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PREFACE 

In an advanced book on Aerodynamics extensive use may be 
made of mathematical methods. Difficulties besetting this 
approach to the subject are readily surmounted by under¬ 
graduate engineers and others possessing some mathematical 
aptitude. However, occasions are multiplying when a wide but 
less exacting knowledge of the subject suffices, and then the 
science must be described more frequently in terms of 
experiment. 

This book presupposes a very limited knowledge of algebra, 
trigonometry, and mechanics. The experiments relied upon 
require only simple apparatus; but if they cannot actually be 
carried out, a careful consideration of them is necessary to grasp 
the subject. 

Various important parts of Aerodynamics, whose adequate 
investigation calls for advanced methods, have been introduced 
qualitatively. Thus the final chapter presents a brief account of 
the famous Lanchester-Prandtl theory of wings without attempt¬ 
ing its scientific analysis. Some other matters have been omitted 
altogether, being regarded as too difficult or specialised. Of this 
nature, for instance, are recent developments foreshadowed in 
some measure by the Schneider Trophy Races. 

Applications of aerodynamical principles and methods are 
illustrated by examples worked in the text, covering an appre¬ 
ciable range of difficulty without making demands on ingenuity. 
Additional questions of comparable standard can be found in 
the aeronautical examination papers of the University of Cam¬ 
bridge (Engineering Studies, II and III), the University of 
London (B.Sc., Part I), the Institution of Civil Engineers, the 
Institution of Mechanical Engineers, the Royal Aeronautical 
Society, etc. 

Examples 12, 25, 58, 96-7 and 102, though involving no 
essential difficulty, lead on to further study and, together with 
Articles 50, 170, 202 and 218-21, need only be scanned upon a 
first reading. 

Reference has been made to Davy’s “ Interpretive History of 
Flight” and other admirable works in connection with the few 
historical allusions in the text. 
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Chapter I 

INTRODUCTION 

1. Aerodynamics is the principal science of Aeronautical 
Engineering. Its chief concern is to ensure the safety of aircraft 
in flight and to improve their operational efficiency so far as may 
be achieved by a judicious shaping of external form and dis¬ 
tribution of mass. 

The subject surveys the stable equilibrium of aircraft in steady 
or accelerated flight and their reaction to disturbance; the ease 
and efficacy of control in all circumstances; and also the maxi¬ 
mum air loads arising on exposed parts, with a view to securing 
requisite structural strength. Many questions are largely deter¬ 
mined by considering the character of the air flow relative to the 
craft. These notably include the manner in which lift is best 
generated to support the flying weight; minimising resistance to 
motion through the air; and providing propulsive force to over¬ 
come such resistance as remains. 

Both safety and performance depend in part on the physical 
properties of the atmosphere, which have therefore to be ascer¬ 
tained at all flying altitudes. 

Unlike some other studies of Aeronautical Engineering, Aero¬ 
dynamics is in no sense a development of a subject previously 
comprehended within general engineering science. It has little 
or nothing in common with Hydraulics, whilst the difficult modem 
engineering subject of Fluid Mechanics has itself been fostered by 
the expansion of Aerodynamics. The latter brings to engineering, 
indeed, an array of new fundamentals, phenomena and methods 
of investigation, some originating in the subject and others 
transplanted from Mathematics or Physics and given new life. 

The student equipped with engineering knowledge, elementary 
or more advanced, encounters on turning to Aerodynamics a 
certain break with previous studies, arising partly from the 
novelty of the subject matter and no less from a change in 
method. The subject is already developed to an exceptional 
degree, but remains in vigorous growth, susceptible to discoveries 
and inventions of benefit to Aviation. In these circumstances 
it is as well that no so-called engineering theory of the subject 
exists to make its study ‘ cut and dried \ 

B I 



2 ELEMENTARY AERODYNAMICS [CH. 

In all engineering there is room for intuition, born of an 
instinctive visualisation of how things will work. Aerodynamics 
is no exception, and calls for engineering instincts that are 
supplementary to those a student has already formed. These 
soon develop, whether the subject is studied mathematically or, 
as in this book, experimentally. The initial difficulty experienced 
on this score implies that Aerodynamics is not a subject to 
‘ con over ' but rather to study deeply, even at the cost of 
covering less ground. 

Finally it is evident that the success of aerial transport results 
from many endeavours of different kinds, of which our subject 
deals with only one, although the most important and funda¬ 
mental. Parallel progress in other fields of Aeronautical En¬ 
gineering—in aero-engines, structural plans, materials and modes 
of construction, aerodromes and airports, and so on—influences 
the scope and orientation of aerodynamical preoccupations, modi¬ 
fying these from time to time. Existing aerodynamical know¬ 
ledge is very extensive, and a short course of study must be 
selective, giving preference to matters of immediate aeronautical 
interest; for instance, it is justifiable at the present time almost 
to neglect the biplane and triplane in order to consider the 
monoplane more effectively. 

This chapter describes a few of the considerations determining 
the present treatment of the subject. The brief references to 
some outstanding events of the past no more than touch upon 
the history of Aerodynamics and flying, for which many excellent 
books and papers may be consulted. 

2. Static and Aerodynamic Lift 

The first requirement for human flight is a lift that will support 
a considerable weight freely in the atmosphere. Such a lift can 
be secured by two dissimilar means. * 

The one method exploits Archimedes' Principle, by which 
every body in the atmosphere experiences an upward force equal 
in magnitude to the weight of the air it displaces. For ordinary 
bodies this force is negligible; thus it lightens an 11-stone man 
by only 3 ozs. But the man weighs no more than the air in a 
room 10 feet high and wide and 20 feet long, and a tenuous body 
of twice this volume and the same weight could lift him. 

Speculation was already rife in the 17th century as to the 
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>ossibility of securing a sufficient margin of buoyancy from con- 
ainers enclosing either a partial vacuum or air rendered light by 
leating. During the following century the second of these 
chemes was successfully demonstrated at full scale, and the 
>roblem was also solved in a more practical way by employing 
envelopes inflated with hydrogen. 

The method is aptly described as ‘ lighter-than-air ', the term 
•eferring to the lifting agent and excluding the load attached. 
Being evidently statical, the force of buoyancy supporting the 
oad is called static lift. 

The other method is purely aerodynamical. It is frequently 
iistinguished as the ‘ heavier-than-air ' method, but the weight 
3f air displaced is in fact quite negligible. Aerodynamic lift is 
the inaction resulting from a rate of change of downward mo¬ 
mentum imposed upon continually renewed air. Whether the 
action is achieved by flapping or fixed wings, horizontal pro¬ 
pellers, or paddle-wheels, the lifting agent must be maintained 
in quick motion through the air, which the latter resists, however 
idealised the action. This method therefore calls for a continuous 
expenditure of power, on which the lift depends. 

Aerodynamic lift excited attention in most remote times. The 
earliest projects naturally favoured beating wings in imitation of 
birds and insects, but the horizontal propeller is some four-and-a- 
half centuries old, whilst the aeroplane itself was invented in the 
early years of the 19th century. 

The practical utilisation of aerodynamic lift was delayed until 
the present century owing to (a) the problem of making flight 
by this means even tolerably safe, (b) the tardy advent of the 
light-weight prime mover. The second of these difficulties also 
impeded lighter-than-air aeronautics, but much less implacably 
because the maintenance of static lift, unlike that of aerodynamic 
lift, absorbs no power. 

3. The First Ascents 

The story of the first ascents into the atmosphere provides 
one of the most exciting pages of aeronautical history. In 1783 
the idea of obtaining static lift from an imprisoned volume of 
heated air was put into practice by the brothers Montgolfier of 
Lyons. Their audacious contraption consisted of a giant inverted 
paper bag, strengthened against bursting by a fabric cover and 
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filled with the hot smoke of a damp straw fire which was main¬ 
tained at the open mouth during flight. The apparatus, as will 

be seen from Fig. 1, somewhat resembled 
an ecclesiastical hat, the passengers being 
accommodated in the brim. 

Fire-fighting equipment seems to have 
comprised a bowl of water and a sponge. 
But a more insidious risk than this 
blatant one arose from lack of knowledge 
of the atmosphere. Apart from other 
perils that might conceivably lurk in the 
air, there was the chance of being caught 
in a current and hurled violently upward 
or downward. All flying depends upon 
freedom from vertical surging on a large 
scale in the atmosphere, and the reason 
for confidence in this respect was un¬ 
known at that time. 

However, sending up a trial load of 
live-stock resulted only in such damage 
as could be traced to animal spirits, and 

thereafter as many as seven passengers together made aerial 
trips in safety. Montgolfieres, as these hot-air balloons were 
called, were abandoned only when an 
ingenious but unwise attempt to com¬ 
bine them with hydrogen balloons led to 
disaster. 

4. Hydrogen Balloons 

Cavendish isolated hydrogen in 176G. 
Its exceeding lightness was so quickly 
harnessed to aeronautics that a first 
ascent was made by its means before the 
end of the same year that witnessed the 
Montgolfieres. Balloons filled with hydro¬ 
gen were clearly more efficient and 
utilitarian. They permitted an aerial 
crossing of the English Channel in 1785, 124 years before this* 
was accomplished by aeroplane. Almost immediately they were 
also put to scientific use for investigations into the state of the 

Fig. 2.—The First Hydro¬ 

gen Balloon, 1783. 

Displacement, 9000 cu. ft. 

Fig. 1.—Hot-Air Balloon, 

IN WHICH THE FIRST 

Ascent was made in 

1783. 

The displacements of these 
* Montgolfieres ’ ranged from 
30,000 to 60,000 cu. ft. 
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atmosphere, which are still continued with the aid of balloons sent 
up to great altitudes. 

Other matters of interest regarding gas-filled envelopes include 
their design to carry a given weight to a prescribed altitude or 
‘ ceiling ’, and their tendency to ride level at lower altitudes. 
Detailed consideration of these problems is postponed to the next 
chapter, but evidently the envelope must be only partly filled at 
low altitude to permit expansion of the gas without loss at 
increased altitudes. 

5. Early Dirigibles 

A balloon is incapable of motion relative to the surrounding 
air except in a vertical sense; free of contact with the ground or 
sea, it drifts with the wind 
and cannot be steered. To 
overcome the disadvantage 
and enab-e a journey to be 
made in a direction different 
from that in which the wind 
is blowing requires a hori¬ 
zontal pull or thrust. Sails 
being useless and oars re- Fig. 3.—The First Aircraft—Giffard’s 

quiring to be too large, it Steam-driven Dirigible, 1852. 
n j , Displacement, 88,000 cu. ft.; H.P., 3; 
was proposed at one time r speed, 5 m.p.h. 

to harness flocks of trained 
birds to balloons, like teams of dogs to sledges. But more 
practical ideas prevailed in the 19th century, and a power plant 
driving a propeller was incorporated. 

The aircraft resulting from the combination of a gas-filled 
envelope, an engine and propellor, and a rudder to steer with, is 
appropriately called a dirigible balloon, or simply a dirigible. 
However, the elongation of the gas-bag into a streamline shape 
to reduce resistance to motion and render a small thrust effective 
brought the name airship early into use. 

The first successful dirigible, and therefore the first aircraft in 
the true sense of the word, was Giffard’s airship (Fig. 3), which 
cruised under its own steam at some 5 miles per hour in the 
absence of wind. It appeared in 1852, which seems rather late 
when one recalls that Watt’s inventions relating to the steam 
engine were worked out during the period of the isolation of 
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hydrogen and the first ascents. But a glance at early prime 
movers in a museum will suffice to explain how much easier was 
the task of making a large envelope and filling it with gas than 
that of evolving an engine of useful power which the gas-bag 
could lift. Giffard's power unit represented a considerable 
advance, but it still weighed per horse-power more than a cwt. 
for each lb. of the modern aero engine. 

As each prime mover was invented during the 19th century it 
was quickly tried out in the air. Dirigibles propelled by electric 
motor or gas engine were flown within a dozen years or so of 
_these inventions becoming C^\ practical. The first success- 
. v ful petrol-or benzene-fuelled 
IV ~~T ~jj£ airship (Santos - Dumont, 

\ / y4ium 1898, Fig. 4) appeared only 

\ N. y' thirteen years after Benz 
\ succeeded in driving the first 
l s' oi corresponding motor-car 

round in a circle nearly four 

Fig. 4.—-Santos-Dumont’s small Petrol- times before breakdown 
driven Airship, 1898. occurred. Santos-Dumont's 

The ballast-bags slung fore and aft were diminutive power plant was 
employed to adjust trim. r r 

of about the same size as 
Giffard’s (3-4 H.P.), but weighed 80 per cent. less. The establish¬ 
ment of the internal-combustion engine led to many small airships 
being built; Santos-Dumont alone is credited with fourteen. 

6. The Three Types of Airship 

A difficulty with the early dirigibles lay in maintaining the 
streamline shape of the envelope in face of variation in volume 
of the gas on change of altitude. Occasionally, transverse baffles 
were fitted to prevent surging of the gas towards nose or tail, 
which, by concentrating the lift at one or other extremity, could 
cause a partially deflated envelope to stand on end. Even so, 
the longitudinal compression arising from the fans of wires sup¬ 
porting the gondola could make a limp envelope buckle like a 
weakly inflated inner tube from a tyre. 

The difficulty was met for small aircraft by fitting internal 
ballonets filled with air. These collapsed on increase of altitude 
to allow the gas to expand inwardly, and they could be inflated 
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again to keep the envelope taut at lower altitudes when the gas 
contracted. An airship of this kind is distinguished as ‘ non- 
rigid 

Two constructional changes were introduced at the end of the 
century, leading to the ‘ semi-rigid ’ and ‘ rigid ’ types. 

In the semi-rigid type the gondola containing the engine and 
other loads was suspended from a long girder, concealed within 
the envelope and extending along its length, which relieved the 
envelope from end-wise compression from the suspending wires 
and in other ways helped to preserve its shape. 

The rigid type was introduced by Zeppelin, and large airships 
of recent times have all taken this form. Its external shape is 
independent of the volume of the gas, being secured by a frame¬ 
work covered with fabric. The hull so formed is divided by a 

Fig. 5.—Large Rigid Airship with Fabric cut away over Two Cells, 

Showing [right) External Framework, [left) Gas-bag. 

succession of bulkheads into a string of numerous cells (Fig. 5), 
each containing a gas-bag, which, in modern examples, may be 
many times as large as a balloon. The several power units and 
other loads are supported directly by the great hull. 

Only lack of powerful and light engines prevented greater 
development of airships during the Victorian era. Otherwise 
trouble would have been encountered through the use of hydro¬ 
gen, which is inflammable in air; the danger has since proved 
real, and this gas will probably never be used again in Civil 
Aviation. Substitution of the inert gas helium entails little 
increase of volume to support a given weight; in round numbers 
each ton of static lift requires 33,000 cubic feet of hydrogen and 
36,000 cubic feet of helium; but the supply of the latter is 
restricted. It will be seen that an airship weighing 200 tons 
would require a volume exceeding 7 million cubic feet, leading 
to a hull some 800 feet in length and more than 135 feet in 

maximum diameter. 
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7. Size and Speed 

It was early recognised that as airships become larger both 
lift and structural weight tend to increase as the cube of the 
linear dimension, whilst surface area increases only as the square 
of the same. Resistance to motion is roughly proportional to 
the area, and so large sizes promise a greater proportionate useful 
lift at the same speed through the saving of engine, fuel and 
fixed weights. The development of the aero engine has enabled 
this theoretical advantage of the large* airship to be tried out in 
modern times. But results have so far proved to be rather 
indifferent from the point of view of Civil Aviation, examples of 
up to 200 tons weight failing to evince exceptional weight-carrying 
capacity compared with other types of aircraft. The reason is 
that the construction of vast hulls of sufficient strength and 
light weight presents a severe engineering problem for solution. 

A comparison will be effected shortly between airships and 
other aircraft, but the following points may be noted. A large 
airship, 6-7 million cubic feet in volume, has a surface area of 
the order of 6 acres. Hence, however perfect the streamline 
form of the hull, the speed through still air is necessarily slow 
and seldom approaches 100 miles per hour. It follows that an 
airship can make only poor progress against strong headwinds 
and must seek out favourable weather conditions. This it is 
largely in a position to do by virtue of the exceptionally long 
time it can remain in the air without re-fuelling. But the time 
required for an ocean crossing, say, against the direction of the 
prevalent wind becomes long and uncertain. 

8. The Beginnings of Aerodynamics 

Aerodynamics originated with Leonardo da Vinci, who at the 
close of the 15th century planned and engaged in comprehensive 
researches with a view to exploring the subject. He invented 
the helicopter and the parachute. But much more remarkable 
was his realisation that the elements of a science had to be estab¬ 
lished before flying could reasonably be essayed. His work 
remained unpublished until the end of the 18th century, when it 
was found to comprehend some of the basic principles of the 
subject. 

Little further progress was made during this interval of nearly 
300 years, but then the subject was revived creatively by Sir 
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George Cayley in a series of researches spread over the first half 
of the 19th century. These illuminated many different facets of 
aeronautics, but his most enduring and notable achievement was 
elucidating and applying the principle of the fixed wing, used on 
aeroplanes and flying-boats. 

Cayley invented the aeroplane. It is true, of course, that 
there existed no engine to make level flight possible by this or 
any other aerodynamic means, but the fact that his prototypes 
derived power from gravity, the flight path being inclined for 
this purpose slightly downward from the horizon, detracts in no 
way from the invention. His first small glider flew in 1804. A 
year or two afterwards he was experimenting with almost a full- 
scale glider which flew with “ perfect steadiness, safety and 
steerage . . . from the top of a hill . . .” It was large enough 
to give rise to conjecture as to whether a man ever perched 
himself upon it, but apparently this never occurred. 

These experiments were epoch-making in demonstrating not 
only the aerodynamic lift of fixed wings but also how an aircraft 
could be shaped and loaded to fly by their means. A measure 
of stability was secured by fitting the gliders with vertical and 
horizontal fins, which were made adjustable for the purpose of 
steering. Above all, Cayley discovered the principle of the 
* lateral dihedral \ the upward inclination of the wings from 
their roots to form a flat vee, a device that is still outstanding 
amongst the many inventions that go to the making of a modern 
aeroplane. 

9. Early Laboratory Experiments 

It is particularly instructive to consider briefly one other 
aspect of this early work. To judge of the possibilities of avia¬ 
tion it was necessary to estimate the resistance of the air to the 
motion of the aircraft. Calculation being impossible, Cayley 
resorted to laboratory experiment, introducing the * whirling 
arm ' for the purpose. 

This apparatus, whose occasional use still survives, consists of 
a long horizontal arm which can be whirled round a vertical axis 
located at one end, so that a model secured to the other end is 
forced through the air in a wide circle at a speed which can be 
varied. The lift and resistance of the model are measured 
directly, though rather inconveniently, by suspending it from 
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the arm through a balance, whilst its speed through the air can 
be ascertained by a stop-watch after deducting an allowance for 
the swirl of air set up by the rotating apparatus as a whole. 

The whirling arm came to be much used during the second 
half of the century, notably by Professor Langley in the U.S.A. 
and Sir Hiram Maxim in England, but then began to give place 
to the more convenient wind tunnel, in which the force com¬ 
ponents are measured on a stationary model suspended in an 
artificial wind. Thus the wind tunnel, employed on so mag¬ 
nificent a scale today, was already preferred by Horatio Phillips 
for his researches, circa 1870-90, on the most favourable forms 
of section to employ for aeroplane wings. 

10. The Main Problem 

The period between Cayley’s original researches and those of 
Langley and Phillips was characterised by designs for full-scale 
aeroplanes and the construction of power-driven models, notably 
those of Henson and Stringfellow in Britain and Penaud in 
France. All these efforts and projects received scant support, 
for the world remained incredulous, though it must be admitted 
that the inventors were over-sanguine of a ready success. 

Meritorious though these inventions were, they suffered in 
varying degree from lack of an assured measure of inherent 
stability enabling them to fly safely without constant attention, 
or.alternatively of an adequate system of aerodynamic controls, 
such as would have sufficed in skilled hands. Without the 
removal of this defect, either in the one way or the other, 
mechanical flight remained impracticable, for a gust of wind 
could bring the aircraft fluttering or crashing to the ground. 
Thus the aeroplane, in contrast to the airship, waited upon a 
matter of even greater urgency than the provision of a light 
engine. 

This position still existed at the close of the century, but was 
by then clearly appreciated. Attempts to surmount the difficulty 
proceeded along three different lines : (a) adventurous experi¬ 
ments with man-carrying gliders, (b) advance in aerodynamical 
theory, (c) ad hoc experiments on models in the wind tunnel. 

A gallant band of pioneer pilots engaged perilously in (a); 
mention must be made of Lilienthal, Pilcher and Chanute, among 
others. Progress under (b) was achieved by Dr. Lanchester, who 
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embarked upon a theory of dynamical stability which aimed at 
no less than such a judicious shaping of the aircraft and dis¬ 
tribution of its mass as would cause it to respond safely, without 
assistance from the pilot, to any moderate disturbance encoun¬ 
tered during flight. This fundamental line of enquiry involved 
a mathematical step of great complexity, only finally negotiated 
by Professor Bryan in 1911. Lastly, (c) was the method favoured 
by the Brothers Wright, and it led to an instant success. They 
did not concern themselves with achieving inherent stability for 
the aeroplane they had in mind to build, but concentrated simply 
on making it controllable in average weather with reasonable 
skill. Their wind-tunnel experiments on models were correlated 
with flights on full-scale gliders, so that their plan also utilised 
the method (a). 

11. The First Mechanical Flights 

Wilbur and Orville Wright brought off the first successful 
aeroplane flights at Kitty Hawk, North Carolina, on December 17, 

Fig. 6.—The Wright Brothers' Biplane, in which the First Mechanical 

Flights were made in 1903. 

1903. Their craft was a biplane of 40 feet span weighing 1000 lb. 
all up (see Fig. 6). It was fitted with a biplane elevator in front 
for longitudinal control and with a twin rudder behind for steer¬ 
ing, and the wings could be warped to roll the machine round 
its longitudinal axis. A 12 horse-power motor drove two pro¬ 
pellers in opposite directions, through chains, and gave a speed 
relative to the air of about 32 miles per hour. Launched from 
a rail under its own power and in the presence of a boisterous 
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20 miles-per-hour wind, it was flown several times, finally for 
nearly a minute, and safely landed. 

This historic achievement cannot be overrated. It was typically 
of an engineering character, being due to a general soundness of 
design and construction, permitting that touch of brilliance, the 
warping of the wings, to demonstrate its effectiveness. A tail 
plane, already suggested by others, would have been preferable 
to the front stabiliser, but the latter sufficed and was retaified 
for some time afterwards. Lighter engines had been planned or 
constructed, but the one used did not peter out, and provided a 
sufficient margin of power; moreover, special care had been 
taken to ensure that the transmission would stand the strain. 
Better wing sections were known at the time, but those employed 
avoided some earlier mistakes and allowed of a light construction, 
and the whole featherweight structure withstood a moderately 
severe test without fracture. Finally the wing-warping, whose 
function was to be discharged later on by ailerons, demonstrated 
the advantage of powerful means of aerodynamic control in the 
lateral sense. 

Full accounts of the achievement exist, of the painstaking 
experiments, both model and full-scale, leading up to it, and of 
the remaining difficulties surmounted soon afterwards. The first 
aeroplane to fly was not conceived from a flash of inspiration. 
It resulted from concentrated study and attention to detail by 
.two level-headed men, crowning not only their own wise pre¬ 
parations, but also a century of high endeavour to which their 
predecessors had consecrated time; fortune and life in face of 
every discouragement. The most ehduring aspect of the enter¬ 
prise is that it made clear the need in aeronautics, as plain today 
as then, for intense care, a composite excellence, and a policy of 
leaving nothing to chance. Especially significant was the ex¬ 
ploitation of experiments on models. The method was soon 
adopted far and wide, tunnels being constructed in Britain 
(notably at the National Physical Laboratory), the U.S.A., 
Russia, France and other countries. 

12. Wing-loading and Stalling Speed 

Discussion of the sphere of aviation and of the interplay 
between Aerodynamics and other aeronautical sciences must refer 
to two fundamentals, which will be explained in detail in later 
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chapters, but may at once be perceived in a general way. The 
first to be considered is the dependence of aeroplanes on wing 
area. 

The lift of given wings fixed rigidly to an aeroplane body 
depends primarily on the speed and the inclination of the sections 
of the wings to the direction of motion. The amount of lift 
generated is adjusted to balance the weight of the aircraft by 
suitably raising or depressing the tail end of the body by con¬ 
trary motion of the elevators, movable parts of the tail-plane of 
a modern aeroplane. Reduction of speed, which in itself rapidly 
decreases lift, is compensated by lowering the tail, thus increasing 
the inclination of the sections and the lifting capacity of the 
wings. But this compensation cannot be continued indefinitely. 

Fig. 7.—Monoplane Flying Straight and Level. 

(a) At a high speed and small incidence, (b) at a low speed near the stall. 

there being a limiting angle for each aeroplane at which the 
wings reach their maximum capacity; it is called the stalling 

angle. 
Fig. 7 shows an aeroplane flying (a) at a small angle appro¬ 

priate to high speed, (b) nearly at its stalling angle. The speed 
at which sufficient lift is generated is much reduced in the second 
case, as indicated by the shorter arrow; it is the minimum speed 
of which the aeroplane is capable, and is called the stalling 
speed. 

Apart from certain devices which improve maximum lifting 
capacity, the stalling speed of an aeroplane is directly propor¬ 
tional to the square-root of the weight and inversely proportional 
to the square-root of the wing area, defined as the product of 
the span of the wings and their mean width. The total weight 
divided by this area is called the iving-loading, i.e. the wing¬ 
loading is the average weight carried per unit area of the wings. 
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Thus the stalling speed is approximately proportional to the 
square-root of the wing-loading. 

The wings of the Wright biplane were so lightly loaded (2 lb. 
per square foot) that the stalling speed was only some 26 miles 
per hour, and other early aeroplanes stalled at not a great deal 
more. It is found that in skilled hands an aeroplane can be 
landed at its stalling speed, so that there is an advantage in 
keeping this low. However, familiarity and prepared landing 
grounds make landing speeds of 65-70 miles per hour quite 
feasible for skilled pilots today. Such high modern landing 
speeds make possible much larger wing-loadings, which can still 
further be increased by the use of landing flaps and monoplane 
wings. A wing-loading of 32 lb. per square foot, sixteen times 
as great as that of the Wright biplane, is now by ho means 
excessive. The approximate square-root law would then indi¬ 
cate a landing speed of over 100 miles per hour, i.e. a four-fold 
increase of that for the Wright biplane. But the substitution of 
monoplane wings, which have a greater lifting capacity than 
biplane wings, reduces this to 85—90 miles per hour, and then 
landing flaps decrease it further to 70 miles per hour. 

Summing up, the wing area of modern monoplanes, weight for 
weight, need be only a very small fraction—say between one- 
tenth and one-twentieth—of that employed for the earliest 
biplanes. 

1*3. The Power Required for Aerodynamic Lift 

It has already been mentioned that aerodynamic lift, unlike 
static lift, absorbs engine power. The second fundamental of 
heavier-than-air aviation to be considered is how this demand 
depends on speed. Attention will be focused upon an aeroplane 
in straight and level flight through a still atmosphere, but the 
results also apply in principle to other means by which aero¬ 
dynamic lift may be secured. 

Soon after the Wrights' achievement Lanchester published his 
remarkable theory of the aerodynamic lift and drag of wings. 
Though of too revolutionary a character to be generally credited 
until many years afterwards, this theory as improved by Pro¬ 
fessor Prandtl is now universally accepted. Its details are com¬ 
plicated, however, and a description of them must be deferred 
until a later chapter. On the other hand, the aspect of im- 
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mediate consequence becomes apparent by considering a hypo¬ 
thetical system governed by the same broad principle. 

The lift is the reaction that results from giving downward 
momentum at a certain rate to the air flown through. In the 
actual case the large mass of air concerned is affected unequally. 
But for present purposes the wings are assumed to act uniformly 
on a mass m of air per second, giving it a uniform downward 
velocity v. Then the rate of change of downward momentum is 
mv and, if L denotes the lift, L = mv. 

Now, before receiving the downward velocity v the air, being 
at rest, had no kinetic energy. But after the action each mass m 
has acquired kinetic energy to the amount \mv2. In the case of 
level flight through a still atmosphere this energy can come only 
from a continuous combustion of fuel, and it accounts for part 
of the power expended by the engine. 

Consider the effect of changing the horizontal speed V of the 
aeroplane. Since flight is both straight and level, the lift L of 
the wings is equal to the weight of the aircraft, which, neglect¬ 
ing loss of fuel, is constant. Hence L is constant and, therefore, 
also the product mv. But with change of speed m will vary 
directly as V. Therefore v must vary inversely as V. Energy 
is given to the atmosphere at the rate \mv2 per second, i.e. at a 
rate which is proportional to the product of m and v2. Therefore 
on change of speed this rate varies as V x 1 jV2y i.e. as 1/F. 

This important result leads to inferences which conflict with 
common experience, increase of speed usually demanding more 
power. The minimum flying speed of almost every aeroplane 
is determined by its wing-loading, as explained in the preceding 
article. The power required to generate the lift necessary 
for straight level flight is a maximum at this slowest speed, 
but, although an aeroplane has occasionally been fitted with 
too small an engine to fly as slowly as its wing-loading 
would permit, there usually exists an ample margin of power. 
Nevertheless, if the lifting capacity of wings were greatly increased 
by a new invention and small wing-loadings adopted to realise 
very low landing speeds, the power required might well become 
prohibitive before the stall; the circumstances of these aero¬ 
planes would then resemble those of autogyros, whose minimum 
flying speeds are determined by the power available. 

The power required for aerodynamic lift is expended by the 
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airscrew, or propeller, in doing work against a certain part of the 
resistance of the wings to motion, a part which would not exist 
if the wings had no lift, and is called the induced drag. Since 
the associated power varies as 1 /V, the induced drag of a given 
aeroplane in straight level flight varies as 1/F2. 

The given wings have also a drag of another kind, which, 
together with the drag of the body and other exposed parts of 
the aeroplane, varies with speed in a normal manner, i.e. roughly 
as V2. Thus the power absorbed by this second part of the 
drag, often called the total parasitic drag, varies roughly as V3; 
it is small at low speeds and rapidly becomes great at high 
speeds. 

Combining the two demands made by a particular aeroplane 
in straight level flight, the total power it requires can evidently 
be written in the form 

y + BV3, 

approximately, where A and B are constant coefficients. These 
coefficients differ greatly in magnitude, A being very large and B 
very small. At low speeds with landing flaps retracted, the 
second term is so small compared with the first that its aug¬ 
mentation with increase of speed is overshadowed by the much 
more important decrease of the first term, and thus the total 
power required rapidly diminishes. But, on progressively in¬ 
creasing speed, a stage is reached when the second term becomes 
as important as the first, increasing the power required as much 
as the first term reduces it, and thereafter the second term takes 
charge. 

Thus each aeroplane has a certain speed at which the power 
it requires to fly is a minimum. So weak were the engines of 
early aeroplanes that they could do little more than fly at this 
one speed, which was very low. The modern aeroplane has a 
much higher speed for minimum power and its engine permits it 
to fly much faster or slower; in short, it possesses a wide speed 
range. Towards the upper limit of its speed range the power 
required for lift is less than 10 per cent, of the total power, 
which mounts rapidly, nearly in proportion to the cube of speed, 
as is generally characteristic of other means of transport. Com¬ 
pared with those other means, the aeroplane starts with an 
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initial advantage in respect of high speeds, which it owes in the 
end to an inability to fly slowly at all. 

14. Comparative Efficiency of the Lifting Systems 

A cursory review of aircraft development since the first 
mechanical flight reveals three outstanding features : the ascend¬ 
ancy of aeroplanes, the triumph of the monoplane after a long 
period of suppression in favour of the biplane, and a great 
increase in the speed of aeroplanes. Preliminary discussion of 
these broad issues is useful, and the present article deals with 
the first. 

The ornithopter, or flapping-wing aircraft, can be lightly dis¬ 
missed in spite of its long and disastrous innings, for no advan¬ 
tage has yet been demonstrated in favour of this imitative 
method. There remain the three systems of lift, picturesquely 
called the spinning-top, kite and gas-bag methods. The first 
was conceived in a remote age, but has taken practical shape 
only in recent times, in the autogyros of J. de la Cierva and in 
experimental helicopters. The third has been tried repeatedly 
throughout nearly a century. Why has the kite method soared 
so high above its competitors ? 

The permanent interest of a lifting system centres in its suit¬ 
ability and operational efficiency in relation to aerial transport. 
Regarding suitability there is involved a question of special 
purposes. Each system permits the performance of some duties 
which would be impossible with one or both of the others; for 
example, an airship can remain for a very long time in the air 
without refuelling, whilst an autogyro can land in a confined 
space, but an aeroplane can do neither. In short, circumstances 
arise in which any one of the three systems must be employed, 
whatever its efficiency, if aerial service is required. 

In regard to operational efficiency account must be taken of 
(a) dead weight, which detracts from useful lift, (b) size and 
(c) speed. Factors neglected affecting efficiency in a wider sense 
include durability and ease of handling and repair, but such are 
beyond the scope of our subject. 

In the following comparison between the envelope of an air¬ 
ship, the rotor of an autogyro and the wing of an aeroplane, 
(a) is met by referring to definite aircraft, the weights of whose 
lifting systems are known. Difficulty arises in connexion with 

c 
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(b), since data are available for only small autogyros, whilst 
airships become efficient only at large sizes; as a compromise, 
the envelope selected is from a recent airship of only 5J tons 
gross lift which proved especially serviceable. In respect of (c), 
a familiar characteristic of autogyros is their ability to fly very 
slowly, but this useful feature is associated with a top speed 
that is economically too small for aeroplanes. In these circum¬ 
stances the wing considered is taken from a particularly slow 
aeroplane. 

Perhaps the most generally familiar measure of transport 
efficiency is miles-per-gallon. However, the load transported is 

Fig. 8.—Comparative Efficiencies of Lifting Systems. 

(a) Autogyro rotor, (b) small airship envelope, (c) slow aeroplane wings. 

equally significant, and its variation is allowed for by substituting 
ton-miles-per-gallon. Finally, the load reckoned should be use¬ 
ful; i.e. the dead weight should be subtracted from the total 
load. Thus in Fig. 8 the ton-miles-per-gallon of useful lift are 
plotted * against the true air speed, defined as the speed in a 
still atmosphere. 

On the basis of the figure the rotor is upon the whole the least 
efficient, but it is adapted to unique services—e.g. aerial taxi 
work and private flying of short range—and moreover is still in 
course of technical development. The wonderful efficiency of 

* Further data regarding the figure may be obtained from " Aircraft 
Efficiencies”, a paper read before The Institution of Mechanical Engineers 
in 1938. 
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the airship hull at speeds below 60 miles per hour is illusory, 
since the drift of head-winds must be subtracted in full. At 
100 miles per hour, the efficiency of airships and autogyros is 
of the same order as that of a corridor train with a normal 
complement of passengers and reasonable luggage. The wing 
selected surpasses the small hull at 75 miles per hour, but below 
this speed requires excessive power for its aerodynamic lift. At 
twice this speed the drag of the wing is largely frictional, depend¬ 
ing primarily on the skin area exposed, like that of the airship 
hull, and its great advantage is due to the comparatively small 
area of this * wetted surface \ 

With increase of size an airship hull improves aerodynamically, 
as already described in Article 7. Increase of size at first also 
improves a wing, owing to better use that can be made of the 
materials of construction, but once an economical scale has been 
reached from this point of view the dead weight increases as the 
cube of the linear size, and the lift only as the square. Thus 
eventually a limitation to the size of aeroplanes is reached, but 
this already exceeds 100 tons gross weight. Large aeroplanes 
and flying-boats employ greater wing-loadings, thus scoring again 
off the airship by reducing their wetted surface. For much larger 
sizes than contemplated in the figure, the curves for the hull and 
the wing still cross in the manner depicted, though at a higher 
speed. 

The conclusion is that, in practical sizes and above a quite 
moderate speed, the wing easily surpasses in efficiency any other 
lifting system known. 

15. Monoplane Supremacy 

Amongst the designs and models of the 19th century will be 
found monoplane, biplane, triplane and even multiplane' wing 
arrangements. The biplane predominated for three or four years 
after the first flight, but then the monoplane reappeared, and for 
a time the two types grew up together. 

The English Channel was first crossed by aeroplane in 1909 
by Bleriot, using a monoplane of 600 lb. weight with a wing¬ 
loading of 4 lb. per square foot and driven by an engine of some 
24 horse-power. Interest in the achievement has, perhaps, more 
to do with airmanship and engine reliability than with Aero¬ 
dynamics. 
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The monoplane attained in 1911 to a high peak of aerodynami¬ 
cal development in the French ‘ Pantalette ', illustrated in Fig. 
9 (a). In this small craft will be seen anticipated many features 
of recent aeroplanes : low wings, widened and thickened at the 
roots to permit of internal bracing against the bending moments 
arising from the lift; an enclosed streamlined body or fuselage; 
and a trousered, or faired, undercarriage. No biplane produced 
for many years afterwards could bear comparison with this early 
design, yet a long period soon ensued in which monoplanes fell 
into disuse. 

The same figure shows at (6) the 1912 type of the same Antoin¬ 
ette series of monoplanes. It will be seen that the Pantalette 

Fig. 9.—(a) The ‘Pantalette* of 1911, a Streamlined Cantilever Mono¬ 

plane of the Antoinette Series. (b) The Antoinette Monoplane of 

1912, with External Bracing and Nose-wheel Undercarriage. 

was unique, subsequent monoplanes continuing to have their 
wings supported, as before, by a fan of lift wires radiating from 
the body or a strong point beneath it. The lengthwise com¬ 
pression of the wings induced by these wires was the principal 
objection to the monoplane, it being much less severe in the 
biplane. 

Thus the Pantalette was long ahead of its time, and for two 
reasons. Firstly, there existed no aero-engine of sufficient power 
to produce a speed that would give effect to the elimination of 
parasitic drag which the design achieved; the speed range was, 
in fact, so limited that the drag was largely of that different 
kind associated with the production of lift. Secondly, in general, 
wings constructed on the full cantilever principle, i.e. with only 
internal bracing against bending moments, weigh much more 
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than the externally braced wings of biplanes, and the unavoid¬ 
able increase of landing speed was prohibitive at that time, when 
landing grounds were rough and familiarity with high speeds had 
yet to be attained. Use of full cantilever construction in spite 
of its large dead weight has since been justified by the much 
greater wing-loadings which higher landing speeds and landing 
flaps make possible. 

The above considerations, together with an exaggerated pre¬ 
dilection for very thin wing sections such as cannot be used in 
cantilever construction, explain the preference for biplanes during 
the primary period of aero-engine development. They fail to 
account for its continuance, however, once engines had become 
powerful and light, moderately high aircraft speeds a matter of 
course, and the now familiar landing flaps had been invented. 
These flaps permitted the wing-loading of a monoplane to be 
nearly double that of a biplane not so equipped, without landing 
speed being increased. They thus enabled the two wings of a 
monoplane to do almost the duty of the four wings of an unflapped 
biplane, but though invented long previously, they remained 
practically unused until 1934, improvement of aircraft perform¬ 
ance being left largely to the rapidly developing aero-engine. In 
that year the London-Melbourne race demonstrated the advan¬ 
tage they confer, and flaps were soon incorporated generally. 
Much smaller wing surfaces became feasible and the reduction 
of wetted surface brought higher speeds into view. These raised 
aerodynamical blemishes into prominence, owing to the import¬ 
ance of reducing parasitic drag, and external wing bracing clearly 
had to be dispensed with. Stripped of this, the biplane is 
structurally inferior to the monoplane. 

The modern preference for the latter is so marked as to 
make it unnecessary to consider the properties of the biplane 
in detail, although special purposes may lead to its reappearance 
in modified form. Triplanes and quadruplanes have received 
considerable attention in the past without showing to special 
advantage. 

16. Theory and Experiment 

It will be seen that though Aerodynamics has sometimes lagged 
behind the development of aviation, it has often leaped far 
ahead. Important new scientific theories and inventions have 
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often in the past been pigeon-holed because aviation could not 
utilise them at the time. 

In Aerodynamics the frequent difficulty of calculating results 
directly from first principles, or with the aid of only a few common 
coefficients, leads to extensive demands on experiment. During 
the first twenty years of mechanical flight progress was achieved 
almost entirely by testing models in wind tunnels. This experi¬ 
mental era, as it may almost be called, was highly successful, 
revealing many principles and phenomena, amassing data of 
general utility and, above all, establishing methods by which 
aeroplanes could be made aerodynamically safe. 

A small wind tunnel can be constructed and equipped at little 
expense, and will re-demonstrate, qualitatively but convincingly, 
much of this accumulated knowledge. Such an apparatus forms 
the nucleus of an Aeronautical Laboratory, and will be described 
in a later chapter. 

Unfortunately, Aerodynamics is not especially suitable for the 
direct experimental method. Designing aircraft from even pre¬ 
cise wind-tunnel data calls for costly apparatus and an advanced 
technique, because large corrections are often required before 
model experiments can be interpreted in terms of full-scale flight. 
The process of interpretation calls for aid from theoretical reason¬ 
ing. More generally, progress in Aerodynamics is most rapid 
and reliable when theory and experiment join hand in hand. 



Chapter II 

AEROSTATICS 

17. Dry air is a nearly uniform mixture of oxygen, nitrogen 
and other gases which are chemically indifferent to one another. 
Though rapidly becoming less dense with increase of altitude, air 
extends throughout the regions of the atmosphere used for flying. 
At higher altitudes the heavier gases of the mixture gradually 
fail to rise until, at some 50 or 60 miles up, hydrogen or helium 
predominates. 

In relation to the Earth, the atmosphere can only be regarded 
as a skin. Nevertheless its height is sufficient for the air and 
separated gases vertically above each square foot of the Earth's 
surface at sea-level to weigh nearly a ton. 

A force of nearly a ton weight presses down, therefore, each 
square foot of the top side of a board held horizontally at sea- 
level. Yet it cannot be felt, and evidently the board is also 
pressed upward by an approximately equal force arising from 
the atmosphere on its lower side. This compensation is made 
possible by the fact that the forces are caused by fluid pressure. 

Fluid pressures arise ultimately from external causes, such as 
gravity, centrifugal force, heat, or the action of a pump. They 
are transmitted through the fluid, and so communicated to the 
surfaces of immersed bodies or enclosing envelopes by molecular 
agitation. 

The sides and edges of a board held in any position in the 
atmosphere, for instance, are continuously bombarded at short 
range by the free and fast-moving molecules of the air. If the 
board be withdrawn, the parts of the gas brought again into 
mutual contact bombard one another, and the same pressure 
results across the area of contact as was formerly sustained by 
each side of the board. 

Each small portion of a bulk of gas at rest bombards every 
adjacent portion, irrespective of direction, maintaining an equal 
pressure in all directions. Thus a change of pressure arising 
from an external cause is transmitted in all directions and locally 
equalised. 

A continuous pressure is measured by the force exerted on 
23 
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unit area of a surface over which it is uniformly distributed. 
Thus if p, P and A denote the pressure, force and area, respec- , 
tively, p = PI A. More convenient means exist, however, for 
determining the magnitude of a fluid pressure experimentally 
than that of weighing the force exerted on a material surface of 
known area. Immersing a material surface in a fluid at rest 
makes no difference to the fluid pressure, but only defines the 
magnitude and (as we shall see) the direction of the force arising 
therefrom on the surface. 

These preliminary conceptions can be illustrated by two simple 
experiments. Let an exhaust pump be connected to a large 
biscuit tin, or similar box, which has been made air-tight. The 
crushing forces due to the external atmospheric pressure will 
soon become apparent on proceeding to remove a proportion of 
the molecules from within. If the action be arrested in time, 
the box can be at least partly restored to its original shape by 
heating, the enclosed molecules making up for their reduced 
numbers by an increased activity. Now let the biscuit tin be 
filled with water and a long upright tube be firmly connected to 
a small hole in its lid. Filling up the tube with additional water 
will cause the sides, lid and bottom of the box to bulge outward. 
In this second experiment molecules are not added to those 
already enclosed, for the liquid is incompressible. But a con¬ 
siderable pressure is applied over a small area at the foot of the 
tube and is transmitted equally throughout the water in the box, 
presenting each side of the latter with a large additional bursting 
force to support. 

The pressure is called aerostatic if the fluid is everywhere 
apparently at rest; that is to say, if no collection of many 
molecules, such as could be perceived with a microscope, move 
together. We proceed to investigate the aerostatic pressure. 
It is important to note that the following laws do not in general 
apply to fluids which are in motion. 

18. The pressure exerted on a material surface by a fluid at 
rest acts perpendicularly to the surface at every point. 

This law is established by the consideration that otherwise the 
force arising from the pressure on some part of the surface would 
have a tangential component, and the fluid, being unsupported 
against a force parallel to the surface, would thereby be caused 
to move. 
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It follows that the pressure on a cylindrical or spherical surface 
acts everywhere radially. 

19. The pressure in a fluid at rest is constant at any one 
horizontal level. 

Imagine a narrow cylinder AB, Fig. 10, suspended in a fluid 
with its axis horizontal, and let its weight be adjusted to have 
the same value per 
unit volume as that of 
the surrounding fluid. 
Evidently, the fluid be¬ 
ing at rest, the cylinder 
will remain suspended Fig. io. 

without support or movement. 
Consider its equilibrium in the horizontal sense. Neither the 

pressure on the cylindrical part of its surface nor its weight can 
give rise to a horizontal component of force. Hence the hori¬ 
zontal forces PA and PB arising from the pressure on the two 
ends must be equal. The diameter of the cylinder is assumed 
to be so small that the variation of the pressure over each end 
can be neglected. Denote these pressures by pA and pB and the 
cross sectional area by a. Then PA = pA X a and PB = pB X a, 

whence, since PA = PB, pA = pB. 
There is no restriction on the altitude, length or orientation of 

the cylinder, whence follows the generalisation expressed in the law. 
20. The pressure at any point in a fluid acts equally in all 

directions. 
The pressure on an immersed sphere acts in all directions, 

being radially directed at every point, but it does not act equally 
at all points, owing to differences in horizontal level. If the 
sphere be reduced to a minute size, however, all parts of its 
surface will be sensibly at the same level, and then the pressure 
will act not only radially in all directions but also equally upon 
all parts. Eventually the sphere can be regarded as a point. 

21. The pressure in a gas at rest decreases upward through a 
small displacement by the product of the vertical displacement 
and the local weight per unit volume of the gas. 

In Fig. 11 the point A is vertically above the point B and 
both are situated in a bulk of air or other gas at rest. The 
pressure is pA at the horizontal level of A and pB at that of B. 
The vertical displacement h is assumed to be sufficiently small 
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for the weight w per unit volume of the gas to be sensibly con¬ 
stant between the two levels. 

Imagine a cylinder of this same weight w per 
unit volume, height h and cross-sectional area a, 
disposed with the ends of its axis at A and B. 
It will evidently remain suspended without move¬ 
ment. The pressure on the cylindrical surface, 
acting radially and being constant round each 
cross-section, can give rise to no resultant force, 
and the cylinder will be in vertical equilibrium 
under its own weight, wha, and the forces 
PA = pAa and PB = pBa caused by the pressures 
on its ends. Hence 

wha -f- pAa ~ pBa 

i-e-> Px = Pn-wh • • • • 0) 

The restriction that h must be sufficiently small 
for this expression to apply to a gas is necessitated 
by the fact that the weight of upper portions 

compresses lower portions, increasing their weight per unit volume, 
so that w is not constant, but decreases upward. Little error 
arises with vertical displacements that do not greatly exceed 100 
feet. Thus (1) can be applied to the air in a moderately high 
building and to the gas in a balloon or airship. But the expres¬ 
sion is inapplicable to large changes of altitude in the atmosphere. 

22. The expression (1) applies without restriction to liquids at 
rest on account of their incompressibility. The change of pres¬ 
sure for a given vertical displacement is the same for all depths 
below the free surface of the liquid. 

It follows that if an additional pressure is applied to any part 
of a bulk of liquid it will be transmitted equally to all parts. 
For the pressure is constant at the horizontal level of the point 
of application, and so we first note that the pressure is increased 
uniformly at that level as it would be in case of a gas. But 
since the weight per unit volume of the liquid is sensibly inde¬ 
pendent of the pressure (unlike that of a gas), the change of pres¬ 
sure between this and any other level remains the same, being 
equal to the product of the weight per unit volume and the 
vertical displacement. Hence the same increase of pressure 
occurs at the second level as at the first. 
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In particular, the atmospheric or other gas pressure acting on 
the free surface of a liquid is transmitted equally to all parts. 
Thus the pressure at a point distant z below the free surface of a 
liquid is equal to the sum of the pressure acting on its free 
surface and the product of the weight per unit volume of the 
liquid and the depth z of the point. 

Example 1.—Assuming the atmospheric pressure to be 2116 lb. 

per sq. ft. at sea-level and air to weigh 0-0765 lb. per cu. ft. 
estimate the pressure at an altitude of 200 ft. 

Immediately from (1) the pressure required is 

2116 - 0-0765 x 200 = 2101 lb. per sq. ft., 

approximately. 

Example 2.—A tube 10 ft. high is filled with water weighing 
62-4 lb. per cu. ft. What is the pressure tending to burst the 
tube at its foot? 

There is no bursting pressure at the top of the tube. The 

increase of water pressure between the free surface and the foot 
of the column = 62-4 X 10 = 624 lb. per sq. ft. A corresponding 

increase in the external atmospheric pressure, amounting to about 

£ lb. per sq. ft. from the previous example, is comparatively so 
small that it can be neglected. Hence the bursting pressure can 
be given as 624 lb. per sq. ft. This would be the same whatever 

the inclination of the tube to the vertical provided its height was 

the same. 
It will be realised that the pressure in the water at the foot of 

the column, and therefore the pressure that acts on the interior 

surface of the tube in this region, is not the above but 624 -f 
2116 — 2740 lb. per sq. ft.; but the atmo¬ 
spheric pressure transmitted through the 

water is slightly more than compensated by 
the pressure of the air external to the tube 
at its base. 

23. Pressure Head 

Fig. 12 represents the familiar apparatus of 
a glass tube some 3 feet long sealed at the 
upper end and open at the lower end, which 
is immersed in a basin of mercury. Before 
inversion, the tube is filled with mercury, 
which is allowed to run out into the basin as Fig. 12. 



£8 ELEMENTARY AERODYNAMICS [Ch. 

much as it will against the atmospheric pressure pt leaving a 
vacuum.above the free surface A. 

The pressure at B, any point within the tube level with the 
surface of the mercury in the basin, is equal to p. But, if B is 
at a depth z below A and the mercury weighs w lb. per unit 
volume, the pressure at B is equal to wz. Hence p = wz. 

Though variable, the height of the column of mercury sup¬ 
ported at sea-level is found to be about 2\ feet, and mercury 
weighs 850 lb. per cubic foot, approximately. These numbers 
give p =850 x 2| = 2125 lb. per square foot. A somewhat less 
value is adopted as standard, viz. that appropriate to a ‘ baro¬ 
metric height 1 of 760 millimetres of mercury at a temperature 
of 15° C. At this temperature mercury weighs 13*593 grams per 
cubic centimetre, giving for the standard pressure : 13*593 X 

76 = 1033 grams per square centimetre = 2116 lb. per square foot. 
Water weighs 62*4 lb. per cubic foot, approximately. So if 

water took the place of mercury in the above experiment the 
height of the column supported would be, under standard con¬ 
ditions, 2116 -T- 62*4 == 34 feet, nearly. 

The height of a column of specified liquid which a given 
pressure will support is called the pressure head. Measuring the 
pressure head is a convenient method of determining the mag¬ 
nitude of a moderate fluid pressure, water being substituted for 
mercury when the pressure is light. Experiments in Aero¬ 

dynamics are often concerned with 
differences of pressure, and these are 
assessed in much the same way, as 
illustrated in the following example. 

Example 3.—A U-tube, Fig. 13, is 
partly filled with water, and unequal 
pressures are transmitted to the free 
surfaces by the air above them, caus¬ 
ing a head of 5 inches of water. What 
is the difference between the pressures ? 

In the figure, C is at the same horizontal level as A, and there¬ 
fore the pressure at C = that at A = pA. But the pressure at 
C = ps + wz 

= ^ X 62-4 = + 26 lb. per sq. ft. 

Therefore the pressure difference p^ — p& = 26 lb. per sq. ft. 

Fig. 13., 
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24. Pressure Gauges 

The pressure differences of experimental Aerodynamics are 
often small, and various modifications of the familiar U-tube 
gauge of Fig. 13 are used to increase accuracy of measurement. 
Two simple adaptations are shown at (a) and (b) in Fig. 14. 

Referring to (a), let 6 be the angle between the inclined limb 
and the horizon and l the displacement of the meniscus B of the 

liquid along this limb due to the air pressure applied to the wide 
liquid surface A exceeding that above B. Provided the area of 
B is very small compared with that of A, as illustrated, the 
displacement of A associated with the rise of B will be negligible. 
The head z — l sin 6 and for 6 = 30°, for example, the displace¬ 
ment of B is twice the head, providing a greater length for 
measurement. But d must be determined accurately by means 
of a protractor and spirit level. 

In the gauge illustrated at (b) in the same figure an air bubble 
is used to indicate the displacement of liquid along an approxi¬ 
mately horizontal tube of small bore connecting two wide, equal 
pressure chambers. If l is the displacement of the bubble caused 
by a head z, l may be many times greater than z, for l — z x the 
ratio of the area of the free surface of the liquid in each pressure 
chamber to the cross-sectional area of the connecting tube. 
This ratio can be determined experimentally. 

Both these gauges are preferably filled with methylated spirit 
or a similar liquid. The bubble of (b) takes a considerable time to 
reach its proper position, and the narrow tube must be reason¬ 
ably clean. A convenient attachment to (a) is a lens that is 
slideable along a scale fixed parallel to the sloping tube. 

Manometers of many other and more accurate types exist, 
some permitting a head of less than one-thousandth of an inch 
of water to be detected with ease. 
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The Chattock gauge is illustrated schematically in Fig. 15. It 
comprises a modified U-tube AB carried on a frame F which can 

be tilted about pivots P by 
means of the micrometer screw 
S. The U-tube is filled to the 
level L with a saline solution, 
which also completely fills the 
central and enclosed tube T. 
The closed vessel surrounding 
T is filled up with castor oil. 
A water-oil meniscus M, or 
bubble, is formed at the open 
mouth of T and is kept under 
observation through a micro¬ 
scope attached to F. An excess 
of pressure in A tends to bubble 
water through the oil from A 
into B, but is prevented from 
doing so by tilting F through 
a small angle as indicated at 
(b) in the figure. The amount 
by which the water level in B 

must be raised above that in A to prevent any deformation of 
the bubble relative to cross-hairs in the eyepiece of the microscope 
gives the head z required to balance the pressure difference 
between A and B. Its precise measurement is effected by noting 
the number of graduations through which it is necessary to turn 
a micrometer wheel integral with S, complete revolutions being 
indicated on a scale at the side. 

In another type a long, plain U-tube is pivoted midway between 
the pressure chambers so that it can swing freely, like a scales. 
Water is allowed to run from the one pressure chamber into the 
other and the amount displaced is weighed, whence the pressure 
head causing the displacement can be calculated from a know¬ 
ledge of the diameters of the pressure chambers. 

Liquid gauges are unsuitable for use on aircraft for several 
reasons, of which the most important is that the aircraft is sub¬ 
ject to accelerations which would apparently vary the weight per 
unit volume of the liquid. Pressure differences occurring in 
flight are usually large enough to be indicated with sufficient 

(6) 
Fig. 15.—Chattock Gauge. 
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accuracy by a diaphragm instrument working on the principle 
of the aneroid barometer. An example is the familiar air-speed 
indicator. 

25. Static Lift at Constant Altitude 

Referring again to Article 21 and Fig. 11, if the cylinder there 
considered were thin-walled and weightless, and could be com¬ 
pletely exhausted of fluid without collapse, a load equal to wha 
would evidently require to be attached to balance the upthrust 
due to the resultant pressure force PB — PA. But wha is equal 
to the weight of the fluid displaced by the cylinder. Thus the 
upthrust due to the pressures, called the buoyancy, is equal to 
the weight of the fluid displaced by the cylinder. 

This result can be seen in several ways to apply to a body of 
any shape immersed in any fluid, and is then known as the 
Principle of Archimedes. Thus we note, for instance, that the 
volume of a shaped body may be made up by a large number of 
cylinders of different sizes so that the sum of their volumes is 
equal to the volume of the body. Now, the quantity wha = 
w x the volume of the cylinder and applies to each of the 
cylinders and therefore to all added together. Hence the buoy¬ 
ancy of the body = w x the volume of the body, provided w may 
be assumed constant. 

A balloon makes a large proportion of the above buoyancy 
available as useful lift by employing a light gas imprisoned in 
an approximately spherical envelope to displace a suitable weight 
of air. The pressure of the gas within the envelope is approxi¬ 
mately the same as that of the surrounding air, relieving the 
envelope of any appreciable bursting pressure, so that its fabric 
need not be strong and will weigh little. Neglecting the weight 
of the fabric altogether gives for the static lift : the weight of 
the air displaced less the weight of the gas. 

26. The above leads to simple formulae for the static lift L 
exerted by a gas-filled envelope of volume V'. 

Writing W for the weight of air displaced and Wr for the 
weight of the gas, 

L = W - W', 

neglecting the weight of the envelope. But if w and wf are the 
weights per unit volume of the surrounding air and the gas, 
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respectively, W = wV' and W' = w'V', and the above formula 
gives 

L = (2) 

At equal pressures and temperatures the value of w'/w is 
0*0695 for hydrogen and 0*138 for helium. Hence 

L = 0*9305 W for hydrogen 

and L — 0*862 W for helium. 

Again, substituting wV' for W in the last formulae gives for the 
volume of gas required to secure a given static lift L, 

v‘ = omwi,,or hydrogen 

and F'-0-8S2»'°rhelium' 

Thus using helium instead of hydrogen increases the volume 
required in the ratio 0-9305/0-862 = 1-08, nearly. The increase 
of 8 per cent, is a small matter in consideration of the non- 
inflammable properties of the heavier gas. 

The numbers given refer to the gases in the pure state. Con¬ 
tamination soon occurs by diffusion through the envelope, lead¬ 
ing to a less lift for a given volume, or the need for a greater 
volume to provide a given lift. 

Example 4,—Find the diameter of a spherical balloon filled 
with pure hydrogen for a lift of 1 ton at 10,000 feet altitude, 
where the air weighs 0*0565 lb. per cu. ft. 

9940 

V’ = 6*9305 x 0*0565 = 42’6°° CU' ft" aPProximately* 

4 
The volume of a sphere of radius r is ^3. Equating to the 

value found for V' leads to 

r3 = x 42,600, 

whence r = 21 ft. 8 in., 

i.e. the diameter required is 43 ft. 4 in. 
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27. Unit Density 

Units and dimensions are discussed in Chapter IV. As there 
mentioned, the units of mass, length and time are initially open 
to separate choice. In engineering generally, the lb.-foot-second 
system is employed. A different choice is made in Aeronautics 
and Fluid Mechanics regarding the unit of mass, the slug being 
preferred to the lb. The slug is the mass of a body weighing 
g lb. As will be apparent from the foregoing, the lb. is a 
convenient unit of mass in Aerostatics, but this is not the case 
in Aerodynamics, where the slug saves much useless labour. 

Whilst retaining the lb. throughout Aerostatics would effect 
some slight simplification, the formulae noted in the remainder 
of this chapter will, on the other hand, be referred to in Aero¬ 
dynamics. To avoid confusion, therefore, the slug is introduced 
forthwith. 

The density of a substance is defined as its mass per unit 
volume. In contrast with liquids, the density of a gas depends 
acutely upon pressure and temperature. Thus even at a given 
altitude the density of atmospheric air changes continually with 
the weather, and a numerical value must refer to specified con¬ 
ditions. The conditions accepted as standard for sea-level assume 
the mercury barometer to read 760 mm. and the thermometer 
15° C., when air weighs 0-0765 lb. per cubic foot, as already 
mentioned. Its density in aerodynamical units under these 
standard conditions is thus 0-0765/g slug per cubic foot, g being 
the acceleration due to gravity, which we accept at 32-2 feet per 
second per second, neglecting a small variation with altitude 
and latitude. 

Air density is denoted by the Greek letter p (rho) and its 
standard sea-level value is distinguished by adding the suffix 0. 
The following should be remembered : 

pQ = 0-00238 = slug per cubic foot . . (3) 

With increase of altitude the air becomes cold and its pressure 
decreases, while the density diminishes nearly as rapidly. This 
variation is clearly of great significance in Aerodynamics, but 
before discussing it we have to review the laws governing the 
expansion or compression of air, which behaves in this connexion 
like a perfect gas, 

P 
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' 28. Equation of State 

The pressure, density and temperature at any position in a bulk 
of gas are related to one another by the equation 

^ - gBr.(4) 

In this important equation, p is the pressure in lb. per square foot; 
p is the density in slugs per cubic foot; r (the Greek letter tau) 
denotes the absolute temperature in degrees Centigrade, obtained 
by adding 273 to the reading of a Centigrade thermometer; and 
B, the * gas constant ', is an absolute constant for each gas, 
having the values 96 for air, 696 for helium and 1381 for hydro¬ 
gen, the units being feet per degree Centigrade. 

Example 5.—Assuming that — 2116 lb. per sq. ft., what is 
the density of air at a temperature of 15° C. ? 

We have t = 15° + 273° = 288° C. Hence (4) gives 

p _ 2116 
p gBT 32-2 x 96 X 288 

= 0*00238 slug per cu. ft., 

in agreement with (3). 

Example 6.—If conditions at sea-level are standard, what is 
the density at an altitude of 20,000 ft., given that the pressure 
there is reduced by 54 per cent, and the temperature by 39*6° C. ? 

With suffix 0 distinguishing sea-level values, (4) gives 

Po — PoIgB^o a* sea-level and p = p/gBz at the altitude. 

Dividing the second expression by the first leads to 

P. = P Ip 
Po Po ' * ' 

By the question, pjp0 = 0*46 and t0/t = 288/248*4, whilst p0 is 
known. Hence 

p = 0*46 x M6 X 0-00238 
= 0-00127 slug per cu. ft. 

29. Boyle’s and Charles’ Laws 

The relationship (4) is obtained by combining the Laws of 
Boyle and Charles. Boyle’s Law states that if the pressure 
changes while the temperature remains constant, the density 



AEROSTATICS II] 35 

will change in direct proportion to the pressure. It can therefore 
be written 

p — constant x p.(5) 

Charles' Law states, in effect, that if the temperature changes 
while the pressure remains constant, the density will vary in¬ 
versely as the absolute temperature since the coefficient of 
expansion is approximately the same (viz. 0*00366 = 1/273) for 
all ordinary gases and temperatures. 

The first is sometimes called the isothermal law, since the 
temperature remains constant; it will be found to have a special 
interest in connexion with high altitudes. But otherwise the 
two laws are more useful as combined in the Equation of State, 
which facilitates calculation of the pressure, density or tempera¬ 
ture of a given gas for which B is known, once two of the 
quantities have been determined. 

30. Adiabatic Law 

Expansions and compressions take place in the gas when a 
balloon or airship rises or descends, and in atmospheric air during 
a change of altitude or the passage of an aircraft nearby. Iso¬ 
thermal adjustments of pressure and density have only a re¬ 
stricted interest in our subject. For when a gas is compressed 
it becomes warmed, as is familiar in the use of the tyre pump, 
gaining an amount of heat equivalent to the work done during 
compression. Similarly, an expansion causes a loss of heat, 
resulting in a fall in temperature. Hence, for the action to be 
isothermal, heat must be conducted away from the gas in the 
first case and supplied to it in the second. The thermal con¬ 
ductivity of gases is poor, and such transference of heat takes 
time. 

Usually, expansions or compressions occur so quickly that 
transference of heat during the process can be neglected alto¬ 
gether. In these circumstances the pressure and density are 
related to one another by the Adiabatic Law : 

p = constant X /j1*4.(6) 

This law should be compared with Boyle's, from which it differs 
widely. It indicates that in an adiabatic compression, for 
example, the increase of density for a given change of pressure is 
much reduced by the gas holding its heat. Similarly, in an 
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adiabatic expansion the decrease of density is reduced by drop of 
temperature. These effects are of particular interest in Aero¬ 
dynamics. It is a convenience to note that 1*4 = 7/5. 

Example 7.—If the pressure of a gas is halved by an adiabatic 
expansion, how is its density changed ? 

Denoting initial conditions by suffix 1 and final conditions by 
suffix 2, we have 

pi = constant x p^/6 and p2 = constant X p27^5- 

Dividing the second expression by the first gives, since the con¬ 
stant cancels, 

P2 _ /M5/7 

Pi W ‘ 

So if p2ipi = taking logs : 

log P-2 = flog £ = 1-785, 
Pi 7 

whence p2/px = 0*61. This ratio would have been \ had the 
expansion been isothermal. 

The Equation of State at once gives the change of temperature 
accompanying adiabatic expansion or compression. If the pres¬ 
sure changes from px to p2 and the density from px to p2, the 
absolute temperature will change from to r2 according to : 

Example 8.—In being pushed out of the way by a fast aero¬ 
plane at low altitude, some atmospheric air momentarily loses 
one-quarter of its pressure. How cold does it become ? 

P2IP1 = I- *1 may be assumed to be 15° + 273° = 288°. 

Hence t2/288 - (f)2/7 

or log (t2/288) = (2/7) log f = 1-963, 

whence t2 = 265° C., or 8° C. below the temperature of ice. 

The question is numerically practical; the diverted air would 
pass close over the top of the wings of the aeroplane; and so it 
is seen that temperature in that region may be quite cold. 

31. Structure of the Atmosphere 

The atmosphere, so far as flying is concerned, consists of two 
dissimilar parts. A lower layer, called the troposphere% extends 
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from sea-level to altitudes which vary from 4 miles at the poles 
to 9 miles at the equator. In temperate latitudes the height of 
the troposphere is about 7 miles. This layer is characterised by 
storms and vertical currents of air which induce, upon the 
average, an approximately constant fall of temperature with 
increase of altitude. Above the troposphere lies the stratosphere, 
so called because vertical winds gradually cease, leading to a 
stratified condition and eventually to the separation of the 
various gases of which air is composed, the light gases mounting 
high and the heavy ones remaining at lower levels. Only the 
lower levels of the stratosphere are of aeronautical interest, and 
there the composition of the air may be taken as standard. 
Through these lower levels the stratosphere is characterised, in 
contrast with the troposphere, by a more or less uniform tem¬ 
perature, changing little, that is to say, from one altitude to 
another. Therefore, it is often called the isothermal part of the 
atmosphere. Between — 50° and — 58° C. appears to be repre¬ 
sentative of the constant temperature. No sudden break occurs, 
of course, between the troposphere and the stratosphere; the 
two layers merge gradually the one into the other. 

