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PREFACE TO SIXTH EDITION

For some time past various committees have been engaged on
the preparation of ‘recommendations’ for the design of
structures and the more economical use of constructional
materials. For example, a committee of the Institution of
Structural Engineers has been considering the question of
the design of steel-framed buildings. The recommendations
of such committees will be issued in reports with the probable
title of * Code of Practice.” It is likely that some new working
stresses will be suggested and that in a few cases new calcula-
tion methods may be recommended. The ‘ Code of Practice’
recommendations are not mandatory, but represent considered
opinion on what should constitygte good design. The recom-
mendations have statutory eff t‘ f and when they become
incorporated in local by-laws.

It is not probable that any major alterations will be made
in the existing basic principles of steel-frame construction, but
the reader is advised to watch carefully for any revision of
local by-laws, such as those of the London County Council.

T. J. R.
L. E. K.



PREFACE TO' THIRD EDITION

THE chapter on ‘ Welding ' has been re-written in order to
incorporate the regulations of the London County Council with
respect to the use of metal arc welding.

By kind permission of the Institute of Welding some extracts
from the ‘ Handbook for Welded Structural Steelwork ' have
been included. The authors wish to record their thanks to the
Institute for this practical assistance.

A few of the working stresses in structural steelwork design
have been raised for the period of the war emergency and these
higher stresses may persist for a time after the emergency
has ceased. The reader should consult B.S.S,, etc., for any
revision, temporary or permanent, which may take place in
the permissible stress values.

T.J. R
L. E. K.

PREFACE TO SECOND EDITION

THe L.C.C. By-laws affecting the design of steel-framed
buildings came into force on January 1st, 1938. The By-laws
supersede the regulations contained in the L.C.C. ‘ Code of
Practice.’

The presentation of building regulations in the form of
by-laws has not affected the general methods of calculation
and design which have to be employed in structural steelwork
construction. The authors have thoroughly revised the book,
in order to use the phraseology of the L.C.C. By-laws, where
appropriate.

It is desired to express thanks to the London County Council
for permission to quote from the By-laws referred to,.and also
from the regulations dealing with the employment of metal
arc welding. The thanks of the authors are also due to
Messrs. Redpath, Brown & Co., Ltd., for their courtesy in
permitting the use of certain diagrams from the new issue of
their handbook.

T.J.R.

L. E. K.
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PREFACE TO FIRST EDITION

DURING recent years a good deal of research work has been
carried out with a view to improving the quality of the materials
used in building construction and, in this connection, structural
steel has received considerable attention. Improved quality
in the materials of construction naturally leads to investiga-
tion into the possibility of their more economical use and, in
the case of structural steelwork, much thought has been given
to the question of better methods of design.

Building regulations have had to take into account the pro-
gress which has been made both in the quality of structural steel
and in the knowledge of its most effective employment in
steel-framed buildings.

As the regulations contained in the Building Acts of the
London County Council are acknowledged throughout the
country to represent a high standard of building construction,
it will be useful to state the present position with regard to the
regulations affecting steelwork construction in London.

In 1932 the Council issued a ‘ Code of Practice ’ for the use
of structural steel and other materials in buildings, approved
by the Council as a basis of consideration of applications for
relief from the Third Schedule of the London Building Act,
1930. By the London Building Act (Amendment) Act, 1935
the Council has obtained powers to make byelaws with respect
to a number of matters, including those affecting steelwork (and
reinforced concrete) construction.

It is probable, therefore, that in course of time the ‘ Code’
will lose its separate identity and its provisions become part
of the matters dealt with by byelaws.

The L.C.C. ‘ Code of Practice’ regulations and those contained
in recent British Standard Specifications will be found at
appropriate points in the text.*

* See Preface to Second Edition.

vii



viii PREFACE

In writing this book the authors have endeavoured to show,
in as simple a manner as possible, the relationship between the
established principles of structural mechanics and modern
methods of steelwork calculations—as exemplified in struc-
tures of not too difficult a character. It is written as a text-
book for the student, whether he be a full-time student in a
technical college or a young assistant in an office supple-
menting his practical experience by private, or part-time
evening, study.

Throughout the book theoretical demonstration has been
immediately followed by practical illustration in the form of
a worked numerical example.

The mathematics employed has been of the simplest possible
character consistent with effective demonstration and should
present little difficulty to students in advanced building
courses. On the few occasions in which theoretical investiga-
tion has involved the use of the methods of Calculus, the
results have been clearly set out in simple language, so that
their employment does not demand a knowledge of this branch
of mathematics.

Students preparing for the examinations of the Institute of
Builders, the Institution of Structural Engineers, and the Royal
Institute of British Architects will, it is hoped, find the book
of material assistance. Candidates for the Inter. R.I.B.A.
examination should read Chapters I to VII, the part of Chapter
IX dealing with maximum bending moments, and the more
elementary portions of Chapter XI. For the final examina-
tion, architectural students will require to read Chapter XI
more closely and also to take up those parts of the book which
deal with practical design.

Building students preparing for the National Diploma or
Certificate in Building should find the groundwork covered in
the theory and design of structural steelwork. |

The authors wish to acknowledge freely the many sources
of the theoretical principles which, together with the results
of practical experience, constitute the text of the book.
The practical value of the book has been considerably en-
hanced by the assistance received from a number of well-



PREFACE ix

known constructional firms who have supplied diagrams,
photographs, and other practical data. The authors’ thanks
are especially due to :

Messrs. Dorman, Long & Co., Ltd.; Messrs. Redpath,
Brown & Co., Ltd.; Messrs. R. A. Skelton & Co. Steel &
Engineering, Ltd.; Messrs. Dawnays, Ltd.; Messrs. The
Kleine Company, Ltd.; Messrs. Caxton Floors, Ltd.; Messrs.
The Quasi-Arc Company, Ltd.

The British Standards Institution kindly granted permission
for extracts to be made from recent B.S.S. and this, together
with the permission of the London County Council to quote
from building regulations, notably the ‘ Code of Practice,” has
made it possible for the authors to refer frequently to the
practical considerations which influence purely theoretical
results.*

Acknowledgment is also due to the British Steelwork
Association for its courtesy in permitting the publication of
certain property tables which will be found in the text, and
to the Institution of Structural Engineers for permission to
quote from the valuable report which it issued on the metallic
arc welding of structural steelwork.

The authors wish to record their thanks to Mr. F. E. Drury,
M.Sc., M.L.Struct.E., Principal of the L.C.C. School of Build-
ing, Brixton, for helpful advice given on this occasion, as on
other occasions, whenever sought.

Finally it is desired to express appreciation of the interest
taken by Dr. H. H. Burness in the preparation and production

of the book.
1936. T.J.R.
L.E K.

* See Preface to Second Edition.
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CHAPTER 1
STRESS, STRAIN AND ELASTICITY

Nature of Structural Steel

STEEL is not a simple element. 1t is mainly composed of iron,
but the iron is alloyed, or associated with, various other
materials. It is upon the nature and relative amounts of these
special ingredients that the physical properties of the steel
depend. For example, if the metal chromium be introduced
into the composition, the resulting steel is able to exhibit,
among other useful properties, a pronounced resistance to
rusting and is given the name stainless steel. The element
manganese, on the other hand, gives good wearing properties to
steel, making it suitable for use in the manufacture of tram
rails. There are, therefore, various types of steels, known
respectively as chromium steels, manganese steels, and so on,
according to the alloying elements which give the steels their
characteristic properties.

A substance which plays an important part in the type of
steel used in building construction is the element carbon. The
percentage of carbon in steel directly influences its essential
structural properties. An increase in carbon content results
in an increase in strength, but this is accompanied by a marked
decrease in ductility. Ductility, or absence of brittleness, is
one of the important requisites of a structural steel. It pro-
motes equalisation of load between the steel fibres of a member.
Of such importance is this property of ductility that, in the
commercial testing of structural steel, an upper limit of
strength is prescribed for the stcel in addition to a definite
minimum value for the percentage elongation.

Steel which is to be used in general building construction is
subject to a number of standardised requirements. The
standards of quality required are laid down in specifications

issued by the British Standards Institution. These specifica-
$.5.—T



2 STRUCTURAL STEELWORK

tions are known as B.S.S. (British Standard Specification) and
the two relating to structural steel for general building work
are B.S.S. No. 15-1936 (Structural Steel) and B.S.S. No. 548-
1934 (High Tensile Structural Steel). The former is concerned
with the type of steel in common use at the present time and
is referred to in such regulations as the L.C.C. By-laws (1938)
(clause 15). The modern tendency is, however, to adopt steel
of higher tensile strength, and for this steel the B.S.I. has
prepared specification No. 548-1934.

Chromador Steel * is a specially manufactured steel which
exhibits high tensile strength without lack of ductility. The
comparative analyses given show that the metals chromium and
copper are incorporated in the composition of the steel. The
introduction of these elements leads also to an improved resist-
ance to corrosion in the resultant steel.

‘Mild ’ steel is steel conforming to the requirements of
B.S.S. No. 15.

TYPICAL ANALYSES OF STRUCTURAL STEELS
PERCENTAGES

! .HI(O'

DEscrIPTION CARBON MANGANFSE:
' i
. \

: H i
c s | Puos-
MIUM OPPER lSu.xcou SULPHUR, PHORUS |

IrON

Mild Steel. o-2 05 - — 004 004 004 . 9918

i

0°05 0-05 | %
Max. Max. {Difference

Chromador | 03 :o~7—1~o Jo-7—1~1;o-254)~5§ 02
Steel Max. . ' Max.

Stress

To understand the provisions of B.S.S. Nos. 15 and 548, and
similar specifications, it is necessary to study the subject of
stress.

Fig. 1 shows a tension member AB subjected to a pull of
L tons at each end. Considering a typical section XX,
we see that the load L tons, at the end A, is trying to detach
the portion AX of the member from the portion XB. It is
unable to do so, because of the numerous little pulls which the
fibres of the material exert, and which are shown to the right

* 'A high tensile structural steel manufactured by Messrs. Dorman, Long &
Co., Ltd.



STRESS, STRAIN AND ELASTICITY 3

of the section plane XX. Similarly the pull L. tons at end
B cannot effect separation at the section, because there are
fibre pulls acting there, to the left. Such a system of actions
and reactions, acting over the cross-sectional area of a member,
constitute what is termed a stress at the section.

F1BRE FORCES CONSTITUTING

THE STRESS AT THE SECTION
A \( ,/I 8
L JTONS — —fFE— —1T—>/L7ONS
X

F1G6. 1.—DIAGRAM ILLUSTRATING THE NATURE OF STRESS.

If the cross-sectional area of the member at XX were A
sq. ins., and if the load L tons were distributed uniformly
over the section, the ratio L. tons = A sq. ins. would give the
intensity of stress at the section. Assuming the load to be
10 tons, and the sectional area to be 2 sq. ins., the sfress at the
section (the word ¢ntensity is always omitted in practice) would

I0 tons
2 sq. ins.

Varying Stress.—The distribution of load over the section of
a member may be of a non-uniform character. For example,
in a beam section, not only is there variation of load value,
but there is a complete reversal from fension (pulling) to com-
pression (pushing). In such a case, the stress’ cannot be

obtained by the simple formula k(r)zg : the stress will vary in

= 5 tons per sq. in.

value from point to point in the beam section. But, however
its value may be obtained, a stress has always the nature of
load intensity per unit area. When a phrase such as ‘ extreme
fibre stress equals 8 tons per sq. in.’ is used, what is meant is
simply that, were the fibres over a whole sq. in. to be subjected
to this given stress value, the total load carried would be 8
tons. The structural designer does not think in terms of
average stress values, but in terms of ‘ maximum stress inten-
sity ’ in any single fibre.
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Forms of Stress

There are three forms of simple stress : tension, compression
and shear.

Tensile Stress.—This is the kind of stress induced in a
member, when it is subjected to a pull.

—> L 7ONS
AX/AL LOAD

NN\
N
|
I

CROSS-SECTIONFAL FREH OF MEMBER
AT THE SECTION XX =HA SQMNS

F1G. 2.-—TENSILE STRESS.

Tensile stress at section XX = Load
Area

= ,jgitg»ns _L tons per sq. in

T Asq.ins. T A per sq. 1n.

(Any convenient units of load and area may be used in stress
calculations, but, as stress values in structural steelwork are

nearly always expressed in fons per sq. in., this unit has been
adopted.)

ILLUSTRATIVE EXAMPLES

(x) A solid circular steel tie-rod 2" diameter carries an axial
load of 20 tons. Calculate the stress in the material of the rod.

Tensile stress = Load
Area
2
Sectional area of tie-rod = mal_ X 2! sq. ins.
= 314 sq. ins.
Tensile stress — . 20 tonS "
3°I4 sq. Ins.

== 0-37 tons per sq. in.
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(2) Find the maximum safe axial load for a mild steel tie-bar,
2" wide by §” thick, if the tensile stress is not to exceed 8 tons per
sq. in.

Sectional area of tie-bar = 2” X §” = 1-25 sq. ins.

Load
Stress = Aréa"
8 tons per sq. in. = L tons
"7 1-25 sq. Ins.

L = 8 X 1-25 tons = 10 tons.

(3) Calculate the necessary thickness for a tie-bar 4" wide, if it
has to carry an axial load of 22-5 tons without the maximum stress
exceeding 7-5 tons per sq. in.

Sectional area of tie-bar = 4" X {” = 4¢ sq. ins.

. . __ 22°5 tons

7-5 tons per sq. In. = 4t sq. ins.
.. 48 X 7°5 = 22°5.

t = 22.5 == 3"

30 *

Compressive Stress.—Columns and struts (i.e. members which
support thrusts) have their fibres in this condition of stress.

L TOAS -axiAL LOARD —

!

| - CROSS ~SECT/ONAL
ARER OF MEMBER AT
| SECTION XX = A 55

X
|
7 ///////lz/////////
FI1G. 3.-—~ILLUSTRATION OF COMPRESSIVE STRESS.
C . . Load
ompressive stress at section XX = Area

= Ltoms _ Loions per sq. i
T Asq.ins. A Per 8q. 1n.

Slender compression members are liable to failure by side
bending or ‘buckling,’ in addition to direct crushing. This
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type of member is fully dealt with later in this volume
(Chapter XI).

EXAMPLE

A solid circular steel column supports 180 sq. feet of floor area,
for which the total inclusive load is 3 cwts. per sq. foot. ~ Assuming
1t to be necessary to limit the maximum compressive stress in the
column fo 2-5 tons per sq. in., obtain the minimum permissible
diameter for the column.

Total load on column (assumed axial)
= 3 cwts. per sq. ft. X 180 sq. ft.
= 540 cwts. = 27 tons.

Let 4" = diameter of column.

. Ted? .
Sectional area of column = sq. ins.

4
27 tons
.. 2'5 tons per sq. in. =  d? sq. ins,
nd?
w205 X, =27
o 432

K17

d = say, 3 ins.

Shear Stress.—When one portion of a member tends to slide

over another portion'at a given section, the fibres at the section
are said to be in shear stress.

L TONS -T7TANGENTIRL LORD —

—_—
— ]
X X
N CrOsS -SECTIOMAL
AREA OF MEMBER AT

T SLECTION XX =-/SQNG.

F1G. 4—MEMBER SUBJECTED TO SHEAR STRESS.

Shear Load
Area under Shear

L tons L tons per sq. in
T Asq.ins., A per sq. .

Shear stress at section XX =
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The rivets, in a simple riveted joint, are examples of struc-
tural units subjected to this form of stress.

£

|
[ \L > L JONS
AREAR OF RIVET .
CROSS SECTION
E.! L ) r —I - A 5@ INS.

L) L —
N4

EXAMPLE

<E

F1G. 5.—SHEAR STRESS IN A RIVET.

Assuming the load in Fig. 5 to be 2 tons, and the rivet diameler
lo be 3", find the shear stress in the rivet.
nd? _ w X 75
4
= +44 sq. ins.
load 2 tons
Area ~ -44 sq. ins.
= 455 tons per sq. in,
The subject of rivet strength is treated, in detail, in
Chapter 1V.

Strain

If we apply a load to a member, not only do we induce in the
fibres a state of stress, but in some respect we alter the size,
or shape, of the member.

The subject of strain is concerned with these geometrical
alterations. Each of the stresses which has been referred to is
accompanied by its corresponding strain.

Tensile Strain.—The tensile strain in the member in Fig. 6 is
not measured by the extension x” itself, but by the ratio of
this extension to the original length of the member,

Extension
Original length

= ’;,, = 7 (simply a number).

Sectional area of rivet = sq. ins.

Shear stress =

Tensile strain =
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The reader should carefully note that the value of the strain
is not expressed in any dimensional unit. The two length
measurements concerned in the computation may be in any

”

" ’(x
y My .
Y,
ﬂ//__ —_—— > JENS/LE LOAD
7
//<_.__-——-——- —t

1
ORIGINAL LEMGTH

THE EXTENSION 5C 1S VERYSMALL
IN AN ACTUARL STRUCTURAL
MEMBER

F16. 6.—MEMBER SUBJECTED TO TENSILE STRAIN.

units, provided the same unit is employed for both. In the
practical employment of a steel member, the extension x is
extremely small, and is not discernible by the naked eye.

EXAMPLES
(1) A tie member 10 ft. long is subjecled to an axial load which
stretches 1t -012 tns. Calculate the strain in the material of the
member.
Extension
Original length
012 ins. _ +0I2
(1o X 12) ins. ~ 120

Tensile strain =

= +000I (a number).

(2) A tensile test specimen undergoes a strain of -0004. Find
the actual extension on a measured gauge length of 8”.

Tensile strain = ——Eﬁflﬁiﬂ"
Original length

Extension in ins.

0004 = “TEem gy S

... Extension = (8 X -0004) ins. = -0032 ins.

Compressive Strain

. Compressive strain = §_hort§ggig in length =% _7*

Original length e
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COMPRESSIVE LOAD

N T

* T e o

o 1 !

§ |

iz
THE SHORTENING IN LENGTH 2C 15 VERY

SMALL IN A STEEL STRUT UNDER
WORKING CONDIT/IONS

I'16. 7.—MEMBER SUBJECTED TO COMPRESSIVE STRAIN.

ExampLE. A column, loaded axially, shortened by -016 ins.
If the resulting strain were -0002, find the original length of the
columm.

. . * Shortening
Compressive strain == Original length’
0002 — 010 ins.
length in ins.
- Length — ©°X011S g e — 6787,
‘0002

Shear Strain.—The two strains already discussed involve the
change in length of a member. Shear strain is concerned with

- 1;15//57»? LOFRD
r_—————? ' —_—
ZS%{/O*/ | 'l
‘; ! ~— G388
Vixiyizzzzds
THE BROKEN LINE INDYCARTES THE
SHRFE OF THE RECTANGULAR BLOK
N THE STRAINED CONDITION

F1G. 8.—NATURE OF SHEAR STRAIN.

‘the change of shape, or the distortion, which results from shear
stress. .

”

The value of the shear strain is given by the ratio f,, = 7

S.S.—1*
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It is more important at the present stage for the reader to
have a correct appreciation of the nature of shear strain, than
to possess a knowledge of its exact determination. It is the
type of strain induced in a workshop shaft which is transmit-
ting a twisting moment, or in a key when we are attempting
to turn it in a stiff lock.

Relationship between Stress and Strain

It will now be clear that the terms ‘stress’ and ‘strain’
refer, respectively, to two quite different physical conditions
of a loaded member. Within certain limits, however, there is a
definite, and simple, relationship between the corresponding
values of these quantities. The relationship is more clearly
defined in some building materials than in others. Steel
possesses the property of elasticity in a high degree, and obeys
the elastic law very closely.

Elasticity.—A piece of material is said to be elastic if, having
been deformed by an applied force, it regains its original size
and shape when the deforming force is removed. An ex-
perimenter, named Hooke, discovered (about the year 1676)
that an elastic body would always stretch by an amount which
was directly proportional to the applied tensile load, provided
the experiment were not conducted beyond a certain maximum
limit of stretching. This law of relationship between ‘load ’
and ‘ extension ' is exemplified in the tension spring balance
scales used in shops. The graduation marks on such scales are
all equidistant, indicating, for example, that the spring stretches
10 times as much for a 10-1b. weight as it does for a 1-1b. weight.
A steel member may be regarded as being, within limits, a very
strong and accurate spring, whose extensions (or compressions)
are so small that special instruments are required to measure
them.

We have seen that the stress in a member is directly
proportional to the applied load (stress = ;ogg and

that the strain is directly proportional to the extension

(strain ____extension
~ original length /*
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Hooke's load-extension law may therefore be expressed in
terms of  stress ~ and ‘ strain.” This is the form in which it is
usually remembered and quoted, and the law is expressed by
the statement that *stress varies as strain.’ The law will
equally apply in tension and compression for all steel mem-
bers, up to a stress value known as the elastic limit for the
particular steel.

Young’s Modulus of Elasticity

“The reader will, perhaps, more readily understand this very
important physical property, if a comparison be made between
it and another physical property with which he is already
familiar.

N 0

X y

N v, N %

8 ¢ o 4

) NC RET E
48 CONCRETE.
VOLUME T STRAIN
WEIGH T-VOLUME GRAPH STRESS-STRAIN GRAPH

FiGs. 9 AND 10.—ANALOGY BETWEEN THE Two PHYSICAL CONSTANTS,
‘DENsITY " AND ‘ YOUNG'S MopuLus.’

If we took a number of different pieces of any given material
and weighed them, a graph could be drawn showing the varia-
tion of ‘weight’ with ‘volume.” The graph would be a
straight line (Fig. 9), as weight would increase uniformly with

weight

volume. The value of the ratio — would be the same for
volume

any pair of corresponding values of weight and volume, taken
at any point in the graph. The ratio would give us the
physical constant for the material known as its density. But
stresses and strains follow the same type of law as weights and
volumes do.

The stress-strain graph will be a straight line, and the ratio
of any particular stress to its corresponding strain will be a
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constant value for all points in the graph. The actual valuc of
this constant does not depend on the size of the member
undergoing stress and strain, but simply on the nature of
the material of the member, just as density is independent of
the dimensions of the substance concerned.

The physical constant, obtained from the stress-strain ratio,
is given the name Young's Modulus, and is denoted, in cal-
culations, by the letter L.

Stress
~ Strain’

Hooke’s elastic law holds also in the case of shear stress and
shear strain, but the value of the constant 232?% differs in this
case from that obtained in tension and compression, and is
termed the shear modulus of the given material.

Units of Young’s Modulus.—As the value of strain is simply
expressed as a number, the units of E will be those of stress.
If strain = 1, E = stress, so that Young’s modulus may,
theoretically, be defined as the stress value required to produce
unit strain in a tensile specimen of the particular material.
Unit strain, however, involves an extension equal to the
original length of the specimen. Young’s modulus has no
significance beyond the elastic limit of the material, which, in
the case of steel, represents a strain of the order of -oo1.
Although unit strain is impracticable in attainment, the
terms of the definition serve to emphasise the nature of the
constant E.

The value of Young’s modulus for structural steel, in tension
or compression, may be taken as 13,000 tons per sq. in. . A
lower value of about 12,000 tons per sq. in. is sometimes taken
in calculations involving the deflection of steel beams.

The following important facts of elasticity will now -be
appreciated by the reader :

(x) Stress cannot exist without strain, nor strain without
stress.

(2) A given elastic stress value is always accompanied, in
any particular type of material, by the same value of strain,

(3) Young’s modulus is the physical constant which enables
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us to calculate exactly how much strain accompanies a given
stress value, and vice versa.

EXAMPLES
(1) Calculate the value of E from the following resulls of a
steel tensile test.
Sectional area of specimen = -44 sq. ins.
Measured gauge length on specimen = 8.
Applied tensile load = 1-43 tons.
Corresponding elastic extension = -002 ins.
Load _ 1-43 tons
Area ~ -44 sq. ins.
Extension -002 ins.
Originallength — 8 ins.
Stress _ 3-25 tons per sq. in.
E = .=
Strain 00025

Stress = = 3-25 tons per sq. in.

Strain = = :00025.

= 13,000 tons per sq. in.

(2) Find the elongation produced in a circular tie-vod, 10 ft.long
and §" diameter, when subjected to an axial load of 4 toms.
E = Ij,ooo tons per sq. in.

Let x” = the extension. :

Sectional area of a §” diameter rod = ‘6013 sq. ins.

Load 4 tons
Area ~ -6013 sq. ins.
= 6-65 tons per sq. in.

Stress in rod =

Strain in rod = E).ctension
Original length
_ x" %
" (10 X 12)" T 120
~ _ Stress
" Strain
6-65 tons per sq. in.
13,000 == x
120
x ¥ =665
13,000-X .
x = 001",

(3) In a test, to determine the stress induced tn a member of a
steel frame by the load carried, an instrumeni was fixed to the
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member in order to measure the shortening produced in it. Assum-
ing a contraction in length of -005" to have been measured on a
10" gauge length, deduce the stress in the member.

i _  Shortening
Strain in member = Original length
_ 005" _
= 10" *0005.
E = g_tr_gg .». Stress = E x Strain.
train

Taking E to be 13,000 tons per sq. in.,

Stress = 13,000 X -0005 = 6-5 tons per sq. in.

The above example illustrates the method employed in
research work to ascertain the stress at any part of a loaded
specimen. The extremely small alterations in length caused
by the application of load are measured by instruments termed
‘ extensometers.’

The illustration given in Fig. 13 shows a model steel roof
truss being tested in a 100-ton Riehlé testing machine. A
Lamb’s roller extensometer is fixed to one of the struts in
order to find the extension on a known gauge length, i.e. the
‘strain ’ (and hence the  stress ’ and ‘ load ’) in this member.

EXERCISES I

(1) A tie-bar in a steel truss carries a load of 9 tons. The
section of the bar is rectangular, 3” x 4”. Calculate the tensile
stress in the material of the bar.

(2) How many steel suspension bars, 4" X ", would be
required to support a load of 72 tons, assuming the load equally
divided between the bars ? Maximum stress not to exceed
8 tons per sq. in.

(3) Find the necessary diameter for a steel column of solid
circular section which has to carry an axial load of 75 tons,
the maximum allowable stress being 6 tons per sq. in.

(4) The base of a column is carried on a square concrete slab.
The load transmitted to the ground beneath the slab is 64 tons.
Assuming a safe bearing pressure on the ground of 4 tons per
sq. ft., find the minimum dimensions, in plan, for the slab.

(5) Find the maximum safe value for P, in the gusseted con-
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nection given in Fig. 11, from the point of view of (a) the ten-
sion in the tie-bar (2}” gross width), (b) the tension at section
XX in the gusset plate.

[

-'L5' | F"'
f s
z |O | o) ' " 'y
USSET
d s—/ 36 THiEK
-5/4 049, RIVETS
¢ W35 DR HOLES
F 7IE BAR Y2 THICK
—slpf . ITAXY PERMISSIBLE
STEEL STRESS EQUALS
» & TONS PERSQ.IN.
P TONS
Fig. 11,

(If x” = width of tie-bar and d” = diameter of rivet hole, a
section taken through a rivet hole will have an * effective area ’
of (x —d)" X thickness of tie-bar.” The safe load for the
tie-bar must be computed from this ‘ net ’ area.)

(6) Find the shear stress in the tie-bar rivets of the given

} |6 —0- o
L ©1& | .
AARS)

+H—40m.07ETS IV
19|/ O'or HoLES

_94%’ b

vt_i

05 7OMS

FiG. 12.

connection (Fig. 12). Find also the necessary thickness of the
tie-bar, using a safe stress of 8 tons per sq. in.

(Two rivet holes must be allowed for in finding the net width
of the tie-bar.)
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(7) Calculate the strain in a column which is shortened by
-0312" under the applied axial load, the original length of the
column being 13’. Also determine the contraction in length
corresponding to a strain of -0004.

(8) Obtain Young’s modulus from the following results of a
practical test :

Diameter of circular specimen = $”.

Gauge length on specimen = 8”.

Applied load = 2-86 tons.

Corresponding extension (measured on gauge length)
= -004."

(9) Distinguish between the terms ‘stress’ and ‘strain.’
Give the three forms of simple stress with examples of typical
structural members in which they respectively occur. Name
and write down the law which, within certain limits, governs
the relative values of these two physical properties, and ex-
plain the meaning and nature of * Young's modulus.’

(r0) Calculate the extension in a steel tie-rod, 1”7 diameter
and 8’ long, for an axially applied load of 3 tons. E = 13,000
tons per sq. in.

(x1) In a test to determine the ‘live load’ carried by a
member of a steel lattice girder—due to the passage over the
girder of a travelling crane—an extensometer, of the direct-
reading dial type, was employed. Taking the following test
results, determine the live load referred to.

Gauge length on member = 10”. )

Value of one dial division on extensometer = ;,44"-

Difference in readings due to passage of load = 20 divisions.

Sectional area of member = 4 sq. ins.

Take the usual value for E. _

(12) An uncased steel member 20’ long was subjected during
a fire to a temperature rise of 30° C. Assuming the ends of the
member to have been fixed in such a way as not to allow of any
expansion, calculate the stress induced in the steel.

Coefficient of linear expansion of steel = -00001.

Assume E = 13,000 tons per sq. in.
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CHAPTER 11

ULTIMATE STRESS, FACTOR OF SAFETY AND
WORKING STRESS

Stress-Strain Graph for Tensile Test

Ir a mild steel specimen were placed in a testing machine
and a tensile load applied steadily until the specimen fractured,
the stress-strain graph would have the general character given
in Fig. 14.

/
_ TN RERL STRESS

-

ANOMNAL STRESS

ULTIMATE STRESS e
~Commerceal~

\wﬂo PONT STRESS

ELASTIC LIMIT STRESS

TEMSILE STRESS

~——— S8 REPRESENTS TOTAL RANGE
OF PRACTICAL DESIGN STRESSES

7 TENSILE STRAN

F1G. 14.—STRESS-STRAIN GRAPH FOR A MILD STEEL SPECIMEN TESTED TO
FRACTURE.

The graph may be divided inte three parts, indicated
respectively in the figure by AB, BC and CD.

(i) A4 to B. Between A and B the graph is a straight
line. The point B fixes the upper limit of proportionality
between stress and strain. The stress value corresponding to
this limit is known as the Elastic Limit stress for the steel.
For structural steel its value will be about 15 tons per sq. in.
The part AB of the graph is very important from the point of
view of design, as the stresses involved are those corresponding
to the elastic strain of the steel—the strain condition of all

17
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steel in practical structures. It will be clear that no formula
in design, based on the assumption of Hooke’s law, will hold
for a stress exceeding the elastic-limit stress.

(ii) B to C. When the stress has reached a value slightly
higher than the elastic limit, a definite yield takes place in the
specimen. The strain value increases without corresponding
increase in the stress. The stress at this point is known as the
Yield Point stress. The yield point is made apparent in a
practical test by the sudden drop of the lever arm of the
testing machine, and the temporary refusal of the specimen to
take up load. The term commercial elastic limit is sometimes
used for this stress. After passing the yield point the stress
increases, and the graph takes the form indicated in the
figure.

(iif) Cto D. Throughout the test lateral strain accompanies
the longitudinal strain, but extensometers would be required to
measure both these strains--inside the elastic limit. Between
C and D, however, there is a marked contraction of cross-
sectional area, easily visible to the naked eye. Just before
fracture the specimen will have the appearance shown in
Fig. 15.
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F1G6. 15.—LABORATORY TENSILE TEST SPECIMEN.

. It will be found that to maintain the lever arm floating be-
tween its stops, during this part of the test, load will have to be
taken off the specimen. If we calculate stress values on the
original sectional area of the specimen, these values will de-
crease with the decreasing load. This explains the apparent
drop in stress before fracture, as represented in the graph.
Actually the stress increases up to the point of fracture, and the
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broken-line graph would be obtained if the reduced cross-
sectional area of the specimen were taken into account. Stress
calculations, in commercial testing, are based on original
dimensions.

Ultimate Stress.—In a practical test to determine the
strength of steel, the maximum load carried by the specimen is
the important quantity, not the actual load at fracture. This
applies equally to ‘compression’ and ‘shear’ tests. The
ultimate stress is obtained by dividing the maximum load
during the test by the original sectional area of the specimen.
Ultimate stress = .Mrax—lfn um load .
Original sectional area

Commercial Testing of ¢ Structural Steel ’

B.S.S. No. 15-1936 gives precise details of the nature of the
tests to be carried out, and of the general procedure which
has to be followed. The reader is referred to this specifi-
cation for fuller particulars than can be given here.

Some of the steel sections, etc., being rolled to an order, are
made longer than necessary. The extra lengths are then cut
off, as required, for test specimens.

There are two tests imposed by the B.S.S,, (i) a tensile test
and (ii) a cold bend test.

Extract from Clauses relating to the Tensile Test.

(a) Plates, Sections (e.g. Angles, Tees, Beams, Channels, etc.)
and Flat Bars.—The tensile breaking strength of all plates,
sections (such as angles, tees, beams, channels, etc.) and flat bars,
shall be between the limits of 28 and 33 tons (62,700 and 73,920 1b.)
per square inch of section. The elongation measured on the
Standard Test Piece A shall be not less than 20 per cent. for steel
of 0375 tnch in thickness and upwards, and not less than 16 per
cent. for steel below 0-375 inch in thickness.

For plates, sections and flat bars under 0-25 tnch in thick-
ness bend tests only shall be required.

(b) Round and Square Bars.— The tensile breaking strength of
round and square bars (other than rivet bars) shall be between the
limits of 28 and 33 tons per square inch of section, with an elongation
of not lessthan 20 per cent. measured on the Standard Test Piece B,
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or not less than 24 per cent. measured on the Standard Test Piece
F. For bars under 0-375 inch diameter or thickness for concrete
reinforcement, the elongation measured on test piece B shall be
not less than 16 per cent.  For bars under 0-375 inch diameler or
thickness for other purposes, bend tests only are required. The
bars may be tested the full size as rolled.

(¢) Rivet Bars.— The tenstle breaking strength of vivet bars shall
be between the limits of 25 and 30 tons (56,000 and 67,200 1b.) per
square inch of section, with an elongation of not less than 26 per
cent. measured on the Standard Test Piece B, or not less than 30
per cent. measured on Standard Test Pzece F.  The bars may be
tested the full size as rolled.

Standard Test Pieces.

