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FOREWORD

THis book would appear to me to fulfil a useful function, in that it
combines the fundamental theory of structures with the practical
knowledge of structural design gained by the author over a number of
years. In his introduction the author has pointed out that engineering
design can be learnt only in practice. While this is perfectly true, the
young engineer can always profit by the experience of the practising
engineer. This work has, in my opinion, endeavoured to indicate the
application of first principles to practical civil engineering problems.

For that reason and also since the author is a former member of my
staff, and well known to me, it gives me great pleasure to recommend
this work especially to the younger generation of civil and structural
engineers.

V. A. M. ROBERTSON
¢.B.E., M.C., M.I.C.E., M.I.M.E., M.LE.E.






INTRODUCTION

THis book is intended primarily for the student or young engineer, and
the theoretical portions should cover the syllabus for the Degree or
Associate Membership examinations in the Theory of Structures; for
that reason many of the numerical examples are based upon questions
set in those examinations, but it is hoped that the book will also prove
of service to practising engineers.

Many books on Structural Design are either too academic or ultra-
practical, that is, based upon rule-of-thumb approximations. Whilst it
is a truism that the art and science of design can be learnt only by
experience, the author feels that there is a definite need of, and demand
for, a book or books which, whilst dealing with the methods of rigorous
analysis, can indicate the application of first principles to practice.
It has been stressed in the worked examples that a designer must
acquire the skill to be able to modify the theoretical requirements to
suit practical design problems.

In presenting the subject the author has assumed a knowledge of
elementary mechanics and mathematics; the use of advanced mathe-
matics has been avoided wherever possible, emphasis being placed upon
the methods of successive approximation which have been introduced
in recent years. The student should find the comparison of methods
of analysis in the later chapters of interest, and he should bear in mind
that no one method should be applied indiscriminately to every prob-
lem. The arrangement of the subject-matter may be unusual, but it
has seemed logical to commence with materials and, having dealt with
the design of main members, to conclude with the problem of Structural
Connexions (a matter which has received scant attention in many text-
books). The student should also realize that the engineer who cannot
prepare satisfactory details cannot design efficiently, and he should
consider connexions in relation to fabrication, erection, and engineering
economics.

The book has been divided into two volumes, the first of which covers
the more elementary part of the subject. The second volume deals with
advanced theory and design suitable for the student specializing in
structures and for the practising structural engineer.

The author wishes to thank all who have been kind enough to read
the manuscript for their helpful criticism and advice, in particular
Mr. R. H. Ray; Mr. A. E. Moxon ; Mr. H. P. Smith, B.Sc., M.I.Struct.E. ;
Mr. A. P. Mainprice, B.Sc., AM.I.CE.; Mr. E. E. Markland, M.Sc.,
AMI.CEE, and Mr. L. R. Waddington, B.A.,, AMI.C.E. Part of the
text and illustrations in Chapter XIV are reproduced from a previous
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publication by kind permission of Mr. G. W. Thomson ; the Tables in
Appendix A and plates in Chapter XV by permission of the British
Steelwork Association; the Tables in Appendix C by permission of
H.M. Stationery Office, and those in Appendix D by permission of the
Institution of Structural Engineers. The illustrations of timber con-
nexions in Chapter XVI are reproduced from the B.S. Specification by
permission of B.S.I. and from photographs kindly supplied by the
Timber Engineering Co., Washington, U.S.A.

The author also wishes to express his grateful thanks to Dr. Orr,
Glasgow University for numerical examples, and to J. B. Dwight, M.Sc.
for his careful reading of the proofs.

Finally, as it is impossible to avoid errors in presentation and com-
putation, the author will be grateful if readers will notify him of any
they may discover, with a view to their elimination.

34, ST. JAMES'S AVENUE

HAMPTON HILL, MIDDX.
June, 1950
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CHAPTER I
STRUCTURAL MATERIALS

THIS book is not intended to deal with the strength of materials at
any length. It is, however, necessary for the designer to understand
the physical properties of the materials with which he is dealing, and
for that reason this chapter has been included as an introduction to
structural theory and design.

Steel is the material most universally used in structural work either
as structural, i.e. fabricated, steelwork or as reinforcement to concrete
in the form of round or square bars, wires, or fabric. Steel manufactured
in this country is very uniform in quality and has displaced cast and
wrought iron almost entirely. It possesses approximately the same
strength in tension and compression and also has a high resistance to
the effects of shear and torsion.

The manufacture of steel is beyond the scope of this chapter and
the following text is intended to give a brief outline only. Steel used
for structural purposes can be classified thus:

1. Mild Steel: Structural Steel for Bridges, etc., and General Build-

ing Construction. (B.S.S. 15—1948.)

2. High-tensile Steel: High-tensile Structural Steel for Bridges, etc.,
and General Building Construction. (B.S.S. 548—1934.)

3. High-tensile (Fusion Welding Quality) Structural Steel for
Bridges, etc., and General Building Construction. (B.S.S. 968—
1941.)

4. Bars and Wires for Concrete Reinforcement (B.S.S. 785—1938.)

Mild steel is the most common form of steel used for structural
purposes. 1t can be manufactured by the open-hearth process (acid or
basic) or the acid Bessemer process and should not contain more than
0-06 per cent. of phosphorus or sulphur. Mild steel may be copper
bearing, and the copper content should be either between 0-2 and 0-35
per cent. or between 0-35 and 0-50 per cent.

The basic open-hearth process produces nearly 75 per cent. of all the
steel made in this country. It was first introduced into this country
in 1884 in order that phosphoric pig-iron might be used in place of the
more expensive haematite, and it has grown in popularity since it is
able to use cheap low-grade steel scrap, cast-iron and wrought-iron
scrap which the acid open-hearth or Bessemer processes cannot use.
The chief difference between the basic and the acid open hearth lies
in the lining of the hearth. In the case of the basic process the hearth
is lined with bricks made of crushed dolomite bonded with tar or with
dolomite melted to form a covering. In operating a furnace of this

B



2 STRUCTURAL MATERIALS

type, the first charge consists of steel scrap; afterwards the pig-iron
and scrap are added alternately. About 10 per cent. of limestone should
be added to help the formation of basic slag. The pig-iron used in this
process should be basic, i.e. low silicon content, high manganese phos-
phoric iron. The phosphorus content is less than that for the acid
open-hearth process, since the necessary heat is supplied by producer
gas and not by the process of oxidation of the phosphorus. The charge
should be melted as quickly as possible, and most of the silicon and
some of the manganese is oxidized and absorbed by the slag during
this part of the process. When the charge is completely melted the
contents of the furnace show about 0-6-0-8 per cent. carbon. Iron ore
and mill scrap are then added to reduce the carbon content and fluor-
spar can be added to make the slag more fluid. As the carbon content
is reduced, more lime and ore are added to facilitate the removal of
phosphorus, which should be eliminated before the carbon content has
fallen below the specified value. Samples of the metal are analysed for
carbon, sulphur, and phosphorus. To prevent the return of phosphorus
from the slag to the steel it is necessary to deoxidize and recarbonize
the steel either in the ladle or in the furnace. The steel is tapped out
of the furnace into the ladle and various additions are put into the
steel in the ladle to remove impurities, and powdered anthracite to
bring the carbon content to the necessary value. Since the steel in
the ladle may absorb phosphorus from the residue slag, some manu-
facturers discard the last ingot cast from the ladle.

In the acid open-hearth process the floor of the furnace is lined with
silica or similar substances. The charge consists of 30-50 per cent. of
haematite pig-iron and selected steel scrap (not cast iron or wrought
iron) which must be low in sulphur and phosphorus. The pig-iron is
fed in first and the steel scrap follows. The charge should be melted
as rapidly as possible (4-7 hours), and during melting a certain pro-
portion of iron and silicon should be oxidized and the oxides form a
slag. The iron-oxide content of the slag is raised by adding haematite
ore which has the result of oxidizing the rest of the silicon, also the
manganese and the carbon. More ore is added to keep the metal boiling
and to continue the elimination of carbon, samples being analysed from
time to time. When the carbon content is nearly the desired value,
no more ore is added, but limestone is added to thin the slag. Just
before the end of the process additions are put into the metal to
eliminate impurity and to adjust the carbon content, and the metal is
then tapped into the ladle and thence into ingot moulds. Acid open-
hearth furnaces produce about 18 per cent. of the total output of steel
in this country.

The acid Bessemer process is carried out in a tilting steel container
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called a ‘converter’ which is fitted with a wind box from which air is
forced in through openings called ‘tuyeres’. Bessemer converters are
used in conjunction with blast-furnace plants, and liquid iron from the
blast-furnace is tapped into a ‘mixer’ and thence into the converter.
Owing to the action of the air entering through the tuyeres, the molten
metal becomes agitated and sparks come from the mouth of the con-
verter. Iron oxide is formed and this reacts with the impurities in the
iron, which should contain 1-5 to 2-5 per cent. silicon. As the process
continues silicon, manganese, and finally carbon are eliminated, and the
metal ‘boils’, a white flame appears, and the blast should be shut off.
Sulphur and phosphorus are not eliminated and therefore the pig-iron
must not contain more than a certain amount of these impurities. In
order to recarbonize the iron a certain quantity of iron (either solid
or liquid) is added to convert the pure iron into steel. It is necessary
to remove dissolved oxygen and iron oxide by the addition of alloys
such as ferro-silicon, ferro-manganese, and silico-manganese. Haema-
tite pig-iron is used in the acid Bessemer process, which produces about
2 per cent. of the total steel output of this country.

The basic Bessemer process uses phosphoric iron. The removal of
phosphorus is effected after the elimination of silicon, manganese, and
carbon. The lining of the converter is dolomite instead of the silica
used in the acid process. The process is known as the Thomas process
and is used extensively on the Continent where phosphoric ore deposits
occur. It has also been reintroduced into this country to use similar
ore found in Northamptonshire.

High-tensile steel (B.S.S. 548 and B.8S.S. 968) and also steel to B.S.S.
785 can be manufactured by the open-hearth process (acid or basic)
or the acid Bessemer process.

The chemical analysis and physical properties of these steels are given
in Table I. It will be noticed that for steel to B.S.S. 15 no yield-point
stress is specified.T Tensile tests are carried out on standard test-pieces
(see Fig. 1.1), the most common being test-piece A. The specimen is
placed in a testing machine (one type is shown diagrammatically in
Fig. 1.2) and the load is applied gradually until failure takes place.
During this time the extensions on the gauge length are measured by
means of an extensometer (various types of these are in use). From
the test results a graph can be plotted showing stress (force or load per
unit area) as ordinate against strain (extension per unit length) as
abscissa. A typical stress-strain graph for mild steel is shown in Fig.
1.3. The characteristic points on the graph are (1) the elastic limit,
(2) the limit of proportionality, (3) the yield-point, and (4) the ultimate
breaking stress.

t B.S.S. 15—1948 specifies a yield-point for steel.
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The elastic limit is usually defined as the point where elasticity
ceases to function but actually elasticity is always present in steel to
some extent.
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The limit of proportionality is that point on the stress-strain graph
where the graph ceases to be straight. In finding this point it is usually
correct to neglect any permanent deformation less than 1/100,000.
In carrying out a tensile test it will be found that the graph is a straight
line from the origin up to a certain point and then deviates slightly
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from the straight line through the origin. The point where the stress-
strain graph leaves the straight line through the origin is the limit of
proportionality. Up to that point the specimen obeys Hooke’s law,
i.e. that stress is proportional to strain. It is necessary to take accurate

40

| Ultirgole Srength

N

if

Shress (7 /o:u/:n’)
R

e il

N
<

Lowdr
Yield Rornf

L imit of Propolrhionalily

9 i 25 62 G237 '75%‘-25"' 755 75

5
Strain = /
Fia. 1.3

x

observations with highly sensitive instruments to determine this point
with any certainty. From this part of the graph, i.e. up to the limit

of proportionality, the value of Young’s modulus (£) can be found

thus: .
K = stress—strain,

== slope of stress-strain graph.

It is worth noting that the value of K remains practically constant,
regardless of the carbon content of steel or even the method of manu-
facture or heat treatment.

The yield-point is usually defined as that point at which there is a
sharp change in the behaviour of the specimen due to a breakdown
of the structure of the material. The point is characterized by an
extension much greater than the previous extensions without increase
in the load. The yield-point is indicated in the testing machine shown
in Fig. 1.2 by a marked drop in the lever. If the test is carried out
very carefully and the stress at any point is the actual stress, the stress-
strain will show two yield-points (upper and lower) and the upper value
is taken as the yield-point stress. The yield-point stress is most im-
portant, and it will be noticed that the specification for high-tensile
steel defines the yield-point stress (Table I). In fact, high-tensile steels
might be called high yield-point steels, and the present tendency is to
base working stresses on the yield-point stress and not on the ultimate
stress as was formerly the practice. The yield-point stress appears to
be a much more logical basis, since once the material has passed this
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8 STRUCTURAL MATERIALS

point it becomes plastic and has no recovery. Since the yield-point is
important, care should be taken to determine it as accurately as
possible, the usual procedure being that laid down in B.S.S. 548. When
the specimen is nearing the yield-point the rate of loading should not
exceed 0-5 tons per square inch per second. The actual point can be
found by the drop of the lever or, if this method is considered un-
satisfactory, by means of dividers. The yield-point should not be
assumed to have been reached until the increase in the gauge length
exceeds 1/200. (The drop of the lever method gives the upper yield-
point.) If the rate of loading is excessive, the value of the yield-point
obtained is higher than the true value.

Proof stress. During the test, after the yield-point has been passed,
if the load is gradually decreased and the lengths between the gauge-
points measured, the stress-strain graph is
approximately a straight line parallel to
the ‘loading’ stress-strain graph. The in-
tercept of the ‘unloading’ line on the hori-
zontal axis gives the permanent set. B.S.S.
18 (Tensile Testing of Metals) defines proof
stress as the stress just sufficient to produce
a permanent elongation equal to a certain percentage of the original
gauge length. This can be found either by the unloading test or by
drawing a parallel line to the straight part of the ‘loading’ stress-strain
graph to give the required intercept on the horizontal and reading off
the corresponding stress on the graph. A proof test can be made by
applying the specified proof stress to the specimen for 15 seconds. If,
after the removal of the load, the permanent elongation of the specimen
does not exceed the percentage elongation specified, then the material
shall have passed the proof-stress test satisfactorily. Proof stress is
sometimes called the commercial yield-point.

After passing the yield-point, the extension increases rapidly with-
out marked increase of load until the material fails. The nominal stress
at failure, i.e. the breaking load divided by the nominal area, is called
the ultimate tensile stress. Owing to the reduction in area which accom-
panies the elongation the actual stress is much higher than the nominal
stress. The reduction of area is inversely proportional to the extension
(measured on the gauge length). On reaching the maximum load a
local contraction (or necking) of the specimen takes place and the load
falls although the actual stress rises. The elongation on the gauge
length and the reduction of area are an indication of the ductility of
the specimen. A typical fracture of steel is shown in Fig. 1.4. The
ultimate tensile stress is given approximately by the formula

U.T.S. = 19+50C+4(Mn)?,

45°)

Fic. 1.4
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where C = percentage of carbon and Mn = percentage of manganese.
The yield-point stress is usually 55 to 60 per cent. of the U.T.S.

Other tests

Bend tests. In this case the specimen shall be able to be bent over
until the internal radius is not greater than that given in Table I (last
column). -

Tests for rivet bars. Rivet bars must be bent as shown in Table I
and rivet heads must be able to be flattened, while hot, without cracking
at the edges (see Fig. 1.5). The head when ,
flattened must have a diameter at least 2% }.._2’*0.'

2
times that of the shank. T
Hardness lest. This affords a quick and

inexpensive method of finding the approxi- o
mate U.T.S. The machine most commonly
used is the Brinell hardness tester. The (a) @)

hardness is measured by the diameter of the Fra. 1.5
impression made on a smooth, flat surface of
the metal by a specially hardened steel ball. The test can also be made
by a diamond hardness tester. The Brinell hardness number can be
found from tables, then the U.T.S. = hardness number X 0-22.
Fatigue stress. This measures the resistance of the specimen to
alternating stress, e.g. alternate tension and compression. The ‘fatigue
range’ is defined as the greatest alternating stress which, when applied
to the metal for any number of reversals, will not produce failure. The
fatigue range is usually 80 to 90 per cent. of the UT.S. In actual
practice, stecl structures are often subject to alternating stress due to
the effect of rolling loads and may have to be designed accordingly.

Effect of overstrain and cold working

The effect of initial straining at stresses below the yield-point stress
is to improve the elastic properties, and the limit of proportionality
stress is increased. If the yield-point stress is exceeded, the material
is overstrained. The effect of overstraining is to raise the yield-point
stress and to reduce the ductility. Overstrain produces a condition
called strain hardening when repeated.

If the yield-point stress is exceeded and the specimen is reloaded
immediately after unloading, the limit of proportionality falls to zero,
but the yield-point stress is raised to nearly the maximum stress during
the previous loading. The U.T.S. is slightly increased and the elonga-
tion slightly decreased. If the yield-point stress is passed, the limit of
proportionality stress is restored, if the specimen is allowed to rest.
Mild heat treatment, e.g. immersion in boiling water, will completely
restore the limit of proportionality stress and the yield-point stress.
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The effect of cold working is to increase the yield-point stress and
the U.T.S. and to reduce the ductility similar to the effects of over-

strain. Normalizing counteracts the effects of cold working and restores
the normal yield-point, U.T.S., and ductility.

Special and alloy steels

The demand for high-tensile steels first arose for long-span bridges,
where it was important to reduce dead load. Nickel steels were first
used in the Queenborough Bridge, the Quebec Bridge, and Delaware
River Bridge. Silicon steels have been standardized in the U.S.A. and
were used in the Sydney Harbour Bridge. Silicon steel has also been
standardized in Germany as well as copper-chrome steels for bridge-
work. Very high tensile steels are required for the cables of large-span
suspension bridges and for the reinforcement in pre-stressed concrete.
The steel used for the latter should have an U.T.S. of 100 tons per
square inch, 0-2 per cent. proof stress 0-8 of the U.T.S,, and an ¥
value of 12,000 to 14,000 tons per square inch. Wire for the same
purpose is available up to No. 8 SSW.G. and has an U.T.S. of 150 tons
per square inch and 0-2 per cent. proof stress of about 80 to 90 per
cent. of the U.T.S. There is no B.S. specification for such steels, but
the engineer can specify the U.T.S., etc., for the steel for any particular
purpose. For example, for pre-stressed concrete sleepers the reinforce-
ment can be either (a) hard drawn steel wire up to } in. diameter
having an U.T.S. of 80 to 125 tons per square inch and having a
permanent set not exceeding 1-0 per cent. after being subject to a
stress of 70 per cent. of the U.T.S., or (b) alloy steel up to § in. diameter
with an U.T.S. of 70 tons per square inch.

Concrete

Concrete is a material widely used in structural work. The use of
concrete seems likely to increase, especially in view of recent develop-
ments in pre-cast and pre-stressed concrete. Concrete is strong in com-
pression and has a moderate strength in shear, but its tensile strength
is almost negligible. Plain concrete is suitable for resisting direct com-
pression and where dead weight is the prime consideration, but where
tensile forces have to be resisted, some form of steel reinforcement
must be used.

Concrete consists of a mixture of cement, fine aggregate (sand), and
coarse aggregate (broken stone, gravel, or similar material). The mix-
ture should be as dense as possible to obtain a good concrete. The sand
should fill the spaces between the coarse aggregate, and the cement
paste should fill the spaces in the sand. The amount of water used
has a pronounced influence on the strength of the concrete. The
properties of the constituent materials are:
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1. Cement. This may be of several kinds. The most commonly used
cement is Portland Cement (B.S. Specn. 12) which is produced by heat-
ing a mixture of calcareous (chalky) and argillaceous (clayey) materials
to sintering temperature and then grinding to a powder. The require-
ments as to fineness, chemical composition, setting-time, strength, etc.,
are laid down in the specification.

Rapid Hardening Portland Cement is very similar to Portland Cement
but it has been ground more finely and therefore the setting time is
reduced.

Portland Blast-furnace Cement contains a certain amount of finely
ground blast-furnace slag.

High Alumina (or aluminous) Cement contains a larger proportion
of alumina (aluminium oxide) than Portland Cement. The relatively
high percentage of alumina reduces the setting-time and final setting
may take place 34 to 54 hours after mixing. The B.S. specification for
high alumina cement is No. 915 and the L.C.C. Building By-laws lay
down certain requirements for fineness, percentage of alumina, ratio
of alumina to lime, and setting-times. It possesses rapid hardening
properties (note that hardening is not the same as setting). The cost
of this cement is relatively high and unless there is need for rapidity of
construction or fear of corrosion by chemicals it is not economical in
use. The ‘curing’ of concrete made with high alumina cement should
be carried out with special care.

2. Fine aggregate (sand). Sand used for concreting should be clean,
hard, and free from clay or organic materials. The shape of the grains
is not of major importance and rounded grains are quite satisfactory.
Loam, clay, and similar impurities can be detected by shaking the
sand with water in a vessel and noting the amount of material in
suspension and the quantity of sediment. Where impurities exist, they
should be removed by washing. River and freshwater sand seldom
require washing, but pit sand generally must be washed before use.
All these sands are suitable for concreting. If sea sand is used, it should
not be too fine, and should be taken from below high-water mark, other-
wise it may contain too much salt. It is as well to make test cubes
before using sea sand to any large extent. Screenings from crushed
stone can be used, but foundry and silver sands are too fine.

The size of sand varies with the purpose in mind, the usual maximum
being $ in. or } in. (} in. for rendering). Coarse sands usually give a
stronger concrete than fine sands. The grading of the sand plays a
greater part in determining the strength of concrete than is generally
realized. Some specifications give a }-in. maximum and state that at
least 10 per cent. must be retained on a {5-in. mesh ; other specifications
state that not more than 10 per cent. shall pass a sieve having 50
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meshes per inch, and not more than 3 per cent. shall be under gj; in.
L.C.C. By-laws gives {-in. maximum, with not more than 5 per cent.
under g in. Some natural sands are well graded, but others may
have to be mixed for good results.

3. Coarse aggregate. The requirements for this are: hardness, freedom
from clay, loam, etc., cubical or spherical shape, without injurious
chemicals and, for some work, fire-resisting properties. Coarse aggre-
gate is best obtained from a source of supply which has proved satis-
factory over a period of years. Gravel and crushed stone are most
suitable for reinforced concrete. For mass concrete, hard brick and tile
can also be used. Aggregates which require much washing are not
economical. Dust is removed by screening. For reinforced work the
aggregate should have a crushing strength of not less than 5,000 1b./in.2,
with softer aggregates for mass work. Broken brick aggregates are too
porous for reinforced work. The amount of water absorbed in 24 hours
should not exceed 10 per cent. of the weight for mass concrete and
5 per cent. for reinforced concrete. Pit and river gravel and Thames
ballast are the most commonly used aggregates and are quite suitable
after washing. Uncrushed gravel contains fewer voids than crushed
stone. Gravel found in excavations should not be used without wash-
ing and screening. Beach shingle should be taken from below high-
water mark. The best stones are granite, whinstone, quartzite, flint, and
some of the harder sandstones. Shale or similar materials should not
be used, but hard limestones, if free from dust, produce good concrete.
Broken brick is banned by the L.C.C. By-laws for R.C. work. Coal resi-
dues, clinker, ashes, coke breeze, pan breeze, copper slag, forge breeze,
dross, and such must not be used. Gypsum has the effect of causing
corrosion of the reinforcement. Good blast-furnace slag makes a good
aggregate. Clinker and breeze may be used for mass concrete. Pumice
produces a lightweight concrete but should be used with great care.

The size and grading of the coarse aggregate vary with the purpose
for which the concrete is intended. For R.C. work the minimum size
will be £ in. or } in. and the maximum size about 20 to 25 per cent.
of the total thickness, and also be small enough to pass between the
reinforcement. For heavy work or mass concrete, the maximum size
may be 1} in. or 2 in., with 3-in. stones in masses. For the usual f-in.
to $-in. limits, the percentage less than f in. should not exceed 10 and
the percentage less than § in. should not be more than 25. Actually,
the size and grading of the coarse aggregate does not play such an
important part in determining the strength of concrete as that of the
fine aggregate.

Water used for concrete should be fresh and clean, and free from
oils, acids, and other deleterious substances. Generally, water suitable
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for drinking is suitable for concrete. Sea-water produces efflorescence
on concrete and lengthens the setting-time. In doubtful cases it is as
well to test water before using it.

W ater—cement ratio.” The ratio weight of water: weight of cement has
a definite influence on the strength of concrete. Generally speaking,
the lowest value of this ratio consistent with a workable concrete gives
maximum strength. Finely ground cements require more water than
coarse cements. Concretes whose aggregates contain a relatively large
proportion of sand also require more water than those with coarse
aggregate, and broken stone aggregates require more water than gravel.

Properties and tests of concrete. The working stress for concrete is
based on compression tests (works tests) on a 6-in. cube after 28 days.
The working stress (in bending compression ‘c’) is generally taken as
one-third of the cube crushing strength.

Sheess
>

5//‘0/./7
Fic. 1.6

For ordinary Portland cement and high alumina cement concretes
the cube strength should be not less than the tabular values (in lb./in.2)
after 28 days. For direct compression as in columns the safe stress

Portland cement concrete and High alumina cement
Portland blast furnace cement concrete
Miz Preliminary test I Works test Preliminary test | Works test
1:1:2 5,250 4,500
1:1-5:3 4,375 3,750 ..
1:2:4 3,500 3,000 6,000 5,000

can be taken as 80 per cent. of c. The shear stress s is generally taken
as 10 per cent. of ¢. The bond or adhesion stress s, is usually taken as
13 to 14 per cent. of ¢ for ordinary grade concrete, but exhaustive tests
have shown that it is as well to be rather more conservative in fixing
the value of s, for high-grade concretes. Punching shear, i.e. shear
concentrated over a small area, is usually taken as twice the value
of 8. The value of E,, the Young’s modulus of concrete, presents some
difficulty. Fig. 1.6 shows a typical stress-strain graph for concrete.
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It will be noticed that there is no elastic limit or limit of proportionality
for concrete, and it is therefore difficult to calculate E,. A good approxi-
mation can be found by taking a value based on the tangent through
the origin. It will be noted that E, decreases as the stress increases.
The ratio m = E,/E, is an important factor in R.C. design and has
been the subject of considerable controversy. Some authorities take
a constant value (m = 15; E; = 30x1081b./in.2).} This does not seem
to be in line with tests, which shows that m decreases as the cube
strength increases. Another method is to calculate m by the formula

- 40,000
" cube (works) strength’

which appears to be logical. The American Society of Civil Engineers
in their 1940 specification give varying values of m, decreasing as the
cube strength rises, so that on the whole it appears that m must be
a variable quantity and in important work should be found experi-
mentally.

In specifying concrete there are two alternative methods: (1) that
in which the proportions of cement, fine aggregate, coarse aggregate, and
water-cement ratio are definitely given and the minimum cube strength
is also stated; (2) in which the proportions of cement, fine aggregate,
coarse aggregate, and water-cement ratio are left to the discretion of
the contractor (within certain limits) and the cube strength that must
be attained is specified. The difference between ordinary and high-
grade concrete lies in the care taken in the grading of the constituents,
mixing, placing, and supervision. The values of cube strengths given
in the table are rather conservative and the present tendency is to up-
grade working stresses in view of the present-day quality of cement
and the more stringent supervision and improved workmanship in
mixing and placing of concrete.

Timber

Timber is a structural material which differs from steel and concrete
inasmuch as, being an organic material, it is not uniform and is highly
complex, being subject to variation in grain, moisture content, etc.
Before examining the question of physical properties and working
stresses it is as well to review briefly the structure of wood and its
growth.

Wood structure. Wood is composed essentially of cellulose in minute
elongated cells, called fibres, firmly cemented together by lignin. The
fibres are tapered at one end, and run vertically in the standing tree,
and are about } in. long in softwoods and Z in. in hardwoods. Their

1 B.8.8. Code of Practice CP 114 (1948).
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central diameter is about length/100. The appearance of different woods
varies with the arrangement of the fibres. In addition to the fibres
running parallel with the grain there are bands of cells extending
radially from the pith, or centre of the tree, across the grain towards
the bark. These are called the wood or medullary rays. In most woods
these rays are small and inconspicuous. The weight and strength of
wood depends on the thickness of the cell-walls. The shape, size, and
arrangement of the fibres, the presence of wood rays, and the later
effect of springwood and summerwood account for the large differences
in properties along and across the grain. The properties across the
grain may be a small fraction of the same properties parallel to the
grain.

Hardwoods and softwoods. Trees used for structural and building
purposes are divided broadly into hardwoods and softwocds. The
terms are rather loose, as some ‘softwoods’ may be harder than ‘hard-
woods’. The custom has developed in America of calling coniferous
trees softwoods and deciduous, or broad-leaved trees, hardwoods.
American classification is as follows:

Softwoods Hardwoods
Cedars and Junipers Alder Gums
Cypress Ashes Hachberry
Douglas fir Aspen Hickories
True firs Basswood Locust
Hemlocks Birches Magnolia
Larch Buckeye Maples
Pines Butternut Oaks
Redwood Cherry Sycamore
Spruces Chestnut Walnut
Tamarack Cottonwoods Willow
Yew Elms Yellow Poplar

Other hardwoods are karri, jarrah, teak, and greenheart.

The British classification is given in the tables in Appendix C (Vol. II).

Heartwood and sapwood. The end of a timber log shows three distinct
zones of wood: (1) the bark on the outside; (2) a light-coloured zone
next to it, called sapwood; (3) an inner zone (usually darker), called
heartwood. In the centre of the log is the pith or heart centre. A tree
grows by forming new layers of wood where the sapwood and bark
meet. A young tree is made up entirely of sapwood. As the tree ages,
the central portion matures, forming heartwood. Heartwood is more
durable in contact with the soil and under conditions conducive to
decay. It is therefore better to use heartwood if the material is to be
used untreated. On the other hand, sapwood absorbs preservatives
better than heartwood and is preferable for treating.

Annual rings. The cross-section of freshly cut trees shows a large
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number of concentric rings, starting at the centre. Each ring represents
the growth the tree makes in one year from spring to autumn. The
width of the annual rings varies: narrow rings are formed during a
short dry season and wider rings during a more favourable growing
season. Each annual ring, in many woods, is made up of two parts:
(1) an inner light-coloured part, called springwood; and (2) a darker
outer portion known as summerwood. Springwood is made up of
relatively large, thin-walled cells formed during the early part of the
growing season ; summerwood is formed later in the year and is made
up of cells with thicker walls and smaller openings in the cells. Summer-
wood contains more solid wood substance than springwood. The
presence of springwood and summerwood occurs in both softwoods
and hardwoods; it is less noticeable in hardwoods. The proportion of
springwood and summerwood present in softwoods has an important
effect on their strength and physical characteristics.

Density and rate of growth. In softwoods the rate of growth has an
important effect on their strength properties. An accurate measure
of this is provided by the relative width and character of wood in each
annual ring. In these woods, pieces having medium to narrow growth-
rings have been found to have generally higher strength properties
than those having wider rings. In addition, in certain woods, portions
where a considerable proportion of each annual ring is made up of
summerwood have still higher strength properties. Therefore in grading
timbers for structural purposes the rate of growth, i.e. the number of
rings per inch radially, and the density, i.e. proportion of summer-
wood, are considered and are made part of the specification. Timber
having a specified minimum number of annual rings per inch is known
as ‘close-grained’ and that having one-third or more of summerwood
is known as ‘dense’.

Grain and Texture. These terms are used to'describe characteristics
of wood in various ways. Wood from slow-growing trees in which the
annual rings are close together are known as close-grained; that
from rapidly growing trees with wide rings as coarse-grained. Straight
grain and cross grain describe wood in which the direction of the fibres
(not the annual rings) is parallel to or at an angle with the sides of
the piece. Cross grain includes spiral grain in which the fibres wind
around the trunk of the tree. The ‘slope of grain’ is employed in the
grading of structural timber to describe the extent of cross grain per-
mitted, since this has an important effect on strength properties.

‘Grain’ and ‘texture’ refer usually, however, to the physical properties
of appearance rather than to properties of strength. ' For example, fine
grain is used to describe woods in which the cells are small and thick-
walled, making a compact wood with smooth surface, and coarse grain
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to denote woods in which the cells are large and open, producing a
surface slightly roughened due to the large cells being cut where they
intersect the surface.

Knots are portions of a branch or limb which have become incor-
porated in the body of a tree. Loose knots are a source of weakness.
Wanes or waney edges are parts of the original rounded surface of

the tree remaining on the timber which cause a reduction of the effective
area.

Shake is a separation along the grain, which usually occurs between
the annual rings.

Shakes, loose knots or numbers of knots, or waney ‘edges are definite
faults in timber, which impair the strength. The presence of any one
or more of these faults has an effect on the grading of structural
timbers, and where these faults are present in marked degree, the
timber should be rejected or used as second-grade material.

Specific gravity and density. The substance of which wood is com-
posed is actually about 50 per cent. heavier than water. The dry wood
of most species floats, however, owing to the large proportion of the
volume occupied by air spaces. The specific gravity or density of dry
wood is an excellent index of the amount of wood substance and
therefore of the strength properties (see Appendix C).

Moisture in wood. Wood in standing trees contains moisture in two
forms: (1) as free water held in the cell cavities, and (2) as imbibed
hygroscopic moisture held in the cell-walls. The moisture content is
expressed as a percentage of the oven-dry weight and can be found by
drying a sample at slightly over 212° F. until no further loss of weight
occurs.
loss in weight

100.
oven-dry (final) weight .

Moisture content =

Wood in use over a period of time usually arrives at a moisture
content corresponding to the humidity of the surrounding atmosphere.
Fig. 1.7 shows the moisture content of wood, when in equilibrium with
various relative humidities and at given temperatures. Moisture con-
tent has an important effect upon the susceptibility to decay. Wood
that is continually wet, as when submerged in water, or wood that is
continually dry, will not be attacked by fungi which cause decay.
Differences in moisture content above the fibre saturation point have
no effect upon the volume or strength of wood. As wood dries below
the fibre saturation point, shrinkage occurs and the strength in-
creases.

Shrinkage of wood. Most data on the shrinkage of wood is expressed
in terms of the shrinkage which takes place between the green (actually
the fibre saturation point) and the oven-dry condition. Actually this

o
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shrinkage will never occur in structural timber. The important factor
is the change of size that may occur due to changes in the moisture
content as wood members absorb or give off moisture due to variation
in the atmospheric humidity. Large structural members do not shrink
as much proportionately as small members, since drying does not take
place simultaneously in the inner and outer fibres of large members.
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For softwood members 6 in. X 6 in. or over, the shrinkage may be at the
rate of g in. per inch in drying from the green condition to ordinary con-
ditions of use. For members 2 in., 3 in., or 4 in. thick, the average shrink-
age should not exceed g in. per inch for softwoods (the values for
hardwoods will be slightly more).

Effect of moisture on strength. Increase in strength begins when the
cell-walls begin to lose moisture, i.e. after the wood is dried to below
the fibre saturation point. From then on, most strength properties
increase rapidly as drying progresses. Drying wood down to 5 per cent.
moisture content may add anything from 2} to 20 per cent. to its
density. In small members the end crushing strength and bending
strength may be doubled or trebled. The effect of seasoning is most
marked in the case of small members. Seasoning does not affect all the
strength properties in the same proportion. Resistance to shock is not
increased and may be decreased. Table II shows the effect of change
of moisture content on strength properties.
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TasLE II

Values show Average Increase (or Decrease) in Value (%) due to lowering
(or raising) Moisture Content 1 per cent. from Fibre Saturation Point

Static bending Impact bending
Fibre stress at limit of propor- Fibre stress (limit of propor-
tionality . . 5 tionality) . . . .
Cross-breaking sbrength 4
Modulus of elasticity 2
Compression parallel to grain Compression at right angles to grain
Fibre stress at limit of propor- Fibre stress (limit of propor-
tionality . . 5 tionality) 5
Maximum crushing strength 6 Hardness, end grain . 4
»s side grain . 2:5
Shearing strength, parallel to grain 3
Tension, perpendicular to grain 1-5

Grading of timber and working stresses. It will be seen from the fore-
going remarks that it is difficult to lay down definite rules for the
grading of structural timbers. The chief factors to be considered are
the density, moisture content, closeness of grain, and freedom from
defects such as knots, shakes, waney edges, etc. Other factors which
affect the grading indirectly are the extent to which exposure may
cause decay, the treatment, and the frequency and thoroughness of
inspection. L.C.C. By-laws divide timber into two classes, ‘graded’ and
‘non-graded’. Stresses in bending, compression parallel to the grain
and at right angles to the grain may be increased for close-grained and
dense timbers, but horizontal shearing stress should be increased only
in the case of dense timbers. For timbers subject to severe exposure,
the working stresses may be reduced at the discretion of the engineer.
The basic stress in compression parallel to the grain is given for mem-
bers whose I/d ratio does not exceed 10 (I = effective length; d = least
width). For members where I/d exceeds 10, working stresses should be
reduced. Fig. 1.8 shows the comparison between various formulae used
in America. I.C.C. By-laws show a reduction in working stress for
various values of //d.

ld Factor ld Factor
0-10 1-00 24-26 0-650
10-12 0-985 26-28 0-600
12-14 0-970 28-30 0-485
14-16 0-950 30-32 0-430
16-18 0-920 32-34 0-380
18-20 0-875 34-36 0-340
20-22 0-820 36-38 0-300
22-24 0-745 38-40 0-275

Uses of timber. While timber has been displaced to a great extent
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by steel and reinforced concrete, it still has many uses, e.g. piles and
temporary work, formwork, roof trusses, and purlins. Seasoned timber
has good resistance to attack by smoke and steam. The extent to
which timber is used must be governed by the availability of seasoned
timber, which at the time of writing is less than normal. The question
of the connexion of timber members is dealt with in some detail in
Chapter XVI (Vol. II).
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Brickwork

In recent years brickwork has diminished in importance as a struc-
tural medium, owing to the introduction of steel-framed work and
reinforced concrete. The present tendency is to use brickwork as a
facing for brick-filling between steel and R.C. members to keep out
the weather, or as permanent shuttering for concrete. At the same time
it is probable that brickwork will continue to be used for load-bearing
piers, walls, etc., for some time yet, and it is as well to consider its
properties.

Bricks consist essentially of an argillaceous or clayey earth, baked
or burnt to form an artificial stone, and the properties of the bricks
depend on the nature of the earth, its preparation, and the manner
in which it is baked or burnt. Brick earths are found in many parts
of this country, and the variation in the chemical composition of the
earths is responsible for the different kinds of bricks, with different
appearance, hardness, porosity, etc. When the brick earth has been
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dug out it is usually subjected to the following processes: (1) prepara-
tion, (2) moulding, (3) drying, and (4) burning. The processes vary
somewhat according to the nature of the earth and the purpose for
which the brick is intended.

Stocks, i.e. clamp-burnt bricks of yellowish appearance commonly used
in London, the south of England, etc., are made by the following
processes: (1) preparation of the earth either by spreading layers of
the earth on level ground and then layers of breeze and broken chalk
and so on to a height of 5 or 6 ft., or alternatively washing the earth
and chalk together in a wash-mill and passing the mixture through a grid
into settling-pits to remove excess water and spreading a layer of
breeze on top. In both cases the mixture is left to weather during the
winter and then turned over two or three times. (2) Moulding may be
done by hand or machine. Hand-moulding is done by filling a mould
about 10 in. X 5 in. X 3 in. (for 8} in.x 4} in.x 2§ in. bricks) with the
clay and striking off to form a flush surface. With machine-moulding
the clay is pressed into a mould containing six bricks. (3) Drying is
commenced immediately after moulding. The object of drying is to
enable the bricks to be handled and to withstand the pressure due to
stacking. It may be carried out in a drying-shed where the bricks are
sprinkled with sand to absorb moisture. The process may take 3 to
6 weeks. Where the bricks are moulded by machinery the drying is
carried out in long chambers, through which hot air is forced by fans,
the period for drying being reduced to 24 hours. (4) Burning may be
carried out either in ‘clamps’ or in kilns. The object of burning is to
drive out water and to fuse the constituents into a homogeneous mass
with the necessary hardness to withstand pressure and with a vitrified
surface to resist the effects of the weather. ‘Clamps’ are built by raising
the site above the surrounding ground and draining it. The surface is
paved with bricks; horizontal flues filled with faggots are made; then

two layers of brick on edge are laid diagonally, above which is placed
~ a layer of raw bricks; then about 7 in. of breeze, then another layer
of raw bricks, above which is placed 4 in. of breeze ; then another layer
of raw bricks with 2 in. of breeze on top. Above this, bricks are built
up in thin unbonded walls to a height of 14 ft. The time of burning
varies from 2 to 6 weeks. Bricks produced in clamps are called ‘stocks’
and are capable of resisting a high degree of compression.

Kilns used in brick-making may be of the Scotch, Hoffmann, or
Warren type. Kilns may take 20,000 to 50,000 bricks at a time. The
time taken for burning is 2 or 3 days, and the bricks burnt by this
process are much more uniform in colour and regular in shape than
those burnt in clamps. Bricks produced in kilns are called builders’
firsts, seconds, and thirds. Wire-cut bricks are forced through orifices
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9 in. X 4} in. and then cut into 3-in. layers by wires arranged in a frame.
They are generally burnt in a Hoffmann kiln. Fletton bricks are pro-
duced from dense bluish-grey shale from the Oxford Clay formation,
which is ground in a mill, before going to the pressing machine, where
it is pressed into the form of bricks and passed to a kiln, where
it remains for about 3 weeks. They absorb about 20 per cent. of
their weight of water in 24 hours and vary considerably in properties.
Blue bricks such as the Staffordshire are used in engineering where
it is necessary to have a high compressive strength. They have an
ultimate crushing strength (when tested between plywood) of up to
16,000 1b./in.2

Bricks may be classified in various ways. Hand-moulded bricks have
a frog on one side, are porous, and have no great amount of shape.
Wire-cuts have no frogs and show the wire-cuts on the beds; they are
regular in shape and dense. Pressed bricks have smooth faces, regular
and sharp arrises, frogs on one or two sides with trade marks in frogs
and are very dense. Clamp-burnt bricks are not uniform in colour.
Kiln-burnt bricks may show light and dark stripes owing to the position
of the brick in the kiln. Bricks made from clays free from iron burn
white. Slight amounts of iron cause a cream colour. Red bricks are
made from clay containing slightly more iron with chalk. Clays con-
taining 8 to 10 per cent. of iron produce blue or black bricks.

Characteristics and tests. Desirable qualities for good bricks are regu-
larity of shape, rectangular faces, uniform texture, compactness and
freedom from flaws, and the amount of water absorbed should not
exceed 15 per cent. of their own weight. Water should be absorbed
gradually and given off freely. Bricks should be uniformly burnt, hard,
and give a metallic ring when two are struck together. They should
be of correct colour for their kind and tough or pasty in texture.
Bricks should require repeated blows to break them and should stand
carting and handling. From an engineering point of view, the most
satisfactory classification of bricks is according to the crushing strength.
L.C.C. By-laws grade bricks thus:

Destgnation of bricks or blocks Load in 1b.[in.?
as regards strength of horizontal area
Special Over 10,000
First 10,000
Second 7,600
Third 5,000
Fourth 4,000
Fifth 3,000
Sixth 1,500

Where the slenderness ratio of walls and piers does not exceed 6, the
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permissible pressure for walls, piers, etc., built of bricks or blocks as
specified above is given in the following table:

Proportion of mizture of mortar
Designation of (by volume) Mazxi pressure
bricks or blocks Cement Lime Sand tons|ft.2
Special 1 .. 2 (555 X strength of brick in
1b./in.2)+4 10, max. value 40
First 1 2} 30
Second 1 2% 23
Third 1 3 16
Fourth 1 3 13}
Fifth 1 4 11
’ 1 1 6 10
Sixth 1 .. 4 8
,, 1 1 6 7
- 1 2 9 6
. 1 3 12 5%
' 1 4 15 5
" 1 5 18 43
’s . 1 3 4

For a slenderness ratio of 12, 40 per cent. of above values should be
taken as the permissible pressure, with corresponding values for inter-
mediate slenderness ratios. B.S.S. 449 (Use of Structural Steel in Build-
ing) gives a table showing pressures as above but allows certain in-
creases for pressure due to cccentric loading or lateral forces or local
loads, e.g. at bearings of girders, stanchion bases, etc. The same speci-
fication gives a method for finding the crushing strength of bricks.
Twelve bricks are tested and the average value of the ultimate strength
is taken. The bricks must be soaked in water at a temperature of
between 15° and 20° C. for 24 hours. The frogs are then filled with
a mortar composed of one part (by weight) of cement and three parts
(by weight) of dry, clean Leighton Buzzard pit sand (cement being
either normal or rapid-hardening Portland cement). After the frogs
have been filled, the bricks are covered with damp cloths for 24 hours,
then immersed in water (15° to 20°C.) for a period of 27 days (for
normal Portland cement) or 6 days (for rapid-hardening Portland
cement) and then crushed between 3-plywood sheets } in. thick, load-
ing being applied at the rate of about 2,000 lb./in.2 per minute. Note
that when rapid-hardening Portland cement is used the period of
immersion may be reduced for 2 days, provided that the mean crushing
strength of three 3-in. mortar cubes made from the same batch of mortar
and stored under the same conditions is 2,000 to 4,000 lb./in.?

L.C.C. By-laws give extensive rules governing brickwork in relation
to maximum height, unsupported span, etc., for any particular thick-
ness, and B.S.S. 449 also gives some rules, and the reader is referred
to these publications for fuller information. Engineering brickwork
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should always be built in cement mortar. English bond (alternate
courses of headers and stretchers) is to be preferred to Flemish bond
(alternate headers and stretchers) for strength, although the latter has
a better appearance.

As mentioned earlier, brickwork should possess high crushing strength
but has little strength (comparatively speaking) in tension and adhesion.
This is due to the effect of the mortar joint. At one time it was
customary to ignore the strength of mortar entirely, but actually it
can be shown by tests that cement mortar does possess a fair degree
of strength in tension or adhesion. When dealing with self-supporting
brickwork structures, a distinction should be drawn between cases
where the mortar has had time to set and harden before the load is
applied and cases where load may be applied when the mortar is green.
Brickwork subject to wind loading, e.g. chimney-stacks, shafts, and
buttresses, should be treated as if the mortar has not had time to set
when the load is applied. Brickwork may be reinforced by placing
layers of expanded metal or mesh reinforcement in the mortar joints.

Reinforced brickwork is analogous to reinforced concrete and can be
designed in a similar manner. Reinforced brickwork can be built in two
ways: (a) By building brick skins with a layer of concrete reinforced with
steel rods or mesh sandwiched between. The skins are usually 4} in. thick
with headers at intervals bonded into the concrete. This form of construc-
tion has been largely used for A.R.P. purposes and compares favourably
with reinforced concrete for this, as no shuttering is required, but the
work should be carried out carefully to get good results. (b) By build-
ing reinforcement into the mortar joints which are made thicker than
usual or by passing steel rods through holes in specially made bricks.
Such bricks are more expensive and difficult to obtain and the arrange-
ment of vertical and diagonal reinforcement presents some practical
difficulties.

Common bricks have been standardized throughout England and
Wales at 82 in. long (tolerance 4} in.) by 4% in. wide (tolerance 4 4 in.)
with a depth of either 2§ in. (tolerance + 4 in.) or 2% in. (tolerance
=+ 4 in.). The reason why the depth is varied is to allow for a varying
thickness of the mortar bed. (The usual practice is to reckon 4 courses
of brickwork to one foot vertically.)

Masonry

Many of the general remarks applying to brickwork apply also to
masonry. The use of masonry except as a facing has diminished in
engineering work and to-day masonry is used chiefly where mass is
desired, e.g. retaining walls, dams, and marine structures, and even in
such cases the general tendency is to replace stones by concrete.
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Building stones can be divided into two classes: natural and artificial,
the latter being usually a concrete with varying kinds of aggregates.
Natural stone may still be used where it is found locally and can be
quarried economically.

Characteristics of building stones. These are the general structure,
fineness of grain, compactness, porosity and absorption, weight, ap-
pearance, seasoning, natural bed, and weathering.

General structure. Sandstones consist of grains of sand cemented
together by various natural cementing agents. Limestones usually con-
sist of crystallized grains of calcium carbonate joined together by a
cement of calcium carbonate (when it can be polished it is called a
marble). Qolitic limestones consist of calcareous matter formed round
a nucleus, usually in the form of small shells. Marbles proper consist
of calcite of various colours ranging from white to pink and other
shades. Dolomites are composed of calcium and magnesium carbonates
which should be in nearly equal amounts. All the foregoing stones,
except dolomites, belong to the sedimentary class. Granite, which is
an igneous rock, is crystalline in structure and is composed of quartz,
mica, and felspar.

Fineness of grain is important, as fine-grained stones produce sharp
arrises and are better for weathering.

Compactness is necessary for durability. The best building stones
are those which have been formed in the lower strata and have been
subject to intense pressure. Actually they may be found in some cases
near the surface of the earth, owing to disturbance in the strata or to
the effects of weathering.

Porosity and absorption are important qualities, as stones with a
high degree of porosity are unsuitable for building work, especially
in exposed positions. Porous stones absorb much rain-water and may
decompose or disintegrate. Where rain contains such acids as sul-
phuretted, hydrochloric, and sulphurous types (which occur in town
and city atmospheres) it may be absorbed into stones and decompose
the constituents. Rain in conjunction with frost may cause disintegra-
tion of stones.

The weight of stones is important as being a measure of the density.
Heavy stones are used for buttresses, gravity walls, marine struc-
tures, etc.

The appearance of a stone is a good guide to its durability. Red
and brown shades of colour show the presence of oxides of iron, which
leads to discoloration and perhaps disintegration. The lighter shades
of any particular stone are preferable.

Seasoning of building stones is necessary in order to harden them.
Stone when freshly quarried contains a certain amount of moisture
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known as ‘quarry sap’. The dressing of stone should be done before
the quarry sap has disappeared. After the stone has been worked to
a finished surface, the dressed surface should not be disturbed as is
sometimes done in cleaning down the surface of a building. Quarry
sap should have disappeared before the stone is positioned, and the
time of seasoning varies from 6 to 12 months.

The natural bed of a stone is the surface on which the material was
originally deposited. It need not necessarily be horizontal in the quarry.
The natural bed of a stone should always be placed at right angles to
the direction of pressure, e.g. horizontally in walling or at right angles
to the centre line in arches. The question of weathering is also im-
portant in considering how the natural bed should be placed in exposed
stonework. The natural bed may not be apparent to the naked eye,
and in such cases it can be found by pouring some clean water on the
stone and observing (through a magnifying-glass) the direction it takes
in descending.

Weathering is most apparent on surfaces exposed to the prevailing
wind (south-west in England). The best way to determine the weather-
ing properties of a stone is to inspect similar stonework which has been
exposed to the weather under similar conditions.

Building stones are classified as igneous, metamorphic, and sedi-
mentary. Igneous rocks are volcanic in origin and include granites,
syenites, and traps. Metamorphic rocks are either igneous or sedi-
mentary rocks which have been subject to enormous pressure or heat
or both, and which have altered their structures owing to the action
of these agents. They include dolomites. Sedimentary rocks are those
whose constituent materials have been deposited by air or water. They
include most of the limestones and sandstones. Granite is found in
Aberdeenshire, Cornwall, Guernsey, and other parts of Britain. In
addition to being a good building stone it has good wearing properties
for use in setts, dock sills, quoins, etc. Syenite is imported from Nor-
way. Limestone is found in many parts of England. The most com-
monly used variety is Portland stone. Dolomites are found in the
midlands and Yorkshire. Purbeck is really a marble of oolitic origin
found in Dorset. A simi'ar stone is found in Derbyshire. Sandstones
are found in many parts of England and Scotland. Sandstones may
range from greyish-white to red in colour and have good weathering
properties.

To ascertain the crushing strength of a building stone (in accordance
with B.S.S. 449) three specimens should be tested and the mean value
of the ultimate loads taken. The specimens should be in the form of
cubes with sides not less than 3 in. and must be soaked in water at
a temperature of from 15° to 20° C. for 24 hours. They are then crushed
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between 3-plywood sheets } in. thick, the rate of loading being about
2,000 1b./in.2 per minute.

Stone should have a crushing strength of not less than 15,000 Ib./in.?
and should be free from such defects as cracks and sand-holes.

Stone for engineering work is usually in the form of ashlar, i.e. roughly
dressed stone, and should be set in cement mortar. Where it is used
as a facing to brick or concrete, it should be properly bonded to the
backing. The permissible pressure on masonry walls, piers, etc., can
be found in a manner similar to that described in the sections dealing
with brickwork.
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CHAPTER II
STRUCTURAL MECHANICS

Berore proceeding to consider the theory of bending and shear, it is
advisable to state very briefly the conditions for equilibrium of a body
acted upon by any system of coplanar forces. These forces may be
either (a) concurrent or (b) non-concurrent.

Case (a). Concurrent forces P, @, and R passing through the same
point O (Fig. 2.1). Draw two axes of reference XX and YY at right

Y

_Q
P24

X
Y

Fic. 2.1

angles to each other. Now the separate forces P, (), and R can be
replaced by a single force F' passing through O. Each force can be
resolved into two components parallel to the axes X-X and Y-Y and
the algebraic sum of such components can be written > X, > V.

For equilibrium F must be zero and therefore

F— (S XP+(E T = o.

Hence
Y X = algebraic sum of components parallel to X-X axis = 0,
z Y = ’ ” N i 2 ’ Y_Y y 0'

Case (b). Forces P, @, and R are non-concurrent. The separate
forces can be replaced by a single force £ which cannot be zero (Fig. 2.2.)

F=J{ZXrP+EY)3
and tané = §—§
Now if a perpendicular ON be drawn from O to the line of action, then
the turning moment of the force F' about the point O is given by

M = FxON,
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which must equal
> (moment of each force about 0).

For equilibrium a balancing force must be applied to the body equal
in magnitude but opposite in direction. The moment of this balancing
force must be equal and opposite to that due to F, so that the resultant
moment is zero.

Y
@ R
R
o
X ¢ X
\*24
? F
Y
Fia. 2.2

Therefore the third condition of equilibrium is > M = 0, i.e. the
algebraic sum of the moments of all forces acting upon the body is zero.

Hence the conditions of equilibrium are (1) ¥ X = 0; (2) XY = 0;
(3) S M =o.