Regular flying in the stratosphere has only recently begun. 
The very low pressure necessitates air being pumped to the 
passengers and engines and the cabins being sealed and 
strengthened against bursting. Again, the low temperature calls 
for artificial heating, and altogether the air-conditioning apparatus 
tends to be weighty. Nevertheless, aviation in this upper layer 
appears to have a bright future for several reasons, amongst 
which may be mentioned at once an ability to fly over the tops 
of storms. 

The troposphere remains of the greater immediate interest, 
and the precise manner in which the pressure, density and tem¬ 
perature of the air change through it from one altitude to another 
is by no means always the same. The performance of an aircraft 
depends on these quantities, and so will vary from day to day, 
and even from hour to hour, though the altitude of flight be 
constant. To judge of the capabilities of a given aircraft it is 
consequently necessary to correct the performance observed with 
casual values of the above quantities to what it would become 
under average, or at least specified, conditions. 

To this and other ends, a certain standard atmosphere has been 
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adopted internationally for the troposphere. It represents 
average conditions over Western Europe, so that its consideration 
presents a fair picture of the structure of the troposphere in this 
region whilst ignoring the vagaries that occur from time to time. 

32. The Standard Atmosphere 

The drop in temperature per 1000 feet increase of altitude, 
which is the same for all heights within the troposphere, is called 
the temperature lapse rate. In the standard atmosphere the tem¬ 
perature at sea-level is taken as 15° C. and the lapse rate as 
1-98° C. Thus at 30,000 feet altitude, for example, the standard 
temperature is 15° — 30 x T98° = — 44-4° C. It can be shown 
that this lapse rate is consistent with the following relationship 
between the pressure p and the density p : 

p — constant x p1’235.(8) 

which should be compared with (5) and (6). 

10 0'8 06 04 02 O 

RELATIVE DENSITY & PRESSURE 
Fig. 16.—Relative Density and Pressure in the Standard 

Atmosphere. 

Fig. 16 indicates how p and p vary with altitude. For con¬ 
venience there are introduced the terms relative pressure and 
relative density. The first is defined as the ratio of the pressure 
at any altitude to the standard pressure at sea-level, which is 
2116 lb. per square foot. Similarly, the second is defined as the 
ratio of the density at any altitude to the standard density at 
sea-level, which is 0-00238 slug per cubic foot. The relative 
density is in such frequent use that it is given a special symbol, 
the Greek letter a (sigma). It will be noticed from the figure 
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that the density at 30,000 feet altitude has only three-eighths of 
its value at sea-level and that the pressure falls off even more 
rapidly. Some accurate numbers are given in Table I. 

Table I 

The Standard Atmosphere 

Altitude (ft.) Temperature (° C.) PlPo 

s It o
 

Q- 
Q

. 

0 150 1-000 1-000 
5,000 51 0-832 0-862 

10,000 — 4-8 0-688 0-738 
15,000 -14-7 0-564 0-629 
20,000 -24*6 0-459 0-534 
25,000 -34-5 0-371 0-448 
30,000 -44-4 0-297 0-375 
35,000 -54-3 0-235 0-310 
40,000 -54-3 

* 
0-185 0-244 

33. The Ceiling of a Balloon or Airship 

The formula (2) of Article 26 for the static lift L of a balloon 
or airship can be re-written in the form 

L = *"(%-').(9) 

W' denotes the weight of the gas and w/w' is equal to the ratio 
of the density of air to that of the gas, which is now seen to be 
constant if both are at the same pressure and temperature. 

It follows that the lift of a balloon remains the same at all 
altitudes provided (a) no gas is lost, (b) the pressure and tem¬ 
perature of the gas remain sensibly the same as those of the 
surrounding air. The fabric of a gas-bag is not strong enough 
to support any appreciable bursting pressure. Hence the second 
condition reduces to that of equality of temperature. This con¬ 
dition is seldom satisfied in practice, but for the present we shall 
assume it to be fulfilled. It then follows that on ascent the gas 
expands in just the same way as does the surrounding air. The 
greater and greater volume that a given mass must occupy is 
provided for by only partly filling the envelope at sea-level and 
leaving an open vent at the bottom. But eventually the gas will 
fill the envelope completely, so that it becomes taut, and then 
the balloon can ascend no higher without losing gas and, therefore, 
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lift. Thus the ceiling of a balloon is decided by the extent to 
which the envelope can be left limp at sea-level. 

Example 9.—An observation balloon is required to ascend to 
30,000 ft. What reserve capacity must the envelope possess at 
sea-level ? 

For constancy of lift, and equality of temperature between the 
gas and surrounding air, the equation (2) gives 

W — gpV' = , = constant, 

w 

i.e., the volume of the gas is inversely proportional to the density 
of the air, and therefore to its relative density cr. Between 
30,000 ft. and sea-level, Table I shows that a increases 8/3 times. 
Therefore the volume of the gas decreases in this proportion; 
i.e., to 3/8ths of its volume at the high altitude. Hence 5/8ths 
of the capacity of the bag must be reserved at sea-level for 
expansion. 

34. Why a Balloon Maintains Altitude 

A balloon is not in the circumstances of a ship, floating only 
partly immersed in its supporting fluid. Indeed, the lift is the 
same for all altitudes below the ceiling, provided no gas is lost 
and the temperatures of the gas and surrounding air remain 
equal. While this condition holds, equilibrium is always main¬ 
tained between the lift and the weight supported, and at what 
height the balloon would ride without continual adjustment by 
jettisoning ballast or valving gas is quite uncertain. But the 
thermal conductivity of gases is so poor, as already mentioned, 
that heat is transferred only slowly through the envelope. For 
this reason the assumption of equal temperatures within and 
outside is artificial, and we shall now see that an important 
consequence is to give the balloon a measure of stability in 
regard to vertical displacement, so that it tends to ride at 
constant altitude. 

To fix ideas, assume that a balloon has been kept at a certain 
altitude sufficiently long for equality of temperatures to have 
been established, and enquire into the effect of then suddenly 
decreasing its altitude. The gas is compressed by the increased 
pressure of the atmosphere at the lower altitude, and the tem- 
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perature rises in accordance with (7), for it is evident that no 
appreciable amount of heat will be lost during the quick com¬ 
pression, which will therefore accord closely with the Adiabatic 
Law. But Fig. 17 shows that the balloon is now surrounded by 

TEMPERATURE (°C) 

Fig. 17. 
- Mean atmospheric temperature. 
-Temperature of gas in quickly displaced balloon. 

warmer air than before. Which is the hotter at the lower level, 
the air or the gas ? An answer to this question is most clearly 

provided by considering any numerical example. 

Example 10.—A balloon riding initially at 10,000 ft. altitude 
descends quickly through 5000 ft. What is the temperature of 
the gas immediately after the compression ? 

Let properties of the gas be distinguished at the first altitude 
by suffix 1 and at the second by suffix 2. Then px, tx and p2 are 
all given by Table I, for they have the same values as those of 
the surrounding air. Inserting these values in (7) gives approxi¬ 
mately, since p2lp\ = 0-832/0-688, = 1*21, nearly, and Tj = 
268-2° C., 

t2 = (1-21)2/7 x 268-2 = 283-2° C., 

showing a rise in temperature of 15° C. But the corresponding 
rise in the temperature of the atmosphere is only 5 x 1*98 = 
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9-9° C. Hence immediately after the descent the gas is more 
than 5° C. warmer than the surrounding air. 

Such examples verify that displacing a balloon vertically 
changes the temperature of its gas much more than the tem¬ 

perature of the atmosphere changes in respect of altitude, as 
illustrated in Fig. 17. The increased temperature immediately 
after descent causes the gas to occupy a larger volume than it 

would do at the temperature of the surrounding air; a greater 
weight of air is displaced and the static lift increases, becoming 
greater than the weight of the balloon. Therefore, the balloon 
is accelerated upwards and tends automatically to regain the 
altitude from which it was forced down. Similarly, a balloon 
whose altitude is quickly increased loses lift and, if no ballast 

has been thrown overboard, descends again to its original level. 
We conclude that a balloon, unless heated by the sun, tends to 
maintain altitude so long as the state of the atmosphere at that 
altitude remains constant. 

35. Stability of the Atmosphere 

The stability of a balloon in respect of vertical displacement 
has been considered at some length because the same considera¬ 
tions apply to bulks of air in the atmosphere, and the same con¬ 
clusions are reached and have a wider significance than in appli¬ 

cation to balloons and airships. Local heating produces upward 
and downward currents in the atmosphere, but only, as a rule, 
of a gentle character easily negotiated by aircraft. Upward 
currents, indeed, are naturally helpful to flying except when they 

occur in the form of gusts. Otherwise, large or small bulks of 
air, forming part of the atmosphere, tend to remain at constant 

altitude for the same reason as does a balloon. Briefly stated, 
the reason is that the pressure through the troposphere varies 
with the density raised to a power whose index is substantially 
less than 1-4, being in the neighbourhood of 1-235, upon the 

average, over Western Europe. If this were not so, the atmo¬ 
sphere would be liable to great upward or downward surges of 
air, which would make flying impossible. It follows without 
further calculation that the isothermal reaches of the strato¬ 
sphere are still more stable than is the troposphere. 



Chapter III 

THE NATURE OF FLOW PAST BODIES 

36. A body of small height immersed in stationary air is 
exposed to a practically uniform pressure which acts everywhere 
perpendicular to its surface. For ordinary volumes the buoy¬ 
ancy, equal to the weight of air displaced, is negligibly small. 
Ignoring this, there is no resultant force due to the fluid. 

If the body is set in motion through the air, the pressure to 
which it is subjected changes in magnitude, increasing on some 
parts of the surface and decreasing on others, whilst everywhere 
deviating from its original direction. Resolving the pressure 
acting at any point into components normal and tangential to 
the surface, the first component is called the normal pressure 
and the second the intensity 
of skin friction. Thus in 
Fig. 18 PS, PS represent the 
equal and normal static pres¬ 
sures of still air acting at any 
points P, P on the surface of 
a stationary body, whilst PR, 
PR indicate the unequal 
values and inclined directions 
of the pressures acting at the 
same points when the body 
is in motion in the direction of the arrow V. The new pressures 
PR give rise to unequal normal pressures PN and intensities of 
skin friction PF. 

37. Aerodynamic Force 

The unequal distribution of pressure over the body yields a 
resultant force, due to the motion through the fluid, called the 
aerodynamic force. Its magnitude, direction and line of action 
depend on a number of factors having to do with the shape, 
size, attitude and speed of the body, as well as the physical state 
of the air. It may be directed wholly backward, constituting 
simply a resistance to the motion, or, at the other extreme, 
nearly perpendicularly to this direction. 

For most purposes, the aerodynamic force A, Fig. 18, is resolved 
43 
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into components D and Lt parallel and perpendicular, respec¬ 
tively, to the direction of motion. The first component is called 
the drag and the second usually the lift, but in some circum¬ 
stances the cross-wind force. 

88. Direction of Lift 

Interest in the lift of a body centres as a rule in its effect on 
the lift of an aeroplane of which it will form part. The direction 
of lift is then defined as perpendicular to the direction of motion 
of the aeroplane and the line joining its wing-tips. Thus aero¬ 
dynamic lift is not necessarily vertical, as is static lift, nor even 
directed vaguely upward. If an aeroplane is climbing or gliding 
along a flight path inclined at a certain angle to the horizon, its 
lift is inclined backward or forward, respectively, by the same 
angle from the vertical. If it is turning, so that the outer wing- 
tip is higher than the inner one, the lift is inclined inwardly from 
the vertical towards the centre of the turning circle. 

Only in straight level flight, and when any wind that may be 
present is blowing horizontally, is the lift vertical. The lift is 
reckoned positive in these circumstances if the aircraft is the 
right way up; if the aircraft is flying straight and level but 
upside down, there must evidently exist an upward component 
of aerodynamic force to balance the weight, but the lift is 
negative. 

Any cross-wind force on an aircraft is perpendicular to the lift 
and the drag; examples occur when an aeroplane side-slips or its 
rudder is used. However, the terms lift and cross-wind force 
are often employed alternatively in a less stringent manner to 
denote a component perpendicular to the direction of motion of 
the aerodynamic force arising on an isolated body. 

39. Aerofoils 

Any body which is asymmetric in form or moves at an inclined 
attitude will generate a lift (or cross-wind force). For example, 
an aerodynamic lift can be added to the static lift of an airship 
hull by holding its tail down during level motion; the only 
reason for not doing so, indeed, is that such an extra lift is 
preferably kept in reserve to maintain a change of altitude until 
the gas adjusts its temperature, and as a margin of safety against 
loss of gas. 
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Wings, however, have been intensively developed in shape to 
generate lift with a minimum of drag consistently with other 
common requirements, aerodynamical and structural. They are 
studied in wind tunnels by means of scale models, called aero¬ 
foils. Aerofoil investigations are fundamental also to the shaping 
of airscrews and the rotors of autogyros and helicopters, all of 
which may be described as twisted aerofoils. 

A unique aerofoil shape for all purposes is impracticable. 
Good aerofoils do not differ widely from one another in lifting 
capacity, but chiefly in the attitude, called incidence, required 
to produce a given lift under set conditions. Their shapes and 
properties are discussed* in later chapters. For the present it is 
sufficient to note that an aerofoil experiences lift almost entirely 
as a modification of its normal pressures; skin friction over the 
aerofoil surface affects lift indirectly, but its direct contribution 
is negligible. 

40. The study of drag is more complicated than that of 
lift. It arises in general from both the normal pressures and 
skin friction, and varies greatly from one shape of body to 
another. 

Table II gives in the third column the drags in lb. per 10 feet 
run of a number of long strips or cylinders, of the sections shown, 
which are supposed to be moving in the direction from left to 
right of the table at a velocity of 150 feet per second through 
still air in the standard sea-level state. All except the flat plates 
have the same maximum width of section, viz. 2 inches, (b) 
represents the normal plate (a) turned through a right-angle ; 
(e) represents the symmetrical aerofoil (d) reduced to small thick¬ 
ness. Uniformly changing size or speed would alter each drag 
differently, and there would still remain an enormous variation 
of drag from one shape to another. 

41. The Three Kinds of Drag 

It is convenient to distinguish between three different kinds of 
drag—viz., induced drag, form drag and skin friction. A body 
may experience one, two, or all three. 

Induced drag has already received some attention in Article 13, 
and further discussion is deferred until later chapters. It arises 
solely from the continuous generation of aerodynamic lift under 
three-dimensional conditions, as by a wing, and is non-existent 
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TABLE 2 

(Further particulars relating to the drag of long strips and 
cylinders having the sections shown in Table II are given in the 
following articles 

Normal plates, Articles 69 and 102. 
Flat plates, Articles 69 and 119. 
Circular cylinders, Articles 46, 69 and 101. 
Streamline cylinders, Articles 43 and 102.) 
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in the absence of such lift. It is associated with a modification 
of the normal pressures on the lifting body. 

The generation of 3-dimensional lift does not account for the 
whole of the normal pressure variation arising over the surface 
of a body in motion. If the attitude of the body be such as to 
generate no lift, the normal pressures still, in general, yield a 
drag, called the form drag. Thus form drag is that part of the 
drag resulting from the normal pressures that is not due to the 
generation of lift under three-dimensional conditions. 

Skin friction is caused by the tractions along the surface of a 
body, assuming such small roughness as it may possess to have 
no effect, when the body is said to be aerodynamically smooth. 
At high speeds, skin friction is considerably augmented by slight 
roughness and is then called skin drag. 

42. Limiting Cases 

Column 4 of Table II gives approximately for each strip or 
cylinder the fraction of the total drag due to skin friction. The 
remainder is form drag, induced drag being absent throughout. 

Tractions exist along the surfaces of the normal plate (a), but 
cannot contribute to drag, since they act at right angles to the 
direction of motion. The large form drag arises from an increase 
of normal pressure on the face of the plate and a reduction on 
the back; it is put to practical use in aeroplane landing flaps 
considered as air-brakes. A still larger drag is experienced by a 
U-shaped strip arranged to cup the air, and finds three-dimen¬ 
sional application in the parachute. But usually the need is to 
abate drag. 

The drags of the flat plates, which are supposed to be very 
thin and sufficiently smooth, are pure skin frictions. Actually, 
the normal pressure of the air is hardly modified by the passage 
of such a plate, but it could not contribute to drag in any case. 
For shapes between the two extremes of (a) and (e) the drag is 
partly form and partly frictional. 

43. Streamlining or Fairing 

The very small drag of (b) compared with that of (a) suggests 
that skin friction is of a nature to cause relatively little drag, and 
this is true. But it must not be inferred that skin friction is 
unimportant; in a first-class aeroplane flying at high speeds 
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some 60 per cent, of the total horse-power is expended in over¬ 
coming it. The correct deduction is that skin friction con¬ 
stitutes an irreducible minimum of drag under given conditions, 
and a thick body should be shaped to approach this minimum 
as closely as possible by reducing its form drag. 

Shaping to this end is called fairing or streamlining. A com¬ 
parison of (d) with (c) in Table II illustrates the process and its 
effect. In some large biplanes of the past the inter-plane struts 
were circular metal tubes fitted along the front and back with 
shaped strips of spruce, the whole being bound together with 
fabric and reproducing some such section as (d). The spruce 
* fairings ' added little or nothing to the strength of the struts, 
but greatly reduced their drags. Similarly, a normal disk is 
faired by adding a hemisphere to its front and back faces, to 
form a sphere, but the latter can itself be faired by elongation 
to resemble an airship envelope. Passable streamline shapes can 
be contrived in this way by eye, and a great saving in drag 
effected if the original shape is poor. The ' wetted surface * is 
enlarged, but the increase of skin friction on this account is 
justified until the ‘ lines ' of the body become 4 fine \ 

Fineness and Thickness Ratios. Considering a body of com¬ 
pact cross-section perpendicular to the direction of motion, such 
as an airship envelope, an aeroplane fuselage or a flying-boat 
hull, the ratio of its length to its maximum width is called its 
fineness ratio. Thus the fineness ratio of a thin normal disk is 
zero, of a sphere unity, whilst that of (d), regarded for the 
moment as the longitudinal section of a solid of revolution, is 3. 

For rather flat bodies which extend mainly across the direction 
of motion, such as wings, tail-planes and struts, a term which is 
essentially the reciprocal of fineness ratio is preferred—viz., the 
thickness ratio. This is defined with reference to a section of the 
body perpendicular to its length and parallel to the direction of 
motion, and is given by the ratio of the maximum width of the 
section to the length of the section. Thus the thickness ratio of 
a very thin flat plate is zero, whilst that of (d), regarded again 
as the section of an aerofoil extending perpendicular to the page, 
is 1/3. 

The fineness ratio of the envelope of the airship R 101 was 
approximately; the thickness ratios of wing sections suitable 

for full cantilever monoplanes usually range between 0*1 and 0*2; 
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biplanes of the past commonly employed wing sections having 
thickness ratios of about 0*06. 

Determining the best lines for sections, or profiles as their 
boundaries are often called, is a highly technical problem. The 
use of french curves is inadvisable owing to sudden changes of 
curvature being left in the profile, and designing from mathe¬ 
matical formulae is preferred. The final choice of a profile often 
involves a compromise between aerodynamical and other con¬ 
siderations. 

Fig. 19 gives as an example the results of some experiments 
on struts of various thickness ratios. Down to a thickness ratio 
of about 0-25 the decrease of form 
drag due to better streamlining 
exceeds the increase of skin friction 
due to a larger wetted surface; 
below this value the reverse is true. 
The optimum thickness ratio is 
therefore clear so far as drag is 
concerned. However, since the 
strength of a long streamline strut 
varies with the cube of the width 
and linearly with the length of its 
section, a slightly larger thickness 
ratio might be preferred in order to 
save weight. Still other considera¬ 
tions would affect the final choice. 

44. Streamlines 

It will be appreciated that streamlining is a process of wide 
application and requires careful study. This is best begun by 
considering the streamlines. 

A streamline is an imaginary line drawn in the fluid such that, 
at the instant considered, the component of the fluid velocity 
perpendicular to it is everywhere zero. Thus adjacent fluid is 
flowing tangentially to it. Restriction to a given instant of time 
is necessary, because the streamline may vary in shape either 
quickly or slowly. 

In the present article the flow will be assumed to be steady, 
so that the streamlines retain a constant shape at all times. 
The velocity of the air flow past an obstacle varies greatly from 

E 

THICKNESS RATIO 

Fig. 19.—D = Drag in lb., at a 

Speed of 100 ft. per sec., of 

a Strut 10 ft. Long and 2 in. 

Maximum Width of Section. 
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one point to another in magnitude and direction. The criterion 
of steadiness is absence of change at any one point geometrically 
fixed relatively to the obstacle. 

The aerodynamic force on an aircraft or component part is 
evidently identically the same whether the aircraft is flying 
straight and level at a certain speed through still air or is itself 
stationary in a uniform horizontal head wind of the same speed. 
The streamlines of flow in the latter case seen from the ground 
are the same as those that would be viewed by an observer 
moving with the aircraft in the former case, and are said to be 
relative to the aircraft or body. 

An immersed body disturbs the oncoming head wind supposed, 
which must divide to flow past it. The disturbance is propa¬ 
gated upstream to some distance in front of the body, persists 

far behind, and also spreads 
_—deeply in the lateral sense. 
--—<- Thus the disturbed wind 
-flows past in a widely 
-—curved manner, as depicted 

in Fig. 20, for example, 
Fig. 20.—Streamlines of Flow Past a Strut which shows the stream- 

Section, the Wake being Neglected. 

lines of the now past a 
faired strut held stationary in the wind. The strut is assumed 
to be long, so that the motion can be regarded as two-dimensional. 

The flow between any two neighbouring streamlines may be 
regarded as confined within a channel, of unit depth perpendicular 
to the page, for fluid cannot cross the streamlines. Where the 
channel narrows, the velocity increases, since an equal mass of 
air passes every cross-section in unit time. It will be illustrated 
that, unless exceptionally high speeds are attained, the com¬ 
pressibility of the air can be neglected, and then the same volume 
of air passes every cross-section in unit time. The velocity 
consequently varies along the channel inversely as its width. 

In a uniform flow the velocity is the same in magnitude and 
direction at all points and the streamlines are parallel to one 
another. Drawing them at equal distances apart, as in Fig. 
21 (a), and regarding them as forming a number of parallel 
channels all of the same width and unit depth, an equal volume 
of air per second passes all cross-sections. In Fig. 20 the stream¬ 
lines have similarly been made equidistant far in front of the 
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strut where the wind is almost uniform. As a result the mean 
velocity near any point P can at once be compared not only 
with that near another point in its own channel, but also with 
the velocities at points in different channels. By means of this 
artifice the pattern of streamlines conveys not only the direction 
of the disturbed flow, but also the widespread changes in the 
magnitude of the velocity. 

Example 11.—Assuming that the strut of Fig. 20 is in a wind of 
100 ft. per sec., estimate the velocity at the point P in the figure. 

By measurement, the ratio of the distance apart of neighbouring 
streamlines in the region of P to that far in front of the strut is 
0*7. Hence the local velocity is 100/0*7 = 143 ft. per sec. 

(Other examples of the present kind will show that, though the 
method is valuable as conveying readily a first estimate of the 
velocity variation, accuracy cannot be expected unless the stream¬ 
lines are closely and carefully drawn.) 

45. Conversely, the foregoing conceptions can be used to con¬ 
struct the streamlines of a steady two-dimensional flow from 
appropriate knowledge of the distribution of fluid velocity, which 
may be obtained experimentally. One streamline must be known 
to start with, and this may be the profile of the section of the 
body causing the disturbance. The principle of the method is 
illustrated in the following example. 

Example 12.—A wind is blowing 
steadily over and parallel to a flat 
roof. The air is at rest on the sur¬ 
face, and its velocity increases in 
proportion to distance above the 
surface up to a height H. Draw the 
streamline at height H and two 
others between it and the roof. 

(The problem is to determine the 
position of the two additional stream¬ 
lines so that, per unit width of the 
wind, the same volume of air flows in 
unit time between the roof and the 
first streamline as between the first 
streamline and the second, and so on.) 

A diagram of the linearly increasing velocity is given at (d) in 
Fig. 21. Let V be the velocity at height //. Per unit width, 
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the volume of air passing in unit time between the roof and H is 
the mean velocity X the height, i.e., \V . H. The corresponding 
flow between each pair of neighbouring streamlines is one-third 
of this, viz. VH16. Thus the volume passing per second between 
the roof and the first streamline will be VH/6, and that between 
the roof and the second streamline VH/3. 

From the velocity diagram, the velocity at any height h less 
than H is 

and the volume per second passing between the roof and h is 

= ,h = ^h2. 

Equating this to VHj§ gives for the position of the first streamline 

h = H\yJ3 = 0-577 H. 

Again, equating the expression to VH/3 gives for the position of 
the second streamline 

h = HV2/3 = 0-817 H. 

The streamlines are shown at (c) in the figure. Those at (a), 
appropriate to the velocity diagram (b)—i.e., to uniform flow— 
have been drawn for the same flow between each pair of stream¬ 
lines. Thus they are separated by the distance 0-167 H. Imagin¬ 
ing the linearly increasing wind near the surface of the roof to 

* underlie the uniform wind, separating it from the roof, the pat¬ 
tern (c) would be continued upward by the pattern (a) and, 
counting from the surface of the roof, the distances between 
neighbouring streamlines would be proportional to : 0*577, 0-24, 
0*183, and then 0-167 indefinitely. 

46. Eddying Flow 

Unsteadiness develops very easily in the flow past a body, 
greatly increasing its drag. Shaping of sections is especially 
directed, therefore, towards delaying the tendency and weakening 
unavoidable ' eddying \ while confining this to the back part of 
the flow. Success makes for a thin wake, comparatively free 
from violent fluctuations of velocity. Attention is then focussed 
on restricting an insidious and finely grained unsteadiness that 
arises very close to the surface of the body. 
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Fig. 22 depicts the kind of wake that exists behind a long 
normal plate or cylinder of bluff section. The streamlines reveal 

H—> 

Fig. 22.—The Strongly Eddying Wake Caused by a Circular Cylinder at 

Ordinary Sizes and Speeds. 

a double row of staggered vortices, strongly whirling eddies of 
air, which are continually shed by the body, from one side of it 
and the other alternately, forming an ever lengthening ‘ vortex 
street'. More than 90 per cent, of the drag of a bluff body can 
sometimes be traced to their generation. 

The wake including this regular or periodic type of unsteady 
flow is often wider than the long plate or cylinder producing it. 
With a better streamlined section, or sometimes even with a 
poor section at large sizes and speeds, the eddies become smaller 
and more numerous, lose their regular disposition and form a 
narrower wake. Further improvement in streamlining leads, 
especially with large sizes and speeds, to a thin wake of weak and 
irregular eddying. These changes are associated with the great 
saving of form drag made possible by fairing, as described in 
Article 43. 

Thus eddying flow can be strongly marked and regular, or 
weak and indefinite. But the term is usually reserved to indi¬ 
cate a flow whose unsteadiness is on a sufficiently large scale to 
be readily perceived. 

47. Turbulence 

To gather a fair preliminary idea of what is meant by a tur¬ 
bulent flow, imagine an eddying flow with its vortices broken up 
and reduced to minute proportions so that all semblance of 
pattern is lost. The innumerable tiny eddies dart about in a 
chaotic manner, jostling one another and creating much resist¬ 
ance to flow. The velocity at any point fluctuates quickly, 
though through only a small range, but the unsteadiness is so 
finely grained that details can be revealed only by the most 
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intimate measurements. Nevertheless, its effects on drag and 
other phenomena are large and of great practical importance. 

An interesting experiment can be made with water pouring 
through a long straight glass tube, a little ink being fed into the 
stream, as indicated in Fig. 23. At sufficiently low speeds the I flow is steady and the ink extends 

as a dark line along the tube, more 
or less parallel to its axis as shown 

^ (a) at (a). On increasing the speed a L stage is reached when the flow 
Nkp— __-_ _ suddenly changes from streamline 
—-.v'j- t0 turbulent and the dark line 

F,g. 23-Flow through a Pipe. breaks UP.and is Iost’ the ink ' 

(a) Steady, (6) Turbulent. COmlng mlXed Wlth the Water- If 
the pressure drop along the pipe is 

also measured, it will be found that the resistance to flow is much 
increased by the change. 

Turbulence arises near the surfaces of aeroplane wings and 
other components, as described in the next article, and increases 
their drag. But it may also exist in the undisturbed wind. 
Natural winds are singularly free from turbulence except near 
the ground, although they possess much eddying. Artificial 
winds, on the other hand, such as are used for aerodynamical 
experiments, are usually turbulent, though largely free from 
eddying. A wind containing little or no turbulence is often 
described as ‘ smooth \ 

" (5) 
. 23.—Flow through a Pipe. 

(a) Steady, (b) Turbulent. 

48. The Boundary Layer 

The flow past a streamlined body is essentially of a two-fold 
character. Air which never closely approaches the surface flows 
in a comparatively straightforward manner, as we shall see. 
Separating this outer flow from the body, and merging into the 
wake behind, there is a ‘ boundary layer ’ in which the flow is of 
an altogether different kind. Near the nose of the body the 
boundary layer is almost too thin to measure, but it gradually 
thickens backward over the surface; 6 feet behind the leading 
edge of a flat plate in a smooth wind of 100 feet per second, for 
example, the boundary layer would be about 0*2 inch thick. 

Within this enveloping layer the air is subjected to an intense 
shearing action. No slipping can occur between the surface of 
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the body and the fluid that touches it; molecular attraction 
prevents this. Air coming in contact with the body is imme¬ 
diately brought to rest and, escaping again, impedes the motion 
of air which is trying to brush past a little distance away. Close 
to the surface the flow is consequently sluggish. Yet, at a small 
fraction of an inch away—i.e., at the outer edge of the boundary 
layer—obstruction is not felt at all and the air is able to flow 
with unimpaired velocity. 

Fig. 24 illustrates at (a) a small part of the boundary layer 
2 feet or so behind the nose of a smooth aeroplane wing. The 

Fig. 24. 
(a) Laminar boundary layer. (c) Turbulent boundary layer. S, viscous sub¬ 

layer. (b) and (cl) corresponding velocity diagrams. 

magnification is considerable, the height of the diagram corre¬ 
sponding to perhaps a millimetre in the actual case. The air is 
supposed to be moving and the wing stationary. This part of 
the boundary layer is steady and streamlines are shown. The 
diagram at (b) indicates the rapid manner in which the velocity 
of the air increases from zero on the surface of the wing to 
several hundred feet per second at a distance of a millimetre or 
so away. The streamlines may be imagined to divide the layer 
into a number of thin laminae which slide over one another. 
The steady part of the boundary layer is therefore called the 
laminar part. 

In the same figure, (c) illustrates with much less magnification 
the thicker boundary layer farther back along the wing where 
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the flow is turbulent. Streamlines cannot be drawn owing to 
the unsteadiness of the motion, but the diagram (d) gives the 
average velocity at different distances from the surface. 

The velocity increases very rapidly through a very thin film 
of air lying on the surface of the wing at the foot of the turbulent 
boundary layer and called the viscous sub-layer. It is proportion¬ 
ately much thinner than is shown in the figure, and may be 
regarded as laminar again. 

49. Tractions and Skin Friction 

Referring first to laminar flow, the rate of shear or the sliding 
over one another of adjacent laminae is resisted by viscosity, a 
physical property which all fluids possess and is so marked a 
feature of thick oil and the like. The viscosity of air is exceed¬ 
ingly small, but shearing is maintained at such a high rate close 
to the surface of a body that considerable resistance arises there. 
This resistance may be regarded as a dragging force acting between 
adjacent laminae of air. It is called traction and builds up into 
the surface traction, or intensity of skin friction, which drags on 
the surface of the body itself. 

Much more intense traction is spread through a turbulent 
boundary layer than through a laminar one, but the resistance 
to flow is caused differently—viz., by a continuous mixing of 
sluggish and fast-moving air. This greater traction is built up 
and communicated to the viscous sub-layer, which in turn trans¬ 
mits it to the surface. 

The intensity of skin friction is not constant over the surface 
of a body, but varies widely, according to the local steepness of 
the 4 velocity profile \ Fig. 24 (b), in laminar flow. It increases 
considerably where the flow becomes turbulent. Taking all parts 
of the body into account, the components of the surface tractions 
resolved parallel to the direction of motion add up to the total 
force of skin friction. 

It will be seen that skin friction is quite unlike the friction 
between two dry surfaces, such as arises when one board slides 
along another. If, however, a layer of oil separated the boards, 
the relative motion would produce a similar shearing action and 
resistance, owing to the adherence of the oil to the surfaces 
combined with its viscosity. 



57 III] THE NATURE OF FLOW PAST BODIES 

50. Irrotational Flow 
The practically tractionless flow outside the boundary layer 

and wake is called irrotational because no element of air in this 
region turns about its own centre as it moves along. This widely 
used mathematical term, and especially the converse, are rather 
difficult to understand. In the following qualitative description 
we begin with the latter, considering a small square element of 
air moving within a thin laminar boundary layer. 

Reverting to the analogy of 
thin strata of air sliding over 
one another, the relative velo¬ 
city of adjacent laminae and, 
consequently, the traction be¬ 
tween them diminish from the 
surface of the body outward. 
The traction is more intense on 
the inner face of a lamina or 
stratum than on the outer face, 
tending to turn an element of 
the stratum. The element has, 
indeed, an angular velocity, but 
its rotation is masked by a 
simultaneous distortion of shape 
due to some parts of the element 
moving faster than others. 

Thus an element of the air 
within a laminar boundary 
layer has three components of 
motion—viz., translation, rota¬ 
tion and distortion. The separ¬ 
ate effects of these component 
motions during a brief instant of time are illustrated in Fig. 25 
at (a), (b) and (c) respectively, the element moving from the left- 
to the right-hand column. It will be seen that while the angular 
velocity alone would turn a small square element into the position 
shown at (b), the distortion alone—i.e., in the absence of rotation 
—would change it into an oppositely canted lozenge, as at (c). 
The way in which the element actually moves is obtained by 
combining the three motions with the result shown at (d). At 
first glance the figure (c) may appear to show rotation, but the 

Fig. 25.—The Component Motions 

of an Element of Air. 
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side AB has rotated in one sense just as much as the side BC 
has rotated in the opposite sense, and proceeding in this way 
shows that upon the whole no rotation has occurred; this is 
summed up by noting that the diagonals of the element have 
retained their original directions. The rotation included in (d) 
becomes clearly apparent in the same way; (d) is (c) turned in a 
clockwise sense—i.e., combined with the rotation (b). 

Though the air close to a surface possesses angular velocity, 
it evidently does not move ‘ like roller bearings '; if it did, the 
resulting drag would be large, not small, for the body would 
have to keep on manufacturing new roller bearings to replace 
those shed continually behind (cf. Fig. 22). 

Elements of air in the outer flow possess no angular velocity, 
though they may become distorted; hence the term irrotational, 
as already mentioned. An irrotational flow is sometimes de¬ 
scribed as one in which there is no ‘ vorticity '; this comes to 
the same thing, since the further mathematical term means 
twice the angular velocity. Still another name is 4 potential 
flow \ 

Resulting from the lack of tractions in the fluid, the pressure 
in an irrotational flow acts equally in all directions at any one 
point, just as in a fluid at rest. The pressure in the irrotational 
part of a disturbed motion may vary greatly from one point to 
another, and this variation is related to an associated change of 
velocity by the following important theorem. 

51. Bernoulli’s Equation 

The theorem now to be explained is of the greatest utility in 
Aerodynamics. Its application is restricted to the irrotational 
part of the flow, but this limitation is by no means derogatory, 
because the two very dissimilar parts into which every aero¬ 
dynamical flow resolves itself can be treated to a large extent 
separately. When Daniel Bernoulli first propounded his theorem 
in 1738 he employed a method of reasoning which is easy to 
remember but rather difficult to comprehend. The following 
non-mathematical derivation avoids this disadvantage, and forms 
the basis of one of the several mathematical proofs which further 
reading will reveal. 

The assumptions should first be clear. We follow the fluid 
along any streamline, or rather within a narrow imaginary tube 
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or pipe, enclosing this streamline, the imaginary pipe-wall being 
itself formed of streamlines (Fig. 26), so that no fluid can get in 
or out except at the ends. The fluid may be flowing in any 
steady and incompressible man¬ 
ner, which may be three-dimen¬ 
sional, subject to certain restric¬ 
tions which will be stated. The 
assumption of incompressibility 
—i.e., uniformity of density—is 
not actually necessary, but it 
makes for simplicity; in a later Ao 
article we shall illustrate, by Fig. 26.—Stream-Tube. 

means of an example, the effect of 
taking the compressibility of the air into account and infer that 
it is unnecessary to do so except at high speeds. The restrictions 
are as follows:—First, no tractions must act on the fluid in the 
pipe or * stream-tube '; this we have seen to be realised closely 
in non-boundary layer flow. Second, the fluid must be flowing 
freely in the sense that no work is done by it or upon it. For 
example, if the stream-tube passes through the disk of rotation 
of a windmill or autogyro rotor, then Bernoulli's equation will 
not apply from one face of the disk to the other, because the air 
does work in the course of making the windmill or rotor rotate. 
Again, the equation will not apply without restriction to a 
stream-tube that crosses the disk of rotation of an airscrew, 
because the airscrew in imparting momentum to the air does 
work upon it. These restrictions can be summed up in the 
statement that the mechanical energy of the air per unit mass 
must remain constant. 

The pressure p and the velocity V are supposed to be changing 
from point to point along the stream-tube, whose cross-sectional 
area therefore varies along its length, because in unit time the 
same mass of air must pass every cross-section. But, the stream- 
tube being everywhere very narrow, the pressure and velocity are 
sensibly constant over any one cross-section. 

We are going to consider the motion of a block of air which 
fills the tube and is of short length x2 — xl (Fig. 26), the x’s 
being measured along the bent axis of the tube from any point 
upstream. Different pressures, px and p2> act on the two faces 
of the element, which are of different areas because the velocities, 
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Vx and V2, at xx and x2, respectively, are different. The familiar 
dynamical law governing this motion is : 

force = mass x acceleration (i) 

The first step is to calculate the force on the element, which 
Let the pressure vary along the 

tube in any continuous manner, 
as shown for example in Fig. 27. 
First consider a narrow element- 
cylinder AB of uniform cross- 
sectional area a and short length L 
Let pA denote the pressure on the 
end A and pB that on the end B. 
Then the force on the cylinder in 
the ^-direction is pAa — pBat which 
can be written 

al 

volume of cylinder . . . (10) 

the force due to the pressure field 
on any body, of whatever shape, provided it is so small that the 
pressure varies along its length in a sensibly linear manner—- 
i.e., provided (pA — pB)/l remains constant as l varies. For the 
volume of the body can be made up of a large number of element- 
cylinders of different lengths and very small sections, as described 
in Article 25. 

Turning now to the tapered element in Fig. 26, the force on 
it in the x-direction is therefore 

arises from the pressure field. 

Pa ~ Pb v 
/ x 

_Pa Pb w 

This same expression gives 

P2 
*2 

x volume. 

The mass of the element is p x volume, p being the density of the 
air, which has been assumed constant, and the acceleration is the 
increase of velocity, V2 — Vx> divided by the time in which this 
increase occurs. This time is equal to the length x2 — xx divided 
by the mean velocity : \{V2 + Vx). Hence the acceleration is 

(F2 - Fj) X iOV+Zi) 

*2~*1 

*2 - *1 
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Hence the equation (i) gives 

v, _j) y 2_ y 2 

—-— x volume = p x volume x 1 —?-L 
*2 — *i 5 *2 - *i 

reducing to 

*1~*2 = W- V) • • • • (11) 

Considering instead a contiguous element to the left, extending 
upstream from xl to #0, the same reasoning will give 

*o-*i=*p(V-*V)- 

Again, considering a contiguous element to the right, extending 
from x2 to x3, gives 

Pz-Pz = \p[VJ-Vf). 

Adding the last three equations together leads immediately to 

Po~ Pi = lp{VZ2 — ^o2)- 
Extension along the streamline can proceed without limit in 

either direction in the same manner. Hence finally the equa¬ 
tion (11) is seen to hold good when the positions denoted by the 
suffixes 1 and 2 are located anywhere on the streamline. 

With this understanding, (11) expresses Bernoulli's theorem. 
It can be written in various ways. The best form to remember is 

Pi + \PVl2 = p2 + \pV22 .... (12) 

Immediately from this expression it follows that 

p + \pV2 — constant .... (13) 

for all points on the streamline, since points 1 and 2 can be 
located anywhere along it. This is the form in which the theorem 
is usually stated. 

52. Interpretation 

In the preceding article Bernoulli's equation has been obtained 
for flow along a streamline. Restricted to any one streamline, 
the equation holds good whether the flow is irrotational or not, 
provided the viscous tractions are negligible. The proviso can 
be stated in the alternative form that the theorem applies to an 
inviscid fluid. But this statement is unhelpful, because no such 
fluid exists, whilst large tractions arise even in a fluid of small 
viscosity like air, as we have seen, in regions where the velocity 
changes very rapidly across the flow. 
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Absence of tractions and free flow enable the air to proceed 
on its path without loss or gain of mechanical energy, and the 
adjustments of pressure and velocity that take place accord with 
a conservative interchange of pressure energy and kinetic energy. 
The value of the total mechanical energy per unit mass is related 
to the constant in equation (13). Though invariable along any 
particular streamline, this constant will change, in general, from 
one streamline to another. An example is provided by the slip¬ 
stream behind an airscrew, which adds energy in an unequal 
manner to the air passing through its disk of rotation. 

But in a uniform wind the energy per unit mass is the same 
for all streamlines. As the stream flows past an immersed body, 
this equality still holds good, or very nearly so, away from the 
boundary layer and wake. In other words, the constant of 
equation (13) has the same value for all streamlines in the 
irrotational part (cf. Article 50) of the disturbed motion emerging 
from a uniform stream. 

The application of Bernoulli's equation in these circumstances 
is especially simple, for the points 1, 2, etc., of the preceding 
article need not then be located on the same streamline. These 
favourable circumstances are fortunately so widely representative 
of aerodynamical motions that we can afford to postpone dis¬ 
cussion of more troublesome cases, which involve changes in the 
constant, until they arise. 

Referring, then, to a free and approximately irrotational flow, 
not passing through an airscrew or into a wake or the like, the 

first point Bernoulli’s equation makes is 
that the pressure increases when the velocity 
decreases, and vice-versa. This very natural 
law occasionally proves a stumbling-block 
in a first reading, owing to a feeling that 
the pressure should go up when the velocity 
increases. But its truth can be verified at 
once by blowing through a paper tunnel 
supported on a table (Fig. 28 (a)); the tunnel 
at once collapses, as shown at (b) due to 
the pressure within decreasing. 

The next point is that if the increase of velocity is known the 
decrease of pressure can be calculated, and vice-versa. In the 
slug-foot-second system (cf. Article 27) the units are : density. 
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slugs per cubic foot; velocity, feet per second; pressure, lb. per 
square foot. For many calculations it is convenient to rearrange 
equation (11) in the form 

Example 13.—A 150-m.ph. wind flows past a wing. At a 
certain position outside the boundary layer the velocity has 
double its undisturbed value. What is the pressure drop there? 

Let suffix 1 distinguish undisturbed values and suffix 2 those 
at the point concerned. Since 22 ft. per sec. = 15 m.p.h.. Vx — 
220 ft. per sec. and \?VX* = 0*00238 x 220 X 220 = 57*6 lb. 
per sq. ft. By the question, F2/Fx — 2, whence (14) gives 

Pl-p2 = 57*6(4 - l) = 172>8 lb* Per sq*ft* 

Example 14.—An air duct of circular section has a long diver¬ 
gent part expanding from 10 ft. diameter at A to 15 ft. diameter 
at B, followed by a convergent nozzle contracting to 7| ft. dia¬ 
meter at C. The speed of the wind through the duct is increased 
until a gauge shows a pressure difference of 1 in. head of water 
between A and B. Neglecting energy losses, estimate the speed 
at C. 

Since the divergent part is long the duct can be assumed to 
run full—i.e., without breaking away from the walls—so that the 
velocity along it varies inversely as the cross-sectional area. 

Distinguishing positions along the duct by appropriate suffixes, 
Bernoulli’s Theorem gives 

Pa + bv a2 = Pb + hVB2 

i.e., b(VA2~ FB2) = Pb Pa’ 
Now VA = (7£/10)2Fc, - 0*5625 Vc, 

VB = (7J/15)2Fc = 0*25 Vc 

and Pb ~ Pa~ 62*4/12 = 5*2 lb. per sq. ft. 

Substitution gives 

X 0*254 Fc2 = 5*2 

/5*2 x 840 1Q1 . 
i.e., (>254 = 131 ft per sec* 

Example 15.—The convergent nozzle of Example 14 is 15 ft. 
long and the static pressure decreases linearly along it. A stream¬ 
line body, having a volume of \ cu. ft., is held within the nozzle 
at a position where the wind velocity is known. In free flight at 
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this same velocity the drag of the body would be 0*2 lb. What 
is it in the convergent stream ? 

Using the notation and results of Example 14, 

Pb-Pc = MVc2-Vb2) = ™29Vc2 

= 19-2 lb. per sq. ft., 

since VB/VC = £ and Vc = 131 ft. per sec. 

Thus the decreasing pressure gradient is 19*2/15 = 1*28 lb. per 
cu. ft. and the increase of drag on this account is 1*28 X the 
volume of the body—i.e., 0*64 lb. Hence the total drag of the 
body in the convergent stream is 

0*2+ 0*64 = 0*84 lb. 

53. The Stagnation Pressure 

An immediate deduction from Bernoulli's equation is that the 
maximum possible increase of pressure in a disturbed wind, pro¬ 
vided compressibility can be neglected, is equal to \pV2, V being 
the undisturbed velocity. To see this, equation (11) is written as 

Px-p = \pV*-\PVx*. 

p being the undisturbed pressure. Now clearly pVx2 cannot 
possibly be negative. Hence the maximum pressure rise occurs 
when Vl = 0 and has the value \pV2. 

When a stream divides to flow past an immersed body there 
must be a dividing streamline which, except in most unusual 
circumstances, abuts on the body at some point near its nose. 
The fluid is brought to rest at this point, which is therefore 
called the front stagnation point. The known pressure increase 
there is called alternatively the stagnation pressure, the impact 
pressure or the dynamic pressure. Being of constant occurrence, 
it will be denoted by the symbol q. So we note for reference 

q = \pv*.(i5) 

54. The Pitot Tube 

If an open-mouthed tube faces directly upstream and its other 
end is sealed so that air cannot flow through, the dividing stream¬ 
line terminates within the mouth of the tube at some point 
denoted by suffix 1, say, and Vl — 0. Thus if p,V refer to the 
undisturbed stream, Bernoulli’s equation gives 

Pi = P + q 
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for the pressure in the tube. This is called the pitot pressure or 
pitot head. A pitot tube can be of almost any size or shape. 
Diameters as small as 002 inch are used for fine experimental 
work. 

55. The Pitot-static Tube 

It is continually required to measure q, and for this purpose 
the pitot-static tube has been developed. It consists essentially 
of a pitot tube connected to one side of a pressure gauge whose 
other side is connected to another tube, called the static tube, 
so designed that the pressure within it is the same as that of the 
oncoming air. Thus the gauge records the pitot pressure less 
the static pressure—i.e., p + q ~ p = ?• 

Fig. 29.—Pitot-static Tubes. 

A, pitot tube; B, static tube. 

A concentric type developed at the National Physical Labora¬ 
tory is shown at Fig. 29 (a), the static tube surrounding the pitot 
tube and having for outlet a number of small perforations at a 
chosen position. The gauge is connected between A and B. As 
will be inferred from the preceding article, no difficulty arises 
from the pitot tube, but the design of the static tube rests 
ultimately on experiments with the whirling arm (Article 9). 
Once a reliable design has been worked out by this means it can 
be used as a standard, with which other pitot-static tubes can be 
compared in the wind tunnel. Another type is shown at (b). 

F 
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Example 16.—Find the head of water supported by a pitot- 
static tube in a wind of (a) 100 m.p.h., (b) 10 m.p.h., the air being 
in the standard sea-level state. 

(a) In lb. per sq. ft. the pressure difference — q — $pV2, if V 
is expressed in ft. per sec. Therefore it comes to 

£ X 0-00238 x (lOO X ||)2 = 25-6 lb. per sq. ft. 

Then from Article 23 the head of water is 

X 12 = 4-92 in. 

(b) The head is evidently reduced in the ratio (10/100)2. Thus 
it is 0-0492 in. 

The example illustrates that, while the pitot-static tube is 
suitable for the measurement of moderate and high speeds, it gives, 
at exceptionally low speeds, a head that is too small to observe 
accurately. Special gauges have been developed to cope with 
the difficulty in a laboratory (Article 24), but for speeds lower 
than 10 feet per second other methods of measurement are 
in use. 

56. Measurement of Aircraft Speed 

The pitot-static tube is employed on aircraft to determine the 
air speed—i.e., the speed relative to the wind. The tube is 
exposed in a position affected as little as possible by other parts 
of the craft, and is connected by piping to a pressure gauge of 
the aneroid barometer type in the pilot's cock-pit. The dial of 
the gauge, over which a needle moves, is graduated in miles per 
hour by applying to the gauge a sequence of pressure heads 
calculated from the knowledge that the pressure difference 
operating the needle will be equal to q. But evidently the 
graduations can only be true for a particular value of p—namely, 
that for which they were marked. In other words, the gauge 
will register the true air speed only at a certain altitude. 

The speed registered is called the indicated air speed and is 
denoted by VLet the gauge be graduated for a density p0. 
Then for a known pressure difference, px — p, expressed in lb. 
per square foot, 

* 22 V ipo 
m.p.h. 
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Interpreting p0 as the standard sea-level value of the air density- 
gives 

Vi = (15/22)V840 X Vpt—p 
= 19*8 Vpi — p m.p.h., approximately . . (16) 

At another altitude, where the density is p and the true air 
speed is Vt, we have for a given reading of the gauge 

W = lp0Vi2, 

whence V, = V{J^> = . • . . (17) 
> p \ a 

where a is the relative density of the air at the altitude. 

Example 17.—The speed of an aeroplane at 20,000 ft. altitude 
is 150 m.p.h., A.S.I. (Note : the letters A.S.I. are often used in 
this way to convey that the speed concerned is the indicated air 
speed.) What is the true air speed ? 

From Table I, Article 32, a = 0-534, whence Vt = VilV<* = 
150/0-731 = 205-2 m.p.h. 

Sources of Error.—The above use of the pitot-static tube is 
subject to various errors, as follows, for which corrections should 

be made. 
(1) A ' position error ’ arises from two causes. First, it is 

difficult to find a convenient location for the tube where inter¬ 
ference from other parts of the aircraft can be neglected. 
Usually, such interference changes the velocity both in magnitude 
and direction. Second, an aeroplane flies at various attitudes 
to the direction of motion, ranging through some 20°, and a 
pitot-static tube is affected by inclination to the stream. Sup¬ 
posing that it is set tangentially to the local stream at a mean 
attitude, its pressure difference may be increased 2-3 per cent, 
above normal when inclined in either direction by 10°. But the 
interference itself is also affected by change of attitude of the 
aircraft. 

(2) An error of a different kind, often termed the ' instrument 
error', may arise casually from imperfections of manufacture, 
or systematically from the use of a particular design of pitot- 
static tube in which the pressure in the static tube differs from 
the true static pressure of the surrounding air—i.e., the pressure 
difference is not exactly equal to q. 
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Both the errors (1) and (2) can be determined by flying the 
aeroplane to and fro over a measured course and comparing the 
indicated speed with the mean speed estimated by timing. This 
calibration can be carried out at various speeds. 

(3) Any pitot-static tube leads to an over-estimation of excep¬ 
tionally high speeds. The error is due to compressibility, as 
described in the next Article. It can be eliminated by graduating 
the dial from a more complicated formula. 

Advantage of the Pitot-Static Tube on Aircraft.—Other methods 
are available for the measurement of air speed. But the use of 
the pitot-static tube on aeroplanes has a great advantage, as 
follows. 

Whilst the pilot (or navigator) requires to know the true air 
speed in order to estimate his position on a course and the like, 
the indicated air speed is of vital concern in connexion with the 
immediate condition of flight. The reason is that the aero¬ 
dynamic force on the aircraft depends on the value of q, and 
therefore Vit whilst how it depends on Vt could be gauged only 
by making a calculation involving o. Thus, for example an 
aeroplane stalls (cf. Article 12) at all altitudes at an approxi¬ 
mately constant value of Vi} which is immediately visible to the 
pilot. 

Example 18.—An aeroplane lands at its stalling speed. On an 
aerodrome at sea-level the landing speed is 64 m.p.h. What is it 
on an aerodrome situated at an altitude of 5000 ft. ? 

The value of F* will be the same in both cases. At low altitude 
(a = 1), Vt — Vi — 64 m.p.h. On the high aerodrome, since o = 
0-862, Vt = VilyfZ = 64/0-928 = 69 m.p.h. 

Ground Speed.—The navigation of an aircraft depends upon a 
knowledge of the speed relative to the Earth's surface, called the 
ground speed. This is obtained by adding the speed of the wind 
vectorially to the true air speed. A head or following wind is 
simply subtracted or added, respectively. Other cases are solved 
immediately by the triangle of velocities. 

Example 18 would appear to be restricted to the unlikely cir¬ 
cumstance of a windless day. But actually the landing speed of 
an aeroplane is always stated as an air speed. Since landing 
occurs into the wind, the ground speed on landing is always less 
than the landing speed quoted for the aircraft.- 
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Example 19.—An aeroplane flies due North between two aero¬ 
dromes 500 miles apart. The indicated air speed is 180 m.p.h., 
the altitude is such that the relative density of the air is 0*81, 
and there is an East wind of 40 m.p.h. Estimate the time 
required for the journey. 

The true air speed = 180/\/0*81 = 200 m.p.h. Setting out 
the triangle of velocities shows that the aeroplane must head 
East of North at an angle whose sine is 40/200, i.e., 11° 32'. 
This gives a ground speed of 200 cos 11° 32' = 196 m.p.h., nearly. 
Thus the flying time is 500/196 = 2-55 hours. 

57. Compressibility Effect 

The formulae (12) and (13) express Bernoulli's theorem for 
incompressible flow. But air is compressible, and the question 
arises as to what effect this may have. There was theoretically 
no need to neglect variations of density, but including these 
would have entailed mathematical treatment. In this article 
will be given a brief description only of the results of such a 
more advanced analysis. 

Pressure in the air stream cannot change without an accom¬ 
panying variation of density, and pressure variations on a high¬ 
speed aeroplane may exceed one-third of an atmosphere, while 
they are still larger near the tips of an airscrew. The whole 
cycle of change occupies only a small fraction of a second; there 
is no time for the air to gain or lose heat, and accordingly it 
expands and contracts adiabatically (cf. Article 30). Thus the 
pressure and density are related by formula (6), showing that 
the latter varies less than the former, whilst the temperature 
also varies as given by the equations (7). 

The result of taking compressibility into account will be illus¬ 
trated in an important case—viz., the pressure difference of a 
pitot-static tube. For all but exceedingly high speeds, the more 
accurate expression of this pressure difference is, for low altitudes 
where the speed of sound is 1100 feet per second, 

P\ ~P = ?[* + (2200) ]• ‘ ‘ ' (18) 

V, the undisturbed speed, being in feet per second, as before. 
Neglecting the compressibility of the air gives px — p = q, as 
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we have seen, and the error incurred can therefore be indicated 
by simple calculations as in the following table :— 

Speed (m.p.h.) . .75 150 225 300 450 
,, (ft./sec.) . .110 220 330 440 660 

Error, per cent. £ 1 2£ 4 9 

It will be seen that at low and moderate speeds, say up to 
150 m.p.h., the error is negligible. But then it begins to increase 
rather rapidly and becomes important at over 300 m.p.h. The 
pitot-static tube does not provide the worst case in Aero¬ 
dynamics, but in all instances there is no need to take the com¬ 
pressibility of the air into account and modify the simple expres¬ 
sions of Bernoulli's theorem until high speeds occur. 

The general question naturally arises as to Whether the com¬ 
pressibility of the air is an advantage or a disadvantage to flying. 
Without going into this wide question thoroughly, it may be 
remarked that until the maximum velocities attained by the 
disturbed air reach 500-600 m.p.h. at low altitudes, and 100 
m.p.h. less at very high altitudes, there is no great effect. At 
higher speeds, compressibility begins to exert an adverse influence 
on flying, until eventually it prevents further increase of speed. 
This final stage is distinguished by Bernoulli's equation no longer 
applying to the flow past the aircraft owing to the formation of 
shock waves. 

58. Bernoulli’s Equation and Lift 

•The applications of Bernoulli’s equation in Aerodynamics are 
almost unlimited. We complete the few instances studied by 

enquiring what it has to 
say in explanation of the 
lift of a wing or aerofoil 
in a wind. 

Fig. 30 shows the 
streamlines past a long 
aerofoil, far from its wing- 
tips. Inspection of the 

way in which these streamlines first approach one another and 
then diverge again to their normal distance apart, appropriate to 
the undisturbed stream, gives a picture of how the lifting aerofoil 
modifies the fluid velocity, for the velocity is inversely proportional 
to the distance apart of neighbouring streamlines, as we have 

Fig. 30.—Streamlines of Flow Past a 
Lifting Aerofoil. 
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seen. The velocity change penetrates deeply into the disturbed 
stream, but is most marked in the vicinity of the aerofoil surface 
—at the edge of the boundary layer, in fact. 

Applying Bernoulli's equation to this velocity field would 
evidently yield a widespread modification of the pressure, which 
on the whole is reduced by the aerofoil. The pressure drop (and 
also the pressure increase under the nose where the velocity is 
reduced) is built up to a maximum, like the velocity, at the 
edge of the boundary layer. Theory and experiment then show 
that it is propagated without further change through the bound¬ 
ary layer to the skin of the aerofoil as a normal pressure. 

A detailed working out in this way of the pressure alterations 
thus transmitted to the upper and lower surfaces of the aerofoil 
results in Fig. 31. Referring first to 
the lower surface, the pressure change 
for a short distance behind the nose 
pushes up the aerofoil, but further aft 
it pulls the aerofoil down. Turning 
now to the upper surface, the pressure 

drop over the entire profile pulls the F,G d3/s~^“”AnL Ro^^a 
aerofoil up SO strongly that on the whole Lifting Aerofoil. 

there is sufficient lift. 
Further details and other cases are dealt with in later chapters, 

but it is as well to appreciate at once the following outstanding 
features. 

(1) The pressure changes given neglect the compressibility of 
the air. They would be slightly modified at high speeds on the 
lines indicated in Article 57, and the lift of the aerofoil accord¬ 
ingly. But this variation of density, incidental to compressi¬ 
bility, which cannot be avoided with air, is entirely subsidiary. 
Except at high speeds, the lift of the aerofoil in no way depends 
on it. To say, for example, that the lift of an aerofoil depends 
essentially on the rarefication of the air above, and the com¬ 
pression of the air below, is incorrect, implying a misapprehen¬ 
sion of Bernoulli's equation; the streamlines and pressure changes 
shown in the figures would occur equally if the fluid were water, 
which is sensibly incompressible. 

(2) These pressure changes are generated in the outer, irrota- 
tional part of the flow and merely transmitted through the 
boundary layer. We have omitted from discussion the tractions 
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which are generated within the boundary layer, as described 
earlier, because they do not contribute appreciably to lift. 

(3) A pressure distribution that gives an upward lift depends 
on greater velocities existing, upon the whole, in the part of the 
divided stream which passes over the aerofoil than in the part 
which passes beneath it. Therefore, an aerofoil can lift only if 
it tends to throw, as it were, the oncoming air over its upper 
surface. This throwing action, making the streamlines crowd 
rather more closely together above than below, will be referred 
to again in a later chapter. It is not unique to wings, being 
exploited in several ball games, in order to make the ball soar, 
duck or swerve in flight. The advantage of the aerofoil lies in 
the fact that it achieves the effect fairly strongly without being 
spun, and has little form drag. 

Example 20.—A shaft, whose diameter is 6 in., is rotated at 
1440 revs, per min. in air originally at rest. Assuming that the 
circulatory flow, generated by absence of slip between the shaft 
and adjacent air together with the action of viscosity, is irrota- 
tional, find the reduction of normal pressure on the surface due 
to the rotation. 

The peripheral speed of the shaft is 2* x \ X 1440/60 ft. per 
sec. The velocity v of immediately adjacent air is the same, 
whence v = 12* ft. per sec. Air at a very large distance from 
the shaft will not be affected by the rotation of the latter and 
will remain at rest. Let its pressure be P. Also let the normal 
pressure on the surface of the shaft before rotation—i.e., when 
v = 0—be p0> and that during rotation be p. Then, since the 
motion is irrotational, Bernoulli's equation can be applied and 
gives 

p + o = p0 + o 
P + 0 = p +lpv*f 

whence pa — p = ipv2 — \ x 0*00238 x 144*2 
= 1*69 lb. per sq. ft. 

This pressure reduction is uniform round the section and may 
be accounted for by the centrifugal force of the revolving air. 

Example 21.—The shaft of Example 20 is horizontal and 
exposed in a horizontal wind perpendicular to its axis. Before 
rotation of the shaft, the local air velocity just outside the thin 
boundary layer at the top A and bottom B of the section is 88 ft. 
per sec. The shaft is revolved in the wind at 1440 revs, per min., 
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when the maximum air velocity at A increases to 88 + 12n, 
whilst that at B decreases to 88 — 1271 ft. per sec. Find the 
pressure difference between A and B. 

Let the undisturbed wind have a pressure P and a velocity V. 
Then 

P + faV* = pA + £p^A2 
P + ipF2 = pB + lpvB*, 

whence Pb~Pa = bivA2 ~ ^b2) = Jp(125-72 - 50-32) 
— 15-8 lb. per sq. ft. 

The pressure is no longer uniform round the section and 
evidently the shaft will exert a lift. 



Chapter IV 

THE THEORY OF MODEL EXPERIMENT 

59. All the data in Table II, Article 40, except those relating 
to flat plates, are necessarily experimental and could not be 
calculated. The same remark applies to most of the information 
regarding aerodynamic force. Given such data, relating as in 
the table to a specified size and speed and to air in a standard 
state, can the drags of the same shapes be deduced for different 
sizes, speeds and altitudes? If so, the often insuperable diffi¬ 
culties of calculation from first principles can be circumvented 
by carrying out measurements on models in a laboratory and 
translating the results into terms of full-scale flight. 

This question in one guise or another continually confronts the 
designer who wishes to utilise experiments on models in wind 
tunnels to forecast, for instance, the speed his aircraft will attain. 
A fair answer is as follows. The deduction is simple and reliable 
under certain conditions. When, as often happens, these con¬ 
ditions cannot be complied with, a straightforward application 
of wind-tunnel results may lead to large errors, and making the 
transition from model to full-scale is then fraught with difficulty. 

The present chapter studies the conditions under which experi¬ 
mental results can be applied directly to full-scale flight. The 
matter is of immediate importance, since it controls in large 
measure the arrangement of laboratory work. The enquiry may 
be stated as follows. The effects on aerodynamic force of pecu¬ 
liarities in the shape of an aircraft or its components being too 
complicated for calculation, it is agreed to carry out experiments 
on models made accurately to scale. Having made this pro¬ 
vision regarding shape, it is desired to know the dynamical 
conditions under which measurements are to be obtained and 
how the latter are to be interpreted. 

The method of study is an application of the Principle of 
Physical Dimensions, which will first be considered briefly in 
general terms. 

60. Physical Dimensions 

Quantities occurring in Aerodynamics depend on one or more 
of the basic conceptions : mass, length and time, and are 

74 
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measured in terms of the units in which the latter are expressed. 
The fundamental units of mass, length and time are independent 
of one another, and the magnitude of the particular unit selected 
in each case is open to arbitrary choice. In Aerodynamics the 
magnitudes adopted are the slug, the foot and the second, 
respectively. Whatever the choice made, these fundamental units 
are respectively denoted by M, L and T. 

The unit of any dependent quantity is derived by defining the 
quantity explicitly in terms of the three fundamentals. Often 
the unit is self-evident—e.g. one foot per second, in the aero¬ 
dynamical system, for the unit of velocity. But sometimes the 
precise manner in which a quantity depends on mass, length and 
time is not immediately apparent. Elucidation is then effected 
by establishing its ‘ physical dimensions '. 

In illustration of the method, consider again a velocity. Its 
magnitude is directly proportional to a length traversed, and 
inversely proportional to the time occupied in traversing that 
length. This relationship is expressed by writing its dimensions 

L 
T 

The magnitude of a given velocity is specified by multiplying 
L/T by a pure number, or non-dimensional coefficient, which 
depends on the magnitude of the velocity and also on the funda¬ 
mental units adopted for length and time. For example, if the 
magnitude of a velocity is such as to require the coefficient 88 
in the foot-second system, then a velocity of one-half that mag¬ 
nitude will require the coefficient 30 in the mile-hour system. 
But the fundamental nature of a velocity, whatever its mag¬ 
nitude and the convention adopted in measurement, is completely 
revealed by its dimensions L/T. 

To express the physical character of quantities in this way, it 
is clear that one or more of the dimensions M, L and T will often 
require to be raised to a power. For instance, the magnitude of 
an area is measured in terms of that of the square of unit side 
(whatever the unit of length may be), and therefore direct 
dependence of a quantity on area will be indicated by the dimen¬ 
sion L2. Again, an acceleration is a change of velocity that 
occurs in a time; its magnitude is directly proportional to the 
former and inversely proportional to the latter. A change of 



76 ELEMENTARY AERODYNAMICS [CH. 

velocity has the same dimensions as a velocity and, therefore, 

the dimensions of acceleration are 

L 1 J. 
T x T - T2- 

The quantities so far considered are evidently independent of 
mass, whence the absence of M from their dimensions. The 
dimensions of density are 

M 
L.3 

since the density of a given bulk of matter is directly propor¬ 
tional to its mass and inversely proportional to its volume, and 
volume has plainly the dimensions L3. In the aerodynamical 
system the unit of density is one slug per cubic foot, and the 
magnitude of the density of a given material is specified by 
stating how many slugs of it occupy a cubic foot of space; this 
number is 1/g-times the number of pounds, as already men¬ 
tioned (Article 27). It is necessary to take this into account in 
visualising the magnitudes that numbers are intended to convey, 
but density as a property which all materials possess is clear 
from its dimensions M/L3 alone. 

A force is gauged by the rate at which it increases momentum, 
and the dimensions of momentum are evidently ML/T. Thus 
the dimensions of force are ML/T2—i.e., those of a mass x an 
acceleration. 

Example 22.—Verify that work, potential energy and kinetic 
energy all have the same dimensions. 

The amount of work done is proportional to the product of the 
force employed and the distance through which it acts. Thus 
its dimensions are ML/T2 x L = ML2/T2. The potential energy 
of a body is increased by the product of its weight (which is a 
force) and the height through which it is raised (which is a 
length), and therefore its dimensions are the same as those of 
work. The kinetic energy of a body is proportional to the 
product of its mass and the square of its velocity. Hence its 
dimensions are M x (L/T)2—i.e., ML2/T2. 