A.—A test piece of prescribed pattern with a gauge length
of 8” for elongation measurements.

B.—A standard test piece in which the minimum gauge
length is given as 8 times the diameter.

F.—For test pieces over 1” diameter. The gauge length is
not to be less than 4 times the diameter.

Extract from Clauses relating to the Cold Bend Test.— For cold
bend tests, except in the case of round bars 1 inch in diameter
and under, the test piece shall withstand, without fracture, being
doubled over either by pressure or by blows from a hammer until
the internal radius is not greater than 1% times the thickness of the
test piece, and the sides ave parallel.  In the case of round bars,
1 tnch in diameter and under, the internal radius of the bend shall
be not greater than the diameter of the bar. For sections having
Sflanges less than 2 inches wide these bend tests may be made from
the flattened section.

Laboratory Steel Testing

It will be noted that in the tensile test—in commercial
testing to B.S.S. (No. 15 specification)—only two quantities
are determined, viz. wultimate tensile stress and percentage
elongation at fracture. In laboratory testing two other values
are usually found, viz. the Elastic Limit (or Yield Point) Stress
and the percentage contraction in area at fracture. Interesting
tests on a range of carbon steels (steels in which the variation of
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carbon content provides the characteristic properties) may with
advantage be carried out to illustrate how the Y.P. and
ultimate stresses are increased in value, and the ductility con-
stants (percentage elongation and percentage contraction in
area) decreased, as the percentage carbon content increases.

ExAMPLES ON STEEL TESTS

(x) Calculate the usual test constants from the following results
of a steel tensile test, and stale whether the steel represented by this
specimen would satisfy the requivements of the B.S.S. for structural

steel. . .
Diameter of specimen = -75".

Distance between gauge points = 8”.
Load at yield point = 7-48 tons.
Maximum load during test = 12-76 tons.
Gauge length (after fracture) = 10-08".

Diameter at fracture = -52".
(@) Yield point stress = Origin{:;loiilegtoyégecimén'
Original area of specimen = ﬂf =" ><4 75° sq. ins.
= +44 $q. ins.
Y.P. stress = —ngqtoil:lz == 17 tons per sq. in.

(b) Ultimate stress = I_V__IiagglmUITLLc)gid_qgﬂg test
¢ Original area of specimen

_ 1270 tons _ 29 tons per sq. in
T 44 sq.ins. T 9 per sq.in.
. _ Elongation
(c) Percentage elongation at fracture Gange length X 100
_ (1008 — 8)" 2-08"
8" X 100 =" g, X 100 = 26.

(d) Percentage contraction in area at fracture
__ Contraction in area
Original area

*52? . .
Area at fracture = " ><4 5 sq. ins. = -2I sq. ins.

X I00.

-. Contraction in area = (44 — 2I) sq. ins, = +23 sq. ins.
*23 sq. ins.

Percentage contraction = .
*44 sq. ins.

X 100 = 52°2,
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Results for (b) and (c¢) are within the limits of the B.S.S.
requirements, hence the steel would pass the tensile test. v
(2) For the specimen given in the last example, evaluate the
maximum and minimum test loads, respectively, which would
have been permissible for the specimen to pass the B.S.S. test.
Also determine the minimum elongation on 8" gauge length.
Sectional area of specimen = -44 sq. ins.
.. Maximum test load = 33 tons per sq. in. X ‘44 sq. ins.
= 1452 tons.
Minimum test load = 28 tons per sq. in. X 44 sq. ins.
= 12-32 tons.
Minimum elongation= 209, of 8" = 16 ins.

High Tensile Structural Steel

B.S.S. No. 548-1934 defines the procedure to be adopted in
testing this type of steel, and should be consulted for detailed
information. It follows, generally, the lines of B.S.S. No.
15-1936, but the test results required are, of course, different.
The limits ‘37’ to ‘43’ tons per sq. in. appear in place of
28-33 tons per sq. in. A minimum ‘ yield point ’ stress is given
in the tensile test, the value depending upon the thickness of
material in the test specimen. For example, in the case of
plates and sections from }” to 1}” in thickness, the minimum
yield point stress allowed is 23 tons per sq. in.  This is also
the figure given for round and square bars up to 1” diameter,
or side, respectively.

A cold bend test is specified, as in B.S.S. No. 15. In the case
of B.S.S. No. 548, such test applies also to rivet bars, which are
exempt from this form of test in the former specification.

Factor of Safety and Working Stress

It will be clear that the stress to be used in the actual
dimensioning of structural members will have to be somewhat
less than the corresponding ultimate stress for the material.
Some of the principles governing the suitable margin of safety
to be allowed, in any particular case, are indicated later. The
.stress used in practical design is termed the safe working stress
or simply working stress, This stress value is obtained from the
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appropriate ultimate stress by dividing it by a selected number,
known as the factor of safety.
. Ultimate stress
Working stress = Factor of safely’

Thus if we take 32 tons per sq. in. as the ultimate stress for
structural steel and adopt a factor of safety of 4, the working
stress will be

Ultimate stress 32 tons per sq. in.
Factor of safety 4

Choice of a Factor of Safety.—The value of the factor of
safety will be influenced by such considerations as the following:

(1) The ultimate stress of a material is not really the best
stress upon which to base a working stress value. The limit
of useful stress is given by the elastic limit stress. Formule and
methods of design are definitely based on the assumption of
Hooke’s elastic law. In the case of structural steel, this fact
alone requires a factor of safety of about ‘ 2.’

(i) Materials such as timber and cast iron are not so reliable
as steel, and are less likely to exhibit, throughout any consider-
able quantity, the standard of quality represented by the
tested specimens. I‘rom this point of view, therefore, some
materials will require a higher factor of safety than others.

(ii1) Structural members may be temporarily overloaded dur-
ing abnormal conditions. The margin of safe stressis useful then.

(iv) It is not always possible to calculate the actual load a
member will have to carry. The load application may be of a
doubtful character, and, possibly, the theoretical principles
involved be based on assumptions not wholly justifiable.

(v) Design calculations are made on the basis of a high
standard of workmanship in the fabrication of the members.
Also (as in the case of reinforced concrete) it is assumed that the
details given on the working drawings will be strictly adhered
to, in the assembly of the members. The factor of safety
makes some allowance for the human element in this respect.

Working Stresses.—Ior dead loading (i.e. loading applied
steadily and not intermittently) the factor of safety for
structural steel is 4. A higher factor is required for lve load
and in special circumstances, as in the design of long columns.

= 8 tons per sq. in.
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However, the designer has little to do with the factor of safety
itself, but is supplied with a list of working stresses directly.
Various lists of working stresses are issued, the most important
being those of the British Standards Institution, the London
County Council and the Institution of Structural Engineers.

B.S.S. No. 449-1937 is concerned with the use of structural
steel in building and the reader is strongly advised to make
himself acquainted with its contents. With the permission of
the British Standards Institution, extracts will be given, where
appropriate, from this specification.

The London Building Act, 1930, Third Schedule, contaius
clauses dealing with the working stresses to be used in con-
structional work carried out in the area under L.C.C. juris-
diction. The present working stresses for steelwork are given
in the London County Council By-laws (1938).

The Institution of Structural Engineers issues reports from
time to time, as the results of research work, carried out under
its promotion, become established.

B.S.S. No. 449 (Clause 10) gives the following working stresses
for Mild Steel B.S.S. No. 15. This steel must be made by the
Open Hearth Process (Acid or Basic),* and must not show on
analysis more than -06 per cent. of Sulphur, or of Phosphorus.
The stress values in the specification are accompanied by cer-
tain provisos, which will be referred to in the practical use of the
stresses later. The L.C.C. By-laws (clause 81) give the same
values as the B.S.S. as far as this list of working stresses is
concerned. For the corresponding values of working stresses
for High Tensile Steel B.S.S. No. 548 the reader should refer to
B.S.S. No. 449-1937.

TONS PER

" (@) For Parts in Tension 5Q. INCH
On the mett section for axial stress or extreme fibre

stress of all beams . 8

On the nett section of rwets Sfor axzal stress n the case of

‘rivets driven at the Works where the steelwork is fabricated . 5
On the nett section of rivets for axial stress in the case of

rivets driven at the site . . . . 4
On the nett section of bolts for axml stress . . 5

* B.S.S. No. 15-1936 permits Acid Bessemer Process.
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. TONS PER
(b) For Compression Flanges of Beams SQ. INCH

On the gross section for extreme fibre stress of beams
embedded in a concrete floor or otherwise laterally secured . 8

On the gross section for extreme fibre stress of uncased
beams where the laterally unsupported length L is less
than twenty times the width b of the compression flange . 8

On the gross section for extreme fibve stress of uncased
beams where L is greater than twenty times b

L
110 - 015 7

(In no case may the ratio é’ exceed 50.)

(c) For Parts in Shear

On the gross section of webs 5
On shop rivets and tight-fi ttmg turned bolts 6
On field rivets . . 5
On black bolts . 4

(The strength of rivets and bolts m double shear may be
taken as twice that for single shear.)

(d) For Parts in Bearing

On shop rivets and tight-fitting turned bolts . . .12
On field rivets . . . . . . . . Io
On black bolts . . . . . . . . 8

The stresses to be used in the design of grillage beams, filler
floor beams, and in columns, will be described in the following
chapters.

ExXAMPLES

(x) Taking the ultimate stress for mild steel as 30 tons per
sq. in. and adopting a factor of safety of 4, calculate the safe axial
load for a mild steel tie-bar, 4" X §".
Ultimate stress
Factor of safety

— 30 tons ier S M 7% tons per sq. in.
Sectional area of tie-bar = 4" X §" = 2-5 sq. ins.
*. Safe axial load = (25 X 7°5) tons = 1875 tons.

Working stress =
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(2) A tie-bar, 2" X §" section, is used in a structure to carry
5625 tons. In a test on the same quality steel, the maximum
load carried was 13-64 tons, the test specimen having a sectional
area of -44 sq. ins. Find the factor of safety used in the design.

Ultimate stress for the steel = Maxgggm load _ 1364 t-?'? S

Sectional are ‘44 sq. inis.
= 3I tons per sq. in.
5:625 tons _ 7-5 tons per

Actual working stress = (2 X §)sq.ins. ~  sq.in.
Ultimate stress
Factor of safety used = W orking stress
I tons per sq. in.
. 3 A p q = 4'13.

" 7+5 tons per sq. in.
(3) Find the safe shear load for one 3" diameter vivet, assuming
the shearing tendency to be across one section of the rivet, and the
rivet to have been put in position in the * shop.’
From the table of working stresses given, we find that the
stress in such a case can be taken as 6 tons per sq. in.
nd? _ ® X -75°
=
= *442 sq. ins.
.. Safe shear load = (-442 X 6) tons
= 265 tons.
(Tables of rivet and bolt strengths, for various working
stresses, are given in Chapter IV.)
(4) Calculate the safe load, from the point of view of shear i
the bolts, for the cleat connection given in Fig. 16.

Sectional area of rivet = sq. ins.

'
778775, 4

Use a workueg 5 sbress of
O bons per sp.crch forbhe bolés

ANGLE CLERT CONNECTION FOR

BEAM TO BEAM
FiG. 16,
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Sectional area of one " diameter bolt = -6013 sq. ins.
Working stress for bolts = 6 tons per sq. in.

.-. Safe load per bolt = (6 X -6013) = 3:6078 tons.

.. Safe load for 6 bolts = 2165 tons.

The following B.S.S. are referred to in this chapter:
No. 15-1936, No. 548-1934, No. 449-1937. The extracts have
been made by permission of the British Standards Institution,
28 Victoria Street, London, S.W.1 (see Appendix I), from whom
official copies of the specifications may be obtained, price
2s. 2d. each, post free.

IEXERCISES 2

(1) Express the relationship between the following three
quantities : ultimate stress, working stress and factor of safety.
Assuming a working stress of 8 tons per sq. in. to represent a
factor of safety of 4, obtain the ultimate stress. What would
be the working stress in this case for a factor of safety of 5 ?

(2) Work out a complete set of test results for the following
steel test, and show that the steel would satisfy the require-
ments of B.S.S. No. 15.

Diameter of specimen (round) == -74"
Gauge length = 8"

Load at yield point = 7-25 tons
Maximum load = 1254 tons

Gauge length (after fracture) = 103"
Diameter at fracture 50"

(3) A specimen of mild steel gave the following calculated
results in a tensile test: Y.P. stress = 18 tons per sq. in.;
ultimate stress = 30 tons per sq. in.; percentage elongation at
fracture (on 8” gauge length) = 28; percentage reduction in
area at fracture = 58. The original sectional area of specimen
being 56 sq. ins., evaluate the experimental results obtained in
the test.

(4) A piece of mild steel of rectangular section, 2" X §7,
fractured at a maximum tensile load of 40 tons. Using a factor
of safety of 4, determine the safe working stress and hence find

fl
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the necessary thickness for a tie-bar of the same quality steel,
3” wide, to carry safely an axial pull of 18 tons.

(5) A flat bar, 1-5 sq. in. in sectional area, has two bolt holes
drilled in it 12 ft. apart. Assuming that the load in the bar,
when in position in a structure, is 19,530 lb., and that E
for the material of the bar is 30,000,000 lb. per sq. in., show
that the bolt holes will be y',” out of true with bolts spaced at
12’ centres.

(6) A specimen of rivet steel, -4 sq. in. in section, sheared in a
test at a load of 10'8 tons. Adopting a factor of safety of 5,
obtain the safe shear load for four §" diameter rivets which are
resisting shear, as indicated in Fig. 5, Chapter I.

(7) Inatensile test, a specimen of steel ot rectangular section,
2" X $", broke at a maximum load of 48 tons. A tie-bar of the
same quality steel, and having a rectangular section 4" x 3", is
used to carry an axial load of 20 tons. What factor of safety
does this represent ?

(8) By an error in printing, the following was given as a
problem in ‘ elasticity " :

Sectional area of mild steel tensile

member = -5 $q. ins.
Length before application of load = 10"
Load applied = 125 tons
E for material = 13,00 tons per sq. in.

Calculate the extension in length produced.
Explain why this problem is not capable of soldtion. Sub-
stitute a possible correct set of values,
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CHAPTER 1II

FABRICATION OF STEELWORK

British Standard Sections

CONSTRUCTIONAL steelwork is built up, or fabricated, from
units of standardised shape and dimensions. The British
Standards Institution issue B.S.S. for the various sections
employed. B.S.S. No. 4-1932 is the revised standard specifica-
tion for the dimensions and properties of British Standard
Channels and Beawms for Structural Purposes. B.S.S. No. 4A-
1934 gives similar details for British Standard Equal Amgles,
Unequal Angles and T-bars for Structural Purposes.

The various sections are produced from white-hot steel
ingots by passing them through rolls in a rolling mill. The
photograph facing this page shows the soft-steel slab
ready to be drawn through the rolls, just like a garment in the
ordinary domestic mangle. The mill shown in the foreground
is the finishing mill, and it has reduced the steel to the form of a
plate. The rolls have grooves cut in them when the sections

J"Hﬂ”",” R _ ﬂ“'—-ﬂ ,;.
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F16. 18.—FoRrRMS OF ROLLS USED IN THE ROLLING OF STEEL SECTIONS.
Reproduced by permission and courtesy of Messrs. K. A. Skelton & Co., Lid.

rolled are of the flanged type. Fig. 18 gives the types of rolls
used for the various steel sections used in structural work.
The diagrams show the rolls used for (i) plates and sheets ;
(ii) squares and rounds; (iii) flats, angles, etc.; (iv) flanged
sections.

The term rolled steel section is applied to constructional units
manufactured in the manner indicated, and the section in the
form of the letter I is commonly called a rolled steel joist
(R.S.J.). Some steel firms roll special sections which are not

29
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“ British Standard,’” in addition to the range of British Standard
sections. It is customary to denote the latter by prefixing the
letters B.S. Thus B.S.E.A. will mean British Standard Equal
Angle and B.S.B. will indicate British Standard Beam. It is
possible with most sections to slightly increase the thickness of
certain parts by spacing the rolls farther apart. B.S.S. Nos.
4 and 4A give the section properties corresponding to various
thicknesses thus obtained.
+~ Choice of Sections.-—In the practical choice of a section for
a particular job in a structure, several factors have to be con-
sidered, irrespective of the question of strength suitability.
The section chosen should be one which does not require the
steelmaker to change the rolls in his rolling mill, as this is
an expensive operation. The section should therefore be a
standard one, and, not only so, it should be one fairly frequently
rolled. Steelmakers indicate in their lists those sections which
are most readily obtainable. They also issue lists of extras
which have to be paid, for sizes and weights which are outside
certain limits in the case of any particular section.

It is not possible, owing to the high temperature of the
sections when dealt with—and the usual mode of cutting—to
obtain the exact dimensions and weights which might be
specified in an order. The reader is referred to B.S.S. No. 15
for full details of the maximum allowable variations. Tor
bars and sections to be cut to specified lengths, the margin is
one inch, under or over, with a two-inch margin over, when the
length specified is a minimum. When exact lengths are specified,
the sections are to be cold-sawn or machined to one-eighth of an
inch, over or under. An exfra has to be paid for cutting to
exact lengths. The tolerance for weights of flat bars or
sections (not stated to be either a maximum or a minimum) is
239%,, over or under the specified weight. The same rolling
margin’ applies to plates over }” thick, and round and square
bars over 3" in diameter or thickness.

Commercial Data

The authors are indebted to the British Standards Institution
for permission to reproduce details respecting the profiles of
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the B.S. sections. Messrs. R. A. Skelton & Co., Steel and
Engineering, Ltd., have very kindly assisted in the com-
pilation of the commercial data given, and readers interested
in this important side of practical design are recommended to
obtain Handbook No. 19, issued by this firm. It should be
remembered that commercial data is subject to possible
variation from time to time.

British Standard Beam (B.S.B.).—It will be observed, from an
inspection of the profile given in Fig. 19, that the flange thick-
ness is measured at a point half-way between the extreme edge
of the flange and the nearer side of the web.
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F1G6. 19.—BRITISH STANDARD BEAM SECTION.

In naming a beam section. the depth is given first. Thus a
5" X 43" X 20 1b. B.S.B. is a British Standard Beam, having
5" overall depth, 43" width of flange and a weight of 20 lb. per
foot of length. The smallest B.S.B. is a 3" X 13" X 4 lb.
section, and the largest, 24" X 73" x 95 lb. It is possible,
in a few cases, to obtain two B.S.B.s, having the same overall
dimensions, but different weights per foot (and different section
properties) owing to differences in respective flange and web
thicknesses. When ordering it is usual to specify the depth,
flange width and weight per foot. Thicknesses cannot be
ordered together with the weight per foot. Some firms roll
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beam sections with specially wide flanges. The Broad Flange
Beams, Grey Process, manufactured by Messrs. R. A. Skelton,
are referred to later.

Stock Sizes and ‘ Extra’ Sizes of Beams.—Sections
5" X 3" X 11 lb. and up are usually stocked by steel firms in
even lengths up to 40’. Smaller sizes up to about 36’. ‘ Extras’
are charged for beams less than 5” X 3" or greater than 16” x 6"
and for a few intermediate sizes. Extras are also listed for
lengths exceeding 50’ or under 10’
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F1G. 20.—DBRITISH STANDARD EQUAL ANGLE AND UNEQUAL ANGLE SECTIONS,

British Standard Equal Angles (B.S.E.A.) and Unequal
Angles (B.S.U.A.).—As indicated in diagrams (Fig. 20), an
equal angle means one with equal legs, and an unequal
angle one in which the legs are of unequal length. An
angle section is named by giving the two leg lengths and
the thickness thus: 4” X 4” X 3" or5” x 3" X §”. Theangle
between the legs is 9o°, though a variation from 89° to g1°
is accepted. It is possible to obtain rolled angle sections with
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acute angles of about 45° upwards, and obtuse angles up to
135°, but these are not often rolled.

The smallest B.S.E.A. is 1”7 X 1” X }" and the largest
8” x 8" x §". B.S.U.Asarerolled assmallas2” x 13" X %"
and as large as 8" x 6" x " or 9" X 4" X §".

Stock Sizes and ‘Extra’ Sizes of Angles—Angle sections
234" X 24" and larger are usually stocked in even lengths up to
about 36’ or 40’. Smaller sections are in stock up to 18’ long.

Angles between 6” and 12" combined leg lengths, by §”
thickness and upwards, are charged at basts price. Extras are
charged when the united leg lengths are outside the stated
limits. Angles less than " thick are subject to an extra.
The maximum and minimum lengths, without extras, are 60’
and 10’ respectively. %
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1. 21.—BRITISH STANDARD T-SECTION.

British Standard T-Bars (B.S.T.).—In naming a-Tesection-the—
flange dimension is given first. Thus a 6" x 3" X 4" T-bar
would indicate a flange width (B) of 6", a web depth (including
flange thickness) of 3” (A) and a thicknessof 4”. The thickness
of the flange must be measured at a point half-way between the
extreme edge of the flange and the nearer side of the web,
and the web thickness is measured half-way between the
extreme edge of web and the farther side of the flange. As
indicated in the diagram (Fig. 21) the flange and web have a
taper of §°. B.S.T.s range from 13" X 13" X }"t0 6" X 6" x §".
Special Tees can be obtained with the flange thickness different
from that of the web, but only in considerable quantities of a
size.

Stock Sizes and * Extra’ Sizes of Tees.—Tees 3" X 3* and

R
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larger are stocked in lengths up to 36’, smaller sizes up to about
20’,

Tees having the sum of their overall dimensions from
6" to 12", and thickness §” and upwards, are charged an extra
over the ‘ angle ’ basis price. A further extra is charged if the
‘ united inches’ is less than 6”, or over 12”. Thicknesses less
than %", and lengths over and under 60’ and 10’ respectively,
lead to extra charges.

British Standard Channels (B.S.C.).—The profile given
Fig. 22 indicates that the flanges have a taper of 5°. Standard
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Fi1Gc. 22.—BRrITISH STANDARD CHANNEL SECTION.

flange thickness is measured half-way between the extreme
edge of flange and nearer side of web. In describing a channel,
the web depth is given first, then the flange width and weight
per foot. A 7" X 3" X 14-22 lb. B.S.C. would therefore be
7" deep overall, with a flange width of 3", and weight per foot
of 14-22 lb.

The smallest B.S.C. is 3" X 13" X 4-60 lb. and the largest
17" X 4" X 51-28 1b.

Stock Sizes and ‘Extra’ Sizes of Channels.—B.S.C.s are
usually in stock from 5" x 24" and up, in even lengths up to
36’ ; sections under 5" depth, up to 20’ or 30'.
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Channels 6" to 12" deep, 3" flange width and under, having
a %" web thickness and over, are charged an extra on the angle
basis price. If the depth is under 6, or over 12", an additional
extra is levied, also for thicknesses less than %”. The maxi-
mum and minimum lengths are respectively 60’ and 10’, for
no extra.

Plates.—The thinnest plate rolled in an ordinary plate mill
is a }” plate. Thinner plates than these are usually termed
sheets. 'The maximum thickness is 2”, without special arrange-
ments being made. Plates are rolled to a maximum area, the
area depending on the plate thickness. Corresponding to each
thickness there is also a maximum length and a maximum
width. Both the maxima cannot be obtained together, so
that the maximum width for any given thickness equals the
listed maximum area divided by the length required. For
example, a §” plate has a maximum length of 55" and a maxi-
mum width of 110", but a maximum area of only 250 sq. ft.
A 3" plate has a maximum length of 60’, maximum width of
156" and a maximum area of 320 sq. ft. Intermediate thick-
nesses will have correspondingly intermediate values to those
given.

Stock Sizes and Extra Sizes.—3" to }” plates are usually in
stock in various sizes up to 6’ wide by 30’ 6” long. Maximum
stock thickness is usually about 1}”, with a width of 4’ and
length of 8’. Plates having thicknesses from §” to 14" are
charged the basis price, those with thicknesses outside these
limits have extras. The width to be obtained without extra
depends on the plate thickness. TFor }” plate, maximum width
= 66" ; for " and up, the maximum width = 96”. Long thin
plates and narrow plates are subject to extras. Plates weigh-
ing more than 4 tons each, or under 4 sq. ft. in area, are rated
above the basis price.

Flats.—An inspection of the diagrams, indicating the forms
of rolls employed (Fig. 18), will show the difference between the
methods employed in rolling plates and flats respectively. In
the case of flats, it will be seen that the rolls bear on the edges,
and thus have a control on the width. There is a special type
of flat known as a universal plate or wide flat. For long and
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narrow details, as in plate girder work, flats are superior to
plates. Ordinary flats are obtainable up to a width of 20}”,
which size has a minimum thickness of %" and a maximum
of §".

Stock Sizes and Extra Sizes.—The largest usual stock size is
18" wide, with a thickness from }” to §”. Widths under 6"
are usually stocked up to 18’, and from 30’ to 40’ for greater
widths. Minimum stock width is 4", with a thickness %" to 3”.
Universal plates can be obtained from about 6" width to
47" width, but the usual stock limits are 14" width (thickness
$"-%”, maximum length go’) and 36” width (thickness }{"-}”,
maximum length 115°). Flats over 5” width or }" thickness are
charged an extra over the angle basis price, and there is a
special rate for 5” width and under. ILengths exceeding 40’
are subject to an extra.

Rounds and Squares.—Rounds are rolled from %" diameter
to 12" diameter. The stock lengths are up to 14’ for §” dia-
meter and under, up to 24’ for diameters over ". 3" to 53"
represents basis price for 3" and up, extras are charged for
greater diameters. Squares are rolled in sizes from ;" side to
8” side. Stock lengths and extras are as for rounds.

Special Forms of Beams.—An important example of a beam
section which is not included in the British Standard lists is
the broad flange beam. Messrs. R. A. Skelton roll such beams
and their Handbook No. 21A gives full particulars of Broad
Flange Beams, Grey Process. By the courtesy of Messrs.
Skelton a table of section properties of a selection of these
beams is given on pages 108 to III.

Broad flange beams have certain special advantages. They
possess the carrying capacity of built-up girders without the
disability of riveting. The broad flange provides a suitable
wide bearing for walls. A pair of ordinary rolled steel joists
of given depth may often, with advantage, be replaced by one
single broad flange beam of the same depth. The Grey
Process rolls the metal on all faces. Fig. 23 (reproduced by
permission from Handbook No. 21A referred to) shows the
stages in the production of a ‘ Broad Flange Beam, Grey Pro-
cess.” There are three stages, viz. (2) rolling the ingot in an



FABRICATION OF STEELWORK 37

ordinary Blooming Mill into the bloom shape shown in first
diagram, (b) passing the bloom through a mill with rolls as
shown in second diagram, (c¢) finishing off in the Finishing Mill,
with rolls as illustrated in the third and fourth diagrams. (The
last process involves two sets of rolls which are placed close
together in the mill.)

THE GREY PROCESS.

|
TTENE A

F1G. 23.—RoOLLING BroaD FLANGE BEAMS, GREY PROCESS.
Reproduced by permission and courtesy of Messrs. R. A. Skelton & Co., Ltd,

Rivets and Bolts

The plates and sections used in steelwork construction are
usually connected together by riveting, or bolting. The
welding of structural steelwork is gradually becoming accepted
as a standard constructional process, and recognition, in the
form of a British Standard Specification (B.S.S. No. 538-1940),
has given the science a definite place in the technique of steel
construction. The metal arc welding of structural members
is dealt with in Chapter XIV.

Riveting and bolting form the subject of a number of clauses
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in B.S.S. No. 449 and in the various London Building Act
regulations. The London Building Act requires rivets to be
used where reasonably practicable. If bolts are used, they
must extend through the full thickness of the nuts—which
themselves must be secured against the possibility of working
loose. The B.S.S.and L.C.C. By-laws (No. 74) require as much
as possible of the fabrication to be completed in the works with
the use of rivets, or turned bolts of driving fit. Black bolts
(i.e. bolts as manufactured, and not turned down to precise
size) may be used in the circumstances noted later.
Rivets.—The type of steel used in the manufacture of rivets
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¥1G. 24.—ForMs AND PROPORTIONS OF RIVET HEADs.

is that described on page 20, Chapter II. The usual form of
rivet head employed in structural steelwork is the snap head
(Fig. 24). Snap heads and pan heads form a projection beyond
the plate face, and where this is an objection—as in bearings,
where continuity of contact between plate and plate, or
between plate and masonry, is necessary—a countersunk head is
employed. Occasionally snap heads are flattened a little to
provide clearance.

"~ B.S.S. No. 153-1933, Part 2, deals with the requirements of
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Fi1G. 25.—HyYDRAULIC RIVETING.

(Rivet head about to be formed.)
Reproduced by permission and courtesy of Messrs. Dawnays Lid.
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good riveting. It states that rivet holes should preferably be
drilled through the solid metal. In cases where a compound
girder or plate girder is built up of several plates and sections
the parts should be firmly clamped, or tacked together, with
temporary bolts, and the holes drilled through in one operation.
This procedure ensures correct alignment of holes. Any burrs
formed around the holes by drilling should be removed, and the
parts re-bolted together in preparation for final riveting-up.
The practice of driving in drifts (slightly tapered round bars of
iron), in order to effect alignment of holes, is forbidden by the
B.S.S., but drifts may be used to position the various parts
together.

Methods of Riveting.—The rivet, having been rendered soft
by heating, is placed in the rivet hole prepared and closed,
i.e. the second head is formed. The contraction in length on
cooling tends to draw the parts connected closer together.
The closing of the rivet may be effected in several ways, but
the B.S.S. recommends some form of machine riveting, pre-
ferably of the pressure type. In the hydraulic riveter (Fig. 25)
water pressure is utilised to force a die on to the soft rivet
shank, while the other end of the rivet is held firmly by a
stationary die. The water, in some forms of pressure riveters,
is replaced by compressed air. Such machines are used in
fabrication shops and are suitably installed for rapidly dealing
with the various riveting operations which are carried out
there. The closing of the rivets by pressure leads to the best
results, as the rivet hole becomes compactly filled with the
metal. Site riveting, and some shop riveting, is carried out by
a pistol-shaped compressed-air machine known as the Pom-
pom or Pneumatic Hammer (Fig. 26). The head is formed
in this case hv a rapid succession of blows. The rivet is held
tightly in position by one of the riveters (usually known as the
‘ holder-up '), while the other man plays skilfully upon the pro-
jecting shank until he has formed—by repeated blows—the
necessary rivet head. This form of riveting gives rise to con-
siderable noise which resembles a machine gun in operation,
and in some cases, near hospitals, bolting has been resorted to
in order to obviate the nuisance. There is a risk of rivet heads
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being formed by the ‘ Pom-pom ’ without the holes being com-
pletely filled, and shop pressure riveting is to be preferred.

In order that the hot rivet shall easily be placed in position
in the rivet hole, it is necessary to make the diameter
of the hole bigger than the nominal rivet diameter. The
maximum clearance (i.e. difference in diameters) permitted by
B,8.S. is %".

_* Bolts and Nuts.—All bolts and nuts should be of mild steel
of the quality specified for round bars in B.S.S. No. 15. The
B.S.S. requires standard Whitworth threads, and the head and
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nut must be of hexagonal shape (Fig. 27). Tapered washers
must be provided for heads and nuts bearing on bevelled sur-
faces. Washers must be used with all ‘ turned ' bolts, the
washer under the nut being at least }” thick.

Two varieties of bolts are used : (i) turned and fitted bolts,
(ii) black bolts.

Turned bolts are carefully turned parallel throughout the
length of the barrel. The maximum clearance allowed in the
case of turned bolts is -0o1”. It will be observed, from the list
of working stresses given in Chapter 11, that a turned and fitted
bolt is regarded as being the equal of a shop rivet.



FABRICATION OF STEELWORK 41

‘ Black ’ bolts are not reduced to precise size, and the hole
diameter for such bolts can be made ,',” bigger than the nominal
bolt diameter. Black bolts are not therefore a tight fit in the
hole. The allowable shear stress is consequently not so high
as for rivets, or turned bolts. Black bolts are not permissible
for all purposes, even with the lower stress value. In shop
fabrication L.C.C. regs. permit the use of black bolts for the
end cleat connections of secondary floor beams. Such bolts
may be used on ‘ site * for roof-truss work and end connections
of secondary floor beams; also for some other field con-
nections, if the shear forces are otherwise resisted. Bolts,
turned and black, must have washers under the nuts of such
thickness that the thread is clear of the hole in the plate. The
shanks must also project at least one full thread beyond the
nuts.

The following B.S.S. are referred to in this chapter:
No. 4-1932, No. 4A-1934, No. 15-1936, No. 449-1937, No.
153-1933, No. 538-1940, No. 275-1927. The extracts have
been made by permission of the British Standards Institution,
28 Victoria Street, London, S.W.1 (see Appendix I), from
whom official copies of the specifications may be obtained,
price 2s. 2d. each, post free.

EXERCISES 3

(1) Give a few considerations which influence the choice of a
structural section, apart from the question of strength.

(2) What are the trade allowances for structural sections in
(@) length, and (b) weight ?

(3) Name the British Standard sections in common use.
Which dimension is given first in naming (a) a tee-bar, (b) a
beam ?

(4) Which of the standard sections have tapered flanges, and
which have not? Give the angle between the component
parts in each case, and state where the standard thicknesses are
measured.

(s5) Distinguish between a plate and a sheet, and between
a plate and a flat. Give the maximum thickness of plates
usually kept in stock.

s.s.—2"
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REDPATH, BROWN & CO., LIMITED

CONNECTIONS OF BEAMS TO STANCHIONS

ALL CLEATS BOLTED TO

BEAM AND STANCHION

EXCEPT SEAT ANGLES TO
STANCHIONS

PLATE GIRDERS, END
ANGLES AND STIFFENERS

Prate 11(a)
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REDPATH, BROWN & CO., LIMITED

PILLAR JOINTS AT FLOORS: NO BENDING
UNPLATED JOIST STANCHIONS

PLATED JOIST STANCHIONS
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Plates 11(a) and 11(b) reproduced by permsission and courtesy of Messrs. Redpath, Brown & Co., Lid.




44 STRUCTURAL STEELWORK

(6) Name and sketch the forms of rivet heads generally
adopted in structural steelwork. Indicate the most commonly
used of these forms and give, for this head, the proportions laid
down in the B.S.S.

