9	${ }^{\frac{7}{8}}$	1.47	$4 \times 1 \frac{3}{4}$
4×3	10	. 24	. 35	$2 \cdot 5$	$1 \frac{1}{2}$	2.96	4×3
$4 \frac{1}{4} \times 1 \frac{3}{4}$	$6 \frac{1}{2}$. 18	. 32	3.5	$\frac{1}{7}$	1.91	$4 \frac{3}{4} \times 1 \frac{3}{4}$
5×3	11	- 22	. 38	3.4	$1 \frac{1}{2}$	3.26	5×3
$5 \times 4 \frac{1}{2}$	20	- 29	. 51	2.8	$2 \frac{1}{2}$	$5 \cdot 88$	$5 \times 4 \frac{1}{2}$
6×3	12	- 23	. 38	4.4	$1 \frac{1}{2}$	3.53	6×3
$6 \times 4 \frac{1}{2}$	20	. 37	. 43	4.0	$2 \frac{1}{2}$	5.89	$6 \times 4 \frac{1}{2}$
6×5	25	. 41	. 52	3.7	$2 \frac{3}{4}$	$7 \cdot 37$	6×5
7×4	16	- 25	. 39	$5 \cdot 2$	$2 \frac{1}{4}$	4.75	7×4
8×4	18	. 28	. 40	$6 \cdot 2$	24	$5 \cdot 30$	8×4
8×5	28	. 35	. 57	5.6	$2 \frac{3}{4}$	8.28	8×5
8×6	35	. 35	. 65	$5 \cdot 2$	$3 \frac{1}{2}$	10.30	8×6
9×4	21	. 30	. 46	7.0	$2 \frac{1}{4}$	6.18	9×4
9×7	50	. 40	. 82	5.7	4	14.71	9×7
$10 \times 4 \frac{1}{2}$	25	. 30	. 50	7.8	$2 \frac{1}{2}$	7.35	$10 \times 4 \frac{1}{2}$
10×5	30	. 36	. 55	7.6	$2 \frac{3}{4}$	8.85	10×5
10×6	40	. 36	. 71	7.1	$3 \frac{1}{2}$	11.77	10×6
10×8	55	. 40	. 78	$6 \cdot 5$	$4 \frac{3}{4}$	16.18	10×8
12×5	32	.35	.55	9.7	23	9.45	12×5
12×6 L	44	. 40	. 72	9.1	$3 \frac{1}{2}$	13.00	12×6 L
$12 \times 6 \mathrm{H}$	54	. 50	. 88	8.8	$3 \frac{1}{2}$	15.89	$12 \times 6 \mathrm{H}$
12×8	65	. 43	. 90	8.3	$4 \frac{1}{4}$	19.12	12×8
13×5	35	. 35	. 60	10.5	$2 \frac{3}{4}$	$10 \cdot 30$	13×5
$14 \times 6 \mathrm{~L}$	46	. 40	. 70	11.2		13.59	
$14 \times 6 \mathrm{H}$	57	. 50	. 87	10.8	$3 \frac{1}{2}$	16.78	$14 \times 6 \mathrm{H}$
14×8	70	. 46	. 92	10.3	$4 \frac{3}{4}$	20.59	14×8
15×5	42	. 42	. 65	12.5	$2 \frac{3}{4}$	12.36	15×5
15×6	45	. 38	. 65	12.2	$3 \frac{1}{2}$	13.24	15×6

Table 103-Continued.

Size	Weight	Thickness		Distance		Area sq. in.	Size
		Web t_{1} in.	Flange t_{1} in.	Clear of Root Fillets r, in.	Centres of Holes, C, in.		
$16 \times 6 \mathrm{~L}$	50	. 40	. 73	13.1	$3 \frac{1}{2}$	14.71	$16 \times 6 \mathrm{~L}$
$16 \times 6 \mathrm{H}$	62	. 55	. 85	12.8	$3 \frac{1}{2}$	18.21	$16 \times 6 \mathrm{H}$
16×8	75	. 48	. 94	12.3	$4 \frac{3}{4}$	22.06	16×8
18×6	55	. 42	. 76	15.0	$3 \frac{1}{2}$	16.18	18×6
18×7	75	. 55	. 93	14.5	4^{2}	22.09	18×7
18×8	80	. 50	. 95	14.2	$4 \frac{3}{4}$	23.53	18×8
$20 \times 6 \frac{1}{2}$	65	. 45	. 82	16.8	$3 \frac{3}{4}$	19.12	$20 \times 6 \frac{1}{2}$
$20 \times 7 \frac{1}{2}$	89	. 60	1.01	16.2	$4 \frac{1}{2}$	26.19	$20 \times 7 \frac{1}{2}$
22×7^{2}	75	. 50	.83	18.7	4^{2}	22.06	$22 \times 7{ }^{2}$
$24 \times 7 \frac{1}{2}$	95	. 57	1.01	20.2	$4 \frac{1}{2}$	27.94	$24 \times 7 \frac{1}{2}$

MAXIMUM SIZE OF RIVET OR BOLT IN FLANGES OF B.S.B. AND T SECTIONS

TABLE 104

Width of Flange in.	Max. Size of Rivet or Bolt in.	Width of Flange in.	Max. Size of Rivet or Bolt in.
$1 \frac{1}{2}$	$\frac{1}{4}$	$4 \frac{1}{2}$	$\frac{3}{4}$
$1 \frac{3}{4}$,		,
2	"	$5 \frac{1}{2}$	\cdots
$2 \frac{1}{4}$	$\frac{3}{8}$	6	$\frac{7}{8}$
$2 \frac{1}{2}$	"	$6 \frac{1}{2}$,
3	$\frac{1}{2}$	7	,
$3{ }_{4}{ }^{2}$	5	$8{ }^{71}$	".
			"

For drilling centres of T sections see B.S.B.s of same flange width, in Table 103.

For weights and section modulus of T sections, see Table 108.

DIMENSIONS OF BRITISH STANDARD CHANNELS

 B.S. 4-Channels and Beams for Structural PurposesEach of the sections given below can also be rolled with a thicker web; for particulars see B.S. 4. Designers should confirm that the sections chosen are readily obtainable, and
 should specify size and weight.

For dimension C and maximum rivet size see Table 110 .
TABLE 105. For section moduli see Table II3.

Size	Weight 1b./ft.	Thickness		Distance Clear of RootFillets r in.	Area sq. In.
		$\text { Web } t_{1}$ in.	Flange t_{1} in.		
$3 \times 1 \frac{1}{2}$	4.60	20	28	1.8	1.35
4×2	7.09	. 24	. 31	2.5	2.09
$5 \times 2 \frac{1}{2}$	10.22	. 25	. 38	3.3	3.01
6×3	12.41	. 25	. 38	4.1	3.65
6×3	16.51	38	. 48	3.9	4.86
$6 \times 3 \frac{1}{2}$	16.48	. 28	. 48	3.75	4.85
7×3	14.22	. 26	. 42	5.0	4.18
$7 \times 3 \frac{1}{2}$	18.28	. 30	. 50	4.8	$5 \cdot 38$
8×3	15.96	. 28	. 44	$6 \cdot 0$	4.69
$8 \times 3 \frac{1}{2}$	20.21	. 32	. 52	5.7	5.94
9×3	17.46	.30	. 44	7.0	$5 \cdot 14$
$9 \times 3 \frac{1}{2}$	22.27	. 34	. 54	$6 \cdot 6$	6.55
10×3	19.28	. 32	. 45	8.0	5.67
$10 \times 3 \frac{1}{2}$	24.46	. 36	. 56	7.6	7.19
$11 \times 3 \frac{1}{2}$	26.78	. 38	. 58	8.6	7.88
$12 \times 3 \frac{1}{2}$	26.37	.38	. 50	9.7	7.76
12×4	31.33	. 40	. 60	9.3	9.21
13×4	33.18	. 40	. 62	10.3	9.76
15×4	$36 \cdot 37$. 41	. 62	12.3	10.70
17×4	44.34	. 48	. 68	14.2	13.04

SIZES AND WEIGHTS OF EQUAL ANGLES

B.S. 4a-Equal Angles, Unequal Angles and Tee Bars for Structural Purposes TABLE 106

Size, in.	Lb./ft.	Section	Size, in.	Lb./f.	Section Modulus
$1 \times 1 \times \frac{1}{\frac{1}{16}}$.80 1.15	.028 .040	$3 \frac{1}{2} \times 3 \frac{1}{2} \times \frac{\frac{3}{16}}{\frac{18}{81}}$	$\begin{array}{r} 7.11 \\ 8.45 \\ 11.05 \end{array}$	$\begin{array}{r} .94 \\ 1.12 \\ 1.46 \end{array}$
$14 \times 1 \frac{1}{4} \times \frac{1}{\frac{3}{16}}$	1.01 1.47	.045 .070			
	1.91	. 086	$4 \times 4 \times \frac{5}{\frac{5}{61}}$	8.17 9.73	1.24 1.48
$1 \frac{1}{2} \times 1 \frac{1}{2} \times \frac{3}{16}$				12.75	1.93
	1.79 2.34	.100 .128	${ }^{5}$	15.68	2.36
	2.85	$\cdot 16$	$4 \frac{1}{2} \times 4 \frac{1}{2} \times \frac{5}{10}$	9.24	
$1 \frac{3}{4} \times 1 \frac{3}{4} \times \frac{3}{\frac{1}{6}}$	2.11	-137	$4{ }^{1} \times 4 \frac{1}{4}$	11.00 14.45	1.89 2.47
	2.76	- 180		14.45 17.80	2.47 3.03
	3.39	. 219			
$2 \times 2 \times \frac{3}{16}$	2.43	. 180	$5 \times 5 \times \frac{3}{8}$	12.28	2.35
	3.19	. 236		16.16	3.08
	3.92	. 290		19.93	3.78
	4.62	. 34	$\frac{3}{4}$	23.59	4.46
$2 \frac{1}{4} \times 2 \frac{1}{4} \times \frac{3}{16}$	2.75 3.61	. 231	$6 \times 6 \times \frac{3}{8}$	14.82	3.40
	3.61	. 304	$6 \times 6 \times \frac{1}{\frac{1}{2}}$	19.55	4.49
$\frac{3}{16}$	4.45 5.26	. 374		24.17	5.54
$2 \frac{1}{2} \times 2 \frac{1}{2} \times \frac{1}{4}$	4.04	. 377			
	4.98 5.90	. 4780	$7 \times 7 \times \frac{1}{\frac{1}{2}}$	22.95 28.42	6.17 7.63
	$5 \cdot 90$. 549		38.42 33	7.63 9.04
$3 \times 3 \times \frac{1}{4}$	4.89	. 555			
	6.04	. 680	$8 \times 8 \times$ 音	32.68	10.05
	7.17 9.35	. 812	- ${ }^{\frac{3}{4}}$	38.89	11.94
	9.35	1.05		45.00	13.77

For drilling centres and maximum rivet size see Table 110.

SIZES AND WEIGHTS OF UNEQUAL ANGLES
 B.S. 4a-Equal Angles, Unequal Angles and Tee Bars for Structural Purposes

TABLE 107. The section modulus is about an axis parallel to the short leg.

Size, In.	Lb./ft.	Section Modulus	Size, in.	Lb./ft.	Section Modulus
$2 \times 1 \frac{1}{2} \times \frac{3}{16}$	$\begin{aligned} & 2.11 \\ & 2.76 \end{aligned}$	$\begin{aligned} & .175 \\ & .229 \end{aligned}$		$\begin{array}{r} 8.17 \\ 9.73 \\ 12.75 \end{array}$	$\begin{aligned} & 1.84 \\ & 2.18 \\ & 2.86 \end{aligned}$
$2 \frac{1}{2} \times 1 \frac{1}{2} \times \frac{3}{16}$	$\begin{array}{r} 2.43 \\ 3.19 \end{array}$	$\begin{array}{r} .270 \\ .350 \end{array}$		15.67	$3 \cdot 50$
$2 \frac{1}{2} \times 2 \times \frac{\frac{3}{16}}{\frac{1}{6}} \frac{5}{16}$	$\begin{aligned} & 2.75 \\ & 3.61 \\ & 4.45 \end{aligned}$	$\begin{aligned} & .280 \\ & .368 \\ & .453 \end{aligned}$	$5 \times 3 \frac{1}{2} \times \frac{5}{16}$	8.71 10.37 13.61	$\begin{aligned} & 1.88 \\ & 2.24 \\ & 2.93 \end{aligned}$
$3 \times 2 \times \frac{\frac{1}{4}}{\frac{5}{\frac{1}{6}}}$	$\begin{aligned} & 4.04 \\ & 4.98 \\ & 5.90 \end{aligned}$.522 .650 .761	$\begin{array}{r} 5 \times 4 \times \frac{\frac{3}{8}}{\frac{1}{2}} \\ \frac{i}{8} \end{array}$	$\begin{aligned} & 11.00 \\ & 14.45 \\ & 17.80 \end{aligned}$	$\begin{aligned} & 2.28 \\ & 2.99 \\ & 3.66 \end{aligned}$
$\begin{array}{r} 3 \times 2 \frac{1}{2} \times \frac{1}{\frac{5}{16}} \\ \frac{\frac{3}{6}}{6} \end{array}$	$\begin{aligned} & 4.47 \\ & 5.51 \\ & 6.54 \end{aligned}$	$\begin{aligned} & .541 \\ & .670 \\ & .790 \end{aligned}$	6×3 $\times \frac{5}{\frac{5}{16}}$	$\begin{array}{r} 9.24 \\ 11.00 \\ 14.45 \end{array}$	2.59 3.09 4.05
$3 \frac{1}{2} \times 2 \frac{1}{2} \times \frac{1}{\frac{5}{5}} \frac{\frac{5}{8}}{\frac{3}{8}}$	$\begin{aligned} & 4.89 \\ & 6.04 \\ & 7.17 \end{aligned}$	$\begin{array}{r} .743 \\ .900 \\ 1.07 \end{array}$	5	17.80	4.97
$3 \frac{1}{2} \times 3 \times \frac{1}{4}$	5.32 6.58 7.81 10.20	.745 .920 1.10 1.42	$\begin{array}{r} 6 \times 3 \frac{1}{2} \times \frac{5}{\frac{5}{16}} \\ \frac{\frac{1}{8}}{\frac{1}{2}} \\ \frac{5}{8} \end{array}$	9.76 11.63 15.30 18.86	2.65 3.17 4.16 5.11
$4 \times 2 \frac{1}{2} \times \frac{1}{4}$ $\frac{\frac{4}{16}}{\frac{5}{8}}$	$\begin{aligned} & 5.32 \\ & 6.58 \\ & 7.81 \end{aligned}$	$\begin{aligned} & .939 \\ & . .17 \\ & 1.38 \end{aligned}$	$\begin{array}{r} 6 \times 4 \times \frac{3}{\frac{1}{2}} \frac{\frac{1}{2}}{\frac{5}{8}} \end{array}$	$\begin{aligned} & 12.28 \\ & 16.16 \\ & 19.93 \end{aligned}$	$\begin{aligned} & 3.23 \\ & 4.24 \\ & 5.22 \end{aligned}$
$4 \times 3 \times \frac{\frac{5}{16}}{\frac{1}{\frac{1}{2}}} \frac{1}{2}$	7.11 8.45 11.05	1.20 1.42 1.85	$\begin{array}{r} 7 \times 3 \frac{1}{2} \times \frac{\frac{3}{1}}{\frac{1}{2}} \frac{s_{8}^{8}}{} \end{array}$	12.91 17.00 20.99	4.23 5.58 6.87
4×312 $\times \frac{5}{\frac{5}{16}}$	$\begin{array}{r} 7.64 \\ 9.09 \\ 11.91 \\ 14.61 \end{array}$	$\begin{aligned} & 1.22 \\ & 1.45 \\ & 1.89 \\ & 2.31 \end{aligned}$	$8 \times 4 \times \frac{1}{2}$	$\begin{aligned} & 19.55 \\ & 24.17 \end{aligned}$	$\begin{array}{r} 7.34 \\ 9.06 \end{array}$

For drilling centres and maximum rivet size see Table 110.

SIZES AND WEIGHTS OF T BARS

B.S. 4a-Equal Angles, Unequal Angles and Tee Bars for Structural Purposes
TABLE 108. (See also Table 104)

Size, in.	Lb./f.	Section Modulus	Size, in.	Lb./ft.	Soction Modulus
$\frac{1}{1 \frac{1}{2}} \times 2 \times 2 \times \frac{1}{2} \times \frac{1}{4}$	2.36 3.21	.130 .237	$5 \times 4 \times \frac{1}{\frac{1}{4}}$	11.06 14.50	1.49 1.96
$2 \frac{1}{2} \times 2 \frac{1}{2} \times \frac{4}{4}$	4.07	. 375	$6 \times 3 \times \frac{1}{8}$	11.08	. 871
21 $\times 2 \frac{1}{8}$	5.92	. 548	6 $6 \times 3 \times \frac{1}{\frac{1}{2}}$	14.52	1.14
$3 \times 3 \times{ }^{\text {最 }}$	7.20	. 801	$6 \times 4 \times \frac{1}{2}$	16.22	2.00
$4 \times 3 \times$ 音	8.49	. 833	$6 \times 4 \times \frac{5}{8}$	19.99	2.46
	11.09	1.08	$6 \times 6 \times \frac{1}{2}$	19.62	4.36
$4 \times 4 \times \frac{3}{8}$	9.77	1.45		24.23	$5 \cdot 40$
	12.79	1.90			
	9.79	. 854			

The first dimension is the head or table of the Tee and the second dimension is the stalk; the thickness applies to both.

The Section Modulus is about an axis parallel to the head of the Tee.

DEFLECTION COEFFICIENTS

for steel beams and channels carrying the full tabular loads
Mid-span deflection in inches $=c L^{2}$ where L is the span in feet.
Example: a beam 12 in . deep, e.g. $12 \mathrm{in} . \times 5 \mathrm{in}$. or $12 \mathrm{in} . \times 6 \mathrm{in}$. B.S.B. or $12 \mathrm{in}. \times 3 \frac{1}{2} \mathrm{in}$. or $12 \mathrm{in} . \times 4 \mathrm{in}$. B.S.C., on 14 ft . span fully loaded, will deflect $0.00154 \times 14^{2}=\cdot 30 \mathrm{I} \mathrm{in}$.

TABLE 109

Depth of Section, in.	Deflection Coeff. c.	Depth of Section, in.	Deflection Coeff. c.
3	.00615	12	.00154
4	.00461	13	.00142
43	.00389	14	.00132
5	.00369	15	.00023
6	.00308	16	.00115
7	.00264	17	.00109
8	.00231	18	.00103
9	.00205	20	.00923
10	.00185	22	.000839
11	.00168	24	.000769

TABLE IIO. STANDARD BACKMARKS (Drilling Centres)
For beams see Table 103 ; the values also apply to T sections.
For channels the values below for the appropriate leg length apply.

Single Row

Leg in.	$\begin{gathered} C \\ \text { in. } \end{gathered}$	Max. Size of Rivet or Bolt in.	Leg in.	$\begin{gathered} C \\ \mathrm{in} . \end{gathered}$	Max. Size of Rivet or Bolt In.
$\begin{aligned} & 1 \frac{1}{4} \\ & 1 \frac{1}{2} \\ & 1 \frac{3}{4} \\ & 2 \\ & 2 \frac{1}{4} \\ & 2 \frac{1}{2} \end{aligned}$	$\begin{array}{r} \frac{3}{4} \\ \frac{7}{8} \\ 1 \\ 1 \frac{1}{2} \\ 1 \frac{1}{2} \\ \frac{7}{8} \end{array}$	$\begin{aligned} & \frac{3}{1} \\ & \frac{1}{2} \\ & \cdots \\ & \frac{5}{5} \\ & \frac{3}{4} \\ & \hline, \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \frac{1}{2} \\ & 4 \\ & 4 \frac{1}{2} \\ & 5 \\ & 6 \end{aligned}$	$\begin{aligned} & 1 \frac{3}{4} \\ & 2 \\ & 2 \frac{1}{4} \\ & 2 \frac{1}{2} \\ & 3 \\ & 3 \frac{1}{2} \end{aligned}$	$\begin{aligned} & \frac{7}{8} \\ & \because " \\ & " \end{aligned}$

Leg	A	
In.	in.	
5	2	$1 \frac{3}{4}$
6	$2 \frac{1}{4}$	$2 \frac{1}{4}$
7	$2 \frac{1}{2}$	3
8	3	3
9	3	4
10	3	5

RIVET SPACING IN GIRDERS

Spacing (centres of rivets)	Diam. of Rivets			
	8^{*}	47	7"	1 "
Minimum pitch on line Maximum pitch on line:- Single line ${ }^{1}$	$17{ }^{\prime \prime}$ $8^{\prime \prime}$ $8^{\prime \prime}$	24" ${ }^{\prime \prime}$	25"1 ${ }^{\prime \prime}$	3'1 ${ }^{\prime \prime}$
Two lines staggered ${ }^{2}$	$12^{\prime \prime}$	$12^{\prime \prime}$	12"	$12^{\prime \prime}$
Minimum distance to sheared edge to rolled or planed edge	11" ${ }^{\prime \prime}$	(12"	(1) ${ }^{1}{ }^{\frac{1}{2}}$	(3 ${ }^{\prime \prime}{ }^{\prime \prime}{ }^{\prime \prime}{ }^{\prime \prime}$

${ }^{1}$ Must not exceed in tension members 16 times, or in compression members 12 times, the thickness of the thinnest outside plate or angle.
${ }^{2}$ If in angles, must not exceed in tension members 32 times, or in compression members 18 times, the thickness of the thinnest outside angle. If in plates, see I.

LATERALLY UNSUPPORTED STEEL BEAMS

B.S. 449 and L.C.C. by-laws stipulate that when the laterally unsupported length L inches of a steel beam exceeds 20 times the breadth b inches of compression flange, the fibre stress shall not exceed $11-\cdot 15 \frac{L}{b}$ tons/sq. in., i.e. 8 tons /sq. in. when $\frac{L}{b}=20$; further, the ratio $\frac{L}{b}$ shall not exceed 50 .

TABLE III.
Proportion of Tabular

The Tables 112 to 114 are for laterally supported beams working on the full fibre stress of 8 tons/sq. in., and the table below gives the proportion of tabular loads permitted when a beam is not laterally supported, or when the distance between effective lateral supports, e.g. secondary beams, exceeds 20 times the compression flange width.

For beams solidly encased in concrete, B.S. 449 permits b to be taken as the width of the steel flange plus the least concrete cover on one side only and not exceeding 4 in . in thickness.

Loads Permitted

SAFE LOADS ON BRITISH STANDARD BEAMS

I. The next three tables give the total load which may be uniformly distributed along a simply supported beam. If concentrated or non-uniform loads occur the BM. must be worked out and a section chosen so that 8 z (reduced if necessary according to Table III) is not less than the BM. in inchtons.
2. The load shown at the left-hand end of each line is the maximum load which may be distributed on the corresponding beam ; no increase of load on shorter spans is permissible unless the web is stiffened.
3. The self-weight of beams has not been deducted.

TABLE II2.
Safe Uniformly Distributed

Size ofJoist in.		$\left\|\begin{array}{c} \text { Section } \\ \text { Modulus } \\ \mathbf{z} \end{array}\right\|$	EfFECTIVE SPANS									
			3	4	5	6	7	8	9	10	11	
$3 \times 1 \frac{1}{2}$	4	1.11	1.9	1.4	1.1	. 98						
$4 \times 1{ }^{\frac{1}{4}}$	5	1.83	3.2	2.4	1.9	1.6	$1 \cdot 3$	$1 \cdot 2$				
3×3	$8 \frac{1}{2}$	2.54	4.3	3.3	2.7	2.2	1.9					
							$1 \cdot 6$	1.2				
$4 \frac{3}{4} \times 1 \frac{3}{4}$	$6 \frac{1}{2}$	2.83	5.0	3.7	3.0	$2 \cdot 5$	2.1	1.8	$1 \cdot 6$			
4×3	10	3.89	6.9	5.1	4.1	3.4	2.9	$2 \cdot 6$	2.3 2.0 2.			
5×3	11	5.47	8.4	$7 \cdot 2$	5.8	4.8	4.1	3.6	$3 \cdot 2$	$2 \cdot 9$	$2 \cdot 6$	
6×3	12	7.00	10.7	9.3	7.4	6.2	$5 \cdot 3$	4.6	4.1	3.7	2.4 3.3	
$5 \times 4 \frac{1}{2}$	20	10.01			10.5	8.8	7.6	6.6	5.9	5.3	4.8	
7×4	16	11.29		13.5	12.0	10.0	8.6	7.5	$6 \cdot 6$	$6 \cdot 0$	$5 \cdot 4$	
6×41	20	11.57	17.7	15.4	$12 \cdot 3$	10.2	8.8	7.7	6.8	6.1	$5 \cdot 6$	
8×4	18	13.91		17.4	14.8	12.3	10.5	9.2	8.2	7.4	6.7	
6×5	25	14.56		19.0	$15 \cdot 5$	12.9	11.0	9.7	8.6	7.7	7.0	
9×4	21	18.03		20.8	19.2	16.0	13.7	12.0	10.6	9.6	8.7	
8×5	28	22.42			21.6	19.9	17.0	14.9	13.2	11.9	$10 \cdot 8$	
$10 \times 4 \frac{1}{2}$	25	24.47			22.6	21.7	18.6	16.3	14.4	13.0	11.8	
8×6	35	28.76					21.0	19.1	17.0	$15 \cdot 3$	13.9	
10×5	30	29.25			27.9	26.0	22.2	19.5	17.3	15.6	14.1	

Arranged in ascending order of section modulus. The values are taken by permission from Messrs. Redpath Brown \& Co. Ltd.'s Steel Handbook.
(B.S.B.) (1932 Revision) 8 tons/sq. in.
4. Loads to the right of the thick lines must be multiplied by the appropriate factor in Table III if the beam is not laterally supported by crossbeams, floor slab or otherwise.
5. Where two loads are tabulated at the right hand end of the line, the higher figure is the maximum safe load and the lower figure is the load which will produce a deflection of $\frac{1}{32}$ th of the span. Under L.C.C. by-laws and B.S. 449 the span of a steel beam shall not exceed 24 times its depth unless the deflection is less than $\frac{1}{9 \frac{1}{2} 5}$ th of the span.
6. For beams continuous over a support see notes on p. II7.

Loads in Tons

IN FEET

Continued overleaf.
General dimensions of these sections are given in Table 103.

