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PREFACE 

The propagation of electromagnetic waves of high frequency in wave 
guides is one of the most fruitful fields for the application of Maxwell’s 
Electromagnetic Theory in the form given by Heaviside. By a wave 
guide is meant in the simplest sense a hollow tube of metal which con¬ 
tains the energy propagated from one end to the other. For practical 
reasons the cross-sectional form is usually either rectangular or circular. 
A dielectric cylinder may also be used to guide electromagnetic waves 
of sufficiently high frequency and is usually called a dielectric guide. 
Conventional parallel wire and coaxial transmission lines, of course, also 
guide waves in that electromagnetic energy is propagated in the vicinity 
of the conductors. We shall, however, restrict the use of the term 'wave 
guide ’ simply to a hollow tube of conductor. 

The range of electromagnetic spectrum for which wave guides are 
used extends over wavelengths from 40 cm. to a fraction of a centimetre 
and is referred to as the microwave region. To this range Hertz’s pioneer 
work with spark-excited short waves may be said to have extended, 
but on account of the many years required to develop oscillators pro¬ 
ducing sufficient microwave power this most interesting region of 
the spectrum has not been exploited for radio until the last decade. 
During that period the war intervened and greatly accelerated the 
growth of knowledge and technological skill. By the operation of 
security regulations, however, the dissemination of knowledge of this 
newly acquired technique was restricted to physicists and engineers en¬ 
gaged in research or in the production of instruments of war employing 
microwaves. This book attempts to make amends in one part of the 
field. 

The fundamental ideas of propagation in wave guides were enume¬ 
rated by Lord Rayleigh at the end of last century, but his results were 
not generally well known until the experiments of Southworthf and 
BarrowJ and others demonstrated their practical importance. One 
might almost say that, to judge by the literature of the 1930’s, his work 
had to be rediscovered in America. But perhaps this comment is hardly 
fair, for the language wliich the radio engineer uses to-day is very 
different from that of the theoretical physicist writing before the 
invention of the thermionic vacuum tubes and before the modern 

t Southworth, G. C., Bell Syst. Tech. J. 15, 284-309 (1936). 
t Barrow, W. L., Froc. I.B.E. 24, 1298-1328 (1936). 
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development of telephonic engineering that has contributed much to the 

elaboration of electric circuit theory. 

For the radio engineer, however, the wave guide is fundamentally a 

novelty in one respect which is a commonplace to the mathematical 

physicist, namely, multiple propagation. Until the engineer had to deal 

with radio waves shorter than a metre the transverse dimensions of his 

ordinary transmission systems were all considerably less than half of the 

free-space wavelength for the frequencies transmitted over the system. 

Consequently the propagation was simply treated by the theory which 

includes the telephone line and submarine cable and uses quasi-static 

conceptions—inductance, capacity, voltage across the line, and current 

in it. The waves consist essentially in the propagation of electro- and 

magneto-static distributions along the line with the velocity of light. 

This is a great convenience, because for many purposes it is not neces¬ 

sary to refer to the detailed description of the electromagnetic field in 

space between and around the conductors. As soon as the transverse 

dimensions of the physical transmission line are sufficiently large com¬ 

pared with the wavelength in free space, this simple method is no longer 

adequate. The transmission system then behaves like a number of 

transmission lines propagating at different speeds. Consequently the 

field distributions characteristic of the individual simple lines, once 

launched, never recombine in the proper way to reproduce the composite 
field distribution which initiated the waves. In short, simple periodicity 

in space, obvious on the Lecher wires with short waves, is secured only 

by taking account of the possibilities represented in field theory and 

ensuring that only one characteristic mode of propagation—the domi¬ 

nant wave—is effective in the process of net energy transfer. It is this 

condition in a wave guide that has been exploited with great success in 
practice up to the present, and with which most of this book has to deal. 

The physical facts that have compelled the use of wave guides to 

propagate microwaves, rather than the conventional 2- or 3-conductor 
transmission lines, are the large energy losses occurring essentially in the 

latter. These losses arise first in the dielectric separating the conductors 

either continuously or as spaced supports, and secondly on the surface 

of the conductors themselves. For given power transfer, geometry 

requires higher current densities in these lines than in wave guides 

serving the same purpose. Further, no dielectric is necessary in the 

wave guide. 

It has been my aim in this book to emphasize especially those aspects 

of wave-guide technique the parallels to which are quite unrealizable in 
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practice in connexion with longer waves. There are, of course, many 

respects in which conventional short-wave radio practice finds its 

counterpart in the microwave region, but there is a practical limit to the 

exploitation of this correspondence. This limit is set in part by con¬ 

siderations of mechanical rigidity and in part by the expense of precise 

fabrication of many very small parts, to be assembled into a permanent 

electrical whole, and finally by capacity for transmitting large power 

efficiently. It is obvious that the practical difficulties attending the 

application of longer wave practice become more serious the higher the 

microwave frequency to be used. 

Among physicists whose limited interests in radio have never given 

them the opportunity to meet the problem of feeding power to an 

antenna, it has been a common gesture to dismiss the physical basis 

of radio practice with very short electromagnetic waves as merely 

requiring a little physical optics. The existence of this point of view 

shows how incomplete has been the conventional treatment of optical 
theory. Electromagnetic optics is greatly simplified by the concept of 

impedance. Physicists owe the clear appreciation of this fundamental 

theoretical matter to the development of microwave radio. 

The first chapter of this book deals with the wedding of electric 

circuit ideas to wave conceptions. Physicists will understand that the 

application of these conceptions need not be restricted only to electro¬ 

magnetic waves. Whenever we have to deal with plane waves of a 

physical quantity u satisfying the equation 

dx^ dt^ 

the conceptions of impedance and admittance, series and shunt, have a 

clear application. 

It has been customary to introduce ideas of equivalent circuits to 

represent the loading of waves. This procedure can be applied usefully 

to wave guides only in a restricted way, and only too often lures one 

away from the essential simple representation—that waves are incident 

on an obstruction to electric waves in the guide or the flow of electric 

current on the wall, and in consequence secondary waves are radiated 

in both directions from this ‘antenna* in the guide. Thus the wave 

systems on the two sides of the antenna are different. The methods for 

dealing with such waves are connected with the mathematical theory 

of bilinear transformations and in this connexion the use of matrices 

is highly appropriate. Having observed many tedious examples of 
4791.4 
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amorphous elementary algebra, I have endeavoured to encourage the 

use of the more powerful and, indeed, easier methods. The reader who 

is not familiar with matrices can find all that he requires in the early 

pages of one or other of several introductory texts, f These same methods 

might well find application in other branches of physics. 

Accordingly Chapter I contains material of quite general applicability 

to any characteristic wave; the attention of the reader is directed 

particularly to what is logically essential about series- and shunt-loading 

of waves, and the ease with which these conceptions can be generalized. 

What is important about series loading is that an open-circuit is trans¬ 

formed past a series-load unchanged, and what is important about shunt 

loading is that a short-circuit is transformed past a shunt-load unchanged. 

I have called unimodular loading the general case where a pure reactance 

or susceptance is transformed unchanged past the load, and it will be seen 

in this book that this type of loading is actually realized in a wave guide 

when a resonant slot is cut in the wall. 

In another respect the treatment of electric waves in this chapter is 

aimed at inducing versatility in representing them by indicating the use 

of both current and voltage representations. The terms current, voltage, 

admittance, shunt, and series form a system mathematically indistin¬ 

guishable, although physically distinct, from that of voltage, current, 

impedance, series, and shunt. As is well known to electrical engineers, 

advantage may lie in using one rather than the other in a particular 

application. The resulting possibility that the circle diagram may be 

used in two senses is quite clear and, given good notation, should lead to 

no difficulty. 

In Chapter II dominant wave propagation in a rectangular wave 

guide is presented, and for the purpose of giving in brief compass a 

general idea of the laboratory work in which theoretical conceptions 

should be brought into contact with experience Chapter III is devoted 

to measurements. These chapters, therefore, deal with the essentials of 

the simple technique of the rectangular wave guide, the conception of 

multiple propagation being reserved for Chapter IV, in which mathe¬ 

matical detail has been suppressed as far as possible. Chapter V intro¬ 

duces the magnetic half-wave radiator with the electromagnetic version 

of Babinet’s Principle and deals with the ideas for treating obstructions 

and antennas in rectangular guides. 

The aspect of the use of wave guides with which I have been most 

t e.g. Aitken, Determinants and Matrices (Oliver & Boyd, Edinburgh, 1939); Frazer, 
Duncan, and Ck>llar, Elementary Matrices (Cambridge). 
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closely associated is the development of slot radiators cut in the wall of 

the wave guide. On account of their practical advantages and the 

theoretical interest in their novelty, the study of slot antennas and guide 

couplings has received perhaps undue attention in this book (Chapters 

VI, VII, VIII). It seemed, however, that since older aspects of the 

theory of wave guides have already been treated in other works,f it is 

unnecessary to repeat them in detail. Instead, the reader will find here 

the general theory of wave guides presented from a somewhat more 

physical point of view. This is supplemented by a discussion in the last 

chapter on Field Representation, treated in sufficient detail to indicate 

the methods employed, especially the contributions to the mathematical 

theory by Professors Synge, Infeld, and Stevenson, whose work is best 

known to me. 

On account of its particular relevance in the design of slotted wave¬ 

guide antennas, the elegant and successful work of Stevenson on the 

field theory of resonant slots in wave guides is dealt with at some 

length. The complete elucidation of guide coupling by means of slots is 

given in Chapter VII for the first time and a new design procedure for 

the most useful slot antenna to be used in airborne radar is worked out 

in Chapter VIII. 

In Chapter IX several devices have been discussed with the object 

of emphasizing the principles relevant to understanding their operation. 

No attempt has been made to present all the practical details which a 

radio engineer interested in technique would require and which, no 

doubt, will be described elsewhere. For this reason it was decided not to 

treat rotating joints, the ‘door-knob’ coupling, and a variety of bridge 

devices. Further, following the decision not to take up dielectric guides, 

‘polyrod’ aerials have been omitted. 

This book would not have been written had it not been for the op¬ 

portunity provided for work in radio during the war at McGill Uni¬ 

versity. After its inception in the basement of the Macdonald Physics 

Building the work was moved to a more commodious laboratory which 

with its staff was liberally supported financially by the National 

Research Council of Canada and received the most helpful considera¬ 

tion by the University. Special acknowledgment is due to Dr. J. S. 

Foster, F.R.S., who was instrumental during his association with the 

Radiation Laboratory at the Massachusetts Institute of Technology in 
securing for the McGill laboratory he had started the use of apparatus 

t Stratton, J. A., Electromagnetic Theory, McGraw-Hill, 1941; Slater, J. C., Microwave 
Transmission, McGraw-Hill, 1942; Schelkunoff, S. A., Electromagnetic Waves, yan 
Nostrand, 1943. 
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without which the work on slots would have been confined to the 10-cm. 

band. 

To the writings of Dr. H. G. Booker and conversations with him I 

owe in great measure the stimulation of my thoughts. During the war 

his visits to this Continent began and ended at Montreal, and in this we 

were very fortunate. 

In the pioneer experiments on slots the measurements were skilfully 

made by Dr. E. W. Guptill, whose enthusiastic co-operation in invention 

it is a pleasure to acknowledge. I am likewise indebted to other mem¬ 

bers of the laboratory at McGill—^Messrs. J. W. Dodds, R. H. Johnston, 

M, Telford, and Dr. F. R. Terroux, on the results of whose work I have 

drawn freely in the following pages. 

Most of this book was already in type before the appearance of the 

report of the Radiolocation Convention of the Institution of Electrical 

Engineers and the publication of the Technical Series of the Radiation 

Laboratory of the Massachusetts Institute of Technology. Had this not 

been so, more detailed references to work during the war would have 

been possible. My hearty thanks are due to Sir Edward Appleton, F.R.S., 

for his kind assistance in managing the references that are given, and 

for his helpful editing of this monograph. Dr. Guptill has put me further 

in his debt by reading the proofs and eliminating the errors. Any re¬ 

maining must be charged to me, for the workmanship of the printer has 

been meticulous. Lastly, the secretarial staff of the Oxford University 

Press has at every point made smooth the work of seeing the book 

through the press. I am very grateful for this efficient and understand¬ 

ing help in avoiding the delays inherent in correspondence at so great a 

distance. 
W. H. W. 

SASKATOON, 

SASKATCHEWAN, CANADA 
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PLANE ELECTROMAGNETIC WAVES 

We shall be concerned at the outset to treat the elements of wave 

propagation using the idea of impedance. Our object is to bridge the 

gap which exists between the treatment of transmission lines by means 

of circuit theory and the theory of more general forms of wave pro¬ 

pagation based on Maxwell’s equations in which, until quite recently, 

the impedance concept has not been used. Impedance has been intro¬ 
duced into the treatment of wave propagation by Schelkunoff.t 

In the present chapter we shall deal only with plane waves, and as 

a starting-point we consider a simple transmission line which lends itself 
very simply to the conventional transmission-line treatment and also 

to field representation. 

1.1. The Strip Transmission Line and Circle Diagram 

Imagine two parallel infinite conducting planes distant b metres 

apart, in the empty space between which is propagated a uniform plane 

electromagnetic wave, simple harmonic in the time arid of frequenc^^ 

a>/27r. We shall suppose that the 2-axis of our right-handed rectangular 

Cartesian system of reference coincides with the direction of propaga¬ 

tion, and the y-axis with the direction of the electric force E in the 

wave, the magnitude of which we shall suppose not to depend on x 
and y. The conducting planes between which the waves travel are 

parallel to the a;2-plane. Imagine both conductors cut parallel to z 
so as to isolate two strips of width a metres opposite each other. 
We shall think of these two strips {ABGD and A'B'G'D' in 

Fig. 1) as constituting the transmission line, the remainder of the 

t Schelkunoff, S. A., BeU Syst, Tech. J. 17, 17 (1938). 

B 4791.4 
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planes being retained as guard plates to permit the simplest possible 

geometry.f 
Sinoe we have assumed a uniform plane wave with E parallel to y. 

E^ = Eg = 0, 
dy dx 

It follows from Maxwell’s equations (see §10.2) that when the field 

components depend on the time through (j* = — 1) 

SEy 
dz et 

dHg. dEy . „ 

Hy = Hg=Q. 

(11.1) 

Now in order to sustain the uniform magnetic field between the 

plates, there must be a longitudinal current I parallel to 2; on the faces 

of the strips bounding'the field between them, namely. 

I^aH, (11.2) 

on the upper strip, there being an equal and opposite current on the 

lower one. The voltage between the strips is 

V == 

Accordingly the equations (11.1) may be rewritten 

dz a * dz b 

(11.3) 

(11.4) 

These are just the equations governing the propagation of current and 

voltage on an ideal transmission line for which the inductance and 

capacitance per unit length are respectively 

fjLQbjcL and 

indeed these relations suggest a picturesque method for defining the 

constants 

{= 47rX 10“’ heniy/metre) and Ky |= farewi/metrej. 

(11.4) shows that both I and V and both Ey and satisfy the equation' 

dhl - /II ie\ 

t If one considers a coaxial line, this device is unnecessary, but the complexity of 
03dindrical polar coordinates is introduced. It is a good exercise to work out the calcula¬ 
tion in this case. 



1.1] PLANE ELECTROMAGNETIC WAVES 

SO that, given the hanuonic time factor, u has the general form 

8 

(11.6) 
where c = = 3.10* m./sec. is the velocity of propagation. When 

V(/*o«o) 
u stands for V we call this a voltage representation, and correspond¬ 

ingly for / or Ey or Hj, a current or electric force or magnetic force 

representation. The variables V and Ey are essentially electric; I and 

Hr are magnetic variables. 

In (11.6) A is the complex amplitude of the wave travelling in the 

direction of increasing z: that is, \A\ is the physical amplitude and 

arg-4 the phase of the wave a,t z = ct, B has the Uke meaning for the 

wave travelling in the direction ^-decreasing. 

Since all electromagnetic variables on the line are proportional to 

Yjre shall follow the practice of electrical engineers and suppress this 

factor. Physical magnitudes are the real parts of the corresponding 

complex numbers. Any of the variables F, I, E^ H ib completely 

specified once we know the corresponding pair of complex numbers 

A and B. Now it should be noted that for a given wave system the 

arguments of A and B depend on the choice of the origin of z. To 

emphasize this fact we shall write A and B as functions of the reference 

2-position. For instance, 

^(0) = B(0) == B(zo)e-^^^^<^, (11.7) 

corresponding to (11.6) written in the form 

u(z\ t) = ^(2o)e^^^-^/">+£(2o)e^'“^<+*'/">, (11.6') 

where 2' = z—Zq. 
The equations (11.7) constitute a transformation of the complex 

number pair {A,B) which we shall treat mathematically as a column 

2-vector and, using matrix notation, write 

where P(*o) ia the matrix 

and 

/a>(*o) 0 \ 
\ 0 a>-i(«o)/ 

a)(ao) = 

(11.8) 

(11.9) 

The wavelength on the line is A = 27rc/a>, and it is evident that 
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displacement by an integral number of half-waves corresponds to the 

unit matrix E as follows: 

^(t)?)• 

where m is an integer. 

Consequently the ratio w(Zq) = BjA regarded as a function of 

Imaginary 

Fio. 2. 

repeats its behaviour every half-wavelength. For any displacement 

2o, argic; changes by {2zJX)27r, We speak ^ X electrical 

distance corresponding to Zq, On displacement in a given 

wave system on an unloaded line, argi^; therefore changes at twice the 

rate of the electrical distance, and on account of (11.7) modi^; = \w\ 
is unaltered by displacement. Let us use the complex t^;-plane as in 

Fig. 2 to represent wave systems. 

The point ti; = 0 denotes a pure travelling wave in the direction 

z-increasing. The circle |t^| = 1 represents the standing wave produced 

by two waves of equal amplitude travelling in opposite directions; each 

point of the circle corresponds to a point in the wave system. The 

point == — 1 corresponds to the position on the line where u vanishes, 

and ti; = -f 1 denotes the position where is a maximum. If u denotes 

V or Ey, = — 1 is a short-circuit point in the wave; it; = -f 1 is an open- 

circuit point. On the other liand, if u denotes / or the electrical 

roles of the places where it; = — 1 and it; = +1 are interchanged. 

It should be evident that short-circuit and open-circuit points in a 

standing-wave system bccur alternately a quarter-wavelength apart. 



Ml PLANE ELECTROMAGNETIC WAVES 5 

It is convenient to think of z increasing to the right and to regard 

the source of waves on the left. By this convention it is possible always 

to represent any wave system on the line within the circle \w\ =1. 

Any other circle \w\ = p <1 represents a wave system in which there 

is imperfect reflection. Where the circle cuts the real axis w is a maxi¬ 

mum on the positive side of the origin and a minimum on the negative 

side. The ratio 

r — — li? 
^min 1- P 

(11.10) 

is called the standing-wave ratio. Places of maximum u and minimum 

u occur alternately JA apart. Hence if r is measured and we know, for 

example, the position of the circle diagram may be employed to 

obtain w at any other point of the line. The angle coordinate 9 — arg w, 

measured counter-clockwise from the real axis of w, is twice the electri¬ 

cal distance from the position represented on the positive real axis ana 

measured to the right, i.e. away from the generator. 

So far we have considered the transformation of A and B on displace¬ 

ment through the wave system. Let us now consider transformations 

which involve physical changes of the wave system on the transmission 

line. Suppose that at the point z = 0 there is a localized obstacle to 

propagation; say, a thin sheet of dielectric or imperfect conductor. For 

simplicity, assume that the sheet is at right angles to z and is continued 

indeflnitely between the guard plates. The obstacle will then reflect 

the waves travelling in both directions; consequently there will be dis¬ 

continuities in A and B 8i,t z ~ 0, Let A' and B' denote the values of 

A and B to the left of 2 = 0, and let unprimed letters denote values 

to the right of the origin. Suppose the wave of complex amplitude 14' 

incident from the left. The obstructing sheet acts as an antenna sending 

a plane wave of complex amplitude —fA' to the right and —/A' to 

the left, where / is a complex number whose modulus is less than 1, 

and all waves are treated according to the same convention as to the 

positive direction of u in the wave. Similarly the wave B incident 

from the right excites the antenna. We now apply the principle of 

superposition which holds for waves obeying hnear laws; we equate the 

outgoing wave amplitudes to the sum of the ingoing and scattered 

amplitudes. Since we are dealing with complex numbers, the sums in 

question take phase differences into account automatically. We obtain 
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or, solving for A' and 

B' — ^ 4 1 B (11.11) 

Now let 2/ 
1-f 

(11.12) 

then 

(11.13) 

The matrix transforming from the right to the left of the point of 
loading is therefore 

/l+i“ \ 
\ — 1—W* 

(11.14) 

We shall call / the radiation coefficient of the load, and the meaning 
of (X will appear later. 

It is clear that A'+B' = A+B. 

Hence if u denotes the voltage, the load is a shunt load since the voltage 
at z = 0 suffers no discontinuity at the point of loading. On the other 
hand, if u denotes I, the load is a series load since the current at the 
point of loading suffers no discontinuity, but, of course, this does not 
apply to the example just given. 

1.2. Impedance and Admittance 

, Consider a travelling wave to the right. From (11.4) 

1= (definition). (12.1) 
JL ^ ^ kq a 

Zg is the characteristic impedance of the line and the ratio is inde¬ 
pendent of position on the line. In general, when waves travel in both 
directions in the wave system, the ratio V/I is a function of z and is 
the impedance in the wave at the place where the ratio is evaluated; 
for a travelling wave to the left this impedance is —Zg. If u denotes 
F in the (A, B) representation, then at z = 0 the impedance 

V 
I 

l-fto 

1-rW’ 

(12.2) 
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whereas the admittance 
V ^ id S_« 

“7“ *z+5~ 

7 

(12.3) 

Yg is the reciprocal of Z^. Unless they are required explicitly we 

eliminate Zg and Yg from (12.2) and (12.3) by understanding that Z 
and Y are measured with Zg and Yg respectively as unit. 

It is noted that impedance and admittance are mutually inter¬ 

changeable merely by reversing the sign of w, and that the complex 

number Z is derived by the conformal transformation of the w-plane 

Z = 
l+w 

1—w’ 
(12.4) 

where the real part of Z is B, the resistance, and the imaginary part 

X is the reactance; hence 

2B = I+WJ , l+w* 

l—w 1—u>*’ 
2jZ = 

l-fw 

\—w 

l-f-to* 

l—w*' 
(12.5) 

where te?* denotes the conjugate complex of w. It is easy to show that 

the loci of constant R are circles centred on the real axis of passing 

through 1/; = -f-1 and of radius l/(i2+1): whereas the loci of constant X 
are circles centred on the tangent to the unit circle at = -f 1 and 

passing through that point. 

It is therefore possible to superpose on the simple circle diagram of 

Pig. 2 a grid of two orthogonal sets of circles all passing through 

== 4-1, so that (R,X) coordinates may be read off directly. This is 

the circle diagram which is fundamental in all transmission-line work. 

An example is shown in Fig. 3. The same grid system may be used 

admittance-wise, conductance and susceptance being expressed as frac¬ 

tions of the characteristic admittance of the line. The common limit 

of the two circle systems, being the open-circuit point on the impedance 

diagram, becomes the short-circuit point in the admittance diagram, and 

in accordance with the rule given in (12.4) the sign of j must be changed, 

so that numbers on the side of the real axis that formerly referred to 

positive reactance now refer to negative susceptance. Further^ it is 

sometimes convenient to adopt the inverse coordination in which (R, X) 

are used as rectangular coordinates while \w\ and argw? are given by the 

auxiliary grid of circles. 

The simple equations (11.2) and (11.3) allow us to transfer very easily 

all the ideas which have just been expressed in the familiar context of 

the transmission line, in order to set up the idea of field impedance, 

whieh in the case of the plane wave considered above is —In 
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a travelling wave this ratio is VCMo/^o) = 376*6 ohms (1207r). In the 
ease of a medium between the plates in place of vacuum, let fx and k 

be its magnetic susceptibility and dielectric constant. The velocity of 
propagation is now and the intrinsic impedance of the medium 
is 1207r-^(/x/#c) ohms, corresponding to the characteristic impedance of 
the transmission line. 

The great advantage obtained by introducing the concept field im¬ 
pedance is that problems involving uniform plane waves are very 
simply managed by the {A^B) representation already discussed. At 
the boundary between two dielectrics the tangential components of E 

and H are continuous, consequently, in the electric force representa¬ 
tion, (A+5) and {A—B)IZc are continuous. Thus the matrix governing 
transformation from the medium 1 to the medium 2 at the interface 
is as follows: 

Mi\ _ J1_A(Z2+Zi) ^{Z2—Zi)\IAi\ 
[bJ Z,\i(Z,-Z^) i(Z,+Z,)J{Bj’ 

(12.6) 

where = ^(/xi//cj)1207r, Z2 == >^(/Lt2/^2)i2Chr. 
If we put B2 = 0, we readily obtain from (12.6) the relations between 

the electric force in the refiected, transmitted, and incident wave 
travelling towards the interface in medium 1, when medium 2 is 
unbounded on the right, viz. 

Ai _ Bi __ A2 

or, in terms of admittance, 

Ai _ B^ _ A2 

(12.7) 

(12.8) 

1.3. Energy Flux and Phase in the Wave System 

In a voltage representation the mean rate of energy transferf to the 
right is (the denoting conjugate complex) 

= (13.1) 

which is proportional to root-mean-square of it is 
proportional t6 the square root of this product of the maximum and 
minimum values of it in the wave system. In the electric field repre¬ 
sentation the above expression yields, when Z^ has been replaced by 
the intrinsic impedance of the medium, the mean energy transfer rate 
per unit area perpendicular to the direction of propagation. It is 

t Stratton, EUetromagntHe Theory, MoGhraw-Hill, 1941, p. 186. 
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evident that the more closely |5| tends ^ \A\, the smaller the mean 
flux: the limiting value 0 is reached for infinite standing-wave ratio (r), 
because (13.1) can be written 

lA I* 4r 
YZZ (r-hl)*' 

It is important for some purposes to know how phase is distributed 

9-tan'(^ tein 9) 

along the line in the wave system. Referred to the phase at the place 
in the line where w = p, arg p = 0 as origin of z, 

2i7TZ 
argu = arg(e~^'^+w;c^^), where ^ 

= tan“^{(l/r)tan^}. (13.2) 

Only in a pure travelling wave to the right (r = 1) is argi^ = A 
graph of <^—tan~^{(l/r)tan^} for different values of the standing-wave 
ratio r is shown in Fig. 4. Note that the phase of u changes rapidly 
in the vicinity of the positions where is a minimum. In a perfect 
standing wave the phase changes discontinuously by rr at the minima 
(zero). A fixed position on a line does not mean a position of constant 
phase if the terminating load on the line and consequently r is changed. 
If r is large, however, the phase at a maximum does not change rapidly 
with r and may in practice be used for a reference phase. 

1.4. The Fundamental Matrices 
We have stiH to give an electrical meaning to the coefficient a intro¬ 

duced in equation (11.12). Let us rewrite (11.13) in the form 

A'+B^ = A+B, 

A^-^B^ = A~£+a(A+fi). 
o 4791.4 
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If (^, £) is a voltage (or electric field) representation these equations 

are equivalent to v = V 

r = I+ccV. 

Hence, by Kirchhoff’s laws, ot is the admittance of the load. 

In order to obtain a series load, mth the same meaning for {A,B), 

we have to make the load radiate in opposite phases on its two sides. 

Thus, when a wave of complex ampUtude A' is incident from the left, 

the scattered wave is —fA' to the right and +/ri' to the left. Apply 

the principle of superposition to obtain 

Hence 

Let 

A = (l-/)A'+/H, 

B' = 

and the transformation matrix is 

(14.1) 

r-%)- 
We show the series character of the load by combining the transforma¬ 

tion equations (14.1) in the form 

A'+B' = A+B+y{A-B), 

which are Kirchhofl’s laws for a series element when we have regard 

to the fact that in a voltage representation {A-{-B) is the voltage and 

(A—B) is the current at 2 = 0. The quantity y is therefore the im¬ 

pedance of the load. 

Thus the series and shunt loading matrices transforming right to left 

in a voltage representation are respectively 

(series) and E-\-(xU^ (shunt), (14.3) 

wher. = _ij) tr, = g -|). (14.4) 

Any combination of series and shunt loads may be represented by 

multiplying in order the corresponding matrices and noting that 

= “/). J). 
E. (14.6) 
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If the loads are separated we must introduce the corresponding dis¬ 

placement matrices P in order to take account of propagation. 

Since the choice of a voltage (electric, impedance) representation or 

a current (magnetic, admittance) representation is dependent on the 

types of loading, both representations may be used. It is convenient 

to know the matrix which transforms from one to the other. In an 

obvious notation 

(14.6) 

and a loading matrix M in current representation becomes for voltage 

representation 

C -M- 
This shows that is appropriate to series and Z/g to shunt in an 

admittance representation on the i4;-plane. 

1.5. Standing-wave Representations 

For certain purposes it is convenient to represent the wave system 

in terms of standing waves in space quadrature instead of running 

waves. Thus, suppressing the time factor, (11.6) may be written 

u = (^+-fi)cosA:;2J+j(^“~^)sinA:2:. (16.1) 

The transformation from travelling to standing waves is therefore given 

by the matrix z , 

(-i} 
and the inverse transformation is 

i -y, 
(16.3) 

In this system of representation impedance plays the role of w in 

respect to the travelling waves. 

Displacement in the standing-wave representation is achieved by 

(cos kzQ —j sin kz^ 

sin kzQ j cos kzQ ; 
(15.4) 

in place of (11.9) which applies to travelling waves. 

As examples of the construction of loading matrices, we choose shunt 

and series loads with {A,B) on a voltage basis. For a shunt load of 

admittance a the transformation is 

(1 i\(i+^oc wi y\_(i o\ 
\-j i-Wli -yj 1/’ 

(16.6) 
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operating from right to left. Correspondingly for the series load of 

impedance y we have 

1+iy —iY\(i y\^(^ 

y l-WU -y) lo !/■ 
(16.6) 

1.6. Transformations on the w-plane 

If (A, B) is transformed by the matrix 

C = 
W21 ^22/ 

the corresponding transformation of w is 

(16.1) 

= ^21 + ^22^ 
Cii-|-Ci2^ 

(16.2) 

This bilinear transformation can be foimd in any practical case, but 

only the ratios of the elements of the matrix C are involved. Hence 

in addition to knowledge of the transformation of the ii;-plane which 

would be obtained by impedance or admittance measurements only, 

two quantities (a modulus and phase) must be measured in addition, 

in order that the corresponding matrix C can be fully determined. It 

is clear that the most general matrix C represents the most general 

localized loading of the line or wave. Regarded as a mathematical 

transformation (16.2) has well-known properties.f There are two self- 

corresponding points. If these points are coincident, we obtain a 

restricted class of transformations and correspondingly a restricted 

class of localized loads. In impedance representations, if the coincident 

self-corresponding points he at = -f-1, the load is a series one, for 

an open-circuit is transformed unchanged past the series load; if they 

lie at = —1 the load is a shunt, for a short-circuit is transformed 

past the shunt load unchanged. Corresponding statements may be 

made regarding admittance representations. 

The general form of the matrix G can be expressed in terms of the 

radiation coefficients. Let a wave of complex amplitude A' be incident 

from the left, and let the load radiate f'A' to the left and —g'A' to 

the right.:]: When the wave of amplitude B is incident from the right, 

let the corresponding amplitudes of the waves radiated to the right 

and to the left be fB and —gB respectively. Now apply the principle 

of superposition to obtain in current representation^ for example, . 

A = {l^g')A'+fB, 

JS'=/'^'+(l~fif)B, 
t Bateman, H., Partial Differential Eqtiationa, § 4.22. 
j The negative sign is chosen so that g will be positive when real. 
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which lead at once to the matrix representation 

IJ- 

r.)=' 

13 

/' 
(16.3) 

The special case which represents the most general load presented 

by a lumped circuit load to a wire transmission line is given by gr = g\ 

This result is required by reciprocity, for the determinant of the second- 

order matrix in (16.3) must be unity. It is perhaps worth while to 

prove this result. Let v' and i' denote the voltage and current on the 

line on the left of the load and let imprimed letters denote corresponding 

quantities to the right. On account of the linear circuit laws 

where p, q, r, and s are constants determined by the circuit. When 

V V and v' = 0, the value of i' is —(ps—qr)Vlq. Whereas when 

V == 0 and v' — F, the value of i is Vjq. Now the reciprocity theorem 

states that these two currents are equal, hence |detQ| = \ps—qr\ = 1. 

(b]=4]' -M- 
IA\ 

Thus 
M'\ ^ 

U'/ 
BQR -1 

\B 

and since \Q\ =1, \BQR-^\ = 1, which is the result stated. 

Let us now restrict ourselves to the system in which not merely 

g' = g, but also 
/ = grc-jS, 

/. 

/' = pe 
—ge~^^\ 

+j8 

Then C = 
1-? i-9 

l-2g 

\i-g 1-Sr 

The corresponding «i;-transformation may be written 

w = 
ge^^+{l—2g)w 

1 —ge-^^' 

which may be reduced to the form 

1 1 1 

(16.4) 

(16.5)' 

(16.6) 

(16.7) 
w‘—w— 

where k = —e^^jg. This equation shows that is the position of the 
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double self-corresponding point of the transformation, and it is evident 

that the susceptance transformed unchanged past the load is tanJS, 

while the transform of the match {w = 0) is 

(16.8) 
k 

With respect to this type of load, the susceptance just mentioned 

plays the same role as does the short-circuit for a shunt load or the 

open-circuit for a series load. We thus reach a suggestive generahzation 

of the conceptions shunt and series by giving attention to the pure 

susceptance which is invariant under the transformation representing 

the load. It would be convenient to use the name unimodular loading 

of argument 8 to describe a load for which the self-corresponding double 

point lies at Series loading would then become unimodular loading 

of argument tt, etc. It will always be necessary to indicate whether the 

t^-plane is used on a current or voltage basis so as to render these 

names unambiguous. Accordingly it may be advantageous to introduce 

the following refinement in notation: use s-argument and r-argument 

respectively to distinguish uses of the ^^;-plane to represent susceptances 

on the one hand and reactances on the other. Further, we note on 

writing the matrix (7 of (16.5) in the form 

j is the generalization of and which in 

voltage representations become respectively and Uq, 

Since the equation (16.7) will be used in practice with actual plots 

on the circle diagram, it is useful to have the following results relevant 

to the geometry of the case. Let the self-corresponding points be e^^ 

and let the transform of a match be pe^^. The unit circle is transformed 

into the circle with its centre at 

|^Jcos(S-e)-p] 

and of radius , (10.10) 

The fraction of power absorbed by the load when the line is 

terminated in a match is 

l_\±Z9l (16.11) 
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1.7. Oblique Incidence of Plane Waves on a Plane Interface 

In §1.2^ it was indicated how to treat, in perfect analogy with the 

transmission line, the discontinuity in propagation which occurs when 

unbounded plane waves are incident normally on the plane interface 

between two dielectrics. We now discuss the oblique incidence of 

unbounded plane waves on the plane interface. For this purpose we 

introduce the ideas of propagation-vector and wave-function for plane 

waves propagated in any direction specified by the set of direction 

cosines (Z, m, n) referred to our coordinate system Oxyz, The phase 

difference between the origin and the point {x, y, z) at the same time is 

k{lx-\-my-\-nz), where k — ^TrjXy A being the wavelength in the medium 

supposed loss-free; if k and ^4 are the dielectric constant and magnetic 

permeability of the medium, 

^ k = = kQyJiflK), 
c 

The wave-function for these waves (assumed harmonic) is 

exp[ —k(lx+my -f- nz)]'\ 

and the propagation-vector is (H, km, kn) radians/metre. 

The components of the propagation-vector will be complex in the 
case of a medium with loss and, as we shall see, this is also possible 
even when there is no leakage. When this is so, the real parts of the 
components form a vector which is perpendicular to the planes of 
constant phase 

k{lx-\-my-{-nz) = (f), 

while the imaginary parts form a vector in the direction opposed 
to that of the exponential attenuation. When these two directions 
coincide, the infinite plane wave is called simple. 

Let the semi-infinite medium 1 be bounded over the icy-plane by 

a second medium 2 extending to infinity {z positive). Let the constants 

IM and K for these media be distinguished by the subscripts 1 and 2. 

Imagine a simple plane wave travelling in medium 1 towards the inter¬ 

face: let its propagation-vector make 0^ with the normal to the interface; 

let the propagation-vectors of the refiected and transmitted waves make 

(tt—0i) and $2 respectively with the normal which is the positive 2;-axis. 

(See Fig. 5.) 
Although the law of reflection is known, we shall not for the purpose 

of this discussion assume it. With an obvious choice of the axes of 
X and y, the propagation-vectors of the three waves are: 

Incident: V(/^i ^i)* 
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Reflected: ki){0, sin —cos 

Transmitted: isp '<2)(0, sin d^, cos O^). 

Suppose that in the incident wave the electric vector Ui is parallel 

to the interface. Since the wave is transverse we must have Si in 

the a:-direction. The component of magnetic force parallel to the 

interface is Hy = Hi cos Oi. Thus the field impedance looking towards 

the interface in the direction of the positive z-axis is for the incident 

wave 

Zi = ^ = ^secOi = 12O7r^(/xi//ci)aec0i. 
Hy Hi 

This method can be applied with the following results to each wave, 

in each of the two fundamental cases from which the behaviour for 

arbitrary polarization of the incident wave may be deduced: 

Case 1. E vibrates parallel to the interface: 

Incident: = 12077' .y/(pi/Ki)sec di. 

Reflected: Z; = — 12O77 V(AiiK)8ec6>;. (17.1) 

Transmitted: 12O7T.^(/A2//f2)sec02. 

Case 2. H vibrates parallel to the interface: 

Incident: Zi = l20n^{(iilKi)coadi. 

Reflected: 2;; = — 1207rV(Mi/'fi)cosei. (17.2) 

Transmitted: = 1207r ^{fijKi)coa 6^. 

The boundary conditions which must be satisfied at the interface 

2 = 0 in each case are the continuity of the tangential components of 
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both E and H. This reqxiires at once that the y-components of the 
propagation-vectors of the waves shall be identical, i.e. 

K^{HiKj)amd.^ = = *oV(f*2«2)sin02, 

which yield at once the laws of reflection and refraction 

///^\ and 

We note that Z\ = —Z^. 

In the second place, we have for Case 1 

~ ^2, 

sin 6^ 

sin 09 ’ 
(17.3) 

(17.4) 

or Y^E,-Y^E\==Y2E2. 

where Y^ is the admittance corresponding to etc. 
For Case 2 

Thus 

= H2. 
Z^H^. (17.5) 

(1) ^ parallel to interface); 

(2) ^ ^ parallel to interface). (17.6) 

The first of these is equivalent to (12.7) in the case of normal incidence 
and the second corresponds with what we should obtain in place of 

(12.7) were we to use the magnetic {A,B) representation. 

On the basis of equations (17.6) just derived, we can establish 

Fresnel’s laws, which are well known in electromagnetic optics. Further, 

these results may be extended to apply to media in which there is 

appreciable conductivity (a). The phenomena of reflection and trans¬ 
mission are described by substituting for k in the above formulae the 

complex number (K—ja/coKo), so that the intrinsic impedance of the 

second medium, for example, becomes 

120. 11 -). 
The velocity of propagation is also complex, viz. cl^J{fi2{f<2~j^2l^^o)}y 
which means exponential attenuation of amplitude in the direction of 

propagation. The results are immediately evident from Maxwell’s 

equations and Ohm’s law for 

curlH = JcdkkqE+I = 

where i is the current density. 
4791.4 D 
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1.8. Evanescent Transverse Electric and Magnetic Waves 

The field impedance of (17.1) and (17.2) may be expressed directly 

in terms of the angle of incidence 6-^: 

(1) 

(2) 

Z = 12Q^/^2 _ {E 11 interface); 

^2 = 

12077 

^2 

.^(/x2/c2—f^i^isin^^i) {H II interface). (18.1) 

If fjLiKi < /x2^2> ^2 IS real, i.e. purely resistive, for all real values of 

the angle of incidence. But if purely resistive or 

purely reactive according as is less or greater than sin“^>^(ft2'^2/i^i 

which is called the critical angle of incidence 0^* When 6i> 6^, (1) is 

actually an inductive reactance and (2) is a capacitive reactance. The 

formulae (17.6) give the relative amplitudes and phases of the three 

waves whatever the angle of incidence, and when 6^ > 6^, the propaga¬ 

tion-vector in medium 2 is complex: its real part is 

^o{O.VW'fi)sin0i,O}; 
its imaginary part is 

0, —j 

Thus the wave in medium 2 is not simple. The propagation of phase 

takes place in the 7/-direction with the velocity /Ci)}cosec which 

is less than that for free waves in medium 2. The surfaces of constant 

phase are perpendicular to y. In the z-direction the amplitude of the 

disturbance is attenuated exponentially with distance from the inter¬ 

face at the rate 

20 logio e ^0V(Mi sin^^i—/X2 ^<^2) decibels/metre. (18-2) 

The reactive field impedance secures complete refiection. Like 

a coil or a condenser, it sucks in and ejects energy across the interface 

in successive quarter cycles; but, of course, these processes happen at 

different times at different places across the interface, due to oblique 

incidence. The energy is stored in medium 2 close to the interface, as 

is shown by the exponential attenuation of field strength in that 

medium. If E vibrates parallel to the interface, the stored energy is 

mainly magnetic, and if H vibrates parallel to the interface it is mainly 

electric. There is no continual flow of energy away from the surface 

of medium 2 as there is when e^<d, and the propagation-vectpr in 

that medium and the impedance Z^ are real. 