(7) Distinguish between  black bolts* and  turned bolts.’
Give any L.C.C. regulations you know which affect the use of
these bolts.

(8) Give values of working stresses in shear which exemplify
the superiority of (a) turned bolts over black bolts, (b) hydraulic
shop riveting over field riveting with the pneumatic hammer.



CHAPTER 1V

PRACTICAL DESIGN OF RIVETED AND BOLTED
CONNECTIONS

Introduction.—The general principles of design are the same
whether the connecting together of the units of steelwork is
effected by riveting or by bolting. The working stresses for
rivets driven at the works and for tight-fitting bolts being the
same, their respective use becomes largely a matter of practical
convenience. The lower working stress for site-driven or field
rivets has already been referred to, and black bolts have a
limited application (by regulations) even with their reduced
working stress. In the normal steelwork connection a rivet or
bolt is called upon to resist ‘ shear ’ and bearing stresses only.
Rivets and bolts may, however, under certain conditions, be
designed to resist tension. In the connections dealt with in
this chapter the rivets or bolts are not intentionally subjected
to tension. The line diagrams given on Plates (@) and (5) (kindly
supplied by Messrs. Redpath, Brown & Co., Ltd.) illustrate
a number of types of structural steelwork connections, in which
bolts and rivets of various forms are used. The conventional
methods adopted to indicate these forms should be carefully
noted, particularly those where countersinking is necessary
(denoted by asterisk).

Strength of One Rivet (or Bolt)

(1) Shear Strength.—According to the type of a given joint,
the connecting rivets may be subjected to simgle shear or to
double shear. Fig. 28 illustrates these two shearing tendencies.

“In single shear the shearing action is across one cross-sectional
plane of the rivet. In double shear two such cross-sectional
areas are involved.

If 4" = diameter of rivet, the area of metal provided in one

2 .
cross-sectional area = nj sq.ins. Using the symbol f, for the

45
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working stress in shear (in tons per sq. in.) for the rivet material,
the formula for the strength of one rivet in single shear be-

comes FZ’ f, tons.  The sectional area of metal provided being

twice as much, in the case of doublc shear, as that in the case of
single shear, the corresponding expression for the strength of

3 .
one rivet in double shear is zzd fs tons. The latter value is

T
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F1G. 28.—SINGLE SHEAR AND DOUBLE SHEAR IN A RIVET or BoLT.

-

-T

accepted by most steelwork regulations now (including L.C.C.
regs.), but the London Building Act 1930 gives the strength in
double shear as being only 1} times that in single shear.

(2) Bearing Strength.—If we walk on smooth sand the depth of
the impression left depends upon the type of shoe worn.
Flat-bottomed sand shoes, which provide a large bearing area,
would cause a shallow depression. but, if shoes with well-
defined heels be worn, the impression is much deeper. In the
latter case the intensity of bearing pressure is higher, owing to
the reduction in bearing area. In_the same way, the intensity
of bearing stress between a plate and a rivet—for a given
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applied force in the plate—becomes greater as the bearing area
between the two becomes less. With the usual plate thick-

nesses the bearing strength of a rivet is less than its strength
in double shear, but greater than that in single shear.

L

FF16. 29.—BEARING STRESS IN RIVET OR BoLT.

As shown in Fig. 29, the bearing area is taken as diameter of
rivet X plate thickness, i.e. d X t sq.ins. If f, tons per sq. in.
be the working stress in ‘ bearing’ for the rivets, the strength
of one rivet in bearing will be given by the formula ‘ dtf,” tons.
We have therefore the following three important formul :

Single shear (S.S.) strength of one rivet = ﬂ;lg f; tons.

8
Double shear (D.S.) w -_—2’;‘1 £

Bearing " woo = dtfy ”
The actual strength, or value, of one rivet in a joint will be the
lesser of its shear and bearing values.

The value of 4 in the formule above may be taken to be
the diameter of the finished rivet, i.e. the actual diameter of the
rivet hole.* Engineers often assume 4 to be the nominal rivet
diameter (the value taken throughout the calculations in sub-
sequent problems). In the case of countersunk rivets, one half
of the depth of the countersink must be omitted, in calculating
bearing area.

EXAMPLES
() Calculate the actual value or worth, in tons, of one rivet in
the following circumstances : Rivet diameter = 3", plate thickness
= }"; the rivets are in double shear and are works driven.
* Rivet hole diameter always, when calculating loss of plate area.
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The working stresses to be used in this case are f, = 6 tons
per sq. in. ; f, = I2 tons per sq. in.
D.S. value of one rivet = szjf.. = Z-Z-t:(‘%—)’ X 6 tons = 5+3 tons.
B.V. (bearing value) = dtf, = $ X } X 12 tons = 4-5 tons.
-. the actual value of one rivet (V) in this case = 4-5 tons.
(i) Find the maximum safe load, from the point of view of
rivet strength, for the joint given in Fig. 30.

16| <L Gusset 27
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Te-bar 76 Check
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In this case the rivets are in single shear and bearing in
3" plate (the thinner of the two plates concerned).

S.S. value of one rivet = - f = ’LX B X 6 tons
=1 84 tons.

B.V. of one rivet = dtf, = § X § X 12 tons
= 2-81 tons.

Actual value = 1-84 tons.
Rivet strength of joint = (4 x 1-84) tons
= 7-36 tons.

Table of Rivet and Bolt Strengths

The tables on pages 50 and 51 give the shearing and bearing
values for rivets and bolts, for the usual working stresses, and
for the plate thicknesses in common use. The figures shown in
italics will be found useful in allowing for loss of sectional area,
caused by rivet holes in tension members. The rivet hole is
assumed to be ;" greater in diameter than the nominal rivet
diameter. Readers will be able to check the rivet values already
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calculated, and those in subsequent examples, by reference to
these tables. The figure 8 tons/in.? at the head of the tables
refers to the tensile value of the steel for which the given rivet
stresses are suitable. A high tensile steel will require the rivet
material to exhibit higher working stresses in order to maintain
equivalent strength.

Rivet Diameter and Plate Thickness.—The choice of a suit-
able rivet diameter for a given structural connection involves
several factors, and it is not possible to lay down any hard and
fast rule. As far as possible rivet diameters are kept constant
throughout any particular built-up unit. For example, "
diameter rivets might be used solely throughout a plate
girder, and the rivet positions designed to maintain this uni-
formity. It is usual to select a rivet size with reference to the
plate thicknesses involved. A useful formula can be obtained
by equating the shear and bearing strengths of a rivet or bolt.

2

Zidftr—‘dtfn

Ld=2 b ing £ —
L d = anfx. Takmgfs_z,
d=1-31.

Thus for a §” plate, d would be 1-3 X §" = §". The size
of rivet to be used in standard cases of compound girders, etc.,
will be found tabulated in the section books issued by steel
firms. The diameters in common use in building work are
3”and §". Heavy engineering work requires 1" diameter rivets
sometimes.

Design of Riveting Detail

The positioning of rivets and rivet lines forms the subject of
a number of practical regulations and theoretical considera-
tions. The latter will be taken up later in the book, but it is
essential that the reader should early become familiar with the
requirements of standard regulations with respect to riveting.
B.S.S. 449 and the L C.C. regs. are in close agreement in regard
to the main essentials.
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FOR BOLTS & RIVETS

one hole {y inch larger in diameter than bolt or rivet.

SHEARING & BEARING VALUES

Figures 1n italic type represent the arca to be deducted from any dar for

Tons [inch?

Bearing Values @ 12 tons/ inch?

Dia of Area Shearing Value
Rolt in @ 6 tons/inch? Thickness in inches of plate passed through
or square
Rivet inches Single | Double
ininches| Shear | Shear AR AR SR SR AR SRNE SR i
i 01104 0-66 133 |113{141|169
109 137 | 164
) 01963 118 2:36 |150|188|225263|3.00
141|176 | -211 | -248 | -281
M3 0-3068 184 368 [188|2341281|328]|375|422
172|215 | -258 | -301 | -344 | -387
i 04418 2:65 530 {2:25)|2-81|338|394]4:50 506563619
203 | 254|305 | -355 | -406 | -457 | 508 | -559
i 06013 36l 722 |263]328|394|459)|525|591 656722788
-234 | 293 | -352 | 410 | -469 | -527 | -586 | -645 | -703
1 07854 471 942 |300|3-75|450|525(6:00|6-75|7-50 | 825 | 9-00 |10 50
- 266 | -332 | -398 | -465 | -631 | -598 | 664 | 730 | 797 | -930
¢
Area Shearlng Value Bearing Values @ 10 tons/inch
Dia of in @ 5 tons/inch? ‘Thickness in inches of plate passed through
Rivet square
h S|
ininches{ inches sl:eg.l: ];t;:zlre 1 & i % 1 & § B 3 1
i 01104 055 110 |109%4(117 141
109 | -137 | -164
4 0-1963 0-98 196 (126|156(188{219|250
1411176 | -211 | -246 | -281
] 0 3068 153 307 [156(1:95(2:34 1293313352
172| -215 | -258 | -301 | -344 | -387
3 0-4418 221 442 1188234281 |328|375(422|469(516
-203 | -254 | -305 | -355 | -406 | -467 | -608 | -669
¥ 06013 301 601 |[219(2-73|328|3-83|4-38|4-92 | 547 (6:02 | 6:56
234 | 293 | -352 | -410 | -469 | -527 | -686 | -645 | -703
1 0-7854 3-93 78 [250]313|375]4-38|500]|563|625|688 750|875
-266 | -332 | -398 | -465 | -531 | -698 | -664 | -730 | -797 | -930
Tables reproduced by per and y
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SHEARING & BEARING VALUES
FOR BOLTS & RIVETS

Figures in {talic type represent the area to be deducted from any bar for
TOI\S/ inch? one hole Jy inch larger in diameter than bolt or rivet.

Val tons /inch?
Area Shearing Value Bearing Values @ 8 tons/in

Dia. of in @ 4 tons /inch? Thickness In inches of plate passed through
Boit square

ininches | fnches Single | Double

Shear | Shear % Ty i T L 5 t # £ ¥

$ 0-1104 044 088 |075|094]113
-109 | 137 | -164

% 01963 079 157 [100(125}150(1-75|2-00
141 176 | -211 | -246 | -281

i 03068 | 123 | 245 |1:25(156|1:88|2:19]250 281
172|215 | -258 | 301 | -344 | -387

1 0-4418 177 353 |160|1-88|2:25|2:63(3-00|3-38|375|413
203 | 254 | 305 | -355 | -406 | -457 | -508 | -559

¥ 0-6013 241 481 |175(219|2-63|306|350|3-94|4-38 | 481|525
-234 | 293 | -352 | -410 | -469 | -527 | -586 | -645 | -703

1 0-7854 314 6-28 |2-00|250|300(3-50 |400|4-50(5-00560|6-00|7-00
-266 | -332 | -398 | -465 | -531 | -598 | -664 | -730 | -797 | -930

Maximum working stresses on bolts and rivets as prescribed in the British Standard
Specification (No. 449—1937) for the Use of Structural Steel in Building, and in the London
County Council By-laws.. )

For parts in shear

Tons /Inch?
On shop rivets and tight fitting turned bolts . .. 6
On fleld rivets . . . .. . 5
On black bolts, where permissible . . 4

NOTE.—The strength of rivets and bolts in double shear may be taken as twice that for

single shear
For parts in bearing.
On shop rivets and tight fitting turned bolts . ¢ 12
On fleld rivets .. . . .. . . .. 10
On black bolts, where permissible .. . 8

of the British Steclwork Association.
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“Minimum Pitch of Rivets.— The distance between centres of
“vivets shall not be less than three times the diameter of the
rivet.

Maximum Pitch of Rivets.—The straight-line pitch_in_the
direction of stress in riveted girders, columns or other members shall
not exceed the following values :

For parts in tension, 16 times the thzckness__f the thmnest out-
side plate or angle with a maxzmmwjif”

For parts in compression, 16 times the thickness of the thinnest
outside plate or angle, with a maximum pitch of 6”.

L.C.C. regs. and B.S.S. give the following variations : Where
two rows of staggered rivets occur in one flange of a single angle
(as in 5" X 5" or 6" X 6"Ls) the straight-line pitch in the
direction of stress shall not exceed 1% times the above. This will
apply to angles in tension or compression. Tacking rivets, i.e.
rivets merely used for tacking flange plates together, and not
subjected to calculated stress (see Chapter IX) may be spaced
farther apart.

Applying these rules to a 2" diameter rivet, the minimum
pitch equals 3 X 2" = 24”. Similarly for a §” diameter rivet
the minimum pitch =3 X §" =2§". If a plated member
have an outside plate 3" thick, or an angle thickness 4", the
maximum pitch (for rivets in a single row in one angle flange)
in the case of the tension flange == 16 x }" = 8" (the maximum
allowed in any case). For the compression flange it would be
6" as this is less than 16 X 3”.

Edge Distance of Rivets.—L.C.C. By-laws give the mini- -
mum distance in the form of a rule: The distance from the edge
of a rivet hole or bolt hole to the edge of a plate, bar or member
shall not be less than the diameter of the rivet or bolf.  Allowing
the usual {%" clearance in rivet holes, the minimum distance of
rivet centre to plate edge is @” + % (2" + (") or, practically,
1} d"—a rule commonly quoted.*

Riveting for Built-up Girders.—The L.C.C. By-laws give a few
practical regulations respecting the edge distance of rivet lines
for flange plates. These regulations are important, as they
influence the choice of flange plate width in plated joists and

* Exactly 1} d” if d* = finished rivet diameter.
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girders. Fig. 31 shows two cases: (A) where one flange plate
is used, (B) where two or more flange plates are used.

The maximum distance x” permitted is measured in each
case from the centre line of the rivets—connecting the flange
plates to the web construction—which lie nearest the plate
edge. For a single plate the maximum distance is ‘ g times’
the plate thickness, and, for two or more plates, it is 12 times ’
the thickness of the thinnest outside plate.

E A

”

¢
4

Eceing e
Case A Sengle K.plale.
Case S 7wo or more plates.

I16. 31.—EDGE DISTANCE OF RIVETS.

—

If, in the case of two or more plates, the edge distance re-
ferred to exceed g times the thickness of thinnest outside
plate, tacking rivets must be employed to hold together the
plates between the edge of the main angles and the plate edge
The spacing of such rivets does not involve the type of calcula-
tion given later in the book for angle rivets, but their pitch must
not exceed 24 times the thickness of the thinnest outside plate
or 12", whichever is the lesser.

Principles of Design of Riveted and Bolted Joints

The principles of design will be illustrated by consideration
of some of the common forms of joints used in structural steel-
work. "

Joint in a Tie-bar.—The plates may be joined together in
one of the three ways illustrated in Fig. 32. The third method
shown is the best, as methods () and (b) have a tendency to
subject the rivets to tension.

In (a) and (b) the rivets are in single shear and bearing, and in
(¢) in double shear and bearing.

Tie-bar joints have to be designed to resist liability to failure
in the following ways :

(i) By the failure of the rivets—If n rivets be. provided
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altogether in a lap joint, or to each side of the butt in a butt
joint, and V tons be the value of one rivet, the rivet strength of
the joint will be #nV tons.

(ii) By the tearing of the tie-bar across a section weakened by
one or more rivet holes.

3 =TT 7
VY YW
‘I

4 .

o &
+ el e
@) Lap bl @WCOVB/’MMM\
zeadmg&c/eé

8 ) I

.ﬂ.‘/ap‘

© mme

F1G. 32.—FoRrMs OF JOINTS IN TENSION MEMBERS.

e

Consider section 1 in Fig. 33. The effective solid width
of the tie-bar = (x —d)". The net area of metal provided =
% — d)t sq. ins. If f; tons/in.? = the working tensile stress

K
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F16. 33.—DOUBLE-COVERED BuUTT JOINT IN TENSION MEMBER.

in the plate, the safe load for section 1 = (x — d)¢f; tons.
(Note the contracted form used for expressing the stress unit.)
Similarly the net sectional area of plate at section 2 is
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(x — 2d)t sq. ins., giving a strength—from the point of view of
tearing only—of (¥ — 2d)#f, tons. But the rivet situated at
section I acts as a peg and would have to be got rid of
before failure at section 2 could actually take place. The
actual strength at section 2 is therefore [(x — 2d)¢f; 4 V]
tons. In the same way the strength for section 3 would be
[(x — 2d)tf, + 3V] tons. The reason for the adoption of the
leading rivet form of rivet arrangement will now be apparent.
Where a serious deduction of metal is made by rivet holes—
as at section 2—compensation is afforded by the strength of
one rivet, so that one hole only is made without alternative
strength being supplied.

(i) By fatlure of the covers (tn a butt joint).—If the covers
failed at section 3 (see Fig. 33) the joint would fail without
any assistance from the rivets. The cover plate strength of
the joint illustrated is given, therefore, by the expression
[(x — 2d) x 2Tf] tons where T” is the thickness of one cover.
In a double-covered butt joint the thickness of each cover
should be about § x the plate thickness.

(iv) By the rivets being placed too near the edge of a plate.—The
tendency to split, or shear out, the intervening piece of metal
between the rivet and plate edge is guarded by the rules
already given for minimum edge distance.

EXAMPLE. A tie member in a frame has to transmit an axial
dead load of 32 tons. The plate thickness is to be §" and the rivet
diameter §". Design the general joint details and evaluate the
percentage efficiency of the commection. Working stresses f, =
6 tons/in.3, f, = 12 tons/in.?, f, = 8 tons[in.2.  The joint is to
be a double-covered butt joins.

zrdt, 2z X m X (§)

D.S. value of one rivet = 4 fo== " i X 6 tons
= 7+2 tons.
B.V. of one rivet = dif, = (§ X § X 12) tons = 656 tons.
.. V= 6-56 tons.
Number of rivets required each side of butt
32
T 656 >

The rivets are arranged as in Fig. 34.
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F1G. 34.—]JOINT IN THE MEMBER.

Width of tie.
Section 1. (x — d)if, = 32 tons.
Allowing 5" clearance for rivet hole,
( — -94)% X 8 = 32.
(x — -94) = 6°4.
x = 734", say 7}".
Section 2. (x — 2d)if, + V = 32.
(x — 1-88) X 8 + 6:56 = 32.
(x — 1-88) = -2-5—;—4 = 509.
x = 6-97".
Section 3 will be stronger than section 2.
-. necessary width of tie = 73".
Thickness of covers.
Section 3. (¥ — 2d)2Tf, = 32.
(7.5 — 1-88)2T X 8 = 32.
T=4%.
Practical rule: T =§t=§ X § = 3}", say §".
Efficiency of Joint.—The efficiency of a joint is the ratio of
its actual strength to the strength of the solid plate outside the
joint,
Strength of joint
‘Strength of solid plate

Percentage efficiency = X 100.

A low efficiency would mean that the stress in the tie-bar out-
side the joint was considerably below the economic working
value.  Taking the joint designed, the rivet strength is
5 X 6-56 tons = 328 tons. The tearing strength is governed
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by section 1 and equals (7:5 — -94) X § X 8 tons = 328
tons.

Cover-plate strength = (7-5 — 1-88) 2 X § X 8 tons =
3372 tons.

Actual safe load for joint = 32-8 tons, i.e. the smallest of its
various strengths.

Strength of solid plate outside joint = xtf, tons

= (74 X § X 8) tons = 37'5 tons.
% efficiency = g;g X 100 = 87-5.
Connection of Beam to Stanchion.—Fig. B, Plate I(a), showsa
~ typical connection of a beam to the flange of a stanchion. It
will be observed that the seating angle cleat is riveted to the
stanchion in the shop, and that site bolts or rivets effect the
remaining connection. The top cleat is useful for erection
purposes, but the additional strength it provides is not added
in, when computing the strength of the connection.

A similar type of connection, involving similar calculations,
is used to connect a beam to the web of a stanchion. When
sufficient rivets cannot be provided in a seating cleat, web
cleats are employed, as indicated in Fig. 35.
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Fi16. 35.—CoNNEcCTION OF BEAM To WEB OF STANCHION.
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Taking the example shown, we have the following strength
values :

Web cleat bolts. The bolts are in single shear and bearing
in either -4” plate thickness or §” (angle) thickness.

S.S. value of one §” diameter bolt = nd? fs
4

=(" j ¥ X 6) tons = 2-65 tons.
B.V. in -4" plate = dif, = (} X -4 X I2) tons
= 30 tons.

.. Value of one bolt = 2-65 tons.
For 8 bolts the safe load = 8 x 2-65 tons
= 21-2 tons.

Seating angle cleat rivets. The value of one rivet = 2-65
tons (as before).

Strength for 4 rivets = 4 X 2-65 tons = 10-6 tons.

Total safe load for the connection from the point of view of
the bolts and rivets (in bottom cleat) == (21-2 + 10-6) tons =
31-8 tons.

The riveting of a web cleat to the web of a beam requires
calculations of a special form, illustrated in Fig. 36.

Connection of Beam to Beam.—The end connections of beams
are usually of a standard design and the detail for any par-
ticular standard beam size will be found in the section books
issued by steel firms. With the beam size is given a minimum
span, so that the greatest load safely carried by the beam will
not result in a reaction at the end exceeding the safe strength
of the joint.

Fig. 37 gives a standard web cleat end connection for a
13" X 5" X 35 Ib. B.S.B. Before calculating the maximum
safe load for this connection, the effect of rotation on groups of
rivets will have to be considered.

. . Eccentric Loading of Rivet Groups.—The theory of eccen-
tricity of load application in members is considered in Chapter
XI. We may assume here that the eccentric load R tons in
Fig. 36 has two effects : (i) a tendency to push all the rivets in
a direction vertically upwards, and (ii) a rotary effect, tending
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to turn the rivet group round the centroid G of the rivets as
centre. The vertical load per rivet

_ _Rtons

" Number of rivets

= % tons, in the example given.

Let L tons be the load on rivet A due to the rotation effect.
Rivet B, not being so far from G, will have a smaller load—in
proportion to its distance. A list of loads may therefore be
compiled as follows :

Load on rivet A = L tons.

3 ) B=1L X 2t0n5.

w o » C=LXx gtons, and so on.
The moments of these loads about the centroid G will be
respectively (L X a) tons ins., (L X 2 X b> tons ins., etc.

The sum of all these moments must equal the applied turning
moment. '

be c?
~Rxe=La+L +L - etc
= Iz; (@® + b2 |- c* + etc.)

= ]‘; (& a?), where Za? (sigma a?) means the sum of

all such quantities as a2.

This equation enables L to be found, from which the load,
due to the turning moment, can be deduced for any other rivet.
The two loads,  direct * and that due to turning moment, for
any given rivet, are combined by the parallelogram of forces.

~ The resultant load must not exceed the safe load for the rivet,
from the point of view of bearing and shear.

ExampLE. Find, by means of the foregoing theoretical
principles, the safe load for the beam connection given in Fig. 37.

The eccentricity of loading is, in this case, the distance from
the web face of main beam to the centroid of the rivets con-
necting the angle cleat to the web of the secondary beam.
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¥16. 37.—WEB CLEAT END CONNECTION FOR BEAM.

Assume a load of 1 ton to be the reaction load applied to the
connection (Fig. 38). Direct load carried by one rivet =
I ton

4 A
of the rivet group = 1 ton X 33" = 3-375 tons ins.

Let L tons be the load on rivet A.

In the example @ = b = ¢ = d = V/1}? + 3? = 3-2".

= 25 tons. The turning moment about the centroid

R Xe= ];' (Za?).

L
3375 = 33 (4 X 3-2%) = 12-8L.
.~. L = -264 tons.

As a = b = ¢ = d the same load will be applied to each
rivet.

The maximum resultant load carried by any rivet in the
group = +42 tons.

The value of one rivet in the connection is the lesser of its
double shear value and bearing value in the thickness of the
secondary beam web, i.e. in -35” plate thickness.

D.S. value of one " shop rivet = 5-3 tons.

B.V.in :35" plate = } X :35" X 12 tons = 3-15 tons.

... V = 3-15 tons.

The reaction load transmitted to the connection can there-

fore be increased from 1 ton to 34125 tons = 7-5 tons, which is
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the safe maximum load for the connection on the basis of the
stated theory.

The connection must now be tested from the point of view
of the bolts in the web of the main beam.

g

Lccerisme Load = 7 Eon,

F16. 38.—R1vETs IN BEAM CONNECTION CARRYING ECCENTRIC ReactiON.
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There is a tendency for some bolts in such a connection to
have tensile stress developed in them, in addition to shear. A
good deal of experimental work is being carried out at the
present time on the end connections of beams. It is the
practice of some designers to calculate the strength of the
bolts on the basis of a low working stress in shear—about
4 tons per inch. Applying this to the given example, the safe

load per bolt = E;f: f: tons = r i:js X 4 tons = 1-76 tons.

For 6 bolts the safe reaction load would thus be 6 X 1-76
tons = 10-56 tons. This value more nearly agrees with the
strength of the connection, as given in ‘ section books,’ than the
value of 7-5 tons, obtained on the ‘ rotational ’ theory for the
rivets in the secondary beam web.

Top flange cleats are sometimes used, but, as in beam to
stanchion connections, no addition to strength is attributed to
these. Seating brackets are employed for heavy reaction
loads.

Fish-plated Beam Connections.—Two lengths of standard
beams, which are in alignment and butt together over a
support, are connected by fish-plates. The connections are
standardised and will be found in section books. A typical
fish-plated connection is given in Fig. I, Plate I(d).

There are a number of types of joints in steelwork con-
struction, other than those already dealt with. Stanchion
lengths are connected, flange and web joints have to be made in
plate girder construction, and so on. Such joints involve theory
not yet considered, and their design will be taken up in later
chapters.

EXERCISES 4

(x) Find the strength of one §” diameter rivet in single shear,
and one §" diameter rivet in double shear, using a working
stress in shear of 6 tons per sq. in.

(2) Calculate the value in tons of one rivet in the following
circumstances : Rivet diameter = §”; plate thickness = §”;
f« = 5 tons/in.?; f, = 10 tons/in.%. Rivet is in D.S.

s.5.—3
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(3) For the connection given in Fig. 39, calculate
(a) Safe load for section I.
B » . 2
(¢ , ., rivets,
Hence determine the safe value of L and the percentage
efficiency of the joint.
(f: = 6 tons/in.? ; f, = 12 tonsfin.? ; f; = 8 tons/in.%)
|

F16. 39.—CoNNECTION OF TIE-BAR TO FRAME.

(4) Obtain the safe maximum reaction load for the 15" X 6”
B.S.B. shown in Fig. 40. Use the working stress values.
appropriate to the case. Angle bracket thickness = }”.

~—1/2%8°8.5.8
54 /et
/4505 &s
%ISizop

55568, " Rovets

Mt R
Fi16. 40.—BEAM CONNECTION TO WEB OF STANCHION.
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(5) Two }" plates are to be connected by a double-covered
butt joint. The load to be transmitted through the con-
nection is 18 tons. The rivets are to be §” diameter in 13"
diameter holes. Taking the working stresses given in question
3 and adopting a leading rivet in the arrangement of rivets,
find the number of rivets required, the necessary width of the

H

A

N
| ) n4/2x8858
o grdT
\_,g—\“/‘Zaageé/z‘
= 8"~ = 904’

F1G. 41.—ECCENTRIC CONNECTION OF BEAM AND STANCHION.

plate, and a suitable cover thickness. Lvaluate the percentage
efficiency of the joint.

(6) Fig. 41 gives details of an eccentrically loaded con-
nection. Assuming the 9" X 4" B.S.B. to transmit a load of
6 tons to the seating angle cleat, find the maximum load carried
by one §" diameter rivet, and test for safety.



CHAPTER V
THEORY OF BEAM DESIGN

Bending Moment and Moment of Resistance

THE subject of beam design may be divided into two parts,
(i) the consideration of the effects which the external loads
carried have on beams and (ii) the design of beam sections, and
details, to resist these effects. The experimental model shown
in Fig. 42 illustrates the nature of the forces acting across a
vertical section of a loaded beam. The portion ABCD of an

2

Chaipg
lLa ,,gl

Mekal Bars
7T=Resllant pull
Che crracrs.

Lrv

C- ?&full‘azu" ElrusE
et bhe bars,

F1G. 42.—EXPERIMENTAL BEAM MODEL.

originally solid cantilever is assumed to have been cut off from
the remainder at a section AD, and to have been removed
to the position shown. In order to maintain this portion in
equilibrium, it is necessary to introduce at the face AD certain
forces, which in the model are supplied by. (i) the horizontal
pull in the chains, (ii) the horizontal thrust in the metal bars
and (iii) the vertical pull in the string. Removal of either of
these forces results in collapse of the cantilever, so that they

are independently necessary for equilibrium.
66
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Applying the laws of equilibrium to the detached portion
ABCD we get :

For horizontal equilibrium T = C
For vertical equilibrium S = W.

The forces T and C constitute a couple of anticlockwise
moment T (or C) X a. Similarly forces S and W form
a couple of clockwise moment W (or S) x {. These two
couples must have equal moment for equilibrium, therefore

T(orC) X a= W (orS) x [l

In a practical beam T represents the resultant of all
the little fibre pulls exerted across the section AD, by the beam
to the left of AD. C is, in the same way, the resultant force
of all the thrusts exerted on AD. The relative positions of
T and C are, of course, reversed in a simply supported beam.

W stands for the resultant vertical force (which may be
compounded of forces acting vertically upwards or downwards)
of all the forces acting to the right of the section AD. S
represents the resistance the beam section at AD offers to
vertical shear.

The moment, W x [, of the couple tending to bend the
beam is termed the bending moment at the section AD. The
moment, T (or C) X a, which resists the bendmg of the beam
is terrrmm.e of the section AD. ™~ -

When a beam has deflected to its position of equilibrium, the
bending moment at every beam section will be equalled by the
moment of resistance of the section. This is a very important
result, and will be often used in later chapters.

The force W tending to produce vertical sliding, or shear, at
AD is the shear force at the section.

We may now express these facts in the form of three im-
portant definitions, assuming the usual case of a horizontal
beam with vertical loads.

Bending Moment (B.M.).—The bending moment at any given
section of a beam is the resultant moment, about that section,
of all the external forces acting to one side of the section.

Shear Force (S.F.).—The shear force at any given section
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of a beam is the resultant vertical force of all the external
forces acting to one side of the section.

Moment of Resistance (M.R.).—The moment of resistance
of a beam section is the moment of the couple which is set up
at the section by the longitudinal forces created in the beam
by its deflection.

Bending Moment and Shear Force

When computing values of these quantities it should be
noted that :

(i) In finding B.M. values, it does not matter which side of
the given section is taken, but only one side must be con-
sidered.

(i) In finding S.F. values, the actual positions of the loads
do not matter, provided only those loads to one side of the
section be taken.

EXAMPLE. Determine the B.M. and S.F. values for the
section XX in the beam shown in Fig. 43.

4lbs 8lbs X requerect.

F1G6. 43.—BEAM WITH GENERAL I.OAD SYSTEM.

Resultant moment about section.
=[(4 X 10) + (8 X 4) — (3 X 5) — (6 X 13)]1b. ins.
= (40 + 32 — 15 — g) Ib. ins. = 48 1b. ins.

This is the value of the ‘ bending moment ' at the section.
It is a clockwise moment tending to bend the beam so that it is
concave upwards. The unit ‘1b. ins.’ is sometimes written
as ‘in. Ib.’

Resultant vertical load at section

=(4+8—3—6)1b.=31b.



THEORY OF BEAM DESIGN 69

This is the value of the shear force at the section, and the
tendency is for the left portion of the beam to move vertically
upwards, at section XX, with respect to the right portion.

It will be necessary to distinguish between bending moments
which, respectively, produce concave and convex bending in a
beam. Also the two possible types of shearing must be capable
of identification. Distinction is made in both cases by the
use of positive and negative symbols. The convention of

&7 Y&
o/ §! O
f gl \2
L\ 1
— ei J
i ~‘>’: 1
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F1G6. 44.—CONVENTION oF SIGNS FOR BENDING MOMENTS AND SHEAR FORCE.

signs adopted in the subsequent calculations is illustrated in
Fig. 44.

Certain standard cases of beams and loading will now be
considered.

(a) Cantilever with Single Concentrated Load W at the.
Free End

To the right of the given typical section XX, Fig. 45, there is

only one load, viz. W, and it is at a distance % from the section,
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The B.M. at the section is therefore Wx. We may write this
as follows: B.M., = Wx.

x w

4 |
.- £ 05
) Oregen
Tk
e — .
b
Wf B. Mornent
kR Dwagram
'S
wl o+
Ll —Z =
3. Force
Diagram

F1G. 45.—CANTILEVER WITH CONCENTRATED END LoAD.

% may have any value from o to /, and a graph can be drawn
showing the change in value of the B.M. as « varies.

When ¥ =0, BM. =W X 0 =o0.
When x =1, BM. =W x [ = Wi/,

Such a graph, or diagram, exhibiting the value of the B.M.
for all points of the beam span, is known as a bending moment
diagram. It is not necessary, in most cases, actually to plot a
large number of points, as in graph construction. The form
of the B.M. expression for the typical section is a clue to the
geometrical form of the diagram, and geometrical means may
be used to construct it. The expression * Wx ’ is of the first
degree in x and leads to a straight-line diagram.

Shear force diagrams are constructed on the same general
principles. )

S.F.; = resultant vertical load to right of section
=W.
This value is independent of x, so that the graph is a
horizontal straight line.
It will be noted that, according to the convention of signs
adopted, the B.M. is negative and the S.F. positive, in this case.
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(b) Cantilever with Several Concentrated Loads

The loading on a beam may be disintegrated, as convenient,
for the calculation of B.M. (or S.F.) values. The net B.M.
(or S.F.) value at any given section will then be the algebraic
sum of the various separately calculated values. The principle
of addition and subtraction may also be applied to diagrams of
B.M. (and S.F.).

e
E

W, +W2 +Ws
b
'
fS\

'O omce
rE

— Benaing Morment.— —Shear force. —

F1G. 46.—SUMMATION OF COMPONENT DIAGRAMS.

In Fig. 46 is shown the building up of the final B.M. and S.F.
diagrams from the component diagrams. In practice, the final
diagrams are drawn directly.

EXAMPLE. A cantilever carries the load system given in
Fig. 47. Construct the B.M. and S.F. diagrams, and compule
the B.M. and S.F. values, respectively, for a section 4 ft. from the
free end.

