PILANI (RAJASTHAN) Call No. 621.384132 B 296L V. Accession No. 36010

Lehrbuch der Elektronen-Röhren und ihrer technischen Anwendungen

Von

DR. H. BARKHAUSEN

ordentk, Professor u. Direktor des Instituts für Schwachstromtechnik an der Technischen Hochschule Dresden

3. Band: Rückkopplung

A. Selbsterregung (Schwingungserzeugung), B. Entdämpfung

Fünfte Auflage

Mit 85 Abbildungen

Vergebrutlicht unter der Linns-Rr. 198 2190/48-1087218
der Sowjettischen Effittervervaltung in Doutenbland
Älle Rochte verteinstein
Oopyright 1989 – S. Elizad Verlag Leipzig
Printed in Gormany

Bruck: Buil Pinken & Co. A.-G., Leipzig

Vorwort zur dritten und vierten Auflage.

Von dem Inhalte dieses Buches war früher die Selbsterregung d.h. die Schwingungserzeugung bei den Röhrensendern in Band II, die Entdämpfung bei den Empfängern in Band III behandelt. Der Grund dieser Teilung wag ein äußerlicher. Auch die großen Röhrensender bestanden damals fast stets aus einer einzigen Röhre in der Selbsterregungsschaltung. Jetzt sind die Röhrensender aber nichts anderes als vielstufige Verstärker, denen in der ersten Stufe eine durch Selbsterregung erzeugte sehr kleine Leistung sugeführt wird. Sie wurden daher bei der Neubearbeitung schon in Band II unter "Senderverstärker" Innerlich gehören Selbsterregung und Entdämpfung zusammen. Denn durch einfache Vergrößerung der Rückkopplung geht die Entdämpfung stetig in die Selbsterregung über. Das Verständnis der einen Erscheinung wird durch das der anderen vertieft. Beide werden durch dieselben Gesetze beherrscht.

Außer dieser neuen Gliederung war auch hier wie bei den ersten beiden Bänden eine völlige Umarbeitung des ganzen Stoffes erforderlich. Bei der Selbsterregung wurde die ganz allgemein gültige Formel 2 B == 1 neu eingeführt, aus der sich die alte Selbsterregungsformel als Sonderfall ergibt. — Bei den alten Röhren wurde die Amplitude der selbsterregten Schwingungen hauptsächlich durch Erreichen des Sättigungsstromes begrenzt. Die den neuen Röhren, die praktisch keine Sättigung mehr besitzen, tritt statt dieser "Strombegrenzung" die "Spannungebegrenzung" durch dem Gitterstrom in den Vordergrund, die durch eine der Schwundzegelung entsprechende Gleichrichterwirkung stratisch verstäckt werden kann. Diese Art der Amplitudentensung gewährleistet auch die größte Konstenz der selbstensung gewährleistet auch die größten konstenz der selbstensung der selbstensung gewährleistet auch die größten konstenz der selbstensung der selbstensung der selbstensung der selbstensung gewährleistet auch die größten keine kei

Bedeutung geworden ist. Durch Hinzunahme mechanischer Schwingungsgebilde (Piezoquarz) ist es gelungen, die Frequenz in ungeahnter Weise genau konstant zu halten. — Neu aufgenommen wurden ferner die Kippechwingungen, die zur Zeitablenkung bei der Braunschen Röhre (Fernsehen), zur Frequenzerniedrigung und -vervielfachung Verwendung gefunden haben. Da die Erzeugung kurzer Wellen eine so große technische Bedeutung erlangt hat, wurden zunächst die Rückkopplungssender für diese Wellen ausführlicher behandelt, dann aber auch den Borkhausen-Kurz-Schwingungen und den magnetischen Elektronentanz-Schwingungen, die beide in den früheren Auflagen gar nicht oder nur kurz erwähnt waren, ein besonderer Abschnitt gewidmet.

Bei der Entdämpfung sind die Anschauungen gegen früher teilweise in das Gegenteil umgeschlagen. Während man früher in der Entdämpfung nur eine willkommene Vergrößerung der Verstärkung sah, fallen jetzt, wo die Herstellung beliebig hoher Verstärkungen keine Schwierigkeiten mehr macht, die Nachteile der Entdämpfung immer mehr ins Gewicht, die in der größeren Instabilität, dem Hervortreten der Verzerrungen und Störungen liegen. Das hat sogar dazu geführt, daß man zur Erhöhung der Stabilität bei Fernsprechverstärkern mit gutem Erfolg eine die Verstärkung verringernde negative Rückkopplung eingeführt hat. Der Einfluß einer Rückkopplung auf Fernsprechverstärker mit breitem Frequenzbereich wurde ganz allgemein neu untersucht. -Die neu aufgenommene formelmäßige Berechnung weiterer einfacher Beispiele soll dazu beitragen, das Wesen der Entdämpfung und der dabei im Grenzfall eintretenden Selbsterregung weiter zu klären. Schließlich wurde noch die Pendelrückkopplung ausführlicher behandelt, die wegen der ungeheuer großen damit zu erreichenden Verstärkung-besonders für den Kurzwellenempfang wichtig ist.

Der große Umfang des neuen Stoffes hat eine nochmalige Teilung notwendig gemacht. Die Neubearbeitung des letzten noch fehlenden Teiles, der die Gleichrichter und Empfanger behandeln wird, ist in Angriff genommen worden.

Drosden, Herbet 1934.

Barkhausen.

Inhalt.

III. Teil. Rückkopplung.

2
4
8
9
11

	Selte
c) Berechnung eines Beispiels	14
Der Wert solcher Berechnungen. Die komplexe Selbst-	
erregungsformel zerfällt in zwei reelle Gleichungen,	
von denen die eine die Amplitude, die andere die Fre-	
quenz der stationären selbsterregten Schwingungen	
bestimmt. So einfach geht die Rechnung aber nicht	
immer auf. (Weitere Rechnungen in § 15-17.)	
§ 4. Transformator-Bückkopplangen	17
Erwünscht: Sinusform und bestimmte Frequenz. Er-	
reicht durch Parallelschwingungskreis als Ra. Gün-	
stigstes R, wie beim Verstärker. Rückkopplung durch	
Transformator, durch Spartransformator. Schwin-	•
gungskreis auf der Anodenseite oder auf der Gitter-	
seite oder beiden Seiten gemeinsam bei fester Kopp-	
lung im Grunde gleichwertig. Zuführung der Gleich-	
spannungen. Reihen- oder Parallelschaltung von	
Gleich- und Wechselspannungen. Störende natürliche	
Kapazitäten. Schwinglöcher bei Drosselspulen. Er-	
seugung einer negativen Gittervorspannung durch	
Spannungsabfall in einem Widerstande.	
§ 5. Spannungsteiler-Rückkopplungen. (Dreipunkt-Schal-	
tangen.)	21
a) Induktive und kapazitive Spannungsteiler-	
schaltung	21
Positive Rückkopplung verlangt entgegengesetste	
Phasen zwischen den beiden Spannungsteiler-Wider-	
ständen Mga und Mgk sowie Mga · Mgk. Phasenreines	
Ra verlangt Zusatzwiderstand Rak gleichphasig mit	
Ngk. Zwei Möglichkeiten: Ngk und Nak induktiv, Nga	
kapazitiv — induktive Spannungsteilerschaltung; oder	
\Re_{gk} und \Re_{gk} kapazitiv, \Re_{gk} induktiv = kapazitive	
Spannungsteilerschaltung. In beiden Fällen erregt	
sich angenähert die Eigenfrequenz des aus $\Re_{ga}+\Re_{gk}$	
+ Rak bestehenden Schwingungskreises.	
b) Drei Schwingungskreise in Dreipunktschal-	
tung	24
Ein Parallelschwingungskreis ist ein Widerstand, der	
unter der Resonans induktiv, über der Resonans ka-	
pazitiv ist. Zwei Falle von Selbsterregung möglich.	
Besiehung swischen der sich erregenden Frequens und	•
den drei Eigenfrequensen.	