Example 23.—What are the dimensions of horse-power ? 
Unit hdrse-power is 33,000 foot-pounds of work done in one 

minute. Thus horse-power measures the rate of doing work, and 
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its dimensions are those of work divided by that of time—i.e., 
ML.2/T rT = ML2/T3. 

Rather more complicated is the question of the dimensions of 
the coefficient of viscosity, /z. This quantity is defined with 
reference to the following particular fluid motion. Two infinite 
parallel plates are supposed to be separated by a thin flat layer 
of fluid. One of the plates is held stationary whilst the other is 
moved with a uniform velocity in its own plane. The fluid 
sticks to both plates, being dragged along by the moving plate 
but retarded by the stationary one, and through the layer there 
is constantly taking place a shearing action which is resisted by 
viscosity, as described in Article 49. Consequently a force must 
be applied to the moving plate to maintain its motion, whilst an 
equal force must be exerted in the opposite direction on the 
other plate to keep it still. Now it can be proved that, pro¬ 
vided the motion becomes steady, for a given fluid the mag¬ 
nitude of the force per unit area on either plate is directly pro¬ 
portional to the relative velocity and inversely proportional to 
the distance separating the plates. Hence, the coefficient of 
viscosity is defined as this force per unit area divided by the 
relative velocity and multiplied by the thickness of the fluid 
layer. 

Table III. 

Quantity Dimensions 

Mass M 
Length L 
Time T 
Area L2 
Volume L3 
Velocity L/T 
Acceleration L/T- 
Angular velocity T-i 
Density M/L3 
Force ML/T2 
Pressure M/LT2 
Moment ML.2/T2 

Momentum ML/T 
Energy ML2/T2 
Power ML2/T3 
Viscosity M/LT 
Kinematic viscosity L2/T 
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Thus the dimensions of p come to the same as those of 

force 1 , 
- x —i—rr— x distance, 
area velocity 

which are 
ML 1 T , M 
J2 x L2 x L x L ~ LT* 

In the aerodynamical system the units of /z are slugs per foot- 
second. 

Proceeding on these lines, the above Table III can be verified 
and extended as desired. 

61. Application to Equations 

Two quantities can be equated to one another only if they are 
of the same kind. We are justified in framing, for example, the 
equation 

N feet per second = 150 miles per hour. 

giving 
,r . miles 
N = 150 x *- 

hour 
X 

second 
feet 

= 150 
5280 

X 3600 
220. 

For, although the units on the two sides are different, each side 
has the same dimensions—viz., L/T. But no number of feet per 
second could possibly be equated to a number of lb. per square 
foot, for example, there being no basis of comparison. 

What is evidently true of two single quantities also holds for 
two groups of quantities, or for a single quantity on the one 
hand and a group on the other. They can be equated only if 
there exists a basis of comparison, and this question is decided 
by whether each side of the equation has the same dimensions. 

The principle is of wide utility. An equation may not be 
right if the dimensions of the two sides are the same, but it is 
unquestionably wrong if they are not, and thus comparing the 
dimensions of the two sides provides a check. The method can 
also be used constructively in forecasting the form of a desired 
equation or formula, as described in the following examples. 

A familiar example of the latter use is in application to the 
simple pendulum. From inspection, the frequency of its oscil- 



IV] THE THEORY OF MODEL EXPERIMENT 79 

lation is likely to depend only on its mass m, its length l and the 
acceleration g due to gravity. A first attempt at a formula for 
the frequency — is therefore 

~ = C mplqgr.(i) 

where C is a constant and pt q, r are unknown indices. The 
principle asserts that the right-hand side must have the same 
dimensions as that of the left-hand side, which is 1/T, i.e., since 
C is non-dimensional, 

"'xl'x(p)'=T 

This requirement can be satisfied only if (a) p = 0, since M does 
not appear on the right-hand side of the dimensional equation; 
(b) q + r = 0, or q = — r, for a similar reason regarding L; 
(c) r = in order to make the dimensions in T correct. Hence 
(i) is solved to the extent :— 

Only the constant coefficient remains for determination in some 
other way, e.g., by experiment. It will be observed that the 
method corrected a mistaken notion that the frequency depended 
on the mass of the bob, but it cannot go further and point out 
any mistake of omission. If experiment clearly showed that C 
was not a constant, we should have to go back and find out for 
ourselves what physical factor had been left out in the first place. 
Repairing the omission and applying the principle anew would 
yield, of course, a different formula. 

Example 24.—Assuming that the drag of an airship envelope 
of a particular shape depends only on its velocity (V), its volume 
(vol.) and the density of the air, precisely how is the drag (D) 
affected by these three factors ? 

A formula is required for D in terms of p, V and the volume. 
Introducing a constant coefficient C, write this first as 

D = C PP7? (vol.)r 

and then in the dimensional form 
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Solving for the indices in order to secure the same dimensions on 
the right as on the left gives 

(M) . . . P~ 1 

(L) ... 1 = - 3 + q + Sr 

(T) ... - 2 = -q 

so that r = 2/3. 
Hence the required formula is 

D = C . pF2(vol.)2/3. 

Thus the assumption in the question is consistent with the 
so-called velocity-squared law. It is known, however, that the 
assumption makes an important omission, and including the 
missing factor destroys that law. Nevertheless, the formula 
obtained is sufficiently accurate for restricted changes of density, 
speed and volume. 

Example 25.—Obtain a formula for the drag of a flying-boat hull 
during the run prior to take-off, assuming it to depend only on 
the waves continually formed on the surface of the water. 

It is reasonable to suppose that the formation of waves will 
depend in some way on the density p of the water, the velocity V 
and linear size l of the hull, and the acceleration g due to gravity, 
the last factor being included because water is continually being 
raised against it. The formula is written in the general form 

D = CpVVtrg8 

and re-writing it in dimensional form and solving as far as possible 
for the indices, as indicated above, gives 

p = 1, q = 2 — 2s, r = 2 + s. 

It is not possible to eliminate s because there are 4 unknowns 
and only 3 equations can be formed, viz., those in respect of M, 
L and T. Thus the formula cannot be reduced farther than to 

D = C . pV2-2>l2+.g. = C . pVW . (^)~S. 

Nothing whatever has been discovered concerning the index s, 
and, at first sight, the investigation may appear to have achieved 
little. But this is far from true, for it has indicated a rule by 
which the drag may be inferred from an experiment with a scale 
model of the hull. If the drag of the model is measured at such 
a speed that the quantity in the brackets has the same value for 
the model as for the hull at the full-scale speed, then this quantity 
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raised to the power — s will be the same in the two cases, whatever 
s may be, and the full-scale drag will be greater than that of the 
model precisely in the ratio of the cubes of the sizes, since 

DJD, = JW/JW while V£IV# = lx\l2. 

The formula has been used for many years in Naval Archi¬ 
tecture, and forms the basis of tests in ship’s tanks on flying-boat 
models. A ship’s tank is a long trough of water along which the 
model can be pulled by means of a carriage travelling on rails. 

When the ratio V2/lg (or V2/l, since g is a constant) has the 
same value for the model and the hull, they are said to be moving 
at corresponding speeds. The ratio is very convenient, since the 
speed of the model is required to be less than that of the hull; 
thus if the model is to one-sixteenth scale, its corresponding speed 
is only one-quarter of the full-scale speed. But wave-making 
accounts for only part of the water-resistance of the hull; the 
other part is akin to an aerodynamical drag and much less 
amenable. 

62, Returning now to the main problem enunciated in Article 
59, it is tackled in just the same way as have been the simpler 
questions already illustrated. Search is made for a general 
formula expressing the aerodynamic force that arises on all bodies 
of a constant geometrical shape in terms of other essential 
variables. 

The formula must contain all the factors, except shape, that 
affect aerodynamic force. What these factors are can mostly be 
arrived at by simple experiments; for instance, the following:— 
Choose two bodies of different size but geometrically similar in 
shape—e.g., two rectangular boards, one twice the length, width 
and thickness of the other. The requirement of geometrical 
similarity includes constancy of attitude to the direction of 
motion, so decide, for simplicity, to move the boards broadside- 
on. Waving each through the air reveals two factors on which 
the aerodynamic force depends—viz., size and velocity. Now 
move either board deeply immersed through water. The greater 
resistance felt indicates that a third factor is the density of the 
fluid. Finally, movement through thick oil or treacle shows that 
there must be a fourth factor because the density is little different 
from that of water. This last factor is the viscosity of the fluid. 

It is important that no essential factor be omitted. Further 
P 
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consideration suggests that the compressibility of the air might 
be added. Its effect could not be felt by waving a board, but 
that it will influence the aerodynamic force is suggested by 
Article 57. On the other hand, that article concludes that the 
pressures will be affected only at exceptionally high speeds. For 
simplicity, therefore, and as representing usual conditions, we 
can omit compressibility as a factor on the understanding that 
speeds will not become unduly high. 

Considering, then, a series of geometrically similar bodies—all, 
that is, of one and the same shape, whatever that shape may be— 
differing widely in size, let them move at any agreed constant 
attitude but with different speeds through air at various altitudes. 
They may equally well be considered to move through different 
fluids, liquid and gaseous, provided only that in the case of gas 
the velocities are not exceptionally high and that in the case of 
liquids no surface waves are formed. 

The size of the body will be denoted by Z, which may be any 
agreed dimension—e.g., the length, or width—the velocity by V; 
the density of the fluid by p; and its viscosit}' by pi (the Greek 
letter mu). The aerodynamic force will be denoted by A. 

63. Derivation of the Formula 

If A is to stand alone on the left-hand side of the formula, the 
right-hand side must be so arranged as to have the dimensions 
of a force—viz., ML/T2—because A is a force. In other words, 
the factors Z, V, p, fx must be combined together in such a manner 
as to haye collectively these dimensions. There may occur a 
number of terms on the right-hand side of the formula, separated 
by + and — signs; in that case the requirement must be 
satisfied by each term separately and it will be sufficient to deal 
with any one of them. 

The right-hand side, or the typical term, is written in the 
form 

pWy.(i) 

and the indices are suitably determined, so far as this is possible. 
Written dimensionally, the product gives 

— * x \J + r -Sp -* XT“r“"®. 
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For this to come to ML/T2, we must have 

1 =P + s 
1 = q + r — 3p — s 

— 2 = — r — s 

Solving these simultaneous equations for the indices, the first 
gives p = 1 — s and the last r = 2 — s, so that substituting for 
r and p in the second gives 1 = q + 2 — s — 3(1 — s) — s, i.e., 
2 = q -f- s. Hence the indices in (i) must be related as follows : 

p = 1 - s 
q = r — 2 — s. 

This is as far as Dimensional Theory can guide us. There are 
four unknowns—viz., p, q, r and s—and only three equations 
can be constructed for their evaluation—viz., those in respect of 
M, L and T. One of the unknowns, therefore, must be left 
undetermined. However, the aid rendered is extremely effective, 
as will shortly be seen. 

The required formula for A is 

A = p1 -°l2 -« V2 

or, on the right-hand side, the algebraic sum of a number of 
terms of the same form. The formula can be arranged as 

A=PVW.(f^)~'.(19) 

This equation is of far-reaching importance, forming the back¬ 
bone, as it were, of experimental Aerodynamics. Expressed in 
rather better form, as will be possible after preliminary dis¬ 
cussion, it is.known as Rayleigh's formula, having been obtained 
and expounded by the late Lord Rayleigh in the early days of 
the British Advisory Committee for Aeronautics, now the Aero¬ 
nautical Research Committee. 

64. Preliminary Discussion 

To save repetition, it will be remembered that the following 
remarks apply to any one geometrical shape of body only, as 
assumed in the analysis. It will also be realised that Dimen¬ 
sional Theory cannot discriminate between the aerodynamic force 
and any component of it, for all components have the same 
dimensions. Thus (19) holds equally with lift or drag written 
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in place of A, although the unknown index s would be varied 
thereby. Two vital conclusions follow at once from the analysis : 

(1) However A (or the lift, drag or other component of A) 
varies with size for a given shape, it must also vary in the same 
manner with F. It follows that size and speed are often inter¬ 
changeable, a concept which is put to practical use. 

(2) A cannot vary as the square of the speed, or as the area of 
the body, for if it did we should have 5 = 0—i.e., A would be 
independent of the viscosity, which is demonstrably absurd. 
Thus whenever A appears in experiment to vary with F2, as it 
often does, we know this can be only an approximation, good or 
bad, holding through the range of the particular experiments 
and liable to break down beyond that range. For example, the 
drag of spheres increases through a wide range approximately in 
proportion to F2, but then, with little warning, increase of speed 
actually reduces their drag. 

The Reynolds Number.—The composite quantity pVl/p. forms 
a single variable of the greatest significance in Aerodynamics. It 
is non-dimensional; an attempt to find its dimensions gives 

M L . LT 
[3 x t x L x M 

and all are seen to cancel. In other words, it is a pure number, 
whose value in any case of motion is easily calculated, as will be 
described later. It is called the Reynolds number, after Pro¬ 
fessor Osborne Reynolds, who first discovered its significance. 

The ratio p,/p is called the kinematic coefficient of viscosity of 
the fluid, or simply the kinematic viscosity It occurs so fre¬ 
quently that a special symbol has been assigned to it—viz., v 
(the Greek letter nu). In these terms the Reynolds number 
becomes Vl/v. Both forms of expression are in use. 

It is essential to understand clearly that the Reynolds number 
is a single variable in the sense that, though its value is con¬ 
tinually required, there is no significance whatever in how this 
value is contributed to by p, F, /, p, or v separately. Thus, if we 
require to double the Reynolds number, we may double the 
speed or double the size or halve the kinematic viscosity, just as 
we please, a concept which again is of great practical utility. 
The expression for the Reynolds number—viz., pFZ/p or Vl/v— 

must be remembered in order to calculate its value in any given 
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case. But, since it is a single variable, there is no advantage in 
retaining these details in (19). Therefore, the Reynolds number 
is usually written simply as R. 

The Index s.—Nothing whatever has been determined or re¬ 
vealed by the dimensional analysis regarding the form of the 
remaining index s. Lengthy experience with a few geometrical 
shapes indicates that this index is of a most complicated form. 
It is useless to attempt its determination. There is consequently 
no advantage in retaining it in (19). All we can say from (19) 
is that the aerodynamic force, or any component of it, arising 
on bodies of any single geometrical shape, is equal to the product 
of pV2l2 and a factor which is not a constant, even for that one 
shape, but whose value depends in some unknown way solely 
upon the value of the Reynolds number. It is for experiment 
to obtain the factor (when it can) for any particular Reynolds 
number that may be of interest. This limitation of knowledge 
is suitably reflected by writing in lieu of (pVl/p)~8 the symbol 
/(/?), which stands for the words, ‘ a function of the Reynolds 
number \ 

65. Rayleigh’s Formula 

The expression (19) is written for brevity, with the above 
understanding, 

A=pVH*.f(R). . . . (20) 

This is the form in which Rayleigh’s formula is perhaps best 
remembered, being the form which is most convenient when only 
size and speed are changed and the air remains in a constant state. 

Another form, especially convenient if the state of the air 
varies widely, is obtained as follows. The formula preceding 
(19) can clearly be re-written : 

A =^.p2-,/2-S J/2 — « ^ — 2 

P 

__ pfi /pVl\2 -s 
~~ p\ p, ) 

leading in the same way as before to 

A=£.MR).(21) 

The suffix is added to / to denote that the function of R is 
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different from that occurring for the same geometrical shape 
in (20). 

66. Calculation of the Reynolds Number 

This article sets out rules for calculating the Reynolds number 
of any aerodynamical motion. It is nearly always a large num¬ 
ber, often running into millions owing to the fact that /x amounts 
only to a few ten-millionths of a slug per foot-second. Since p is 
also rather small, there is an arithmetical convenience in evaluat¬ 
ing R in the form 

p-H-Yl 
nip v ’ 

combining /x with p as a first step. 
p. The density is that of the undisturbed stream, or of the air 

before disturbance by the body moving through it. At 15° C. 
and 760 mm. pressure, p = p0 — 0*00238 slug per cubic foot. 
This value is therefore appropriate to very low altitudes in the 
standard atmosphere. At higher altitudes in this atmosphere, 
p = 0*00238 a, and the relative density a is given by Table I 
or Fig. 16. For air in any other state, p is calculated from 
equation (4), Article 28, and a knowledge of the pressure and 
temperature. 

Example 26.—Air enclosed in a vessel at 5 atmospheres pres¬ 
sure has a temperature of 47° C. What is its density? (Note : 
large static pressures are often expressed, as illustrated, in terms 
of the atmospheric pressure, by which is meant the standard sea- 
level pressure of 2116 lb. per sq. ft.) 

Directly, equation (4) gives from the question, since t = 273 + 
47 = 320° C., 

5 X 2116 = gBxp = 32*2 X 96 X 320 X p, 

whence p = 0*0107 slug per cu. ft. 

Rather more neatly, the equation gives, with suffix 0 distin¬ 
guishing standard sea-level values, 

Po = £Bt0Po and P = 

whence, dividing the second of these expressions by the first and 
substituting from the question, 

l^P_ Lo_5x288. 
Po Po' t ° X 320 

This gives the same answer as before. 

4*5. 
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p. The coefficient of viscosity fx of a given gas depends only 
on the temperature; by Maxwell's Law it is independent of the 
pressure and density. For air at 15° C., 

(Xq — 3*72 x 10"7 slug per foot-second . . (22) 

and it varies for this gas directly as r3/4. Fig. 32 shows how its 
value decreases through the 
standard atmosphere to a con¬ 
stant value in the strato¬ 
sphere. 

Example 27.—Determine 
the viscosity of the air of 
Example 26. 

The compression has no 
effect and, since t is 320° C. 
for this air, the value given 
in (22), which is for t — 

288° C., is to be increased 
in the ratio 

(320/288)3/4 = 1-082. 

Hence the required value is 4*03 X 10*7 slug per ft.-sec. 

v. The calculation of R is more concerned, however, with the 
ratio fxIp—i.e., the kinematic coefficient of viscosity v, which 
depends on both the temperature and the density. For air at 
15° C. and 760 mm. pressure, 

v0 = 0*000156 square feet per second . . (23) 

Corresponding to this value, it is useful to note that the Reynolds 
number under standard sea-level conditions is given closely by 

R = 6400 VI.(24) 

Fig. 32 also shows how v increases with altitude in the standard 
atmosphere, the gain through a diminishing density more than 
offsetting the loss through a falling temperature. 

The value of the kinematic viscosity under other conditions 
is most readily derived from the standard sea-level value (23), for 

v _ nip Po M 

0 12 5 4 
RELATIVE VISCOSITY 

Fig. 32.—Variation of the Viscosity 

and the Kinematic Viscosity v 
THROUGH THE STANDARD ATMO¬ 

SPHERE. 
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Or again, since by equation (4) of Article 28 

Po =Po Z. 
P P 'T o 

(cf. Example 26), v/v0 can be expressed in terms of the relative 
pressure thus 

1 ^PofJLS"4, 
J’o p \288) 

(26) 

Example 28.—Determine the kinematic viscosity of the air of 
Example 26. 

Directly from (26), 

= 0*0000375 sq. ft. per sec. 

Alternatively from (25), since by Example 26 1/a = 0*00238/ 
0*0107 = 0*222 whilst by Example 27 \x/jjl0 = 1-082, 

= 0*000156 X 0*222 x 1*082 sq. ft. per sec., 

giving the same answer as before. 

V. The velocity V in the expression for the Reynolds number 
is the true air speed expressed in feet per second. Thus, if only 
Vi, the indicated air speed in miles per hour, is known, and the 
altitude is such that the relative density of the air is a, the 
required velocity is obtained from (17), 

F=22 Vz 
15 VS' 

If, on the other hand, the body is held stationary in a wind, V is 
the velocity in feet per second of the undisturbed wind. 

An exceptional case of practical interest occurs when the 
Reynolds number is required for a small body situated close to 
a large one—e.g., for a streamline object under a wing. Con¬ 
sidering for a moment the small body to be removed, the local 
wind velocity in the region it occupied will differ from the 
undisturbed velocity of the wind, being modified by the presence 
of the wing; Example 11, Article 44, illustrates the effect. The 
Reynolds number of the small object is to be specified on this 
locally modified velocity. A corresponding local variation of the 
kinematic viscosity may usually be ignored. 
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Example 29.—An aeroplane is flying at an indicated air speed 
of 270 m.p.h. at an altitude where the relative density is 0-81. 
A small component part is exposed in a region where the pressure 
is increased by 23 lb. per sq. ft. in the absence of the part. What 
velocity should be used in calculating the Reynolds number of 
the part ? 

Denoting by Vj the relative velocity of the aeroplane and by 
V2 the relative velocity of the body, we have by Bernoulli's 
Theorem 

Pi + b?vi2 = P'2 + bV22 

or l = . • • • (i) 

where q = IpV^, p being the density at the altitude. 
Using the data in the question, 

T/ 22 270 ..... 
K. = r-r —i=~ = 440 ft. per sec. 

1 15 a/O-81 v 

q = \x 0-81 X 0-00238 X (440)2 = 186-6 lb. per sq. ft. 

Substituting in (i), 

whence 

jjq = VO-877 = 0-936. 

Thus the required velocity = 412 ft. per sec. 

1. The length l, on which the Reynolds number is further 
specified, may be any agreed dimension of the body concerned, 
but in Aerodynamics it is usual to choose the maximum length 
in approximately the direction of motion. Thus for an aeroplane 
fuselage, l would be the extreme length from nose to tail and 
would be reckoned the same for flight on an even keel or with 
the tail held down, in spite of the fact that in the latter case the 
length measured in the direction of motion might actually be 
slightly less. For a wing of tapered or shaped plan-form, the 
mean length of the wing section, called the mean ‘ chord ’, is 
conventionally chosen. Any unusual case is dealt with by adding 
a statement as to what convention has been adopted regarding 
this length. I must be expressed in feet. 
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67. Examples 

Once the foregoing simple rules are understood, no difficulty 
will be experienced in calculating R. The following examples 
illustrate the process and give some idea of the magnitudes of 
the numbers to be expected. 

Example 30.—An airship, 800 ft. in length, cruises at 75 m.p.h. 
at an altitude of 10,000 ft. Find the Reynolds number of its hull. 

From Table I, a = 0-738, giving •%/<* = 0-85&, whence 

rr 22 75 inofi 
F==l5X(T859= 128 ft-perSeC- 

Assuming the atmosphere to be in the standard condition, the 
temperature of the air is — 4-8° C. by Table I, giving t = 268*2° C. 
and then 

V 
0-000156 _ 

0-738 X (^f)3/4=r 0'00020 scb ft- Per sec- 

Hence 

R - 
128 x 800 

0*0002 
= 512 millions. 

Example 31.—The mean length of section (mean chord) of the 
wings of a flying-boat is 15 ft. Find their Reynolds number at a 
speed of 240 m.p.h. at low altitude. 

From (24), since 240 m.p.h. = 352 ft. per sec., 

R = 6400 X 352 x 15 = 33*8 millions. 

Example 32.—A one-thirtieth scale model of the wings of the 
flying boat of Example 31 is tested in a wind tunnel working at 
100 ft. per sec. What is the Reynolds number of the test ? 

R = 6400 X 100 X 15/30 = 0*32 million - 320,000. 

Example 33.—The section of a streamline tube exposed on an 
aeroplane, whose speed is 150 m.p.h., measures \ in. across the 
direction of motion and has a fineness ratio of 3. Find its 
Reynolds number at low altitude ignoring interference from the 
aeroplane. 

The length of the section is 1J in. = 0*125 ft. The velocity is 
220 ft. per sec. Hence 

R = 6400 X 220 X 0*125 = 176,000. 

From these examples will be noted the wide range of Reynolds 
numbers occurring in Aerodynamics; their large magnitudes. 
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leading to habitual expression in millions; and also the great 
difference between the Reynolds number of a large aircraft com¬ 
ponent in full-scale flight and that of a small model under test 
in atmospheric air. 

68. Measurement of f(R) 

Having seen how to assess the Reynolds number of any given 
aerodynamical motion, we proceed to discuss further the impor¬ 
tant formulae of Article 65. The first of these gives 

' (27> 

showing that the value of f(R) can be measured for any experi¬ 
mentally suitable value of R] for A, pt V, l and /z can all be 
determined and both R and A/pV2l2 evaluated. The last quan¬ 
tity is a pure number, like the first, writing out its dimensions 
giving 

ML /M L2 
J2 * \|_3 X J2 X 

It .is a non-dimensional coefficient, but not a constant one, its 
value varying, though the geometrical shape of the body be kept 
constant. By stating that it is a function of the Reynolds 
number for any one shape, the formula asserts that its variation 
then depends solely on the variation of R. The formula has 
nothing to say as to the manner in which these two numbers, 
the coefficient and R, vary together, but the limited claim it 
makes, if justified, is nevertheless of outstanding significance. 
For it follows at once that if R remain constant, so will also the 
coefficient, however size, speed or the physical properties of the 
fluid may vary. 

The claim is so important that it is as well to recapitulate the 
restrictions on which it rests. Regarding first the series of bodies 
considered, geometrical similarity must be strictly conserved; it 
must extend, for instance, to the attitude of the body and the 
degree of roughness of its surface. Gravitational effects on the 
motion of the fluid have been excluded, whence it follows, for 
instance, that if one of the bodies is moved through liquid con¬ 
tained in a tank, then immersion must be so deep that no waves 
are formed on the surface of the liquid. If the fluid is air or 
another gas, the velocity must not be so great as to call com- 
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pressibility into play. Finally, if the relative motion between 
the fluid and the body is secured by holding the latter stationary 
in a stream or wind, instead of moving it through fluid initially 
at rest, then the oncoming stream or wind must be steady and 
uniform before disturbance by the body. The last requirement 
is not easy to satisfy, but some of the most modern wind tunnels 
succeed in providing very good approximations to steady and 
uniform streams. 

By complying with these conditions and measuring A, />, V, l, 
fi in a series of experiments carried out on some geometrical 
shape, a series of values of f(R) can be obtained for a series of 
values of R. If the formula is adequate and its claim justified, 
we know that the value of A/pV2l2 will always be the same for 
any one value of R; if, for example, one of the bodies is four 
times as large as another and is tested in the same fluid at one- 
quarter of the speed of the other, then the coefficient will be the 
same for both because R is the same. It follows that plotting 
all the ascertained values of the coefficient against R will yield a 
single curve for that particular shape. This curve will be the 
graphical representation of f(R). 

The construction of a curve of this type, covering a wide range 
of the Reynolds number, involves extensive and careful experi¬ 
mental work and often the use of large or costly apparatus. 
Nevertheless, the research has been carried out for a few shapes 
of body. The results justify the formula, all results lying close 
to a single curve for each shape, as predicted. 

The conclusion regarding aerodynamic force applies equally to 
any component of it—e.g., the lift or drag—but the curve will 
be different for each component. Changing the shape or attitude 
of the body changes all such curves. 

69. Illustrations 

Fig. 33 gives graphical representations of f(R) for bodies of 
four shapes, viz. (a) long plates normal to the wind, (6) long 
circular cylinders normal to the wind, (c) spheres and (d) thin 
plates parallel to the wind. In each case A is a drag, and for 
(a), (t>) and (d) A is the drag of a length l across the stream, 
where l is the maximum width of the body. The Reynolds 
numbers are also specified on this length. There is no need for 
the symbol l in the coefficient A/pVU2 to have the same meaning 
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but only that l2 shall denote a representative area of the body. 
For ease of future reference l2 is made equal to the area S defined 

Lo?io (VL/v) 
Fig. 33.—Examples of f(R). 

(a) Long normal plates, (b) long circular cylinders, (c) spheres, (d) thin flat 
plates. Let l be the maximum width of a long plate or cylinder. Then for (a), 

(b), (d), S = /*. For (c), S = ~/2, where l is the diameter of the sphere. [Note : 

Some experiments suggest rather larger values for (a).] 

below the figure, the coefficient then becoming one-half the con¬ 
ventional ' coefficient of drag CD ’—i.e., \CD. It is plotted against 
log R instead of R in order to open out the horizontal scale when 
R is small and compress it when R is large. 

Referring to (b), the flow is steady for R less than 100. The 
regular eddying wake depicted in Fig. 22 makes its appearance 
at approximately that Reynolds number and continues until R 
reaches a value of about 200,000. But then the * vortex street ' 
breaks up into a pack of small vortices, the wake narrows and 
the drag coefficient rapidly decreases, as shown. 

Little variation appears in f(R) for normal plates at ordinary 
Reynolds numbers. The curve (d) for flat plates rises and falls 
in a marked manner at Reynolds numbers ranging from \ million 
to 10 millions, though the scale of the present figure is unsuitable 
for illustration. 

It will be seen that f(R) is nearly constant for (b) and (c) 
between R = 20,000 and R — 200,000. Some years ago, when 
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the highest Reynolds numbers of experiment reached to only a 
small fraction of a million, rapid change in the value of f(R) 
seemed generally to subside within their limited range, and it 
was thought that further changes could be ignored. Were this 
idea justifiable it would simplify aircraft design, for measure¬ 
ments made on models could be applied directly to full scale 
with no more precaution than that of avoiding very small Rey¬ 
nolds numbers in the experiments. But instances could be mul¬ 
tiplied to show, like those given, that the notion cannot be 
justified; important changes continue to occur in f(R) even at 
the Reynolds numbers of large full scale. 

70. Use of a f(R) Curve 

An experimental curve such as that just described supplies 
very complete information. To put it to practical use, all that 
is necessary is to work out the Reynolds number in the given 
circumstances, read off from the curve the corresponding value 
of the coefficient, and finally calculate directly from this coefficient 
the required aerodynamic force. 

Example 34.—A long wire, ^ in. diameter, is exposed on an 
aeroplane. What is its drag per ft. run at 240 m.p.h., A.S.I., at 
an altitude where a = 0-64 and the temperature is — 14° C. ? 

Ignoring interference from the aeroplane, 

V = 440 ft. per sec. 
By (25), since t = 259° C., 

v == 0*000225 sq. ft. per sec. 

In order to use Fig. 33, l must be the diameter of the wire, i.e., 

These give 
l = ^/12 = 0-00521 ft. 

VI _ 440 X 0-00521 
V “ 0-000225 

10,190. 

Fig. 33 shows the corresponding value of A/pV2l2 to be 0*57. 
Also 

pV2 = 0-64 x 0-00238 X 4402 = 295 lb. per sq. ft. 

Hence the drag of one foot length, away from the ends of the 
wire, is 

0*57 x pV2l2 x ijl 
= 0*57 x 295 x 0-00521 = 0-875 lb. 

Other examples, in which lift and drag coefficients are employed, 
are given later on. 
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71. Isolated Tests in Atmospheric Air 

The large error which may arise if a coefficient determined at 
one Reynolds number is applied to calculate the aerodynamic 
force at a very different Reynolds number has already been 
illustrated. On the other hand, building up an adequate f(R) 
curve for each shape of body used in flying is far too ambitious a 
scheme. Preceding articles suggest immediately, however, a 
method by which this labour may be avoided, without loss of 
accuracy, in the case of a body whose full-scale size is small. 

Knowing beforehand the Reynolds number of the body in 
flight, it may be possible to carry out a single experiment on a 
scale model of the body at the same Reynolds number. When 
this can be done, the single coefficient determined in the experi¬ 
ment will evidently apply exactly to the full-scale case; failure 
to do so would mean only that the experimental technique 
needed improvement. 

If the experiment is made in air of the same condition as that 
through which the flight occurs, so that the kinematic viscosity 
is the same, then for R to be constant the product VI must have 
the same value in the two cases. The experimental velocity Vu 
will usually be much less than the flight speed VF, and then the 
model must be correspondingly larger than the aircraft component; 
for example, if VF = 400 feet per second whilst VM is limited to 
100 feet per second, the model will require to be four times as 
large as the actual body. Having regard to economic restric¬ 
tions on the size of experimental apparatus, it will be obvious 
that such magnified models can be handled only in respect of 
small aircraft parts and that the method cannot be applied to 
large parts, such as wings and fuselages. 

At first sight it may appear that an alternative method, suit¬ 
able for the larger components or complete aeroplanes, would be 
to experiment with models of reduced size at speeds correspond- 
ingly greater than those of flight. This would just have been 
possible in the early days of mechanical flight when aeroplanes 
were of small size and their speeds seldom much more than 50 
miles per hour. Had the funds been available, arrangements 
could then have been made to test a one-sixth scale model of a 
complete aeroplane in an artificial wind of 300 miles per hour. 
But the method has long ceased to be applicable apart from 
economic considerations, owing to the growth of aircraft sizes 
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and speeds; the latter are now so high that any substantial 
further increase called for in experiment would introduce com¬ 
pressibility effects. 

72. Isolated Tests in Compressed Air 
There is one proved method, however, by which complete 

aircraft or their main components can be tested in experiments 
on small models at full-scale Reynolds numbers, provided the 
latter are limited at full scale by either rather small values of the 
product VI or a substantial increase in v due to high altitude. 
This method consists in suspending the model in a stream of 
highly compressed air which circulates in a wind tunnel of 
specialised construction, known as the compressed air tunnel 
(and commonly referred to as the C.A.T.). 

The apparatus is briefly described in the next chapter, but the 
principle will at once be evident. Writing the Reynolds number 
in the form ^yj 

t R = * 

we note that by Maxwell's Law pu is independent of the pressure, 
while by Boyle's Law p is directly proportional to the pressure 
for constant temperature. Hence R increases, for constant tem¬ 
perature, in direct proportion to the compression. The following 
example illustrates the scope of the artifice. 

Example 35.—A one-fifteenth scale model of an aeroplane is 
tested in a C.A.T. working at 100 ft. per sec., 25 atmospheres 
pressure and 15° C. Supposing the aeroplane to be flying at 
30,000 ft. altitude, at what speed will its Reynolds number be 
the same as that of the model test ? 

Denoting model conditions by suffix M and full-scale conditions 
by suffix F, it is required that 

PfVf^F . 

V-F 
and the condition gives 

VF 

PmYmLm 
v-m 9 

p_m h 
p f h 

Vf 
V-M 

Y M’ 

From Table I, pF = 0-375 p0, whilst from the question pM = 
25 p0. Also tf =*= 228-6° C. Hence 

T/ 25 w 1 w ^228-6\3/4 
F 0-375 X TB X \ 288 ) 

= 374 ft. per sec. 

x ioo 
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In the above example the model might have a span of 4 feet, 
when that of the aeroplane would be 60 feet. The true air 
speed of 255 miles per hour ( = 374 feet per second) corresponds 
to an indicated air speed of 255 x VO-375 = 156 miles per hour. 
Thus full-scale Reynolds numbers of practical interest can be 
realised by the method. It would be used much more widely 
but for the large cost of the apparatus. 

73. Dynamical Similarity 

Two or more motions which satisfy the conditions summarised 
in Article 68 and for which also the Reynolds number is the 
same are said to be dynamically similar. The great Principle of 
Dynamical Similarity is far-reaching, and the above provides 
only a single instance of its application. Discussion of the prin¬ 
ciple is beyond the scope of this book, but its aid is so frequently 
invoked in Aerodynamics that some consideration, however 
inadequate, can hardly be postponed altogether to more advanced 
reading. There occur in Aerodynamics other motions of geo¬ 
metrically similar bodies for which the formula (20) requires 
fundamental extension and the criterion of dynamical similarity 
becomes different. Nevertheless, the conditions at present 
assumed are those most commonly experienced. The following 
description is restricted to this important though particular 
case. 

The question immediately arising is : What is meant by 
dynamical similarity? When in addition to being dynamically 
similar the motions are also steady, the meaning is easily inves¬ 
tigated, as follows. 

Consider two geometrically similar bodies of different sizes 
suspended in uniform streams of the same or different fluids 
having different undisturbed velocities, subject always to the 
provision that R has the same value in the two cases. Then it 
can be proved that the streamlines of the two disturbed streams 
are geometrically similar. In other words, making the two sets 
of streamlines visible would reveal the one set to be a magnified 
version of the other. If the Reynolds number were not the 
same, this would not be true, and the two pictures would differ 
from one another. 

The proof presents no difficulty and provides an interesting 
exercise on the method of Article 63. Precisely on the lines of 

H 
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that article, search is made for a general formula for the angle 
of the tangent to the streamline at any representative point in 
the flow. Now, angles are non-dimensional quantities, and so it 
is found that the angular deflection of the streamline is simply a 
function of the Reynolds number. Since this is true for all 
points, the streamlines cannot change in shape if the Reynolds 
number remains constant; they are subject only to a uniform 
expansion or contraction to suit the size of the body. Of course, 
admitting time as a factor instead of assuming steadiness of flow 
would introduce a complication. 

Extension of geometrical similarity to the streamlines enables 
other details to be followed with ease. Let attention be focused 
on any pair of ‘ corresponding points '—i.e., any point in the 
flow past one body together with the particular point in the 
other flow which is geometrically similarly situated with reference 
to the other body. 

By measuring the distance separating adjacent streamlines at 
one of these points, we can easily find the local velocity (cf. 
Example 11, Article 44). The local velocity can similarly be 
determined at the corresponding point in the other flow. In 
this way it is verified that, since the two sets of streamlines are 
identical except for a change of linear scale, adjacent streamlines 
approach or are displaced from one another proportionately, and 
the local velocities at any pair of corresponding points are related 
in the ratio of the undisturbed velocities. 

. Having investigated the dynamical similarity existing in regard 
to the velocity distributions, we can go on to compare the pres¬ 
sures at corresponding points outside the two boundary layers 
by means of Bernoulli’s Theorem. They are found to be related 
in the ratio of the two values of pV2, V denoting the undisturbed 
velocity. 

Proceeding on these lines we could eventually relate the aero¬ 
dynamic force on the one body to that on the other. But this 
step may be achieved at less trouble, as described in the next 
article, by a method which is not restricted to steady flow as is 
the above argument. 

74. Application to Aerodynamic Force 

Considering again two dynamically similar motions governed 
by the formula (20), let them be distinguished from one another 
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by the suffixes 1 and 2. Then the formula gives for the ratio of 
the two aerodynamic forces : 

A2 ~>2*W -f(R)2 

Owing to geometrical similarity the same function of R applies 
to the two cases. And for dynamical similarity R itself is also 
the same. Therefore f(R) has the same value. Hence 

Ai _/LiW (i) 
A2~p2v2n2*.w 

Equating the Reynolds numbers, 

whence 

Substituting in (i), 

pjVjh 
Pi 

(PiP2\2 
\U9pJ * 

AI __ p_2 fPi\2 
Pi 'P'2 

This result follows equally, and more directly, from the formula 
(21) and, since v = fi/p, may be expressed in terms of the kine¬ 
matic viscosity as 

It will be observed that in order to relate the aerodynamic 
forces (or any given components of them) in two dynamically 
similar motions the only data required relate to the physical 
properties of the fluids. Some illuminating deductions follow. 

75. Examples 

The expressions (28) and (29) reveal the following in regard to 
two dynamically similar motions. 

(a) If the fluid is the same, then px — p2, /Lq = fi2 and therefore 

A i — A2.(30) 

i.e., the aerodynamic force is exactly the same. This covers 
experiments in atmospheric air relating to aircraft in flight at 
low altitude. For example, it is just possible to determine the 
stalling speed (supposed low) of a very small aeroplane, weighing 
some | ton, by means of an experiment under dynamically similar 
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conditions on a small model in a wind tunnel of ordinary size 
working at a high speed, say 250 miles per hour. The above 
result shows that the lift of the small model would also be f ton. 

(b) If the fluid is air at the same temperature in the two cases, 
then by Maxwell’s Law fxx = n2, whence 

A\ —P_2 
Pi 

(31) 

i.e., the aerodynamic force is inversely proportional to the density, 
or, since the temperature is constant, to the pressure. This 
result covers the application of experiments in compressed air to 
flight through atmospheric air of the same temperature, i.e., to 
flight at low altitude, in practice. 

Example 36.—A 2\ ton aeroplane in straight level flight at 
low altitude is tested under dynamically similar conditions by 
means of a model in a stream of compressed air, whose pressure 
is 24 atmospheres and temperature 15° C. What lift will the 
model exert ? 

The relationships deduced for A apply equally to any given 
component such as lift. The lift of the aeroplane is evidently 
2\ x 2240 = 5600 lb. Hence that of the model will be 

5600/24 = 233J lb. 

(c) When experiments are carried out in atmospheric air at 
low altitude under dynamically similar conditions to flight at 
high altitude, both p and /x are different, but, since the fluid is 
air in the two cases, /x varies as r3/4 and the expression (28) 
simplifies to 

4i = Pj. /IA3/2 

A 2 PiW 
(32) 

Example 37.—A small body is exposed on an aircraft flying at 
30,000 ft. altitude. A model is tested under dynamically similar 
conditions in an atmospheric wind tunnel and its drag measured 
to be § lb. Deduce the drag of the body in flight. 

With suffixes F and M distinguishing full-scale and model 
conditions respectively, directly from (32) and Table I : 

Af __ 1 /228*6\3/2 
Am~~0-375 \ 288 ) 

whence the required drag is 

4 X | X 0-707 = 1-41 lb. 
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(The model would probably be larger than the body, perhaps 
twice as large, but this information is not required to answer the 
question.) 

76. Aerodynamic Scale 

The flow past bodies of given shape, even if so unobtrusive as 
flat plates, changes in nature as the Reynolds number reaches 
greater and greater values; Article 69 provides an illustration 
(Fig. 33) and others could be given. These changes may occur 
suddenly at certain Reynolds numbers or develop gradually. 
The aerodynamic force is affected by them and in this sense can 
be said to depend on the ‘ bigness ' of the motion. A statement 
of linear size is meaningless in this connexion unless accompanied 
by information as to speed and kinematic viscosity. Equally, 
the speed alone conveys little, unless it be so high as to give 
warning of the imminence of compressibility effects. Only the 
Reynolds number can provide a proper scale on which bigness, in 
the aerodynamical sense, can be gauged. Considering for example 
the three motions : 

(a) an aeroplane model, 3 feet long, in an airstream of 
100 feet per second velocity and 25 atmospheres pressure; 

(b) a geometrically similar aeroplane, 18 feet long, in low 
altitude flight at 300 miles per hour; 

(c) an aeroplane of the same shape but 72 feet long, 
flying at 30,000 feet altitude at a true air speed of 150 miles 
per hour; 

the smallest is the last, not the first; the ascending order of 
magnitude aerodynamically is (c) (a) (b), not (a) (b) (c). 

The Reynolds number is consequently called the aerodynamic 
scale, or simply the scale. To say, for instance, that a proposed 
aeroplane will have a scale of so-many millions is to mean that 
its Reynolds number, with l conventionally specified on the 
mean chord, will be of that magnitude. 

When geometrical similarity is implied in the term scale, the 
criterion of dynamical similarity is that the motions occur at the 
same scale. This condition can often be satisfied by one expe¬ 
dient or another, as we have seen, and then the difficulties regard¬ 
ing the assessment of aerodynamic force are met half-way, for 
the motions are at least the same, whatever their nature may be. 
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Unfortunately, circumstances of practical urgency continually 

arise in which securing dynamical similarity for the purpose of 
determining aerodynamic force is theoretically impossible, or 
else beyond the world’s existing resources, or (still more fre¬ 

quently) would involve delay in construction due to the rarity of 
suitable apparatus. In these circumstances we have to experi¬ 
ment up to as large a scale as possible, and make the best of it. 

Changes due to increase of scale are called scale effects, and 
those occurring between the ultimate experimental scale available 
and that of the aircraft may be called residuary scale effects. 
Uncorrected for, they may lead to the aircraft having a better 

or a worse performance than that forecast. Thus it is essential 
to investigate and assess them in any given case. For a new 

aeroplane of very large scale, the model experiments may be 

supplemented and extended by flying experiments carried out 
on a small edition, or a ' mock-up ’, of the aircraft eventually in 
view. Otherwise the means available comprise (a) advanced 

theory, (b) accumulated experimental data of a general character, 
(c) practical experience—i.e., accumulated data regarding other 
full-scale aeroplanes. 

The estimation of residuary scale effects, often tentative, is in 

any case too involved for present consideration. Geometrical 
similarity is lost, except in the rough sense that a wing, for 

example, will be compared with other wings, of as like a shape 

as possible, and not with bodies of an entirely different shape, 
such as fuselages. A wider use is therefore made in practice of 

the term scale than that above described; two wings, for instance, 

are still said to have the same scale, though they differ in shape 
or inclination to the direction of motion, provided their Reynolds 
numbers are the same. Of course, dynamical similarity then no 

longer occurs at any scale. 



Chapter V 

USING THE WIND TUNNEL 

77. Experiments in a wind tunnel form an important part of 
a course in Aerodynamics. Their first object is to illustrate the 
principles of the subject and demonstrate phenomena bearing 
upon aviation; their second object is to cultivate an instinctive 
knowledge of the ‘ habits ' of flowing air. To be en rapport with 
the susceptibilities of air flow, to be able to anticipate its response 
to a given disturbance, is an incomparable advantage alike to 
the experimental engineer, scientist or mathematician, the 
designer and the pilot. 

Occasionally it is desirable to make the flow visible by means 
of smoke, or to observe its effects on tufts and streamers, but as 
a rule there is need for accurate measurements; to take an 
example, a deviation of the air stream amounting to 2° is only 
just perceptible to the eye, but an aeroplane responds noticeably 
to less than one-tenth of this angular change. 

Precision is not easy to achieve in aerodynamical experiments, 
which call for careful preparation and skill. Nevertheless, it is 
readily possible for the student to arrive during his short appren¬ 
ticeship at the stage of taking representative observations, even 
with rather crude apparatus and models. 

This chapter does not describe the magnificent aerodynamical 
laboratories that now exist, nor the polished technique which has 
persuaded the wind tunnel to reveal so much that long remained 
inscrutable. Its aim is to outline only such apparatus and 
methods as can be encompassed in a small laboratory devoted to 
education rather than research. Systematic investigations with 
this modest equipment form the subject of Chapter VI; the few 
experiments now described are intended only to illustrate the 
operation of the apparatus and the reduction of results. 

78. The Air Stream 

The first requirement of an Aeronautical Laboratory is a satis¬ 
factory artificial wind, and the following properties are desirable. 

The part of the stream used for measurements, commonly 
called the working section, should preferably be 4 feet or more 
in width; many interesting experiments can be made in air 
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streams 2-3 feet wide, but others only with difficulty, if at all. 
The advantage of the rather larger size is operational; it permits 
of more robust and relatively compact apparatus; the gain in 
aerodynamic scale is only of interest in much larger sizes. 

The aerodynamic scale being small, and the wind far too slow 
to illustrate compressibility effects, a high speed is not worth 
striving after. A maximum of 100 feet per second is adequate, 
but the speed must be adjustable and range upwards from some 
20 feet per second, for scale effects are investigated more easily 
by varying the speed of the stream than the size of the model. 

At each operational speed the air stream should be approxi¬ 
mately uniform in three respects. Its velocity should be nearly 
constant in magnitude and direction over about four-fifths of the 
working section; there should be immunity from gusts or other 
easily perceived unsteadinesses; and there should be as much 
freedom as possible from turbulence in the sense of Article 47. 
These qualities are rather elusive, especially the last named, and 
wind tunnels have been developed primarily to secure an accept¬ 
able approximation to them. 

79. Lay-out of Wind Tunnels 
Wind tunnels are said to be atmospheric when they use air at 

approximately the same pressure as that of the surrounding 

Fig. 34.—Straight-through or Open-return Wind Tunnel. 

atmosphere. With few exceptions all come within this category 
and are broadly of three kinds. 

In the open^ return or straight-through type shown diagram- 
matically in Fig. 34, the used air circulates back to the mouth of 
the tunnel through the laboratory itself. The closed-return type 
conveys the return stream within a divergent duct D, Fig. 35. 
Either type may be intended by the description an enclosed- 
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section tunnel, for in both the working stream is enclosed within 
a wooden or metal shell, whose section may be square, rect¬ 
angular, circular, oval or of some other shape. But another 
variation provides for a working stream that is unrestrained by 
an enclosing wall and takes instead the form of a jet springing 
from a delivery nozzle N, Fig. 36, to a collector C. This is 
known as the open-jet type. Most examples arise from the 
‘ race course ' design illustrated, but the straight-through type 
can also be suitably modified; it was in this manner, in fact, that 
the open jet was introduced by Eiffel in 1909. 

Before comparing one type of wind tunnel with another, some 
common features may be noticed. 

Apart from a few specialised tunnels, the air streams are 
horizontal, and then it is advantageous for them to be level to a 
high degree of accuracy. The working stream is induced by a 
tractor airscrew so that the eddying discharge from the latter 
shall have least opportunity to affect the model. This discharge 
is straightened and brought to a low speed before being rapidly 
accelerated again into the working section, through a honeycomb 
H. The sole function of the grill or net screen S is to prevent 
loose objects from damaging the airscrew (its fitment does not 
relieve the student from the prime duty of verifying, on each and 
every occasion before starting up the driving motor, that nothing 
whatever can work loose and be caught up by the wind). The 
size of a tunnel is specified by the width—or the width and 
height, if these are not the same—of the working section, marked 
E in the figures. The electric motor is best coupled direct to 
the airscrew shaft. For control of speed it is usually equipped 
with generous field and armature resistances, to which may be 
added a carbon plate resistance for fine adjustment. The Ward- 
Leonard system is a great convenience. When a large battery 
exists and a tunnel may sometimes be engaged on difficult 
research, it is an advantage to arrange for the motor to be 
switched on special occasions from the mains to the battery. 

80. Open-Return Tunnel 

The design depicted in Fig. 34 was developed many years ago 
at the National Physical Laboratory, Teddington, and the Royal 
Aircraft Establishment, Farnborough. Examples of various sizes 
are still in use at the N.P.L. and elsewhere amongst numerous 
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tunnels of more recent construction. Given a large room, this 
type is easy and inexpensive to construct. To accommodate the 
4-foot size, the room needs to be some 55 feet long and 300 
square feet in vertical cross-sectional area. Forming the return 
channel for the flow, it should be kept reasonably clear of fur¬ 
niture and especially clean; swirling dust is injurious to health 
besides being a nuisance and affecting some experiments. 

Air enters the intake from all directions and is straightened 
and spread evenly across the tunnel by suitably adjusting the 
position of the honeycomb H. If the room is sufficiently high, 
a larger intake resembling the nozzle N of Fig. 35 may be 
preferred. 

The skin friction of the tunnel wall gives rise to a boundary 
layer of sluggish flow penetrating only a short distance from the 
wall into the stream but gradually thickening along the tunnel. 
The stream in a parallel-sided tunnel slightly converges, there¬ 
fore, since just as much air must pass S in unit time as H, and 
greater difficulty is experienced in flowing close to the wall at S 
than at H. Beyond S the air stream is gradually enlarged in 
section along the regenerative cone D and thereby slowed down 
before being engaged by the airscrew. The spinning and eddy- 
packed discharge from the airscrew is delivered back to the 
room through the honeycomb wall W or other perforated baffle. 
This step is unnecessary in case of a small tunnel in a large 
room. 

.Neglecting for the moment the honeycomb and screen, which 
oppose skin friction and form drag to the main stream, and so 
detract from its mechanical energy, we may apply Bernoulli's 
Theorem along a streamline which threads the tunnel but avoids 
the vicinity of the wall. Then we find that the pressure decreases 
rather suddenly through the intake, decreases again but only 
slightly and gradually through the parallel part of the tunnel, 
and finally increases fairly rapidly along the divergent cone, 
until the air arrives at the airscrew with a pressure little less 
than that in a sheltered corner of the laboratory. The airscrew 
makes up the relatively small deficit and communicates a little 
additional pressure to make the air flow back to the intake again. 
Thus the kinetic energy generated in the vicinity of the intake 
at the expense of the pressure energy is largely recovered before 
the used stream is returned to the room, being transformed again 
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into pressure energy in accordance with the conservative principle 
expressed in Bernoulli's Theorem, and the return flow passes 
slowly back along the laboratory, wasting little energy and 
providing time for remaining eddies from the airscrew to die 
away. 

Example 38.—A straight-through enclosed-section wind tunnel, 
4 ft. 6 in. in diameter and fitted with a regenerative cone diverg¬ 
ing to 9 ft. diameter, is working at 100 ft. per sec. Neglecting 
the boundary layer and other sources of energy loss and assuming 
the stream to fill the cone, determine the pressure difference in 
inches of water between a sheltered corner of the laboratory and 
(a) the working section, (6) the wide end of the cone. 

Let suffixes 1, 2, 3 refer to the laboratory, the working section 
and the wide end of the cone, respectively. By Bernoulli's 
Theorem, 

Pi + (7i = P2 + (72 = P'S + 
and it can be assumed that V1 = 0, giving qx = 0. 

Hence (a), 

Pi-P2 = <l2 = \ X 0-00238 X 1002 
= 11-9 lb. per sq. ft. 

and the corresponding pressure head is 

11.0 
X 12 = 2-29 inches of water. 

62-4 

Again, the mean velocity of the stream is inversely proportional 
to its cross-sectional area, or, neglecting the boundary layer, 
V3 = V2 x (4|/9)2 = \V2' Hence (b), 

Pi — Ps ~ ~ T3<72 
= 0*744 lb. per sq. ft. 

= 0*143 inches of water. 

In the practical case, the honeycomb involves a further pressure 
drop and prevents application of the method to determine the 
wind speed directly from p\ — p2- The screen and walls also 
give the airscrew work to do. 

The regenerative action of the divergent cone greatly reduces 
the power required to drive a tunnel of the present type, but 
this remains considerable; it exceeds 35 horse-power for the 
4-foot size at a speed of 100 feet per second and varies as the 
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square of the size and the cube of the speed. Another dis¬ 
advantage arises from fierce little whirlpools of air, which mature 
continually on the floor and ceiling of a low room in the neigh¬ 
bourhood of the intake and dart down the tunnel like snakes, 
momentarily upsetting the velocity distribution across the work¬ 
ing section. However, the type still has several advantages, 
including the possibility of employing a very large airscrew, 
thereby minimising noise. 

81. Closed-Return Tunnels 

Returning the stream within a divergent duct can save two- 
thirds of the power required to maintain a wind of given section 

Fig. 35.—Enclosed-section Tunnel of Race-course Type. 

and speed. The closed-return type is also more economical in 
first cost when laboratory space has to be built, for a large clear 
room is not required. Little difference exists between the designs 
of the open- and enclosed-jet forms; in fact a single tunnel can 
be rapidly convertible from the one into the other; and one 
description almost suffices for both. 

Essential features are as follows. The air received from the jet 
or working section has to be guided round at least four corners 
in such a manner as to preserve an approximately uniform dis¬ 
tribution of velocity across each section. This is achieved by 
cascades of aerofoils or other guide vanes stretching diagonally 
across the comers as shown in the figures. The airscrew may 
be located in the collector C or the divergent duct D, but must 
be sufficiently far removed from the front end of the working 
section to prevent its eddies from being carried through. It 
communicates spin to the air stream, which is removed by a 
fixed windmill or set of radial helical guide vanes. Where the 
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cross-sectional area is a maximum, and the speed, therefore, a 
minimum, the air passes through a large honeycomb of small 
mesh to enter the convergent nozzle N, which leads immediately 
to the working section or delivers the jet. 

The sudden contraction of the stream by this nozzle has a 
Ibeneficial effect in steadying the flow. Thus the contraction ratio 
<of the tunnel, defined by the ratio of the maximum cross-sectional 
area of the stream to that of the issuing jet, is a matter of prime 
•.significance. Few modern tunnels rely upon a contraction ratio 
<of less than 5, and a larger value is necessary if exceptional steadi¬ 
ness is desired. A large contraction ratio tends to a long tunnel, 
ifor it is important that the return flow completely fill the diver¬ 
gent duct and not separate from the walls, to ensure which the 
divergence must be gradual unless special means are employed 
tto keep the return stream under intimate control. A long tunnel 
increases the cost of construction, but has the advantage of pre¬ 
venting the wake of a high drag model from being carried com¬ 
pletely round the circuit, a defect which cannot arise with an 
open return. 

Turning to the open jet, the first point to notice is that the 
pressure within it is approximately the same as that of the 
surrounding air. If a closed-return tunnel has a jet open to the 
laboratory, its ducts must sustain a small bursting pressure. 

Example 39,—An open-jet, race-course tunnel has a contrac¬ 
tion ratio of 6. Neglecting energy losses, estimate the bursting 
pressure, at a speed of 100 ft. per sec., sustained by the duct at 
its widest part. 

Denoting the position concerned by suffix 1 and the jet by 
Suffix 2,; Bernoulli's Theorem and the question give 

Pi + Vi ~ P2 + 
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i-e., Pi-p2 = ?2(1 - ?i/?2) 

= i?v2*[1 - (Fi/F2)2J 
- 11*9[1 - (1/6)2] 

= 11*57 lb. per sq. ft. 

This is a bursting pressure because p2 ~ the pressure of the 
surrounding air. Energy losses would increase the pressure 
difference in the actual case. 

An open jet is deformed by a model suspended within it, 
whence troubles tend to arise in accurate work. It is especially 
suitable for testing model airscrews, elastic models exhibiting the 
torsional-flexural vibration known as flutter, experiments in con¬ 
nexion with the stability of model aeroplanes, and also (in very 
large sizes) full-scale aeroplanes or aero-engines, which require 
hoisting into position by means of a lift or crane. Many tunnels 
employing open jets have been built and are in operation, but a 
tendency exists to reserve the type whenever possible to such 
uses as those mentioned, where accessibility and an uninterrupted 
view are at a premium. 

82. Brief reference to two national tunnels will give some 
idea of the impressive development reached in aerodynamical 

apparatus. 
Fig. 37 illustrates in 

outline the compressed- 
air tunnel at Tedding- 
ton. It has a jet 6 feet 
in diameter, unenclosed 

Fig. 37.—Compressed Am Tunnel. immediately by a wall, 
though not, of course, 

open to the laboratory. Indeed, the complete apparatus, apart 
from the 450-H.P. driving motor, is boxed within a cylindrical 
steel shell with dished ends, 18 feet in diameter and 2\ inches 
thick. The return flow is annular in section and accommodated 
just within the outer shell. The model having been suspended 
from electrically controlled measuring apparatus and the manhole 
closed, a large compressor plant pumps up the shell to a pressure 
of 25 atmospheres (370 lb. per square inch). The dense air, 
weighing nearly 2 lb. per cubic foot, attains a speed of 90 feet per 

second in the jet. The theory of compressed-air tunnels has been 
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given in Chapter IV. Models have to be strongly made and 
smoothly finished, and Reynolds numbers are reached equal to 
those of small full scale. Variable density tunnels may also be 
of the race-course pattern. 

The horse-power required to drive an enclosed return tunnel 
is roughly equal to Cb(V/105)3, where C is the cro-s-sectional 
area of the working section in square feet, b the pressure there in 
atmospheres, and V the velocity in feet per second. If b is con¬ 
siderably less than unity—i.e., if the tunnel be partially ex¬ 
hausted—high speeds can be attained with the same power. 
Very high air speeds can be induced through a small nozzle for a 
short time by exhaust¬ 
ing a compressed - air 
tunnel, or similar vessel, 
through an annular 
orifice surrounding the 
nozzle. 

The second tunnel 
selected is the giant 
atmospheric one at 
Langley Field, U.S.A. 
(Fig. 38). The open jet, 
60 feet wide and 30 feet high, is sufficiently large for testing many 
full-scale aeroplanes. Twin motors, totalling 8000 H.P., drive two 
side-by-side airscrews more than 35 feet in diameter and produce 
a speed in the jet of 175 feet per second. The return flow is con¬ 
veyed in double divergent ducts; in fact, the lay-out suggests 
two enormous wind tunnels so joined together and merged as to 
form one gigantic whole. 

A larger aerodynamic scale is attained in the smaller of these 
tunnels, for while the product VI is only some 20 times the greater 
in the large tunnel, the reciprocal of the kinematic viscosity is 
25 times the greater in the small tunnel. The latter is also less 
costly to run. On the other hand, the full-scale tunnel permits 
investigation of a number of problems for which a small model 
cannot be prepared—e.g., engine cooling and slipstream effects. 

83. Measurement of Tunnel Speed 

When a tunnel is first installed, adjustments are made to secure 
as uniform a distribution of velocity as possible over the working 

Fig. 38.—Full-scale Wind Tunnel. 
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section. Success is proved by measurements with a pitot-static 
tube at a network of points 2 or 3 inches apart. The results of 
this final exploration may be noted collectively by stating the 
mean speed across a wide central part of the stream in terms of 
the speed at its centre. 

Subsequent use of a pitot-static tube in the tunnel when a 
model is under test is avoided by the following artifice. A 
smooth flat plate is let into the side of the tunnel, flush with the 
interior surface and several feet upstream of the working section, 
and a small hole drilled through it is connected permanently with a 

pressure gauge, which thus records continuously the difference 
of static pressure between the atmosphere of the laboratory and 
the wind opposite the plate. This pressure difference is cali¬ 

brated by comparing it, through the entire speed range, with 
that given by a pitot-static tube occupying the position intended 
for the centre of span of the model. The direct readings of the 
permanent gauge are plotted against the corresponding values 
of $pV2 obtainable from the pressure heads given by the pitot- 
static tube. 

The curve gives the undisturbed value of |pF2, corresponding 
to any reading of the gauge and without further use of the pitot- 
static tube, provided the model in the tunnel does not modify 
the pressure near the plate. The plate is therefore kept away 
from the floor and roof of the tunnel and located well upstream 
of the working section. 

Example 40.—A pitot tube is moved upstream along the 
axis of a straight-through wind tunnel until it emerges therefrom 
and finally touches the end wall of the laboratory. Describe the 
pressure changes occurring within it. 

As the pitot tube is displaced from the working section towards 
the honeycomb its pressure remains constant, though the velocity 
of the wind decreases slightly. From the downstream to the 
upstream side of the honeycomb the pitot head increases because 
the skin friction and form drag of the honeycomb detract from the 
mechanical energy of the stream. The pitot head then remains 
constant between the upstream side of the honeycomb and the wall 
of the laboratory, though in the latter position the velocity is 
reduced to zero and the pitot registers merely the static pressure 
in the laboratory. 
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84. The Aerodynamic Balance 

Most wind-tunnel experiments are concerned with the measure¬ 
ment of aerodynamic force. The model is suspended for this 
purpose from one or more balances installed outside the working 
section or jet, and the experimental problem is to determine the 
aerodynamic force in magnitude, direction and line of action. 
Magnitude and direction are obtained by measuring the com¬ 
ponent forces—i.e., the lift, drag and cross-wind force, which 
have already been defined. The line of action is deduced from 
measurements of component moments about suitably located 
pivotal axes. 

The latter components, called the pitching, rolling and yawing 
moments, are indicated in Fig. 39 with reference to an aero¬ 
plane in normal flight, the 
pivotal axes then passing 
through the centre of gravity 
of the aeroplane. A positive 
pitching moment tends to raise 
the nose and depress the tail. 
A rolling moment tends to roll 
the aircraft round the longi¬ 
tudinal axis and a yawing moment to turn it away from the 
direction of flight; these two moments are reckoned positive if 
they are suitable to begin a right-hand turn—i.e., if they depress 
and retard the right-hand or starboard wing-tip. 

In the general case of an asymmetrically disposed model, the 
three force and three moment components will all require measure¬ 
ment. A single balance capable of measuring the six quantities 
simultaneously, i.e., without changing the rigging of the model, 
is necessarily of complicated construction. Apparatus available 
to students is seldom able to cope with more than three of the 
quantities at the same time. 

An especially simple aerodynamic balance which measures 
simultaneously only the lift (or cross-wind force) and drag—and 
is frequently called, therefore, a lift-drag balance—is sufficient 
for many purposes if supplemented by a plain steelyard. We 
begin by considering one of many forms that a lift-drag balance 
may take and its use in particularly straightforward circum¬ 
stances. 

Rolling Moment 

^Yawing Moment 

Fig. 39. 

I 
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85. Light Lift-Drag Balance 

The crudest form of a serviceable horizontal type is illustrated 
schematically in Fig. 40. The base plate (not shown) supports 

CDb 
Fig. 40.—Light Lift-drag Balance of Horizontal Type. 

a steelyard S at G in such a way that it can pivot about the 
horizontal axis XX, which is parallel to the wind, and also about 
the vertical axis YY. S is divided at W so that the tapered 
spindle H, which enters the wind tunnel through a clearing hole 
T in the wall, can be turned about its own axis. To illustrate 
one application of the balance, H is shown screwed firmly into 
the end of a square-tipped aerofoil, whose attitude to the wind 
can be changed accurately without stopping the tunnel by means 
of a worm-gear at W. A large angle plate with a vernier can be 
used instead of the worm-gear, but angle changes should be 
observed to within 0-1 degree. 

The lift component L of the aerodynamic force A turns the 
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steelyard or lift beam about XX and, if amounting to no more 
than 2 or 3 lb., is weighed by taking known weights off the 
scale-pan P and adjusting the jockey or rider J. Larger lifts 
are counterbalanced for the most part by placing known weights 
in another scale-pan B, hung beneath the stream by a wire 
which passes freely through a hole in the floor of the tunnel, and 
the process described for small lifts is then used for final adjust¬ 
ment. The movement of B is restrained by stops so that a 
sudden cessation of the wind cannot break the model away 
from H. 

The drag D turns the lift beam about the axis YY, operating 
a subsidiary drag balance by pressing (in the example illustrated) 
a knife-wheel K on the hardened steel plate E. The drag balance 
pivots about the axis ZZ and is provided with its own scale-pan 
P' and rider J' to enable D to be weighed. 

The beam S is readily given stability about both its axes of 
swing. But the aerodynamic force on a model in a wind tunnel 
is frequently too unsteady for a leisurely weighing, in spite of 
dampers applied at B and near P, and a quick-release stop at the 
end of S is therefore an advantage. 

A fitment of this kind is indicated in Fig. 41. Terminating 
the steelyard is a long cone O, which passes freely through a hole 
in the small plate C and whose point 
moves in juxtaposition to a cross-hair ) 
fixed near to C. Lift and drag are T_^ 
weighed simultaneously, and a correct , ? 
balance is obtained by observing the 
displacement of the point of the cone | 
in relation to the cross-hair. Fully , 

. , , , ,, Fig. 41.—Quick Release Stop 
retracted by the spring F, C acts as a FOR lift-drag Balance. 

circular stop preventing the maximum 
displacement of the end of the steelyard from exceeding one 
millimetre, say, and it is readily slideable over the cone to prevent 
swinging and to centralise the point in relation to the cross-hair. 
Thus the stop is employed in rather the same way as is the lifting 
handle of an ordinary physical balance, but more quickly and 
frequently. 