First Moment of Area

Any area A of any shape can be divided into a number of elements a
(KFig. 2.3). Taking a pair of rectangular axes of references X'-X’ and
Y'-Y’, then each small element of area a has a pair of coordinates
x, y with respect to these axes and moments a X x; a Xy about these
axes.

The total moments can be written thus:

Sar : Y ay.
Now if the coordinates of the centre of gravity of area A with respect
to the axes are ¥, 7, the total moments can be written as A¥, A7.

> ax = A% = first moment of area about Y'-Y”,
Say=Ag= ., . o X-X.
When these quantities become zero, the coordinates &, j must be zero
(since A cannot be zero); therefore the axes must pass through the C.G.
Hence if two rectangular axes X-X, Y-Y be drawn parallel to the

original axes X'-X', Y'-Y' and at distances &, § respectively there-
from, they must pass through the C.G. of the area.
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Alternatively we can write

M

- ax
xr =

.

Q
4

2 a

Yy==41

and the principle can be used to find the position of the C.G. of any
section, as will be seen in later chapters. Note that the first moment of
area can be either positive or negative.

Y
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Fia. 2.3

Second Moment of Area or Moment of Inertia

Referring again to Fig. 2.3, the second moments of area a with respect
to the axes Y'Y’ X'-X', are ax?, ay? and the second moments of the
whole area are

> ax® (with respect to axis Y'-Y")

and Say* ( ' »  X'=X').

Considering now the second moments of area with respect to the
rectangular axes Y-Y and X-X passing through the C.G., these are

Y a(x—&)?* and 3 a(y—y)? respectively.

But
> ax—x)? = Y a(x?+E2— 2xF)
= Y ar*+ ) af:—2% Y ax
=Y ax®+ Ad*—2F X A%
= Y ax?—Az?
= (2nd moment about axis Y'-Y")—Az2.
Similarly

Y a(y—7)* = (2nd moment about axis X'-X")—Ag72.
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Or
2nd moment of area about Y'-Y’
= (2nd moment of area about axis Y-Y through C.G.)+ A%2,
and
2nd moment of area about X'-X'
= (2nd moment of area about axis X-X through C.G.)+ 432

Generally this principle can be stated thus: The sccond moment of
area about any axis is equal to the second moment of area about a
parallel axis through the C.G. plus a quantity equal to the total
area X the square of the perpendicular distance between the two axes.
This is often referred to as the principle of parallel axes and will be
used in succeeding chapters. Note that the second moment of area is
always positive since it is equal to Y ax? or I ay?.

The second moment of area is often referred to as the moment of
inertia, which is a misnomer since an area has neither weight nor inertia
nor moment of inertia. The term ‘moment of inertia’ is in general use
and the axis of reference is often denoted by a suffix thus:

Moment of inertia about X-X axis = I,
» » I Y-y » = IWI'

Usually I, I, are the maximum and minimum values of the second
moment of area.

O\
ong® oF _—
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N g! K j.'
Q
Y

\>
ELLIPSE 'oOF INERTIA

Fia. 2.4

Ellipse of Inertia (Fig. 2.4)

Using the maximum and minimum values of the moment of inertia
as the major and minor axes of an ellipse, then the value of the inertia
about any other axis passing through the C.G. can be found by drawing
a line through the origin parallel to the axis and scaling off the value.
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The values I, and I, are normally the values of the second moment
about the axes of symmetry. (Where there are no axes of symmetry,
then the values should represent the maximum and minimum values
of the second moment of area.) In cases where the figure has more than

two axes of symmetry, e.g. the square or the circle, the ellipse of inertia
becomes a circle.

Polar Moment of Inertia

This is often denoted by the letter J and is equal to the quantity
> ar?, where r is distance from any element of area a to an axis passing
through the C.G. and at right angles to the plane in which the area
lies. The quantity J is used in calculations relating to torsional prob-
lems. It can be used to find the value of I for such figures as circles
and annular rings, since by symmetry

I, = Iuy = 3xJ.
Referring again to Fig. 2.3,
J =3 ar?,

but r: = x*4y>

J=3Yax*+Yay*=1,+1,,.
Hence the polar moment = sum of ‘rectangular’ moments.
The M.I. of simple shapes such as rectangles, circles, etc., can be

\
¥, A
] T \
9 ]
v\
5 (b)
)

Fic. 2.6

calculated without difficulty. Consider the rectangle shown in Fig.
2.5(a), and find the moments of inertia I, and 1,,,.

For an infinitely thin strip of thickness dx at a distance « from the
axis X~X the second moment of area of the strip is b xdx x 22, and
the total moment I, is given by

+be2dx— bl bd?
13 12°

—d
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Similarly the moment

s
w T2—
and J =2

By using the principle of parallel axes it can be shown that the
second moments about the edges are bd®/3 and db3/3 respectively.

To find the values for a circle, find the value of J by considering an
annular ring of average radius x and thickness dx (Fig. 2.5 (b)).

r 4R DA
X
Then J=|2mrdrat= || ="
2 |, 32
0
aDA
&nd . sz == I]/]/ = —6—4—.
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For an annular ring J = iD%Q_Q‘i)
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and III=Iyu=——6-Z_—-
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The values for other shapes can often be found by dividing the figure
up into rectangles, circles, triangles etc., and considering the moment of
each element about an axis through its own C.G. parallel to the axis
of reference and adding an amount equal to the area X square of distance
between the axes. The examples in Chapter VI should serve to illus-
trate the method. Values for various figures are given in Fig. 2.6.

D
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Radius of Gyration

If in Fig. 2.3 the whole area A4 is taken as being concentrated at a
distance k,, from the axis X-X so that

4 ("7:41::1:)2 = Ix.t’
then k,, is called the ‘radius of gyration’ with regard to the axis X-X.
Similarly Ax(k,)2 =1,
and kyp = %1!; k,, = A/%’ll’

The radius of gyration is used principally in calculating the strength
of columns and other struts.

Approximate Moments of Inertia

The M.I. can be found in many cases by dividing the figure up into
a number of rectangles.

Il hd 6, Ay oss”
So—— = 1‘ AR
Jo' . * " !

-1 ’ i e < (4% '
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If a 10 in. X 4} in. joist section be taken as an example (web thick-
ness = 0-30 in.; flange thickness = 0-505 in.) the moments of inertia
can be found by taking the gross area and deducting the difference
between that and the net area (Fig. 2.7 (a)).

Axis X-X
4:5 3 .

I, (gross area) = —3%19 = 375 in 4

Difference breadth 4:5—0-3 = 4-2

depth 10—2Xx0-505 = 9 in. about.

. 3

_ 42x9 ~ — 255 ins
12

Net moment = 120 in.4

The value given in the tables (Appendix A) is 122-34 in.4, so that the
error is less than 2 per cent.
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Axis Y-Y
. .53
flanges %5- = 7-6in.*
Moment
9% 0-33
web A
12

7-6in.4
(Tabulated value = 6:49in.4).

Applying the same method to a 10 in. x 3} in. channel section with
web and flange thicknesses of 0-36 in. and 0-56 in. respectively, it can
be seen that the position of the C.G. must be calculated in relation to
the heel of the channel (Fig. 2.7 (b)).

3:5x103 .
1., (gross area) == ~—.l>-<2 = 292 in.4
. breadth 3:5—0:36 = 3-14 in.
Difference , .
depth 10--2X0-56 = 8-88 In.
3-14 x 8-883 .
[ = XIS g5ins
12
Net = 107 in.4
(Tabulated value == 109-5in.4)
I yy
Distance
Sfrom Ist 2nd I
Area heel moment | moment oun Total
A Y Ay Ay? aris I
Part (in.?) (in.) (in.3) (in.t) (in.9) (in.4)
Web 8-88 x 0-36 = 3-21 0-18 0-58 0-10 .. 0-10
Flanges 2% 35x0:56 = 3:92 1-75 6-88 12:00 4-00 16-00
Totals 713 .. 7-46 16-10
7-46
Therefore § =t — 1.05,
7-13

and by principle of parallel axes
1,, = 16:10—7-13x (1-05)2 = 8-30 in.4
(Tabulated value == 7-40 in.%)

In dealing with such sections as angles and channels, etc., it is often
necessary to find the M.I. about axes other than the rectangular axes.
This is most conveniently done by means of the principle of the ellipse
of inertia. An unequal angle 6 in. X 4 in.x } in. will serve to illustrate
this (Fig. 2.7 (c)).

First, calculate the properties about the rectangular or ‘square’
axes.
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L.
1st 2nd
Area Arm moment | moment Own I Total I
Part (in.2) (in.) (n.2) (tn.4) (in.4) (in.4)
Table 4x} = 200 0-25 0-50 0-12 .. 0-12
Stalk 54x4 =275 3:25 8:95 29-00 6-95 35-95
Total 475 .. 945 .. .. 36-07
9-45 .
= _—— = 1-98 in.
4-75
Iu = 36:07—4-75%x1-982 = 1742 in4
(Tabulated value = 17-14 in.%)
Iw
Ist 2nd

Area Arm nt t Own I Total 1

Part (in.2) (in.) (in.3) (in.4) (in.4) (in.9)

Table 2:00 2:00 4.00 8-00 2-67 10-67

Stalk 275 0-25 0-69 0-17 . 0-17

Total 475 .. 4-69 .. .. 10-84

4-69 .
j = —— = 0-99 in.
Y= 175

Iw = 10-84—4-75x0-99%2 = 6-19 in.4
(Tabulated value = 6-11 in.%)

In order to find the values of the maximum and minimum moments

of inertia, it is necessary to calculate the ‘product moment’ about the
axes X-X and Y-Y which is 3 axy.

Therefore the product moment is given by
Table 2-00 X (1:98—0-25) X (2:00—0-99) = 3-48 in.¢
Stalk 2-75 X (3-25—1-98) X (0-99—0-25) = 2:58 in.¢
Total = 606 in.*
Then angle of inclination between the two sets of axes is given by
2 X product moment
Ixz—‘lw
_ 2x606 1212
T 17-42—6-19  11-23°
20 = 47° 11” approx. 6 = 23° 35’ 30" approx.
If I, and I, are the maximum and minimum values
rL,+1,, = I,,+1,, = 23-61 in.*
and I, = 23-61—1,,.

tan 20 =
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Hence, since I, = I, cos?0+1,,sin%0 = 17-42.

Substituting and solving, we obtain the values

' I, = 20-1 in.4,
I,,= 351 in4
Tabulated values are 19-73 and 3.52 respectively.

More complicated sections such as plate and angle girders can be
dealt with in a similar manner. The arithmetical work can be reduced
by the intelligent use of a structural section book. (When dealing with
net sections, i.e. when rivet holes are to be deducted from the gross

area, use the principle: moment of net section = moment of gross
section—moment of area deducted.)

Definitions of Shear Force, Bending Moment, etc.

1. The loading diagram shows the intensity of normal loading at
any point along the span.

2. The shear force at any point along a loaded span is the algebraic
sum of the forces (normal to the span) to the one side or the other of
the point in question. The shear-force diagram shows the variation in
shear force along the span and is the ‘sum curve’ of the loading
diagram.

3. The bending moment at any point on a loaded span is the algebraic
sum of the moments of all (normal) forces, to one side or the other of
the point under consideration, about that point. The bending-moment
diagram shows the variation of the bending moment along the span.

The bending-moment diagram is the ‘sum curve’ of the shear-force
diagram and conversely the shear-force diagram is the curve showing
the rate of change of B.M. along the span. Consider two points 4, B
on a span and let AB = dx.

Load on 4B = w (per unit length) X dx

= wdx.
Moment at A = M
w s B=M+4+dM.
Shearat A =S
s s B = 8+d8S.

Then taking moments about 4,
(M+dM)—M+(S+dS)dx—jwX (dx)* = 0.
Neglecting the last two terms as they are the squares of elemental
quantities, aM

§=—%

which is the relation between shear and B.M.
Since shear represents rate of change of B.M. it follows that the
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maximum or minimum value of the B.M. occurs at the point of zero
shear, and this fact gives us a convenient method of determining the
maximum B.M. (Fig. 2.8).

]
7
WA
R, ¢ R
¢ Load Diagram R
8’ |
: Z 7 c’ Area s Asc
R/_ /,,’,////// <~ I — zero shear
A . 0
S F. Diagram Re
Area , | Max
A8ED | M
8Mm. Diogram
Fia. 2.8

Theory of Bending

The accepted theory of bending is based upon the following assump-
tions:

1. Sections which are plane before bending remain plane after
bending.

2. Stress is proportional to strain, i.e. the material obeys Hooke’s law
and is elastic; also the material is not stressed beyond its elastic limit.

3. The value of K (Young’s modulus of elasticity) is the same for
tension and compression.

Referring to Fig. 2.9, AB, CD are two sections which are plane
before bending. After bending AB, C'D become A’'B’, C'D' respec-
tively, which when produced meet at O, the centre of curvature of the
beam (the curvature has been purposely exaggerated in Fig. 2.9).

Fibres along the neutral axis are unchanged.

,, above v ’ shorten.
,,  below ’ ’ lengthen.
That is,
the portion of the beam above the N.A. is in compression,
” » ' below . ,,  tension.

Considering a fibre at x above the N.A. and having an elemental area
 then - gtrain in EL = change in length
" original length
__EE'4+LL

EL
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Since stress = K X strain, force — ak EE'F—'(»_LLL'.
= FF;ﬂi,”M , force = aFXEF;'ﬂ]InM'.
total force in compression = Z al % FLFiI_E‘j}_LE ,

—ZGFXFF +MM'

' ’s tension

Fra. 2.9

But EE’' = LL' and FF' — MM', also EL = FM = GH, and by
similar triangles,
EE o«  LL
Y il 0
Stress in EL Ex(EE'+LL')|EL EE'+LL  «x

Stressin FM ~ EX(FF +MM')JFM ~ FF+MM ~ 2
which proves that stress is proportional to the distance from the N.A. or

stress constant
distance from N.A. '
Now if f is the stress at the extreme fibre, stress at any other fibre

—fx distance to that fibre
distance to extreme fibre’
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and stress in EL = f x = fx|AG

force in EL = fra/AQ,
and total compression = Y fra/AQ
total tension = Y fza/AG.
For equilibrium these forces must balance.
Sax = az,

or first moment of area above N.A. = first moment of area below

the N.A.

This condition applies to the centre of gravity of the section, there-
fore the N.A. must coincide with the C.G.

Now taking moments of forces about the N.A.:

2
total moments of forces in compression = fj ;’ A——f > ax?,
2
" » " tension Zfz a“_ ij_ S az?,

and sum of these moments
= (f[AG)(3 ax®+ 3 az?)
= (f/|AG)(second moment of area about C.G.)
= (fI/AQ).
Now sum of moments of forces = moment of resistance, which must
equal M, the external B.M.

- f
M=TIxqg
. . M f _f
which can be written T= 46— & (1)

This formula is one of the basic formulae for use in analysis and design
of beams and girders.

Also f = E xstrain in AC

. AA'4-CC
= EXx 10
If angle AGA’ = 0, angle CH("' is also 6, and angle GOH = 26.
AA' = AGx0; CC' = CHx0 = AGX8,

and AC = R X206 approx.
Lo 24Gx6 AG
S = EX g = Bxg

and substituting in equation (1) we find that
M_f _E_f -
I AG R y
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This equation (2) gives the complete relation between B.M., inertia,
stress, distance from N.A., and radius of curvature.

From equation (1)

VL GErNY
M ” fx y fxz,

where Z = section modulus of the section. It should be noted that,
as the distance to the extreme fibre in compression is not necessarily
the same as for the corresponding fibre in tension, there may be two
values of Z for any section, viz.

Z, = (I/y,) (section modulus in compression),

Zy = (I[y) ( » » tension);
Y., Y, are distances to the extreme fibres.

If Z be multiplied by the maximum fibre stress the result is the
moment of resistance (M.R.) of the section, which must equal M (bend-
ing moment).

In many cases in practice the maximum stress in compression is not
the same as that in tension. For instance, beams and girders may fail
by buckling of the top flange due to strut action or torsion, and for
that reason the permissible compressive stress is generally less than
the corresponding tensile stress.

Moment of resistance (compression) = MR, = Z X f,
’ " (tension) = MR, = Z,Xf,
Where the two moments of resistance are unequal, the lesser value
should be adopted in strength calculations.

I is usually given in in.4, and as y is in inches,

Z = 1Ily=in3
As f is usually given in tons per square inch, M will be in in.-tons,
whereas bending moment is often calculated in ft.-tons, and care should
be taken to convert one or other of these quantities to the same units
in which the other is given.

Since 1/R can be written as d%y/da?, where y is the deflexion (this
will be proved in Chap. IV),

M d%y &y M
—I—=E<E§ o ST ET (3)
Integrating the R.H.S. of this equation (3) we get, since
dy/dx = ¢ = slope of the elastic line at the point in question,

. M
z—f—ﬁdx.

A second integration gives the value of y, the deflexion at the same

point, M
y(A)=I( mdx) de.
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Bending applied to Homogeneous Sections

Steel is a homogeneous material and therefore we can take the
10 in. X 4} in. T section shown in Fig. 2.7 (a) as an example.

I, = 122-34 in4; I, =649int

Zyy= ”25'34 = 24-46 in3
6:49 . .
w= 55 = 2-88in3  Area = 7-35 in.?
Radius of gyration k,, = A/ 2%—;5(—; = 4-08 in.
6-49 .
b2] 2 EX) kuu - A/'i.—3—5- = 0'94 1.
Assuming f = 10 tons per sq. in.,

M.R. = 10X 24-46 = 244-6 in.-tons,
= 20-38 ft.-tons about X-X axis.

Timber is also a homogeneous material (although it is organic and
therefore less homogeneous than steel).
For a timber beam b in. wide X d in. deep,

Z = bd?/6 and M.R. = fbd?/6.
Ifb=3in,d = 9in., f = 1,000 1b./in.2
M.R. = 40,500 in.-1b.
3,375 ft.-1b.

Il

Bending applied to Non-homogeneous Sections

Reinforced concrete is an example of a non-homogeneous material,
since the moduli of elasticity and working stresses are different for steel
and concrete.

The basic theory for R.C. is called the ‘straight-line, no-tension’
method. It ignores any tensile strength in the concrete, the whole of
the tension being taken up by the steel reinforcement. In recent years
several theories have been propounded, some of which ignore the
modular ratio, and in certain other cases the concrete is treated as a
plastic material with a parabolic or hyperbolic distribution of stress
(see Bibliography). The inexperienced designer should adhere to the
generally accepted theory, since any error therein is upon the side of
safety.

Referring to Fig. 2.10, let

E, = Young’s modulus for steel,

E, = ' ’ ,, concrete in compression,
m = E,[E,.
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Considering the bending of the section it is obvious that the strain

on any fibre is proportional to its distance from the N.A. Also, for equal
strains,

stress on steel = m X stress on concrete at same distance from N.A.

b
c 1
N - -"7‘2_ %-.ﬂ
v
./At 1- w l 7= /44! ¢
<o
SEcTion STRAIN STRESS
Fia. 2.10
If n = depth from top to N.A.
d = . . reinforcement,
and b = width of section,
strain on concrete at extreme fibre _n
strain on steel at extreme fibre =~ d—n’
stress in concrete at extreme fibre n
Hence ~ — - i - : = .
stress in steel at extreme fibre m(d—n)
If ¢ = stress in concrete at extreme fibre
and t—= ’ steel ’ '
c n me(d—n)
= e O = - 4
t n(d—mn) n (4)

And if 4, = area of steel reinforcement,
total tension (7') = A4,xmec X {(d—n)/n}.

Now the compressive stress in the concrete varies from ¢ at the top
to zero at the N.A.

total compression (C) = bn X 3¢ = iben.

But for equilibrium c=T.
Yben = A, X me X (—1—? (5)

The force C must act at n from the top, since the distribution of stress
is triangular, and the lever arm a = d—}n = a, Xn.

Moment of resistance (compression) = }ben X (d—3n),

. " (tension) = A,Xme X d—_Tn X (d—3n).



44 STRUCTURAL MECHANICS

For any given values of ¢, ¢, and m, the depth of the N.A. n can be
found in terms of d from equation (4) thus:

t_ __ m(d—n)
c
d
"= rm+1 md,

MR, can be written thus:
MR, — ben, d % (d——M)

¢

= Qbd?,
where ) = constant,

_ emy(1—4n,) .
2

If t = 20,000 1b./in.2, ¢ = 750 1b./in.2, m = 15,
r= 2667 and n, =036, a, =088, @ =119.

il:%t = ratio of steel to concrete
=™ — 0.00675.
2t

Similarly for ¢ = 18,000 1b./in.2 and ¢ = 750 lb./in.?
n, = 0-385, a, = 0-872, @ = 1257, and A4,/bd == 0-008.

Other values are given in Appendix B. It will be noticed that ¢
rises with ¢, i.e. with richer mixes, but that at the same time a higher
value of ¢ does not increase ¢, although the ratio @/4,/bd falls.

Owing to practical considerations in R.C. design it is often necessary
to provide compression reinforcement (above the N.A.). The stress in
this is m times the stress in the surrounding concrete. The steel can
be replaced, for purposes of calculation, by an area equal to (m—1)4,,
where 4, = area of compression steel (Fig. 2.11).

If this is placed at d, below the top, then the additional moment
of resistance is given by

A X (m—1) X (1—d,[n) X (d—d,)
or C,x (d—d,).
Then total MR, = Qbd*+C,x (d—d,)
= MR,
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Hence it is necessary to increase the value of 4, to suit.

A . de2+osx(d~dc)
= .
a,dt

The use of compression steel is not really economical owing to the fact
that it is under-stressed (the American Society of Civil Engineers allow
a stress in compression steel equal to 2 X (m—1)cx (1—d,/n) with an
upper limit of 16,000 lb./in.2). Where compression steel is used, stirrups
must be provided and spaced so as to prevent any tendency to buckle.

i A"j <
i T - N VA Jw "G‘
3 ¥
N
— L ]
Fic. 2.11

The following examples are useful to illustrate the above principles.
Example 1. A concrete beam is 9 in. widex 24 in. deep. Using
c = 8251b./in.2, t = 20,000 1b./in.?, and m = 14, find the area of tensile
reinforcement and the M.R. of the section.

A, 825x0-366

tle = 24-3.
n, = 0-366,
a, = 0-878,
Q — 133,

= 0:00756.

bd — 2x20,000
d = 24—1} = 22} in.
to allow for cover on the underside of the reinforcement.
MR, = 133X 9% 22-5% = 604,000 in.-Ib.
A, = 0-00756 X 9 X 22:5 = 1-53 in.?
Therefore use three §-in. diameter bars, which gives
A, = 1-80 in.?
MR, = 1-80x 20,000 x 0-878 x 225
= 711,000 in.-lb.

Then

MR, is the lower value and will be used as the effective M.R.
Example 2. The beam used in Example 1 is required to resist a B.M.
of 800,000 in.-lb. Find the area of compression steel required and

adjust 4, to suit.

B.M.— MR, = 196,000 in.-lb.
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Working stress in compression steel

= 825 ><-(8—2—8_—-21—5—) X (14—1)
= 8,750 1b./in.2
Lever arm = (0-878 x 22-5)—1} = 18-3 in.
196,000

A = 1-26 in.?

¢~ 18:3x8,750
Two §-in. diameter bars give 4, = 1-20 in.2

800,000
£7 19-8 20,000
Use two at §-in. diameter and one at 1-in.

= 2:00 in.?

2’ diameter, which gives
3 l ?ol A, = 201in2
N Example 3. A T-beam has an effective
124 ] width of 60 in., an effective depth of 30 in.,
/::::: and the slab is 6 in. thick, Using the same
Fro. 2.12 values for ¢, ¢, and m as before, find the area
16. 2.

of tension steel required.
n = 0:366 X 30 = 11 in. approx., i.e. the N.A. lies below the slab.

Stress in concrete at top of slab = 825 1b./in.2
" . underside of slab = 825 x —l-lT:lG
= 375 Ib./in.2
average stress in slab = 825—532—5 = 600 1b./in.?

Total compression in slab = 600 X 6 X 60 = 216,000 lb.

In order to find the C.G. of the compressive forces, take moments
about the underside of the slab:

Stress Area  Arm
375 X (60x6)x § ==405,000
§2—5;L75x (60X 6)X%x6 = 324,000
729,000
. 729,000
= > == '4
distance 316,000 34 in
and lever arm = (30—6)+4-3-4 = 27-4 in.

MR, = 27-4x 216,000 = 5,950,000 in.-lb.
(neglecting compression in the rib).
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5,950,000
‘7 20,000 274
Use twelve 1}-in. diameter bars: A, = 12 in.2 (Fig. 2.12).

= 111in.2

dz

()

Fia. 2.13

Shear in Homogeneous Members: General Case

It has already been proved that shear represents the rate of change
of B.M. Referring to Fig. 2.13,

shear = § = dM/dx.
Considering any fibre at distance y from the N.A.

Bending stress at A-A = !I! XYy I, =MI. at 4-A
1
’ ’ B-B = (*M—:}_I—dﬂ X:I/ 12 = s B—B
2
Since dz is small, I =1,=1
change in bending stress between A-4 and B-B = (dM|I)xy.
If the area of the fibre = q,
. dM

then force in fibre =aX va XY,
and total force in fibres above N.A. = > ay xdM/I.

But dM = Sdx,

shear stress = s,
breadth of section = b,
and shear force must balance force due to change in B.M.

bxdrxs = §~;l£x > ay,
S
or =L
S=pX 2w

= ]ST) X first moment of area of parts above the N.A.
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Therefore s (intensity of shear stress) must be a maximum when the
first moment of area is a maximum, i.e. at the N.A. and zero at the
extreme fibres. It should be remembered that s refers to the shear stress
on a horizontal plane.

The horizontal shear stress acting upon a cube of unit side produces
a moment of s X 1x 1. For equilibrium this moment must be balanced,
and hence it is clear that the intensity of shear stress on a vertical plane
must also be equal to s (Fig. 2.13 (b)).

Shear stresses also occur on diagonal planes due to the action of
shear on the horizontal and vertical planes. The value of s given by

S
§ = 73 X > ay

is that at any particular distance from the N.A., the average shear stress
being given by
s, = S/A (4 = area of cross-section).

Case 1. Rectangular beam.

b = breadth,
d = depth.
Intensity of shear s = Iixb X Yay (I =bd?*12).
(1 d, y\ [ ¥
zaw =o(—)(c+E) = o(5-%)
When y=14d, Say=0,
y=0, Yay= }bd:
Maximum intensity of s = 38 _ 8 X8
2bd — PTM

Average intensity s,, = S/bd.
Also, since > ay varies as a function of »2, the graph of shear stress
must be parabolic.

Case 2. 10 in. X 4} in. joist section dealt with previously.
From the formula

S
8= TxpX 2

it can be seen that s will increase from zero at the extreme fibres up
to a certain value at the underside of the flange, the variation of stress

being parabolic.

Maximum value 8 = §X4-5x0-505 X (5—0-505/2) = 0-01958.

45x1
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The value of s increases suddenly just below the flange and the web
shear is then
o _ SX45X0-505% (5—0-505/2)

— 0-9¢
w 7503 = 0-295.
[——
i////
/ / \ 135,
g /‘ meon
— /™ (5) A
0295
0-375s
(a)

Zm

p
.

(Y
il

)

(c)
Fic. 2.14

Maximum value of shear at the N.A.

S X {45 X 0-505 X (5—0-505/2) + (5—0-505)2  0-3/2}

Smax = 7%03 = 0-3758.
Total shear on flanges
= 2X §x0-01958 X 4-5 X 0-505 = 0-0598.
Total shear on web
= 0-3(10—2 x 0-505) x 0-298 = 0-7828
+3%0-3(10—2 % 0-505)(0-375—0-29)S = 0-1538

0-9948
(See Fig. 2.14 (a).)
Percentage of total shear on web = 94 per cent. (about). The assump-
tion made in practice is that the web carries the whole shear (error is
about 10 per cent.).

Average shear stress = S 0-1368.
7-35
max. shear stress 9.76.

average shear stress
E
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Case 3. Solid round section (Fig. 2.14(b)).
4
I for circle = % (D = diameter).

S 48
h = — = —,
Average shear stress A= ope

Considering shear stress at the N.A.
Area above N.A. = {#D2. _
Distance from N.A. to C.G. of part above N.A. = 2D/3m.

2 3
first moment of area = % X —23—57—) = %
168

Smax = 37TD2’

max. shear stress .
and = 1-33.
average shear stress

Case 4. Thin shell of mean diameter D and thickness ¢ (Fig. 2.14(c)).
Average shear stress = S/mDt.
Area above N.A. = {=Dt.

Distance to C.G. of part above N.A. = D/n.

First moment of area = mDt X D_ I—Ef
2 T 2
I = area X (radius of gyration)?
= Dt X }D? = }nD%.
Max. shear stress = 2S/7Dt = 2 X average shear stress.
Shear modulus is called the ‘modulus of rigidity’ (). For steel
@G = 0-4F approximately,
= 5,500 tons/in.?

Shear strain is measured in radians (Fig. 2.14 (d)). For steel the shear
strain is usually very small, and in general shear strain is small in com-
parison with the strain due to bending.

Shear stress acting in conjunction with stress due to bending can
cause diagonal stresses in the webs of plate girders, which should be
considered in the design of such members. Shear in webs should not
be confused with web buckling due to failure of the web under com-
Ppression.
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1n the design of built-up girders, the shear force acting upon the rivets
must be calculated. Since

8§ == gﬁ z ay
Ixb
shear per unit length = Sx 2 %,

1

In actual practice it is usual to find the
shear per unit length thus: since S = dM [dx MM,

(Fig. 2.15). p ls
1f M, = BM. at 4-4 S
and M, = B.M. at B-B,
S == My— My (where x = AB). A
x
Fia. 2.15

Now the flange forces form a couple equal
and opposite to the B.M., so that if d = effective depth,

flange force at A-4 = M,/d,
2 ”» B-B = Mz/d,

and increment of flange force == JL]‘&;]E[_I = %x

When z is small, shear per unit length = S/d. This is usually calcu-
lated per linear inch and must be developed by the rivets or welds
connecting the flange details, or the flange to the web.

In cases where § X web area has been included in the flange area

S, 4
d”A+LIW’

where 4 == flange area and W = web area.

shear per unit length —

Shear in Rivets

When two structural members are connected together by riveting
and loaded as shown (Fig. 2.16 (a)), there is a tendency to fail by shear
along the line AB. The effective area of the rivet (in single shear) is
nd%[4 (where d = diameter of the hole), and strength in single shear
= md?*s[4 (s = safe shear stress). For rivets in double shear (Fig.
2.16(b)) there is a tendency to shear along two planes and the value
in double shear is usually taken as 2 X wd2s/4. Note that a rivet can
also fail in bearing by crushing against the edges of the hole and the
bearing value = safe bearing stress xdxt (¢ = thickness of metal).

In designing riveted joints the least value of the rivet should be used.
For long rivets treble or quadruple shear may occur, but owing to
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bending which may occur in the rivet and other practical reasons, it is
well to reduce the working stresses in such rivets as stated in Chapter
XVI (Vol. II). Sinceriveted joints may fail by tearing of the plate along
the dotted lines in Fig. 2.16 (a), the distance between the edge of the hole
and that of the plate should not be less than the rivet diameter. Values
for rivets in shear and bearing are given in the regulations referred to

ll|s

(a) %)

Fic. 2.16

in the Bibliography. Shop-driven rivets are more reliable than those
driven at site, and for that reason turned bolts with a tolerance of
+0-005 in. are often used in preference to the latter. (Rivets are not
used in tension where this can be avoided. For rivets in tension, use
diameter of cold rivet to find the effective area.)

Welding

This method of joining structural members has come into more
general use in recent years and the use of welding is likely to increase
owing to the tendency to design structures as rigid or semi-rigid frames.
Since welded connexions are dealt with in Chapter X VI (Vol. II) it will
be sufficient to deal very briefly with the question of welding at this stage.

Sick Fi/kF Throot
tFrrckness
.__1 End __.
Fille !
Fllet Weld
Fia. 2.17

The most common type of welds are (a) butt and (b) fillet welds. Type
(@) are more reliable than type (b), although they involve more prepara-
tion of the parent metal. Fillet welds are rather unreliable under the
action of alternating stresses which occur in bridges and similar struc-
tures. Welds may be subject to tension, compression, or shear, or to
the action of combined stresses.

Fillet welds (Fig. 2.17) may be end, side, or diagonal fillet welds.
The size is specified as the length of the shorter leg, but the size used
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in design calculations is the throat thickness = 0-707 length of leg

N A— -

for symmetrical fillet welds. The effective
length = overall length—2 X (size of fillet).
This should not be less than 2 in. or 6 X size
of fillet for stressed welds. Side fillets are
stressed in longitudinal shear. End fillets
are stressed in transverse shear.

Effective area = throat thickness x effec-
tive length, and working load = safe stress
X effective area. Values for safe stresses
are given in the various regulations already
referred to.

Butt welds (Fig. 2.18) may be of various
profiles and can be used to resist tension,
compression, and shear. The most common
types are the square butt, vee, double-vee,
J, and U, and their use and working
stresses are specified in B.S.S. 538 and other
regulations.
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Fia. 2.18

Shear combined with Tension or Compression
It is unusual in the case of simply supported beams to find heavy

stresses due to shear occurring at the same point as
heavy tensile or compressive bending stress. This
case does, however, arise in rigid or semi-rigid
frames. Considering the general case (Fig. 2.19) of
a direct stress f and a shear stress s acting together.
The stress f acts upon the plane 4 B and s upon the
plane AC. Since s acts upon the plane AC there
must be a similar stress upon a plane at right angles

Fia. 2.19

to AC. If BC be the plane acted upon by the principal stress p, then

ABXf+ACXs = BCXpcos#, (1)
also ABxs = BCxpsind. (2)
From (2) s = ptand,
and from (1) .
ABxf+?££%mﬂ % AC = BC x pcos.
Simplifying, fHptan?d = p,
or J4+p X (s[p)? = p.

sy
g

)
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. f 4s?
Max. principal stress = p; = 5‘1 +A/(l +F }

Min. principal stress = p, = { {1__ A/(1 +;_s:)}

Principal stress can be defined as the normal stress acting upon a plane
which is wholly free from tangential stress.

—_ 2
Max. shear stress = 1-7—12—1)2 = A/ (‘%4-32).

The same method can be used for riveted, bolted, or welded con-
nexions subject to direct stress and shear due to eccentric loading.

Shear in Timber Beams

The treatment of this presents no difficulty since timber beams are
usually rectangular or square; hence as previously stated the maximum
shear stress will be 3.5/2bd, where b, d are the breadth and depth of
the beam. Since the shear strength of timber parallel to the grain is
less than the corresponding value across the grain, this should be used
in checking the strength of the member.

Shear in Non-homogeneous Members; R.C. Beams

In the case of rectangular R.C. beams with tensile steel only, the
lever arm @ = d—n/3.

In Fig. 2.20, M, = BM. at A-A,
M, = B.M. at B-B,
AB =1
Then compressive force in concrete = B.M./a = tensile force in steel.
M N .. Force at A-4 == M,/a,
A 8 v 5 DB-B = Ma.
o ¥ Increment in tensile force between A-A4 and
B-B = (M,— M,)/a.
4 / But since  M,— M, = S,

in the limit when [ is very small,
Fia. 2.20

increment in tensile force = §/a,
and this must be resisted by the shear stress s acting across the

width b. s = Sjab.

The actual shear-stress diagram is a parabola between the top edge
(where shear is zero) and the N.A. (where shear = s). The shear stress
remains constant from the N.A. to the steel reinforcement.
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The allowable shear stress in concrete is usually taken as 10 per cent.
of the basic compressive bending stress. If the calculated shear stress
does not exceed this value there is no necessity for shear reinforcement,
although it is good practice to provide nominal reinforcement. Where
the calculated stress exceeds the allowable shear reinforcement must
be used (a) in the form of stirrups, () by bending up the main bars as
diagonals, (c) by a combination of () and (b). Stirrups should be spaced
not farther apart than the lever arm a or twelve times the diameter
of the main bars (whichever is the lesser). The following formula is
used to calculate the area of stirrups:

S = ?w X Aw Xa
p b
where

t, = allowable tensile stress in stirrups (18,000-20,000 lb./in.? for
mild steel),
A, == area of stirrup =: 2 }nd? for double stirrups (¢ = diameter),

p = pitch of stirrups.

hongers

f

L)y L
strrups
Fia. 2.21

Stirrups are normally } in. minimum diameter, but stirrups more
than } in. diameter are difficult to bend. As the shear is usually a
maximum at, or near, the supports, the stirrups should be spaced more
closely together at the ends of the beams and may be omitted near mid-
span. For doubly reinforced beams stirrups must be provided through-
out the length of the beam. Hanger bars should be provided in singly
reinforced beams (Fig. 2.21).

Diagonal or bent-up bars. Main bars may be bent up beyond their
‘theoretical ends’, i.e. where they are no longer required to resist B.M.,
to act as shear reinforcement. Usually the top layer of bars or the
inner bars where there is only one layer, are bent up in this way. The
steel acts in tension and the vertical component of the tension resists
shear.

Force resisting shear = Atsin6,

where A = area of bar or bars,
t = tensile force (18,000-20,000 1b./in.2 for M.S.),

6 = angle of inclination to horizontal.
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For 6§ = 45,
shear value = 0-7074¢. (Fig. 2.22.)

These bars are analogous to the diagonals in a lattice girder.

A LA Shear steel should be designed as carefully as the
main reinforcement since failures have occurred
due to insufficient shear reinforcement. Where the
i calculated shear stress exceeds the allowable value
for concrete, some designers ignore the shear value
of the concrete entirely. A more rational method
is to reduce the allowable shear stress in the ratio of

Fic. 2.22

allowable shear stress
calculated shear stress’
Then the difference between the shear taken up by the concrete (at

the reduced working stress) and the total shear must be taken up by
shear reinforcement.

Bond and Anchorage in R.C. Beams

It has been proved that the increment in tensile force between two
points along the span of an R.C. beam is given by S/a. Now if no slip
occurs between the steel and the surrounding concrete, this must be
balanced by the bond or adhesion between the steel and the concrete.

8 X0 = Sla
and 8, = S/(Oxa),
where 8, = bond stress,
and O = perimeter of the bar or bars.

Values for s, are based upon the basic bending com-
C ) pressive stress C.

Since reinforcing steel is normally used in tension,
it is necessary to anchor main bars at their ends by
hooking them over other bars or by providing a length
of bar to develop the tensile strength in bond.

If
T = tensile force = }nd? (using the same symbols as before),

then the anchorage length is given by
X OX1 = }md?,
_md  dt

4x0xs8 43,
For ¢t = 18,000 1b./in.2 and s, = 100 1b./in .2,

= 45d.

4,
Fi1a. 2.23

or l



STRUCTURAL MECHANICS 57

It is usual to provide a hook of inside diameter = 4d in addition to
the length given by the above formula. In the case of bent-up bars

the length assumed to act as anchorage is measured from the N.A.
(Fig. 2.23).
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CHAPTER III

STRUCTURAL ANALYSIS:
CANTILEVERS AND SIMPLY SUPPORTED BEAMS

Cantilevers are beams or girders which are free at one end and fixed
or built-in at the other. The tangent to the elastic line, i.e. the line
representing the N.A., must be horizontal at the fixed end.

Case 1. Concentrated load W at free end (Fig. 3.1) of span I. The
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shear at any point is W and the B.M. increases from zero at the free
end to a maximum of WI at the fixed end.
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Case 2. Concentrated loads W;, W,, W;, and W, at distances I, 1y, I,
and [, respectively from the free end (Fig. 3.2).
A and B = 0,
B, C=1W,
Shear between{ ¢ ,, D = W,+W,,
D, E= VVI+VVA+W€3,
E ,, F= Wi+ Wot- W+ W,
from A to B =0,
at ¢ = W(l,—1),
at D = W(ly—L,)+ Willa—Ly),
at B = Wi(ly,—I )+Wz(l4—l )+ Wa(ly—1y),
at fixed end = W(l —1,)+Wy(l —L,)+W;(1—1;)+
+Wall—1y).

B.M.

Graphical Method

Set down the span to scale with the loads spaced correctly. On a
vertical vector set off the loads to any convenient force scale. Then
if the loads are represented by 0-1, 1-2, 2-3, and 3-4, project the loads
down vertically to meet horizontal lmes from the points 0, 1, 2, 3, and
4 to obtain the S.F. diagram. To draw the B.M. diagram, select a
pole P at a horizontal distance p in. from the vector line and draw the
rays P-0, P-1, P-2, P-3, and P-4. In space BC draw a line parallel
to ray -1, and from the intersection of this line with the vertical line
through C draw a line parallel to ray P-2 and so on, until the diagram
is completed. The scale for B.M. = scale of space X scale of force X polar
distance, e.g. if one inch represents 4 ft., one inch represents 5 tons, and
polar distance = 4 in., then one inch on B.M. diagram represents

4x5x4 == 80 ft.-tons.
Case 3. Uniformly distributed load w per ft. run and W = wl

(Fig. 3.3).
Shear at x from free end = wu,

B.M. at « from free end = w2
Maximum values when x = [, i.e. at fixed end, are:
shear = wl = W; B.M. = jwl? = L1 WI.
Case 4. Triangular loading increasing in intensity from zero at free
end up to a maximum of w at the fixed end (Fig. 3.4). The intensity

of loading at distance x from the free end is w./l and the shear at that
point = wz?/2l. The B.M. at x

wal T _ vt
20 73 6l
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The maximum values at the fixed end are:
shear jwl = W and B.M. = }wi? = Wl

Any combination of the loadings in Cases 1-4 can be dealt with by
treating each component loading separately and then adding the values

A ’
w per ft run v 8 w ;
wx #
7 A 7z v
2 : ;
S 4
3 ? } rEL
Y 2 2
k] "
S.F SF v
t
Il
& E{0 ) §|m
= " x W
£ F 2 Yo
8.M. 8M
Fic. 3.3 Fic. 3.4

of shear and B.M. at points along the span algebraically to obtain the
combined S.F. and B.M. diagrams.

Sign Convention for Shear and B.M.
Shear{ Upward shear to the lt?ft—posmwla
» » right—negative.
Bending causing tension below N.A.—positive
B.M. ‘ ;
» ” above N.A.—negative.

It will be noticed that the cantilevers dealt with in Cases 1-4 are all
subject to negative B.M.

Simply supported beams are freely supported on two supports,
generally at each end, and are free from restraining moments. The
supporting forces are called reactions, which may have suffixes to
denote at which end they occur. By the conditions for equilibrium
stated in Chapter II, the sum of the reactions must be equal to the

sum of the loads and the B.M. at each support must be zero (except
in the case of overhanging ends).

Case 1. Concentrated load W at distance a from R, (Fig. 3.5 (a)).
Then R, = Wbjl and Rp= Wall
and R,+R,=W.
Shear from R, to W = + Wb/,
w3 Wto Rp= —Wall
B.M. at « from R, = R, xXx = Wbz/l.
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61
When x = a, i.e. at the load, BM. = Wab/l.

When 2 = a = }, i.e. load is at mid-span,

R;, = R, =4W and max. BM. = }Wl (Fig. 3.5 (b)).

v
a ]
l‘ *‘ \‘eg 5/2 5/2 3

A7 Y X
P Ra ¥ ~ %
SF -2 s 2

2 We

’!‘1 a

8M BM

(a) (b)

Fic. 3.5

Case 2. Uniform load w per ft. run on span ! (Fig. 3.6). Then
R, = R, = jwl = }W

X
. w per f rom a {'Za L 2
P2 w
wl
244 +\\l |
t s — tw —JT- *
~. 22
\.._f_ * F ~ w
s
t we
£
wa Wa|
% R
e.l'M. B B M.
Fic. 3.6 Fic. 3.7

and shear at any point at « from R is R, —w=, so that S.F. diagram is
a straight line passing through zero at mid-span.

BM. at x = R; xx—jwa? = jwle—Jual.
Since shear is zero at mid-span, i.e. when x = }l,

max. B.M. = Jwi? = { Wi

and the B.M. diagram is a parabola.

Case 3. Two equal point loads W at equal dlstances a from the
supports (Fig. 3.7).

‘RL=RR: W.

Shear is constant between the supports and the loads and zero
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between the loads, so that part of the beam is subject to pure bending.
The maximum B.M. is Wa at and between the loads. '

Case 4. Loads W;, W,, W;, and W, on span ! (Fig. 3.8).
Set down the loads to scale on a vertical vector line 0-1-2-3-4.
Choose any pole P at a horizontal distance p from the vector line.

z Xe Xy
% x4
GD Wiz Wis) (Wy
. Z p
¥ ‘ T T
___,__}_—.____.—
e
S
b e e BT
5~ \\?f
Rpw: — ¢
G gm
Fiu. 3.8

Construct the polygon abedef by drawing lines ab, be, ete., respectively
parallel to P-0, P-1, etc., and join af. Through P draw Px parallel
to af and project x horizontally, also points 0, 1, 2, 3, and 4 to meet
the verticals through W, W,, W,, and W,. The resulting diagram is the
shear force diagram drawn to the scale chosen for the vector line.

The polygon abcdef is the B.M. diagram and the scale for this
= p X space scale X scale of vector line.

p should be chosen so as to give a convenient scale. Ox represents
R, and x4 represents R,

By moments Ry <1 = Wz, + Wyay+ Wyay+ Wy,
B, = Wi+ W+ Wy+W,)— Ry,.

Shear
From R, to W = R,

» WtoWy= R —W,

»  Weto Wy = R —(W+W,),

»  Wato Wy= B —(W+W,+ W),

» Wyto By = R —(W+W,+W+W,) = Bp.
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B.M.
At W, = R, x,,
» Wp= Rpz,—W(2,—2,),
» Ws = Rpzy—{Wi(x3—z)+ Wy(xz—2,)),
» Wo = Rpzy—{Wilz,—a;)+Wolr,—ap)+ Wylx,—2,)},
= Rp(l—z,).
Proof. By similar triangles
w _os

4o P’
bb' xp = Ox Xz,

and cc¢’ == ¢, ¢’ —cey.

|

2w
¥

o3

Lox?
R + W(r7')

7r‘ (128wé

Fia. 3.9

pxee = 0x xXxy—W(wy—-1;)
and  pxdd = OxXxy—{W(xzs—a,)+ Wyla;—a,)}.
Also  pxee == Orxxy—{W(ag—ux,)+ Wy(ay—a,) -+ W(xy—x,)}
and 0 = Ox X I—{Wy(l—x,)+W,(l—x5)+ Wy(l—x5) + Wy(l—x,)}.
O X1 = W(l—ay)+ Wyl —ay) + Wy(l—acy) + Wyl —z,)
= moments of loads about Ry,
Hence Ox represents R; and x4 represents R,
Now pxXbb = OxxXwx, == B, Xx; = moment at W
and pXxee = x4(l—x,) = Rpy(l—ry) = moment at W,
“and similarly for other points along the span. Therefore the polygon
abcdef represents the B.M. to scale.

Case 6. Uniformly increasing load, the total load being W (Fig. 3.9).
The maximum intensity of loading is 2W/l per ft. R, = 4W and
R, = iW.
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The intensity of loading at « from R, = 2Wx/I?

and shear at that point

— g, W oz W W&

I AT A R
This is zero when @ = I/v3, which gives the position of the maximum
B.M.
w2 v 2
312 7343

Case 6. Triangular load W, the distance from R, to the apex of the

triangle being a (Fig. 3.10).

Max. BM. = R, x0-577l — = 0-128WI.

=1
wd w
4
R a b Rz
£
3%(?("‘) ul 2a” x‘] @
A5 L)
¥ T
s\jgun)
St /TS
8m™
Fia. 3.10

The intensity of loading at the apex = 2W/L.
2W

1 2 a a
= l—a)2x=x =4 21—as?
Ry x1=21—a) ><2><3+2(l a+3)}
= %/(Ql—a).
W ..
RL = —37 (Zl—a)
and Ry=W—R, = %(l—{-a).
. . . 2W =
The intensity of loading at z from R, = T X
—a
For zero shear at z:
2V x =z
Ty B

r = R—a?
_Ja,
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Max. BM. = B, A/(’LT“*) W trayx L A/(l —3a2)
=%VTV(H_“)A/(§ —3“)

When a = 1, i.e. apex is at mid-span,
R, = R, =W and max. BM. = }Wli.

@ |
w/z»/‘ un ﬁ—l
R V4 Re
4
Q,Na‘;l-g) 7 ‘ l
T 2Bl Z Re- e’
ng S £ T7
e
Wa 2t
. Ylta
BM.
Fic. 3.11
Case 7. Uniform load w per ft. over distance a from R, (Fig. 3.11).
_wa? _ wa(2l—a)
Bro=g  Bo=—gy—
Distance of point of zero shear from R; = ‘%‘_‘_").
2 —a)2
Max, BM. = WA= ).
812
b a l-(ash)
w per fF run
R, Ra
4
R = Hof2el-Gbra) + |
f - R
g 57 (2b+a)
x= bed |{26-(20a) o R ;
R’-( %b) 5(?6 ba)({-(atb)
Bl fma)
' BM
Fia. 3.12

Case 8. Uniform load w per ft. over length a of span [, the distance
from R, to L.H. end of load being b (Fig. 3.12):

Ry — %1(2,,4_(,); R, = %(21——21;—(;).
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Distance of point of zero shear from R, = b+2ﬁl(2l——2b——a),
and max. BM. = R, z— RL("lc b) RL(x—i—b)

8l2(2l 2b—a)(20+a)(2l—a),

where W = wa.

Simply Supported Beams with Overhanging Ends

These beams can be treated by dividing them into a cantilever (or
cantilevers) and a simple beam, finding the shear and B.M. for each

w per fF run

R < - TR 42
4
RL;zi‘ = ') |
2
SE Re= "’—‘é%fl)
point of — \ 4
\\\\\ ccﬂrmﬂuu, \_ Y
\\\\\\ =
8 M. z
Fic. 3.13

part, and adding the ordinates algebraically. For the case shown in
Fig. 3.13, the maximum (negative) B.M. at R, = wlg/Z and the shear
is wl,. For the part between R  and R, the maximum (positive) B.M.
at ’rhe centre is wl / 8 and the shear at R; and Ry = wl,/2. Combining
these values, the S.F. and B.M. diagrams are as shown. It will be
noticed that the B.M. diagram crosses the base line near R,. At this
point the B.M. changes sign and this is therefore called a ‘point of

contraflexure’. Shear at R, = wl,/2 and shear at R, = !} wl,.

By moments,

R, = w(l,+1,)?

20, 7
RL - 2_1( 2)’
and R, + R; = total load.

The values found by combining the component parts were
Ry = $wl,+wly; R; = jul,,
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the difference in each case being +wl/2l,. Now B.M. at R, = 0 and
BM. at Ry, = —wl3/2.

Difference in B.M. = -wl3/2.

Dividing this by the distance I, between R, and R, we get the
amount wly/2l, and hence the rule for such beams; the reactions must
be adjusted by an amount equal to the difference in B.M. divided by

w }{r /4 run

.
'6/ ¢ /7 {’/2 K (,

BM.
Fiu. 3.14

the distance between the reactions. This will be dealt with more fully
in Chapter V.

For the case of a beam overhanging both supports by an equal
amount I, (Fig. 3.14), the central span being l,, the values for the
cantilevers are:

shear = wl; BM. = —wlf/'.),.
The values for the central part are:
2
shear = 113—2; BM. = %—2

Since there is no difference in B.M. at the supports, no adjustment of
the reactions is necessary and the value of these is wl;+wly/2. There
are two points of contraflexure equidistant from the ends. The distance
from the supports is x, where
2 42
(3l —2)? — u_)j_%lZ_%_l_l_).
(312)? w(}le)

L fly g
x-—-'z———J(Z——ll .

Greatest economy is obtained where the net B.M. at the centre is equal
numerically to the support moments. Let the central span be I and
the cantilevers be nl (Fig. 3.14(a)).
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Then support moment = —}wn??;
Positive moment = jwi?;
Net moment = wt_wnil at centre.
T8 2
2 2]2 2]2
When Q—USL ___w_r;l_ = w1;l numerically,

n?=1% or n = 0353
Total length = 1-7061.
w per ft ron

R, K2
-207¢ 5864 2o7¢| & =
- 7074 R 293¢

/Tw
* e * -o42s WE

- U4 —
T~ - “ofz750F
- - -0g25 W

Fic. 3.14(a) Fic. 3.14(b)

Hence we derive the rule that the best method of lifting or slinging
is when the supports are at approximately } length from the ends.
Max. B.M. = 0-0625W1 (W == wl).

For a uniformly loaded beam overhanging one end only (Fig. 3.14 (b)):
Positive B.M. = Jwl?; negative BM. = —}un?l?,

. wlz 1 wnfl? wn?l?

Effective B.M. = —8-——§>< —5 =g
n = 0-41 approx.

Total length = 1-411, and ratio ?—i—i = 0-29.

Graphical Construction for Beams with Overhanging Ends

W;, W;, Wy, and W, are point loads on a beam overhanging each sup-
port (Fig. 3.15). Set down a vector line 0-1-2-3-4 representing the
loads to a suitable scale. Project the points 0, 1, 2, etc., across and set
off a pole P at a convenient polar distance p in. Draw ab parallel to
P-0 in the space between R; and W, then bc parallel to P-1 in the
next space, and so on. Join a to the last point f and obtain the polygon
abedef representing the B.M. to scale. Draw Px parallel to af, then
P-z represents R, and z—4 represents R;. The S.F. diagram can be
completed by projecting the x across horizontally.

Example 1. A simply supported girder 120 ft. long is loaded as
shown in Fig. 3.16. Draw the S.F. and B.M. diagrams.
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By moments 120 x R, = 80x 100—80x 40.

R; = 40 tons and R, = —40 tons.

Points of zero shear are at 20 ft. from R, and 40 ft. from R,,.
40 % 20—40 x 10 = 400 ft.-tons.

Max. positive B.M. =
,, negative BM. = 40x40—40Xx20 = 800 ,,

and S.F. and B.M. diagrams are as shown.

69
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Ezample 2. A beam 40 ft. long overhangs each support by 10 ft.

and carries a uniformly distributed load of 1 ton per ft. run. Draw
S.F. and B.M. diagrams.

R; = R, = 20 tons.
Shear at support due to cantilever = 10 tons.

