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PREFACE 

This book grew out of a set of mimeographed notes prepared 

by the author for a series of lecture courses, offered at the Poly¬ 

technic Institute of Brooklyn in 1942 and 1943 under the sponsor¬ 

ship of the War Training Program. 

The notes, and the lectures, were intended chiefly as back¬ 

ground material supplementing the practical information that 

the students (raostly engaged in industrial work) already had in 

communications and related subjects. There was no attempt 

to cover these subjects comprehensively. 

The same may be said of this book, although it bears but little 

resemblance to the original notes and has an altogether different 

character. The book aims primarily at broadening and strength¬ 

ening the foundations for a superstructure of technological 

knowledge which the reader may be about to acquire or may have 

acquired through the exercise of his profession. 

It is fairly well agreed among teachers of Communications and 

Radio Engineering that students of these subjects generally 

approach them without adecpiate theoretical preparation. Yet 

it may be unwise to offer more background theory to the student 

not yet acciuainted with the practical aspects of the art, because 

of his natural desire to get away from ai)stract ideas and absorb 

factual information of a descriptive character. 

Later, however—perhaps in the senior year, or in graduate 

school, or even after some years of industrial experience—the 

same student or engineer may well profit from a thorough over¬ 

haul of his knowledge of fundamental theory, especially if, at 

the same time, he is shown how to use modern timesaving meth¬ 

ods of analysis and computation, which may help him in his 

work. This going-over need not '‘start from scratch,'’ as the 

concepts of elementary alternating-current theory, for example, 

will be familiar to such a reader: these are the concepts that sink 

in and become second nature through constant reference, in 

contrast to others that are apt to fade into a dim background. 

What is needed perhaps as much as anything else is a fresh 

slant, showing how many different ideas, seemingly unrelated 
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because acquired in connection with totally different problems, 

are in fact closely associated. 

If it is to meet these requirements, a book such as this must 

be built upon a solid mathematical framework and cannot be 

‘^ight reading.^’ Yet it must remain accessible to readers of 

average mathematical preparation. When unfamiliar branches 

of mathematics must be called upon, these should be adecpiately 

introduced, taking advantage of the fact that the physical prob¬ 

lem often throws as much light on the method used in its analysis, 

as it derives from the analysis itself. It is hoped, for example, 

that the reader may become familiar with the fundamentals of 

complex-function theory through its frequent applications to 

network and impedance transformation theory as carried out 

in the book. 

Alany recent books, essentially different from this in character 

and purpose, devote much attention to subjects requiring a 

working knowledge of vector analysis, such as the general solution 

of dynamic field problems in three dimensions, usually as a 

preliminary to the treatment of radiation and wave guides. 

In compiling this book it was felt that its main objective would 

not have been furthered by the inclusion of these suiqects, in 

view of the existence of excellent recent treatments, and because 

radiation and wave guides are not often among the subjects that 

reejuire strengthening or integrating, but are more likely to be 

approached as totally new subjects. On the other hand, the 

prereejuisite of vector analysis may be expected to constitute a 

serious obstacle. Maxwell’s equations are applied in this book 

to circuit and line analysis without recourse to the vector- 

analytical form; yet the transition from the (luasi-static to the 

dynamic state is emphasized, thus laying the groundwork for 

the next step, namely, the expression of Maxwell’s equations in 

differential form and their application to radiation theory. 

It may be objected that other subjects of somewhat limited 

interest, and likely to be new to the reader, are treated here— 

for example, the multisection transformer, generalized selectivity, 

and the exponential line. These discussions are offered as exam¬ 

ples of the more advanced type of problem which may be attacked 

with the help of the methods presented. It was also felt that 

some of this material, not yet covered in the literature, may be 

of use to practicing engineers. 
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One of the guiding principles of this book is that essential 

ideas require repeated presentations of increasing thoroughness, 

to be fully assimilated. For this reason, the book will appear to 

go over the same ground more than once on occasion; sometimes, 

a subject will be briefly mentioned, under the assumption that the 

reader does not require formal introduction; later, the same point 

may undergo a more thorough treatment. 

The author acknowledges his indebtedness to Professors Robin 

Beach, Frank Canovaciol, George Hoadley, and Ernst Weber, 

and to Dr. William Maclean of the Brooklyn Polytechnic Insti¬ 

tute, for their helpful advice and suggestions. To Mr. Lewis 

Winner, editor of CommunicalionSj the author is particularly 

grateful for his valuable assistance in the preparation of the 

manuscript and illustrations. 

Paul J. Selgin. 

Fort Wayne, Ind., 

March, 1946. 
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ELECTRICAL TRANSMISSION 

IN STEADY STATE 

CHAPTER I 

INTRODUCING THE FOUR-TERMINAL NETWORK AS A 
CIRCUIT ELEMENT: SOME GENERAL PRINCIPLES 

1.1. Circuit, Field, and Network Problems. Engineering 

problems are usually solved by considering, in place of the true 

physical situation, an ideal one about which relatively simple 

statements, capable of mathematical expression, can be made. 

Electrical engineering problems lend themselves to this process 

of idealization to a varying degree and may be distinguished 

accordingly. 

Electrical systems are frequently idealized in that they are 

considered as a combination of circuit branchesy or two-polcs. 

The branches are interconnected by their terminals (two for 

each). Each branch has a voltage across it and a current through 

it, both uniquely defined (Sec. 12.7). The branches are fre¬ 

quently assumed to be linear (Sec. 1.7), in which case branch 

voltage and branch current arc related by a linear differential 

equation—the branch equation (Sec. 12.7). Certain funda¬ 

mental properties of voltage and current, following directly 

from their definition, impose conditions, known as Kirchhoff's 

laws (Sec. 12.1), which, added to the branch equations, assign all 

voltages and currents in terms of any one. 

The theory built upon these premises is commonly known as 

circuit theonjy and we may class under the heading of circuit 

problems those which may be adequately handled by this theory. 

Generally speaking, circuit theory ceases to be valid when the 

electrical quantities change very rapidly with time; hence it 

cannot accurately handle very high frequency transmission 

problems. Often circuit theory, although valid, is not the most 

convenient method of approach, in the sense that the branch 
1 
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is not the most convenient unit into which the system may be 

resolved. 

At the other end of the scale, we find situations which may only 

be handled, if at all, by direct application of the laws of electro¬ 

magnetism to each volume element of the physical system. In 

their treatment, voltage and current may not be used as variables 

because they are no longer uniquely defined (Chap. XII). The 

field vectors E and H, D and B, used only implicitly in circuit 

problems, now appear as the variables. The fundamental laws 

of electromagnetism, Maxwell's equations (Sec. 12.2), expressed 

in differential form, mutually relate these variables, and their 

integration solves the problem. 

This approach idealizes only with regard to the intimate struc¬ 

ture of matter and occasionally simplifies the geometry of the 

problem. Its limitations arise not from restricting assumptions 

but from analytical difficulties. 

Problems requiring this type of approach are known as field 

problems; many of them, requiring the field approach because of 

the high value of frequency, go under the heading of microwave 

problems. 

In addition to circuit and field problems, a third group of 

problems is subject to yet another method of approach. Prob¬ 

lems of this group generally arise in the study of complex or 

extensive systems. They are solved by dividing the system into 

units or parts, which in turn are individually and separately 

subject to either the circuit or the field approach but arc often 

regarded as independent functional wholes characterized by 

numerical constants (Sec. 2.2). In the absence of any other 

widely accepted, precise designation, the term network problems 
will be used for this group. 

In the present treatment, the term network will refer to any 

part of an electrical system having more than two points of contact 

with the rest. In a narrower sense, network will often be used to 

indicate a linear, passive four-pole (Sec. 1.7). 

A network may or may not include, as the word suggests, a 

number of interconnected branches; some very important net¬ 

works (for example, transformers and lines) are not so con¬ 

stituted. On the other hand, a combination of branches, 

however complex, having less than three points of contact with 

the outside is not a network according to the present definition; 
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if it has two points of contact, it is a branch or two-pole; if one 

or none at all, a closed system. 

An alternative, perhaps more suitable, designation for network 

is n-pofe (four-pole, six-pole, etc.). The term two-pole is the 

equivalent of branch. 

Network problems might well be called transmission problems 

because all transmission systems (whether for power or com¬ 

munication) are studied most conveniently by subdivision into 

networks. 

It may be said more specifically that the unit of transmission 

systems is the four-terminal network or four-pole. This will be 

substantiated in the next section by generic considerations valid 

for both electrical and mechanical systems. Later on in the 

chapter, the reader will find outlined the functions that individual 

transmission networks are required to perform and the assump¬ 

tions upon which is based the solution of network problems. 

1.2. Two-point Transmission. Networks and Mechanisms. 
It is possible to state quite generally that if there is energy inter¬ 

change between two parts of a closed system, electrical or 

mechanical, and if this interchange depends on contact, there 

must be no less than two distinct points of contact between the two 

parts. The two points must be distinct in the sense that if 

they are located within a single area of contact no energy will 

flow. Situations in which energy is transmitted entirely by 

radiation, or by sound, are not included in the statement. 

The statement is self-evident with regard to most electrical 

systems, with some possible exceptions. 

Consider, for example, an isolated metal sphere that is being 

charged through a single wire. In appearance, the sphere 

receives energy only through the charging wire, or at any rate 

by virtue of it. (The location of the flow’^ of energy need not be 

discussed at this point.) Actually, this is not correct. As the 

sphere receives its charge an equal and opposite charge must go to 

ground; energy must be associated not with a single charge, but 

with both (as in a condenser). The receiver is therefore the part 

of the system which includes the sphere and ground and con¬ 

nects to the source (the electric generator) at two points: the 

charging wire and the grounding wire. 

There is a mechanical parallel to the above. A crane lifts a 

bale of cotton, apparently supplying it with potential energy 
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through a single point of contact (the hook). But here again, the 

energy of the lifted weight does not change, except by virtue of 

its position in the earth^s gravitational field. Therefore, a 

combination of the earth and the bale of cotton should be con¬ 

sidered as receiving energy. Such a system acquires energy 

because a part of it is separated from the rest against the force 

of gravitation. So did the condenser of the preceding example 

acquire energy, when its two conductors acquired equal and 

opposite charges. We shall return to the analogy between 

charge and separation (Sec. 1.5); for the present we observe, 

that two points of contact are necessary for energy interchange 

in the example, the contact with the lifted weight and the contact 

with ground. 

A bow releases an arrow. The arrow appears to have received 

kinetic energy by contact at a single point. But how much 

exactly is this energy? We say where v is referred to the 

earth. But if the arrow were to reach some planet other than 

the earth it would release on collision some value of energy not 

equal to We cannot assign a value to the arrow’s kinetic 

energ}" except in relation to the earth and under the tacit assump¬ 

tion that its motion will end on the earth, where it started. 

Two masseis having a mutual velocity (the earth and the arrow) 

constitute a system endowed with a definite amount of kinetic 

energy; not so a single moving mass. 

In the examples chosen, two-point transmission is not evident 

because there is no question of a clo.sed system unless we include 

ground. Mechanically, ground is any fixed rigid framework, 

electrically, ground is any conductor at ground potential. We 

may thus differentiate between closed systems that include 

ground and those that do not. Electrical systems of the first 

type are called unbalanced; of the second, balanced. It should 

be added that some systems are considered balanced when the 

contacts with ground carry only direct current. Likewise, in 

mechanics, a rotating mass is balanced when it does not subject 

its supports to vibrational stresses. 

Having called to mind the need of two points of contact for 

energy interchange, we are made aware of the fundamental part 

played by Jour-terminal networks in electrical transmission and 

of their analogy with mechanisms. 

If one part of an electrical system is the source of energy. 
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it must have no less than two points of contact with the rest. 

The same may be said of the part where energy is ultimately 

utilized, or the receiver. What is left of the system is, therefore, in 

the simplest case a four-terminal network; or it may be resolved 

into a series of such networks. 

It is clear that the task of handling the energy as it passes 

from generator to receiver must fall to networks; hence the 

advantage in considering the four-terminal network rather than 

the two-pole as the functional unit of transmission systems; hence, 

also, the analogy of networks and mechanisms. We shall make 

use of this analogy in briefly reviewing the ways in which net¬ 

works handle electrical energ}. 

1.3. Functions of Networks. The connection between source 

and receiver may simply have the purpose of bridging the inter¬ 

vening distance. Thus we have, to continue the electro¬ 

mechanical analogy, such devices as belt drives and shafts and 

their electrical counterpart, the transmission line. 

While we need not think of a line as a net of current paths, 

we cannot, in general, ignore the capacitive current flowing 

across the wire spacing. As a circuit, the line would have to 

be subdivided into an infinite number of branches; as a network, 

it may be considered as a whole or subdivided into sections of 

arbitrary length. 

Because of their uniformity of structure, transmission lines 

are sometimes set apart from other networks and treated in 

much tl'e same way as uniform elastic media are treated. They 

can, however, be brought within the framework of general net¬ 

work theory. As a matter of fact, the reasoning involved is 

substantially the same, whatever the method of approach. 

The approach through network theory has the advantage that 

it does not depend on the solution of a differential equation, 

which can be shown to be correct and general but is not obtained 

by an intuitive deduction. Moreover, the network approach has 

the advantage of being equally applicable to lumped structures. 

Situations in which transmitter and receiver are joined by a 

simple uniform line are the exception rather than the rule. 

They are no more common than mechanical systems in which the 

transmission ratio is 1 to 1. The reduction gear and various 

lever actions arc obviously paralleled by the transformer; but, 

many and varied as are mechanical transmission problems, the 
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number and variety of transformer problems (and the word is 

used here in its broader sense) are still greater. The reader will 

be introduced later on (Sec. 8.1) to this broader meaning of 
transformation. 

The branch of mechanics that provides the closest parallels 

to transforming networks, as included in the more general 

definition, is that of acoustics. Unfortunately, however, 

acoustical mechanisms are no more intuitive in their operation 

than their electrical counterparts. The situation is often 
reversed. 

Many of the functions performed by networks are corrective 

in character and come about as the result of the strict require¬ 

ments imposed upon communication systems. In this respect a 

sharp distinction must be made between the transmission of 

energy as an end in itself and the transmission of energy for 

the purpose of communication. In the second case the efficiency 

of transmission is relatively unimportant; on the other hand, 

the distribution of the energy over the frequency spectrum, or 

over a part of it, must remain virtually unaltered. Or, if altered 

for the purpose of more convenient handling^ it must eventually, 

before reaching the receiver, be brought back to its original 

form.^ 

It is to be expected that the networks which, as in the case 

of lines, span the distance between transmitter and receiver, or 

as in the case of transformers, make possible the transfer of 

appreciable energy, will have efficiency (the word is used here 

without precision) variable with frequency; or, in other words, 

that they will to some extent discriminate against the energy 

in certain frequency intervals. In limiting cases, they may be 

selective and discriminate against all frequencies except for 

those in a very narrow interval. Sometimes discrimination is 

intentional; without it, it would not be possible to design systems 

in which many transmitters and many receivers are inter¬ 

connected and utilize a single line. Often, however, it must be 

corrected by networks designed expressly for this purpose. 

Further correction may be required to eliminate distortion 

of another kind: that arising when the time lag, or time interval 

1 The reader is referred to the literature^^^ on the fundamentals of Fourier 
analysis, which underlies the concept of distribution of energy over the 

frequency spectrum. 
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elapsing between transmission and reception, varies with the 

frequency. 

Systems in which several transmitters are linked to as many 

receivers have been mentioned. Such systems must include 

networks with more than four terminals; four-terminal network 

theory must therefore be extended to cover networks with more 

than four terminals, although in practice, owing to the fact that 

it is possible to think of all the transmitters and all the receivers 

as coming together at two junctions, the extension is a relatively 

simple matter. 

The majority of communication systems include components 

which perform the functions of transmission, generation, and 

reception simultaneously. We do not often think of these 

functions being performed by an amplifier, because the word 

amplifier alone describes all three functions. However, an 

amplifier does receive signal energy (quite apart from battery 

energy), although in small quantities; it transmits energy, 

although sometimes not by deliberate design, and generates 

energy. A common approach to the study of amplifiers is 

the subdivision into sections, or stages; this is generally pos¬ 

sible because the direct interchange or transmission of energy 

between stages is so small that its ^^second-order effectsmay 

be neglected. 

Sometimes this is not possible, and then we must again resort 

to the network concept and extend this to include networks 

in which energy is generated, as distinct from passive networks. 

This extension (like the other extension previously considered) 

is not fundamental, as long as it does not require rejection of the 

two fundamental hypotheses upon which elementary network 

theory is based: the hypothesis of steady state and the hypothesis 

of linearity. These hypotheses will be considered later (vSec. 1.6). 

1.4. Chains of Networks. The subdivision of amplifiers into 

stages suggests the possibility of breaking down any complex 

transmission network into sections, for the purpose of analyzing it 

or designing its components on the assumption that their opera¬ 

tion is not mutually affected. 

Clearly, the four-terminal network that connects transmitter 

and receiver is generally far too complex to be considered as a 

single unit. Furthermore, specific functions cannot be assigned 

to separate components, or units, of this complex network 
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unless the operation of each unit, when connected or inserted 

in the system, can be made to depend exclusively upon the design 

of the unit itself. 

In order to make this possible, the individual unit networks 

must be connected together according to certain rules; and the 

more closely these rules are followed, the more accurately can 

the operation of the system be predicted. 

Networks joined together in this way are said to constitute 

a chain. Some special condition or other must be met at each 

junction of the chain. Three types of chains will be considered: 

iterative, image, and maximum power transfer chains (Secs. 

2.1 and 2.10). 

It is not necessary for a chain to extend all the way from 

transmitter to receiver. The same conditions that prevail at 

each junction must, however, be fulfilled at the junctions of the 

chain with the remainder of the system. 

1.6. Electrical and Mechanical Quantities Referred to a 
Junction, Duality. The phrase ‘^conditions that prevail at a 

junction’^ is rather noncommittal and will have to be given 

more precise significance. 

Before specifying these conditions it will be worth while, 

perhaps, to amplify the concept of junction and review the 

significance of electrical quantities as referred to a junction. 

Once again, the mechanical analogy will provide an intuitive 

basis for discussion. 

We define a junction as a pair of terminals; more precisely, 

it is the combination of two areas on the boundary between parts 

of a system, through which there is flow of current. 

Not any cut through an electrical system is * necessarily a 

junction, but a network is bounded by two junctions. A net¬ 

work may or may not possess intermediate junctions. 

In dealing with networks, electrical quantities are referred to 

some particular junction. As a matter of fact, this is true of 

circuits as well (Sec. 1.1), although perhaps not explicitly. 

Hence, there will be reference to the power through a junction, 

voltage at a junction, current through a junction, although 

occasionally other equivalent expressions, such as input or output 

terminals, will be used. 

It was shown that not only electrical, but also mechanical 

energy is transmitted through at least two points, or a junction. 
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Hence, it is with reference to a junction that a parallel can be 

traced between the electrical quantities mentioned above and 

their mechanical counterparts. 

In order to transmit mechanical power, we must have a force 

and a velocity^ whose scalar product is not zero. More specifi¬ 

cally, if power is transmitted through only two points of con¬ 

tact, the transmitting system must exert two equal and opposite 

forces along the line through both points, and the points must 

have a relative velocity along the same line. The power is the 

product of this velocity by the force on either point. We can 

express this as follows: the power transmitted through a junction 

is the product of force and velocity at the junction. 

Note that only one force and one velocity are mentioned, 

although there are two points. This is because the velocity is a 

relative matter, and the force likewise. As an example, if power 

is transmitted to a spring by compressing it, we think of the force 

compressing the spring, not of two forces. 

Now consider the electrical case. The power transmitted 

through a junction is the product of the instantaneous voltage and 

the instantaneous current at the junction. Both those quantities, 

not the voltage alone, should be understood to have reference to 

a pair of points. A voltmeter must be connected to two points 

to show a reading, but so must an ammeter. An ammeter does 

not measure current at a point; it measures current at the 

junction between the meter itself and the rest of the system, which 

happens to be the same as the current at the junction of the load 

whose input current we are measuring with the rest of the 

system. 

The identical reasoning can be applied to force with regard 

to dynamometers. It is not always necessary, of course^ and 

not always convenient to think in terms of junctions rather than 

points. In dealing with networks, however, it is a useful habit. 

The circumstance that mechanical power is the product of force 

and velocity (as defined), while electrical power is the product 

of voltage and current, would seem to indicate that each of the 

two electrical quantities corresponds to one of the mechanical 

quantities. We can, in fact, build (or imagine) mechanical 

models of given electrical systems in which, junction for junction, 

the current is equal to the velocity^ the voltage is equal to the force. 

Or we can make the current equal to the force, the velocity 
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equal to the voltage. In both cases the analogy can be carried 

out for all situations, at least in theory. 

Since these analogies cannot be considered in detail here, 

the literature^^^ should be consulted for further information. 

A tabulation of the corresponding quantities is given below, 

however, as it brings out the existence of a dual quantity for every 

electrical (or mechanical) quantity. For example, the current 

is the dual of the voltage (both can be considered analogous to 

the velocity), or the velocity is the dual of the force (both can 

be considered analogous to current). 

In the tabulation above, which uses standard notation, dual 

(luantitics (both electrical or both mechanical) are in the same 

column. The principle of duality may be stated as follows: 

If an equation is written with regard to a system, another equation 

may be written, where every quantity is replaced by Us dual; the 

new equation is valid for a new system, dual of the first. Examples 

of dual systems will be pointed out as they present themselves. 

1.6. The Hypothesis of Steady State. The study of networks 

can l^e greatly simplified, while remaining adequate to handle 

many practical situations, if it is based upon two limiting assump¬ 

tions : the hypothesis of steady state and the hypothesis of linearity. 

The hypothesis of steady state can be expressed as follows: 

It is assumed that the amounts of energy transmitted through any 

junction over two successive equal time intervals, at any particular 

frequency, are not appreciably different, provided that the period of 

this frequency is small compared to the intervals considered. 

The hypothesis could be given quantitatively by specifying 

in numbers what is meant by appreciably different and small 

compared to. Such precision would be quite arbitrary, however. 
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We can only say that, in a relative sense, situations in which 

the difference is smaller, for larger intervals, are more adequately 

studied by methods based on the steady-state assumption. 

To illustrate the hypothesis, suppose an oscillogram of the 

voltage at the junction has been taken over a period of time. 

Any 'portion of the oscillogram, corresponding to a particular 

time interval, can be analyzed into Fourier components, 

by graphical methods or otherwise. In general, different compo¬ 

nents will be obtained for different time intervals. The sum 

of the components will not reproduce the original pattern except 

over the specified time interval. 

Suppose we divide the oscillogram into intervals of ^ sec. 

and carry out the analysis for each. In each interval we will 

find a number of sine wave components, large or small, depending 

on the shape of the pattern and on the accuracy of the analysis. 

Let us suppose that some particular component, say 1,000 cycles 

per second, is present in all intervals and varies in amplitude 

no more than 10 per cent between successive intervals. For 

ordinary purposes, we are then satisfied that the assumption of 

steady state is valid, at least for the 1,000 c.p.s. component. 

If we can verify that the same condition prevails for all compo¬ 

nents, using in each case intervals large compared with the 

period, then we are dealing with a steady-state signal. 

This example docs not reveal the importance of the steady- 

state hypothesis unless we make it the object of further reasoning. 

We have succeeded in resolving the oscillogram into component 

voltages, each of which is sinusoidal within successive equal 

intervals extending over a large number of cycles. Each compo¬ 

nent has the same frequency in all the intervals and varies in 

amplitude slightly from one interval to the next. 

Had we chosen our intervals infinitely small, each component 

would appear to build up or decay gradually, rather than in 

steps. This conclusion, although plausible, can only be guessed 

at, because the Fourier analysis can only be carried out over finite 

intervals. 

We can now define the steady-state assumption in a more 

intuitive manner. A steady-state signal can be considered as the 

sum of individual steady-state components, gradually varying in 

amplitude. 

The value of the assumption is this: Each steady-state co'mpo- 



12 FOUR-TERMINAL NETWORK [Chap. I 

neniy although not sinusoidal, can be regarded as such for all 

'practical purposes. In fact, we can imagine a second Fourier 

analysis, whereby each component is in turn resolved into 

second-order- components included, like the side bands of a 

modulated signal, within a narrow frequency interval. This is 

true independently of the time interval chosen for the second 

Fourier analysis. For each steady-state component, energy is 

transmitted only within a narrow range of frequencies, equivalent 

to a single frequency for practical purposes, and more exactly so 

when the amplitude variations of the component are more 

gradual. 

It is clear that if we defined a steady-state signal as a periodic 

signal f.e., one whose Fourier components do not dcpeiKi on the 

interval of time selected for analysis, we would exclude from this 

classification all practical circumstances. In terms of sound, 

this definition would apply only to an even, uniform note, 

indefinitely sustained. 

If a steady-state signal (as defined originally) is impressed 

upon a linear network (Sec. 1.7), each steady-state component 

may be considered as acting independently. Although not 

sinusoidal, each component occupies a narrow frequency band. 

If we know how the network transmits a sinusoidal signal 

of frequency anywhere within this narrow band, then we know 

with sufficient accuracy how the steady-state component is 

transmitted. 

In consequence, a plot of the frequency against the quantities 

(whatever they are), which define transmission, will enable us 

to predict how any steady-state signal is transmitted, thus (and 

here lies the simplification) obviating the necessity of considering 

each new wave form as a fresh problem. 

The same information can be applied in certain cases to the 

transmission of signals not included in the steady-state category, 

or transients^ although other methods are often preferable. A 

transient pulse can be regarded as the summation of an infinite 

number of Fourier components, known as the Fourier integral, 

if we suppose the analysis to be carried out over a period of 

infinite length.The Fourier integral can, however, be evalu¬ 

ated only in particular cases. 

If the rigid definition of steady-state signal is used (a periodic 

signal of indefinite duration), then all communication signals’ 
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must be regarded as transients, approaching steady state to a 
variable extent. The loose definition which has been adopted 
affords a criterion for judging how closely steady state is 
approached. 

For a given type of signal, however far from periodic, the 
bulk of the energy is transmitted within a specific frequency 
band, whose extent can be determined experimentally by suitable 
discriminating networks. It can be further ascertained that cer¬ 
tain frequencies contribute more than others to the transmission 
of intelligence. This is true in particular with regard to speech. 

Upon such considerations is based the engineering specification 
of transmission networks. This generally calls for a distortion 
(Sec. 4.2) not exceeding some given value over a given frequency 
range. 

1.7. The Hypothesis of Linearity. As a consequence of the 
steady-state assumption, we are now in a position to give exclu¬ 
sive attention to the transmission of a single frequency—or, which 
is the same thing, to the transmission of sine wave signals. 

Let us suppose, then, that a sine wave voltage, or signal, 
appears at a junction through which electrical energy is trans¬ 
mitted. This voltage is fully identified by the corresponding 
voltage vector^ Vo.^ We can say briefly, if without precision, 
that the voltage at the junction is Vo. The vector notation 
will often be omitted in the context, but it is understood, unless 
otherwise specified, that equations apply to the vectory and not 
effectivey voltages and currents. 

If the junction transmits energy into a linear system, which 
is passive {i.e.y generates no energy) and receives energy only 
through the junction in question, then voltages and currents at all 
junctions of the system will likewise be sinusoidal, of the same 
frequency as Vo. Moreover, the ratios between Vo and any 
other voltage, and the ratios between Vo and any current, will 
be complex numbers independent of the amplitude of Vo. In 
other words, in such a system all voltages and currents arc 
linearly related. 

^ The following notation is used: 
iy Vy € instantaneous values of current, voltage, e.m.f. 
/, Vy E effective values of current, voltage, e.m.f. often used for cur¬ 

rent, voltage, e.m.f. vectors in the context 
?, V, E amplitudes of current, voltage, e.m.f. 
1, V, E current, voltage, e.m.f. vectors 
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Physical systems are linear only as long as the voltage or 

current at each junction remains below some maximum value, 

the hypothesis of linearity can be considered satisfied by the 

system if this maximum is never attained in ordinary operating 

conditions. 

All solutions of linear network problems make use of this 

hypothesis in some form or other. The most general solution 

for the terminal voltages and currents of a linear four-terminal 

network follows directly from the mathematical expression of the 

hypothesis, namely, a system of two linear equations in four 

variables, the voltages and currents at the two ends (Sec. 2.7). 

But important particular cases can be studied without writing 

these equations explicitly. 

Instead of writing the equations, we can draw conclusions 

from a universal principle, the principle of superposition^ whose 

validity is based, in turn, on the assumption of linearity. 

This principle is best understood wdth reference to a linear 

system, upon which several electromotive forces are simul¬ 

taneously impressed, for example, Ei and E2. An electromotive 

force (e.m.f.) is considered impressed at a junction when the 

voltage there is independent of all other voltages or currents in 

the system, being due to an external cause (Sec. 2.5). 

If E2 were reduced to zero, the voltage at a junction J would 

be proportional to Ei, because the system is linear. Hence 

V.(0, El) = AiEi 

where Ai is a complex constant. If Ei is zero, we have 

V^(E2, 0) = A2E2 

By virtue of the superposition principle, we may write 

Vy(Ei, E2) = AiEi -|- A2E2 (1) 

The extension to the case when many e.m.fs. are impressed is 

immediate. Instead of the voltage Vj, the current L can be 

considered. 

It can be shown rather simply that the superposition principle 

is not valid for nonlinear systems. Suppose Ei and E2 to be in 

series. ^ Then, for a nonlinear system 

V.(0, El) = /(El) 
V.,(E2, 0) = /(E2) 
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where /(E) stands for a nonlinear function of E. By the super¬ 

position principle, we would have 

V^(Ei, E2) =/(E0 +/(E2) 

whereas actually the two e.m.fs. in series are equivalent to a 

single e.m.f. Ei + E2. Hence 

Vy(Ei, E2) = /(El, E2) 

The last two lines are not equivalent unless the system is linear. 

The concept of electromotive force, upon which the principle 

of superposition is predicated, deserves some attention. It is 

impossible to impress an e.m.f. across two points; no generator 

has terminal voltage independent of the current. However, 

any linear generator is equivalent, as far as the external circuit 

is concerned, to an e.m.f. independent of the load in series with an 

internal impedance. Tn fact this may be considered as the 

definition of a linear generator. 

If the generator e.m.f. vanishes, then the generator becomes a 

linear passive system. The internal impedance of the generator 

has the value that would be measured under these circumstances. 

An e.m.f. of zero volts can be thought of as a shorting connection. 

Any linear generator, no matter how complex, can be repre¬ 

sented in this way (Th4venin\s theorem, Sec. 2.G). The equiv¬ 

alence is only valid, however, as far as conditions outside the 

generator terminals arc concerned. 

Linear generators can also be represented by a current, whose 

value does not depend on conditions outside the terminals, in 

parallel with an internal admittance (Norton\s theorem. Sec. 2.6). 

The equivalent generator current (which we shall abbreviate 

e.g.c.) becomes equivalent to an open circuit (absence of con¬ 

nection) when its value is zero, and the internal admittance 

has the value which would be measured in this case. 

In most generators, rotary or otherwise, (the term includes 

such devices as microphones, etc.) the e.m.f. is generated by 

changes of magnetic flux and bears a direct relation to mechani¬ 

cal quantities, such as speed. 

Generators which depend on changes of electric flux are not 

common. In such cases, however, the e.g.c. would bear a 

direct relation to the speed, hence the Norton equivalence 

would be more suitable. 
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Both equivalences can be used conveniently to represent the 

generator action of vacuum tubes. For the same generator, 

the two equivalent circuits are dual systems (Sec. 1.5). 

A problem relating to generator equivalences is given in 

Sec. 1.9. 

1.8. Impedances at the Junctions and Power Relations. In 

the preceding sections, we have been dealing with concepts of 

such a general nature that it would have been difficult to represent 

them symbolically. The two fundamental hypotheses, however, 

('a^-Illustratinq inpuf cinol output voltage, 

current, power;equivalent source and load 

^'AAlllustratinq power transmitted 

in direct connection 

■Input 
impedance 

Cct-Illustratinq input impedance 

(network is part of 

eguivalent load) 

Output 
impedance- 

E'^E- 

frfi'Illustrating output impedance 

(network is part of 

equivalent source) 

Fig. 1.—Basic concepts relating to a four-terminal network. 

have narrowed down the object of discussion to such an extent 

that it can now be shown in simple symbols, as in Fig. la. 

Generator, four-terminal network, and receiver (or, more 

briefly, source, network, and load) are shown as three boxes, 

which means that they are closed and energy can only be 

exchanged through the terminals. This was our first assump¬ 

tion (Sec. 1.2). 

Furthermore, within the source and load boxes, equivalent 

circuits have been drawn. This is possible because of the 

linearity hypothesis. The load is equivalent (for anything 

outside its terminals) to an impedance, whose value is the complex 

ratio between voltage and current at the load terminals, there¬ 

fore (Sec. 1.7), a constant for a given frequency. 

The source is equivalent to an impedance in series with a sine- 

wave e.m.f. This particular form of e.m.f. can be assumed, 

thanks to the steady-state hypothesis. 

The e.m.f. frequency / and its amplitude or effective value 
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E are generally considered as the known data^ independently 

assigned; and so are the source and load impedances Z, and Zi, 

Therefore, when we use equivalent reprasentations for source 

and load, we are merely doing what is done in all problems, 

putting the data of the problem in a usable simple form. 

We could use an equivalent circuit representation for the 

network, too; in fact, we would have a choice of several, the 

equivalent 11, the equivalent etc. All these would involve, in 

general, three distinct impedances. We would choose one of 

these forms, if we were interested for some, reason or other in 

replacing the network by that particular equivalent circuit. 

Because this is not our present purpose, we shall leave the net¬ 

work box empty. 

Putting the network into an equivalent form certainly does 

not give us the ultimate answer to the problem, although it may 

be a step toward that end. We are ultimately interested in 

finding, and describing by an adequate set of numbers, the effect 

that the network has on the transmission of power. As was 

pointed out when discussing the functions of networks, in many 

cases efficient power transmission is the only object; in other 

cases, efficiency is desirable at some frequencies, inefficiency at 

others. But always, efficiency of transmission is of paramount 

importance; hence we must somehow find an expression for it. 

Considerable progress will have been made in this direction 

once we have determined the Tower input Pi and the power output 

P2. The definition of these quantities is implicit in Fig. la. 

But a third value of power must be introduced, if we want a true 

reference, the power in direct connection Po. This is the power 

that would be transmitted from source to load if they were 

directly connected at a common junction (Fig. 1^). 

Once these three powers are known, we are in a position to 

compare the power output which is actually available at the load 

with the power input which the source must deliver; or, alterna¬ 

tively, with the power which would be available at the load if 

the network were not inserted, everything else remaining the same. 

These comparisons can be expressed numerically, either by the 

ratios of the powers involved or by their logarithms (Sec. 1.9). 

Power comparison is not the whole answer. The phase of 

both voltage and current is generally different at the two ends 

of the network. These phase differences, or phase shifts, 
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are generally not equal. When they are large, however, they 

are nearly the same in a relative sense, so that we can speak 

of a single value of F^iase shift. The phase shift, in radians, 

divided by the angular frequency w, in radians per second, gives 

the time lag, in seconds. This represents the time taken by a 

variation in signal amplitude in traveling through the network 

(Sec. 4.2). 

In most cases, additional information is necessary. We must 

remember that both source and load, which we have so simply 

represented, are in reality complex systems. Just as we have 

reduced whatever lies to the right of junction 2 to a simple equiva¬ 

lent impedance, we might want to do the same thing with respect 

to junction 1; in other words, extend the boundaries of the load 

still further. To do this, we must find the impedance looking 

toward load^^ at the input terminals, with source disconnected. 

This is called the input impedance (Fig. Ic). 

Similarly, we can define the output impedance as the impedance 

measured toward the source at the output, with load discon¬ 

nected and with zero e.m.f. at the source, in accordance with 

the definition of internal impedance in a generator (Sec. 1.7). 

In conclusion, we are looking for four things: a power ratio,^ 

a phase shift, and two impedances. The impedances, being 

complex, are really two numbers each, hence we are looking for 

six answers in all. Furthermore, we must remember that 

this information must, in general, be available over a range of 

frequencies (Sec. 1.6), so that the solution calls for six curves. 

This number checks with other considerations. If we knew 

the ratios of three of the voltage and current vectors (Fig. 1) 

to the fourth, we would have all the answers. But there again, 

we would need three complex ratios, or six numerical data. 

The six data which we have taken as descriptive of trans¬ 

mission through the network when this is connected in a system 

obviously depend on the system itself, i.e., on the load and source 

impedances, or terminations, as w^ell as on the internal structure 

of the network. We shall call them transmission data. 

On the other hand, the network itself is comxJetely identified 

by any one of several sets of six quantities, or parameters. For 

example, the three impedances of the equivalent T (six scalar 

^ There are two possible power ratios, as was explained, but each depends 

on the other when the impedances are known. 
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parameters) can be used for this purpose. So can the 11 imped¬ 

ances, or the two short-circuit impedances together with the 

transfer impedance (Sec. 2.7), and so on. 

One of these possible sets of network parameters is especially 

convenient because, if the terminations are correctly chosen, 

it becomes identical to the set of six transmission data (trans¬ 

mission loss, phase shift, input and output impedances). In 

other words, the network may be identified by parameters which, 

under special conditions often approached, also describe its 

performance. These parameters are called the network coristants.^ 

For the time being, we shall remain on general ground and 

give some attention to the methods used for expressing power 

and voltage ratios. 

1.9. Transmission Loss. Insertion Loss. It was pointed out 

that two distinct power ratios may serve to describe the efficiency 

of transmission. They are 

(a) 

and 

^2 __ power output 

Pi power input 

P2 _ power output 

Po power in direct connection 

One or the other of these two ratios may be significant. The 

choice of a criterion for power com])arison will be taken up in 

Sec. 0.1. Sometimes the two ratios coincide; as can be readily 

verified, this is true when the load and input impedances (Fig. 1) 

are equal. 

In a linear system, both ratios are constant for a given fre¬ 

quency. This follows from the fact that any given impedance 

or resistance depends only on frccpieiicy. The transmitted power 

at any junction is where I is the effective current and R the 

resistive component of impedance looking toward load. 

Suppose the effective value of current doubles at the junction. 

It must then double right through the system. Hence, all values 

of power increase fourfold. 

If all values of power increase by a factor of four, the ratios 

between them remain the same. 

^ This designation is convenient and commonly used in spite of the fact 

that the parameters in question vary with the frequency. 
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Power ratios are seldom given explicitly. Numbers equal 

to their common or natural logarithms, multiplied by constant 

numerical coefficients, are given instead, as a measure of compari¬ 

son. These numbers, or the symbols for them, appear in all 

computations and analytical work. They are called losses. 

The neper loss L(N) is half the natural logarithm of the power 

ratio, where the power output appears in the denominator. 

Thus 

(c) Lt{N) = In P1/P2 is the neper transmission loss. 

(d) Li(N) = i In P0/P2 is the neper insertion loss. 

The decibel loss L (db) is the common logarithm of the power 

ratio, multiplied by 10. Thus 

(e) Lt (db) = 10 log P1/P2 is the dh transmission loss. 

(/) Li (db) = 10 log Pq/P2 is the dh insertion loss. 

If figures are given for these losses, they are usually followed 

by the abbreviation N or db, as if such data were ^‘in nepers’^ 

or ‘4n decibels,^^ considering the neper and the decibel as units. 

The advantage of thus extending the meaning of the word unit is 

open to question. The phrase ^^a loss of 3.db’^ means nothing 

more than ‘^a decibel loss of 3.^^ 

The neper loss multiplied by the factor 20/ln 10 = 8.68 is equal 

to the decibel loss. 

When the insertion loss and the transmission loss are equal, 

we used instead the term attenuationy the symbol for which is a 

(Sec. 2.2). 

The existence of two equivalent methods for the logarithmic 

evaluation of ratios has historical reasons. The neper loss was 

introduced for basic reasons of mathematical convenience, as will 

appear later (Sec. 2.2). Other advantages incidental to the 

logarithmic evaluation came to be more widely appreciated than 

the early reason for its adoption. These advantages do not 

depend on the use of natural logarithms, so that this was largely 

discarded in favor of the common, or decimal logarithm, which is 

easier to manipulate in a superficial sense: ratios of 1 to 10, 1 to 

100, and so on, are round numbers when evaluated in decibels. 

It should be noted that the insertion loss (both neper and db) 

can be obtained from the ratio of effective currents or voltages 

at the load terminals directly. For instance. 
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where /o is the root-mean-square current in direct connection, Rl 

the load resistance. 

By extension, logarithmic evaluation, particularly in the decibel 

form, came to be used for voltage and current ratios even when 

_______ 
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Fig. 2.—Decibel conversion chart 

these ratios are not the square roots of the corresponding power 

ratios. 

In such cases, the terms decibel drop and neper drop should be 

used in place of decibel loss and neper loss. For example, the 

decibel drop from a high value of voltage Fi to a low value F2 is 

D (db) = 10 log = 20 log 

If the two voltages were applied to identical impedances, then 
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the decibel drop in voltage would be equal to the decibel loss 

in power. 

The negative of the drop is the gain. Thus 

G (db) = -D (db) = 20 log ^ 
Y 1 

The term gain does not imply a gain in power. V2 might be, 

and generally is, the output voltage, V\ the input voltage of a 

stage of amplification. A chart for quickly obtaining the decibel 

loss (or drop) and the gain when the two voltages are known (or 

vice versa) is given in Fig. 2. 

The decibel gain is more convenient to handle than the cor¬ 

responding voltage ratio, because the gains of successive stages 

simply add to give the total gain. Furthermore, plots of gain 

against frequency have the advantage of greater accuracy, for a 

given size, than plots of the voltage ratio. Finally, decibel 

figures bear a direct relation to the response of the ear.^^^ 

These and other considerations have spread the use of loga¬ 

rithmic evaluations, particularly in the decibel form, to many 

fields, notably acoustics. 

1.10. Illustrative examples. 

Equivalent generators. The following measurements were taken 

across the terminals of a generator of unknown characteristics, 

except that it is known to be inductive: 

1. In short circuit: 

Inc =1.5 amp. r.m.s. 

2. In open circuit: 

Voc = 31.2 volts r.m.s. 

3. With unknown resistive load: 

Ir = 0.7 amp. r.m.s. 

Vr = 22.1 volts r.m.s. 

The frequency was constant for all measurements. Equivalent 

series (Th^venin) and parallel (Norton) circuits are required 

for the generator at the same frequency. 

a. TMvenin generator. In open circuit, the e.m.f. must equal 

the terminal voltage. Hence 

E = 31.2 volts r.m.s. 
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In short circuit, the current is 

23 

I.C = 
E 

iz.l 
where |Z,| is the magnitude of the internal impedance, which is 

then equal to 

|2.| = f- 
^ »c 

Measurements (3) were taken with the following resistive load: 

R = ^ = 31.6 ohms 

The total loop impedance |Z, + J^| under conditions (3) is 

given by 

E 
R\ = 

Ir 

Expanding Za in the rectangular form, we have 

Ra^ + Z.2 = 
8C 

E 

and expanding (Z« + R)^ 

(Ra + Rr + ^ 

Subtracting the last two linos and expressing Ra, 

“• ~ 2It “ 

Expressing X„ 

X.. ± ^5 - 

Substituting numerical values, 

“ n v/ o 1 * R. 

- Wf - 

2 X 31.6 

(8.7)2 ^ 9 ohms 

ohms 

(The reactance must be positive because the generator is induc¬ 

tive.) Hence, the equivalent circuit below: 
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h, Norton generator. Any equation involving electrical quanti¬ 
ties is equally valid for the dual system when dual quantities 
(Sec. 1.5) are substituted. Hence we have for G,, dual of 

and for 

Gt = 

- G2 

Tn these equations, U is the equivalent generator current, dual 
of the e.m.f. This is equal to the short-circuit current, because 
in short circuit no current flows in the internal-shunt admittance. 
Hence 

U = 18c = 1.5 amp. 

G is the reciprocal (and dual) of R; hence 

G = 75 = 0.0316 mho 
R 

Substituting these and the measured values in the expression for 
G, and we have 

Gb 

B. 

(1.5)2[<1/22.1)2 - (1/31.2)2] - (0.0316)2 
2 X 0.0316 

X 103 

= 21.6 millimhos 

— (0.0216)2 X 103 = —42.4 millimhos 

whence the equivalent parallel generator below: 

(e.g.cr 

-o 

^s^-42/ImU 

c. Check, The equivalent parallel generator should produce 
the measured open-circuit voltage (31.2 volts). Hence, this 
voltage must cause the currents in the shunt branches G and B to 
have values which, added vectorially, equal the equivalent 
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generator (or short-circuit) current. Letting /' and 7" stand 

for these currents (/' current in conductance, 7" current in 

susceptance), 

r = 21.6 X 31.2/103 = 0.674 amp. 

7" = -42.4 X 31.2/103 = -1.322 amp. 

Adding vectorially, 

= V^674)2 + (1.322)2 = 1.485 amp. 

Previously we had obtained 

U =1.5 amp. 

The error is within slide-rule accuracy. A similar check on the 

series generator would call for vector addition of the voltages 

through internal resistance and reactance under short-circuit 

conditions. 

Neper losses. Decibel voltage drop. The following measure¬ 

ments have been taken on a four-terminal network transmitting 

steady-state, a-c power: 

1. Power input: 
P\ = 3.5 watts 

2. Power output: 

P2 = 1.2 watts 

3. Input voltage: 

Fi = 8.5 volts r.m.s. 

4. Output voltage: 

F2 = 5.8 volts r.m.s. 

With the network replaced by direct connections, the power 

transmitted to the load was 

5. Power in direct connection 

Po = 4.1 watts 

The following data are to be computed: 

a. The load and input conductances 

h. The neper insertion loss 

c. The neper transmission loss 

d. The decibel and neper input to output voltage drops 

a. Load conductance: 

“ s - “ 
,% Gl — 35.7 millimhos 
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Input conductance: 

G/ = ^ = ~ = 0.0485 mho, 

Gi = 48.5 millimhos 

h. Neper insertion loss: 

UiN) = i In ^ i In 3.42 = 0.615 

c. Neper transmission loss: 

Lt{N) = ^ In i In 2.42 = 0.535 
r 2 

d. Input to output voltage drop, decibels: 

D(db) = 20 log — = 20 log 1.465 = 3.316 
V 2 

Conversion to neper: 

D{N) = —~ = 0.382 



CHAPTER II 

THE CONSTANTS OF NETWORKS AND 
THEIR SIGNIFICANCE 

2.1. Iterative Chains. The network problem has been stated 

in a very general way. At this point, two courses are open: we 

can either seek a general solution, or we can make further 

assumptions leading to a particular solution. 

We will consider the second alternative and give prior attention 

to the study of chain-connected networks (Sec. 1.4). 

Networks forming part of a chain are so related to the rest 

that their performance, as part of the chain, can be inferred from 

data, or 'parameters^ which depend only on the network's internal 

configuration. 

We would expect a chain to be uniform in some respects. 

The simplest type of chain consists of an indefinite number of 

identical networks connected end to end, or in ‘‘cascade.^^ It 

must surely be possible to predict the performance of a network 

forming part of such a chain, when only the network parameters 

are known. 

Consider (Fig. 3a) such an indefinite homogeneous chain. 

Note that there are many ways of connecting identical networks 

end to end, just as there are, for example, many ways of coupling 

cars in a train. Assuming that the cars have fixed seats, the 

order of connection is immaterial, but each car has a front and 

a rear which must not be exchanged. We will therefore stipulate, 

to begin with, that all the networks face the same way, z.c., are 

similarly oriented. 

It is clearly evident that the impedance toward load is the same 

at all junctions of the chain we are considering, and likewise the 

impedance toward source. 

If there is any doubt regarding this, let us suppose the chain 

to be cut at some junction and consider the half chain extending 

indefinitely toward the load. If we remove an arbitrary number 

of networks from the near end of this half chain, an infinite 
27 
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number still remain; therefore, the new half chain is identical 

to the original one. It follows that the impedance toward load 

is the same at all junctions. The same argument applies to the 

impedance toward source. 

These two recurrent impedances Zi and Z2 are the iterative 

impedances of the chain. Instead of the infinite chain, we may 

consider a section of it, or even a single network, provided it is 

terminated in these impedances (Fig. 36). It clearly does not 

matter, as far as the operation of the network is concerned, 

whether it is part of a homogeneous chain or not, provided the 

— 
A 

— 

—1 — 
£1. 

Indefinite homogeneous chain. Defines 
iterative impedance, Z,, 

I-1 e.Zt,Z2 
Network-terminated in Z/.Z^ 
(iteraf ivciy connected) performs 
as if part of a homog. chain 

(c)-Two-way transmission.The input 
to output current (volt.) ratio 
remains the same 

frfi-Output matching. Assuming one-way 
transmission,voltage (current) 
ratio is independ. of source 

Fig. 3.—Iterative connection. 

source and the load are correctly represented by the equivalent 

circuits of Fig. 36. 

Nor is it necessary to consider an indefinite chain in order to 

define the iterative impedances. In the system of Fig. 36, the 

load and input impedances are equal, and likewise the source and 

output impedances. Hence, the iterative impedances are simply 

defined as those values which, when used as source and load 

impedances of a given network, produce identical values of 

output and input impedance, respectively. In other words, they 

reproduce or repeat themselves from one end of the network to 

the other (hence the word iterative). 

Evidently, the iterative impedances depend on the internal 

structure of the network exclusively and may therefore be 

regarded as network parameters. 

It was anticipated in Sec. 1.8 that it might be possible to 

select the network parameters so that, under special circum- 
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stances, they are equal to the six quantities which describe 

network performance. 

We see now that this is at least partly possible for the special 

circumstance of iterative connection. In fact, for the iteratively 

connected network, the input and output impedances (used to 

describe network performance. Sec. 1.8) are equal to the iterative 

impedances (network parameters). 

We have agreed to call these specially selected parameters 

network constants^ as is customary, in spite of the fact that they 

vary with frequency. The iterative impedances are network con¬ 

stants. Being complex, they take care of four out of the six 

real numbers which, in one way or another, are necessary to 

define the network. 

Two more real parameters remain open to choice. This means 

that two networks having the same iterative impedances are not 

necessarily equal. If they were, iterative chains would all be 

homogeneous, and different functions could not be assigned to 

the constituent networks. 

The two remaining parameters, in order to be classed as 

constants,’^ would have to be equal to two of the remaining 

descriptive quantities. One of them could be the transmission 

loss (or alternatively the insertion loss) of the iteratively con¬ 

nected network; the other would have to be the voltage phase shift 

(or alternatively the current phase shift) of the iteratively con¬ 

nected network. 

As it happens, there is only one choice, not two, because 

the insertion and transmission loss of iteratively connected 

networks are equal, and likewise the voltage and current phase 

shifts. Both propositions follow immediately, as the reader will 

readily verify, from the equality of input and load impedances, 

and, respectively, output and source impedances. 

2.2. Network Constants. To summarize our conclusions: 

Among the many possible sets of parameters, we have selected as 

means of identifying the network those that are equal to the 

transmission data describing network performance, for the case 

of iterative connection. They are 

1. The iterative impedance Zi (equal to both load and input 

impedances when the network is iteratively connected). 

2. The iterative impedance (equal to both source and output 

impedances when the network is iteratively connected). 
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3. The attenuation a {neper or decibel) (equal to the insertion loss, 

transmission loss, voltage and current drop, for the iterative 

connection). 

4. The phase shift {in degrees or radians) (equal to the phase 

difference of either current or voltage vectors for iterative 

connection). 

Constants (3) and (4) are advantageously combined into a 

single complex number. If the attenuation is in nepers and the 

phase shift in radians, this complex number is identically equal to 

the natural logarithm of the ratio of the voltage {current) vectors for 

the iterative connection. It is then written 

0 = a + j/? 

where a is the neper attenuation, jS the phase shift in radians. 

d is called propagation or transfer constant. 

The significance of the transfer constant in terms of voltage 

or current ratio is verified immediately. We may write 

Hence 

Vi = V2 = 

h 
V2 V2 

(2) 

Since a, the neper attenuation, is also equal to the neper voltage 

drop, we have 

a = In L 
V2 

whence 

(3) 

The phase shift in radians is obviously given by 

P = Pi — P2 

Hence, substituting (3) and (4) into (2), 

Vi 11 = 

V2 

(4) 

(5) 

(6) 
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To some readers, the logarithm of a complex quantity may 

not have a clear meaning. The literature on functions of complex 

variablesshould be consulted. But the definition of the 

transfer constant itself may help in clearing up this point. 

The transfer constant is equal to the natural logarithm of a 

complex quantity; at the same time, we have shown it to be equal 

to the natural logarithm of the magnitude {a = In Vi/V^) plus 

j times the angle in radians ~ ^2)]. This, in general, is the 

significance of the logarithm of a complex quantity. 

The reason for selecting earlier (Sec. 1.9) the neper rather than 

any other logarithmic evaluation of ratios is now apparent. 

In order to evaluate the logarithm of a complex ratio, we must 

take the neper expression of the magnitude of the ratio and add j 

times the angle of the ratio, in radians. 

If we took the decibel expression and added j times the angle 

in radians, we would have a meaningless number. 

Thanks to the introduction of the transfer constant, the net¬ 

work constants may now be given as three complex numbers^ 

namely 

1. and 2. The iterative impedances Zi and Z2 

3. The transfer constant d 

2.3. The Principle of Reciprocity. The transfer constant of a 

network has been defined as the logarithm of the input to output 

voltage vector ratio (Eq. 6) when the network is iteratively 

connected. This ratio and the corresponding current ratio are, 

of course, equal. 

The definition appears ambiguous in one respect. Consider 

a system where both terminations are capable of transmitting 

energy, although not at the same time. This is not just an 

academic hypothesis; all systems which provide ^‘two-way'' 

transmission are in this category. 

Such a system may be shown as in Fig. 2c, with the under¬ 

standing that both e.m.fs. are not in operation at the same time 

(one or the other is always zero). 

The network of Fig. 2c is iteratively connected, hence the 

ratio of input to output voltage vectors must be c^. But, which 

is the input and which the output? If 6 is defined with one 

direction of transmission in mind, will the definition hold for 

the other direction as well? 

The answer is in the affirmative, because the ratio of input 
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to output voltage (or current) vectors is the same for iteratively 

connected networks, no matter which end is the input and which 

the output. 

This proposition is contained, as a corollary, within a much 

broader principle known as the principle of reciprocity. Like 

the principle of superposition, this is universally valid for linear 

systems, whether mechanical or electrical; and, like the principle 

of superposition, it is best understood with reference to. a linear 

system on which two e.m.fs. Ei and E2 are impressed at the same 

time (see Sec. 1.7). 

Let Ii be the current at the junction where Ei is impressed, 

or the current through Ei, and I2 the current through E2. Then, 

by the superposition principle, we have (Sec. 1.7, Eq. 1) 

Ii(EiE2) = i/iiEi + i/i2E2 /-V 

l2(EiE2) = ^2iEi -j- 2/22E2 

where all the coefficients are complex constants for the particular 

frequency under consideration. 

The principle of reciprocity is contained in the equality 

ijn = ?/2i (8) 

Now suppose that first Ei, then E2, are given a common value 

Eo while in each case the remaining e.m.f. is zero. The currents 

in the two cases will be 

Ii(E()0) = 2/12E0 

12(0 Eo) = 2/21E0 

Hence 

Ii(EoO) = 12(0 Eo) (9) 

which is a widely quoted statement of the principle. 

In the above, voltages could have been considered in place 

of currents, and independent currents (e.g.cs.) in place of e.m.fs., 

by virtue of the principle of duality (Sec. 1.5). 

Various proofs of the principE of reciprocity have been given. 

It must be remembered, however, that neither the principle of 

superposition nor that of reciprocity is proved by showing that 

it applies in particular cases. Neither is it proved with the help 

of equivalent circuits. These can be set up in the-'first place 

only as a consequence of the principles themselves. For example, 

the T structure equivalent to a network for transmission in one 
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direction can readily be shown to have a transfer constant 

independent of direction. However, if we reverse the direction, 

how valid is the equivalence? Only as valid as the principle of 

reciprocity. 

Returning to the iteratively connected network of Fig. 2c, 

if an e.m.f. E at the near end (for example, at the left) sends an 

output current 12 into the far end, then the same E at the far 

end will send I2 into the near end (9). Thus, if the e.m.f. simply 

changes ends without changing in value, the output current 

remains equal. 

Now consider the input current. When transmission is from 

the near end, the input current (at the near end) is 

I - ^ 
‘ + Z2 

When transmission is from the far end, we have at the far end 

the input current 

I = E 
‘ Z2 + 

In conclusion, input and output currents simply change ends. 

We have therefore shown that, if the e.m.f. goes from one end 

to the other without changing value, the input to output current 

vector ratio remains the same. If this is true, it must remain 

the same for all values of the e.m.f. Obviously, the same can be 

said of the voltage vector ratio and of the transfer constant. 

Hence this is uniquely defined. 

2A. Output Matching. We defined the network constants in 

terms of their significance in the particular condition of iterative 

connection.,^ For example, the transfer constant is equal to the 

natural logarithm of the input to output voltage ratio /or the 

iterative connection. It should be noted that this, while a suffi¬ 

cient condition, is not a necessary condition for the equality 

to hold. 

The input to output voltage vector ratio is still equal to 

even when the network is not iteratively connected, provided the 

load impedance has the iterative value. In other words, this ratio 

(as well as the current ratio) is unaffected by the source imped¬ 

ance or anything else pertaining to the source. 

This premise is easily verified. The system which includes 
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load and network is a passive linear system. Any two voltages 

in this system (Sec. 1.7) are in constant ratio for the frequency 

under consideration; this ratio may be regarded as a parameter of 

the system. We cannot affect it by changing anything outside 

the system. 

The expression matching terminations is often used to designate 

the source and load impedances of a network in iterative con¬ 

nection (although the phrase may have other meanings). If a 

matched network is one whose terminations are both matching, 

we will use the term output matched for one whose load only is 

matching, while the source is not specified. Obviously, while 

a matched network is matched independently of the direction 

of transmission, an output-matched network is no longer output 

matched if the direction is inverted. Output matching is 

insufficient in two-w ay transmission systems. 

A network has the same transmission loss, insertion loss, phase 

shift, and input impedance, whether it is matched (iteratively 

connected) or simply output matched (iteratively connected with 

regard to the load only). The output impedance^ however, differs 

in the tw^o cases, as can be immediately verified. 

If the direction of transmission through an output-matched 

network is inverted, the netw^ork ceases to be output matched and 

all the above quantities change. In this case the source, not 

the load impedance, would have the iterative value; the load 

would have some generic value upon which all the quantities 

(except the output impedance) would depend. 

2.6. Fictitious Replacements. The logic behind some of the 

methods of network analysis is rather delicate and deserves at 

least as much attention as the algebraic manipulation. 

The superposition system (Sec. 1.7) was explained with 

reference to a linear system upon which several e.m.fs. were 

impressed. In stating the principle, the e.m.fs. were implicitly 

regarded as the causes to which all voltages and currents were 

due. 

This is correct enough. The e.m.f. is distinguished from all 

other voltages (and the e.g.c. from all other currents) by its inde¬ 

pendence from the circuit, or system, upon which it is impressed 

by an outside agency. In other words, it is an independent 

variable. For example, the e.m.f. of an alternator is an inde¬ 

pendent variable as far as the alternator and its circuit are 
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concerned; it depends on the driving speed and the excitation, 

factors that have no connection with the alternator circuit proper. 

On the other hand, the voltage across two points of a circuit 

depends, in general, upon the load on which impressed. Only 

a generator of zero impedance, which cannot be realized, would 

have voltage independent of load. 

For this reason an e.m.f. may be thought of as a generator of 

zero impedance. 

A physical generator, of finite internal impedance, is equiva¬ 

lent to an e.m.f. (impedanceless generator) in series with a 

passive load. • 

In addition, it is possible to imagine any two-pole, generator or 

other, replaced by a fictitious generator of zero impedance, or 

fictitious e.m.f. 

Consider, for example, the terminal voltage of a generator, 

given by 

V = EZj 
Zs + Zi 

(10) 

where E is the generator e.m.f., and Zi the source and load 

impedances. Let us imagine the generator replaced by a pure 

e.m.f. (or impedanceless generator) which can be adjusted by an 

automatic control. 

Suppose the load Zi is varied. The value of V for the actual 

generator would vary according to (10). But we can imagine 

the automatic coptrol of the fictitious impedanceless generator 

so set up that it responds to variations in the load and varies 

the e.m.f. also according to (10). Under these conditions, the 

fictitious impedanceless generator and the actual generator are 

equivalent. 

Electromotive forces such as that in the preceding example, 

whose value is not independent of the system parameters, are 

called fictitio us or dependent. 

It is clear that any branch or two-pole forming part of an 

electrical system may be ideally replaced by a fictitious e.m.f. 

equal under all conditions to the voltage appearing across the 

two-pole. This fictitious replacement will not disturb the 

remainder of the system. 

It is equally possible to replace the two-pole by a fictitious e.g.c. 

equal under all conditions to the current flowing through the 

two-pole. A fictitious e.g.c. is a generator of infinite internal 
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impedance, whose terminal current is the required function of 

the system parameters. 

In the case of a passive branch, the fictitious e.m.f. may be 

written IZ, where I is the branch current and Z the branch 

impedance; the fictitious e.g.c. may be written FF, where V is 

the branch voltage and Y the branch admittance. The first 

of these two statements is usually given prominence. It goes 

under the name of compensation theorem. 

(ahOienerafor ^^AFictifious replacements 
reprcsentatiohs tor generic 2>pole 

Fig. 4.—Fictitious replacements. 

The difference between a fictitious replacement and an equiva¬ 

lent circuit should be kept in mind. An equivalent circuit is 

completely identified by parameters (such as impedances) and 

independent variables (independent e.m.fs.). The quantity or 

quantities which identify a fictitious replacement are functions 

of the remainder of the system. 

In the limiting cases when a branch does not conduct current 

(open branch) or has no voltage across it (shorted branch) there 

is latitude in the choice of a fictitious replacement, namely 

1. A branch in open circuit (open branch) may be replaced 

by a fictitious e.m.f. equal to the voltage across the branch 

terminals (open-circuit voltage), in series with an arbitrary 
impedance. 

2. A branch in short circuit (shorted branch) may be replaced 

by a fictitious erg.c. equal to the short-circuit current in parallel 
with an arbitrary admittance. 
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Evidently, absence of all connection may be regarded as an 

open branch and a shorting connection as a shorted branch. 

Statement 1 will appear plausible if the reader thinks, for 

example, of placing a 110-volt battery across a 110-volt d-c line 

(positive terminal to positive terminal) across an arbitrary resist¬ 

ance. No current will flow, although an open circuit (absence 

of connection) has been replaced by a branch potentially able to 

carry current. However, if the line voltage fluctuates, current 

will start to flow unless by some means we adjust the battery 

e.m.f. to follow the line-voltage fluctuations. 

2.6. Thevenin’s and Norton’s Theorems. With the help of 

fictitious replacements, the Th^venin and Norton equivalences 

for linear generators may be stated with greater precision. In 

Sec. 1.7, these equivalences were introduced simply as definitions 

of linear generators. 

Consider Fig. 5a, a generator in open circuit. The open 

circuit, considered as a branch of zero admittance or open 

branch, may be replaced by a fictitious e.m.f. equal to the open- 

circuit voltage Foe, in series with an arbitrary impedance Zi 

(statement 2, Sec. 2.5). 

The replacement is possible because the component currents 

due to the generator and to the fictitious e.m.f., adding by the 

superposition principle, cancel or balance out. We can write 

an equation to this effect 

h + 
Voc 

Zi + z; = 0 (11) 

where Ii is the component of current through Zi due to the 

generator and Z« the generator impedance measured when the 

generator is inactive. 

In (11) we have an expression for h, the current flowing 

through a generic load connected to the generator terminals. 

This is 

h = 
Zi + Z, (12) 

This expression is true for any Zj, as this was arbitrarily 

selected. Therefore, for any load, the generator is equivalent to 

an e.m.f. — Voc in series with the impedance Z«. The minus sign 

of Voc appears when we place this e.m.f. inside the generator 

terminals instead of out. It means that the internal e.m.f. of 
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the generator and the open-circuit voltage are opposed as far the 
open-circuit current is concerned, thereby causing it to vanish. 
They must be considered to have equal signs with regard to any 
branch added in shunt to the open circuit. The equivalence 
may be expressed as follows: 

TMvenMs theorem. For a given frequency, any generator 
(active linear system) is equivalent to an e.m.f. equal to the 

Optn circuit Loaded generator 

Voc 

Short arcuit 

Fictitious replacements tor 

j ^ (dOpen circuit idJ-Short circuit 

Bcv- 3 
Equivalent circuits 

(ciThevenins 
circuit circuit 

Yu 

/u 

's 
/li 
11 

^sc 

Fig, 5.—Thevenin and Norton equivalences. 

open-circuit voltage, in series with an impedance having the 
value measured at the generator terminals at the same frequency, 
in absence of load, and with the generator inactive. 

The statement of Norton^s theorem (Fig. bb) closely parallels 
the above. Norton’s theorem is implicit in Thevenin’s theorem 
and in the principle of duality. A statement of the theorem is 
the following: 

Norton*s theorem. For a given frequency, any generator (active 
linear system) is equivalent to an e.g.c. (equivalent generator 
current) equal to the short-circuit current, in parallel with an 
admittance having the value measured across the generator 
terminal at the same frequency, in absence of load, with the 
generator inactive. 

It should be noted that the internal admittance of the Norton 
generator is the reciprocal of the internal impedance of the 
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Th^venin generator, since both are measured under the same 

conditions. 

2.7. Measurable Parameters. Going back, temporarily, to 

the network with generic terminations, the general method of 

solution will now be indicated. Rather than distinguish between 

load and source, we will suppose both terminations to be active. 

Figures 6a and 66 represent the Th4venin and Norton equivalent 

circuits for such a system. Note that Ya = 1/Za, Yi, = I/Z5. 

Fig. 6.—Network between generic terminations. 

Both terminations may, for convenience, be replaced by 

fictitious e.m.fs. equal to Vi and or by fictitious e.g.cs., 

equal to /i, h. Figure 6c shows the first replacement, Fig. 6d 

the second. The superposition principle may be applied in order 

to find the terminal currents in terms of the e.m.fs. Vi and V2, or 

the terminal voltages in terms of h and 12- The following 

equations result: 

(Fig. 6c) (Fig. 6d) 

11 = ^llVl + I/I2V2 /..JX Vl = 2llll + 2I2I2 .N 

12 = 2/21V1 + y22V2 V2 = 2:2iIi + 222I2 

where, in agreement with the principle of reciprocity. 

2/12 = 2/21 Z12 — Z21 

The above equations are similar to (7) (Sec. 2.3), but there 

is this difference: In Eqs. (7), the currents were expressed in 

terms of independent variables {Ex and i^2), which must be con¬ 

sidered as the given data; Eqs. (13) and (14), on the other 

hand, merely correlate four dependent variables together. They 

cannot lead to a solution without some additional information, 

since there are two equations in four variables (obviously there 

are only two independent equations, written in two alternative 
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forms). The additional information must be supplied by the 

expressions for the fictitious e.m.fs. Fi, Vi (or e.g.cs. /i, li), 

namely 

(Fig. 6a) 

Vi = El - ZJi 
V2 = Ea — Z{Li 

(Fig. 66) 

11 = Ui - F,Vi 
12 = U2 - FjVa 

If, instead of a single network between known terminations, 

we had considered a system of many networks connected together, 

the problem would require simultaneous solution of many 

equations. In any case, three complex coefficients (j/n, 2/2 and 

2/22 or 2ii, Z12, and 222) would have to be known for each network. 

The significance of the coefficients becomes clear when we observe 

the following: 

for V2 = 0 

Vn = 2/21 = 

Zn 

2i2 = 221 

Vi 

Y? 

for Vi = 0 

_ I2 
2/22 y^ 

II 
2/12 = 2/21 = y-^ 

for I, = 0 

Z\2 

Z22 = T" 
I2 

Hence the following definitions for the coefficients: 

1. yw is the near end or driving point short-circuit admittance 

(admittance measured at the near end with the far end shorted). 

2. z/22 is the far end short-circuit admittance (measured at the 

far end with the near end shorted). 

3. 2/12 = 2/21 is the transfer admittance^ equal to the ratio 

Current at the shorted end 

Voltage at the other end 

4. Zn is the near end or driving point open-circuit impedance 

(impedance measured at the near end with the far end open). 

5. 222 is the far end open-circuit impedance (measured at the far 

end with the near end open). 
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6. 212 = 221 is the transfer impedance^ equal to the ratio 

Voltage at the open end 

Current at the other end 

Any three of the six coefficients define the network, hence when 

three are given the rest can be obtained from them. Of the 

identities correlating the coefficients with one another, one in 

particular will be found useful, namely 

yilZn = 2/22222 (15) 

To verify this, let 72 = 0 in Eqs. (13) and (14). Then we have 

II I2 Z\i Ii 
2/11 y 2/21 y 7 Y" 

Vi y 1 Z21 I2 

Hence 

uii -.yji 
Z22 Z21 

Likewise, if 7i is set equal to zero, we obtain 

^22 _ _ 2/12 

2ii Z\2 

which, compared with the above, yields (15). 

The network coefficients, unlike the network constants, are 

never equal to the transmission data (transmission loss, phase 

shift, input and output impedance). In themselves they do not 

tell us much about network performance. On the other hand, 

they can be measured (or computed) on the network—the short- 

circuit admittances and open-circuit impedances being preferable, 

in this respect, to the transfer coefficients. 

We will therefore refer to i/n, ^22, 211, and Z22 as measurable 

parameters and consider them as known quantities. They 

represent a starting point from which to attack the network 

problem. In a generic case, the problem is attacked by writing 

four or more equations in which these parameters appear as 

coefficients and solving them simultaneously. In the particular 

case of iterative connection, all the information we need is 

contained in the network constants; hence, all we have to do is to 

express the network constants in terms of the measurable para¬ 

meters. This will be the object of the following section. 

2.8. Network Constants in Terms of Measurable Parameters. 
Consider a network in iterative connection: Two equivalent 
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representations (Norton and Th^venin) are possible for the 

source termination, and both will be used (Figs. 7a and 7b). 

The values of current and voltage in the network so connected 

will be called, for brevity, matched values (Ii, I2, Vi, V2). They 

are mutually related as follows: 

where B is the transfer constant, Zi and Z2 the iterative imped¬ 

ances (Sec. 2.1). 

Fig. 7.—Network in iterative connection. Derivation of the network 
constants. 

Now consider the same network, with the same source but 

with the output shorted, and let the currents -and voltages for 

this case (short-circuit values) be denoted by primed symbols 

(7/ 12 Vi V^')- For convenience, the page will be divided 

into two columns and all work relating to the short-circuited 

network will occupy the left-hand column. 

On the right, the parallel st6ps will be carried out on the same 

network (with the same source), but with output open, and the 

corresponding values will be denoted by double-primed symbols 

(Zi", and so on). 
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Short-circuited Network 

(Fig. 7d) 

The short circuit across the 

output can be replaced, as in 

(2), Sec. 2.5, by a fictitious 

e.g.c. equal to the short-cir¬ 

cuit current shunted by the 

admittance Yi (Fig. 7/). 

12 can be found as follows: 

The output voltage due to 12' 

alone and the output voltage 

due to the source alone (the 

matched value), adding by the 

superposition principle, must 

cancel. Hence 

“ Fi + Yi " ° 

I2' = + Fj) 

= Vx(Fi + Y,)e-^ 

Knowing h'j we can write 

the other short-circuit values, 

adding the components due to 

12 to the matched values: 

li' = li + I2' Yi-zfYl 

= Ii + ViFjc-^o 

Open-circuited Network 

(Fig. 7c) 

The open circuit across the 

output can be replaced, as in 

(1), Sec. 2.5, by a fictitious 

e.m.f. equal to the open-circuit 

voltage, F2", in series with the 

impedance Zi (Fig. 7e). 

F2" can be found as follows: 

The output current due to F2" 

alone and the output current 

due to the source alone (the 
matched value), adding by the 

superposition principle, must 

cancel. Hence 

I - n 
z, + z, 

V2'' = MZ, + Z2) 
= Ii(Z. + Zi)e-> 

Knowing F2", we can write 

the other open-circuit values, 

adding the components due to 

y2" to the matched values: 
7 

\T If I fr n ^2 _a Vi + V 

' V 
11^2- 
I + tT e 

^ t 1 
= v,( 

Vi' = Vi - /s' 
■ Fl + 1^2 

= Vi(l' - < 

^ ^ Z, + Z, 
= Vi + IxZse-^* 

p~e 

Z1 + Z2 

= Ii(l - e-2^) 

Dividing the above lines by one another, and noting 

7 = 2/11 (near end short cir- ~ 2n (near end open cir¬ 

cuit admittance) 

and that 

cuit impedance) 
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Short-circuited Network 

(Fig. 7d) 

we obtain the following: 

Yi + 
1 - e-2» 

Fic'+Fje-* 

Open-Circuited Network 

(Fig. 7c) 

_Zi + 
*>» 1 - e-2* 

Zic* -|- Zie~^ 

The entire derivation, for both short and open circuit, may 

evidently be repeated with the network turned about. This 

merely interchanges the subscripts 1 and 2. Thus 

7 _ ^2£M- ZiC " , . 
/u-'er_-g-e (.!«) 

Equations (16), (17), (18), (19) are four equations in the three 

unknowns 0, Zi (or Fi), and Z2 (or 1^2). Clearly, the equations 

are not independent. In fact, the parameters i/n, 2/22, 2:11, 222, 

are correlated by Eq. (15), namely 

ynZll = 2/22^22 

hence any one of the four equations could have been obtained 

from the other three. 

The solution of the equations, leading to explicit expressions 

for the network constants 6, Zi, and Z2, is purely a matter of 

algebraic manipulation. We will continue for a time the division 

of the work in two columns, which permits a more orderly 

arrangement. 

Subtracting (18) from (16), Subtracting (19) from (17), 

2/11 — 2/22 = Yi — Y2 (20) Zn — 222 = Zi — Z2 (21) 

This is a remarkable result. It shows, for one thing, that if 

the network measures the same from the two ends, either in 

open or short circuit, its iterative impedances are the same. 

Eliminating F2 in (16), (18), Eliminating Z2 in (17), (19), 

Vue^ — 2/22^“® Ziie^ — 2226“*^ 

= Fi(e^ + e-^) (22) = Zi(e^ + e-^) (23) 

Multiplying (22) by (23) and recalling (15), 

(e^ + e-^y = ynZnie^^ + e-^^) - 2/11^22 - 2J112/22 
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In view of the identitie.s 

(e" + e-^Y = + e-2« + 2 = 4 cosh^ 6 

iVn + y2i)(zii + 222) = 2ynZii + j/u222 + ^22211 

the above can be put in the form 

cosh e = i /Sh + y22)(2u + 222) ^24) 
\ yilZll - 1 ^ ^ 

[General expression for transfer constant] 

Equation (24), like all equations involving the hyperbolic 

functions of a complex variable, is not in a form suitable for 

numerical computation. The reader will find, at the end of the 

chapter and elsewhere, examples of the algebraic procedure used 

to obtain a and from hyperbolic functions of d. Alternatively, 

maps of the hyperbolic functions can be used. 

Equations (20) and (21) lead to expressions for the iterative 

impedances. From (20) we have 

1 1 
2/11 ““ ^22 - ^ 

•*. Z2 — Zi — ZiZtiyn — 2/22) = 0 

Combining the above with (21), 

(2/11 yii)Z\^ — (2/11 “• 2/22)(2i1 “ Z22)Zi + (^11 “ 222) = 0 

Similarly, 

(2/1I — ?/22)^2^ + (2/11 ~ 2/22) (2^11 ~ 222)^2 + (^11 “ 222) = 0 

Solving for Zi and Z2, and noting that 

2^11 ~~ ^22 _ Zii 1 ^22/^11 _ __ ^21 

yii — 2/22 2/22 2/22/2/11 ~ 1 2/22 

we have for the iterative impedances 

[General expression for the iterative impedances] 

2.9. Reversible Networks. The expressions for the network 

constants simplify very materially in the event that 

Zi = Z2 
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Tliis is, actually, by far the most important case. It is usual 

and necessary for communication systems to have interchange¬ 

able terminations, and an iterative chain linking such termina¬ 

tions must present the same impedance at any junction in both 

directions. As a result, the two iterative impedances must 

coincide, and it makes no difference which way each network is 

facing. 

In this case the common value of Zi and Z2 is written Zo and 

called the characteristic impedance^ and the network is often 

referred to as symmetrical. Because this word sometimes has 

other connotations, we shall use the word reversible instead. 

This term implies that the network can be inverted, or turned 

about, without effect on the transmission, which is true. The 

other designation is mathematically correct in that it refers to 

the matrix of the network coefficients; however, it would seem to 

indicate a symmetry of structure which the network often does 

not possess. 