This balance, being particularly simple to construct and use, 
has taken more elaborate forms. Some of the improvements 
effected apply to aerodynamic balances in general and may be 
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mentioned briefly. Unsteadiness is often violent when a model is 
near its stalling angle and damping must be heavy in these and 
similar circumstances, but it should be light when small forces 
are to be measured. Thus damping should be variable, and the 
electro-magnetic method has an advantage in this respect over 
the plunger working in oil. Elastic pivots are usually preferred 
in aerodynamic balances to knife-edges or points; these com¬ 
monly take the form of crossed strips of clock-spring, whilst in 
the present instance a thin metal diaphragm has been used with 
success in place of a gymbals at G. A fixed guard-tube, shown 
dotted in Fig. 40, is required to shroud the greater part of the 
tapered spindle H from the wind and, with an enclosed-section 
tunnel, there tends to be an inward leak of air along it. To 
prevent the leak, the balance may be boxed in a draught-cup- 
board, or H may enter the tunnel through an oil seal, or the 
flexible diaphragm mentioned may be specially adapted. A drag 
balance can be brought into position alongside a lift balance by 
use of bell-crank transmission. 

An aerofoil with a model landing flap attached may have a 
lift of 15 lb. at 100 feet per second in a 4-foot tunnel, and yet a 
minimum drag of less than 0*02 lb. at 30 feet per second. To 
measure this small drag with good accuracy is well within the 
compass of the balance described. But occasion frequently arises 
to measure aerodynamic forces which are much smaller still and 
then a more sensitive balance is called for. 

86. Calibration of Lift-Drag Balance 

To calibrate a lift-drag balance, first determine the values of 
the displacements of the two riders J and J' in terms of lb. 
weight on the scale-pans P and P', respectively. Then extend H 
and hang from it, exactly at the centre of the tunnel, a tem¬ 
porary scale-pan. Centralise the conical point or other indicator 
by adjusting the weights in P, P' and the positions of the riders. 
Place known weights in the temporary scale-pan and note the 
weights required to be added to P, including any movement of 
J, to centralise again. This calibrates the lift-beam. The drag 
beam may be dealt with similarly by attaching the temporary 
scale-pan to a thread passed over a pulley in such a way as to 
exert a horizontal force on the end of H, see Fig. 42 (a). Another 
method, which eliminates the friction of the pulley, is shown at 
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(b) in the same figure. The scale-pan is slung from a pin joint 
between the two fine wires BD and AD, the first of which is 

Fig. 42.—Calibrating the Drag Beam. 

attached freely to the end of H and the second to a fixed point, 
such as the top of a retort stand. Having obtained the zeros of 
the balance, a known weight is put in the temporary scale-pan 
and readings for a renewed balance are observed on both the lift 
and drag beams. The inclinations to the horizon of the two 
wires are then carefully measured and the force polygon shown 
at (c) is constructed, where ab represents the known weight and 
so defines the scale of the diagram. On this scale, be should 
agree with the lift recorded on the balance; if it does not do so, 
the angles have been wrongly determined. Assuming success, 
cd gives the horizontal force exerted at the centre of the tunnel 
on H. 

87. A Simple Aerofoil Test 

To carry out a test on a square ended aerofoil with the simple 
arrangement shown in Fig. 40, proceed as follows. Verify that 
the centre of span of the model is at the centre of the wind 
tunnel. To remove backlash from the worm-gear or other turn¬ 
ing device, increase the angle of incidence positively to the most 
negative incidence at which data are required. 

Incidence and its Measurement.—Several conventions have 
been used in the past to define the angle of incidence (a) of an 
aerofoil. Thus if the lower surface of the section has a concavity, 
the incidence may be defined as the angle between the direction 
of the undisturbed wind and the tangent touching the lower 
surface at two points. In these circumstances the incidence is 
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easily determined, for a steel rule can be held against the lower 
surface of the aerofoil by a spring clip and the difference of the 
heights of its two ends above the floor of the tunnel carefully 
measured, whence the angle follows from a table of sines. Un¬ 
fortunately in the present connexion, modern aerofoils are usually 
bi-convex in section. The angle of incidence is then defined by 
the line joining the nose to the tail or, more accurately, by the 
line joining the centres of curvature of the nose and tail of the 
section. In the case of a square-ended aerofoil of this type, 
scratches may be made on the nose and tail at the outer end 
consistently with the above definition, and the heights of these 
scratches above the floor determined. But now, owing to the 
short length of the section, the heights should be found with 
accuracy; an error not exceeding 0-005 inch is possible with 
practice. 

Having estimated the angle of incidence of the model, cen¬ 
tralise the balance by adjusting the weights in the various pans 
and the positions of the riders. Note these zero readings. 
Obtain also a zero reading of the pressure gauge used to measure 
the tunnel speed. Verify that nothing has been left in the tunnel 
and then start up. Allow two or three minutes for the electrical 
resistances in circuit with the motor to warm up and the pressure 
gauge to settle down. Then adjust the balance weights and 
obtain readings of lift, drag and the pressure drop in the tunnel. 
Increase the incidence by 1° or 2° and repeat all three measure¬ 
ments; it is not necessary to shut down the tunnel, for the 
zeros will not have changed. Repeat this process until as many 
angles as desired have been tested; from — 4° to 4-18° is 
usually sufficient at small scale. Finally, shut down the tunnel 
and, after allowing time for the residual wind to stop and the 
gauge again to settle down, repeat all zeros and check the incid¬ 
ence to make sure no mistake has occurred. 

Correction of Readings.—First, by the subtraction of zeros from 
gross readings, obtain net readings of lift, drag and tunnel 
pressure. The observations of lift and drag will have been 
obtained at slightly different tunnel speeds, owing chiefly to 
other demands on the electric mains and to further heating of 
the electrical resistances, and it is seldom worth while to avoid 
this by continuous adjustment of a finely variable electrical 
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resistance. In a few minutes by slide-rule, all the net readings 
of lift and drag can be corrected to a selected gauge reading, 
for which the corresponding tunnel speed is known, the forces 
being assumed for this purpose to vary directly with the tunnel 
pressure—i.e., with the square of the speed. Now detach the 
model from H and measure the drag of the latter at the selected 
tunnel speed. If use has been made of the supplementary scale- 
pan B of Fig. 40, estimate the drag of the wire from Fig. 33 and 
add to that of H. The parasitic drag so obtained is to be 
subtracted from the observations of total drag already adjusted 
to the selected tunnel speed. The corrected lifts and drags can 
now be plotted against angle of incidence. Alternatively, they 
may first be converted to coefficients, as described in the next 
article. 

88. Coefficients of Lift and Drag 

Following directly from Article 68, non-dimensional coefficients 
of lift and drag can be obtained as 

, _ Lift , __ Drag 
kL ~pV2S> nD - pv*S* 

where S denotes some representative area of the body. In the 
case of aerofoils, this area is conventionally taken as that of the 
plan-form of the aerofoil at 0° incidence. For a fuselage it would 
be the maximum cross-sectional area. These coefficients, said to 
be in the ‘ ^-system were uniformly employed for many years 
in this country, and so appear in most of the literature published 
here prior to about 1937. More recently, this country has largely 
adopted the alternative ‘ C-system ' of U.S.A. and elsewhere, in 
which the coefficients are just double those of the ^-system. 
Since CL = 2kL, etc., we may define 

C, Lift 
JS’ 

c D 
Drag 
~qS 

. . (33) 

where q = \pV2. To evaluate these formulae the forces must 
be expressed in lb., q in lb. per square foot, and S in square feet. 
As explained in Chapter IV, the coefficients for any aerofoil at a 
given incidence are not constants but functions of the Reynolds 
number, in other words they are subject to scale effects. 
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Fig. 43.—Aerofoil Characteristics 

a Small Scale. 

Fig. 43 gives at (a) a 
typical lift curve for an 
aerofoil at small scale. It 
will be seen that for this 
aerofoil, and at the scale of 
the test, the angle of zero lift 
is — 2°. From this angle, 
the lift coefficient increases 
closely in proportion to the 
increase of incidence up to 
about 12°, but ever more 
slowly afterwards until CL 
reaches the maximum of 1*1 
at 15° incidence. The aero¬ 
foil then stalls. The corre¬ 
sponding drag curve is shown 
at (b). As the incidence in¬ 
creases from — 2°, CD de¬ 
creases a little at first, to 
a minimum of 0-01 in the 
present example, and then 
increases. At angles ap¬ 
proaching the stall, and 
especially when this occurs, 
CD increases rapidly. 

For curve (c), CL is divided 
by CD at each angle of incid¬ 
ence, giving the lift-drag 
ratio, written L/ZX This 
quantity is closely related to 
the efficiency of the aerofoil 
as a lifting device. At the 
most efficient incidence in 
the present case., L/D — 18; 
or in words, the lift is 18 
times as great as the drag. 
If we know the lift in lb. at 
any incidence, the drag in lb. 
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is obtained at once, whatever the speed or altitude, by dividing 
the lift by the LID at that incidence. The reciprocal of the L/D 
is the tan of the angle y between the lift and the aerodynamic 
force, see Fig. 40. Hence y can be plotted against a, as at (<i), 
Fig. 43. 

A specially convenient graph for many practical purposes is 
that shown at (e), in which the angle of incidence has been 
eliminated by plotting corresponding values of L/D and CL. 
We can find CL for an aeroplane in straight level flight from the 
wing-loading and indicated air speed. Then a knowledge of the 
corresponding L/D gives at once the drag of the wings. Another 
well known mode of exhibiting the results with a eliminated is 
shown at (/). This last curve, obtained by plotting CL against 

CD, is often called the polar for the aerofoil. 

90. Suspension of Models 

The design of aerodynamic balances and the arrangement of 
experiments are largely controlled by an urgent need to disturb 
the flow round the model as little as possible. The arrangement 
shown in Fig. 40 is singularly free from objection. If, after 
measuring the combined drag of the model and the exposed part 
of the holder H, the drag of H is determined without the model 
present as described, the second measurement can reliably be 
subtracted from the first to obtain the drag of the aerofoil alone. 
In these circumstances there is said to be no ‘ interference ' 
between the two bodies, the aerofoil and the holder. 

This simplicity is rare. If two bodies have drags X and Y 
when isolated, their combined drag when joined together seldom 
has the value X + Y, but some other value Z. The difference 
between X + Y and Z is a measure of the interference. This 
difference may become important if either body appreciably 
disturbs the flow round the other; for example, a good airship 
model 6 inches in diameter may have its drag increased by 20 
per cent, if a spindle of the size of a pencil is screwed into its 
side, whilst the drag of the spindle will also be increased by the 
presence of the model. The first effect is due to a splitting of 
the delicate flow close to the surface of the streamline body, the 
second to a general increase of wind speed in the neighbourhood 
of the spindle. 

The interference can usually be determined if it is small.. 
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Thus referring to Fig. 44, an aerofoil A can be tested for drag as 
supported by two fine streamlined holders B and C and also 

with each removed in turn (care is 
necessary to ensure that removing 
either holder does not twist the aero¬ 
foil). Subtracting the drag with B 

Yig. 44. removed from that with both B and C 
present gives the effective increase of 

drag due to attaching B; and subtracting this effective increase 
from the drag measured when A is supported by B alone gives 
the true drag of A. 

This method is used to estimate the effective drag of any 
attachment to the body, such as even a wire. It sometimes 
fails as follows, for example. Referring again to Fig. 44, B may 
appreciably advance, at a small aerodynamic scale, the stalling 
angle of the aerofoil. C alone may also advance this angle. 
The two effects are not strictly additive, and so neither can be 
determined accurately. Again, it is unlikely that the drag of 
the airship model already mentioned would have its drag in¬ 
creased just twice as much by the attachment of two spindles 
to its side instead of one. 

There is in general only one unobjectionable place for a sup¬ 
porting spindle—viz., screwed into the tail of the body so that 
it lies along the mean direction of motion in an already eddying 
region. A holding spindle arranged in this way is called a 
sting. The nodding weight of the body, or its angular deflec¬ 
tion under air load, is usually too great for this means of support 
alone, which is assisted, therefore, by two fine suspending wires 
of circular or streamline section. The practice applies equally 
to aerofoils, whose wing-tips are often too thin to receive an end¬ 
wise spindle of sufficient diameter for the stiffness required. 
Testing an aerofoil for lift and drag with three-point suspension 
requires care, but has the advantage of yielding the pitching 
moment without further work. 

91. Test of Aerofoil Shaped in Plan 

Fig. 45 illustrates the combination of a lift-drag balance with 
an overhead steelyard for the purpose of testing an aerofoil for 
lift, drag and pitching moment. The supplementary ‘ roof 
balance' S1# installed above the tunnel or jet, pivots about the 
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axis XjXj. It is loaded through vertical wires, which descend 
into the wind from a winding device attached to the steelyard so 
that they can be raised or lowered. 

Fig. 45.—Combination of Lift-drag Balance and Overhead Steelyard to 

Determine Lift, Drag and Pitching Moment. 

The aerofoil is suspended upside-down from these wires, which 
are flexible, so that the model can pivot freely about the line 
KK joining their ends. Set firmly into its back at the centre of 
span is a sting I, whose tail end is pivoted freely on the end 
of H, the prolongation of the lift beam of the lift-drag balance (S) 
already described and which now extends to the centre of the 
tunnel and terminates in an elbow. The weight B, hung beneath 
the tunnel by a wire from I or the aerofoil, serves to keep the lift 
wires taut when the wind is off and safeguards the aerofoil 
against breaking loose should the lift become negative. 

The greater part Lx of the total lift L of the aerofoil is measured 
by Sx and the remainder, L2> by the lift-drag balance. Usually 
the lift imparted to the sting and the exposed part of H is 
negligible and then 

L = Ly T L2. 

Provided the lift wires are truly vertical, the lift-drag balance 
also measures the whole of the drag D of the aerofoil together 
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with the effective drag of the wires, the sting and the exposed 
part of H. The total parasitic drag d is assessed as follows. 
The effective drag of the wires is estimated experimentally by 
adding an extra lift wire for this purpose; part of this drag is 
supported by SL and only the part that is supported by H must 
be taken into account. The effective drag of the exposed part 
of H is found with the model still in its proper position upstream, 
so as to include effects of the wake; for this purpose the tail of 
the sting is detached from H and temporarily supported by other 
means. Finally, the effective drag of the sting is determined in 
a separate experiment, in which the aerofoil is supported by a 
second sting, or in a different way, so that it can be tested for 
drag with and without the original sting in place. Hence D is 
finally obtained from 

D = (D + d) - d. 

The figure shows the aerodynamic force A acting on the aero¬ 
foil some distance behind KK, the pivot line joining the lower 
ends of the lift wires. The leverage of A about this line is 
denoted by a. The pitching moment equals A x a and is 
counterbalanced, and therefore measured, by the product of the 
force exerted by the end of H and its leverage about KK. 
Approximately, if b denotes the horizontal distance of the pivot 
on the end of H from KK, 

A x a = L2 x b. 

In order, however, that this moment should convey a definite 
meaning, the location of KK must be stated; it is usually chosen 
to be at one-quarter of the chord from the nose of the aerofoil, 
the ‘ chord ' being the distance from the nose to the tail of the 
section. In the circumstances of the figure, the pitching moment 
is negative, since it would tend to depress the nose of the aerofoil 
if the latter were in the right-way-up position. 

Any inclination of the lift wires from the vertical must affect 
the drag reading on the lift-drag balance. The angle between 
the directions of the lift and aerodynamic force is denoted by y 
(see Fig. 45). If the lift wires were inclined forward from the 
vertical by this angle—i.e., if they were parallel to A—the 
horizontal component of the force generated in them would 
nearly balance the whole of the drag and little would be regis¬ 
tered by the lift-drag balance, y may be less than 3°, in which 
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case an inclination of the wires^to the vertical amounting to 3° 
may lead to a 100 per cent, error in the drag observation; to 
measure D to 1 per cent, requires the wires to be vertical to 
within 0*03°, a very small angle. The difficulty may be over¬ 
come as follows. 

H is terminated in a crank, so that turning H about its own 
axis by operating the worm-gear, or other incidence-changing 
device of the lift-drag balance, displaces the tail of the sting 
upstream or downstream, facilitating adjustment of the lift wires 
to the vertical. A simple and effective static test shows when 
this adjustment has been achieved with accuracy. With the 
wind off, a ‘ hook weight ’ (resembling a question-mark in shape) 
is hung on the model. This increases the tension in the lift 
wires by approximately the value of the weight, which is prefer¬ 
ably known and may be 1 lb. Only if the wires are truly vertical 
will their increased tension be found to have no effect on the 
drag balance. It will be appreciated that this static test is 
urgently necessary, however carefully the model may have been 
set up. It is frequently convenient to allow the lift wires to 
become slightly inclined. The drag observation is then corrected 
from the measured lift in them and the statically determined 
effect due to a hook weight of 1 lb. 

92. Procedure and Results 

Unless the compound balance described in the last article has 
been elaborately constructed or calibrated, an aerofoil test will 
take much longer to complete than by the method of Article 87, 
and one will proceed as follows, remembering that the zeros of 
the balances are subject to continual change. 

Having set the aerofoil approximately at the most negative 
angle of incidence required, use the elbow or crank at the end 
of H to set the lift wires truly vertical. Then take all three 
zeros and determine the incidence accurately. Start the tunnel 
and obtain readings of Llf L2 and D + d at a measured speed. 
Without stopping the tunnel, let out the lift wires so as to 
increase the incidence and repeat the readings. Stop the tunnel, 
find the new zeros and angle of incidence, and then hang the 
hook weight on the aerofoil and obtain three more readings as 
due to this weight—viz., Llw, L2w and Dw> say, after subtraction 
of zeros. With w written for the value of the hook weight. 
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Llw = w — L2w> and it follows that for the second set of readings 
with the wind on, the drag beam zero must have changed by 
Dw x (Ll/Llw). This correction is applied to the apparent value 
of D + d in that test. Change the incidence, adjust the lift 
wires to the vertical again, and repeat. 

To reduce the pitching moment to a coefficient we must intro¬ 
duce an additional factor of dimensions L because the moment 
has the dimensions of force x length. The convention in the 
case of the pitching moment is to choose the chord of the aerofoil 
section, denoted by c. Thus the required coefficient in the 
C-system, c being expressed in feet and the moment in lb. feet 
is, 

r __ Moment 
- qSc 

(34) 

Fig. 46 gives an example of a pitching moment coefficient 
curve referred to the quarter-chord 
point. The fact that the coefficient 
is negative throughout indicates 
that the aerodynamic force never 
reaches so far forward as one- 
quarter of the chord from the 
nose in the present case. It will 
also be observed that the pitch¬ 

ing moment by no means vanishes at the angle of incidence 
appropriate to zero lift. 

-006 

Fig. 46. 

93. Large-Scale Testing in Small Tunnels 

The largest chord an aerofoil may have for a reliable test at all 
angles of incidence in a 4-foot enclosed-section is about 5 inches. 
Hence the Reynolds number specified on the chord, or the aero¬ 
dynamic scale, is little more than \ million at 100 feet per second. 
A much larger scale can be attained in the same tunnel, however, 
for angles of incidence approximating to that for zero lift, pro¬ 
viding the effects of a finite span can be ignored. An aerofoil, 
whose chord may exceed the width of the tunnel, but whose span 
is 8-12 inches less than this width, is so suspended as to ride 
with small clearance between shoulders or distance-pieces, having 
the same section as that of the aerofoil and fixed to the tunnel 
walls. These shoulders separate the aerofoil from the confused 
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and sluggish flow adjacent to the walls, and the test is thus made 
under an imitation of two-dimensional conditions of flow. The 
scale may reach as much as 2£-3 millions. Besides imparting 
information as to scale effects at small incidences, the method is 
valuable as permitting the effects of ridges and other details of 
practical construction to be investigated. 

A model of this description may easily weigh 30-40 lb. and its 
lift at zero incidence come to a like amount. Its drag, for a 
clean shape, will be less than 2 lb., but may amount to much 
more if severe blemishes are tested. The balance arrangements 
so far described are inadequate for the present purpose owing 
chiefly to a difficulty in retaining sufficient sensitivity at low 
speeds. The type of balance described in principle in the next 
article has given much useful service in the present connexion 
and has been found to have other applications. 

94. Referring to Fig. 47, the heavy aerofoil is carried upside- 
down by a bar EE which threads through its quarter-chord point 
and is firmly secured to its ends. This bar passes freely through 
the shoulder-pieces mentioned in the preceding article (omitted 
for clearness from the figure) and through the tunnel walls, and 
terminates in knife-edges or elastic pivots AA which prevent any 
displacement of the model within the balance due to drag. These 
pivots are carried on the top ends of a stiff frame HHH, which 
encircles the lower half of the working section of the tunnel and 
rides vertically upright on pivots BB below the floor by virtue of 
the adjustable counterpoises UU. Thus the greater part of the 
weight of the model and a part Lx of the downward lift L it exerts 
can be weighed in the scale-pan Px of the lower steelyard Sj, 
which is situated below the floor of the tunnel and pivots 
about XX. 

The remainder of the weight and lift are dealt with by a 
vertical wire attached to the trailing edge of the model and 
passing freely through the floor and roof. The upper end of this 
wire is supported by an overhead steelyard S2, pivoting about 
ZZ above the roof of the tunnel. S2 can be used for weighing, 
but is more conveniently given a bias by a counterpoise W, so 
that the part L2 of the lift can be determined in the scale-pan P2. 
The axis ZZ is vertically above the axes A A and BB, whilst S2 is 
parallel to the chord-line of the aerofoil; hence the back wire 
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remains truly vertical as the angle of incidence is varied by 
raising or lowering the stop 02. The stops O, and O' are fixed. 

Fig. 47.—Balance for Large-scale Testing under Two-dimensional 

Conditions. 

The drag is taken by the horizontal wires w, w, fastened to the 
two top ends of HHH and operating twin bell-crank levers, which 
are pivoted outside the side walls on the axis YY. Vertical 
wires attached to the other ends of these levers support a hori¬ 
zontal connecting bar CC, below the tunnel, from which depends 
the scale-pan P' for measuring the drag. A bracket on CC carries 
a cross-hair M for observation through a lens or microscope. 

95. Testing a Heavy Fuselage Model 

The same balance can be used to determine the cross-wind 
force, drag and yawing moment of a heavy model of an aeroplane 
body, or fuselage, at small angles of yaw. The arrangement is 
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indicated in Fig. 48, the model being on its side. A sting I is 
fastened to the tail of the body and also secured to the middle 

Fig. 48.—Arrangement for Testing a Heavy Model of Low Drag. 

of the bar EE, which is now enclosed within a guard-tube G fixed 
between the tunnel walls. (It is easy to devise means by which 
the back end of I can be pushed into a hole in EE and locked 
there, using a small aperture in G for the purpose.) The drag 
is measured through the wires w, w as before. The model is 
additionally suspended from a point F near the nose by V-wires 
w2 depending from the roof balance illustrated in Fig. 45. Thus 
the vee is across the wind tunnel and prevents swaying, which 
the sting is too weak to resist. Also the angle of yaw can be 
varied by means of the winding drum on the roof balance. 

Good sensitivity is obtained in spite of the heavy weight of 
the model for a reason which will be apparent from the inset 
diagram (a), which shows, greatly exaggerated for clearness, a 
displacement of the model downstream during a test. If, follow¬ 
ing such a displacement, the wires Wj and the arms of the frame 
HHH became inclined to the vertical by equal angles and the 
centre of gravity of the model were situated midway between 
the two points of suspension, the upstream component of the 
tension in Wj would be counterbalanced by the downstream 

K 
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component of the compression in HHH, and the displaced model 
would be in equilibrium. Actually, the first component exceeds 
the second because the centre of gravity is nearer the wires than 
it is to EE. Thus the model is statically stable in respect of 
horizontal displacement. Without the compensation of HHH, 
this stability would, of course, be far too great to permit the 
small drag of a heavy model to be determined with sufficient 
accuracy. The compensation may be varied by adjusting the 
counterpoises U, U (Fig. 47). 

96. Systematic Errors 

Apart from errors due to false readings, unsuitable measuring 
apparatus, inadvisable suspensions and the like, wind tunnel 
experiments are liable to over-ruling errors which arise from 
five causes, as follows : (a) the restricted lateral extent of the 
artificial wind, (b) the throttling of the stream by the obstruction 
presented by the model, (c) turbulence possessed by the stream 
on arrival at the working section, (d) inclination of the working 
stream to the horizontal and (e) the variation in static pressure 
along the tunnel prior to the introduction of the model. 

Adequate treatment of (a)-(c) is beyond the scope of this 
book and brief general remarks must suffice in their case. Re¬ 
garding (a), the walls of an enclosed-section tunnel constrain the 
direction of flow, whose streamlines would be bent by the model 
to a greater extent in their absence. The effect is felt notably 
by* aerofoils and models of complete aeroplanes, whose perform¬ 
ance is flattered thereby. More or less the opposite occurs with 
an open jet. It is not difficult to calculate approximate theo¬ 
retical corrections which suffice in most cases, (b) need not 
worry us; the throttling effect of even a comparatively large 
body is much less than appears to the eye. (c) is important and 
involves a difficult correction. It is usually because their on¬ 
coming streams possess turbulence in a varying degree that 
different wind tunnels sometimes yield estimations of the same 
aerodynamic force which fail to agree. There is hardly any 
limit to the care that should be taken in the construction of a 
wind tunnel to decrease this initial turbulence, for the atmo¬ 
sphere, though subject to much large-scale unsteadiness, is 
singularly free from the finely-grained turbulence that is found 
to increase the drag of well streamlined bodies. 
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There remain [d) and (e), both of which often make large 
corrections necessary and must be considered in detail. 

In most wind tunnels, however carefully they have been 
aligned, the undisturbed working stream deviates a little from 
the horizontal. In the open-return type it is often directed 
slightly downward owing to the return flow being less obstructed 
near the ceiling of the laboratory than near the floor. The acute 
effect of such deviation on the measured drag of a model of high 
lift-drag ratio will be appreciated from the part of Article 91 
which deals with the urgent need for truly vertical lift wires and 
an accurately horizontal stream. If in the case there considered, 
the angle y (Fig. 45) being 3°, the wires were truly vertical, but 
the oncoming wind were inclined downward at this angle to the 
horizontal, the component parallel to the wind of the force in 
the wires might again counterbalance the whole of the drag, and 
the apparent drag, registered on the drag balance, would be 
zero; the error in the estimate of drag would be 100 per cent, 
minus. With the model in its natural instead of the inverted 
position, the error would be 100 per cent. plus. So large a 
deviation of the undisturbed stream never occurs, but one of \° 
is common, and then the error exceeds 16 per cent, for y = 3°. 
Obviously, a true estimate can be obtained by testing first one 
way up and then the other and 
adopting the mean, but this practice 
in every case would be arduous, and 
it is better to apply a correction to 
the readings obtained. 

In Fig. 49 the wind is supposed 
directed downward at the small angle 
P to the horizon. The lift L is, by 
definition, perpendicular to the wind. 
If the model is upside-down (a), so 
that the lift is downward, the force 
component in the horizontal direc¬ 
tion is reduced by AD. If the model 
is in natural position (6), it is in¬ 
creased by an equal amount. Since 
P is small, AD = pL. Fig. 50 shows 
at A, A the lift and drag curves for the first arrangement and at 
B, B those for the second, the value assumed for p being 1°. The 
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true drag curve, shown dotted, is obtained from either of those 
observed by applying the above correction. The true lift curve, 

q A/v / •' 
7xCd 

// 

_i_i- 

-5* O' 5* 10° 15° 
Fig. 50.—Lift and Drag Coefficients 

Plotted against Incidence. 

-True values, - apparent 
values when the wind is inclined at 1° 
to the horizon. 

also dotted, results directly by 
increasing or decreasing, re¬ 
spectively, the observed incid¬ 
ences by p. 

Turning finally to (e), the 
pressure drop along a parallel¬ 
sided tunnel, arising as de¬ 
scribed in Article 80, can be 
determined by measuring the 
pressure drop between two 
positions A and B, widely 
distant l apart. A sensitive 
pressure gauge and a high 
tunnel speed should be em¬ 
ployed and care taken to 
achieve a reliable estimate. If 
pA is the static pressure at the 

upstream and pB that at the downstream position, and l is 
expressed in feet, the rate of fall of pressure along the stream 
can be taken to be 

lb. per cubic foot, 

that is to say, the pressure gradient may be assumed to be con¬ 
stant for a given tunnel speed. It may also be taken to vary in 
proportion to pV2 when the tunnel speed is changed. 

On account of this gradient there arises on a body in the 
stream an increment of drag that is in no way connected with 
aerodynamic force and is absent in free flight. Thus the drag 
measured in the tunnel requires to be decreased in order to 
remove this artificial increment due solely to the apparatus. 
For streamlined bodies the increment can be estimated by the 
method explained in Article 51, when it comes to 

£a—£m x the volume of the body. 

More adequate analysis provides estimates 10-30 per cent, greater. 
The gradient is small; in a 4-foot tunnel of the type illustrated 
in Fig. 34 a value of about 0*01^ would be expected. Therefore 
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the correction is important only in the case of low-resistance 
bodies of considerable volume. 

97. Summary of Correction Formulae 

To correct for a falling pressure gradient P, decrease the 
measured drag coefficient by P x the volume of the body -f- qS, 
where 5 is the conventional area on which CD is specified. 

To allow for a downward inclination of the wind by a small 
angle (3 to the horizon, the aerofoil being inverted so that its lift 
is exerted downward, increase the measured incidence by (3 and 
add $CL to the measured drag coefficient. Use the same correc¬ 
tions but with opposite sign on reversing the position of the 
model, or if the lift is upward. [3 must be expressed, of course, 
in circular measure. 

The following are added without attempt at derivation to 
enable allowance to be made for the limited width of the experi¬ 
mental stream, the cross-sectional area of which is denoted by C. 

For an enclosed section tunnel, add to the incidence measured 
in the tunnel 

rcc‘.<35> 
and add to the drag coefficient observed in the tunnel 

V .<M> 

For an open jet use the same corrections but with sign changed. 
The resulting incidence and drag coefficient refer to free flight 
conditions at the same aerodynamic scale, but these corrections 
are required only for 3-dimensional aerofoils having exposed 
wing-tips; they do not apply to an aerofoil which stretches 
completely across the tunnel or is tested between shoulder-pieces 
under approximately 2-dimensional conditions. The formulae 
are approximately correct only for streams of compact, not 
elongated, sections. 

98. Examples 
Example 41.—A gauge connected between two static pressure 

holes drilled through the side of a wind tunnel, one hole 10 ft. 
downstream from the other, shows a pressure drop of 0T92 in. 
water at a speed of 100 ft. per sec. How does the falling pressure 
gradient affect the drag coefficient in this tunnel of a fuselage 
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model, whose maximum cross-sectional area is 0*2. sq. ft. and 
whose volume is 0*36 cu. ft. ? 

In lb. per sq. ft. the pressure difference is 62-4 x 0*192/12 = 
1*00, giving a pressure gradient of 1*00/10 = 0*1 lb. per cu. ft. 
At 100 ft. per sec. the drag of the model will be increased on this 
score by 0*1 X its volume = 0*036 lb. But at this speed qS = 
JpF2S = 11*9 X 0*2 = 2*38 lb. Thus the drag coefficient will be 
increased by 

0*03 6/qS = 0*015. 

Example 42.—A large aerofoil section, of mean thickness 4 in., 
gives a drag coefficient of 0*011 when tested under 2-dimensional 
conditions in a wind tunnel along which there is a falling pressure 
gradient = 0-005#. Estimate the true drag coefficient. 

Let P denote the pressure gradient, 5 the area (span X chord) 
of the model and t its mean thickness. The drag coefficient is to 
be reduced by 

P x volume __ PSt _ P 
qS ~ ~ 9 

= 0005 xi = 00017. 

Thus the true drag coefficient is 0*011 — 0*0017 — 0*0093. 

Example 43.—A rectangular aerofoil, of 36 in. span and 6 in. 
chord, is tested upside-down at a certain incidence giving a good 
lift-drag ratio in a 4 ft. 6 in. diameter enclosed section wind 
tunnel working at 100 ft. per sec. The oncoming wind is inclined 
downward at p = 0*4° to the horizon. If the lift, measured 
vertically, is 14*28 lb., what is the true lift coefficient? 

On setting out the triangle of forces (cf. Fig. 49) the true lift is 
found (since cos p = unity) to be less than that measured by 
P X the drag. The correction can be neglected since both p and 
the drag are small. We have 

qS - \pV2 . S = 11-9 X 1*5 - 17*85 lb. 

Hence CL = measured Mit/qS = 14*28/17*85 = 0*800. 

Example 44.—If the aerofoil chord is inclined at 7*7° to the 
horizon in the test of Example 43, at what incidence would the 
aerofoil produce the same lift coefficient in free flight ? 

To the measured incidence must be added the angle of the 
stream and also SCL/SC expressed in degrees. 
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C, the cross-sectional area of the stream = tc(2£)2 = 15*9 sq. 
ft., giving 

SCL _ 1-5 X 0-80 
8C 8 x 15*9 ~ 

0-00943 0*54°. 

Thus the required incidence is 

7*7° + 0-4° + 0-54° - 8*6°. 

Example 45.—If, in the test of Example 43, the drag registered 
by the aerodynamic balance is 0-714 lb., what would be the drag 
coefficient of the aerofoil in free flight at the same lift coefficient ? 

The observed drag coefficient = 0-714/^5 — 0*0400. To this 
must be added $CL on account of the downwardly directed wind, 
and SCl2/SC, to allow for the constraint of the tunnel wall. 
We have 

?j — 0-4° = 0-007 radians, giving (3CL — 0*0056, 
SC L2 __ 1-5 x 0-64 
“8C ~ 8 X 15-9 

0-00755. 

Hence, under free flight conditions, 

CD = 0-0400 + 0-0056 + 0-00755 = 0*0532. 

99. It is useful to observe that the formulae (35) and (36) of 
Article 97 can be expressed in terms of lift, drag and the stag¬ 
nation pressure qy and so are not restricted to monoplane aero¬ 
foils. Thus if Aa is the increment of incidence due to the 
narrow stream and L is the lift of the monoplane, biplane or 
other model, 

1 S L _ L 
~~ 8 ‘ C ’ qS 8 C' q 

(37) 

Similarly, if AD is the corresponding increment of drag, from (36) 

An 1 S/W c 1 L2 /oox 

AD _ 8 ’ C (qS) ' qS ~ 8C - q ‘ ' ' ^ 

Example 46.—The lift of a triplane model in an open-jet wind 
tunnel, whose cross-sectional area is 12| sq. ft., is 15 lb. at a 
stagnation pressure of 10 lb. per sq. ft. How much of the 
measured drag is due to the limited size of the jet? 

Directly from (38) 

AD - 
152 

8 x 10 X 12J 
= 0*225 lb. 

This is included in the balance reading because the drag of a lifting 
3-dimensional model is greater in an open jet than in free flight. 



Chapter VI 

EXPERIMENTAL STUDIES 

100. This chapter describes and explains groups of experi¬ 
ments illustrative of the principles, phenomena and methods of 
Aerodynamics within the scope of a small Aeronautical Labora¬ 
tory. Some of these studies replace mathematical investigations 
which are possible in more advanced treatises. Thus the chapter 
does not comprise merely an optional experimental course, but 
forms an integral part of the treatment of the subject in this 
book. It is hoped that the student will have access to a wind 
tunnel to carry out a selection of the experiments described, and 
some practical details are included accordingly. But even if no 
such opportunity exists, the matters treated will still be found 
easier to grasp under the simplified conditions contemplated in 
experiment than in the technically involved circumstances of 
full-scale flight. A few specialised experiments relating to wings 
and airscrews are reserved to later consideration. 

101. Circular Cylinder 

A round tube, say 1| inches in diameter, stretches completely 
across a wind tunnel, being mounted in such a way that it can 
be turned about its axis through angles which are indicated out¬ 
side the tunnel. The ends are sealed, and a small hole drilled 
midway along the length communicates through the cylinder 
with a pressure gauge whose other limb is connected through a 
tee-piece to the permanent static pressure hole in the side of the 
tunnel. 

At some definite speed, chosen in accordance with the sensi¬ 
tivity of the gauge available, measurements of pressure are made 
with the hole in the cylinder facing directly upstream and at 
intervals of from 5° to 10° away from this position. The cylinder 
is then removed and a pitot-static tube mounted in its place to 

verify the dynamic pressure q = \pV2 and the static pressure p0 

of the undisturbed stream. 
From these data is evaluated the variation round the cylinder 

of the normal pressure coefficient plq, where p denotes the 
increase of pressure above p0 expressed in lb. per square foot. 
Fig. 51 (a) shows this non-dimensional coefficient plotted radially 

136 
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outward from a circle representing the cylindrical surface. The 
coefficient is unity with the hole facing directly upstream, zero 
at 30° away on either side of this position, and negative round 
the remainder of the section. At (b) in the same figure the 
values of the coefficient round the profile are plotted on the 
diameter MN transverse to the wind as base. 

Finally, the drag per unit length of the cylinder is determined 
at the same speed by means of a balance, a shortened length 
being arranged for this purpose to ride with small clearance 
between shoulder-pieces of the same section fixed to the tunnel 
walls. This measurement enables the drag coefficient CD to be 
evaluated. 

Analysis of Results.—Referring first to Fig. 51 (a), consider 
an element AB of the cylindrical profile. The force per unit 

Fig. 51.—Pressure Diagram for Circular Cylinder. 

length of the cylinder on this element is / = AB x p and so 
f/q can be represented by the area of the rectangle ABCD. The 
force / makes the small contribution to form drag d = / x cos 0. 
Now, if AE is the projection of AB in the direction of motion, 
the angle BAE = 6 and AB cos 0 = AE. Therefore d = AE x p. 

In the diagram (6), A"E" is the projection of AB and is equal 
to AE, whilst A"F is equal to pjq. Therefore djq is represented 
to the same scale as before by the hatched area A"E"F. Simi¬ 
larly the contribution of the opposite element A'B' to positive 
drag is proportional to the hatched area A"GE". 

Thus Df the total form drag per unit length of the cylinder is 
proportional to the sum of all such strips—i.e., to the area 
enclosed within the curve plotted at (6) provided the areas of the 
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small loops are reckoned negative. The need for the proviso is 
clear from the diagram (a); the element S'T' increases drag by 
a smaller increment than that by which the opposite element ST 
reduces drag (if the area is measured by tracking a planimeter 
round the curve as indicated by the arrows, the areas of the small 
loops will be subtracted automatically from the large area). 

Let the net area of the diagram (b) come to x square inches, 
and suppose that 1 inch of the horizontal scale represents a units 
of pressure coefficient and 1 inch of the vertical scale represents 
b units of length (feet). Then x x ab is equal to the actual 
value of DF/q. Remembering that DF is the form drag of unit 
length of the cylinder, the associated part of the drag coefficient, 
CDF is equal to (DF/q) diameter in feet (cf. Article 88). 

CDF is found to be a little less than CD. The difference repre- 
^ sents that part of the drag 

which is due to skin friction. 
^- ~ ) t To determine the skin friction 

! of any body directly is experi- 
; , mentaiiy difficult. But an in¬ 

plain; it is only necessary to 
find the drag which arises from 
the normal pressures and to 
subtract this from the total 
drag found by weighing. 

102. Comparison with Other 
Sections 

Repetition of the foregoing 
experiment with cylinders of 
other than circular section takes 
longer to do because a separate 
hole must be drilled for each 
position at which the pressure 

'^w/A Wi 
i i i 

!• Wind . ! 
1 

1 1 1 

(c) 

Fig. 52.—Forms OF Pressure Diagram of whirh thp nrp^nrp 
FOR (a) AN Elliptic Cylinder, (b) P0Sltl0n at wftlctl tne pressure 
a Symmetrical Aerofoil and (c) is required and all holes except 
the Normal Plate. the one under immediate ob- 

°°'y h,1Utd„T*"h*« servation carefully sealed. Fig. 

the jnormal flate. the one under immediate ob- 

°°'y servation carefully sealed. Fig. 
52 gives the pressure distribu¬ 

tions round (a) an elliptic cylinder of fineness ratio 3, (b) a 
symmetrical aerofoil or streamline strut section of fineness ratio 
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2\t (c) the normal plate—i.'e., a long plate broadside-on to the 
wind. Only half the diagram is shown in each case, and only half 
the section of the body. The pressure distribution depends on 
the Reynolds number, which is less for (a) than for Fig. 51, whilst 
that for Fig. 51 is less than that for (b) of the present figure; 
nevertheless, the diagrams are fairly typical of the shapes 
concerned. 

Evaluating the form drag from such diagrams for a number of 
different bodies by the method of the preceding article and sub¬ 
tracting it from the total drag shows much less variation in the 
resulting skin friction than might be expected, verifying that 
the improvement achieved by streamlining (cf. Table II, Article 
40) is due to elimination of form drag. Streamlining expands 
the negative loops of the pressure diagram, which are absent 
from that of the normal plate and only small in the case of the 
circular and elliptic cylinders. This results from increasing the 
pressure (i.e. restricting its reduction) over the back part of the 
profile. Thus the kinetic energy, generated near the shoulders of 
the section at the expense of pressure energy, is transformed to a 
larger extent into pressure energy again before the air passes the 
body. The action resembles that secured by fitting a regenera¬ 
tive cone to a wind tunnel (cf. Article 80). 

Many tests illustrating the striking advantage of streamlining 
can be carried out rapidly by direct weighings on the aero¬ 
dynamic balance. Thus a normal disk, first tested alone, if 
successively fitted with a long nose, a still longer tail, and finally 
both fairings, when it will resemble an airship envelope, may 
show a reduction of drag from first to last approaching 98 per 
cent. 

103. The Wake 

The advantageous modification of the pressure distribution by 
streamlining is associated with a narrowing of the wake behind 
the cylinder or other body. This is easily verified by an experi¬ 
mental method based on Article 52. 

A pitot tube of small diameter is supported from the tunnel 
floor or roof through a screw, or other device, by means of which 
it can be traversed across the wake behind the body. Con¬ 
nexion is made to a pressure gauge, the other limb of which may 
communicate with another pitot tube held stationary in a position 
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clear of the wake. Outside the wake the flow is irrotational and 
the constant of Bernoulli’s equation does not change as the pitot 
tube crosses the streamlines. But this condition breaks down at 
the edge of the wake, which is at once revealed, therefore, by a 
fall in the pitot pressure. 

If, in addition to providing means for traversing the pitot 
tube fairly accurately across the middle of the wind tunnel, 

arrangements are also made to 
slide the model along it, the 
edges of a length of the wake 
can be mapped out in a very 
short time. Fig. 53 shows at 
(a) those for a circular cylinder; 
the fiercely eddying motion 
between is described in Article 
46. At (b) is indicated the much 

_thinner and only weakly eddy- 
(c) ing wake behind an aerofoil at 

Fig. 53.—Examples of Wakes. moderate incidence and at (c) 

the steady wake behind a flat 
plate at a Reynolds number of 100,000. 

This method is important as determining at once what part of 
the flow past a body is irrotational. If measurements are also 
made at a number of points across the wake itself at some dis¬ 
tance behind the body, an estimate can be made of the drag of 
the latter, a development which is used both in model experiment 
and in full-scale flying tests. 

The pitot boundary, as the region where the pitot pressure 
begins to fall is sometimes called, extends upstream from the 
wake to envelop the body in a boundary layer (Article 48). 
This may be shown by the same method, but calls for finer work 
since the boundary layer is thin. 

104. Breakaway 

Where the boundary layer ends and the wake begins marks 
the points of breakaway, so called because the flow ceases to follow 
the profile of the body. With a circular cylinder at small scales 
breakaway occurs in front of the shoulders of the section, at 
about 0*43 of the diameter behind the extreme nose. With the 
elliptic cylinder (a) of Fig. 52 it recedes to about 0*6 of the chord 
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behind the nose. With the streamline cylinder of the same 
figure it is pressed back farther still, to about 0-8 of the chord 
behind the nose. These positions are subject, however, to scale 
effect. Separation does not occur on a flat plate except in the 
presence of an adverse pressure gradient. 

It is easy to perceive the reason for this phenomenon. Chapter 
III describes how the pressure changes are generated in a wide¬ 
spread manner through the outer and irrotational part of the 
flow, attaining a maximum at the edge of the boundary layer 
and being transmitted through that layer without modification. 
The pressures on the body are therefore related to the velocities 
at the edge of the boundary layer by Bernoulli's equation. Con¬ 
sider an element of air which passes close to the stagnation point 
of the streamline strut (b), for example, of Fig. 52. Its velocity 
is reduced there nearly to zero, its pressure being raised by 
nearly the amount q. But as it passes on towards the upper 
shoulder of the section, through a region of falling pressure, it 
quickly gathers speed; no energy is lost in this process so long 
as the element remains in the irrotational part of the flow. 
Sooner or later, however, it enters the boundary layer and has to 
do work against the shearing action going on there, losing energy. 
Behind the shoulder of the section, it is called upon to push its 
way against a rising pressure. Eventually it arrives at a position, 
well in front of the trailing edge, with all its kinetic energy 
used up. Left to itself it would stop. But other elements are 
coming up behind in similar circumstances, and all are pushed 
out into the stream. 

Summing up, streamlining delays breakaway, enabling the 
thin boundary layer to extend farther towards the tail and 
narrowing the wake; this induces an improved pressure dis¬ 
tribution, which decreases form drag. 

THE PRESSURE ROUND AN AEROFOIL SECTION 

105. The Model 

The distribution of pressure round a lifting aerofoil is par¬ 
ticularly important and repays careful study. It is necessary to 
distinguish 2-dimensional conditions, when the aerofoil is simply 
a special case of the long cylinder, from the very different 
3-dimensional circumstances of aeroplane wings. Primary in- 
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terest centres in the effects of changing the angle of incidence 
and restricting the span. An aerofoil of rectangular plan-form 
and constant section suffices for the 3-dimensional experiments 
and the same model can be made 2-dimensional, when required, 
by fitting extensions of like section and incidence between its 
wing-tips and the tunnel walls. If a 4-foot tunnel is used, suit¬ 
able dimensions for the short aerofoil are 25 inches span and 5 
inches chord. To save labour in carrying out a number of tests, 
a judicious choice of incidences should be made as will be 
described. Some difficulty arises in fitting the model for pressure 
observations owing to a need for very closely spaced pressure 
holes round the nose. ‘ Mass production ' of pressure observa¬ 
tions by using multiple tube manometers, though easy to devise, 
tends to inaccuracy unless the tubes can be accommodated within 
the aerofoil until they pass out of the tunnel. 

One construction assumes an aerofoil well made in hard wood 
to a length equal to the width of the tunnel, from which length 

the above extensions are cut. On 
either side of the centre of span of 
the short aerofoil so obtained, a 
narrow thick-walled brass tube, 
carefully bent to shape, is let into 
the wood, one into the upper and 
the other into the lower surface as 
indicated in Fig. 54, so that they 
stand just ‘ proud ' of the profile. 

Fig. 54.—Pressure Tubes; the These tubes are closed at the ends 
Centre of Span is Midway a and B, where, as also near the 
between A and Bin the Plan .... , , 
view. trailing edge, they can be fastened 

firmly in their grooves. They are 
then filed down in place to the correct shape, using the thick 
wall, and the grooves made good with wax, which is scraped to 
shape. Fine pressure holes are drilled into the tubes, very closely 
together round the nose and in staggered formation there, but 
widely spaced elsewhere. The central part of the aerofoil is 
covered with a wide strip of oiled silk. The open ends of the 
tubes, projecting behind the trailing edge, are connected by 
bicycle valve tubing each to a pressure gauge, the other limb of 
which communicates through a tee-piece to the hole in the side 
of the tunnel. 
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To obtain readings a hole is pricked through the oiled silk into 
each tube. After observing the pressures at these points for all 
incidences, the holes are re-sealed, care being taken to avoid 
blocking up the tubes in the process, and new perforations made 
farther along the tubes. It is essential to test for leak before 
each prick through; this is contrived by slightly increasing the 
internal pressure in each tube and verifying that the gauges 
will remain steady. Leaks are to be anticipated, and precautions 
taken beforehand to insure against them are well worth while. 

Since each pair of holes in turn will be tested at all the chosen 
incidences, whilst eventually the pressures at all holes will be 
required at each one of these incidences, it is important that the 
angle changes be always accurately the same. To adjust so 
many angles by direct measurement is impracticable. If a fit¬ 
ment for changing angles rapidly and accurately is attached to 
the lift-drag balance, the model will naturally be carried on the 
balance throughout the investigation. Otherwise, special pro¬ 
visions should be made. 

The reduction of the readings to pressure coefficients is effected 
precisely as described for the circular cylinder. But it is now 
necessary to prepare an accurate drawing of the aerofoil section 
and mark on it the precise position of the centre of each pressure 
hole. A suitable method of plotting is explained in the next 
article. 

106. Two-Dimensional Aerofoil 

Fig. 55 shows the section of an aerofoil set at a moderate 
incidence in a wind stream which it completely spans. At (a) 
the pressure readings, reduced to coefficients, are plotted normally 
outward from the profile on the same plan as was adopted in the 
first instance with the circular cylinder. Referring to the dia¬ 
gram (by, the base AB is the projection in the direction of the 
wind of the total depth of the aerofoil section at the given 
incidence. The pressure holes are projected in the same direc¬ 
tion on to AB and the pressure coefficients re-plotted on AB 
as base. 

Under the 2-dimensional conditions assumed, the net area of 
the diagram (6) is proportional to the form drag of the aerofoil 
per unit of span. Careful note should be made of the restriction 
of this statement to 2-dimensional flow; the corresponding net 
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area for the central or any other section of a lifting 3-dimensional 
aerofoil—i.e., one with exposed wing-tips in the stream or of 

Fig. 55.—Estimation of Lift and Form Drag of Aerofoil from 

Pressure Exploration. 

non-uniform section—includes besides form drag the local induced 
drag. 

The method of deducing the form drag, already explained in 
detail for the circular cylinder, can clearly be applied to estimate 
the lift from the normal pressures. The hatched area shown in 
(a) (Fig. 55) is proportional to the force arising on the element 
of the profile concerned, per unit of span, and is directed along 
the normal to the profile at the centre of the element. Just as 
resolving this force parallel to the direction of the undisturbed 
wind gives an increment of drag, so resolving it in the direction 
perpendicular to the wind and to the span gives an increment of 
lift. But this process is equivalent to resolving the length of the 
element in the new direction and multiplying that projected 
length by the observed pressure change. Thus the increment of 
lift is correctly shown hatched in the diagram (c), where the 
observed pressure is plotted on the projection CD of the chord 
of the aerofoil section, and whose area is proportional to the 
total lift per unit span. 

Comparison with Weighed Forces.—Supposing estimations of 
lift and form drag to have been deduced from the pressure 
readings, the true lift and total drag can now be obtained by 
direct weighing in a lift-drag balance at the same speed. To 
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preserve 2-dimensional conditions, the aerofoil will be arranged 
to ride closely between extensions fixed to the tunnel walls, as 
already described. Differences are to be looked for because the 
balance readings will include the effects of skin friction, which 
cannot be obtained from the normal pressures. 

The measured lift per unit of span is found to agree closely 
with the estimate previously made, showing that skin friction 
only negligibly affects lift, so far as we are now concerned. The 
measured drag is substantially greater than the form drag and 
the difference is the frictional drag, or simply the skin friction. 

Profile Drag.—The total drag of an aerofoil under 2-dimen¬ 
sional conditions is called its profile drag. Thus 

Profile Drag = Form Drag + Skin Friction . (39) 

Slope of Lift Curve.—One of the distinguishing features of a 
2-dimensional aerofoil is the rapidity with which the lift co¬ 
efficient increases with incidence. This is readily determined by 
direct weighing. Up to moderate angles the rate of increase of 
CL with incidence will be found to be about 0*094 per degree. 

107. Improved Representation 

The diagram (c) suggests a method of plotting the normal 
pressures round an aerofoil section, but not a perfect one because, 
as the angle of incidence increases, the projection of the chord 
continually shortens and the pressure holes project into con¬ 
tinually changing positions along the shortening base. This leads 
to needless labour when several angles of incidence are to be 
analysed. 

The disadvantage is avoided by plotting the pressures on the 
chord itself as base, a convention usually adopted, therefore, as 
in the next article. The area of the new diagram that now takes 
the place of (c) is no longer proportional to the lift but to the 
component of the pressure force perpendicular to the chord. 
Again, projecting the pressure holes parallel to the chord, instead 
of parallel to the wind direction, and plotting the pressures on 
the thickness of the aerofoil section as base, yields a new pressure 
diagram in place of (&), and the area of the new diagram is pro¬ 
portional to the component of the pressure force parallel to the 
chord. Let these two components be Z and X, respectively. 
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and let a be the angle of incidence defined by the chord, 
per unit of span 

L — Z cos a — X sin al 
D = Z sin a + X cos aj 

where L and D are the lift and drag components of the pressure 
force. 

108. Typical Pressure Diagrams 

Pressure distributions round aerofoil sections vary from one 
shape to another at the same incidence or the same lift coefficient. 

[Ch. 

Then 

(40) 

Fig. 56.—Typical Pressure Diagrams for an Aerofoil Section at Various 

Incidences : (a) High Speed, (6) Climbing, (c) Low Speed, (d) Past the 

Stall 

-Upper surfaces, --lower surface. 

It is more profitable, therefore, to consider salient features than 
a specific example. Fig. 56 illustrates a sequence of pressure 
diagrams referring to aerofoils in general and not to one in par¬ 
ticular. The method of plotting is that explained in the preceding 
article. 

At lifting incidences the front stagnation point, where p = q, 
occurs just under the nose; it recedes with increase of CL, but 
only slightly so. From this point the pressure falls very steeply 
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round the nose to the upper surface, but only slowly along the 
lower surface. The maximum pressure drop is usually between 
— |q and — q at small lift coefficients, but may amount to 
— 3y or — 4q at larger ones. The pressure towards the trailing 
edge is unpredictable and of little present interest until the stall 
approaches. But then the pressure drop over the back of the 
upper surface can be expected to increase, as shown at (c), in 
association with a failure of the sharp pressure drop round the 
nose to maintain its former rapid increase with incidence. This 
is the beginning of the stall. Further development at still greater 
incidence results in a much changed diagram after the stall, as 
shown at (d), indicating poor lift and high form drag. 

109. Inferences and Applications 

Aerofoil sections formerly possessed flat or even concave lower 
surfaces, and the pressure was then increased over practically the 
whole of the lower surface, so that this surface exerted considerable 
lift, although a much greater proportion was derived from the 
pressure drop over the upper surface. But modern wing sections 
are usually bi-convex, and then the pressure is reduced below 
the aerofoil as well as above it, except for the forward part of the 
lower surface. The latter as a whole may exert no lift at all, or 
even a negative lift. In either case, still more lift is required 
from the upper surface. 

The main force component Z, perpendicular to the chord, acts 
through the centroid of any pressure diagram shown in Fig. 56, 
and is differently located along the chord at different incidences. 
This characteristic can be modified by re-shaping the section and 
is evidently important as affecting the balance or trim of the 
aeroplane in flight. It suggests the definition of a centre of 
pressure, as will be discussed in a later article. 

The diagrams also show that the maximum intensity of lift is 
often far greater than its mean intensity, which for straight 
level flight is equal to the wing-loading w (cf. Article 12). Since 
lift = CLqS, for such flight w = CLq. Thus, to take an example, 
if CL — 1 and the maximum pressure drop = — 3q, the maximum 
lift per square foot may locally approach or surpass 3w, depending 
upon the inclination of the profile at the position where the 
maximum pressure drop occurs and the local contribution from 
the lower surface. It follows that the ‘ ribs ' of a wing (see 
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Fig. 57) fitted partly to transmit the pressure variation on its 
skin to the girders, or ‘ spars *, which in turn support the body, 

must sustain large local air loads. An im¬ 
portant application of pressure diagrams 
is evidently concerned with specifying just 
what worst load distribution the ribs must 
be structurally designed to carry. 

Example 47.—A thin flat plate of 4 in. chord, tested at 4° 
incidence under 2-dimensional conditions, gives a lift of \ lb. per 
unit length. Estimate the form drag of unit length. 

Neglecting the contribution of skin friction to lift, the force Z 
normal to the chord of the plate = \joos 4° in lb. per unit length, 
for the surface of the plate is everywhere inclined at 4° to the 
wind and the normal pressures have no component parallel to 
the chord. Hence, whatever the distribution of these pressures 
along the chord, the form drag of unit length is Z sin 4° = 
\ tan 4° = 0*035 lb. 

It follows from this example that the lift-drag ratio of a thin 
flat plate at any incidence a would be equal to cot a in the 
absence of skin friction. This gives high values for very small 
incidences at which, however, skin friction in fact takes charge, 
so that the values are actually small. At 5°, cot a = 11*4, and 
the lift-drag ratio of a good aerofoil at this incidence and a high 
Reynolds number might be double, including the skin friction. 
Such calculations are often made to illustrate the superiority of 
the aerofoil over the flat plate; another advantage is the higher 
maximum lift coefficient of the former. 

Example 48.—If the drag measured on the balance in the test 
of Example 47 is 0*06 lb. per unit length of the plate, estimate 
the mean intensity of skin friction. 

From the known form drag, the drag due to skin friction = 
0*06 — 0*035 = 0*025 and acts parallel to the wind. The skin 
friction itself acts parallel to the surface of the plate, and thus 
the frictional force per unit length is 0*025/cos 4° = 0*025 lb. 
closely. The wetted surface per unit length is 0*333 x 2 sq. ft., 
whence the mean intensity of skin friction = 0*025/0*667 = 0*0375 
lb. per sq. ft. 

Example 49.—If at a greater incidence (a) the lift coefficient of 
the above plate is 0*8 and the pressure diagrams for both the 
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upper and lower surfaces are triangular, the pressure change, due 
to the motion, varying uniformly on each side from a maximum 
at the leading edge to zero at the trailing edge, what proportion 
of the lift is due to the upper surface ? 

The maximum pressure increase under the nose is necessarily 
equal to q. Let nq be the magnitude of the pressure drop above 
the nose, and let c be the chord of the plate. Then, since the area 
of a triangle is one-half the product of the base and height, the 
normal forces arising on the lower and upper surfaces per unit 
length are \cq and \cnq, respectively. Thus the total lift, neg¬ 
lecting skin friction, is \cq(n + 1) cos a. But CL — lift per unit 
length/cq. Hence and from the question, \{n + 1) cos a = 0-8, 
giving n = 0*6, approximately. 

The ratio of the upper surface lift to the total lift is nj(n + 1) 
and, ignoring the difference between cos a and unity, this gives 
0*375 for the fraction required. 

EFFECTS OF RESTRICTED SPAN 

110. Span-Grading of Lift 

The pressures observed round middle sections of a rectangular 
aerofoil of restricted span apply approximately only to positions 
far removed from the wing-tips. 
Fig. 58 shows at (a) the theoretical 
variation of the lift per unit of span 
along a rectangular aerofoil set at 
a moderate angle of incidence. The 
dimensions assumed are those sug¬ 
gested in Article 105; for a shorter 
span the distribution would be more 
graded, for a longer one more 
nearly uniform. The dotted line (b) applies to wings which are 
half-tapered in plan. In practice, irregularities occur near the 
wing-tips. These curves give the span-grading of lift, which is 
not to be confused with the 4 span-loading \ a term used to 
denote the whole lift of the 3-dimensional wing divided by its 
span. The span-grading (b) is mostly due to plan-form. 

The span-grading can only be obtained experimentally by 
observing the pressures round a sequence of sections between the 
centre of span and a wing-tip. This rather long job verifies that 
for a wing, as for a 2-dimensional aerofoil, the lift is given by 

Fig. 58.—Span-grading Diagrams 

for (a) Rectangular Wing, 

(6) Half-tapered Wing. 
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the pressures and is hardly contributed to by skin friction. Other 
aerodynamical applications will be described later on. The span¬ 
grading is also of structural interest since it specifies the bending 
moments the spars must be able to resist at their roots—i.e., 
where they join the body. 

111. Effect on Incidence 

On comparing the pressure diagram for a 2-dimensional aero¬ 
foil with that for the centre of span of a rectangular aerofoil of 
the same section and at the same incidence, a large difference is 
found to exist; the latter diagram is of a shape suggesting a 
smaller incidence and would evidently yield a less lift per unit 
span, illustrating a theoretical conclusion—viz., that the first 
action of a restricted span is to diminish the effective incidence 
of all sections of the aerofoil. 

To determine the overall consequence of this action, select an 
incidence—a, say—for which the lift coefficient CL of the 3-dimen¬ 
sional aerofoil is known. Now find, by use of the lift-drag balance, 
the incidence, a0, say—at which the aerofoil gives the same lift 
coefficient under 2-dimensional conditions. It will be found that 
a0 is substantially less than a; with the dimensions suggested in 
Article 105 the difference a — a0 would amount to about 3CL° 
in a 4-ft. tunnel having an enclosed working section. Repeating 
at other lift coefficients well below the stall will reveal the angle 
of zero lift to be approximately the same for the two aerofoils 
and a — a0 to be proportional to CL. 

112. Induced Drag 

Induced drag is experienced by a 3-dimensional aerofoil as a 
modification of its pressure distribution and varies along the 
span, as also does the effective incidence. To verify the state¬ 
ment for the centre of span, evaluate the local lift per unit of 
span from the pressure diagram at incidence a. Find, by weigh¬ 
ing, the incidence of the 2-dimensional aerofoil which gives the 
same lift per unit of span. Now determine the pressures round 
the 2-dimensional aerofoil and compare with the first diagram, 
when a marked difference will be found to exist except at small 
lift coefficients. 

It is of more interest, however, to investigate the total induced 
drag, and this can be done by direct weighing. Let CD be the 
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drag coefficient of the 3-dimensional aerofoil at any lift coefficient 
CL, well below the maximum, and CD0 be the drag coefficient of 
the 2-dimensional aerofoil at the same lift coefficient. Then the 
difference is called the coefficient of induced drag and is written 
CDi. Thus we have 

CD ~ CDi + CdO.(^1) 

and the induced drag D{ is given by CDiqS, where 5 is the area of 
the aerofoil. Alternatively, we say 

Total Drag — Induced Drag -f Profile Drag . (42) 

Although this statement is beyond criticism, the question of 
whether D{ or CDi can reliably be evaluated in the manner 
described depends upon whether the coefficients of form drag 
and skin friction are sensibly the same for a 2-dimensional and a 
3-dimensional aerofoil of the same section at the same lift co¬ 
efficient and scale. This question is of practical importance, and 
numerous experiments have been carried out to investigate it. 
Their results justify the assumption being made provided (1) the 
incidence is considerably less than the stall and (2) the aerofoil 
has a span considerably greater than its chord. 

The following law may be verified approximately from balance 
readings over a range of moderate incidences with the aerofoil 
working in turn under 2- and 3-dimensional conditions : CDi is 
proportional to CL2 for a given aerofoil of limited span. 

113. Varying Aspect Ratio 

The aspect ratio of a rectangular aerofoil is defined as the ratio 
of the span to the chord. To include modern wings, which for 
aerodynamical and structural reasons are usually shaped or 
tapered in plan-form, the definition is generalised as the ratio of 
the span to the mean chord. It is always denoted by A and 
this symbol will be employed, there being no danger of confusion 
arising from the use of the same symbol for aerodynamic force. 
A slightly more useful expression is derived by multiplying each 
side of the ratio by the span, giving 

A = (sPan)2 = (sPan)2 /43) 
mean chord x span wing area v ' 

The aspect ratio of the aerofoil suggested for test in Article 105 
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is 6. The value commonly employed for experimental work is 6. 
Aeroplane wings often have values between 7 and 8, although 
monoplanes and biplanes have been constructed with wings of 
larger aspect ratios. An aerofoil stretched completely across a 
wind tunnel, or otherwise arranged to simulate 2-dimensional 
conditions, is frequently referred to as of infinite aspect-ratio. 

Increasing the aspect ratio of a wing confers aerodynamical 
advantages, but scope is restricted by structural and construc¬ 
tional disadvantages and any practical case calls for a carefully 
determined compromise. The chief aerodynamical advantages 
are readily obtained mathematically from Aerofoil or Wing 

INCIDENCE 

Fig. 59.—Effects of Varying 

Aspect Ratio. 

Theory, which, however, is be¬ 
yond the scope of this book. 
But they can be verified by 
simple experiments, which will 
now be described. 

It is convenient to use three 
rectangular aerofoils, exact 
copies of one another and each 
of aspect ratio 3, say; a chord 
of 3£ inches is then suitable 
for a 4-foot tunnel. They are 
carefully fitted with detachable 
inset lugs so that two, and 
finally all three, can be joined 
rigidly together, end to end, at 
exactly the same angle of incid¬ 
ence. By this means, lift and 
drag curves are obtained in the 

balance for aspect ratios of 3, 6 and 9, the aerofoil section being 
constant throughout. These curves will be very different in the 
three cases; Fig. 59 gives an example, the dotted curves referring 
to infinite aspect ratio. 

Aspect Ratio Formulae.—Points to notice from these results 
are as follows. The angles of zero lift are about the same. The 
slope of the lift curve—i.e., the rate of increase of lift cofficient 
with increase of incidence—rapidly increases with increase of 
aspect ratio, particularly when the latter is small; the dotted 
lift curve defines the limit to this increase. The slope enters 
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acutely into aerodynamical and structural calculations regarding 
aeroplane wings and an approximate formula is : 

Increase of CL per degree = ^ . . . (44) 

For convenience, 1*9 + A is replaced by 2 + A in Examples. 
A much greater incidence—a, say—becomes necessary to secure a 
given lift coefficient as aspect ratio is reduced. If a0 denotes the 
corresponding incidence under 2-dimensional conditions, the ex¬ 
periments will show approximately that a — a0 is inversely pro¬ 
portional to A. Combining this result with the law noted at the 
end of Article 111 gives a — a0 proportional to CL/A. It is 
often sufficiently accurate to take 

a — a0 (in degrees) = 20 CL/A . . . (45) 

The coefficient of profile drag is assumed to be independent 
of A at flying incidences (Article 112). Thus the difference 
between any of the full-line curves and that shown dotted is due 
to the coefficient of induced drag, which is found to vary in 
inverse proportion to the aspect ratio at a given lift coefficient. 
Combining this result with another law stated at the end of the 
preceding article gives CDi proportional to CL2/A. An approxi¬ 
mate formula is 

CDi = 0-35 CL*/A.(46) 

| may often be substituted for 0-35. 
All the above approximate formulae are restricted to incidences 

appreciably less than the stalling angle. Again, they apply to 
free flight conditions and neglect effects due to the narrow wind 
stream of experiment. They can be verified approximately 
directly from balance results or, more accurately, by introducing 
the tunnel corrections mentioned in Article 97. 

Example 50.—Find the aspect ratio of an aerofoil of elliptic 
plan-form having a span of 3 ft. and a maximum chord of 6 in. 

The wing area = £71 x 3 X £ = 37r/8 sq. ft. Hence the aspect 
ratio is 3 X 3 X 8/3tt == 7*64, by (43). 

Example 51.—A wing of aspect ratio 8 has an angle of zero lift 
of — 2°. At what incidence will it develop a lift coefficient 
of 1*2? 

From (44) with ^4 = 8, the increase of CL per degree = 0*094 x 
8/10 = 0*075. Thus the increase of incidence required from the 
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angle of zero lift = 1-2/0-075 — 16°, giving for the actual incid¬ 
ence 16° - 2° = 14°. 