2
Negative B.M. at support = 1 x 1—20— = 50 ft.-tons.

i 202
Max. positive BM. = 1 x - = 50

EEl

Residual B.M. at mid-span is zero.
S.F. and B.M. diagrams are as shown in Fig. 3.17.

gt st
/Ten per H ron R=15777 6.
Re Re ¢ 170" 2'a”
”" * o4 777 v ZJ
- or - rd _ |8 ¥ &
J74 | SF
s 7174

\&&/ -  forns. \/ J'ﬁ' 9-64 4. for}

am 777 am

Fic. 3.17 Fic. 3.18

Example 3. A beam 18 ft. long is supported and loaded as shown in

Fig. 3.18. Draw S.F. and B.M. diagrams and find the maximum values
of the shear and B.M.

Total load on beam = 8414 = 22 tons.
R, x12 = 14XxT—8x2.
R, =683 tons and R, = 15-17 tons.
Max. negative B.M. at B, = 8Xx 2 = 16 ft.-tons.

”» ”» ” RR:2X1: 2 »s
2
Max. positive BM. = 1x128 18 ft.-tons
8 at centre of
12-ft. span.
Residual positive BM. = 18— (l%tg) = 9 P

Distance of point of zero shear from R; = 15-17—8 = 7-17 ft.
172
Max. positive B.M. = —(8><9-17)—(l X 2—157—)+15-17>< 7-117.

= 9:64 ft.-tons.
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Example 4. A beam is loaded as shown in Fig. 3.18 (a) and has a
pin at 5 ft. from the L.H. end which is built in. Find the reactions
and draw the S.F. and B.M. diagrams.

Y

A5 o 18 4
«Pin /%M
b 727
et —————— 4-1#_\
-F -y
- |32
SE A
+ 18
M.
Frc. 3.18(q)
.
v

1
\, 4.
oM \\lﬁ‘/
Fic. 3.19

Since B.M. is zero at the pin, by taking moments about this point
16X By = 4 X 104+4X17.
R;, = 7-2 tons; R, = 0-8 tons.

‘B.M. at R, = —8 ft.-tons,
,, under load = +8 ,,
) at -RL =—4

and diagrams are as shown.

Example 5. A beam ABCDE is loaded and supported as shown in
Fig. 3.19. Draw S.F. and B.M. diagrams and find the maximum B.M.



72 STRUCTURAL ANALYSIS: CANTILEVERS AND
’By moments about D: RpXx20 = 6X10—1X8 = 52.
. . B: R;,x20 = 6x10—1x12 = 48.
Rp = 26 tons; R, = 24 tons.
Shear force. At B = —0'5 tons and -+2-1 tons.

” C=—-09 2 ” +O']~ ”
3] D= —19 ] 3] +0‘5 3]
Distance of point of zero shear (X) from 4 = 02;5 2 = 10-4 ft.
bRl » Y » E 2 == 9.6 »
2 ( ) 0 2r+
95 42
BM.at X — 2-6><8-4_°2°___>_;_19.i — 834 ft.-tons (max.)
95 % 9-62
. Y= 2-4x7-6—% — 675
. 2
L 0= 2-6x12—9¥ —670
92
Negative B.M. at B and K = o 20;«2- = 05 ft.-tons.

The dotted and chain dotted lines on the diagrams represent the

B.M. due to distributed and point loading respectively. The points of
contraflexure are X, Y.

(AX)? 2><0 25 = 2-6(4X—2). oo AX = 292 ft.
2
(%ﬁ 25 94(BEY-2). . EY =23 ft.

In all the preceding examples the loads on the span have been fixed in
position. It is now necessary to define dead, superimposed, and live
loads and to consider the effects of the latter.

Dead load is the self-weight of a structure, e.g. in the case of a bridge
the weight of the girders, flooring, rails or road surfacing, and in the
case of a steel-framed or R.C. building, the weight of the structural
framework, floors, walls, ete.

Superimposed load (for buildings). In a warehouse this represents
the loads due to the materials stored therein. For office blocks the
superload is the load due to furniture, fittings, and occupants. The
superimposed loads for various classes of buildings are laid down in
the Codes of Practice, etc., referred to in the Bibliography. In practice
superimposed loads are treated as dead load, but with the exception
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that they should be applied so as to produce the maximum shear and
B.M. It may be found, for instance, that the worst conditions occur
when all spans are loaded with dead load and superimposed load is
applied to some of the spans (for continuous spans).

Live loads are those which travel across a span, e.g. the vehicular
traffic on rail and road bridges and the loads due to end carriages of
cranes acting upon gantry girders. The loading on the span varies
during the passage of the wheels and the effect of this must be investi-
gated. In addition to the effect of the wheel loads crossing the span,
there are certain effects due to impact which will be described later
in this chapter.

Influence Lines

Many problems of live or rolling loads can be solved by the use of
influence lines. An influence line is a curve representing the variation
in shear, B.M., or any other result of the loading at one particular point
as the load crosses the span. The equation to the curve is derived from
the value of the function of the loading (i.e. shear, B.M., etc.) due to
unit loading travelling along the span. It is usually convenient to write
the function in terms of z, the distance from one support.

In a bridge, where the load is first applied to the stringers or rail
bearers and then transferred through the cross girders to the main
girders, the value of any function for the latter must vary at a uniform
rate as the load moves from one joint to another, and the influence
line will be a straight line between the panel points. Tt is usually
sufficient to calculate the ordinates of the influence line at two or three
critical points. Influence lines are useful for showing the effect of the
moving load and can be used for finding the forces in the members.

Method of Use. First draw the

influence line and find the position < 4 Z

of the loads which will produce the P

worst condition. Although mathe- A T s
matical analysis may be more direct %\

in simple cases, the use of influence < |9

line gives a better appreciation of 4 ¢ 8
the effect of rolling loads, and is 8M Influ

certainly the best method for com-
plex loadings or structures.

Case 1. Influence line for B.M. at any point due to a single rolling
load (Fig. 3.20). C is a point on the span at a from 4. Place unit load
P at distance x from B. When P is to the right of C,

Px

]VIc=—T><a=gl‘—xxP, but P = 1.

Fia. 3.20
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Therefore the equation becomes M, = ax/l, which is the equation
to a straight line. The maximum ordinate is at C' and equals a(l—a)/l.
Case 2. Several concentrated loads on the span. Referring to Fig.
3.20, the moment at C due to any load P at any point is P Xy, where
¥y is the ordinate at that point (since y represents the moment due to

o per Jl rum
A [4 % B
e
\ Wi
BM. Influcnce Line
F1c. 3.20 ()

unit load at that point). Therefore total moment = > Py, or B.M.,
due to any number of loads is given by the sum of the products of the
loads multiplied by the respective influence line ordinates.

In practice a useful method is to draw the influence line and then
to set down the spacing of the loads to the same scale used for space
on the influence line on tracing-paper. Then by trial and error the
maximum value of 3 Py can be found, which gives the maximum B.M.
on the span due to the applied loading.

Case 3. Influence line for uniformly distributed load over part of
the span (Fig. 3.20 (a)). If the intensity of loading = w per ft. run,

M, = area of part of influence line between end ordinates X w.

Since the moment due to the element wdx is given by wdx x y,
total moment = f wy do = w f ydx
Ty Ty

= wX area of element,

and moment due to load = wxarea EFGH.
(When the uniform load is longer than the span,

M, = wxarea ADB.)
To find the position of rolling loads for maximum B.M. at any point C.

Case 1. Single concentrated load. M, due to any load P at x = Py.
Hence this is a maximum for the load at C.

Case 2. Uniform load. The maximum B.M. at C evidently occurs
when the load covers the whole span and is given by
M, = area ADB xw
1 _ a(l—a)

";“ (—a).
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Case 3. Two equal loads P at distance d apart (Fig. 3.21).
M, = P(y+y'), where y, y’ are ordinates.
Hence M, is a maximum when (y+y’) is a maximum.
a(l—a)  a(l—a) l—a—d
T Ry }

Max. M, — P{

= ?{2a(l—a)—ad}.

Pl .p
[
A a t-a 8
|
k4 8
BM. Influence Line
Fic. 3.21

Case 4. Any number of concentrated loads (Fig. 3.22). Let

G, = sum of all loads between 4 and C for any position
of the loads,

G, = sum of all loads between C and B.

G,, G, are acting at the centroids of the load groups. Since G, G, have
the same effect on the reaction at B as the loads they replace, they

5 2
A = B8
! g 2 "
P, 4 8
8.M._Inflvence Line
Fia. 3.22

have the same effect on the moment at C. As the loads move to the
left across the span, the change in the moment at C is given by

dM = G, xdy,— Gy X dy,

aM dy, dy,
and E;_sz%—(}'lx%,
which can be written as
% = Gytanoy,— G tana, (% = tan ay, % = tan al)
_ Gy, G
= oD(gh 16}
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For maximum value of M, this expression must be zero as the moment
changes sign. The values G,, G, can change only as the load passes
the point C. A load passing C increases &, and diminishes G,, and
therefore the condition for maximum value of M, is

& _ G
CB  AC’
ie. GitG G
’ CA+CB AC
¢ _ 6
or Z—E = _A_é (G = G1+G2).

That is, the maximum B.M. at any point on a loaded span occurs when

the average unit load to the left of the point in question is equal to the

average unit load over the whole span. The unit of length is the foot

for simple girders and the panel for lattice girders. For any given

loading there are generally two or

three positions which satisfy this con-

dition, and each must be investigated

Lotiz)| b d =d to find the maximum B.M. for the
4 particular point on the span.

Frc. 3.23 Case 5. Maximum B.M. for a series

of point loads (Fig. 3.23). Let P be

any load, G' the total load on the span, and G, the sum of the loads

to the left of P. a, b are distances independent of the position of the

loads provided that all the loads are on the span.

Moment under P = R, (l—z—a)— G, xb
= (Gz[l)(l—x—a)— G
= (Ql)(lx—2%—ax)— G, b.
Now dM|[dx = 0, when [-—-2zx—a =0,

or r=1l—xz—a.

G I 6

Therefore maximum B.M. under a load occurs when the load and the

C.G. of the whole load system are equidistant from the ends of the
span.

Influence Lines for Shear

Case 1. Shear influence line for any point on a span (Fig. 3.24). The
positive shear due to unit load, moving from B to A, increases from
zero (for load at B) to a maximum of (!—a)/l at point C. The shear
at C' due to a load W is Wy. As a load passes C' the shear suddenly
becomes —a/l and then decreases to zero when the load reaches 4.

If there are several loads on the span, a movement to the left
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increases the positive shear until some load P passes C, when the shear
is suddenly decreased by P. For concentrated loads, the shearing force
reaches a critical value each time a load reaches C, and the maximum
shear occurs when one of the loads near the head of the train is just
to the right of C.

A c VI 8 Al 3 |%
a L-a A - R
a {-a
m
l-7¢ T
A — % 8 \
Shear Influence Line Shear [nflvence line
Fia. 3.24 Fic. 3.24(a)

Case 2. To find which of two loads P, and P, causes the greater shear
when placed just to the right of ¢ (Fig. 3.24(a)). Let

b = centres of loads P, and B,
@ — total load on span (when P, is at c).

Now let loads advance a distance b to the left so that F, is at C. The
shear at C is suddenly decreased and then gradually increased by
Gxm. But

SRS

1
'in

increase = G X %)— P,
If this is positive, P, at C gives the greater shear.
negative, P, ,, » » y
If G X%) =P or C{

we have equal shears with either P, or I3 at C (neglecting the slight
increase in shear at ¢ due to additional loads coming on the span at the

) bRl

=

’

right).
If G, = total load on span for P, at O, then increase in shear lies
between
G%’—Pl and 9_;9_11.

When the first expression is negative and the second is positive, both
positions should be tried for maximum shear (this will occur for a short
distance, to the left of which both expressions are positive and to the
right of which both are negative).
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Case 3. Influence line for uniform loading over length shorter than
the span (Fig. 3.24 (b)). The shear at P is represented by the shaded
area X intensity of loading w. When the head of the load reaches P,
the area and the shear will be a maximum. When the head of the load

" ]

Shear A//mlhe
Fia. 3.24 (b) Fia. 3.24(c)
passes P, the shear will decrease, as the portion of the diagram to the
left is of opposite sign.

Case 4. Influence line for uniform load longer than the span. The
maximum value occurs when the head of the load reaches P as before
and is represented by the area PBD X w.

It is common practice to calculate the shear at the quarter points
(or panel points for trussed girders).

Case 5. Influence line for shear at the supports (Fig. 3.24(c)). The
influence line is a triangle of height unity, and the shear due to a series

Wtwy
)

Wy
Re
_ ==
| WitWy
I
L=y
- Max. Shear Diagram
'
¢
Leircurmgeribing
- 4 parabela.
7 NG wews 2
e @ NNt (e
7 T' {-xey
A N
g I oz Iz-y

Max. B.M. Diagram.
F1a. 3.25

of concentrated loads = Y Wy. For a uniform load, maximum shear
when the load covers the span == wl/2.
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In all the preceding cases, the influence lines have been drawn for a
certain point. 1t is often necessary to find the maximum values of shear
and B.M. for a number of points along the span.

Case 1. For a single load W, maximum B.M. = Wl/4 and maximum
shear = W/2.

Case 2. Two loads W, and W, at distance x apart on span [ (Fig. 3.25).
C.G. of the loads is at P, where

Distance of W, from R, = z.

L= l

and R, = W+ W) (l_—_z—Ta_c_—__}-y)

shear between R, and W, = R;.

This is & maximum when z is a maximum (since x = constant).
The maximum value of z = l—x and the maximum shear at L.H. end
as load travels from right to left

- W+W(’——l—’”)

For loads travelling from left to right, the maximum value of R, occurs
when z = 0.

Then R, = _W%13

and Ry — Wit Wl(l_i;).
B.M. under W, == R, X (l—x—=z)
(Wﬁ_Wz
l

)(zl—2zx—z2—}—xl-—x2—yl+xy+zy).
For a maximum value, %]—z” =0=101—-20—22+y,

_l—2x4y
2=

or

Distance from R; to W, = l;2g_/

. . PtoR, =l:2_£/,
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Therefore max. B.M. under W, occurs when W, and P are equidistant
from the supports. The same condition holds for max. B.M. under W,.

l

w, = Bt W(l:zﬂ) — M,

—u\2
Max. B.M. under W, = M(lTy) = M,.

l

» bRl

Hence M, is greater than M,.
When I’Vl = I’Vz = W,.

2W (l—y
M'“l(2)

%wj(%)z, since y = iz,

M, = M,

Example. Crane girder 20 ft. span with two 5-ton wheel loads at
10-ft. centres.

Max. shear at support = 5(1 +;—?)) = 7} tons.

__K\2
Max. BM. = 2><5(&§

<o \—3 ) = 28-125 ft.-tons.
Case 3. Load w per ft. of length ! travelling across a span L.
By ="yt ),
wl
Ry =T (L—y+a—3).
2
M = B.M. at point C = Rny-—uE— = ﬂg(L—y-l—x—a}l)—%x—.

L
M is a maximum when dM/dx = 0, i.e. when

E%/-—wx =0 or ;_::_ %,
or the load is in such a position that the given point divides the load
in the same ratio as it divides the span. Hence

M= Fy—(1-g7)  F =,

. . L
@:0. .. L 2y-——0 (y——g),

WL Wi

—— —

4 8

and M =
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Equivalent distributed load W, is such that

WL_WL_W
8 4 8’
2w l
W= T(L_Q)‘
Max. shear at supports = R, =R, = W(l _.le)

Equivalent Distributed Load; Circumscribing Parabola

For convenience in practical design it is usual to find the maximum
B.M. due to the rolling loads by means of an equivalent distributed

w per f run w éﬁ.# run [
( J

Load Diagram
wl

Max.Sheor Dlgﬂ_-z

wl?
K4

Max. 8M 0109@
Fia. 3.26

load W so that Wi/8 = max. B.M. It is necessary to draw a ‘circum-
scribing parabola’ to find the E.D.L. For Case 2 (Fig. 3.25) there are
two positions which give maximum B.M. under the two loads. To find
the E.D.L. draw a tangent from the L.H. end to the larger parabola
by setting off the height OX = 2 x height of parabola. Produce this
tangent to meet the centre line of the span in Y. Draw a parabola with
height = } X Y Z and base = span. This is the circumscribing parabola
or B.M. envelope. If h = }xYZ, then

Iﬂ—:h or W=§’—L.
8 [}

The B.M. envelope must enclose the maximum B.M. diagram for the
rolling loads.

For railway bridges B.S.S. 153 gives the values of the E.D.L. and
similar values are given for road bridges.

For a uniformly distributed load w per ft. travelling across the span,
the maximum shear at any point P is equal to the reaction at the end
which the head of the load is approaching (Fig. 3.26).

G
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1f z = distance of P from the other end,

| = span,

2
then shear at P = 1-”2% (whenz = I, P = W/2).

The maximum B.M. occurs at mid-span and is W L/8. For loads shorter
than the span an influence line gives the required values.

Combined Dead and Rolling Loads (Fig. 3.26 (a))
When the shears due to dead and rolling loads are combined, it may

Deod Legd Shear

\
Live Logd Shear

¥rsol]

Combined Sheor

Fic. 3.26(a)

be found that the combined shear changes sign according to the
direction of the traffic.

Example 1. A uniform load of 1} tons per ft. run (longer than the
span) rolls across a span of 100 ft., the dead load being  ton per ft.
run (Fig. 3.26 (b)).

Max. live load reaction = 75 tons.
,» dead load reaction = 37-5 tons.

When the head of the load is 10 ft. from the end of the span
1-5x 902
2% 100
When the head of the load is 20 ft. from the end of the span

L.L. reaction = 48 tons, and so on.

L.L. reaction = = 6075 tons.
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From an examination of Fig. 3.26(b) it is found that the dead and
live load shears are equal at about 13 ft. from mid-span, so shear force
may change sign over the central 26 ft. of the span.

Example 2. A bridge of 100 ft. span carries a dead load of 1 ton
per ft. run. The live load can be represented by an E.D.L. of 1} tons

/

*375
Oead LoEd Shear =375
75 \
\.
—
+lps
Live \-x
*975
1
reversgllof syn
Combuned 5}:\ )
- 225
F1c. 3.26(b)

per ft. run. Find the maximum shear on the bridge when the head of
the load is 20 ft. from one abutment.

D.L. shear = 50 tons (at abutment).
D.L. shear at 20 ft. from abutment = 50—20 == 30 tons.
. 1-5%80%

L‘L' ” LRl ) - 48

"9% 100 ”
Total shear =178

ER]

Example 3. Draw the influence lines for shear and B.M. for the
quarter point of a simply supported span. Hence find the maximum
shear and B.M. at the quarter point of a 50-ft. span due to a load of
1 ton per ft. over 20 ft. crossing the span (Fig. 3.27).
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Influence line for shear is a triangle of height §.
shear — shaded area X1 ton per ft.
= 20X 3(0-354-0-75) x 1 = 11 tons.

3
Influence line for B.M. is a triangle of height = }_><;1_><5_0
= 50 .
-6 | 200 176" X 136
B.M. = shaded area x 1 ton per ft.
> SF|Influence
L o =1Xx20% 135(5°fg3°) = 150 ft.-tons.
N Ezample 4. A longitudinal girder is supported
g on columns at 12-ft. centres. Four 6-ton wheel
2 Ptrog $= loads at 5-ft. centres roll along the girder.
AL e Assuming that the girder is cut so as to be simply
Fic. 3.27 supported at the points where it rests on the

columns, find the maximum load on a column.
Let the position of the nearest wheel on R.H. span from the column
be z, then nearest wheel on L.H. span is (5—x).

Then reaction from L.H. span = 6{2+2)+(7+a)}

12
e .
ww o R, = HTTOEZEO)
12
Total reaction on column = 6{?%}?} — 14 tons,

and this is independent of the position of the loads so long as these are
all on two adjacent spans.

Example 5. A 30-ft. span girder is simply supported. Draw an
influence line for B.M. at point 4, 10 ft. from L.H. support (Fig. 3.28).
Hence find maximum B.M. at 4 due to a travelling load of 5 tons
distributed over a length of 10 ft.

Maximum B.M. at 4 occurs when the point divides the load in the
same ratio as it divides the span.

B.M. = shaded area x } ton per ft.
= 27-78 ft.-tons.

Example 6. A girder of 16-ft. span is simply supported. Derive from
first principles an influence line for shear at A4, 4 ft. from L.H. end.
If two wheel loads of 8 tons at 6-ft. centres cross the span, find the
maximum values of positive and negative shear at 4.

Consider unit load at # from R.H. end (Fig. 3.29).

z
RL=Z;

. . l—2
positive shear = R, ; negative shear = — ——.

l
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Values in this case are § and } for load at A.

Max. positive shear = (8 x$)+8x$ = 9 tons.

, negative , = —} %8 = —2 tons.
b4 ¢ 8"
Jo' 20’ , l
ey ‘ 1z’
M
2V [ Inplvence Lin S7 Jrafhoe)
/’/:»2_773 nflsence Linc [afluchice
B8 —~—~ iy el
=]
Fia. 3.28 Fia. 3.29

Impact due to Rolling Loads: Dynamic Effects

The dynamic effects of rolling loads have been neglected in the
preceding pages and these will now be dealt with. In past years there
has been much confusion of ideas on this subject, and the tendency
has been generally to overestimate the dynamic effects.

Case 1. Railway underbridges. The effect of a train of loads crossing
a bridge is very complex, and the practice of adding a certain per-
centage to the live load to allow for dynamic effects cannot be justified
in the light of modern research. In the early stages of bridge design
it was common to double or more than double the live loads, perhaps
due to a mistaken analogy with the case of a suddenly applied load.
Another type of formula which has been used extensively until com-
paratively recently was based upon fatigue or range of stress. A

typical example is the Launhardt-Weyrauch formula which varies the
permissible stress thus

=i+

minimum load
2 X maximum load/’

where J, = permissible stress for dead+live load,

f= » ” » load only.

In actual fact this formula has no connexion with impact, as it is
based upon the theory that over a long period a material is less able
to withstand the effects of a stress which is applied and then removed
very many times than the effects of a uniform stress. It is very doubtful
whether this condition occurs in a railway bridge as the dynamic load
is applied for short periods and the stress does not reach the elastic
limit for the material.

Many empirical formulae have been used to allow for the effects of
impact and some of these will be stated very briefly.
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(a) Pencoyd formula
300

T300+ L
I = fraction of live load to be added or ‘impact factor’,

L = span in feet.

This has been widely used and gives very high values for short spans,
e.g. I = 0-75 for L = 100.

(b) B.S.8. 153 (1923) for Girder Bridges:
B 120
90+ (n+1)/2 X L
I=1 for n=1 and L = 30.
For rail bearers, etc., I can be greater than unity.
(¢) Dr.J. A. L. Waddell:

I (n = number of tracks).

400
500 L°

(d) Eyson’s formula:

15

T2+ L7

(e) Indian Railway Board (1925):
65
T 45+ L°

1

(f) A.R.E.A.:
20,000

= 90,000+ L2

It will be seen that all the foregoing formulae include a function of
the span (either linear or quadratic) and that no account is taken of
such factors as the peculiarities of the track or vehicles. Therefore such
formulae are empirical and not scientific.

The Bridge Stress Committee was constituted to investigate the
effects of locomotives and other vehicles on railway bridges and carried
out exhaustive tests. Its report, which was published in 1928, gives
the results of these tests and the conclusions to be drawn from the
analysis thereof. The report covers the work carried out over a period
of four years and gives a rational method of finding live loads on any
bridge due to the passage of a locomotive or locomotives. The field
tests were carried out by a staff of engineers under Mr. Conrad Gribble,
0.B.E., M.I.C.E,, and the theoretical investigation by Prof. Sir Charles
Inglis, M.A., F.R.S., P.P.I.C.E,, and his assistants. The report is well
worth the study of any bridge engineer and can be summarized as
follows.
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1. Effect of hammer blows. The hammer blow of a locomotive is due
to the balancing of the reciprocating parts or the lack of balancing of
the revolving parts. This blow varies for different types of locomotive
and has no relation to the weight of the locomotive, in fact, it may be
much greater for a light than a heavy locomotive. It is less for a three-
or four-cylinder locomotive than for a two-cylinder locomotive. In the
case of steam locomotives, the report is of opinion that the maximum
value of hammer blow should not exceed 5 tons for British railways
(when used in conjunction with 20 units of the standard loading) with
larger hammer blows where less than 20 units is taken for design. For
electric locomotives hammer blow may be entirely absent or be very
much less than that for steam locomotives.

The hammer blow is the chief factor causing dynamic effect and is
greatly in excess of all other causes for fairly long bridges. For such
bridges other causes of impact may be neglected, but for short-span
bridges hammer blow should be considered along with other causes of
impact.

The hammer blow produces vibrations in a vertical plane due to the
periodic impulses as the locomotive travels across the span, and in a
long span hammer blow may produce a cumulative effect. This is most
marked where the period of the impulses coincides more or less with
the free period of vibration of the span. The cumulative effect is limited
in practice by the following factors: (1) the number of impulses is
limited by the length of the span; (2) the actual vibrations are ‘damped’
to a certain extent. Damping is due to several causes: (a) the span is
not perfectly elastic, (0) friction at the supports, (c) dissipation of energy
at the supports, and (d) friction in the spring suspension of the loco-
motive itself. This last factor has the greatest influence in limiting the
cumulative effect. ’

When a locomotive is crossing a span at a slow speed, it acts as if
it were not spring-borne, since the vibrations set up in the span are
not strong enough to overcome the friction of the spring suspension.
At higher speeds, as the vibrations increase, the springs come into
operation and then friction helps to damp the vibrations. The effect
of damping is most marked when the vibrations are such as to cause
violent vibration and in a sense it serves as a factor of safety. (3) The
natural or ‘free’ period of vibration of the span itself varies as the
locomotive crosses the span, reaching a maximum when the locomotive
reaches mid-span and then decreasing as it approaches the farther
abutment. For bridges of moderate spans the variation of the frequency
of the span, as the locomotive crosses it, is so marked that it is unlikely
that the periods of the hammer blow and of the span will coincide for
for any appreciable time and so set up resonance. In addition, the
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period for large vibrations, when the springs come into operation, is
different from those when the load is not spring-borne. The foregoing
factors limit the effects of hammer blow, and the conditions for full
resonance (i.e. complete agreement of impulse and bridge with regard
to period) do not occur in actual service and any synchronism which
may occur near mid-span is of a purely transient nature.

For short spans and floor members the free period is shorter than the
frequency of the hammer blow which may occur and no cumulative
effect is possible. The observed maximum deflexion in such cases is
comparable with that due to the axle loads plus a static load equal to
the hammer blow.

2. Effects of irregularities of track and of rail joints. These effects are
most marked in the case of short spans and rail bearers; for long spans
they are much less noticeable. The most important causes are:
(2) Wheels passing over a rail joint drop and then rise and ‘batter’ the
near end of the further rail. This effect varies as the square of the speed.
With the present tendency to use long or welded rails this will become
much less important. (b) Any defect in the permanent way which
causes a sudden settlement as the load is applied causes a blow some-
what similar to (a). (c¢) Rolling or lurching of the locomotive, which
may occur either before or during the time it is crossing the span,
produces variation of the load on either rail.

Effects (a), (b), and (c) vary according to the nature of the permanent
way and may be ‘damped’ by the ballast. Effect (a) varies according
to the product of the axle load and the non-spring part thereof (as well
as according to the square of the speed). Lurching causes an addition
to, or subtraction from, the load on the rail bearers and main girders.
The result can be expressed thus:
total live load _ 160cn

ti f load transferred = R
proportion of load transferre 9 X7 100

where

¢ = coefficient dependent on the type of spring suspension, weight,
and height of rolling stock; also the type of construction
and lateral rigidity of the substructure;

n = speed of rolling load (in revolutions per second of the driving
wheels of the locomotive);

l = effective span in ft.

For British standard gauge track, ¢ = & and n = 6 can be used,
provided that the structure is adequately stiffened laterally and the
maximum value of the proportion of the load should not exceed 0-25.
For other railways use ¢ = % and a maximum value of 0-40 for the
proportion of the load.
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Design according to the Bridge Stress Committee Report

In order to simplify the design of railway bridges, certain tables are
given in the Report, which embody the test results. To allow for loco-
motives heavier than those in use at the time of publication of the
report, 20 units of the standard loading for railway bridges (B.S.S. 153)
are used for main lines and lesser values for secondary and light rail-
ways.

Three types of loadings are given, viz.

A: 20 units with 5-0-ton hammer blow at 5 r.p.s. (0-2n?),

B: 16 ” 12-5 ”» ” ) (057&2),

c: 15 ., 15:0 ., ., ., (0-6n2).

Hammer blow = (r.p.s.)? X factor which varies according to the
loading.

Loading A covers the effects of existing three- and four-cylinder
locomotives and also provides for future heavier types. The factor is
0-2 owing to the number of cylinders and better balance.

Loading B is intended to cover the effects of somewhat lighter loco-
motives of the double cylinder type, and the factor is increased to 0-5
to allow for the lesser number of cylinders.

Loading C covers nearly all the remaining types whose hammer blow
exceeds 12-5 tons, but such locomotives are comparatively light, and
present tendency in design is to reduce hammer blow to a minimum.

Tabulated loads for bending moment and total loads including
E.U.D.L. are given in the Appendix to B.8.S. 153. The values are given
for speeds of 3, 45, and 6 r.p.s., and include 4, B, and (' loadings.
Present practice is to design for 4 or B, since the types covered by C
are obsolescent. Similar tables arc given for shear at supports and
quarter points. These tables allow for the effect of rail joints but not
for lurching, and this must be added by multiplying the ‘static’ load
by coefficients which are:

025 for 6 r.ps.
0-1875 ,, 45 ,
0125 ,, 3 ”

Cross-girder loadings are also tabulated (these do not allow for effects
of lurching which are comparatively small). Rail-bearer loadings in-
clude the effects of lurching and rail-joints. The proportion of the
live load to be added or subtracted is 25 per cent., i.e. one rail bearer
can carry either § or # of the live load per track.

Alternatively the loadings given in the Appendix to B.S.S. 153 can
be taken and increased by such impact allowances as the designer may
consider suitable for present and future traffic and the type of structure.



90 STRUCTURAL ANALYSIS: CANTILEVERS AND

Suggested values for impact allowances are given in Appendix 2, which
gives the formulae for general application to cover hammer blow and
rail-joint effects, also coefficients depending on the type of bridge.
Lurching effect must also be considered.

Impact Effects on Highway Bridges

The effect on such bridges is much less complex owing to the absence
of hammer blow and rail joints. There are certain effects due to irregu-
larities in the road surface. Factors are given in B.S.S. 153, viz.

I = 0-75—0-002] (max. 0-60) for one line of traffic,
and I = 0-65—0-002] (max. 0-50) for more than one line of traffic.

I = centres of main bearings for main girders, and centres of adjacent
cross girders for cross girders, except in the case of an end cross girder
or an intermediate cross girder where there is a break in the continuity
of the floor system, in which case [ must be taken as the distance between
the end of the floor (if overhanging), and the farther cross girder, or
for end spans of flooring resting on an abutment or pier, the distance
from the cross girder to the centre of the bearing plate. For rail bearers
and stringers, | = centres of cross girders. The factor I applies only to
live load due to wvehicular traffic.

Impact Effects on Crane Girders and Gantries

This is a comparatively simple case and can be allowed for by adding
a given proportion to the wheel load due to the live load. The Institu-
tion of Structural Engineers’ Report on Steelwork for Buildings, Part I,
9, gives a value of 60 per cent. for electric cranes and 30 per cent. for
hand cranes of the lifted load. (The report on Gantry Girders is at
present under revision.)
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EXERCISES

1. A simply supported beam has a span of 20 ft. and carrics a load of 1 ton
per ft. run, also a clockwise moment of 20 ft.-tons applied at mid-span. Find
the values of Ry, Rp, and the maximum shear and B.M. [9; 11; 11 tons;
405 ft.-tons.]

2. A beam ABCD is frecly supported at B and €. The dimensions are
AB = 6 ft.; BC = 10 ft.; CD = 4 ft. There is a distributed load of 6 tons on
ADB, a point load of 10 tons at the centre of span of BC, and an upward force of
3 tons at D. Find the reactions Ry, I¢, and the maximum positive and negative
B.M. [14; —1ton; 422 ft.-tons; — 18 ft.-tons.]

3. A beam ABC is 12 ft. long. It is fixed in position and dircetion at 4 and
overhangs B by 2 ft. There is a hinge midway between 4 and B. If an upward
force of 5 tons is applied at C, find the values of the reaction at 4 and B, also
maximum positive and negative B.M. [-]-2; — 7 tons; -- 10 ft.-tons; — 10 ft.-tons.]

4. The loading of Fig. 3.A crosscs a simply supported span of 60 ft. Find
(1) maximumn shear and B.M. at 20 ft. from I.H. end, (2) maximum B.M., (3)
maximum end shear. [(1) 336 tons, —89 tons, 792 ft.-tons; (2) 900 ft.-tons;
(3) 59-2 tons.]

5. The loading shown in Fig. 3.13 may cross a simple span of 50 ft. in cither
direction. Find the maximum B.M. at 10 ft. from R.H. support. [204 or 188
ft.-tons.]

6. ¥ig. 3.C shows the loading crossing a simple span of 50 ft. Find the maxi-
mum B.M.,, also the maximum quarter point B.M., and hence the corresponding
equivalent distributed loads per ft. [301; 255 ft.-tons; 0-964 and 1-09 tons/ft.]

7. A girder of 80-ft. span carries the loading shown in Fig. 3.D. Find the
maximum quarter-point shear and the equivalent distributed load corresponding
to maximum B.M. at quarter point. [25 tons; 72 tons.]

107 07 2T B
g' 7/ 6' g/
Fia. 3.A

T
57 8‘ |1o /01 IOI
]
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Fic. 3.B




CHAPTER IV
DEFLEXION OF BEAMS, ETC.

CoNsIDER any beam bent under the action of an external moment M

to a radius of curvature R at a particular point (Fig. 4.1).

é = angle between the tangent to the elastic line at 4 and the

horizontal,
AB = ds which is very small in comparison with R,

tang = g—g = slope of elastic line at 4,

and ds = Rxdé¢.

For small lengths ds = d.

1_dp_dy
R dx da?
But, from Chapter II, J—I‘{ =§ = %
&y _ M
x> EI’
dy M, . -
and I = f i dx = 1 = slope of elastic line,

and Y= f (f % dx) dxr = deflexion of elastic line.

(2)
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The quantity EI is the flexural rigidity of the beam and is a constant
for homogeneous beams of uniform section. From equations (1) and
(2) the slope and deflexion of the elastic line at any point along the
span can be found either graphically or by calculation.

The Conjugate Beam .

This is an imaginary beam of the same span as the beam in question
loaded with the B.M. divided by the flexural rigidity. Then the ‘shear’
at any point gives the value of the slope and the B.M. the value of
the deflexion of the elastic line at that point. The ‘reactions’ give the
values of the slopes at the support. The method is very useful in the
case of complicated or irregular loading.

Mohr’s theorem states that the clastic line of a beam coincides with
the shape of a cable loaded with the B.M. diagram and subject to a
horizontal pull equal to /1.

Deflexions of Cantilevers

Case 1. Cantilever of length ! with point load W at free end.
For any point at x from free end M = Wz.

&
dy [ Wx
= ) B
0
Wa? ., )
~ ST + (€' == constant).
dy . N . Wiz
As P 0 when x == [, (= —57]
= slope at free end.
dy W
L (22
R ) A
W (z3
Si wis .
ince y = 0 for x == [, C, = SHI = deflexion at free end,
W a3, 28
and v= (5 -+%)

By conjugate beam method:
slope at end = area of B.M. diagram = EJ

Il . o, Wi
= Wlxé — EI = SFT’
2 ¢ 3
and deflexion = —ul X -Z—l =~ EI Wi

2 3" ~ 3EI
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Case 2. Same cantilever with uniform load w per ft. run.

wxz
J‘/I = —2——'.
dy_ 1
dr — EI\'6
z,
Xz “’2
1= I“k Ws Y
T .- -~ - y‘%:%l-‘;&&%‘(d';y
* 22 ()
£
Fia. 4.2
Since @ =0 forxz =1,
dx
l3
0=
6
and slope at free end = _ye (W = wl)
6E1
w2t
and Y= 6—E-I(Z—--l x—l—C’l).
Since y = 0 when v =1, 0 = §IA
ow [xt 3
y= @7(2—’ ”+7f)'
When x = 0, i.e. at free end,
wlit WP
Y=g =g’
8EI  8EI
Case 3. Several concentrated loads (Fig. 4.2).
. W B
Defle: fi d due t = 1
eflexion at free end due to W) SET’
. _ oy
deflexion under W, = 3T
2
and slope at this point = IéVszIl’
deflexion at free end due to W, = slope X distance
_ Wy

= og1 )
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W;% szl

total deflexion at free end due to W, = 371 k3ot HR SH1 (I—ay)
A

= o7 (I—3a,).
Similarly W2
3 7’32

deflexion at free end from W, = SHT I l 1x,)
W;xa

) ”» ” m - ZU (l % 3)'

The same result can be found by taking the moment of the B.M.
diagram about the free end and dividing the result by £/. Note that
the area of the B.M. diagram should be in in.2-tons and the moment
of this in in.3-tons.

Case 4. Triangular load increasing from zero at the free end to a
maximum of w per ft. run at the support.
Intensity of load at « from free end = wa/l

3 2
and Mx:%:m%.

ody  wfxt
“@*61(1“’)'
I8
0= :i

Since dy = 0 when z =, —
dx
ob 4
and EI dy . a v .
dx 6l\+ 4
wl? Wiz
slope at free end = SiEI = T9BT’
where W = }wl = total load.
wlad
E = = - .
Ixy 6l(20 +01)
5
Since y = 0 when 2 = I, C_%
5 By I
ind _ W (& Vo B
an Y= SEN (20 i 5)
. wit Wi
Max. deflexion at free end = SoFI = 351"

Any combination of the preceding cases can be dealt with by calcu-
lating the separate deflexions and adding the results. For beams of vary-
ing inertia it is necessary to draw a corrected B.M. diagram, based on
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the maximum value of I for convenience. Then the ordinate of the

corrected B.M. diagram at any point
I(max.)

= B.M. X - :
. X Inertia at point

(see Fig. 4.2 (a)).

Corrected
B M Dagram

F1G. 4.2 (a)
i (. 4 | %
< . <
b e e T
{ I i A
1 wee
Y2, Yo e
Fi1c. 4.3

Simply Supported Beams
Case 1. Point load W on span [, b being greater than a (Fig. 4.3).

By conjugate beam method
Wab
Ry = G"E'Tz(%“) = slope at L.H. end
Wab . .
-and Ry, = 6-1—(;,-1—1(2(%14)) = slope at R.H. end.
Point of maximum deflexion is where ‘shear’ is zero.
Let x = distance from R,,.
Wax?2  Wab
-—2—l——- = ——é—l—— (2a+b).

e




DEFLEXION OF BEAMS, ETC. 97

and ‘moment’ at x

= Wg_?é(za—i-b) A/{é(ﬁ?—i)} = deflexion X EI.

Deflexion under load x ET

Wab® b
= RJ,.,><117I><b—_2_l_><g =

When a = b = 1/2, i.e. at mid-span,

Wa2b?
3

deflexion at mid we
eflexion at mid-span =
2
and slope at end = ;!E%
Case 2. Uniform load w per ft. run over span I.
Ry = R, = wlf2 = W/2 (W = wl).

Then B.M. at x from the support

wx?
= RL XX — —-—2—'
_ wle wa
) 2
174y
= KI Tt
dy lx? 23
. dy l 13
S _— = 0 = - = e— —
ince —= when x 5 c 54
2
and slope at support = 24—1%7
e 2¢ B
Also Elxy—w(ig——ﬁ—ﬁ-{- 1)
Since y = 0 when z = 0, C, =0,
and maximum deflexion at mid-span
5WI3
T 384EI

Case 3. Two equal point loads W at equal distances a from the ends
of a spanl. The B.M. diagram is a trapezium, the maximum value being
Wa at and between the points of application of the load (Fig. 4.4).

H
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I'reating the problem by the conjugate beam method:
Area of B.M. diagram = Wa (l——2a+2—>2<-—a)
= Wa(l—a),

w w
a '(’?a a

Load Dugasm

8m D/agrom
L4
J T
I i 77‘”‘;1-661 a%)
Fic. 4.4

reactions = _P%g (l—a)

and slope at support = —W—Z—%——;—q—).
‘Moment’ at centre = —u;—a(l—a)‘—g—
—_ 2
— Wax (1—2a) _
8
Wa? (1—2a  a
2 (—z'—+3)
_Waan 4p
. Wa . L,
and deflexion = m(?»l —4a?).
Case 4. Triangular load W on span ! with apex of triangle at Rj,.
w 2w
Bi=7  Be=
2Wx

Intensity of loading at « from R, = -

Hence point of zero shear is at 0-577] from R;. Considering & point

at x from R
w a3
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By the conjugate beam method:

!
. w x? Wiz
area of B.M. diagram = f —3—(:3— zg) =I5
0
and moment of area of B.M. diagram about K,
7
_ (W, _ 2w
) Bl 45 °
0
. 2W1i2 2Wiz
R.H. reaction = T (slope = 4_5—177)
—TWi2 —TWi?
IJ.H. ’ = —léT (Slope = m).
azy W a3
EI T K(x—- Tf)
dy W(z* at
Bl = ?(5—4‘#*0)’
but since
. 2 ]2
Eld—y=—7W—l when 2z = 0; (= 7l.
dx 180 60
Also deflexion is a maximum when % = 0, i.c. when
A 0
274 60
x = 0-52l.
W x3 x5 712 0-521
Bly = [T»—Qo_lz_ﬁ)‘]o :
. 0-013 W3 !
max. deflexion = —5]  APprox.
Case 5. Triangular load W on span ! with apex at mid-span.
W
R =1 _R = —
L 2
M f r 228
B.M. at z from support == W 5= 3E)
i 925
. x 2
Area of B.M. diagram = 2 f W(Q_E{ﬁ)

0

5Wiz

48
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5Wi?
slope at supports = 96F ]
3
and max. deflexion at mid-span = Y

Case 6. Uniform load w per ft. run covering L..H. half of span .
3 wl

RL=§wl, RR=——8—.

Using conjugate beam method:
B.M. at = from L.H. end (where x is less than 1/2)

. wl?
B.M. at mid-span = Te-

il
Area of this half of B.M. diagram == f (3—1;2-—“)—;-2) dx
0

. Swl?
1927
J3
Area of other half of B.M. diagram = %%
wl3

1 total =,
and total area = 57

Moment of L.H. half of B.M. diagram about B,

4
f (31/;19102 wxa) wit
= — " )dx
8
0

2] T 128
4
Moment of R.H. half of B.M. diagram about B, = z—é .
Twlt
1 =,
total moment 384
3 3
R.H. ‘reaction’ = Z;S—i (slope = ?%7)
3wl

Swid )

H. _ Bl e — WP
LH 128 (“pe 12881

For any point on L.H. half of span

dy dwle  wa?
pigl= [ (-1 o

3wle?  wad
=76~ 6 T
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. dy 3wi3 ) 7
Since Elﬂ——m when 2z = 0; 0_—-m.

Max. deflexion occurs when gg = 0, i.e. when
x

Swlax?  wad 3wl
16 6 128

e

i

|
|
|
l
|
|
|
|
1

8 M Diggrom

\

Dcf/gclmn 0 agrom
Fia. 4.5

The approximate solution of this equation is given by w = 0-461.
| wlxd  wat  3wldr]o46
Ely = [Ta" “21“72—8]
= 0-00655wl*.

0

wlt
151E1
Case 7. Uniform load w per ft. run over length a of span [, the distance

from R; to left of load being b (see Fig. 3.12). This problem can be

solved by either the conjugate beam method or the graphical method
given in Case 8.

max. deflexion = approx.

Case 8. Any number of point loads or irregular loads on a span (Fig.
4.5). Using the conjugate beam method, divide the B.M. diagram into
a convenient number of strips of equal width. Since the width of the
strips is constant the height of the mid-ordinate represents the area
of the strip in each case. Set down a vector line, vertically, with the
distances 0-1, 1-2, etc., equal to or a fraction of the corresponding
mid-ordinates. Set off a polar distance p equal to EI divided by
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any convenient reduction factor R, so that EI/R is a suitable length.
Join P-0, P-1, etc., to form a polar diagram, and draw lines parallel
to these lines in the corresponding spaces to form a link polygon. The
ordinate of this polygon at any point represents the deflexion at this
point to a certain scale.

Scale: 1If 1 in. on space scale represents S ft.

and lin.on BM. ' F ft.-tons,
area of any strip = width X mid-ordinate
and 1 in. of mid-ordinate = width x S x F (ft.2-tons).
M
-~
m
7 7 h
M
- »r 2z
S
% %
Jud
Z2Er +
3
» M
M - M 31er
ZEr 2er
Y %a
- i
Tlﬁé’ mer
72i3€1 ﬁﬁzr
Fia. 4.6

If ordinates are diminished on vector scale by, say, N times, each
inch on vector scale represents N xXSXJF (ft.2-tons). Now EI is
generally in tons-in.2 units. Therefore to convert this to the same units,
we must divide by 144 and find the length on the scale: 1in. to N X S x F
ft.2-tons. Since this will be large, we divide by R to find p, therefore
deflexions are read off to a scale 1 in. to S/R ft. = 12S/R in. In
choosing R, use a figure so that 12S/R gives a convenient scale.

This method is applicable to any loading and is most convenient for
complicated or irregular load systems.

Case 9. Span I subject to a moment at mid-span (Fig. 4.6).

Reactions = 4 M/l.
Max. BM. = +iM.
Using conjugate beam method:
+ Ml
24
+ Ml
4EI

R.H. ‘reaction’ =

and slope =
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Point of max. deflexion is where ‘shear’ is zero.

B.M. at « from L.H. support = M= = EI & 29,
l da?
L.H. ‘reaction’ = —%l.
24
Let point of zero ‘shear’ be at y from E;. Then
My y_ M
R A 70
and so y—w = 0-288].
Then ‘B.M.” at 0-288] from R,
Ml (0- zssl)
= ORRI -
—5i X X 0 l-|- X
== —0-008 M2
2
and deflexion = -+ 29‘)8?41- .

Example 1. A beam of I section, 12 in. deep with [ == 488 in.4 and
freely supported at the ends, has to carry a uniformly distributed load
of 18 tons. What is the maximum span for a fibre stress of 8 tons per
8q. in., and will the beam satisfy the condition that the deflexion must
not exceed g in. per ft. of span if E = 13,000 tons per sq. in.?

Section modulus = 81-33 in.

Moment of resistance = 81 SZX 8 = 54-22 ft.-tons
_18xL
=—"

L — 24‘1 ft}.
5WI3 .
D 1 = — 0'8(‘ .
eflexion SRiT] 5 in

2 .
Permissible deflexion % = 0-96 > 0-86 in.

)]

Example 2. A cantilever 12 ft. long carries a load of 2 tons at 4 ft.
and another load of 1 ton at 10 ft. from the fixed end. Find the deflexion
at the free end if I = 60 in. and £ = 12,500 tons per sq. in.

Due to 2-ton load:

WL 2x48

d == =
deflexion under loa SHT SET
WIL* 2x48?

slope under load = SET = BT
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2
Additional deflexion at end = slope X distance = gi(«;%——~,l><%
3
total deflexion at end due to 2-ton load = 2_>I<;Ii X %
. . 1202
Similarly total deflexion at end due to 1-ton load = 7T < 52,

total deflexion at free end = 1-39 in.

Example 3. A simply supported beam of 18-ft. span carries a
uniformly distributed load of 3 tons. I = 36 in.* and E = 12,000

5' 7 3

Loud Owgrorm

N/
SO R AT
Loas o0 Cozyuyulr Beazrrn

i

¢ 28’

[~ T T Deflechon

Fia. 4.7

tons per sq. in. Find the maximum deflexion at the centre and what
propping force must be applied at the centre if the deflexion is not to
exceed span/300.

. . S5WI3 .
Deflexion due to distributed load = ——- = 0-9125 in.
384E]
Span _ .75 in.
300
Residual deflexion = 0-1925 in.
3
= ‘%, where W, = propping force.

W, = 0-39 ton.
Example 4. A simply supported beam of 8-ft. span carries a load of
1 ton at 5 ft. from the L.H. end. Find the maximum deflexion due to
the load and the distance. I == 4-25in.* and E = 13,000 tons per sq. in.
B.M. diagram is a triangle (Fig. 4.7).
Using conjugate beam method:

area of B.M. diagram = 7-5 ft.2-tons.
R.H. ‘reaction’ = 4:0625 |,
L.H. ‘reaction’ = 3-4375 ,,
Deflexion is a maximum whetre the ‘shear’ is zero.
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Let distance from L.H. end be x ft. Then
3 x?

—_ P 3'4375
8§73

or x = 428,

and ‘B.M.’ — 3-4375x 4-28

. = 975 ft.3- .
—3-4375 x 152-8— ? tons

9751728

= = 0-31in.
4-25x% 13,000

b({-b)
4

_
ata)
4 i

Fic. 4.8

General Cases

Clerk Maxwell’s theorem of reciprocal deflexions. In a simply sup-
ported span the deflexion at any point 4 due to a load at any point B
is equal to the deflexion at point B due to the load at A.

Proof. Place a unit load on span ! at point B distant b from R.H.
end (Fig. 4.8). Consider point 4 at a from L.H. end.

By conjugate beam method:

; b(l—0)

area of B.M. diagram = 5

Distance of C.G. from R.H. end = Il_g}.—l

b(i2—b?)

LH. ¢ tion’ =
reaction &l
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ab(l2—b%—a?)

Deflexion at 4 = GBI "
Now place load at 4.
Area of B.M. diagram = a(l;a).

Distance of C.G. from L.H. end = a_;)_}—_l.

2 g2
R.H. ‘reaction’ = alf—a ),
6l
. _ab(l*—a?—b?)
and deflexion at B = Y

as before, which proves the principle of reciprocity.

Deflexion of a Simply Supported Beam under a series of Con-
centrated Rolling Loads

The exact solution of this problem becomes rather complicated for
a number of loads. For all practical purposes it is sufficiently accurate
to take the deflexion at mid-span for a certain position of the loads.
There are two positions of the loads which may produce maximum
deflexion. One is that position producing maximum B.M. on the span
(see Rolling Loads, Chap. 111) and the other is that giving the maximum
area of the B.M. diagram, which occurs when the C.G. of the loads is
at mid-span.

Deflexion of Beams with Overhanging Ends

Such beams can be dealt with by considering (1) the part between
the supports, and (2) the cantilever portions.

As an example consider the problem previously dealt with in Chapter
I11, Fig. 3.13.

At B, moment = —%wl:

and shear = Rp,.

Deflexion between R; and R, is that due to the distributed load
between these points and the negative moment at R,
(1) Considering any point at x from R,



DEFLEXION OF BEAMS, ETC. 107

(2) Now moment at B = —wl3/2,
9 ) RL = 0.
Area of negative B.M. diagram = 1% X %
‘ - A
Reaction’ at R, = —21,
12
2
_ Wl
ER] E) RR - 6 )
and ‘loading’ at « = w_l2 xZ

W
Hence upward deflexion at x X EI = ‘reaction’ X x—moment of area of
part of B.M. diagram about x

_ wlil,x(l _:1:_2)
12 A
A= ’i@ﬁ(l _f).
12E1 12
6EI"
Combining this with the slope due to the simply supported portion
(Case 2, Chap. III) which is W l1/24EI we find slope at end
w_l2_ Wll
6E1 24ET’

which gives the slope of the tangent to the elastic line of the cantilever
portion at Rj, from which we can find the deflexion of the overhanging
portion.

In the case of a beam overhanging both supports by an equal amount
(Fig. 3.14), the problem is very simple. The deflexion at any point
between R, and R, is that due to a uniform load on a smlply supported
span minus that due to a constant negative B.M. of w12/2 The slopes
and deflexions of the cantilever portions are found as in the preceding
case.

Slope at E,, =

Deflexions due to Unsymmetrical Loading

It is common in practice for a beam or girder to be subject to loading
in a plane which does not coincide with one of the principal axes, e.g.
a purlin under vertical load. In such cases it is necessary to calculate
the B.M. and deflexion with respect to each of the two principal axes.

General Case. Moment M applied at an angle « to the principal axis
0Y (Fig. 4.9).
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Then components of M are
M sin o about OY
and M cos o about OX.
At any point @ whose coordinates are x, y
Mcosay Msinox
I I

XX vy
(x, y may be either positive or negative).

stress due to bending =

Fia. 4.9

For points on the neutral axis, the stress is zero.

ycosa xsina

L, IL,°

vy

or Yy = Lee X xtan a,
vy
which is the equation to a straight line ON inclined at an angle B
where y = ztanp, or I
tan B = “Ztana
vy
(I, and I, being constant for any given section).

tanf = (I,/1,, )tan o
is the relationship between the slopes of the conjugate axes of an ellipse.
Therefore the neutral axis is conjugate to the plane of bending.

This can also be proved thus: at @ the stress is proportional to the
distance from the N.A.

fooc QM = Ox QM.
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Therefore moment of any elemental area 34 about OY’ (the plane of
loading)
=0AXCXQM X QR.

Total moment = C' Y 84X QM X QR,

but total moment must be zero and 3 84 X QM X QR is a product
moment for axes OY’ and ON; and if the product moment is zero, the
axes must be conjugate. In general tanf is not equal to tana and
therefore the N.A. is not normal to the plane of loading. The plane
of the deflexion curve is normal to the N.A. when o = 0, the loading
plane is normal to N.A. when I, = I, , the cllipse of inertia is a circle
and any two perpendicular axes may become the principal axes of the
section. When [, is large compared with [, tan 8 is large compared
with tan«. When tan « is small, 8 will approach 90° and the N.A. will
approach the vertical axis. The deflexion will be greatest in the plane
of maximum flexibility.

For most sections used in structural engineering, the shapes are
symmetrical about one or two axes and the properties can be found
from section books.

Approximate method. For simply supported beams of span L

3 2
(@) with central load W: A = WId ML

TI8EI T 12ED
S5WILP  5MIL?
384E1 — 48KI
(M = max. B.M.).

In all cases A is proportional to M and for a constant span
o

I 3
where C is a constant involving L? and a number depending on the

nature of the loading.
Then component deflexions are

(b) with uniform load #: A =

A:

CM cosu
A, = ey
v I,

CM sin
A, = 55—

Resultant deflexion "

cos?x = sin?
— Jagtan = on (S 55,

yy
and the direction is given by tan-1A,/A,.
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Example. A 9in. X 3 in. timber purlin carries a vertical load of 250 1b.
over a simply supported span of 10 ft. The slope of the rafter is 1 in 2.
Find the maximum fibre stress and the central deflexion if

E = 1,500,000 1b./in.?