British Standard Beams-Continued.
TABLE II2.-Continued.
See notes on previous page.
Safe Uniformly Distributed

Slize ofJolitt in.	$\left\lvert\, \begin{gathered} \text { Weight } \\ \text { libper } \\ \text { if. } \end{gathered}\right.$		effective spans								
			3	4	5	6	7	8	9	10	11
12×5 10×6	$\begin{aligned} & 32 \\ & 40 \end{aligned}$	$\begin{aligned} & 36.84 \\ & 40.96 \end{aligned}$				31.7	28.0	$\begin{aligned} & 24 \cdot 4 \\ & 26 \cdot 9 \end{aligned}$	$\begin{aligned} & 21 \cdot 8 \\ & 24 \cdot 2 \end{aligned}$	$\begin{aligned} & 19.6 \\ & 21.8 \end{aligned}$	17.8 19.8
10×6 $\mathbf{1 3 \times 5}$ $\times 8$	35 50	43.62 46.25				33.5	33.2	29.0	$\begin{aligned} & 25 \cdot 8 \\ & 26 \cdot 3 \end{aligned}$	$\begin{aligned} & 23 \cdot 2 \\ & 24 \cdot 6 \end{aligned}$	$\begin{aligned} & 21 \cdot 0 \cdot 0 \\ & 22 \cdot 4 \end{aligned}$
$12 \times 6 \mathrm{~L}$	44	52.79					$36 \cdot 3$	35.0	31.2	28.1	25.4
$\begin{aligned} & 15 \times 5 \\ & 10 \times 8 \end{aligned}$	$\begin{aligned} & 42 \\ & 55 \end{aligned}$	$\begin{array}{\|l\|l} 57.13 \\ 57.74 \end{array}$				47.4	43.4	38.0	33.8	$\begin{aligned} & 30 \cdot 4 \\ & 29.6 \end{aligned}$	27.6 27.9
$12 \times 6 \mathrm{H}$	54	62.63					$46 \cdot 1$	41.6	37.0	$33 \cdot 4$	30.2
$14 \times 6 \mathrm{~L}$	46	63.22						41.7	37.4	33.7	30.6
15×6	45	65.59						41.3	38.8	34.9	31.8
$14 \times 6 \mathrm{H}$	57	76.19					53.8	50.6	45.0	40.6	36.8
$16 \times 6 \mathrm{~L}$	50	77.26						46.1	45.6	41.2	37.4
12×8	65	81.30									38.0
$16 \times 6 \mathrm{H}$	62	90.63					68.4	60.4	53.6	48.3	$43 \cdot 8$
18×6	55	93.53							53.5	49.8	45.2
14×8	70	100.8									47.8
16×8	75	121.7									59.0
$\begin{aligned} & 20 \times 6 \times 61 \\ & 18 \times 7 \end{aligned}$	$\begin{aligned} & 65 \\ & 75 \end{aligned}$	$\left\lvert\, \begin{aligned} & 122.6 \\ & 127.9 \end{aligned}\right.$							75.0	$\begin{aligned} & 62.9 \\ & 68.2 \end{aligned}$	59.4 62.0
18×8	80	143.6									69.6
$\begin{aligned} & 22 \times 7 \\ & 20 \times 7 \frac{7}{2} \\ & 24 \times 7 \frac{7}{2} \end{aligned}$	$\begin{aligned} & 75 \\ & 89 \\ & 95 \end{aligned}$	$\begin{aligned} & 152.4 \\ & 167.3 \\ & 211.1 \end{aligned}$							90.7	77.5 89.2	$\begin{aligned} & 73.8 \\ & 81.0 \\ & 97.6 \end{aligned}$

8 tons/sq. in.

Loads in Tons
in feet

12	14	16	18	20	22	24	26	28	30	32	36	40
16.3	14.0	12.2	10.9	9.8								
18.2	15.6	13.6	12.1	10.9	9.9 9.0							
19.3	16.6	14.5	12.9	11.6								
20.5	17.6	15.4	13.7	$\begin{aligned} & 12.3 \\ & 11.1 \end{aligned}$								
23.4	20.1	17.5	15.6	14.0	12.7	11.7	10.8	10.0				
25.3	21.7	19.0	16.9	15.2	13.8	12.6	9.9 11.7	8.6 10.8	10.1			
25.6	21.9	19.2	17.1	$15 \cdot 3$	$\begin{aligned} & 14.0 \\ & 12.7 \end{aligned}$							
27.8	23.8	20.8	18.5	16.7	15.1	13.9	12.8	11.9				
							11.8	10.2				
28.0	24.0	21.0	18.7	16.8	$15 \cdot 3$	14.0	12.9	12.0	11.2	10.5		
29.1	24.9	21.8	19.4	17.4	15.9	14.5	13.4	12.4	11.6	10.9	9.7	
33.8	29.0	25.3	22.5	20.3	18.4	16.9	15.6	14.5	13.5	10.2 12.7	8.0	
33.8	29.0	$25 \cdot 3$	22.5	20.3	18.4				12.6	11.1		
34.3	29.4	25.7	22.8	20.6	18.7	17.1	15.8	14.7	13.7	12.8	11.4	$10 \cdot 3$
36.1	30.9	27.0	24.0	21.6	19.7	18.0	16.7				10.1	$8 \cdot 2$
36.1	30.9	27.0					16.7 15.3	13.2				
40.2	34.5	$30 \cdot 2$	26.8	24.1	21.9	20.1	18.5	17.2	16.1	15.1	13.5	12.1
41.5	$35 \cdot 6$	31.1	27.7	24.9	22.6	20.7	19.1	17.8	16.6	15.5	11.9 13.8	9.6 12.5
												11.2
44.7	38.3	33.5	29.8	26.8	24.4	$22 \cdot 3$	20.6	19.1	17.9	16.8		
									16.7	14.7		
54.1	$46 \cdot 3$	40.5	$36 \cdot 0$	32.4	29.5	27.0	24.9	23.1	21.6	20.2	18.0	$16 \cdot 2$
		40.8	$36 \cdot 3$	32.6	29.7	27.2	25.1	23.3	21.7	20.4	16.0 18.1	12.9 16.3
54.4 56.8	$46 \cdot 7$ 48.7	42.6	37.8	34.1	31.0	28.4	26.2	24.3	22.7	21.3	18.9	17.0
63.8	54.6	47.8	42.5	38.2	34.8	31.9	29.4	$27 \cdot 3$	25.5	23.9	21.2	15.3 19.1
												17.2
67.7	58.0	50.8	45.1	40.6	36.9	33.8	31.2	29.0	27.0	25.4	22.5	20.3
74.3	63.7	55.7	49.5	44.6	40.5	37.1	$34 \cdot 3$	31.8	29.7	27.8	24.7	22.3
93.8	80.4	70.3	62.5	56.2	51.1	$46 \cdot 9$	$43 \cdot 2$	40.2	37.5	35.1	31.2	28.1

SAFE LOADS ON BRITISH STANDARD
See notes I to 4 on page 148 .
TABLE II3.
Safe Distributed

			effective spans									
	lb./ft.	z	3	4	5	6	7	8	9	10	11	
$3 \times 1 \frac{1}{2}$	4.60	1.22	12.1	1.6	1.3	1.0	. 79	. 61				
4×2	7.09	2.53	4.4	$3 \cdot 3$	2.6	$2 \cdot 2$	1.9	1.6	1.3	1.0		
$5 \times 2 \frac{1}{2}$	10.22	4.75	8.4	$6 \cdot 3$	5.0	$4 \cdot 2$	3.6	3.1	$2 \cdot 8$	2.5	$2 \cdot 0$	
6×3	12.41	7.09		9.4	7.5	6.3	5.4	4.7	4.2	3.7	3.4	
6×3	16.51	8.76	15.5	11.6	9.3	7.7	6.6	$5 \cdot 8$	5.1	4.6	$4 \cdot 2$	
7×3	14.22	9.36		12.4	9.9	8.3	7.1	$6 \cdot 2$	5.5	4.9	4.5	
$6 \times 3 \frac{1}{2}$	16.48	9.63			10.2	8.5	7.3	$6 \cdot 4$	5.7	5.1	4.6	
8×3	15.96	11.68		15.5	12.4	10.3	$8 \cdot 8$	7.7	6.9	$6 \cdot 2$	$5 \cdot 6$	
$7 \times 3 \frac{1}{2}$	18.28	12.24			13.0	10.8	9.3	8.1	$7 \cdot 2$	$6 \cdot 5$	5.9	
9×3	17.46	13.89							8.2	7.4	6.7	
$8 \times 3 \frac{1}{2}$	20.21	15.14			16.1	13.4	11.5	10.0				
10×3	19.28	16.53							9.6	8.8	$8 \cdot 0$	
$9 \times 3 \frac{1}{2}$	22.27	18.36							10.8	9.7	8.9	
$10 \times 3 \frac{1}{2}$	24.46	21.90							12.8	11.6	10.6	
$11 \times 3 \frac{1}{2}$	26.78	$25 \cdot 80$							$15 \cdot 2$	13.7	12.4	
$12 \times 3 \frac{1}{2}$	26.37	26.62							15.6	14.1	12.8	
12×4	31.33	33.35							19.6	17.7	16.0	
13×4	33.18	37.98							22.4	20.2	18.4	
15×4	36.37	46.55							27.4	24.8	22.4	
17×4	44.34	61.20							$36 \cdot 2$	$32 \cdot 6$	29.6	

* Each of the sections tabulated above is also rolled in a heavier weight by raising the rolls to give a thicker web. The user should confirm that a section is available.

CHANNELS (B.S.C.) 1932 Revision
8 tons/sq. in.
Loads in Tons.
IN FEET

12	14	16	18	20	22	24	26	28	30	32	36
1.7											
3.1	$2 \cdot 3$	1.7									
3.8	2.8	2.1									
4.1	3.5	2.7	$2 \cdot 1$								
4.2	3.1	2.4									
5.1	4.4	3.8	3.0	2.4							
5.4	4.6	$3 \cdot 5$	2.8								
6.1	$5 \cdot 2$	4.6	4.1	$3 \cdot 3$	$2 \cdot 7$						
6.7	5.7	5.0	3.9	$3 \cdot 2$							
7.3	$6 \cdot 2$	$5 \cdot 5$	4.8	4.4	$3 \cdot 6$	3.0					
8.1	$6 \cdot 9$	6.1	5.4	4.4	$3 \cdot 6$						
9.7	8.3	7.3	$6 \cdot 4$	5.8	4.9	4.0					
11.4	9.8	8.6	7.6	$6 \cdot 8$	$6 \cdot 2$	$5 \cdot 2$	4.4				
11.8	10.1	8.8	7.8	7.0	$6 \cdot 4$	$5 \cdot 9$	$5 \cdot 0$	$4 \cdot 3$			
14.8	12.7	11.1	9.8	8.8	8.0	7.4	6.3	$5 \cdot 4$			
16.8	14.4	12.6	11.2	10.1	9.2	8.4	7.7	6.7	5.8		
20.6	17.7	15.5	13.7	12.4	11.2	$10 \cdot 3$	9.5	8.9	$8 \cdot 2$	7.2	5.7
27.2	23.3	20.4	18.1	$16 \cdot 3$	14.8	13.6	12.5	11.6	10.8	10.2	8.5

Arranged in ascending order of section modulus. The values are taken by permission from Messrs. Redpath Brown \& Co. Ltd.'s Steel Handbook.

General dimensions of these sections are given in Table 105.

SAFE LOADS ON BROAD

See notes 1 to 4 on page 148. The thick vertical lines below show the limit of spans equal to 20 times flange width ; the widths and depths of these beams are less than the nominal dimensions.

The deflections do not exceed $\frac{1}{5 \frac{1}{2} 5}$ th of span for the loads tabulated. TABLE II4.

Safe Distributed

Nominal Size* in.	Approx.Weight lb ./f.	Depth of web clear of RootFillets in.	$\begin{aligned} & \text { Section } \\ & \text { Modulus } \\ & \mathbf{Z} \end{aligned}$	Effective spans					
				6	7	8	9	10	
5×5	13	3.0	$6 \cdot 4$	5.7	4.9	4.3	3.8		
$5 \frac{1}{2} \times 5 \frac{1}{2}$	$16 \frac{1}{2}$	3.6	9.3	8.3	7.1	$6 \cdot 2$	$5 \cdot 5$	5.0	
6×6	18	4.0	10.9	9.7	8.3	7.3	$6 \cdot 5$	5.8	
7×7	25	4.9	18.5		14.1	12.3	10.9	9.9	
8×8	30	$5 \cdot 4$	24.9		16.8	16.6	14.8	13.3	
10×10	44	$7 \cdot 1$	46.7					23.3	
11×11	$51 \frac{1}{2}$	$8 \cdot 0$	61.0						
12×12	59	8.8	75.8						
14×12	76	$10 \cdot 6$	114						
16×12	85	12.0	142						
18×12	96	13.7	179						
20×12	108	15.4	221						
24×12	124	19.1	299						
30×12 40×12	145	24.7 34.2	424 700						
40×12	188	34.2	700						

The above values hạve been extracted from Handbook 22 by permission of Messrs. R. A. Skelton \& Co., Steel and Engineering Ltd., who marketed these sections in Great Britain until 1939. The sections were rolled in Luxembourg and it is expected that they will become available again in due course.

* The exact sizes and weights are metric figures. Each size is rolled in 4 weights of which the lightest (D.I.E. series) is tabulated above.

FLANGED BEAMS (Grey Process)

Loads in Tons

12	14	16	18	20	22	24	26	28	30	32	36
8.2											
21	18	- 16	114								
26.9	23	20	18	16							
31	29	25	22	20	18	17					
45	43	38	34	30	28	25	23	22			
	53	47	42	38	34	32	29	27	25		
	65	60	53	48	43	40	37	34	32	30	
	78	74	65	59	54	49	45	42	39	37	33
	102	100	89	80	72	66	61	57	53	50	44
		137	126	113	103	94	87	81	75	71	63
		210	207	187	170	1156	144	133	124	117	104

Broad flanged beams have advantages as columns, since the radius of gyration about the $Y Y$ axis is greater than in a B.S.B. of similar weight. When used as beams they are less efficient than B.S.B.'s, the ratio of section modulus to weight being smaller ; they are useful in some circumstances, e.g. for lintols where the broad flange forms a wide bearing for brickwork, in cases where lateral rigidity is necessary, and where they may replace compound girders, i.e. joists with riveted flange plates.

TIMBER FLOOR CONSTRUCTION

The L.C.C. by-laws permit alternative methods of determining the size and spacing of timber joists and binders.
(a) Provided that the construction is of normal weight, e.g. does not include concrete pugging between the joists, the size and spacing of timbers may be obtained by the use of a table of spacing factors.

The following tables have been calculated to give this information direct ; they are based on the L.C.C. factors for " non-graded" timber (working fibre stress in bending 800 lb ./sq. in.).

The alternative (b) is referred to at the end of the timber tables.
Cantilevers may project clear of support by a distance not exceeding \ddagger of the supported span for which the timber would be permitted.

Non-graded timbers, supported at each end
[(iv) JOISTS AND BINDERS TO RESIDENTIAL FLOORS, see Table 35]
(v) JOISTS TO OFFICES, ABOVE ENTRANCE FLOOR

TABLE II5.
Clear Spacing S in inches

$\begin{aligned} & \text { Joist Size } \\ & d \times b=0 \end{aligned}$ in.	Clear Span in Feet									
	6	7	8	9	10	11	12	13	14	15
6×13 6×2 7×2 8×2 $8 \times 2 \frac{1}{4}$ $8 \times 2 \frac{1}{4}$	17 20 25	12 14 20 25	8 10 14 20 22 25	71 9^{2} 10 14 16 17	98 12 13 15	9 10 11			spa $6^{\prime \prime}$ $6^{\prime \prime}$ -11 $-9^{\prime \prime}$	
9×2				20	14	12	10	94		
$9 \times 2 \frac{1}{2}$					17	15	12	11^{4}		
9×3					21	18	15	134		
$11 \times 2 \frac{1}{2}$						25	21	15	12	11
11×3							25		15	13

${ }^{1}$ Refer to the table inset, which gives the calculated maximum permitted span.

(vi) BINDERS TO OFFICES, ABOVE ENTRANCE FLOOR

TABLE II6.
Clear Spacing S in inches

$\begin{gathered} \text { Joist Size } \\ d \times b b \end{gathered}$ In.	Clear Span in Feet							
	8	9	10	11	12	13	14	15
9×3	57	48						
9×4	76	64	46					
10×4	94	76	64	46				
11×3	88	70	57	48				
11×4	118	94	76	64	54			
12×4	134	118	94	76	64	54	46	
12×6	201	177	141	114	96	81	69	60

(vii) JOISTS TO OFFICES ON AND BELOW ENTRANCE FLOOR, RETAIL SHOPS, GARAGES FOR CARS NOT OVER $2 \frac{1}{4}$ TONS
TABLE 117.
Clear Spacing S in inches

(viii) BINDERS TO OFFICES ON AND BELOW ENTRANCE FLOOR, RETAIL SHOPS, GARAGES FOR CARS NOT OVER $2 \frac{1}{4}$ TONS

TABLE II8.

Clear Spacing S in inches

$\begin{gathered} \text { Joisst Size } \\ d \times b b \end{gathered}$	Clear Span in Feet							
	8	9	10	11	12	13	14	15
9×3	37							
9×4	50	40						
10×4	60	50						
11×3	57	45						
11×4	76	60	50	40				
12×4	88	76	60	50				
12×6	132	114	90	75	60	51	42	

(ix) JOISTS AND BINDERS TO CORRIDORS AND LANDINGS

Note. If within the curtilage of a flat or residence, a waiver may be sought to work on Table 35.
TABLE II9. Clear Spacing S in inches

Joist Size $d \times b$ in.	Clear Span in Feot									
	6	7	8	9	10	11	12	13	14	15
$6 \times 1 \frac{3}{4}$	9	6								
6×2	10	7								
7×2 8×2	13	10	7							
8×2 8×21	21	13 14	10	7						
$8 \times 2 \frac{1}{2}$	26	16	12	9						
9×2	24	16	13	10	7					
$9 \times 2 \frac{1}{2}$	30	20	16	12	9					
9×3	36	24	19	15	10					
$11 \times 2 \frac{1}{2}$	34	30	26	20	16	12	10	9		
11×3	40	36	31	24	19	15	12	10		

(x) JOISTS TO WORKSHOPS, FACTORIES, GARAGES FOR MOTOR VEHICLES OTHER THAN THOSE IN CLASS (viii)
TABLE 120.
Clear Spacing S in inches

Jolst Size $d \times b$ in.	Clear Span in Feet							
	6	7	8	9	10	11	12	13
$6 \times 1 \frac{3}{4}$	9	6						
6×2	10	7					x.	
7×2	13	10	7					
8×2	21	13	10	7				
$8 \times 2 \downarrow$	23	14	11	8				
$8 \times 2 \frac{1}{2}$	26	16	12	9				
9×2	24	16	13	10	7			
$9 \times 2 \frac{1}{2}$		20	16	12	9			
9×3		24	19	15	10			
$11 \times 2 \frac{1}{2}$			26	20	16	12	10	91
II $\times 3$				24	19	15	12	10^{1}

(xi) BINDERS TO WORKSHOPS, FACTORIES, GARAGES FOR MOTOR VEHICLES OTHER THAN THOSE IN CLASS (viii)
TABLE I2I.
Clear Spacing S in inches

$\begin{gathered} \text { Jolst Size } \\ d \times b= \end{gathered}$In.	Clear Span in Feet					
	8	9	10	11	12	13
10×4	40					
11×3	37					
11×4	50	40				
12×4	58	50	40			
12×6	86	75	. 60	48	39	

(xii) JOISTS AND BINDERS TO WAREHOUSES, BOOK AND STATIONERY STORES AND THE LIKE

TABLE 122.
Clear Spacing S in inches

	Clear Span in Feet							
Joist Size $d \times b$								
in.	6	7	8	9	10	11	12	
8×2	15	9	7					
8×3	22	13	10					
9×2	18	12	9	7				
9×3	27	18	13	10				
9×4	36	24	18	14				
10×4	-	-	24	18	14			
11×3	30	27	22	18	13	10		
11×4	40	36	30	24	18	14		
12×4	-	-	36	30	26	18	14	
12×6	-	-	54	44	36	27	21	

(b) The alternative to using the foregoing tables is to determine the size and spacing of timber by calculation, In which case the following superimposed loadings are specified by the L.C.C. and in B.S. 1018 -Timber in Building Construction, respectively.

Both specifications state that floor boards shall be not less than $\frac{5}{8} \mathrm{In}$. thick, and shall be calculated on a superimposed loading of not less than $200 \mathrm{lb} . / \mathrm{sq}$. ft. ; but B.S. 1018 allows grooved and tongued boards to be designed on not less than twice the loading for joists (see next table).

The M.O.H. Model by-laws give rules for timber rafter and joist thickness, and specify that a trimmer joist carrying not more than 6 common joists, or carrying one trimmer joist not more than 3 ft . from its end, should be $1 \frac{1}{2} \mathrm{in}$. thicker than a common joist of the same span. The common joists specified for warehouses are not deep enough to be efficient, but timber is no longer likely to be permitted in warehouses.

TABLE 123. Superimposed Loading. Lb./sq. ft.

These cases are not specifically covered by the L.C.C. by-laws, but District Surveyors and local authorities will normally accept the class loading stated. The actual loading on floors in Classes 5 and 6 and for any purpose not specified is to be ascertained, and is not to be taken as less than the figures given where they apply.

The minimum breadth of a joist or binder is $1 \frac{3}{8}$ in.-B.S. 1018 or $1 \frac{3}{4}$ in.L.C.C. Both specifications limit the deflection under the specified loading to $\frac{1}{8} \sigma^{\text {th }}$ th of the span. B.S. 1018 stipulates that if the depth of a member exceeds 3 times the breadth and the length exceeds 50 times the breadth, lateral restraint (such as would be provided by floor boards) is necessary.
B.S. 1018 gives definitions of the various types of joist in floor construction, as shown in the sketch plan. A plate is a member supported throughout its length, as on a wall, and used to spread the load from other parts of the construction, e.g. Joists or rafters.

The following formulæ are given for checking the bending moment, shear and deflection of timber beams. They may be derived from the expressions given on page 112 .

TABLE 124

Bridging Jolsts and Trimmed Joists, simply supported.	Bridging Jolsts, Trimmed Joists, Binders, continilg over Suports and adequately cantilevered.
$W I=\frac{4}{3} \cdot b \cdot d^{2} f$	$W I=\frac{1}{3} \cdot b d^{2} f$
$q=\frac{3}{4} \frac{W}{b d}$	$q=\frac{3}{2} \frac{W}{b d}$
$b d^{3}=\frac{225}{4} \cdot \frac{W I^{2}}{E}$	$b d^{3}=540 \frac{W I^{2}}{E}$

where W is the total load in Ib . distributed over the span.
I is the span in inches.
b and d are in inches.
E is the Elastic Modulus in $\mathrm{lb} . / \mathrm{in} .^{2}$ units. q is the maximum shear stress, $\mathrm{lb} . / \mathrm{in}^{2}{ }^{2}$

FOUNDATIONS

FOUNDATIONS

SOIL DEFINITIONS AND SAFE LOADS

TABLE 125

Agricultural Definitions

Sandy soil, containing not more than	
	5\% clay
Sandy Loam	5-8\% .,
Loam	8-15\%
Clay Loam	15-30\% ,
Clay	over 30% ",
Marl	5-50\% lime

TABLE 126

Soil Classification
(Massachusetts Institute of Technology)

Designation	Grain Size mm.
Gravel	above 2.0
Coarse sand	$0.6-2.0$
Medium sand	$0.2-0.6$
Fine sand	$06-0.2$
Coarse silt	$.02-.06$
Medium silt	$.006-.02$
Fine silt	$.002-.006$
Clay	below .002

FOUNDATION PRESSURES ON GROUND

Any list such as this can only be a rough indication of the permissible load. The decision should be made after consulting the local authority, who may require tests. Excavation in clay should always be taken below frost level.

TABLE 127

Nature of Ground	Safo Load tons/sq. ft.
Natural bed of silt, peat, recent made ground	Less than t or
Alluvial soil, very wet sand, made ground well compacted or tipped	requires piling
several years.	Up to $\frac{1}{2}$
Natural bed of soft clay, wet sand	1
Natural bed of fairly dry clay, fine dry sand or loam	2
Natural bed of firm dry clay, medium boulder clay, gravel	3
Compact sand or gravel, London blue clay, hard boulder or similar	4
compact clay, in deep foundations	4
Hard solid chalk	6
Shale and soft rock	Up to 10
Very hard rock	Up to 40

TABLE 128. COMPARATIVE WEIGHTS OF EARTH, GRAVEL, etc.

Material (soes Tables 125 and 126 for Definitions)		Lb. por cu.f.
Alluvial ground	undisturbed	100
Ballast	loose, graded	100
Chalk Clay fill	undisturbed	120
	dry, lumps	65
	dry, compact	90
	damp, compact	110
	wet, compact	130
,, undisturbed do. China		120
	gravelly compact	130 140
\because China Fuller's Earth Gravel	natural	110-150
	loose	100
	undisturbed	120-135
Kaolin Loam (sandy clay)	compact	140
	dry, loose	75
	dry, compact	100
	wet, compact	120
Loess Marl (limey clay) Mud, river	dry	1100
	compact	110-120
	wet	110-120
Peat	dry, stacked	35
	sandy, compact	50
	wet, compact	85
Sand fill	damp when filled	80
	dry when filled	100
	saturated	105
	saturated	125
Shingle	fine, dry	100
	cis saturated	130
	coarse, graded, dry	115
Silt Soil, common	wet " saturated	$\begin{gathered} 140 \\ 110-120 \end{gathered}$
	loose compact	$\begin{aligned} & 90 \\ & 130 \end{aligned}$

For the weights of building stones see page 64. A number of minerals are included in the table of Densities, page 94.

ANGLES OF REPOSE

The angle of repose of granular materials varies with the size of the particles, being steeper as the size increases, but the presence of damp fine material in broken stone or ballast increases the angle.

In fine granular materials, dampness increases the angle, but water, above a certain proportion, acts as a lubricant and the angle flattens.

The angle of repose of material like clay is very indefinite. Hard lumps can be stacked to an almost vertical face, but weathering will eventually break them down to a slope which depends on the nature of the clay. The presence of clay in sand and of sand in clay increases the angle of repose.

The figures below can only be regarded as typical.

TABLE 129

Material	Angle	Material	Angle
Alluvial ground Ballast Cement, clinker ground Clay , typical construction : Embankment, water face downstream face Cutting Coal, broken 10 mesh 100 mesh slurry Coke Grain Gravel	25° 45° 33° concave $15^{\circ}-45^{\circ}$ 1 in $3=18^{\circ}$ 1 in $2 \frac{1}{2}=22^{\circ}$ 1 in $1 \frac{1}{\circ}=33^{\circ}$ $35^{\circ}-45^{\circ}$ 34° 16° $0-20^{\circ}$ $25^{\circ}-30^{\circ}$ 25° $35^{\circ}-45^{\circ}$	Hamatite, loose Marl Pyrites, ground Rock filling Sand, coarse fine saturated Shale, colliery dirt Shingle, crushed smooth Slag filling Stone, broken, up to $\mathbf{2 "}^{\prime \prime}$	$\begin{gathered} 35^{\circ} \\ 45^{\circ} \\ 40^{\circ} \\ 45^{\circ} \\ 35^{\circ}-40^{\circ} \\ 30^{\circ}-35^{\circ} \\ 25^{\circ} \\ 35^{\circ} \\ 40^{\circ} \\ 30^{\circ} \\ 35^{\circ} \\ 35^{\circ}-40^{\circ} \end{gathered}$

INCREASE IN BULK OF EXCAVATED MATERIAL

TABLE 130

SERVICES AND FITTINGS

METER PITS

The Metropolitan Water Board specify the minimum dimensions of meter pits when not in the line of wheeled traffic as below.

TABLE I3I

Size of Meter	Internal Dimensions of Plt, and Clear Opening of Cover	Depth of Frame of Cover
$\frac{3}{8}_{\prime \prime}^{\prime \prime}$ to $1 \frac{1}{2}^{\prime \prime}$	$24^{\prime \prime} \times 24^{\prime \prime}$	$4 \frac{1}{4}$
$2^{\prime \prime}$ to $3^{\prime \prime}$	$36^{\prime \prime} \times 24^{\prime \prime}$	$"$
$4^{\prime \prime}$ to $8^{\prime \prime}$	$42^{\prime \prime} \times 24^{\prime \prime}$	$"$,

MANHOLE COVERS AND FRAMES (CAST IRON)
B.S. 497 for light manhole covers and frames gives the dimensions and weights below.

TABLE 132

Nominal Size $=$ Clear Opening In.	Overall Size of Frame In.	Depth of Frame* In.	Minimum Weight	
			Frame lb.	Cover lb .
$\begin{aligned} & 18 \times 18 \\ & 24 \times 18 \end{aligned}$	$21 \frac{1}{4} \times 21 \frac{1}{4}$ $27 \frac{3}{4} \times 21 \frac{1}{4}$		$13 \frac{1}{2}$ 18	$28 \frac{1}{2}$ 38
"	28×22	$1 \frac{1}{2}$	27	57
	$28 \frac{1}{2} \times 22 \frac{1}{2}$	$1 \frac{17}{8}$	36	76
24×24	28×28	$1 \frac{1}{2}$	31	81

* The cover chequer pattern projects $3^{3}{ }_{2} \mathrm{in}$. above the rim of the frame.