Inhalt.	VII
c) Selbsterregung infolge der natürlichen Gitteranodenkapazität Cga	26
d) Frequenzhaltung durch mechanische Schwingungen (Piezoquarz)	29
§ 6. Die Amplitude selbsterregter Schwingungen und ihre Stabilität	31
a) Weiches und hartes Einsetzen der Schwingungen	31
b) Beißdiagramme	36
o) Strombegrenzung (Mittlere Steilheit) Amplitudenbegrenzung erfordert irgendeine Nichtlinearität. Diese kann auch in Veränderungen der Konstanten L. C. R. oder im Gitterstrom liegen. Zu-	39

Belte

nächst nur Krümmung der Anodenstrom-Kennlinie untersuchen. Diese bewirkt 1, Gleichrichtung; 2. Verserrung (letztere hier klein vorausgesetzt; sonst Kippschwingungen); 3. Änderung von Anfangssteilheit S in mittlere Steilheit S_m. Entwicklung in Taylorsche Reihe. Es kommt auf den 3. Differentialquotienten W der Kennlinie, also den 2. Differentialquotienten (die Krümmung) der Steilheitskurve an. Ist er positiv, so setzen die Schwingungen hart ein. Im Raumladungsgebiet ist W negativ, aber nur solange der Nullpunkt nicht wesentlich überschritten wird. Bei sehr großen Amplituden nimmt S_m dauernd zu. Reine Strombegrenzung läßt sich bei Röhren ohne Sättigung kaum herstellen.

- d) Spannungsbegrenzung (Gitterstrom) Zwei verschiedene Wirkungen des Gitterstromes: a) Einfluß auf die Anodenstromkennlinie der Röhre (Indirekte Strombegrenzung). Bei großen Amplituden begrenzt überspannter Zustand die Verstärkung und damit das Anwachsen der Selbsterregung. Bei kleinen Amplituden übertragen sich die Unregelmäßigkeiten im 3. Differentialquotienten der Gitterstromkennlinie mit umgekehrtem Vorzeichen auf die Anodenstromkennlinie. β) Dämpfender Einfluß auf die äußeren Schaltungselemente. Dämpfung schwankt unregelmäßig mit Amplitude. Dadurch auch Unregelmäßigkeit im Schwingungseinsatz möglich. Diese verschwinden bei kleinem Widerstand & des außeren Gitterstromkreises. Gitterstrom bedingt auch Frequenzinderungen.
- e) Künstliche Amplituden begrenzung....

 Durch kleinen Sättigungsstrom; dann Amplitude stark vom Heisstrom abhängig. Spannungsbegrenzung normal durch überspannten Zustand; starker Gitterstrom stört. Großer Widerstand Rg in Gitterzuleitung verhindert Anwachsen über Ug = (— Ug). Verserrungen werden vermieden bei der Audionschaltung. Gleichrichterwirkung verschiebt Gittervorspannung ins Negative. Entspricht Schwundregelung. Intermittierende Selbeterregung. Frequens Übergang zu Kippschwingungen.

§ 7. Die Frequenz selbsterregter Schwingungen und ihre	Seite
Stabilität	
	52 52
Maßnahmen dagegen. Leistungsabgabe nur über ein Verstärkerröhre.	В
 b) Zwei nicht gekoppelte Schwingungskreise jeder für sich rückgekoppelt	56
Durchmodulation bis zum Aussetzen sind die hoch- frequenten Wellenzüge nicht mehr kohärent. — Ver- wickeltere Schaltungen sind schwer zu übersehen. Es entstehen leicht "wilde Schwingungen".	
c) Zwei gekoppelte Schwingungskreise mit einer gemeinsamen Rückkopplung	60

Inhalt.

_	~	WH	Solto
8	8.	Rückkopplungssender für kurze Wellen	64
		Schwingungskreise nur aus den natürlichen Kapasi-	
		täten der Röhre und den natürlichen Induktivitäten	
		der Zuleitungen gebildet. Diese lassen sich nicht beliebig klein machen. Schwierigkeiten unter $\lambda = 3$ m.	
		Starke Schwingkreisströme auch in der Röhre. Be-	
		sondere Durchführungen erforderlich. Einfluß der	
		verschiedenen Teilkapazitäten der Röhre. Ver-	
		meidung von Hochfrequenzdrosseln durch abge-	
		glichenen Aufbau. Gegentaktschaltung, Wellenlängen	
		äußerstenfalls bis \$0 cm herstellbar, aber nur mit	
		kleiner Leistung. Einfluß der Elektronenlaufzeit.	
		Kleine Röhren und hohe Betriebsspannungen günstig.	
		Pseudokennlinien. Entstehen "wilder Schwin-	
		gungen" und ihre Beseitigung.	
8	9.	Fallende Kennlinien	71
		a) Wahre Kennlinien	71
		Definition. Zwei Arten von Instabilitäten: Sprünge	
		im Gleichstrom oder Selbsterregung von Schwin-	
		gungen. Negativer Widerstand. Labilitätakriterium.	
		-R₁ < ℜ₃ umgekehrt dem beim Lichtbogen. Beispiel:	
		Dynatron. Graphische Lösung durch Schnittpunkt	
		der Widerstandsgeraden mit der Kennlinie. Schwin- gungserzeugung. Wirkungsgrad gering. — Gitter-	
		dynatron. Fallende Kennlinien bei schlechtem Vaku-	
		um; bei Baumladegitterröhren; unter Zuhilsenahme	
		eines Magnetfeldes. Habann-Röhre.	
		b) Pseudokennlinien	78
		Jede "fallende Kennlinie" kann als "innere Rück-	
		kopplung", jede äußere Rückkopplung auch als	
		"fallende Kennlinie" aufgefaßt werden. Letzteres im	
		allgemeinen unzweckmäßig. — Pseudokennlinien	
		durch Schwingungen ähnlich Richtkennlinien. Können	
		auch unbeabsichtigt durch wilde Schwingungen ent-	
		stehen.	
		c) Widerstands- (Gleichstrom-) Bückkopplun-	
		gen	80
		Vorzeichenumkehr durch Reumladegitterröhre oder	
		Rückkopplung über zwei Röhren. Bei Reumlade-	
		gitterröhre innere Bückkopplung durch Durchgriff (Negadyn), äußere Bückkopplung durch direkte Ver-	
		frackarin's amoste teneraphisting anten mueros Act.	