Properties of section

I, =18225in4,  z,, = 40-5in?

I, = 2025in4 2, =135in3
tanx = 0-5; sino = 0-447; cos o = 0-894.

Max. vertical B.M. = 37,500 in.-1b.

M,, = 37,500 % 0-894 = 33,500 in.-Ib.
M, — 37,500 0-447 — 16,750

33,500 & 16,750
40-5 13-5

Component B.M.s

2

Max. fibre stress = = 952 1b./in.2

5 2,500 1203 X 0-894 .

IRV — 0-183 in.
By = 352 X 189-25 X 1500006 m
A,= 5 2,500%120%x 0-447

382 % 3025 1,500,000

Central deflexions
= 0-823 in.

Vertical deflexion = A, cosa+A, sina
= 0-532 in.
Resultant deflexion = ,/(A24AZ%) = 0-84 in.

in the direction tan-! % from the principal axis.

Stiffness of Beams and Girders

In all cases for beams and cantilevers A = K, x WL?/ EI and maxi-
mum bending moment K, X W L, where K,, K, are coefficients depending
on the loading and the position of the supports.

A can be written as

K, _ML? M__f__f

X0 ™ 7=y

A K I* L K
or =& 5= %71 (K—z)'

Also, since M = fx Z and if f = 10 tons/in.2 (for steel) with £ = 13,000
tons/in.?
I 201

M=1 — = = .
0><d/2 p) K, WL
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L2
A=Kx — L = span in inches).
oo =P )
For other values of f, A = f/10 x K—LE.
650d
. Al= 10 tons/in.?
Type of span Loading K, K, K = 13,000 ,,
Cantilever . .| Watend 3 1 1 0-0738 x L¥/d
”» . . W dist. ’&‘ i’ i— 0‘0554)( »
Simply supported. W at centre &= 1 25 0-0185% ,,
woow .| W dist. - st | i & 0-0231x ,,

In calculating the deflexion of R.C. beams, it is usual to find the
‘equivalent’ inertia by replacing the tensile reinforcement by (m—1)
times its area of concrete (m = modular ratio). Values of m are given
in the various codes.

In dealing with timber beams, the inertia is bd3/12 for rectangular

beams and the value of E varies between 1,200,000 and 1,600,000
Ib./in.2

Work done in Bending (Strain Energy)
In any beam bent under an external moment, work done
= average B.M. xangle d¢ (Fig. 4.1)
= Md¢/2.

M

1
total work = f Mds (d¢ - Hdac)

L2 2
LM, ML

=5 | g =357 = U [M constant].
0

But M2 :f:/__?.
_ fPL
- 2EIy*
For a rectangular section bxd: I = bd3/12, y = d/2
f2
UszI_fJXV (V = bdL).

£2
Resilience per unit volume = (—StE
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Case 1. Cantilever span [ with load W at free end.
For any point at « from W,
M, = Wx

W23
U= f sm1 ™ = §E1

max. B.M. M = WI.

M2
U= 8FI
For rectangular section:
_ I
U= 18E x V.
Resili it vol i
esilience per unit volume = <.
If A = deflexion at free end,
w W
U=AXg=%m
_ws
T 3EI
Case 2. Same cantilever with load w per ft. run.
wx2
M, =
1
wit w23 M2l wi
v= ISE T 30EI~ 10EI1 (M - 7)'
0
For rectangular section:
i
U= 308 < V.
e . _f?
Resilience per unit volume = 30E"
Case 3. Simply supported span ! with central load W.
Moment at z from support = M, = _W;E
For half the beam:
i
U_ [Mdx __ W
2 ) EI " 192EI
0
wepe w
U=ge51 =%%7
3
A— Wi
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For rectangular section:
v=J xv.

li it volume — J.
Resilience per unit volume 1SE

Case 4. Same span with load w per ft. run.

lx  wax?
M, =
£ 2 2 ’
i
U_ [ Mg wP
2 J2EI " 480EI
0
was
© 240E1
4 M3 ( Wl)
= — M - —].
15E1 8 ba A
For rectangular section:
v=2 xV
T 45ET Fic. 4.10
Resilience per unit volume = il .
45K

Applications of Strain Energy Method

1. To find the deflexion of a pole at the free end due to a force F
applied at that point (Kig. 4.10).

Length Inertia
Top section . . . . A I,
Middle section . . . i I,
Bottom section . . . IA I,
Work done by F = }F x A, where A = deflexion,
M2
= —_dx.
2E1

9 < M2
A_Fzmdx (M = Fx)

2 2 22de  F g oatdx

ke SEI- F 1

F L 24 L+l 24 Li+la+l1s 24
xeax xeax xeax
"E{ S [ 13}
0 I L+l

F(sf1 1 1 1 1
— (87— 1)+ (- )+ ).
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2. To find the deflexion of a simply supported beam at the ends,
due to a load W falling through a height 4, at centre of span I.

Let deflexion during impact = A,
equivalent load producing A = P

PB 48EIA

BEL = A or P= e

Work done by P = % == energy stored in beam
24 EIA®
= —ls—- .
Energy of weight W falling through (h-+A)
= W(h+A).
24E1

B

W(h+A) = A2 x

For example, let a 5-cwt. load fall 2 in. on to the centre of a 12-in.
TI-beam of 20-ft. span (I = 220 in.4).
Then 5X112(2+A) = 3 PA,
_ PB
T 48EI’
P = 1,160 lb.,
from which A and the stress f can be found.

M = 69,600 in.lb.,, f=1,9001b./in.2, A = 0-05 in.

Deflexion of a Continuous Web Girder at any point by Method
of Virtual Work

Imagine a load P placed at the point at which the deflexion is
required and let the actual loading be gradually applied.
Let u = deflexion due to actual loading. Work done by P acting

through distance w = P xu. Actual loading gradually applied does
work = > 3 W3, where

W = any part of actual load,
and 8 = deflexion of C.G. of W.
total external work = Pu+ 3 3W3.

Let M’ = B.M. at any point due to P,

f’ = stress intensity on a horizontal strip of breadth b at y from
N.A.

force on elemental strip due to P = f'bdy (Fig. 4.11).
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If f = stress intensity on same strip due to the actual loading

f S

strain on dxr = < and extension = < x dx.
E 1728

Load on strip = fbdy.
Total load on strip = f'bdy-+fbdy
= bdy(f'+f).

LT

AR
Fic. 4.11

Work on elemental strip when actual loading is gradually applied

= mean stress X extension due to actual load. Since

initial stress—final stress
mean stress — - 3 - ,

P4y g

work done on strip =

_ ANy,

Let d = distance of extreme fibre from N.A. and
f1 = stress intensity at d due to P,
fl = ) I Iy actual load.

f'=f'1><% and f-——flxg.
/ Yor Y, b
work done = (fl—{-%fl)& Xfl& X% dydz.

Integrating this expression over the total length and depth of the
girder:

1 d
total work = (flétéfl)fl dx x f by?dy.
dl

0

d
f by?dy = M.I. of section about N.A.
dl

If M = B.M. due to actual load,

i M h_ M
7= and ]

I I
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so that the expression for the total work becomes

J(M'—HM x I dx,

I*E
or total work in girder = f 5T dx 4+ j SHI I
. M
~ ) EI
[}
1
= f E?I dx 4 work done by actual loagling.
0
!
M'M dx
Pu = Bl
0
l
or w— L [MMdx
P EI -
0
P can be taken as unit load (which may not necessarily be vertical).
1
Then ]—ul]:,[—[(h

0
Example. Cantilever length { with load W at free end.

A — W x? dx _we
T 3EI
If the cantilever carries in addltlon a uniformly distributed load w
per ft. run,

El

A J‘ (Wx+wx2/z
0
___I/_VL"_I_ wt WBE WP
T 3EI"SEI T 3E1TSEI
Deflexion due to Shear
Case 1. Rectangular beam with central load W on span [ (Fig. 4.12).

Divide the beam into four equal sections as shown. Shear = W /2
throughout. Therefore the same energy is stored in each section.

Shear stress s, = _‘ng b(h/2—y) >; 3(h/24y)

- (i)
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Energy stored in each section due to shearing stress
in

= f Su f’l x b dy x % (@ = modulus of rigidity)

h2 2bld
2Gf1612( ) Pl

ih
2 2 2
144 W21 (’L _yz) ay

~ 166%8 X 4G
0
3w
= 80 % BhG
3 Wzl
Total energy due to shear = 50 i
w
& ¢
=k
T LA *
2, 2, :lr e L4
y
¢
S lsr

Fia. 4.12

Total energy in beam

= }W(A,+A,) {Al = deflexion due to bending,
= A,

A, = " . shear.
3wl
27 106RG?
o wB
YT 4R E”
& __6hE
A, 5GT

Case 2. Same beam with distributed load w per ft. run (Fig. 4.12(a)).

Energy stored is proportional to s? and shear force diagram is a
straight line.

Area of S.F. diagram varies according to (distance)2.

Ordinate of curve of energy is proportional to (distance)?.

Therefore average energy stored for distributed load = }(average
energy for point load).
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Slope of curve varies as the distance from the centre, i.e. curve of
shear deflexion is a parabola.

Let A, = shear deflexion for point load,
A, = . . distributed load,
U, = energy for point load.
Wast
|
‘
y
Jad
2
52
Curve of crergy
Fic. 4.12(a)
Then U, = WTAI
and % = V_2V X g-?-)A-? (average load X mean height).
A
A, =21
)

which is general for uniform sections.
Case 3. T-beam: assuming flanges take all the B.M. and the web all

the shear.
Let d = depth,

Ay A, = area of flange and web respectively.
I = }A, d?approx.

(The error is about 2} per cent. for most cases.)

For point load
deflexion due to bending = e A,.
48EI 1

Assume shear stress uniform over web

o =
V24,
Deflexion due to shear = A, = %
w
A, 6EA,d?

A G4’
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The ratio Ay/A; varies as (d/l)2.
For steel ¢ = 04E.

For short beams A, may be comparable with A,.
For distributed loads:

A, = } X deflexion due to point load = &Z,la’
_ swe |
TV

Ay . B A fdy
—::4'8 —_ —!—— .
A, XGXA,,,(L)

In practice it is common to neglect shear deflexion. This can be done

with safety except for short beams or where the shear is great relative
to B.M.

Example 1. A rectangular cantilever has the dimensions b, d, and [.

A point load W is applied at the free end. Show that the shear deflexion
is 6W1/5Gbd.

Shear force at any point = W.
Shear stress (s,) at y from N.A.
= S badtydd—y)

1 2b
6W (a2,
=\ Y)
_sf,_ 36w (d*  \2
Resilience = 56 = S5 (Z —y2|.
Total work done by shear
wswe ae e
— @ 2
= Gbd f (4 y) dy > bl
—3d
18w
T 30Gbd

= average force X distance
= }W xA.

_6WI

" 5Gbd’

Example 2. A beam 50-ft. span, freely supported at the ends, deflects
2 in. under a uniformly distributed load of 50 tons. If the beam is
propped at the centre so that the deflexion there is reduced to 0-75 in.,
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calculate the propping force. Sketch the B.M. and S.F. diagrams,
indicating the maximum B.M.

Shear at end = 25 tons (from distributed load).
Max. B.M. at centre = 312-5 ft.-tons.
5WE

BV A
250
I =2"xB.
E =58 x 1
If residual deflexion = 0-75 in.,
deflexion due to prop = 1-25 in.
If propping force = P tons,
P
8ET — 77
and P = g()lf'l = 19-8 tons.
Shear at end = 25—9-9 = 15-1 tons.
Negative B.M. = 247-5 ft.-tons.

Effective B.M. at centre = 65 ft.-tons.

Max. B.M. occurs when shear is zero, i.e. where shear from distributed
load = 9-9 tons, which is at 10 ft. (approx.) from the centre.

Positive B.M. = 312-5{1 —(12)?} == 2625 ft.-tons.
Negative B.M. = 9-9x15 = 1485
Max. BM. = 1140 ,,

Example 3. 1t is estimated that a certain beam will deflect 0-2 in.
under a central load of 8 tons and that the resulting maximum bending
stress will be 6 tons per sq. in. If a load of 1 ton is allowed to fall 1 in.
on to the centre of the span, what deflexion and maximum stress will
be produced? Assume that impact stresses are negligible and state
any other assumptions which are necessary.

Let P = equivalent static load which will produce the same deflexion
as the 1-ton load falling on the beam.

»

Deflexion for P tons = E X 02 = —Ii = A.
8 40
P

Work done =3 X A = 20A2

= energy of 1 ton falling (14+A) in.
= 1+A.
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A = 0-25 in.

P = 10 tons.
If stress is 6 tons per sq. in. for a load of 8 tons,
then ,, 7-5 ’ ’ 10 tons.

1t is unnecessary to make any assumption other than that no energy
is lost in the impact and that there is no rebound.

Torsion

Torsion occurs in beams curved in plan and in beams subject to
unsymmetrical loading, etc. Torsion is also important when considering
the stability of certain struts and of beams which are not adequately
supported laterally.

The solution of the problem of torsion is complicated except in the
case of circular sections, where the formula is

T _q_ 9
J ('7’
where T = torque,

J = polar moment of inertia,
6 = angle of twist per length I.

For other shapes the analysis becomes very complicated. Investiga-
tions of such problems have been carried out by various experimenters.
Dr. Orr has made a very useful comparison between the results of actual
tests and the empirical formula propounded by Dr. Griffith. The results
of his investigation are given in his paper. A number of formulae are
given which show remarkably close agreement with the experimental
values.

For structural sections 9

T =G xC (3)
0
and q=G@q j X R, (4)
where (' = rigidity constant for the section

and R = stress factor.
C = K(Dt},4-nBt),
D = depth; ¢, = web thickness,
B = breadth; ¢, = flange thickness,
K = 0-42 for British standard beams,
= 0-37 . ’ channels,
= 0-34 v . tees and angles,
n = 2 for beams and channels,
=1 ,, tees and angles.
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0_ g
F 4 G- ==,
rom (4) 1= R
Substituting in (3) = % x C,
or q= ET
o

t is taken as the greatest thickness of metal, and in the case of beams
and channels, this occurs at the junction of the flange and the web.
This agrees with the experimental result that the maximum shear stress
is at this point. The stress factor R can be taken as ¢, for beams and
channels (error is about 10 per cent.) and the thickness for angles and
tees.

In order to find the value of 7', it is necessary to calculate C. For
q = 5 tons per sq. in., T = 5C/R with proportionate values for other
shear stresses. In the case of built-up sections (compound and plated
girders), it is recommended that the value of C' be calculated for each
component and ¥ C evaluated for the whole section.

For rectangles such as web and flange plates

C = {)t—a —0-21¢4,
3

which is approximately correct. By using this method, the effect of
the rivets or welds in preventing slipping is neglected. Any error caused
thereby is on the side of safety. It may be possible to increase the
value of ¢ for built-up sections for this reason.

American practice is to divide all structural sections into a number
of separate rectangles, then C' = Y (bt3/3) which is a good enough
approximation for design purposes.
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EXERCISES

1. A cantilever of span [ is fixed at ono end and carries a distributed load W
and a point load F at the centre. Find the maximum deflexion.

[B48EI X (5F+6W).]

2. A 12 in.X 6 in. joist (I = 316-8 in.?) carries a distributed load over a 30-ft.
span and is strengthened by a 6 in. X § in. plate top and bottom over the central
10 ft. Find the distributed load if the maximum stress is 9 tons per sq. in.,
and the maximum deflexion. [16-9 tons; 1-82 in.]

3. Two 10 in. X 6 in. joists (I = 211-4 in.4; 4 = 124 in.?) are placed (@) side
by side, (b) one above the other but not connected thereto, (¢) as (b) but riveted
on. If the maximum bending stress is the same in each case, find (1) the ratio
of the loads carried and (2) the ratio of the deflexions, [1:1:1-23; 1:1:0-5.]

4. A steel pole is composed of an upper portion of outside diameter 5 in. and
inside diameter 4 in.; tho lower portion is 6 in. outside and 5 in. inside diameter.
The pole is fixed at the base and the overall height is 16 ft. Find the length
of the upper portion (1) if the maximum stress due to & load of 600 lb. applied
at the top is the same for both parts, and (2) if the maximum deflexion is 1} in.
[10-5 ft.; 6-6 ft.]

5. A beam carrics a distributed load of 15 tons over a span of 20 ft. Find a
suitable scction for a maximum stress of 8 tons per sq. in. If a load of 2§ cwt.
is allowed to fall 2 in. on to the centre of the span, find the additional stress and
the deflexion. [14in.X 6 in. X 46 B.S.B.; I -= 443 in.%; 3 tons per sq. in.; 0-16 in.]



CHAPTER V

FIXED AND CONTINUOUS BEAMS
Fixed Beams

WHERE one or both ends of a beaw are fixed or ‘encastred’, the support-
ing forces cannot be calculated by the methods previously used for
simply supported beams. The system is statically indeterminate owing
to the restraining moments which must be applied so that the tangent
to the elastic line is horizontal at the ends, i.e. dy/dx = 0.

) ,
/ \% 1, l “
v v
/ I
¢ L% 4
z, 4
Zz /anﬂﬁl
ARN \\\é\k\\ \\:\\ A\ N N
N
] NN
MAS NNk

Fia. 5.1

General case (Fig. 5.1). Consider the points at x; and z, from L.H.

end
2/
da: J il

If i, = slope of tangent to the elastic line at z,
and

1’2 L3 ’ LR :172,

tg—1, = f dx = area of B.M. diagram between x,

and x, divided by E1. (1)
[, [ Mz
Also d 2d T dx
T T
dy 1" 1 -
|- L,zfifodx’ ®
T

or Tyiy—) 1 —([Y,—y;] = moment of area of B.M. diagram

between x, and z, about L.H.
end divided by E1.

Now if ; = 0 and z, = [, then since the tangent to the elastic line
is horizontal at the supports, i, = ¢; = 0.
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Therefore equation (1) becomes: area of B.M. diagram = 0, i.e. thearea
of the ‘fixing” moment diagram is equal and opposite to that of the free
B.M. diagram. Also, since y, = y, = 0, equation (2) becomes: moment
of area of B.M. diagram = 0, i.e. moment of ‘fixing’ moment diagram
is equal and opposite to that of the ‘free’ B.M. diagram. Since the
areas are equal numerically, the distance to the centroid must be the
same in each case, i.e. they must lie on the same vertical.

Case 1. Span AB = [, with central point load W, built in at ends.

W l
Free BM. = T

2
Area of free B.M. diagram = ~8§—.

By symmetry,

2
M,y=M, = %l-+l = ‘-Z—l = max. negative moment.
Max. positive B.M. at centre = ﬂ_ﬂf_l Wl.
4 8 8
- . wis
Positive deflexion = Wi

Negative deflexion due to fixing moment
WLy W
= T T TR
we we - WE
48K 64KE1  192E1
= }(deflexion for same beam simply
supported).
Case 2. Same beam A B with W uniformly distributed.

wi
Free B.M. =5

effective deflexion =

As B.M. diagram is a parabola, area
Wi 2l Wi

=% X3 1
wi
J‘/[A _ MB == 1—2',
and effective B.M. at centre
_Wi_wi_w
T8 12 24

Distance of point of contraflexure (where moment changes sign) from
the supports = 0-2111. *
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Positive deflexion for simply supported span

__ 5WB
T O384ET
Upward deflexion due to fixing moment
wi 1t 1., ,
=g XgxgT
_we
T 96EI’

effective deflexion

3
= 383F1 ;ZlE' 7= %(deﬂexion for same beam simply supported).

Case 3. Triangular load W on span [ (apex of triangle at mid-span)
with fixed ends.
For freely supported beam, B.M. at «
W oW, s
2 312 2 3/
U2

3 7
area — 2 X%—, f (x_‘}i)dx — 51Vl2.
0

302 48
5Wl
My= Mg= 8
For simply supported beam, deflexion = we .
’ 60K 1

Upward deflexion due to fixing moment

SWL 1 1.
=g XgXg+ I
_ 5WB
T 384EI’

effective deflexion

TWPR 7 . .
= T930E] = 39 (deflexion for same beam simply supported).
Case 4. Two point loads W at a from ends of span 4B = I, with
fixed ends. Max. free BM. = Wa
2__4q2
and deflexion = Wa(3l2—4a?)

4ET
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Where a = 1/3, i.e. loads are at third points,

BM. = LV—l and deflexion = 2BWE

648E1°
For general case, area of ‘free’ B.M. diagram = Wa(l—a).
My = My— W“(i"i“_),
. 2
and negative deflexion = ?%%—%.
. L War(3l—4a)
effective deflexion 5Bl

For a = 1/3: effective deflexion

_ W8 we 5 - (deflexion for same beam simply supported).
T G48EI T 23 Py supp
Case 5. Point load W at a from L.H. support of span AB =1, with
ends ﬁxed
Free B.M. = _I’Ka(l—(z)

and area of B.M. diagram
_ Wa(l—a) _ M,+M,

s e MY
M2, = 00,

Also, since moment of ‘fixing’ moment diagram = moment of free

B.M. diagram

Wa,(i a){z % +( )( +§J)}=§(M4+2Mu)-

Wa(l—a
o, = =),

Wa(l—a)?
M, — _Lﬁ._)

and deflexions can be found by the conjugate beam method.

Now since M, and M are not equal in this case, the reactions R,
and Ry must be adjusted.

For the simply supported beam

R, = W(l—a),
l
Ry = E;E

Shear force at any point = rate of change of B.M.
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At R shear due to fixing moment
_ M,—My
o l
Wa(l—2a)(l—a)
== _—_—_—la——’
which may be 4 or — in sign.
W(l—a)¥(l+2a)

Total reaction R, = B s

__ Wa?(3l—2a)
=3 ——lg_-

Case 6. Triangular load W with apex at R.H. end.

E¥) ER) RB

3
Free B.M. at x from L.H. end = —1;—7(:1: z )

e

WBR MM,

1
w a3
Total area = 3 f (x—--ﬁ)dx =15 = 3 x 1.
0
* M4+]‘/IB= ?.

w at
=5 (x2— l—z) dx
2w 12
— S = UL 20y,
Wi Wi
M,,:E and MA:E'

Effect of Haunching on Fixed Beams

If the depth (and therefore the moment of inertia) of a fixed beam
varies along the span, the end fixing moments must be adjusted accord-
ingly. The end moments can be expressed thus:

My, = KWI,
where K is a coefficient depending on two factors:
I Iy = M.I1. at support
1) K, = 4/8, wh s pport,
1) K /\3/ I’ where {Io = ,, centre,

length of haunch
span [ )

and (2) K,=
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For a uniformly distributed load, the normal fixing moment

Wi

If K, = 2 and K, = 0-2,
My = 0-10W1 approx.

and max. positive moment ~—= WI(0-125—0-1) = 0-025W1.
Where I, = 0 and K, == 0-5, i.e. where depth increases from zero at
the centre to a maximum at the supports (virtual hinge at the centre),

My = 0-125W1

and max. positive moment = zero (approx.).

Therefore it can be seen that the fixing moment varies from a maxi-
mum of 0-125W1 to a minimum of 0-0833WI. The centre (positive)
moment varies from zero to a maximum of 0-0416 W1.

Treatment of Fixed Beams by the Column Analogy

This method, first introduced by Professor Hardy Cross, has not
perhaps received the attention that it deserves in this country. Since
it has useful applications for rigid frames, etec., it will be outlined in
this chapter.

For any elastic beam, the angle between the tangents at two points

. . 1 N
=l = gy J M ds,
£o
and the relative vertical deflexion
l T
== y.B_on — E;—I- f de'g,
Lo
and the relative horizontal deflexion
¥
1
=%y, = 57 f My ds.
Yo

Now, as will be seen when dealing with columns, the equations relating
to columns subject to loading eccentric about the two axes X-X and
Y-Y are:

total load on column = W = j wdA.
B.M. about X-X axis = M,, = f wy dA,

. Y-Y . =M, = [wrdd.
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Comparing the two sets of equations, we find that

Elf f ds for beams corresponds to f dA for columns

Eljfxds ”» 1 » fdi ”
1
m—’fyds " 2 ”» f ydA ”
27
- 3' 5'
A’
/] ,
ﬁ 3’ ’
A 4 4.0

k>

7%
/.
“ fr e[

e

s
A
/ fag

Fia. 5.2

and these relations form the column analogy. Therefore the rule can
be laid down that the indeterminate (restraint) moments in a fixed beam

correspond to the stresses in a short column with the following dimen-
sions, viz.

length of cross-sectional area = length of beam,

. 1
Wldt!h 7] ’ = -E—I .

Since the tangent to the elastic line is horizontal at both ends of a fixed
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beam, the fixing moment must be such that ¢,—i,, = 0, when 2 = {
= length of the beam. The loading on the analogous column is the
‘free’ B.M. at the corresponding point on the beam.

Convention for signs:
Positive load—downwards.
. stress—compressive.
' B.M.—produces tension on underside.
. coordinates—measured upwards and to the right of the
origin.
The method is best illustrated by an example (Fig. 5.2). Draw the
B.M. diagram for a simply supported beam.

Max. BM. = WTa{) -= 3-75 ft.-tons.

Area of B.M. diagram — 375 x4 = 15 ft.2-tons.
Average B.M. - 1-875 ft.-tons.
Distance of C.Gi. from R,, — 4-33 ft.
Eccentricity : 0-33 ft.
15
'J d { == / = o5
08a( W 71
o (1/BI)x 8 4267
M.I. of section -= 15— =T = I.
WxIx3l

Stress at ends == - IR
I,

20 { 2:345 ft.-tons

= 1-875
i42 67 1-406 ,,

which will be found to correspond with the values given by Wa2b/i?
and Wab?/l2. The method is particularly useful for beams of varying
moment of inertia (Fig. 5.3). In this case the analogous column section
must be of varying width.

Max. B.M. for freely supported beam = %l = 5 ft.-tons.

Average free B.M. = 2-5 ft.-tons.
. . 1
Width of L.H. half of column section = SHT
» R.H. ”» ”» = —1- .
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s 7 14
/) [ /,
2r L3
Y, 167 | 167 333 v
’ -5 333
S |
L) »
o gy o
sk CL c6 Q(\.‘&
Free or 'S'/z:/;'c-'&/‘t 0/&,_;9_:; i
3
h

Fina/ 8.1 Orogram.

Fi1c. 5.3

Multiplying throughout by EI and taking moments about R.H. sup-
port, the calculation is set out in the table below:

Part | Area (A) | Distance (z) Az Az® Own [ Total 1
L.H. 2:5 (R 1875 140-625 5208 145-833
R.H. 50 25 125 31-25 10-417 41-667
Total | 75 | 3125 1875
31-25

Distance of C.G. from R.H. end = =5 = 4-17 ft.
-5

eccentricity == 0-83 ft.
Net I X EI = 187-5—T-5X4-17% = 57-282.

Total Load on Analogous Column and Moments

Part Area X EI Load x EI Distance | Moment x E1
L.H. 2:5 6:25 2:5 15-625
R.H. 50 125 0-83 —10-417
Total 75 1875 5208
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End moments:
1875 5:208 x5:83

LH. = = 307 - .
H 5 57989 3-03 ft.-tons
R.H. =S .:1_8._75.‘?._208_?(&_12 — 2-12 '
75 57-282

3\‘ -

&

N cle

/]

7 ]

/]

d /67 Canhilever

Fic. 5.3 (a)

Checking as cantilever from L.H. support (Fig. 5.3 (a)):

Determinate moment at L.H. =: 10 ft.-tons, and
‘Static’ moment = 5 ft.-tons.

Load on L.H. of analogous columnx EI = 125,

Moments from above:

25 125X 41T X B8

LH, = 120 120Ch1TXE8S 607 f.-tons.
75 57-282
125 125 % 4172

RH, — (28 125X HIT 00 g tons.
75 57-282

Subtracting above moments from the ‘cantilever’ moments, final
moments then become

LH. == 10—6-97 -= 3-03 ft.-tons

}as before.
RH. = 0 (—212) = 212

”»

Effect of Settlement of one Support

All the preceding calculations have been based upon the assumption
that the supports are level. If, for some reason, settlement occurs at
one of the supports relative to the other, then the moments and shears
must be adjusted to suit. In the case shown in Fig. 5.4, the R.H.
support sinks a distance A relative to the L.H. support. Now, since
the tangent to the elastic line is horizontal at each support, it follows
that there must be a point of contraflexure at mid-span. Assume an
imaginary W at this point and divide the beam into two cantilevers
each loaded with W at its end. The deflexion of each cantilever

N ... WB A
= W(é) =g
_ 12EI

W=

B

3
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Wi  6EIA 6EKA
I
where K = %

Note that the end moments are of opposite sign and therefore the
reactions will have to be altered by an amount equal to 12EKA/I%
Also that the C.G. of the fixing moment diagram will not be on the
same vertical as the C.G. of the free B.M. diagram.

and end moment

A
wlkf/ln/a
£ 3W
/ ¢ | ]
A [ / .y
(DU G =iy
. we| N :
% Z :\\ \l\'“i{\\i\\
. 17 r//A N/
S S
w v
Fic. 5.4 Fia. 5.5

Beams fixed One End only

Such beams are best treated as ‘propped cantilevers’, i.e. by finding
the deflexion at the free end when the beam acts as a cantilever and
then finding the force necessary to cancel this deflexion.

Case 1. Span [, uniform load w per ft. run (Fig. 5.5).

713
Deflexion as cantilever -= Q!ﬁli o=
If propping force = F,
LN
3EI  ~  B8EI
7
3"
8
and fixing moment = %’l_ %V_l = %ﬁ,

and B.M. diagram is as shown with a point of contraflexure at I/4 from
the fixed end.

Max. positive B.M. at &l from fixed end = 9WI/128.

The maximum deflexion occurs where the tangent to the elastic line
is horizontal. By the conjugate beam method, the reactions are

wi?

+57 at each end from ‘free’ B.M. diagram,
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and Wi

— 5T at fixed end
Wi from fixing moment.
—— at free end
48
Therefore net ‘reaction’ at fixed end is zero. W
Let = distance from fixed end to point yw/ w
of zero ‘shear’, then Tij % % ®
wlx wxz) Wiz { (l x) \ A W
— dr == —] . y 2
22 16 U] RSN E’;\
T4
x == 0-5791. gl
Fic. 5.6

Taking moments about fixed end,

; wle?  wxd  [wl? (0-581)2 wl 0580 2
i = —_—— e — | —— e ( l"
EIA [2 . (Sx B 8))]d
— 0-005420l8,
Py N —
= ORI 1851 PP

Case 2. Same beam with load W at mid-span (Fig. 5.6). Treating

as cantilever.
w 1}l)q wis

Deflexion under load = kT~ %kl

‘ W@y we
Alope » T RRT T OBET
i . wiz 1 wp
additional deflexion = <71 %5 = T6ED’
5w FB
total . ~ REI " 3EI
11W

F = .1-5_ W and reaction at fixed end = BT

Fixing moment = Wi 5Wl—-3—Wl
Tne T2 T 16 16

Distance from fixed end to point of contraflexure = x.

() =Gl

-
T
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Positive moment under load = é?—f—g—l .

. wp
Deflexion under load (freely supported) = Tk
Upward deflexion due to fixing moment = —IiV—l-s—

64 K1
Net deflexion under load = _PIQ'{
. 192K 1

Reactions from B.M. diagram:

Fixed Free
wiz wiz
‘Free’ moment -+ 16 4 6
Fixing moment — % — g‘?
Total moment 0 g

Proceeding as before, as ‘reaction’ at fixed end is zero, area of B.M.
diagram between the free end and point of zero shear must be W1/32.

. . . I s5Wik
Area of effective B.M. diagram in length - = Tow

Distance to point of zero shear __ /1/32 2
3 ' TAB/128 T W5

distance = ..l

V5
EIA = area of B.M. diagram x distance of C.G. from end
B
T 48457
Wi wi
approx.

T A8VBEL T 107K
Case 3. Point load W at a from fixed end (Fig. 5.7).

. . Wa?
Deflexion under load (as cantilever) = SET
‘ Wa?
Slope »ow =gpTe
2]
Additional deflexion under load = Pi’%%_fa) .

. Wa2(3l—a) Fi3
Total d e LN .
otal deflexion under load G T SB]
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Wa?(3l—a)
=27
1A
and reaction at fixed end = W(tﬁ?%}gk@),
Wa(2l—a)(l—a)
moment ,, »s =g

B.M. is as shown and deflexions can be found as for Cases 1 and 2.

v
w y w
s
j 4w 7 w
a Z-a 37 5
; ) g
! RN J
Wa(2t= ' :"‘\'\\ . \: JF
2¢* R S
> ’ -577¢
)
Fic. 5.7 Fic. 5.8

Case 4. Triangular load W with apex at fixed end (Fig. 5.8).
From Chapter 1V deflexion at free end

_15EI _ FB
T OWE T OBEL

F = 15K and reaction at fixed end = %K

Fixing moment = _Hil__WLl = :)H-l
3 5 15
and B.M. diagram is as shown.

The distance from the freely supported end to the point of maximum
B.M. is 0-4471. (0-577! for simply supported beam.)

Deflexions can be found as before.

‘Propped cantilevers’ can also be treated as one half of a beam con-
tinuous over two equal spans, as will be seen later in this chapter.
The moment at the fixed end can be found by treating the beam as
fixed at both ends and then transferring half the moment from the far
end to the fixed end (this can be checked by comparing Cases 1-4 with
the corresponding cases of fixed beams).

Example. A uniform beam of length L is rigidly built into a wall
at each end and rests on a prop at mid-span. It carries a uniformly
distributed load (including its own weight) of w per unit length. If the
prop sinks a distance d below the level of the ends of the beam, show
that the end B.M. WL 94EId

T e T
and sketch B.M.
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Deflexion due to uniform load = —w.
384F1
Residual deflexion =d.
Upward deflexion due to prop = WL —d
384E1
_ B
T192EI°
W 192K Id
by
WL (W 192K1d\L
End moment = T (_3 ~— ,..‘)g
W L 24E1d_
T L
B.M. diagram is shown in Fig. 5.9.
y w krum/l/d
wrl % FFT % wr
2" )
-2/¢ ‘a’i\ h\\d"“w y4
\7\ %‘ . X N
. A
(A wlusl <F -4
LA o N L/4
¥ M /fvm prop
agg
Nel 8m
Fia. 5.9

Continuous Beams
Where a beam or girder is continuous over more than two supports,
the system is statically indeterminate. The number of redundancies
(the support moments) is equal to the number of intermediate supports.
Methods of analysis
Clapeyron’s Theorem of Three Moments and its variations.
Method of ‘Fixed’ or ‘ Characteristic’ Points.
Slope Deflexion method.
Hardy Cross or Distribution method.
Experimental method.
1. Clapeyron’s theorem of three moments can be called the ‘classic’
method of analysis and the proof can be stated thus:
Consider any portion of a continuous beam A BC resting on three

Sul o
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supports A, B, and C at the same level and assume that no relative
settlement takes place (Fig. 5.10).

Let M,, My, My be the support moments at 4, B, and C respec-
tively.
A, = area of free B.M. diagram for 4B,

‘A2 = ’ 3] %) BC,
AB =1,
BC =1,,

x, = distance of C.G. of free BM. on ABto 4,
x‘) = 3 EE) " BO tO C.
x, 2,

”’5 A
MA AI 2 MC
A 8 c
Z <
P
A c
o~ta by 8
Fia. 5.10

Using the same reasoning as for the general case of fixed beams at

the beginning of this chapter, and considering span 4 B with support
A as the origin,

LXig—yp—(0Xi—y,) f Mz dx.

ip, t4 are the slopes of the tangent to the elastic line at B and 4

respectively and y, ¥, are the corresponding relative deflexions; but
since the latter are zero,

L
Iy Xt == F]—I f My dr = bI x [moment of B.M. diagram about A4]
<

= ET [4,2,— 3 G+2Mp1)).
1
Similarly, considering span BC with C as origin,
LXip = [Az x,— (Mg l2+2MB lz)]

Since the elastic lines for AB and BC have a common tangent at B,

“‘@B' == ZB,
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and . .
E'[l —[A, 2, — (M1 +-2Mpl5))

W Mol e A A
Lt AR A Y

which is the general form of Clapeyron’s theorem.

For constant moment of inertia I, = I, and the equation can be

written as
M1+ 2My(l+ 1)+ M, = 6( 1xl+-_)
b ly

By treating any two adjacent spans in this way, a number of simul-
taneous equations are derived, which can be solved algebraically to
find the support moments, the number of equations being equal to
that of the intermediate supports. For the case where the beam is
hinged at the end supports, the end moments are zero. In the case
where the beams are fixed at the ends, then the number of redundancies
is more than the number of equations. A solution can be found by
adding, at each end, another span which is symmetrical with the ad-
jacent span, about the end support, and solving as before. For beams
overhanging an end support, the moment at that support is equal to
that produced by the cantilever portion.

A modification of the Clapeyron method was devised by the late
Mr. T. R. Sturgeon. When used in conjunction with the graph in
Fig. 5.11, this method saves a certain amount of time.

The equation (3) can be written thus:

l l
ji(MA—}-2MB+Kl)+T:(MC+2MB+K2) = 0, (4)
where K, = %;—xl nd K, = 6A 2 numerically.
1 2

A number of corresponding equations can be derived. Where an end,
such as 4, is fixed or built in, then an additional equation such as

2MA+MB+K1(%—-1) =0 (5)
is required. '
When the loading on the span is symmetrical, then
34

and K = —-.

—
=3 =7
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For a uniformly distributed load W on a span [,

area of B.M. diagram — Wi

12
Wi
and K=—.
4
~ ! 2 3 £ 5 6 7 g 9 ro
S+ S A AN SRR A -+
-~
‘ N
¢ - AV
{ 7 v
a2 £ X
N 7
3 N
N a %
AN 7 A ¥
N v X
° \
1}

N ="

u* ll \
=" =
Ve
N
L -

\
va !
Y

AZARAE A ERar)

B A ST AR AT A
Dishance from w/e].wé/_wf/
3fon
Fia. 5.11

For a number of point loads on a span A B, the B.M. due to a load w
at « from 4

_ wa(l—x)

l

Area of B.M. diagram = wr(l—2)

9 >
total area — 2 wx(l-—x)

R
The moment of B.M. diagram about 4

_wa(l—x) Itz
=TTy X

total moment = z Qgﬁ:—_x}&lr—}—_x)
and distance of C.G. from 4

6 ’
. Zw(l-l—x)
o 33w
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Referring to Fig. 5.11, K can be found by the expression
> load X ordinate on graph X span.

For each load divide the distance from the outer support by the span
length to find a decimal. Set off this decimal along the horizontal axis
and move vertically to meet the curve and then horizontally to read
off the value on the vertical scale. Note that since the graph is drawn
for unit span and load, the value on the vertical scale must be multiplied
by the actual values of the span and the load.

For an unsymmetrical system of loading

l—z 3l+x
K bA 121 Z ( )(l—}—x),

from which K, can be found by slide rule. Some cases will now be
worked out for the sake of comparison between Clapeyron’s method
and the above modifications.

Case 1. Two equal spans AB, BC with any loading which is sym-
metrical about B and constant /

Xy == Xy M= My =0.
By Clapeyron’s theorem,

QM x 2 = 6x2 XA_ZCI
.5Ax1

My =25

For uniformly distributed load W

BM. — HS’l’ 4 — wi2

12’
MB = —'ES/—l-
From the modified method:
OMy+K =0, K= _'?.
Wi
My = -5
Addition to Rj; due to moment
— 2 X _I'ﬁ — ..W_/
C U 8xl 4
RB=5W and R, == R0=Z_’>V_V
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(Note that half the beam gives the same result for moment and reac-
tions as Case 1 for ‘propped cantilevers’.)

Case 2. Two unequal spans 4B =1, and BC = l,. Moments of
inertia are I, and I,.

By Clapeyron’s theorem

MAl1+2MBl1+MCl2+2MB —6 Alxl_I__A2x2
I, A LL ' LLJ
If MA == MC _ 0,
Mgl,  Mgl, Az, Az,
LT (11+l12'

By using modified method

B, K+ 2K = 0.
1 2

For uniformly distributed load and constant inertia
K= % and (zM,+ )+1 (zMBJr.’KZé) —o.

_ WL+ Wl
M- 8( 1+l )
oy = TV WL WA
(ATl (b
R, W _WELWL p W Wl Wl
SR AT 2 (),
Case 3. Three unequal spans AB, BC, and CD, with moments of
inertia I, I,, and I, respectively, and loads on spans W, W,, and W,.
M, = M, = 0.
By Clapeyron,
Il +-ly)+ My ly — 6({.1.i1.+ég“_)

2

Aa‘”s)

ly

Mty 1+ Myl = o 145504
2
By the modified method,
‘(2M3+K1)+ (ZMBJrMc +K,) =

L l
"I;(2M0+K3) *’r"I;

For uniformly distributed load and constant inertia

(zn13+_)+z2(21v11,+1110+w2 ) 0,

@Myt Mp+K,) = 0.

(2MC + % l3\) +l2(2MC+]‘[B+ ——ZJ) =0,
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from which My and M, can be found and the support reactions calcu-
lated.
Case 4. Three spans A B, BC, and CD with loads W, W,, and W, and
inertias I, I,, and I; respectively.
Ends A4 and D are fixed horizontally.
Then applying Clapeyron’s theorem,
M L +2Mgl, +MC 2+2MB : (Aloc1 A2x2)

I, I, AN
Mylyt2Moly | Mylat 2Mcly _ o Aally—a) | Ay,
I, I A A

This cannot be solved directly as there are four unknowns and two
equations and the only method possible is to ‘reflect’ AB and CD
about A and D respectively.

Using the revised method,

l Ny
TI(JI‘4+2MB+K2)+f(u”}2+]u'v+K2) =0,

3(MD+‘>MV+K3)+ (Moot My Ky) =

ZMA+MB+K’1 =0,
oM+ M+ K, = 0.

If end D is freely supported, the last equation can be omitted.
For constant inertia and uniform load

(MA+2MB+ )—i—lz(ZMB—}-MC "312) 0,

(MD-{—‘ZMC + )—}—l (QM( M+ 1‘%@) —0,
OM ,+ M, +W’l 0,
2MD+M +%l3 )

from which the moments and reactions can be found.

2. Method of fixed or characteristic points. The following construction
can be used to find the position of the ‘fixed points’, i.e. where the
negative B.M. diagram crosses the base line. In Fig. 5.12, set off the
third points in the spans AB, BC, and CD of lengths [,, I,, I,, etc.,
and draw verticals through these points. Working from 4, set off the
fixed point F,. :
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When A is simply supported, distance of F, from 4 = 0.
When 4 is fixed, distance of F, from 4 = [;/3.
From B set off Bz, == 4(I,—1,),

no €, Crg = §(l,—y),

. D ,, Dxy=1%(;—1,), and so on.
Draw any line through x, to meet the third point vertical in ¥; and
produce it to meet the third point vertical at ¥,. Join K Y, and produce
it to meet the vertical through B at B’. Join B'Y, and find the fixed
point F,. F,, F, can be found in the same way, and working from the
other end, the corresponding points Fj, F;, Fg, Fy can be found. For
equal spans, the values of the fixed points are:

Distance of fixed point . . AF| BF, CF, DF,
End A fixed . . . 13 2119 0-21211 0-2113!
End A freely supported . 0 15 0-21051 0-21131

Having found the fixed points, the free B.M. diagram can be drawn.
Considering span BC (Fig. 5.12(a)), set up

Bl — 6A2 xz,
l2
o2 — 84ulzs)
l2
wi -
64,7, e for distributed load,
s 3Wl

= for central point load.

Join C1 and B2 to intersect the verticals through F, and F in points
1’ and 2’. Join 1’2" and produce this line to intersect B1, C2 at M, and
M,. Join M, F, and produce the line to meet the vertical through 4.
Also join M, F, and produce this line to meet the vertical through D.
Treat the other spans similarly and combine B.M. values to obtain the
complete B.M. diagram.

It will be noticed that the values 64x/I? must be found as for the
Clapeyron method, and up to this point the work involved is the same.
The difference lies in the fact that this method solves the problem
graphically, whereas in the previous method a number of simultaneous
equations had to be solved. For the method of fixed points, the graph
of Fig. 5.11 can be used to find the values Az, etc., and reduce the
amount of work necessary. ,

3. Slope deflexion methods. This method was introduced by Mohr
and developed by Wilson and Maney and extended in scope by Professor
Ostenfeld. It uses the deflexions and rotations as the redundants. It
should be noticed that relative settlements at the supports are taken
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into account automatically, whereas in the two previous methods the
effects of settlements are ignored and must be calculated separately.
The general form of the basic equation is

M,y ZEK(%A—}—OB—%),
where M, My, are end moments, 8, ,; are the angular rotations,

K = é and A = relative settlement in span .

/%A. M
Tl 1
A= 8
7T T v~ “N& N 4]
2
I3
d
Mag |/ 2,7,
&l //// TS L)
77,7} Msa
§ ki
Mas # 4
‘x Mag + MBa {":glm_ <

Fia. 5.13

1t should also be noted that this method is based upon a beam fixed
at the ends as the angular rotations are measured from the horizontals
at 4 and B. In order to find the solution of the problem it is necessary
to know the fixing moments M,.,,, and M., , and to add the moments
M,,;, My, , algebraically to find the actual moments at 4 and B.

Proof of slope deflexion equation. Consider the case shown in Fig. 5.13
with moments M, M, , and deflexion at B = A.

The angular rotations at 4 and B are 6,, 8, respectively. Using the
conjugate beam method, load the beam with M, ,/ET and My, /EI
and ‘reactions’ 6,, 8,. There is an equivalent ‘reaction’ at 4 = A/l and
a balancing ‘reaction’ at B == A/l. The total ‘loading’ must balance
the ‘reactions’.

O ALt (M _] 0,94 (3_2
EI2(Mp+My) 2M+My )] 8 2\ 1)
. 1 \
( =7) oo M yy— My, — 2EK(0,—0,). 6)
Also, by taking moments about R.H. support, .
X L . YT
l EIV2(Myp+ My )™ 3(M g+ My )
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UM g My, — 6EK(0,——%). (M)
Combining equations (6) and (7),
M, — 2EK (201+02_§l‘3),
My, — 2EK (202+01—3~l‘§ :

(s

Mg ) ;L

Mag < - 2EX (29, *92)
Mg = -2Ex (26, +6,)

Fic. 5.13 (a)

+Mga
LN
/*NAQ % a
e
7
Mig= 2Ex (26 -6,+ 32
Msa» 2£x(26, -6+ 28)

% > 29,49
F1a. 5.13(b)
A e
~Mas 4 14

Mag= - 26x(28+6,+ %‘)
Mea = -25!((20,404%9)
F1a. 5.13 (c)

which are the relations for Fig. 5.13. If there is no deflexion the term
3A/l disappears. These relations hold good only if

26,+6, > ?—lé
For other cases the values of M, My, are as shown in Figs. 5.13 (a),
(b), and (c). The sign convention rather detracts from the usefulness
of this method and the fact that the fixed-end moments must be
calculated must be remembered. One or two examples will be worked
to illustrate the method.
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. 5075t L st 2
\/4 . I 6250 m* 8 L1°2250mF C 24, 000=7
. 25’ /5’ 20"
sy ;,
- (e P2%s ‘.
/,’/;// /y z //////:‘/ ey ///
/// s <./, //5 0
m/ 7, w . '\ 24 /// 7 77 3
= o2 7
A7 % ¢ ¥ : ts00 Xg 7| 129
7 % rorzs ¢ //747’3 l ;
4
J
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S.F

Fic. 5.14

Example 1. A beam A BCD is as shown in Fig. 5.14. Ends 4 and D
are fixed (A, = 6, == 0).

Vi . .
My = _1]__; == — 1,250 in.-tons.  Mpp,, = 41,250 in.-tons,
Mgy — - 675 in.-tons Myey — +675 "
Mypo =+ -1.000 Mype = +1,000

M,y = 500K6,—1,250,
My, = 1,000E6,+1,250,
My = 600E0,+300E0,—675,
Mgy = 600E6,+300E0,+- 675,
My, = B00EG,—1,000,
My = 400E6,+1,000.
For equilibrium
My, = —My, and Myg = —Mgp.
Efg == —0-420 and Ef, = +0-323.
Hence
M, g = —1,460 in.-tons; My, == +830 in.-tons = — Mp.
Moy — +743 in.-tons = — Mgp; My = +1,129 in.-tons.
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Reactions A B C D
Freely supported 25 475 47-5 25-0
From moments +21 —21 —0-49 +1:61

+0 -49 —1-61
Totals 27-1 45- 89 45-4 ’() bl

Total reactions = 145 tons == total load.

Check by theorem of three moments. In order to obtain sufficient
equations, it is necessary to add spans 4’4 and DD’ symmetrical with
AB and CD respectively. Alternatively, using modified form, four
equations are found to solve for four unknowns, viz.

1250 67
ZBB(M* f2Mpy - )+ I}()(M 4 2My ,V:’) — 0,

675 1000
<MJH 20+ )'f‘»)o()()‘fnJrJ” +y ) =0,

IM + M, +13"_° —0,

)0
2 My + M+ 1_”‘_‘ —o0.

From above equations
M, = —1457; My - —839
My, —~ —1740; My — —1,129
The above values, obtained by slide rule, show close agreement with
the slope deflexion results.
Example 2. Spans A BCD with point loading as shown in Fig. 5.15
Ends 4, D are hinged (M, = M, = 0).
Fixed end moments
Mpyp = —48 ft.-tons; Myg, == +72 ft.-tons,
Mppo = —Myp = —50 ft.-tons,
Mpep = —22:22 ft.-tons; Mppo = + 4444 ft.-tons.
Relative values of K are taken for simplicity in equations
Myp = 2-5E(205+6p)+50 = — M, = —[3E(20,+6,)—22-22],
Solving, the following values are obtained:
E§, — +15035; Ef;= —607; E6,= +1-011; E6, = —1-912,
My, = +7719; Myy = —77-81; Mgy = +39-88; M, = —38-89.
(All above moments are in ft.-tons.)

}in.—tons.
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151
Check by Clapeyron’s theorem of three moments
Span AB: Free B.M. = 120 ft.-tons; Area = 1,500 ft.2-tons
i) BC: ” = 100 ) 5 I 19000 ”
, CD: " = 66-67 ft.-tons; ,, = 500 '
ZOr 207 207,
15 /o_‘— 10' Io 10’ s
A - K=l 8 ke (128 c Ka /-5 )
25’ 20’ 5’
1aa ;/ ”
/,/"', . /// 77,8 Z e /
/ Ry p L AeeeT
/. 3 A
8M (4Toms)
489 ]
27 o 17453 l 1067
] SF

Fie. 5.15

Distances from C.G. of free B.M. diagram to supports are

span A B:—13-33 ft.; span ('D:—6-67 ft.

(X]vOOXl‘} ‘33 3000
( My S IP0 ) + 25(2AIR+JII(.+»H) 0,

05(1‘!,, {20, 150) |-.~_(z M, 8500 x6 67) —0.

152
My — 178 ft.-tons; My = —39-9 ft.-tons.
A B c D
Freely supported reactions
(tons) . 8 22 16-67 13-33
Reactions from moments
(tons) . —311 +(3-114-1-9) —1-942-66 —266
Total reactions (tons) 4-89 27-01 17-43 10-67

Total reactions = 60 tons = total loads.

Note that in these two examples no settlement of the supports has been
allowed for. In cases where this occurs, the induced moment is 6 EKA/l
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4. Hardy Crosst or moment distribution method. This method has
been widely used since it was first suggested by Professor Hardy Cross,
not only for continuous beams but for other statically indeterminate
structures. Like the slope deflexion method it involves the use of fixed-
end moments, but on the other hand it is a method of successive
approximations.

The beam is first considered to be fixed in direction at each joint
before loading, and therefore when the loading is applied the continuous
beam consists of a series of fixed-end beams. Owing to the fact that
the fixed-end moments do not, as a rule, balance, the joints are ‘out
of balance’ by a certain amount. Now, if any one joint is released,
it will tend to rotate into a position of equilibrium and the unbalanced
moment will distribute itself among the members meeting at that joint.
In order to prevent rotation, it is necessary to apply a moment equal
and opposite to the algebraic sum of the fixed-end moments. Now if
the joint is released, this moment will be distributed among the mem-
bers in the ratio = stlf.fness of member . At the same time

total stiffnesses of members
there will be a ‘carry-over’ of moments to the remote ends of the
members equal to half the amount distributed to the near ends. This
is obvious from the slope deflexion equations

Myp = 2EK(20,+6p); Mp, = 2EK(20,+6,).
If 6,; = 0, i.e. far end remains fixed,
‘Z‘{AB = 4EKOA; ]‘IB;I — 2EK0A == %A‘[AB'

The carry-over is added to the algebraic sum of the balancing moments.
The other joints are released in turn and the process repeated until
the out-of-balance moments are negligible. The method can be sum-
marized thus: '

1. Write down the stiffnesses and the fixed-end moments due to the

loading.
2. At each joint, evaluate the ‘balancing’ moment and the distribu-
. stiffness
tion factors = —————.
> stiffness

3. Release the first joint and distribute the balancing moment.

4. Make the carry-over to the adjacent joints.

5. Release the other joints and continue the process until all joints
are balanced.

Special cases.

1. Beams freely supported at one end.

1 H. Cross, ‘Analysis of Continuous Frames by Distributing Fixed-end Moments’,
Trans. Amer. Soc. C.E., 96 (1932), p. 1 et seq.
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By slope deflexion,

153

My, = 2EK(265+6,) = 0.
Oy = —10,.
2EK(36,) = 3EK0,
X M ,,; for beam fixed at B.
Hence this case can be dealt with by assuming an equivalent stiffness
= $ X nominal stiffness I/I.

2. Overhanging ends can be treated by considering the last support
to be hinged as (1) and then adding the cantilever moment to the
support moment (which of course is zero).

Since this method is arithmetical, it is best illustrated by its applica-
tion to the two preceding examples.

Example 1. Fixed-end moments are A B == 1,250

MA B

BC = 675 }in.-tons.
‘ CD = 1,000
The ratios of the stiffnesses are A B: BC:CD = 5:3:4.
The distribution factors are: at B, AB = §,
so— )
at ¢, BC ==},
CD = !,.}

The work is best done in tabular form as below. Note that the beam
cannot be released at A and D as it is fixed at these points. The
balancing moments are shown thus (—575).