All work on transmission lines and much of the work relating 

to lumped networks consider as a starting point reversible net¬ 

works in the iterative connection. For the sake of brevity, 

such networks, when so connected, will be referred to as matched 
reversible networks or simply matched networks. However, it 

must be understood that matched has a broader meaning than 

iteratively connected. 

The measurable parameters reduce to two for reversible net¬ 

works, in agreement with (20) and (21). They are customarily 

given as two impedances: the short-circuit impedance: 

2/11 2/22 

and the open-circuit impedance: 

Zoc = Zii = Z22 

Equations (16) and (18) are now identical and may be written 

Z,c = Zo tanh B (26) 

Similarly, (17) and (19) go into the common form 

Zqc = Zq coth B (27) 
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Dividing (26) by (27), we obtain 

tanh e = (28) 
\ ^oc 

[Expression for transfer constant of reversible networks] 

(By the use of well-known identities correlating the hyperbolic 

functions, the general expression (24) readily reduces to the 

above form for the reversible network, as the reader will verify.) 

Multiplying (26) by (27), we have 

Zq = \/ZacZoc (29) 

[Expression for characteristic impedance] 

2.10. Image Impedances, Maximum Power Transfer. The 

iterative chain has particular significance because it is the only 

possible connection which makes the voltage vector ratio equal to 

the current vector ratio and therefore permits the transfer 

constant to be uniquely defined. It is not, however, the only 

possible chain. The only requirement for chain connection, 

according to the definition given, is that each network in the 

chain must have terminations which depend on the network 

parameters in a prescribed manner. 

If the network is so terminated that its input impedance is 

equal to the source impedance, while the output impedance equals 

the load impedance, it is said to be image connected. This condi¬ 

tion is fulfilled for all members of an image chain. It follows 

that at all junctions of the image chain the impedance is the 

same in both directions (Fig. 8a). 

If the networks are reversible the image chain and the iterative 

chain become coincident. 

The importance of the image chain is brought out when we 

consider a chain of reversible networks, each network having an 

internal junction separating two equal halves, symmetrically 

placed (Fig. 86). With regard to the outer junctions, the chain 

is both image and iterative. This is also true with regard to the 

inner junctions, which also separate the chain into reversible 

networks, provided the impedance at all the inner junctions is 

the same. But if both outer and inner junctions are considered 

as boundaries between individual networks, then the chain is no 

longer iterative; it is, however, still an image chain. 

The image chain is more flexible than the iterative chain. 
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It permits nonreversible networks to operate between identical 

terminations. It further permits the impedance level to change 

from junction to junction, to suit the requirements of networks 

having special functions. 

Consider, for example, an iterative, reversible chain between 

equal terminations, of characteristic impedance Zq. It may 

be necessary to insert into the chain a reversible network of 

characteristic impedance Zo'. Obviously, this cannot be done 

without additional insertions. Between the new network and the 

original ones, matching networks must be added whose function 

Matching nefworks --'' 

Fig. 8.—Image chains. 

is that of providing correct terminations for both the new network 

and the others (Fig. 8c). 

These matching networks obviously cannot be reversible, nor 

can they be iteratively connected. They must be selected so 

that their image impedances are equal to Zq and Zo', respectively, 

and operate as parts of an image chain. 

The image impedances are defined as those values which, when 

used as terminations for a given network at a given frequency, 

cause the impedance toward load to equal the impedance toward 

source, at both ends of the network. 

For a reversible network, the image impedances coincide with 

the characteristic impedance Zo. Nonreversible networks can 

be considered in conjunction with identical networks, sym¬ 

metrically connected (Fig. 86). In other words, regarding the 
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nonreversible network as a half, the two possible whole networks 

(both reversible) are considered. Their characteristic imped¬ 

ances Zoi and Zo2 are the image impedances of the half. 

The transmission loss of the image-connected half network is 

equal to half the transmission loss of either whole. As for the 

insertion loss, this is seldom of importance, since insertion losses 

of individual networks do not add up to the over-all insertion loss, 

except in the case of iterative connection. 

Image chains form the basis of conventional filter design. 

A third type of chain is obtained when the impedances in 

the two directions, at each junction, are not given by equal 

complex numbers but by conjugate numbers. As will be shown 

in connection with the coupling problem (Sec. 8.2), this is 

the condition for maximum power transmission through the junc¬ 

tion. In other words, if an equivalent generator has impedance 

R + jXj it will transmit the highest possible power to a load 

R — jX. Chains which meet this requirement at all junctions 

may be called maximum power transfer chains. 

Chains of this type may be realized only approximately, as they 

impose serious limitations upon the component networks (Sec. 9.2). 

If a chain has resistive impedance of uniform value, looking 

in both directions at all junctions, it has the characteristics 

of all three types (iterative, image, and maximum power trans¬ 

fer). Transmission lines, under favorable conditions, are in 

this category. 

In the next chapter, the basic theory of four-terminal networks, 

particularly that of reversible networks in matched operation, 

will be used as a tool for the analysis of transmission lines. 

2.11. Applications and examples. 

Iterative chains. A number of identical resistive L sections 

in cascade (Fig. 9) are to be used in a variable attenuator designed 

for one-way transmission. The load impedance is 600 ohms, 

resistive. Each section must provide 2 db attenuation. 

Let Rm^ Rp stand for the series and shunt arms of each section. 

The iterative impedance toward load, /2i, equals the input 

impedance of a section terminated inRi. Hence 

= 22, + R\Rp 
lii H“ Rp 

R,^ = 22,(2?i + Rp) 
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The attenuation A must equal twenty times the log of the 

input to output voltage ratio. Hence 

R 
^ RyR,/{R, + Ep) 

R, = /2p(log-^ - l) 

The above may be written 

P 
” log-' (A/20) - 1 

Hence 

R. = (l - log-. (^720)) 

Numerically, 

fii = 600 

Rp = 2,305 ohms jR« = 123 ohms 

Zdb. 

Fig. 9.—Attenuator sections. 

Hence the arrangement of Fig. 9. Switches are designed to 
exclude sections; they short the series branch and open the shunt 
branch simultaneously. 

Suggested Exercises. Find the iterative impedance toward source for 

the above sections (networks). Verify that 

I_L = _L 
Ri Ri Rp 

Design a chain of T sections, providing attenuation up to 100 db in 1-db 

steps, between 600-ohm terminations, using the least number of sections. 

Network constants. Compute the constants of the (low-pass 
filter) T section of Fig. 10a. 
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The open- and short-circuit impedances are, by inspection, 

Ztc — J wZ/ -f- 
jluc - (l/o}L)] 

L’ZSO/dT L’2S0/M L L L 2L 
} t V Qpo r—0 O-V j)QQ y ♦ -O T ^ 

^C=aoi/xF ic d=2C ic rfec 
O ' "■ i   o o———i—o o 1 . . o o—i —4—0 

(a) (b) (c) (d) 
^ 

w-IOOfiOOnp.s.(2.lf.2.) L=O.IH C=OJjuF w--5000rps(2.lJ.J.) 

Fig. 10.—Low-pass filter sections. 

To simplify the algebraic work, and for other reasons; it is 
convenient to use dimensionless parameters. Thus, the above 
may be written 

Zoo =- jr (" - 0 
having let 

= jr (v 

= VI 
(lA)) 

Multiplying, clearing fractions, and taking the positive square 
root, 

Zo = VZocZac = r \/2 — 

Dividing, and proceeding likewise, 

tanh d — —r ^ 
Zqc 1 

Numerically, 

L = 250 pH a = 0.01 pF CO = 100,000 r.p.s. 

Hence 
r = 158 n = 0.158 

Zo = 222 ohms tanh B = j0.22S 

a and jS may be computed by expanding tanh 0, as follows: 

tanh 6 = 
- 1 
+ 1 

1 + tanh B 
1 — tanh B 
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Numerically, 

, [1 + (0.228) ^ ,«(Un-.„.22S) 
[1 + (0.228) 

TTptipp 

e = a+jp j tan-1 0.228 
a = 0 

i3 = tan-* 0.228 = 12°50' 

Actually, in this particular case this procedure is not necessary. 

Because of the identity 

tanh jx = j tan x 

the result could have been obtained by inspection. This is not 

true when a and are both 9^ 0. 

Suggested Exercise. Assign arbitrary values to the network con*stants 
(preferably keeping the two iterative impedances equal), and solve for 

Zoe and Ztc by means of (26) and (27). Note that, in some cases, the 

results represent vectors in the second and third quadrants, corresponding 
to negative resistances. Barring such cases, investigate the field of variation 
for Zq and 0 (see also group 6 in the Bibliography). 

Image impedances. Find the image impedances of the L 
section in Fig. 10b. 

The image impedances are found by taking the characteristic 

impedances of the T and TI sections formed by joining two 

identical L sections in the two possible symmetrical combinations. 

For the T section (Fig. 10c) we may use the equation 

Zq = r '\/2 — 

However, in place of 7i, we must write n a/2, and in place of r, 

r/y/2j if we want to preserve the notation 

r = 

where L and C are the values for the L section. Hence 

Zqi = r y/1 — 

The configuration of the n section (Fig. lOd) is in every 

respect the dual to that of the T section. 'We can therefore use 

the last line for this case also; however, Z becomes 7, and L 
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becomes C; hence, r becomes 1/r. Thus 

i i Vl - Zo2 = 
Zo2 J 

Numerically 

L = 0.1 henry. C = 0.1 /x a> = 5,000 r.p.s. 

r = 1,000 ohms n = 0.5 

Zoi == 867 ohms 

Zo2 = 1,150 ohms 

Suggested Exercise. Consider an L section with scries arm of impedance 

Za shunt arm of admittance Fb. Obtain the image impedances in terms of 

Za and Yb. Observe that the expressions for the image impedance at one 

end and the image admittance at the other are the same, except that Za takes 

the place of Yb. 

Note. The reader should bear in mind that, while there exists an equiva¬ 

lent T and an equivalent II for any four-terminal network, in some cases 

these are not physically realizable. As for the equivalent L, this exists 

only in particular cases. L networks, although nonreversible, have only 

two independent constants (7). 



CHAPTER III 

NETWORK THEORY APPLIED TO 
UNIFORM NONREFLECTING TRANSMISSION LINES 

3.1. The Section of a Long Line as a Four-terminal Network. 
The conclusions of the preceding chapters find immediate and 
useful application in the study of the transmission line, a finite 
section of which will now be considered in place of the generic 
four-terminal network. 

In order to study the line, certain data must be taken as the 
starting point. These data must be connected with, and 
deducible from, the physical structure of the line (its length, the 
distance between conductors, the size and nature of the con¬ 
ductors and of the dielectric between them). Our first object is to 
define quantities suitable for this purpose. The relation between 
these and the line constants will be investigated later (Sec. 3.4). 

3.2. Series Impedance. Shunt Admittance. It is impossible 
to draw a schematic representing a finite section of line because 
this can be likened to a network having an infinite number of 
meshes. A crude approximation (Fig. 11a) includes a finite 
number of meshes. Upon this approximate model may be based 
considerations which are valid regardless of the number of 
meshes and therefore apply to the line itself without loss of rigor. 

Suppose, for instance, that all the shunt or transverse con¬ 
nections of Fig. 11a are severed. The line section degenerates 
into a simple series impedance connecting source and load, 
or adjoining sections (Fig. 116). This is the series impedance 
of the line section. This impedance is obviously independent 
of the arbitrary number of meshes used in the model and is, 
also obviously, in direct proportion to the length of the section. 
Its value per unit length of line (t.e., for a line section of unit 
length) is the series impedance per unit length of the line, Z,. 
It ma^ be defined as the impedance which would be measured 
across the input of a unit length section, if the output were 
shorted and if the distributed shunt admittance were removed. 

Now suppose that all the series branches of Fig. 11a were 
54 
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shorted or replaced by direct connections. This reduces the 
section of line to a single shunt connection across both pairs of 
terminals (Fig. 11c). The admittance of such a connection will 

I' Series Shunt 
I branches (a) branches 

(c) 
Fig. 11.—Approximate representation of a section of line^ showing signifi¬ 

cance of series ivipedence and shunt admittance. 

naturally be proportional to the length of the line section, and 
independent of the number of shunt branches in the model 
initially considered. It is the shunt admittance of the section. 
Its value per unit length is the shunt admittance per unit length of 
the line, Yp. This may be defined as the admittance that could 
be measured across the input of a unit length section, if the out- 
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put were open and the distributed series impedance replaced 
everywhere by impedanceless connections. 

As has been pointed out, the quantities so defined would be 
valueless as a starting point if they could not be linked to the 
line’s physical characteristics. The reader will appreciate 
that the above pictures in which series impedance and shunt 
admittance appear independently are far easier to analyze than 
the composite one where these two quantities appear together. 
Therefore, for the time being it is not necessary to go any further 
in the study of and Fp, and these may be treated as known 
parameters. 

3.3. Element of Line. The series impedance of a section of line 
of length Al is clearly equal to Z, AZ, and likewise Yp Al is the 
shunt admittance. According to the preceding definitions, we 
could consider Z, Al equal to the short-circuit impedance of the 
section, Zsc (Sec. 2.9), if it were possible to assume that the 
shunt admittance of the short-circuited section had no effect and 
could be removed without any change in input current or voltage. 

The short-circuited section is shown in Fig. 12a, again by an 

('a) (b) 
Fig. 12.—Element of line. 

approximate representation with a limited number of transverse 
connections. It is evident that if the length Al is small, these 
connections will absorb only a negligible fraction of the total 
input current, so that their severance has very little effect. 
Going to the limit, if the length becomes infinitesimal we are 
justified in saying that the shunt connections carry no current 
and may be neglected, hence 

Z.e = Z. dl (30) 

for a section of infinitesimal length dl, or element of the line. 
Considering Fig. 126, we see that the drop in voltage from 
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the input to the output terminals is negligible in a very short 
section. Hence all series branches have only a negligible voltage 
across them and may be short-circuited without appreciable 
change. In the limiting case of an infinitesimal section of 
length dlj or line element, we may say that the input admittance 
for short circuit is equal to the shunt admittance of the element, 
or 

Yoc = 4- = Yp dl (31) 
^oc 

3.4. Constants of the Line. A chain consisting of an infinite 
number of line' elements connected in cascade will now be con¬ 
sidered. Such a chain is equivalent to a section of line of finite 
length 1. 

If Zo is the characteristic impedance of a single element (Sec. 
2.3), the characteristic impedance of the chain, or section of line, 
is also Zo. If this value of impedance is used to terminate the 
section, this will operate as an output-matched chain of reversible 
networks having an infinite number of junctions. If any 
junction of such a chain is disconnected, the impedance on the 
load side of the junction is always Zo. This value of impedance, 
will be measured across any two opposite points of a line, if the 
line is cut at those points, and if the line is terminated in the 
same impedance at the far end. The impedance Zo is therefore 
called the characteristic impedance of the line, A line used to 
transmit signals to distant points should be terminated in its 
characteristic impedance; when this is the case the line is said to 
match the receiver or other load, and vice versa. Nonmatched 
operation will be taken up in Chap. V. 

If the definition of transfer constant is called to mind (Sec. 
2.2) it will be seen that the transfer constant of a chain of n 
identical networks is n0, if 6 is the transfer constant of each. 
As there are 1/dl line elements of length dl in the unit length 
of line, if 6 is the transfer constant of a unit length section, 
6 dl will be its value for the element. 

On the basis of Eqs. (30) and (31), the values of image imped¬ 
ance Zo and transfer constant 6 dl for an element of line will 
now be found. The first of these is also the characteristic imped¬ 
ance of the line; the second, divided by dl, yields the transfer 
constant per unit length of the line. Using Eqs. (28) and (29), 
we may write 
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Note that in the above line, tanh 6 dl is identical to $ dly this 
being an infinitesimal quantity, as can be quickly verified by 
examining the series expansion for hyperbolic tangent (Sec. 5.6). 
Accordingly, the line constants will now be rewritten in simpler 
form _ 

Z„ = ffo + jXo = (33) 

[Characteristic impedance] 

e = (34) 
[Transfer constant per unit length (mile) of line] 

In the above expressions, using the mile as the unit of length, 
Z, represents the series impedance and Yp the shunt admittance 
per mile of line, a and ^ are the attenuation and phase shift per 
mile. Equation (33) tells how the line should be terminated and 
^34) gives the transmission characteristics per mile for the cor¬ 
rectly terminated line. These equations are in vector form, and 
further analysis is necessary in order to make them directly 
useful for computation. The following sections will be devoted 
to this purpose. 

3.6. Dissipation Factors. The series impedance and shunt 
admittance per unit length of line, Z« and Fp, which served as 
basis for the derivation of Eqs. (33) and (34), must now be 
reconsidered and expressed in terms of parameters having more 
direct engineering significance. 

Letting L stand for the inductance per mile, which is therefore 
a constant, and R for the resistance per mile for both wires, 
we have 

Z,--R+ jcoL (35) 

For the value of L in terms of wire spacing, see Sec. 4.4. 
In perfect analogy with the above, Yp may be expressed in 

terms of G and C, conductance and capacitance per mile of line 

Fp = (? + icoC (36) 

w as usual stands for the angular frequency 27r/. For values of 
C in terms of wire spacing, see Sec. 4.4. 

Expressions for a, jS, 7?o, and Xo (see Sec. 3.4) could be found 
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in terms of /?, L, G, and C and the results would be of value. 
However, these results would not lend themselves to convenient 
handling, except for a few cases of particular interest. For the 
results to have more significance, it is found, in this as in many 
other cases, that dimensionless parameters must be used. 

There are other advantages in the use of parameters of this 
type; they generally have greater value in the comparison of 
systems whose electrical dimensions are widely different. The 
numerical value of such parameters is usually a good indication 
of the general character of the line, or any other system, to 
which they apply. Moreover, they eliminate confusion with 
regard to units and conversions. 

Parameters of this type, when not in general use in the litera¬ 
ture, will be introduced and explained as the need arises; this 
slight departure from current usage is justified, in the author's 
opinion, by the simpler expressions which result. 

The well-known ratio Q, equal to X//2 or B/G, is an example 
of a widely used dimensionless parameter. Later on we shall 
make a distinction between Q and Qo, another parameter defining 
selectivity (Sec. 9.5). Although less popular than (?, its recip¬ 
rocal, the dissipation factor d is also used on occasion. In 
the treatment of lines d is preferable, as it leads to simpler 
expressions. 

Accordingly, let us define the following: 
a. The series dissipation factor 

* = 

where R is the series resistance per unit length, L the series 
inductance; and 

h. The shunt dissipation factor 

^ (38) 

where G and C are the shunt conductance and capacity per 
unit length, respectively. 

These two parameters are all that is needed to account for 
the losses present in the line. 

3.6. The Lossless Line. Impedance Number. Time Lag 
and Frequency Number. Using the dissipation factors, Eqs. (33) 
and (34), giving values for the line constants, expand as follows: 
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a. The characteristic impedance: 

rj _ f^8 _ + joiL 

“ yiYp ~ \G+jccC 

hence 

(39) 

b. The transfer constant (per unit length): 

e = V^p = V(R + jo^L)(G + jo>c) 
hence 

e = w y/LC V{d, + j){d/+ j) (40) 

Let us now consider the values taken when and dp are 
negligibly‘ small. Because in this case, as we shall see, the 
attenuation a vanishes, the line in question would be incapable 
of dissipating power and may be properly called a lossless line. 

Often, a physical line may be considered lossless for practical 
purposes. Besides, the values obtained neglecting losses are 
useful for reference. By comparing the actual values to these, 
we obtain dimensionless parameters which can be used to some 
advantage. 

The lossless value of Zq is a pure resistance. From (39) 

^\d.^dp^o) ~ ~ yjc 

Comparing the actual, or ^Mossy^^ value to the above, we are 
led to a pure number, usually complex, as follows: 

Characteristic impedance number:^ 

Zo 
Zq _ jdg + j 

^\d,^dp=0) + j 
(42) 

Note that the above equation contains dimensionless quantities 
only, therefore lending itself well to graphical methods of evalua¬ 
tion (Sec. 3.4). 

^ Later, the term impedance number will be used in a somewhat different 

sense, to signify the ratio of a given impedance to the characteristic imped¬ 

ance of a line or network which is being studied. 
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The lossless value of the transfer constant is a pure imaginary. 
We have, in fact (from Eq. 40) 

0(dpw*-o) = w VXC \/ —1 = jo) \^LC 

hence 

a(dp-rf^O) = 0 

^(dp«d.=iO) = 0) y/~LC (43) 

A lossless line, as we anticipated, does not attenuate but produces 

a phase shift of value co vTC per unit length. 
Since the voltage (or current) vector rotates uniformly with 

time at the angular velocity o), the phase shift introduced by 
the line could be duplicated by ^^setting the clock back^^ a given 
number of seconds. We could say that the line retards the signal 
by this time interval, or that it produces a time lag of so many 
seconds. If steady state is assumed, this time lag is not particu¬ 
larly significant; it has importance only when there are time 
variations, which is true in practice, of course. One might 
object that the present method of analysis does not apply to 
changing conditions, except when they are very gradual (Sec. 
1.6). There is no valid answer to this objection; however, we 
shall later confirm the results predicated on steady state by 
other methods not based on this hypothesis (Sec. 13.2). 

The time lag caused by a mile of lossless line is readily 
expressed. We may argue that the time lag is to one second as 
the phase shift due to the mile of line is to the vector rotation 
during a second, w. Hence 

{Time lag per mile of line] 

The above is general. Now for a lossless line we have the value 
of p given in (43). Hence 

= VLC (45) 
CO 

The reciprocal of the time lag per unit length is called velocity of 
propagation^ although we cannot think of this quantity as a 
velocity in the ordinary sense unless we assume some kind of 
disturbance being propagated along the line, which again con¬ 
tradicts the hypothesis of steady state. For a lossless line. 



62 TRANSMISSION LINES [Chap. Ill 

this velocity takes the value 

If, in addition to the absence of losses, we also assume absence 
of magnetic materials or of any dielectric other than gases or a 
vacuum and furthermore consider the currents to flow only 
on the surface of the conductors, can be calculated by the 
methods of field theory (Chap. XIII) and turns out to be the 
same as the velocity of electromagnetic waves in space, or 
the velocity of light. For practical purposes, this is true of all 
physical open wire lines with reasonably small dissipation. 

We shall find it convenient to express the ratio 

n = VLC = - (46) 

which we shall call frequency number. For open wire lines, using 
the mile as the unit of length, n is approximately equal to 

" - T^®6 ■ « X 

In terms of n, Eq. (40) may be written 

I = V{d~+md7+ j) (47) 

The remainder of the chapter will be devoted to various 
methods for evaluating the line constants in cases when dis¬ 
sipation cannot be neglected. 

★ 3.7. Expressions for the Line Constants in Terms of the Line 
Parameters d, and dp. To expand (42), we take the squares of 
both sides, rationalize, and separate into real and imaginary 
parts. Thus 

/ ro^ 
1 ”f" dpdg 

1 + dp^ 

I roXo 
1 dp dg 

^l + dp^ 

(48) 

Sections marked by star are largely taken up by the mathematical 
steps leading to formulas useful in computation but not necessarily essential 

to a good understanding of the theory. The reader may omit such sections 
without loss of logical continuity. 
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Now we let, for brevity 

A _ 1 “b dpdg 

dp - d. 

and divide the second line into the first, obtaining 

^ ^ = 2^ 
Xo Xq 

Now, solving for ro/xo, 

= A i. \/1 (49) 
Xo 

Solving for Xo/vq 

^ = -A ± V'l + (50) 
ro ' 

Multiplying (49) and (47), expanding, and taking the square 
root, 

^ 1 /a/(1 +~rf;,^)(l + ds^) + 1 + dpde 

ro-^yl (51) 

[Characteristic resistance of the line] 

The uncertainty on signs is eliminated by making dp and d, 
vanish in the above expression and comparing the result with the 
expression derived from (44) by removing dp and d, in that 
equation. Now, multiplying (40) and (47), 

^1 /V(i +o!pO(l + (1.^) - 1 - dprf. x„ = ± ^- (52) 

[Characteristic reactance of the line] 

We cannot remove once for all the ambiguity in the sign of xq. 
The minus sign applies when da > dpy which is true in all practical 
cases. 

The identical procedure is applied to Eq. (45). It leads 
to the following: 

- = -4- Va/(1 + rfp^)(l + d.^) - l+d^. (53) 
n ^/2 

[Attenuation per unit length] 

^ ^ VV(1 + dp=)(r+Z^) + 1 (54) 

[Phase shift per unit length] 
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In the above expressions (51) to (54): 

a = attenuation, nepers per mile 

= phase shift, radians per mile 

n = 0) VXC = frequency number 

ro == Rq \/C/L = resistance number 

Xq = Xo y/C/L = reactance number 

Zo = Ro + jXo = characteristic impedance 

ds = R/o)L = series dissipation factor 

dp = G/oiC — shunt dissipation factor 

G, Ly C = distributed resistance, conductance, inductance, 

capacity 

(For simplified expressions valid in many cases, see Sec. 3.6.) 

3.8. Mapping of Line Constants. Equations (51), (52), (53), 

and (54) provide means for obtaining the line constants, 6 and Zo, 

having measured or obtained in some way the parameters ds and 

dp and the frequency number n. The necessary computation, 

however, is laborious, since in general the constants have to be 

evaluated over a range of frequencies. 

The line constants can be determined much more easily by the 

use of appropriate charts or maps. A visual appreciation of the 

quantities involved and their variation is also gained by means 

of such devices. 

Consider a plane whose coordinates are Q, = 1/d, and 

Qp = 1/dp. Each point of the plane corresponds to only one 

value for each of the quantities a/n, fi/n. All points for which 

a/n has a particular value, joined together, define a constant 

a/n line. A family of such lines, drawn over a sector of the 

Qs/Qp plane and adequately spaced, constitutes a map of the 

quantity a/n. Other maps are similarly defined. These maps 

are obtained by manipulation of Eqs. (51) to (54). 

Figure 13 shows maps of a/n and p/n. Both maps are sym¬ 

metrical about the 45-deg. line through the origin; for this reason, 

each is drawn on one side of this line only, to avoid crowding. 

For the same reason, it does not matter whether Q, is taken 

as the abscissa and Qp as the ordinate, or vice versa. Each 

scale may be used indifferQntly for Q, or Qp, hence both the 

abscissa and ordinate scales are marked Q without a subscript. 

These scales are logarithmic, to ensure uniform accuracy and 

provide much wider ranges. 

Once the point corresponding to a given line at a given fre- 
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quency (the point of operation) is located on the map, the points 
of operation for other values of frequency become immediately 
available. Consider the point P of coordinates Q, and Qp. 
Both Q, = oiL/R and Qp = o)C/G are proportional to frequency 
(provided this does not exceed a certain value; roughly, this is 
true over the audio range). From the above expressions, we 
obtain 

Qs ^GL 
Qp CR 

(55) 

This is the equation of the locus described by P as the frequency 
is varied. It represents a straight line passing through the 
origin. This line is the path of operation for the line in question 
at variable frequency, on the Qp, plane. 

This construction is based upon the use of arithmetic (linear) 
scales for Qp and If logarithmic scales are used, the actual 
coordinates of the point of operation are log Q* and log Qp. In 
this case the equation for the path of operation can be obtained 
by taking the logarithms of (55), as follows: 

log Q, - log Qp = log ^ (56) 

Equation ^56) represents, on the plane log Qp vs. log a 
straight line with a positive slope of 45 deg. Upon this path of 
operation can be traced a frequency scale, which is the same for 
all possible conditions, being logarithmic and having projections 
upon the axes of coordinates entirely similar to the scales used for 
Q, and Qp. 

This frequency scale accompanies the maps of Figs. 13 and 14. 
By the use of a simple procedure, described in the legend accom¬ 
panying the maps, the required constants can be obtained for 
many values of frequency in one operation. 

With reference to the maps of Fig. 14, these include lines of 
constant [2:0] and of constant /^. These two symbols stand for 

the magnitude and angle of the impedance number 

Zo 

y/Ljc' 
These lines have been drawn on separate halves of the sheet, 
just as in the case of a/n and fi/n (Fig. 13), although they are 
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Freciuencv scoile 

m 200 300 400 500 1000 2000 3000 40005000 iQOOOc.p.s 

Fig. 13.—AUemiation and 'phase-shift maps for matched transmission 

lines. 

Symbols used: 
a — attenuation, nepers/mile 
jS = phase shift, radians/mile 

n — Q) y/hC = frequency number 

Q stands for either!^* 
tor Qp = wC/G 

C, G = inductance, capacity, resist¬ 
ance, conductance per mile. 

To read a/n and ^/n over a range of fre- 
quendea, copy as much of frequency scale 
as needed on a straight edge. Transfer 
this upon maps in both positions shown on 
left. Frequency scale is logarithmic, valid 
only up to upper limit of audio range. For 
examples, see Sec. 4.6. 

Frequency 
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not symmetrical about the Q» = Qp line. However, we note 
from Eq. (44) that substitution of ds for dp and vice versa changes 
zo to its reciprocal. 

Magnitude of impedance number go = Zo is given by| 

Angle of characteristic impedance Zo is given by ... . | 

7 when Qs > Qp 

1 /y when Qp > Q« 

ip when Qs > Qp 

—<p when Qp > Qs 

Q stands either for Qa = o)L/R, or Qp = oiCfG 
For other symbols and for use of frequency scale, see Fig. 13. (The same fre¬ 
quency scale can be used.) For examples, see Sec. 4.5 and Fig. 13. 

Hence, interchange of Q* with Qp will change l^ol to and 

to -/^o. This makes it necessary to interpret the values 

obtained according to the key which accompanies the maps. 
3.9. Example of Line Constant Evaluation. In the following 

example, we will suppose that the distributed series impedance 
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and shunt admittance have been measured on an open wire line 
(see also Sec. 4.4). The line parameters will be computed, and, 
by means of the maps described in the preceding section, the line 
constants will be evaluated over the lower end of the audio¬ 
frequency range. Plots of the constants against frequency 
appear on Fig. 15. 

100a: 

Fig. 15.—Constants of a 0.104-in. open wire line. 

Open wire line of 0.104-m. wire. The following data are given: 
Resistance per mile R = 10.4 
Inductance per mile L = 3.67 
Conductance per mile G = 0.8 
Capacitance per mile C = 0.00835 
Computation of and Qp at 1,000 c.p.s.: 

- ojL 1,000 X 27r X 3.67 X 10--« _ « oo 
^ T ^-mi " 

^ coC 1,000 X 27r X 0.00835 X 10-« .. . 
Qp = y-0.8 X iif^- = 
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Computation of y/LC and 

y/LC = y/zm X 10-« X 0.00835 X 10-» = 5.53 X 10-« 

‘^C ^ Vo.00835 ^ 

Tabulation op Values 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
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50 .174 2.25 1.96 .34 33 .392 1.085 1950 -33 

70 .2435 1.8 1.76 •4 34 .438 .973 1 1660 
1 

-34 

100 .348 1.45 1.57 .47 34 .505 .868 1410 -34 

140 .486 1.17 1.41 .56 33 .569 .78 1185 -33 

200 .695 0.9 1.285 .64 30.7 .625 .71 1035 -30.7 

300 1.043 0.67 1.17 .75 26.5 .7 .647 884 -26.5 

400 1.39 0.52 1.12 .82 22.8 .723 .62 808 -22.8 

600 1.74 0.44 1.076 .87 20 .765 .595 762 -20 

700 '2.435 0.32 1.043 .915 15.5 .779 .577 724 -15.5 

1000 3.48 0.23 1.021 .955 11.8 .8 .667 694 -11.8 

These results are plotted in the curves of Fig. 15. The signifi¬ 
cance of the time lag jS/w is explained in Sec. 4.2. 
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★ 3.10. Lines of Low Parallel Dissipation. No assumption has 
been made, so far, regarding the values of ds and dp as they occur 
in most practical cases. In the next chapter this matter will be 
taken up in some detail; however, it is convenient to note at this 
point that the following conditions are fulfilled in a large number 
of situations: 

First condition: 
da dp (57) 

Second condition: 
dp « 1 (58) 

In order to assign a definite meaning to the above inequalities, 
let it be assumed that .r <3C 1 when < 0.01, or, in other words, 
when can be neglected with respect to unity with an error of 
1 per cent or less. 

Conditions (57) and (58), thus defined, hold with the following 
exceptions: 

Condition (57) does not generally hold for loaded open wire 
lines if treated on the assumption of uniform loading (Sec. 4.4). 

Condition (58) does not generally hold below frequencies of 
150 c.p.s. (open wire) and 25 c.p.s. (cables). 

Consider the form that Eqs. (51), (52), (53), and (54) take 
when the above conditions are met and errors of less than about 
1 per cent are tolerated. Take, for example, Eq. (53), 

^ ~ Vv^ + dp2)(l + d,2) — 1 + dpdn 

We may write 

Vl + d/ = 1 + e (59) 

e being approximately equal to dp^/2, first term of the series 
expansion. Substituting in (53), 

^ = ^2 (V^ + da^ — l+e'\/l+da^ + dgdp) 

It is convenient to introduce the following quantity, function of 
da only 

-Si = (60) 

whence 
Vl + d.^ = 2Si^ + 1 
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and 

^ = S, .Jl + e + (61) 

Noting that all the terms beneath the radical of the above are 

positive, we may neglect the term e with very small error [see 

condition (58)]. Furthermore, since e and dp^/2 are approxi¬ 

mately equal, the term e/2Si^ is also negligible if we can show 

the following term to be negligible: 

_ 
W " 2{Vl~Td? - 1) 

For any given dp, this term decreases with increasing ds. There¬ 

fore, if the term can be neglected when ds = lOdp, it can also be 

neglected when ds > lOdj,; hence, from (57), if the term is 

negligible for ds = lOdp, it is negligible for all values of ds con¬ 

sistent with the premises and with the given dp. Letting 

ds = lOdp, we have 

dp^ _ _dp^_^_ 
2(Vr+T6od;2 -1) 

As dp takes all values consistent with (58), the above varies 

between 0.01 and approximately 0.012. This last figure is the 

highest possible value of the term e/2^Sr, and, taking for the 

term e its highest possible value, which is approximately 0.005, we 

find that in the most unfavorable case {dsdp/2Si^ — 0). The 

omission of both terms introduces an error of about 0.85 per cent. 

We may, therefore, without exceeding 1 per cent error, write 

^ Jl + 
n \ 

dsdp 

2Si^ 
(62) 

Considering now the term dsdp/2Si~j we note that, for a given dp, 

this term is largest when the expression 

ds __ds_ 

W ““ Vl + ds^ - 1 

has the greatest value. This expression depends on ds only and 

has 00 for a limit as ds approaches 0. The expression can easily 

be shown to increase as d« decreases for all positive values of 

ds. Hence it will have its highest value, consistent with our 
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premises and with the given dp, when d, has its lowest value, 

which is ds = lOdp. In this case we have 

dgdp __ _lOdp^_ 
W “ Vl + 100dp2^ 

As dp takes all permissible values, this quantity ranges between 

0.2 and 0.24. It cannot, therefore, be neglected as a rule, 

although in many cases its value is much smaller. However, 

since this value is never greater than unity, (62) can be expanded 

in a series as follows: 

a 

n 
Si 

1 dsdp ds^dp^ 
32Si^ 

+ 

The highest possible value of the third term of this series is 

(0.24)2 ^ 

8 
0.0072 

Omission of this term introduces an error never greater than 

0.72 per cent. It should be noted that this error is in the opposite 

sense to the error of less than 0.85 per cent previously introduced, 

and both errors reach their peak for the same conditions; hence 

we may, with a total error probably much less than 1 per cent, 

write the final equation 

n 

dgdp 

457 

Reasoning along similar lines, Eqs. (51) to (54) can be put 

. in the approximate forms tabulated below. Their graphical 

counterpart is the curve of Fig. 16, accompanied by a self- 

explanatory procedure for quickly finding the constants of lines 

or cables applicable in the vast majority of cases. The terms 

dgdp/AiSi and dgdp/^82, generally small, are allowed for in the 

form of an additive correction. 

The expressions given below are correct within 1 per cent 

provided d, > lOdp, dp < 0.1. 

[Attenuation] 

X, = ^ (64) 

[Characterietic reactance] 
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—WW a or Xo T^o find P/u or Ro 

Q» 
range: 

1 

1. Read 
S 
on 

curve 
No. 

2. Di¬ 
vide 
S by 

3. Add 
the 
cor¬ 
rec¬ 

tion* 

4. For a 
(nep./mile) 
multiply by 

5. For 
Xo 

(ohms) 
multi¬ 
ply by 

1, Read 
.5 
on 

curve 
No. 

2. Di¬ 
vide 
Sby 

3. Subtract 
the correc¬ 

tion* 

4. For fi/oj 
(ji sec/mile) 
multiply by 

6. For R 
(ohms) 

multiply by 

0.001 to 
la 0 25 n=2ir/ -y/LC 

IZ 
16 1 

0.25 
\/ZCX 10« 0.02 1 

SQvQ. SQpQ, yjc 

0.26 

SQpQ, 
n = lirf \/LC 

11 1 
0.25 

Vlcxio* 
0.2 2a 1 

“Vc 

If 

SQpQ. 
1 

2.5 
2.6 

SQpQ, 

26 

SQpQ, 

n=2ir/ \/LC 10 Vlc X 10« 

\/lcx 10« 

0.1 to 2 3a 10 
'^^[c 

IT 

36 SQpQ$ 

2.5 
\c 

IZ 
2 to 20 4a 100 n=2irf \/LC 

'^yfc 
46 10 SQpQ. \c 

10to50 5a 100 
26 

SQpQ. 
n^2irf -y/hC -4 /5/« “ \^LCX 10* M sec/mile; Ro »= Q 

* Do not apply correction if less than 1 per cent of total. Method is correct to 1 per cent except for fre¬ 
quencies below 150 c.p.B. (open wire) or 26 c.p.s. (cable) and for loaded open wire lines. 

See example, Sec. 3.11. 
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^=82 
71 n ^ AS2 

' [Phase shift] 

[Characteristic resistance] 

In the above expressions 

a/1 + d ? - 1 

2 
IVl + + 1 
' 2 

All other symbols are as for Eqs. (51) to (54). 

3.11. Example of Line Constant Evaluation for a Line of Low 
Shunt Dissipation. The following values have been obtained 

by direct measurement on a 22 A.W.G. cable (see Sec. 3.12): 

Qs = 0.0293 

Qp = 209 

10« X \/rC = 8.54 

CO = 5,000 r.p.s. 

VLC = n = 0.0427 

4-- 

117 ohms 

The constants can be found on the curves of Fig. 16 as follows: 

a. To find a and Xo (attenuation and characteristic reactance) 

1. Qs is in the range from 0.01 to 0.2; hence Si is read on 

curve 2a 

Si = 4.08 

2. No division is necessary 

3. The correction is 

1 
4 X 4.08 X 0.0293 X 209 

= 0.01 

The correction is therefore negligible compared with Si and 

need not be added. 

4. The attenuation is as follows: 

a = 4.08 X n = 4.08 X 0.0427 = 0.1745 nep./mile 

5. The"characteristic reactance is 

Xo = “4.08 X 
/c- 

-4.08 X 117 = -477 ohms 



Sec. 3.12] MEASUREMENT OF LINE PARAMETERS 75 

5. To find p/o) and Ro\ 

1. Read on curve 26 

^2 = 4.2 

2. No division necessary 

3. Correction negligible 

4. The time lag in microseconds per mile shows the following 

result: 

10« X ^ = 4.2 X 10« X VLC = 4.2 X 8.54 = 35.9 m sec./mile 

5. The characteristic resistance iJo is 

= 4.2 X = 4.2 X 117 = 491 ohms 

Note. The approximate cable formulas (Sec. 4.5) could have been used 
in the above example with small error (about 1.4 per cent). For higher 
frequencies and for lines of other types the error would be large. 

3.12. Measurement of Line Parameters. It will be noted that 

the four real constants of a line, a, 74, and Xo, are fully 

established, through Eqs. (51) to (54) or (63) to (06), in terms of 

frequency and of the following four parameters: 

ds = RJo^L = series dissipation factor 

dp = G/oiC ~ shunt dissipation factor 

L = distributed inductance per mile of length 

C — distributed capacitance per mile of length 

In general, six real quantities identify a network; but a 

mile of line is a reversible network (29); hence, four parameters 

are sufficient. 

The four parameters may be obtained analytically from the 

physical dimensions; however, considerable mathematical diffi¬ 

culty may be encountered, especially in the case of d^ and dp. 
On the other hand, a knowledge of the parameters is not 

required if the constants are measured directly, or if the open- 

and short-circuit impedances of a long section are known with 

good accuracy, in which case the general equations for the con¬ 

stants of a reversible network can be used (Sec. 2.9). The 

difficulty in this case is experimental; long sections are needed, as 

well as special equipment. 

It is often convenient to determine the parameters by measure¬ 

ments which can be performed easily on short sections and then 
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substitute the values in the equations or use the corresponding 
charts, such as those of Figs. 13, 14, and 16. 

It was pointed out (Sec. 3.3) that the impedance of an element 
of line of length dZ, short-circuited at the far end, is (30) 

Zsc ~ Za dl 

Hence, and from (35) 

Zac = (I? + dl 

The Q factor of the short-circuited element, Qac, is the ratio 
X/R for the element, hence 

R d. 

It is impossible, of course, to perform measurements on 
infinitely short elements. However, if the element is short 
compared to the wavelength used (less than about 2 per cent of 
the wavelength) it can be shown that (30) still holds with error 
less than 1 per cent (Sec. 5.8). Hence, d« can be measured 
conveniently up to frequencies in the neighborhood of 50 or 
100 me. At higher frequencies, several measurements can be 
taken for decreasing length and the curve extrapolated to zero 
length. 

The factor Qoc = 1/dp can be measured in the same way when¬ 
ever necessary, except that the far end of the section under test 
is kept open (disconnected). 

The inductance per unit length, L, can be obtained at the 
same time as Qac) the capacitance C is obtained together with Qoc- 

These measurements are conveniently performed on a com¬ 
mercial Q meter. The procedure is exactly the same as if the 
short-circuited section of cable were a coil of which the induct¬ 
ance and Q factor are required and the open-circuited section, 
a condenser whose capacity and Q factor are to be measured. 

The values of L and C obtained in this measurement are, of 
course, those for a section of length I (whatever length is used). 
The values per unit length result when we divide the measured 
values by Z. 

At the Jower audio frequencies the measurement of Q and L 
is apt to present difficulties, especially for pairs in cable, because 
of the large capacitors required to resonate the small inductance 
of the section. At these frequencies accurate results may be 
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obtained by simply using the d-c values of R and G and computing 
L and C by means of Eqs. (76) and (77). At ultrahigh fre¬ 
quencies, on the other hand, the method discussed in Sec. 10.9 
may be used. 

The literature should be consulted^’' for general information 
regarding the measurement of inductance, capacitance, and Q. 



CHAPTER IV 

DISTORTION IN TRANSMISSION LINES 

4.1. Voltages and Currents Along the Matched Line. The 
problem of establishing the over-all performance of a matched 
line has been reduced, in the preceding tw» chapters, to the 
determination of the line dissipation factors and characteristic 
frequency. We have as yet learned nothing, however, about 
those aspects of line transmission which can only be understood 
through a study of conditions all along the line rather than at 
the terminals exclusively. 

To this end, let us obtain, for a matched line, expressions giving 
the instantaneous voltage and current at any point. 

This purpose can best be achieved by plotting instantaneous 
values of voltage against distance for two consecutive values of 
time. Such a plot will indicate how the voltage (or the current) 
is distributed along the line at any instant, and how this dis¬ 
tribution varies with time. The familiar mechanical concept 
of wave propagation will emerge from this discussion. Voltage 
only will be considered because the current is proportional to the 
voltage and in constant phase relation to the voltage everywhere, 
their ratio being the characteristic line impedance Zq. 

The voltage at a point x miles from the sending end will be 
(Secs. 2.2 and 3.4) 

V, = Vie”^- = (67) 

Time will be counted from the instant when the input voltage 
Vi is at a positive maximum. Then 

Vi = 

This expression gives Vx for any distance and time. The 
instantaneous value Vx is the real part of (68). Hence, recalling 
that = cos d + j sin 0, 

Vx = Vie~^^ cos {r-Px + o)t) 
78 

(69) 
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Let t have some particular value, 0 for instance. At this time 
we have 

Vx = V cos (— fix) (70) 

which is an expression of instantaneous voltage in terms of 
distance. Its plot is a cosine wave of amplitude decreasing 
exponentially towards the receiving end (Fig. 17). —fix is the 
phase of the voltage, which is 0 at the transmitter: by definition. 

^yec^r roktfion 

x-0 

it becomes — 27r at a point X miles from the transmitter, X being 
the wavelength in miles. Hence 

X = ^ (71) 

Now consider a point at the distance x^ from the transmitter. 
Its voltage has the phase —fix^. If an interval h is allowed to 
elapse, the whole distribution of Fig. 17 will have changed 
and in particular the phase of point Xo will have changed. But 
there will exist another point xi, whose voltage will now have 
the phase previously associated with Xo, indicating that the wave 
has traveled a distance Xi - x^. To express Xi in terms of xo, 
we must state that the phase at Xo for time 0 equals the phase at Xi 
for time ^i, or 

— fiXQ = —fiX\ + (J3t\ 

From this we have 
— Xo __ w 
h fi 

showing that 03/fi is the ratio between the travel of the wave 
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xi — Xo and the time elapsed h. This quantity is called the 
wave velocity^ or velocity of 'propagation. 

4.2. Phase and Amplitude Distortion. The wave velocity 
acquires particular significance when steady state (which has 
heretofore been assumed) suffers a change. We will suppose that 
the signal (a steady sine-wave voltage) suddenly changes at the 
transmitter by a given amount, and thereafter remains at the new 
value. If, at the instant of the change, the phase angle of the 
sending end voltage was we may conclude that the change 
will be felt at any particular point down the line, when the voltage 
at that point reaches the same phase angle <I>, which will be after 
some time, as was shown. We may say that the change is 
propagated, or travels down the line with the wave velocity 
w/jS, although the expression for this velocity was derived on the 
premise of steady state, which is inconsistent with the concept 
of change. 

The interval (/3i/co), representing the time elapsed while a 
disturbance travels the length I, is the time lag for this length 
of line. /3/co X 10® is the time lag in milliseconds per 100 miles 
(see Fig. 13). 

If the signal has complex wave form or consists of several 
superimposed voltages of different frequencies, a change in 
signal strength or amplitude will affect all those frequencies. 
If the wave velocity, hence the time lag, is different for each 
frequency, at the receiver the signal components will change 
amplitude at different times, instead of simultaneously. For 
example, the high note of a chord may last after the low note 
has stopped. 

This evidently constitutes a serious disadvantage in the 
transmission of intelligence over long lines or cable. The result¬ 
ing effect is called phase distortion. To be free of phase distortion, 
a line must be so constructed that its wave velocity is constant 
with frequency. 

Likewise, if the attenuation varies with frequency, the mutual 
proportion of the components of a sound will be affected by 
transmission, giving rise to amplitvde distortion. This is some¬ 
times called frequency distortion. 

A completely distortionless line will, in consequence, fulfill the 
following two conditions: 

1. w//8 constant with frequency (eliminating phase distortion) 
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2. a constant with frequency (eliminating amplitude dis¬ 
tortion) 

4.3. Distortionless Line. If dp and d, have a common value d 

Eqs. (63) and (54) simplify to the following: 

- = d 
n (72) 

In terms of co and distributed line constants, if 

It is clear that any line for which Eq. (73) holds within the 
operating frequency range is free of both amplitude and phase 
distortion, as it fulfills the conditions of the preceding section 
{a constant, oi/fi constant). The characteristic impedance of 
such a line is purely resistive, as Eqs. (51) and (52) reduce to 
the following: 

A distortionless line can be realized by properly selecting the 
constants, as (7'3) indicates, provided that it can be assumed 
that resistance and conductance do not change with frequency. 

4.4. Open Wire Line. Summing up the conclusions of the 
preceding sections, we may say that to secure satisfactory 
transmission the two dissipation factors d« and dp should be as 
nearly equal as possible, and both should be low. As in many 
similar situations, the attainment of these conditions conflicts 
with economic necessity. We will now investigate what the 
dimensions of a line should be in order to secure theoretical 
freedom from distortion. The scope of the discussion will be 
limited to open wire lines at audio frequencies; as regards cables, 
of course, the dimensions are hardly subject to choice, and for 
open wire lines at high frequencies, the above criterion does not 
apply. 

The condition for absence of distortion (Eq. 73) involves 
Rj L, Gf and C. In the audio range these are all independent of 
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frequency. They are controlled by the wire diameter, the 
spacing between wires, the wire material, and the nature of the 
dielectric. For open wire lines, the dielectric is air, and we will 
assume the material to be pure copper. Given the character of 
this discussion, exact data are not required. 

The inductance of a mile of line, defined in Sec. 3.5, is given 
in millihenrys as follows 

L = 1.481 log ^ + Lo mh (76) 

At audio frequencies Lo has the value of 0.16. This value 
decreases for increasing frequencies. 

The capacitance, also defined in Sec. 3.5, has the value^®^ 

0.01941 
log 6/a 

(77) 

In both these expressions, 6 is the spacing between wire centers 
and a is the wire radius. 

The resistance per mile of a pair of copper wires of radius a 

in millimeters, at audio frequencies, is approximately 

D 17.5 , 
R = —^ ohms (78) 

The conductance G is affected by many factors and will be 
estimated later. Expressing (73) in terms of wire spacing, wire 
radius, and^ conductance, with the help of Eqs. (76), (77), and 
(78), we have 

17.5 
= G X 10^ X [76.3 (log 5)’ + 8.24 log 

Practical considerations impose that 6/a be a fairly large num¬ 
ber, hence the second term in the brackets may be neglected for 
the present purpose. Consequently 

229 X 10~« 
Ga^ 

Expressing G in micromhos ‘for convenience, taking the square 
root, and expressing 6 in meters, we have finally 

6 = a log- 
/15.13 

\aVG 
(79) 
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where h ^ spacing of wires, in meters, for distortionless line 
a = radius of wire in mm. (copper wire) 
G = conductance per mile in junihos 

Assuming a conductance of 1 jwmho as representative of average 
conditions, we obtain 

For a wire of 1 mm. diameter, fe = 0.9 X 10^^ m. 
For a wire of 2 mm. diameter, 5 = 1.35 X 10^^ m. 
For a wire of 5 mm. diameter, h = 2.8 km. 
For a wire of 10 mm. diameter, 6 = 9.1 m. 
For a wire of 20 mm. diameter, h = 32.6 cm. 
Wc may conclude that the distortionless open wire line, 

for audio frequencies at least, is not an economic possibility, 
as it would require extremely heavy conductors. If conductors 
of normal size are used, the series dissipation factor d* is con¬ 
siderably larger than the shunt factor dp. At frequencies 
exceeding 10,000 cycles and lower than about 500 kc., both 
factors become so small that distortion is never serious. At the 
audio frequencies a reduction of d* is very desirable, as it not 
only reduces distortion but materially improves the efficiency 
of transmission. 

The problem has been solved by the insertion of inductors 
at regular intervals along the line. This increases the average 
value of L, hence decreases d, and enables the engineer to satisfy 
Eq. (72) without having resort to prohibitive dimensions. 

The inductors used for this purpose are known as loading coils. 

Their use was first suggested by Heaviside and further developed 

by Pupin. 
Most loaded lines are disuniform structures and cannot be 

studied within the framework of uniform line theory. The 
reader is referred to the literature on the subject.However, 
at the lower audio frequencies, lines loaded at regular intervals 
{lump loaded) operate as if the loading were continuous. To 
study the effect of loading, the reader should repeat the example 
of Sec. 3.9, giving L a value higher by 30 mh, and increasing R 

by 1 ohm. These are representative values for the increase in 
average distributed inductance and resistance due to standard 

^ Tightloading. 
4.6. Approximate Expressions for Conductors in Cable. 

When the two conductors are almost contiguous as in a cable, the 
limitations presented by the open wire line become much more 
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serious. Because of the proximity of the wires, the capacity is 

large and the inductance practically negligible, so the d, (except 

at very high frequencies) is very large compared to unity and dp 

very small. Accordingly, approximate expressions may be 

obtained from the general equations (53) and (54) by neglecting d, 

with respect to unity and unity .with respect to d,. These are 

<«» 

Hence 

^ (82) 

g - ^ 
The approximation involved in these expressions.is clearly shown 

on the curves of Fig. 16; if the expressions were rigorous, curves 

la and lb, 2a and 2b, etc,, would coincide throughout. 

Both attenuation a and wave velocity are proportional 

to the square root of frequency. In a long cable, the difference in 

attenuation and time delay between the lowest and highest 

speech frequencies is very considerable. 

Loading materially improves the performance of a cable. 

It is not practicable, however, to load a cable to the point where 

its performtoce approaches that of the distortionless line 

previously considered (Sec. 4.3). 



CHAPTER V 

REFLECTION AT THE TERMINALS OF 
TRANSMISSION NETWORKS AND LINES. 

USE OF MAPPING METHODS 

6.1. Reason for the Use of Matching Terminations. Up to 

this point, the analysis of transmission lines has been carried 

out under the assumption, formulated in Sec. 3.4, of matched 

operation. If, as this assumption implies, the load or receiver 

impedance is equal to Zo, the characteristic impedance of the line, 

then the entire problem of analyzing or predicting the line 

performance reduces to the determination of the two complex 

constants, Zo and 6 = a + which has been carried out in 

Chaps. Ill and IV. 

As was stressed in Chap. II, the performance of a network is 

affected by the terminations (source and load). A section of line 

is no exception to this rule. We have considered a section of line 

a mile long, terminated in such a manner that the load impedance 

was reproduced at the input; this impedance, and the logarithm 

of the complex input to output voltage (or current) ratio for such 

a setup, have been selected as the constants Zo and 6 for the line. 

Conversely, if the constants are known, then the performance 

of the line in question is fully determined, provided the load has 

the matching value Zo. 
This condition is very often satisfied in practice. It has to 

be met, more or less carefully, in all systems designed for the 

transmission of a wide range of frequencies, because a mismatch 

would bring with it fluctuations of the voltage and current ratios 

with frequency (Sec. 5.5). 

The distinction between matched and output-matched operation 

should be called to mind here (Sec. 2.4). The points previously 

raised in this connection will be repeated here with special 

reference to the line, as it is important that they should be clearly 

understood. 

A line is output matched when only the load has the matching 

value Zo. This implies, of course, that transmission is always 
85 
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in the same direction. Under these conditions, the input imped¬ 

ance is Zo and the voltage (current) ratio is just as if both 

terminations were matched. To put it more generally, the 

ratios between any two of the four quantities—input current 

and voltage, output current and voltage—are unaffected by 

the source impedance (Sec. 1.7). 

For what reason, then, is it necessary to match a line at both 

ends and not at the output only? Primarily because very few 

lines transmit only in one direction. Terminations generally 

function alternatively as transmitters and receivers. In addi¬ 

tion, although none of the ratios is affected by the source imped¬ 

ance, the values themselves are; the input current, for instance, 

is inversely proportional to the sum of source and input imped¬ 

ances, hence a change in source impedance will affect the input 

current and every other value in the same ratio. 

Consequently, the power transmitted by the line depends on 

the source impedance. A given source transmits maximum 

power into an impedance equal to the conjugate of the source 

impedance (Sec. 2.10). In particular, if the input impedance 

is a resistance, the source impedance should be an equal resist¬ 

ance if it is to deliver all the power of which it is capable. 

Actually, the characteristic impedance of a line, hence the input 

impedance if the load is matching, is not a pure resistance but 

generally approaches a resistance, so that when the source 

matches the line the condition for maximum power is approxi¬ 

mately satisfied. 

In conclusion, whenever the transmission line is used as a 

means for conveying energy to a distant point for the purpose 

of communication, matched operation is the rule. The rule may 

be followed more or less rigidly and the question of predicting 

how the line will behave for any particular value of load is 

obviously of more than academic interest. Moreover, the study 

of lines in the extreme cases, when the far end is open- or short- 

circuited, provides methods of fault location (Sec. 5.8). 

On the other hand, sections of line have come to be used 

more and more frequently for purposes other than transmission 

over long distances. Generally speaking, they replace coils and 

condensers when the wavelength is of the order of the dimensions 

of apparatus. Because this use is restricted to very high fre¬ 

quencies—currently known as vhf—it is customary to distinguish 
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between telephonic lines and vhf lines. Although there is no 

fundamental difference, vhf applications stress aspects of line 

theory that are not important at telephonic frequencies, and the 

behavior of the line with generic terminations becomes particu¬ 

larly relevant. 

This subject will now be approached by extending general 

network theory to cover operation with nonmatching loads. 

(^ci-Illusirafing "matched” (d)- Illustrating'’reflected''components 
components of terminal values (network turned about) 

(e)- Non-fictitious s;/stem in which matched 
and reflected components appear separately 
Illustrates meaning of reflection factorp 

Fig. 18.—Analysis of network operation under generic load conditions. 

We must therefore go back to the generic four-terminal network 

and obtain expressions for the ratios between the terminal values 

when the load is arbitrarily chosen. (The source impedance 

does not affect these ratios, as we know.) Steady state (Sec. 1.6) 

and linearity (Sec. 1.7) will be assumed, as before. 

6.2. Analysis of the Four-terminal Network with Generic 
Load. Consider the system of Fig. 18a. Note the differences 

between this system and that of Fig. 6a (four-terminal network 

between generic terminations). Chiefly, it is now assumed that 

the network is reversible, of known constants, that the load is 
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passive, and that the source impedance is Zo, the characteristic 

value. 
Such a system may safely be taken as the basis for discussion 

because line sections are reversible; their constants are known 
(or can be evaluated by the means indicated in Chap. Ill); 
transmission is never in both directions at the same time; and 
finally, since we are interested in the ratios of the terminal 
values, the source impedance is immaterial and may be set at any 
convenient value. 

The conclusions drawn from this analysis will apply not only 
to the line but to any reversible network of known constants 
(such as symmetrical filter sections). The same conclusions may 
be reached by methods suitable to the line only, as will be shown 
(Chap. XIII). The present treatment,’being more general and 
somewhat less complex from an analytical standpoint, should 
have precedence. 

We shall rely chiefly, as in Sec. 2.8, on the principle of super¬ 
position. Using a fictitious replacement (Sec. 2.5) we will 
imagine the load Zr replaced by a matching load Zo in series with 
a fictitious e.m.f., Er (Fig. 185). The ^‘duaU^ replacement could 
be used equally well, but there would be no advantage in doing so. 

The fictitious character of Er should be fully appreciated. 
Its value, unlike that of depends on the parameters of the 
system and can be obtained by computing the current I2 in 
the output twice, first by Th^venin^s theorem, and secondly, 
on the basis of Fig. 185, by the superposition principle. For 
the two systems in Figs. 18a and 185 to be equivalent, the two 
values thus obtained must be identically equal. This condition 
yields an expression for Er. 

When Er is known, we can, again by the superposition principle, 
write the partial values of terminal voltage and current, due 
respectively to Er and E, and add them, obtaining the actual 
values as they appear in the original system. 

As usual, let Vi, Ii, V2,12, stand for the terminal values to be 
evaluated (Fig. 18a). Let us apply Th^venin's theorem (Sec, 
2.6) to find I2. We have 

I2 Zo + Zr (84) 

In the above, Voc remains to be determined. This is not difficult, 
however. Consider Fig. 18c; all the terminal values for this 
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system may be considered known; they are the matched values 
(Sec. 2.8). They are kn,own in the sense that they can be written 
in terms of E and of the network constants, as follows: 

v.'-5 

Th4venin^s system may again be used to express I2' in terms of 
the open-circuit voltage 

h' = (86) 

Combining the last line with (84), we have 

The first expression for I2 has now been obtained. To obtain the 
second expression, based on the system of Fig. 186, we must 
evaluate the difference of the two partial currents, I2' (Fig. 18c) 
and I2" (Fig. 18d) due to E and Er, respectively. Note that 
the difference rather than the sum must be taken because of 
the convention as to the positive direction of the two currents, 
as shown by the arrows. Accordingly, we have 

I2 = I2' - I2" = ^ (88) 

We may now compare (88) with (87) and derive an expression for 
Er. Thus 

, 2Zo __ T / _ 
2Zo 

Evaluating I2' (85), the above becomes 

The system of Fig. 186 is now fully determined. Before 
proceeding with the evaluation of the terminal, values and their 
ratios, however, the concept of reflection should be introduced, 
and with it the definitions of reflection coefludent and reflection 
constant 

6.3. Reflection. The double-primed components of terminal 
voltage and current (Fig. 18d), which, superimposed to the 
matched values (Fig. 18c), result in the actual values for the 
network with generic load (Fig. 18a), are called reflected values. 
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This designation may be justified as follows: The values in 
question would be the actual terminal values if the load, or 
receiver, were active; actually, the receiver is passive. Hence 
we are led to assume that the receiver acts as a mirror, sending 
back, or reflecting, a part of the signal impressed upon it. 

It should be kept in mind, however, that the reflected values 
have no separate existence. It is possible to solve for the 
terminal values without having resort to the separation into 
components, by the general method of Sec. 2.7; the answer 
would then be in terms of the network parameters. 

The network and load of Fig. 18a constitute a passive system 
driven at the input terminals. This is the basic mental picture 
that the reader should retain throughout the steady-state analysis 
of networks and lines. 

The other picture, more artificial but also more revealing in 
some respects, is that of two superimposed disturbances propa¬ 
gated in opposite directions, and such that their mutual ratio is 
determined at the output by the load impedance, while their 
sum at the input is the driving voltage (if voltage is being con¬ 
sidered). This concept will be stressed later (Sec. 7.5). In mak¬ 
ing use of it, the reader is cautioned against assuming that the 
reflected disturbance can be reflected again at the source if this 
does not have the matching value, and so on. If a transient 
pulse were applied, this multiple reflection would actually take 
place. But under steady-state conditions, the direct and 
reflected waves add up precisely to the value of the driving 
voltage at the input terminals, and there is no further reflection. 

6.4. Reflection Coefficient. Reflection Constant. The ratio 
between matched and reflected values at the output terminals 
(generally a complex number) is the reflection coefficient kj a 
quantity which depends on the load and characteristic imped¬ 
ances; when the latter is fixed once for all, k may be used to 
define a particular load impedance. 

Let us express k. By definition, we have 

jf 

Hence, and from Eqs. (85) and (88), 

k = 
TS,r/2Zo _ Er ^ 

Ee-V2Zo “ E ® 
(90) 
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Now, substituting the value of Er (89) 

91 

k = ~ 
z, + Zo 

[Expression of reflection coeflicieni] 

(91) 

Using the ratios Zr = and yr = Yr/Yo, we have the forms 

= ~ ^ ^ - Vr 

2r + 1 1 + 2/r 
(92) 

The reflection coefficient is extensively used in the literature 
and will be used in the present treatment whenever convenient. 

However, k is essentially a ratio of currents, or voltages. 
(The same expression for it would be obtained if the output 
voltages had been used.) The logarithms of such ratios generally 
take the place of the ratios themselves, for a number of reasons. 
Accordingly, we will define the reflection constant as follows: 

0 = +ir = - 1 In fc = i In (93) 

\Definition of reflection constant] 

Alternatively, any one of the following forms may be used to 
define p: 

= Z 
Zr + Z 

0 

0 

2p (94) 

^ = coth p 
-^0 

(95) 

yr rr tanh p 
/dr 

(96) 

The reflection constant is often considered as the transfer con¬ 
stant of an imaginary network (usually a section of line), hence 
no special notation for it has appeared in the literature. How¬ 
ever p, like A:, may be used to define an impedance. It is therefore 
simply another form of evaluating impedances, while 6 is the 
constant of a four-terminal network. A separate notation for 
the two quantities is certainly desirable. 

With the help of the reflection constant, we can now devise 
a system, entirely free of fictitious elements, where both the 
matched and the reflected values of Fig. 18c and 18d appear 
simultaneously at different points. Imagine (Fig. 18c) a chain 
of four matched networks, of which the first and fourth are 
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identical to the original network, while the two middle networks 
have constants Zo and p. As can easily be verified, the terminal 
values of the first network are the matched values of Fig. 18c; 
those of the fourth network, the reflected values of Fig. ISd. 

By this scheme, the meaning of electrical reflection can be 
made apparent. The type of reflection that everyone has in 
mind is reflection of light at oblique incidence, when the incident 
and reflected rays are physically separate. Such a situation is 
electrically reproduced in Fig. 18c. What actually happens in a 
network with generic load corresponds to reflection at normal 
incidence. 

The reflection constant is now endowed with new significance. 
It is the transfer constant of a hypothetical network, which 
handles the signal twice (first in one direction, then in the other) 
before it is sent back toward the input. Likewise, light may 
be attenuated and retarded at the point where it is reflected, an 
infinitesimal film, which has to be crossed twice, accounting 
for these changes. 

6.6. Voltage and Current Ratios. The matched and reflected 
components of voltage and current at the terminals will now be 
tabulated and added. Their values can be arrived at, by inspec¬ 
tion of Fig. 186, and tabulated (page 93). 

The mutual ratios of the terminal values result from the tab¬ 
ulation. These are independent of the source e.m.f. and of 
the source impedance; they are functions only of the network 
constants and of the load impedance. Thus we have, for the 
input to output voltage ratio (see tabulation): 

V2 

1 + e-2(g-t-p) ^ __ cosh {B -h p) 

1 + e~'^^ cosh p 
cosh ^ + 2/r sinh 6 

[Input to output voltage ratio] 

(97) 

Similarly, for the current ratio 

h 
h 

I _ g-2(«+p) 

1 — 
= = cosh 6 + Zr sinh 6 

sinh p 
[Input to output current ratio] 

Note. yr = Zo/Zr = tanh p; Zr = Zr/Zo = coth p 
When Zr = Zo (matching load), both the above reduce to 

V2 I2 
cosh 6 + sinh 6 — 

(98) 
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confirming that the values of 
terminal voltage and current 
which serve to define the 
transfer constant are those of 
the output matched network 
(Eq. 6). 

The expressions we have 
derived for the voltage and 
current ratios show that these 
ratios vary with the load im¬ 
pedance and with ^ in a rather 
complicated manner. It is 
quite possible for either ratio 
to be less than unity in magni¬ 
tude, in which case the voltage 
(or current) has a higher value 
at the output than at the in¬ 
put. This occurrence was ob¬ 
served in the operation of lines 
when line theory had not yet 
been developed, and given the 
name of Ferranti effect (see 
Sec. 5.10). In general, we 
may deduce from the form of 
the expressions that both mag¬ 
nitude and angle of the ratios 
depend on the value of /3, the 
phase constant. In the case 
of lines, in particular, this 
means that if the input volt¬ 
age is constant, the output will 
vary with the frequency, since 
jS is sensibly proportional to w. 
This is one reason why a de¬ 
parture of the load impedance 
from the matching value (a 
mismatch) is undesirable in 
telephonic systems. 

6.6, Input Impedance. 
Most important among the O
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ratios of terminal values is ‘the input impedance. This quantity 
determines the amount of power delivered by the source into the 
network. If the network is nondissipative, there is no difference 
between this power and the power received by the load. 

The difference between load and input impedances may be 
very great. In such cases, the network has the function of 
transforming the load impedance. 

A discussion of impedance transformation will be found in 
Chap. VIII. The relation between load and input impedance 
will be taken up here in a general way. 

Taking the ratio of input voltage and current, we have 

Vi 1-4- e-2(«+p) 
Z.- = ^ = Z„ = Zo coth (0 + p) 

The above, combined with (95), brings out the desired relation 

Zi = coth {B H- p) (99) 
[Input impedance number] 

Zr = coth p (100) 
[Load impedance number] 

Equations (99) and (100) are not in a form suitable for computa¬ 
tion but lend themselves to an interpretation from which originate 
various graphical methods of solving transmission problems, one 
of which (based on the hyperbolic tangent map) will be taken up 
shortly; the others, later on (Secs. 8.7 and 10.5). The compact 
form of (99) makes it an easy equation to remember; other forms 
of the same equation, currently found in the literature, may be 
obtained by expanding it; for example, the following: 

zT^osTe'+ZTsm 
The above must be expanded further in order to compute with 
the help of ordinary tables of hyperbolic and circular functions. 
On the other hand, if maps of the hyperbolic functions of complex 
variables are available, (99) can be used directly, at a great 
saving of time. 

For the reader who is not familiar with the use of maps of func¬ 
tions of a complex variable, the subject is briefly reviewed in the 
following section. 
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6.7. Map of the Hjrperbolic Tangent of a Complex Variable. 
Consider the equation 

z = coth p 

Analytically, for every value of the complex variable Zj the 
equation assigns a value to the complex variable p, and vice versa. 

Geometrically, complex numbers represent points on a plane. 
For example, a + jh represents a point whose rectangular coordi¬ 
nates are a and 6; Ae^'^j a point whose polar coordinates are 
A and <p. 

A complex variable is a complex number that may have any one 
of a set of valuep. It represents a point which may be anywhere 
within a given region of a plane. For example, z^ depending on 
the particular value which the load has in each case, occupies 

particular position on its plane; however, if we assume the load 
conductance to be positive at all times, certain regions of the 
plane will be barred to it. 

It is convenient to assign a particular plane to each variable. 
Thus we have, for instance, the z plane and the p plane (Fig. 19). 
As the load impedance varies, both the z point and the p point 
will move to new positions in their respective planes. 

Suppose now that we know the value of z for some given case 
and want to find the corresponding value of p. Let A and <p stand 
for the polar coordinates of z (rectangular coordinates could be 
used, but not as conveniently, as examples will show). 

It is easy enough to locate the z point on its plane, once 
the scale of A has been agreed upon. This may be done with a 
protractor and compasses, since we know A and <p. Polar 
coordinate paper would make this operation still easier. The 
lines on this paper are, analytically, lines of constant A (circles 
about the origin) and lines of constant (p (straight lines through 
the origin). Jointly, they form a map whereby a point of given 
polar coordinates may be located readily. For example, if 
z = 2.5/30^, the line A = 2.5 is followed to its intersection with 
the line <p = tt/G (30°). 

Since for every z point there is a corresponding p point, while 
the former describes the line A = 2.5, the latter must describe 
some definite line on its own plane (Fig. 19). The second line is 
a transformation of the first; it is still a constant A line, but it 
has been transferred to a new plane, thereby acquiring a new 
shape (hence the word, transformation). 
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Evidently, if all the constant A and constant <p lines had been 
transferred to the p plane, it would be easy to locate the p point; 
these lines would constitute a map of the function z — coth p 
on the p plane. Such a map may be considered as a special kind 
of graph paper—a transformation of the polar coordinate paper. 

Any figure may be transformed from one plane to the other 
with the help of maps of this type. If the figure is small, its 
shape will remain substantially the same, because the trans- 

— tan ^ (coth <t tan r) 

Fig. 19.—Illmtrating the transformation of constant A and constant B lines 

from the z plane to the p plane if z — coth p. 

formation does not change the angle between two lines at their 
common point. Hence, such transformations are known as 
isogonal or conformal, and the branch of geometry that deals 
with them is conformal mapping 

A map of the function z = coth p on the p plane is shown on 
Fig. 20a and 20&. It can also serve as a map of the reciprocal 
function y = tanh p, and is called accordingly map of the hyper- 

bolic tangent of a complex variable. The map of Fig. 20a contains 
only a few lines; it must be usea in conjunction with the partial 
map of Fig. 20b, which, with due attention to the key of Fig. 20a, 
may be used indifferently for any one of the eight quadrants of 
the general map. 

Accurate maps of this and other hyperbolic functions have 
been published. They are not common, because they are 
useful only in connection with line and network problems, and 
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because other maps (such as the A:-plane map, Sec. 10.5) can 
be used to solve many of these problems and are easier to draw.^ 

Range Selection Table 

Range of r ± tit* Range of <r Quadrant Range of (p Range of A 

0 < T® < 45® <r > 0 1 0 > > -90® A > 1 
0 < r® < 45® <r < 0 2 -90® > v’® > -180® A > 1 

45® < T® < 90° «r > 0 3 0 > > -90® A < 1 
45® < T° < 90® O’ < 0 4 -90® > ip^ > -180® A <1 
90° < T° < 135° <r > 0 5 0 < < 90® A < 1 
90® < r° < 135® <r < 0 6 90® < ^® < 180® < 1 

135® < r® < 180® <r > 0 7 0 < ^® < 90® A > 1 
135® < 7-® < 180® <r < 0 8 90° < ^® < 180° A > 1 

* n is any positive integer. Values of t® such as 30 and 210® are equivalent. 

Example of evaluation of the reflection factor and input imped¬ 

ance with the help of the coth p map. Given a reversible network 

^ Maps of the hyperbolic functions should not be regarded as charts for 
the solution of specific problems, but as mathematical tools, like tables of 
logarithms or of the circular functions. The solution of line problems with¬ 

out the help of such tools is comparable to the longhand extraction of square 
roots. 
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of the following constants 

a = 0.18 nep. 0 = 62® Zo = 600 ohms /~28° 

Pig. 206.—Hyperbolic tangent {or cotangent) of p — cr jr. See Fig. 20a 

for range selection. A — |coth Ph ^ “ [tanh p\;(p = /coth p = — /tanh p. 

The reflection constant of the load impedance 

Zr = 350 ohms /42® 

is required with respect to the network, 
in accordance with the position 

Zr , . 
Z/o 
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we have from the given data 

A = ^ = 0.583 ip^ = -42 - 28 = -70°* 

At the intersection of the lines A = 0.583 and = —70 deg. 
on the map (Fig. 20a), we locate point P, whose rectangular 
coordinates are 

<r = 0.15 = 60.6° 
The value of p is 

p = (r + jr = <r + i ^ r° = 0.15 + ^0.106 

Note. The actual values of <t and t° arc found on the map for one quad¬ 
rant (Fig. 205); there is a choice of two values for each coordinate if this 

map is used, but the ambiguity is removed by consulting the key tabulation 

of Fig. 20a. 

Rather than the numerical value of the reflection factor, the 
input impedance is usually of interest. From Eqs. (99) and 
(100) we note that, if p is changed to p + 0, its hyperbolic cotan¬ 
gent changes from Zr to Zi, 

Graphically, the change from p to p + 0 causes the p point 
to move a distance a along the or axis and a distance /3 along the 
r axis. Looking upon p and 6 as vectorsy we may say that they 
add vectorially. In any event, a new point results; at this point, 
the map will show new values of A and <p, from which Zi may be 
computed. 

The preceding example will now be carried on to the deter¬ 
mination of the input impedance. Given the values for the 
network constants 

a = 0.18 neper = 62° 

and the values of a and r° (at point P), 

^ = 0.15 T° = 60.6 

we have, adding a to cr and i3° to r° 

(t' = 0.33 T°' = 122.6° 

Thus the new point P' is located (Fig. 20a). The directed seg- 

* and T° are the values of <p and t in degrees. It would be better to 

use radians throughout, but since tables and slide rules use degrees, this 

unit is more convenient. 
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ment PP' represents the vector 6, Its horizontal projection is the 
phase constant, its rise, or vertical projection, the attenuation 
constant. At P' we read (with the help of Fig. 206) 

^ = 1.43 = 52° 

and since 

we have (using the value of Zo given in the previous example), 

Zi = 600 ohms A'/(2S^ + 52°) = 420 ohms /80° 

The reader will find another example relating to the use of the 
hyperbolic tangent map in Sec. 5.10. Applied to lines or cables, 
the map is particularly useful, although it is valid for any 
reversible network of known constants. 

If the input impedance is known (by measurement), the map 
may be used to locate the position of a ^ ^ short or ‘^open^^ along 
the cable. Problems relating to power lines may also be solved 
in this way.^®^ However, the hyperbolic tangent map has been 
brought to the attention of the reader, not so much because of 
its value as a mathematical tool, but rather as a preliminary 
example of the ways in which impedance changes may be repre¬ 
sented on the complex plane (Sec. 8.3). 

6.8. Input Impedance of Open- and Short-circuited Lines. 
Fault Detection, For = 0 (short circuit) and Zr = oo (open 

circuit), Eq. (101) becomes identical to Eqs. (25) and (26), 
respectively, namely 

Zsc = Zo tanh d Zoc = Zo coth 6 

For a line of length Z, whose transfer constant per unit length is 
6 (Sec. 3.4), the above take the form 

Zsc = Zo tanh {$1) (102) 
Zoc “ Zo coth {01) (103) 

In some cases, approximate forms of (102) and (103) may be 
used to advantage. This is true, for example, when the length I 

is short compared to the wavelength. Analysis of Zsc and Zoc 

in this case confirms the validity of the method of line parameter 
measurement discussed in Sec. 3.12. 
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Expanding (102) in series, we have 

^ ^ sinh (el) _ ^ + 3!' + sr + 
cosh {ei) “ , , {eiy , {eiy ^ 

^ 2! + 4! + 

= eiz^ ^3'. 5! ^ 

2! 4! 