STEEL CHEQUERED AND PLAIN PLATES
 Welghts and Safe Loads

TABLE 133.

Thickness in.	Weighe per sq. ft.		Safe uniformly Distributed Load, lb./sq. ft.				
	Chequer	Plain	Span 1	2	3	4	5 ft .
$\frac{1}{2}$	22	20.4	5970	1490	660	370	240
$\frac{7}{16}$	$19 \frac{1}{1}$	17.9	4570	1140	510	280	180
	$16 \frac{1}{4}$	15.3	3360	840	370	210	130
	14	12.8	2330	580	260	140	93
	$11 \frac{1}{3}$	10.2	1490	370	160	93	59
$\frac{1}{16}$	97	7.7	840	210	93	52	-

DIMENSIONS FOR PLANNING

In general these dimensions should be regarded as minima.

Stairs. Rise $7 \frac{1}{2}$ in. max. Run or tread $8 \frac{1}{2} \mathrm{in}$. Width 3 ft . (Public buildings: Rise 6 in., tread II in., width 4 ft .6 in .) Headroom from nose of stair 6 ft .6 in . vertically. Height of handrail from nose of stair 2 ft .6 in . vertically. Ditto on landings 3 ft . 0 in .

Windows. 10% of floor area (L.C.C.), half to open.
P.W.B.S. No. 12 recommends 15% for large bedrooms and large living rooms and 20% for kitchens. Measurement of area is inside the fixed framework. The glass line should be not more than 2 ft .9 in . above floor level and the lintel not less than 7 ft .6 in . above floor level.

Fittings

Bath $\quad 5 \mathrm{ft} .6 \mathrm{in} . \times 2 \mathrm{ft} .4 \mathrm{in}$. in plan
\star Sink 10 in . deep $\times 2 \mathrm{ft} .0 \mathrm{in} . \times 1 \mathrm{ft} .6 \mathrm{in} . \quad$, Linen and clothes cupboard not less than 20 in . deep. Lavatory basin 25 in . wide by 18 in . front to back
\star Gas oven vertical type $2 \mathrm{ft} .6 \mathrm{in} . \times 2 \mathrm{ft} .0 \mathrm{in}$. ., ,"
$\star \quad h o r i z o n t a l ~ t y p e ~ 3 f t . ~ 6 i n . ~ \times 2 f t . ~ 0 i n . ~,, ~, ~$
\star Copper, gas or electric $1 \mathrm{ft} .9 \mathrm{in} . \times 1 \mathrm{ft} .9 \mathrm{in}$. In plan

* These items are becoming standardised at 3 ft .0 in . in height above floor and 1 ft .9 in . front to back.

Roads and paths

Access road 16 ft . Cul de sac 13 ft . Private drive 9 ft .
Public path 6 ft . The minimum width of carriage-way usually permitted in local by-laws is 20 ft .

Minimum turning circles : 10 ton lorry 60-65 ft. diameter. 30 H.P. car 45 ft . diameter.

Vehicles

Cars range from 4 ft .3 in . to 6 ft .0 in . wide, 5 ft . I in. to 6 ft .5 in . high, $10 \mathrm{ft} .7 \mathrm{in} .-16 \mathrm{ft} .7 \mathrm{in}$. long.

All cars not over $14 \mathrm{H.P}$. will go in a garage 14 ft .6 in . long.
Garage for cars :
door opening (straight approach) 7 ft . Height to lintel 6 ft .6 in .
width inside $\quad 11 \mathrm{ft}$.
Garage for large lorrles :
door opening $\quad 10 \mathrm{ft}$. Height to lintel 14 ft .
track width outside tyres $\quad 7 \mathrm{ft}$.
wheel load single tyre 2.1 tons, double tyre 3.6 tons.
Loading dock level above road 3 ft .0 in .

Railways

Standard gauge between running faces of rails . $4 \mathrm{ft} .8 \frac{1}{2} \mathrm{in}$.
Clearance from running face of rail to structure . 4 ft . $9 \frac{3}{4} \mathrm{in}$.
Height clear above rail level to structure . . 15 ft .0 in .
Centre of buffer stop above rail level . . 3 ft .6 in .
Wagon floor above rail level 4 ft .0 in .
Loading dock above rall level 3 ft .3 in .
Large loco. wheel loads 8 tons at 5 ft . 3 in . centres.
Width of widest rolling stock 8 ft .4 in .
Dimensions of timber sleepers . $10 \mathrm{in} . \times 5 \mathrm{in} . \times 9 \mathrm{ft} .0 \mathrm{in}$.
Height of rail top above top of sleeper
90 lb . bullhead rails $\quad 7 \frac{1}{2} \mathrm{in}$. 90 lb . flat bottom rails $6 \frac{1}{4} \mathrm{in}$.

DIMENSIONS OF PIPES

The main purpose of these pipe tables is to show conveniently the overall diameters and effective lengths, which are required in planning. In the British Standard specifications, the outside diameters of sockets must be obtained by adding other dimensions which are often in fractions to $\frac{1}{32} \mathrm{in}$. The present tables give these dimensions directly, in decimals to the nearest tenth of an inch, so that the figures are sufficiently accurate for determining clearances and easier to handle than small fractions.

When pipes are cast with ears, the face of the ears is practically tangential to the outside of the socket.

It will be noticed that the standard lengths are in some cases "effective," i.e. exclusive of the depth of socket, and in other cases overall, i.e. inclusive of the socket. The depth of socket for the latter cases is tabulated so that the effective length may be derived.

Summary of Cast Iron Spigot and Socket Pipes

B.S. 40. Cast Iron Low Pressure Heating Pipes.
41. Cast Iron Flue or Smoke Pipes.
78. Cast Iron Pipes (Vertically Cast) for Water, Gas and Sewage.
416. Cast Iron Soil, Waste, Ventilating and Heavy Rainwater Pipes.
437. Cast Iron Drain Pipes.
460. Cast Iron Light Rainwater Pipes (Cylindrical).

DIMENSIONS OF CAST IRON PIPES

B.S. 40. Heating Pipes (Low Pressure) in standard lengths 3 ft ., 6 ft . and 9 ft . overall.
B.S. 41. Flue or Smoke Pipes in standard lengths 3 ft . and 6 ft . overall.

TABLE 134.
Dimensions in inches

Nominal Internal Diam.	B.S. 40				B.S. 41			
	Outside Diam.	Diam. over Socket	Depth of Socket	Weight of 6 ft . Pipe lb .	Outside Diam.	Diam. over Socket	Depth of Socket	Woight of 6 ft . Pipe lb .
2	2.4	4.0	3	27	-	-	-	一
3	$3 \cdot 5$	$5 \cdot 3$	$3 \cdot 5$	45	-	-	-	-
4	4.5	6.5	4	61	4.3	$5 \cdot 4$	3	33
$4 \frac{1}{2}$	-		-	-	4.8	5.9	3	36
5	5.6	7.7	4	94	$5 \cdot 3$	6.4	$3 \cdot 25$	46
6	6.6	9.0	4.5	125	6.3	$7 \cdot 6$	3.5	63
7	7.7	10.1	$4 \cdot 5$	160	$7 \cdot 4$	8.8	$3 \cdot 5$	86
8	8.8	11.5	5	201	8.5	10.1	4	112
9	9.8	12.6	5	243	9.5	11.4	4	144
10	-	-	-	-	10.6	12.6	$4 \cdot 25$	176
12	-	-	-	-	12.6	14.8	$4 \cdot 25$	245

Dimensions of Cast Iron Pipes-Continued.
In accordance with B.S. 78-Cast Iron Pipes for Water, Gas and Sewage.
Four classes are included in this specification, which covers straight pipes and bends and other specials, with joints either spigot and socket, turned and bored, or flanged.
$\begin{array}{ccc}\text { Class } & \text { Purpose Tested Pressure } \\ \text { A } & \text { Gas } & 200 \mathrm{ft} .\end{array}$

B Water sewage
$\begin{array}{llll}\text { D } & " & " & 600 \mathrm{ft} \text {. } \\ \text { " }\end{array}$
(1) Spigot \& socket
(ii) Turned \& bored
(iii) Flanged

For the weights see next table.

TABLE 135.
Dimensions in inches

Nominal Internal Diam. in.	Pipe Thickness in.			Outside Diam. in.		Dlam. over Socket In.		Flange Diam. $A, B \in C$ In.	Nominal Internal Diam. In.
	A	-	C	A 88	C	A 1 B	C		
$1 \frac{1}{2}$. 35	As	As	2.20	As	4.86	As	51	$1 \frac{1}{2}$
2^{2}	. 36	Class A	Class A	2.72	Classes	5.42	Classes	6	2
$2 \frac{1}{2}$. 37		A	3.24	A \& B	6.00	A \& B	$6 \frac{1}{2}$	21
3	. 38	",	",	3.76	A \& B	6.60	A \& B	$7 \frac{1}{2}$	$2 \frac{1}{2}$
4	. 39	",	. 40	4.80	",	7.74	"	$8 \frac{1}{2}$	
5	. 41	"	. 45	5.90	",	8.88	",	10^{2}	5
6	. 43	"	. 49	6.98	",	10.0	"	11	6

TABLE 135-Continued.

Nominal Internal Diam. in.	Pipe Thickness in.			Outside Diam. in.		Diam. over Socket in.		Flange Dlam. $A, B \& C$ in.	Nominal Internal Diam. in.
	A	B	C	A \& B	C	A \& B	C		
7	. 45		. 53	8.06		11.2	"	12	7
8	. 47	",	. 57	9.14	",	12.4	",	$13 \frac{1}{4}$	8
9	. 49	\cdots	. 60	$10 \cdot 20$	"	13.5	,	$14 \frac{1}{2}$	9
10	. 52	\cdots	. 63	11.3	${ }^{\prime}$	14.6		16^{2}	10
12	. 55	. 57	. 69	13.1	13.6	16.7	17.6	18	12
14	. 57	. 61	. 75	15.2	15.7	19.0	20.0	$20 \frac{3}{4}$	14
15	. 59	.63	. 77	16.3	16.8	20.1	21.1	$21 \frac{3}{4}$	15
16	. 60	. 65	. 80	17.3	17.8	21.2	22.3	223	16
18	. 63	. 69	. 85	19.4	20.0	23.6	24.7	$25 \frac{1}{4}$	18
21	. 67	. 75	. 92	22.5	23.1	26.9	28.1	29	21
24	. 71	. 80	. 98	25.6	26.3	$30 \cdot 3$	31.6	321	24

Other sizes are also listed. Class D is only used for very high pressures.
The Metropolitan Water Board stipulates that water service pipes shall be at least Class C. For fraction-decimal equivalents see Table 188.

LENGTHS AND WEIGHTS OF C.I. PIPES (spigot and socket)

in accordance with B.S. 78. The length is exclusive of depth of socket. For the dimensions see previous page.

TABLE 136. Weight per pipe, lb.

Internal Diam. in.	Class A			Class B		Class C	
	6 ft .	ff .	12 ft .	9 ft .	12 ft .	9 ft .	12 ft .
$1 \frac{1}{2}$ 2 $2 \frac{1}{2}$ 3 4 5 6 7 8 9 10 12 14 15 16 18 21 24	$\begin{aligned} & 47 \\ & 60 \end{aligned}$	105 129 171 222 276 344 403 468 546 677	221 286 357 433 520 605 707 876 1066 1179 1278 1505 1860 2266		As Class A $\begin{aligned} & " \\ & " \\ & " \\ & \ddot{"} \\ & 904 \\ & 1131 \\ & 1248 \\ & 1371 \\ & 1629 \\ & 2055 \\ & 2516 \end{aligned}$	\star \star \star As Class A 175 239 307 383 473 555 642 868	226 310 399 498 614 721 835 1125 1425 1563 1727 2056 2132 3147

* 6 ft . lengths only; weights as Class A.

Dimensions and Weights of typical spun Cast Iron Pipes (spigot and socket) The length is exclusive of the depth of socket. Tested pressure 400 ft .

TABLE 137.
Weight per pipe, lb.

Internal Dlameter In.	Class B			
	Thickness In.	9 ft.	12 ft	l8 ft.
4	.30	135	175	255
5	.31	180	231	334
6	.33	228	294	426
7	.34	267	343	497
8	.36	322	413	596
9	.37	377	483	696
10	.39	436	560	808
12	.43	556	714	1032
14	.46		896	1312
15	.47		980	1413
16	.49		1085	1565
18	.52		1281	2163

B.S. 416-Soil, Waste, Ventilating and Heavy Rainwater Pipes, in standard lengths 6 ft . overall.

TABLE 138.
Dimensions in inches

Dimensions of Cast Iron Pipes-Continued.

TABLE I38-Continued.

Nominal Size $=$ Internal Diam.	Outside Dlam.	Diameter over Socket	Depth of Socket	Weight oft Pipe lb.
Medium Grade				
$1 \frac{1}{2}$	1.9	3.4	2.25	22
$\mathbf{2}$	2.4	3.9	2.5	24
$\mathbf{2 \frac { 1 } { 2 }}$	2.9	4.4	2.75	30
3	3.4	5.1	2.75	35
$3 \frac{1}{2}$	3.9	5.8	3	41
4	4.4	6.3	3	46
$\mathbf{5}$	5.4	7.5	3.25	59
6	6.4	8.5	3.5	71

B.S. 437.—Drain Pipes, in standard lengths 9 ft . exclusive of socket (${ }^{2}$ in. diam., 6 ft. only)

TABLE 139.
Dimensions in inches

Nominal Size Internal Diam.	Outside Diam.	Diameter over Socket	Weight of fipe lb.
2	2.6	4.4	42^{*}
3	3.6	5.75	98
4	4.75	7.1	157
5	5.75	8.25	186
6	6.75	9.25	225
7	7.9	10.9	316
8	8.9	11.9	370
9	9.9	12.9	441

B.S. 460-Light Rainwater Pipes (Cylindrical) in standard lengths 6 ft . overall

TABLE 140.
Dimensions in inches

Nominal Size \dagger	Outside Diam.	Diameter over Socket	Depth of Socket	Weight of Pipe lb.
2	$1^{\prime \prime}$ more	3	$2 \frac{1}{2}$	17
$2 \frac{1}{2}$	than	3.5	$2 \frac{2}{8}$	19
3	nominal	4	$2 \frac{3}{4}$	23
$3 \frac{1}{2}$	size	4.6	27	28
4	$"$	5.1	3	34
$4 \frac{1}{2}$	$"$	5.7	$3 \frac{1}{8}$	40
5	\because	6.2	$3 \frac{1}{2}$	45
6	$"$	7.25	$3 \frac{3}{8}$	58

\dagger The internal diameter in each case is approximately $t \mathrm{in}$. less than the Nominal Size.

DIMENSIONS OF ASBESTOS CEMENT PIPES

See remarks on page 173.
The following specifications refer to asbestos cement pipes :-
B.S. 567. Flue Pipes for Gas Fired Appliances.

Standard lengths Ift., 2 ft ., 3 ft ., 4 ft ., 5 ft ., 6 ft . effective. Test pressure $6 \mathrm{lb} . / \mathrm{sq}$. in.
B.S. 569. Rain Water Pipes (includes gutters, rainwater heads, etc.). Standard length 6 ft . effective.
B.S. 582. Soil, Waste and Ventilating Pipes.

Standard length 6 ft . effective. See Table 14 I for test pressures.
B.S. 835. Flue Pipes for Domestic Heating Stoves.

Standard lengths 1 ft ., 2 ft ., 3 ft ., 4 ft ., 5 ft ., 6 ft . effective. Test pressure $6 \mathrm{lb} . / \mathrm{sq}$. in.
B.S. 486. Pressure Pipes, see Table 142.

The year of the latest specification referred to is given in the list at the end of the book.
B.S. 567
B.S. 835

B.S. 569

B.S. 582

B.S. 486

TABLE 141.
Dimensions in inches

Internal Diam. Nominal Diam.	B.S. 567		B.S. 569		B.S. 582			B.S. 835	
	Outside Diam.	Diam. over Socket	Outside Diam.	Diam. over Socket	Outside Diam.	Diam. over Socket	Min. Pressure	Outside Diam.	Diam. over Socket
2 $2 \frac{1}{2}$ 3 $3 \frac{1}{2}$ 4 $4 \frac{1}{2}$ 5 $5 \frac{1}{2}$ 6 7 8 9 10 11 12	$2 \frac{3}{8}$ $2 \frac{1}{8}$ $3 \frac{3}{8}$ $3 \frac{1}{8}$ 4 5 5 $5 \frac{1}{2}$ 6 6 $6 \frac{1}{2}$ $7 \frac{3}{4}$ $8 \frac{3}{4}$ 9	$\begin{aligned} & 3 \\ & 3 \frac{1}{2} \\ & 4 \\ & 4 \frac{1}{2} \\ & 5 \\ & 5 \frac{3}{4} \\ & 6 \frac{1}{4} \\ & 6 \frac{3}{4} \\ & 7 \frac{1}{4} \\ & 9 \\ & 10 \\ & 11 \\ & 12 \\ & 13 \\ & 14 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 2 \frac{1}{2} \\ & 3 \\ & 3 \frac{5}{8} \\ & 4 \frac{1}{8} \\ & 4 \frac{3}{8} \\ & 5 \frac{1}{4} \\ & 5 \frac{3}{4} \\ & 6 \frac{3}{4} \end{aligned}$	$\begin{aligned} & 3 \frac{3}{4} \\ & 4 \frac{1}{4} \\ & 5 \\ & 5 \frac{1}{2} \\ & 6 \\ & 6 \frac{3}{4} \\ & 7 \frac{1}{4} \\ & 8 \frac{1}{4} \end{aligned}$	$\begin{aligned} & 2 \frac{1}{2} \\ & 3 \\ & 3 \frac{5}{1} \\ & 4 \frac{1}{1} \\ & 4 \frac{5}{8} \\ & \hline 5 \frac{3}{3} \\ & 6 \frac{3}{4} \end{aligned}$	4.1 4.6 5.4 6.0 6.5 7.9 8.9	$\begin{gathered} 300 \\ 240 \\ 250 \\ 215 \\ 190 \\ -180 \\ 150 \\ \text { Ib. } \\ \text { sq. in. } \end{gathered}$	$\begin{aligned} & 3 \frac{5}{4} \\ & 4 \frac{1}{4} \\ & 4 \frac{3}{4} \\ & 54 \\ & 5 \frac{1}{4} \\ & 6 \frac{4}{4} \\ & 6 \frac{3}{4} \\ & 7 \frac{3}{4} \\ & 8 \frac{3}{4} \\ & 9 \frac{3}{4} \\ & 11 \frac{3}{4} \\ & 11 \frac{3}{4} \end{aligned}$	$\begin{aligned} & 4 \frac{1}{2} \\ & 5 \frac{1}{4} \\ & 5 \frac{3}{4} \\ & 6 \frac{1}{4} \\ & 6 \frac{3}{4} \\ & 7 \frac{1}{4} \\ & 7 \frac{3}{4} \\ & 9 \\ & 10 \\ & 11 \\ & 12 \\ & 13 \\ & 14 \frac{1}{2} \end{aligned}$

B.S. 486-Asbestos Cement Pressure Pipes

These pipes have plain ends, to be jointed by sleeves which are not covered in the specification. The pipes will fit in the sockets of the corresponding cast iron pipes of B.S. 78.

TABLE 142. Dimensions and Weights per foot

	CLASS								
	Working Pressure								
Nom. Internal Diam. in.	Outside Diameter (all classes) in.	Int. Diam. in.	We. per ft., lb .	Int. Diam. in.	Wt. per ft., lb .	Int. Diam. in.	Wt. perft., lb .	Int. Diam. in.	We. per ft., lb .
2	2.76	1.98	3	1.98	3	1.98	3	1.86	$3 \frac{1}{2}$
3	3.76	2.96	$4 \frac{1}{2}$	2.96	$4 \frac{1}{2}$	2.76	$5 \frac{1}{2}$	$2 \cdot 66$	6
4	4.80	3.96	6	3.86	7	3.58	$8 \frac{1}{2}$	3.48	9
5	5.90	4.98	8	4.80	10	4.50	12	4.34	13
6	6.98	6.00	10	5.76	13	$5 \cdot 42$	16	$5 \cdot 18$	18
7	8.06	7.00	13	6.74	16	$6 \cdot 32$	20	$6 \cdot 00$	24
8	9.14	8.00	16	7.70	20	$7 \cdot 22$	26		
9	10.2	9.00	18	8.62	23	$8 \cdot 10$	30		
10	11.26	9.98	21	9.58	27	8.94	37		

TABLE 142-Continued.

CLASS			A		B		C		D	
Working Pressure			100 ft .		200 ft .		300 ft .		400 fc .	
Nom. Internal Diam. in.	Outside (all	Diameter sses)	Int. Dlam. in.	Wt. per. ft., lb .	Int. Diam. in.	Wt. per. ft., lb.	Int. Diam. in.	Wt. per. ft., in.	Int. Diam. in.	Wt. per.ft., lb.
12 14 15 18 20 21 24	Class A 13.14 15.22 16.26 19.38 21.46 22.50 25.60	Classes B C D 13.60 15.72 16.78 19.98 22.06 23.12 26.26	11.78 13.64 14.58 17.38 19.26 20.18 23.00	27 36 41 58 71 78 99	$\begin{aligned} & 11.60 \\ & 13.42 \\ & 14.32 \\ & 17.02 \\ & 18.82 \\ & 19.72 \end{aligned}$	$\begin{array}{r} 39 \\ 53 \\ 60 \\ 85 \\ 102 \\ 115 \end{array}$	11-26	46		

Other sizes are listed up to 40 in .
100 ft . of head $=43.35 \mathrm{lb} . / \mathrm{sq}$. in.

SALT-GLAZED WARE PIPES

Formerly known as " stoneware." The trade designation " Best Quality " is appreciably cheaper than goods marked "British Standard." B.S. 65 covers taper pipes, bends and junctions in addition to straight pipes. The dimensions given below are calculated from data in B.S. 65.

The standard length is exclusive of depth of socket.
TABLE 143

Internal Diameter in.	Outside Diameter in.	Diam. over Socket in.	Standard Lengths	Approx. Wt. per 2 ft . Pipe, lb.	Wt. of $6^{\prime \prime}$ of barrel lb .
3	37	$5 \cdot 5$	2'	11	-
4	5	6.9	"	19	-
5	61	$8 \cdot 3$	",	25	-
6	$7 \frac{1}{4}$	9.5	" ${ }^{\prime \prime}$	30	-
7	$8 \frac{1}{3}$	10.8	$2^{\prime}, 2^{\prime} 6^{\prime \prime}$	37	8
8	93	11.9		45	9
9	$10 \frac{1}{2}$	13.2	$2^{\prime}, 2^{\prime} 6^{\prime \prime}, 3^{\prime}$	55	11
10	$11{ }^{\frac{5}{8}}$	14.7	", ",	66	13
12	14	17.4	" "	100	20
13	15t	18.7		115	23
14	$16 \frac{8}{8}$	20.2		139	28
15	$17 \frac{1}{2}$	21.4		157	31
18	21	25.4	1) 1	239	45
21	244	29.2	$\geqslant 1$	304	56
24	$27 \frac{1}{7}$	32.7		372	69
27	$30 \frac{3}{4}$	36.2		460	83
30 36	34 41	39.7 48.2	" $"$	540 820	98 147
36	41	48.2	" "	820	147

Pipes to British Standard Specification must withstand an Internal hydraulic pressure of $20 \mathrm{lb} . / \mathrm{sq}$. in. for 5 seconds.

WROUGHT IRON AND STEEL TUBES FOR GAS, WATER AND STEAM In accordance with B.S. 788-Wrought Iron. Tubes and Tubulars and B.S. 789-Steel Tubes and Tubulars

The three grades are also known as Light, Medium and Heavy, Medium being one size and Heavy two sizes thicker on the S.W.G. than Light. The outside diameter is controlled by the screw gauges, and the actual bore therefore depends on the wall thickness but is within $\frac{1}{16} \mathrm{in}$. of the nominal, for sizes up to $2^{\prime \prime}$ and within $\frac{1}{8} \mathrm{in}$. for larger sizes.

TABLE 144

Nominal Bore in.	Approx. Outside Diameter in.	Wall Thickness, in.			Weight per ft. lb.*			Diam. over Socket
		Gas	Water	Steam	Gas	Water	Steam	
$\stackrel{1}{k}$	13	. 080	. 092	- 104	. 274	.303	. 329	$\cdot 60$
1	17				. 378	. 423	. 465	. 75
3	18	. 092	. 104	. 116	. 574	. 636	. 695	.91
1	${ }^{2} 2$. 104	. 116	. 128	. 806	. 885	. 960	$1 \cdot 10$
3	118	.116	.128	. 144	$1 \cdot 150$	1.253	1.385	1.34
1	$11 \frac{1}{2}$. 128	.144	. 160	1.630	1.810	1.983	1.66
11	$1+15$.144	.160	. 176	2.327	2.559	2.786	2.03
11	18	. 160	.176	- 192	2.926	3.189	3.447	2.28
2	$2{ }^{3}$				3.711	4.053	4.389	2.78
$2 \frac{1}{2}$	3	. 176	. 192	$\cdot 212$	5.205	5.646	$6 \cdot 190$	3.44
3	31	",	"	",	6.126	6.651	7.300	4.0
$3 \frac{1}{2}$	4	,	"	"	7.048	7.656	8.410	4.5
4	41	"	"	"	7.970	8.662	9.520	5.06
5	51	\cdots	,	,	9.813	10.67	11.74	6.12
6	6	,"	,	"	11.66	12.68	13.96	7.25

The weights given are for wrought iron; add 2% for mild steel.

War Emergency B.S. 789A-1940 substitutes Light and Heavy Weights for the three grades of B.S. 789; Light Weight is one gauge lighter in each size than Gas, and Heavy Weight is the same as Water or Medium grade.

The properties of useful sizes of tubes are given below, calculated on the nominal thickness and minimum permitted outside diameter. The steel is 22-30 tons/sq. In. tensile, and may be stressed in bending to 10 tons/sq. in. for scaffolding. Tubes of $\frac{1}{2} \mathrm{in}$. bore and upwards are supplied in random lengths of 15 to 23 ft .

Steel Tubes-B.S. 789 Water or B.S. 789A Heavy Weight

TradeName	Nominal Bore in.	Approx.Outside Diam. in.	$\begin{gathered} \text { Wall } \\ \text { Thickness } \end{gathered}$in.	$\begin{aligned} & \text { Weight } \\ & \text { Wb./ft. } \end{aligned}$	Minimum Properties			
					$\begin{gathered} \text { Section } \\ \text { Area } \\ \text { sq. } \mathrm{in} . \end{gathered}$	in. ${ }^{1}$	in.	In. ${ }^{2}$
$\begin{aligned} & 2^{\prime \prime} \\ & 2 \frac{1}{\prime \prime}^{\prime \prime} \\ & 3^{\prime \prime} \end{aligned}$	$1 \frac{1}{2}$ 2 $2 \frac{1}{2}$	${ }^{172}$.176 .192	3.253 4.134 5.759	.949 1.206 1.675	.353 .724 1.626	.610 .774 .985	.372 .614 1.095

PIPE HOOKS

A table of standard dimensions of pipe hooks suitable for fixing the above tubes is given in B.S. 31-Electric Conduits.