- 4		4
_	-	-

bindung zwischen G ₁ und G ₂ . Gleichstromsprünge, Schwingungserzeugung, Kippschwingungen. Bei Rückkopplung über zwei Röhren alles entsprechend.	
Selbsterregung von Reihenschwingungskreisen auch möglich.	
§ 10. Selbsterregung ohne Schwingungskreis. Kippschwingungen	87
Auch Systeme, die nur L und R oder nur C und R ent- halten, können bei sehr schwacher Rückkopplung sinusförmige Schwingungen erregen. Transformator- Beispiel. Bei starker Rückkopplung Kippschwin- gungen. Dabei oft hohe Überspannung; Frequenz leicht, Amplitude wenig veränderlich. Kippschwin- gungen beim Dynatron, beim Widerstandsver- stärker. "Multivibrator". Anwendung zu Frequenz- messungen und Frequenzvervielfachung, zur Zeit- ablenkung. Leichtes Synchronisieren. Frequenz- erniedrigung.	
§ 11. Elektronentanz-Schwingungen	98
a) Elektrischer Elektronentanz (Barkhausen- Kurz-Schwingungen)	98
a) Die Frequenz. Elektrische Bremsfeldschaltung, d. h. Gitter stark positiv, Anode negativ. Größenordnung durch Laufzeit der Elektronen bestimmt. Näherungsformel: $\lambda = \frac{1000 \cdot d_a}{VU_g}$ ($d_a = An$)	
odendurchmesser). Äußere Schwingungskreise haben nicht nur Einfluß auf Amplitude, sondern bei starker Rückwirkung auch auf Frequenz. Zieherschei- scheinungen.	
β) Der Mechanismus der Selbsterregung. Notwendigkeit einer Ordnung zum Tanz. Aussortierung der in falscher Phase schwingenden Elektronen. Anoden-, Kathoden- und Phasenaussortierung. Selbsterregung von Oberschwingungen. Schwingungen viel leichter zu erzeugen als zu erklären. γ) Experimentelle Ergebnisse. Zylindrische Anordnung günstig, besonders mit geradliniger Leitungsdurchführung. 4 Watt Hochfrequenzleistung bei 80 Watt Verlusten.	
b) Magnetischer Elektronentanz (Magnetron- Schwingungen)	109

a) Die Frequens. Diode mit magnetischem Brems-	Seite
feld. Kreisförmig tanzende Elektronen $\lambda = \frac{13000}{80}$	
(\Re = magnetische Feldstärke in Gauß). Unabhängig von Röhrengröße. Erforderliche Betriebsspannung $U_a = \left(1930 \frac{r_a}{\lambda}\right)^2$. Praktisch erreicht $\lambda = 3.15$ cm.	
β) Der Mechanismus der Selbsterregung. Anodenaussortierung. Hochfrequente Rückwirkung magnetischer oder elektrischer Art. Raumladungen stören. Schräges Magnetfeld günstiger. — Alle Elektronentanz-Schwingungen oft nicht nur nicht sinusförmig, sondern auch nicht periodisch, entsprechend Geräusch. Bei gashaltigen Röhren treten auch Ionentanzschwingungen auf.	
§ 12. Zusammenfassung von Tell III A	114
B. Entdämpfung.	
§ 18. Das Problem	120
Verstärker mit Fremderregung und gleichzeitiger Rückkopplung. Letztere so schwach, daß keine Selbsterregung. Wirkung wie zusätzliche Spannung, so daß geringere Fremderregung erforderlich ist, um bestimmte Ausgangsleistung zu erreichen. Erhöhung der Verstärkung $\frac{1}{1-\Re \mathcal{B}}$ fach. Frequenzgang ungleichmäßiger. Rückkopplung daher im allgemeinen für Hochfrequenzverstärker günstig, für Niederfrequenzverstärker ungünstig. Schwankungen des Verstärkungsgrades, nichtlineare Verzerrungen und Störungen werden durch positive Rückkopplung vergrößert, durch negative verkleinert. Durchgriff D wirkt wie negative Rückkopplung.	
§ 14. Brastaschaltungen	123
Rückgekoppelte Röhre wirkt wie zur Anodenspannung parallel geschalteter synchroner Generator. Für R > D überwiegt innerer Generator, so daß Leistungs- abgabe von der Röhre nach außen. Andere Auf- fassung: Röhre besitzt inneren Widerstand R ₁ = 1 S(D-R), der für R > D negativ wird. Für	

Inhalt.	IIIX
§ 15. Entdämpfung eines Schwingungskreises	Seite 128
a) Fremderregung ll _f im Anodenschwingungskreis	128
b) Fremderregung Uf auf der Gitterseite Entdämpsende Wirkung ebenso. Unterschied in der Rückwirkung auf Uf. Eigentümliche Leistungsver- hältnisse. Beispiel: Empfangsantenne. Bei starker Entdämpfung wird mehr Leistung ausgestrahlt ale aufgenommen. Relaiswirkung.	r - r
c) Gitterschwingungskreis	
§ 16. Weitere Schaltungen	. 138
a) Dreipunktschaltung	•
b) Verwickeltere Schaltungen	- c -

§ 17. Bäckgekoppelte Verstärker mit breitem Frequens- bereich	145
a) Ein scheinbarer Widerspruch	145
b) Verstärker mit Transformatorkopplung Kleine Unterschiede in der Verstärkung treten bei Rückkopplung stark hervor. Mathematische Berechnung. Dieselbe Formel wie bei Entdämpfung eines Sohwingungskreises. Nur sehr kleines ϱ . Für negatives $\varrho < \frac{1}{2}$ aperiodisches Anwachsen, Kippsehwingungen.	147
c) Verstärker mit Widerstandskopplung 20fache Vergrößerung der Verstärkung durch eine Bückkopplung möglich. Selbsterregung sinusförmiger Schwingungen praktisch nur möglich, wenn Frequenzbereich künstlich stark verkleinert wird. Sonst Kippechwingungen. Zusammenhang mit § 10.	152
d) Zweidrant-Fernsprechverstärker	163
Rückkopplung bis zur Selbsterregung bei gleich- zeitiger Fremderregung. Schwebungen, "Über- lagerungspfeifen". Im "Mitnahmebereich" keine Schwebungen. Normale Resonanzkurven. Bei festerer Rückkopplung Resonanz weniger ausgeprägt, Mitnahmebereich schmäler. Statt "Mitnahme" besser "Unterdrückung der Selbsterregung" durch die bei Resonanz stärker einwirkende Fremderregung.	156
§ 19. Pendektickkoppiung	163
a) Der Anfang einer anklingenden und das	
Ende einer abklingenden Schwingung Stets gewisse, durch Störungen bestimmte Anfangs- amplitude vorhanden. Diese durch Anklingseit meß-	163

•		• -
10	-	It.

XV

bar. Im Grenzfall Schroteffekt Störungsquelle. Ab- klingender Vorgang ist beendet, sobald seine Amplitude kleiner als der Störpegel. Falls nicht abgeklungen, "Kohärenz" der Wellenzüge bei Pendelrückkopplung. Erzeugung der Pendelungen.	Seite
b) Überlagerung einer Fremderregung Größtmögliche Verstärkung mit einer einzigen Röhre herstellbar. Kleinstmögliche (über dem Störpegel liegende) Anfangsamplitude kann bis zur größtmöglichen (die Röhre voll aussteuernden) Endamplitude verstärkt werden! Freilich moduliert durch Pendelfrequenz. Resonanzschärfe sowohl von der Stärke der Dämpfung wie der Entdämpfung abhängig.	168
§ 20. Zusammenfassung von Teil III B	171
Sachverzeichnis	175

Dritter Teil. Rückkopplung.