If 1^1 is small, all second and higher order terms in the above 
may be neglected. The error introduced will be less than 1 per 
cent if 

= 0-01 or m\ = 0.0141 (105) 

But 1(91 can be written 

+ /32 = /3 .Jl + 

For most lines, approximately, = 27r/X and {fi/aY <K 1, hence 

and (105) becomes 

= 0.141 or I = 0.0224X 

In conclusion, if the length of the section is less than about 2 per 

cent of the wavelength^ we may write, neglecting higher order terms 
of (104), 

Zsc ~ BlZo 

or, substituting values of the line constants in terms of the series 
and shunt parameters (Sec. 3.2), 

Zac — IZa 

and likewise, expanding (103), 

Foe = ^ = lY^ 

It is therefore evident that, if the length is below the limit 
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indicated, the Q of the short-circuited section will closely approxi¬ 
mate Qa, and the Q of the open-circuited section will likewise 
approach Qp (Sec. 3.12). 

Another useful approximate form of (102) and (103) results 
when it is assumed that a, the attenuation constant, is small 
compared to the phase constant and that dissipation in the line 
is low enough to justify the approximations 

'’-T ^'‘4 

All the above assumptions are valid, in first approximation, 
when the frequency is comparatively high (Sec. 7.1). They 
enable us to write Z^c and Zoc in the form 

- -Ws 
col 

cot^ 

If the reactance of the short-circuited line and the suscepiance 

of the open-circuited line are expressed, the two expressions are 
of the same form, namely 

(107) 

(108) 

The above are periodic functions of w, and the period (frequency 
interval within which X^c and Boc go through a full cycle) is 
given by 

In the last line, 12 is the wave velocity on the line, approaching 
in this case the velocity in free space, or 186,000 m.p.s. (Sec. 
3.6). 

Aw can be obtained from a plot of X^c or Boc against frequency; 
Z, the length of the line, will result. Explicitly, I is given by 

27rl2 12 186,000 
= ~r— = TT* =  X r— Aw A/ A/ 

(109) 

This relation is used to find the length of line separating the 
point at which the impedance is measured from a fault in the 
line, which may be a short across the line or an interruption 
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(open circuit). This procedure locates the breakdown approxi¬ 
mately, obviating the necessity of exploring the entire line from 
terminal to terminal. 

Example. After the service has been interrupted due to an unknown 

cause, impedance measurements across the line are made at one of the 

terminals. The impedance is measured with a bridge over a range of fre¬ 
quencies, resulting in the plot of Fig. 21a. The distance from the terminal 

to the fault and the nature of the fault are to be deduced from this plot. 

The ordinates of the plot obtained are values of the impedance magnitude 

According to either (107) or (108), such a plot should be 

periodic and go through 0 at intervals of frequency equal to A//2, as shown 

in dotted line. 

Actually, the ordinates fluctuate between a minimum and a maximum; 

however, the distance between two successive peaks can be taken as A//2. 

Hence, we have 

A/ = 32,000 c.p.s. 

and the unknown distance is 

186,000 

327000 
5.8 miles 

The nature of the fault (whether open or short) can be argued by observing 

whether the impedance tends to zero or infinity for / ~ 0. In the example 

given, the impedance tends to zero, hence the line must be shorted. 

★6.9. Input Impedance of Near-matched Networks. Very 
often small differences between the load impedance and Zo, 
the matching impedance of a network or line, cannot be avoided. 
Filter networks, for example, are sometimes designed under the 
assumption that they are matched throughout the operating 
frequencies, whereas actually this is true only at one or two 
frequencies.^®^ At the other frequencies the match is approxi¬ 
mate. The same is generally true of parallel cables. 

When the mismatch is small, approximate formulas and con¬ 
structions may be advantageously used. These are all the more 
helpful because chart methods, notably the hyperbolic tangent 
map, are not convenient in such cases, as p becomes large. 

Consider expression (101) for the input impedance. Expand¬ 
ing the hyperbolic functions into sums of exponentials, we 
have 
fj __ rj Zr(e^ + e~^) + Zo(e® •— 

' “ Zo(e» + e-*) + Zr{e> - e-<>) 

_ rj i^r + Zo)e* + (Zr — Zo)e~* 
~ {Zr + - {Zr - Zo)e-> 
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Tcofft^facL) 
faJ-Pht of short circuit 

inputimpedcinccofa 
line v$. frequency (5.8) 

-Computed according 
to equation007) 

-Actual values, ibr 
L a^QHnep.permi. 

at 79Sc.p.s. 

\ . Length to short 

■ \ (frompht) 

0 5 10 15 20- 25 30 35 40 45 kc. L^I6hOOOperdf-S.8mi, 

\curve:^oshpl'l,or:sinh<T=sinz^,^,^^^^ pcv/?/ 

01 0.2 03 0.4 0.5^06^ 0.1 0.6 

(bJ- Graphical solution for the 
termination which causes 

the voltage to be the same 

at both ends of a line 
or network. 

'p point" results from this 
construction. Zr may be 
obtained therefrom on 
the hyp. tang. map. (5.1) 

i.(mklpot'ntofZg2i^)l 

100 200 300 400 500 600^ -400 -300 \-200 

fc)-Graphical determination ofic: 

IkhAZo/OA; Ih^A-OAZo 

(Note:k‘^^^ip‘CrfJf-ilnlJkh iik) 

200 1300 400 

Cdl-lnput impedance of a “near 
matched" network (5.9) 

To go from point Zr (toad imp.) to Zi 
(input impedance): rotate point 
around Zo by^'then move toMrds 
Zfibya db. Circles are spaced by 
2db.intervals;radial lines by 20* 

Fig. 21.—Inpvi impedance. 
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In terms of the reflection coefficient k (Sec. 5.4), the above 
may be written 

1 _J_ hp—20 

= (110) 

[Input impedance in terms of k] 

There is no particular advantage in writing Zi this way as a 
rule, because the apparent simplification is offset by the necessity 
of computing k.* However, when the load is close to the 
matching value, the reflection coefficient k is small. Now (110) 
may be evaluated by means of the series expansion 

— = l+^ + ^^ + x^+ • • * 
l — X 

Terms of the second and higher orders are negligible, however, 
if k is small (in absolute value) compared to unity, which we 
assume to be the case. Accordingly, we may write 

Zi = Zo(l + 

Again, in expanding, the second-order term drops out. Hence 

Zi = Zo(l + (111) 

This can be written, evaluating k, 

Z, = Zo + {Zr - Zo) 

2Z 
which, noting that -iy—r-"^ = 1 + A;, becomes 

Zi = Zo + (Zr - Zo)e-^» + e-^o 

The last term may here also be neglected. Hence, finally, we 
have 

Zi - Zo + {Zr - Zo)c-2^ (112) 
[Input impedance for near--matched networks] 

A construction based on the above expression is given in Fig. 2Id. 

6.10. Illustrative examples. 

Input to output voltage ratio. Assuming a line of known length 
and constants terminated by a resistive load, this question is 

* The magnitude and angle of k are obtained most conveniently by the 

construction of Fig. 21c. 
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asked: For what values of the load resistance is the output 
voltage higher than the input? The voltage ratio of any 
reversible network of known constants is given by Eq. (97). 
Since the load is a pure resistance, we replace 2/r by gr^ 

Vi 
V2 

= cosh d + Qr sinh 9 

The hyperbolic functions expand as follows: 

(cosh 6 = cosh (a + i/3) = cosh a cos ^ + j sinh a sin ^ n 
sinh 6 = sinh (a + jjl) = sinh a cos ^ + j cosh a sin ^ ^ 

Hence, expressing the magnitude of the voltage ratio 

Vi2 

V2 
(cosh a cos ^ + gr sinh a cos 

+ (sinh a sin + gr cosh a. sin 

The problem may be solved by setting this magnitude equal to 
unity, which yields an equation in gr. Solving this equation, we 
find the load value which makes the two voltages equal. Any 
higher value of gr will make the input voltage greater, and vice 
versa. Accordingly, we write 

Vi 

V2 

which, substituting the value for the ratio and arranging terms, 
becomes 

(sinh^ a cos? ^ + cosh^ a sin^ ff) + 2gr cosh a sinh a 

+ cosh^ a. cos^ jS + sinh^ a sin^ P — 1 = 0 

We now make use of the identities 

[sinh (a + = sinh^ a cos^ /3 + cosh^ a sin^ 
= sinh 2 a sin^ ^ 

|cosh (a + jl3)\^ = cosh^ a cos^ /3 + sinh^ a sin^ p 

= sinh^ a + cos^ ^ 

and obtain 

(114) 

gr,.2 (sinh^ a + sin^ p) + 2gr cosh a sinh a + (sinh^ a — sin^ /3) = 0 

Solving for the positive value of gr, we have 

= sinh^ a + sin^ /g — cosh a sinh a 

sinh^ a + sin^ /3 



Sec. 5.10] ILLUSTRATIVE EXAMPLES 107 

Numerically, consider an open wire line of length 10 ml., 
a = 0.008 nep./ml., at the frequency 3,000 c.p.s. For such a line 
we have, approximately, 

^ Q, 186,000 0.1013 rad./mile 

We must, of course, substitute al and for a and ^ in the general 
form. We compute 

sinh al = sinh 0.08 = .08 sin = sin 1.013 = 0.53 
cosh al = cosh 0.08 = 1.003 sin^ ^l = 0.281 
sinh^ al = 0.0064 sin^ ^l = 0.079 

Hence 

_ \/o:0^064 + 0.079 - 1.003 X 0.08 _ 
0.0064 + 0.281 

Under the conditions of the problem, if the characteristic imped¬ 
ance of the line is 600 ohms, the input and output voltages have 
the same peak or r.m.s. value when the load impedance is 

\Zr\ = = 814 ohms 

Any value higher than this will result in the Ferranti effect, 
the line acting in this respect as a step-up transformer. We 
have assumed that both Zo and Zr are resistive; if not, the 
conclusion is still valid provided their angles are the same. 

Note. Variations of the above problem may present formidable mathe¬ 

matical difficulties if solved by the above method. These difficulties may 

be surmounted with the help of considerations based on the use of the p 

plane (Sec. 5.7). The voltage ratio may be written 

Yi _ cosh (p + B) 
V2 cosh p 

Suppose we had drawn, on the p plane, the line 

|cosh p| = 1 

(This line, shown in Fig. 216, has the equation sinh a = sin t.) The point 

for any particular value of load can be found by means of the hyperbolic 

cotangent chart (Sec. 5.7). Given the transfer constant of the network 

or line section, this is added vectorially to p, just as in the determination of 

input impedance. If the point p + 0 lies on the line we have drawn, the 

voltage ratio is unity. If it lies to the right of it, the output is lower than 

the input, and vice versa. 
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Suggested Exercise. Check the result obtained in the previous problem 
by the p plane method. 

Fault location on a cable. The impedance of a broken-down 
cable, measured at one of the terminals at some particular value 

of frequency, is 
Zi = 870 ohms /-~34° 

The constants of the cable are known for the same frequency. 
They are 

Zq = 685 ohms /-"44^ a = 0.12 nep./mile = 9°/mile 

The coth p chart may be used to locate the breakdown. The 
values of A and corresponding to the measured input imped¬ 
ance are 

870 
685 

= 1.27 = jZi - /Zo = 10° 

Since A' > 1 and 0 < <p° < 90°, the key (Fig. 20a) indicates that 
we are in quadrant 7, therefore we must have cr > 0; 

135° < T° < 180°. 

The map for one quadrant (Fig. 206) gives, at the intersection 
of the lines A = 1.27 and <p° = 10°, the values 

= 0.95 T° = 162° 

(The alternative readings do not agree with the permissible 
values of cr and r°, hence must be ruled out.) 

We can now locate point Q', corresponding to the input imped¬ 
ance of the cable, on the map of Fig. 20a. Each added mile of 
cable would move this point to the right by .9° and upwards 
by 0.12 (this movement resulting from the vector addition of 
the transfer constant of a mile of cable). Hence, if measurements 
had been made at various lengths from the breakdown, the cor¬ 
responding points would lie on a straight line of slope 

^ ^ OJL? 
)8° 9° 

If a line of such a slope is drawn through Q', we see that it passes 
through the point SC. At this point, A = 0, corresponding to 
zero impedance (short circuit). 
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The total phase shift between Q' and point SC is 72 deg. 

Hence, the distance in miles 

i = ^ = 8 miles 

Each mile of cable is graphically represented on the map as the 

segment marked mih interval. 

Suggested Exercise. Obtain from the chart the magnitude of the input 
impedance into the cable for distances of 1, 2, 3 . . . miles from the short 
and plot against distance. Repeat for an open-circuited cable. 



CHAPTER VI 

POWER FLOW THROUGH NETWORKS AND LINES 

6.1. Criteria of Power Comparison. Fundamental equations 
governing the performance of a network, or line, when the load 
impedance has a generic value, have been derived in the preceding 
chapter. Particular attention has been given to the voltage and 
current ratios and to the input impedance. The transmitted 
power, or the power absorbed by the load, will now be considered. 

The results of this study will be, necessarily, of a comparative 
nature. The ratio between the power in question and some other 
value of power, taken as a standard, will have to be expressed. 
In some cases, uncertainty may arise as to the particular value 
to be chosen as reference. 

To bring light on this point, let us take a familiar situation 
where power is involved. Consider, for example, the power 
available at the shaft of an electric motor. We speak of a 
^^5-kw.^^ motor, thereby associating the motor with a definite 
value of power, rather than a ratio. However, we mean by that 
only that 5 kw, is the highest power which the motor will deliver 
continuously'at the rated speed without overheating. 

If we rule put the possibility of overload, no value of power 
can be considered as characteristic of the motor, but we can still 
compare the power output with the input. The ratio power out- 
put/power input is the efficiency of the motor. It varies depend¬ 
ing on the speed; but for a given speed, it is characteristic of 
the system made up of the motor and its mechanical load. 

Similarly, the transmission loss expresses the comparison 
between input and output power in a network and is therefore 
characteristic of the system comprising the network and its 
load (at a given frequency). If the load has the matching value, 
then it becomes characteristic of the network alone, and equal 
to the attenuation constant a (Sec. 2.2). 

The transmission loss is the only one of the various losses 
to be considered which actually represents a ^4oss^^ as the power 
engineer understands it, i.e., power wasted in the form of heat. 

no 
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The insertion lossj for example, has a different meaning, as was 
explained in Sec. 1.9. It measures the ratio between the power 
that the load would receive if connected directly to the source 

and the power that it receives through the network. Here also, 
if the load matches, we have identity between the insertion 
loss, the transmission loss, and the attenuation constant. In 
general, however, the insertion loss does not indicate any waste of 
power. A dissipationless network (a filter section, for example) 
may have a very high insertion loss. 

We might say that the transmission loss compares the power 
flow at two different points of a system, and the insertion loss 
compares the flow into the same load from two different sources. 
As a third criterion, we may compare the power flowing from the 
same source into two different loads. We do this when we assign 
power ratings to light bulbs; it is assumed that they all draw 
power from the same source (the domestic supply). Because in 
this instance the difference in power arises from a change, or 
permutation of loads at the same source terminals, the correspond¬ 
ing loss, more precisely defined in the following, will be called in 
general permutation loss. This loss, like the insertion loss, may 
be positive or negative. It is useful in correlating other losses 
but not significant in itself unless the standard of comparison is 
carefully selected. 

As a particularly significant example of permutation loss, 
consider the loss in power (positive or negative) resulting when 
a matching load is replaced by a generic impedance. This type of 
loss will be called reflection losSj and its study is particularly 
important. 

As will be explained, the term reflection loss has a somewhat 
different meaning in the literature. 

6.2. Loss Terminology. To avoid possible confusion, some 
care must be taken in the choice of symbols associated with 
various values of power. The notation used for power in Sec. 
1.9, and everywhere for voltages and currents, will serve as a 
basis, namely, the symbol for power transmitted through a 
junction y (Sec. 1.8) will havej as a subscript.^ 

In addition, a superscript will denote the impedance into which 

^ Junction 1 is always the input to a network, junction 2, the output; 

when only source and load are considered, their common terminals will be 

junction 1. 
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the power is transmitted (the impedance toward load at junction 
j). For example, P2® is the power flowing into the impedance 
Zo (characteristic impedance) at junction 2 (output terminals). 
For other examples, see Fig. 22. 

Potvgrj 'P/^ Pf^ 

Junction • j 

faJ-lht power transmitted through 
a junction j of a s^tem into an 
impedance Zjc is designated as IT 

Source Network Load 
LSJ-Jhe transmission loss compares the 

power transmitted at the two ends 
of a network or line: z>« 
Lr-ibiP/^f 

Source 
fci'The insertion loss compares the power values 

transmitted to the load through the network 
and directly from the source' 

L,-ilnP,7P/ 

e.Zo H 

P 

5 

r 

S, Zq 
1— 

IJi 

(d)-lht permutation loss compares 
the power values transmitted 
by the same source to two 
different load impedances: 

Lj^a^ritjipf/P/ 

LePThe reflection loss is a particular case of(d), 
arising when the interchange of load impedances 
occurs at the output of a network and the 
impedance used as standard is Z/>: 

LR-ilnP/ZP/ 

Fig. 22.—Criteria of power comparison. 

The various losses whose significance has been explained in 
the preceding section can now be formally defined, in agreement 
with the above notation and with reference to Fig. 22. Neper 
values pf the losses (Sec. 1.9) are expressed. Thus we have 

i In (115) 

[Definition of transmission /oas] 



Sec. 6.2] LOSS TERMINOLOGY 113 

L, = (116) 

[Insertion ^o««] 

« = (117) 

[Attenuation constant] 

Lj(^a--*b) = i In ^ (118) 

[Permutation loss due to change from load Za to Zb at junction j] 

= (119) 

[Reflection loss due to reflection at output of a network] 

The prevalent usage of the term rejlection loss, as distinct from 
the above definition, will now be explained, and reasons for not 
adhering to it will be given. The following definition has been 
given: 

Reflection loss = In 

where I2' is the matching value of output current, I2 the value 
when the load is Zr. Noting that (88), I2 = I2' ~ I2") and that 
(Sec. 5.4), /I2 = A:, we can write the above as follows: 

Reflection loss = — In [1 — A:| 

The above quantity depends therefore, like k and p, on the rela¬ 
tion between load and characteristic impedance and may be used 
to define the load—not particularly conveniently, however. As 
an expression of reflection loss, the quantity is certainly no 
more valid than the corresponding voltage ratio in logarithmic 
form, or 

In In In ^ ^ ^ In |1 + A;| 

The choice of the term rejlection loss to indicate either one of 
the two above-mentioned quantities is therefore quite arbitrary. 
There is no reason for introducing either quantity in the course 
of analysis, nor is the evaluation of either quantity necessarily 
called for. On the other hand, the variation of Lr (119) with 
frequency is identical, aside from an additive constant, to the 
variation of transmitted power with frequency; it leads therefore 

I2 
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to an evaluation of selectivity (Sec. 9.5). Other applications of 
the reflection loss will be taken up (6.8). 

6.3. Correlation of Losses. For a given network, all the losses 
and the attenuation are mutually related. Equations expressing 
these relationships are readily arrived at and are instrumental 
in computing the losses themselves. We may write, for example, 

Pf ^ 
P2^ P2^ Pi' 

Taking the logarithms, and using equations (115), (116), (118), 

Li = Lt + Ll(r-*i) (120) 

The insertion loss equals the transmission loss, plus the permuta¬ 
tion loss which results when Zr is replaced by Zi at the source 
terminals. This equation may be used to find Li from Lt. 

Lt may be similarly broken down. We have 

^ 
P2'^ P2" P2" Pi" 

hence, taking logarithms, 

Lr = « + Lr + Li(,_^o) (121) 

Usually, Lt is determined directly and the last line is helpful 
in finding Lr. 

Finally, a relation between the insertion and reflection losses 
may be derived, by comparing Eqs. (120) and (121) 

Li = a -|“ Pj? + Pi(r->.o) (122) 

For an output-matched network (Sec. 2.4), Eqs. (120), (121), 
and (122) reduce to the following: 

Lt — Li = <x Lr = 0 

It is worthy of note that, when the output is matched, the 
insertion loss equals a independently of the source impedance. 
In general, however, Li depends on Zs, while Lt never does. 

6.4. Transmission Loss. To evaluate any loss, we must 
express a ratio of powers. The power may be written as a 
function of current or voltage, as follows: 

p = = v^G 
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Expressing current and resistance, we have, for the trans¬ 

mission loss 

Lt — In 
h 

h 
In 

Rr 

Substituting the value of the current ratio, we have (98) 

Lt = In 
sinh {6 + p) 

sinh p 
+ In 

Rr 
(123) 

The second term of the above may be evaluated by means of the 

input impedance expression (101). Since, however, the trans¬ 

mission loss is seldom computed, this evaluation will not be 

carried out, and (123) will be used as it stands in the derivation 

of the insertion loss. 

6.6. Insertion Loss. The insertion loss can now be obtained 

from Eq. (120). To this end, the permutation loss Li(r->t) must 

be found. In general, we have 

— In 

= In 

■^^*1 _i_ 1 In 

Zs + Zh 
'Z~+Za 

111 
Rg 

Rk 
(124) 

having let Z, stand for the impedance toward the source at j. 

In particular, can be written 

L l(r—^i) In 
Zs + Zj 

Zg + Zr 
+ i In 

Rr 

Ri 

hence, we have for the insertion loss 

Zg + Zj 
Zg + Zr 

We may now make use of Eqs. (99) and (100), namely 

Z, 2^ 
Zi = -B- = coth (9 + p) 2r = = coth p 

to which we may add a similar definition for the reflection con¬ 

stant of the source impedance, p' (Sec. 5.4) 

2, = ^ = coth p' 

Li — Lt L l(r—>t) = In 
sinh {6 + p) 

sinh 
+ ln 

(125) 
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The insertion loss may now be written^ 

jsinh {6 + p) coth p' + cosh (6 + p)j 
sinh p coth /?' + cosh p j 

[sinh (0 + p) cosh + cosh (0 + p) sinh p'l 

Z/ = In 

= In 

Hence, the final form 

Li = In 

sinh p cosh p' + cosh p sinh p' 

sinh (^ + p + pOI 
sinh (p + p') 

[Insertion has in terms of the reflection constants] 

(126) 

Equation (126), like (97), (98), and (99), lends itself well to a 

geometric interpretation based on the use of the p plane (Sec. 

5.7). The insertion loss can therefore, be computed quite 

readily with the use of maps of the hyperbolic functions, by the 

method outlined in Sec. 5.10. 

The analytical evaluation is lengthy and can be carried out 

most conveniently in terms of the reflection coefficients k and A:', 

defined as follows: 

k = e-2p = 2r — 1 

•2r + 1 
k' = = - I 

+ 1 

Expanding tly5 hyperbolic sines in (126) and noting that |e^l = 

Li = In 

Hence 

g(p-l-p0 — g--(p+p') 

T/ = Of -f- In 

= In 
I — g-2(p+p'+d) 

1 — g—2(p+p') 

1 — kk'e~'^ 

1 - kk' 

[Insertion loss in terms of k and k'] 

(127) 

The case when k = k\ or Z, = Zr, is particularly important, 

because most transmission systems have equal terminations. 

In this case, (127) may be written 

Li = a + \n \l + ke-^\ + In |1 — 

- In |1 + /bj - In |1 - *1 (128) 

[Ir^ertion loss between equal terminations] 

Another important case, that of the near-matched network, 

will be taken up later (Sec. 6.7). For examples of insertion 

loss evaluation, see Sec. 6.8. 

1 Note the identity 

In |A| -h In |b1 « In j^ll • \B\ - In Ub| 
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6.6. Reflection Loss. To find the reflection loss, Eq. (122) 

may be used, but L^o^r) must be evaluated first. Using the 

general formula for the permutation loss (124), we obtain 

Ro 

Rr 

There is advantage in expressing the above in terms of k and k'. 

Note that we have, in agreement with the definition of the 

reflection coefficient (92) 

Zr _l +k _ Z, _ 1 + /c' 

z; l-ic Zo I -k' 

Substituting, clearing, and simplifying, we have for Li(o->r) 

Li(o-*r) = In —+ -^ In ^ (129) 

Equation (122) may now be used in combination with (127) and 

(129) to find the reflection loss. Thus 

Lr = L/ — a + Li(o~>r) = In 

Simplifying, we obtain 

Lh = i In ^ - In |1 - + In jl - kk'e-^^\ (130) 
rCr 

[Reflection loss] 

The third term of (130) vanishes when k' = 0, or when the source 

matches the network. It therefore accounts for the effect of a 

mismatch at the input upon the reflection loss due to a mismatch at 

the output. For this reason, the term has been called interaction 

loss. The interaction loss may be neglected when the attenuation 

is large. 

When the interaction loss is negligible, a more convenient form 

of the reflection loss expression is the following, obtained by 

expanding k: 

^ In I? + In i ^ (131) 
iCr -^0 

[Reflection Joss neglecting inieraciion] 

The above form will be used in the study of selectivity of imped¬ 

ance transforming networks (Sec. 9.5). 

1 - kk^ 

1 - k 
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★6.7. Near-matched Networks. Near-matched networks have 

been taken up before, in connection with the input impedance 

(Sec. 5.9). Because of the frequent occurrence of imperfect 

matching in communication systems, the approximate formulas 

valid in such cases should be given attention. 

Let us carry out the evaluation of 

J{w) = In |1 + + In |1 — w\ 

where w — u + jv is a complex number of magnitude small 

compared to unity. Expanding the first logarithm in a series of 

which we consider the first and second term only (the remainder 

being obviously negligible), we have 

2 In |1 + = In (1 + 2u + 

= 2u + u- -\- V- — \(2u + + v‘^Y -j- . . . 

Repeating for the second logarithm, 

2 In |1 — = In (1 — 2u + 
= -2u + + ^2 _ ^(-2u + + y2)2 + • . . 

Adding the last line to the one above, we obtain the required 

expression 

In [1 + + In |1 — w\ — ^ —\w\- cos 2/w (132) 

(Note that terms of the. fourth order have been dropped.) 

The error involved in (132) is quite small, since all second- and 

third-order terms have been retained; the third-order terms, 

however, cancel out. 

Equation (132) may be used to evaluate the insertion loss in the 

case of a network between equal terminations, of impedance not 

far from the characteristic value. Actually, the formula thus 

obtained continues to be accurate when the match is very poor; 

when there is a difference of 40 per cent between Zo and Zr, 

assuming the angles to be the same (which is the most unfavorable 

case), the error is the order of 0.02 neper. 

Using (132), Eq. (128) takes the form 

Li — a + |A:p {cos 2/J^ — cos 2(^ — jS)} (133) 

[Insertion loss between equal near~matching terminations] 

The magnitude and angle of k can be found most conveniently 

by construction, as shown in Fig. 21c. Depending on the angle of 
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k and on the phase constant 13, the insertion loss may be higher 

or lower than the attenuation. 

6.8. Illustrative examples. 

Insertion loss. The insertion loss is required for a 10-mile 

section of the cable whose constants were computed in Sec. 3.11. 

Both the exact formula (128) and the approximate formula (133) 

will be used. The terminations are assumed equal, both of 

600-ohm impedance, zero angle. 

The data for the cable will be repeated below 

Zo = 480 — j490;ohms attenuation al = 0.1785 X 10 

= 1.785 nepers ^"^1 = 100° 

Let us now compute k. We have 

Zr + Zo== 480 + 600 - i490 

Z, - Zo = 600 - 480 + i490 

Hence 

k = = 0.420/100.7° 
"T ^0 .. 

■ke~^ cun now be computed 

ke-« = 0.426 X 0.168/100.7° - WO^ 

= 0.0715/0.7° or 0.0715 

Now we have 

1 + ke-> = 1.0715 In |1 + /ce-*| = 0.06907 

1 - /ce-» = 0.9285 In jl - == -0.0^1_ 

-0.00603 

1 + fc = 0.9208 + j0.417 |1 + = 1.01 

1 - A: = 1.0792 - iO.417 |1 - /cj = 1.155 

In |1 + A:| = 0.00995 

In jl - A'i = 0.1441 

0.15405 

Finally, 

L, = 1.785 - 0.00603 - 0.15405 = 1.625 nepers. 

Using (133), we obtain 

L, = a + (0.426)Mcos (2 X 100.7°) 

- (0.168)^ cos [2 X (100.7° - 100°)]) = 1.611 nepers 

= 1185 ohms /-24.45° 

= 504.5 ohms /76.25° 

= -0.0792 + j0.417 
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Reflection loss. A long line of 600 ohms characteristic imped¬ 

ance is terminated by a matching receiver. Another 600- 

ohms receiver can be inserted in parallel. When the second 

receiver is added the speech power in the first drops to a lower 

value. Find the corresponding decibel loss. 

We must evaluate the reflection loss resulting when a matching 

load of 600 ohms is replaced by a 300-ohm load. To this we 

must add a loss of 3.01 db, because only half the load power will 

be made available at the first receiver after the insertion of 

the second (3.01 db correspond to a power ratio of 2 to 1). 

The interaction loss is assumed negligible. Using Eq. (131), we 

have for the reflection loss 

UiN) = i In + In i 1 + 3TO 

"000 
Lfi (db) = 10(log 2) - 20 log (0.75) = 3.01 - 2.5 = 0.51 db 

Hence, the total value of the required loss 

L (db) = 0.51 + 3.01 = 3.52 db 

(1 watt of power is cut to 0.445 watt.) 

Suggested Exercise. Consider the alternative sehome of two 600-ohm 
receivers in series, each provided with a shorting switch. The loss in power 

at the first receiver when the second is cut in (by opcniing the shorting switch) 

will be found to have the value of 3.52 db, as found above. Show why the 

loss must be equal in the two cases. 



CHAPTER VII 

BEHAVIOR OF ELECTRICALLY LONG LINES HAVING 
SMALL DISSIPATION 

7.1 Electrically Long Lines. In Chap. V we discussed at some 

length the input impedance of a network with generic termination. 

By way of illustration, we considered the input impedance of 

transmission lines or cables and its use in fault location. We 

found that a mismatch somewhere along the line, and particularly 

an extreme mismatch such as a short or open circuit, will cause 

the impedance measured across the input terminals to vary 

periodically with frequency (Fig. 21a). 

The telephone engineer attempts to avoid such variations in 

normal operation, as they are accompanied by changes in the 

insertion loss and frequency distortion, as well as other anomalies 

(such as echo and cross talk) arising from the transient nature 

of signals and the complexity of telephonic systems. 

With the advent of much higher frequencies as a means of 

communication, it gradually became apparent that this pecu¬ 

liar behavior of mismatched lines can sometimes be used to 

advantage. 

Before going further, we should have clearly in mind the mean¬ 

ing of the term electrical length of a line. In the equations 

which define the electrical behavior of lines, the physical length I 

never appears alone; it is always multiplied by the transfer con¬ 

stant per unit length B. Two lines of different lengths will 

behave identically if they are the same in all other respects and 

if they operate at two different frequencies, so that 61 is the same 

for both. 

To satisfy this condition, frequency and physical length 

must vary inversely, so that the product ft remains constant; 

in fact, Eq. (40) [see also Eq. (46)] gives 61 in the form 

ei = Vlc V{d. + j){dp + j) = V(d.+i)(dp+i) 

showing that for a given line 61 remains the same if length and 

frequency have a constant product. 
121 
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Using X, the wavelength on the line, the above may be written 

more simply 

ei = ^ V{d. + j){d, + j) 

The product 2irl/\ is often called line angle. It is approximately 

equal to the over-all phase shift caused by the line in matched 

operation and is a measure of the electrical length of the line. 

As we shall see further on, particularly useful properties 

are exhibited by lines a quarter wavelength long, provided their 

physical length does not make them unwieldy. A quick numeri¬ 

cal check shows that at a frequency of 100 me./sec. the quarter 

wavelength in space, or on open wire lines or air-filled cables, is 

75 cm. (Expressing the wavelength in meters, the frequency in 

megacycles per second, they are numerically related as follows: 

/ - 300/X.) 
We might conclude the foregoing remarks as follows: An 

electrically long line is one whose length is of the same order 

of magnitude as the wave length on the line (usually one quarter 

or more). Except for cables with solid dielectric, the wave¬ 

length on the line is simply related to frequency, just as the 

wavelength in free space. Hence, only at very high frequencies 

can a line be physically short (comparable to the dimensions 

of apparatus) and at the same time electrically long. For this 

reason, the study of long lines usually assumes high operating 

frequencies, at which some factors that are important at tele¬ 

phonic frequencies may be considered negligible. 

7.2. Attenuation in Long Lines. At very high frequencies, 

the parameters R and G of a line (Sec. 4.1) are far from constant. 

The dissipation factors d, and dp which appear in (134) are 

therefore difficult to evaluate. In any case, however, they 

are very small compared to unity. As may be readily verified, 

this makes for small numerical values of the attenuation a in 

relation to the phase shift /3. (We recall that a in nepers and in 

radians are the real and imaginary parts of S.) 

It follows that, for some purposes^ the constants of long lines 

at very high frequency may be considered the same as those of 

the hypothetical lossless line (Sec. 3.2). This does not mean that 

transmission at high frequency can be effected without losses. 

In fact, although the attenuation is small compared to the phase 
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shift, the latter is so large when considerable distances are 

involved that the attenuation may have large values. 

If, for example, fila — 1,000, over a distance of 1,000 wave¬ 

lengths the attenuation totals 27r nepers, or 54.5 db; now, at 

100 me./sec., 1,000 wavelengths correspond to a distance of 1.87 

miles. Yet a line for which jQ/a = 1,000, though obviously 

''lossy'' if used for high-frequency long-distance transmission, is 

lossless for all practical purposes when only 1 or 2 wavelengths 

long. In particular, it will have virtually the same input 

impedance as a lossless line with the same termination and of 

the same small; physical length. Its characteristic impedance 

will also be close to that of a lossless line, i.e., a pure resistance. 

For convenience, formulas giving the attenuation and charac¬ 

teristic impedance at very high frequencies are tabulated below, 

without derivation. The formulas for a assume that no energy is 

lost in the dielectric. 

Attenuation a, 

db/m. 

Characteristic 

impedance Ro, 

ohms 

a 

equals 

b 

equals 

Parallel line 

in air 

(134)* 

b 
27G log - 

(135)* 

radius of 

wire cm. 

distance be¬ 

tween cen¬ 

ters, cm. 

Concentric 

cable, air- 

or gas-filled 
G+0 «/ 

(136)* 

138 log - 
a 

(137)* 

inner con¬ 

ductor ra¬ 

dius, cm. 

outer con¬ 

ductor ra¬ 

dius, cm. 

* This number is the equation number. 

Conductors are assumed to be copper (Sec also Fig. 23). 

A discussion on the optimum dimensions of concentric cables 

appears in Sec. 7.7. 

In line with the above discussion, let us now consider trans¬ 

mission lines having the following properties: 

1. Long electrical length (length comparable to X) 

2. High operating frequency 

3. Negligible loss per wavelength (because a <KP) 

4. Generic terminations 

Condition (3) enables us to drop the attenuation a from the 

expressions in most cases. For this reason, and for brevity, the 

term lossless will be used at times to designate transmission lines 

in the above category. 
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Fig. 23.—Constants of lines for very high frequencies* 

7.3. Input Impedance and Impedance Transforming Action 
of Lossless Lines. The premise that a/p is a small number 

brings considerable simplification to the analysis of line perform¬ 

ance, particularly with nonmatching loads, provided the line 

length is of the order of X. 
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In general, the input and load impedances of a line of length L 
are correlated (see Sec. 5.6) by the equations 

Zi = coth (p + OL) 
Zr = coth P 

The expression p + OL may be written 

a + aL + j(r + jSL) 

where aL is the total attenuation of the line section, in nepers. 

This is, by assumption, small compared to unity; hence it may 

be neglected, barring some instances in which the load is purely 

reactive. We may, therefore, when Zr has a generic value, 

use the approximations 

Zi = coth (p + j^L) = coth 

Zr = coth p 

(138) 

(139) 

Recalling the interpretation given to (99) and (100), we may 

, interpret the above as follows: For every value of impedance, and 

for a given line, there is a point on the p plane; the two p points 

corresponding to the input and load impedance of a reactive 

line section are separated by a distance 2tLI\ along the axis of 

imaginaries. Of the two components a and r which characterize 

the impedance toward load, only one, r, is changed by the 

insertion of the line. (If the line had high dissipation per wave¬ 

length, both a and r would be changed appreciably, and in a 

fixed proportion.) 

This impedance transforming action of the lossless line, and 

the concept of impedance transformation in general may be 

clarified by the following analogy: 

Consider (Fig. 24a) an impedance R + jX. Imagine this to be 

connected at one end of an inductive line, consisting of two 

long, uniformly wound solenoids, each of reactance x/2 ohms per 

unit length at the given frequency. Let all distributed capacities 

be negligible at this frequency. This nductive line will trans¬ 

form the impedance R + jX into R j{X + xL), if L is the 

line length. The transformation is limited in that it affects 

only Z, leaving R unchanged. Furthermore, X can only be 

increased. 
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r- 
-L cm.- 

1 
Inpui impedance 
ZrR^j(X^ljxy 

Load impedance 
Zr-R^JX 

iQmmmmomQX)., 

Inductive line'* 
(reactance x/i/crr.) 

Input admittance 

Yi-G^j(B^Lb) Load admittance 
nJ Yr-G-hJB 

K. 

(aMmpedoince transformed 
b;y insertion of'inductive 
line’',increasincj reactance 

('^Mmpedance transformed 
insertion of "capacitive 

line",increasing susceptance 

"Capacitive line " 
(susceptance b v/cm.) 

Input impedance impedanc^^ 
Zi*Rcoth[(T^j(z-i-L^)J^ Zr=J^coffj(iTijz)\, ^ 

[-^-^1 
' "Reactive line" 

(phase constant p radjem.) 

1 
r ^ 

Load impedance 
^ Zr=RoCoth(cyz)->^ 

Virtual toad \ 
1 RjE^cottiaX 

Vertical Hn^ 
ez tension: 
n =-5.^ 

p 2rr 

(c)-Impedance transformed 
by insertion of a lossless 
line,varyim "r" 
(Note: ^oth (<r-hjz) is o 
periodic function ofz) 

(d)’Jhc load impedance, 
itself may be regarded 
as the product of a 
transformation operated 
upon a pure resistance 
(the"virtual load") by 
an added section of line 
(the'line extension") 

Fig. 24.—Impedance transforming action of the lossless line. 

Similarly, we might imagine a capacitive line made of two 

parallel strips held close together, with negligible inductance. 

Connected to an impedance of value 

1 
G+fB 
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such a line would transform it to the value 

1 
G + j{B + bL) 

Of the two parameters G and B which have now been used to 

define the impedance, this transformation has increased 5, leaving 

G unchanged (Fig. 246). 

Finally, consider a lossless line of characteristic impedance 

Ro and length L (Fig. 24c). Connected to an impedance of value 

Rq coth {<T + jr) 

this line transforms it into the value, 

Ro coth [cr + j(r + /3L)] 

provided we assume a. This time the impedance has been 

expressed in terms of Ro and the two parameters (t and r; of 

these, the transformation has affected only r. It should be noted 

that since the impedance is a periodic function of r, an indefinite 

increase of r brings it through a cycle which keeps repeating 

. itself, whereas an increase in Z or J5 brings it closer and closer 

to infinity or zero. 

All three of the transformations of Fig. 24 are unaccompanied 

by loss of power, which is one of the requisites of impedance 

transformation problems (Sec. 8.1). However, none of them 

can be used, in general, to bring the impedance to a specified 

value, since each transformation only varies one of the two 

parameters by which impedance is defined. 

Impedance transformation problems and the methods for their 

solution will be taken up later (Chap. VIII); many such methods 

will be based on Eqs. (138) and (139) and their geometric 

interpretation. 

The input impedance computation may have to be carried out 

analytically. Equation (101) can be used for this purpose. It 

simplifies to the following: 

. _ Zr + i tan (27rL/X) 

’ 1 + jzr tan (2tL/X) ^ ’ 
[Input impedance of a lossless line] 

From the above we may obtain the rectangular components of 

the impedance and admittance number: 
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_ Tr [cot* (27rL/X) + 1] 
r,* + [Xr — cot (27rL7X)]* 

_ j, [cot* (2TrL/X) - 1] - cot (2TL/X)(r,* + x.* - 1) 

** rr* + [a;, — cot (27rL/X)]* 
Qr [cot* (2tL/X) + 1] 

~ ffr* + [6, - cot (27rL/X)]* 
hr [cot* (27rL/X) - 1] - cot (27rL/X)(gr* + ?>r* - 1) 

' “ + [hr - cot (2tL/X)]* 

. Zi . Zr 
Zi = rv + JXi = ^ Zr = Vr + JXr = ^ 

ito ito 

.Vi = = ^*^0 2/r = + A = YrRo, 

7.4. Virtual Line Extension and Virtual Load. Standing 
Wave Ratio. It is often convenient to imagine the load, or 

termination, of a lossless line replaced by a virtual termination, 

consisting of an additional length of the same line extending back 

of the load terminals and loaded by a pure resistance (Fig. 24d). 

It can be shown that such a substitution is always possible; 

for each value of the actual load impedance there is a value of 

the virtual line extension and a value of the virtual load such 

that the virtual and actual terminations are equivalent. This 

may be surmised from the fact that the impedance depends on 

two distinct real numbers, <t and r. Now, if the line is lossless, 

the virtual line extension will appear to be a function of r only; 

the virtual load, a function of cr only. 

The load impedance may be written, as usual, 

Zr — Ro coth (o' + jr) 

Let the virtual load have the value 

Rv = Ro coth <T 

and the virtual extension, the value 

The impedance of the virtual termination may now be written as 

an input impedance, using (138), 

Z^ = Ro coth + j = ^0 coth (o- + jr) = Zr 

showing that Rv and Lv are the values which bring about the 
desired equivalence. 

(141) 

(142) 

(143) 

(144) 
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The virtual termination illustrates the principle discussed 

in the preceding section. If a lossless line transforms the load 

impedance by adding to the value of the parameter r, then the 

load impedance itself may be regarded as the product of a 

transformation, operated on a pure resistance (for which r = 0) 

by a line of such length as to add the correct value of r (Fig. 24d). 

Expressions for Rv and Lv suitable for numerical work are given 

below. 

^ “ 4 

tan“^ A 
+ B 

[Virtual line extensionY 

c + r* = ^ = coth <j 
/to 

(145) 

(140) 

[Virtual load number^ or standing wave r(dio\ 

where and C have the following values: 

for Xr < 0: 5 = 0 

for > 0: = 1 

for Xr = 0, 

for Xr = 0, 

2av 

C = 

+ - 1 
+ 1 

2/v 

^Ar Vf “1” jXr 

r, < 1: = 1 
Tr > 1: = 0 

Lv and Tv may be expressed in terms of /c, the reflection coefficient 

(Sec. 5.4), and a modification of the construction used to deter¬ 

mine k (Fig. 21c) may be used to find Lv and rv rather more 

conveniently than by computation. The new construction is 

shown in Fig. 25 for the two cases of inductive and capacitive 

load; actually, the construction is the same in both cases, but 

it is not easy to avoid confusion in measuring the angle. This 

construction follows from that of Fig. 21d, as the reader may 

verify, because — 2r is the angle of k (94) and because 

Tv coth a — 
1 + ^ 1 + |fc| 
1 — 1 — \k\ 

The virtual load number Tv is primarily of interest because 

it is equal to the standing wave ratiOj as will be shown in the 

^ The term virtual line angle is sometimes used for - 
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following section, while Lv determines the position of maxima 

and minima of voltage along the line with respect to the load 

terminals. The construction of Fig. 25 is useful, therefore, for 

the purpose of determining how the voltage (and current) will 

vary along the line for any particular loading. The opposite 

problem of evaluating an unknown impedance by measurements 

taken along a line will be taken up in Sec. 7.6. 

Acfua! hcfd- V/'rfua! had— 

Fig. 25.—Construction for the virtual termination of a lossless line. 

7.6. Voltage Distribution along Reflecting Lines. Standing 
Waves. The. value taken by the voltage and current as a func¬ 

tion of time and position along a section of line with generic load 

will now be considered, assuming as usual steady-state conditions. 

The analysis will first be carried out in general, thereby extend¬ 

ing the discussion of Sec. 4.1 to the case when reflection is 

present. Particular attention will subsequently be given to 

the distribution of voltage and current in a lossless line. 

The ratio of voltages at the two ends of a line is, in general 

[Eq. (97)], 
Vi ^ cosh [{a + jP)L + p] 

V2 ' cosh p 

and the ratio of currents (98) 

h = sinh [{a + jP)L + p] 
I2 sinh p 
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We are now concerned, not with the terminal values, but with 

values all along the line. The above equations must therefore be 

applied to a section of variable length, whose output we will 

consider fixed at some reference point conveniently situated 

on the line, while the input is at a variable distance x from the 

reference point, counted positively in the direction of the source. 

By giving x a range of values, negative and positive, we will 

then obtain ratios of the voltage at various points to the voltage 

at the reference point and also the distribution, for a given instant 

of time. 

For reasons of convenience, we shall place our reference point 

where the reflection factor p has a real value. There is a value of 

p (a function of the impedance toward load) for every point along 

the line; all of these values are represented by points on the p 

plane (Fig. 20a) located along a straight path. 

This path must cross the axis of reals (r = 0) somewhere, 

although the intersection may correspond to a virtual point of 

the line, beyond either termination. 

We will then write a for p in the general expressions. Also, 

V(x, t) will be written in place of Vi, to signify the voltage at 

a distance x from the reference point and at time t; and V(0, t) 

will be the new notation for V2; the currents will be handled in 

the same way. Finally, x will take the place of L. Accordingly, 

we have 
V(x, t) ^ cosh [{a + j^)x 4- (t] 

V(0, t) cosh a 

l(a:,_0 ^ sinh [{a + j^)x + o’] 

1(0, t) sinh a 

Like Xj t must be counted from some reference instant. For 

convenience, let ^ = 0 when the voltage at x = 0 is a positive 

maximum. Accordingly, we may write 

t;(0, t) = Vo cos 0)1 V(0, t) = Voe^'^^ 

and we have 

V(x, t) = c^sh [ax + <7 + jpx] (147) 

Taking as the origin of time the instant at which 1(0, t) is a 

positive maximum, we obtain 

I(x, t) = ^ sinh [ax + <r + jfix] (148) 
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Note that the origin of time is not the same for the two Eqs. 

(147) and (148); t stands for two different variables in the two 

equations, except when the voltage and current are in phase at 

X = 0 (as for the reactive line). 

The hyperbolic functions of (147) and (148) may be expanded 

into sums and differences of exponentials, as follows: 

V(x, t) 

I(x, t) 

C<T _|_ >■ ^ 

^ ^ [f><r+ax+](ut+$r) 
£)<r _ <r 

— f - (<r-f ax)+y (w / —^ j-) j 

Noting that the instantaneous values of voltage and current 

are the real part of the corresponding vector expressions and 

that the real part of is cos we have finally 

r(x, t) = -cos (ojf + /3x) 

+ ^.-u+ax) cos (oit - px)] (149) 

— cos (cot — ^x)] (150) 

[Voltage and current among the line in the general case. Direct and reflected 

waves] 

Voltage and current are expressed above as the resultants of 

two waves ti^iveling with the same velocity a>//3. This inter¬ 

pretation follows closely along the lines of the discussion of 

Sec. 4.1. 

Eqs. (149) and (150) could have been obtained as the solution 

of a differential equation (Sec. 13.3). That is the method 

generally used in problems involving the propagation of dis¬ 

turbances in continuous media. 

The general expressions will now be applied to lines in which 

a Assuming that the line length is of the order of X, the 

term ax may be neglected for all values of x corresponding to 

points of the line proper. The reference point may now be taken 

at the virtual load for which p = a by hypothesis (Sec. 7.4). 

Moreover, since the virtual load is resistive, voltage and current 

at the virtual load are in phase, hence f is the same in the voltage 

and current equations, which can be written 
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v(x, t) 

Ox, t) 

e’ + e~’ 

+ cos 

— 6“" COS 

[Voltage and current along line^ neglecting losses] 

(151) 

(152) 

The distribution of voltage or current at any time may be found 

by ^freezing the variable t at some value, as was done in Sec. 4.1. 

For < = 0, we have 

v(Xf 0) = Vo cos t‘(x, 0) = lo cos 

showing that both v and i vary sinusoidally along the line at this 

particular instant, i.e., when they go through a maximum at the 

virtual load. The distribution of voltage at this time is shown 

as the solid line of Fig. 26a. A fraction of a cycle later it will 

have changed as indicated by the dotted line, which is still 

sinusoidal because it is the sum of two sinusoidal waves, although 

of different phase and amplitude. 

In general, the distribution is analyzed more conveniently 

with the help of the polar diagram of voltage (or current). The 

polar diagram was used in the discussion of voltage along the 

matched line (Sec. 4.1); it is no other than the locus, or path, of 

the point V(a:, t) for x variable. (For those who are used to 

thinking of V as a vector, the point V is best described as the 

arrow of the vector.) 

To obtain the polar diagrams, the expressions for I(x, t) and 

V(a:, t) must be used. The value assigned to the parameter t 

(time) does not matter, because the only change which the polar 

diagram undergoes from time 0 to time Hs a rotation oit in the 

positive (counterclockwise) direction. Evidently, therefore, 

once the diagram is at hand for ^ = 0, it can readily be made 

available for any value of time. Accordingly we may substitute 

i = 0 in Eqs. (147) and (148), in addition to making ax — 0 and 

fix = 2Trx/\ to account for the lossless character of the line. 

Thus, we have 
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= Fo j^cos + j tanh cr sin j (153) 

= lo l^cos + j coth c sin (154) 

If Y{Xj 0) and l{Xj 0) are considered as points of planes, the loci 

described by these points when x is varied are ellipses, as may be 

verified by separately equating the real and imaginary parts of 

the above equations. If we let 

we have 
Y = V + ju 1 = i + jh 

2Trx 
V = Vq cos 

= t^o tanh <r sin 

/ . f 2Trx 
i = Iq cos —^ 

A 

2Trx 

h = lo coth cr sin 
. 2tx 

(155) 

(156) 

(157) 

Equations (156) are the parametric equations of an ellipse, whose 

radius vector has a maximum value Vo along the axis of reals, 

a minimum value Vq tanh a along the axis of imaginaries. For 

every x (point of the line) there is a point of the ellipse, and 

the radius vector at that point is the peak value of voltage at x. 

The correspondence of points on the line to points on the 

voltage ellipse is best understood by graphical construction 

(Fig. 26a). Taking as the unit length, two circles of radii 1 

and tanh <t are drawn. A line is then traced at angle 27rx/X with 

the axis of reals, intersecting the circles at two points. The real 

coordinate of the point on the outer circle and the imaginary 

coordinate of the point on the* fnner circle are the components 

of the voltage vector. This construction follows immediately 

from Eqs. (156) and is, as the reader will recognize, the standard 

procedure for constructing an ellipse. 

As the angle 2tx/\ is varied, the real component of t^o takes 
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& T&ng6 of vslues which, plotted Eg^inst a distance axis, show how 

the instantaneous voltage is distributed over the line. To obtain 

the distribution for any particular time <, the voltage ellipse 

termination. 

must be rotated by an angle ui. Each voltage vector is so rotated 
and its real component changes accordingly. 

If, instead of the real component, we plot the length of the 

voltage vector (radius vector of the ellipse) against x, we obtain 
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the variation of voltage amplitude (or peak voltage) along the 

line. This plot does not change with time. It is periodic along 

Xj with period X/2, but not sinusoidal. Its equation is 

= + tanh^ <T + (1 — tanh^ a) (158) 

The ratio of the maximum amplitude to the minimum is called 

standing wave ratio (s.w.r.). Its value is coth o’, which is also 

the value of the virtual load number (Sec. 7.4). Thus, if the 

line is loaded by a resistance twice as high as the characteristic 

resistance, the voltage maxima and minima will be in the ratio of 

2 to 1, the load terminals being a point of maximum. If the 

load resistance were half the characteristic value, the standing 

wave ratio would be the same but the load terminals would be a 

point of minimum voltage. In this case, the virtual load would 

be a quarter wavelength behind the load proper. 

If the line is open- or short-circuited, the standing wave 

ratio is infinity. The polar diagram in either case degenerates 

into a straight line, and the voltage amplitude is zero at points 

spaced by interval?? of a half wavelength (nodes). This behavior 

of the line parallels closely the vibrations of elastic bodies 

driven at some point and rigidly held by supports incapable of 

absorbing energy, such as a taut string fixed at one end and tied 

to a tuning fork at the other. 

The current distribution is entirely similar to that of voltage, 

except for this, that voltage maxima correspond to current 

minima, and vice versa. The current ellipse is rotated by a right 

angle with respect to the voltage ellipse. The standing ratio 

is the same, whether the voltage or current distribution is con¬ 

sidered. At all points of minimum and of maximum (voltage or 

current) the voltage and current are in phase; hence their product 

is the power, which must be constant at all points. The maxi¬ 

mum to minimum ratio of voltage and current must therefore 

be the same, in agreement with Eqs. (156) and (157). 

The polar diagram has been studied in the two cases of an 

attenuating line without reflection (Sec. 4.1) and of a lossless line 

when reflection is present. In the first case it was found to 

have the form of a spiral; in the second, of an ellipse. 

In the most general case, that of a line with appreciable 

attenuation with nonmatching load, which was studied analyti- 
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cally in the first part of this section, the polar diagram has the 

form of an elliptic spiral.^®^ From an engineering standpoint, 

the general case is not very important because reflection is 

purposely kept low in long sections of line where the over-all 

attenuation is large (Sec. 9.2). 

7.6. The Line as an Impedance Measuring Device. Most 

engineers are acquainted with the difficulties experienced in the 

measurement of impedance at very high frequencies. These 

difficulties arise, chiefly, because twt) points not coincident in 

space are also separated electrically, i.e., they have an impedance 

between them; and two points not Infinitely distant always have 

an admittance between them. While at audio and broadcast 

frequencies it is comparatively easy to keep these stray effects 

so low that the electrical relationships between points of a circuit 

need not depend on the size and position of its parts, at vhf this 

is impossible. 

If the impedance to be measured is to be connected to a measur¬ 

ing device, the impedance and admittance of the connection will 

invariably introduce an intolerable error. The only solution 

lies in the use of the connection itself as a measuring device. 

The theory of the lossless line, as developed in the preceding 

sections, indicates how this can be accomplished. The procedure 

is as follows: 

a. The unknown impedance is connected to one end of a 

section of line, while the other end is driven by a source of the 

required frequency. The length of the line should be a half 

wavelength at least. 

h. The distances from the unknown impedance to the nearest 

point of maximum voltage on the line and to the nearest point 

of minimum voltage are recorded; or, alternatively, maximum 

and minimum current points are used. 

c. The maximum and minimum values of voltage (or current) 

along the line are measured. 

The measurement described under (6) determines the value of 

the virtual line extension (Sec. 7.4), while (c) yields the standing 

wave ratio. The unknown impedance may be computed from 

these data. 

An example will illustrate the procedure. Suppose that the 

r.m.s. voltage has been read continuously along the line so that 

a plot of the voltage distribution is available. This is shown in 
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Fig. 266 for two cases: when the unknown is inductive and when 

it is capacitive. 
Expressing the unknown impedance in terms of <t and r, we 

have (139) 

Zr = Ro coth p = Ro 
coth (T + j tan r 

1 + j coth O', tan r 

Recalling that coth o- = and r = 27rLv/X, we have the value 
of the unknown impedancg in terms of the virtual parameters 
(Sec. 7.4) 

r, + j tan 
Zr = R,-- (159) 

1 + jr. tan ^ 

[Impedance of termination in terms of virtual extension and standing wave ratio] 

Letting l/’2, xt. stand for the maximum value of peak voltage 
and the corresponding distance from the load end, and Fi, Xi 
for the minimum value and corresponding distance, we have 
(see Fig. 266) 

Substituting these values, the following is obtained: 

Zr 

A 

t^2 sin A + cos A 
ICo - 

Fi Sin A + jVi cos A 

TT X2 1 
2 xi — X2\ 

(160) 

[Impedance of unknown termination in terms of measurements obtained on the 

line] 

If currents have been measured instead of voltage, the maxi¬ 
mum current amplitude should take the place of F2, and xi 
should stand for the distance from the unknown impedance to 
the point of highest current. Peak or effective values may be 
used indifferently, of course. 

For the experimental technique of measuring voltage and cur¬ 
rent distribution, the reader is referred to the literature. 

A geometKc construction based on the polar diagram (Sec. 7.5) 
may be used in place of Eq. (160). Suppose, for example, that 
the distribution of peak voltage along the line has. been obtained 
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Fig. 266.—Graphical determination of an unknown impedance from 

7neasurements taken along a line. 
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(Fig. 266). Three concentric circles are drawn, with radii Vi, Fr, 
and V2 {Vr = voltage at the unknown impedance). Then the 
voltage ellipse can be constructed—for simplicity, oriented as 
shown, i.e.y corresponding to the instant when the voltage at the 
virtual load is a positive maximum. Only a small arc of the 
ellipse need be drawn, so as to locate point A at the intersection 
of the ellipse with the circle of radius Fr- Since the radius vector 
of the ellipse represents the voltage vector, point A determines 
the latter for the position x = 0 (unknown impedance terminals), 

or 61 = Vr. 
Proceeding with the construction, points B, C, and D are 

located. OC is the radius vector of a second ellipse, identical to 
the voltage ellipse except for a right-angle rotation. The new 
ellipse is therefore similar to the current ellipse (Sec. 7.5) except 
for the dimensions, the major radius being Fo instead of h coth a. 
[Fo and lo peak values at the virtual load, see Eqs. (157).] It 

follows that OC is related to the current vector at the load ter¬ 
minals by the equation 

—> Vi) 
OC = Ir — tanh <t = Ro coth a tanh cr F = Rolr 

lo 

Consequently, we have 

OC R^r R() 

and the ratio of the complex numbers represented by the points A 
—> —> 

and C (or the vectors OA and OC) is the impedance number 
for the unknown load 

^ = k| ZCOA = -Izr 

Figure 266 illustrates the difference in voltage distribution for 
the two cases of inductive and capacitive load. When the load is 
capacitive, the voltage falls as the point of measurement moves 
away from the load; the reverse is true of an inductive load. 

When the current distribution has been measured, the con- 
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.struction is the same, except for the order in which the two 
—^ —> 

vectors OA and OC are obtained. 

7.7. Balanced and Unbalanced Transmission Lines. In our 

discussion of transmission lines it has not been necessary to 

introduce distinctions, except for the fact that electrically long 

lines, when short in physical length, can usually be regarded as 

free of losses. 

For practical purposes, however, it is well to have in mind the 

fundamental difference between balanced and unbalanced lines. 

This subdivision has been made before (Sec. 1.2); a system is 

said to be balanced when its conneccions with ground do not carry 

current; the opposite is true of an unbalanced system. 

In order to make the definition general, we should think of 

ground as being, not necessarily the surface of the earth, but 

any conducting enclosure or shield surrounding the electrical 

system. (If such an enclosure is not in evidence, its place is 

taken by the surface of the earth, which, being virtually indefinite 

in extent, is equivalent to a closed surface.) 

A balanced system, then, is one in which no current flows 

into or out of the shield surrounding the system at any point. 

If a transmission line is used to connect parts of such a system, 

there will be no longitudinal flow of current through the part of 

the shield that surrounds the line (or, if the shield were removed, 

through the ground). There will be two conductors within the 

shield, carrying equal currents in opposite directions. As the 

shield is not needed to carry current, it may be dispensed with 

without causing ground currents to flow. Most balanced lines 

are unshielded. Many balanced lines may run close together 

without interference. 

The term unbalanced usually refers to those lines which consist 

of one conductor and a shield, or one conductor and ground. 

The shield (or ground) is used as a return. A shield is required in 

the vast majority of cases, since the use of ground as a return 

causes interference as well as serious losses, particularly at high 

frequency. 

A shielded unbalanced line generally takes the form of a 

coaxial, or concentric, cable. This is altogether different from 

telephonic cables, which actually consist of many balanced lines, 

or pairs, within a common sheath that serves as a mechanical 

protection and does not have an electrical function. 
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A coaxial cable is more expensive than an unshielded balanced 

line of comparable attenuation. However, unshielded lines 

cannot be used above a certain frequency; hence, the widespread 

use of coaxial lines in the higher frequency ranges. Shielded 

balanced lines suitable for very high frequency are also used, 

although of less simple construction. 

When the distance is short, the choice between the two types 

of line may be affected by the terminations. A balanced line 

is the logical choice, for example, in connecting a push-pull 

amplifier to a dipole antenna.It is not impossible, however, 

to match a balanced line to an unbalanced load, or vice versa. 

Suppose a coaxial feeder had to be used to energize the dipole 

antenna (Fig. 27a). The antenna is balanced when equal cur¬ 

rents flow through its two arms at the junction with the cable. 

Without attempting a rigorous discussion, which would require 

field concepts, we will recall the well-known fact that high- 

frequency currents flow only on the surface of conductors and 

do not traverse them. There are, in consequence, three possible 

paths for the current to take as it leaves the antenna: the outside 

surface of the shield, the inside surface of the shield, and the 

surface of the inner conductor. The last two are of necessity 

equal and opposite, because the charge densities on opposite 

surfaces of a dielectric are equal and opposite. Hence, to ensure 

balanced operation, we must make it impossible, or at least 

difficult, for the current to follow the third path (the outer 

surface of the sjiield). 

The device of Fig. 27b accomplishes this purpose. The 

unbalancing current would have to flow along the surface of a 

resonant cavity, formed by the hollow space between the shield 

and an outer skirt^ a quarter-wave long. This cavity is equiva¬ 

lent to a quarter-wave line terminated in a short circuit, or stub 

(Sec. 10.4). If a given current were to flow in and out of the 

cavity at its mouth, a very much greater current would have to 

circulate at the bottom of the cavity. Or we might say that 

the impedance of the cavity is effectively in series with the path 

of the unbalancing current, although expressions borrowed 

from circuit theory are not generally useful in this type of 

problem. The skirt arrangement may well be described as a 

trap which stops undesirable currents from flowing. 

As an alternative means of preventing the flow of unbalancing 
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currents, a magnetic field may be used to convey energy from the 

balanced to the unbalanced part of the system. This device is 

very commonly used at all frequencies. It consists of a trans¬ 

former which has a grounded center tap on the balanced side 

(Fig. 27c). 

i V77777777Z777777777777/7777777777777777777Z777777777777777/ 

Cc)’-Boi\ancinq transformer 

Fig. 27.—Junction of balanced and unbalanced systems. 

7.8. Illustrative examples. 

Optimum proportions of coaxial cables. For a given shield 

radius b, (Fig. 23), there is a value of core radius a which mini¬ 

mizes the attenuation of the coaxial cable. This is also true 

of the parallel line (for hf operation), but with this difference: 
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in the parallel line, the cost of the line is affected by both a (wire 

radius) and b (wire spacing); in the coaxial, the cost is influenced 

primarily by the value of b and only slightly by a. Hence, for 

the coaxial line, a can be selected exclusively on the basis of 

performance. 

(An analogous problem would be that of finding for a 100-gal. 

drum the diameter which permits the highest pressure in the 

drum, given the quality and weight of steel to be used in its 

construction. The diameter does not affect the cost appreciably, 

while the weight of steel does. For any given weight there is 

therefore an optimum diameter, which can be determined on the 

basis of strength only.) 

We may write the attenuation of the coaxial line, for a given 

frequency, in the form (Sec. 7.2) 

_ K 1 b/d 

^ b log b/a 

where K may be regarded as a constant. If we assign a value to 

6, there will be a value of a which minimizes a; there is advantage, 

however, in choosing b/a as the variable, since the optimum value 

of this must be a numerical constant independent of 5, as the 

form of the. above equation indicates. Letting b/a — x, we find 

that a is a minimum when 

da ^ K' \n X — I — \/x 

dx b In^ X 
(K' 9^ K) 

The above may be solved by trial and error, or graphically. The 

solution is 

X = - = 3.59 
a 

The variation of a with x is shown in Fig. 236. 

The characteristic impedance, of the coaxial cable is a function 

of X only (Sec. 7.1). Its optimum value is therefore 

R = 138 log 3.59 = 76.6 ohms 

The problem of parallel lines is not essentially different, except 
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that b, the wire spacing, is not economically important unless a 

shield has to be provided. For shielded pairs in high-frequency 

operation, there is an optimum value of h/a consistent with the 

lowest attenuation for a given shield diameter. Such lines are 

not used unless a balanced circuit is necessary. 

Standing wave ratio on a line many wavelengths long. The 

discussion on voltage and current distribution has been carried 

out (Sec. 7.5) for a line of short length compared to X. Long 

lines in hf operation are generally matched to their terminations, 

in which case the analysis of matched lines (Sec. 4.1) applies. 

If this precaution is not taken there will be standing waves on 

the line; the s.w.r. will be sensibly uniform over a few wavelengths 

but will decrease progressively from the load to the source. 

Consider the following example: A 77-ohm coaxial cable is 

used to connect a uhf transmitter to its radiator (antenna). The 

cable is 200 m. long, with b = 1 cm. (b = inner radius of shield.) 

The frequency is 100 me.; consequently, the attenuation (Fig. 

23c) is 1.08 db, or 0.124 nep./lOO m. The standing wave ratio at 

the load (the antenna) is 1.5. Values of the s.w.r. at the trans¬ 

mitter and halfway down the cable are required. 

At the load, the s.w.r. is coth a (146), where a is the real 

part of the complex number p, a function of the load impedance 

(Sec. 5.4). A value of p may be assigned to any point of the line, 

as a function of the impedance toward load at that point. At a 

distance x from the load this value is 

p{x) = p(0) + Bx 

where p(0) is the value of p at the load (x = 0), 0 the transfer 

constant of the line. The real part of the above may be written 

(t{x) = o-(O) + ax 

Hence, the standing wave at distance x from the load is 

r.(:r) = coth <r(x) = coth [<r(0) + ox] = 

where rv(0) is the s.w.r. at the load. Numerically, 

for X = 100 m. (halfway: ax = 0.124 neper): 

^ 1.5 + 0.1233 ^ 

” 1.5 X 0.1233 + 1 



146 ELECTRICALLY LONG LINES [Chap. VII 

for X = 200 m. (at the transmitter; ax = 0.248 neper): 

1.5 + 0.243 

■ 1.5 X 0.243 + 1 
1.28 

Suggested Exercise. Construct the curve coth <r vs. <r, from the table. 
Find the value of <t corresponding to coth tr = 1.5 on the curve. To this 
value of <r, add ax = 0.248. The corresponding value of coth <r is 1.28. 
This graphical method takes the place of the computation above, and solves 
the problem for any set of data. 



CHAPTER VIII 

PROBLEMS INVOLVING IMPEDANCE TRANSFORMATION 

8.1. Classification of Impedance Transformation Problems. 
The problem of coupling a generator to its load so as to obtain 

the highest flow ;of power and that of matching a line to its 

terminations will be taken np in the following sections. These 

problems are often solved by the use of transmission lines, and 

their discussion is a logical sequence to the analysis of electrically 

long lines. 

On the other hand, the problems mentioned above may be 

considered as particular instances of a wider class of problems, all 

of which call for the design of an impedance transforming network 

of suitable characteristics and of reactive character. 

The characteristics of this network may be specified over a 

range of frequencies or at a single value of frequency. The 

coupling problem and the matching problem are essentially 

single-frequency problems, although the performance in the 

immediate neighborhood of the operating frequency may be of 

importance. 

A rough classification of all the impedance transformation 

problems may hinge upon the extent of the frequency range 

involved. The chief object of the problem is essentially the same 

in all cases, that of ensuring maximum power flow between the 

source and the load; this may be required over a given range of 

frequencies or at a single frequency. Discrimination against 

frequencies outside the operating range may also be an object. 

We may list the various impedance transformation problems in 

order of increasing complexity, as follows: 

a. The coupling problem. This is the problem of obtaining 

maximum flow of power from a' given source to a given load at 

some particular frequency. It is solved by the insertion of a 

coupling network which transforms the load impedance so as to 

obtain the highest power from the source—hence, into the load, 

since the coupling network does not absorb appreciable power. 
147 
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In some cases, a high degree of selectivity (Sec. 9.4) may be 

required, to prevent all frequencies outside a narrow band from 

being transmitted. Often the network is made adjustable, so 

as to vary the operating frequency over a range; such networks 

are called tuners (Sec. 10.5). 

A modification of the coupling problem calls for maximum 

voltage across the load rather than power, as in the coupling of 

voltage amplifier stages. 

The operating frequency is generally high in this, as in other 

single-frequency problems. Such problems have to do with the 

transmission of carrier frequencies, while audio frequencies require 

uniform transmission over a relatively wide range. Source and 

load are not, as a rule, pure resistances. 

b. The matching problem. The only difference between this 

and the coupling problem is that either the source or the load is 

now replaced by the output (or input) of a long transmission 

line. The problem calls for the design of reactive networks 

suitable for matching the line to its terminations. As the charac¬ 

teristic impedance of lines is practically a pure resistance, espe¬ 

cially at high frequencies, maximum flow of power is thereby 

obtained. 

The matching problem may be regarded as a particular case of 

the coupling problem and is handled in the same way. 

c. The transformer problem. This problem arises when the 

transmitted power is to be kept close to the maximum over a wide 

frequency rango^ both source and load being resistive in character 

but of different values. Essentially, this is an audio-frequency 

problem, solved by the use of close-coupled transformers. How¬ 

ever, problems of this type are not uncommon at higher fre¬ 

quencies. The vhf solution, employing many short sections of 

line, is discussed in Sec. 10.1. 

d. The filter problem. This is the most complex of all imped¬ 

ance transformation problems. Filters are generally inserted 

between equal resistive terminations; within the transmitted 

range of frequency, therefore, they must have little or no trans¬ 

forming action on the load impedance. Outside this range, they 

must transform the load impedance into a value approaching a 

pure reactance, so as to reduce the flow of power below a specified 

limit. 

The design of filters is not generally carried out on the basis 
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of their impedance transforming action; for this reason, the filter 

problem is seldom associated with other impedance transforma¬ 

tion problems. Yet the distinction between a coupling network 

and a band-pass filter is not a very sharp one. 

8.2. Condition for Maximum Power Transfer. The coupling 

problem, problem 1 in the preceding section, calls for the trans¬ 

formation of the load impedance to that value which, connected to 

a given source at a given frequency, absorbs from this source the 

greatest amount of power. This transformation must be 

accomplished so that only a negligible part of the power drawn 

from the source is lost in the transfv)rming network. 

The value of transformed impedance^ as defined above, is 

readily found. Let Zt stand for this value and Zy for the source 

impedance. The power received by Zt may be written 

^ = \Z, + Z,|2 = {R, + + (X„ + Xty 

where E is the source e.m.f. This power depends on both Rt 
and Xi\ but if we assign some definite value to Rt, then the maxi¬ 

mum of power will occur for Xt = —Xg, This conclusion does 

not depend on the value assigned to Rt; the condition Xg = —Xt 

must therefore be considered necessary (but not sufficient) if 

P is to have the highest value possible. If we imagine this 

condition to be met, then P is written 

p = _p 
iR„ + Rr ‘ 

This expression depends on Rt only, and we soon find (or remem¬ 

ber from elementary circuit theory) that it is a maximum when 

Rg = Rt. This is the second condition. Both conditions 

together determine the required value of transformed impedance, 

as follows: 

Zt = Rt+jXt = Rg -jXg (162) 

[ Value of transformed impedance for maximum transmitted power] 

We may express the above by this simple statement: A source 

delivers the highest amount of power when connected to a load 

whose impedance is the conjugate of the source impedance. 

When such a condition exists there is said to be a conjugate 

match of impedance at the junction of the source to its load; 
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the condition itself is known as the condition of maximum power 

transfer. (The abbreviation m.p.t. will be used occasionally.) 

It will appear (Sec. 9.2) that if a transmission system includes a 

source, a load, and an intermediate network free of losses, the 

m.p.t. condition, if it is met at either end of the network, must 

be met at the other end as well and at all inner junctions of 

the network. The system then constitutes a maximum power 

transfer chain (Sec. 2.10). 

8.3. Representation of Impedance Changes Due to Branch 
Additions. Having set the goal of the coupling problem as the 

transformation of a given load impedance Zr into the value Zt 

specified by (162), let us now turn our attention to the means 

available for carrying out the transformation. 

Three types of impedance transformation have already been 

considered (Fig. 24). While it is easy to see that neither of the 

first two means (the inductor and the capacitor) solves the 

problem by itself, we shall find presently that a combination of 

both is sufficient in general. (We would expect this to be true, 

since the impedance is defined by two real numbers.) 

It is worth while, at this point, to develop a method that 

will enable us to visualize what happens to the impedance of a 

given two-pole when circuit elements are added to it in various 

ways. The method consists essentially of the use of the complex 

plane, previously discussed in connection with the function p 

(Sec. 5.7). At first, no restriction will be imposed on the type of 

circuit elemeijt added; then, reactive elements will receive 

particular attention. Their use will lead to a solution of the 

coupling problem. 

The method relies upon the use of one or more points (on 

as many planes) to represent impedance. It should be noted that 

the word impedance is sometimes used broadly, sometimes in a 

narrow sense. In the narrow sense, impedance is the complex 

number 

When used broadly, impedance is that property of a two-pole, or 

loady which may be defined indifferently by Z or -by F, or by 

other complex numbers, or by a schematic. 

In general, a property is not the same as the number used 
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to express it, although both are expressed by the same word. 

Thus, ‘^hardnessis a property of matter, in the broad sense. In 

the narrow sense, we might say that something has hardness 

5,’^ using some particular hardness scale. Hardness” now 

denotes the number used to measure the property, instead of the 

property itself. 

It is now possible to say, without ambiguity, that two complex 

numbers, the admittance Y and the impedance Z, may be used 

(among others) to define or measure the property impedance of a 

given two-pole. This is almost a truism, of course; yet such is 

the inadequacy of words to express technical thought that much 

of the basic literature prefers not to make this statement and 

uses Z everywhere to the exclusion of F, in spite of the fact that 

Y is more convenient in'the majority of cases. 

Now, both Z and F, like all complex numbers, may be repre¬ 

sented by points (not by vectors; only quantities having a 

direction in space are legitimately called vectors^ although the 

phrases voltage vector and current vector and the correspond¬ 

ing arrows have become so common that a change is hardly 

warranted). 

The admittance F is represented by the point of coordinates 

G and B on the F plane; the impedance Z, by the point of 

coordinates R and X on the Z plane. A circuit addition cor¬ 

responds to a ^^jump” of both points to new positions; we there¬ 

fore have two distinct ways of visualizing a change of impedance 

due to circuit additions, by following the movements of either 

the Z point or the F point. 

We begin by locating the points Zr and Fr, representing 

the load impedance upon which we are effecting the trans¬ 

formation. Now if we add a branch, or two-pole, in series with 

the load, the impedance of the combination will be the sum of 

the complex numbers Zr and Z« (load and branch impedances). 

On the Z plane, the impedance point will be brought to its new 

position by moving it a distance Its along the axis of reals and a 

distance Xg along that of imaginaries (Fig. 28a). 

Addition of a shunt branch has a similar effect on the F point, 

displacing it horizontally by Gp and vertically by Bp (Fig. 286). 

Now, suppose we add first a series and then a parallel or shunt 

branch. If we consider the Z point, the series addition is readily 

interpreted (Fig. 28a); as for the shunt addition, we have as yet 
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Addition of a series branch 
"Impedance poini“follovMs line of constant JST a 
distance /?^,line of constant/? a distance 

firft-Addition of branches in-shunt and senes. 
Admittance point is used: both representations arc 
equally suitable to this case and to ic). The 
construction is os in fcj except for dual substitution 
(R forG, X for.fl,etc.)is positive in this example: 
hence,const./? circle is described in cw. direction. 

Fig. 28.—Geometric representation of branch additions. 
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no way of representing the movement of the Z point due to such 

an addition, and it is likely that there will be a difference between 

this type of movement and those considered up to now. 

The difference is formal, however, not fundamental. When 

we were moving Z a distance Rs along the R axis, we were actually 

following a line of constant X (specifically, the line X = Xr) up 

to its intersection with a line of constant R (specifically, the line 

R — Rt + Ra). In general, it is clear that if one parameter 

only is altered, the line followed will be associated with a constant 

value of the other parameter. Now, when we add the shunt 

branch, we are in effect changing the conductance and sus- 

ceptance of the two-pole by given amounts. The impedance 

point must therefore follow a constant B line and a constant G 

line successively (or vice versa). 

Such lines on the Z plane are not parallel to the axes; hence 

they cannot be traced quite as readily as the constant R and 

constant X lines. They could be readily followed, however, if 

they were drawn on the paper once for all. A map of the Y 

function on the Z plane would then be available (Sec. 5.7). 

The lines of this map would be transformations of parallel 

orthogonal lines; we shall discuss them in the next section. 