Example 52.—At CL = 0-8 an aerofoil tested under 2-dimen¬ 
sional conditions gives a lift-drag ratio of 24. Estimate its lift- 
drag ratio at the same lift coefficient for an aspect ratio of 7. 

The profile drag coefficient = 0*8/24 = 0-0333. By (46) the 
approximate induced drag coefficient = ^ X 0-8 x 0-8/7 =0-0305. 
Thus the total drag coefficient = 0-0638 and the 3-dimensional 
lift-drag ratio = 0-8/0-0638 = 12-5. 

EFFECTS OF CAMBER 

114. Centre of Pressure 

Although the distribution of pressure over a body in a wind is 
required in a number of connexions, information as to its gross 
effect is frequently sufficient. This is given by the magnitude, 
direction, and line of action of the aerodynamic force, how 
to determine which has been described in Chapter V. For a 
body symmetrically disposed in straight line flight, we measure 
the lift L, the drag D and the pitching moment M. Then the 
aerodynamic force = V(L2 + &2) and *s inclined to the direc¬ 
tion of L by the angle y = tan-1 (D/L); and its leverage a about 
the point to which M is referred is given by a = MIV{L2 + D2). 
Use of these formulae enables the above line of action to be 
marked correctly on a drawing of the body. To avoid confusion 
as to the pivotal point or line chosen for the measurement of M, 
we might state the leverage of the aerodynamic force about, say, 
the nose of the body, as measured on the marked drawing. 
However, since both this force and its leverage vary as the 
incidence changes, it is often more convenient to specify the 
intersection of the aerodynamic force with some line or plane 
drawn within the body—e.g., its longitudinal axis. Such a point 
of intersection is called the centre of pressure and written C.P. 
It lacks the physical significance of, for example, the centre of 
pressure of a plane lamina immersed in water, but is no less 
helpful on that account. 

In the case of an aerofoil, the C.P. is conventionally located on 
the chord-line, the line passing through the centres of curvature 
of the extreme nose and tail of the section. We can then with 
little error regard L and D as acting through this point, as 



EXPERIMENTAL STUDIES 155 VI] 

depicted in Fig. 60. If the C.P. is distant x behind the nose of 
a wing of chord c% a non-dimensional centre of pressure coefficient, 
Ac.p., is defined as xjc. Thus &c.p. varies 
between 0 and 1 unless the C.P. is off 
the aerofoil, as occurs at vanishing lift 
coefficients. 

For an aerofoil of symmetrical section, 
&c.p. is approximately the same for all Fig. «o. 

flying incidences and equal to {—i.e., the 
C.P. is then located at the ‘ quarter-chord point \ With usual wing 
sections, however, the C.P. shows a ‘ travel ’ as incidence varies. 

LEADING EDGE 

An example of this travel may now be determined by the method 
described in Articles 91-2. 

In the typical case illustrated in Fig. 61, the C.P. is situated a 
large distance behind the aerofoil at an incidence just exceeding 

that for zero lift, so that the lift 
coefficient, though very small, is 
positive. The explanation lies in 
the fact that the aerofoil still ex¬ 
periences a pitching couple when 
its lift vanishes. As incidence 
increases, the C.P. moves forward, 
at first rapidly and then slowly, 
reaching a most forward position 
shortly before the stall occurs, 
after which it moves back. 

Fig. 61. —Example of Centre of 
Pressure Curve 

Such a C.P. travel is unstable at flying incidences. For 
imagine the aerofoil to be pivoted and balanced about a line 
such as XX. If the incidence were set at oq, the aerodynamic 
force would pass through XX, giving rise to no pitching moment 
about that line. But the state of equilibrium would resemble 
that of a pencil momentarily balanced upright on its point; the 
slightest angular displacement would at once develop. Thus if 
the disturbance slightly increased the incidence, the C.P. would 
move forward and produce a pitching moment tending to raise 
the nose of the aerofoil still more. The aerofoil would con¬ 
tinue to pitch until the incidence reached a2. But at this 
angle, past the stall, a small increase of incidence would cause 
the C.P. to move back and produce a righting moment. Thus 
the whole of the curve covering incidences below the stall, in 
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which the C.P. moves forward with increase of a, indicates an 
unstable travel, whilst the part beyond the stall shows a stable 
travel. 

115. Direct Determination of C.P. 

An approximate method of arriving at the C.P. curve for a 
rectangular aerofoil without first measuring the lift, drag and 

gj m pitching moment is de- 
- ^ \ scribed below. Besides 

«n ^ being rapid, it carries con- 
^ i\ r , J viction to the student, who 

^^ is enabled to feel directly 
I |b \ the surprisingly heavy 

*0 | | moment sometimes gener- 
s rnf | ated about a pivotal line 

if j ___ — f corresponding to a possible 
a oqqqqoO i position of the centre of 

(a) gravity of an aeroplane 
employing the aerofoil 
shape for wings. 

The simple apparatus is 
_ indicated schematically in 

CR _ Fig. 62. The crosshead C, 
located just outside the 

^ i. tunnel, is integral with the 
/ ' spindle H, which passes 
j into the stream and is sup- 

-4* op 4° 8* J2° 16° ported in the bearings BB. 
a This spindle is securely 

Fig. 62.—Apparatus for Direct Determina- t>y screw 
TION OF C.P. OF Aerofoil. (b) Test in and lock-nut—to one end 
a 2-ft. Tunnel. 0f ^he aerofoil at a chosen 

The curve is accurately known for the aerofoil i ^ 
chosen, the points are direct observations, position along the Chord. 

The other end of the aero¬ 
foil is freely supported at the same position along the chord by a 
fine peg D, working in a clearing hole drilled into that end, the peg 
being rigidly supported from the opposite wall of the tunnel. A 
guess being made as to the incidence at which the C.P. will be 
situated on the chosen pivotal line, the crosshead is swung to that 
angle by adjusting the position of the movable stop S, which re- 



Vi] EXPERIMENTAL STUDIES 157 

stricts angular play to a minimum, and weights on C are adjusted 
to give static balance. With the wind on, the bottom end of C 
will bear on one side or the other of S, which is further moved 
until that end bears indifferently on either side of the stop. If 
this new angle differs substantially from that anticipated, the 
apparatus may be found, on stopping the tunnel, to be slightly 
out of static balance; in these circumstances the experiment is 
repeated, the incidence first found to give balance in the wind 
being regarded as a first approximation. Finally, the pivotal 
line is changed and the incidence determined for a second position 
of the C.P., and so on. To facilitate the process, one end of the 
aerofoil may be closely packed with screwed holes for the spindle 
H, as shown at (a), and the other end with fine clearing holes 
for the peg. The reliability of the method is illustrated at (b) 
from an actual test in a 2-ft. tunnel. 

116. Restriction of C.P. Travel 

Reducing the unstable movement of the C.P. of aeroplane 
wings results in a lighter structure and a smaller tail-plane, thus 
increasing useful load and decreasing parasitic drag. Several 
methods are available for shaping the wing section to this end. 
But all have concomitant disadvantages unless employed with 
restraint and discretion and, as happens so often in Aerodynamics, 
a compromise usually becomes necessary. The various means 
are readily verified by testing four or five rectangular aerofoils 
in the apparatus described in the preceding article or by the 
method of Articles 91-2. Suitable sections for these aerofoils 
will be plain from the following discussion. 

It has been mentioned that a symmetrical aerofoil section has 
a practically stationary C.P., but this form of wing is inefficient 
and, for most flying purposes, ‘ camber' is required. Two 
variables then become significant : the amount of the camber 
and the shape of the camber-line. 

The camber-line of a section is found as follows. On a drawing 
of the section a number of points are marked, each being an equal 
distance from both the upper and lower surfaces measured per¬ 
pendicularly to them. The curve drawn through all such points— 
i.e., the median line of the section—is called the camber-line. 
Thus the camber-line terminates at the centres of curvature of 
the nose and tail of the aerofoil section where it meets the 
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chord-line, but is usually prolonged to reach the profile, as shown 
in Fig. 63. 

The amount of camber, or more simply the camber, is defined 
by the maximum height 8 of the camber-line above the chord¬ 

line, expressed in terms of the 
Thus 

camber = 8/c. 

Since 8 is small compared with c, 
the camber of a section is com¬ 
monly stated as a percentage of 
the chord. Usual values lie be¬ 
tween 1 per cent, and 3 per cent. 

For a given shape of camber- 
^ line—e.g., a circular arc—the ad¬ 

verse pitching moment at the angle 
Fig. 63.—Examples of Camber- r . .. , . 

LINES. of zero lift is proportional to the 
camber. Aerofoils made to test 

this theoretical result, or to illustrate the exaggerated C.P. travel 
normally induced by large cambers, may conveniently be given a 
circular arc camber-line which, though a bad shape from the point 
of view of restricting C.P. travel, constitutes a standard of 
reference. 

It has long been known that reflexure of the tail of the 
camber-line, as indicated in Fig. 63 (b), greatly reduces the un¬ 
stable C.P. travel and, if emphasised, will eventually make the 
travel stable through flying incidences. The chief disadvantage 
of this method lies in an accompanying loss of maximum lift 
coefficient. 

More recently, experiments in the U.S.A. have shown that the 
C.P. travel can be controlled by displacing the crest of the camber¬ 
line forward, and this method has been widely adopted in prac¬ 
tice. Little travel remains if the crest occurs at one-sixth of 
the chord from the nose, as shown in Fig. 63 (c), but so extreme 
a displacement is usually inadvisable in view of other considera¬ 
tions. If a model of, say, 2 per cent, camber, with a circular-arc 
camber-line, and another having precisely the same camber but 
with the crest moved forward from midway along the chord to a 
distance of about \c from the nose, be tested, comparison will 
verify a reduction of C.P. travel in the latter case. 
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117. Camber and the Lift Curve 

The following can easily be verified by direct balance measure¬ 
ments on a few rectangular aerofoils of different cambers. Their 
camber-lines should be shaped on a single plan and have no 
reflexure at the tail—e.g., all may be circular arcs. 

With a symmetrical section zero lift occurs at zero incidence 
as defined by the inclination of the chord-line to the wind. 
The principal effect of adding camber is to cause zero lift to 
occur at a negative incidence. This affects the setting of the 
wings on the fuselage of an aeroplane, so that the latter may 
normally fly on an even keel, but is otherwise of little signifi¬ 
cance; a section can be designed to have an angle of no lift of 
— 15°, but no advantage accrues; in fact the model would give 
a bad performance in flight at full scale. The slope of the lift 
curve—i.e., the increase of CL per degree of incidence, remains 
sensibly unchanged. It follows that if the maximum lift co¬ 
efficient is about the same, stalling occurs at a smaller incidence, 
a feature which is again of no practical interest. It is possible 
by careful design to produce a highly cambered aerofoil which 
will stall rather late, giving a maximum lift coefficient at small 
scale of approximately 2. Though of passing interest as showing 
what can be done with models, such a result is of very doubtful 
value in connexion with full-scale predictions; a wing of the 
same section is likely to stall several degrees earlier at a lift 
coefficient less than 1*5, the value already suggested as suitable 
to expect from a well designed section of moderate camber 
under full-scale conditions. In short, the effects of camber 
variation on maximum lift as ordinarily obtained at small model 
scales are of dubious value when viewed in relation to full-scale 
flight. 

Example 53.—Estimate the centre of pressure coefficient for 
the aerofoil of Fig. 56 (d). 

The normal pressure curve plotted on the chord is seen to be 
approximately triangular. The centroid of a triangle is located 
at one-third of its height from its base. Thus the centre of 
pressure coefficient is about 0-33, probably a little more. 

Example 54.—A rectangular aerofoil, whose span is 2 ft. and 
chord 4 in., gives in the wind tunnel a pitching moment of — 0*09 
lb. ft. about the quarter-chord point when the lift coefficient is 
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0*3 and q — 15 lb. per sq. ft. Determine (a) the centre of pressure 
coefficient, (b) the moment coefficient. 

(a) qS = 15 x 2/3 = 10 lb., whence the lift = 0*3#S = 3 lb. 
Ignoring the small moment of drag, the distance of the C.P. 
behind the quarter-chord point is therefore 0*09/3 == 0*03 ft. = 
0*36 in. Thus its distance behind the leading edge is T36 in., and 
the C.P. coefficient = T36/4 = 0*34. 

(b) qSc = 10/3 = 3*33 lb. ft. This gives for the pitching moment 
coefficient : — 0*09/3*33 = — 0*027. 

Example 55.—The aerofoil of Example 54 is a one-twentieth 
scale model of the wings of a monoplane which flies at the same 
lift coefficient at 24-times the tunnel speed. Ignoring tunnel 
and scale effects, what is the pitching moment of the aeroplane's 
wings about their quarter-chord point ? 

With geometrical similarity, constant density and negligible 
tunnel and scale effects, the moment is proportional to F2/3, V 
denoting speed and l size. Hence the full-scale pitching moment is 

- 0*09 X (2J)2 x (20)3 = _ 4500 lb. ft. 

SCALE EFFECTS 

118. Scale Effects on Aerofoils 

An important experiment is to test an aerofoil at the lowest 
and highest speeds available. The incidence should range from 
a value giving a small negative lift to one that exceeds the stall¬ 
ing* angle by several degrees. The chord may be limited to 
one-tenth of the width of the stream, the maximum thickness 
of the section to one-seventh of the chord and the aspect ratio 
to 6. A substantial variation of aerodynamic scale is secured 
by change of speed; the alternative of using two models of very 
different sizes is not so satisfactory on account of the different 
tunnel effects and the difficulty of ensuring that the models 
shall be exactly similar to one another. 

The forces on the model vary greatly in magnitude, causing 
very different strains in the suspension which tend to prevent a 
true correspondence of incidences. To guard against this source 
of error, either the incidence should be checked by a telescope 
when the wind is on or, after shutting down the tunnel, the 
model should be loaded with weights, in imitation of the previous 
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air load, and the angular deflection resulting therefrom carefully 
measured and allowed for. 

The results obtained will depend upon the section, the scales 
actually tested and the smoothness of flow in the tunnel. But 
the following salient features can be expected in a small wind 
tunnel. 

Increase of scale will have little effect on the lift coefficients 
at normal flying incidences, but the lift curve will be straightened 
towards the stall, which will occur later and at a higher lift 
coefficient. The lift coefficients beyond the stall may also be 
greater. Corresponding changes will be reflected in the drag 
curve at large incidences. But, apart from such modification 
due to a delay of the stall, the drag coefficients at small incidences 
will be lower. As a result, the maximum lift-drag ratio will be 

considerably higher and occur at a smaller incidence or lift co¬ 
efficient. Fig. 64 illustrates these effects. 

It must not be assumed that these modifications would develop 
in the same way on increasing the scale much further, or for all 
aerofoils, or in all wind tunnels. Thus an aerofoil tested in a 
large, good tunnel may give a smaller minimum drag coefficient 
than would prevail at small full scale. The maximum lift co¬ 
efficient observed in a bad wind tunnel, and, in any case, at small 
scale with a few aerofoils, may be greater than could be expected 
from an actual wing of similar section. The present experiments 
demonstrate, however, that important scale effects do exist. 

119. Scale Effect on Profile Drag 

One of the most important scale effects is that on the minimum 
drag coefficient of an aeroplane wing. This coefficient is con- 

M 
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tributed to by induced drag, skin friction and form drag, but the 
first is immune from scale effect, which modifies only the sum 
of the last two—viz., the profile drag. Tests may therefore be 
carried out under 2-dimensional conditions, which, together with 
the small incidence, enable an exceptionally wide range of scale 
to be covered in a small wind tunnel. 

Fig. 65 illustrates the scale effect on a thin wing at small 
incidence from the smallest Reynolds numbers of experiment to 

those of large full scale. CD0 
is the profile drag coefficient. 

The part AB of the curve 
corresponds to steady or 
laminar flow of air in the 
boundary layer (cf. Article 48). 
The improvement through this 
initial range is largely due to 
decrease of the skin friction 
coefficient. If it could persist 
to full scale, a very low co¬ 

efficient would eventually be attained. But at B the flow in 
the back part of the boundary layer becomes turbulent, causing 
a great increase in the intensity of skin friction on the adjoining 
part of the wing. The aerodynamic scale at which turbulence 
begins to set in is called the transition Reynolds number. 

As the aerodynamic scale increases further, turbulence spreads 
forward in the boundary layer, subjecting a still greater part of 
the profile to the more intense skin friction associated with this 
kind of flow, and so increasing the coefficient of skin friction for 
the wing as a whole. CD0 mounts rapidly in consequence, for 
any progressive reduction in the form drag of the thin stream¬ 
line shape assumed can do little to offset the disadvantage 
described. 

At C, almost the whole of the boundary layer has become 
turbulent. Thereafter, the skin friction begins to decrease again. 
An easing of form drag also helps, but only in a subsidiary 
manner, for the form drag of a good thin wing at a large scale 
amounts to only a small fraction of the skin friction. Still 
another change is in store, for finally the improvement at high 
scale is arrested, as indicated at D, by slight roughness of the 
surface of the wing. Aircraft surfaces have to be exceedingly 

Fig. 65.—Scale Effect on Profile 

Drag for Small Thickness Ratio. 
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smooth to escape being penalised in this way at high speeds, 
though with small models a corresponding phenomenon appears 
only in the compressed air tunnel. 

It will be seen that the profile drag coefficient experiences 
much modification between a small-scale test and full-scale flight. 
The sequence of changes has been described with special reference 
to wings because it is most important, and can most conveniently 
be verified by experiments, in their case. But in principle it 
applies also to tail-planes and, in fact, to all exposed parts of an 
aircraft that are sufficiently well streamlined for skin friction to 
form a large part of their resistance. 

An interesting range for experiments to cover is from a scale 
less than that at B to one that is greater than that at C. The 
largest Reynolds number would then be some 25 times as great 
as the smallest. This range is too wide for a single model, but 
can be managed by employing two models of geometrically similar 
sections, one five times as large as the other, if the tunnel speed 
can be varied from, say, 20 to 100 feet per second. Feasibility 
also depends, however, upon the transition Reynolds number 
being no more than i million. 

This Reynolds number—viz., that at B—depends partly upon 
the condition of the undisturbed wind, transition being accele¬ 
rated by a rough stream and delayed by an exceptionally smooth 
one; the roughness or unsteadiness in the wind that matters in 
the present connexion is of the fine-grained kind described in 
Article 47. A tunnel wind is always less smooth in this sense 
than a natural wind. In drawing Fig. 65 a fairly steady tunnel 
has been assumed. Tunnels available to students are often 
sufficiently rough to bring on transition from laminar to turbulent 
flow in the boundary layer appreciably earlier. With a tunnel 
of this common kind, the chord of the larger of the two models 
need be no more than 4-5 feet. Such a size is not too large for 
a 4-foot tunnel, since a thin symmetrical section at zero incidence 
will be used. In the unlikely circumstance of a specially smooth 
tunnel, the stream can be lightly roughened, if need be, by a 
mesh screen. 

Example 56.—Two geometrically similar aerofoils A and B, A 
b^ing twice as large as B, are tested at various speeds V in a 
wind tunnel for maximum lift coefficient CLm with the following 
results; 
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V (ft. per sec.) 20 40 60 80 100 
CLm (A) . . 1-00 1-08 1*14 1*18 1-20 
CLm (B) . . — 1-00 1*06 1*08 Ml 

Investigate these coefficients for experimental error. 
The results may be examined by plotting against the Reynolds 

number or, since the fluid is constant, against the product VI, for 
coefficients obtained with the two models should be the same at 
the same value of VL 

Let c denote the chord of A. Then the data lead to the 
following table : 

Vc . . 20c 30c 40c 50c 
CLm (A) . 1-00 1-04* 1-08 1*112* 
CLm (B) . 1-00 1-06 1-08 Ml 

the values marked with an asterisk being read from a fair curve 
drawn through the readings with model A. The observation on 
the smaller model at 60 ft. per sec. is probably in error. Either 
this should be repeated or the larger model tested at 30 ft. per 
sec. 

Example 57.—The wings of a monoplane have a span of 30 ft. 
and a mean chord of 5 ft. A section of the actual wing, complete 
with de-icing equipment, is tested at zero incidence and under 
2-dimensional conditions in a wind tunnel through a wide range 
of speed. The observations lead to the following formula for the 
profile drag coefficient: 

CD0 = 0-2/Ri/s, 

R being the Reynolds number specified on the chord. Estimate 
the lift-drag ratio of the wings of the monoplane when flying at 
a lift coefficient of 0*3 and at a speed of 300 ft. per sec. 

The full-scale Reynolds number is (cf. Article 66) 300 X 5 X 
6400 = 9,600,000, giving 

RII5 — 25, approximately, and CD0 — 0*2/25 = 0*008. 

The aspect ratio = 30/5 = 6, so that by (46) the induced drag 
coefficient 

CDi = (0*3)2/18 = 0*005, approximately. 

Hence the drag coefficient is obtained as 

CD — CDi + CD0 — 0*013 

and the required lift-drag ratio = 0*3/0*013 = 23*1. 
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Example 58.—A thin flat plate, having sharpened leading and 
trailing edges and a chord of 1 ft. 9 in., is tested under 2-dimen¬ 
sional conditions and at zero incidence in a wind tunnel working 
at 50 ft. per sec. and the drag per ft. run perpendicular to the 
stream is found to be 0-0185 lb. The test is repeated with a wire 
gauze screen placed in front of the plate, whose drag is found to 
increase 3 times. It is known for flat plates in general that the 
frictional drag coefficient has approximately the values : 

8 
if the boundary layer is laminar, and 

3V^ 

3 
2q ri/1 ^ if is entirely turbulent. 

Comment on the state of the boundary layer flow in the two 
tests. 

For uni: length of the plate in the test the value of qS = \$V2 X 

If = 5-2 lb. Hence the observations gave for the two drag 
coefficients : 0-0185/5-2 = 0-00356 in the first case, and 0-0107 
in the second. 

The Reynolds number of both tests was 50 X 1} X 6400 = 
560,000, giving y'R — 750 and R1/5 = 14, approximately. Hence 
the two drag coefficients measured can be written in the form 

0-00356 X 750 _ 2-67 

V# “ VR 
for the first case, and 

0-0107 X 14 _ 0-15 
RIJ5 ~ Ri 15 

for the second. 

Comparison with the formulae given in the question shows that 
the boundary layer was entirely laminar without the screen and 
entirely turbulent with the screen in position, for otherwise the 
drag coefficients would have had intermediate values. 

TAIL-PLANE AND CONTROLS 

120. Stabilizing Action 

The first duty of the tail-plane of an aeroplane is to convert 
the unstable travel of the C.P. of the cambered wings into a 
stable travel for the wings and tail-plane combined. On a large 
modern craft its task is increased by the long engine nacelles and 
body and the powerful airscrews. 

The principle involved is almost self-evident. Suppose an 
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aeroplane flying at a certain speed has its incidence suddenly 
increased. The C.P. of the wings moves forward, tending to 
augment the change, as already described, and additional un¬ 
stable pitching moments arise from other parts of the craft. 
But the incidence, and therefore the lift, of the tail-plane is 
increased, and this member is given such a size and leverage 
about the centre of gravity of the aeroplane as will overcome all 
opposition and pitch the craft back to its original incidence. 

Investigation of the precise manner in which statical stability 
is secured will lead to an interesting discussion in the next 
chapter, but an important factor must be determined by experi¬ 
ment. Geometrically, the change of angle of the tail-plane is 
the same as that of the wings, for both are fixed to the fuselage, 
but aerodynamically it is much reduced by down wash, as will 
now be described. 

121. Downwash 

The flow in the region occupied by a tail-plane is deflected 
downward partly by the wing sections and partly by disturb¬ 
ances, called vortices, which trail behind the wing, particularly 
behind its tips. The angle through which the air is deflected 
from these causes is called the downwash angle and denoted by e. 

Its value under given conditions is not the same at all points, 
but increases in front of the tail-plane and decreases above, 
below and behind it. But in all feasible positions for the tail- 
plane the variation from point to point is slow, and can be 
ignored. 

For a given lift coefficient of the wings, the downwash angle 
at the tail-plane depends upon the span and plan-form of the 
wings, so that experiments must be made with a correctly shaped 
model. It will be assumed that a specific design of wing has 
been selected. 

When the wing incidence is varied, the downwash angle at 
any point varies in proportion to the lift coefficient. This law 
is readily established experimentally as follows. Let the aero¬ 
foil be supported from the tunnel walls by long spindles located 
some three chords upstream from the lift-drag balance. Let the 
latter hold an exploring plate, in imitation of a small tail-plane, 
directly behind the centre of span. As a first test, the exploring 
plate may be kept constantly parallel to the floor of the tunnel 
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whilst the aerofoil is rotated through a full range of measured 
incidences. The negative lift of the plate will be found to vary 
and, indeed, to reproduce in miniature an approximation to the 
lift curve of the aerofoil when the lift of the plate is plotted 
against the incidence of the former. In a second test, e may be 
determined directly for each incidence of the aerofoil ^y turning 
the plate until its lift is zero and noting the angle required. The 
curve connecting e with CL will be a straight line throughout the 
range of flying incidences. 

There exists no reliable method of calculating e from first 
principles, whilst at the same time experimental determination 
is affected in a complicated manner by the limited width and 
height of the tunnel stream. Corrections for the latter must be 
left to more advanced reading. 

After these corrections have been made, e is usually found to 
amount to between one-third and one-half of the incidence of 
the aerofoil reckoned from the angle of zero lift. Thus the effective 
change of incidence of the tail-plane of an aeroplane may amount 
to little more than one-half its geometrical change. This neces¬ 
sitates, of course, a larger tail-plane than would otherwise be 
required. 

The law of linear variation of e with CL is intimately related 
to the fact that a wing can exert upward lift only as a reaction 
to the rate at which it impresses downward momentum on the 
air. Further discussion of this important matter is best deferred, 
however, pending a more general view of the type of flow. 

Example 59,—The tail-plane of a complete model aeroplane is 
a flat plate. It exerts no lift when the wings are at zero incidence, 
and the wings have no lift when their incidence is — 3°. The 
downwash angle increases at one-third of the rate at which the 
wing incidence increases. If the tail-plane has an aspect ratio of 
4, find its lift coefficient when the wings are at 9° incidence. 

The downwash angle e = 0° when the wing incidence a = — 3°, 
whence and by the question, e = 3°/3 = 1° when a = 0°. Since 
the tail-plane has an uncambered section and its lift = 0 when 
a = 0, its incidence relative to the undisturbed wind must be 1° 
greater than a. 

Thus when a is changed to 9° the incidence of the tail-plane 
relative to the undisturbed wind becomes 10°, for both wings and 
tail-plane turn together with the fuselage. 
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But when a is changed to 9° the increase of a from its value 
for e = 0 is 12°. Hence and by the question again, e becomes 
12/3 = 4°. Hence the effective incidence of the tail-plane = 
10° - 4° = 6°. 

By (44) the increase of the lift coefficient of the tail-plane per 
degree of effective incidence is 0*094 x 4/(2 + 4) = 0*0627. There¬ 
fore its lift coefficient with the model aeroplane in its final position 
is 0*0627 X 6 = 0*376. 

122. Control Surfaces 

It will be shown that with an entirely fixed tail-plane only 
one speed is possible in level flight. To vary the speed, the lift 
of the tail-plane must be changed. In a few early aeroplanes, 
tail lift was altered by quickly changing the incidence of the 
whole tail-plane, which was small. But for many years the tail- 
plane has comprised a fixed front part, to which is hinged a 
movable back part, called the elevator, and the necessary adjust¬ 
ment is made by swinging the elevator up or down according to 
whether the tail lift requires to be decreased or increased. 

The rudder of an aeroplane works in the same way. It is 
usually hinged to the back of a fixed fin and varies the cross- 
wind force on the tail unit when turned about an approximately 
vertical axis. 

The wings again incorporate similar control surfaces. It is 
frequently necessary in flight to generate a rolling moment by 
increasing the lift on one side of an aeroplane and decreasing it 
on the other. Many early aeroplanes adopted the Wrights' 
scheme of warping the wings to this end, but the method was 
soon superseded by fitting ailerons along the outer rear parts of 
the wings—i.e., providing for the back part of one wing in this 
region to be hinged up whilst that of the other is hinged down, 
the two ailerons being inter-connected. 

All these controls, therefore, employ the device of turning a 
movable part of an otherwise fixed surface. Considering the 
surface as a whole, the device results in not only a change of 
incidence, but also a crude adjustment of camber, and the lift 
produced is greater than would be obtained by turning the 
hinged part alone in the absence of the fixed part. For example, 
depressing an elevator gives it positive lift and at the same time 
induces positive lift on the fixed part of the tail-plane, the 
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alteration amounting to an increase of both camber and incidence 
of the tail-plane as a whole. 

To facilitate the investigation of the longitudinal trim of an 
aeroplane, as in the next chapter, it is convenient to have a 
record of the variation of the lift coefficient of a complete tail- 
plane with {a) variation of the incidence of the fixed part, 
(b) change of elevator angle. A sequence of lift curves may 
usefully be obtained on a model tail-plane, therefore, with various 
elevator settings. Detaching the elevator and testing the two 
parts of the tail-plane separately enables the effect of the one 
part on the other to be analysed. 

Aerodynamic Balancing.—Considering any control flap on an 
aeroplane, a large force may arise on it with a centre of pressure 
located at about one-third of the 
width of the flap from its front 
edge. If the flap be hinged at this 
front edge and directly connected 
to a lever in the pilot's cockpit, a 
large hinge moment may be trans¬ 
mitted. Minimising this moment 
is a necessity with large aircraft 
and is also desirable with smaller 
sizes in order to save fatigue. The 
straightforward method is to set 
the hinge-line back as indicated in 
Fig. 66. The part of the flap in 
advance of the hinge-line then has 
a throw and is specially shaped to 
avoid high form drag arising in use. 
In order to prevent the flap from 
developing a torsional vibration in flight, known as flutter, its 
centre of gravity must be brought at least as far forward as 
the hinge-line, and setting the latter back facilitates the necessary 
weighting. 

Experiments to determine a suitable location for the hinge-line 
provide an example of the many direct uses of the wind tunnel 
to the designer. The overriding condition to be observed is that 
in no circumstances of flight must the C.P. of the flap reach as 
far forward as the hinge-line, and the remaining hinge moment 

vHinge 

Fig. 66.—Reduction of Hinge 

Moment of Aileron by a 

Backward Location of its 

Hinge-line. 



170 ELEMENTARY AERODYNAMICS [Ch. 

must continuously increase as the flap is turned, so that the 
pilot can feel an increasing resistance to operation. Complying 
with this condition usually results in the control ' going hard' 
at some moderate angle, as shown in the figure. 

Other systems of aerodynamic balancing are known. Large 
control flaps may be operated by a small rudder fixed to them, 
a narrow strip known as a control balance and trimming tab. 

THE STALL, THE SLOT AND THE FLAP 

123. All bodies have a stalling angle beyond which lift fails to 
increase. If they extend mainly in the direction of motion, the 
stalling angle is large, but the maximum lift is still restricted, 
whilst the associated induced drag is high. Efficiently lifting 
wings stall at less than 20°, when a sharp drop often occurs in 
the lift coefficient. A large lift coefficient is required from the 
wings for slow flight, during which they are liable to be stalled 
by an upgust or by depressing an aileron, and the consequent 
loss of lift and lateral control are of first importance, especially 
during the crucial operation of landing. 

The problem of stalling, anti-stalling devices and lift augmenta¬ 
tion is evidently of outstanding practical interest. A number of 
simple experiments that can readily be performed in a wind tunnel 
facilitates future discussion in terms of flight. 

124. Nature of Stalling 

The sequence of events leading to the partial failure of lift and 
rapid increase of drag which characterise stalling will be described 
with reference to a thin convex section such as that of a modern 
aeroplane wing. There are two points of breakaway, one on the 
upper and one on the lower surface, and at small incidences 
both are located well back towards the trailing edge, leading to a 
narrow wake. As incidence increases, the lower point remains 
approximately stationary or may even recede slightly towards 
the trailing edge, but the upper point creeps forward, gradually 
thickening the wake. This progression is accelerated until, when 
the stall ultimately occurs, the flow makes little effort to follow 
the upper surface, but springs away early to form a deep wake. 

The description applies more particularly to a small scale and 
results in a rather gentle type of stall. The striking effect on 
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the thickness of the wake is readily demonstrated with a travers¬ 
ing pitot tube on the lines suggested in Article 103; Fig. 67 is 
drawn from such a test at a small 
Reynolds number. Probing the —-- ~ 
eddying flow over the back of the 
stalled aerofoil with a wire carrying ' r ~- 
a streamer of unspun silk will show 
evidence of return flow, a feature FlG- 67-~Wake Behind Aerofoil. 

of a bluff shape, which the aerofoil after^tafiing8' 

has now become. The experiment 
may be extended to measure the much reduced wind speed some 
three chords behind the aerofoil. Then will be perceived the 
poor circumstances of a tail unit behind a stalled wing and the 

-desirability of a high rudder to 
(f'C-._ —_ retain directional control under 

extreme conditions. 
2 At larger scales, or even with a 

small model in some wind tunnels, 
turbulence in the boundary layer 

_ / delays breakaway and produces a 
r / higher lift coefficient at an in- 

L ' '' creased incidence. The stall is 
1 _ / \ then often the more abrupt. 

CD / 125. Nose Slot 

05- / / The stalling of a wing is greatly 
/ /*'' delayed by the nose slot. This 

/ device involves fitting a narrow 
—/ i-- -•- guide vane (or slat, or auxiliary 

u 1U 0 aerofoil) a short distance in front 
of the nose, as indicated in Fig. 68. 

Fig. 68.—Use of Nose Slot to 
Delay Stalling. The vane is retracted to form the 
-Slot closed, leading edge of the wing in normal 

slot open. flight, and is advanced to expose 

a slot only when stalling would otherwise be imminent. 
The same figure gives typical lift and drag curves with the 

slot open and closed. The slot prolongs the original lift curve 
by perhaps 50 per cent, before the stall occurs. The large 
incidence for maximum lift prevents application of the device to 
the reduction of landing speeds, since it would entail a high and 
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heavy undercarriage and discomfort to passengers. This diffi¬ 
culty could be overcome by mounting the wings in trunnions so 
that their incidence could be increased without pitching the 
fuselage, an expedient which has been demonstrated in full-scale 
flight, but not adopted. However, it is desirable to have as 
much drag as possible on landing, and the nose slot tends to 
diminish drag. The last characteristic explains the unrivalled 
value of the nose slot in connexion with lateral control near the 
stall, when the wing raised by depressing its aileron and opening 
its slot is desired to have less drag than the other wing, which is 
lowered, so that the aeroplane will turn in a direction suitable 
for the bank. The auxiliary aerofoil may be linked in such a 
manner as to open a slot only when the aileron behind it is 
depressed. 

Experiments to test the efficacy of the device are easily per¬ 
formed on any aerofoil. For simplicity, the vane may consist of 
a long narrow strip of soft copper plate, bent to the shape of the 
nose and mounted thereon by pliable lugs. The aerofoil is carried 
on a lift-drag balance at an incidence past its stall, and the 
position and incidence of the vane are adjusted by trial and 
error until a large increase of lift and reduction of drag result. 
The subject is also particularly suitable for visual tests with 
smoke, a low wind speed being employed. The principle has a 
wide application outside Aeronautics, and smoke tests will show 
that a fairly smooth flow can be induced by its means round 
even, a right-angled corner, for instance. 

128. Cut Slot 

The stalling of a wing by the depression of its aileron can 
also be delayed by so shaping 
the front part of the aileron and 
locating its hinge that, on being 
depressed considerably, it opens a 
slot through the body of the wing, 
Fig. 69 (a). Such a channel is 
called a cut slot. A cut slot can 
be arranged to remain closed for 
small positive angles of the aileron 

(a) 

(*) 
Fig. 69.—Aileron with Cut Slot. 

and when the latter is raised. 
It may be contended that raising such an aileron mutilates the 
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lower surface of the wing (Fig. 69 (&)) and so increases form drag. 
This effect can be mitigated, if desired, by shaping the underside 
of the nose of the aileron, but is often considered an advantage, 
assisting the turning action described in the preceding article. 
An aileron that deliberately increases form drag on being raised 
is often described as of the ‘ Frise' type. 

The cut slot can also be used between the tail-plane and the 
elevator. It should then open to induce flow from above to 
below because the elevator requires to be raised through much 
greater angles than it requires to be depressed. 

The easiest way to test the anti-stalling properties of a cut 
slot is to fit it along the whole length of an aerofoil, whose back 
part is then hinged, and to use the lift-drag balance. A special 
interest in this experiment lies in demonstrating that such a flap 
with a cut slot can assist take-off and climbing by increasing lift 
at little sacrifice in drag. Another method is to test a model 
fitted with ailerons on the cut-slot principle. The aerofoil is 
pivoted about a line parallel to the wind and passing through its 
centre of span, a fitment being incorporated to permit variation 
of incidence. A counterpoise beneath the tunnel is hung by a 
wire from one of the wing-tips, and the other is attached to a 
lift beam, so that the rolling moment due to deflecting the ailerons 
can be measured with the slot on the one side open or sealed. 
A strikingly more powerful moment will be found in the former 
case at high incidence. (The slot should be designed with some 
care, making use on the drawing-board of a cardboard templet of 
the proposed aileron section secured by a pin, representing the 
hinge, whose position can be adjusted. A relatively wider pas¬ 
sage should be provided on a model than would be opened on an 
aeroplane, owing to scale effect.) 

127. Flaps 

Some early aeroplanes and seaplanes exploited the contrivance 
of hinging upwards and downwards the back parts of their wings 
as a whole in order to improve performance and especially to 
reduce landing speeds. But in the latter connexion the so-called 
hinged flaps were not depressed through a sufficiently large angle. 
When this angle is 60-90° the gain in maximum lift coefficient is 
considerable and the greatly increased form drag is a help, not 
a hindrance, to landing. For maximum effectiveness from this 
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point of view there should be no leak between the flap and the 
body of the wing. 

Scientifically, the hinged flap was superseded in 1921 as a 
landing device by the split flap, although, as has already been 

remarked, the latter did not come 
into general use until some 12 years 
later. The split flap is more effec¬ 
tive than its predecessor and has 
other advantages. It is exposed 
by letting down the back part of 
the lower surface of a wing only, 
leaving the upper part undisturbed 
(Fig. 70). The same figure indicates 
the effects on the lift and drag 
curves of the wing with a large 
flap angle. Points to notice are as 
follows : 

(1) Most of the advantage in 
lift is attained when the flap 
angle reaches 60°, but a larger 
angle gives appreciably greater 
drag. 

(2) Lift is increased by approximately the same amount 
at all incidences up to the stalling angle, which is scarcely 
changed. 

(3) The lift past the stall is little changed, so that the 
loss of lift at the stall is much more serious with the flap 
down than with it retracted. 

(4) The increase of drag is so large that, in spite of increased 
lift, there is a remarkable reduction of lift-drag ratio. 

The advantages these qualities confer in landing are discussed 
later. But it may be noted that (2) enables the device to be 
employed without a high undercarriage ; (3) prevents full ex¬ 
ploitation and leads to flaps being fitted along only the inner 
half or two-thirds of the span; (2) and (4) enable a con¬ 
fined landing ground to be approached slowly and on an even 
keel at a steep angle to the horizon. Since the London-Mel- 
bourne race, many improvements have been incorporated in 
Dayton Wright's original invention. 

on Lift and Drag. 

Flap down, 
flap retracted. 
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Verifying experiments should be carried out at as large a 
scale as possible, but the high maximum lift coefficients realised 
at full scale, sometimes exceeding 2-3, cannot be expected in a 
small tunnel. 

128. Lateral Spread of Stall 

The stalling of a wing section has been described in Article 124 
and its effect on the pressure distribution in Article 108. Con¬ 
sidering a complete wing, the stall does not in general occur 
simultaneously at all sections, but begins at certain parts of the 
span and spreads to other parts as incidence is further increased. 
With a rectangular plan-form, middle sections fail first, often 
several degrees earlier than those towards the tips; with a sharply 
tapered plan-form the converse is true. Plan-forms can be shaped 
to encourage evenness of stalling, but the problem is more com¬ 
plicated than one of plan-form alone. 

The complete lift curve of an aerofoil obtained from an aero¬ 
dynamic balance averages all sections and conveys no informa¬ 
tion as to which have failed and which remain unstalled, a 
question of both aerodynamical and structural interest. Exten¬ 
sive pressure explorations arc required to establish the much 
changed lift-grading curves (cf. Article 110) that hold at large 
incidences. The distribution of the stall is readily made visible, 
however, by glueing a large number of very short streamers over 
the back half of the upper surface. These flicker, often turning 
upstream, under the disturbed ^ 
regions, as will be anticipated c-- 
from the experiment with a \ 
single streamer at the end of a X x. 
wire in the 2-dimensional case. \ xj 

129. Autorotation —v 

An experiment of exceptional (__s 
interest in both the design and 
operation of aircraft is as fol- Fic 71._,Xpparatus F0R Demonstrat. 
lows. Let an aerofoil of rect- ING Autorotation in a Slow 2-ft. 

angular or any other symmetri- WlND Tunnel* 
cal plan-form be pivoted so that it can rotate freely about an 
axis XX through its centre of span and parallel to the wind 
(Fig. 71). At any incidence well below the stall, its span will 
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assume indifferently any direction, provided no spin exists in the 
oncoming wind. Give the aerofoil a sharp angular velocity about 
XX and it will quickly come to rest again. But a range of larger 
incidences can be found, near to or past the stall, at which the 
aerofoil, if only slightly disturbed, will gather rotational speed 
until it is spinning quickly about XX. It is then said to 
autorotate. 

The phenomenon is easily explained. For clearness, consider 
the rotating aerofoil at an instant when it is right-way-up, with 

its span horizontal. Let v 
be the vertical velocity of 
the downwardly moving 
section at a distance y from 
the axis and let V be the 
undisturbed velocity of the 
wind. Then from the tri¬ 
angle of velocities (Fig. 72 
(a)), the incidence of the 
section is increased by the 
amount Aa = v/V, approxi¬ 
mately. If any difficulty is 
experienced in seeing this, 
one may reflect that the 
average time t taken by 

particles of air to pass the wing section, of chord c, is c/V, 
whilst during this time the tail of the section moves down 
a distance vt = vc/V. Hence, so far as the air is concerned, the 
section might just as well be stationary and inclined at an 
incidence increased by the amount vt/c, approximately—i.e., v/V. 
Similarly, the corresponding section on the other side of the 
aerofoil, at an equal distance from the axis, has its incidence 
decreased by the same amount. But, if to is the angular velocity 
of the aerofoil, v == toy, and it is seen that this change of incid¬ 
ence increases or decreases uniformly along each half-span; it is 
a maximum at the wing-tips and zero at the centre of span. 

Suppose first that the incidence at the centre of span has a 
small value oq (Fig. 72). Then the downwardly moving sections, 
having their incidence increased, exert more lift, whilst the up¬ 
wardly moving sections along the other half of the span exert 
less lift, and a stable rolling moment results resisting the rotation. 
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This moment is surprisingly large in a practical case and partly 
explains the need for long ailerons; they have much resistance 
to overcome when rolling is required at speed. 

Now suppose the incidence at the centre of span to have a 
large value a2 appropriate to flight near the stall. Then the lift 
of all sections is reduced, whether they are moving upward or 
downward. For small values of Aa—i.e., for small values of 
coy/V and especially, therefore, at small angular velocities or for 
sections near the roots of the wings—the lift of the downwardly 
moving element is reduced much more than that of the corre¬ 
sponding upwardly moving one (cf. points a and b of Fig. 72), 
and such a pair of elements exerts an unstable rolling moment, 
tending to increase the angular velocity. Considering, on the 
other hand, pairs of elements well out towards the wing-tips, for 
which Aa is large, these exert a stabilising moment, though a 
weak one (cf. points c and d of the figure). The ensuing motion 
depends on whether the stable or the unstable moments are the 
more powerful. At a small angular velocity the latter predom¬ 
inate and the angular velocity increases. But this makes the 
former group more effective, until a stage is finally reached 
when there is no resultant couple on the aerofoil. By then it 
may be rotating quickly, and it will continue to do so indefinitely 
in the wind. 

Autorotation is easy to demonstrate even in a diminutive wind 
tunnel, for which the simple apparatus shown in Fig. 71 would 
be suitable, provided the aerofoil has been mounted at an auto- 
rotating incidence. With little complication the incidence can 
be made adjustable from outside the tunnel without inter¬ 
fering mechanically with the rotation, and a sudden decrease of 
incidence can then be shown to bring the aerofoil quickly to 
rest. 

A larger tunnel permits of more ambitious experiments. These 
begin with checking a forecast of the rotational speed, obtained 
by a process of graphical integration from the lift curve of the 
aerofoil under test. In a 4-foot tunnel of considerable speed the 
apparatus should be exceptionally sturdy and well secured. The 
foregoing account is incomplete; there may also be large yawing 
moments; and a viciously stalling model can rip itself free from, 
or twist up, fragile supporting gear, or tear the latter from weak 
fastenings. 

N 
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130. Practical Significance 

Apart from several points of interest in connexion with a more 

advanced study of Aerodynamics, the bearing of the above 
experiment on flying is plain. An aeroplane may develop auto¬ 

rotation when flying near its stalling angle, the wings also losing 

lift as a whole. The descending spiral flight that ensues is called 

the ordinary spin and is not dangerous provided the corkscrew 

path is not allowed to tighten unduly. It can be stopped by 

decreasing incidence, which involves a dive. Room for the 
recovery does not exist when landing, and so, to avoid risk of 

autorotation in these circumstances, an aerodrome is approached 

at a ' coming-in ’ speed that is considerably greater than the 
stalling speed of the aeroplane concerned. 

The stalling speed is reached just before touching down, and 

then a small upgust on one wing may start the phenomenon, whilst 

the ailerons may not be able to arrest it. The restricted rolling 
of the aeroplane is known as ‘ wing-dropping'. Reasons for 

limiting the lateral extent of landing flaps and avoiding wings 

which stall first at their tips will now be apparent. 



Chapter VII 

EQUILIBRIUM IN STEADY FLIGHT 

131. For an aircraft to fly steadily it must be in equilibrium 
with respect to all the forces and couples acting externally upon 
it. The weight and airscrew thrust must just balance the result¬ 
ant aerodynamic force, and the control surfaces must be so 
adjusted that no uncompensated moment remains to produce 
pitch, roll or yaw. 

These conditions cannot be fulfilled with fixed controls for any 
appreciable length of time. The weight is not constant, being 
continuously decreased by consumption of fuel. The aircraft 
itself is disturbed continually by small changes of wind. It is 
nevertheless of great interest to ignore such variations and 
examine the equilibrium of the aircraft flying with assumed 
steadiness in a number of circumstances typical of those it will 
normally encounter. The aircraft is then regarded as of constant 
weight and so designed as to respond in a stable manner to casual 
disturbance, so that the condition of flight for which its controls 
have been set is quickly restored. 

STRAIGHT LEVEL FLIGHT 

132. Flight in a straight level path is naturally of greatest 
interest and will be studied at some length. The lateral controls 
will be assumed so disposed as to keep the span horizontal and 
perpendicular to the direction of motion. 

Fig. 73. 

Referring to Fig. 73, the conditions for equilibrium in this 
form of flight are : total lift (L) = total weight (W); total drag 
(D) = total horizontal component of airscrew thrust (T), and 
the algebraic sum (M) of all the pitching moments about the 
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centre of gravity of the aeroplane = 0. These conditions are 
briefly noted by writing down the appropriate equations of 
equilibrium : 

W = L, T = D, M = 0 . (47) 

The aeroplane can fly steadily only if all three equations are 
satisfied and if, in addition, the equilibrium noted in the third 
equation is stable in regard to small angular disturbance. 

We have to enquire what these conditions imply and how— 
and within what limitations—they can be fulfilled. We shall 
take each equation in turn and discuss its main points in detail, 
assuming meanwhile that the other two equations are satisfied 
automatically. 

133. The Lift Equation 

L denotes the algebraic sum of all lifts generated on the air¬ 
craft. Contributions arise, for instance, from the tail-plane and 
also from the airscrews, whose axes can lie in the direction of 
motion only at one speed. All these small and variable lifts are 
commonly negligible, however, compared with that of the wings. 
Thus, if S denotes the wing area (in square feet) and q the 
stagnation pressure (in lb. per square foot), a close approximation 
to the first equation of (47) is 

W = L = CLqS.(48) 

An alternative form is obtained by writing w for the wing-loading 
-W/S, viz., 

w = CLq.(49) 

W is to be expressed in lb., p in slugs per cubic foot and V in 
feet per second. 

Considering application to a given aeroplane in straight level 
flight, the following implications of these formulae should be 
noticed. For a given indicated air speed Vi (cf. Article 56) the 
value of q is constant, no matter what the density may be. 
Thus CL and Vi are connected by a single relationship which 
does not change with altitude. For any possible value of CL 
the stagnation pressure is obtained from q = w!CL and then the 
indicated air speed follows from the formula 

Vi = 19*8 V? miles per hour . . . (50) 

Calculations do not depend on whether the landing flaps are up 



VIl] EQUILIBRIUM IN STEADY FLIGHT 181 

or down, since lift coefficients are always specified on S and 
ignore any increase of area that may result from lowering some 
types of flap. CL being inversely proportional to q, the mini¬ 
mum value of qt and therefore of Vit occurs at the maximum 
value of CL. The aeroplane stalls at the same value of Vi at all 
altitudes. Any pair of corresponding values of CL and q being 
known—e.g., those at the stall—the value of q for any other lift 
coefficient, or vice versa, can be found at once, for 

q — q\ - CliICl.(51) 

The following examples illustrate further the use of these 
simple formulae. 

Example 60.—The wing-loading of an aeroplane is 33 lb. per 
sq. ft. and the maximum lift coefficient of its wings with flaps 
down is 2-2. What is the stalling speed (V8) ? 

By (49), 33 = 2*2q, whence q = 15 and, by (50), V8 — 76-7 
m.p.h. (Note that the stalling speed is given as an indicated 
speed; this is the form in which the pilot requires to know it.) 

Example 61.—Assuming that the aeroplane of Example 60 is 
to fly at a ground speed of 330 m.p.h. at an altitude where the 
relative density a = 0-64 and there exists a following wind of 43 
m.p.h., what must be the lift coefficient ? 

The true air speed — 330 — 43 = 287 m.p.h. The indicated 
air speed = 287^(1 = 230 m.p.h., nearly. By Example 60 the 
lift coefficient at Vi = 76-7 m.p.h is 2*2. Therefore the required 
CL = 2*2 x (76-7/230)2 = 0-245. 

Example 62.—A monoplane of 10,500 lb. weight is to have 
wings of aspect ratio 7 and is to fly at an indicated air speed of 
300 m.p.h. with a lift coefficient of 0-15. Determine the necessary 
span. 

Let c be the mean chord. Then the span = 7c and the wing 
area = 7c2. Now 300 m.p.h. = 440 ft. per sec., whence q = £ X 
0-00238 X 4402 = 230-4 lb. per sq. ft. With these values (48) 
gives 

10,500 = 0-15 X 230-4 x 7c2. 

So c2 — 10,000/230-4—i.e., c = 6-59 ft. Thus the span = 46 ft. 
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134. Application to Landing Speed 

The calculation of the minimum speed at which an aeroplane 
can actually land in a quiet atmosphere is unreliable for two 
reasons. As described in Article 130, an aeroplane approaching 
a landing ground is kept well above the stalling speed to ensure 
control and particularly to guard against wing-dropping. Its 
coming-in incidence is about the same as its incidence when 
standing on the ground—i.e., 4° or 5° less than the stalling 
angle. The aeroplane touches down during an unsteady motion, 
in course of which the flight path is flattened out and the incid¬ 
ence at first increased. To some extent the process is individual 
to the pilot and especially low landing speeds are achieved by 
exceptional skill. A second difficulty arises from the fact that 
the near presence of the ground affects the lift coefficient of the 
wings in a way which is imperfectly understood. This effect is 
most marked, of course, with aeroplanes which have especially 
low wings. 

Practical experience shows, however, that in skilled hands 
landing speeds differ little from stalling speeds. For this reason 
the landing speed of an aeroplane is usually identified with its 
stalling speed, and this practice will be followed here. Lack of 
operational ability or unfamiliarity with a given type would 
make a somewhat higher landing speed advisable. 

With this understanding, Table IV can be verified readily. 
It relates to a monoplane weighing 5 tons, having wings of aspect 
ratio 7 fitted with flaps which raise the maximum lift coefficient 
by 50 per cent.—i.e., to about 2-25. Quantities are given in 
round figures for ease of inspection. 

Table IV. 

Landing speed 
(m.p.h.) 

Required wing 
area (sq. ft.) 

Required span 
(ft.) 

Wing-loading 
(lb./sq. ft.) 

80 303 46 37 
70 396 53 28 
60 539 61* 21 
50 776 74 14* 
40 1212 92 9 
30 2155 123 5 

A biplane of the same weight without landing flaps would 
have a maximum lift coefficient amounting to little more than 
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one-half the value assumed for the table. Thus for the same 
landing speed its span and chord would be nearly as large as 
those of the monoplane equipped with flaps and its wing loading 
little more than one-half the values given. 

Inferences drawn from such calculations and associated aero¬ 
nautical considerations may be summarised as follows. It is 
impossible for aeroplanes to achieve really low landing speeds. 
In order to land in the neighbourhood of 40 miles per hour, 
early aeroplanes carried less than 5 lb. per square foot, and were 
thus characterised by enormous wings for their weight. The 
landing speeds of modern main-line civil transport aeroplanes 
are upwards of 70 miles per hour and correspond to wing-loadings 
of 28 lb. per square foot, or more. Larger and better-prepared 
aerodromes will doubtless make higher landing speeds and wing- 
loadings feasible for such aeroplanes, as they already are for 
flying-boats. On the other hand, landing speeds of under 50 
miles per hour still remain of interest in connexion with private 
or inexpert flying and alighting on confined or rough surfaces. 
Biplanes with landing flaps may be used especially in these 
connexions. 

135. The Total Drag 

The drag of an aeroplane can be divided into two parts : the 
drag of the wings (Dw) and the remainder, which will be denoted 
by Db. The latter is sometimes called the body drag, but a 
better term is the American one, the extra-to-wing drag, for it 
includes the drag of the fin and rudder, tail-plane, engine nacelles 
and other exposed parts or attachments. Still another name 
employed occasionally is the ‘ parasitic drag ’, but care is then 
necessary to see just what is intended, for part of the wing drag 
is sometimes included under this heading. 

Either Dw or DB, or both, are increased by airscrew slip¬ 
streams. This effect is neglected in the present chapter; rules 
for taking it into account, by which present formulae can be 
corrected, are given in Chapter IX. The total drag in the 
absence of slipstream effects is often called the glider drag of the 

aeroplane. 
The wing drag for any value of q can be obtained by first 

calculating the appropriate value of the lift coefficient, and then 
reading off the corresponding value of the drag coefficient from 
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the * polar' connecting CD with CL for the wings concerned (see 
Fig. 74), and finally using the formula 

— CdQS* 

An alternative, and usually more convenient, method is to 
note that Dw = the lift of the wings -f- their lift-drag ratio. 
Writing r for the last quantity and remembering that L = W 
for straight level flight, we then have 

Dw = W/r.(52) 

To evaluate for any value of q we first find the lift coefficient 
from CL = wjq, or otherwise, and read off the corresponding 
value of r from a curve connecting r with CL (see Fig. 75). 

DRAG COEFFICIENT 

Fig. 74. Fig. 75. 

The extra-to-wing drag is difficult to determine accurately. 
It is estimated by experiments on some parts and advanced 
calculations regarding others, whilst allowances are also made 
for the interference between one component and another and for 
aerodynamic scale. These matters have been treated in previous 
chapters so far as scope allows, and it is now assumed that a 
particular value of DB—viz., DB—has been estimated for a 
particular value of q—viz., q'. The approximation is also adopted 
that Db is proportional to q; this neglects further modifications 
due to change of scale and incidence; errors on this score are 
minimised by estimating DB for the speed and altitude with 
which subsequent calculations will be principally concerned. 
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On this understanding, 

Db = Zy X q/q' = Db' X CL'/CL . . . (53) 

since CL is inversely proportional to q for straight level flight. 
Summing up, the total drag D is given approximately by 

W fV 
D=Z- + Db'±*. .... (54) 

r 

and q/q' may be substituted for CL'jCL if more convenient. 
With the assumptions made, this expression is independent of 
altitude. 

A second method will now be described which permits variation 
of extra-to-wing drag with incidence to be taken into account 
when known. 

A series of values of q are evaluated from a series of values of 
CL by the relation q = wjCL, and the corresponding incidences a 
are read from a curve connecting CL with a. At each q and a 
the extra-to-wing drag DB is estimated for the altitude at which 
the aeroplane will fly. Choice of altitude fixes the aerodynamic 
scale for each estimate of DB, for the scale is proportional to the 
Reynolds number, which depends on the true air speed and not 
the indicated air speed. The estimates of DB are then divided 
by qS to yield a series of drag coefficients CDB, all based on the 
wing area. These are added to the values of CD for the wings 
at the various incidences, giving a total drag coefficient CDA — 

CD + ^ DB’ 
The overall drag coefficient CDA may be plotted against CL, 

yielding a ‘ polar ' for the complete aeroplane (Fig. 74). To use 
this curve to find the total drag D at any indicated air speed Vit 
the first step is to calculate the value of q = \ x 0*00238 x 
V* X (22/15)2 == 0*00256 Vf, independent of altitude. The next 
step is to find CL, which is equal to wjq for straight level flight. 
Then CDA is read from the polar. Finally 

D = Cda<1S = CDAqWlw .... (55) 

The following alternative method of handling the estimates of 
Cda often saves labour and will have a special interest later on. 
Each value of CDA is divided into the corresponding value of CL, 
giving a corresponding value of the overall lift-drag ratio, which 
will be denoted by rA to distinguish it from the lift-drag ratio 
of the wings only. Then rA is plotted against CL (Fig. 75). In 
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use, the total drag at any indicated air speed is found by first 
determining the value of CL, as before, and dividing the corre¬ 
sponding value of rA, as read from the curve, into the lift. For 
straight level flight the lift is equal to the weight, whence 

D = W/rA ...... (56) 

136. The Drag Equation 

Always neglecting slipstream effects, and also scale effects due 
to a varying difference between Vi and the true air speed, each 
aeroplane with flaps retracted (or with them in any one position) 
possesses a unique curve connecting the total drag D in straight 
level flight with the indicated air speed. Remaining the same for 
all altitudes with the approximations mentioned, this curve also 
requires little correction to apply to climbing and gliding at 
moderate angles to the horizon. 

To see how the curve is constructed, it is best to consider a 
specific example, and calculations will relate to the following 
aeroplane : 

Weight : 5 tons; wing-loading : 25 lb. per square foot; 
wing characteristics : as detailed in first three columns of 
Table V below (flaps retracted); extra-to-wing drag : 240 lb. 
at an indicated air speed of 150 miles per hour. 

Referring to the table, a denotes the incidence in degrees, CL the 
lift coefficient and r the lift-drag ratio of the wings, q, the 
stagnation pressure in lb. per sq. ft. = 25/CL. Vit the indicated 
air speed in m.p.h. = 19*8 y/q. Dw> the drag of the wings in lb. 
= 11,200/r. Db> the extra-to-wing drag — 240 9/57*6, 57-6 lb. 
per square foot being the value of q at 150 m.p.h. D, the total 
drag in lb., is the sum of Dw and DB. 

Table V. 

a CL r ? Vi Dw J)B D 

— 0*4 01 11*0 250 313 1018 1042 2060 
-f 0-9 0-2 19-5 125 221 574 521 1095 

3*6 0*4 26*0 62-5 157 431 260 691 

60 0-6 23-5 41*7 128 477 174 651 
100 0-9 18-5 27-8 104 605 116 721 
14-3 1*2 130 20-8 90 862 87 949 
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The results are exhibited in Fig. 76, where the full line is the 
drag curve required. The dotted curves show how this drag is 
made up through the speed 
range; a large proportion is 
due to the wings at low speeds 
but only about one-half at 
high speeds. The total drag 
diminishes to a minimum of 
just under 651 lb. at an indi¬ 
cated air speed of about 130 
m.p.h. The curve might have 
been extended to a minimum 
speed of approximately 81 
m.p.h., but this has not been done as the landing flaps would 
then normally be in use. 

Referring to the second equation of equilibrium for level flight, 
viz., T = D, the engine throttle must be so adjusted at each 
speed that the airscrew gives a thrust equal to the total drag 
shown in the figure. If the power unit is not capable of pro¬ 
viding this thrust, then level flight is not possible at the speeds 
at which the failure occurs. 

137. The Moment Equation 

We proceed to consider the moment equation, M — 0. In 
flight at any wing incidence a, unstable pitching moments about 
the C.G. of the aeroplane arise from the wings (Article 114) and 
other parts, e.g., the fuselage and engine nacelles. The equa¬ 
tion requires, in the first instance, all these to be cancelled by a 
pitching moment generated in the opposite sense by the tail- 
plane. But the equilibrium also requires to be at least statically 
stable; that is to say, should the incidence a casually increase 
or decrease during flight, the tail-plane moment must increase 
more rapidly than the unstable moment, overruling the latter 
and bringing the incidence back to a again. Moreover, this 
stabilising action must take place at all incidences that may 
occur during flight. The resultant pitching moment can be made 
zero at a particular incidence in a variety of ways, but only a 
method that accords with this wider exigency can be accepted. 
Thus it is necessary to consider the entire speed range. 

The matter is not complicated if approached methodically, 

INDICATED AIR SPEED {m.p.h) 
Fig. 76. 
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but there have to be taken into account a number of factors 
which operate simultaneously. These are explained in the follow¬ 
ing articles, where are also introduced special terms and quantities 
which simplify the calculations and are in common use. 

138. Effective Tail Incidence 

The incidence of the tail-plane, denoted by a', is defined in 
such a manner as to be independent of the movement of the 
elevators relative to the front part of the tail-plane which is fixed 
to the fuselage. Depressing the elevators actually increases the 
tail-plane incidence as would be defined in the ordinary way by 
the line joining the leading edge to the trailing edge. But such 
modification is specifically excluded from affecting a', its aero¬ 
dynamical effect being treated separately. Thus a' is defined, in 
the first place, with reference to the chord-line of the section 
when the elevators are in the neutral position with regard to 
the fixed part of the tail-plane. Again, the relative wind in the 

vicinity of the tail-plane 
is deflected downward 
by the wings through 
the angle of downwash 
e. So finally a' is de¬ 
fined with reference to 

this deflected air stream (Fig. 77). 
The chord-line of the tail-plane (with elevators neutral) may 

be so fixed as to be parallel to that of the wings. In this case, 
if the wing incidence is a, a' = a —- e, for the downwash evidently 
reduces the effective incidence of the tail-plane. 

Generally, however, the tail-plane is fixed to the fuselage at 
some small angle to the wings. The angle between the chord¬ 
line of the tail-plane and that of the wings is called the tail-setting 
angle and is denoted by oc*. It is reckoned positive if the nose 
of the tail-plane is tilted up. Thus in Fig. 77 there is a negative 
tail-setting angle. When the tail-setting angle is negative, as 
shown, the aeroplane is said to possess a geometrical longitudinal 
dihedral. 

Formally, the tail-plane incidence is given by 

a' = a + oc< — e.(57) 

But the correct sign must be attached to ar For example, if 

Fig. 77. 
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the wings are at 8° incidence and the tail-plane is fixed nose- 
down relative to the wings by 2°, whilst the downwash angle is 
3£°, then a' = 8° — 2° - 3£° = 2£°. 

For a given aeroplane, cnt usually remains constant at all 
speeds. As the speed of flight is reduced, a of course increases 
and so also does e, though much less quickly; it was found by 
experiment in the preceding chapter that e increases at between 
one-third and one-half the rate at which a increases. 

139. The Tail Lift 

Strictly speaking, the lift of the tail-plane is perpendicular to 
the deflected air stream and so is inclined backward a little from 
the vertical in straight level flight. But this slight inclination 
is ignored, and the tail lift, denoted by Lv is assumed to be 
perpendicular to the direction of flight. It is calculated from 

Lt = CLtqSt.(58) 

where CLt is the lift coefficient of the tail-plane, St its area and 
q = \pV2. V is less than the speed of the aircraft if the tail- 
plane is situated within the low velocity wake behind the wings, 
but for simplicity it will be assumed to be outside the wake. 

The lift coefficient of the tail-plane depends partly on a' and 
partly on the elevator angle, which is denoted by 77 (the Greek 
letter eta). This angle specifies the rotation of the elevators 
away from their neutral position relative to the fixed part of the 
tail-plane. It is reckoned posi¬ 
tive if the elevators are de¬ 
pressed, as shown in Fig. 78. 
An increase of a' does not imply 
an increase of rj. 

Fig. 78.—The Elevator Angle. Fig. 79.—Lift Curves for a 

Tail-plane, 

Fig. 79 shows a series of lift curves for a tail-plane—Cu 
plotted against a'—each curve being characterised by a particular 
elevator setting. The curves are restricted in range in order to 
^exclude stalling effects. Such a chart is used as follows. A 
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tail-plane of known area is required to give a certain lift at a 
particular value of q. The formula (58) at once gives the required 
lift coefficient. The value of a' is then estimated and, finally, 
the elevator angle necessary for the required lift coefficient at 
the known incidence oc' is spotted by interpolation on the chart. 
Examples of this process will be given shortly. 

140. Tail-Volume Ratio 

Calculations are facilitated by employing a non-dimensional 
quantity called the tail-volume ratio and denoted by r, which 
will now be described. Let l be the distance of the centre of 
pressure of the tail-plane behind the centre of gravity of the 
aeroplane. Then the corrective pitching moment due to the 
tail = Lt x /. But for constant values of CLt and q, Lt is pro¬ 
portional to St, and the moment is proportional to St x l. In 
words, the tail-plane area and its leverage about the centre of 
gravity of the aeroplane are equally effective in producing a 
pitching moment under given conditions, provided St is not so 
enlarged at the expense of l as to bring in secondary effects, 
such as a change of down wash angle. 

The ‘ tail-volume ', St X l, is thus an especially significant 
variable in the present connexion when referring to a particular 
size of aeroplane. To achieve independence of size, it is divided 
by the volume S X c, where 5 is the wing area and c the mean 
chord of the wings. Hence the tail-volume ratio 

It is a non-dimensional fraction, often about one-third in value. 

141. The Cit for Equilibrium 

We now assume that all the pitching moments acting on the 
aeroplane, other than the tail moment, are added together alge¬ 
braically, and, from the gross unstable moment so obtained, 
there is derived a composite C.P. travel curve (Article 114). 

The method of carrying out the calculation has been described 
in the article mentioned. The curve gives the position of the 
C.P. along the wing chord, when the tail-plane is ignored, for 
any incidence a of the wings. Appropriate to a we also know 
the lift coefficient CL of the wings and therefore the value of q 
for straight level flight. 
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In order to avoid unnecessary arithmetic, we assume that the 
centre of gravity (C.G.) of the aeroplane is situated on the wing 
chord, and that the C.P. of the 
tail-plane lies on the wing chord 
produced (Fig. 80). 