Rel. K A 5 n 3 « 4 D

F.E.M, — 1,250 4 1,250 - -675 +675  — 1,000 + 1,000

Bal. (—575)

Dist. 35937 —215-63 N

C.0. — 17969 % o 107-82

(+432-82)

Dist. % + 18560 -247-32 .

C.0. —(92-75) +92-75 4-123-66

Dist. — 5797 —34-78

C.0. —o899 < N 1739 (+17-39)

Dist. + 760 +979

C.0. (--3-80) 4-3-80 « N +4-90

Dist. —2:37 —143

C.0. —118 ¢ N 072 (4072

Dist. +0-41 +0-31

C.0. (=020) 4020 ¥ N o1

Dist. —0-12  —0-08 N

C.0. —0:06 ¥ —0:04 (40:04)

Dist. +0:02 4002

C.0. +4-0-01 ' N +0-01
Total moments | —-1,459-92 +830-17 —830-16 +742:56 —742:56 +1,128:73
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It will be seen that the moments balance at B and C and that the
values agree with those previously found.
Example 2. In this case ends 4 and D are hinged so that

Mg = Mpe = 0.

In order to have zero moments at these points, it is necessary, after
each carry-over to 4 and D, to apply an equal and opposite balancing
moment. The balancing moment is then carried over and the process
is repeated so far as is necessary. As an exercise the student is recom-
mended to work this example using the equivalent stiffnesses for AB
and CD, i.e. $ x I/l, and it should be noted that the fixed-end moments
should be altered to suit the condition ‘one end free’. Note that there
is no carry-over to the free ends. The amount of arithmetic is reduced
by using this alternative method.

.. . 4B =4
Distribution factors B{ ”
= b

C{BC—_-{'l

CD = }.

Rel. K A 4 B 5 C 6 D
F.E.M. —48 +172 =50 +50 —22.22 4-44-44
(—22)

Bal. and C.O. —4-89 <« =979 —12:21 —- —6-10 (—21-68)
" " 45289 — 42645 —492 <« —985 —11-83 -» —592
(—21-53)
. ’y —4718 <« =957 —1196 — —598 —1926 <« —3852
(+-25-24)
. . +478 > 4239 +573 <« +11-47 4 13-77 —> --6-88
(—812)
v ’y —1-80 <- —361 —461 -» —225 —344 - --6-88
(-+5-69)
" ” +1:80 — 090 4130 -~ 4259 4310 -~ }-1-55
(—2-20)
" " —049 - —098 —122 - 06l - 078 . —155
(4-1-39)
" " +049 -+ 4025 +031 < 063 -+076 -» +038
(—0-56)
. . —012 <« 02 —031 - —016 —019 <« —0-38
(+0-35)
" " +0-12 > 4006 +008 < 4016 +019 - 010
(—0-14)
. . —003 <« —008 —008 -> —004 —005 < —010
(+40-09)
. . 4003 > 4001 4002 < -£004 +005 - +002
(—003)
—0-01 —002 - —001 —001 <« —0:02
(+0-02)
+0-01 +0-01
Total moments | 0 +77-78 —177-79 +39-90 —39-90 0
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If settlement of the supports occurs, the moments due to this
(+6EKA|l)y are written down and distributed until balance is obtained.
The resulting moments are then added to those due to the loading to
find the final moments.

5. Experimental methods. Such methods have not been used exten-
sively in this country up to the present (apart from research carried
out, by scientific bodies), but the use of these for actual design purposes
is now being widely adopted. These methods can be classified under
two main headings: (@) direct, and (b) indirect.

(@) The direct method consists of applying to a model the actual
forces, reduced, of course, in a convenient ratio. This method is
applicable only to members subject to a symmetrical B.M. diagram.

From the slope deflexion equations

) 3A
My 2BR (2,0,

—y 3A
My, = 2EK (293+0A - —l—) +Mpp 4

Now for a symmetrical B.M. diagram, My ,, = M, , numerically.
Also they are equal to A/l, where 4 = area of free B.M. diagram.
Hence the equations can be written in the form

My, 2EK(2Q,,+0,,_§;}) 4

I, b

4

7

Therefore, knowing A and K, the values of 6,, 65 and A can be
measured and the moments calculated. Usually the model is mounted
upon rollers on a drawing-board and the loads are applied by weights
and pulleys or by spring balances. Light pointers attached to each
end of the members give the end movements. Care should be taken
to prevent buckling of the model under load (this can be done by
placing weights upon the model). A full description of the application
of this method to the analysis of building frames has been given by
Prof. J. F. Baker (see Bibliography).

(b) The indirect method consists usually of supporting an unloaded
model in a manner similar to the beam under consideration. The
method was first described by Prof. G. E. Beggs in the Proceedings of
the American Concrete Institute, and has been developed in this country
by Prof. A. J. S. Pippard and Dr. S. R. Sparkes. It has much to
recommend it as it can be used with the simplest of apparatus by any
careful investigator after a little practice in its use. The principle is
based upon a theorem enunciated by Prof. Miiller-Breslau. If 4, B,

3% 3A
My, - 2EK (20,,«}—0‘4__[)‘}_
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and C are the supports of a continuous beam (see Fig. 5.16) it is required
to find the influence line for the reaction at C. This support can be
removed and replaced by a unit vertical force. Then the deflected
shape of 4 BC is shown by the curved line, which represents the deflexion
at all points on A BC, and is therefore the influence line for deflexion at
C. Now if a unit load be placed at any point P, the deflexion pro-
duced at C will be §, the ordinate under that load. The unit force

A‘
l l —1c

acting at C produces a deflexion A at that point. Therefore in order
to bring the point C back to its original position, a force of 1x8/A
must be applied. Hence it follows that if the ordinates of the deflected
shape are divided by A, the resulting figure is the influence line for
reaction at C, and this principle is used to find the reactions at the
supports.

Considering the case of a continuous beam 4 BCD, the model, which
is made of thin celluloid, xylonite, or even a thin spline to a suitable
scale for length, is pinned at A, B, (!, and D to a sheet of paper on
a drawing-board. The edge of the model is traced on the paper. To
find the reaction at any support, take away the pin at that point and
displace the point vertically upwards and trace the line of the edge
again. Then, by taking a number of points along the span and dividing
their ordinates (between the pencil lines) by the displacement at the
support, the influence line for reaction at that support is obtained. The
same process is repeated for the other supports. The displacements
given should be large enough for the ordinates to be measured directly
on a finely divided scale (the section of the beam is assumed to be
uniform). The reaction for any particular load is given by the ex-

pression Z load ordinate
dlsplacement

For distributed loading this expression becomes
> area of influence line X load intensity.

These expressions must also be multiplied by a number depending upon
the linear scale, e.g. for } in. to 1 ft., multiply by 2. Further reference
will be made to this method when dealing with rolling loads, and fuller
information can be found in the papers mentioned in the Bibliography.
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Comparison of Methods used in the Analysis of Continuous
Beams

1. Clapeyron’s theorem of three moments is useful for a small number
of spans or for a large number of equal spans of uniform sections.
For a larger number of spans or irregular loading the solution of the
simultaneous equations involved becomes laborious.

2. The graphical methods are also convenient in fairly straight-
forward problems, but for unequal spans or loadings, the work involved
in constructing the diagrams, after having found the ‘fixed points’, is
considerable, and the possibility of errors is correspondingly increased.
Like Method 1, it does not allow for moments caused by settlement at
the supports.

3. Slope deflexion is applicable to any case as it allows for settle-
ment at the supports. While the solution of the equations may prove
laborious for large numbers of spans, the method is worthy of close
study as it can be applied to all types of rigid frames.

4. The Hardy Cross method is one of the most useful tools in the
hands of the designer. Its simplicity will appeal to many, as once the
end moments and distribution factors are evaluated, the process is
purely arithmetical. As in method 3, there is a certain check on the
accuracy of the working owing to the fact that the moments at any
joint must be in equilibrium. This method can also be applied to a wide
range of rigid frames.

5. Experimental methods. The great virtue of such methods lies in
the fact that problems may be solved by experiment in a matter of
hours which would take days or even weeks to analyse by calculation.
The agreement between observed and calculated results is remarkable,
and any error is unlikely to exceed that due to faulty initial estimates
of the loading. It is certainly extremely useful as a check on the results
of mathematical analysis.

6. Other methods. These include the method of least work combined
with moment area; moment balance and four-moment theorem, but
space precludes any attempt to deal with these.

Effect of Settlement of Supports

Where settlement occurs it is probably spread over an appreciable
time and the relative settlement between adjacent supports is probably
almost negligible, so that the resulting moments and shears will have
comparatively slight effects on the structure. Large relative settle-
ments are unlikely to occur unless the foundations have been badly
designed or constructed. For R.C. beams it is probable that plastic
flow will rclieve the effect of settlements very considerably.
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Deflexions of Continuous Beams

Once the support moments have been found, the effective B.M.
diagram can be drawn and the deflexion at any point found by the
conjugate beam method. (The slope deflexion method gives the slopes
of the elastic line at each support.)

Rolling Loads on Continuous Beams

When dealing with this subject we must consider two cases: (1)
rolling loads on continuous beam bridges (which is the commoner
case), and (2) rolling loads on other continuous structures. The problem
is simplified when the rolling load can be expressed as an equivalent
uniformly distributed load. Some authorities take the case of alternate
spans loaded which, theoretically, gives the maximum values of B.M.
at the mid-spans and supports, but this condition is unlikely to occur
in practice. The more probable condition is that two trains of vehicles,
with a short space between them, are crossing the span. The influence
line method is particularly useful in the analysis of such cases. The
principles stated under ‘Experimental methods’ can be applied. In
every case a unit force or unit moment is applied at the point under
consideration. Then by finding the ordinates to the deflected shape
and dividing by the displacement (unity), the influence line ordinates
are obtained. The method for finding an influence line for reaction has
already been explained. To find an influence line for shear at any
point, a vertical unit displacement must be applied at that point (with-
out relative rotation at the two ends). Finally, to find the influence
line for B.M. a unit rotation (i.e. one radian) or unit couple must be
applied at the point. Typical influence lines for shear and B.M. are
shown in Fig. 5.17.

For design purposes the structural engineer must obtain the curves
of maximum B.M. and shear for the spans so that he can design for
the worst cases. Reference has been made under ‘Graphical methods’
to fixed or characteristic points. Generally speaking, these lie at or
near the third points for continuous beams (values are given on p. 146).
From a study of Fig. 5.17 it will be noticed that for any central portion
of any span between the fixed points, the maximum B.M. occurs when
the spans are fully loaded. For the parts of the spans lying between
the fixed points and the supports, maximum B.M. occurs when the
spans are partially loaded (these can be approximated when the B.M.s
at the fixed points have been found). Maximum B.M. at the supports
occurs when the spans are fully loaded. For positive B.M. between the
fixed points, find the sum of the moments produced by live load on
that span and on each alternate span (plus, of course, the moment due
to dead load). For negative B.M. find the sum of the moments due to
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live load on the other spans and the dead load. Then the maximum
B.M. curve for the parts of the spans between the fixed points can be
drawn. For the support moments, the maximum (negative) values
occur when both the spans supported and each alternate span are
loaded, the positive values being obtained by reversing this condition

st

A & _c T[_, T‘)_, 2

1]

(a) Influence line
for R4

B

)

>t (b) Influence line
r Re

(c) Influence line
for Rp

() Influence line
for Mg

(e) Influence line

for Mc

T (f) Influence line

T for mid-span
moment

|
/I\ | — |
‘ N | T () B.M. for point load

on A8

Influence lines for
/‘ (n) { B.M. at fixed

i points

N

(j) B.M. for point load
l \ / on BC r

Fia. 5.17

(in each case dead load moments must be added). The remainder of
the B.M. curve can be sketched in (Fig. 5.18).

For maximum shear near a support use the same loading condition
as that for maximum negative B.M. at that support. The shear at or
near the support is the value used in the design of beams of constant
inertia. For haunched beams it may be necessary to find the shear at
mid-span.
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Continuous spans other than bridges. The most common example of
this is the crane gantry. It is unlikely that more than two or three
cranes will be carried on any one gantry. Therefore, if the influence
lines for B.M. and shear have been drawn and the wheel loads and

. e L\,

1
B
Live Lo Aﬂon/y
— N
Live load. 8C only

P P
7 \‘\,\ Q‘L"; * l//\ 7N
\ \ /,/’ PN /
) / {\“// ) /
/

Deod + Live Loa \

Moxsmyme, Moments

Fic. 5.18

spacings are known, the analysis of the moments and shears is com-
paratively simple.

Ezxample. A uniform continuous beam of length [ rests upon supports
at each end and at a point distant I/3 from the L.H. end. The beam
carries a uniformly distributed load, including its own weight of w per
unit length. Assuming that the supports are on the same level, prove
that the support moment is wi?/24, and find the reactions.
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L.H. span: span = _.

3
2
Max. BM. — “°.
72
wl3 . l
A= 393 distance x, == 5
R.H. span: span = Zl
22
Max. BM. = “.
18
23 . l
4 = AN distance x, = 3

394 ST R
w3

12

a]3 D)3
Support moment x 2] = (i( wh 1, 2ul 1)

b

wl?
moment — - -,
24

11wl
16’

!

Centre reaction =

wl
IA.H. = ;_,;—4»
13wl
R.H. == - 48—.

3
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EXERCISES

1. A beam is loaded as shown in Fig. 5.A. Find the moment at B and tho
reactions. [15-24 ft.-tons; 9-58, 5:42, and 5 tons.]

2. A beam is as shown in Fig. 5.B. 4 isfixed. Find the moments at A, B, and
C, and draw the B.M. and shear diagrams. [4-28; 8:56; 5 ft.-tons.]

3. A continuous beam ABC rests on columns at 4, B, and C. AB -- BC
= 10 ft. The load is 1 ton per ft. run. The columns are 100 in. high and their
areas are A = (' = 6 in.?; B = 5 in.2 If the beam has an inertia of 144 in.4,
find the reactions at 4 and C. [3:796 tons.]

4. A beam ABCD is supported at 4, B, C, and D and carries a distributed
load of w per ft. run. AB = CD = 3 ft. 9 in.; BC = 27 ft. 6 in. Find the
moment at B and the reaction at 4. [57-92w; —13-5%w.]

5. A beam ABC is 30 ft. long and carries a load of 1 ton per ft. run. It is
built in at 4 and supported at B (4B = 20 ft.) and at C. Find the maximum
positive and negative moments. [M, = 37-5; My = 25.]

6. A beam ABCD is 42 ft. long. It is fixed at A4, supported at B and C, and
free at D. AB = 18 ft., BC = OD = 12 ft. There is a point load of 20 tons
midway between A and B, a load of 2 tons per ft. on BC, and a point load of
10 tons at free end D. Find moments at 4, B, C, also deflexion at D if I = 2,000
in.t and E = 12,000 tons/in.? [M, = 61-23; My = 12:53; My = 120 ft.-tons;
A = 0-417 in.]

7. A beam ABC is continuous over two equal spans ! and earries a point load
W at the mid-span points. Find the settlement at B so that the reactions are
all equal. [17TWI3/144E1.]



CHAPTER VI

DESIGN OF BEAMS AND GIRDERS; DESIGN IDEALS
AND WORKING STRESSES; STEEL, REINFORCED
CONCRETE, AND TIMBER BEAMS AND GIRDERS

THE analysis of beams and girders under dead and live loading has been
dealt with in Chapters IIT to V. In fact, given the loading conditions
and particulars of any beam or girder, the investigation of stresses and
deflexion, either graphically or analytically, is perfectly straightforward.
On the other hand, the problem facing the designer of structures is
complex, in view of the large number of factors to be taken into con-
sideration. Firstly there arc general considerations, such as choice of
materials, economic life of the structure, etc. The choice of material
depends on the purpose for which the structure is to be designed, local
conditions, relative costs, and maintenance. The question of main-
tenance is important as it affects the overall cost of the structure, as
distinet from the initial cost, but unfortunately it is frequently over-
looked by designers. The deterioration of many metal structures has
been due to the fact that the design has not provided for periodic
inspection and painting. Maintenance must be studied in relation to
the economic or expected life of the structure. The choice of material
must be governed by several factors, for instance, in certain cases it
may be economical to use mass concrete in preference to reinforced
concrete especially where steel or skilled labour is in short supply.
In cases where floor space is valuable, it may be advisable when
designing R.C. columns to use a concrete mix richer than the usual.
Where noxious fumes or liquids may come in contact with a structure
or any part thereof, the choice of material becomes doubly important
and the results of inspection of structures under similar conditions
should be studied closely. In general, it can be said that material is
usually cheaper than workmanship. Therefore design should aim at
simplicity in fabrication and erection and it is often good policy to
sacrifice economy of material to secure simplicity in the works or field.
Over-refinement in design calculations should be avoided. Since the
assumptions made in design as to dead and live loading may be in error
to the extent of several per cent., it is unnecessary to spend too much
time in calculating stresses or sections. It should also be remembered
that errors in fabrication or erection, or settlement of the foundations,
may upset the assumed loading conditions and it is advisable to revise
‘theoretical’ design in the light of practical experience, without adopt-
ing ‘rule-of-thumb’ methods. It can be said that skill in design is a
combination of experience and ‘engineering sense’.
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At present, the design of structures is in a transitional or fluid stage.
Up to quite recently, practically all beams and girders (other than
continuous) were designed as ‘simply supported’. In such cases, the
necessary sections can be found directly. The present tendency in
design, both for economic and aesthetic reasons, is towards monolithic
frames in welded steel and R.C. Recently, the superimposed loadings
have been reduced and at the same time working stresses have been
increased somewhat, in view of improved materials and workmanship.
There is a good deal to be said for the policy of allowing the skilled
designer to design for working stresses somewhat higher than those in
common use. Working stresses for various materials and types of
structures are set out in the specifications and by-laws mentioned in
the bibliography at the end of this chapter.

Every structure should be treated as a separate problem and it is
impossible to generalize. For that reason, it is best to deal with the
behaviour of the various materials under load and to give design
examples from actual practice, so far as the available space will allow.

Steel

The properties of steel have been described in Chapter I. Steel may
be used in the form of simple I or [ beams, as compound girders formed
of T or C beams with flange plates, as plated girders, or as built-up
sections formed by welding plates together. Steel beams and girders
may fail by flexure, by elastic instability, by buckling of the compression
flange together with distortion of the web, by shear, web buckling,
or by diagonal compression. The buckling of the compression flange
is the most common cause of failure. In short spans shear or web
buckling may have to be provided against. Web buckling must not be
confused with shear. Buckling of the web is due to the failure of the
web as a short strut. It is liable to occur at points of concentrated load,
especially in grillage beams supporting heavy stanchion loads. Where
there is heavy B.M. and shear at the same point, diagonal stress may be
important.

Buckling of the compression flange is due to the safe stress in com-
pression being exceeded. In order to prevent this, the compression
flange must be efficiently supported in a lateral direction by subsidiary
members, by concrete casing, or by being embedded in a concrete slab.
There is a certain amount of divergence of opinion as to the permissible
stresses in compression flanges of beams or girders. The Institution of
Structural Engineers gives values of 10 tons/in.? for mild steel and 14
tons/in.? for high-tensile steel where //k does not exceed 100 and 75
respectively. Where these values of //k are exceeded, the safe stresses
are: 1000k/l for mild steel and 1050k/l for high-tensile steel (see
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Report on Steelwork for Buildings, Addendum, 1942). In other speci-
fications the safe stress is based on /b, where b is the least width.

B.S.S. 449 (Use of Structural Steel in Building), War Emergency
Revision, 1940, gives a maximum value of 10 tons/in.? for mild steel
up to L/b = 20. Where L/b exceeds 20, the safe stress is given by
14:4—0-22 X L/b tons/in.? .

B.S.8. 153—1937 for Girder Bridges gives 9(1—0-0075L/b) tons/in.?
for stiffened edges and 9(1—0-01L/b) tons/in.? for unstiffened edges.

L.C.C. By-laws give values similar to those of B.S.S. 449 before
War Emergency Revision, viz. 8 tons/in.2 for L/b less than 20 and
11-0—0-15x L/b for L/b greater than 20. Tt should be noted that the
above values apply to uncased beams only.

Where beams or girders are cased in concrete, it is usual to increase
the permissible stresses in virtue of the additional lateral support.
The Institution of Structural Engineers Report allows an increase on
permissible stresses of up to 10 per cent. B.S.S. 449 allows the ‘0’
value to be increased by up to 4 in. where beams are encased in concrete
and there is a similar provision in the L.C.C. By-laws. For grillage
beams embedded in a solid block of concrete not leaner than 1:6 mix,
the stresses in single and top tiers may be increased by 25 per cent.
or for other tiers by 50 per cent.

For beams (other than grillage beams) embedded in a solid block of
concrete, such as filler beams, it is usual to calculate on the basis of
the combined moment of inertia of steel and the surrounding concrete
as for R.C. The extreme fibre stress in steel should not exceed 11
tons/in.? for mild and 15 tons/in.2 for high-tensile steel (Institution of
Structural Engineers Report) and similar provisions are made in B.S.S.
449 and the 1..C.C. By-laws, also in Draft Code of Practice.

Web shear is generally taken as 5 to 6 tons/in.2 for mild steel and
7-5 to 9 tons/in.? for high-tensile steel. The same proviso holds good for
grillage beams encased in a solid block of concrete, viz. that the stress
can be increased by 25 per cent. to 50 per cent. for mild steel. Shear
stress should be investigated at the bearings or under heavy concen-
trated loads.

Web buckling is often neglected and is not directly referred to in
the specifications mentioned, except in B.S.S. 449, although some steel
handbooks give values of safe loads in tons per linear inch. The value
of the permissible stress is given by some authorities as

5:0—(0-04 X d/t) tons/in.?,
where d is the effective depth of the web and ¢ is the web thickness.
Where the safe stress is exceeded, stiffeners fitted into the flanges
should be riveted or welded to the web.
1 To be superseded by B.S. Code of Practice which gives different values.
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Where heavy bending and shearing stress occur at the same point
on a span, diagonal stresses are set up in the web which, when in
compression, may exceed the safe stress. This can be dealt with by
providing stiffeners sufficiently close together. This is specially im-
portant in deep girders such as plated girders and some specifications
lay down rules for spacing of stiffeners.

The economical depth of beams or girders is difficult to define.
Generally, the deeper the beam the more economical, provided such
points as web buckling are not overlooked. L.C.C. By-laws give a
maximum span: depth ratio of 24, unless the calculated deflexion is less
than span/325. For filler beams the span:depth ratio should not exceed
32, the depth being measured from the underside of the beam to the
top of the concrete. The Institution of Structural Engineers Report
gives the same values for filler beams but does not give any rule for
other beams except for deflexion. B.S.S. 449 gives the same values as
L.C.C. By-laws. In actual practice, the depth may be limited by such
factors as the available construction depth, architectural features, etc.,
and the permissible deflexion must be governed by the purpose for
which the girder or floor is to be used. In some cases it may be necessary
to use a section which is not really economical. Provided the maximum
B.M. is known, the required section modulus is found by dividing by
the permissible bending stress and then a suitable section can be selected
from the steel handbook.

The design of compound beams is on similar lines. The rivets or
welds connecting the flange plates to the I or L beams must be strong
enough to transmit the shear force. If V is the shear force at any point
and d the effective depth, then shear per inch is V/d and the shear per
foot 12V /d and therefore the rivets or welds must be designed to suit.
In the case of rivets the minimum strength (either in shear or in
bearing) must be used to calculate the number required.

// Plate girders are used where the strength required is more than that
of compound girder sections. The economical depth of plate girders
is about & to {5 of the span, although such considerations as construc-
tion depth may cause a greater span:depth ratio to be used. The web
of the girder should be thick enough to resist the maximum shearing
force on the girder. One-eighth of the web area can be taken as
equivalent flange area, provided that the web joints are designed to
transmit horizontal as well as vertical stress. In designing the flanges
it should be noted that the angles should form as large a part of the
flange area as practicable. Two methods of designing can be used:
(1) by calculating the moment of inertia and section moduli of the
section of the girder about its neutral axis; (2) by dividing the maxi-
mum B.M. by the distance between the centres of gravity of the flanges,
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in order to find the ‘flange load’. In commercial design, the depth over
the flange angles is often taken as equal to the distance between the
centres of gravity. While this method may be sufficiently accurate
where the span:depth ratio does not exceed 12, it is not exact as it
neglects the flexural strength of the web. Where the span:depth ratio
is more than 12, the moment of inertia should be calculated as in the
design example. As the B.M. decreases towards the supports, the outer
flange plates are stopped off as they become unnecessary.
~ Web plates should never be less in thickness than }; of the clear
distance between the flange angles (in practice it is as well to use § in.
minimum on account of corrosion). B.S.S. 153 gives shear in M.S.
web plates as 5 tons/in.2 The Report of the Institution of Structural
Engineers on Steelwork for Buildings gives the same figure for the shear
on the gross area where ratio unsupported length :thickness does not
exceed 80 and 9-44 — _____qlen.gth
18 X thickness
on the net area does not exceed 6 tons/in.%

The web must be supported by stiffeners riveted or welded thereto,
at the bearings and all points of concentrated loading. At bearings and
under concentrated loads, the stiffeners should be sufficiently strong
to carry the whole shear, when designed as struts having an effective
depth of three-quarters of the depth of the girder. A certain amount
of the web can be included as acting together with the stiffeners for
this purpose. Intermediate stiffeners must be provided throughout at
centres not exceeding the depth of the girder, with a maximum value
of 6 ft. They can be designed according to the formula

otherwise, provided that shear stress

Sp
8= 15
where s - load per pair of stiffeners,

§ -~ max. vertical shear at that point,
p = distance between stiffeners along the girder,
D = overall depth of the girder.
Where } of the web area has been taken as forming part of the flange

area, the rivets or welds fastening the flange angles to the web plate
should be designed by

F = § X ____ﬁl__w,
D™ A+(W/8)
where A = flange area, W == web area,
and F = shear force per unit length.

Where it is necessary to make a joint in the flange angles, flange plates,
or web plate, then the joint should be designed to develop the full
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strength of the member, even if that member is not stressed to its
maximum permissible stress at the point in question.

Design example. To design 45-ft. span crane girders to carry 25-ton
and 10-ton cranes, the cross centres of crane rails being 43 ft. 11} in.
(to suit existing girders). '

Data: (1) 25-ton crane. Weight of crab — 5 tons

Weight of crane bridge and end carriages = 25} ,

Wheel centres, 11 ft. 3} in.; distance over buffers, 13 ft. 9 in.;
minimum hook approach to centre of girder, 4 ft.

wheel loads
. . 25-25 .
(@) from bridge and end carriages = = = 631 tons
39-93
3 = 2462
(b) from crab } X575 X —— 1393 2,
39-93
11
(¢) from load } X 25 x — 1393 i+,
Add impact (60 per cent. of load) = 684

Max. wheel load == 37 17
(2) 10-ton crane.
Weight of crab = 2 tons

Weight of crane bridge and end carriages = - 10

"

Wheel centres, 10 ft. 1} in.; distance over buffers, 12 ft. 4} in.;
minimum hook approach to centre of girder, 3 ft. 6 in.

wheel loads
(@) from bridge and end carriages -= 25 tons
40-43
I = 00
(b) from crab §x2 X503 3.,
40-43
( == 465
(¢) from load 410 x 1393 465
Add impact ~> X 4-65 = 279
Pach 100 ”

Max. wheel load = 10-87

To find max. B.M. due to wheel loads. Find the position of centre of
gravity of the loads (Fig. 6.1).

By moments 27-17x11-29 = 30675
10-87 X 13-646| _ 10671
10-87 x 23-77

713 46
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4 .
71346 71346 .o o

X 2 _ 1o
total load 76-08
27177 . cjc 27177 (08 , "Té’?'
1/:3%" 24 1013
9-36’
YL )
Fia. 6.1
‘ "'A‘fw'
2/-535 d 71-555
LR R . .
12.175" 13 | & 1013 9055

0

”:037&9'7

Fic. 6.1(a)
For max. B.M. under one wheel load, that wheel and the C.G. of the
loads must be equidistant from the ends of the span (Fig. 6.1 (a)):
76-08 X 23-465
R, = 277770 — 396 tons.
L 45
Max. B.M. == 396 X 23-465 —- 929-16 ft.-tons

—9717Tx 1129 -- 30675,

622:41 |,
Assuming weight of girder at 7 tons,
Max. D.L. BM. = "5 305 fo.-tons

Total max. B.M. = 661-89
B.M. at quarter-point of span. Taking L.L. values from influence line

(Fig. 6.2)
L.L. BM. = 463 ft.-tons

D.L. BM. 3:5x 1125 } — 2958 .
—175x5625)

Total B.M. = 49258 ,,
In addition to the vertical loads from the wheels, the horizontal forces

transverse to the rails must be allowed for in the design. The Institution
of Structural Engineers Report on Steelwork for Buildings (Addendum)
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gives a value of 20 per cent. of the load for electric cranes (to be divided

equally between the two girders). The lateral B.M. is calculated for

the same position of the wheel load as was taken for the vertical B.M.
Loads per girder: 25-ton crane, 1:25 tons per wheel,

10-ton ,, 0-50 ) . (Fig. 6.3).
3
e
13° B9 .
Fic. 6.2
1257 1557 o6 0s”
12.175' vz pH 10'h | 9oss’
4570
Fic. 6.3

By moments: R; X 45 = 0-5(9-035+19-16) — 14-1 ft.-tons
1-25(21-51+432-82) == 67-9 |,
82:0 ,
82

= - — = 1-82 tons.
L™ 45

B.M. == 1-82x23-475 —: 42-7 ft.-tons
—1:25%x11-29 - 14:15 "
Max. lateral B.M. = 28-55 ft.-tons.
Lateral B.M. at quarter-point (Fig. 6.2):
R, %X 45 = 0-5(9-975-+20-1) — 15-04 ft.-tons
1-25(22-45+33-75) = 7025

R, = %2 = 1-90 tons.

Lateral BM. = 1-9x 11:25 = 20-45 ft.-tons.
‘Having found the B.M. near mid-span and at the quarter-point, the



DESIGN OF BEAMS AND GIRDERS 171

maximum shear at end of girder must be found. Maximum shear occurs
when one wheel of 25-ton crane is over the end (Fig. 6.4).

Then shear = 27'17(1 +}1§l) = 47-25 tons
26-27
21‘ 4= ) = 12-
+21-7 ( is ) 12-75

Max. L.L. shear = 60-00
D.L. shear == 35

Max. shear —= 635

LR}

A
Nz 12 bl

45l 0°

F1c. 6.4

Taking web shear at 5 tons/in.?, web area required is

In this case depth over the flange angles is 3 ft. 8 in. to suit existing
girders,
. . 127 .
thickness required = w e 0-29 in.

Use § tn. web plate throughout.
Riveted design. Use section shown in Fig. 6.5 as ‘basic’ section. The

calculation for the moment of inertia is best done in tabular form,
thus:

1st 2nd
Area Arm moment moment | Own I

Part ("n.2) (in.) (in.?) (in) | (in8) |Total I| I,
Web . .| 165 .. .. .. 2,662 | 2,662 ..
Flange angles . | 11-44 20-88 .. 4,986 17 5,013 38
Channel . . 1304 | 42156 | +282 6,061 15 6,076 | 520
Top plate . . 8:00 | 42273 | 4182 35395 4,125 .. 4,125 170-67
Top 63" x §” pkg. | 325 | +2323 |+ 755 1,750 ol L750 | 114
Bottom plate 800 | —22:25 | 178 3,950 .. 3,950 170-67
Gross . .| 60-23 .. +361:5 .. .. 23,576 | 910-74
—2 holes " x }” 165 | —22:06 | +36-4 .. .. —800 ..
Net . . . | 5858 .. 397-9 oo {22,776
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F— — =— 68
Y= 5858
I, = 22,776
—58-58 % 6-82 = 2,700
20,076 in.*
S5 5 e 674
//7'-!',
[ ﬁ U “#.34% .
e
5 N
. e
HF
m ;/’/:4:;‘ /6:{'
644" #
Fic. 6.5 Fra. 6.5 («)
910-74 . .
k,, = ,\/(—5_8—55) = 3-95 in. Ik, = 137.
910-74
Zw = 780
— 113-83 in.?
Safe stress = »]’O;NL
_ Lovo oy tons/in.2
137
For quarter-point
49258 X12x16:18 -
f, = __._.%m-ﬁ—"— = 4-77 tons/in.
20-45% 12
= - = 2'16 )
I 113-83
6-93

Less than 7-3 tons/in.?
This section is therefore suitable at quarter-points.
Full section as shown in Fig. 6.5 (a).
347-44
70-4
Total I = 28,990
70-4x 4-94%2 = 1,720

Net I, == 27,270 in .4

.’l-,‘ = = 4'94.
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Ist 2nd
Area Arm moment moment| Own I
Part (in.2) (in.) (in.3) (int) | (in.8) |Total 1| I,
Web 165 .. .. 2,662 | 2,662 ..
Angles 1144 20-88 NS 4,986 17 5,013 38
Channel . 13-04 | +21:56 | 4282 6,061 15 6,076 | 520
Top plate 8:00 | 2273 | +182 }649'84 4,125 .. 4,125 170-67
16" x 4" . . 8:00 | 423-23 | 418584 4,325 4,325 170-67
Bottom plate . 8-:00 —22.25 | — 178} 360 3,950 170-87
16" x 3" . 800 | —22.75 | —182 4,125 170-67
Gross 7298 289-84 . 30,276 |1,240-67
—2 holes
" x 13" 2:58 57-6 1,286
Net 70-40 347-44 28,990 |
1,240-67 .
kyy = J ( ) —s18in Uk, — 129,

Safe stress

For max. B.M.

For riveting at ends:

F |4

704

_ 635
44

13-72
16-78

= 13355 tons/in. == 1506 tons/ft.

= d " Area of flange+ } X web area’

vy

Z,, - 155:05 in.3
= }-’(_)OO = 7-75 tons/in.2
27,27( .
7z, = 27,270 _ 1,470 in.3
’ 18-54
27, :
2, = 2LH10 _ g75ins
27-94
561-89 % 12
f.= 6618912 o4y
1,470
28-85 X 12
= - == 2‘20
= "T55.05
7-61 tons/in.2 < 7-75.
V = 63-5 tons; d = 44 in.
Area of flange

Area of flange 8-00

1 web

572
13-72
2-06

1578
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Value of 1 in. rivet bearing in § in. plate = {3 X $ X 12 = 4:23 tons.
18 g

15-06
\ . i = —— = ‘56,
No. required per foot 135 3

i.e. 3-37 in. pitch.
End stiffeners. Max. load = 63-5 tons.
Effective length = X 44 in. = 33 in.
Section two angles 3} in.x 3} in. X § in. Area == 4-97 in.?
End plate 16 in. X }in. = 8-00 ,,
web 3} in. X gin. = 131 ,

14:28 .
635 i,
Actual stress = 1198 = 4-45 tons/in.
l 33
2= 22 90,
k165

allowable stress == 6-8 tons/in.?

For intermediate stiffeners use two angles 31 in. 34 in. x § in.

The ‘basic’ section will be used from the ends to the quarter-points
and the ‘full’ section for the centre portion. The outer 16 in.x} in.
flange plates will be extended beyond their ‘theoretical” ends to cover
the joints in the inner 16 in. X } in. plates. The 6} in. x } in. packing
plate on top is intended to take up the thickness of the outer 16 in. X } in.
plate and to form an even seating for the crane rail. The latter is not
taken as forming part of the girder section as it is bolted thereto at
about 104 in. reeled pitch.

Alternative welded section

1. At quarter-point (Fig. 6.6).

1st 2nd
Area Arm moment moment | Own I
Part (in.2) (in.) (in.?) (in#) | (in.%) |TotalI| I,
Web . .| 165 .. .. .. 2,662 2,662 .
Channel . . 13-04 +21-56 4282 6,061 15 6,076 | 520
14x 3" . .| 105 42285 | +240}4637 | 5,490 .. 5,490 | 1715
64" x 3" . . 4-88 | +23-60 | +115 2,710 .. 2,710 17-1
14" x 3" . .| 108 —22:375 —235 | 5,300 .. 5,300 | 171-5
55-42 .. 402 . .. 22,238 | 880-1
- 402
Xr = —— =
5542

Total I = 22,238
5542742 = 2,980
Net I, = 19,258 in.4
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880-1 l
- = 135.
J (55 42) k
Safe stress = 7-4 tons/in.?
Max. compressive stresses in channel
4‘)2 oBXlela 08 .
= S = 4-63 2
,f” 19,958 53 tons/in
20-45 X 1285
= - — 9. 7
fh 880 = 23 )
Total = 7-00
1° 3
(5 g iy
0 i V-172ec
L HA
N .
-—k‘ L
A - T | .
di //4'-/4’
143 "
F1a. 6.6 F1c. 6.6(a)
and plate
4‘)‘) 5 .
= 58X 12x15:83 _ 4-86 tons/in.?
19 258
20 45X 12 %7
o iakan i YT, S
= 880
Total = 6-82 »
Less than safe stress; therefore section is adequate.
Full section (Fig. 6.6 (a)):
Ist 2nd
Area Arm moment moment | Oun I
Part (in.?) (in.) (1n.3) (in.3) | (int) |Total I| I,
Web 165 o . .. | 2662 | 2,662] ..
Channel 13:04 | 42156 | +282) o0 | 6061 15 | 6076| 520
Top plate 2100 | 12323 | 488t 11,300 11,300 | 343
Bottom plate 175 | —22:625] —396 9,000 9,000 | 285-8
6804 374 29,038 | 1,148-8
F= 2T _ 55din,
68-04
Total I = 29,038
68:04 x 5:542 = 2,070

I

Net I,

26,968 in.¢
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1,148-8 !
= —’-——”_‘ — 4'1 1 . - == 132.
b A/ ( 68-04) g

Safe stress = 7-7 tons/in.2
Max. compressive stress in channel
661 80X 12 X 16-94

— 4. in.2
fo=— 56, TN T I 4-98 tons/in.
*)8 55x 12 X 8
_— =—1 :.4'54 23
In 11,1488

Total = 7-52

and plate 66180 12X 1844

il

= 5-43 tons/in.2

v T 726,968
N4 ©)
o= BOOXIXT g
1,148°8
Total — 7-52

Max. shear at ends = 63-5 tons.

Use double 6% in. X } in. stiffeners at ends. Area == 13:5 in.2
Value of two }-in. fillet weld = 2-1 tons/in.

Length required = 30 in. Make full depth.

Intermediate stiffeners 6% in. x § in. with intermittent welds.
Welding of channel to web:

< S % Z area above section X distance
S = i < — - R —— -

1
635 % (13 O4>< 16 ()2)_—‘}:_(2_17 00X 17 -69)
IR 26,968
580-4
== 63'5 ——— 1‘27 S i .
X 56,968 tons/in

Use two }-in. fillet welds. Value = 2-1 tons/in.

It will be seen that the welded section is lighter and therefore more
economical as well as being better from a maintenance point of view,
but at present, tonnage rates for welded steel are 10 to 12} per cent.
higher than for riveted steel, so first costs are about equal.

Reinforced Concrete

The fundamental assumptions made in R.C. design have been dealt
with in Chapter II. In applying these principles to design in practice,
it must be remembered that the designer is dealing with a non-homo-
geneous material and that some of the assumptions made are con-
venient, but not strictly true. Whilst steel is a perfectly elastic material
(within certain limits), concrete is a material with no true elastic
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modulus. The value of E, and therefore that of the modular ratio in
E,/E, has been a subject of considerable controversy. Up to quite
recently it was standard practice in this country to adopt a constant
value of 15. At present most concrete design in Great Britain is in
accordance with the Code of Practice for Reinforced Concrete which
is incorporated by reference in the Model Building By-laws.t The
Code gives values of m varying according to the concrete mix and is
based on the cube crushing strength at 28 days (3x). The basic bending
compressive stress is taken as x and the modular ratio at 40,000/3x.
In considering the modular ratio it must be borne in mind that the
value of E, varies with the time during which the concrete is loaded.
For an instantaneous load (which is seldom likely to occur in practice)
there is no permanent deformation, i.e. concrete will behave as an
elastic material. For sustained loading, on the other hand, concrete
has an elastic and also a plastic deformation known as creep. The
creep will increase with time until it reaches a value which may be
four or five times that of the elastic deformation. The effect of creep
is to redistribute the stresses in a R.C. beam between the steel and
the concrete. In the earlier stage of loading the concrete stress may
be somewhat higher than that calculated according to the accepted
theory and the steel stress correspondingly lower. After the section
has been under load some time, the concrete stress will diminish and
the steel stress increase. Creep is roughly proportional to the stress
applied, and for that reason the value of m given by 40,000/3x, while
higher than that obtained by tests on specimens, takes into account
the redistribution of stress and is therefore safe for design purposes.
It is interesting to compare the values for m given by the American
Society of Civil Engineers Report for Concrete and Reinforced Con-
crete. This gives values as follow, viz.:

cube crushing
m strength (Ib.]in.2)

15 . . . . 2,000-2,400

12 . . . . 2,500-2,900

10 . . . . 3,000-3,200
8 . . . . 4,000-4,900
6 . . . . over 5,000

which show fairly close agreement with the Code values. Other Ameri-

can research workers give a value for m of 5+4-10,000/u (v = crushing

strength of 12 in. X 6 in. cylinder) for gravel and broken stone concretes.}

The straight-line no-tension theory of R.C. outlined in Chapter II is

generally accepted, although other theories based on different stress

distribution have been put forward by various investigators from time
+ CP 114 (1948) gives value of m as 15.

.1 Ultimate Strength of Reinforced Concrete Beams as Related to the Plasticity Ratio of
Concrete, University of Illinois Bulletin No. 345.

N
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to time. An interesting comparison of these is made by Dr. R. H.
Evans in a paper presented to the Institution of Civil Engineers.t It
can be said that the accepted theory errs on the side of safety, if at all,
and failures in R.C. structures have been due generally to faulty
materials or workmanship rather than to errors in design.

Another phenomenon peculiar to concrete is that of shrinkage. The
setting of concrete involves a certain amount of heat, the effect being
most marked with quick-setting and other special cements. As the heat
is dissipated into the surrounding atmosphere a certain amount of
shrinkage must take place, causing tension in the concrete and com-
pression in the steel. The amount of shrinkage which takes place in
any particular case depends on several factors, chiefly the care with
which ‘curing’ is done (particularly with special cements). Again, the
shrinkage stresses may be affected by a certain amount of slip between
the concrete and steel. Usually shrinkage stresses can be neglected
(except for indeterminate structures) in design and the usual effect is
the formation of hair cracks in the concrete.

In considering the question of failure of R.C. sections due to bend-
ing, it is found that, provided the tensile steel is securely anchored, the
most common causes of failure are yielding of the steel or failure of
the concrete along a diagonal. The tensile reinforcement is designed
for a safe stress of 18,000 lb./in.? for mild and 25,000 for high tensile
steel and the yield-point is approximately twice the safe stress. It is
a matter of regret that no specification lays down a value for the yield-
point{ as this is a most reliable guide to the safe stress and certain
formulae, notably that for steel stanchions in B.S.S. 449, are based
thereon. The amount or percentage of tensile steel is constant for any
given ratio of stresses and modular ratio, and provided this is placed
in the tension side of the beam, failure by yielding is unlikely to take
place. The design of shear reinforcement either in the form of stirrups
or bent-up bars (or both) is most important, particularly near the sup-
ports or under concentrated loads, and the detailing of this steel should
receive special care. The failure of R.C. beams in compression is not
so common as for steel, but buckling of compression steel may take
place if the distance between stirrups exceeds the safe value as laid
down in the specification.

Rectangular beams. The effective depth should be

span X tensile stress
320,000

t ‘The Plastic Theories of the Ultimate Strength of Reinforced Concrete Beams’,
Journal 1.C.E., Dec. 1943.

1 This point is brought out in B.8. Code of Practice, The Structural Use of Normal
R.C. Buildings.
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For t = 18,000, depth = span/18; for ¢ = 20,000, depth = span/16,
and for ¢ = 25,000, depth = span/13, with other values in proportion.
A rough rule is that overall depth (inches) = clear span (feet). How-
ever, such factors as headroom and construction depth must govern
the design. The breadth/depth ratio may vary from } to 1, with an
average value of . The breadth is governed by the amount of steel

PBre_stress / oading fre.shess ¢/, oading
7‘01:'.»‘{7 W E

—_—
C
ormp [Fensiard Nominol
S/ress

(a? @) (<)
Fi1c. 6.7

and its cover and the area required in shear. The breadth should, if
possible, be fixed to suit commercial sizes of timber for shuttering (4 in.,
7in., 81in., 11in., etc.) or steel shutters. For rectangular beams the ratio,
unsupported length: width of compression flange, should not exceed

20 (3_2 % actual compressive stress )

permissible compressive stress

In recent years the principle of pre-stressing has been introduced for
simply supported beams. The process consists essentially of stretching
the tensile steel by jacks or other devices while the concrete is formed
round it.} The steel used should be high or medium yield-point steel.
When the tension is released the effect is to introduce an initial com-
pression in the concrete in the tension zone (Fig. 6.7 (a)). This, com-
bined with the normal stress distribution (Fig. 6.7 (b)), produces a final
effect as shown in Fig. 6.7 (¢). The object is to obtain a smaller section
and the principle is particularly useful for pre-cast units. For large
spans the pre-stressing of the shear steel presents practical difficulties,
and where there is reversal of B.M. the method is not of much use.

T- and -beams. The design of flanged beams is similar to that of
rectangular beams, with the exception that the slab, being monolithic
with the rib, forms the compression flange for positive B.M. The
effective width of T-beam flanges is

Code of Practice American Society of Civil Engineers
effective span span length
least of 3 . 4 .
centres of ribs centres of ribs

breadth of rib+4-12 x slab thickness breadth of rib- 16 X slab thickness

t See also Vol. II, Chap. XV.
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Corresponding values for L-beams:

effective span span length

breadth of rib---" —

6 12
least of{ preadth of rib+ } X clear distance breadth of rib+ 4 X clear distance
between ribs between ribs

breadth of rib-4-4 X slab thickness breadth of rib+ 6 X slab thickness

The maximum positive B.M. will occur at mid-span and the maximum
negative B.M. at the supports. In dealing with negative B.M., the slab
comes in the tension zone and must be neglected. At the same time,
additional strength can be obtained by ‘haunching’ the underside of
the beam at the supports. In the design of buildings, the following
conditions must be investigated: (a) alternate spans loaded, (b) adjacent
spans loaded and all other spans unloaded. (For bridge floor members
the influence line method outlined in Chapter V can be used.)

Secondary beams generally frame into main beams at each end and
are restrained to a certain extent by the continuity of members and
the torsional rigidity of the main beams. For exact analysis, the effect
of the latter can be taken into account by assuming its stiffness equal
to that of a column having a stiffness half that of the beam. Beams
may be taken as continuous over supports about which they are free
to rotate. This assumption ignores the torsional rigidity and can hardly
represent the conditions existing in practice. For a preliminary design
for uniformly distributed load and approximately equal spans, the
maximum B.M.s can be taken as

Near middle of Penultimate At middle of Other interior
end span support interior span supports
wi wi wi wi
+i6 10 i b

Where necessary, the final analysis can be done by taking the relative
stiffnesses into account, but this is seldom necessary for secondary
beams.

Main beams are generally monolithic with columns and should be
treated as part of an elastic frame and analysed by use of Hardy Cross,
slope deflexion, or method of virtual work. In order to carry out an
exact analysis it is necessary to know the stiffnesses or relative stiff-
nesses of the members. The stiffnesses of members can be calculated
on the area of concrete only, the error involved being small. To obtain
preliminary sections the coefficients stated for secondary beams can be
used. For beams framing into exterior columns the value of —W1/24
for end B.M. can be taken into preliminary calculations. In order to
reduce the negative B.M. at supports and consequently the amount of
reinforcement at column connexions, it is permissible to make a reduc-
tion of up to 15 per cent., provided that the positive mid-span is in-
creased by that percentage of the negative B.M. For haunched beams
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the shear is altered by the vertical component of the inclined stress.
Usually shear in beams need only be investigated at supports or at
a distance from column faces equal to the effective depth. The B.M.
at a column face can be taken as
B.M. at centre of column—shear x "re2dth of column
.M. at centre of column—shear x 3 .

Slabs can span in one or in two directions at right angles. It should
be clearly understood that these remarks do not apply to slabs in
‘mushroom’ floors which are designed according to rules derived as a
result of experience in this country and the U.S.A. (see Report of
Institution of Structural Engineers on Flat Slab Floors). The design
of one-way slabs follows that of rectangular beams with the proviso
that distribution steel must be provided at right angles to main steel
equal to 20 per cent. of such and at spacing not exceeding 4 times the
effective depth of slab. The slab thickness (effective) should be not
less than g of the span. Shear in slabs does not usually require investi-
gation.

The load in two-way slabs is distributed in the two directions accord-
ing to the ratio long span/short span. The distribution coefficients have
been derived by various methods, usually by equating deflexions of
strips at right angles at their crossing-points. If

- long span
~ short span’
values of distribution coefficients are:

Grashof and Rankine | French Government

K Short span ' Long span Short span Long span
1:00 0-50 0-50 | 0-33 0-33
1-25 0-71 0-29 0-55 0-17
1-50 0-83 0-17 ‘ 0-71 0-09
1-75 0-90 0-10 I 0-83 0-05
2-00 0-94 0-06 ! 0-89 0-03

The Code of Practice gives other values based on Marcus’s method,
which allows for corner restraint and torsion, and values are also given
by the Report of the Institution of Structural Engineers and by the
American Society of Civil Engineers. The effective depth should be
not less than g; span, or thickness can be calculated by

1 P 2,500
‘= 'ﬁ[“’— m]z/ ('3}7)’

L, I are lengths of sides in inches,
P = perimeter in continuity with adjacent slabs (in.),
x = permissible bending stress.

where
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In general it can be said that slabs less than 4 in. thick are not
economical and thicker slabs form a more effective flange for T- and
L-beams. Point loads on slabs can be treated according to the Report
of the Institution of Structural Engineers. In calculating the load
taken by the supporting edges, the method shown in Fig. 6.8 should
be used, the shaded area being that supported on the shorter edges.

L 45° 45

%

Fra. 6.8

Design example
Warehouse floor: superimposed load 2 cwt. per square foot; columns
20-ft. centres both ways; secondary beams 6 ft. 8 in. centres.
Concrete 1:2:4 mix ; steel stress 18,000 lb./in.2 (Sec Fig. 6.9.)
. 1 6407 /(2,500
= —| 24 —_— o7
Thickness of slab 72[ 0+ 80 10 ]2/(2,250)
= 3-65 in.,
or %g = 4 in.
Use 4-in. slab:
then dead load per square foot is

Slab = 48 lb.
Finish =12
60 ,,

¢ = 750 1b./in.2; ¢ = 18,000 1b./in%; m = 18.
n, = 0-425; a, = 0-858; @ = 136-9.
Slab design. Since ratio
long span
short span
slabs will be designed to span in one direction.

b
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Posgitive B.M. Negative B.M.
Dead Super Dead Super
Interior spans wi?[24 wi?[12 wi?[12 wi?[12
End spans wl?/12 wi?[10 wi?[10 wi?(10

Interior spans:

672
Dead =6OX667 X 12

gy = 1,333 in.-Ib.
Positive B.M. 0 \
Super — 2ZHXOOTX1Z _ 9967,
12
11,300 ,
60x6:672x12 .
Neg&tive B.M. Dead = 12 == 2’667 bR}
Super (as Positive) = 9,967 ,,
12,634 ,,

M.R. of 4-in. slab (d = 3-25 in.)
= 12x136-9 x 3-25%2 = 17,500 in.-1b.

Make reinforcement same throughout, then
4= , 1‘2,633 _
0-858 X 3:25 % 18,000

== 0'25 in.z/ft.

Area of -in. ¢ bars at 5-in. centres = 0-265 in.2/ft.
For distribution steel use f-in. ¢ bars at 12-in. centres.

Area given = 0-077 in.?/ft.

End spans:
. 2
Dead — ‘i‘li‘ifziﬁl? — 2,667 in.-Ib.
Positive B.M. 994 5 6-67% 12
Super — 22220007 X212 y1.960
10
14,627
60 % 6:672x 12
. = — e 2(
Negative B.M. Dead 10 3,200,
Super (as Positive) = 11,960 ,,

15,160
M.R. of 4-in. slab = 17,500 in.-lb.
Use same reinforcement throughout.

15,160

A, = : _
7™ 0-858 x 3-25 X 18,000

= 0-303 in.2




184 DESIGN OF BEAMS AND GIRDERS

Use $-in. ¢ bars at 4-in. centres: area = 0-331 in.?, and distribution
bars f-in. ¢ at 12-in. centres as before.
Secondary beams:
Effective span = 20 ft.

Centres = 6 ft. 8 in.
Area supported by secondary beams
= 20X 6:67—6-67 x 3-33 == 111-11 sq. ft.
Dead load = 60x 111:11 = 6,667 1b.
OW. = §xix19x 144 = 2432 ,
9,099 ,, say 9,100,
Super load = 224 x 111-11 -= 25,000 lb.

Interior spans:
9,100X 20 12

Dead = -’ 7 91,000 in.-1b.
Positive B.M.
Super = %5@%@5—12 = 500,000 ,,
591,000
Effective width
Span/3 —= 6 ft. 8 in,
Centres of ribs — 6 ft. 8 in.

Rib+12xslab = 8 in.4+12x 4 in. -- 4 ft. 8 in.

Take least value = 4 ft. 8 in. = 56 in.
Take effective depth = 18 in.; then

n = 18X 0-425 = 7-65 in.

Max. compressive stress in slab = 750 1b./in.2
Min‘ ) ” IR) == 750 X ?»:‘(E ”
7-65
—= 358 1b./in.2
Moment of resistance of sections:
Rib 136-9x 8 x 182 = 355,000 in.-1b.
(56—8)4x 358 == 68,550% 16 = 1,095,000 ,,
Slab —
(56——8)4><7_59»2~3_5§ — 38,200%16:67 — 642,000 ,,

Total = 2,092,000 ,,
«. M.R. is greater than B.M.