For practical purposes, the effect of the series-parallel addition 

may be obtained without drawing the’ whole map beforehand; 

the construction of Fig. 28c may be used. A similar construction, 

applicable when the Y point is considered, is given in Fig. 2Sd, 

Both constructions are justified by the analysis of the following 

section. 

★8.4. Mapping of the Function Y on the Z Plane, and Vice 
Versa. We may write 

Z = = = [v>-/Z] 

Expanding, 

Z — ^ (cos^ (P j cos <p sin ^) = ^ (1 + cos 2(p + j sin 2(p) 

= ^ (1 + (163) 

It is convenient at this point to think of Z as a vector; we find 

then that it can be resolved into two components, ^(7 and c^’2^/2G. 

If G is kept constant, the first component is fixed, the second 
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rotates around the point 0), i.e., around the tip of the 

first component vector. Thus it is seen that the tip of the 

resultant vector describes a circle around the point; or, in more 

precise language, the constant G line on the Z plane is a circle 

through the origin, of radius with center on the R axis. 

This circle cuts the R axis at a distance 1/G from the origin, 

hence it is very easy to construct. For instance, the circle for 

(7=1 millimho passes through the origin, has its center on the R 

axis, and cuts this axis at the point R = 1,000 ohms. 

Suppose the circle is drawn for a value G and we wish to 

draw a new circle for the value G + Gp. We read the value of the 

intercept for the G circle, take the reciprocal, add Gp to this, and 

take the reciprocal again. The last value is the intercept for 

the new circle. 

The constant B lines are similarly obtained. We may write 

Z = - e'V = i (-1 + e>^-) (164) 

proving that, if B is kept constant, the Z point must move on a 

circle passing through the origin, of radius ^B; the center will be 

on the negative X axis for positive B (when Z is in the fourth 

quadrant), and vice versia. Accordingly, we need only draw a 

circle through the origin and the Z point, with center on the X 

axis, to obtain the susceptance B for the point, which is the 

negative reciprocal of the circlets intercept. 
t 

If, in the foregoing, we replace each quantity by its dual 

(F for Z, G for R^ B for A, etc.), we obtain identical rules for 

the inverse construction (Fig. 28d). 

The maps of Y on the Z plane and of Z on the Y plane are 

one and the same. The transformation of one line into another 

resulting when, for each point of the line, we take the inverse 

point (point whose complex number is the reciprocal of the 

origin value) is called inversion. Either the Z map or the Y 

map may be regarded as an inversion operated on a system of 

orthogonal lines parallel to the axes (Fig. 29); both must there¬ 

fore have ^the same form. We shall make further use of the 

inversion process in Sec. 8.7. 

8.6. Impedance Transformation by Reactive Branch Addition. 
Coupling Networks. We are now in a position to solve easily. 
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at least on paper, the coupling problem or any other single¬ 

frequency impedance transformation problem. 

Let us first assume that we have available two branches, or 

boxes, with two exposed terminals for each; each box has zero 

resistance and adjustable reactance (or identically, zero con- 

Fig. 29.—Map of the inverse functiony illustrating the inversion of orthog¬ 

onal straight lines into orthogonal families of circles. 

ductance and adjustable susceptance) for the assigned fre¬ 

quency. In other words, the solution will call for a perfect 

coil of inductance L and a perfect condenser of capacitance 

C, where L and C may have any value. In practice, such require¬ 

ments cannot be met by lumped elements at very high fre¬ 

quencies (Sec. 8.6). 

Using the Z plane (the Y plane would do just as well), we 

locate the points Zr and Zg (for the load and source impedances, 

which are given); then we locate Zt, symmetrical to Zg about 
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the R axis (because the two numbers Zg and Zt are conjugate 

as shown in Sec. 8.3). 

We must transform Zr to the value Zt \ hence, the Z point must 

be brought from Zr to Zt in some way. Since we are adding only 

reactive elements, only lines of constant R and constant G 

may be followed. There are four such lines (two circles and two 

straight lines) through the two end points of the transformation. 

Three possible cases are listed in Fig. 30, depending on the 

relative values of resistance and conductance. If no more than 

two branches are used, two distinct solutions are possible in 

cases 1 and 2 and four solutions in case 3—of which two use a 

coil and a condenser and two use condensers only (or coils only). 

A numerical example is given, as well as a key for recognizing 

readily the branch addition corresponding to each type of path 

followed (Fig. 30). 

Coupling networks of this type are used at audio and radio 

frequencies, whenever power has to be transmitted at a fixed 

frequency (see also Secs. 8.8 and 9.7). The design is influenced 

by the fact that coils have appreciable dissipation. For this 

reason, other methods of coupling involving mutual inductances 

are often used. The method we have used can be extended to 

cover mutual inductances; for the time being, however, we shall 

extend it in another direction, to help us in solving the coupling 

problem at high frequencies by means of the transmission line. 

8.6. Requisites of Coupling Networks at High Frequency. 
Use of the Trahsmission Line. As the frequency is increased, 

the true value of reactance of a coil deviates more and more from 

the theoretical value based on the inductance alone, because 

of the mounting effect of distributed capacitances. This not 

only makes it difficult to design a coil for a specified reactance, 

but often results in very high losses. We find, therefore, that 

the device of linking the same current many times with the same 

magnetic path, used so successfully at low frequencies, must 

inevitably be discarded; if we do not want to incur high dis¬ 

placement currents (Sec. 12.2) there must be some relation 

between the voltage and the distance separating two points. 

We are 16d therefore to the use of transmission lines, singly 

or in combination. This use has the added advantage that the 

performance of lines can be predicted, because of their simple 

geometry. 



Sec. 8.6] USE OF THE TRANSMISSION LINE 157 

Solution 
type (a) : 

So/ution 
typefbh 

Displacemenfof 
Z'^poinf "Ypoint 

Corre^ndsto 
addition of: 

•fX. -ySi^insei^ 
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The impedance transforming action of the line was discussed 

in Sec. 7.3. We shall now represent this transforming action 

by the displacement of the Z or Y point due to the insertion 

of a line, very much as we did when branches were added in series 

or parallel. 
We know that, with regard to a given network or line, an 

impedance may be represented, in addition to the numbers Z 

and Y, by any of the numbers 2, t/, fc, and p (Sec. 5.4). Of these 

we have found p, the reflection constant, particularly useful 

because, to express the change from load to input impedance of a 

network, we can simply say that the transfer constant 6 of 

the network has been added to the reflection constant of the load 

(Sec. 5.7). On the p plane such a change is represented by a 

straight-line movement (Fig. 20a). 

On the Z and Y planes, the movement is not yet known to us, 

but we can determine it, just as we determined the movement of 

the Z point due to a shunt addition, by noting the following 

analogies: 

1. When a series branch is added, we add the branch impedance 

to the load impedance, 

2. When a shunt branch is added, we add the branch admittance 

to the load admittance, 

3. When a four-terminal network (reversible) is inserted, we 

add the transfer constant of the network to the reflection constant 

of the load. 

We may regp,rd an addition to the number p as the result of 

two separate additions to its components, a and t. Graphically, 

these correspond to movements along lines of constant r and 

constant cr, respectively. It now appears that a map of such 

lines on the Z and Y planes is all we need in order to represent 

the movement of the Z or Y point due to the insertion of a net¬ 

work in front of the load, or, in particular, to the insertion of a 

line. 

The construction of this map will be discussed in the following 

section; we shall find that we can readily construct the required 

impedance paths, as we did for the constant G and constant B 

lines, without resort to a predrawn map. This practical con¬ 

sideration makes the Z or Y planes useful in impedance trans¬ 

formation problems, while the p plane (Sec. 5.7) is more suitable 

for long-line problems. Still another method of representation 
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(the k plane, Sec. 10.5) is particularly effective when adjustable 

elements are involved. 

★8.7. Mapping of the p Function on the Z and Y Planes. We 

proceed here much as we did for the map of Y on the Z plane, 

except that the steps are more tedious. We have in general 

(Sec. 5.7) 
Z = Zo coth p 

We need only consider, however, the insertion of networks for 

which Zo is a pure resistance—lossless line sections, in fact. 

Hence, we may write 

Z = Rq coth p = Ro 
cosh <T cosh jr + sinh c sinh jr 

sinh a cosh jr + cosh a sinh jr 

Clearing the imaginary arguments, rationalizing the denominator, 

and simplifying, with the help of (114), we obtain 

Z = /?( 
sinh <T cosh <t — j sin t cos t 

sinh’-^ cr + sin^ r 

which we may write still more simply 

„ ^ sinh 2(x — j sin 2t 
Z — /to 

whence the equations 
cosh 2a — cos 2t 

cosh 2a — cos 2t sinh 2a 

Solving for ' 

Solving for a 

cosh 2a — cos 2r = 

sin 2t —-5 sinh 2a 
K 

cos 2r = cosh 2a-^ sinh 2a 
tc 

sinh ^ sin 2r 

cosh 2a = cos 2r 

Squaring and adding Eqs. (167), t is eliminated and the equation 

of the constant a paths is obtained in the form 

R^ + - 2RRo coth 2a + Ro^ = 0 
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This, by the expedient of adding and subtracting (/2o coth 2(7)2, 

can be written 

(B - B. coth 2c)= + A-< . (169) 

Similarly, squaring (168), eliminating cr, then adding and sub¬ 

tracting (fio cot 2t)2 

{X + flo cot 2tY + 

Equations (169) and (170) are equations of circles. We conclude 

from inspection of these equations that 

1. The constant a lines on the Z plane are circles with center 

on the R axis at distance 7?o coth 2cr from the origin and radius 

ft/sinh 2(7. 

2. The constant t lines on the Z plane are circles with center on 

the X axis at distance — Rq cot 2t from the origin and radius 

Ro/sixi 2t. 

A more thorough investigation reveals how these circles may 

be constructed without having to compute the hyperbolic 

functions. Consider, in fact, a circle with center in the origin 

and radius Roy henceforth referred to as the characteristic circle 

for the reactive line in question. We can show the following 

to be true: 

3. All circles with center on the R axis which cross the charac¬ 

teristic circle at right angles are circles of constant (7; 

4. All circles passing through the intersections of the charac¬ 

teristic circle with the R axis are circles of constant r; and the 

arc of such circles determined by either intersection and the 

positive X axis subtends at the center an angle 2t. 

Positions 3 and 4 can be shown to be consequences of positions 

1 and 2, which were derived analytically. 

Consider (Fig. 31) the circle with center C crossing the charac¬ 

teristic circle at right angles. Let a number <t be defined by 

the following: 

OC = iZo coth 2(7 

Then the radius of the circle is, by inspection, 

CD = Ro Vcoth* 2<r - 1 = -r4^ 
sinh 2(7 
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and consequently the circle answers the description givep for a 

constant <r circle, which proves position 3. 

The proof of 4, similar to the above, is left to the reader. As a 

corollary of 3 and 4, it may be shown that 

5. The circles of constant <r and of constant t cross at right 

angles. 

This is generally true of two families of lines that have been 

obtained from two orthogonal families of straight lines by a 

conformal transformation (Sec. 5.7). 

Fig. 31.—Leftj loci of constant a and constant r on the Z plane, {For F 

plane, use bracketed notation.) Valid when Zo = Ro* Right, construction 

for the input impedance of a generic network of constants Zo and 6 = a -f jjS. 
Note: OBjOZo = coth 2<r, OCfOZo = coth (2<7 + 2a). 

We have discussed the map of the p function on the Z plane. 

To obtain the map of the function on the Y plane, inversion may 

be used (Sec. 8.4). Rules for this inversion are implicit in 

Fig. 31. Instead of the circle of radius i?o, the circle with radius 

Go must be taken as the characteristic circle; the positive X axis 

corresponds to the negative B axis; otherwise, the construction 

is identical. 

As a result of the foregoing analysis, we have at our disposal, 

for use in the next chapter, a method whereby sections of lossless 

line may be handled just as conveniently as pure inductors or 

capacitors, as far as their impedance transforming action is 

concerned. 

It should be noted that lines similar to the constant <r and 
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constant t circles on the Z plane make frequent appearances in 

problems of applied physics. Such lines represent the flow lines 

and the lines of equal pressure in the plane movement of a fluid 

between a source and a sink; or lines of force and equipotentials 

in the electric (or magnetic) field between parallel conductors 

(Sec. 11.10). 

8.8. Illustrative examples. 

Efficiency of coupling networks. Whenever coils are used in a 

transmission network, some power is lost because of dissipation 

in the coil. This is also true, but in much smaller degree, of 

condensers. 
Consider, in particular, a network of the type discussed in 

Sec. 8.5, in the case when both source and load impedances are 

pure resistances. In this case only two solutions are possible if 

no more than two elements are to be used. They are shown in 

(a) and (6), Fig. 32. The coil is considered to have some resist¬ 

ance, which is represented as a series resistance in Fig. 32a and 

as a shunt resistance in Fig. 326. Both representations are 

equally valid in single-frequency problems. With reference to 

the schematics and complex plane diagrams of Fig. 32, we have 

the following*. 

Solution a (Fig. 32) 

Total power absorbed by coil 

and load, equal to power input 

Pi = I\Rl + Rr) 

Power dissipated in coil 

Pd = PRi 

Po.wer absorbed in load I 
(power output) 

Po = PRr 

Ratio power input/power* 

output 

Solution 6 (Fig. 32) 

Total power absorbed by coil 

and load, equal to power input 

Pi = YK)i 

Power dissipated in coil 

Pd = V^Gi 

Power absorbed in load 

(power output, obtained by 

subtraction) 

Po = V\Gi ~ Gi) 

Ratio power input/power 

output 

Po 1 - Gi/Gt 
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We shall follow the usual practice of expressing power ratios 
in the form of losses; it will be assumed that the coil absorbs only 
a small fraction of the total power. Hence, the following 
approximations: 

Power loss due to coil dis- Power loss due to coil dis¬ 
sipation (in nepers) sipation (in nepers) 

Ld = In ^ ^ nepers (171) Ld = In ^ ~ nepers (172) 
X 0 Xtr X 0 

The above can be put in more significant form by the use of 
dimensionless parameters (Sec. 3.5). Let, as usual, 

^ = i = ^ 
Q X2 Bi 

vstand for the dissipation factor of the coil, and let 

Gt 

stand for the ratio of source and load resistances. We may 
now write (171) and (172) as follows: 

From inspection of the complex plane diagrams, we observe 
that Xi is the geometric mean of Rr and Rt — Rr] likewise, Bi 
is the mean of Gt and Gr — Gj. Ilehce 

(173) 

We come, therefore, to this conclusion: when the dissipation 
is small and the dissipation factor of the coils used may be con¬ 
sidered to be independent of the coil impedance, the two solu¬ 
tions are equivalent from the standpoint of efficiency. 

When the dissipation is not small, a true analysis is very 
complicated, because maximum power flow from the source no 
longer corresponds to maximum flow into the load. Therefore, 
equality of source conductance with transformed conductance is 
no longer called for, and the optimum value of N remains to be 
determined. It may be argued, however, that in such cases 
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Coupling networks between resistive terminations. 
Effect of coil losses 

Ca'^^SOjujuF 
HI—1-1 

Locus of possible 
points 

(oC)~\siOjs of possible 
Yt points 

pedancc transformations 
lainabic by means of condensers 
ly. Z point (or Ypoint) may be 
)ught only within shaded area 

tv/0^np,s. 

(eMmpedgnee trans¬ 
formation due to a 
capxitive bridge 
Given; Yi}=j 2.24 mfl 

e^OL-0.14ein 
_ Yr-2.95-j2ma 
mfi To find If'. 

1. Draw circle through 
^yorYo 

2. Draw tangent to circle 
at 1^, obtain .5 

3. Compute: 
coth 2a=^--/.92 

and obtain ^rom 
tables:^or-Ci577 

4. Compu\t:2a*2a^OM4 
hence from fables: 
cdfi\a9/64'/.3S 

5. Obtain C so that: 
^*coth^£r+2aJ*/J«? 

6. Draw tangent through 
C and obtain ‘ 
Yf.'2+j2.5m[i 

Fig. 32,—Examples of impedance transformation. 
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solution h is less efficient by inspection of the exact expressions 
for the power ratio; for Gi —^Gty the power ratio in b tends to 
infinity; for > Rry the power ratio in a tends to 2 as a limit. 

Another important consideration in favor of solution a is this: 
The value of coil inductance called for in this solution is always 
less than for the other. From the expressions of Xi and Biy we 
have the following: 

La ^ J. 
L, N 

where La is the coil inductance for solution a, Lj the inductance 
for solution b, and N the impedance ratio, taken so as to be always 
greater than unity. 

At radio frequencies, the effective inductance of a coil must 
take into account the distributed capacity; the coil is actually 
a parallel LC circuit which must be brought near resonance in 
order to obtain high values of reactance. This can only be 
accomplished at the expense of the effective Q, since high circulat¬ 
ing currents produce dissipation. For this reason solution 5, 
requiring a higher reactance, is unsatisfactory. On the behavior 
of coils at high frequency, see group 7 in the Bibliography. 

Example. An L network of type a, Fig. 32, couples a 10,000-ohm tube 
to a 70-ohm coaxial cable. The Q of the coil is 80 at the operating frequency. 
The loss due to the coupling is 

Suggested Exercise. Compute the values for the condenser and coil of 
the above example at 100 kc., both graphically and analytically. 

Impedance transformation by condenser networks. Since con¬ 
densers have a much better Q than coils, it is advantageous, 
whenever possible, to use coupling networks made up of con¬ 
densers only for the purpose of impedance transformation at a 
single frequency. The possible values of transformed impedance 
are limited, however. Geometrically, for every load impedance 
point on the complex plane, there is a region of the plane con¬ 
taining all possible transformed impedance points if condensers 
only are used in the transformation. 

The region (shaded area of Fig. 32c) is bounded by the following 
lines: 
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The constant G circle through Zr 
The constant G circle through the point R = Rr^ X — 0 

The lines 7? = ft = i2r, = 0 

On the admittance plane, the corresponding region is similarly 
defined (Fig. 32d). 

It can be readily shown that no number of condensers added 
in shunt or series can move the Z point anywhere outside the 
region of Fig. 32c. In fact, a condenser added in series moves the 
Z point down (t.c., in the negative X direction); a condenser in 
parallel moves it in a circle, clockwise toward the origin. No 
combination of such displacements can bring the point outside 
the region, as is immediately evident. 

It can also be shown that any symmetrical network composed 
entirely of condensers will bring the impedance point somewhere 
within the region. The transforming action of a capacitive 
bridge network will be taken up in the example below. 

Suggested Exercise. Analyze and define by regions of the complex plane 

the transformations of impedance possible when the following types of 

circuit elements are used: 

1. Condensers and resistors 

2. Coils only (neglecting dissipation) 

3. Coils and resistors 

Impedance transformation by reversible networks. Capacitive 
bridge. A construction for the input impedance of a generic 
reversible network (the transformed impedance), given the load 
impedance and the network constants, is indicated in Fig. 316. 
It uses the constant <r and constant t lines of Sec. 8.7. The 
advantage of this graphical method over those of Chap. V is 
that no predrawn chart or map is necessary. 

As an example, consider the impedance transformation due to 
a capacitive bridge network (or lattice network^ Fig. 326). We 
have for this network 

Short-circuit admittance: 

V _ + n _ , Ca + c, 
y $c 7) — Jw jr 

Open-circuit admittance: 

n. = 2 ^ 2ji,CaC, 
Za + Ca + Cb 
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Characteristic admittance: 

= jo>vc:c„ 
Transfer constant: 

2\/^5 

e = iln ^ = In ^£?a±l 
VF„-VF., 2VCaC\ VCalCt-l 

Ca + Cl 
[Note, a = 9, ^ = 0.) 

Numerically, take for example 

CO = 10« r.p.s. Ca = 6,250 M^f Cb = 800 ju^f 

Hence 

V(^aCl = 2,240 VCaT^ = 2.8 
and 

Fo = ^2,240 jumhos = In (3.8/1.8) = 0.7467 neper. 

The construction (Fig. 32^^) is carried out on the basis of the 
above data. As a result, we find for a load admittance: 

Yr = 2,950 — j2,000 jumhos 

the transformed admittance 

Yt = 2,000 + j2,500 jumhos 

It will be noted that the Yt point is within the region of Fig. 32d. 



CHAPTER IX 

USE OF LINES AS MATCHING DEVICES 

9.1. The Line as a Solution of the Coupling Problem. As a 
simple application of the geometry developed in the preceding 
chapter, we may imagine a section of lossless line (of length 

Fig. 33.—Impedance transformation by a lossless line. 
To find the transformed impedance Zt, 

1. Locate Zr and Ro on Z plane. 
2. Draw circle through Ro and Zr, with center A on the X axis. 
3. Drop normal to AZr at Zr'. obtain point B. 
4. Measure angle 47rL/X cw from ARo at Roi obtain C. 
5. Draw circle through Zr with center in B. 
6. Draw tangent to above circle through C: obtain Zt. 
The same construction may be carried out on the Y plane (brackets). 
The ratio ORq/OD is the s.w.r. on the line. 

L, characteristic impedance i?o, attenuation a ^ iS, connected 
to a load Zr, and proceed to find graphically the impedance at 
the free end. This problem can be solved in a number of ways; 
the method of Fig. 33, however, has the advantage that neither 
computation nor a predrawn map is required. It follows 
directly from the discussion of Sec. 8.7 and points the way to a 

168 
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solution of the inverse problem, i.e.j that of transforming a given 
impedance to a prescribed value by means of a line section of 
suitable characteristics—the coupling problem, in fact (Sec. 8.1). 

Source Coupling section Load 
-.L. 

w-x-A 
Fig. 34.—Solution of the coupling problem by means of a section of lossless 

line. 
The procedure is that of Fig. 33, in reverse order. Locate points Zr and Z<, 

for the load and transformed impedances. (Zt must be the conjugate of Zg 

for max. power transfer.) 
Draw a circle through Zr, Z(, with center on the R axis. This is the constant cr 

circle described by the Z point as x, distance from load, increases. 
Draw tangents to this circle at points Zr, Z^, and from the origin. This locates 

points B, C, D, E. Ro and L/\ are measured on the diagram as shown. These 

data determine the line required for maximum power transfer. 
Note: The problem can be solved by the use of a single section only if the 

terminations are so related that whichever has higher conductance also has lower 

resistance. 
Let Zo represent the load impedance. No physical line can transform this 

impedance so that its conductance and resistance both decrease, because, as 
shown on left, in that case the constant or circle would surround the origin. An 
imaginary value of Ro would result. 

Figure 34 is an illustration of this solution of the coupling 
problem. Given a source impedance Zg and a load impedance 
Zr, the characteristics Ro and L of the coupling section which, 
inserted between them, will ensure maximum power transfer. 
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are uniquely determined by retracing the steps of Fig. 33 in the 
opposite sequence. The lateral dimensions a and h are readily 
obtained from /?o by means of the formulas of Sec. 7.1 and cor¬ 
responding charts (sec Sec. 7.2). 

This solution of the coupling problem is not always possible. 
As shown in Fig. 34, the two points Zr and Zt can always be 
joined by a constant a circle, but some of these circles do not 
correspond to realizable or physical lines. Simple considerations 
of geometry point to the following rule: Two terminations may 
be coupled by a single section of line only when the termination 
having higher resistance also has lower conductance^ and vice 
versa. 

Example. Consider the following values: 

Zo = 30,000 - i50,000 Zr = 60,000 + i20,000 

We have in this instance 

Rr > Ro 

The values of conductance are 

Hence 

^ 3 X lO--* . , 
Go = 9 Mmhos 

^ 6 X lO--* _ , 
Gr = Mmhos 

Gr > G„ 

The terminations* cannot be coupled by a single line section, as the load 

resistance and conductance are both lower than the values for the source. 

While theoretically possible, this type of coupling may not be 
practicable owing to the difficulties of realizing very low or 
high values of characteristic impedance. In general, it has the 
serious disadvantage of rigidity; once the cable is built, the 
characteristic impedance cannot be adjusted; length adjustments 
are almost as difficult if the source and load terminals have 
fixed positions. Aside from tuner problems, which require 
m.p.t. over a range of frequencies (Sec. 10.4), it is always desirable 
to allow some latitude in the dosign of high-frequency coupling 
devices, since the terminating impedances are seldom accurately 
known. For this reason, tuners are used even when the fre¬ 
quency is never varied, as they can be adjusted to work between 
terminations of any value. If the terminal impedances do not 
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change and can be measured with accuracy, the fixed coupling 
consisting of a single line section, when practicable, is the most 
efficient solution. 

9.2. Matching Sections: Maximum Power Transfer in Dissi¬ 
pative Systems. One of the drawbacks of the coupling section, 
as has been pointed out, is that the length of the section cannot be 
established independently of the terminal impedances. This is 
no longer a disadvantage when the coupling section is used to 
convey power in or out of a long transmission line, or between 
two such lines. We have previously (Sec. 8.1) classified this as 
the matching problem, as distinct from the coupling problem, of 
which the former is a particular case. The distinction hinges 
on the fact that systems comprising long transmission lines 
function most efficiently when they are matched at both ends, 
as will be shown, and the coupling sections are designed with 
this end in view. 

As an example, consider a physically long line of characteristic 
impedance Rq connecting a load Zr to a source of impedance Zg. 

The terminations are matched to the line by means of short 
matching sections of characteristic impedances Iti and R2. 

These values, as well as the lengths L\ and L2, are determined 
graphically (Fig. 35) just as in the previous problem. The first 
matching section operates as a coupling between Zr and R^] the 
second couples i?o to Zt (or transforms R^ into Zt, the conjugate 
of Zf,). A numerical example accompanies the diagram of Fig. 
35. It is apparent from a study of the diagram that not all 
lines can be matched to a given set of terminations in this manner. 
For given values of Zg and Zr, there are values of Rq, the charac¬ 
teristic impedance of the connecting line, which cannot be used. 
They are the values comprised between the resistance and the 
reciprocal of the conductance of either termination. These 
prohibited intervals are shown more clearly on the plot of 
impedance vs. length of Fig. 35. 

A system such as the one we are considering is perhaps the 
best illustration of an important general point; it will pay us, 
therefore, to analyze it in some detail. 

We are immediately conscious of the fact that the three line 
sections of Fig. 35 operate under entirely different conditions. 
This is brought out by a plot of instantaneous voltage along 
the system. The center section is matched, and the impedance 
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looking both ways at all its points is identically therefore, 
its voltage distribution is patterned after Fig. 17. 

The end sections, on the contrary, have reflecting terminations, 
and the impedance in either direction varies throughout their 

Fig. 35.—Matching a long line to its terminations by means of short 
impedance transforming sections. In the example shown, 

Zr = 190Q/+37°; Zg = 640O/--21^; fto = 30512. 

The construction of Fig. 34 is carried out twice: first between Z, and 

Ko, then between Rq and conjugate of Zg. 

Results: Ri * 49012; R2 = 14012; Li/X = 0.177; L2/\ = 0.35. 
Relation between polar diagram of voltage vector and impedance diagram. Tlie 

ratio of max. to min. voltage (r.m.s. or peak), or standing wave ratio is the 
square root of the max, to min. impedance ratio. 
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length. The voltage distribution is therefore that of Fig. 26. 
There are definite relationships between the polar diagram of 
voltage, on which the distribution plot is based, and the Z-plane 
diagram. 

Stressing what could be termed the 'physicists point of view, 
we might say that a wave is propagated continuously through the 
system from source to load. This wave carries power and is 
attenuated uniformly within each section. In addition, reflected 
waves are set up at the two ends by the reflecting terminations. 
These waves do not enter the center section; their energy remains 
stored in two oscillating systems, namely, the source with the 
adjacent matching section and the load. with its matching 
section. Analogous mechanical systems are easily imagined 
and may provide useful illustrations. 

In spite of these obvious differences, the entire system is 
uniform in one respect: if we cut it at any point, the impedance 
towards the load and the impedance towards the source are 
always conjugates. This is true, by hypothesis, at the source 
terminals, but we may verify that the condition holds everywhere. 
Let us suppose that the direction of energy flow is inverted and let 
Zg now represent the load impedance. As we move along the 
system away from Z^, the impedance point follows the constant a 

circle in the direction of increasing r, Le., clockwise. If we carry 
this out for the whole system, we find that, point for point, the 
new path is the mirror image of the original one with respect 
to the R axis (dotted line, Fig. 35). The two paths meet on the 
R axis at the point which represents Ko, the characteristic imped¬ 
ance of the center section, which is seen in both directions at all 
points of this section. 
-Since two points symmetrically placed about the R axis 

represent conjugate impedances, we reach the conclusion that, for 
this case at least, the condition of m.p.t. is met through the 
system if it is met at one point. 

The above proposition can be proved for a wide class of systems 
by a reductio ad absurdum. Suppose a dissipationless network 
is used to transform a load impedance Zr into a value Zt such 
as will ensure maximum power flow from a source of impedance 
^g. Now, imagine the network to be cut at an internal junction 
J. Let Zt stand for the impedance at this junction, looking 
toward the load, and Zg' for the impedance toward the source. 
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Assume that Zt and Z/ are not conjugate; by suitable altera¬ 
tions of the interposed network, we can in this event cause 
them to vary so as to be conjugate and thereby increase the flow 

of power through J. 
It follows that the power flow through J is not the highest pos¬ 

sible; now, the same thing can be said of the power from the 
source, as no power is lost in the network by hypothesis. 

This statement contradicts our premise of a conjugate match 
at the source terminals. The assumption that Z/ and ZJ are not 
conjugate is therefore a fallacy, and we reach the conclusion 
that, if there is a conjugate match at one junction of a trans- 
miswsion system, this is also true of any other junction, provided 

the section of the system included between the two junctions does 

not dissipate power. 

If a transmission system extends over a considerable distance, 
its over-all dissipation must inevitably be large. We cannot, 
therefore, ensure a conjugate match at all points of such a system— 
at least, not in general. 

We can, however, realize an equal match over the entire 
syvstem, if every part is terminated by its image impedance. 
Specifically, in the case of a line, we know that it is possible for 
the impedance in both direction to be Zo at all points. 

An equal match is also a conjugate match when the matching 
value is real. A matched transmission line at high frequency 
has a real value of matching impedance; it is therefore an excep¬ 
tion to the general rule, in that it ensures a conjugate match 
over its entire length, although the losses in it may be very high. 
Distortionless lines have the same property at all frequencies, 
and all open wire lines come very close to it. 

It is now apparent that a long line must be matched for 
efficient operation. The same conclusion may be reached in 
other ways. Using the wave concept, we may argue that the 
energy stored in a reflecting line does not contribute to trans¬ 
mission while it does contribute to the losses. Upon evaluation 
of the transmission loss in the reflecting line as compared to the 
attenuation, we would obtain the same result. 

Whenever the terminations themselves do not match the 
line, as in the system of Fig. 35, reflection should be confined 
within short matching sections, such as have been considered. 

9.3. Quarter-wave Transformer. As a particular case of the 
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matching problem, consider the connection of two long lines 
a and 6, of unequal characteristic resistances Ra and /?&, by the 
intermediary of a short matching section. 

It is helpful, although by no means necessary, to think of 
transmission in a definite direction. We will assume the energy 
to go from line a into line b. 

Evidently, the source and load impedances of the section are 
not uniquely given, unless the terminations of lines a and b 

Fig. 36.—Qv/irter-wave transformer, hi the example shown, Ra = 510; 
Rb = 1511. Length of transformer L = X/4. Characteristic resistance. 

Ro = VRaRb = 27.511. 

Voltage ratio (s,w,r.) r^ 

are assigned. However, it has been es|ablished in the preceding 
section that a system of this sort can meet the m.p.t. condition 
only if the impedance in both directions is resistive over all 
but a small part of the length. Hence, both lines a and b must 
be in matched operation. 

To ensure such operation, the source must be matched to 
line a and the load to line b by suitable matching networks, 
which may be sections of line as described in Sec. 9.2. 

In addition, the two lines must be mutually matched. This 
requirement assigns the values of load and source impedance for 
the connecting section. They are Ra at junction A (source) and 
Rb at junction B (load), as shown in Fig. 36. 
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The connecting section should therefore be designed to provide 
maximum power flow between' resistive terminations. This 
can only be obtained if the impedance at both ends is the same 
in both directions, or if the section is image connected (Sec. 2.10). 

Geometrically, this problem differs from the general coupling 
problem (Fig. 34) in that the points corresponding to source 
and transformed impedance, which in the general case are sym¬ 
metrically placed about the real axis, now fall on the axis and 
coincide. The load impedance point also falls on the R axis. 

The matching section must bring the load impedance point 
from Rh back to the R axis at Ra- Since the path followed 
(assuming use of a lossless line) must be a constant <t circle 
with center on the R axis, we conclude that the path is a semi¬ 
circle.^ The source impedance point describes the other half of 
the circle (Fig. 36). 

By the general construction of Fig. 33, we find immediately 
that the line angle 27r/y/X for the section is 7r/2, hence the length 
must be X/4, which justifies the term quarter-wave transformer. 

The determination of i2o, characteristic resistance of the 
matching section, also conforms to the general case. We draw 
the tangent to the semicircle (Fig. 36) from the origin and the 
characteristic circle through the point of tangency. The radius 
of the latter is 

It is shown in plane geometry that points 0, ^o, and 
as obtained on the R axis in the above construction, are so 
related that 

OR,^ = ORa • OR, 

Bearing in mind the significance of the segments, we may 
write the above as follows: 

§■ = 5" ’ (174) 
/to IC, 

Ra/Ro and Rb/Ro are the load and input resistance numbers 
of the quarter-wave line; hence, the general statement: A quarter- 

wave line transforms a resistance into another resistance ^ whose 

number is the reciprocal of the first. More particularly, the 

1 If a line is terminated by a resistance, its input impedance point describes 

a semicircle as the line length varies from 0 to X/4; it completes a full circle 

as the length is increased to X/2; and it goes twice around the same circle for 
each addition of a wavelength. 

For nonresistive loads, the arc of circle described for each X/4 increase is 

not a semicircle, but a X/2 increase still corresponds to a full circle. 
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matching section between two lines {quarter-wave transformer) 

should have length equal to X/4 and characteristic resistance the 

geometric mean of those for the two lines to be connected. 

The action of the quarter-wave transformer is so simple that 
considerations of a very general nature would have enabled us to 
reach the same conclusions. 

Consider a wave propagated over line a. This will be partially 
reflected at point A (Fig. 36). Also, there will be a refracted 

component, to use the terminology of optics, which will keep right 
on. In turn, this will be partially reflected at B. 

The two partially reflected waves will coexist in line a. They 
will be out of phase by a number of cycles corresponding to 
the time of propagation from A to B and back. If the length 
AB is X/4, this time is evidently a half period, so that the phase 
difference is half a cycle. If, furthermore, the amplitude of 
the two waves is the same, there will be no reflected wave in line 
A, which will be in matched operation. 

Of the two conditions for absence of reflection, one has to do 
with phase; this is satisfied by making the length of the connecting 
section equal to X/4, as we have seen. The other has to do 
with amplitude and must be met by adjusting the real part of 
the reflection factors at the two junctions (Sec. 5.4). This is 
done by properly selecting the impedance of the matching section. 
We could reobtain by this method the condition = RaRb- 

Interference phenomena due to thin transparent films are 
similarly explained. A close analogy to the quarter-wave trans¬ 
former is supplied by the thin transparent costings which 
minimize reflection at the surface of optical lenses. These films 
have thickness equal to one-quarter of the wavelength of the 
dominant color; their index of refraction is the geometric mean 
of the two absolute indices for the lens and for air. 

9.4. Selectivity, Tuning, and Resonance. Methods for coup¬ 
ling a generator to its load and matching a line to its terminations, 
or two lines to each other, have been considered. One type of 
solution, the same in all cases, has been taken up so far; namely, 
the use of a short section of line as an impedance transforming 
network. This solution is possible because two variables, the 
characteristic resistance and length of the section, are separately 
subject to choice, although in some cases the solution is not 
realizable. 
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It has been pointed out that solutions of this type lack flexi¬ 
bility, as maximum power transfer is obtained only for a single 
value of the frequency. For example, the quarter-wave trans¬ 
former meets the m.p.t. condition only if the wavelength is four 
times the section length. This is true at one value of frequency, 
the midband frequency /o. At this frequency the transmitted 
power, for a given source, has the highest possible value. At 
all the other frequencies the power flow is capable of increase 
by altering the load impedance. The quarter-wave transformer 
is said to be selective in favor of /o. 

Quantitative considerations regarding selectivity will be 
taken up later (Sec. 9.5), and the selectivity of the quarter-wave 
transformer in particular will be evaluated (Sec. 9.6). For the 
present, let us consider qualitatively the advantages and dis¬ 
advantages of selectivity and its physical significance. 

It is evidently necessary, in some cases, to single out a narrow 
frequency band, excluding all others. The best known example 
is the antenna coupling of a radio receiver. A high degree of 
selectivity is often desirable in such cases; moreover the coupling 
network may have to be adjustable so that the midband fre¬ 
quency may be selected at will within a range of the spectrum. 

Selectivity must be avoided when the signal components are 
spread over a wide band or when adjustments are not contem¬ 
plated. As a rule, when a narrow frequency band is transmitted 
at any one time, its selection should take place at one point, or at 
a few accessible points of the transmission system. The remain¬ 
der of the system should be capable of transmitting any one of 
the selected frequencies with substantially uniform efficiency. 

Let us see how the single-section couplings (in particular, 
the quarter-wave transformer) fit into the above picture. They 
are not selective enough to single out a narrow band and cannot 
be tuned to any desired frequency. Hence, we must rule them 
out whenever selectivity appears as a necessary feature. They 
may be used, with limitations, as nonselective couplings; only a 
quantitative analysis will reveal whether or not this use is 
permissible in any specific case. For the quarter-wave trans¬ 
former, this analysis will be carried out in Sec. 9.6, by a method 
based on the variation of input impedance with frequency. To 
begin with, however, a broad discussion of selectivity based on 
the wave conception may be of value. 
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It was shown in Sec. 7.5 that the voltage (or current) on a 
line, when reflection is present, may be considered as the resultant 
of two waves traveling in opposite directions, of unequal ampli¬ 
tudes (151). 

An alternative subdivision results if we write (151) as follows;- 

v{x, t) = 
eA e 

— {e" — 6“") cos ^ e-’) cos ( wi 

-4- e~‘’ I cos ^ 

= 'P’o tanh <r cos ^ 

Oil -f- 

oit -f- 
t) + t 

27r.A , / 
^j + cos(^ - x)l 

2Fo 27rx 
cos wt cos — 

(175) 

The voltage now appears as the resultant of two component dis¬ 
tributions, a standing wave and a traveling wave of the usual 
type, having the same direction as the flow of energy. The former 
has zero amplitude at all times for x = X/4, 3X/4, 5X/4, . . . 

(at the voltage nodes); hence, if it existed alone, no power 
could be transmitted down the line. (The transmitted power at 
a junction of zero voltage is zero.) Geometrically, the voltage 
ellipse would degenerate into a straight line if the standing 
wave alone were present; the corresponding current ellipse would 
be an orthogonal line; hence, the voltage and current would be 
in quadrature everywhere, which confirms the fact that the time 
average of transmitted power at any point is zero. 

While it does not contribute directly to the transmission of 
power, the standing wave causes energy to be exchanged between 
the electric and magnetic fields which surround the line. At 
time t = 7r/2co, 37r/2cj, 57r/2co, . . . the standing wave voltage 
vanishes everywhere and the standing wave energy is stored in 
the magnetic field, which has maximum strength at x = X/4, 3X/4, 

5X/4^ ... (at the voltage nodes). At ^ = 0, tt/co, 27r/co, . . . 

the standing wave energy is entirely due to electric field, 
with maximum density at x = 0, X/2, X, 3X/2, . . . Potential 
and kinetic energy are similarly exchanged in the vibration of 
elastic bodies. 

In addition, the standing wave affects the transmission 
of power indirectlyy as it alters the value of voltage and current 
at all points, and particularly at the driven end. In fact, the 
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impedance transforming action of the line may be ascribed to 
the standing wave exclusively. 

Bearing in mind the above considerations we can see what 
causes a coupling section to be selective. The degree of selectiv¬ 
ity is closely related to the comparative values of standing wave 
energy and transmitted power. Frequency has no bearing 
on the transmitted power except indirectly^ because of its effect 
on the standing wave. In particular, consider the case when the 
standing wave energy (energy of oscillation) is a maximum at the 
impressed frequency, and assume that the transmitted power is 
also a maximum for the same frequency. A frequency variation 
in either direction will cause the oscillation energy to drop sharply 
and with it the impedance transforming action upon which the 
transmitted power depends. 

When the frequency has one of the values that make the oscilla¬ 
tion energy a maximum, the system is said to be in resonance. 

We may theu conclude that selectivity is accompanied by reso¬ 

nance, We are used to this association with regard to lumped 
LC circuits. These, however, do not transmit power, although 
they dissipate some. In coupling networks, we must think of 
resonance and transmission as superimposed. Selectivity is 
high when resonance plays a major part. 

9.6, General Validity of the Parameter Qo as a Measure of 
Selectivity: Its Analytical and Geometrical Significance. The 
reader is probably acquainted with the definition of the Q 

of a resonant circuit as the inverse of the bandwidth for half 
power, or 

where, in general, 

5 == liLzM 
fo 

is the bandwidth and, in particular, 

fo 

f being the-value of frequency at which, under certain conditions, 
the power taken by the coil-condenser combination is one-half 
the maximum. (The conditions will be specified at the end of 
this section.) 
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Equally familiar is the definition of the Q of a coil^ namely, 

where R is the (series) resistance and L the inductance of the coil 
at the frequency o)/2t. 

It can be shown readily that if an LC series combination 
includes a dissipative coil and a nondissipative condenser and 
receives energy from a constant voltage (zero impedance) source, 
the Q of the circuit and the Q of the coil, as defined above, are 
approximately the same, or 

1 o)L 

J' ~ 'R 

Likewise, if a parallel LC system includes a dissipative coil 
and nondissipative condenser and takes energy from a constant 
current source (zero admittance source) the above equality holds 
approximately. This circumstance makes it possible to measure 
the Q of coils by methods based on selectivity, and conversely, 
to estimate selectivity of radio amplifier couplings from the Q 

of the coil. 
The two quantities in question have, however, nothing in 

common except numerical equality in a particular case, and their 
definition is altogether too restricted to be of use under any other 
set of conditions. 

In order to extend the study of selectivity to any linear 
system, we must end all confusion between the parameter used to 
evaluate selectivity and that used to evaluate dissipation. To 
avoid the introduction of a totally new symbol, we shall use Qo 

for the first purpose, Q for the second. The definitions of Qo 

and Q will be quite general and yet equivalent to the current 
definitions of Q of a circuit and Q of a coil in the particular cases 
previously mentioned. 

The general definition of Q is well known. Q and power 

factor are used by communication and power engineers for 
essentially the same purpose. We have, for any linear two-pole 

Q = ^ = ^ = |tan /Z| = |tan /F| 

[Definition of Q for a two-pole] 

(176) 
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The Q of a coil, o)LJRy evidently is included in the above defini¬ 
tion. 

Qo may be defined indifferently on the basis of the variation 
of impedance, admittance, voltage, or current with the frequency. 
Impedance and admittance are better suited for the purpose, 
because no assumption is required as to the nature of the source. 
If we seek a definition in terms of current or voltage, or power, we 
must make some premise with regard to the source. 

It is clear that if we wish to describe the behavior of the 
two-pole at variable frequency by a single real number, the 
frequency variation must be restricted to a first-order interval 
in the neighborhood of some particular frequency. Hence any 
exact expression of Qo must include a derivative with respect to 
frequency taken for this particular frequency value. 

Thus, we will write 

Q _ 1 
0 — s 

fdZ 
= i 

/ dY 
Z df (/«/o) 

2 Y df (/-/o) 
(177) 

[Definitions of Qq based on variation of Z and Y with frequency] 

In the above, /o is a value of frequency for which Z (or Y) is 
a real. If there are several such frequencies, there is a value 
of Qo for each. As a rule, we are interested in the behavior of the 
system in the neighborhood of one particular frequency (mid¬ 
band). It is therefore legitimate to regard Qo as single valued. 
Noting that for / = /o, we have 

Z = Ro Y = Go 

• we obtain an alternative form of Eqs. (177) 

Qo 
dZ _ , fo laF 

la/ (178) 

Consider now a two-pole receiving energy from a source such 
that at the frequency/o the condition for maximum power transfer 
(Sec. 8.2) is established. Since for / = fo the two-pole impedance 
is Roy the source impedance must likewise be Rq. Assume, 
furthermore, the source impedance to be constant with frequency 
{Rq at all frequencies) and the source e.m.f. to have constant 
amplitude, variable frequency. At the generic frequency /, 
the two-pole impedance is Z and the current is (Fig. 37a) 

I = 
E 

Ro + Z 
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Differentiating with respect to frequency, 

df E df 

Letting lo = E/2i?o stand for the current at /o (maximum cur¬ 
rent), we have from the above 

^ lo dZ 
(/-/o) 2/^0 df (/„/„) 

Multiplying both sides by //lo and equating the magnitudes, 

dl _ f dZ 
df\ if^h) 2Ro — Qo 

The last line, and the dual equation similarly obtained, may be 
used to define Qo, as follows: 

fdl / dV 

I df (/-/o) V df (179) 

[Definition of Qo based on voltage or current changes in neighborhood of m.pd. 
frequency] 

It will be necessary to obtain, from the analytical expressions 
pf Qo, (‘177) and (179), practical formulas for finding Qo geo¬ 
metrically and for finding the neper (or db) loss of transmitted 
power, in terms of Qo and the frequency departure from midband 
under representative conditions. 

Such formulas must be based on approximations. They result 
when we substitute finite differences for the differentials of 
frequency, impedance, and so on. 

Let us use the following notation, in agreement with most of 
the literature: 

5 = ?A/ = (180) 
Jo Jo 

d, the bandwidthj should be used only when the departure from 
midband is small. ^ 

Using impedance and admittance numbers, we have also 

A A * A Az = Ar + j Ax = 
ito 

Z — Rn 
Ro 

Ay = Ag + j Ab 

Y -Go 
Go 

' If A/ is large, the following variable should replace S: 

IT = i 
U f 

W and 6 coincide for small departures from midband. 

(181) 

(180o) 
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Replacing the differentials in (178) by finite differences and 
using (180) and (181), we obtain the following: 

fl. . !|l . 1^ (182) 

[Approximate value of Qo] 

The approximation is better for small values of 5, naturally. 
Thus, Qo may be found by computing a finite change in imped¬ 
ance due to a small frequency variation from midband and 
dividing by 5. Figure 37 shows this graphically. 

To find the loss in transmitted power for a given Qo and 6, 

assume first that m.p.t. is obtained at the midband frequency. 
In this case, the neper loss in power resulting from a change in 
load impedance (due to departure of / from midband) is none 
other than the reflection loss (Sec. 6.6). This is given by (131), 
as interaction need not be considered in the present case. Equa¬ 
tion (131) may be rewritten in the form 

Lr — In 
Ra -f- Z\ 

2Ro 
iRo 

V R 
(183) 

having replaced Zo by Ro and Zr, receiver impedance, by Z, 
impedance of a generic two-pole. Using (181), we obtain from 
(183) 

1. - In 1 + $ \/r + Ar 

= ^ In 1 + 

V(1 + Ar/2y + (Ax/2) 

■y/1 + Ar } 

\Az\^ 

4(1 + At)] 

Assuming Az to be small and expanding in series, we have the 
simple expression 

Lr = i\Az\^ (184) 

and finally, making use of (182), 

Lr = i(Qo5)2 

[Off-midhand loss in terms of Qo and 6] 

(185) 

We are now in a position to correlate Qo with selectivity in 
a tangible way. Let 8 have a value 5i such that Lr = 1 db. 
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Locus of z5r]point Generic form Schematic and v^/ue of Qq 
at variable frequency of sysfem in particular case 

LR'~^(Qo^)^nep 

At midband, max. power transfer conditions are satisfied 

Lji^iCQoSFnep. ^ 

The power loss Z/r equals the current drop 

I^R~i(Qo^)^nep. 

The power loss Jjr equals the voltage drop; Tuned plate amplifiers approach this 
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Substituting in (186), we have the identity 

8^ = KQoSi)^ 

or 

(186) 

Thus, Qo is approximately equal to the reciprocal of bandwidth 

for a l-dh drop in transmitted power^ assuming maximum power 
transfer at midband. 

Equation (186) is useful in the study of coupling networks from 
the standpoint of selectivity. The coupling network and its 
load are considered in place of the generic two-pole. 

The selectivity of tuned amplifiers requires a different approach. 
We must now assume that the two-pole is fed from a constant 
current source (or source of zero admittance; the plate con¬ 
ductance of pentodes is low enough to permit this assumption). 
We may also consider the two-pole (or tank circuit) to have 
constant value of conductance in the neighborhood of midband 
(resonant frequency). Let I stand for the constant r.m.s. 
value of current and Go for the constant conductance, while R 

will designate the resistance of the tank circuit at some generic 
frequency and Rq = 1/Go will be the resistance at midband. The 
system is shown in Fig. 37c. 

We have for the power taken by the tank circuit at frequency / 

* P = PR 

while the power taken at frequency fo (midband) is 

P„ = PRo = 
(to 

Noting that 

R = 
Go* + 

and that 
B = Y - Go = AY 

we have for'the power ratio [see Eq. (181)], 

Po _ Go* + B* _ Go* + {Ay)^ 
P ~ Go* ~ Go* 

= 1 + (AyY 
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Finally, eliminating Aj/ in the above, with the help of (182), 

y = 1 + (Qo5)2 (187) 

Let b' be the bandwidth for half power; in other words, let 8 = b' 

for P = iPo. The last line then becomes the identity 

e--7 

showing that Qo, as defined generally by Eqs. (177) and the 

following, also fits the restricted definition for the Q of a resonant 

circuit as given in the literature. 

Expressing the power ratio in (187) in nepers, and assuming 

Qob to be small, we Rave 

= (188) 

[Loss of tank circuit in neighborhood of resonance] 

A similar expression would be obtained with regard to the system 

of Fig. 375 (series resonant circuit with constant voltage source; 

Le., the dual of the system in Fig. 37c). We conclude that 

whenever a selective two-pole is energized from a constant cur¬ 

rent source (for two-poles with constant conductance) or from a 

constant voltage source (if the two-pole has constant resistance), 

the selectivity, measured by the loss in power for a given small 

6, is four times greater than if the source matches the resistance 

of the two-pole at midband. 

In the following section, the value of Qo will be computed 

for the loaded quarter-wave transformer. This will serve as an 

illustration to the foregoing theory. 

9.6. Selectivity of the Quarter-wave Transformer. Reverting 

to the system of Sec. 9.4, Fig. 36, let us find the value of Qo 

(as defined in the preceding section) for the two-pole consisting 

of the quarter-wave transformer and all that part of the trans¬ 

mission system which is on the load side of the transformer. We 

will use the first of Eqs. (177) for the purpose. The two-pole 

impedance Z is now evidently the input or transformed imped¬ 

ance of the transformer. We have, therefore, (140) 

7 _ p {2tL/\) 
"Rm+ jRb tan (2tL/\) 
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The symbols are those of Sec. 9.4. Note that L, the length of 
the transformer, is 

T Xo 
4 

where Xo is the wavelength at midband. (In Sec. 9.4, the wave¬ 
length was considered fixed, hence no subscript was necessary. 
As we are now dealing with a variable frequency problem, the 
notation without subscript must indicate a generic value.) 

Hence, we may write 

27rL _ TT Xo __ TT / 

~ 2\ 2To 

Differentiating Z with respect to frequency, we have 

(189) 

dZ __ .irRm RtJ ~ Rb^ 
If ~ ^ Wo [fim COS (///o)(t/2) + U/fo){j/2)Y 

Taking the magnitude of the derivative at / = /o, 

dZ _ToRj(R„y 1 
d/</-A) 2/„ [\rJ q 

Noting that at midband we have 

Z = Ra 

Eq. (177) yields the following value of Qo’. 

\z df (/-/o) 

TT Rm (Rn^ _ . 

4/^aL\^6/ 

Finally, eliminating Rm (174), 

(190) 

The ratio \/Ra/Rh is the voltage ratio of the transformer (or 
inverse of the current ratio). Because it is also equal to the 
standing wave ratio in the transformer, we may denote it by the 
symbol r^ (146). We may write accordingly 

[Qo of the X/4 transformer in terms of r», standing wave ratio (voltage ratio)] 
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When Tv is large, the above may be written approximately 

Qo = 0.785r, 

Hence, the bandwidth for a 1-db loss is given by (186) 

, 0.96 1.225 
0i — 'Tv- 

Qo 

and the per cent departure of frequency from midband for a 1-db 
loss is 

100 ^ (1 db) = 50«1 = — 
jf 0 r 

For example, if a quarter-wave transformer is used to step the 
voltage up (or down) twenty times, there will be a 1-db loss in 
power, with respect to midband, when the frequency is 3.06 per 
cent off midband. 

It should be stressed that such computations are less and less 
accurate as the departure from midband increases. Equation 
(185), upon which they are based, represents the loss as propor¬ 
tional to the square of 6. Geometrically, the equation represents 
a parabola (Fig. 38) which osculates the true loss curve at 
midband frequency. The plot of P/Po against ///o is periodic. 
We note, in fact, that Z, input impedance of the transformer, 
equals Ra when the transformer length is a quarter-wave plus a 
whole number of half-waves, or when 

L = I + n ^ = I (1 -b 2n) 

Having defined Xo as 4L, we have from the above 

h 
X 

1 + 2n = f 
Jo 

In conclusion, maximum power will be transmitted for 

/ = /o(l + 2n), 

or when the frequency is either midband or any odd harmonic 
of midband. 

Our analysis has shown that the quarter-wave transformer is 
satisfactory as a nonselective method of coupling, provided the 
voltage ratio (square root of the impedance ratio) is below some 
value which will obviously depend on the requirements of each 
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specific problem and which can easily be arrived at by stating 
such requirements in the form of a maximum allowable value for 
Qo. If the voltage ratio is too high, other means must be used. 
We must then resort to a truly nonselective transformer, whose 
design is no longer a single-frequency problem but falls under 
heading of a transformer problem (Sec. 8.1). It is, essentially, 
the problem of finding a substitute for the close-coupled inductive 

The ratio P/Po 
transmitted power 

is plotted against///o -- 2n where 
max. transmitted power 

/ = frequency of transmission, /o = midband frequency and n = positive integer. 
Maxima occur when frequency is/o or an odd harmonic of/o. 

transformer at high frequencies. A possible solution, the multi¬ 
section transformer, will be taken up in the following chapter. 

9.7. Illustrative examples. 

Qo of the constant resistance two-pole. The simplest constant 
resistance two-pole is the series resonant circuit (Fig. 376). 
For this we have 

Z . K+i(„L - V® - 

Using the dimensionless parameters 

1 = 2 a>VLC = ^ = n 
ti COo 
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Differentiating with respect to n, 

We may write the general expressions for Qo (177) in the form 

(192) 
(n-1) 

and for the two-pole under consideration 

dz 
= ^ 

dy 
dn 2 

(n=il) dn 

Qo = i 
.2 y/L/C 

^ ~ ~R 

Vl/c 
R 

Note that if we consider the physical coil of the series circuit 
to include the resistance Rj the Q of the coil at the frequency of 

. resonance will be given by 

Olu^/o) — 
oyoL _ VL/C 
R R 

from which we see that in the constant resistance two-pole 

Qo = 0l(/«/„) 

as previously noted (Sec. 9.5). 
The constant G two-pole of Fig. 37c is dual to the above. 

We may, therefore, write immediately for this two-pole 

Qo — 

A combination of coil and condenser in shunt can be represented 
only approximately by Fig. 37c because the conductance of a 
dissipative coil is not constant. A better representation is that of 
Fig. 37a. We shall find, however, that, for the same values of L 
and C, if the coil dissipation is small, Qo is approximately the 
same for Fig. 37a and Fig. 37c. 

Selectivity of L networks, L networks as a means of coupling 
a source to its load have been discussed in Sec. 8.5. We will 
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now evaluate Qo for one such network and its load, jointly con¬ 
sidered as a two-pole. Resistive terminations will be assumed. 
We have (Fig. 39a) 

Z = jo)L + 
1 

Gr + joiC 

At midband, Z must have the value Rq equal to the generator 
^ QQQ ^ resistance. Hence, for co = wo, 
^ I 

Gr — 
— Ro — ji^oL + 

Gr^ + 

(aj We have from the above 

a 
L = . i?o = 

Gr 
G.2 + COo‘'G2 G.2 + 

{R, < Rr) •• 

(6) 
Fig, 39.—Coupling 

networks. 

Hence 

^ = KoKr COo^C^ = ^-Gr^ 

and the element values 

Rq 
L = - 1 G = ^ \/r.2 

COo O)0ltr 

having written (in keeping with the notation used for the quarter- 
wave transformer) = \^Rr/Ro for the voltage ratio of the 
coupling network. 

The impedance Z may now be written in ratio form, as follows: 

where 

= jn Vr 1 + 
T ^ • V 

1 + jn \/— 1 

z 
CO 

n = — 
Wo 

Adding and subtracting unity, we may reduce z to the more 
convenient form 

^ , (n2 - l)(rj - 1) 2=1-^--- 

[D = 1 + jn VrT^] (193) 
Differentiating, 

/ 2 i\ —2nD + (n^ — 1) dD/dn 
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Hence, we have for Qq 

Qo — i 
dz - 1 

dn (n=l) D 
(194) 

When Qo is large, it is approximately equal to Vy and can be 
written in terms of L and C as follows: 

Qo 
Vl/c 

Rq 

Since Ro is the resistance of the two-pole at midband, the above 

coincides with (192), obtained for the simple series LC combina¬ 

tion. We conclude that if the two configurations of Fig. 39a 

and Fig. 376 have the same values of L and C and the same low 

value of resistance for the frequency of zero reactance, their 

selectivity is very nearly the same. If, however, in the system of 

Fig. 39a, 7^0 and Rr are comparable, this equality no longer holds. 

Another point worthy of note comes up when we compare 

(194) with (191), the expression for Qo of the quarter-wave 

transformer. The form of the two expressions is the same but we 

find that, in all cases, the L network is more selective by 12.7 

per cent. 
The system of Fig. 39a and that of Fig. 37a are dual. Equa¬ 

tion (194) gives therefore the value of Qo for both systems, except 

that in the case of Fig. 37a we have 

Ty = 

{G must be written in place of R when we go from a system to its 

dual). The approximate expression for large may be obtained 

in the same way as before 

Qo 
ero 

We see from the above that Qo is the same for the two con¬ 

figurations of Fig. 37a and Fig. 37o if L and C are the same, and 

if Gt has the same Idw value. Parallel combinations of coil and 

condenser (tank circuits) are more accurately represented by 

Fig. 37a, but the circuit of Fig. 37c can be used much more 

conveniently with approximately the same results. 

Suggested Exercise. Find the value of Qo for the two-poles of Figs. 39a 

and 396. 



CHAPTER X 

COMPOSITE LINES AND STUBS 

10.1. Multiple Reflection. The solution of the transformer 
problem by transmission line methods will be discussed at this 
point, although it would be more logical, in some respects, to 
defer it until after the treatment of the transformer proper 

(Chap. XIV). 
There are strong reasons in favor of discussing at one time 

devices for solving different problems by similar means, rather 
than discussing dissimilar methods used in solving the same 

problem. 
The problem of securing uniform transmission between differ¬ 

ent impedance levels over a wide frequency band is solved at 
audio frequencies by the transformer proper. At all frequencies, 
the flow of power into nonmatching loads may be increased by the 
use of vacuum tube amplifiers (Chap. XVII). 

Wavelengths comparable to apparatus dimensions permit 
a solution of the transformer problem based on midtiple reflection 
taking place at the discontinuities of characteristic impedance 
in a disuniform transmission line. 

Multiple reflection may be explained by the method previously 
used to help understand the action of the quarter-wave trans¬ 
former (Sec. 9.3). Another approach, through the values taken 
by the input impedance, is suitable here, as formerly, for a 
quantitative discussion. 

Consider (Fig. 40) a disuniform transmission line, coaxial 
or otherwise, consisting of a number of sections of equal length 
L but of different characteristic impedances. A wave entering 
the system will be reflected at each junction of two consecutive 

sections. If we define the phase of any one reflected wave as the 
angle of the voltage vector due to this wave with the voltage 
vector due to the wave reflected at the first junction, both 
voltages being taken at any point of the input line (line feeding 
into the system), and define the nth reflected wave as that 

194 
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due to reflection at the nth junction, we may find the phase of 
the nth wave quite readily. 

The difference in travel of the two waves (the first and nth 
wave) is twice the distance between points of reflection, or 
2(n — 1)L, assuming that all reflections are accompanied by 

O/rscfMorye 

^—I-^—I--f 

i 
—t 

Reflechd wave No.1 2 3 4 S n*6 

Fig. 40.—Multiple reflection. 

equal phase shifts (Sec. 5.4). The phase <t> of the nth wave is 
to 27r as this distance is to the wave length X, hence 

2(n — l)L27r _ 4(n — l)irL —_ _ 

Letting Xo = 4L, we have 

<t> = 7r(n — 1) — = 7r(n — 1) r 
X Jo 

where /o, midband frequency, is that value at which each section 
is a quarter wavelength long. There is some advantage in 
using dj the bandwidth, in place of frequency. We have from 
(180) 
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Hence 

<t) — (n — l)7r + 1^ 

Computing the phase difference to the nearest cycle, which is 
sufficient for the purpose, we have 
1. For odd-order waves (n = 1, 2, 3, • • •)• 

<t> = Oy irby 2Trdy SttS, • • • 

2. For even-order waves (n = 2, 4, 6, • • •)• 

. , 7r6 , Stt^ , SttS 
0 = TT + TT -j-~y TT H-* * * 

Figure 40 illustrates the case of n = 6 (5 sections). It can be 
seen that if the amplitudes of the reflected waves in the input 
line are in the correct mutual relation, they all add up to zero. 
(The first and third cancel the second; the fourth and sixth cancel 
the fifth.) The same thing is evidently true for any number of 
sections. It is therefore possible for the input line to be totally 
free of reflection, in which case the condition of maximum power 
transfer is satisfied at junction 1, hence anywhere in the system. 

The validity of this result does not depend explicitly on the 
value of 5, However, we cannot prove by this type of reasoning 
whether or not the assumptions we have made regarding the 
amplitude of the reflected waves and the phase shifts at the points 
of reflection can be satisfied independently of frequency. We 
are only justified in concluding that the system in question 
can probably be made to transmit uniformly over a range of 
frequencies, whose extent will depend on the number of sections 
used. 

Exact data on the optimum design and performance of the 
system will be obtained by expressing the input impedance as a 
function of 5. 

10.2> The Multisection Transformer. Figure 41a reproduces, 
for convenience, the system of Fig. 40 with this difference, that 
the sections are now numbered instead of the junctions. Sections 
1, 2, 3, . . . , n are arranged in order of increasing characteristic 
impedance; this is brought from the value Ra for the input line 
to the value Rh for the output line, in a series of n -f 1 steps 
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of values -4o, Ai^ ^2, . . . , An. The generic term Ak in this 
sequence is the difference in characteristic impedance between 
the section of order k + 1 and the section of order k. 
9 

If L is the common length of all sections, when the wavelength 
is X = 4L, each section operates as a quarter-wave transformer 
at midband, and the impedance toward load (toward Rb) varies 
through the system as shown in Fig. 41&. 

The analysis of the system simplifies materially if we use 
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the transformation of Fig. 41d. Consider the complex quantity 

z' = r' + jx' = In Z (195) 

We may think of a plane, every point of which has coordinate 
r' and x\ representing, in fact, the complex number z'. This 
plane will be used as a basis of discussion instead of the Z plane. 

We must find explicit relations giving r' and x' in terms of 
R and X. These relations (implicit in Eq. 195) will enable 
us to locate the point on the z' plane corresponding to a given 
Z point. 

We may write (Sec. 2.2) 

z' = In Z = In \z\ + j/Z 

= In VR^ + + j tan-i f 
rC 

and hence 
r' = In 

Y (196) 
x' = tan-^ 

Consider now the input impedance of the nth section and the 
corresponding point in the new representation. Let us agree to 
use the symbol Zk for the input impedance of section k and 
Rok for the characteristic impedance of the same section. At 
midband, each section has the impedance transformation action 
of a quarter-wave section (Sec. 9.3). Hence we have, for 
5 = 0, 

7 — P — (^0^)^ A/n itn D 
tlh 

Taking logarithms, 

\n Rn ~ 2 In /?o« — In Rh 

Hence, and from (196), noting that Xn = 0, 

r/ = 2ron' ~ n' 
ron' = ^{Vn + n') 

Note that, while on the Z plane the characteristic resistance 
of the section is the geometric mean of the input and load imped¬ 
ances at midband, on the z' plane ron' is the arithmetic mean of 
rn and rft'. Let us now make the position 

o>k = Tqh ro(jfc+i)' (197) 
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and in particular 

an = r-on' - n' 

The sequence ao, ai, a2, . . . , an corresponds to the sequence 
Ao, Ai, ^2, . . . , in the logarithmic transformation. We 
write, accordingly, for 5 = 0, 

Tn = 2n = Ton' + On (198) 

We now ask for the value of Zn when 5 5*^ 0. The answer takes 
a simple form if Un is small compared to ron'. Consider (Fig. 31) 
the constant <t and constant r circles (Sec. 8.7), at whose inter¬ 
section the Z point falls for 5 other than zero. Note, in particu¬ 
lar, that the constant r circle crosses the R axis at an angle 

Note, furthermore, that the same constant r circle crosses the 
constant cr circle at right angles. 

Now, imagine the whole construction transferred to the z' 
plane. As the transformation is isogonah^^ (Sec. 5.7) the con¬ 
stant cr path is still approximately a circle, provided its radius 
is small compared with the distance from the origin (an <3C ro„'). 
The constant r path must go through the center of this circle 
and cut it at right angles; it may therefore be assimilated to a 
radius of the circle, rotated by an angle 7r5/2 from the direction 
of the negative r' axis,^ 

We conclude that the Zn point may be expressed analytically, 
using the exponential notation, as follows: 

Zn = ^On' + ttnC ^ ^ (IQQ) 

To find the input impedance of the next section, we may argue 
that the corresponding z' point lies diametrally opposite to Zn 
about the new center ro(n-i)', except for a negative rotation about 
ro(n-i/ by an angle 7r3/2. Analytically, 

__ 
^(n—1) ~ ro(r—1) “I” (ro(n—1) Zn )^ ^ 

_ 
Letting, for brevity, p stand for the operator e 2, the above 

' More rigid proof of this argument is not difficult, but tedious. For 

practical purposes, the error involved is small enough to be negligible. 



200 COMPOSITE LINES AND STUBS [Chap. X 

may be written as follows: 

Z(n—1) “ ro(n—1) “f" ®(n—1)P 

__ 
{p = e 

Continuing in the same way, we find for Zi\ which corresponds 
to the input impedance to the first section or to the entire 
multisection transformer, the following expression: 

zi = roi + aip - a2P^ + asP® - • • • ± (200) 

The plus sign before the last term should be used when n is odd. 
Rather than in z' itself, we are interested in the departure 

of z' from its midband value. Letting Az' stand for this depar¬ 
ture, we define Az' as follows (Fig. 4id) : 

Az' = Zi' — Tx = Zx — roi' — ao (201) 

We have, therefore 

Az' = — [ao — axp + a2p'^ — • • * ± a^p^] (202) 

To carry on the analysis, we must express Az' as a series in 
powers of 5. If we let 

Az' = ^{8) 

the following expansion may be used for the purpose {MaclaurMs 
expansion^ ^^): 

^{5) = $(0) + $'(0)5 + 52 + • • • + s’- + ■ ■ ■ . 

In the above, for the function under discussion, the first term 
is zero; the mth derivative with respect to 8 of (202) for p = 1 
(6 = 0) may be written by inspection 

j^the mth derivative of 2) ig ^ c 

$<“>(0) = ai (^-j ^ - 2”‘a2 ^ (^-j ^ 

for 5 = 0 : 

= ~ - • • • + n”*o„ 
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m! 
=(:i!r 

ml 
[ai - 2^a2 + S’^aa - ± n'^an] 

{-xyk^ak 

and we have for the entire expansion 

A2' = - 

00 

i: 
m== 1 

(203) 

We may expand the double summation in the following form, 
better suited to the purpose of the discussion: 

^ j \ + 2ai — Zaz + • ■ ■ + na„)& 

+ ^ (—fli + 402 — 903 + • • • ± n‘^an)P 

-j ^ { — ai + 8o2 — 27o3 + • • • + n’a„)3’ 

(-1); 
mi 

(— tti “h 2”*<Z2 — 3’”ci3 -f" ± n^an)d^ (204) 

10.3. Optimum Design for Wide-band Transmission. The 
multisection transformer has been analyzed in the preceding 
section to the extent of obtaining the departure of the input 
impedance from the midband value in terms of the bandwidth b. 
We have actually expressed this departure in logarithmic form as 
the quantity 

= z' - k' = In (205) 

No particular value has been assigned as yet to the impedance 
steps tto, ai, . . . , Un which (all except ao) appear in the coeffi¬ 
cients of powers of 8 in the series expansion of Az\ 
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Inspection of (204) discloses that if enough sections are used 
(n sufficiently large), we may cause an arbitrary number of terms 
in the expansion to vanish by a correct choice of the impedance 
steps. Assuming 5 « 1, which makes the series convergent, 
this means that \Az'\ can be made as small as we like. 

Given the number of sections used, the following points must be 
taken up: 

1. How many terms of (204) can be made to vanish by a 
proper selection of the impedance steps? 

2. How are the steps to be selected? 
3. If the steps have been selected correctly (optimumdesign), 

what is the power loss referred to midband in terms of 5? 
In answer to the first question, observe that two relations 

exist between the n + 1 steps ao, ai, a2 . . . , Un, independently 
of the values assigned to them. The total difference of imped¬ 
ance determines their sum, which may therefore be regarded as a 
known quantity 

^ a = ra' - Tb = (206) 

In addition, if we examine carefully the solid-line diagram of 
Fig. 4Id (representing the locus of the z' point for midband as 
we go through the system), we find that the above sum may be 
obtained by adding every other step, beginning with either the 
first or the second, and doubling the total. In fact, each step 
includes the radii of two adjoining semicircles; therefore, when 
we double every other step, we are taking the sum of all the 
diameters or of all the steps. Symbolically, we may write 

Xa = 2Saeven = 2Saodd 

or identically, 

2(leven ”” 2(Zodd ~ 0 
and expanding, 

ao — ai + a2 — as + • • • ± an = 0 (207) 

We need n — 1 equations, in addition to (206) and (207), in 
order to assign the values of the n + 1 steps. By setting the first 
n — 1 coefficients of (204) equal to zero, we obtain that many 
equations. We conclude that, if n sections are used, n — 1 terms 
of (204) can be made to vanish by proper design, leaving only 
terms of nth and higher order in 5. 
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Passing now to the second question, combining (207) with the 
equations obtained by setting the first n — 1 terms of (204) 
equal to zero, we have the system 

do — ai + a2 — ' * i ftn = 0 
— ai 4" 2a2 — • • • ± riun = 0 
— ai + 4a2 — • • • ± n^dn = 0 

— Ui -j- 2”~^a2 — * • • 4: n^-^an = 0 
(208) 

The system above determines not the steps themselves but the 
ratios between any two of them. When these are known, (205) 
may be used to find the actual values. If we solve (208) for 
different values of n, we invariably arrive at the proportion 

ao*.ar.a2: • • • :an = 60:61:62: * • • :6„ (209) 

where 60, 61, , K are the binomial coefficients of order 
n + 1.^ From the above and (205) we obtain 

or, in general, 

Uo = 60 
26 

, 2a 

A' = 0 

(210) 

A table of binomial coefficients, which may be extended inde¬ 
finitely by a very simple rule, is given in Fig. 42. Any coefficient 
of the table is the sum of the one directly above with the one 
above and to the left. The sums of the coefficients advance as 
the powers of 2. A numerical example, for n = 5, accompanies 
the table. 

Next comes the question of performance. This must be judged 
on the basis of power loss, referred to midband, over a wide range 
of frequencies on either side of midband. A single parameter, 

1 General proof of (209), although not particularly difficult, is beyond the 

scope of the present discussion. W. W. Hanson is credited with having 

shown that the steps should be in the same proportion as the binomial coeffi¬ 

cients; his work on the subject does not appear to have been published at 

the time of this writing. (See J. C. Slater, **Microwave transmission,” 

McGraw-Hill Book Company, Inc., p. 60 1941. 
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such as Qoy could only serve to establish the loss in the immediate 
neighborhood of midband, hence would be of no value. The 
information called for can only be adequately expressed by a set 
of curves (one for each value of n) of power loss against frequency, 
obtained under the assumption of optimum design. 

Fig. 42.—Table of binomial coefficients. For optimum performance 
of the multisection transformer, the logarithmic impedance steps 
ao ai 02 • . . On (Fig. 41) should have the following value: 

Note: Ra and Rb — terminal impedances; hk = A:th binomial coefficient; 
n == number of sections. 

Numerical example-? 

Ra = 150 ohms; Rh = 45 ohms (In Ra/Rb 1.20387); n = 6 
Binomial coefficients bo bi h2 . . . . : 

1; 5; 10; 10; 5; 1 
Logarithmic steps ao ai a2 . . . . : 

0.0376; 0.188; 0.376; 0.376; 0.188; 0.0376 
Corresponding impedance ratios: 

1.0382; 1.207; 1.456; 1.456; 1.207; 1.0382 
Characteristic impedances (ohms); 

144.4; 119.6; 82.1; 56.4; 46.8 

A number of predictions regarding the variation of transmitted 
power with frequency may be made at the start. At the fre¬ 
quencies /o, 3/o, 5/o, . . . (midband and odd harmonics) the 
length L of each section equals a quarter wavelength plus a whole 
number of half wavelengths. The impedance transforming 
action of each section is therefore that of a quarter-wave section. 
It follows that, if maximum power transfer exists at midband, 
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it will also exist at the odd harmonics of midband, as in the case 
of the quarter-wave transformer. 

At frequencies 0, 2/o, 4/o, . . . (zero and even harmonics of 
midband), the sections have no impedance transforming action, 
and the loss will depend only on the end values of impedance. 
More precisely, the loss referred to midband will have the value 
(183) __ 

We conclude that, irrespective of the number of sections, the 
plot of transmitted power will be periodic, with points of mini¬ 
mum at frequencies 0, 2/o, 4/o. . . . These minimum values of 
transmitted power will be all the same and will depend only on 
the total unbalance of impedance. 

For practical purposes, the evaluation of Lr need not be 
accurate except where Lr is relatively small, as this is the condi¬ 
tion which delimits the useful operating range of the device. 
The following approximations are therefore in order: 

Ln = (184) 

Az' = In Z - In /?„ = In (l + 

= In (1 + Az) = Az (212) 

[‘~i az.z-r.] 

and combining, 

Lr = ilA^'p (213) 

The evaluation oi Lr thus reduces to the evaluation of A^'. 
The series expansion (204), which has been used to determine the 
rule for optimum design, is not useful for the present purpose 
except when 5 is small, in which case the expansion converges 
so rapidly that it may be identified with its lowest order term, 
which as we know is the term of order n. The value of this term 
is given in the tabulation of Fig. 42. 

To obtain values over a wide range, we must resort to (202). 
Evaluation of this expression, although tedious, is not difficult. 
It is best carried out graphically, as a vector addition. We find 
in this manner that as 6 increases, the z' point moves out from r' 
in a spiral (Fig. 43). The radius vector of the spiral is the 
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magnitude of Az'; Lr may be obtained from this by squaring 
and dividing by 8. As a result, the plots of Fig. 44 have been 
drawn. They are universal; to fit a particular case, the ordinate 
must be multiplied as indicated. 

We learn from the plots that there is little advantage in 
increasing the number of sections beyond four or five. With five 

Fig. 43.—Polar plots of KAz' = K In —, illvrstrating the variation of 
Ha 

input impedance Z with the frequency for the n-section transformer. 
Points are obtained by vector sum according to (202). Construction 
shown for n = 3, 5 = 0.8. 

sections, transmission is essentially uniform within 50 per cent 
of midband. 

10.4. Tuning Stubs. At the cost of some complication, the 
selectivity associated with impedance transformation at high 
frequency can be eliminated for practical purposes by the use of 
the multisection transformer. 

A high value of selectivity, on the other hand, is generally 
not objectionable in adjustable coupling devices, or tuners. The 
study of these devices will now be taken up in some detail. 



Sec. 10.4] TUNING STUBS 207 

Adjustable couplings must take the place of fixed couplings in 
the following cases: 

1. When uniform transmission is required, and the value of 
midband frequency must vary from time to time over a wide 

range. 

• Fig. 44.—Amplitude distortion of the multisection transformer. 

2. When the load or source impedance (or both) are unknown, 
or inaccurately known, or subject to variation. (It should 
be noted that such variations usually accompany variations of 

frequency.) 
If only the frequency is subject to change, a single adjustment 

may suffice. As an example, consider a quarter-wave trans¬ 
former inserted between two long lines. A simple change of 
length will tune the transformer to any frequency. The example 
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is not of practical value, because the quarter-wave transformer 
lacks selectivity. 