B.M. at support due to 8 cwts. load = (8 x 8) cwts. ft.

=64 cf. (—).
B.M. at support due to 12 cwts. load = (12 X 5) c.f.
=6ocf. (—).

Total B.M. at support = (64 + 60) c.f. = 124 c.f.
B.M. at given section AA = [(8 X 4) + (12 X 1)] c.f.
= (32 + 12) cf. =44 cf. (—).
S.F. at section AA = total load to right of section
= (12 + 8) cwts. = 20 cwts. (+).
s.s.—3"*
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I'16. 47.—CANTILEVER WITH CONCENTRATED LOADS.

The diagrams may now be constructed as shown in the figure.
The reader is recommended to draw out these diagrams (and
those in subsequent worked examples) to suitable scales.
Suggested scales: 1” = 2’ (for span); 1" = 40 c.f. (for B.M.
values) ; 1”7 = 10 cwts. (for S.F. values).
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FI1G. 48.—CANTILEVER WITH UNIFORMLY DISTRIBUTED LOAD.
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(c) Cantilever with Uniformly Distributed Load

The total load on the hatched position of the cantilever
(Fig. 48), to the right of the given typical section = w per
unit run X x units of length = wx. The centre of gravity

of this load is z from the section, hence the moment of the

w2 M, = ().
2 2

If this expression were plotted for different values of x, the

curve obtained would be a ‘ parabola,” tangential to the beam

at the free end. The reader is referred to Appendix III for the

method of constructing a parabola, and for other useful

properties of this important curve.
wx*  w X o?

load about the section = wx X ; =

When x =0, BM. = - = = T = 0.
2 2
When x = [, BM. = ?*" — # X l’=wl’.
T 2 2 2
If W = total load on cantilever, W = wl. B.M. at support,
i.e. the maximum value of the B.M., = wit = WI.

2 2
S.F., = total load to right of section
= wx.
The S.F. diagram is therefore linear.
When x =0,SF. =w X 0o =o.
When x =/, SF. =w X | = wl = W (positive).

.». S.F. maximum = W,

ExAMPLE. A balcony is carried by B.S.B.s placed at
2' 6" centres (Fig. 49). The beams project 4 ft. from a wall. The
total depth of the concrete floor, including floor finish, is 9". Con-
struct the B.M. and S. F. diagrams for one beam, assuming a super
load of 100 lb./sq. ft. on the balcony.

Area of floor carried by one joist = 4’ X 2-5" = 10 ft.%

Volume of concrete = (10 ft.* X %) cu. ft. = 7-5 cu. ft.

Total weight at 130 1b./cu. ft. = (75 X 130) Ib. = g75 Ib.

Total dead load including steel beam, say 1000 Ib.

Super. load per beam = (10 X 100) lb. = 1000 Ib.

Total uniformly distributed load per beam = 2000 Ib.
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B.M. maximum = "' = 2%% X 41b,_ft. = 4000 Ib. 1t

S.F. maximum = W = 2000 1b.

b~ - — 27-07—- —=
Fi1G. 49.

The diagrams may be conveniently drawn to the following
scales: 1" =1 ft.; " = 1000 lb. ft. ; 1" = 1000 1b.

(d) Simply Supported Beam with a Single Concentrated
Load

In the case of beams, the first step is to calculate the two
support reactions. By taking moments about point B

(Fig. 50) we get R, x =W x b. ... R, = V}l’b.

Similarly, Rg = V&lfa There is only one load to the left of

the typical section indicated, viz. the reaction at A <= V\;b)

BM., = “{b X x= Wlbx . This value indicates that the
B.M. graph from A to C will be a straight line.
Whenx=o,B.M.=“—l,P X 0 =0,

" When ¥ =q, BM. = “l,b X a =Wl@’
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We cannot put x greater than a in this expression, but

similar reasoning will show that the B.M. gradually increases
Wab

from zero at the point B to the value N at the point C.
Maximum B.M. for this case is therefore ng—b .

S.F., = total load to left of given section
_ Wb
=7

A \ 5
b
“% o ”%

A -
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F1G. 50.—SiMPLY SUPPORTED BEAM WITH SINGLE CONCENTRATED LOAD.

For any beam section to the right of point C, the total load
to the left of the section would clearly be
Wb Wb Wb — Wa — Wb Wa
W=y VE ey ST
i.e. the right end reaction with a negative sign.
In this type of beam we get, therefore, positive B.M.s and
both positive and negative S.F.s.

If W is at the centre of the beam, a = b = zl

B.M. maximum becomes w Xz X o= Wl
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S.F. maximum = 4 \;V The values for B.M. maximum
and S.F. maximum in this case should be memorised.

In the calculation of B.M. and S.F. values for beams simply
supported at the ends, the following concise statements will be
found useful :

B.M. = ‘ Reaction moment -- load moments,’ the reactions
and loads being taken to oneé side of the section, and ‘moments
taken about the section.

k S.F. = ‘ Left end reaction — sum of loads up to section.” If

th i i ken s for S.I',, the d f
ncorrect sign of S.F. will be avoided.

(e) Simply Supported Beam with Several Concentrated
Loads

Fig. 51 shows the derivation of the B.M. and S.F. diagrams

for this case from the component diagrams for the separate

~[eructirig Momenk - -Shear Force —
- Dagramus — - Deagrams -

Fi1c. 51.—ComposiTioN oF B.M. AND S.F. DiAGRAMS.

loads. It will be seen that we need only calculate the values of
the B.M.s at C and D to complete the B.M. diagram. The
S.F. diagram is a stepped diagram, the vertical drop at C
representing the load W, and that at D the load Wi,
EXAMPLE. In Fig. 52 there ts shown a simply supported
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beam carrying three concentrated loads. Calculate the values of
B.M. and S.F. respectively for a section 6 ft. from the left end.
Construct the B.M. and S.F. diagrams for the beam.
Ry X10=(6 X7) + (4 X 5) + (2 X 2)
10R, =42 4+ 20 4+ 4 = 66
R, = 6-6 cwts.
Rp X 10 = (2 x 8) 4 (4 x 5) + (6 X 3)
10 R = 16 + 20 4 18 = 54
Rg = 54 cwts.

SR AP . T
. <. /o’a_.L.. —_—— —q

Ry=G-Bonts PARE L
Dagam
A < 7} 3 8
) T,
G:6lcmts ?}
; .
3. £ Ocagrarm ¥ o bl'l-c»b
N 3.
dcT: “ents | ?
I
, ’% - ‘;-\gﬁfen Seclion,
o = 3__::}
G-Ocnt's '
Fic. 52

Ry 4+ Rp = (6:6 + 5:4) cwts. = 12 cwts., which agrees with
the total load on the beam.
BM.; =R, X 3= (66 X 3) cwts. ft. = 19-8 c.f.
B.M.;, = Reaction moment — load moment
= (66 X 5) — (6 X 2) cf. =21°0cClf.
B.M.p (taking loads to right of section for convenience) =
Rp X 2 = (54 X 2) cf. =108 Cf.
B.M. at the given section XX
= (66 X 6) — (6 X 3) — (4 X 1) cf.
= (396 — 18 — 4) c.f. = 176 c.f.
S.F. at given section = Left end reaction — sum of loads
up to section

= (66 — 6 — 4) cwts. = — 34 cwts,
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The reader should check these given section values by taking
loads to the 7ight of the section, and also by scaling diagrams of
B.M. and S.F. for the beam.

Suitable scales: 1" =2 ft.; 1" =8 c.f.; 1" = 4 cwts.

(f) Simply Supported Beam with Uniformly Distributed
Load

The total load on the beam (Fig. 53) = wl, so that each
reaction = w?l. Considering the B.M. at the typical section
and taking loads to the left of the section, we get

A LLLLLLLLLA AJ B8

F16. 53.—SIMPLY SupPORTED BEAM wiTH UNIFORMLY DISTRIBUTED LOAD.

B.M., = Reaction moment — load moment
wl x
=, X X — wx X 2
wlx _ wx
2 2
This expression would give a parabola if plotted.

Whenx=o,B.M,=.%l><o_g’.x (o)a_____'o.
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2
When x =° BM. =@ x!i_® ><<l>
2 2 2 2 2

wli* wlr wl

:=—4 — ~8 = 8 *
Inserting W (the total load) for wl, the B.M. at centre
Wi
of beam = g

At B, x=1 and B.M.=lzl><z_l§

would expect.

The B.M. is clearly a maximum at the beam centre, but
readers familiar with the Calculus will be able to show that the

X {? = 0, as we

. wlx  wa? . l
expression = — -, has a maximum value for x = 2
S.F., = Reaction — total load up 1o section
wl
= = — wx.
2

This indicates uniform variation for the shear force, as x
is in the first degree.

When x = o, S.F. =wl~w X 0 = wl =W
2 2 2
When v = £, SF. =% _ % _,,
2 2 2
When x = I, S.F.:wl——wl—_—__wl= _,W_
2 2 2
For this case, therefore, B.M. maximum = Vgl and

w
2"

The formule given for B.M. maximum and S.F. maximum
are very important and are frequently required in the design of
beams.

EXAMPLE. Draw the B.M.and S.F. diagrams for one of the
steel floor beams given in Fig. 54. Find the B.M. and S.F.
values respectively, for the section of a beam, 8 ft. from the left
end.  Total load (including weight of floor) to be taken as go lb.
per sq. ft.

Area supported by one joist = 10" X 12’ = 120 ft.?

S.F. maximum = 4
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Uniformly distributed load carried by one beam
= (120 X 9o) lb. = 10800 Ib.

WI! 10800 X 12

B.M. maximum = g = 8

Ib. ft. = 16200 Ib. ft.

S.F. maximum — -+ VZV = 1 % 1b. = & 5400 Ib,

as )’éa
'Aﬁ.ﬁfl

| lIl ll"
per Floor ml:% :
||,||“|' o
— o S.Fe 1800065 P

f/@am?es

L aad =900(bs, /fé rvn

2242777 @vaec&.on,
< "‘ BM = 144005 #

~- 189" S'F <Za00es
3400 7200
Lbs Tbs
F1G6. 54.
Load carried per foot length of beam = ;A()ISZOO b,
= goo lb.

B.M. at given section = Reaction moment — load moment
= [(5400 X 8) — (900 X 8 X 4)] Ib. ft.
= (43200 — 28800) Ib. ft.
= 14400 lb. ft.
S.F. at given section = Reaction — load up to section
= 5400 lb. — 7200 1b.
= — 1800 lb.
Suggested scales for diagrams :
1" =2"; 1" =40001b. ft.; 1" = 4000 lb.
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(g) Beam Overhanging its Supports and Carrying a
System of Concentrated Loads

It will now be appreciated that a system of concentrated
loads will always give a B.M. diagram compesed—of_straight
lines, so that B.M. values at load points only are required to
be calculated.

S.F. diagrams for such a system will always be stepped dia-
grams, with a step, up or down at a load point, representing the
value of the given load.
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F1G. 55.—OVERHANGING BEAM wiTH CONCENTRATED LOADS.

ExampLE. Construct the B.M. and S.F. diagrams for the
case given in Fig. 55.
Taking moments about B, to find R,, we get

(Ry X 10) + (5 X 2) = (4 X 12) + (8 X 8) + (10 X 3)
10 R, 4+ 10 =48 4+ 64 + 30 = 142
10 R, = 142 — 10 = 132. .-. R4 = 132 cwts.
Moments about A :
(Rg X 10) + (4 X 2) = (5 X 12) + (10 X 7) + (8 X 2)
10 Ry +8 =060+ 70 + 16 = 146
10 Ry = 146 — 8 = 138. .-. Ry = 138 cwits.
B.M.; = o (there is no load to left of section).
B.M., = (4 X 2) c.f. = 8 cf. (negative).
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B.M.;, = Reaction moment — load moment

=[(132 X 2) — (4 X 4)] cf.
= (264 — 16) c.f. = 10-4 c.f. (positive).
BMg=[(132 xX7) — (8 X5 — (4 X9)]ct

= (92°4 — 40 — 36) c.f.

= 16-4 c.f. (positive).
Alternatively, taking loads to right of section at E :
BMyg = [(13:8 X 3) — (5 X 5)] cf. = (41-4 — 25) c.f.

= 16-4 c.f.
B.M.; = (5 X 2) c.f. = 10 c.f. (negative).
B.M.F = 0.

Suggested scales for diagrams :
$"=1ft.; 1" =8ct ; 1" = 8 cwts.

(h) Beam Overhanging its Supports and Carrying a
Uniformly Distributed Load
The form of the B.M. diagram will be understood from an
inspection of Fig. 56, in which it is built up from component
diagrams which are already familiar to the reader.

oad)  Load
! w

1
- - —- -
o

F1G. 56.—OVERHANGING BEAM wWITH UNIFORMLY DISTRIBUTED LOAD.

The two end portions act as cantilevers. In the practical
construction of the B.M. diagram, the usual geometrical con-
struction for a parabola—somewhat modified as shown—can
be used for the central span. The S.F. diagram presents no



THEORY OF BEAM DESIGN 83
difficulty, if it is borne in mind that a uniformly distributed

{oad causes a uniform slope in the S.F. dxagrarn

EXAMPLE. A steel and concrete floov is carried by B.S.B.s
which rest on pillars in the manner shown in Fig. 57. The total
load transmitted to one B.S.B. is 1 ton per foot run. Construct
the B.M. and S.F. diagrams for a beam.

t
v e -/CBnsd

Portion of beam from left end to A.
BM. at A= " <4 ><4> tons ft. — 8 tons t.

Portion of beam from B to right end.
BM. atB=— (5 X 5) tons ft. = 12-5 tons ft.

Both these will be negative bending moments.

B.M. maximum for central portion AB, regarded tempor-
arily as a simple beam of length AB,
Wi _ 16 X 16
8~ 8

The B.M. diagram is constructed as shown. For the S.F.
diagram we require to calculate the two support reactions.

tons ft. =32 tons ft.
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R, X 16 = 25 tons X 7-5 ft. (the c.g. of the whole load is
75 ft. from B).

R, =2 56];5— tons = 11+72 tons.
Ry X 16 = (25 X 8-5).
Ry — 25'"?;68.5 tons = 1328 tons.
(Check R, + Rp = 25 tons.)

Between the left end of the beam and A the diagram slopes
uniformly to a negative value of 4 tons at A. There is then a
sudden vertical jump of 11+72 tons, owing to the reaction at
A. Between A and B the total fall = 16 tons. The diagram
finally ends with zero value at the extreme right end of the
beam.

Two or more Load Systems

The self-weight of a beam always involves a distributed load,
in addition to any other loads carried. The weight of the beam
itself may be small in comparison with the super. loading and
able to be neglected in calculations. To obtain the net B.M.
(or S.F.) diagrams for two or more simple load systems, the
component diagrams should be drawn out to the same scale
and arranged one beneath the other. Vertical lines—drawn
at suitable intervals in the span—to cut the series of diagrams
will give corresponding ordinates in the separate diagrams.
These ordinates algebraically added are then plotted on a new
base line to give the final net diagram.

The load systems dealt with in this chapter represent those
commonly occurring in practical problems. For the treatment
of other load types, the reader is referred to books on the theory
of structures.

EXERCISES 5

(1) Distinguish between the terms ‘ bending moment ’ and

‘ moment of resistance,” and explain the meaning of the term

‘ shear force.” State the regions of a simply supported beam

for ‘which the B.M. and S.F. are, respectlvely, of relatively
greater importance.
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(2) A cantilever projects 5’ horizontally from a wall. It
carries a load of 2 cwts. at its free end, and 4 cwts. at 3’ from
the free end. Find the B.M. and S.F. values for the centre of
the cantilever, and draw the B.M. and S.F. diagrams for the
given loads.

(3) A tank is supported outside a building by two B.S.B.s
which are fixed in the wall and extend 4’ horizontally therefrom.
The tank when full weighs 2 tons, the load being equally
divided between, and uniformly distributed along, the two
beams. Draw the B.M. and S.F. diagrams for one beam, and
find the B.M. and S.F. respectively to which each beam is sub-
jected at 1 foot from the wall.

(4) A simply supported beam of 10’ span carries the following
concentrated load system :

4 cwts. at 2’ from left end of beam.
8 » » 5, iR ” » »
8 » » 9, »” » » 2

Calculate the B.M. and S.F. values for a section 4’ from the
left end and check the values obtained by the construction of the
B.M. and S.F. diagrams for the beam.

(5) A room, 18" X 16’, has a B.S.B. parallel to the longer
side and at mid-width of floor, supporting the pitch-pine beams
of which the floor is composed. The total load carried by the
floor, including the weight of the floor itself, is 150 lb. per
sq. ft. The floor beams are spaced at 12" centres.

(a) Construct the B.M. and S.F. diagrams for one of the
timber beams, and (b) determine the maximum B.M. in the
steel beam, allowing 400 lb. for its self-weight.

(6) A lintol of 6’ effective span carries a wall of uniform
height and thickness. The thickness is 1’ 6” and the average
density of the wall material is 112 Ib. per cu. ft. Calculate the
maximum height of the wall so that the B.M., due to the
weight of the wall, does not exceed 225 tons ft. Sketch the
B.M. and S.F. diagrams for the lintol, inserting thereon all
important values.

(7) A beam, resting on two walls, A and B, 16’ apart, carries
four lifting appliances which may cause the loads given in
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diagram (Fig. 58). Assuming the four loads to be simultan-
eously applied, draw the B.M. and S.F. diagrams for the beam

for these loads.
| ’
_h\V“:ﬁ- /6 -j\b k...

~

We A

Q
0% s 20% 8
onls. cnfs, cnfs. onts,

Fic. 58.

(8) Draw the B.M. and S.F. diagrams for the self-weight of
the beam referred to in question 7, assuming it to weigh 18 1b.
per foot run.



CHAPTER VI

DESIGN OF SIMPLE BEAMS. MOMENT OF
RESISTANCE

Assumptions in the Beam Theory

THE theory which is involved in the derivation of the formula
for the moment of resistance of a beam section is based upon
certain assumptions.

(i) The beam section, for the theory to apply strictly, should
have a vertical axis of symmetry, in order to ensure the de-
flection of the beam being in a vertical plane.

(ii) Stmple bending is assumed. This is the type of bending
produced by the application of pure couples at the ends of the
beam. Such bending does not involve the beam in deflection
due to shear strain (which is, however, relatively small in any

practical case) and is exemplified by the portion AB of the
beam shown in Fig. 59.

-la.i- .:a.\L

U Form B4
N\ nt W,:. _/

- MO Shear [ |

l — Force =
FiG. 59,———E§<AMPLE OF SIMPLE BENDING.

(iii) Vertical sections of the beam before bending are as-
sumed to remain plane after bending. In Fig. 61 the plane
sections AB and CD remain plane in the positions A’B’ and
C’'D’ respectively.

(iv) The stress in any given beam fibre is assumed to be
proportional to its strain, i.e. Hooke’s law is assumed to hold
for the beam material. Young’s modulus (E) is assumed to
have the same value throughout the beam.

87
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It will be instructive, before taking the general theory, to
study the applications of these assumptions to the case of a
beam having a rectangular cross-section.

Rectangular Beams

The beam shown in Fig. 60 will have its upper fibres in com-
pressive strain (and hence compressive stress) and its lower
fibres in tensile strain (and hence tensile stress). It will be
clear that the biggest strains will occur at the top and bottom of
the beam respectively. These strains will decrease in value as
we proceed inwards from the extreme fibres. At some level

=

& /
y—2

ot - %
§§; Tebsfin®

Fi16. 60.—MOMENT OF RESISTANCE OF A RECTANGULAR BEAM SECTION.

in the beam the strains will have completely vanished.
Throughout a bent beam there is a layer of material which
undergoes no strain and, therefore, is in an unstressed con-
dition. This extremely thin layer is termed the neutral layer
(N.L.) and the straight line, in which this layer cuts any
given beam cross-section, is known as the neutral axis (N.A.)
of that section. The N.A. of a rectangular beam section will
be at mid-depth.

From assumption (iii) it may be concluded that the strain in
the beam fibres will increase uniformly as we proceed, up and
down, from the N.A. to the extreme beam fibres. As stress
and strain are assumed to vary in proportion, the stress varia-
tion will also be of a uniformly changing character. Further,
in the case being considered, little horizontal strips of beam
cross-section will be of constant width so that the load dis-
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tribution (as a result of the stress) will also be of the same
uniformly varying type. The diagrams in Fig. 60 will now be
clear to the reader.

The two like parallel systems composed, respectively, of the
numerous little thrusts and pulls on section AB, will each have
a resultant with a definite line of action. These two resultants
(C and T) form the forces in the couple resisting bending, and the
distance between their lines of action is the ‘arm’ of the couple.

Value of C (or T). C will be found by multiplying the
average stress in the top half-section by the area of this
portion. Taking the symbols and units given in Fig. 6o,

C =/ 1b. per int x @ inss
2 2

fol p,
4

Similarly T = Z‘i Ib.

Value of the “ arm’ of the couple. C will act through the
c.g. of the upper load triangle and T through that of the
lower. The distance between their lines of action will therefore

be [d — (I of d> — (I of d>:| ins. = -Z-d ins.
3 2 3 2 3

Moment of couple.
Moment = Force X arm

S 2dins,
4 3

_foar
=" Ib. ins.

This is the ‘ moment of resistance * and equals the ‘ bending
moment ' at the section. Writing ‘M’ for * M.R.’ or * B.M.’,
the formula becomes (without reference to any special system

of units) 1bd
2
M="c".
ExXAMPLES
(1) A timber beam is 3" wide, 6" deep and has an effective
span of 10'. It carries a total U.D. load of 1200 lb. Cal-
culate the maximum stress in the timber.
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B.M. maximum = \%,—l = Iﬁgog___;g_g_o__x 2 _ 18000 Ib. ins.
(Note that the span must always be in inches, as the stress

is expressed in inch units.)

_ foa
M=%

fX3X6x6
6
f = 1000 1b./in.?

(2) Find the maximum safe central load for a pitch-pine
beam, 4" wide and 12" deep, if the effective span (i.e. centre to
centre of bearings) is 15'. The working stress may be taken as
1200 1b.[in.2.

Let W Ib. = safe central load, neglecting weight of beam.
Wi W xi15X12

18000 =

B.M. maximum = 4 4 Ib. ins.
= 45 W Ib. ins.
_ foa
M= 6
_ 1200 X 4 X 12 X 12
45W = Z
W = 2560 1b.

(3) 4 floor is composed of timber joists 2" wide, 7" deep and
11’ effective span. It is to carry a total load (including the'
weight of the floor) of 100 lb. per sq. ft. Adopting a working
stress of 1300 Ib. per sq. in., determine the maximum spacing for
the joists.

Let x ft. = spacing.

Area of floor carried by one joist = (11 X %) ft.®

= I1x ft.2
Load carried by one joist = (112 X 100) Ib.
W/ 1100% X II X 12

B.M. maximum in joist = 8 = g Ib. ins.
= 18150« lb. ins.
_ foar
M="

18150x=13oo><26><7><7

x = 117’ (= say, 14").
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General Theory of Bending

Fig. 61 shows a portion of a beam in the unbent and in the
bent conditions. AB and CD are two vertical cross-
sections, assumed so close together that the portion of beam
between them may be regarded as bending to the arc of a circle.

EF is the part of the neutral layer intercepted between the
sections. GH reptesents a typical layer of material at a
distance y from the neutral axis. R is the radius of

g

M —

F1G. 61.—DIAGRAM ILLUSTRATING THE THEORY OF BENDING.

curvature of the portion of the neutral layer, in the bent beam.
The following are the steps in the development of the theory :
(r) Determination of the strain in layer G'H’ by principles
of geometry.
(2) Evaluation of the stress in this layer by means of Young’s
modulus.
(3) Determination of the load carried by the little strip of
cross-section at distance y from the N.A.
(4) Computation of the moment this load has about the N.A.
and, by summation, the total moment of all such strip loads.
Step 1. Extension in layer G'H’ = G'H’ — GH.
Strain in layer G'H’ = (%éx%%gl%ﬁi
_GH —GH
GH
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But GH = EF and EF = E'F’ (being on the unstrained
layer). :
in i g = GH — E'F
.+, Strain in layer G'H’' = — B .

Y2

Expressing these distances in terms of R and 6 (the
angle in radians contained by B’A’ and D’C’) we have :

in i g R+E)O—RO_y
Strain in layer G'H’ = R6 =R

Stress in G'H’
Step 2. Sirainin G'H = E
.- Stress in layer = E X strain = EIg’

If f = the stress, f = %’

Step 3. If a = the area of the cross-sectional strip, the

load carried = stress X area
Ey E
Step 4. Moment of the load on this strip about N.A.
= Load X distance

_(E. _E_ .
=\r X% Xy—RXay.

The total ‘ moment of resistance’ of the beam section is
made up of all such moments as this.

Total Moment of Resistance =% % X ay?

=g X Zay?.

Zay® (sigma ay?) is a geometrical property of the beam
section, with reference to the axis N.A. It is termed the
moment of inertia of the beam section, and is denoted by the

letter I.
Writing M for ‘ moment of resistance,’

E
M=RXI

tep 2).
y(sep)

f
fl
y

—t

Butf=%yor%=
M=
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This is the important formula for finding the moment of
resistance of a beam section. Writing the results found as a
continued ratio we get the complete expression for the theory.

E M _f
R 1

In using this expression f will normally represent a maximum
stress, so that y, in that case, will be the distance from the
neutral axis to an extreme fibre, top or bottom of the section,
as the case may be.

M will usually be a ‘ bending moment,” such as Wl, Vgl-, etc.

Position of the Neutral Axis.—In the theory we found that
the strip load was given by the expression % X ay.

As long as y is measured downwards all these strip loads
will represent tension. If we put y negative, i.e. measured
the distance upwards from N.A., the load would be compression.

21% X ay or ﬁ Zay (since E and R are constants) will

therefore represent a summation of a large number of positive
and negative quantities. But, as the total compressive
force = the total tensile force (being forces in a couple),

E
R Z'ay must = o.

This, i.e. Zay = o, means that the axis, from which y is
measured, passes through the centre of gravity of the section.
The neutral axis of a beam section therefore passes through its
centre of gravity.

Moment of Inertia

This is one of three very important properties of section. It
is a geometrical property of the shape and size of the beam
section, and has reference to an axis. The material of the
beam has nothing to do with its value.

In Fig. 62(a) we have an extremely small area ‘a2’ at a
distance y from an axis XX. The product (@ X ¥ is
termed the moment of inertia of the area ‘a’ about the axis
XX.

Ixx = ayr.
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In Fig. 62(b) there is shown an area divided up into very
small elements a,, a,, etc.,, at distances y,, y,, etc., from

Area =a’ |
-~

o

an axis XX. The sum of all such products as a, .2, a; y,*,

etc., will be the moment of inertia of the given area about the

axis XX.

. Ixx = a; y:* + a3 y,* + etc.
= Zay*.

In the beam theory, the little strip of beam cross-section had
to be extremely small, so that the stress could be regarded as
being of the value f all over it. In computing I values,
we will necessarily be approximate if we divide the given
section into areas of finite size, but we can reduce the error
by taking reasonably narrow strips.

1-4”4
l—-——n«;
1S __4”“1
"I:r 4 cnd
) V| 4 f

"

A,
y;

pury —
~ &

V¥ %
i¥

F1G. 63.—APPROXIMATE Ina FOR A RECTANGLE.

ExaMPLE. Fig. 63 shows a rectangle, 4" wide and 8" deep,
divided into 8 strips. Find an approximate value for Iy,
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Iya for top strip = ay? = 4 sq. ins. X (3} ins.)? == 49 ins.*

T 2nd » = ayz == 4 Sq. inS (2% 1ns. )2 = 25 ;.
w » 3td ,, =ay*=4sq.ins. X (1} ins)? = g9 ,,
YY) 4th ”» = ay’ = 4 Sq. inS. X ( % in )’ = I ,,

Total Iy, for 4 section = 84 ins.

Ixa for whole section = 168 ins.*

The reader should note carefully the unit in which I values

,are expressed.

If the strips were taken }” deep, instead of 1”, the answer
would be slightly higher, and if taken extremely thin the value
would be 170-66 ins.*

Ina for a Rectangular Section.—To obtain a correct value for
Ixa, the methods of calculus must be employed. Readers un-
familiar with the Calculus should omit the work immediately
following, and accept the formula given for this case.

e O )

Sy
.
. 4
MY

XL — 12
v

Axcs XX = Newlbad

xes.’
F1c. 64.

Ixx == Zay’ (Fig. 64).
Consider top half-section only.

Ixx =/y_gay’ =fy-ngy X y?
— " y'Sy _b[y] 3

y =
bd* _ ba?
24 12°
Applying this formula to the example worked previously,

_ba_4xX8X8X8,
Ina = 2z = 12 ins.* = 17066 ins.*

Ixx for whole section = 2 X

$.5.—4
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Imaximum and Iminimum.—In dealing with the strength of
beams the computation of I is made about the appropriate
neutral axis of the section. If we calculated the various I
values for all the possible axes passing through the c.g. of the
section, we would find that the biggest value, and the least
value, were associated with the axes of symmetry of the
section—assuming such axes existed. It is supposed in the .
beam theory that there is at least a vertical axis of symmetry,
and in this case, if the horizontal axis through the c.g. is not
an axis of symmetry, it still becomes the axis for either
Imaximum OF Ipinimem. The  properties of section’ for certain
standard beams given on pages 104 to 107 (published by
kind permission of the British Steelwork Association) illustrate
these two I'values, I yuimum being required for ordinary beam
calculations.

EXAMPLE. I, for a 12" X 6" X 44 1b. B.S.B. is given in
the table referred to as 31676 ins.4

Calculate the safe U.D. load for this section for an effective span
of 16', using a working stress of 8 tons/ins.?

M=ST
wi yfI 8 x 316 6—
Wi J1__ 6 X 3167 —wn
g =y = KT = =0
W x16 X 12 _ 8 X 31676

8 = 6

W = 175 tons.  (Check from table of safe loads.)

Addition and Subtraction of I Values.—Moments of
inertia of component areas about any given axis may be directly
added, or subtracted, to obtain the final result for the com-
pound area—but only provided each component 1 walue has
reference to the one common given axis. In ordinary beam

roblems this axis will be the neutral axis of the beam section.

EXAMPLE. Find the value of Ixx for the section given in
Fig. 65.

We first treat the section as a solid rectangle 8” wide and
12" deep.

bd* 8 X 12 X 12 X 12
12 12

CIgx = ins.* = 1152 ins.¢
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To get the net section we have to subtract the two rectangles
lying, respectively, to either side of the web (shown hatched).

ba?
Ixx for these two rectangles = 2 2
=2 [3—7%: —I'—O’] ins.* = 625 ins.t,

Net Ixx for section = (1152 — 625) ins.t = 527 ins.*.
It is useful to remember a formula for such a section, viz. :
BD* bas

Ixx = " 12" [b = B — web thickness.]
-
8 "'ﬂ i Vi

Uﬂ% 77

w/ 120
XIIV |// //::\

765 | 75t
_{.l'l:é)// - l:}’/'

FiG. 65.

1\
‘

Economy of B.S.B. Type of Section.—Beams of rectangular
section are not economical of material, as the parts of the
section situated near the neutral axis are only stressed to low
values (Fig. 66). The small loads carried here are further

d‘ons/cro

o % 'Zorr.sd‘nsa ‘._

Q 7//
&D a. . L
\ o
“eongfire’
F1G6. 66.—DERIVATION OF FLANGED SECTION FROM RECTANGULAR SECTION
OF SAME AREA.
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subject to the disadvantage of having g small arm for their
resistance moment. In the B.S.B. form of section a fair
proportion of the steel is placed in such a position as to be-
come highly stressed, and the corresponding loads have a bigger
arm of resistance moment.

ExAMPLE. Fig. 67 shows three similar plates welded together

LAY A4 a

_ W/ A/ 4/ > ol l

/l

—.»-/Mt— t
< |
X-p | 4.1 X N

x—--01 o x

{ v,

/

=

to form a beam section in two different ways. Compare the safe
U.D. loads for these two beams, for an effective span of 12’.

@ u="¢
U_;S? X 12 — 8 x,3 7>6<,,.8___>_<__8 (f — 8 tons/in.l)
W = 14-2 tons.
0 M=7)
I.. — BD? bd* _ /8 x 10* 7 X 8%\. ,
X7 12 12 z° T 12 )
= 368 ins.4
W x 12 X12__ 8 X 368
8 5
W = 32-7 tons."

Both beams have the same weight of steel, but the B.S.B.
type can support a far greater load.
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Section Modulus

In the expression we have two symbols, I and y,

fI
y
which represent geometrical properties associated with the
beam section. For any given geometrical figure, or standard
beam section, they can be separately computed. It is con-

venient to merge these two section properties into one single
property, in the form of their ratio ; . To this property is

given the name section modulus. The symbol used for this
composite property is usually Z. The units for Z will be

. . ins.* .
‘ins.®’ being ins.’ Corresponding to Iiaximum and Iuigimum

there will be Zaximum and Zminimum.
z=1
y
In most structural sections, as in I'ig. 68(a), the neutral axis
is also an axis of symmetry, so that y is half the overall
depth of the section. In this case:
7 _ Moment of Inertia (about N.A.)
4 overall depth of section
In the event of the distances from the neutral axis to the

extreme fibres at the top and bottom of the section, respect-

ively, not being equal, as in Fig. 68(b) and (c), there will be !
two Z valuesfor this axis. In a beam composed of material {
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like steel, which is equally reliable in tension and compression,

*the lower of these two possible values must be used for calcula-
tion of strength. Where the workmg stresses are not equal in
“énsion and compression (as in cast iron), the safe load for
the beam must be separately calculated from the two values—
Z, (tension) and Z. (compression)—using the corresponding
working stress values. The latter case is not common, owing
to the extensive modern use of rolled steel sections.

Values of Z for the recently revised list of B.S.B.s will be
found on pages 104-107.

The formula M = j;I may now be written M = fZ,
In the form required for design purposes, the expression for

Z becomes Z = 1>{, or, for a beam of constant section through-

out its length, we may write
Necessary section modulus  Maximum B.M. in tons ins.

for beam section ~  Working stress (tons/in.?)