When E vibrates parallel to the interface, the magnetic field in 
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medium 2 is seen, because of the continuity of the tangential magnetic 

force and normal magnetic induction, to have components 

f __ I207r^(fijKi) jr __ sin01J?! 

z,{i+zjzT' fi,{i+zjz,y (18.3) 

The electric force in medium 2 is parallel to x. Thus we have in that 

medium, under conditions of total reflection, a wave with the real part 

of its propagation-vector parallel to y, with the components of E and 

H at right angles to this direction in phase with each other, while in 

the ^/-direction there is a component of magnetic force in phase- 

quadrature with and and perpendicular to them, for Z^ (reckoned 

normal to the interface) is imaginary. This wave is called transverse 

electric. In it the electric force is perpendicular to the direction of phase 

propagation which is also the direction of the quadrature component 

of magnetic force. ' 

When H vibrates parallel to the interface, we make use of the con¬ 

tinuity of electric induction normal to the interface to obtain the 

corresponding result, viz. the wave in medium 2 is a transverse magnetic 

wave propagated parallel to y. The longitudinal {y) component of E 

is in phase-quadrature with the transverse components of E and H. 

In both cases these waves are propagated with phase velocity less 

than that for plane waves with uniform amplitude distribution in the 

medium. The attenuation of wave amplitude normal to the interface 

is not attended by loss of energy in the form of heat such as would 

occur in a medium with finite conductivity. The waves are therefore 

called evanescent waves—since they involve exponential attenuation in 

a loss-free medium. Evanescent waves are associated with the storage 

of energy in the neighbourhood of a surface and are closely connected 

with the idea of lumped shunt reactance in transmission systems whose 

lateral dimensions are not necessarily small compared with A/27r. 

1.9. Lumped Shunt Admittance and Impedance 

Consider the strip transmission line of § 1.1. Let a resistive film whose 

surface conductance is 0 mhos be presented normally to the waves 

between the strips. If we take a square of the film of side 1 metre, 

the conductance for uniform current flow between two opposite edges 

of the square will be O mhos. Hence our strip transmission line is 

shunted by the conductance Oajb mhos. If Y is the intrinsic admit¬ 

tance of the medium between the strips, the characteristic admittance 

of the transmission line is Yajb. For a wave incident from the left, the 

reflection and transmission on the line shunted by the film and extending 
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indefinitely to the right in the direction of the positive a;-axis are calou 

lable by (12.8) if we put Y for and Y+0 for Fg- Hence 

IP jp^ jp _ -^1   J^2 (19.1) 

From the circuit point of view this is exactly what we expect from the 

admittance Gajb shunted by Yajb as the termination of the transmission 

line. From the wave point of view, at the discontinuity in the propaga¬ 

tion, the electric field but not the magnetic field is continuous. The 

discontinuity in the magnetic field arises from the current through the 

film constituting the load. 

Suppose now that a perfectly conducting plate is situated exactly 

JA beyond the conducting film. The field impedance immediately to 

the right of the film is now infinite, and in (12.8) we must now put 

Fa = G, i.e. 
-^1 -^1 -^2 (19.2) 

For complete absorption of the wave in the film we must have (r = F: 

then = 0. 

In order to secure complete absorption of the wave energy in the 

resistive film when the simple infinite plane wave is incident at the 

angle 0 to the normal to the film supposed in a medium (/>t, k), we have 

to consider field admittances reckoned in the direction of the normal to 

the film. We have 

y = (H II film). (19.3) 

The complete propagation-vector in the direction of the normal is 

kQ^J{iJLK)QOQd. There will be no reflection from the film if 0 is made 

equal to the appropriate value of F, and the film is backed by a parallel 

reflecting plate placed JA sec 0 behind it. 

So far we have considered resistive loads on plane waves: it is natural 

to conceive the possibility of loads having susceptance and to find their 

realization in a metal grating such as a plane grid of parallel equidistant 
wires. 

Imagine an infinite plane grid of perfectly conducting coplanar strips. 

Let 2d be the distance between the centres of adjacent parallel strips, 

and let 26 be the width of the gap between them. This grid is equivalent 

to a shunt admittance similar to the resistive film just discussed, but 
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it has susceptance as well as conductance. If 2d < A, the wavelength 

in the medium in which the grating is embedded, the surface admittance 

of the grid is a pure susceptance, whereas if 2d > A, it has conductance 

as well. The pure susceptance is of capacitive type if the electric force 

in the incident wave is perpendicular to the strips, but of inductive 

type if the electric force is parallel to the strips. 

We have already seen (§1.8) how, in a field, capacitive and inductive 

reactance are connected with the storage of energy in the vicinity of 

the plane where a discontinuity in propagation takes place. Further, 

the storage of energy is associated with evanescent waves. We shall 

find the same phenomenon due to the grating. A wave incident normally 

on the grid from the left with E parallel to the strips induces in them 

currents which vibrate in phase. The waves reradiated by the strips 

when 2d < X arrive in phase over any plane parallel to the grid and 

over no other planes. The wave radiated to the left is the reflected 

wave, while that travelling to the right superposed on the undisturbed 

incident wave constitutes the transmitted wave. But if 2d > X the 

grid can produce spectra; the waves reradiated by the strips arrive in 

phase over any one of planes inclined at 6^ to the grid, where 

e, - (19.4) 

and n is an integer less than 2d/A. 

These waves draw energy from the incident wave and give rise to 

the resistive component in the lumped shunt which represents the grid. 

Let us consider these side waves when 2d < A: is imaginary and the 

waves become evanescent just as does the transmitted wave at total 

reflection. These evanescent waves are concerned only with the storage 

of energy in the immediate neighbourhood of the grid. With this inter¬ 

pretation of imaginary values of we see that in general we may 

regard n as unrestricted, but of course integral. To each value of n 

corresponds a side-wave: if 6^ is real, the side-wave in question carries 

away energy continually and hence contributes to the shunt con¬ 

ductance presented by the grid; if 6^ is imaginary, the corresponding 

side-wave is evanescent and, being associated with the storage of energy 

in the vicinity of the grid, contributes to the shunt susceptance pre¬ 

sented by the grid. Exact expressions for the surface susceptance of 

such grids have been worked out, both for grids of fine circular wires 

and for flat strips, and for both the inductive and capacitive cases. 

We shall have occasion to return to the discussion of gratings in 

connexion with obstructions in wave guides. 
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1.10. Summary 

In this initial chapter some fundamental ideas have been presented. 

With the aid of the simple strip transmission line it has been shown 

how to transfer the circuit conceptions impedance and admittance to 

plane waves in space. In this way it is possible to discard the elaborate 

differential equations conventionally employed even with such simple 

waves and to use instead simple algebra. The gain in ease of manage¬ 

ment of quite complicated wave systems is analogous to the corre¬ 

sponding step in the theory of electric circuits where the replacement 

of systems of ordinary differential equations by algebraic ones involving 

complex numbers is well known to engineers and physicists. The alge¬ 

braic equations representing waves either on a transmission line or in 

space can be easily connected with an elegant geometrical representa¬ 

tion in terms of the circle diagram. 

Again, algebraic representation immediately suggests that propaga¬ 

tion and the loading of waves be regarded as transformations. These 

are found to belong to a simple type and are conveniently represented 

by matrices which we have developed in some detail. Appropriate to 

plane waves, the ideas of energy flux, phase distribution, and the 

classification of types of load by the mathematical properties of the 

corresponding transformations were considered. 

Finally there was discussed at some length the optical phenomenon 

of reflection and transmission from one medium into another, and by 

a grid of conducting strips embedded in a single medium. In both of 

these cases the idea of impedance has an illuminating role to play. In 

order to explain the reactive behaviour of grids and of an interface at 

total reflection, we were led to the consideration of evanescent waves. 

To anyone accustomed to the representation of plane waves of light as 

essentially transverse electromagnetic, the appearance of transverse 

electric and transverse magnetic waves will be a novelty. In part, the 

justification of the discussion of these waves in this chapter is that we 

have to deal with them in wave guides in which we shall find that, as 

the result of a different amplitude distribution in the planes of equal 

phase, these waves can transfer energy just as do the better-known 

transverse electromagnetic waves. 
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THE RECTANGULAR WAVE GUIDE. I 

2.1. The Dominant Wave 

In order to obtain a picture of the simplest or dominant transverse 
electric wave in a rectangular wave guide, we consider a system of two 

interfering trains of the plane waves such 

as we introduced in § 1.1. As before, let the 
electric vector be parallel to y but let the 

waves travel between two uncut parallel 

planes, in such a way that the propagation- 
vectors each make the angle 6 on opposite 

sides of the 2:-axis but remain parallel 

to the a:2:-plane. The harmonic wave 

trains are supposed in phase at the origin 

of coordinates. The propagation-vectors 

are lc{±l^0^n), where I = sin0, n = cos0, 
and by the principle of superposition the 

electric force in the system of the two 

plane waves of equal amplitude -4/2 is 

2 

= A cos— (21.1) 

The magnetic forces of the waves are in different directions, hence they 

must be combined vectorially (see Fig. 6); 

Hy,— 
Zo c 

(21.2) 

(21.3) 

where Zq is the intrinsic impedance for the medium in which the plane 

waves are travelling. The other field components vanish. 

The wave system therefore comprises a standing-wave pattern in 

the rr-direction and propagation in the z-direction with phase-velocity 

cjn = Vg. The standing-wave pattern is repeated (apart from phase 

opposition) in the aj-interval 
ttC 

lo) 
a = (21.4) 



24 THE RECTANGULAR WAVE GUIDE. I [Chap. H 

Along the planes x = dbct/2, and on parallel planes distant from 

them (p an integer), the electric force parallel to the planes vanishes. 
Consequently, we may confine our attention to the part of space con¬ 

tained within the planes y = 0, y = b, and x = db®/2, provided that 

the field is bounded by a perfect conductor. That is, we have arrived 

at a possible field distribution inside a rectangular tube a X 6 in cross- 

section. For reasons that will be adduced later, we shall assume 

6 < |A < a < A, where A = 27rc/oi. Since the electric force, but not 
the magnetic force, is transverse, relative to the direction of propaga¬ 

tion 2, this wave is called a transverse electric (TE) wave. 

Let us introduce a into the formulae and displace the origin of 

coordinates to (—^,0,0), then 

where 

and 

E^ = Asm — eMt-zlv„)^ 
a 

H. = 
Zg a 

cojjLQa a 

Z = 
^ n c aJ kq 

y — _?_ for / = A 
^{l~(A/2a)2}’ 2a ‘ 

(21.6) 

(21.6) 

(21.7) 

(21.8) 

(21.9) 

Since \l\ ^1, the width a of the tube must not be less than half of 

the free-space wavelength corresponding to the frequency a>/27r. That 

is, there is a certain minimum frequency 

(21.10) 

for which the velocity Vg and the impedance Zg are real. For frequencies 

less than/o, Vg and Zg become imaginary; the field components, instead 
of depending harmonically on z, decay exponentially with distance 

along the guide. At the same time the wave impedance Zg becomes 

a pure reactance, which means that although energy can be stored 

inside the guide close to the place where it is excited, there can be no 

transfer of energy on the average along a guide with perfectly con¬ 

ducting wall when co < 27r/o. In fact, the wave is an evanescent one. 

We speak of /q as the cut-off frequency for the T£-wave with this 

particular amplitude distribution in the a?i/-plane for the guide cross- 
section given. 
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The foim of equation (21.7) shows that the longitudinal magnetic 

field Hg is in phase-quadrature with the transverse electric and mag¬ 

netic field components, which both vanish on the walls of the guide 

parallel to the t/-axis. Further, over the plane x = \a, midway between 

and parallel to these walls, Hg vanishes, but the transverse electric and 

magnetic field components reach their maximum amplitudes of oscilla¬ 

tion. 

2.2. Energy Flux 

Let us now apply Poynting’s theorem in the form giving the mean 

energy flux density w in terms of the complex vectors E and H: 

w = iReExH* = ^8in2—Zi, (22.1) 
2Zg a 

where is the unit vector in the direction z. The total flux obtained 

by integrating over the guide section is 

4.12077 
watts. (22.2) 

Since Eg is in quadrature with Ey, there is no mean energy transfer in 

the a;-direction. There is, however, oscillation of energy to supply what 

must be stored most densely at each side of the guide where Eg is 

maximum, and to remove it again when Eg falls to zero. We call EyJEg 

the triinsverse impedance in the wave: it is seen to be reactive in 

accordance with the vanishing mean energy flux in the a:-direction. 

2.3. The Current System on the Wall 

Just as the electric and magnetic fields in the space between the two 

conductors of an ordinary transmission line require current on the con¬ 

ductors, so the walls of the wave guide are the seat of surface currents 

which support the field inside the guide. Apply the boundary condition 

expressed in equation (11.2) and we obtain for the surface-current 

density (J) measured in amperes per metre perpendicular to the direc- 

•tion of flow: 

on y — 0, — Egy Jg — E^^^ 

on y = 6, = Egy Jg = E^^y 

on a; = 0, Jy= —Egy Jg = 0; 

on X ^ ay Jy = Egy JT = 0. 

(23.1) 

Fig. 7 represents the amplitude of oscillation in the system of current 

flow on a normal cross-section A BCD of the guide, which has been 
4791.4 Bj 
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opened out so as to show both longitudinal and transverse ourren|;s as 

functions of distance along the perimeter of the section. 

The longitudinal current is zero on BC and DA, and is in opposite 

directions on -45 and CD where its amplitude is proportional to 

sinTTxja, The transverse component of current is in phase-quadrature 

with the longitudinal current at the same guide section. Its amplitude 

is constant on BG and DA, but it flows in opposite directions on these 

Longitudinal current 

Transverse current 

A 

f -<r ^ p 4 

Fig. 7. 

narrow faces of the guide wall. On AB and CD the distribution of 

transverse current is given by cos7rx/a. If we change our representation 

so as to make B coincide with G and D with A, the longitudinal is 

shown by a sine curve and the transverse by a cosine curve on AD, 

With this device we may therefore say that the two distributions are 

in time-quadrature and space-quadrature along the perimeter of a 

cross-section of the guide. At P, the mid-point oi AB, the broad face 

of the guide, and at P', the mid-point of CD, the transverse current 

is zero. Consequently the current system on the guide wall will, for 

practical purposes, be undisturbed by a cut or slot in the rectangular 

metal tube along the centre-line of a broad face. This fact is used in 

the technique of standing-wave measurements in guides, and in the 

measurement of relative field strengths, to allow the introduction of an 
antenna into the guide. 

The electric current vector on the walls of the guide executes linear 

oscillations on the side walls and on the centre-line of the broad faces. 

Elsewhere it executes elliptical oscillations because it is the resultant 

of two unequal orthogonal vectors in phase-quadrature; for the parti- 
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oular value of x which makes equal the amplitudes of and the 

oscillation is a circular one. These remarks apply only to a pure 

travelling wave in one direction. If, due to reflection at one end of the 

guide, a standing-wave system is generated, there will be a stationary 

pattern of current distribution on the walls, in which the lines of 
current flow are orthogonal to the loci 

7TX . OJZ 
Sin—sin— == constant. (23.2) 

a ' 

The distribution is shown in Fig. 8. 

C 

0 fb f 
Fig. 9. 

2.4. Frequency Dependence of the Propagation 

One of the striking characteristics of propagation in a wave guide 

is dispersion. The velocity of propagation of waves with amplitude 

(21.6) is a fairly rapidly varying function of frequency (see Fig. 9). 

Accordingly a group of waves will not retain its group wave form in 

the course of propagation. For example, if the microwaves are modu- 

' lated by means of micro-second pulses repeated every milli-second, the 

shape of the pulse will be appreciably altered in propagation through 

a guide many wavelengths long. Such modulated microwaves will not 

permit zero minima in the standing-wave system in a long guide 

terminated by a perfect reflector. Further, if two trains of coherent 

modulated waves are sent by different paths to interfere at a detector, 

cancellation can never be perfect for the modulated wave, even although 

it may be so for a narrow band of frequencies in the group. 
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As the fipequency of the radiation is increased in a given rectangular 

wave guide, the relative amplitude of the longitudinal magnetic field, 

and, consequently, of the transverse surface current on the wall, is 

decreased. The field impedance Zg tends more and more closely to the 

free-space 12077 ohms. On the other hand, as the frequency is reduced 

towards cut-off, the value of Zg increases indefinitely; the transverse 

magnetic field and the longitudinal current on the wall tend to zero. 

At the same time, for given power input to the guide, the electric field 

strength, the longitudinal magnetic field, and the transverse current 

all increase. 

2.5. Impedance of a Rectangular Wave Guide 

So far we have introduced only the field impedance in the TE-wa,ve 

in the rectangular guide. On account of the simple field distribution 

in the guide we are easily led, however, to think of the impedance of 

the guide reckoned as the ratio 

Z^ 

It is readily shown that 

2 X total energy fiux 

(total longitudinal current)^ ’ 

Z=—-Zg. 
8 a " 

(25.1) 

If we attempt to define impedance as the voltage/current ratio in a 

travelling wave, we must choose what we mean by voltage. Some 

writers use the maximum voltage, others the mean voltage over the 

guide section. Neither of these gives the same numerical factor as 

(25.1), but both yield the same dependence on the dimensions a and b 

of the guide. 

The importance of this conception is that it brings out clearly how 

the depth b of the guide enters to determine the current and maximum 

voltage to be expected for given power transfer along the guide. A 

shallow guide requires greater current on the inside of the faces of the 

guide wall for the same power. Consequently, on account of the finite 

conductivity of the metal walls on which the current must fiow, one 

expects greater ohmic loss in the transmission of microwave energy in 

such a shallow guide than in one with larger b. 

A wave guide is essentially a high-impedance transmission line. For 

example, 5-band guide (a = 7-2 cm., 6 = 3*4 cm., Z^ = 1*6x12077 

ohms) gives Z = 329 ohms for a typical frequency in the band for 

which the guide dimensions were chosen. This should be compared 

with coaxial line impedances of less than 100 ohms. Not merely is the 
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wave ^de able to transmit microwave power more efficiently than 

coaxial Une, it has actually a higher power rating than coaxial lines of 

practically useful impedance which permit the effective propagation 

of only one mode, namely, the principal wave. In Table I are shown 

some data on standard wave guides and coaxial lines to illustrate these 

considerations. 
Table I 

Outer 
diam. 

i 
Wall 

Centre 
rod 

Char, 
imped. Support 

Attenua¬ 
tion 

1
1

 

in. 1 m. in. ohms db/m. kw. 

Codxio il lines 

0025 i 44-4 bead 0-47 

i 0032 * 50-6 stub 0-49 
50P'^and 

i 0035 i 47-8 bead 0-22 ^6 1 o UcmH 

i 1 0032 i 46-4 stub 0-16 200 P ° ^ 

Wave g 'uides Wave type 

i-xl 1 0-050 H., 0-25 250'j 
ixli 0-064 H,„ 0-16 

Ix-band 
n 0-032 Hix 650 1 

lit 0-080 E, 500j 
4x3 0-080 H. 0-04 2,500 \ 

3 I.D.t — H,. 3,700 LS-band 
4 I.D.t — Eo 3,700 i 

t The rated power is one-quarter maximum, based on the breakdown field strength 
in air under normal conditions. 

t For convenience, data for other wave types in circular guides are included. 

2.6. Approximate Theory of Attenuation due to Ohmic Loss 

On the assumption that the ohmic losses are small, we may use equa¬ 

tions (21.5)-(21.7) as a first approximation to the field in the guide.§ 

The intrinsic impedance of the metal walls is — 1207r>^(jcn/co/(T) very 

nearly, where the permeability of the metal is taken as 1, and a is 

its conductivity in mhos/metre. The fiux of energy into the metal to 

produce heating is determined by the tangential component of electric 

force which no longer vanishes as in our previous representation of the 

field. This component is small and may be deduced as follows. The 

tangential component of magnetic force at the wall and just inside 

the metal will be very nearly given by (21.6) and (21.7); and the 

tangential component of E inside the metal is E^ = Z^jHi directed at 

right angles to the magnetic vector. 

Let be the real part of Z^, i.e. 

§ Cf. Schelkunoff, S. A., Proc, 25, 1467-92 (1937). 

(26.1) 
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Since the transverse and longitudinal currents are in phase-quadrature, 

we can treat the power dissipated by them separately. The pow:er 

flowing into the wall of the two broad faces of the guide per unit length 

due to the longitudinal current is 

Qr,= 2jiItJIIJl,dx. (26.2) 

0 

The power lost per unit length due to the transverse current is repre¬ 

sented in two terms belonging respectively to the broad and narrow 

faces, as follows: 

(2^ = 2 [ J+hbRM\ll (26.3) 

Since Qjr + is small compared with the power flux P along the guide, 

we may obtain the attenuation a reckoned on a power basis, as 

oc = ^ nepers/m. (1 neper == 8*686 db.) (26.4) 
2iJl 

P is given by (22.2). Apply equations (21.6) and (21.7) to obtain 

Ql 
p 

Therefore (26.6) 

Since from (21.8) and (21.9) 

lirZnV P , A 
(26.6) 

YUoiiqI 1—i®’ 2a’ 
we have finally 

// 1 \ 1 l-|-2P6/a , 

Vd-P) 
(26.7) 

For example, the following approximate values are relevant for 

)S-band guide: 

A = 0-1 m., b = 0-036 m., bja = ( = 0-7. 

Assuming a = 1-1 x 10’ mhos/m. for brass, we find a = 0-046 db./m., 

which agrees reasonably well with experience. 

It will be noted that the main factors determining a are the depth 

(6) of the guide, and the ‘cut-off’ factor 11^(1—P). Use of silver in 

place of brass halves the attenuation, while for a similar guide designed 

for £^-band the attenuation would be three times as large, according 

to the formula. The ratio b/a may be chosen so that da/dX = 0. 
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2.7. The Wave Guide as a Transmission Line 

The equations (21.6-7), which present the field components in the 

dominant wave in a rectangular guide, show explicitly their dependence 

on a propagation factor common to all and a distribution factor speci¬ 

fying how they vary over the guide cross-section. If the waves are 

detected by a method which does not vary the aspect of the detecting 

antenna with respect to the guide cross-section, the only variations in 

the measured fields arise from propagation. Accordingly the methods 

of §§ 1.1-1.6 may be applied to such measurements of wave amphtudes, 

the dominant wave in the guide thus being treated in the same way 

as the principal wave on a conventional transmission line. 

Localized loading of the wave by an antenna or obstruction in the 

guide causes the radiation of waves, which, at sufficient distance to 

allow the disappearance of evanescent waves in the vicinity of the load, 

consist of dominant waves in a special phase and amplitude relation 

to the incident dominant wave. If the secondary waves of electric force 

on the two sides of the load are of equal amplitude and in phase at 

the same distance from it, the load behaves as a shunt, presenting an 

admittance which can be measured by standing-wave procedure. If 

the secondary waves of electric force are of equal amplitude and in 

opposed phase on the two sides at the same distance, the load behaves 

as a series one, presenting to the wave an impedance which can likewise 

be measured. Shunt loading involves a discontinuity in the transverse 

component of magnetic force at the point of loading: series involves 

a discontinuity in electric force. It should be noted that the phase 

relations of the secondary waves for shunt and series are interchanged 

when the dominant wave is represented as a wave of transverse mag¬ 

netic force. Further, it is clear that types of loading more complicated 

than simple series or shunt may be treated just as they were in Chapter I 

for the principal wave on the transmission line. 
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MEASUREMENTS 

3.1. Detection 

Two methods are used in detecting microwaves. In order that low- 

frequency amplification may be applied, the microwave generator is 

usually amplitude-modulated. For this purpose it is desirable to use 

a square wave form, the fundamental frequency in which is not close 

to any of the important frequencies present in the a.c. supply used to 

operate equipment (e.g. 60 and 300 cycles per second). By modulating 

with a square wave one may avoid the complicating effects of the 

frequency modulation due to the varying voltage applied to one of 

the electrodes of the*microwave oscillator; the time intervals during 

which this voltage is changing form an insignificant fraction of the 

duration of the pulses of oscillation. As detectors, crystals have been 

successfully stabilized and until recently have far surpassed electronic 

converters in their freedom from noise. The crystal may be used as a 

single detector of the modulation which is amplified by a noise-free, high- 

gain amplifier; the output of the latter is shown on a good vacuum-tube 

voltmeter. This system must be fully calibrated on a standing wave, the 

frequency of which is continuously monitored. From time to time this 

calibration should be checked. The second method is more elaborate 

but yields linear response by double detection on the superheterodyne 

principle [1]. A second microwave oscillator, with automatic frequency 

control and well-regulated excitation, will be required for this purpose. 

If sufficient energy is available, as in high-power testing equipment, 

a bolometer or vacuum thermocouple may be used in place of the 

crystal. Sensitive detectors of the bolometer type have been used in 

some laboratories. 

Microwave radiation is picked up by an antenna which may be 

designed to receive in space outside the wave guide or may be of 

suitable form to introduce into the wave guide through a central slot. 

In the latter case, it is desirable to locate the detector close to the 

antenna by mounting it in the carriage which supports the antenna 

and which can be moved to and fro on the top of the guide. For 

accurate work, mechanical details require scrupulous attention, and the 

higher the microwave frequency used, the more exacting the precision 

of workmanship required to overcome many of the possible sources of 

experimental trouble both electrical and mechanical. 
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3.2. Wavemeters 

The essential basis of all microwave measurements is the wavemeter 

and some convenient arrangement by which frequency may be continu¬ 

ously monitored. This is required because of the frequency dependence 

of propagation in wave guides. 

In one form a wavemeter consists of a tunable cavity of sufficiently 

large Q which will respond only in one mode of oscillation at frequencies 

in the band over which it is to be used. If the spectrum of the cavity 

is accurately calculable, as a function of the parameter specifying 

the change in its configuration, this method can be made absolute. 

Generally, it is more convenient to use this type as a secondary standard 

which is calibrated by comparison with a coaxial line type of instru¬ 

ment. Here the cavity consists of a coaxial line which is weakly coupled 

by means of a probe or loop or through a small hole in its wall to the 

lino from the source to be measured. One end of the wavemeter is 

short-circuited by a fixed plate, the other by a movable plunger whose 

position can be accurately ascertained with the aid of vernier or micro¬ 

meter attachments which form part of the instrument. If the losses 

in the metal walls are very low, the velocity of propagation of the 

principal wave in the line is known accurately, and if the cross-section 

of the coaxial line does not vary, the positions of the movable plunger 

for maximum response in a detector coupled to the wavemeter are 

a])art. 

As a frequency monitor a secondary standard wavemeter is weakly 

coupled to the main microwave circuit near the generator. The output 

of the crystal detector of the wavemeter is amplified and fed to an 

oscillograph. On the screen will be shown the square wave modulation 

of the source when the frequency of the latter agrees with the wave¬ 

meter setting and when it is constant during the pulse of oscillation. 

Incipient frequency drift is readily detected by the change in the 

pattern. 

3.3. Microwave Circuits 

While the main parts of microwave circuits consist of wave guides 

and of rigid coaxial lines, for convenience in ordinary laboratory routine 

flexible coaxial cable is employed. The attenuation in such cable due 

to loss in dielectric beads or continuous insulation supporting the inner 

conductor should not be excessive. The bead type of support introduces 

trouble if the curvature of the cable has to be altered in the course of 

measurements. If the outside of the cable is exposed to radiation, it 
4791.4 
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is essential to have a satisfactory outer covering. Metallic braids are 
quite unacceptable for accurate work where it is best to use lead- 
covered cable with continuous polythene dielectric. Plugs, jacks, and 
other couplings have been satisfactorily developed, but unless properly 
designed may introduce mismatch in the circuits of which they form 
a part. 

It seems desirable at this point to distinguish between the weak 
signals which result on the one hand from absence of matching and on 

the other from intrinsic attenuation in cables or wave guides. The 
latter is usually desirable in moderate amount—for example, in order 
to decouple a generator from a reactive load. The former involves 
strong coupling with the generator as the result of reflection from a 
discontinuity in the circuit. In order to match a device to which coaxial 
line is coupled, a double-stub tuner may be employed. On the coaxial 
line are mounted, f A apart, two coaxial hne stubs shorted by movable 
plungers. These stubs shunt the line with variable reactances. The 
reactance nearer the load must be adjusted to yield a pure resistance 
at that point of the line. The reactance seen at the position of the 
second stub is then cancelled by the reactance there. This same 
principle may be employed in a wave guide. The stubs are now pieces 
of wave guide abutting the main guide transversely on the broad 
face as shown in Fig. 10. The reactances introduced are in series 
with the dominant wave circuit: the stubs are called JSJ-stubs. Shunt 
reactances could be introduced by J^-stubs abutting the narrow face 
of the main guide. But this arrangement is inconvenient because of the 
geometrical disposition and the need for guide of smaller width to make 
the stubs. 

Frequency insensitive attenuating devices which present a matched 
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input are common parts of microwave circuits. For non-variable 

attenuation one may use a piece of guide containing absorbent im¬ 

pregnated with finely powdered graphite, the density of impregnation 

increasing from a very low value at the input end, and the gradient 

being sufficiently gradual to prevent refiection. A sohd piece of weak 

conductor in the form of a wedge will also serve. A variable attenuator 

is very convenient. It consists of a thin segment of plastic which is 

specially lacquered to make it conducting and is introduced into the 

guide through a longitudinal slot in the broad face of the guide. The 

segment is hinged at one vertex, as shown in Fig. 11. It may be 

Fig. 11. 

necessary to cover the slot to prevent leakage when high attenuation 

is desired. 

The same principles are followed in making a guide termination 

intended to absorb without reflection all the microwave power incident 

on it. When high power is used, a wedge of sand and powdered graphite 

is enclosed by micalex, and the guide containing it is furnished with 

fins so as to cool it. This device is commonly called a sand-load, which 

is understood to mean a matched termination capable of dissipating 

of the order of 100 watts. 

As a common part of wave-guide circuits we have to mention choke- 

couplings. In order to prevent reflection from the junction of two 

pieces of straight wave guide of nominally the same cross-section it is 

necessary to connect the guides rigidly and to provide good electrical 

contact for the flow of longitudinal surface current on the broad face 

without leakage. While simpler couplers have been used and have been 

found to function satisfactorily when care is taken, it is found con¬ 

venient to design flange couplers which are held together by screws 

after having been soldered to the ends to be joined. By means of them 

the guides are properly alined, which is otherwise more difficult to 

achieve the smaller the guide. To prevent the propagation of waves 

through the gaps which will inevitably exist between the faces of the 

flanges in juxtaposition, a narrow circular slot or groove JA deep is cut 



36 MEASUREMENTS [Chap. Ill 

in each flange around the junction. The use of such a groove or trough 

is common to choke microwaves travelling over a metal surface. 

The problem of leakage likewise arises at a movable plunger in the 

guide. It is important not to use a metal handle attached to the plunger 

for it will form with the guide a 2-conductor transmission line of low 

impedance making an easy escape path. Various degrees of elaboration 

have been introduced into the design of plungers; for most purposes 

well-made plungers will serve if good contact with the guide walls is 

assured by cleaning. 

In wire-transmission work in radio the quarter-wave transformer is 

a very useful device. In wave guides its principle may be used in 

matching technique, but it is not generally convenient to introduce 

a metal block into the guide to alter its depth and thus make a quarter- 
wave (in the guide) transformer. 

3.4. The Standing-wave Detector 

After the wavemeter, probably the most important microwave 

measuring device is the standing-wave detector. In the broad face of 

the rectangular guide is cut a narrow longitudinal slot accurately in the 

centre. This slot should be somewhat shorter than one wavelength in 

the guide. It is important that the cutting of the slot should not 

deform the guide cross-section and that the outside top surface in which 

the slot is cut should be quite flat. Through the slot passes a short 

fine wire surrounded by a larger tube which does not project into the 

guide. This tube is fixed rigidly in the centre of a key which fits the 

slot so that lateral displacement of the travelling antenna is reduced to 

a minimum, and, of course, its distance from the nearest metal, namely 

the surrounding tube, does not vary. It is desirable to have some easy 

means of altering the depth of projection of the wire antenna into the 

guide. If a crystal detector is used, it is more convenient to employ 

the shunt arrangement of the crystal on the transmission line to the 

antenna so as to allow the adjustment just mentioned. If the series 

arrangement is used, it is necessary to bend the antenna back on itself 

and to solder it to the outer tube so as to complete the low-frequency 

circuit. The high-frequency circuit is closed by means of the condenser 

indicated in Fig. 12. In X- and A^-band work, a more suitable arrange¬ 

ment of the detector is the following. The wire antenna stretches across 

a second piece of wave guide forming a tunable cavity; it lies broad-face 

to broad-face over the central slot in the other guide and can be moved 

to and fro on it. The probe antenna is coupled to the crystal only 
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through the cavity, and the crystal joins the inner conductor of the 

low-frequency coaxial output to the opposite inner wall of the cavity, 

and is therefore placed in the latter. This arrangement permits the 

easy adjustment of the projection of the probe through the slot. 

The keyed block or wave-guide cavity carrying the antenna can be 

moved to and fro on the top of the guide by means of a rack and 

pinion and its position determined by means of a pointer and scale 

with vernier attachment if desired. For the shortest microwaves this 

arrangement is insufficiently precise. To fix a reference point on the 

scale, let a short-circuiting (reflecting) plunger be placed at some point 

in the guide beyond the standing-wave detector (S.W.D.). Move the 

detector until a minimum is shown by the voltmeter. This position 

corresponds to the position of the plunger short-circuit (mod ^A^).t The 

wavelength in the slotted guide may have to be measured accurately and 

compared with that in the uncut guide beyond, so that the difference, 

if any, can be taken into account. 

So long as the S.W.D. is used in a nearly pure travelling wave no 

particular difficulties attend its use. It is when large values of the 

standing-wave ratio (S.W.R.) occur that skill is required for accuracy. 

The minimum signal as the detector is moved through the waves has 

to be discerned in the presence of noise, and if this is not reduced it is 

not feasible to use a more sensitive vacuum-tube voltmeter. Thus a 

natural limit is set to the largest values of S.W.R. that can be measured. 

When the detector is at a position of maximum signal it will tend, in 

virtue of shunting the Une, to underestimate the signal strength just 

t «! == iCg (moda) if = x^^na, where n is an integer. 
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as does a voltmeter in a high-resistance d.c. circuit. It is therefore 

desirable to work with very short receiving probes and to depend on 

efficient amplification of minimum signals. 

To measure impedance at a particular point in the wave system a 

plunger is placed at the position (mod ^A^) in question, and the position 

of the S.W.D. for minimum signal noted. If the plunger is a perfect 

reflector, the minimum should actually reach zero. The plunger is next 

either removed altogether from the guide or placed somewhere else to 

open or close the guide circuit (see below). With the load it is desired 

to measure producing a standing-wave system, the position of the 

minimum and the values of the maximum and minimum signal strength 

are noted, due account being taken of the calibration of the detector 

if necessary. The noise is measured and S.W.R. calculated. This fixes 

|t/;| on the circle diagram. Argi/; is determined by twice the electrical 

distance between the minimum in the standing-wave pattern and the 

position of the load. Impedance or admittance may then be read 

directly from the circle diagram chart of sufficient size to permit the 

necessary precision. Two forms of this chart are in common use—one 

in which the centre of the diagram only is shown, for use with nearly 

matched systems; in the other, the complete circle diagram is presented. 

It has already been pointed out in § 1.6 that standing-wave measure¬ 

ments alone will not suffice in general to indicate how the guide is 

loaded in any particular case. It is necessary to supplement measure¬ 

ments of impedance transformation from one side to the other of the 

load with measurements of power and phase transformation. 

The power transfer in a standing-wave system is equal to the geometric 

mean of the powers corresponding to the maximum and minimum 

signals in the standing wave. When power is to be measured in two 

different parts of a wave-guide system, care should be taken to see that 

the probe antenna is coupled to the same extent in the two places; or 

two probes may be used and interchanged. 

3.5. Power 

The probe-antenna detector is useful in power measurements only 

on a relative basis. Too many variables enter to allow its use for 

absolute measurement of the power transmitted along a guide in watts. 

For this purpose two devices are employed—the absorption wattmeter 

and the enthrakometer. The former is a piece of wave guide arranged 

to absorb, without reflection of the microwaves, all the energy passing 

down the guide: it acts as a water-flow calorimeter. The latter measures 
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a known fraction of the power passing through the guide and can 

therefore be used as a wattmeter when the power transmitted is usefully 
employed. 

In the absorption wattmeter [2] the matching device should be 

insensitive to frequency over the band for which it is intended. Rather 

than use a quarter-wave transformer of suitable dielectric (usually 

micalex) it is better to enclose the absorbing matter with a V- or wedge- 

shaped entry for the microwaves. The guide termination is then cooled 

by water flowing through a pipe in good thermal contact with the guide. 

In the enthrakometer [3] a section of the narrow face of the guide 

wall is removed and replaced by a metallic film which is insulated 

electrostatically and thermally from the guide wall without opening 

the microwave circuit. The film is in the form of a grid of parallel 

resistive strips perpendicular to the guide axis. These are in series with 

each other and with a source of d.c. by which change in resistance of 

the film is measured in a bridge. The change in resistance in the steady 

state is proportional to the rate of dissipation of energy in the film due 

to microwaves passing it in the guide. Since the magnitude of the 

transverse surface current which alone flows on the narrow face is 

dependent on frequency when the power transfer in the guide is given, 

this device gives an indication dependent on frequency. ^It may be 

made direct reading, but must be calibrated by comparing with the 

absorption wattmeter. 

3.6. Phase 

In principle the phasemeter allows the mixing of two microwave 

signals in a tunable cavity or other mixer (see §9.8) into which a 

detecting crystal is coupled (see Fig. 13). One signal is a standard of 

phase comparison which can be adjusted in amplitude. The other 

signal is obtained from a probe antenna which receives where the phase 

of the radiation is to be measured. The line from the probe antenna 

contains a section which may be varied in length. This section may 

be telescoping coaxial-line made up of silver tubes or it may be a piece 

of wave guide which is effectively varied in length by moving the 

coupling antenna and plug. The latter device may yield better resolu¬ 

tion, but it is more difficult to make and it is frequency sensitive. 

Whatever arrangement is used to secure the phase-shift (see Chapter IX 

for other phase-shifting devices), the method of measuring phase is to 

adjust the amplitude of one signal and the phase of the other until the 

detector of the mixer gives zero or minimum output. The required 
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phase is then equal in magnitude and opposite in sense to that intro¬ 
duced by phase-shift. It is essential to provide sufficient decoupling in 

the system by means of attenuation, otherwise the method of measure¬ 

ment is quite unreliable. Further, if the probe antenna is to measure 
phase in free space, one can easily test for radiation from the exploring 

antenna by shielding it from radiation other than its own which will 

be reflected from neighbouring pieces of metal, and its presence made 

evident by the fluctuation of the detector response as the antenna is 

moved about. 
Plane sections of equiphase surfaces in the radiation near an antenna 

can be plotted directly on a large sheet of squared paper stretched in 

a plane passing through the antenna. The exploring antenna is moved 

so as to bring the detector indication in the phasemeter to a minimum: 

the position of the centre of the antenna is then plotted. In order to 

reduce to a minimum the distortion of the radiation field being explored, 

it is desirable to use coaxial line of especially small radius to couple to 

the exploring antenna. 

In the laboratory it is convenient to have a means of reducing the 

reflection of radiation from objects in it. A large plane screen made 

of cloth treated to give it a surface resistance of 1207t ohms between 

the opposite sides of a square 1 m. X 1 m. will act as a perfect absorber 

of waves incident normally on it when backed by a plane reflector JA 

behind it. 

3.7. Directive Pattern and Gain of Antennas 

While it is possible to obtain by laboratory measurements a fair idea 

of the performance to be expected of a microwave antenna, it will, of 
course, always be necessary ultimately to test a directive antenna by 
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observing its directive pattern when used either as a transmitting or 

receiving aerial. The latter arrangement is found more convenient in 

practice, for the antenna is mounted on a turn-table at the receiving 

station, and indeed the pattern may be recorded by automatic means 

as the table is turned. It must be possible to investigate reception of 
both horizontal and vertical polarization. 

Since it is the distant pattern in which we are interested, the trans¬ 

mitter and receiver must be set up at a sufficiently great distance apart 

for the test. If D is the major aperture of the antenna, the distance 

in question should be four or five times D^/A so that the waves from 

the transmitter are effectively plane over the aperture. 

To supplement knowledge of the radiation pattern which is not 

usually determined by absolute field-strength measurements, when 

given power is delivered to the antenna, it is usual to estimate the 

antenna gain. This is specified by using as standard either a hypo¬ 

thetical isotropic radiator or a half-wave dipole. The gain of an antenna 

is defined as the ratio of the field strength in the maximum of the 

main-lobe for given power input, to the maximum field strength pro¬ 

duced at the same distance by the standard of reference when radiating 

the same total power. The determination of gain requires either integra¬ 

tion of the two-dimensional pattern of the antenna or absolute field 

measurements. If the average cross-section of the radiator which ter¬ 

minates the transmission line feeding the antenna is known,! the gain 

of the directive antenna can be found by the method of matched 

transmission and reception. The transmitted and received power are 

measured when the antenna to be tested is the receiving one. 