A. Selbsterregung.

§ 1. Das Prinzip der Selbsterregung.

Jeder Verstärker erzeugt an der Anodenseite eine verstärkte Wechselspannung II., die stets dieselbe Frequenz hat wie die unverstärkte, dem Gitter zugeführte Wechselspannung 11g. Man sollte daher annehmen, daß zunächst immer eine Wechselspannung U, geringer Leistung von der zu erzeugenden Frequenz vorhanden sein müßte. Das ist aber nicht der Fall, und eine der wichtigsten Anwendungen der Elektronenröhren beruht gerade darauf, daß sich mit ihnen ohne irgendeine vorhandene Wechselstromquelle ganz von selbst Wechselströme von behebiger Frequenz erzeugen lassen, und zwar von einer solchen Vollkommenheit bezüglich der Konstanz und leichten Einstellbarkeit der Frequenz, wie sie von keiner anderen Wechselstromquelle auch nur annähernd erreicht wird. Ganz besonders lassen sich auf diese Weise auch hochfrequente Wechselströme bis zu Frequenzen von 100 Millionen Hertz mit Leichtigkeit völlig konstant erzeugen, was früher nur mit großen Schwierigkeiten und sehr unvollkommen möglich war.

Dieser Selbsterregung von Wechselströmen beliebiger Frequenz liegt ein allgemeines Prinzip der Schwingungserzeugung zugrunde. Man kann grundsätzlich jedes periodische Steuerorgan, das als Verstärker wirkt, das also eine größere periodische Leistung erzeugt, als zum Steuern erforderlich ist, dadurch selbsttätig machen, daß man das Steuerorgan rückwärts von der gesteuerten, verstärkten Leistung betätigt. Die hin und her gehende Dampfmaschine, die sich periodisch selbst ihre Ventile schließt und öffnet, oder die Hausklingel, der Selbstunterbrecher, der sich periodisch selbst seinen Strom ein- und ausschaltet, sind die bekanntesten Beispiele dafür. In gleicher Weise läßt sich mit Elektronenröhren ein periodisch wechselnder

Strom dadurch selbsttätig aufrecht erhalten, daß man die zum Steuern am Gitter erforderliche Wechselspannung lig durch geeignete Schaltungsmaßnahmen rück wärts durch den anodenseitig abgegebenen verstärkten Wechselstrom erzeugen läßt. Man bezeichnet eine derartige Schaltungsmaßnahme als eine "Rückkopplung" und spricht im Gegensatz zur "Fremderregung" beim gewöhnlichen Verstärker von einer "Selbsterregung". Entsteht durch eine Rückkopplung am Gitter gerade die Wechselspannung, die bei Fremderregung zur Erzeugung des Anodenwechselstroms erforderlich wäre, so ist ohne weiteres klar, daß sich dann die Schwingungen bei Selbsterregung ebenso aufrecht erhalten können wie bei Fremderregung. Fraglich ist nur, ob sie es auch wirklich tun, ob bei Selbsterregung dieser Schwingungszustand noch stabil bleibt, oder ob durch die gegenseitige Beeinflussung von erzeugenden und erzeugten Schwingungen irgendeine Neigung zur Änderung des Zustandes eintritt. Fraglich ist ferner, oh die Schwingungen auch von selbst einsetzen, wenn zunächst noch gar keine Schwingungen vorhanden sind. Es wird sich zeigen, daß das letztere ohne Schwierigkeiten erreicht werden kann. Der schwingungslose Zustand wird bei genügend fester Ruckkopplung völlig labil, d. h. er kann nicht bestehen bleiben, es treten stets von selbst, ohne daß es irgend eines äußeren Anstoßes bedürfte, Schwingungen auf, die sich in kürzester Zeit bis zu einer stabilen Endamplitude aufschaukeln. Das ist natürlich für die praktische Anwendung von großer Bedeutung. Es gibt freilich auch Fälle, bei denen zunächst ähnlich wie beim Uhrpendel ein gewisser Anstoß erforderlich ist, um die Schwingungen in Gang zu bringen, während sie sich, einmal in Gang gebracht, dauernd weiter erhalten (Harter und weicher Schwingungseinsatz). gibt ferner Fälle, bei denen ein stabiler Endzustand nicht erreicht wird, die Schwingungen z. B. bei einer bestimmten Amplitude plötzlich abreißen und dann immer wieder von neuem anfangen, sich aufzuschaukeln ("Intermittierende Selbsterregung"). Oder es treten sogenannte "Kippschwingungen" ein, die alles andere als sinusförmig sind und in einer Art periodischem Umkippen von einem Zustand in einen anderen und wieder zurück bestehen. Auch diakontinuierliche Änderungen in der Frequenz, ein plötzliches Umspringen einer Schwingung in einen anderen Zustand bei ganz kontinuierlicher Änderung der Versuchsbedingungen kommen vor ("Zieherscheinungen"). Es entstehen schließlich oft ganz unbeabsichtigt Schwingungen von einer ganz anderen, meist sehr hohen Frequenz, sogenannte "wilde Schwingungen", die den eigentlichen gewollten Zustand völlig verändern und bei größeren Röhren sogar erhebliche Zerstörungen verursschen können. Doch sind das alles Fälle, die nur unter besonderen Bedingungen auftreten und die praktisch im wesentlichen nur aus dem Grunde von Interesse sind, daß man lernt sie zu vermeiden. Sie sollen daher erst in zweiter Linie später behandelt werden.

§ 2. Die Selbsterregungsformel.

So schwierig das allgemeine Problem der Selbsterregung ist, so einfach läßt sich eine grundlegende Bedingung aufstellen, die beim Bestehen stationärer sinusförmiger selbsterregter

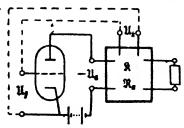


Bild 1. Allgemeines Schema einer Rückkopplung.

Schwingungen stets erfüllt sein muß und die auch weiter bei der Frage nach der Stabilität eines solchen Schwingungsgleichgewichts gute Dienste leisten wird. Man denke sich zunächst den Fall der Fremderregung. Dem Gitter der Röhre wird eine bestimmte Wechselspannung us zugeführt (Bild 1).