COPPER TUBES

Ministry of Health Model Specification agrees with B.S. 659 for Light Gauge Copper Tubes, suitable for compression or capillary joints or bronze welding. For screwed joints B.S. 61-Copper Tubes and their Screw Threads gives three classes, viz., Low Pressure, $50 \mathrm{lb} . / \mathrm{sq}$. in. working. Medium Pressure 125 lb ., High Pressure $200 \mathrm{lb} . / \mathrm{sq}$. in.
$t=$ thickness in inches (specified as S.W.G.) of the wall.
Outside diam. $=$ Internal diam.$+2 t$

TABLE 145

Internal Diam. in.	B.S. 659		B.S. 61					
			Low Pressure		Medium Pressure		High Pressure	
	t	lb./ft.	t	lb./ft	t	lb./ft.	t	lb./ft.
$\frac{1}{5}$. 040	.08	. 064	$\cdot 15$. 064	$\cdot 15$. 080	- 20
$\frac{1}{4}$. 048	. 17	. 072	. 28	. 080	. 32	. 092	. 38
$\frac{3}{4}$	"	. 25	"	. 39	,	. 44		. 52
$\frac{1}{2}$,	. 32	"	. 50	,	. 56	. 104	. 76
\%			"	.61	092	. 68	. 116	1.04
$\frac{1}{7}$	"	. 46	"	. 72	. 092	.94 1.08	"	1.21 1.39
${ }^{7}$			000	. 82		1.08		1.39
	. 056	.71	. 080	1.04	-104	1.39	. 128	1.75
12	"	. 88	,	1.29	,	1.70	. 144	2.43
$1 \frac{1}{2}$,	1.05	092	1.53	,	2.02	,	2.86
$1 \frac{3}{4}$	"		. 092	2.05	"	2.33	,	3.30
2	. 064	1.60	,	2.33	\cdots	2.65	\because	3.73
$2 \frac{1}{2}$		1.98	$\ddot{0}$	2.88	. 116	3.67	. 176	5.70
3	. 072	$2 \cdot 68$.104	3.90	. 128	4.84	- 192	7.42
$3 \frac{1}{2}$. 080	3.46	. 116	5.07	. 144	$6 \cdot 25$. 212	9.55
4	. 092	4.55	- 128	6.39	. 160	7.93	-232	11.88

LEAD PIPES

The Metropolitan Water Board define pipes as follows :-
A service pipe is any pipe subject to pressure from the main; the portion from the main to the stopvalve in the street, or if no stopvalve to the boundary of the street or where the pipe enters the premises in or under the street (whichever of these points is nearer to the main), is called a communication pipe and the remainder of the service pipe is called a supply pipe. A distributing plipe is any pipe under pressure from a storage cistern, feed cistern or hot water apparatus.

There are several conflicting specifications relating to lead pipes.
(i) B.S. 602-Lead Pipes, specifies the following weights per lineal yard (the figures in brackets are the weights stipulated for B.N.F. Ternary Alloy No. 2 lead pipes specified in B.S. 603, for pipes laid above ground) :-

TABLE 146. Minimum Weight, lb./lin. yd.

Internal Diameter :	1 "	\%	\%"	$1 "$	$1 \underbrace{*}$	$1{ }^{1}$	$2{ }^{*}$
Working Pressure	Supply and Distributing Pipes						
Not exceeding 150 ft . head ($65 \mathrm{lb} . / \mathrm{sq} . \mathrm{in}$.) Exceeding 150 ft . and not exceeding 250 ft . head ($108 \mathrm{lb} . / \mathrm{sq} . \mathrm{in}$.) Exceeding 250 ft . and not exceeding 350 ft . head ($152 \mathrm{lb} . / \mathrm{sq} . \mathrm{in}$.)	$\begin{aligned} & 4 \frac{1}{2} \\ & (3) \end{aligned}$	$\begin{gathered} 6 \\ (4) \end{gathered}$	$\begin{gathered} 9 \\ (6) \end{gathered}$	$\begin{aligned} & 12 \frac{1}{2} \\ & (9) \end{aligned}$	$\begin{gathered} 16 \\ (12) \end{gathered}$	$\begin{gathered} 20 \\ (15) \end{gathered}$	28 (21)
	$\begin{gathered} 5 \\ \left(3 \frac{1}{2}\right) \end{gathered}$	$\begin{gathered} 7 \\ (5) \end{gathered}$	$\begin{aligned} & 11 \\ & (8) \end{aligned}$	$\begin{gathered} 16 \\ (13) \end{gathered}$	$\stackrel{21}{(18)}$	$\begin{gathered} 27 \\ (24) \end{gathered}$	$\begin{array}{r} 381 \\ \left(38^{1}\right) \end{array}$
	$\begin{gathered} 6 \\ (4) \end{gathered}$	$\begin{gathered} 9 \\ (6) \end{gathered}$	$\begin{gathered} 15 \\ (12) \end{gathered}$	$\underset{(21)}{21}$	$\begin{gathered} 28 \\ (28) \end{gathered}$	$\begin{array}{r} 35^{2} \\ \left(35^{2}\right) \end{array}$	
Flushing and Warning Pipes							
		$\begin{gathered} 3 \\ \left(2 \frac{1}{2}\right) \end{gathered}$	$\begin{gathered} 5 \\ (4) \end{gathered}$	$\begin{gathered} 7 \\ \left(5 \frac{1}{2}\right) \end{gathered}$	$\begin{gathered} 9 \\ \left(7 \frac{1}{2}\right) \end{gathered}$	$\begin{gathered} 12 \\ (10) \end{gathered}$	$\begin{gathered} 16 \\ (13) \end{gathered}$

${ }^{1}$ Not exceeding 225 ft . head.
2 ., , 325 .,
The M.W.B. by-laws differentiate between service and distributing pipes, and between hot and cold water in the latter.

The M.O.H. Model Specification also makes these oistinctions but differs from both the other authorities in the recommended weights.
(ii) M.W.B. by-laws. (The figures in brackets are the weights stipulated for ternary alloy lead pipes fixed above ground.)

TABLE 147. Minimum Weight, lb./lin. yd.

Internal Diam. :	$\mathrm{i}^{\prime \prime}$	\%	$8^{\prime \prime}$	$1 *$	$1 \underbrace{*}$	$1{ }^{\prime \prime}$	$2 *$	21*	$3^{\prime \prime}$
Pressure	Service Pipes								
Not exceeding 250 ft . head Exceeding 250 ft . and	$\begin{gathered} 5 \\ \left(3 \frac{1}{2}\right) \\ 6 \end{gathered}$	$\begin{gathered} 7 \\ (5) \\ 9 \end{gathered}$	$\begin{gathered} 11 \\ \binom{7}{15} \end{gathered}$	$\left.\begin{array}{l} 16 \\ (11) \\ 21 \end{array}\right)$	$\begin{gathered} 21 \\ (14) \\ 28 \end{gathered}$	$\begin{gathered} 27 \\ (18) \\ 35 \end{gathered}$	$\begin{gathered} 38 \\ \left(25 \frac{1}{2}\right) \\ 48 \end{gathered}$	$\begin{gathered} 59 \\ (40) \end{gathered}$	85 (57)
not exceeding 400 ft .	(4)	(6)	(10)	(14)	(19)	(231 ${ }^{2}$)	(32)	--	-
Distributing Pipes									
For cold water For hot water Hot or cold, alloy	$\begin{array}{r} 4 \\ 4 \frac{1}{2} \\ (3) \end{array}$	$\begin{gathered} 5 \\ 6 \\ (4) \end{gathered}$	$\begin{gathered} 8 \\ 9 \\ (6) \end{gathered}$	$\begin{gathered} 11 \\ 12 \frac{1}{2} \\ \left(8 \frac{1}{2}\right) \end{gathered}$	$\begin{gathered} 14 \\ 16 \\ \text { (11) } \end{gathered}$	$\begin{gathered} 18 \\ 20 \\ \left(13 \frac{1}{2}\right) \end{gathered}$	$\begin{gathered} 24 \\ 28 \\ (19) \end{gathered}$	$\begin{gathered} 38 \\ 44 \\ \left(29 \frac{1}{2}\right) \end{gathered}$	54 63 (42)
Flushing and Warning Pipes									
Lead or ternary alloy	2	3	5	7	9	12	16		

(iii) Ministry of Health Model Specification

TABLE $148 . \quad$ Minimum Weight, lb./lin. yd.

Internal Diameter :	$8{ }^{\prime \prime}$	$t^{\prime \prime}$	7^{*}	$1 "$	$11^{\prime \prime}$	12"	$2^{\prime \prime}$
Pressure	Supply Pipes						
Not exceeding 110 ft . head	4	6	9	12	16	18	24
exceeding 250 ft . Exceeding 250 ft .	$\begin{aligned} & 5 \\ & 5 \frac{1}{2} \end{aligned}$	7	12 16	16 21	21 28	27 36	33 48
Distributing Pipes							
For cold water For hot water	4	5 6	8 9	11 12	14 16	18 18	24 24
Flushing and Warning Pipes							
			5	7	9	11	14

APPROXIMATE DIMENSIONS OF LEAD PIPES

This table gives the wall thickness t and outside diameter O.D. of the lead pipes mentioned in the foregoing specifications; the sizes are not necessarily obtainable. Lead pipe should be specified by the internal diameter (bore) and weight per yard. The usual length of coil is 60 ft . for bores up to in . and 30 ft . for larger sizes.

TABLE 149.
Dimensions in inches.

f bore			t" bore			$2^{\prime \prime}$ bore			1" bore		
1b. $/ \mathrm{yd}$.	t	O.D.	lb. $/ \mathrm{yd}$.	t	O.D.	lb./yd.	t	O.D.	lb. yd .	t	O.D.
2	10. .09	In. .56 .65	3	. l . 11	In. .71	5	in. 12	1.00	7	113.	$\mathrm{lin}_{1.23}$
3	. 13	. 63	4	$\cdot 14$. 77	6	$\cdot 14$	1.04	$8 \frac{1}{2}$	$\cdot 16$	1.31
$3 \frac{1}{2}$. 14	. 66	5	. 16	. 83	$7 \frac{1}{2}$	$\cdot 17$	1.10	$11^{\frac{1}{2}}$. 20	1.39
4	. 16	. 70	6	$\cdot 19$. 87	8	- 18	1.12	$12 \frac{1}{2}$. 22	1.44
41	- 17	. 73	7	-21	. 92	9	- 20	1.16	14^{2}	- 24	1.48
5^{2}	. 19	. 76	9	. 26	1.01	10	. 22	1.19	16	. 27	1.54
6	. 22	. 81				11	. 24	1.23	21	. 34	1.68
						15	. 31	1.36			

TABLE 149-Continued.

It" bore			11/" bore			2" bore			2li" bore		
lb./yd.	t	O.D.	$\mathrm{lb} / \mathrm{yd}$.	t	O.D.	lb./yd.	t	O.D.	lb./yd.	t	O.D.
9	In .14	$\underset{1.53}{\text { in. }}$	12	in. .15 18	in.	16	in. .16	in.	38	in. . .30	in. 3.09
11	. 17	1.58	$13 \frac{1}{2}$. 18	1.85	19	. 19	2.38	44	. 34	3.18
14	. 21	1.66	18	. 22	1.95	24	. 23	2.46	59	. 43	$3 \cdot 37$
16	. 23	1.71	20	. 24	1.99	$25 \frac{1}{2}$. 24	2.49			
19	. 27	1.79	$23 \frac{1}{2}$. 28	2.06	28	. 27	2.54			
21	. 29	1.84	27.	. 32	$2 \cdot 14$	32	. 30	2.60			
28	. 37	2.00	35^{\prime}	. 40	$2 \cdot 30$	38	. 35	2.70			
						48	. 43	2.86			

B.N.F. Ternary alloy lead may be taken as having the same weight as lead.

PLUMBERS' WIPED JOINTS

TABLE 150

Diam. of pipe	$\frac{1}{2}$	$\frac{3}{4}$	1	$1 \frac{1}{4}$	$1 \frac{1}{2}$	2	3	4
Length of joint	$2 \frac{1}{2}$	$2 \frac{3}{4}$	3	3	3	$3 \frac{1}{4}$	in.	$3 \frac{1}{2}$
Weight of solder	$\frac{3}{4}$	1	$1 \frac{1}{4}$	$1 \frac{1}{2}$	$1 \frac{3}{4}$	$2 \frac{3}{4}$	$3 \frac{1}{2}$	$4 \frac{1}{4}$

B.S. 617-Identification of Pipes, etc., in Buildings

The specification recommends painting with the appropriate colour either the whole line, or a 12 -in. length on each pipe in positions readily seen, in each compartment of the building and next to valves, switches, etc. A list of identification marks to distinguish individual lines is also given. A separate specification is issued for Chemical Factories.

TABLE 15I

Service	Colour	Service	Colour
Air	White	Water :-	
Drainage	Black	Cold fresh	Azure blue
Electricity	Orange	Hydraulic power	S"̈ blue"
Gas	Deep cream	Hot fresh	Sky ble
Oil	Light brown	Central heating	Brilliant green
Refrigeration	French grey	Fire service	Signal red
Steam	Crimson	Salt	Sea green

HEAD REQUIRED BY SMALL WATER PIPES

Add to the length of pipe 2 ft . for each bend and obtain the head required by proportion from the table; for example actual length 40 ft . plus 5 bends $=50 \mathrm{ft}$., so take $\frac{50}{100}$ of value in table. Then, if the discharge required is 10 gals. per minute, a head of 8 ft . is needed for a 1 in . bore pipe, $2 \frac{1}{2} \mathrm{ft}$. for $1 \frac{1}{4} \mathrm{in}$. bore and so on.

A flow of 10 gals ./minute will supply sufficient for a bath in 3-4 minutes or fill a normal bucket in 10 seconds.

TABLE 152. Head H in feet required per 100 ft . of pipe

$\begin{gathered} \text { Inter- } \\ \text { nal } \\ \text { Diam. } \\ \text { of } \\ \text { Pipe } \end{gathered}$	Discharge in Gals. per minute.											
	2	4	6	8	10	12	14	20	40	60	80	100
	20 8	28 11 3	Veloc $\begin{array}{r} 26 \\ 6 \\ 2 \\ 1 \end{array}$	ities Exce 10 4 1.5	ssive 16 5 2	$\begin{array}{r} 23 \\ 7 \\ 3 \\ 0.6 \end{array}$	$\begin{array}{r} 10 \\ 4 \\ 1 \end{array}$	$\begin{array}{r} 7 \\ 1.5 \\ 0.5 \\ 0.2 \end{array}$	6 2 0.8	4.4 1.8	7.8 3.1	4.7

HYDRAULIC DATA

$1 \mathrm{cu} . \mathrm{ft}$. of fresh water weighs 62.3 lb . at $60^{\circ} \mathrm{F}$.
sea , (av.) ,, 64.0 lb .
I gallon of fresh water weighs 10.0 lb .
$1 \mathrm{cu} . \mathrm{ft} .=6.23 \mathrm{gals}$.
$1 \mathrm{cu} . \mathrm{ft}$. per second (cusec) $=60 \mathrm{cu}$. ft. per minute (c.f.m.) $=374$ gals.
per minute (g.p.m.) $=28,430$ gals. per hour (g.p.h.)
1 ft . of head $=.433 \mathrm{lb} . / \mathrm{sq} . \mathrm{in}$.
$1 \mathrm{lb} . / \mathrm{sq} . \mathrm{in} .=2.30 \mathrm{ft}$. of head.
I in. on mercury manometer $=0.49 \mathrm{lb} . / \mathrm{sq}$. in.
$1 \mathrm{atmosphere}=14.7 \mathrm{lb} . / \mathrm{sq} . \mathrm{in} .=29.9 \mathrm{in}$. of mercury.
$=33.9 \mathrm{ft}$. of water.

DISCHARGE OF SMALL DRAINS AND SEWERS OF CONCRETE OR SALT-GLAZED WARE

Calculated from Barnes' Formula for Slimy Sewers :

$$
Q=31.85 \times 60 \times d^{2.70} \times i^{.50} \text { c.f.m }
$$

TABLE 153. Discharge, cu. ft./minute

Hydraulic Gradient*	Diameter of Pipe				
	$4 "$	6"	9"	$12^{\prime \prime}$	15*
1 in 40	16	46	139	302	552
1 in 60	13	38	114	247	451
1 in 80		33	98	213	390
1 in 100		29	88	191	349
1 in 120			80	174	318
1 in 140			74	161	295
1 in 160			69	151	276
1 in 180			66	144	263
1 in 200				135	247
1 in 250				121	221
1 in 300				110	201
Usual minimum	1 in 60	1 in 90	1 in 180	I in 380	1 in 500

$$
\begin{aligned}
& \text { DISCHARGE OF UN-PLANED WOOD FLUMES } \\
& \text { Calculated from Barnes' formula : } \\
& Q=A v=A \times 182.5 \mathrm{~m}^{.66 s} i^{.569} \times 60 \mathrm{c} . \mathrm{f} . \mathrm{m} .
\end{aligned}
$$

TABLE 154. Discharge, cu. ft./minute

Hydraulic Gradient*	Internal Section of Flume, Breadth \times Depth, in.						
	$\left\|\begin{array}{c} 12^{\prime \prime} \times 12^{\prime \prime} \\ 24 \times 6 \end{array}\right\|$	24×12	$\begin{aligned} & 24 \times 18 \\ & 36 \times 12 \end{aligned}$	36×6	36×18	$\begin{aligned} & 36 \times 24 \\ & 48 \times 18 \end{aligned}$	48×12
1 in 100	383	1000	1700	622	2960		
1 in 200	258	677	1150	419	2000	2910	1640
1 in 300	205	538	910	333	1580	2310	1300
1 in 400	174	456	773	282	1340	1960	1110
1 in 500	153	402	681	249	1180	1730	970

* The hydraulic gradient is not necessarily equal to the gradient of the channel. It is defined as the drop in free water level (e.g. at manhole chambers) divided by the distance measured along the line of flow.

COVERING POWER OF PAINTS AND COATINGS

TABLE 155

Ironwork :

Yards super per gallon

Red lead oil paint, priming 80
second coat
110
White lead oil paint on undercoat . . . 130
Bituminous solution
100-130

Wrought Woodwork :

Knotting 800
Linseed oil 80
Stain 100
Tar 20
White lead oil paint, priming 90
second coat . . . 110
third coat . . . 120-130
Enamel finish paint, undercoat . . . 100
finish coat . . . 70
Enamel, first coat 70
second coat 80
Varnish, first coat 60
second coat 80
Carbolineum or sideroleum 40
Rough Woodwork :
Creosote 20
Tar 10
Plaster :
Oil paint, priming 70
second coat 100
Water paints, distempers, first coat . . . 4
second coat . . 8
Size (dry weight) 30
Whitening, first coat 7
second coat 10

Stucco or Concrete :

Water paints, distempers, first coat . . . 3 second coat . . 6

ELECTRICAL DATA

Ampères $=\frac{\text { Volts }}{\text { Ohms }} . \quad$ Watts $=$ ampères \times volts $=(\text { ampères })^{2} \times$ Ohms.
The above relations apply to direct current supply. In alternating current circuits the effect of inductance and capacity must be included, but on ordinary systems for the lighting and heating of building these factors may be ignored.

I Kilowatt $(K W)=1000$ watts $=1.34$ horsepower.
I "Unit" or Board of Trade Unit (B.T.U.) = I kilowatt-hour.
I Horsepower $=746$ watts $=550 \mathrm{ft}$. lb . $/ \mathrm{second}$.
When converting horsepower to watts, etc., the efficiency of the plant must be taken into account.

For thermal and gas equivalents see page 199.

DOMESTIC ELECTRIC CONSUMPTION
TABLE 156

Appliance	Watts
Boiling ring, to boil I qt. in 15 mins.	1000
Flat iron, 3 ib.	350
Griller, per sq. in of surface	12
Hot plate	$150-300$
Kettle, to boil I qt . in. 10 mins.	700
Oven $12^{\prime \prime} \times 12^{\prime \prime} \times 15^{\prime \prime}$	2000
Radito $\times 16^{\prime \prime} \times 18^{\prime \prime}$	3000
Toaster, per 1000 cu. ft. of space	1000
Vacuum cleaner	350
Water boiler, small, per gal.	$500-600$

The next two tables are based, in part, on data in the Institution of Electrical Engineers' Regulations for the Electrical Equipment of Buildings, reproduced by permission of the Institution.

The second column of Table 157 gives average values for 250 volt cables: the sizes vary slightly among different manufacturers. The diameters of 600 volt cables are somewhat greater.

VULCANISED-RUBBER-INSULATED CABLES

TABLE 157

ConductorSize	$\begin{aligned} & \text { Nominal } \\ & \text { Outside } \\ & \text { Diameter } \\ & \text { in. } \end{aligned}$	Current Rating when in Conduit, amp.			$\begin{gathered} \text { Resistance } \\ \text { Per } 1000^{2} \\ \text { Yds. at } 0^{\circ} \mathrm{F}, \\ \text { ohms } \end{gathered}$
		$\begin{gathered} \text { Not more } \\ \text { than } 2 \text { Single } \\ \text { Cables } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { Not more } \\ \text { chan } 4 \text { Single } \\ \text { Cables } \end{gathered}\right.$	$\begin{array}{\|c\|} \text { Not more } \\ \text { than } 8 \text { Single } \\ \text { Cables } \end{array}$	
1/044	. 155		5	5	15.79
3/.029	. 180		5	5	12.36
3/.036	- 200		10	8	8.019
71.029	-210		15	12	$5 \cdot 281$
71.036	. 235	29	23		3.427
71.044	. 270	38	30		2.294
7/.052	. 300	45	36		1.643
71.064	. 345	56	45		1.084
191.044	. 380	65	52		0.847
19/.052	. 425	78	62		0.606

ELECTRIC CONDUITS

Weight, thickness and radius in accordance with B.S. 31.
Cable capacity in accordance with Regulations for the Electrical Equipment of Buildings.

TABLE 158

Outside Diam. of Conduit	$1^{\prime \prime}$	$8{ }^{\text {" }}$?		$1{ }^{\prime \prime}$		1 ${ }^{\prime \prime}$		$1{ }^{\circ}$		2^{*}		$2{ }^{4}$	
Nominal thickness : Class A (plain) Class B (screwed)	$\begin{aligned} & \text { in. } \\ & .040 \\ & .056 \end{aligned}$.040 .064		.048 .072		$\begin{aligned} & .048 \\ & .07 \end{aligned}$. 05		. 06		. 06		. 072	
Weight per $100 \mathrm{ft}, \mathrm{lb} .\left\{\begin{array}{l}\text { A } \\ B\end{array}\right.$	$\begin{aligned} & 20 \\ & 27 \end{aligned}$	26 39		37 53		50 73		73 93		12				19	
Min. radius on C.L. : Elbow or tee Normal or $\frac{1}{2}$ normal bend	$\frac{1}{2} \frac{1}{2}$	${ }_{1}^{\frac{5}{8}} \frac{\frac{5}{9}}{16}$		$\frac{3}{17}$		1		1t		$1 \frac{1}{2}$ 3				21 64	
Conductor Size	Maximum Number of Cables														
	S ${ }^{\text {B }}$	s	B	5	B	5	B	5	B	s	B	S	B	S	B
	22	5 4 3 2	4 3 2 2	7 7 5 5 5 3 2 2	5 4 4 2	13 12 10 8 6 6 5 4 3 2	10 10 8 6 5 5 4 3 2	20 20 18 12 10 8 6 4 4 4 3	14 14 14 12 10 8 8 7 5 4 4 3 2	 8 7 6 5	6 6 5 4	10 8	7	12	8

Conduit is ordered by the outside diameter and class (A or B). Pipe hooks for fixing conduit to walls, and standard connector boxes, etc., are covered by B.S. 31. A normal bend turns through 90° and a half-normal bend through 45°. The cables referred to are 250 v . grade vulcanised-rubberinsulated in accordance with B.S. 7. Column S applies to runs not exceeding 14 ft . between draw-in boxes and not deflecting from the straight more than 15°; column B to runs which deflect more than 15°. .

Electric conduits must not be allowed to touch gas or water pipes, but may be earthed to water pipes.

DIMENSIONS AND WEIGHT OF GALVANISED OPEN CISTERNS

TABLE 159

Gals.	Typical Dimensions				Weight of		Minimum Thickness of Sheet. BG.
	Size on Plan	Depth of Water	Size on Plan	Depth of Water	Cistern ib.	Water lb.	
20	$2^{\prime} \times 1{ }^{\prime \prime} 4^{\prime \prime}$	$1{ }^{\prime \prime}{ }^{\prime \prime}$	$1^{\prime} 8^{\prime \prime} \times 1^{\prime} 8^{\prime \prime}$	$1^{\prime \prime} 3^{\prime \prime}$	19	200	20
30	$2^{\prime} \times 1{ }^{\prime \prime} 6^{\prime \prime}$	$1^{\prime \prime}{ }^{\prime \prime}$	$2^{\prime} \times 2^{\prime}$	$1^{\prime \prime} 4^{\prime \prime}$	24	300	.,
40	$2^{\prime} 3^{\prime \prime} \times 1^{\prime \prime} 8^{\prime \prime}$	$1^{\prime} 8^{\prime \prime}$	$2^{\prime} \times 2^{\prime \prime}$	$1^{\prime \prime} 8^{\prime \prime}$	30	400	"
50	$2^{\prime} 5^{\prime \prime} \times 1^{\prime \prime} 10^{\prime \prime}$	$1^{\prime} 10^{\prime \prime}$	$2^{\prime} 1^{\prime \prime} \times 2^{\prime \prime} 1^{\prime \prime}$	$1^{\prime} 10^{\prime \prime}$	35	500	\cdots
60	$2^{\prime} 6^{\prime \prime} \times 1^{\prime} 11{ }^{\prime \prime}$	2^{\prime}	$2^{\prime} 3^{\prime \prime} \times 2^{\prime \prime} 3^{\prime \prime}$	$1^{\prime} 11{ }^{\prime \prime}$	40	600	$\ddot{\square}$
80	$3^{\prime} \times 2^{\prime} 2^{\prime \prime}$	$2 '$	$2^{\prime} 6^{\prime \prime} \times 2^{\prime} 6^{\prime \prime}$	2'1"	63	800	18
100	$3^{3} \times 2^{\prime} 6^{\prime \prime}$	$2^{\prime} 2^{\prime \prime}$	$2^{\prime} 9^{\prime \prime} \times 2^{\prime \prime} 9^{\prime \prime}$	$2^{\prime} 1^{\prime \prime}$	71	1000	
150	$3^{\prime \prime} 7^{\prime \prime} \times 2^{\prime} 10^{\prime \prime}$	2' ${ }^{\prime \prime}$	$3^{\prime \prime} \times 3^{\prime \prime}$	$2^{\prime} 8^{\prime \prime}$	130	1500	16
200	$4^{\prime \prime} \times 3^{\prime \prime}$	$2^{\prime} 8^{\prime \prime}$	$3^{\prime} 6^{\prime \prime} \times 3^{\prime \prime} 6^{\prime \prime}$	$2^{\prime} 7^{\prime \prime}$	160	2000	"
300	$4^{\prime} 6^{\prime \prime} \times 3^{\prime \prime} 7^{\prime \prime}$	$3^{\prime} 0^{\prime \prime}$	$4^{\prime} 0^{\prime \prime} \times 4^{\prime}$	3^{\prime}	200	3000	",

DIMENSIONS OF HOT WATER CYLINDERS

Suitable for 30 ft . working head
TABLE 160

Gallons	Diameter	Height over Dome	Weight, lb.		
Cylinder	Water				
19	$1^{\prime} 6^{\prime \prime}$	$2^{\prime} 0^{\prime \prime}$	50	190	
25	\because	$2^{\prime} 6^{\prime \prime}$	59	250	
30	$3^{\prime \prime}$	$3^{\prime} 0^{\prime \prime}$	66	300	
37	$1^{\prime \prime} 8^{\prime \prime}$	$3^{\prime \prime} 6^{\prime \prime}$	76	370	
44	$1^{\prime \prime} 10^{\prime \prime}$	$4^{\prime} 10^{\prime \prime}$	145	440	
62	$2^{\prime} 0^{\prime \prime}$	$4^{\prime} 6^{\prime \prime}$	152	820	
83	100	$\prime \prime$	$5^{\prime} 4^{\prime \prime}$	172	
			1000		

HEATING DATA

The heating requirements of normal small brick buildings, in which no effort has been made to reduce heat losses by the incorporation of insulating materials, may be estimated by rule of thumb methods. For thermal units and equivalents see page 199.