With highly directive antennas it is much easier to measure the 

width of the beam and to infer the gain with sufficient accuracy for 

practical purposes. 

3.8. The Electrical Properties of Dielectrics and Semi-conduc¬ 

tors at Microwave Frequencies 

The use of wave-guide impedance and attenuation measurements to 

obtain the electrical properties of fluid and solid substances without 

having in mind any application to radio is of considerable physical 

interest. We shall deal first with the measurement of attenuation, 

which calls for comment only when it is comparable with that due to 

the finite conductivity of the walls of the guide. A piece of guide about 

20 wavelengths long is terminated in a short-circuit by closing its end 

t Slater, Microwave Transmission (McGraw-Hill, 1942), chapter vi. 

4791.4 G 
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with a plate soldered to the guide wall. Near the input coupling is 

a S.W.D. On account of the attenuation the S.W.R., instead of being 

infinite, will have a finite value, for the refiected wave is not equal in 

amplitude to the incident. For weak attenuation of electric force 

according to the law we have 

« = (38.1) 

where r is the S.W.R. and L is the length of the guide between the 

detector and the short-circuit. This method could evidently be applied 

Fig. 14. 

to gases and the dielectric constant be determined from the wavelength 

in the gas-filled guide. 

Solid dielectrics and liquids have been investigated by Roberts and 

von Hippel.f Imagine a section of rectangular wave guide filled with 

the substance between two parallel planes perpendicular to the axis 

of the guide. On the side removed from the source of the microwaves 

the guide is terminated in a short-circuit. The input impedance to the 

slab is measured (reckoned at the position of the face where the radia¬ 

tion first enters) and knowing the thickness d of the slab and the air 

gap d' to the refiecting termination (Fig. 14), we may calculate the 

constants of the material. 

Let y2 be the propagation constant in the sample in the guide for 
the dominant wave. Then 

y| = €)» where e = /c + -—. (38.2) 

ki and kg are respectively 27t/X for the empty guide and for free-space, 

K is the dielectric constant, and a the conductivity of the sample. 

We shall apply the matrix method to determine the value of the 

circle diagram variable w at the face of the slab where the waves are 

t Roberts, S., and von Hippel, A., Massachusetts Institute of Technology Publication, 
A New Method for Measuring Dielectric Constant and Loss in the Range of Centimeter 
Waves^ Mar. 1941. 
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incident from the generator. We require the matrix of (12.5) and its 

inverse and note that for ZJZ2 we write ^i/y2» if material can be 

treated as non-magnetic. The matrix M which transforms from the 

place of the short-circuit termination to the generator side of the slab 
at the position of its face is 

M 

where 

_ 1 / a 

“ 2 + 2y,’ 

~p\ ou )£ m/wi 0 \ ^ iMii 

3 aJ{o tufV yifgi 
^12' 

a )\0 

K 

272’ 
COj^ = 0)2 = gy,(i_ 

Since at the short-circuit w = —1 (voltage representation), the required 

value of w' is from (16.2) 

^ ^ —a^COi(oJ2 — ^2 ^)~^l 
— ^12 o)i{oL^a)2—j8^a>^^) — aj8a)£*^(cL)2—^2^) 

There are two obvious special cases: (I) d' = 0, hence cof = 1, and 

(II) kd' = ^77, ojf = — 1. The latter would be chosen for a thin slab to 

obtain maximum sensitivity. 

The corresponding values of w' are: 

I- P 211 ^col+l 
(X 

oc 

The input impedance is 

\-\~w' OL — ^ , , 
-- =:-^tanhy^d 
\-w' oc+^ 

d tanh yg d 

II. P 2 1 -a)|—1 

- 
oc 

The input admittance is 

I—^ = ^^i-tanhygd 
l+w' oc-p 

— X^tsi,r\hy2d. 
A/j d 

The input impedance or admittance having been measured, and since 

k^d is known, we can find ygd from charts of the functions tanh0/0 and 

0 tanh 0 of the complex variable 0 respectively. Once yg is known, the di¬ 

electric constant k and the conductivity a can be calculated from (38.2). 

The main point of practical importance in connexion with such 

measurements is the difficulty of removing all traces of water from the 

material studied, otherwise the results will have little theoretical value. 

3.9. Discontinuities in Propagation 

In order to determine how the guide is loaded in any given discon¬ 

tinuity in propagation it is essential in the first place to establish the 
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law of transformation of the circle diagram variable w, or impedance Z, 

or admittance Y past the discontinuity.f This is iiccomplished by 

standing-wave measurements on both sides of the place of discontinuity. 

The simple series and shunt cases are revealed at once by the fact 

that an open-circuit and a short-circuit are respectively transformed 

unchanged past the discontinuity, which, for this purpose, must be 

regarded as established at a particular definite cross-section in the 

guide. If the discontinuity can be represented as a lumped circuit 

quadripole on the equivalent line, the form of the loading matrix is 

IT section T section 

Fio. 15. 

given by (16.5). For certain purposes, however, it is found convenient 

to think of an equivalent circuit. This may be drawn in the form of 

the symmetrical 11- or T-sections indicated in Fig. 15. 

n-section T-section 

Let = = |^ = y, |«=S. 

The loading matrix transforming in voltage representation from the 

right to the left of the point of loading is 

(^-f«C/i)(^+i3C4)(^+aC4) (^^+yC4)(^+8^7,)(i;+y[4) 

== = (1 ^-y8)^-^-(2y+y^8)^4+8C4• 

In order that the sections be equivalent 

ajS = ySy ^ — 2y-\-y^Sy 8 = 2oc-\-(x^P; 
hence 

i+«^ = i±^a: 2oc-\-(x^P 
2oc 

-ay 1—ay ' ' 1 — ay 

When the guide is terminated by an impedance Z at the position 

of the section, the input impedance is given by 

_ (1+<X^)Z+^ [i/2«-lrr 
'IN l+a/8+^(2a+a*)3) ^+l(y+V“)' 

f This method of studying the loading of a guide by both series and shunt coupled 
reactances was introduced by Watson and Quptill and reported July 1943. 



3.9] MEASUREMENTS 45 

When Z db pure reactance, and y and ol are purely reactive, the 

graph of Zj^ against Z is a rectangular hyperbola with centre at 

(—*i(7+i(y+V^))* The constant of the hyperbola is [KV«—y)]^* 
From these facts, Ijoc and y and hence j3 and 8 can be deduced. The 

impedance transformed unchanged past the discontinuity is +^{(xy). 
If oc and y contain resistive elements, and Z is a pure reactance, 

Zj^ must be represented on the complex plane. Its locus is the circle 

which is the transform of the imaginary axis on the Z-plane. If the 

centre and radius of the circle are determined, then 1/a and y follow 

by simple geometrical considerations. 

In general, however, it will be found by experience that the circuit 

ideas, which are so very attractive in the simple cases, are really incon¬ 

venient and should be discarded in favour of the straightforward matrix 

representation of transformation of the z^;-plane treated in § 1.6. 

The essential difficulties that attend the measurement of weak dis¬ 

continuities by the method just mentioned arise from the high noise/ 

signal ratio at the minimum in the standing-wave system, where the 

voltage must be accurately measured, the length of guide required for 

the measurement, and the junction between the slotted section and 

test-piece may itself introduce a discontinuity. The cavity resonance 

method [4] is designed to overcome these difficulties. The discontinuity 

now occurs in a section of wave guide which is shorted at both ends 

by carefully designed plungers moved by micrometer screws. The 

cavity is excited through the input plunger and resonance is detected 

by a weakly coupled probe through a hole in the broad face. Pre¬ 

liminary tests determine the position of zero electric field in terms of 

micrometer screw readings which measure the motion of the plungers 

in the guide. 

If the matrix representing the discontinuity is 0^2 = and 

coi = where and arb respectively the distances of the input 

and terminating plungers from the discontinuity, then the matrix 

transforming from the terminating to the input plunger is 

(a>i ^ ^\/^2 ^ \ ^^2 ^^1 \ 

Since w has the value —-1 at both of these places, we find for resonance 

the condition ^ 
dtO^ ^^2- 

a>i 

i.e. 
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Special cases: 

1. Series: a = l+Jy, d = 6 = —\y, c = Jy. 

jsin(0i+02)+y[cos(0i+02)+cos(fli—^2)] = 

y must therefore be the pure reactance 

^ -sinje^+e^) 
COS(^l + ^2) + ^®®(^l~^2) 

2. Shunt: a — l + d = 1 — |cx, 6 = Ja, c = —^a. 

OL must be the pure susceptance 

B = — sin(^i+^2) 
COS(01 + 02)~C^S(^1 —^2) * 

3. H- or T-section: 

j(l+ay)sin(0i+^2) + (a+y)cos(^i+^2) + (y—«‘)cos(^i—^2) = 

Let (X = jB, y = jX, then 

0 = (1—jBX)sin(^i+^2) + (^+^)^^s(^i+^2) + (^“~^)cos(^i—^g)- 

The essence of the method is to operate in the vicinity of 01 = ^2, 

which corresponds to a stationary value of (0i+02)> removes the uncer¬ 
tainty in actual position to be assigned to the discontinuity, and 

permits the use of approximate algebraic equations in place of the 

transcendental ones. 
In the laboratory it is convenient to work with lengths (1) in the 

guide in place of the electrical distances (6). The two stationary posi¬ 

tions are given by 

tan 
2 X 

or —B. 

Given one, the other is readily deduced. 

It should be recognized that with microwaves of the order of 1 cm. 

in length, mechanical precision and measuring accuracy of the highest 

order are required to justify these measurements. 



IV 

MULTIPLE PROPAGATION 

4.1. Propagation in Wave Guides in General 

The wave system described in Chapter II is a particular case which 
can be realized in practice only if the wave guide and the radio fre¬ 
quency are properly chosen. So long as it is not necessary to probe 
deeper for practical ends, we are content to treat the wave by the 
transmission-line method. On the other hand, for a proper under¬ 
standing of wave-guide propagation one must consider other possi¬ 
bilities. 

The propagation of electromagnetic waves in a guide exemplifies an 
important principle concerning waves. Imagine an unbounded plane 
wave of which the amplitude is distributed in a pattern across the planes 
perpendicular to the direction of propagation. Two complementary 
general consequences follow from the equation of wave propagation 

c2 dt^ 
(41.1) 

(i) the phase velocity of the waves in general differs from c, and (ii) if 
the amplitude pattern referred to is periodic and preserved in propaga¬ 
tion, there exists a cut-off frequency which must be exceeded by the 
actual frequency of the waves in order to allow the effective propaga¬ 
tion of the pattern through space. 

If we think of the pattern like an unlimited wall-paper, the wave 
guide provides a boundary to limit the wave to a single cell of the 
pattern. On this boundary the tangential component of electric force 
and the normal component of magnetic force must vanish. Let pro¬ 
pagation take place in the ^-direction with velocity F, the pattern of 
amplitude being distributed in planes parallel to the x^-plane. It is 
easily seen that only those amplitude distributions which satisfy 

dx^ dy^ 
(41.2) 

are propagated with velocity F = c. For any bounded portion of the 
a:i/-plane there can be only one such distribution, called the principal 
wave, and it can exist only if the domain in the :ry-plane is multiply- 
connected. Such is the case if there are two or more separate con¬ 
ductors indefinitely extended in the ^-direction. There is no principal 
wave in a hollow tube. 
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Let kj^TT and denote respectively the wave numbers, of the 

harmonic waves of frequency a>/.27r, in free-space and in the guide. Then, 

when these are different, in place of (41.2) above we have 

, d^U ., 2 7 2\ (41.3) 

To this equation must be adjoined the boundary condition imposed by 

the wall of the tube around the curve C which is the form of cross- 

section of the wave guide. This condition depends on the physical 

meaning of u. In the problems with which we have to deal it is either 

u or its gradient normal to C which vanishes on (7. 

The equation (41.3) is the same as that satisfied by the displacement 

of a vibrating uniform membrane, viz. 

dx^ dy^ 
(41.4) 

where depends on the surface tension and density of the membrane. 

If the membrane is clamped at its edge, the appropriate condition is 

= 0 at all points of (7. 

Now it is known that the frequency of natural vibration of a mem¬ 

brane of given physical properties may take any one of the series of 

values constituting the spectrum of its possible modes of oscillation. 

Further, to each frequency there corresponds at least one amplitude 

distribution characterized by a set of nodal fines on which the displace¬ 

ment vanishes. If the membrane is struck, a combination of notes may 

be sounded, corresponding to the superposition, in suitable relative 

proportions, of the amplitude distributions each of which is charac¬ 

teristic of one mode. This physical example has been used to indicate 

the mathematical result, viz. the differential equation (41.4) with its 

boundary condition does not in general have a solution. Only for a 

discrete series of values of x is a solution possible. We shall name the 

possible X-values by means of the pair of integers m, n, Xmn^ meaning 

of the pair of integers will be made clear later in particular cases. To 

each m, n there corresponds the characteristic amplitude distribution 

^mn, naust now take a different value for each distinct Xmn- 

In fact 

Xmn = (41-5) 

This equation shows at once that \i k < Xmn^ ^hen k^^ is imaginary. 

That is, the corresponding distribution is not propagated, but is 

choked, its dependence on z being by a real exponential instead of an 
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imaginary one. In fact, the corresponding wave is evanescent; by 

means of it there is no net transfer of energy on the average. The 
cut-off frequency is 

and the velocity of propagation for waves of frequency / in the (m, «.)th 

mode is 

(41.7) 

4.2. TE and TM Characteristic Waves 

On account of the association of electric and magnetic vectors in the 

wave, the system of characteristic distributions in a wave guide is more 
complicated than for a membrane. The characteristic functions form 

two groups, in one of which—magnetic type or ^-waves—the electric 

force is transverse only, thus constituting transverse electric {TE) 
waves: whereas in the other—electric type or ii'-waves—the magnetic 

force is transverse only, thus constituting transverse magnetic {TM) 
waves. The function u by which the characteristic forms are given 

represents the longitudinal 2:-component of force in the wave, as follows: 

u represents Boundary condition 

TE (//-waves) ^ = 0 
dn 

TM {E-waves) u = 0 

The detailed investigation of different forms of wave guide can be 

carried out on the basis of the information just given. Mathematically, 

the simplest method is to use the two Hertz-vectors pointing in the 

direction of propagation—electric type for waves, magnetic type for 

-waves. The reader is referred to §§ 10.2 and 10.3 for an explanation 

of this representation. 

The characteristic functions form a closed infinite set. They are 

linearly independent, and by linear superposition of a number of them 

it is possible to represent any electromagnetic disturbance whatever in 

the unobstructed wave guide. This form of representation may be 

regarded as a natural generalization of Fourier’s theorem by which 

a function, given in a finite stretch of a single variable, may under 

certain conditions be represented as the sum of sine and cosine terms. 

In the .two-dimensional representation, however, the shape of the 

boundary enters, whereas of course it does not in one dimension. This 
4791.4 H 
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circumstance causes the system of characteristic functions to alter with 

the boundary. Thus the rectangular guide has the following forms: 

TE: 
, jj, niTTX mxy 
Wmn = COS-—COS 

a 0 

TM: 
, „ . . miTX . mry 

= sin-—sm-^, 
a b 

(41.8) 

where evidently from equation (41.4) 

(41.9) 

and a and b are respectively the width and depth of the cross-section 

of the guide. For T^/-waves m or n may be zero, whereas for TM 

neither may be. This explains why the TE-wsbve discussed in Chapter II 

is the simplest wave in the rectangular guide and has the lowest cut-off 

frequency. The inequality b < < a < X secures that / exceeds f^Q 

but is less than /20, and the cut-off frequency for all higher TE 

modes and for all the TM modes. That is, only the -Hjo-wave can be 

effectively propagated along the guide, all other modes are evanescent, 

and the larger m and n the more rapidly are these higher-order charac¬ 

teristic waves attenuated. An antenna or obstruction in the wave guide 

can excite the higher-order waves, but except in the immediate vicinity 

of the obstruction or the antenna, only the //^o-wave is present, and 

hence propagation in the guide may be treated by the transmission-line 

analogy. Since the energy introduced at one part of the cycle into the 

characteristic waves of higher order does not escape along the guide, 

but is merely stored and then reflected, it is evident that the reactive 

behaviour of any load is explained in part by the storage of energy in 

the higher-order waves, Ignoration of these waves is quite analogous 

to the procedure in electric practice, where no attempt is made to 

represent the distribution in space of the fields which account for self¬ 

inductance and capacity. 

4.3. The Degenerate Case of Square Cross-section 

If the guide has square cross-section (a = 6), there are now two 

characteristic waves with the same cut-off frequency and propagated 

with the same velocity. In place of the linearly polarized electric force 

of the Hiq- or floi’Waves, we now have in general elliptical polarization, 

with the particular conditions of linear and circular polarization when 

the proper phase and amplitude relations are fulfilled. To represent 

this propagation by a pair of characteristic waves—called a degenerate 
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case, since both have the same cut-off frequency and velocity of pro¬ 

pagation—it is necessary to introduce two transmission lines which 

must be thought of as coupled at any place where the propagation is 

disturbed. Again, it is possible to omit explicit representation of the 

higher-order waves, but of course the system, being a double trans¬ 

mission line, is a more complicated one (see Chapter VII). 

4.4. Circular Wave Guide 

When guide of circular cross-section of radius a is to be used, it is 

convenient to choose polar coordinates (r, 0); the characteristic forms 

are: 
cos 

rilf-waves. Xnm “ ?/iw> 
Sin 

where non-vanishing root of ~ 0. 

TE-waves: {H^m = Xnm = 
Sin 

where q^m^ is non-vanishing root of = 0. 

The symmetry of the circular guide makes it impossible to obtain 

the condition analogous to the simple propagation found with the 

rectangular guide. It is true that there is a single ^/o^-wave and a single 

^Qj-wave, but on account of the distribution of the roots of the Bessel 

functions Jq{z), its derivative Jq{z), and the derivative J'i{z), these 

waves have a higher cut-off frequency than the /f^-wave.t Since n = \ 

has two characteristic forms for the same cut-off frequency c/3-412a, 

a circular guide involves at least double propagation. This is a great 

practical inconvenience, because any departure of the cross-section 

from exact circular form and symmetry may cause coupling of the two 

modes of propagation, so that there may occur rotation of the plane 

of polarization, or elliptic polarization may be produced. The same 

cause would operate to convert some of the energy of an ^^o^-wave into 

an -ff-wave. Hence in both cases, any receiving device might be called 

on to accept waves which it was not designed to receive. The resulting 

reflection might cause electrical breakdown in the system and would 

in any case prevent matched transfer of energy. 

The method of standing-wave measurements encounters serious diffi¬ 

culties in circular guide, quite apart from the physical difficulty of 

cutting a slot without distorting the guide wall. It is true that the slot 

may be cut so as not to disturb propagation in the polarization for 

■f Stratton, op. cit., p. 537 et seq. 
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which the slot axis is a line of zero transverse current on the wall. For 

any other polarization, however, the slot presents a load to the wave 

and interferes with the propagation. 

4.5. Effect of Finite Conductivity of the Walls on Propagation 

Since resistance in the walls of the guide requires a flux of energy 

from the wave in the guide into the metal wall, the tangential com¬ 

ponent of electric force does not vanish on the boundary of the cross- 

section of the guide. It is therefore not possible to satisfy the boundary 

condition by means of the characteristic pure TE- and TJf-waves 

which we have discussed in §4.2. It is necessary to superpose waves 

of both electric and magnetic types whose amplitude distributions do 

not have a nodal line of tangential electric force on the inner surface 

of the guide wall. The theory is well known for a tube of circular 

cross-section.t 

4.6. Multiple Propagation on the Outside of the Guide 

So far we have had occasion to deal only with waves inside the wave 

guide. When an aperture is cut in the guide wall, the outside of which 

will have the same form of cross-section as the inside when the wall is 

of uniform thickness, waves are launched on the outside of the guide. 

These waves are reflected from the ends of the finite guide and radiation 

to space takes place. The discussion of this problem belongs to the 

field theory of antenna oscillations. In the case of an antenna in the 

form of a rectangular prism the explicit representation of the waves 

would be extremely complicated, and little is gained in physical insight 

by attempting the representation, unless detailed numerical results can 

be attained. The problem of an antenna of arbitrary cross-section has 

been discussed by Schelkunoff,J who treats the antenna as a trans¬ 

mission line with varying electrical parameters along its length. 

If the guide is long and we are interested in the field near the guide 

and away from its ends, a useful approximation is to regard the guide as 

infinite in length. The aperture in the guide wall is then coupled to 

the system of waves possible outside the infinite guide. Propagation 

is considered parallel to th6 axis of the guide, and the characteristic 

waves occur in two groups: TM, in which there is no magnetic force 

component parallel to the guide axis, and TE, in which the longitudinal 

electric force vanishes. The lowest order Tif-wave is propagated as 

t Stratton, op. cit., p. 551. 
t Sohelkunoft, Proc. l.R.E. 29, 493-621 (1941). 
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the principal wave with the velocity of light and without attenuation 

when the guide wall is a perfect conductor. The electric force near the 

guide wall is perpendicular to the wall, there are no nodal lines of 

electric force, and there is no transverse current on the wall. The 

absence of transverse current is characteristic of all TJ^-waves, its 

presence of jTJS^-waves. With the exception of the principal wave, 

unless the guide is sufficiently large, all of these waves are attenuated, 

because they are of evanescent type. The higher-order modes of both 

types may be thought of as waves which spiral round the guide—the 

higher the order, the more rapid the convolution. Two waves of the 

same type and order and of equal amplitude, when superposed, form 

a standing-wave pattern of current on each transverse section of the 

guide wall, nodal hnes of electric force being parallel to the axis. 

The other approximate form in which the waves outside the guide 

maj^ be represented is by analogy with the wave-functions of a prolate 

spheroidal antenna.| This will be more helpful in the treatment of 

a short antenna. Magnetic and electric types are now classified by the 

vanishing of the ‘radial’ components of E and H, The determination 

of the field is the problem of the diffraction by the spheroid of the 

radiation from the aperture in the wall. Resonance will occur for each 

characteristic mode of the spheroid in turn as the frequency of the 

radiation is increased. Due to radiation damping, no essential infinities 

occur at resonance. 

These methods of picturing the wave system on the outside of the 

guide are admittedly crude, though the axially symmetric case of 

the circular wave guide permits exact treatment of the infinitely long 

guide,t and the solution for the finite guide, provided that the termina¬ 

tions are symmetrical about the axis, may be achieved.§ The rect¬ 

angular guide requires much greater computation because of its 

geometrical form, even if only a very approximate solution is desired. 

It is quite possible that an experimental study of the waves launched 

on the outside of the guide by resonant slots (see Chapter VI) will 

prove a much more convenient and economical method of achieving 

a good physical picture of these waves. 

t Stratton and Chu, J. of Applied Phys, 12, 241-8 (1941). 
X Stratton, op. cit., p. 524. 
§ See Schelkunoff’s recent paper, Proc. I.R,E. 33, 872—8 (Doc. 1945), where references 

to the published work of Hallen and others on the problem of the cylindrical antenna 

are given. See also [5]. 
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5.1. Introduction 

In our discussion of the rectangular wave guide in Chapter II we 

confined our attention to the dominant wave and its propagation in 

the simple guide. We now consider the infiuence of obstructions in the 

guide and the behaviour of antennas introduced into it in order to 

excite or receive the dominant wave. Although at first sight it might 

appear that an antenna in a wave guide is a more complicated affair 

than the antenna in free space, with which the radio engineer and 

physicist are already familiar, this is not the case so far as propagation 

is concerned, for between transmitter and receiver only a single wave 

is involved in the transfer of energy in the guide. In space, however, 

the transfer of energy is achieved by multiple coupling of both the 

receiving and transmitting antenna to space. Consequently, while 

the wave guide can be represented by the methods of Chap. I, as 

a simple transmission line, radiation and reception in space cannot: 

both require a multiplicity of transmission lines which are coupled 

together at the antenna.f Nevertheless, the reader who has already 

become familiar with the radiation problems of ordinary antenna theory 

will probably find it helpful to think of the wave-guide antenna problem 

in terms of the other. He will then understand how driven and para¬ 

sitic antennas and arrays of antennas may be expected to behave in 

a wave guide. 

5.2. The Half-wave Magnetic Radiator 

The foundation of classical radiation theory is the electric doublet. 

It is regarded as the strength of a point singularity in the distribution 

of the electric Hertz-vector and represents an antenna short compared 

with the wavelength of the radiation. The equivalent magnetic radiator 

is the magnetic dipole and in radio practice with longer waves, the only 

way of realizing it is by means of a loop which is less efficient than the 

electric one. In microwave radio, however, the half-wave magnetic radia¬ 

tor can be realized by means of a narrow slot about long cut in a suffi¬ 

ciently large conducting sheet. The current system on the surface of the 

sheet may be excited by means of a transmission line, the two conductors 

t Watson, Trans, Roy, Soc, Can,, Sect. Ill, pp. 33-51, 1945. 
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of which are connected to the two sides of the slot at its centre, or, as 
we shall see, by cutting the slot in the conductor forming a wave guide 

so that the slot is excited by the wave inside the guide. In order to 

picture the field due to such a resonant slot, imagine that a magnetic 

current replaces the conductor of a half-wave electric linear antenna 

with its sinusoidally distributed electric current. The magnetic field 

due to the magnetic current will now point along meridians on a distant 

sphere centred on the middle of the radiator which lies along the polar 
axis of the sphere, as shown in Fig. 16. 

The electric field will be directed round 

the circles of latitude and therefore 

perpendicular to any plane containing 

the polar axis. Such a plane may there¬ 

fore be occupied by a conducting sheet 

which splits the field in two. Since the 

magnetic force close to the sheet is 

tangential to it, the conductor will be 

the seat of currents at right angles to 

the magnetic field. In order to permit 

this current system, directed on one 

side towards and on the other away 

from that part of the polar axis which 
is the seat of the magnetic current, it is 

necessary that the conductor be cut so 

as to present a narrow slot half a wavelength long. The electric field in 

the plane of the sheet is continuous through the slot, so the phase of 

the field in half of Fig. 16 must be reversed to represent the resonant 

slot cut in the infinite sheet. In the plane of the sheet the magnetic 

field within the slot is directed parallel to its length and varies 

sinusoidally along the slot, being zero at its ends. This magnetic dis¬ 

tribution may be regarded as the magnetic current from which we 

started. So long as the slot is narrow and its length approximately 

equal to half of the free-space wavelength, the distribution of E and 

H along it will be sinusoidal. Only the longitudinal component of H 

and the transverse component of E are then physically important, and 

to a first approximation they may be taken as constant across the 

width of the slot. The magnetic current from which the field due to 

the resonant slot may be computed is then equal to the voltage across 

the slot. The direction of the e.m.f. is related to that of the magnetic 

current in the sense opposite to the direction of the magnetomotive 

Axis of magnetic* current 

Magnetic Force 
Fig. 16. 
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force equivalent to the corresponding electric current. This result is 

immediately evident in Maxwell’s equations, and we can derive the 

field due to the magnetic radiator from that which is well known for 

the half-wave electric antenna by interchanging the electric and mag¬ 

netic field components. 

The substitution of magnetic for electric quantities and vice versa 

which we have just mentioned has an intrinsic connexion with the 

electromagnetic theorem which is the counterpart of Babinet’s principle 

in optics. 

5.3. Babinet's Principle 

In physical optics Babinet’s principle is usually thought of in con¬ 

nexion with a scalar wave and a non-refiecting screen. Suppose the 

screen is pierced by apertures of any size and sliape and that there is 

incident on the screen an optical disturbance. Let the screen obtained 

by interchanging the holes and obstructions be called the comple¬ 

mentary screen. Then Babinet’s principle states that the disturbances 

produced at any point behind the plane of each of two complementary 

screens, exposed in turn to the same incident waves, would, if super¬ 

posed, yield the effect produced at the same point with no screen. In 

electromagnetism we use reflecting screens, and, of course, vector waves. 

The principle must therefore be restated. This has been achieved by 

Booker [6], who first applied it to deduce some of the properties of 

resonant slots from the known properties of the corresponding electric 

oscillator. 

In the hands of Sommerfeld the mathematical theory of the diffrac¬ 

tion of electromagnetic waves by a semi-infinite conducting screen was 

treated by means of a Riemann space, j* We may use this idea in con¬ 

nexion with diffraction by a single aperture. The points of this space 

do not correspond 1 :1 with the points of physical space. Instead, a 

point of physical space corresponds to two points of Riemann space, 

which is entered and left behind by passing through the reflecting sheet. 

Let us start in object space before the screen, on the same side as the 

source of waves: on passing through the part of the plane occupied by 

the metal screen, we enter image space which gives a complete repre¬ 

sentation 1 :1 of physical space. After passing through the aperture, 

still in image space, we can again approach the plane of the screen, 

and on passing through it at a point which corresponds to the metal 

t See Baker and Copson, The Mathematical Theory of Huygens' Principle (Oxford, 
1039). 
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of the screen, we can reach the object space behind the screen; coming 

back through the aperture, we can again approach the metal screen in 

the same way as that in which we started. Thus for a screen with 

a single aperture there is a dual representation of physical space. One 

of these is called the object space, in which are presented the waves 

accessible to physical observation. The other is called the image space; 

in it are placed the image sources by means of which the reflecting 

property of the plane of the metal screen is secured. To satisfy the 

boundary conditions imposed on the field at the screen we have to 

introduce image sources which look out of image space into object 
space through the face of the screen. 

Since the fields produced behind the two complementary screens are 

to be added to obtain the field that would be produced with no screen, 

the image sources associated with the complementary screens must 

cancel out when superposed. Thus, for Babinet’s principle to hold, we 

require that the images in the complementary screens must vibrate in 

anti-phase. This necessitates that if one screen is a perfect conductor 

of electricity the complementary screen must act as a perfect con¬ 

ductor of magnetism. There being no such magnetic conductor, we 

have to secure the anti-phase relation of the two systems of images in 

another way. Suppose that in passing to the complementary screen we 

interchange electric and magnetic quantities everywhere and reverse 

the sign of one of the field vectors; the complementary screen becomes 

a perfect conductor of electricity, while the directions of the electric 

and magnetic vectors are interchanged in the surrounding field. If the 

source associated with the original metal screen is an electric dipole, 

that associated with the complementary screen must be a magnetic 

dipole. Two sources related in this way are called conjugate sources. 

Two plane waves which differ only in being linearly polarized at right 

angles to each other are conjugate. 
Let aSjl (electric) and S2 (magnetic) be conjugate sources jilaced 

respectively at corresponding points before the mutually comple¬ 

mentary screens and Sg. Let the corresponding object and image 

spaces be denoted by 0^, and The source looks into and 

produces there beyond the plane of the screen an electric field denoted 

while in behind the screen the electric field is denoted by 

€1^1, where is the strength of the field at the point in question due 

to the source 8^^ in the absence of the screen. Since the geometrical 

relations of the spaces O and I to the source are interchanged when 

we pass from to 22’ the source 8^ produces in behind ^2 the 
4791.4 T 
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mugnetic field and in /g magnetic field where Zq is 

the intrinsic impedance of the medium, and denotes the strength 

of the electric field at the point in question due to the source S2 in the 

absence of the screen. Now when the screen is removed, the fields 

in Oi and Og superposed to produce the field in the absence of the 

screen, and since Sg equal to for conjugate sources, we reach 

the result 
— '^1 

or ^1+^2 — 1- (53.1) 

Further, due to the images S[ and 82 of and 82 in 2^ and ^2 

respectively, the contributions to the fields in 0^ and O2 respectively 

behind the screen are 63 4 and 634* Since 82 is supposed equal to /S'l 

and in anti-phase with it, these fields cancel on superposition, and we 

reach the result which is Babinet’s principle for electromagnetism, viz.: 

Let 61 be the ratio of the field behind the screen 2^ to the field which 

would be produced at the same point in its absence, and let 62 denote 

the same ratio for the complementary screen ^2 fhe conjugate 

source, then ej-f-e2 = 1. 

Further, if/i denotes the ratio of the reflected field in front of 2^ to 

the reflected field due to the complete screen without apertures, and 

if /2 is the same ratio for the complementary screen 22 with the con¬ 

jugate source, then/i-f/2 = 1. 

This principle has been studied in detail by Booker and Macfarlane. 

They have developed methods of thinking about electromagnetic waves 

which in their physical immediacy remind one of the role of Fresnel’s 

zones in optics. By means of these methods it is possible to avoid 

recondite mathematical analysis and at the same time keep in view 

the physically important quantities. 

5.4. Applications of Babinet’s Principle 

Consider two infinite plane complementary gratings. Let Fi r2 

mhos be their equivalent surface admittances for simple infinite plane 

waves with their electric vectors vibrating in perpendicular directions 

and incident normally on the gratings. The ratios of the electric field in 

the transmitted wave to that in the incident wave for the two gratings 

are from § 1.9 
2^0 

2Yo+Y^’ 
(64.1) 

where IJ, is the intrinsic admittance of the surrounding medium. By 

Babinet’s principle the sum of (64.1) must be unity. That is, 

(64.2) 
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or, in terms of the corresponding impedances, 

^1^2 = JZg. (54.3) 

Thus, for complementary conducting gratings in the field of incident 
plane waves in which the directions of electric and magnetic vibration 
are interchanged, the geometric mean of the equivalent surface im¬ 
pedances is half the intrinsic impedance of the surrounding medium. 

The same relation can be established between the driving-point 
impedance of a half-wave strip electric radiator and that of a half-wave 

WIRE SLOT 

Fio. 17. 

resonant slot fed at the same position along its length. In the former 
a generator of voltage is applied across a gap small compared with 
the strip width; in the latter the generator of voltage is apphed 
across the slot. We shall use the electromagnetic laws in integral form 
and apply them to the paths indicated in Fig. 17 (a) and (6). The 
subscript 1 refers to the electric radiator, the subscript 2 to the magnetic 
one. The circuit encircles the wire at its centre, the short path C\ 
bridges the gap in the antenna. The circuit Cg encircles the slot passing 
through the metal in which it is cut; Cg is the short path bridging the 
feed-point in the slot. Ci is geometrically identical with Cg, and C[ with 
Cg in relation to the two half-wave radiators. 

In order that the two fields be transformable into one another in 
conformity with the conception of conjugate sources, we require 

J H,.* - ±J E, A - I'. (54.4) 

o. c. 
Hence, being the electric current in the metallic strip, 

(54.6) 
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Similarly J E^.ds = J Hg.ds. (64.6) 
C[ Ca 

Now from the symmetry of the field on the two sides of the plane of 

the resonant slot, the integral on the right of (54.6) is equal to one-half 

of the current entering and leaving the slot at the feed-point; con- 

sequently ^ (54 ,^ 

We now combine (54.5) and (54.7) to obtain the result (54.3), where 

and Zg now represent the ratios VJIi and V2ll2- 

Fig. 18. 

This result enables us to calculate the radiation resistance of the 

centre-fed resonant slot, for = 0'194Zo (73 ohms) and hence 

Zg = l*29Zo (485 ohms). Some useful results follow. 

If V is the root-mean-square e.m.f. across the centre of the slot in 

kilovolts, the power (W kilowatts) radiated on both sides of the screen is 
103U2 

W = = 2-06F2. (54.8) 

Although the foregoing discussion dealt with straight radiators, the 

argument may be extended to any plane linear conductor and the com¬ 

plementary slot. The driving-point impedances of wire and slot are 

related by (54.3) at corresponding points. A circular slot about a wave¬ 

length in perimeter is equally transparent, no matter what the polariza¬ 

tion of the normally incident wave may be. Likewise a pair of straight 

half-wave slots bisecting each other at right angles is equally trans¬ 

parent to all polarizations. 

A grating of resonant slots as shown in Fig. 18 is dealt with like 

a curtain of resonant electric dipoles. If the spacing is such as to make 

the latter a perfect reflector of waves polarized with E parallel to the 
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wires, the slot grating is, by Babinet’s principle, perfectly transparent 

to waves polarized with E perpendicular to the length of the slots. It 

acts in fact as a band-pass filter. The mutual impedance between two 

slots is related to the mutual impedance of the two complementary 

strip radiators by the equation (54.3). 

We now consider approximately how the selectivity of the slot 

depends on its width. It is known that the distributions of voltage and 

current along a half-wave electric radiator are related approximately 

in terms of the characteristic impedance 

where b is the width of the strip, and its selectivity is approximately 

ttZI 

Now, regard the slot as approximately half a wavelength of transmis¬ 

sion line of characteristic impedance Z\ terminated by the impedance 

Zg. We have 
^ (zo)2 

and O = 
^ 2^“2Z0‘ 

Since by Babinet’s principle the two radiators have the same Q, 

_ ^2 f70 _ '^^0 

zr 
=_ 

^ •21og^(2A/6)’ 
and Q = 1*29 log, 

\b)' 
(54.9) 

The foregoing is quite crude, and the reader is warned to approach 

the treatment of antennas by the simple transmission-line analogy with 

great caution. 

5.5. Obstructed Propagation in a Rectangular Guide viewed as 
a Grating Problem 
It must be evident that the study of gratings is relevant to under¬ 

standing the propagation of the dominant wave when irises are present 

in the rectangular guide, for we may approach the wave guide via the 

strip transmission line as was done in §2.1. The strip transmission line 

permits the propagation of plane waves in longitudinal slabs between 

its two parallel planes with such boundary conditions at the faces of 

the slabs that we can imagine an infinity of similar slabs side by side, 

the conducting sheets withdrawn without disturbing the field, and the 

resulting field a possible unbounded plane-wave system in the presence 
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of a periodic obstruction. We now offer some preliminary general 

observations on antennas and obstructions in wave guides. 

Consider the limiting form of the Unear electric antenna, an electric 

doublet, placed in a rectangular guide. Because of the multiple reflec¬ 

tions from the guide walls, it is equivalent to a two-dimensional infinite 

array of doublets. Such an array is able to radiate only in certain 

directions determined by the spacing and phasing of its elements. The 

excited element D with its adjacent images is shown in Fig. 19. Now 

in planes parallel to the plane of the array, standing-wave patterns of 

A A 
y ■i ■n Hi y A 

mm y A 

A A A 
Fig. 19. 

field distribution are produced by groups of these directed beams in 

which the array radiates, all the members of one group being pro¬ 

pagated with the same component speed perpendicular to the plane 

of the array, in a manner analogous to that discussed in §2.1 for the 

i^io'Wave, and, of course, the period of the pattern is the rectangle 

congruent to the guide cross-section. Each group of waves corresponds 

to the propagation of one of the characteristic modes in the wave guide. 

Since the cross-sectional dimensions of the latter determine the spacings 

of the array, only a limited number of real side-waves is possible from 

the array, and corresponding thereto only a limited number of non- 

evanescent waves in the guide. The presence of TE or TM types (or 

both) depends on the orientation of the doublet as well as on the ratio 

of the guide dimensions to the free-space wavelength of the radiation. 

Now the array has associated with it an infinite system of evanescent 

waves in which the amplitude falls off exponentially with distance 

from the plane of the array, and phase is propagated parallel to that 

plane. Waves with the same rate of exponential decay of amplitude 

may be grouped in TE and TM types to build up standing-wave 

patterns of amplitude corresponding to evanescent characteristic waves 

in the guide, just as the non-evanescent ones were. 
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So far we have thought of the elements of the array as independently 

excited, but essentially the observations that have just been made are 

relevant in understanding the effect of any obstruction in the guide 

when the currents in the obstruction are due to an incident wave in 

the guide. Each point of the obstruction is now a dipole excited by the 

incident wave and with its own system of images. We have to think 

of the periodic repetition of the obstruction as constituting a grating. 

The characteristic waves in the guide are then regarded as systems of 

unbounded plane waves incident obliquely on the grating. In this way 

we can reach a clear understanding of the effects due to wires stretched 

across the rectangular guide parallel to the electric force in the dominant 

Ti?-wave, and of metallic strips introduced in transverse sections thus 

reducing locally the cross-section of the guide. 

5.6. Plane Gratings and Irises [7] 

We consider first a plane grating of parallel thin wires of radius 

p A, and spaced d apart. On it is incident an unbounded uniform 

plane wave propagated in a direction making 6 with the grating normal, 

the electric force in the wave being parallel to the wires. The currents 

excited in the latter are in constant phase relation with the electric 

force in the incident wave as it reaches them, and the possible directions 

for distant radiation from the infinite grating are given by 

sinii„ = sin0±^ (n = 0, 1, 2,...), (56.1) 
d 

where 0,^ is measured in the same sense as 9 from the normal to the 

plane of the grid. The case n == 0, — 9 or 7t—9, yields the trans¬ 

mitted and reflected beam directions. For given djX and 9 there is 

only a limited number of real values of satisfying (56.1): they give 

the directions of the real side-waves which occur in pairs symmetrical 

with respect to the plane of the grid. The complex'values of satisfy¬ 

ing (56.1) are 

4>n = ^±jcosh-i|^ + sin0j = 

>Ph = Y±icosh-i|^—sin^j ^ y±iF„, (56.2) 

the positive sign to be taken for radiation on one side of the grid, the 

negative on the other, as can be seen at once by considering the pro¬ 

pagation factor exY){---jwt+jk{z (56.3) 

where z is normal to the grid, y parallel to the wires, and x perpendicular 
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to them. Although sin^^ is real, in general cos^^ is not. Indeed we 

have in such cases for the propagation factor 

exp(—sinh . exp(—j<x)t-{-jkx cosh P^), (56.4) 

leading to exponential decay of amplitude with distance from the 

grating. These evanescent waves store energy vibrating 90"^ out of 

phase with the incident field in the vicinity of the grid: they do not 

contribute to the radiation of energy on the average from it. 