If the terminal impedances are variable, two adjustments are 
generally needed to preserve the condition of maximum power 
transfer. One of the adjustable parameters might be the length 
of the coupling section, the other, its characteristic impedance. 
It is more convenient, however, from a mechanical standpoint, to 
leave both length and characteristic impedance unaltered and to 
add one or two adjustable susceptances in shunt with the line. 
If only one susceptance is added, its position must be made 
variable to provide the second adjustment. This is the principle 
of the sliding-shunt tuner (Sec. 10.6). Two variable susceptances 
shunting the line at fixed points constitute, a double-shunt tuner 
(Sec. 10.5). 

As a preliminary to the study of tuners, we must therefore 
discuss the method used at high frequencies to provide a variable 
susceptance. Consider the input admittance of a section of 
lossless line, short-circuited at the far end. Making the usual 
substitutions, valid for lossless lines, in the generic expression 
(102), we have 

F.. = -jGo. cot ~ (214) 

It should be noted that the above expression, in which a has 
been neglected, in comparison with i3, becomes quite inaccurate 
for physical lines under particular conditions (Sec. 7.3). The 
exact expressioti for the input admittance will be given later 
(Sec. 10.9); we may now observe that (214) represents a suscept¬ 
ance which takes all values from — oo to -f- » as L is varied from 
0 to X/2. Actually, infinite values are never reached and F«c is 
a conductance for these values of L. 

We may conclude, at any rate, that a line section of length 
X/2, equipped with a movable shorting connection (a plunger 
if the line is coaxial), offers at the free end a susceptance that 
may be varied between a very large negative value and a very 
large positive value. The conductance of such a line is small 
and may be disregarded, except-as a loss factor (Sec. 10.9). 

Such sections are called stubs. They replace lumped element 
tank circuits at frequencies so high that coils are no longer 
usable, while the wavelength is short enough to permit the 
practical use of shunt branches a half wavelength long. The 
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construction and general properties of stubs are illustrated in 
Fig. 45. 

Open-circuited lines of length variable between X/4 and 
3X/4 could theoretically be used in place of stubs. In some ways, 
such a solution is preferable, as it does not require high currents 
to flow through a sliding contact. 

10.6. The Double-shunt Tuner: Use of the k Plane. If two 
stubs are shunted across a source and its load before coupling, 
the corresponding Y points take some position along the two 
ordinates whose distances from the origin are, respectively, 
Gr and Gt. The two points may be moved up and down the 
ordinates by adjusting the two stubs. Under these conditions, 
the coupling may be effected by a line section whose charac¬ 
teristics are arbitrary, within limits. 

Such a system, known as a double-shunt tuner^ is shown in 
Fig. 46. Except for the addition of the stubs, this is again the 
coupling section of Fig. 34. However, while in Fig. 34 the 
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coupling section was required to move the impedance (or admit¬ 
tance) point from the point Zr to the point Zty in Fig. 46 the 
coupling section may bring the Y point from anywhere on the line 
(? = Gr to anywhere on the line G — Gt. Given a line section, 
it is generally possible to find two points on these loci which repre¬ 
sent a possible pair of values for the load and input admittance 
of the section. 

Fig. 46.—Double-shunt tuner. 

These two points cannot be located very readily on the Y 
plane. Here, as in previous problems, there is advantage in 
using the particular method of representation which best fits 
the conditions of the problem. Since Roy the characteristic 
impedance of the coupling section, may now be regarded as a 
known quantity, we are free to consider, in place of Z or 7, any 
function of Z and /2o, or Y and Go. The function p has already 
been used extensively in place of impedance, both geometrically 
and analytically. In dealing with lossless networks, some of the 
advantages of the p plane cease to be important, and there are 
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good reasons for selecting as a method of representation the 
k plane. This is based on the function 

1 - y ^ g - 1 
I + y 2 + 1 

introduced in Sec. 5.4 as the reflection coefficient. 

Fig. 47.—The k-plane diagram.. Left, loci of constant cr and constant 

r on the k plane. Right, loci of constant g and constant b on the k 
plane, k is the reflection coefficient: 

Loci of constant a, constant r, constant g and constant h can 
all be mapped quite readily on the k plane. Such maps, generally 
spoken of as hemispheric charts are in common use and have 
generally superseded the hyperbolic tangent map (the p plane) in 
high-frequency work. 

From the identity 

k = 

we see that the loci of constant a and constant r on the k plane 
are also loci of constant |A:| and constant [k, respectively, hence, 
concentric circles about the origin and straight lines, as illustrated 
in Fig. 47a. If a load impedance is represented by a value of k, 
or a point on the k plane, the impedance transformation operated 
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on it by a line of length L is represented by a rotation of this 
point about the origin, in clockwise direction, by an angle AirL/\. 

For this property to have practical value, we must imagine 
the z or y function mapped on the k plane, because then it would 
be easy to go from the k point to the impedance (admittance) or 
vice versa. Such a map might consist of the two orthogonal 
families of constant g and constant b loci. We obtain the 
equations of these loci by the usual method (Secs. 8.4 and 8.7), 
which consists of the following steps: 

1. Expression of k (point of the plane) in terms of y (function 
to be mapped); 

2. Subdivision of the complex equation obtained in (1) into 
two real equations; 

3. Elimination of b and g in turn from the two equations. By 
definition, we have (step 1) 

1 - 

1+2/ 

In the above, we let as usual 

y = g + jb 

and define the coordinates ^ and rj of the k plane as follows: 

k = ^+j7] 
We have, accordingly, 

^+jri 
I - g - jb 
l + g + jb 

(215) 

Separating real and imaginary parts (step 2), we obtain the 
system 

( + g) - br) == 1 - g 
I + 77(1 + ^) = -6 (216) 

Eliminating b from the above (step 3), 

f 
2g 

^+g = 1 - 

This is the equation of a circle on the k plane, one of a family 
of constant g circles. Writing the equation in the form 

(-*)■ + >?* = 
1 

(1 + gy (217) 
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we see that such circles have center on the real axis and go 
through the point r? = 0, ^ = — 1 for all values of g. The circle 
corresponding to any particular value of g can be constructed 
geometrically as shown in Fig. 476. 

Now, eliminating g from (216), 

I* + + 2^ + 21 = 0 

which may be written 

(?+1)^+(’»+jy=p (218) 
indicating that all constant 6 circles pass through the point t? = 0, 
^ — 1 and are tangent to the axis of reals at this point. The 
construction for obtaining such circles is also shown in Fig. 476. 

The complete map is shown in Fig. 48. We note that the 
constant g circle for g — 0 has center in the origin and unit 
radius. This circle bounds the region of the k plane whose points 
correspond to physical values of admittance (points outside the 
region corresponding to negative values of g). 
. Various calculating devices include this map and a radial 
scale which can be rotated around the center. A circular scale 
is also provided. A useful arrangement, which the reader can 
easily assemble, consists of the map (rigidly backed) covered by 
a circular sheet of tracing paper or other transparent material, 
fastened at the center so as to permit its rotation. Uniform 
divisions from 0 to 0.5 should be drawn around the edge of this 
movable sheet, which will be referred to as the rotating dial 
(Fig. 48). 

Such a device is particularly helpful in the analysis of tuners. 
(Its operation may be visualized easily, providing a concrete 
basis for thought, even if the device is not physically available.) 

Consider, for example, a double-shunt tuner operating between 
terminations of conductances Gr and Gt. Knowing the charac¬ 
teristic impedance of the coupling section, we may thereby 
determine the two conductance numbers gr and gt and the 
corresponding constant g circles. 

These two circles will be visible through the rotating dial 
sheet, which the reader will imagine superimposed upon the map 
of Fig. 48 in such a position that the zero division of the dial 
falls on the positive real axis {reference line) (Fig. 49a). 
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We now take a pencil and make a tracing of the g — Qr circle 

on the rotating dial sheet; then we rotate this sheet clockwise 

until the dial reading at the reference line (initially 0) equals 

L/X, the length of the coupling section from stub to stub, in 

wavelengths (Fig. 496) 

kH' 

/cr U6€, this map shou/d be p/aced 
on a rigid backing (a targe scale C(vy^ 
obtainable by the construction of 
FioAtb, is needed for accurate work). 

The "rotating diaU (on left) should be 
drawn on tracing paper to the size of 
the map, cutout and secured on the map 
so that it can turn about the center (point 0). 

This device is widely used in transmission 
tine work, forexarnpies relating 
to tuners, see Figs. 4% SO 

Fig. 48.—Hemispheric chart {map of the y function on the k plane). 

In this new position, the tracing of the g = Qr circle on the 

rotating sheet may or may not intersect the g = gt circle of the 

hiap. Assuming that it does, two intersections are located 

and marked on the rotating sheet, and the corresponding values 

of g and h are read on the map and recorded. 
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The moving sheet is now brought back to its original position. 
The two points marked on it will now designate on the map new 
values of g and b (Fig. 49c). 

cond number) at two points. 

('c)-0\a\ is reset to 0 reading Pour 
points are now established For 
each possible tuner adjustment the 
2 points determine the 
aamittomcesl^,}^' (above.right) 

Fig. 49.—Graphical analysis of the double-shunt tuner. 

We have, all told, four sets of values for g and 6, or four 
values of admittance. For each intersection of the circles, there 
are two such values—the load and input admittances of the 
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coupling section when the system is set for maximum power 
transfer. The two intersections correspond to two distinct 
settings, both consistent with maximum power transfer. 

Consider the values of b obtained for one of the two settings, 
namely, b/ and b/ (Fig. 49c). b/ is the susceptance number of 
the load, shunted by the stub; b/ is the negative of the suscept¬ 
ance number for the source, similarly shunted (for maximum 
power transfer). From 6/ and 6/, knowing br and bg = —bt 
(susceptance numbers for the load and source proper), we can 
obtain the stub conductances, hence the stub lengths and the stub 
losses (Sec. 10.9). We should find in this way that some of 
the settings are such as to make the operation of the tuner very 
inefficient. This is likely to happen when the two circles inter¬ 
sect very close to the point A: = — 1, or ^ = <». 

A survey of conditions affecting transmission through the 
double-shunt tuner would become rather complex because 
of the number of variables involved. Primarily, however, we are 
interested in ascertaining under what conditions the device will 
be capable of tuning for maximum power transfer, without 
regard to the value of stub losses. Geometrically, we are asking 
whether or not the two circles {g = Qt and g — gt) will intersect 
after mutual rotation about the origin by the angle AirL/\. 

The answer depends on the relative values of conductance. 
Consider, in fact, the minimum distance of a generic constant g 
circle from the origin, or center of rotation. This is expressed 
(Fig. 49c) by • 

d = 9-1 
9 + ^ 

(219) 

counting d as positive when the origin is outside the circle. 
If this is true of both the 9 = 9r and the g = 9t circles, a mutual 
rotation of these circles about the origin by an angle tt (for 
L = X/4) would bring them outside one another, the distance 
between the nearest points taking the value 

D = dr dt 9r - 1 

+ 1 
+ 9t - 1 

9t+ I 

It is evident that if D is positive, there will be values of L/X 
for which the device cannot be tuned (or more precisely, cannot 
be tuned for maximum power transfer; there will always be a 
setting for which the power is highest in a relative sense). 
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By writing D = 0, we may find the limiting relation between 

gr and gt 

grgt = 1 (220) 

If (220) is satisfied (if the characteristic conductance of 

coupling section is the geometric mean of source and load con¬ 

ductances), the system can be tuned for all values of L/X, 

except 0 and multiples of 0.5, which must be excluded in all cases, 

since they require infinite values of susceptance. There will 

always be two possible settings for m.p.t., except if L/X = i, 

when there will be only one setting, the two circles being tangent 

for this value. 

If grgt < 1, tuning is also continuously possible (with the 

exceptions stated above), with the difference that two alternative 

settings exist at all times, the circles having always two common 

points. 

If grgt > 1, suppose L/X is increased continuously from a 

small initial value (because of a frequency increase, for example). 

At first, double tuning will be possible, until L/X has reached 

the value 

For this value the circles will be tangent, as may be verified. 

Using the terminology of coupled circuits, we might call this 

condition critical tuning. A further increase of L/X makes tuning 

impossible, until the critical condition is reached again at the 

value 

L 

X 
(222) 

The two values (221) and (222) are symmetrically spaced 

about the value L/X = i. We conclude that if gtgr > 1, there 

are frequency ranges over which the device will not tune, in the 

sense that, whatever the setting, it will not transmit the maximum 

possible power. These ranges recur periodically and center 

about the values /o, 3/o, 5/o, . . . where /o is the frequency for 

which L = iX. The width of the ranges increases with the 

product grgt and vanishes when this is unity. Again, by analogy 
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with coupled circuits, we might say that the system is under- 

coupled when it cannot be tuned for m.p.t., overcoupled when there 

is double tuning, and, as already mentioned, critically coupled 
when there is only one m.p.t. setting. Considering the fre¬ 

quency as fixed and the length L of the coupling section variable 

between 0 and ^X, the system is undercoupled when .. 

where 

<i)c = COS"^ \~-1 ) 
\9r0^ / 

[Critical angle for double-shunt Inner] 

may be called the critical angle. 
Up to this point, the characteristic impedance of the coupling 

section has been looked upon as a given quantity. Suppose 

now that both (?o and L are open to choice, while Gr and Gt are 

given, at least approximately. We may wish to find the most 

favorable values of Go and L. We must assume that X is to vary 

between given limits and base the discussion upon an average 

value of X, which we shall call Xo. For this average operation 

we would like the stub losses (Sec. 10.9) to be the lowest possible, 

which will be true, or nearly true, when the susceptance numbers 

hr and ht (Fig. 49c) are both zero, for which we must have 

Gfit = Go" L = j 

We reach the conclusion that for optimum performance the 

coupling section of the double-shunt tuner should operate exactly 

as a quarter-wave transformer section (Sec. 9.3) and be designed 

accordingly. Under these conditions, the stubs merely serve 

the purpose of tuning out the susceptance components of source 

and load. 

10.6. Sliding-shunt Tuner. The operation of this device, like 

that of the double-shunt tuner,’ may be understood with the help 

of the F-plane diagram, although the k plane (Sec. 10.5) is more 

convenient for a quantitative analysis. 

Figure 50 shows the variation of the admittance toward load 
through the sliding-shunt tuner, which consists of a line section 

(223) 

(224) 
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source side of the stub, then again a constant a circle. In fact, 

the insertion of a reactive line varies only r (constant <t), and 

the addition of a shunt susceptance, the stub, varies only B 
(constant G). 

Comparing this diagram with that of Fig. 46, which illustrates 

the action of the double-shunt tuner, we notice that while 

previously a constant a circle joined together two constant G 

lines, the sequence is now inverted. 

The conductance toward load and the conductance toward 

source must have a common value at the stub, as Fig. 50 clearly 

indicates. This condition determines one of the two adjust¬ 

ments (the position of the sliding contact of the stub to the line). 

The other adjustment (length of the’ stub) is assigned by the 

second condition for maximum power transfer, expressed in 

terms of admittances (Sec. 8.2), namely, equal and opposite 

values of susceptance in the two directions. 

The problem of determining whether or not the tuner can be 

set for maximum power transfer under a given set of conditions 

is solved by finding the stub 'position along the line and the 

stub susceptance consistent with maximum power transfer. 

If we find that the stub position falls on the line proper 

(between terminations) and the stub susceptance is not excessive, 

the tuner will work. Among the given conditions we must 

include the line length L, the characteristic conductance of the 

line Go, the load admittance Fr, the transformed admittance 

(conjugate of Ifhe source admittance) F<, and the wavelength X. 

(If this is variable, the answer must be obtained for both maxi¬ 

mum and minimum X.) The length L must be short (not 

large compared to the wavelength), unless one of the terminations 

matches the line, which is a special case and will be taken up 

separately. 

When Yr and Yt have generic values, this problem can be 

solved exactly only by trial and error. However, with the help 

of the /c-plane map (Sec. 10.5), supplemented by the rotating dial 

and an additional sheet, also pivoted at the origin, the procedure 

of trial and error becomes a very simple one. Having located the 

two points on the map corresponding to Yr and F^, we rotate 

them 'mutuall'y (relative to one another) by the known angle 

AirL/\ (L = length of the coupling line section); then we rotate 

them together until they both fall on the same constant g circle. 
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The total rotation of each point from the original position, 

divided by 47r/X, is the distance between the corresponding 

termination and the stub. 

Note that the need for trial and error has not been eliminated, 

although it has been reduced to the simple operation of moving 

two points about a third (the three points forming a rigid system) 

until the two points fall on the same circle. Because there is 

an immediate visual check, the correct solution is arrived at 

immediately. The same problem, if carried out analytic'ally, 

would involve very considerable labor. In such cases the use 

of trick methods (as, for example, the rotating sheets) is justified. 

When the analytical solution is straightforward, these methods 

are not called for. 

Figure 50 describes the above procedure in detail for a particu¬ 

lar case. The F-plane diagram for the same values is also given. 

When the coupling line is matched on one side the problem is 

very much simpler; the distance between the stub and the match¬ 

ing termination is now immaterial, since over this distance the 

line is matched and has no impedance transforming action. 

. We need not regard this section of line as part of the tuner. The 

tuner has the function of matching this line to the nonmatching 

termination. 

Consider, for example, a long line with a matching source 

and nonmatching load (Fig. 51). In this system, the conductance 

toward load will vary as we move along the line away from the 

load. There will be points where this conductance has the 

matching value Go, although the suscex)tance is not zero at these 

points. If we connect a stub across the line at such a point and 

adjust its length correctly, this susceptance will be neutralized 

and, from this point on toward the source, the line will be 

matched. 

The stub position and stub susceptance are easily obtainable 

by construction, on either the Y or the k plane (Fig. 51). The 

arrangement commonly used for coaxial cable matching is 

shown. 

The stub position may be found by an experimental procedure 

if means for measuring the voltage (or current) along the line 

are available. It can easily be shown that the stub should be 

placed at a point where the voltage is the geometric mean of the 

maximum and minimum values (Sec. 7.5). 
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Dah ofproblem: Yi /Go-y^. -gj.-*-Jbgr0.625-j0i6 Results :L (distance from stub to load, less 
%l2)-0.27A. (stubsusceptancenr.p-0.89 HenceL^'‘0.133% (see fig. 39). 

Other information: n. (standing waveratio)^ -2.41 ’‘y^-t.26 
^ Vo tme voltage 

Fig. 51.—Line-to~load matching by means of the sliding-shunt tuner. 
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Consider, in fact, the expression for the power transmitted 
at any point (junction) of the line 

P = VH} 

where V is the voltage at the junction and G the conductance 
toward load. P does not vary appreciably over distances along 
the line comparable with the wavelength; we may, therefore, 
regard it as a constant and write 

V^G = const. 

At points where V is maximum (voltage antinodes) the con¬ 
ductance will be a minimum, and vice versa; these extreme values 
must be related as follows: 

where V and G are the values at a generic point. Now consider 
a point where the voltage is the geometric mean of Fmax and Fmm, 
For such a point we have 

V = 

Substituting the above in the previous line and writing this 
as two separate equations, 

F max F min^ min 

FmaxFmin^^ = Fmin^Gmax 

Multiplying the two equations, 

G'^ = GminCrmax 

Now, Gmm and Gmax are no other than the terminal admittances 
(formerly designated by the resistances Ra and Sec. 9.3) of a 
quarter-wave section; therefore, we must have 

G — Go 

We conclude that the conductance toward load at the point 
in question must have the characteristic value, and a stub 
shunting the line at this point, if properly adjusted, will satisfy 
the conditions for maximum power transfer. 

10.7. Selectivity of the Shunt Tuner. In the preceding sec¬ 
tions, high-frequency coupling networks with adjustable elements 
(tuners) have been discussed, and methods have been worked 
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out for finding whether or not these can be tuned or adjusted 
for maximum power transfer under given conditions. 

To complete the discussion, three additional points should 
be taken up: selectivity^ sharpness of tuning, and efficiency. 
To avoid excessive complication, only one type of tuning device 
will be used as the basis of further analysis, the matching tuner 
of Fig. 51. This device is very often used in vhf transmission. 

The study of selectivity reduces to the determination of Qo, 
as we know (Sec. 9.5). Knowing Qo, we may obtain the loss 
in transmitted power Lr due to a departure from midband 
frequency (185) or use Qo as a means of comparison. 

Consider a long line coupled to its load by means of a stub 
(Sec. 10.6), the stub position and stub length being adjusted 
so that m.p.t. conditions are satisfied for the midband frequency 
/o. At this frequency the admittance toward load, F(, measured 
close to the stub on the source side (Fig. 52), must therefore 
have the matching value Go. At a generic frequency this 
admittance will have the value 

Yt = F/ + F. 

where Yr is admittance toward load measured close to the stub 
on the load side and F, the stub admittance. Dividing the above 
by Go, we obtain 

yt = yr + jr 
(zo 

* 

where yt and y/ are now admittance numbers, y/ is the input 
admittance number for the section of length L (Fig. 52), which 
is given by (140) as follows: 

, ^ yr + j tan 
1 + jyr tan <!> 

(225) 

In the above, y. is the load admittance number, <f> is the line 
angle 

(226) 

Y, is the stub admittance, given by (214) 

Y. = -jGo. cot 4>. (227) 

where Go. is the characteristic admittance of the stub line, and 
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<ps the stub line angle 

(f), = 27rLs 
(228) 

We have, therefore, the following expression for yt'. 

f I Ys Vr + j tan 0 .Go. . , 
+or 1+ 

The value of Qo for the tuner is given by (192) 

Qo = i! dn (n-l) 

where n = f/fo is the frequency number. Thus 

Qo = i 
(1 - Vrll/) d<j> 

cos^ <#>(1 + jyr tan <l>) dn 

To evaluate the above, note that 

+ j 
Go _d^\ 

Go sin 2 0, dn 

(229) 

(n-l) 

2tL 2tL Xo . 
‘^ = ~r =T7x 

4>. = 
2tIj8 _ 27rZ/g Xo 

”x~ ” “^"x = n<j>08 

where 0o, 0o« are the line angles at midband. Hence 

d0 , d<t>s _ . 
^ - <^0. 

Note, in addition, that (225) gives 

= V' ~ ^ 
1 — jyr tan <t> 

and that at midband (w = 1) 

yt = 1 

y/ = yi — }r ^ i + 3^ cot <po, Oo {jQ 

(230) 

(231) 

[See Eqs. (227) and (229).] 
Substituting (231) into (230), and both (231) and (230) 

into the expression for Qo, we obtain, after some algebraic 
manipulation. 
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Qo — i 

= i 

bXi — 2/r'^) + i ^ 1 
I Cjo sm <p«((n-l) 

rt A . , ^0« I • 

2<f>o cot </>o« "T” J /nr 
Cro ITO 

-1" 7T COt^ 
Vsin2 </>o« Go / 

= ^ 00 cot^ 0o« ^tan^ 0o# + i ^ j 
(232) 

[Qo for the shunt timer] 

The same expression may be arrived at through considerations of 
plane geometry based on the admittance diagram (Fig. 52) and 
on Eq. (182). 

It should be noted that (232) has been derived on the assump¬ 
tion that the variation of load admittance Yr with frequency 
is small compared with the variation of Yt> This assumption 
is justifiable in the majority of cases. 

Lines of constant Qo on a plane of coordinates L/X and L,/X 
have been plotted (Fig. 52) for the important case of Go« = Go. 
These lines show immediately how the selectivity depends on the 
stub setting and position. 

It should be borne in mind that these values of Qo refer to 
the whole tuner, comprising stub, line, and load. The value of 
Qo for the stub itself is entirely different (Sec. 10.9). This value 
should be used if the stub itself is the load, for example, when the 
stub is used as tank circuit in uhf amplification (Sec. 10.9). 
The selectivity is much higher in such cases. 

The sliding-shunt tuner can be made very selective only by 
using a low impedance stub (Go. ;:$> Go). This increases the stub 
loss, however. 

10.8. Sharpness of Tuning. When selectivity is the object of 
discussion, it must be assumed that the parameters of the selec¬ 
tive receiver have fixed values, while the frequency is considered 
variable. 

A parallel analysis considers the frequency as a constant, and 
one or more parameters of the system as subject to nonsimul- 
taneous variations. These parameters are the adjustments 
which must be set to some optimum value for maximum power 
transfer. 

The sharpness of tuning or sharpness of adjustment measures 
the power loss caused by a variation of any one adjustment from 
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Ga>mefr!callYmgm,abon):Qo^-Zr^^cd^(Zir^)]/ltn>(lir^Hify-^^Q*hn‘Zr^f 
Chart /$ dram tor Gqs'Go ^ 

Fig. 52.—Selectivity of the sliding^shunt tuner. 

the optimum. This evaluation may be carried out, for each 
adjustment, by means of a coefficient analogous, but not neces¬ 
sarily equal, to Qo. 

Let A stand for one of the adjustable parameters (such as 
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stub length, condenser setting or capacity, mutual inductance, 
etc.) and Ao for its optimum value. Under our general assump¬ 
tions (Sec. 9.5) when all the adjustments have optimum values, 
the receiver admittance F is a real. If only A is subject to 
variation, the other adjustments being set at the optimum, we 
must have for A = Ao 

Expressing A in ratio form, through the parameter 

a 
Ao 

we may define sharpness of the adjustment A, as follows: 

dz 
= i da (a-l) da 

[Definition of 

(233) 

Assuming that maximum power transfer conditions are satis¬ 
fied for a = 1, the power loss due to a variation (detuning) of 
A is given approximately by 

where 

Ln = iiSalY 

[Power loss due to detuning] 

2(a - 1) 

(234) 

(235) 

is analogous to the bandwidth d. Sa may be approximately 
defined as the reciprocal of the value of y which causes a power 
loss of 1 db (see Eq. 186). 

Consider, as an illustration, the shunt tuner discussed in 
the preceding section (Fig. 53). The sharpness of the two 
adjustments, stub position and stub length, will be evaluated 
separately. Assuming first that the stub position has the 
optimum value and the stub length is variable, the sharpness of 
stub adjustment may be defined by the following: 

dyt \ l-e
- o dyt 

dL, 2 d<t>a 
(236) 

where the symbols have the meaning of the preceding section 
(Sec. 10.7). 
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Carrying out the differentiation on yt as expressed in (229), 
we obtain 

S — 1 00a 

^ (?o sin^ 00* 
(237) 

[Sharpness of stub adjustment] 

We find that &, = Qo for L = 0 (stub directly across load), 
showing that when the stub length is the only adjustment, equal 
relative departures of stub length and frequency from the 
optimum value have the same effect. This is not always true 
of systems with only one adjustment. In lumped LC systems, 
the condenser setting must vary twice as much as the frequency, 
in a relative sense, for the same drop in voltage. A plot of 
Slb against LJ\ is given in Fig. 53. 

To evaluate the sharpness of slider adjustment, we must hold 
the stub length fixed and allow the stub position to vary. The 
differentiation must now be carried out with respect to 0, the 
stub to load line equal to angle 27rL/X (Fig. 53), to obtain 

Sl 
00 

2 d0 
(238) 

Accordingly, we find from (229) 

Si = ^ <^0 cot 00, ) (239) 

[Sharpness of slider adjustment] 
« 

Sl depends on l)oth 0o, and 0o, the optimum stub and line angles. 
It is proportional to 0o; for a given 0o, it vanishes when 00, = 7r/2, 

or when the stub length is X/4. Under these conditions, the stub 
has no effect (except for losses) and could be removed without 
disturbing the system. The line is matched over its entire 
length, which can only be true if Fr = Gq. 

Example. Let us find the sharpness of the two adjustments in the tuner 
of Fig. 51 for the values given. Note that for this computation the actual 
value of L, stub to load distance, must be used, not the value to the nearest 

half wavelength. Added half wavelengths have no impedance transform¬ 
ing action bu,t affect considerably both selectivity and sharpness. 

^ = 1 0o-27r^ = 2x(0.5 + 0.27) = 3.58 
IJO A 

00. - 2ir^- - 2)r(0.133) = 0.835 
A 
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Hence 

cot </)o« =* 0.9057 sin 0o« = 0.7412 

We have for the sharpness of stub adjustment 

0.835 
^ (0.7412)2 

and for the sharpness of slider adjustment 

0.76 

Sl = 3.58(0.9057) = 3.56 

The value of Qo, computed through (232), is Qo = 3.94. 

The same variation in transmitted power would be caused by 

A 1 per cent variation in frequency 

A 1.1 per cent variation in stub position \ 

A 5.2 per cent variation m stub length 

10.9. Qo of Stub : Stub Loss and Tuner Efficiency. The concept 
of efficiency, when applied to coupling devices, must be care¬ 
fully defined. As an engineering term, efficiency generally means 
the ratio power output/power input (Sec. 6.1); the present case is 
no exception to this general rule. However, our entire discussion 
of coupling networks, tuners in particular, has been based on the 
premise of lossless networks, or 100 per cent efficiency. If this 
premise does not hold, the conditions for maximum power transfer 
cannot be met at all junctions of the network simultaneously 
(Sec. 9.2); we are therefore obliged to distinguish between maxi¬ 
mum power transfer at the source and maximum power transfer 
at the load. Fortunately, the efficiency is generally so high that 
this distinction need not be made for practical purposes. We 
shall therefore continue to assume that, for maximum trans¬ 
mitted power, the input impedance of the coupling network Zt 
is the conjugate of the source impedance Zg. 

In particular, with reference to the shunt tuner of Fig. 53, 
we will continue to assume that, for tuned operation, the input 
conductance (measured on the source side of the stub) equals 
(jo, characteristic admittance of the line. If V is the voltage 
at this point, the input power will be 

Pi = VH}o 

A small fraction of this power will be lost in the stub; another 
smaller fraction, in the portion of line between stub and load; 
the remainder is the power output. We can, without major error. 
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neglect the loss in the line proper in comparison with the stub 
loss. As the stub is directly across the voltage V, the stub loss 

will be given by 
Ps = 

where 6, is the stub conductance. Hence the efficiency 

r, = ~ 100 = 100 (240) 

Instead of efficiency, the transmission loss may be expressed. 

This is given by 

Lr^iln ^ i ^ nepers = 4.34 ^ db (241) 
I I — Tg iiQ ^ isro 

The answer to the efficiency question lies therefore in the evalua¬ 
tion of Gg, stub conductance. In first-order approximation, 
we have considered this to be zero (214), a conclusion based 
on the simplified expression for the input impedance of reactive 
lines (140). In the present discussion we are interested in second- 
order effects; we must therefore go back to the general, exact 
expression for the input impedance of a short-circuited line and 
simplify this only after careful consideration. 

Equation (102) may be written 

Ygc = Yo coth QL 
— y tanh aL{\ + cot^ pL) — j cot — tanh^ oL) 

® ^ 1 + cot^ pL tanh^ aL 

The above notation is general. For stubs in particular, we have 
been using the symbols 

Yg for Ygc (stub admittance) 
Lg for L (stub length) 
<f>g for jSL (stub angle = 2wLg/\) 
Yog for Fo (characteristic admittance of stub) 

We rewrite, accordingly, 

tanh 3 <^,(1 + cot^ <!>,) — j cot <#>, ( 1 — tanh^ ^ <#>, 
Y. - r..-i^ 

^ 1 + cot^ <t>g tanh^ ^ </>, 

(242) 

The ratio a/fi is small by hypothesis (Sec. 7.1) and has the 
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value (135) 
a _ ^ _ 1 
0 *" 2 ~ 2Q. 

where Qs has been called the series Q of the line and is the limiting 
value of 

X 

R k? 

for the input impedance of a short-circuited line section (stub) 
whose length approaches zero (Sec. 3.12). (See Sec. 9.5 on 
the general definition of Q as opposed to Qo.) 

Since Qs is always very high (several hundred) and 0 <</>,< tt 
in practical applications, we may assume 

tanh S = tanh A . 

tanh^ ^ « 1 

and simplify Y, to the following: 

V - V + cot^ </>,) - j cot <#>, 
1 + (<>./2Q.)2 cot^ 

(243) 

Yqs has been considered to be real in reactive lines; its exact 

value is (39) 

Yo. = I^J 
Lyjds+j 

Because dp « d, and ds = l/Qs « 1, the above may be written 

where 

(244) 

may be regarded indifferently as the magnitude or the real 
component of Fo«. Consequently, F, may be written 
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The above expression is accurate over the entire range of <t>,. 

Separate expressions for G» and B, may be obtained from it 
as follows; 

Gt — (jo« 

B, = Go. 

tan + cot <^a + ~ 
_^ 

tan cot </>« 
<Pg Aiqlt 

^ (tan 4>, + cot 4>,) - ~ 
fVf_<P» 

20. . 6. 
tan cot <t>g 

(246) 

[Com'ponents of stub admittance {valid for all values of (^g)] 

The function 7, is illustrated graphically in Fig. 54* 

We may verify from the above that Q, is the limit of the 
absolute value of Bg/Gg as 0. approaches zero. (The verification 
is left to the reader.) Another notable fact emerges from (245), 
namely, Qg is also equal to Qo, the selectivity of the stub. (Atten¬ 
tion has been called before to Ihe distinction between this and 
the selectivity of the stub in combination with a shunting load.) 
To prove the point, we will first obtain approximate values for 
G, and Bg, valid for nearly all values of (f), (except in the neighbor¬ 
hood of <f>g = 0 and <t>g = tt). These result when we drop all 
terms of (246) which have Qg in the denominator. Thus, we 
have 
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Bt = “Go® cot <l>g 

[Components of stub admittance. Approximate expressions not valid when </>* 

is close to 0 or nir] 

We see from (247) that 7® is real for <t>, = 7r/2 and has the value 

Now, if /o is the frequency for which Y, is a real, we may write 

n — Z — ^ <t>3 

/o 

and, according to (191), 

O - I 1 
Wa - IS n - 

(n-l) [G® dn 

irJ2 ^®j 
G® d<ha\(<t>g'^'’f/^) 

Trl2 

— i I 
^ [G® d</>® dn (n-l) 

Substituting the value of G® for </>« = 7r/2 given by (248), 

dF, 

d<l>a (</>5=t/2) 
Vo — Tsr- 

tro« 
(249) 

If we differentiate F® as given by (247) with respect to (l>8 and 
substitute 7r/2 for <^®, we obtain jGo® as the result. Hence 

Qo = Q.lil - Q® (250) 

In Sec. 3.12 a general method of measuring Q® and Qp, and 
hence evaluating the line constants, was indicated. In particu¬ 
lar, Qg may be obtained, according to this method, as the Q of a 
short-circuited line section of small length compared to X. This 
may be done by resonating the section in combination with a 
capacity with negligible losses and measuring Qo for this resonant 
system. At high frequency, however, this method is not con¬ 
venient, as the length would have to be exceedingly short. 
Equation (250) suggests the alternative method, valid when 
shunt dissipation is negligible, of measuring Qo for the_ short-cir¬ 

cuited line alonej adjusted to the length X/4, which is numerically 
equal to Q, and may be used to find the attenuation constant. 
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Example. To measure the attenuation constant of a coaxial cable at 

40 me., the following arrangement is used: The cable is cut to a length 

approaching a quarter-wave (1.875 m.) and plugged at one end. The other 

end is connected to a variable frequency, high impedance source (a pentode, 

for example). Facilities for accurate readings of frequency and voltage at 

the input of the cabledare provided. Readings are: 

Frequency, me. Voltage, any unit 

/' = 40,430 V = 21.3 

fo (midband) Vo =* 58.2 (maximum reading) 

/ = 40,680 V = 21.3 

We may consider the shorted cable as a constant conductance two-pole 

receiving energy from a constant current source (Sec. 9.5). Hence, 
Eq. (187) may be used. This may be written 

or approximately, in view of the narrow band 

~ ^-7) 

Thus, we have for Qt 

Q. = Qo = V7.45 - 1 = 412 

and for the attenuation. 

“ “ ^ “ 412^775 = ^ 

It can be readify shown that the sharpness of tuning, as defined 
by Eq. (233), is numerically equal to Qo, or for the stub alone. 
The above computation may, therefore, be carried out without 
change if length readings (at constant frequency) are available 
instead of frequency readings at constant length. Such length 
measurements may present difficulties, however, in view of the 
high accuracy required. (Frequency readings can be accurate 
because they depend on the setting of a specially constructed 
standard.) 

Reverting to the chief subject of this section, the determina¬ 
tion of shunt tuner efficiency, we may express this on the basis 
of Eqs. (240) and (247), provided the stub length is not too close 
to 0 or X/2, in which cases (247) is not valid, and the exact equa¬ 
tion (246) yields too low a value of efficiency for practical 
operation. * 
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Accordingly, we have for the efficiency 

[Efficiency of the shunt tuner] 

and for the transmission loss 

‘ = X (252) 

where Go = characteristic admittance of the line 
Gos = characteristic admittance of the stub 

<j>s = 2tL,/\ = stub angle when adjusted for m.p.t. 
a, = attenuation of the stub line, nep./m. 

X = wavelength', in meters 

Note. 27ra,/X = l/2Qa, where Qs is the value for the stub line. 

Example. Take, as in the preceding example, Q, = 412. Assume the 

stub angle to be 0.18 radians for m.p.t. The efficiency is 

” “ ' - 2^2 ((OTW + = 93.65 per cent 

and the transmission loss 

Lt = 0.0584 db 

10.10. Illustrative examples. 

Effect of dielectric supports on coaxial cable transmission. In 
many coaxial cables, the inner conductor is kept in position by 
regularly spaced supports of low-loss dielectric material. Elec¬ 
trically, each support may be considered as a capacity added in 
shunt to the uniform cable, since substitution of a solid dielectric 
of constant k for an equal volume of air over a small axial length 
d of the cable increases the capacity of the cable by the amount 

Cd = d{k - 1)C 

which may be considered as a lumped capacity shunting the 
cable somewhere within the thickness d of the support. The 
support is assumed to be cylindrical of thickness d; however, for 
a correct evaluation, an equivalent thickness, allowing for edge 
effects, should be used. This can best be determined by direct 
measurement. C, in the above, is the distributed capacity of 
the cable (capacity per unit length). 
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For a wavelength X, the shunting admittance due to each 
support has the value 

Yd = jo>Cd = j 
2ird 1 

X VW 
{k - 1)C = j 

.2^d 
1) 

= j~Goik - 1) 

where Go is the characteristic admittance of the line. Writing, 
for brevity, for the angle 2Td/\ yd for the admittance number 
Yd/Goy the above takes the form 

Vd = j(t>d{lc - 1) (253) 

Consider (Fig. 55) the variation of adjnittance toward load 
through the cable in question, assuming the load to have the 
matching value. ^ This variation may be plotted as the path 
described by the point denoting the complex quantity 

= In F 

(The dual quantity z' was used in the analysis of the multisection 
transformer, Sec. 10.2.) Letting L stand for the length between 
consecutive supports, hereafter called a section, the discussion of 
Sec. 10.2 has shown that the locus of 2' = In Z for points of a 
section is an arc of circle subtending an angle 

with center on*the point 
To = In Ro 

provided Z remains close to Ro. The identical statement may be 
made with respect to the locus of y\ except that the center is 

Qo — In Go 

It follows that, if the load admittance of a section corresponds 
to a value 1//, the input admittance of the same section will 
correspond to the value 

Vi = ^0' + kdr - (254) 

We now aSk for the path described by the y' point as we go from 

^ By “matching value’^ is meant that computed from the dimensions 
without regard to the supports. In practice, when supports are closely 
spaced, an “average^’ value of matching impedance is used. 
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the load side to the source side of one of the dielectric supports. 

Again, if y/ corresponds to the admittance on the load side and 

y/ to that on the source side, we will have 

y/ = In = In (7, + Y^) = In F. (l + 

= y/ + In ^1 + 

Approximately, since Yd<^Yr and Yr ^ Go, 

vt 

and from (253) 

yt = Vr + Vd = yr' + — 1) (255) 

We are now in a position to investigate the path of the y' point 

as we progress from the load in the direction of the source through 

a number n of sections. We will assume that the first support is 

at the load end of the cable and that the load itself has the 

matching admittance Go, 

We have, accordingly, 

At the load: 

y' = go 

At the output of the first section: 

y' = Qo + 34>d{k — 1) 

At the input of the first section: 

y' = go + j<t>d{k - 

At the output of the second section: 

y' = go +i<#>d(i + — 1) 

At the input of the second section: 

y' = go + j<t>d{e-j^^^ + e-J'^^){k — 1) 

At the output of the third section: 

y' = go + j<t>d{l + + e-^^^^){k - 1) 

At the input of the third section: 

y' = go + j<t>d{e~J^^^ + + e-»®^^)(/c — 1) 
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At the input of the nth section: 

y' = go' + j<t>d{k - 1) X 
1 

The last branch of the path (locus of the point through the 

nth section) is circular with radius 

1) i: 
= 1 

If the nth section continued indefinitely, without further sup¬ 

ports, in the direction of the source, the y' point would continue to 

Fig. 55.—Effect of dielectric supports on coaxial line, 

describe this circle. The maximum and minimum values of 

conductance tdward load in this ideal continuation of the nth 

section would be related as follows: 

In t/max In frinin 2(Zn 

hence the standing wave ratio is 

I I an^ , 

—-= = 1 + Ctn + -^T + 
Cjmin 

Because a is small, second and higher order terms of the above 

may be dropped, and we have approximately 

^vn 1 + <f>d(lc — 1) 
n 
^ ^~j2truf>L (256) 

Im =■ 1 I 

fStaJiding wave ratio due to supports of coaxial cable, n supports away from 
matching load] 

In the above, </>d is the angle of line %rd/\ covered by the thickness 
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d of the supports, assumed cylindrical, and is the angle 

between supports. The summation indicated in (256) is best 

obtained graphically as the closing side of an n-sided polygonal 

line, with unit sides and angle 2<j>L between adjacent sides. 

In the important practical case when the distance between 

supports is small compared to the wavelength, the analysis may 

be carried on to an interesting conclusion. In this case, the 

maximum value of the summation, or of the closing side of the 

polygonal, corresponds to a value of n such that the polygonal 

approaches a semicircle. For this value the total line angle, 

covered by the n. sections, is given by 

hence 

n 

^ 24>l = 2?10l = TT 
wi «= 1 

AwnL 
or (257) 

from which we conclude that the maximum value of standing 

wave ratio occurs at a distance X/4 from the matching load (or at 

distances 3X/4, 5X/4, . . .). As for the maximum value itself, 

note that the summation of (256) is now approximated by the 

diameter of a semicircle, in which may be inscribed a polygonal 

having n sides of unit length. The summation is therefore 

approximately given by 2n/Tj and we have 

r^max = 1 + <l>d{k —I) - 
TT 

which may be written, from (257) 

= 1 + (/b - 1) 

or finally 

= 1 + 1) (258) 

[Maximum value of sjv.r. in a coaxial cable with many supports to the wave- 

lengthy for matching load] 

where d — thickness of supports (corrected for edge effects) 

L = distance between supports 

k = dielectric constant of supports 

rt,ma* may be obtained directly from measurements of capacity. 
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The thickness d has been defined through the equation 

Ca = d(k - 1)C 

where Ca is the added capacity due to the support, C the capacity 

of the unsupported cable per unit length. Suppose we measure 

the capacity of a length L of cable (distance between supports) 

with and without one of the supports. (Both measurements will 

actually be obtained by difference, eliminating the effect of 

additional supports necessary for the measurement.) In this 

way, we would obtain the ratio 

CL + Cd C. 

which, by comparison with (258), is seen to be equal to the 

maximum standing wave ratio. In conclusion, the maximum 
s.w.r, in a matched cable with many supports to the wavelength is 
approximately equal to the ratio of capacities measured on a con¬ 
venient length of the cable^ with and without the supports. 

Setting of the shunt tuner for resistive load matching. A graphical 

solution for the values of stub and line lengths of a shunt tuner 

matching a line to a generic load has been given (Fig. 51). If 

the load is resistive, the analytical solution is sufficiently simple 

and straightforward to warrant its use in preference to graphical 

methods. We must have in this case 

gr + j tan </>/. . 

1 + jgr tan 4>l ^ Go 
cot (f>8 = I 

where yt = Yi/Gq is the transformed admittance number which 

must equal unity to match the line; gr = Gr/G^ = Ro/Rr is the 

conductance number for the load; Go and Go« are the charac¬ 

teristic admittances of line and stub, respectively; and <t>L and 

are the line angles for line and stub. Solving the real part of the 

above, we have 

tan <f>L = (259) 

Using th^ above value of tan <t)L and solving the imaginary 

part, 

cot 4>8 = 
RiS$ / /^r __ ifloX 

Ro \\Ro yiRrJ 
(260) 
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Note that \/Rr/Ro is the ratio of currents. The above may be 

used to compute the selectivity, sharpness of tuning, and effi¬ 

ciency. A numerical example is given below. 

Example. Suppose the tuner is used to match a 77-ohm cable to a 10,000- 

ohm load. Assume that the stub and cable have the same characteristic 

impedance. We have 

= 11.4 cot 4>. = 11.4 - ~ = 10.522 
" xio 11.4 

<t>, = 0.0943 

Equation (251) for the efficiency gives in this case 

tIoV — 1 (0.0943(1 - (10.522)2] + 10.522) 

'Faking the same value of Qt as in the example of Sec. 10.9 {Q, = 412), 

rj = 97.44 per cent 

Note. When cot 4>„ is a large number, the efficiency may be written more 

.simply 

, = |l 100 (261) 

and for resistive loads 

r, = 
\/Rr/Ro — \^Ro/Rr 

Qs 
100 (262) 

The efficiency has the same value if the direction of transmission is reversed. 

Lumped equivalent of the line stub. Stub shunted by capacity. 
Stubs are used in place of lumped LC tank circuits in uhf amplifi¬ 

cation. The characteristics of the amplifier stage, particularly 

the gain, depend on the total value of plate circuit admittance, 

which in this case is the stub admittance added to the input 

admittance of the following stage. When the system is tuned 

this total value reduces to a conductance, and this determines 

the maximum gain. In the following, the problem will be simpli¬ 

fied by considering the stub shunted by a capacity C (for the 

value of C to be used in gain computations, see Fig. 566 and 

Sec. 16.6). The conductance of the combination is therefore 

the stub conductance, given over the useful range by Eq. (247). 

This is a function of 0,, the stub angle. When the system is 

tuned, this angle will differ from the value x/2, which would 

produce resonance without the shunting capacity. Hence, the 

plate circuit conductance for maximum gain and the maximum 
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value of gain itself depend on the value of C and on the fre¬ 

quency. This dependence will now be investigated. 

For an exact solution, we would have to solve a transcendental 

equation, which would require graphical methods. We will 

compromise by expanding cot <^>s, which appears in the stub 

admittance formula, into an algebraic expression; by so doing. 

Cp.C^.Cp, /m+erelec.capacities /I =3x10^; Ls mmeters 
^p.plate conductance,(small) (c)-Z’ekmeni ('<^)-3*element 

"Lumped"eciuivalents of stub 

Fig. 56.—Concentric line used as coupling impedance, 

we will assirqilate the stub to a parallel LC combination and 

treat it as such. We have for the susceptance of the stub (247) 

* Bg ~~ G()g cot 

and for that of a parallel LC system 

= ,») 
For an approximate equivalence of the two expressions over a 

useful frequency range, we must satisfy two conditions; namely, 

1. The two functions must vanish for the same w. 

2. The two functions must have the same derivative at the 

zero point. 

By imposing these conditions, we may obtain values of L and C 

which may be used to represent the stub in problems where only 

the frequency is variable. This does not, however, solve 

the present problem, nor any problem where adjustments of stub 
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length are contemplated. What we need is an expression for B 

in terms of Go® and 4>s but having the form of (263). To obtain 

this, observe that to satisfy the first condition we must have 

simultaneously 

<t>. 

T 

2 

"" Vlc 

To these we must add the general relation 

27rL« oiLs 

where is the wave velocity in free space (Sec. 3.6). Combining, 

we have 

^ CO </>«!> tU 
(264) 

which is one of two equations needed to find the equivalent 

values of L and C. Furthermore, we find 

Til T \ ll / T 

which enables us to write (263) in the form 

We have not yet made use of condition (2). Differentiating the 

original function (247) we obtain 

dB^ 

d(t>s{ J(-“0 
= Go, 

and differentiating (265), 

d^ 

d<l>s 

L =r /^y?4- 1^ 
.(/..'-o, LVi 20.vJ(«-=i) TVi 

Now, equating the two derivatives, 

ii 

C_r 
l-jG,. (266) 

The above, combined with (264), gives the. equivalent values of 
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L and C shown in Fig. 56c. Substituted in (265), it gives 

TtGq, /2<f>a 

4 \ X 
(267) 

Comparing the above with (247), we find that by assimilating the 

stub to a lumped system we have made the approximation 

cot /■'s-/ 

X 

4 
(268) 

The same approximation enables us to consider in place of 

the stub conductance (247), the expression 

2)+5 O+t)] 
(269) 

We must now write the tuning equation in terms of and Cw, 

solve it for and substitute the solution in G/. The tuning 

equation is 
BJ + Co) = 0 

Writing in the expression (267) for B/ and solving for we 

obtain the positive root 

- Ro.Ccc (270) 

It is best to solve the above numerically for any specific case, 

and substitute the result into (269). An example follows. 

Example. Consider a stub of 77-ohm characteristic impedance, with 
Q, =* 412 (as in preceding examples). To be computed, the conductance 
of the stub, when tuned across a 10 fjipf capacity, at 200 me. 

We have 
RoCco = 77 X 2t X 200 X 10 X 10-« = 0.96 

<^.=I +(^ X - -96=0.88 

Hence 

«•' = 77 X'8-X 0^88 X 412 ^ X (0.88)« + 11] = 41.9 .mhos 

For a comparison, let us find the conductance of the stub when tuned 

alone. This is (for </>, « x/2) 

G. = = 24.95 .mhos 
4 Cj» 
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The shunting capacity is therefore responsible for a 40.5 per cent drop in 

gain (assuming a constant current source). 

Recalling the difficulty, inherent to the use of lumped tank 

circuits, of obtaining “high Q” coils with inductance small 

enough to tune out the input susceptance of a tube at very high 

frequency, we note that this difficulty is not eliminated by the 

use of distributed systems, such as the stub. Although quanti¬ 

tatively much better results are obtained, the trend is the same. 

Suggested Exercise. A more exact equivalent of the stub than that of 

Fig. 56c is the three clement two-pole of Fig. 56d. The equivalence is 

based on the coincidence of the first zero and the first pole (barring the 

origin) of the two admittance functions, and of the derivatives at the first 

zero. Check the values of the elements given in Fig. 56d, which were 

obtained on this basis. 



CHAPTER XI 

A BRIEF REVIEW OF ELECTROMAGNETIC THEORY. 
STATIC FIELDS 

11.1, Introduction. At the start of Chap. I the distinction 

between circuit, and network problems was briefly introduced 

as a preliminary to the study of four-terminal networks. The 

solution of both network and circuit problems depends on cer¬ 

tain basic assumptions that only field theory can justify. In a 

sense, therefore, every network or circuit problem is a field 

problem to begin with. A logical presentation should start out 

with field analysis and continue on to circuits and networks. 

This book is not designed to cover that much ground and assumes 

some knowledge of field theory as well as an understanding of 

alternating currents and complex algebra. 

It is expected, however, that some readers, while well 

acquainted with certain aspects of field theory, may not have a 

comprehensive picture embracing field, circuit, and network 

theory as parts of a whole. 

If one takes network assumptions and definitions for granted, 

one can go a very long way without such a picture. Trans¬ 

mission line tiieory, for example, has been based so far on these 

assumptions entirely. Eventually, however, these assumptions 

must be questioned to see just what problems can or cannot be 

treated in this way. If such a discussion were presented at 

the start, much of its significance would be lost. 

These are the reasons for undertaking a review of field theory 

at this point. The object is to trace out a continuous thread from 

the general laws of electricity which relate to the field vectors 

to those particular laws (having the form of voltage-current 

relations) which justify the treatment of circuit and line problems 

as it has been carried out up to this point. There will be an 

effort to achieve this limited objective with the simplest possible 

means, without loss of rigor or generality. Hence, only the 

integral form of the field equations will be cited. The only 

concept that the reader must have clearly in his mind from the 
248 
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outset is that of a vector field. It is anticipated, of course, 

that many readers will find this review unnecessary and will pass 

on to subsequent chapters. 

11.2. Electric Current and Electric Field Intensity. In 
defining the fundamental electrical quantities, we must remem¬ 

ber that they are known to us only through the observation of 

phenomena or actions which we ascribe to them (force actions, 

visible discharges, etc.). If we confine ourselves to the study of 

currents within conductors (as opposed to space currents), we 

may consider the charge or quantity of positive electricity as 

the cause of all observable phenomena. Of these, force actions 

are particularly important as they constitute the link between 

electrical and mechanical quantities. We need not inquire into 

tne nature or even the existence of the positive charge, provided 

we assume it to be so distributed as to give rise to the existing 

force actions. The positive charge is correctly thought of as 

the end point of a line of force^ and nothing more. It is helpful, 

however, to think of it as a fluid (to use an old-fashioned word) 

which is distributed continuously^ although seldom uniformly^ 

within material media, where it may flow or remain stationary. 

Consider a small particle of matter upon which lies a charge 

Q. Imagine it placed at a point P of a region including a system 

of charged bodies. There will be a force F on the particle; 

this will depend on its position in space (the coordinates of P) 

and on the amount of charge Q. It will not depend appreciably 

on the distribution of Q over the particle; as this is of small extent. 

Now, the limit 

E = lim 5 (271) 
Q-*0 H 

[Definition of E] 

has a definite value depending on the coordinates of P; this is 

a vector value, or better still, because it varies from point to 

point, a vector point function, generally known as the electric 

field intensity, or electric force vector. 

Next, take a system of conductors through which charge 

is flowing. We shall fix our attention now not on a point of 

the system, but on a surface, plane or otherwise, and not neces¬ 

sarily extending over a conductor cross section. Through 

this surface a certain charge Q will have , passed during a time 
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interval r ending at time L The limit 

i = lim ^ (272) 
r—+0 r 

[Definition of i] 

is the current through the surface at time i. This is not a vector, 
but a scalar quantity; and not a point function, but a surface 
function, having a particular value for every surface in space. 
Alternatively, i may be defined as the time derivative of a time 
function Q{t) equal to the total amount of charge having traversed 
the surface from some initial time U to the time {i — dQ/dt). 
The current i through a given surface may or may not vary 
with time. 
. 11.3. Current Density. The Surface Integral. Because the 
current is a surface function, its value must be obtainable 
from that of a suitable point function integrated over the sur¬ 
face. As a parallel, consider the rate of flow of water in a 
river; if we know the velocity of water at all points of a cross 
section of the river bed, we may arrive at the rate of flow. 
Most methods of flow measurement are based on a measurement 
of velocity; the alternative consists in measuring the amount 
of flow over a known time interval, which corresponds to 
Eq. (272). 

If p is the charge density and U its velocity of flow, we may 
write 

J = pU (273) 
[General] 

Both J and U are vector point functions. J is called the current 
density, or current flow vector; if J is known for all points of a 
surface S, then we may evaluate the current through S by the 
surface integral 

i = ffgJ„dS (274) 

[General] 

In the above, Jn stands for the component of J along the positive 
normal to dS (Fig. 57). 

The importance of thoroughly understanding surface (and 
line) integrals cannot be overemphasized. It is not necessary 
in most cases to acquire practice in the computation of such 
integrals, which is very involved in any except the simplest 
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cases. What one should possess is a mental picture, for example, 
of the surface integral or flow through a surface in relation to the 
vector which represents the flow at any point, which may be 
velocity of flow, flux density, current density, stream vector, 
etc. Figure 57 may be found helpful to this end. 

From the form of Eq. (274) we note that, if the current density 
J is known throughout a region, we may evaluate the current 

face integral. 

through a surface of the region, provided we assign a positive 
direction to the normal at some point of the surface. Intuition 
tells us that the positive direction of all the other normals to 
the surface is determined in consequence. If we do not assign 
the positive normal, there is no way of telling in which direc¬ 
tion the surface is traversed by the current i, since i is a scalar. 
If the positive normal is assigned, we may conclude that the 
current flows in the direction of the positive normal if i > 0, 

and vice versa. 
When we put an arrow next to a wire in a schematic, this is 

intended to show not the direction of the current but the direction 
of the positive normal to the cross section at which current is 
measured. The current flows with the arrow if positive, against 
it if negative. 

We have so far introduced three vector point functions: 
E, U, and J. The velocity U has little physical meaning except 
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for free charges, and we shall not refer to it further. The 
electric force vector E and the current flow vector J are impor¬ 
tant because they lead directly to the concepts of current (274) 
and of voltage, as the. following will show. 

11.4. Voltage. The Line Integral. Ohm’s Law. The defini-. 
tion of voltage that follows is a general one, like that given 
for current (4). No restrictions are imposed, not even those 
that are taken for granted by engineers in most applications. 
For this reason it may sound unfamiliar. We must first state 
that voltage is a line function^ in the sense that it has a value 
for any particular open line or path that we may trace in a 
region. This line may be partly or totally within conductors. 
We might add more precisely that the '‘direction of the positive 
tangent to the path must also be assigned before we say that a 

Posifive ivingenf 
lo I dip 

Fig. 58.—Voltage over a path (•=/ Eidl^. Illnstrates line integral. 

certain voltage is positive or negative. Having assigned a 
path I and its positive direction, the corresponding voltage is 

V == El dl (275) 

[Definition of v] 

where Ei is the component of E, the field intensity, along the 
positive tangent (Fig. 58). 

The integral of (275) is called the line integral of E over L 
While the surface integral has to do with the idea of floWj the 
line integral is associated with work done. The work W done 
by the force F of the field, in moving a charge Q over a path i, 
may be written 

W = f^Fidl 



Sec. 11.4] VOLTAGE 

Dividing by Q and letting Q approach zero, 

253 

lim ^ = [ ^dl = [ El dl = V (276) 
Q->o y Ji Q Ji 

Hence, we have the following definition of voltage: The voltage 

over I is the work done by the force of the field in moving a charge 

Q along I in the 'positive directionj divided by Q, for Q approaching 

zero; or, alternatively, the voltage over I is the work done by an 

outside force {electromotive force) in moving a charge Q along I in 

the negative direction^ divided by Q, for Q approaching zero. 

The arrow between terminals (Fig. 1 and others) is intended 
to show the direction of the outside force, or electromotive 
force, which would ideally perform the work W of Eq. (276). 
This arrow is therefore opposite to the positive direction of 1. 

When the voltage is positive at the terminals, W must be positive, 
hence E and the arrow must be in opposite directions. 

As the current is the integral of J over a surface (4), and 
the voltage is the integral of E over a line, we would expect 
a relation between E and J to yield an expression of voltage in 
terms of current, at least in a particular case. Such a relation 
exists for points of a homogeneous solid conductor. It is simply 

J = tE (277) 
[Valid within homogeneous solid conductors] 

where 7 is a material constant, the conductivity. As an applica¬ 
tion of (277), consider (Fig. 6la) a section of conductor; assume 
that the current through it is the same for all cross sections at 
any time and that J is uniform over each cross section. Then 
we have for the current 

i = IJI-S 
where S is the area of a normal cross section. For the voltage 
taken along a current streamline^ 

Now, letting. 

I dl/yS 

1 A streamline or flow line is a line whose tangent at every point indicates 

the direction of the flow vector (in this case, J) at the point. In the case of a 

force vector, such as E, such a line would be called a force line. 
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we have the voltage-current relation 

i = Gv (278) 

The above {Ohm^s law) is valid for conductors when the current 
is the same in all cross sections and provided the voltage is measured 

along a streamline of current. The restrictions may be removed 
when J and E are time constants at all points of the region. 

11.6. Definition of a Static Region. Electrostatic Potential. 
Magnetic Field Intensity. If, within a region of space, E and J 
are constant with time at all points, we will refer to it as a 
static region; we will call the vector fields of E and J in the 
region static fields^ in spite of the. fact that there will be, in 
general, a flow of electric charge in the region. The study of 
static fields is wider than the study of electrostaticsy if this term 
is taken to mean that there are no moving charges (no currents). 
It is essentially the study of direct current systems. A revision 
of the concepts of static fields becomes necessary when the field 
vectors, E and J, change with time; but as long as these vectors 
are time constants, such a revision is not necessary. 

In a static region E and J obey certain laws, which can be 
expressed in several ways. We will call them the laws of static 

fields; they are actually no other than the well-known Kirchhoff 

laws, expressed in a general form, as follows: 
First law of static fields: The voltage over a closed path within a 

static region is zero, or 

' f Eidl = 0 (279) 

[Static fields only] 

where I is any closed path or loop within the region. The integral 

fi 
is often called circuitation of E over 1. 

Second law of static fields: The current through a closed surface 

{surface totally enclosing a volume) within a static region is zero, or 

= 0 (280) 

[Static fields only] 

As an important corollary of the first law, we have the follow¬ 
ing: The voltages over all the paths having the same end points are 
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equal in a static region. This is illustrated in Fig. 59a; the reader 
may easily verify it by considering two of the paths shown. 
They form a loop, over which the voltage must be zero (279). 
Clearly, then, in a static region the voltage is no longer a line 
function; it is a point function, in the sense that for each pair of 
points taken in a definite order there exists one and only one 
voltage. We may now talk without ambiguity of the voltage 
between two points; in general this is not possible, although in 

(a)~ln a siafic region: iSJ'Jn a s+cific region: 

Hence the voltages over all Hence the currents through all 
paths ti I2 v/fth surfaces bounded by the same 
common endpoints are equal contour I are equal. Surfaces 

are partially shown 

Fig. 59.—Geometric significance of Kirchhoff’s laws, generally valid only 

for static fields. 

many cases this expression, while lacking precision, has an 
accepted practical significance. 

Consider, then, the voltages between each of a set of points 
Pi, P2, P3, . . . and a reference point Pq. We may associate a 
value of voltage to each point of the set, always taking Po as 
the second point. In fact, we may do this for all the points of 
the region; in this way, voltage becomes a scalar function of the 
point coordinates, or a scalar point function. This is called the 
electrostatic potential 

U = -T El dl 
JPo 

A static field of E may be represented in two ways: by mapping 
the force vector at every point, or by mapping the potential 
function. The second method is easier, because the potential 
function, a scalar, is denoted by a single number. A set of 
equipotential surfaces, each corresponding to a value of the 
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potential, defines tie field. The reader is probably on familiar 
ground here; if not, he should consult the literature. 

The second law of static fields (280) also has an important 
corollary, as follows: The currents through all the surfaces having a 

common boundary are equal in a static region. This corollary is 
illustrated in Fig. 595. It is an immediate consequence of (280) 
and suggests that, in a static region, the current is not a surface 

function but a loop function; one and only one value of current 
traverses every closed path (loop) of the region. It is the current 
linked with the loop. To grasp what this means, imagine the 
streamlines of current to have substance. If we thread a loop 
through them, we will catch a definite number within the loop. 
But this can only be true if each streamline is itself a loop. If 
we say that two lines link each other, the phrase has definite 
meaning only if both lines are closed. We conclude that, 
within a static region, the streamlines of current are closed; 
they do not terminate anywhere. Under such conditions the 
vector J is said to be solenoidal (tubular). We can draw further 
conclusions from the solenoidal quality of J in a static region. 
If the current is a loop function, then it should be possible to 
obtain its value by the integration of a point function over the 
loop. A new point function has to be invented for this 
purpose, just as the potential function was introduced when 
it became possible to associate voltage with a point. Let us 
call this new function H (known as magnetic field intensity). It 
is impossible to define H as we defined E, as such a definition 
presupposes a force measurement, and the means for this are 
lacking where H is concerned. An incomplete definition of H is 
implicit in the following: 

= i (281) 

[Static fields only] 

known as Ampere^s circuitation law. The definition is incom¬ 
plete because there are many fields of H for which (281) would 
be satisfied; this ambiguity disappears, however, if we further 
state that H must obey (283) at every point, as will be shown. 

For E(^. (281) to have exact meaning, we must specify the 
positive direction of the circuitation. There is a general rule 
which relates the positive normal to a surface with the positive 

tangent to its contour (Fig. 60). The rule is easily remembered 
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if we think of a disklike *surface; looking in the direction of 

the normal, the tangent points clockwise. 

The reader will not fail to see a certain similarity between 

the expressions of voltage in terms of E (275) and current in terms 

of H (281). Both voltage and current are given as line integrals. 

However, current may be so expressed only when it is constant 

with time, while for voltage the expression is general. Further¬ 

more, for current the line integral must always be taken around 

a closed loop. Finally, there is this difference, that E has 

PosifivG iangenf 
of I 

Progress of n'ghi hand screw 

^^^Rofah’on ofrighfhandscrev^ 

Fig. 60.—Conventional relation between the positive normal to a surface 
and the positive tangent to its contour. 

definite meaning apart from voltage, which is a derived quantity; 

H, on the contrary, is an abstraction predicated on current. 

11.6. Electric and Magnetic Flux Densities. As the presence 

of an electric charge is manifested by a force to which the charge 

(or the charged body) is subject, the presence of a current is 

revealed by a force which acts upon the current (or the con¬ 

ductor carrying it). It is possible to imagine experimental means 

for measuring the force acting on a very short and thin current 

element in the presence of other currents. These experiments 

would show that the force varies in direction and intensity 

depending on the orientation of the current element; we cannot, 

therefore, arrive at a vector point function similar to E (271) 

simply by dividing this force by the current and letting this 

approach zero. However, suppose we let the current approach 

zero by making the cross section dS of the element smaller and 

smaller, keeping the current density J in the element constant 

in value and direction and uniform over the cross section. 

Then we could find the value of 

lim 
(dS->0) 

F 
dSdl 
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where dl is the element length, assumed small {dS dl is the element 
of volume). If we computed the above limit, which is a vector 
quantity, for all possible orientations of the element and current 
densities, we would find that it satisfies the vector equation 

[Definition of B] 

where B is the same in all cases, independent of J. Interpreting 
the cross-product notation, the limit of force over volume for 
small volumes is normal to the plane of J and of a vector B, 
function only of the position of the current element in space. 
The value of the limit is equal to the area of the parallelogram 
constructed on J and B. 

Equation (282) may be taken as the definition of B, the 
magnetic flux density or induction vector. The definition is 
complete, although it would take more than one experiment to 
determine B at any point; several orientations of the current 
element would be necessary. 

The value of B at any point of a region depends on the dis¬ 
tribution of the currents in the region. This dependence is 
expressed by the equation 

B = //H (283) 
[General] 

where y (the permeability) is a scalar quantity which depends 
on the mediuni, and also, when the medium is ferromagnetic, on 
B itself. Equation (283) is not sufficient to determine B from a 
given distribution of currents, because H is not uniquely defined 
(only the circuitation of H around any particular loop is assigned 
by the current distribution in a static region). To (283) must 
be added a general experimental law relating to B, namely, 
that B is solenoidal everywhere under all conditions, or 

B„dS = 0 (284) 

[General] 

Equations (281), (282), and (283) together permit us to find B 
around a given current distribution. H may be regarded merely 
as a step in this procedure. Nevertheless, (283) and (284) 
jointly determine the vector H at all points, and therefore the 
H field is uniquely defined. 
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There is a formal similarity between the induction vector B 
and the current density in a static region. Both are solenoidal. 
Hence, in a static region, a definite current links each closed 
line of magnetic flux, and vice versa. Hence, also, the magnetic 

flux through a surface^ a scalar, defined by 

<t> = f fgB„dS (285) 

[Definition of <1‘] 

depends, like the current through a surface in a static region, 
only on the contour or loop I bounding the surface. It follows 
that we can invent a new vector point function such that its 
line integration over a contour gives the magnetic flux through 
the contour. This neiV function bears exactly the same relation 
to B as H does to J. It is called the magnetic vector potential, A, 
defined by the equation 

4> = f^Ai dl (286) 

supplemented by the condition that A must be solenoidal in a 
static region.^ Like the electrostatic potential, the vector 
potential is useful in field-mapping problems. 

So far nothing has been said about the electric force vector 
beyond defining it (171) and stating that its loop integral is 
zero in a static region (179). There is also, as we would expect, 
a general law relating E to the charges in the region. This 
relation, like that between B and the currents of the region, may 
be expressed by introducing a new vector point function, serving 
as a link between charge and E, just as H serves as a link between 
current and B. Let us call this new vector D, the electric dis¬ 

placement vector or electric flux density. This will be defined by 
expressing its relation to E on the one hand and to electric 

^ Under dynamic conditions A is defined as follows: 

or, vector analytically, IB = curl A 

=divA 

for the significance of U, See Sec. 12.3. 
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charge on the other. The relations are 

D = eE 
[General] 

(287) 

Q = D„ dS (288) 

[General] 

In (287), € is a material constant, the permittivity; in (288) Q 
is the charge contained within the closed surface S. Equation 
(288) is the well-known law of Gauss, The electric flux through 

a surface is defined by 

= I f^Dn dS ^ (289) 

[Definition of 

11.7, Inductance. Consider the three equations 

J = tE (277) 
B = mH (283) 
D = eE (287) 

We have seen how (277) leads to a relation between the surface 

integral of J (current) and the line integral of E (voltage) within 
conductors (Ohm’s law). Similar relations may be obtained 
from (283) and (287). In each case, however, there has to be 
a unique value for both the line and the surface integral within a 
certain region. 

For examplS, in the case of a section of conductor (Fig. 61a) 
terminated by equipotential cross sections, there is a unique 
value for the voltage across the section and the current in the 
section. We can therefore define (if not compute) the ratio 

V 

or the conductance of the section and show that, because of (277), 
G is constant. 

Consider now (283). The surface integral of B is the magnetic 

flux ^ (285) and the line integral of H, taken over a loop, is 
the current through the loop, but only in a static region (281). 
Imagine (Fig. 62a) that all the magnetic flux of a region is 
channeled within a doughnut-shaped core and all the current flow 
lines are channeled within a ring of wire linked with the core. 
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^.^-Illus+rafing conductance G 

t 
fjeldi « 

where: J=yE 
Surface S e^fends over 
conductor cross section. 

Line L extends to ''ends'* 
of conductor (terminal 
equipoten Hals) 

Surface S, norma/ 
toJ and E at 
all points (equipotentia!) 

Line codirecfiona! 
with J and E ata// 
points (stream line) 

Current path of 
small cross section 

L ine 4 codirectionat 
-with Hand B 

(flux tine) 

(b)- Illustrating 
inductance L: , SfjBlds 0 

where B ^julH 
Surfaces is bounded by path ofi. 
Line I is dosed and traverses S 
Definition applies when current path 
has small cross section, andp is constant 
for other definitions see Fig. 62 

Surface S, 
^normal to HandB 

Surface S, norrria! 
to E andD (oartia/ty 
shown: entire surface 
separates conductors 
completely) 

Perth 4 codirectiona! 
with E andDfforce tine) 

-Illustrating capacitance C. 
ffg/D/ds 

' fjElM 

where: D-eE 
Surface S "encloses"either 
conductor. Path I terminates 
at conductor surfaces. 

Fig. 61.—Conductance^ inductance, capacity. 

Under these conditions, taking the loop integral of H along a line 
of magnetic flux (inside the core) 

i= j^Hidl iH| dl = ^ ® dl 

Assuming (for simplicity) B uniform in the core, and letting 
S stand for its normal cross section, 

$ = PIS 
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Hence 

But as the B field is solenoidal, must the the same at all cross 
sections and can be taken out of the integral sign 

which can be written 
$ = Li (290) 

having let 

Fig. 62.—Definition of inductance in special cases. 

L, the inductance, is constant if ju is constant. This, unfor¬ 
tunately, is not true of ferromagnetic materials, for which an 
equivalent inductance may be defined for specific purposes. 

Even assuming p. constant, the significance of L is restricted. 
The example given is a particularly simple one, selected for its 
similarity with that of Fig. 61a. 

Inductance could also be rigorously defined if the current 
made several turns around the core; all the flux lines in this 
case would still have the same value of linked current (current 
crossing a surface whose contour is on the flux line). When the 
magnetic flux is everywhere in space instead of being confined 
within the core, the inductance can be defined only if the current 
flow's within a wire of negligible cross section (Fig. 616). Sup¬ 
pose, in fact, the current to flow in a sizable conductor (Fig. 626) 
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penetrated by flux. Some flux lines would, in this event, link 
more current than others. There would be a range of values for 

Hi dl and the general definition* 

L I Is 
(292) 

[Definition of inductance] 

would not lead to a unique value. In such cases one can define 
the external inductance by means of (292), with the understand¬ 
ing that the surface S has its boundary on the surface of the 
conductor, and that this boundary is the loop I (Fig. 626). 
Thus defined, the external inductance is not rigorously single 
valued, but very nearly so. Another definition of inductance 
is based on the energy associated with the flow of current; this 
definitions®^ is more general but not useful for our limited purpose. 

In any case, inductance ceases to have exact meaning when 
J is not solenoidal everywhere. If the current flow lines are 
open, each loop I can no longer be associated with a unique value 
of current. It follows (Sec. 11.5) that inductance has exact 
meaning only in a static region. This will come as a surprise 
to many, who may be accustomed to the use of inductance in 
a-c problems. Actually, the inductance, computed or measured 
for static (d-c) conditions, may be considered approximately 
equal to the ratio ^/i at all times, up to a value of frequency 
which depends on the approximation required and on the 
geometry of the system. 

If the geometry is particularly simple, one can define a dis¬ 
tributed inductance which continues to have exact meaning 
up to extremely high frequencies. Consider a parallel trans¬ 
mission line. The static field configuration may be worked out 
by the method shown in Fig. 63 (Sec. 11.10). This configura¬ 
tion, within an orthogonal cross section, also obeys the laws of 
dynamic fields (MaxwelFs equations), as we shall see (Sec. 12.4). 
This does not mean that other dynamic configurations are not 
possible. It can be shown, however, that these do not occur 
except when the wavelength is comparable with the lateral 
dimensions. 

1 The absolute values of B and H may be used instead of the components 
Bn, Hi, if / is a flux and S cuts all flux lines orthogonally (Fig. 61). 
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Assuming, then, the configuration of Fig. 67, we may define 
the distributed inductance as follows: 

I — lim 
(Az-^O) ^ Az 

[Definition of distributed inductance] 

(293) 

where i is the current through either wire at a given cross section, 
Az the thickness of a slab including this cross section, and A<I> 
the external flux in the slab (Fig. 67). The quantity A4>/A2: may 
be interpreted as a linear flux density, Z is a constant because 
this linear density is proportional to the current all along the 
line. 

The distributed inductance defined in this way (more exactly 
called the external distributed inductance, see Fig. 626) varies 
slightly with the current distribution within the wire, hence 
with frequency. The reader is referred to the extensive litera¬ 
ture on this subject.For the inductance coefficient relating 
to systems of several currents, see Sec. 14.3. 

11.8. Capacity. Going back to the derivation of Ohm\s law 
(278), if, instead of a section of conductor, we consider a section 
of dielectric limited by two cquipotentials, which presupposes 
static fields (Sec. 11.5), we arrive at a relation between the electric 
flux ^ and the voltage v similar to Ohm^s law. The only differ¬ 
ence is that Djs taken in place of J, € in place of 7. 

Consider the dielectric of a condenser in which D is assumed 
uniform overreach equipotential. We have for the voltage 
taken over a line of D between the end equipotentials (the 
condenser plates) 

v= l\E\ dl 

For the flux we have 
^ = ID’i.S = e\E\S 

hence 

V = ^ 

Letting 

C^-J- 

dl/eS 

we may write the above in the form 

= Cv (294) 
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If we define the capacity by the above equation, as the ratio 
of electric flux and voltage, we associate this parameter with a 
portion of the dielectric, traversed by a given ^ or adjacent to 
a given portion of the conductors. In the absence of such qualifi¬ 
cations, it is understood that capacity is the ratio between the 
entire electric flux and the voltage of the two-conductor system 
(Fig. 61c), or, from Gausses law, Eq. (287), 

[Definilwn of capacity] 

(295) 

The expressions of capacity and inductance (291) and (295) are 
dual; however, to obtain inductance, we divide an integral 
taken over an open surface by an integral taken over a closed 
line; for capacity, an integral over a closed surface is divided by 
an integral over an open line. 

Capacity, like inductance, has no exact meaning outside 
a static region, although it may be used with good approxima¬ 
tion for slowly varying fields, particularly when the spacing is 
close. Nor can capacity be defined if there is electric charge 
distributed in the space between conductors. In this case various 
surfaces enclosing each conductor would also enclose different 
amounts of space charge and would be traversed by different 
amounts of electric flux (Gauss\s law). 

The concept of capacitance, like that of inductance, can be 
extended to include dynamic conditions if the geometry permits. 
The distributed capacity of a transmission line is an example. 
This parameter is similar in all respects to distributed induc¬ 
tance. Its definition is (Fig. 67) 

C = lim 
(A^-^O) V lAli 

[Definition of distributed capacity] 

(296) 

Partial capacities and capacity coefficients relating to systems 
of several conductors will be discussed in Sec. 15.1. 

