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PREFACE TO THE FIRST EDITION

TEXT-BOOKS on the theory of structures generally include the
subject of influence lines, but, as it is usually desired to cover a
wide field, the treatment awarded this particular branch of study
is often too brief for a beginner. The following text is free from
such space considerations and the young designer will find in it
complete sets of calculations for the various types of structures
he may encounter in the ~arly stages of his career.:

The text also recognises the fact that many young engineers shun
the subject of mathematics. One reason for this dislike may be
due to the dissimilarity in the professional environment of the
teacher and his pupil. To the professional mathematician an
equation bristling with symbols may be a pellucid answer to an
investigation, but to the average engineer the answer to be intelli-
gible must be a numerical one of so many units. Mathematics to
the latter individual is only a tool, and one of many at that, which
he uses towards the completion of his structure. Because of this
aversion the neat methods of the calculus have either been forsaken
for, or accompanied by, the arithmetical * long way round.” It is
hoped thereby that the text will be as easily read by the young
practising engineer, who is weak in mathematics, as by the under-
graduate completing his final year.

As this book was written for beginners the rather unusual
procedure was adopted of having the text criticised by beginners.
This often resulted in a more expansive treatment of the debated
point and in repetitions being given, for, as it was said, ‘‘ The
student reader has no teacher at his side to cross question and an
extra explanatory sentence or so will often save a student hours of
thought.” Apart from the hyperbole as to the time expended in
thought (even Seneca wrote that all complained of time shortage)
it is admitted that the criticism is well founded ; while repetition
is just as useful in the text-book as it is in the lecture theatre—after
all  engineering experience ”* is but another form of repetition.

v
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Grateful acknowledgement is made to Mr. Wm. Dudgeon,
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ABBREVIATIONS AND SYMBOLS

The following symbols are also explained throughout the text

B.M.
B.M.,

B.S.S.

Cross sectional area of a
bar.

Bending moment (in foot
tons).

Bending moment at point
A

British Standard Specifi-
cation.

(intertwined).
line on drawing.

Centre pin of an arch.

Effective depth of girder.

Dead load.

Young’s modulus.

Force (in tons).

Horizontal thrust (on an
arch).

Horizontal thrust at left ;
at right.

Impact coefficient.

Influence line.

A constant in an equa-
tion.

Span of girder.

Left-hand pin
arch).

Left-hand side.

Live load.

Moment.

Moment at 4 ; at B.

Maximum.

Normal thrust
arch).

Reaction or resultant.

Centre

(of an

(on an

Reaction at left; at
right.
Right-hand pin (of an
arch).

Right-hand side.

Shear or stress, as per
text.

Span of an arch, as per
text.

Shear at 4 ; at B.

Stress in member 4B.

Superscript, small capital
= tons (British or
“long " ton of 2,240
Ib.).

UDD.L. .
U.D.L.
U.D.L.L.

vV

ViiVr

14
dM

Uniformly  distributed
dead load.
Uniformly  distributed
load.

Uniformly  distributed
live load.

Vertical component, or
shear.

Vertical reaction at left
hand ; ditto  right
hand.

Load or work done, de-
pending on text.

Small  increment  of
moment.

Small increment of shear.

Compressive working
stress in tons per sq. in.

Tensile working stress in
tons per sq. in.

Feet.

Foot tons.

Centre of gravity.

Height or rise of an arch.

Fraction or decimal part
(of the span).

Neutral point.

Length of bridge panel.

Square inches.

Unit load.

Usually load in tons per

ft. run.

Variable distances.

“Delta z”; a small
increment of length z.

«“Delta y; a small
increment of length y.

(Delta). The amount of
deflection.

Angles (theta and phi).

Angle ABC.

Less than.

Greater than.

(Sigma). The sum of.

Equal to.



INFLUENCE LINES: THEIR
PRACTICAL USE IN BRIDGE
CALCULATION

CHAPTER 1

REACTION AND SHEAR INFLUENCE LINES
(SIMPLE BEAM)

Definition. An influence line is a curve or graph representing
some function such as reaction (shear, bending moment, or stress,
etc.) which occurs at a particular point or section on & span as a
load passes over the span. The curve is drawn on a base line
representing the span to scale and the ordinate from the base line
to the curve at any point K on the span represents the value of the
reaction (or shear, etc.) at the fixed section when the load is placed
at the (variable) point K.

Throughout these pages the influence diagrams for reaction,
shear, bending moment and stress * are all composed of straight(
lines because the structures treated are all statically determinate.
Curved influence lines for these quantities are only encountered in
statically indeterminate structures, e.g., the two pinned arch.t

Further, the influence lines are all drawn for the passage across
the span of a unit load of 1T and are thus unit influence lines
although briefly termed influence lines. If a 9T or a WT load be
rolled across the span the result will be nine times or W times that
of unit load, ¢.e., multiply the effect by the ratio of the loads, or
by the load considered as an abstract number.

Reaction at 4 of the simply supported 40’ 0" span 4 B of Fig. 1.

With the wheel at point B the total load pa,sses directly into the
nght-hand abutment so that Rg (i.e., reaction “R” at point B)
is 17, while the left-hand reaction, R, is zero.

Permit the load to travel to point b of Fig. 1 (b) and consider
the reactions. By taking moments at B the left-hand reaction is

* See the footnote on page 15.
zln the last chapter ourved influence lines ocour, but these refer to beam
eotlons
1



2 INFLUENCE LINES: IN BRIDGE CALCULATION

found, thus: 1T X 10’ = R, X 40’ or R, = }T, t.e., when variable
z is 10’ 0” the reaction R, is $T. Similarly when the 1T load arrives
at ¢ both reactions are each 4T, .e., variable z = 20’ 0" and variable
R4 = }t. When the 1T load arrives at d the variable z = 30" 0"
and the corresponding value for R, = 3r. Finally, when the It
load is placed at point 4 the value for z is 40’ 0” and for R4 is 1T.

It is now seen that these two variables, z and Ry, can be plotted
asin Fig. 1 (f); the values for the straight line being :—

z 0 10 20 30’ 40’
R, 0 0-25t 0-5t 0-75T 1r

This straight line graph can be much more easily obtained from
consideration of the equation of the line. The value for R, is
found, as above, by taking moments at the point B, viz., R, X 40’

= 1T X 2’ or R4 = -—~; and this expression is the law governing

xT
‘E ’
the graph of Fig. 1 (f). Since z is to the first power the line is a
straight one and any value of R4 can be found on substituting the
requisite value for z in the equation.

«—x _.‘r\
@ B0 -9 ¢ b %, xw0
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@ 8005 Lz _ / | o
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':'— - —— —— 32t0" 3 &y 17
. S b ’ _ /6.'0"__1
4/) ~ o '
gl ey e
s &, 3 °
Horrortol Cirs /'or z; Vertical Qs y for £y
FIG/
Arithmetical Examples

1. What is the value of the left-hand reaction R, when the 1T
load is placed at point @, 16’ 0” into the span, Fig. 1 (f) ?

Answer. Meusure the ordinate at the Load, i.e., at G. This

ordinate scales 0-4” and as the vertical scale is 1" = 1T the,

reaction at the left hand is 0-4T,
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2. If the load is placed at H what is the left-hand reaction ?

Answer. Since the ordinate at the load is 0-8”, the reaction is
0-8r,

3. What is the left-hand reaction if a 17 load is placed at G' and
another at H ?

Answer. The ordinate at G added to the ordinate at H, viz.,
0-4" 4- 0-8" = 1-2" or 1-2T reaction.

4. If a 97 load be placed at G, what is the reaction R, ?

Answer. Measure the ordinate at the load, 7.e., at G, and
multiply this by 9, e.g., 04" X 9 = 36" or 3-6T reaction.
(Multiplying by 9 is necessary as the load now considered is nine
times larger than the unit load of 1T for which the graph or
influence line was originally drawn.)

5. If a 6T load be placed at G and a 4T load at H what is R, ?

Answer. Ordinate at G multiplied by the load thereat plus the
ordinate at H multiplied by its load = 04" X 6 4 0-8" X 4
= 56", 1.e., R4 = 5-6T. Check by taking moments about B,
6T x 16’ 0" 4- 41 x 32’ 0" = R4 X 40’ 0", whence R4 = 5-6T.

Train of Loads. Arithmetical Ezample

6. What is the reaction on the left at 4 with the Ministry of
Transport Loading (1922), see also Fig. 111, in the position shown
in Fig. 2 (b) ¢ It is assumed that the wheels give up their loads

000742 /20" a'ofT— 100" s'o'-l
o Bl b brw

L R

@) X E
hrzyopeloey | .

@

}-—n’d«}o—waow 00"
4—2*»
FIG. 2. @
to the beams or girders at once, without any distributive effect,
and that the vehicles are on the longitudinal centre-line of the
bridge as in (d).

Answer. Draw the influence line for the left-hand reaction,
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Fig. 2 (a), then multiply each load by its own ordinate and finally
sum the results. Thus,

(4 X 1") 4+ (11 X 0-75") + (5 X 0-45") + (5 X 0-26") + 5 X 0

‘and the last load is not on the span, so giving a total length of
15-76", which is equivalent to a reaction of 15-75T, since the
scale used was 1" = 1T, As a check calculate by moments about
point B,

[(4TX 40")+ (117X 30')+(5T X 18') (5T X 10)]--40"=R 4 =15-T5T.

7. What is the largest reaction which can occur at 4 with the
above load traversing the span ?

Answer. 1t is obvious by inspection that by placing the 4T load
. off the bridge and bringing on to the span the last 5T wheel load

that there is an increase in R,. This position of the load is

indicated in Fig. (c).

Ry = (11 X 1") + (6 X 07") 4+ (6 X 05") + (5 X 0-25") +

(5 x 0-05") = 18-5” or 18-5T since 1" = 1.
Checking by moments, (11T x 40') 4 (5T x 28’) 4 (6T X 20') +
(6T X 10") + (5T X 2') =40’ X R,
whence R4 = 18-5T.,

Uniformly Distributed Load (U.D.L.)

Let the self or dead weight of the girder be wT per ft. run (s.e.,
assuming the girder to be of uniform cross section throughout its
full length, Fig. 3) to consider the effect on the reaction at 4 of the
dead load of the 10’ 0" length AhA.

Since the girder is assumed uniform, then the weight 10w of the
10’ 0" length may be assumed to act at its mid-point or centre of
gravity g. Hence the end reaction at 4 due to a length 4h is

R, = ordinate at mid-point X (numerical value of load thereat),
= ordinate, scaled in tons X (length 4k in ft. X numerical
value of load/ft.),
= by X Ak X w in tons units,
since ft. cancel and w is a ratio or abstract number ;
= area achd X w, tons.

Hence for a uniformly distributed load covering any length = of
the span the result is the diagram area upon z as a base line
multiplied by the numerical value of the load per ft. run. The true
area of the figure is obtained by measuring the vertical ordinate to
its scale and the horizontal base to its scale and then multiplying
these two numbers together.
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Arithmetical Example
8. Due to the 10’ 0” length,
R, = (area Ahca X w) tons
= (bg X 4k X w) tons
If the girder weighs 0-057/ft.
then R, = 0-875T X 10 X 0-05
= 0-4375 tons.

Due to the complete girder,
R4 = (area AaB X w) tons
= §(da X AB K w) tons

=05 X 1 X 40 X 0-05 tons,
= lT

Uniformly Distributed Live Load (U.D.L.L.). Arithmetical Examples

9. What are the values of the reaction at 4 when a U.D.L.L. of
§r/ft. run covers the span from B to ¢, and, secondly, from < to 4,
and, finally, when the U.D.L.L. covers all the span of Fig. 3 ?

Answer. (a) Btoi. R, = area Bid X }r

= }(Bi X id) X 3r

= 3(25 X 0-625) x 3T = 586t
(b) to 4. R, = area idad X #T

= }(1 4+ 0-625) X 15 X §r = 9-l4t
(c) Bto A. Ry=4(40 x 1) x §r = 15-00T

Result (c) should be the sum of (a) and (b).

10. Find the maximum reaction or shear at 4 when the live load
of Fig. 4 (a) crosses the 40’ 0” span girder which weighs 37/ft. run.

Answer. Dead load R, = }(4a X AB) X } tons

= (11 X 40) X % = 10T
Live load
Position (a) R, = (4 17)4(11X 0-757)+3(0-45Tx 18)X }
= 15-28751
» (b) Ry = (11 x 1u) 4 3071 x 28) X } = 18-357
” (c) Ry=3(1T X 40) X }
= 15-00T
Maximum reaction is thus D.L. 4 L.L. (b) T = 28-35T
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Right-hand Reaction R,

From the previous examples it is obvious that the influence line
for the right-hand reaction Ry will be as indicated by Fig. 5 (a).
However, as the left-hand reaction is termed positive shear it
automatically follows, as with shear curves, that the right-hand
reaction will be termed negative shear, and in consequence will be
plotted below the line as in Fig. 5 (b). The combined influence
lines for both reactions can be (and are always) plotted on one
single base line after the manner of Fig. 6.

. r £Lq
‘a) ” / +
A gogrezeadp A —°
®) Vi La= /
| Pgacrn; eraﬂw’:p% {,mn
F/G. 5. F/IG. 6.

INFLUENCE LINE FOR SHEAR (SIMPLE BEAM)
With the one ton load stationary at point a the reaction at 4
of Fig. Tislt X 2+~ L= ?—2— This upward force or shear acts at

A and remains constant in value (as shown by the shear diagram
of (b)) until point a is reached, so that the shear between 4 and

a is positive = % From the figure it is clear that the shear at C

equals R, = % Therefore, 8o long as the 1T load lies between
B and C and does not enter into the portion C4 of the span the
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shear at C (S,) equals the reaction at 4. This reaction changes, of
course, in value according to the position of the wheel load, but
S, = R, always, with the one ton load between B and C. Therefore,
the full line of Fig. (c), which is part of the influence line for Ry, is
also part of the influence line for shear at point C.

< <
b)ﬂL T R 8 A .L._ ~ 8
‘[_._4'___6:; _,__T’l if: eyt Rt
@) et = '
,,.r"{‘; ______ S |Tl4s iy 5 hesr Gre | @
€ |
A {u 1|d ﬁ:"'ﬂlmzzr____ ‘5"
/moovce‘é_ﬂg + 5Hz4¢ rguence 44;76 ----------- j /,'
FIG 7 FIG.8

Let the 1T load now lie between C and 4 and let  be measured
from A instead of from B, Fig. 8. In this position R,=1T(L—z)=-L,
found by taking moments about B, and the shear at C is this
reaction minus the 1T load, diagram (b), 1.e.,

Se=Ryr—It=17(L —2) -~ L—1r
T
- L

Alternatively, it is easier to consider the right-hand reaction at B,
since this reaction is also equal to the shear at point C. (By
definition the shear is the algebraic summation of all the loads to
the left or right of the point considered.) Taking moments at 4,
1t X # =~ L = Ry = S,. Again, then, so long as the one ton load
lies between C and A4 the shear at C is of the same value as the
reaction B and is negative. As the load travels from C to 4 the

reaction B decreases from {11? to 0, see influence line for Ry, Fig. 6.

Therefore, the shear influence line for point C with the load anywhere
between C and 4 is the full line, shaded, of Fig. 8 (c).

The complete influence line for shear at C' is these two lines
combined as in Fig. 9.

mrivevee Live foe Sc,
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Arithmetical Examples

11. Find the shear at point C, 10’ 0" from the left-hand support
of a 40’ 0" span beam, Fig. 9, when a 1T load is placed at 15’ 0" from
the right-hand support, s.e., D of the figure, then at E and C of the
figure.

Answer.

ltat B; S;=load X ordinate =1 X OT = O0r

lTatD; S.= , X 5, =1X 4 0-375T = + 0-375T

ITatE; S.= , X , =1xX —0125T = — 0-125T

lTatC*; Sc.= , X w =1X 40757 = + 0-75T
or= , X , =1x —025T = — 0-257

12. If the dead load of the girder is 4T per ft. run, what is the shear
at C, S, ? ’
Answer. Asin example (8), S; = area of the influence line which
stands upon the loaded length of base line (s.e., all the span in
this case) multiplied by the load per ft.
S = (neg. area AEC plus the positive area CDB)}T, Fig. 9,
= (— 125 + 11-25)}T1 = 5T.

13. Tt is required to find the shear at point C on the
40’ 0" simply supported span of 4B of Fig. 10 due to the
given loading.

.- Answer. The ordinate heights of the influence lines
can be either scaled or calculated. The gradient or

slope of the curve is v.e., every foot of span is

I—O’
equivalent to an increase in height of 410 = 0-025.

Load Travelling from B towards A

So long as the 4T wheel is to the right of C there is
no negative ordinate to deduct and so lessen the
positive shear. Despite this, case (a) does not give a
max. value,

(8) S¢=-+0-625T X 44-0-375T X 1140-076Tx3X 3 X} =+ 671t

*In (b) the 11T wheel is a hair’s breadth to the right of
«C so giving the case of the heaviest concentration at

* Placing the load a hair’s breadth to the left or right of C will cause the shear
to change in sign and also suddenly in numerical value. If the girder has a plate
web the value required for designing is the maximum vertical silear independent
of b:gn and this occurs, theoretically, just a hair's breadth to the right of 0, i.e.,
at O,
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the greatest positive ordinate. The 4T wheel has a
negative shear value, being in the negative segment AC.

(b) Sg=—0-125TX 4+0-625TX 114+-0-325X 13X § X§ = - 7-96T
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In (c) the complete load system has moved ever so
slightly towards the end 4. The 11T wheel has entered
the negative segment AC and its ordinaté has changed
from + 06256 to — 0-375. The ordinate values at the
41 wheel and the U.D.L.L. remain unaltered because
the movement which has taken place is microscopic.
This position promises a large, if not the max., negative
shear.
(¢) Sg=—0-125Tx 4—0-375Tx 114+-0-326TX 13X $ X §= — 3-04r
Cases (d) and (e) obviously do not suggest max.
values, but they are given in full.
(d) S¢=—0-075Tx 114-0-625T X 25X $ x §
=—0-82614-5-8591 = 4 5-03T
(€) S¢=—0-375Tx 156X 4 X §4-0-625Tx 25X X §
=—2-1097+45-8591 = 4 3-757

Load Travelling from A towards B

The complete train of loads is now reversed and
enters the span at 4.
By inspection neither case (f) nor (g) prommes a max.
value.
(f) Sg=—0-376Tx4—0-1256T1x 11 = — 288t
(8) Sc=+40-376TX 4—0-3756TX 11-0-076TX3X 4 X} = — 2.7IT
Inspection suggests that case (h) should be tried for
max. positive shear as the negative effect of the
U.D.L.L. is small.
(h) S;=40-375Tx 4+40-625Tx 11—0-075Tx3x $x } = 4+ 8:29r
Dead Load. Let the dead weight of the girder be §
per ft. run as in example 8. In the present example,
however, point C is situated 15’ from 4.
So=(negative area - positive area)} tons,
=(—0-3767x 15X §-+0-626T X 25X §)} =4 2T

Maximum Combined Shear at C

Max. 448, = D.L. 4+ L.L. = + 2:61 4 8:297 of (h) = 4 10-791

Max, — S = ,, » = 4 2:BT — 3047 of (c) = — 0-54T

Shear diagram, Fig. 12, really combines in one figure the two cases of
influence line loading of Fxg 10 (g) and (h). For the loading, station-

ary as in the figure, there exist two values for the shear at point C ;
at an infinitesimal distance to one side of C there is a shear of
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+ 8:29T and at an infinitesimal distance on the other side of C there
occurs the negative shear of 2-71T, either one value or the other,
but not the arithmetical sum of these values. These results agree
with those for cases (g) and (h). The shear diagram certainly shows
a positive shear of 10-54T, but this value refers to point 4 and not to
point C; similarly the — 6-717 ordinate of the shear curve has no
relationship whatsoever with point C.

Advantages of Influence Lines

At this stage a brief note upon the advantages of the use of
influence lines can be given. From the last example above it is
geen that only one simple influence line is required in order to
arrive at S, for any position of the live loading whatsoever, whereas
if shear curves be employed in calculating S, every new position of
the load necessitates an entirely new and separate shear curve, and
these are by no means comparable with an influence line for
simplicity of drawing.

37 Cg &
—-/50" -~~~  25°0" —-—-3-4 A¥L_. g /o'a'—}— - /J-'o'-—{
e R OER ' @ G
! %D-— 15°0-=H r829" | |
= . | *Sheor ; I
¥ 2y - Shr_|
-6

Q - i
Snear InFLuence Line ey Swear ODircram. (-7
FIG. 1/, @ FIG. 12

Again, if S, or Sz be required the same influence line can be
used as shown by the hatching in Fig. 11 (b). The influence line
for the point D is AhgDdeB, and for E it is AhgfEeB, an additional
argument in favour of influence lines.

However, if a girder carries only dead or static loads there is no
advantage in using influence lines, in fact it is the reverse, because
one shear curve will give the shears which act at all points on the
girder, whercas an influence line will show the shear acting at only
one particular chosen point on the girder.

L
Rule for Maximum End Shear. Case I. Wheel Loads

Consider, for the time being, only the five wheel loads which
are on the span of Fig. 13 (a), viz., loads w, to wy; wheel wg will
be considered later in the arithmetical example. Now let these five
wheels (which keep their set distances apart) move, as a single
unit, a small distance 3z to the left. This means that w, passes off
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the span and the ordinate at each remaining wheel increases in
height by exactly the same amount of 8y.

S It 1. Sz
S_g =tan § = [ 'z in the figure, whence 8y = A

If 3z be equal to a then Sy = —Z.

It is clear that for a possible maximum value of R, wheel w,
should be placed at point 4, in other words, the five wheels con-
sidered should move a common distance @ to the left hand.

Position (a),

Ry = wyyy + [wayp + way3 + wey, + wsys)
Position (b)

Ryq = wy(y, + dy) + wy(ys + 8y) 4 wy(ys + 8y) + wslys + dy)
Now let 8z = a and

Ry = wy(y, +%) + wy(ys +g) + wy(y, +%) + w(ys +%).

= [0yt wgat 0y, oyl T (0ptwgtwto) . ()

Then R, is less than R, if the Right-Hand Side of (a) is less than
the R.H.S. of (c).

.., Ry y<Rapif wyy,< %(w2+w3+w4+w5), and since y; = 1 then

” ”» w]_ <

'i.e.) ” ” & <("02 + s 2- il + w5)

a

.. Ryy<R,, if [the load rolled off — succeeding wheel space]<[the
sum of the loads remaining on the span < span length].
This rule is of no great utility because with experience one can
easily pick out the two or three possible max. cases by inspection
‘and then by actual trial, as simple as the application of the rule,
prove which case is the maximum.

Arithmetical Ezample
14. Loading and span as given by the numerical values of Fig. 13.
w,+-a= 4=-10=04. . . . . . (1)
(wotows) - L=26-+-40=065 . . . . . (2

.". Position 2 is the greater, and much more so since wheel wg has
now entered.
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Now roll w, off
wy+b=11+12=0917 . . . . . (3)
T (wytowgnow) ~L=20-40=05 . . . . . . (4

t.e., a reduction of end shear occurs, and thus it follows that
maximum end reaction occurs with w, over point 4.

& af
® w€e)  w2En)  W3E5) WefS) ‘?“"’ we(:s)
- (e10) 1 6(12°0) <~ 8 A<~ Jo' == §'
e — — ———Sponl (#0°0) ————
| F1G.13.

Rule for Max, End Shear. Case II. U.D.L.L. of any Length

Maximum positive end shear occurs, by inspection, when the head
of the load, advancing on to the span from B, reaches point 4.

AL T-o= /071 572 G5 +1- =10
: I ) -T | | I

: ~ 1
] + v % Y5 8
. <y 4 ! 1%
ﬁmﬂ I !55/ l LY 8

L @
£r/G.14

Max. Shear at any Point on a Beam. Case I. Wheel Loads -

“The loads of Fig. 14 roll directly upon the simply supported
girder of span AB on which C is any fixed point. ADCEB of (b) is
the influence line for shear at C, (S;).

Then for the loads in positions (a) and (b) the shear at C, S¢,, is
that given by equation (1) under.
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A very slight movement 3z, towards the left, position (c), of the
entire load system will cause all the ordinates, positive and negative,
except that under w,, to increase by exactly the same amount, + 3y,
because the slope lines of the influence diagram are parallel and both
make the same angle  with the horizontal. The shear at C, Sg, is
now given by equation (2) under.

Now let this very small movement be increased to a horizontal
displacement of b, the spacing between the second and third wheels,
thus bringing wy over the max. positive ordinate at C.

Since 8y/8x = tan § = AF|AB =1/L ', 8y = 8z/L
and if 8z be made equal to b then 8y = b/L. Substituting this
value for 8y, equation (3) is obtained for Scs.

Sc1 = =Wy + weys + [weys + Wy + weys +weye) - - . (1)
Scy = +w1( Y1+ 8y)+wy(— m)+wa(ya+8y)+w4(yt+8y)+
.. we(yetdy) . . (2)

Scs =+ wl(_ Y1+ z)+wz(_ m + I:)+ ‘wa(ya + Z)
+ w‘(y‘ +L) cee wc(yo +L)
= — WY, — WM + [ws.’/a + WYy + WeYs + WYl
+I:(w1+wz+wa+ ceo W) . . ()
Then the shear at C for position (b) is numerically less than that
f)(;r(g;).sition (d) if the Right-Hand Side of (1) is less than the R.H.S.

. . b
.., Sgy < Scg if weyy < — wym —l—-Z(w1 +wg +wg+ ... wg)

. b
if (wgy3 + wym) < sz
if 'ﬁ@’Lb*”_"‘)<T. But (yy + m) = DE = AF =1
LWy Zw
if —b— <'—L— F T T (4)
if [the load rolled past the point <+ succeeding
l wheel space]<[the sum of all the loads - span
length].
Arithmetical Example
¢ 15. To find the max, positive shear at point C on the given span

due to the engine and trailers shown thereon advancing from B
towards 4.
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e —35-80=0138 (5)
w, moved from C and w, brought over C, w,~a= 4--10=0-4  (6)
wﬂ ” ”» 'Y wa 2 ’ W2“:-b =11—:—12=0'917 (7) -
Wg ”» ”» ”» Wy ” ,, w3+c = 5—:— 8=0-625 (8)

From (7) it is apparent that max. positive shear occurs at C
when w, is placed over point C.

Here, again, it is about as quick, and possibly more satisfying,
actually to work out the arithmetical values of the shear from the
influence lines. Thus the following are the influence line ordinates
multiplied by the wheel loads. As an additional exercise the
student should verify these values either by direct scaling or by
calculating the ordinates.

Sc, wy at C.

4x0-6251411 % 0-574-5(0-354-0-264-0-125+4-0-025)r =11-756T
S, wy at C.
—4x0-2514-11 x 0-6251+4-5(0-4754-0-3754+0-25+4-0-15)r =12-125T
Sc, wy at C. .
—4x0-1T—11X 0-2257+-5(0-625+0-525 4-0-440-3)T = 6-3757

Max. Shear at any Point on a Beamy; Case II. U.D.L.L. of any
Length '

It is clear, without proof, that max. positive shear occurs when
the head of a load advancing from B arrives at C, while max.
negative shear occurs when the head of a load advancing from 4
arrives at C.

Stress and Signs. The term stress influence line means the influence line for
the total stress (force or load) in a member of a structure.

Henoe a stress diagram is & diagram which gives the total stress in each of the
various members of a truss.

Stress s ity, or siress ger g. +n., is the total stress in a member divided by the
oross-sectional area of that member.

This is the nomenclature adopted by the principal structural engineering firms
of this country as shown by their * handbooks,” and also by most textbooks on
‘“ Structures ' ; also see the B.S.S. No. 1563, par. 19. Similarly, the algebraic signs
allotted to bending moment, shear, tension, and compression are those used by the
foregoing authorities.



CHAPTER II

BENDING MOMENT INFLUENCE LINES
(SIMPLE BEAM)

LET AB be the given beam with the unit wheel load running
directly upon it, and let C be any given point for which the B.M.
influence line is desired, Fig. 15.

First let the unit load travel anywhere between 4 and C, t.e., 2

T ’
varies from 0 at 4 to a max. value of @ at C. Then Rg = I—ZX,—I

andB.M.c==R1,T><b'::z%ft.tons, e 0 )

a straight line equation as z is to the first power.

Plotting the values for z horizontally and the corresponding
values for B.M. vertically, the portion 4D of the influence diagram
is obtained ; for when z = 0 then by (1) B.M.c = 0, and when
z = a then BM.¢c = ‘—%’, the ordinateat D . . . . . . (2)

Now allow the unit load to pass C and enter the segment CB of
the span. If Rp be still considered then BM.c = Rp X b — 1T X
lever arm to C. A much simpler expression can be obtained by
considering R, and then BM.c = R4 X a.

The Fig. 15 (b) shows this method with B as the origin and 2

as the variable measured from B. Then R4 = 1LI>J<,—Z and BM.c =

a
pitons . ... @)

Again a straight line of minimum value B.M.c = 0 when 2 = 0

RATXa’=z

and max. value of BM.c = %— when z has its max. valueof b . (4)

Plotting this line the portion BD is obtained and it is seen that
these two sloping lines meet at a common point D at a height
above C of % by (2) and (4). Triangle ABD is therefore the

influence line for bending moment at point C as unit load travels
across the span. '

16
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A construction often given is as follows. With 4 as centre and
AC = a as radius swing C to 4’, similarly with B as centre and
radius BC = b obtain B’. Next join 4 to B’ and B to 4’; then
the influence triangle is again ADB. This is easily seen from the
similar triangles BCD and BAA’ wherein BC/BA CD/A4’ or
CD =BC x AA' - BA =ba/L . . N ()]

1., the height of D previously found in (2) and (3).

The disadvantage of this construction is that it predetermines
the scale of the vertical ordinates. It will be found preferable to
place unit load at the given point, calculate the max. B.M. so created,
and then plot this value, viz., ab/L, to any suitable scale instead of
one depending entirely upon the linear scale of the span.
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Arithmetical Examples
16. Find the B.M.c with the wheel loads in position (a) Fig. 16.

Answer. 4x3:125'T411Xx9-375'T+
5x 4-875'T4+5x 1-875'T = 149-375 ft. tons
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Check by moments
RA—[5T(5'+13’)+111>< 25'4-41X 35’]—-40’
=12-6256T
BM.c=R,Tx156'—41Xx 10'=12-626T X 15’
—47x 10 = 149-375 ft. tons

17. Find the B.M.¢ with the U.D.L.L. in position (b).

Answer. Area of influence diagram X load/ft.
= $(9-375 + 3-375)16 X { ft. tons = 765 ft. tons

18. Now place this U.D.L.L. so that point C divides the load in
the same ratio a8 it divides the span.
AC|CB = 15/25 = 3/5 and
mnno = 6/10 =3/5
B.M.c = (area of diagram over mo) X { ft. tons,
= [§(5-625 + 9-375)6 +
3(9-375 + 5-625)1013 ft. tons,
= (46 + 75)§ ft. tons = 90 ft. tons
This is the max. B.M. which can occur at C due to this 16’ 0"
length of U.D.L.L. See the rule for max. B.M. given under.

19. Find the max. B.M.¢ due to dead load of 47/ft.

Answer. Since the D.L. covers all the span, then the complete
area of the diagram must be considered.
B.M.c due to D.L.=(}x 9-375 < 40)} ft. tons = 93-75 ft. tons
Check.
15'R,T—17-5'(16 % $)T=15" X 10T—T7-5'X 7-5T =93-76 ,,
20. Find the total B.M.c due to the wheel loads of (a) and the
dead load combined.

Answer. Add results (16) and (19)
= 149-375 4 9376 = 243-125 ft. tons

" Rule for Max, B.M. at any Point on a Beam. Case I. Wheel Loads

In Fig. 17 the given beam is 4B and C is the fixed point on it ;
while the loads shown, although moved backwards or forwards,
always remain on the span with no load entering or leaving the span.
The ordinate CD is the value of the B.M.¢ when 1T is placed at C.

Ry =17 X b/L = b/L and BM.c = R4 X a6 = ab/L = CD
For the loads positioned as shown the B.M.¢ is
M =y, + s+ 0ays + W1 Y + WYy + WeYy . . (1)
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If the éntire load system be moved s 2 rigid unit a tiny distance
8z, then each ordinate in the AC segment will either decrease or
increase by the same amount 8y, while those in the CB segment
will either increase or decrease by a constant amount of 8Y, where
8Y is different from 3y.

ub.L.L. ";A’/ T
&) s !
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P |
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The new moment at C' will be the original value of M plus or
minus an increment of moment 8 M, z.e., the new moment at C is :—
M + 3M = wy(y, + By) + walys + 3y) + . . .

+ WYy +8Y) + WYy +37) + . . . (2)
Hence (2) — (1)

=M = dy(w, + wy + wy) + YWy + W+ W) . . (3)
Dividing both sides of (3) by 8z now gives :
M § 3Y
Tz'=8—i/(w1+wz+wa)+§(wl+wz+ W) R 4)
= tan 04(w, + wy + w;) + tan 6(W, + Wy 4 W)
b
=t tugtw) =W+ Wt Wy . . . ()

since AD has the positive gradient or tangent of—%and BD the
negative tangent of %‘

Equating expression (5) to zero will give a maximum or a minimum
value, but if it is desired that no recourse be made to the calculus
then consider Fig. 40 (c), page 56. If various values be given to the
variable z and the corresponding values of M, the B.M.c, be
obtained and plotted, a curve similar to Fig. 40 (c), page 56, or one
with hollows and crests like Fig. 33 (c) might be obtained. With
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the curve rising in Fig. 40 (c) the slope, gradient or tangent to the
curve (tan = a small vertical increment —- the corresponding
horizontal increment = 8M - 8z) has a positive value. This value
becomes gradually smaller on approaching the crest of the curve
where the ratio % = 0, and on passing this point 88-11 has a negative
value increasing numerically as the crest is left behind. The

maximum value for the moment thus happens when %% is zero.
So an equation of condition is established which says that maximum
bending moment at C, Fig. 17, occurs #f the ratio of 88—11 =0 in

equation (5), .e.,

. b
f i(w1+wz+wa)‘%(w1+W2+Wa)=0
or if w1+“;2+wa=W1+I'Za+Wa

. Zw, ZIW, . _ Z(w,+ W,) total load
or if a ———l—)—and..— a+b = span

In words then. The max. B.M.c occurs when the average load
per ft. to the left of the point equals the average load per ft. to the
right of the point, and, therefore, equals the average load per ft.
of span.

This rule, applying to all triangular influence lines, is of great
value and is constantly used‘/ /

Rule for Max. B.M. at any Point on a Beam. Case II. U.D.L.L. of
any Length

Case (a). Load longer than the span.

Case (b). Load shorter than the span.

(a) By inspection it is obvious that max. B.M.c happens when
the span is completely covered by the load.

(b) If the load is shorter than the span as in Fig. 17 (b) it may
be considered to be made up of a large number of small wheel
concentrations and the rule obtained above becomes immediately
applicable. '

Place the U.D.L. on the span at C so that the load per ft. on the
left equals the load per ft. on the right of point C ; in other words,
the disposition of the load is such that C divideg‘;h}e load in the
same ratio as it divides the span. @
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Arithmetical Examples

21. What is the max. B.M.¢ caused by the four wheel loads of
Fig. 16 (a) ?

First. Assume that the 11T belongs to the CB segment.

Then 47 =- AC =4 =15 = 0-27
and (117 4 5T 4 5T) - CB =21 = 25 = 0-84
.. Max. B.M.c does not occur with the 11T in
segment CB.

Second. Now assume that the 11T belongs to the AC
segment.
Then (4T + 117) = AC = 15 = 15 =1
and (5T -+ 51) = CB =10+ 25 =04

again max. B.M.¢ does not occur with the 11T in segment AC.

Therefore max. B.M.c can only take place when the 11T is placed
directly upon point C, for in this position a portion of the 11T
(58T) may be assumed on the AC segment and the remaining
portion (5§T) allotted to the CB segment.
te, (44568 -AC =93 +15 = 0-625
and (10 4 5§y — CB = 16§ — 25 = 0-625
thereby satisfying the rule in that the load/ft. run of each segment
is the same.

22. Max. B.M.¢ (Fig. 16) due to the U.D.L.L. of §7/ft. for 16’ 0"
occurs in the position shown by (c), since point C' divides the span
and the load in the same ratio.
te, (6X§T -+ AC =451 =15 =03
and (10 X §)T = CB = 75T - 25 =03

ABSOLUTE MAX. BM. FOR A SIMPLE GIRDER
Case I. Wheel Loads

Looking back through the bending moment influence lines it will
be observed that each was capable of giving the max. B.M. which
occurred at the particular fixed point for which the diagram was
made, but it did not follow that any one of these B.M.’s was the
absolute max, B.M. for the given span. For the design of a beam
or plated girder what is required is th€ absolute max. B.M. and the
position of its point of occurrence on the span. These can be
found very closely indeed by “ trial and error "’ through taking a
series of fixed points, C, distant 1’ apart near the centre of the span.
Draw the influence line for each point and so ascertain which point
provides the largest B.M. A still closer approximation can be made
by taking an additional pair of such points, C, say 6” on each side
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of the previously obtained point, which gave the arithmetical max.
value, and again taking the greater. This method will give very close
approximations to the two desired values, but only after very
laborious working. On occasion this method can be successfully
used for more complicated influence lines, but in the present
instance the following proof and the rule deduced therefrom make
the finding of the point of max. B:M. a very simple matter indeed.

The_xeaﬁl?/for these two quantities will be facilitated when it
is recalled that max. B.M. occurs under a load and not between
loads, and, further, that the point of occurrence must be near the
centre line of-the span.. /

In Fig. 18 (b) a series of wheel loads are shown on a span L and
it is desired to find the max. B.M. which can happen under the
wheel emphasised as W,;. Place the entire load system with the
specified wheel near the centre line and let Ry, be the resuliant of
the loads w, to w, acting at the centre of gravity of these four
loads ; similarly, Rr is the resultant of the loads marked W, to W ,.

The combined resultant of B, and Rp is R and is the total live
load on the span acting through the centre of gravity of the load
system. It is, of course, a condition of this proof that no load
enters or leaves the span. Distances a, b and ¢ are constants
belonging to the loco or load system, while z is the only variable
and denotes the distance of W, from the centre line “ CL.”

Reaction at 4 = R, ='R[£2J + (¢ — z)] =+ L. Then the B.M,
under W, vii., M= R,,(‘E‘z + :v) - RL(a'—}- c)
L(2+c )(2+z — Ri(a + ¢)

+cr—+cz——x2) Rija+c¢) . (1)
First method, by dlrect differentiation : —

%=E(c—2x)andforamax value=0 . . . . (2)
c—2x=0whencez=%. T )

Therefore max. B.M. under any wheel occurs when the centre line
of the span 1s midway between the centre of gravity of the load system
and the wheel considered.

Alternative method. In equation (1) above if z be altered by a
tiny amount &z to (z + 8z) then the moment M under wheel W,
will alter to :—
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2 . .
M+8M=%[%+c§+c(x+b‘z)-—(x+8x)z] —Riate) . . (4

then M = (4) — (1) = %(081: — 228z — 8z?).