Now without altering the field we can bound it by two parallel plane 

conductors 1 metre apart, perpendicular to the wires, so as to make 

a parallel strip transmission line of unit width, guarded by the re¬ 
mainder of the parallel planes, and shunted by the grid of wires. 

If 2d < A, there are no real side-waves: all are evanescent, conse¬ 

quently the grid loads the transmission line inductively, the energy 

stored at reflection being in the magnetic field of the currents in the 

wires. 

The impedance presented by the grid to the transmission line of 
characteristic impedance Zq sec d is found to be 

(56.5) 

where 
(56.6) 

(56.7) 

and sin^+ = sin0+^. (66.8) 

F(dix,e) is a correction term taking into account the finite ratio d/A: 

when 2d < A, this correction term is real, but if 2d > A, some of the 
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terms are imaginary, leading to real conductance which corresponds to 

the loss of incident energy, for each term in F corresponds to a side-wave. 

If the wires are replaced by plane metallic strips of width w, then, 
without restricting w to be small, we have 

^ -■>-^[logcosec^+f(|,9) (56.9) 

as the expression for the impedance shunted across the strip trans¬ 

missionline (Fig. 20). Whend/w^l, (56.9) reduces to (56.5) within = 4p. 

Let us restrict ourselves to normal incidence, 0 = 0. The self¬ 

inductance shunting the strip transmission line is 

L 
277 

Iog,coseo2+j(^,o) . (66.10) 

A graph of F{djX,0) is shown in Fig. 21. 
47#1.4 K 
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By means of Babinet’s principle we can find at once the shunt 

admittance presented by the complementary capacitive iris across the 

transmission line. Alternatively we could have started with the capaci¬ 

tive iris and inferred the result for the inductive case. From (64.3) 

Hence jY' = ^ j^log^ cosec ^®j • (66.11) 

Fig. 22. 

Thus the shunt capacity eicross the transmission line when the waves 

are incident normally on the grid is given for this symmetrical iris by 

(7 = (56.12) 

w now denotes the width of the gap and d the distance between the 

centres of adjacent gaps (see Fig. 22). 

In order to pass to the dominant wave in a guide of rectangular 

section, since the strip transmission line and rectangular wave-guide 

problems for the capacitive iris have essentially the same mathematical 

form, we have merely to replace A by A^ and Yq by 7^, and d by the 

depth (6) of the guide. Accordingly, the susceptance measured in 

the standing-wave produced by the iris (Fig. 23) is expected to be 

■Bo = ^j^logeCosec^+JJ’l^.oj . (66.13) 

Actually the measured values are very sensitive to the thickness (c) of 

the metal forming the window. The following theoretical formulae 
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yield the susceptance and conductance referred to the entrance plane 

(56.14) 

€ 

For the symmetrical inductive strip (Fig. 24) the case is different, 

for we have to deal with the images of the strip in the narrow faces; 

these make up a grating with the currents in adjacent strips in opposite 

directions. The consequence is that the inductive reactance presented 

to the transmission hne of characteristic impedance = ^0 

V[l-(A/2a)2] 

is approximately 

X = cosh~^|cosec^j — 2j, (56.15) 

when w, the width of the strip, is much less than a, the width of the 

guide. 

It will be noticed that the geometric mean of the reactances of 

the complementary irises in the guide is not equal to one-half of the 
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characteristic impedance This result is not in conflict with 

Babinet’s principle, for to apply the latter the wave systems in the two 

complementary cases must be conjugate. That is, if we deal with 

and the capacitive iris, we must treat the EyfVf&YQ with the inductive 

one and vice versa. Actually the error in using (64.3) with ^10 substi¬ 

tuted for Zq depends on the ratio ajb and in the useful practical range 

will never exceed 25 per cent. 

Fig. 25 (6) and (c). 

An instructive method for deducing the foregoing results for the 

capacitive iris and inductive strip is given in § 10.5. In practice, irises 

are used mainly to introduce susceptance for matching and to couple 

the wave guide to another guide or cavity. The capacitive iris is of 

little use in high-power circuits because it reduces the maximum power 

that can be handled without breakdown: as a coupling device to a 

cavity it yields too strong coupling; for these reasons inductive windows 

are generally used. It is obviously inconvenient to insert two strips of 

metal through the guide wall when one will serve; accordingly the 

results for unsymmetrical inductive irises are of practical interest. 

These have been worked out by Schwinger’s method (§ 10.5), and for 

the sake of generality we quote the result in the general case. Let Xq 
be the distance of the centre of the gap, of width w, from one of the 

narrow faces of the guide as shown in Fig. 25(a). The susceptance 

introduced by the window is 

_^cot2^(l+8ec2^cot*:^V (66.16) 
a 2a\ 2a a ) ' ' 

The special cases of the symmetrical window (Fig. 26 (6)) and of the 
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window bounded on one side by the guide wall (Fig. 25 (c)) may be 
immediately deduced from this: 

(i) Symmetrical window, Xq — ^a, 

B=-^cot2_. (56.17) 

(ii) Single-strip window, = \w, 

Bq = —^cot^/l+cosec^^y (56.18) 
a 2a\ 2a j 

Fio. 26 (a) and (6). 

Finally it is of interest to mention the inductive ring (Fig. 26(a)) 

and the capacitive disc (Fig. 26 (b)) used in circular wave guides intended 

for propagation. 

In practice the band-width of transmission by irises is important. 

Actually the iris is introduced into the wave guide for the purpose of 

compensating susceptance in the load; consequently, except for a reso¬ 

nant slot iris, the conception of the Q of an iris itself has no practical 

relevance. The band-width of the combination is determined by the 

gradients with respect to frequency of the susceptance both of the iris 

and the load. Thus, let -Bj be the susceptance introduced by the iris, B2 

that of the load (reckoned at the position of the iris), both of which are 

functions of A, then 
0 = 

c/Aq being the resonant frequency of the system. If dBJdX = 0, then 

K d(Bi^-\-B2) 
2 dX 

(56.19) 

^ _ Aq dBi 

^^”“2^0* 

Now in all the cases with which we have dealt we have found either that 

J5i is proportional to A^ (inductive irises) or to A^^ (capacitive irises). 

Hence 

vi — 7- — hr l^ilo — i n /9^^2• (56.20) 
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In order to secure band-width, therefore, we require that the gradients 

of JSi and £2 should compensate, or, if this is not possible, and 

dBJdX must both be small, i.e. only small compensation is necessary. 

5.7. Discontinuity at the Junction of Two Guides of Differing 
Gross-section: Bends, Corners, Twists 

Although the junction of two guides of different cross-sections does 

not commonly arise in practice, it is well worth while to mention it in 

order to bring out that even when two lines of equal characteristic 

impedance are joined, a considerable mismatch may occur, unless the 

dimensions of the cross-sections are all small compared with the wave¬ 

length, and unless the geometrical discontinuity itself is small. Since 

in wave guides the former restriction cannot be met, we must expect 

reflection from the junction of two different guides on account of the 

geometrical discontinuity, even when the guides have the same im¬ 

pedance. 

When the guide beyond the junction is terminated in a match, reflec¬ 

tion can be measured. The S.W.R. to be expected may in certain 

simple cases be calculated without difficulty [8], For instance, if the 

discontinuity consists only in change of the depth (b) of the rectangular 

guide, then the reflection is approximately what one would expect from 

a capacitive iris in the deeper guide due to the distortion of the field 

in that guide only, that is, only half of the capacity of the iris is 

effective. If a more accurate estimate is desired, the quasi-static 

method of § 10.5 may be used, or the result be derived by Schwinger’s 

analysis (§ 10.5). 

For the numerical treatment of all problems of this type, Motz and 

Klanfer [9] have outlined a method which, with adequate computa¬ 

tional aids, will serve to determine with any desired precision the effects 

on dominant propagation due to changes in the guide cross-section and 

due to junctions. The method is based on the representation of a 

travelling wave as the linear superposition of two standing-waves dis¬ 

placed with respect to each other in space and time phase. Once the 

nodal lines in the standing-waves are known, the travelling-wave 

problem is solved. 

In order to convert the solution of the boundary-value problem for 

the partial differential wave equation, into that of a system of difference 

equations, a portion of the guide containing the discontinuity is 

imagined divided into cubical cells, and the field strength is found only 

at the lattice points. The nodal planes can be found either by relaxa- 



5.7] THE RECTANGULAR WAVE GUIDE. II 71 

tion methods or by direct solution of the difference equations by deter¬ 

minants and subsequent transformation of the latter, so that in both 

cases sufficiently refined knowledge of the position of the nodes is 

obtained by interpolation. 

The representation of the standing-waves proceeds differently from 

what is given in § 1.5, for there the nodal lines are fixed by the choice 

of the relative space and time phases of the two standing-waves. For 

a discontinuity symmetrical in planes parallel to the axis of propaga¬ 

tion it is convenient to choose as the basis standing-waves symmetrical 

and anti-symmetrical in z. Thus, let 

(а) 

(б) 

u = 6rsin(Z:2:+8)+irsin(fe4-8+e) (z > 0); 

u ~ — (?sin(A:2;—sin(A:2;—8—6) {z < 0), 
(57.1) 

z = 0 being the plane of symmetry of the discontinuity. Since (a) 
represents the pure travelling wave to the right, we require 

G = 

and the travelling wave to the left is 

u = jH cos € 

The reflection coefficient \w\ on the left is 

^j(€+kz~h)_\^j{kz-h-€) 
__'_ _ r>( 
^i{kz--8-€)_^^jikz-8-€) I 

(57.2) 

€ is evidently the electrical distance between the two nodal planes, and 

equation (57.2) leads immediately to the value of the S.W.R. due to 

the discontinuity when the guide is terminated in a match. 

When a wave guide is bent, one expects that only small effects will 

show on the propagation inside the guide, provided that the radius of 

curvature of the bend is large compared with the transverse dimensions 

of the guide. Without seriously deforming the guide, it is difficult to 

bend rectangular tube in small space: a circular bend of small radius 

may be electroformed by plating on a suitable base or turned from 

a solid piece of metal, but it is more convenient to use corners joining 

straight pieces of guide. For example, one may cut the two pieces of 

similar straight guide at the same angle to the guide axis, namely, half of 

the resultant angle between the two straight pieces after joining. When 

the deviation is not greater than 30°, no appreciable reflection will 

occur at the join, but for larger angles of turn the corner must be mitred, 

an example of which is shown in Fig. 27. The proper dimensions 
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for these mitred comers, so as to give matched transmission, have been 

worked out [10] experimentally for turns in the plane parallel to the 

broad face of the guide (bend in the -plane) and for turns in the 

plane parallel to the narrow face (bend in the JS?-plane). Such corners 

have very limited band-width, and have been superseded in practice [11] 

by mitred comers formed with an intermediate section of guide (see. 

Fig. 28). The mean length L of the intermediate section should be 

close to ^Xg, or an odd integer times this distance, on the theory that 

the similar reflections from the two discontinuities will then cancel. 

Actually it is found that the H- and E-type comers differ markedly: 

the former show a considerable departure from the mean intermediate 

length IXg for no reflection, and this departure depends on the angle 

of the comer, whereas the latter show only a small variation. Circular 

bends and twists introduce reflections in opposed phase arising from 

entry to and emergence from the bend or twist. In order to cancel 

them, the mean length of the section introduced as the bending or 

twisting connector is chosen about The mathematical theory of 

circular bends has been worked out by Marshak [12]. 
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If, in addition to changing the direction of the guide axis, it is desired 

to alter the orientation of both the plane of the broad face and that 
of the narrow face in a single junction, the combined corner and twist 

can be made in the smallest distance by applying the principles of 

guide coupling presented in Chapter VII. These same principles have 
been used in designing a ‘360° corner’ in which the returning guide 

lies along the outgoing piece. 

5.8. The Coupling of Antennas to the Hjo-Wave in the Rectangu¬ 
lar Guide 

In order that a linear conductor may be excited by the iffio-wave in 
a rectangular guide, it is necessary that for part of its length, at least, 

its projection on the direction of the electric force in the wave does 

not vanish. If the wire is insulated from the wall of the guide and of 

resonant length, the .antenna will effectively short-circuit the wave in 

the guide and therefore reflect all energy, just as a curtain of resonant 

dipoles, if sufficiently closely spaced, would reflect a simple plane wave. 

Since the depth of the guide permitting only jEf^Q-propagation is less 

than ^A, it would, of course, be necessary to bend the wire, but this 

does not affect its short-circuiting property in the wave guide when 

resonant.I On the other hand, the curtain of bent wires would have 

quite a different effect on the plane wave. 

A straight-wire antenna may be inserted through a hole in either of 

the broad faces of the guide, and in virtue of the system to which it 

is coupled outside the guide may become resonant. For instance, the 
wire, suitably supported, may project through the wall of the guide 

and may act as a radiator to space or into another guide or cavity, 

or it may form the central conductor of a coaxial line, the outer con¬ 
ductor being connected to the wall of the guide as shown in Fig. 29. 

Experience shows that the last of these is probably the most important 

case in practice, for by this means energy is commonly introduced into 

a wave guide from a generator or received from the wave guide by 

detecting apparatus. 

If high power is to be delivered, the problem of electrical breakdown 

must be surmounted. Accordingly the wire must be replaced by a thick 

rod with a round end. For 10-cm. waves the diameter of the rod would 

be of the order of J in. in a coaxial line about 1 in. in diameter. The 

width of the corresponding wave guide is 3 in. With shorter waves this 

method of coupling a high-power generator is not successful: it is 

t Measurements on such bent probes were reported by Watson and Guptill, Jan. 1943. 
4791.4 X 
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necessary to build the generator with a wave-guide output, so that in 

order to use the power one merely couples two wave guides. 

Whether a wire of small diameter is used as in low-power measure¬ 

ments, or a rod of considerable diameter as in high-power applications, 

there are two problems connected with the coupling of an electric 

antenna to a rectangular wave guide. In order to achieve the efficient 

use of power, a technique is required for matching; and this must be based 

on understanding how a wire probe loads the .ffio'^ave in the guide. 

On physical grounds it is relatively easy to see that a wire probe will 

always load the as a shunt. Think of the electric field due 

to the radiating wire as initiating ^T^o-waves along the guide in both 

directions. These waves must have the same amplitude and the electric 

force in them must have the same phase at equal distances from the 

wire. It follows at once from § 1.2 that this type of radiation from 

the antenna corresponds to shunt loading of the equivalent trans¬ 

mission line representing the dominant wave propagation in the guide. 

With the actual dependence of the admittance on the position of the 

antenna in the cross-section of the guide, its length, and the system to 

which it is connected, we shall deal in the next section. We note, how¬ 

ever, that it is not possible to arrange any other type of load on an 

wave by means of a straight thin wire antenna, for there is only one way 

in which the field in the guide can excite currents in the wire, namely, by 

its single electric compoilent. In a guide propagating a TJf-wave, how¬ 

ever, this restriction would no longer hold. The wire might be coupled 

to the transverse electric field or to the longitudinal electric field. 
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Since the magnetic field in an ^T^o-wave possesses two components 

in quadratiire, and corresponding thereto both longitudinal and trans¬ 

verse currents fiow on the wall of the guide, a magnetic radiator, 

realized by a slot cut in the wall, may be coupled in various ways. 

These will be discussed in Chapter VI. The key to understanding the 

mode of coupling lies in the answers to the questions, what are the 

amplitudes and phases of the dominant waves radiated by the antenna 

on each side, and what is the relation of the antenna oscillation to the 

incident wave. 

Fio. 30. 

When an obstruction is placed in the dominant wave in a rectangular 

guide, we can understand its effect by regarding it as an antenna which 

is excited by the wave. We think of the current system fio wing in it 

as made up by the superposition of characteristic distributions, one of 

which corresponds to the dominant wave and determines the radiation 

along the guide from the antenna. This radiation superposed on the 

incident wave yields the transmitted and refiected waves. This prin¬ 

ciple leads one to a qualitative understanding of the reason why a 

rectangular aperture, which might be regarded as the combination of 

symmetrical inductive and capacitive irises, can be expected to trans¬ 

mit the dominant wave without reflection when the aperture is correctly 

proportioned. In Fig. 30 the arrows indicate the direction of current 

flow on the metal diaphragm in which the aperture is cut, when the 

latter is oscillating as a resonant slot. In the centre of the guide cross- 

section the current flow is opposed to that at the sides. These opposed 

currents tend to cancel each other’s contribution to the dominant wave 

radiated from the iris. 

5.9. The Impedance of a Wire Antenna in the Guide 

The study of the relation of impedance to waves in Chapter I makes 

evident what could not have been brought to light by the conventional 
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circuit treatment of impedance, namely, that we must keep in mind 

the particular type of wave to which the impedance refers. In trans¬ 

mission lines we have to deal normally only with the principal wave, 

for the transverse dimensions of the line are small compared with the 

wavelength of the radiation. When a wire antenna is inserted into a 

wave guide it may be mounted on the wall of the guide in conducting 

contact with it, or, as we have already mentioned, it may form the 

extension of the inner conductor of a coaxial line, the outer conductor 

of which terminates on the guide wall. If we regard the antenna as 

fed at the other end of the coaxial line, we see that it presents a certain 

impedance to the line just as an antenna radiating to space. In order 

to permit radiation in one direction only along the guide, a reflecting 

plunger may be placed from the antenna. The load presented to 

the coaxial line is made up of a radiation resistance and a radiation 

reactance. Both of these quantities depend on the length of the 

antenna, the distance of the plunger from the antenna, and the posi¬ 

tion of the antenna in the guide cross-section. We shall later discuss 

this dependence in detail. For the present our interest is to distinguish 

the driving-point impedance presented to the coaxial line at its termina¬ 

tion, and the shunt impedance presented to the dominant wave in the 

guide when travelling towards the antenna. Evidently this shunt im¬ 

pedance will depend on the termination of the coaxial line and its 

characteristic impedance, just as the radiation impedance will depend 

on the termination of the wave guide. 

Knowledge of driving-point impedance is important in feeding energy 

to a wave guide from a coaxial line. It is measured by standing-wave 

technique on the coaxial line. The shunt impedance offered by the 

receiving antenna to the dominant wave, on the other hand, is measured 

by standing-wave technique in the wave guide. 

Nevertheless these two impedances are related to each other because 

the antenna really couples two transmission lines—the coaxial line and 

the dominant wave circuit in the guide. We shall have occasion to 

treat the subject of coupled lines in Chapter VII: for the present it 

suffices to remark that the law of impedance transfer from one line to 

the other at the coupling is 

^ (69.1) 

where ^ is real and dependent only on the antenna and its position in 

the guide cross-section, Z is the impedance in the wave system of the 

coaxial line reckoned at the junction and looking towards it, Y is 
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the total admittance seen from the point of coupling in the wave guide, 

and m is a real constant like This is called shunt-shunt coupling. 

Consider first the impedance presented to the coaxial line when 

the guide has a matched termination on one side, and on the other the 

plunger distant fi:om the antenna. If Yg is the characteristic admit¬ 
tance of the guide, 

y_y/i II (59.2) 

Hence Z, = = ^(1- (59.3) 

The radiation resistance is ^^(1—cos while the radiation 

7Tt 
reactance is — sin2i:i2;o+l- Now consider the coaxial line ter- 

^Yg 

minated by Z\ reckoned at the point of coupling, the plunger placed 

^Xg from the antenna, and the input admittance Y' seen in the guide 

at the antenna. From (69.1) we have 

= or = (59.4) 

^/m is therefore the reactance shunting the guide when the antenna is 

short-circuited to the broad face of the guide. If we take Yg = l/Zg 
(cf. (21.8)), then 

m == ^sin^^^tan^^, (59.5) 
ah a X 

I being the length of the antenna which is supposed thin, Xq is the 

distance of the antenna from the narrow face, and a, 6, k, X have their 

usual meaning. Infeld [13] has deduced the following expression for | 

intended to apply to a thin antenna of radius p^: 

SOtt tanVZ/A 

W ^o(^Po) + 

GOtt (cos kl~ cos nnlIb) 

jbk sin^/cZ ^ 1 — (nTr/bk)^ 
+ 

+ ^tan^(^\ 2 (-l)”‘Yo(r«te), (69.6) 
' ' m-1 

where Yq is the Bessel function of the second kind and is the 

Hankel function of the first kind, both being of order zero. 

The first and third terms in (69.6) are of opposite signs, and in the 

vicinity of Z = JA, ^ vanishes. Thus the guide is short-circuited by a 
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‘quarter-wave’ antenna attached to the guide wall. (This result holds 

also for a bent antenna.) As the length of the antenna is increased, 

the reactance presented by it to the wave in the guide passes from 

a capacitive into an inductive load, provided that Z' is real. As the 

length approaches half-wave, |/m tends to infinity as an inductive 

reactance: of course, an antenna of this length could not be accom¬ 

modated in the guide without bending, but this fact does not invalidate 

the argument. If the ‘ half-wave’ antenna is insulated from the wall 

of the guide, we may think of Z' as a large reactance of capacitive type 

which wiU be cancelled by | when the antenna has the proper length, 

so that the guide is again short-circuited. On the basis of Babinet’s 

principle we expect therefore that a half-wave slot, cut perpendicular 

to the electric force of the H^Q-wa^ve and in a conducting partition 

across the guide, loads the guide as an open-circuit—that is, it does 

not interfere at all with the propagation unless the power is sufficient 

to cause breakdown in the slot. As we have already mentioned, such 

a slot may be regarded crudely as the combination of complementary 

capacitive and inductive irises and behaves therefore as a parallel 

resonant circuit shunted across the transmission line. 

The case of the short probe is of special interest; both $ and m are 

proportional to so that approximately we may write 

kH^ . „7rXo 
—r—sin^— 

4abZ a 
l^'l (59.7) 

Since the fraction of power drawn from a travelling wave by the shunt 

load is Y'jYg, it is proportional to the square of the probe length. 

It remains for us to discuss the matching problem [14]. We are 

required to choose Zq, the distance of the plunger, and I, the length of 

the antenna, so as to make in (59.3) equal to the characteristic 

impedance of the coaxial line. 

Let = and ^'(i) = 

From (59.3) we require 

A(l){l—coa2kj^ZQ} — 1 and A'(l) = A(l)sm2k^ZQ, (59.8) 

Let Iq be the value of I which makes these two equations possible, then 

i{l+[A'(l,)f} = ^(g. (69.9) 

Plot the right- and left-hand sides of this equation as functions of I for 

the given radius p^. The intersection of the two graphs yields 1^: sub¬ 

stitution in the first of (59.8) then gives Zg. 
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The equations (69.3) and (59.9) may be presented in simple geo¬ 

metrical form on an impedance {R, X) diagram. From the former 

(R^-A)^+(X^-Ay = AK (59.10) 

Thus if we alter Zq, keeping the other parameters fixed, the points 
(i2i,Xi) lie on the impedance circle 

tangent to the X-axis and with centre 

at {A, A') which must lie on the 

parabola (69.9) plotted on the same 

plane with the axes of A and A' 

respectively coincident with those of 
B and X (Fig. 31). The centre of 

the impedance circle is determined 

by the length of the antenna; the 
position on the circle corresponding 

to the input impedance is determined 

by zo- 
The calculation referred to above 

is based on assumed sinusoidal dis¬ 

tribution of current in the antenna. 

If the latter reaches across the guide 

so that it touches the opposite face, there is reason to believe that the 

current amplitude is uniform along it, and we then have the results 

R == Zg-(l--Qos2kiZQ), 
a 

X = ^8in2Ai2o-52^ y (-!)”• Y„{A(po+ma)}, (69.11) 
a A Z-r 

00 

where m is an integer. It is possible to achieve a match in this case 

by choosing z^ and po, the radius of the antenna. 

Useful results for the resistances of antennas of various shapes 

variously disposed in rectangular and circular wave guides have been 

worked out by Chu [16] and Chien [16]; the latter corrects results of 

the former in the case of circular guide. 

The principles for treating the excitation of other modes by means 

of an antenna in the guide are discussed in Chapter X. 



VI 

THE COUPLING OF A RESONANT SLOT IN A 

RECTANGULAR WAVE GUIDE 

We shall consider a narrow slot about |A long and discuss the different 

ways in which coupling may take place. Outside the guide the slot 

may radiate to space or it may radiate into a second guide. Only 

the first of these is treated in the present chapter; the second is 

discussed in the following chapter on the coupling of guides by means 

of slots. The simple rectangular shape is taken as fundamental, for 

only two parameters are required to specify it; nevertheless it must 

be pointed out that in actual practice it is desirable to depart from 

this simple shape in order to facilitate accurate but inexpensive 

cutting. 

6.1. Displaced Longitudinal Shunt Slots 

Let a slot be cut in the guide wall with its long axis parallel to the 

axis of the guide: such a slot presents a shunt load to the dominant 

wave in the guide. In spite of the length of the slot antenna, this 

load can be treated as lumped at the position of the centre of the 

slot. 

When, under the chosen conditions outside the guide, the slot has 

been tuned by cutting to the proper length, which is close to half of 

the free-space wavelength, the slot presents a pure conductance 0 

to the wave. Let denote the distance of the centre of the slot from 

the centre-line of the broad face of the guide (see Fig. 32). Then, 
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expressed as a fraction of the characteristic admittance for the domi¬ 
nant wave in the guide, 

Q = (61.1) 
CL 

Alisa, constant which is approximated well in Stevenson’s [17] formula 

derived by solving the somewhat idealized field problem in which the 

width (2c) of the slot is assumed small compared with the length (21), 

the thickness of the wall of the guide is taken as vanishing, and the 

diffraction of waves round the outside of the guide is left out of account. 

In presenting various results in connexion with slots we shall find it 

convenient to introduce the angle i {6 of Fig. 6) whose trigonometric 

ratios connect the free-space, guide, and cut-off wavelengths as follows: 

sini = cosi = tani = (61.2) 
^ 2a Ag 2a 

In the theory referred to it is found that 

A Ocos2(A7rcosi) , ^ IX ^ tv /t.1 ov 
Ai = 2-09---;-- (a > 4A > 6). (61.3) 

6 cosi 

a and b are, as usual, the internal dimensions of the guide cross-section, 

is the dominant wavelength in the guide. Refinement of the theory 

will affect the numerical factor in (61.3), but it will not seriously affect 

the dependence on the other parameters of Ai, which is closely related 

to the slot polar diagram. It will be noted that the nearer the guide 

is to cut-off for the frequency used {i -> \7t) the greater O for given 

proportionate displacement of the slot from the centre of the broad 

face. If the guide is wide (A a), the slot is a less effective shunt. 

The conductance can be measured by means of the standing-wave 

detector, provided that a reflecting plunger is placed JA^ from the 

centre of the slot, at which point in the guide the equivalent line is 

regarded as loaded. This method is quite unsuited for the measurement 

of the small conductances (0(0*01)) which result from placing the slot 

close to the centre-line. In that case, the difficulties arising from the 

need to draw energy into the S.W.D. and the great disparity of the field 

strengths at the maximum and minimum of the S.W. system can be 

avoided by comparing the radiation fields due to two slots, one of 

which can be measured well by S.W. technique. On the assumption 

that the slots radiate with similar directive patterns, the slot con¬ 

ductances are in the ratio of the square of the field strengths measured 

in space outside the guide at the same position with respect to the 
4791.4 M 
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1-50 V52 V54 1-56 1-58 1-60 VG2 
S/ot /e/?y^^ — c/??. 

Fio. 34(c). 

S/ot /e/ig'M -- cm. 

Fio. 34 (<i). 

slots. Experimental results for S- and X-bands are shown in Figs. 33 
(a) and (6). 

The length of slot for resonance, that is, to present a pure con¬ 
ductance, is dependent on the position of the slot on the guide and on 
its width. Some experimental results are shown in Figs. 34 (a)-(d). 
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For a giventhe frequency of the radiation is altered in the 

vicinity of resofl|||||||^ is found that for one frequency the conductance 

attains a maximum: this is not in general the same frequency at which 

the susceptance vanishes for the slot load (see Fig. 34). It has been 

Fig. 35. 

stated that the resonant length of the slot for given frequency and 

guide dimensions is linearly dependent on its displacement from the 

centre-line, but there is good reason to believe that a parabolic law fits 

the facts for not too large displacements, and is in accord with theoreti¬ 

cal expectations (see § 10.9, Fig. 95). However, for a given displacement 

on a given guide the resonant length depends linearly on the wave¬ 

length, as shown in Fig. 35. 

The width of the slot enters in an important way to determine the 

sensitivity of the slot to change of frequency. It is expressed [18] by 
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the Q-value of the slot: is the resonant frequency and Xq the corre¬ 

sponding free-space wavelength, B and 0 the susceptance and con¬ 

ductance of the slot, then 

Q = fo 
20, dB __ Xq dB _ Xq dB 

Q^ WqIX Q^ WqH ' 
(61.4) 

Fig. 36 shows the variation of Q with slot width for an /S-band slot 

0 -25 -5 m 
W/c/t/? of/9ter^//j/ 

cf/sp/ocecf s/ot 

Fio. 36. 

displaced 1-98 cm. from the centre-line. Note that the Q is higher than 

for a slot cut in an infinite plane sheet (eqn. (54.9)). 

It follows from (61.1) and it has already been pointed out that when 

the longitudinal slot is alined with the centre of the broad face, the 

slot is not coupled to the dominant wave. This is because the trans¬ 

verse component of surface current on the inside wall of the guide 

vanishes there: this component may be regarded as exciting the slot 

in a displaced position, and the dependence of 0 on can be readily 

understood on this basis. Further, the transverse surface current 

reverses phase across the centre-line, consequently the phase in which 

a resonant slot would be excited would be reversed were the slot placed 

in the image position with respect to the centre-line of the broad face. 

In this position the conductance presented to the dominant wave in 

the guide will, of course, have the same value as before. 
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6.2. Inclined Transverse Shunt Slots 

Since the longitudinal component of surface current vanishes on the 

narrow walls of the guide, a transverse slot, perpendicular to the axis 

of the guide, cut in the narrow face, will be parallel to the lines of 

current flow and hence unexcited by the dominant wave in the guide. 

In order to achieve resonant length, since b < |A, it will be necessary 

to cut the slot partly in the two broad faces, but even so, the slot, if 

cut symmetrically—its centre on the centre of the narrow face—will 

still be unexcited by the dominant TE-wsive. It may be excited by 

other types of waves inside or outside the guide (see §9.3). 

Suppose now that the slot is turned about its centre, as shown in 

Fig. 37. Such a slot could be cut with an end-milhng cutter, its axis 

parallel to the broad face and perpendicular to the axis of the guide, 

and the cut made in the plane making (f> with the transverse section 

of the guide through the centre of the slot. The latter is again excited 

by the transverse surface current and loads the dominant waves as 

a shunt. At resonance, in Stevenson’s theory, 

b cos i [ 1—cos^i sin^^ 

and approximately, when ^ is less than 

O = (62.2) 

where A2 — 2-09?—^. (62.3) 
0 cos i 

The radiation from this slot travels along the outside of the guide: 

it spreads around the guide and will also be reflected from the ends 

of the guide or from obstacles on it, for the slot is coupled to the 

(62.1) 
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principal wave on the outside of the guide considered as of infinite 

length. These facts must be considered in measurement. 

The phase of the inclined shunt slots may be reversed by changing 

the sign of <^, which, if small, allows in the radiation electric polarization 

substantially parallel to the guide axis. This is at right angles to the 

electric force in the radiation from the longitudinal shunt slot. 

6.3. Transverse Series Slots 

A transverse slot S3mimetrically ctit in the broad face is excited by 

the longitudinal component of the surface current in the inside of the 

guide wall. Such a slot radiates jff^o-waves of equal amplitude in 

opposed phase in opposite directions inside the guide, and hence pre- 

sents a series load to the incident wave. If this slot is displaced parallel 

to its length on the broad face through the distance x^, as shown in 
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Fig. 38, then at resonance its resistance is 

R = £,cos2!l:n, 
a 

where, according to Stevenson’s theory, 

= 2*09? - —cos^(47r sin i) 
^ b cos^i ' 

(63.1) 

(63.2) 

The calculation is based on the assumption that the slot lies completely 

in the broad face. If, in order to secure the resonant length, part of 

the slot has to be cut in the narrow face (round the corner), the above 

result will hold fairly well provided that the part off the broad face is 

not greater than a quarter of the slot length. 

This slot is coupled to the principal wave on the outside of the guide. 

It is interesting to compare the constants and 

AI co^^(^7r cos i) * 
(63.3) 

Since usually i will not differ greatly from Jtt, it is seen that the above 

ratio is not far from unity in practice. 

A series-coupled slot may be cut in a plate closing the end of the 

guide, thus presenting a magnetic radiator as the termination of the 

wave guide. The resistance of the resonant slot when cut symmetrically 

in the end-plate is the same as for a symmetrically disposed transverse 

slot in the broad face. Since the radiation from the resonant slot 

termination will travel back along the outside of the guide, it is necessary 

to introduce suitable chokes. This may be done in the way indicated 

in Fig. 39. After adjustment of the geometrical parameters involved, 

it is possible to secure the radiation pattern shown in Figs. 40 (a) and (6). 

Further, the termination is a fair approximation to a matched load. 

For comparison. Fig. 41 shows the transverse pattern for an array of 

inclined shunt-coupled slots (see Chapter VIII). 

6.4. Inclined Series Slots 

A transverse slot symmetrically placed on the broad face may be 

rotated about its centre (Fig. 42) and still remain a pure series load. 

For small angles of rotation 6 from the centre-line of the broad face— 

that is, from the unexcited longitudinal position—the resistance pre¬ 

sented by the slot at resonance is given approximately by 

jR = Bgd^ {6 in radians). (64.1) 
4791^4 N 
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Experiments easily show the departure from this law as 0 increases. 

Stevenson’s theory yields a fairly complicated dependence on 6, of 

which (64.1) is the limiting form. We now consider the theoretically 

exact law. Let 
_ C0S(JirC08Z) 

(64.2) 
sin 2; 

then i? = 0-524®*”** %M{i+e)-M{i-d)f. 
COS % 0 

(64.3) 

The constant in (64.1) is given by 

^ cost b[dz ^ 
(64.4) 

These slots are evidently excited by the longitudinal surface current 

on the broad face, for the transverse current on the guide wall is flowing 

towards the two halves of the slot in opposite phases. The phase of 

radiation from the slot is reversed by changing the sign of 6, 

6.5. Behaviour off Resonance 
It is important to understand that the behaviour of these slots when 

not resonant is represented by the schemes of the transmission-line 

t-AAAA/S- 

nimir 
_ZIZ_ ___ 

Shunt Series 

Fio. 43. 

analogy shown in Fig. 43. Accordingly, the value of 0 at resonance 

does not give the conductance off resonance in the shunt case, and the 

value of iZ at resonance in the series case does not yield the resistance 

off resonance. 

The results which have just been presented can be verified experi¬ 

mentally. It has been shown that when there is no mutual interaction, 

the admittances of shunt loads combine by addition provided that the 

loads are placed an integral number of guide half-wavelengths apart 

(i.e. are in the same position (mod^A^)) and the line terminated by a 

short-circuit (mod ^A^) from this position. The impedances of series 

loads also combine by addition if the loads are at the same position 
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on the Kne (mod \Xg): the line in this case will be terminated by a short- 

circuit at this position (mod^A^). For any other spacing of the loads 

it is necessary to use the circle diagram or the equivalent matrix method 

in order to calculate the input impedance or admittance to the com¬ 

bined load. The striking fact revealed by the experiments and sup¬ 

ported by Stevenson’s field calculations is that the slot may be treated 

as a lumped load applied at the position of its centre and that the 

simple types of load may be achieved by the above scheme. 

6.6. The General Inclined-Displaced Slot (Broad Face) 

We now consider the general case of an inclined laterally displaced 

slot cut in the broad face of the guide. Let Xq be the transverse displace¬ 

ment of the slot-centre from one edge of the broad face, and 6 the 

inclination of the slot-axis to the guide axis, according to the sign 

conventions of Fig, 44. 

If the guide beyond the slot is terminated by a movable reflecting 

plunger (short-circuit), it is found that there exists a position (mod|A^) 

of the plunger at which the slot is not excited, and the reactance pre¬ 

sented by the plunger as seen from the centre of the slot is transformed 

past the slot unchanged, This reactance plays the part of the short- 

circuit for the shunt load and the open-circuit for the series load. Thus 

the resonant slot in the broad face of the guide propagating only the 

JTio“Wave realizes in full the possibilities discussed in § 1.6. 

Two fundamentally different types of measurement are required to 

exhibit the properties of such slots. First, by S.W. measurements 

between the slot and the generator, and between the slot and an 

arbitrary known termination of the guide beyond the slot—usually a 

match or a pure reactance—it is possible to find the law of impedance 

or admittance transformation past the slot, regarded as producing a 

discontinuity in propagation at the position of its centre. Secondly, 
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measurements are made of the power taken from the guide through 

the slot, and of the phase change which occurs in propagation past the 

slot to the matching termination. The S.W. measurement refers to 

operations on the circle diagram: the latter supplement this information 

so as to determine the laws of transformation of wave-amplitudes from 

one side to the other of the slot. 

//?€///?€(/ sncf cf/sp/aced s/oC S-^/rdJ 

Fio. 45. 

Let US consider those properties of the slot made evident by S.W. 

measurements and represented in terms of the transformation of the 

plane of the circle diagram variable w, reckoned at the position of the 

centre of the slot. We shall employ the magnetic representation. 

Since the self-corresponding points are coincident, and lie on the unit 

circle on the i^;-plane, the form of transformation for any such slot can 

be expressed by equation (16.7), viz. 

(16.7) 

where, as usual, w* refers to the left and w to the right of the slot, the 

generator being on the left, and k and 8 are expected to depend on the 

displacement, inclination, and length of the slot. 
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It is found that 8 does not depend on the length of the slot whereas k 

does. Evidently 8 can be determined by finding the susceptance which 

is transformed unchanged by the slot, for we know that = tan J8. 

Further, once we know the transform of a match, k can be calculated from 

(16.8). Thus by finding first the reactive termination beyond the slot which 

will put the slot out of action as a radiator, and then measuring the trans¬ 

form of == 0, we can determine the bilinear transformation completely. 

-/ 

Fia. 46. 

The dependence of k on the length of the slot can be explained with 

the aid of Fig. 45, where the input impedance to an inclined-displaced 

slot, when the guide is terminated in a match, is shown as a function 

of the length of the slot in each case. From the circular form of these 

curves it is evident that w' given by (16.7) must lie on a circle through 

the origin of the i«;'-plane as the length 21 of the slot is varied 

JA < 2Z < I A. Fig. 46 exhibits the relations involved. 

The self-corresponding point S is the point of contact of the unit 

circle = 1 and the circle 1, which is the transform of the unit circle. 

The point P is the transform of k; = 0 when the length of the slot is 21q. 

As the length of the slot is changed, the displacement .Tq and the 

inclination 9 being kept fixed, w = 0 transforms into a point on the 

circle 2. It will be noticed that the centres of the circles 1 and 2 lie on 

the same radius 0/S, making 8 with the positive real axis of w\ On 

the circle 2 the arrow indicates the direction of the displacement of P 

when the length of the slot is increased; i/j is therefore a function of the 

length of the slot and it is found also to depend on its width. 
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Let US now consider how the position of the self-corresponding points 

of (16.7) depends on the inclination and lateral displacement of the slot. 

Let (X be the conductance of the pure shunt resonant slot with its centre 

at XQy and let y be the resistance of the pure series resonant slot inclined 

at dy its centre of course being at a; = ^. Experiment shows that to a 

first approximation for slots at small inclination with centres near the 

middle of the guide, ~ zhylioc/y)- The sign to be given to depends 

on the combination of inclination and displacement chosen according 

to the rules presented in Fig. 47. 

The facts just presented are illuminated by the results of field 

_I_ _J_ 

Gener^dor Generator 

Fig. 47. 

representation applied to the problem of the general near-resonant slot 
in a rectangular wave guide. Without entering fully into the details 
of the field calculation, we may profit from a brief reference to the 
principle of it. Suppose that the dominant TE-wa,ve of unit amplitude 
is incident from the left. Let p' denote the amplitude of the voltage 
across the centre of the slot when excited by this wave only. The 
solution of the electromagnetic boundary problem under the assump¬ 
tions already mentioned at the beginning of this chapter leads to the 
result 

P' = (66.1) 

where the complex number ^ depends on the displacement and inclina¬ 
tion of the slot but not on its length or width. The real part of Ky 
like can be evaluated without difficulty. The imaginary part of K 
involves the summation of a doubly-infinite series. When the slot is 
similarly excited only by a wave of unit amplitude from the right, then 
the voltage across the slot is 

(66.2) 

where is the conjugate complex of and 

CL 
(66.3) 
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The function M is defined in (64.2) and the equation (66.3) applies 

only to slots cut in the broad face. When the slot is cut in the narrow 

face 
2tt sin i cos d 

a(l—coaHcoB^d) 
cos(^7r cos i cos d), (66.4) 

while if the slot is ciit in the end of a guide as indicated in Fig. 48, 

which presents the terminating plate seen from the inside of the guide, 

^ cos i cos S X 

5 sin i cos — 1 

(66.5) 

All of the foregoing formulae are derived on the assumption that the 

slot is sufficiently narrow to allow approximate treatment. 