Durch die Verstärkereigenschaften der Röhre entsteht dann eine verstärkte Anodenwechselspannung

(1)
$$u_a = -\mathcal{B} u_g$$
; $\mathcal{B} = -\frac{u_a}{u_a} = ,, Verstärkungsfaktor".$

Das negative Vorzeichen ist gewählt, weil die Anodenwechselspannung II. bei Verstärkung durch eine Röhre nahezu die

entgegengesetzte Phase wie die Gitterwechselspannung u., hat. Man erhält dann unter den normalen Verhältnissen als Verstärkungsfaktor & einen positiven, dimensionslosen Vektor mit einer Phasenverschiebung kleiner als 90°. Will man jetzt zur Selbsterregung übergehen, ohne an dem Schwingungszustand etwas zu ändern, so braucht man nur auf der Anodenseite durch eine Schaltungsanordnung eine der ursprünglichen Spannung U. nach Amplitude und Phase genau gleiche Spannung U, herzustellen und dem Gitter zuzuführen. Dann bleibt auch nach dem Fortfall der Fremderregung alles beim alten. Röhre spricht auf eine am Gitter anliegende Wechselspannung U. immer in derselben Weise an, ganz gleichgültig, woher diese Wechselspannung U, stammt. Man bezeichnet zweckmäßig die Schaltungsanordnung, die aus der Anodenspannung - 11, die Spannung $u_k = u_g$ herstellt, als "Rückkopplung" oder ausführlicher als "Rückkopplungsfaktor".

Auch \Re ist ein dimensionsloser Vektor, das Spannungsverhältnis eines Vierpols. Mit diesen Bezeichnungen läßt sich die notwendige Bedingung für den stationären Zustand, daß nämlich $\mathfrak{U}_{\mathbf{k}}$ in Gleichung (2) gleich $\mathfrak{U}_{\mathbf{g}}$ in Gleichung (1) sein muß, schreiben:

(3)
$$\Re = \frac{1}{\Re}$$
 oder $\Re \Re = 1$. (Allgemeine Selbsterregungsformel.)

Bei einer 10 fachen Verstärkung $\Re = 10$ ist also eine Rückkopplung $\Re = 0,1 = 10^{\circ}/_{0}$ zur Selbsterregung erforderlich, während bei 100 facher Verstärkung schon $1^{\circ}/_{0}$ Rückkopplung ausreicht.

Die Bedingung (3) ist ganz allgemein gültig, z. B. auch dann, wenn die Verstärkung über mehrere Röhren hintereinander verläuft. Unter — Ua ist dann die Anodenwechselspannung an derjenigen Röhre zu verstehen, von der die Rückkopplung zur rückwärtigen Erzeugung von Ug abzweigt. Bei sehr hoher Verstärkung B genügt dann zur Selbsterregung schon eine sehr geringe Rückkopplung R, wie sie leicht unbeabsichtigt durch

die natürlichen Kapazitäten oder eine gemeinsame Gleichspannungsquelle hervorgerufen werden kann. Vgl. Bd. II § 32 b und c. Es wurde dort auch schon auf die Folgerung hingewiesen, daß zur Vermeidung von Selbsterregung der Rückkopplungsfaktor R nur für den Frequenzbereich klein zu halten ist, für den der Verstärkungsfaktor R tatsächlich groß ist. Denn R und R sind im allgemeinen für verschiedene Frequenzen verschieden groß.

Hier soll umgekehrt untersucht werden, wie man die Selbsterregung als Selbstzweck möglichst günstig und betriebssicher
herbeiführen kann. Man wird dafür natürlich im allgemeinen
möglichst einfache Verhältnisse wählen, d. h. besonders eine
Verstärkung durch nur eine Röhre, also eine Rückkopplung
von der Anodenseite derselben Röhre aus, wie in Bild 1 gezeichnet, herstellen.

Bei einer Röhre gilt für den sich dem Gleichstrom überlagernden Wechselstrom, solange die Kennlinie in dem Arbeitsgebiet noch als hinreichend geradlinig betrachtet werden kann und solange kein Gitterstrom fließt, die Steuergleichung

$$\mathfrak{F}_{\mathbf{a}} = 8 \left(\mathfrak{U}_{\mathbf{g}} + D \, \mathfrak{U}_{\mathbf{a}} \right).$$

Hieraus und aus dem äußeren Widerstand der Schaltung

(5)
$$\Re_a = -\frac{\mathfrak{U}_a}{\mathfrak{R}_a}$$
 (also $\mathfrak{U}_a = -\mathfrak{R}_a \mathfrak{F}_a$)

bestimmt sich der Verstärkungsfaktor

(6)
$$\Re = -\frac{\mathfrak{U}_a}{\mathfrak{U}_g} = \frac{1}{D + \frac{1}{S \Re_a}} = \frac{1}{D \frac{\Re_a}{R_1 + \Re_a}}$$
. Vgl. Bd. II § 3 (7).

Die Bedingung (3) für das stationäre Bestehenbleiben selbsterregter Schwingungen geht also über in

(7)
$$\Re = D + \frac{1}{S\Re_a}$$
. (Spezielle Selbsterregungsformel.)

Von den vier in dieser Formel (7) vorkommenden Größen sind D und S von den Eigenschaften der Röhre, R und R

von den Eigenschaften der Schaltung abhängig. Der Durchgriff D der Röhre hängt praktisch nur von deren geometrischen Abmessungen ab, die Steilheit Saußerdem noch von dem Arbeitspunkt, d. h. den Gleichspannungen Ug und Ug. Sind die Schwingungen so groß, daß die Kennlinie nicht mehr als geradlinig zu betrachten ist, so ist $S = S_m$ die "mittlere Steilheit" in dem durch die Schwingungen ausgesteuerten Gebiet. S hängt dann auch von der Größe der Aussteuerung, d. h. der Amplitude der selbsterregten Schwingungen ab. Vgl. § 6c. Die Röhrengrößen S und D haben bis zu Frequenzen von 106 Hertz den Phasenwinkel 0, denn die durch (4) ausgedrückte Steuerwirkung des Anodenstromes durch die Gitter- und Anodenspannung erfolgt praktisch augenblicklich, also ohne Phasenverschiebung. Erst bei extrem hohen Frequenzen, etwa von 107 Hz ab, macht sich die endliche Zeit für die Umgestaltung der Raumladungen und noch wesentlich später, etwa von 108 Hz ab, die endliche Laufzeit der Elektronen bemerkbar, durch die in der Steuergleichung (4) eine Verspätung des gesteuerten Stromes 3, gegenüber den steuernden Spannungen U, und D U, eintritt, so daß S eine positive Phasenverschiebung erhält. In allen übrigen Fällen sind aber S und D völlig "phasenrein" und für alle Frequenzen von genau derselben Größe, wie sie auch aus Gleichstrommessungen gefunden werden (vgl. Bd. I § 18).

Im Gegensatz hierzu haben die beiden Schaltungsgrößen \Re und \Re_a im allgemeinen einen von 0 verschiedenen Phasenwinkel und beide ändern sich sowohl ihrer Größe wie ihrer Phase nach mit der Frequenz der Schwingungen, und zwar ganz besonders stark, wenn Resonanzerscheinungen eine Rolle spielen, was bei den meisten Röhrensendern der Fall ist. Dagegen sind \Re und \Re_a im allgemeinen vom Arbeitspunkt auf der Kennlinie oder von der Amplitude der Schwingungen nicht abhängig, falls man von Eisensättigung und dergleichen absieht. Nur wenn der Gitterstrom \Im_g , merklich wird, der innere Gitterwiderstand $\Re_g = \frac{11}{\Im_g}$ der Röhre nicht mehr groß gegen den äußeren Gitterwiderstand der Schaltung ist, kann dadurch der Rückkopplungs-

faktor & und auch der Anodenwiderstand & geändert werden, da der Gitterstrom einen zusätzlichen, mit der Amplitude veränderlichen Widerstand darstellt. Der Einfluß des Gitterstroms wird besonders beim Eintritt des überspannten Zustands merklich und verhindert dann oft ein weiteres Anwachsen der Schwingungen. Vgl. § 6d.