But the square of a very minute quantity, viz., 822, is negligible,
hence M = %(cSz — 2zdz). *

As previously done on page 19, divide throughout by 8z, then
BSM ILz(c 2z), and as explained on the page mentioned there
occurs a max1mum value for the bending moment under wheel
W, zf — = O

i.€., zf (c 2r) =0, or 3f ¢ — 2z = 0 as in (3), whence follows

the rule given above.
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Arithmetical Example
23. At what point on the 60’ 0" span of Fig. 18 does the absolute

max. B.M. occur, and what is the value of this B.M. due to the
given unit loco ?

Answer. Inspection suggests that max. B.M. should appear
under wheel W,, if not, then under Wg, or possibly w,. To
calculate the position of R take moments about W,.

[17(5 + 10 + 15) + §7(24 + 30 + 36 - 42)] = 7T = 18-44' from
W,, i.e., 344’ to the left of W,.
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Wheel W;. Place the loco so that the centre line of
the span is midway between W, and R,
hence ¢ = 344’ and z = 1-72’, Fig. (b)
Ry = (R X 4628 + Rg X 20-78) = 60
= (3T X 46-28" + 4T X 20-78') - 60" = 3T
BM. at W, =R, X 3172 — R, x 18
= 31T X 3172 — 3T X 18 in ft.tons = 63-33
Wheel w,. Dimensions, etc., as in Fig. (a).
. R=(3T X 4178 44T x 16:28') - 60" = 3-175T
B.M. at w, = RY x 27-22'—§7(18'+12'+6) in ft.tons= 59-42
Wheel W,. Having placed the load so that the centre
line is midway between W, and R the distances ¢ and =
are respectively = 8-44’ and 4-22".
R, = 3-997 and B.M. at W, in ft. tons = 62-66

The largest bending moment therefore occurs under

wheel, or rather axle, W, in the position given by point
C, Flg (b).

The hypothetical loco shown is the standard loading
proposed by the *British Standards Institution for a
single line of way. If the bridge is for a heavy main
line then 20 units are suggested, i.e., the B.M. in this
case under azle W, is 20 X 63-33, or under wheel W, is
63-33 X 10 = in ft. tons - = 633-3

The rule, previously obtained, for max. B.M. at any point on a
beam will, of course, also apply to this particular point C (under
wheel W, Fig. (b)) once it has been found.

Absolute Max. B.M. Case II. U.D.L.L. of any Length

e Max. B.M. will, of course, always occur at the centre line of the
span. The U.D.L.L. should therefore be placed so that the span
centre line is also the centre line of the load.

The method of obtaining this equivalent uniformly distributed
live load from a set of wheel loads can hardly be considered under
the heading of Influence Lines.}

{Absolute max. shear occurs at the ends of a simple glrder (since
11 the load on the bridge must find its way through the end bearings
to the abutments) and has been dealt with previously.

* See page 171 and Fig. 110.

+ See Vol. 1L, ** Practical Design of Simple Stoel Structures,” by D. 8. Stewart
(Constable & Co. ), for a method - of obtaining the E.U.D.L.L. from an actual
train.



CHAPTER III
CANTILEVER PLATE GIRDERS

THE following discussion will be limited to the case where the
loads are in direct contact with the girder.

Influence Line for Reaction at 4, Fig. 19 (b)

Consider the passage of a unit load from B towards 4 in the
span L, i.e., z varies from 0 to L in value and Ry = 1T X ¢ = L
= /L. The maximum ordinate to this straight line is 1T given by
z = L, or unit load over 4 ; the influence line so far traced out 1s
aa’b.

Now permit unit load to enter the cantilever S so that its distance
zfrom B varies from 0toS. The reaction at 4 hasnow to counteract
an uplift and is found by taking moments at point B, viz., Ry X L
= 1T X zor R4 = z/L, again a straight line. This line, commencing
from 0 at B, achieves its maximum negative value for B4 with unit
load at C when z == S and R4 = — S/L. The influence line for R
i8 now complete and is aa’bc’c.

Influence Line for Reaction at B, Fig. 19 (c)

As the unit load travels from A4 to B the reaction B increases as
in the case of a simple beam of span L ft. With the unit load
confined to this particular span the greatest value for R happens
when the load is over point B, giving Rp = 1T. Passing B and
entering the cantilever arm, Ry still increases for (moments at 4),
Ry X L=17(z4 L) or Ry = (2+ L)/L, the maximum value
taking place when z has its maximum value of S, load at nosc C of
cantilever, and this being (S + L)/L.

Influence Line for Bending Moment at D, Fig. .19 (d)

The curve for span 4B is the same as.for a simply supported
girder of equal span. When the unit load is in portion 4D consider
Ry when calculating the B.M,, t.e.,, M} =10 Ry ; and when the
load is in portion DB of the span consider R ( so giving M), = 30 R,;.
Similarly when the load is on the cantilever arm, M), = 30 R, ;
numerically this expression will have the negative sign because R 4

25
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is now an uplift. As Ry= —z-= L then M, = —30z =L,
which is a straight line. The values at each end of this curve are :
at B,z =0, then M;, =0, and at C whenz = S the M, = — 30 S/L,
which, for the lengths given on the diagram, works out at
— 30 X 20 = 40 = — 15 ff. tons.

Influence Line for Shear at D, Fig. 19 (e)

The portion of the curve for the span L is the same as for an
ordinary girder of equal span. When the unit load enters the
cantilever reaction 4 becomes an uplift and, there being no load
between 4 and D, this R4 is also the shear at D. It follows that the
portion bec’ of Fig. (e) is identical to bec” of Fig. (b).
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Arithmetical Examples
Spans as given in Fig. (a).
Loading. A. Engine: 11T — 10" — 4T, either wheel leading.

B. U.D. Live L. of 1}7/ft. covering a 10’ length.
C. U.D. Dead L. of §7/ft. covering all the spans.

Loading A

Max. 11T wheel at Ordinates. Results.
+R, A 11X 17+44x0-75T = 14-00T

—R, C —(11x0-5T44x 0-25T) = —6-50T

Ry ¢ i 11X15T44x1-257 = 21501
+M, D 11X 7-5'T4-4 x 50"t = 102:50 ft.T
-M, C — (11X 15'T4-4 X 7-5'T) =—195-00 ft.T
-+, D 11X 0-257--4 x Ot == 2-751
-8, D —(I1x0-75T+44 % 0-5T) = —10-25T
Loading B _

Max. End of load at Load/ft. x [arca]. ]
+Ry A 11{3(14-0-75)10] = 13-33T
—R, C —11[{3(0-5+40-25)10] = Z583T
+Ry C 13(3(1-56+1-25)10] = 20-63T
+M, Sec Fig. (d) 13[3(5-625+4-7-5)10] = 98-44 ft.T
-M, C ——11[7‘,(10-{-7 5)10] =—16875 ft.T
+S, D 13[3(0-25)10] = 1-88T
-8, D —14[(0-754-0-5)10] = —9:387
Loading C
R, load/ft. X sum of arcas = 3(20 — 5) . == +4-11-25T

B ”» ’» = %(45) =+4-33-757
M, ”» = 3(150 — 150) == 0
Sp s » = }(—11-254-1-25—0) = —11-25T

CANTILEVER BRIDGE WITH SUSPENDED SPAN, FIG. 20

So long as the unit load only travels between points 4 and C,
but does not pass C, the influence lines for Ry, Ry, M, and S, will
be identical with those of the previous figure for the length AC.

With unit load just entering the suspended span at C, the reaction
from the suspended span Rc is 1T. If it advances 5’ 0” into the
suspended span Rc is §T; when unit load reaches mid-span at H
then R¢ = 4T, and if placed midway between H and E the value of
R is §7. Finally, Rc is zero when the load arrives at point K.
Algebraically this straight line can be expressed as R¢ = y/20.
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Therefore, no matter what arithmetical value the influence line
had with unit load placed at C (be it the influence line for R4, Rg,
M, or 8, etc.) the values of the vertical ordinates to the influence
line die away to zero as unit load approaches point E, because they
are functions of, 4.e., proportional to, the value when unit load was
at C. The complete influence lines are given on the figure with the
additions due to the suspended span shown hatched to the right-hand
side of CC".

The influence lines for section EG' will be mirror reflections of
those for section AC.

To obtain'maximum negative reaction at 4 or maximum negative
B.M. at D, fully load length BE with the U.D.L.L. Ifthe U.D.L.L.
covers a length of span smaller than length BE, then arrange the
U.D.L.L. so that point C divides the length of load in the same
ratio as it divides BE ; in this case the loaded length will be placed
so that point C lies on its centre line for — R, and — M. (In the
previous figure max. + M, was obtained by placing the 10’ load
so that 7-5': 2:6' = AD : DB = 30’ : 10'.)

The suspended span either rests on simple pedestal bearings at C
and E, at the noses of the cantilevers, or else is virtually suspended
thereat by single links or tie bars and the span is as freely supported
as if it were resting on masonry abutments. Such influence lines as
Rc, M and Sy are those of a simply supported span and are in no
wise dependent upon the cantilevers.

By increasing span AB and decreasing the lengths of the canti-
lever and suspended spans the uplift at 4 (loads between B and E)
can be reduced, thereby adding to the stability of the structure.
The safe bearing pressure on the pier founds or local site conditions,
depth of water, etc., would finally settle the position of piers B and F
in the river bed. The choice of spans in this example is not altogether
a happy one, for, if the bending moment curve be drawn for the
spans all fully loaded with a uniformly distributed load of, say,
1T per ft. run, it will be found that there is a large negative moment
at pier B,

DOUBLE CANTILEVER BEAM, FIG. 21

The overhanging girder is continuous from E to F over the two
simple supports B and C. A simple span from 4 to E and another
from F to D connect up with the shore abutments. The connections
at E and F may be either pinned connections (a) or simple pedestal
bearings (b) ; both types are the same in effect because no bending
moment can exist at these points £ and F. A hinged member
cannot withstand a bending or turning moment at the hinge, which
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adjusts itself like a hinged door till the applied turning or bendmg
moment becomes zero ; see Fig. 80, page 116.

. Reaction B. From 'the previous example it is known that the
influence line commences with zero value at 4 and rises to a
maximum value with unit load at E. This value, taking moments
at C, is given by Rp X 40" = 1T X (40" 4 10’).

Unit load between B and C': the value of Rp is as for a simply
supported beam of span BC.

Unit load between C and F : the greatest value of Rz happens
when the load is at point F and is negative, .e., an uplift whose
value is found by taking moments at C. Rj X 40 = 1T x 10.
From this value of — 0-257 at F the influence line approaches zero
value at D as more and more of the load finds its way to-the right-
hand abutment.

Moment at X. The influence line is stralght and falls from 0 at 4
to a maximum negative value with unit load at E. For this
particular position of load the BM.y = — 1Tat E x 20’ + Rzx 10/,
and as the value of Ryis 1-25T, from diagram (c), so BM.y = — 20+
12-5 or — 7-5 ft. tons. This bending moment is negative as it tends
to make the beam convex upwards at point X.

When unit load is at B it causes no moment at X as the load
finds its way immediately into the pier and only uses the girder as
a stool or packing.

Between B and C the influence line is that for a simply supported
span BC, and is of positive sign since curvature is concave upwards.

With the load going directly into the pier C, when placed there,
the value of the influence line for this point is zero, thereafter the
M gradually increases in negative value as point F is approached.
Load at F causes an Ry of — 0-25T, Fig. (c), hence My = sum of all
moments to the left of point X, = — Ry x 10’, = — 2:5 ft. tons
(convex upwards). From this value a straight line goes to zero
value at D as the load is gradually taken off the cantilever.

Shear at X. Unit load at E gives, from Fig. (c), an Rz of 1-25T
and the shear at X, which is the sum of all the vertical forces to the
left of point B, is 1T downwards + 1-25T upwards = - 0-25T,
This value is gradually lessened to zero as unit load leaves E and
approaches 4.

If motion is from E to B then Rp decrcases to 1T (Fig. (c) ) when
B is reached, at which position of the load there is no shear at X,
all the load going directly into the pier, 7.e., — 1T down + 1T up = 0,

Between B and C the influence line is that of a simple beam
span BC.

Load between C and F causes an uplift at B which means that in
order to give equilibrium pier B has to exert a downward pull. This
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this applies to all load positions

that the curve for

Rp is the only force act:
the length CD.

diagrams, Fig. 21 (f) and (g), are
hese diagrams show that there is

buted dead load of 3T per ft. run for

i

drawn for a uniformly distr
the whole length of the bridge. T

Shear and bending moment



82 INFLUENCE LINES: IN BRIDGE CALCULATION

no bending moment at the pins £ and F and also verify two of the
values My and Sy of the following arithmetical examples.

Anrithmetical Ezamples, Fig. 21
The uniformly  distributed dead load acts simultaneously over
all the bridge and so all the areas must be taken into account.
For example, Fig. (d), dead load My = all areas X load/ft.
= (— 112-5 4 1560 — 37-5) X }
= 0.
UD.L.L.

In this example the uniformly distributed live load of §T per ft.
run is assumed to act on any part or parts of the bridge, or through-
out the complete bridge if need be, in order to give the worst possible
condition of loading. In Fig. (d) by loading section BC the max.
Ppositive moment is obtained.

My, max. 4 = area X load/it.
= 4150 X } = + 112-5 ft. tons

By loading parts 4B and CD simultaneously

max. negative moment is obtained, viz.,

My, max, — = (— 1126 — 37-5)§ = — 112:56 ft. tons
Whereas loading all the bridge from 4 to D
reduces the moment to zero, thus,
My =(—112-54+150—37-5)3 = 0
Wheel Loads. The positions of these concentrations are shown
superimposed upon the influence lines.
Table of Values. From the above explanation the beginner

should have no difficulty in obtaining the results set forth in tabular
form on the plate.



CHAPTER IV
METHOD OF SECTION AND MOMENTS

IN the case of a framed structure the influence lines are often
obtained by the Method of Section and Moments of which a brief
description will be given before entering into the discussion of the
influence lines themselves.

This method of obtaining the stress by sectioning a structure is
due to August Ritter, who published the Method of Moments in
1863, and also to Culmann (1821-81). Stress diagrams were
invented by J. Clerk Maxwell (1831-79), and their use further
extended by Cremona, Mohr and Bow (1873), while influence lines
were the invention of Winkler in 1867.
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FIG. 24.

'/ Fig. 24 shows a girder the top boom panel points of which lie
upon a parabola. The boom itself is not curved, but is built up of
straight lengths between the panel points. The property of a
girder of this type is that with a uniformly distributed load covering
all the span the diagonals carry no stress whatsoever, while the
verticals act as suspenders carrying only the bottom panel loads.
Given that the span is 120’ 0" and the height at the centre line is
16',0”, and also that the cross girders are at 15’ 0" centres—to find
the heights of the various verticals.

4 83
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" The equation to the parabola ACDB of Fig. 22 with 4 as the
origin is (L — z) = . N 8 Y
For the present example Lis 120 and at the centre line z = 60’

and y = 15, therefore substitute these values in (1) and so find
the constant K.

t.e., 60(120 — 60) = K X 15, whence K =240 . . . . (2)
The general equation is thus o(L —z) =240y . . . . (3)

First vertical, substitute z = 15 in equation (3), :

then 15(120 — 15) = 240y whence y = 656’
Second vertical, z = 30’

then 30(120 — 30) = 240y
Third vertical, z = 45

then 45(120 — 45) = 240y  ,, = 14-06’

In practice the verticals would in all probability be made 6’ 6”
(r.e., 65" instead of 6-56') ; 11’ 3" (z.e., 11-25") ; 14’ 0" (in place of
14-06’). The effect of these slight departures from the vertical
lengths is to throw negligible stresses into the diagonals as is borne
out by the following calculations ; whereas the stress diagram of
Fig. 23, which is drawn for the truss of Fig. 24 having the theoretical
and calculated heights, shows that there are no stresses existing in
the diagonal members, when the U.D.L. completely covers the span.

To Find the Stress in Member DE, Fig. 256. ‘ Take a section to

;e three bars, including the desired bar, and take moments where
-che two unwanted bars meet.” Consider the stability of that part of
the girder which is to the left (or right if desired) of the section line
XX, since it has fewer forces acting upon it. These forces are
R, and 1T at A4, panel loads of 2T each at B, C and D, and, in
addition, three unknown forces acting in each of the cut members
. Y, NE'and DE. Now, as the structure is at rest, the sum of the
moments of all the acting forces about any point must come to zero,
which is the third law of statics, viz., ZM = 0. Further, the
moment of a force about a point is the product of the force and ita
perpendicular lever arm, and if moments be taken at point N, the
point of intersection of the unwanted and unknown forces NO and
NE, then these forces can have no moments as the lever arms are nil.
Two of the three unknown forces are thereby eliminated from the
moment equation. Calling clockwise moments positive, then

Ry, X 45'—17x 456’ —27(30'4-15'4-0)=force DE x N D+ force NOX 0
+force NEXO.
(8T—17)45'—27(45')=DEx 14’ whence DE=16-077
The preponderance on the left-hand side of the equation of the
plus sign indicates that the part of the structure shown in heavy

, = 11.25'
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line tends to rotate clockwise round the imaginary pin placed at N,
due to the overwhelming turning moment of R;, about N. This
(turning moment tends to extend the restraining bar DE and there-
fore member DF is in tension. The stress in this bar would have
been 167 if the verticals had not been altered in height from those
of Fig. 24.

- S @&
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Stress in CD. Section line is YY and moment centre where the
two unwanted bars MD and MN meet is M, Fig. 25.

(8T — 17)30" — 2T x 15’ = CD x 11:25 whence CD = 16T
t.e., approximately the same as DE. The excess on the left-hand
side of the plus sign again indicates that the tendency to rotate is
in a clockwise direction round M so pulling the restraining
member CD, which thus carries a tensile stress of 16T,

Stress in M D. Take moments at point S, Fig. 26, where the two
unwanted bars NM and DC meet, thereby eliminating them from
the moment equation when considering the stability of the heav‘
lined portion of the structure.

The position of point S together with the lengths ST and S4 can
be obtained graphically, but only approximately. If accurate
results are required these lengths must be calculated. -

To find the length SA compare the similar tnangles, NDS and

ND__D_S ie. 14 _ 45 4 AS

MC 08 "'112% 30+ 48
Length MD of the right angle triangle MCD

= 4/(MC? 4 CD?) -

= 4/(11-25% + 15?)
= 1875’

To find ST compare the similar triangles, SDT and MDC.
ST _ MC ; ST 1125
8D~ MD“* 7636 ~ 1875

Taking moments at S and giving the positive sign to
clockwise moments :—

whence 4S = 31-36’

whence ST = 45-8’
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— (8t — 1T) X S4 + 27(SB + SC) = Stress MD x ST.
t.e, — 7T X 31-36' 4 27(46:36" + 61:36') = MD x 45-8
t.e., (—219-52+4215-44)=-45-8=MD whence stress MD = 0-09T .-

The portion of the structure tends to turn anti-clockwise round
'the imaginary pin S, but is restrained by the bar MD. The point M
tries to move away from D so lengthening bar M D, which must,
therefore, be under tension.

This negligible stress would not have occurred if the verticals
had been of the correct parabolic heights.

Stress in M N, section line is XX and moment centre is D, Fig, 27.
(8T — 1T) X DA — 27(DB + DC) = Stress in MN x UD .. (a)
To find the length of DU compare the similar triangles UND and
DNS.
UD_ DS . UD_ 17636 . _ . 0 mrrar
DN = 3N e, 7 = 7rgy Since SN = 4/(SD*+4DN?) = 77-54
Hence UD = 13-8'

Substitute in equation (a) above
T1x 45’ —27(30'4-15’)=MN x 13-8’ whence stress MN = 16-31

The final moment about point D is a clockwise one and tends to
make point M travel towards N so shortening MN, which is,
therefore, in compression.

Stress in N D, section line is XX and the two unwanted bars NM
and ED meet, when produced, at the moment centre S, Fig. 28.
—(8T—1T)x 31-36"4-27(46-36'+61-36"4-76-36")=Stress ND X 76-36’

—219-54368:16=NDx 76-36 or Stress ND=1-95T
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The unbalanced turning moment on the left-hand side of the above
juation is clockwise, which means that D is being swung away from
, thus extending bar ND whose stress of 1-95T is therefore tensile.

Stress in MC, Fig. 29. The unwanted bars ML and DC when
roduced meet at point ¥V which lies 5-53' by calculation from 4.

— (8T — 17) X 553 4 27(20-53' 4 35-53') = stress MC X 35-53’
vhence stress MC is a tensile one of 2-06T,

PARALLEL FLANGED GIRDER, FIG. 30

The stresses acting in the top and bottom flanges can easily be
»btained by section and moments. Thus the section line XX of
Fig. (a) gives point 4 as the moment centre for bar 3,5 and point 5
for the moment centre ‘of bar 4,6. The moment equation for both
of these bars will be the same, viz., 5Tx 20’ —2Tx 10’ =Stress x 6’,
whence the value of the stress is 13-33T; 4., flange members
between the same pair of diagonals have the same amount of stress.

The end bar of the bottom flange has no stress (see also Fig. (c) )
because the reaction of 5T passes through the moment centre 1,
therefore there is no moment about point 1, and, in consequence, no
stress in the bar shown in broken line. This bar, since it could be
safely left out, is known as a redundant member.

Web Members. The method of taking a section to cut three bars,
including the wanted bar, 4,5, Fig. 30 (a), does not work out quite
80 neatly as it did with the previous girder with non-parallel flanges,
because the two unwanted bars, 3,6 and 4,6, will never meet.
However, since the stress in 3,6 has been found, its value can be
substituted in the appropriate moment equation. The stress in the
lower flange cut by section XX can be eliminated from the moment
equation by taking a moment centre at some point along its length—
no lever arm, no moment,

Regarding the section line XX of Fig. (a), only the forces and that
part of the structure to the left of this section line may be taken
into account when considering the equilibrium of the broken part
of the structure, whereas the moment centre may be taken any-
where, left or right, above or below the section line. Further, since
the compression bar 3,56 has been cut the thrust acting on this bar
must be applied at its broken end as a push of 13-33T. Taking
point 6 on the bottom flange as the moment centre and calling
clockwise moments positive, then

BT x 30" — 2T X 20’ — Stress of 13-33T X 6’ = Stress in 4,5 X 10'.
t.e.,, 150 — 120 = Stress in 4,5 X 10, whence stress is 3' com-
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pression since the tendency, due to the moments, is for point 4 to
approach point 5.

\ 5 M ’;YN Casecﬁ-./_/éﬁ. /94
19 :0 b P 2” er‘
5" 4 x i X T 3 $2
©) (f) 0
Lig 2 X/ 4
FlG. 30. w

Vertical Web Members. A simpler method of solution than the
foregoing is obtained by considering the shearing force at any
section.

The stress in the end vertical, over the reaction, is 5T compression
because the reaction travels undiminished up to point 1. Thereafter
from 1 to 2, down the diagonal, no additional force is encountered,
not even at panel point 2, and so the upward shear or thrust in
bar 2,3 is 5T compression, When point 3 is actually reached the
upward force or shear is reduced by 2T leaving an unbalanced
upward force of 37 to travel, as it were, down diagonal 3,4. Since
no additional force is met with at point 4 the upthrust on bar 4,5 is
3T compression. When point 5 is reached there requires to be
deducted the downward panel load of 2T leaving 1T upwards when
the path from 5 to 6 is resumed. Similarly with the right-hand
reaction there is an upward force which is gradually reduced until
point 6 is reached with an unbalanced load upwards of 17. It thus
happens that there are two tons travelling, so to speak, upwards in



METHOD OF SECTION AND MOMENTS 39

the centre bar, which, therefore, is under compression to that
extent. When the upper centre panel point is reached the two tons
upwards balances the two tons downwards. This can also be seen
from the fact that, as the top boom is at right angles to the mid-
panel load of 2T, the only bar which can directly resist this vertical
load is the mid-vertical.

The shear diagram of (b) also shows this, but beginners have
difficulty, sometimes, in ascertaining as to which panel shear a
vertical participates in ; e.g., bar 2,3 of diagram (a), as to whether
it belongs to the first panel shear of 5T or to the second panel
shear of 3T,

The stress in the vertical is therefore the shear in the corresponding
panel. The nature of the stress is found by taking a section to
cut three bars such us XX in (e), and finding whether the unbalanced
shear acting on the smaller portion of the structure tends to make
point 4 move towards point 5, 1.e., compression of 5T — 2T = 3T, or,
as in Fig. (g), tends to make point 5 move upwards and away from
point 4 due to the upward force of 5T — 2T — 2T = 1T tension,
because bar 4,5 is being extended.

Web Diagonals. There is no difficulty in assigning the proper
shear values to the diagonals. Diagonal 1,2 is under the 5T vertical
shear of the first panel, while diagonal 3,4 of Fig. (a) is under the
panel shear of 3T, and so on.

Again, take an imaginary section to cut three bars as in Fig. (f).
Now the external forces of 5T and 2T cause an unbalanced upward
shear of 3. The horizontal flanges can offer no direct resistance
to this force, because they are at right angles to its line of action,
and, therefore, it is left entirely to the diagonal member MQ to
withstand this upward thrust which is pulling at MQ and so placing
it under tension. By the first law of statics, ZV = 0, the vertical
components of all the forces acting on the body of Fig. (f) must sum

to zero,
viz., 5T — 2T = vertical component of forcein MQ. . (a)
1.e., vertical shear in panel
= " ” ’ . . (b)
Turn now to Fig. (d), where the force in the member MQ, of

diagram (f), is drawn to scale as mq and it is seen that its vertical
component is om. Hence

mg _ stressindiag. _ 11-66" _ . ., _
mo  vert. comp. of ditto 6" 194 = cosecf . . (c)
or stress in diagonal = the vert. comp. X cosecf . . (d)

= the vert. shear X cosec 8 by (b) (e)
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To obtain, therefore, the stress value in any diagonal multiply
the panel shear by the length of the diagonal and divide by the
effective girder depth.

Another proof of this is given by the shear curve (b). The stress
in the diagonal 2,1 of Fig. (a) is obtained by drawing in the shear
curve (b) a line parallel to the diagonal. Refer now to the stress
diagram (c) and it will be observed that the stress 2,1 of (b) is
parallel and equal to the line 2,1 of the stress diagram (c), as both
diagrams have been drawn to the same scale. Similarly any line
drawn in the shear curve at the 4 3T portion parallel to the bar 4,3
will give the actual stress 4,3, to the same scale as the shear curve,
and this in turn is equal to the length 4,3 of the stress diagram ;
both lengths are marked with double parallel ticks. Finally, any
line ip the + 1T portion of the shear curve drawn parallel to 6,5
gives the stress in diagonal 6,5. This is simply a graphical method
of multiplying the shearing force by cosec 6, i.e., multiplying the
shear by the length of the diagonal and dividing by girder depth.



CHAPTER V
THE EFFECT OF CROSS GIRDERS AND STRINGERS

MAXIMUM LOAD ON A CROSS GIRDER, FIG. 31

A uniT load situated at z, from A4 creates a reaction at cross
girder C of 1T X z; =~ L,. When z, is 0 then R is 0 and when
z, i8 L; then R; = 1T. The resulting influence line for the reaction
Rc of span L, is a straight line rising from 0 at 4 up to 1T at C.
Similarly the influence line for reaction C of span L, is the straight
line BD, where CD is also equal to 1T, and the final combined
influence line for R is the triangle ADB of apex height 1T and basal
length L, + L,.

= c e Striogtr o

4 I A Rt (a)
b—-GPar £, — Spon Ly ——
4 ¢ [

‘ 16 TNF= T )
2 |
S ‘

P X CI s 8 ﬁﬂwm Line )

FIG. 3.

The form of this influence line is triangular like that of Fig. 17,
page 19, with the variable M changed to R, and, therefore, the
same law applies to both figures: Max. value of R¢ occurs when the
load per ft. on span L, = load per ft. on span L,, v.e., W, =~ L,
= Wgq + L,. This works out exactly with a uniformly distributed
load, but with a series of concentrations it usually happens that
one of the wheels must be placed at point C and part of this wheel
load considered as belonging to span L, and the remainder to L, in
order to satisfy the mathematical interpretation of the law.

THE EFFECT OF CROSS GIRDERS ON SHEAR

The plate girder of Fig. 32 (a) is hollowed out at CD, and within
this hollow is inserted a tiny independent girder or stringer of
41
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span CD. The one ton wheel load runs directly upon the top
surfaces of both main and subsidiary girders.

Unit Load between B and D
The reaction at 4, Ry,is 1T X ¢ —~ L = z|L
As previously discussed, the shear throughout the

segment AD of the main girder = Ry
Therefore the shear in the particular panel CED of the

main girder also = /L

Unat Load between A and C

Now measure z from 4 towards C, but z 3} 4C
Agdin it follows that the shear in the unloaded segment

CB == — RB = — Z/L
Therefore the shear in the particular panel CED of the

main girder also = —z/L

So far, then, the parts of the influence line which can be traced
out are Bd’ and Ac¢’ of diagram (b), where the ordinates at d and ¢
are 1/5 and — 3/5 respectively.

Unit Load on the Stringer DC

During the passage of the wheel from D to C the main girder
receives its load at two fixed points of application, viz., at the wedge-
shaped panel points or bearings C and D, instead of the one point
of contact under the wheel, of varying position.

In diagram (c) the load has to travel the remaining length DC,
i.e., y varies from 0 to p in length. The local reaction on the main
girder, Rc = 1T X y = p = y/p, and, taking moments at C on the
stringer, the reaction Ry = 17(p — y) = p.

Considering the main girder as a complete unit the reaction at
B, due to the unit load placed as in (c), is

Ry =1T(4p — y) = 5p.
and R, = 17(p 4 y) + 5p.

Alternatively, the same values for R and Rp could have been
obtained by considering the 1T entirely removed and replaced by the
local loads R¢ and R, on the main girder. For the load as shown

in (c) the shear at any point within the panel CD of the main
girder is
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Since y is the only variable, this expression represents a straight
line, whose two terminal values are :—

-0 1
1st: load at D ; y=0thenScp=£—5p—=5=dd'
and 2nd : load at C'; y = p then =p———4—}—)= —:§=cc’
. y » 5p 5
-z =f

—ET @
A 8 T 0 18
I 5

A 8 b)
| 2T éhl\\j’
| J, !'fl'/-':y J—-f—’, ,
[ (E) = Bc m&’)'eb ©
E2)0df ¢ o iese
| l l '
(4}:%) [ sweae cueve l l @)
L
FIG 32.

But these values are, respectively, also the higher terminal
values of the portions of the influence line traced out above, so that
the complete influence line for shear within the panel CD of the
main girder is A¢'nd’B.

The dotted and hatched influence line shown for comparison in (b)
refers to point E of an ordinary solid plate girder (without an
inserted stringer) in direct contact with the travelling unit load
throughout the span.

The shear diagram of (d), drawn for the one position of the load
indicated in (c), clearly shows what is meant by the term “ shear is
constant throughout the panel.” If the load position, however, is
altered by the merest fraction of an inch the shear curve immediately
also alters its shape, and hence the reason of an influence line for
moving loads.



44 INFLUENCE LINES: IN BRIDGE CALCULATION

NEUTRAL POINT

The point #, where d’c’ of the influence line of Fig. 32 (b) crosses
the base line 4B, is called the neutral point, because a load placed at
this point n on stringer CD would cause no shear whatsoever in the
panel CD of the main girder.

. , , - .om_ cn
Triangles cnc’ and dnd’ are similar, .’ = (1)
Triangles Ac'n and Bd'n are similar, ", g% = c—,:% N )]
It thus follows that %: %.-’,: N )

That is, for a parallel flanged girder “ the ncutral point divides
the span in the same ratio as it divides the panel.”

The diagram shows a bridge of 5p in span, hence, substituting
en 3p +cn
—cn 2p—cn

the value of p in (3), 7

2p.cn — (cn)? = 3p% — 3p.cn + p.cn — (cn)?, te., cn = §p.
Verify by placing unit load at point » on stringer DC, then the

local reaction B¢ = (IT X %’ —p=1}T and R, = §r.

Consider the bridge as a complete unit with a 1T load placed at
point n on span 4B, then

R_4=(1T><nB)—Z-L=(1T><5Zp)—:-5p = }T,
and Rg = (1T X An) = L = (1T X 33p) = 5p = §r

Hence for this one position of unit load on the span the shear in
panel CD of the main girder = Ry — Ky = }T — §T = 0.

The shear in the stringer, however, is not zero, but is equal to R of
4™ between C and n and to R;, or — §7 between n and D.

MAXIMUM SHEAR IN A PANEL
For convenicnce of proof the total load W on the span has been
divided into three portions, so that W = loadings 4 + B + C.
In Fig. 33, since Fg is parallel to f@, then
tan 0, = tan 0, = Ff - FG = 1 =+ span =1L . . (1)
Tan oz=¢_i_1_)=pe—e¢l=l——cd=l —Cdtan 8,
Gip P 2
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[and giving tan 6, its value from (1)]

I—-px !
"I 1o g
2 pL

The total shear in panel HJ = X loads X respective ordinates,
i.c.,S=Ala1+A2a’+ “ s e +B1b1+BSbﬂ+ DI

+Cie;+Coea+ ... . . (3)

If an arithmetical result is desired for S then the ordinates should
be assigned their proper signs, positive or negative, and arithmetical
values.

Now move the load system, as a complete rigid unit, a very small
distance 8z to the left, or right, of its present position so that no
wheel enters or leaves the span. This small movement will cause
each ordinate in segment 4 to be altered in length by exactly the
same amount da ; those in segment B by 8b; while the C segment
ordinates will each have the same change in height of 8c. The
shear in panel HJ is now

S + 88 = A,(a, + 8a) + Ag(ay + 3a) + . . . B,(b,+8b)
+ By(by + 8b) + Cy(c; + 8¢c) + Cyles + 30) + . . . . . (4)
Equations (4) — (3) will give the value of the increment of shear,

viz., 88=38a(4;+ 4.+ . . )+8b(B,+By+ . . )+
8(Ci+Cat - . ) . . (6)

Dividing each side of this equation by 8z leaves the equation
undisturbed,

e.e.,§,=g—:(‘4)+g(3)+%(o) L ®

=tan 0, X A+ tan 63 X B + tan 6, x C.
But line CD has positive slope while lines Fg and f& have negative
slope, therefore tan 0, is positive and tan 6, = tan 4 is negative.
Now substitute these signs together with the values for the
tangents obtainable from (1) and (2) whence :—
38 _A+B(L—p) C
& "LV "L L
_—Ap+BL—pB—pC —p(4+B+C)+BL —pW+BL 7
pL B pL ~—r O
The process of differentiating inferred by (7) will give a max. or
& min. value when the right-hand side of (7) is equated to zero.

The same result can be obtained as follows without direct recourse to
the calculus,
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Now if the different shear values in the panel were plotted
against the corresponding different values for z, or position of the
loading on the span, a curve something like that of Fig. (c) might be
obtained. The slope of, or the tangent to, this curve at any point

L. S . a small vertical increment
is given by 52 e e . Further, when
z correspond. horiz. increment
mhfi mex. (o 0 max posing/
&',/k_:"’ ka0
1 o
© g | i
|- o axis
9| .
i
H Z
Q@ O
® ) w A8 &S &
G
Al __=p-d | Sher { H—
e —— - Lo0ding A—.——. 1= ‘,,.9-—1-— -[‘w'pyC—»—----l
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the curve has achieved a turning point, or point of maximum or
minimum value, this ratio of %2, or tangent, is zero. Then consider-

ing expression (7) as an equation of condition it can be said that
the loads on the span, Figs. (a) and (b), give maximum positive or
negative shear in the panel HJ, if %?; =0, 1.e., if :&Z%EL. =0.
Therefore, maximum positive or negative shear occurs in HJ if

B W
BL=pWorzf—};=Z (Y

or@fB=Wx’i=W—:—numberofpanels . . (b)
Rule for a train of wheels can now be stated: Max. shear
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(positive or negative) in any panel occurs when the load per ft.
in this panel equals the average load per ft. for the complete span,
condition (a). Alternatively: The load in the panel considered
should be so arranged that it, equals the total span load < number
of panels, by condition (b).

For a series of wheel concentrations crossing the span the applica-
tion of the foregoing rules is very tedious and it is more expeditious
and just as accurate to resort to trial and error. Usually, by
placing heavy wheels where the ordinates are large and keeping
wheels out of the segment of opposite shear sign, three trial positions
of the load system are sufficient to indicate the position of the loading
and the resulting maximum shear.

Single-wheel Load. From Fig. 33 place wheel at D for max.
positive and at C for max. negative shear.

Double-wheel Vehicle. For max. + shear place the larger wheel
at D and the smaller wheel near C, ; while max. negative shear is
given by turning the vehicle round about, so that it faces in the
opposite direction, with the larger wheel at point C and the smaller
wheel in the region of 4,, depending on the wheel base or spacing.

Dead load covers all the span and the shear in HJ is given by
adding the positive and negative triangular areas and multiplying
the result by the load per ft.

U.D.LL. (a) Length Shorter than NG

For max. positive shear place the load on segment NG in such a
position that the line Dd divides the load in the same ratio as it
divides length NG ; see rule on page 20.

Max. negative shear: place on segment NF so that line CH
divides the load in the same ratio as it divides N'F.

U.D.L.L. (b) Length Longer than Span

Max. positive shear in HJ occurs with the head of the load at N,
the section NG covered, and the remainder of the load on the
approach to the right of G. '

Max. negative shear in HJ takes place when NF only is loaded.

These positions of the loading satisfy the rule found for max.
shear in a panel due to a train of wheel loads.

Condition (b) was—

load on panel HJ = total span load <+ number of panels
t.e., NJ X wT/ft. = NG X wr/ft. = 6.

By calculation the neutral point N is so situated that HN = 0-6p

and NJ =04p. ., 04 pw = 2:4 pw = 6 = 04 pw.
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WEB STRESSES
Plate Girder

All that is required when designing the web plate of a plate girder
is the maximum arithmetical value of the vertical shear. It is
immaterial whether the shear is positive or negative. Example :
In a plate girder the depth over the main angles is 4’ 0" ; shear is
90T and the working shear stress is 57/sq. in. To find the web plate
thickness ““ ¢.”

Web area of 48" x ¢" at 5T[sq. in. = 90T

whence t = 90 =~ (48 X 5) = §"

Braced Girders

Examples, Figs. 34 and 35, Pratt and Warren trusses. The Pratt
truss, of which one type is shown, has its diagonal members in

earr Teuss : Waeren TRusS-

FIG. 34, FIG 35.

tension and vertical members inb compression under dead load.
This truss was patented in U.8.A. by Caleb and Thomas Pratt in
1844. The Warren truss web system is composed solely of diagonals
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which are under tension or compression, alternately, on both sides
of the centre line due to dead load ; this truss first came into
prominence about 1870.

With braced girders both positive and negative shear values are
required. Further, in the pages devoted to “ Section and Moments ”
it was shown that the stresses in the’diagonals were functions of the
vertical shear.

Thus stress in either diagonal ED = shear in panel X (diagonal
length = girder depth)
For the Pratt truss stress ED = shear X (15 = 9)
= 1-67 X shear
While the Warren member ED = shear X (10-817 = 9)
= 1-202 X shear.

In both trusses positive shear places bar ED in tension, so
multiply the ordinates to the shear influence lines by 1-67 and 1-202,
respectively, and plot the results under the base line for negative
sign of stress, i.e., tension. Negative shear, obtained by loading
length AN, causes compression in bar ED of both trusses and the
influence line values are plotted above the base line in both figures
marked (c).