Now when the slot radiates with unit voltage amplitude at its centre, 

there is radiated to the left a wave of amplitude and to the right 

a wave of amplitude where l/NL is the power carried down the 

guide by a travelling wave of unit amplitude, and N is a numerical 

factor depending on the particular field vector whose amplitude is to 

be unity, and of course on the system of units employed. If the 

magnetic Hertz-vector is chosen, as it is in Chapter X, 

X 

in cos! - sin i cos 0) + cos sin i cos ^ sinf 
a \2_/ a \_\ 

1—sin^icos^^ 

L = and N — iyKiMjKo) = 4807r. 

It follows then that the radiation coefiBcients of § 1.6 are 

J K’ ^ K ' ^ K ‘ 

(66.6) 

(66.7) 

which are exactly of the form (16.4) with 

iS = i’T+argi, 
o 47»l-4 

(66.8) 
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The susceptance is therefore given by 

yi M(i+d)-M(i-0) a ’ 
(66.9) 

which leads in the limit 6 -> 0, ^ to the experimental result 

for r^. 

Let r = then 

/ ^ K ' 
(66.10) 

Since from (16.8) the transform of a match is on the t^^'-plane, 

the angle ip of Fig. 46 is given by 

fjf = —TT+argii. (66.11) 

We shall call the inclined-displaced slot of length such that arg K = tt 

the resonant slot, even although there is no pure resistance or con¬ 

ductance presented to the wave in the guide. 

Now we can deduce from energy considerations an important relation 

between r and K which is the basis for the estimates of resistance and 

conductance in the cases of the resonant series- and shunt-coupled 

slots. Let I/Nq be the power radiated by the slot outside the guide 

when the voltage amplitude at its centre is unity. Then considering 

a wave of unit amplitude incident from the left inside the guide, we 

have the following equation of energy: 

Hence 

or 

NL (i-i/'i*) NL No' 

1 
>2 »2 

— = l_2Regr + _ + ^^, 

(00.12) 

If iC is real, the slot is resonant, and we obtain for its conductance, 

if shunt, or its resistance, if series, 

2g _ ^NqV 

l—g N 
It is found that 

(00.13) 

4No _ 12017 _ intrinsic impedance of space ^ 

N ~ 73 ~ radiation resistance of electric dipole’ 
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The simplifying assumption under which the numerical factor occur¬ 

ring in equation (61.3), and similar equations, was calculated, ignored 

the diffraction of waves round the outside of the guide. Nq therefore 

is taken to have the value corresponding to a half-wave slot cut in an 

infinite sheet of perfect conductor. Generally speaking, one expects a 

transverse slot to be better represented in this way than a longitudinal 

one. 

The equation (66.12) shows that according to theory the circle 2 of 

Fig. 46 is indeed a circle. 
-/ 

Fig. 49. 

There is a very interesting and useful inclined-displaced slot which 

transforms a terminating match into an admittance whose real part 

is unity and whose susceptance is negative and therefore inductive, 

when S = — Jtt. The transform is represented by Q in Fig. 49. 

Let us write K = —{r+rQ)-\-jq. 

It is readily seen that in this case 

t&ntit = 

Hence from (66.11) 

r+r® 

(66.16) 

(66.16) 

(66.17) q = r. 

The matrix transforming from the right to the left of the slot 

(generator on the left) is 
1—j+a —j 

a—j a—3 

-3 o-j-1 
(66.18) 

a-3 a-3 
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where a = rjr, which can easily be determined by measurement since 

the diameter of circle 2 in Fig. 49 is l/(a+l). Further, from equations 

(66.13), (66.10), and (66.3) it is seen that a is approximately given by 

1/y, where y is the resistance of the pure series slot with inclination 6 

when the latter is small. 

The phase of the radiation from the slot when the guide beyond it 

is terminated in a match is 

argy = arg^—arg^L = | —i/r —y. (66.19) 

6.7. Probe-excited Slots 

We have already noted the two cases of resonant slots cut parallel 

to the stationary lines of current flow on the guide wall and therefore 

unexcited by the dominant wave. These are the longitudinal slot 

centred on the middle of the broad face and the transverse slot centred 

on the middle of the narrow face. Both of these slots will be excited 

if, by local loading of the guide, we distort the system of current flow 

on the guide wall. This may be achieved by electric or magnetic means. 

In the electric case a probe which has part of its length parallel to 

the electric vector in the guide is placed so as to produce a field 

distribution asymmetrical with respect to the vertical plane through 

the slot-axis when the broad face of the guide is horizontal. For the 

longitudinal slot the simplest plan is to introduce a thin vertical screw 

through the broad face in the cross-section containing the slot-centre. 

When the screw is moved to the image position with respect to the 

centre-line on the broad face, the phase of excitation of the slot will 

be reversed. The strength of coupling of course increases as the short 

length of screw protruding into the guide is extended. This method of 

coupling does not, however, allow independent adjustment of conduc¬ 

tance and susceptance of the resultant load on the dominant wave, 

which adjustment is desirable in arrays of couplings. 

The variable coupling should allow the load presented to the guide 

to be a variable pure conductance, usually small compared with the 

guide admittance. Suppose that a bent probe (see Fig. 50) is supported 

on the narrow face in the vertical plane perpendicular to the guide 

axis. By itself this probe presents a positive susceptance determined 

by the total length of the probe. It is possible to choose the length of 

the slot which is to be coupled so that the probe-slot combination is 

a pure conductance, the value of which is proportional to cos*0i, where 

01 is the angle between the electric vector in the guide and the part of 



6.7] A RECTANGULAR WAVE GUIDE 101 

the probe that can be rotated about the fixed horizontal axis through 

the centre of its support on the narrow face. A J-in. diameter probe 

of this type in /S-band guide will handle up to 50 kw. without break¬ 

down in the air at normal pressure. 

In the magnetic case, a second slot S' cut in the guide wall may be 

used to excite the first. Since this will produce leakage of energy from 

the guide, it is necessary to cover the slot S', so that the latter really 

couples the guide to a cavity. Though more complicated mechanically 

than the probe, this device gives great flexibility of circuit, since either 

Fig. 60. 

series or shunt coupling may be selected. The reactance presented by 

the cavity and the length of the radiating slot may be chosen to 

compensate each other so that the resulting load is a pure conductance. 

6.8. Probe-compensated Slots 

If slots are to be used as radiators in an array, it is advantageous 

to couple them to the guide so that no reflection of the incident energy 

takes place. One obvious way of doing this is to insert a probe between 

the slot and the generator at the point in the wave system before the 

slot where the conductance is unity and the susceptance negative. 

If less than JA long, the probe presents a capacitive (positive) sus¬ 

ceptance which, because of its dependence on the length of the probe, 

can be adjusted to cancel the negative susceptance in the wave system 

at the place where the probe is to be introduced. The practical objection 

to this type of compensation is that it is exact only for the exact 

frequency which gives the proper electrical distance between probe and 

slot-centre. In the laboratory, however, where the frequency of the 

generator may be well regulated, this device is a useful one. 

Probe compensation of the special inclined-displaced slot described 

at the end of §6.6 does not suffer from this defect, because the sus¬ 

ceptance to be cancelled occurs at the position of the slot. If inserted 
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in the cross-section of the guide containing the slot-centre and placed 

opposite the centre of the slot and perpendicular to the broad face, a 

probe of the proper length will give perfect compensation at the fre¬ 

quency chosen and a very good approximation to it over a band of 

frequencies. Thus it is possible to load the guide so as to abstract 

energy without reflection, provided the guide is terminated in a match. 

The probe being placed in the broad face opposite to that in which the 

slot is cut, the direct mutual interaction between the electric and 

magnetic antennas is made almost negligible. 

These considerations bring us quite naturally to discuss the loading 

produced by a pair of antennas in the same cross-section of the guide. 

Let the radiation coefficients of one antenna be/i,/i, and of the other 

/g, /i, g^\ then in the absence of direct mutual coupling, the radiation 

coefficients for the combination are/i+/2,/i+/2, and the loading 

matrix is 

Suppose that antenna 1 is a pure shunt, then 

n=h=-gv 

If, moreover, antenna 2 is that represented by (66.18), then 

In order that the combination be non-reflecting to the left, we require 

f'l+y = 0, and the susceptance presented by antenna 1 should be 

X = 
2 

o-f r (68.2) 

The fraction of power extracted by the radiating antenna 2 is 

' l + (o+l)2‘ 

On the other hand, if antenna 2 is pure series, 

/z ~ /a “ 

(68.3) 

and it is easily seen that when g^ = gi the pair of antennas will trans¬ 

form a match unchanged in either direction. The transforming matrix 

(right to left) is then 

I 2gi |. (68.4) 

\ 0 l-2gj 
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The equivalence of and requires that the admittance (oc) of the 

shunt antenna shall equal the impedance (y) of the series antenna. 
The matrix (68.4) then becomes 

(X 

0 

6.9. Pairs of Slots 

If two half-wave slots are cut at right angles to each other inter¬ 

secting at their common centre (Fig. 51), the following facts can be 

established when the guide is matched beyond the slots: 

(a) When one of the slots lies along the centre-line on the broad face, 

(68.5) 

1-“W 

droad face 

Fig. 51. 

only the other slot is effective as a radiator. The radiation is 

electrically polarized parallel to the length of the guide. This 

shows that the mutual coupling of these slots is negligibly small. 

(6) As the cross is turned about its centre both slots are excited and 

consequently the direction of polarization is not substantially 

altered. The cross presents a pure series load to the guide. 

(c) Suppose now that the centre of the cross is displaced from the 

centre of the broad face, one slot being kept parallel to the guide 

axis. The transverse slot is a series element and therefore excited 

in quadrature with the other which is a shunt element. One 

expects that this device should radiate elliptically polarized 

waves normal to the guide. This is found to be the case. 

In general the radiation pattern of the pair of slots is approximately 

that of two half-wave magnetic radiators at right angles to each other 

with their complex amplitudes in the ratio in accordance with 

(66.1), the guide termination being matched. For circular polarization 
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we require one arm of the cross parallel to the guide axis and the centre 

distant from one edge, where 

a M(\tt—%) 
(69.1) 

If the cross is moved to its image with respect to the centre-line on 

the broad face, the sense of circular polarization is reversed. 

The effect of terminating the guide by a movable reflecting plunger 

can easily be deduced on the basis of the principles already adduced. 

Radiation from the longitudinal arm of the cross is effectively sup- 

Fig. 62. 

pressed when the plunger is from the centre of the cross and from 

the transverse when the plunger is from the centre. 

Another combination of a pair of slots, one longitudinal shunt, the 

other transverse series, with their centres in the same transverse section 

of the guide, is shown in Fig. 52. If a = y = 2, then the pair of slots 

presents a match to the generator and all the energy is radiated, none 

passing the slots in the guide, irrespective of the termination of the 

latter. 

6.10. General Remarks on Apertures in the Guide Wall 

The rectangular slot is a particular type of aperture in the wall of 

the guide. Imagine the slot deformed but still retaining a major and 

a minor axis of symmetry, the former associated with the length and 

the latter with the width. So long as the deformation is continuous 

without changing the connectivity of the aperture, we obtain essentially 

the same behaviour as with the half-wave slot near its first resonance: 

that is, its resonance of lowest frequency. Dimensions for the aperture 

can be found to produce resonance. Such an aperture will load the guide 

just like a resonant rectangular slot. In practice, on account of the 
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ease of cutting by means of an end-mill, the rectangular slot is replaced 

by one with semicircular ends. Dumb-bell slots have also been used in 

the laboratory; the dimensions of such slots for ^S-band are shown in 

Fig. 63 and the accompanying table. The larger the circles at the ends, 

the narrower the gap required in the centre. The deformed slot now 

resembles a conventional resonant circuit in that in the circular ends 

of the slot the energy is mainly stored in the magnetic field as in 

inductance, while in the gap the storage is electrical as in capacity. 

Slot a b c 

1 i' V 1-90^ 
2 i' V 1-77^ 
3 i' r 1-69^ 
4 ' V v 1-59^ 
6 i' 2-00" 

Dimensions of dumb-bell slot, resonant at 
10‘7 cm., on end of standard *S*-band guide. 

Slots may be covered with dielectric so as to close the guide in which 

they are cut. The main effect of this is to increase the capacity referred 

to above and thus reduce the length of the slot for resonance. 

A slot of length A, if not driven near its centre, will tend to oscillate 

in two halves in opposed phase with a node of voltage at its centre, 

just like the same length of transmission line. If the Q of the oscilla¬ 

tion is sufficiently small, this may not be the only oscillation present: 

there may be superposed on it the distribution without a node in the 

centre like the half-wave slot. Each of these two different amphtude 

distributions has its own resonant frequency; hence if the slot is excited 

by radiation in a guide with frequency close to one of these, that 

particular form will predominate in the oscillation of the aperture, 

always supposing that the couplings of the two modes to the waves in 

the guide are of the same order of magnitude. 
More interesting than the long slot in this connexion is an aperture 

such as a sufficiently large circular or square hole cut in the broad face 

off-centre. There are now two natural modes with frequencies close to 
4791.4 p 
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each other, and we may dismiss the somewhat .artificial condition 

introduced above. It is easy to demonstrate experimentally that the 

radiation from the hole corresponds to different t3^es of oscillation of 

the current system about it, depending on the mode of excitation of 

the hole. Thus, suppose a reflecting plunger is used to terminate the 

guide. Let the plunger be placed beyond the centre of the hole so 

that the transverse current near the centre of the longitudinal side of 

the hole would in its absence be reduced to zero. The hole oscillates 

with electric force parallel to the guide axis like a transverse series slot. 

If the plunger is moved the other simple mode with transverse 

electric force predominates, as it does in longitudinal shunt slots. Thus 

the polarization of the radiation from the hole, and of course also its 

radiation pattern, depends on the position of the plunger inside the 

guide. Moreover, these two oscillations have different phases with 

respect to the waves inside the guide. CJorresponding effects can be 

shown for a circular hole; the two simplest modes correspond to the 

-modes of the transverse field distribution in a guide of circular cross- 

section. If the hole is sufficiently large, it is possible also to excite the 

^-mode of oscillation, the notation again being based on analogy with 

the names of the circular guide patterns. The electric field distribution 

in the plane of the hole is shown in Fig. 64. 

The foregoing observations are founded on quite rough experiments, 

so the question should be investigated further. 



VII 

GUIDE COUPLING BY SLOTS 

7.1. The Simple Laws 

In microwave practice it is often required to divide wave-guide paths 

so that energy may be distributed according to a definitely prescribed 

law, and it frequently occurs that wave guides having different orienta¬ 

tions must be joined in the minimum space. In order to understand 

the practical devices by which these results can be achieved it is 

necessary to know the laws of the coupling of guides by means of slots 

or holes cut in the metal sheet which forms part of the wall or termina¬ 

tion of both guides. 

The slot, once excited, radiates into both guides. Depending on the 

aspect of the slot im each guide, the type of coupling, and hence the 

law of impedance or admittance transfer from one guide to the other, 

will change from one disposition of slot and guides to another. The 

method used by Stevenson in treating the slot radiating to space can 

equally well be applied to the coupling of guides. The difficulty of 

diffraction outside the guide is now removed, but it is replaced by 

another, due to the finite wall thickness and width of the slot which 

must be represented if the theory is to yield results of practical value. 

Accordingly we shall present the method of representation adopted 

in connexion with the discovery of these laws. In any practical case, 

where the shape of the slot and of the neighbouring wall may be 

distorted in order to achieve low energy loss at the junction and high- 

power transfer through it, it is possible to use the forms presented 

below and to determine by direct measurement the parameters intro¬ 

duced in the symbolism. 

The simplest types of guide coupling by a single slot are classified 

by the modes of coupling of the corresponding slot radiator cut in the 

same aspect with respect to each of the coupled guides. Thus, suppose 

the coupling slot is transverse in the broad face of both guides, which 

must therefore be parallel; this is called series-series coupling, and an 

example of it is depicted in Fig. 55. If the slot is longitudinal in the 

two parallel guides, they are coupled shunt-shunt; an example is shown 

in Fig. 56. The simplest case of dissimilar aspect is when the slot is 

transverse to guide (1) and longitudinal in guide (2); the coupling is 

then series-shunt. In this case the guides must be at right angles to 

each other, as shown in Fig. 57. It is found that the coupling depends 
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on the length and width of the slot and on the thickness of metal 

between the adjacent inside surfaces of the two guides. It is likewise 

determined in part by the disposition of the slot with respect to each 

of the guides coupled by means of it. 

Let guide (2) be terminated on each side of the coupling slot and let 

guide (1) be fed from an oscillator on one side and be terminated on 

the other side so as to produce either (a) a short-circuit at the centre 

of the slot, if it is series to guide (1), or (6) an open-circuit at the centre 

Fio. 57. 

of the slot, if it is shunt to guide (1). The two impedances seen from 

the slot in guide (2) will add by the law of series combination if the 

slot is series-coupled to guide (2), and by the law of shunt combination 
if the slot is shunt-coupled to guide (2). 

Let Z\ Y' be respectively the total impedance or admittance in 

guide (2) as seen from the point of coupling which is the centre of the 

slot, and let Z, 7 be the corresponding input impedance or admittance 

to guide (1) terminated in the way indicated above. The input im¬ 

pedance is reckoned at the point of coupling. Provided that the length 

of the coupling slot is properly adjusted for the frequency used, for 

the aspect and width of the slot, and for the dimensions of the guide 

cross-section, we have the following simple laws of impedance and 

admittance transfer through the slot at its centre, when the wall 
thickness is negligible. 

I. Series-series: Z — —, 
n, 

(71.1) 



7.1] GUIDE COUPLING BY SLOTS 100 

where is a numerical constant which is equal to 1 for identical guides 
coupled in similar aspect. 

Y' 
II. Shunt-shunt: Y = —, (71.2) 

^2 

where rig is a numerical constant which is unity for identical guides 
coupled in similar aspect. 

y' 
III. Series-shunt: Z = —, (71.3) 

where is a numerical constant which may be varied by changing 
the displacement of the coupling slot from the central line of guide (2). 

Not merely may series coupling be achieved by means of a slot 
transverse to one of the guides, it may also be achieved for guide (2), 
for example, when one end of this guide abuts on guide (1), as shown in 
Fig. 58. In this case the law of impedance transfer (71.1) holds, but 
Z' now stands for the single terminating impedance in guide (2). 

Inclined slots may also be used to achieve these three different types 
of coupling, but the possibilities are somewhat restricted in practice 
by the difficulty of accommodating slots of sufficient width to transfer 
large power. Thus in series-series coupling the slot-centre must lie on 
the centre-line of the broad faces of the guides which touch one another, 
as in Fig. 69, or it may lie on the centre-line of one guide and in one 
of the ends of the other, as in Fig. 60. Shunt-shunt coupling with an 
inclined slot may be achieved with the narrow faces placed in contact 
(Fig. 61). Series-shunt coupling with an inclined slot may be accom¬ 
plished with the narrow face of the shunt-coupled guide in contact 
with the broad face of the series-coupled one, the centre of the coupling 
slot lying in the centre of the latter face, as shown in Fig. 62. An 
important case of shunt-series coupling is shown in Fig. 63. The axes 
of the guides and also their broad faces are perpendicular to each other. 
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Guide (1), which carries the inclined coupling slot, fits into the recessed 

broad faces of guide (2), so that mechanical as well as electrical junction 

is effected at the coupling. It is unnecessary to place a conducting 

termination in the series-coupled guide (2) behind the coupling slot. 

In standard /S-band guide, the maximum inclination allowable with a 

Fig. 60, Fig. 61. 

Fig. 62. Fig. 63. 

7.2. Radiation Coefficients in Guide Coupling 
In order to explain the method of radiation coefficients by which the 

laws of guide coupling may be deduced, we shall consider first the simple 

case of series-series coupling of similar guides in similar aspect to the 

coupling slot. When a wave of amplitude A[ is incident from the left 

in guide (1), the coupling slot radiates a wave gA[ to the left and —gAi 
to the right in guide (1) and —gAl to the left and gA'^ to the right in 

guide (2). These are represented in Fig. 64. The senses assumed 

correspond to the relative voltage due to a series slot cut in both 

guides. The equations expressing the outgoing wave-amplitudes in 

terms of the incoming waves are given in (72.1), where subscripts refer 
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to the guides, primed letters to the left of the slot, unprimed to the 

right, and as usual A denotes a wave travelling to the right, B a wave 

to the left. Thus 

^2 = 9A+i^-9)^2-9^i+gB2, 

B'l = gA[—gA2-^{l—g)Bi-\-gB2, 

■®2 — ~9'-^i+9'-42+9'-®i+(1~9')-®2- C^^.l) 

In order to determine the impedance relations we put B = Aw, thus 

reducing (72.1) to a set of four homogeneous equations in the incoming 

p^u/de 2 

A', ■ y/i; ffuide 1 

Coupling point 

Fia. 64. 

wave-amplitudes B^, A'^- The determinant of the coefficients 

must therefore vanish; i.e. 

l-fir 9 9-^l^i -9 

9 -9 

9-'^'x —9 l-!7 9 

-9 9-w% 9 ^-9 

From this we obtain 

1 —^ (u;;—1)(1—(it-;—1)(1—it>i) 

g w[—w^ 

(72.2) 

(72.3) 

2_j 
We now substitute w = —-, all impedances being reckoned positive 

Z+l 
looking to the right, and we have 

l-2g 1 1 
g - Zj-Zi ' Zi-Zr 

(72.4) 

Zj = Z', wo obtain 

1 1 \-2g 

Zi Z' • 
(72.6) 

As we shall see, when the slot is properly tuned, g = \ and we have 

the special case of the law (71.1). 
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7.3. The General Case of Single Slot Coupling 
Let the slot be excited by a wave of unit amplitude from the left 

in guide (1), all the other incoming amplitudes being zero, then in 

place of (66.1) which applies to the slot radiating to space we find for 

the voltage amplitude at the centre of the slot 

Vi 
K, 

(73.1) 
12 

where -^12 plays the part of iC in the previous discussion, and is the 

value of $ for guide (1). Similarly for excitation by unit amplitude from 

the right 

Vi = K, 12 

When the incoming wave is of unit amplitude in guide (2), the corre¬ 

sponding voltage amplitudes at the slot are 

^2 it = ^ and = (73.2) 
Ai2 Ai2 

Now when the voltage amplitude at the centre of the slot is unity, 

there are radiated waves of amplitude Ci a^id L2 ^2 f^ fhe left in the 

respective guides and to the right LiCf and LgS?* Thus if the wave 

is incident on the coupling in guide (1) from the left, the wave 

radiated to the left in guide (2) is and to the right is — 
Ai2 Ai2 

and so on. The equations corresponding to (72.1) are therefore 

Ai2 
B,. LM 

K, 12 

\ -^12 / ^12 ^12 

Lxint 
K, -'2> 

^2 ^2 ^1 4' 
-^1“ A12 

A9 = 

^2 ^2 
Bi- 

12 

12 

^B,+ {l. .^21^2 

K, 12 K, 

K, 

Let 
K,. 

12 

= a. 

K, 12 ¥ 
12 

L^iV 

^12 

)b„ 

and 12 _ 

4 Cl * ^iCf 

then the relation between the circle diagram variables w is 

ix-h< Cf + «1 C2 C2* 

Ci+^i iz i* 

Cl Cl C2 *2^2 C2"I~*2 
Cl cr Ca+4 C2*-«>a 

fij. (73.3) 

(73.4) 

= 0, (73.6) 
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from which on expansion we obtain 

^ [ w\—w^ J"^ * *' [ vf^—w^ 
+2w2+e^*' 

(73.6) 
where ^i = 2argfi, <f>^ = 2&Tgtz. 

The equation (73.6) may be arranged in more convenient form as 

follows: 

w^—w^ 

^12+^ll^ll^+i2l^2l". (73.7) 

We shall now show that the right-hand side of (73.7) is equal to the 

imaginary part of 

Imagine a wave of unit amplitude incident from the left; the out¬ 

going waves are then given by (73.3) when ^2, are put equal 

to zero and A^— 1. The energy equation reads 

Ml\\ 1 

K, 12 

AlCil 
K, 12 

i.e. 

so 

L, K, 12 K, 12 

= 0, 

ReK,, = -{L^\C,\^+LS2n (73.8) 

This proves the result. 

The tuning of the slot by adjusting its length so as to obtain the 

simple coupling laws corresponds to making real: then the right- 

hand member of (73.7) vanishes. Further, the assertion made about 

the value of g in equation (72.5) is seen to be justified. The three cases 

of simple coupling are: 

I. Series-series: — 

r \r i2(1-w’i)K-1) , T ir i2(l-"'2)K-l) _ a 

II. Shunt-shunt: = ^2 = 0. 

r 1)- i2K+1)(«’'i+1) , T \r |2(“’2+1)(w^2+1) _ A 
■■ 

III. Shunt-series: <f>i = 0, <f>2 = tt, 

T \Y 12(^1"!" ^)(^1”^~ I T \Y |2(^ ^2)(^2 _ A 
-^ilfeil ——- r •^21421 -7 —- Wg, — W^ 

Since 
(l--^;i)(ti;;-l) 

(73.9) 

(73.10) 

(73.11) 

(73.12) 

4791.4 Q 
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and 
K+1)K+1)_ 2 

w. -W. Y,-Y- 
(73.13) 

it follows that the constants ^3 in (71.1) et seq. are all given by 

« = (73.14) 

The values of and ^2 can be obtained from the equations given in 

§6.6. Thus, for example, when the couphng slot is cut in the broad 

face of one guide and a somewhat larger registering slot is cut in the 

broad face of the other guide, one applies equation (66.3). The ratio 

^2! T a^bi cosii 

Uj ^2 cos t'2 

When the slot is not of resonant length, the coupling laws are: 

(73.15) 

I. Series-series: 1 > • . 
Z ~ 2''^-^“^’ 

(73.16) 

II. Shunt-shunt: 1= = p4-j“2; (73.17) 

III. Series-shunt: 
1 n, , . 

jF7 "i” (73.18) 

lLxxx.K. 
where joc^, jot^ are given by - ^ - and the appropriate values are 

given to 2/^, and for the two similar guides in the case concerned. 

It is found experimentally that the form (73.16) applies to the JE7-type 

coupling of guides and (73.18) to the i2-type couphng. These are shown 

in Fig. 66. 

7.4. Some Simple Consequences of the Laws 

The reactance introduced by the non-resonant slot is in shunt with the 

impedance in a series-coupled guide, and in series with the admittance 
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in a shunt-coupled guide. In the series-shunt case the coupHng acts as 
a transformer. 

The resonant slot couplings may be conveniently applied in the 

design and construction of wave-guide circuits. Since the coupling of 

similar guides by a resonant slot in the same aspect to both guides 

allows the transfer of impedance in the series case, and admittance 

in the shunt case, without change, a means is provided for coupHng 

different loads to a wave guide without requiring at each coupHng 

operation mechanical work on the guide in question. In particular, 

short-circuits and open-circuits may be introduced without any plunger 

in the main guide. It should be noted, however, that in the coupHng 

of reactances and susceptances, particularly when transformation takes 

place with a high ratio, the ohmic losses at the slot may not be negHgible 

due to the very high currents flowing to it. 

In practice the shunt-series coupHng is of special importance. It has 

been found that the thickness of guide wall, which is relatively greater 

in guides intended for higher frequency microwaves, introduces a 

departure from the simple laws (73.16)-(73.18). The form which fitted 

the experimental facts with standard ^-band guide is 

1 ^ m 
(74.1) 

where oc may be reduced to zero by tuning the slot-length, R may not: 

it depends on the thickness of metal between the adjacent inside faces 

of the guides being coupled by the slot. R may be tuned out by the 

appropriate series reactance in guide (2). It may be remarked that the 

form (74.1) was obtained with guide (1) terminated on one side by an 

open-circuit, and guide (2) terminated on one side by a short-circuit 

at the position of the slot-centre (mod^Aj^). 

7.5. Directive Antenna Coupling of Guides 

Suppose that the second guide is coupled by a pair of antennas 
excited by the first. If one of the antennas is shunt-coupled and the 
other series-coupled to guide (2) at the same position in that guide, 
then the radiation from the two antennas will be greater in that direc¬ 
tion along guide (2) in which the fields are in phase. When complete 
cancellation occurs in the direction which was formerly that of weak 
radiation, all the energy is transmitted in the other. We shaU work 
out the case of coupHng by a pair of slots each in the same aspect to the 
two similar guides, one being shunt-shunt, the other series-series. 
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Let $1, the parameters already introduced for one slot, and 

^1, fa* '^2 the corresponding parameters for the second. Adding the 

waves from the pair of slots, we obtain in place of the first of equa¬ 

tions (73.3) 

^1 = /Mh 
^ ^} ^12 I ^1+ 

+ + (76.1) 
\ ^12 *^12 / \ -^12 *^12 / 

There are four such relations in all. 

Now suppose that arg^i = 0 (shunt), argf^ = \tt (series). Since the 

guides are in similar aspect to each slot, = fa* = ^2> when 

the slots are tuned 

Ki2 — *^12 

On substitution of these values we obtain 

— (J—i)Ai+(l—J)J5i+(|—|)A2+(--J—1)^2 — 

(75.2) 
Similarly 

Aj = -^2, ^2 = and ^2 = -a;. (76.3) 

This result shows that a wave entering one guide is switched completely 

at the slots to emerge from the other, there being no refiection from 

the junction. 

7.6. The Resonant Coupling Paradox 

When the slots of the directive antenna pair are not situated with 

their centres in the same guide cross-section, the problem of computing 

the coupling is somewhat more difficult than when they are at the 

same position, for now each antenna scatters the radiation from the 

other. 

Let (76.1) 

then the coupling equation is of the form derived from (73.7) 

■^1 I -^1 = jCi. (76.2) 

where, as before, the primed variables refer to the left of the whole 

coupling, but the double-primed variables now refer to the right of the 

left-hand coupling slot. A^, and are constants determined by 

the position and len^h of the latter. Let T denote the operation of 
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transferring from the position of the first coupling slot (on the left) to 

that of the second. The coupling equation for the second slot is 

Bo 
(76.3) 

the unprimed variables referring to the right of the second slot-centre. 

Now equation (76.2) relates Wl to Wl by a bilinear transformation 

M"' and equation (76.3) relates to by a second bilinear 

transformation M, M" and M can be represented by their appropriate 

matrices, as can also and T2, We therefore require for consistency 

(76.4) 

I 
I 
I 

-JK— 

Fiq. 66. 

In general, this means that the W’s on each side of the coupling are 

related by four equations. In the case of resonant slot couplings these 

actually impose conditions on the constants A2, and jBg and 

the spacing which are supposed given! Indeed they require Ai = A2, 

Bi = B2, and if the velocity of propagation is different in the two 

guides, the slots must be spaced so that electrical distances in the two 

guides differ by an integral multiple of 27t. If these conditions are not 

met, then when energy is fed to the first guide no coupling to the second 

guide is possible. 

The explanation of these apparently paradoxical conclusions lies in 

this. Suppose we regard equations (73.3) as a set from which the primed 

wave-amplitudes are to be determined in terms of the unprimed wave- 

amplitudes. It is easily shown that the determinant of the coefficients is 

Ai2 

which vanishes when the slot is resonant and K12 because of (73.8). 

It is therefore not possible in this case to set up the fourth-order coupling 

matrix by which one can transform wave-amplitudes from the right 

to the left of the coupling slot. The resonant slot has the same effect 

with respect to the guides as that imposed by a parallel-resonant circuit 

as a common series element coupling two transmission lines. The latter 
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forces the two lines to carry equal and opposite currents at the point of 

coupling. Thus the number of independent variables required to 

describe the coupled line transmission is reduced from four to three. 

7.7. Multiple Propagation and Coupling—Matrix Method 

In the non-resonant case, let jq be the imaginary part of then 

the coupling matrix by which we transform the column vector 

into 

18 

E~\ 

,v J 1 r ir 11/ i/ 

The three special cases are 

I. Series-series: 

e-H 
kW\l^\\ 11^21^2 -^2l^2l^^2 

II. Shunt-shunt: 

jq\L^U\U\Ux L^\l2?u, n- 

III. Shunt-series: 

21 jLM^2\U^ 
jq\-jL2\m2\U,U, 

C4 

(77.1) 

(77.2) 

(77.3) 

(77.4) 

When q is small these matrices represent the coupling of two trans¬ 

mission lines by a third of electrical length 6 which in cases I and II 

is close to 0 (modTr) and in case III close to ^tt. 

So far as concerns the calculation of impedance transfer these matrices 

are very useful, for we can pass to the limit y -> 0 (resonant case) after 

establishing the general impedance relations. The method may evidently 

be extended to multiple guide coupling. For instance, for three guides 

the matrix would be of sixth order. By using the fundamental matrices 

Ui, U2 and their products to write this sixth-order matrix formally as 

of third order, it is possible to calculate quite readily the impedance 

(or admittance) relations, and the voltages and currents in quite compli¬ 

cated circuits. The same principles may be applied to the coupling of 
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different waves in the same guide. It is necessary to introduce the 

composite matrix corresponding to (11.9), namely in the case of three 

guides |P^ 0 0\ 

I 0 Pj 0 I 

\ 0 0 pj 

in order to transform from one point to another, there being no 

discontinuity in propagation between these points. 

7.8. Resonant Slot in —Circular Guide 

The loading of a circular guide by a resonant slot cut in quite general 

aspect to the wave will be represented in a fourth-order matrix, pro¬ 

vided that the frequency of the radiation is between the cut-off 

frequencies for and ^^i-waves. Since there are two independent 

polarizations possible in the latter which constitutes a case of degenerate 

propagation, there are effectively two independent waves in the guide. 

If only one is incident, the slot will in general also generate waves of 

the other polarization in both directions along the guide. 

Let <I>Q denote the angle between the direction of the electric vector 

through the centre of the circular section in the linearly polarized jH^- 

wave and the radius (a) to the centre of the slot, which is supposed cut 

so that it would be straight were the cylindrical guide wall rolled out 

flat. Let 0 denote the inclination of the slot-axis to the cylinder 

generator through its centre, reckoned positive when the end of the 

slot farther from the microwave source is rotated from the line 0 = 0 

in the direction of increasing </>. Then with respect to the waves linearly 

polarized along <^ = 0 on the guide axis, it can be shown for this slot 

(78.1) 
where 

F(8) = cos 6—{kill a)ain 0)sin[(TT/2A;){i:,i cos 0-|- (l/a)8in 0}] 
{^*,1 cos 0+(l/a)sin 

(78.2) 

Hii = 2n/Xc, ^11 = 2TTjXg, and X^ is the cut-off wavelength for the Hn- 

waves in the guide of radius a. 

For radiation polarized at right angles to that just treated, 

^2 = %#^*P(0)-fe-»'^*P(-0)]. (78.3) 

When the incident radiation is circularly polarized in the counter¬ 

clockwise sense 
(78.4) 
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and for circular polarization in the clockwise sense 

L = hiCi-jU) = (78.6) 

Of course, in general, when radiation in one polarization is incident on 

the slot, the latter will radiate in both polarizations except in the 

particular case when F{d) or F{—6) vanishes. Thus for circular polariza¬ 

tion in the counter-clockwise sense, the equation 

aH^ 
tsLiid =-or (78.6) 

gives the inclination of the unexcited slots. The former corresponds 

to the transverse slot in the rectangular guide, the latter to the longi¬ 

tudinal slot unexcited by the incident TJ^-wave. 

The principles already discussed in § 7.3 together with the results just 

given enable one to calculate the impedance presented to one wave by 

the tilted slot, given the terminations for the second wave of either the 

linearly or the circularly polarized pair; also the rotation of the plane 

of polarization of the wave on reflection and transmission could be 

calculated. Many possibilities present themselves in connexion with the 

loading of a circular guide by reactances coupled to it by means of slots. 

7.9. Application to the Optics of Polarized Light 

In concluding this chapter it is not inappropriate to return to the 

brief consideration of plane waves with uniform amplitude distribution 

in the surfaces of equal phase. The matrix methods we have used in 

connexion with the coupling of waves in a guide may be employed to 

represent the changes in polarization produced in propagation. We 

think of the two component waves linearly polarized at right angles 

to each other, as propagated on two transmission lines which are in 

general coupled at a discontinuity. 

First we require the matrix 

I cos if, E 8in<f,E\ 

\-8in<f,E cosifE) ' ■ ^ 

by which we transform the wave amplitudes to correspond with the 

rotation of the transverse axes of reference through the angle <f>. This 

enables us to find coupling matrices C" corresponding to arbitrary 

systems of resolving the vibration in the wave, as follows. If G is the 

coupling matrix corresponding to a particular coupling load on the 

pair of transmission lines, then 

C> = tCT-^ T-^ == 
’ \8m<f>E cosif>E }' 

(7S'.2) 
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In the second place, transformation from a system of linearly 

polarized waves to a system of circularly polarized waves is accom¬ 
plished by means of the matrix 

* = if)' “’(o -j) 
the first row in the transformed matrix will refer to the circularly 

polarized wave in the counter-clockwise sense, the second row to that 

in the clockwise sense. 

Again, from the coupling matrix C for linearly polarized waves we 

can derive the coupling matrix O'' for the pair of transmission lines 

representing the circular polarizations. Thus 

C'' = BCR-\ where = 

On this basis it is possible to solve optical problems involving polariza¬ 

tion by methods analogous to those used in Chapter I. 

-W’ 
(79.4) 

4791*4 B 



VIII 

WAVE-GUIDE ARRAYS 

8.1. Introduction 

One important practical advantage which distinguishes microwaves 

from-longer radio waves is the possibility of constructing radiators of 

large aperture in order to obtain high directivity. By this means radia¬ 

tion is concentrated in a narrow cone. Accordingly, for given power 

input to the antenna, a prescribed value of electric intensity in the 

waves radiated from it can be realized at a greater distance from the 

radiator than is possible for a less directive one. Secondly, the more 

directive a radar antenna is, the greater the resolution in most repre¬ 

sentations made by means of it. The physical considerations entering 

the design of such an antenna are twofold. In the first place, one must 

solve an optical diffraction problem to determine the amplitude and 

phase distribution over the aperture required to secure the desired 

radiation pattern. There remains then the electrical problem of securing 

this distribution and at the same time the maximum transfer of power 

from the generator. 

A suitable termination to a wave guide may be used as source of 

the waves which are concentrated by a metallic reflecting screen in the 

form of a paraboloid. The effective source of the waves is at the focus 

of the latter. The primary pattern of this source must be such as to 

flood the reflector properly, otherwise the advantage of the large 

aperture will be lost. This primary pattern is usually investigated in 

the absence of the reflector, equiphase surfaces being traced and the 

amplitude distributions in both polarizations being measured. To this 

end the wave guide may feed a dipole or system of driven dipoles and 

parasites, or it may feed a slot in its end or the guide may be terminated 

in a horn. The last named has been used to flood the reflector in a 

‘cheese aerial’, which is a shallow section of parabolic cylinder, its depth 

parallel to the generators of the cylinder and the long axis of the 

rectangular aperture of the horn. This device provides a fan-shaped 

beam polarized in the principal plane perpendicular to the focal line 

of the cylinder. 

Whenever great directivity is required, say, in the horizontal plane, 

as commonly occurs in radar practice, the reflector will be a parabolic 

cylinder with its greatest dimension parallel to the horizontal generators 

of the cylinder. To secure satisfactory illumination of the reflector, the 
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power must be fed from a linear radiator lying along the focal line of 

the cylinder. A linear array of elementary radiators coupled to a wave 

guide will serve this purpose well. In place of this combination of 

linear radiator and parabolic reflector, it is sometimes advantageous to 

use a two-dimensional array consisting of a coplanar parallel system 

of linear arrays. In the present chapter our main interest will be to 

discuss the design of linear and two-dimensional wave-guide arrays. 

The expression for the distant field from a linear array of similar 

radiators is well known from works on optics and radio. It is worth 

while to recall the result. We shall call the straight line on which lie 

the centres of the elementary radiators the axis of the array. Let the 

N similar radiators, which we shall suppose similarly oriented, radiate 

with electric force i/f)/r in the direction making d with planes normal 

to the axis of the array, and i/j with a fixed plane through the axis. 

Let the distance between adjacent radiators be d, and let <f> be the 

constant phase difference between the excitations of successive radiators 

along the array taken in the same sense as positive 6. The amplitude 

of the electric force at a great distance from the array in the direction 

(0,0) is proportional to 

I a«=0 ' 

i.e. to = \E,{e,^)\A{e). 
sin (TTCf sin ujA 2^) 

(81.1) 

The array factor A{d), regarded as a function of direction, will in general 

show principal maxima in those directions in which the field from the 

individual radiators reinforce each other, viz. for d given by 

= rriTT (m integral). (81.2) 
A 2 

The order of the principal maximum is (m-f 1). Between these directions 

there will occur subsidiary maxima given by 

tan AI 
W sin 6 

\ A 
(81.3 

due to fluctuations in the degree of destructive interference of the 

corresponding waves. 