11.9. Recapitulation. The Unit System. It is advisable at 
this point to cast a bird^s-eye glance over the ground already 
covered before preceding further. We may do this with the 
help of the following table, which brings together the quantities 
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of electromagnetism and their mutual relations. Only those 
relations involving the quantities themselves and length (or 
powers of length) have been included in the tabulation. Rela¬ 
tions involving time, or time, length and mass (force or energy), 
are best considered separately. Of these, some have already 
appeared as definitions of i, E, and B. Others (Maxwell’s 

Mutual Relations between the Quantities of Electromagnetism 

Scalar Vector 
quantities quantities 

lAl 
Q -// 

Dnds 

a-up e - cct) 

Center i ^ Go(^) 

V = ( E,dl (286) I [ El dl = 0 

I u I 

Line 

D = tE 

),_, 
A.' 

J = yE 

(*) 

J = yK (*) I ^ Jnds (277) I ^ Jnds = 0 

Lower I 
Group I 

m 
4. = L((t) 

/■ 

/ (•) 

/ t = / Hidl 

B = ^// 

-P = J Bnds (283) 1 j ^ B„ds = 0 

B 

Notes. Two quantities symmetrically placed about the center line are dual. Two quanti¬ 

ties similarly placed in their respective groups are of the same order. 

Quantities shown thus: |^, serve to define the others. Arrow points to defined quantity. 

Relations marked thus: (*) are valid only in static regions. 

Relations marked thus: (t) have significance only in particular cases. 

For relations involving time (dynamic relations) see Sec. 12.1. 

equations) will be taken up later. Many more do not come 
within the scope of our analysis. 

Looking at the tabulation, we observe two groups of four 
quantities, thus: 

Q D 
V E 

i H 
^ B 



Sec. 11.9] RECAPITULATION 267 

These eight qilantities may be paired together in two distinct 
ways. We may, for example, take each quantity and its dual, 
which has been arranged symmetrically about the center line. 
For example, Q and $ are dual; D and B are dual. Dual quanti¬ 
ties are formally similar; similar relations exist between 
dual sets (the relation of D to Q is similar to that between B 
and <l>). But no general relation exists between a quantity and 
its dual. 

Another way of pairing quantities together is by what may 
be called their order. Each member of the upper group (Q, 
D, Vj E) occupies a definite order or position within the group, and 
so does each member of the lower group. Thus, for example, 
E is defined in terms of Q and force (271). Likewise, B is defined 
in terms of i and force (282). D is defined in terms of Q by 
the law of Gauss (287); the definition is not unique, however, 
and has to be supplemented by a relation with E. Similarly, 
H is defined in terms of i by Ampere’s circuital law, but not 
uniquely; a relation with B must be added. 

If we move the upper group downward until Q coincides with 
i, each quantity will coincide with the quantity of the same 
order. In this way, D may be paired with H, E with B, v with 
and Q with i. 

This second type of correspondence (by order) differs from 
the first (by duality) in that there are general relations between 
terms of the same order, and they are most important. These 
relations involve time and will be taken up in the next 
chapter. 

For the sake of continuity, no mention of units has been made 
so far. If the equations which we have taken as definitions are 
to be free of numerical constants, which is highly desirable, 
the definitions themselves must serve to establish the dimensions 
of the defined quantities, hence their units. The system of units 
thus evolved, starting from the international units of length, 
mass, and time (meter, kilogram, and second), and the coulomb, 
is called the rationalized m.k.s. or Giorgi system. The following 
table gives for each quantity the equation serving to define it. 
(by number), and, accordingly, the dimensions and the units. 
Dimensions and units will be found to check if one bears in 
mind the dimensions of the derived units (ampere, volt, weber, 

henry, farad). 
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Dimensions and Units 

Sym¬ 
bol 

Name 
Defined 

by equa¬ 
tion 

Dimensions 
as defined 

Units 

Q Electric charge _ Q Coulombs 
D Electric displacement 287 Coulombs/sq. m. 
i Current 272 T-^Q Amp. 
J Current density 274 L-^T-^Q Amp./sq. m. 
H Magnetic field intensity 281 L~^T-^Q Amp./m. 
V Voltage 275 L'^T-HIQ-^ Volts 
E Electric field intensity 271 LT-HfQ-^ Volts/m. 

Magnetic flux 285 Webers 
B Magnetic induction 282 'T-mg-^ Webers/sq. m. 
G Conductance 278 i-2tm-^q^ Mhos 

y Conductivity 277 L-^TM-^Q'^ Mhos/m. 
L Inductance 289 Henry 
M Permeability 283 LMCt^ Henry/m. 
C Capacity 294 L-^THI-HP Farads 
€ Permittivity 286 L-^ThM-^Q^ Fa rads/m. 

Values of < and m in free space: 

«o = 8.854 X furad/m. 

MO == 1.257 X henry/m. 

—. = 2.998 X 10^ m./sec. (velocity of light) 
V «oMo 

★ 11.10. Application to Plane Fields. Static Fields of the 
Parallel Line.- As an illustration and elaboration on the con¬ 
cepts of this chapter and for purposes of reference, we shall 
consider the static fields surrounding a parallel line (Fig. 63a), 
The line will be assumed to have infinite length; consequently, 
the static field distribution is the same in all orthogonal cross 
sections, of which Fig. 63a represents one; the results will apply, 
in practice, to all cross sections of a long line at a distance from 
the terminations large compared to the lateral dimensions. 

Within the orthogonal cross section, all point functions may be 
expressed in terms of only two coordinates, x and ?/, instead of 
three. The problem of mapping the field reduces therefore to a 
two-dimensional or plane problem; fields of this type are often 
called plane fields. 

Consider (Fig. 63a) a point P on the xy plane, and a line I 
from P to 0, center of symmetry. Assume P to be outside the 
conductors. We may associate with point P four distinct integral 
functions, namely 
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(a) -I^E,dl= U(x,y) (297) 

This is the electrostatic potential at P, equal to the voltage (Sec. 
11.4) between P and 0; point 0 is chosen arbitrarily as reference 
point. U is single valued for all possible paths from P to 0. 

{b) f^E„dl= U'{x, y) (298) 

Uniqueness rcgionomd boundary values of (cfMllustraiing-clerivafion of Cauchy* Riemoinn equations 

Fig. 63.—Potentials of a plane field. 

This function is equal to ^/e, where Af is the electric flux across a 
surface S obtained by translating I in the z direction by the 
unit length, e the permittivity of the dielectric. In order to 
establish the uniqueness of U' for all possible paths I, we must 
make a cut along the x axis and limit I to the region of Fig. 63c. 

(c) - I B,dl = A'ix, y) (299) 

This function, like f7', is single valued only if I is restricted to 
the region of Fig. 63c. .4' is sometimes called magnetostatic 
potential. 

id) B„dl = Aix,y) (300) 

This function is equal to the magnetic flux 4> through the surface 
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S defined under (298). A is single valued for all possible paths 1. 
The vector ^4, = A, ^4* = .4^ = 0 is the magnetic vector potential 
(Sec. 11.6). 

The functions U and A are continuous and single valued^ 
over the region of the xy plane outside the conductors (Fig. 636); 
at the boundaries (conductor surfaces) we have 

U, = 
4i = 

V 

2 

? 
2 

(301) 

where v is the voltage between conductors, ^ the external mag¬ 
netic flux (Sec. 11.7). The above boundary conditions are 
based on the premise that E and B are directed along the normal 
and the tangent to the surface, respectively. The second 
premise is rigorously justified only when the current flow is 
limited to the conductor surface. 

The functions C/' and A' are continuous and single valued 
over the region of Fig. 63c. If U' and A' are arbitrarily made 
equal to zero at the upper edge of the cut, their boundary values 
will be (Fig. 63c) 

I - » '-■' - ! (302) 

I Ai' = 0 A2' = ^ii 

where q is the yharge per unit length on the positive conductor, 
i the current in either conductor. These boundary values arise 
from the definitions (299) and (300) and from the laws (281) and 
(287) (Ampere^s circuital law and law of Gauss). 

The physical laws of static fields have helped us establish the 
boundary values of the four functions and the facts that the func¬ 
tions are continuous and single valued in the regions defined. 
This information, apparently very limited, is actually sufficient 
to determine the functions at all points of the region by mathe¬ 
matical methods. This is the mapping process. There are 
short cuts to this process, but 4he general method is of interest 
to us here." 

Let us express the differentials of the four functions, or incre¬ 
ments of the functions due to an infinitesimal displacement dl 
of P along 1. We have, by definition, 
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dU = -Eidl dU' = Endl 
dA = B„dl dA'= -Bidl 

(303) 

and in terms of the partial derivatives of the functions along x 
and y 

ATT , , at/. dU = ^dx + -^dy (304) 

and similarly for the other three functions, dx and dy are 
related to dl as shown in Fig. 63d. From this figure we also 
derive the following relations: 

I Et=- E:, cos a + £„ sin a = E^ 

\ El dl = Ex dx +' Ey dy 

I E,.= -E, sin a + Eyeosa= + ^y^i 

\ En dl = —Ex dy + Ey dx 

(305) 

(306) 

Similar expressions are obtained for —Bidl and Bndl. Sub- 
.stituting these expressions for the right-hand terms of Eqs. 
(303) and the expansions in terms of partial derivatives (304) 
for the left-hand terms, we obtain 

dU j dU j j 
dy 

.dU' , dU' „ , , „ . 
dx + dy = —E^dy + Eydx 

\^dx +^dy = -B^dy A- By dx 

^ dx + dy = 5x dx + By dy 

(307) 

From (307) we obtain differential relations between the potential 
functions and the field vectors, by comparing the coefficients 
of dx and dy. Thus 

-Ex 

Bx 

dx dy 

dA' ^ dA 

dx dy 

dx dy 

> _ ^ _ dA' 
*' dx dy 

(308) 

Such differental relations can be derived, more generally, in three dimen¬ 
sions, with the help of the theorems of Green and Stokes. The relation 
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between U and E is then written 

E * -grad U (309) 

and that between A and B 

B = curl A (310) 

Expanding the above in cartesian coordinates, we would reobtain (308) for 

the case in question (At — Ay Ax = Ay = 0). 

Equations (308) may be broken up into two systems of 
differential equations 

and 

= 0 
dU _ ^ 

dx dy 

dy ^ dx 

dx 

dA' 

dA 

% 
dA 

+ = 0 
dy dx 

(311) 

(311a) 

From these systems it is possible to obtain differential equa¬ 
tions of the second order in each of the four variables; for example, 
by differentiating the first of (311) with respect to Xy the second 
with respect to i/, and eliminating the cross derivatives, we 
obtain 

= 0 (312) 

Equations (311) or (311a) are the equations of Cauchy- 

Riemanriy and (312) is the equation of Laplace. The Laplace 
equation is satisfied by all the potential functions of static fields; 
its solution, combined with the boundary conditions, is the most 
general method of field mapping in three dimensions. 

Two-dimensional fields are conveniently studied by conformal 
transformations similar to those of network theory. It may be 
shown, in fact, that if two point functions 

9 = 9{^, y) _ h = h{x, y) 

satisfy the Cauchy-Riemann equations. 

dx dy dy'^dx 

for all points of a region or domain D of the xy plane; and if the 
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complex number 

z = X + jy 

represents a point of D (Sec. 5.7), then the complex number 

f=g + jh (313) 

is an analytic function of z, or 

/ = f(^) 

A function is said to be analytic within a domain if it possesses 
a single-valued;derivative within the domain; this condition 
may be shown to follow from the Cauchy-Riemann equations. 
All algebraic and transcendental functions of complex variables 
are analytic within specific domains. 

Consider in particular the function 

/ = In (314) 
z — r ^ 

where r = \/5^ — (r = 0/i, Fig. 64). This function is 
analytic except at the points 2 = ±r. Its real part g has 
constant value over the circles 

(x — 5)2 -[- ^2 ^2 

(x + 6)2 + ^2 ^2 

representing the conductor surfaces. We have, in fact 

g = In 
z + r| (x + r)2 + y2 

(x - r)2 + 2/2 |2 - rl 

Replacing y by its value obtained from (315), we have 

, 6 + \/62 - a2 
gi 

b - Vb^ - a2 

for the first conductor surface, and 

(315) 
(316) 

g2 — —gi 

for the second. These values may be put in the form 

gi = -g2 = cosh-i^ (317) 

The imaginary part h of f may be zero or any multiple of t 
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for 2/ = 0. However, as z moves continuously from the upper 
to the lower edge of the cut of Fig. 63c without crossing the cut, 
h increases by Letting = 0 at the upper edge, we have the 
boundary values of h 

hi = 0 /i2 = 27r 

Now consider the complex function 

V . . V . z + r 

(318) 

(319) 

This function is analytic in z and its real part has the value 
±v/2 at the conductor surfaces; further, it is constant over the 

X axis. These are also properties of the complex potential 
function U + jU\ and it may be shown that they are sufficient 
to establish the identity of the two functions. We may, there¬ 
fore, write 

U + jU'= + jh) (320) 

We may use the above to find a relation between v and g. 
general. 

and in particular at the boundary, 

In 

1/2' = ^ ==^h2 = 
€ 2gi ffi 

From this and from (317) we have 

[Dtslnbuled capacity of the 'parallel line] 

C, the distributed capacity, is equal in this particular case to 
the capacity per unit length, (g is the charge per unit length.) 

Expressing the complex potential in terms of C and Zj 

(322) 

The complex magnetic potential A + jA' may be arrived at in 
a similar way. First, we consider the function 
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and verify that its imaginary part coincides with A' over one 
of the boundaries. Next, we verify that this function is analytic, 
and thirdly, that its real part is constant over the conductor 
surfaces. These facts establish the identity of the function 
with A + jA', which may be written 

A + jA' = ^ + 3^) (323) 

A relation between ^ and i results from the above, because if 

then on the conductor surface we must have 

^ . Ill cosh~^ - 

h2 27r 

hence 

^ fi cosh“^ - 
i = % =-? 

l TT 

[Distributed inductance of the parallel line] 

In terms of i and 2, the complex magnetic potential is 

A , if ^ z + r 

From the expressions of L and C we may verify that 

1 1 

VLC VeM 
= 3 X 10® m./sec. 

(324) 

(325) 

(320) 

a relation formerly given without proof (Sec. 3.6). Approximate 
value of L and C for small wire diameters may also be readily 
obtained. They have been given in Sec. 7.2. 

A graphical procedure for mapping the fields, based on the 
theory developed in this section, accompanies Fig. 64. For 
other examples of plane field mapping and a complete statement 
of the theory, the literature^should be consulted. 

What little has been covered in this section serves to establish 
some important general facts about plane fields, which we shall 
have occasion to use later, namely, 
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To map the fields: 

1. Draw tangent OP a to conductor surface; drop arc Poi2 about O, locating 
R. Linear conductors through R, R' would reproduce external fields of 
cylindrical wires (this is true for B field only approximately). 

2. Draw constant h circle through P and R with center on y axis; tangent 
to circle at P locates Q. 

3. Draw constant g circle through P with center Q. 
4. Obtain values of g for points P and Po: 

go = cosh“i = cosh“i g = ±cosh”i ^ (+ if » >0) 
QoPo a QP 

5. Obtain electrostatic potential U oX P\ 

U (v = line voltage) 
2 go 

6. Obtain magnitude of vector potential A at P: 

A = - — (i = line current: A has direction of current in nearest wire). 
2 TT 

7. Repeat for other points on the same constant h circle; plot U and A against 
distance measured along circle; slope of U plot is E; slope of A plot is B; 
directions of E and B are as shown. 

8. Obtain distributed parameters: 

C = — 

3 X 10^ m/sec. in air 
Vlc \/%i_ 

Ro = \/" = — \/- * 120 cosh"^ - ohms i 
^ C ir ^ € a 

Note: In the above, h ia the center to center spacing. 
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1. Since the two complex potentials are both analytic func¬ 

tions of 2 = X + jy, lines of constant U and constant U' may 
quite generally be obtained from lines of constant x and constant 
y (parallels to the axes) by an isogonal transformation^^^ (Sec. 
15.7); the same is true of lines of constant A and constant A\ 

2. Since U + jU' and A + jA' are identical functions, except 
for a real multiplier, lines of constant U (equipotentials of the 

E field) are also lines of constant A (lines of flow of the B field); 
hence, E and B are orthogonal everywhere in the space between 
conductors. This second conclusion is less general than the first, 

as it is subordinate to the fact that the lines in question must 
coincide at the conductor boundaries; and this in turn is only 
exactly true for surface currents. The conclusion is not 
limited, however, by the shape of the conductors (provided they 
are parallel, of course). 

Another important property of plane fields, that of retaining 

their configuration under dynamic conditions, will be discussed 

in Sec. 12.4. 

Suggested Exercise. Show that in a coaxial cable, the complex poten¬ 

tials result from the function 

/ = In 2 

multiplied by appropriate real coefficients. Find the values of these coeffi¬ 

cients from the boundary conditions and obtain values for the distributed 

parameters. 



CHAPTER XII 

MAXWELL’S EQUATIONS AND THEIR APPLICATION 
TO CIRCUIT ELEMENTS 

12.1. General Form of the Field Laws. The laws of static 
fields, as we have seen, are expressed by the equations 

El dl = 0 (279) 

= o' (280) 

[Valid for static fields] 

From these relations we can derive the statements that, in a 
static region (Sec. 11.5), the sum of the voltages (Sec. 11.4) taken 
over sections of a closed path and the sum of the currents flowing 
out of a closed surface are zero for all paths and all surfaces. 
These statements, due to KirchhofT, continue to be approxi¬ 
mately valid in dynamic regions (regions where E and J are time 
variables) provided the paths and surfaces are suitably chosen. 
In this sense, Kirchhoff^s laws are often considered valid for 

-a-c as well as d-c circuits. 
In a general sense, however, we must modify equations (279) 

and (280) if Ve wish them to be rigorously valid under all condi¬ 
tions. The modified equations are 

o
 11 

+
 (327) 

+ f - « 
(328) 

[Generally valid] 

where ^ is the magnetic flux linked with the closed path or loop Z, 
and Q, the electric charge enclosed within the closed surface S, all 
the quantities being time variables. 

Upon"^ equations (327) and (328) is based the theory of lumped 
systems (circuit theory) under generic conditions, and particu¬ 
larly that of harmonically driven systems (a-c circuits). The 
transition from the field equations (327) and (328) to the branch 

278 
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equations (voltage-current relations) for lumped elements will be 
carried out later; it depends, as we shall see, upon the possi¬ 
bility of disregarding second-order effects with engineering 
approximation. 

Should we require an exact solution of any dynamic problem, 
or should we inquire into phenomena due chiefly or entirely 
to the second-order effects mentioned above (radiation, for 
instance), then we would find that equations (327) and (328), 
while valid, are insufficient. In such problems we would need a 
relation between magnetic flux and current density, and so far 
such a relation’ is available for static fields only. [See Eqs. 
(281) and (283) in the tabulation of Sec. 11.9. Note that the 
corresponding relation between E and D is not restricted to 
static fields.] 

Historically, Eq. (328) was established first, as it simply states 
that the total current leaving a volume must equal the rate of 
time decrease of the charge in the volume. This law may be 
identified with the definition of current (272) and was confirmed 
experimentally as soon as it became possible to measure currents 
and charges independently. 

Equation (327) represents a later development, due to Fara¬ 
day’s interpretation of much experimental evidence on induced 
currents. Maxwell supplied the missing equation relating the 
flux and current densities in general (for both static and dynamic 
fields) by his theoretical work, later supported by the observa¬ 
tions of Hertz. 

12.2. Maxwell’s Equations in the Integral Form. We may 
rewrite (328), expressing Q in terms of the electric flux density, 
(Eq. 287), thus 

If the medium is at rest, i.e., stationary, with respect to the 
surface S, we can carry out the surface integration and the time 
differentiation in inverse order with the same result. Hence, 
the alternative form^ 

#.(•'• 
1 The time derivative of D and of other point functions is usually written 

as a partial derivative to imply that the space variables on which the func¬ 

tion also depends (x, a in the cartesian system) are considered constant. 
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Comparing the above with (280) and recalling the definition 
of a solenoidal vector (Sec. 11.5), it appears that, while J is 
solenoidal only in static regions, J + dD/dt has this property 
in dynamic regions as well. The flow lines of this composite 
vector are always closed; over part of each flow line, the vector 
may be equal to J and represent an actual current density, while 
elsewhere it may be entirely due to the time variation of electric 
flux density. 

Consider the charging of a condenser. The streamlines of 
the charging current terminate at the surface of the condenser 
plates. Just outside the surface there is a value of electric flux 
density increasing with time; its rate of increase, dD/dtj is a 
vector quantity which continues the current streamline outside 
the conductor across the dielectric. 

When discussing static fields, we argued (Sec. 11.5) that if J 
is solenoidal, its integral over a surface, which is the current 
through the surface, must depend only on the contour of the 
surface and be expressible as the integral of an appropriate vector 
point function over this contour. Experiment shows (as 
observed by Ampere) that H = B/m is one such point function. 

Going now to the general case, J + dJy/di is solenoidal. Its 
integral over a surface must once again be a function of the 
contour and expressible by contour integration of an appropriate 
point function. Maxwell inferred that the same point function, 
H = B//i, integrated over a contour Z, gives, in a static region^ 
the current tlirough a surface bounded by 1: 

and in a dynamic region^ the summation 

where is the electric flux (285) through the surface S, d^/dt 
was called by Maxwell the displacement current through aS. 
Thus, Maxwell extended Ampere’s circuital law to dynamic 
fields by^ adding the displacement current to that due to the flow 
of charge, or, in symbols, 

(330) 
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Maxwell developed the modern theory of dynamic fields, using 
as the starting point equation (330), jointly with equation (317), 
which expresses in general form the results of Faraday^s observa¬ 
tions. This system of two equations may be regarded as the 
basis of all electromagnetic theory, as all the other laws (287), 
(279), (280), (281), (284), and (328) can be derived from it. 
The two equations are brought together below for convenience 

(327) 

Hidl = i + ^ (330) 

[MaxwelVg equations in the integral form] 

In the first equation, I is the contour of the surface through 
which <J> is taken; in the second, I is the contour of the surface 
through which both i and ^ are taken. Aside from this condition, 

there is no restriction on the choice of loops and surfaces. 
12.3. The Scalar Potential. The reader mil find in the 

literaturethe development of electromagnetic wave theory 
from Maxwell’s equations. The equations will be used here 
only for the purpose of justifying the voltage-current relation¬ 
ships currently used in the study of transmission lines as well as 
lumped systems. It will appear that in the case of transmission 
lines, such relations can be considered theoretically sound, while 
for lumped circuits they are only useful approximations. 

We shall require for this purpose an extension of the concept of 
electrostatic potential (Sec. 11.4) from the static to the dynamic 
case. In a static region the potential is 

U=-f^Eidl (331) 
JPo 

[Valid in static regions] 

[7 is a single valued function of P because loop integral of E 
vanishes for any loop of a static region, or 

Eidl = 0 (279) 

which may be expressed by stating that E is a conservative vector. 
(The word conservative implies that the potential energy of a 
particle subject to the force of the field is conserved, or remains 
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unaltered, whenever the particle describes a closed path beginning 
and ending at the same point.) 

In a dynamic region E is no longer conservative, as (279) is 
no longer valid; hence, the potential as defined by (331) is no 
longer a single-valued point function. Loci of constant [7, or 
equipotential surfaces, cease to have meaning unless we contrive 
to define U in a more general way. 

Clearly, this general definition of U can only be written in 
terms of a conservative vector. E is not such a vector, generally 
speaking. We have to look for a dynamic addition to E which 
will make it conservative in all cases. We traveled a similar 
road before, when we found a dynamic addition {d'D/dt) which 
made the vector J solenoidal in all cases. * We started then from 
the general equation (328), brought the derivative within the 
integral sign, and expressed the sum of the integrals as the 
integral of a single vector. We can do exactly the same thing 
now, taking the other general equation (327) as the starting 
point. This runs: 

We can express ^ as a loop integral, because it represents the 
flow of a solenoidal vector B across a surface. This was done 
before, in defining the vector potential A 

^ = fAidl (293) 

Taking the differentiation within the integral sign and com¬ 
bining the integrals, we may now write (327) in the form 

signifying that E + dA/dt is conservative in dynamic as well 
as in static regions. The scalar potential may now be defined as 
follows: 

[Oeneral] 

In a static region, the derivative dk/dt vanishes and the 
scalar potential becomes identical with the electrostatic potential, 
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as defined by (331). The electrostatic potential is actually no 
other than the value which the scalar potential takes in a static 
region and need not be considered to have separate meaning. 

In general, it is evident that the equipotential surfaces take 
different configurations in going from static to dynamic condi¬ 
tions. There are exceptional cases when this is not true. It 
would be more accurate to say that, exceptionally, in certain 
systems, the scalar potential may be defined in general without 
recourse to a dynamic term. Hence, the dynamic study of such 
systems is comparatively very simple. 

12.4. The Invariance of Plane Fields. The scalar potential 
U may be defined without recourse to a dynamic term by restrict¬ 
ing the path I of the integration (333) so that it is perpendicular 
to A, the vector potential, at all points. 

Take, for example, the parallel line of Sec. 11.10. (Any other 
system of parallel conductors would do.) Assume the path of 
integration I to be confined within a plane orthogonal to the con¬ 
ductors, as we did for the static field analysis. 

If the current flows parallel to the conductor axes, it can be 
shown vector analytically and otherwise that A is likewise 
oriented.^ Then it is clear that A and the path I must be mutu¬ 
ally orthogonal (Ai = 0) everywhere. The definition of U valid 
for plane fields under static conditions (79) continues to be valid 
in the dynamic case. 

As a consequence, all four potential functions continue to be 
defined as before, and the entire analysis of plane fields remains 
valid. All the quantities will of course vary with time, but 
at any 'particular instant the fields will depend on v and z, line 
voltage and current, exactly as if these were constant. This 
is an important principle, and for easy reference we shall call 

1 Consider a straight linear current in empty space and a cylindrical sur¬ 

face coaxial with it, both indefinite. If A at any point of this surface had a 

radial component, this would be true of all such points, due to the axial 

symmetry; the cylinder being a closed surface, A in this case would not be 

solenoidal, which contradicts its definition (Sec. 11.6). Next take a circle 

on this cylinder. If, at some^point, A had a component tangent to the 

circle, this would be true of all points of the circle and the loop integral of A 

around the circle would not be zero. Since this is equal to the flux and there 

are no axial flux lines, such components cannot exist. Hence, A must be 

parallel to the current. By the superposition principle, we conclude that A, 

due to a system of parallel currents, has the direction of these currents. 
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it the 'principle of invariance of plane fields. It must be under¬ 
stood that plane fields are defined as the fields of a system of 
parallel currents; if the conductors are parallel but the current 
does not flow axially, we cannot regard the resulting fields as 
plane. 

We cannot fully analyze the performance of parallel lines under 
all conditions without recourse to much more complex methods 
of analysis than those used so far. Thanks to the principle 
stated above, we can, however, justify the simpler methods by 
showing that they are in accord with the laws of electromagnetic 
theory, provided we assume the current to flow axially at all 
points. This matter will be taken up in Sec. 13.1. 

12.6. Branch Equation for the Coil. Going back to Eqs. (327) 
and (328), let us see how the branch equations of the basic circuit 
elements or two-poles, the coil and the condenser, follow from 
them. 

A coil is shown in Fig. 65. The exact meaning of the term coil 
is implicit in the following assumptions relating to it, which 
permit the derivation of the branch equation. We must first 
imagine a boundary separating the coil from the remainder of 
the electrical system of which it is a part. This may be a material 
boundary (in a shielded coil) or an ideal one. In any case it 
must be a closed surface through which pass the two leads joining 
the coil to the rest of the system; in Fig. 65 it is shown as an 
indefinite plane surface. 

Next, we must imagine another surface (surface S, Fig. 65), 
also closed, contained entirely within the coil boundary and 
crossed by the coil wire twice, once at the boundary and once 
at an arbitrary point. 

The first assumption is that the total displacement current 
through S is negligible compared to the conduction current 
at the boundary (the coil current, i). This can be written 

(334) 

The above must be valid for any S within the definition given; 
hence, the current in the coil wire may be considered to be 
constant throughout the coil (330). 

Next, consider a closed path I as shown (Fig. 65). This path 
follows the surface of the coil wire everywhere except on the 
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boundary surface. Let stand for the magnetic flux linked 
by I (Sec. 11.5) when the current is i. Now imagine the coil 
to be short-circuited along the entire path 1] we would then have 

Coii bounchry 

Posifive direcHon of (J 

1 Condenser boundary 

Surface S (a dosed 
surface crossed by 
conductor only once 
at boundary) 

I Surfaces (a closedsurfti^dossed by mre af 
jV^bourKhp^an^an arb^w^pdri'i/aideboLffKhryJ^^ 

-^‘Loop I (a closed 
path fblhwing current 
streamline along wire surface 
except on coH boundary) 

Fig. 65a.—Voltage-current relation 
for the coil. 

IsurfaceS' !I> 
'yp-oss / 

sectioni' 

Assumptions: 

dt 
« I 7^ Li 

J-'•'Loop I (a dosed 
hne connecting conductors 
along boundary and over an 
arbitrary path inside boundary) 

Fig. 656.—Voltage-currerd relation 
for the condenser. 

Assumptions: 

dt 
« V Q CV 

where 'I' = electric flux through any 
surface S 

= magnetic flux through 
loop I 

L = inductance of coil short- 
circuited along boundary 
(see Fig. 616) 

where 4> = magnetic flux through any 
loop I 

Q = electric flux through sur¬ 
face »S 

C — capacity of condenser open- 
circuited at boundary. 

Derivation: for coil: 

Eidl = 

hence: 

For condenser: 

/A 

« = Ri + // X dt 

hence: 

t dS -f- 
IL 

J„dS = - ^ 
S-S' dt 

Gv 
, dv 
-^^dt 

a closed current path, for which there is an inductance L, as 
defined in Sec. 11.7 (Fig. 626). It is clear that, as long as the coil 
is part of a system, it does not possess a definable inductance; 
inductance has no exact meaning when it refers to a section of a 
current circuit, with one exception—the. distributed inductance 
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of a parallel line. Having thus defined L as the inductance of 
the coil in short circuit, and noting that i is constant over the 
coil length, we can formulate the second assumption 

^ Li (335) 

The above implies that, for a given coil current, the magnetic 
field inside the coil boundary does not change appreciably, whether 
the coil is short-circuited across its terminals or connected to an 
outside source. (If the reader finds it difficult to imagine a 
current flowing in the coil without external connections, it might 
be helpful to imagine that the short-circuiting connection includes 
a small battery.) 

A third, rather obvious assumption should be added for com¬ 
pleteness. No conduction current is assumed to flow in the space 
surrounding the wire. 

We may now obtain the required voltage-current relation 
from (327). The loop integral of E may be written for the path I 
and split in two as follows (Fig. 65): 

f Eidl= - Jt El dl + jt El dl= (336) 

f A , 
The first .integral / c Ei dl is, by definition, the coil voltage v. 

We cannot associate a voltage with the coil unless we agree on a 
path over which the voltage is taken (Sec. 11.4), unless we assume 
static conditions. This path must be considered to lie along the 
coil boundary*and to form part of the loop I along which we have 
imagined the coil to be short-circuited when defining its induct¬ 
ance. To be sure, in most cases the exact choice of a path will 
not make much difference, but our premises must be precise 
if we want our mathematical .statements to have meaning. 

The second integral, taken entirely over a path within the 
conductor, can be expressed in terms of current with the help of 
Eq. (277). We must consider the current to be constant over the 
whole path, which can be done with small error, thanks to our 
first assumption (334). Then, following the procedure of Sec. 
11.4, we may write 

If El dl = Ri 

where R is the coil resistance. 

Replacing the integrals of (336) by their values, as above, 
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and using (335) to express ^ in terms of current, we have the 
branch equation for the coiP 

(H 
v = Ri + Lj^ (337) 

The importance of associating the coil voltage with a specific 
path is brought out by the following observation. Suppose no 
path were specified; then we could take the coil voltage, for 
example, over a path following the coil wire. In this case the 
voltage would be the second integral of (336) instead of the first, 
and we would write the coil equation as follows: 

V — Ri 

which evidently contradicts (337). The reason for specifying 
that the voltage path lie along the boundary, for the coil as 
well as for other two-poles, is this: If we consider the two-pole 
in question and the source from which it receives power to have 
a common boundary, the voltage taken along the boundary is 
common to both. 

It is wrong to think of voltage as a difference of potential, 
except in a static region, and in any case it is not necessary to 
explain voltage in this way. There should be a better word than 
voltage to denote the line integral of the field (in some languages, 
tension or its equivalent is used); but the concept of voltage is more 
general and less abstract than that of electrostatic potential; 
the latter is widely used to explain voltage, mainly because it 
lends itself to the gravitational analogy and thus eliminates 
the necessity of introducing the line integral. This method leads 
to inevitable confusion, however, when dynamic effects are 

studied. 
12.6. Branch Equation for the Condenser. The assumptions 

relating to the condenser are as follows: 
I. For any loop I entirely within the condenser boundary 

(Fig. 656) and extending along the boundary between conductors 

^ « V (338) 

' A lossless or ideal coil is one for which 72 = 0. In some circuit diagrams 

actual coils are represented by an ideal coil in series with a resistor. This is 

an equivalent representation. 
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where ^ is the flux linked by the loop 1. From this assumption 
we conclude that the voltage between the two conductors, over 
any path entirely within the boundary, may be considered equal 
to Vj the condenser voltage (defined as the voltage along a path 
lying on the boundary). 

2. If Q is the electric flux through a surface S as shown (Fig. 

66), we assume 

Qt^Cv (339) 

where C is the capacity of the condenser, open-circuited at 
the boundary. Capacity, like inductance, cannot in general be 
associated with a part of a system;,it relates to a closed system 
of two conductors. 

3. The electric field within the condenser plates and leads 
is negligibly small (small resistivity). As a consequence of 
this assumption and of assumption (1), the voltage over I from 
C to D equals the condenser voltage. 

We can now obtain the required relation from (328). This can 
be written in the form 

#»•'•*■■/X''-* + /fs-s- 

where S' is the cross section of the conductor at the boundary 
(Fig. 66), S — S' the remainder of the surface S, The two 
integrals represent respectively the coil current ^ and the leakage 
current in the condenser dielectric, Gv (Fig. 61a). Expressing 
Q in terms of C and v (339), we have 

i = Gt; + (7^ (341) 

which is the branch equation for the condenser.^ 
12.7. Lumped Linear System. Systems made up of coils and 

condensers, for which the voltage-current relations are expressed 
by (23) and (27), connected through their terminals, have been 
called lumped linear systems or linear circuits or networks, (In 
the preset book, however, the term network is used exclusively to 

^ A lossless or ideal condenser is one for which (7 = 0. In circuit diagrams, 
actual condensers are sometimes shown as ideal condensers shunted by a 
conductance (an equivalent representation); usually however, G can be 
neglected for practical purposes. 
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denote a part of a system, lumped or otherwise, joined to the rest 
at more than two points, as defined in Sec. 1.1.) 

The definition of a lumped linear system includes, of course, 
systems in which some of the two-poles are resistors. A resistor 
may be considered as a coil for which L = 0 and R is finite, or a 
condenser for which C = 0 and G is finite. The definition does 
not include, however, mutual inductances, unless they are con¬ 
sidered replaced by their T equivalents (Fig. 77c). 

It is not the purpose of this book to go systematically into 
lumped circuit theory. The reader is assumed to have a working 
knowledge of the more fundamental phases of it. Specific 
problems which involve the use of lumped circuits have been 
treated from time to time, and in doing this it has never been 
considered necessary to explain the meaning of the quantities 
and symbols currently used in steady-state circuit work (a-c 
circuits). However, the present chapter has the purpose of 
effecting a connection, in the mind of the reader, between the 
basic laws of electromagnetism and the methods used to solve 
circuit and network problems; the remaining link in this connec¬ 
tion, as far as circuit problems are concerned, consists in showing 
how the concept of impedance originates from the voltage-current 
relations (337) and (341), This will be done in the following 
section, the subject of which will not be pursued further. At 
appropriate points bibliographical notes will direct the reader 
to the literature on elementary as well as advanced phases of 
circuit theory. 

Chapter XIII will go back to the laws of electromagnetism 
and their application not to lumped but to distributed or con¬ 
tinuous systems. 

★12.8. Complex Voltage and Current. Impedance. Oscilla¬ 
tion Constant. The solution of any circuit problem ultimately 
reduces to the simultaneous solution of a number of equations 
similar to (337) or (341) (branch equations), to which must be 
added a sufficient number of conditions^ ^.e., the voltage or 
current at some particular junction (Sec. 1.5) as a function of 
time (boundary value problems); or the voltage and current at 
some junction and at some instant of time, after which the 
system is allowed to oscillate freely, none of the variables being 
any longer conditioned except by their mutual relationships 
(initial value problems). 
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Steady-state a-c circuit problems are boundary value problems; 
the solution for transients is an initial*" value problem. This 
terminology is general rather than typical of circuit theory. 

The branch equations upon which is based the solution of either 
kind of circuit problem are, in general, linear differential equations 
in V and i. (If we think of a single branch as a series combination 
of R, L, and (7, as is frequently done, the branch equation is of 
the integrodifferential type.) Such equations may, however, 
reduce to linear algebraic equations of the form 

v^Zi (342) 

if both V and ^ are a special type of time function, which we may 
readily identify by checking (342) againsl either (337) or (341). 
Let us ask, for example, what functions i{i) and v{i) are com¬ 
patible with (342) and with the general form (337) of the coil 
equation. Eliminating v between (342) and (337), we have an 
equation in i{t) 

Zi-Ri-L% = Q (343) 

This may be integrated by inspection; \ve have for the unknown 
function 

where p stapds for 
(344) 

(345) 

and the ratio Z, in terms of p and branch parameters, has the 
value 

Z — R pL (346) 

We find, therefore, that (337) may be written in the form of a 
linear algebraic equation only if i varies exponentially with time. 
The same is true of (341). 

The family of functions i{t) which satisfy both (342) and (337) 
might be extended very considerably if we were to include 
complex functions. What physical significance would such 
functions have, however? A current is a scalar quantity, 
definable by a single number. A complex number cannot 
represent the instantaneous value of a current. 

The difficulty may be surmounted by requiring that the 
instantaneous value of current be equal, not to the function 
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which satisfies (342), but to its real part (or to its imaginary 
part; we will take the first alternative). Thus we may write^ 

i = Re{l) 
and likewise 

V = ReiY) 

where I and V are complex functions, which must be so chosen 
that they satisfy Eq. (342), while their real parts satisfy Eq. (337). 
These functions are called the complex current and the complex 
voltage. 

If I and V satisfy (342), we ma}" write 

V = ZI (347) 

We may now write (337) in terms of I only, as follows 

Re{Zl) = 7?[i?e(I)] + L J [fte(I)] 

Noting that 

the above may be written 

fle jzi -/ei - L^j = 0 (348) 

Any root of the equation 

zi - /ei - L 5 = 0 
at 

satisfies (348). The complex function 1(0 may now be obtained 
by integration, as follows: 

1(0 = loe^^ <849) 

The above is the same as (344), except that p may now be 
complex. As before, we have 

Z = J = R + pL (350) 

Z is no longer the ratio of instantaneous values of i and v] it 
is the ratio of the complex values (also called current vector and 
voltage vector). Z is called impedance and is, in general, a complex 
number. It is a function of p and of the parameters of the two- 

^ Re (Z) stands for real part of Z, 
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pole. The reciprocal of Z, the admittance 7, is often simpler 
to express in terms of these parameters; for example, we have for 
the condenser (Eq. 341) 

= G + (351) 

Both Z and Y have meaning only when the instantaneous current 
(or voltage) varies with time in such a manner as to be identifiable 
with the real part of the complex function (349). Let us see 
what time variations are included in this group. 

Without loss of generality, we may assume the constant 
lo to be a real /o (this merely assigns the time origin). Then, 
letting 

p = a + jco (352) 
we find 

i = /oc®' cos (Jit (353) 

For the impedance of a two-pole to have the meaning of the 
ratio between complex voltage and complex current, the instan¬ 
taneous current must vary with time as indicated by (353). 
As a particular case of (353) (for o) = 0), we have exponentially 
decreasing or increasing currents, in which case, as we have seen, 
the complex current becomes a real .and coincides with the 
instantaneous value. For a = 0, (353) becomes the equation 
of an alternating or harmonic current. 

In general, (353) describes an oscillation whose amplitude 
increases or 4ecreases exponentially. The two numbers a and o) 
fully define the character of the oscillation; for this reason, the 
complex number p = a iw is called oscillation constant. For 
harmonic oscillations, the oscillation constant reduces to jw and 
the familiar expressions for the steady-state impedance of a coil 
and Admittance of a condenser result from the general expressions 
(347) and (351). 

It can be shown, by solving the system of branch equations, 
that the currents and voltages in a freely oscillating lumped 
linear system (Sec. 12.7) obey (353), a and co having particular 
values depending on the parameters of the system. We may 
in consequence write a branch equation of the form 

V = ZI 

for each branch or two-pole of such a system. For a closed 
system, the resulting system of equations will show that all 
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voltages and currents must be zero, unless the branch impedances 
are suitably related to one another. This condition, when each 
impedance is written as a function of p and the branch para¬ 
meters, becomes an equation in p; the roots of this equation 
determine the frequency and decrement of the free oscillations 
of which the system is capable. 

12.9. Applications and examples. 

Zeros and poles of a lumped linear system. Consider in particu¬ 
lar the closed systems consisting of a branch Z (the impedance 
of a branch may be used in a wider sense to denote the branch 
itself) in open and short circuit (Fig. 66). Considering the 
open circuit as a branch of zero admittance and the short circuit 
a.s a branch of zero impedance, we have 

Fig. 66.—Poles and zeros. 
a. Two-pole in open circuit. Two-pole in short circuit. 

The voltage v must have the form For I 5^ 0, we must have 

^ = ReiY) = ReiVeP^) = fe«‘ cos cot >7 >7, s ^ 
= - = 0 

(p « a -f ;w) I 
For V 0, we must have since V = 0 (short circuit). Solving 

j for p we obtain 
Y F(p) “ Y — 9 Pac = a«c -f Jcosc 

since I « 0 (open circuit). Solving J**'^ ^ ^ 
the above for p, we obtain the value Note: Poc is also a root of the equation 

Poc Otoe “1“ jcOoc ^(P) “* 

Poc is the zero of F (F may have more considered a pole of Z. 
than one zero in general). aoc and cooe Likewise, p«c is a pole of F. 
are the characteristics of the open- 
circuit oscillations. 
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Branch in Open Circuit 

Foe open branch 
I = 0 

For branch of admittance Y 
I = vy 

Combining, 
vy = 0 

First solution: 
y = 0 

(no oscillation) 
Second solution: 

y = 0 
(condition for oscillation) 

Branch in Short Circuit 

For shorted branch 
V = 0 

For branch of impedance Z 
V = IZ 

Combining, 
ZI = 0 

First solution: 
7 = 0 

(no oscillation) 
Second solution: 

Z = 0 
(condition for oscillation) 

Let the branch in both cases be, for example, a parallel com¬ 
bination of coil and condenser (Fig. 66). The well-known 
rules for obtaining the impedance or admittance of parallel and 
series combinations apply, of course, in the general case wfien p 
is not a pure imaginary. Hence, we have 

Y = G + vC + j 

Z = 

___J_ ^ 1 + (fl + pL){G + pC) 
R 4“ pL R + pL 

R -f- p7> 
\ + {R + pL){G + pC) 

(354) 

(355) 

The two conditions for oscillation (for open and short circuit) 
are, respectively, 

• % 

Open circuit (y = 0): 
{R + pL){G + pL) + l = 0 

Solving, we have the following roots: 

Short circuit (Z = 0): 
R + pL = 0 

Pac 
R 
L 

OC,c = — 

0>,c = 0 

R 
L 

(356) 

(357) 
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The values above are those of the decrement and angular 
velocity of free oscillation for the two systems. The oscillation 
constant poc for oscillation of the branch in open circuit is a 
zero of the branch admittance (it is the value of p for which 
F = 0). Similarly, p^c is a zero of the branch impedance. 
Inversely, psc is a pole of the branch admittance and poc a pole 
of the impedance. (When p is at a pole of impedance, the imped¬ 

ance is infinite.) 
Geometrically, the Z plane and the p plane are correlated, 

point for point, by an equation in the two complex variables 
Z and Pj for example, Eq. (355). When the Z point is at the 
origin, the corresponding p point (point p«c) occupies on the p 
plane a zero of the function Z. When Z is at infinity, the cor¬ 
responding p point {poc) occupies a pole of the function (Fig. 67). 

In the example chosen, there is only one pole and one zero for 
either Z or Y. This is not always the case. The function Z for 
any lumped linear two-pole is fully determined by its zeros 
and poles. 

The impedance function theory and its applications to network 
design are treated extensively in the sources cited in the bibliog¬ 
raphy under group 5. A short bibliography on the theory of 
transients in linear systems will be found under group 8. 

Definition of Qo in terms of the oscillation constant. In Sec. 9.5, 
Qo was defined as follows: 

Qo — 
\dY 

1 
dZ< 

\du) (WnCdo) 

1 

du\ (W">Uo) 

The above definition made it possible to obtain Qo from the 
impedance or admittance function by* differentiation; it also 
relates Zo directly to the loss in power, or to the drop in voltage, 
caused by a frequency departure from midband. 

We are now in a position to show that Qo, as defined above, is 
also given by 

when it refers to a zero of susceptance, and by 

Qo = “~ 

with reference to a reactance zero, provided that, in either case, 

Qo» F 
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Consider a selective branch, such as that of Fig. 66. For this 
we have 

Poc ~ ^oe "I” j^oc 

meaning that, if we impressed across the branch an e.m.f. of 
angular frequency co^c and decrement — aoc(«oc is an intrinsically 
negative number for any passive branch), no current would flow 
in the branch. 

Let us ask the following: If a harmonic e.m.f. of frequency 
Woe (and decrement 0, of course) is impressed, what will be the 
admittance of the branch? This will be a value of harmonic 
(a-c) admittance as distinct from generalized admittance. 

This question may be answered in two separate ways, and a 
comparison of the answers yields the desired definition of Qo. 

First, let us imagine that the p point is moved from poc to 
jwoc on the p plane (Fig. 66a). This interprets graphically the 
change from the oscillation of constant poc to the harmonically 
driven condition. At the same time, the Y point will have moved 
out of the origin {Y = 0) to some point not far from the origin, 
and the path of this movement will be an isogonal transforma¬ 
tion^^^ of the path followed by p. Since p moved in a direction 
orthogonal to the axis of imaginaries, such must be the direction 
of Y (the axis of imaginaries transforms into itself). Hence, 
Y moves from the origin along the axis of reals; its value for 
p = j^oc (impressed harmonic e.m.f. of frequency w^c) is a 
real number Go. Hence w<,c, imaginary component of the 
branch admittance zero, is itself a zero of susceptance, and we 
have 

F(p = jwoc) = Go 

Secondly, we may express Y{p = jo)oe) by a MacLaurin expansion 
of Y about the origin. Thus 

(^j^oe Poc) “1“ 
ap 

(^^oc Poc) 
^ I ap ip^poc) 

Noting that 
J ^OC Poc ~ Cloc 

is small, the expansion may be limited to the first-order term and 
written 

V - 
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The derivative dYfdp does not change appreciably as p 
moves from poc to jo^oc] furthermore, as Y is an analytic func¬ 
tion, its value is unaffected by the direction of the infinitesimal 
displacement dp on the complex plane. Hence the equality 

dp {P--P06) d{jo3)(^p^p^^) do) (wwctfoe) 

Finally, comparing the two expressions of F(p = jcooc)^ 

Gq — Otoe 
1^1 
d(jiy\{(at=^(aot) 

from which we have, as we set out to prove 

Qo = i G, do) (w—(iJoc) 

COqc 

2ao< 

This equality—as well as its counterpart in terms of the 
components of the impedance zero p,c—is significant in that it 
brings out the physical aspect of selectivity. We may consider 
the power stored in the open-circuited branch to decay as the 
square of the voltage (or current); hence, expressing the ratio 
of the power lost during a period T to the power still in store, 
we have 

— ^—2oioeT J 

The exponent —2otocT may be rewritten —4r(aoc/o)oc) and 
because this is a small fraction of unity, we have, expanding the 
exponential, 

P lost   _ _ ?! 

Pttored Oioo Qo 

Here is, therefore, yet another interpretation of Qo- This 
parameter, when large compared to unity, equals the power dis¬ 
sipated during the unit electrical angle, expressed as a fraction 
of the total stored power. For a coupling element, instead of 
power dissipated, we could say more properly power transmitted. 
We are thus brought back to the considerations of Sec. 9.4. 



CHAPTER XIII 

EXPONENTIAL LINES 

13.1. Application of the Field Equations to the Transmission 
Line. The last chapter was chiefly devoted to the application of 
the laws of electromagnetism to lumped systems. Two types 

of branches having lumped parameters were discussed: the coil 
and the condenser, with the resistor'as the limiting case of either 
type. It was postulated that, in a coil, tfie magnetic field obeys 
the laws of static fields for practical purposes, in spite of 
not having constant intensity; and the same is true for the 
electric field in a condenser. In both cases the field is called 
quasi-stationary. 

These postulates were found useful, as they enabled us to write 
the product Cv for Q, the total electric flux of the condenser, 
and Li for 4>, the total magnetic flux of the coil. In making 
these substitutions, we relied implicitly upon the validity of 
the laws of static fields, Eqs. (279) and (280), failing which C 
and L would have no general meanmg (Secs. 11.7 and 11.8). 
Thanks to these substitutions, the field equations took the form 
of voltage-current relations (the branch equations). 

In a mathefnatical sense, this simplification of the field equa¬ 
tions was obtained at the cost of neglecting one of the two 
correction terms which mark the change from static to dynamic 
conditions. These correction terms, being time derivatives, 
increase in importance as time variations become more and more 
rapid; if we are concerned with harmonic (a-c) variations, this 
importance may be said to grow with the frequency. This 
explains in general terms why lumped circuit theory has to be 
discarded at very high frequencies. 

There is a type of structure to which the field equations may 
be applied without neglecting either correction term, so that 
the resulting voltage-current relations are not restricted to low 
frequencies. 

This is the plane-field structure in which the current flow 
vector has uniform direction. 

298 
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Application of the field laws to such a structure, limited to 
the case of two conductors (bifilar transmission line) will be 
considered in the following; the assumptions from which trans¬ 
mission line theory has been developed in earlier chapters will 
thus be found to be in accord with field theory. 

Figure 67 represents a system of two parallel conductors. 
Two circular cylinders of equal radius are considered, but the 

Fig. 67.—Application of the field equations to the transmission line, 

conclusions will be applicable to cylinders of any cross section, 
including coaxial structures. 

The static fields of such a system have already been studied; 
by the principle of invariance of plane fields (Sec. 12.4), we are 
able to extend the results of this study to the dynamic condition, 
provided the current is assumed to flow in the axial direction. 
A number of these results will be used in the derivation of the 
line equations, namely, the following: 

1. The law of static fields 

Eidl = 0 

holds within the plane xp (plane of the cross section). Hence, 
the voltage between conductors, or line voltage is single 
valued, provided it is obtained by integration along a path lying on 

the xy plane, 

2, There is no electric flux in the z direction {E is in the xy 

plane everywhere). Hence there can be no displacement current 
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(Sec. 12.2) in the z direction. This confirms the model of the 
transmission line in which the shunting branches connect only 
opposite points. Moreover, since an indefinite plane may be 
assimilated to a closed surface, and the total (conduction plus 
displacement) current through a closed surface is zero, the 
currents in the two conductors must be equal and opposite. 
If they are not, the cross-section plane must intersect a third 
conductor somewhere; and this must be taken into consideration. 

3. The electric flux dNf through a strip Si of width dz completely 
surrounding either conductor at z (Fig. 67) is proportional t9 
the line voltage v at z, and the coefficient of proportionality is the 
same as for static conditions. Hence, if C is the distributed 
capacity (Sec. 11.8) 

= Cv dz (358) 

4. The magnetic flux through a strip Si of width dz ending 

at the conductor surfaces (Fig. 67) is likewise given by 

d4> = Li dz (359) 

where!/ is the distributed external inductance (Sec. 11.7). 
To proceed with the analysis, the first of MaxwelFs equations 

(13) may be applied to the rectangular loop ii, bounding Si 
(Fig. 67). Note that here, as in general when the circuitation 
of E is taken wholly or partly over a current path, the positive 
direction of h must be with the current, so that the positive 
normal to S ntay be vrith the flux. Thus 

We now break up the loop integral into four parts, for the four 
sides of the rectangle, noting that the contribution to the integral 
due to the x-directed sides is dt;, difference between the line volt¬ 
ages at z and z + dz. The contribution of the z-directed sides 
may be evaluated in terms of do, the current density at the 
conductor surface, by Ohm^s law (278). Thus 

dv + -L dz 
y dt 

We will base subsequent steps on the assumption that the 
current density J varies with time proportionally at all points 
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of the conductor cross section. The error due to this assumption 
is negligible at very high frequencies. To correct for this error, 
an internal inductance should be added to the external value L. 
We let 

Jo^K- 
a 

R = — (360) 
ayi 

where K is a coefficient depending on the current distribution 
within the conductor, a the conductor cross-sectional area, 71 

the conductivity, and R the resistance per unit length. Thus 

,-£=^'+^1 (361) 

We have obtained from Maxwell’s equation a voltage-current 
relationship, the first of two differential equations which con¬ 
stitute the classical approach to transmission line theory. 
[The performance of lines in steady state may be analyzed with¬ 
out recourse to these equations with the help of the network 
assumptions (Chap. III).] 

The second line equation emerges when we apply (328). 
Considering the pillbox-shaped volume whose lateral surface 
is the strip /S2, the net outgoing conduction current is d^, the 
differential of current over dz, plus some leakage current across >82. 
Hence 

di + f + (d’i') = 0 

The second term is the leakage current; the third, the dis¬ 
placement current. Using Ohm’s law and assuming the dielectric 
to have uniform leakage conductance 72, 

fL - //., ■'«=7 / L 
Thus the equation becomes 

di + ^d<f' + i; {d<fr) = 0 
c ot 

Substituting the value for given by (358), and letting 

(362) 
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we have the final form 

di 
dz 

(363) 

Actually G, the leakage conductance per unit length, is seldom 
given by (362) because many imperfect dielectrics do not obey 
Ohm^s law. The actual value of G is difficult to determine 
except by measurement. 

Regarding the signs of (361) and (363), the sign of the left- 
hand terms depends on the choice of a positive direction for z. 
This has been taken to coincide with the direction of instan¬ 
taneous power flow arising from the^ positive values of v and i. 

13.2. The Uniform Line. Wave Character of the Solution. 
Further manipulation of Eqs. (361) and (363) depends on the 
conditions of the problem. In a great many practical cases 
the parameters L, C, Ry G are virtually constant, both with time 
and with the distance, henceforth designated by x. We have then 
a uniform liney and the mathematical solution of (361) and (363), 
considered jointly as a system of partial differential equations, 
is straightforward. In outline, the procedure is as follows: 

1. Differentiating (361) with respect to x (now taking the place 
of z)y (363) with respect to ty and eliminating the crossed deriva¬ 
tive dHjdx di between the two equations, we obtain 

where 
[TehgrayhePs equation] 

(364) 

(365) 

(366) 

An identical equation in i would be obtained by carrying out 
the preliminary differentiation in inverse order. In either 
case, we now have an equation in only one variable and its time 
and space^derivatives, known as the telegrapher^s equation, 

2. It can be shown that the solution of (364) must be a func¬ 
tion of x and t of the following form: 

t;(x, 0 ='X’lT'i + X2r2 + XaTs + * • • + XmTm + * • • (367) 
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where the mth member of the summation is the product of a 
function of x only, Xn^ by a function of t only, Tm- 

The mth member of the summation itself satisfies (364); 
this requires Xm and Tm to have the same form in all the terms 
of the summation, the only difference arising from the values 
of a number of constants of integration, which vary from one 
term to the next. 

3. The form of Xm and Tm will now be determined. Sub¬ 
stituting 

V = XmTm 
in Eq. (364), we have 

^ + 2aX„^ + (a^ - h^)X^2\ = 

and dividing through by XmTm, 

1 (d^Tm 
Tm \ dt^ 

-|“ 2(1 
dt) 

+ d‘^Xm 

Xm dx^ 
+ 62 

The left-hand term of the above cannot be a function of anything 
except t, or the right-hand term of anything except x. However, 
we immediately see that the left-hand term cannot be a function 
of t because if it were, and t were to change while x remained 
constant, the equation would no longer be satisfied. Hence both 
terms are constants and equal, and we may write 

4. We have succeeded in writing two homogeneous differential 
equations with constant coefficients in Tm and Xm- These can 
be solved by familiar methods. Observe, however, that —km^ 
may be positive, negative, or complex;^ we only know that it is 
a constant. Hence, km (the separation constant) may be real 
or complex. The solutions are 

Tm = [Ame^'^-^ + (370) 
Xm = (371) 

^ If is complex, Tm must be complex also. Our premise (367) does 

not imply that the individual terms must be real, even though we may require 

the summation to be real. 
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having let 

hyn - Q 
(372) 

If the conditions of the problem require hm and km to be real, 
we may expand (370) and (371) into sums of sines and cosines 
of real arguments 

Tm = [Am' cos kmt + Bm' siu 
Xm = Cm' cos hmX + Dm' siu kmX 

and the mth term of (367) may be written 

Vm(Xjt) = [Am'Cm' COS kmi COS kmX BJDm' sin kmt sin hmX 

+ Am'Dm' cos kmt Siu hmX + BmCm' COS kmX sin kmt]e~^* 

or, using the relations of trigonometry, 

Vm{x, t) = [Am" COS {kmX + kmt) + Bm" BlXi {kmX + kmt) 
— Cm" COS {hmX — kmt) — Dm" siu {kmX - (373) 

We may interpret the above as follows: The voltage Vm, particular 
solution of (367), is the sum of two waves traveling in the 
direction of positive x with the velocity 

'kj + Vl + {b/k„r 

and two waves traveling in the opposite direction with the 
same velocity, all four attenuated as they travel. 

The velocity of propagation will be different for each particular 
solution unless 6 = 0. We realize without difficulty that if the 
total voltage is made up of component waves traveling with 
different velocities, the resultant wave will be distorted as it 
travels. In this sense, we may define a distortionless line as one 
for which [Eq. (365)] 

We thus reobtain the condition (73) of Sec. 4.3, which defines a 
distortionless line for the particular standpoint of steady-state 
operation. 

It should be stressed that (373) is not the answer to all possible 
line problems. We have, in fact, assumed km to be a real, 
which may not actually be the case; furthermore, the number of 



Sec. 13.2] THE UNIFORM LINE 306 

terms making up the entire value of v and the constants appearing 
in each term should be determined. All this calls for some state¬ 
ment regarding the conditions of the problem, for example: 

5. The initial value of v may be known all along the line. In 
this event 

v{Oy x) = V(x) 

is a known function of x. Comparing this with (367), in which 
the constants and the values of h have been written in as 
unknowns and t has been made equal to zero, we would then 
arrive at some conclusion regarding the number of terms and 
the corresponding values of h. In addition, two boundary 
conditions (one for each end of the line) would have to be assigned. 

6. The boundary value of v may be known for all values of 
time, the line being driven at one end by the application of a 
known time-variable voltage. Again comparing with (367), 
in which x has been made equal to zero (taking the origin of x 
at the driven end) we may find the number and values of the k 
coefficients. An additional boundary condition (for the receiving 
end) must be given. 

7. As a particular case of boundary value problem, the line 
may be driven by a steady-state harmonic voltage. The procedure 
(3) may be used in this case; we would find that the summation 
of (367) must consist of two terms, corresponding to two complex 
conjugate values of k{k\ = w + ja; A:2 = w — ja). By a proper 
choice of the constants of integration, this two-term summation 
reduces to the required cosine function 

V{0, t) = V cos 0)t 

However, it is not necessary to go through this procedure. The 
line equations (361) and (363) are similar to the coil and con¬ 
denser equations (337) and (341). We may, therefore, as in 
Sec. 12.8, let 

v{Xj t) = R€[Y{Xy 0] 
i‘(x, 0 = fte[I(x, 01 (375) 

Now, if V and i are solutions of (361) and (363), we may verify 
that V and I are solutions of the system 
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obtained by substituting V and I for v and i in the original 
system. Conversely, if we solve (375), the real part of the solu¬ 
tion will be the required voltage (or current) function. There 
is advantage in the use of this device if the boundary value is a 
cosine (or sine) function, as the corresponding complex value is 
an exponential. In the following section the steady-state solu¬ 
tion will be worked out in this way. 

13.3. Steady-state Solution: Reappearance of Network Con¬ 
cepts. The steady-state solution of the line equations is generally 
carried out by substituting for V and I in Eqs. (375) the functions 

Y(x, t) = 
I(a:, t) = 

(377) 

where V* and Ix are functions of x only. Since it is possible 
to satisfy (376) by this position and at the same time meet the 
boundary condition of a steady-state harmonic signal, ix., 

V(0, t) = 

we are justified in concluding that the position (377) is valid. 
It is important, however, to realize the full meaning of this 
position. It means that because we impress a harmonic voltage 
at one point of the line, both voltage and current at all other 
points will be harmonic functions of time. It was stated without 
proof in Sec.^ 1.7 that this was true of all linear systems. Now 
we have probf of this all-important premise in the case of the 
transmission line. It should be understood that the premise is 
not self-evident; it is not true of any other periodic function 
of time. If a square wave is impressed at one end of the line, 
it will not, in general, appear as a square wave at the other end; 
it will be distorted, unless condition (73) is satisfied. Variations 
of a and jS/o? with the frequency (Sec. 4.2) cause distortion only 
when several frequencies are transmitted at once, in which case the 
impressed signal is not harmonic. Harmonic signals are the only 
periodic signals for which all lines are distortionless. This is 
true alsQ of those nonperiodic signals which can be written 

v{t) ^ Re(Ve^^) 

where p may be real, complex, or imaginary. (The harmonic 
signal corresponds to an imaginary value of p.) 
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If the values (377) are written into the system (376), the time 
function drops out and the equations reduce to^ 

-V.' = Zh 
-Ix' =■ FVx (378) 

where 

Z = /? + jcoL Y = G - j<^C (379) 

are the senes impedance and the shunt admittance (Sec. 3.2). 
Taking the x derivative of the first line and comparing with the 
second, we reobt^in (369) in the form 

V," - ZFV, = 0 (380) 

An equation in L, otherwise identical to the above, is obtained 
by preceding in inverse order. 

It should be noted that (380) does not contain the arbitrary 
separation constant km which appears in (369). This constant 
has already been assigned by the position (377). In fact, 
comparing this position with the general solution (367), we 
would find that all the terms drop out except one, for which we 
must have 

Tm = 

Hence, comparing with (370) 

Em = 0 Am = l km — 03 — ju (381) 

The solution of (380) is 

+ Be-VzYx (382) 

Comparing this with (371), solution of (369), we find 

K = = -j VZY = - V-ZY 

Recalling positions (365), (366), and (379), it may be verified 
that km — — ja satisfies the above. We may put (382) in a 
convenient form by the following positions: 

^ As there are no more time derivatives, we may use without ambiguity 

the notation 

r . 
^ dx ^ dx^ 
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K = ViB p' = i In I (383) 

e = -yyiY 
noting that 0 has been defined earlier (Sec. 3.4) as the transfer 
constant per unit length of the line. Thus 

Vx = if cosh (p' - ex) (384) 

I, may now be obtained by differentiation, using the first of 
Eqs. (378) 

I, = ^ sinh (p' - ex) (385) 

Dividing (384) by (385), and letting 

ry 

y = Zo (characteristic impedance) (386) 

we have 

^ = Zo coth (p' — dx) 
A* 

Finally, letting, 

p = p' — el 

— Zr (receiver impedance) 
(x-O 

= Zi (input impedance) 
(x-O) 

we reobtain (99) and (100), namely 

Zr = Zq coth p 
Z< = Zo coth (p -|- el) 

(Note, For I = ^ Zi = Zo, characteristic impedance) 

We need not go any further, because the two methods of 
approach, based on the assumptions of network theory and on 
Maxwell's equations, respectively, have brought us to the same 
point; from here on they are no longer distinct. We will there¬ 
fore leavje the subject of the uniform transmission line and go on to 
lines with variable parameters. 

13.4. The Exponential Line. The most general case in which 
all four distributed parameters of a line vary with x cannot be 
conveniently handled. We must simplify the problem by assum- 
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ing a lossless line (iJ = (? = 0); losses may be evaluated approxi¬ 
mately on the basis of the lossless current distribution (Sec. 7.5). 

This preliminary assumption leaves only two variable param¬ 
eters, L and C, of which only one may vary independently. We 
know that in a lossless two-dimensional system (326) 

Q, = 

1 

vxc 
(387) 

Consequently, the equation for the lossless disuniform line 
need not include more than one variable coefficient. To write 
the equation, we use (378) as the starting point. Differentiating 
the first line and noting that Z and Y are now functions of x, 

= Z'l, + ZIJ 

or, substituting for and 

V." - Y V/ - = 0 (388) 

We may readily evaluate the coefficients, making at the same 
time the following positions: 

Z jo)L 

ZY = (icoL)(iajC) = -co^LC = 

The quantity was defined previously as the phase constant, 
which for a lossless line is equal to the transfer constant d divided 
by j and may also be written /S = 2t/\. The new quantity 7, 
in general a function of x, may be defined in more than one way. 
Recalling (387), the following may be easily verified: 

where, as usual 

Rq = 

is the characteristic impedance, now a real and variable from 
point to point. Equation (388) and a similar equation for 
current may now be written in the form 
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I V/' - 27(x)V/ + = 0 
1 h" + 2y{x)V + = 0 

[Equations for the lossless disuniform line] 

(390) 

We will not carry through the integration of (390) in general. 
Only one type of disuniform line has been found to have useful 
properties—the exponential line^ for which 7 is a constant and 
Eq. (390) may be integrated immediately. 

An exponential line may be defined as one in which the charac¬ 
teristic impedance increases or decreases exponentially with x, the 
distance from a given point of the line. We have, accordingly, 

L(x) = L(0)e2^" C{x) = C{0)e-^y- Ro(x) = Ro(0)e^'^- (391) 

where 7 may be positive or negative. The above is evidently 
in agreement with the definition of 7 given by (389). 7 may 
now be called the decrement of the distributed capacity (or the 
increment of the inductance). 

Let us now integrate the second of Eqs. (390), which may be 
written simply 

L" -f 2ylJ + = 0 (392) 

This is a homogeneous differential equation, similar to (368). 
Its solution is 

L = (393) 

Note that for 7 = 0 (uniform line), the above reduces to the 
sum of a sme and a cosine of the real argument jSx, or of the 
hyperbolic sine and cosine of the imaginary argument jpx = dx. 
The most convenient form of (393) for further manipulation is 

L = sinh (p' — x (394) 

obtained by making 

The integration constants K and p' must be determined by 
assigning two boundary conditions. Usually these include a 
relatioq between I* and V* ior x = I (determined by the load 
impedance), and the value of I* or V* for x = 0 (the signal value). 
We find, however, that the ratio of the two variables is determined 
everywhere by a single boundary condition, the load impedance. 
We may therefore proceed as in the case of the uniform line, by 
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computing Vx from I*, hence their ratio, and setting this equal 
to the load impedance for x = L Using (394) and the second 
equation of (378), 

we obtain 

V* = ^ [— \/7^ — e~'^^ cosh (p' — X 
coC 

— ye-yx (p' _ ^ _ ^2)] (395) 

Now, dividing the above by (394), we have 

T-* = [ Vv' - /3^ coth (p' - a; + y] (396) 
lx JO)t 

Noting that 

1 ^ Vl/c ^ ^ 

j<»c jo> 

(396) may be put in the form 

T. - «•[>/' - (s)'I-' - -^1] 
where it should be noted that 

7 ^ tX 

P 2t 

depends only on the frequency, while Ro is a function of :r. 
We may now make x = I (length of line) in (397) and equate 
to Zr, load impedance; then make a: = 0 and equate to Zi, 
input impedance. We thus obtain the following equations, 
characterizing the impedance transforming action of the exponen¬ 
tial line: 

Zr = Ror A coth p i ^ j (^98) 

Zi = Ror A coth (p + j0lA) - i|j(399) 

[Impedance transforming action of the exponential line] 
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where A = \/l — {y/py p ^ — jfilA (defined by Zr) 
Ror = characteristic impedance of line at load 
Roi = characteristic impedance of line at input 

7 = 1/2Z In Ror/Rot = line decrement 
Z = line length 

y/p = 7X/27r 
Zr = load impedance 
Zi = input impedance 

Equations (398) and (399) enable us to devise an equivalent 
circuit for the exponential line. Any two lossless networks 
having the same impedance transforming action are equivalent 
in all respects.^ Hence, the required equivalent network may be 
obtained by analyzing the steps involved in the transformation 
due to the exponential line and reproducing them one by one. 

Let 

Z/ = Ror A COth P = Zr + J ^ Ror 

This impedance may be obtained by adding a reactance 

X = \Ror 
P 

to the load impedance. X is the reactance of a condenser of 
capacity 

^ yRorQ ^yRor^^ 

This capacity has a negative value when y is positive, in which 
case and for a particular co it may be replaced by an inductance 
of value 

j _ yRor^ 

“4^ 

If we consider Z/ as the load impedance of a uniform lossless 
line of characteristic impedance 

and of length 
Zq^ — ARo 

V = Al 

^ The two networks will receive, hence transmit, the same power. There¬ 

fore, the load voltage and current will be the same in the two cases. The 

input values are also equal, as the input impedances are equal. Thus, all 

four values of voltage and current are the same in both cases. 
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then the input impedance of this line will be 

Zi = ARo coth (p + j^Al) 

Adding to Z/ the reactance 

-X= 

due to the condenser 

C- 1 
yRorii 

we obtain, as may be verified by inspection of (399), the im¬ 
pedance 

Z/' = 

Finally, if Z/' is connected across the output of a perfect trans¬ 
former (Sec. 14.6) of turn ratio 

A2 
N 

the input impedance of the transformer is Zi. 

Orar, impedance Decrement: ru id 
^Roi >iiCn(R^/Roi) Char. ,mpedanoe\R^ 

U--L meters- 
Pet" fee f 

transformer -x Uniform lossless fine ofehar^ 
Negative 

-lixx capacity 

f \\Zr 

Tumratio: _\ I..... U,i,^,.(7*/2nP-! / ' 

Capacity C-tO'^/SyRorf^F 

Fig. 68.—Equivalent circuit of a lossless exponential line for the wave¬ 
length X. The circuit shown applies to a divergent line (7 > 0). 
For 7 < 0, the positive and negative capacities change places and the 
turn ratio N^/Ni becomes less than unity, 

A simpler circuit, equivalent to the line only with regard to the input imped¬ 
ance, is given in Fig. 69. 

The equivalent circuit (Fig. 68) consists of two condensers, one 
positive and one negative, a lossless uniform line whose charac¬ 
teristics change with frequency, and a perfect transformer. 
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This circuit cannot be physically realized (or there would be no 
point in using the exponential line), but it may be used con¬ 
veniently in analyzing the performance of the actual system. 

Consider the case of a matching load. We must interpret this 
to mean that the load impedance is equal to the characteristic 
value at the load endj or 

Zr = Ror 

Let us see what happens when the frequency is so high that 

7X « 2t (400) 

In this event the two series reactances are negligible and the 
uniform line is matched, hence without effect on the impedance; 
the equivalent circuit reduces to the perfect transformer alone. 

We conclude that, if the condition (400) holds, the exponential 
line solves the transformer problem j(Sec. 8.1). Sections of 
exponential line may therefore be used to couple together lines 
of different characteristic impedances. Transmission through 
this system will be comparatively uniform for wavelengths 
below the value 

_ Awl 
(401) 

where c is a small number which depends on the allowable 
fluctuation of the insertion loss. This dependence will be 
investigated (Sec. 13.7). Taking 0.1 as a representative value 
for €, we find 

1,251 

In Ror/Roi 
or 

^ = 0.8 In (402) 

and conclude that the length of the exponential section, measured 
in wavelengths for the lowest operating frequency, must be of 
the same order of magnitude as the natural logarithm of the 
impedance ratio. 

^13.6. Analysis of Exponential Line Performance. By resolv¬ 
ing thcr exponential line into its equivalent circuit (Fig. 68), 
we have been able to show that such a line approaches the charac¬ 
teristics of a perfect transformer (Sec. 14.6), if the frequency 
is sufficiently high. Let us now follow up that preliminary 
survey by a more detailed analysis. 
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The performance of a lossless exponential line, as that of any 
lossless network, is fully described by the value of its •input 
impedance, since this, with the known source impedance, deter¬ 
mines the transmitted power (Sec. 5.6). Expressions for the 
input impedance of the exponential line, suitable for numerical 
computation, may be derived from (398) by elimination of coth p. 
These expressions are given below. For convenience, a new nota¬ 
tion, reducing to a minimum the number of variables, will be 
used. The new symbols are 

Zr = ZrIRor 

Zi = Zi/Roi 

r = 7? = In N^Ror/Roi 

(t» = pi 2Trl/\ 

load impedance number (ratio 
of the load impedance to the 
characteristic impedance of the 
exponential line at the load) 

input impedance number (as (403) 
above, referred to the input) 

nominal voltage or current 
ratio, in nepers (the voltage or 
current ratio has this value 
when the line operates as a per¬ 
fect transformer) 

line angle 

A single general expression could be written. However, this 
expression becomes indeterminate at the cutoff frequency, 
for which <t> — T, The limit of for </> -^ F has been evaluated 
and is given separately. A distinction is also made between 
the two cases <#> > F and <^ < F in order to avoid functions of 
imaginary arguments. Thus 

Above cutoff (<^ > F): 

2, - r* + {zrT + j<i>) tan v<t>^ - 

•s/^^ — — (r — j0Zr) tan ■\/<t>^ — 

At cutoff (<^ = r): 
_Zr + ZrT + jr 

1 - r + jZrT 

Below cutoff (</> < F): 

2, Vr" - + {zrT + j4>) tanh 
Zi = 

(404) 

(405) 

- <t>^ - (V - jzr<t>) tanh Vr^ - <t>^ 
[Expreasiona for the input impedance of a lossless exponential line] 

(406) 
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Graphical evaluation of Zi is also possible; it can be based 
on the methods developed for the uniform line (Fig. 33) and on 
the equivalent circuit (Fig. 68). The latter may be simplified 

Fig, 69.—Impedance transforming action of the lossless exponential line: 
divergent line ivith matching load. Construction steps: 

1. Measure 4>/T on <t>/T scale. In example, <t> = 3.61 radius, F = 2.68. 
2. Draw OA, AB ( = to r axis), OB. Obtain Draw circle with center 

A tangent to r axis. 
3. Compute <>' and a = 2<>' — 27rn (n = number of times 27r is contained in 

2<^')* McEisure a. clockwise from BO. Obtain C. 
4. Draw tangent from C to circle with center A. Point of tangency is Zi, input- 

impedance number. Sector of z plane inside circle of unit radius about 
origin contains Zi when ir < a < 2t. This removes ambiguity in choice of 
tangents. Zi is always 1 for a = *0. 

somewhat if we do not require it to be equivalent to the line 
in every respect, but only as far as the input impedance is 
concerned. We may then use the device of eliminating the 
perfect transformer and multiplying all impedances on the 
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secondary or load side of this by the square of the transformer 
ratio, or Roi/Ror^ The resulting network is that of Fig. 69. 

The constructions of Fig. 69 (for F > 0) and Fig. 70 (for F < 0) 
are based on this network. They can be used to determine the 
operation of the line with a matching load (Zr = 1) above cutoff 
and at cutoff (below cutoff the operation is of no practical 
interest). Above cutoff, the characteristic impedance and 

Fig. 70.—Impedance transforming action of the lossless exponential line: 
convergent line with matching load (construction steps as in Fig. 69). 

the angle of the equivalent uniform line are real numbers. The 
constructions determine these values and apply the principle 
of Fig. 33 with some modifications due to the addition of the 
series capacities. 

Polar plots of the input impedance of a step-up (F > 0) and 
a step-down (F < 0) exponential line have been traced out by 
such graphical methods and are shown in Fig. 71. As the 
frequency is decreased, the impedance point describes ever- 
widening circles, all of which pass through the nominal value 
Zi = Roxy until finally the impedance becomes very nearly 
a pure reactance before swinging back to the real axis at the 
point Zi = Ror (for d-c).. 

The fluctuation of transmitted power is correlated with the 
frequency of transmission in Sec. 13.7 at the end of this chapter. 
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13.6. The Exponential Stub Line. A section of uniform line, 
short-circuited at one end, may be used as a reactive two-pole 
whose susceptance may vary from large positive to large negative 
values, depending on the length or on the wavelength. This 
use was discussed in Sec. 10.4; sections of line used in this 
manner are often called transmission line resonators or stub lines. 