Member EC of the Pratt truss, being vertical, has its stress
numerically equal to that of the vertical shear and as positive shear
creates a compressive or positive stress in EC the influence line for
stress of Fig. (d) is identical with that for shear in (b).

Member EC of the Warren truss, not being vertical, has its stress
numerically equal to 1-202 X vertical shear, as for the adjoining
bar ED. Positive shear creates positive or compressive stress in
Warren member EC, and it thus follows that Fig. (d) is a distorted
image of (b) to another scale, instead of being identical with it as was
the case with the Pratt truss.

Maximum values of stress can now be directly obtained by
applying the rules, newly evolved above, for maximum shear.

THE EFFECT OF CROSS GIRDERS ON BENDING MOMENT
Pratt Truss and Plate Girder. Moment Influence Lines, Fig. 36

With unit load travelling from B towards C, but not

past C, then R, =z/L (1)
-For vertical loads the bending moments at points C

and E are identical since they are in the same vertical,

1:.0., Mc == Mg = R,{ xX AC = pa:/L (2)
This expression of (2) represents a straight line

because z is the only variable.
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At B the value for z is 0, so that My = My =0 (3)
At C ) ’ 517, ) M; = Mg = szlL (4)
Considering zp/L as simply the mathematical equa-

tion of a straight line (so forgetting its connection with

influence lines) its value when z = L would be = (5)
The ordinate at @ would thus be ag = p. This value

is purely imaginary (since it was specifically stated

that z 3 BC) and so also is the length ge.
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Let unit load traverse the remaining portion of
the span from C to 4, i.e., z varies from p to 0 in value.

Me=Mg=Rp X b5p= (1T X 2 X bp) =~ L = bpz/L (6)
Unit load at 4 means that z = 0 and therefore M¢ = 0 (7)
while load at C gives z a value of p and Mc =5p*L (8)

The moment caused by unit load at C is satisfied by
both the straight lines given by (2) and (6) and there-
fore these lines must meet at point e to form the
triangular influence curve of aeb. '
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If z be given the hypothetical value of full span
travel of L expression (6) would have the imaginary
value of 5p (9)
which is the ordinate br in the figure.

This results in the old form and graphical construction of the
B.M. influence line which was previously obtained for a beam
carrying the wheels in direct contact with the upper flange. This
construction offers no advantages and it is better simply to calculate
the moment when unit load is applied at point ' and to erect ce to
represent this moment to any suitable scale.

Pratt Truss. Flange Stresses, Fig. 36

In the truss the stress in FE is desired while FC and AC are the
unwanted bars meeting at C, which is, therefore, the moment centre.
From the discussion given in ‘‘ Section and Moments " the

Stress in FE = moments taken at C - perp. lever arm EC
= M¢ = d, and is compression.
Similarly the stress in CD is given by Mg =~ d and is tension.
The influence line for stress, therefore, is given by dividing the
moment influence line by the girder depth, or, alternatively, the
stress influence line is simply the moment influence line to another
vertical scale.

Plate Girder. Flange Stresses

The bending moment diagram of Fig. 37 is for the main plate
girder carrying a U.D. load of 17/ft. run. The stress at any goint
on the top or bottom flange is obtainable by dividin thc‘ B2

(£
| T
cr A - . A, 90"
4 @)
At cl &2 o 8t
_— ..ll__ 22 ot 6‘,ameé@/2'- 780" — — —
£l £l 6lx
1 16 +
90’
4 ®
(3}
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occurring at the selected point by the girder’s effective depth.
It is apparent that the maximum stress occurs at a cross girder, or
panel point, and never between such points, and it is for this
reason that the influence lines drawn for moment or stress are for
the panel points as in Fig. 36. If for any reason, however, the
flange stress for some such intermediate point between cross girders
as F or @ were required the influence line would be of the truncated
type of Fig. 39 ; the apex of the truncated triangle lying on the line
through the flange point considered.

With a braced girder, on the other hand, the moment centre is
constant in position for a complete panel length of either top or
bottom boom. In Fig. 37 the stress of 52T is constant throughout
the panel, whereas the plate girder has a total flange stress varying
from a minimum of 40T to a maximum of 64T in exactly the same
panel length.

The influence lines of Fig. 36 apply then not only to the Pratt
truss, but also to the specified points on the flanges of the plate
girder.

Warren Truss. Influence Lines with Moment Centres on Bottom
Flange, Fig. 38

The moment centre for member FE is point C. Permit unit load
to travel between B and C, t.e., z varies from 0 to 5p.

l Z f— X —_—
—
A [ \s - A 90’
@) -
Ale _C Rt ORV-720 G —
o 4
S - sun 2
IE LivEs foe 1L s Mo
e Lo fae Sreess LTS
o £G.
Mc=R,x AC=(ITxz=-L)yxXp - =pz/L (1)
With load at B the minimum ordinate to this
straight line is =0 (2)

while maximum ordinate occurs when z = BC = bp,
viz. = 5p*/L (3)
Similarly with z as the variable in the remaining
length AC, Mo = Rp X BC; giving a minimum

ordinate at 4 =0 (4)
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and a max. ordinate at C of (z/L) X BC - =bp*L (5)
The ordinate at d for the dotted influence line for
Mp=(4p+~ L)X 2p = 8p*/L (6)

These are identical with the influence lines obtained for the
corresponding points on the Pratt truss and plate girder of Fig. 36.

The stress in EF is compression, and is equal to M¢ - perp. lever
arm from C to FE = M¢ — d, thus providing the stress influence of
diagram (c). :

Warren Truss. Influence Lines with Moment Centres on ‘Top

Flange

In Fig. 39,  is the variable distance as the load travels between
B and D, while point E is the moment centre for stress in bar CD.
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Now R y=z/Land Mg = R X de=(z/L)x1}p = lipx/L (1)
At B the ordinate to this straight line is 0 and at
Ditis =6p*L . (2)
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If the hypothetical value of L be used for z the )
ordinate at 4 would be = 1}p (3)
8o giving the previous construction for ag.

Unit load now travelling from 4 to C but not
beyond C gives Mz = eB X Rp = 4}p X 2/L with
a max. value of = 41p*/L (4)
and an imaginary value at B (when z = L) of = 43p (5)

It should be noted that in (1) and (4) the Mg was of the form,
R x distance, with nothing deducted as happens when the load lies
between C and D. When the single wheel moves from D to C it
does so on a stringer (or tiny internal bridge parallel to the main
girder) which causes local reactions at C and D and, therefore, the
bending moment Mg = Ae X R4 — Ce X Rc. The value for Ry,
w1thya.sshown isR4y = 17(4p + y) = Landlocal R, = 1T Xy-+p,

whence My = Aex(4p+y)/L—Cexy/p=(§ X ?pT-HI)—(Ex
_12p2 + 3py — Ly
- 2L )

(6)

Since the variable y is only to the first power, equation (6)
definitely shows that the influence law between points C and D is
an absolutely straight line like c¢d and not a bent line like ce’d.
If equation (6) is correct it should have the same terminal values
as the inner ends of lines ac and bd, already drawn, i.e., when the
load is at C, y = p and (6) becomes

12p2 + 3p? — 4
p+2Lp Lp _ ip as in (4)

while for point D, y = 0 and (6) becomes

2 2
122% = (—;% as in (2).

This definitely proves that the influence line for a top flange
moment centre, such as point E, is a truncated. triangle due to the
fact that the upper moment centre lies between the cross girders
and not vertically above one as with the Pratt truss.

The stress influence diagram immediately follows, since its
ordinates are those of the moment influence diagram divided
throughout by the girder depth d. The arithmetical values for
points ¢ and d are given on the drawing.

r

MAXIMUM FLANGE STRESS IN A PANEL

When the influence line for moment or stress for a braced girder
is of the triangular form, as given by Fig. 36 (c), (d) and (e), and
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Fig. 38 (b) and (c), the rule for the position of the load on the
span to give maximum effect is that previously enunciated for this
shape of influence curve, viz., the load per ft. to the left hand of
the moment centre should equal the load per ft. to the right. For
a uniformly distributed load crossing the span the bridge should
be completely covered by the load, but if the load is shorter than
the span then the load should be so placed that the vertical through
the apex of the influence triangle divides the load in the same
ratio as it divides the span, 7.e., load/ft. on left = load/ft. on right,
see page 20.

With the truncated form of influence line of Fig. 39 the above
rule does not hold and the requisite rule is that derived under.

In Fig. 40 split the load into three portions, calling that portion
over the member considered the B portion, and the remaining two
parts, the 4 loading and the C loading, z.e.,

W=4+B+C . . . . . . (1)
For the loads in any position the stress or the bending moment,
as the case may be, is M = X loads X respective ordinates
=46, + 483+ . . . Biby + Bghy,+ . . .
Cer+Coea+ ... - . (2

As explained on page 45, an extremely small movement of the

complete load system through a distance 3z will give & new bending
moment of

M + 3M = 4,(a, + 3a) + Aa(aa + 3a) + .
By(by +3b) + . . . Cyle; + 8") + N ¢
(3) — (2) = increment §M
=08a(d,+ Ag+ .. )+ 8By + By + . . )
+38(Cy+Ca+..) . . (4
As for equation (6), page 45, dividing throughout by 3z gives

M 8a
=z = 54+ SE(B) + 35(0) R ()
=tan0;.4 +tan 03.B 4 tanb3.C . . . . . (6)
and giving proper signs to the tangents
=tan6;. 4 +tan 0. B —tan8,.C . . . . . (T)

Now refer to Fig. 40 (c) and let the vertical ordinates represent
the various values of the bending moment (instead of shear as in
Fig. 33 (o) ) plotted against the corresponding various distances of z
across the span. Once again it is seen that when the curve has
reached & maximum value, or turning point, the ratio, slope or
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tangent, M /3z = 0. Hence the equation of condition now is that
there is maximum moment at & point on the span if M /3z = 0 (8)
oviftan 0,.4 +tan6,.B —tan 0, C=0 . . . . . . (9)
» tan ;.4 4+ tan 6,.B =tan0;.C . . . .(10)
If the load can be placed on the span to satnsfy condition (10) then
the load is in that position which creates maximum bending moment

or stress. Each bottom panel of the Warren truss will have its own
set of values for the three tangents.
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FIG. 40.

As an application of the above rule consider panel CD of Fig. 40
and substitute the particular numerical values appertaining to this
panel for the three tans 6 of expression (10).

Dat+lp-Po

ie., 3A+B c . . . . . .

For a U.D. load longer than the span the maximum M or stress
occurs with the span fully loaded. This satisfies condition (11)
because 34 + B = 4 panel lengths of load = loaded length C of 4

nels.

If the U.D. load is shorter than the span then adjust the position
of the load to satisfy condition (11).

The rule given by expression (10) applies to all influence lines
which have the form of a truncated triangle.

THE EFFECT OF CROSS GIRDERS ON END REACTIONS, F1G. 41

Bometimes a cross girder is used at the end of a bridge as illustrated
at the ends A of the three given girders, and at other times it is
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missed out altogether and the stringers carried forward on to a
specially raised portion of the abutment wall as shown at the ends
marked G.

When a cross girder is used over the abutment wall the floor load
can only reach the abutment through the main bearing at 4,
Fig. (), and thus the influence line for end reaction at main bearmg
A is Aa@G of (d).

If no cross girder is employed, as at @, the stringer delivers part
of its load directly into the elevated portion of the abutment
without entering the main bearing at G' at all. Unit load placed at
F gives R; = Ff; unit load placed midway between F and G on

1
x 0
] c > =z - 6’
i‘/ va ad 4 AT A
x > s A
A
B8 c o £ ~ [
Kt h ] . ©
X r__ﬁ_[_—xqr Ceoss Secrom ATA.
@ A B c o
a f
X +
@ A=

FIG 4.

the stringer causes a reaction of half a ton at the elevated portion of
the abutment (and so does not affect the main cast iron bearing)
and the remaining half ton at cross gieder F. Hence it follows that
ordinate Mm must be half of Ff. Th: influence line for the main
girder reaction R is therefore the triangle AfG.

Shear in end panel 4B is given by the influence line AbG This
will be clear if it is pointed out that in the Warren truss, for example,
the load which comes on to cross girder 4 is immediately transferred
into the abutment through the main cast iron bearing at 4 without
in any way affecting the main girder. The same argument applies
equally well to the girders of (a) and (b), although in these two cases
the lower or local part of the main girder in contact with the cross
girder has to carry this additional concentration of load. In (b) the
inclined path BH is travelled and then down from H to X before
any load is encountered, 7.c., the load in part HX = vertical
component of stress in HB = shear in panel 4B.
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The influence line for stress in the end vertical 4H of (b) is the
ghear influence line 4b@, and that for stress in the diagonals HB of
(b) and AH and HB of (c) is obtained by multiplying the ordinates
to AbG by (the length of diagonal - depth of girder) as previously
explained.

Shear in End Panel F(G is obviously given by the triangle Af@,
which was also the influence line for the main girder reaction at G ;
in addition AfG is the stress influence line for vertical NG of (b).
The stress influence lines for the diagonals FN, FM and MG can be
obtained by multiplying the ordinates to AfG by (length of diagonal
=+ girder depth).



CHAPTER VI

INFLUENCE LINES FOR THE MEMBERS OF A
' BOWSTRING GIRDER

THE girder of Fig. 25 used in the description of the ‘ Method of
Section and Moments ’ will be considered, and the positions of the
various moment centres will be found on referring back to that
article.

When handling a new problem in influence lines the safest plan,
although laborious, is to calculate the different stresses in the same
member when unit load is applied at each panel point in turn on
its passage across the span from one abutment to the other.

BOTTOM BOOM
Member DE

Moment centre is N and the lever arm ND = 14’, Fig. 42.

1T at A4 is immediately countered by the reaction at 4 of 1T, and no
stress occurs in the main girder, but only in the end bearing 4.

1Tat B R4 = 3T and Rg = 4T, see (b), Fig. 43.
Considering the stability of the portion of the girder to the left
of the section line XX (see ‘“ Section and Moments ") then :—

- R4 X horiz. length equal to AD — 1T X BD = Stressin DE X DN

3T % 45 — 1T X 30’ = Stressin DEX 14’
whence stress in DE = 0-67T
The ordinate of 0-67 is plotted immediately under this
position at B of the 1T load. The stress is a tensile one,
as previously cxplained, and is therefore given the
negative sign.
Alternatively, it is simpler to consider the stability of
the right-hand shaded section of (b), Fig. 43, because
there is only one force to work with, namely, the
reaction Rg = }T.
Moments at N : RxX horiz. length DK =Stress DEXND

v.e.,Stress DE = Rx X DK —~ ND  =}7(75'=14') =067T
1Tat C Rx = {7, see small Fig. (c).

69
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Moments at N : RgXx horiz. length DK =Stress DEX ND

}1(75' = 14) = 1-341

Ry X DK - ND

Ry = {7, see small Fig. (d).

1.e., Stress DE =
Ry x DK = ND

1Tat D

<4

14) = 2:01T

37(75’

The existence of a straight line law is at once apparent.

Stress DE
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Sce Fig. (e) and consider the stability of the left-hand

portion, shown shaded, which has only one force R,.

1ITat E

Moment centre is still point N.
R4 x horiz. dist. equal to 4D

Stress DExX ND

R.(AD

14') = 1.607T

yr(a5'+

+ND)=

Stress DE

)

or

1T at F

14’) = 1.205T

~ND)=§T(45'~

Stress DE=R4(4AD

See Fig. (f)
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1ITat G

See Fig. (g) Stress DE=R,(AD--ND)=}7(45'=-14") = 0-803T
1T at H

See Fig. (h) Stress DE= ,, ” =37( ,» ) = 0-402T

Plot the value of 1:607T at E and at F the value of 1-205T, etc.,

8o completing the triangular influence line DE.

If unit load is placed on a stringer between panel points the value
of the ordinate under the load can be scaled from the influence
line, see previous chapter. The area of the curve newly obtained is
2:01 X span of 120 = 2 = 120-6, negative or tensile stress.

Knowledge born of experience would cause only one point on the
curve to be calculated, namely, the apex value under the moment
centre, but, nevertheless, it is a useful check to calculate an

additional value such as that at C or F, or, preferably, both as
checks.

Member CD

The influence line for CD is similarly obtained with M as the
moment centre, see “ Section and Moments,” page 35.

Max. ordinate occurs with the load at C, then

Rg X CK = Stress CD x MC of 11-25" or

Stress in CD = }T X 90’ <+ 11-25' = 2T

Members 4B and BC

The stress in member LB being at right angles to AB and BC
cannot have a horizontal component to affect the stress in 4B and
BC, which have, therefore, the same stress.

The max. ordinate of the triangular influence line occurs when
the unit load is placed at B directly under the common moment
centre L.

Ry of §7 x 105’ = LB of 6-5' = Stress in BC (or 4B) = 2-02T

Arithmetical Example
The stresses given on page 34 can now be verified by these

influence lines. With the ‘bridge loaded with 2T per panel point

the stress in DE = ordinate under each load X respective load
value,

= 2(0-67 + 1-34 4 2-01 4- 1-607 + 1205
, + 0-803 + 0-402) = 16-07T
andin CD = 2(1 + 2 + 1-666 4 1-333 4 0-999
+ 0-666 + 0-333) = 16-00T
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Alternatively the panel point loads of 2T can be con-
sidered as being distributed uniformly over the span

= 2T = panel length of 15’ = per ft. run  0-133T
Then stress in DE = area of 120-6 X 0-13 = 16-07T
and , ©CD= , 120 X013 = 16-00T

WEB DIAGONALS

Member LC. Figs. 44 and 45.

The moment centre where the two unwanted bars, cut by XX,
meet is S situated 5-53’ to the left of 4 (previous calculations).
Comparing similar triangles STC and LBC

then ST'/SC = LB/LC whence ST = 14-127’
Clockwise moments are termed positive.

A @
P 1 P @
N e IS @
N 7l e T
D% /POD S
s i l !
‘A X ";g /}dg . | L]
N\ < '
‘ﬂ S 59: — 9 — ]
Y © /,‘" DiaconAL L.C.
FIG 44 FI1G.45.

1Tat 4
All the load enters the abutment through the end
bearing A and therefore the stress in LC for
this load position =0
1Tat B
R, = }T and Rg = §T. Consider the stability
of the portion to the left of the section line,
small Fig. 44 (a).
Stressin LC X 14-127'=—}Tx S4+1Tx SB
' =—3Tx5-53'41Tx 20-63'
=--15-691 ft. tons.
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The positive moment of 15:691 would swing the
broken smaller part round 8 in a clockwise
direction as indicated by the arrow in (a) so
making LC shorter in length, i.e., the stress is
compression,
.. Stress in LC = 15-691 = 14-127 = + 1-11T
1T at C
The unit load having now passed the section line
XX drops out of the moment equation for the
stability of the smaller portion AB of the
structure, see small Fig. (b). Nevertheless the
unit load causes a reaction at 4 of §T.

Stress in LC X ST = — R4 X SA. Theright-
hand side indicates that the unbalanced moment
i8 now counterclockwise and, as indicated by the
arrow, member LC is in tension because L moves
away from C. So that when unit load lies to the
right of XX the stress in LC is tension.

Tensile stress in LC = R(S4 = ST)

= R,(5:63' - 14:127") = — 0-3914R,
For 1T at C the stress = 0-3914 X §T = — 0-294T
1T at D = 0-3914 X §T = — 0-245T
1Tat E = 0-3914 X 4T = — 0-1957

And so on, down to zero value at abutment K.

Neutral Point

The position of point # is obtained by comparing
the similar triangles Bbn and Cen of Fig. 46 (b).

%I:; =g—:, 1.e., 1731;} = %E% whence Bn = 11-9’

Note. Since this girder is not parallel flanged the neutral point
does not divide the panel in the same ratio as it divides the span.
Compression area

=(bBxX An) ~2=111x269+2  =1493
$

Member MD. Fig. 46

Moment centre and lever arm as on page 36. So
long as unit load lies between 4 and the sectipn
line XX the equation is of this form :

Stressin MD X 45-8' = — 31-36'R,
+ 17(SB or SC)
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Max. value occurs with 1T at C.
Stressin MD x 45-8' = — 31:36" X §T
+ 1T X 61-36" = + 37-84
This positive or clockwise turning moment moves
M towards D and the stress in MD is compressive

= 37-84 = 45-8 = + 0-826T
we
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Once the unit load is to the right of the section
line the equation becomes: Stress MD x 45-8
= — R, X 31-36 (a negative moment which places
MD in tension).

.. Stress MD = — R4(31:36 = 45-8) = — 0-6847TR,

A straight line whose minimum value is zero
when unit load is at K and whose max. value
happens when unit load is at D so giving R, = }T
and Stress MD = — 0-6847 x §T = — 04281

Member NE. Fig. 46. Length NE = 4/(142 + 15% =20-518’

Moment centre is at S where ON produced meets
ED produced. ,
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Comparing similar triangles OES and NDS,

OE SE
ND ~ SD
15 60"+ S4  ams
1.6., 1—4'7 = m, whence length SA = 165
Comparing triangles STE and NDE,
ST ND
SE ~ NE
1.e., %—ﬁ, = 2—017;17, whence lever arm ST = 153:523'
The influence line then follows, as explained for
LC and MD.

Arithmetical Example

Find the stress in bar MD when only panel
points 4, B and C are loaded each with 2T,

Stress MD = + 2(0 4+ 0-413 + 0-826) = 4 2-48T
If panel points D to K are loaded with 2T each,
then :

Stress MD = — 2(0-428 + 0-342 4 0-257

+ 0-171 + 0-086) = — 2:57T
If all panel points carry a 2T load each, then :
Stress MD = 2[+ 0-826(1 + 0-5) — 0-428(1 +

0-8 + 0:6 + 0-4 + 02)] = — 009

(Inspection of the influence line suggests that
simplicity of calculation is obtained by stating the
values of the small ordinates in decimal terms of
the highest ordinate.)

This agrees with the stress found by direct section and moments,
page 36.

During the passage across the span, from K towards 4, of a
U.D. live load, wT per ft., longer than the span the stress in MD
increases from 0 to a maximum tensile value of — 17-15wT when
length Kn only is fully covered by the load. This max. tensile
value is immediately reduced in value whenever the head of the
load enters the positive section nd, because of the addition of the
compressive area now covered.

This diminution of negative stress progresses steadily until the
whole span is covered, when the tensile stress in MD is a very small
one of wr(4 16:47 — 17:156) = — 0-68wT, When the tail of the
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load leaves point K and approaches n there is one position of the
load system where the negative area covered by the load exactly.
balances the positive area of 16-47, thereby giving no stress
whatsoever in MD.

As the load tail approaches », remembering that An is fully
covered, the tensile area by gradually decreasing in value causes a
corresponding increase in compressive stress. Max. compressive
stress occurs with the load covering only section n4 and the value
is + 16:-47TwT. When the tail of the load leaves n for 4 the live
compressive stress gradually approaches zero as the bridge is freed
of its live load. :

WEB VERTICALS

Member LB, Fig. 47 (b), is different from the two succeeding
members in that it is purely a suspender bar, and is not part of the
main web system since it only carries the load from the cross girder
at B. This cross girder obtains its load from the two stringers,
whose ends it supports. The reaction influence line for end B of
small girder 4B is the triangle abd ; similarly that for end B of
small girder CB is the triangle bcd. The total pull or tension on the
suspender is due to both these stringer reaction influence lines,
hence the resultant influence line is triangle acd of area = 15.

Member MC, Fig. 47 (c), has the moment centre at T. A max.
ordinate occurs under C and another of opposite sense under D,

1T at C
Stress MC x 35-53' = — R, of §T X 5-53',
+ 1T X 35-63' = + 31-38
A positive moment causing a lengthening of MC,
.. Stress MC = 31-38 = 35-53 = — 0-883T
1T at D
t.e., unit load is now excluded from the moment equation.
Stress MC x 35563’ = — §T x 5:63’, ,
whence stress MC = -+ 0-047T
The negative moment causes a positive stress
since point C tends to approach M.
Newtral Pownt. (ESE = _O.i.._g_:,_ or z = 1351’
z 156 — =
Member ND, Fig. 47 (d), has point S as the
moment centre.
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1Tat D
Briefly : NDx76-36’=—§TXx 31-36"+17x 76-36’=-- 56-76
.. Stress NDis a tensile one, value=>56-76--76-36 = —0-743T

1Tat E
NDx76-36'=—3T x 31-36’, whence stress ND = + 0-205T
Neutral Point, 2123 _ 0208 z = 1176’
T 15 — =z
N P
Q) —_::"'f;:;’/ ~1
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Member OF, the mid-vertical, is given in Fig. 47 (e).

Any section cutting OF cuts through not three but four bars
(Fig. (f) ). By taking moments on one of the unwanted bars, e.g.,
at N, on NE, this unwanted bar is eliminated from further thought,
but the stresses in- the remaining two broken bars must be taken
into consideration. Further, from symmetry, it is clear that max.
stress occurs when unit load is at point E. Now when unit load is
placed at E it has been found that the tensile stress in DE, corre-
sponding to this load position, is 1-607T—the ordinate under E of
influence line for stress in DE—and the compressive stress in OP is
2-004T, similar to that in bar ON as given under. If a cut bar is in
tension the force acting does so away from the cut end, and if in
compression then towards the cut face.

Then moments at N, Fig. (f) :

+ Stress DE X ND -+ Stress OP X 199" + 1T
at £ X 165" — R X 756" = 15’ X Stress OF
+ 1-607T x 14’ 4 2-004T X 1-99" 4 1561’
— 3T X 75’ = 15’ X Stress OF
t.e., 15’ X Stress in OF = - 3-99 ft. tons

The resulting 4 moment causes a tensile
extension in bar OE, whence the stress OF
=399 =15 = 0-266T

The influence line is then as given in (e).

Alternatively, consider Fig. (g). At point O in the top boom
three bars meet and in consequence a triangle of forces can be
drawn as in Fig. (h). The stresses in NO and OP are compressive,
and that in the mid-vertical is tensile as given by the force triangle.

Further, vertical ND is 14’ and vertical OF is 15’ high, giving a
height difference of 1’ 0”, as in (g); therefore, in the triangle of
Fig. (h) if wv is 15-03’ then wu is twice a foot in length, viz., 2’ 0",

But triangle uwv is also a triangle of forces, hence

wu  Stress WU 2'

“uv _ Stress UV ~ 1503’
2
Stress WU = 503 Stress UV

i.e., Stress OF = 1T20_3 Stress NO

= a tensile stress of 0-133 stress in NO.

That is, whatever is the stress in NO the stress in OF is 0-133
stress in NO and of opposite sign ; and therefore the influence line
for stress in OF must also be 0-133 times that for stress in NO but
opposite in sign. As will be seen under, the influence line for stress
in NO is an isosceles triangle of height + 2-004T, and thus the
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influence line for stress in OFE is an isosceles triangle of height
equal to
— 0133 X 2:004T = — 0-266T.
drithmetical Example
With the bridge loaded throughout with 2T panel loads the
stress in
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FIG.48.
MC =2[—0-883(1+0-5)+0-097(140-84-0-64-0-440-2)]
=2[—1-32+4-0-29] = — 2:06T
ND =2[—0-743(14-0:664-0-33)40-205(14-0-754-
0-64-0-25)]

= 2[—1-486 + 0-513] = — 1-95T

These results are identical with those found on page 37.

TOP BOOM

Member MN. The moment centre is point D and the lever arm
can be calculated as on page 36 or from the comparison of the

¥
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similar triangles NmM and NdD of Fig. 48 (d). The influence line is
given by (c) and shows that maximum stress occurs when the bridge
18 fully loaded. -

If all panels carry a 2T load the value of the stress in

MN=2[2-04(14-0-664-0-334-0-2+0-4-+0-6+0-8)] = 16:327

Member NO. The influence line is found in a similar manner
to that for MN.



CHAPTER VII
63-FT. SPAN PLATE GIRDER RAILWAY BRIDGE

THE small cross-section of the bridge given in Fig. 49 shows the
usual disposition of the stringers or longitudinal beams. Flat mild
steel plates are laid on top of the stringer joists and are riveted to
the upper flanges. The thickness of the floor plating is y;" or "
and is adopted without calculation.

—_230
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CROSS ceocR. Tcﬂw GraocR —'l [
o e )
36" e 50" ope 00" - 50 .{.36-1 p—290 "—’1"“‘9'°“l
|

FIG49. F1G 50.

The floor plating is covered by a 1” thick coat of asphalte because
the upper surface is inaccessible for painting. To protect this
bitumastic seal against a carelessly driven pick a 2” thick layer of
small aggregate concrete is laid on top of the asphalte. The ballast,
which is in contact with this concrete, is prevented from corroding
the web plates of the main girders by subsidiary vertical plates
known as ballast plates. The protecting ballast plates when
corroded can be easily dismantled and replaced.

a-mﬁvﬁm/ﬁd
uvirs / 75 98 P8 7S 4 s WIS
arnee 4 ‘?__?&Mfém
8' 131515t 9 16'1616151 0 1515151 9 t6{6t6'ts
5 425 B47773K 37 T U rag emurey
oe éé‘ BRIOCES FOR A SINGLE LIWE OF PWY
X ‘e Axee Lomos
req (a.‘&;«‘é‘%pm.m of the Brifish Stondards IsfMfion,)
1G.5/. .

The complete stress calculations for the steelwork will be given
in the following pages. If further information is desired as to the
general design of the sections for the girders, stiffeners, bearings,
splices, etc., together with working details, see “ The Practical
Design of Simple Steel Structures,” Vol, II.

n
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The live load on the bridge will be taken at 15 units, 1.e., 15 times
the axle loads of the imaginary train of Fig. 51.*

STRINGERS
Floor Dead Load per ft. run of Span }
Floor plating y&" tk. ;
23’ x 1’ @ 17-85 1b./sq. ft: = 411 1b.
Rivet heads in above ; add 5%, = 21
Asphalte sealing coat ;
23’ X 1’ X (1 = 12) @ 136 1b./cu. ft. = 261
Concrete overlay ;
2 x 1'x (2+-12) @140 ,, = 537
Ballast, 9” average tk. ;
WxlI'x9+-12)@ 9% , , = 1,653
2,783 Ib. (a)
& i
e @°6" —ol— 4'6'-——4 ' ' 1 ~
16 52 o | e | j?:ﬁ:
! llher | g (D 3 (D 3 D a Wias
P or s @s'rs'@ 6 | »
e — 670" —h— 3‘07—4 I
FIG 53. FIG 54.
Single track of 2 rails, chairs, sleepers, etc.,
14 cwt./ft. = 168 1b. (b)
Stringer self ; dead weight estimated at 3T = 448 1b. (c)

Width supported by internal stringer
' =40f6" +3of 5 =5 6"
Dead load on stringer, item (a) ;
2,783(5-6' <~ 23') X 9’ long = 5,990 Ib.
’ of half track, item (b) ;
) 4 0of 168 X 9' long = 1756
» of self, item (c) = 448

—_——

7,194 1b, = 3217 (d)

* Also see Fig. 110.
t Bee Weights of Materials, page 168.
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Bending Moment, see Figs. 50 and 52

The axle load is 15 units X 1-25T
= 18-75T or per wheel = 9-375T

*Impact factor
-, ~ e,
90 + —TL 90 4 3 9
but not to exceed 1-15 (e)

Where n = No. of tracks which girder sup-
ports or assists in supporting.

L = loaded length in ft. of the track

or tracks producing max.

stress.
Dead load max. B.M.
= WL -8 sec item (d)
= 3-21T x 108" = 8, in inch tons = 433
Live load max. B.M.
=WL -4 see Fig. 52
= 9-375T x 108" =4, in inch tons = 253-1
*Impact, item (e)
= 2531 x 115 . = 291-1
Total max. BM. for D.L. + L.L. 4+ 1., in
inch tons = 5875  (f)
End Shear
Dead load
= } of 3217 (item (d)) tons = 1:60
Live load
= 9-3757(3'4+-9')+9’ (see Fig. 53) ,, = 125
Impact
='12:6T x 1-15 (item (e)) ,» = 1438
Total max. end shear for D.L.4+L.L.4I.,, = 285 (g)

* The live load stress is that due to the wheel weights applicd as static loads ;
actually, however, these loads are applicd dynamically and not statically to the
bridge, and in consequence there is a considerable increment of the static stress.
There are several causes of this increment, but the effects are all included in the
collective term ‘* impact " (see page 173).

For simplieity the impact formula of the * B.S.S. for Girder Bridges No. 153,”
1923 edition, is used here. Although the 1937 edition says that this provisional
formula should be discontinued it leaves the fixing of the impact allowance to the
discretion of the engineer. (The specifications are published by The British
Standards Institution, 28 Victoria Strect, S.W.1, post free 2s. 2d.)
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Design stringer to carry a max. B.M. at centre of 587-5 inch tons
and an end shear of 28-5 tons.

CROSS GIRDERS
Span 23’ 0" at 9’ 0" centres.
Dead Load. Assume each stringer to carry

the same amount.
From stringers (see item (d) of stringers) = 3-2IT

Estimated weight of self = 2:08T. Per
panel point = 2-08 = 4 = 0-62T
(See calculations on page 166.)
Total panel point dead load = 3-73T (a)

>3 B3 373 373 zxma )7’ 373 373 373 -~ -DEAD
A 4 M7 1007 Ve LA - - .. LIV(

R 0 e ﬁﬁﬁé&wm""””

35, 5 | & | 5 55
T — 2T T e,
mad!
- AP p :}N‘r
FIG56.
Live Load. Impact factor=———z§3—_ﬁ—
0+—; L
120
T @D TP
90+—-——18

Live load reaction on cross girder, Fig. 54.

Case 1. 1(34+1+44) =1§ unit axle load.
”» 2. 1*(2)(8) =18’ » ”
Max. L.L. reaction on
C.a. =1§ X 15 units per axle= 28-331
Max. L.L. reaction on C.G. per single rail
= 28:33T - 2 = - 14177 (b)
Max. impact allowance = 14177 x 1026 = 14627 (o)
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Max. end shear

=92(3-737414-177414-527) ; see Fig. 55 = 64-84T (d)
Max. shear panel CD ; ” = 32:42T (e)
Max. B.M.¢

= 3-bR4 = 3-6' X 64-84T » = ft.tons 2269 (f)
Max. BM.,,

=64-84Tx 8-5' —32-42T X 5’ w =, 3890 (g
The max. shear in centre panel occurs with

only one track loaded as in Fig. 56 = 1497 (h)

This figure of item (h) is required for the
design of the riveting in the flanges of the
centre panel DE.
Desngn the cross girder to withstand the bendmg moments and
hears given in Figs. 55 and 56.

MAIN GIRDERS
Span 63’ 0" centre to centre of bearings, Fig. 57.
Dead Load per Cross Girder Ib.

See stringers, item (a)
Floor covering ; 9 X 2,783 1b. = 25,047
See stringers, item (b)
Double track ; 9 x 168 1b. x 2 off = 3,024
See stringers, item (c)
Stringer self ; 448 Ib. X 4 off = 1,792
See cross girder, item (a)
Wt. of C.G. = 2-08T = 4,660
34,523 16-4t
Dead load per panel point of main girder
= } of 15:4T = 77T (a)
Estimated weight of main girder, see calcula-
tions on page 167. = 16-0r  (b)
Live Load. Impact factor = ——:;‘2—0_—*—_7)——
90 + 3 L
(Taking n as 2) == ——-—(1—22%_—1—)—— = 0656 (c)
90 + 3 63
(Taking n as 1) 120 0-784

90 + L+ g
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The main girders carry their greatest live load stresses when both
tracks are occupied by identical trains crossing the bridge in the
same direction and keeping pace with each other—an imaginary
condition of loading which results in simplified design calculations.
In keeping with this assumption a few designers suggest that n
should be taken as 1 in the formula, so giving the greater value of
0-784 for the impact factor or coefficient—this is equivalent to
saying that each main girder carries one track.

Usually, however, n is taken as being equal to 2, because, in the
words of the specification. each main girder * assists in supporting
two tracks.” This gives the lower value of 0-65 for the impact
factor which is in accordance with practical conditions, because
when two scparate trains cross a bridge they do so in opposite
directions. The two trains are thus out of phase with each other,
so producing a damping effect which lessens the impact. The lesser
coefficient of 0-65 will be taken.

MAIN GIRDER—SHEAR INFLUENCE LINES, FIG. b7

The diagrams of this figure give the positions of the neutral
points, the areas of the curves, and the positions of the axle loads
causing maximal shears. These unit axle loads will require to be
multiplied by 15 to give the 15 units axle loads, which is the loading
on each main girder when both tracks are loaded simultaneously.

(a) Axle Loads. The ordinate at each axle is obtained by -
proportion ; thus in the curve for panel AB the ordinate at the

leading driving axle adjoining 4 i i85 i of the apex value of § =4% of §.

The second axle is at ordinate §, whxle the third driving axle is 49’

and the ordinate at the fourth driver is ;‘;1 of §or 44 of §. The §r

axles, in addition, will have their ordinates multiplied by this
figure of $.

Panel AB, casc (a)

1T axles: 1 x ( F14 4-f%i"f’) — 2777
%T ) 2)( ";(17—{-23;;29—{-35) — 1.238

4-015 (60-23T)
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Panel AB, case (b)

1T axles: 1 X 9(9 + 1+ “+ 49) = 2714
¥, ix 3;(17 + 23 + 29 + 35) _ 1238
UD.LL. 01 X $(3% X 122) = 0-114
4066
The latter case gives the greater value. T
Max. S,pdue to 15 units train = 4-066 x 15 = 61T
Panel BC. Group the heavy wheels near the apex. o
IT axles: 1 X 3(% + ?’Ej——ig—_{_‘i?) = 2:143
it ., ix *’;(8 + 1 t;'o hs 26) = 0-810
30"of UDLL. = § X §4 X $ X 01 = 0-007
2.960
Mox. Spcdueto 15 unitstrain = 296 X 15 = 4447
Panel CD, case (a). For max. positive shear keep
the loads within the positive segment of the span.
1T axles: 1 X ?(2—9——{_%*_(15_*-36 + (l)) = 1571
it ., ix 1(53-'*'—13}6i—17 ) = 0-393
1.964
Panel CD, case (b) o
1T axles: 1 X §(21 + 26;;31 + 36) = 1-809
o, iz = 0214
2023

Max. S¢p due to 15 units train = 2023 x 156 = 30-357
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Panel DE
1T axles: 1 X 3(l2+ 17;,_,22+27)

I . XM = 0036

1-274

Max. Spz due to 15 units train = 1-274 X 16 = 19-11T
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(b) UD.L.L. of 0-1T X 15 units. For max.
positive shear load only the positive segment of
the influence line between H and the neutral

point.
Shear = area X load per ft.
Sisz =27 X 01 X 15 units 40-5T
Spc =18 X 0-1 X 15 units 28-137
Sop =12 X 01 X 15 units 18-00T
Spg = 6} X 0-1 X 15 units 10-137
In all cases the wheel concentrations give the

greater ghears.

(c) D.L. shear from cross girders (at 7-7T each panel).
Shear = X loads X ordinates at panel points.

Sas =7-7(6+5+4j3+2+‘) . 2317
Szc =7-7(_ 1+ 5+47+3+2+ l) = 15-4T
Sop _77( 2+4+3+2+1) _ -

Sy =7.7(—1—2—37+3+2+1) _ 0
(d) D.L.shear from main girder self. The D.L.