§ 3. Folgerungen aus der Selbsterregungsformel.

So einfach die Selbsterregungsformel (3) bzw. (7) aussieht, so enthält sie doch eine nicht unbeträchtliche Schwierigkeit. Die Größen 2 und 28 bzw. R. sind zwar für einen Wechselstrom bestimmter Frequenz meist leicht zu berechnen, die Frequenz der sich erregenden Schwingungen ist aber zunächst ganz unbekannt! Man weiß nur, daß jede Frequenz, für die R der Gleichung (3) bzw. (7) entspricht, sich selbst erregen kann, muß aber gewissermaßen erst alle Frequenzen durchprobieren. Das ist um so schwieriger, als sich & und M. häufig mit der Frequenz stark ändern und besonders bei Resonanzerscheinungen für gewisse Frequenzen ganz andere Werte besitzen als für unmittelbar benachbarte. Dazu kommt, daß die durch R ausgedrückte Steuerwirkung nicht nur hinreichend groß sein, sondern auch in der richtigen Phase erfolgen muß, wenn die Schwingungen unverändert bestehen bleiben sollen. Würde die Steuerwirkung zu früh oder zu spät einsetzen, so würden die Schwingungen schneller oder langsamer erfolgen, die Frequenz würde sich ändern. Diese beiden physikalischen Bedingungen: richtige Amplitude und richtige Phase, kommen mathematisch in Gleichung (3) bzw. (7) dadurch zum Ausdruck, daß R und B, bzw. R gerichtete Größen sind, die erst durch ihren absoluten Betrag und ihren Phasenwinkel oder auch durch ihren reellen und ihren imaginären Teil bestimmt sind. Eine solche Gleichung zwischen gerichteten, komplexen Größen ist gleichwertig zwei Gleichungen, indem sowohl die reellen wie die imaginären Teile odes auch die absoluten Beträge wie die Phasenwinkel auf beiden Seiten unter sich gleich sein müssen. Die Gleichheit der absoluten Beträge stellt die Bedingung dar, daß die Amplitude der Schwingungen, die Gleichheit der Phasen, daß die Frequenz der Schwingungen unver ndert bleibt. Denn auch die Frequenz der selbsterregten Schwingungen ist zunächst ganz unbekannt und wird durch Formel (3) bzw. (7) mit festgelegt. Der physikalische Inhalt der Selbsterregungsformel ist hiernach nicht so ganz leicht zu erkennen und soll daher etwas genauer erörtert werden.

a) Die Amplitudenbilanz. Man muß sich stets vor Augen halten, daß die Selbsterregungsformel (3) bzw. (7) besagt, daß die durch die äußere Schaltung bedingte Rückkopplung A gerade so groß gemacht ist, daß sie die zur Aufrechterhaltung der Schwingungen am Gitter erforderliche Wechselspannung ug gerade wieder hervorruft. Dann erkennt man sofort, daß bei einem anderen Wert von R kein stationäres Schwingungsgleichgewicht möglich ist. Ist z. B. & kleiner als der Gleichung (7) entspricht, so wird die Gitterwechselspannung Ug kleiner und damit nach (4) und (5) auch die Aussteuerung 3, und 11, kleiner als dem Gleichgewichtszustand entspricht. Dadurch wird über die Rückkopplung nach (2) weiter ein noch kleineres 11, erzeugt, dadurch wieder u. kleiner usw. Die Schwingungen müssen also abklingen, können sich bei zu kleinem R nicht aufrecht erhalten. Ist umgekehrt R größer als es der Gleichung (7) entspricht, so wird U, und damit die Aussteuerung immer größer. - Die Schwingungen wachsen immer weiter an, bis sie durch irgendeine in den obigen linearen Gleichungen nicht zum Ausdruck kommende Begrenzung am weiteren Anwachsen gehindert werden¹). Als solche Begrenzungen wirken praktisch in erster Linie die Nichtlinearität der Anodenstrom-Kennlinie, die bei größeren Amplituden eine Verminderung der "mittleren Steilheit" S im Schwingungsbereich bewirkt und so eine weitere proportionale Vergrößerung des verstärkten Stromes 3. mit der Gitterspannung U., nicht mehr eintreten läßt, in zweiter Linie ferner das Einsetzen des Gitterstromes, das besonders bei Eintritt des überspannten Zustandes stark dämpfend, vermindernd auf R. oder R einwirkt. Dies soll später in § 6 be-

¹) Hiervon gibt es Ausnahmen. Vgl. F. Strecker: Die elektrische Selbsterregung. 8. Hirzel, 1947.

sprochen werden. Hier ist von besonderer Wichtigkeit, daß die ursprüngliche, durch die Fremderregung hervorgerufene Wechselspannung Ug beliebig klein sein kann. Da die Verstärkung & der Röhre keinen Schwellwert besitzt, die Röhre auch beliebig kleine Wechselspannungen in genau demselben Maße verstärkt, so müssen sich auch beliebig kleine Schwingungen, wie sie stets durch irgendwelche kleine Störungen (vgl. § 19a) vonselbst vorhanden sind, immer weiter zu Schwingungen von größerer Amplitude aufschaukeln, sobald & größer als 1/8 ist. Daraus folgt:

Die Selbsterregungsformeln (3) oder (7) Geben mit dem Gleichheitszeichen die Rückkopplung R an, die für den Fall der stationären selbsterregten Schwingungen erforderlich ist.

Macht man & kleiner als $1/\Re$, bzw. als $\left(D + \frac{1}{S \Re_a}\right)$, so können keine selbsterregten Schwingungen bestehen bleiben, etwa vorhandene Schwingungen klingen ab. Macht man dagegen & größer als $1/\Re$, bzw. als $\left(D + \frac{1}{S \Re_a}\right)$, so entstehen stets ganz von selbst Schwingungen, die sich (normalerweise) bis zu einer gewissen, endlichen Amplitude außchaukeln, für die dann wieder das Gleichheitszeichen in der Selbsterregungsformel gilt, indem sich mit der Vergrößerung der Amplitude schließlich die "Konstanten" der Formel ändern.

Röhren mit großer Steilheit S und kleinem Durchgriff D und Schaltungen mit großem wirksamen Anodenwiderstand \Re_a neigen besonders leicht zur Selbsterregung. Beachtet man, daß der innere Widerstand der Röhre $R_i=1/S$ D ist, so kann man die Selbsterregungsformel auch schreiben:

$$\mathfrak{R} = D\left(1 + \frac{R_i}{\Re_*}\right).$$

Es kommt also auf das Verhältnis von \Re_a zu R_i an. Für $\Re_a \gg R_i$ genügt $\Re=D$, bei Widerstandsanpassung $|\Re_a|=R_i$ und Phasenreinheit von \Re_a muß $\Re=2$ D sein. Ist \Re_a wesentlich kleiner als R_i , so kann Selbsterregung nur bei sehr fester Rückkopplung eintreten.