The maximum order of principal maximum present is the integer 

next greater than the larger of 

A 27T\ 
and 
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Thus more than one principal maximum will occur if d > A. Accord¬ 

ingly, in order to achieve a beam of radiation with only one major lobe 

or principal maximum in any plane containing the axis of the array, 

the elements must be spaced somewhat closer than A or they must 

themselves be sufficiently directive, so that the maximum in the array 

factor A(d) is rendered ineffective by the weakness of the amplitude 

of the reinforcing waves which are radiated in the direction corre¬ 

sponding to the principal maximum in question. 

For an array of similar co-phased elements the main lobe is normal 

to the axis and its shape is determined by 

N 

1 
fg being the amplitude of excitation of the 5th element. For symmet¬ 

rical arrays we have 

m = /j(^^^4-2/iov_x)Cos?^ + 2/jcv-3)Cos^ + ... {N odd) 

Trdd . irrdd . 57rd0 , 1 /\t \ 
= 2 + 4v--iCOS-^+/*^^2Cos--y-+ (N even). 

(81.4) 

Since the sharpness of the peak in S(d) is dependent on the high-order 

cosine terms, the sharpness of the lobe is dependent on the excitation 

of the extreme elements of the array. 

8.2. Array Elements 

A linear array from which the electric force in the main lobe is at 

right angles to the axis of the array, we shall call transversely polarized. 

If the electric force is parallel to the plane through the point where it 

is measured and containing the axis, we shall call it longitudinally 

polarized. The simplest array elements which are practically useful 

are electric or magnetic half-wave radiators. The former is realized by 

a wire or rod, the latter by a slot. The electric polarization due to the 

electric dipole is parallel to its axis and that due to the magnetic dipole 

transverse. Apart from polarization, E and H being interchanged, 

these radiators have identical patterns with maximum intensity in the 

equatorial plane. CJonsequently in order to suppress end-fire radiation 

from an array, it is necessary to choose closer spacing in an array of 

elements with their axes transverse to the array than is required when 

their axes are parallel to the array. We have already seen how slot 

radiators may be cut in the wall of the wave guide. Electric dipoles 
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must be moimted on the guide wall, and a suitable coupling device 

must be introduced to draw energy from the guide and feed it to the 

dipole without allowing unwanted spurious radiation from the coupling. 

Usually a probe antenna in the guide forms the extension of the central 

conductor of a coaxial line which acts as support for the wings of the 

half-wave radiator. One type of element is shown in Fig. 67. This 

element is mounted on the centre of the broad face of the feed-guide 

and the wire probe passes through into the guide. The depth to which 

the probe extends determines the shunt 

load imposed on the wave in the guide 

and hence the fraction of energy drawn 

from the wave when the rest of the 

load is given. This method is suitable 

only when there is a large number of 

elements so that the energy to be drawn 

by a single element is not a large fraction 

of the whole. If this is not so, since the 

probe constitutes a shunt load on the 

HiQ-wa,Yey the reactance in series with 

the radiation resistance of the dipole is 

varied rapidly with the probe depth 

and hence independent control of phase 

and amplitude is not possible. This diffi¬ 

culty may be avoided by means of the 

bent-probe coupling described in §6.7: 

the dipoles are mounted on the narrow face, and the probe is the bent 

continuation of the central conductor of the coaxial feed-line terminated 

in the dipole. The probe is chosen of such overall length as to present 

a non-reactive load to the guide and the conductance is controlled by 

rotating the probe, thus altering its inclination to the electric force in 

the guide. Two limitations should be mentioned: (i) the power which 

can be radiated by such an element is considerably smaller than that 

which even a narrow slot can handle without breakdown, and (ii) unless 

a very large number of such radiators is to be fabricated, the cost of 

making them is excessive. Nevertheless, electric dipoles mounted on 

the broad face have been effectively used in the United States [19]. 

Not only do the slot (magnetic) radiators compare favourably with 

electric dipoles on the basis of power-handling capacity, physical 

permanence, and cost, but they provide the electrical designer with a 

much more flexible circuit element, in that both series and shunt 



126 WAVE-GUIDE ARRAYS [Chap. VIII 

couplings are possible. By using the slot coupling described in §§6.6 

and 6.8, it is also possible to couple the slot radiators so as to maintain 

in the guide a pure travelling wave between the radiators. 

Since we have in mind long arrays with many elements among which 

the energy is to be divided, each element must be comparatively weakly 

coupled to the wave in the guide. Accordingly, we can cut slots in the 

guide in somewhat different ways in order to control the degree of 

coupling, without at the same time introducing into the radiation 

pattern serious effects due to the varying aspect or disposition of the 

slots, either on account of their displacement from the longitudinal 

central line on the broad face, or on account of their inclination, or in 

fact, due to a combination of these. If it is absolutely essential to have 

radiators parallel and in line, then the slots must be probe-excited*j* or an 

external structure must be built on the guide at each coupling slot. 

An array of bent-probe-excited slot radiators built and tested in April 

1943 actually preceded arrays of slots cut in the guide-feed. It is shown 

in Fig. 68. 

8.3. Band-width 

One of the most important practical requirements to be met in a 

radar antenna in war-time is to secure adequate band-width, to allow 

for the spread of the actual frequencies of commercial magnetrons and 

for operational flexibility. It must be possible for the antenna to 

present a tolerable impedance over the specified frequency range, and 

the antenna must retain its directivity or gain without introducing an 

intolerable side-lobe structure. To maintain a satisfactory radiation 

pattern as the frequency is altered the condition on the phase distribu¬ 

tion is much more stringent than that on the amplitude distribution. 

The former can always be tested in the laboratory by means of equiphase 

plots near the array. Such plots for different frequencies through the 

band will indicate, by the presence of large departures from straightness, 

that a poor distant pattern is to be expected. In addition, the amplitude 

distribution can be roughly checked near the array. 

Provided that over the band a constant phase-gradient is maintained 

along the array, a good main lobe is to be expected. The direction of 

this lobe will in general change with frequency unless the phase-gradient 

is independent of frequency. If the direction of the main lobe is to 

remain fixed through the band, it will generally be more difficult to 

secure band-width than if this requirement is relaxed. Further, it is 

t Disctissed in [20]. 
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evident from equation (81.4) that change in frequency affects the shape 

of the main lobe and hence the width of the beam. We therefore classify 
linear radiators in two groups: 

(а) fixed azimuth for main lobe—narrow band-width, 

(б) variable azimuth for main lobe—wide band-width. 

Of course it will be desirable with class (a) to secure as great band-width 

as possible in order to render less critical the operation of the trans¬ 
mitter. 

8.4. The Elements of the Design Problem for a Linear Radiator 

We shall deal with the straightforward problem of providing a linear 

radiator with the following properties: 

(i) For given length of radiator it shall give the narrowest possible 

main lobe (total width being reckoned, for instance, at 6 db. 

below maximum) or inversely, for a given beam-width, the 

radiator shall have the minimum length, consistent with 

(ii) no side lobe should exceed in amphtude 15 per cent, of the main 

lobe maximum (i.e. the power level in the side lobe should not 

exceed approximately 2 per cent, of the maximum in the main 

lobe). 

In order to meet these requirements, the phase distribution along 

the array must be linear, and the amplitude distribution ‘gabled’ or 

‘tapered’ with its maximum at the centre of the array. However, since 

the sharpness of the main lobe derives from the rapid onset of destruc¬ 

tive interference of the waves from the whole array on each side of the 

direction of maximum intensity, the radiators at the ends of the array 

must contribute just as much as condition (ii) will permit. It is possible 

to achieve very sharp lobes by using only two radiators, one at each 

end of the array.f In order to produce a single lobe, the intermediate 

radiators are required to cancel all except one of these, and in the 

process they widen the remaining lobe. It is therefore necessary to 

have due regard to optical principles in array design, so that effective 

use is made of the length of the array. By actual computation, sup¬ 

ported by antenna experience, it has been found profitable to choose 

with care the gabling function by which the amplitude distribution 

along the array is specified; for example, in an array from which the 

central element opposite the feed-point was missing, it was chosen to 

have the form shown in Fig. 69. The amplitude of the end elements 

•f Cf. Michelson’s method for determining stellar diameters. 
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is about half of that of the centre ones. It should be noted that if no 

gabling were introduced and the elements therefore equally excited, the 

maximum side-lobe amplitude would be 24 per cent, (or about 6 per 

cent, on a power basis) of the main lobe. The uniformly illuminated 

array gives a main lobe about 10 per cent, narrower than the gabled 

one referred to. 

From these considerations it is clear that, provided the phase 

Fig. 69. 

distribution along the array is good, the advantage of correct amplitude 

distribution is that it leads to efficient use of the length of the array. 

For the purpose of comparing different arrays in this respect, it is 

desirable to have a term, based on the comparison of the beam-width (a) 

given by the antenna, supposed to meet condition (ii) above, and that 

to be expected from a uniformly illuminated array of the same length 

L for the wavelength A. We shall define the figure of merit for a linear 

array to be ^ 
S = (84.1) 

The larger this quantity is the worse the performance. For a good array, 

8 should be less than 1*6. 

From the point of view of theory, one should be able to calculate the 

phase and amplitude of excitation of the elements of an array, each 
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element being coupled to the wave system in the guide, no matter what 

that system is on account of loading. In fact, such calculations were 

carried through for comparatively short arrays in the early stages of 

understanding the process in the feed-guide. In practical arrays, how¬ 

ever, there are only two alternative conditions which can be adopted 

as the basis of design, because of the required stability of the phase 

distribution. These are: 

I. The guide is terminated by a reflecting y)lunger, and a standing- 

wave system is established in the guide. Alternate couplings reverse 

phase and the elements, being spaced apart, radiate in phase. The 

main beam from the array is normal to the guide. The band-width of 

this arrangement is proportionally reduced the longer the array, for the 

limiting condition is that, for N elements, the fractional change 1/A^ 

in the frequency will put one of the elements in opposed phase. For 

the fractional change njN, (N~n) elements will radiate in phase, and 

n elements in anti-phase, and the beam will split. For this reason it 

is of the greatest practical importance, in constructing long arrays of 

this type, to measure the wavelength in the actual guide to be used 

for the mean frequency of the band, otherwise the array will not 

function over the desired band. It may, however, function satis¬ 

factorily over a displaced band. 

II. The alternative condition which allows a good approximation to 

a constant phase-gradient along the array consists of a travelling wave 

in the guide. Since the velocity of propagation in the latter is usually 

about 1*5 times that in free space, the main beam will be radiated at 

an inconvenient angle to the array normal, when the elements radiate 

with the phase of the wave in the guide where they are coupled. 

Accordingly, alternate elements are coupled in reversed phase, and 

unless the coupling device does not reflect in the guide, it is necessary 

to space the elements sufficiently differently from in order to present 

a satisfactory input im])edance over a band of frequencies, the guide 

being terminated by a matched sand-load. Two spacings have been 

used, viz. 100° and 200° (guide), the latter being preferable [21]. When 

the spacing of the elements is s w ith alternately reversed phase coupling, 

the direction of the main lobe is given by 

d being reckoned in the same sense from the normal as the direction 

of propagation in the guide. 
4791*4 3 
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This type of array was first used with electric dipoles coupled by 

probes, which therefore act as shunt loads. It is possible to maintain 

a sufficiently good approximation to a travelling wave in the guide and 

to obtain the proper amplitude distribution only if all the elements are 

weakly coupled to the wave in the guide. This requires that a con¬ 

siderable fraction (from 5 to 20 per cent.) of the input energy may have 

to be dissipated in the sand-load terminating the guide. The waste of 

energy varies with the frequency of the waves, and is one of the main 

factors limiting the band-width of arrays of this type. We shall describe 

later a wide-band antenna which avoids this difficulty. 

The fundamental distinction between the standing-wave and the 

travelling-wave antennas is that in the former the loads are effectively 

at the same place on the transmission line and compete for power, 

exactly like the parts of a d.c. circuit, whereas in the latter the exciting 

wave is attenuated by the absorption of power in the series of loads, 

hence for the equal excitation of two elements, that farther from the 

generator must be more strongly coupled than the other. With half¬ 

wave spacing, if the elements are all shunt-coupled, the wave of electric 

force in the guide is unattenuated; the wave of transverse magnetic 

force is attenuated, but since the elements are voltage-excited, they 

are unaffected by this attenuation when the frequency corresponds 

exactly with the spacing. If the elements were series-coupled at the 

resonant spacing, the current (magnetic force) wave would not be 

attenuated, whereas the voltage wave would. In order to produce 

attenuation of both waves, both series and shunt loading would be 

required at spacing. The matter may be stated somewhat differently, 

thus: Off resonant spacing, with weak coupling, the standing-wave 

ratio never departs seriously from unity anywhere along the guide; 

whereas with resonant spacing, the standing-wave ratio varies from oo 

to 1 if the guide is fed from one end and presents a matched input. 

It should be noted that a traveUing-wave antenna must be end-fed, 

otherwise a discontinuity in phase-gradient will occur at the feed-point. 

In a standing-wave antenna the feed-point may be at one end or it 

may be near the middle of the array, and in the latter case by skilful 

design it may be possible to secure somewhat greater band-width. 

In order to prevent instability of phase when resonant spacing is 

used, the elements must be coupled at maxima in the standing-wave of 

mean frequency which excites them, i.e. shunt loads should be placed 

at voltage maxima, series loads at current maxima. The amount of 

power drawn from the guide should be determined by presenting to 
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the wave in the guide the proper admittance or impedance as the case 

may be. Attempts to control power taken from the guide by any other 

method are likely to lead to instability of the phase distribution. 

8.5. Theory of the Wave-guide Feed to a Linear Array 

We now discuss the theory of the feeding of a linear array from a 

wave guide.t We shall assume in the first place that the mutual effects 

between elements of the array, apart from their coupling to the iT-wave 

in the guide, may be neglected. This method will therefore apply with 

fair approximation to dipole arrays and to arrays of longitudinal shunt 

and series slots, but not to transverse slots. For the purpose of the 

argument, we shall assume shunt loading, but the principle of the 

method is applicable to any type of loading. 

Let oLj, be the admittance of the rth shunt load in the array of N 

elements, the Nth load being most distant from the generator. Let 

be the voltage in the equivalent transmission line at the position 

of the rth load. If the loads are spaced equidistant d apart, or 6 radians 

reckoned on the unloaded line, the difference equation satisfied by the 

voltage is 
Vj.+i—2cos6v^-{-Vj._i — (85.1) 

We note at once that when 6 is an integral multiple of tt, say rmr, 

(-inv> (85.2) 

showing that the voltage wave is unattenuated. If denotes the current 

immediately to the right of the rth load, 

*r = (—iWj'o— 2 “s^). (85.3) 

where V is the constant voltage, and is the current in front of the 

first load. This shows the decreasing current wave in the shunt-loaded 

line. 
It remains now to discuss non-resonant spacing. In a long array the 

(x^ should be small compared w ith unity for weak coupling in the proper 

physical sense of negligible local disturbance of the feed, and further, 

oty is not a rapidly changing function of r. 

Let us treat (85.1) by the analogue of the method of variation of 

parameters, writing 

r, = a> = (85.4) 

t The theory has been discussed in another way by Harvie [22]. 
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with the auxiliary condition 

= 0, (85.6) 

SO that ^r+l’^^r = (85.6) 

Thus we can replace the second-order difference equation (85.1) in 
by a pair of first-order equations in and In consequence of the 
smallness of we proceed on the assumption that Aj. and do not 
vary rapidly with r, and hence we may replace the pair of difference 
equations by differential equations in which the variable"x/d replaces 
the index r. These equations are 

IV ^i^dA , .lAdB ~ismd(x(xd) 

ax ax a 

Comparison of these equations shows that 

/I AQL(a)—aj~^) .dA + =Aj-, 

dB Bol(oj—cx)~^) .dB 
.id— = ''E' 

where A is a multiplier to be determined. 
X 

If f(x) = j adx and f{L) — Q, 

(85.7) 

(85.8) 

where L = Nd, we find 

A — .i4(,exp 

(85.9) 

(85.10) 

(85.11) 

The value of A is deduced in terms of the ratio of the input and 
terminal values of the circle diagram variable w — BjA reckoned at 
points distant an integral number of half-wavelengths from the origin 
of X. We find 

1—A = cos0+jJ(o+l)sin0, where p = ^9 —. (85.12) 
dlog^wjwj. 

If is near zero (matched termination), jj will be small, and therefore 
1~A tends to to, so we obtain the following approximate formula: 

(86.13) 
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or reverting to the discrete loading, 

A, = ^oexp[- 2 
*- 8 = 1 J 

while 

(85.14) 

(85.15) 

The expression for shows the attenuation of the wave travelling 

from the generator, that for the growth of the reflected wave. We 

shall show how to calculate the ratio wjwj, in considering input 

impedance in the succeeding section. 

In general ocg is complex, presence of susceptance 

bg modifies the velocity of phase propagation, but near constancy of 

the phase-gradient along the radiators of the array will be preserved 

if the gradient of b along the array is small. The attenuation of the 

wave is determined by the conductances g^. The fraction of energy 

reaching the terminating load is 

^xpf- 2 gs\ (85.16) 

8.6, Amplitude Distribution and Input Impedance 

In the ca.se of half-wave spacing the radiators may be co-phased by 

making them pure conductances g,., so that the input conductance to 

the array can be made unity or any desired value G, and the amplitude 

distribution along the array made to follow the desired law fj, simul¬ 

taneously, by means of the relation 

9r = G-#-. (86.1) 

In 
r = l 

To secure the desired amplitude distribution in a travelling-wave 

antenna, one must take into account the attenuation along the wave 

guide due to the loads. Let be the fraction of energy to be extracted 

from the guide by the rth radiator from the generator end, and let 

be the amplitude of excitation desired for that radiator, then we require 

or 
er+l+(/r+l//r)®' 

(86.2) 

Since the fraction of energy taken from the guide by a radiator in a 
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travelling wave is equal to the conductance presented by it to the 

waves, we have 

a =__ 
9r^l + {frJfr? 

(86.3) 

In order to fix the values of the we must be given one of them. 

This will generally be decided by one or other of the following con¬ 

siderations: (a) there is a maximum g that can be presented to the 

guide consistent with the hypothesis of weak coupling and satisfactory 

phasing, or in the case of slots, consistent with satisfactory radiating 

properties with respect to polarization and side lobes from the array; 

and (6) the amount of energy to be dissipated in the terminating load 

must be sufficiently small so as not to reduce unduly the efficiency of 

the array. Except for long arrays, these two considerations usually 

conflict, and in practice it is necessary to strike a compromise. Com¬ 

putation of the ^’s is greatly facilitated by noting that if we write 

gr = niyr (86.4) 

we obtain the following simple formula: 

Vr = (86.5) 

Hence we have to find yy so that g^, then 

yr = y.v+'2/2- (86.6) 
«=>=r 

The fraction of energy to be absorbed in the terminating load is then 

approximately 

In the foregoing it has been assumed that the wave in the guide is 

attenuated only by loading due to the radiators. At X-band and 

jfiL-band, however, appreciable attenuation will take place due to the 

finite conductivity of the walls of the guide. Let S be the fraction of 

energy lost due to this cause between two successive radiators, then 

equation (86.2) must be replaced by 

/^i _ (86.8) 
/r 

or 9r = 
(1-8) 

?r+l+/?+l//? 
9r+l' (86.9) 

It is easily shown that the y’s are now given by the rule 

yr = j3g(yr+i+/?). (86.10) 
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We now consider the calculation of input impedance to the guide 

loaded at equal intervals (6 radians) by admittances ocj. which are small 

compared with the characteristic admittance of the equivalent line. 

Let be the displacement matrix The matrix which 

transforms from the right of the nth point of loading to the right of 

the (n—l)th point of loading, 6 radians distant, is 

= Q+oc^nU,. (86.11) 

For N loads the resultant transformation from output to input is 

N N 

M = n = n 
n—1 n=l 

(86.12) 

To a first approximation this may be written 

Q^+ I ^ Q.V4. f 
8-1 «=1 

(86.13) 

Now (86.14) 

Hence „ _ / 1 + 2 ia*) 2 \ (86.15) 

all sums being extended from 1 to N, Thus the transformation from 

the terminating value of w, Wj,, to the input value in the sense of 

§1.6, is 

When the termination is matched, Wrp = 0^ and 

(86.16) 

(86.17) 

As d is varied, the sum which is the numerator of this fraction undergoes 

rapid fluctuations, but its modulus remains small compared with 2 

except when 9 == mn (m integral). Indeed a graph of the modulus of 

the sum against 6 will resemble the diffraction pattern of a grating 

with principal and subsidiary maxima. Thus when the terminating load 

is non-reflecting, \Wi\, and hence the standing-wave ratio will exhibit 

fluctuations like the sum in question when the electrical spacing of the 

elements is altered by varying the velocity of propagation in the guide, 

either as the result of changing the frequency or changing the width 

of the guide cross-section. That is, it is not possible to feed the same 
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array when 0 = mir and in the vicinity of these values. The fluctuations 

in S.W.R. to be expected are illustrated in Fig. 70. 

On the other hand, if Wq, = 1 (open-circuit termination) and 
N 

2 = 1, then when d = rmr, — 0, i.e. the input is matched. Even 
1 

when — q < we can secure a matched input by choosing 

Wq. = ^/(2—(7), but, of course, if g > 1 there is no possible termination 

of the feed-guide yielding a matched input. From (86.16) it is easily seen 

that for a system of equal loads intended to match at half-wave spacing, 

the input admittance is reduced to \ when 9 is changed from tt to the 

nearest zero of sin NO, that is the wavelength is changed by the fraction 

l/2iV. These considerations explain the sensitivity of the input admit¬ 

tance of a long array to frequency at spacing. 

It remains to mention the possible effect of the reflector on the input 

impedance to the array placed along its focal line. So long as the 

reflector is wide (> lOA), transverse to the axis of the array, and so 

long as the distance between the face of the guide and the nearest part 

of the reflector, which is of course parallel to the broad face of the 

guide opposite it, is not equal to an odd number of quarter-wavelengths, 

one is justified in expecting no effect on impedance that would be serious 

in practice. When the array floods a narrower reflector, the energy 

reflected towards the guide is increased, and this in due turn will partly 
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reach the generator, which thus faces a reactive load which will have 

to be compensated by means of an iris in the feed-guide. 

8.7. Linear Arrays of Slots—Transverse Polarization 

The invention of slot arrays at McGill University in 1943 was the 

natural outcome of the search for radiating elements which can be 

coupled so as to present a low pure conductance to the wave in the 

guide. It is quite obvious that dipoles coupled by means of probes 

perpendicular to the broad face of the guide at its centre are ill adapted, 

since the coupling is made at the place of strongest electric force in 

the guide; consequently the probe has to be very short. On the other 

hand, a longitudinal slot cut close to the centre of the broad face is 

weakly coupled. The slot can be tuned to present a pure conductance, 

whereas the probe-excited dipole cannot, for the essential cause of the 

weak coupling by a short probe is the high reactance introduced by 

the latter (see § 5.9). 

The first array of slots cut in the guide wall consisted of forty-nine 

shunt-coupled displaced slots, being the spacing between the centres 

of successive slots, and the guide terminated by a reflecting plunger 

from the last slot-centre. The conductance presented to the dominant 

wave in the guide by each slot was determined by its distance from 

the centre of the guide in accordance with the law (61.1) presented in 

Chapter VI, the constant Ai being determined by measurement. Phase 

reversal was secured by placing alternate slots on opposite sides of the 

centre-line as shown in Fig. 71. This particular array was centre-fed: 

in such a case, it is necessary to take into account the phase relationship 

of the waves to the right and left of the point of coupling. If the 

coupling of the generator feed in the guide array is series, the two 

waves are in anti-phase, if shunt they are in phase. Consequently for 

a centre-fed array it is necessary to know the method by which the 

transmitter is coupled to the guide in order to cut the slots correctly. 

This array had a sufficiently large number of elements so that even 

the most strongly coupled slots in the centre of the array did not have 
4701.4 rp 
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to be displaced from the centre-line by a distance great enough to 

distort sensibly the radiation pattern from the array. The polarization 

was of course transverse. The following refinements and simplification 

arise in the practical development of this device: 

(i) choice of slot-width sufficient to improve band-width; 

(ii) since the slots must be covered with weather-proof dielectric, 

the length of slot for resonance must be measured for the covered 

slots; 

(iii) the length of slot for resonance varies slightly with displacement 

of the slot-centre on the broad face of the guide; 

(iv) it is not necessary to cut the slots with displacements exactly 

as calculated, the displacements can be forced to the nearest 

figure found suitable for the machine work of cutting them 

(usually with an end-mill). 

An array having the same polarization but not as convenient to cut 

could be made with inclined series slots; the inclination of the slots to 

the guide axis would be small enough to give a good radiation pattern 

provided that a sufficient number of elements comprised the array. 

8.8. Longitudinally Polarized Slot Arrays 

In many practical antennas longitudinal polarization is desired 

because of the increased contrast possible in the radar pictures resulting 

from the use of this polarization. It may be provided by means of the 

inclined shunt-coupled slots cut in the narrow face of the guide. These 

slots make only a small angle (<^) with the plane perpendicular to the 

guide axis. On account of the mutual interaction between these slots 

in virtue of waves propagated on the outside of the guide, the exact 

design problem is quite difficult. In the first place, it is not easy to 

obtain precise measurements of the parameters which determine the 

mutual effects; in the second, the conditions governing propagation 

outside are complicated; and in the third, even if the foregoing 
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information were obtained with the necessary accuracy, special com¬ 

puting methods would be required to give the theory effect in practice. 

The presence of mutual interaction can be shown by measurements 

of the input impedance to an array of similar slots cut at spacing, 

as the number of slots is increased. If there were no interaction, the 

graph of susceptance B against conductance G would be a straight line 

through the origin. Actually a somewhat irregular curve is shown for 

the first six or seven slots; thereafter it becomes smooth, and by proper 

choice of the common length of the slots, it is found that each of the 

later slots contributes the same pure conductance to the input ad¬ 

mittance of the array. For any other slot-length there is likewise a 

limiting gradient of B i)er slot. On account of the weak coupling of 

slots cut in the narrow face nearly at right angles to tlie guide axis, 

it is more convenient to study the mutual interaction of series slots 

cut transversely in the broad face. In one experiment seven such slots 

were cut apart. The mutual impedance between the first of these 

and each of the other six was measured in the following way. The 

series impedance of each slot by itself was measured, then the im¬ 

pedances of the pairs. Twice the mutual impedance of any pair is the 

impedance of the slots acting conjointly minus the sum of their separate 
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impedances. On the RX diagram of Fig. 74 are shown the values of 

the mutual impedances between the pairs 1,2; 1,3;..., and 1,7. The 

points lie on a spiral. The angle between the radii from the origin to 

the successive points is 76°, which is the difference between 255° and 

180°, the respective electrical spacings of the slots at free-space and 

guide phase-velocities. The observations quoted indicate that the 

mutual impedance falls off very approximately as the reciprocal of the 

Fio. 74. 

distance between the slots. Thus the main factor determining the 

mutual impedance corresponds to the propagation of a nearly spherical 

wave from one slot to the other. This wave may be reflected by 

obstacles mounted on the guide, such as the S.W.D.; care should be 

taken in measurement to minimize this reflection. 

Arrays of inclined shunt slots may be constructed with resonant or 

non-resonant spacing—usually 200° (guide). The latter affords a some¬ 

what easier crude approximation in design which we now consider. 

With a matched termination, the attenuation of the wave in the slotted 

guide due to radiation from 15-20 similar slots cut with alternately 

positive and negative inclinations is measured as a function of the 

depth of cut, which, of course, is transverse in the broad face. For a 

sufficiently great number of slots there is found a particular depth of cut 

for each angle of inclination {<f>) of the slot, which makes the power 

radiated a maximum. For different ^ 16°) the overall length of the 

slot, measured on the outside of the guide, is found to be the same for 
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maximum radiation: that is, the depth of cut is determined geo¬ 

metrically, once the common length is known. Hence slots should be 

cut to the same length rather than to the same depth. This attenuation 

measurement with a large number of similar slots gives a useful estimate 

of the contribution of the individual slots in a gabled array at the same 

non-resonant spacing, only provided that the array is sufficiently long, 

so that the gradient of slot inclination along the array is nowhere rapid. 

The attenuation constant (k) per slot so measured is an approximation 

to the effective conductance G of each slot in the array. For example, 

for 10° slots in standard >S-band guide, the limiting value of k for a 

large number of slots is 0*049, whereas the admittance of a single slot 

of the same length and inclination is 0*017+j 0*015. Thus the effect 

of mutual interaction is to increase the effective conductance of a single 

slot, and, of course, to change the susceptance. If the slots had been 

cut without phase reversal, that is, all parallel, quite a different result 

would ensue. It is fortunate that at 200° spacing the effect is to increase 

the power radiated per slot, so that the amount of unwanted polariza¬ 

tion to be tolerated for a given radiation per slot is less than would be 

expected on the basis of an individual slot. 

Since arrays of these slots are desired to give a certain measure of 

broad-band behaviour, it is interesting to compare the effect of varying 

the frequency with that of varying the slot-length. Since the former 

changes the relative phases of the contributions to the mutual effect 

at each slot as well as changing the admittance of the slot itself, it is 

expected that to produce a given decrease from the maximum value 

of the power radiated by the array of similar slots the fractional change 

in frequency is much less than the fractional change in slot-length. 

This is shown in the following table, where the results are given for 

ten 10° slots cut at 200° spacing in /S-band guide. 

Percentage change 
in radiated power Percentage change Percentage change 
from maximum in slot-length in frequency 

10 3 1 1-5 
25 1 4 9 1 2-2 

The beam leaving a travelling-wave antenna is conical in section; 

to make it cyhndrical, oblique flanges are attached to the slotted guide 

so that the waves leave the open end of the flanges in phase. The 

flanges may be flared to obtain the primary distribution of radiation 

required to flood the mirror. The direction of the beam emerging from 
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the guide is dependent on frequency; to overcome this difficulty, flanges 

have been so proportioned as to impose a frequency-sensitive phase 

change to counterbalance. There results a beam whose direction is 

independent of frequency to the first order, f 

The simplest procedure in designing an array of inclined shunt slots, 

cut in the narrow face of the guide of a longitudinally polarized array, 

is to make all the slots of the same overall length which corresponds 

to maximum radiation in a long array of similar slots at the same 

spacing equally inclined but alternately reversed in phase. The inclina¬ 

tion of the individual slots is then chosen so as to approach the desired 

amplitude distribution and to yield a suitable dissipation of power in 

the terminating load. The guide is assumed weakly loaded by each 

slot so that the phase of each radiator is nearly in constant relation to 

the phase of the wave in the guide at the position of the slot-centre. 

An array constructed according to this plan will not give the desired 

amplitude distribution. Whenever the mutual effect increases radia¬ 

tion, one may expect that waves on the outside of the guide travelling 

towards the generator have larger amplitude than those travelling in 

the opposite direction. In order to test the foregoing an array of twenty 

slots of equal overall length and 200° spacing (guide) was cut with 

inclinations varying from 6*3° at the input end to 8*1° at the other, 

intended to extract 40 per cent, of the energy in the guide, on the 

assumption that mutual interaction may be taken into account approxi¬ 

mately by assigning to each slot the conductance corresponding to the 

limiting decrement of energy per slot in a long array of similar slots. 

It was found that 45 per cent, of the energy was actually abstracted. 

The amplitude distribution was intended to be uniform; the actual 

measured distribution is shown in Fig. 75. The hump in the distribution 

at the input end of the array corresponds with the observation that 

the wave energy beyond the array on the outside of the guide was twice 

as much at the input end as at the load end. The actual amplitude dis¬ 

tribution is only a fair approximation to the intended one: examination 

of the equiphase distribution about 20 cm. away from the array showed 

that the equiphase lines are very nearly straight, as they should be for a 

good directive pattern from a linear array. They were inclined at 4-2° to 

the guide: if the radiation were phased according to the travelling wave 

in the unloaded guide, the angle would be about 3-8°. For many practical 

purposes, therefore, this method may be adequate. An example of an 

array of this type used to feed a reflector is shown in the Frontispiece, 

t See J. A. Ratclifife, Aerials, Part II, I.E.E. Radiolocation Convention, 1946. 
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If one wishes to go farther it seems necessary to prescribe the length 

and incliilation of each slot in order to secure the desired amplitude 

and phase distributions. A design procedure based on approximate 

theory is discussed in the following paragraphs. 

8.9. A Design Procedure for a Travelling-wave Antenna with 
Inclined Shunt Slots cut in the Narrow Face 

Let d be tlie distance between the centres of adjacent slots and 

d ~ 27rd/A^, d' ~ 'Zird/X. If is the amplitude of the travelling 

wave in the guide at the rth slot, the loading of the wave by that slot 

i, «prc«„t6d by ^ ^ ,33 ,, 

where is a parameter which is to be determined. Let be the 

voltage amplitude across the centre of the rth slot; then taking account 

of reversed phase and equation (66.7), 

(89.2) 

where is determined entirely by the inclination of the slot and the 

dimensions of the cross-section of the guide, the wall of which is sup¬ 

posed indefinitely thin. is the amplitude of the wave scattered 

by the slot antenna. 

Assuming a long guide antemia so that Gj. is small, we have the follow¬ 

ing approximate expression for the power radiated from the guide by 

the rth slot: IT, = Rea^r,2. (89.3) 

Since ^ is real for a shunt slot and we wish the P’s to be in phase, we 

have from (89.2) 

avgGyTjr = constant along the array. (89.4) 
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Equations (89.1), (89.3), and (89.4) allow us to determine and 

by geometrical construction, provided we are given the power lost in 

the load. On a straight line choose the origin O, and set off segments 

* * * ^ such that 

OX2.Z2X3 = 

OX„.X„X„^, = Wn 

on some suitably chosen scale. Construct the circle shown in Fig. 76; 

Fio. 76. 

it is the locus of points whose distances from X^ and are in the 

ratio of the square roots of the input and output power in the guide. 

Let this circle meet the normal at 0 to the line X^O in Q. Then 

XiQ, JC2$ represent T/gv? In+i amplitude and phase. 

X^X2f -X^2^3v> '^n‘^n+1 r®pr®^llt 

The P's are supposed given by the desired amplitude distribution 

along the array and a brief conversion of units. Hence Cr can be 

determined from (89.2). This information fixes the inclinations of the 

slots. 

Now field theory methods require us to replace the equation (66.1) 

for the single slot by 

= CrVr^i^. (89.6) 
8 

where q„ = K^, the constant already introduced for the single slot, and 

q„ = J F«„i^)ooski (r^ s). (89.6) 
-z 

P^(^) is the component of magnetic force along the rth slot due to a 

sinusoidal voltage of unit amplitude in the «th slot calculated for 

propagation outside the guide. 5^, may be approximated by 
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where is dependent on the length of both slots to an extent which 

decreases as the slots are separated from each other. Except in the case 

of nearest neighbours, may be taken as constant. We shall also ignore 

the variation of the cosine factors since the inclinations are supposed 

less than 10®. That is, we replace cos cos (f>g by a constant /x. So 

Finally we have 

Kr = 

<lrs 
^ p1\r-8\e' 

\T—8\d 

^r Vr \ j\r-8\d'-Kr-8)Ld+7r) 

P, Z\r-s\dP, 
(89.7) 

Now all the quantities on the right-hand side are known, hence we can 

determine and the length of each slot. It may be desirable to carry 

this procedure to a second approximation to improve the representation 

of the mutual effects of nearest neighbours. 

It should be noted that the reflection of waves inside the guide is 

very weak because the slots are weakly coupled to the inside of the 

guide. On the outside this is not so: the slots are strongly series-coupled 

to the principal wave on the outside of the guide. Whether the repre¬ 

sentation of the propagation on the outside of the guide is sufficiently 

good in the form adopted here remains to be seen. At the present time 

the representation of wave-propagation on the outside of a rectangular 

wave-guide is very crude. 

The factor limiting the band-width of arrays of this type is the 

decrease of effective conductance as the frequency is altered from 

the value corresponding to maximum radiation from the array, and 

the consequent increased dissipation in the sand-load. 

^^10. Inclined Shunt Slot Arrays at Resonant Spacing 

An approximate design for arrays of inclined slots in the narrow 

face spaced apart with a plunger terminating the guide can be 

approached through the conception of incremental conductance. 

Similar slots with equal inclinations alternately reversed in sign to 

reverse the phase of excitation are cut ^A^^ apart in the narrow face. 

The overall slot-length is found which will make the input susceptance 

to the array independent of the number of slots when that number is 

sufficiently great. The limiting value of the average conductance per 

slot of this length in a long array is called the incremental conductance, 

and is used as the effective conductance of the individual slots in any 

array in which the gradient of inclination is everywhere small. For 

this purpose the incremental conductance is found as a function of 
4791.4 XT 
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inclination. Arrays are then cut according to the law for shunt slots 

at resonant spacing without mutual admittance. The terminating 

plunger must be adjusted by trial. While tliis procedure yields usable 

arrays with beams radiated normal* to the guide, the procedure is not 

good for securing the desired input impedance and amplitude distribution. 

If we attempt to improve the design by following theory like that 

used in § 8.9, we find that both the inclinations and the lengths of the 

slots enter the oscillating sums, leading to very formidable numerical 

work in the design of an array of over fifty elements. The question is 

briefly discussed in § 10.10. 

It is evident that when polarization is not of prime importance, the 

inclined shunt slots being the most easy to cut, arrays of them are 

particularly suitable for X- and if-band work. In the latter the losses 

in the guide itself should be allow ed for in design. ’ 

8.11. A Broad-band Array of Slots (Transverse Polarization) 

On account of the mutual interaction between the slots of a longi¬ 

tudinally polarized array, and the sensitivity of that interaction to 

frequency so that the fraction of energy radiated by the slots is fairly 

strongly frequency sensitive, it is clear that the band-width of these 

arrays is limited by the loss of energy to the terminating load. Mutual 

interaction by waves outside the guide operates to reduce band-w idth. 

For a broad-band slot array it is necessary to use transverse polariza¬ 

tion. We now present a method for achieving this by means of the 

displaced-inclined slots cut in the broad face and described in §6.8. 

The principle involved is that each radiator is so coupled to the guide 

that it permits a pure travelling wave from the generator to the matched 

termination of the guide while abstracting a known fraction of the 

energy from it. 

The slots have small displacement (x) and inclination (6) measured 

from the longitudinal unexcited position on the broad face, and so 

chosen that the self-corresponding point on the i/;-plane transformed 

by the slot lies at The length of the slot is such that a match is 

transformed into unit conductance with a small negative susceptance. 

The latter is compensated by the positive susceptance due to the silver 

probe (of diameter ^ in. for ^S-band) placed in the same guide cross- 

section as the centre of the slot and opposite to it in the other broad 

face. This disposition is required for proper compensation when a 

considerable fraction of energy is drawn from the guide by the end slots 

of the array. 



8.11] WAVE-GUIDE ARRAYS 147 

Design of the array depends on the following measurements: 

(i) The corresponding values of x and 0 to yield the proper type 

of displaced inclined slots; for practical pury)oses, it is not 

necessary to treat as variable the slot-length once found for one 

value of 6, so that it allows perfect compensation by a probe, 

because only a small range of angles is required. 

(ii) The compensating susceptances and the corresponding probe- 

lengths. 

(iii) The fraction of power abstracted by the compensated slot from 

a travelling wave as a function of 0. 

(iv) The phase shift (retardation) produced in the travelling wave 

as it passes the slot as a function of 9, 

The desired connexions between x and 0, and the compensating 

susceptance are given in §6.8, and approximate formulae may be 

derived to represent the data (iii) and (iv) for convenience in inter¬ 

polation. 

At /S-band, a slot displaced 0*4 in. and inclined at 25° abstracts 

40 per cent, of the energy from a travelling wave in the guide; the 

corresponding phase-shift is 14-4° in passing the compensated slot. 

Since most of the radiators in an array with its amplitude distribution 

tapered symmetrically about its centre will be required to radiate very 

much smaller fractions of power and will produce phase shift much 

less than 14°, we may ignore the longitudinal displacement required to 

compensate the latter when we are concerned with amplitude distribu¬ 

tion, and choose as the most convenient variable to characterize a 

radiator, the fraction of energy to be radiated by the slot. Let be 

the fraction of energy to be radiated by the rth slot from the generator 

end of the array, and be the amplitude of the excitation desired for 

that radiator; then the equation (86.2) serves to connect and 

except for the few slots near the end of the array which are sufficiently 

inclined to the guide axis to make correction necessary. For these we 

write 
fhi _ <±i(iz:£r) 

4 ’ 

where e^. denotes the fraction of power radiated in the desired polariza¬ 

tion by the rth radiator. The correction amounts to 5 per cent, in 

amplitude for slots inclined at 20°. 

Given the and having chosen the fraction to be drawn by the 

last slot of the array of N slots, we can design the array with the aid of 

graphs in which are plotted against the variable e (i) the displacement 





Fio. 77 (c>. 
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generator will be nearer to the centre of the guide in every case. 

The phase correction is applied by bringing the slots nearer to the 

generator. 

As an example of the application of these principles, a 45-element 

array was cut for >S-band. The slots were ^ in. wide, 2 in. long, and 

the basic spacing at A10-7 cm., and the correction for phase shift 

was taken into account. The energy reaching the matching load at the 

end of the guide was measured as a function of frequency, and the 

result is shown in Fig. 78 both for the whole array and for the last 

half of it. On the basis that not more than 6 per cent, of the energy 

shall be dissipated in the terminating load, this array has band-width 

±4 per cent., and it may confidently be predicted that a longer array 

would have greater band-width for satisfactory power absorption. 