HEATING AND RADIATOR AREA REQUIRED PER 1000 CU . FT. OF SPACE

TABLE 161

Temperature malntained in Excess over Outside Air	B.Th.U. per hour	Area of Radiator plus Exposed Piping		
		Low Pressure Hot Water at $160^{\circ} \mathrm{F}$.	Low	Pressure Steam, 5 lb . gauge
$20^{\circ} \mathrm{F}$.	1600	12 sq. ft.		7 sq. ft.
25°	2150			
30°	2700	20		12
35°	3400	25		15
40°	4200	31		19

Additions to the above should be made separately for the particular circumstances listed below.

For exceptionally high or unsheltered sites When heating is cut off during the night	$\begin{aligned} & . \quad 15 \% \\ & . \quad 15 \% \end{aligned}$
For rooms facing north to east	. 10\%
For each external wall of room above one	- 10\%
In lofty rooms : 12 ft . up to 15 ft .	5\%
15 ft . to 25 ft .	10\%
over 25 ft .	15\%

In Post-War Building Studies, No. I-House Construction, desirable standards of insulation for walls of houses are given. For large buildings it is necessary to make accurate estimates of heat loss so as to secure the best balance between capital expenditure on insulation and annual cost of heating. See the notes following Table 165.

RADIATION FROM HORIZONTAL PIPES TO AIR AT $60^{\circ} \mathrm{F}$.

TABLE 162. B.Th.U./hour/lineal foot

Internal Diamter of Pipe	Temperature in Pipe		
	$160^{\circ} \mathrm{F}$.	$212^{\circ} \mathrm{F}$.	$226^{\circ} \mathrm{F} .(5 \mathrm{Ib}$ gauge)
$1^{\frac{3}{4}}$	63	96	104
$1 \frac{1}{2}$	77	117	128
$1 \frac{1}{2}$	105	146	159
2	124	160	174
$2 \frac{1}{2}$	146	228	206
3	175	266	242
4	218	332	290

HOT WATER SERVICE
The following amounts of storage in hot tank are usually recommended :

Per bath	.				
Per sink $:$	hotel, etc.	.	.	.	40
commercial	.	.	.	$10-20$	$"$
coms					
domestic	.	.	.	7	$"$
Per lavatory basin	.	.	.	3	$"$

The boiler should be capable of raising the hot tank contents through $100^{\circ} \mathrm{F}$. in $1 \frac{1}{2}$ to 2 hours. For dimensions of hot tanks, see Table 160.

To heat 100 gallons of water through $100^{\circ} \mathrm{F}$. In 2 hours requires $\frac{100 \times 10 \times 100}{2}=50,000$ B.Th.U./hr., to which should be added 20% for loss in exposed circulation in small installations, l.e. about 600 B.Th.U./hr./ gallon stored.

I cu. ft. of town gas gives about 500 B.Th.U.

Heating Data-Continued.

SMALL BOILERS BURNING SOLID FUEL

In accordance with the recommendations of B.S. 758.

TABLE 163

Heating Surface sq. ft.	Performance B.Th.U./hour		Smoke Pipe Diameter in.	Storage Vessel gals.	Circulating Pipe Diameter, in.	
	Continuous	Short Period			Soft Water	$\begin{aligned} & \text { Hard } \\ & \text { Water } \end{aligned}$
2	12000	20000	4	25-30	I	$1 \frac{1}{4}$
$2 \frac{1}{2}$	15000	25000		25-37	$1 \frac{1}{4}$	\cdots
3	18000	30000	$4 \frac{1}{2}$	30-45		$1 \frac{1}{2}$
4	24000	40000	,	40-60	$1 \frac{1}{4}-1 \frac{1}{2}$	\because
5	30000	50000	"	50-75	${ }_{1}^{1 \frac{1}{2}}$	$1 \frac{1}{2}-2$

For larger installations the makers should be consulted.
All pipes and fittings in heating installations should be of " steam " weight (see Table 144 (M.W.B.)).

The hot draw-off should be not further than 25 ft . from hot water cistern or flow plpe (M.O.H.) ; a maximum of 16 ft . is preferred (M.W.B.).

BOILER FLUE SIZES

TABLE 164. Thousands of B.Th.U./hr.

Size of Flue, in.	Height of Flue, feet.			
	20	30	40	50
$9 \times 4 \frac{1}{2}$	70	90	120	130
9×9	190	230	270	310
14×9	320	420	460	500
14×14	400	600	800	900

DESIRABLE AIR TEMPERATURES

TABLE 165

Accommodation	Degroes F.
Garages for storage only	40
Bedrooms, corridors in public buildings, dance halls	50
Shops, showrooms, factories for light manual work	55
Churches, lecture halls, theatres, cinemas, concert halls	$58-60$
Factories, workers seated	60
Offices, living and bed-sitting rooms	62
Hospitals, schoolrooms, nurseries	65
Operating theatres, drying rooms	75

Transmittonce of Heat

The property often tabulated in connection with the transmittance of heat through various materials is the Thermal Conductivity, which in British units is defined as the number of British Thermal Units (B.Th.U.) transmitted through a stated thickness of the material per square foot per hour per degree Fahrenheit difference of temperature between the faces. When dealing with different materials in combination a more convenient unit is the Thermal Resistance, i.e. $\frac{1}{\text { Thermal Conductivity }}$, defined as the number of hours required to transmit I B.Th.U. through a stated thickness of the material per square foot per degree F. difference of temperature between the faces; these units can be added algebraically.

The temperatures which interest the designer, however, are not those of the faces of the construction but of the air on each side of it, and the rate of loss of heat depends, for a given difference of air temperature, not only on the thermal resistance of the material but also on the readiness with which the outer surface transfers heat to the atmosphere by convection and radiation. The practical unit for heating purposes is the Heat Transmittance Coefficient U, measured in B.Th.U./sq. ft./hr./degree F. difference in air temperature, and it varies according to the exposure.

Table 166 gives the values of U for various constructions with normal exposure ; the values should be increased by $10 \%-20 \%$ for walls facing north, and on exceptionally exposed sites.

The rate of heat loss through a wall of area A sq. ft. and Transmittance Coefficient U, if the inside air temperature is maintained at $t^{\circ} \mathrm{F}$. above the outside temperature, is $A \times U \times t$ in B.Th.U./hr., and the sum of these quantities for the walls, floor and ceiling or roof of a room or building is equal to the rate of heating required to maintain the difference of temperature assumed.* Boilers and heating appliances are rated in B.Th.U./hr. The outside temperature for maximum heating requirements may be taken as $30^{\circ} \mathrm{F}$. in the south of England and $20^{\circ} \mathrm{F}$. in the north. Desirable inside temperatures are given in Table 165.

> * (Allowance must be made for loss due to draughts, see Table 167.)

TRANSMITTANCE COEFFICIENT U FOR TYPICAL CONSTRUCTIONS

The values of U in B.Th.U./sq. ft ./hr./degree F. difference of air temperature on the two sides are tabulated below for normal exposure, see the preceding notes. The constructions are listed in order of merit for heat insulation.
TABLE 166

Wall Construction (Dry unless otherwise stated)	u
$6^{\prime \prime}$ foamed slag concrete 1:6, rendered, $1 \frac{1}{}{ }^{\prime \prime}$ " wood wool lining	. 15
2-4 $\frac{1}{\prime \prime}^{\prime \prime}$ skins clinker concrete 1 $1010,2^{\prime \prime}$ cavity, render and plaster	.17 .18
"'i 2 " Fletton bkwk, $2^{\prime \prime}$ cavity, $\frac{1}{2}{ }^{\prime \prime}$ fibreboard on battens	$\cdot 18$
$6^{\prime \prime} 1: 2: 4$ ballast concrete, $1^{\prime \prime}$ cavity, aluminium foil, asbestos sheet on battens $4^{\prime \prime}$ Bath or Portland stone, $8^{\prime \prime}$ foamed slag concrete I: 6, plaster	. 19
$4^{\prime \prime}$ Bath or Portland stone, $8^{\prime \prime}$ foamed slag concrete I: 6 , plaster 9^{2} Fletton bkwk.. ** fibreboard on battens	.19 .21
	- 23
2-3" skins clinker concrete 1: 10, $\mathbf{2}^{\prime \prime}$ cavity, render and plaster	. 23
$\mathbf{2 - 2 \mathbf { k } ^ { \prime \prime }}$ and plaster"	. 25

TABLE 166-Continued.

Wall Construction (Dry unless otherwise stated)	u
7" stone concrete I: 2:4, 1" wood wool slab, render 9" Fletton bkwk, render, plaster on battens internally Corrugated asbestos sheeting, $\frac{1^{\prime \prime}}{2}$ fibreboard on battens internally 2-4 $\frac{1}{2}^{\prime \prime}$ skins Fletton bkwk, $2^{\prime \prime}$ cavity, plaster $3^{\prime \prime}$ stone concrete $1: 2: 4,2^{\prime \prime}$ cavity, $3^{\prime \prime}$ clinker concrete $1: 6$, render Corrugated steel sheeting, $\frac{1}{2}^{\prime \prime}$ fibreboard on battens internally $9^{\prime \prime}$ hollow clay tile, render and plaster $5^{\prime \prime}$ clinker concrete I: 10 , rendered, papered $4^{\prime \prime}$ Bath or Portland stone, $9^{\prime \prime}$ Fletton backing, plaster $9^{\prime \prime}$ London stock bkwk, dry, plaster 9" Fletton 2-41" ${ }^{\prime \prime}$ skins sandlime" bkwk' dry, " ${ }^{\prime \prime}$ " cavity, plaster 9" Fletton bkwk. 10" Stone or ballast concrete 1:2:4 $4^{\prime \prime}$ Bath or Portland stone, $4 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$ Fletton backing, plaster $8^{\prime \prime}$ no-fines concrete $1: 6$, stone aggregate, render and plaster $4^{\prime \prime}$ hollow clay tiles, render and plaster $9^{\text {9 }}$ Sandlime bkwk, dry, plaster $\mathbf{8}^{\prime \prime}$ stone or ballast concrete 1:2:4 $4^{\prime \prime}$ studding, lath and plaster both sides $4 \frac{1}{2}^{\prime \prime}$ hollow clay tiles, render and plaster $9^{\prime \prime}$ Sandlime bkwk, dry $6^{\prime \prime}$ stone or ballast concrete 1:2:4 $9^{\prime \prime}$ London stock bkwk, wet, plaster $41^{\prime \prime}$ Fletton bkwk. $5^{\prime \prime}$ stone or ballast concrete 1:2:4 $8^{\prime \prime}$ Bath or Portland stone $9^{\prime \prime}$ London stock bkwk, wet 4^{4} stone or ballast concrete 1:2:4 $4 \frac{1}{2}^{\prime \prime}$ sandlime bkwk. Corrugated asbestos sheeting, unlined ,, steel	.38 .30 .31 .3 .32 .32 .32 .36 .37 .40 .41 .42 $.43-.46$.44 .45 .45 .46 .48 .52 .53 .54 .55 .56 .58 .59 .62 1.15 1.2

The cavities are of normal construction with metal ties and unventilated.
Stucco, rough-cast or pebble-dash finishes may be substituted for rendering without materially altering the value of U. Render refers to the outside face and plaster to the inside face.

For constructions not listed see the text following the next Table.

Transmittance Coefficients-Continued.
TABLE 167

Pitched Roof and Celling Construction	u
Tiles, felt and battens. Ceiling $\frac{1_{2}^{\prime \prime}}{}{ }^{\prime \prime}$ fibreboard above ceiling joists, $\frac{1}{2}$ " fibreboard ceiling	17
Tiles, battens, boards and felt. Ceiling of plaster	. 30
Slating, felt underlay, ${ }^{\text {s/ }}$ " sarking. Ceiling of plaster	$\cdot 30-35$
Corr. steel or asbestos sheets, $\frac{1}{2 \prime \prime}$ fibreboard and air space, no ceiling	. 32
Tiles, felt and battens. Ceiling of plaster	. 43
Tiles, felt and boards, no ceiling	9
Tiles, felt and battens, no ceiling	1.1
Corr. asbestos sheets unlined, no ceiling	1.4
Flat Roof and Ceiling Construction	
$\frac{3}{2}^{\prime \prime}$ asphalt, $2^{\prime \prime}$ lightweight concrete screed, $6^{\prime \prime}$ concrete slab. Ceiling $\frac{1}{2}$ " fibreboard on battens It" boards and felt, wood joists. Ceiling of plaster "i" concrete slab, "í" asphalt " No ceiling $6^{\prime \prime}$ hollowtile concrete slab, $\frac{1}{2}$ " asphalt As above with $\frac{1}{2}$ " fibreboard lining See also wall construction, Table 166.	20
	. 22
	. 56
	53
	. 33
Windows and Lights	
King's Glas-crete pavement lights, single construction	. 43
21 oz. glass in wood frames ${ }^{1}$	1.08
., ", ", double glazed	. 5
Floor Construction ${ }^{\text {2 }}$	
Wood blocks or boards on concrete direct on ground $I^{\prime \prime} t$ and g boarding on wood joists, ventilated below	$\begin{aligned} & .15 \\ & .25 \end{aligned}$

[^4]| | | Thermal Resistance | |
| :---: | :---: | :---: | :---: |
| From Table 168: | $4 \frac{1}{2}$ in. Fletton brickwork | | |
| | 2 in . cavity and wall ties | | . 20 |
| | $4 \frac{1}{2} \mathrm{in}$. Fletton brickwork | as above | . 72 |
| | Air space at battens | | . 90 |
| | $\frac{1}{2} \mathrm{in}$. Fibreboard | $\frac{1}{2} \times 3.0=$ | 1.50 |
| | Total thermal resistance | e | 4.04 |
| | From graph, $U=\cdot 19$
 Table 166 gives 18 | | |
| Thermal Resistance K of Materials | | | |

The unit of thermal resistance is the number of hours required to transmit I B.Th.U. per sq. ft. per degree F. difference of temperature between the faces, and is given below per inch of thickness. The figure in the first column gives the order of merit in this table.

TABLE 168

	Material	Thermal Resistance		Material	Thermal Resistance
22	Air space $2^{\prime \prime}$, and ties	-20 5	29	Fireclay, at $600^{\circ} \mathrm{C}$.	. 11
18	", " ${ }^{\text {(}}$ (unventilated)	-50t	28	Glass	. $12-14$
	". " between wall and		2	Glass silk	3.4
9	lining on wood battens	.90t		Hardboard	1.4-2.0
2	As above with aluminium foil curtain in cavity	3.4*	13	Hardwood, mahogany oak, teak	.7 .6
37	Aluminium	. 00067	35	Iron, cast	. 0030
18	Asbestos cement sheets	. 48	36	wrought	. 0024
	Boards, see Hardwood, Softwood.		36 4	Lead	.0041 2.5
	Breeze, see Concrete, Clinker		31	Marble	. 2.5
6	Brickwork, diatomaceous	1.8	8	Perspex	1.02
24	Fletton, dry	. 16		Plaster	-1-5
23	Ldn. stocks, dry	. 17	17	do. partition slab	. 57
30	wet	.07	10	Plasterboard	.7-.9
29		. 11		Plastics, laminated Plywood	$\begin{aligned} & .45-7 \\ & 1.0 \end{aligned}$
	Cavity, see Air Space. Clinker, see Concrete.		8	Plywood Pumice, see Concrete.	1.0
25	Concrete, ballast I: $1: 2$. 15		Rendering, cement abt.	-2
26	1:2:4	.14	11	Rubber	. 8
27	do., no fines	.13-15	2	Slagwool (silicate cotton)	3.4
10	cellular	.5-1.0	30	Slate	. 07
21	clinker 1:6	. 36	8	Softwood	1.0
20 19	I : 10 foamed slag 1.6	.44 .46	34	Steel	. 0031
19 16	foamed slag $\begin{aligned} & \text { I } \\ & \text { I }\end{aligned}$. 46		Stone, Bath or Portland Stucco	.08 $.1-5$
12	pumice 1:6	. 72		Wood, see Hardwood,	
9	1:10	. 90	7	Softwood.	
38	Copper	. 00038	32	Wood wool slab	1.7
3	Cork slab	$3 \cdot 3$		Zinc	. 013
	Diatomaceous earth, see Brickwork.			For proprietary building	
				boards see Fibreboard,	
4 5	Fibreboard, insulating laminated	$\begin{gathered} 2.5-3.0 \\ 1.9 \end{gathered}$		Hardboard, Plasterboard, etc.	

* The values for air spaces must be taken as stated and not regarded as per inch of thickness.

I B.Th.U. (British Thermal Unit) is the quantity of heat required to raise the temperature of I lb . of water by $1^{\circ} \mathrm{F}$. (at $63^{\circ} \mathrm{F}$.).

I c.g.s. unit of thermal conductivity is the number of gm.-calories transmitted per sq. cm . per second per cm . thickness per degree C.

I B.Th.U. per sq. ft. per hour per degree F. per inch $=2903$ c.g.s. units.
I cu. ft. of ordinary town gas represents about 500 B.Th.U.
I Gas Therm $=100,000$ B.Th.U. = about 200 cu . ft. of town gas. $=29.32$ kilowatt-hours or "Units."
I B.Th.U. $=0.293$ watt-hours $=778 \mathrm{ft}$. lb.
I Kilowatt-hour $=34 \mathrm{II}$ B.Th.U. $=0.034 \mathrm{I}$ gas therms $=$ about $6.8 \mathrm{cu} . \mathrm{ft}$. of town gas.

In domestic installations I gas therm will raise 100 gals. of water by about $150^{\circ} \mathrm{F}$., and I B.T.U. will raise 100 gals. of water by $2-3^{\circ} \mathrm{F}$.

Gas Consumption

TABLE 169

	Cu. ft. per hour
Cooker ($1 \frac{3}{4} \mathrm{cu} . \mathrm{ft}$. oven, hotplate)	. 90
Fire, full on : 10 in .	30
14 in.	40
21 in.	- 65
Geyser (2 gals. per minute)	
Refrigerator, domestic .	- 2
Water Heater: bath •	. 200
storage, 20 gal.	- 40
wash copper, 5 gal .	- 25

Size of Gas Pipes
The chart below gives the flow in pipes of steam weight (see Table 144) for ordinary conditions.

WHITWORTH BLACK BOLTS, NUTS, LOCKNUTS AND WASHERS HEX-ROUND-HEX (B.S. 28)
The length is measured to the underside of head
TABLE 170.
Weight per bolt in lb .

Length in.	1"	8^{*}	$1{ }^{\prime \prime}$	\%	$q^{\prime \prime}$	\%"	$1 \times$ dia.
$\begin{aligned} & 1 \\ & 1 \frac{1}{2} \\ & 1 \frac{1}{2} \\ & 1 \frac{2}{4} \\ & 2 \\ & 2 \frac{1}{2} \\ & 2 \frac{1}{2} \\ & 2 \frac{3}{4} \\ & 3 \frac{1}{2} \\ & 4 \\ & 4 \frac{1}{2} \\ & 5 \\ & 5 \frac{1}{2} \\ & 6 \\ & 7 \\ & 8 \\ & 9 \\ & 10 \\ & 11 \\ & 12 \end{aligned}$	$\begin{aligned} & .042 \\ & .045 \\ & .049 \\ & .052 \\ & .056 \\ & .59 \\ & .063 \\ & .065 \\ & .069 \\ & .075 \\ & .082 \\ & .089 \\ & .096 \\ & .103 \end{aligned}$.106 .114 .22 .130 .138 .145 .53 .161 .169 .85 .200 .216 .232 .247	$\begin{aligned} & .222 \\ & .236 \\ & .250 \\ & .264 \\ & .278 \\ & .292 \\ & .305 \\ & .319 \\ & .333 \\ & .361 \\ & .389 \\ & .417 \\ & .445 \\ & .472 \\ & .500 \\ & .556 \\ & .612 \\ & .667 \\ & .723 \end{aligned}$	$\begin{aligned} & .376 \\ & .398 \\ & .419 \\ & .441 \\ & .463 \\ & .484 \\ & .506 \\ & .528 \\ & .549 \\ & .593 \\ & .637 \\ & .680 \\ & .724 \\ & .767 \\ & .810 \\ & .897 \\ & .984 \\ & 1.071 \\ & 1.158 \\ & 1.245 \end{aligned}$.612 .643 .675 .706 .737 .769 .800 .831 .862 .925 .988 1.050 1.13 1.175 1.238 1.363 1.488 1.613 1.739 1.863 1.989	.944 .986 1.029 1.072 1.114 1.157 1.999 1.242 1.327 1.412 1.497 1.583 1.667 1.753 1.923 2.094 2.264 2.434 2.605 2.775	$\begin{aligned} & 1.394 \\ & 1.449 \\ & 1.505 \\ & 1.561 \\ & 1.616 \\ & 1.672 \\ & 1.727 \\ & 1.838 \\ & 1.950 \\ & 2.061 \\ & 2.772 \\ & 2.283 \\ & 2.394 \\ & 2.617 \\ & 2.839 \\ & 3.062 \\ & 3.284 \\ & 3.57 \\ & 3.729 \end{aligned}$
Thickness of head	. 23	. 34	. 45	.56	67	- 78	89
Weight of one nut Thickness of nut	$\begin{aligned} & .0134 \\ & .26 \end{aligned}$	$\begin{aligned} & .0345 \\ & .39 \end{aligned}$	$\begin{aligned} & .0757 \\ & .51 \end{aligned}$	$\begin{aligned} & .1394 \\ & .64 \end{aligned}$	$\begin{aligned} & .2164 \\ & .76 \end{aligned}$	$\begin{aligned} & .3203 \\ & .89 \end{aligned}$	$\begin{aligned} & .4611 \\ & 1.01 \end{aligned}$
Thickness of locknut	$\cdot 18$. 26	. 34	. 43	.51	. 59	. 68
Thickness of washer Wt. per 100 washers Diameter washer	.064 .44 5	.080 1.02 7	.104 2.20 18	.128 4.04 178	.144 6.35 18	.160 9.38 17	.176 13.2 $2 \downarrow$

COACH SCREWS

TABLE 17I. Weight per gross, lb.

	Diameter		
Length			
	in.		
$1 \frac{1}{2}$	11	24	
$\mathbf{2}^{\prime \prime}$	13	26	46
$2 \frac{1}{2}$	15	30	51
3	17	34	57
$3 \frac{1}{2}$	19	38	62
4	21	42	68
5	25	49	79
6	29	59	90

LEWIS BOLTS (RAG BOLTS)
For nuts ee Whitworth bolts
TABLE 172. Dimensions and Weight

Diam.	$\frac{1}{2}$	\#"	!"	$8^{\prime \prime}$	$1{ }^{\prime \prime}$	$18^{\prime \prime}$	$1 z^{\prime \prime}$
L	5"	$6^{\prime \prime}$	6"	7"	$8{ }^{\prime \prime}$	$9{ }^{\prime \prime}$	10"
1	$3 \prime$	3 "	3"	$3 \frac{1}{2 \prime}^{\prime \prime}$	$4 \frac{1}{2}^{\prime \prime}$	5"	$6^{\prime \prime}$
b	$7{ }^{\prime \prime}$	119	$14^{\prime \prime}$	$1 \frac{1}{2}{ }^{\prime \prime}$	1音"	1717	21/ ${ }^{\prime \prime}$
$\begin{gathered} \text { Weight } \\ \text { Ib. } \end{gathered}$. 40	. 73	1.02	1.63	2.45	3.53	5.00

RIVET HEAD DIMENSIONS
Calculated in accordance with B.S. 275
TABLE 173

	Snap or Pan		Countersunk	
	Diameter In.	$\begin{aligned} & \text { Projec- } \\ & \text { tion } \end{aligned}$ in.	Diameter in.	Depth in.
	80	35	. 75	22
.	1.00	44	. 94	27
$\frac{3}{4}$	1.20	. 53	1.12	. 33
$\frac{7}{8}$	1.40	. 61	1.31	. 38
I	1.60	. 70	1.50	. 43

The nominal diameter is the diameter of the hole in which the rivet is driven.

COPPER ROVES

TABLE 174

Size, in.	$\frac{7}{b}$	$\frac{7}{6}$	$\frac{1}{2}$
lb. per 1000	3	$3 \frac{3}{4}$	5

WIRE NAILS

TABLE 175.
Number in I lb.

S.W.G.	Length, in.									
	$2^{\prime \prime}$	$1 *$	11*	$2{ }^{\prime \prime}$	21"	$3 *$	$3{ }^{\prime \prime}$	$4 *$	$5{ }^{\prime \prime}$	6"
0						22	19	11	9 13	8 11
4					36	30	26	23	18	15
6				62	50	41	35	31	25	21
8				86	69	57	49	43	35	
10			165	124	99	83	71	62		
12			274	205	164	137	117	103		
14		710	473	350	284	236				
16		1140	761	571						
18	2760	2070	1380							

Common constructional sizes are shown in bold figures.

WOOD SCREWS

TABLE 176

Size	Diameter in.	Size	Diameter in.
0	.052	11	.206
1	.066	12	.202
2	.080	13	.234
3	.094	14	.248
4	.108	15	.262
5	.122	16	.276
6	.36	17	.290
7	.150	18	.304
8	.164	19	.318
9	.178	20	.332
10	.192		

The length of roundhead screws is measured to the underside of head. countersunk screws overall.

RAILWAY RAILS
TABLE 177.
British Standard Flat Bottom

Weight lb. per yard	Dimensions in inches			Section Modulus Z in. ${ }^{\text {a }}$	$\begin{aligned} & \text { B.S. } \\ & \text { No. } \end{aligned}$
	Height	Width of Head	Width of Base		
14	$2 \cdot 125$	1.156	$2 \cdot 125$		536
20	$2 \cdot 5$	1.375	2.5	1.37	
25	2.875	$1 \cdot 5$	2.75	1.88	11
30	$3 \cdot 125$	1.625	3.0	2.44	"
35	$3 \cdot 375$	1.75	$3 \cdot 25$	$3 \cdot 10$	",
40	3.625	1.875	3.5	3.77	",
45	3.875	1.969	3.75	4.55	"
50	$4 \cdot 125$	2.062	3.937	5.43	"
55	4.312	2.156	$4 \cdot 125$	6.22	"
60	4.5	$2 \cdot 25$	4.312	7.04	"
65	4.687	2.312	4.437	7.79	"
70	4.875	2.375	4.625	8.73	",
75	5.062	2.437	4.812	9.72	"
80	5.25	2.5	5.0	10.75	"
85	5.437	2.562	5.187	11.61	,
90	$5 \cdot 625$	2.625	5.375	13.05	"
95	5.812	2.687	5.562	14.22	",
100	6.0	2.75	5.75	15.37	"
110	6.25	2.875	6.0	17.41	,
120	6.5	3.0	6.25	19.73	,

TABLE 178. British Standard Bull Head (B.S. 9)

Weight	Dimensions, inches		Section 16. per yard
	Height	Width Modulus of Head	Zin.
60	4.75	2.312	6.47
65	4.875	2.375	7.22
70	5.0	2.437	7.92
75	5.125	2.5	8.53
80	5.375	2.562	9.64
85	5.469	2.687	10.44
90	5.547	2.75	11.00
95	5.719	$"$	11.77
100	5.906	$"$	12.47

WEIGHT AND STRENGTH OF MANILA ROPES In accordance with B.S. 431 -Manila Ropes for General Purposes
TABLE 179. 3 Strand (Hawser Laid) Manila Rope

Circumference in.	Approx. Diameter Diameter in.	Safe Load in Cwe.			Woight per 100 ft . lb.
		Grade I or Special Quality. Quality	Grade II or Standard Qualityl	Grade III or Merchant Quality	
I \qquad $\frac{1}{2}$ $\frac{1}{2}$ $\frac{3}{3}$	$\frac{5}{16}$ $\frac{9}{16}$	1.8 2.7 4.0 5.3	1.6 2.4 3.5 4.7	$\begin{aligned} & 1.4 \\ & 2.1 \\ & 3.1 \\ & 4.1 \end{aligned}$	3.6 4.7 7.2 9.6
2		7.1 8.5 10.5 12.7	$\begin{array}{r} 6.3 \\ 7.6 \\ 9.4 \\ 11.4 \end{array}$	5.5 6.6 8.2 9.9	13.1 15.1 20.3 23.9
3 1 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	15 18	15.0 17.4 20.0 22.8	13.3 15.5 17.7 20.2	10.7 13.6 15.5 17.7	28.6 33.4 39.3 43.9
4	14 $1 \frac{1}{2}$	25.6 28.5 31.9 35.1	22.7 25.3 28.3 31.2	19.9 22.1 24.8 27.3	51.3 57.2 64.3 71.5
5		38.8	34.4	31.8	80.0

The safe loads given above are based on a Factor of Safety of 6.
Where the rope is knotted or spliced a deduction of $\frac{1}{3}$ should be made.
4 STRAND (shroud laid) has a central core ; the strength is 10% less than for 3 strand and the weight $5 \%-10 \%$ more.