Will man einen bestimmten Schwingungszustand, d. h. ein bestimmtes $\mathfrak{U}_{\mathfrak{g}}$ und $\mathfrak{U}_{\mathfrak{a}}$ durch Selbsterregung herstellen, so liegt damit auch die Größe des Rückkopplungsfaktors $\Re = -\frac{\mathfrak{U}_g}{11}$ fest. Auf diese Weise wird man besonders dann die Größe von Raus den gewünschten Größen von U, und U, bestimmen, wenn es sich um so große Amplituden handelt, daß die Kennlinie auch nicht angenähert mehr als geradlinig betrachtet werden kann. Das ist z. B. der Fall bei der Selbsterregung von Amplituden, wie sie beim Senderverstärker in Band II § 20 und 21 behandelt wurden. Dabei kann es dann freilich vorkommen, daß sich kleinere Amplituden nicht mehr selbst erregen können. Liegt z. B. der Arbeitspunkt im negativen Teil der Kennlinie, wo der Ruhestrom und damit auch die Steilheit der Kennlinie völlig null ist, so tritt für kleine Gitterwechselspannungen überhaupt keine Stromaussteuerung und Verstärkung ein. Damit ist auch eine Selbsterregung unmöglich. Werden aber durch irgendeinen Anstoß so große positive Gitterspannungen erzeugt, daß eine Stromaussteuerung eintritt, so kann sich ein so eingeleiteter Schwingungsvorgang durch Selbsterregung dauernd weiter aufrecht erhalten. Vgl. auch § 6.

b) Die Phasenbilanz. Wie schon oben gesagt, können selbsterregte stationäre Schwingungen nur bestehen, wenn die durch die Rückkopplung erzeugte Gitterspannung nicht nur der Amplitude, sondern auch der Phase nach gerade den richtigen Wert besitzt. Bei sinusförmigen Schwingungen lassen sich Amplitude und Phase zusammen durch eine komplexe Zahl oder graphisch durch einen Vektor, eine gerichtete Strecke, darstellen (vgl. Bd. I § 14). So zeigt Bild 2 die Vektordarstellung der Selbsterregungsformel (7). Die Röhrengrößen S und D besitzen keine Phasenverschiebung. D ist also in Richtung der reellen Achse aufzutragen. Der wirksame äußere Widerstand der Schaltung \Re_a hat einen Phasenwinkel φ_a zwischen 0 und \pm 90°. Positives φ_a bedeutet einen induktiven (\Im_a nacheilend gegen — \Im_a), negatives φ_a einen kapazitiven Widerstand (\Im_a voreilend gegen — \Im_a).

also den entgegengesetzten wie \Re_a , nämlich — φ_a . Der Vektor \Re ist gleich der geometrischen Addition der Vektoren D und $\frac{1}{S \Re_a}$. Er hat daher stets einen Phasenwinkel φ_k , dessen Vorzeichen

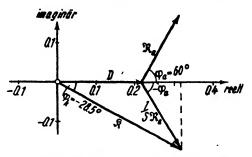


Bild 2. Vektordarstellung der Selbsterregungsformel.

entgegengesetzt dem von φ_a und dessen absoluter Betrag kleiner als φ_a ist. Bei stationären selbsterregten Schwingungen besteht daher eine ganz bestimmte Phasenbeziehung zwischen \Re und \Re_a . Insbesondere gilt:

Der Phasenwinkel von R. kann nur null werden, wenn auch der von R null ist, die Rückkopplung phasenrein ist. — (10) Nur in diesem Fall kann sich daher genau die Resonanz-frequenz eines den Anodenwiderstand R. bildenden Parallelschwingungskreises erregen.

Ein solcher Parallelschwingungskreis (vgl. Bild 3) wird gern zur Selbsterregung einer bestimmten Frequenz verwandt. Er hat nur für seine Resonanzfrequenz einen phasenreinen Kombinationswiderstand. Für höhere Frequenzen ist er kapazitiv, für tiefere induktiv. Amplitudenmäßig wäre für die Selbsterregung die Resonanzfrequenz am günstigsten. Denn für diese wird der Kombinationswiderstand \Re_a besonders groß, ϱ mal größer als die Teilwiderstände ω L oder $\frac{1}{\omega C}$ (ϱ = Resonanzschärfe vgl. Bd. I § 23.) Für die Resonanzfrequenz käme man daher mit einem besonders kleinen Rückkopplungsfaktor Ω aus. Trotzdem kann sich die Resonanzfrequenz nicht erregen, wenn

 ${\mathfrak R}$ nicht phasenrein ist. Die ϱ -fache Resonanzüberhöhung tritt dann nicht voll ein und man braucht einen entsprechend größeren

Rückkopplungsfaktor. Bild 4 zeigt, wie die Verhältnisse dann liegen. Der geometrische Ort für den Endpunkt des Vektors $\frac{1}{8\,\Re_a}$, der an den Vektor D anzusetzen ist, ist in Abhängigkeit von der Frequenz die strichpunktierte senkrechte Gerade. Für phasenreines \Re erregt sich genau die Resonanzfrequenz, es ist die Verstimmung $\mathbf{v} = 0$. \Re brauchte nur von 0 bis r zu reichen. Bei dem

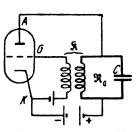


Bild 3. Rückgekoppelter Anodenschwingungskreis.

gezeichneten Phasenwinkel φ_k von $\mathfrak R$ muß der Endpunkt von $\mathfrak R$ aber bei b liegen, wo die Verstimmung $\mathbf v=\frac{2}{\rho}$, bei $\varrho=50$

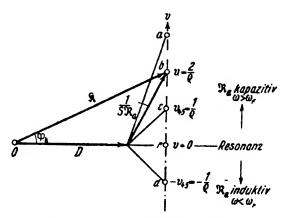


Bild 4. Vektordarstellung zu Bild 3.

also gleich $4^0/_0$ ist. Der absolute Betrag von \Re_a wird dort $\sqrt{1+2^a}=2,24$ mal kleiner als bei Resonanz und für die Phase von \Re_a gilt tg $\varphi_a=-2$, also $\varphi_a=-63,5^0$ kapazitiv. Man erkennt, wie unter Umständen schon ein kleines φ_k ein großes φ_a

bedingen kann, nämlich dann, wenn $\frac{1}{S \Re_a}$ wesentlich kleiner als D ist.

Die Rückkopplung wird am einfachsten durch einen Transformator hergestellt, dessen eine Seite an die Anodenspannung \mathfrak{U}_a angeschlossen ist, während die andere Seite zum Gitter führt und hier die erforderliche Gitterspannung \mathfrak{U}_g erzeugt (vgl. Bild 3).

Der Rückkopplungsfaktor A ist dann nichts anderes als das Spannungübersetzungsverhältnis $\mathfrak{U}_{g}/\mathfrak{U}_{a}$ des Transformators. Dabei muß die Polung so gewählt werden, daß \mathfrak{U}_{g} im wesentlichen die entgegengesetzte Phase wie \mathfrak{U}_{a} hat. Bei falscher Polung des Transformators erhält man keine Selbsterregung.