If L = span in feet for a simply supported beam with a
U.D. load = W tons, and if 8 tons/in.? be taken as the
working stress,

WX%‘E“_sz.

2= VVSIf X 182 = B.M. in tons ft. X 1}, a rule often

used by. designers for the given case.
AlsoZ — WXL xriz_ WxL
64 533
_ Load in tons X span in feet
5'33 ‘
Both these rules are employed in the calculations given in
Chapter XVI.

EXAMPLES

(In the following examples, the self-weights of the steel
beams are not taken into account. In practice an allowance
may be made, if required—usually the self-weight for an un-
cased simple beam is small compared with the load carried.)
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(1) 4 9" X 4" X 211b. B.S.B. has a value of Zxx equal to
18-03 1ns.® (see tables). Calculate the safe U.D. load for this
beam, for an effective span of 12'. Use a working stress of
8 tons/in.2.

(The reader will note that the XX axis is always at right
angles to—and the YY axis always parallel to—the direction of
the web, in standard sections.)

M= fZ.

\\Y/

i sz

W x 182 X 12 _ 8 % 1803. .. W = 8 tons.

This value may be checked by inspection of the table of safe
distributed loads given on page 106. The zig-zag lines on this
table will be explained later,

(2) A steel joist of 10" effective span is requived to carry a
central load of 2-9 tons. Select a suitable joist from the section
tables.

M = fZ.
\\//
"= fZ.
s =1
2:9 X 10 X 12 _ g7 .7 =29XI0XI2 404
4 4 %8
= 10-88 ins.%.

The nearest value given in the izhles, under the heading
Moduli of Section (axis XX),and not less than therequired figure,
is 11-29 ins.?, which corresponds to a 7" X 4" X 16 1b. B.S.B.
The tabular load for this section, for 10’ span, is given as
6 tons (U.D.). This is equivalent to 3 tons as a central load.

(3) An opening 11° 9" in the clear is to be made in a well-
bonded brick wall 133" thick. The lintol beam for the opening,
in addition to carrying the brickwork loading, has to support
floor joists which transmit a uniform load of total value 6 tons.
Taking the detail given in Fig. 69, design the lintol.

Provided the brickwork is well bonded and extends at least
half the span to each side of the opening, it is usual to take the
brickwork loading on a lintol as that contained in an equilateral
triangle standing on the effective span as base, This load is
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then treated as a uniformly distributed (U.D.) load. Any
loads immediately above the opening, such as floor or roof loads,
must be treated as additional load.

In the example, allowing 9" bearing, the effective span =
12’ 6",

BN
(A D
A \
R
r PP
~ WM =
[gflgfig:knork'\
g ad:
for Grlot beams,
£ Leres of Breck™
&=/ (bs//‘é. 2,
& % o Y
P 60"
all— I I‘I I I T I'.I I—_\I
%
)}j-— Clear Spar =// -9'}:—-—,?
e [feckive =[2G —

F1G. 69.—BEAM CARRYING A BrRICK WALL.

The weight of brickwork in the equilateral triangle
25 o (V3 1205 x 133
_[ 2 ><<2 ><125>>< 12 ><nz]lb.
= 3-8 tons.
Total U.D. load = (=2-9 + o) tons = g-8 tons.
M = fZ.
98 X 125 X 12 _
3 =8 XZ

75

Z= 98 '%827)2{‘58‘){' 22 ins.» = 22-97 ins.3.

Assuming two B.S.B.s, each should have a Z value of at
least 11-49 ins.?

Two 8" X 4" x 18 lb. B.S.B.s would provide (see tables)
2 X 13-9I ins.® = 27-82 ins.?, hence these will be suitable.
(A 6" x 43" would be too shallow to use.)

(4) Fig. 70 shows a floor supported by a plate girder, with
B.S.B.s as secondary beams. The floor is constructed of con-
crete with fillers. Assuming the inclusive floor load at 170 b,
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per sq. ft. find the mecessary section modulus for ome of the
B.S.B.s, and also for the girder (allowing 1} tons for ils self-
weight).
Area of floor supported by one B.S.B. = 10’ X 15’ = 150 f£.2
Total load carried = (150 x 170) Ib. = 11-38 tons.

Wi
3 = fZ.
11-38 X 15 X 12 _ g 1138 X 15 X 12,
8 =8 xZ. .. L= 8 % 8 ms.?
= 32 ins.?

F1G. 70.—STEEL l"x.(;:):]?R;m:
A 12" X 5" x 32 Ib. B.S.B. has a section modulus of 36-84
ins.?, hence will be suitable. The Maximum B.M. for the
reaction loads due to the secondary beams in the case of the
plate girder will be :
(1x-38 tons X 15') — (11-:38 tons X 5')
= 1138 tons ft.
= 13656 tons ins.
Due to self-weight of girder the B.M. maximum will be
vgz =12 ?5-839— X 12 tons ins. = 56-25 tons ins.

Total B.M. maximum = 1421-85 tons ins.
M_ 142;-7—85 ins.?

7
(assuming a working stress of 8 tons/in.? for both flanges).
(Continued on p. 108)

s.8.—4*
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o JOISTS
: Safe Distributed Loads, in Tons
Tons/Inch?
e SPANS IN FEET
fnches
1012 14|16 |18 | 20| 22} 24 | 26| 28| 30| 32| 36| 40
2x74 | 112 1938|804 703|625 562 511 | 469|432 402 375|351 | 312 | 281
22x7  |812677|580|508 (451|406 |369| 338|312 | 290| 210|254 | 225 [ 203
20xTh  |892|74-3| 637|557 | 495 | 446|405 | 371 | 34-3 | 31:8 297|278 247 | 223
0x6) | 65:3i504|467 (408|363 | 32:6|207] 212|251 |23:3] 217|204 (181|163
18x8 | 7651658|54647-8|42:5 | 382|348 | 319|294 [ 273|255 | 239|212 [17:2
18x7 682|568 487[426|37:8| 341 |310{284| 262|243 |227|21:3{189[153
18x6  |49-8]41:5|356|31:1 | 277|249 | 22:6 | 207|191 [17:8 | 166|155 [ 138 [ 112
16x8  |64-9i541|46:3|405 | 360| 324|295 | 27:0| 249 | 231 | 21-6 | 202 [ 160|129
16x6m | 483]402| 345|302 | 268|201 |29 201|185]17:2] 161|152 | 119 96
16x6, |412|343] 294|257 | 228|206 187|171 [ 15:8| 147|137 128|101 | 82
15x6 | 349|291|249|218|194|17-4|159| 145|134 | 12.4| 11:6[ 102 80
15x5  |304|253|217|190|169|152|13.8|12:6|11-7| 108|101 | 89| T0
14x8  |557:447|383| 335|298 268 | 204 | 22:3| 206|191 167 | 147
l4x6m  |406|358|290| 253|225 | 203|184 | 169|156 | 145|126 | 111
Wx6, |337|280|24021:0|187 168|153 (140 (129|120 [ 104 | 92
13x5  |232(193]166|145|129| 116|105 | 96| 89| 77| 67
12x8  |433}361|309|210|240|216|197 | 180[15:3] 132
l2x6m  |334|21:8|238|208(185 167|151 |139|11-8|102
12x6,  |281|234|201|175| 156140127 11-7] 99| 86
12x5  |196]163|140|122|109| 98| 89| 81| 69| 60
Repvodeed by o o
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4
JOISTS T
Dimensions and Properties :
Tons/inch? y
Standard Moments of Modulf of Safe
Sfze [Weight [ Area | Thicknesses Inertia Section Distri- | Deflec-
dxb |perft.| In buted tion
inches | in lbs. |sq. ins. Axis | Axis | Axis | Axis |Load on|Coefficient
Web |Flange| x—x | y—y | x—x | y—y | 1foot
Max. | Min. | Max. | Min. | Span
2x7%| 9% |2794| 57 | 1-011 |2533-04( 62-54 | 211-09 | 16:68 | 1125-8 | -000769
22x7 % | 22206 50 -834 1 1676-80 | 41-07 | 152-44 | 11-73 | 813-0 | -000839
20xT4 | 89 {2619 -60 | 1010 |1672-85| 62-54 | 167-29 | 16-68 | 892:2 | -000923
20x63 | 6 [1912| -45 -820 | 1226-17 | 32:56 | 122-62 | 10-02 | 654-0 | -000923
18x8 80 | 2353 | 50 -950 |1292-07 | 69-43 | 14356 | 17-36 | 17657 | -001026
18x7 % 12209 55 -928 1 1151-18 | 4656 | 127-91 | 13-30 | 682-2 | -001026
18x6 55 1618 | <42 757 | 841-76| 23-64 | 93-53 | T-88 | 498-8 | -001026
16x8 75 | 22:06 | 48 -938 | 973-91| 68-30 | 121-74 | 17-08 | 649-3 | -001154
16x6 62 | 1821} 55 ‘847 | 125-05| 2714 | 90-63 | 9-05 | 4834 | ‘001154
16x6 50 | 1471 | -40 -726 | 618:09| 2247 | 7726 | 749 | 4121 | -001154
15x6 46 1324 38 655 | 491-91| 1987 | 6559 | 662 | 349:8 | -001231
15x5 42 |1236 | 42 -647 | 42849 1181 | 5713 | 472 | 3047 | -001231
14x8 70 | 2059 | -46 ‘920 | 705-58| 66:67 | 100-80 | 16-67 | 537-6 | -001319
14x6 57 | 1678 | 50 873 | 533-34| 2794 | 7619 | 9:31 | 406:3 | -001319
14x6 46 | 1359 -40 -698 | 442-57| 2145 | 63-22 | 7-15 337-2 | -001319
13x5 3% | 1030 | -3H 604 | 283-51| 10-82 | 4362 | 4-33| 232:6 | -001420
12x8 6 |1912| -43 *904 | 487-77| 6518 | 81-30 | 16-30 | 433:6 | 001538
12x6 54 |1589| -50 883 | 375-77| 28-28 | 62:63 | 943 | 334-0 | -001538
12x6 4 11300 40 ‘77| 316-76| 2212 | 5279 | 7-37| 2815 | -001538
12x5 32 945 | -3 -850 | 221-07| 969 | 3684 | 3-88| 1965 | -001538

of the British Steelwork Association.
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T JOISTS
1 Safe Distributed Loads, In Tons
Tons/Inch?
oz SPANS IN FEET
dxb
inches
3{4|5|6|7|8|9|lw|n|i2]e|w]i18|2
10 x8 34-2|30-7i27-9256(21:9]19-2{17-1 | 15:3
10 x6 31-2|21-3i24-2|21-8| 198|182 156|136 12-1| 109
10 x5 31-2i260|22:2/195|17-3| 156|141 129|111| 97| 86| 7-8
10 x4} 26:1i21-7|18-6|16-3|14-4|13.0|11:8 108 | 93| 81| 72| 65

x
-

308|214} 246 | 22:4| 205 | 17:6| 154 [ 137|111
2401192|160|137| 120|106 96| 87| 80| 68| 60| 53| 43
2552191191 | 17.0| 153 139|127 109 95| 75| 61
2391199(170| 149|132 | 11:9|108| 99| 85| 74| 59| 47
185:148]123[105| 92| 83| 74| 67| 61| 52| 46| 36| 29
150i120(100| 86| 75| 66| 60| 54| 50| 43| 32| 26
194i156|129| 10| 9| 86| 77| 10| 64| 47| 36
051154 | 123|102 88| 71| 68| 61 56| 51| 37| 28
124} 93| 14| 62| 53| 46| 41| 37| 33| 31| 22| 17
133|106} 88| 76| 66| 59| 53] a4 37
91i 12| 58| 48| 41| 36| 32| 29] 24| 20
50| 31; 30| 25| 21| 18| 16 14| 12
ax3 | 69| 1] 41| 34| 29| 25| 20| 16
a x| 32| 24| 19| 16| 1:3] 12| -96] 18
3x3 | a8 33| 27| 22| 16] 12
3xip | 19| 14| 11] 98| 72| 55

x
»

x
-

x
w»

x
>

X X x
Ol: o

x
>

>» v o o (- -~ o o oo -] O
x
»

x
(2]

&
x
-

Reproduced by permsssion and courtesy
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Y
JOISTS I
Dimensions and Properties :
Tons/inch? y
Standard Moments ot Modull of Safe
Size |Weight| Area | Thicknesses Inertia Section Distrl- | Deflec-
dxb |perft.| In buted tion
inches | in Ibs. |sq. ins. Axis | Axis | Axis | Axis |Loadon|Coeflicient
Web |Flange| x—x | y—y | x—x | y—y | 1foot
Max. Min. Max. Min. Span
10 x8 | 5 1618 | 40 *783 | 288-69 | 54-74 | 57-74 [ 13-69 | 307°9 | -001846
10 x6 | 40 (1177 | -36 709 | 204-80 | 21-76 | 409 | 7-25 | 218-5 | -001846
10 x5 | 30 885 | 36 652 | 14623 | 9-73 | 2925 | 3-89 | 156-0 | -001846
10 44| 25 736 | 30 505 | 122:34 | 649 [ 2447 | 2-88 | 1305 | -001846
9 x7 | 5 (1471 -40 -825 | 208-13 | 4017 | 46-25 | 11-48 | 246-7 | -002051
9 x4 | 21 618 | -30 457 | 81113 | 415 1803 | 207 | 962 | -002051
8 x6 [ 3 [1030| B ‘648 | 11506 | 1954 | 28-76 | 651 | 153-4 | -002308
8 x5 | 28 828 | 3% ‘575 | 8969 | 1019 | 2242 | 408 | 1196 | -002308
8 x4 | 18 530 | -28 -398 | 5563 | 351, 1391 | 1-75| 742 | -002308
7 x4 | 16 475 | -25 -387 | 3951 | 337 | 1129 | 169 | 60-2 | -00263T
6 x5 | 25 731 | 41 520 | 4369 | 910 | 1456 | 364 | 77T | -003077
6 x4} | 20 589 | 3T ‘431 | 3471 | 540 | 1157 | 240 | 617 | -003077
6 x3 | 12 353 | 23 3171 2099 | 146 | 700 97+ 3713 | -003077
5 x4} 20 588 | 29 513 | 2503 | 6-59 | 10-01 | 2:93 | 534 | -003692
5 x3 | 11 326 | ‘22 316 | 1368 | 145 | 547 97 | 292 | -003692
44x13| 65| 1.91 | 18 325 | 613 26| 283" -0 151 | 003887
4x3 |10 29| ‘24 347 779 | 133 389 88 | 207 | -004615
4 x13| 6 147 | 17 239 | 366 ‘19 183 21 9:76{ ‘004615
3 x3 85| 252 | -20 332 | 381 125 254 83 | 136 | -006154
3 x13| 4 118 | -16 2499 | 166 13 111 17 592 | 006154

of the British Steelwork Association,
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——
B.F. BEAMS, GREY PROCESS: AS QGIRDERS.
SAFE DISTRIBUTED LOADS, WITH DEFLECTIONS : 8 TONS STRESS.
—h
Nommal | _, | - |88 | ® 61t 718 81t 011 101t 12
Size. ing. E i%g gg . 4 o N ] . a . & . -‘—.
o 3 - v - 3 - v - v - -
IR s LR R I I HE
Ins. Lbdb. Toous. |In Tns | Tons. | Ins. | Tons. | Ins. | Tons. | Ins. | Tons. | Ins. | Tons. | Ins | Tons. | Ina
11-0 59/34-0/38|-18/32|-24}]28|-32|25|-40/23|-50/1-9]-72
142 6-3/46-1| 51 |-37|4:4|-23]38|-30(34|-38|31|:47|2:6]| 67
4 x 4 |148]| b | 82|466|52|-17|4:4|-2313-9)-30|3-5]|-38|3:1|-47({2:6] -67
232 13-8|74 6/ 83|15/ 7-1|-217 82| 27]55|-34/50]-42/4-1] 60
132 7-2|51-2] 57|15/ 49 |-20/4-3|-26|38|-33]34) 41|28 -850
17-0 7-5(69-6)7-7]|-14]66)|-19}58)|-25/52)-32146]|-39|3-9] 56
5 x5 |178| b | 98/696/77|-14{66| 1958|2552 ]|-32]461-39/139} .56
279 16 2 111 ] 12 |-13) 11 |17} 93| 23] 82 |-20[ 7 4]-36]62] 51
16 4 92/746/83)|-13|7-1|17|62]|-23]55|-20/50]|-36]4-1]| &1
21-1 79(103) ... ..} )] o )..]76]-2116-9]|-33)57] 48
5ix 54 |23-4| ab {13 7| 106 | 12 |-12| 10 |-16| 88 |-21|7-8|-27}/701}-33]5:9] 48
479 326|224 | 25 |10} 21 |-16) 19 |-18| 17 |-23| 15 |-20] 12 [ -41
17 6 99(872(97|12{83|-16]73| 21{6-5|-27[58/|-33)4 8] 47
228 990|120 ... | ..} o | o] o ]| 89 [25]80[-31]67] 45
6 x 6 |249/abf147]123 ]| 14 [-11| 12 |-15] 10 |-20{91|-25/ 82| -31]68]-45 |
513 34-5/258 | 29 [ -10f 25 ! 13| 22 | 17| 19 |-22| 17 | 27] 14 ] -39
20 0 1m3{103] 1 {-nfogl-as[{86) 20f[76|-25[69] 31}57] 45
26 3 10 1| 147 N R ol 98| 20821 42
6ix 6} {308 b {17 6{161 | ... | ... 15 | 14| 13 |-19f 12 [-24| 11 |-2018 9] 42
56 -0 36 1298 33 | o9 28 {-13| 25 | 18| 22 |-21| 20 [-26{ 17 | -37
24-8 14 1| 148 12 |17 9-9(-27/82] 30
31-9 12-5] 202 . .. .. JUU (RURY AU S ¥ I A% 1]
7 x 7 (347 ab|19-9]| 208 20 |13} 17 (17| 15 |-21| 14 |-26| 12 | -37
63-0 40-1| 383 36 |-11] 32 |-16( 28 |-19]| 26 |-28] 21 | -33
30-1 16-8| 199 17 |16 13 |-25| 11 | -35
380 15-1 269 . JURN ORI HROUR HRPTVR RO B -3 IRF )
8 x 8 (43-6{ ab {24 6| 280 24 {-15]| 22 |-10]| 19 |-23]| 16 | -3¢
716 43 6 484 40 | 14| 36 |-17{ 32 [-21| 27 | -n
345 19-3| 256 17 |22 14 | -32
446 18-0| 349
84x 8% [48-0| ab |27-0] 358 24 |-21] 20 | -3
78-8 47-6| 593 40 |-20] 33 | -28
40 9 22 3| 330 . .| 22 |-21] 18 | -30
519 21 2| 444 . P IRPUUE [OOR [ RS
ot x 9} |58-7| b |32 5] 475 J 32 |-20| 26 | -28
92 2 54 9| 754 L 50 |-18] 42 | 26
]

Chapter XIII.)

Reproduced by permission and courtesy

Necessary section modulus for girder = 17773 ins.®
(The question of encasement of steelwork is considered in

v

Deflection.—Beams have to possess stiffness as well as

strength. In choosing a beam section for a given maximum

U.D. load and span—by means of the tables of safe loads—
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B.F. BEAMS, GREY PROCESS: AS QIRDERS.
SAFE DISTRIBUTED LOADS, WITH DEFLECTIONS : 8 TONS 8TRESS.
L]
14 1t 16 ft. 18 ft. 20 ft. 22 ft. 241t 206 ft. 28 ft 30 ft. .
vy & A legl 8 1oy g1y | 81 LM 8 |lyg| 8 v A %E
% 3
SRR R R e L R L R AR R
Tons. | Ins. | Toas. Ins.
- )
20/ 92
2:4| 80
33|11
3.3 -1 5
5370
36|-10]31]-
49| -65/43]|-
50| -65(4-4)| - 5%
11| -56{9:3]-
42| -65/3:6] -84 ...
57| -61|50] 80| ...
59| -61(51]-80f ... ..f. .| 8
12 | -83| 11| -60{9.6| -87({8 6|11
49| -61|43] 80[38|10] ..
70| -57{6-1] 7555|905 ...
7-7(-8716:7(-75{6-01-95{ ... 8
T4 | -60] 12| -66| 11| -83/99]|10
7-11-63]|6-2| 70155 -88|4 9|11} .. ..
961 61184 67[7-5| -s4(67010] ... ..
99 -51187]-671177| -84/6-9|020f ... . 7
18| 46| 16 | -69) 14| -75| 13| 93} 12 111
05| 48[83]63]7-4| s0(6-6| ss{60f12]| ...
13| a6] 11| 60| 10| 7600 sa{8-1|1-1]| .. |..
14 | 4612 | -60f 11| -76/9.7] 94 |88f12] ... | .. 8
23 | 42] 20 ] 5] 18| -69| 16| 85| 15|10 13|12
12 | 44| 11 | 57§95 72|85 897 8[1-1|7-1[13 .
17 | 42| 14 | -65f 13 [ -69| 12| -85 11 (1-0|9-7| 12 .
17 | 42| 15| 56} 13 ] -691 12 | 85| 11 j1-0{9-9) 12} ... | ... 84
28 | 38| 25 | 50 3] 20 |-78) 18| 4|16 |21 15]13
16{ 40| 14| 58] 12 [-66f 11 |-82{10(-99|92|1-2|85( 14| ..
21 | .38| 18| -50( 16 | -63] 15| -78] 13 | -84 | 12 } 11| 11 {213} ...
23 | -38) 20 50| 18] -63} 16 (-8 14 | ea| 13 )10} 1203 . . 9%
36 | -35| 31| 40| 28 | 58 LTF—-‘JS 23{-87| 21|10 19 |1-3] 1814

of Messrs. R. A. Skelton & Co., Ltd.
the choice should be made so that the safe load falls to the left
of the zig-zag black line, shown on the section tables.
subject of deflection of beams is considered in detail in
Chapter VIII.

The' L.C.C. By-laws (Clause 84) state that the span of
any beam (except a filler floor beam) shall not exceed 24 times

The
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B.F. BEAMS, GREY PROCESS: AS QIRDERS.

SAFE DISTRIBUTED LOADS, WITH DEFLECTIONS : 8 TONS STRESS.

L]

Nomunal - 211 M1 1611 184 20 11. 221t
Size. £ 5§ Ed !
5513 §§§ 8% wilalsgldloqlalonlelenldlsild
-

I I E R E R I R I A AR LR
Ins. Lb. Tons. Tons. | Ins. | Tons. | Ins. | Tons. | Ins. | Tons. | Ins. } Tons. | Ins. ‘l‘ou.! Ins.
442 23-3| 374| 21 |-28| 18 |-38| 16 |-s0| 14 |-64| 12 [.79| 11 | -95
556 22-8| 497| ... | ... .. | .| 21 |-48] 18 | -1} 17 |-18] 15 | ‘01
10 x10 [81-1} ab |33-8| 519| 29 |-27| 25 |-37| 22 |-48| 19 |-62] 17 [-78] 18 | -91
103 61-3| 880| 49 |-25| 42 |-3¢| 37 |-4¢| 33 |-68[ 25 |- 27 | -83
46-0 24-3| 407 23 [-27| 19 |-37 17 |-48| 15 |-61 | 14 |-76] 12 | -91
595 24-6f 553 ... | ... ..} .| 23 |[-46[ 21 |-58| 18 | -72] 17 | -87
103 %10} [63-6| b |35-2| 566| 31 |-26| 27 |-35] 24 |-46( 21 |-58| 19 |-72| 17 | -87
116 71-7|1032| 57 | 23| 49 |-32| 43 |-42| 38 |-53| 34 |-65] 31 | 79
51-4 26-9| 488| ... | .. | 23 [-34| 20 |-45| 18 |-57] 16 |-70] 15 | -85
67-7 27-3( 679 oo { oo oo | oo | .. 25 |-B4] 23 |-67] 21 | ‘81
11 x11 |75-7| ab [41-4| 722| 40 |-24| 34 |-33| 30 |-43| 27 | -54| 24 |-67| 22 | -8)
135 81-1/1296( 72 |-22| 62 |-30| 54 |-39| 48 | -49] 43 |-61]| 39 | -73
589 31-0) 606 ... |..| 29 |-32] 25 |-41]| 22 [-52( 20 |-65( 18 | -78
76-4 31-2) 824 ... | ... | ...t} oo || 31 |-51| 28 |-63) 25 | -76
12 x18 [81-2| ab [44-4| 840| ... | ... | 40 |-31]| 35 |-40f 31 |[-52| 28 |-63]| 25 | -76
158 96-3|1648| 92 |-20| 78 |-27| 69 |-36] 61 | -45| 55 | -58| 50 | -68
65-8 35-8| 15 ... |...| 34 |- 30 |-39] 26 |-e9| 24 |-61| 22 | -7
814 3531 928 ... | .o oo | o ]| 34 |47 31 | 50| 28 | .71
124x12 (90-3| b |51-4| 984 ... | ... | 47 |-29f 41 |-38]| 36 |-47{ 33 |-50] 30 | -7}
166 102 | 1832(102 | -19] 87 |-26| 76 |-34| 68 |-43| 61 | 53| 56 | -64
70-7 40-6| 816) ... |..| 39 [-28] 34 |-36| 30 |-46| 27 | .57 25 | -69
86-2 39-6[1040f ... {...| .. [..] .. |..] 39 |-45( 35 |-88] 32 | -67
13§x12 |91-6| b |54-6{1064| ... | ... | 51 |-27| 44 |-35| 39 |-45| 35 |-56| 32 | -67
168 108 11976 ... .. | 94 |-2¢]| 82 [-32{ 73 [-40| 66 |-50| 60 | -60
75-7 44.9| 912 ... |...| 43 [-26] 38 |-35| 34 |-44| 30 |-54] 28 | -68
91-3 421160 ... | ... .o .| o | ] 43 (62| 39 |-82| 35 | ‘63
14 x12 | 101 | ab |62-3/1224] ... | ... | 58 |-26| 51 |-33] 45 | -42| 41 [.52] 37 | -63
170 112 [2080( ... | ...| 99 |-23| 87 |-31| 77 |-39| 69 |-48) 63 | ‘58
806 50-2{1032| .. |..| 49 {-25| 43 | 32| 38 |-41| 34 | 61| 31 | ‘61
963 49-111280| ... | ... | ... [ .. ] o || 47 |40 43 | -49) 39 | -60
15 x12 | 102 | ¢ [65-8[1312| ... | ... | 62 |-24| 55 | 32| 49 | -40| 44 | 49| 40 | ‘60
172 118 |2224{ ... | ... |106 |-22| 93 |-290| 82 |-37]| 74 | 46| 67 | -85
849 52-6/1136| ... | ... | ... | ... | 47 [-31]| 42 | 39| 38 | ¢8| 34 | &8
101 54-2(1408) ... .. | .. | ... .. |..| 52 (-38| 47 | 47| 43 | o7
16 x12 (110 5 [69-3/1480| ... | ... | ... [...]| 62 |-30| 55 [-38]| 49 | 47| 45 | -7
172 117 | 2328 ... | ... {111 |-21]| 97 |-28| 86 |-36| 78 | 44| 71 | -3

Reproduced by permission and courtesy
its depth, unless the calculated deflection of the beam is less
“than one .thfee-hundred-and-twenty—ﬁfth part of the span;
Shear in Webs.—The webs of rolled steel sections may be
stressed up to 5 tons per sq. in. of gross section, provided there is
no danger of buckling. The question of shear stress in beams
is considered in Chapter IX,
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B.F. BEAMS, GREY PROCESS: AS GIRDERS. =
SAFE DISTRIBUTED LOADS, WITH DEFLECTIONS : 8 TONS STRESS.

201t 26 1t. 28 1t 0 ft. 21t 36 1t ot . rYs 521t |

(— P!
] o8 | s ;o o ] ;| 8 i ] s %EI

Y - v - v -d v - v - v - 3 - v - v - v -

34 % |9%) % 3] 3 |90 9] R 90 a () 2 | g Y (e

ons.| Ins. {Tons.| Ins. |[Tons | Ins. (Tons| Ins. | Tons.| Ins. |Tons | Ins. { Tons | Ins. | Tons.| Ins. [Tons | Ins. | Tons.| Ins. [Ins.

10{0:0|96{1-3]8901-3] vei oo | ool ol f e | e

a3 frsfa2|es| oo b b e e e L ] e

14011313 12{18 . . {10

2499023 11-2f21 |13 "

11110 {1-3}97/1:5]90[18

1501014 202]13|14}12]1:8 .

16|10 1412|131 413 |06f...|.. 104

20 |-04{26 (11|25 {1323 |1-5]22]|17

14(10)13(12{12{14f11{0186[10]|17

1997|171 1{ 16 {1 3[15 (15| 1417

20 {-970 18 |1 1|17 131625015 17, | . . 1

(36 | 5733 [1of o1 {1220 |vaf27 5] 24]20f.. ..

1793|161 aj1afr3fa3frsla3lr)1nlza

23 |-00) 21 1.1} 2012 18)14) 171615 (20] ..

23 |90} 21 1t-1l20f12|19f{14]17 16|16 20 “‘} o 12

46| 80| 42 98] 39 |1 1|37 13| 3t!a31{18]27122

20| sal18|{1of17 {1216 |14f15 (18|13 120] 1224

26 |-8af24 | oofl22 (vl 2t |3l 19(15|17 {015 23] ..

97 (-840 25(-09[ 23 {11l 22{13[2 (15)18{1-9(16(2:3].. 124

51 (-76[ 47 | 691 43 (1 0] 41 {1-2{ 38 13|34 (1-7]31 (212825

23 |-s2{ 21| w19 v {18 {1317 15|15 18] 42301227 ..

20 f-79) 27 o325 {1232l 22lraf9lrsja7l2ez2le |27 .. ...

30 |-79) 27| oaf25 |10} 24 12122 14f20 1818 |22|16|27|..].. 134

55 | 72| 51| -84) 47 | 08| 44 |1 1] 41 |13]37/16]33[2:0|30|24]27]|29

2518|231 -orf{ 22 {1-1f20]1 2|19 |vaf 170 7]15](22] 1426 .

32 |75 30 [-ss{28 l1of26 12|24 3]2t]7|19(201[18 25

34 |-15| 31| 88|20 frvof27f{r-2fos({13]23/1-7{2 |22f19)|25]..|.c|-.]|.-.]|14

58 |69 53 | -81| 50| 04|46 (11143 12|39 :1:635|1-9(32(23|29)28f27 32

20 |-73{ 26| 86| 25| -90( 23 {1 1|21 (13|19 16|17 20|16 |24 1420

36 |-71{33] 83|30 |-07]28 | 1-1)27|1-3]24)1-6]21 2019241828

36 |-71{34|-83| 31| e7{20 |1 1)27|13]24]2:6/22/20|202:4(182:8}...]..]/18

62| -66| 577753 89| 49 {10)46|1-2] 411637 |18]34]22]31]|2:6]29])31

32|70 29| -82]27|-08]25 1 1]2¢ 012|211 6/19|1-9)17 23|16 |2:8}15)3-3

39 |-68) 36| 79|34 92|31 [1-1f29 {1 2]26|1-5]23|19]21|23[20]2-7]18/32

41|-68[ 38 )-79[ 35| 92|33 v 1|31 l1-2{27|1-6)25|1-9{22|2-3[21])2:7}19][3-2]|16

65 |-63| 60 |-74| 55| -86| 52| 99| 48 |1-1] 43 |1-4| 39 [1.8[35!2-2132(25]|30]3-0

of Messrs. R. A. Skelion & Co., Ltd,

Use of Safe Load Tables.—The reader is recommended to
check a number of the safe loads given in the various tables
in order to acquire confidence in the use of section properties
and beam formule.
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EXERCISES 6

(Where necessary the section tables on pages 104 to 107 must
be consulted. These tables may also be used for checking
numerical answers. The self-weight of beams may be neg-
lected.)

(1) Calculate the safe U.D. load for a 14" x 8" X 70 Ib.
B.S.B. for an effective span of 20’. Working stress = 8
tons/in.2.

(2) Select a suitable standard section for a simply supported
beam which has to carry a central load of 12 tons, the effective
span being 18’. Maximum stress not to exceed 8 tons/in.2.

(3) A 9" x 4" x 21 Ib. BS.B. (Z =18 ins.?) carries a
U.D. load of 6 tons. If the span is 16’, calculate the maximum
steel fibre stress.

(4) A beam of 12’ span carries two concentrated loads:
2 tons at 3’ from the left support, and 4 tons at 4’ from the right
support. Assuming a maximum stress of 74 tons/in.?, find the
necessary section modulus for the beam.

(5) Fig.71 shows a lintol composed of two standard channels,
with concrete filling. The effective span is 10’. Calculate the

643 85Cs
X/6°'3/Lbs
FiG. 71.

safe total U.D. load for the lintol, from the point of view of the
channels alone.

Ixx for one B.S.C. = 26-28 ins.,

Maximum stress = 8 tons/in.2

(6) Select suitable steel sections for the floor given in Fig. 54.

The timber beams are of 10’ span, and spaced at 14" centres.
Calculate suitable dimensions for their breadth and depth.
Assume a working stress of 1000 1b./in.? in the timber,



CHAPTER VII
PROPERTIES OF COMPOUND BEAM SECTIONS

Parallel Translation of Areas
THE compounding of several smaller areas into one com-
posite section, or the disintegration of a complex figure into a
number of simpler diagrams, are methods sometimes employed
in dealing with the computation of section properties. The
principle employed is known as the pavrallel translation of areas.
If an element of area a, situate at a distance y from a
given axis, be moved parallel to the axis, its moment of inertia
about that axis will retain the value ay* for all positions of
the area. Areas of finite size may be regarded as being com-
posed of a very large number of such elemental areas, so that
we may move any given section—in whole or part—parallel to
an axis, without altering its I value about the axis. Fig. 72

~ - - - - -

Fic. 72.

illustrates the equality of I value for any horizontal axis,
such as AB, of a rectangle and a parallelogram. In this case,*
rectangles, 1" wide and of very small depth, have been moved
horizontally to form the parallelogram.

. I X 6%, .
I, in each case = ,_?;__, ins.* = 72 ins. (see p. I15).