= 16T or 16T =~ 63 per ft.
Shear = sum of positive and negative areas

X (16 - 63).
S.s =(area 1—0)16/63=(27)x 16/63 = 6-86T
Szc =(A2—A6')16/63 =(183—1)x16/63 = 457t
Sep =(A3—Ab')16/63 =(12—3) x16/63 = 2297
Spx =(A4—A4')16/63 =(6]—63)x16/63 = 0-0T

The thickness of the main web plate and the pitches of the web
to flange-angles rivets are calculated from the values tahulated in
the final column on page 80.
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SUMMARY OF MAXIMAL SHEARS IN TONS

Dead load from Total .
Panel Axle loads .J.'g‘,?“'- =) :\)heum:x
ane () (@ . @) + (b) + (¢)
(b) Cross girder Main glrder + (d)
(c) (d)

AB 61 39-65 231 6-86 130-61
BC 444 28-86 164 4-57 93-23
CD 30-35 19-73 77 2-29 60-07
DE 19-11 12-42 0-0 00 31-63

* As the main girders have plated webs the impact factor obtained for the shear
in the end panels is also used for the remaining panels of the girders.

However, had the main girders been Warren trusses, then the two web diagonals
in panel BC would have had their impact factor calculated on a value for L of
52’ 6” and those in panel CD on a value for L of 42’ 0”. This follows from the
shear influence lines of Fig. 57 which show that the necessary length of span to be
loaded to produce maximum stress in a web diagonal in these panels is from the
right-hand abutment at A up to the neutral point in the panel.

MAIN GIRDER—B.M. INFLUENCE LINES, FIG. B8

The ordinate at each axle is obtained by proportion and the
sum of the ordinates is multiplied by 15 as in the case of shear.

The influence line for point K is a truncated triangle, because K
lies between the panel points. The apex value of this triangle is
found by placing unit load at K actually on the main girder. The
moment at K = Ry X 3L = }7 X (63’ - 2) = 15§ foot tons. The
ordinate at D is 153(4D - AK) = 153(3 - 3}) = 13}, measuring
AD and AK in panel lengths.

The units of panel length are easier to use than feet dimensions.
Thus when a girder has all its panels of the same length and the
influence line is a triangle then the rule for a max. condition of
loading can be restated as—the average load per panel to the left
of the point should equal the average load per panel to the right—
in place of saying the average load per foot, etc. As a numerical
example take point D with the loads (b) placed as in the figure and
consider the unit load at apex D as belonging to neither segment.
The average load per panel in segment

DH =2 @1T 4+ 3 @ §7) =+ 4 panels = 426 - 4
AD=(1@1"+2@3§r)+-3 , =25=+3

If the 17 load at D is now considered as belonging to
the lesser segment 4D, the addition to 4D=1T+3 = (0-33T

1-06T

I

I

0-83t

Total average load per panel of segment 4D = 1-16T
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Without unit load at D the average panel load of segment AD is
less than that of segment DH and with the unit load at D considered
in segment 4D the average panel load of this 4D segment is larger
than that for segment DH and therefore a maximum condition is
present. Alternatively, 0-82T of the unit load at D can be considered
as being in AD and the remaining 0-18T in DH. The average load
per panel now balances.

Segment DH = (4:25T +.0-18T) = 4 panels = 443 - 4= 1-11T
Segment AD = (2-5T 4+ 0-82T) -3 , =332-+3= 1117

(a) Axle Loads
BM.at K
1T axles : 1275 (22426)42%x1x 135 = 51-00 foot tons
o, ix 1375(3 4945411417 = 16875
67-875
Max. Mx due to 15 units train = 67876 X 15 =  1,018:13

BM.at D. Case (a)

22 417 36 + 31
lTaxles:lleﬁ( + + ) = 51-00

27 36
4 4410416422 .
o, ix 193(27+__%___) = 1843
69-43
Max. M, due to 15 units train = 6943 X 156 = 1,041-45
(Case (b) gives a smaller moment =
(62-43 + 15-75) X 15 units = 1,022-7.)
BM.atC
8 13 8 4
1T axles : lxﬂ,ﬂ( + +1 +Zg = 39-286
13 19 25 1
It ., ix %"( + + +3) = 18-857
U.D.L.L. O-IXW(;K)XSXQ—areaxload/ft. = 0914
59-056

Max. M due to 15 units train = 59-066 X 156 = 885-84
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BM.at B
1T axles: 1 X 5.,4(% + IW————‘—ZiE-‘t = 24-429 foot tons
r ,, ix 5,,1(" +23;;29+35 = 11-143
U.D.LL. 01X 54(33)x 12X §=areaxload/ft. = 1-028
36-600

Max. M5 due to 15 units train = 366 X 15 = 549
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This B.M. influence line is similar to that for
shear in panel 4B and the apices of the B.M. and
Shear I.L.’s are in the ratio of &% : §, i.e., as
9 is to 1. Therefore the B.M. corresponding to
case (b) loading for the shear, panel 4B, Fig. 57,
is 9 times the respective shear result of 61
(page 77), i.e., 549 as above. This follows
because the positions of the wheels, whether for
shear or B.M., are governed by the same law, viz.,
the average load per ft. on the left of the apex
equals the average load per ft. on the right of the
apex.

Similarly the B.M. for case (a) loading shown
on the shear influence line, panel 4B, Fig. 57,

i8 9 times the shear result of 60-23, page 76. = 542 foot tons.
(b) U.D.L.L. of 0-1T X 15 units. Only the U.D.L.L. now covers
the span.
Foot tons.
Max. Mg = area X 0-1 X 15 =486 X 0-1 X 15 =729
Max. MD = s ) = » ’ =729
Max. M¢ = ,, ’ =405 X 01 x 15 = 6075
Max. Mp = ,, ' =243 X 0-1 X 15 = 364-

In all cases the wheel concentrations give the greater B.M.

(c) D.L.B.M. from cross girders.
B.M. = loads X respective ordinates.

Mg = 77(W)3 % 135

MD—77(9+18+27+9+1386+27)19ﬁ

Mo — 7.7(9 -{—818 L9+18 + 27 + 36)%)

77(9+18+27+36+45+54)§7(

(d) D.L.B.M. from girder self at 16T -~ 63 in T/ft. run.

Note.—Since the dead load of main girder self acts
directly on the girder, and not through panel points, the
proper influence line for Mk is the triangle of apex height
16}, Fig. 58, K.

= 4156-8

= 415-8

= 3465

= 2079
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Foot tons,
Mg = area X load/ft. = (15-75 x 63 - 2)16 = 63 = 126-0
Mp= , ” = 486 X 16 = 63 = 1234
M= ,, ’ = 405 X 16 - 63 = 102-86
M= " = 243 X 16 = 63 = 6171
SUMMARY OF MAXIMAL BENDING MOMENTS IN FOOT TONS
Dead load from
Point Axle loads .'6'_‘&“(':;’ TOt.‘Lli,m:-x'
@ (b) Cross glrder Main girder ) ++( %)‘* ©
(c) (d)
K . 101813 661-78 4158 126-0 2221-71
D 1041-46 676-94 4158 123-4 2257-59
C 885-84 575-80 3485 102-86 1911-00
B 549-0 356-86 ' 2079 61-71 1175-46

* The influence lines of Fig. 58 clearly indicate that the maximum flange stress
at any point occurs when the bridge is completely covered by the load. Similarly
with & Warren (or other type of) truss maximum stress in any flange member
occurs when the load covers all the span, and so the value to use for L, in the impact
formula, is the span length of 63’, i.e., the impact factor is constant for the flange

members.

The sections of the main flanges and the points of curtailment of
the several flange plates can be determined from the values listed
in the final column above.



CHAPTER VIII
LIGHT WARREN TRUSS ROAD BRIDGE
Span = 75’ 0". Clear width of roadway is 20" 0”.

Dead Load of Floor *

Buckled plates 5" tk., dished 3". .
Concrete filling 1s 27 tk. over plates at ke.ob to 43" at
crown, for camber. 17 sand and 4" deep granite sets.
Stringers and local cross beams supporting buckled
plates. Av. wt./sq. ft. of floor = 154 Ib.

Dead Wt. of Cross Girder cach = 09T
Dead Wt. of Main Truss (see calculations, page 167) cach = 7-0T

Dead Load per Panel Point
15" x 10" at 154 1b./sq. ft. = 10-3T, 4.e., panel length

by half width, plus 4 of 0-97 plus  of 7-0T = 12-15T
Dead Load/ft. of Main Truss

12:157 = panel length of 15 = 0-8IT
Live Load

Wheel Loads. Two vehicles of 12T cach cross the
bridge side by side, exactly abreast, in either direction ;
t.e., the main trusses carry a vehicle each or a set of
axle loads.
U.D.L.L. Uniformly distributed live load of 100
Ib./sq. ft. of floor surface. Kach main truss will carry
per ft. run of its length a load of % of 20" X 1’ at 100
1b./sq. ft. = 1,000 Ib. = 0-447T

Design of Bridge

The bridge carrics a private road to a mill and the vehicle loads
were determined by the weights of merchandise and the tare or
dead load of the lorrics. The 100 lb./sq. ft. represents pedestrian
traffic in the nature of a densc crowd and hence a slowly moving

* See page 168 for * Weights of Materials.”
86 G
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mass without impact ; alternatively, it may be considered as an
equivalent uniformly distributed load for light traffic, as explained
on page 171. The stresses from the actual wheel loads, on the other
hand, were increased by 30%, * to allow for impact, and the
permissible axial tensile stress was 7T/net sq. in. {Compare this
with the Ministry of Transport figure for impact allowance of 509%,,
which is included in the imaginary wheel loads of Fig. 111, and the
working tensile stress of 9T/net sq. in. as specified in the B.S.8.
No. 153, revised September, 1933, and September, 1937.

Further, it is hardly possible for the full wheel loads with impact
allowance added (t.e., maximum speed) to occur simultaneously
with full pedestrian traffic on the remaining free area of the floor
not occupied by the vehicles. Either one type of loading or the
other, but not both types, can act on this small span and narrow
bridge.

Since the flat edges of the buckle plates rest upon the cross
beams, stringers and cross girders, the top flanges of these members
are all at the same level. The floor loads thus travel through the
buckle plates to the local cross beams of 5 0” span and from there
to the stringers, which are tiny 15’ 0” spans parallel to and between
the main trusses. The stringers in turn give up their loads to the
cross girders, which deliver their loads as end reactions to the main
trusses at all points marked L on the lower boom, see Fig. 66.

Main Bearings. The cross girders at L, and L could be left out
and the masonry abutments brought up to a higher level to carry
the ends of the stringers and floor. This would not affect the
influence lines given for the boom or web members because cross
girders L, and L really deliver their loads directly into the main
bearings without influencing the structure of the bridge in any way.
What is altered, however, is the amount of the load passing through
the main bearings.

Cross Girder at L,}. The influence line for the reaction on the
end bearing is given by (b) of Fig. 59. Every load on the bridge
floor must ultimately find its way into the main truss, and the
influence line is exactly the same as if the main truss were a beam
of 75’ 0" span carrying the loads directly on its upper flange. A unit

* See page 178 for Road Impact Formule.
t E.g., consider an axial tensile live load stress of 50T.

Above example :
Bsmmzw" +309%=65T. Net area required s. 7T/sq. in.=9-29 8q. in,
© =80T 4509%="75T, ’ ’» 8T ,, =9-37
B.8.8. 1933 : > ' "
» =80T +50%= 75T, " eT ,, =833 ,,

3 The notation of U,, U,, etc., for the upper psnel points and L,, L,, eto., for
the lower panel points is used by some bridge engineers.
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load at D causes an end reaction of 1T X 67-5’ = 75’ = 0-9T, as is
also given by the influence line.

No Cross Girder at L,. F1g 59 (c) gives the influence line for the
reaction on the end maxn bearing. Because the stringers rest
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directly on the abutment they give up part of their load to cross
girder C and the remainder to the masonry without affecting the
bearing at 4. A unit load at D of Fig. (c) means only 0-4T to end 4.
This can be checked by thinking of the tiny internal stringer bridge
with a central load at D. Then 0-5T reaction goes directly to the
abutment and 0-5T to the main truss at point C. So far then the
main truss carries not 1T but only 0-5T at C, which means a reaction
at bearing 4 of 0-5T X CB + B4 (i.e., moments at B to find A)
= 0-6T X 60’ = 75" = 0-4T, as is also obtained by influence line c.

Top Boom or Flange. Moment centres for U,U, and U,U, are
respectively L, and L,.

UyU, in Full Detail. (1) Unit load anywhere between L, and
Ly, 1.e., z varies from 0 to 30’ 0", no other load on the span, Fxg 60.

¢ S,
Memeerlbl /’({\ /’/g&f\y Ve 5D
mnwr&m/ _'::--.\'Z"‘“:* almlah 74 i =S

L, P La 8=~
XTI * SRS 2&5,,. —y - 6;
/;v/w:ﬂ( A;M """ "
—————————————— 4 Bons
- ,__,_,_.._.-_—-_—-@.,,,.,m
] 450!
F1G.60
BM. at L,
=45 Rpg = 45(1’1‘ X z = 75) = 0-6z
= 0 when z is 0, and when z is a max. of 30’ = 18 ft.T

Now consider the load between Ly and L, ie., y
varies from 0 to 45',
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B.M. at L,

=30 R, = 30(1T X y = T5)

= 0 with y equal to 0, and when y is a max. of 45

The B.M. influence curve is thus a triangle of apex )

height = 18 ft.T
These moments tend to close gap ab, therefore

causing compression in UyUs.
The stress influence curve immediately follows on

dividing the I.L. values for B.M. by the girder depth

of 7-5’. Max. ordinate = 18 - 7-5 = 24T
Alternatively, as is usually done, obtain the I.L.

curve for stress without drawil the B.M. I.L., thus :—

Stress U,U

=BM. - D=45R; =75 =06z =T7bH = 0-08z

= 0 when z is 0 and when z is a max. of 30’ = 24T

=also30 Ry -75=04y - 75 = 0-063y

= 0 when y is 0 and when y is a max. of 45’ = 241

Bottom Boom or Flange. Moment centre for LiL, is U,; for

L,L,is U,, etc.

Because these moment centres do not lie vertically above the
cross girders the resulting influence curves are truncated triangles
as fully explained on page 54. The method will be briefly repeated
for bar L,L,, Fig. 61.

roe Sreess

mw L, L,

FIG6]/.

Stress LiL, = BM. at U, -~ D
With z as the only variable, 7.e., unit load between
Lyand L), Rg = (1T X z =~ 75)and BM. U, = 526 Ry
Stress L,L,
= 525 Rp = 76 = 525(x = 15) — 75
= 0 when z is 0 and when z is a max. value of 15’ .
Unit load between Lg and L,, t.e., y varies from
0 to 45’ then :—

0-093z
1-41
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Stress L,L,
=225 By = 75 = 22:5(y =~ 75) =15

= 0 when y is 0 and when y is a max. value of 45’
Finally, let the load lie between L, and L,, i.e., Z

varies from 0 to 15’ in Fig. 62. The local reaction from

the stringer on cross girder L, is 1T X Z -+ 15, and on

the main girder R = 17(15 4 Z) = 75.
Hence the B.M. at U,
=525 Rg — 75 Ry,

15 +2) . .2

= 52-5——75— — 155 Dividing by D =
gives :—
Stress L,L,
_B25(154+2)  T5Z 42+ 08Z
BxT75 15x75 30
_ 4 +;)08 x 0 (when the straight line has Z =
= 4&3%3(_13 (when Z has its max. value)

These values agree with those found above.

75

0)

A quick method of obtaining this influence line is to
calculate the B.M. at U, as if there were no stringers.
In such a case the B.M. influence line would be a
triangle with apex lying on the vertical through U,,

Fig. 61.
17 at U, then Ry = 1T X 225" = 75’

BM. at U, = 52-6 Rp=052-5"X0-3T ; in ft. tons

“ Flange Stress ” = B.M. - D = 1575 =~ 7:5

g

P SO

NG/ _X‘:ﬁv\,

I

Cr 2
/‘ﬂ'/%B[BL L, A{‘Mrﬁj r
Loso Bcrveen ,l 8
L, mL’ /-

F/G.62.

This value of 2-1 is the apex of the truncated triangle.

89

0-04y

1-8T

14t

1.0t

The

proper influence line is now obtained by beheading this triangle by
a line joining the points where the influence triangle meets the
verticals dropped from L, and Ly, Fig. 61. The arithmetical value
at point p is given by the similar triangles mnq and pogq :

mn[ng = pojoq
or po=mn X og + ng = 2:1 X 456 = 52:D

1.8t
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The stress in member L, L, is tensile because the bending moment,
taken about point U,, tends to widen the gap ab in Fig. 61.

Web Members

/ Stress influence lines for the web members of parallel flanged
girders having been dealt with already on page 49, the following short
explanation is all that is now necessary.

If a section were cut at XX the positive shear of Fig. 63 (a)
would force the left-hand portion upwards, placing bar U,L, in
compression. It follows that the vertical component of stress U,L,
equals this vertical shearing force, because the flange members offer
no direct resistance to a force at right angles to themselves. In
diagram (c) the length ab represents the stress in U,L, to scale,
and its vertical component is ac.

. . . distance D
t.e., ac = ab sin § = vertical shear. Now, since fongth UL, also
. vert. shear vert. shear
= sin 0, then ab = prmars =D=length U aL1= vert. shear
(member’s length) . _
girder’s depth’ whence ab or stress in bar U,L, = vert. shear
X 1-414,
»,OM 4 A)
| “%:& 4 b Lo U
&
X Z Eg L e,
5 ,0_1,, F/iG.63.

Similarly if a section YY be taken the positive shearing force
places U,L, under a tension whose numerical value equals that of
stress U,L, of the same panel, because shear is constant throughout
a panel. Had the shear in the panel-been negative then U,L,
would have been in tension and U,L, in compression.

To ascertain values for the influence line roll unit load from B,
where y = 0, to L,, where y = 45, an action which creates positive
shear in panel L,L,, Fig. 64.

The positive vertical shear in panel L;Ly = R, = (1T X y) < 75,
which has a min. and a max. value of 0 and 0-6, respectively.
Consequently the corresponding stress values for member U,L, = 0
and 06 X 1-414 = 0-848T compression and for member UyLg = 0
and 0-848T tension.

Negative shear ip panel L,L, is given by allowing unit load to
move from A to\L,. Its value = Rp= (1T X z) =~ 75 with a
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minimum value of 0 and a8 maximum value of 15 <~ 75 or 0-2 when
z is 15"; the corresponding stress values for U,L, being 0 and
0-2 X 1-414 = 0-2837 tension, and for member UyL, they are 0
and 0-283T compression. A straight line joining point 0-283 to the
value 0-848 completes the influence line of Fig. 64.

More fully, however, think of a load between L, and L,. This
causes an Ry = 17(45 + Z) = 75 and a local reaction at L, of
Z = 15.

Shear in panel L,L,
464+72 Z 45-—-42
=R.1—RL1=—%——— E="% - - - - @
7 % 173 ‘a &
” /r Ud

3 A {4 @
]::x:gt C toxy = 45 L d——

j vrm

ﬂl‘\:-v,lﬂ ‘ 'A
0B s Invavence Lmve roe Sreesy fons)
F/G.64. rerer 4L,

and the stress in the diagonals = (4—5—7_512)1-414

when Z = 0 the stress value is § of 1-414 = (-848T
and Z = 15 the stress is } of 1-414 = 0-283T

When conversant with the theory the following is a quick method
of deriving the influence line. At point 4 on Fig. 64 erect above the
base line a vertical equal to 1:414 X unit shear, s.¢., 1-414, and under
the base line at B erect a similar perpendicular. Now join both
these points to the opposite ends of the base line AB. Finally, join
the intersection points of these sloping lines with the verticals
dropped from L, and Ly The values of these two last mentioned
points are § of 1-414, or 0848 and } of 1-414, or 0-283, see Fig. 67.

Neutral Point for Panel L,L,. The point where the stress
influence line changes from plus to minus, s.e., the neutral point,
can be found by equating (a) to zero since stress is zero.

456 — 42
—5—
SoZo=45 - 4 = 1125
measured from L, This verifies the rule for the position of the

neutral point which was: The neutral point divides the panel in
the same ratio as it divides the span.

Stress in web members = 0 =
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LN AN . (15—2) (30— Z2)
LNTBN' T Z T @12
or 30Z — Z°® = 675 — 45Z 4 15Z — Z* whence Z = 11-25'.
Stress U L,. A load placed on the stringers anywhere between
L, and L; must find its way back into the main truss. At Ly 1t

causes no reaction at 4, then as it approaches L, the value of R
rises, Fig. 65.

Ri=1txz=75 . . . . . (b
‘A"g\g/, — &y (244 4 (/___.D
S0 S R S —" LY
V-5 M SRS 5 2 G —— ")
FIG .65.

The shear in panel LyL, is thus = R, and therefore the stress in
U,L, or UL, = 1414 R = 1414z - 75,

The max. value occurs when x = 60’, v.e., 1T load at L,, then
stress in U;Lyor ULy = 1-414 X 60 - 75 = 1-13 ; the maximum
ordinate for influence lines U,L, and U,L,, Fig. 67.

Now let the unit load pass point L; and enter the stringers of
panel L,L,. As it advances into this panel the local reaction or
load which finds its way back to L, gets smaller and smaller, while
the other reaction, either on the cross girder at L, or on the masonry
if cross girder L, is left out, gets greater and greater. In any case
the effect upon the main structure, and web members U,L, and
U,L, in particular, decreases to zero as was already explained for
the Main Bearings, Fig. 59 (c).

Member U,L, is a mirror reflection of U,L, and so are the
influence lines ; U,L, of U;L,, U,L, of U,L,, and hence only the
influence lines for members up to the centre line need be drawn.
Further, U,L, is similar to U,L,, but opposite in sign, and so again
a saving in drawing the influence lines can, be made, see Fig. 67.

Design Stresses, Fig. 68. The stresses due to the several loadings
are computed on pages 93 and 96, and are based upon the complete
sets of influence lines set out in Figs. 66 and 67.

Since the pedestrian traffic, or U.D.L.L., was taken as a dense,
slow-moving crowd of 1 cwt./sq. ft. intensity, no increase for impact
requires to be made to the stresses derived from the influence lines.

The stresses induced by the wheel loads as static loads are set
forth in Fig. 68 (c), and the 309, allowance which requires to be added
is given by (d). The total stresses created by the moving wheel
loads are summarised in (e).
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The design stress for any one bar is now found by adding to the
dead load stress the greater of the two stresses given by diagrams (b)
and (e). For each of the web members ULy, UyL,y, Ugl,y, UsLs,
U,L; and U,L, the maximum is the summation of the dead load
and the wheel load stresses, but for every other member of the
truss it is the dead load and the U.D.L.L. Further, there are
alternating stresses in web members 77,L, and U,L,, because as
the U.D.L.L. crosses the span each of these members has a complete
reversal in stress from 4 4:74T to — 4-74T, or vice versd.

Dead Load Stresses. (0-81T/ft. run ; main truss fully loaded.)

Tons.
L)L, and L{L, = (—)area 30 X 0-81 = — 243
LlLa a/nd L‘Ls = ’ ) 75 X 0'81 = - 60'75
oLg = ,, 4 90x0381 = — 1729
U,Uyand UU, = (+) area 60 x 0-81 = -+ 486

I

UUsand UUg = ,, , 90X 081 = 41729

U,L,and UgL, = (+) area 42-375 X 0-81 = + 34-32
ULyand UL, =(—) ,, » ”» = — 34-32
U,L,and U,L, = area (23-85 — 2:65) x 0-81 = + 17-17
UL,and ULy = , (— 2385+ 265) x 081 = — 1717
UgLyand UgLy = ,, (410613 —10-613) X 0-81= O
Alternative Method for Dead Load Stresses.
Panel point load was 12-15T.
Ly,L, and LyL, 12-15 (sum of Inf. Line ordinates
at Ly, Ly, Ly, etc.).

= 12-15(0+-0-8+4-0-640-440-24-0)

=12:15 X 2 = — 243
L,L, and L,Ly = 12:15(0+1-4+41-841-240-6+0)

= 1215 X b = — 60-75
L,L, =12160+14+2+4+2+140)

=12:16 X 6 = —1729
U,Ugand U U, = 12:15(0+1-6+1:240-84-0-44-0)

=12-15 x 4 = 4 486
U,Uyand U,U; = 12-15(0+1-2+42-441:64-0-84-0)

= 12:16 X 6 =+ 1729
U,L, and UL, = 12:15(0+1:134-0-854-0-57

+ 028 + 0)

= 12:156 x 2-83 = + 34:36

UlLl and UsL‘ = ditto = — 34-36



94 INFLUENCE LINES: IN BRIDGE CALCULATION

B88.
SLCTION.
%]
L
-3
U

' L_-ab’q'(bm:_i
! .
I
V. lad '
0SS
et Jo

-
-? e ap “—l
JTIITITITNIT isesasst I 14 TI1T }% 8
3 : Bgssa
18881 igesal 3L o 3
]{,l . T 8 ‘_ P‘H 1 ‘4 -
“es 1 1 1. 1 a8
sse T T T 1T T
1 oat " an: =
T ) 8 11 e 11 4 junee o=
: 388 £ i a2 :
18 08881 T 1 sgea
1] 1 1 E e
1
H
- sae ,.4#,' » s s o9
Sge T »
. T T 1 Hit
3 H s e o8
& 3 1 ap
. 3 e ERe s 13 H
SesRas:
++ +4 4 43 .44 t— = "
H - R L TP 8
2488 . s
4 . P a8 1
HH }H 0 86 ey H
. 1 :§~ &
LT ss.>SSnEde! H s
sdss y 1 s s
Cas I 1 ™ -1
8 2948
sesisastdiig . oo
Hine:
. H
H
4+ - e -+ -
~: 1 v .
ssgs!
1 Ly o <<
H s 22 L dgguans o= - HHOH
genglil
S HITHE 2
1 BE S 1B EE
1 H Qe . o THIT
188
14 14
. a 8SSRSNE: 17 suEe
< H e 111
o - t H
- § H343404H e us isw
L
— : -
sse
ns
.
H
411
T a8
$-4-4 - j i e
1
: ; g
i1 T

- = T
MEMBLRS,
£%-66.




956

LIGHT WARREN TRUSS ROAD BRIDGE

Us

N

3
1
T

benswi

4103

H R
13T

134

H

T

{1t

A
H4

SRE8E &

T
111t

T1IT
117
HiiH

1313

18 4

T3y

Tt

e

18 ¢

18 81
111

T

sesest
T T

Inane 8

T

0T
13t

188 8¢

o

MEMBERS

FIGE7

11T
T

TIT

Ht

T

ISRNS 84
jenas santu

+r

4+

T
Ieunes:
T

JON.
WES

s B®/50

]

I

+H

THT
bas snas
BRIt
bunanss

gl

1
T

auee
O

S

o

HH

+=

1 —.#;Eh

THT
JERE BN
T

e
sos!

t+-1

T

H

%o

rew

HH




96 INFLUENCE LINES: IN BRIDGE CALCULATION

Tons.
U,L, snd U, L, = 12:15(0 — 0-283 + 0-848
-+ 0-566 + 0-283 - 0)
= 12-15 X 1-414 =4 17-17
Ugly and ULy = o ditto = — 1717
UsLg and U, L = 12-15(0 — 0-283 — 0-566
+ 0-566 4 0-283 + 0)
=1215x 0 =0
U.D.L.L. Stresses. (0-447T/ft. run of main truss.)
L,L, and LL, = — 30 X 0-447 = — 1341
L,L, and L,Ly; = — 75 X 0-447 = — 3353
L,L, = — 90 X 0-447 = — 4023
U,U, and U U, = + 60 X 0-447 = 1 26-82
U,U, and U,Us = + 90 X 0-447 ~ 1+ 4023
U,L, and U L, = + 42-375 X 0-447 = + 1894
UL and UL, = —( , » ) — — 1894
U,L, and UL, = + 23:85 x 0-447 = + 10:66
and = — 265 X 0-447 = — 118
U,L, and U,L, = — 23-85 X 0-447 = — 1066
and = -+ 2650 X 0-447 =+ 118
U,L, and UsL, = + 10-613 X 0-447 =1 474
Wheel Load Stresses.
A set of axle loads to each main truss,
L,L, and L,L, = — (7 X 0-8 + b X 0-64) = — 88
L,L, and L,LLy = — (7T X 1-8 45 X 1:48) = — 200
L,L, =—(TX2+4+5X%X2) = — 240
U,Usand UU, = + (T X 16 + 5 X 1:28) = 4176
UUsand UUg = + (7T X 244 + 5 X 1-76) = + 256
UL, and UL, =+ (7 X 113 + 5 X 09) = + 12:41
ULiand ULy = —( ) = — 1241
U,L, and UL, — + (T X 0848 +-5 x 062) =+ 904
and = — (7 X 0283 + 6 X 0-06) = — 228
UL, and UL, = — (7 X 0-848 +5 X 0:62) = — 904
and = 4 (7 X 0-283 + 5 x 0-06) = 4 228
ULy and UyL, = 4 (7 X 0566 + b X 0-34) = 4 566

Vertical Members. The verticals at points Ly, L,, Ly and L, do
not belong to the truss system and are shown in Fig. 68 (f) as
having no stress.
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Their function is to lower the slenderness ratio £ of the upper

boom and to act as stools to which the cross girders are attached.

The section used for these verticals is usually either an R.S.J. or
a built-up section of four angles and a web plate to give the R.S.J.
form. The sizes of the rolled sections in this member are usually
governed by details and not by calculation. The width of the web

&m U STRESSES DUE TO-
: ?23 &* DERD LD,

s

uaLL e/,

WHNLEL LOAOCS.

PIVRKCT 230X P~
WHEEL LORD STRAESSEY

WNEELS RS IRCT

e) »~ )

OESICN STRLSSES.

@) + {B)ar@)

AT + -;ga»ﬁeam-

FIG 68.

plate of the built-up vertical (as for other web members) is governed
by the width between the gusset plates of the inverted U-shaped
upper boom, and the thickness by the minimum thickness allowed
by specification. The dimensions of the angles forming the flanges
of these ‘ redundant * verticals are settled thus :—

The outstanding legs in the flanges must be in register with the
end angle cleats of the cross girder, because of the common connect-
.ing site rivets or bolts, while the thickness of the angles is usually
determined by the bearing value of these site rivets or bolts.



CHAPTER IX
PRATT TRUSS ROAD BRIDGE

SpaN = 70’ 0". Roadway of 22’ 0" including gutters, t.e., two
tracks of 10’ 0" net, to carry the Ministry of Transport loading for
highway bridges.*

The floor of this bridge was designed to carry the M. of T. wheel
loads because the 11T wheel loads gave a more severe case of loading
on the trough flooring than the U.D.L.L. of 220 lb./sq. ft. plus the
knife edge load of 2,700 Ib. per lineal foot placed anywhere.t The
troughs adopted were 24" wide, crest to crest, and 74" deep, on the
supposition that one and a half troughs participated in carrying a
wheel load of 11T in addition to the dead load. For a simply
supported span of 12’ 0° the modulus required with f, at 9T/sq. in.
was 49, while that given was 53 ins. cu.

Experiments carried out on the dispersion effects of concentrated
loads on trough flooring (Report of the Bridge Stress Committee)
show that if contiguous troughs D, C, B, 4, B’, C’, D’ have a load W
placed at the crest of trough A, then this mid-trough A4 carries
15 of W. Troughs B and B’ immediately on each side of the loaded
trough carry 4% W each; troughs C and C' {# W each, while
troughs D and D take 4 W each.

There are ten troughs on the cross section of the bridge with a
crest on the longitudinal centre line—the small cross section of
Fig. 69 is only diagrammatic. Immediately on each side of the
centre line there is a wheel, one belonging to each vehicle, so that
there is a possibility of approximately y; W from each of the inner-
most adjacent wheels of each engine, .., a total of 0-6 W, coming
on the mid-trough.

However, there is the case of the two outermost troughs, parallel
and adjacent to the main girders, which are given no relief of stress
such as that envisaged above, and, as the working stress was taken
at the higher figure of 9T (in place of 8T) per sq. in., it was thought
reasonable to take the figure of 0-66 W or one and a half troughs per
wheel load. The designer, of course, can adopt the alternative
method of reinforcing the outermost troughs and so save material
in the internal troughs.

* See * Wheel Loads,” page 173, and Fig. 112,

{ For the drawings and complete design of this bridge, see Chapter 10, Vol. II,

* Practical Design of Simple Steel Structures.”
98
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Floor Dead Load per sq. ft.*

Tar mac. av. thick. 4" .at 140 1b./cu. ft. = 4671b
3" concrete cover on top of troughs at 140 lb./cu. ft. = 35
3} concrete av. thick. in troughs at 140 lb./cu. ft. = 40-8
M.S. trough per sq. ft. = 27
Total per 8q. ft. of road surface, say = 150 1b.
Cross Girder
Dead weight of each built-up or plated R.S.J. = 13T
(Either 4 Ls 6" X 4" X 8" + 27" X §” web pl. or
90 1b. R.S.J. + 10" X 4" pl. on each flange.)
Main Pratt Truss
Approximate estimate of dead weight = 10T
Dead Load per Panel Point = 112t
Since each main truss carries half the roadway, half
of each cross girder and its own dead load.
" (12 x 11’ @ 1501b./sq. ft. + } of 13T 4 10T =
6 full panels = 8-:84t 4 0-65T 4 1-67T)
D.L. per ft. run of Main Truss = 11-2T = 12’ 0" panel
length, say = 0-94T

Live Load
The Ministry of Transport wheel loads which
include 509, for impact (June, 1922) as given in
Fig. 69. Two complete sets of engines and trailers
are supposed to cross the bridge side by side both in
the same direction. Hence each truss will carry the
azle loads given on figure.
Uniformly Distributed Live Load of 220 lb. per sq. ft.
for spans of 10 0" to 75" 0".
Per ft. run of main truss = 220 lb. X 10" width
X 1"+ 2,240 = 0-98T
Knife Edge Load (in addition to the U.D.L.L.) placed

anywhere, 2,700 Ib. X 10’ 0" width - 2,240 = 12-05T
U,U,. Moment Centre Ly Tons.
D.L. = 5406 X 094 = + 50-81
UD.LL.  =5405 x 098 = 53r
Knife L. = 1644 X 12:05 = 18-6T
—_— Total = 4 716
Axle L. =8 X 0-873 4 22 X 1-644 +

10(1:162 +- 0-888 + 0-559 +- 0-296) = - 69-9
* See * Weights of Materials,” page 108.
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UyU,. Moment Centre L, Tons.
D.L. = 6126 X 094 = + b7-67
UD.LL = 6125 X 098 = 60-03T
Knife L. = 176 X 12-06 = 21-09T &

’ flotal = + 81-12
Axle L. =8 X 065 4+ 22 x 115 4
10(1-75 + 135 4 0-85 4 0-45) = + 745
2nd position =

8 X 126 4+ 22 X 1-75 +
10(1-15 + 0-75 4 0-25) = + 70-0
L,L, and L,L,. Moment Centre U,
DL

L. = 3245 X 094 = — 305
UD.LL. = 3245 x 098 = 31-8T
Knife L. = 0927 x 12:05 = 11-17T
Total = — 42:97
Axle L. = 8 X 0-084 4 22 x 0927 +

10(0-738 + 0-612 + 0-455

+ 033 + 0-173 + 0-047) = — 44-62

L,L,. Moment Centre U, (same as L, above)
D.L

L. = — 50-81

UDLL = 53T
Knife L. = 18-6T

Total = — 71-6
Axle L. = — 699

LyU,. Vertical shear X cosec 6§ = vert. shear
X (14-866 - 10)

D.L. = 43-856 X 094 = + 41-22
UDLL. =43-855 % 0-98 = 42-98T
Knife L. = 1-2563 X 12-:05 = 156-10T

Total = 4 58-:08
Axle L. =8 X 0-114 4 22 x 1-253 +

10(0-996 + 0-821 4 0-615
-+ 0-445 + 0-233 + 0-06) = + 60-17
U,L,* Vertical shear X (15-621 = 10)

D.L. = (4 1:63 — 29-75) X 0-94 (all span
loaded) = — 26-43
UD.L.L. = —29-75x0:98 =—29-16T (partspan
loaded)
Knife L. = —1-049%12:05=—12-64T
' ' Total = — 41-80

AxleL., (a) =8 X (4 0:03) — 22 X 1-049 —
10(0-781 + 0-602 4 0-379 + 0-2) = — 42:46
or
* See remarks on pages 104 and 105 regarding this member.
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UD.LL. = 4163x098 =-+41-60T(partspan Tons.
loaded)
Knife L. = 4-0-245x 12:05=4-2-95T
Total = 4+ 4-56
Axle L. Position (c), trailer leaving span, is

more severe than position (b), engine

entering span from left-hand abut-

ment.
(c) = 10(0-067 + 0-245) =4 312
(b) = —8x 0-834+22% 0-245=—1-282T,

U,L,.* Vertical shear X (15621 = 10)

D.L. = (47-12—16-5) X 0-94 (all span loaded)= — 8:82
UD.LL. = —166x098 =—16-17T(partspan
loaded)
Knife L. = —0-781x12:05=— 9-41T
Total = — 25-58

AxleL., (b) = + 8 x 0-298 — 22 x 0-781 —
10(0-513 + 0-335 x 0-111) = — 24-39
or
UD.LL. = +4712x098 =+6-98T (partspan
loaded)
Knife L. = +40-513 X 12-05=+6-18T

Total = + 13-16
AxleL. (a) = +8x0-5134+22%0-29+10x0-022 = + 1071

U,L,. Vertical suspender carrying only the load from

cross girder L,

D.L. = — 115 X 0-94 = — 10-81
UD.LL = —11'56 X 098 = — 11-27T
Knife L. = — 10 X 12:05 = — 12:05T  Total = — 23-32
Axle L. = —22 X 1—8x 0167 = — 23-34
U,L, carries the vertical shear in panel LgL,
D.L. = (+410-56—4-56)x 0-94 (all span
loaded) = 4+ 564
UD.L.L. = (+10-56)Xx0-98=--10-35T (part span
loaded)
Knife L. = 40:5x12:06 =+ 6-03T
Total = 4 16-38
AxleL., (b) = —8 X 019 + 22 X 056 +
10(0-33 + 0-215 4 0-072) = 4 1565
or

* Seo page 105,
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UD.LL. = (—456)x098 =—4-47T (partspan Tons.
loaded)
Knife L. = —0-329x 12-05 = —3-98T
Total = — 8-4b
Axle L, (a) = —8x0-329—22x0-186—10x0-014 = — 6-864
Maximal Stresses

In the foregoing calculations it is seen that for maximal live and
dead load stresses in the boom members all the span should be loaded.
The majority of the web members, on the other hand, receive
maximum stress with a partially loaded length because the influence
lines have negative and positive lengths.

Take U,L, as an example. Maximum positive shear in this panel
occurs when only the 56-72' right-hand length is covered by the live
load. As the load advances into the small triangle (of opposite
sign) of 1328’ base the shear is reduced accordingly. Pesitive
shear in panel L,L, means that member U,L, is extended in length,
1.e., in tension, hence the influence line for negative stress or tension
is drawn under the base line. A unit load at L, would cause an end
reaction at L, of 1T X 47 =~ 70 = 0-671T. There being no other
load between L, and L, the shear in panel L;L, is positive or
upwards and = 0-671T.