590,667

A= _
18,000 < 0-858 X 18

= 2-15 in.2




DESIGN OF BEAMS AND GIRDERS

© A1 — 1 in 2
Use {z at 1-in. ¢ = 1-57 in.
1 at §-in. ¢ -= 0-60 ,,
2:17 ,,
Negative B.M . 0.067 5 20
Dead — ﬁ_ﬁz_lﬂ? — 181,330 in.-b.
Super (as Positive) = 500,000 ,,

681,330 ,,
M.R. of 8 in.x 18 in. beam = 8 X 1369 x 182 == 355,000

moment to be taken by compression steel = 326,330
n = 0425 % 18 = 7-65 in.
Permissible stress in compression steel
6:15

— ——— x750x17 = 10,300 1lb./in.2
765 X X , b./in

»”

L= 526330 905 in.2
10,300 % 1545

Z-in. ¢ = 0-60 in.2
Use {1 atsf“ ¢ 60 in
2at 1-in. ¢ = 157 ,,
217 ,,
681,330 _ 9.46 in.2

L7 18,000 X 1545
2 at 1-in. ¢ == 1:57 in.2
1at 1}-in. ¢ = 0-99

End shear = 17,000 Ib.
Shear taken by two 1-in. ¢ bars at 45°

Use ‘

1-57
= -—— % 18,000 == 20,000 lb.
2
6-5
Shear beyond end of bent-up bars = 17,000 x oF — 11,650 lb.
Shear taken by concrete == 8 X 0-858 X 18 X 75 = 9,250 ,,
Shear to be taken by stirrups = 2,400 ,,

Using f5-in. ¢ stirrups
Aw = 0-153 in.?
18,000 0-153 X 0-858 X 18
P= 2,400 '

p = 18in.

186
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Use 9-in. spacing at ends and 12-in. in middle.
End spans:

Dead — 9’067%20’(__1? — 181,340 in.-Ib.
Positive B.M. 95.000 5 20 5 19
Super — 200X X212 600,000
10
781,340
This is less than M.R. of beam.
4 81340 o0,
18,000 x 0-858 x 18
Use three 1}-in. ¢.
9,067x20x12 .
Negative B.M. Dead = T = 217,000 in.-1b.
Super (as Positive) = 600,000 ,,
817,000 ,
M.R. of 18 in. X 8 in. =: 355,000

”»

B.M. to be taken by compression steel == 462,000

A, = _ 462,000 gy in.2
10,300 X 15-45

817,000
18,000 x 1545
Use three 1}-in. ¢ - 2-98 in.2

bR

4, 293,

Shear as for interior spans.
Main beams:
Effective span = 20 ft.

Floor area supported -= 22-22 sq. ft.
Distributed dead load == 22-22x 60 -= 1,333 lb.
OW.19%x1x1-56%x144 == 4,100 ,,
Total distributed dead load = 5;433 "
Distributed super load = 22-22 x 224 = 5,000 ,,
Loads from secondary beams at third points:
Dead = 9,067 1b.
Super = 25,000 1b.
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Interior spans:

Positive B.M.
5 433 X 20x 12

dist. o4 = 54,330 in.-1b.
Dead load 9 069 % 20x12
X 20 X
L DURIXETX S 966,000,
conce 895 . 0
dist, 2:000X20X12 406600
12
Super load 95.0
cone. 25,000 ng)ﬁ2 1,333,333 ,,
45
Total —= 1,753,663 ,,
Effective width{sf’”/ 3 — 6 ft. 8 in.
12 x slab+-rib —= 4 ft.4-1 ft. = 5 ft.

Adopt 5 ft. as lesser value.

Take overall depth as 21 in. and allow for 1 layer of bars. Then effective
depth d = 19-25 in. and % == 0-425 X 19-25 = 8-18 in.
Stress at underside of slab

= :—}-g X 750 = 385 1b./in.2

Moment of resistance (compression)
Rib  136-9x 12X 19-25%
4(60—12)385 = 74,000 % 17-25
‘ { (750 385)
2

|
i

600,000 in.-1b.
1,280,000 ,,

il

4(60—12) = 35,000x 1792 = 625,000 ,,
2,505,000 ,,
which is greater than the B.M.
1,753,663 .
A —_ T — 585 -2
L7 18,000 X 0-858 X 19-25 m
Use four 13-in. ¢ == 5-93 in.2
Negative B.M.

5,433 x 20 12
12
Dead load 0,007 2 .
IX20X12° 460,000

4-75
5,000x20X12 _ 190000

12
Super load
25,000 20 12

35

= 108,660 in.-1b.

= 1,710,000 ,,

Total = 2,378,660

»
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Allowing for 9-in. haunch at columns, effective depth = 28-25 in.
M.R. = 136-9x 12X 28-25? = 1,310,000 in.-1b.,
moment to be taken by compression steel = 1,068,660 in.-1b.
n = 0425 X 28-25 = 12-00 in.
Stress in compression steel
= ——1;)25 X 17x 750 = 11,150 lb./in.2
) 1,068,660 o .o,
T 11 150 X 26-75

-in. ¢ == 1-97 in.2
Use {two 1§. in. ¢ == 1-97 in
two l-in. ¢ = 1-57 ,
3-56¢ ,
[ AT
18,000 x 24-25
1 _ 3.94in.
Use {four 1§ in. ¢ = 3:94 in
two 1l-in. ¢ = 1-57 |,

5-51 ,
dist. dead load — 2,716 lb.
Shear at column faces = {conc dead load = 9,067 ,,
conc. super load = zwg .
36,783
B.M. at column faces == 2,378,660.
2,378,660
3% 2825
— 36,783 — 28,000
— 8,783 Ib.
8,783
12 % 0-858 X 28- 25

Shear at end of haunch = ~9~z-5 36,783
-.)

Effective shear — 36,783 —

— 30 Ib./in.2

Shear stress =

= 28,200 1b.
. 1-57
Shear taken by two 1-in. ¢ bars bent = 75 % 18,000
= 20,000 1b.
Shear on concrete = 8,200 ,,

8.200
St o — 41 Ib./in.2
ress T 12%0-858X 1925 [in.
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End spans:

Positive B.M.
5,433 x20x 12
S
9,067 x20x% 12
P
5,000 ?(f‘l?.( 12 120000 ,,

25’0‘3"!;;‘,’% 2 175000
Total - 2,487,660
This is less than M.R. in compression.
do BT
18,000 x 0-858 < 19:25
four 1}-in. ¢ -= 594 in.2
two 1}-in. ¢ - 2:45 ,
839,

Dead load
— 544,000

Super load

Negative B.M.
5433 x20x 12

Dead load 9,067 ;(‘;0 X 12

PR = 622,000 ,,

5"","?2:(‘;’,‘,,’%'3 — 120,000

Super loadd ) o0 x 20 12 '

T g = 1840000,

Total = 2,,712,00—6 »

M.R. = 1,310,000 ,,

B.M. to be taken by compression steel = 1, ,160—,0—(76 "
1,400,000

_ = 473 1 _2
¢ = 11,150 x 2675 "
Use {tWO 13-in. ¢ = 2-97 in.?
two 1}-in. ¢ == 2:45 ,,
5:42
= 2,712,000 — 692in.2
18,000 x 0-858 X 28-25
{two 1}-in. ¢ = 2-45 in.?
four 1}-in. ¢ = 3-98 ,
6-43 ,,

Use

204 108,660 in.-1b.

22— 130,000 in.-lb.

189
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Shear as for interior spans.

For arrangement and details see Fig. 6.9. (All B.M. coefficients taken
from Institution of Structural Engineers Report on Reinforced Concrete
for Buildings and Structures, Part I (Loads).)

Composite Beams

When steel beams are used in conjunction with concrete slabs, it is
usual to encase the beams in concrete in order to protect them against
the effects of fire or weather. The weight of the concrete increases the
dead load to be carried by the beams, but, at the same time, the steel
is strengthened by the encasement and many authorities advocate
higher working stresses in such cases.

The strength of composite sections has been investigated by a number
of tests carried out in this country and in America, notably by Prof.
Batho, Dr. Lash, and Mr. Kirkham; cf. ‘The Properties of Composite
Beams, consisting of Steel Joists encased in Concrete, under Direct and
Sustained Loading’ (Journal Inst. C.E. 11, 19389, pp. 61-114). Other
data are to be found in ‘Composite Beams of Concrete and Structural
Steel’, R. A. Caughey (Proc. Towa Engineering Soc. 1929); ‘Tests of
Steel Floor Framing encased in Concrete’ (Proc. Western Society of
Engineers, June 1930); Bulletin 75, Iowa Engineering Experiment
Station (A. H. Fuller and R. A. Caughey), and in Arrol’s R.C. Hand-
book.

Tests have shown that the composite section of steel and concrete
behaves as a unit, provided that the bond stress between the steel and
concrete does not exceed the permissible stress. Professor Caughey in
his book Reinforced Concrete gives a value of 60 1b./in.2 for bond and
240 1b./in.2? for horizontal shear on the concrete. He also suggests that
for preliminary design purposes the safe working stress in steel joist
be increased by 334 per cent., and that the strength of the composite
section be checked according to the rules for R.C. Tee-beams. In
designing such sections the unknown factors are: (1) The effective width
of concrete to be taken. Mr. E. A. Scott (Arrol’s R.C. Handbook) gives
the rule that the least of following quantities should be used. (a) 8D+b;,,
where D = depth from top of concrete to underside of joist and
by = width of rib measured on concrete. (b) joist span/3, and (c)  x slab
span. (2) Depth of neutral axis. In calculating this the full section of
the steel joist should be used, although part of it may lie within the
compression zone.

Method of design (see Fig. 6.10). If b = effective width of slab (in.),
then

bn X’g = mA(y,—n),
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where A; = area of steel, y, = depth to steel C.Gi., m = modular ratio;

or bn®:—2mA,y,+2mA,n = 0.
s
e
Y4 |
¥ =
T\b —— IS
ol |7 i

Fia. 6.10

from which » is found. Having found », the equivalent moment of
inertia about N.A. can be calculated:

b 3
I = o LAy, —n)?

in steel units, where J, = moment of inertia of steel about its C.G.
Hence if M is applied moment

s = M—(-l;—lt—) == fibre stress in steel at underside of joist,
e
fo= %7—1 = fibre stress in concrete at top,
fo="= yI“ 1™ __ direct stress in steel,
e
fo= I:——yr“) = max. bending stress in steel.
Also 8 = Sd,(n po” Id o/2) _ == bond stress at top of joist,

where 8 == total shear and d, == concrete cover at top.

The joist in a composite beam is, in general, subject to axial and
flexural stresses and the maximum fibre stress is the sum of these.
The flexural strength of the joist is much greater than that of ordinary
reinforcement and may form a considerable proportion of the total
strength. The strength can be increased by the provision of anchorage
plates or angles on the top flange of the joist. Where composite sections
are subject to reverse B.M., the strength can be increased by the
addition of steel rods in the compression zone. The underside of the
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concrete should be not less than 1 in. below the N.A. and the cover to the
lower flange of the joist not less than 2 in. Some authorities recommend
that concrete at the sides of the ribs should be sloped as shown in Fig.
6.10 (@), and it is advisable to have the lower flange wrapped as shown.

| |
! N ire I
e

[
_,‘ width+4 1__

F1a. 6.10(a)

Example. 7in.x4in.Xx 16 in. B.S.B., spaced at 2 ft. centres. d, = 2
in.; ¢t = 18,000 1b./in.2; ¢ = 750 lb.[in.2; m = 15; A, = 4-75 in.?%;
I, = 39'5 in.4; y, = 55 in.

Take

b= 3x24 = 18in.

15475 15X 475\2 2x 15X 475X 55 .
N o= — O -t — = 372 in.
18 18 18

2y 3.793
I, = lﬁgleg 4 30-54-4-75(1-78)2
= 75 in.* approx.
5% 18,000 .
Muteel == %i!.a_:??)‘)(—) = 232,000 m.-lb.
) =4
-‘z”conc = 7—5%%5_)512) = 226,000
Q.
Myoiet, = 3;—2 % 18,000 = 203,000 ,,

Increase in moment = 23,000 in.-lb. = 11-3 per cent.

Max. shear § for s, = 60 1b./in.?
_ 15X 75X 60
T 2%272

For b = 24 in.; n = 3-46 in.; [, = 81-4 in.*; M = 265,000 in.-1b.

Increase in moment = 62,000 in.-lb. = 30-5 per cent.

The figure 30-5 per cent. is roughly in accordance with Prof. Caughey’s

rule for approximate design,

= 12,400 lb.
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Design of Timber Beams and Joists

The physical properties of timber have been dealt with in Chapter I
and in the Appendix. The moisture content has a considerable effect
on the strength of timber and the latter may vary accordingly. In this
country timber is divided into graded and non-graded, and the L.C.C.
Regulations give the following values for stresses in lb. per sq. in.:

Nature of stress Graded ; Non-graded
Extreme fibre stress in bending . 1,200 800
Shear stress parallel to grain . 100 90
Compression perpendicular to grain 325 165
Tonsion parallel to grain . . 1,200 800
Modulus of elasticity . . . 1,600,000 1,200,000

The maximum deflexion should not exceed span/360.

In calculating the strength of timber beams the span should be taken
as centre to centre of bearings. In timber floors the distribution of
concentrated loads can be taken as (for B.M.)

Thickness of floor Load on beam nearest load

2 in, Joist centres -~ 4-0
4 in. . <445
6 in. ’s =- 50

Where the joist spacing (in feet) exceeds the value of the coefficient
given above, then the floor between the joists can be treated as a simple
beam and reactions calculated accordingly. The above values to be
used in calculating bending moment. To calculate the shear on floor
joists due to concentrated load, when the distribution of moment at
mid-span is known, the distribution to adjacent beams, loaded at or
near the quarter-points, can be obtained from the following table:

Distribution in Terms of Proportion of Total Load

Load at mid-span Load at quarter-point
Proportion on Proportion on
Centre beam side beams Centre beam side beams

1-00 0 100 0
0-90 01 0-94 0-06
0-80 0-2 0-87 0-13
0-70 0-3 0-79 0-21
0-60 0-4 0-69 0-31
0-50 0-5 0-58 0-42
0-40 0-6 0-44 0-56
0-33 0-67 0-33 0-67

The design of timber beams and joists is governed by three factors:
(1) bending stress, (2) shear stress parallel to the grain, (3) deflexion.
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(A rough rule for the depth of timber floor joists is span/24+2 in.)
The safe B.M. on a timber joist of breadth b in. and depth d in. is
fZ = f xbd?/6 and f = 1,200 (graded) and 800 (non-graded). The shear
stress is a maximum at the N.A. and is $Xaverage shear stress
= §x 8/bd, where S is total shear. Therefore maximum shear
S = %sbd and s = 100 (graded) and 90 (non-graded). In many cases
shear will be found to be the limiting factor. Deflexion can be calcu-
lated according to the formulae given in Chapter IV,

For rectangular joists as before J = bd3/12

and the deflexion at mid-span = SWI? -
T 384T for distributed load,
== BW L3|32 Ebd?

and — WIL3/4Ebd?® for central load.

E = 1,600,000 lb.-in.2 (graded) and 1.200,000 lb./in.? (non-graded).
Now if deflexion is limited to span/360. the maximum span can be
calculated in each case in terms of d.

For graded timbers max. span = d x .
For non-graded timbers max. span — d x3j.

Similarly the minimum span can be calculated from the shear stress
in terms of d.

For graded timbers min. span .= d.
For non-graded timbers min. span — d x 0-731,

Figs. 6.11 and 6.12 give the total safe distributed loads in pounds for
joists up to 12 in. deep. The actual values are found by multiplying
the figures given per unit width by the width of the joist. Take as an
example a 12 in.X 6 in. (graded) timber joist on 16-ft. span. Then
using Fig. 6.11 safe load = 1,200 6 = 7,200 Ib. Note that for 12-in.
depth maximum span (for deflexion) is 17-8 ft. and minimum span
(for shear) = 12 ft. These values are read off by following the vertical
line marked 12 in. until it meets the sloping lines marked max. spans
and min. spans.

For 9 in. X 3 in. timber (non-graded) use Fig. 6.12. It is required to
find maximum and minimum spans, also the corresponding loads.
Move up line marked 9 in. vertically until it meets line of maximum
spans at 15 ft., then horizontally to intersect curve of 9 in. depth, then
by moving vertically downwards the value of 480 1b. is read on base
line. Therefore safe load = 480X 3 = 1,440 Ib. Minimum span = 6 ft.
8 in. and corresponding load = 1,080 X 3 = 3,240 Ib. Other values can
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be found in the same way. Circular sections can be taken as equivalent
to a square section of equal cross-sectional area.

In calculating flexural strength of beams notched at or near mid-span,
the net depth should be used. For beams notched at or near bearings,
the net depth should be used in calculating the shear.

Lateral Restraint for Timber Joists

Ratio depth[breadth Restraint required
Not exceeding 2 None.
3 At ends.
4 Joist to be held in line.
5 One edge to be held in line.
6 To be bridged at 6 times depth.
7 Both edges to be held in line.

For joists subject to bending plus compression parallel to the grain,
the ratio depth/breadth can be 5 if one edge is held in line. In general,
joists should be bridged at not more than 8 ft. centres or not more
than 8 ft. from bearing to nearest bridge. If these values are exceeded,
safe stresses should be reduced accordingly.
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CHAPTER VII
SIMPLE FRAMED STRUCTURES

Definition. A framed structure consists theoretically of a number of
straight bars, pin-jointed together at their ends. Such structures can
be either two-dimensional or three-dimensional.

The following assumptions are made unless otherwise stated:

(1) that the intersection of two or more members forms a perfectly
frictionless joint;

(2) that the external forces are applied at the joints only (where the
load is applied between two joints, it should be replaced by two
equivalent loads at the nearest joints and the local B.M. in the
member calculated separately);

(3) that the forces in the members are axial tension or compression;

(4) that the members are rigid and that they do not alter appreciably
in length under the applied loading.

Types of Framed Structures

1. Firm or completely triangulated frames which have just sufficient
members to prevent distortion and in which any alteration to the length
of a member will not induce a stress in any other member. To fulfil
this condition the following equation must apply:

n = 2N—3,
where n = number of bars,
N = . joints

(Fig. 7.1(a)). (This equation applies to two-dimensional frames.)
2. Deficient frames do not have sufficient members to prevent distor-
tion and to satisfy the above equation. They are prevented from

81 ¢
A 1
4 3\2
(@) (b) () (d)

Fic. 7.1

collapse by the stiffness of the joints and will be dealt with in the
chapters dealing with portals and rigid frames. (Fig. 7.1(b).)

3. Redundant frames have more members than are necessary for
complete triangulation or to satisfy the equation referred to. (Fig.
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7.1(c).) Any error in the length of a member or change in tempera-
ture may induce forces in the members. Such frames are treated in
Chapter VIII.

The analysis of the forces in completely triangulated frames can be
made by graphics or by calculation.

Graphic Statics

In order to specify a force completely, the following data must be
known: (1) magnitude and direction of force, (2) point of application.
For equilibrium there must be no translation and the resultant of the
reactions must be equal and opposite to that of the external forces or
loads. In drawing the force diagram (erroneously called the ‘stress’
diagram) it is necessary to know (1) all the data regarding all the forces
at any one point except one force about which nothing is known, or
(2) all the data regarding all the forces except for two forces, of which
either the magnitudes or the directions are unknown.

Bow’s notation is used in lettering the forces, and each external force
must have a letter and one only on each side of it (see Fig. 7.1 (d) and
examples). The usual practice is to go round the frame in a clockwise
direction when lettering the forces, and the internal spaces between
the members may be lettered or numbered. The rule for finding the
‘sense’ of the force in any member, i.e. whether it is in tension or
compression, is as follows: take the letters or numbers on each side
of the member in the space diagram in the same direction as that in
which the external forces were lettered, with respect to the joint at one
end. Then the direction of the force in the force diagram is from the
first to the second letter or number. If this is towards the joint used
for reference, the member is in compression; if this is from the joint,
the member is in tension. The usual convention (apart from the method
of tension coefficients) is for compression to be shown by a plus (+)
and tension to be shown by a minus (—). The magnitude of the forces
is found from the force diagram, i.e.

force = length of line on diagram X force scale adopted.

Examples of Firm Frames

1. (Fig. 7.2.) R.H. reaction is vertical since the R.H. end is on
rollers and therefore incapable of resisting horizontal forces. Set down
load line bedef to a scale of 1 in. to 4 tons. Draw cg, dg parallel to
CQ, D respectively to intersect in g. Draw gh, eh parallel to GH, EH
respectively to meet in %, and so on. The values of the forces in the
members and the reactions can be scaled from the force diagram.

2. (Fig. 7.3.) Truss subject to vertical dead and normal wind load.
R.H. reaction vertical. Analysis as for (1).
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3. (Fig. 7.4.) King-post truss subject to vertical dead and normal
wind load. In this case both ends are fixed and the reactions must be
parallel if the supports are equally rigid. The reactions can be found
by means of a ‘substituted frame’.

In some cases it is found that, in drawing the force diagram, a point
is reached where the number of unknown forces is more than the usual
two. In such cases the ‘substituted frame’ can be used. Since the
magnitudes of the reactions are independent of the internal framing,
they can be found by using this method, i.e. a ‘substituted frame’
carrying the same loads. Having found the reactions, the forces in
the members can be found without difficulty.

The reactions can also be found by using a polar diagram and link
polygon. Referring to Fig. 7.4, a suitable pole P can be taken and rays
Pb, Pc, Pd, Pf, Ph,and Pk drawn. Then, by drawing a line Pa parallel
to the closing line of the link polygon, the values of the reactions KA
and AB are obtained and will be found to agree with those obtained
by means of the substituted frame.

4. (Fig. 7.5.) French truss subject to dead load only. In drawing
the force diagram, it is found that at the joint C-D, there are three
members meeting at one point. The problem can be solved by substitut-
ing the single member shown dotted for the two members 4-5, 5-6, and
finding E, and afterwards working back to find the loads in the actual
members. Alternatively, it can be assumed that the equal loads B('
and DE set up equal forces in the diagonal members and parallel lines
are drawn in the force diagram.

Method of Moments or Sections (Ritter’s Method)

This method is commonly used for the analysis of framed structures
with parallel chords. In such cases it is as simple as the graphical
method. Where the chords are not parallel, e.g. roof trusses, it is more
laborious than the graphical method, but it may be used as a check
on the graphical method. In any framed structure, if a section line
X-X is drawn cutting several members, it is obvious that if the mem-
bers were actually severed, the structure would collapse. Therefore,
the moments of the forces in the members about any point must balance
the moments due to the external loads. For purposes of analysis, it is
convenient to choose a point through which one or more members (or
members produced) pass, so that the forces in these members have no
moment about that point. Some numerical examples will illustrate this
method.

Case 1 (Fig. 7.6). 200-ft. span Pratt truss girder, divided into eight
panels of 25 ft. and with dead load on top and bottom panels.
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Booms
Ly L,, moments about U:

Force = 10_%?@ = 848 tons,

and L, L, = L, L, since members are continuous.

" " " " " ! hd
[ < 0
Y Us vy u £ F G
. . .
3 s ; 7 5 3 , J
| 2 4 6 ' ’ ' o
6 4 2 '
/
Ly L Ly Ly Ls
° N “
of a |, N E o A A S FAR A 'Y
8 Panels @ 250" = 000

=

-

-~ 6 a8 o &
- = ~

-

L, Ly, moments about [/,

(105X 25 X 2)— (3 X 25)

Force = = 145 tons.
31
Ly L,, moments about U:
Force = MX_):({XE) = 181 tons.

31

Member U, U;: take moments about L, Since moment about
L, = moment about Uy, U U, = L, L.

Similarly U, Uy = Ly Ly,
Member U, U, (moments about L,):

Force = (10-5% 25X§)l—(3 X 25X 6) = 19-4 tons.

To find the force in the diagonals, first find the net force to one
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side of the section line and multiply by the secant of angle of inclina-
tion to the vertical (in this case sec§ = 1-285).

Member Shear (tons) Force (tons)
L, U, 10-5 13-6
U, Ly (10-5-3) 9-65
Uy,Ly (10-5—6) 578
Uy L, (10-5—9) 1-93

To find the forces in the verticals, use inclined section lines as shown,
then force = net load to left.

Force in hanger U] L, = load at panel point L, == 2 tons.

' ’s Uy, L, = 10-5—5 = 5-5 tons
v s ULy=105-—8 =25
), . U, Ly = load at U, - 1 ton.

Case 2. King-post truss in Fig. 7.4 (with dead load only for sake of
simplicity). (See Fig. 7.7.)
Span = 30 ft.; rise = tan-1}; 0 — 26° 34’;
sinf = 0-447; cosf = 0-894.
Use section line cutting rafter A1 and main tie E1.
For E1; moment of external force about mid-point of rafter
= 3 tons X 7-5 ft. = 22-5 ft.-tons.
Perpendicular distance = 375 ft.,
force == 6 tons.
To find the force in A1, take moments about the mid-point of the
main tie.
Moment of external force = 3 x 15 = 45 ft.-tons.
Perpendicular distance = 15sinf = 6-72 ft.,

force — _4-5. = 6-7 tons.

6-72
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Use second section line for members B2 and 12.
B2. Taking moments about mid-point of main tie.

3x15—-2x%x175
Force = — -7~ 270 °
672

12. Taking moments about L.H. support.

= 4-47 tons.

Force x 15s8inf = 2x17-5,
force = 2-23 tons.

To find the force in 2-3, use an inclined section line cutting B2, 2-3,
3-4 and the main tie, and calculate the moments about L.H. support
so that B2 and the main tie have no effect. Then

moment of external force = 2x7-5 = 15 ft.-tons.

= moment of 3-44+moment of 2-3
= —15+(force in 2-3)15
force in 2-3 = 2 tons.

(The signs of the forces must be taken into account.)

Method of Resolution of Forces

Applying the principles stated in Chapter II to the last example, and
considering the forces in the members acting at the mid-point of the
main tie, two of these (diagonals) are in compression and the post is in
tension. Now the forces acting at the point must balance, i.e. 3 H = 0
and > V = 0. Knowing the forces in the diagonals as 2-23 tons (acting
towards the point), it is obvious from symmetry that their horizontal
components must balance.

Vertical component == 2-23sin§ = 1 ton (acting towards the point).

Therefore force in post == 2 1 ton == 2 tons (acting away from the
point), i.e. post is in tension. The same result could be obtained by
considering the forces at the apex.

Method of Tension Coefficients

This method, first introduced into this country by Professor Sir R. V.
Southwell, has come into greater use in recent years and is particularly
useful in the analysis of space frames.

If AB is any bar in a space frame

L,,; = length of 4B,
t,p = tension coefficient of A B.
Tension in AB = L,zXt,p = Typ

(if ¢, is negative, A B is in compression).
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Referring to Fig. 7.8, if A is taken as the origin of three rectangular
axes Ax, Ay, Az, the coordinates of the ends of 4B are z,, y,, 2, and
X, Y, 2. Resolving the force T, its component in the direction of
the xz-axis is given by

T pcos BAx = T, x =24

= X (Xp—2y).
Similarly the other components are

Lip X (Yp—Y4); LipX (2—24)

J

e

F1c. 7.8
Considering the other end of the bar B, the components may be

written as . .
tap(ry—2p); (Y —Yp); tan(24—2p).

Now, if there are a number of bars AB, AC, AD,..., AN all meeting
at the point 4, the external forces acting at 4 can be written as 3 X,
>Y, and 3 Z,. By first principles, the algebraic sum of the forces
at any one point must be zero. Hence we can write:

bp(@p—24) +o(@e—2,)+
Hp(@p—2,)+ ey —x)+3 Xy = 0, (1)

LislUp—Y0) FlacWe—Ya)+
FtnUp—Yo)+ - FlnUn—Y) +2 Yy = 0, (2)

tip(2e—2) ttaclze—2)+

Htplzp—20)+ - Htanley—2)+ 2 Zy = 0, (3)
and all other joints can be treated in the same way. Note that the
quantities (zz—x,), (yg—1y,), (2g—24) are the projections of the length
AB on the three axes. Also, if all such equations are written out, it
will be found that for every expression such as t,4(xp—x,) there is

an equal and opposite expression t,g(x,—2g).
If, therefore, we add these equations for all joints we obtain:

SX+3Xp+>X +..+ 3 Xy=0
S, +3% +3Y +.+3Yy =0 }. (4)
224+3Zg+3Zc+..+ 22y =0

That is, for equilibrium the algebraic sum of the external forces in any
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direction must be zero. Also, multiplying equations (1) and (2) by ¢,
and z, respectively, we obtain:

tB(XpYa— T4 Ya) +tio@o Yy —24 Yg) Ftin(@p Yy — T4 yg)+ ..+
Flav@nYs—2 4ty 2 Xy = 0. (5)
LaB(Ta Yp— 24 Yu) Flac( g Yo— 24 Yu) FLan(Ta Yp—24 Y4)+ ...+

(@ Ynv—24Y)+2, 2 Yy = 0. (6)
Subtracting equation (6) from (5) we find
tip(@p Y1 — %4 Yp) Hlic(@e Yy — 1Y) Hp(@p Yy — 24 Yp) +-. +
Flan(ey Yy—2yn) +yy 2 Xy—2, 2 Y = 0,
and similar results can be obtained for other joints. Again it will be

found that for every expression such as t,,(x;y,—2,yg) there is an

equal and opposite expression. Hence by adding all such equations we
find

(Y4 2 X—x, 2 Y) +(yp 2 Xy—ay z ) +..=0
S22 S X))+ Y Zyg—2y 3 Xp)+.. =0 | (7)
@S S Z)+en Yy —ys S Zg)+.. — 0

These equations mean that the algebraic sum of the components of all
the forces about the three axes is zero in every case.

Now for a space frame there must be six support forces or reactions.
The equations (4) and (7) enable the reactions to be found. Having
found the reactions, the equations (1), (2), and (3) are used to find the
tension coefficients and hence the forces in each member. For a space
frame the value of

Tip = tipW{(xp—24)*+ Up— Y02+ (2 —24)%.
For a plane frame the last term disappears. One or more examples will
be worked to show the use of this method.
Example 1. Take king-post truss with vertical load only (Fig. 7.7),

as solved by Ritter’s method. Length of members AF, EF = 15 ft.;
FC = 7 ft. 6 in.; others 8:385 ft.

Joint | Axis Equation Member t L T
4 x T1-5tyg+ 15ty p = 0 AB —0-8 8-385 | —6-71
{ y 375ty +3 = 0 AF +0-4 15 +6-00
B { x —7'5tAB+ 7'55};0"]" 7‘5‘];{7 =0 BC '—O'{.—)33 , 8-385 — 447
Yy —3-75(tyg+tpp)+3-76tge—2 = 0 BF —0-267 —2.24
c { x —1-btge+7-5tcp = 0 CF +0-287 | 75 +2-00
Yy —3‘75(tBC+tCD)"“7'EtCF—2 =0 . .. o .o
F { x —15(typ—tpg)—T-b(tgp—tpp) = 0
y 3-1(typ+tpr+2top) =0

P
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Example 2. Same truss with positive wind loading. To calculate
the reactions, resolve the wind loads. Then total horizontal force
= H, = 1788 tons (X is free to move).

Ve =(} ><3-596)—L%§§ = 2-46 tons; V; = 3-58—2-46 = 1-12 tons.

Joint | Axis Equation Member t L T
4 { x 7-5t4p+15t4p+1-788 = 0 AB | —0-298 | 8:385 | —2-49
y 3-75t4p+1:117 = 0 AF | 4003 |15 +0-45
B { z 7-5(tgo+tgp—tag) = O BC | —0-298 | 8385
y 375(tgo—tpp—tap) = O BF . . ..
c { x T-5(tcp—tpe)—0-447 = 0 C¢D —0-239 | 8-385 | —2-00
Yy ‘*3‘75(’0D+t1;0+2[CF)—0'894 =0 CF +0'150 7-5 +ll2
IS { @ T5(tpg—tep—tpr) —0894 =0 | DE | —0-417 }8,38,) —3:50
y 3-75(¢cp—tpr—tpp)—1:788 = 0 DF —0-298 Tl —2-49
x —7'5(‘DE+2tEF)'—'O'447 =0 P . LRS
E { : e s = 0 } EF | 4017915 +262

Effects of Live Loads
The effects of live or rolling loads on framed structures (such as
bridges) can be analysed by the use of influence lines. In truss bridges

w
x )4

P

A 18
A

D

A 8
Fic. 7.9

the loads are usually carried on bearers or stringers and then transferred
by the cross girders to the chord points of the main girders (top chords
for deck spans and bottom chords for through spans). Therefore the
stringer or bearer acts as a simple beam spanning between the panel
points. If then a load W is at X on a span 4 B (Fig. 7.9) and AC, BD
are influence-line ordinates at A and B, then

reaction at B = &

l
W(l—x)
= "
W

shear = e

bRl ‘A

For any point P,

B.M. =1Vlﬁl’.

Both of these latter expressions are linear functions of x and therefore
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the influence lines for shear and B.M. are straight between 4 and B.
Hence if the value of the influence line ordinates at the panel points
are known, the influence line can be drawn by joining up these points.

Influence Lines for Trussed Girders with Parallel Chords
This category includes Warren, Pratt, and N-girders. As an example,
find the force in the bottom chord member AB of a Warren type

P

—

A 8 R
p\_ a x R
/vl/’
' F~. 8
AL L —T Bm
-~ Influence
SP ne
3n (In-3)
A 8
=== T |
P B
lz, B
A
/ Shear /
Influence
_ k- =T M
Fia. 7.10

through span (Fig. 7.10). The B.M. at P on the top chord is formed
by an influence line and hence the force in A B. For unit load placed
at X distant « from R.H. end, R, = #/l and R, = (I—2)/l,

== np’
where n = number of panels, p = panel length.

B—2 and Mp— " xP_3
np np

2 '
Now M =222
pon
and % __ 2 distance of A from L.H.

M, 3  distance of P from L.H."
Similarly it can be shown that
My distance of B from R.H.
M, ~ distance of P from R.H."

But My = %‘% and max. value of z = l—r?-

spi_spy TV
M, = 2P ;lp/ ).
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which is the same as the ordinate for the B.M. influence line for a simple
beam span. Therefore the B.M. influence line can be drawn by setting
up the ordinate at P and joining the ends of the base line and then
joining A’B’ to complete the influence line.

Similarly, to obtain the influence line for shear in panel 4 B, set off
the influence line as for a simple beam and join points L and M.

Position of loads for maximum B.M. For a single load, maximum
B.M. will occur when the load reaches B. For a uniformly distributed
load, maximum value of B.M. will occur when the whole span is covered
by the load.

Position of loads for maximum shear. For single loads, maximum
shear will occur with the load at 4 or B. For uniformly distributed

VAVAVAN

—Y
r Z 1'1 -/
R
3 R, R,
m panels « £
Fra. 7.11

loading the maximum shear will occur when the head of the load
reaches Z (as once the head of the load passes that point, shear changes
sign). The position of Z relative to 4 and B is dependent on the
number of panels. In the general case (Fig. 7.11), let
n = number of panel points to the right of panel in question
(counting from the right),
p = panel length,
m = total number of panels.
(np-+a)* ?
R, = 1 : = = .
L 2pm R, ) (x = BZ)
Shear in panel = B, — R, == S.
For maximum a8 _ 0.
dx
="
T om—1
B.M. Influence Lines for Lower Chord Panel Point
Let A be the point distant @ from L.H. support.
For unit load at « from R.H. support,

x axr
R, = -l~ and ‘Z‘IA — —l—
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and max. value of x = l—a.
. . . a(l—a)
influence line ordinate = ———.

For point loads, the maximum value of B.M. can be found as for
simple beam spans.

For uniformly distributed loads the B.M. is given by [(area of in-
fluence line) X intensity of load]. Maximum value occurs when the span
is fully loaded.

For deck spans the reverse procedure is adopted in calculating the
forces in the chord members.

For girders with vertical posts, such as the Pratt and N-types, the
influence lines for B.M. will be as for the panel points on the lower
chord of the Warren girder. The shear in the panels is obtained as for
the Warren girder.

Influence Lines for Trussed Girders with Non-parallel Chords

Consider the Warren girder shown in Fig. 7.12 and the same panel
as before, and a section line cutting the chords and diagonal. To find
the force in the upper chord, a B.M. influence line must be drawn
for point 4 on the lower chord. Then force = B.M--perpendicular
distance from 4.

To find the force in the lower chord A B, a B.M. influence line must
be drawn for P. These lines are drawn in the same manner as for the
Warren girder with parallel chords. To find the force in the diagonal,
produce the inclined top chord member P to meet the lower chord pro-
duced in X. Then force in diagonal = M, perpendicular distance X R.

To draw the influence line for M, consider a unit load placed at y
from R.H. support. Then

R, = % and M, = —-% x distance z (anti-clockwise moment).

For any value of y between R.H. support and B,

M, = —% x distance z (varying as y).
Max. value of y = BS and max. value of M, = —BTS X 2.
For any distance r, so that the load is between L.H. support and 4,
R, = l—? and M, = r(l +?-;)

which is a linear function of » and M, is a maximum when 7 is a maxi-
mum (equal to O4).

The ordinates of the B.M. influence line at 4 and B can be drawn
and the points joined up to complete the influence line.
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For maximum force in the diagonal, maximum B.M. occurs (for a
single load) when the load is at 4. For uniformly distributed load the
maximum B.M. at X is obviously produced when the head of the load
reaches the point where the influence line cuts the base line.

A J R

.
8.M. influence Line
for PQ

R
RN am infh
.7 ks
BM.Influence
Line for |AP

Fic. 7.12

As in the case of the Warren girder, the position of this point relative
to the panel points depends upon the number of panels and the position
of the panel point immediately behind the head of the load.

For maximum shear in any panel of a truss, the load in the panel
must be equal to the total load on the truss divided by the number
of panels (Fig. 7.13).

S, = shearat C = R 1,—(Wl+ Wp;FD) (p = panel length)
= W(l"xl’_il)--W;——W2 x%) (W = total live load)
(=5 =
dSe _ o W W,
For max. shear = 0= ._._l_..I_;,
..u_fz = _u_,. or 'Wé = .@ = E,
P l l n

where n equals number of panels.
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Some numerical examples will be worked to illustrate the applica-
tion of these principles.

Example 1. A single-track deck bridge is shown in Fig. 7.14. The
members are each 20 ft. long and the cross girders are connected to
the top chord panel points. Draw an influence line for the force in the

{
E D Iy
e 4r,£z-<4,,,_ Lo+ 1™
w, Wz W

Fic. 7.13

—
~-
~ -
Shesr lnfluersce Lie B

-

Fic. 7.14

diagonal AB. Hence find the maximum compression and tension in
A B due to the two 8-ton loads coupled together at 10-ft. centres.

The influence line is as shown. Multiplying the maximum ordinates
by the values of the loads,

Shear == (8 X 0-2+8x0-1) = 1-2 tons,
= H(BX0:64+8%05) = 44 ,,
) secl = 2/v3.
Tension = 12X 2/V3 = 1-39 tons.
Compression = 44X 2v3 = 5:08 ,,

Example 2. A bridge has main girders as shown in Fig. 7.15. The
width of each panel is 25 ft., and the cross-girders are connected to the
lower chord- panel points. Draw an influence line for the force in
vertical A B. Hence find the maximum tension and compression in the

member due to a uniformly distributed load of 2 tons per foot run per
girder, longer than the span.
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The influence line is as shown in Fig. 7.15. In order to find the force
produce the top chord to meet the lower chord produced in Z.
Then distance z = (30+—2§5)—50 = 4375 ft.
For unit load between R, and B, maximum distance y from
75

dinate = — — X 43-75-93-75 = —0-234.
ordinate 150)( 3 : 0-234

22! 30\
z - 8 \

2. . —
/J,s"r" € fonels of 250°- /500"

BM Influcnce
A

Fi¢. 7.15

For unit load between R, and 4, maximum distance r = 50 ft.

ordinate = 50(1 -}-%’?)—:—93'75 = +0-69.

Max. tension value == X 2X 069X 68-75 == 47-5 tons.
Max. compression value == 4 X2 x0-23 X 81:25 = 18-7

"

Example 3. A single-track bridge has two main girders as shown in
Fig. 7.16. The panels are each 25 ft. long and the cross girders are con-
nected to the lower chord panel points. Draw an influence line for the
force in member 4 B and hence find the maximum force in the member
due to the train of moving loads.

Draw an influence line for B.M. at P as before.
Maximum ordinate = 36-46.

To convert this into an influence line for force in 4 B, divide by the
distance from AB to P = 25X ¥3/2.
ordinate of influence line for force in AB

= 36:46--25v3/2 = 1-685.
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By trial and error, maximum force in AB occurs with one 5-ton load
over B and another 5-ton load at 8 ft. to the right of B.

Max. force = (5 x 1-44)+ (4 x 1-38) (11 x 1-42) -+ (5 X 1-29) — 34-8 tons.

-]
8,
RL‘ A 150'-0' Rn
4 "'IZ‘ i'a. T
P =
Influence
™ Lrnc'_ f:‘
o -+ Al
g 2 N
N
Fic. 7.16

Deflexions of Framed Structures

The deflexion of a framed structure at any point and in any direction
can be found either graphically or by calculation. The latter method
used is based on the principle of work or strain energy. The general law
of work for framed structures can be enunciated thus: ‘For any framed
structure at constant temperature acted upon by loads which are
gradually applied, the actual work produced during the deformation
of the structure is independent of the manner in which the loads are
applied and is always half as great as the work which would be pro-
duced by the same system of loads retaining their full values during
the whole process of deformation.’

If W == any external load or reaction,

8 -= displacement of the point of application of W in its line of
action,
F - force in any member due to load I,

Al == change in length of any members due to W,
then total external work = } > W3,

, internal ., =} FxAl
Il 1 F?
A2 X =5 2 aF
where 1 = length of member,

A — cross-sectional area,
E = Young’s modulus.
By the principle of conservation of energy,
1< F2

bIWs = o> 2= U.
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If a system of forces and loads acting at any joint of a framed
structure is in equilibrium, then the algebraic sum of their components
parallel to any axis of reference is zero, e.g. > X = 0.

If 6 be the angle made by any load or force (#') with the axis of
reference, then S Feosf = 0.

Now, if the joint in question is displaced by an amount A parallel to
the axis and if the joint is still in equilibrium

> (Fcosf)A = 0.

But A cos § = displacement A projected on the line of action
of the force in question,
= 8.
S Y P8 =0,
where F’ represents a force independent of 3. This relation is called
the law of virtual work.

If the forces are in equilibrium, the displacements 8 may be any
possible displacements and it can be stated that for any point, frame,
or body acted upon by loads F’ in an established state of equilibrium,
the total work done by those forces in moving through any given
possible displacements is always zero. This rule can be developed to
give other equations. Take for example a framed structure subject to
loads W3, W, Wi, etc.,..., which, in conjunction with temperature
effects, cause forces F, Fy, F),..., cte.

in the members of the frame, and form a system in equilibrium.

Now all joints are subject to small displacements A, A,, A,...., ete.,
which may be due to another system of loads (the values of A are
variable).

For any joint in the structure, the algebraic sum of the components
parallel to any axis is always zero.

Wicosf,+ > Ficosa, = 0,

where 6, = angle of inclination for W7,

ay = " " F.
Also Ay Wicos8,+A, > Ficosay = 0,
but Ajcosf; = §;

= displacement in the direction of Wj.
W1i8,+A,> Ficosa, = 0.
Similarly for all joints in the structure, and the summation of these
equations will give the virtual work equations for the structure.

The expression W38, will occur once only but the term A; F;cosa,
will occur twice, i.e. at each end of the member in question.
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Also
A, cos o, == displacement of the joint in the direction of F1;.
> Widi+ > FiAl =0,
where Al = change in length of the member.
But internal work is always opposite in sign to external work.
> Wid— > FiAl = 0.
S Wid, =Y FiAlL
If the supports are subject to movement, the equation becomes
> Wid+ > R'A, =Y F{Al (R, R, etc., are reactions),
where §, A,, and Al are caused by the loads W, W, W,.
If Wy, Wy, Wy, Fy, Fy, Fy,..., and R’ are identical with W;, W,
Wy,...; By, F,, F,..., and R respectively, then

12
SWst S RA, =3 FAl= LS Il

24 AR’
If there are no movements of the supports,
> Wé =73 FAL
If W =1, 1x8 =3 FxAl,

where F are the forces due to a unit loading. Unit loading may be
a single force, a force pair, or a moment of unity, in which case
8 = rotation measured by an arc.

The work done by unit loading may be denoted by U.

If then, it is required to find the relative displacement § of two
points of a framed structure when changes of length Al are given to
each member (neglecting the effects of temperature.and assuming the
supports immovable), assume that two unit forces are applied at the
points in question along the line joining the two points. The direction
of these forces should be such as to make U positive.

= Fx Fl

Then Ix8 =3 FAl = i
The forces F are produced by the actual loading.

For the case of deflexion at any point use a single load at the point
at which the deflexion is required.

KFi

VL

where K = force in any member due to unit load at point where
deflexion is to be found.

In cases where there are changes of temperature and movements of

the supports, [ FI
5=> F(AE—{-atl)—- S RA,,

Then _ S =
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where « == coefficient of linear expansion,
. t = change of temperature.
(Compare these formulae with the corresponding equation for beams
in bending, viz. i
§ = 2 Mx Mdx
El

Applying this principle to the case of the lattice girder shown in
Fig. 7.17 and assuming that the stresses in tension and compression
members are 8 and 6-8 tons/in.? respectively, find the deflexion of the

Us +80 U, +20 U,

3, O \ M
Q o 7, 0 N,
Q N o %
*
Lo 0 Ly -150 Ly
#]l g-0 60 60" 6o |
6 16 (4
Up +375 U +75 Uy
\ Y N 0
% S %
° N
Pt
L o L, =378 (2
os o5
o
Fia. 7.17

mid-point of the lower chord. The value of K can be taken as 13,000
tons/in.2 It is necessary to find the value of K, i.e. the load in the
member due to a unit load applied at the point in question. As the girder
and loading are symmetrical, calculate the deflexion for half the truss
and multiply by 2. The calculation is best done in tabular form, thus:

Force Stress L FL KFL
Member (tons) (tons[in.?) (in.) AE K AE
U,U, +18:0 6-8 72 +0-0376 +0-375 0-0141
U,U, +24-0 6-8 72 +0-0376 +0-75 0-0282
LyL, 0 0 .. .. .. ..
L, L, —180 80 72 —0-0443 —0-375 0-0166
U, L, +240 6-8 96 +0:0502 -] 405 0-0251
U, L, +8-0 6-8 96 +0-0502 +0-5 0-0251
U,L, 0 0 .. .. .. ..
U, L, —30 8 120 —0-0738 —0-625 0-0461
UL, —-10 8 120 —0-0738 —0-625 0-0461
KFL
i = 02013

Total deflexion = 2 x0-2013 = 0-4026 in.
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Graphical Treatment of Deflexions
This can be done by means of a Williot diagram. In order to under-
stand the principle, take the case of the simple frame shown in Fig.
7.18 carrying a load W. The member A B is in tension and extends by
the small amount BB;, while the member OB is in compression and
shortens by the small amount BB,. To find the deflected position,
swing arcs from points 4, C with radii 4 B, C'B, respectively to inter-
sect in B’. Since the extensions are small and the arcs are nearly

8,
8 R4

8. ot

hﬁf 1Zon,
JeflecFion,

Verdoo!/ 6 //«[/b re

Fia. 7.18

perpendicular to the members, the same result can be found by setting
off the extensions in the correct directions and drawing perpendiculars
from the ends to obtain the deflexion of B from its original position.
Now, applying this method to the lattice girder, we take L, as the
reference point and U, L, as the reference direction. The force in U, L,
is zero. The extensions are generally set off to an enlarged scale. Set
off from L, the shortening of U, U, horizontally to the right and the
lengthening of U] L, upwards to the left, parallel to the slope of the
respective member. Then by drawing perpendiculars the deflected
position of U] is found relative to L,. Also set off from L, the extension
of L, L, horizontally to the left and the extension of U, L, vertically
upwards and draw perpendiculars to find the new position of L;. Then
set off the extension of U, L, upwards to the left and the shortening of
U, U, horizontally to the right and draw perpendiculars to find the new
position of U,. Finally from that point set off the shortening of U, L,
vertically upwards and draw perpendicular to meet perpendicular from
the point L, (since there is no force in L, L,) to find the position of L.
The horizontal and vertical deflexions are as shown in Fig. 7.19. If in
drawing Williot diagrams there is any doubt as to the direction of any
line, it should be remembered, that, if the member is in tension, the
other end moves away from the end which has already been located
in the line of the member and vice versa for members in compression.
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(These movements are all relative to the reference line chosen at the
beginning.) In this case the total vertical deflexion obtained from the
Williot diagram is § = 0-4 in., which agrees with the calculated value
of 0-4026 in. The advantage of the graphical compared with the mathe-
matical method is that the former gives the deflexion of all joints in
both directions, whereas the latter gives
the deflexion at one joint in one direction
only. The Williot diagram should be
ve " carefully drawn to an enlarged scale in
order to obtain accurate results and the
mathematical method may be used as a

check on the accuracy of the drawing.
J In the case of unsymmetrically loaded
framed structures, the deflexion at any
joint can be calculated exactly as before.
od—1- In drawing the Williot diagram, how-
ever, it must be remembered that this
. gives the displacements relative to one
] e, point and on the assumption that one
sl 76! bar is fixed in direction, e.g. in previous
. example with reference to L,, and assum-
Fic. 7.19. Williot diagram.  ing that the direction of U, L, remained
Displacement > 10 unchanged. Now, if the bar in question
is subject to a change of direction, it is obvious that the actual displace-
ment of any joint is made up of a relative displacement, as obtained
from the Williot diagram, combined with a displacement due to a rota-
tion of the whole frame about an instantaneous centre of rotation.
Taking the same girder as dealt with in previous examples (p. 221) but
with an unsymmetrical load (Fig. 7.19(a)), the Williot diagram can be
drawn. Fig. 7.20 shows the diagram, the joint L, being taken as the
point of reference and U, L, being assumed as fixed in direction. The
displacement of L, with respect to L, is represented by L, L,, which is
almost completely vertical. It is obvious that the displacement of L,
with respect to L, cannot have a vertical component and therefore a
correction must be applied to obtain absolute displacements. This is

most conveniently done by means of a Mohr diagram.

If in Fig. 7.19(a), P is the instantaneous centre of rotation and 6 the
angle of rotation, then any joint will move in a direction at right angles
to the line joining the joint in question to the pole P and the amount
of movement will be distance (L) x 6.

If a pole O be taken and rays be drawn parallel to the displacements
of the joints and representing them to any convenient scale, then, by
joining the ends of these rays together the Mohr diagram will be
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obtained, and since the angles in each triangle are respectively equal
to those of the girder, the Mohr diagram is similar to the frame diagram
and the rotation of the Mohr diagram relative to the frame diagram
is 90°.

The Mohr diagram must be superimposed on the Williot diagram in
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Fia. 7.20. Williot-Mohr diagram. Displacement X 25

order to obtain absolute displacement, and in order to do so, two
points on the Mohr diagram must be located on the Williot diagram.
Now, the points L, must obviously coincide and also the point L, can
have no vertical displacement. The point L, is therefore chosen as
the instantaneous centre of rotation. From L, draw a vertical line to
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meet the horizontal line from L, in L;. Then draw with L, L, as base
the outline of the girder to form the Mohr diagram and letter it
accordingly Lj, Ly, etc. (shown chain dotted). The absolute displace-
ment of any point is found by joining that point on the Mohr diagram
to the corresponding point on the Williot diagram (dotted lines) and
can be resolved into a vertical and a horizontal displacement. For
example the vertical displacements of L,, L,, and L4 are found to be
0122 in., 0:156 in., and 0-067 in., and these values will be calculated
as a check on the accuracy of the drawing. It will be seen that the
amount of time involved in drawing the Williot—-Mohr diagram is much
less than that necessary for the calculation of all the displacements.
The calculation of deflexions at these points is as under:

Aat L, Aat L, Aat Ly

FL/AE o — s S

Mem-| Load (by proportion) KFL/AE KFLIAE KFLIAE
ber (tons) (in.) K (in.) K (in.) K (in.)

UyUy | 1135 3x00376 = +0:0282 | +0:375 | --0-0106 400159 | +0-1875 | 1 0-0053
UU, | +90|« & =x00376 = 400141 | 1075 | {0-0106 10-0058 | 4 0-375 | +0:0053
U, | +90 400141 | 4075 | +0:0108 | L0375 | +0-:0053 | +0-375 | | 0-0053
U | +45 { 0-0071 | +0-375 | + 0-0026 | -+ 0-1875 | -1 0-0013 | +0-5625 | +0-0039
LiL, | =135 | 1x -0:0443 = —00332 | ~ 0375 | +0:0124 | —~ 0:5625 | 1-0-0187 | - 0-1875 | +0-0062
LyLy | —45 —0-0111 | —0-375 | 4 0:0041 | -0-1875 | + 0-0021| --0-5625 | -4 0-0062
UoLy | +180 1x0:502 = +0-0376 | +0-5 {00188 | 075 100282 | 4025 | +00094
U,L, | —60 —0-0125 | +05 —0-25 { 0-0031 | 4025 —~0-0031
ULy | +60 +00125 | +05 " 1025 +0-0031 | ~0-25 —0-0031
ULy | 460 +00125 | 05 | +00062 | +025 +0:0031 | +0:75 1 0:0093
UgLy | —22:5| 1% —00738 = —0-0554 | —0:625 | 100346 | —0-9375 | i 0:0520 | —0-3125 | +0-0173
ULy | +75 + 00185 | —0-625 } +0:3125 | 40-0058 | —0-3125 | —0-0058
UL, | —75 ~0:0185 | —0-625 v —~0-3125 | +0-0038 |  0-3125 | —0-0058
ULy | —75 - 0-0185 | —0-625 | 4 00115 | —0-3125 | +0-0058 | —0-9375 | 1 0-0173
Totals| .. .. . 1 0-1220 . 1 0-1555 . 00677

The calculated values will be seen to agree very closely with those
obtained from the Williot-Mohr diagram. In practice, the actual
deflexion is generally found to be considerably less than the calculated
value. (For bolted members the deflexions may be modified owing to
the ‘slip’ of the bolts in the clearance holes.)