SISAL has about the same strength and weight as Manila rope.
TARRED HEMP weighs 25% more and is 30% weaker than Manila.
COIR weighs 25% less and is about 70% weaker than Manila.
Cordage is always specified by the circumference.

WEIGHT AND STRENGTH OF STEEL WIRE ROPES

In accordance with B.S. 302-Round Strand Steel Wire Rope for Cranes.
The values below are for Best Patent Steel $80-90$ tons $/ \mathrm{sq}$. in. For other qualities multiply the strength by :-

$$
\begin{aligned}
& \text { Special Improved Patent Steel 90-100 tons/sq. in. . . } 1 \cdot 10 \\
& \text { Best Plough Steel . . 100-110 , ". . } 1.23 \\
& \text { Special Improved Plough Steel IIO-120 , ", . . I.35 }
\end{aligned}
$$

TABLE 180. Steel Wire Ropes-80-90 ton quality

Circumference in.	Approx. Diameter in.	Safe Load in Tons			Weight per 100 ft . lb.
		Construction			
		6/19	6/24	6/37	
1	$\frac{5}{16}$. 46	. 40	. 47	18
11		. 55	. 55	. 57	21
$1 \frac{1}{1}$. 70	.67	.65	25
$1 \frac{1}{8}$. 82	. 79	. 78	30
$1 \frac{1}{2}$		1.00	. 95	. 96	36
$1 \frac{1}{8}$	$\frac{1}{2}$	1.21	1.09	1.13	43
$1 \frac{3}{4}$		1.35	1.25	1.34	50
2	宫	1.84	1.71	1.78	66
21	$\frac{8}{16}$	2.02	1.92	2.02	74
21		2.32	2.13	2.29	84
$2 \frac{1}{2}$	$4 \frac{3}{6}$	2.85	2.71	2.71	102
$2 \frac{3}{4}$	7	3.42	$3 \cdot 22$	3.34	123
3	$1 \frac{5}{6}$	4.31	3.79	4.03	154
31		5.01	4.56	4.56	184
$3 \frac{1}{2}$	It	5.91	$5 \cdot 22$	5.36	217
$3 \frac{3}{4}$		6.74	$5 \cdot 92$	$6 \cdot 22$	247
4	$1 \frac{1}{4}$	7.60	6.87	$7 \cdot 15$	275
$4 \frac{3}{8}$	$1 \frac{1}{1}$	9.12 10.7	8.10 9.69	$8 \cdot 38$	336
$4 \frac{3}{4}$	$1 \frac{1}{2}$	10.7	$9 \cdot 69$	10.0	392
Sheave diameter		$7 \cdot 5$	$7 \cdot 0$	6.0	
Rope	ircumf.				

The safe loads given above are based on a Factor of Safety of 6, which is usually sufficient. The sheave diameters are those recommended for rope speeds up to 200 ft ./minute ; the life of the rope is shortened if smaller sheaves are used.

SHORT LINK WROUGHT IRON CHAINS

The working loads given below are in accordance with the recommendations of B.S. 394 -Short Link Wrought Iron Crane Chains, and of the Home Office, for chains of "Standard " quality (corresponding approximately to the old BBB quality).

Where a chain is subject to shock or passes over an edge or where there is any special hazard the working load is to be substantially less than the values tabulated.

Chains become brittle in use and should be sent periodically for heat treatment.

The nominal diameter is the diameter of the material in the link ; the overall width of each link is $3 \frac{1}{4}$ times the nominal diameter.

TABLE 181

$\begin{aligned} & \text { Nominal } \\ & \text { Size. } \\ & \text { in. } \end{aligned}$	Weight per foot． lb．	$\begin{array}{\|c\|} \text { Working } \\ \text { Load (see } \\ \text { notes above) } \\ \text { tons } \end{array}$
$\frac{5}{7}$	1.25 1.71	$\begin{aligned} & .55 \\ & .80 \end{aligned}$
$\frac{7}{16}$	2.25	1.12
$\frac{1}{2}$	2.92	1.50
$\frac{5}{16}$	3.75	1.87
\％	4.50	2.32
穼	6.17	3.37
7	$11^{8.5}$	4.57
1	11	$6 \cdot 0$

A separate specification is issued covering Pitched or Calibrated chain for working over chain wheels．

STRENGTH OF SHACKLES
In accordance with B．S．825－Mild Steel Shackles for Lifting Purposes

TABLE 182.

D Shackles

Material Diameter in．	Small D Shackles			Large D Shackles		
	$\begin{gathered} \text { Opening } \\ \text { On. } \end{gathered}$	in Diameter in．	Working Load tons	$\begin{gathered} \text { Jaw } \\ \text { Opening } \\ \text { in. } \end{gathered}$	Pin Diameter in．	Working Load tons
$\frac{3}{8}$ $\frac{1}{2}$ $\frac{8}{8}$ $\frac{8}{4}$ $\frac{8}{4}$ 1	$\begin{aligned} & \frac{5}{6} \\ & \frac{1}{8} \\ & 1^{\frac{1}{3}} \\ & 1 \frac{1}{1} \\ & 1 \frac{1}{2} \end{aligned}$	$\begin{array}{r} \frac{1}{2} \\ \frac{5}{8} \\ \frac{3}{4} \\ \frac{7}{8} \\ 1 \\ 1 \frac{1}{8} \end{array}$	$\begin{aligned} & .6 \\ & 1.0 \\ & 1.5 \\ & 2.0 \\ & 2.75 \\ & 3.5 \end{aligned}$	$\begin{aligned} & \frac{3}{4} \\ & 1 \frac{1}{8} \\ & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{1}{2} \\ & 2_{4}^{4} \end{aligned}$	$\begin{array}{r} \frac{1}{2} \\ \frac{5}{8} \\ \frac{3}{4} \\ \frac{7}{8} \\ 18 \\ 1 \frac{1}{8} \end{array}$.5 .75 1.25 1.75 2.25 3.0

TABLE 183.
Bow Shackles

Material Diameter in．	Small Bow Shackles．			Large Bow Shackloz		
	$\begin{gathered} \text { Jaw } \\ \text { Opening } \\ \text { In. } \end{gathered}$	$\begin{gathered} \text { Pin } \\ \text { Diameter } \\ \text { In. } \end{gathered}$	Working Load tons	$\begin{gathered} \text { Jaw } \\ \text { Opening. } \\ \text { In. } \end{gathered}$	Pin． Diameter in．	Working Load tons
\％ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{4}$ $\frac{1}{4}$ 1	$\begin{gathered} \frac{1}{1} \\ \frac{1}{1} \\ \frac{1}{\frac{1}{2}} \\ \frac{1}{2} \\ \hline \end{gathered}$	$\begin{aligned} & \frac{3}{1} \\ & \frac{1}{3} \\ & \frac{1}{8} \\ & \frac{1}{3} \\ & 1^{\frac{3}{3}} \end{aligned}$	$\begin{aligned} & .3 \\ & .5 \\ & .75 \\ & 1.25 \\ & 1.75 \\ & 2.25 \end{aligned}$	量 1 1 1 1 1 1 1 章		.35 .6 1.0 1.5 2.0 2.5

GENERAL TABLES

GENERALTABLES

SIMPSON'S RULE

To find the area under a curve as shown in the sketch:-

Divide the base into an even number of parts so that there is an odd number of ordinates. Then if S_{E} is the sum of the
 lengths of the end ordinates E, S_{A} the sum of the alternate ordinates A and S_{B} the sum of the remaining (even) ordinates B, then the area of the figure is approximately

$$
\frac{b}{3}\left(S_{E}+4 S_{A}+2 S_{B}\right)
$$

The greater the number of ordinates used, the more accurate will be the result.

QUADRATIC EQUATIONS

$$
\begin{aligned}
\text { If } a x^{2}+b x+c=0, & x=-b \pm \frac{\sqrt{b^{2}-4 a c}}{2 a} \\
\text { or, if } x^{2}+a x=b, & x=-\frac{a}{2} \pm \sqrt{b+\left(\frac{a}{2}\right)^{2}}
\end{aligned}
$$

AREAS OF SMALL CIRCLES
TABLE 184. For Round Bars at different spacings see Table 88

S.W.G. or Diameter in.	Area sq. in.	Diameter in.	Area sq. in.	Diameter in.	Area sq. in.
20 g	. 0010	$\frac{3}{8}$. 110	$2 \frac{1}{2}$	4.908
18g	. 0018	$\frac{7}{16}$	$\cdot 150$	$2 \frac{3}{4}$	5.939
16 g	. 0032	$\frac{1}{2}$	- 196	3	7.069
14 g	. 0050	$\frac{9}{16}$. 248	314	8.295
13 g	. 0066	${ }^{\frac{5}{8}}$	- 307	$3 \frac{1}{2}$	9.621
12 g	. 0085	$\frac{11}{6}$. 371	$3 \frac{3}{4}$	11.04
11 g	. 0106	$\frac{3}{4}$. 442	4	12.57
$\frac{1}{8}$. 0122	$\frac{1}{6}$. 518	41	14.18
10 g	. 0129	$\frac{7}{8}$. 601	$4 \frac{1}{2}$	15.90
9 g	. 0163	$\frac{15}{6}$.690	$4 \frac{1}{4}$	17.72
8 g	. 0201	1	. 785	5	19.64
7 g	. 0243	$1 \frac{1}{16}$. 890	$5 \frac{1}{4}$	21.64
$\frac{3}{16}$. 0276	$1 \frac{1}{8}^{\frac{1}{6}}$. 994	$5 \frac{1}{2}$	23.75
$6{ }^{6}$. 0290	$1 \frac{3}{16}$	$1 \cdot 107$	$5 \frac{3}{4}$	25.96
5 g	. 0353	$1{ }^{\circ}$	1.227	6	28.27
4g	. 0423	$1 \frac{1}{1}$	1.484	7	38.48
$\frac{1}{4}$. 0490	$1 \frac{1}{2}$	1.767	8	50.27
38	. 0499	$1{ }^{1}$	2.073	9	63.62
2 g	. 0599	$1 \frac{1}{4}$	2.405	10	78.54
18	. 0707	17	2.761	11	95.03
${ }^{\frac{8}{16}}$. 0767	2	3.142	12	113.1
0 g	. 0824	24	3.976		

B.s.T.

REGULAR POLYGONS

TABLE 185

Name	Number of Sides	Area $l^{2} \times$	Radius of Circle		Corner Angle A
			$\underset{\substack{\text { Inside } \\ l \times}}{ }$	Outside lx	
Equilateral triangle	3	. 4330	. 2887	. 5773	60°
Square . .	4	1.0	. 5	. 7071	90°
Pentagon	5	1.720	. 6879	. 8506	108°
Hexagon	6	2.598	. 8660	1.0	120°
Heptagon	7	3.634	1.038	$1 \cdot 152$	$128 \frac{1}{2}^{\circ}$
Octagon .	8	4.828	1.207	1.307	135°
Nonagon	9	6.182	1.374	1.462	140°
Decagon	10	7.694	1.539	1.618	144°
Undecagon	11	9.366	1.703	1.775	$147 t^{\circ}$
Dodecagon .	12	11.196	1.866	1.932	150°

PROPERTIES OF THE CIRCLE

Chord of angle $A=\frac{c}{r}$
Versed sine of angle $\frac{1}{2} A=\frac{h}{r}=1-\cos$. $\frac{1}{2} A$
Area of circle $=\pi r^{2}=.7854 d^{2}$
For areas of small circles see Table 184.
Circumference of circle $=2 \pi r$
$\pi=3.141593 \pi^{2}=9.869604$
Arc length $a b c=r . A$ (A in radians)

$$
=\frac{8 l-c}{3} \text { approx. }
$$

1 radian $=57.296^{\circ}$

$$
\begin{aligned}
& l=\sqrt{h^{2}+\frac{c^{2}}{4}} \\
& c=2 \sqrt{2 r h-h^{2}} \\
& r=\frac{4 h^{2}+c^{2}}{8 h} \\
& h=r-\sqrt{r^{2}-\frac{c^{2}}{4}}
\end{aligned}
$$

Moment of inertia about a diameter $=\frac{\pi d^{4}}{64}=.0491 \mathrm{~d}^{4}$

TRIGONOMETRICAL FUNCTIONS

See table on next page

$\sin A=\frac{a}{r}$
$\tan A=\frac{a}{b}$
$\cos A=\frac{b}{r}$

chord of $A=\frac{c}{r}$
$\frac{\sin A}{\cos A}=\tan A$
$1+\tan ^{2} A=\sec ^{2} A=\frac{1}{\cos ^{2} A}$

PROPERTIES OF TRIANGLES

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}
\end{aligned}
$$

$$
\text { If } s=\frac{1}{2}(a+b+c), \text { area of triangle }=\sqrt{s(s-a)(s-b)(s-c)}
$$

TRIGONOMETRICAL FUNCTIONS

TABLE 186. See diagrams on previous page

Degrese	Sine	Tan		Cos	Chord		
0	0	0	∞	1.0000	0		90
1	. 01745	. 01746	57.290	. 99985	. 01745	1.4018	89
2	. 03490	. 03492	28.636	. 99939	. 03490	1.3893	88
3	. 05234	. 05241	19.081	. 99863	. 05235	1.3676	87
4	. 06976	. 06993	14.301	. 99756	. 06980	1.3640	86
5	. 08716	. 08749	11.430	. 99619	. 08724	1.3512	85
6	. 10453	. 10510	9.5144	. 99452	. 10467	1.3383	84
7	. 12187	. 12278	8.1443	. 99255	. 12210	1.3252	83
8	. 13917	. 14054	7.1154	. 99027	. 13951	1.3121	82
9	. 15643	. 15838	6.3137	. 98769	. 15692	1.2989	81
10	. 17365	. 17633	5.6713	.98481	. 17431	1.2856	80
11	. 19081	. 19438	5.1445	. 98163	. 19169	1.2722	79
12	. 20791	21256	4.7046	. 97815	- 20906	1.2586	78
13	. 22495	. 23087	4.3315	. 97437	. 22641	1.2450	77
14	. 24192	. 24933	4.0108	. 97030	. 24374	1.2313	76
15	. 25882	26795	3.7320	. 96593	. 26105	1.2175	75
16	- 27564	- 28675	3.4874	. 96126	. 27835	$1 \cdot 2036$	74
17	. 29237	. 30573	$3 \cdot 2708$. 95630	- 29562	1.1896	73
18	. 30902	. 32492	3.0777	. 95106	. 31287	1.1756	72
19	. 32557	. 34433	2.9042	. 94552	. 33010	1.1614	71
20	. 34202	. 36397	2.7475	. 93969	. 34730	1.1471	70
21	. 35837	. 38386	2.6051	. 93358	. 36447	1.1328	69
22	. 37461	. 40403	2.4751	. 92718	. 38162	1.1184	68
23	. 39073	. 42447	$2 \cdot 3558$. 92050	. 39874	1.1039	67
24	. 40674	. 44523	2.2460	. 91355	. 41582	1.0893	66
25	. 42262	. 46631	2.1445	. 90631	. 43288	1.0746	65
	Cos		Tan	Sine		Chord	Degrees

TABLE 186-Continued.

Degrees	Sine	Tan		Cos	Chord		
26	.43837	.48773	2.0503	.89879	.44990	1.0598	64
27	.45399	.50953	1.9626	.89101	.46689	1.0450	63
28	.46947	.53171	1.8807	.88295	.48384	1.0301	62
29	.48481	.55431	1.8040	.87462	.50076	1.0151	61
30	.50000	.57735	1.7320	.86603	.51764	1.0000	60
31	.51504	.60086	1.6643	.85717	.53448	.98485	59
32	.52992	.62487	1.6003	.84805	.55127	.96962	58
33	.54464	.64941	1.5399	.83867	.56803	.95432	57
34	.55919	.67451	1.4826	.82904	.58474	.93894	56
35	.57358	.70021	1.4281	.81915	.60141	.92350	55
36	.58778	.72654	1.3764	.80902	.61803	.90798	54
37	.60181	.75355	1.3270	.79864	.63461	.89240	53
38	.61566	.78129	1.2799	.78801	.65114	.87674	52
39	.62932	.80978	1.2349	.77715	.66761	.86102	51
40	.64279	.83910	1.1917	.76604	.68404	.84524	50
41	.65606	.86929	1.1504	.75471	.70041	.82939	49
42	.66913	.90040	1.1106	.74314	.71674	.81347	48
43	.68200	.93252	1.0724	.73135	.73300	.79750	47
44	.69466	.96569	1.0355	.71934	.74921	.78146	46
45	.70711	1.0000	1.0000	.70711	.76537	.76537	45
	Cos		Tan	Sine		Chord	Dagrees

IMPERIAL AND OTHER MEASURES
 with metric and U.S. equivalents

TABLE 187

LENGTH

AREA

I sq. in. $=6.452 \mathrm{sq} . \mathrm{cm} . \quad$ I sq. cm. $=\cdot 1550 \mathrm{sq} . \mathrm{in}$.
I sq. ft. $=929.0$ sq. $\mathrm{cm} .=.0929 \mathrm{sq} . \mathrm{m}$.
I sq. yd. $=9$ sq. ft. $=8361$ sq. m. \quad I sq. $\mathrm{m} .=10.76$ sq. ft.
I square $=100$ sq. ft.
I rod, pole or perch $=30 \frac{1}{4}$ sq. $y \mathrm{ds} .=272 \frac{1}{4}$ sq. ft.
1 rood $=40$ perches
1 acre $=4$ roods $=10$ sq. chains $=4840$ sq. yds. $=4046.89$ sq. m .
1 sq. mile $=640$ acres $=2.5899$ sq. km.

VOLUME (see also Liquid Measure)

$$
\begin{aligned}
& 1 \mathrm{cu} . \mathrm{in} .=16.39 \text { c.c. } \quad \mid \text { c.c. }=.0610 \mathrm{cu} . \mathrm{in} . \\
& 1 \mathrm{cu} . \mathrm{ft} .=1728 \mathrm{cu} . \mathrm{in} .=28,320 \text { c.c. }=.0283 \mathrm{cu} . \mathrm{m} . \\
& 1 \mathrm{cu} . y \mathrm{y} .=27 \mathrm{cu} . \mathrm{ft} .=7645 \mathrm{cu} . \mathrm{m} .=21.04 \text { bushels } \\
& 1 \mathrm{cu} . \mathrm{m} .=1.308 \mathrm{cu} . \mathrm{yds} .=35.3 \mathrm{Icu} . \mathrm{ft} . \quad \mid \text { bushel }=1.2836 \mathrm{cu} . \mathrm{ft} . \\
& =1.032 \text { U.S. bushel } \\
& \text { | Petrograd standard }=165 \mathrm{cu} . \mathrm{ft} . \quad \mid \text { bushel }=4 \text { pecks }=8 \text { gals. } \\
& \text { I rod of brickwork }=306 \mathrm{cu} . \mathrm{ft} \text {. | bushel of cement weighs | cwt. } \\
& \text { I hod (bricklayer's) } \left.=\frac{2}{3} \mathrm{cu} . \mathrm{ft} . \quad \right\rvert\, \text { sack }=2 \text { or } 4 \text { bushels } \\
& \text { | quarter }=8 \text { bushels }
\end{aligned}
$$

WEIGHT

1 grain $=.0648 \mathrm{gm} .=.0001429 \mathrm{lb}$.
$1 \mathrm{oz} . \quad=16$ drams $=28.350 \mathrm{gm} . \quad 1 \mathrm{gm} .=.0353 \mathrm{oz}$.
$1 \mathrm{lb} . \quad=16 \mathrm{oz} .=453.59 \mathrm{gm} .=7000$ grains
I stone $=14 \mathrm{lb} .1$ Smithfield stone $=8 \mathrm{lb}$.
1 quarter $=28 \mathrm{lb} . \quad 1$ cental $=100 \mathrm{lb} . \quad 1$ centner $=50 \mathrm{kgm}$.
$1 \mathrm{cwt} . \quad=4$ quarters $=112 \mathrm{lb}$.
I ton $=20 \mathrm{cwt}=2240 \mathrm{lb}$. . 1 U.S. ton (short ton) $=2000 \mathrm{lb}$.
I ton $=1.0160$ tonnes $=1016.0 \mathrm{kgm}$. I tonne $=.9842 \mathrm{ton}$
$1 \mathrm{kgm} .=1000 \mathrm{gm} .=2.204 \mathrm{lb} . \quad 1$ tonne $=1000 \mathrm{kgm} .=2204 \mathrm{lb}$.

Imperial Measures and Equivalents-Continued.

PRESSURE

$\mathrm{I} \mathrm{lb} . / \mathrm{sq} . \mathrm{in} .=.0643 \mathrm{ton} / \mathrm{sq} . \mathrm{ft} .=.0703 \mathrm{kgm} . / \mathrm{sq} . \mathrm{cm}$.
1 ton $/ \mathrm{sq} . \mathrm{ft} . \quad=15.55 \mathrm{lb} . / \mathrm{sq} . \mathrm{in} .=1.094 \mathrm{kgm} . / \mathrm{sq} . \mathrm{cm}$.
$1 \mathrm{kgm} . / \mathrm{sq} . \mathrm{cm} .=14.22 \mathrm{lb} . / \mathrm{sq} . \mathrm{in} .=914 \mathrm{I}$ ton $/ \mathrm{sq}$. ft .
For atmospheric and hydraulic equivalents see page 186.

DENSITY

$1 \mathrm{lb} . / \mathrm{cu} \mathrm{ft}=.0160 \mathrm{gm} . / \mathrm{c} . \mathrm{c} . \quad 1 \mathrm{gm} . / \mathrm{c} . \mathrm{c} .=62.43 \mathrm{lb} . / \mathrm{cu} . \mathrm{ft}$.
$100 \mathrm{lb} . / \mathrm{cu} . \mathrm{ft} .=1.205$ tons $/ \mathrm{cu} . \mathrm{yd} .=0.05787 \mathrm{lb} . / \mathrm{cu} . \mathrm{in}$.
$1 \mathrm{ton} / \mathrm{cu} . \mathrm{yd} .=82.96 \mathrm{lb} . / \mathrm{cu} . \mathrm{ft} .=1329 \mathrm{kgm} . / \mathrm{cu} . \mathrm{m}$.

TEMPERATURE

$1^{\circ} \mathrm{C} .=1 \frac{4}{5}^{\circ} \mathrm{F} . \quad 1^{\circ} \mathrm{F} .=\frac{5^{\circ}}{9} \mathrm{C}$.
Freezing point $=32^{\circ} \mathrm{F} . \stackrel{=}{=} 0^{\circ} \mathrm{C}$.

LIQUID MEASURE

60 minims $=1$ fluid drachm $=.222 \mathrm{cu} . \mathrm{in}$.
$8 \mathrm{fl} . \mathrm{dr} .=1 \mathrm{fl} . \mathrm{oz} .=1.732 \mathrm{cu} . \mathrm{in}$.
$20 \mathrm{fl} . \mathrm{oz} .=1$ pint $=4$ gills $=34.68 \mathrm{cu} . \mathrm{in} .=568.3$ c.c.
1 quart $=2$ pints. $\quad 1$ pottle $=2$ quarts
1 gallon $=4$ quarts $=8$ pints $=277.463 \mathrm{cu} . \mathrm{in} .=.1605 \mathrm{cu} . \mathrm{ft}$.
$1 \mathrm{cu} . \mathrm{ft} .=6.230$ gallons
1 litre $=1000$ c.c. $=\cdot 2200$ Imperial gallons $=1.76$ Imp. pints
I U.S. gallon $=833$ Imp. gallons
1 Imp. gallon $=1.196$ U.S. gals: $=4.546$ litres
I Imp. gallon of pure water weighs 10 lb .
1 Reputed quart $=0.60 \mathrm{lmp}$. quart.

beER AND WINE MEASURES

DECIMAL AND METRIC EQUIVALENTS FOR EACH $\frac{1}{32}$ INCH

TABLE 188

Fraction	Decimal	$\underset{\substack{\text { Milli- } \\ \text { metres }}}{\text { a }}$	Fraction	Decimal	Milli- metres
	$\begin{aligned} & .03125 \\ & .0625 \\ & .09375 \\ & .125 \end{aligned}$	$\begin{aligned} & .79 \\ & 1.59 \\ & 2.38 \\ & 3.17 \end{aligned}$		$\begin{aligned} & .53125 \\ & .5625 \\ & .59375 \\ & .625 \end{aligned}$	$\begin{aligned} & 13.49 \\ & 14.29 \\ & 15.08 \\ & 15.87 \end{aligned}$
	$\begin{aligned} & .15625 \\ & .1875 \\ & .21875 \\ & .25 \end{aligned}$	$\begin{aligned} & 3.97 \\ & 4.76 \\ & 5.56 \\ & 6.35 \end{aligned}$		$\begin{aligned} & .65625 \\ & .6875 \\ & .71875 \\ & .75 \end{aligned}$	$\begin{aligned} & 16.67 \\ & 17.46 \\ & 18.26 \\ & 19.05 \end{aligned}$
	$\begin{aligned} & .28125 \\ & .3125 \\ & .34375 \\ & .375 \end{aligned}$	$\begin{aligned} & 7.14 \\ & 7.94 \\ & 8.73 \\ & 9.52 \end{aligned}$		$\begin{aligned} & .78125 \\ & .8125 \\ & .84375 \\ & .875 \end{aligned}$	19.84 20.64 21.43 22.22
	$\begin{aligned} & .40625 \\ & .4375 \\ & .46875 \\ & .5 \end{aligned}$	$\begin{aligned} & 10.32 \\ & 11.11 \\ & 11.91 \\ & 12.70 \end{aligned}$	$\begin{array}{ll}33 & \\ 3 & \frac{15}{18} \\ 31 & \\ & 1\end{array}$	$\begin{aligned} & .90625 \\ & .9375 \\ & .96875 \end{aligned}$	23.02 23.81 24.62 25.40

MM. AND CM. EQUIVALENTS IN INCHES

TABLE 189

MM.	Inch	MM.	Inch	MM.	Inch	CM.	Inches
1	.03937	11	.4330	21	.8268	1	.3937
2	.07874	12	.4724	22	.8662	2	.7874
3	.1181	13	.5118	23	.9055	3	181
4	.1575	14	.5512	24	.9449	4	1.575
5	.1968	15	.5905	25	.9842	5	1.968
6	.2362	16	.6299	25.4	1.0000	6	2.362
7	.2755	17	.6693			7	2.755
8	.3149	18	.7087			8	3.149
9	.3543	19	.7480			9	3.543
10	.3937	20	.7874			10	3.937

SIZES FOR DRAWINGS

The following sizes are recommended as standards in B.S. 308-Engineering Drawing Office Practice, which also gives a list of standard abbreviations for use on drawings.