The tensile stress in bar U,L, = panel shear X length of U,L, =

girder depth
= 0671 x 15621 = 10 = 1-049
which is the max. ordinate to the influence line.

Since dead load covers all the span, therefore,

D.L. stress = area difference (1-63 — 29-75) x 0-947/ft. = — 26-43T

Max. positive L.L. shear, i.e., max. tensile stress in U,Lg, load only
the 56-72" portion.

Max. negative L.L. shear, i.e., max. compressive stress in U,L,,
load only the 13-28’ portion.

Further, with the knife-edge load extending right across the
bridge, of 20’ 0" active width, the worst position which this load
can occupy is that point on the bridge immediately under the apex
of either triangle, t.e., at a max. ordinate.

Wheel Loads

As the *Ministry of Transport has now specified & uniformly
\distributed live load plus a knife-edge load as being equivalent to,
and acceptable in place of, the separate wheel loads of June, 1922,
there is no call to employ both loadings. Either is sufficient and the

® Bee M. of T. loadings, page 173, and Fig. 112.
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equivalent U.D.L.L. is preferable because of its simplicity. How-
ever, as an exercise in dealing with wheel loads these were also used.

From the stress summation diagram, Fig. 70, it will be observed
how remarkably close in agreement are the stresses obtained by
both types of loading. The wheel loads were used to design the
bridge floor troughs because these carry the live load in its most
concentrated form. Thereafter the U.D.L.L. was used for the
remainder of the structure since the dispersion effect comes more
and more into play as the load travels from tar macadam into
troughs and from troughs into cross girders, thence to main trusses
and so through the abutments into the foundations.

Alternating Stresses

Referring to the stress summation diagram, Fig. 70, it will be
seen that the web members U,L, and U,L, cach carry stresses of
opposite sign, whereas all the flange or boom members are of
constant sign and vary from the minimum or dead load stress to
max. value of D.L.. 4+ L.L.

U,L,. The U.D.L.L. stress in this member varies from 4-55T
compression to 41-8T tension as the load crosses the bridge. How-
ever, as the D.L. stress of 26-437T tension is always in existence the
L.L. compressive stress of 4-55T only makes itself felt by reducing
26-43T tension to 21-887 tension. The variation of the total stress
is thus from — 68-231 to — 21-88T with the L.L. on the bridge, and
rises again to — 26-437T under dead load only.

UoLs. In this case the D.L. figure of — 8-:827 is not sufficiently
large to neutralise the U.D.L.L. figure of 4 13-167, and so the final
stress is of opposite sign = -+ 13-16T — 8821 = - 4-347.  This
figure in turn decreases to zero as the load changes its position and
rises to & maximum of — 34-47, falling again to — 8-82T when the
bridge is empty.

UyL,. A similar cxplanation applics to this member.

Influence Line Ordinates

These given in the examples have been calculated to the “ third
decimal place.”” Thus, for member U,U,, Fig. 69, by similar
triangles abc and ade, bc : de : : ab : ad or bc = (ablad)dc =
(13/23)1-544 = 0-873.

The usual degree of accuracy employed with influence lines in
practice is the ‘second place of decimals” obtained either by!
calculation or by direct scaling. A draughtsman can read by the
naked eye to 0-01”. The scale adopted for the influcnce line will
settle whether the influence line ordinates should be scaled or

calculated.



CHAPTER X

BRACED CANTILEVER AND SUSPENDED SPAN
ROAD BRIDGE

The Dead Load of the wearing surface of the bridge floor, the
floor steelwork, stringers and cross girders can usually be estimated
with considerable accuracy before the design of the main cantilever
girders is undertaken. The dead weight of the items mentioned
can easily be turned into an equivalent figure of so many tons per ft.
run of the bridge span. With main girders varying rapidly in depth,
as these cantilevers do, it is clear that their dead weights cannot be
so given, but must be distributed throughout the girder span as
panel point loads. However, for simplicity, the dead load of the
complete bridge will be taken as being equivalent to §T per ft. run
of span for each main girder.

The Uniformly Distributed Live Load (U.D.L.L.) per ft. run of
main girder depends only on the constant area of the bridge floor.
Thus if the bridge is 30’ 0" wide, the U.D.L.L. per ft. run of bridge
at 2 cwts./sq. ft. = 3T, and per ft. run of main girder is 14T.

The Engines and Trailers. 1If the roadway be 20’ 0" wide then
each main girder in effect carries one engine with its trailer, i.e., a
set of axle loads. If the roadway be 30’ 0" wide, with no footpaths,
then it is possible to pass the engines and trailers across the bridge
so that they are nearer one main girder than the other. The effect
of this would be to throw, approximately, one and one-third axle
loads on to one main girder and two-thirds axle loads on to the
other. In the example the loading per main girder is one set of
axle loads.

Reactions R4 and R,. The influence lines for the reactions at the
shore abutment 4 and the pier e are found as explained for the plate
girder cantilever on page 25. These influence lines prove extremely
useful when calculating the stress influence lines for the bridge
main members.

— Stress CD = S;,. The two unwanted bars c¢d and ¢D meet at
the moment centre ¢, giving the lever arm of 16’ to member CD.
17 placed at 4 goes straight into the abutment ., Spp =0
1T » B gives R, = 4T, see I.L. for R,

Fig. 71.
,.. 15 SCD = 30 RA — 1T X 15 .. SOD =3 + *T

106
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17 placed at C gives R, = 3T, see I.L. for R,
' S 168, =30R,—1TXO0 S Sep=+1T

When ‘unit load passes the section line at C' jt leaves only one
force to be dealt with in the moment equation, viz., R, as shown in
(a), Fig. 72. .. 156 Sgp =30 Ry, .or Spp =2 R,{ .applies to all
wheel positions to the right of C, and whatever value R, may have
the influence line for S, has twice this numerical value, i.e., I.L.
for Scp = twice the ordinate values of the I.L. for R.

A
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As a check try unit load at point F, Fig. 71. From the I.L. for
R this creates an uplift at 4 of }T, and so the reaction arrow head
of Fig. 72 (a) acts downwards now instead of upwards, and 15 S¢p, =
— 30 R 0r8Sep = —2Ry= —2X }= — 47r. The broken ends
of bar CD now tend to fly apart, indicating that CD is in tension
with the load to the right of the pier e.

Sc¢p for UD.D.L. The dead load is always acting throughout
the full length of the bridge, hence S, dead load

= (summation of areas X )T
= (4 30 — 101-25)3T = — 5347

Max. compression, apply load to the base of the + 30 triangle.
Max. tension, ", — 10125 ,,

Scp for Wheel Loads. Apply the max. axlo load at the apex of
either positive or negative triangle, as illustrated on the I.L. for
CD, Fig. 71, in order to obtain the greatest stress in the member CD
due to the vehicles.

Negative stress

= 8 X ## of 1-5T 4 22 X 1-5T 4 10(}§ + §8) X 1-5T
= 1-6T(8 X § + 22 + } X 148) = 67T
_. Diagonal cD. On production the unwanted bars DC and dc meet
at the moment centre 4. By similar triangles 4Dc¢’ and ¢DC it

’

follows that %cD = z—%, whence Ac’ = AD x ¢C = ¢D.

In Fig. 73 (a) the reaction R, passes through the moment centre
at A4 causing no moment, .. S, X 31:82 = 1T X AC, whence
8.p = 0:94T, Unit load at B will cause half this value, and at 4
the tensile stress in bar ¢D will be zero.
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When unit load arrives at D it causes no stress in ¢D ; the web
members shown in broken line, Fig. (b), are redundant for this load
position. Similarly a load placed at E or to the right of E will not
cause any direct stress in cD. These statements are easily proved
by * Section and Moments,” see diagram (a): since there is no
load to the left of the section line except R4 there can be no moments
about point 4 and therefore no stress in cD.

< Vertical Dd. The section line cuts through bars ED, Dd, and dc,
the first and last meeting on continuation at the moment centre 4.
As for the previous member cD, the stress in dD increases as unit
load moves from 4 to D. 1T X AD = §,;; X 45 gives the max.
value when unit load is at D, while zero values are obtained with
unit load at 4 and E or (tjawhere on the bridge outside of AE.

< Top flange, FG, of the #gver arm carries no live load stress so long
as the moving unit load is between 4 and E because with this
position of the load the shore arm acts as a simple girder. Neither
does a load placed at F affect FG since this load goes down the
vertical Ff on its way to the nearest points of support e and 4.
‘“ Section and Moments ”’ about point g with a lever arm of 15
verifies this, Fig. 74 (a).

£ G K » 11/’ J K L M N
iQ l\ I>}._ — 6ponels@ /S 90 Soan
i \ s *4<k
P ® & @
4 fousL ro
© FIG.74.

1T at F creates no reaction or other force to the right of the
section line and hence no stress in F@G.

1T at @ being vertically over the moment centre g also causes no
moment ; and no stress in FG.

1T at H. Spg = (1T X 15), pulling FG apart =—1r
If 4T be placed at H then Spg = — §T
= — §r

and §T placed at H gives a stress in FG
These last two results are also obtained by placing a unit load
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first at I and then at J, on the suspended span, when Ry is §T and
4T respectively, see Figs. 74 (b) and (c).

The results exhibit one interesting feature in that the values for
the wheels shown on the plate, Fig. 71, are greater than if the 22T
load were placed at the max. ordinate, also see Fig. 75.
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~ Lower Sflange, fg, if produced meets the upper flange at point I
forming a triangle f'FI which is similar to triangle gGI, and from
these is obtained the ratio ) and so giving Ff’' = 20-124’,

=9
FI — gr
see Figs. 71 and 76.

F ¢ N T x4 NN
;L:f;"‘a panels @/5:90Span - —
NLuen’
f] F/G.76.
1Tat F

No moment equation since ¥ is the moment centre. .".S;, =0
1T at G

1T x FG = 8;, X 20-124, i.e., S;, = 15 = 20-124 = 0-745T
1Tat H
ITx FH= ,, , ie, 8, =30 = 20-124 = 14917

Thereafter, as the single wheel reaches 1, J, K, etc., in turn, the
load at H gradually decreases in value to §T, §T, T, etc., respectively,
and so the stress in fg has the corresponding values of § of 149,
then § of 1-49, etc., down to zero value when the wheel arrives at
point N, at which point the wheel load is wholly carried by the
right-hand river cantilever.

With the wheels in the position shown on the plate, Fig. 71,

8, =1491T[§ x 8+22+10(3§+5§§)] = 1-4917[43777] = 65:3
The broken ends of the bar fg approach each other under load

intimating that the stress is compression. The foregoing position
of the wheel loads gives a larger stress for fg than is obtained by
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moving the complete system 10’ to the right hand until the 8T wheel
comes under the apex.

GH of the top flange carries no stress whatsoever and is redundant,
because the real cantilever is A EGhe, member Hh carrying the load
from H down to nose h. Alternatively, by taking moments at A,
see Fig. 77, and considering the stability of the section to the right
of the cutting line, no moment equation is possible for this bar
because A is directly under H, the point of loading.

. Web diagonal Gh has its moment centre at I, Figs. 71 and 76.
f\at G is to the left of the section line and has therefore no

effect on member Gh. 5 Sgr=0
1Tat H
) 1% 15
SGA X 13416 = 1Tat H X HI, .o S(M = -m = ]1-118T

A straight line from 0 at G rising to 1118 at H and then dying
away to zero as point N is approached is the outline of the influence
line.

The wheel loads placed as shown for Gk, Fig. 71, give a larger
stress to this member than that obtained if the system were moved
10’ 0" towards the left-hand side until the max. wheel coincides with
the max. ordinate.

0
As shown: S, = 1-118T [8 + 3—0 X 22 4+ 10(68 ;;)60)] = 46-7T
1 78 0
If moved: 8Sg = 1-118T[§ X 8+ 22 + 10(——;(;—72 = 45-96T

15, Suspended Span. The girder HN is a simply supported Pratt
truss and the influence lines for all its members are found as
previously described. This particular influence line should offer
no difficulty.

[ I 7 J N

S WW\Q/‘
A
' FIG77

Members Hk and At of the Pratt truss are redundant, while bar Hh
of the cantilever functions always as a column transferring the truss
end reaction on to the nose A of the cantilever, and therefore its
stress I.L. is the I.L. for reaction at H of the suspended span.

SECOND EXAMPLE ON BRACED CANTILEVER

In general layout this example is very similar to the previous one,
there being but two differences, first, the depth of the suspended
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span (which has but little effect on the shape of the influence lines),
and, second, the terminal inclination of the bottom boom of the
shore arm. This latter change, although small, creates quite large
alterations in the stresses which occur in some of the web members
of the shore arm : thus, compare the influence lines for the members
lettered Dc of Figs. 71 and 78.

End reaction R4, Fig. 18, is obtained in a similar manner to that
of Fig. 71, and since the lengths AE, EH and HN are unaltered,
the influence lines will be the same.

Stress Dc = Sp,, Fig. 78. The two unwanted bars, DC and dc,
cut by section ZZ, meet, on production, at point O situated 30’ to
the left hand of 4 and the lever arm, OL, to the member under
discussion, is 60’.

Load between 4 and C
1T at B creates an R, of §T. (See I.L. for R,.)
Moments at O of all forces to the left of section line ZZ.

— R, X044+ 1TX 0B =8,,x60 . . . . . . (a)
— 3T X 30’ + 1T X 45'= Sp, X 60’ (tending to

- lengthen Dc;.

s 225 =60 = Sp. (tension) == — 0-376T
1T at C gives R4 = 3T and, as in (a),

— 3T X 30" + 1T X 60'= 60’ Sp, giving Sp, = — 0-756T

Load between C and E
1T at D although excluded from the moment
equation (being now to the right of the se.cion line
ZZ) causes a reaction R, of }T.
S — 3T % 30 = 60" Sp, giving Sp, = 401257

The stress in Dc is now compression as R4, the
only force to the left of section ZZ, tends to push
point c up to D.

1T at E goes straight into the pier and 8o no stress
occurs in De for this particular position of the unit
load.

Load between E and H obviously causes a steadily
increasing uplift at 4 as unit load approaches H.
1T at H causes an uplift at 4 of 3T. (See I.L.
for R4.) This means, of course, that the abutment
holding-down bolts at 4 pull the steelwork down
at A. Then, moments at O . — -
+ 41 x 04 = Sp. X 60’ e, Sp, = — 0-375T
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Load between H and N. As point N is approached by
unit load the uplift at 4 approaches zero and so the
stress in Dc approaches zero, giving a straight line
from the — §T ordinate at H to zero at N.

Stress Cc, Since the moment centre is still point O and the lever
arm OC is.also 60’ in length, then the arithmetical values of the
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influence line will be identical with those newly found for member
De. The natures of the stresses, however, will be opposite to those
for Dc. For example, unit load at D causes R4 to be the only force
between A and the section lines YY or ZZ, and R, pushing the
broken end-piece of steelwork upwards tends to open the cut YY
in bar Cc¢ (tension) and close the cut ZZ in bar Dc (compression).
%/St_rm_CD. The influence line for this member is similar in general
utline to the corresponding member of the previous example, but
the arithmetical values, however, are not in agreement because of the
difference in main girder depths.



CHAPTER XI
THREE-PINNED PARABOLIC ARCH RIB

The Arch. The antiquity of the arch is very great, as the first
known example dates from about 4,000 B.c. and is that giving
entrance to the tomb of the un-named queen of King Mes-Kalam-
Dug in the city of Ur.* Despite its common occurrence, the word
arch (L. arcus = a bow) is very loosely used ; an arch need not
necessarily be a curved structure nor need a curved structure be an
arch.

An arch rib when subjected to external loads tends to compress
axially, while any tendency to outward lateral movement of its
ends is absolutely prevented by corresponding inward-acting
horizontal forces.

Fig. 79 (a) is a two-pinned arch, while Fig. (b) is an ordinary
curved beam, because the right-hand end is free to move laterally
and only vertical reactions are called into play. In fact this second
figure is used at one stage of the calculations to obtain the necessary
additional elastic equations necessary for the solution of the stati-
cally indeterminate two-pinned arch.

¢
w a
o ¥ /A/\o
Ve e v Va.
©

FIG 79.

F1g. 79 (c) is a three-hinged arch rib and is statically determinate,
i.e., all the reactions can be found by the use of ordinary statics.
This is the only type which will be dealt with in these pages.

If the loads are vertical and the basal pins are at the same level,
then Hy and Hg have the same value. Also, because no bending
moment can exist at a pin (Fig. 80) the line of action of the force
Rg must pass through the centre pin until it meets the load line of
W. The structure of (c) is now under the action of three forces,

¢ Being built of imported limestone blocks, this vaulted tomb is the oldest
known stone structure in the world.

116



116 INFLUENCE LINES: IN BRIDGE CALCULATION

R., W, and Rg, which, since there is equilibrium, must meet at a
point, and, further, a triangle of forces can be drawn. The inter-
section point of Rr and W when joined to the L.H.P. (i.e., left-hand
pin) gives the line of action of R,. The values of R; and Rg can
now be obtained from the triangle of forces in which W is drawn to
scale. Now knowing the direction and magnitude of R, and Rnr
these can be resolved into their respective horizontal and vertical
components H and V. If there be several loads on the arch then

: '}._x——‘ A s 3 ’ﬂ
L L b
@ ® G H
8

Contiauous o A BTy, F ol ] Molooda’d.  W*loadol B, Fim folb .. Mo
F1G.80. Morer? oA,

each load can be considered separately, the total H acting on a
basal pin being the sum of the horizontal thrusts due to each separate
load ; similarly, the total vertical reaction at either basal pin is
the sum of the separate V’s.

These forces can also be found arithmetically as well as graphi-
cally. Taking moments at the L.H.P., 4, Fig. 81, and noting that,

because pins 4 and C are at the same level, H has no moment
about A, then :—

VrX 1000 =W x 26° .. Vp=1T x 25’ =— 100’ = 0-25T
Moments at C, then :(—
Vi x 100’ = 1T x 75" .. V= 1T x 76’ = 100’ = 0-75T,

The vertical reactions are the same as for a simply supported girder
of the same span as the arch.

oise ha 25
FiG8I.
...L_L

Va.

To find the value of H recourse is made to the method of *“ Section
and Moments ”’ by taking a section ZZ through the C.P. (zentre
pin), B. Had the arch been continuous at B without a pin there
would have been an unknown bending moment at B, but since there
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is a pin at B there can be no moment existing at this point.
Considering the right half of the span : -
Ve x 50" = H X rise of 25’
0-25T x 50" = 25'H or I = 0-5T
Alternatively, consider the left-hand portion :—
Vi x50 — 1T x 25" — H % 25’ == 0
(0-75T x 50" — 1T x 25') = 25" = H = 0-5T
Before going further it might be advisable to show the difference
between the spandrel-braced arch and the plated arch rib. In the
former the superstructure above the bottom chord is an integral
part of the arch structure and the failure of one of the main web
members, vertical or diagonal, would entail the complete collapse
of the structure. In the arch rib the load from the roadway
is carried down to the rib through vertical columns or walls
as the case may be, and any failure of one of these would mean
only a local failure of the roadway, but not of the three-pinned rib
which would remain standing.

Influence Lines for V', and V. Figs. 82 and 83

Let unit load travel anywhere between 4 and C, i.e., x varies
from 0 to 100'. :

8 |
/-o\\ z
4 A \\c_@
Vb 100" - e e
/’[\\\
Lok Lme for VG
ok Lare, — 1 o
> 3 J/r Irfl
~o. FIG 836. Line
‘ /’//f e T F\<¢
® J"/"”V_é‘.{z_._::é S Y-S BN
FIG82 FIG83.
Moments at 4. 100'Vy = 1T X &’ S Ver=001z . . (i)
This is the equation of a straight line.
Unit load at 4, 1.e.,x =0 thenVeg =0
» ”» B) yw L= 50’ 3 VR = 0-5T
I ) O’ vy L= 100’ ’ VR= 1T

which is the standard form of the reaction influence line for a simple
beam. Now to find ¥V, let z be the variable measured from C.



118 INFLUENCE LINES: IN BRIDGE CALCULATION

Moments at C. 100’V = 1T X 2 SV =001z . . (il)

A straight line similar to that of Vg but other hand, ¢.e., 8 mirror
reflection.

Influence Line for the Horizontal Thrust H. Figs. 82 and 83

Let unit load travel only between 4 and B, i.e., z varies from
0 to 50'.

Moments at B. 50'Vgz = 25'H S H=2Ve . . (ii)
Substitute the value for Vg from (i) then H =0:02z . . (iv)
which is again a straight line (heavy line ab of (b), Fig. 82).
Unit load at 4, te., 2 =0 then H=0 .
I ”» B) n T= 50’ ” H=1r
Now let unit load travel between B and C and let the variable
be z measured now from C, 1.e., z varies from 50’ to 0.
Moments at B. 50'V, = 25'H SH=2V, . . (v)
Substitute the value for V from (ii) then H= 002z . . (vi)
also a straight line (heavy line ¢b of (b), Fig. 83).
Unit load at C, 2.e.,2 =0 then H =0 .
” LR B’ »n 2= 50’ Y H = lT

Joining these two half paths of unit load travel the complete
influence line for H, as unit load travels across the span, is the
triangle abc of Fig. 82 (b).

Geometrical Properties of the Parabola

The segmental (part of a circle) arch is seldom used in arch
bridges because of the heavy and laborious calculations involved
due to its awkward mathematical equation, and hence the choice
of the parabola.

The equation of a parabolic rib with its origin at the left-hand
pin, 4, was shown to be (page 34) z(span — z) = Ky, where K is o
constant for any particular parabola, x is the variable horizontal
distance from origin 4 and y is the corresponding vertical height to
the arch. To find the value for K substitute known values fer
z and . Thus at the centre of the span z is 50" and y is 25’.

.. 50(100 — 50) = K X 25 or K = 100
and the equation of the rib’s neutral surface is
(100 — ) = 100yory =z — 0-012® . . . .(vii)
The height of the rib axis at a horizontal distance of 25’ from 4 is
y = 26 — 0-01 x 252 = 18-76'

* The max. ordinato for / is not always 17, e.g., it is 1-25T for a rise of 20’
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To ﬁ/;d the slope of the tangent to the parabola at a point such as M,
ig. 84 '
Geometrically it is a property of the parabola that if a tangent
be drawn to it at any point, and if this tangent be produced to cut
the vertical centre line, or axis of symmetry, then the height of this
intersection point above the apex of the parabola is equal to the
depth below the apex of the original point M, i.e., BN = BO.
The ordinate y at M, or height of M, was 18-75' ., OB = 625
and ., ON = 2 X 625’ = 125’

Tan of angle NMO = tan § = ON - MO = 12-5' - 25’ =05
Alternatively, from the calculus :—

% will give the slope or tangent to the curve at M, therefore

differentiating equation (vii), Z—‘: =1—-002x . . . . (vii)
With z = 25 then the value of tan § = %—: =1—-002x25=0%5

The angle whose tan is 0-5 is 26° 34’
.. 8in @ = 0-4472 and cos 6 = 0-8944.
As a further example let M be situated at 40’ from the L.H.P.

Height PM =y =2 —00122 . . . . . . . . .(vii)
= 40 — 0-01 X 402 = 24’
.. 0B =25—PM = 1

S.tand =ON -0OM =2 x 1--10 = 02

sin @ = 0:1962 and cos 6 = 0-9805

Alternatively, by substituting in (viii) tan § = % =1-—0-02 x40

=02

Influence Line for B.M.

Let K be any fixed point on the axis of the rib, for which the
moment i8 desired, and let unit load occupy any position distant z
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from A, where z < AJ. The total bending moment at K, Fig. 85, is

Mg=[Vyx A —17(4J —z)] —H x KJ
= [Vert. moment as for a beam] — “ Horizontal moment ”
of H X KJ.
= [mv] — my

and if the unit load be considered to act anywhere in the portion
JC of the span, i.e., z > AJ, a similar expression is obtained.

X}ﬂqém- Laoo'- LY 2 Y/

' =imrsyEr
|
“ a7 1 b 1—— uDLonoime PER FERWY:=
v, 000" | e BTt /T
. PSFET {
' . Ivervence Line fe-
|
@ ] | v m, o’ K.
3 |
4) ~ H.
R 875FLt7
@ i my al K
P 825 m,
T v
@ e ——
/{\,N ‘b —Orec= /875
@) o B My « my~my,
| 25Ff7

my. The influence line for the bending moment at a point K
on a simply supported beam is a triangle whose apex liesimmediately
under point K. To find the value of this ordinate place unit load
at K which gives ¥, a value of 1T X 75’ -~ 100" = 0-75T, and the
max. ordinate for my at K = 25’ V;, = 25’ X 0-75T = ft. tons 18-75.

my. The B.M. at the fixed point K is simply 18756’ X the
appropriate value of H.

my at K when 1T is at N = 1875’ X ordinate nm, diagram (b).

’ ) , K =1875" X ordinate kj,
. ,, B = 1875’ X ordinate Bb

The influence line for my is thus also a triangle, but one whose
ordinates are 18-75 times greater in value than those of the I.L.
for H.

The complete influence line for the moment at K is the I.L. for
my minus the L.L. for myg. This subtraction can be accomplished
graphically by drawing both curves on the same side of & common
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base line. Thisis done in Fig. 85 (d), where the area shown shaded is
common to both my and my and so cancels out, leaving the positive
and negative areas, which are not hatched, as the result. These
curves are then redrawn as in Fig. 85 (e) on a straight line base, and,
being of the same respective heights and base lengths as those of
the Fig. (d), must bé equal in area and in the height of the same
respective ordinates. The position of the neutral point N of Figs.
(d) and (e) is found by comparing similar triangles.
Height 9-375 _ height 625 6:25 ko
N = 5 = 55— TN’ whence kN = 15" 0
Positive moment at point K will cause the upper fibres or top
flange of a plate web or I section to be in compression and the
lower fibres to be in tension, as for a plate girder of simply supported
span. Negative moment occurring at point K will have the opposite
effect, and the upper flange thereat will be under tension and the
lower flange under compression as for a beam cantilever. The
direct compressive stress occasioned by the normal thrust also acts
on these flanges and usually wipes out these small tensile bending
stresses.

Let I = total moment of inertia of the radial cross-section of the
rib.
A = total area of the radial cross-section.
y, = distance from neutral axis to top fibres.

Yo = » ” bottom ﬁbl‘es,
f, = stress mtensxty on top fibres.
fp = y » bottom fibres.

M = bending moment at point K.
N = normal thrust at point K (compression .. + sign).

For positivc’ moment at K. f, = |_ + IVIIyt
f, = 4- g - _I"Il&,
For negative moment at K. f, = 4 g — Illlbl
f, =+~ N <+ MIYh

Normal Thrust and Radial Shear. Fig. 86

Consider the section at K. Diagram (a) shows the external or
active forces acting on this portion of the arch. The resultant
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vertical force acting at K is V, — W, — W, = vertical shear ¥V
as for a simply supported girder. As far as the section at K is
concerned diagram (b) illustrates the vertical and horizontal
resultant forces. The shear V, however, is vertical, but what is
desired is the true or radial shear at right angles to the tangent at
point K, so resolve the sum of all the vertical forces, i.e., ¥V, into
two components, one along the tangent (s.e., normal to the section)
and the other along the radial section.

ab = V¥ sin § = a normal thrust on the section.

Ka = V cos § = a true or radial shear on the section.

But H also has components along both of these directions, so
replace H by its components, H cos 6 and H sin 6.

W K tﬁm
"

@ 2
A - > E
@ =) FIG 86.

The total normal thrust acting on the cut face of the rib at K is
N=Vsin60+ Hcosb . . . (ix)
and the total force tending to shear the rib through in a radial
direction at Kis R=+4 Vcos§ —Hsinf . . . . . . (x)

Influence Line for Radial Shear. Fig. 87

From the previous article the vertical shear ¥V was seen to be the
same far a point K on either the arch rib of 100’ span or on a simple
beam of 100’ span and, similarly, the influence line for V will apply
equally well to either of these structures. Then the ordinates of
diagram (a) when multiplied by the value of 0-8944 (previously
found for cos 8) will give the influence line for V cos 6.

Similarly, if the values of the ordinates of the H influence line be
multiplied by sin 8, = 0-4472, the resulting curve is the H sin 0
curve for the fixed point K.

Superimposing diagram (b) on (d), and noting that the hatched
area cancels out, the result of the graphical subtraction is the two
unshaded triangles which are redrawn in (f) on a straight line base.

Influence Line for Normal Thrust. Fig. 88

N ="Vsin6 + Hcos .

Multiply the H influence line ordinates by the value of cos 6 at
point K and the I.L. ordinates of V by the value of sin §. To add
these figures graphically plot one above the base line and the other
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under. The value of the normal thrust due to a one ton load placed
anywhere on the span is the length of the ordinate, under unit load,
which is bounded by the upper and lower sloping lines of (e).
Diagram (f) is simply diagram (e) placed on a horizontal base line.
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rig. 89 gives the complete set of influence lines for another
position on the rib span. In this case point K is taken at 40’ from
the left-hand pin, a point whose height and tangent value have already
been found. The diagrams of this figure should be self-explanatory
in view of the text devoted to the previous examples.

Maximal Values. A uniformly distributed live load (for simplicity
adopt 1T per ft. run) can be so placed on the arch span as to create
maximum bending moment at point K. In Fig. 89 the U.D.L.L.
should cover the left-hand portion of 45-45’ to give a maximum
positive moment of 4 109-1 ft. tons. If this be unloaded and the
54-55" length on the right-hand side be loaded in turn, the moment
occurring at K reaches its maximum value for negative moment of
— 109-1 ft. tons. (If both parts are loaded simultaneously, t.e.,
the complete span, there is no moment whatsoever at K.)

In Fig. 85 the left-hand length of 40’ when covered by the
U.D.L.L. gives the max. positive moment of 187-5 ft. tons at K,
while max. negative moment of the same amount happens when the
60’ portion between N and the R.H.P. is loaded.
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Repeating the above for points K at 2’ 6” or 5’ 0" intervals across
the span permits a curve of maximal bending moments to be
drawn. This curve is not a bending moment curve, but a curve
giving the values of the maximal positive or negative moments
which can occur at any point on the rib and is given in Fig. 90.
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Further, by showing the lengths 2’ 6”, 5’ 0", 7' 6”, etc., as decimal
lengths of the span, s.e., kL, the resulting curve mmedlately
becomes useful for all symmetrical parabolic three-pinned arch ribs
of 100 ft. span and any rise whatsoever.

The normal thrust and radial shear values were similarly obtained
and the max. values are those.given in Fig. 90. Radial shear and
bending moment have positive and negative values, but the normal
thrust is always positive for this rise to span ratio. All the curves
are symmetrical about the centre line through the mid-pin.

Maz. B.M. The equation to the curve of maximal bending
moments of Fig. 90 can be found from the geometry of Fig. 91. Let
the span be S and the rise be A.

Equation of parabola is 2(S — z) =

2
At the centre z = % and y = A, whence f—h = K and the equation
of any parabolic rib similar to the figureis y = %—:(S —z) . . (1)
Max. H occurs with unit load at C.P.
—Raxoth=> >
—Bxé—'——ﬁz""()

Max. BM. at K dueto H
4hx S
=ny=-—— x)x S(S ). . . (3)

Max. B.M. at K due to vert. loading
= 2R, with unit load at K

=z X 1(S —z) = S-—S(S—x). ()]

® &« L Gines ar 4%,

a ”‘ w /-1,

@ ’x L Boow Siewe ar A,

\‘o-m’ \‘W;' (xos502
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Observe that in (b) height CE

= FH always = g(s — )
;’)IEi jg or DE = AE X FH +— AH. Substituting values, then
S 2z?
DE=2x g8 —2)+5 =mB-2 . . ()
GH BH

CE = BE" r GH = CE X BH - BE. Substituting values, then

S
GH=§(S—z)x§+(S~z) = . (6)

CD = CE — DE = g(s—z)—%”;(s—x) = (S —2)(S — 20) (7)

g N8y

FG=FH—GH=§(S—-¢)—; =2%(S—2z) .. 8
By similar triangles
¢b_Fe . OCD__FG _ FG
DN~ GN'“® DN ~4G — AN g_x_DN
CD(——x)
~ FG4-CD
S
Gl — )8 _2“°)('2‘ _") (S = a)S — 2q)

- = 9)
z z 38 — 2z (
Sl -t S-S —2) )

Area of shaded triangle = $4N X CD = }(4D + DN)CD and

substituting

=i[s w’] [sn (S — 2)(S — 2x)]

_ %8 — 2)(S — 22)
238 — 2z)

Triangles ACB and AFB of Fig. (b) are equal in area so that in

subtracting the common area from each the resulting triangles ACN

and BFN of (c) must also be equal in area. Either of these basal

lengths should be covered by the U.D.L.L. to give max. B.M.x,

where K is any point on the span between the left-hand pin and
the centre pin.

(10)
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And this applies to any similar three-pinned parabolic arch rib of
whatever span and rise. For the particular rib under discussion the
max. B.M.x due to a uniformly distributed load of wT per ft. run
placed on any part or parts of the span is

z(100 — x)(100 — 2z)
2(300 — 2z)

By differentiating and equating to zero a cubic expression can
be obtained giving the position of point K for max. B.M. : alterna-
tively by trial values find the position of K thus: z = 23-3', 23-4'
and 235 gives the respective B.M.x of 188-302, 188-305 and
188-302 ft. tons, so that the max. moment occurs at 234" from the
left-hand pin 4.

Radial shear, K lying between 0 and 25" from the LHP. A
typical influence line for this case is that given by Fig. 91 (d) and is
composed of three triangular areas. The right-hand triangle becomes
smaller in area as the quarter point is approached by the point K.

With K situated at the quarter point the right-hand negative
triangle has faded away into the straight line of Fig. 87 (f). A load
placed anywhere between the C.P. and the R.H.P. will cause no
radial shear at point K, 25’ 0" from the L.H.P.

When K is taken between the quarter point and the C.P. the
influence line takes the form indicated by Fig. 89 (h) and is formed
of a negative triangle and a positive area composed of a triangle
and a trapezium,

It is clear, then, that.the quarter span point is a critical or change
point in the curve of maximal shears of Fig. 90.

The values from which Fig. 90 was obtained are listed below.

. (11)

Position B.M. Rad. 8 Normal T | Position B.M. Rad. S Normal T
in ft. 4 ft. tons + tons 4 tons in ft, L ft. tons 4 tons + tons
0-0 0-0 11-79 70-71 27-5 183-1 665 5483

2:6 3925 | 1075 6897 | 300 | 1750 752 | 53-85

50 7371 9-82 67-27 32:5 163-36 8:47 652-97

76 | 103-45 897 6562 | 350 | 14837 939 | 6220
100 | 128-57 8-22 6403 | 376 130-21 | 10-23 51-54
126 | 149-15 766 62:50 | 400 | 10909 | 1098 | 50-99
160 | 165-28 6-99 61.03 | 426 8525 | 1161 50-56
176 | 177-06 6-51 69-63 | 460 5893 | 12:09 50-25
200 | 184-62 6-11 68-31 47-5 30-41 12:39 50-06
22:5 | 188-05 5-81 5708 | 600 00 12:5 50-00
26:0 | 1875 559 5590




CHAPTER XII
THREE-PINNED SPANDREL-BRACED ARCH

IN this example the centre pin is placed on the bottom or rib
boom, and there is a clear structural gap left in the top chord
immediately above this pin. The value of the horizontal thrust H
is obtained by taking moments about this centre pin d and consider-
ing (preferably) the stability of the unloaded half of the arch.

In Fig. 92 (b) there are two vertical reactions, V1, and Vg, whose
values are the same as if the structure were a simply supported
beam of the same span. Then taking moments about the centre pin
d and giving the positive sign to clockwise moments :—

+II><h——Vn><§=O

Ve (2

FIG 92,
(a) Unit load at 4 gives Vr=0 . H =24Vpg — 00
(b) ”» »w B ’ = ‘&T SH=24X% % = (04T
(c) ) » C » =4T  H=24X} = 0-8T
(d) » »w D ” =3t H=24x1} = 12T

LL 129
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When unit load arrives at E consider the stability of the left-hand
portion of the arch, and this case becomes a mirror reflection of
Fig. (c), so that load at E has 0-8T as the value of H. Unit load at ¥
has 04T for H and the final influence line for H is the isosceles
triangle of Fig. 93 (a).

Arithmetical Ezample (1). Find the value of the horizontal
thrust when :—

(a) Unit loads are placed simultaneously at points B, C, D and E.

(b) The U.D. Live L. of 1T per ft. covers the right-hand half of the

span.
(c) The U.D. Dead L. is §T per ft. of main arch.
Answers. () H = 1(0-4 + 0-8 4 1-2 + 0-8)T = 391
(b) H=1 X area = 1(60 X 1-:2 = 2) = 36-0T
(c) H =3 X area = §(120 X 1-2 = 2) = 54.0T

Bottom Boom Members, Fig. 83

Fig. (b). The perpencicular lever arm from point C on the upper
chord to the line of action of H is 30’ and the moment caused by
H about C is 30H for every value of H. The influence line for the
moment about C due to H, i.e.,, my, is given by Fig. (b), whose
ordinates are thirty times greater than the corresponding ordinates
of the influence line for H. This bending moment is negative
because H inclines to make the basal pins meet and make the
structure convex upwards.

Arithmetical Example (2). Find the moment at C due to H, i.e.,
mp at C, caused by the loading given in the preceding example.

Answers
(8) mpg= —12 —24 — 36 — 24 = ft. tons — 96
(b) mpy =load X area =1(60 X 36 ~2) = ,, — 1,080
(c) mg= ,, y =%3$120x36=-2)= , —1,620

1.e., in all three cases the results are thirty times larger, numerically,
than those of the previous example.

Fig. (c) gives the bending moment at point C due to vertical loads

only. Returning to Fig. 92, then in the diagram lettered :—

(a) With unit load at 4 the internal stress takes the
shortest path, Aa, to the abutment and so the
bending mament at C =0

(b) If unit load is placed at B the reaction V,is §T and the
moment at C=mp="V1X 40'~1TX20'=§ X 40—20 =13}
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(¢) Unit load at point C gives V1, = % and at this point C

my =40V, — 1T X 0 =40 X § = 26%
(d) 1T at D gives V; = 4T and my = 40V =20
(e) 1t ,, E » = 4T w = 5 =13}
(® 1t ,, F ”» = }T o T o» = 6%

The results are all in ft. tons and are, moreover, all positive
moments because the structure tries to take a concave upper surface
under the action of the vertical forces. These results are graphed
in Fig. 93 (c), and it is apparent that this influence line, my, is
exactly the same as that for point C placed in a similar position on a
simply supported horizontal girder of the same span.

Arithmetical Ezample (3). Find the moment, my, at point C
due to the vertical forces only for the loading as given in example 1.

Answers
(a) Unit loads at B, C, D and E, then
my = 134 + 26% + 20 4 13} in ft. tons =4+ 73}
(b) 1T per ft. covering right half of span :—
my = load X area=1(60x 20=2) in ft. tons =+ 600

(c) Dead load of 3T per ft. :—
my = load X area=§(120x 26§--2) in ft. tons = + 1,200

Fqg. (d). 1f Fig. (c) is superimposed on Fig. (b) then the portion
which is shaded, being common to both the positive and negative
curves, subtracts out leaving as the result of this graphical addition
the unshaded triangles.