Throughout the band the S.W.R. (voltage) never exceeded M2. In 

practice, however, it is possible to dispense with the terminating load 

and to terminate the guide with a plunger f A^ from the centre of the 

nearest slot. This particular reactive termination may be used because 

the last few slots of the array transform it into a near match, and it 

is found that the disturbance of phase at the end of the array is not 

serious. It should be noted that transformation by these slots reduces 

the radius of a small circle near the origin on the it;-plane, thus the 

matching arrangement is essentially stable. 
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The results of the field measurements are shown in Fig. 79 (a)-(j). 

The average observed beam-width of the main lobe was 2*35°, which 

is to be compared with the theoretical 2*1'^ for a uniformly illuminated 

array of the same length. When the guide was terminated in a match 

the maximum side-lobe amplitude was 15 per cent, of the maximum 

in the main lobe, in the range 10*4-11*0 cm. used in the measurements. 

When the guide was terminated by a reflecting plug, the maximum 

side-lobe varied from 19 per cent, at 10*5 cm. to 12 per cent, at 10*8 

and 16 per cent, at 11*0 cm. The lobe of unwanted polarization, due 

mainly to the inclination of the slots, was observed at with the 

normal to the array and did not exceed 11 per cent, in amphtude. 

The band-width of this array is sufficiently great to allow control of 

the direction of the beam over 4 or 5 degrees by means of the frequency, 

variation of which can be tolerated ±4: per cent, from the mean. 

8.12. Two-dimensional Arrays of Slots 

The linear arrays which have been described in the foregoing sections 

can be used as elements in a two-dimensional array of slots, which 

replaces the combination of a linear radiator with a reflector. The hnear 

arrays may be either standing-wave or travelling-wave radiators. 

Mutual effect between them will be important only for transverse 

I)olarization, but it may be suppressed by introducing a choke between 

each pair of adjacent guides. This choke is a narrow channel, a quarter- 

wave deep, which prevents waves from travelling from the surface of 

one guide to the next. Care should be taken to prevent the trans¬ 

mission line formed by the channel from being resonant and thus 

becoming the source of unwanted radiation. 

In the design of a two-dimensional array, the problem is to arrange 

that the linear arrays load the transverse feed-guide so as to give the 

desired transverse amplitude and phase distributions and a suitable 

input impedance for the array as a whole. To achieve this end, the 

coupling of guides by means of slots offers a wide variety of circuit 

arrangement. The spacing of the linear arrays, if transversely polarized, 

is little open to choice because of the width of the guide, but longi¬ 

tudinally polarized arrays may be spaced more closely. If we are willing 

to use a feed-guide of specially chosen width, or if the guide may be 

turned so as to cross the linear radiators at an angle different from 

right, the spacing of the loads on the transverse feed-guide may be 

made any desired figure, resonant or non-resonant. 

There are two basic types of coupling of shunt-series type that permit 
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choice of impedance transfer. For slots cut in the broad face the 

couplings have already been explained in Chapter VII, Fig. 57, while 

for slots cut in the narrow face of the feed-guide the arrangement was 

depicted in Fig. 63. With both types of coupling the system of wave 

guides forming the whole antenna can easily be rigidly bound together. 

We shall now briefly describe the first two-dimensional array of 

slots which was built at the Radio Field Station of the National 

Research Council of Canada. The beam desired was to have 2° width 

in azimuth and about 15° width in elevation. Six horizontal linear 

wave-guide radiators were stacked vertically and centre-fed from a 

transverse feed-guide on which they were spaced 0*55A^ apart with 

phase inversion in the alternate couplings. With this arrangement it 

was possible to feed the transverse guide from either end, and since 

the main lobe does not point normal to the plane of the two-dimensional 

array, the elevation of the beam could be altered by means of a switch 

which caused first one end of the feed and then the other to be connected 

to the generator. 

Since the series-shunt couplings act as transformers, the impedance 

seen from the centre in the radiating guides, each terminated by a 

plunger from the nearest slot, is at our disposal, provided that the 

coupling coefficient is correspondingly adjusted by proper displace¬ 

ment of the coupling slot. The impedance was finally chosen to give 

best matching band-width for the whole antenna. 

The antenna is shown in the Frontispiece mounted on a trailer con¬ 

taining the transmitter. The up{)er two-dimensional array of three 

linear radiators is intended to give a less directive beam in elevation. 

The staggered slots, which are all covered, can be discerned most easily 

in the lowest guide. 



IX 

FURTHER MICROWAVE DEVICES 

The plan of this chapter is to deal with a number of loosely related 

topics connected with the use of wave guides as transmission lines and 

in antennas. Interest will of course lie mainly in the physical principles 

involved rather than in the details of particular practical devices. 

9.1. Scanning 

The highly directive antennas which we have considered in the 

preceding chapter would obviously be of little operational use unless 

means are provided to turn them. It is not proposed here to consider 

the mechanical problems involved. In order to increase the speed of 

rotation and hence of scanning it is necessary to reduce the weight and 

size of the antenna and therefore to use the shortest possible micro- 

waves consistent with power or other requirements. For the purpose 

of securing rapid scan over a limited sector, without turning the antenna 

as a whole to obtain the scan, several devices have been invented. All 

of them depend on making the rotation of some part of the device 

impose a phase gradient across i he aperture of the antenna so that the 

direction of the main lobe is determined by the moving part. For 

example [23], a feed-guide may be rotated opposite the annular mouth 

of a thin flat horn which has been rolled into a complete circle at the 

feed end. Another successful scanning device, due to Foster, introduces 

the phase gradient into a beam of wide aperture by varying the path 

across the whole beam. The variable path is the space between two 

coaxial cones limited by the diametrically opposite input and output 

slots in the outer cone and the slot through the centre of the inner cone 

along its length. The inner cone rotates. The main practical problem 

to be surmounted is to shut off the alternative paths round the inner 

CQiie while maintaining a good approximation to matched transfer of 

energy through the system. It is not our intention to discuss the 

details of such devices here. We confine ourselves to the problem of 

scanning with wave-guide arrays. 

Steerable-beam antennas depending on the phasing of the elements 

of an array are well known in short-wave radio work, but to use inde¬ 

pendent phase changers in a long microwave array of many elements 

is not practical. From equation (81.2) we see that to produce a 10° 

change in the azimuth of the main lobe of an array of equispaced 
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elements 0-7A apart, it is necessary to introduce a phase shift of 48° 

between each pair of adjacent elements; that is, about 20 per cent, 

change in the free-space path-length is required to achieve the change 

in azimuth of the beam. In the wave-guide feed there are only two 

practical ways of doing this—by changing the frequency of the genera¬ 

tor, which is not possible for a high-power magnetron, or by changing 

the velocity of propagation in the guide through varying its width. 

The latter alternative has been followed with a travelling-wave antenna. 

The guide is specially made in two halves which are moved transversely 

to their length, thus causing the guide to vary periodically in width (a). 

Since the coupling of any radiator to the guide depends on the width, 

the main difficulties, w'hen a is varied, concern input impedance and 

satisfactory absorption of energy by the radiators. The amphtude 

distribution cannot remain unchanged in the process, consequently a 

scanning array of tliis type will be successful only if an adequate com¬ 

promise can be found; and this is decided by what can be tolerated in 

practice. The array will scan only on one side of the normal to the guide 

when the power is fed from one end. 

It is easily seen that microwave arrays are not suited for scanning 

by electrical phasing except over comparatively small angles, because 

of the difficulty of introducing the large fractional change in path 

required to turn the beam. In all other cases of scanning antennas, the 

mechanical device producing the beam swing must have outstanding 

advantages over that required to turn the antenna as a whole; other¬ 

wise its use is not justified. 

Two-dimensional (television) scanning is achieved by superposing 

on the azimuthal displacement of the beam a transverse oscillation 

which may be produced by rocking the reflector. 

9.2. The Cosecant Pattern 

A horizontal array designed to give a sharp beam in azimuth and 

placed along the focal line of a parabolic cylinder of sufficiently great 

aperture (> lOA) produces a narrow beam in elevation, which is satis¬ 

factory for height (or depth) coverage at great ranges. At short range, 

however, effective coverage of vertical height as the beam swings round 

with the antenna is very much reduced, and so long as the beam is 

formed in the simple way just mentioned, adequate vertical coverage 

at short range will be obtained only at the expense of the maximum 

range obtainable with given power input to the antenna. Indeed, for 

radar used in aircraft to view the ground, or vice versa, the radiation 
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pattern,required in elevation should be asymmetrical about the direc¬ 
tion of maximum intensity in the beam, being sharply cut off on one 
side, and trailing gradually on the other. If the maximum difference 
in height to be viewed is given, it is obvious that the trailing pattern 
should yield an energy distribution approximating the cosec^^ law [24], 
6 being the angle measured in the vertical plane from the cut-off side 
of maximum (see Fig. 80), so that the ground or sky at the chosen 
height may be illuminated properly. Ideally one wishes to obtain return 

signals substantially independent of range up to the maximum range 
considered practically attainable with the power available, so Lambert’s 
law of diffuse scattering might be taken into account, thus requiring 
a cosec®0 distribution, but experience does not confirm this. 

The essential difficulty in producing the beam which we have just 
described lies in securing with a comparatively narrow aperture the 
sharp cut-off feature, the strong maximum intensity, and at the same 
time avoiding the appearance of side-lobe structure in the rest of the 
pattern. The reflector being illuminated in the normal way, we can 
obtain the cut-off by splitting the reflector or deforming it so as to 
obtain radiation normal to the antenna in antiphase from the two 
halves. In theory this can be done by displacing one half of the reflector 
JA behind the other, but in practice it does not yield good overall 
results. It is better to re})lace a segment of the paraboloid by a plane 
flap or, if the reflector lies only on one side of the axial plane of the 
paraboloid, one may alter a portion of it near the axis bringing it closer 
to the focus to get the desired result. 
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For the rest, in order to obtain a satisfactory beam the illumination 
of the deformed reflector must be properly adjusted. While it is possible 
to calculate the required law of flooding, it is quite another matter to 
secure it from a linear radiator. The problem therefore becomes 
essentially a practical one of experimental compromise. 

If instead of a parabolic reflector we use a two-dimensional array, we 

can obtain the required cut-off by mounting the array below (or above) 

a plane sheet of metal projecting about lOA in front of the array. By 

using arrays of inclined shunt slots we have some freedom to adjust 

the ‘fiir in the pattern by turning these linear arrays about the guide 

axes, and arranging the strength of coupling to the feed through in¬ 

clined coupling slots in the broad face of the latter, and by choosing 

the transverse spacing between the linear arrays and the reflector so 

as to improve the pattern. A satisfactory antenna of this type was 

constructed by Guptill early in 1944. 

9.3, Parasitic Radiators: Microwave Yagi 

In short-wave practice, end-fire arrays are used as directive antennas, 

the ‘half-wave’ wire radiators being transverse to the axis of the array. 

Only one of these radiators need be driven by the transmitter; the others 

are parasitic, excited by the radiation from the driven member. One 

of the parasites is placed about behind the driven radiator to act as 

a reflector; one or more others act as directors spaced about 0-3A along 

the line of sight. Such a linear array is called a Yagi antenna. The 

critical parameters are the lengths of the wire radiators and their 

spacing. When the wavelength is about a metre, the centres of the 

parasites are attached to a metal rod to which the driving element 

is joined with metal by folded dipole technique. Successful Yagi 

antennas for >S-band have been made likewise, but for X and K bands 

the sizes are inconvenient. The Yagi principle may be applied to 

direct waves over a metal sheet by using ‘quarter-wave’ wire antennas 

mounted at right angles to the sheet and in line. This will not be a 

convenient antenna, and to make it will require fastidious workmanship. 

We have seen that a resonant slot cut in the narrow face of a 
rectangular wave guide at right angles to the axis of the guide is un¬ 
excited by the dominant wave in the guide, and that the mutual 
coupling of inclined slots cut in the narrow face and weakly coupled 
to the guide takes place by waves on the outside of the guide and plays 
a large part in determining the admittance presented to the guide by 
these slots. These two properties make possible the use of slots cut in 
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the narrow face as parasitic radiators and their employment in micro- 

wave antennas. Such slots must be cut at right angles to the axis of 

propagation in the guide. 

An example of this type of antenna was constructed as follows.f 

In each of the narrow faces of a piece of JT-band guide was cut an array 

of slots. Each array consisted of one 20° inclined slot coupled to the 

guide with a reflecting plunger behind it inside the guide, a single 

parasitic reflector, and fifteen director parasitic slots at 0*31 A spacing. 

The two arrays were excited in antiphase and their fields allowed to join 

in front at the edge of the wedge in which the guide carrying the slots was 

terminated in order to minimize reflection. The details are shown in 

Fig. 81. The radiation is polarized parallel to the broad face of the guide. 

The microwave Yagi has all the advantages of the wire Yagis for longer 

waves; namely, small cross-section presented to the direction of the main 

lobe which is approximately axially symmetric, extreme portability, 

and simplicity. The advantage of the slotted Yagi antenna is that it 

is easily made. Its directivity is limited, however, by the fact that it is 

an end-fire array. 

9.4. Switching Devices 

In d.c. and a.c. devices the opening of a circuit to change the path 

of energy flow is attended by transient phenomena w hich, for practical 

purposes, may be suppressed by suitable adjustment of the time- 

constants of the circuit. Once the circuit is open, no current flows in 

the steady state. But in a microwave circuit this is not so. The steady 

state consists in the reflection of waves from the open circuit; this is 

equivalent to presenting a reactance to the generator. In order to 

render the circuit quiescent, it is necessary to put the generator out of 

oscillation. Consequently in microwave work one may have to couple 

the switching device to the generator to do this. If the switching is 

repeated, the generator w ill be pulse-modulated. 

There are two main types of switching device: (1) those w^hich modify 

the circuit by mechanical means, pieces of metal being moved and the 

rapidity of switching severely limited by this fact, and (2) electronic 

t Watson. Guptili. and Terroux, unpublished note. Feb. 1944. 



160 FURTHER MICROWAVE DEVICES [Chap. IX 

devices which may be triggered by suitable transient waves of voltage 

applied to auxiliary electrodes. In the former, power-carrying capacity 

is usually not difficult to achieve, in the latter it is the most important 

hmiting factor in design. When the peak microwave power is not great, 

a much greater variety of switching devices is possible and consequently 

greater flexibility of control. 

In order to block the passage of microwaves along a wave guide 

without a metallic partition in the guide, one may couple a second 

guide to the first. If the coupling in 

the first guide is series, the reactance 

presented in the second must be such 

as to introduce infinite reactance 

in the first in order to open-circuit 

it. If the coupling is shunt, the 

reactance presented in the second 

guide must be such as to short- 

circuit the first. As an example of 

this principle we show a very simple 

switching device [25] in Fig. 82. 

It may be mechanically driven for 

repeated transfer of power alter¬ 

nately into the arms A and B. The 

narrow faces of the guides are presented in the diagram, so that all 

couplings are series. When energy is to be fed into A, the plunger a 
is placed from the junction, so completing the circuit to the guide 

arm A\ meanwhile the plunger b is placed from its coupling, so 

open-circuiting the guide arm B, If A and B are both matched, it is 

possible to couple the motions of the plungers so that the input im¬ 

pedance of the whole device does not depart markedly from unity at 

any time in the cycle of operations. 

The stubs with the moving plungers may be replaced by electronic 

switches. Let a resonant iris in a guide be enclosed with inert gas at 

low pressure. When the gas conducts, the iris ceases to transmit; thus 

in principle we have a switch. A tuned cavity can likewise be detuned 

and when suitably coupled to the main guide will effectively short- or 

open-circuit the guide when the arc strikes across the narrow gap sur¬ 

rounded by inert gas inside the cavity or rhumbatron. The arc may be 

triggered by means of a pulse of voltage applied to an auxiliary electrode 

in the rhumbatron. The speed of switching is determined by the 

de-ionization time of the space where the arc occurs. 
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By far the most important switch is the Ti?-box [26] used for duplex¬ 

ing so that both transmission and reception may be accomplished with 

a single antenna. In the receiver line, at the proper distance from the 

junction, is the soft rhumbatron by means of which the receiver is 

effectively disconnected when the arc passes across the gap between 

the axial electrodes of the cavity. These are usually conical or cusp¬ 

shaped, thus giving the resonant cavity the general shape of a toroid 

except for the gap. Actually what happens is that when the arc is 

struck, the cavity is put out of resonance and the admittance presented 

by the receiver line at the junction is very small. Whereas when the 

arc is off, the distance of the transmitting generator from the junction 

being chosen so that a low admittance is presented at the junction by 

the transmitter stub, the rhumbatron, which is of fairly high Q, effec¬ 

tively couples the receiver to the junction without reflection, even 

although the two couplings into the rhumbatron are weak. When 

coaxial line is used, the couplings in question will usually be by means 

of loops; when wave guide is used, coupling is effected by inductive 

windows or by holes. It would be out of place in the present work to 

attempt to treat the immense amount of practical information which 

has been gathered on the design and perfecting of this device. It is 

appropriate, however, to mention the names of Sutton of the Clarendon 

Laboratory, and Samuel and Fisk of the Bell Laboratories, as the 

leading pioneers in its development. It is fairly obvious that when high 

power is to be transmitted the device must give adequate protection 

to the receiver and at the same time it must provide efficient reception. 

In this connexion the reader is referred to § 9.7 on cavities. 

Low-power electronic or other switching devices designed for use in 

coaxial line may be coupled to an antenna stretched across the wave 

guide, and by tuning and detuning the antenna, short-circuit or open- 

circuit the guide. Since in low-power devices one may expect to work 

with narrow band-width, a high-Q cavity may be used in switching, 

deformation of the cavity being used as a method of detuning it. 

A convenient form of cavity for this purpose is the rhumbatron of a 

klystron oscillator shown in section in Fig. 83. A telephone receiver 

diaphragm forms the flat circular base, and outside the cavity is 

mounted opposite the diaphragm the magnet-coil system of the receiver. 

This device permits switching at telephonic frequency. 

As examples of simple mechanical switching devices which do not 

involve the movement of plungers we may mention the useful ring 

switch and a rotating switch employing the principles of guide coupling. 
4781.4 Y 
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In § 5.9 it was pointed out that a wire antenna insulated at both ends 

will effectively short-circuit the guide when the length of the antenna 

is close to JA and part of it is parallel to the electric force in the domi¬ 

nant wave; it is clear that if two ends of the wire are joined so as to 

make a ring, which need not be exactly circular, the condition for 

resonance and effective short-circuiting of the dominant wave is that 

the perimeter of the ring should be about a wavelength—actually it 

should have a particular length somewhat greater than A. The general 

shape of the graph of susceptance vs. perimeter of ring in wavelengths 

is shown in Fig. 84 [27]. With the resonant perimeter, the ring behaves 

as a perfect reflector. It may be used to switch radiation at a junction, 

as indicated in Fig. 85. When the proper dimensions have been found, 

it is possible to have substantially matched transmission in either 

direction from the junction. 

The rotating wave-guide switchf is particularly suited for JC-band 

t Johnston, Terroux, and Watson, NJt,0, Report, June 1944. 
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or higher frequency radiation. A complete ring of wave guide is made 

by cutting a groove of rectangular section in a thick metal plate, and 

closing the top by means of a second 

^ plate which can rotate with respect to 

the first about the axis of circular 

symmetry. Leakage from the guide is 

prevented by choke grooves concentric 

with the ring. Radiation is fed into the 

guide through the lower plate by a 

series-series resonant slot coupling, and — 

proceeds only in one direction from the 

coupling point because on the other 

side is coupled a series-stub which 

open-circuits the guide (mod — 

from the main coupling.f Similar out- — 

puti couplings are arranged at intervals 

on the upper plate, as shown in Fig. 86. 
Radiation is propagated in the ring wave guide only between the input 

V 
Han 

loop 
Fig. 85. 

coupling and the nearest output coupling in the proper direction. Thus 

as the upper plate rotates, radiation is fed successively to the wave 

t The directive coupling of § 7.6 was found more difficult to make. 
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guides attached to it. This permits a cycle of switching operations and 

would also allow a multiple antenna to scan a limited sector of wide 

angle by continuous rotation. Blanking is required during the period 

when the switch-over occurs and a coupling point in the upper plate 

is opposite the input coupling in the lower one. 

9.5. Phase Changers 

The usefulness of apparatus capable of changing the phase of micro- 

wave radiation in a wave guide without altering amplitude is obvious. 

We have already mentioned in connexion with the measurement of 

phase the basic method of altering path-length which may be easily 

accomplished in coaxial line but not in a wave guide; consequently the 

latter is used only when variable phase change is not required. We 

shall describe tw o methods of changing phase which ensure matched 

transmission through the phase changer. 

The first consists in coupling a series and a shunt reactance to the 

guide by means of resonant slots centred in the same guide cross-section. 

This arrangement functions as a symmetrical FI- (or T-)section. We 

have already discussed this way of loading the guide in § 6.8 and found 

that the susceptance (6) of the shunt must equal the reactance {x) of 

the series load. The loading matrix (see (68.5)) is 

i-ljb/ 

When the guide beyond the load is matched, the input is also matched, 

for the loading matrix is diagonal. The ratio of the output to the 

input complex wave amplitude is 

l-iJb 

i+bb’ 

The modulus of this ratio is 1 and its argument is 2 tan~^ ^6. The latter 

is therefore the delay in phase introduced by the arrangement, when 6 

is positive, i.e. corresponds to capacitive shunt reactance. All that is 

now required is a convenient method for securing the equality of 6 and 

X. Let X be introduced by a series-series coupling to the top broad face 

of the guide and 6 by a shunt-shunt coupling to the bottom broad face 

(see Fig. 87), the two auxiliary guides of the same cross-section as the 

main guide being closed on one side and JA^ respectively from the 
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coupling while on the other side a plunger slides in each. If the plungers 

are set to correspond—i.e. apart—then they will continue to do so 

when displaced through the same distance. If this distance (0 is 

reckoned from the position for 6 = 0, the phase shift <f> is given by 

2— 

^ = 2 tan-i i t8in(kg $), K = IT' 
^0 

The second type of phase changer [28] with which we shall deal is 

/r3/?syerse ser/es-ser/es 
coup/fng s/od 

Fia. 88. 

more troublesome to make, but once made, is very much more con¬ 

venient to use since the phase change introduced by means of it is 

equal to twice the angle through which one of its parts is rotated. 

The device consists of three pieces of circular guide, two of which serve 

to convert a linearly polarized iTj^-wave into circularly polarized and 

vice versa. These parts are fixed, and the third piece of circular guide 

coaxial with the others is free to rotate between them about the axis 

of the system. 
The transformation from linear to circular polarization is achieved 

as follows. The guide is shunted by a pair of parallel wires fA^ apart. 

These extend diametrically across the guide, and their common diameter 

is chosen such as to make the inductive reactance each presents as a 
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shunt to the fTij-wave, polarized with its electric force parallel to the 

wires in the centre of the guide, equal to one-half of the guide impedance 

for this wave. That this arrangement will cause a 90° phase lag without 

reflection is readily checked by the matrix method. The matrix trans¬ 

forming from the immediate right of the second wire met by the waves 

from the generator, to the immediate left of the other, is 

M = {E+2jU,)P{E+2jU,) = P+2j(U,P+PU^)^W,PU,. 

where P and are the matrices introduced in Chapter I. Jf is readily 

reduced to the form 

(joj 0 \ 

\ 0 -jco-^r 

which shows the 90° phase change without change of amplitude. Thus, 

by means of this device, linear polarization is converted into circular 

polarization if the incident wave is linearly polarized so that the 

diameter coincident with its electric force makes 45° with the wires; 

for radiation polarized perpendicular to the wires, which are thin, 

passes by unchanged. Obviously the process is reversible. 

The central section of the phase changer is equivalent to two of the 

sections just described merged into a single unit, there being three 

parallel wires spaced |A^ apart, the middle one showing twice the 

admittance of each of the others for waves polarized parallel to the 

wires. These ^^-waves are now retarded 180° in passing through this 

wave-guide circuit. Thus the direction of oscillation in a circularly 

polarized wave is derived from that in a similar wave traversing the 

same length of unloaded guide by reflecting the direction of oscillation 

of the latter in the plane of the wires. Since the direction of oscillation 

rotates at a constant rate in propagation, this reflection is equivalent 

to changing the phase of the circularly polarized wave by 2<f>, where (f) 
is the angle between the plane of the wires and one of the two directions 

referred to. The sense of pha.se change is retardation. Thus rotation 

of this central section of circular guide changes the phase of the linearly 

polarized fl^i-wave emerging from the third section. 

The main practical difliculties in this apparatus concern coupling 

from rectangular to circular guide, the suppression of resonance in the 

system, and the fact that the apparatus is designed for one frequency. 

So far as power-handling capacity is concerned this device is satisfactory, 

whereas the simple 11-section in rectangular guide is strictly limited in 

this respect even when the voltage required to cause sparking at the 
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resonant^ slot couplings has been raised by using wide slots reinforced 

by cylindrical bulwarks covering the edges of the slots to reduce the 
electric field strength (see Fig. 89). 

Fig. 89. 

9.6. Radiation and Coupling by Small Circular Holes 

Small circular holes have sometimes to be drilled in a wave guide. 

It is well to realize [29] that the radiation by such a hole is not to be 

calculated by the Kirchhoff-Huygens method of physical optics. The 

radius (a) of the hole being small compared with A, the incident field 

on the hole can be treated without regard to phase retardation across 

it. Through Babinet’s principle, the problem of a hole in an infinite 

conducting sheet exposed to radiation is identical with the problem of 

a conducting disc in the conjugate applied field. We may replace the 

hole by a distribution of magnetic charge and current. The latter arises 

partly from the tangential component of magnetic force and partly 

from the normal component of electric force. This distribution may 

be regarded as radiating on the other side of the screen. It is easily 

shown that the hole is equivalent to a magnetic doublet of strength 

—-(2/37r)a^fll) plane of the sheet, and an 
electric doublet — (ACQ/37r)a*i?o coul.-m. perpendicular to the sheet, 

being, of course, the electric force (normal to the sheet) and Hq the 
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tangentially directed magnetic force in the absence of the hole. The 

doublets are directed in sense opposite to the applied field, and the 

radiation from them to space or in a guide may be calculated without 

difficulty. 

Two guides may be coupled by such a hole. Now we have already 

seen that a transverse electric dipole is shunt-coupled to the dominant 

T-E-wave in the guide, and likewise the longitudinal magnetic dipole: 

but a transverse magnetic dipole is series-coupled, hence the hole 

behaves as a directive antenna; by suitable orientation of the two 

guides, or if they are parallel to each other, broad face to broad face, 

by suitable displacement of the hole from the centre, it is possible to 

arrange that radiation takes place in one direction only in the second 

guide. Thus, samples of the waves travelling in the two opposed 

directions in the main guide may be separated to travel in opposite 

directions in the coupled guide away from the hole. This principle is 

used in the measurement of S.W.R. Two meters are required, but no 

motion of a travelling probe is involved. A pair of holes separated 

serves as a directive coupling [30]. 

9.7. Cavities 

We have had occasion to refer to two important uses of resonant 

cavities in connexion with wave guides, first in waveraeters and later 

in the TB swdtch. We now consider cavities with general principles 

in view. Except when the cavity is coupled to a beam or cloud of 

electrons from which energy is derived to maintain the electromagnetic 

oscillation, the coupling of other systems to the cavity will be weak in 

general, so we turn our attention in the first place to the properties 

of the cavity by itself. These depend on its shape and size and on the 

conductivity of the metal of which the containing wall is made, and 

are summarized physically in the spectrum of resonant frequencies, 

the field distributions in the corresponding modes of oscillation, and 

the Q of the oscillation for each resonant frequency. Since generally the 

best conductor will be used to form the walls, the conductivity of the 

latter does not enter at all in the representation of the spectrum and 

field distributions. If it did we should be deprived of the essentially 

simple notions of pure TE and pure TM fundamental modes of oscilla¬ 

tion just as in wave-guide propagation (§4.6). 

Accordingly the calculation of the properties of a cavity can be split 

into two parts. First, the resonant frequencies and corresponding 

modes of oscillation are determined on the assumption that the wall is 
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perfectly conducting: then one can determine approximately the Q- 

value for each mode, defined as follows. Let be the natural 

frequency of the sth mode, and the corresponding Q-value, then 

^alQs average fractional rate of dissipation of the energy of the 

cavity oscillation in the sth. mode. The corresponding rate of decay 

of field strength is a}J2Q^. The proportionate band-width Aoj/oj of 

cavity response in forced oscillation reckoned at half-amplitude, i.e. 

6 db. below peak, is V3/Q^. 

Exact analytical expressions for the resonant frequencies of the 

normal modes of both TE and TM types together with formulae for 

the field distribution have been deduced for cavities of simple shape— 

the rectangular prism and cylindrical box (made in each case, for 

instance, by short-circuiting a piece of wave guide at both ends) and 

the space between two coaxial cylinders bounded by two planes per¬ 

pendicular to the axis are all well known.f For practical purposes, the 

study of the cylindrical cavity with a centre post that may be regarded 

as the incomplete inner conductor in a shorted coaxial line has been 

followed in some detail both in theoryj and experimentally as to 

spectrum;|| while Bethe, Marshak, and Schwinger [31] have devoted 

considerable attention to the fundamental mode of cavities of this 

shape to determine how the natural frequency and Q-value depend 

on the various geometrical parameters involved. In the theoretical 

treatment of such a case one must keep in mind that the geometrical 

form discussed in the theory does not represent the cavities actually 

used, except topologically. Practical considerations enter to require 

shapes that are not easy to treat analytically, although they may be 

managed numerically by methods such as that of Klanfer and Motz 

(§ 6.7). Generally speaking, however, it is more economical to investigate 

details by the experimental study of models. The idealized geometrical 

system is suitable as a good rough guide as to general trends. 

With the hollow cylindrical resonator, Stevenson [32] has discussed 

the best modes to use, the best ways of exciting such modes by a w4re- 

probe or loop in order to obtain maximum Q, taking into account 

practical restrictions as to the maximum allowable size for the cavity 

and proximity of neighbouring modes. The procedure for treating 

the excitation of oscillations is exactly analogous to that used to 

calculate the field due to a given distribution of currents in a wave 

t Schelkunoff, op. cit. 
X Hansen, W. W., J. Applied Phys. 9, 664-63 (1938); 10, 38-46 (1939). 
II Barrow, W. L., and Mieher, W. W., Proc. I.R.E. 48, 184 (1940). 

47U.4 Z 
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guide; it is discussed in § 10.6. It can be shown that the of the 

mode s of any cavity can always be expressed in the form 

a 
VA, 

where is the free-space wavelength of the 5th mode, a is the conduc¬ 

tivity of the metal walls, and is a dimensionless factor determined 

by the mode in question and by the ratios of the linear dimensions of 

the cavity. The subscript s of course stands for the set of integers 

required to distinguish each mode of the E and H types. If the cavity 

is symmetrical like a circular cylinder or square prism, degeneracy will 

occur; that is, each natural frequency may correspond to more than 

one single mode of oscillation as judged by the field distribution. This 

fact must be kept in mind when the cavity is loaded, or coupled to 

another system, for then in general the degeneracy will be removed, 

and two or three natural frequencies close to each other will appear 

in the spectrum in place of one. 

The response of a cavity to a particular current distribution of 

frequency ai/27r introduced into it by means of a wire, for example, 

can be represented when is large, in terms of coupling coefficients 

which are proportional to 

integrals of the type 

jjj JfEf'fdxdydz 

and depend linearly on 

over the current distribution. is the ^-component of exciting current 

density; E^ is the ^-component of electric force in the 5th mode in 

free oscillation. A cavity may, of course, be excited through a circular 

hole in its waU or through a window in a wave guide abutting the 

cavity wall. In both of these cases one must distinguish the magnetic 

excitation of the cavity from the electric in order to understand coupling 

to the cavity. Again the calculation follows the corresponding one for 

the excitation of a wave guide through an aperture. 

In representing the behaviour of actual cavities we should take into 

account the effect of coupling arrangements on the natural frequency and 

Q of the cavity used normally in its lowest-order mode. For example, 

capacitive or loop coupling increases the natural frequency whereas 

an inductive window decreases the natural fundamental frequency of 

a cylindrical cavity with centre post. Also included will be the effect 

of dielectrics used to close the cavity, e.g. so that it may be evacuated. 

UsuaUy a cavity will be coupled to at least two systems which it is 
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intended to couple only through oscillations in the chosen mode of the 

cavity. Actually, coupling may also take place through the excitation 

of higher-order modes and also directly. The presence of these other 

modes of coupling may actually vitiate decoupling which is intended 

by detuning the cavity in respect to its lowest-order mode. 

9.8. The ‘Magic-Tee’ Junction 

The arrangement of three coupled guides which was introduced as 

the n-section phase changer (§9.5) or in the more simple form shown 

B 

Fig. 90. 

in Fig. 90, and known as the Magic-Tee junction [33], can be applied 

as a balanced mixing-device. Instead of regarding the guides A and B 
as loading the main guide CD, we now imagine C and D as terminated 

in matched loads and power-fed into B and A from two sources. 

Since the arm B is series-coupled to the guide CD, it will radiate 

into the latter waves of equal amplitude travelling in opposite direc¬ 

tions from the junction and in opposed phase at equal distances. On 

the other hand, the arm A being shunt-coupled, radiates into CD waves 

of equal amplitude travelling in opposite directions from the junction 

and in phase at equal distances therefrom. Further, there is no direct 

coupling of the arms A and J5. It follows, therefore, that if two signals 

are fed into A and B there will be radiated towards one of C and D 
the sum of the signals and into the other the difference. If crystals 

are coupled to the arms C and D and are coimected to the opposite 

ends of a centre-tapped I.F.-transformer, the local oscillator coupled to 
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B and to A the signal to be detected, there results a very useful balanced 

mixing device. The main advantages of the system when the arms are 

all properly matched are that there is no loss of signal into the local 

oscillator, and that the system rejects local oscillator noise. 

The junction may also be used as an R.F. bridge. Power is fed to 

the shunt branch A and a detector terminates the series branch B. 
The arm C is terminated by the unknown impedance and D by a 

calibrated impedance such as a movable plunger behind a variable 

attenuator. The detector current will be zero when the two impedances 

are equal, for waves from C and D of equal amplitude and in phase 

do not excite the series-coupled arm B. 



X 

FIELD REPRESENTATIONS 

10.1. Introduction 

For the most part in the foregoing chapters the phenomena concerning 

wave guides have been treated by representing only propagation and 

discontinuities in propagation of the individual characteristic waves. 

In not explicitly exhibiting the actual distribution of electric and 

magnetic force in space and time, we are in fact abstracting part of 

the field representation of the waves at such distances from antennas 

and obstructions in the guide that all evanescent waves may be 

ignored. We have seen how, for theory, the wave-conception ‘radiation 

coefficient’ is a much more useful one in general than the circuit one 

‘impedance*. The coefficients may be determined by measurement in 

the laboratory or they may be calculated by applying electromagnetic 

theory to a sufficiently good geometrical model. 

Questions of propagation, including the calculation of the losses due 

to the presence either of walls with finite conductivity or of imperfect 

dielectrics in the guide, and the theoretical treatment of junctions, 

bends, and irises require that the field be completely represented. If 

only the dominant wave is effectively propagated in the guide, so that 

the cut-off frequency of all other modes of propagation is very much 

higher than the frequency of radiation in the guide, the field of the 

evanescent waves in the vicinity of a localized obstruction may be 

treated as an electro- and magnetostatic distribution varying har¬ 

monically in time just like the fields in low-frequency a.c. theory. This 

is equivalent to ignoring the frequency dependence of the rates of 

extinction of the evanescent waves of different order radiated from 

the obstruction, the wave equation being therefore treated as if the 

velocity of propagation of free waves were infinite in this approximation. 

In this chapter we shall devote our attention to the radiation and 

reception by antenna systems through which waves are launched in 

the guide or coupled to other guides or to space. The basis of field 

representation in this connexion is the determination of expressions for 

the Hertz-vectors of the field in a wave guide due (1) to an electric 

dipole, and hence to a current element, and (2) to a magnetic radiator, 

which is realized by a distribution of tangential electric force on the 

surface where an aperture replaces part of the guide wall. As a pre¬ 

liminary to this study, for the convenience of the reader. Maxwell’s 
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equations are presented in the following section in M.K.S. units, together 

with the representation of plane waves in terms of Hertz-vectors in the 

succeeding section. 

10.2. R^sum^ of Field Equations 

An electromagnetic field on the molar scale is described by two pairs 

of vectors: 

Electric type: E measured in volts/metre, 

B „ webers/square metre. 

Magnetic type: H „ amperes/metre, 

D „ coulombs/square metre. 

Sources of the field are represented by distributed electric charge of 

density p coulombs/cubic metre and electric current of density i am¬ 

peres/square metre. 

Between these there subsist the vector relations 

(A) curlE == —B, (B) curlH = D+i, 

divB = 0, divD==p, (102.1) 

which express the well-known electromagnetic laws. The dot denotes 

partial differentiation with respect to the time. 

In vacuum B = /XqH, D = kqE, 

where = 47rX henry/m. is the specific inductance of vacuum, 

and kq = ^ farad/m. is the specific capacitance of vacuum. 

In an isotropic medium, fiQ and kq must be multiplied respectively by 

the magnetic permeability and dielectric constant of the medium. We 

shall not have occasion to deal with an anisotropic medium where the 

magnetic and electric properties are represented by tensors. 

The equations (A) are automatically satisfied if we relate E and B 

to the magnetic vector potential A and electric scalar potential <f> by 

means of 
E = ~A~grad^, B = curl A. (102.2) 

The set (B) now become conditions on A and <f>. On the assumption 

that div A-f= 0, we find in a rectangular cartesian coordinate 

system 

(102.3) 
Ko 

and, of course, c® = absence of distributed electric 

charge and current, the components of A and <j> together with the 
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components of the field vectors satisfy the wave equation obtained by 

annulling the right-hand sides of the above equations. 

The sources of the distributions of A and <f) are electric currents and 

charges; accordingly the conception ‘vector potential’ has been found 

very useful in radiation theory. However, current and charge distribu¬ 

tions cannot be assigned arbitrarily; one must have regard to the con¬ 

servation of electricity, and this finds expression in the conception 

‘electric doublet’ (dipole) as a fundamental singularity in the radiation 

field. The corresponding system of potentials is the electric Hertz- 

vector, which we define as 11, given by 

(102.4) 

(102.5) 

A = fio 
8U 
8t ’ 

j. 
divll. 

Hence from (102.2) 

E = ij8raddivn_^^, 

H = curl 
m 
dt ’ 

Not only may we think of electric dipoles as field singularities, we 

may also introduce the idea of magnetic dipole; in which case, it is 

advantageous to use the Hertz-vector of magnetic type M given by 

Thus 
A == curlM, (f> = 0, 

.aM 
E = —curl rv. y Ot 

H = — curl curl M. 
Fo 

(102.6) 

(102.7) 

In free space, the cartesian components of both 11 and M satisfy the 

wave equation 

(^’-3 £)“=“■ 
and hence equations (102.5) and (102.7) are symmetrical as between 

electric and magnetic quantities, apart from the negative sign in the 

first of (102.7). 

10.3. Plane Waves 

Suppose that the equiphase surfaces are parallel to the a;y-plane and 

that the only non-zero Hertz-vector component is H^ which we shall 

denote by J7. From (102.5) we readily obtain in the case of harmonic 
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waves of frequency to/27T, time dependence being represented by the 

factor for convenience in calculation: 

where 

E,= 
1 d^U _\ 

kq dxdz' " Kffdydz' 

H.= 
. 8U „ . 8U 

dy "■'“■'"to’ 

2 = fXoKQOJ^ = — 

E. 

H, 

1 /dW 

xo\ 8z^ 

0, (103.1) 

This set of field components constitutes a TJf-wave propagated parallel 

to 2, and the appropriateness of the name jE-wave is evident from the 

fact that the generating function U is an electric Hertz-vector. On a 

conducting wall parallel to 2, U vanishes. 

Now suppose that V = is the only non-vanishing Hertz-vector 

component. Then, from (102.7), we find 

H =i^ 
* fiodxdz’ 

Ey = —j(0 
dx ’ 

H -1^ 

E, = 0, 

(103.2) 

This constitutes a TE-wave with generating function F, the magnetic 

Hertz-vector in the direction of propagation. On a conducting wall 

the normal derivative of V vanishes. 

It is readily seen that if the transverse components of 11 and M do 

not vanish we cannot have the simple wave types (103.1) and (103.2), 

for in the former will differ from zero, and in the latter E^,. 
In representing waves in a guide we require the generating functions 

to satisfy the wave equation subject to the boundary condition on the 

wall of the guide U = 0, dVjdv = 0, where v denotes the normal to the 

w'all. 