The more common commercial sizes of paper corresponding to these dimensions have been added.

TABLE 190

Commercial Size	Dimensions, inches	
	Outside Edgess of Sheet	Maximum Border Size
	72×40	70×38
Antiquarian	60×40	58×38
Double Elephant	53×30	52×29
	40×30	39×29
Imperial	40×27	39×26
Demy	30×15	39×14
Foolscap	27×22	29×21
Quarto	20×15	19×14
	15×10	$144 \times 9 \frac{1}{4}$
	13×8	$12 \frac{1}{2} \times 7 \frac{1}{4}$
	10×8	$9 \frac{1}{4} \times 7 \frac{1}{4}$

PROPERTIES OF METALS

The physical properties of some metals vary widely according to the conditions of manufacture, e.g. the proportions of constituent metals, rate of cooling, subsequent heat treatment and working, and the size of the specimen.

Table 191 gives the Density, Ultimate Tensile Stress, Yield Stress (tensile), Young's Modulus and the Elongation of the most commonly used metals.

For metals for which the density and no other information is given, see Table 93.

The relative densities of certain common metals are also given on page 13 in connection with the weight of sheets.

The Ultimate Compressive Stress of ductile materials is uncertain, but may be taken as approximately equal to the tensile Yield Stress; in brittle materials the compressive strength is generally higher than the tensile, and for grey cast iron is from 3 to 4 times as great.

The Yield Stress in Compression is generally the same as in tension, but in cast iron is higher ($10-12$ tons/sq. in.).

The Elastic Modulus in Compression is about the same as in tension ; in shear it may be taken at 0.4 of the values tabulated.

The Ultimate Shear Stress is generally 0.8 to 0.85 of the ultimate tensile stress.

For representative values of Temperature Coefficient of Expansion, Brinell Hardness and Melting Point, see Table 192.

The Working Stress in metals is usually taken at about 0.3 of the ultimate stress, whether tensile or shear. For working stresses in structural steel, see page 136.

A few representative light alloys are included in the tables; for further information the reader is referred to the numerous D.T.D. specifications and to an article by Hardy and Watson in the Structural Engineer, February, 1946.

PROPERTIES OF METALS

For composition of the alloys mentioned, see Table 193.
For other properties see the preceding Notes.
Elongation is measured on $2^{\prime \prime}$ specimen for the aluminium alloys and on $8^{\prime \prime}$ specimen for other metals.
TABLE 191

Metal	Weight $\mathrm{lb} . / \mathrm{cu} . \mathrm{ft}$.	Ultimate Tonsile Stress	Yield Stress	Young's Modulus	Elongation
		tons per sq. In.			\%
ALPAX die cast sand cast	164	$\begin{aligned} & 13-15 \\ & 10-12 \end{aligned}$	7 6	4820 .	2-5
ALUMINIUM, cast rolled	$\begin{aligned} & 159 \\ & 167 \end{aligned}$	5.5	$2 \cdot 2$	$\begin{aligned} & 4000 \\ & 4560 \end{aligned}$	20
hard-rolled do. annealed	",	10.8 6.1		"	7 39
$5-20 \% \mathrm{Zn} \text {. }$	"	5-13	3-12	"	3-16
ALUMINIUM BRONZE	471	Up to 42	20-25		8-19
BA/29, cast	164	16		4800	7
BERYLLIUM BRONZE quenched and heat treated	512	76-82	67		3-5
BIRMABRIGHT, various alloys	167	11-25			3-18
BRASS (a) cartridge : chill cast	520	16	6		60-70
rolled sheet	533-536	30-40	20	5800	10-15
do. annealed	"	20-23	6	,'	65-75
(b) Admiralty :	"				
drawn tube	530	42			9
do. reheated	"	21			79 20
(c) Naval, annealed	",	$\begin{gathered} 26 \\ 24-30 \end{gathered}$		5800	20 $20-50$
BRONZE (see also Aluminium, Beryllium, Manganese and Phosphor Bronzes)					
90/10 cast	520	15	9	5400	10
cold drawn $400^{\circ} \mathrm{C}$	549	38	26		12
$\begin{gathered} \text { quenched, } 400^{\circ} \mathrm{C} \text {. } 800^{\circ} \mathrm{C} \end{gathered}$	",	12 13	6.6 4.5		14 30
CERALUMIN " C " chill cast	170	24		4500	1
CHROMADOR, see Steel.					

TABLE 191-Continued.

Metal	Weight lb./cu. ft.	Ultimate Tensile Stress	Yield Stress	Young's Modulus	Elongation \%
		tons per sq. in.			
COPPER, cast hammered or sheet wire, annealed do. hard-drawn	547 558 555	11 16 19 27	$3 \cdot 6$	$\begin{aligned} & 6700 \\ & 7600 \end{aligned}$	25 4
CUPRO-NICKEL $\begin{array}{r}80 / 20 \\ 60 / 40\end{array}$	558 	23 30		8000 9200	$\frac{40-45}{45}$
DELTA METAL, see Manganese Bronze.					
DURALUMIN "E"	174	26-36	16	4800	8
ELEKTRON, cast forged rolled, annealed	$108-113$ $"$	9 20 21	7	2850 ",	5 18 15
GUNMETAL, Admiralty, cast rolled	$\begin{aligned} & 528 \\ & 549 \end{aligned}$	$\begin{array}{r} 8 \\ 14 \end{array}$			10
HIDUMINIUM " Du "	175	26-27		4800	15
INCONEL	533	45-55			15-18
IRON, cast, grey*	450	5-18	3	5-10000	slight
Blackheart	460	22-25		11000	12-18
Whiteheart	468	22-28			5-7
spun wrought, sheet	480	$15-18$ $20-27$	12-18	$\begin{gathered} 7000 \\ 12000 \end{gathered}$	25-30
wire : annealed hard-drawn	",	$\begin{aligned} & 30 \\ & 38 \end{aligned}$			
LEAD (see also Ternary alloy)	707	0.8-1.0		320	20-65
MANGANESE BRONZE	537	25-27	11-13		46-48
MONEL, cast hot rolled sheets and rods	548	$\begin{array}{r} 19-23 \\ 30-34 \end{array}$	$\begin{array}{r} 14.5 \\ 21-24 \end{array}$	10000 $"$	$\begin{gathered} 12 \\ 30-35 \end{gathered}$
MUNTZ METAL cast hot rolled and cold drawn extruded and cold drawn	524	24			
	557	25.8	6.5		48
		28.4	13.9		31
NITRALLOY, see Steel.					

TABLE 191-Continued.

Metal	Welght lb./cu. ft.	Ulitimate Tensille Stress	$\begin{aligned} & \text { Yield } \\ & \text { Stress } \end{aligned}$	Young's Modulus	Elongation$\%$
		tons per sq. in.			
NITRICAST-IRON sand cast centrifugal cast		$\begin{aligned} & 25 \\ & 28 \end{aligned}$		$\begin{array}{r} 8500 \\ 9800 \end{array}$	
NORAL 26ST	174	28-32			8
PHOSPHOR-BRONZE malleable cast hard drawn wire	$\begin{aligned} & 540 \\ & 550 \end{aligned}$	$\begin{aligned} & 16-18 \\ & 55-58 \end{aligned}$	8	7-8000	17 10
STEEL, see also pp. 136, 137 cast, annealed	489	30-35		13500	30
Chromador		37-43		"	
$.8 \% \mathrm{C}$ oil quenched $.6 \% \mathrm{Cr} \mathrm{I.2} \mathrm{\%} \mathrm{Ni}$	492	80 69	54 56	",	$\begin{aligned} & 2 \\ & 14 \end{aligned}$
$.6 \% \mathrm{Cr} 1.2 \% \mathrm{Ni}$ $.4 \% \mathrm{C} 3.5 \% \mathrm{Ni}$, oil	",	69		,	14
quenched Nitralloy structural :B.S. 15 plates and	"	$\begin{aligned} & 127 \\ & 35-76 \end{aligned}$	$\begin{gathered} 71 \\ 32-69 \end{gathered}$	"	$\stackrel{5}{12-37}$
B.S. IS plates sections	489	28-33		"	16-20
,, rivets ," rounds and	,	25-30		"	26-30
" ${ }^{\text {s }}$	"	28-33		"	16-24
B.S. 548 high tensile	,	37-43	19-23	,	14-18
TERNARY ALLOY LEAD No. 2	707	1.69			62
TUNGUM					
cold forged hard rolled	533 ,	45 46		$\begin{aligned} & 6900 \\ & 8000 \end{aligned}$	13 17
sand cast		20	10		51
Y ALLOY, quenched and aged	174	14		4500	2
ZINC, rolled	449	7-10		6000	45

[^5]HARDNESS, EXPANSION AND MELTING POINT OF SELECTED METALS
The temperature coefficient gives the change of length with change of temperature, thus : Change of length in inches = length of specimen (inches) \times change of temperature in degrees $\mathrm{F} . \times$ coefficient tabulated, divided by 1 million.

TABLE 192

Metal	$\begin{aligned} & \text { Brinell } \\ & \text { Hardness } \end{aligned}$	Temperature Coefficlent per ${ }^{\circ}{ }^{\circ}$	$\begin{gathered} \text { Meltinn } \\ \text { Point } \\ \text { of.t. } \end{gathered}$
Aluminium, rolled	45	Parts per million 14	1215
Brass, cartridge : chill cast hard rolled	$\begin{gathered} 60 \\ 150-200 \end{gathered}$	\} 10.11	1650
Copper		9.5 12.6	1949 1170
Duralumin Invar	114	$\begin{gathered} 12.6 \\ -.17 \text { to }+1.4 \end{gathered}$	1170
Iron, grey cast	100-200	6.0	2770
do. chilled	400-500		,
malleable wrought		6.2	
Lead (see also below)		16	621
Monel, hot-rolled sheets	120-140	25.2	2460
Muntz metal ditto Phosphor-bronze	116 $100-130$	9.3	
Steel, cast	150-200		2800 (casting
cobalt alloys	1250-1400		temperature)
(mild structural $\begin{aligned} & \text { mickel chrome hardened } \\ & \text { nit }\end{aligned}$	$115-150$ $400-700$	6.0	
Ternary alloy lead No. 2	5.7	14.6	
Tin		12.1	449
Tungum		10.5	2088
Y alloy	114	12.6	
Zinc		14.5	787

COMPOSITION OF COMMON ALLOYS

List of symbols :-

Al	Aluminlum	Cu
Bopper		
Be	Beryllium	Fe
Iron		
C	Carbon	Mg
Magnesium		
Cd	Cadmium	Mn
Ce Magnanese		
Ce	Cerium	Ni
Cr	Nickel	
	Chromium	P

Pb Lead
Sb Antimony
Si Silicon
Sn Tin
Zn Zinc

TABLE 193

Metal	Composition of Alloy when referred to in Table 192.
Alpax Aluminium bronze Babbitt's metal Beryllium bronze Birmabright Brass Bronze Ceralumin " C" Chromador Cupro-nickel Delta metal Duralumin, typical Elektron Everdur German silver Gunmetal, Admiralty Hiduminium Inconel Lead-bronze Magnalium Manganese bronze Monel Muntz metal Nickel silver Nitralloy steels Nitricast-iron Pewter Phosphor-bronze Ternary alloy lead No. 2 Tungum Yalloy	Si 8-13, Al 87-92 $\mathrm{Cu} 92, \mathrm{Al}$ or Zn 8 Sn 10, Cu 1, Sb 1 Be 2.4, Cu 97.6 Similar to duralumin Cartridge $\mathrm{Cu} 70, \mathrm{Zn} 30$; Admiralty $\mathrm{Cu} 70, \mathrm{Zn} 29, \mathrm{Sn} 1$; Naval ,, 62 ,, 37 ,, Cu 90, Sn 10 , some Zn Similar to duralumin, with $\cdot 15 \%$ Ce Proprietary chrome steel $\mathrm{Cu} 80, \mathrm{Ni} 20$; $\mathrm{Cu} 60, \mathrm{Ni} 40$; and other proportions Proprietary manganese bronze $\mathrm{Cu} 55, \mathrm{Zn} 40$, Fe and Mn $\mathrm{Cu} 4 \cdot 0, \mathrm{Mn} \cdot 5, \mathrm{Mg} \cdot 5, \mathrm{Si} 1 \cdot 0, \mathrm{Al} 94$, some Fe Proprietary aluminium-magnesium alloy Cu 96, Si 3, Mn I $\mathrm{Cu} 60, \mathrm{Ni} 15, \mathrm{Zn} 25$ Cu 86 -88, $\mathrm{Sn} 10-12$, Zn 2.5 max. Similar to duralumin with Ni, Fe $\mathrm{Ni} 80, \mathrm{Cr}$ 12-14, Fe 6-8 $\mathrm{Cu} 70, \mathrm{~Pb} 30$ Al 70-86, Mg 13-30 $\mathrm{Cu} 55, \mathrm{Zn} \mathrm{40} \mathrm{Fe}+,\mathrm{Mn} 4$; varies Ni 65-70, Cu 30-35 $\mathrm{Cu} 60, \mathrm{Zn} 40$, trace Pb Cu 60-65, Ni 20, Zn 15-20 C -2-4, Mn-5-6, Si -2-4, Cr 1.4-1.7, Al .9-1.1, Fe 96 C 2.6, Si 2.6, Al I.7. Cr I.4, Mn -6, Fe 91 Sn 86, Sb 14 ; varies Cu 92, Sn 7.4, P -3-6 Sb 1.5, Cd $\cdot 25$, Pb 98.25 Proprietary copper alloy $\mathrm{Cu} 84, \mathrm{Zn} 13$, AI I, Si I Similar to duralumin

PROPERTIES OF PLASTICS

The list below gives the characteristics of some well-known plastics; the properties can be varied over a wide range by the inclusion of filler materials and changing the conditions of manufacture, and the figures given are typical only. The figures are largely derived from Warburton Brown's Handbook of Engineering Plastics.

TABLE 194

Typical TradeName		Weight lb./cu. ft.	Ultimate Stress lb./sq. in.		Young's Modulus lb./sq. in.	Temperature Coefficient per ${ }^{\circ} \mathrm{F}$.
			Tensile	Comp. ${ }^{\text {ve }}$		
					Millions	Parts per million
Bakelite	1	80	6-9000		.7-1.0	
Cellomold	2	78-85	6-11000	4-16000	. $10-13$	80-90
Celluloid	3	84-100	5-10000		-2-4	66-90
Diakon	4	74	7-9000	11-13000	. 4.6	44
Improved wood	5	50	22000	11000		
		80	29000	20000		
Ivorine	6	84	7500		.5-6	44
Jicwood " 138 "		86	45000	25000		
" " 87 "		54	30000	16500		
Perspex	7	75-84	8-10000		.35-4	38
Tufnol	8	84-86	10-16000		1.0-1.5	
Trolitol	9	66	6-8500	6-8000	1.2-1.5	40-45
Resin-bonded sheet for gears		82-86				

Type of plastic :-
I. Phenol formaldehyde.
2. Cellulose acetate.
3. ", nitrate.
4. Methyl methacrylate.
5. (Impregnated Canadian birch.)
6. Casein.
7. Polyvinyl chloride acetate.
8. Urea formaldehyde.
9. Polystyrene.

BRITISH STANDARDS REFERRED TO

Continued.

BS. No.	Title	Pago
602-1939	Lead Pipes for other than Chemical Purposes (add. June, 1941, March, 1942)	182
617-1942	Identification of Pipes, Conduits, Ducts and Cables in Buildings	185
648-1935	Unit Weights of Building Materials .	64
657-1941	Common Building Bricks, Dimensions . . . I/-	50
$659-1944$ $680-1936$	Light Gauge Copper Tubes Welsh Roofing Slates	182
690-1940	Asbestos Cement Slates and Unreinforced Flat and Corrugated Sheets	4,8
743-1941	Materials for Horizontal Damp-proof Courses including Classification for Bituminous Damp-proof Courses	168
758-1945	(Part I) Domestic Hot Water Supply Boilers Burning Solid Fuel	193
788-1938	Wrought Iron Tubes and Tubulars, Gas, Water and Steam Qualities (add. Mar., 1938, Jan., 1939)	181
789-1938	Steel Tubes and Tubulars, Gas, Water and Steam Qualities	
798-1938	Galvanised Corrugated Steel Sheets	11
825-1939	Mild Steel Shackles for Lifting Purposes (i) - - $^{\text {d }}$	206
835-1939	Asbestos Cement Flue Pipes and Fittings (Heavy Quality) for Domestic Heating Stoves (add. June, 1941)	178
849-1939	Plain Sheet Zinc Roofing, Code of Practice.	3,15
$\begin{gathered} 952-1941 \\ 1018-1942 \end{gathered}$	Glass for Glazing, Including Definitions, etc.. . . 3/6 (Part I) Timber in Building Construction. \qquad	$\begin{aligned} & 50 \\ & 160 \end{aligned}$

Extracts from British Standards, as listed above, are reproduced by permission of the British Standards Institution, 28 Victoria Street, London, S.W.I, from whom official copies of the specifications can be obtained at a price of 2 s . net per copy unless otherwise stated.

REPORTS AND CODES REFERRED TO

British Standards Institution:

C.P.4-1944. Code of Functional Requirements of Buildings.
Chapter V-Loading
17, 65

See also preceding list of specifications.
Institution of Electrical Engineers:
Regulations for the Electrical Equipment of Buildings
189, 190
Institution of Structural Engineers :
Report No. 8-Steelwork for Buildings, Part I, Loads and Stresses
(Revised 1938) 16, 49, 65, III, 136
Report No. 10 -Reinforced Concrete for Buildings and Structures, Part I, Loads (1938) 65, 90, 113-116
L.C.C.:

Bullding By-laws (1938) . 4, 16, 23-26, 28, 38, 46-48, 58-63, 65, 68, 71, III, 146, 156-160, 172
Memorandum on Computation of Stresses, amended 1939 47
The clauses on reinforced concrete in these two documents are referred to below as the L.C.C. code.

Building Industries National Council :
Code of Practice for the Use of Reinforced Concrete (Reprinted April, 1942)
This document is the same as the L.C.C. code with alterations of wording to suit the different administration which prevalis outside the County of London. The two codes were based on the Code of Practice proposed by the Reinforced Concrete Structures Research Committee of the Department of Scientific and Industrial Research, with modifications.

Ministry of Works :
Post-War Building Studies
No. 1-House Construction (1944) 18. 67
No. 8-Reinforced Concrete Structures (1944) . . . 88
The above and the remainder of the 22 Studies published in 1944 and 1945 contain much useful information on building.
Ministry of Health :
Model By-laws, Series IV. Buildings (1939) . . . 3, I83, 193
Ministries of Health and Works:
Housing Manual and Technical Appendices (1944) . . . 67
Metropolitan Water Board By-laws 171, 182, 193

INDEX TO PAGES

Note.-The densities of a large number of materials are given in Table 93. The names of these materials will not be found in the Index unless other information is given elsewhere in the book.

A
bbreviations, x
Acre, 214
Adamantine tiles, 67
Aerocrete, 37
Age, effect on concrete strength, 35
Aggregate, cost, 45
definitions, 38-40
effect on concrete weight, 37
sizes, $33,38,40$
Air bricks, cast iron, 50
pipe, colour, 185
temperatures, 193
Aircraft timbers, 20
Alloys, composition, 222
light. See Aluminium.
All-ups, ballast, 39
Alluvial soil, angle of repose, 167
loads, 165
weight, 166
Alpax, 218, 222
Aluminium alloys, 217, 218-222
bronze, composition, 222 properties, 218
foil, 67, 194, 197
properties, 197, 218, 221
weight of sheet, 13
Aluminous cement,
removal of shuttering, 37
strength, 35
Ampere, 188
Ancaster stone, 64
Angles functions of, 211 of repose, 167 rolled steel, properties, 142 backmarks, 145
Anker, 215
Antiquarian paper, 217
Arc length, circular, 210
Area circles, 209
polygons, 210
round bars, 88
Simpson's rule, 209
Art gallery, floor load, 66, 111
Asbestos cement, by-laws, 3
corrugated, 4, 6, 12 flat, 12 pipes, 8, 178

Asbestos cement, roof truss, 7 slates, 8
Asbestos spray, 67
wood, 67
Ash (timber), 20
Asphalt, by-laws, 3, 23
dampcourse, 168
Assembly hall floor loads, 66, 111, 160
Atmosphere, pressure, 186
Auction hall floor loads, $65,66,111$
Aum measure, 215
Aylesford pink bricks, 63
$B_{\text {abbitt's metal, } 222}$
Backmarks, standard, 145
Bags, material stored in, 93
Bakelite, 223
Ballast, all-ups, 39
angles of repose, 167
weight, 40, 166
Ballast concrete, insulation, 194, 197
quantities, 38, 41, 42
weight, 37
Banking hall floor load, 65
Barnes formula, 187
Barrel, gas, water and steam, 181
measure, 215
vault, 7
Barrels, materials stored in, 93
Bars, Steel, areas, 88
stresses, 88
weights, 88
Basements, 118
Basin dimensions, 172
Batches, concrete, 39
Bath dimensions, 172
stone properties, 64, 197
Battens, definitions, 19
slating, II
Beams, continuous, 71, 82, 1|3-1|8 deflection formulx, $1 / 2$
load regulations, 65, 111, 160
reinforced concrete, 47, 88, 89
steel, dimensions, 139, 141 deflections, 144 safe loads, 148, 152
Bearing plates, 29

Beaver board, 67
Bedroom floor loads, 65, 66, 111
temperature, 193
Beech, 20
Bending formulx, $71,89,112,161$
Bents, formulx, 118-135
Bergen hollow bond, 52
Beryllium bronze composition, 222 properties, 218
Binders, timber, 24, 156
Birch, yellow, 20
Birmabright, 218, 222
Birmingham Gauge, 15
Wire Gauge, 15
Bltuminous felt, 4 paint, 188
Blinding, concrete quantities, 42
Blue brick dampcourse, 168
weight, 53
clay, load on, 165
Board, definition, 19
Board of Trade Unit, 188
Boards and felt, 4
hardwood, softwood, 67, 196, 197
Boilers, hot water, 192, 193
Bolts, max. size in members, 140
hook, 15
lewis, 201
sheeting, 16
stress in, 136
Whitworth, 200
Bond stress, concrete, 46
Bookshop floor joists, 158, 159
loads, 66, 110,160
Boulder clay, load on, 165
Bow shackles, 206
Brass, properties, 218, 221, 222
weight of sheet, 13
Breeze concrete, weight, 37 partition weight, 68
Brick, aggregate weight, 37
air, 50
Aylesford, 63
blues, brindles, 53, 63
calcium silicate, $50,53,63$
data, 50
engineering, 53, 63
fire-, 53
Flettons, 53, 63
glass, 50
partitlon weight, 68
piers, 54
red, 53
sand-cement, 53
sand-lime, 50, 53, 63
stocks, 53
walls, 58-64, 194
Brickwork, bonds, 52

Brickwork, brick quantities, 50-53
courses, 55
dampcourses, 168
eccentric loading, 63
facing bricks, 52
heat transmittance, 194, 197
lateral loading, 63
local loading, 63
mortar mixes, 62
quantities, 54
permissible pressure, 62, 64
safe loads, 62
slenderness ratio, 63
temperature coefficient, 53
ultimate loads, 54, 63
weight, 53
Young's modulus, 53
Bridging joists, 160
Brinell hardness, 221
British Standard beams, dimensions, 139
safe loads, 146, 148
channels, dimensions, 141
safe loads,
146, 152
Specifications, 224
British Thermal Unit, 199
Broad flanged beams, 154
Bronzes, 218, 221, 222
B.Th.U., 199
B.T.U., 188

Buffer stop height, 1731
Building Industries National Council, 226
Bulk, density, 92
increase on excavating, 167
Bulking of sand, 92
Bushel, 214
Butt (measure), 215
Butt welds, 138
Buttressing walls, 58, 61

Cable, electric, 189, 190
length, 214
Cabot's Quilt, 67
Cafe floor loads, 66, III, 160
Calcium silicate bricks, 50
Cantilever, deflection, 112
length, 156
moments, 116
timber, 23, 156
Capacity, drains, 187

Capacity, electric cables, 190 flumes, 187
gas pipes, 199
measures, 215 pipes (small), 186 sewers, 187
Carbolineum covering power, 188
Carriage-way width, 172
Cars, dimensions, 172
Casein, 223
Casks, materials stored in, 93
Cast iron, pipes, list, 173
properties, 219
Cavity walls, construction, 59
insulation, 194, 197
Cedar tiles. See Shingles, 10 timber, 20
Ceiling joists, 23
Cellomold, 223
Celluloid, 223
Cellulose acetate, 223
nitrate, 223
Cement, angle of repose, 167
aluminous, 35,37
concrete quantities, 41
cost curves, 44
mortar quantities, 51
Pozzolana, 36
quantities, 41, 51
rapid hardening, 35, 37, 40
strengths, 35
Trass, 36
weight, 40, 68
Cental, 214
Centigrade, 215
Centimetre, 214, 216
Centner, 214
Central heating pipe colour, 185
Ceralumin C, 218,222
C.G.S. unit of heat, 199

Chaln measure, 214
Chalns, weight and strength, 205
Chalk, increase of bulk, 167
load, 165
weight, 166
Channels, steel, dimensions, 141 safe loads, 152
Chapter V, building code, 17, 65
Chequer plates, 171
Chimneys, wind load on, 17
Chord of angles, 210, 211
Chromador, 220, 222
Church floor loads, 65, 66, 111
temperature, 193
Cinema floor loads, 66, 111
temperature, 193
Circles, area of, 209
properties, 210
Clistern dimensions, 191

Clapeyron's Theorem, 117
Classification of soils, 165
Classroom floor load, 65, 66
Clay, angle of repose, 167
definition, 165
increase of bulk, 167
load on, 165
weight, 166
Clinker, concrete, 37
insulation, 194, 197
Clothes cupboard dimenslons, 172
Clubs, floor load, 66, 111
Coach screws, 201
Coal, angle of repose, 167
Coatings, covering power, 188
Codes of practice, 226
Coefficient, deflection, 144
expansion, 221
heat transmittance, 194
Coil, measure, 214
Coir rope, 204
Coke, angle of repose, 167
Cold-worked steel, 88
Colours to identify pipes, 185
Columns, concrete bases, 49
steel, 137
timber, 25, 26
Combined stress, 113
Communication pipe, 182
Composition of common alloys, 222
Compressive strength, brickwork, 54, 62
concrete, 4649
metals, 217
mortar, 54
steel, 136, 137
stone, 64
timbers, 20, 25
Concentrated loads, beams, 148 slabs, 90
Concert hall floor load, 66, 111
temperature, 193
Concrete properties and data, 33-45
filling, 48
insulation, 194, 197
painting, 188
piers and walls, 48, 58
slab quantities, 42
See Reinforced Concrete.
Conductivity, thermal, 194
Conductors, electric, 189, 190
Conduits, electric, 190
Cone, slump, 34
Consumption, electric, 189
gas, 199
Containers, materials stored in, 93
Continuity steel, 71
Continuous spans, 71, 82, 113-118

Copper, dampcourse, 168
electric, dimensions, 172
consumption, 189
gas, consumption, 199
properties, 197, 219, 221
roves, 202
sheet, 13
tubes, 182
Cord of timber, 19
Cork flooring, 67
Corridors, loads on, 66, III, 160
temperature, 193
timber Joists, 158
Corrugated sheets, asbestos, 4, 5, 6, 12 galvanised, 4, 5, 6, II
insulation, 195, 197
Cosines of angles, 211,212
Cost charts for concrete, 44
equivaients, timber, 19
Countersunk rivets, 201
Countesses, slates, 10
Courses, helghts of brick, 55
Covering power of paints, 188
Covers, manhole, 171
Creosote, covering power, 188
Crushed stone quantities, 41, 42
Crusher-run stone, 39, 40
Cul-de-sac wldth, 172
Culverts, 118
Cupboard, linen, dimensions, 172
Cupro-nickel, 219, 222
Curing concrete, 35
Current in cables, 189
Cusec, 186
Cylinders, hot water, 191
D
amp course, cement, 55
general, 168
lead, 14, 168
Dance halls, floor load, 66, 111, 160
temperature, 193
Darley Dale stone, 64
Data, collected, brickwork, 50-57
concrete, 33-49
electric, 188
heating, 191-199
hydraulic, 186
measures, 214
metals, 217-222
mortar, 54
paints, 188
plpes, 173-187
planning, 172
plastics, 223
polygons, 210