Fig. (¢). The unhatched triangular areas from (d) are, in the
present figure, plotted or a straight line base with the positive
moment above the line.

Arithmetical Ezample (4). Making use of diagram (e), obtain the
total bending moment at point C due to the vertical and horizontal
forces acting on the structure, for the three cases of loading of the
previous examples.

Answers
(8) M¢c= + 1} + 2% — 16 — 10§ in ft. tons = — 223
(b) M= load X area = 1(16 X 60 = 2) in ft. tons = — 480
(c) M¢= » » = $(3)(2§ X 42-86 —16x 77-14)

in ft. tons = — 420
The results for M¢ of example 4 equal the sum of the corre-
sponding results for mg and my of examples 2 and 3.
Fig. (f). This is the influence line for stress in member dc, and
K2
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it is similar to (e) because it is the M¢influence line divided by the
lever arm of 7-91’. The stresses in this member are obtained by
““ Section and Moments,”” where ZZ is the section line and the
moment centre is C, the point of intersection of the two unwanted
bars CD and Cd.

There is too much latitude for inaccuracy in scaling the length
of the lever arm from the drawing, and this length should be
calculated.

Bar ed produced meets the upper chord or boom at J. Then by

e EJ
Dd — DJ>

similar triangles

.8 40°4-0CJ  yaaar ke
e, 5= 30T 0T whence CJ = 13:33’ and JE = 53:33’.
The length Je can now be obtained and is equal to /(JE? + Ee?)
= 53-93
Now comparing the similar triangles Eoe and J Ee,
Ee _ Jde . 8 _ 5393 or lever arm Eo = 791’

Eo~ JE’"® Eo~ 5333

Considering the stability of that portion of the cut arch to the
left hand of line ZZ by taking moments at point C, it follows
that Mo = stress in cut bar ed x 7-91’

or Sy = M¢ = 791 as given by Fig. (f).

Next, the nature of the stress is ascertained by observing that the
cut ZZ in member cd is closed by the action of H and opened by the
action of ¥, or, for this particular member, negative moment causes
compression while positive moment entails tension.

Finally, the exact position of the neutral point N, common to
all three figures, (d), (e) and (f), is found thus from (f) :—

¢N __ height 0-337

Nd = height 2:022
. ¢cN
N T

Arithmetical Example (5). Ascertain the stresses in member cd
created by the loadings given in example 1.

whence cN = 2:857’

(8) S.; = — 0-168 — 0-337 - 2:022 4 1-348 =+ 287T
(b) S,y = load X area = 1(2:022 X 60 = 2) = + 60-66T
(© Sa= , , =3 T722+ 7799 = + 53-08T

Figs. (g) and (h), Sy.. The influence line for my is identical with
that of (b), because the H influence line is constant for any one arch
and the lever arm from the new moment centre B to the line of

\l¢
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action of H is still 30’. The influence line for my is the same as for
point B on an ordinary simply supported girder of 120’ 0" span.

The intermediate influence lines are not drawn, while the final
stress influence line S,. is derived by dividing the differences in
heights at the apices of the unshaded triangles by the new lever arm
of 14-87' from point B to rib member bc.

Fig. (1), S;p.  The section line is XX and the moment centre is 4.
Considering the stability of the cut arch to the left of XX it is seen,
no matter what position unit load takes on the span, that there are
only two forces to consider when taking moments about point 4,
viz., H and V. Further, since Vj, passes through 4 it has no
moment about 4, whence it follows that

S X lever arm of 24:577 = H x 30’
. Sap = 30H = 24-577 = 1.L. for my = 24-577

i.e., a simple isosceles triangle of apex height = 36 < 24-577 = 1-464T.

Stress Table. The loading and the resulting maximal stresses are
given at the bottom of the plate. The uniformly distributed live
load is advanced on to the span from either abutment so as to take up
that position which causes max. positive or negative stress in the
member under consideration. The stresses in the final list are
obtained by multiplying the requisite arcas, given on the diagrams,
by the load per ft. run.

Top Boom Members, Fig. 94

Frg. (a) i1s the same as the previous diagram (a), Fig. 93.

Fig. (b). The section line ZZ cuts the two unwanted bars Cd
and cd, which meet at the moment centre d. This point is situated
25’ 0" vertically above the horizontal line of action of H, and in
consequence the moment of H about d is now 25H. The max.
ordinate of my is 1:2 X 25, or 30 ft. tons.

The influence line for B.M. at d due to vertical loads is as for an
ordinary beam ; max. ordinate occurring under d with unit load
thereat. In this position Vi = 4T and B.M.; = 4T X 60’ = 30 ft.
tons.

Thus my and my are identical influence lines, but being of
opposite sign they cancel each other and there is no stress in bar CD,
which is, therefore, redundant. That this is correct is. verified by
observing that the real or effective arch is 4, B, C, d, ¢, b, a, members
CD and Dd being redundant as regards the main structure. The
double vertical bars at Dd do carry loads, but only the local loads
from the dual cross girders at D down to point d.

Fig. (c). The moment centre of BC is ¢ situated 22’ above H,
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This gives the max. ordinate of the mg triangle as 22 X 1-2 = 26-4
ft. tons.

The influence line for my for point ¢ is the same as that for point C
of diagram (d), Fig. 93. These points lie in the same vertical line,
and, as only vertical loads are being considered, the same B.M. is
encountered at both points. ¥, which causes positive moment
about point ¢, has the effect of closing gap Y'Y in the cut bar BC,
while H opens the gap, 1.e., positive moment creates positive or
.,ompressxve stress in the upper boom members whxle negative
moment is associated with tensile stress.

Figs. (d) and (e). These are derived as previously explained.

Ordinate 1133 = 9-067 = lever arm Cc of 8'.

Figs. ( f) ) and (k) call for no special mention.

The posmon of the neutral point N is obtained as follows :—

bN Nd 40 — bN ,
0FR = 0935 = 0% , whence bN = 24-781

Vertical Web Members, Fig. 95

Fig. (a). It was mentioned in the text regarding the previous
plate that the two bars at Dd carry, as columns, the local loads
applied at their caps by the cross girders. The left-hand cross girder
at D supports the right-hand end of the stringers spanning from C
to D and the max. column load is the max. reaction at D from these
stringers. The influence line for the load on the left-hand vertical
Dd is the small right-angle triangle of perpendicular height equal
to one ton.

Fig. (b). The H influence line is constant for any one arch and is
repeated here to facilitate the calculation of the other curves.

Fig. (¢). The moment centre for bar C¢ is point K, situated on
the top boom, where ¢d produced meets BC produced. The length
CK has been calculated already, sce EJ of the figure on the bottom
boom members.

The lever arm of H about K is 30" and the max. ordinate of the
mg curve is 30’ X 1:2T = 36 ft. tons

my at K. Possibly the clearest idea of this bending moment is
gained by considering unit load to be moved from panel point to
panel point on its travel across the span from 4 to G.

1Tat 4. No B.M. at K, i.e., my at K =0
1T at B. There are two forces to the left of section line
ZZ, viz., V1 and 1T, and only one force Vg to the right
of ZZ. Consider the simpler case of Vig; then
my at K = KG X Vg = 26:66" x }T = 444
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(If point a be joined to point 4-44, in Fig. (c), and pro-
duced it will cut the vertical gk’ on the right at a height
of 2666, 1.e., Vr with an imaginary value of 1Tin KG X Vr
= 26:66 X 1T.)

1T at C. Unit load has now passed section line ZZ, leaving
only ¥V to the left of the cut, so examine the stability of
portion ABZZcba of the arch under vertical forces only.
my at K = AK X V= 93-33V, = 93-33' X 4T = 62-22
IT at D makes V= 3T ". mpat K = 93-33" X §T = 46:66
1T at £ makes V= 4T . mpat K = 93-33' x 3T
IT at F makes Vp =34T " . myat K = 93-33" X }T

This clearly represents a straight line from 62-22 down to nothing
when unit load is at G. (If this straight line were continued to cut
the vertical through Aa the ordinate would be 93-33 = ak, diagram
(c), t.e., V1 would have the imaginary value of 1T and the imaginary
B.M. would be 93-33' x 1T.)

The actual influence line for my at K is finally completed by
joining the upper extremities of the two straight lines newly
obtained, t.e., point 4-44 to point 62-22.

The foregoing suggests an easy construction, viz.: At point a
erect ak = AK to scale, and at g erect perpendicular gk’ = GK to
scale, then join the tops of these perpendiculars to the far ends of
the base line. Lastly, connect the two points of intersection of the
sloping lines with the verticals through the ends B and C of the
panel considered. The similarity with the shear influence line of a
parallel flanged braced girder is very apparent.

Fig. (d) is the geometrical subtraction of mg from my so giving

k.

Fig. (e) gives the stress influence line obtained by dividing the
values at the change points of (d) by the lever arm, KC = 53-33’,
from K to bar Ce.

Fig. (f). The moment centre for Bb is point D where the
unwanted bars bc and 4B meet. When unit load is placed on any of
the panel points between B and G there is only one vertical force ¥,
to the left of section line YY and the BM.pdueto V,is AD x V,
= 60V ,;. The value of ¥V for unit load at B, C and D, etc., i¢
47, 47 and 3T, etc., respectively, and so the I.L. from B to @ runs
from a value of 60" X 3T, 1.e., 50 ft. tons, straight down to zero.
This line, if continued, would meet the vertical through the L.H.P.
at a height above the base line of ad = 4D = 60’ to scale. From
the apex point of 50 ft. tons the I.L. descends to zero at a, because
1T at 4 causes no moment,
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The mpg influence curve for point D is identical with that in (c), as
both moment centres D and K are 30’ above the line of action of H,
the horizontal thrust.

F1g. (g) then follows automatically on using the lever arm BD of
40’ as the divisor.

The horizontal thrust H increases the gap in a cut vertical bar
when the broken structure swings round the moment centre,
whereas force V¥V closes the gap, ¢.e., negative moment creates
tensile stress and positive moment, compressive stress.

Fqg. (h). Consider the stability of the small cut-part of the arch
below section line XX when taking moments about the moment
centre J. No matter what position unit load may be given there are
only two forces acting on the small triangular piece of structure
XaX, viz., Vyand H.

Stress in da = (— H X 30 + V, X 4J) - AJ.

Now 30H is the same triangular I.L. as in the examples above,
while 4J X V simply means 42-85 times the left-hand vertical
reaction I.L. for the ordinary girder of 120’ 0" span, and this V
influence line varies from 1T at A to zero at G.

Frg. (t). The two ordinates of the triangle are 42-85 of Fig. (h)
- lever arm of 42-85 or unit stress and (36 — 21-428) = 42-85 gives
the other apex of 0-34T.

The resulting stresses given in the table refer to the loading stated
alongside.

Diagonal Web Members, Fig. 96

The dimensions necessary for finding the lengths of the lever arms
between the diagonal members and their respective moment centres
are given on the plate.

Fig. (a). The moment centres are still situated on the top boomr
and so the influence lines for my are constant in outline and
similar to those of the previous plate.

Since the section line is ZZ for bar Cd then unit load at D, E, F,
or G causes only one vertical force Vy to the left of ZZ, and in
consequence the vertical moment is a straight line whose equation is
AK X V= 9333V, where V[, varies from }T down to zero. Max.
ordinate of 46-67 occurs under the first position D. Unit load at
A, Bor C gives Vzonly to the right of the seetion ZZ and the my at
K =KG x VR = 26-66 Vn.

Vg has its max. value of }T when unit load is at € and the
corresponding my at K with load at C'is § X 26-66 = 8:88 as in the
figure.

If these straight lines be produced they cut the end verticals in a
similar manner to those of Fig. 95 (c).
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Figs. (b) and (c) then follow. Note that positive moment opens
the break at ZZ in diagonal Cd, i.e., positive moment gives tensile
stress.

Figs. (d), (e) and (f). With unit load to the left of section line
YY, consider Vg when drawing the I.L. for my at D and with unit
load to the right of Y'Y consider V.

Figs. (g), (k) and (3). Unit load on any panel point from B to G,
inclusive, gives rise to only one vertical force ¥y, on the left of XX,
hence mp at J = AJ X V5. The max. value for ¥V, unit load at B,
is §T and therefore the max. ordinate to the straight line for my as
unit load travels from B to G is § X AJ = § X 42-857 = 35-T14.
Unit load at 4 being immediately countered by a Vj, of 1T has no
moment about J, hence join the point 35:714 to the left-hand end
of the base line.



CHAPTER XIII
BALTIMORE TRUSS

WiTH a very large span Pratt truss of the type illustrated by
Fig. 97 the floor stringers spanning from F to G, G to H, etc., become
uneconomically large and heavy. These stringers could be reduced
in length if cross girders were placed at M, N and O, etc., but the
design would become even more inefficient because the bottom boom,
in addition to being-subjected to direct axial tensile stress, would
now be required to carry the cross bending caused by the mid-panel
loads, M, N, O, etc. This* combined direct and lateral loading
would entail a deep and heavy bottom boom.

Ved 8 - o 4 ~ y-l - o £
L T /
FP6c¢"w°r s x & W s x%}
-FeArr TRYSSES.
FIG. 97 FIG 98.
A B8 ¢ o ~r A B8 c o0 £
k) * X s, r v | v

A LY B PO P A
WITH 3U8 7765 WITH SUB-STRUTS.
BALTIMORE  TRUSSES.
F1G 98.. F/G /100

Halving the panel lengths of Fig. 97, and so doubling the number
of web members, produces the Pratt truss of Fig. 98. The stringers
are now of an economical length and the bottom boom has only
direct primary stress, but the main truss, as a complete unit, is too
heavy and rather unsightly due to the increased weight of the web.

The Baltimore trusses of Figs. 99 and 100 are offspring of the
Pratt truss because the main system of Fig. 97 is maintained. The
additional cross girders are supported by subsidiary suspenders at
M, N, O, etc., and to prevent bending in the main web diagonals
secondary ties TB, UC, etc., are added in Fig. 99, and secondary

* See * Practical Design of Simple Steel Structures,” Vol. II.
142
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or sub-struts TG, UH, etc., in the case of Fig. 100. It will be noted
that these additional members will be much lighter than those of
Fig. 98 because the sub-ties and sub-struts, engaged in transferring
only local panel loads, are in no wise parts of the main web system.

Bottom Boom Members

Member SM, being perpendicular to F@, has no horizontal
component of stress to affect the stress in F@, consequently the
stress throughout member FG is constant, i.e., whatever the stress
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FM is then MG has the same value. Similarly the stress in GN
equals that in NH and stress in HO equals the stress in OI, ete.
Member FG. The moment centre for bar FM is point S in Fig.
101 (f). Reaction Ry X 20’ = stress FM X 25’ or stress FM = $Rp.
Reaction F is zero when unit load is at L, and therefore stress
FM = 0. The straight line influence curve increases in value as the
unit load leaves L and approaches M and reaches its maximum
value when the load is directly under the moment centre 8. Taking
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moments about L to find Rp, and, for simplicity, working in panel
lengthg, then 1T at M X 11 panel lengths = Rp X 12 panel lengths,
or Rp =433,

The max. stress in FM due to unit load = 4 max. Rp
=4 X $3T = 31T or 0-73T. As unit load leaves M and approaches
F the stress in FM rapidly decreases to zero because the load is
being transferred either directly to the abutments by the stringer
MF or indirectly through a cross girder at ¥ into the main bearings.

Member GH. Fig. 101 (g) shows the section line YY and the
moment centre 4 where the two unwanted bars meet. The influence
line for bending moment at point A offers no difficulty, the max.
ordinate occurring under point A. The value of this ordinate,
1T at @, is Rp X FG = 40Rp = 40(1T X GL = LF) = 40 X 200
-~ 240 = 33-3 ft. tons, as given by diagram (c). The stress influence
line for GH will also be a triangle, the height of whose apex is
33-3 ft. tons - effective girder depth of 50° = 0-67T as shown by
diagram (d).

Member HI. Diagram 101 (h) shows B to be the moment centre.
Max. B.M. occurs when unit load is placed at H, under point B,
giving a reaction at F of 1T X HL -~ LF or %T and a B.M. of
§TFH = %T X 80’ = 53-33 ft. tons. The B.M. =~ the girder depth
gives the stress value in HI and the max. value due to unit load
traversing the span is 53-33 +— 50 = 1-067T, which is the apex value
for the triangle of diagram (e).

Maz. Stress in Members FG, GH and HI. Since the stress
influence lines for these members are triangular in form then, as
given on page 20, max. stress occurs when the average load per
ft. of span to the left of the apex (or moment centre) equals the
average load per ft. to the right, and, therefore, equals the average
load per ft. of spap.

Top Boom Members

¥ Member AB. By taking a section line such as XX, Fig. 102 (d),
only three members are cut including the wanted bar 4B ; and the
moment centre, where the two unwanted bars AT and GN meet on
production, is panel point H.

Now consider the stability of that portion of the structure shown
in heavy line, diagram (d). So long as the 1T load travels between L
and N the only external force acting on the heavily lined portion is
Rp. Then, taking moments about point H, FH X Ry = stress

AB X BH, 1.e., stress AB = g—ng = 1-6Rp.
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1T at L means Ry 1s zero and stress 4B = 1-6Rp =0
1T, H . 0-67T ” =16 X 0-67 = 1-07T
1t , N ’ 0-75T ' =16 X 075 = 1-2T

Whenever unit load leaves N and moves towards G there are two
external forces acting on the small piece of structure FAXXG@, viz.,
Rp and panel load G.

1T at G means Ry is §T and the equation about moment centre H
is now FH X Rp — 1T at G X GH = stress AB X BH, calling
clockwise moments positive ; d.e., 80" X 5T — 1T X 40’ = 50’4 B,
whence stress AB = 4 0-5334T,

As the clockwise moment is the greater on the left-hand side of the
equation the effect on 4B is to close the cut in this bar, v.e., 4B is
in compression.

Rp has a value of }4T when unit load is placed at M and the
moment equation about point His80" X 13T — 1T X 60’ = 50'4B,
or stress AB = -+ 0-267T.

The complete influence line is given by diagram (b). The only -
point to note is that when unit load is placed at N it is still outside
of the heavily lined portion of the structure even although it has
passed the moment centre H. The reaction at F is therefore the
only external force to be considered. P
{ Max. Stress in AB. As was previously done in Fig. 40, split the
total load of W on the bridge into three distinct portions 4, Band C,

e, W=4+B+C . . . . S )
where the 4 loading consists of 4,, Az, Aa, etc., and the B loading
of the separate loads B,, B,, Bg, and so on.
S, the stress in 4B = X loads X respective ordinates
= A,a, + Aya, + . . . Biby + Byb,
+ 1c1 —{— Czcz ce e . (1)
Move the complete load system a small distance 8z along the span,
no load entering or leaving the span, and the new stress in 4B is’
S+ 88 = A4,(a, + 3a) + Ay(ay + 8a)+ . . . By(by + 8b)
+ By(bg + 8b) + . . . Cy(ey + 6¢) + . . (iii)
The change of stress = (iii) — (ii) = SS.
SS=80(A1+A,+...)-{-Sb(.Bx—{-Ba-{-...) .
4+ 8¢(Cy +Ca+ .. 0) . . (iv)
and, as for equation (v), page 55, dividing throughout by 8z gives

8a
SS S-(A)+8z(3)+8x(0) T |

=tan01A+tan0,B+tan0,C S A 4]

LL.
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But since the slope of the influence line for portion C is opposite to
that for portions 4 and B its tangent will have opposite sign, .e.,

S

Fr =tan 6,4 +tan @B —tan0,C . . . . . . . .(vi)
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Now substitute the arithmetical values for these tangents from
Fig. (b) and

88 (05334)4-}-(12 05334)B )0

= 0-0133354 + 0-03B — 0-006C



BALTIMORE TRUSS ' 147

For reasons stated against equation (viii), page 56, maximum

stress occurs in AB if 52 = 0,

i.e., if 0:0133354 <+ 0-03B — 0-006C = 0
orif 0-0133354 4 0-03B = 0-006C
= 0-006(W — 4 — B) by
equation (i)

if 0024 + 0-04B = 0-006 W
if 24 + 4B =3iW
te,if 344 6B =W.

For a uniformly distributed load this equation of condition can
be easily fulfilled, but with concentrated loads it may be found
quicker simply to find the max. stress in 4B, directly from the
influence line, by trial and error.

Member BC. The section line is YY and the moment centre is 7,
Fig. 102 (e). So long as unit load is to the right of panel point O
only one external force, Rp, acts on the ABYYHF portion of the
bridge, Consequently, moments about I, CI X stress BC = FI
X Rp, whence stress BC = IC;,—‘—;RF

= 2-4Rp.

The stress influence line will rise from zero at L to a max. value, at
the vertical through O, of 2-4Rp = 24 X {f; =1-4T, since Rpis {4;T
when unit load is placed at O.

Unit load at H means a new type of moment equation, because
there are now two external forces acting on the broken piece of
bridge, i.e., CI X stress BC = FI X Ry — 1T X HI. As Rphas
the value of 4T with unit load at H then

50’ X stress BC = 120" X §T — 1T X 40’ or stress BC = 0-8T

From this point the influence line drops to zero at F, Fig. 102 (c).

Maz. Stress 1n BC. Substituting the new values for the tangents
of equation (vii) :— |

38 08 14 — 08 14
w4t 2 1m0
© = 0-014 + 0-03B — 0-01C

C

Thereisamax.stressinBCifg—g=0
s.e., if 0:014 4 0-03B — 0-01C =0

if A4+43B-C =0
or if A4+3B—-(W—-—A4-—-B)=0
or if 2444B =W.
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Web Members

With a cross girder at F the reaction influence line for the main
bearing at F is the triangle Iff", Fig. 103 (b). However, since the
panel load at F goes straight through into the main bearing without
affecting the main girder in any way, the influence line for the
reaction as it affects the main girder is[fm. This is also the influence
line for the reaction when there is no cross girder at F and the end
stringers rest directly upon the abutment wall, as previously
explained on page 57.

Member FS. The internal forces acting in members FS and FM
together with the external reaction form three forces acting
at a point, whence it follows that the vertical component of the
stress F'S, 1.e., of Spg, must balance Rp.

N
s RF=SFS><sin;Sé"M=SpS><MS—Sp X e=— 25

FS 32-015
or ‘SFS = 1281RF

Because the influence line for Ry is a triangle then that for Srg is
also a triangle, but one whose apex value is 1-281 times that of Rp,
t.e., 1281 X 0-9167 = 1-174.

Similar reasoning gives the apex value of the triangular influence

line for FM as Ry X cot AS/F')I = Rp X %8 = 09167 X 0-8 = 0-733,
as was previously obtained for Fig. 101 (b) by the method of
Section and Moments. }

«~ Member SM is simply a suspender supporting the cross girder at
M. As the load travels from G to M the load on SM gradually
increases from zero up to 1T, at which value unit load has arrived
at M, and then gradually decreases again to zero as the 1T load
approaches F. As explained on page 66, the influence curve is a
triangle and is given by diagram (e), which is also the I.L. for all
the suspenders, SM, TN, UO, etc.
¥ Member SG. The load from panel point M travels up MS and
bifurcates at point S, one half going down SG as a strut and the other
half down SF The vertical component of ;Ssa is always one half

26
of the load in SM. '}S,su = Sgg X cos MSG S,ga X 32 015

Sse = 0-6483y, and the I.L. for SG is a triangle like that for SM,
but one whose apex value is 0-64 X 1T. A reference to the stress
diagram of Fig. 106 will show that the stresses follow the paths
outlined.

Sub-tie DW (and CV, CU and BT). Here again as the load
arrives at point W it splits into two equal portions, one half going
up tie WD and the remaining half enteriny the main diagonal.
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The vertical component of Spw = 3Swq

‘. (3DJ = DW)Spw = }Swq
25
or msnw = 4Swq, t.€., Spw = 0- 64SWQ
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Therefore the I.L. for Spw is a triangle like that for Swq and with
an apex value of 0-64T. An examination of the stress diagram will
verify that the panel load in a suspender takes the routes indicated.
Member SA. Referring to the inset figure, 103 (h), the length of
the lever arm yG is obtained by comparing similar triangles 4Gy and

i GA x GF
x 50 x 40 ,
16 G 30 = A5 G2
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With the moving load confined between L and G there is only one
external force, Ry, acting on the broken end-piece of the bridge and,
taking moments about @, 31-235'Sg4 = 40'Rp. The maximum
value of this straight line occurs when unit load is placed at G giving
RpF a value of §T and so Sgq4 = 40" X §T = 31-235" = 1-067T,

When unit load enters the small end portion of the bridge consider
the right-hand reaction R; and 31-235'Sgs = 200R; or Sgq =
6-403R;. The max. value to this expression happens with unit
load placed at G giving Ry a value of 3T and Sg4 its maximum
ordinate of 6-403 X } = 1-067T. These two straight dines form the
triangle of diagram (g).

Vertical AG. In Fig. 103 (i) as unit load moves from F to M
suspender SM is brought into action and so also is SG@, which
transfers to panel point G one half of the vertical load in SM. This
panel point load at G has then to travel up the main suspender GA--
to get to the abutments. The influence line so far outlined is from
zero at f to sm = 3T, with unit load at M. Approaching G from M
more of the load goes to panel point G from the stringer MG and
less into the suspender SM until point G is reached when the full
panel load of 1T is wholly carried by AG. Now it is known (page 43)
that between panel points influence lines must be straight and the
curve fmg now traced out is therefore absolutely straight since the
panels are all of the same length. As the load travels along stringer
GN the reaction at G becomes smaller while that at N increases.
With the moving wheel at N the whole load is supported by NT,
thence into the main diagonal H4 and sub-tie TB without placing
any stress whatsoever on main suspender AG, and so the closing
line of the curve is gn.

Mazimal Stresses, Fig. 103 (b) to (i). Each influence line being a
triangle, the rule is that the load per ft. to the left of the apex
should be equal to the load per ft. to the right in order to obtain
the position of the load which gives the maximum stress.

« Vertical BH, Fig. 104 (a) and (b)

Portion LI. When unit load lies anywhere between L and I
there is no stress in the sub-ties NT and T'B, and these, for such a
load position, could be well left out as in Fig. 105 (a). The stress
influence line is thus of the standard form for a Pratt truss, Fig.
105 (a), and rises from zero value at L to 0-5T at 1.

Portion 10. Now referring to Fig. 104, it is clear that if 1T be
placed anywhere between I and O the positive vertical shear is Rf
and is constant in value between ¥ and O, and consequently th
stress in HB is compression and equal arithmetically to Ry. Whei

unit load is at O the value for Rp is 4}, or 0-583T. So far, then, the
influence line is straight from [ to o, Fig. 104 (b).
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Portion OH. From point O advance the load to H. If in Fig.
105 (a) one were to leave H and travel up HB, then down BI and so
ultimately arrive at L no external load would be encountered, and
therefore the stress in HB is equal to the negative shear between
H and L, i.e., equal to Ry or §T. The stress in HB has now changed
from compression to tension since Ry tends to push B upwards
away from H. The influence line as at present determined is lok in
Fig. 104 (b). .

Portion HN. When unit load is placed at N it, in effect, travels
up suspender NT, breaks into two equal parts at T, one going up
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TA and the other, T'B, with the result that the panel loads at 4
and B are each 4T. Having endowed unit load with the climbing
propensity of the primates the path NT, TB can be removed leaving
the 4T loads secured at points 4 and B of the simplified truss of
Fig. 105 (b). The reaction at F is §T whether unit load at N be
considered or its equivalent at 4 and B. There being no external
load at H, the vertical component of the force in AH must be the
same as the force in HB, 1.e., the vertical shear of $T. This positive
shear subjects vertical HB to a compressive stress, and the point #
of Fig. 104 (b) is another point on the desired influence line lohn.

Portion NF. A load at @ (or any position between G' and F)
affects only the primary members of the Pratt truss of Fig. 105 (b)
and the bars NT and T'B could be removed if desired. For this load
position the stress in BH is due to the shear in panel GH = Rp — 1T
at G = §T — 1T = — 4T,

The negative shear causes tensile stress inBH.

Alternatively it is due to the reaction Ry. Lét the load be
anywhere between F and G at a distance z’ from F, then the
reaction L = 1T X 2’ - 240".

.". stress in BH is tensile = z’ < 240, 1.e., a straight line.
Unit load at G then Spg = 40 = 240 = —}r
”» ) M ”» = 20 =~ 240 = — 1J!_'l.‘

and the complete influence line is lokngf.

Mazimum Stress. Max. compressive stressin BH with a U.D.L.L.
will be obtained by breaking up the live load so as to cover the
positive segments, and max. tensile stress in BH by covering the
bases of the negative triangles whose apices are — }T and — AT.
However, some specifications do not countenance this partial
breaking up of the load and they suggest for max. compressive
stress in BH that the live load should either (a) extend from I to the
neutral point between O and H, or (b) cover all the span. A
mathematical criterion can be worked out on the lines previously
laid down, viz., finding the equation embracing the various tangents,
differentiating, and equating to zero to give a max. value, a
procedure possibly of more academic interest than practical utility.

Vertical CI. In the simplified truss of Fig. 105 (b) this member is
redundant, and so in Fig. 104 it can only receive stress through the
sub-bracing system, which limits the influence base line to a length
equal to HJ. Unit load approaching O from H increases the stress
in OU and UC from zero up to a max. value when 1T is at O, In
this last position the equivalent panel load at C is 4T and this §T
must travel down the centre vertical CI on its way into the main
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diagonals. Shifting unit load from O to F decreases panel load O
and increases that at /. When the wheel arrives at I no stress goes
up UC to panel point C and so no stressisin CI. The panel load at I
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is shared equally between diagonals IB and ID without affecting
IC which is now redundant. The same reasoning applies to panel
IJ and the stress influence line for CI is the dual triangle of
diagram (c).

Diagonal AT. Assume a vertical cutting line midway between
G and N. There is only Ry acting on the left-hand portion FAG
when unit load is to the right of N.

Vertical componer " of Syr, the stress in AT = Rp

R SAT cos G{‘i}I = SAT(AG - AII) = Rp -

o Sar = (4H = AG)Rp = (6403 + 50)R, = 1-281R;
- The influence line for S, is a straight line from nothing at L to
1:281 X 4T = 0-961T at N, since Rp is §T when 1T is at N. The
stress in AT for this load travel is tensile.

When unit load is between G and F consider Rz, whose value
with 1T at G'is §T.

Sar cos ({A\H now equals Ry, t.e., Syr = 1-281R.; a straight
line from 1-281 X 3T, or 0-213T at G down to zero at F. This
portion of the load travel induces compression, while the completed
influence line is fgnl of diagram (d).

Driagonal TH. Subsidiary bars NT and 7B are redundant and
can be taken out if unit load is confined to move between L and H,
and so the simplified panel ABHG cxists as shown by Fig. 105 (b).
Stress in TH is tensile and equals (AH = AG)Rp = 1-281Rp.
Since Rp is §T with the load at H, the max. value of the foregoing
straight line is 1-281 X £T or 0-854T.

Similarly when the load lies between G and F the bars TN and
T'B are redundant and the stress in 4H or TH is 1-281R;. The
stress in TH is now compression with a max. valuc of 1:281 x 3T
or 0-2135T, when unit load is at G.
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So far, then, the influence line traced out is from ! to A and from

to g.

Ngw place the unit load at the doubtful point N, an action which
brings TN and 7B immediately into play without directly affecting
the stress in TH, because, as we have seen, the load travels up NT,
bifurcates at T, and, taking the dual paths of T4 and T'B, deposits
3T panel loads at 4 and B.

From the partial influence line fg and I of Fig. 104 (e) it is to be
observed that the 3T load placed at 4, relative to the span, causes a
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compressive stress in TH of one-half of the ordinate at g (4 of
0-2136T) while the 4T load at B creates a tensile stress in TH of
one-half the ordinate at k, namely } of 0-854T. Hence a nnit load
placed at N, a point which is midway between points @ and H,
induces a stress in TH which is the mean of the stress ordinates at
@ and H. In other words, the required stress ordinate at n is the
mean of the stress ordinates at g and A and it thus follows that the
closing line gnh is absolutely straight. Alternatively, when load N
has been replaced by 4T loads at 4 and B, Fig. 105 (b), the bars TN
and TB are redundant and can be removed. Considering this
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denuded truss, it is seen that the stress in AH = Spg = 1-281
(shear in panel GH) = 1-281 X }T = 0-32T, tension. But this
value of — 0-32T is the mean of + 0-2135T and — 0-854T of Fig.
104 (e), and thus lies on the straight line joining the two last
mentioned ordinates. The complete influence line fgnkl now derived
for Srg is identical with the stress influence line for the complete
and unbraced diagonal 4H of the ordinary Pratt truss.

Members BU and Ul are derived in a manner similar to that of
AT and TH respectively.

Maz. Stress in Members AT, TH, BU and UI. The laws govern-
ing the disposition of the loading to give max. stresses in these
members are those given relative to Figs. 33, 34 and 35.



CHAPTER XIV
MISCELLANEOUS TRUSSES

PENNSYLVANIA OR PETTIT TRUSS

Tuis truss is a derivative of the Bowstring, the Pratt and the
Baltimore types of bridge trusses. The general method of obtaining
the stress influence curves follows the lines laid down in the section
devoted to the Bowstring girder because many of the moment
centres now lie outside of the truss.

The intermediate suspenders are again the agents whereby the
panel loads at their lower extremities are transferred to the upper
boom panel points. If the panels are of equal length then the amount
transferred to each of the top boom panel points on both sides of a
suspender is one-half of the suspended load. Although this means
that the vertical component of the stress in each of the sub-ties is
the same, for unit suspender load, yet the triangular shaped stress
influence curves will have different values for the ordinates to the
apices because the inclinations of the sub-ties are different. Thus
sub-ties CU and BT will have the respective apex heights of
31[CU = (CI — UO)]and 47[BT - (BH — NT)]; the arithmetical
value of the latter is 4T(34 — 27-5) = 0-618T.

In view of the full explanation given for each member of the
Bowstring and the Baltimore trusses no difficulty should be
encountered in verifying the typical influence lines given on Fig. 107.
A brief summary of the straight line equations as derived for these

influence lines is given under.

Sps.= Ry cosec SFM = Ry(FS = SM) — 1-28Rs

Ssa = Rp X F& - 31-31, with load between L & G = 1-277RF
= R, X GL = 31:31 ’ ’ G & F = 6-387R,,

Spc = Ry X FI =-49-61 ’ ’ L&O = 2-419Rp
= Ry X IL = 49-61 ” ’ H & F = 2419R;,

Member BU has its moment centre outside of the '
truss at point Y so giving a lever arm of 298-96',

Spy = Rp X YF -+ 29898, with load between L &0 = 0-9366R,

=Ry x YL - 29896 »  H&F =171393R,
166
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Syr = Rp X YF = 29896 with load between L& I = 0-9366Rp

=Ry x YL = 29896 ,, » H&F = 1-7393R,,
Member BH has its moment centre at Z.
Ssg = Re X ZF <+ ZH,withload between L& 0 = 0-5Rp

Member BT is not acting for the foregoing load
travel and the cut ends of BH tend to meet, indicat-
ing compressive stress in the member,
Spr = Ry X ZL - ZH, with load at point H = 1-8R;
With unit load at H member BT is redundant ;
while the portion of the structure on the right-hand
side of the section line tends to move upwards
relative to the left-hand segment F AT H showing that
Spg 18 now tension.
Spg unit load at N. Replace TN and 7B by 3T
load at 4 and another T at B, then
Spg = (Rp X ZL — }Tat B X ZH) - ZH
= (}T X 340.— } x 180) -+ 180
= —5 =180
i.e., clockwise moment causing cut ends to meet,
compressive stress = 4 0-027T
Spr = Ry X ZL - ZH, with load between G & F = 1-8R,,
For the above travel of the load, members TN and
T'B are redundant.
Members HO and OI have always identical
stress ; moment centre is at B.
Sgo = Ry X HL -~ BH, load between F & H = 3-6R;,
=Ry x HF -~ BH ,, , H&L = 17R;

PRATT TRUSS WITH DOUBLE PANELLED STRINGERS
In Fig. 108 (a) there is a cross girder placed a+ every second panel

point of the truss, and it is now proposed to inv :stigate what effect
this has upon the influence lines.

Bottom Flange

Member NM. The moment centre is at D. As the unit load
travels from R to N the standard piece of influgnce line m, of
diagram (b), is traced out. The height of ordinate ¢4 is found by
placing the load at N so giving R, a value of §T.
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The BM.p = R; X 4D = 44D
Syy = B.M. = depth = 44D < DM
, =ix3panels 3p e

1 panel )
Similarly portion jl is of standard form with tae load
between J and L.
Unit load at L gives Rr a value of 1T and the
BM.p = DI X Rr = }DI
while the corresponding Syy=4$DI+-DM=}x5p+-p = 1}T
Finally place unit load on stringer LN. As there is

no cross girder at M there can be no panel load at this
point. The local reaction from stringer LN at L is

RL=1T X z - LN =z -2
and the main reaction at J is 1T(NR + z) —~ JR = ﬁ)—s-:—i
B.M.p = R; X AD minus the local reaction or load
at L X CD
_4dp+= z _12p—z
= '—Bp— X 3p — 2—p' Xp = 8
. 12p — 2 12p — =
The SNM = B.M. - depth = 8 -—p = Sp
a straight line, the two extreme values of which are
found by placing :—
12p
a) z=0and S == = 137
(a) yu =g, ¥
12p —
(b) z = LN and Syu= =2 = 4 — 1y
The final influence line is the truncated triangle
jlnr of diagram (b).
Member ML. The moment centre is now C.
Load between R and N

1T at N then Syz = Ry X AC = CL = }T X 2p-+p= 1T
Load between L and J

17 at L then Syz = Rg X CI = CL = }T X 6p+p = 13T
Load between N and L

B.M.0=RJXAC—RLX0=1—E%X2P =é£itf

ip + 2 ip+x
Suz =—£;——rdepthp = p4p
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z=0 thenSyr=4p+4p = IT
z = NL then Syr = (4p + 2p) - 4p = 13T
The triangular figure of diagram (c) is the desired .
influence line.
Member LK. From R to L the influence line will
follow the standard type and Spx = R; X 4B = BK.
The reaction at J is $T when unit load is placed at L,
hence Seg = $p =+ p = 3T
Now consider unit load on the stringer JL and let y
be the variable distance measured from J.

Rr=1T x y = JR =§’;

and Ro=1Tx y + JL —_-%D
- ctox L _ax ¥ ¥
BM.3=BIX Rp—BCX R, = Tp X 8p p X 2 =3
. . 3y . 3y
..SLK=B.M.-:-depth =§—_—p =-8;

The terminal values of this straight line are :—
Load at J, y = 0, then Syx

=0
Load at L, y = 2p, then Szx ={r

Member KJ is redundant and has no direct primary
stress,

Top Flange Members
Member DE has moment centre at N.

Travel RN. Spg = R; X JN == EN = 4R,
Load at N, then Spg = 4 X 4T = 9T

Travel JN. 8Spg = Rr X NR - EN = 4Rp
Load at N, then Spg = 4 X 4T = 9T

Member CD. The moment centre is point M. Travel
RN conforms to the standard ; unit load at N causes a

stress in CD of Ry X JM -~ DM = 3T X 3p +—p = 13T
Travel NL.
_RN+‘”__4P+$ oz =z
12p —
Scp=(Ryx JM — Ry X LM) =~ p e

8p
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Load at N, z = 0, then S¢p = 12p = 8p = 1§T
Load at L, = 2p, then Scp = (12p — 2p) - 8p = 1}T
-y _Y¥

Travel LJ. Rp=y -~ JR = 3p
- cp=Y xbpo _
SCD—RRXMR—])'—SPXE)}) el -—*SP
Load at L, y = 2p, then Scp =5 X 2p - 8p = 14T

Load at J, y = 0, then Scp =

Members AB and BC are investigated in a manner similar to that
given for members KL and LM.