Secondary Stresses

In estimating deflexions of framed structures in the preceding pages,
the stiffnesses of the gussets have been neglected and the deflexions
have been assumed to be as shown in dotted lines in Fig. 7.21 (deflexions
have been purposely exaggerated). The members have been taken as
free to rotate about pin connexions whereas, in actual fact, they are
restrained by the rivets, bolts, or welds connecting them to the gussets
to take up shapes as indicated by the full lines. Therefore there must
be restraining moments at each end of the members and these cause
secondary bending stresses in addition to the primary stresses due to
the axial loads in the members. The computation of these bending
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stresses may be rather involved and for that reason many engineers
have decided to neglect them and allow for their effect by reducing
the permissible working stresses. The problem can be solved by an
application of the slope-deflexion method previously mentioned in
Chapter V, e.g. referring to Fig. 7.21,

My = 2112{’&(29_4 +6 —Esélilf),
1 1

M= %{”llﬂs(2oA+ec_3_Al:t€), etc.,
2 2

and the equations are then solved for 6, 05, 0, etc. Where there are
a large number of members the solution of the simultaneous slope-
deflexion equations becomes involved and may almost be impossible.

o 8, N
P

Sy

Fra. 7.21

The problem is most easily solved by an application of the Hardy
Cross method of moment distribution previously mentioned in Chapter
V.t This application has been dealt with by Prof. J. ¥. Baker.{ The
deflexions having been found by means of a Williot diagram, then if A
is the deflexion of one end of a member relative to the other, measured
at right angles to the axis, the end B.M. is given by 6 EIA[I?. Having
found the moments at the ends of all the members, these moments can
then be distributed until balance is obtained. The method is best
illustrated by an example and the symmetrically loaded girder already
dealt with (Fig. 7.17) can be taken. The horizontal and vertical displace-
ments are shown in Fig. 7.19 and the moments at the ends of the posts
are obtained as shown. For convenience in calculation I is assumed
1,000 in.* throughout. Note that for the diagonals the relative dis-
placement of the ends must be found by combining the horizontal and
vertical displacements and then resolving the resultant displacement
at right angles to the member, also that there is no moment in U, L,.

It will be seen, as all members, except U, L,, tend to rotate in clock-

t+ Trans. American Society Civil Engineers, 96, 1932, p. 108 ot seq.
1 ‘Modern Methods of Structural Design’, Journal Inst. C.E. 8, 1936-17, p. 297 et seq.

Q



226 - SIMPLE FRAMED STRUCTURES

Moments in Members

M ‘= 6 x 13,000 x 1,000A
Relative displacement A Length oment = length?®
Member (in.) (in.) (in tons)
u,U, 0-228 72 3,440
u,U, 0-122 72 1,840
L,L, 0-228 72 3,440
LL, 0-172 72 2,590
U,L, 0-120 96 1,015
U, L, 0-0819 96 692
U, L, 0-200 120 1,083
UL, 0-108 120 585

wise direction, ‘fixing’ moments required to constrain them in their
original directions at their ends must be anti-clockwise and therefore
that in order to balance the joint a clockwise moment equal to the
sum of the anti-clockwise fixing moments must be applied to the joint.
Now this balancing moment must be divided among the members in
proportion to their stiffnesses K == I/l (in this case in the inverse
ratio of their lengths). The calculation is best done in tabular form (see
P. 227). The relative stiffnesses of the members at each joint are written
down and immediately below them the fixing moments from the above
table. Then the distributed balancing moment is written in the next
line and process completed for each joint. Then the joints are ‘released’,
i.e. half the moment at one end of each member is carried over to the
other end of the same member. Due to the carry-over moments the
joints are again out of balance and balancing moments will then be
written down. These again must be carried over and balanced. The
process must be continued until the ‘out-of-balance’ moments are so
small as to be comparatively negligible and then the moments for each
member at each joint added up to find final moments, which should
balance at each joint for equilibrium. A study of the table should
show the method, which is purely arithmetical and should be self-
checking (see p. 227).
(Note. In practice critical B.M. will occur at the edge of a gusset.)

Influence Lines for Deflexion

When necessary these may be obtained from the Williot or Williot—
Mohr diagram by means of Clerk Maxwell’s theorem of reciprocal
deflexions. Referring to the method of virtual work dealt with on
Pp. 217-20, take the case of a framed structure loaded with W, W,, W,
ete., at the panel points and let the supports be immovable. Now,
let the loaded points be subject to displacements Aj, A3, Aj, ete., in
the lines of action of the loads. By the principle of virtual work
WA +W, Ay + Wy Ay+...+ 3 F; Al = 0 where F, etc., are forces in
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members due to loads W, ete. , and Al = change in length of member
due to another system of loads W3, Wg, W;, etc., or
, o HRFyl
SWA = SEA = Fxgl = > A
Similarly, by taking the same frame loaded with W3, W3, Wy, etc., and
displacing the loaded points A,, A,, A, ete., in direction of loading

: , F F;l
S WA, =3 F Al = ZFI AE: L

S W8, = 3 WA,
Now if A}, A;, A; are deflexions at panel points due to load system

Wi, W, Wi, ete., and if A, A,, A; are corresponding deﬂexmns for
W, W,, W, etc., we can write:

Wy Ay Wy Mgt W Do W ALy = WA+ Wi Ayt Wy Ayt k- Wi,
That is, if the supports are immovable, the product of one system of
loads and the deflexions due to another load system is equal to the
other load system multiplied by the deflexions due to the first system.
This is the general case of Clerk Maxwell’s law, which can be applied
to beams and elastic frames as well as to framed structures. The law is
often stated in the form that ‘the deflexion at point 4 when a load is
placed at point B = deflexion at B when the same load is placed at
A’. Let load be W and points 4 and B; then if deflexions for W at 4
be denoted by A, Ays, Ay, ete., with corresponding values Ay, Ap,,
Ag, for W at B, the equation becomes

WxAy, = WxA,,

since 4, B are the only points loaded and the other terms in the
equation become 0 X A =: 0, i.e.

ABA - AA B>

or deflexion at B due to load at A — deflexion at 4 due to load at B.

If we take the case of the lattice girder in Fig. 7.6, suppose that it is
required to draw an influence line for the deflexion at L,, the mid-point
of the lower chord. Since the deflexion at any other panel point due
to a load at the centre equals deflexion at the centre due to that load at
the panel point, let the load be unity and find the influence line thus:
set off the panel points on a horizontal line and project them vertically
downwards to meet the corresponding points on the Williot diagram
projected horizontally across. By joining the points of intersection a
deflexion polygon or influence line for deflexion at the centre of the
lower chord is obtained (Fig. 7.22). Note that the Williot diagram
must be drawn for displacements due to a unit load at the point for
which the influence line has to be drawn. These displacements can be
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A U, U, +0-81 10 300 0-00187
9 U, U, 4-1-21 15 300 0-00187
, U, U, +1-62 20 300 0-:00187
Force diagram LyL, | —040 10 300 | 0-00093
I, —0-40 10 300 0-00093
Ly L, —0-81 15 300 0-00125
Ly L, —1-21 20 300 0-00093
U,L, -4-0-5 5 372 0-00286
Usg Ly +0-5 5 372 0-00286
U, L, +0-64 5 478 0-00473
U, L, —0-64 5 478 0-00473
U, L, —0-64 b 478 0-00473
Us L, —0-64 5 478 0:00473

Fia. 7.22
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derived by proportion from the changes in length due to the forces

(p. 227) and the values of K, i.e. force due to unit load already tabu-
lated on page 224.

Space or Three-dimensional Frames

In dealing with two-dimensional frames it was shown that the relation
between joints and bars for a simply firm frame is given by

n— IN_3 (n == number of bars);

(¥ = number of joints).

If then it is required to build up a simply firm frame in space, three
bars meeting at three joints and forming a triangle
can be taken as a basis. Now, if a fourth joint be
taken and connected to the three joints by three bars,
the result is a simply firm frame in space (Fig. 7.23).
The number of joints is 4 and the number of bars 6.
The process of building up the frame in space can be

Fie. 7.23 continued, and for a firm frame the relation will always
be n = 3N —6, where n = number of bars, and N = number of joints.

If the number of bars is less than that given by the equation, the

frame will be deficient; if more, then certain of the bars will be redun-
dant and it will be necessary to treat the structure as a simply firm
frame with one or more additional redundant bars. It is obvious that
for stability a space frame must be supported at not less than three
points. Referring to the method of tension coefficients dealt with on
Pp- 207-9 we have three equations of the form

Dbplep—x)+ 2 X =0
at each joint and therefore we have 3N equations for N joints, which

are used in finding the forces in the members. Also we have three
equations of the form

X+ D Xp+ D Xe+ A2 Xy=0

and three equations of the form

Yo 2 Xy—24 2 Yi+yp D Xp—2p 2 Ypt.. = 0.

The total number of equations is therefore (3¥ +-6).
In order to find the forces in the members we can use the equations

2 tpEp—a)+ 2 X, =0
and the remaining six equations can be used to find the external forces.
Since there are six linear equations, there should be six unknown forces

to be determined and therefore it can be said that the essential number
of supporting forces for a space frame is 6. The forces may be distributed
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among the supports in several ways; for example, if the case of three
points of support is taken, then there may be three reactions X,, Y7,
and Z, at the first point, two forces ¥, and Z, at the second point,
and only one force Z, at the remaining point.

As an example of the use of tension coefficients, take the case of the
top cross-arms of a transmission tower carrying vertical loads (due to
the weight of the cables, etc.) at the ends of the cross-arm (Fig. 7.24).
The work is set out in tabular form and should be self-explanatory.
In this case it is obvious that the vertical force in each leg must be
a quarter of the total load.

As a second example the case of a simple tower, which is triangular
in plan and subject to loads in each direction, can be dealt with. The
equations are again set out in tabular form and as a check the values
of the supporting forces have been calculated and found to be equal
and opposite to the loads. It will be noticed that at each support there
are three reactions X, Y, and Z, but it must be remembered that any
two of these can be combined to form a single force in one plane.
The equations become rather cumbersome where there are more than
three or four members meeting at a joint, and care must be taken to
include all the factors in the equations and due attention paid to the
signs (Fig. 7.25).

(See Fig. 7.24)

Joint|Axis hquatmn Bar t L (ft.) | T (tons)
A | x btAR+6tA(v+ 8tyq =0 AB|—0-1667 | 6-3246 | —1-0541
Y 4ya—1=0 AG |+0-25 8:9443 | +2:2361
2 2ep-—~2t40 =0 AC|—-0- 1(;67 6-3246 | —1-0541
P Bt~ Oty - Sty — O FE|-01667 | 6:3246 | —1.0541
Y dpe--1 =10 Fa 4025 8:9443 | 4-2-2361
z ..l”—.!t”) =0 FD ~—0 1667 | 6:3246 | —1-0541
B | =z 4ll,b+4t1,,,+-lm. bt,“ =0 BE —0 187" 4 —0-75
y dtpa+Yg =0 BG | —0-125 4:8990 | —0-6124
4 "““BC—‘“BD'—MBG_ztBA == () BD 0 ..
C | = dtop+ 2o —6tp 4 =0 CD |—0-1875 4 —0-75
y Aoy + Yy =0 CG |—0125 | 48990 | —0-6124
z dtop+2toa+2tp 0 = 0 BC |+0-14583 4 +0-5833
D |z 6tpp—4po—2tng = 0 DF|—0-1667 | 6-3246 | —1-0541
y 4tpat+ Yy =0 DG |—0-125 4-8990 | —0-6124
E x 6tEF_2tEG—4tEB =0
y pe+ Yy =0 EQ@|—0-125 4-8990 | —0-6124
z —2gp—Adtgp—2yg = 0
G x StGF—'S’GA+2tGE+2t(}D-2t('B-"t(zC = 0
y | —4Cegttepttocttepticatiar) =0
z 2ap+2ep—2uo—2ep = 0
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(See Fig. 7.25)
Joint| Azis| Equation Bar t L (ft.) | T (tons)
A| = %40—2t45+1 =0 | AB|—0-0608 |3.0551 | —0-186
y —2(tyo+t4gttap)—1 =0 AC |—0-5608 | 3-0651 | —1-712
z +1-155(t4g+t40) —2:309t4p-+1 = 0 AD|+40-1217 | 3-6519 | +0-445
B |z dtpo+2p4—tgp+2pe+2tgp = 0 BC |+0-0162 4 +0-0648
Y 2tp4—5(tgg+tpg) = 0 BE |—0-0568 | 5-1316 | —0-2915
z —1:156tg 4 +0-577t g — BD|—0-0325 4 —0-130
—3464t5;)—4-619tp; = 0 | BG |4-0-0325 | 7-0953 | +0-230
C | = top—4top—Otop— 2t 4 —2toa—2tcp = 0 | CE |4 0-0889 | 7-0947 | +0-630
Y 2t04—b(tcpttopticg) =0 |CF |—0-4345 | 51316 | —2-225
z +0-57(tcp+tog) — 1155680 4—
] —4-619t,;—3-464t,p = 0 | CG |40-1214 | 7-0953 | {-0-861
D | =z 2(tpc—tpp) = 0 DC |—0-0325 4 —0-130
Y ZtDA_'f”DG =0 DB |—-0-0325 4 —0:130
z | 2:309tp 4+ 3-464(tpp+tpc)—1-155tp; = 0 | DG |+0-0487 | 5:1317 | 4-0-2445
E | =z 6tgpr+Stpct+tgp—tpn+3tye+3tgx = 0 | EF |—0-0593 6 —0-3558
Yy 5(tgp+itye)—5(tgy+-tgx) = 0 | EG |—0-0216 6 —0-1296
2z —0-577(tyg+tgc) —5:196t g+ EH|40-0159 | 5-1316 | +0-0819
+0-57Tt gy —6-351tyg = 0 | EK|+0-0162 | 8-6216 | +0-1493
F | x| —6tpg—tpc—3tpg—Ttpy+tps—3tgy = 0| FH|{4-0-0445 | 8-6216 | +0-3840
y 5tFC—5(tFJ+tFK+tFH) = 0| FJ |—0-5397 51316 | —2-765
z | +0-577(tpg+tpy —tre) —
—5'196tp;—6-351¢px = 0 | FK|40-06075| 8-6216 | 4-0-524
G| = +2go—2gp+3tgp—3tgy = 0 GF |—0-0810 6 | —0486
y btgp—>5tgr+56tge+5tep = 0 GK |+0-2026 | 51316 | +1-075
z 1-155tp —1-1556t g +4-619(tgo+top) +
L - +5'196(t0E+tGF) = O L -
H\| = Ttypt+igp+Xy =0
Yy 5(typ+itpg)+Yy =0
z —0-57(typ+tyy)+Zy = 0 D
J z —tJF+XJ =0
Yy Styp+ Yy =0
z — 087ty p+2Z5 =0
y 5(tgp+trkgting)+Yg =0
2 6'35](tKF+tKE)+1.155tKG+ZK =0

As a check on the tabular analysis the reactions at each support in
each direction can be calculated from the coefficients.

Xy = —(Ttgp+tygp) = —0-3274
Xy = typ = —0-5397
Xy = —3(tgr—txg) = —0-1337
. Total = —1-0008 (orror—0-0008)
Yy = —5(typ+tyg) = —0-3020
Yy = —btyp = 426985
Yy = —bltgp+ixgting) = —1-3977

Total = +0-9988 (error—0-0012)
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By moments:

Yy Y Yg
From unit load in Y.axis +0-3333 +0-3333 +0-3333
o e X-axis
Lil;_% —15 +15
8
From unit load in Z-axis
--1—2—— .. .. —1-7321
6-9284
. 12 + 0-8660 0)-8660
2% 69284 ] + -
- 0-3007 tons +2:6993 tons —1-3988 tons
Zy = 05Tty p+tyy) = +4-0-0348 tons
Zy = 0-577(ty5) = —03114 ,,
Zyg = —6:351(tgp+tgp)— 1156tk = —0-7227

Total = —0-9993 (error+0-0007)

In practice, it is quite usual in the commercial design of towers, etc.,
to assume that all vertical loads are carried by the legs and that the
horizontal loads are carried by the face or faces in whose plane they
occur. The separate forces due to these conditions are then added
algebraically to find the total force in each member. It is also quite
common practice to neglect redundants, e.g. if a panel is counter-
braced then it is assumed that the diagonals are capable of resisting
tensile forces only, and that one or the other diagonal becomes redun-
dant according to the direction of the horizontal load. It can be seen
from the foregoing analysis that such assumptions are justifiable.

EXERCISES

1. The frame shown in Fig. 7.A is loaded as shown. Find the forces in the
members and the reactions. [AB = BC = 0-27¢; CD —= 1-8T7; AE = FD
= 1-287C; CF = 57C; CE = 5-387; GH = 1-2TC; E@ -- 4-3T; QJ = 4-85T;
FH = 6-57¢; HK = 6-677C; FG = 64T; GH = 0-2TC; HJ = 2687; R} — +6-67
(vert.); Ry = —4-67 (vert.) and 27T (hor.).]

2. The frame shown in Fig. 7.B carries three loads. Find the deflexion under
the centre load if the area of all members is 4 sq. in. and E = 12,000 tons per
8q. in. [0-058 in.]

3. In the frame shown in Fig. 7.C, a rope passes over C and is fixed to B.
It carries a load of 5 tons at its free end. The areas are: AC = AD = DE = 3
8q.in.; BD = 4sq.in.; CE = 2sq.in. Find vertical deflexion at D. [0-074 in.]

4. Fig. 7.D shows a simply supported bridge girder consisting of 8 panels of
10 ft. each. Draw influence lines for forces in the members AD and AB. If
vertical DB is removed, compare new influence line for AC with previous in-
fluence line for AB. For a live load of 1 ton per ft. run longer than the span,
find the maximum compression in AD and compare the maximum forces in AB
and AC. [23-9 tons; 37-6 tons (tension); 34-2 tons (tension).]

5. For frame in Fig. 7.E find the vertical deflexion at B if I/A4 is 10 (inch units)
for all members and E = 12,000 tons per s8q. in. [0-0167 in.]

6. A swing bridge (Fig. 7.F) is supported at 4, B, and C. When the outer
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supports are removed and unit vertical loads are applied at A and C, the deflexion
curve for the bottom boom is as shown. Find the forces in the members X and
Y due to a loading of } ton per ft. run over the whole span, the loading being
applied at the panel points. Find also the reactions. [R, = R; = 5'5 tons;
Ry =19 tons; X = 6-93 tons; ¥ = 2:31 tons.]

7. Fig. 7.G represents the end of a Warren girder, each member being 200 in.
long and having a second moment of 1,000 in.4 All joints are rigid and joint 4
is prevented from rotating. The rotations of 4B, AC, and BC by Williot
diagram are respectively +30/E, +40/E, +10/E (4 = clockwise) and the
bending moments in members BD, CD, CE at joints B and C are Mg; = 300,
Mgp = 500, and Mg = 300 in. tons as shown. Find the moments in members
at A and sketch distorted shape for AC.

[MAB = —707; MAC == —1,072, MCA = 944 in. tons.]

8. Find the forces in members of the space frame of Fig. 7.H duc to the point
load of 10 tons at (. [FB = FE = F@ = 0; DG = 829 compr.; CG = 8:29
tens.; EG - 11-18 tens.; ED -- 182 compr.; AE — 228 tens.; BE — 84
compr. |
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CHAPTER VIII
COLUMNS AND STRUTS

A sHORT member subject to compressive stress will fail by direct
crushing or shear. A long slender member, however, is more liable to
fail by buckling. The deformation or deflexion of the member caused
by buckling will induce bending stresses in addition to the direct com-
pressive stress.

Bending stress which may be induced by buckling, by eccentricity
of loading, or by lateral loads, is in general, more important than direct
stress in column design, as will be seen in the text and worked
examples.

It is impossible to do more in this chapter than to deal with some
of the many column formulae which have been propounded since
Euler first enunciated his theory in 1759. Since this may be regarded
as the ‘classical’ theory, it may be worth expounding now, remembering
that this is a purely mathematical formula and that Euler made certain
assumptions, viz. (@) that direct stress due to compression can be
neglected, (b) that the load is perfectly concentric, (c) that the member
is perfectly straight initially and homogeneous.

Case 1. Considering now the strut free to rotate at both ends
although the ends are fixed in position (see Fig. 8.1(a)).

Then the moment at x from one end = — Wy = M,.
S M, = B1%Y
ince o= B
d*y Wy
Py B
where n? = ]%

The solution to this differential equation is given by

y = Asinnx-+ Bcosnx
and c_ly = nd cosnx—nBsinnx.
dx
&y _
dx

In this case, when = 0, then y = 0.

—n?d sinne—n?Bcosnx = —n?y.

B=0 and y = Asinna.
Also, when x = L, then also y = 0.
AsinnL = 0.
Since A cannot be zero, sinnL = 0.
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The values of nL satisfying this condition are 0, =, 2=, 3=, etc.
2

Taking nl = =m, then n?= %2—
W T Bl
Ej = I_4§ &I]d W = Iz .

W = critical load or load which when applied concentrically to an
initially straight column will cause failure by buckling.

£ ®
i}’ 2 7 _;‘,.ﬁ 3 /l
—0— )
" ] QK / /
‘u | II
.- |
(S N ~N
! / it
! \
g < v { ~ \| F ~
| \ ' |
| \ |
\ \
\ \
\\ ‘( y \\______
7“ -
=) () (c) ()
Fic. 8.1

Case 2. Ends fixed in position and direction (Fig. 8.1(b)).
Let fixing moment at each end be M.

MW 1%y
Then M, = M—Wy = EI%S.
d%y 1
dar = g1 W= M)
__w_ A
=B\ W
W M
_—E—j(y—a), where @ =75

== —n?(y—a), (» being as in Case 1).
Now let y—a = z; then

dz __dy
dr ~ dz’
d*z _ d%
da® ~ da?

= —n2.

2z = Asinnx-- Bcosnz,



COLUMNS AND STRUTS 239

or y—a = A sinnx+ Bcosnx.

dy = nA cosnx—nBsinnz.

dx
Whenx:O,d—y=0. s A=0.

dx
y—a = Bcosnz.
When z = 0, y = 0. s B= —a.
Yy—a = —a COSNx.

y = a(l—cosnx).
Also, when x = L, y = 0.
cosnL = 1.
Hence nL must be 0, 27, 47, etc.
Taking nl — 2m,
_ir_ W
L2 EI
4n K1
L2
Let ‘equivalent’ length of free-ended strut = L,.
mEl  4n*El
i =75
Ly == L/2,
‘equivalent’ length for fixed ends := } L.
Case 3. One end fixed in position and direction, the other end fixed
in position only (Fig. 8.1(c)).
Let fixed end moment = M, and horizontal reaction at other
end = R.

2

W = = 4 W for free ends.

Then

Then d2y
@y  W{( R
=gy

= —-nz{y——ﬁ—/(L—x)} (n being as in Case 1).

Let
(L—x);

S

z:y—

+

g&
S| =

dz
du
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A% dy

and — = =2 = —nl,
dx?  dax?

2 = A sinnx+ Bcosnx

R
= y—W(L—x).
RL
== 0 e 0. e _B T e———,
For z Y 7
dy R oy
Also a;;-}—w = nd cosnx—nBsinnx

andd—y = 0 when z = 0.
dx

R R
nA=—W— and A=W.
R R .
y-—W(L—x) — n——Wsmnx——W COS nx
R [sin nx
=W( P —Lcosnx).

But y = 0 when z = L.

0= -{Ti(sm nL_ Lcosn L)

n
or sinnl, = nLcosnL.
tannl = nL.

By solving graphically, nL = 4-493 radians,
ntL? = 2-04772,

o 2:0477°
N
_w
=57
2:047m2E [
W = gz

To find equivalent length
niEl  2-0477*KE1
L L2

1 L
L, = LJ(W) =133 0-7L approx.

Case 4. One end fixed in position and direction, the other free in both
position and direction (Fig. 8.1 (d)). By inspection it is obvious that the

.
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member can be reflected and that the equivalent length = 2 x actual
length, load = } x load for Case 1.

In dealing with Euler’s formula it must be remembered that it applies
only to ideal conditions unlikely to be found in practice, also that even
then its limits of application are not the same as those for actual
column design.

The value W is known as the ‘crippling’ load, generally taken as the
limiting load under which the column will buckle with progressive
deformation and collapse.

w1
12
W w*HEl  n*HAk?

AT ALlr T AL

Taking Case 1, then W =

and compressive stress =

= 7 E/[(L[k)2.
AmE
W=>"-—"".
(L/k)?

The value L/k is generally called the ‘slenderness ratio’, and k is taken
as the least radius of gyration.

The Eulerian theory aroused much controversy and many efforts
have been made to modify it, and it is possible to deal with only a
few of such formulae now. Perhaps the earliest formula in general use
was that of Gordon, who adapted the Kulerian formula to allow for the
effect of direct compression. Gordon’s formula can be written

fo4

= (L
where d — least diameter or breadth, ¢ = a constant.

Gordon’s formula was further modified by Professor J. W. M. Rankine
to read f.4
c

V= e

where f, == compressive stress for very short members and ¢, = a
constant.

This formula was obtained by interpolation between the formula for
a short strut, which will fail by direct compression, and that for a long,
slender strut which will behave according to the Eulerian theory, i.e.
fail by buckling.

Let W, = f, A = value for short strut, and

W= TEL_ mEA
L (L

— Eulerian value.
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Then according to Rankine,

1 1 1

W
since for very short struts 1/W, is negligible and W = W, and for very
long struts 1/W, is negligible in comparison with 1/W, and W = W,.
Also, since the change in W by increasing ! must be continuous, it is
reasonable to accept the value of W, viz.

W, W,
W=_-12
W+W,
_JoAxm*EA(k/L)®
T A+ EA(k/L)?
_ f.A __fA4
fe 14+ C(L[k)*’
gy A
S oo
where C = ey constant
and stress = —uj f e

4 T 1T 0Lk

Johnson’s Parabolic Formula

This is an empirical formula propounded by Prof. J. B. Johnson and
can be expressed thus:

f= fy—=b(Lik),
where f = permissible stress,
f, = stress at yield-point,

and b = a constant determined so as to make the para-
bola giving the value of f tangential to the
Eulerian curve.

Claxton Fidler. This formula, given by the author in his Bridge
Construction, can be expressed thus:

fE+fc—\/{(fE+fc)2_’2'4flgfc},

stress =
1-2
where fx = Eulerian stress,
and f, = ultimate strength in compression.

Fidler’s formula is based on the assumption that the value of E
varies from one side of the cross-section to the other, causing differential
contraction and hence a deflexion which increases with the bending
moments.

It has been pointed out that the Eulerian formula neglects two
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factors which are likely to arise in actual struts: (a) accidental eccen-
tricity of loading, and (b) original curvature of the strut (as well as
the direct compressive stress).

The formulae under heading (@) may be termed eccentricity’ formu-
lae and those under heading (b) as ‘curvature’ formulae. It should be
understood that ‘eccentricity’ means ‘equivalent’ eccentricity, i.e. in-
cluding effect of curvature, and similarly that ‘curvature’ means a
curvature representing the combined effect of curvature and eccen-
tricity.

The Moncrieff formula is typical of type (2) and embodies the result
of much research work by the late J. Mitchell Moncrieff described in
the Proceedings of the American Society of Civil Engineers (1901).
Moncrieff assumed that the column was originally straight, the loading
accidentally eccentric, the deflected form is parabolic, and the central
deflexion is given by

. We, L?
= SEI_(5WLH6)’
where e, = accidental eccentricity,
W = load on the column,
and 1 == least moment of inertia.
If the denominator becomes zero, then d becomes infinite, i.e. when

8EI = 5W12[6

48K 1
or W= =T
and K = ————9.6E

A~ (Ljk)*

which is approximately the Eulerian value,
w_ mE _ 98K
A Lk (Lfk)*
Since the total deflexion == ¢,4-d,

viz.

max. stress — ])‘1 +(“6‘ch—2d)n},

where n == distance to extreme fibre.
In order to find the L/k value corresponding to p, Moncrieff gives
the following formula:
48E(‘L°-— 1-% ”)
P

(&) —
¢ p(‘f%l—‘-—s)Jrﬁfc

which assumes that e, is known.
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In order to obtain a formula for columns intended to be loaded
centrally, Moncrieff plotted the results of hundreds of tests and came
to the conclusion that e, = 0-6k%/n. Also, in order that the working
stress should not exceed one-third of the Eulerian value, Moncrieff
took the value of f, as 10-7 tons/in.?

When Ljk = 0 and e, = 0-6k%/n,

fo=16p or p = 667 tons/in.?

and the formula can be written as

£ i)y )

Considering curvature formulae (type b) the Perry formula may be
taken as typical and can be written as:

p= &z&(’_{z_ﬂ!&: _ J {(Pliztl)z_f) — pE}

for stress p, on concave side of column and
1—n)p,— 1—n)pe—p,\?
e O (0

for stress p, on convex side of column, where p,, =: Eulerian value and
n = measure of the original curvature.

Prof. A. Robertson in his paper The Strength of Struts (Inst. C.E.,
Selected Paper No. 28) took the value of p, as the yield-point in com-
pression of the material. The lower limit of the tests could be taken
as represented by n = 0:003//k. Prof. Robertson also took the yield-
stress as 18 tons/in.2 and E as 13,000 tons/in.? (for mild steel).

, 9-81 X 13000
Th = AT
o PE = T ke
. . 2
ma p= IO (L0,
0-997p,—18 0-997p,—18)\2
or p= ——%’Lﬁ-«—_A/{(———%E———) + ISpE}.

In the First Report of the Steel Structures Research Committee
Prof. Robertson makes the statement that, for struts having a definite
eccentricity e,, he is of opinion that the term C, from the curvature
formula should be added to e, and that for working loads these can
be represented by a factor of 2:36. C, can be taken as the measure
of the curvature (see Fig. 8.2).
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The formula used in B.S.S. No. 449 for the use of structural steel in
building is of this type, viz.:}

ap =Bt O ) r

: : fie
where p = working stress for mild steel, /
A == 236, P
p, — yield stress = 18 tons/in.2, ‘\
pgr — Eulerian stress, ‘\
n = 0-003l/k. L‘

It must be realized that for many columns in practice the 10,4, 8.2
stress due to direct loading, including the effects of additional
eccentricity and curvature, may not be the determining factor in the
design. In fact many columns in buildings may carry B.M.s so large
in comparison to the direct load that it is a moot point whether they
should not be designed as vertical beams. To allow for the effect of
bending the B.S.S. formula is modified thus. Suppose that the value p
is determined from the formula given above and let f, = W|A, where
W = direct load and A = area. Then if f, < p, the safe working stress
can be increased thus:

S S\ —0-002 L
lvz_fcr75(l—p 10002

for mild steel (corresponding values are given for high-tensile steel).

The formula given in B.S.S. 449 is widely adopted, as it is incorporated
by reference in the Ministry of Health Model Building By-laws and
the L.C.C. By-laws. It is worthy of note that where columns are sub-
ject to the effects of wind pressure, the allowable stresses may be further
increased. B.S.S. 449 applies to all building work.

B.S.S. No. 153 applies to girder bridges. Parts 3, 4, and 5 give the
following values for struts in truss and lattice girders:

9(1—0-0038l/k) for riveted connexions
and 9(1—0-00541/k) for pin connexions,

1 Draft revision of B.S.S. 449 gives this amended formula (1) for values of I/k greater

than 80: +(n+1) +(n+ pg)?
D g >
p = PO (g

and (2) for values of I/k less than 80; then p can be found by joining that point on the
curve for I/k to the value when I/k = 0 [when p = 0-59p, (9-00 tons/in.2)].

The Draft Code of Practice for the structural use of steel in buildings gives: (1) for
values of l/k greater than 80, formula as in B.S.S. 449/1937, but with constant A
reduced from 2:36 to 2; (2) for values less than 80, by interpolation between that for
l/k = 80 and that for I/t = 0, i.e. 0-63p, (9-00 tons/in.?).
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values being in tons/in.? for axial stress, with an upper limit of 7-65
tons/in.? for mild steel.

The values for high-tensile steel are generally taken as 50 per cent.
higher than the above values. The ‘153’ formulae are of the straight-
line or Pencoyd type. Though this is of an empirical nature, the value
of the working stress shows a fairly close agreement with those derived
from mathematical or experimental studies.

Another formula used in this country is that of the Institution of
Structural Engineers given in the Report of Steelwork for Buildings.
Although the formula itself is not stated explicitly in the report, the
values for L/k ratios of 10 to 240 are given for mild and high-tensile
steels, and correspond with those given in B.S.S. 449. The effect of
combined stress, viz. compression and bending, is also dealt with by
allowing a working stress

fl = f;t+ﬁz(l—j;z/fp)’
where  f, = W/A (corresponding to f, in B.S.S. 449),

, = permissible compressive stress for laterally unsupported

beams, viz.
750 o 900
=1 0+f/7c (M.S)) or 0 5+E/70 (H.T.8.)

and f, = strut value for ratio L/k given in table (as B.S.S. 449).

A further proviso is that, for a distance not exceeding one-fifth of
the actual length above or below a restrained end, the working stress
may be increased to 44-1f; (mild steel) or 643 f; (high-tensile steel).
Values are also given for eccentricity of loads on columns. It should
be understood that in using this formula or the B.S.S. 449 formula
(a) that the stress W/A4 must be less than the ‘primary’ allowable stress
fi1, and (b) that the algebraic sum of stresses W/A and that due to
bending (in cases where there is bending about both axes, then the
bending stress must be calculated about both axes and added alge-
braically) must be less than the maximum stress, f,, allowable under the
formulae when W/A is less than the ‘primary’ working stress, f;.

Other column formulae are in use in the U.S.A. and other countries,
but space precludes any attempt to deal with them. It must be under-
stood that the foregoing remarks apply to steel and that columns of
other materials will be dealt with later in this chapter. In Fig. 8.3
working stresses according to various formulae have been plotted for
the purpose of comparison. The student should bear in mind the fact
that while some of the formulae may be complicated, the values of the
working stresses for varying L/k values can be obtained by reference
to tables or graphs.
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Design of Steel Columns

It must be recognized that all column design must be by trial and
error; in other words, a section must be selected and the safe stress
found from the column formula and the actual stress calculated to
ensure that it does not exceed the safe stress. Only experience can
minimize the time to select a satisfactory section. In cases where there
is no B.M. to allow for, the ideal strut would be one where the M.I.
of the cross-section is the same about both axes, e.g. a hollow circle.
In steelwork tables, joists whose flange widths are broad relative to
the overall depths are suitable, and of course a suitable section can be
made by adding flange plates to a single or double joist or channel.

Effective length of columns. One point which must be decided in
column design is the effective length or length of the equivalent column
with pin ends. It is best to treat the problem in two parts: () single-
story columns; (b) continuous columns such as are found in multi-
story buildings.

Under heading (a) it will be remembered that according to Euler the
equivalent length ratios are (1) both ends fixed, 0-5; (2) one end fixed
and the other end hinged, 0-7; (3) one end fixed and the other end free,
2+:0. Claxton Fidler was more conservative and took the equivalent
length for both ends fixed as 0-6. Present-day practice is inclined to



248 COLUMNS AND STRUTS

be still more conservative in assessing equivalent lengths, probably on
account of the difficulty in estimating the degree of fixity at the ends.
The following values are given in the report of the Institution of

Structural Engineers and may be taken as representative of good
practice:

Ratio equivalent length
End conditions actual length

Both ends fixed . . . . . . . 0-7
One end fixed

o o) 080
Both ends hinged . 1-00
One end fixed, other end fixed wholly or partly in

direction but not in position . 1-0 to 1-5%
One end fixed, other end not held in posmon smd

either partly or not restrained, not held in direction 1-5 to 2:0%

1 Given as 1'5 in dra.ft revision of B.S.S. 449.
t Given as 2:0 in draft revision of B.S.S. 449.

The equivalent length under heading (b) is more open to controversy.
The table below gives values which may be accepted:

. equmalent length
. Ratio Sl
End conditions actual len Jth
Both ends fixed . . 075
Both ends fixed in poslhon one or both ends im-
perfectly fixed in direction . 0-75 to 1-00
One end fixed in poqmon and (hrectlon, othex end
imperfectly fixed in position and direction . . 1-00 to 2-00

The amount of restraint depends on the relative stiffnesses of the
column and the beams connected thereto, also the connexions between
the column and other members.

For columns forming part of a frame with rigid joints the following
values have been suggested for equivalent lengths:

stiffness of beam

Ratio - Finess of eolumon leneth 0-25 0-50 1-00 15
stiffness of column lengt and over
ffective length
Ratio - Shective long 090 075 0-65 060

actual column léﬁ_éiﬁ

Flat ends. Moncrieff dealt with flat-ended columns in his investiga-
tions already referred to. These behave as columns fixed at the ends
until the compressive stress at one point on the end becomes zero, when
the end rotates and the column tends to behave as a hinged-end column
with initial curvature. Flat-ended columns may be taken as fixed for
the values less than 120 and as partially fixed for L/k more than 120.

Equivalent concentric loads. Where a load or a system of loads has a
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definite eccentricity about one or both axes, it can be reduced to an
equivalent concentric load thus:
Let load == W eccentricity about X-X axis = e,

Then B.M. about X-X axis == Wxe,,.

Stress due to bending = W xey,xd/ 2.
T

Direct load to produce same stress -= Wﬁ“}ﬁflgxil
LI

W Wxe,,Xd/ /d
kL

Similarly for Y-Y axis: Load = Wx _C’;,gx b/2 ’

total or equivalent concentric load

d  e,xb
W1 G )
( * %2, RO 2Ic2

yu
which is a function of the column and its properties.

Example 1. A column is 10 ft. high and hinged at each end. It carries
a load of 40 tons which has eccentricities of 6 in. and 1} in. about the
X-X and Y-Y axes respectively. Design a section to comply with
B.S.S. No. 449.

Use section composed of two channels 8 in.x 3} in. x 20-21 1b. and
two plates 10 in.x § in. Properties: Area = 24-38 in.%; k== 2:62 in.;
Z,, ="165in? Z == 33-4 in?;

120

Lk = ~— = 46; p = 6-44 tons/in.?
b= 5% p=2 /
Direct stress (f,) ):(?58 1-64 tons/in.? j}% = 0-255.
. .y 240 . . . .
Bending stress X-X = — =314 F, = 6-70 > 661
76-5 S
(and section is adequate).
60
Y—-Y = = 1-80 )
”» b 33.4

Total = 6-58 tons/in.2 > 6-44.
Check by finding equivalent concentric load:
W, = 40(14+6% 0-3241-5x 0-73) = 160-6 tons

and total stress — 160-6

—— = 6-61 tons/in.? as before.
24-38
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Example 2. A column has an effective length of 12 ft. and carries
loads as shown in Fig. 8.4. Assume loads are applied on brackets so
that there is an eccentricity from the face of flanges or of web. Design
suitable section to B.S.S. 449.

Try 12 in. X 8 in. X 65 lb. B.S.H.B.

3"
ﬁ:f_z’ Properties: Area = 19-12 in.2; k,, = 1-85 in.;
o +_-L2: Z,, = 813 in3; Z,, =163 in3;
— it —=
Lk = l44 78; p = 499 tons/in.?
- 1-85
== 45"
33
___l 25'L Direct stress (f.) = 1_511 , = 173 tons/in.?
Fic. 8.4 folp = 0-35.
Bending moment X-X axis = (16 —3)(642)— 12X 2 = 80 in.-tons.
” » Y-Y ,, =16x2:54(12—-2)2:22 = 622,
80

Bending stress X—X = — .. = 098 F, == 5'8 tons/in.2 < 6-53
813 °
(not strong enough).

. 62-2

'Y} " Y—Y B = 3-82
16-3

f, =173

Total = 6:53 = 4-99.
Try 8 in. X 5 in. X 28 1b. B.S.B. with two 10 in.x } in. flange plates.

Properties: Area = 18-28 in.2; k,, = 2:26 in_;
Z,, — 60-1in3; Z,, — 187 in3;
Lk = Z’L;: = 64; p == 571 tonsfin.?
fe= —33— = 1-80 tonsfin.2 [ /p = 0-32.
18-28
Bending moment X-X axis = (16—3)6-5—12x2 == 60-5 in.-tons.
Y-Y ,, = 16x2:5+(12—2)2-18 = 61-8
Bending stress X-X = 23? = 1-01 tons/in.?
62-2

Y-Y = = = 332
18-7

”»
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F, = 6-25 > 6-12, so section is suitable.
Equivalent concentric load == 33 tons
+60-5%030 = 18
+62:2%x 098 = 61
112

Stress = 1598 = 6-12 tons/in.® as above.

Columns with Lateral Loads

Case 1. Hinged ends, concentric load P, lateral load w per unit
length. (Fig. 8.5.)

w_per /f

P ] P
“_lé i\\\‘-~ - ry"_,".gL
2 -o—' 2

| L
_".% | P

- - - _ _ -_.x‘-— 3—' — —_—
w i ¥
2 (a)

Fias. 8.5 and 8.5(«)

Taking the origin at O on the centre line, then the B.M. at = from

origin ) \
M, = _;(11 —a* )“ Py -= Kl dfl)

-

Perry’s approximation to above is

2
K 3;% = _?"_:i cos zn—Py
d Y wL‘z x
,,,,,,, Py D 08!
or + m cos LT

The solution to this differential equation is

_ wL?cosmx|L

8 P—P’
where P, = Eulerian value.
When x = 0 at centre line,
gy =
YR sam=py
yL2
and M, = _wk % R L = max. value,
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from which the bending stress can be calculated. It will be noticed

that MW 2 1
A . )

and the first part of the expression represents the B.M. due to lateral

load only.

Case 2. Lateral point load W at centre (Fig. 8.5 (a)).

Then = py Y (——-x)
&y W(L
o YT )

Hence when x == 0,

Yo = w E{ tan EA/-E }——H
Yo=5pJ\p 2 J\EL)| T3P
14 El L P
— M, = H)A/(?))tan{é ,/EI}

Putting £; A/ % ==
and using the expansion
1767
tanf — 0+ + —|— 3154- -

HL 204 1766
M, =" AL AT
Mo = (S T )
and since
rp_wp
*EIT 4P

e

WL, =P ot [P\t 17a% [P\
—My =214 o T T 5] 4
T 4 { +12R,+120(R> +20,160(R) t }

.Since the expression in brackets is a geometric progression approxi-

mately, WL o
=

0? = (P, == Eulerian value),

WL 1 . .
= T(l—(T/Pp))’ since P[P, is less than 1,
_WL( 1 since P, = 10E1
T T4 \I—(PLY10EL)) T T TLE

The expression WL/4 is, of course, the B.M. due to point load W
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only. Therefore it is apparent that to find the B.M. it is necessary to
multiply the B.M. due to lateral load only by

S S

1—(PL¥10KT)  1—(P[P)

(note that this also holds good for Case 1).

Columns acted on by End Moments

In building frames, column lengths are often restrained at the ends
by moments due to the beams framing into them. The usual effect
of such moments is to reduce the bending due to initial curvature.

Fic. 8.6

If then we take the moments at 4, B as M,, My respectively and
direct load as P, and if the assumption is made that the equation to
the original shape is given by

esin
y =1

(as in B.S.S. 449 formula),

where € =- 0003 Lk/a,
a = distance {0 extreme fibre.

Then the equation to the curve under M,, My becomes:

llI, L—x sina(L—x)] +J_l{,_, x  sinoax’ en®  sinmx
Pl L sinal P L sinaL| (n*—a2l?) L

where « == ,/(P[EI), and the moment at any point x is given by

sina(L—2)] sin o Pen?  sinmx
= — M|~
M, = =2, [ sina L A B[sin aL] (m*—a2Ll?) L
When My=M,=M,
then moment at centre (= M,)
Pen?
== —Msec——}——— — 2z
. 2PLL
_ —-MsecaL—|—0 00372 PLEk

2 a(nt—alLl?)’
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The equivalent length I for a hinged end strut restrained by end
moments M is given by:
ol | 0-00372PLk  0-003n2Plk
T =) = alm e
If M is greater than M,, then to find equivalent length

= (%ﬁjzg{f (k == least radius of gyration).

z

(for M, greater than M).

e

|

0

¢

Tx

Ms Ma ;i

1 7. N .
T8 P’IL_A

Frcs. 8.7 and 8.7 (a)

Howard Circle Diagrams

The moment at any point on a column subject to end moments as
well as to direct load can be found graphically by means of a modifica-
tion to the method proposed by H. B. Howard for the analysis of
beams subject to end moments and direct compression. Referring to
Fig. 8.7, from the point O on centre line of the beam set off two rays
OP = M, and OQ = My, making an angle § with OY so that

L /P
0=%/Z’7‘

Describe a circle to pass through O, P, and Q. To find M, draw a line
OR at angle of ¢ = x/(P/EI) to centre line, then the moment is
represented by OR to the scale used for OP, O¢). The maximum B.M.
is represented by the diameter 0Z.

Certain modifications must be introduced in order to allow for the
effect of initial curvature. In the formula on page 253 the equation to
the centre line of the column has been assumed to be

Lk . nx
= 0' — —_—
Y 003 a 8in T

Fg

representing the initial curvature. The ordinates representing this are
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approximately equal to those for an initially straight beam under a
constant B.M. of M = 0-024KEI/aL and the error involved in substi-
tuting the latter is very small. Therefore the diagram should be modi-
fied thus: when the rays OP, OQ are set off from O make OP = M+ M,
and 0Q = M+ My, then the circle drawn through O, P, and @ repre-
sents the moment at any point on a column acted on by end moments
M~+M;:M+Mp. In order to find M, set off OR at ¢ = x,/(P/EI)
then M, —= OR—M and maximum B.M.= OZ—M (where OZ is
diameter). The points P’, @', R’, Z’ lie on the line giving the values
of the net moments (see Fig. 8.7 (a)).

Design of Columns for Single-story Workshop Buildings

The design of such columns depends on the method of attachment
at the cap and base. For spans up to about 30 ft. columns can be taken
as fixed at the base and pinned at the cap. The B.M. due to the lateral
wind load = sum of moments about the base. The column and also
the foundation must be designed to resist this moment.

For larger spans, it may be economical to insert a knee-brace con-
necting the column to a panel point on the main tie of the truss. In
this case the B.M. is often assumed to be zero at the cap and at the
base and a maximum at the foot of the knee-brace.

Another type of column is that designed to span as a vertical beam
between the base and a wind girder at main-tie level or in the plane
of the rafter. The moment is zero at the base and the cap. The
reactions at the column caps are carried by the wind girder to the end
frames. This design can be economical for high buildings provided that
the building is not too long.

It should be understood that the foregoing remarks apply only to
simple columns and single spans. For more complicated columns and
for more than one span, effective heights are given in the Code of

Practice for the Use of Structural Steel in Buildings and the draft
revision of B.S.S. 449.

Reinforced Concrete Columns

In dealing with R.C. columns it must be remembered that this is a
composite or non-homogeneous material. Under direct compression the
stress in the steel will be m times the stress in the surrounding con-
crete. In addition to the main longitudinal reinforcement R.C. columns
must have secondary reinforcement to prevent buckling of the main
bars and bursting of the concrete outwards. Columns without this are
‘rodded’ columns. Secondary reinforcement is in tension and may be

(1) in the form of hoops;

(2) ’ ' a spiral or helix;

(3) . ’ (1) and (2) combined.
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The effective area of a R.C. column can be taken as either (1) gross
area DX D or (2) net area d X d (see Fig. 8.8).
The minimum concrete cover to steel should be 1 in. (measured from
outside of transverse reinforcement). The effective area of a R.C.
column is equal to concrete area-(m—1) area of

V ' main steel or
/ NE A = DXD+(m—1)4,.
% Then A4 X f, = safe load on short column, where

f. = allowable compressive stress.

“{;——J Main or longitudinal reinforcement should be
between 0-8 per cent. and 8 per cent. of gross
column area. Where helical transverse steel is used,
the main steel must be in the form of not less than 6 bars, but with
hoops 4 bars can be used.

Transverse reinforcement. The volume of this should not be less than
0-4 per cent. of the gross volume of the column. For hoops the spacing
should be 6 to 12 in. For spirals the pitch should be not more than
3 in. or } X core diameter (whichever is the lesser) and not less than
1 in. or 3 X diameter of main steel (whichever is the greater).

Fi1c. 8.8

Allowable Stress in Concrete in Direct Compression (f,)

Mix Stress lb.[in.?
1:1:2 780
1:1:2:2:4 740
1:1:5:3 680
1:2:4 600

The allowable compressive stress in the main steel can be taken at
13,500 1b./in.2 and the same value can be taken for tension in the spiral
reinforcement. These values are for mild steel only; where steel with
a yield-point of not less than 44,000 lb./in.? is used, these values can
be increased to 15,000 1b./in.2

Loads in Columns (modern practice)
(a) Short columns. (1) With hoops:
Safe load = f, X gross area of concrete+13,5004..
(2) With spiral reinforcement:
Safe load = f, X core area of concrete+ 13,5004,
+2x 13,500 X equivalent area of spiral reinforcement

(equivalent area of spiral reinforcement = volume of spiral divided by
length of column).

The reason why spirally reinforced columns can carry a higher load
is that tests have shown conclusively that these can develop a higher
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stress in the concrete core before failure takes place. These figures
apply only to columns under direct load.

(b) Long columns. The safe load in this case is obtained by multi-
plying the safe load for a short column by a coefficient depending on
effective length
least lateral dimension
is the least overall dimension, and in (2) the least core dimension is

taken. These coefficients are given:

the ratio

. In case (1) the least lateral dimension

Effective length of column

Least lateral dimension

Cocfficient
15 1-0
18 0-9
21 0-8
24 0-7
27 0-6
30 0-5
33 0-4
36 0-3
39 0-2
42 01
45 0

L.C.C. By-laws are based on L/k values thus:
Lk Coefficient
50 1-0
60 0-9
70 0-8
80 0-7
90 0-6
100 0-5
110 0-4
120 0-3

k = J(I]A), where I == equivalent moment of inertia found by taking
equivalent area of steel = (m—1)4,.

These coefficients allow for the effects of buckling. The effective length
can be defined as the equivalent length of a hinged end column. This

depends, of course, on the conditions of the ends. The following values
are typical:
Single-story Columns and Top Lengths

Lffective length Effective length
Iind conditions Actual length Connexions Actual length
Both ends fixed 0-75 4- and 3-way 0-875
v ,» hinged 1-00 2-way 1-0
One end fixed 9. P
. hinged} 1-00-2-00 1-way 1-25
Columns of Two or More Stories
Both ends fixed 0-75 4- and 3-way 0-75
ss s hinged 0-756-1-00 2-way 0-875
One end fixed 1-00-2:00 1-way 1-00
s sy IrEE
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Example 1. A concrete column 10 in. square (1:2:4 mix)is 15 ft. high
and fixed at both ends. The main steel is four 1-in. diameter bars with
binders. Find safe load.

Safe load for short column = (600X 10 x 10)-+ (13,500 x 3-14)
— 102,500 Ib.
Actual length == 180 in.
Effective length == 135 ,

Effective length 135
Least lateral dimension ~ 10

Coefficient == 1-0,
safe load — 102,500 Ib.
Check by L.C.C.:
A == 1004314 14 = 143-96 in.2

4
I, = ITOZ + (m—1)A, X distance?

104 ‘
= J5+ 14X 314X (5-1-75)2

= 1,298,
- ) o
135 .
= 45 Joefti = 1-0.
/K = 3.0 5. Coefticient = 1

Example 2. A concrete column 12 in. diameter is 20 ft. high and
hinged at each end. The mix is 1:1-5:3, and the main steel consists of
six 14-in. diameter bars. Find what transverse reinforcement is required
and the safe Joad.

Pitch of spiral reinforcement == 2 in.
Min. diameter of spiral reinforcement == % in.
Volume of spiral reinforcement per foot length
= 6X7X10X0:076 = 14-3 in.3
Equivalent area = 1-19 in.2

Core area = 2{12—2x 13} = 64 in.2

A, = 6-00 in.?
safe load for short column
= (64X 680)+(6 X 13,500)+ (2 X 1-19 X 13,500)
= 156,600 1b.
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Effective length = 240 in.

Least lateral dimension = 2%0 = 26-67.

Coefficient = 0-6,
safe load == 0:6 X 156,600 == 93,960 1b.

Check by L.C.C.:

AE=§><122+14><6

== 113-6484 == 197-6 in.2;

I, = —D4+4>< 14 % 1(4 5 X “;)
— 1,870 in 4
= [(1870) g7,
197-6
240 . .
Lk = Z=— = 178. Coeflicient = 0-72,
3.07

This gives safe load = 0-72 x 156,600 == 112,752 lb.

R.C. Columns subject to Bending Moments

In practice R.C. columns are often subject to B.M. as well as direct
compression, e.g. columns in building frames are acted on by bending
moment due to unequal spans, loadings, wind pressure, etc. As this
matter will be dealt with more fully in another chapter, the following
coefficients can be used for preliminary design:

259

.qulr' bay fmme* Multiple-bay frames
Moment at base
Ky Ky

of upper { } { . X (M,—M,)

column length Ky+ K] +%KB Ky+K,, +711 [\1;1+712KB2 ! 2
Moment at top K X

of lower : b . } { S L - }x(M —M,)

<olumn longth "U+1‘L+5KB Ky+Kp, +ny 1‘1;1+n21x1, 2

where

KU == stlﬁness of upper column length,

K; == . lower column length,
Ky = . beam,

KB; - ” IR} B]y

KI;’g = » D Bz’

= 1 for beam continuous beyond next support,

=} ” non-continuous beyond next support,

suffixes for beams 1, 2, etc.
M,, M, =: fixed-end moments for beams B,, B,.
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Where the moment M is known as well as the direct load W, then
it is usual to calculate the equivalent eccentricity e = M/W. The
design of R.C. columns subject to B.M. is somewhat complicated, as
the position of the neutral axis varies and the formulae are somewhat
unwieldy. In order to solve the equations Morsch’s curves can be
used (see Fig. 8.9). The graph shows the ratio », knowing the value
of M/Nd (d = overall depth) and the percentage of reinforcement on
the tension side. The method of calculation is apparent from the figure.t

The graphs given in the Institution of Structural Engineers’ Report
on Formulae for the Computation of Stresses in R.C. (1946) can also
be used.

In cases where the eccentricity is less than half of the column width
and the ratio of steel : concrete x m is more than 0-3, the following
formula for fibre stress can be used:

Stress = w % - 14K [Ag — gross area,
L  Ag T 14 (m—1)(4s/4g) As = area of steel],

K = 6e/d for rectangular columns,
= 8e/d for round columns.

In some specifications it is permissible to use somewhat higher stresses
in cases of combined bending and axial load thus:

allowable stress = f, x 11+i(§—( )
where (’ = f./allowable stress in bending,

= file.

The critical stresses are the maximum fibre stress in concrete and, for
large eccentricities, the stress in the steel on the tension.

Composite columns. Where steel columns are cased with concrete
properly reinforced with main and spiral reinforcement, the safe load
can be taken as

P =f,A,+tx A, ,+area of steel col. X working stress,
A, = net concrete area.

Timber Struts

The strength of timber has been already dealt with in Chapter I and
various American formulae have been shown for comparative purposes
in Fig. 1.8. It must be remembered that timber is an organic material
and that the strength of any particular timber must depend on the
tree from which it is obtained and the method and effect of seasoning.