They may be of the parallel or coaxial type. 
While no mention of the use of disuniform lines as resonators 

appears to have been made in the literature as yet, it may be 

Fig. 71.—Polar plots of input impedance for the matched exponential line. 

shown that the exponential line offers some advantages over 
the uniform line in this connection. 

Any valid criterion of comparison must be based primarily 
on the value of resonant impedance, as it is generally called, 
although the value in question is a resistance and its inverse, the 
conductance, is actually more significant because the stub is 
connected in shunt with other, branches. Secondarily, such 
aspects as physical dimensions, freedom from interference and 
radiation, and structural difficulties require consideration. 

The conductance of the uniform stub line at resonance was 
evaluated in Sec. 10.9. We must now extend this evaluation 
to the case when the decrement y has a generic value, thus 
including in the analysis both the convergent and divergent 
types of exponential stub lines, as well as the uniform stub line. 

The evaluation will be based on a method often used to deter¬ 
mine the losses of resonators or oscillating systems. The cur- 
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rent and voltage distributions are worked out on the assumption 
that the system is lossless; the loss, based on these current and 
voltage values, is then obtained by integration over the entire 
system. 

The general expression of /* for the lossless exponential 
line (Eq. 394) is taken as the starting point. We further specify 
that /* = 0 for x = 0. This means that x, distance along the 
line in the direction of energy transmission, is counted from a 
current node. Thus the general expression 

t = Ke-y’^ sinh (p' - x Vy^ - (394) 
becomes 

I* = sinh x \/y‘^ — (407) 

having set p' = 0 in accordance with the condition I* = 0 at 
a: = 0. 

Only one constant of integration remains to be determined. 
To obtain it, we assign the value of h at the first antinode in 
the direction of increasing x. This antinode, in a stub line, 
corresponds to the shorting connection. We will let 

X = U lx = h 

at the first antinode. Of these values, the second is set arbi¬ 
trarily, the first is a function of y and 

Hence we have 

I„ = sinh Lg 

and, eliminating K between (407) and the above, 

sinh Z, VT^ — 
(408) 

The next step is to express (sinh Z, \/y^ — in terms of y 

and P only, thus simplifying the remaining manipulation and 
obtaining at the same time useful information on the length 
of the resonant stub. On a uniform line this is a quarter wave¬ 
length, or an odd multiple of it; on the exponential stub line, 
the length depends on 7. 

To obtain the desired relation we must specify that the point 
X = Is is actually a current antinode or that the voltage at this 
point must be zero. An expression for the voltage V*, consistent 
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with (408), may be obtained by differentiation just as the generic 
voltage distribution (407) was obtained from (394). Thus 

V = —I 
JP _ _ 

V7^ - cosh X - y sinh x \/y^ - 

The denominator of the above must vanish for x = Z*, according 
to our premise, hlence 

y2 — ^2 cosli ^y2 ^ ^2 y y2 __ ^2 

which may be written in the following forms 

cosh 1. V'-y"' - = l (410) 
P 

/- v/ — 3^ 

sinh 1. Vy^ - |8' = (411) 
P 

and, introducing the notation of Eqs. (403), 

cosh Vf.= - 4>.^ = X (r. > 1) 
<Ps 

cos vV.' - r.2 = 5: (r. < 1) (412) 
<P8 

[Relation between exponent and line angle in the exponential stub] 

where T, = yl, = In y/Ror/Roi 

<t>, = 27rZ./X (413) 
Rot = characteristic impedance at shorted end 
Roi = characteristic impedance at open end 

I, = length of stub 
From Eqs. (408) and (411), we now obtain the following expres¬ 
sion for Ix: 

The above determines the • current distribution in a lossless 
line wh6n the current at the shorted end is If we hold 
I, fixed and imagine the line to have distributed resistance, 
the current values will be affected slightly. A small current 
will now flow at the current node (x = 0) to make up for the 
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dissipation, but obviously the loss due to this added current is a 
negligible fraction of the entire value. To clarify the point, 
assume the current to be 10 amp. at the short-circuited end at 
all times. If the line were lossless, the current would vary from 
0 to 10 amp. as we go from x = 0 to x = U. In the actual 
dissipative line, the current will vary from, say, 0.1 ma. at the 
input to 10 amp, holding the latter value deliberately constant. 
The values of joule loss due to the two current distributions are 
evidently the same for all practical purposes. 

In evaluating the losses, we will neglect dissipation in the 
dielectric and assume the distributed resistance R to have uniform 
value (Sec. 7.2). The loss is then given by the integral 

T 2 
Ps = R dx (415) 

Jo ^ 

Carrying out the. integration, we obtain 

1^2 sinh I, y/y^ - cosh 

h V^y^ — + y (cosh^ 1, y/y^- — + sinh^ I, y/y^ — 

- V - (t - ~y* 

Using (410) and (411), the above simplifies to 

(416) 

This value of the loss in the resonant stub will be used to find 
the stub conductance. We will again make use of the fact 
that the voltage and current distributions are not affected by 
the losses if the maximum values are assigned. The voltage 
distribution has a point of maximum (antinode) at a: = 0; 
this maximum value may be obtained from (409) and (411), 
as follows: 

Noting that (413) 
Vo = jlsRoie'^^* 

eyh 

the above may be written 

Vo — jI»Rom (417) 
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where 

Ra — RoiRor 

is the geometric mean of the end values of characteristic resist¬ 
ance or, which is the same thing, the value of Ro at the center 
point. Now, the conductance is given by 

R 

4/2cm^7 
(418) 

To express G* in terms of easily recognized quantities, we may 
define the mean of the exponential stub as the Q, of a uniform 
stub for which both r and Ro are those of the center point of the 
exponential stub. By this definition, have 

am OiLm __ W Vl m/Cm _ ^Rom //I 1 n\ 

(The subscript m denotes geometric mean value, or value at 
the center point.) Recalling that at high frequencies (Sec. 7.2) 

we have, finally 

Q.m 
fiRom 

R 
(420) 

Using the above, as well as Eqs. (413), the expression for the 
stub conductance takes the form 

r = 1 r r, -- i1 
• 'Q.mRoml (t>, T, 4 J 

[Conductance of the exponential stub at resonance] 

(421) 

where Q«m = value of at center point (geometric mean value) 
Ram = characteristic impedance at center point 

Equation (421) is valid for all values of r„ including F, = 0, 
for which value we should reobtain the conductance of the 
uniform stub at resonance, or (248) 

G = ^ 
' ^Q.Ro 

We cannot check this by simple substitution; the limit of (421) 
when r, tends to zero must be evaluated. This may be done by 
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expanding in a series; for F, small this expansion reduces to 

esr. = 1 + 2r, 

Noting, moreover, that for the uniform line at resonance 

we have from (105), in accordance with previous results, 

TT 1 + 2r. - ll _ TT 
2 4r, J AQMo 

The results of the fol*egoing analysis are implicit in Eqs. (412) 
and (421). For each value of the exponent F,, positive or nega¬ 
tive, (412) gives the corresponding line angle <j>a for resonance 
(more precisely, the shortest line angle, assuming that the stub 
includes only one voltage node and one current node, with a 
node at each end). A plot of vs. F« appears on Fig. 72 and 
indicates that convergent stubs, for which the characteristic 
impedance is lowest at the short, are longer than uniform stubs 
for the same wavelength; with an exponent of —2.12 the resonant 
stub length is X/2 instead of X/4. On the other hand, a divergent 

stub with F, = 1.44 has a resonant length of X/8. 
Substituting for each value of F* the corresponding in 

Eq. (421), a plot of vs. F« has been obtained, and this also 
appears on Fig. 72. It shows that if we compare stubs whose 
mean characteristics (Q* and Ro at the center point) are the same, 
the conductance is lower for divergent than for uniform stubs. 
The resonant impedance of a divergent stub with F, = 2.02 
is twice that of a uniform stub with the same mean values. 

The characteristic impedance of stubs shunting a coaxial 
line is usually made equal to that of the line itself. If it were 
made greater, undesirable discontinuities would result at the 
junction. Assuming the line to have a 70-ohm characteristic 
impedance, we niay therefore make a valid comparison between 
a uniform 70-ohm stub shunting the line and a divergent stub 
having a characteristic impedance of 70 ohms at the input and 
210 ohms at the short (for corresponding dimensions, see Fig. 
73). Let us find the resonant length and conductance in the two 
cases. 

* QsRo 
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Let Q, = 1,000 for both stubs at the input end. 

We have, for the divergent stub, 

r = ilnW = ln\/3 = 0.56 

Q.n, = Q. a/3 = 1,730 
Rom = Ro \/3 = 121 ohms 

Fig. 72.—Plots of resonant angle and resonant conductance of stubs against 
stub exponent F, 

Note: 

r s= i In (Ror, characteristic impedance at short; Roi, at input) 
Roi 

<t>t = 2irls/\ (Ig, length of stub at resonance; X, wavelength) 
G, = conductance of stub at resonance 

Q,m = mean Q, = ooL/R at center of stub 

Rom = mean Ro = \^L/C at center of stub 

From the plot (Fig. 72) 

Hence 
G.Q,mRom = 0.69 

<t>s = 1.24 rad. 
^ _ 0.69 X 10* _ o o 

121 X 1,730 



Sec. 13.6] THE EXPONENTIAL STUB LINE 325 

a. Parallel convergent stub for 

X = 5 m. 

(to be connected across widely spaced 
terminals). Numerical examples*. 
(1) Wire radius (uniform): 

a = 4 X 10”3 m. 

(2) Half distance between centers: 
At input, = 6 X 10"* m. 
At short, br = 5 X m, 
(3) Characteristic impedance: 

Rot = 408 ohms 
Ror = 82.8 ohms 

(4) Characteristic impedance at cen¬ 
ter point: 

Rom = \/408 X 82.8 = 184 ohms 

(5) Q, at center point 

Q,m = 4,280 
Rot 

(l/a + 1/6) VX 

(6) Exponent F: 

1,990 

r 
1, 408 

282.8 
-0.7976 

(7) From plot (Fig. 72): 
<t>, « 2.12 GsQomRom « 0.9 

(8) Resonant length: 
L, « 2.12X72ir « 1.69 m. 

(9) Resonant impedance: 
R» = QnmRom/0,9 <= 406,000 ohms 

b. Coaxial divergent stub for X = 6 m, 
(to be connected across 70-ohm 
cable). Numerical example: 
(1) Inner conductor radius: 
(2) Outer conductor radius: 
(3) Characteristic impedance: 

At input, Oi =3.11 X 10~’m, 
b, = 10“2 m. 

Roi = 70 ohms 
At short, Or = 2.42 X 10“^ 

br = 8 X 10-2 
Roi — 210 ohms 

(4) Characteristic impedance at cen¬ 
ter point; 

Rom = V70 X 210 = 121.1 
(5) Qb at center point: 

Q^m = 8,660-—-TT = 2,620 
(l/a + 1/b) VX 

(6) Exponent F: 

F 
210 

70 
0.56 

(7) From plot (Fig. 72): 

<pB ~ 1.24 GsQamRom ” 0.69 

(8) Resonant length: 

Lb = 1.24 = 0.99 m. 

(9) Resonant impedance: 

R. - “ 460,000 ohms 
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The corresponding values for the uniform stub are 

<l>8 = 1.57 rad. 

^ TT X 10® _ TT X 10® __ 11 o U 
“ 4Q,Ro “ 4 X 1,000 X 70 “ 

By using the divergent stub, the length may be cut by 21 per cent 
and the conductance (or the stub loss, which is proportional to 
it), by about 70 per cent. 

It may be said generally, if without precision, that the diver¬ 
gent stub has advantages as a resonator across closely spaced 
terminals. On the other hand, the convergent stub should have 
useful applications when the terminals need not be close together. 

Consider, for example, the tank circuit of an amplifier (Fig. 73). 
If the conventional coil and condenser are used, it is impossible 
to obtain a high value of resonant impedance at very high fre¬ 
quencies, as for example, 60 Me. (5 m.). If a uniform coaxial 
resonator were used, assuming Q, = 1,000 and Ro = 200 ohms, 
a resonant impedance of 

R, = = 255,000 ohms 
T 

could be obtained. Such a resonator would have to have a 
resonant length of 1.25 m. and a diameter of 7.5 cm., and these 
dimensions would prohibit its practical use. 

An open wire uniform stub would be equally impractical and 
would presenl serious interference problems. However, a con¬ 

vergent open wire stub would minimize these disadvantages. 
Over most of its length, this stub would have such a low value 
of center-to-center spacing that it could be rolled on a drum 
(Fig. 73). In addition, the spacing would be lower where the 
current is larger, which would reduce radiation to a negligible 
value. A numerical example is given in Fig. 73. 

13.7. Applications and examples. 

Design of the exponential transformer. It was pointed out in 
Sec. 13.4 that the exponential line approaches the performance 
of Sk perfect transformer (Sec. 14.6) as the wavelength tends to 
zero. Considering in particular the use of such a line as a means 
for securing uniform transmission between lines or cables with 
different values of characteristic impedance, or other unequal 
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resistive terminations, we will now investigate how the degree 
of uniformity, or the freedom from amplitude distortion (Sec. 
4.2), is related to the design parameters. It will be recalled 
that another solution of the same problem (the transformer 
problem), also suitable for very high frequencies, is based on the 
use of several uniform line sections (Sec. 10.2). A comparison 
between the two solutions will be made. 

The exponential transformer has a characteristic impedance 
which varies exponentially between a value Roi at the input end, 
equal to the source resistance, and a value Ror at the output end, 
equal to the load resistance. 

The input impedance (impedance looking from the source into 
the exponential line) has been derived, both graphically and 
analytically. Its nominal value is Roi, equal to the source 
resistance. This value is, however, realized only when the 
wavelength has certain definite values in relation to the line 
length. The nominal condition is represented in Fig. 69 by 
the point R/Roi = 1. The input impedance point is in this 
position only when 

where </>' is the line angle of the equivalent uniform line (Fig. 69), 
</> = 2Trl/\ the line angle proper, r = ^ In Ror/Roi the exponent, 
and 71 any integer. 

We may write (422) in the form 

I - 
which lends itself to a convenient interpretation, based on the 
relationship between F and the cutoff frequency. We have 
defined the cutoff frequency as the value for which 

= r 

At this value of frec^uency, a marked change in the exponential 
line operation takes place (Fig. 71), and it is convenient to refer 
all frequencies to this value. In terms of the cutoff frequency fc 

we may write 

r Sc 
(424) 



328 EXPONENTIAL LINES [Chap. XIII 

and the cutoff frequency itself is given by 

/. = = y log ^ Mc./sec. (425) 

[Cutoff frequency of the exponential line {I in meters)] 

Equation (423) now takes the form 

r, - V' + (Sy 
Any frequency that satisfies the above, where n is an integer, 
is transmitted by the exponential line under maximum power 
transfer conditions (Sec. 8.2) or, which i^s the same thing in the 
case of resistive terminations, without reflection. 

Fig. 74.—Plot of reflection loss against frequency for an exponential 

line transformer, Lr = reflection loss in nepers; fc = cut-off frequency; 

plot drawn for T == 0.8; envelope shown as dotted line. 

If the reflection loss (Sec. 6.6) is plotted against///c (Fig. 74), 
the plot will go through zero at the points given by (426). 
Between these points there will be departures of the input 
impedance from the nominal value and of the reflection loss from 
zero. These departures will increase in magnitude as / decreases. 
The envelope curve of Fig. 74 may be interpreted as a plot of 
amplitude distortion vs. the minimum operating frequency limit. 
The distortion is given as the neper ratio Lr of the maximum to 
the minimum value of transmitted power within any frequency 
range having /n,in as the lower limit and including at least one 
point of maximum {Lr = 0). 

The equation of the envelope may be obtained with the help 
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of the general relation (184) and of the polar plots of Zi (Fig. 71). 
The general relation is 

Lr = i \Az\^ neper 

where Az is the relative departure of input impedance from the 
nominal or m.p.t. value. Az is assumed to be small. 

From the polar plots we see that within the range of useful 
operation the impedance point describes a series of nearly circular 
paths starting and ending at the nominal point, where they are 
tangent to the R axis. Hence, the departure is greatest when 
the impedance point is directly below or above the nominal point. 

We also see from the constructions (Figs. 69 and 70) that 
the impedance point lies at all times upon a circle tangent to 
the R/Roi axis at R/Roi = 1 and having radius T/<t) = fdf- 

It follows from this and the above considerations that the maxima 
of Az have, for all practical purposes, the value 

Hence, the equation of the envelope 

It is clear that if we substitute for / in the above equation 
the value /min of the lowest operating frequency, the maximum 
loss over the operating range will be equal to or slightly less 
than the value of Lr given by the same equation, or 

(428) 

We shall be on the safe side if we consider the last line to be an 
equation rather than an inequality. In this case, combining 
with (425) and solving for the minimum length of the exponential 
line, 

I = (429) 

[Minimum length of the exponential line] 

In the above, I is in meters, Fmin in megacycles, Lr^ in db, and 
the logarithm is to the base 10. 

Comparison of the exponential and multisection lines as solutions 
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of the transformer problem. In order to compare the two solutions, 
graphical means must be used because no convenient analytical 

O "Crossover "points 

Fig. 75.—Comparison of the exponential and midtiaction soltUions of the 
vhf transformer problem. 

expression comparable to (428) has been derived for the multi¬ 
section transformer (Sec. 10.2). Instead, plots of KLr against 
f/fo have been obtained (Fig. 44) for various values of n. Simi¬ 
lar plots must be drawn for the exponential line for a valid 
comparison. 
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The symbols used in Fig. 44 have the following significance: 

K = 

n = 

fo = 

10^ 

(In Ra/Rb)^ 

U ^ Wo 
Xo 0 

250 
r2 (430) 

(431) 

(432) 

fo is the midband value of frequency (geometric mean of the 
extremes of the useful range), n the number of quarter wave¬ 
lengths comprised in the length of the line at midband. 

We now must express KLr in terms of f/fe and n for the 
exponential line. From Eq. (428) we have 

and from (426) 

Now, recalling (431), 

(433) 

Figure 75 shows plots of (433) for n = 2, 3, 4, 5 superimposed 
to the plots of Fig. 44. For each value of n the two solutions, 
multisection and exponential, are thus made directly comparable. 
There is this difference: noninteger values of n are possible for 
the exponential but not for the multisection line; on the other 
hand, the plots for the exponential line are to be interpreted as 
envelopes^ actual values of Lr fluctuating between zero and the 
envelope. 

A numerical example will bring out the significance of the 
plots. Assume the following requirements: 

Frequency range: 5 to 50 me. 
Impedance ratio: 10 to 1 
Allowable distortion (maximum reflection loss): 1 db 

We have from the above 
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The plots (Fig. 75) show for f/fo = 0.316 and for n = 5, the 
following values of KLRm^x'^ 

Exponential line: 

KLRmta. = 20 
Multisection line: 

KLRtata. ~ 32 

In both cases the total length would have to be 

nQ _ 300 X 5 

4/o ■ 4 X 15.8 
23.7 m. 

hence the exponential line is better suited. 
Whether one or the other type of line should be used depends 

on the value of /min//o, t on the bandwidth. For each n there 
is a value of f/fo at which the two plots, for the exponential and 
multisection lines, cross over. All these cross-over points, as 
it happens, lie at or near the abscissa 

f/fo = 0.425 

This value corresponds to the bandwidth 

w = = 2.35 - 0.425 = 1.925 
Jmin Jo Jo 

Unless other factors (in addition to amplitude distortion and 
over-all lengths) are taken into consideration, we may conclude 
that the exppnential line is preferable as the solution of the 
transformer i5roblem whenever the bandwidth is greater than 2. 



CHAPTER XIV 

INDUCTIVE COUPLING AND TRANSFORMERS 

14.1. Linkage of Flux and Current. The laws governing 
electric and magnetic fields under static conditions were reviewed 
in Chapter Xl. Inductance and capacity were defined there 
(Secs. 11.7 and 11.8). Both these concepts have significance 
only when the fields change relatively slowly with time. More¬ 
over, their definition presupposes that only two charged con¬ 
ductors, or only one current circuit, have effect upon the field. 
In spite of these restrictions, these parameters play an all- 
important part in the analysis of lumped systems. 

Distributed values of L and C continue to have meaning when 
the fields are not slowly varying, because of the geometry of 
the system to which they refer; but the second restriction, that 
only one current and one voltage have effect on the field at any 
particular point, embraces distributed as well as lumped values 

of L and C, 
We will now go on to consider a system of two currents, 

stipulating that because of the geometry of the system and 
the slowness of current variations, displacement currents (Sec. 
12.2) are negligible, and in consequence the current in each 
circuit is the same at all points. This is true, for practical 
purposes, at power and lower audio frequencies, and in many 
cases at higher frequencies. 

We will ultimately be interested in relations between the 
currents ip and is (Fig. 76), designated hereafter for convenience 
as 'primary and secondary, and the corresponding linked values 
of magnetic flux. First, however, let us discuss the subject 
of linkage. 

The flux or flow of a vector linked with a loop or closed line 
was illustrated in Fig. 57. The magnetic flux linked with a 
current is included in the general definition, the loop being in 

this case coincident with the current path and in the same direc¬ 
tion. The linked flux is positive when to an observer looking 

333 
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in the direction of the flux lines the current (or loop) appears to 
have clockwise direction. 

It should be noted that, just as we have defined the linked flux 

with respect to a current path^ we can also define the linked 

current with respect to a flux pathj more commonly called line 

of flux or line of force. In fact, current and flux are formally 
similar; both may be defined as the flow of a vector through a 
surface. However, when the current is confined within wires 
of small cross section, the linked flux is the same for all current 
paths of the same circuit. The reverse is never quite true; the 

tp 

Fig. 76.—Linkage of flux and current. 

Loop Itn, taken along any line of force in the magnetic flux tube 4>m, has -f4 
linkages with Joop Ip (path of primary current),—3 linkages with 1, (path of 
secondary current). 

Number of linkages is number of penetrations of linking loop through a sur¬ 
face bounded b>^ linked loop or vice versa. 

The sign of each penetration is determined by the rule of the right-handed 
screw (Fig. 60). 

linked current is not the same for all the flux lines of the same 
magnetic field, except in very special cases. 

It is therefore necessary, for purposes of evaluation, to sub¬ 
divide the magnetic field existing at any particular instant into 
tubes or partial fluxes, such that all lines of each tube have the 
same linked current, or, to use the established phrase, the same 
number of current linkages. 

For example, the partial flux (Fig. 76) has —3 secondary 
and +4 primary current linkages. To determine these numbers, 
we must obtain the current linked with any flux line of 4>m, or, 
according to the definition, draw a surface bounded by this flux 
line and count the number of times each current traverses this 



Sec. 14.2] SELF AND MUTUAL INDUCTANCE 335 

surface. The convention with regard to the sign is the usual 
one; if, looking in the direction of current, the flux line appears 
to rotate clockwise, the linkage is positive. All flux lines may 
be considered to have the same direction; any convention regard^ 
ing the direction of flux and currents may be used, provided we 
respect the rule concerning the relationship between each current 
and the corresponding linked flux. 

We may, in general, write the linked current for each partial 
flux as follow's: 

im Pmip “1“ 8mi» (434) 

where pm and Sm (primary and secondary linkages) may be 
positive or negative integers. The linked current is variously 
referred to as magnetomotive force or ampere turns. When the 
so-called practical system is used, the magnetomotive force is 
defined as 0.47r times the linked current. It is obvious that 
the concept of turns, useful as it is in many applications, lacks 
generality. 

Next, we must assume that at any particular instant of time, 
each partial flux is equal to the corresponding linked current 
multiplied by a positive coefficient. We will write, therefore, 

Lfnijpin^p ”1“ ^mif) Lml'm (435) 

The positive coefficient Lm has the dimensions of an inductance 
(Sec. 11.7); it is not, however, a constant parameter.^ 

14.2. Self and Mutual Inductances. Coeflicient of Coupling. 
We may use (435) to express the fluxes linked with the primary 
and secondary currents, respectively. 

If is the flux linked with the primary, consider the con¬ 
tribution to 4>p diie to the partial flux It will be clear from 
an inspection of Fig. 76 that if a surface bounded by any flux 
line of is crossed pm times by 4, then a surface bounded by 
ip is crossed pm times by 4>,„. Generally speaking, the number 
of mutual linkages of two closed paths may be defined in two 
ways, by associating a surface with either closed path and count¬ 
ing the positive penetrations of the other path through this 
surface. 

^ The boundaries of the partial flux tubes have been shown to change dur¬ 
ing each cycle under harmonic excitation. 
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As a result, we may write 

n 

^ LmPmijPm^p “1“ 

m- 1 
n 

LmSm(jpm^p “f~ Smia') 

m 1 

and, collecting terms in ip and i. 

having let 

4^p = Lpip “f“ Mig 
= Lgig -|- Mip 

(436) 

Lp = £ L„p„2 L, = ^ L„s„2 M = 
n 

^ LmPmSfn (437) 
m-*! m“l n — l 

Lp and L, are the coefficients of self-inductance ^ M the coefficient 

of mutual inductance. Experiment shows that all three of 
these coefficients are constant^ when the media have constant 
permeability. 

We may define Lp through Eq. (436) as the ratio 4>p/I/p for 
z, = 0; we may define L, in the same manner. M may be defined 
identically by the following: 

d) <tp-0) 

M = ^ 
ta 

or 
* (i.=-0) 

M = ^ 

The subscripts s and p, used in this section for reasons of clarity, 
will be replaced later by the subscripts 1 and 2 in agreement 
with standard usage. 

Equations (437) enable us to draw some generic conclusions 
with regard to the self- and mutual-induction coefficients. It 
is principally for this purpose that the foregoing discussion 
on linkages has been carried out. 

The values Li, L2, . . . Ln) pi, P2, . . . Pn) and Si, S2, . . . 
Sn are not constant with time, but refer to the field configuration 
at a given instant of time. We know, however, that Li, L2, . . . 

1 In the case of large flux variatfons in ferromagnetic cores, the coefficients, 

as defined, are not constant. In such cases and for sinusoidal excitation, 

harmonics are generated and the problem becomes much more complex. 

It is possible, however, to apply the transformer equations based on (436), 

using equivalent values of the coefficients and restricting the analysis to 
fundamental components. 
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Ln are always positive, while the p and s coefficients may be 
positive or negative. 

Hence, we see immediately that the self-inductances are 
always positive, while the mutual inductance may be positive 
or negative. 

The particular case for which 

Pi = P2 = Pz = • • • = Np (primary turns) 
Si = S2 = S3 = ■ * • = Ns (secondary turns) ^ 

is approached; when the two current circuits are wound around 
the same closed ferromagnetic core and the flux density in 
the core is very large compared to that of the surrounding 
space. In this case "we have, evidently, 

Lp = LoNp^ Ls = LoNs^ M = UNpNs (439) 

where now Lq is the ratio of the core flux to the linked current, 
or the current crossing a surface whose edge is within the core. 
Lo is the inverse of the core reluctance. If the core links with the 
current only once (Fig. 62a), Lo becomes the inductance of the 
current circuit. 

It may be shown quite generally that 

LpLs - 1/2 > 0 

by substituting the values of Eqs. (437). Thus 

LpL, - AP = ^ (Ln.p„s„)- + £ LkPh-LkSk^ - £ {L„p„s„y 
0<m<n h^k 0<m<n 

— ^ LhPhShLkPkSk 

h^k 

= ^ LhLkipysy + pkW - 2phSkPkSk) 
h>k 

= ^ LhLk{phSk - PkShY (440) 
h>k 

The difference in question is evidently positive and vanishes only 
when 

PhSk = Pk^h (441) 

for any combination of h and k. The ratio 

M 

\/LpLf 
T (442) 
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is therefore never greater than unity, r is the coefficient of coupling. 
That unity coupling is physically impossible may be shown by 
applying (440) to two partial fluxes, of which links only with 
the primary. We would have in this case 

Vh8k = 0 PkSh 9^ 0 

showing that (440) cannot be satisfied for any combination of 
h and k unless all the flux lines link both currents. 

The ideal case described by Eqs. (438) is, of course, consistent 
with unity coupling, but this condition is never fully realized. 
On the other hand, unity coupling is not subject to the condition 
that all the flux lines have the same nupiber of linkages. 

In the discussion on the transformer, we will find that this is 
equivalent to h T network of coils, of inductances Lp — ilf, 
Ls — M, and M. Let us express the first two inductances with 
the help of (437). We obtain 

Lp ]\L — ^ Lmpmijpm ^rn) 
m = 1 

n 

Lg ]\I = ^ LmStni^Sm Pfn) 

(443) 

In closely coupled transformers, owing to the geometry of 
the windings, all the primary linkages must have the same sign, 
and likewisq all the secondary linkages. Hence, if M is positive 
(437), Pm afid Sm have the same sign for any m and Lp — M, 
Lg — M have opposite signs. This is also true for M negative. 

14.3. Systems of Several Currents. Linear relations similar 
to (436) may be written between currents and linked fluxes when 
more than two currents have effect on the field. We may arrive 
at such relations by assuming that the magnetic flux density, 
at any point in space, due to a current I flowing in a circuit ele¬ 
ment of infinitesimal length dlj is given by 

B = dl X r 
. (444) 

The flux density due to each entire current circuit may be 
obtained by integrating the above over the length of the circuit; 
the resulting value will have 7 as a multiplier. Proceeding like¬ 
wise for all currents, we conclude that the flux density at any 
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point is a linear function of all the currents. The same may be 
said of the flux linked with each current; hence the system 

= Lull + L12/2 + ‘ • * + Linln 

^2 = L2lli + L22/2 + * * ' + L2nln 

= LnllI Ln2l2 * * ' + Lnn/n (445) 

14.4. The Transformer Equation. A transformer differs from 
the two-current system of Fig. 76 because it does not contain 
two complete circuits. A transformer is a four-terminal net- 

Fig. 77.—Equivalent 

ra^Voltage-currenf relations 
for the transformer 

(b)‘ Equivalent circuit of the 
transformer,separating winding 
resistances from lossless transformer 

fc)-Equivalent T network for 
the lossless transformer 

T” 0/ the transformer. 

work, not a closed system (Sec. 1.1). In applying to the trans¬ 
former the conclusions reached in the preceding sections, we run 
up against the same difficulty as in applying the concept of 
inductance to a coil (Sec. 12.5). 

We must here, as in the case of the coil, run a closed path 
along each winding and across the terminals (Fig. 77a). These 
paths will not coincide with the current paths over their entire 
length. In order to apply (436) we must assume that the flux 
linked with /i, for example, is substantially the same as if ii 
actually followed h across the terminals. 

Subject to this condition, we obtain the induced e.m.f. values, 
or loop integrals of the electric field around h and i2, by taking 
the time derivatives of Eqs. (436). The subscripts 1 and 2 
will now be used in place of p and s. Thus 
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-ex = — dl 
< 

— ^2 ~ dl 

Each loop integral may now be broken up, as in (Sec. 12.5), into 
the voltage across the terminals and the contribution due to 
the electric field within the wire of the windings, which is the 
product of current and resistance. Hence, expressing the 
terminal voltages, 

T dl'i I dz2 

T ^^2 , dll 
(446) 

= ixRi - ex = ixRx + Lx^ + M ^ 

V2 = t2R2 — 62 — 12^2 + L2 M —* 

(447) 

(The positive directions are those of the generic network. Fig. la.) 
It is clearly possible to consider a lossless transformer in series 
with the resistances Ri and R2 as an equivalent circuit for the 
transformer (Fig. 776). The transmission properties of the loss¬ 
less transformer will therefore be discussed in the following. 

14.6. Network Coefl5cients for the Lossless Transformer. 
Input Impedance and Voltage Ratio. The equations for the 
lossless transformer may be written in complex form for steady- 
state harmonic values, as follows: 

I Vt = ico(L + il/12) (448) 
1 V2 = yco(L2l2 + Mh) 

Comparing the above with the generic network equations (14), 
we obtain the network coefficients for the transformer 

2^11 — j^Li Z22 — Z12 — 221 — j(j)M (449) 

It may be easily verified that the T network of Fig. 77c has the 
same coefficients, which makes it equivalent to the transformer. 
We have seen, however, that in absence of stray flux, the two 
series inductances of the T must have opposite signs if the shunt 
inductance M is to be positive. Hence, one of the three must 
always be negative. It is therefore impossible to reproduce in 
this wa^ any of the useful transmission properties of the 
transformer. 

The transformer performance may be summarized by the 
values of input impedance and voltage or current ratio. The 
insertion loss may be obtained in terms of the input impedance. 
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We will first obtain generic expressions for these values in terms 

of the network coefficients, then the particular ones for the 

transformer. Finally, a useful equivalent circuit for the lossless 

transformer will be obtained; this in turn will provide us with a 

simple graphical interpretation. 

From the system (14) we obtain the following general expres¬ 

sions : 
^2 _ ^21 
II Zr + 222 

(450) 

[Current ratio for generic network] 

V2 _ Z2\Zt 

Vi ZiiZr + Dz 
(451) 

[Voltage ratio] 

„ Vi 2iiZr + 
“ I, “ Z, + Z22 

(452) 

[Input impedance] 

where Zn Z22 Zn Z21 = network impedance coefficients (Sec. 2.7) 

Dt = 2112:22 — z<iiZ\2 = determinant of network coefficients 

Zt = load impedance 

{Note, for passive linear networks, 212 = 221.) 

We will now rewrite the above for the lossless transformer, 

using the coefficients as given by (449) and noting that 

where 

D, = -co2(LiL2 - ilP) ■co2LiL2(1 - r2) 

I2 r 1 

II 7 1 - jZr 
(453) 

[Current ratio for lossless transformer] 

= -rt - 
Vl 1 - 7= - jZr 

(454) 

[ Voltage ratio] 

Zi = icoL, ^ ~ 
1 - JZr 

(455) 

[Input impedance] 

M 
T = - = coefficient of coupling 

V L1L2 

(456) 

t = = turn ratio (457) 

Zr = 

Zr 

CoZ/2 

{Zr includes secondary resistance of dissipative transformer.) 
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It appears from the above that the voltage ratio will be 

uniformly close to the turn ratio of the transformer, for any 

value of load impedance, provided the coupling is near unity. 

The current ratio is nearly equal to the inverse of the voltage 

ratio only if Zr is small (load impedance small compared to the 

open-circuit impedance from •'the output side). The input 

CaJ-Q>enera\ network equivalence on which transformer equivalence is based 

"Remainder" Perfect 

network transformer 

ianh O^Vl-z^ 

' ^-Application tothe "lossless" fransformer 

Fig. 78.—Equivalent circuit for the lossless transformer^ including a perfect 
transformer and a reversible T network. 

impedance approaches the open-circuit value when Zr is large 

or when the coupling is loose; for close coupling and Zr small it 

approaches 1/^^ times the load impedance. 

14.6. Equivalent Circuit of the Lossless Transformer. Given 

a nonreversible lossless network (Sec. 2.9), it will now be shown 

that its impedance transforming action may always be duplicated 

by a reversible network, proyided the load impedance is multiplied 

by thq ratio 211/222 (Fig. 78a). This is a useful equivalence 

as it permits us to extend the graphical methods applicable to 

reversible networks (Fig. 316). To obtain the constants of the 

reversible network for generic values of the coefficients, let us 

express the input impedance of the reversible network, loaded by 
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Zr{zn/z22)j and compare it with Eq. (452). Using Eq. (101), 

we have 

For the reversible network of unknown constants Zo, 6 loaded 

by Zr{znfz22): 

7^7 ^r(zulz22) + Zo tanh 6 
' “Zo + Zr{zn/Z22) tanh 6 

_ V .. ^ ^ + (ZrZulZoZ22) COth e 
0 1 + {ZrZii/ZoZ22) tanh e 

For the given network (452): 

y _ Zl\Zr ~b Dz _ 1 4" {ZiiZr/Dz) Dz 

' Zr + 222 1 + {Zr/Z22) Z22 

Comparing the coefficients of Zr in the two expressions, 

= JlL COth d A Zo = — COth d 
Dz 222-^0 222 

— = tanh 6 Zo = Zu tanh B 
222 222^0 

Hence 

Zo = Jd^ (458) 

tanh 6 = ^ • (459) 
\ 211222 

are the constants of the reversible network in the equivalence 

of Fig. 78a. 

Let us now apply the equivalence to the lossless transformer. 

The load impedance must be changed to the value 

In other words, it must be divided by the square of the turn 

ratio. If we inserted a 'perfect transformer before the load 

(Fig. 786), it would account for this change in the value of 

load impedance. The perfect (or ideal) transformer (not to 

be confused with the lossless transformer) is characterized 

by this relation of the terminal values 
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which in physical transformers is satisfied at best only approxi¬ 

mately. The remainder of the equivalent circuit of Fig. 786 is 

wholly responsible for the departure of the real transformer from 

its ideal behavior, and, as such, is particularly significant. 

This remainder is a reversible network, whose constants may 

be obtained from (458) and (459) by substitution of the trans¬ 

former coefficients (449). Thus 

z„ = - r“) ^ = jmX, (460) 

4- U ^ l—0)‘^LiL2(l — t2) /^^1\ 

^ = V—— == 

where 

m = \/1 — T" Xi = ct)Li (4fi2) 

Zo and 6 completely define this network. However, its T 

equivalent affords a more concrete picture. 

In general, T equivalents of reversible networks having known constants 
can be constructed by solving the system 

Zqc ~ Za “h Zh 

Z,c = Zo + 
Z[,Za 

Za + Zh 
_ ^ Zo + 2Zh 

“ Zo + Zh 

(463) 

where Zo is either series arm, Zb the shunt arm. The roots are 

Z'. = Zor [l ± ^1 - 1^] = Zo, (1 + Vl - tanh» e] 

Zb= +Zoo 'Vl - = +Zoo Vl - tanh*"0 
^ ZtOc. 

Noting that (26) 

Zoc = 
Zo 

tanh d 
the above may be written 

Zo = Zo (coth d ± \/coth* 0 — 1) 

Zb ~ dbZo y/coth* 0 — \ 
(464) 

Using the above, we have for the transformer remainder network 

(Fig. 786) the following values: 

f Za = jcoLi [1 ± Vl — 1 + t2] = jwLi(l — r) 

\ Zb = ±icoLi \/l — 1 + = jo)LiT 

having chosen the signs consistent with positive values of 

the inductances. 
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14.7. Graphical Determination of Transformer Performance. 
The equivalent network of Fig. 78 permits us to apply to the 

transformer the generic construction of Fig. 316 for the input 

impedance of a reversible network. 

The reversible network is, in this case, the T network of Fig. 78. 

For this network, the characteristic impedance Zo is a pure 

imaginary (460) and the transfer constant d a pure real .(461), 

because < 1 in all cases. 

Fig. 79.—Input impedance of the lossless transformer. 

Procedure: Locate Zr/t^ on complex plane. Locate points X = Xi and 
X = mXi on X axis. Draw circle with center on R axis through X = mX\ 
and Zr/t^. Draw straight line through X = Xi and Zr*lt^. Zi is at the inter¬ 
section of straight line and circle. 

It follows that the load impedance point Zr/t'^ and the input 

impedance point Zi (Fig. 316) must lie on the same constant r 

circle.^ In fact, insertion of the T network of Fig. 78 before 

the load does not add to the imaginary part r of the reflection 

constant of the load, but only to the real part, a. By comparison 

with Fig. 316, we see that the constant r circle in this case has 

center on the R axis and cuts the .X axis at X = mXi (Fig. 79). 

The construction of Fig. 79 shows that Zi is located at the 

^ The reader is cautioned against confusion between r, imaginary part of the 

reflection constant (Sec. 5.4), and t, coefficient of coupling. The expression 

M/y/LiLi will be written in full for the coefficient of coupling wherever it is 

felt that there could be ambiguity. 
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intersection of the above circle with a straight line drawn through 

the conjugate point (symmetrical about the R axis) of ZrIV'y 
and the point X = Li on the X axis. This line is the locus of Z 

for variable m, as may be argued from the fact that it may be 

drawn independently of m = \/l — {M^/LiL2). 

To show that Zi must lie on the above-mentioned straight line, we must 

go back to Eq. 455, expressing the input impedance as the ratio of two com¬ 

plex numbers. Such ratios may always be evaluated graphically by inter¬ 

secting two straight lines, as will be shown in the following. One of the 

straight lines and the constant r circle are used in the construction of Fig. 79. 

V a2 

/ 
, dji 
/«*5i \ 

Fig. 80.—Construction for the ratio of two complex numbers. 

To locate ^he ratio of two complex numbers on the complex plane of 

coordinates a, b, let 

flo "h jbo 
di + jbi 
di + jb2 

(466) 

Separating real and imaginary terms, we have the identities 

(iQdi — b(Jb2 fli 

<10^2 "j” b(j/(l2 ~ bi 

ao and bo must satisfy simultaneously the following equations in a and h: 

aa2 — hb2 =* fli (467) 

ahi + ba2 = bi (468) 

The above are represented on the ah plane by the straight orthogonal lines 

of Fig. 80. 

Let us find the lines in question, in the particular case when the input of 

impedance of the transformer is taken in place of ao jbo. We rewrite 
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(455) as follows: 

. _ . - jz, 
^ 1 - jZr 

(469) 

having let for brevity 

II (462) 

Zi 
(470) 

Zr 
(471) 

('omparing (469) with (466), wo find that the generic coefficients now have 

the values 

ai — Tr bi = -f 0-1 = \ Xr ?>2 = — Tr 

Equation (467) is now written 

r(l Xr) -f xrr - Tr (472) 

As may be easily verified, the al)ov(‘ represents a straight line on the rx plane 

which cuts the x axis at 
X = I r = 0 

and the values 
r = Kr X = —Xr 

satisfy (472). To draw the line on the impedance plane proper, all these 
values must be multiplied by wL\. On the impedance plane (of coordinates 
H, X) the line must go through the points 

X = coLt = Xi and R = 0 

X-and = TF 

as in Fig. 79, 

The impedance transforming action of the transformer 

for various values of load, primary reactance, and coupling 

coefficient will be revealed very clearly to the reader by means 

of the construction of Fig. 79 carried out in a number of cases. 

The frequency response of a transformer with resistive load will 

be investigated in Sec. 14.11. 

In some applications the primary current (or the primary 

voltage) is practically independent of the transformer input 

impedance. In such cases the complex current ratio (or voltage 

ratio) of the transformer fully describes its performance. Graph-, 

ical constructions for these ratios, which can be used in power 

as well as other applications, are given in Fig. 81. They are 

based on the principle of Fig. 80, applied to Eqs. (453) and (454). 
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14,8. The Autotransformer. If two coils of self-inductances 

Li, L2, and mutual inductance M (defined as in Sec. 14.2) are 

connected to source and load as shown in Fig. 82a, the resulting 

four-pole, known as the qutotransformer, is equivalent to a 

transformer connected as in Fig. 826, having values Li', L2', and 

M', which may be expressed in terms of Li, L2, and M. The 

autotransformer (tapped coil) is often used in radio circuits, 

when primary and secondary do not have to be at different d-c 

potentials. 
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To find the parameters of the equivalent transformer, we 

may express the linked flux for the primary and secondary 

meshes of Fig. 82a, noting that the current through coil 1 is 

ii + t2 and that through coil 2 is Thus 

= L\{ii + + Mh = Liii + (Li + M)i2 
$1+2 = $1 + $2 = Liii + (Li + M)i2 + Z>2i2 + M{ii + 12) 

= (Li + L2 + 2M)i2 + (Li + M)ii 

$1 and $1+2, differentiated, give the primary and secondary 

values of e.m.f.; hence, we may consider these values of flux 

(a)- Auto-iransformer f6>^-Equivalent fransformer 

Fig. 82.—Equivalent values of coupling and turn ratio for the 
autotransformer: 

t' = ^ t' = Vl + IHI + 2t^) 
Vl + 2rt 

to be the values of the equivalent transformer. By comparison 

with Eqs. (446) we may write for the constants of the equivalent 

transformer 

I L/ = Li L2' = Li + L2 + 2M) (473) 

\ M' = Li + M 

The expression for L2 is, of course, the well-known expression 

for the inductance of a series combination of mutually coupled 

coils. M may in general have positive or negative value; in 

the autotransformer, however, M is not negative as the two coils 

are generally part of the same winding. 

The values r' and t' for the coefficient of coupling and turn ratio 

of the equivalent transformer may be obtained from (473). Thus 

T 

t' = 

M' ^ Li + M ^ 1 + Tt 

y/L^ VLi^ + Lilt + 2L^M y/\+ 

[Equivalent parameters of the ctutoiransformer] 

(474) 

(475) 
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We deduce from (474) that the equivalent coupling coefficient 

can be made to approach unity in two ways: by making r as 

near unity as possible, z.e., by closely coupling the coils; or by 

making t small. In other words, if the tap is near the high 

end of the coil, close coupling may effectively be obtained 

even if the mutual induction between the two coil sections .is 

small. This is a distinct advantage of the autotransformer 

connection; however, the advantage vanishes for high equivalent 

turn ratios. 

As may be verified from (474), if m = a/I — is small 

(as it always is in magnetic core transformers), the equivalent 

value m' for the autotransformcr connection is approximately 

/ i m = m -7- r: ‘ 
Vi + r- 

In this case the equivalent turn ratio may be written approxi¬ 

mately 

t' = vr+'^" 
Hence, substituting, 

For example, if the recpiired equivalent turn ratio (voltage 

ratio) is 2, the relation is as follows: 

It will be shown in Sec, 14.11 that the parameter m = V1 — 

has a direct bearing on the frequency response of the transformer 

and may be taken as a direct measure of the effect of leakage 

flux. The above shows, therefore, that the improvement which 

may be secured in this respect by the autotransformer connection 

is rather limited. 

14.9. Coupled Circuits. Most radio and intermediate fre¬ 

quency amplifiers are transformer coupled. As distinct from 

audio-frequency or power transformers, the types used at radio 

and intermediate frequencies have loose coupling and small 

self-inductances. The theory and constructions developed in the 

preceding sections are valid for any transformer in linear opera¬ 

tion and can be applied to these types. However, the function 
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of the radio or I-F transformer is radically different and cannot 

be adequately studied aside from the associated circuit. 

Figure 83a shows the schematic of an 7-F transformer stage in 

which both windings of the transformer are tuned by shunting 

condensers. An equivalent circuit is shown in Fig. 836. The 

pentode is shown replaced by a current of value — g'mVi, where 

Vi is the input signal voltage applied to the stage. This repre¬ 

sentation is justified by the Norton equivalence (Fig. 92a), 

and by the fact that the plate conductance Qp of the pentode 

Fig. 83.—Application of the transformer to an amplifier {coupled circuits). 
Cl and Co include tube capacities. 

is negligibly small. The fundamentals of linear amplifier theory 

will be reviewed in Chap. XVI. 

Evidently, it is the over-all performance of the stage of 

F'ig. 83, not that of the transformer alone, which is of interest. 

The performance may be summed up entirely by the complex 

voltage ratio V2/V1. It should be noted that the capacities 

Cl, C2 of the equivalent circuit include the stray and inter- 

electrode values (Sec. 15.4) as well as the distributed capacities 

of the windings. If the frequency is very high, the distributed 

capacity of the windings, at best an artificial and approximate 

concept, is no longer significant and the entire lumped system 

representation must be used with caution. 

The entire four-terminal network of Fig. 836 has the output 

terminals open-circuited; we wish to determine its open-circuit 

output voltage when the input current is known. Therefore, 

we require the coefficient 212' for the entire network (Sec. 2.7), 

(prime symbols referring to the whole network as distinct from 

the transformer without shunting capacities). "From 212', 
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the voltage ratio may be readily determined; we have, in fact 

, V2 -V2 
" II !7mVi 

^ = -g^n' (477) 

To find 212', we must make use of expressions which relate the 

admittance and impedance parameters of a four-terminal network 

(Sec. 2.7). These can be obtained by comparison of the systems 

of linear equations (13) and (14) whose coefficients are the 

parameters in questions. Thus we obtain 

II 

- Dy 
- 2/12 

Dy 
(478) 

and the dual expressions 

222 2ll 2i2 

“ D. 
(479) 

In the above, Dy = 2/111/22 — and z ^11^12 — Zi2* are 

the determinants of the two sets of parameters. 

We have therefore for 212' 

yW ^_y\2 

y\\y22 — (yn'y 
(480) 

The prime admittance parameters may be obtained easily 

from those, of the transformer proper; for example, we have 

by inspection 

yi\ = 2/11 + iwCi 

observing that addition of Ci in shunt with the transformer input 

must add jcoCi to its short-circuit input admittance. Similarly, 

y22 = y22 + iwC2 

The transfer admittance is not affected by the shunting capacities 

(see its definition. Sec. 2.7). Hence 

J/12' = yn 

As a result, we may write (480) as follows: 

_yn_ 

(2/11 +i«*>Ci)(2/22 joiC^ — 2/12^ 
Zl2 = (481) 
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The admittance parameters of the transformer proper, which 

appear in the above, must in turn be expressed in terms of the 

known impedance parameters, using (479). Thus 

, ^ Z\2/Dz 

(zss/I>. + j<»C,){zu/D. + jc^Ci) - 
_ 

— + j^J^z(Zl2C\ + 211C2) + Zi\Z22 “ Z\2^ 

" 1 + ia)(C2222 + C,Zu) - 0)2CiC2D, 

The impedance coefficients for the dissipative transformer 

may be obtained from those of the lossless transformer (Sec. 14.5) 

by simply adding the winding resistances to 211 and 222. In 

expressing them, however, we shall make use of the dissipation 

factor d defined in Sec. 4.1. This factor is the reciprocal of the 

coil Q (Sec. 9.5) and mathematically better suited to allow for 

the effect of dissipation in many cases. Thus we have 

2ii = /El + jcoLi = jwLi(l -* jd\) 

Z22 — R2 + jo)L2 = jwL2(l — jd2) 

2ii = jcoM 

D, = 2ii222 — Zl2^ = — Co2LiL2(1 “ jdl)il — ^^2) + 

= -(02LiL2[1 - did2 - - j{di + d2)] (483) 
where 

^ ^ r = (484) 
JCioLl J^L2 v/^i/>2 

Substituting into (482) 

I — w*C2L2(1 — jd2) — a)*CiLi(l —jdi) -\-u)*CiC2LiL2[\ — did2 —t* —ji{di +<^2)] 

At this point, by the suitable choice of parameters, the expression 

may be put into more significant and convenient form. We 

shall use the/re^ucnci/ numbery introduced generically in Sec. 4.1; 

in this case, the reference frequency will be the geometric mean 

of the two resonant frequencies, defined as follows: 

Thus we have for the frequency number 

n (486) 
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We further note that 

03^ ^ ^2 ^ 

Similarly 
032 0)10)2 0)2 

o)^CiLi = — 
Wl 

CoM = 0)T Vl.Lj 
V VLiL^CiCi 

o> y/i\(\ " VCiCj 

Substituting into (484) and rearranging terms 

O) VCiCa 

n\dx + di) -(dt‘^ + d,‘^)+j\L-(!^ + ^) 
\ 0)1 0)2/ L?! \0)2 0)1/ 

+ n^l - d,di - r^)] 

Finally, expressing the input and output voltages as from (477), 

we obtain 

A: Vi 2 t • 1 
rfi + rfj V2 

where 

di + ^2 

2c + ^2(1 - €) (487) 

iN = 
~ 0, a/^ 

_ rfjCwj/wi) + (/2(wi/t02) 

“ “ rft + rfs (488) 

\0)2 0)1/ 

€ = + dld2 

Up to this point, no term has been neglected in the analysis. 

There is danger in dropping terms, however small, in expressions 

including a large number of variables. Equation (487), such 

as it i^, is subject to graphical interpretation, which in turn may 

be simplified with visibly small error. 

K Vi 
To interpret (487), let us find the locus of — ^—r—7- 

tti -f- (12 V2 

for variable n. Small relative variations of frequency are 
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assumed. This locus shows, except for an essentially constant 

multiplier, how Vi must vary in phase and magnitude when V2 

is constant (except for frequency). This locus is studied rather 

than its inverse (locus of V2 for constant Vi) because of its 

greater simplicity. 

To obtain the locus we let 

K 
d\ + 6,2 V2 

P = X + jy (489) 

thus associating each value of the complex ratio with a point of 

the xy plane, in the usual way. In this plane, circles about 

the origin are therefore lines of constant gain; lines through the 

origin are lines of constant phase angle. We have, from (487), 

X = n^ — a 

^ di 62 

Eliminating n, 

• - drh, [r-h - + -x' - •)] (“w 
which is the equation of a hyperbola. The asymptotes of this 

hyperbola have equations 

L-2c + n\l - e) 

X = —a 

x(l — €) 

^ = ~dV+T. 

The first is parallel to the y axis; the second is inclined with 

respect to the y axis by the angle whose tangent is —^ 

Since the dissipation factors are always small with respect 

to unity, the asymptotes are nearly parallel and the hyperbola 

may be assimilated to a parabola in the neighborhood of its 

vertex. Analytically, we obtain this result by expanding the 

term l/(a; -f- a) of Eq. (490) in a series of powers of 

(:r + a — 1) = — 1. 

Since practical operation is confined to the neighborhood of 

the midband frequency (for which n = 1), high-order terms of 

this power expansion may be neglected. Letting for brevity 

x' = x + a — l = — l (491) 
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we may therefore write (490) in the form 

+ 2(1 - c) - *] 

Adding and subtracting 6^/4 within brackets, 

» - 37T* [(*'- 0 +2a-.)-.(i-0] 

Let us now introduce two new variables 

J = x' - 1 = X + 

>1=2/ + 

i = x + a-(l+i) 
0+0 

di “t- 6^2 
K Vi 

In terms of $ and the locus of — -j—r—r given by Eq. 
rfl “T «2 V2 

(493), reduces to a parabola in the canonic form of equation: 

This parabola can be easily drawn on the fry plane. Along 

the parabola, a frequency scale could be marked with the help 

of the relation between $ and n (494). 

K Vi 
Considering — -1—^ as a vector, or better, as a directed 

* Gti -r U2 V2 

segment, one end of this segment will be on the parabola in 

question. The other end will be at point x = 0, 2/ = 0, as 

implied in Eq. (489). This point must now be located in the 

coordinate system, i.e., with reference to the parabola we 

have drawn (Fig. 84). The coordinates for this point will be 

called fo, Vo and may be obtained from (494), in which x and y 

are made equal to zero. Thus 

2(c - 1) + e (•-0 
dl + d, 

If t is varied [because of changes in t, Eq. (488)], the point 
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$0, m will describe some path. Evidently, if we could draw 

this path on the {?; plane on which we have already drawn 

the parabolic variable frequency path (495), we would have the 

desired information in very compact and accessible form. For 

each set of values for n and e (frequency and coupling), two 

points could be located, one on each path. The directed segment 

joining the two points would give the voltage ratio in phase and 

magnitude. 

The new path, as it happens, turns out to be another parabola 

identical to the variable frequency path, except that it is upside 

down and the vertices do not coincide. The steps may be 

verified by the reader; after eliminating e in the system (496), the 

resulting second-degree equation may be put into the form 

2c - 1 _ (fo - a + 2)2 

~di +di di + di 
(497) 

For the vertex of this variable r parabola, we have the coordinates 

’• - f. - a - 2 (498) 

The entire double-ended polar diagram is shown in Fig. 84 

for the general case in which the tuning frequencies are not equal. 

The two end points are obtained by laying off appropriate 

functions of n and r on the { scale, as shown. For convenience, 

distances along n are multiplied by di + ^2; the ^ component 

of the resultant vector is likewise multiplied after carrying out 

the construction. Thus, the entire vector remains multiplied 

Vi 
by + ^2, giving A simpler construction for the 

V2 

important case of wi = 0)2 is given in Fig. 85a. This case is 

taken up in some detail in the next section. 

If we hold the T point fixed on the diagram of Fig. 84 and let 

the F point sweep the variable n curve, we can see how the gain 

and phase shift vary with frequency, noting that the gain is 

inversely proportional to the length of the TF' segment. There 

will be two unequal gain maxima, or one maximum, depending 

on the position of T (or on the coupling coefficient). Plots of 

gain and phase shift against n for any r and wi/W2 can be obtained 

from Fig. 84, 
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It should be noted that the quantity 

a — 2 + \^2c — 1 

is a measure of the lack of symmetry in the characteristics. 

When this quantity is zero, the parabolas go through each 

other^s vertices, as in the symmetrical case = co2. 

X_\.i;'=2c-J=/.266 

Parado/a 

Direcfion of T for 

increasing'- 

^ Parabola 

\ DirecfionofF 

\^or f increasing 
0.4 

O'^yilr' 

Circuit data: 

/ Consfrucf/onfbrf=320kc 

i\ 
•1.0 ,j^a , -0i6 , 11^°' •_^ 

£,--'a-2-a866 ^-n‘-(t*^)--0.400e ''•i,-a-(l*\ha0S2Z 

Fig, 84.—Double-ended polar diagram for the determination of com¬ 
plex gain inui transformer coupled amplifier stage. General case, f\ 5*^/2. 

From the circuit data: 

a = c = \ +7^ = 1.133 (o = c when di — di) a = c = ^ 4"^^ = 1.133 {a = c wher 

^ , , u i € = did2 + r2 = 0.1G16 
Compute for each t: i /i • / \ r\too 

* V a — (1 + e/z) = 0.0522 

Compute for each/: — (1 + t/2) = —0.4008 
/ fOm 736,000 

From the construction: 
2*-/ VCiC, 

V\ fpp> 0.26 

/Fz - /Vx= -TFT = -1.49 radians 

Note: This method is accurate, provided (n* — 1)® <JC 1; the error is smaller near 
midband (n = 1). 

When rf. a - . 1 (A 
di + dz 2 V/2 /i/ 
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Use of the double-ended polar diagram in connection with coupled circuits 

raises the question: What class of problems can be handled in this way? 

Consider a complex quantity z = x jy, function Of a number of parameters 

a, Y, and suppose we wish to chart or analyze the variations of z with both 

a and /3. The most gcmeral method consists of drawing, on the xy plane, a 

family of polar diagrams or loci of z for constant values of and variable a; 

then repeating for constant a and variable (y being constant for both 

families). This, however, requires th(^ tracing of a double family of curves, 

all of which have to be redrawn each time y is changed. Suppose, however, 

the locus of z for variable a can be written in the form 

F(x +B,,y + B2, 7) = 0 (499) 

which means that F is an algebraic or transcendental expression in a; + 
y B2 (where Bi and B2 are functions of and 7), the coefficients of F being 
functions of 7 only. Jn this case we can proceed as we did after writing 

Eq. (493) of the preceding discussion, i.e.j adopt a new coordinate system 

^ = X -h Bi 

rj — y -\- B2 

On the plane, the single curve 

Vy y) =0 

takes the plac(* of the family of variable a loci. It now becomes necessary 

to trace out the path ch'seribed by the origin of the xy axes upon the plane 

for variable /3. This is done by writing 

^0 = Bi 

VO = B2 

and eliminating p from these two equations. In conclusion, the system is 

applicable whenever the polar diagram of z(a0y) for variable a can be put in 

the form (499). It should be noted that if this may often be accomplished 

by suitably selecting «: a may be a function of several among the original 

parameters used in the analysis. 

14.10. Synchronous Coupled Circuits: Critical Coupling. 
When the two tuning frequencies 

1 1 
COl = --W2 = -7-—— 

of the coupled circuits network are equal (we shall call such 

circuits synchronous for brevity), the diagram takes the form 

of Fig. 85a. It is often possible (when r <3C 1) to draw only 

the lower end of the variable frequency locus, together with 

that part of the variable r locus which corresponds to low values 

of T. This section of the variable r locus may be assimilated to 

a straight line. Hence the simpler construction of Fig. 856, 
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which may be used effectively to analyze synchronous coupled 

circuits under all practical operating conditions. 

The construction may be simplified still further (Fig. 85c) 

when the dissipation factors are so small that the variable r locus 

may be assimilated with the ri axis. 

Plots of over-all gain and phase angle, obtained from Fig. 85c, 

are reproduced in Fig. 86. It will be noted that the plots are 

based on a common value, d, of the dissipation factors for the 

two coils. They can, however, be used when d\ and are not 

equal; in this case the values of d and r to be used in selecting 

the appropriate plot and computing the constants must be 

equivalent values, obtained in the following manner: 

Equivalent d = i(di + ^2) (500) 

Equivalent r = — ^{di — d^Y (501) 

To justify this, we note that r has effect on the diagram of Fig. 

85c only through the value of 

€ = did2 + (488) 

In the case di = ^2 == d, the above becomes 

€ = d2 + 

Now, if for d we substitute the equivalent value i(di + d2), 

we must substitute an equivalent value for r also, so that € 

may have the correct value for the case di 7^ d^, as given by 

(488) above. Hence 

('^•q)^ 4“ i‘(di + d2)^ = + didz 

from which we obtain (501). 

We also note from the plots, as from the polar diagram, that 

the gain characteristic is symmetrical for small values of r, 

in the sense that the gain is the same for any two frequencies 

whose geometric mean is the midband, or common tuning 

frequency. This is, in general, the meaning of symmetry as 

applied to network characteristics. The characteristics are 

not actually symmetrical unless plotted against the logarithm 

of frequency or over a narrow frequency range. 

The location and height of the peaks in the gain characteristic 

may be determined analytically in terms of r on the basis of 
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Fig. 85c. This could be done by writing an expression for the 

length TF in terms of n and r. This expression would actually 

give us the equation of the gain curve; by taking its derivative 

-1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -O.Z 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 

~2il"' Of" approximately *. 

Fig. 86.—Universal plots of gain and phase shift for synchronous 

coupled circuits. Plots are drawn for the case /i = /z = /o, di = d2 = d 
(see Fig. 84). They are based on the construction of Fig. 85c. ‘ 

If di 7^ di, plots can be used if based on equivalent values: 

(di - di)^ 

4 

di -f~ di 
2 

Qmtq — Qm ““ 

with respect to n and setting it equal to 0, we could obtain the 

desired results. However, a simpler method consists in writing 

the equation of a circle with center in T (Fig. 85c) and generic 
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radius R.^ This done, we eliminate f from this equation and 
that of the parabola; the resulting equation in r; will have two 
roots (not four as would be the case for a parabola and a circle in 
generic mutual relationship). This is because the four inter¬ 
sections of the circle and the parabola are symmetrically placed 
about the axis of the parabola; a single value of rj corresponds 
to two intersections. Finally, we impose the condition that the 
two solutions for r? at the intersections reduce to one, thus 
specifying that t^ie circle and the parabola must be tangent. 
This assigns a value to R, the radius of the circle, and to rj for 
the points of tangency, hence, respectively, for the maximum 
gain and frequency of maximum gain. 

The equation of the circle is 

- (irir.)]’ + 
and that of the parabola 

(502) 

V = 
di + ^2 

Eliminating and expanding, 

Hence the values of rj at the intersections 

€ di + (I2 
V = 

d\ + ^2 

4 
€ d\ d2 

d\ + d2 ! 

The discriminant vanishes, and the intersections coincide into 
a point of tangency, when 

R = = yjt- (503) 

At the same time rj takes the value, for the point of tangency. 

_ € dl “t" ^2 

^ di + ^2 2 
(504) 

^ The coordinates of Fig. 85c arc 17' = v/idi + dz) and = ^/(di -|- ^2). 
This change does not affect the configuration, yet makes it possible to draw 
a single parabola y' = for all possible values of di and d%. 
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From (503), substituting (488), and noting that 

[Chap. XIV 

TF = 
K Fi 

(di + d^Y Vi 
K 

(m*x) Raunidl “1“ (^2)^ 

we have the maximum value of gain for the condition when the 

gain curve has two separate peaks (overcoupling) 

Wo Vl\C,Uh_+ d,) I - 

(505) 

[Maximum value of gain for overcoupled circuits (wi = wa =* wo)] 

Qm 

2d(*3Q \/CiC2 

[ids abovej when = cfa = <^1 

(506) 

where di = Ri/uiLi, wi = lIx^LiCi^ etc. 

In the above, wo has been put in place of w with small error. It 

is instructive to compare (506) with the maximum gain obtainable 

by tuning the joint capacity Ci + C2 with a single coil of dissipa¬ 

tion d .(gain of the tuned output amplifter). The comparison 

is valid if Ci and C2 are considered to be limiting factors of the 

gain, not if their values have to be adjusted by means of variable 

condensers in order to tune out given inductances. 

The two^gains compare as follows: 

Maximum gain (transformer coupled) 

Maximum gain (tuned output) 
(507) 

This expression is greater than unity when the two capacities 

are not equal, in which case the turn ratio of the transformer 

should be, noting that \/LiCi = \/L2C2 

As an example, consider a tube having plate to cathode capacitance (Sec. 
15.4) of 20 MMf, to be coupled into a grid to cathode capacitance of 3 tint at a 
single fixed frequency. The ratio (507) would be in this case 

2.968 
1.482 

2 
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showing that there is a limited advantage in the use of transformer coupling, 

in certain cases, from the standpoint of gain as well as bandwidth. 

From Eq. (504) we may obtain the frequencies of maximum 

gain. We have, for the points of tangency F^Jy Frr.J' (Fig. 85c) 

Hence, and from the equation of the parabola = 

? = V* - 

di + ^2/ 

Noting that, approximately, ^ — 1 [Eq. (494)], comparing 

with the above, solving for n, and expanding e (488), 

= 1 + + d\di — 
{d^ + d,r 

n = yjl ± - — 
+ di‘ 

Finally, expanding by means of the binomial theorem, 

= <00 [l + i (508) 

[Frequenctes of maximum gain for overcoupled circuits (wi = co2 = wo)] 

= O)o[l ± i Vr^^] (509) 
[/Is aOove, when di — = d] 

If the coupling coefficient is fairly large compared to the dis¬ 

sipation factors, the separation of the peaks, expressed as a 

fraction of midband frequency, is sensibly equal to r itself, 

thus providing means for measuring this quantity. 

The separation vanishes when, in the general case 

di 7^ d2 (508) 

^ V 2 
[Value of T for critical coupling (wi = <*>2 = wo)] 

T = d 

[As abovej when di =* =• d] 

In a geometric sense, critical coupling occurs when the circle of 

Fig. 85c osculates the parabola; in this case the gain curve 

has zero curvature at its peak, which is now at the center of 

symmetry. Under these conditions, a finite frequency interval 

(510) 

(511) 
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is transmitted with low values of amplitude and phase distortion 

(Fig. 86). The maximum gain value for critical coupling is 

obtained by substituting (510) into (50.5). Thus 

^\/2(rfi^ + d2^) 

\Fl/max CJo VCiCj idi. + diY 

[Maximuyn gain for critical coupling (wi = a>2 = ojo)] 

(512) 

For the condition d\ = d2 = d, maximum gain for critical 

coupling has the value of Eq. (506). Uneven distribution of 

dissipation in the two coils (inequality of Q values) has a slight 

effect on the gain at critical coupling. Comparing the gain 

for di = d2 — d with the gain for did^ = d“, ^2 = 4di, we find 

j= 0.933 (the constant didi) 
Gain (ui = a2) 

When T is below the critical value, the gain curve goes through 

a maximum at midband and has a curvature there. We have 

under these conditions 

V2 ~dx + d2 
from which we obtain 

[Maximum gain for vndercoupled circuits (a>i = 002 = wo)] 

When the coupling is very loose (r“ «c/it/2), the gain is approxi¬ 

mately proJ)ortional to r. 

-) = 
r max 

TQn 
(513) 

14.11. Applications and examples. 

Amplitude distortion due to the transformer inserted between 

resistive terminations. The transformer (magnetic coupling) 

provides a solution for the transformer problem in the audio 

range. As defined in Sec. 8.1, this problem calls for uniform 

transmission over a wide band when the terminations have resis¬ 

tive values. The performance of a transformer in this respect 

may be appraised by the variation of transmitted power with 

frequency (amplitude distortion). Instead of computing, or 

plotting^ transmitted power, we may conveniently compute the 

db or neper loss in transmitted power (Sec. 1.9) referred to the 

maximum amount of power that could flow between the given 

terminations. This method has been used before (Sec. 9.5); 
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the loss in. question is called the reflection loss (Sec. 6.6). It is 

obtained (when small) by the approximate formula (184) 

where \AZ\ is the distance, on the Z plane, from the input imped¬ 

ance point Zi to the generator resistance Rg. 

X 

Fig. 87.—Transformer with resistive load. 

We can evaluate AZ, hence L/?, by means of the input imped¬ 

ance construction of Fig. 79. We must assume that Rg, generator 

resistance, includes the resistance of the primary and Rry load 

resistance, that of the secondary, and that the turn ratio of the 

transformer has the value 

Under these conditions the diagram takes the form of Fig. 87. 

We deduce, by comparing similar triangles, the proportions: 

A.0 “1" Rg 17lX\ Rg 

from which we obtain 

(514) 

Hence, the reflection loss 

, jRg, ,XlY 

Lr = i ^ r) (515) 

Xi = coLi = 1 — 

[Reflection loss for the transformer between resistive terminations] 
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The reflection loss is a minimum, as may be verified by differ¬ 

entiating, when frequency is such that the terms under brackets 

are equal, or 

X, = —" (516) 

in which case the loss takes the minimum value 

Lnudn = neper (517) 

As an example, assume Rg = 10,000 ohms (including primary 

resistance, which may be estimated approximately). We 

wish to determine the minimum values of primary inductance 

and coupling coefficient for a transformer which is to operate 

between 10 and 1,000 c.p.s. with less than 2 db amplitude 

distortion. 

Since the minimum reflection loss, given by (517), is always 

exceedingly small for closely coupled transformers, we may 

identify the distortion with the maximum Lr within the useful 

range. For optimum utilization we will therefore set Lr = 2 dh 

at both extremes of the range. Thus 

^ = i (^ + = i (1 + (518) 

having let 

a:' = — = 27r X 10 X Li 
Rg (/-=10) Rg 

x" = = lOOx' 
Hg (/—1,000) 

Eliminating from (518), we have 

hence 

x" ^1.356 - = x' ^1.356 

100 - (1/100) 
1.356(100 - 1) 

and for the primary inductance 

0.745 

_ 10,000 X 0.745 

2jr X 10 27r X 10 
118.5 henrys 
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Now may be obtained from (518) 

369 

or 

. 0.0188 
X 

T = \/i — = 0.9906 

The values obtained are independent of the turn ratio. This 

does not affect amplitude distortion for given values of r and 

Li. If the turn ratio is high, however, a large primary inductance 

may be difficult to obtain. It should be noted that the winding 

capacitance has been neglected in the discussion. This is there¬ 

fore applicable only to low frequencies. 

X 

Comparison of resonant impedance of a tank circuit and of 

a transformer with capacitive load. Selective two-poles of the 

antiresonant type, having a high value of resonant impedance 

(or resonant resistance are frequently called for. The 

simplest of such poles is the parallel LC combination (Fig. 88a); 

a possible alternative is offered by a transformer with capacitive 

load (Fig. 885). A third alternative might be the autotrans¬ 

former or tapped coil connection. This may be reduced to an 
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equivalent transformer connection by the relations (474) and 

(475). We will now compare the first and second alternatives, 

from two standpoints, namely, 

1. Assuming that the same coil is resonated, first by a con¬ 

denser across it (Fig. 88a), then by a condenser through a 

magnetic coupling (Fig. 886), at the same frequency in both 

cases; 

2. Assuming that the capacity and the frequency are the 

same in both cases. 

The comparison may be carried out on the basis of the Z-plane 

diagrams. These are given, for the two alternatives, in Fig. 88. 

The diagram for the tank circuit is based on the principles 

discussed in Sec. 8.3; that for the transformer circuit, on the 

construction of Fig. 79. For purposes of comparison, both 

diagrams have been normalized, by making the scale unit equal 

to coLi in both cases. 

Broken down into similar triangles, Fig. 88a gives 

d _ (oji/coq)^ 

I -Ro/0)oL\ 

(wi/aJo)“ “• 1 d 

where 
d 1 

d — ^ 
1 

0)0 = resonant frequency 
COoLl 

From the $,bove we obtain 

< 

1 

COo — 
C*Ji 

Vl + 
Ro — oidLi —^ —- 

O^oLl 
d 

(519) 

(520) 

These conclusions are well known, of course. Dissipation 

causes a slight shift of the resonant frequency, and the resonant 

impedance is the reactance of the coil at resonance multiplied 

by the coil Q. 

Now consider Fig. 886.* Although more complicated, this 

may be analyzed in a similar manner. Comparing pairs of 

similar triangles, we have the proportions 

Ro/(jjqLi   m 
(521) 
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(fio/copLi) — _ (cog/gjo)^ 

(aJg/coo)^ 'AO + d2 
Hq/COoZ>i _ 

1 1 — (cog/coo)^ 

From (523) we have 

\COo/ ^o/ OioLl 

and with very small error 

fe)“= 
1 - 2 

/^o/(j^oLi 

From the above, (521) and (524), 

having let 

(»-o - = 1 - 

7-2 = 1 — 1^2 

Solving (525) for Tq 

* V t2 + 

Discarding the negative sign which does not correspond to 

the configuration of Fig. 886, clearing and expressing /?o, 

Ko = cooLi ——--- (52b) 

In common cases when dg « r, this and (524) become approxi¬ 

mately 
tOoLiT” 

COg 

VT'-^WW 

(527) 

(528) 

[T^csonan^ impedance and resonant frequency of transformer with capacitive load 

(d2«T)] 

If Li is held the same in the two circuits (Figs. 88a and 886), 

we find that the resonant impedance is the same in both cases 

only for tight coupling, assuming the dissipation factor to be the 

same for coils L\ and Lg. 
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If the capacity is the same (C for both circuits), we have, 

approximately, taking the resonant frequency to have the 

lossless value 

For Fig. 880 (from Eq. 520): 

“ diu>oC 
(529) 

For Fig. 886 (from Eq. 527): 
/ \ i 

^ d^oC \y (530) 

[‘-M 
It may be possible, therefore, to obtain a higher resonant imped¬ 

ance, using a given tuning condenser, by the method of Fig. 

886 than by the direct parallel connection. It is necessary for 

this purpose to use a turn ratio smaller than the coefficient of 

coupling. 



CHAPTER XV 

CAPACITIVE COUPLING 

16.1. Systems of Several Charged Bodies: Partial Capacities. 
In the preceding chapter, an abstract system of two neighboring 

currents was considered first; this led to general relations between 

the currents and the magnetic fluxes linked with each, which in 

turn enabled iis to derive the network equations for the trans¬ 

former. Mutual relationships between flux and current values 

in systems of many currents were also touched upon briefly. 

From a practical standpoint, this general case is not as important 

as the particular case of two currents. 

As the dual of a multicurrent system, in a general sense, we 

may consider a multivoltage system. In place of a number of 

closed paths, or loops, in which flow well-defined values of current 

(one value for all cross sections of the same loop), we can 

imagine a number of closed surfaces, any two of which define a 

value of voltage (the same for all paths between the two surfaces). 

A system of charged conductors immersed in a dielectric 

medium fills these requirements, provided the charges do not vary 

too rapidly with time (Sec. 12.6). 

If only two conductors are present, the displacement current 

flowing across the dielectric can be considered due to a con¬ 

denser connected between the conductor surfaces. In this 

equivalent representation, the geometry and mutual position 

of the two conductors no longer have effect on the field of the 

system, which is now localized between the condenser plates. 

This idealization, which, in place of a physical system identified 

by its geometrical configuration, considers a circuit branch 

identified by a value of capacity, can be carried over to a system 

of many conductors. In this case the equivalent systems include 

as many condensers as there are voltages in the system or com¬ 

binations of conductors taken two at a time. 

This equivalence is shown in Fig. 89. The condensers of 

the equivalent system are called partial capadtieSy and we shall 

call the electric flux in each condenser the partial Jlux associated 

with the pair of conductors across which the condenser is ideally 
373 
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connected. Thus, is the partial flux between conductors 

j and k; C,„ the partial capacity, may be written 

Cj, = ^ (531) 
Vjk 

where vjk is the voltage between j and k. 