Web Members

Members DM and CL. The load carried by these members is
numerically equal to the shear in the stringer panel LN.

Load between R and N, then Spy = Scz = R,
Unit load at N, Spy = Ry =37, ‘
compression.
Load between J and L, then Spy == Scr = Rr
Unit load at L, Spu = Rr = }T, tension.

No load is applied at M, and from the text given in connection
with Fig. 32 it is known that the line joining points e and ! must be
straight, so giving the influence line jlernc of Fig. 108 (i). Alterna-
tively, obtain the straight line equation for the shear in pancl LN
with unit load placed in the panel at a variable distance z from N,
as was done above for several of the other members.

Members BK and AJ will have the same stress because no external
load is applied between the panel points J and L. Unit load placed
at L causes R, to have a value of §T and so the ordinate ¢l of
diagram (j) is found. The line c¢r is drawn in as for the ordinary
Pratt truss and so also is ¢j because as unit load travels along
stringer LJ more and more of this load finds its way directly into
the abutment at J.

Member EN is redundant. The lowcr portion acts as a stool to
the cross girder and carries the load into panel point N.

Diagonals DN and CM. The vertical component of the force

in each bar equals the shear in panel LN. Spy X %%l = vertical

shear = Spy. .. Spy = DNSDM = 1-4148py, t.e., the influence

line for Spy is similar in form to that for Spy, but with the ordinates
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1-414 times as large. The stress is now opposite in sign to that of
Spu, and therefore Fig. (k) is a vertically distorted mirror reflection
of Fig. (i).

Diagonals BL and AK. For similar reasons Fig. (1) is a distorted
reflection of Fig. (j).

INFLUENCE LINES FOR ROOF TRUSS

Influence lines are of little use in roof truss design because
maximum stress in any member occurs when the truss is carrying
its full load. Hence one stress diagram gives all the maximal stresses

1 Dead L oaa’perpaoel,wm/(i/f
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simultaneously, whereas to accomplish the same object would, for
the French truss above, require no less than fourteen separate
influence lines.

As an example on influence lines, however, members CD and KL
will be considered in full detail, see Fig. 109.

It will facilitate the calculations to have the influence line for
reaction 4 handy for reference.

BM. atJ.
ITatC. BM.,y, =Ry x 75 —1Tx CJ
=§T X T8 — 1T X 15 = 5-06 ft. tons
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1T at D. B.M., = R4 X 7-5' (no load between
J and 4)
=4§T X 7-5 = 5-625 ft. tons
ITat E. ,, = R4 X 7-5’ (no load between
J and 4)
= §T x 75 =469
ITat F. ,, = 3T X 75, etc., t.e., astraight
line down to zero at’ B.
But the stress in UD X perpendicular lever arm to J = external
B.M. atJ.
.. Stress in CD = B.M., — 3-35’.
Stress CD. Divide the foregoing bending moment values by
3-35" and so obtain the stress influence line.
Stress KL. ™ ~ moment centre is now F and the section line

FM. Consi’ .-t0ad between F and B.

Stress KL= “lever arm FM =(R,x AM)~FM = 2R,
1Tat I Sires. KL = 2R, =2 X 4T =}r

1Tat H ’ = ,, =2 X §T = 4T
ITatG&F =2X T and 2 X §T = §Tand IT

When the unit load passes F towards E consider Rp instead of R4
for bending moment and it is seen that the influence line is a
symmetrical figure.

Stresses. 1f the dead load per full panel point is }T then the
total force acting in member CD

Scp=3X0+}151 +168+14 ... +028)T+3 %0

=3} X% 7397
= 1-84T
Member KL
Spr=34 X0+ HE+3+§2+17+4 X0

= IT.



CHAPTER XV
BRIDGE LOADINGS

THE three principal causes of stress in the members of a statically
determinate small span bridge are : (a) Dead Load ; (b) Live Load ;
and (c) Impact Effects.

It is upon the combined effect of these three items that the
preliminary design of the bridge is based. The permissible (or
working) axial tensile stress may vary from 7 to.Q tons per square

inch, depending upon the impact formula use! ..
Afterwards the stresses due to the undernote. . 4 (d) to (i), as
may apply, are calculated and added to the co 'd stresses (a),

(b) and (c) ; but for this summation the working stress is now raised
by an amount varying from 15%, to 259,, with the result that the
-gectional areas of the majority of the members, as originally
computed, require no enlargement. The reason for the higher
permissible stress, when dealing with the total effect of all the
stresses, is that the simultaneous occurrence of the worst possible
causes of stress will be but seldom in the life of the bridge. The
additional items are : (d) Wind Pressure ; (e¢) Longitudinal Forces
(tractive effort and braking effect) ; (f) Centrifugal Effect (where a
bridge is situated at a curve on the track) ; (g) Temperature Effect ;
(h) Deformation Stresses ; and (i) Erection Stresses.

(a) THE DEAD LOAD on a bridge is a constant static load and
may act with or without items (b) and (¢). The first step in the
design calculations of any member, main truss or secondary
stringer, is to make an estimate of the probable dead weight carried.
To facilitate this preliminary estimate a list of the weights of various
materials is given under. Where a material on the list has alterna-
tive weights placed against it, the heavier weight should be used
in the absence of more exact knowledge. A point not to be over-
looked is the presence of service mains, sewers, water mains, electric
cables, etc., and that these may have to be carried in the future, if
not immediately on the erection of the bridge. The young designer
often under-estimates the dead weight, possibly because he overlooks
connections, splices, secondary bracings, lacing, batten plates, etc.,
in his preliminary mental picture of the job.

Drawings and data of existing bridges, whether in the office file

165
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room or in text-books and current engineering periodicals, prove
extremely useful when estimating the dead weight of a bridge.

The beginner must remember that the live load is an important
factor and a necessary function to be taken into account when
comparing the weights of two bridges.

For preliminary work the following method gives quite satisfactory
results. The cross girder of the Plate Girder Railway Bridge,
page 71, will be taken in detail as the first example.

Railway Bridge Cross Girder (page 74)

Dead weight of track, floor plating, stringers,
etc., but excluding unknown weight of cross
glrder self (see item (a), page T4) per panel

point C, D, etc., of Fig. 55 = 3-21T
Live load and impact at 14-17T and 14-52T

respectively, items (b) and (c), page 74 = 2869

External load per panel point = 3190

The max. B.M. caused by the above external

loads, see Fig. 55, is 2 31-90Tx 8-5'—31-9Tx 5’ .

in ft. tons = 3828
If an effective depth of 2’ 9" be assumed then

the total flange stress, top or bottom, is the

B.M. = depth of girder = 382-8 < 2-75 = 1397
If f,, the working tensile stress, is 8T per net

square inch the net area of tension flange

required at mid-span is 139T -~ 8T per squareinch =  17-38sq. in.
A steel bar 17 X 1” in cross section by 1’ 0"

long weighs 3-4 1b.
Hence weight of net section is 17-38 X 3:4

per ft. run = 59 1b.
Weight of flange of net section for 23’ span

=59 X 23 = 1,357 Ib.

Approximately the weights of the top flange,
the web plate and the bottom flange of a plate
girder arc the same, but to make allowance for the
fact that the gross area of the tension flange
should have been taken instead of the net area and
also to cover for the weight of rivet heads,
splices, ctc., multiply the weight of the net flange
by 3} instead of 3.
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Approx. weight of cross girder = 1,357 X 3} .

<+ 2,240 1b. = 2-121
The figure of 2-08T used in the text of item (a),

page 74, was run out from the actual scantlings

after the girder had been designed, showing that

this easy method is reasonably accurate.

Railway Bridge Main Plate Girder (page 75)
Dead weight of track, floor, stringers and cross

girders, but excluding unknown weight of self

(see item (a), page 75) per panel point = 77T
Using the influence line for B.M.x, Fig. 58, the

resulting B.M. = 7-7(4-5 + 9 + 13:5)2 = 4158 ft.T
(Alternatively, consider the dead weight as

being uniformly distributed at the rate of

7-7T -9’ panel, in tons per ft. run of span.

Then approx. max. BM. = wi? ~ 8 = (7-7 = 9)

X 632 = 8 = 424 ft. tons.)
Max. B.M. due to wheel loads and impact from

summary, page 84, = 1,041'5 4 676-9 = 1,718-4 ft.T

Approx. total external moment = 2,134 ft.T

Assume, meantime, an effective depth of 57’
(¢.e., approx. span = 11).
Total flange stress=B.M. - depth=2,134 -5.7T =  375T

Net arca of tension flange at mid-span=375--8 = 47 sq. In.

Equivalent weight per ft. run = 47 X 3-4 = 160 1b.
Equivalent weight for the 63’ length or span

= 160 x 63 = 2,240 = 4-5T
Approx. weight of complete girder = 4-5T X

the constant of 3} = 16T

Warren Truss Bridge, Main Girder (page 85)

For a braced girder the constant is 4 instead
of 34, provided that the girder depth is kept to
span - 10. When the depth is greater than
this, e.g., span = 7, the constant has a value
round about 4}.
Dead weight of floor per ft. run = 154 1b./sq. ft.
X 10" = 2,240 = 0-688r
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From page 85, dead weight of cross girder is
09T — 2 per panel or per ft. of main truss

= 0-45T - 15

U.D.L.L. per ft. of main truss = 100 1b. X 10’

= 2,240

(U.D.L.L. gives larger B.M. than the wheel
loads 4 impact.)

Total, excluding weight of self

Approx. max. B.M. at mid-span = wi? =8

= 1-164 x 752 - 8

Total flange stress at mid-span = B.M. -

depth = 818 = 7-5

Net area required at the specified £, of 7T/sq. in.

=109 -7

Approx. weight of girder = 15-6 X 3-4 X 75

X constant of 4 — 2,240

WEIGHTS OF MATERIALS

IN BRIDGE CALCULATION

= 0-03

= 0-446

= 1-1641

= 818 ft.T
= 109T
= 156 8q. in.

= 7T

Material. Description. 1b. per cubic foot.
Aluminium Cast-hammered. 165
Ashes and cmders Dry, loose. 30-45
Asphalte Rock. 136
Ballast Stone or slag 90-100

» . Gravel. 100-112
Basalt, trap 180
Bitumen 90

- Brickwork . Ordinary. 112-126
’ Pressed. 140
Brass Cast-rolled. 530
Bronze 510
Cast iron 450
Cement (Portland) loose. 90

» . . set. 183
Cement concrete . Aggregate, breeze. 90

” ” ” rick. 112

» ”» stone 140

o ”» Reinforced. 160
Clay . Dry, compact. 100
w ¢ Plastic. 100
Cork . 18
Copper Cast-rolled. 566
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WEIGHTS OF MATERIALS—continued

169

Material. Description. 1b. per cubic foot.
Earth. Loose and dry. 76
» . . Loose and moist 78
w . . Packed and dry. 95
» . Packed and moist. 96
Granite 160-170
» Chippings. 90
» . Mortar rubble masonry. 155
Granolithic 2to 1. 140
Gunmetal 549
Lead . 710
Limestone . 160-180
. Broken, 359, voids. 110
" Mortar rubble masonry. 150
Macadam Tar. 140
v Rolled. 160
Masonry Ashlar (freestone). 140-150
» Rubble. 140-155
. Squared stone. 145-150
Paving Granite sett. 155-160
»”» Rubber. 60
»» Whinstone sett. 160-170
»”» . . | Wooden block. 45-56
Phosphor bronze . | And manganese bronze. 549
Pitch 73
Sand . Dry, clean. 90
» e Wet. 115
»w . Wet, compressed. 120
Sandstone . 150
» Mortar rubble masonry. 140
Snow Newly fallen. 6
Steel . 489-6
Tar . 62-64
Timber Usual constructional. 44
- Greenheart. 74
9 Jarrah and Karri. 60
»”» . Oak. 45
» Teak. 41
Water Fresh (in pipes). 62-5
' . Sea.. 64
Wrought iron 480
Floorings Stecl trough. 13-56 1b./sq. ft.

Jack-arch.

Buckled plate }” thick.
” ” : (%)
I ’” '3’ ”"

" ” "17|\ ”
2” asphalte on 1”7 sand on 4” concrete
on %" buckled plate.

140 Ib. /cu. ft.
10-2 Ih./sq. ft.
12-75 1b./5q. ft.
15-3 Ib, sq. ft.
17-85 1b./sq. ft.
85-90 1b./sq. ft.
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WEIGHTS OF MATERIALS—continued

Material. Description.
Railway track . | Chairs (weight varies). 456-66 1b. each.
» ' . | Fish plates and bolts (weight varies). | 46 lb. per set.
» ” . | Oak keys. 1} 1b. each.
”» ” . | Timber sleepers, 2’ 8” to 2’ 10" ¢/c. | 125 lb. each.
» ” . | Rails, bullhead. 76 1b. by 5 1lb. to
100 1b./yard.
» ”» . | Rails, flat bottom. 80 1b. by 5 lb. to
120 1b./yard.
»” ”» . | Single track of two rails, chairs, keys, | 1§ cwt./ft. run.
sleepers, etc.
Railing (hand) . | Vert. rods and horizontal flats. 15-20 1b./ft. run.
" . | Latticed flat bars. 20-30 1b./ft. run.
Rivet heads . | Add to weight of steel sections 5%
Steel . . . | Abar1sq.in.in cross section weighs | 3-4 1b./ft. run.
» . . . | Or approximately 32 1b./ft. run.

(b) THE LIVE LOAD is the transient load on a structure. With
a road bridge consideration has to be given to two types of live
loads, viz., pedestrian traffic and vehicular traffic : with a railway
bridge only the latter has to be considered.

Pedestrian  Traffic. The following equivalent weights are
commonly used in bridge design and no addition need be made
for the dynamic application of the load. Impact effect, however,
would require to be taken into account for the particular case of
soldiers marching in formation across a light bridge if the order
to break step were not rigidly enforced. It is to be recalled that the
denser, and, therefore, the heavier, a crowd is the nearer the live
load approaches the static state.

The following loadings are per square foot of road surface.

56 Ib. (4 cwt.). This allowance represents people moving in both
directions and is the loading suitable for the design of a light
country foot bridge.

*84 1b. (} cwt.). At this intensity there is impeded movement.
The value of 84 1b. is the commonly accepted one for use in the
design of pavements and possibly the roadway of a light bridge,
and is taken to include for the passuge across the bridge of herds
of cattle, flocks of sheep, horses, etc.

* B.8.8. No. 153 for Girder Bridges—revised September, 1937—specifies 84 1b.
but adds that * the Engineer may at his discretion vary this loading where speoial
circumstances require it,”
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100 Ib. (to 1 cwt.). This value indicates a dense slow-moving
crowd on the pavements and roadway of a small span city-street
bridge. A reduction is made in the intensity as the span increases,
but these two figures are often taken as the equivalent uniformly
distributed load for light traffic.

140 Ib. is the estimated weight of a throng of people, but it is to be
remembered that self-preservation will not permit of this density
over a large area.

181 lb. has been attained experimentally, but only by jamming
the arms against the bodies of the individuals taking part, and
is a case unlikely to be encountered in practice.

Vehicular Traffic. Even apart from the present indefinite state
of our knowledge as to the dynamic effect of moving loads on a
structure, it is impossible to state that a bridge has a definite factor
of safety against destruction. The stresses in the various members
of a bridge not only depend directly upon the value of the wheel
loads, but they also depend upon the spacing of the wheels, and both
these items vary with almost every vehicle (road or rail) which
crosses the bridge.

In the past, engineers, who had to design bridges, studied the
traffic nceds of their districts and issued various types of design
loadings. For roads in one district the specification might demand
a vehicle of 6 tons on two axles at 8" 0” centres and 5 0" gauge,
whereas bridges in the adjoining district and carrying the same
road might be designed for a given road roller or a traction engine.
Similarly in railway work, previous to the unification of the railways,
the usual load considered was two engines of similar type coupled
together preceding a uniformly distributed train load, but, naturally
enough, the locomotives varicd greatly as to axle loads and wheel
bases.

Railway Bridges. One of the most important contributions
towards standardisation of design loads for railway bridges was that
made in the United States of America by Theodore Cooper (1894).
Cooper’s loadings are composed of double-headed trains preceding
uniformly distributed train loads and the class of the loading takes
its name from the weight on the driving axles ; thus, E—60 means
60,000 1b. (or 60 “ kips ”’) per driving axle. Morcover, the E—50
loading has the same whecl spacing as the E—60, but the axle loads
are 50,000 1b., 7.e., the loads are in the ratio of 6 to 5.

The British Standard Unit Loading for Railway Bridges for a
single line of way, Fig. 110, is of the same form as Cooper’s loadings.
Although the Minister of Transport recommends 20 units (s.e.,
20 tons) per axle for main line bridges, 18 units seems to be a
common figure for the design of main and subsidiary line bridges.
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For a branch line with light traffic a smaller number of units is
adopted. Usually in the calculations both tracks on a bridge are
assumed to be loaded with double-headed trains and both sets
travelling abreast in the same direction. An actual locomotive
whose driving wheels may be at 7’ 6" centres with 20T axle loads
may, on a certain length of span, give approximately the same
stresses as the hypothetical standard loco with 16 units, or tons,
as the driving axle loads at the specified 5’ 0” axle centres, because,
as mentioned above, both axle spacing and axle loads affect maxi-
mum bending moment and maximum shear.

It may be interesting to state that the maximum axle load for
British railways is in the neighbourhood of 22T, in India it has
reached 28T, while ip the United States of America axle loads of
36T to 40T have been used in the design of special locomotives.

Road Bridges. Here again an imaginary set of vehicles is taken
as the standard loading on every 10’ 0” width of bridge, as given by
Fig. 111. Unlike the railway standard loading, however, the road

STANDARD LOAD FOR HIGHWAY BRIDGES.

At/ — Lrghe —e - ——Trer—e = Jrwiler —
Zoaods { t}m') ”?/’:')’ s 39
(T= 7ons)

MNSTRY OF TRANSFORT

£0ADS DEPT APRIL 1927
Note. The bridge shall be assumed to be loaded with such standard trains or
parts of standard trains as will produce the maximura stress in any bridge member,
provided that in any line of trains there shall not be more than one engine per
76" 0" of the span of the bridge, and each standard train shall occupy a width of
10’ 0°. Where the width of the carriageway exceeds a multiple of 10’ 0%, such
excess shall be assumed to be loaded with a fraction of the azle loads of a standard

train. The fraction to be used shall be the cxcess width in feet divided by ten.

FIG. 111

loads include a 50%, allowance for impact. Denuding the road
engine of its impact allowance and comparing it with the railway
loading it is seen that the axle loads are 14§ tons and 20 tons
respectively.

IMPACT. In the previous pages on influence lines the wheel loads
‘were really treated as temporary static loads. The live load system
was brought to rest at several positions on its passage across the
span and the corresponding stress on any particular member of the
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bridge was calculated for each position of the load. In effect one
could regard the procedure as if the wheels were slowly and gently
skidded from one position to the next, without shock or vibration
to the structure. Actually the high velocity live load is applied
impulsively or dynamically to the structure with a consequently
increased stress on the bridge member. This increase in stress
over that caused by the live load at rest is termed the impact
stress.

When a load is suddenly applied to the end of a light suspended
bar the resulting momentary maximum tensile stress is twice that
caused by the same load applied gently, provided that the elastic
limit is not exceeded and that the inertia effects are negligible. In
the case of a bridge, however, the load is not applied so suddenly
as in the foregoing case, neither are the inertia effects negligible,
nor is a bridge one single unit ; on the contrary, a bridge is composed
of a very large number of separate pieces of steel averaging
well over 100 for every ton of steel in the bridge. Further, one part
of a bridge may help a neighbouring member to carry stress. For
example, in the majority of through bridges with steel-plated floors
the calculated stress in the tensile flanges is seldom attained because
of the help afforded by the floor members in this relief of stress.
Painstaking experiments on existing bridges under ordinary traffic
conditions have definitely proved that this particular dynamical
effect of load application is not by any means so large as at one time
thought.

Among the other contributions to the stress increment or impact
may be listed the dynamic effects of hammer-blow ; flats upon
wheel treads; rolling, nosing and lurching of the locomotives ;
rail joints and badly laid tracks.

Hammer-blow. In a steam locomotive there are masses which
reciprocate in practically what is the horizontal plane, and others
which revolve about the axles and crankshafts. No difficulty is
encountered in completely balancing the revolving masses, it is the
reciprocating masses which cause the trouble, and the balance is
partially obtained by adding revolving masses to the wheels. These
revolving masses on the wheels certainly make for smoother running
of the locomotive, but they have a very severe effect upon the rails
and hence upon the bridge. If the locomotive speed be raised
sufficiently high it is possible for these balance weights to lift their
wheels off the rails once in every revolution of the wheel. This
hammer-blow is somewhat reduced in practice by the locomotive
designer balancing only two-thirds or less of the reciprocating
masses. It is the two-cylinder locomotives which create the most
harm as the modern three- and four-cylinder locomotives cause very
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little hammer-blow, while electric locomotives are free of this
particular trait. ‘

The intensity of the hammer-blow is not proportional to the
axle load ; a light locomotive may produce hammer-blow effects
much in excess of those given by a very much heavier locomotive.

The frequency of the hammer-blow hus a maximum value between
six and seven per second, and depends upon the diameter of the
driving wheels and the speed of the train. Thus for six revolutions
per second the driving wheels of diameter 4’ 6", 5’ 0”7, 6’ 0" and 7' 0"
would necessitate locomotive speeds of 58, 64, 77 and 90 miles per
hour.

Resonance. Practical research has definitely shown that in small
span bridges only the percussive effect of the hammer-blow is to be
contended with, but in larger spans there is an additional source of
stress by reason of the resonance set up. This is an approximate
synchronisation between the number of hammer-blows per second
given to the bridge by the driving wheels and the natural period or
frequency of oscillation of the loaded bridge. A simple analogous
case i8 that of a child on a suspended swing steadily increasing its
maximum height above the ground by a series of timed impulses
personally applied ; and hence the previously mentioned army
command to break step when crossing a bridge.

Lurching. Due to the lurching of the locomotive it has been
found that the wheel pressure on the rails varies by as much as 409,
of the static load value. The greater the locomotive speed and the
rougher the track the greater is the lurching effect.

Locomotive Springs. If these are friction locked the locomotive
participates in the vertical swaying motion of the bridge, but if
they are frce to act they may exert a considerable damping action
on the bridge oscillations.

Flats on the driving wheels have been known to cause considerable
damage to the track. They may cause hammer-blows just as serious
as those created by the partial balancing of the reciprocating masses
of the engine.

Other causes of impact, but to a lesser extent, are the rail joints and
the nosing of the locomotive. In long spans the first are inevitable,
but in short spans the joints can either be kept off the bridge or
arranged to be near the ends of the span. Still another method is to
weld the rail joints, which occur on the span, thereby making the
rail a continuous unit on the bridge.*

The impact stresses are not wholly dependent upon the external

* Unbroken lengths of 120" 0" are now being used on some British railways,

while, by welding the constituent parts together, continuous lengths up to 2,700 ft.
have been used on the main railways of Germany.



176 INFLUENCE LINES: IN BRIDGE CALCULATION

causes listed above, for they are also contingent upon the internal
features of the structure itself. Thus the type of main girders
adopted has an effect, and so also have the bearings, the piers or
abutments, and the floor. As an example of the latter it need only
be mentioned that a ballasted floor has a beneficial effect because
of its damping and cushioning qualities.

Rail Impact Formule. The impact stresses have to be taken into
account in the calculations either directly or indirectly. In the
direct method empirical formulee are used to obtain arithmetical
values for the impact stresses, either as separate items by them-
selves or in conjunction with the live load stresses, while in the
indirect method the working stress is varied in value according to
the intensity of impact the individual members are thought to carry.

As an example of the latter method, which is now falling into
desuetude, a through plate girder railway bridge would have
working tensile stresses of 5-5, 5-0 and 45 tons per square inch for
the 60’ 0” span main girders, the 23’ 0" span plate cross girders,
and the 10’ 0" span stringers, respectively.

In the direct method the first and probably the best-known
formula is the Pencoyd Formula originated in 1887 by C. C.
Schneider, Pres. Am. Soc. C.E., for the Pencoyd Iron Company of
America.

It was I = 300

L300

where I = coefficient, or factor, of impact by which the live load
stresses are multiplied,

and L = loaded length of the span which gives max. live load
stress in the member.

If the span is zero then the impact coefficient is unity, <.e., the
case of the suspended bar with instantaneous loading. As a further
example consider the case of a railway bridge of 200 ft. span and
assume that the dead load stress on one of the tension flange
members is 250T and the max. live load stress is 500T (i.e., with
the live loads at rest). The impact coefficient or factor is

300

I= 300 - 300 — 0-6, since max. B.M. (and flange stress) occurs
when the load covers all the span, and the value of the impact
stress is 0-6L.L. = 0-6 X 500T = 300T.

Hence the design stresses for the member are :—

D.L. = 250T
L.L. = 500t
I = 300t

Total = 1,050T
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If f, = 8T per square inch then the net tensile area required
= 1,050 = 8
= 131:25 sq. in.
For railway bridges the Pencoyd type of formula has been

greatly favoured, and it appears in amended forms in many
specifications, thus :—

Coeflicient I for a span of :—
Date. Authority. Formula.
Unity. 200°.
300
1887 | Pencoyd . A=z 7300 1 0-6
I= 400 0-5
1896 | Waddell . . = LT 500 08 -57
165
1916 | Waddell . N I= mo" 1.09 0-47
120
1923 | B.S.S.t+ . | I= A r N (1-15)% 0-41
( 2 )L +90
. 65
19256 | Indian Ry. Board | I = I+ 4 (1-00)§ 0-27

* Where n = number of tracks; taken as 1 in the examples,
1 Value is 1:31, but is not to exceed 1-15.
§ Value is 1-41, but is not to exceed 1-00.

It will be observed in the case of large spans that the allowance
for impact has steadily decreased since this type of formula was
originally specified.

The American Railway Engineering Association specifies a
formula of somewhat different form ; it is

I 300
=—
300 + 100
where, as hitherto, I and L are the impact coefficient and the loaded
length, respectively.

One objection offered to the foregoing formuls is that the calcu-
lated impact stresses depend upon axle weights and no apparent
direct provision is made for the other kinds of impact stresses which
have their sources elsewhere than at the axle loads.

t In place of one lingle formula to embrace all impact effects the revised B.S.S.

of 1937 gives a series of formulsm, one for each of the various causes mentioned in
the text. Also see footnotes, pages 73 and 181.
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Road Impact Formule. The impact effects are not nearly so
severe on road bridges. Two formule of the Pencoyd type in
common use in America are :—

100
® I'= 7350
(b) I = 17%2—5 (Am. Assoc. Highway Officials)

where I and L still have the meanings previously stated.
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The uniformly distributed load applicable to the * loaded length ” of the bridge
or member in question is selected from the curve or table.

The * loaded length ™ is the length of member loaded in order to produce the
most severe stresses. In a freely supported span the ‘‘ loaded length ™ would thus
be (a) for bending moment, the full span ; (b) for shear at the support, the full
span; (c) for shear at intermediate points, from this point to the fariher support.

In arches and continuous spans the ‘‘ loaded length  can be taken from the
influence line curves.

The live load to be used consists of two items : (1) The uniformly distributed
load which varies with the loaded length, and which represents the ordinary axle
loads of the M.T. standard train, perfectly distributed ; (2) an invariable knife-cdge
load of 2,700 lb. per ft. of width applied at the section where it will, when com-
bined with the uniformly distributed load, be most effective, i.e., in a freely
supported span : (u) for bending moment at midspan, at midspan point; (b) for
shear at the support, at the support ; (c) for shear at any section, at the section.

FIG, 112 (a)

For spans of unity and 200 ft. the values of the multiplying factor
I are, respectively, (a) 0-33 and 0-2; (b) 0-4 and 0-15.

Many specifications took advantage of this comparatively small
range of values by simply using a constant impact factor of 25%, or
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30%. The Warren road bridge of pagc 85 is an example of this
method, and the impact factor used there is 0-3 or 309,. The
corresponding impact factors by the above formule for this 75’ 0”
span bridge are (a) 027, and (b) 0-25. The diagrams of Fig. 68
show how these impact stresses are dealt with in the stress
summations,
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This knife-edge load represents the excess in the M.T. standard train of the
lieavy axle over the other axles, this excess being undistributed (except laterally
as already agsumed).

In spans of less than 10’ (i.¢., less than the axle spacing) the concentration serves
to counteract the over-dispersion of the distributed load.

In slabs the knife-edge load of 2,700 1b. per ft. of width is taken as acting parallel
to the supporting members, irrespective of the direction in which the slab spans.

In longitudinal girders, stringers, etc., this concentrated loading is taken as
acting transversely to them (i.e., parallel with their supports).

In transverse beams the concentrated loading is taken as acting in line with
them (s.e., 2,700 1b. per ft. run of beam).

If longitudinal or transverse members are spaced more closely than at 5’ centres,
the live load allocated to them shall be that calculated on a 5 wide strip. With
wider spacing this strip will be equal to the girder spacing.

In all cases, irrespective of span length, one knife-edge load of 2,700 1b. per ft. of
width is taken as acting in conjunction with the uniform distributed load
appropriate to the span or * loaded length.”

FIG. 112 (b)

Formula (b), viz., I = 50/(L + 125), was used in the design
calculations for the San Francisco-Oakland Bay Bridge for the
impact caused by road vehicles and 139, was added as impact to
the stresses produced by electric trains.
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A still simpler manner of allowing for impact effect is that of the
Ministry of Transport, see Fig. 111,* on page 173. The axle loads
of the standard vehicles are all increased by 50%, to allow for
impact, and in consequence no separate items for impact stresses
occur in the stress calculations. The heavy axles are taken at 14§T
net and 22T gross, inclusive of 509, for impact. But this figure of
22T total could, from the point of view of some specifications, be
regarded as 17T net, plus an impact allowance of 309, (5-1T), again
giving the total of 22T.

Some engineers regard this 22T axle as over heavy for present-day
traffic requirements, but as no one can foresee the loads of the near
future the use of the standard loading may ultimately save renewals
and strengthenings. (On the other hand, if the new working tensile
stress of 9T per square inch be used in place of the preyious 8T per
square inch this is equivalent to reducing the axle loads by approxi-
mately 11%,.) It is worth remembering that an increase of, say,
10%, on the initial calculated stress does not necessarily entail a
109, increase in the cost of the finished structure ; the extra stress
may necessitate an increase of 109, in the cost of the raw material,
but possibly very little addition to the fabrication cost. Again there
are other considerations which govern the selection of the scantlings
of a bridge member such as rigidity, minimum sizes, mercantile
sizes, appearance, maintenance, etc. That due attention should be
paid to future requirements, subject, of course, to present-day
economics, is borne out by the fact that some of the railway bridges
in the industrial parts of the United States of America have been
rebuilt no less than four times.

As with the railway impact formule, criticism is often levelled
against the impact allowance and the form for its provision in the

* The Ministry of Trans}Port has issued an equivalent loading curve (Fig. 112)
for the standard train of Fig. 111. The sccompanyi:;g notes issued state that :
* Impact is included and therefore need not be considered separately. Explanation
is given for its use in applying to various bridge members. It is thought that the
bridge designer’s work will be simplified by the use of this oquivalent loading as it
standardises the interpretation and method of application of the standard load,
leaving & minimum of calculation for design.

‘ On bridges whose span exceeds 75 feet a reduction has been made in the
intensity of loading as compared with the standard train. This is to allow partly
for the lower average weight of vehicles in the larger group, and partly for the
lessening effect of impact on the longer spans.

‘ For spans below 10 feet the equivalent loading makes allowance for bending
moments in both directions of which only the main bending moment need be
calculated. To allow for continuity in the deck slab or other type of flooring a
0-8 factor should be applied to the free bending moment obtained at midspan, and
the same bending monient is assumed to operate at the support. In end panels
and at the first interior support no deduction should be made.

‘* This equivalent loading (or the standard train on which it is based) is the
minimum loading recognised by the Ministry of Transport for highway bridges.”
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M. of T. standard loading for road bridges. The amount of practical
research and mathematical investigation which has been devoted
to the subject of impact is phenomenal, but no exact solution has
been, nor probably ever will be, proposed ; all that can be hoped
for is a compromise, and the simpler form this compromise takes
the cheaper will be the bridge.*

In the days of the fratres pontifices,t when a bridge failed, a
second, nay, on occasion, pheenix-like, a third, attempt had to be
made before stability was achieved. Undoubtedly much water has
passed under these bridges since then, .., if they are still standing,
but even in this scientific age the design of bridges is not by any
means a pure science, it is also an art.

* An indicatjon of the difficultics encountered in arriving at a suitable formula
for impact is furnished by the statement in the Foreword to the B.S.S. No. 153
(September, 1937). Herein it states that although the provisional formula of the
1923 edition should be discontinued, ‘* agreement could not be obtained upon any
one method which should be recommended in its place.” (Also see footnotes,
pages 73 and 177.)

t Fratres pontifices (L. Bridge building brotherhood), a lay or * third order”
of monks, t.e., a guild, whose duty it was in medival times to safeguard fords, build
bridges, and look after the safety of travellers. Peter of Colechurch (d. 1205), who
built the famous London Bridge—a stone structure which stood for 600 yrars—was
a member of this order.



CHAPTER XVI
INFLUENCE LINES FOR DEFLECTIONS

THE preliminary paragraphs of this section will be devoted to a
brief explanation of graphical integration. This method is an
extremely useful and accurate one for obtaining the elastic curve,
1.e., the deflection curve of the neutral surface of a loaded beam or
girder, no matter what type of loading has been employed. It
requires no knowledge of the integral calculus in its application,
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and for complicated load distribution it is distinctly a quicker
method than the mathematical one of evolving the equation of the
elastic line. If done with ordinary care the accuracy of the results is
of a high order, as will be seen from the mathematical results given
alongside the graphical ones. The graphical results have been given
as they were found and have not been tampered with in any way.
In most cases 1 in. scales have been shown on the drawings to serve
as checks on the reduced reproductions.
163
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Gwven the curve abedfhiwy of Fig. 113, to find the area contained
between this curve and the X and Y axes.

Construction. Divide the base line of the curve, or X axis, into
several parts, AB, BC, CD, etc., usually made equal for convenience
and scaling about }” or }” each, depending on the size of the drawing.
FG and GH are odd lengths made to suit the curve and so simplify
the drawing, while lengths 4B and BC are made larger than the
others in this case in order to show the construction clearly.

Draw the mid-ordinates of all the foregoing divisions, kp, lg, mr,
etc., and project points p, g, 7, etc., horizontally across to the ¥ axis
80 as to give the corresponding points P, Q, R, etc.

Take any pole, or point, O, such that the ““ polar distance ”’ 04,
universally known as H, is, preferably, an integral number of
inches, e.g., 17, 2", 3", etc., although lengths such as 13", 24", etc.,
will be found useful at times. Join O to P, O to @, O to R, etc., and
draw A4b’ parallel to OP, b'c’ parallel to 0Q, c¢'d’ parallel to OR, and
so on, thus giving the secondary or integral curve.

Proof. Now if the divisions 4B, BC, etc., are small the chords
and the arcs will be coincident, %.e., arc ab becomes practically a
straight line, and all such figures as 4Bba become trapeziums.

Area of trapezium bcCB = lg.BC = AQ.b't e o . (a)
By construction the triangles A40Q and tb’c’ are similar ;
49

S OA= (Euclid : Book VI, prop. 4)

| AQ.b't = 04.t'
te., by (a) area bcCB=04.tc' =H.tee . . . . . . . (b)

If, for the primary curve, the vertical scaleis 1” = Y units and
the horizontal scale is 17 = X units, then

the true area of bcCB = (lq.Y)(BC.X) =1lq.BC.YX
= H.t¢'.YX by (a)and (b)
= HYX.tc . (c
The vertical scale of the secondary curve is thus 1" = HY X, and if
an ordinate scales t¢’ actual inches then the area represented by tc’
is HYX .tc'.
Similarly, true area of abBA = HY X . Bb
w s acC4d=HYX.C¢
., , adGDA = HYX .Gy ; i.e., in all cases HYX
times the ordinate at the point to the secondary curve.

In the example the vertical scale Y was 1" = 20"
the horizontal scale X was 1" = 10"
and H was 1" = 2 (simply a number)
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then the vertical scale to the integral curve is 1" = HYX
=2 X 20" X 10"
= 400 sq. in.
As the original drawing is reduced in size for reproduction the
original inch scale is drawn in, and measuring Gg’ with dividers, and
reading the dimension on the inch scale, Gg’ is found to be 2-83" long.

Hence area of figure adGDA =0G9 X HYX
= 2-83 X 400 = 1,132 sq. in.
2
The equation of the primary curve is y = — %)—{— 2z + 14, and,

as a check on the accuracy of the graphical integration, the result
by calculation is :

z = 46-07 . 4607
fydz = —6%+a:2+14z]
r=0 0
— T8 | o199 4 6a5
60
= 1,138 sq. in.

Negative Areas. The primary curve crosses the X axis at ¢ and
the area between the curve and the X axis now becomes negative.
The construction of the secondary curve still follows the method
previously explained, viz., project the ends of the mid-ordinates
across to the Y axis, then join to pole O and draw parallels to the
rays from O.

Total area of curve adGjJHDA = HYX .Jj' = 400 X 2-09

= 836 sq. in.

60 " 60
By calculation it isjydx = [A-()TO + 2% + 14z]
0 0
= — 3,600+3,600+840 = 840 sq. in.
Deduction. Although of no direct bearing upon the subject under
discussion, the following deduction is of use in engineering, viz.,
to divide the given arca acGCA into any number of equal areas.
Construction. Let the required number be three, then divide
any line Gz, from @, into three equal parts, and by means of parallels
divide Gg’ similarly. Project g horizontally along until it cuts the
secondary curve at s’, and from this point drop the vertical s'S.
The shaded area SsfG is one-third of the given area, because B¢,
the length of ordinate belonging to the shaded area, is one-third
of Gg'.
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Relationship between Load, Shear, Bending Moment, Slope and
Deflection

Shear. If the intensity of the loading on a beam be w tons per
inch run, then the summation of the loading between two points
on the span is the change in shear, or as mathematically stated in
text-books on strength of materials,

Zy
fwdx = change in shearing force V ;
Zy

i.e., graphically sum the area of the load curve and so obtain the
shearing force diagram.

Bending Moment. Similarly, if the shear curve be graphically
summed, or integrated, the summation curve is the bending moment

diagram,

2
i.e., JJde = change in bending moment M.
z

The bending moment and shear which act upon a beam are
independent of the beam’s geometrical properties of shape and
depth, and would have the same numerical effect on whatever size of
rolled steel joist were used to span the opening, neglecting, of course,
the differences in the dead weights of the beams.

It is not so, however, with beam curvature, and the deflection or
sag for these, obviously, depend upon the elastic nature of the
material, or modulus E, and the geometrical properties of the beam,
or moment of inertia I.