Let c be the wing chord and 
x the distance of the C.P. of 
the wings, etc., in front of the 
C.G. Then the unstable pitch¬ 
ing moment = Lw x x, approximately, Lw denoting the wing lift. 
For equilibrium, this moment must be balanced by the contrary 
moment Lt x l—i.e., 

W = Lwx. 
Divide both sides of this equation by the product qStl, obtaining 

r _ r 
° Lt — x • 

1 

q 'stv 
Now multiply the numerator and the denominator of the right- 
hand side by Sc and the following formula will result for the 
tail-plane lift coefficient : 

x CL 
cLt = (60) 

This simple formula applies to all sizes, speeds and altitudes. 
xjc is a positive or negative fraction depending upon the wing 

(b)CRUISING SPEED 

incidence or, more directly, 
upon CL. It is negative at high 
speeds, when the C.P. is behind 
the C.G. and a negative (or 
downward) lift is then required 
from the tail. 

142. The Elevator Setting 

(c) LOW SPEED 

Fig. 81 shows an aeroplane 
under three typical conditions 
of flight. Cambered wings and 
a tail-plane of symmetrical 
section are assumed. The tail¬ 
setting angle is taken as — 2°. 

a may be 0°, but there 
- 2°. 

Fig. 81.—Elevator Settings. 

Depicted at (a) is a high-speed case; 
is still a downwash .angle, and a' is more negative than 
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x is negative, requiring Lt to be negative, but not sufficiently so 
as to pitch the aeroplane to a larger incidence. Therefore, the 
amount of negative tail lift is decreased to the required amount 
by depressing the elevators; in other words, the elevators hold 
the tail up. (The elevator angle is exaggerated in the figure for 
clearness.) 

Indicated at (b) is a particular cruising speed case. No lift is 
required from the tail and, at the same time, a' = 0°. Therefore 
the elevators are neutral. 

(c) is typical of low speeds. The positive tail lift necessary 
for equilibrium is abundantly available from the tail-plane, oc' 
being positive and fairly large. But the tail-plane is prevented 
from pitching the aeroplane to a smaller incidence by the raised 
elevators, which hold it down. 

It will now begin to appear that to each and every speed of a 
given aeroplane in straight level flight there corresponds a par¬ 
ticular elevator setting. Only with one elevator setting will the 
algebraic sum of all the pitching moments acting on the aeroplane 
vanish at the precise incidence which will provide the lift co¬ 
efficient that the particular speed demands from the wings. 

143. The Elevator Curve 

This important result is further elucidated by considering an 
example, and a simplified case will be chosen so that the arith¬ 
metic can almost be done mentally. The calculations are set 
out in Table VI below. For the aeroplane considered r is taken 
as equal to 1/3, so that by (60) CLt = 3CL(x/c). The tail-setting 
angle a* is taken as equal to — 2°. The downwash angle e is 
assumed to increase at one-third the rate at which the wing 
incidence a increases. Finally, Fig. 79 gives a number of lift 
curves for the tail-plane tested alone with various elevator 
settings. 

Table VI 

(1) 

(deg.) 

(2) 

Cl 

(3) 
Act 

(deg.) 

(4) 

(deg.) 

(5) 

(deg.) 

(6) 

| XIC 

(7) 

CLt 

(8) 
V 

(deg.) 

(9) 
Vi 

(m.p.h.) 

0 0-2 2} 0-9 -2-9 — 0-12 -0*072 2*2 250 
4 0-6 1 6$ 2-2 -0*2 0 0 0*4 158 
8 0*8 10J 3-6 2*4 0*02 0*048 -2*4 125 

16 1*4 18$ 6-2 7-8 0-04 0*168 -7*2 94 
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Referring to the table, the first two columns give the lift 
curve of the wings. Remembering that e = 0 when the wings 
are at their angle of no lift, which is — 2f°, the third column 
gives the increase of wing incidence (Aoc) from this angle. The 
angle of down wash follows in column 4, being given by Aa/3. 
The effective incidence of the tail-plane, column 5, is obtained 
from a' = a + <xt — e, remembering that cnt = — 2°. The values 
of xjc given in column 6 represent the unstable travel of the 
C.P. without the tail-plane, x being positive if the C.P. is located 
upstream from the C.G. of the aeroplane. The required values 
of CLt, column 7, follow at once from (60). Now we have a' and 
CLt fixed and known at all the wing CL*s and have only to find an 
appropriate elevator setting in each case. This is done from 
Fig. 79 by interpolation, and the resulting elevator angles are 
given in column 8. The last 
column, 9, gives possible values 
of the indicated air speed— 
viz., those corresponding to a 
wing-loading of 32 lb. per 
square foot. 

Fig. 82 (a) shows the elevator 
angle plotted against the indi¬ 
cated air speed. In order to INDICATED AIR SPEED (m.p.h) 
draw this curve accurately, 
additional angles required 
evaluation, the table giving 

Fig. 82.—Elevator Curves. 

(a) Satisfactory, (6) insufficient control, 
(c) dangerous. 

only a few specimen rows of the calculation. 

144. Statical Stability. 

The shape of the curve just calculated signifies that the aero¬ 
plane possesses statical stability through the speed range. This 
quality is a first step towards safety in flight. Verification is as 
follows. 

Consider first a flying speed of 152 m.p.h., for which the 
elevators of the aeroplane to which the curve relates must be 
neutral. If the speed inadvertently changes, the tail-plane will 
clearly bring it back to 152 m.p.h., for the curve shows that to 
enable a different speed to persist the elevators must be depressed 
or raised to weaken the power of the tail-plane. Then consider 
flight at some other speed, for example a higher one, the elevators 

o 
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being depressed in order to hold the tail up sufficiently. If now 
the speed inadvertently increases, momentarily reducing the wing 
incidence, the tail-plane will reduce the speed and increase the 
wing incidence each to its first value, for only if the elevators 
were depressed further could the change of speed and incidence 
be maintained. In this way it is verified that statical stability 
exists throughout the range of speed covered by the calculations. 

The argument can evidently be shortened as follows. Begin 
again with a speed of 152 rn.p.h., when the elevators are in the 
neutral position, and consider a progressive increase, or decrease, 
of speed. The curve shows that either can only be secured by 
the elevators fighting increasingly hard against the fixed part of 
the tail-plane, progressively weakening its power. 

145. Unsatisfactory Elevator Curves 

Changing the foregoing data arbitrarily and working out 
another example may easily lead to an unacceptable elevator 
curve. Two such curves are shown at (b) and (c) in Fig. 82. 

First considering curve (b), stability is still signified, but the 
elevators are not strong enough to secure the lowest speeds of 
which the aeroplane is otherwise capable. The aeroplane cannot 
be stalled, and, with a less margin than that shown in the figure, 
this might be an advantage in some connexions—e.g., inexpert 
flying; the landing speed would become rather high for the 
wing-loading, but could be reduced again by suitably lightening 
the load. 

The curve (c) reveals a serious defect, the aeroplane becoming 
unstable at high speeds. Supposing flight at 190 rn.p.h. to be 
disturbed in such a way as to increase the speed appreciably, the 
tail-plane would fail to effect a recovery. At higher speeds an 
elevator angle exists which enables the third of the equations 
(47) to be satisfied, but not the proviso noted immediately follow¬ 
ing these equations, and so steady flight is impossible. An 
elevator curve of this highly dangerous type is avoided by locat¬ 
ing the centre of gravity of the aeroplane sufficiently far forward, 
but this artifice must be used sparingly or other troubles ensue. 

GLIDING, CLIMBING AND TURNING 

146. Suppose that during straight level flight, and without 
adjustment of the elevator setting, the engine throttle is closed 
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or opened, decreasing or increasing the airscrew thrust, and thus 
preventing the second of the equations (47) from continuing to 
be satisfied. Flight continues to be straight, but cannot remain 
level. If the throttle opening is decreased, the path slopes 
downward to the horizon, so 
that a component of the weight 
of the craft can make up for 
the deficit of thrust. The aero¬ 
plane is then said to glide, 
although this term is usually 
reserved for the specially 
interesting case that occurs 
when the thrust is reduced 
to zero. If the throttle open¬ 
ing is increased, on the other 
hand, the flight path becomes 
upwardly inclined to the horizon 
and the excess of thrust is 
balanced by a fraction of the 
weight. The aeroplane is said 
to climb. The circumstances 
of the aeroplane are shown in 
Fig. 83 (a) and (b), 9 being the 
angle of glide or climb. Resolv¬ 
ing perpendicular to the flight path, we have in each case 

W cos 9 = L.(61) 

showing that the lift is reduced, though only slightly for small 
values of 9. Resolving along the flight path, 

T + W sin 9 = D (gliding) 

or T = D + W sin 9 (climbing) 

These are the new conditions for equilibrium, together with the 
requirement that the pitching moment must vanish in the stable 
manner that has already been investigated for straight level 
flight. 

Regarding the last requirement, we continue to assume that 
the axis of the airscrew passes close to the centre of gravity of 
the aeroplane and to ignore drag arising from the slipstream, so 
that, since for moderate values of 9 the lift is little changed, the 

Fig. 83.—(a) Climbing, (6) Gliding. 
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unstable pitching moment is scarcely affected by the throttle 
opening. In these circumstances the elevator curve obtained 
for straight level flight applies with little modification to gliding 
and climbing and a given elevator angle corresponds to almost 
the same speed. 

This verifies the description given of the effect of varying the 
opening of the engine throttle during straight level flight. Speed 
is determined by the elevator setting because the resultant pitch¬ 
ing moment must be reduced to zero. Increasing or decreasing 
the thrust does not make the aeroplane fly faster or slower unless 
the elevators are changed, but only inclines the flight path, one 
way or the other, to the horizon. 

Conditions are different during a turn or a steep glide and 
these cases must be considered as they arise. 

The range of angles at which it is possible for a given aeroplane 
to climb is largely determined by the power equipment, and 
further investigation is postponed to the next chapter. There is 
no such restriction, however, on the angle at which the aeroplane 
can glide, for T may be less than the drag, or zero, or even 
negative. The most important case of gliding, and what is 
usually intended by the term, is when T = 0. This case is 
developed in the following articles. 

147. Gliding Angles and Speeds 

With T = 0 the conditions for straight flight become W cos 9 = 
L and W sin 9 = D. Dividing the second of these equations by 
the first gives 

tan 6 = j = L.(63) 

where rA denotes the overall lift-drag ratio of the aeroplane, for 
D represents the total drag. 

This result must be regarded as a hard fact. When T ~ 0 
and there is no vertical wind, an aeroplane can glide only in 
accordance with it. In order to glide at a chosen angle 0, the 
elevators'must be set to make M = 0 at a wing incidence that 
will give to the whole aeroplane a lift-drag ratio = 1 /tan 0. 

The curve (a) of Fig. 84 gives the overall lift-drag ratio, rA, 
of a certain aeroplane with flaps retracted plotted against its lift 
coefficient. The curve has been extended to very large incid¬ 
ences, which are marked. Choosing a suitable value of 0 leads 
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to a line such as AB, representing the required value of rA. This 
line makes two intersections with the lift-drag curve, indicating 

Fig. 84.-—Overall L/D Ratio (pA) Plotted against Lift Coefficient 

for a Monoplane with (a) Flaps Retracted, (b) Split Flaps Open. 

that two lift coefficients are possible. Thus there are two alter¬ 
native incidences for gliding at 8 to the horizon, and two corre¬ 
sponding speeds given by 

q = w cos 8/Cl.(64) 

where w is the wing-loading. The equation (64) is the counter¬ 
part for gliding flight of (49). For flat glides the difference 
between cos 8 and unity may be neglected, when the equations 
come to the same, but for steeper glides the speed associated 
with a given lift coefficient is reduced. 

If too small a value is chosen for 8, the corresponding value of 
rA will yield a line such as AtB1; giving no intersection with the 
lift-drag curve, and therefore indicating that a glide at this angle 
is impossible without help from the engine. If, on the other 
hand, a rather large value is chosen for 8, displacing the line to 
A2B2, say, two intersections with the lift-drag curve are again 
secured, but B2, yielding the larger lift coefficient, and therefore 
the lower of the two possible speeds on the glide, has a restricted 
aerodynamical interest, for it is beyond the stall. The aeroplane 
using it would be liable to autorotation (Article 130), which 
would lead to a spin. It could be employed for a spiral descent 
at altitude, so that space existed for recovery by way of a pre- 
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liminary dive, but would be dangerous at low altitudes. The 
intersection A2 may entail a very fast gliding speed. 

Since 6 depends only on rA, the lift coefficients possible for a 
given angle of glide are the same for all altitudes. Thus the 
possible indicated air speeds are always the same, for a given 
aeroplane, but the true air speeds vary inversely as the square 
root of the air density. Gliding right down from 30,000 feet at 
a constant angle, the speed will ultimately decrease to 61 per 
cent, of its initial value. 

Example 63.—Assuming the curve (a) of Fig. 84 and that the 
wing-loading is 25 lb. per sq. ft., at what speeds will the aero¬ 
plane glide at 4° to the horizon, the airscrew thrust being zero ? 

Since 0 = 4°, 1/tan 0 = 14*3 and this must be the value of rA. 
The overall lift-drag curve then gives CL — 0-35 or 0*85. With 
w = 25 and the standard value of p, the equation (64) gives 

V = 145\/co^0/C^, 

where V is in ft. per sec. Substituting leads at once to V = 245 
or 157. Therefore the alternative speeds are 167 and 107 m.p.h. 
These are the indicated air speeds. Approximately, the faster 
speed corresponds to 2 J° incidence and the slower to 8£° incidence. 

Example 64.—What is the minimum angle at which the aero¬ 
plane of Example 63 could glide without help from the airscrew ? 

The minimum value of 0 clearly corresponds with the maximum 
value of rA, which is 15-7 in the present case. Thus tan 0 = 
1/15*7, giving 0 = 3*65°. The corresponding value of CL is 0*53. 
Hence the indicated air speed comes to 135 m.p.h. The incidence 
is about 4£°. 

In aerodynamical questions we often have to employ ‘ trial and 
error ’ or graphical methods of solution. The following example 
provides an illustration. 

Example 65.—Still assuming the aeroplane of Example 63, and 
that T = 0, at what gliding angle will a speed of 400 m.p.h. be 
reached ? 

The difficulty here is that if we substitute the speed in equa¬ 
tion (64) we are left with two unknowns, 0 and CL, whilst the value 
of rA is not given. The substitution yields (see also Example 63) 

v/ci = 145-22-400 Vc°se 
i.e., CL = 0*061 cos 0. 
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It is required to find the value of 0 which will satisfy this equation 
and also the curve of Fig. 84. 

Bearing in mind the wing-loading, the high speed must result 
in a small value for CL; in fact, putting cos 0=1 gives CL = 

0*061 and the coefficient must be less on the glide since the lift is 
reduced. Assume, therefore, some smaller values and construct 
the following table. 

(1) (2) 
rA 

(3) 
e° 

(4) 
0*061 cos 6 

0-060 3-18 17-45 0-0582 
0-050 265 20-7 0-0570 
0-058 3-07 18-05 0-0580 

Column (2) is obtained from column (1) by means of the lift-drag 
curve, arranging rA to be proportional to CL) as closely applies 
to small lift coefficients. Column (3) is obtained from column (2) 
by the method already illustrated. Column (4) then follows, giving 

the right-hand side of the equation above. The first two rows 
were worked first. Evidently the true value of 0 lies between 
the first two values because the figure in column (1) is first greater 

and then less than the corresponding figure in the last column. 

The lift coefficient for the third row was then estimated. It 
transpired to be correct, otherwise a closer estimate would have 

been framed on the further experience. For a graphical solution, 
four reasonably assumed CL's would have been worked as above 
and columns (1) and (4) plotted against column (3). The inter¬ 

section of the two curves would have indicated the true value of 0. 
Thus the answer to the question is 18°, closely. The incidence 

is - 1°. 

148. Applications of Minimum Gliding Angle 

If the power unit of a single-engined aeroplane breaks down, 

or the fuel becomes exhausted during flight, 

a small minimum gliding angle increases 

the ground area from which to select a 

suitable place for a forced landing. Let 

the failure occur at altitude h, Fig. 85. 

Then the distance which can be traversed 

in the absence of wind is x = h/tan 6, and 

the above area is equal to nx2 whether a wind exists or not 

(except that it is greater if the wind has an upward component, 
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and vice versa). The idle airscrew will exert considerable drag, 
unless its blades can be feathered, but on the other hand the 
aeroplane will be relieved of drag due to its slipstream. Aero¬ 
planes disabled at high altitude can cover a long distance before 
having to land. Motorless gliders can be designed for especially 
small minimum gliding angles and speeds and can reach high 
altitudes by using the strong rising wind currents associated with 
storms. 

Example 66.—An aeroplane weighs 10,000 lb. Its wings, which 
are loaded to 32-5 lb. per sq. ft., have the characteristics given by 
the first three columns of Table V, p. 186. It can just attain an 
indicated air speed of 225 m.p.h. at an altitude of 15,000 ft., the 
power unit providing a thrust of 1000 lb. Supposing the engine 
to fail at this altitude and neglecting airscrew effects, estimate the 
distance the aeroplane can cover in the absence of wind before 
landing at sea-level. 

The question is solved once the maximum lift-drag ratio (rA) 
of the complete aeroplane is known and this may be found by 
considering straight level flight through a range of speeds. 

For an indicated air speed of 225 m.p.h. q = 130 lb. per sq. ft. 
Thus the lift coefficient at this speed is 32*5/130 = 0*25. Plotting 
the third column of Table V against the second gives 22*2 for the 
corresponding lift-drag ratio of the wings, leading to 10,000/ 
22*2 = 450 lb. for their drag (.D ) and leaving 1000 — 450 = 550 
lb. for the extra-to-wing drag DB. 

Db will vary inversely as CL at other speeds and the following 
' table is readily constructed for straight level flight : 

CL r Dw db Total drag yA 

0-25 22-2 450 550 1000 100 
0-4 26 385 344 729 13-7 
0*6 23-5 426 229 655 15-3 
0-9 18-5 541 153 694 1 14-4 

Plotting the last column against the first, with the help of 
another row if required, indicates a maximum lift-drag ratio for 
the aeroplane of 15*4, giving for the minimum gliding angle (0) 
tan 0 = 0*065. 

Hence the ground distance that can be covered in the absence 
of wind is 

15,000 .. .. . 
5280 X 0-065 = 44 miles' nearly- 
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149. Sinking Speed. 

The rate of descent during a glide is equal to V sin 6 (see 
Fig. 85), and is sometimes called the sinking speed. Its minimum 
value for a given aeroplane occurs at a greater incidence than 
that for maximum lift-drag ratio, since the consequent diminu¬ 
tion of V is more important than the increase of sin 6. This 
value is easily obtained by constructing a table as follows. A 
few promising lift coefficients are assumed, and rA for each is 
read from the lift-drag curve for the aeroplane. This gives a 
sequence of values of d, for which, knowing the wing-loading, 
the speeds can be evaluated. Hence V sin 8 can be plotted 
against CL and the minimum value found. For the aeroplane of 
Examples 63-65 it comes to about 11 feet per second. If the 
wing-loading were reduced from 25 lb. per square foot to 4 lb. 
per square foot whilst retaining the lift-drag curve, which could 
be managed if the aeroplane were changed to a glider, the mini¬ 
mum sinking speed would be less than 4£ feet per second. Up¬ 
ward currents of this magnitude are common in the atmosphere. 
Thus a lightly loaded glider of good lift-drag ratio can expect to 
find conditions enabling it to ' soar \ by which is meant that it 
is carried up by the rising currents rather faster than it glides 
down through them. 

Such reflections help one to realise the intimate way in which 
atmospheric changes affect aeroplane flight. In a wind having 
an upward component of 11 feet per second the aeroplane of 
Examples 63-65 could fly level at 100 m.p.h. with the engine 
throttle practically closed. Up-currents of this magnitude are 
encountered only locally, but those which are prevalent give 
substantial assistance to maintaining altitude under conditions 
of flight in which the value of V sin 8 is rather low; the effect 
is the same as if the lift-drag ratio were much higher, and the 
performance of the aircraft is therefore flattered. It follows that 
only with difficulty can the lift-drag ratio of an aeroplane be 
determined by observing the gliding angle in full-scale flight 
experiments, for up-currents cannot be avoided by changing the 
direction of flight, and must be estimated. It is also not easy to 
ensure the airscrew thrust being accurately zero. Article 96 
includes consideration of the same difficulty in connexion with 
wind-tunnel experiments. 
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Example 67.—With T == 0 an aeroplane is observed to glide 
at 4° to the horizon, the speed being 120 m.p.h. There is present 
an up-current of 3£ ft. per sec. What is the true gliding angle 
at this speed ? 

Since 120 m.p.h = 176 ft. per sec., the observed sinking speed 
is 176 sin 4° = 12*3 ft. per sec. Without the upcurrent this would 
be 15*8 ft. per sec., with a change of forward speed that can be 
neglected since cos 0 is nearly equal to unity. Hence the true 
gliding angle 0' is closely given by 176 sin 0' = 15*8—i.e., 0' = 
5T5°. The true lift-drag ratio = 1/tan 0' = 11*1. Without the 
correction the value would have appeared to be 14-3. 

150. Effect of Opening Split Flaps 

Fig. 84 (b) refers again to the aeroplane of Article 147, and 
shows the profound change in the lift-drag curve due to opening 
the landing flaps fully. These are of the split type (Article 127). 
Reasonable modifications in their design would alter the curve 
shown, but not fundamentally. 

It is first seen that the lift-drag ratio varies comparatively 
little between 2° and the stall, which occurs at about the same 
incidence as with flaps closed. The maximum value of 6*5 gives 
a minimum gliding angle of 8-75°. At zero incidence and just 
before the stall the value is 5-5 leading to 10*3°. The aeroplane 
requires holding to a considerable negative incidence if required 
to glide much more steeply unstalled. At an incidence of — 7^°, 
rA = 3 and the lift coefficient is about 0-37, giving a speed of 158 
m..p.h. for gliding at 18° to compare with the speed of 400 m.p.h. 
estimated with the flaps closed (cf. Example 65). Flaps can be 
used, therefore, for gliding steeply without great increase of speed. 

Interest centres chiefly, however, in the way they affect coming- 
in conditions. As already mentioned, an aeroplane glides down 
to a landing ground at a considerably smaller incidence than its 
stalling angle, in order to retain lateral control and insure against 
wing-dropping, and 14° might be suitable in the present case. 
Fig. 84 (a) then gives rA = 11*7 and CL = 1*3, giving 0 = 4*9° and 
V = 87 m.p.h. But with the flaps open, rA = 6-2 and CL = 
2*07, giving 0 = 9-2° and V = 69 m.p.h. Thus opening the 
flaps in this instance decreases the coming-in speed by 18 m.p.h. 
and increases the gliding angle by 88 per cent. The latter effect 
is important in case of a confined landing ground surrounded by 
high obstructions, providing more room for the landing run.1 



203 VII] EQUILIBRIUM IN STEADY FLIGHT 

151. Equilibrium on a Turn 

Fig. 86 shows an aeroplane turning in a horizontal circular 
path of radius R. The wings are ‘ banked ' to the horizon at the 
angle of bank <f> in order that the 
centrifugal force F can be balanced by 
a component of the lift. Resolving 
vertically and horizontally and writing 
V for the speed, 

W — L cos <f> . . (65) 

F = 
WV2 

gR 
D = T. 

= L sin (/>, 

Since <f> may be a large angle, the 
first equation shows that the lift of 
the wings may require to be several 
times as great as the weight of the Fig. 86. 

aeroplane. 
obtaining 

To find <f>, divide the second equation by the first, 

tan<A =p.(66) 

which shows that for a given value of the ratio V2/R the angle 
of bank is the same for all aeroplanes. V is the true air speed 
in feet per second and R is in feet. 

Example 68.—An aeroplane whose wing-loading is 30 lb. per 
sq. ft. is turning horizontally at 20,000 ft. altitude, the indicated 
air speed being 200 m.p.h. and the angle of bank 60°. What are 
(a) the radius of the turning circle, (b) the lift coefficient ? 

{a) Since a, the relative density of the air = 0*534, and 
tan 60° = 1*732, (66) gives 

2002 x (22/15)2 
32*2 x 1*732 X 0*534 

= 2890 ft. 

(b) L = TF/cos<£, whence CL — LjqS — w/q cos <f>. 
From the question, q = \ x 0*00238 x (200 x 22/15)2 = 102J 

lb. per sq. ft. Hence 
^ __ 30 

L 102* X * 
0-585. 

Applying the method of Article 143 shows that the elevator 
angles will correspond to different speeds because the lift is 
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increased in the ratio l/cos<£. When an aeroplane in straight 
level flight is put into a turn at the same speed, for example, the 
elevators must be used to increase the wing incidence by the 
amount necessary to secure the greater lift required. 

The outer wing of a circling monoplane will have more lift 
and drag than the inner one because it is moving the faster. 
Thus a rolling moment and a yawing moment arise which must 
be balanced by use of the .ailerons and rudder. 

The fourth control of the aircraft—viz., the engine throttle— 
will also be called into play to adjust the airscrew thrust so that 
the third of equations (65) will be satisfied. Considering again 
the example of an aeroplane being put into a turn at constant 
speed, the extra-to-wing drag may be assumed, as an approxima¬ 
tion, to remain the same, but the wing drag, now obtained by 
dividing TT/cos <f> by the new lift-drag ratio corresponding to the 
new lift coefficient, will increase. 

It is easy to choose conditions in which the engine is too small 
to enable the third of equations (65) to be satisfied. The aero¬ 
plane will then spiral downwards, a component of gravity making 
up for the deficit of thrust. Alternatively, the thrust may be 
greater than this equation requires, when the aeroplane will 
execute a climbing turn. 

152. Minimum Radius of Turn 

First let the circling flight be horizontal, so that L/W — 1 /cos <f> 
and R = V2/g tan </>. For any chosen value of V, R will be a 
minimum when tan ^ is a maximum—i.e., when cos ^ is a mini¬ 
mum and L/W is a maximum. Now increasing <f> increases D, 
as we have seen, and for horizontal flight we must have T = D. 
Therefore, the increase of (f> will be limited by the possible 
increase of T if the speed of the aeroplane is well on towards its 
maximum speed in straight level flight. But if the speed is low 
compared with this maximum speed and a sufficient increase of 
T is available, then the increase of <f> will be limited by the 
stalling of the wings, which will prevent any further increase of 
the ratio L/W. 

Example 69.—A fast aeroplane, whose wing-loading is 28*8 lb. 
per sq. ft. and whose maximum lift coefficient is T5 with flaps 
closed, is in straight level flight at 150 m.p.h. with engines 
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throttled. Find the minimum radius of a horizontal turn at this 
speed on the assumption that ample airscrew thrust is available. 

For the straight flight, CL = wjq, where w is the wing-loading 
and q — JpF2 = 57*6 lb. per sq. ft. Hence CL = 0-5 and W = 
0•SqS, S being the wing area. 

The maximum lift L on the turn = 1*5^S and, siiF.e q remains 
unchanged, the maximum value of the ratio L/W = 1-5/0*5. Thus 
1/cos = 3, giving tan <j> = 2*83. Hence, since 150 m.p.h. = 220 
ft. per sec., 

the minimum radius = 2202/2-83g = 531 ft. 

In making a quick change of direction of flight, a limited 
reduction of altitude and speed may be permissible, and then 
the equations L cos </> = W and T = D need not be satisfied. 

The wings can be banked at 90° so that the whole of their maxi¬ 
mum lift opposes the centrifugal force. Ignoring the reduction 
of speed gives L = WV2/gR. On this basis the data of Example 

69 would yield a minimum radius of 501 feet, but the calculation 
assumes that the wings have sufficient time to stall. 



Chapter VIII 

PRINCIPLES OF PERFORMANCE 

153. By the performance of an aeroplane is meant its capabili¬ 
ties in the standard atmosphere regarding such matters as speed, 
rate of climb, the altitude to which it can ascend, the load it can 
take on board, and range. Several systems exist for predicting 
accurately the performance of a given aeroplane. Without detail¬ 
ing these, the chapter will describe the main principles underlying 
such systems and the improvement of performance. 

Civil Aviation is concerned rather with all-round merit than 
outstanding achievement of a particular kind. Nevertheless, 
some main-line services have to face exacting conditions that 
can be ignored by others, and modifications of design that foster 
particular qualities, though not to the degree of record-breaking, 
are of interest. A quality of importance to passenger transport 
is fuel economy at fairly high speeds and the question of efficiency 
in this sense is prominent. 

In Chapter VII it was possible to deduce some of the capabili¬ 
ties of an aeroplane from considerations of equilibrium. To 
proceed further we examine the balance of power between the 
demands of the aeroplane on the one hand and the output 
available from the power plant on the other. 

The power demanded by the aeroplane will be studied by two 
methods. The first develops naturally from that employed in 
the last chapter, the wing drag being separated from the remain¬ 
ing drag. The second method discriminates between induced 
drag on the one hand and form drag and skin friction, wherever 
arising, on the other. In applying the latter method we revert 
to the ideas of Dr. Lanchester, who not only discovered induced 
drag, but also forecast its essential influence on aviation. 

Regarding the power available we shall be content to make 
reasonable assumptions, but a descriptive knowledge of its 
variation is essential. 

The quantity TV/550, T being the airscrew thrust in lb. and 
V the true air speed in feet per second, gives the rate in horse¬ 
power at which useful work is done by the power plant. It is 
called the thrust horse-power and written T.H.P. It is equal to 
the brake horse-power of the engine or engines, written B.H.P., 

206 
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multiplied by the airscrew efficiency, which is denoted (like the 
elevator angle) by r/. Thus 

T.H.P. = r} x B.H.P. = TV/550 = TFm.p.h./375 (67) 

The B.H.P. of which an engine aspirating air of constant 
density is capable depends upon its rotational speed. This speed 
must not exceed the designed maximum, or excessive wear will 
result, but can be reduced as required by the throttle. Gearing 
is interposed between engine and airscrew so that the latter 
rotates more slowly. The airscrew is carefully designed to allow 
the engine to develop its maximum rotational speed, and there¬ 
fore its full B.H.P., at full throttle. With an airscrew of fixed 
pitch this can only be managed for chosen conditions of flight; 
under other conditions, either the airscrew slows down the engine 
or the throttle must be used to prevent the engine racing, leading 
to a loss of B.H.P. in either case. Moreover, the efficiency of 
the airscrew diminishes at the lower speeds. If it has been 
chosen to produce full T.H.P. at or near top speed, much less 
will be available at climb and take-off. Use of variable pitch, 
described in a later chapter, greatly reduces such losses. 

With increase of altitude the B.H.P. of a normally aspirated 
engine decreases rather faster than the pressure of the air, which 
itself decreases faster than the density. In the modern aero 
engine this is compensated up to a pre-arranged altitude, called 
the supercharged height, by compressing the air supplied for com¬ 
bustion. This altitude may amount to many thousands of feet, 
but above it the power falls away in a manner depending upon 
the type of supercharger. 

In brief, the T.H.P. available from a given plant is not con¬ 
stant, but depends upon altitude and speed. For small changes 
the maximum thrust available varies in inverse proportion to 
the true air speed, but this assumes constant T.H.P., and is 
therefore far from true for large changes. 

154. For steady level flight, whether straight or otherwise, 
T = D, the total drag, and it is therefore necessary that 

T.H.P. = DV/550 .(68) 

The quantity on the right is called the horse-power required, 
being the horse-power necessary to overcome the drag. The 
throttle will ensure that the power plant does work at the correct 
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rate provided that the T.H.P. does not exceed the maximum 
value of rj x B.H.P. available under the particular conditions of 
working. 

If so much T.H.P. cannot be provided and the elevators are 
not adjusted to decrease the speed, the flight path will slope 
downward, so that the extra work can be done by gravity. If, 
on the other hand, an excess of T.H.P. is supplied, this excess 
will be absorbed in raising the weight of the aeroplane against 
gravity—i.e., in climbing. It follows that the maximum rate of 
climb will result when there is a maximum excess of T.H.P. 
over and above that required to do work against the drag. 

The maximum level speed of the aircraft will occur when the 
horse-power required to overcome the drag absorbs the full 
T.H.P: available at the speed. Probably the T.H.P. will then 
be a maximum for the altitude concerned. 

155. Horse-Power Required Curve 

Denoting by H the horse-power required for straight level 
flight, the methods of Article 135 at once give 

H = (- + D 
\ r 

r '\ V 
B ’ CTI 550 . (69) 

V is the true air speed in feet per second and the other symbols 
are defined in the article cited, where also the approximation 
achieved is discussed. If, alternatively, the variation of rA, the 
lift-drag ratio of the complete aeroplane, is known, the formula 
(56) gives 

ff==W V_ 
rA ' 550 

(70) 

The correction of these formulae for slipstream effects will be 
explained in a later chapter. 

The 5-ton aeroplane studied in Article 136 provides material 
for an example. Referring to Table V, the speed is given as an 
indicated air speed, which is equal to the true air speed in m.p.h. 
at low altitude. Instead of changing to feet per second, we 
multiply the final column of that table by F^/375 instead of 
F/550, but it is important to remember that the result will apply 
to low altitudes only. This result is given in the third column 
of Table VII, the first two columns being copied from the earlier 
table. 
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Table VII 

a (degrees) Vi (m.p.h.) H.P. required (H) 

- 0-4 313 1719 
-f 0-9 221 645 

3-6 157 289 

6-0 128 222 
100 104 200 
14-3 90 228 

1000 
H 

500 

100 200 300 
\(m.p.h.) 

Fig. 87.—Estimating 
Maximum Speed. 

H is plotted against Vi in Fig. 87. It will be seen that this 
5-ton aeroplane can fly at low altitude with some 200 thrust 
horse-power, though the speed is then ]500r 
only about 104 m.p.h. The speed for 
minimum H is less than that for 
minimum drag (i.e., about 130 m.p.h.) 
because the drag curve is rather flat in 
this region and decrease of speed more 
important than the associated increase 
of drag. To fly at 313 m.p.h. would 
require an exceptionally large engine 
for an aeroplane of the size—viz., one 
of 2000 B.H.P., allowing reasonably for 
the airscrew efficiency. If the aero¬ 
plane were intended for Civil Aviation, no more than 1000 B.H.P. 
would be contemplated. The airscrew efficiency might be 83 per 
cent, at maximum speed, giving 830 T.H.P. available. This value 
is marked in the figure and, from the intersection with the curve 
for H, it is seen to yield a speed of 245 m.p.h. The maximum 
speed attainable at low altitude with an engine of different horse¬ 
power is determined in the same way. 

Given the wing data—i.e., corresponding values of r and CL— 
and the extra-to-wing drag at some speed or lift coefficient, the 
above method of obtaining a first estimate of the maximum level 
speed, involving the working out of Table V and extension to 
Table VII, becomes rapid with a little practice. There is no 
shorter method. Approaching the problem algebraically leads to 
a cubic equation which must be solved either graphically or by 
trial and error, and a special advantage of the tabular method is 
that mistakes of arithmetic are easily detected. 
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80Oh 

^600h 

2 

o400f 

156. Rate of Climb 

The above curve is reproduced in Fig. 88 with an extension to 
show the horse-power required at low speeds with split flaps 

open. Also plotted is a possible 
T.H.P. available curve, assum¬ 
ing a variable pitch airscrew. 
The excess of T.H.P. available 
over and above that required for 
straight level flight is measured 
by the height of the hatched 
area. This excess, called the 
reserve horse-power and written 
HR} is the T.H.P. available for 
doing work against gravity— 
i.e., for producing a rate of climb 
—which is conventionally ex¬ 
pressed in feet per minute. 
Hence 

rr W X rate of climb 
H* =-557)00-<71> 

and the rate of climb possible 
at each forward speed of the 
aeroplane can be calculated at 
once. The maximum rate of 
climb occurs when the speed of 
the aeroplane is such as to pro¬ 

vide maximum reserve horse-power. For the case illustrated, this 
speed is 135 m.p.h.; HR is then 495 and, since W = 11,200 lb., 
the maximum rate of climb = 33,000 x 495/11,200 = 1458 feet 
per minute. Three-quarters of this rate would usually be suffi¬ 
cient in Civil Aviation, but for some military purposes it might 
require to be doubled, when a larger engine would be necessary. 

E 

200F 
REQUIRED FOR 
LEVEL FLIGHT 

50 

Fig. 88.- 

100 150 200 
AIR SPEED (m.p.h) 

250 

-The Horse-power for 

Climb. 

157. Angle of Climb 

The condition for climbing at a maxi¬ 
mum angle to the horizon is rather different 
and does not imply climbing at the greatest 
rate. Fig. 89 shows how the angle of 

550 Hi 
W 

Fig. 89.—The Angle of 

Climb. 
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climb, 6, can at once be calculated from a knowledge of the rate 
of climb and the aircraft speed, for 

. n rate of climb 
sin 6 = —dr— (72) 

V being expressed in feet per second. If V is reduced below its 
value for maximum rate of climb, 9 increases because the rate of 
climb does not diminish so rapidly, at first, as does V. To 
estimate the maximum angle, we may assume a few suitable 
speeds, work out 9 for each speed and plot the results. 

The foregoing treatment is not quite exact, in that the values 
of V and D are carried over from straight level flight for which 
L — W, whilst both are actually reduced during climb, when 
accurately L = W cos 0, as we have seen. But the error is small 
in Civil Aviation, amounting to only some \{ per cent, for 
9 = 10°, and is on the right side for safety, its neglect leading 
to an under-estimate. Corrections must be made, however, for 
fast-climbing military aeroplanes. 

Retaining the assumption that 9 is small, the following expres¬ 
sion results for the total T.H.P., HT, required by an aeroplane of 
weight W to fly at a true air speed V feet per second and at the 
same time climb at a vertical velocity v feet per second. 

Ht = H + Hr 
= DV Wv 
~ 550 + 550 

_ WV / i_ v\ 
~ 550 \rA + V) 

WV 
550 

(73) 

To use this expression, rA is found from CL, which in turn is 
found from W, S, V and the true value of p. 

158. Examples. 

The following examples all refer to flight at low altitude. 
Wherever possible, results are given in round numbers only. 

Example 70.—An aeroplane weighing 10,000 lb. has wings of 
49 ft. span and aspect ratio 7, a power unit providing 815 T.H.P., 
and the following overall lift-drag ratios at the lift coefficients 
stated : 

CL . . 016 0*25 0-50 1-00 1-40 
rA . . 8-1 12-5 160 13-5 10*0 
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Estimate the maximum speed in straight level flight. 
S, the wing area — 49 X 49/7 = 343 sq. ft. Since L — W, 

the stagnation pressure q — 10,000/343 CL, leading to 

-v /840 X 10,000 157 
/ 343 X CL ~ V^L 

ft. per sec. 

H — DV/550, where D — 10,000/r^ and V is now known from 
CL. The following table is constructed by means of these 
formulae : 

CL ■ 0*16 0*25 0*50 100 1*40 
V . 393 314 222 157 133 
D . 1235 800 625 741 1000 
H . . 882 457 253 211 242 

Plotting the last row against the second shows that H = 815 at 
V = 385 ft. per sec. Thus the top 
speed is 263 m.p.h. The curve is 
shown in Fig. 90 (a). 

Example 71.—The aeroplane of 
Example 70 flies ‘ all out' in a level 
circular path with an angle of bank 
(<f>) of 60°. Find the radius of the 
turn. 

We now have L = W/cos </> = 
20,000. Hence, by the same method 

Fig. 90.—Increase of Pow 
Required on a Turn. 20,000/^, giving the new table : 

Cl 0*25 0*50 100 1*40 
V . 444 313 222 187 
D . 1600 1250 1481 2000 
H . 1290 712 598 680 

Plotting the last row against the second (Fig. 90 (b))t shows that 
H = 815 at V = 350 ft. per sec., approximately—i.e., 239 m.p.h. 
The required radius of turn = F2/g tan <f> — (350)2/32*2 X 1*732 — 
2196 ft. 

Example 71 has been worked as if the results of Example 70 
did not exist, but labour could have been saved by using the 
latter as follows. At constant CL the lift is proportional to F2, 
whence V is proportional to Vsec 0- But rA is unchanged, so 
that D is proportional to L. Hence H, which is proportional to 
DV, is proportional to \/sec3<f>. 
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Example 72.—The aeroplane of Example 71, whilst circling at 
full power with an angle of bank of 60°, is put into straight flight 
without change of speed or the engine throttle. At what rate 
will it climb ? 

We cannot use the above short cut because the incidence will 
change. For 350 ft. per sec., which is the constant speed con¬ 
cerned, q = ipV2 = 145*8 lb. per sq. ft. and the lift coefficient 
for straight flight is (ignoring the small difference between cos 0 
and unity, 0 being the angle the straight flight path makes with 
the horizon) : 

r _ W _ 10,000 

Ll qS ~ 145-8 X 343 
0-200, 

the value for the wing area being taken from Example 70. By 
plotting rA against CL from the data there given, it is also found 
that the value of rA corresponding to the above value of CL is 
about 10-2. Hence in straight flight at 350 ft. per sec. D = 
10,000/10*2 = 980 lb. and H = 980 X 350/550 = 624. 

The reserve horse-power that becomes available for climbing, 
on changing to straight flight at the same speed, is thus 815 — 
624 == 191. Hence the rate of climb 

= 191 X 33,000/10,000 = 630 ft. per min. 

Example 73.—A 20-ton flying-boat has a wing-loading (w) of 
32 lb. per sq. ft. and its wings have the following coefficients at 
some incidences : 

CL . . . 0*2 0*4 0*7 1-0 
CD . . . 0*010 0*015 0*032 0-063 

Its rate of climb is 1200 ft. per min. at 150 m.p.h., its power units 
then giving a total of 2800 T.H.P. Estimate the maximum level 
speed for 3000 T.H.P. 

We have first to find the extra-to-wing drag, DB, from the data 
given for 150 m.p.h. 

At 150 m.p.h.—q = \pV2 == 57*6 lb. per sq. ft., CL = wjq = 
32/57*6 = 0*555. Plotting the polar given in the question—i.e., 
CL against CD—shows that the drag coefficient corresponding to 
this lift coefficient is 0*022. Also from the question the wing 
area S = 20 x 2240\w = 1400 sq. ft. 

Still at 150 m.p.h., the wing drag Dw = CDqS — 0*022 X 57*6 x 
1400 = 1774 lb. The T.H.P. expended on climbing as such 

20 X 2240 X 1200 
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Thus the T.H.P. that overcomes the drag at this speed = 2800 — 
1629 = 1171. Writing D for this total drag, we therefore have 

1171 = 
D x 150 

375 ’ 
giving D = 2928 lb. 

Thus the extra-to-wing drag at 150m.p.h. = D — Dw = 11541b. 
At other speeds DB is assumed to vary directly as q or inversely 

as CL. Thus at all speeds, DB = 1154 x 0-555/C^ = 640jCL. 
The following table can now be constructed : 

CL • 0*2 0*4 0*7 1*0 
q = w/CL 160 80 45*7 32 
qSI1000 . 224 112 64 44*8 
Dw — CDqS 2240 1680 2048 2822 
Db = 640/C^ . 3200 1600 914 640 
D = Dw -f- Ds. 5440 3280 2962 3462 
V = 29V? 367 259 196 164 
H = DV/550 . 3627 1545 1055 1032 

Plotting H against V shows that H — 3000 when V is 345 ft. 
per sec. = 235 m.p.h. This, then, is the maximum speed of the 
flying-boat in level flight. 

Example 74.—The wings of a small aeroplane, which weighs 
2000 lb., have a drag of 100 lb. at an indicated air speed of 80 
m.p.h. Find the T.H.P. required for an angle of climb of 5° at 
this speed, given that a {-scale model of the aeroplane without its 
wings, tested in a wind tunnel at 240 m.p.h., has a drag of 36 lb. 

At 80 m.p.h., the full-scale extra-to-wing drag — 36 x 16 x 
1/9 = 64 lb. Thus the total drag = 164 lb., neglecting inter¬ 
ference between the body and the wings. This gives an overall 
lift-drag ratio of 2000/164 = 1/0*082. 0 = 5° = 0*0873 radian. 
Hence from (73) : 

T.H.P. required = + 0^ (for V in m.p.h.) 

= 426*7(0*082 + 0*0873) 

= 72J. 

159. Change of Altitude 

It was seen in Article 136 that, neglecting subsidiary effects, 
each aeroplane possesses a unique curve connecting total drag D 
in straight level flight with indicated air speed Vit a curve which 
does not change with altitude. But the corresponding curve 
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MSOOOffl 

^30,000ft. 

y^l5,000ft. 

1 LOW ALTITUDE 

100 200 300 4( 
TRUE AIR SPEED (jm.p.h) 

Fig. 91.—High and Low Altitude 

Flying. 

connecting H, the T.H.P. required, with Vi depends upon the 
altitude, for H is proportional to DV, where V is the true air 
speed and V — 
Hence both H and V in- 300O1-—>J?66 
crease with altitude in the J / 
ratio 1/\/cr for constant in- / X-/^M3000ft 
dicated air speed. 2000- //,/ r 

Curves giving the thrust H °° * 
horse-power required by a 'V^H^OOOft. 
certain aeroplane of 20 tons 1000 - 
weight for straight level * LOW ALTITUDE 

flight at various altitudes 
are shown plotted against 0 ^ ^ 400 
the true air speed (m.p.h.) TRUE AIR SPEED jm.p.h) 
in Fig. 91. A wide range 
is illustrated, the highest FlG* 9L“HlG^GL°W Altitude 

altitude being nearly two 
miles into the stratosphere. Such curves are derived immediately 
from that for low-altitude flight by dividing the ordinates and 
abscissae of points on the latter curve by \Zcr. 

The increase of power required is not so important a matter 
as is the decrease of power available from the engines. To fix 
ideas, a maximum of 3000 T.H.P. is assumed for the aeroplane 
of the figure, giving a speed of 235 m.p.h. at low altitude. With 
normally aspirated engines the power would fall at 15,000 feet 
to within the region enclosed by the circle shown towards the 
middle of the figure. The speed would be reduced to 205 m.p.h., 
though the power absorbed would be 500 T.H.P. less than for 
the same speed at low altitude. Moreover, only 500 additional 
T.H.P. would serve to restore the speed to 235 m.p.h., which 
would be attained at 15,000 feet with 27 per cent, less power 
than at low altitude. 

The aerodynamical economy achieved by high flying increases 
with the altitude. Still referring for illustration to the particular 
aircraft of Fig. 91, if the engines were supercharged to 15,000 
feet the speed there would be 270 m.p.h. If this altitude were 
the maximum for the supercharging system fitted, the power 
would fall to the region of the circle again at 30,000 feet. But 
an additional 500 T.H.P. would enable the speed of 270 m.p.h. 
to be achieved with 25 per cent, less power than at 15,000 feet 
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and with very much less than at sea-level. Increasing the power 
from 2500 to 3000 T.H.P. increases the speed of this aeroplane 
by 50 m.p.h. at 45,000 feet as compared with 17 m.p.h. at 
sea-level. 

Such comparisons are flattering because they make no allow¬ 
ance for extra dead weight, due to the air compressing and con¬ 
ditioning plant and strengthening the cabin against bursting. 
However, when proper correction is made on this score there 
still appears a considerable advantage in high flying, apart from 
passing over the tops of storms. 

The advantage can be described in general terms as follows. 
An aeroplane at low altitude is encumbered with large reserves 
of wing area and engine power in order to provide for a reason¬ 
able landing speed and a satisfactory rate of climb. These 
reserves are largely mobilised at a suitably high altitude. The 
wing area then corresponds to a high stalling speed (for the 
aeroplane of Fig. 91 it would be 170 m.p.h. at 45,000 feet), 
whilst the horse-power not actually being utilised would produce 
only two or three hundred feet per minute of climb. Neither 
fact implies a disadvantage; low stalling speed and rapid climb 
reappear on descending to low altitudes, where they are par¬ 
ticularly needed. The reduced air density permits cruising at 
incidences near to that for minimum horse-power without loss 
of true air speed, indeed with a gain in this respect compared 
with low altitude flying. 

160. Ceiling 

The maximum altitude to which a given aircraft can ascend is 
called its absolute ceiling. The rate of climb diminishes with 
increase of altitude, partly on account of the greater power 
required at any incidence to overcome drag, but more acutely on 
account of the decrease of power available above the super¬ 
charged height. The service ceiling is defined as the altitude at 
which the rate of climb falls to 100 feet per minute. The absolute 
ceiling corresponds to zero rate of climb. At the latter the 
aircraft can fly level at only one speed, the power available 
being insufficient for faster or slower flight; any other speed 
entails a power glide and loss of altitude. 

To find the ceiling in a given case, an estimate may first be 
framed from the general particulars of the aeroplane and its 
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Fig. 92. 

A;_b , 
ALTITUDE 

Estimation of Ceiling. 

power equipment. Thrust horse-power available and required 
curves being set out for this provisional altitude, inspection will 
suggest the incidence (or lift _ 
coefficient) at which these two 

curves will just touch one \\ ^^XS^ercharoed) 
another on increasing or de- gj \ 6 
creasing the provisional alti- ^ ^\r 
tude, as may be required, and ? available^\A 
further calculations will refer (no boost) 
to this incidence only. The § ", 
curve of horse-power required & ^required ; 
in Fig. 92 is for the appropriate § J , 

incidence so determined. The H ; ! 
other two curves in the figure ^ g'! 

are obtained from particulars ALTITUDE 
of the engines and airscrews _ ~ 
and illustrate the falling T.H.P. 
available with (a) a normally aspirated and (b) a supercharged 
engine. The points A, B mark the service ceilings for a certain 
weight and the intersections A', B' the absolute ceilings. 
With normally aspirated engines the rate of climb decreases 
approximately linearly with increase of altitude, facilitating rapid 

estimation of either the absolute 
j or service ceiling. 

/// 161. Change of Wing-Loading 

2000- ///w=T0 The curves in Fig. 93 relate 

H C to three aeroplanes which are 

• '^1^7 identical in weight and shape 
except that they have different 

^*20 wing-areas. The three wing- 
loadings are 20, 30 and 40 lb. 

0 50 ioo 150 200 250 per square foot. A low altitude 
Vj^ (m.p.h.) is assumed throughout. The 

Fig. 93.—Change of Wing Area. dotted extensions refer to Split 
flaps opened; otherwise the 

flaps are closed. The effect of increasing the wing-loading on the 
minimum flying speed, which may be identified with the landing 
speed, has been described in Article 134. Another effect is to 
increase the minimum power required for level flight and also the 

V
/ 1 TL 

C '» /A 

c "1 7 
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Fig. 93.—Change of Wing Area. 
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speed at which it occurs. A result is to reduce the rate of climb 
and increase the difficulty of take-off in starting a flight, for ease 
of which a rather low wing-loading is desirable. But the power 
required is reduced at high speeds, which are hardly attainable 
without heavy wing-loadings. There are several ways of explain¬ 
ing these contrasting effects; the simplest, and one which we are 
already in a position to understand fully, is as follows. Consider 
the change of drag due to reducing the wing area of an aeroplane 
at any low speed. Keeping the speed constant prevents the 
extra-to-wing drag from changing. But the drag of the wings, 
obtained by dividing the flying weight by their lift-drag ratio r, 
increases because the lift coefficient increases in the range where 
the curve of r plotted against CL is falling (cf. Fig. 43). Repeat¬ 
ing this comparison at some constant high speed shows the 
reverse to happen, because the increase of CL then occurs within 
the range in which r is increasing with CL. 

Comparison of Fig. 91 with Fig. 93 shows some effective 
resemblance between increasing altitude and reducing wing area. 
It is restricted by the fact that in the former case the extra-to- 
wing drag contributes the same fraction of the total drag at all 
altitudes for any one indicated air speed, whilst in the latter 
case this fraction increases as the wings become smaller. Both 
figures depict aerodynamical effects only, neglecting variation of 
useful load, the total weight being kept constant. But while 
this limitation flatters the aeroplane in relation to increase of 
altitude, as already described, the reverse holds in respect of 
increase of wing-loading, for smaller wings can be made lighter 
to sustain the same total load, thus increasing the useful load. 

When account is duly taken of the lighter wings, the advantage 
of heavy wing-loadings at high speeds becomes striking. Some 
years ago, when aircraft speeds were being increased rapidly, 
wing-loadings were increased in roughly the same proportion. 
Theoretically the latter should have increased the faster, as we 
shall see later, but restriction arose from increased landing speeds, 
in spite of the general adoption of the split flap, and difficulties 
of take-off. With long non-stop flights, however, the landing 
weight is much reduced by consumption of fuel on the journey, 
and the question of take-off is the more urgent. Various schemes 
have therefore been suggested for ‘ assisting ' take-off when the 
wing-loading is especially heavy and the power available not 
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superabundant. In the Short-Mayo system, for example, the 
long-range aircraft is carried into the air on the back of a larger 
parent aircraft, the engines of both being used to fly in com¬ 
bination until a suitable speed and altitude are reached for the 
smaller aeroplane to fly away on its own. 

162. Change of Weight 

The investigation of the preceding paragraph is complicated 
by the fact that the shape of the aeroplane changes as the wings 
get smaller or larger, whence the overall lift-drag ratio rA varies 
though the lift coefficient remain constant. The present article 
is concerned with the effect of varying the weight of a given 
aeroplane, as by taking more fuel or pay-load on board and, 
since the shape does not change, rA remains constant for any 
one lift coefficient. The problem is therefore simpler, and it is 
evidently no less important. Many practical questions concern¬ 
ing change of weight also involve change of altitude. Little 
complication results from considering both variations together, 
as follows. 

Attention is confined to any given aeroplane in straight level 
flight at any one lift coefficient CL. Then the lift L = CLqS — W 
and, whatever W may be, the wing area S is constant. Consider 
the effect of altering the weight W by adding or subtracting dis¬ 
posable load. Two results follow from CL being kept constant : 
q must vary in proportion to W, and Vi in proportion to y/W; 
the overall lift-drag ratio is constant, and therefore D, the total 
drag, varies as W. Now, H, the horse-power required, is pro¬ 
portional to DV, where V is the true air speed and — IL/V*7- 
Hence H varies as WVW/a. 

This result applies to any lift coefficient, and a curve of H 
plotted against V for a particular weight W0 at low altitude is 
rapidly modified to apply to another weight Wx at a higher 
altitude by increasing all the F's and H’s respectively in the 
ratios 

4 1 Wy 
*-w0 

(74) 

The curves of Fig. 94 all refer to one and the same aeroplane 
at low altitude. The middle curve applies to the aeroplane 
when it is loaded to a total weight of 18 tons. For the lower 
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curve the weight is reduced by one-third, for the upper one it is 
increased by one-third. Increasing the weight makes less differ¬ 

ence to the horse-power required 
at high than at low speeds. 
It rapidly increases the mini¬ 
mum H.P. and consequently 
reduces the rate of climb and 
the ceiling. Take-off is made 
more difficult, and in an ex¬ 
treme case of over-loading the 
power equipment would not be 
sufficient to get the aircraft into 
the air. Even a light aeroplane 
cannot take-off unless the en¬ 
gine provides sufficient power; 
instances of failure on this score 

were not infrequent thirty years ago, when aero engines were 
very weak. 

The wing-loading for the middle curve of the figure is 30 lb. 
per square foot and that for the others is 20 and 40 lb. per square 
foot. Thus the wing-loadings correspond with those assumed in 
Fig. 93. But there they are varied in another way—-viz., by 
keeping the weight constant and varying the size of the wings 
only. A family of such curves exists for each of the weights of 
Fig. 94. 

163. Examples 

Example 75.—At the beginning of a long non-stop flight a 
flying-boat cruises at a certain incidence at a speed of 180 m.p.h., 
using 3000 T.H.P. Towards the end of the flight the weight is 
reduced by 19 per cent, owing to consumption of fuel. What are 
then the speed and the T.H.P. required for this incidence? 

Directly by (74), the speed will be reduced in the ratio 
\/(l — 0T9) = 0*9—i.e., to 162 m.p.h.—and the T.H.P. will be 
reduced in the ratio V(0*8!)3 = 0*729—i.e., to 2187. 

Example 76.—At the indicated air speed for maximum rate of 
climb, the engine and airscrew of a small aeroplane are capable of 
the following thrust horse-powers at the altitudes noted : 

Altitude (ft.) . 0 10,000 15,000 20,000 
T.H.P. . . 300 216 182 152 
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When lightly loaded to 5000 lb. total weight, the aeroplane has a 
service ceiling of 20,000 ft. What is its service ceiling with 
1500 lb. of additional load on board ? 

W = 5000 lb.—The T.H.P. in reserve for the remaining rate of 
climb of 100 ft. per min., defining the service ceiling = 5000 X 
100/33,000 = 15*2. Since the power unit is capable of 152 
T.H.P. at this altitude, the T.H.P. required for level flight there 
= 152 — 15*2 = 136*8. The relative density of the air at this 
ceiling — 0*534, from Table I, p. 39, giving = 0*7308. Hence 
level flight at the same incidence at sea-level requires 136*8 X 

0*7308 = 100 T.H.P. 
W = 6500 lb.—The T.H.P. in reserve at the service ceiling 

must now be 6500 x 100/33,000 = 19*7. The weight is increased 
by the factor 1*3 and the T.H.P. for level flight is increased on 
this score in the ratio y'(TS)3 = T482, or in the ratio 1*482/y'<* 
at various altitudes. Hence the new service ceiling will be 
reached when <j is such as to make 148*2\\Ja + 19*7 = the T.H.P. 
available, which itself depends upon the altitude as stated in the 
question. 

A solution will be obtained graphically. The following table 
is constructed for the new weight: 

Altitude (ft.) 0 10,000 15,000 20,000 
1/V® ... 1 0 1*164 1*261 1*369 
148*2/+ 19*7 . 168 192 207 223 

The last row of this table 
and the second row of the 
table given in the question 
are plotted against altitude 
in Fig. 95. The inter-section 
of the two curves gives for the 
answer : 12,500 ft., approxi¬ 
mately. 

Example 77.—An aeroplane 
weighs 10 tons without pay- 
load and then has a rate of 
climb of 1650 ft. per min. at 
low altitude, the power units 

ALTITUDE (ft.) 

Fig. 95. 
providing a total of 1600 
T.H.P. What pay-load may be taken on board if the rate of 
climb is not to be less than 1000 ft. per min. at 10,000 ft. altitude, 
assuming that the power available is maintained to this height ? 
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At low altitude when the weight is 10 tons, the T.H.P. absorbed 
in climbing alone = 22,400 x 1650/33,000 = 1120, whence the 
T.H.P. required for level flight = 1600 — 1120 = 480. 

Let W' be the required weight in tons and write W for 10 + W't 
i.e., for the new total weight. At 10,000 ft. l/\/a=L164. 
Hence the T.H.P. required for level flight at the altitude = 
480(^/10)3/2/^ = 17-7 X WM. The T.H.P. required for climb¬ 
ing at the minimum rate specified = W x 2240 x 1000/33,000 — 
67-9JT. Hence W is given by the following equation 

17-7 TT3/2 + 67-9 W = 1600 

or, dividing both sides for convenience of working by W, 

17-7yW + 67*9 = 1600/PF. 

This equation will be solved by trial and error. Referring to 
the table below, the first value assumed for W—viz., 16 tons— 
was chosen for a trial run because it is a possible value and the 
arithmetic can almost be done mentally. It was evidently much 
too large and so the value of 12 tons was next chosen. This came 
out to be a little too small and was adjusted to 12*3 in a third 
trial. The value 12-3 transpired to be so nearly correct as to be 
acceptable; otherwise a fourth row would have been added. 

W (tons) y/W 17-7 y/IV 
L.H.S. of 
equation R.H.S. 

16 4 70-8 138-7 100-0 
12 3-464 61-3 129-2 133-3 
12-3 3-507 621 130-0 130-1 

Yhe pay-load is 12*3 — 10 = 2-3 tons. 

164. Alternative Method 

So far, the extra-to-wing drag has been assumed to vary only 
with qy no account being taken of variation with incidence. The 
approximation is usually justifiable in primary calculations. It 
becomes poor near the stalling angle, but then the extra-to- 
wing drag is small compared with the wing drag, variation of 
which with incidence is correctly allowed for. 

When knowledge exists of the variation of extra-to-wing drag 
with incidence, this drag is best added to the wing drag in the 
manner of Article 135, resulting in an overall drag coefficient CDA 
specified on the wing area. Experimental data will be expressed 
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automatically in this form when obtained from wind tunnel tests 
on a complete model. 

Either CL may be divided by CDA, yielding the overall lift- 
drag ratio rA, which may be plotted against CL, or CL may be 
plotted directly against CDA in polar form (Article 135). In the 
first alternative the formula (73) is used in the way already 
explained. For the second alternative the formula is re-written as 

Ht =5§cl(C^ + eC^ • • • (75) 

The true air speed is V in feet per second, and is found from the 
indicated air speed appropriate to W and CL. Writing w for the 
wing-loading, q = wjCL and V = 29 Vq/a, so that 

V = 29 Vw~!<jCl. 

It is hardly worth while substituting for V in the formula for HT, 
since a knowledge of V is usually required. 

Whichever mode of calculation is adopted, a curve of HT can 
be plotted against V for any assumed small angle of climb 6. 
Plotting also the curve of T.H.P. available against V will show 
at a glance through what speed range, if any, steady climbing 

at 9 is possible. 

Example 78.—Below are given the overall lift-drag ratios and 
the T.H.P. available for a slow 5-ton aeroplane at various indi¬ 
cated air speeds. 

Vi (m.p.h.) . 85 120 140 160 
rA 130 15-5 14-4 12-6 
T.H.P. available . 420 580 640 685 

Find the speed for an angle of climb of 4° at 5000 ft. altitude. 
At the altitude, a = 0*862—i.e., V = 1-077 Vi in m.p.h. This 

yields the first row of the table below. WV (ft. per sec.)/550 = 
11.200F (m.p.h.)/375 = 29-9F (m.p.h.); hence the second row. 
The third row follows from the values of rA given and the fact 
that 0 = 0*0698 radians. The fourth row is obtained by multi¬ 
plying together the numbers in the second and third rows and 
gives, by (73), the T.H.P. required (to the nearest 5 H.P.). 

V (m.p.h.) . . 914 129 151 172 
WV/375 . . 2740 3850 4510 5150 
1 \rA + 0 . 0*147 0*134 0*139 0*149 
T.H.P. required . 400 515 625 770 
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The T.H.P.'s. available and required are plotted in Fig. 96 and 
are equal at about 86 and 155 m.p.h., true air speed. Within 

this speed range the aircraft can 
800i- climb more steeply still, if desired, 

/ but outside it only less steeply. 
AVAILABLE 

Sx 165. Induced Drag Method 

400- last article refines upon 
TH.P methods of preceding articles. At 
200- the other extreme, we may neglect 

variation with incidence of the profile 

°50—ioo—iso—200drag (Article 106) of the wines> be~ 
, TRUE AIR SPEED (mph) sides that of the extra-to-wing drag. 

F 96 This approximation is often permis¬ 
sible through a restricted speed range, 

corresponding to incidences not far removed from that for 
maximum lift-drag ratio. First estimates of performance follow 
very simply. Another advantage is that, though precision is 
lost at high and low speeds, some of the principles underlying 
the attainment of good performance are revealed particularly 
clearly. 

The total drag D is still dealt with in two parts, but these 
differ essentially from the wing and extra-to-wing drag so far 
used. The profile drag of the wings is now added to the extra- 
to-wing drag, thus collecting together all skin frictions and form 
drags. The sum will be called the total parasitic drag, written 
DP. Subject to scale effect and variation due to change of 
incidence or airscrew slipstreams, all of which are neglected, DP 
varies proportionately with q for a given aeroplane, no matter 
what load the aeroplane takes on board or discharges, or whether 
it is gliding, climbing, circling or simply flying straight and level. 

This leaves only the induced drag to comprise the other 
part of the total drag. It is calculated approximately from the 
formula (46) of Article 113, as follows, A denoting the aspect 
ratio. 

Di — CDiqS 

~ C^qS 

__ 0*35 12 
~ q ‘AS 

(because CL2 = L2/(qS)2) 
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0-35 / Lift \2 
q \Span/ 

(76) 

since by (43) \jA = 5/span2. 
The coefficient 0-35 is not constant, but varies a little with the 

plan-form of the wings, being a minimum for the elliptic and 
approximately half-tapered plan-forms. The value given is 
probably correct within ± 5 per cent, for all ordinary plan-forms. 

The formula is of fundamental importance. It states that, for 
a given aeroplane, D{ varies directly as the square of the lift 
and inversely as q. If the wings are changed for others of 
similar shape but a different span, then, however the chord or 
wing area may be adjusted, Di changes inversely as the square 
of the span for the same values of L and q. The ratio of lift to 
span is called the span-loading. Comparing different aeroplanes 
in flight at different speeds and altitudes, subject only to the 
restriction that the plan-forms of their wings show little diversity, 
Di varies from one to another directly as the square of the span¬ 
loading and inversely as the square of the indicated air speed. The 
term span-loading must not be confused with the span-grading, 
which describes another matter—viz., the way in which the lift 
varies along the span (Article 110). Again, the span-loading is 
the lift, not the weight, per foot of span; no difference occurs in 
straight level flight, but in other forms of flight the span-loading 
may be several times as great as the weight divided by the span. 

The contrary way in which Di and DP vary during flight sup¬ 
plies the reason for their separation. For straight level flight, 
the expression for the total drag of a given aeroplane now takes 
the form 

D — Di -f- Dp 

= -+bq.(77) 

where the coefficient a has approximately the value 0*35(JF/ 
span)2 and the coefficient b is assessed as already described for 
Db, except that it has to include the profile drag of the wings. 
If the form of flight changes from being straight and level, a 
will also change. 

166. Examples 

The examples in this article relate to an aeroplane weighing 
20,000 lb., for which, in straight level flight at an indicated air 

9 
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speed of 150 m.p.h., Di — 500 lb. and DP = 750 lb., making 
D — 1250 lb. The horse-power required is denoted as usual 

by H. 

Example 79.—What is the power required by the above aero¬ 
plane for a speed of 180 m.p.h. at low altitude? 

As p is constant, Di varies as 1/F2 and DP as V2 and, since 
180/150 = 1-2, D{ = 500/1*44 = 347, DP = 750 X 1*44 = 1080, 
giving D = 1427 lb. Hence 'H = 1427 x 180/375 = 685. 

Example 80.—The aeroplane flies at 150 m.p.h. in a level 
circular path with an angle of bank (</>) of 45°. What power is 
required ? 

The lift L — W/cos<f>— Wy/2 and varies as Z.2. Thus 
Di — 2 X 500 whilst DP remains at 750. Hence D = 1750 lb. 
and H = 1750 X 150/375 = 700. 

Example 81.—If 1500 T.H.P. is available, what is the maximum 
speed of the aeroplane at low altitude ? 