The equivalence of Fig. 89 may be justified in a roundabout 

manner, as will be shown in the next section. 

s 

Fig. 89.—Equivalent representation of a system of n conductors (n = 5) 
illustrating partial capacities. m 

16.2. Capacity and Potential Coefficients. The total electric 

flux leaving conductor j, or the charge Q of this conductor, is 

given by the sum of the partial fluxes 

Qj = + "^,-2 + • • * + 4^/n 

or, using (531), ’ 

• Qi — + Cj2Vj2 + • • • + CjnVjn 

where Vjk is the voltage over a path from conductor j (first 

subscript) to k (second subscript), and Vjk > 0 when the field 

and the path have the same direction or when j has higher 

potential. We could obtain in this way the system 

Qo = CokVok 

k^O 

Qi = X (^32) 

Qn ~ (^nkVnk 

4 k^n 

for the conductors 0, 1, 2, . . . n.^ 

* The notation ^ designates a sum of terms, in which the subscript k 
kf^j 

takes all values from 1 to w successively, except the value j. 
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Let us now consider, rather than the voltages between con¬ 

ductors, the voltage of each conductor to conductor 0, considered 

as a ground^ or the potential U of the conductor. In terms of 

potentials, we have in general 

Vjk = Vja + Vok = Uj — Uk 

Hence, the expression for Q, becomes 

Qi = t 

The right-hand side of the above is a homogeneous polynomial in 

the n potentials Li, U2, Ih . . , Un and can be written 

Qi ~ ^ QikUk 

where 

Qii = -Qi 
g,-2 = — Cy2 

Qii = I 

The q coefficients are called coefficients of capacity. They are 

equal and opposite to the partial capacities (hence negative) 

except when they have two equal indices. In view of the 

significance of the partial capacities (Fig. 88), it is evident that 

hence also 
Cjk = Cki 

Qjk = Qkj 

The differentiation between partial capacities and capacity 

coefficients has been stressed in order to avoid confusion. For 

practical engineering purposes it is much better to avoid the q 

coefficients entirely, using only the C parameters, which have 

concrete physical meaning. 

From a mathematical standpoint, however, the q coefficients 

are convenient. In terms of these, the relation between charges 

and potentials is as follows: 

/ Qi = qnUi + qi2U2 + • • qinUn 

\ Q2 = q2\Ui + ^22^/2 + • • ' + q2nUn 
(533) 

\ Qn = qnlUl + qnilh + • • "I” qnnCIn 
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From this we may derive a similar set of equations, expressing 

the potentials in terms of the charges 

/ [/l = PllQl + P12Q2 + • • • + PlnQn 

) U2 = P21Q1 + P22Q2 + • • • + P2nQn 

\ f/n = PnlQl + Pn2Q2 + * * • + PnnQn 

where pn, p 12, Pu • • • the potential coefficients. 

Equations (534) may be regarded as a consequence of the 

principle of superposition applied to the potential due to several 

superimposed distributions of charge density. Suppose a given 

distribution <r,- causes the total charge to have a value Q, on 

conductor j and 0 on all other conductors and causes the potential 

on conductor k to have the value Ukj- It is evident that if ctj 

were multiplied by a factor n at every point, the charge Qj 

would likewise be multiplied by n and so would the potential 

Ukjy by the superposition principle. Hence, Ukj and Qj must 

be proportional, or 

Ukj = PkjQi 

Now consider a new distribution an which causes a charge 

Qh to appear on conductor h and no charge on any other con¬ 

ductor. By virtue of (t/i, the potential at k will have the value 

Ukh = PkhQh 

and by virtue of both <ry and ah existing together, it will have 

(again because of superposition) the value 

Ukj + Ukh = PkjQj + PkhQh 

Continuing this way, we would obviously arrive at Eqs. (534). 

From these, retracing our steps, we would finally come to the 

conclusion that the partial capacities Cl 1, C12, . . . are constants. 

A full discussion of this subject can be found in the literature. 

In the following, systems of three conductors (or two conductors 

and ground) will be taken up in particular detail, as the electro¬ 

static system formed by* the electrodes of vacuum tubes falls 

within this category. 

16.3. Systems of Three Conductors: the Capacitive n Network. 
Consider a system of three conductors, of which one is grounded, 

as in Fig. 90a. Particular attention should be given to the word 
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grounded. It would be more correct to say that the third con¬ 

ductor shields the others. Whether or not this conductor is in 

contact with earth is immaterial. The important thing is that no 

fourth conductor must have appreciable effect on the field of the 

system; and this can evidently be true only if one of the three 

conductors shields the remaining two. The term grounded 

used in this connection actually means that a dosed system is 

considered. 

(c) 

Fig. 90.—Three-conductor system and equivalent 11 network. 

In some cases the closed system is actually delimited by 

the earth^s surface, which then constitutes the third conductor. 

An example in point is a two-conductor open wire line. If 

the line spacing is small compared to the height from ground, 

the field of the line is not appreciably affected by ground, and the 

line is treated as a two-conductor system, as has been done 

(Chap. III). 

Returning to the system of Fig. 90a, we may write expressions 

for the charges on conductors 1 and 2 in terms of the voltages 

of the system, as we did for the n-conductor in Eqs. (532) 

Ql = CioVio + C12V12 

Q2= C20V20 + C21V2I (535) 
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We can interpret these equations by the equivalent system 

of Fig. 906, in which the electric field is considered localized 

within the condensers Cio, C20, Cu, and the conductors them¬ 

selves shrink into points. 

This equivalent system has the form of a n network and can 

be used to examine the performance of the original system when 

electrically connected to the outside. 

We must use caution, however. When leads are brought 

out through the shield (conductor 0), the parameters Cio, C20, C12 

no longer describe the system accurately, unless the section of 

each lead contained inside the shield has been considered as part 

of the corresponding conductor in the original closed system. 

Furthermore, the aperture through which the leads are brought 

out should be so small as not to impair the effectiveness of 

the shield. If the three conductors are close together, as in 

Fig. 90a, the fields are essentially localized and the above condi¬ 

tions become unimportant. 

As the next step, we express the currents through the leads 

at their entrance through the shield, in terms of the voltages. 

Of the latter, only two need be expressed, namely, vio and V20. 

The third may be written 

V12 = ViQ + Vq2 — Vio — ^20 

Since Viq and 1^20 are the input and output voltages of the system, 

considered as a four-pole, the standard notation Vi will be used 

in place of vio from this point on, and V2 for V20. 

Thus, referring to Fig. 90d 

ii = ^ = ~ [Ciovi + Ci2(v, - V2)] 

= ^ l(Ol0 + Ci2)t^l — ^121^2] 

iz = ^ [(C20 + ^^21)^2 — C12V1] (536) 

Going to the harmonic case, we have by means of the usual 

substitutions (I for i, V for v, and joi for d/dt) 

Ii = MiCio + C'«)V, - CuV*] 
Is = MiCio + Ci2)V2'- CisV,] 

(537) 
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Hence, the admittance coefficients of the four-pole 

Vll = iw(Cio + C12) t/22 = jo){C20 + ^12) 

2/12 = 2/21 = —j^C12 (538) 

bearing in mind, however, that the coefficients are not 

mutually independent and that i/12 is always negative. The 

sums (Cio + C12) and (C20 + C'12) are dual to the self-inductances, 

and C12 is dual to the mutual inductance. The lossless trans¬ 

former and the three-conductor system are themselves dual, 

except that the equivalent T network for the transformer is not 

always physically realizable, while the 11 network equivalent 

to the three-conductor system always is. 

The most important practical example of a three-conductor 

system is a vacuum tube, either a triode or a multielectrode 

tube in which all electrodes but two are effectively grounded 

to the shield (by-passed). In vacuum tubes the currents given 

by Eqs. (537) are not functional, in the sense that the tube 

would work better without them. However, they cannot be 

neglected except, in general, at audio frequencies. A con¬ 

venient, if somewhat unorthodox, approach consists in regarding 

the high-frequency electronic currents of the vacuum tube simply 

as additions to the currents of Eqs. (537) and thus arriving at 

values for the admittance coefficients of the vacuum tube in 

linear operation, considered as a four-pole. This line of reason¬ 

ing will be followed in Chap. XVT; the next section will be devoted 

to applications of the foregoing theory. 

15.4. Applications and examples. 

Electrostatic coupling. It has been pointed out that the 

three-conductor system of Fig. 90 and the lossless transformer 

are dual structures, as can be verified at once by comparing 

Eqs. (448) and (537). However, while magnetic coupling (by 

means of the transformer) is in frequent use, electrostatic coupling 

(by means of the three-conductor system, equivalent to a II 

condenser network) is seldom resorted to. We can see why this is 

if we write down the expression for the input admittance of the 

electrostatic coupling network; this expression results immedi¬ 

ately from that of the transformer, by dual substitution. We 

had for the transformer 

Zi = joiLi 
1 — — jZr 

1 jzr 
(453) 
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where 

(Zr = load impedance) 

Hence, for the electrostatic coupling network (Fig, 90d), 

Yi = joiiC 10 + C12) 

where 

- - JVr 

1 - jyr 

(Cio + CnXCjo + Cn) 
Yr ' 

yr = —779-/ -X {Yr = load admittance) 
W(C20 + Ci2j 

The transformer is useful chiefly because its input and load 

impedances (for close coupling) differ essentially only by a 

real multiplier (the square of the turn ratio t) which, within 

broad limits, can be given any required value. 

Thus, if we make 
|1 -r=|«|3,| 

|z,| « 1 

{i.e.j for tight coupling and sufficiently low load impedance), 

the transformer input impedance reduces to 

Z, - - >1, {-i ^ 

where 

Under similar conditions, the input admittance to the electro¬ 

static coupling network would be 

where 

y ^yr 

but since we have assumed 

/U20 + Cl 

Cio + Cl 

(Cio + Ci2)(C20 + Ci2)^ 

we must necessarily have 

Cio^Ci2 C20^Ci2 
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Hence 

In other words, for close coupling, the shunting capacities of 

the n network (Fig. 90d) must be negligibly small, in which 

case the multiplier l/t^ is near unity and the coupling has 

practically no impedance transforming action. 

Measurement of partial capacities {particularly interelectr.ode 

capacities). The partial capacities Cio, C20, C12 are specially 

important in the case of triodes when the three conductors 0, 1, 2 

(Fig. 89c) are the three electrodes (cathode, grid, and plate). 

Of these, the cathode is usually by-passed to an external shield 

(grounded), hence we shall consider it in place of conductor 0, 

although other connections are used occasionally (Sec. 16.3). 

We shall, therefore, in this example adopt the notation com¬ 

monly in use for triodes, but the conclusions will be of a general 

character. 

Thus 
Oio = CuU 

C20 = Cvk 
Cn = C,, 

These three values are called interelectrode capacities. It is 

well to remember thg,t they are not, however, capacities in the 

ordinary sense as applied to two-conductor systems (Sec. 11.8), 

but partial capacities or, which is the same thing, equivalent 

capacities which would reproduce the three-electrode system if 

connected in the 11 configuration. None of the three inter¬ 

electrode capacities can be measured directly by impedance 

measurements (on a bridge). The II network is an equivalent 

representation of the system, but it cannot be taken apart for 

separate measurements of its branches; it must be considered as a 

box with three exposed terminals. 

The interelectrode capacities may be obtained indirectly from 

the following three measurements: 

1. Cathode and plate connected together; capacity measured 

on bridge between grid and remaining electrodes 

C/ = C,, + 

2. Cathode and grid connected together; capacity measured 

between plate and remaining electrodes 

Cj. = 
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3. Plate and grid connected together; capacity measured 

between cathode and remaining electrodes 

Ck = Cgk + Cpk 

During all three measurements, the shield should remain 

connected to whichever electrode is connected, or by-passed, to 

the shield in actual operation. 

From the expressions of Cgy Cp, Ck, constituting a system 

in the three unknowns Cgk, Cpk, we readily obtain expressions 

for the latter values. They are 

_ Cg ~ Cp -h Ck 
uk 2 . 

-Cg + Cp -h Ck 

2 

Cu C p — Ck 

2 

C,. = 

Cpk (541) 

Another method of obtaining the partial capacities is based 

on measurements of transfer admittance. The connections 

are as in the three measurements (1), (2), (3) above, but the 

procedure is as follows: 

1. Cathode shorted to plate. A high-frequency source is 

connected between grid and cathode. The voltage Vgk across the 

source and the current Ipk in the shorting connection (r.m.s. 

values) ai;e measured. This gives 

C gp 

I pk 

(jOVgk 

2. Cathode shorted to grid; source connected between plate 

and grid 

Cpk = 

3. Plate shorted to grid; source connected between plate and 

cathode 

The partial capacities must be measured when the tube 

is ''cold^^ (filament not turned on), or the electronic current 

would introduce large errors. This is a serious handicap, as 

cold and hot capacities differ appreciably. 



CHAPTER XVI 

FOUR-POLE THEORY APPLIED TO THE VACUUM TUBE 

16.1. The Vacuum Tube in Linear Operation. A triode differs 

in operation from the generic three-conductor system (Fig. 89c) 

in that a space current, carried by free electrons/ flows to the 

cathode from the plate, or from both grid and plate. 

If we add to the space or electron-borne current leaving 

each electrode, the displacement current due to the changes of 

electric flux and the conduction current leaving the electrode 

through the lead which connects it to the outside, the sum 

must vanish (Sec. 12.1); hence, the current entering the electrode 

through the lead must equal the sum of the space and displace¬ 

ment currents leaving the electrode. 

We will, with the help of simplifying assumptions, obtain 

simple expressions for these lead currents in terms of the voltages; 

these expressions will enable us to consider the vacuum tube 

as a four-terminal network of known coefficients and investigate 

its transmission characteristics, much as we have done for other 

networks. We must keep in mind, however, that many of the 

functions performed by tubes (modulation, detection, etc.) 

cannot be handled as simply as that of linear amplification, 

for which alone the preliminary assumptions can be considered 

valid. 

Let us consider a vacuum tube in which only two electrodes 

(the control grid and the anode, or plate) are subject to voltage 

variations with respect to the cathode. Multielement tubes 

(pentodes particularly) are included, as the screen and sup¬ 

pressor grid are kept at constant voltages. The number of 

independent variables, therefore, reduces to two, the instan¬ 

taneous grid and plate voltages Vg and Vp (Fig. 91a). 

First assumption. The space currents from the grid and plate 

are continuous, single-valued functions of Vg and Vp. This 

1 The electrons, being negative charges, move in the opposite direction to 

the space current. 

383 
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Tc)-Grounded grid conncclion 

Fig. 91.—Network equivalents'of the vacuum tube in the three connections, 
Semigraphical solutions for voltage ratio and input admittance. 

assumption is seriously in error only at extremely high fre¬ 
quencies, when the space current leaving the plate and grid is 
not equal to that entering the cathode at the same instant, 
because the field changes appreciably during the electron transit 
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(542) 

time.^^^^ Barring this exception, we may write 

I ig = igiVg, Vp) 

\ ip = ip{vgf Vp) 

We could learn more about these functions through an analysis 
based on the field equations and the conservation of energy, 
assuming some simple geometry, continuous distribution of 
the electrons in the interelectrode space, and negligible energy 
of emission. In practice, the functions (542) are made available 
in the form of plots obtained by measurement (the static charac¬ 
teristics). The continuity of the functions enables us, further¬ 
more, to expand them in series about an arbitrary value. 

In operation, thq voltages Vg and Vp fluctuate about their 
quiescent values. Thus, we may write 

(543) 
\Vg=-Vj-\- i^Vg 

\ Vp = Vp + ^Vp 

Vg and Vp are the quiescent values, such as can be measured on 
the system at rest, with no signal impressed. .These values are 
not necessarily equal to the average values nor to the battery 
voltages. 

tavg and are the variational or signal values of voltage. 
The total values of current may be subjected to a similar 

breakdown, and the variational values of ig and ip may be 
expressed in terms of Avg and Avp by expanding the fuhctions 
(542) about the quiescent values. Thus, we have for ip 

ip - ip(,Vg ^Vgj Vp “b AVp) - 'Ipi.Vg f,)+A..!'(('. 

+ 2 Avg Avp 
dHp 

y,) + (Av.r (y„, y 
dVp^ 

(544) 

and a similar expression for ig. 

Two additional assumptions may be introduced at this point. 
Second assumption. All terms of (544) except the first two 

are negligibly small in actual operation. The significance of 
this point is made clear by considering the characteristic surface: 

' ip = ipipgj Vp) 

A set of values of Vg^ Vp, characterizes the operation of the tube 
and defines at the same time a point of this surface, which is 
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called the point of operation. If excursions of the point of 
operation are limited to a region of the characteristic surface 
which can be assimilated to a plane, then the second assumption 

is valid. 
Third assumption. All terms of the expansion for ig^ space 

current from the grid, are negligible at all times. This is true 
when Vg Sever takes positive values. 

When assumptions (2) and (3) are respected, the tube is said 
to be in class A operation. The space current, which flows from 
the plate only, is then a linear function of the two voltages, as 
(544) reduces to 

ip = ip{V,, V,) + ^v„ (f„, Vp) + AU, (F„, F,) 

Hence the variational value of current (the signal value) is given 

Aip ~ ip “ (Jfn Avg ~|" Qp Avp 

having made the positions 

Bi “ ■“ 

gm = ^ {Vg, Vp) = mutual conductance (545) 
OVg 

St “ •” 
Qp ^ {Vay Vp) = plate conductance (546) 

OVp 

The mutual and plate conductances, together with the inter¬ 
electrode capacities, characterize the tube in linear operation. 
The valu^ of gm and gp depend on the quiescent values of voltage, 
since gm and gp are defined as the partial derivatives of current 
taken at the quiescent point. Because of the particular form 
which the function 

ip = ip{vg, Vp) 

takes over a large range of values, for each value of Ip (quiescent 
current) there is only one value of gm{Vg, Vp) (mutual con¬ 
ductance at the quiescent point), and of gp{VgVp). 

We may write, in fact^“^ 

ip-= k{vp + iiVg)^ (547) 

where n, k, n are constants depending on the tube geometry.* 

1 It may be shown that 

for an indefinite plane triode. 
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Hence 

and 

g„{f„ V,) = g (f,, fp) = kn 

M = 
Qm 

9p 

(548) ^ 

(549) 

The reciprocal of ^p, called plate resistance^ is very commonly 
used in place of Qp. In the following, however, Qp and gm will 
be used exclusively, for the sake of uniformity and convenience. 
IX is called the .amplification factor. 

16.2. Admittance Coefficients of the Tube, Regarded as a 
Four-terminal Network. The variational or signal components 
of space current flowing out of the grid and plate in linear 
operation have been found to be 

M, = 0 
Mp = g„, Lvg + gp Lvp 

subject to the three assumptions of the preceding section. 
As far as the space currents are concerned, the tube is there¬ 

fore a linear system. Hence, the principle of superposition (Sec. 
1.7) holds for any system made up of the tube and passive linear 
elements. The performance of such a system under harmonic 
excitation of variable frequency is therefore significant, even 
though in actual operation the excitation may be not harmonic 
but periodic, with components occupying a definite frequency 
range. We shall, therefore, replace the variational values 
Aigy Aipj .... by the corresponding complex values and write 

V = 0 (550) 

Ip* “ ”h p 

The superscript e signifies that the values in question are due 
exclusively to the flow of electrons (space currents). To these 
we must add the displacement currents, which we readily obtain 
from Eqs. (537) relating to a generic three-conductor system, 
taking the grid as conductor 1, the plate as 2, and the cathode 
as 0: 

I 1/ = MiC,, + Cgp)Yg - CgpVp] .... 

\ 1/ = MiCp, + Cgp)Yp - CgpYg] ^ ^ 

The total currents into the electrode leads are obtained by 
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adding the electron and displacement values. Thus 

Ig = Ig^ "f" gk + Cgp)Yg jo)CgpYp 

Ip = 1/ + V = [gm - j<^Cgp]Yg + [gp + MCpk + Cgp)]Vp 

So far, no assumption has been made as to the manner in which 
the tube is connected to sources or receivers of energy. We 
will now consider three possibilities, as illustrated in Fig. 91. 
In each case one of the three electrodes (cathode, grid, and 
plate) is at ground potential; the input and output voltages 
are those between the grounded electrode and the remaining two. 
It is always understood that d-c values, as well as other harmonic 
values, actually exist in addition to the harmonic values of the 
frequency considered; and that grounding connections consist 
of by-pass condensers of relatively large values joining the 
grounded electrode to the tube shield. 

In high-frequency operation it may be necessary to distinguish 
between the interelectrode voltages which appear in Eqs. (552) 
and the voltages between the electrode leads at the points at 
which these are brought out through the tube shielding. The 
difference is the time derivative of the magnetic flux linking 
the loop delimited by the two leads (Fig. 90c). This effect 
may be minimized by correct design and need not be taken 
into account, as a rule, unless the frequency is so high that 
circuit methods of analysis have to be abandoned altogether. 

The following table correlates input and output voltages and 
currents with electrode voltages (referred to cathode) and 
electrode currents. From these relations and Eqs. (552), the 
admittance coefficients of the three four-poles, consisting of 

the tube in the three different connections, may be obtained. 
Their values are listed in the table. Instead of using these 
values directly, it is more convenient, in practice, to take out 
from the tube those admittances which appear effectively in 
shunt with the input or output terminals. The tube is then 
considered equivalent to a residual four-pole shunted at both 
ends by these shunting jidmittances. These equivalent repre¬ 
sentations appear in Fig. 91, and the admittance coefficients of 
the residual four-pole are given there and on the table. The 
shunting admittances are, in practice, lumped with the load and 
source admittances, following the procedure outlined in the next 
section. 
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Admittanck Coefficients of the Vacuum Tube in Linear Operation, 

FOR Various Connections 

Connection 
Cathode to ground 

(Fig. 90a) 

Plate to ground 

(Fig. 906) 

Grid to ground 

(Fig. 90c) 

Input voltage. . . . 

>
 II 

>
 Vi - Vp - Vp Vi = -Wg 

Output voltage... Vs « Vp 1 >
 <

 

1 

Input current. . . . Ii - h Ii - L Ii = -(Ip + h) 

Output current... Is = Ip Is =» -(Ip + Ig) U * Ip 

V coefficients 
. . 1 Vti 

of tube* 

four-pole* 
VI/21 

jo}(Ciik + Cgp) 

Qp ■4” jot(Cpk "b Cap) 

~~ jooCgp /V 
Om — jcoCgp 

jo>{Cak "b Cgp) 

jotiCgk -f- Cpk) -}“ (7m 4* Op 

— joyCgk 

— Om — joCgk 

Om Op ju{Cgk + Cpk) 

Op 4" jo>{Cpk 4" Cgp) 

— Qp — joiCpk 

— Om — Op — jtoCpk 

Admittance taken 

out on input 

side. jutCgk juiCgp Om -b jofCgk 

Admittance taken 

out on output 

side. Qp -{- juiCpk Op + Om + joCpk ju)Cap 

y coefficients 

of residual' 

four-pole 
VI/21 

jofCgp 

joiCgp 

— jiaCgp 

Qm ”” joiCgp 

jo)Cgk 

joiCgk 

— jo}Cgk 

— Om — i<j)Cgk 

Op 4“ jo)Cpk 

Op “b juCpk 

-Op - ji^Cpk 

— Om ~ Op — juiCpk 

* Obtained by writing Eqa. (552) in terms of input and output voltages and current. 

16.3. Voltage Ratio and Impedance Transforming Action Due 
to the Three Vacuum-tube Connections. Having obtained the 
admittance coefficients for the residual four-pole equivalent to 
the vacuum tube in the three connections of Fig. 91 (less the 
admittances shunting input and output, which are more con¬ 
veniently looked upon as part of the load and source systems), 
the voltage ratio and iinpedance transforming action of these 
four-poles may be worked out. 

We may regard these quantities as descriptive of the linear 
performance of the tube in the three connections, provided 
the signal energy is fed into the input side at all times. One 
more complex value, the output impedance, would be required 
to establish the behavior of the tube for transmission in both 
directions. We know in fact that six real numbers, or three 
complex numbers, are needed to describe fully the action of a 
four-terminal network (Sec. 2.1). 
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Transmission in both directions need not be contemplated, 
however. A glance at the values of the coefficients shows that 
the principle of reciprocity (1/12 = 1/21, Sec. 2.3) does not hold 

in the case of vacuum tubes. The transfer admittance from 
output to input, t/i2, is due entirely to the interelectrode capacity, 
except for the grounded grid connection (Fig. 91c). Tubes 
cannot, therefore, be used effectively for transmission in two 
directions. 

The input admittance and voltage ratio expressions are 
tabulated below for the three residual four-poles of Fig. 91. 
Semigraphical constructions for these values are given in Fig. 91. 
An example, illustrating the' breakdown of an amplifier circuit, 
will follow (Sec. 16.5). It should be borne in mind that amplifier 
analysis simplifies very considerably at low frequencies or when 
the interelectrode capacity is very small. 

Input Admittance and Voltage Ratio of Vacuum Tubes in Linear 

Operation, for Various Connections 

Connection Cathode to ground Plate to ground* Grid to ground 

(Fig. 90a) (Fig. 906) ^ (Fig. 90c) 

Input admit¬ 

tance (resid- 

ual four- 

pole). 
Yi' - : 

Oy 4- VllY/ 

l/« -f Y/ 

(553) 
(Y’-' Om) 

Y/ Op -jr jwCpk 
(555) 

• 
Voltage ratio* 

(tube or re¬ 

sidual four- 

pole) 
V, 

Vi 

r/ +ju,d". 

jipCgk + Qm /ec7\ 

Y? + ^ ^ ^ 

juiCpk 4" I/p 4" ym /ECQX 

Yr' 4- yp 4- 

yji 

v» + Y/ 

where Y/ =» Yr -h f/p 4- jiaCpk Fr 4- f/p + (7w 4- jy^)Cpk Kr 4" joiCgp 

* This is often called the cathode follower connection. The corresponding expression 

reduces to a very simple form when the load admittance has a particular value (Sec. 16.6). 

In the above 

Dy =** 2/112/22 — 2/122/21 = determinant of residual four-pole coefficients 
Yr « load admittance, plus admittance taken out of tube on output side 

y,' *= input admittance of residual four-pole. To obtain input admittance 

of tube, add admittance taken out on input side 

Note. In practice, it is often unnecessary to compute the actual load and 

imput admittances (see Fig. 92). 
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16.4. Amplifier Classification. It is common practice to 

classify amplifiers according to the following subdivisions: 
a. By frequency: 

d-c 
Audio 
Intermediate 
Radio 
Video 

b. By loading : 
Voltage amplifier (unloaded) 
Power amplifier (loaded) 

c. By class: 
A 

B 
C 

d. By method of coupling: 
Direct coupled 
Resistance coupled 
Inductance coupled 
Transformer coupled 

e. Depending on the use of ground as a signal current return 
(Sec. 1.2): 

Balanced 
Unbalanced 

/. By presence or absence of regeneration (Sec. 17.1): 
Regenerative 
Neutral 
Degenerative (inverse feedback amplifiers) 

These distinctions are useful when discussing amplifiers in 
general. We must avssume here that the reader is familiar with 
the use and attributes of each type, at least in a qualitative 
sense. If this is not the case, the literature on the subject^ 
should be consulted before proceeding. 

The quantitative problem of investigating the performance 
of an amplifier of given design has limited but definite usefulness. 
Solving this, or any other problem of analysis, does not lead 
directly to design values. Such a solution does, however, 
provide a check on tentative values, and if it is not too laborious 
and time consuming, it can lead to the correct values by trial 
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Simplified form of cquivcticnf circuif, suifable for 
analysis. The following formulas,or the consfruefions 
of Fig.90, may be used : 

V4^gpvu,cpk 

Vs J(oCgkym }l_J<*^Cpk^gp*gm 
Vf Yj^jwCgJc If Xi+gp^jcoCpk 

Fig. 92.—Redv^ing an amplifier schematic to equivalent form. 

and error. Hence the importance of using the simplest possible 
methods of .analysis. 

These methods must vary, of course, depending on the type 
of amplifier. Many of the usual distinctions are not sufficiently 
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precise for the purpose of analysis. The significant distinctions 
are the following: 

а. Whether the amplifier is linear or nonlinear in operation. 
As a rule, circuit and network analysis can only be applied 
to the linear case. An exception, relating to tuned amplifiers, 
will be considered briefly later (Sec. 16.6). 

б. Whether the interstage capacity effects can he neglected: 
At audio frequency, and at higher frequencies if screen grid 
tubes are used, the susceptance due to this capacity is so small 
that its effects on performance are negligible. In this event, 
the analytical problem simplifies very materially, as the per¬ 
formance of each stage reduces to a calculation of voltage ratio 
and can be worked'out independently (Sec. 16.5). 

c. Whether or not the amplifier is tuned to a particular frequency 
in normal operation. A tuned amplifier operates under particu¬ 
lar conditions. This simplifies the analysis, as will be seen in 
Sec. 16.6. 

d. Whether the stages are coupled hy Jour-poles or hy shunting 
branches. 

e. Whether or not the amplifier stage is the only transmission 
channel between source and load. In amplifiers with external 
feedback there is an added transmission channel that may be 
regarded as a four-pole in parallel with the amplifier or part of it. 

16.6. Equivalent Circuit of the Amplifier, The amplifier of 
Fig. 92 would be classified, according to the preceding criteria, 
as follows: 

a. Linear operation 
b. Interphase capacity not negligible 
c. Untuned 
d. Shunt coupled 
e. No other transmission channel 

Any other amplifier similarly classified would be subject to a 
similar method of analysis, although its characteristics and 
design might be entirely different. A rather unorthodox design 
has been deliberately selected. The method of analysis is not 
affected by the type of tube connection (see Fig. 91 for the 
three alternatives). 

The first step in any amplifier analysis is the drawing of an equiv¬ 
alent circuit in which the physical circuit elements are replaced by 
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parameters. It is important to recognize the difference between a 
schematic diagram and an equivalent diagram. The schematic, 
or diagram of connections, shows the parts and their metallic 
connections. It should indicate the commercial ratings of the 
parts and, especially in high-frequency systems, the exact 
manner in which they are joined together. Leads can be straight¬ 
ened and their length altered, but all junctions of the schematic 
should be physical junctions of the system. Schematics are 
principally used as a guide in wiring, and also, in conjunction 
with mechanical layout drawing, may be used as the basis 
of equivalent circuits on which the performance analysis may be 
carried out. 

An equivalent circuit is an entirely different matter. It 
shows not circuit parts, but parameters, and may differ depending 
on the frequency for which it is drawn. On the equivalent 
circuit, a coil rated at 50 mh may appear as a 10/xf condenser. 
By-pass condensers are left out of the equivalent circuit whenever 
their effect may be considered negligible. 

Drawing the equivalent circuit is perhaps the most difficult 
part of circuit analysis. The rest requires careful numerical 
work and an orderly procedure. Semigraphical methods (Fig. 
91) permit considerable saving of time. 

16.6, The Tube as a Generator. When the interstage capaci¬ 
tance does not have appreciable effect, either because of its own 
low value pr because of the low value of the operating frequency, 
the mutual conductance of the tube constitutes the only link 
between the input and output sides of the tube (except for the 
grounded grid connection, Fig. 91c, in which the plate con¬ 
ductance gp provides an additional link). 

It is more convenient in such cases to represent it as a generator 
(Sec. 2.6) than as a four-pole. The Th^venin and Norton 
equivalences (Sec. 2.6) can both be used, but the second is 
generally more convenient. Consider, for example, the tube in 
the cathode to ground connection, which is by far the most 
common. If we neglect the voltage ratio (plate voltage/ 
grid Voltage) becomes, from Eq. (556), 

[VoUage ratio for the tube with grounded cathode^ interstage capacity negligible] 

where F/ = Yr + gp+ jwCpk 
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Regarding Yr as the load, we can write the load current as 
follows: 

// = V2F/ = -Vigm 

which means that a driving current (-or equivalent generator 
current) of value —Vigm is impressed by the tube upon the load 
Fr. Hence the Norton equivalence of Fig. 93a. Similar 
equivalences for the grounded plate and grounded grid con¬ 
nections are shown in Figs. 936 and 93c. 

to^-Cathoclc fo ground (b)-V\a\e\o qrour\d (c)-Gncll h ground 

Fig. 93.—Equivalent circuits for the vacuum tube at low frequency. 

The exclusive use of the grounded cathode connection in 
multistage amplifiers is readily explained if the interstage 
capacity effects are neglected. This connection is the only 
one for which the output voltage is higher than the input wheri 
a chain of similar stages is used. In both the grounded plate 
and grounded grid stages, the voltage ratio is less than unity 
when the load is the input admittance of a similar stage. 

For the grounded plate connection, this is evident from the 
expression of V2/V1, which in no case can have value greater 
than 1 (557). The same is true of the voltage ratio of the 
grounded grid stage, if we replace load admittance Yr by the 
input admittance of a similar stage, which includes gm- 

Voltage amplification may be obtained without recourse 
to the grounded cathode connection by alternating grounded grid 
and grounded cathode stages. Such a chain may be thought of as 
made up of similar stages, each including two tubes connected 
as in Fig. 91. Large voltage gains are possible by this device, 
which has the advantage that it works well between terminations 
of relatively low impedance, comparable ta l/fifm, which is 
generally about 500 ohms. Such an impedance, connected 
across the output of a grounded cathode stage, would reduce its 
voltage gain to small or negative values. Another advantage 
of the grounded grid connection is that it has low interstage 
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capacity when trioides are used; the grid, which is at ground 
potential, prevents capacitive coupling from the cathode to the 
plate. This function must be discharged by an additional 
electrode (the screen) when the grounded cathode connection is 
used, if a low interstage capacity is desired. 

16.6. Applications and examples. 
Tuned amplifiers. Consider the amplifier stage shown in 

Fig. 94. Let us obtain values for the input admittance and 
voltage ratio, assuming that 

a. The tuning condenser Ct is set for the highest possible value 
of voltage gain;^ and 

5. The interstage capacity is so low that 

OiCgp <3C Qm 

The second condition is made possible even at uhf by the use 
of screen grid tubes, particularly pentodes, which have almost 
universally replaced triodes in voltage amplification. 

Because of condition (2), the voltage ratio may be written 

(557) 

Vi 
Qrti Qm 

Yr' + j(^Cgp Gr + Qp + j[Br + 0){Cpk + C gp)] 

We will regard the load conductance Gr as constant with frequency. 
This is legitimate by comparison with Br. Then the highest 
voltage gain will occur when 

Br + O^iCp, + Cgp) = 0 
and will be 

V2 _ Qm 

Vl(in«z) Qp “I" Gr 

[Maximum gain of tuned amplifier] 

Now, the input admittance (554) reduces to 

Qp + Gr — ji^Cgp + gm 

(561) 

F/ = icoC,: 

0>^Cg 

gp + Gr 

+ i^Gg 

(562) 

g, + Gr, ' + Gr, 

[Input admittance of tuned amplifier] 

^ The voltage gain, expressed in db, is given by 

20 log ^ 

The term gain is very often used for voltage gain. 
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The above value does not include the susceptance coCgk, which is 
best considered lumped, with the preceding stage. 

It will be observed that the real part of (562) increases with 
the square of oiCgp. This is the chief reason why it is important 
to reduce Cgp. 

(c)' Input oidmiftoince (for max. ): 

Gi= 
(coCgp) 

gp+G/^ 

Fig. 94.—Gain and input admittance of the tuned amplifier for 
9m » wCgp, 

Constant gain operation of the cathode follower stage. Under a 
particular set of conditions, the performance of the grounded 
plate, or cathode follower stage, becomes particularly simple. 
The voltage ratio of such a stage is given, in general, by (558.) 

V2 _ + jG)Cgk 

Vi ~ r/+jcoC,, 
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where Y/ is the load admittance increased by the admittance 
taken out of the tube on the output side (Fig. 94); or 

Y/ = Fr + g'm + + ji^Cpk (563) 

Let us suppose that the load admittance Yr consists of a resistive 
branch shunted by a variable condenser, or (Fig. 94),, 

Yr = Gr+jo^Cr 

Then we can write the voltage ratio as follows: 

V2 _ _Qm + _ 
Vi Qm Qp Gr jo){Cpk + Cr + Cgk) 

This ratio becomes a real number, independent of frequency, 
when 

Cgk + Cpk + Cr ^ ^ 
+ (/p -f- Gr Qm 

for which we must have 

Cr - Cp* (564) 
Qm 

When Cr has the above value, the voltage ratio becomes 

V2 ^ gm 

V1 + {7p + G r 
(565) 

The input admittance of the stage can be written (554) 

Yi' 
Yr' - On, 

Y r + 
Including the admittances previously taken out of the tube, and 
expressing Yr, this becomes 

+ C, ak 
(7r + + joijCpk + Cr)_ 

Gr + Qp + Qm + j^{Cpk + Cpk + Cr) 

Noting that (564) 

Cr + Cpk 
^ n Gp Gr — Cfljfc- 
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the above can be written 

Yi = jw 

= 

Ogp + Cgk 

c,, + C, fjk 

Gr + Qp + jo) {Gr + 9p) 
_ym_ 

Gr + Op + Qm + jo) [ (Gr + g'm)] 
L yw J 

Gr + gp_ 
Gr -h gp -h gm ^ 

gm 

Gr + gp 

;] 
or simply 

This shows that if the capacity Cr has the value given by (564), 
the voltage ratio of the stage is a constant real number, and 
its input admittance is that of a condenser of value 

Gr + gp 
Ci = Cgp + C, {jfc 

Gr “H gp "f" gn 
(566) 

Fig. 95.—Cathode follower stage. 

This is illustrated in Fig. 95. Under these conditions the 
stage receives no driving power, since its admittance is purely 
reactive. Yet it delivers power. Hence, the transmission gain 
(Sec. 17.1) through the tube is infinite at all frequencies, although 
the voltage gain is negative (voltage ratio less than unity). 
Such a stage can be connected across a high Q tank circuit 
without loading it at any frequency.^ A large voltage will 
therefore be permitted to develop across the tank circuit, and a 
constant large fraction of this will appear across the load con¬ 
ductance Gr. 

^ Except for transit time eflfocts. 



CHAPTER XVII 

FLOW OF POWER THROUGH 
HIGH-FREQUENCY AMPLIFIERS 

17.1. Transmission of Power through Linear Amplifiers. It 
has been shown in the preceding chapter that amplifiers in linear 
operation may be regarded as chains of four-terminal networks 
and handled analytically by network methods. 

In the general discussion on transmission networks (Chaps. 
II, V, and VI), power relations occupied a prominent place. 
Passive networks (as distinct from those capable of generating 
power) are used for the purpose of securing maximum power 
transfer, either at a single frequency or over a range (Sec. 8.1). 
When maximum power transfer is not enough, an amplifier has 
to be used. Under these conditions the amplifier has the job of 
supplying the receiver with more power than the source is 
capable of delivering, and this increase in available power is a 
significant quantity. Hence the importance, at least in principle, 
of power relations in connection with amplifiers. 

In a number of cases, however, voltage rather than power is 
stressed. 'The ultimate receiver of the amplifier chain may 
absorb no energy, requiring only an electric Reid (hence, a 
voltage) for its operation. A notable example is the cathode- 
ray oscilloscope; each pair of deflection plates presents a purely 
capacitive load. In this case we should compare the amplifier 

output voltage to the voltage which the source would impress 
directly across the deflection plates. The latter is not necessarily 
equal to the amplifier input voltage, because of the difference 
between the amplifier input admittance and the admittance 
of the deflection plates. However, as a rule, the source has 
such low impedance, relatively, that the voltage across it, 
when connected directly to either the plates or the amplifier 
input, is the open-circuit voltage. Hence, we may take in this 
case as a criterion of amplifier performance simply the output 
to input voltage ratio of the amplifier, or its real value expressed 
in db (the voltage gain). 

400 
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The same reasoning applies to each stage of an amplifier 
chain, whatever the nature of the ultimate receiver, when the 
operating frequency or the tube characteristics are such that 
the power input to each stage is negligible. 

We can generalize and say that the increase in load power 
due to the insertion of an amplifier depends only on the load 
and source admittances and on the over-all voltage gain (hence, 
on the stage gains), whenever the input admittance of the amplifier 
is small compared to the source admittance. 

To show this, we may express the insertion gain of the amplifier, 
which is the negative of the insertion loss (Sec. 6.4). Expressed 
in db, this is 

r, (db) = 10 log ^ (5G7) 
P 0 

where Pr is the power actually received by the load through 
the amplifier and Po the value that would flow into the load 
if this were connected across the source directly. If and Yr 
are the source and load admittances, we may write 

\Y,+ Yr\^^^ 
and 

P, = Vr^r = 

V, and Vr are the voltages at source and receiver, their ratio 
is the over-all voltage ratio. F, may be expressed as follows: 

y =—^ 
' |F. + Fi! 

where y< is the input admittance to the amplifier. We can now 
write the insertion gain 

r, = 10 log 
\Y. + Y, 

\Y. + F. 

Gr 

■,Gr 
20 log ^ + 20 log 

F.+ F, 
F. + F.- 

or, letting IV stand for the over-all voltage gain, 

T; (db) = Tit (db) + 20 log 
F. + Yr\ 
F. + F,1 

\Imerlion gain of ihe amplifier] 

(568) 



402 HIGH-FREQUENCY AMPLIFIERS (Chap. XVII 

If we assume 

the insertion gain becomes 

r, (db) = Tv (db) + 20 log (669) 

The above depends only on the over-all voltage gain and on the 
ratio of source and load admittances; the latter docs not have 
very much effect, as a rule, since IV generally large. The 
insertion gain is affected favorably, all other things being equal, 
by a decrease in source admittance (higher source impedance). 

Source Adjust. Load Source Acfjust Awptifier Lossless Load 

lossless lossless stage coupling 
coupling . coupling 

Fig. 96.—Power increase due to amplifier insertion. 

We may conclude that the voltage gain is the only important 
factor in amplifier performance as long as the input admittance 
remains small. At high values of frequency, as we know, this 
is no longejr a safe assumption. Voltage ratio and input admit¬ 
tance both play an important part in high-frequency operation, 
and the general expression for the insertion gain becomes very 
complicated. However, in the case of high-frequency amplifiers 
which are tuned to a particular frequency, the problem may be 
attacked from a different angle. 

Consider a dissipative four-terminal network coupled to a 
source and load by lossless coupling networks (Fig. 96). Sup¬ 
pose that the coupling on the source side is adjusted for maxi¬ 
mum power transfer (Sec. 8,2). We can easily show that the 
logarithmic ratio of the power Pr flowing to the load under 
these ^conditions to the maximum power that the source 
is capable of supplying is the transmission loss (Sec. 6.3) of the 
dissipative network. 

In fact, the dissipative network under the conditions given 
(source to network coupled for m.p.t.) receives power Pm„. 
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It transmits power Pr. Hence (115) 

Lt (db) = 10 log = 10 log ^ db 
r r r 

(Pi = power input) 
(Pr = power output) 

Likewise, if a vacuum tube (considered as a four-terminal 
network) is inserted between couplings, the available power at 
the load will increase by 

rr(db) = 10 log ^ 

assuming that the maximum power transfer condition is satisfied 
at the source, both with and v/ithout the tube. In other words, 
if a transmission system includes adjustments for securing m.p.t. 
at the input end of a given amplifier network, we must consider 
the transmission gain rather than the insertion gain for a valid 
evaluation of the amplifier’s effectiveness. 

The transmission gain is a function of the amplifier charac¬ 
teristics and of the load admittance. There is no difficulty 
in obtaining very large values of the ratio Pr/Pi] in fact, this 
ratio may become negative, showing that the amplifier puts out 
power at both ends. When this happens, the amplifier is 
regenerative and the transmission gain ceases to have significance. 
In designing amplifiers for high-frequency use, regeneration is 
avoided, as it leads to instability.^ Hence, the practical 
problem consists in designing the coupling network on the load 
side in such a manner that the ratio Pr/Pi is positive at all 
frequencies and becomes large at * the operating frequency. 
Methods for solving this problem will be considered in the 
following. 

17.2. The Transmission Gain as a Ftmetion of Load Admit¬ 
tance. Let us obtain the transmission gain for a tube in the 
grounded cathode connection. By definition, this is equal to 

r. (db) = 10 log = 10 log (py I (570) 

where the symbols have reference to Fig. 96. 
We have for the voltage ratio V2/V1 the expression (557) 

V2 ^ _ji^Cup — gm_ 
Vi Gr + gp + j<^(Ggp + Cpk) + jBr 

having replaced Y/ by its value (Fig. 90a). 
1 Regeneration should not be confused with oscillation (see Sec. 17.2). 
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Hence 

(Yi\ = __ 
\Vj {Gr 

(571) + + [Br + a,(C,p + Cp*)]» 
The input admittance (553) is 

ir V / , 2 n _ Gr + gp + gm + jlBr + 0>Cpk] ^ ^ F,- - F< + - jwCpp^^ ^ + jcoC.. 

Hence, its real part Gi may be written 

Gx - (*)Ggp 

{Gr + Op + gm)[Br + Oi{Cgp + CpA.)] — {Gr + gp){Br + (^C pk) 

{Gr + gp)^ + [Br + a)(C,p + Cp,)]^’ 

_ p gmlBr + Oi{Cop + Cp*:)] + {Gr + gp)o)Cgp 
- COC.p ^ ^ 

and the power ratio Pr/Pi goes into the form 

Pr (VXGr_ gJ + O^'^Cpp^ Gr 

Pi \vj Gi g^[Br + 0>{Cpp + Cp,)] + {Gr + (7p)a>C„ o>Cpp 

Hence, arranging terms, 

(572) 

This ratio, hence the transmission gain, depends on Gr and Br^ 
components of the load admittance. It should therefore be 
possible to associate graphically a value of transmission gain 
to each point of the complex plane of coordinates Gr, Br (the 
load admittance plane). This correspondence will appear to be 
remarkably simple, in contrast to the complexity of the original 
expressions. Its usefulness is evident; given the load admittance, 
we can promptly find by this method what increase of load power 
can be secured by the use of the tube, provided an impedance 
matching network is inserted between the tube input and the 
source. 

What we require is a map of the transmission gain on the Y 

plane. This map, in general, will consist of lines of constant T 
(constant transmission gain). Most significant, and easiest 
to obtain, are the lines 

Tt (db) = 10 log 
1 + [gJi^CppY 

‘+&: 
1 S'*" 

Gr 

1 4- 4. 
1 + -h 

Oyp a;Oyp_ 

Tt ~ 0 Tt = 
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The transmission gain is infinite when the denominator of 
(572) is zero. For this we must have 

~Gr = Op + 9m 1 + H—7^1 (573) 
L/ gp OJLv pp J 

which is the equation of a straight line on the Gr, Br plane. 
The intercept of this line on the Gr axis is 

Gr{Br = 0) = -gp - g,„ (^1 + 

^ ^ ^ (574) 

and the intercept on the Br axis 

Br(Gr = ̂ 0) = 1 + ? + y HI Qp/ 
(575) 

Hence the slope 
BriGr = 0) 
GriBr = 0) ■ 

II (576) 

This line (line Tt = oo) is shown in Fig. 97. 
To locate the line Ft = 0, we observe that, for zero trans¬ 

mission gain, we must have 

Pr = Pi 

or, equating the numerator and denominator of (572), 

(it) = + Jt) 
By working out the intercepts in the usual way, we find that 
the straight line represented by (577) is at right angles with 
the Ft = 00 line and crosses it at its B-axis intercept (Fig. 97). 

The two lines are easily drawn, once the frequency and tube 
characteristics are known. A practical construction for this 
purpose is shown in Fig. 97. On this drawing, the shaded 
region represents the portion of the Y plane for which the trans¬ 
mission gain has positive real values. If Yr falls within this 
region, the tube operates as an amplifier, its power output being 
in excess of the input. 

Below the Ft = « line, the power ratio is negative; the source 
as well as the load receives power from the amplifier, which is 
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then said to be in regenerative operation. One must be careful 
to distinguish between regeneration and generation, or oscillation. 
The question of whether or not the system oscillates, and at 
what frequency, depends on the value of the oscillation constant, 
which must take into account the parameters of the entire 
system, including the source (Sec. 12.8). A regenerative 

Fig, 97.—Transmission gain as a function of load admittance {at high 

frequencies). Cathode to ground connection. 

amplifier will enter into oscillation only if the source admittance 
components are within given limits. 

Above the Fr = 0 line, the tube absorbs signal power in excess 
of the output and is equivalent to a dissipative network. 

Along the Fr = «> line, the power ratio is infinite, because of 
the fact that the input -admittance of the tube is imaginary 
and the tube does not absorb any power. If this condition is 
approached, the assumption that maximum power transfer 
takes place between the tube and the source is obviously in error. 
This assumption is based on the premise (Sec. 9.2) that the 
efficiency of the coupling networks is high. When the power 
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transmitted through a coupling is small, the losses in the coupling 
cannot be neglected. Hence the present method does not permit 
a valid appreciation of the amplifier's effectiveness when its 
input impedance is entirely, or almost entirely, reactive. On 
the other hand, such a condition should be avoided for stable 
high-frequency operation, because it is near the borderline of 
the regenerative region (Fig. 97). This is not objectionable at 
low frequencies, or for very low values of Cpg, because then the 
power which the tube is capable of feeding back into the source 
is minute and incapable of causing sustained oscillations (mathe¬ 
matically, the input conductance (?» must be equal and opposite 
to Gt, source conductance, for oscillations to take place: at low 
frequency Gi is invariably small). 

Barring the low-frequency case, which is adequately handled 
by simpler methods (Sec. 16.5), we will take up in the following 
section the problem of designing a stable amplifier capable of a 
given increase of load power over the maximum power transfer 

value. 
17.3. Criteria for Stable High-frequency Amplifier Design. 

Cathode to Ground Connection. Suppose we require an increase 
of power of Tq db over the m.p.t. value at the angular frequency 
0)0. The output to input power ratio will have to be 

Corresponding to this ratio there is a line on the GB plane which 
we will now locate. We must have (572) 

, _,ro__1 + {gjo^oCgpy_ 
10 1 + igp/Gr) + {gJGr)[l + {Cpu/Cgp) + (B./o)or,,)] 

The last line is a linear equation in Br and Gry representing a 
straight line on the GrBr plane. The Br-axis intercept of this 
line is the same as for the lines r = <» and F = 0 previously 
discussed. The slope of the new line is 

1 f gm i WoCgpX O^oCgp 

log-1 Fo/lOVo^oC.P 

The construction of Fig. 97 is based on the above values for the 
slope and the intercept. This construction can be carried 
out in reverse direction. Given a value of the load admittance, 
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the transmission gain (hence the increase in transmitted power 
due to the tube being inserted) can be found in this way. 

adjustable 
coupling 

Fig. 98,—Example of amplijier-outpvl coupling designed to ensure a 
specified maximum of transmission gain at the operating frequency. Con¬ 
struction yields correct values of L and C, 

Data used: Om = 2,600/43; Op = 250/43; Cgp = 4/u/iF; Cpk 0.6/*/liF; load 
conductance G *= 6,000/43 (20011); frequency 40 me./sec. 

Desired transmission gain: 30 db, for which m = PifPr = 0.06 
From construction (points are obtained in alphabetical order): 

- 1,900 -V = 3,900/^0 
C U)Li 

Hence: 
^ C - 2.44/i/iF L « l.S7nH 

The problem thus reduces to the design of a coupling network, 
such that the admittance Yr looking into the network, towards the 
load, plotted as a point on the complex plane, lies on the con¬ 
stant r line corresponding to the required gain, which we assume 
to have been drawn by the above construction. 
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This must be true at the operating frequency. At other 
frequencies, the point Yr should always lie above the line (for 
stability). Normally, Yr will move rapidly with frequency, so 
that by comparison the constant T line may be considered sta¬ 
tionary. Under these conditions, the polar plot of Yr for 
variable frequency must be tangent to the constant T line. We 
can secure this condition by correct proportioning of the coupling 

elements. 
Take, for example, the coil-condenser coupling of Fig. 98. 

The admittance point, for a passive two-pole, as we know from 
a-c circuit theory, describes with increasing frequency a path 
which curves toward the right. ^ The same is true of the impedance 
point. For a coil and resistance in series, this path is a circle 
through the origin. The presence of the shunting condenser 
complicates matters; however, we can regard this condenser 
as part of Cpk, and observe that a change in Cpk simply shifts the 
entire construction of Fig. 97 in relation to the Br axis. 

The construction of Fig. 98 is based on this observation 
and leads directly to the values of inductance and capacity to 
be used in the coupling for the desired gain consistent with 
stable operation. A numerical example is given. 

As a general rule, to avoid instability, tank circuits or stubs 
should not be placed directly across the tube output without 
additional load, unless their Qo is relatively poor. The admit¬ 
tance plot of a stub (Fig. 54) will inevitably cross the F = oo 
line at some frequency, and oscillations will result when coupling 
adjustments are made on the input side. 

17.4. Plate to Ground Connection. The voltage ratio of a 
tube in the plate to ground connection (cathode follower) \vas 
found to be (558) 

Yl = + Qm _ _Qm + _ 
Vi F/ + joiCgk Qm Gr -{■ j[Br + CoCgfc -|- 0)Cpk] 

Evidently, this ratio cannot exceed unity; it is therefore com¬ 
monly understood that the gain of the cathode follower is 
always negative. This is true only of the voltage gain, however. 
The transmission gain (logarithmic ratio of power output to 
power input) can have any value, depending on the load admit- 

' Toward the right of an observer following the Y point in its movement 

on the complex plane. 
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tance (admittance between cathode and ground or cathode and 
plate). It is possible for the power ratio to be negative, in which 
case, if the proper value of admittance is connected on the input 
side, the tube will oscillate without external feedback. 

Fig. 99.—Transmission gain as a function of load admittance (at high 
frequencies), Plate to ground connection. 

The dependence of transmission gain on load admittance 
can be analyzed by the method already used for the cathode to 
ground connection. The algebraic steps are very similar and will 
be omitted. The final expression for the transmission gain is as 
follows: 

Tt (db) = 10 log p = 10 Jog 

_i + (gm/o^Cgk)^_ , . 
1 + (gp/Gr) - {gJGr)[{C,,/C,,) + (B./cC,,)] 

[Transmission gain of the cathode follower stage] 

On the Yr plane (Fig. 97) may be drawn, as before, loci of con- 
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stant Tt. The loci Fr = 0 and Fr = oo are, as before, straight 
orthogonal lines; however, the Fr = « line now crosses the axis 
of reals. This means that cathode follower stages may be 
regenerative when the load susceptance is positive (capacitive 
output). This is impossible if the grounded cathode connection 
is used. Figure 99 also shows the construction for obtaining the 
line corresponding to any particular value of transmission gain. 
This construction is similar to that of Fig. 97. 

It is worth noting that, if the condition 

Qp   ^pk 

Qm gk 

were met, all the constant Fr lines would meet at the origin; 
or, in other words, the transmission gain would depend only on 
the angle of the load admittance. The above condition may be 
written 

and we know that this is satisfied in the theoretical case of an 
indefinite plane parallel triode. In practice, the condition cannot 
be realized because of end effects; how^ever, it may be approached. 

The cathode follower connection differs markedly from the 
grounded cathode connection in one respect. As the frequency 
is varied, the transmission gain of the grounded cathode stage 
cannot be kept continuously at a high value; this would require 
a negative load susceptance directly proportional to the fre¬ 
quency, which cannot be physically realized. To obtain such 
high values we must rely on a selective load, which must be 
tuned to the correct frequency; moreover, as was shown, the 
value of Qo for this selective load must be limited or instability 
will result. 

If the cathode follower connection is used, we can, on the 
contrary, ensure an infinite value of transmission gain at all 
frequencies; this can be deduced from an inspection of Fig. 99, 
or as a consequence of the discussion of Sec. 16.6. It was 
shown there that if the load of a cathode follower is a con¬ 
ductance, shunted by a suitable capacity, the input admittance 
of the tube is that of a pure capacity, independent of frequency. 
Under these conditions, the transmission gain must be infinite 
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because no power is absorbed by the tube, while some power is 
certainly delivered to the load conductance. 

In practice, of course, a finite insertion gain will be realized, 
depending on the efficiency of the input coupling, as a practical 
example will show. This design has the advantage of greater 
stability and reduction in the number of necessary adjustments. 

17.6. Extension of Linear Concepts to Amplifiers in Nonlinear 
Operation. The foregoing discussion on amplifiers has been 
based upon the equation 

Aip = Qm + Qp ^Vp (545) 

expressing the variational value of, plate current (departure 
from rest) as a linear function of the variational values of grid 
and plate voltages. 

This linear relationship, as was pointed out, is approached 
only for small signals. It is not realized when large signals 
are used, particularly if the grid voltage exceeds the cutoff 
value at any time during the cycle. 

This restriction is not quite so serious as might be supposed. 
While it is true that (545) holds only for small signals, the 
complex equation 

Ip = QmV 0 + Qp^p (550) 

which follows from (545) when we assume harmonic variations, 
continues *to be valid for large signals under one condition— 
that both grid and plate voltage vary harmonically. 

Consider, in fact, the expansion (544) from which (545) was 
obtained by dropping all terms except those of the first order. 
When variations are large, these terms cannot be dropped. 
We must then use the expansion in its original form, or 

Afp = AVg + Qp Avp + i At;/ + - Avp^ 

2 dHp . . 

NdW, if we assume the voltages to be harmonic time functions, 
we may substitute as follows: 

At;^, = AVg sin (tat + ai) 
Avp == AVp sin {o)t + ^2) 
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and the expansion, after some manipulation, takes the form 

Mp = g„ Avg sin (w< + ai) + gp Avp sin {ut + 0:2) 

+ - cos2 (a,< + a,)] Avg^ 

i9V 
+ i [1 - cos 2 (0,1 + aj)] Avp^ 

dVp 

dH 
+ r—^ [cos (ai — 0(2) ~ cos (2aj^ + oo + 0(2)] ^Vg AVp 

C/Vg p 

The constant terms of this summation stand for variations in 
average value; their sum constitutes the zero frequency com¬ 
ponent of Atp. Terms contributing to the fundamental frequency 
w and to* each harmonic frequency are easily recognized. To 
each of these harmonic components of Aip we may associate a 
complex current, or current vector. Thus, we may write, for 
the fundamental component, 

Ipl ~ “f" ^pVp 

for the second harmonic. 

lp2 
= [ I. —P Ay 4- 4 

^ dVg^ " ^ dVg^- ” 

+ 
dVp 

AVg t/2) 

and so on. Equation (550) therefore still holds, except that it 
no longer expresses the entire current variation, but only its 
fundamental component. This omission does not matter so 
far as the voltages and currents outside the tube are concerned; 
we have, in fact, postulated that the voltages at the input and 
output terminals (plate and grid voltages) are sinusoidal at the 
fundamental frequency. 

According to this assumption, the output voltage is sinusoidal 
while the output current is not. This is not a difficult condition 
to realize; it is fulfilled, for practical purposes, whenever the 
load impedance is sharply resonant to the fundamental fre¬ 
quency. All tuned amplifiers are in this category, particularly 
class B and class C amplifiers, which operate with large voltages. 

We conclude that, in principle, linear analysis can be extended 
to all tuned amplifiers. In practice, the values of Qm and Qp to 
be used for large-signal operation differ from the small-signal 
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values and will vary somewhat with the signal amplitude. These 
values should be considered as equivalent or effective values, 
much as the values of mutual and self-inductances of a power 
transformer. 

We cannot, of course, apply linear analysis when grid and 
plate voltage are sinusoidal but of different frequency, or when 
either is the sum of two frequencies. 

17.6. Application: Increase in Load Power Made Possible by 
Amplifier Insertion. Bringing the analysis of Sec. 17.4. to a 
practical level, consider the two transmission systems of Fig. 100. 

Fio. 100.—Use of grounded plate connection for power amplification. 

In the first system (Fig. 100a), a coupling link, consisting of a 
transformer and condenser in series with the primary side, is 
used to transfer power from a resistive source, of resistance Rgy 

to a resistive load Rr, These values might stand for the charac¬ 
teristic impedances of transmission lines or cables; they may or 
may not be equal. 

In the second system the same link is used to drive a grounded 
plate triode or pentode, connected on the output side to Rr in 
shunt with an adjustable capacity Cr. We will assume that 
Cr is adjusted to the value given by Eq. (564), so that the tube 
input looks like a capacity Ct, whose value is given by (566). 

In the first system the loss resistances of the transformer wind¬ 
ings may be neglected (in practice, these windings at high fre¬ 
quencies will consist of a few turns of heavy wire). Hence the 
power in the load can, by the proper adjustment of the coupling, 
reach the highest value that the source can put out, or 

P. - g (580) 

In the second system, all the power leaving the source (except 
a negligible fraction lost in /?i) must end up in the winding 
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resistance R2. Since this power can again, by adjusting the 
coupling, be made equal to the value given above, we can 
compute the current through the secondary under maximum 
power transfer conditions. This is 

The voltage developed across Ci is therefore 

E 

2(joCi yjRgR^ 

If we wrote the condition of maximum power transfer in terms 
of the coupling parameters, we would find that in order to meet 
this condition, when the load is capacitive, the secondary must 
be at or near resonance. We must, therefore, imagine the 
secondary inductance to be adjusted until it meets this require¬ 
ment. We will then have 

and in consequence, letting as usual Q2 = wL2//^2, 

Now the voltage ratio across the tube has a constant value, given 
by (565). Hence, the voltage across the load will be 

Y = ^ 
2 gm + gr>+ {\/Rr)\oiCiR, 

From this we readily obtain the power in the load 

P _ 
^ Rr 4i RrRg(i3Ci{gyn + + (l//?r)]^ 

and the ratio between this value and the power obtainable with¬ 
out the tube (580) 

^ ^__ 
Po O^CiRrlgm + g,+ (1/Pr)]- 

We can make this expression more significant by substituting the 
value for Ci, as given by (566), or (neglecting from now on gp 
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in comparison with Qm and l/i?r) 

C, = C„ + C„T^, (581) 

Thus 

^ ^_RrgJQi_ 
Pd uCfik [(Cip/Cik) + (1/1 + ffm^r)](l + gmRr)' 

Hence the decibel gain in power 

r (db) = 10 log Qi 

[1 + (OVffm)]{l + (C„p/C„t)[l + {gJGr)]] 

[Gr = {\/Rr)] 

As an example, for the following data: 

Qm = 3,000 ^imhos 
= C\p = 2 MMf 

CJ = 3.14 X 10»(50 Mc./sec.) 

Qi = 250 
Gr = 10,000 ftmhos (100 ohms) 

the gain has the value 

3,000 X 250 
r (db) - 10 log 2 X 314(1 + 3.33)(1 + 1.3) = 20.8 

This example shows how the grounded plate connection may, 
under certain conditions, be used to advantage as an amplifier. 
It is important to realize that voltage gain is only one aspect of 

amplifier performance. In the above example, the voltage gain 

of the tube has the negative value —12.70 db. 
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INDEX 

A C 

Admittance, definition of, 292 

driving-point or near-end, 40 

plotted on impedance plane, 155 

transfer, 40 

Admittance coefficients, of generic 

network, 40 

of vacuum tubes in linear opera¬ 

tion, 387, 389 

Ampere, law of, 256 

Amplification factor, 387 

Amplifiers, classification of, 391 

equivalent circuit of, 393 

Amplitude distortion, of lines, 80 

of transformers, 366 

Analogs, electromechanical, 10 

Analytic functions, 273 

Attenuation, of cables, 84 

definition of, 20 

at high frequencies, 123 

of lines, at telephonic frequencies, 

63, 66 
with low shunt dissipation, 72, 

73 

Attenuators, design of, 49 

Autotransformer, 348 

B 

Balanced and unbalanced systems, 4 

Balanced and unbalanced transniis- 

sion lines, 141 

Bandwidth, 183 

Binomial coefficients, 204 

Branch additions, geometric repre¬ 

sentation, 150 

Branch equations, 1, 289 

for the coil, 284 

for the condenser, 287 

421 

enables, coaxial or concentric, 123 

at telephonic frequencies, 83 

Capacities, interelectrode, 382 

partial, 374 

measurement of, 381 

( apacitive, coupling, 379 

line, 126 

TT network, 377 

Capacity, definition of, 265 

distributed, in general, 265 

of open wire lines, 82 

of parallel conductors, 274 

Capacity coefficients, 374 

Cathode follower, 390 

in constant gain operation, 397 

transmission gain of, 409 

Cauchy-Riemann, equations of, 272 

Chains, image, 47 

iterative, 27, 49 
maximum power transfer, 49 

of networks, 7 

Characteristic impedance, of cables, 

at telephonic frequencies, 84 

definition of, 47 

at high frequencies, 123 

of lines, at telephonic frequencies, 

63, 67 
of lines with low shunt dissipation, 

72, 73 

Characteristic reactance or resist¬ 

ance (see Characteristic imped¬ 

ance) 

Circuit problems, 1, 289 

Circuitation, 254 

Coaxial cables, 123 

optimum proportions of, 143 

Coil, definition of, 284 

Compensation theoreiA, 36 
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Complex potentials, 274 

Complex voltage and current, 291 

Condenser, definition of, 287 

Conductance, definition of, for con¬ 

ductors, 261 

Conformal mapping, 96 
Conjugate match, 174 

Conservative vectors, 281 

Constants, of networks, 29 

of transmission lines, 57 

Coupled circuits, 350 

synchronous, 359 

universal plots of gain and phase 

shift for, 362 
voltage ratio of, construction, 358, 

360 
Coupling, coefficient of, 337 

Coupling networks, efficiency of, 162 

selectivity of, 191 

of two reactive elements, 157 

Coupling problem, 147 
Coupling sections, of transmission 

line, 168 

Critical angle, of double-shunt tun¬ 

ers, 218 

Critical coupling, 365 

Current, definition of, 250 

Current density, 250 
Cutoff frequency, of exponential 

lines, 316, 327 

D 

Decibel, 20 

conversion chart, 21 

Decrement, of exponential line, 310 

Dielectric supports, in coaxial cable, 

237 

Dimensionless parameters, 59 

Dissipation factors, measurement of, 

75 

at very high frequency,, 275 

of transmission lines, 58 

Distortion, in lines, 80 

Distortionless lines, 81, 304 

Distributed inductance, capacity 

{see Inductance; Capacity) 

Disuniform transmission lines, 310 

Double-ended polar diagram, of 

coupled circuits, construction, 

358 

general application, 359 

particular cases, 360 
Double-shunt tuners, 209, 215 

Driving point admittance, imped¬ 

ance, 40 

Drop, neper or decibel, 21 

Dual quantities, 10 

of electromagnetism, 267 

Duality, principle of, 8 

Dynamic fields, equations for, 278 

E 

Electric charge, 249 

Electric field intensity, 249 

Electric flux and flux density, 259 

Electromagnetic quantities, tabula¬ 

tion of, 266 

Electromechanical analogs, 10 

Electromotive force, 34, 253 

Electrostatic potential, 255 

Element of line, 56 

Ellipse, of voltage and <}4irr<ent, 135 

Equivalent generator current, 15 

Equivalent generators, 15, 22, 38 

Exponential line, 310 

equivalent circuit of, 313 

input impedance of, constructions, 

316, 317 

I^xponential stub, 318 

comparative performance of, 324 

Exponential transformer, compari¬ 

son of, with multisection trans¬ 
former, 330 

design of, 326 

External inductance, 263 

F 

Faraday's law, 279 

Fault detection, on lines, 103, 108 

Ferranti effect, 93, 107 

Fictitious replacements, 34 

Field problems, 2 
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Fields, of parallel lines, construction, 

276 
Filter problem, 148 

Flux and flux density, electric, 259 

magnetic, 258 

Fourier analysis, 6, 11 
Frequency distortion, 80 

Frequency number, of transmission 

lines, 62 

G 

Gain, neper or decibel, 22 

Gauss, law of, 260 
Green, theorem of, 271 

Ground, electrical significance, 142 

Grounded grid amplifiers, 395 

H 

Hemispheric chart, 211 

Hyperbolic tangent, map of, 95 

I 

Image chains, 47 

Image impedances, 47, 52 

Impedance, characteristic, {see Char¬ 

acteristic) 

definition of, 289 

image {see Image impedances) 

iterative {see Iterative imped¬ 

ances) 
measurement of, by means of 

lines, 137 

Impedance transformation, by 

capacitive networks, 165 

by lossless line sections, 126, 168 

problems in, 147 

by reactive branch additions, 154 
by reversible networks, 166 

Impedances, at the junctions of 

transmission systems, 16 

Inductance, definition of, 261 

distributed, in general, 264 

of open wire lines, 82 

of parallel conductors, 275 

Inductance coefficients, 338 

Inductances, self and mutual, 335 

Inductive coupling, 333 
Inductive line, 126 

Input impedance, definition of, 18 

of network with generic termina¬ 
tions, 93 

of networks with near-matching 

terminations, 103 

of transformer {see Transformer) 

of transmission line at high fre¬ 

quency, construction for, 168 

of transmission lines in open or 

short circuit, 100 

of vacuum tubes, 389 
Insertion gain, of amplifiers, 401 

Insertion loss, 19, 112, 115 

of cable, 119 

of near-matched network, approx¬ 

imate expression for, 118 

Integrodifferential equations, 290 

Interaction loss, 117 

Interelectrode capacities, measure¬ 
ment of, 382 

Invariance, of plane fields, 283 
Inversion, 154 

Isogonal transformations, 96 

Iterative chains, 27, 49 

Iterative impedances, 28, 45 

J 

Junctions, of electrical or mechanical 

systems, 8 

K 

k plane, 211 

Kirchhoff’s laws, 254 

L 

L sections, 52 

Laplace, equation of, 272 

Line angle, 122 

Line integral, 252 

Linear generators, 15 

Linear systems, 13, 288 
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Linearity, hypothesis of, 13 

Lines, open wire, 68, 81 

parallel, 276 

transmission (see Transmission 

lines) 

Linkage, of flux and current, 334 
Loading, of lines, 83 

Long lines, 121 

Loop function, 256 

Loss, insertion, (see Insertion loss) 

neper or decibel, 19 

reflection (see Reflection loss) 

transmission, 19, 112 

Loss correlation, 114 

Lossless lines, 59 

Lossless transformer, 340 

Low-pass filter sections, 50 
Lumped equivalent, of line stub, 

243 

Lumped linear systems, 288 

M 

Maclaurin’s series expansion, 200 

Magnetic field intensity, 256 
Magnetic flux and flux density, 258 

Magnetic vector potential, 259 

Magnetostatic potential, 269 

Mapping, conformal, 96 
of hypeii>olic tangent, 95 

of line constants, 64 

of p function on Z plane, 159 

of Y function on Z plane, 153 

of y function on k plane, 211 

Matched networks, 46 

Matching problem, 148 

Matching sections, of transmission 

line, 171 

Matching terminations, reason for 

use of, 85 

Maximum power transfer, 49 

conditions for, 149 

in lossless systems, 173 

Maxweirs equations, in integral 

form, 281 

Measurable parameters, of net¬ 

works, 39 
Multiple reflection, 194 

Multisection transformer, 196 

amplitude distortion of, 207 

comparison of, with exponential 
transformer, 330 

input impedance of, 206 

optimum design of, 204 
Mutual conductance, of vacuum 

tubes, 386 

Mutual inductance, 335 

X 

Xear-end admittance, impedance, 40 

Near-matched networks, 103, 118 
XejK'r loss, 20 

Network coefficients, 40 

of transformer, 340 

of vacuum tube in linear opera¬ 
tion, 387 

Network constants, 29 
expression of, 41 

Network problems, 2 

Networks, functions of, 5 

Nonlinear operation, of amplifiers, 
412 

Norton's theorem, 15, 37 

applied to vacuum tubes, 395 

O 

Ohm's law, 253 

Open-circuit impedance, of net¬ 

works, 40 

of reversible networks, 46 

of transmission lines, 100 

Open-circuited branch, fictitious 

replacement for, 36 

oscillation constant for, 294 

Open wire line, 68, 81 

Order, of electromagnetic quantities, 

267 
Oscillation constant, 292 

Output impedance, 18 
Output matching, 33 

P 

Parallel lines, fields of, 276 
Parameters, dimensionless, 59 
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Parameters, measurable, 39 

of networks, 19 

Partial capacities, 374 

measurement o^^ 381 

Partial fluxes, 334 

Perfect transformer, 343 
Permeability, 258 

Permittivity, 260 

Permutation loss, 112 

Phase distortion, 80 

Phase shift, of cables, 84 

in coupled circuits, plots of, 362 

of networks, 18, 30 

of transmission lines, 63, 66 

with low shunt dissipation, 73, 

74 

Plane Helds, 268, 283 
Plate conductance, 386 

Polar diagram, double-ended, of 

coupled circuits {see Double- 

ended polar diagram) 

of voltage or current on transmis¬ 

sion lines, 133 

Polos, of impedance or admittance 

function, 293 
Potential, complex, 274 

electrostatic, 255 

magnetic, vector, 259 

mngnetostatic, 269 
scalar or electrodynamic, 282 

Potential coefficients, 374 

Power, in direct connection, 17 

Power comparison, criteria for, 110 

Power loss {sec Loss) 

Power ratios, evaluation of, 19 

Power relations, 16 

Power transmission, through ampli¬ 

fiers, 400 

Propagation, velocity of, 61 

Propagation constant, 30 

Q 

0, of two-pole, definition of, 181 

series and parallel, of lines, 59 

Qo, approximate value of, 184 
of constant conductance two-pole, 

191 

Qo, of constant resistance two-pole, 
190 

of coupling networks, 193 

definition of, in terms of imped¬ 

ance, 182 

of quarter-wave transformer, 188 
of stub, 231 

in terms of current or voltage, 183 

in terms of oscillation constant, 
295 

in terms of power, 297 

of tuners, 227 

Quarter-wave transformer, 174 

selectivity of, 188 

Quarter-wave skirt, 143 

Quasi-stationary fields, 298 

Quiescent values, in vacuum tubes, 
385 

R 

Rationalized m.k.s. system, 267 

Reciprocity, principle of, 31 

Reflected components, of voltage 

and current, 89 

Reflection, in multiple lines, 194 

at network terminals, 89 

Reflection coefficient, construction 

for, 104 

definition of, 91 

Reflection constant, definition of, 91 

map of, on impedance plane, 159 

Reflection loss, definition of, 112 

due to small impedance changes, 

184 

expression for, 117 

of multisection transformer, plots 

of, 207 

in terms of Qo and bandwidth, 184 

Reluctance, 337 

Replacements, fictitious, 34 

Resonance, in transmission lines, 180 

Resonant systems, comparison of, 

369 

Reversible networks, 45 

imput impedance of construc¬ 

tion, 161 
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S Terminations, 18 

Scalar potential, 282 

Selectivity, physical interpretation 

of, 177 

{See also Q.) 
Separation constant, 303 

Series impedance, of transmission 

lines, 54 

Sharpness, of slider adjustment, 230 
of tuning, 226 

Short-circuit admittance, of net¬ 

works, 40 

of reversible networks, 46 
of transmission lines, 100 

Short-circuited branch, fictitious re¬ 

placement for, 36 
oscillation constant of, 294 

Short-circuited line (see Stub) 

Shunt admittance, of lines, 54 

Shunt tuners (see Tuners) 

Skirted coaxial antenna, 143 
Sliding shunt tuner, 208, 218 

Solenoidal vectors, 256 

Stability, of amplifiers, 407 

Standing wave ratio, 128, 136 

due to supports of coaxial cable, 

241 

on long line, 145 

Standing waves, effect of, on selec¬ 

tivity, 1*^9 

Static fields, laws of, 254 

Static region, 254 

Steady state, hypothesis of, 10 

Stokes^ theorem, 272 

Stubs, 208 
admittance of, 208, 234 

losses in, 231 

lumped equivalents of, 244 

used as coupling impedance, 244 
Superposition, principle of, 14 

Surface integral, 251 

Systems, balanced and unbalanced, 

4 

T 

Tank circuit, loss of, 187 

Telegrapher*8 equation, 302 

Th4v6nm^s theorem, 15, 37 

Time lag, in transmission lines, 61 

Transfer admittance, 40 

Transfer constant, expression for, 45 

of networks, 30 

of transmission lines, 60 

Transfer impedance, 40 

'^lYansformations, conformal, 96 

Transformer, amplitude distortion 

of, 366 

coefficients of, 340 

equation of, 339 

equivalent circuits for, 339, 342 

exponential, 326 

imput impedance of, construction, 
345 

intermediate frequency, 351 

lossless, 340 

multisection, 196 

perfect, 343 
voltage and current ratios for, 

constructions, 348 

Transformer problem, 148 

Transmission data, of networks, 18 

Transmission gain, in amplifiers at 

high frequency, 403 

Transmission lines, application of 

Maxwell’s equations to, 298 

approximate model of, 55 

balanced and unbalanced, 141 

differential equations of, 301 
distribution of voltage or current 

on, in matched operation, 78 

with reflecting terminations, 130 

electrically long, 121 

at high frequencies, 121 

impedance transforming action of, 

126, 168 
use of, for impedance measure¬ 

ments, 137 

as matching devices, 168 

Transmission loss, 19, 112 

Tuners, 206 

double-shunt, 209 

efficiency oC, 231 

selectivity of, 227 
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Tuners, sliding-shunt, 218 

Turn ratio, 341 

Two-point transmission, 3 

U 

Unbalancing current, 143 

Units, tabulation of, 268 

Universal plots, for coupled circuits, 

362 

V 

Vacuum tubes, admittance coef¬ 

ficients of, 387 

as generators, 394 

in linear operation, 383 

voltage gain of, 389 

Variational values, in vacuum tubes, 

385 

Velocity of propagation, 61 

Virtual line extension, 128 

construction for, 130 

Virtual load, 128, 130 

Voltage, definition of, 252 

distribution of, in transmission 

lines (see Transmission lines) 

ellipse of, 135 

W 

Wave velocity, 61 

Z 

Zeros, of impedance or admittance 

functions, 293 
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