The Value for Young’s (or *“ Stretch ”’) Modulus, E. For a simply
supported girder carrying a uniformly distributed total load W in
tons the elastic deflection in inches at mid-span, due to bending, is

3
given by the formula A = l%VELI’ where ! and I are in inch units

and E is in tons per square inch.

It is found when a girder is built up of separate plates and angles
riveted together, or is a braced structure, that the resulting deflection
is larger than that occurring when the beam or girder is a single
rolled section of equal moment of inertia. This additional deflection,
caused by the “give” or play in the riveted structure, is taken
cognisance of by lowering the accepted value of E from 13,000 tons
per square inch to 12,000 tons per square inch in the denominator
of the above type of formula.
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Slope. The graph or curve whose vertical ordinates represent
the slope of a beam in radians is thus obtained by integrating the
bending moment curve and dividing the result by EI.

Zg

. M .

v.e., J E_Id‘r = change in slope, or ¢, in radians.
z

If the quantities E and I are constant throughout the span, as they
usually are, then

Zg
1 .
%I Mdzx = change in ¢
Zy

Deflection. The deflection in turn is the summation of the ¢
curve, hence
Zy

¢dx = change in sag or deflection A.

zy
e, A = fq‘»dz = ff%dxdx.

Alternatively : If the bending moment diagram — EI be
considered as a load curve the secondary (equivalent to shear) curve
is the ¢ curve while the third and final integral curve is the curve
of deflection (equivalent to the B.M. curve). This loading of the
beam with the B.M. diagram divided by EI is known as the method
of elastic weights.

Continuous Integration from Load Curve to Deflection Curve,
Fig. 114

(a) Required to find the deflection of an 18" X 6" x 55 1b. R.S.J.
of 30" 0" span carrying a uniformly distributed load of 0-6T per
ft. run of span.

Change all dimensions into ton and inch units, since E is in tons
* per square inch and the moment of inertia I is 842 inch units to the

fourth power, .e., span 30’ 0” = 360" and '

0-6T/foot = 0-05T/inch.

(b) Since the downward load is of constant intensity, ab will be
parallel to AB at a depth of 0-5” ox 0-057, because the vertical scale is
1" = 0-1T. Polar distance H, is 1}", and since there is only one
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ray O,a the secondary, or shear, curve cd is a straight sloping
line.

(c) For clearness this shear curve was drawn under and not
superimposed on the primary curve as was done in the proof.

The base line 4,B, has now to be placed in position, which is a
simple matter with this particular example because the end reactions
are equal to each other, and hence 4,c = B;d = 9T or " actual
height with u scale of 1”7 = 12T. Recall that the scale is always
1" = HYX where H, Y and X refer to the immediately preceding
curve.

Had the original load intensity curve been unsymmetrical,
however, some difficulty would have been encountered in obtain-
ing the arithmetical values of the end reactions at 4 and B and
recourse would have been made to the graphlcal method outlined
under.(d) A plar dicloree Ff M, 2" o~ P\n*vuﬂ:
that these distances can be varied at will. A small H results in a
deep integral curve while a large H distance gives a shallow integral
curve.

Project the ends of the mid-ordinates to the shear curve across to
the Y axis and join to the pole O,. Commence anywhere, as at 4,,
and by drawing parallels to the rays the curve 4,B,; of .(d) is
obtained. Since there is no bending moment at the supports of a
simple beam the base line must be the straight line joining 4,
to B,.

In diagram (c) if the ray 0,4, be drawn parallel to the closing
line 4,B, of diagram (d) then the base line of the shear curve is the
horizontal line 4,B; drawn from point 4, at the end of the ray.
This follows because a ray in a force polygon drawn parallel to the
closing line or link of the corresponding funicular polygon gives the’
reactions on the load linc.

It is usual to show a positive bending moment curve on a
horizontal base line such as 4,B;. This curve is obtained from
curve A,B, by simply measuring and transferring the various
vertical heights by dividers or by markings on a strip of paper.
Calculation gives the max. B.M. as wi? -~ 8 = 0-05T/inch X 360"
X 360" — 8 = 810 inch tons, and the drawing gives it as 0-425"
X 1,920 = 816 inch tons, or 0-79, error.

(e) Now integrate the B.M. curve and obtain the slope curve to
scale. The scale of the slope curve is now HyYX divided by the
clastic constants of EI for the beam. Working in inch and ton
units, the polar distance being a number, the resulting scale is
1" = 0-014, a number, or radians.
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The formula for the slope at the supports of a beam with uniformly
distributed loading is

w3 _ 005 x 360 x 360 X 360
24EI — 24 X 13,000 x 842

while the result by drawing is vertical intercept of 0-63” x 0-014
= 0-00882 ; a difference of 0-679,.

As with the shear curve the base line in this particular case can be
positioned from symmetry at halfway up, .e., 4,6 must equal B,f.
With unsymmetrical load distribution this is not so and the base
line 4,B, is fixed by drawing 0,4, parallel to the closing line 4 ;B
of the succeeding figure (f), and the required base line is the
horizontal 4,B, from 4,.

(f) Base line 4,B, of (¢) may not be known at this stage, so take
the pole O, horizontally opposite to e and integrate the slope curve
to give the deflection curve 4B on a sloping base line. The base
line must be 4B, because there is no deflection at either support,
1.e., end ordinates have zero values. AgB, is this curve on a hori-

zontal base line having the same vertical ordinates, or intercepts,
as A,B;.

= 0-00888

5Wis

The standard formula for max. deflection at mid-span is 384EI

. 5 X (0-05 X 360) x 360 x 360 x 360 "

ves B = =g X 13,000 % 849 = 0999

By drawing = 0-6” vertical intercept X 1:68 = 1-008", an error of
0-9%.

Mazima and Minima. It will be observed that when a curve
changes from plus to minus by cutting the X axis then the succeeding
integral curve has a maximum value directly under the point of
cutting, ¢.e., maximum bending moment occurs at the point of
zero shear and maximum deflection at the point where the clastic
line of the beam is horizontal or has zero slope.

Deflection Caused by Concentrated Loads, Fig. 115

When a girder carries concentrated loads alone, or in addition to
distributed loading, the first curve which can be integrated is the
shear curve. However, it is recommended that wherever possible
the primary curve should be the bending moment one, thereby
contributing to the accuracy of the deflection curve by eliminating
one or two graphical integrations.

Fxg 115 shows a girder of 63’ 0" span supporting & one-ton load at
18’ 0" from one support. The first curve drawn, (a), is the bending
moment and by continuous graphical integration follow the slope
curve, (b), and then the curve of deflection, (¢’). The last curve is
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redrawn on a horizontal base line (c) and the vertical intercepts
¢k’ = ik and 5V =jl, etc. In this example a constant value of
2" for H is used.

The curves (c) and (b) are, of course, really smooth flowing curves,
but they are drawn for graphical reasons as a series of small straight
lines. If desired the curve of deflection (c) may be drawn in with
the aid of French curves. This curve (c), as will now be explained, is
the influence line for deflection for the point B on the girder AC.
The mathematical equation of this curve is derived on page 197.

Maxwell’s Law * of Reciprocal Deflections. A load F placed at
any point 4 on a girder (Fig. 116) will cause another point B to
deflect by an amount z, and if the load be transferred from the
first point 4 to the second point B the deflection which will now
occur at 4 is also z.

4 F
d l” 8 1 a
] ' T
x x
] v
@) FIG 116 A

Proof. Gradually apply a load F, to a beam, Fig. 117, from
zero to full value and so cause a gradually increasing deflection
under the load. If the deflection is y under the load, when fully
applied, then the work done, W, is the product of the average
force by the distance travelled, viz.,, W = }Fq.y.

If, with the load F, in position, the beam is further deflected by
some other external agent, and the load F, is caused to sink or
defléct an additional amount 8y, then the additional work, 8W,
done by F, is the product of the now unvarying force ¥, by the
distance, 1.e., W = F,8y.

In Fig. 117 (a) gradually apply load F, from zcro to full value.
The work done is W = 3}F.y . . . (D)

Next apply at B an additional and equal load Fb, also gradually
from zero to full value. This will further deflect the beam as in

diagram (b).
The additional work done on the beam is now :—
Average load of §F, X distance 8z = }F,.0z

plus the work done at 4 of constant load
F,x 3y = F,.8y

1.e., the additional work done = }Fdz + Fdy (2)

* James Clerk Maxwell (1831-79), of Penicuik, near Edinburgh. Cavendish
Professor of Experimental Physics at Cambridge University.
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The total work done in arriving at the final loading of (b) is
(1) + (2), ie., total W = 3Fy+3Fdz+Fdy . . . . (3)

., 5 L b

@) FIG 117

Next gradually apply loads F, and F, simultaneously from zero to
full value, as in diagram (b), and the same final deflection curve will
be obtained. The total deflection at B must again be = + 6z and
at Aitisy + dy. Hence total W = }F, (z + 8z) + 3F,(y + dy) (4)

Now the total work done, whether obtained by stage application
of one load at a time or with both loads simultaneously, must be
the same, t.e., (3) = (4). Dropping the subscripts a and b which
were attached to the identical loads F for clarity then :—

APy + §Fos + Fdy = }Fx + 4Foc + Fy + 4Fdy
1F8y = ¥z
dy=z
which is Maxwell’s law since z occurs at B due to F, and 8y happens
at A because of Fy.

Influence Lane for Deflection, Fig. 118
, 57 rr rr
/
c o e lo lo
97" ].?’5' I"Oﬁ’

4L _forDa. - LOROING -
@) FIG 18 A

1T at A4 causes a deflection at B of 123" .*, by Maxwell’s law

1Tat B ” . 4 of 1-23"

‘. 4Tat B ’ » Aof 123" X 4 = 492"
Smn]arly 5Tat(C ,, " Aof 07" X 5 = 35"
and 6T at 4 ” ” Aof 105" X 6 = 63"

i.e., the total deflection at point 4 due to the
loading = 14-72"

63’ 0" Span Railway Girder, A, Fig. 1156

This is the girder previously dealt with on page 71, and it is
desired to ascertain the deflections at a point B, 18’ 0" from one end,
a8 the British standard loco passes over the bridge. Usually it is at
mid-span where the deflection is required, but the mid-span case is a
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particular one, whereas that now dealt with is the general case.

The construction has been explained already and it only remains
to emphasise that unit load must be applied at the point whose
deflection is desired.

The influence line of diagram (c) can be graphed directly from the
mathematical equations (14) and (15) on page 197 by giving K its

value of ' or o
63" T
Moment of Inertia. The scantlings at mid-span are :—
Top flange. 3 plates 21" X §"
2 angles 6” X 6" X "
Web plate. 78" X §"

Bottom flange. 2 angles 6” x 6" X }”
3 plates 21" X §”

(It is more usual to make the flange plates an even number of
inches wide, such as 20” or 22", instead of 21”.)

Recall that it is the gross sectional area which is considered when
dealing with deflection because elastic deformation affects all the
metal in a member and not only the net area.

It is advisable to work the graphical example in tons and inch
units throughout since £ is 12,000T/square inch. However, if the
solution is being evolved mathematically the arithmetical work is
less arduous if £ is taken in tons per square foot (12,000 X 144) and
all linear dimensions and M. of I. in foot units.

The M. of I. of the girder is 177,550 inches?*.

(In foot units it is 177,550 = 124 = 8-56 feet*.)

Deflection for Unit Auxle Loads. The bridge by supporting a
double track causes each main girder to carry a set of axle loads.
The loads positioned by inspection in diagram (c) will give a deflection
which must be very nearly the maximum. One or two additional
trials would settle the maximum value. The dimensions stated
on the influence line are the actual dimensions as scaled by the
decimal inch scale.

Deflection at B =sum of the loads X their respective
ordinates :—

3T wheels, left to right :

$(0-42 4 07 4 0:93 4 1-11) X scale 0-002703 = 0-0064

1T wheels, left to right : -

1(1-23 + 118 + 1-05 + 0-85) X scale 0-002703 = 0-0116

Uniformly distributed load, 3’ 0" long at end :

0-3(0-08) x 0-002703 = 0-0001

Total Ap unit axle loads = 0-0181
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As the design was for 15 units the actual deflection at B for the
live load positioned as shown is :
Ap = 15 X 0-0181 = 0-2715", w.e., 0-27"
By calculation (see page 197)
Ap = 0-2682", t.e., 0-27"
a difference of only 1-2%,. :

Deflection for the E.U.D.L.LL. When dealing with a distributed
load it is the area of the influence curve which is required, hence
sum or integrate the influence line diagram 115 (c) and obtain the
area curve (d). The E.U.D.L.L. for the unit train is 0-1T/foot or
0-1 = 12 ton/inch and for 15 units it is 0-1 X 15 = 12 = 0-125T/inch
run.

Load covering length 4B of 45" ;
Ap = pp’ X scale X 0-125
= 1-94 X 0-64872 x 0-125 = 0-1573"
Load covering length BC of 18" ;
Ap=(246—1-94) X 0-64872 X 0-125 = 0-0422"

Load covering all span AC of 63" ;

Ap = 2:46 X 0-64872 X 0-125 = 0-1995"
1.e., a deflection of 0-2”
By calculation (integrating equations AB and BC.
page 197)
Ap = 0-1962", i.e., 0-2"

a difference of 1-7%,.

Alternative Derivation (Mathematical) of the Influence Line, Fig. 119
F

. KL ___-f_(f“?.i
A N A o
a Yy ¢ i
1+
o= FO-K) o G
@ . +¥ )
FIG /9.

Let the fixed point B be situated anywhere on span AC at a
distance of K times the span from 4, where K is a fraction having
any value between nothing and one. The origin is taken at 4 and
positive values of z and y are measured in the directions indicated
in the lesser figure.
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Text-books on the strength of matciiais give the derivation of the
formula 2 = L _PY here Ris the radius of
ormula El-R-d® where £ 18 the radius of curvature.

d
Hence _y —slope ¢ of beam = f Eldz and y = deflection

o e

The tangents to the curve as it leaves 4 are positive, i.e., the
gradient of the curve is positive. However, as x increases in value
the curve becomes less and less steep, i.e., the tangents become

decreasingly positive, or the rate at which the gradient changes is a
2

decreasing one, therefore °Y s negative. But R, the radius of
dx?

curvature, is essentially a positive quantity, and, hence, with the

origin situated at 4, the equation should be written as E1 3 Z —-M
2Z KL M,= R, =F1 — K)zx=Fr— FKkxz
2y
Eldalcg =-—-M=—Fx+FKx. . . . . . . (]
dy 2 2 .,
Eld = — }F2+}FK22+C, . . . . . . (2
.. Ely = — }F3+ }FK2* +Cx+Cy, . . . . (3)
in (3) whenz =0,y=0,..C,=0 . . . . . . . 4
x§KL M,= Rz — F(x — KL) = — FKx + FKL
Eldx’ =—M=FKe—FKL . . . . . . . (b
dy
EI = }FKa* — FKLz+Cs . . . . . . . (6)
and Ely = }FKa® — }FKL2* - Cgz +-Cy . . . . (7)

At point B the slope, whether calculated by equation (2) or (6),
must be the same,

ie., EI ZZ = — }F2? + }FK2* + C, = }FK2® — FKLz+C,

tmdac-—KL..—}FK’L*‘-}-C’l = — FK2L? + C,
Whence C, =Cy — 3FK2L* . . . . . . . . . . (8
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Again at this point B, with z = KL, the deflection, whether
obtained by equation (3) or (7), must be the same, z.e.,

Ellylg=—3}F23+}FK23+Cz+Cy=}FKa3—} FK La*+Cy32+-C,

: —3}FK3L8  +C,KL+40= —3FK3L3+Cy,KL+C,

and substituting the value for C; from equation (8)
—3FK3L3+CyKL—YFK3L3 = —3}FK3L3+-C,KL+C,

whence Cy = — }FK3L® . . . R )]

The deflection y is 0 when z = L and substltutmg value of C,
from (9) equation (7) gives

0 = 3}FKL® — }FKL® + C4L — }FK3L3
.. CsL = AFKL3 4 }FK3L3, whence C; = 3FKL? 4+ }FK3L? . (10)
Now substituting the value of C in equation (8)
C,=4FKL*+ }FK3L* — yFK*L* . . . . . . .(11)

Having evaluated the constants in equations (3) and (7) these may
now be rewritten as :—

(3) Ely=—3}F23+3FK2x*+ A FKL*x4-}FK32x—}FK* L2z . (12)
(7) Ely=3}FKa®—}FKLa*+3FK L%+ FK3L2x —}FK3L® . (13)
For unit load F = 1 these equations become :—

(12) Ely = }(— «® + Kz® + 2KL%x + K3L%r — 3K2%L%) . . (14)
(13) Ely = }(Ka®— 3KLa?® + 2K L% + K3L% — K3L3) . . (1)
Application of the Mathematical Equation, Fig. 120

__63 5/’/7/\’ —_——.

ﬂgf; e e s 6668 "

FIG 120
The same example of the 63’ 0" span railway bridge will be
considered : K for the desired point B = g = g

To simplify the arithmetic all dimensions will be stated in foot
units, t.e. :—

L =63
E = 12,0007/sq. in. = (12,000 X 144)T/sq. ft. = 1,728,0007/sq. ft.
I =171650in4 = (177,650 — 128)ft.$¢ = 85623 ft.4
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The only variables are thus x and y.
Portion AB: equation (14) was

Ely = §(~ o + Kad + 2K L% + K3L% — 3K*Lex)

5 2><5><632 53x 632  3x 52x 632
=1 —x3+ x34 Ea 7 x)

5 X 632 52 3 X5
B )

= — 0:047623 4 173-571x

To plot the graph give various values to x ; in order to obtain a
direct check upon the graphical solution of Fig. 115 the values given
will be 1-5, 8, 14, etc., as in Fig. 120.

x

15 | 8 14'20,26|35|40'45
260 | 1,364 | 2,299 l 3,091 ’ 3,676 I 4,034 ] 3,806 l 3,473

Ely

Portion BC : equation (15) was
Ely = }(Kz® — 3KL2® + 2K L%z 4+ K3L% — K3L?)
3><a><63 2x5x63% 53632  53%x63
= %( z?+ I R T A ’)
= 0-11905x% — 22-52% + 1,186z — 15,1875
When z = 50, the value for Ely = 2,744.

Elyfor3' 0" of U.D.L. considered as a point load
=260 X 0-3 = 78

Elyfor §T axles = §(1,364 4 2,299 4 3,091 + 3,676) = 7,823
Elyfor 1T axles = 1(4,034 + 3,896 + 3,473 + 2,744) = 14,147

Ely total for train = 22,048

22,048 22,048
ET ™ 1,728,000 X 8562

or in inches = 0-01788"
and for a 15 units train Ap = 001788 X 15 = (0-2682"

= 0-27"

.. ¥y = Apforunit train =

= 0-00149’
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Elastic Deformations of a Braced Frame

Since stress intensity = total stress S in tons -~ gross sectional
area 4 in sq. in.

= - tons per sq. in.
and strain = elongation e” - original length L"
e .
=7 (a ratio or number)

stress S e

.. Young’s modulus, E = em = A L= 4e tons per sq. in.

AE

noting that the units, tons and inches ‘‘ cancel top and bottom "’ as
with numbers.

dh 1 i _ 5L, hes { + s
and hence elongatione = —= inches| t.e,, Asq. in. ETjsq. in.

-
Zan -y @

.llL. 37%?;’5“??;:7 % ot .
AB /08 |-75 |25 |-6 FoOvs4

Q BC |/80 (25 |6:25 | +4 po0b

T £ 12000 75" # = Compress/on.
A

1 @) FIG 12/

Williot Diagram.t The horizontal load of 20T in Fig. 121 acting
on the vertical cantilever causes the stresses and elongations in the
two members as given by the table alongside.*

With point A definitely pinned in position the extension BB,
(shown in heavy line), which occurs in the tension member AB,
must move point B away from 4 in the direction of 4B produced.
Similarly, because point C is definitely pinned in position, the
shortening BB, in this bar, caused by the compressive stress,
must tend to move end B towards C along path BC.

The new position of point B is b obtained by using 4 as centre

+ Atter the inventor, a French engineer, 1877.

* For elastic deformations only use E = 13,000.

If the total deformation (i.e., elastic and inelastic) is desired use £ = 12,000.

Inelastic deformations are due to shop errors in marking off the lengths of
members, play in holes, etc. Some designers prefer to work with E at 13,000 and
then multiply the elastic deflection so obtained by a constant which experience
has shown to be suitable for the particular type of structure under consideration.
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and new length 4B, as radius to cut the arc drawn with C as centre
and CB, as radius.

These extensions are very small in comparison with the original
lengths. With bar 4B, for example, e = L = 0-054 = 108 = 0-0005
or 2—(:0—0 It is therefore clear that such a construction, as suggested
above, is impracticable. In the small figure (b) the elongations
alone have been set out and perpendiculars drawn at their termina-
tions in place of arcs to give the new position of the apex b relative
to the original position B. The arcs employed in (a) are really
perpendiculars because the lengths along the arcs to the cutting
point are very small relative to the radii.

In Fig. 122 a tie-bar has been added to the cantilever frame of the
previous figure : end A4 remains pinned in position, but C is free to

20" v ﬁ,

/

A
|

50‘7L[ fae 572555 DMB#N
rONS 0

C

® ﬁ" /N, o7 ) o7 o2 N
P 20" —_— SCILE FOR OLFLECTIONS.

MEMNeerghiShoss| fza] S | SL | e zg&.

see| (o | s7|aa |aE AE.
AC |/ |/144|-20 |3-2 }625+075 |-/ |+0-079]

AB|2|/08 |15 |2-5|-6 |-054|--75 h0-0405]
A C Ca BC |3|/80 |+25 |6°25\¢ 4 |+06 tr25p0075.

FIGl22

move laterally under deformation. Reaction C must be at right
angles to the frictionless plane upon which the free or roller bearing
rests and, by the theorem of the triangle of forces, the reaction line
of 4 must pass through z the intersection of the load line and the
reaction C line. The stress diagram together with the stresses, etc.,
are also given on the figure.
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To fix the positions of the deformations in space a fixed point for
position and a reference line for direction are necessary and these
are furnished by point 4 and line of constant direction 4C.

In Fig. 122 with reference to 4 point B moves up to B, and the
final position of B is somewhere on arc B,. The tie-bar lengthens
and point C' moves in the direction 4C away from 4. The final
position of C, must be on 4C produced because end C, will not swing
on an arc with 4 as centre. So far the new lengths of 4B and 4C
have been plotted and it now remains to complete the third side
of the triangle by obtaining the new length of CB. The position of
end C of this bar is known and with C, as centre and the now
shortened length C,B’, as radius describe the arc to cut that through
B, and obtain the new position of apex B.

As a practical construction, however, plot, to a large scale, the
extensions only as in (d). Commence with a fixed point @ and from
it draw the heavy line 1 = 0-075" to the right of 4 and parallel to
AC, because the extension of AC tends to pull 4 in the direction
mentioned. Bar AC is the reference line and point C is at its end
and requires no arc to be drawn. Now thinking of this newly
obtained point C it will be seen that the effect of the compression
in CB is to push point C in a south-easterly direction ; hence draw
heavy line 3 away from ¢ in a S.E. direction parallel to BC and of
length 0-06”. The point b in Fig. (c) lies on an arc through B’, and
therefore on a perpendicular from the end of line 3 in (d). Lastly,
the extension in 4 £ tends to pull point 4 due north, so from point a
in Fig. (d) draw line 2 due north (z.e., parallel to 4B) and away from
the point and of length 0-054”,

The perpendicular from the end of 2 intersects that from the end
of 3 at b, so fixing the position of b. Scaling Fig. (d) shows that
point B has moved eastwards a length of 0-19” and northwards a
distance of 0-054”. This value of 0-19” is in close agreement with
the summation of the last column which now requires to be explained.

Dummy or Unit Load Method. In Fig. 123 it is required to find
the vertical deflection of point 4 due to the various loads marked F.

B8

A
T F 7 = = 7 F1G. 123,

b7
Apply a unit load of 1T at the point 4, whose deflection is desired,
and let it act in the required direction of the deflection. Let the

F loads and the unit load be applicd simultaneously from zero to
full value ; the resulting total stress in any member, such as B,
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will be S tons due to the F loads and « tons due to the unit load.

t.e., stress in member B =S+u
The extension of this member B = e = (—S—}E%-‘)—L-
The internal work done on bar B by the

external unit load, which was applied from

zero to full value,

= average value of u X total extension = ﬁ%ﬁl{'—
While the internal work done on all the

members by the dummy or unit load will

be the sum of all such quantities, i.e., = Z%M

a5 1)

Now point 4 will have a deflection made up :

of two component parts, viz., A 4p due to the

F loads and A ,, due to the unit load, and

so the work done at 4 by the 1T load

= average load of 3T X total distance

travelled =MAr+A4A4) (2)
The internal work done by the unit load

= external work done by unit load

. S L
ie., (1) = (2) or gz’f(—;%)— = HAur + Ay
. SLu uL,
t.e.,zZE-*-EE =AAF+AA,‘ : . . . . (3)

A4, may be evaluated by making the F loads so small that in the
limit they have zero value and therefore both S and A 4 = 0.
2
Equation (3) will now read 21;—1{; =A4 - - . . . . 4)
Having thus established the value for A ,, the value for A 4 will

be obtained by subtracting (4) from (3), so giving Zi—LEu =Aur . (5)
Hence the arithmetical value of the deflection at 4, caused by

the external loads F, is found by adding together the values of %‘

as calculated for all the members of the truss; where u is the stress
induced in any member by unit load applied in the direction and
at the point of the required deflection.

The application of this method in Fig. 122 ascertains the deflection
of only one point in a pre-selected direction and not, like the
Williot diagram, the complete displacements of all points. If the
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deflection of point B is desired in a direction due east then a 1T load
is placed at B acting from left to right. This happens to be the
sense and direction of the 20T load, and therefore the u stresses will
be ; of the S stresses. The dummy or unit load method is an
excellent check upon the accuracy of the deflection of one main
point as given by the Williot diagram and requires but little
additional labour.

Mohr’s Rotation Diagram.* In Fig. 125 the bottom boom of the
girder will deflect or sag unlike member 4AC of Fig. 122, and so in
the former figure if either member L,U, or L L, be chosen as the
reference line from the fixed point L, the Williot diagram will give
the deformations relative to this reference line, whick now rotates
wtself. The value of the Williot diagram is greatly enhanced by th:
rotation diagram of Mohr, for by the use of both diagrams th.
absolute deformation of any panel point on the structure can
ascertained.

If the saw-tooth or north-light truss of Fig. 124 be slightl
rotated as a single unit about a distant centre O each radial a1 .

/95.? ‘‘‘‘‘‘‘‘‘ ’
SN Tee=eal Q __----
e
! 9% SR \:‘.__‘
L N
FlG.124.

04, OD, etc., will be turned through the same angle 6, but the
tangential paths at 4, D, etc., will be of different lengths, viz.,
0.04, 0.0D, etc.; the greater the spoke length from hub O the
greater will be the linear path travelled.

. Take any other point 0’ and from it scale, as vector quantities,
the length and direction of each of the paths travelled by the panel
points. Thus O’D’ represents the distance and direction travelled
by the original point D and 0’4’ by point 4, and so on. If the
points A’C'D’ be joined up the resulting figure will be found to be
similar to the original figure, but with the corresponding bars of the
figures at right angles to each other.

* Professor O. Mohr, 1887.
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INFLUENCE LINE FOR DEFLECTION FOR A BRACED FRAME

To find the influence line for deflection for a panel point on the
lower flange of the road bridge (Fig. 125) whose dead load, live load
and impact stresses have been calculated previously, see Chapter
IX, page 98.

In the column of the table headed 4, given on the figure, are the
gross cross-sectional areas of the members as they were finally
designed ; while the S column contains the stresses due to a unit
load applied at the point for which the influence line is required.

The two last columns headed » and SZLE‘,-‘ are not required meantime.

~ The Williot diagram drawn alongside is for point L, as the fixed -
pomt and bar LU, as the reference line. The stress in this member
1s compression tendmg to push L, along line 1 of the enlargement
‘a distance L’gU’; = 0-000578" (s. e 0-578 x 10-3) as given in the

‘column headed :9_1% In order to facilitate the tabulation (and

. .. o ane SL
scaling) the extension is stated in this column as TR 103. On

the base U,L, stands the original triangle U,L,L, and on the
corresponding base of heavy line 1 build the respective deformations.
Bar 12 is in tension tending to pull L, towards the right, therefore
heavy line 12 of the diagram is drawn from L', also towards the
right, a distance of 0-000597", while point L’; will be on the
perpendicular (or arc) from the free end of thisline. From U’ draw
line 13 parallel to U,L,, but as this bar has no stress there is no
extension to draw, i.e., heavy line 13 is given by point U’;. The
point L', will lie on the perpendicular from the free end of heavy
line 13, t.e., on the line drawn due east from U’;. These two
perpendiculars meet at L',.

The next triangle to be considered is that standing on U,L, as
base line, viz., U,L,L,. U,L, is in tension and so U, is subjected
to a south-easterly pull, therefore from U’; heavy line 14 is drawn

towards the S.E. and parallel to U,L, for a length—- :«I_E‘—O -001123"

—to scale, of course, viz., 0:00112 on the original 3" scale for the
complete Williot diagram or the same reading on the original 1"
scale belonging to the enlargement. L', will lic on the perpendicular
from the free end of heavy line 14. Of the base linc U,L, point U,
has been considered, so now consider the other extremity L, and
from L’y draw heavy line 11 due east parallel to L,L, to represent
the extension of 0:00065" caused by the tension in L,L, tending to
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pull L, towards the east. At the fice end of this line erect a
perpendicular and where this perpendicular intersects that from
heavy line 14 is the position of L'y

And so, as in the structure itself, build up the Williot diagram by
considering, structurally, triangle after triangle until the last point,
L', is obtained.

The Mohr rotation, or correction diagram as it is sometimes
termed, is next drawn in and is shown in dash-dot lines with the
panel point lettering in brackets; in the text the corresponding
lettering is also given within brackets. This figure will have one
end at L', the fixed point, and the base L’((Lg) vertical therefrom
since the latter must be perpendicular to the original baom L L.
The end bearing L, will only move horizontally, therefore (Lq) of
the Mohr diagram must lie on the horizontal line through L’4 of the
Williot diagram, and thus length L’ (L) of the Mohr figure is fixed.
Now divide this vertical line (Lg)L’, into six parts, recalling that
(Lg)(Lyg) : (Lg)(Ly) : (Lg)(Lyg) :: 117 : 12" : 127, viz., the length ratio of
the original panels of the bottom boom. Erect perpendiculars at
(Lg), (L,), (Lg), etc., t.e., these lines are now at right angles to the
original verticals. Through (L) draw (Lg) (Uy) at right angles to
LgU of the girder until it cuts the perpendicular from (L;). This
intersection is point (Ug). Similarly the line L'((U,) is drawn at
right angles to the end post LyU, cutting (L,)(U,) at (U,). Join
(U,) to (U;) and the remainder of the Mohr diagram falls into
position.

The movement of any panel point of the truss is given in length
and direction by the line joining the panel point of the Mohr figure
to the corresponding panel point of the Williot, e.g., panel point L
moves in direction along the line joining (L) of the Mohr to L', of
the Williot. The vertical deflection of point L is the vertical
component, viz., the vertical drop or distance between point (L)
of the Mohr to the horizontal, line 7 produced, through L’ of the
Williot : while the horizontal motion is eastwards from (L;) of the
Mohr to the vertical through L’ of the Williot, ¢.e., the length of the
horizontal line which appears as if it were lettered (L,)L,.

Influence Line. The vertical distances between (L,) and L'y, (L)
and L'y, (Lg) and L'y, etc., on scaling are found to be 0-0049”,
0-0095" and 0-01359”, etc., respectively. Plotting these downwards
from a horizontal base line gives the influence line for deflection for
point Lz on the bottom boom as was proved for the simple beam of
Fig. 115.

If the influence line for L, on the bottom boom is required the
procedure i8 similar save that unit load requires to be applied at L,.
Should the deflection influence line be required for any panel point
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of the top boom then apply unit load at the desired point and
thereafter follow the method outlined.

Returning now to the table, the columns headed » and %%—u may

be used to check the accuracy of the Williot diagram. The u
stresses will be identical to the S stresses, both being caused by the
same unit load applied at the same point. By summing the

arithmetical values in the % column the vertical deflection of

L4 is 001354 as against 0-01359” by the Williot diagram.

If, in effect, each main girder carries a set of the M. of T. wheel
loads, then for the engine and trailers positioned as shown on the
influence line, the deflection at Lg

= 10(0-0031 +- 0-0072 -+ 0-0102 + 0-01359 + 0-0109) = 0-4499"

plus 22 X 0-0064 4 8 X 0-0022 = 0-1584"

Total A at Ly = 0-6083"

For the uniformly distributed load of 220 1b. per square foot (equal
to 0-98T per ft. run of girder for the 10’ 0" width supported) plus the
knife-edge load of 2,700 1b. per ft. width (equal to 12-056T for the
10’ 0" width) the deflection at L,

= load X area = 0-98 X 0-5038 = 0-4937"
plus 12-05 X mid-ordinate of 0-01359 = 0-1638"

0-6575"

And for the dead load of 0-94T per ft. run the deflection
at L, = load X area = 0-94 X 0-5038 = 0-4736"
The vertical deflection at the mid-point, Ly, is therefore
(a) Due to D.L. + Wheel L.
= 0-4736" 4 0-6083" = 1-08"
(b) Due to D.L. + U.D.L.L. + K.E.L.
= 0-4736" + 0-4937" + 0-1638" = 1-13"
Result (b) can be obtained directly, without recourse to an
influence line, either by a Williot diagram or by the arithmetical
unit load method. The loads applied at the lower panel points
would then be: L, and Ly = 22-08T; Ly and L, = 23-04T and
L, = 35-097T (including knife-edge load). The S stresses would be
the stresses due to the foregoing loads, but the u stress would still
be due to unit load applied at L,, the point whose deflection is
desired.



INDEX

A

ALTERNATING stress, 97, 105

Arch, definition, 1156
B.M,, 119, 125, 128
normal thrust, 121, 125, 128
radial shear, 121, 125, 128
spandrel-braced, 129-141
three-pinned, 115-128
two-pinned, 115

Area by graphical calculus, 182

B

BaLLasT, 71, 72, 168, 176
Baltimore truss, 142-156
bottom boom, 143
top boom, 144
web, 148
Beam, bending moment, 16-24
curved, 115
reactions, 1-6
shear, 7-15
Bearings, 57, 86
Bending moment, arch, 119, 125, 128
beam, 16-24
max., 18-24
cantilever, 25, 27-32
diagrams, 51, 74
graphical integration, 182
Bow, R. H., 33
Bowstring girder, 33-37, 59-70, 156
Braced frame, deflection, 198-200, 204
Bridge loadings, 165-181
British Standard loadings,
178-179
Brothers of the bridge, 181
B.8.S. formula, railway bridges, 177
Buckle plates, 85, 94

172-173,

C

CANTILEVER, braced, 106-114
double, 29 . "
plate girder, 25-32
Centrifugal effect, 165
Clerk Maxwell, 33
law of, 191
Cooper, Theo., 171

Cremona, 33

Cross girders, 41-58, 71, 74, 85, 99
max. load, 41, 74

Culman, 33

Curved beam, 115

D

DEeAbD load, 165
of cross girder, 168
of plate girder, 167
of Warren truss, 167-168
Definition, of influence line, 1
of neutral point, 44
of shear, 7
Deflection, 182-206
influence line, 192-194, 203
reciprocal, 191
Deformation stresses, 198-199
Dispersion of load, 98
Dummy or unit load, 200-202

E

E (Young's modulus), 185, 198
Elastic, curve, 182, 187
deformations, 198
elongations, 198-199
weights, 186
Equivalent load, M. of T., 178-179
Erection stresses, 165

F

FLANGE, members, 50-56, 59-62, 84,
87-89, 99, 102, 130-136, 143-147,
156, 168-160

stress, max. in panel, 54, 84

Flats on wheels, 175

Floor, plating, 71

troughing, 98
Fratres pontifices, 181

G
GIRDER. See Plate, Baltimore, Pratt,

etc.
Graphical integration, 182

2017
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H

H or polar distance, 183

Hammer-blow, 174

Highway bridge. See Road bridge.

Horizontal thrust, 115, 118,
129-140

I

ImpacT, definition, 173
formula, 73-75, 86, 99, 176-178
on cross girders, 74
on main girders, 75, 86
on stringers, 73
Indian Ry. Board, 177
Integration, graphical, 182
load to deflection, 186-189

J

JOINTS on rails, 175
Joint pins, 115-116

K

KNIFE-EDGE load, 98-105, 178-179

L

LivE load, 170
Load, dispersion, 98
shear, ete., 185
Loco., British Standard, 172
nosing of, 174
springs, 175
Longitudinal forces, 165
Lurching, 175

M

MATERIALS, weight of, 168-170
Maxima and minima, 19, 189
Maxwell, 33

law of, 191
M. of T. loading, railway, 172

road, 173, 178-179

Miscellaneous trusses, 156
Mohr, 33

rotation diagram, 202

N
NEUTRAL point, definition, 44

Normal thrust, 121, 125, 128
Nosing of locomotive, 174

INDEX

120,

P

PARABOLA, properties of, 34, 118

Parallel flanged girder, 37, 40, 71, 85, 98

Pedestrian traffic, 85, 170

Pencoyd formula, 177

Pennsylvania truss, 156

Pettit truss, 156

Pin joint, 29, 116

Plate girder, 49-58, 71-84, 166-167

Polar distance, 183

Pratt truss, 38, 48-51, 98-105, 142, 156
double panelled stringers, 158, 163

R

RaDIAL shear, 121, 125, 128

Railway bridge, 71-84, 166-167, 171
deflection, 192-197

Reactions, 1-6, 25, 30, 56, 86, 107, 113,
115

Reciprocal deflection, 191

Redundant members, 96, 111, 134, 152,
154, 160

Resonance, 175

Reversal of stress, 97, 105

Ritter, 33

Road bridge, 85-105, 167
loadings, 173, 178-180

Roof truss, 163-164

S

SEcTION and moments, 33-40
Shear, B.M,, etc., 185
at any point on a beam, 13, 15
diagrams, 2, 11, 31, 38, 43, 74, 153
cantilever, 26-32
definition, 7
max. end, 11, 13, 24
max. in panel, 44, 47
radial, 121, 125, 128
Slope, 46, 656, 185
Spandrel-braced arch, 129-141
bottom boom, 130-134
top boom, 134-136
web diagonals, 139-141
web verticals, 136-139
Stress intensity, 15, 198
Stress diagram, 15, 33, 38, 154
Stress, 15, 198
Stringer, 41-68, 71-74, 94
Sub-ties, 142, 148
Sub-struts, 142

Suspended span, 27-29, 111, 113

T

TeMPERATURE effect, 185
Three-pinned arch, 115--128, 129-1-¢1
Troughing, 98-99

Two-pinned arch, 115
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U

Ug, 115
Uniformly distributed load, 4, 178-179

\'

VERIOULAR traffic, 171

w

WappELL’S formula, 177

Warren truss, 48-58, 85-97

Web members. See type of girder.
Weighta of materials, 168-170
Williot diagram, 198-199, 204
Wind pressure, 165

Winkler, 33

Working stress, 86, 98
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