In Fig. 73 the principle is applied to a number of type
sections. The diagrams indicate methods of dealing with a
half-trough section.

us |
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F16. 73.—PRINCIPLE OF PARALLEL TRANSLATION OF AREAS.

Ixx for each of the sections given
BD* _ ba:

— [6 X128 5 ,,Xl?f] ins.4 — 4472 ins.4
- 12 12 T 44773 1m8 5

Principle of Parallel Axes

In Fig. 74 the axis AB is assumed to be the axis about
which the moment of inertia of the given section is required.

F1G. 74.—PRINCIPLE OF PARALLEL AXES.

CG is an axis parallel to AB, passing through the centre of
gravity of the section. The distance between the two axes
= D, and A = the total area of the section.
Taking a,, a, and a; as typical small component areas of the
section, we get :
1,8 (by definition) = a,Y,* + a,Y,* + a,Y,* + etc.
= a, (y1 + D)* + a2 (y: + D)* + a5(D — y,)* + etc.
= ay,* + 2ay,D + a,D? + azy,* + 2a,y,D + a,D?
+ a;,D?* — 2a,y,D + azy,* - etc.
= [ay,* + ay,* + agy,* + etc]
+ [a,D? + a,D* 4 a,D* + etc.]
+ [2a9.D + 2a4y,D -- 2a,y,D + etc.]
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The expression in the first bracket gives I;. The second
bracket may be written D?2[a, |- a, -+ a; 4 etc.], ie. =
D? x A. The third bracket == 2D[a,y, -} 4y, — a5y, + etc.].
As each term in the latter expression represents an area-
moment about an axis passing through the c.g. of the section,
the algebraic sum of all the terms will be zero. We may write
therefore

I,g = Iog + AD2

In a practical example, I¢q will usually be obtained by means

of a standard formula.

EXAMPLES
(1) Find I4p for the rectangle given in Fig. 75.
1 4 '
r<-— 6" —-—m=m
5:
Cqt - TG
| L
al/
!
g-r - B
Fic. 7s5.
3 3
Iog == l;dz = 6—?—;5—2“ ins.4 = 4 ins.4,

A =6" X 2" = 12 ins.8,
IAB = ICG + AD’
= [4 4+ 12 X 3% ins.4 = 112 ins.¢,

3
(2) Given the formula bldz for I for an axis at mid-depth

of a rectangular section, find the formula for I about the base.

In this case I¢g = bld;
A=0bxd
D=~
2
Lo, = Tog + ADS = ’;‘f 0 xd) x (g)’
s s 3
L

This formula is a very useful one, and worth remembering.
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F1Gg. 76.—R.S.J. SECTION.
(3) Find the value of Ixx for the section given in Fig. 76.
Ixx for top flange = I + AD?
=X (8% 1) x 5i

=|: R
[3 + 242] 1ns
= 242'66 ins..

Ixx for bottom flange = 24266 ins.*.
Ixx for web (taken as a rectangle with axis at mid-depth)

- b‘i' [ 2] ins.4 = 41-66 ins.*.

Total Ixx = 527 ins.*.
This value may be checked by the formula already given for
this case :

BD* _ ba* _ [§,*><__1_2: _ 75X 9_'] ins.4

= 527 ins.%.
To find Iyy, in this case, regard the section as being made up
of three rectangles. e

o2 [ 2 e
—=T8543inst.
T-—

Zxxforthesect10n=—¥=§gjms' 878ms'

y
Zyvy for the section = %:X = 85;43 ins.? = 21-36 ins.3,
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(4) Obtain Ixx for the channel section given in Fig. 77.
Method (a) : by subtraction of I values.

-o—U. '_{}ﬁ,
31
Al
ol N ¥
]
L.
= 'T/z

F16. 77.—CHANNEL SECTION.

Ixx = [3 x 8 2_75_12>< 73] ins.*
== [128 — 78-61] ins.4
= 4939 ins...
Method (b) : by employing the principle of parallel axes.
Top and bottom flanges :

=237, XE L3 x4 x 375" | ins:
= 42-24 ins.\.
Web : Ixx = %d; _4 ;(278 ins.t = 7-15 ins.*,

Total Ixx == 49:39 ins.*.

(5) Calculate the safe total uniformly distributed load, for an
effective span of 8', for the T-section shown in Fig. 48.
Working stress = 8 tons[ins.?

We must first find the position of the neutral axis of the
section.

Taking moments about the base of the section,

(8 x1)+ (6 x1)]Xy=I[8x65]+[6X 3]
14)’ =70
=5"
Ixx for flange = Igg + AD’

=2 +(8><I)><I'}’]ms‘—1866m5‘
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[P, ¥
),

X— — —T— 1< _

IN
“)

Y
¥16. 78.—T-SECTION.

[ gy ol

4
X-

Ixx for web—treated as being composed of two rectangles,

8
with respective axes at the base (bd >

3 3
[IXI IX5]=42inS.‘.

Total Ixx = 6066 ins.4,

Z —I 60-66 ; ins.® = 12-13 ins.%.
oy oS
(y = 5", as this is the greater value).
W x 1
Yg o =Jz.
W x g X1z _ g X 12°13.
W = 8-08 tons.

(6) Find Ixx and Iyy for the angle section given in Fig. 79.
Determination of c.g. position :

(BX3)+@4 xPIx= (1} x1) + (2 X2

34x = 43
x=1}"

3ty = (1} x 2) + (2 x 4)
y=1".

1xx for portion beneath the XX axis, treated as the difference
of two rectangles,
4 >< 3t x ¥
3

]ms*— 1-19 ins.*
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ré’; Y
5
\k';
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X -t = — — T—x
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~ 4>, 1

F1G. 79.—ANGLE SECTION.

Ixx for portion above XX axis
_bar 3 oxad
3 3

Total Ixx == 3’79 inS.‘.

Iyy for portion to left of YY axis

_ [3% >; i %g %]

ins.¢ = 26 ins.4

ins.* = 1-854 ins.4,

Iyy for portion to right of YY axis
3 X 23, .
= * 7 "% inst = 3-4606 ins..
'I‘Otal IYY == 5'32 inS.‘.
[The XX axis is parallel to shorter leg in B.S. sections.]

Tabular Method for Unsymmetrical Sections

Beam sections, for which the neutral axis is not an axis of
symmetry, may be conveniently dealt with by means of a
table. The value of I is first determined for an axis at the
base. The table is arranged in a form suitable for slide rule use.

EXAMPLE. Obtain Ixx for the girder section given in Fig. 8o.

The values of D, shown in the table in Fig. 81, are the
respective distances from the centres of gp ity of the com-
ponent areas to the axis AB, as indicated in- ig. 8o.

Taking the top flange we have :

bd® 3 X 1°. Ly
Iog == ==-"— ins.* = -25ins.*
T 12 12 5 v .
A =area = 3" X 1" = 3 ins.% "\

D = distance from its c.g. to axis AB = 11°.
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The values for the web and bottom flange are similarly
obtained.

Itz = 757 ins.4

- ZXAD o6, .
y = 7Z'X = 2‘4 ms. = 4 ns.
Iz = Ixx + AD*or Ixx = I,z — AD?
= I,p — AY?

- Ixx = [757 — 24 X 4% ins.*
= 373 ins.¢ -

~

-»:\
.

1

L}

|

.

t

|

|
.|
1

FiG. 80.—UNEQUAL FLANGED SECTION.

The tabular method is useful when a beam section is rendered
unsymmetrical by the deduction of rivet holes in one flange
only. The section is then treated as gross in the first instance,

JAICH  ONITS

Sl Zco A. 0 D2 1 AD | AD? I ag=Ico+ AD®
‘25 3 // /27 33 |363 | 36325
rneo

SO7S| 9 o 36 4 | 324 38475
fige [2-25] 12 | =5 [ 5625] 9 [6:78] 9 -00
A= 24 . £AD-96 £Lap=75700

F1G. 81.—TABULAR METHOD FOR MOMENT OF INERTIA.

the rivet holes be'ng subsequently regarded as negative areas
and entered as sv:h in the table. In most practical cases the
effect of rivet hole allowance on the N.A. position may be
neglected (see plate girder section, later),
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Compound Girders

It is usual to allow for rivet holes in both flanges, in dealing
with compound girder sections. The number of holes allowed
will depend upon the style of riveting. The properties of the
B.S.B.s in the following examples are obtained from the tables
on pages 104 to 107. ‘

EXAMPLES

(1) Find the maximum moment of inertia, and the maximum
section modulus, for the plated beam section given in Fig. 82.

Ixx (gross section) :

Flange Plates—These may be dealt with in several ways.
Section books often provide tables giving the I values for

F1G. 82.—PLATED JoIST SECTION.

plates at stated distances apart. The principle of parallel
axes may be employed, or the plates may be computed by
regarding them as the difference between an outer and an inner
rectangle.
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(@) Difference method
I0 X 16® 10 X 143

Iog = | TOXI07 IO X T47 14064 — 1126-66 ins.t
12 12

(b) Parallel axis method
Ixx = [ 10 X-—{a- + (10 X 1) X 7~5'] ns.4 = 1126-66 ins.*

B.S.B.
Ixx = 70558 ins.* (from tables).
Total Ixx (gross) = [1126-66 + 705-58] ins.*
= 1832-24 ins.¢

Rivet Hole Allowance

Ixx for a rivet hole = Iy -+ AD?2.

I is extremely small, and may be neglected. The rivet
hole allowance is therefore AD?* per rivet. A §” diameter rivet
will require a 13" diameter hole. The flange thickness of a
14" x 8" x 70 lb. B.S.B. is ‘92" (see section tables), so that
the area of one rivet hole = (1-92” X }}”) and itsc.g. distance
from axis XX = 7-04".

One rivet hole must be allowed in each flange in this case.
Ixx for rivet holes = 2AD?
a=[2 X ggg/x 18 X 7-04%] ins.4
= 1784 iris.*
Net Ixx for girder section = [1832-24 — 178-4] ins.4
= 1653-84 ins.*
Zyx = Tyxs_ 1653-84 .
y -8
(2) Calculate the safe total U.D. load, for an effective span of
20’, for a compound givder of section given in Fig. 83. Working
stress = 8 tons|ins.?

ins.? = 206-7 ins.?

Ixx (gross section) :

Plates Ins.t
18 X 1°
2 [_AIZ + (18 X 1) X 6'5’] = 1524
B.S. Beams
2 X 48777 = 97554
Total = 249954
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F16. 83.—CoMPOUND GIRDER.

Rivet allowance

4 X IF X 1-g04 X 6-05% = i6lﬂ
Ixx (net section) = 2238-54
Z maximum = 2@?—'5‘}- = 320 ins.?
M = fZ.
WX 20 X2 _g o,
W = 85:3 tons.

Plate Girder Sections

In designing plate girder sections, it is common practice to
allow for rivet holes in the tension flange, but not in the com-
pression flange. The displacement of the neutral axis from
the mid-depth position by this—or by the fact that the flange
section is not the same for each flange—is relatively small and
may be neglected in practice.

. EXaMPLE. Determine Ixy for the plate girder section given



124 STRUCTURAL STEELWORK

F1G. 84.—PLATE GIRDER SECTION.

in Fig. 84, allowing 13" diameter rivet holes in the tension flange
- only.

Ixx (gross section) :

Plates

Ixx =2 [ 14—152}: + (14 X 1) X 24‘5'] ins.* = 16809-3 ins.¢

Angles
From angle section tables, it is found that a 6” X 6" x §"
angle has an area of 7-11 ins.?, and that the position of the c.g.
of the section is 171" from the back of the angle. In the given
example, therefore, the c.g. of each angle is (24 —1-71)" =22-29"
from axis XX. Igq for one angle is given as 23-73 ins.* (gross).
Ixx for the four angles
= 4 [2373 + (711 X 22°29%)] ins.¢
= 142249 ins.*

Web
]
Lex =22 = X 4% ing ¢ — 4608 ins.«

Total Ixy (gross section) = 356422 ins.*

Rivet Hole Allowance.—Allowance must be made for two }3"
diameter holes (through flange plates and angles) and one } 1 3'
diameter hole (through angles and web plate). For the latter
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the hole farther from axis XX is taken. The rivet hole
positions in standard sections are themselves standardised
(see Appendix II), and in the case of a 6” x 6" x §” angle, the
first hole centre is 2-25” from the back of the angle. In the
example, this will mean a distance of 21+75” from axis XX.
Ixx for flange rivet holes
=2 X 14" X 18" X 24°19* = 1545 ins.*
Ixx for web rivet hole
= 13" X 1§" X 21-75% = 6726 ins.*
Total Iy for rivet holes = 22176 ins.*
Net Ixx for girder section
= [35642-2 — 2217-6]ins.4
= 33424 ins.*.

EXERCISES 7

(Consult pages 104 to 107 for section properties of B.S.B.s.)

(1) A steel beam has the following dimensions: Overall
depth = 12", flange width = 6", flange and web thicknesses,
1" and 4" respectively. Calculate Ixx, (@) using the principle of
parallel axis, (b)) by any standard formula. Calculate also
Iyy by any method.

(2) Two rectangular sections, each 6” deep X 1" wide, are
placed side by side. Calculate the distance between their
central vertical axes if Ixx = Iyy, for the two sections com-
bined.

(3) Check the value of Ixx for the T-section, given in Fig. 78,
by means of the tabular method.

(4) Find Ixx for the portion of trough section given in Fig. 85.
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(5) A 12" X 10" compound girder is composed of one
10" x 8" x 55 1b. B.S.B., with plates on each flange to form
10" X 1”. Calculate I (maximum) and Z (maximum), allowing
one }&" diameter rivet hole in each flange.

(6) A 14" X 14" compound girder is built up of two
13" X 5" X 351b. B.S.B.s with one 14” x 3" flange plate, top
and bottom. The rivets used are §" (nominal) diameter.
Calculate the safe total uniformly distributed load for this
girder, for an effective span of 20’, working stress = 8 tons
per sq. in.  (Allow two rivet holes in each flange.)

(7) Find the value of I (maximum) and Z (maximum) for the
girder section shown in Fig. 86. The value of Ixx for one

2" .
2/% Rlales
>|/ ‘“——\14_';:)’41//‘,6 ”A‘
_ e SO — >y - T
1'4% ) '”é SEENT T
Iy L 3764l /0% . Y
a ! 5)5.6‘ 5 \‘0 Aropeltes of L.
x-0 — FI=* " Area =3-75w"
I Tix =546
! | )
S MU CSN »
| e— P x L x//a LS
4 w2 /45 Plates
FiG. '86. Fic. 87.

10" X 3" X 19-28 1b. B.S.C. = 82:66 ins.t. Allow two }’
rivets in each flange. Flange thickness of B.S.C. = -45".

(8) A plate girder, of the section given in Fig. 87, has an
effective span of 40’. Allowing two ]3” diameter holes in
each flange, calculate the total safe uniformly distributed load
for the girder (maximum stress allowable in each flange =
8 tons/in.?).



CHAPTER VIII
DEFLECTION OF BEAMS. THEORY AND PRACTICE

Introduction.-—Not only have beams to be designed to sup-
port the applied loads without unduly stressing the fibres of the
beam material, but they must be made stiff enough to prevent
excessive deflection. The result of a large deflection in a beam
carrying a plastered ceiling will be apparent, but the im-
portance of ‘stiffness’ in beams lies deeper than this. The
steel frame is composed of a large number of separate units
which are, however, often connected together in a manner
which prevents them acting entirely independently. A beam
which is connected to a stanchion by a rigid form of connection
tends to transmit to the stanchion the end slope it would have
if it were freely supported. A good deal of research work is
being carried on with respect to the interdependence of mem-
bers in a composite frame and the bending moment trans-
mitted through stiff connections. Also such questions as the
alternate loading of floors in a steel framed building are being
investigated experimentally.

Permissible Deflection Values.—L.C.C. By-law No. 84 states:
The span of any filler floor beam encased in concrete shall not
exceed 32 times the depth, measured from the bottom flange of the
Sfloor beam to the top surface of the concrete. The span of any
other beam shall not exceed 24 times its depth, unless the calculated
deflection of the beam is less than one three-hundred-and-twenty-
[fifth part of the span. -

The deflection allowance in any given case is governed by the
particular application of the beam. For beams carrying brick
walls—if the span exceeds 12’—the maximum deflection should
not exceed ;%" per foot of span. Timber beams of large span
are especially liable to excessive deflection if designed for
strength alone. Usually the deflection consideration governs
the design in such cases. Beams supporting plastered ceilings
should not deflect more than ,';" per foot of span.

S.5.—5 127
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As already referred to in a previous chapter, the suitability of
a B.S.B. section, from the deflection point of view, is indicated
in tables of safe loads by the insertion of a zig-zag black line
(see page 104). When beams are carrying their full loads
corresponding to a working stress of 8 tons/in.2, the adoption
of spans to the right of this line would result in excessive deflec-
tion. The tabular values to the right of the line, in the tables
on pages 104 to 107, do not correspond to a working stress of
8 tons/in.?, but to a prescribed deflection allowance.

The connection between the deflection allowance and the
position of the zig-zag line is discussed a little later.

Deflection Coefficients.—An inspection of the tables of safe
loads will show that deflection coeffictents are given for the
various standard sections. For beams simply supported at
their ends, and carrying U.D. loads of such value as to produce
a maximum fibre stress of 8 tons/in.?, the maximum deflection
is obtained by multiplying the square of the span in feet by the
appropriate deflection coefficient.

The complete deflection problem is to determine the de-
flection anywhere in a beam, and not merely the maximum
value. The various methods employed in such calculations
will now be considered.

Circular Bending

I\I/!, R = the
radius of curvature of the beam (i.e. of its neutral layer). For
the beam to deflect to the arc of a circle, R must be constant,

In the theory of bending relationship %:

i.e. II;{[I must be constant. Assuming E constant, this means

that % must remain constant throughout the beam span.

(i) If I is constant, i.e. if the beam has a constant section,
M must be constant. This is not the usual case, as the bending
moment generally varies from point to point in the span.
Beams of constant section normally therefore do not bend in a
circular manner. Fig. 88 illustrates a special case of a beam
undergoing circular deflection.
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Fi1G. 88.—CIRCULAR BENDING.

(i) If M varies, I must vary in proportion so as to make the
ratio I constant. I does vary as M in the economical design

of a plate girder, flange plates being dispensed with, as the
bending moment falls away. Plate girders, so designed, may
be regarded as having circular deflection.

By the geometry of the circle (see IFFig. 89)
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y* is extremely small compared with the other quantities,
and may be neglected.
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I
.. 2Ry = 4
I
Y=g
But - M Ly = M
R LI 8EI

Maximum deflection in circular bending = 3%1

(See page 285 for use of formula in a plate girder design.)

ExampLE. A plate givder, fulfilling the requirements for
circular deflection, has an effective span of 30', and carries a
U.D. load of 60 tons. Thevalue of I for the givder section at the
centre being 8000 ins.*, and taking E as 13000 tons[in.2, calculate
the maximum deflection.

Miz
Ymazimum = 8EI'
M= Yz\;’l _ 6o X-~§§—~ ? tons ins. = 2700 tons ins.

n

2700 X 30 X I2 X 30 X 12 _
8 X 13000 X 8000 42

‘o Vmazimum ==

E is sometimes taken as 12000 tons/in.? in beam deflection
problems, especially in cases where the parts of a beam are
connected by riveting.

General Case of Deflection

W&We question of the slope of a beam
at the same time as that of its deflection. The ‘slope’ is
expressed in radians, the angle being measured to the horizontal.

Mohr’s Theorem for the Deflection and Slope of a Cantilever.

In Fig. go C and D are assumed to be so close together that
the radius of curvature is R throughout the length 8x of the
cantilever.

The circular measure of the angle between the two radii
shown = —° _ o= §f

: radius R’ R -
The tangents to the bent beam, at points C and D respec-
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Cernlre oF
Curvalure

F16. 90.—DEFLECTION OF A CANTILEVER.

tively, will also contain the angle 0, and its circular measure

may be expressed very closely as i

_%x_d L, xdx
TR x ced= g
1M xM3x
But R = EI a— M,
The total deflection is the sum of all such little intercepts as d.
ZxMdx
o Vmaximum = 2d = E[ .

M3x represents the area of thelittle element of B.M. diagram
standing on 8x as base, and x is its distance from the end B of
the cantilever.

.. ZxM3x = Ax, where A"is the total area of the B.M.
diagram and ¥ is its centre of gravity distance from B.

Ax
) <%+ Ymaximum = EI'

The diagrams in Fig. g1 show how the result can apply to
any point in the cantilever.

The total slope of the cantilever at B (Fig. go) will be

8% _ o Mdx

=S5 =Fy1
_A
T EI
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cG
Ar q,-ﬂ Y

L.L

"
Cco
%7747/\

e & ly |
BMDuagrams
IY

CG
’7’.}14“ -
a ;___ — 3 ____lry
Delleclion al Y'Y crv
each aase ﬂ%f

Fi6. 9r1.
The theorem will now be applied to a few standard cases of
beams.

(i) Cantilever with Concentrated Load W at the Free End
In Fig. 92, A = } base X height

=§l><Wl=“;l’.
x = 3l
we,
A% 2 <A
yma,umum - EI - EI
_IWP
T3 EI”
A 1 Wiz
Slope at B = El =2 EI-
]
ﬁa-«-_ € —. —_—
e — { — - —»f
1
wé ram

F1G. 92.—CANTILEVER WITH SINGLE END LoaD.
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(ii) Cantilever with Uniformly Distributed Load of Total

Value W
In Fig. 93, A = Area of parabola
= } base X height (see Appendix III)

Wi Wiz
x =3l
A W
ymanmum - 1‘:1 b
EI
_1wb
~ 8 EI’
Slope at B = €I = z)\lh‘/i!
Blal VD load = W.
Ala — & — —

[ i
’LP_’! cs ! B M Deagrem
j_J// F—'—Zg —’l

F16. 93.—CANTILEVER WITH U.D. Loap.

ExampLE. A cantilever projecting 5° from its support (Fig.
94) carries a load of 2 tons at its free end. The moment

2 lons

of inertia of the section = 80 in.* and E = 13000 tons/in.t.
Calculate the maximum deflection, (a) by the standard formula,
(b) by Mohr’s theorem. :
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TWE 3 x2 X (5X12)?

( ) ymanmum = 3 EI 13000 X 8o
_ 144000 — '138”
1040000 '

(b) B.M. maximum = 2 tons X 5 ft. = 10 tons ft.
A = } base x height = (} X 5 X 10) tons ft.?

== 25 tons ft.?
X = % X 5’ = 3%,
Lo _Ax 25 x3h X1z Xz Xz,
Vmaximum = EI 13000 X 8o -

(The three 12’s in the numerator are required to reduce the

‘feet cubed’ to ‘ inch ’ dimensions.)
Vmazimom = 138" as before.

Simply supported beams may—by regarding them as pairs
of inverted cantilevers-— be made adaptable to Mohr’s theorem,
in the form given. A more direct mode of solution may, how-
ever, be employed in such cases.

Secondary B.M. Method for Deflection

It can be shown that deflection bears the same type of re-
lationship to bending moment as bending moment does to
loading. 1f therefore we treat the B.M. diagram for a beam
as its load system, and recalculate the B.M. valuc for a given
beam section on this basis, the value obtained will be a measure
of the deflection at the section. The product EI has to be
introduced to obtain the exact value.

The principle is illustrated in Fig. 95. The deflection at C
is given by

MI
Ye = EI
where M’ is the secondary B.M. at C.
Area of shadéd
Lorleon =A

“ac B.M Dagramn

q 1e5/7//))

xC P
’ /‘7a£ C o
& Sezndary Rx-AX

F16. 95.—DEFLECTION BY SECONDARY BENDING MOMENT,
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(iii) Simply Supported Beam with Single Concentrated
Central Load W
In Fig. g6, R," = secondary reaction = } total area of B.M.
diagram.

F1G6. 96.—SimpLY SUPPORTED BEAM WITH SINGLE CONCENTRATED
CeNTRAL [oAD.

(1 . Wl) .
= XbLx 7)) -2
2 4

_wzz

M’ (at centre of span) = [Wl’ ] [Wl2 (1 l)]

Wiz Wis  Wie
32 9o 48"
M 1 Wis
Ymazimon = BT 7 48 EL
(iv) Simply Supported Beam with U.D. Load of Total
Value W

In Fig. 97, Ry’ = } (3 X base X height)

=%(§ X xwl>::wp.
M’ (at centre of span) = [Wl’ l] [Wli <§ X é)]

_ Wi 3Wir 5

Wis,
T 48 0 384 384
M’ 5 Wis

Ymazimum = ElI = 384 EI"
s.s.—5*
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7oéal U.0 Load =W

F16. 97.—SiMPLY SUPPORTED BeaM witH U.D. LoAbp.

The reader should refer to Appendix III for the properties
of a parabola.

EXAMPLES

(1) Calculate the maximum deflection of a 9" X 4" x 21 1b.
B.S.B. when it 1s carrying 8 tons U.D. load, for an effective span
of 12" (Fug. 98).

Imax. for section = 8113 ins.4, I = 13000 tons/in.?

5 Wiz 5 « 8 X (12 X 12)°.

Ymar = 484 E1 7 384 ~ 13000 x 81-13 ™
= 205",
| Tod'aZ Lload -eeons
AE —38

b‘“-(,9 xq'x2 Cbs 555|

RN
(=

4872 467-52

F1G. 98.

The tables give -002051 as the deflection coefficient for this
case (page 107, last column).
Ymez, = *00205I X (span in feet)?
= +00205I X I2%ins.
—= +205" as before.
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The result may also be checked by using the secondary
B.M. method as follows :

Vgl = 8 >§ 12 tons ft. = 12 tons ft.

Area of parabola = % base X height
= (4 X 12 X 12) tons ft.?
= g6 tons ft.

Secondary reaction at A = R,' = 26 tons ft.2

= 48 tons ft.?

Taking moments about the centre of the beam for the
secondary bending moment, we get :

M’ = [(48 X 6) — (48 X 2-25)] tons ft.3

Care must be taken with the dimensions of the results in
these calculations, in order that correct reduction from ° feet ’
to ‘ inch ’ units may be effected, when desired.

M’ at centre = 180 tons ft.3
= (180 X I2 X I2 X I2) tons ins.?

M’ 180 X 12 X 12 X 12,
EI =~ 13000 X 81:13 %
= -205".

(2) A 7" X 4" X 16 1. B.S.B. carries a single concentrated
load of 3 tons, as shown tn Fig. 99. I max. for this section
= 39-5I ins.Y, and E = 13000 tons/in.®. Calculate the de-
flection under the load, and also determine the position and value
of the maximum deflection.

yma.n'mum -

BM = 3x4x8 tons ft. = 8 tons ft.
12

In the case of a single load, as in this example, it will be
found that the maximum deflection will always occur at a point
in the larger portion of the span. It will be convenient therefore
to calculate Ry'.

Area of triangle ADC = 4 X 4 X 8 tons ft.? = 16 tons ft.?
Area of triangle DCB = 4 X 8 X 8 tons ft.* = 32 tons ft.*
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3%ns

4 e~ & —

Moments about A A
Ry’ X 12 = [32 X (4 1 g)] -+ [16 X (i— X 4>]
’ 8
12 Ry =(32 ><~2§j-)>+<16><3>

Ry’ = 21-33 tons ft.2
M’ at C = (21-33 X 8) — <32 X 2) tons ft.3
= 85-31 tons ft.?
Mo’ 8531 X12 X12 X120 0 o
YT ELT 13000 x 3951 T 287"

To find the position of maximum deflection, we make use of a
rule (explained in Chapter IX) which states that the maximum
B.M. in a beam occurs at the point where the shear force is

’

zero. Asdeflection = %, maximum deflection corresponds

to maximum secondary B.M. value.
To find the position of maximum deflection a point will have
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to be found at such distance from B, that the area of the
B.M. diagram up to this point = Ry’.

Let x’ = the distance.

B.M. at this section = x tons ft. (see Fig. g9g). This is
because at 8 ft. the B.M. = 8 tons ft., i.e. a numerical ratio
of1:1.

LR L0133, he. 4% = 42466
- x = 654",
M’ at this section == [(21'33 X 6°54) -~ <21'33 ~ 67?)]
= 93 tons ft.?
P M’ 93 x 1728 o 31",

EI = 13000 X 3951

Graphical Method for Deflection

The reader will recall that if a link polygon be drawn for the
load system on a beam, it forms, with the closing line, the B.M.
diagram for the beam. By treating the B.M. diagram (as in
the previous examples) as the load diagram, and drawing a link
polygon for thisnew ‘load system,” we will have a diagram which,
to a certain scale, will give deflection values for all points on
the beam (see Fig. 100). The graphical method is by far the

Ae A5 ”:lfru,% E”s %Mgf{

As
LN
l.t IR P

2. 4 ol
e | - As
OdarcA- f;c- ”

L

SRR 1
2

—‘/
A A As Ay As As Ar As As Ao 174
F1G. 100.—GRAPHICAL METHOD FOR DEFLECTION.

easiest method of dealing with deflections, if the loading is at
all complicated. It has the advantage of exhibiting the
deflection for all points in the beam span. Great care must
be exercised in arriving at the correct scale for reading off
the deflections from a diagram thus obtained.
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EXAMPLE. Check the value of the deflection at the load point,
and also the value of maximum deflection, for the example given
i Fig. 99.

The B.M. diagram is divided into a convenient number of
strips, strips 1’ wide being taken in the given example (Fig.

5 7OMS
et — Y — — 87— —
f 7 x g % /5Cbs B.5.8. ]

J P . — /2 F7 —_— —  —  —
|
NI B.NM Dcagrarn
" ¢
§' '\: Lo s
© I
| | 0 bl | |
o «l LY 11 | “l SRS
Al 8| C OVl Fl|G |~ | T T x 14 1~
o eh o by T
—T | Deriecd S ard
<\ a&norcjf'amkgﬂ% Aég/
LDefleclean > R |rectdoed
™~ &1 2 ] et |
Y 7/
[~ 1
Y ] | \
/ o 5 7T 7T 65 I 45 35 25 /5 5
— 7ons FTE —
g éca@ fOr measuremend
lecleort
a _)I /wd.u’z.gm Wg
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Che /5(/,'0ng scales
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’ Xeaag.
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F1G. 101.—EXAMPLE OF GRAPHICAL METHOD.

LY
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101). The areas of these strips are computed, and set down in
the polar diagram to scale—just as loads are treated in the usual
construction. The polar distance is made a round figure,
e.g. 3", to yield a convenient deflection scale. The latter is
obtained by multiplying together the span scale, ‘ load ’ scale
and the polar distance, and then dividing the result by EI.
Thus the diagram in Fig. 101, as originally set out, had a scale
for deflections :

=2 XI6 X3 X 1728 o deflection
13000 X 39°5I

n

= +323".
Length of maximum ordinate was -98”, therefore the maxi-
mum deflection = (-98 x -323) ins.
= 316",
Ordinate at load point = -89” (actual inches).
.. Deflection at load point = (-89 X -323) ins.
= 287",
With average care, the graphical method gives very accurate
results.

Relationship between Span and Deflection

Taking the case of uniformly distributed loading (the loading
for which the limiting zig-zag black line is given in the tables) we
have :

. 5 Wis
ymanmum - 384 EI
5 WL I
=48 7% 8 CEI
5 .M [__wz]
=48 XEr <M g
ButM=f
Iy
2
5 fyl

%o Y maximum = 48 y E
. . D
Assuming a maximum stress of 8 tons/in.?, putting y = 2

(4 depth of beam) and inserting 13000 tons/in.? for E, we get—
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for the usual case of beam sections symmetrical about the
neutral axis—

5 16 Ik
Ymazimim = 48 Xp X 13000°
Nonaximion o l
i 7800D

Taking the L.C.C. By-law value for maximum deflection,

i.e. = thof the span,
32

5 T
325  78o0D
or l = 78000 _ 24D.
325

This means that the span must not exceed 24 times the depth
of the beam. For example, a beam 9" deep must not (if fully
loaded) be used for a span greater than (24 X 9)” = 18’, which
limit is indicated in the tables. The figure ‘24,” given in
maximum deflection regulations, will now be understood.

Deflection Coefficients

/2
Ymazimum = 78OOD (from above).

If L = span in feet and D = depth in inches,
L3 x 144
7800D)
6
325D
Taking, for example, a 10" x 8”,a 10" X 6",a 10" X 5" ora
10" X 43", B.S.B,, the deﬂection coefficient

= ( > = -001846.
325 X I0
This figure will be found in the tables on page 107 for joists

with 10" depth.

Simple Rule.—Instead of completely evaluating the deflec-
tion coefficient we may express the maximum deflection in
terms of both D and L :

Vmazimum (inches) =

x L? = deflection coefficient x 1.2

__ b o L
Ymazimum = 325 D
- OT Ymazimum == L' _ (Spanin feet) squared

54D — 54 X depth in inches "
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Mathematical Treatment of Deflection

Readers not familiar with the Calculus should omit the
remainder of this chapter.

It is only intended to exemplify this method of solution in a
few simple cases. A full treatment of this part of the subject
will be found in the many excellent books on the theory of
structures.

Convention of Signs.—In Fig. 102 x is positive to the
right and y1is positive upwards. The slope Zi’ is positive,
y increasing as x increases. Slopes upwards, as we proceed to

Fic. 102,

the right, will therefore be positive. The curvature shown is
such that ‘2’6 increases positively as x increases, therefore

j:?; will be positive in this case. Also this type of bending

will have been brought about by bending moments which are
positive, according to the convention adopted. We must

therefore associate positive B.M.s with + Z’;‘: The application
of the signs is illustrated in the selected examples given below.

Curvature is given in the Calculus by the expression 3;):,
and in elasticity by the expression 11;11 Equating these

values, we get the relationship which forms the basis of the
integrations leading to deflection values.

ady M

dx* — EI'
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Case (i). Cantilever with Single End Load
In Fig. 103, BM. at x = — W (! — x).

_ay_W(i—2)
dx*~  EI °
ary _
I ntegmting,—EId - = Wix — Wa 4 C, (a possible constant).

2

Y

dx

g Togppecal Secleom
§* 7 |i/ w
0

—

TR e f-ac

To find the constant (if any), known values must be inserted.

dy (i.e. the slope) = o, when x = o ; therefore C; = o.

dx
oo —BIP —wie - W
x 2
Integrating again, -
— Ely = Wzlx’ — \Réx’ + C, (another possible constant).
y =0, when x = 0. .-. C,, in this case, also = o.