Any U may be expressed in terms of the normalized eigenfunctions 

u^(x,y), where in the region A bounded by the guide cross-section 

JJ = 1, (103.3) 

and is an eigenvalue of the problem with = 0 on the boundary 

0 of The subscript a, of course, stands for the pair of integers by 

which the set of eigenfunctions and corresponding eigenvalues are 
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distinguished. In unimpeded propagation, U is obtained by superposing 

the characteristic waves of TM type: thus 

U{x, y, z,t)=^'£ c„ u„ 
a 

if propagation takes place in the direction z-increasing. The complex 

constants are determined by the mode of exciting the guide, and 

Similarly, for the waves of magnetic type we have the normalized 

eigenfunctions Vg{x, y) with 

8^ 
8x‘ 

d^v„ 
8y^ 

■Hlv, = 0. JJ v%dxdy = 1, 

and 

dv 
= 0 on (7, 

(103.4) 

As the notation states, in the expressions for and the positive 

square root is taken if it is real, and the positive imaginary square root 
if pure imaginary. 

Consider now the problem of finding a function f{x,y,z) which 
ACi 

{V^+k^)f=,f,{x,y,z), (103.5) 

<f> being given, together with the boundary conditions that / = 0 on the 

surface S of the guide wall, and that / represents outgoing or damped 

waves at z = ±oo. We suppose / expanded in terms of the functions 

f=1,a„(z)u„ix,y). (103.6) 
a 

Substitute in (103.5) and use the orthogonality relation 

JJ u^u^dxdy == 0 (t ^ a) (103.7) 
A 

and we find 

= IJ <f>(x,y,z)u„{x,y) dxdy. (103.8) 

This equation may now be solved by the method of variation of para¬ 

meters or by operator methods, using the conditions a^{z) ~ as 

z->-foo, and a^{z)as z->—oo, to determine the arbitrary 

constants. 
The foregoing procedure may evidently be applied also to a function 

whose normal derivative vanishes on S. The method is a general one 

for calculating the effects of perturbation of the propagation. 
4TO1.4 ^ a 
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10.4. Characteristic Waves on the Strip Transmission Line: 
Irises 
As a step towards the full representation of the waves in a rectangular 

guide and for the purpose of treating some fundamental ideas in the 

theory of irises, we shall consider the strip transmission line [34] of 

Chapter I using the system of rectangular axes displaced so that the 

za:-plane is half-way between the strips. 

For the TJ/-type waves propagated in the direction z-increasing, 

the generating function for the nth mode is 

= sin^^e^'^**, where * 

and for the TjE-type, nth mode, 

F„ = co8?^e^*«». 

The case n = 0 is the principal wave treated in Chapter I. It is included 

with the others in the corresponding expressions for the field vectors: 

TE TM 

E, • • 
. n-ny 

0 

E, • 0 
jk- mr ntry 

— C08-^ 
Kff b b 

E, • • 0 
nV* . n-ny 

• • 0 
. niT tiny 

—}tu—cos— 
•'6 6 

H, • 
-iK 

^^0 b b 
0 

• • 
nhr^ niTV 

b 
0 (104.1) 

All expressions are to be multiplied by the propagation factor 

the time factor being suppressed as usual. For the principal wave 

the amplitude factor must be assumed inversely proportional to n, 

before putting n equal to zero. 

Consider now a symmetrical capacitive iris on the line at « = 0 (see 

Fig. 22). There is no physical reason to lead one to expect the genera¬ 

tion of electric force parallel to the length of the infinite iris. 
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Accordingly we may represent the field due to the iris when the principal 

wave is incident on it by means of 

Ey{y,z) = ^ anCos^exp =F^ 
~i L 'V \ J n! A 

(2 ^ 0), 
(104.2) 

where f — ^ and fn — ^ i® t.he nth cut-off frequency, and the 
277 2o 

evanescent waves introduced by the iris when A > 26 are all of TM 
type, because f <fn (^11 Suppose we put / = 0, then 

E^(y,z) = ao+ ^ «„co8^exp[(z ^ 0). (104.3) 

This form disregards the retardation of the field, the sum being just 

what we should obtain in the electrostatic problem of the two strips 

with iris charged to different potentials. It is known that this problem 

is solved by means of the Schwarz-Christoffel transformation 

sin(F4-iC^) = cosec sin-(y+12), (104.4) 

where V is the electric potential taking the values on the strips; 

U is the stream function. So that 

Ey 
dV__d£ 
dy dz 

(104.5) 

Evidently is the average electric force between the strips at 2 — 0, i.e. 

(104.6) 

Thus if we represent the propagation only of the principal wave and 

treat the evanescent waves as of negligible frequency compared w ith 

their cut-off frequencies, and this wnll, of course, be nearer the truth 

the smaller 6 compared w ith A, we may wTite 

E^ = (2 ^ 0). (104.7) 

Now consider the condenser formed by the surfaces V — cf our 

static problem between z = —I and 2 = +Z. The total charge on the 

surface of the positively charged conductor per unit width in the 

x-direction is 

(104.8) 
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and the capacity, referred to the voltage it between the strips at z = 0, is 

C{1) = 

The first term is the capacity of the strip with iris in the static problem, 

the second is the capacity of the same length of strip without iris, and 

the third is a periodic term which is bounded and, due to the weak 

attenuation present in any actual guide, represents a capacity which 

tends to zero as I is increased indefinitely. 

^cosh^J, (104.10) 

we see that C{1) tends to a limit as Z -> oo, viz. 

Cl = lim C{1) ~ log cosec ^ farads/m. (104.11) 
TT y.n 

Since U(l)—U(—l) — 2cosh~^(co8ec 

This is the lumped capacity due to the iris, presented to the principal 

wave on the line. The main part of it arises from the immediate vicinity 

of the iris. The justification of the limiting process is that the evanescent 

waves are physically insignificant at distances > b from the iris, and the 

simplicity of the formula obtained by this approximation. The origin 

of the correction term in (56.5) can be seen: the frequency is not treated 

as zero in the evanescent waves. 

Macfarlane has discussed the foregoing problem and the comple¬ 

mentary one in detail. He has defined the radiation admittance (F) 

of the capacitive iris and also of an inductive grid per metre width of 

strip referred to the voltage V of the given frequency across the iris. 

Let P be the complex power supplied by the generator of voltage V in 

order to produce the radiation on both sides of the iris, and to induce 

the field in its vicinity. Then 

(104.12) 

Now the complex power from the iris per metre width is equal to the 

2-component of the complex Poynting vector X H*, where ♦ denotes 

conjugate complex, integrated over two planes parallel to the iris at 

the small distance Az from it on each side, thus enclosing the (fictitious) 

generator. Thus 

P = — J J E„{y,—Az)H*(y,—Az)dy—^ f Az)ff*(y, Az) dy. 

(104.13) 

These integrals are evaluated by noting that Ifg does not depend on y. 
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Consider an infinite loop C formed by the length dx of the line y = j/q 
in the gap and by lines extending from its ends to —oo parallel to z as 

shown in Fig. 91. Now the magnetomotive force round this circuit is 

equal to the time rate of change of electric fiux ^^dx threading the 

loop. Since this is the same for each similar loop parallel to C, and 

since the only contribution to magnetomotive force occurs in the gap, 

provided that we introduce the weak attenuation required to annul the 

field at infinity, it follows that is constant across the gap. In fact 

= (104.14) 

Hence P = | E,(y,0) dy = imV* 

and from (104,12) the radiation admittance is 

Y = = Q-jS. 

(104.15) 

(104.16) 

(j, of course, turns out to be twice the characteristic admittance of 

the line. 

Similar results can be established for the inductive grating. The 

problem of a plane grating of parallel equidistant conducting strips in 

the field of a plane wave incident normally with E parallel to the edges 

of the strips is exactly the problem of a narrow shorting strip across 

a uniform strip transmission line mutually coupled to an infinite array 

of identical transmission lines in parallel. The voltage in the gap of 

the capacitive iris becomes the current in the metal iris strips of the 

inductive one; magnetic flux replaces electric flux and is linked to a 

loop rotated through a right angle with respect to the transmission 

line and terminated by the iris strip. Current generators act in the 

strips and are faced by radiation impedance in place of the admittance 

in the capacitive iris. 
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10.5. Irises In Rectangular Wave Guide (Dominant Wave) 

We now discuss the capacitive iris in the wave guide. Referred 
to rectangular axes bearing the same relation to the wave guide as that 
adopted above in treating the strip transmission line, the electric force 
in the incident dominant wave in the plane of the iris is 

Ey(x,y,0) = Ey{(i,y, 0)C08—. (105.1) 
a 

The corresponding transverse magnetic force must be independent of 
y for the reason already advanced in connexion with the strip trans¬ 
mission line, i.e. 

^x(a;.y.0) = F,(0,0,0)cos —. (105.2) 
a 

The total power that must be fed to the iris in order to maintain the 
radiation and storage fields is 

la 15 

P = — jy*(0,0,0) J cos^^dx J E/0,y,0)dy 

-la -16 

(105.3) 

where V is the voltage across the gap at its centre. 

In place of (104.2) we have 

Ey(x,y,z) 

= co8^[6<,exp(i:jA:joz)+ ^ 6„co8^exp|Tz 

(z ^ 0), (106.4) 
where irfo = i*—(Tr/a)*, 

Concentrating our attention on the plane x = 0 (cf. V above), we 
note that apart from the replacement of of the strip transmission 
line by the problem of the symmetrical capacitive iris in the 
rectangular wave guide is mathematically equivalent to that for the 
strip transmission line. 

The treatment of the inductive strip across a wave guide is somewhat 
more complicated, for we have to deal with the images of the strips 
in the narrow faces so that in the corresponding grating we require 
that the currents flowing in adjacent strips will be in opposite directions. 
By an argument in every respect analogous to that given for the 
capacitive iris we find for the radiation impedance of the iris referred 
to current / in the strips 

2P |/|* (105.6) 
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where °° is the magnetic flux threading through a loop of unit 

width as shown in Fig. 92. In place of (104.2) for the electric field, we 

now represent the transverse magnetic field 

= aicos^€i^*io«+ ^ cos —^ ^ z 

{z ^ 0), (105.6) 

and pass to the magnetostatic problem in which equal and opposite 

direct currents flow in adjacent strips of the infinite grating composed 

of strips of width w spaced a apart between centres. The magnetic 

force due to these currents can be expanded in the form 

= i OnCOs(2n-l)—exp(T(2«-l)-) (z ^ 0), (105.7) 
n-1 ® \ 

which, apart from its first term, is the same as the sum in (105.6) with 

A: = 0, i.e. the quasi-static representation of the evanescent waves. 

Thus we write 

= a^cos—(105.8) 
Ctf 

and H% can be determined from the known solution of the magneto¬ 

static problem in terms of the transformation, when 

F+it7 = K~F2+t(C4-?7,), 
where ^ ^ 

sin(K+fC4) = cosec—sin —(a;-f-t2;), 
4a 2a 

sin(l^-f iC4) = cosec^cos^(a;-f 12), 
4a Ml 

(105.9) 
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and 
'ex 

ev 
az* 

(106.10) 

V is the magnetic potential, U the corresponding stream function: the 

total current in each of the strips is 2it. 

The magnetic flux threading the rectangular loop of width 1 metre 

in the plane a: = 0 firom z = 0 to z = —oo is 

—oo 

= Mo / H^(0,0,z)dz 
0 

and J7(0) = coshcosec 
TTW 

[/(—oo) = 0. 

(105.11) 

(105.12) 

The coefficient is determined as the first in the Fourier series 

representing Hj, when 2 0, i.e. 

\w 
rr •9t'Y‘ 9/wp 

(105.13) 
2 i TT ttx j 2Tr 

a. = ~ I — cos — ax = —. 
a J w a a 

-iw 

Thus the radiation impedance (see (105.5)) is from the last three 

equations 

*" 277 \ 
cosec - 

ttW 

4a )) 
= lz 10" 

= B-jX. (106.14) 

It is instructive to deduce from this the susceptance to be expected in 

standing-wave measurements in the guide. Since the guide is shunt- 

coupled to the strip and the two sides of the guide are in parallel with 

each other to make up the radiation resistance (cf. §6.9), we write 

(106.14) in the form 

Thus the susceptance in question is 

2A, 
^j^cosh-‘|co8ec^j —2j . 

For narrow strips we replace the inverse hyperbolic function by 

log 8a/tp. 
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An analytic method of greater scope than the foregoing is due to 

Schwinger [36]: the approximation is carried to the same point as 

before, namely, by quasi-static treatment of the evanescent waves. 
We shall illustrate it by means of the capacitive iris in the rectangular 

guide and for the dominant wave. 

The electric field in the plane of the iris superposed on the incident 

wave is represented by 

Ey{x,y,0) = cos^r|Co+ ^ (105.15) 
n—1 

where == ^ j 0)cos^^ dr] (n = 0,1,2,...). 

This field initiates waves travelling on each side of the iris, such that 

when superposed on the incident dominant wave of amplitude Eq, the 

transverse magnetic field is continuous across the gap. This requires 

c^cos 
mry 

^0 

We may now substitute for the c’s from (105.15) to obtain the following 

integral equation: 

® cos I j E:Mdr,+?^2 I 
-ito n»i J\y^j (105.16) 

Now replace by interchange integration and sum¬ 

mation, use the known value of the sum 

21 mry nmn 
—cos—7^ cos—= 
no b 

n-l 

SO that (105.16) becomes 

-Jlog2 
Try TTT) 

cos—cos-— 
b b 

= E(y, rj), 

(105.17) 

iU7 

1 J E{r,) dr) J E{7))K(y, r,) dr] = E,. (105.18) 

— JlO ~4U7 

This equation is solved for E{y) and the radiation coefficient for the 

iris determined as cj2Eo. 
47«1.4 B b 
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Solution of the integral equation yields for the electric force parallel 

to ^ in the slit 

Eoooa^ 

Ey = ^(106.19) 

The foregoing method has been applied to the capacitive iris centred 

At a distance from one broad face. The susceptance for a narrow slit, 

of width w is 

^sut • log- 
1 

26 
- 2 2 cos’ 

1 

l”^o/ 1 

'TTWsiniTryJb) ' ' 6 \sl{n^—(2bl\)^} 

(106.20) 

in which the sum is usuaUy quite unimportant.. If a conducting strip 

replaces the slitted plate across the guide, then 

nhv^ 
^strip- * (106.21) 

When the narrow slit or obstacle is presented at right angles to the 

foregoing, it is found for these inductive loads, 

1 ithv^ . .itXq 
Cl 1 * V -- 8in‘ 

^8llt « 

8a sin(7rar0/a) 

(106.22) 

B. strip 2A^sin’ 
■ 28in*^ 

irw 
+ 

m*(wrp/o)[’°® 

where x, is the displacement of the centre of the strip or slit from the 

narrow face of the guide. 

Heins has worked out for a centred strip, whose width is no longer 

restricted to be small compared with a, the width of the guide. 

where 

A„r E—sw}('nwl2a)F I 

o |{l-l-sin*(w«?/^)}/’J’ 

F= j |l-cos*^sin*^J"^(i^ 

(106.24) 

E = J |l—cos®^8in*^j^d(^. and 
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10.6. The Hertz-vector of the Radiation induced by an Electric 
Dipole in the Rectangular Guide 

We assume harmonic oscillations of frequency a)/27r. From Maxwell’s 

equations , 
(V2+i:2)E = —jcD/ioiH—gradp, (106.1) 

and the conservation of electricity requires 

ja)p = divi. (106.2) 

Let us now use the operator method of the Fourier transform, with 

the vector Jp representing the grad operator. In order to justify this 

procedure, we must assume that the current i dies off suitably at 

infinity. Since we shall be interested in localized current, this is clearly 

ensured by the physical conditions. 

Let I(p) denote the Fourier transform of the given current distribu¬ 

tion i(r) (r = (x,y,z)). Then the Fourier transform of E(r) 

Similarly (V*+A:*)H = —curli, (106.4) 

and hence H(p) - . (106.5) 

Now we know that only the characteristic distributions 

and hence H(p) = 

(106.3) 

(106.5) 

// 2 \ . m7TX . n-ny \ 

(m,n integers) (106.6) 

// 2 \ mnx niry 

J\^I ^ “6" ’ > 

are permitted by the boundary conditions on the guide wall. The 

former is proportional to the z-component of electric Hertz-vector 

and hence to for the mnWi characteristic IT-wave, and the latter, 

Vmn> 2-component of the magnetic Hertz-vector and hence to 

Hg in the corresponding TiSZ-wave. From this limitation on Hg and Eg 

it follows from (106.3) and (106.5) that the components of i must be 

expressible as 

.• _ .-(t) _ W -•«) 
iy = = 22 

(106.7) 
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These require that the tangential components of i vanish on the 

wall. 

On account of the discrete spectrum of i in so far as concerns the 

dependence of I on and Pyy which fact is evident in (106.7), we may 

simplify by using Fourier transforms in connexion with z only, and 

writing 

= [ I^Kp,) , (106.8) 
jO}/lmnL ^mn' -PI J 

where P^{Pt) is the Fourier transform of (“ = 1.2,3); and when 

U^niPt) has been inverted to a fxmction of z it is to be multiplied by 

Bm(miTz/a)^(niry/a) to give the mnth TM-w&ve. Similarly 

V (ry\- + n06 01 
^mn\Pt) TJ2 "P _^2 > [lUO.y; 

^mn ^mn Fz 

and when been inverted, it is to be multiplied by 

co8{m7Txla)cos(mrylb) to yield the mwth TF-wave due to the original 

current distribution which was supposed given. 

These formulae may be applied to fincf^he* Hertz-vectors which are 

the characteristic generating functions for the two types of waves in 

the guide, excited by a given current distribution. They show clearly 

that TiJ-waves are coupled only to transverse electric antennas, 

whereas Tif-waves are coupled in general to any electric anteima, 

whatever its orientation in the guide. 

An isolated electric dipole is a singular current distribution. In order 

to show the method, we shall deal with the dominant wave (m = 1, 

n == 0) 

jMo« IwHPz) 
" klo-pV 

(106.10) 

This shows that we are concerned only with the component of current 

flow parallel to y. Now suppose that the current constituting the 

dipole is confined to the element da inclined in the direction (L, M, N) 

at the point (Xj, y^, 2,) in such a way that 

j j j i dxdydz = Iq ds. (106.11) 

Then using the notation of the 8-function, we have 

iy — I^M daB{x—Xj)8{y—yi)8{z—Zi) (106.12) 
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j j j e-^»*»sm^8(a;—®i)8(y—yi)8(z—Zi) dz 

(106.13) 
^LMds , . TTXi 

= —sin—i. 
oo a 

We require to invert the Fourier transform 

This is given by 

^I^Mda . Trrri 1 T 

mp) 
J4o-p^’ 

Now the integral represents! 

j^ikii^z-zd 

and 

(106.14) 

(106.16) 

Thus with the aid of (103.2) we see that the electric force in the domi¬ 

nant wave for 2 > is given by 

n ,l207Tk I^M ds . TTX^ ^ . TTX 
Ey =j—-. (106.16) 

no 

10.7. Field due to a Linear Antenna: Impedance 

For a thin antenna, parallel to y at the position (x^, Zj), the current 

distribution will be assumed sinusoidal. If the length {1) is not a re¬ 

sonant one, at least one end of the antenna must be connected to 

another electrical system, for one end cannot then be the position of 

a current node. Let us suppose that the antenna is straight and extends 

between y = .0 and y = I, the latter being free and therefore a current 

node, then 
iy = lQsink(l-y)8{x-x^)8(z-Zi) (107.1) 

and f^(p) = ^(1-cosH). (107.2) 
aok CL 

The electric force in this dominant wave has the amplitude 

^v/«(l_cosH)sin^. (107.3) 
ab CL 

t See Titchmarsh, Theory of Fourier IrUegrals, Oxford, 1937, pp. 4 and 43 on general¬ 

ized Fourier integrals. 
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Thus the power radiated by the antenna in both directions down the 

guide is 

W 
2abW 

“COS 
a 

(107.4) 

and the radiation resistance of the antenna at the point where it enters 

the guide is 
W 

-?f~tan^ 4Hsin®^^ ohms. 
abk^ a 

(107.6) 

If a reflecting plunger is placed at 2 = 0, it is easily seen, by introducing 

the image source in the reflector, that the radiation resistance is 

—^^tan^^sin^ —sin^^io^i ohms. (107.6) 
abk^ 2 a 

Synge, Infeld, and Stevenson [36] have deduced this result by con¬ 

sidering the system of images of the antenna in the guide walls. These 

images make up a lattice constituted by the superposition of eight 

b€^ic lattices. The distant field due to the lattice is calculated by 

summing series. The mathematical difficulty in the calculation lies 

essentially in the representation of the discontinuous wave-function 

propagated on the two sides of the antenna in different directions. 

Copson [37] has worked out in full the Fourier integral representation 

of the Hertz-vector due to an electric dipole, taking account of the 

boundary conditions imposed by the guide walls. 

While the calculation of the radiation resistance of an antenna in 

a wave guide does not involve computational difficulties—indeed, as 

already mentioned, results have been obtained for antennas of different 

shapes and in different positions both in rectangular and circular 

guides—the calculation of radiation reactance is protracted. Infeld [38] 

has treated the radiation impedance of a straight thin antenna in a 

rectangular guide by assuming sinusoidal distribution of current in the 

wire and calculating the field due to it. The radiation impedance of 

the antenna in the guide closed at one end is equivalent to that of a 

free antenna surrounded by eight lattices of images. We have already 

seen that the presence of the reflecting termination can be taken 

account of after the problem of the antenna in the open guide has been 

treated. Thus only four lattices need be considered. The radiation 

impedance of the antenna in the guide can therefore be represented 

as the sum of the self-impedance of the free antenna and of its mutual 

impedance with each of the elements of all the lattices, due account 

being taken of the fact that some elements are parallel and some are 
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anti-parallel to it. These impedances are deduced by the e.m.f. method, 

that is, using exactly the considerations introduced in § 10.4. Let 

be the radius of the wire, and E{p^) represent the electric force at the 

surface of the wire, then the self-impedance of the antenna A is 

0 ® 0 (107.7) 

If, being the driving-point current at y = 0. The mutual impedance 

Zjg, that is, the contribution to the impedance of antenna A from 

antenna B is 
i 

J (107.8) 

Infeld set out from Sommerfeld’s formula expressing in integral form 

the Hertz-vector due to a dipole, by summing elementary cylindrical 

waves, and derived an expression for the electric field parallel to the 

finite antenna, and so proceeded to evaluate the impedances. The 

success of the computation lies in the transformation of the double sum 

over each of the lattices into a rapidly convergent form. 

The method of images is applicable only to a few types of wave guide 

with suitable cross-sectional form. A general method for calculating 

the impedance of an antenna in a wave guide of arbitrary cross-section 

has been indicated by Stevenson [39], who has given general formulae 

for the radiation resistance when only a single E- or ff-wave is trans¬ 

mitted by the guide. In the notation of § 10.3 the results (in ohms) are 

(i) TJlf-wave: 

R = 
l/olWg 

(ii) TE-w&ve: 

R = 
Zpk_I r / . 

ejsir i„^]amK„zds 
dx 

(107.9) 

Iq is the current at the feed-point, ds is an element of length along the 

antenna which is referred to the plane of the reflecting plunger as the 

a:j/-plane; i^, iy, ig are current components at the point {x,y,z). The 

above formulae hold for a guide of any cross-section and for any 

assumed current distribution along the antenna. 

The detailed calculation of impedance for a longitudinal antenna in 

circular wave guide has been carried through by Infeld [40], who also 



192 FIELD REPRESENTATIONS [Chap. X 

discussed the matching problem for the JE'oi-wave which the antenna 

is intended to excite, 

10.8. Field in a Wave Guide due to an Assigned Distribution of 
Tangential Electric Force over an Aperture in the Wall of the 
Guide 
This problem has been solved independently by Bethe [41] and by 

Stevenson [42]: what follows is based on the latter’s method. 

Let V denote the outward normal and s the direction of the tangent 

to Cy the boundary of Ay the cross-section of the guide as shown in 

Fig. 93; the axis of the guide is parallel to z, and rotation from v to s 

Fio. 93. 

is in the same sense as that from x to y. We shall think of and 

as given functions of position on Sy the wall of the guide; of course, 

they differ from zero only at the aperture. At infinity inside the guide, 

we shall suppose the field to tend sufficiently rapidly to zero for mathe¬ 

matical purposes; the hypothesis of weak attenuation in the course of 

propagation is physically acceptable and would serve. 

Inside the guide E^ satisfies (102.8). Hence by a well-known result 

in the theory of Green’s functions,f 

E,iP) = j dS'. (108.1) 

8 

P is the point (*, y, z) and P' is (x', y', z') in the domain of integration 8. 

The Green’s function 0^{P, P') is defined by the following properties: 

(i) regarded as a function of P satisfies the wave equation every¬ 

where within 8 except at the point P'; 

(ii) Gj = 0 when P is on /S'; 

(iii) As P -► P', -»• 00 as l/4nr, where r is the distance from P to P'. 

t Bateman, op. cit., { 2.32. 



10.8] FIELD REPRESENTATIONS 193 

To obtain the result expressing in terms of and in the 

aperture, we use Maxwell’s equations in the coordinate system v, s, z. 
Then 

. jj dEg dE^ 

Differentiate with respect to v, use the wave equation, and obtain 

^ (108.2) 
dv / dzds\ 

Now introduce the second Green’s function O^iP.P') which satisfies 

dOJdv = 0 on S, and tends to infinity like — l/47rr as P -> P'. Then 

L\ / J 

Integrate by parts twice with respect to z' and s\ use the condition 

that Eg and -> 0 at 2 = db^) we may replace (108.3) by 

® (108.4) 

Equations (108.1) and (108.4) give E^ and respectively in the guide, 

if and 0^ are known. Further, Eg and P, may have discontinuities 

on the wall; hence the formulae apply in the case of an aperture. 

To find the two Green’s functions, we apply equation (103.5) with 

y, z) = 8(x—x')8{y-~y')8(z~z'). (108.5) 

From (103.8) (108.6) 

The solution of this equation subject to a^(z) ~ as 2 -> +00, and 

®a(^) ~ as 2 -> —00, is 

aa(z) = — 

Hencet O^iP, P') = - V VM^', j/')c'^-'i. (108.7) 

SimUarly G^{P,P') = y ^v„{x,y)v„{x',y')ei^<-\^-^i, (108.8) 

from which there has been omitted a term proportional to which 

does not contribute to the field in (108.4). 

t Cf. Tamarkin, J. D., ami FoUer, W., Partial DiJJeretUial Equations (Brown Univer- 

•ity. 1041). p. 252. 
4791.4 O C 
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Substituting for the Green’s functions in (108.1) and (108.4) and 

using the contracted notation u„{x',y') = u'g, etc., we have for the 

generating functions of the TM~ and T^-waves 

- 2 J iS’. (108.9») 

V{P) = 2 J dS’- 

^ ^ s 

J dS', (108.9b) 

the + or — sign being taken in (108.9 b) according as 2 > z' or 2 < 2'. 

These formulae show clearly that to excite TJf-waves by means of 

an aperture it is the longitudinal component of the tangential electric 

force that is effective, whereas to excite TJ5-waves both longitudinal 

and transverse electric force in the aperture are effective. Further, for 

strong coupling should be concentrated where dujdv' is maximum 

for TJf-waves, while for TE-wAves, E^ should be concentrated at 

maximum Eg at maximum dv'Jds', In a circular wave guide, for 

example, these places for TE-wa,ve excitation are 90° apart on the wall. 

10.9. The Resonant Slot in the Rectangular Guide 

Let us consider first an infinite conducting plane in which is cut a 

narrow slot and a wave incident on it from one side. Since we are 

interested in the first resonance of the slot, its length will be about 

one-half wavelength. From the near-symmetry of Maxwell’s equations 

in E and H we have already seen that this problem is essentially the 

same as that of an antenna in the form of a narrow conducting strip 

scattering the incident wave in which the vectors E and H are inter¬ 

changed. Now, in the electric antenna it is the longitudinal current in 

the strip and hence the transverse tangential magnetic force at the 

surface of the strip which is of importance in determining the radiation 

field due to the antenna. The magnetomotive force between the long 

edges of the strip is equal to the electric current at the same section 

and varies very nearly sinusoidally with distance along the strip, the 

maximum at the centre. Thus, in the slot problem, the important field 

components are the tangential components of E transverse to the slot 

and of H along it. For a narrow slot, transverse electric force is 

associated with the e.m.f. e which is equal to the magnetic current 
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required to produce the radiation field of the slot. The foregoing con¬ 

clusions may be expected to apply at least approximately to a slot in 

a wave guide coupled to free space or to a slot in guide-to-guide 

coupling: near resonance, the voltage is distributed very nearly 

sinusoidally and vanishes at the ends of the slot. When the slot extends 

round a comer and is therefore bent sharply, the sinusoidal distribution 

may be expected to fail. 

We have to introduce a convention as to how the position of the slot 

is to be specified with respect to the guide. We take the z-axis along 

one of the edges of the broad face containing the slot, and a right- 

handed system of axes, so that the a:-axis passes through the centre of 

the slot and the t/-axis is parallel to the normal to the guide face drawn 

into the guide, so that Fig. 94 views the guide face containing the slot 

from the outside. Let be the distance of the centre of the slot from 

the 2-axis, and the acute angle d between the z-axis and the axis of 

the slot be taken as positive, if in the same sense as the rotation Oz to 

Ox: so we have always < 0 < 

To describe the tangential field at the slot, we find it convenient 

to introduce axes (f, through the centre of the slot as shown, the 

f-axis making an acute angle with Oz, and a rotation 0^ to Orj 

having the same sense as Oz-> Ox, The component of E across 

the slot in the -direction, when integrated across the slot yields the 

voltage e{^): 

e[0 = jm,r))dv> {109-1) 

2c being the width of the slot. 
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We combine (103.1) and (103.2) to obtain 

„ 1 e>v . dU 

® /io dxdz By ' 

(109.2) 

The functions U{x,y,z) and V(x,y,z) are given by (108.9). Now relying 

on our conception that only is important at the slot, we have 

U = U'sind, 

where 
V = F'cos 0+7'sine, (109.3) 

7' = Ij 0,{i, r.e. V) di'dT]'. (109.4 b) 

S 

® ^ s 

{x\z') or is a point of the domain of integration, the slot S, and 

after differentiation we are to put y' == 0. The upper or lower sign in 

the expression for V'' is to be taken according as 2 > z' or z < z\ 

We require an expression for so as to apply the equation of con¬ 

tinuity of longitudinal magnetic force along the slot inside and outside 

the guide, the wall of which is taken as infinitely thin. Since 

= {HgCose+H^sine)y„Q, 

we have from (109.2) and (109.3) 

(109.6) 

rj) = cos^^i +co8 0sin( 

Now J = oo8<«|;+2c<»9»n(»^+Bm*«|;. 

Substitute for cos^{dydz^) to obtain after rearrangement and use of 

(109.4) 

V) = V), (109-8) 
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where 

^ 8 
H\ dx dx' 

J_ 

1C dx 
di'dr}’+ 

+" 2 J %’ wj, 
^ (109.7) 

and 2/ =F y' = 0 after differentiation. 

It has been assumed that term-by-term differentiation of the infinite 

series is legitimate. On account of the exponential factors, if z z\ 

this is so; but at points of the domain of integration for which z z' 

it may not be. In this event, one must exclude a small region from the 

integrals and add integrals over this small region where differentiations 

occur outside the sign of summation. With this precaution and ex¬ 

cluding the case 0 we may show that J(^, rq) remains finite as 

€ -> 0. With an error of order ejl we may replace it by 

J'o(^)= / F{tne(i')d^\ 

where 

F{i,n = isin*0 1V ^ ^ 
k ^ \HI dx dx' 

I d^v„ 
a; ax* '•) 

(109.8) 

+k 
a;"’ IJ 

i^sin acosa 2 + 

in which after differentiation we put 

X = Xi+^sinOy z = ^cosOy 2/ = 0; 1 

x' == a:i+^'sin0, z' = f'cos^, y' = 0. / 

Thus we have 7,) = (109.10) 

The magnetic field outside the guide is calculated on the assump¬ 

tion that the slot is cut in an infinite conducting plane. It may be 

inferred in exactly the same way as the electric field due to a thin 
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antenna in the form of a flat strip having a given current distribution, 

so 
V) == + V') di'dr)', (109.11) 

where r is the distance between (^, -q) and (fq). 

Now suppose the incident dominant wave of complex amplitude A 

(reckoned at the centre of the slot) to travel in the positive ^-direction, 

and let Af(^)lfjLQ be the f-component of the tangential magnetic force 

in this wave. Continuity of the tangential magnetic force at the slot 

requires 

(109.12) 

This is an integro-differential equation in which would usually be 

solved by series methods. The principal part of the solution is governed 

by the same considerations that have already been discussed in the 

literature of the electric oscillator, and we know physically that the 

most important term in the distribution of e{$) is proportional to cosk^. 

Accordingly let e(i) = p’oosk^, 

and operate on (109.12) in the usual way for finding coefficients in a 

Fourier series; we then have 

inif J 
s \ 

= -Ai-p' jj d^di' F{i,^')coaHcoaki', (109.13) 

-z 

I 
I — jf{^)coak^d^. (109.14) 

Let us rewritef the integral on the left as 

where 

s a 

Approximate expressions for these two integrals are respectively 

i.og^e(f) (109.16) 

t This st^ follows Hallen’t method discussed by SohelkunofI, l.o., 1046. 
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and J (109.16) 

-I ' 

where Oid,^') means tj; Now substitute in (109.13), 

put e,iakl — 1, and we have 

P_ 
A 

1 
K' 

(66.1) 

the result already quoted in Chapter VI, where 

K 
—ii 4i! 

~ Inrr_ 

+ 

log^cosW-i J [G,(Z,f )+(?2(-Z,r)]cosA:f df+ 

-I 

^ J ^d^'— JJ F(^,^')coBk^co8k^' (109.17) 

-i -i 

The first term is retained because, as Stevenson [43] has shown, the 

approximate solution]* depends on 2 log(4Z/€) being much greater than 1; 

in all other terms we may write k = 7r/2/ or Z = JA. 

If the incident wave is travelling in the negative 2-direction and is 

of complex amplitude B, the amplitude p of voltage at the centre of 

the slot is given by 

Z ^ 
B K' 

(66.2) 

To complete the calculation we use the second formula of (108.9) 

employing only the value of a for the dominant wave, because all other 

terms correspond to evanescent waves. We assume a sinusoidal distribu¬ 

tion of voltage along the slot, the amplitude at the centre being p\ 

By referring to (103.2) and (106.6) and (109.5), we readily obtain for 

the amplitudes of the dominant waves radiated to the left and right 

respectively and with L == aii^lTT^bkk^^ and ^ defined in 

(109.14). Thus the results on the basis of which §6.6 was developed 

are established as the first approximation in the field representation. 

For a laterally displaced slot cut in standard iS-band guide with 

A = 10*7 cm., Pounder [44] has worked out Stevenson’s result numeri¬ 

cally. The impedance of this shunt slot is Z = R—jX, where 

^ _ F{xi)—C8llog{Ul€) 
cos^inxja) 

U = JA—-Z, and Xi is measured from the inside edge of the broad face. 

t Cf. Schelkunoff, l.o. 
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C is the constant M94 cm.-^ with the appropriate data. In Pig. 95, 

F(x^ is shown as a function of xja and the value of hi for resonance 

(JC = 0) is shown on the same figure, corresponding to three different 

widths of slot. From the shape of the F(x{j graph, we see that the 

length of a resonant slot increases parabolically with its displacement 

from the centre of the broad face in which it is cut, provided that the 

displacement is not too great. 

If the slot is in the narrow face of the guide, a similar calculation 

can be carried through, and the results apply in the same way as 

before, if, in X, a replaces 6 and vice versa, and the expression for I is 

that given in (66.4). For an end slot, that is, one cut in a plate terminat¬ 

ing the guide at right angles to its axis, the same principles apply. 

We require, however, a new expression in place of (109.10) to represent 

the longitudinal component of magnetic force in the slot due to the 

very nearly sinusoidal distribution of electric force across it. The 

method of images seems best suited to this purpose; the evaluation of K 

in (66.1) for this case has not yet been carried out. 

The coupling of two guides by means of a slot when the wall is infi¬ 

nitely thin can evidently be treated by the foregoing method. We can 

now dispense with equation (109.11) and the assumption it involves, 
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namely that the slot connects the inside of the guide with space above 

the infinite plane in which the cut broad face lies. Instead we use 

the analogue of (109.10) for the second guide. The conventions for 

specifying the configuration are the following. The position of the slot 

with respect to the second guide is given by a second pair of parameters 

(o^i, 6); the ^-axis, which lies along the length of the slot, is common to 

both guides, but the direction of the 17-axis must be reversed if is 

to have the same direction in both when positive: in consequence, once 

the direction of z is chosen in the first guide, that in the second is fixed. 

The essence of the argument for the general case of single slot coupling 

of guides is already given in § 7.3. It remains to specify K^2 explicitly: 

it is derived in quite the same way as K above. If we use superscripts 

to distinguish the functions and defined respectively 

in (109.16) and (109.9) for the single guide, then 

Ki2 = —^log —cosH— 
TT € 

-z 
z - JJ F«>{^,f)cos)l-^cos)tf d^df - 

-z 
z 

— jj $')cos cos dfd^'. (109.18) 
-z 

10.10, The Longitudinally Polarized Array of Slots 

As the final application of these principles, we shall discuss, to the 

same degree of approximation as before, the field representation of the 

mutual interaction between the slots of a longitudinally polarized array. 

Since the slots are spaced at such distance apart that evanescent waves 

inside the guide play no part in their mutual interaction, we need only 

consider the single slot in the array excited by the dominant wave in 

the guide and under the action of the field due to each of the other 

slots radiating outside the guide. 

Let us number the slots 1, 2, 3,..., N according to their order in one 

of the narrow faces of the rectangular guide. Since each slot is approxi¬ 

mately JA long, the voltage distribution along each slot will be 
4791.4 D d 
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approximately sinusoidal. Let denote the complex, amplitude of 

the voltage at the centre of the ^th slot. The problem is to establish 

the connexion between the p, and the wave incident from the generator 

inside the guide at one end, in terms of the spacing, inclination, and 

length of the slots. 

In the first place, we have to replace equation (109.11), which served 

for a single slot, by 

n I 8^ \ r 
~ 2 I ~r '^m) 

where is the T^-component of electric force in the mth slot, 

is the distance between rj^) and 17^), and each integral in the 

sum is an integral over a slot including the sth one. Accordingly, 

equation (109.12) must be altered by adding to the expression on the 

left referring to the 5th slot the sum on the right of (110.1) above, 

from which the 5th term of the sum has been omitted. On the right 

we must write in place of A the complex amplitude Ag which denotes 

the amplitude of the wave travelling in the direction of z-increasing, 

reckoned immediately at the 5th slot on the incident side, which we 

take as usual to be the left. Proceeding exactly as with a single slot 

we find 

iq«np^ = A,t„ (110.2) 
m-l 

where = A",, 

the value of K calculated in accordance with (109.17) for the 5th slot, 

and 
I 

q„„= j F^coslctd^,, (110.3) 
-I 

being the component of H along the 5th slot in the waves outside 

the guide due to a sinusoidal voltage of unit amplitude in the mth slot. 

The foregoing is the basis of the discussion in § 8.9 of the array with 

non-resonant spacing of the weakly coupled slots excited by a travelling 

wave. When the slots, although still weakly coupled to the guide, are 

at resonant spacing, we can no longer overlook the scattered waves in 

the guide. Let Bg denote the complex amplitude of the wave travelling 

to the left immediately to the right of the 5th slot, then 

2 q>mPm == 
tn—1 

(110.4) 
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Now by the principle of superposition, for the dominant wave in the 

guide, 

m—1 

m««+l 

Let J5q be the reflected wave amplitude from the whole array reckoned 

at the position of the first slot, then B^jA^ = Wq is the value of the 

circle-diagram variable corresponding to the input impedance reckoned 

at the same position. 

Thus IOqA^ = 

and eliminating we find 

Bg = Wo 2 
1 « + l 

and 

1 

1 « + l 

At spacing, and with weak shunt loading (^* = ^g) 

m 

SO lhat for matched input we require 

l7smP,n = i-iy-^ACs- 
m 

The design problem for this type of array appears to consist in finding 

the Cs from which the inclination and length of each slot can 

be found, when thep,„/Ai are known, as they will be, from the amplitude 

distribution and the fact that all the energy is radiated. 

The foregoing appears as a straightforward attack on the problem of 

the antenna design, which it should be possible with sufficient com¬ 

putational aid to carry through by successive approximation. There 

are, however, reasons which lead one to doubt the correctness of this 

method of approach. In the writer’s experience every array of this 

type which was made in the laboratory gave a good main lobe normal 

to the array, even although the amplitude distribution may not have 

been satisfactory and the input impedance far from expectation. It is 

well known that the mutual effects are strong and extend over many 

slots. These facts point to a much more stable phase distribution along 

the array than the simple theory we have discussed seems capable of 
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explaining. They point strongly to a multiply-coupled system as the 

mechanism by which the phase is preserved across the array; that is, 

the array should be thought of as a set of parallel tuned circuits coupled 

by mutual impedance. In the lowest order mode of this system, all the 

elements oscillate in phase, and it must be this mode that is excited 

by the wave in the guide. Furthermore, the possibilities of current 

flow on the outside of the guide allowing this simple phase distribution 

are quite complicated, so that slot-length is not a critical factor in 

determining the phase distribution in the way indicated by the fore¬ 

going calculations. Slot-length does enter to affect the amplitude 

distribution and the input impedance. We may conclude then by 

remarking that the projw understanding of wave-guide arrays of this 

type depends on a more adequate representation of waves on the out¬ 

side of the guide. 
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