With F expressed in m.p.h., 

H = 
Z>F 
375 “ 

+ 750 
F 

375 

H is required to be equal to 1500. So we must have at top speed 

+ 1*5 
1125 

V • 

Solving by trial and error, 

F (m.p.h.) (150/F)2 1*5(F/150)2 L.H.S. R.H.S. - 1125/F 

225 0-444 3-375 3-819 5-000 
250 0-360 4-167 4-527 4*500 

The speed of 225 m.p.h. first assumed is far too low but the 
second assumption of 250 m.p.h. is so nearly .correct as to make 
further approximation unnecessary. The aeroplane will fly at 
just under this speed. 

Example 82.—Evaluate the coefficients in the drag equation 
(77) for this aeroplane in straight level flight. 

For V{ = 150 mp.h., q = \ x 0*00238 x 2202 = 57*6 lb. per 
sq. ft. Di — a\q generally and when Z>t- = 500 lb. q has the 
above value. Hence 500 = <z/57*6, giving a — 28,800. Similarly 
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b = 750/57*6 = 13. Therefore, to apply to the aeroplane con¬ 
cerned, the equation becomes 

D = 
28,800 

7 
+ 13 q. 

167. Weight and Climb 

The principles governing analysis by the earlier method apply 
equally, of course, to the alternative one. It is often convenient 
in the present connexion to keep the indicated air speed constant, 
for then only the induced drag changes. 

If W increase from W0 to Wv Di for straight level flight will 
increase from Di0 to 

Da = Ao(WW 
at the same value of Vit and the T.H.P. required will increase 
by the amount 

(Da — Dio) X F(m.p.h.)/375 

375a/ct 
• • (78) 

To find the rate of climb appropriate to W = WY at the given 
indicated air speed, the foregoing increment of power required is 
subtracted from the reserve horse-power when W — W0, giving 
a corrected reserve T.H.P. = HRl, say. Then approximately, 

rate of climb = 33,000 HRl/Wv 

During climb at an angle 0 lift is reduced in the ratio cos 6 : 1 
(Article 146), whence induced drag is reduced in the square of 
this ratio, making slightly more T.H.P. available for climbing. 
A closer estimate of climb is therefore obtained by suitably 
reducing the H.P. required to overcome drag at the same speed 
in straight level flight. 

168. Change of Span 

A complex question arising in the design of an aeroplane is 
choice of span. Span is varied without change of wing-loading 
by suitably adjusting the wing chord—i.e., by altering the aspect 
ratio of the wings. 

Increasing the aspect ratio decreases induced drag, improving 
take-off, climb, ceiling, extreme range and performance at low 
indicated air speed generally, when induced drag forms a large 
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fraction of the total drag. It also reduces the requisite tail 
volume (Article 140), thus effecting some economy in the weight 
and drag of the body and tail plane. On the other hand, increase 
of span, together with the associated reduction of the chord and 
thickness of the wings, increases the weight of the latter and 
reduces their storage capacity. The second disadvantage is of 
practical importance in connection with the retraction of the 
undercarriage, the fitting of fuel tanks in the wings, and the like. 

Final choice of span is therefore a technical matter to be 
decided with reference to the particular class of aeroplane con¬ 
cerned. The following examples no more than illustrate it in a 
preliminary manner. The aeroplane of Article 166 is assumed, 
and enquiry made into some first effects of changing the aspect 
ratio of its wings whilst keeping the wing-loading constant. 

Example 83.—The span of the aeroplane described in Article 166 
is increased by 20 per cent., keeping the wing area constant. 
The total weight is increased 3 per cent, thereby. What is the 
improvement in climb at 150 m.p.h. if a total of 1400 T.H.P. is 
available ? 

Before the modification the T.H.P. required for level flight at 
the given speed = 1250 X 150/375 = 500; the reserve T.H.P., 
Hr = 1400 — 500 = 900 and the rate of climb = 900 X 33,000/ 
20,000 = 1485 ft. per min. 

The modification decreases the induced drag from 500 lb. to 

500 X (1-03/1*20)2 = 368 lb. 

Since DP is unchanged, the total drag become 750 + 368 = 1118 
lb. H is reduced to 1118 x 150/375 = 447, making HR = 1400 — 
447 = 953. This gives a rate of climb = 953 X 33,000/20,600 = 
1527 ft. per min. 

This simple calculation accordingly gives an improvement in 
the rate of climb amounting to 42 ft. per min. The estimate is 
flattering, however, because either the disposable load must be 
reduced by 3 per cent, of the total weight or the area of the wings 
must be increased by 3 per cent, to keep the landing speed the 
same. The latter step would slightly increase DP. 

Example 84.—It is estimated that reducing the span of the 
aeroplane described in Article 166 by 20 per cent, decreases the 
total weight by 3 per cent. The wings are reduced in area to 
maintain the original landing speed and this is estimated to reduce 
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the total parasitic drag by 2 per cent. Determine the effect 
upon the maximum speed if 1500 T.H.P. is available. 

The induced drag is increased in the ratio (0-97 /0-80)2 == 147. 
The total parasitic drag is reduced in the ratio 147/1*50. There¬ 
fore, the second equation of Example 81 which is to be satisfied 
by the top speed, is modified to 

Solving by trial and error gives a top speed of just under 248 
m.p.h.—i.e., the sacrifice on the maximum speed is only 2 m.p.h. 

169. Application to Minimum Gliding Angle 

Fig. 97 shows the induced and total parasitic drags of the 
aeroplane of Article 166 in straight level flight plotted against 
the indicated air speed. In 
this fairly typical case the 
induced drag amounts to 10 
per cent, of the whole at 
about 233 m.p.h.—i.e., Di 
is then one-ninth of DP. 
At one-third of this speed 
the proportionate contribu¬ 
tions to the whole drag are 
reversed. Di and DP are 
equal at 138 m.p.h., and at 
this speed the total drag is 
a minimum, being equal to 
1224 lb. The maximum lift- 
drag ratio is therefore 16*3, 
since the lift = the weight = 
20,000 lb., and the minimum 
gliding angle is 3|°. 

The student acquainted with the methods of the Differential 
Calculus can obtain the minimum drag and the speed at which it 
occurs without the labour of plotting, as follows. Writing the 
expression for the total drag D in the general form 

D — a/q + bq, 

Fig. 97.- -Induced and Total Parasitic 

Drags. 

differentiating with respect to q and equating to zero for a 
minimum gives 
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whence 

dD a , 
~T~ =-9+0=0, dq q2 

(79) 

Substituting this value of q in the original expression for D 
gives 

Minimum D = Vab + Va£> 

= 2Vo6.(80) 

Both parts of the minimum drag are equal and their sum is 
readily calculated. 

170. The Basis of Aerodynamic Efficiency 

In Chapter I the efficiencies of various lifting agents were 
compared on the basis of ‘ ton-miles-per-gallon ' of useful or 
disposable lift, sometimes called the net efficiency. The aero¬ 
dynamic efficiency is not concerned with what proportion of the 
total lift of an aeroplane is absorbed by its tare weight, and the 
useful work done is conceived to be the gross weight x the 
distance transported. The energy expended in this transporta¬ 
tion is proportional to the gallons of fuel consumed, which is 
proportional to the brake horse-power (B.H.P.) actually exerted 
by the power plant and the time of the flight. Thus the aero¬ 
dynamic efficiency is proportional to 

Gross weight x distance flown _ W x V 
B.H.P. x time of flight ~~~ B.H.P. 

Now, the B.H.P. = the T.H.P. divided by 77, the efficiency of 
the airscrews, whilst the T.H.P. is proportional to the thrust 
T x V. Again, T = D, the total drag, whilst for straight level 
flight W = L, the lift. And so the aerodynamic efficiency is 
proportional to 

dvTt) = nrA. 

If the gross weight is expressed in tons and V in m.p.h., the 
quantity WV/B.H.P. = \r\rA with an error of less than \ per 
cent. The last quantity is one of the oldest expressions for 
efficiency. In the early days of mechanical flight rj was less 
than | and rA less than 8, so that a value of unity, corresponding 
to an efficiency on this basis of 100 per cent., was not easy to 
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obtain. With modem aircraft the value of 2 is readily exceeded 
at several times as great a speed. For this reason \y]rA is seldom 
used today to express the aerodynamic efficiency of an aero¬ 
plane. But no other gauge has arrived to take its place and, 
though no longer providing the target of 100 per cent, at which 
to aim, it is nevertheless still of great value as giving, within 
J per cent., the number of ton-miles (gross) per B.H.P.-hour. 

Whether the coefficient of £ is retained or dropped, the product 
y\rA is a measure of aerodynamic efficiency in the operational 
sense. Postponing discussion of 77 to a later chapter, the efficiency 
becomes proportional to rA—i.e., it is greatest when the drag for 
a given weight is least. This result is verified to be consistent 
with the fundamental idea of efficiency, as follows. Consider 
the transportation of a given load from one point to another 
through a still atmosphere. The total work done is equal to the 
drag multiplied by the distance and is a minimum when the 
drag is a minimum. However, the presence of wind modifies 
the practical aspect of this conclusion. 

Further discussion is greatly clarified by expressing rA in the 
form 

_ Lift 
A + DP 

Dividing numerator and denominator by qS and denoting by 
CDP the drag coefficient of the total parasitic drag expressed on 
the wing area, this becomes 

r _ CL 

A CDi + ^DP 
Substituting 0-35 CL2/A for CDi from formula (46), Article 113, 
A being the aspect ratio, and dividing numerator and de¬ 
nominator by CL, 

1 
'a~0-35 Cdp 

~a~cl+'cl 

(82) 

For straight level flight CL — w/q, w being the wing-loading. 
Making the substitution, we have for this condition 

1 
Ta ~ 0-35 w r q_ 

A ' q DPw 

(83) 

The maximum value of rA for a given aeroplane occurs when 
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the total drag is a minimum—i.e., when the two terms in the 
denominator are equal to one another (Article 169). Equating 
these terms gives 

.<84> 

for straight level flight. Substituting this value of CL or w/q 
gives for the maximum efficiency 

(max.) iVo? A 
35 x CQp ■ ■ (85) 

Any of these expressions for rA when multiplied by the air¬ 
screw efficiency 77, or \r), according to the convention adopted, 
gives the aerodynamic efficiency of the aeroplane, the aeroplane 
being defined by A, CDP and the appropriate value of the numeri¬ 
cal coefficient 0*35, which is subject to minor variation by alter¬ 
ing the plan-form of the wings. The efficiency then depends 
upon CL or, for straight level flight, upon w/q. The maximum 
efficiency of the aeroplane is given by (85), and occurs when 
CL or w/q is given by (84). 

Comparing different aeroplanes all having wings of a single 
type so that variation of the numerical coefficient is not involved, 
the maximum efficiency varies directly as the square-root of the 

_ _ aspect ratio and inversely as 
7 7^ 5 the square-root of the co- 

^80--r—-f g efficient of total parasitic drag. 
:g / / It is easily found from (84) 
g60 / / ~I0°S! and (85) that the optimum 
S40-r—yA-_80g indicated air speed is equal to 

?20--J/4--601 16-5 m.p.h. 
S -405 > A 
> pi—4 — I 1—■ -I IgQ 

50 100 150 200 250 300 For most civil aeroplanes this 
OPTIMUM INDICATED AIR SPEED (jn.p.h) speed will lie between 22 y/w 

Fig. 98.—Wing-loading for Maximum and 28-v/w and is unduly low 
Efficiency. , \ . . 

for mam-lme air services 
operating at ordinary altitudes. In Fig. 98 the lower range is 
plotted as a dotted curve, the higher range as a full-line curve. The 
scale at the right-hand side of the figure indicates the landing 
speeds that correspond with the wing-loadings, assuming ordinary 
split flaps. 
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It will be seen that even under favourable conditions a 
wing-loading of 25 lb. per square foot implies an optimum 
flying speed of only 140 m.p.h., and that to secure maximum 
aerodynamic efficiency at 250 m.p.h. would demand a wing¬ 
loading of 80 lb. per square foot, involving a landing speed 
of 115 m.p.h., and a severe problem in assisted takeoff. The 
loss of efficiency due to flying considerably faster than the 
optimum speed, or due to employing a considerably larger wing 
area than would give the optimum wing-loading, is at first small. 
The precise amount of the loss for any excess depends upon the 
shape of the aeroplane, but a 
fairly typical case is illustrated WING-LOADING/OPTIMUM 
in Fig. 99. Approximately, the —^^-r-^ 
wing-loading may be decreased 
by 40 per cent. or the speed 30- A 
increased by 27 per cent, for a Co / 
reduction in the efficiency ^ / 
amounting to 10 per cent. / - 
These adjustments are insuf- ^ / 
ficient, however, for they still £ / 
leave the wing-loading high and / 
the speed low, and a greater ol0- / 
loss is usually incurred. g / 

Some general conclusions can ^ 
be drawn from this discussion. _l_ 
Progress in the operational 1 ^ 16 
speeds of first-class aeroplanes / 
has outstripped progress in the AT 
development of means for land¬ 
ing them reasonably slowly. Until flaps or other landing devices 
improve substantially, aeroplanes must continue to employ waste- 
fully large wings, especially at low altitudes. If the desired 
improvement were forthcoming regarding landing conditions, 
assisted take-off would become an urgent matter. Meanwhile, 
at least, flying at high altitudes recommends itself as providing 
a reasonably high true air speed with a low value of q, and 
therefore incurring little loss in aerodynamic efficiency with a 
moderate wing-loading, suitable for both landing and take-off. 

Example 85.—A flying-boat, 100 ft. in span, weighs 40,000 lb. 
and has 4 1000-H.P. engines which give a speed of 250 m.p.h. in 

1 1*2 IT re 
SPEED / OPTIMUM 

Fig. 99.—Loss of Efficiency at 

Practical Wing-loadings. 
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straight level flight at low altitude, the airscrew efficiency being 
82 per cent. Estimate the aerodynamic efficiency at 175 m.p.h. 
if the airscrew efficiency is then 75 per cent. 

At the top speed the total drag = 4 x 1000 x 0-82 x 375 -H 
250 = 4920 lb. and, since q — 160 lb. per sq. ft., the induced 
drag Dt 

= (tSt)2 = 350 lb- hyformula (76)* 

so that the total parasitic drag Dp = 4920 — 350 = 4570 lb. 
At 175 m.p.h., which is 0*7 of the top speed, Dincreases to 

350 X 1/0-49 = 714 lb., and DP decreases to 4570 x 0-49 = 
2239 lb. Thus at the lower speed the total drag = 2953 lb. and 
the overall lift-drag ratio = 40,000/2953 = 13-55. Finally 

rpA = 0-75 X 13-55 = 10*16, or rpAf6 = 1*7, nearly. 



Chapter IX 

PROPULSION AND AIRSCREWS 

171. Ideal Propulsion 

In order to fly otherwise than downward through the air an 
aircraft is supplied with a quantity of energy, and the duty of 
the propelling device is to convert as much of this as possible 
into work usefully done in overcoming the drag of the aircraft 
and raising its weight. Many forms which a propeller might 
take are too wasteful of either energy or lift. The airscrew 
possesses advantages in these respects, but is by no means ideal. 
The whirling blades have form drag and skin friction, and work 
badly towards the tips even when tip-speeds are only moderate; 
vortices caet from them spin the air behind to no purpose 
and spoil streamline flow over aircraft components on which 
they play; and finally the central part of the disk area is ob¬ 
structed by a boss or other obstacle, providing drag instead of 
thrust. Nevertheless, the airscrew survives its disabilities with 
considerable success. 

It is valuable to investigate in general terms, and supposing all 
disabilities absent, an ideal scheme of propulsion. The results 
will apply qualitatively to actual systems, and can afterwards 
be modified and amplified to take account of additional problems 
which the propelling device presents. The idealised propeller is 
called vaguely the ‘ actuator *; the term ‘ ideal airscrew ' is 
also used when a screw propeller is particularly in mind. 

The actuator is supposed to occupy a disk through which air 
passes, and to engage a certain mass m of air per second equal 
to the product of the disk area, the relative velocity and the 
density of the air. This mass is accelerated backward, purely 
parallel to the direction of motion and equally as to all parts. 
The reaction experienced, equal in magnitude to the rate at 
which backward momentum is imparted to the mass of air, is 
the forward thrust T and, owing to the evenly distributed action, 
T is uniformly spread over the disk. 

Let the actuator propel an aircraft through a still atmosphere 
at the velocity V, and let v be the uniform backward velocity 
given to the air engaged. Then the actuator does useful work 
at the rate TV, and T = mv. 

235 
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The prime mover, or other source of power, must supply the 
actuator with energy at the rate TV and, in addition, make good 
any wastage. Such wastage occurs even under ideal conditions 
because the air engaged cannot receive momentum without also 
acquiring kinetic energy. Thus the actuator puts less work to a 
useful purpose in propelling the aircraft than it receives, dis¬ 
sipating the remainder in the form of kinetic energy imparted to 
the atmosphere. The atmosphere gets infinitesimally warmer 
as a result, but this does not help the propulsion. 

Efficiency is defined in the present and similar connexions as 
the ratio of the useful work to the total work or, as it is often 
described, the ratio of the output to the input. The actuator, 
or ideal airscrew or ideal propeller, is said to have an ideal 
efficiency, which will be denoted by rji. Let E be the kinetic 
energy dissipated per unit length of the flight path. Then EV 
is the kinetic energy lost in unit time and 

TV __ T 
~ TV + EV ~ T + K 

This expression is readily simplified. For the mass of air 
engaged per unit length of the flight path is m/V, so that E — 
|(w/F)v2. Hence, since T = tnv, 

mv - 1 /qfi\ 

Vi~mv + $(m/V)v2 “ 1 + i(i>[V) ' ' K > 

Efficiencies are usually expressed as percentages. The ideal 
efficiency never reaches 100 per cent., but it is greater the less 
the value of v/V. Now v ~T/m and, for constant density of 
the air, m is approximately proportional to the product of the 
disk area and the forward speed. Thus v is proportional, at 
constant altitude, to the thrust per square foot of the disk and 
inversely proportional to V. Hence high ideal efficiency is 
obtained with a lightly loaded actuator disk at high speed. 

The problem of ideal propulsion is solved once v can be deter¬ 
mined, but this is not immediately possible because m is greater 
than appears at first sight, owing to the air crossing the actuator 
disk at a faster speed than the aircraft speed. 

172. In developing the theory further the actuator is assumed 
to be located without axial movement in a uniform head wind of 
velocity V. Thrust is then derived from increasing the momen- 
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turn of the air crossing its disk. The increase of velocity implied 
cannot be added suddenly to this air, but occupies a space of, 
say, two or three disk diameters and is begun well in front of the 
disk. The stream of air engaged accordingly takes the form of 
a jet stretching in front of, and behind, the airscrew. The 
density of the air is constant throughout, and the cn~ss-sectional 
area of the jet is inversely proportional to the velocity, which is 
uniform over any cross-section. The part behind the actuator 
is called the slipstream, and the narrowest part the vena contracta. 
Only here, a diameter or so along the slipstream, is the fully 
augmented velocity reached. 

Let the total increase of velocity be bV. Then b, a coefficient 
to be determined, is called the slipstream jactor} and the final 
velocity of the slipstream is F(1 + b). 

Let the part of this increase which is added in front of the disk 
be aV. Then a is called the inflow factor, and the velocity through 
the disk is V(l -fa). 

It will be convenient to have symbols for the stagnation or 
dynamic pressure far in front of the actuator, through the disk 
of rotation, and at the vena contracta. So we define : q = \pV2f 

qA = $P[V( 1 + «)]2 and qs = \p[V{ 1 + b)f. 
The impulsive action of the ideal actuator is evidenced by a 

sudden increase of the static pressure from the uniform value of 
px on the face of the disk to the uniform value of p2 on its back. 
The pressure difference p2 — px is equal, of course, to the thrust 
per square foot of the disk. 

The pressure px is evidently less than the undisturbed pressure 
p, because Bernoulli's equation must apply in front of the disk 
and qA is greater than q. But in ideal propulsion the flow in the 
slipstream is assumed also to be irrotational; there is assumed 
to be no spin in the slipstream. The streamlines all become 
parallel again at the vena contracta, and the air possesses no 
centrifugal force to support a pressure gradient. Hence the pres¬ 
sure at the position of the vena contracta is the same within the 
slipstream as outside it, and is equal to the undisturbed pressure 
p. It follows that the pressure and velocity in the slipstream 
are related to one another by Bernoulli's equation and, since qs 
is greater than qA> that p2 is greater than p. 

Bernoulli's equation cannot be applied between any point 
outside the slipstream and any point within it, because the 
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actuator does work on the air in forcing it into the slipstream 
against the sudden pressure 
rise p2 — pl, The pitot head of 
the air engaged is increased 
by this amount at the disk. 

The foregoing considera¬ 
tions are illustrated schem¬ 
atically in Fig. 100, where the 
velocity, pressure and pitot 
head are plotted along the 
stream. As already men¬ 
tioned, p2 — pY can be found 
from the thrust and the disk 
area; bV, the added velocity, 
can be found from the thrust 
and a knowledge of the mass 
of air dealt with per second, 
on the lines indicated in the 
preceding article and as will 
be further explained; and 
finally the flow will be com¬ 
pletely understood once the 
relationship between the fac¬ 
tors a and b is established. 

173. Relation of a to b 

Consider any streamline which crosses the actuator disk. 
Applying Bernoulli’s equation between any point far upstream 
and the point of intersection on the face of the disk gives 

Pi+9a=P + <I- 
Applying this equation between points on the back of the disk 
and at the vena contracta gives, since the pressure at the latter 
position is again equal to pt 

Pi + ^a = P + 7s- 

Subtracting the first of these expressions from the second, 

p2~-Pi^qs-q 
= \pV*[{ 1 + 6)2 - 1] 

= ?&(2 + b). 
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Let A denote the area of the actuator disk. Then the mass m 
of air crossing the disk per second is pAV(l + a). The velocity 
finally added to m is bV. Hence, as in the preceding article, 

T =PAV{ 1 + a) . bV 
= 2Aqb{\ + a). 

But T — A(p2 — Hence 

Pi Pi ~ 2?&(1 + a). 

We now have two alternative expressions for the pressure 
difference. Equating them gives 

2 + 2a = 2 + b, 

i.e., a — \b.(87) 

Thus one-half of the total increase of velocity has been added to 
the stream by the time it crosses the actuator disk. 

This important result is not restricted to ideal propellers, but 
is also closely true of airscrews. There is no need to retain the 
symbol b for the slipstream factor; if the inflow factor is a, the 
slipstream factor is 2a. 

Example 86.—A propelling device, 2 ft. in diameter, is located 
in a wind tunnel working at 50 ft. per sec. and gives a thrust of 
5 lb. Regarding it as an ideal actuator, determine (a) the velocity 
at the disk of rotation, (b) the pressure on each side of the disk 
relative to the undisturbed pressure of the wind. 

The disk area A — n sq. ft., whence 

T = 5 - ttPF(1 + a) . 2aV 

— 4cnq(a + a2). 

Since V = 50 ft. per sec., q = 2*975 lb. per sq. ft., whence 

a + a2 = 0*134, 

giving a — 0*12, approximately. 

Hence (a) VA = 50 x 1*12 = 56 ft. per sec. 

This result gives qA — £p(56)2 = 3*73 lb. per sq. ft. and, since 
Vs = F(1 + 2a) = 1-24F = 62 ft. per sec., qs = ip(62)2 = 4*575 
lb. per sq. ft. Therefore, applying Bernoulli’s equation and noting 
that Ps = p, 

pi — p = q — qA = — 0*755 lb. per sq. ft., 

p2~ P = is — 9a = + °*845 lb* Per S<1* ft* 
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Hence (b), compared with the undisturbed pressure^, the pressure 
on the face of the disk is reduced by 0*755 lb. per sq. ft. = 0*145 
inches of water, and the pressure on the back of the disk is 
increased by 0-845 lb. per sq. ft. = 0-163 inches of water. 

It may be noted that according to these estimates the thrust = 
n(p2 — p{) — 1*6 7c = 5-027 lb., providing a satisfactory check 
considering the round numbers used. 

174. Evaluation of Ideal Efficiency 

Referring back to Article 171, the velocity v there introduced 
is now seen to amount to 2a V. Thus iv/V = a and the expres¬ 
sion (86) of that article reduces to 

Vi 1 + a 
(88) 

It is of interest to derive this result alternatively for the case 
of an actuator stationary in a head wind. Relative to the head 
wind, useful work is done at the rate TV. But T = m . 2aV. 
Therefore this rate = m . 2aV2. The rate at which energy is 
supplied to the ideal actuator is equal to the rate at which 
the wind increases its kinetic energy. This rate = \m\V{ 1 + 
2a)]2 — \mV2 = 2mV2 . (1 + a)a. The ideal efficiency is there¬ 
fore given by 

_ m . 2aV2 
^ 2mF2(l + a)a 

which agrees with (88). 
To evaluate the ideal efficiency in a given case the first step is 

to find a. This is obtained from a knowledge of the thrust, 
speed and disk area; for T = m . 2aV and m = pAV(l + a). 
Expressing A in terms of the diameter D of the actuator, we 
have 

T = p\DW*{\ + a)2a 

whence a + a2 = 
Truzq 

(89) 

The inflow factor is small compared with unity and a2 fre¬ 
quently less than 10 per cent, of a. So the quadratic equation 
for a is best solved by trial and error, neglecting a2 for a first 
approximation. Once a is found, the efficiency follows imme¬ 
diately by (88). 



IX] PROPULSION AND AIRSCREWS 241 

Example 87.—An airscrew, of 12 ft. 6 in. diameter, delivers 
1160 thrust H.P. at a speed of 174 m.p.h. What is its ideal 
efficiency ? 

The thrust T = 1160 x 375/174 = 2500 lb. q = 77*5 lb. per 
sq. ft. (tt/4)Z)2 = 122*7 sq. ft. = A. Working from first prin¬ 
ciples i 

T = #» . 2aV = pAV( 1 + a) . 2aV = 4Aq(a + *2) 

„ T 2500 
giving a + a* = = 2-rortTr-^n=r~k — 0*0657. 4 X 122-7 X 77-5 

Approximation : (1) (2) (3) 
Assumed values : a : 0*0657 0*0614 0*0619 

«2 : 0*0043 0*0038 0*0038 

Results : a + a2 : 0*0700 0*0652 0*0657 

Hence a — 0*0619 and = 1/1*0619 = 94*2 per cent. 

The above example is set out in full to illustrate that such 
problems are readily and conveniently worked without reference 
to derived formulae, of which there are many in the present 
subject. The expressions necessary for a solution are easily con¬ 
structed as required. A formal method of successive approxima¬ 
tion is given in which the excess of each value of a + a2 is 
subtracted from the value assumed for a to provide an ensuing 
approximation. Slight experience in making a judicious estimate 
for the first approximation shortens this work. 

175. Airscrew Slipstream Calculations 

Let S be the cross-sectional area of the vena contractor. Then, 
since the same mass of air crosses this area in unit time as crosses 
the airscrew disk and the flow is incompressible, AV{\ + a) = 
SF(1 + 2a) or, if d is the diameter of the vena contracta and D 
that of the airscrew, dfD = \/(S/A)—i.e., 

d _ I 1 + a 

D ~ VI + 2a 

This represents only a small contraction at the narrowest part 
of the slipstream; thus for the above example the value of d/D 
is V'(l,0657/l*1314) = 0*97; and contraction is often neglected. 

The drag of a body, such as an engine nacelle or aeroplane 
fuselage, exposed in a slipstream is clearly increased thereby. 

R 
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The effect is complicated, but a sufficient approximation for many 
purposes is obtained by assuming that the whole length of the 
body is subjected to the final velocity appropriate to the nar¬ 
rowest part of the slipstream. The glider drag of the body— 
i.e., that for T = 0—is then increased by the factor 

V2(ly2 ^ = 1 + 4(« + a*) = 1 + jq . . (90) 

by (89), A being the disk area of the airscrew. This is, however, 
an under-estimate, and a closer approximation can be obtained 
by substituting a smaller value for A to reflect the inefficiency 
of airscrew tips. 

The calculations of Chapters VII and VIII can be corrected 
for the effect by estimating the glider drag of all aircraft parts 
exposed within the slipstream and increasing this part of the 
drag by the above factor. In a given case the increase of drag 
is proportional to Tjq, and is therefore most marked during 
climbing and take-off, when the airscrew is heavily loaded and 
the speed is low. 

Estimates framed in this way, even including a suitable reduc¬ 
tion in A, still do not go far enough in the case of first-class 
aeroplanes, since slipstreams induce turbulent flow over smooth 
and well-shaped aircraft surfaces, increasing their drag coefficients 
besides the air speed. As some compensation for airscrew slip¬ 
stream losses, the higher local speed increases the power of the 
tail unit and controls during take-off. 

Example 88.—A single-engined aeroplane weighing 11,000 lb. 
has an airscrew 12 ft. in diameter. The glider drag of parts 
affected by the slipstream is 250 lb. at 150 m.p.h. Form a lower 
estimate of the reduction in the rate of climb at this speed, as 
due to the slipstream, assuming 800 thrust H.P. to be available. 

r = 800 X 375/150 = 2000 lb.; q= jpV* = 57-6 lb. per sq. 
ft.; A (without reduction) = (n/4)144 = 113 sq. ft. These give 
T/Aq = 0-307. 

The minimum increase of drag due to the slipstream is thus 
250 X 0-307 — 76-75 lb. and the increment of H.P. absorbed in 
this way is 76-75 x 150/375 = 30-7. Now 30-7 H.P. would climb 
the aeroplane at the rate 30-7 x 33,000/11,000 = 92 ft. per min. 
This represents, therefore, a lower estimate of the loss in rate of 
climb incurred (it would probably amount to some 7 per cent.). 
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THE AIRSCREW 
J76. Thrust-Grading 

Considering the disk of rotation of an airscrew, the area of a 
narrow annulus of mean radius r and width Ar is 2tty x Ar. 
Let t be the thrust per unit area of the disk at radius r. Then 
the thrust of the annulus is 2tty x Ay x t. The thYust-gYading 

of an airscrew disk at radius y is defined as the thrust of a narrow 
annulus of that radius per unit of its width, and is therefore 
27TYt. It will be denoted by T0'. 

With an ideal airscrew t is uniform over the disk. Thus the 
thrust-grading is proportional to y 
and can be represented by the tri¬ 
angular diagram {a) of Fig. 101. The 
area of any such diagram is pro¬ 
portional to the total thrust T. In 
the present case, for instance, if the 
diameter of the disk is D the 
maximum value of T0f is 2tt . \D . t 
and the area of the diagram is 
} . \D . 2tt . W . t = (tt£>2/4) x t, 
which evidently = T. 

The perfect triangular thrust-grading diagram cannot be 
realised with a practical airscrew, since flow is obstructed at inner 
radii and fails to be accelerated backward in the desired manner 
at outer radii. Inner and outer annuli consequently produce a 
much-diminished thrust, becoming negative in the former case, 
and these losses require to be compensated by increasing the thrust 
of intermediate annuli. The thrust-grading diagram is accordingly 
modified for a practical airscrew from (a) to (b) of Fig. 101. 

The two diagrams (a) and (b) enclose equal areas and so 
represent equal thrusts on the same diameter, but equal ideal 
efficiencies are not implied because departure from the triangular 
form involves loss of efficiency. The loss arises mainly at outer 
radii and is reduced by increasing the number of blades. 

The inflow factor of a real airscrew depends on the radius. If 
Tq is the thrust-grading at radius r, the mass of air per second 
crossing a narrow annulus of this radius per unit of its width is 
p . 2tty . V(l + a); the velocity eventually added is 2aV; whence 

T0' = &7rYq(a + a2) . . . . (91) 

{a) Ideal Propeller, (b) 
Practical Airscrew. 
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The thrust is transmitted equally to the boss by the blades. 
If their number is B, then the thrust-grading diagram with its 
ordinates reduced in the ratio 1 /B applies to each blade separately. 
The thrust-grading of each blade will be denoted by T\ so that 
TV = BT'. It is important to note that T0' in (91), as else¬ 
where, denotes the thrust-grading for all the blades added 
together. 

177. Velocity and Force Diagram for a Blade Section 

Consider an airscrew which rotates at n revolutions per second 
and propels an aircraft at the velocity V feet per second. With 
a certain reservation, the resultant velocity relative to the wind 
of a blade section at radius r is compounded of a translational 

speed of F(1 + a) and a cir¬ 
cumferential speed of 2nrn. 
The reservation is that a real 
airscrew causes the slipstream 
to spin slowly, reducing the 
latter component of relative 
velocity. The spin sometimes 
requires to be determined but 
its effects are often small, and 
it will be neglected throughout 
this chapter. 

Fig. 102 gives the velocity 
diagram in these circumstances, 

the section moving with the resultant velocity W. The angle </> 
between the direction of motion and the disk of rotation is called 
the helical angle; the section traces out a screw-path having 
this angle. From the figure, 

03 
4* 

> 

2nrn 
Fig. 102.—The Circumstances of a 

* Blade Element at Radius r. 

tan (f> = V(l + a) 
2TTYU 

(92) 

Thus <f> is large for a section near the root of a blade, but much 
smaller for a section near its tip. Consider for illustration the 
case : n — 25 and F(1 + a) = IOOtt. At a radius of 1 foot, 
tan<£ = 10077/5077—i.e., <f> = 63£°, nearly; at a radius of 3 feet 
tan ^ = 2/3—i.e., <f> = 33*7°; whilst at a radius of 6 feet <f> is 
less than 18J°. 

Similarly, the resultant velocity is little greater than the 
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translational speed at small radii, but it is much greater at large 
radii. In the above example, where the relative translational 
velocity is 314 feet per second, the resultant velocity is only 
314/sin 63J° — 351 feet per second at a radius of 1 foot, but it is 
314/sin 18£° = 990 feet per second, nearly, at a radius of 6 feet. 

The blade is required to yield a large thrust with as little 
resistance to motion as possible. It is therefore formed of an 
aerofoil, twisted to take account 
of the variation of <f> (Fig. 103). 
The section at radius r, shown 
in Fig. 102, is set at a suitable 
angle of incidence a to the 
direction of motion. 

The local lift L' and drag D' 
per unit railius that are appro¬ 
priate to the aerofoil section, 
its incidence and its resultant velocity are also marked; L' is 
perpendicular to W and D' is parallel thereto. It is sometimes 
convenient to deal with the resultant aerodynamic force per unit 
radius, which is denoted by R' and is inclined backward from U 
by the angle y, given by tan y = D' jU. Thus R' is inclined to 
the direction of thrust by the angle </> + y. 

The thrust-grading T' is marked in the figure. Tf is equal to 
the resolved part of L' less the resolved part of Dr. If Lf and D' 
are resolved parallel to the disk of rotation, a force per unit length 
results which, when multiplied by r, gives the torque per unit 
length at that radius. Denoting this torque-grading by Q', the 
force-grading is given by Q' jr. The torque is about the airscrew 
axis and has to be overcome by the engine. 

178. Variation of Efficiency Along the Blade 

In dealing with the real airscrew, whose whole torque Q can 
be estimated or measured, we can write down at once an expres¬ 
sion for the overall efficiency. If the whole thrust is T, useful 
work is done at the rate TV, as before. But now it is known 
that work must be done by the engine at the rate: torque x 
angular velocity—i.e., at the rate 27rnQ. Thus, using the symbol 
7) without a suffix for the overall or actual efficiency, 

TV_ 
V 2trnQ ' 

| ! ! j 
-0--—JfL-._ 

I i i 
Fig. 103.—Sections of an Airscrew 

Blade. 

(93) 
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It is important to note that this expression duly includes losses 
arising from kinetic energy gained by the atmosphere. 

Just as the area of the thrust-grading diagram is proportional 
to the thrust, so the area of a corresponding torque-grading 
diagram is proportional to the torque. If these areas are known, 
therefore, and also V and nt the overall efficiency follows. Alter¬ 
natively, it can be determined from experiment, as will be 
described shortly. 

With the ideal airscrew the efficiency is the same at all radii. 
But this is not true of the real airscrew, and it is of interest to 
see how the efficiency of the latter varies along the blades. The 
local efficiency at radius r is usually called the efficiency of the 
blade element, and is given by 

TV 
~ 2rmQ' 

where the thrust- and torque-grading refer to that radius. 
From Fig. 102, 

T = R' cos (<f> + y) . . . . (94) 

y = R' sin {<f> + y). 

whence 

and 

Now 

Hence finally 

T 

Q' 

Ve 

1 

r tan (<f> + y) 

V 1 
27tyu ' tan (<f> + y)* 

Vfeirtn = tan <j>j{ 1 + a). 

1 tan <f) 
(95) 

rie 1 + a ’ tan (<f> + y) 

If the blades had no skin friction or form drag, we should 
have y = 0, and the expression for the 
efficiency of the element would take the 
same form as that for the ideal efficiency. 
But the value of a would not be the same 
for all radii, and the efficiency of the whole 
airscrew would therefore still be less than 
its ideal efficiency. 

The expression (95) includes all losses, 
and plotting it against the radius shows rje 

to increase from the root outwards to a maximum at a certain 
radius and then to decrease again (Fig. 104). The maximum 

RADIUS 
Fig. 104.—Variation of 

Efficiency along 

Blade. 
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occurs when <f> is approximately equal to 45°. Airscrews are 
therefore designed to develop a strong thrust per foot run of 
blade at round about the radius which makes <f> = 45°, so that 
this large part of the thrust will be produced with high efficiency. 

179. Lift and Drag Coefficients on the Blades 

Let a value be specified for the thrust-grading T0' at a certain 
radius, which it is required the blades shall produce at given 
values of V, p and n. The inflow factor can be determined as in 
Article 176, formula (91), and the triangle of velocities constructed 
for the given radius, as in Fig. 102. Let B represent the number 
of blades to the airscrew. Then the value of R' required from 
each blade is given by 

R' = 
1 T ' £ 1 o_ 
B ’ COS (<f> + y) 

(96) 

and is determined once y is known from the effective lift-drag 
ratio of the sections at the radius concerned. 

A close approximation to R' is usually 

R' = CL . $PW*c, 

where c is the chord of the blade section at radius r, called the 
blade width. Accurately, V(CL2 + CD2) should be substituted 
for CL, but CD2 is always negligible in comparison with CL2 
except near the root and tip of the blade or in case of a stalled 
section. 

To realise the value of Rr required by (96), both CL and c can 
be adjusted. Let it be assumed that a suitable blade width has 
been decided upon, thus fixing the value the lift coefficient must 
have. Then the question arises as to what incidence a the blade 
section must be given in order to develop the required lift 
coefficient. 

An aerofoil of similar section can be tested in a wind tunne 
at the same Reynolds number. But should it be tested under 
two- or three-dimensional conditions ? As found experimentally 
in Article 111, the relation between lift coefficient and incidence 
is very different in the two cases. 

Associated with this question is the equally vital one of what 
to take for the drag coefficient, on which y depends. Should 
CD include skin friction and form drag only, as in the two- 
dimensional case, or induced drag as well ? 
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The blade section should be set at the incidence appropriate 
to two-dimensional flow. This does not mean that an airscrew 
blade works under two-dimensional conditions. But increasing 
the translational component of velocity from V to V(l + a), as 
we have done, decreases the effective incidence of the blade 
section in the same way as changing from two- to three-dimen¬ 
sional conditions decreases that of an aerofoil. The allowance 
is already made in the diagram of velocities, and cause for further 
increase of the two-dimensional incidence arises only from the 
slow spin of the slipstream, which we are neglecting for simplicity. 

Similarly, no induced drag should be included in CD. Waste 
of power from this cause does occur in an airscrew, but it is 
precisely the waste of which account is taken in the theory of 
ideal propulsion. For the airscrew blade at radius r, the loss is 
already represented in the calculation of 7ip by the reducing 
factor 1/(1 -{- a). 

It follows that, away from the root and tip of the blade, and 
provided the section is not stalled, the value to be assumed for 
the drag coefficient will be small, making y small. It is usually 
possible to assume y = 1°, subject to a minimum value for CD 
(0-010, or rather less). 

180. Blade Angle and Pitch 

If an airscrew is put on a table with its axis vertical, the angle 
between the table and the chord-line of the section at any radius 
is called the blade angle at that radius. It is denoted by 9 and, 
from Fig. 102, 

9 = cf> + a.(97) 

If 9 is not adjustable during flight—i.e., if the blades are rigidly 
connected to the boss—the airscrew is said to be of fixed pitch. 
This case will be discussed first, leaving that of variable pitch 
until later. 

We may suppose that we have designed an airscrew of a 
certain diameter so as to be especially favourable under top 
speed conditions in straight level flight, represented by particular 
values of the aircraft speed, V feet per second, and the airscrew 
speed, n revolutions per second. At a sufficient number of radii, 
we have found the helical angles <f>, arrived at the necessary 
incidences a, and so laid down the blade angles 9, to which the 
airscrew has been made. 
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Under the designed conditions, the airscrew has a certain 
advance per revolution—viz., V/n feet—which may be vaguely 
called pitch. Working at this pitch the airscrew will always be 
equally satisfactory, however V and n may change. But chang¬ 
ing the conditions of working in such a way that V/n remains 
constant, though experimentally interesting, does 110c reflect the 
varying conditions of flight. Changing to maximum climb, for 
example, will cause both V and n to decrease, but V far more 
than n. Thus at any radius </> decreases and, 9 remaining con¬ 
stant, the incidence a increases; a may increase so much as to 
stall the blade. The advance per revolution—that is to say, the 
working pitch—has become very different from the designed 
value. Let us go to the other extreme and imagine a fast power 
glide. V will have increased greatly, but not n; the engine will 
have had to be throttled to prevent it from rotating at a speed 
greater than that for which it is designed. Thus the pitch is 
now greatly increased. Hence it will be seen that pitch, in the 
above sense, is a rather indefinite term. 

It is useful to define a pitch which conveys a definite picture 
to the mind of what the airscrew concerned looks like, enabling 
one of stated pitch to be selected on inspection from amongst 
others. This is called the geometrical pitch, and is most easily 
understood with reference to the fast glide. Let the axial advance 
per revolution be increased until p = 9. Then a = 0, but this 
does not imply zero thrust; the blade sections are cambered and 
will still have a lift coefficient at zero incidence. Owing to 
variation of the inflow factor along the blade, </> cannot be made 
equal to 9 at all radii simultaneously. We therefore decide to 
make a = 0 at some chosen radius, either 0*7 or 0*75 of the 
maximum radius. The value of V/n for this condition is the 
geometrical pitch required. The inflow factor will be very small 
for this condition. Neglecting it gives, denoting the geometrical 
pitch by P, tan 9 = tan p = V/2irm—i.e., 

P = V/n = 2ttt . tan 6 ... . (98) 

and 9 can be measured on the actual airscrew by use of a 
protractor. 

This pitch has little aerodynamical significance because the 
camber of the sections varies from one airscrew to another. It 
is found, however, that every one design of airscrew develops 
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zero thrust at a particular value of V /nD, no matter what V, n 
or D (the diameter) may be. This value of V/nD, unique to 
that particular design, is called the experimental mean pitch. 
The quantity V/nD is non-dimensional, and the different pitch P 
is also preferably expressed non-dimensionally in the form P/D 
in order to allow for variation of diameter in a specified design. 

Fig. 105 illustrates the section at a certain radius of a fixed 
pitch airscrew blade under various working conditions. The 

Fig. 105.—Incidence of a Blade Section of a Fixed Pitch Airscrew : 

(a) At Experimental Mean Pitch (Zero Thrust), (b) Geometrical 

Pitch (Power Glide), (c) Normal Aircraft Speed (Maximum Efficiency), 

(<d) During Climb at Maximum Angle. 

example is a flat-backed airscrew, in which incidence and blade 
angle are specified by the flat undersurface of the section. 0 is 
constant, but a increases from a negative to a large positive 
value as the helical angle <f> diminishes. 

When working at its experimental mean pitch, an airscrew 
cleaves through the air without giving it backward momentum. 
Even at the pitch P there will be comparatively little backward 
momentum if the blade sections are only gently cambered. To 
develop a large thrust, the airscrew must advance a considerably 
less distance per revolution. The decrease of such axial advance 
is sometimes called the slip, and is usually expressed non- 
dimensionally in terms of P. The effect of slip is to decrease the 
helical angle <f> and so increase the incidence of the blade sections, 
whence the greater thrust is obtained. But persisting in the 
adjustment eventually stalls the blade sections. No additional 
thrust then results, and increase of torque, due to the large form 
drag of the sections, leads to a low efficiency. 

181. The Complete Airscrew 

An airscrew design can be tested by means of a model in a 
wind tunnel. The model airscrew is best driven by an electric 
motor situated directly behind it and enclosed in a fairing, which 
should not be unreasonably large compared with the airscrew. 
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For such reasons 2\ feet is found to be a suitable minimum 
diameter for the airscrew, indicating a 4-foot tunnel. However, 
qualitative results can be obtained with smaller models. 

The suspension from the balance usually enables both the 
thrust and the torque to be measured directly. The suspending 
wires may pass through clearing holes in the fairing and the 
latter be supported independently from the tunnel walls. Inter¬ 
ference between the airscrew and the fairing still gives trouble, 
however, unless the latter is small and situated well downstream. 
The rotational speed of the airscrew is conveniently determined 
by use of the stroboscope. Only a limited number of rotational 
speeds can then be tested, but the tunnel speed can always be 
varied to secure a continuous change of V/n. 

Measurements of the thrust T and torque Q are reduced to 
non-dimensional coefficients by the formulae 

__ Thrust , __ Torque 
'T ~ ~pnW±’ ~ ~pn2lW ' 

(99) 

The units are: T, lb.; Q, lb. feet; p, slug per cubic foot; n, 
revolutions per second; D, feet. These coefficients are evaluated 
for a sequence of values of V/nD, a quantity of such common 
occurrence that it is given for brevity the symbol J. For any 
particular design of airscrew working at any particular value of 
J, the thrust and torque coefficients have constant values, 
whatever the values of V, n and D, 
subject to scale effects and provided 
tip speeds are not excessively high. 
Thus curves giving kT and kQ plotted 
against J are representative of all 
airscrews of the given design. 

Typical curves of this kind are 
given in Fig. 106. There is also 
added a curve showing the variation 
with J of the efficiency, which is 
simply related to the coefficients as 
follows. We have 

TV krppffiD* 

Fig. 106.—Performance Curves 

for a Complete Airscrew. 

V = 
_v_ 

2rrnQ 2nn . kqpn^D5 

kj, J 
kQ ’ 2tt 

(100) 
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Various characteristics of the curves will be noticed. The 
torque is not zero when the thrust is zero. But, if J were much 
further increased, leading to a considerable negative thrust, the 
torque would change sign—i.e., the airscrew would begin to work 
as a windmill. In this state an airscrew acts as an air-brake. 
The bend occurring in the curve for kT when a small J is reached 
indicates the stalling of the blade sections, already described. 
Maximum efficiency occurs at a reasonable slip and can be 
arranged to correspond with the top speed of the aircraft, or 
a somewhat less speed if preferable. But a greatly reduced for¬ 
ward speed, as for take-off or climbing, then involves consider¬ 
able loss of efficiency owing to the low value of J. The maximum 
efficiency is a good deal less than the ideal efficiency under the 
same conditions, but it is nevertheless remarkably high con¬ 
sidering the disabilities to which an airscrew is liable. 

Example 89.—A model airscrew, 3 ft. in diameter, tested in a 
wind tunnel working at 120 ft. per sec., is found to develop a 
thrust coefficient of 0T1 and a torque coefficient of 0*022 at 2400 
r.p.m. What is its efficiency? 

J = Z =_120__ I 
J nD (2400 4- 00) X 3 ' 

whence the expression (100) gives 

iq = X ^ = 0*796, or 79*6 per cent. 

182. Choice of Pitch 

In view of the simple relationship (100), only two of the three 
curves need be retained, and it is usually most convenient to 
have those for kQ and rj. The brake horse-power of the engine 
is then given by 

B.H.P. = 27TnQ/550 

= 2*77 . kQpnW5/550 . . . (101) 

whilst the thrust horse-power made available is given by 

T.H.P. = rj x B.H.P.(102) 

Fig. 107 illustrates the kq- and rj-curves for a family of three 
airscrews, all of the same design except for an increasing pitch. 
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It will be noticed that the maximum efficiency increases con¬ 
siderably with pitch within the range illustrated. 

J 
Fig. 107.—Variation of Airscrew Char¬ 

acteristics with Pitch. 

The reason for such initial increase can be understood readily. 
Mention has already been made (Article 178) of the fact that the 
maximum efficiency along an airscrew blade occurs close to the 
radius for which <f> = 45°. Accepting this value so that tan </> = 1, 
and neglecting the inflow factor, leads to the approximate result 
that V = 2irm at the radius for maximum efficiency, and hence 

j _ V _ 2rrrn . tan </> __ 2rrr 
J ~~ nD ~~ nD ~~ D 

r 

Now the thrust-grading diagram shows that the thrust delivered 
by the airscrew is heavy at about two-thirds of the maximum 
radius but light at one-third of the way along the blades. The 
above result then shows that if the airscrew works' at / = 2n/^ 
a large part of the thrust will be delivered under the condition 
of maximum local efficiency, but if it works at J ~ 7r/3 only a 
small part of the thrust will be delivered with this advantage, 
the radius for maximum local efficiency being too small in the 
second case. 

A large working value of J is much more easily achieved by 
increasing V than by reducing n. Thus the high speeds of modern 
aircraft account in large part for the high efficiencies of modem 
airscrews compared with those of fifteen years ago, a result that 
is evident qualitatively from the simple theory of ideal propulsion. 
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183. Variable Pitch 

The essential difficulty in the way of employing high pitch at 
top speed is that the airscrew stalls very badly at take-off and 
may even stall at climb. The difficulty is removed in the variable 
pitch airscrew, whose pitch can be suitably reduced, when re¬ 
quired, by turning the blades so as to reduce the blade angle 0. 
The effect is very similar to that produced by decreasing the pitch 
in the family of airscrews illustrated in Fig. 107, with reference 
to which the action will accordingly be described. 

It must first be appreciated that the B.H.P. of an aero engine 
depends acutely on its rotational speed and that, at full throttle, 
this speed is determined by the airscrew. If the torque of the 
airscrew is excessive, the engine is slowed down, and fails, perhaps 
by a wide margin, to develop its full B.H.P. The equation (101) 
states that kq must have a precisely correct value for such failure 
to be avoided. The first point in designing an airscrew is to 
ensure that kq will be correct in this sense at the appropriate 
value of J. 

We will assume the above condition to have been fulfilled at 
the top speed of the aircraft and with the airscrew at its largest 
pitch, the value of J corresponding to maximum efficiency. 
Without changing pitch, let the aircraft speed be halved; kq is 
greatly increased, n falls away, and much of the B.H.P. of which 
the engine is capable is lost. Even if the efficiency were main¬ 
tained, therefore, the T.H.P. would be reduced in the same pro¬ 
portion. But actually the efficiency drops very considerably, 
and the T.H.P. is all the more reduced thereby. 

If, however, the pitch is suitably reduced, the original value 
of kq is realised at one-half the original value of J; the full value 
of n is again reached, and consequently the full B.H.P. This 
alone represents a great gain. But in addition, as reference to 
Fig. 107 shows, the efficiency is substantially increased, though 
not to its original value. Therefore, referring to the equation 
(102), both the factors on the right are increased, and the T.H.P. 
increases on both counts. 

It is readily possible for the take-off thrust of a power unit to 
be doubled in this way. An example below illustrates conserva¬ 
tively the effects on climb. Use of variable pitch greatly enlarges 
the scope of twin-engined aeroplanes by enabling a high ceiling 
to be maintained on one engine. Another circumstance in which 
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it shows to advantage is when the aeroplane will normally fly for 
long periods at very different altitudes. 

184. Examples 

The following examples frequently lead on from one another 
in order to save useless repetition. It will be clear that each 
could be worked ab initio. 

Example 90.—A 3-bladed airscrew rotates at 1350 r.p.m. and 
propels an aircraft at 225 m.p.h. Determine the helical angle at 
a radius of 4 ft., where the thrust-grading is 220 lb. per ft. on 
each blade. 

T'0 = 220 x 3 - 2tt . 4 . PF(1 + a) . 2aV 

= 32 Tiq(a + a*). 

q = £p(330)2 = 129-6 lb. per sq. ft. 

Hence a — 0*048, approximately, and V{\ + a) — 346 ft. per sec. 

2nm ~ 8tt x 22\ — 565 ft. per sec. 

These give tan <f> — F(1 + a)l2Tcrn = 346/565 = 0*612. 

Therefore <j> = 31*45°. 

Example 91.—If the two-dimensional lift-drag ratio of the 
blade sections is 50, determine the local efficiency of the above 
airscrew at 4 ft. radius. 

tan y = 1/50 = 0*02—i.e., y = M5°. 

This gives (f> + y = 32*6° and tan (<f> + y) = 0*640. 

1 tan <f> 1 0-612 
Hence rle ~ j + • tan + T) - 1-048'0-640 

= 91*2 per cent. 

Example 92.—If the local lift coefficient is to be 0-80, find the 
necessary blade width (c) of the above airscrew at 4 ft. radius. 

The resultant velocity W =V(l + a) -r sin <f> — 346/0*522 = 
663 ft. per sec., giving JpJT2 = 523 lb. per sq. ft. Then by the 
formula (96) and the question data, 

CL cos + y) . ipIT2c = 220 

i.e., CLc = 

Hence c — 0-5/0-8 — 0*625 ft. = in. 

0*8425 X 523 
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Example 93.—The blade sections concerned in the above 
examples have an angle of no lift of — 2°. What is the blade 
angle at 4 ft. radius ? 

Two-dimensional conditions are to be assumed, whence, from 
Article 106, CL increases at the rate 0*094 per degree. Thus the 
increase of incidence from the angle of no lift — 0*8/0*094 — 8*5°. 
The incidence a is therefore 8*5 — 2 = 6*5°. 

This gives for the blade angle 

0 = + a = 31*45° + 6*5° = 38°, nearly. 

Example 94.—What is the pitch of the above airscrew ? 

It may be assumed that 4 ft. is about 0*7 of the maximum 

radius, so that the pitch P can be assessed from the foregoing 

results. This gives at once 

P = 27:r tan 0 = 871 tan 37*95° 

= 19 ft. 7 in. 

Example 95.—The airscrew of an aeroplane is 12 ft. in diameter 

and has the following characteristics : 

J . . 0*95 M 1*3 1*4 

kQ . . 0*021 0*020 0*017 0*014 

f] . . 0*75 0*795 0*83 0*83 

At jvhat aircraft speed will the engine develop 900 B.H.P. at 

1200 airscrew r.p.m. ? 

Since n = 20 r.p.s., and Q = kqpn^D^, the general expression 

B.H.P. = 2nnQ /550 

gives 900 = 2tt . kQ(20)3p( 12)^/550 

whence kq = 0*0166. 

Plotting kq against J from the data in the question shows the 

corresponding value of J to be T315. Since J = V/nD, 

V = JnD = 1*315 x 20 x 12 

= 316 ft. per sec. or 215 m.p.h. 

Example 96.—Referring to Example 95 and further assuming 

that the B.H.P. delivered by the engine is proportional to 

what will be the rotational speed when J = 0*95 ? 

Since we can write B.H.P. = kn*l* and B.H.P. = 900 when 

n — 20, the constant coefficient k — 900/(20)3/4 = 95*1, giving for 
all permissible speeds 

B.H.P. = 95*1 x «3/4. 
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for the power of which the engine is capable. But the power 

required by the airscrew is 

B.H.P. = 2itn . Agp«2£)6/550. 

Hence, since pi)5 = 592, , 

2tc * -f?2 kQn3 = 95-1 X nm 
550 v 

i.e., = 14-07/^g. 

At J — 0-95, = 0*021 and the formula gives n = 18*2 r.p.s. 

Example 97.—Supposing the aeroplane to climb at J — 0*95, 

what would be the speed and the T.H.P. available? 

As in Example 95, the speed 

V = JnD = 0*95 X 18*2 X 12 

= 207 ft. per sec. or 141 m.p.h. 

This speed is not required in order to evaluate the T.H.P. For 

. B.H.P. = 95*1 x w3/4 = 838 

on substituting 18*2 for n. Hence, from the data in Example 95, 

T.H.P. = 7) x B.H.P. = 0*75 x 838 

= 629. 

It will be noted that the T.H.P. available at 215 m.p.h. when 
n — 20 r.p.s. is about 747. A large proportion of the difference 
of 118 T-.H.P. would be recovered by employing variable pitch. 

S 



Chapter X 

STABLE FLIGHT 

185. The Inherently Stable Aeroplane 

An aeroplane is equipped with four flying controls : the engine 
throttle, the elevators, the ailerons and the rudder. Simultaneous 
settings of these can be found to give equilibrium in respect of 
all the forces and moments acting externally upon the aeroplane 
in some chosen form of steady flight. Imagine the settings to 
be made and the flight started, and then let the aeroplane be left 
to its own devices. Will it continue to move in the same way ? 
If it is disturbed, by a gust for instance, will it return to the 
original form of flight ? 

Some attention has already been given to this matter in con¬ 

nexion with longitudinal trim (Article 144). It was found that 

in addition to equilibrium in respect of the forces and pitching 

moments, an aeroplane must possess a statical stability in regard 

to change of incidence. No indication was obtainable, however, 

as to the strength of the statical stability required. This difficulty 

cannot be met by providing a large margin—a device often 

employed in engineering to cover uncertainties and emergencies— 

because the aeroplane would become restive and uncomfortable, 

a butt for every trivial vagary of the atmosphere, fatiguing to 

'fly in and obstinate to control. 

Sudden change of incidence is only one of many disturbances 
the aeroplane may suffer; it can be displaced in other ways 
whose statical aspect is of much less interest. Connexions arise, 
indeed, in which too much stability of this kind actually prevents 
unaided recovery. 

In considering the response of an aeroplane, therefore, it is 
advisable to resist analogies with a weathercock. Both have a 
pivot about which to rotate—the centre of gravity in the one 
case and the hinge in the other—and the initial movement of 
each is to turn into a changed relative wind. But there the 
likeness largely ends, and it does not carry us far. 

An aeroplane can be so designed that, in face of reasonable 
changes of wind such as commonly occur, it will continually 
renew the form of flight for which its controls are set without 

258 
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further operation of the controls, by either a pilot or an auto¬ 
matic device. It is then said to be inherently stable. 

When disturbed, it interrupts its course of more or less steady 
flight to execute a spontaneous manoeuvre. Though starting as 
a turn into the wind, the disturbed motion may well become 
complicated; again, it may last for only a few seconds or for a 
minute or two; moreover, it requires space. Quickly or slowly, 
however, the manoeuvre dies away and the original form of 
flight is recovered. This is not to say that the initial flight path 
is regained, nor necessarily the same direction of motion. Sup¬ 
pose the aeroplane to be flying due north at a certain speed and 
altitude when disturbed. After recovery it will be in straight 
level flight at the same speed but not at precisely the same 
altitude nor exactly, perhaps, in the northerly direction. The 
essential function of the stability is to recover the original speed 
of flight. 

The inherent stability of the aeroplane is dynamical, and the 
foregoing description gives a preliminary idea of what this term 
implies. To achieve such stability careful attention must be 
directed both to the shaping of external form and to the dis¬ 
tribution of mass. As already suggested, there may be little 
margin for error. The process—unless experience pure and 
simple is relied upon—is partly analytical, partly experimental, 
and on both sides soon becomes difficult and complicated. Our 
aim in this book will be to illustrate further the meaning and 
significance of dynamical stability by considering in turn some 
of its outstanding aspects. 

186. Experiments with Model Gliders 

To offset its difficulties, the subject provides a fascinating field 
for unique experiments which every student can explore. Many 
interesting effects, which make a considerable call on the imagina¬ 
tion to visualise from a description, are readily demonstrable in 
a large room by means of little gliders made of paper or mica. 
The most striking results are obtained on the border-line between 
stability and instability, the only just stable models making 
persistent but prolonged efforts to regain the forms of flight on 
which they were launched. 

The models should be very small, and the simplest construc¬ 
tion is preferable if only to ensure a light weight and slow speed. 



260 ELEMENTARY AERODYNAMICS [CH. 

and to make damage of little account. Proportions and loading 
for desired effects can be calculated beforehand by mathematical 
skill, but much can be achieved in its absence by a little general 
knowledge and a great deal of patience. A few suggestions 
are made in place below. A model should not be called upon 
to contend with initial conditions that are quite unsuited to 
its shape and loading. Until experience is gained, therefore, 
it should be launched by means of some simple mechanical 
contrivance. 

187. Longitudinal and Lateral Stability 

The stability of an aeroplane in straight flight, whether the 

flight path is level or inclined to the horizon, is divisible into two 

separate parts. No error arises, therefore, from considering these 

in turn. 

The first part, called the longitudinal stability, is brought into 
play.by a purely symmetric disturbance. If the cause of trouble 
is a gust, it may be head-on, tail-on, vertical, or inclined in the 
vertical plane of symmetry, but it must not have a lateral com¬ 
ponent nor affect one side of the aeroplane more than the other. 
If the disturbance arises from a displacement and return of the 
controls, only the engine throttle and the elevators, and not the 
ailerons or rudder, may be involved. The ensuing motion is 
concerned with changes that occur in the following : incidence; 
inclination of the flight path to the horizon; speed; lift, drag 
and thrust; angular velocity (originally zero) about the trans¬ 
verse axis through the centre of gravity of the aeroplane—i.e., 
pitching—and the pitching moment (see Fig. 39). 

The remaining part of the stability of an aeroplane is called 
its lateral stability. It is brought into play by an asymmetric 
disturbance such as arises from a gust affecting one wing more 
than the other, or a flick of the ailerons. It involves roll (inclina¬ 
tion of the span to the horizon) and rolling; yaw (horizontal 
inclination of the longitudinal axis of the aircraft to the direction 
of motion) and yawing; side-slipping (motion parallel to the 
span); rolling moment; yawing moment and cross-wind force 
(Art. 38). An attempt is sometimes made to separate off part 
of lateral stability and distinguish it as ' directional stability ', 
but this additional step is unjustifiable and may lead to 
confusion. 
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LONGITUDINAL STABILITY 

188. The Short Oscillation 

Imagine that an aeroplane in straight level flight at velocity V 
runs into an upgust of relatively small velocity v. Incidence is 
immediately increased by the amount v/V, and th° tail-plane 
quickly pitches the aeroplane to an incidence which is too small. 
It will then proceed to pitch the aeroplane back, but again 
possibly overshoot the mark, and so on. There are the ingre¬ 
dients here for an oscillatory motion of the aeroplane around the 
transverse axis through its centre of gravity, and the question 
arising is whether this oscillation is suitably damped. Will the 
amplitude decrease, whether quickly or slowly, or wTill it increase 
in course of time ? 

The abcve component of the unsteady motion induced by a 
symmetric disturbance is called the short oscillation. If it 
develops at full scale its period is likely to be between 3 and 5 
seconds. The tail-plane has more to do than provide a righting 
moment; it has also to damp out the pitching set up. This task 
becomes arduous only at very low speeds near the stall. Increas¬ 
ing the tail volume ratio (Article 140) to prevent the oscillation 
increasing in amplitude near the stall results in very heavy 
damping at ordinary speeds, when the motion is so dead-beat 
that only a fraction of a complete oscillation occurs. This frac¬ 
tion leaves the aeroplane, whose incidence has suddenly been 
increased by an upgust during straight level flight, with its nose 
pointing a little downward, the pitching into the relative wind 
having occupied perhaps a second. 

The consequence of this initial adjustment of a stable aeroplane 
is traced in the next article. Meanwhile, it may be noted that 
the short oscillation is not easy to demonstrate on a glider model. 
Success is most readily secured, perhaps, with a rudimentary 
model of an * all-wing ' aeroplane having a little * sweep-back \ 
In all experiments on longitudinal stability steps must be taken, 
of course, to ensure sufficient immunity from lateral instability. 

189. The Phugoid Oscillation 

The short oscillation having produced a nose-down attitude to 
the ground, the aeroplane proceeds to dive and gather speed. 
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The increased speed generates more lift, which becomes greater 
than the weight. Thus arises an upward margin of vertical 
force which gives an upward acceleration to the descending aero¬ 
plane and prevents the dive from becoming more than a shallow 

one. From the trough of the shallow dive, the aeroplane climbs 
towards its original flight path, which it overshoots. It then 
begins another shallow dive, and so on. 

This second oscillation of longitudinal stability is long, slow 
and lightly damped. Thus at about 100 m.p.h. the period may 
be nearly \ minute and the aeroplane may travel 1| miles before 
the initial amplitude is decreased by 50 per cent. It is called 
the phugoid oscillation, after Lanchester, who gave the following 
simple explanation as applying to really low speeds. With cer¬ 
tain assumptions, which are then justified, the oscillation is 
governed by an alternating exchange between the kinetic energy 
of the aeroplane and its potential energy—i.e., between that part 
of its total energy which depends upon the square of the speed 
and that part which depends upon height above sea-level. It is 
not surprising, therefore, that the variation of drag between the 
crest and the trough of the wave plays an important part in the 

damping. The up and down oscillation of the centre of gravity 
of the aeroplane and the variation of its speed are accompanied 
by a slow angular oscillation about the transverse axis through 
the centre of gravity. 

The phugoid oscillation is very easy to demonstrate in a model. 
The period will be about F/7 seconds—i.e., the length of a com¬ 
plete oscillation will be about F2/7 feet—so the model should be 
lightly loaded and glide at a large lift coefficient in order to make 
V small. Other advisable features are a far forward position of 
the centre of gravity and as much moment of inertia about the 
transverse axis as is compatible with the light weight. If in 
addition the tail-plane is kept rather small, it should be possible 
to make the oscillation increase noticeably in amplitude. These 
features are not desirable in an aeroplane, of course. 

Another kind of disturbed motion takes the place of the phugoid 
oscillation at high speeds. However, the foregoing sufficiently 
illustrates the nature of the longitudinal stability of an aero¬ 
plane, and we proceed to enquire briefly into the character of its 
lateral stability. 
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LATERAL STABILITY 

190. Rolling Moment due to Rolling 

In turning to lateral stability we begin by supposing that an 
asymmetric disturbance produces rolling, 
in Article 129 show that rolling 
during flight at small or moderate 
incidences is quickly damped out. 
The stable rolling moment is 
readily estimated for wings of rect¬ 
angular plan-form. 

Fig. 108 shows at (a), from the 
article quoted, the increase of 
incidence along the descending 
wing of a monoplane of span 2s, 
whose speed is V and which has 
an angular velocity of roll co. The 
increase reaches a maximum of 
<ds/V radians at the wing-tip. If 
a'0 is the undisturbed incidence 
(or that at the centre of span) 
measured from the angle of zero 
lift in radians, and the correspond¬ 
ing normal lift coefficient is CL0, 
the increase ACL of the lift co¬ 
efficient near the wing-tip is, from 
Fig. 108 (6), 

Experiments described 

L' 

(c) 

CDS 

V 
x 

1 
x C LO 

Fig. 108.—Rolling: (a) Increase 
of Incidence and (c) Increase 
of Lift along Descending 
Wing. 

since AB/BC = CD/DE. 
The additional lift L' per foot run of span in the region of the 

wing-tip is hJZLqc, where c is the constant chord. Therefore 

L' = vi xC^c (i) 

But if W is the weight of the aeroplane, in straight level flight 
CL0q{sc) — \W. Hence 

L'=\^w.<«> 
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The additional lift of the descending wing is distributed as 
shown in Fig. 108 (c), giving a total of \sL'. Since the addi¬ 
tional lift passes through the centroid of the triangle, the centre 
of pressure is at 2s/3 from the centre of span, whence the rolling 
moment due to this wing is s2L'/3. The rising wing has its lift 
reduced in a similar way and contributes an equal moment in 
the same direction. Thus the total rolling moment is 2s2L'J3 
or, substituting for L' from (ii) and remembering that s is the 
semi-span, 

Rolling moment due to rolling = W (span)2 . (103) 
1^ V cc o 

The large magnitude of the moment is illustrated in the follow¬ 
ing example and very quickly reduces the initial rolling to a 
small angular velocity. 