Data, collected, portals, 118-135 reInforced concrete, 71,91
soils, 165-167
stones, 64
tlmbers, 19
weights, 92-107
Doal, definition, 19
See Pine, Yellow, 20
Decagon data, 210
Decimal gauge, 14
Deflection of beams, II2, 144, 149, 160
Degrees of temperature, 215
Delta metal, 219, 222
Demy paper, 217
Densitles. See Weights.
Dept. of Scientific and Industrial
Research, 226
Design tables, R.C. floors, 71-91
Diagonal weld strength, 139
Diakon, 223
Diamond slates, 9
washers, 16
Dimensions for planning, 172
Discharge, small pipes, 186
dralns, sewers, flumes, 187
Distemper, covering power, 188
Distributing pipe, 182
Distribution bars, 72
Dock, loading, height, 172
Dodecagon data, 210
Domestic fittings, 172
floor load, 65, 66, 160
timber floors, 24
Donnaconna board, 67
Door dimenslons, 172
Dormitories, floor loads, 66, 111
Doubles, slates, 10
Downpipes, dimensions, 176, 177, 179
slze and spacing, 8
Drachm, 215
Drain plpe, cast Iron, 177
colour, 185
salt-glazed ware, 180
Drains, concrete round, 39
flow In, 187
Dram, 214
Draughts, effect of, 196
Drawings, sizes, 217
Draw-off pipe, 193
Drill hall floor load, 66, 111, 160
Drililing centres, 145
Drive width, 172
Drums, materials stored in, 93
Drying room temperature, 193
D-shackles, 206
Duchesses, slates, 10
Duralumin, 219, 221, 222
Dwellings, fittings, 172

Dwellings, floor load, 65, 66, 160
timber floors, 24
Earth. See Soll.
Eccentric loading on walls, 63 stress, 113
Effective length of pipes, 173
span, 71
Electricity cables, 189, 190
consumption, 189
duct colour, 185
ducts, 190
Elektron, 219, 222
Elm, 20
Elongation, 218
Empresses, slates, 10
Enamel, covering power, 188
Encasing steelwork, mix for, 39
End spans, 71
Engineering bricks, 52, 63
English bond, 52
Garden Wall bond, 52
Entrance floor loads, 66, III, 160
Equal angles, steel, 142
Equivalent slopes, roof, 7
Equivalents, metric-English, 214-216
Expansion coefficients, brickwork, 53 concrete, 34 metals, 221 plastics, 223 jolnts, 36
External walls, L.C.C. rules, 58, 60

F actory. See Workshop.
Fahrenheit, 215
Fastenings, roof sheets, 16
Fathom, 214
Felt, hair, 67
insulation, 197
roofing, by-laws, 3
welght, pitch, 4
Fibre board, 67, 194, 197
Filler joist floors, 80
Fillet welds, 138
Filling, concrete mix, 39
pressure on, concrete, 48 earth, 165
Fillings, angle of repose, 167 weight, 166
Finlsh, concrete, quantities, 42
floor, weights, 67
Fir, Douglas, 20
Flrebrick, 53
Fire service pipe colour, 185
Firkin, 215
Firring, 6

Fittings, domestic, dimensions, 172 consumption, 189, 199
Flange width factor, 146
Flashings, lead, 14
Flat, floor load, 66, III
roof, weight, 7
load, 17, 25
Flemish bond, 52
Garden Wall bond, 52
Fletton bricks, 53, 63
insulation, 194, 197
Floor loads, beams, 111, 160
slabs, 66, 159
Floors, concrete, 71-91
finish, weights, 67
filler joist, 80
hollow, 82
loads on, 65, 66, III, 160
magnesium oxychloride, 68
timber, 24, |56-16|
tongued and grooved, 23
Flow, drains and sewers, 187
gas pipes, 199
small pipes, 186
wood flumes, 187
Flue pipes, asbestos, 178
cast Iron, 173
Flushing pipes, 183
Foamed slag concrete insulation, 194, 197
weight, 37
Formulæ, Barnes, 187
bending, 89, 112,161
Clapeyron, 117
quadratic, 209
reinforced concrete, 89
timber, 161
trigonometric, 211
Foundations, concrete mix, 39, 48
pressure, on concrete, 48, 49
on earth, 165
Frost, effect on concrete, 36, 37
Fuller's earth, weight, 166
Functions of angles, trigonometric, 211, 212
Furlong, 214

Gable ends, wind on, 17
Gallon, 215
Galvanised sheets, corrugated, 11, 12
flat, 12, 14
insulation, 195, 197
roofs, 4, 5, 6
Garage floor, loads, 65, 66, 111, 160
timber joists, 157,158

Garage, temperature in, 193
dimensions, 172
Gas, calorific value, 199
consumptions, 199
copper dimensions, 172
oven dimensions, 172
pipes, cast iron, 173 colour of, 185 wrought iron, 181 steel, 181
Gauge, Birmingham, 15
railway, 172
Standard Wire, 14
tiling, 5
Whitworth Decimal, 14
Zinc, 15
German silver, 222
Girders, rivet spacing, 145
Glass in roofs, 3
line height, 172
silk, 67
thermal resistance, 197
weight and pitch, 4
Graded timber, 25
Grain, angle of repose, 167
measure, 214
weight. See Table 93.
Gramme, 214
Grandstands, floor load, 66, 111, 160
Granite, concrete weight, 37
strength, 80
Granolithic, 67
Granular materials, 92
Gravel, angle of repose, 167
increase of bulk, 167
safe load on, 165
weight, 166
Greenheart, 20
Grey process beams, 154
Grillage, 136
Gunmetal, properties, 219, 222
weight of sheet, 13
Gunter's chain, 214
Gutter, lead, 14
Gymnasium floor load, 66, III, 160
Gyproc. See Plasterboard.

Hxmatite, angle of repose, 167
Hairfelt, 67, 197
Ham Hill stone, 64
Hand, measure, 214
Handrail height, 172
Hardness of metals, 221
Hardwood definitlon, 19
floor weight, 67
Head for small pipes, 186
Headers, slates, 10

Heat transmittance, 194
Heating data, 191-199
pipes, cast iron, 173, 174
colour, 185
sizes, 192
Hemp rope, 204
Heptagon data, 210
Hexagon data, 210
Hickory, 20
Hiduminium, 219, 222
High grade concrete, 46
Hip, lead, 14
Hogshead, 215
Hollow block partition, 68
bond, Bergen, 52
floors, 82
walls. See Cavity.
Honeycomb slates, 9
Hook bolts, weight of, 15
Hopton Wood stone, 64
Hornbeam, 20
Hospital floor loads, 65, 66, 160
temperature, 193
Hot water cylinder sizes, 191
Hotel floor loads, 65, 66, 160
Houses, floor loads, 65, 66, 160
floor timbers, 24
heating, 191-199
planning data, 172
roof timbers, 23-25
wind load, 16, 18
Housing Manual, 226
Hydraulic data, 186
gradients, 187
power, pipe colour, 185

Identification of pipes, 185
Impregnated birch, 223
Improved wood, 223
Inconel, 219, 222
Increased bulk on excavating, 167
Infirmaries, floor loads, 66, 111
Institution of Structural Engineers, 226
Electrical Engineers, 226
Insul board, 67
Insulation, 194-198
Interior spans, 71
Invar, 22I
Iron, properties, 197, 219, 221, 222
welght of sheet and wlre, 14, 15
Ironwork, paintlng of, 188
Ivorine, 223
icwood, 223
Joints, brickwork, 51, 52, 55

Joints, pipe, 173, 185
plumbers, 185
Joists, ceiling, 23
steel, dimensions, 139, 154
safe loads, 148, 154
timber, 24, 156
K
enmore board, 67
Kllogramme, 214
Kilometre, 214
Kilowatt, 199
Knot, 214
Knotting, 188

Ladies slates, 10
Landing floor loads, 66, 111, 160 timber joists, 158
Lap, corrugated sheets, 12
slates, 4, 5, 8
tiling, 4, 5, 8
Larch, 20
Lateral load on walls, 63
Lateral support, beams, 47, 146
walls, 48, 58-61
Lath and plaster, insulation, 195
weight, 67
Lattice girders, 137
L.C.C. See London County Council.

Lead, bronze, 222
dampcourse, 14, 168
pipes, 182
properties of, 197, 219, 221
sheet, 13
ternary alloy, 182, 185, 220, 221
Leaders, size and spacing, 8
Leicester red bricks, 53, 63
Lever arm, 72, 89
Lewis bolts, 201
Library floor loads, 66, 111
Lignum vita, 20
Lime mortar, 54, 55
Limestone, 64 concrete, 37
Line measure, 214
Linen cupboard dimensions, 172
Link measure, 214
Linseed oil covering power, 188
Lintols, brickwork, 57, 172
broad flanged beams, 155
Litre, 215
Lloyd board, 67
Load (timber), 19
Loading on beams, $111,148,152,154$
floors, 65, 72, 80, 82
ground, 165

Loading on roofs, 16
walls, 62
Loads, snow, 16, 18
wind, 16, 18
Loam definition, 165
weight, 166
Local load on walls, 63
Locknuts, Whitworth, 200
Locomotive wheel load, 173
London County Council By-laws :-
beam loads, III, 160
compressive stress, beams, 47
concrete, stresses in, 46-48
floor loads, 66, 71
piers, 48, 58, 63
pitch of roofs, 4
proportions for concrete, 38
stresses in reinforced concrete, 46, 47, 88
steel beams, 146, 149
timber floors, 24, 156-161
posts, 25
roofs, 23
walls, 58-63
welding, 138
wind load on roofs, 16, 29
windows, 172
London stock bricks, 53

Macadam, by-laws, 3 weight and pitch, 4
Magnalium, 222
Magnesia insulation, 197
Magnesium oxychloride floors, 68
Mahogany, 20
Manganese bronze, 219, 222
Manhole covers, 171
Manila ropes, 204
Manometer, mercury, 186
Mansfield stone, 64
Maple, 20
Marble, 64, 197
Marchioness slates, 10
Marl, angle of repose, 167
definition, 165
weight, 166
Marseilles tiles, II
Masonite, 68
Masonry, permissible pressures, 62,64
rules for walls, 58
strength of stone, 64
Mastic weight, 68
Measures, British and other, 214
Melting points of metals, 221
Mercury, manometer, 186
weight, Table 93
Metals, properties, 217-222

Meter pits, 171
Methyl methacrylate, 223
Metre, 214
Metric equivalents, 216
Metropolitan Water Board, 226
Mil, 214
Mile, 214
Millimetre, 216
Millstone grit, 64
Minim, 215
Ministry of Health, 226
Ministry of Works, 226
Mixer sizes, 39
Modular ratio, 89
Modulus of elasticity. See Young's Modulus.
Moment of inertia, |/2
resistance, slabs, 72, 89
Monel metal, 219, 221, 222
sheet, 13
Mortar data, 34, 54, 168 mixes for brickwork, 54, 62 quantities in brickwork, 51
roof, 3
screed, 68
weight, 68
Muntz metal, 219, 221, 222
sheet, 13

Nail, measure, 214
Nails, roofing, 16
wire, 202
Neutral axis, 72, 89
Nitralloy, 219, 222
Nitricast iron, 220, 222
Nonagon data, 210
Nursery temperature, 193
Nuts, Whitworth, 200

ak, 20
Octagon data,1210
Office floor loads, 65,66, |||, 160
temperature, 193
timber floors, 156
Ohm, 188
Oil pipe colour, 185
Openings in walls, 58
Operating theatre temperature, 193
Oregon pine. See Fir, Douglas, 20
Oven dimensions, 172

Panels, L.C.C. rules, 59
Pan head rivets, 201
tiles, 4
Paper, drawing, slzes, 216
Parquetry, 67
Partitions, blocks for, 62, 68
load allowance, 68
thickness, 61 weight, 37, 68
Party walls, L.C.C. rules, 58
Patent steel ropes, 204
Paths, width of, 172
Pavement loading, 66, |||
Peat, effect on concrete, 36
safe load on, 165
weight, 166
Peck, measure, 214
Pentagon data, 210
Perch, 214
Perspex, 4, 197, 223
Petrograd standard, 19
Pewter, 222
Phenol formaldehyde, 223
Phorpres bricks, 53, 63
Phosphor bronze, 220, 221, 222
Piers, concrete, 48
definition, 58
slenderness ratio, 63
ult. strength, 54
Pin, measure, 215
Pine, Dantzig, Kauri, Pitch, Riga, Yellow, 20
Pipe hooks, 182
measure, 215
Pipes, asbestos cement, 178
cast iron, 173
colour identification, 185
copper, 182
lead, 182
salt-glazed ware, 180
steel and wrought iron, 181
Prtch of roofs, 3, 4
Pitched bents, 124
Pitchplne, 20
Plank, definition, 19
Planning data, 172
Plaster boards, 68, 197
insulation, 194, 197
painting, 188
weight, 68
Plastering, 55, 68, 194, 197
Plastics, data, 197, 223
Plough steel ropes, 204
Plumbers' wiped joints, 185
Plywood, insulation, 197
Poisson's ratio, concrete, 34
Pole, measure, 214
Polygons, data, 210
Polystyrene, 223

Polyvinyl chlor-acetate, 223
Poplar, 20
Portal truss, concrete, 7
Portals, formulz, 118-135
Portland stone, 64, 197
Posts, tlmber, 25, 26
Pottle measure, 215
Powders, voids in, 92
Pozzolana cement, 36
Pressure on foundations, 165
on concrete, 46, 48, 49
pipes, asbestos, 179
wind, 16
Priming, covering power of, 188
Princesses slates, 10
Projections, wind load on, 17
Public spaces floor load, 66, 111, 160
Pumice concrete weight, 37
insulation, 197
Puncheon, 215
Punching shear, 46
Purlins, asbestos cement, 7
concrete, 7
steel, 5, 6
timber, 23
weight, 6, 7
Putty, lime, 55
Pyinkado, 20
Pyrites, angle of repose, 167

Quadratic equations, 209
Quart measure, 215
Quarter, measure, 214
Quarto size, 217
Quetta bond, 52
quantities, 53

Radian, 210
Radiator areas, 191
Radius, bending, 112
gyration, 112
Rafters, timber, 6, 23
Rag bolts, 201
Ralls, bullhead, flat bottom, 173, 201
Rallway data, 173
Rainwater pipes, asbestos, 178
cast iron, 177
size and spacing, 8
Reactlons, continuous spans, 118 roof trusses, 27
Reading room floor load, 66, III, 160
Rectangular portals, 120, 130
slabs, 91
Reduction factors, steel beams, 146
Redwood, 20, 25

Refrigeration pipe colour, 185
Reinforced concrete data, 72, 89
D.S.I.R. stresses, 46
beams, 46, 47
floors, 71-91
L.C.C. stresses, 46, 88
mixes, 38
purlins, 6, 7
removing shut-
tering, 37
roofs, 7
Reinforcement, section areas, 72
slabs, 71-91
stresses, 88
weights, 88
Render, cement, 54, 55, 197 weight, 68
Residential floor loads, $65,66,111,160$ timber joists, 24
Resin-bonded sheet, 223
Restaurant floor loads, 65, 66, 111, 160
Restraint of walls, 48, 61
Rivets, head dimensions, 201
maximum sizes, 140
spacing, 145
stress in, 136, 137
Road slabs, concrete, 39, 42
Roads, concrete mix for, 39
width of, 172
Rock, safe loads, 64, 165
weight, 64
filling, angle of repose, 167
increase of bulk, 167
Rod, brickwork, 50
measure, 214
Rods, steel, areas, 72
in floors, 71-87
stress, 88
weight, 88
Rolling stock dimensions, 173
Roof, coverings, weight, 4
flat, 17, 18, 24, 25
insulation, 196
load on structure, 27, 29
reinforced concrete, 7
timber, 23, 25
truss spacing, 27
weights, 6, 7
wind load, 16
Rope, coir, strength and weight, 204
manila, strength and weight, 204
sisal, strength and weight, 204
wire, strength and weight, 204
Roves, copper, 202
R.S.Js, dimensions, 139, 154
safe loads, 146 -15|, 154

Rubber sheet, weight, 68 insulation, 197
Ruberoid, 4
S
ack, 34, 214
Salt-glazed ware pipes, 180
Salt water pipe colour, 185
Sanatoria floor loads, 66, 111
Sand, angle of repose, 167
bulking, 92
on excavating, 167
cost in concrete, 45
pressure on, 165
quantity in concrete, 41, 42
size of particles, 165
voids, 92
weight, 166
Sand-cement bricks, 53
Sand-lime bricks, 50, 53, 63
insulation, 195, 197
Sandstone, 64
Scaffold steel tubes, 181
Scantling, definition, 19
School floor loads, 66, 111, 160
temperature, 193
Screws, roofing, 16
wood, 202
Service pipe, 175, 182-184
Sewage pipes, asbestos, 178 cast iron, 174, 176
Shackles, dimensions and strength, 206
Shale, angle of repose, 167
load, 165
Shear, concrete, 46, 82, 90
continuous spans, 118
steel beams, 112, 137, 148
timber, 25, 112
Sheave, diameter, 205
Sheeting bolts, 16
Sheets, copper, 13
lead, 13
metal, 13
iron and steel, 12, 14, 15 zinc, 15
Shell construction, see Barrel vault, 7
Shingle, angle of repose, 167
cost, 145
quantity in concrete, 40-43
weight, 40,166
Shingles, cedar, by-laws, 3
coverage, 10
pitch, 4 weight, 4
Shop floor loads, $65,66,111$
temperature, 193
timber floor joists, 157
Showrooms, floor loads, 66, III temperature, 193

Shrinkage, concrete, 34, 36 See Expansion.
Shroud-laid rope, 204
Shuttering, area in a standard, 21
removal of, 37
Sideroleum, covering power, 188
Side weld strength, 139
Silicate cotton, 68, 197
Silt, 165
Simpson's rule, 209
Sines of angles, 211,212
Sink dimensions, 172
Sisal rope, 204
Site, concrete mix over, 39
Size, covering power, 188
Skein, measure, 214
Slabs, filler joist, 80
concentrated loads, 90
hollow concrete, 82-87
loads specified on, 65, 66
quantities for, 42
reinforced both ways, 91
ro of, coffered, 7
solid concrete, 71-79
Slag, angle of repose, 167
concrete weight, 37
Slagwool weight, 68 insulation, 197
Slate, damp course, 168
insulation, 196, 197
properties, 64
Slates, asbestos cement, diamond, 9 honeycomb, 9 rectangular, 8
Welsh, 4, 6, 9, II
Sleepers, railway, dimensions, 173
Slenderness ratio, timber, 25

$$
\begin{aligned}
& \text { walls and piers, 48, } \\
& 49,63
\end{aligned}
$$

Slopes, equivalent, 7
minimum for roofs, 4
Slump of concrete, 34
Smoke pipes, asbestos, 178
cast iron, 173
Snap-head rivet dimensions, 201
Snow, 16, 18
Soil, bulking of, 167
definitions, 165
pipes, asbestos, 178
cast iron, 176
pressure on, 165
weights, 166
Solid fuel boilers, 193
Spans, continuous, 71, 82, ||3-118
effective, 71
lintols, 57
joists, steel, 146, 154
timber, 24, 156

Specific gravity. See Weights of Materials.
Spruce, Norway, 20
Square, area, 19
properties, 210 scantling, 19
Stack, timber measure, 19
Stafford blue bricks, 63
Stairs, dimensions, 172
loads on, 66, 111, 160
Stancheons, II9, 136
Standard brick sizes, 50
timber measure, 19
Wire Gauge, areas, 209 sizes, 14
Standards, British, list, 224
Stationery store floor load, 66, 111, 160 timber joists, 159
Steam pipe, colour, 185
wrought iron, 181
Steel, properties, 197, 220, 221, 222
reinforcement areas, 72
stresses, 88, 89
weights, 88
sheets, weight, 13
structural, stresses, 136
tubes, 181
wire ropes, 204
See Galvanised.
Stiffness coefficient, 119
Stock bricks, 50, 53, 63
Stone, broken, angle of repose, 167

> quantity in concrete, 40-43
measure, 214
Stones, properties of building, 64, 197
Stoneware pipes, 180
Storage room floor load, 66,92, 111, 160
Strength. See Compressive, Tensile, and material concerned.
Stress, ultimate, concrete, 35, 36
metals, 218
plastlcs, 223
steel, 220
stone, 64
timber, 20
working, concrete, 46-49
steel, 136, 88
timber, 20 posts, 26
Stretcher bond, 52
Strip, load on floors, 65, 67
timber, definltion, 19
Structure gauge over railway, 173
Struts, timber, 25, 26
steel, 137, 138
Stucco, 55
insulatlon, 195, 197
painting, 188

Studding, timber, insulation, 195

- welght, 68

Sulphate waters, effect on concrete, 36
Supply pipe, 182

Tangents of angles, 212
Tar, covering power of, 188
Tarmac weight, 4
Teak, 20
Tee beams, reinforced concrete, 89
steel, 144
Temperature, air in rooms, 193
coefficient, brickwork,53
concrete, 34
metals, 221
plastics, 223
stones, 64
effect on concrete strength, 36, 37
Tensile strength, concrete, 34
metals, 218
mortar, 54
plastics, 223
steel, 136, 137
timber, 20, 25
Tentest board weight, 68
Ternary alloy lead, 182, 185, 220, 221
Terra cotta, 64
Terrazzo welght, 68
Tests on bricks, 62, 63
brickwork, 54
concrete, 35, 46
Thatch, by-laws, 3
weight and pitch, 4
Theatre floor loads, $66,111,160$
Theorem of three moments, 117
Thermal resistance, 197
Thickness of piers, 58, 63
pipes, 173-184, 190
slabs, 71-89
walls, 58
Thread measure, 214
Three moments, theorem of, 117
pin arch roof, 7
Tierce, 215
Ties, wall, 59
Tlles, adamantine, 67
asbestos, 8
clay by-laws, 3
weight, pitch, 4
concrete, 4
coverage, 10
insulation, 195, 196
welght, 4
Tiling battens, II
Timber, area equivalents, 21, 23
data, 19

Timber, floors, 156
length equivalents, 21, 22 posts, 25, 26 roofs, 23
Timbers, properties of various, 27
Tin properties, 221
Ton, 24
Tonne, 214
Trafford tiles, 11
Transmittance of heat, 194
Trass cement, 36
Triangle data, 211
equilateral, 210
Trigonometric functions, 211, 212
Trimmed joists, 160
Trimmer joists, 160
Trimming joists, 160
Trolitol, 223
Truss portal, 7
roof, weight, 6
Tubes, see Pipes.
Tubulars, 181
Tufnol, 223
Tungum properties, 220, 221, 222
sheet weight, 13
Turning circle, vehicles, 172
Twisted bars, 88

Itimate stress, 217
Undecagon data, 210
Unequal angles, steel, 143
Urea formaldehyde, 223

Varnish, covering power, 188
Vault, barrel, 7
Vehicles data, 172
Ventilating pipes, asbestos, 178 cast iron, 176
Versine of angle, 211
Viscountess slates, 10
Voids, percentage of, 92
Volt, 188
V.R.I. cables, 189

W
all definition, 58
plate, 160
tiled, 10
Walls pressure on concrete, 48 to L.C.C. by-laws, 58-64
Wards, hospital, floor loads, 66, III, 160
Warehouse floor loads, 66, 111, 160 timber joists, 159 wall thickness, 58, 61

Warning pipe, 183, 184
Washers, flat, 200
limpet, 16
Waste pipe, asbestos, 178
cast iron, 176
Water pipe, asbestos, 179
by-laws, 171, 182, 193
cast iron, 174, 176
copper, 182
head required, 186
lead, 182
wrought iron, steel, 181
Water-cement ratio, 34, 35
Watt, 188
Weights of materials :-
brickwork, 53
concretes, 37
earth and gravel, 166
general table, 94-107
metals, 218
partitions, 68
plastics, 223
roofs, 6, 7
sheet metals, 13-15
slab finishes, 67
stones, 64
timbers, 20
walls, 53, 68
Welds, strength of, 138
Wheel load, garage floor, 67, I 12, 172
locomotive, 173
Whinstone concrete weight, 37
Whiting, covering power, 188
White lead, covering power, 188
Whitewood, 20
Whitworth bolts, 200
Decimal Gauge, 14
Wind drag, 17
loads, 16, 28, 29
Window dimensions, 172
insulation, draughts, 196
Wire gauge, Standard, 14 ropes, 204
Wood insulation, 196, 197
See Timbers.
Woodblock flooring, 67, 196, 197
Wood-screws, 202
Woodwool slab insulation, 194, 197
weight, 68
Woodwork, painting of, 188
Working stress, brickwork, 62, 64
concrete, 46-49
masonry, 62, 64
metals, 217
steel, 88, 136
stone, 64 timbers, 20
Workshop floor loads, 65, 66, III, 160 temperature, 193

Workshop timber joists, 158, 159
Writing room floor loads, 66, 111,160 Wrought iron tubes, 181

Yalloy, 220, 221, 222
Yield stress, 217
York stone, 64
Young's modulus, brickwork, 53 concrete, 34 metals, 217, 218

Young's modulus, mortar, 34 plastics, 223
stone, 64
timber, 20, 25
$Z_{\text {inc }}$ by-laws, 3
Gauge, 15
properties, 197, 220, 221
roof, weight and pitch, 4
sheet weight, 15

The weights of a large number of substances are given in Table 93 ; these substances will not be found in the Index uniess other information is inciuded in the book.

DATE OF ISSUE

This book must be returned within 3, 7, 14 days of ite iswue. A fint of ONE ANivA per duy wit be charged if tha book is overchie.

[^0]: * By-laws generally say 24 B.W.G. Corrugated steel is sold by Birmingham Gauge and not Birmingham Wire Gauge. See Tables 20 and 21 for details of the gauges.
 \dagger See list of British Standard Specifications immediately preceding the Index.

[^1]: * In very exposed situations these pressures should be taken as $\mathbf{1 6} \mathbf{~ l b} . / \mathbf{s q}$. $\mathbf{f t}$.

[^2]: * These pressures are to be reduced according to slenderness ratio and conditions of lateral support as specified in the next table. Walls may be designed according to rules of thickness for normal circumstances, for which see p. 58.

[^3]: * These cases are not specifically covered by the L.C.C. by-laws, but District Surveyors and local authorities will normally accept the class loading stated.

[^4]: ${ }^{1}$ For opening windows the heat loss is usually about doubled through infiltration of air. If the windows remain open special calculations must be made. 19.3 B.Th.U. will raise the temperature of 1000 cu . ft . of air by $1^{\circ} \mathrm{F}$. The air in a well-ventilated room is changed twice an hour, and with a coal fire up to 10 times an hour.
 ${ }^{2}$ The exposure is less than in the case of walls and roofs, and the values of U here given have been adjusted so as to be suitable for calculation of heat loss.

 To arrive at the value of U for constructions not listed, Table 168 and the graph following it may be used. Table 168 gives the Thermal Resistance per inch of thickness for various materials. The Thermal Resistance is proportional to the thickness, and from these values the total Thermal Resistance of any combination of materials may be obtained. The corresponding value of U for heating calculations may then be read from the graph and will be near enough for practical purposes.

 Example :-
 II in. ventilated cavity wall of Fletton brickwork, with $\frac{1}{2} \mathrm{in}$. fibreboard on wood battens Inside.

[^5]: * See B.S. 991 for details of various grades of cast iron.