. — Elv = Wixt  Wx?
wo—Ely= " " — .

This expression will give the deflection at any point in the
cantilever, by inserting the proper value of x.

For maximum deflection put x = /-
Wi W

— Ely = N xl’—6 X I3
Wi
3"
1 Wik

Ymarimum = — 3 EI .
The minus sign indicates that the deflection is downwards.
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Case (ii). Simply Supported Beam with U.D. Load

2
In Fig. 104, BM. at v = wzl)x — w:: (positive).

. EI dy  wix® wx®

ix= 4 — 6 TCr
ay . !
in = o at mid-span, when x = 2
wl IN®  w /l\?
.~ El xo= 4 X <2> — 6<2> + C,.
wl?
‘e Cl = — 24.
L EIY _we _we _wl

dx ~ 4 6 24"

Integrating again,
o wlxt wxt wlx
Ely="1p — 24 2 T&
y=o0,whenx =0. ...Cy=o0.

o Ely = Y _wst wlx
12 24 24
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For maximum deflection, put x = l

s (20 (55 (540

= <96 384 48>
5

~ 384 wit,
5 Wi
yma-timum - 384 EI .

The remaining standard cases already considered by the

area-moment method may be taken, by the reader, as exercises
in the mathematical method.

Il

Beams with Several Load Systems

Resolve the loading into simple systems, and deal with each
system separately, by graphical or analytical methods. The net

deflection at any given point will be the algebraic sum of the
component deflections.

EXERCISES 8

(All beams are assumed to be simply supported at the ends.
E is to be taken as 13,000 tons/in.? in the case of steel beams.)

(1) A12" X 8" x 651b. B.S.B. has [ maximum = 48777 ins.*.
Calculate the maximum deflection for a U.D. load of 27 tons,
the span being 16’. Check the result by the tabular deflec-
tion coefficient for this beam section (-001538).

(2) A 9" X 4" x 21 lb. B.S.B. projects 4’ horizontally
from its support, and carries at its end a concentrated load of
3 tons. Taking I maximum = 81 ins.4, calculate:

(@) the maximum stress in the steel,

(6) the maximum deflection in the cantilever.

(3) Draw the B.M. diagram for the cantilever of question 2,
and check the value of the maximum deflection by applying
Mohr’s theorem. Find also the maximum slope.

(4) In an experiment to determine Young’s modulus for a
given beam material, by a deflection experiment, it was found
that a single central load of 450 Ib. produced a deflection of
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-06". The span was 40", and I for the beam section 10 ins..
Find E from these results.

(5) What would be the maximum permissible span for a
14" X 6" X 46 1b. B.S.B. if fully loaded and the L.C.C. regs.
maximum allowance applied to its deflection ? What maxi-
mum stress is assumed in this computation ? Show that the
maximum U.D. load, corresponding to the span obtained, is
12 tons.  (Zyawimem for the section = 6322 ins.3.)

(6) A steel beam of 20’ span carries a single central load
of 6 tons. Iuimum for the beam section = 300 ins.*

Determine the maximum deflection of the beam (a) by the
standard formula, (b)) by means of the secondary bending
moment method.

(7) Obtain the maximum deflection for the beam of question
6, by graphical construction.

(Divide span into 2’ bays. The areas of B.M. diagram will
be, in order from the left, up to the mid-point of the beam:
6, 18, 30, 42 and 54 tons ft.? respectively.)

(8) Find the maximum deflection for the compound girder
given in Fig. 83, assuming an effective span of 20’ and a total
U.D. load (including the self-weight of the girder) of 85 tons.

(9) Treating the half-span of a simply supported beam as an

inverted cantilever and using the expression show that

Er’
the maximum slope (i.e. the slope at the ends) of a simply
2

supported beam is (a) 1\())VEI‘,I
Wi

(5) 24E1 for a U.D. load W.

for a single central load W, and



CHAPTER IX
SHEAR AND ITS APPLICATIONS

Relationship between Shear Force and Bending Moment
in Beams
IN this chapter will be explained some of the important applica-
tions of shear in structural calculations.
Fig. 105 shows a simply supported beam, carrying a load
system of a general type. The B.M. at section 1 is assumed

X
W) - Wz J
A Wa
T, »
v b 6{2_*:
Yl— — e—
NN
'T a"ﬁ%é’ﬂ
N}

Fic. 105.—B.M. AND S.F. RELATIONSHIP.

to be M, and to have increased by a small amount 3M to
avalue M + 8M at section 2, the two sections being a small
distance 3x apart. A possible load w per unit run is
shown as acting on this little element of beam length.
M = Reaction moment — load moments
= Rux — Wi, — W,l, — Wyl,.
M 4+ 3M = R, (x + 3x) — W, (!, + 8x) — Wy(l, + 3x)
— Wi(ls + 3x) — $wdxr.
By subtraction and dividing by 8«

M Ry — Wy — W, — W, — jub,
148
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If 8x be taken extremely small, 3wdx vanishes, so that,
using the Calculus notation, we have:—

(fil;{ =R, — W, — W, — W, = S, where S represents the shear
force at section 1.
. daM
oS = dx
. w .
Integrating both sides, and changing over,
M = [Sdx.
In simple language these two important results may be ex-
pressed as follows : (

(1) The value of the shear force at any section of a beam is
given by the slope of the B.M. diagram at that section.

(2) The difference in bending moment values, for any two
given sections of a beam, equals the area of the shear force
diagram between these two sections.

The case of a simple beam has been taken to investigate the
foregoing relationships, but a similar analysis, in the cases of
the beam types referred to later in the book, will show that the
laws enunciated are true for all types of beams.

ILLUSTRATIVE EXAMPLE. As an overhanging beam involves
both positive and negative bending moments, this type has
been chosen to exemplify the relationships between B.M. and
S.F. in beams.

In Fig. 106 the B.M. and S.F. diagrams have been con-
structed in the usual way.

Portion CA. From C to A, the slope of the B.M.
4 cwts. ft.

2 ft.
Therefore, by law (1), the shear force in this portion is constant,
negative, and equals 2 cwts.

Portion AD. Slope of B.M. diagram = + (—Ig:%j: ~4>cwts.

= -+ 2-8 cwts.,, which equals the S.F. over this portion
of the beam. The reader can now trace the remaining slopes,
and show that they give the true S.F. values. We will now
reverse the process, and find B.M. values from the S.F. dia-
gram,

diagram is uniform, negative, and equals = 2 cwts.
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Portion CA. Area of S.F. diagram = — (2 cwts. X 2 ft.)
= — 4 cwts. ft. By law (2), this must be the difference in
B.M. values between the sections at C and A. But B.M.
at C =o0. .-.BM. atA = — 4 cwts. ft.

F1G. 106.

Portion CD. Total net area of S.F. diagram = [(— 2 X 2)
+ (2'8 x 6)] = + 12-8 cwts. ft., which gives the B.M. at
D. The B.M. at B may similarly be found, and it can be
verified easily that the net area of the S.F. diagram from C
to E equals zero, giving B.M. at E = zero.

Applications of S.F.-B.M. Relationships

The importance of the laws referred to does not lie in the
mere deduction of B.M. from S.IV., or vice versa. One im-
portant application gives a method of determining the position
of maximum B.M. in a beam.

The slope of the B.M. diagram (shown in Fig. 107) is zero at
the point where the B.M. reaches its maximum value. If the
diagram were made up of straight lines, the slope would sud-
denly change from a positive to a negative value, at the section
corresponding to maximum B.M. But the slope of the B.M.
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diagram is given by the S.F. We have therefore the following
very important rules :

(1) The B.M. will be a maximum at the beam section at which
the S.F. diagram crosses its base, i.e. passes through a zero value.

Slope = O
+ . -

]
Secton for B M max.
Slope c/ta;.ge,: Segr
Secleon for B M rmax
FiG. 107.

(2) 1f we proceed across the beam from the left end, just
sufficiently far enough to take up load of equal value to the left
end support reaction, the point arrived at will be that of maximum
BM.

ExampLE. Find the position, and value, of maximum B.M.
for the example given in Iig. 108.

47ons
2 ns ook
441 e 6= e 2 w2
Shear force
| '+' = Jesro
3y = 8
Teoa ANt |
Posclion of - &%

F1G. 108.

Ry X 10 =[(2 X 6) X 7] + [4 X 2]
10R, =84 + 8 =092
Ry = 92 tons.
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To make up 92 tons, we must proceed 4-b ’ across the beam
from A. B.M. maximum is therefore at 4:6 ' from A.

B.M. maximum = (9-2 X 4:6) — <9~2 X 4;) tons ft.

= 21-16 tons ft.

If, on arriving at a concentrated load by this method, it is
found that its inclusion makes the load total too great, and that
its exclusion gives too small a value, the maximum B.M. will
actually occur at the load point.  Fig. 106 shows an example
of a S.F. diagram cutting its base line three times, each position
corresponding to a local B.M. maximum value. ‘

Rules for Constructing S.F. Diagrams

The following rules will be found helpful in constructing
S.F. diagrams for simply supported beams :

M) Where there is no load on the beam, the diagram will be
horizontal.

/(i) A vertical load will cause a corresponding vertical jump
in the diagram—vertically upwards for G‘/a/reaction, and
vertically downwards for a concentrated load/

(i) The diagram will slope uniformly for U.D. load.
Throughout the diagram, the slope will remain constant for
constant load per unit run. If the rate of load per unit run
increase, the slope will correspondingly increase. The slope is
always downwards towards the right.

These rules will be found to apply in the cases of ‘ fixed’
beams and ‘ continuous ’ beams respectively (see Chapter X).

EXAMPLE. Draw the S.F. diagram for the case given in
Fig. 109.

Ry X 20 = (20 X 19) + (6 X 12) + (24 X 7).
20R, = 380 + 72 + 168
= 620.
R, = 31 cwts.
Rg = 19 cwts.

From the left end of the beam up to the point A, the slope
of the S.F. diagram will be uniform, and the total drop will be
(2 cwts. per foot x 4 feet) = 8 cwts. The diagram will then
jump vertically upwards a distance equivalent to 31 cwts.,
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owing to the vertical reaction at A. The remainder of the
diagram may be similarly followed through.

Complementary Shear Stress

ABCD (Fig. 110) is a very small square block of metal,
forming part of the web of a beam, the sides AB and CD
being vertical. Assuming the block to be situated near the
left end of the beam, the sidles AB and CD will be sub-

Fi1G. 110,

jected to the type of shear stress indicated in the figure. The
total load carried by each face =s (tons/in.3) x (I X ¢
sq. ins. = slt tons. These two forces constitute a couple
tending to rotate the block in a clockwise manner with a
moment of magnitude slt tons X / ins. = s/% tons ins. It
is clear that an equal and opposite couple must be acting on
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the block, to maintain equilibrium. The forces in this
balancing couple are brought about by the stress induced in
the fibres of metal along the horizontal faces BC and AD of the
block. If s, tons/in.? be this stress value, the corresponding
couple will have a moment
st tons X I ins. = s/ tons/ins.

.. s4% = si3t for equilibrium,

ie. s, =s.

A vertical shear stress of a certain value at a given point in the
weh is, therefore, accompanied by a horizontal shear stress of
equal intensity—et-thepoint.

Further investigation shows that other complementary
stresses are involved. Fig. 111(0) indicates how the shear

“"* (b)

I'tG. 111.-~COMPLEMENTARY STRESSES.

stresses, already referred to, result in a compressive stress in the

material Resolving the shear loads at right angles to the

internal diagonal plane of the block, and dividing by the area
of the plane, to obtain the intensity of stress, we get

Compressive stress = lls:oqc_l 2sik cos 45° tons

' rea  2lf cos 45° sq. ins.

= s tons/in.t.
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Similarly, the tensile stress induced = s tons/in.* (Fig. 111(b)).

The original vertical shear stress is thus accompanied by
both compressive and tensile stresses of equal intensity to its
own—across planes at 45° to the horizontal. The theory
would, of course, hold for the case of any stress units and may
be extended to include any elastic material subjected to shear
stress, not necessarily forming part of a beam web.

Variation of Shear Stress in a Beam Web

The result obtained by dividing the ghear load (as obtained
from the shear force diagram) by the area of the web, gives, far
any given beam section, the average shear stress-in-the-web:|
The shear stress is not in fact a constant value for all points in
the web depth, and the nature of the variation will now be
discussed.

In Fig. 112, AB and CD are two vertical sections of a
beam, assumed to be very close together. The bending mo-

F1G. 112.—HORIZONTAL SHEAR STRESS.

ment at AB is M and that at CD is M 4 8M. EF is a
horizontal layer of material lying between the two vertical
sections, its distance from the neutral layer of the beam being
¥1.  Consider the forces acting on the portion of beam from
EF to the top (shown in the lower diagrams of Fig. 112).
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Owing to the difference of B.M. at sections AB and CD, the end
faces of this little piece of beam will be subjected to different
stress intensities—and therefore to different resultant thrusts.
The difference of these two end thrusts represents a force
tendmg to slide the portion of beami over its base at E.F. W;
obtain the corresponding honzontal shear stress by d1v1dmg
thlS orce by the horizontal area of the base.
GH  represents a typical layer of beam Tsituated be-
tween level EF and the top of the beam. At the level

of GH in section AB the compressive stress will be Niy

(obtained from the standard formula M = ";I > The load on

the corresponding elemental strip of cross-section of area a—

at AB—will therefore be M_'Iy a.

The compressive stress at the level GH for section CD

will be (M %ISMU and the load on the corresponding cross-
sectional strip = (M +IB M)y . For this one little strip the

difference of the end loads will therefore be
M + 3M)ya _ Mya _ 3Mya
I I = 1°

To obtain the total difference of thrusts referred to, we must
add up all these little differences—from level EF to the top
of the beam, i.e. fromy =y, toy = y,.
8May

I

M
=T X Zay (between the stated levels).

Net resultant thrust =

But Zay = Ay where A = the total area of beam section
above EF and y is its c.g. distance from the neutral axis of
the section.

.. Net resultant thrust = %ﬁ Ay.

. Shear load M A:
Shear stress at level EF = “Area = &% ;<_5 f
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As we take 3x smaller and smaller, the value of M becomes

3x
‘2‘4, i.e. S, the shear force at the section of beam under con-
sideration.

If s = the intensity of horizontal (or vertical) shear stress
at the level EF,
s = S Ay
)
Application to a Rectangular Beam Section.—Ior the shear
stress at the section EF (Fig. 113) we have

F1G. 113.—SHEAR STRESS IN RECTANGULAR BEAM.

b (in formula) = b
. _ b
” 12
A " = bx
= _(¢_~*
y ” “\2z2 2
S .-
§ = b Ay
_ S a_x
. s-—bxbj,xbxx<2—2>
12
12S  x(d — x 6S
= bd® X '"“(“"2'*—)‘ = ba® X x(d — x).

If we plotted a diagram showing the shear variation for
different values of x, the graph would be parabolic.
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When ¥ = 0, s = 0.
i@ 68 d d_35
” 2' bd* "2 T2 2bd
But the average shear stress would be I;\oad = S, so that
rea  bd
our result shows that the m maximum shear stress, in the case of
a rectangular beam se sectlon, is 1% times the mean value.

—EXAMPLE. A rectangular ‘steel beam (Fig. 114) s used to
carry a total U.D. load of 6 tons, the section being 6" deep X 3"

< _ O ..

wide, and the span 12’'.  Draw a diagram showing the variation
of shear (horizontal and vertical) stress down the beam section, and
write down the maximum shear stress in the steel.

Maximum shear load = VZV = 3 tons.

Maximum shear stress = 3 X mean stress.
Load 3 r_1 .
= - ] R}
Mean stress Area 3% 6 tons/in. tons/in
-. Maximum shear stress = § X § tons/in.? = | tons/in.2.

The maximum tensile and compressive bending stresses in
this example will be found to be 6 tons/in.?. The steel is only
required to develop a maximum shear stress value of } tons/in.?,
whereas 5 tons/in.? is permissible in the usual case. As we have
seen, the B.S.B. form of beam section is more economical from
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the point of view of flexural stress, and the heavier loads carried
will cause the maximum shear stress in the thin web to approach
nearer its safe value, so that it requires to be checked in de-
sign.
Distribution of Shear Stress in a B.S.B. Type of Section
EXAMPLE. Ilustrate the shear stress distribution at the given

6—-4'—.;.4
|T_ I
|
|

V\S';;o J1
J ! \\

-
-J‘-

N
S ¥ _
7
7%e broter Zre shens (He meart
Shear stress (averaged over reb )

FIG. 115.-——SHEAR STRESS DISTRIBUTION.

beam section (Fig. 115), for a shear load of 6 tons. Compare the
maximum shear stress with the mean value, as usually computed.

I for section = BD> __ bd®
12 12
=4X B _ 35 X6 _ 107-66 ins.*
12 12

Shear stress values :

(1) At level of flange and web junction.
(@) Just inside flange.

S
s =y A
S==6tons; b=4"; I =107:66ins.4; A =4 ins.?;
y = 3%"

s= (4 X 107 66 X 4 X 3 5) tOl’lS/lIl8 = 2 tons/m 2
(® ) Just inside web

— N
< 5 X . 107 0766 ~ 4 %3 5) tons/in.2=1-6 tons/in.
$.5.—6
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(1) At neutral axis of beam.

b=4}".
Ay = (4 X 3}) + [(3 X 3) X 14] = 16-25.ins.?
0T bsi Ay

== <% % 1667'66 X 16-25> tons/in.?
= 1-81 tons/in.?
Maximum shear stress = 1-81 tons/in.?
Shear Load 6 tons
Area of web — 6" X §”
= 2 tons/in.? or = 1-5 tons/in.?if the web is taken as 8” deep.
The maximum and mean values approximately agree. In
most cases of standard sections, it will be sufficiently accurate
to compute the shear stress by averaging over the web sectional
area. It will be remembered that the shear stress, thus cal-
tulated, may be 5 tons/in.?, provided the tendency to side
buckling of the web is safeguarded. The full beam depth is

usually taken, in practice, in calculating web area for shear
calculations.

Mean shear stress =

Shear Strain

The method of measurement of shear strain has been referred
to in Chapter I. The proportional law of elasticity applies to
shear stresses and shear strains. The modulus of elasticity—cor-
responding to Young’s modulus for tension and compression—
is termed the ‘ Shear Modulus.” It is sometimes referred to as
the ‘ Modulus of Rigidity.” In the case of mild steel the value
of the shear modulus is about 6000 tons/in.2. Shear strains in

beams are very small, and may be neglected in calculations
involving deflection.

Application of Theory of Shear to Built-up Beams
Stiffening of Plate Girder Webs.—Fig. 116 shows a portion of
a plate girder. The shear force in this case is assumed to be
negative, so that the compressive stresses in the web act at 45°,
across the plane of compression indicated. If the web stiffeners
shown are placed close enough together to both cut a plane of
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compression, i.e. if they are not farther apart than the depth
d in diagram, the lengths of inclined strips of web which
have to act as virtual columns will be lessened. As will be
seen later, in Chapter XI, the length of a column is a vital factor
in its strength, so that the employment of stiffeners greatly

clfoio' o
I Sl . -
: g [~ may) f:
0,
Ve St fhenens placecd
< ° /5” clase ezrouyhp/o
| o A (s reduce the effectue
| ol 2 ,«‘? lengthr of HAbe Stred of
© web nhwehlacts s
t f_: colurmu.
0.0,0 |Of O, O, 0 O O 0,0

F1G6. 116.—BUCKLING IN PLATE GIRDER WEBR.

increases the resistance of the web to ‘ buckling ’ or failure as a
column. Various formule, of the column type, are in use,
relating the spacing of stiffeners to web thickness. Practically,
the spacing is a combination of theoretical principles and con-
structional requirements (see Chapter XV).

Riveting in Compound and Plate Girders.—The detail of the
riveting of the flange angles to the web, and to the flange plates,
is concerned with the horizontal shear which accompanies the
vertical shear. The shear load per foot length of girder flange
has to be resisted by the rivet strength provided per foot of
length.

Consider the rivets connecting the flange angles to the web
in Fig. 116. Expressing the equality of horizontal and vertical
shear stress for the faces of a rectangular block of web, one foot
deep, one foot long and ¢ feet thick, we have (assuming Sy and
Su to be the shear loads) :

Sv. _ Sa

1 x T rxtOF = S

i.e. the horizontal shear load per foot length of girder = the vertical
shear load per foot of depth. This method of investigation is
necessarily approximate, as variation of web stress has been
neglected, but a closer analysis, based on the stress variation
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theory, leads to the same result for the position in which the
rivet line, or lines, are fixed.*

Let V tons = value of one rivet = maximum shear load per
pitch length.

Let p ins. = pitch of rivets (single riveting as in figure).

Let D ins. = depth of web (sometimes taken as depth be-
tween rivet lines).

Let S tons = shear force at the portion of the girder where
the riveting is being considered.

Applying the above result we get

\a

p-

In double riveting, asin 5" X 5" or 6” X 6" angles, V = value
of two rivets, and ‘ p ’ represents the straight line pitch.

EXAMPLE. A plate girder of depth (web) 3’ carries a total
U.D. load of 8o tons. The web is 3" thick and 3" diameter rivets
are used. Find the maximum permissible rivet pitch at the

- girder ends.

The value of one rivet in this case = dif, = (§ X § X 12)

tons = 3-37 tons.

Dot ="g-

Method 1. S.F.maximum = \;V = 8—9—2@5 = 40 tons.

-. Shear load per foot of depth = 4})9 tons.

.. Shear load per foot length of girder = ";’Q tons.

Number of rivets required per foot = 439 +~337=4,

i.e. the maximum pitch = 3".

VD 3:37 X 36" ”

Method 2. p = ‘§' = "—‘74~0—3*‘ = 3.

The rivet pitch may be changed to 4", if desirable, at the
section of the beam where the shear force has fallen to a value
S = 4\%, i.e. 3 372;)(_‘36 tons = 30 tons.

This position may be fixed by means of the S.F. diagram, or
by calculation.

* See Structural Engineering, by Husband and Harby.
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The rivet pitch in the flange plates will normally correspond
with that in the ‘ angle to web ’ connection.

Shear Reinforcement in R.C. Beams.—I'ig. 117 illustrates
how the induced tensile and compressive forces are resisted in

Tensile rorce C'Om/o'/'es.)‘;ve
vy Steel Force cru
Concrele

F1G. 117.—SHEAR REINFORCEMENT IN R.C. BEAM.

the case of a reinforced concrete beam. The weakness of
concrete in tension necessitates steel reinforcement. As the
B.M. falls away, some of the main reinforcing bars may be
dispensed with, as far as their employment in providing
moment of resistance is concerned. These are turned up to
provide the necessary resistance in tension. In the diagram
the inclined steel cuts the tension planes (as in Fig. 111(d)) at
right angles, thus taking up the stress brought about by the
positive vertical shear force in the beam.

EXERCISES 9
(1) Draw the shear force diagram for the beam given in
Fig. 118. Show that the area (in cwts. ft. units) above the
base line equals that below. Why is this ?

2cnts //‘6 &Scwks

s’ 2 ‘_2_:_|
10’ ———-——-?
Fic. 118.
(2) The maximum B.M. for the beam given in Fig. 119
occurs at 9’ from the left end. Verify this by drawing a shear
force diagram, and calculate the value of B.M. maximum.

dewls/FE exlra load 22cnts
2 cnts [FE t/vvugh’guél
77—

-

8"0’—-{

’ " 7‘0” A
et —_— 20-0 — —

—ty

FiG. 119.
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(3) Deduce the load system which will result in the B.M.
diagram given in Fig. 120. (Construct the S.F. diagram by the

.ﬁ‘-—-

22
Tons

F1G. 120.

slope of B.M. diagram method and determine the loads from
the vertical jumps in this diagram.)

(4) Obtain (without drawing a S.F. diagram) the position,
and value, of the maximum B.M. for a beam of 12’ span, which
carries two U.D. load systems, viz. 2 tons per foot for the whole
span and 4 tons per foot in addition for the first 3’ of span,
measured from the left end.

5) A rectangular beam section, 2” wide X 6 deep, is sub-
jected to a vertical shear load of 24 tons. Calculate the inten-
sity of shear stress at a level 2” below the upper surface. Obtain
the value of maximum shear stress, &n’c‘i construct a diagram
showing the variation of shear stress down the section.

W) A steel joist scction has the following dimensions :

ange width = 8”, flange thickness = 1”, overall depth = 16",
and web thickness = }". Construct a diagram showing the
shear stress distribution across the section, for a vertical shear
load of 21 tons.

(7) A plate girder carries a total U.D. load of 240 tons.
Taking the particulars given, determine a suitable rivet pitch
for the girder near the supports.

Depth of web = 48",
Thickness of web = }”.
Rivet diameter = }” (f, = 12 tons/in.3).

The flange angles are 6” x 6” X §”, requiring two lines of
rivets.



CHAPTER X
FIXED AND CONTINUOUS BEAMS

Fixed Beams

THE bending and shear cffects produced in a beam by a given
load system depend upon the way in which the ends of the beam
are held in position. In Fig. 121(a), the ends are subjected to
no end restraint, and the beam is said to be simply supported.

(@)

__;<<—an9/‘70,71£’;£$ —»&

Horéson L‘apcom of Cbnw%‘f,mw

FiGg. 121,

In Fig. 121(b), the ends are constrained to bend wuntil the
tangent to the beam at each support is horizontal. Such con-
straint represents perfect fixture, and the beam is termed a
fixed beam. 1t is important to note that a beam is only par-
tially fixed if it does not fulfil the qualification of zero slope
at the supports. Most practical beams belong to the partially
fixed class and, for design purposes, are treated as simply
supported. A beam rigidly fixed at its ends by top, web and
base cleats (or by welding) to a stanchion transmits a moment
to the stanchion which the latter must be capable of resisting.
The nature of the bending moments set up in a fixed beam will
now be considered.

Relationship between Fixed and Overhanging Beams.—The

negative support moments necessary to bring about the con-
165
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dition of fixed ends may be produced by overhanging the ends
of the beam, as shown in Fig. 122. In (a) we have the ordinary
B.M. diagram, as for free ends. In (b) is shown the B.M.

7

F16. 122.-~ B.M. DiIAGRAM FOR FIXED BEAM.

diagram (negative) for loads W, and W,—the loads intro-
duced to create the required ‘end-fixing’ moments. The
positive and negative diagrams are superimposed in (c), the
final net B.M. diagram being shown hatched. It should be
noted that, in all such diagrams with a sloping base line, the
B.M. values ave obtained by scaling vertically—and not at right
angles to the base. The B.M. diagram for a fixed beam-is-thus
the summation of two diagrams : (i) the ordinary B.M. diagram
as for ends free (a positive diagram), and (ii) a negati
diagram in the form of a trapezium. _The problem in any given
- case is, therefore, to obtain the dimensions of the negative fixing
lrapezium in order fo superimpose it on the free-end B.M.
idiagram which is first drawn by the usual methods,
Properties of the Fixing Trapezium.—The negative fixing
trapezium referred to above has two important relationships
with the ‘free-end’ B.M. diagram. These are determined by an
application of Mohr’s theorem for the deflection of a cantilever.
It is assumed in Fig. 123 that the ends A and B are at the
same level, and that the beam is of constant section. We may
regard the beam as being a cantilever loaded with a positive
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and with a negative B.M. diagram, in such a way that, with
respect to the support end A, the deflection at the end B is zero.

Area of Trzpoescurr
=2 Area of Free’

Ma| [cG.of T
ra,oejwmf

' 82%*“-[_ xxe -
o —-.x:-=>~|‘—- / —>
=‘.——- Spartv = —_ -——-r-;

F1G. 123.

Similarly, the support end may be assumed to be at B, and
the deflection at A taken as zero. Using the symbols given
in Fig. 123, and expressing Mohr’s theorem for the case of the
support at A, we get :

Ax, _ Ax, R
El EI — ™
. Alxl = A2x2°

For the support at B, and zero deflection at A, the theorem
gives:
Al —m) Al —m) _
El EI
Al — %) = Aol — x),
ie. Al — Ax, = Ad — Aqx,.
But as Aix, = Asx,, Al = Al
ie. A, = A,
and x, = x,.

The following relationships are thus established :
(i) The area of the fixing trapezium is equal to that of the
‘ free ’ B.M. diagram.
(ii) The centres of gravity of the two diagrams lie in the same
vertical line, i.e. are equidistant from a given end of the beam.
s.s.—6*
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Fixed Beam with Central Concentrated Load

The fixing trapezium is in this case a rectangle, as its centre
of gravity has to be at mid-span. It must clearly also have half
the height of the triangular free B.M. diagram in order to be of
equal area. The net diagram for this case is, therefore, as
shown hatched in Fig. 124. The maximum B.M. is halved by

Fig. 124.—Fix:p BeEam wiTH SINGLE CONCENTRATED CENTRAL LOAD

fixing the ends of the beam, but the supports are required to

resist a B.M. of Vgl, which is equal to that at the centre of the

fixed beam.

Fixed Beam with Uniformly Distributed Load

The fixing trapezium will again be a rectangle (I'ig. 125).
The area of the parabolic free B.M. diagram = £ base X
height, so that the height of the rectangle for equal area must

475(‘0.‘5 UD. Load W
-g__ e i -
=
i

Fie. 125.—Tixep Beam with U.D. Loap.

Wi 1 .
; X 8 —-YV-. In this case

it will be seen that the maximum B.M. is not at the centre of
the beam, but at the supports. This illustrates the im-

beg X height of parabola, =
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portance of the consideration of the bending moments
transmitted by such beams to members with which they are
connected.

Fixed Beam with a Symmetrical Load System

In all such cases the fixing trapezium will clearly be a
rectangle, as both c.g.s will be at mid-span.  The height of the
rectangle is found by equating its area to that of the free B.M.
diagram.

ExaMmpLE.  Construct the B.M. diagram for the fixed beam
given in Fig. 126,

éybns &SNS 27ons

¢<5.+_ /o.’—J‘—. 0" e S5k
7 V ) v
A. C

-~ a0 — =
S 7ons X S 7S
Baseline !
At b ?
N
Ke | K "% Ky
' O T T |

VAR s |

'FSI‘:(-- 70" e /O —*53;

't 120

Free B.M. diagram :
R, = Ry = 10 ‘gzons
BM; = (5 X 5) tons ft. = 25 tons ft.
BMp = [(5 X 15) — (2 X 10)] tons ft. = 55 tons ft.

Area of diagram =2 (5 225> +2 (25—j 55 X 10) tons ft.?

= (125 + 800) tons ft.* ,
= 025 tons ft.2.
Fixing trapezium :
The height of the rectangle will be g25 tons ft.* + 30 ft.
= 30-83 tons ft.
The top of the rectangle forms the base line of the ‘ fixed
beam ’ diagram,

= 5 tons.

v
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Shear Force Diagrams for Fixed Beams

In Chapter IX it was explained that the shear force at any
section of a beam is given by the slope of the B.M. diagram at
the given section. The slope at any section will remain un-
altered, if the base of the B.M. diagram remain horizontal. In
all cases of symmetrical loading, therefore, the shear force
values will be identical for both ‘free’ and ‘fixed ended’
beams, and the shear force diagrams will be the same for both
cases.

If M,, the fixing moment at A, is not equal to Mg, the
fixing moment at B, the base line for the fixed beam B.M.
diagram will be inclined, so that all slopes will be altered—but
by the same amount, i.e. by the increase in slope. The positive
increase in slope = My }M—B, so that it will be necessary to
lower the base line of the original ‘ free * S.F. diagram by this
amount, for the fixed end condition. If the value is negative,

i.e. if My is greater than M,, then the base line must be
raised.

Fixed Beam with a Single Non-central Concentrated
Load

This case lends itself to a simple solution derived from the
properties of a trapezium.
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In Fig. 127 M = the free B.M. at C
__ Wab
=
Equating the areas of the triangle (representing the * free’
diagram) and the ‘ fixing trapezium’
Me x 0 _ My + My
2 2
i.e. MC = MA “i‘ MB'

A

Distance of c.g. of triangle from B = lz + ; <l2 - a>

l

_ a_ 20—a
2

l
T6e737 3
Distance of c.g. of trapezium from B (using the standard
expression for the c.g. position in a trapezium)
i ZMA + MB X l
— 3(M, 4 My) '
Equating these distances,
2M, + My ><lzzl—a
3(Ma + Mpg) 3
Let My = x Mj.
(22 Mp -+ M)l 2l —a
36Mp + M) 3

x40l _2l—a . _

) ,i.e 6xl 4 30 = 3(x + 1) (20 — a).
6xl + 3 = 6lx — 3ax - 6/ — 3a.

3ax + 34 = 3l = 3a + 3b.

. b
.. ax = b,le. x =
a

ey

LMy
) MB_a
My b b
MA+MB a b1
But MA+MB=M0.
% MA =? X Mc.
and My = § X Mc.
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M, and M; having been obtained, the base line for the
fixed beam can be constructed. The final diagrams are as

Y/ -/-Zxcn.g/‘bmmt at FF?
178 =fixing Moment atB
AT S e
'%0 + WTA wa
2 2 N N §'s
1 A — d
elere
end/s Fexed

Fig. 128.—Fixep Bram wiTH SINGLE NON-CENTRAL LoOAD.

shown in Fig. 128. The base line of the S.F. diagram is
lowered, the broken line representing the base for ‘ ends free.’
ExampLE. Construct the B.M. and S.I. diagrams for the
fixed beam given in Fig. 129.
J6cwts

Y TY ey

v
Y
0u

: Bendung porment Dcagram.. '
§"f -4 Base lire forFree end's’
k| U R A

SEA Dt.'agram// ? — j?%
Base lene s lonerect
dcsf"am.a.c: 2k5/s cwb/fls/ *

FiG. 120.
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Mo (free BM. at €) = 3% X8 X4 ot gt — o6 cwts. it.

M, = I; X Mg = (I% X 96) cwts. ft. = 64 cwts. ft.

Mg =‘l1 X Mg = (142 X 96> cwts. ft. = 32 cwts. ft.
The diagram is constructed as shown.

R, (for free ends) = 36 x 8 cwls. = 24 cwts.

Ry (for free ends) = 3—61?4 cwts. = 12 cwts.