Example 98.—A monoplane weighing 5 tons and having rect¬ 
angular wings 56 ft. in span begins to roll with an angular velocity 
of 0-2 radian per sec. when in flight at a speed of 225 m.p.h. 
The flight incidence is and the angle of zero lift — 2*1°. Esti¬ 
mate the initial rolling moment. 

V = 330 ft. per sec. and oc'0 — 2*6° = 0-0454 radian. Thus 
(103) gives for the rolling moment 

1 .. 0-2 
12 X 330 X 0-0454 

X 11,200 X (56)2 = 39,070 lb. ft. 

An alternative expression can be obtained by introducing the 
symbol k for the slope of the lift curve (Article 113), so that 
CL0 = ken'0, and substituting in (i). We then have for this 
rolling moment 

2s2L' 
3 

(span)2 
6 

CU5 7 

X -y- X kqc 

k x S x (span)2 
~ 24 

. copV (104) 

since the wing area S = 2sc and q = \pV2. If a> is expressed in 
radians per second, however, the value of k obtained from (44) 
must be increased in the ratio 180/7r to give the increase of CL 
per radian. 

Example 99.—Re-estimate the rolling moment of Example 98, 
assuming that the incidences there given are unknown but that 
the wing-loading is 25 lb. per sq. ft. 
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To solve the question in this rather more practical form, we 
have to find the aspect ratio A in order to evaluate k from (44). 

The total wing area S = 5 x 2240/25 == 448 sq. ft. and, since 
the span = 56 ft., the mean chord = 448/56 = 8 ft., giving 
A = 7. 

Then (44) leads to, with 2 substituted for T9 

k 4-19 9 7T 

and the rolling moment is 

4*19 X 448 X (56)2 

24 
x 

330 
5 X 420 

= 38,540 lb. ft. 

The above formulas are restricted to rectangular plan-forms; 
the rolling moments for practical plan-forms of other shapes are 
less. The formulae are also 
based on the assumption that 
the rolling wings are nowhere 
stalled; the unstable moments 
arising at large incidences have 
been discussed in Articles 129- 
30. — 

7 _ 

(b) , 

NORMAL LIFT 

191. The Lateral Dihedral 

The foregoing moment, 
which stops rolling at ordinary 
flight incidences in a fraction 
of a second, leaves the aero¬ 
plane rolled or banked and, as 
it is still flying nearly straight, 
a sideslip ensues, during which 
the aeroplane is righted by the 
lateral dihedral, as follows. 

Fig. 109 (a) represents the 
back view of an aeroplane 
flying into the page. Each 
wing is inclined upward to the 
line joining the wing-tips by 
an angle /3, and 2£ is called in 
this book the dihedral angle (the dihedral angle is often defined 
alternatively by fS). 

Fig. 109 (b) is a plan view of the aeroplane, rectangular wings 

(C) 
Fig. 109.—Monoplane with Lateral 

Dihedral. At (c) is shown the 

Redistribution of Lift along the 

Span due to a Sideslip to the 

Right. 
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being assumed for simplicity. AB represents any chord line 
and, in the absence of sideslip, the relative wind V passes over 
the leading edge at A and the trailing edge at B. But if the 
aeroplane sideslips towards the right so that the relative wind 
has a component v from that direction, the relative wind makes 
an angle tp with AB and passes over the trailing edge at C. Both 
P and ip are assumed to be small angles, so that sines and tans 
are sensibly the same as circular measures and cosines differ 
little from unity. 

Referring to the figure, C is lower than B by BC x (3. But 
BC = AC x ip. Thus v produces an increase of incidence to the 
changed relative wind amounting to BC x P/AC = AC x ip x 
P/AC == ^p. But ip — v/V. Therefore the increase of incidence = 
P(v/F). This increase is the same all along the right-hand wing 
which is leading into the sideslip and, ignoring blanketing by the 
fuselage, there is an equal decrease of incidence along the left- 
hand wing. Hence a rolling moment arises in the counter¬ 
clockwise sense, equally contributed to by each wing. The 
description and the figure regard, for convenience, the span as 
horizontal, but this is unnecessary and the same moment arises 
at any angle of bank if the velocity of sideslip is the same. 

As in the preceding article, if a'0 is the incidence in undis¬ 
turbed flight, measured from the angle of zero lift, and CL0 the 
corresponding lift coefficient, the increase ACL of the wing lead¬ 
ing into the sideslip is obtained, assuming the lift curve to be 
straight, from ACL ~ CL0 — $v/V 4- a'0—i.e., 

= Jr x y x Clo ••••(*) 

If S is the total wing area of the monoplane, the increase of 
lift on the leading wing is ACLq X £S and there is an equal 
decrease on the following wing. The distribution is as indicated 
in Fig. 109 (c), so that the distance between the centres of pressure 
of the two changes of lift is the same as that between the two 
halves of the normal lift—i.e., \ x span. Hence the total rolling 
moment is £ACLqS x span, or substituting for ACL from (i) and 
noting that CL0qS = W the weight of the monoplane, 

S v 
Rolling moment due to sideslip = £ ^7~ -y -W X span . (105) 

An alternative form equivalent to the expression (104) for the 
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rolling moment due to rolling is readily obtained. Writing k as 
before for the slope of the lift curve, so that CL0 — &oc'0 and 
ACL = k$v/V, gives in place of the right-hand side of (105) 

k x S x span 
8 

x $pVv. (106) 

The examples below refer back to those of the preceding article, 
enabling a comparison to be made between the two rolling 
moments. 

Example 100.—The monoplane of Example 98 has a dihedral 
angle of 6°. After a roll at a speed of 225 m.p.h. it sideslips at 
33 ft. per sec. Estimate the rolling moment. 

Since a'0 == 2*6° and v\V = 33/330 = 0T, (105) gives directly 

5 X 2240 X 56 
4 

X ^ X °-i = 18,100 lb. ft. 

Example 101.—As in Example 99, re-estimate the above rolling 
moment assuming that the incidences are unknown but that the 
wing-loading is 25 lb. per sq. ft. 

From the example quoted, k = 4-19 and, since p = 0*0524 
radian, (106) gives for the rolling moment 

4‘19 * 448-X-56 x 0 0524 X ~ X 330 X 33 = 17,900 lb. ft. 

192. Discussion 

A point of fundamental interest made clear by the formulae 
(104) and (106) is that the rolling moments for a given aeroplane 
in particular circumstances are proportional to V, not to V2. 

The above simple calculations of rolling moment due to rolling 
are reliable. This may be checked by experiment, but the 
apparatus is a little complicated. 

The above estimates of rolling moment due to sideslip, on the 
other hand, are too generous; blanketing of the following wing 
and other losses considerably reduce the moment. Fortunately, 
this moment is easily measured in a wind tunnel, for the effect 
of sideslip is reproduced by giving the model an angle of yaw = 
v/V. The same experiment will allow for a shaped or tapered 
plan-form, although such allowance is readily estimated in the 
present instance, as illustrated in the following example. 
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Example 102.—How much is the rolling moment in Example 
100 reduced by substituting wings of the same span and area but 
which give an elliptic lift-grading curve ? 

The assumption is made that the changed lift on each wing in 
the sideslip will also be elliptically distributed. Change of lift on 
each wing is the same and decrease of moment is due only to the 
centres of pressure being nearer the centre of span. The centroid 
of a quadrant of an ellipse, of semi-axes a, b, is distant (4/3tt) x b 

from a. Thus the centre of pressure on each wing is 0*4244 x 
semi-span from the axis. For (105) this distance is taken as 
£ X semi-span. Hence the rolling moment is reduced in the ratio 
0*4244/£, i.e., by some 15 per cent. 

193. The Lateral Oscillation 

We have seen that if a downward gust strikes the starboard 
wing, say, that wing drops, though the clock-wise rolling is 
fiercely opposed, and the sideslip to the right results in an anti¬ 
clockwise rolling moment by virtue of the lateral dihedral. This 
moment rolls the aeroplane back—rather slowly, or it would be 
overcome by an opposing moment due to rolling. The aeroplane 
passes through the span-level position; the original bank and 
sideslip are reversed in direction; the lateral dihedral raises in 
turn the left-hand wing in a clock-wise recovery; and so on. 

There may ensue an oscillation in rolling combined with a 
' tail wag ', the whole being called the lateral oscillation or (popu¬ 
larly) the dutch roll. It is appreciably slower than the short 
oscillation of longitudinal stability. 

The lateral oscillation is readily demonstrated with a model 
glider. Having given the wings an exaggerated dihedral, the 
area of the fin and rudder may be reduced gradually until the 
oscillation appears. 

194. The Directional Fins 

The effect of a lateral dihedral could be achieved by a large 
vertical fin above the wings. The fuselage, engine nacelles and 
propellers act in a sideslip as vertical fins located forward. 
Finally, the fin properly so called and the rudder hinged to it 
together provide a vertical fin at the back of the aeroplane. 

In a sideslip all these fins contribute to cross-wind force. If 
the centre of pressure of the resultant cross-wind force is well 
behind the centre of gravity of the aeroplane, the latter is said 
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to have strong weathercock stability. The degree of weather¬ 

cock stability may be reduced or changed to weathercock in¬ 

stability by modifying the area of the fin and rudder. 

A far forward centre of pressure—i.e., marked weathercock 

instability—makes the aeroplane turn away from the direction 

of motion with increasing rapidity. The catastrophic motion 

that ensues is illustrated by a model fitted with a vertical fin in 

front of its wings and having a larger area than that of the fin 

and rudder at the tail. 

Consider the contrasting case of a far-back position of the 

centre of pressure. A sideslip to the right then produces a 

turning to the right; the left-hand wing lifts more strongly than 

the right-hand wing owing to its greater speed; the bank and 
therefore the sideslipping and turning all increase. The aero¬ 

plane spirals in a rather downward direction and is said to have 

spiral instability. The defect, which is seen to arise from marked 

weathercock stability, is readily demonstrated by means of a 

model glider having little lateral dihedral and a large rudder. 

It appears that for inherent stability the centre of pressure of 
the crosswind force should not be far removed from the centre 

of gravity. Whether it should be located slightly in front of 

or behind the latter in a given case cannot be decided from 

• elementary considerations. However, a large rudder provides an 

especially useful control, and for this reason some degree of 

spiral instability is tolerated in most aeroplanes, since it is slow 

to develop and easy to correct by the pilot. 



Chapter XI 

LOAD FACTORS ON WINGS 

195. Each structural part of an aircraft is designed to with¬ 
stand several times the load, called the normal load, which it 
sustains in straight level flight. In the structural sense of the 
term, the ‘ load factor ’ is equal to the ratio of the load that 
would produce fracture to the normal load. But included in this 
load factor is a ‘ factor of safety often amounting to 2, to cover 
faults of design, fabrication and material. To arrive at the 
strength for which a part should be designed, the factor of safety 
is applied to. the maximum load which the part may ever be 
called upon actually to sustain. 

Over-loadings are caused in various ways, but we are con¬ 
cerned only with those which may arise during flight. Even so, 
the subject is a wide one and more particularly of interest to 
structural design. The brief investigation below is accordingly 
restricted to the external forces and moments arising on wings. 

The normal load on the wings of an aeroplane in -the direction 
of the lift is equal to the flying weight W. If the wings exert at 
any time a different lift L, the ratio L/W is the aerodynamical 
load factor. However, the word ‘ aerodynamical' is usually 
omitted and, to save confusion, we note that the maximum value 
of L/W would be multiplied by the factor of safety in specifying 
the reputed strength of the wings. 

196. The Pilot as a ( Safety Valve } 

Aerodynamical over-loading may be steady or transient. In 
aeroplanes of the aerobatic class, the first kind can be severe and 
the second could be fantastically so but for the limited physical 
endurance of the pilot. An aeroplane can be designed to fly 
without a pilot on board, its controls being operated by radio 
from the ground. If such an aeroplane were directed into a 
terminal nose dive and its elevators raised suddenly, the wings 
would immediately break off; to prevent fracture they might 
require to be more than 50 times as strong as is necessarj^ for 
steady flight. But in like circumstances with a pilot at the 
controls the elevators would be employed with restraint and the 
load factor prevented from exceeding 4 or 5. Such easing can 

270 
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be relied upon, since the pilot experiences in his person just the 
same load factor as he allows to come on to the aircraft; his head 
weighs upon his neck just as excessively as the body of the aero¬ 
plane weighs upon its wings; and experience shows that few 
pilots can tolerate an actual load factor greater than that 
mentioned. 

If may be thought on this basis that specifying a suitable 
strength for an aircraft part is a simple matter; that it is only 
necessary to decide upon an aerodynamical load factor consistent 
with human endurance and double it. But the problem is more 
complicated, for two reasons. Some over-loads are not directly 
transmitted to the pilot, who remains unaware therefore of their 
intensity. Again, the majority of aeroplanes are not manoeuvred 
at the limit of the pilot’s endurance; passenger-carrying aircraft, 
for instance, are studiedly flown with as little sensation as pos¬ 
sible ; and the strength required then depends upon uncontrollable 
disturbances and exigencies. 

197. Steady Load Factors 

Instances of steady load factors are provided by climbing or 
gliding and maintained turning. The first two have little interest 
unless the dive is very steep, and even then practical concern is 
with the strength of the fuselage rather than that of the wings. In 
climbing or gliding, the lift L = W cos 9. Thus the load factor 
on the wings, the ratio of the actual lift to that in straight level 
flight, comes to L/W — cos 9 and is fractional and commonly 
little less than unity. 

Level circling.—If </> is the angle of bank, the requirement of a 
level path in circling is that L cos </> = W, giving L/W = 1/cos <f>. 
This factor may be fairly severe but is limited by the fact that 
making such a turn without change of speed increases the induced 
drag in the ratio 1/cos2 </>, absorbing all the power available 
before <f> becomes very large. 

Example 103.—An aeroplane is in straight level flight at a 
speed at which the induced drag forms one-half of the whole and 
the power required is one-quarter of the total available. What 
maximum load factor can arise on the wings in level turning at 
the same speed ? 

The total parasite drag will remain unchanged to a first ap¬ 
proximation—i.e., it will continue to absorb one-eighth of the 
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total power available. Therefore the power overcoming induced 
drag may be increased 7 times. Thus the maximum possible 
value of 1/cos <j> at this speed is y/7—i.e., the maximum load 
factor is 2*65. 

Spiral descent.—The restriction of the load factor by the power 
available in level circling is easily removed by permitting the 
aeroplane to lose height slowly so that gravity can help the 
engines. A helical angle of descent of a few degrees allows the 
drag to be doubled. Provided this angle is small, so that the 
difference between its cosine and unity can be neglected, the load 
factor is still 1 / cos </>, but the maximum value is now determined 
by the stalling of the wings. Let CLMAX denote the maximum 
lift coefficient with flaps retracted and CL0 that for straight 
level flight at the same speed. Then, since W == CL0qS and the 
maximum lift L = CLMAXqS, the load factor is 

L/W = CLMAX/CL0. 

The value of the maximum lift coefficient varies little from 1*5 
from one design of wing to another, and the above ratio is seen 
to depend on the square of the speed, at constant altitude, or 
more generally on the stagnation pressure and the wing-loading. 
Thus, writing w for the wing-loading W/S, CL0 = wjq and the 
maximum load factor can be written approximately : 

1*5 qjw.(107) 

For a lightly loaded aeroplane flying fast at low altitude, it soon 
becomes greater than the pilot could ordinarily withstand. 

Example 104.—What maximum load factor is incurred if an 
aeroplane is allowed to descend on a turn at 160 m.p.h., given 
that it stalls in straight level flight with flaps retracted at 80 
m.p.h. ? 

Since CL varies as 1/F2 in straight level flight and the aero¬ 
plane can so fly at \ x 160 m.p.h., the maximum lift coefficient 
is 4 times that appropriate to 160 m.p.h. Therefore the maximum 
load factor is 4. 

Example 105.—Estimate the load factor that would be set up 
if an aeroplane with a wing-loading of 30 lb. per sq. ft. and 
flying at 250 m.p.h. were turned as quickly as possible at the 
same speed. Assume that the wings have time to stall. 
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q = £p72 — £(250 X 22/15)2/420 = 160 lb. per sq. ft., and 
(107) gives for the maximum load factor 240/30 = 8. The pilot 
would make a wider turn, of course, and this factor would never 
develop in practice. 

198. Discussion in Terms of Acceleration 

Turning, though uniform, is not a steady motion, the aeroplane 
being continuously accelerated towards the centre of the turn to 
prevent its ' flying off at a tangent \ If R is the radius of the 
turn, the acceleration is V2/R. Thus considering for simplicity 
level circling with a load factor of 4, so that cos <f> = £, we have 
</> =s 75£°, giving tan <f> ~ V2/gR = 3*87—i.e., the acceleration 
towards the centre is 3*87g. As for the complete aeroplane, an 
object of mass m contained therein must have exerted upon it 
a force mV2/R directed towards the centre of the turn to counter¬ 
balance its centrifugal force. The weight mg of the object must 
also be supported to prevent its falling downward with the 
acceleration g. Thus the total force to be exerted comes to 
mg^(3'872 + 1) = 4:Wg, directed upward to the horizon at the 
angle 14£°. If the object is a bag resting on the floor of the 
fuselage, the force is exerted by the floor and, the aeroplane 
being correctly banked, there is no component of force tending 
to slide the bag across the floor. The equal and opposite reaction 
to this force is the resultant of the weight and centrifugal force 
of the bag, and may be called its apparent weight. Thus the 
circling of the aeroplane can be said to have apparently altered 
the weight of the bag in two ways, first by increasing it 
four times, and second by changing its direction from the 
vertical to within 15° of the horizontal. The first alteration 
might make the bag impossible to lift by a passenger, who 
would be unconscious of the second, however, unless he took 
bearings by looking through a window. If the passenger suc¬ 
ceeded in ‘ lifting * the bag (as he would view the operation) 
and then let it ‘ drop \ it would not fall directly downward 
but in the direction perpendicular to the floor, and it would 
gather speed 4 times as fast as if it were dropped to the floor of a 
room. 

Steady motions are so common, and our movements and con¬ 
ceptions so regulated therefore by the acceleration g due to 
gravity, that an effort is often needed to imagine in detail the 

T 
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new world, in this sense, created by a manoeuvring aeroplane of 
the aerobatic class. The changes illustrated above apply equally 
to each particle of fluid in a cup of tea, say. No drop would 
spill though the rim of the cup were nearly vertical in a properly 
banked turn, but the tea would be singular to drink since it 
might apparently weigh one-third as much as mercury. The 
same considerations apply, of course, to the fuel in the petrol 
tanks. Always assuming a just bank, the liquid surface remains 
parallel to the designed bottom of the tank; there is no tendency 
to flow towards one end or the other; but the fluid pressure on 
the designed bottom may be one-third of an atmosphere in place 
of that due to, say, feet head of petrol. 

Attention has so far been restricted to a constant acceleration, 
such as an aeroplane can maintain. But more generally the 

(positive or negative) ac¬ 
celerations to which an 
aeroplane is liable are 
transient; the resultant 
over-loading is of the kind 
called ' live 1 in Engineer¬ 
ing ; and the action is not 
confined to the direction of 

F lift. 
F2 . 

199. Loop 

Fig. 110 shows an aero¬ 
plane of weight W at vari¬ 
ous positions round a loop 
—viz., at the top, about 
half-way down and dur¬ 
ing the flatten out. The 
tangent to the flight path 
is horizontal in the first and 
last positions, distinguished 
by the suffixes 1 and 3, 

^ XT _ ^ T respectively, and vertical in 
Fig.110.—Normal Forces During a Loop. - r . , ,. , 

the intermediate position, 
denoted by suffix 2. L is written for positive lift (cf. Article 38), 
F for the centrifugal force WV2/gR and R for the radius of the 
flight path. 
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Resolving perpendicular to the flight path, 

Lx + W = Fx; L2 — F2\ i3 = F3 + W. 

The normal lift — W, giving for the load factors : 

hi — _ 1 • ^2 _ ^2 . ^3 __ ! ] 
IT IT ty~IT' TT “ TT ‘ A‘ 

But since F/IV = V2/gR, these can be written 

VI K2> IV 
««1 ' **.' ' ■ • 

respectively. Intermediate positions are solved similarly. 

(108) 

Example 106.—The speed of an aeroplane is 100 m.p.h. at the 
top of a loop and 250 m.p.h. at the bottom. Find the radius of 
the flight path at the two positions for the load factors to be 0 
and 5, respectively. 

For tiie top, (108) gives 0 = Vx2lgRx — 1; i.e., Rx — (146*7)2/ 
32-2 = 668 ft. 

Similarly, at the bottom of the loop 5 = F32/gi?3 + 1; i.e., 
/?3 = £(366-7)2/32-2 - 1044 ft. 

200. Up-Gust 

If an aeroplane flying straight and level at velocity V is struck 
by an upward gust of vertical velocity v, incidence is momentarily 
increased by v/V radians and the lift co¬ 
efficient from, say, CL0 to CL0 + ACL 
(Fig. 111). Drag at once exceeds the air¬ 
screw thrust, and backward acceleration 
arises, but the inertia of the aeroplane 
prevents immediate change of speed. 
Again, the tail-plane will rapidly reduce 
the excessive incidence. But meanwhile 
there exists a transient load factor given by 

L _ (CL0 + ACL)qS _ , , AC* 
W~ CL0qS ~ + Ci0‘ 

Let a'0 be the original incidence reckoned from the angle of 
zero lift and assume the lift curve to be straight. Then from the 
figure ACL/CL0 = (v/V) -f- a'0 and the load factor becomes 

Fig. 111.—Increase of 

Lift Coefficient due 

TO AN UPGUST OF 

Velocity v. 

L 
W = 1 + (109) 
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If the angle of zero lift is unknown, the momentary increase 
of lift coefficient can be estimated from vjV and the slope of the 
lift curve (cf. Articles 190 and 191). 

A special case arises when the aeroplane is flying very slowly 
at so large a lift coefficient that the increase of incidence due to 
the gust carries the wings beyond their stalling angle. It is 
usual to assume in these circumstances that stalling would take 
too long to develop for the momentary over-load to be appreciably 
affected, and therefore to estimate the latter for a lift curve 
that is extended past the stall without change of slope. A 
different treatment is necessary, of course, for stalled flight. 

Example 107.—An aeroplane encounters an upgust of 33 ft. 
per sec. when flying at 150 m.p.h. with an incidence of 4£°. The 
angle of zero lift of the wings is — 2°. What is the load factor ? 

With the above notation, a'0 = (4J + 2) X rc/180 = 0*113 
radian. Since 150 m.p.h. = 220 ft. per sec., v/V = 0*15 radian. 
Hence by (109) 

t _ ! , Ojg _ o-33 
W~ 1 + 0*113 ~ 

Example 108.—A monoplane of aspect ratio 8 and whose wing¬ 
loading is 25*7 lb. per sq. ft. encounters an upgust of 30 ft. per 
sec. at a horizontal velocity of 300 ft. per sec. What load factor 
arises on the wings ? 

The undisturbed lift coefficient = 25*7 jq and q = £ X 
0*00238(300)2 = 107 lb. per sq. ft., giving CL0 = 0*240. The 
sudden increase of incidence = 30/300 = 0*1 radian = 5*7°. 

For wings of aspect ratio 8 the formula (44) of Article 113 
shows that CL increases at the rate 0*8 x 0*094 = 0*075 per 
degree. Hence the momentary increase of lift coefficient = 
0*075 x 5*7 = 0*428. 

Thus the transient lift coefficient = 0*240 + 0*428 = 0*668 and 
the load factor is 

0*668/0*240 = 2*78. 

201. Sideslip 

In Article 191 it appeared that a monoplane, having a lateral 
dihedral angle 2(3, and sideslipping at velocity v during flight at 
velocity V, generates an increase of lift coefficient on the wing 
leading into the sideslip given by 
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CLo being the original lift coefficient appropriate to an undis¬ 
turbed incidence a'0 reckoned from the angle of zero lift. Hence 
the load factor imposed on this wing is (Ci0 + ACL)/C£0—i. e., 

1+£~0XV.(U°) 

The load factor on the wing following into the sideslip is 
fractional. 

Example 109.—A monoplane having a dihedral angle of 8° is 
suddenly yawed through 18°, the forward speed being 300 ft. per 
sec. Estimate the load factor on the advanced wing if the 
incidence for zero lift is — 2*2° and that for undisturbed flight at 
the given speed is 1°. 

As explained in Article 191, the angle of yaw — vjVt approxi¬ 
mately, and in the present instance = 0*314 radian. The 
angle (3 (4°) is 0*07 radian and, reckoned from the angle of zero 
lift, the incidence prior to the sideslip is 3*2° — 0*056 radian. 
Hence (110) gives for the load factor on the leading wing 

1 + 0*07 X 0*314 
0*056 

= 1*4. 

202. Rolling 

During a roll the descending wing experiences an increased 
lift and the ratio L/W for this wing is readily calculated from 
Article 190. It is not of direct interest, however, as the extra lift 
is not uniformly distributed as in a sideslip, but increases towards 
the wing-tip. The rising wing has its lift similarly reduced, so 
that the total lift remains approximately unchanged, and the 
load factor is not felt by the pilot. The essential effect of the 
greater lift of the descending wing in the case of full cantilever 
construction is to increase the bending moments along that 
wing. The effect in the case of an externally braced wing is 
more complicated. 

Restricting attention to an internally braced wing of rect¬ 
angular plan-form and ignoring decrease in the lift-grading 
towards the tip, the normal bending moment at the root is 
\W x one-quarter of the span of the aeroplane, approximately. 
The additional moment on this wing only, due to rolling at the 
angular velocity a> and speed V, is one-half the total rolling 
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moment given by (103) of Article 190. Hence the load factor 
to be applied to the root bending moment is' 

W x span ,1 <x> ttt , , \9 
-8 + 24 x Vl^W 

W x span 
8 

= 1 + 5F«70 x span.(111) 

Example 110.—A monoplane, 50 ft. in span, has cantilever wings 
of rectangular plan-form and — 2° zero lift incidence. During 
flight at 225 m.p.h. and at an incidence of 1*3° it rolls with an 
angular velocity of £ radian per sec. What is the load factor on 
the root bending moment of the descending wing ? 

We have V = 330 ft. per sec. and a'0 = 3*3° = 0*0576 radian. 
Hence the factor is 

0-5 x 50 



Chapter XII 

OUTLINE OF THE LANCHESTER-PRANDTL 
THEORY OF WINGS 

-Spinning Cylinder. 

203. Irrotational Circulation Round Spinning Cylinder 

Imagine a long circular cylinder supported with small clear¬ 
ance between parallel walls (Fig. 112), so that it can rotate freely 
about its axis XX. Let it be set 
spinning at a uniform rate and con- 
sider the air flow generated well away 
from the retarding influence of the ) 
parallel walls. Air touching the 
surface of the cylinder will rotate „ 0 J tic. 112.—Spinning Cylinder. 

exactly wilh it (Article 48), while 
viscosity will rapidly increase the depth of the layer affected 
until even distant air follows round, although only slowly. 

The flow finaFy set up is, in general, turbulent. But under 
certain conditions, too exacting for easy experiment with air as 
fluid, it becomes steady and irrotational, a state of great interest 
in Aerodynamics. The air then circulates round the cylinder in 
concentric circular streamlines with a constant velocity round any 
one path. Since the flow is irrotational, the pressure is related 
to the velocity by Bernoulli's equation and is, therefore, also 
constant round any one concentric circle. We shall show that 
under these conditions the velocity is inversely proportional to 
the radius. 

Consider a thin concentric shell of the revolving air, of inner 
radius rx where the velocity is vlf and outer radius r2 where the 
velocity is v2> and let m be its mass per unit axial length. Its 
mean radius is \{rx + r2), its mean velocity is ^(vl + v2), and, 
therefore, its total centrifugal force is 

i-Hr- .») rl r r2 

This force is uniformly distributed round the shell and acts 
radially outward. It is balanced by a uniformly distributed 
force directed radially inward and due to a greater pressure being 
exerted on the outer surface of the shell by the surrounding air 
than is exerted on its inner surface by the enclosed air. 

279 
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Let the pressure be pl at rx and p2 at r2. Since the thickness 
of the shell is r2 — rlt the radial pressure gradient is (p2 — Pi)I 
{r2 — rx) and, by Article 51, the total inward force is equal to 
the product of the gradient and the volume of the shell. If p 
denotes the density of the air, the volume of unit length of the 
shell is m/p, and the total inward force on this length is 

at p*-p\ 

But Bernoulli’s equation gives 

p2—Pi= £p(V - V) 
and hence the total inward force is, by substitution, 

\m Vj2 
(ii) 

Now the shell neither expands under the centrifugal force nor 
contracts under the pressure force. Therefore, the forces (i) and 
(ii) must be equal. Equating them gives 

Pi + v2 _ Vj ~ p2 

r\ +r2 r2~ 

i-e-, vlrl = v2r2. 

Considering a larger thin shell, of radii r2 and r3, leads in the 
same way to v2r2 = v3r3, and so on. Thus, finally, for a fluid 
revolving irrotationallv round a long circular cylinder the velocity 
is everywhere inversely proportional to the radius. 

The product of v and the length 2nr of the path along which 
the tangential velocity is v provides a simple instance of a quantity 
called the circulation and denoted by K. In the present case 

K = 2 nrv.(112) 

and is the same for all concentric circles because rv is constant. 
Having the dimensions of a velocity multiplied by a length, the 
units of circulation are square feet per second. 

204. Circulation in General 

An aerofoil at a lifting incidence in a wind generates a cir¬ 
culation round its sections without being spun. Fig. 113 shows 
the streamlines of the circulation, imagining it to persist in the 
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absence of the wind. Outer paths, everywhere distant from the 
section, are nearly circular in shape, but inner paths have elon¬ 
gated forms. The circulatory velocity 
is no longer constant along each path, 
but varies, being high near the nose 
and tail of the section and low else¬ 
where. In these circumstances the 
circulation round a path is equal to 
the product of its length and the 
mean tangential velocity along it. Cir¬ 
culations of aerodynamical interest 
only exist in the presence of a wind, Fig. 113.—Circulation 

and a more general definition of cir- Round Aerofoil. 

culation, as follows, becomes necessary. 
Let any imaginary circuit be drawn in a fluid motion, such as 

C in Fig. 114. At any point A on this circuit let VR> the resultant 
air velocity, meet the tangent to the 

si circuit at an angle 6. Denoting by vc 
the component of VR along the tangent, 
vc = VR cos 6. This component is 
reckoned positive if it is in the counter¬ 
clockwise direction when the wind is 
coming from the right; thus it is 
positive along the upper part of the 
circuit C in the figure, but negative 
along the lower part. The circulation 
K round the circuit may be defined as 

equal to the length of the circuit multiplied by the mean value 
of vc, taking due account of its changing sign. 

This definition can be put another way. Let the circuit be 
sub-divided into a number of parts of lengths slt s2> s3, etc. 
These lengths need not be equal to one another; they are pre¬ 
ferably short where vc is changing rapidly, and vice-versa \ but 
they must form an endless chain completely round the circuit. 
Let the tangential component of the air velocity be vci at slt vc2 
at s2, and so on. Then the circulation round the circuit is given by 

K = VclSl + vc2s 2 + vc3s3 +.(113) 

where the summation is to extend round the complete circuit 
and each value of vc is to be given its proper sign. 
1 

Fig. 114. 
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205. Constancy of the Circulation 

Round a circuit which encloses only fluid in irrotational motion, 
as in Fig. 114, the circulation is always zero. But if the circuit 
encloses the section of a body, a circulation may exist though 
the flow be irrotational, as already described for the spinning 
cylinder, and the circulation round every wide circuit which can 
be drawn to enclose the section is the same. 

This is easily demonstrated, as follows, for the spinning cylinder 
of Article 203. In Fig. 115 the curve Ccc represents part of any 

circuit completely enclosing the 
cylinder whose axis passes 
through O. The streamlines 
are concentric circles. The air 
velocity has the values vx at 
radius rlt v2 at radius r2, etc., 
and vlrl = v2r2 = v3r2 and so 
on. The tangential component 
of this velocity along Ccc is vc 
and tends to be large when v 
is large—i.e., at a small radius, 
and vice-versa. Draw a large 
number of radial lines, inclined 
to one another at such small 
angles 0l9 d2, 03, etc., that vc 
can be regarded as constant 

along each of the short lengths cc intercepted. Hence approximate 
the curve Ccc by the serrated circuit AAAaa, which also com¬ 
pletely encloses the section and is made up of short circular arcs 
centred at O, such as aa, and short lengths of the radial lines, 
such as Aa. 

Consider the elements cc and aa of the two circuits and let cc 
intersect aa at an angle <f>. If 02, see figure, is sufficiently small, 

aa r2 02 
COS <f) ~ cos <f>' 

If vc is the tangential velocity component along cc, 

Vc ~ V2 cos 4>- 

vc x cc = v9r902. 

Fig. 115. 

Therefore 
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Now the circulation K round the original circuit is obtained by 
sub-dividing it into a number of parts such as cc and adding 
together the products of the lengths of all parts and their 
respective tangential velocity components. Hence : 

K = VlTldl 4" v2r2^2 + *V3®3 4* • • • 
where the summation extends completely round tli^ cylinder. 
But all the products vlrv v2r2, etc., are equal. Writing vr for 
their common value, 

K — vr(6i + 02 + #3 + . . .). 

The sum of all the angles = 277. Hence finally 

K = 2irrv, a constant, 

whatever the shape of Ccc. 
The proof for a non-circular circulation in the presence of a 

wind is more complicated, but the same result can be verified 
experimentally in a wind 
tunnel. Let a long aero¬ 
foil of small chord be 
mounted at a lifting 
incidence, reaching be¬ 
tween the walls of the 
tunnel, and choose any 
circuit which is every¬ 
where distant from the 
boundary layer and cuts 
directly across the wake; 
usually a rectangular 
circuit such as PQRS, as 
shown in Fig. 116 (a), 
will be preferred. Sub¬ 
divide the circuit into 
a number of parts and FIG. 116.—Experimental Determination of 

determine the resultant THE Circulation Round an Aerofoil in 
, Tr . . a Wind. 

air velocity VR in magni¬ 
tude and direction at the middle point of each part. For 
this purpose a pitot-static tube and ‘ yaw-meter ' are required. 
One form of the latter, Fig. 116 (c), consists of two fine tubes 
inclined at 90° to each other and open at the ends near O, their 
other ends being connected to a sensitive pressure gauge. The 
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meter is turned about O until the gauge shows the pressures 
within the tubes to be equal The meter is set before introducing 
the aerofoil and the angle change due to the latter measured. 
Pitot and static tubes are attached to the meter and orientate 
with it. 

In this way is found the velocity component vc tangential to 
each part of the circuit. The direction for positive circulation 
is SRQPS if the wind comes from the right in the figure. It is 
clear, therefore, that contribution to the circulation will be 
positive along RQ, probably positive along SR and QP, and 
certainly negative along PS. In Fig. 116 (b) the circuit is opened 
out into the straight line SRQPS and the values of vc are plotted 
on this base, giving the curve shown. The area under the curve 
is proportional to the circulation, provided the part of the area 
below the base is reckoned negative. If the shape of the circuit 
is changed, still keeping it widely clear of the aerofoil, and the 
experiment repeated, approximately the same value will be 
measured for the circulation at the same speed of the wind and 
incidence. The measurements require to be be made with care, 
however. 

Thus in stating the circulation round a body it is unnecessary 
to specify what circuit is considered, for, with irrotational flow, the 
circulation is the same for all wide circuits which enclose the section. 

206. Circulation and Lift 

•Fig. 117 illustrates the flow past a rapidly spinning circular 
cylinder in a wind. The picture is easily verified in a wind tunnel 

by the use of smoke. The 
action of the circulation is 
clear. Without it, there would 
be the same average flow 
above the cylinder as below, 
and the same average reduc¬ 
tion of pressure round the 
upper shoulder of the section 
as round the lower shoulder. 

c ~ TTT But the circulation captures 
tiG. 117.—Spinning Cylinder in Wind. . r 

some of the air which would 
otherwise flow beneath the cylinder and causes it to flow over 
the top, increasing the velocity above at the expense of that 
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below. Bernoulli's equation then shows that the pressure is 
reduced to a greater extent above the cylinder than below it, 
and a lift results. 

The cylinder may be mounted in a wind tunnel in bearings 
carried by a balance, to which is also fixed a small driving motor. 
Starting the wind without spinning the cylinder will verify the 
absence of mean lift. But spinning the cylinder rapidly in the 
wind will give it a considerable lift, which can be measured. 

The circulation K can also be determined by exploring the 
velocity in magnitude and direction round an embracing circuit, 
as described in the preceding article. If L' is the lift per foot 
run gf the cylinder in a wind of undisturbed velocity V and 
density p, it will be found that 

U = KpV.(114) 

The units are : Kt square feet per second ; p, slug per cubic foot; 
V, feet per second; L', lb. per foot. 

Fig. 118 shows at (a) the flow that would occur past a wing 
section at an appreciable incidence in the absence of a circula¬ 
tion, and at (b) the actual flow 
as modified by the circulation 
which the wing generates. The 
same action takes place as has 
been described with reference 
to the spinning cylinder, and 
with the same result. An aero¬ 
foil can be tested for lift under 
two-dimensional conditions at 
some chosen incidence, as de¬ 
scribed in Article 106, and 
its circulation determined as 
above. If the experiments are 
carried out carefully under suit¬ 
able conditions, the result ex¬ 
pressed in (114) is again found 
to hold. 

(6) 

Fig. 118.—Streamlines of Flow Past 

an Aerofoil (a) Without Circu¬ 

lation, (b) With a Circulation 

Appropriate to the Lift. 

207. Discussion of the Lift Formula 

The expression (114) is one of the most important formulae in 
Aerodynamics. It can be shown theoretically, and experiment- 
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ally, to hold for every isolated body which provides two-dimen¬ 
sional lift. It also holds, except near the extremities of span, for 

.the sections of a three-dimensional body such as a wing or an 
airscrew blade, provided it is then interpreted locally. It is not 
accurately true for the sections of a very low wing monoplane 
on landing, owing to insufficient isolation from the ground, but 
such exceptional cases may be ignored. 

The first claim of the formula is that if K = 0, then L9 = 0— 
i.e., an aerodynamic lift cannot exist without a circulation, no 
matter what p and V may be. The next claim is that, for con¬ 
stant speed and density, the lift per foot run is proportional to 
the circulation, no matter what the size or shape of the body. 
Again, for constant lift per foot run the circulation is inversely 
proportional to the product of the density and the true air speed. 
These claims are fully justified and form the starting point of 
the Lanchester-Prandtl theory of aerodynamic lift and induced 
drag. 

A simple and useful formula connecting the lift coefficient of 
a two-dimensional aerofoil with the circulation round it is derived 
as follows. By definition, if c is the chord, 

r _ Lift per foot of span 

Ll ~ w* ■ 
Substituting KpV for the numerator gives 

Cl = 2~~.(115) 

This formula may be applied to a strip of the span of a three- 
dimensional wing, K being interpreted as the circulation round 
the local wing section and CL as the lift coefficient of the strip. 

Example 111.—The sections of an aeroplane wing near the 
root have a chord of 12 ft. What is the circulation round them 
at a speed of 150 m.p.h. if the local lift coefficient is 0-5? 

V = 220 ft. per sec. Vc = 2640 sq. ft. per sec. Hence the 
above formula gives K = \ x 0*5 x 2640 = 660 sq. ft. per sec. 

208. Review of Aerodynamic Lift 

The foregoing gives the most fundamental explanation of two- 
dimensional lift and the formula (114) reduces it to its simplest 
terms. In earlier chapters an aerofoil was seen to experience 
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lift as a variation, due to relative motion, of the normal pressures 
acting on its surface. This pressure variation was seen to arise 
from the irrotational flow outside the boundary layer and to 
accord with Bernoulli's equation, implying a faster flow above 
the section than below it. Now it is found that the last require¬ 
ment for lift is achieved in the presence of a wind by a circulation. 

The theory is indifferent as to how the circulation may be 
produced. Provided it exists in a certain strength, there will 
result a certain lift per foot of span for a given density of the air 
and translational velocity, whether the agent generating the 
circulation is large or small, mechanical or otherwise. 

Lift from spin, the method long practised in golf and other 
ball games and later applied to sailing by substituting rotating 
funnels for the sails of a ship lacks interest in Aeronautics, partly 
owing to the mechanical complication involved, but more funda¬ 
mentally on account of the high form drag associated with it. 
Any body pulled through the air at a suitable angle of incidence 
will generate a circulation without being spun, but usually only 
a weak one. The advantage of a well-shaped aerofoil is that it 
generates a comparatively strong circulation at an incidence just 
below the stall and yet offers almost negligible form drag at small 
incidences, when high speeds make a weak circulation sufficient 
for the lift required. A great deal more circulation than a wing 
will produce would be an advantage at low speeds, and many 
attempts have been made to combine the spinning and non¬ 
spinning methods, usually by fitting an aerofoil with a rapidly 
rotating nose. But so far only the flap or slot have proved 
effective, and neither succeeds quite as well as desired. 

In a later section of this chapter will be described the important 
and far-reaching effects of changing from two-dimensional to 
three-dimensional conditions : from an aerofoil stretched across 
a wind tunnel to a free wing. It will be found that the circula¬ 
tion then induces an extra drag which is absent from the two- 
dimensional aerofoil. Though the circulation round the latter is 
set up by an action of viscosity (there would be no lift if the air 
were inviscid), yet with a wing or aerofoil this action appears to 
take place once and for all unless the speed, altitude or weight 
supported be changed. If the virtue of wings had never been 
inferred from bird flight, aeroplanes might conceivably have relied 
on spinning cylinders instead, and then a small fraction of the 



288 ELEMENTARY AERODYNAMICS [CH. 

large power required for flight could have been traced to main¬ 
taining the rotation of the cylinders, on which the circulation 
would have depended. That some such wastage of power is asso¬ 
ciated with maintaining the necessary circulation round a wing has 
often been suspected, but not demonstrated. We may accord¬ 
ingly regard the part of the force arising on a two-dimensional 
aerofoil in a wind due to the circulation round its sections, as 
exactly perpendicular to the direction of the relative motion of 
translation. This force therefore involves no drag, and the drag 
of such an aerofoil comprises only form drag and skin friction. 

When the lift coefficient of a wing is changed, the circulation 
must be adjusted as stated in the formula (115). Large adjust¬ 
ments are therefore necessary in changing from climbing to 
straight level flight at full power, turning into a circular path, 
and so on. These are effected by suitable modifications of the 
angle of incidence. Even in straight level flight at constant 
altitude a continuous adjustment is, in fact, necessary, owing to 
a continuous reduction of weight due to consumption of fuel. 
The wings are assumed, however, to derive neither benefit nor 
disadvantage from this alteration of the circulation round their 
sections except as will be found essentially from the three- 
dimensional effect. 

VORTICES 

209. Nature of a Vortex 

In Article 203 there was no need for the cylindrical core round 
which the air revolved to be solid; it might equally have been 
formed of a shaft or column of the air itself in rotation. Such a 
rotating fluid core is called a vortex. Round it the air or other 
fluid circulates irrotationally as already described for the spinning 
cylinder, the velocity being inversely proportional to the radius 
in the two-dimensional case. This law ceases to hold at the 
edge of the vortex, but the internal motion is of little interest, 
and may be regarded vaguely as a more or less uniform rotation, 
though it is in fact more complicated. 

The strength of a vortex is measured by the circulation round 
it. An example of a strong vortex occurring in nature is the 
whirlwind; another is the whirlpool. Far weaker vortices are 
habitually generated by the wind in blowing past bluff obstacles. 
In the case of a long cylinder of poorly streamlined section. 



XIl] LANCHESTER—PRANDTL THEORY OF WINGS 289 

their axes are parallel to the axis of the cylinder (Article 46). 
We shall find that every lifting wing produces a pair of very 
long vortices whose axes are approximately parallel to the 
direction of motion. 

When the core of a vortex is small or the circulation large, 
the rotational speed at the centre is high; up to 16,000 revolu¬ 
tions per minute are said to have been observed uehind the 
wing-tips of a short aerofoil in a wind tunnel. The centrifugal 
force of the air then produces a considerable pressure reduction 
in the central region. A large pressure drop of this kind accounts 
for the waterspout at sea and the dangerous sucking dimple of 
the whirlpool. If a circular cylinder is drawn with its axis 
vertical through a long tank of water, the vortices in the wake 
cause a succession of dimples in the water surface. The corre¬ 
sponding pressure drop in the vortices trailing behind an aero¬ 
plane condenses water-vapour present in the air, forming plumes 
or streamers that can sometimes be seen. 

A vortex cannot come to a free end in the atmosphere, since it 
would expose its low pressure region to end-flow, and must either 
abut on a supporting surface or else form a closed loop. An 
instance of the latter is provided by the familiar smoke-ring, 
which is simply a vortex loop or vortex ring. 

The fact that a smoke-ring remains distinguishable implies 
that it is formed always of the same particles of fluid, and this is 
true generally of a vortex, except that viscosity causes imme¬ 
diately adjacent fluid to give up its irrotational state of motion 
and become part of the vortex. Though the thickness of a 
smoke-ring varies from part to part, its strength is constant 
along its length—i.e., the circulations round all sections are the 
same. 

210. The Bound Vortex 

Reverting to the two-dimensional case, there is an essential 
difference, as follows, between a long straight vortex and the 
spinning cylinder. When the wind blows on the latter, the 
circulation may be modified but is not blown away; it remains 
attached to the cylinder. But an isolated straight vortex is 
blown helplessly along by the wind. 

Fitting a long flat plate, which has no circulation, with a 
large number of small spinning cylinders, would produce a cir- 

u 
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culation round it. Similarly, the circulation round an aerofoil 
is conceived as caused by innumerable fine vortices which envelop 
it'and are enchained to it. A vortex which is prevented in this 
sense from being blown along by the wind is said to be * bound \ 

Thus a spinning cylinder in a wind can be described as a 
bound vortex. The formula (114) gives the lift, K denoting the 
vortex strength. This formula applies equally to a two-dimen¬ 
sional aerofoil, but makes no mention of the aerofoil chord, on 
which the lift depends only indirectly—i.e., only in so far as the 
chord may be required to generate the necessary circulation. 
Thus an aerofoil, too, is often regarded simply as a bound vortex. 

The student acquainted with the theory of Electro-magnetism 
will perceive a striking analogy between a bound vortex in a 

wind and a wire conveying an 
electric current through a mag¬ 
netic field, leading to a mathe¬ 
matical similarity in some 
respects between the aeroplane 
and the electric motor. Fig. 
119 shows the streamlines past 
a strong bound vortex in a 
wind, the wake being neglected; 
the circulation is much greater 
than an aerofoil can achieve at 

the implied speed. The picture equally represents the * lines 
of force 1 round a conducting wire coincident with the vortex 
and situated in a uniform magnetic field, whose own lines of 
force are parallel to the direction of the undisturbed wind in 
the aerodynamical case. Perpendicular to this direction and to 
the wire an electro-magnetic force arises on the latter analogously 
to the aerodynamic lift on the bound vortex. 

211. Vortex Pair 

When two or more vortices are present, the resultant induced 
velocity at any point is obtained by combining, by the triangle 
of velocities, the separate velocities which would be induced at 
that point by each of the vortices alone. An example of out¬ 
standing interest is provided by what is called the vortex pair. 
This consists of two parallel rectilinear vortices at some distance 
apart, of equal strengths and revolving in opposite senses. The 
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strength of each will be denoted by K and the distance apart 
by l. 

A vortex pair moves through the fluid because, although 
neither has any velocity due to itself, each has, by the formula 
(112), a velocity equal to K/2irl 
due to the other. With the 
rotations as shown in Fig. 120 
the resulting motion of the pair 
is downward; it is slow in most 
cases of aerodynamical interest 
and can usually be neglected. 

Owing to the opposite rota- Fig. 120.—Streamlines of a 

tions, the induced velocity ap- Vortex Pair. 

propriate to either separately is increased between the vortices and 
reduced beyond them. This is indicated in the figure, the stream¬ 
lines being drawn on the convention described in Article 44, so 
that the resultant velocity at any position is inversely propor¬ 
tional to the local distance between adjacent streamlines. Since 
the vortices are themselves moving, it is necessary to add that 
the streamlines shown are relative to the vortices and move 
downward with them. 

Considering a point midway between the vortices, and thus 
distant \l from either, the induced velocity due to each is, by 
the formula (112), K!2tt\1 = K/ttI and has the same direction. 
Thus the resultant velocity at this point amounts to double this 
quantity—i.e., to 2K/nl. 

212. The Bent Vortex 

A two-dimensional or rectilinear vortex is one which is not 
only straight but also extends indefinitely in both directions. 
Three-dimensional vortices are more complicated and can be 
referred to in this book only in general terms. The simplest 
case, and fortunately the one of most interest, is the following. 

Imagine for a moment a straight vortex, which is long in one 
direction only, to terminate in the atmosphere. The velocity 
induced at a given radius decreases as the end is approached and 
is no longer inversely proportional to the radius, except opposite 
the end itself. 

The exception mentioned is important in connexion with wings 
and airscrews. Level with the end of the vortex, the induced 

x 
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velocity v is inversely proportional to the radius r from the axis 
of the vortex, just as in the two-dimensional case, but has 
precisely one-half of its two-dimensional value—i.e., 

v=KI±7ty.(116) 

The induced velocity does not cease abruptly at the end, 
but suffers further reduction only gradually as the end is 
passed. 

How in these circumstances can the strength of the vortex, 
which is measured by the circulation round its sections, remain 
constant all the way along its length? The answer to this 
question follows from the fact that for clearness of statement we 
have supposed a fictitious arrangement. A vortex cannot come 
to a free end. In the absence of a supporting wall to make it 
two-dimensional, a straight length must be joined to another 
part of the same vortex. The two parts might, for instance, be 
joined at right angles to one another, like the two strokes of the 
letter L, and then what has been called the end would be the 
juncture of the two strokes. The description which has been 
given applies to either arm of the bent vortex considered separ¬ 
ately. Both arms produce velocities, and those due to the second 
combine with those due to the first in such a way as to maintain 
the circulation. The circulation is still irrotational, but it is 
not two-dimensional, its paths requiring to thread round the 
comer. 

213. The 1 Horse-shoe ’ Vortex 

The difficulty just discussed would arise equally at the free 
ends of a vortex shaped like the letter L; these ends, too, must 
lead to other parts of the same vortex. As a first step the L 
may be converted to a U, and then, assuming the up and down 
strokes to be very long, we have a pair of vortices joined together 
by a cross vortex. This is known in Aeronautics, not very 
suitably perhaps, as the simple horse-shoe configuration. 

Far away from the cross vortex, the arrangement becomes 
indistinguishable from a vortex pair. As the cross vortex is 
approached, each of the parallel arms behaves separately as 
described in the preceding article. Thus the two together can 
be regarded in this sense as a terminating vortex pair. 



XIl] lanchester-prAndtl theory of wings 293 

THE WING 

214. The Uniform Lift Approximation 

Imagine a re-entrant vortex loop to be drawn out into a very 
elongated form. Let the scale be large, so that the distance 
between the long parallel sides of the rectangular loop is about 
three-quarters of the span of a monoplane, whiL* the other 
dimension may be a few miles. Imagine the two wings of the 
monoplane to be squeezed into one of the short sides, BC, of the 
loop (Fig. 121), and the projecting wing- 
tips cut off. The result is a first _v—^ 

approximation to the actual vortex r V^P C 
system generated by the aeroplane. B \ j 

The part BC of the vortex is ‘ bound ’ \ I 
to the wing. The circulation round this __ ^-4/—^ _ 
part is not added to, but is identified ^ ^ ^ N 
with, the circulation required to give 
the wings a lift equal to the weight of [J L 
the monoplane at a certain speed and n 
altitude. The same circulation occurs 
round every part of the complete vortex 
loop. Thus the lift per foot of span of 
the monoplane is constant along the _* J 
wings. In this respect the mutilated ..... —I—J^ 

wings differ from the actual wings, Fig. 121.—First Approxima- 

which would have a lift-grading (cf. TION TO Trailing 

Article 110), and just so much of the ATED BY a Monoplane. 

wing-tips has been cut off as will 
make the total lift correct in spite of this change. 

The part BC is dragged along with the aeroplane at a velocity 
F, say. The part AD of the loop is incapable of following and 
is left behind; it is often called the starting vortex. Hence the 
trailing vortices BA and CD are lengthened at the rate F feet per 
second. After a few seconds the trailing vortices are so long that the 
starting vortex is too far away to affect the wings; it may there¬ 
fore be ignored and we have the simple horse-shoe configuration. 

215. Qualitative Description 

A two-dimensional aerofoil has no trailing vortex system. The 
consequences of restricting the span are determined by the effects 
on the wing of the trailing vortices thereby introduced. These 
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vortices induce a downwash in the air flown through by the 
wings. In straight level flight, therefore, the wings fly through 
air which is moving slowly downward. 

It is immediately apparent from Article 96 that drag is in¬ 
creased thereby; it was there found that deflecting the relative 
wind downward through an angle (J adds the amount (3L to the 
drag, L being the lift. Thus induced drag can be said to arise 
as follows. The force due to circulation round the wing sections 
in a wind acts perpendicularly to the stream (cf. Article 208). 
But the stream is bent downwards in the neighbourhood of the 
wings by the trailing vortex system. This inclines the force 
backward from the vertical in straight level flight, giving a back- 
wardly directed component parallel to the direction of motion. 
A more fundamental definition of induced drag is given at the 
end of this chapter, but it is not so useful. 

Again, it is apparent why incidence must be increased com¬ 
pared with two-dimensional conditions, as found experimentally 
in Article 112. To realise a two-dimensional value of the lift 
coefficient for any fore-and-aft strip of the wing, the incidence 
requires to be increased by the angle through which the relative 
wind is deflected downward in the vicinity of that strip by the 
trailing vortices. 

216. The Wing-Tip Vortices 

The actual vortex system behind a wing is more complicated 
because the trailing vortices are formed only in part in the 
immediate neighbourhood of the aeroplane. They appear in full 
strength only some distance behind. 

A pair of vortices is generated without delay just inside the 
wing-tips. They are accordingly called the wing-tip vortices. 
Their strength may amount to one-half that of the final trailing 
vortices, but this fraction is subject to large variation. They 
form the nuclei round which the trailing vortices mature, a 
process which pulls them toward one another. 

The existence of wing-tip vortices can be demonstrated in a 
wind tunnel in many different ways—e.g., as follows. 

(a) In Fig. 122 A represents half the span of a lifting aerofoil 
in plan-view (the other half exists in place, of course, but is not 
shown). B represents a short length of one of the wing-tip 
vortices. CD is an imaginary line parallel to the span and one 
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or two, chords behind the aerofoil. A yaw-meter is tracked 
along CD, which extends beyond the i_ 
wing-tip, measuring the downwash f > 
angle e which is shown plotted in the | J 
figure. The part fg of the downwash . “ 'e 
curve relates to the vortex itself, indi- J 
eating approximately uniform rota- j ^ B 
tion; at least 5000 revolutions per q*_^ 
minute can be expected. The part gh j f 
shows upwash beyond the wing-tip, in i J\ 
great strength near the vortex core j 
where a downwash angle of — 60° may |-A—- 
be found. The upwash is caused chiefly • 1 /"^h 
by the circulation round B, but not I \j 
solely. For successful observations, g 
the yaw-meter should be of fine con- Fig 
struction to avoid pushing the vortex 
out of the way, and the precise level of CD adjusted by experiment 
to cut through the centre of the core. 

(b) The vortices can be made visible by the condensation of 
steam fed into the wind tunnel (cf. Article 209) or by smoke. 
In the latter case the dense smoke of titanium tetrachloride may 
be used, drops of the liquid being put on the model or suspended 
from a glass rod, but the speed must be low. 

(c) The upper surface of the aerofoil in the region of the wing- 
tip may be closely explored for pressure (cf. Article 105). The 
readings, if sufficiently numerous, will show a deep pressure drop 
over a small area, indicated in the figure by a black dot on the 
aerofoil, where the vortex approaches the surface. 

217. The rest of the rotating air that is absorbed into the 
fully matured trailing vortices springs like a mane from all along 
the trailing edge of the wings. 

One way of seeing how these innumerable thin vortices arise 
is as follows. Owing to the greater velocity above the wing than 
below it, the streamlines over the upper surface will be bent 
inward towards the centre of span to a greater extent than are 
those beneath the lower surface, which with some sections will 
even be bent outward. At the trailing edge, therefore, where the 
two streams unite again, the upper one tends to slide inwardly 
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over the lower one, producing rotation through viscosity about 
axes roughly parallel to the direction of motion. 

The resulting layer of fine vortices extending from one wing- 
tip vortex to the other is known as the vortex sheet. It is 
naturally in two halves, for the rotations are in opposite senses 
behind the two semi-spans. Each half curls and rolls up with 
its wing-tip vortex. But this process is slow and neglecting it 
altogether leads to the following approximate representation of 
the vortex sheet. 

218. Stepped Lift Distribution 

The wing-tip vortices are omitted from Fig. 123 (a), leaving 
only the trailing vortex sheet. This is represented by a large 

number of vortex pairs, of which 
three are shown, numbered 1, 
2 and 3, symmetrically disposed 
about the centre of span and 
parallel to the direction of 
motion. Each pair is termin¬ 
ated by a cross vortex bound 
to the wing. Thus the complete 
system, including the wing, is 
represented by a number of 
4 horse-shoe ’ vortices. 

The strengths of the vortex 
pairs being Kv K2, K3, as 
marked in the figure, the circula¬ 
tion round the wing sections is 
Kx between points 1 and 2 on 
the span, Kx + K2 between 
points 2 and 3, and Kx + K2 + 
K3 along the central part. Re¬ 

membering that L', the lift per foot run, is given generally by KpV, 
the lift is distributed along the span in accordance with Fig. 123 (b), 
where L/ = KlPV,Li2' = (Kx + K2)PV and Ll23' = (Kx + K2 + 
K3)pV. A given lift-grading curve (Article 110), such as that 
shown dotted at (b) in the figure, can be approximated to by a 
judicious arrangement of this stepped distribution. A close ap¬ 
proximation will result from a large number of horse-shoe vor¬ 
tices, and then the equal number of trailing vortex pairs will 

(b) 
Fig. 123. 
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approximate to the vortex sheet. It is seen in this way that 
the nature of the vortex sheet depends on the lift-grading curve. 

219. The Elliptic Wing 

The term elliptic applied to a wing means that the lift-grading 
curve is a semi-ellipse. The wing is not necessarily elliptic in 
plan-form, though this plan-form is usually considered to give 
the best approximation to elliptic loading. 

It will be evident from. Article 214 that if a wing has wing-tip 
vortices part of its lift must be uniformly distributed along the 
span. It follows that the elliptic wing has no wing-tip vortices. 
This, however, is not its distinguishing feature amongst theo¬ 
retical wings; its unique characteristic is found in the nature of 
its vortex sheet, which induces a uniform downwash velocity 
along the whole span of the wing. We assume this mathematical 
result and may therefore calculate the downwash at any position 
along the span that may be convenient, and the convenient 
position is obviously the centre of span. 

Let the elliptic lift-grading curve be fitted by a number of 
horse-shoe vortices as explained in the preceding article. The 
following investigation will again deal only with three, although 
more would be required for a close fit. In arranging the ap¬ 
proximation, we are able to adjust Kx, K2, K3 and also llt Z2, Z3. 
Let K be the circulation round the centre of span of the elliptic 
wing and Z the span, and let it be assumed that the best approxi¬ 
mation is obtained by making 

if j jFsT2 — .if*3 —— &qK.f 

and Zj — ZqZ, Z2 — Z^oZ, Z3 — Z^3Z, 

The coefficients having once been determined will remain 
unchanged if the semi-ellipse is increased in height or length. 
The first variation implies an increase of K at constant speed and 
density, since at the centre of span L' — KpV, and the second 
an increase of span. 

The approximation achieved regarding the total lift L is 

L=PV(Klll+K2l2 + K3l3), 

each term on the right representing one of the rectangular areas 
in Fig. 123 (b). This expression can be written 

L = KpVl(a1bl + a2b2 + ci3b3) 

— KpVl X constant.(i) 
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The downwash velocity v at the centre of span due to all the 
terminating vortex pairs is, by Article 212, 

Xi , K2 . K3 
v_w1+^+^r3 

_K(a 
_77 l\b 

= y x constant. 

li?J i 
\ + b2 + b3) 

Hence, if V denotes the velocity of the wing, 

But by (i) 

v . K 
y vanes as yy 

K varies as 

Therefore, writing p for v/V, 

P varies as 

pVV 

i.e.. (117) 

1 L 
pV*'P 

3=^ L~ P q-p .... 

where C is a constant and q = \pV2. 
The circumstances of the wing are indicated in Fig. 124. The 

downwash velocity v deflects the stream at the wing through 
the small angle p — v/V and 
increases its speed from V to 
VR. Since v is assumed con¬ 
stant along the span, the figure 
may refer not merely to a strip 
but to the whole wing. R 
represents the total resultant 
force, omitting skin friction 
and form drag. By Articles 

206 and 208 and the expression (i), R = constant x KpVRl and 
is inclined backward from the direction of the lift L by the angle p. 
Hence 

L — R cos p = constant x KpVBl. V/VR 
= constant x KpVl, 

and the total induced drag is 

D{ = R sin p = L tan p 
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Substituting for (3 from (117) gives 

*H(r)!.<II8> 
220. Discussion of the Formulae 

The quantity Ljl, the total lift divided by the span, is called 
the span-loading. The coefficient C can be evaluated mathe¬ 
matically to the value 1 fir for accurately uniform downwash 
along the whole span. The induced drag and the necessary 
increase p of incidence can then be proved to have minimum 
values for a given span-loading and stagnation pressure (or 
indicated air speed). Di and (5 are increased by any change of 
the lift-grading curve from a semi-ellipse. The elliptic wing is a 
theoretical ideal which is particularly useful, however, because 
practical wings give little more induced drag. The increase 
commonly varies between 5 and 15 per cent. Adopting 10 per 
cent, gives C = 0-35, as in Articles 113 and 165. The angle p 
will be in degrees instead of circular measure if C in (117) is 
multiplied by 180/7T, giving 20, approximately, as in Article 113. 

The formulae ignore the chord except in so far as it is implied 
in the angle of incidence; the three-dimensional effects depend 
fundamentally on the span-loading, not on the lift coefficient. 
Nevertheless, a sufficient chord is necessary with a given span in 
order to generate a strong circulation at the minimum flying 
incidence, whence the aspect ratio A becomes a conception of 
practical importance. The formulae are easily re-written in 
terms of A, and then CL appears. Multiplying the numerator 
and denominator of the right-hand side of (117) by c, the mean 
chord, and noting that spanjc — A and span x c = the wing 
area, gives immediately : 

. . . (119) 

Similarly, 
r 

C — — f\2 
u Di — A 

. . . (120) 

as in Article 113. 

221. Applications 

A number of important applications of the induced drag 
formula has been given in Chapter VIII, and there are many 
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others. Those which involve no mathematics are often con¬ 
cerned with the effects of increasing the aspect ratio from, say, 
A to A'f and the last two formulae give for the effects of this 
increase : 

Decrease of incidence 

Decrease of drag coefficient = C G 
These expressions are often called the reduction formulae. To 
use them, the lift coefficient may be kept constant. 

Example 112.—An aerofoil of aspect ratio 6 gives a lift-drag 
ratio of 15 at a lift coefficient of 0-5. What lift-drag ratio would 
result at the same lift coefficient from increasing the aspect 
ratio to 9 ? 

Originally, the drag coefficient = 0*5/15 == 0*0333. Using the 
above formulae, l/A = 1/6 = 0*1667; 1/A’ = 1/9 = 0*1111; CL2 
= 0*25. Hence the decrease of drag coefficient 

= C(0*1667 - 0*1111)0*25 == 0-0139C. 

Putting C = 0*35 gives for this decrease 0*00487. So the new 
drag coefficient = 0*0285, and the new lift-drag ratio = 0*5/ 
0*0285 = 17*5. 

Example 113.—Referring to the preceding example, what change 
of incidence would be required to maintain the lift coefficient ? 

There would be required a decrease of incidence, given by 

C(0*1667 - 0*1111)0*5 = 0*0097 radian 

with 0*35 assumed for C. This comes to a little less than 0*6°. 

As instances of applications requiring mathematical treatment 
may be mentioned the corrections for tunnel constraint noted at 
the end of Chapter V. These arise because the tunnel walls 
decrease the velocity of downwash, but detailed discussion of 
them is beyond the scope of this book. 

222. The Residual Air Flow 

Well behind a wing in flight, the trailing vortex system has 
wrapped up into a vortex pair. The final result, therefore, of 
the passage of the aeroplane is to generate in the part of the 
atmosphere flown through the motion depicted in Fig. 120. The 
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distance between the centres of the vortices is about three- 

quarters of the aeroplane's span. A length of V feet of the air 
flow is created per second, V being equal to the speed of the 
aeroplane. A large mass of air is therefore affected in each 
second. 

As noted in Article 211, the vortices move slowly downward, 
and the air flows downward faster between them than it flows 
upward beyond them. The vertical momentum given to the 
mass of air involved is unevenly distributed, some parts having 
downward momentum and others upward momentum. A balance 
can be struck between these two components of momentum, 
though not by elementary means, and it is found that a length 
of V feet of the complete air flow round the vortices has, upon 
the whole, a downward momentum equal in magnitude to the 

lift of the- aeroplane. Thus three-dimensional lift eventually 
appears as the reaction to the rate of change of downward 
momentum given to the air in continuously generating a vortex 

pair. 
But the air cannot receive momentum without having its 

kinetic energy increased. The velocity midway between the vor¬ 
tices may readily exceed 5 feet per second, and so the generation 

by the passage of the aeroplane of a large amount of kinetic 
energy in the atmosphere each second is apparent from the 

figure. The wastage of energy must be made good by the engine, 
and may account, at low speeds when the circulation is large, for 
one-half of its power. 

In expending this engine power the airscrew does work against 
a certain component part of the drag—viz., the induced drag D{. 
Let E represent the kinetic energy given to the atmosphere per 
unit length of the flight path. Then the kinetic energy given 
per second is VE, whilst the corresponding part of the work 
done by the airscrew is VDit whence Di = E. Thus induced 
drag is equal to the kinetic energy given to the atmosphere 

per unit length of the flight path. 
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