1 For preliminary calculation divide moment by inertia and multiply by half depth
to find bending stress.
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TO FIND ‘»’ IN DOUBLY AND SYMMETRICALLY
1 REINFORCED RECTANGULAR SECTIONS
| £ N d = overall depth. 4, = tensile steel.
& 1 b - ,»  width, 4. = comp. .,
s ;/hﬂ _.l Ap = equivalent area.
< < N = load. e — eccentricity.
A .
V7 H Py = o100, 7 = depth of C.G. (Case 1).
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i [ [ Pe - o100, n= .,  N.A.(Caso 2).
N ! 1
:f < N I. = 2nd moment about C.G. (Case 1).
DY . M = Nxe.
To find ‘middle third’ points
CAsE 2

a = T ]Apxd-j, B=1IJ]Agg.
Cast 1. N acting inside ‘middle third’ points (¢ <X «a, B)

N e N e
Cmax 7T A;(l | B). Cmin :/il,:(l— )

49
Case 2. N acting outside ‘middle third’ points (e > «, B) then, neglecting tension in
concrete,

N
Cmax =

(bn/24+mAn)n—d.) —(md,n)(d - d,—n)
Ne

n, is found from graph by finding intersection of e/d line with curve showing p, for section.
In usual case when 4, = 4, and d, = d,

N
= G (mA (20— d)*
. 'mc@“

t- " (d-d, =),

. me
[ (comp. in stoel) = —"(n—d,
n

¢)-
Fia. 8.9
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For British practice the following values can be taken: (1) for slender-
ness ratios of not more than 10, strength in compression parallel to the
grain 1,000 lb./in.2 (graded timber) and 800 1b./in.? (non-graded timber);
(2) for other slenderness ratios:

Non-graded Graded

Slenderness ratio (1b.[in.2) (Ib./in.2)
10-12 785 985
12-14 775 970
14-16 755 950
16-18 725 920
18-20 690 875
20-22 635 820
22-24 565 745
24-26 485 650
26-28 420 565
28-30 365 485
30-32 320 430
32-34 285 380
34-36 255 340
36-38 225 300
38-40 205 275

The curve of stress-slenderness is rather similar to B.S.S. 449 curve.
The slenderness ratio .- effective 16,11@3-,—— should not exceed 40.
least lateral dimension
Fig. 8.10 shows comparative values for British and American formulae

for timber struts.

American practice with regard to timber columns is rather different
as they are divided into three categories: (1) Short columns, viz. I/d
equal to 11 or less. In this case, P/4 = allowable stress in compression
parallel to the grain (c). (2) Intermediate columns, i.e. I/d greater than
11 but less than the value given by

L) v )

the safe stress is reduced tot

P 1/ 1\* . .

—— = 1— - = = .

i c[ 3( e d) ] ( least dimension)
(3) Long columns, !/d equal to or greater than 0-702,/(E/c), then safe
stress = 0-329E/(l/d)2. This is the Eulerian value, and l/d = 0-702,/(E/c)
is the point where the Eulerian curve is tangential to the curve for
intermediate columns.

The limiting value of I/d for simple solid columns is 50, and for com-

ponent parts of spaced columns I//d should not exceed 80 and the

t K is l/d ratio at a point on the curve where intermediate (parabolic) and long
(Eulerian) column formulae are tangent (stress = 4c at this point)

K = 0-702v(E/c).
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distance between spacing blocks should not exceed 40d. The design
of spaced columns is governed by factors such as position and spacing
of connectors, etc.

For round columns the load should be calculated on the basis of
a square column of the same area (Fig. 8.10).

The treatment of timber columns subject to lateral, eccentric, and
bracket loads is somewhat more complicated and cannot be dealt with
here, and the reader is referred to the bibliography at the end of the
chapter for more detailed information.

Columns subject to Bracket Loads

Case 1. Ends hinged; inertia uniform throughout (Fig. 8.11).
Obviously R = 4+ M/n and B.M. diagram is as shown. If depth of
bracket is taken as d, then B.M. diagram is modified as shown in
Fig. 8.11 (a).

Max. BM. = Mn or M(1—n) or

(1—n—d/2n)

or M(n—d|2n)

Case 2. Ends fixed; inertia uniform throughout (Fig. 8.12). Let end-
fixing moments be M,, M, and R -- reaction.

If M, = B.M. at « from 4, H — overall height, & = height of point
of a,pphca,tlon of M, M, — M,—Re+M

(the last term applies when x > k). Since ends are fixed,

for bracket.

"Md ”M d
x x dx
5= 0 and f B = 0.

no Retlt

fde = [M‘x—_—;] +[Mx]jf
: 0

0

= M,

2
BRI sty = o.

H
2 3
fod:czMAfIz— I—Z—I!——}—‘)( H2—h%) =0

R th(H hy = SMn(1—n)

T

where n=—.
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11@=R711_M(1—n)

= 3Mn(l—n)—M(1—mn)
) = — M(1—4n+3n?),
and My = M—6Mn(l—n)—M(1—n)(1—3n)
= — M (2n—3n?2).

-—

]

e
+
—————
(a)
Fiu. 8.11
20m - 29m M
| N3 e
M - ° X $

2| g

% A

WM

# .
M -
z

- \ M
~ * 2

Mip " N

f
- t- ‘M‘
.29M ‘290 -F Ay o
n= 789 =2/ neo5 4
Fic. 8.12

For B.M. just below bracket
M, = —M(1—n)(1—3n)— 6 Mn3(1—n)
= — M(143n2—4n-+6n%—6n3).
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When M, = g (max. value)

n = 0-5, 0-7887, or 0-2113.
When n =05, M = M4, My, = M/4.
n = 07887, M, == 0-280M; DM, = 0-289M.
n = 02113, M, = 0-280M; My = 0-280M.

M
B 4
* -423M | s77m
M
| 2

z (1-nlH

™
L/

I
wix !

3 M
: N N
A -265M 326M 4 ne.423
n =605 n=.258 nzi
Fia. 8.13
In the limit whenn =1, R = M/H
and M, == 0, My — M.
aM
1‘ =5 1 = —
for n = §, SH
and ]ll_, = 0.
M
M, = 5

Case 3. One end hinged; one end fixed. Inertia constant through-
out (Fig. 8.13).

M, = 0.
M, == RH—M,
I
Also f M, x de ==
0
and M, = Re—M

(second term applies when x > H—h).

)iA I
fozdx— j Mzdx = 0.
0 H—h
RH* M

- — G [H (B2 —2HR)] = 0
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RH3 Mh .
or = [ZHh h?| = -5 —[2H—h].
__3Mn
= 9
i )
M _.“._@[z_n] M
B.M. at bracket = R(H--h)—M
= §Jz”n|2—n][1~n]M
For max. value = _g)
3Mn

M
22 a1 —
5 12—n|[1-n] = 5
6n-+ 302 —Mm2—1 =0
n = 0605 or 0-258,

-28]
For n — 0-605, R = }“I—fM; M, — 0:265M.

675
) no o2ss, R—" ,‘iI‘JiM .M, - 0-326M.
3M
For J‘L! — 0,
n == 0-423.

n= 1, R M, = 0-5M.

0-423 M,

Then R = M/H and moments at bracket = {
' 0-577TM.

Case 4. Fixed at base; hinged at top; inertia constant; eccentric load
at nh from base (Fig. 8.13).

This is really the same as Case 3, with n = 1, i.e. M, = M/2 and
R = 3M/2H.

Other cases, such as eccentric load at top and bracket load in addi-
tion, can be solved by analysing the effect of each load separately as
Cases 1, 2, or 3 and adding moments and reactions algebraically.

When the column is of varying moment of inertia, as often occurs
in practice, the analysis is more difficult. In numerical cases distribution
methods can be used with advantage. To illustrate the use of this
method take a simple case, viz. a column 30 ft. high with fixed ends
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and a moment due to bracket loading of 60 ft.-tons at two-thirds of
height. Referring to Case (2), n = 0-667,

M, = 60(3) = 20 in.-tons.

My = 0.
In order to apply the distribution method apply a propping force
‘ P L at the poipt of ajpplication of the
Py L20 St +%0 s moment (]ijlg. 8.14). As Kyo/Kio=2,
1 < " the balancing moments are M,; = 20
ft.-tons, Myo = 40 ft.-tons, and carry-
Qs L ing over in the usual way M, = 1.0
@)+ io leso um) ft.-tons and My, = 20 ft.-tons. It is
e RS tie 45 24214 mnow necessary to find the magnitude
ores) (spo 23 mlzees ol of the imaginary propping force.
Fic. 8.14 The propping force due to moments
_ 4042010420 15— 45,
10 20

If a force is applied at C' the moments at ends of AC, BC, are propor-
tional to I/I? values. Distributing these moments values are as Fig.
8.14 and corresponding force is

60+40 , 40+30

- = 13-5.
10 20
Therefore ratio for reducing moments is
45 1
1356 3
and final moments are
AC CcA » CBWV??V - i;()
Non-sway . +10 +20 +40 +20
Sway . . +10 +13-33 —13:33 —20
Final . . +20 +33-33 +26-67 0
and R = 2-667 tons.

Check: Moment below bracket = 60 xx = 33-33.

Case 5. Column hinged at top and fixed at base with roof and bracket
loads; varying moment of inertia (see Fig. 8.15).

Let moment of inertia of lower length = I,

iR 2 upper tR] == 12:

H
d — =
an T m,
also L1, _ K.
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. aM
From B to C: M, = — Rz, dR’”—_—_—-x
M2 dzx dU dU dM
d U= | 2= =
an 2EI dR = ) di, dR de
= Rax? dx.
H—h
av Ra? _Rx""” R _H
dR EL [3E12]0 3EI, i
0
&
B 8 D
=
11 .e,
C ___,w F 7 c G
v

A
Fic. 8.15
From C to A:
am,
M, = M~—Rx. AR =
¢
au _ﬂlxw szd
dR A
Hoh
__MH w1\ | RE?(me—1
C2EL\ m? 3EL\ m3 )
. dU
Since d_ﬁ =0,
3(m?*—1)
R=4q i Am? K)
m?—3—2K
and AQHM,\(-:ZW.)N.
Graphical construction for above case. Set off
BD =M
and AR — y ™ 372K

X Ymr 1K)
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Join ED and draw BF parallel to ED, and complete B.M. diagram
by drawing FC@ horizontally.
Example. Let
H =30ft. and H-—h==10 ft.

Also I, = 2,000 in.4, I, = 1,000 in 4
and M = 70 ft.-tons.
Then m == 3, K = 1.
R = 70 24 = 3 tons.

30 2% 9}
y 53‘ 5
M, =170 XEXQ% = 20 ft.-tons.
Moments at brackets — — 30 ft.-tons}

+40

Check by distribution method:

70
| I-=2000 7 X [=1000

| K =100 L K== 075x100
= 15.
,v’ == 4 Te ™ .
Distribution of moment {(A 0 ft.-tons
¢B =3
Then AC =20
Propping force at C 40420 30
T2 10
=3--3 = 0.

Therefore above moments are final and agree with those already
calculated.

Column details

Lattice bracing to columns. Where columns arc composed of two or
more members braced together by diagonal bars, care must be taken
to ensure that such bars are capable of resisting the lateral forces.
These consist of any known lateral forces plus a percentage of the
direct load on the column. This percentage is rather difficult to assess,
and some specifications call for 2} per cent. of the direct load to be
taken up by the bracings at any point. A more exact method is to
take the difference in the working stresses p and F, given in B.S.S. 449,
and multiply this value by the appropriate section modulus of the
column to find the safe B.M. of the column

M = (F,—p)2.
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Now %;:/I == rate of change of B.M.

== shear.

Therefore if the analogy of a beam is taken, to find the lateral force,
divide the B.M. found above by half the length of the equivalent pin-
jointed strut. This force must be divided by 2 for single bracings on
each face and by 4 for double bracings on each face and multiplied by
diagonal length
horizontal length’
to small secondary stresses due to the elastic shortening of the main
column. It is well to be conservative in the design of column bracings,
especially for comparatively short and heavy columns. Where diagonal
bracings consist of single angles riveted to the main members by one
leg only, it must be borne in mind that the effective area of such
members is less than the full arca. The usual rule is to take half the
area of the free leg (this is a generous allowance according to research
on such members) in addition to that of the riveted leg. In addition
there is usually eccentric bending at the ends of such members. These
remarks apply to all asymmetrical struts such as single or double
angles connected by one leg only. It is worthy of note that reverse
cleats are of little value in developing the strength of the member.{
Column bases. In recent years it has been common practice to use
‘bloom’ plates for column bases, and these must be thick enough to resist
the bending moment due to the pressure on the concrete foundation.

the ratio In addition, diagonal bracings are subject

If, then, B == dimension of base plate parallel to column flanges,

D = dimension of base plate parallel to web,
b . . .
al corresponding dimensions of column,

f —- working stress, usually 9 tons/in.?,
= thickness of base plate,
W == load on column.
Then negative B.M. about Y-Y axis

= P;/ xi == p;é (from column).
B.M. due to pressure under base
_V B_VWE
274 8

T e — ———
l SOO B.S.S. 449.

Net moment = K:a(B—b).
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The section modulus of base plates about Y- axis
= Dt?/6,
and resisting moment = Q—tz x [

ly |

Fic. 8.16
2 %x%,——«—(ng)
L [3W(B—b)
=)
Similarly = / {%‘i—)},

and the greater value of ¢ is taken.
For solid round columns:

let d = diameter of column,

3W D
then t= A/ { 7 (D—d } approx.

3W B

For D = B, t=}/{——————} approx.
FE=a) P
(See Fig. 8.16.) The length or diameter should be not less than
$d+3).t
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EXERCISES

1. A compression member of a bridge truss consists of two web plates 18 in. x }
in, with four 4 in. X 4 in. X § in. angles and a top flange plate 14 in. x } in., the
overall width being 15 in. (the angles are inside the web plates). The effective
length is 15 ft. Given that the area of one angle = 2-86 in.2, I, = 4:26 in.%,
and distance from heel to C.G. = 1-12 in., find safe load if f = 9(1—0-0038!/K).
{290 tons approx.]

2. A strut is 25 ft. effective length and is composed of four angles 3} in. x 3}
in. X § in. at the corners of a square of 18-in. side. The angles are laccd on all
sides. If the area of one angle = 2:49 in.?2 and I, = 2-80 in.%, L, = 115 in.4;
Iinax == 4°45 in.4 and distance to C.G. == 1 in,, find the safe load by B.S.S. 449
formula and the theoretical spacing of the lacing bars. [67 tons; 255 in.]

3. (a) A column is hinged at the top and fixed at the base and is 25 ft. high.
Find the horizontal reaction and the moment at the base and draw the B.M.
diagram if a clockwise moment of 25 ft.-tons is applied at 5 ft. from the top.

(b) Also find reaction and moment if a moment of 25 ft.-tons is applied by means
of a bracket 2 ft. 6 in. deop.

4. A column carries a load of 100 tons and is 14 in. square. The column base
consists of a bloom resting on a R.C. foundation. If the permissible pressure on
the concrete is 20 tons per sq. ft., find size and thickness of the base. [2 ft. 3 in.
8q. X 2 in.]

5. A concrete column carries a load of 150 tons and the story height is 15 ft.
The ends may be considered as fixed. Using a safe stress of 680 lb./in.2 in the
concrete, find the effective length, the size of column required, and the main
and secondary reinforcement. [135 in.; 20 in. sq.; four 14-in. diam.; }-in. stirrups
at 9-in. centres.]

6. A R.C. column is 18 in. square and is reinforced by four 14-in. diam. bars.
The cover to the bars is 14 in. The column carries a B.M. in addition to the
direet load. If the stress in the conereto must not exceed 800 1b./in.2, find the safe
load (if e == 3 in. and m == 15), and indicate the amount of secondary stecl
required. [152,000 Ib.; 1-3 in.2 per ft.]

7. A timber strut consists of a 10 in. X 10 in. post 15 ft. high and fixed at each
end. Find the safe load according to the formula

[ = C[1—3}(/Kd)'], C = 1,000 1b./in.?
[98,000 1b.]

8. A C.I. column is 10 in. external and 8 in. internal diameter, but the core
is } in. eccentric. The column is 10 ft. effective height. Find the radius of
gyration and the crippling load according to Euler formula (E = 6,000 tons/in.2).
[3-00 in.; 1,040 tons.]



APPENDIX A
STEELWORK
TABLE 1. British Standard Jousts: Dimensions and Properties

Standard Moments Moduli | Radii of
thicknesses of inertia of section gyration (in.)
Size Weight | Area | Web | Flange
(DxB) | @bffe) | @y | (n) | @ny | X-X | Y-Y | X-X | Y-Y | X X|YY
24" x 14" 95 27-94 | 0-57 | 1-011 | 2533-04 | 62-54 | 211-09 | 16:68 | 9:52 | 1:50
22" x 7" 15 22:06 | 0-50 | 0-834 | 1676-80 | 41-07 | 152:44 | 11-73 | 872 | 1-36
20" x 74" 89 26-19 | 0-60 | 1-010 | 1672-85 | 62-54 | 167-29 | 16-68 | 7-99 | 1-55
20" x 634" 65 19-12 | 0-45 | 0-820 | 1226-17 | 32-56 | 122-62 | 10-02 | 8-:01 | 1-31
187" x 8” 80 23-63 | 0-50 | 0-950 | 1292-07 | 69-43 | 143-56 | 17-36 | 7-41 | 1-72
18" x 7" 75 22:09 | 0-55 | 0-928 | 1151-18 | 46-56 | 12791 | 13-30 | 7-22 | 145
18" x 6” 56 1618 | 0-42 | 0-757 841-76 | 23-64 93563 7-88 | 721 | 1-21
16” x 8" 75 22:06 | 0-48 | 0-938 973-91 | 68-30 | 121-74 | 17-08 | 6:64 | 1-76
16" x 6” 62 1821 | 0-55 | 0-847 725-05 | 27-14 90-63 906 | 631 | 1.22
16" x 6” 50 1471 | 0-40 | 0-726 618-09 | 2247 77-26 749 | 648 | 1-24
15" % 6” 45 13-24 | 0-38 | 0-655 491.91 | 19-87 65-59 662 | 610 | 1-23
15" x 5" 42 12-36 | 0-42 | 0-647 428-49 | 11-81 57-13 472 | 589 | 098
147 x 8”7 70 20-59 | 0-46 | 0-920 705-58 | 66:67 | 100-80 | 16-67 | 585 | 1-80
14" x 6”7 57 16:78 | 0-50 | 0-873 533-34 | 27-94 76-19 9-31 | 564 | 1-29
14" x 6" 46 13-59 | 0-40 | 0-698 442-57 | 21-45 63-22 716 | 571 | 1-26
13" x 5" 35 10-30 | 0-35 | 0-604 | 28351 | 10-82 | 43-62 | 4:33 | 525 | 1.03
12" x 8" 65 19-12 | 043 | 0-904 48777 | 65-18 81:30 | 16-30 | 5:05 | 1-85
12”7 x 67 654 15-89 | 0-50 | 0-883 375-77 | 28:28 62-63 943 | 486 | 1-33
127 x 6”7 44 13-:00 | 0-40 | 0-717 31676 | 22-12 52-79 7-37 | 494 | 1-30
12" x 5" 32 9-45 | 0-36 | 0-550 221-07 9-69 36-84 3-88 | 484 | 1-01
10" x 8” 55 16-18 | 0-40 | 0-783 288-69 | 5474 5774 | 13-69 | 4-22 | 1-84
10" x 67 40 11-77 | 0-36 | 0-709 204-80 | 21.76 40-96 725 | 417 | 1-36
10" x 6" 30 8-85| 0:36 | 0-5652 146-23 9-73 29-256 3-89 [ 406 | 1-05
10" x 434” 25 7-35( 0-30 | 0-505 122-34 6-49 24-47 2-88 | 408 | 0-94
9"x 7" 50 1471 | 0-40 | 0-825 208-13 | 40-17 46-25 | 11-48 | 3-76 | 1-65
9" x 4" 21 6-18 | 0-30 | 0-457 81:13 4-15 18-03 2:07 | 3:62 | 0-82
87 % 6" 35 10-30 | 0-35 | 0-648 115-08 | 19-54 2876 651 | 334 | 1-38
87 x 5" 28 8:28 | 0-35 | 0-575 89-69 | 10-19 22-42 408 | 329 | 111
8" x 4" 18 530 | 0-28 | 0-398 55-63 3-51 1391 1-75 | 3-24 | 0-81
7" x 4" 16 475 | 0-25 | 0-387 39-51 3-37 11-29 169 | 2-89 | 0-84
6" x 5" 25 7-37| 0-41 | 0-520 43-69 9-10 14-56 3-64 | 244 | 1-11
67 x 434" 20 5-89 | 0-37 | 0-431 3471 5-40 11-57 240 | 243 | 0-96
6" x 3" 12 3-53 | 0-23 | 0-377 20-99 1-46 7-00 097 | 2-44 | 0-64
5" x 44" 20 5-88 | 0-29 | 0-513 2503 | 6-59 1001 | 293 | 2068 | 1-08
57x 3" 11 3-26 [ 0-22 | 0-376 13-68 | 146 547 | 097 | 205 | 0-67
4" x 13" 65 1-91| 018 | 0-325 6-73 0-26 2-83 0-30 | 1-88 | 0-37
4" x 3" 10 294 | 0-24 | 0-347 7-79 1-33 3-89 0-88 | 1:63 | 0-67
4" x 14" 6 1-47 | 0-17 | 0-239 3-66 0-19 1-83 021 | 1-58 | 0-36
3"x 3 85 | 252 | 0-20 | 0-332 381 1-25 2:54 | 083 ] 123 | 070
I x1y 4 1-18 | 0-16 | 0-249 1.66 | 013 1111 | 017 | 1119 | 033
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275

Dis-
tance
of

neut'ml Standard Moments Moduli of Radii of

G | thicknesses of inertia section gyration (in.)
from |
Size Weight | Area | toe Web | Flange|

(D x B) ({b.fft.) | (in?) | (@n.) | (n) | (in) | X-X | Y-Y | X-X|Y-Y | X-X|Y-Y
177 x 4% 51-28 |15-08 | 3-21 | 0-60 | 0-68 | 569-31 | 16-96 | 66-98 | 5-28 | 6-14 | 1-06
17" x 4" 4434 | 13-04 | 3-08 | 048 | 0-68 | 520-18 | 15-26 | 61:20 | 496 | 6-32 | 1-08
15" x 4” 42:49 | 12:80| 3-18 | 0-53 | 0-62 | 382:85 | 14-97 | 51.05 | 4-71 | 554 | 1-09
15" x 4" 36-37 10-70 | 3-03 | 0-41 | 062 | 349-10 | 13-34 | 46:55 | 440 | 571 | 1-12
13" x 4" 3892 | 11-45| 3-12 | 0-53 | 0-62 | 270-66 | 14-51 | 41-64 | 4-64 | 4-86 | 1:13
13" x 4" 33-18 976 | 2:96 | 0-40 | 0-62 | 246-86 | 12-76 | 37-98 | 4-31 | 5-03 | 1-14
127 x 4" 36-63 | 10-77 | 3-11 | 0-53 | 0-60 | 218-81 | 13-80 | 36-47 | 4-44 | 4.51 | 1-13
127 x 47 31-33 9-21| 294 | 040 | 0-60 | 200-09 | 12-12 | 33-35| 4-12 | 4.66 | 1-15
127 % 34" 30-45 896 | 279 | 0-48 | 0-50 | 174-13 | 7-96 | 29-02 | 2-86 | 4-41 | 0-94
127 x 33 26-37 776 | 2:67 | 0-38 | 0-50 | 159-73 | 7-15|26-62| 2-68 | 4:54 | 0-96
117 % 34" 30-52 898 | 2:69 | 048 | 0-58 | 152.96 | 8-86 | 27-81 | 3-30 | 4-13 | 099
117 x 34" 26-78 7-88 | 2:57 | 0:38 | 058 | 141:87 | 7-93 | 25-80 | 3-09 | 4:24 | 1-00
10" % 33” 28-54 8:39 | 268 | 0-48 | 0-56 | 119-52 | 8-50 | 23-90 | 3-17 | 3-77 | 1-01
10" x 33~ 24-46 7-19 | 2:53 | 0-36 | 0-56 | 109-52 | 7-42 | 21-90 | 293 | 3-90 | 1-02
10" x 3” 21-33 627 | 2:33 | 0-38 | 0-45 | 87-66| 431 |17:53| 1-85 | 3-74 | 0-83
10" x 3” 19-28 567 | 2:26 | 032 | 045 | 8266 | 3-98|16:53| 1-76 | 3-82 | 0-84
97 x 33" 2563 7-54 | 2-64 | 045 | 0-54 89-30 | 7-86 | 19-84 | 2-98 | 3-44 | 1-02
97 % 34" 23-49 6-91 | 2-556 | 0-38 | 0-54 85-05 | 7-26 | 1890 | 2-85 | 3-51 1-03
97 x 34" 22.27 6:55 | 2:50 [ 0-3¢4 | 0-54 82:62 | 6-9018-36 | 2-76 | 3-55 | 1-03
97 x 3" 19-91 586 | 2:32 | 038 | 044 | 6238 | 418 |14:97| 1-80 | 3:39 | 0-85
9”7 % 3” 17-46 514 | 222 | 0:30 | 0-44 62-52 | 3-75(13-89 | 1-69 | 3-49 [ 0-86
87 x 33" 23-20 6-82 | 2:60 | 0-43 | 0-52 65-27( 7-30 | 16-32 | 2-81 | 3-09 | 1-03
8”7 x 34" 20-21 594 | 245 | 0-32 | 0-52 60-57 | 6-37|15-14| 260 | 3-19 | 1-04
87 x 3” 18-68 549 2:29 | 0:38 | 0-44 50-99 | 4-11|12:756) 1-79 | 3-05 | 0-87
87 x 3" 15-96 469 2-17 | 0-28 | 0-44 | 4672 | 358 |11-68)| 1-65 | 3-16 | 0-87
77 x 34" 20-18 5-94 | 2-51 | 0-38 | 0-50 4512 | 6-4%|12:89| 258 | 2:76 | 1-05
77 % 34" 18:28 5-38 | 2:41 | 0-30 | 0-50 42:83 | 5-83 |12-24 | 2-42 | 2:82 | 1-04
77} 3" 17:07 502 | 2-28 | 0-38 | 0-42 36-18 | 3-87|10:34| 1:70 | 2:68 | 0:88
%3 14-22 4-18 | 212 | 0268 | 0-42 3275 | 326 | 9-36| 1-53 | 2-80 | 0-88
67 % 34" 18:52 545 | 2-49 | 0-38 | 048 30-68 [ 6051|1023 2-43 | 2:37 | 1.05
67 % 34" 16-48 4-85 | 2:36 | 0-28 | 0-48 28-88 | 529 | 9-63| 2:25 | 244 | 1-05
67 x 3” 17-53 516 | 2:15 | 0-43 | 048 27-18 | 395 906 1-84 | 230 | 0-88
6" x 3" 16:51 4-86 | 2:09 | 0-38 | 0-48 26-28| 3-70| 876 1-77 | 2-33 | 0-87
67 x 3" 13-64 401 219 | 0:31 | 0-38 22:35| 310| 7-45| 1-42 | 2:36 | 0-88
67 x 37 12-41 3-65| 211 | 025 | 0-38 21-27| 283 7-09| 1-34 | 241 | 0-88
5" x 24" 11-24 3-31 | 1-80 | 0-31 | 0-38 1250 | 1-82| 500 1-01 | 1-94 | 0-74
5" x 24" 10-22 3-:01| 1-73 | 0-25 | 0-38 11-87 | 1-64| 4.75| 095 | 1-99 | 0-74
47 x 2" 7-91 2:33 | 1-47 | 0-30 | 0-31 5-38| 079 | 269 094 | 1-52 | 0-58
4" x 2" 7-09 2:09 | 1-40 | 0-24 | 0-31 506 | 070 | 253| 050 | 1-56 | 0-58
37 x 14" 5-11 1.50 { 1-07 | 025 | 0-28 194 030 | 1-29| 0-28 | 1-14 | 0-44
3" x 14 4:60 1-35{ 1-02 | 020 | 0-28 1-82| 026 1-22| 0-26 | 1-16 | 0-44
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TasBLE 1I1. British Standard Equal Angles: Dimensions and Properties

Size Distance of Radii of gyration (in.)
DxBxt | Weight| Area | N.A.from toe " Awis X-X Awis Y-Y | ‘

(in.) (b.[ft.)| (in.?) (in.) “ - ) | Max. | Min.
8x8x1 51-01 | 15-00 565 2-42 305 | 1-56
o & | 45:00 | 13-24 570 2-43 3-07 | 1-56
w3 38-89 | 11-44 575 2-45 3-:09 | 1-57
w3 32-68 | 9-61 5-80 2-46 311 | 1-57
TXTx§ | 3905 | 11-48 4-94 2-12 2-67 | 1-36
w3 | 3379 994 4-99 2-13 2-69 | 1-37
o 8§ 28-42 | 8-36 504 2-14 271 | 1-37
s % | 2295 | 675 509 2:16 272 | 1-38
6x6x% | 3310 | 973 4-19 1-80 2:26 | 1-16
o 1 28-69 | 8-44 4-24 1-81 2-28 | 1-17
N | 24-17 | 7-11 4-29 1-83 2:30 | 1-17
o b 19-55 | 575 4-34 184 2:32 | 1-18
w3 14-82 | 436 4-39 1:85 2:34 | 118
5x5x3 | 2359 | 694 3-49 1-50 1-88 | 0-97
» % 19-93 | 586 3-53 1-51 1-90 | 0-97
w3 | 1616 | 475 3:58 1:52 1-92 | 0-98
| 12:28 | 3-61 3-63 1-54 1-94 | 098
44 x4t xi 21-04 | 6-19 3-11 1-34 1-68 | 0-87
. % 17-80 5-24 3-16 1-35 1-70 | 0-87
. 3 14-45 4:25 3-21 1-37 1-72 | 0-88
» o 3 11-00 | 3-24 3-26 1-38 1-74 | 0-88
4x4xi 1849 | 544 2-74 1-18 148 | 077
4 15-68 | 4-61 2-78 1-19 1:50 | 0-77
. 1275 | 375 2-83 1-21 1-52 | 078
» # 9-73 | 2-86 2-88 1-22 1-54 | 078
34 x34x§ 13-55 | 3-99 2-41 1-03 1-30 | 0-68
w3 11-05 | 325 2-45 1-05 1-32 | 0-68
P | 845 | 249 2-50 1-06 1-34 | 0-68
. 7-11 | 2-09 2:53 1-07 1-35 | 0-68
Ix3Ix} 9-35 | 275 2-41 1-03 1-112 | 0-58
R 717 | 211 2-45 1-05 1-14 | 0-58
v B 604 | 1.78 2:50 1-06 115 | 0:58
| 489 | 144 2:53 1-07 115 | 0-59
23 x 24 X } 11-8 3-47 1-75 0-74 0-94 | 0-48
v T 10-0 2-93 1-717 075 095 | 0-48
s} 81 2-38 1-80 0-76 0-95 | 0-49
21 x24x§ | 105 | 309 1-56 0-67 084 | 0-43
v T 89 2-62 1-58 0-67 0-85 | 0-43
R 3 7-2 2:13 1-61 0-68 085 | 0-44
I 5-5 1-62 1-63 0-68 0-86 | 0-44
2X2X 4y 7-8 2-30 1-39 0-59 075 | 0-38
A 64 1-87 1-42 0-60 075 | 0-39
o Ts 49 1-43 1-44 0-60 0-76 | 0-39
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TaBLE IV. British Standard Unequal Angles: Dimensions and Properties

Size Distances of N.A. from = . .

DxBxt |Weight| Area toe (in.) Radii of gyration (in.)
(in.) (Ib.[ft.) | (in.2) | Axis X-X | Axis Y -Y | Axis X-X | Axis Y-Y | Max.| Min.
9IX4Xx 36-07 |10-61 5-57 3-05 2.85 1-00 2:90 | 0-83
’ 31-24 | 9-19 5-62 310 2-87 1-01 2:92 | 083
' 26-30 | 7-73 567 3-15 2-88 1-02 2:94 | 0-83
”» 21:25 | 6-25 573 3-20 2:90 1-03 2:96 | 0-84
8x6x 39-05 |11-48 5-41 4-40 249 1-73 2:75 | 1-27
» 33-79 | 9-94 5:46 4-45 2-51 1-74 277 | 1-28
» B 2842 | 8-36 551 4-50 2-52 176 2:79 | 1-28
b 22.95 | 675 5-56 455 2-54 1-77 2-81 | 1-29
8x4x 28-69 8-44 507 3-06 2-54 1-04 2:61 | 0-84
ye 2417 | 7-11 5-12 3:10 2:556 1-056 2:63 | 0-85
’ 19:55 | 575 517 3-16 2-57 1-06 2:65 | 0-85
8x 34 % 23-11 6-80 5-00 273 2-56 0-88 2:60 | 0-72
' 18:70 | 550 505 2.78 2:-57 0-89 2:62 | 073
Tx4X 26-14 | 7-69 4-51 3-00 2-21 1-07 2:30 | 0-85
’e 22-05 | 6-48 4-56 3:05 2:22 1-09 2-32 | 0-86
. 17-85 5-25 4-61 310 2:24 1-10 2:34 | 0-86
TX33x 20-99 | 6-17 4:45 2-69 222 0-91 2:29 | 0-74
v 17:00 | 5-00 4-50 2:74 2-24 0-92 2-31 | 0-74
v 12-91 3-80 4-56 2:79 2-25 0-93 2:32 | 0-75
8x4x 23-59 6-94 3-94 2:93 1-87 1-11 200 | 0-85
v 19-93 | 5-86 3-98 2-98 1-88 1-12 2-:02 | 0-86
’ 16-16 | 475 4-03 3-03 1-90 1-13 2:04 | 0-86
6X 34 % 18-86 | 555 3-89 2-63 1-89 0-95 1-98 | 0-75
v 15:30 | 4-50 394 2-68 191 0-96 2:00 | 0-75
v 11-63 | 3-42 3-99 2-73 1-92 0-97 2-:01 | 0-76
6x 3 x 17-80 5-24 3:78 2:27 1-89 0-77 1-95 | 0-63
v 1445 | 425 3-83 2-32 1-91 0-78 1-97 | 0-63
' 11-:00 | 3-24 3-88 2-37 1-93 0-80 1-98 | 0-64
5x 4 X 17-80 | 5-24 3-39 2-89 1-54 1-16 1-74 | 0-84
. 1445 | 4:25 3-44 2:94 1-56 1-17 1-76 | 0-84
’ 11-00 3-24 3-49 2-99 1-57 1-18 1-77 | 0-85
5X 3§ 16-74 | 4-92 3-31 2:56 1-55 0-98 1-68 | 0-74
. 13-61 4-00 3-36 2-60 1-57 0-99 1-70 | 0-75
. 10-37 | 3-05 341 2:65 1-58 1-01 172 | 0-75
5x3x 1275 | 3-75 3-37 2:2¢ 1-58 0-82 1-66 | 0-64
. 9-73 | 2-86 3-32 2-31 1-59 0-83 1-68 | 0-65
oo 8-17 2-40 3-34 2-33 1-60 0-84 1-68 | 0-65
43 X3 x 2380 | 7-00 2:98 2-22 1-41 0-84 1-51 | 0-64
e 18:20 | 5:35 3-03 227 1-42 0-85 1-53 | 0-64
w1 15:30 | 4:50 306 2:30 1-43 0-85 1-53 | 0-65
4> 3} < 29-20 | 860 2-71 2:46 1-21 1-02 1-41 | 0-71
- 23-80 | 7-00 2:76 2:51 1-22 1-03 143 | 0-72
s 18:20 | 5-35 2-81 2:56 1-24 1-04 1-45 | 072
" 15-30 | 4-50 2-84 2-58 1-24 1-05 146 | 0-72
4x3x 22:10 | 6-50 2-68 2-18 1-24 0-85 1-36 | 0-63
”» 16-90 | 4-97 2-73 2-23 1-25 0-87 1-38 | 0-64
I3 14:20 | 418 2-76 2.25 1-26 0-87 1-39 | 0-64
4% 24 % 15-60 | 4-60 2-64 1-89 1-26 0-69 1-34 | 0-53
» o 16 13-20 | 3-87 2.7 1-91 1-27 0-70 1-34 | 0-54
’ 10-60 | 3-13 2-70 1-94 1-27 0-70 1:35 | 0-54
3Ex3Ixh 20-40 | 6-00 2-38 1-63 1-06 0-87 1-23 | 0-61
’ 1 15:60 | 4-60 2-43 1-68 1-08 0-88 1-:25 | 0-62
e s 13-20 3-87 2-46 171 1-08 0-89 1-26 | 0-62
3 x 24 x 14:30 | 4.22 2-36 1-85 109 0-71 1-19 | 0-53
w18 1210 | 3-56 2-38 1-87 1-10 0-71 1-20 | 0-53
»» 9-80 | 2-88 2:41 1-90 1-10 0-72 1:20 | 0-54
3Ix 28 x 1310 | 3-85 2:06 1-80 0-92 0-73 1:05 | 0-52
w1 11-:00 | 3-24 2-08 1-83 0-93 0-73 1-06 | 0-52
, 890 | 2-63 2:11 1-85 0-93 0-74 1-07 | 0-52
3x2x 11-80 | 347 1-97 1-47 0-93 0-55 1-:00 | 0-42
» o f 10-00 | 2-93 2-00 1-49 0-94 0-56 1-:00 | 0-43
n 810 | 2:38 2.02 1-52 0-94 0-56 1:01 | 0-43
23 x 2% 10-50 | 3-09 1-68 1-43 0-76 0-57 0-85 | 0-41
w1 8:90 | 2-62 170 1-45 0-77 0-57 0-86 | 0-42
" 7-20 | 2-13 173 1-47 0-77 0-58 0-87 | 0-42
w T 5-50 | 1-62 1-75 1-50 0-78 0-58 0-88 | 0-42
24 x 1§ x 8-40 | 1-87 1-64 113 0-78 0-40 0-82 | 0-32
w16 490 | 143 1-67 1-16 0-79 0-41 0-83 | 0-32
2x 1§ x 5:50 | 1-63 1-35 1-09 0-61 0-42 0-68 | 0-31
w1 420 | 1-24 1-67 1-12 0-62 0-43 0-68 | 0-32
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TaBLE V. British Standard Tees: Dimensions and Properties

Size Dist. from Moments of inertia Radii of gyration

BxDxt |Weight| Area | heelto N.A. I, I, Axis X-X | Awis Y-Y
(¢n.) (./ft)| (in.2) (in.) (2n.4) (in.%) (in.) (in.)
1px1x}t | 2-36| 0-69 0-46 0-14 0-07 0-44 0-31
2x2x} | 321| 094 0-58 0-34 0-16 0-60 0-41
2k x24x} | 407 1-20 0-70 0-68 0-30 0-76 0-50
» ] 592 1-74 0-75 0-96 0-47 0-74 0-52
3x3xg | 720 212 0-87 1-71 0-81 0-90 0-62
4x3x4 | 849 2:50 0-77 1-86 1-91 0-86 0-87
» & {1109 3-26 0-82 2-37 2:60 0-85 0-89
4x4xg | 977 2:87 1-10 419 1-90 1-21 0-81
o 41279 3-76 1-16 5:40 2:59 1-20 0-83
5x3x§ | 979 2-88 0-69 1-97 3-72 0-83 1-14
5 3} 12:80| 3-77 0-74 2:51 504 0-82 1-16
5x4x{ | 11:06| 325 1-00 4-47 3-70 117 1-07
3| 1450 427 1-05 5-77 5-02 1-16 1-09
6x3x3% |11-08 3-26 0-63 2:06 6-40 0-80 1-40
» 3| 1452 427 0-68 2:63 8:67 0-78 1-42
6x4x}|1622] 477 0-97 6-07 8-64 113 1-35
» § (1999 5-88 1-02 7-33 10-93 112 1-36
6x6x% |19-62| 577 1-63 19-04 8:56 1-82 1.22
» §(2423) 713 1-69 23-31 10-87 1-81 1-23




APPENDIX B
REINFORCED CONCRETE

TABLE I. Ordinary Concrete (m = 15 throughout)

Working stresses (Ib./in.?)
Concrete Design factors
Concrete | Steel ign J e
mit |tension(t)| Bending (¢) | Shear (8) | Bond | Comp. t/c n,y a Q r
1:2:4 | 18,000 24-00 | 0-385 | 0872 | 1257 | 0-008
20,000 . 26:67 | 0-360 | 0-880 | 1100 | 0-00675
25,000 } 8 1001600 1 3330 | 0-312 | 0-896 | 1050 | 0-00467
27,000 36:00 | 0-204 | 0002 | 99-4 | 0:00408
18,000 18 | 0455 | 0848 | 193 | 0-0126
20,000 o | o 20 | 0428 | 0-857 | 1837 | 0-0107
25000 } 1,000 1000 B2o | 700 4 25 | o375 | 0875 | 164 | 0:0075
27,000 2 27 0-357 | 0-881 | 157 | 0-0066
1.14:3 | 18,000 2120 | 0-414 | 0862 | 1515 | 0-00975
20,000 . o | o | 2855 | 0890 | 0870 | 1487 | v-00827
25,000 20-40 | 0-338 | 0-887 | 1275 | 0:00575
27,000 3170 | 0-321 | 0-803 | 121-8 | 0-00505
18,000 144 | 0511 | 0830 | 2644 | 00177
20,000 . . - 16 | 0-483 | 0-839 | 2532 | 0-0150
25,000 } 1,250 TS [ Bass | 950 4 20 | 0428 | 0857 | 2209 | 00007
27,000 2 200 216 | 0411 | 0863 | 2217 | 0-0095
1:1:2 | 18,000 1850 | 0-447 | 0-851 | 1857 | 00121
20,000 N 20-50 | 0-423 | 0-859 | 1770 | 0-0103
25,000 } 975 o8 123 1780 1 b5c0 | 0369 | 0877 | 1580 | 00072
27,000 2770 | 0351 | 0883 | 1515 | 0-00633
18000 12 | 0556 | 0815 | 3396 | 0-0232
20,000 ) | 1333 | 0529 | 0824 | 3287 | 00198
25,000 } 1,500 130 g' OB 667 | 0473 | 0842 | 2006 | 00142
27,000 2= 18 0455 | 0-848 | 2892 | 00126

t Same values for High Alumina Cement Conerete, 1:2:4 mix,
For other values of ¢, m, and ¢

t 1 n
LA PR TR LY
me ny ! 3’

Tasre 11. Vibrated Concrete (m = 15 throughout)

Working stresses (1b./in.%)
C'oncrete Design factors
Concrete Steel | —-— - - - - - - _
mir Ieuswn(t) Bending (¢c) | Shear (8) | Bond | Comp. tle 7 a, Q r
F:2:d 18,000 16:36 | 0-479 | 0-840 | 2214 | 0:0146
20,000 s 18:18 | 0453 | 0:848 | 2113 | 0-0124
25,000 } 1,100 N0 BBt 836 975 | 0308 | 0867 | 190 | 00088
27,000 2o 2455 | 0-379 | 0-874 | 1828 | 00077
1:14:3 18,000 13-07 | 0-535 | 0-822 | 303 0:0204
20,000 P 14-54 | 0-508 | 0-831 | 290 0:0175
25,000 } 1,375 127 B | 045 1818 | 0453 | 0849 | 2041 | 00124
27,000 ¥ 19:61 | 0-433 | 0:856 | 2548 | 00110
1:1:2 18,000 10-91 | 0-578 | 0-807 | 385 0:0264
20,000 . 12:11 | 0-553 | 0-816 | 372 0-0228
25,000 } 1,850 13 B 06 L2 L 1505 | 0498 | 0834 | 3424 | 00165
27,000 2= 16:35 | 0-478 | 0-841 | 332:0 | 00146
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TaBLE III. Concrete: Variable Values of m
. Working stresses (b./in.?)
N el Concrete
= | Steel Design factors
Concrete :§§ tension | Bending ion fa
mix (t) (c) Shear (8) | Bond | Comp. | t/c n, a, Q r
[ 1:2:4 18 | 18,000 24:00 | 043 | 086 | 138 | 0-009
20,000 || - - 2667 | 0-405 | 0-865 | 131-3 | 0-0076
» : )
= 25,000 } 00T 100 ] 600 1 5y0 | 0-351 | 0883 | 116 | 0-0053
E 27.000 36:00 | 0-333 | 0-889 | 111 | 0-0046
2| 1t | 16 | 18000 2115 043 | 0-86 | 156 | 00101
8 20,000 . . o | 28:50 | 0-405 | 0-865 | 148:5 | 0-0086
ws 23,000 [ SO0 85| 1101 680 5500 | 0353 | 0-882 | 132:5 | 00060
2 27,000 3175 | 0334 | 0-889 | 125'8 | 0-0052
£ - - Pl Il Indhiniog i e
Bl ulz | 14 | 18000 1848043 | 086 | 180 |0-0116
) 20,000 - q e - 20-55 | 0-404 | 0-865 | 170 0-0098
25000 ( Y78 98 | 128 | T80 ks 0354 0882 152 | 00069
27,000 2770 | 0-336 | 0889 | 145 | 0-0061
1:2:4 | 14 | 18,000 18:97 | 0-425 | 0858 | 173 | 00112
@ 20,000 . . . a0 | 21°05 | 0-400 | 0867 | 165 | 0-0095
& 2»000} 950 1 95 ) 1201 T80 1 o635 | 0347 | 0-884 | 1455 | 00066
& 27,000 2845 | 0-333 | 0-889 | 140 | 00059
S gl it g
Sl 113 ] 12 | 18,000 16:37 | 0-423 | 0859 | 200 | 0:0129
20,000 . 18:17 | 0:308 | 0-867 | 1895 | 0:0110
M| < 4 h b
a 25,000 } L1000 185 880 w20 | 0356 | 0-885 | 1685 | 0-0076
5 27,000 24:55 | 0-333 | 0-889 | 1628 | 0-0068
2| 12 | o1 | 18,000 1440 | 0-433 | 0856 | 2315 | 0-0015
= 20,000 || - ; . 16:0 | 0-108 | 0-864 | 220 | 0-0013
w 25,000 } 1,230 125 150 1000 200 | 0-356 | 0-881 | 196 | 0-0009
L | 27,000 21-60 | 0-338 | 0-887 | 1875 | 0-0008
TABLE IV. Areas of Round Bars (in.?)
Bar Number of bars Bar
Diam.|-— — 0 -~ ———| Diam.
(in) | 1 2 3 4 5 6 7 8 9 10 | Gn)
1 00490098 | 0147 | 0196 | 0245 | 0204 | 0343 | 0302 | 0441 | 0491| §
& 0076 {0153 | 0230 | 0306 | 0-385 | 0-460 | 0-336 | 0-613 | 0600 | 0767 | 4
& 01100220 | 0831 | 0-441] 0552 | 0662 | 0772 | 0-883 | 0-993 | 1-104| 1}
% |01500-300 | 0-450 | 0-601 | 0751 | 0-001| 1052 | 1-202| 1352 1503 | &
1 |0196 0392 | 0588 | 0-785| 0981 | 1177 | 1374 | 1570 | 1-766 | 1963 3
& |0248]0497 [ 0745 | 0994 | 1242 | 1491 | 1730 | 1088 | 2236 | 2485 | &
£ |0306|0613|0920| 1227 | 1534 | 1840 | 2:147 | 2454 | 2761 | 3-088 | 1§
# 0371|0742 | 1-113 | 1484 | 1:856 | 2227 | 2508 | 2069 | 3340 3712| &
1 |0-441 | 0883 | 1325 | 1767 | 2200 | 2650 | 3-092 | 3534 | 3-976 | 4-418| 1
# |0518|1-087 {1555 | 2:074 | 2502 | 3-111| 3620 | 4148 4665| 5185| 1
3 |0601| 1202 | 1:803 | 2:405| 3006 | 3-607 | 4209 | 4816 | 5411] 6013| }
# [0-690 | 1380 | 2070 | 2761 | 3451 | 4141 | 4832 | 5522 6212 6903| #
1 |0785 | 15570 | 2:356 | 3142 3027 | 4712 5407 | 6:285| 7068 | 7854 1
14 |o0w94| 1988 [ 29082 | 3976 | 4970 | 5064 | 6-058 | 7952 | 8046 | 0930 | 14
13 [1-227 | 2454 | 3681 | 4008 | 6-136 | 7:363 | 8500 | 9817 | 11044 [ 12:272| 1}
13 | 1484 | 2:060 | 4454 | 5939 | 7-424| 8:000 | 10394 | 11°879 | 13-364 | 14849 | 1}
1} |1767 |3-534 | 5301 | 7-068 | 8-835 | 10-602 | 12360 | 14-136 | 15-903 | 17671 | 14
14 |2073 | 4147 | 6221 | 8295 | 10-369 | 12-443 | 14:517 | 16:591 | 18-665 | 20730 | 1§
11 (2405|4810 (7215 | 9621 | 12:026 | 14-431 | 16-837 | 10-242 | 21-647 { 24053 | 11
1§ |2761 | 5-522 | 8:283 | 11-044 | 13-806 | 16-567 | 10-328 | 22:089 | 24-850 | 27612 | 1}
2 |3142 | 6283 | 9-424 | 12566 | 15708 | 18-849 | 21-001 | 25-132 | 28-274 | 31416 | 2
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TaBLE VII. Value of Bent-up Bars in Shear (Ib.)

Inclination and angle

Stress |.. .
Diameter | Area ty, lin 2 1inl1}| 1inl
(in.) (in.2) | (lb.Jin.2)| 26° 34’ 30° 33° 41 45° 60°
3 0-196 18,000 1,580 1,767 1,960 | 2,498 | 3,060
20,000 1,756 1,963 2,177 2,776 3,400
§ 0-307 18,000 2,470 2,761 3,063 3,906 | 4,783
20,000 2,744 3,068 3,403 | 4,339 5,314

18,000 3,566 3,976 4,411 5,623 6,886
20,000 3,952 4,418 4,900 6,248 7,653

18,000 | 4,840 | 5411 | 6,003 | 7,654 | 9,374
20,000 | 5378 | 6,013 | 6,670 | 8504 | 10.415

3 0-442

18,000 | 6,323 | 7,067 | 7,840 | 9,996 | 12,243
20,000 | 7,025 | 7,854 | 8,712 | 11,107 | 13,603

18,000 - 8,002 8,946 9,923 | 12,651 | 15,495
20,000 8,892 9,940 | 11,026 | 14,057 | 17,228

18,000 9,876 | 11,043 | 12,246 | 15,618 | 19,128
20,000 | 10,975 | 12,270 | 13,608 | 17,352 | 21,252

956 ‘,;' ,902 315
13 1.485{ 18,000 | 11,956 | 13,365 | 14,827 | 18,902 | 23,150

20,000 | 13,283 | 14,850 | 16,475 | 21,002 | 25,722

18,000 | 14,226 | 15,903 | 17,640 | 22,492 | 27,500
20,000 | 15,805 | 17,670 | 19,602 | 24,992 | 30,556

18,000 | 16,695 | 18,666 | 20,706 | 26,397 | 32,329

20,000 | 18,550 | 20,740 | 23,004 | 29,330 | 35,921
18,000 | 19,360 | 21,645 | 24,010 | 30,611 | 37,490
20,000 | 21,512 | 24,050 | 26,680 | 34,012 | 41,656
18,000 | 22,226 | 24,849 | 27,667 | 35,142 | 43,038
20,000 | 24,695 | 27,610 | 30,630 | 39,047 | 47,820
18,000 | 25,292 | 28,278 | 31,370 | 89,990 | 48,975
20,000 | 28,102 | 31,420 | 34,858 | 44,435 | 54,420

S = AyXt,sin b, A, = area of bar, t, = working stress, 9 = angle.
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Aggregate, 11.

analysis, 58.

anchorage, 193.

area, moments of, 29.
asymmetrical bending, 107.

Bases, 271.

beams, composite, 192.
— conjugate, 93.

— continuous, 138.
— fixed, 124.

— simple, 60.

— timber, 195.
bearing, 52.
bending, 38, 58.

— moment, 37.
bond stress, 13, 56.
Bow’s notation, 201.
bracket loads, 264.
brickwork, 20.
bridges, 85.

Cantilevers, 58.
cement, 11.

column analogy, 129.
columns, 237
compression steel, 44.
concrete, 10, 176, 255.
crane girders, 90, 168.

Deflexion, of beams, 92.
— of framed structures, 217, 226.
— due to shear, 116.

Effective length, 247, 257.

elastic line, 92, 124.

equivalent distributed load, 81, 89.
— length, 239.

experimental methods, 138, 155.

Force diagram, 201.
framed structure, 200.

Girders, 163.

Hammer blow, 87.
haunching, effect of, 128.
homogeneous sections, 47.

Impact, 85.
inertia, ellipse of, 31.
influence lines, 73, 210, 226.

Joists, see beams.

L-beams, 179.
loading, dead, 72.

— rolling, 73, 158.

— superimposed, 72.
lurching, effect of, 88.

Masonry, 24.

modular ratio, 14, 177.
modulus, of elasticity, 5.

— shear, 117.

— section, 41.

Mohr diagram, 223.

moment distribution, 152, 268.
— polar, 32.

— of resistance, 41.

Non-homogeneous sections, 42.

Parabola, circumscribing, 81.
points, fixed or characteristic, 144.
pre-stressing, 179.

principal stress, 53.

proof stress. 8.

Radius, of gyration, 34, 164, 241.

— of curvature, 40, 92.

rail-joint effect, 88.

reciprocal deflexions, theory of, 105,
226.

reinforcement, 43, 178, 256.

resilience, 111.

resolution, method of, 207.

Ritter’s method, 204.

rivets, 51.

rolling loads, see loads.

Secondary stresses, 224.
settlement, effect of, 133, 157.
shear, 37, 47, 51, 54, 58.

— reinforcement, 55.

slabs, 181.

slope deflexion method, 138, 146, 225.
steel, manufacture of, 1.

— properties of, 3.

— use of, 164.

stiffeners, 167.

stiffness, 110, 226.

stirrups, 55.

strain energy, 111.

T-beams, 46, 179.
temperature, effect of, 219.
tension coefficients, 207, 230.
timber, 14, 195, 260.
torsion, 121.

Water—cement ratio, 13.

welding, 52.

Williot diagram, 221.

work, method of virtual, 114, 218.

Yield point, 8.
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