The base line for the S.F. diagram (free ends) is shown by the
broken line. For fixed end condition this must be lowered by
M, — M;

! 064 — 32

== cwts, ==

32
12 I

2 cwts. == 2% cwts.
Fixed Beam with Several Concentrated Loads

The B.M. diagram for free ends is first drawn. The fixing
moment at the left end, corresponding to each load taken
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separately, is computed and the total fixing moment obtained
by addition. Similarly the total fixing moment at the right
end is determined.

ExaMpLE. Fig. 130 shows a fixed beam carrying two con-
centrated loads. Construct the B.M. and S.I. diagrams for the
beam.

Free B.M. diagram :

R, X 10 = (6 X 2) + (4 X 6) = 36.
R, = 3-6 tons, Ry = 6-4 tons.
Mg = (R4 X 4) tons ft. = 14-4 tons ft.
Mp = (R X 2) tons ft. == 12-8 tons ft.
Note : Mg and My, are ‘ free ’ moments throughout.

M¢ (due to 4 tons load alone) = 4 x 160 * 4 tons ft.

= g0 tons ft.
-. M, (due to 4 tons load alone) = 9.61(? 6 tons ft.

== 5-76 tons ft.
. My (due to 4 tons load alone) == 9.61(? 4 tons ft.

= 3-84 tons ft.
My, (due to 6 tons load alone) = 6 XI?) X2 tons ft.

= 06 tons ft.
.. M, (due to 6 tons load alone) -= 9.615 % tons ft.

= 1-92 tons ft.
-. Mg (due to 6 tons load alone) := Q.6I(§< 8 tons ft.
= 7-68 tons ft.
Total M, = (576 + 1-92) tons ft. = 768 tons ft.
Total Mp = (3-84 + 7-68) tons ft. = 11:52 tons ft.
The diagram is constructed as indicated.
M; is greater than M,, therefore the base line of the free
end S.F. diagram must be raised.
M, —My 768 — 1152
A 10
= — -384 tons.

tons
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Deflection of Fixed Beams

(a) Fixed Beam with Single Concentrated Central Load

Fig. 131 illustrates a convenient method of solution. The
beam is regarded as being a double inverted cantilever.* The
cantilever shown to the left of the central sectioh is loaded with

T M

V.

2
— & —-—

\ + 7RIANGLE <X I
,-—,?fcrw N |

¥ TWZTTRUTT

"’—g 2al 7“‘ ki S
::tj __]agfwfe»;{a?z&m

Tangent
%L- —;‘gzjon&bd

! pe, o/‘ conlratlexure
FiG. 131.

two B.M. diagrams, and by applying Mohr’s theorem for the
maximum upward deflection y we get :

SO e
y= EI = EI 3 8 "2y

1 /Wi Wl")

TEI \ 48 64
_ 1w
T 192 EI’

(b) Fixed Beam with Uniformly Distributed Load
Adopting the same method as in the last case, the expression

for y (Fig. 132) = ‘EI

S G )~ (WD)
3 2 8 16 12 2

1 /5Wi Wl’)

~ EI 384 96
1 Wp
=384 EI'

* See Experimental Building Science, Vol. 11, Manson and Drury.
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For other cases of loading, the graphical method given later
may be employed.

Points of Contraflexure

These are the points in a beam at which the character of the
bending changes from positive to negative, or vice versa. In
the case of a single central load (Fig. 131) the points are clearly
situated at one quarter of the span, respectively, from each
support. In Fig. 132, in which the load is uniformly dis-
tributed, the points can be fixed by equating the general
expression for the ‘ free B.M. ’ at a given point in the span to

Wl, the end fixing moment. If w be the load per unit

run, the ‘ free’ B.M. at x from the left end = zpzlx — w:’_
Lwlx wxt wlt
2 2 12
6x* —6lx I8 =0
6l /3600 — 24 ™
- 1z T2 12
= 50 4 289/

= 211/ or +78ql,
i.e. the points of contraflexure are 211/ from each support.
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Continuous Beams

A continuous beam is one which covers more than one span,
so that it has at least three supports. Continuous beams are
not so common in steelwork as in reinforced concrete. = The
calculation of B.M. values for a beam of this type is a reversal of
the normal procedure in B.M. calculations. In the case of
continuous beams the B.M. values are determined first, and the
support reactions deduced therefrom. Evaluations of bending
moments are effected by means of a theorem known as the
‘ theorem of three moments.” A proof of this theorem will be
found in books on the theory of structures.

Theorem of Three Moments

In Fig. 133 we have a continuous beam for which the free
B.M. diagrams are shown for two adjacent spans. These
diagrams are drawn as if AB and BC were separate beams,

™y Ve !

:
Area=F Area = A

F16. 133.—CoNTINUOUS BEAM.

Shaels J 5[ k2
|

having freely supported ends. Owing to continuity there will
be bending moments at the supports A, B and C—
similar in character to the fixing moments in fixed beams. The
theorem connects up the values of these three ‘ moments’
with quantities derived from the free B.M. diagrams.

If A, be the area of the diagram on span AB, and x, its
c.g. distance from end A, and if A, be the area for span BC,
and x, the c.g. distance from end C, the theorem is expressed
as follows :
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Myl +2 My (b + &) + Mo 2—6<Al‘ +A;:‘z>

M,, My and M, represent the mumerical values of the
support bending moments at A, B and C respectively.

The theorem assumes uniform beam section throughout, and
is true only provided the supports at A, B and C are at
the same level.

Expression of the Theorem for U.D. Load.—If for each span
in the series of spans the loading be uniformly distributed, the
theorem may be expressed in a simpler form.

In Fig. 134, A, = % base x height = 2l X wilit _ wiby?

' 3 3 8 12

and x, =lz‘ Similar values will be obtained for the second

span.
i per undl | wp s wrndl

WSS NNNNNANNNRNT 74NN NN

..........................

F1G. 134.—UNIFORMLY DISTRIBUTED LOAD.

Inserting these special values in the general expression of the
theorem, we get :

€L wl
MAll+2MB(l,+l,)+Mclz=6< 12 X2+ 12 Xz)
A A
= }(wd® + wals?).
ExaMPLE (1). Draw the B.M. and S.F. diagrams for the
continuous beam given in IFig. 135. The ends A and C
are freely supported.

t

Free B.M. diagrams : ,
Span AB. B.M. maximum = Vgl =% >8< 0 cwts. ft.

= 25 cwts, ft.
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Span BC. B.M. maximum = \g/l _ 20 X820- cwts. ft.

= 50 cwts. ft.

The free B.M. diagrams are parabol®, as shown.
Expressing the theovem of three moments :
M,y -+ 2Mp (b + k) + Mok = § (wids® + wala?).
» == M = 0, as the extreme ends are * free.’
.. 2Mp (10 4 20) =14 (2 X 10% 4 I X 20%).
60 Mp = 2500.
... Mg = 41-66 cwts. ft.

The negative support B.M. at B is therefore 41-66 cwts. ft.
This is set up to scale at B, and the B.M. diagram completed
by drawing in the base line. It is not necessary to reduce the
diagram to a horizontal base, provided B.M. values are measured
vertically from the jointed, inclined base shown.

Support Reactions,
These are obtained by the ordinary methods of moments,

but care must be taken with the sign of a support moment.
Taking moments about B :

(Ry X 10) — (20 X 5) = — 41-66 (note the sign).
10 R, = 100 — 41-66 = 58-34.
R, = 5-834 cwts.
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Moments about B (to obtain R, ) :
(Re X 20) — (20 X 10) = — 4166 .
20 Rg = 200 — 4166 = 158-34.
Re = 7917 cwts.
Moments about C :
(Ry x 30) + (Ry X 20) — (20 X 25) — (20 X 10) = O.
20 Ry = 500 + 200 — 175-02 = 524-98.
Rp = 26-249 cwts.
Check : R, 4- Rp + R¢ = (5-834 + 26-249 + 7-917) cwts.
= 40 cwts. (load on beam).
The S.F. diagram is constructed by the rules given in
Chapter IX, page 152.

2 lons per /ooé—‘ /Con,oer/‘oot—' 3 Lans perfook

IITIPIOIIIIIS
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) | |
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)] 3 | |
i 29 R o, .
oy + 1IN 5 |
i i _ £\ ¥ T
} N _ o |
_ ~ oFf 8 M occur m él.\ | — a9
oy PN fAe S. £ aeagramy | Q. :.:
éop N crosses tho base Lone. W) L ]
9 -
1R .
ls/zear Force DLagrasm .~

I'16. 136.

EXAMPLE (2). Fig. 136 shows a beam continuous over three

spans, the extreme ends being freely supported. Construct the
B.M. and S.F. diagrams for the beam.

Free B.M. maximum values :

Span AB: B.M. max. = Vgl . 0o >8< 39 _ 225 tons ft.
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WL _ 40 x40

Spc;n BC: B.M. max. = g = g = 200 tons ft.
Span CD: B.M. max. = V;’l _ 0o >8< 20 150 tons ft.

Expressing the ‘ theorem of three moments ’ for the first two
spans, viz. AB and BC, we have :
My, 4 2My (4 4 22) + M, = Hwil® + wily?).
But M, =o. -
.. 2Mg (30 + 40) + (M¢ X 40) == }(2 X 30® 4 I X 40%).
140 My -+ 40 M¢ = 29500.
o 7 My + 2 Mg == 1475 (1).
In order to find My and M we require another simultaneous
equation. This is obtained by considering spans BC and CD.
Mgl, + 2 M (4, + &) + Mpls = $(w.l® + wily?).
But M, = o.
.*. 40 My -+ 2 M¢ (40 + 20) = (1 X 40° + 3 X 209).
40 My + 120 M = 22000.
My + 3 M¢ = 550 (2).
Combining these equations :
7 My + 2 M¢ = 1475 (1)
Mg + 3 Mg = 550 (2).
Multiplying (2) by 7, and subtracting (1),
19 M¢ = 2375.
Mg = 125 tons ft.
and My == 175 tons ft.
Support reactions :
(Ra X 30) — (60 X 15) = — 175.
R, = 24-16 tons.
(Ry X 40) + (2416 X 70) — (60 X 55) — (40 X 20) = — 125.
Rp = 571 tons.
(Rp X 20) — (60 X 10) = — 125.
Ry = 2375 tons.
(R¢ X 40) + (2375 X 60) — (60 X 50) — (40 X 20) = — 175.
R¢ = 55 tons.
The sum of the reactions is 160 tons, which checks the numer-
ical working.
ExXAMPLE (3). AC (Fig. 137) is a continuous beam, freely
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6 Tons
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supported at A and C. Construct the B.M. and S.F. diagrams
for the beam, which carries the two given concentrated loads.
Area of free B.M. diagram for AB = A, = (4 X 16 X 16) tons ft.?
= 128 tons ft.2.
Area of free B.M. diagram for BC = (} X 18 X 24) tons ft.?

.. A, = 210 tons ft.2
%, = 8’ (measured to A).
%, == 8’ (measured to C).

My + 2My (4 + 1) + M, = 6< Hr A;xe
MA = Mc = 0. '

.. 2My(16 -+ 18) — 6<128 X8y a0 X8
68My, = 6  160.

Mj = 1412 tons ft.
Reactions at supports :

{(Ra X 16) — (4 X 8) = — 14°12.
16 R, = 17-88.
R, = 112 tons.
(Rg x 18) 4 (Ry X 34) — (4 X 26) — (6 X 6) = o.
18 Ry = 36 + 104 — (34 X 1°I2).
18 Rp = 101-92.
Rp = 5-66 tons.
(R¢ X 18) — (6 X I2) = — 14°I2.
18 Rg = 72 — 14°12 = 57-88.
R¢ = 3-21 tons.
The diagrams are completed as shown in Fig. 137.
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Graphical Method for Deflection

The method shown in Chapter VIII for obtaining the deflection
of a simply supported beam graphically, may be extended to fixed
and continuous beams. Fig. 138 illustrates the method applied
to one span of a continuous beam. Negative areas are drawn

. Conlerwouvs Bear

F }

1
8 M. Deagram curded wrlo
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upwards in the polar diagram, otherwise the procedure is as for
simple beams. As the slope in space A = zero, in the
example chosen, the pole o is conveniently chosen on a level
with point a in the polar diagram. This is done to obtain a
horizontal base for the deflection diagram.

Characteristic Points

Bending Moment and Shear Force diagrams for fixed and
continuous beams are sometimes constructed by the aid of
points termed characteristic points. The method is par-
ticularly useful when the conditions are rather complicated for
the use of the ‘ theorem of three moments.” The theory is due
to Professor Claxton IFidler. Readers interested in the applica-
tion of the method may with advantage consult ‘ Selected
Engineering Paper No. 46’ of the Institution of Civil Engineers.
This paper, entitled ‘ Characteristic Points,” is written by Dr.
E. H. Salmon, M.Inst.C.E., and in it the author shows how the
method may be developed and extended. It will be only
possible here to refer briefly to the use of the theory in a few
of the examples already considered.

Each free B.M. diagram for a span in a continuous beam (or
for a given fixed beam span) will have two characteristic
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points.  To obtain these points the span is divided into three
equal parts, and, at the third points in the span, ordinates are
erected of a certain height. The tops of these ordinates are the
characteristic points required.

For a given span AB, the ordinate nearer A must have such
a height x as to satisfy the following equation :

x X span? = twice the moment of the free B.M. diagram
about B.

Note that for the ordinate nearer A, moment is taken
about B, and vice versa.

Fi1G. 139.—CHARACTERISTIC POINTS.

Applying the rule to a parabolic B.M. diagram (Fig. 139) of
height % we have:

xxl’:zx(lexh)x(l)
3 2

h

F1G. 140.-~CHARACTERISTIC POINTS.

The points are shown as C, and C, in Fig. 139. For

the case of Fig. 140 (representing the B.M. diagram for a single
central load) :

xxl’:zx(fxlxh>x-l<.
2 2
h

X = _.
2
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Having constructed the free B.M. diagrams in the usual
manner, the base line is drawn in—using the characteristic
points—with the aid of the following rules :

Fixed Beams.—Simply draw the base line through the two
characteristic points. This clearly gives the required B.M.
diagram in the cases given in Figs. 139 and 140, and should be
tested for the other fixed beam diagrams already taken.

Continuous Beams.—The method is a little more complicated,
but will be set out as briefly as possible.

Take the example of Fig. 141 (previously solved in Fig. 136).
The point C, (being adjacent to a free end) is not required.
Base lene determuned by Ereal .

The base line must obviously pass above C,, through C, or
below C,. If above C,, it must be below C; ; if below C,, it
must be above C;, i.e. it must alternate, above and below, for
either side of a support. Tor two points, such as C; and C,
in the same span, there is no such required relationship. If
the base line passes through C,, it must pass through C; (but
not necessarily through C;). There is one further relationship,
governing the base line position with respect to C, and C,4
(or C4 and Cy).  The respective vertical distances between the base
line and a pair of such points must be inversely as the spans in
which they are situated. Thus the distance below C, (in the
example of Fig. 141) is to that above Cg, in the same ratio, as

span BC is to span AB, i.e. gg. The method is not so involved

as it appears in a description, and after a few trial lines the
correct base line can usually be fitted in. The reader is advised
to draw out the given example to a fairly big scale, and to check
the base line position by the support moments already com-
puted for this case.

For the example given in Fig. 142 (see also Fig. 137) the
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Base line foxed by Ercal
[}

FiG. 142.

characteristic point is just below the base line for span AB
and slightly less above for span BC, the ratio of distances being

18:16. Its position in AB will be —If ft. (= 53 ft.) towards A

16T.F.
2

from B, and the height above base AB = = 8 T.F.

(to scale). In BC it will be 138 ft. (= 6 ft) from B, and x

above base where

_ 18 X 24 [_ twice moment
x X 18 =2 X" %8 | = ofarea about C

i.e. x = 104 T.F. (toscale). [T.F. = tons {t.]

The characteristic points for an unsymmetrical B.M. dia-
gram—as that for span BC in the last example--will not, of
course, both be at the same height above the base line of the
free B.M. diagram. To find the height of C,, if it were
actually required, the moment of the B.M. diagram area would
be taken about B.

EXERCISES 10

(1) A steel beam of 10’ span carries a total U.D. load of
13 tons. Taking a working stress of 8 tons/in.?, calculate the
necessary section modulus for the beam, assuming () ends
simply supported, (b) ends fixed. Draw the B.M. and S.F.
diagrams for case (b).

(2) An 8” X 4" x 18 Ib. B.S.B. (Z = 13-91 ins.?) is securely
held by its end connections to pillars, so that the ends may be
regarded as being completely fixed. The span is 8’ and the
loads carried are 6-9 tons (central) plus 3-45 tons (uniformly
distributed). Find the B.M. transmitted to each pillar, and
deduce the maximum stress in the steel of the beam.
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(3) A beam, fixed at both ends, has a span of 21’. A con-
centrated load of 9 tons is carried at 7’ from the left end.
Calculate the fixing moment at each support, and draw the B.M.
and S.F. diagrams for the beam.

(4) Draw the B.M. diagram for the example given in Exercise
(3) by means of characteristic points.

(5) A continuous girder of 30’ total length, and of constant
section, carries a uniform load of 2 tons per foot run. It rests
freely on three supports, at the same level, one at each end and
one 12’ from the left end. Calculate the B.M. at the inter-
mediate support and the reaction at each support. Draw the
B.M. and S.F. diagrams for the beam.

(6) A beam, fixed at one end, is propped at the other end so
that both ends of the beam are at the same level. Assuming
the beam to carry a total U.D. load W, obtain an expression
for the value of the pressure on the prop. (Assume the beam
to be half a continuous beam of two equal spans, with a load
W on each span.)

L__
b' Thickressof wall - 1 FE.| | 4_
X \ Denscly = /cwé/a/ FE. N.

R
/ k /7
t«z A -6 -5 —-'f \\
free sypport /free suaport.

Fra. 143.

(7) Fig. 143 shows a continuous beam carrying a wall of
uniform thickness. Calculate the support bending moments
and reactions, and draw the B.M. and S.F. diagrams for the
beam.

(8) A fixed beam of 12’ span carries two concentrated loads,
8 tons at 3’ from left end and 4 tons at 3’ from right end.
Calculate the positions of the characteristic points and complete
the B.M. diagram. Obtain the end fixing moments and draw
the S.F. diagram for the beam,



CHAPTER XI
PRACTICAL DESIGN OF COMPRESSION MEMBERS

Introduction.—In the computation of the strength of a com-
pression member, several factors have to be considered which
do not influence the calculations in the corresponding example
of a member in tension. In the latter case, the question of
length does not usually arise. Further, the methods by which
the ends of a tie are fixed are important only in so far as they
may influence the axiality of the load. In a compression
member, these considerations are of vital importance. The
word strut will be used in a general sense throughout the
chapter to include all members in compression, such as
columns, pillars or stanchions.

Length of a Strut.—The terms long and short are of a special
relative character, when used in connection with ‘ struts.” A
long strut may be actually shorter than a short strut. The
terms have reference to the relationship between the actual
length of the member and its cross-sectional dimensions. Thus
a concrete cube, 6” high, would be a short strut, but a needle
2" long would be a long strut.

Long struts are liable to failure by side-bending or buckling,
as well as by direct crushing, and the ‘ longer ’ the member is,
the greater is the importance of the buckling tendency.

Classification of Struts

(@) Short struts—in which failure is due to the direct crushing
of the material, without the complication of buckling. The
design of such members depends simply upon the permissible
working stress in compression for the material. The London
Building Act permits a maximum strut stress of 6-5 tons/in.z.
. The maximum value given in the By-laws is 7-2 tons/in.1.

d) Medium struts—in which failure is a combination of
“Crushing (direct stress) and buckling. This group includes the

majority of practical struts, and is discussed in detail later.
' ) ' 188
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« (¢) Long struts—in which the direct stress plays an unimport-
ant part in comparison with that due to buckling.

The actual numerical limiting values to be given to each of
these groups cannot be assigned, until we have considered the
exact way in which the cross-sectional dimensions enter into
the question of length.

Radius of Gyration

In Chapter VI two properties of section were considered.
These had important implications in the design of beams. The
property of section, now to be considered, is of equal importance
in the design of ‘ struts.” It involves the ‘ moment of inertia ’
of the strut cross-section, and also its ‘ sectional area.” Ex-
periment has shown that the association of these two quantities
is in the form of the square root of their ‘ ratio.’

Fic. 144.

If Ixx = moment of inertia of the section given in Fig. 144
about the axis XX, and A = its sectional area, the radius
of gyration of the section with respect to the axis XX is given

by the expression ,\/ Iizi_

Various symbols are employed to denote this property. The
L.C.C. By-laws adopt the letter », B.S.S. 449-1937 uses &,
while text-books frequently refer to the radius of gyration as g.

I
rxx = /\/%.

Similarly, ryy = /\/ IX".

It is possible to constrain a strut so that its tendency to bend
must be about a particular axis of its section. In the usual case
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no such restraint is present, and the radius of gyration has to be
evaluated for the principal axis of section for which it has the
lesser value. This is termed least  (or least k, etc.).

Calculation of Radius of Gyration Values

The following examples illustrate the nature of the calcula-
tions involved in the derivation of this property. Rivet holes
are not allowed for in obtaining » values, the gross section
being always taken.

EXAMPLES
(1) Find rxx for a rectangle b (wide) X d (deep) (Fig. 145).
e
I b6+
%
¥
X—'- —X
NZ %
5 Fi1G. 145
Ixx = 12. A = b X d

Txx = /\/E: = M li_ _ 4
Xx = A by d = A1z
Similarly, ryy = \/bfz.

(2) Obtain an expression for rxx (i.e. ‘7’ about a diameter)
for a solid circular section of diameter D (Fig. 146).
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(3) Calculate the value of least v for the joist column section
given in Fig. 147.

-4
m}"

XS

© -

&8

[J]

RN

KRR

Fic. 147.

Ixx (from tables) = 288-69 ins.*.
Iyy o » = 5474 1ins.t.

= 16-18 ins.2.

A’ ’” ”
ST V288'69 sz
rxx «/ A 16-18 == 422 Ins,
_ E_M54-74_, -
Tyy = M A 1618 1-84 1ns.

Least r is therefore 1-84”. It is clear that the least 7

value must be associated with the least I value.
The values above may be checked by means of the tables

given on page 227, in which the least 7 values are emphasised

by being printed in bolder type.
(4) Find the values of rxx and ryy for the compound column

section of Fig. 148.

|Y
o — 12— iy 1”
E==—==14
|, |
x-| -l - x 2"
ek
K-8+— - T\/’
Fic. 148.

Ixx for B.S. section = 288-69 ins..
Ixx for plates = 2 [Igq + AD?]
=2 12‘1?;_7_;_’ + (12 X 1 X 5-5’)] = 728 ins...
S.8.—%
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Total 1xx = (288-69  #28) ins.4 = 101669 ins.*.
Total area = (1618 4 24) ins.® = 4018 ins.2.

_ g_ M1016-69_ o
rxx = /\/ A = 4—O.i~8 = 5 03 1ns.

Iyy for B.S. section = 5474 ins.4.

Iyy for plates = 2 <I X IZTN _ 588 ins.t.

12
Total Iyy = (288 4 54-74) ins.* = 34274 ins.*.
Ly _ 34274 _ 5.0z i
ryy = /\/ 018 2+92 1ns.

(5) Calculate the values of the greatest and the least radii of
gyration respectively for the compound column section given in

Fig. 149.

Fi1G. 149.

From section tables (page 107) the following properties of a
10" X 6” X 40 lb. B.S.B. are obtained.

Ixx = 204-80ins.%, Iyy = 21+76 ins4, A = 11+77 ins.3,
Total Ixx for B.S.B.s = 2 X 2048 = 4096 ins.4.

Total Ixx for plates = 2 [I‘J——IZ;—E + (14 X 1 X 5'5’)]

= 849-34 ins.*.
Total Ixx for section = (409:6 + 849-34) ins.*
= 1258-94 ins.4,
Total area of section = [(2 X 11+77) 4+ (2 X 14 X I)] ins.?
= 5154 ins.%,

_ 5’"\/125894
rex = «/A = A/ (g ins. =4-g4ins.
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Total Iyy for B.S.B.s = 2 [Igg + AD9)
= 2 [21+76 4 (1197 X 3-5%)] ins.4

= 331-88 ins.*.
Total Iyy for plates = z X II X 14%; ins.4
= 45733 ins.t.
Total Iyy for section = (331-88 + 457:33) ins.¢ = 78g-21ins.*.
ryy = /\/ Tyy _ 78921 _ 3-91 ins.

5I-54
End Fixture of Struts

It is important to distinguish between two terms which are
used in connection with the end fixture of a strut.

A{a) Position fixed.—This mode of fixture implies that the end
~is unable to move its position but also that the strut has free-
dom of bending, just as if the end were held by a pin joint
(Fig. 150 (a) ).

a b

Fi1G. 150.

(b) Fig. 150 (b) illustrates a method of end fixture whereby
the end of the strut is constrained to deflect in the manner of a
fixed beam end. Such end fixture is termed direction fixed.

In the illustrations given later it will be seen that the form
of the curve, into which a strut tends to deflect, depends upon
the mode of end fixture. In each case there is a portion of the
length of the strut which bends as if this part had pin-jointed
ends. The length of this portion is known as the equivalent or
effective length of the strut. The precise value to be taken for
this length depends upon certain practical considerations
(noted later). It will be convenient to explain here, in sum-
mary form, the incidence of equivalent lengths in the various
methods used for strut calculations :
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(a) In formule of the ‘ Euler’ and ‘ Rankine’ type (see
later) the ‘ equivalent length * of the strut must be inserted.
. . {b) The London Building Act gives three separate formule,
the particular formula to be used depending on the nature of
the end fixture.

In these formule, the actual length of the strut must be used.

(¢) B.S.S. 449-1937 and the L.C.C. By-laws revert to the use
of effective lengths, and one table only of working stress values
is given. B.S.S. 449-1937 includes working column stresses
for high tensile steel.

Equivalent Length of a Strut

(1) Hinged ends, i.e. ends ‘ position fixed ’ only.

The strut bends freely from end to end (Fig. 151) and the
¢ equivalent length ’ is the actual length of the strut.

Y
- — € -

——r—---=

=L £=36L E=%L

Fia. 151, FiG. 152. FiG. 153.

(2) Ome end hinged, one end fixed, i.e. ‘ position fixed ’ only
at one end, ‘ position and direction fixed ’ at the other (Fig. 152).
The value ‘% X actual length’ is commonly taken for the
equivalent length in this case.
~ (3) Both ends fixed, i.e. ‘ position and direction fixed’ at
both ends. The equivalent length in this case is half the
actual length—as indicated in Fig. 153.
- (4) One end fixed, one end free, i.e. ‘ position and direction
fixed ’ at one end, and no effective restraint at the other. This
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is the extreme case, and the equivalent length, as shown in
Fig. 154, is twice the actual length of the strut.

It is not easy to decide to which of these four sections any
practical strut in a steel frame should be assigned, but com-
monly adopted standards will be found later in this chapter.

The Strength of Struts

The methods used for determining the strength of struts may
be divided into three groups :

(i) Theoretical methods, based on certain ideal conditions—
exemplified in Euler’s theory.

(i) Methods involving the use of formule having a theo-
retical background, but which are rendered empirical (or
‘ practical ’) by the insertion of ‘ constants,” which are found by
the actual testing of struts. Rankine’s formula is an example
of this group. ‘

(iif) Methods based on lists of working stresses, which are
laid down in regulations issued by local authorities, or in
standard specifications representing the results of research.

Euler’s Theory.—Euler neglected direct stress, and derived
a formula on the assumption that the strut would fail by
‘ buckling.” He assumed that the loading was perfectly axial
and the material homogeneous throughout, and that the length
was such that the assumption as to buckling failure was
permissible. It is of interest to test Euler’s expression for the
ultimate load for a strut by a series of approximations.



196 STRUCTURAL STEELWORK

In Fig. 155, as a first approximation, assume that the strut
bends to the arc of a circle.

y-)

AN

i

B

Yo
F1G. 155
Mz . .
Y = gF1 (for circular deflection).
But M = P X yin this case.
_ Dy
Y = 8EI

or P=l8,><EI.

As a nearer approximation, assume that the B.M. does not
remain constant (as is assumed in circular deflection with a
constant section of the member), but to vary, as in the case of
a beam with U.D. load.

_ 5 We_ 5 WL P
V=384 EI — 48 ° 8 “EI

_5 5 »
—48><M><EI-—48><Py><EI.
6
. P=9° EI
B

Euler in his theory obtained =? instead of 9-6, and defined
P as the least load requived to produce instability. He as-
sumes that the strut remains perfectly straight until this
critical load is reached, and that collapse takes place without
any intermediate state of equilibrium.

T:.

P ~ EL

=~l’
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| = the equivalent length of the strut in ins.
E = Young’s modulus (tons/in.?).

I = least moment of inertia (ins.*).

P = crippling load (axial) in tons.

A factor of safety of 4 is usually used in this theory for mild
steel. The theory gives inadmissible results if the ratio of the
length of the strut to its least radius of gyration is less than
about 110 to 120. )

EXAMPLE. 4 4" X 4" X §" B.S. angle is used as a strut in a
truss. It may be assumed to have ' one end hinged’ and * one end
fixed.” Its actual length is 8' 6".  Calculate the safe axial thrust.

Least I (from"tables) = 2-76 ins.4.

E = 13,000 tons[in.2.

Factor of safety = 4.

Equivalent length of strut = % x 102" = 68".

T e
P = EI = (g, ¥ 13,000 X 2:76 ) tons
= 77 tons.

Safe axial load = 5 = 19 tons.

Rankine’s Formula.— Rankine gave the following formula
for the crippling load of a strut, axially loaded :

Afe

P=_ ., (1}2
Dk

A = sectional area of strut.
I = equivalent length of strut.
k = least radius of gyration.
f. = a practical constant (associated with the yield point of
the strut material) commonly taken as 21 tons/in.? for mild steel.
a = a constant, usually taken as :4'; s for mild steel.
Taking the case of hinged ends (the case for which these
formule are originally considered) it can be shown that for

low values of (i) the formula becomes P = A X f; and for high
values P = the corresponding Eulerian value, so that it agrees

with accepted theory at the extreme values of the I% range.
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ExampLE. Using Rankine’s formula, find the safe axial
load for a 12" X 6" X 44 Ib. joist column 10’ 10" high—to be

regarded as having ends fixed—using the usual constants for mild
s%m?)ﬂ?n_gmo—r‘of safety of 4. The least radius of
gyration for the given standard section is 1-30", and the sectional
area 13 1ns.%

! = equivalent length of column = } X 130" == 65",

o () = 5w () =
k/ ~ 7500 13/ = 7500 33

= i3+><§§ tons = 205-2 tons.
Safe axial load = -29-2:3 tons = 51-3 tons.

London Building Act Column Formulzae.—The London Build-
ing Act, 1930, Third Schedule, paragraph 20, contains the
following table of working stresses, in tons per square inch
of section, for mild steel pillars.* The length referred to in
the first column is the actual length of the member.

MiLp STEEL COLUMNS

Working stresses in tons per square inch of section.
Ratio of length to
least radius of i ahi |
gyration. Hinged ends. | a0ne end hinged, | Both ends fixed.
20 4°0 ! 5'0 ' 6-0
40 35 i 45 ! 55
60 30 | 40 . 50
8o 2'5 ! 35 ! 45
100 20 | 30 : 40
120 10 | 25 3'5
140 00 2:0 30
160 10 2°5
180 o0 15
200 05
210 00

F1G6. 156,—WORKING STRESSES IN MiLp STEEL COLUMNS,

* The word * column ’ replaces * pillar ’ in the more recent L.C.C. Regulations.
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It will be observed that the working stress in the case of each
mode of end fixture gradually falls to a certain value and then
decreases at a uniform but quicker rate. This is illustrated in
the graphs shown in Fig. 157, which give the relationships

between working stress and ivalues for each of the three cases.
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FiG. 157.—LONDON BUILDING ACT (1930) COLUMN STRESSES.

Graph 1 is for ‘ hinged ends.” The maximum working stress
allowed is 45 tons/in.2. The value decreases to 2 tons/in.?

uniformly, the latter stress corresponding to a é value of 100.

This represents the economic limit for this end fixture, as the
working stress rapidly falls for higher values.

Graph 2 is for ‘ one end hinged, one end fixed.” The maxi-
mum working stress is 5-5 tons/in.2, and the economic limit for
l
, = 140.

Graph 3 is for ‘ both ends fixed,” the maximum working
stress in this case being 65 tons/in.%, and the economic limit
160.

The formule corresponding to the three graphs, in their
economic ranges, are simple in form, and may be easily
remembered.

Formulze for working stresses in tons per sq. inch of column
section :

Fixed ends. . 65 — L (maximumé = 160).

407 r
S.S.
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One end hinged.) 1l (maxi I R
One end fixed. | T gqop VTRAXIMUM = 14 )
. l . l
Hinged ends. 45 — 107 (maximum , = 100).
ExaAmPLES

(1) Calculate the safe concentric load for a solid circular mild
steel column, 5" diameter and 10’ high, taking the end fixture as
‘ one end hinged, one end fixed.’

. l
Working stress == 5-5 — 407
r = least radius of gyration = ]: = i == 125",
f; = 11;2%” = g6. This is less than 140, therefore the formula

is admissible.
Working stress = <5-5 — Zg tons/in.?

= (55 — 2-4) tons/in.?
= 3-I tons/in.2

Sectional area of column = mD*_ = j 5 in.? = 19-635 in.*.
.. Safe concentric load == (3-1 X 19-635) tons
= 60-87 tons.

The working stress 3-I tons/in.2 may be checked from graph
No. 2 (fori = gb).

(2) A column 15" high, whose ends may be vegarded as being
fixed, has to support a concentric load of 82 tons Select a suitable
joist column section.

Try a 12" X 8” X 65 lb. standard beam section.

From tables on page 225 least » = 1-85".

b _1sxirz
ey = Trgy =973

From graph 3 [or by formula 6-5 — 4{”] the corresponding
working stress = 4-06 tons/in.®.

The sectional area of this section = 191 in.2.

-. Safe concentric load = (4-06 X 19-1) tons
= 4%7-5 tons.
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