Fließt kein Gitterstrom, so läuft der Transformator gitterseitig leer. Da die in der Anodenseite liegende Wicklung nicht nur einen induktiven Widerstand jwL, sondern auch einen Ohm'schen Widerstand R_L besitzt, erhält der Rückkopplungsfaktor \Re einen durch tg $\varphi_{\mathbf{k}} = \frac{R_{\mathbf{L}}}{\omega L}$ bestimmten positiven Phasenwinkel. Meist ist ωL wesentlich größer als R_L . Für $\omega L = 57 R_L$ wird $\varphi_k = 1^{\circ}$. Es erregt sich dann eine Frequenz, die nur ganz wenig höher als die Eigenfrequenz des Schwingungskreises liegt. Fließt aber ein Gitterstrom, so kann durch die dadurch bedingte Belastung des Transformators der Phasenwinkel φ_k auch negativ werden. Es erregt sich dann eine etwas tiefere Frequenz. Gleichzeitig vermindert aber die Belastung durch den Gitterstrom infolge der in der Gitterspule entstehenden Gegenamperewindungen die wirksame Induktivität des Schwingungskreises. Die Eigenfrequenz des Schwingungskreises wird bei Belastung der Sekundärseite höher. Bei einem Transformator mit fester Kopplung (= geringer Streuung) überwiegt meist der letztere Einfluß, so daß die sich erregende Frequenz beim Einsetzen des Gitterstromes höher wird.

e) Berechnung eines Beispiels. In einem praktisch vorliegenden Einzelfall wird man kaum je eine quantitative Berechnung der Selbsterregungsbedingungen durchführen. Die Messung der vielen für die Berechnung als Unterlage gebrauchten Konstanten würde viel schwieriger und zeitraubender sein als die direkte experimentelle Beobachtung der Selbsterregung selbst und aller in dem Einzelfall auftretenden interessierenden Erscheinungen. Eine Berechnung hat aber einen gewissen pädagogischen Wert, solange sie auf kurze und übersichtliche Formeln führt, weil man dann durch sie einen tieferen Einblick in den Mechanismus des Vorgangs und den Zusammenhang zwischen den einzelnen Größen gewinnt, der auch dann von Interesse ist, wenn der Betrag dieser Größen nicht durch Messungen festgelegt ist. Daher sei als Beispiel die in Bild 3 gezeichnete Transformatorschaltung mit Parallelschwingungskreis für den einfachsten Fall berechnet, daß der Gitterstrom vernachlässigt werden kann. Es ist dann

$$\Re = \frac{\mathfrak{M}}{\mathfrak{R}_L} \quad \text{und} \quad \Re_{\mathbf{A}} = \Re_L \| \Re_{\mathbf{C}} = \frac{\mathfrak{R}_L \cdot \Re_{\mathbf{C}}}{\mathfrak{R}_L + \mathfrak{R}_{\mathbf{C}}},$$

wobei ist

$$\mathfrak{M} = j \omega M; \quad \mathfrak{R}_L = R_L + j \omega L; \quad \mathfrak{R}_C = R_C + \frac{1}{j \omega C}.$$

 R_{c} kennzeichnet die Verluste im Kondensatorzweige, ebenso wie R_{L} die Verluste in der Spule L. Die Selbsterregungsformel

$$\Re = D + \frac{1}{S \Re A} = D \left[1 + \frac{R_1}{\Re A} \right] \qquad \left(R_1 = \frac{1}{S D} \right)$$

geht also über in

$$\frac{\mathfrak{M}}{\mathfrak{R}_{L}} = D \left[1 + R_{1} \frac{\mathfrak{R}_{L} + \mathfrak{R}_{C}}{\mathfrak{R}_{L} \cdot \mathfrak{R}_{C}} \right]$$

oder

$$\mathfrak{M} \cdot \mathfrak{R}_{C} = D \left[\mathfrak{R}_{L} \mathfrak{R}_{C} + R_{I} (\mathfrak{R}_{L} + \mathfrak{R}_{C}) \right];$$

$$\cdot \quad \text{also} \quad j \omega M R_{C} + \frac{M}{C} =$$

$$D\left[\frac{L}{C} + R_L R_C + j\left(\omega L R_C - \frac{R_L}{\omega C}\right) + R_l\left[R_L + R_C + j\left(\omega L - \frac{1}{\omega C}\right)\right]\right]^{l}\right).$$

¹⁾ Diese Formel ergibt sich auch aus den in § 15a durchgeführten Rechnungen. Auch die für andere Schaltungen in Teil B abgeleiteten

Reclies und Imaginares gleichgesetzt, ergibt die beiden Gleichungen:

(I)
$$\frac{\mathbf{M}}{\mathbf{C}} = \mathbf{D} \left[\frac{\mathbf{L}}{\mathbf{C}} + \mathbf{R}_{1} (\mathbf{R}_{L} + \mathbf{R}_{C}) + \mathbf{R}_{L} \mathbf{R}_{C} \right],$$

(II)
$$\omega M R_C = D \left[\omega L R_C - \frac{R_L}{\omega C} + R_I \left(\omega L - \frac{1}{\omega C} \right) \right].$$

Aus der zweiten Gleichung bestimmt sich die Frequenz ω der sich erregenden Schwingungen; aus der ersten dagegen die Amplitude, bis zu der sich die Schwingungen aufschaukeln. Wie später in § 6c ausgeführt wird, ändert sich nämlich die mittlere Steilheit S und damit auch $R_1 = \frac{1}{SD}$ mit der Amplitude der Schwingungen. Da nun Gleichung (I) ein ganz bestimmtes R_1 und damit S ergibt, müssen die Schwingungen sich so lange ändern, bis dieses erreicht ist.

Schreibt man (I) in der Form:

(I')
$$\frac{\mathbf{M}}{\mathbf{L}} = \mathbf{D} \left[1 + \frac{\mathbf{C} (\mathbf{R_L} + \mathbf{R_C})}{\mathbf{L}} (\mathbf{R_l} + \mathbf{R_L} \| \mathbf{R_C}) \right],$$

so erkennt man in ihr deutlich die Amplitudengleichung von $\Re = D\left[1 + \frac{R_1}{\Re_a}\right]$ wieder, da ja nahezu $|\Re| = \frac{M}{L}$ und $|\Re_a| \approx \frac{L}{C\left(R_1 + R_0\right)}$ ist und $R_L \|R_C$ praktisch gegen R_1 zu vernachlässigen ist.

Setzt man in die Gleichung (II) die Resonanzfrequenz des Schwingungskreises $\omega_r = \frac{1}{\sqrt{L C}}$ ein, so erhält man unter Berücksichtigung von (I')

(II')
$$\frac{\omega^2}{\omega_r^2} = \frac{1 + \frac{R_L}{R_l}}{1 - \frac{R_C}{R_l} \left(\frac{M}{DL} - 1\right)} \approx \frac{1 + \frac{R_L}{R_l}}{1 - \frac{R_C}{|\Re_s|}}$$

Formeln geben für den Grenzfall der wölligen Entdampfung die hier behandelten Selbsterregungsbedingungen. Der Zähler ist stets größer als 1, der Nenner stets kleiner als 1, da $\frac{M}{DL}-1$ nach (I') stets positiv und nahezu gleich $\frac{R_1}{|\Re_a|}$ ist. Daher ist ω stets größer als ω_r , d. h. die Frequenz der sich erregenden Schwingungen stets höher als die Eigenfrequenz des Anodenschwingungskreises. Weil aber $|\Re_a|$ (und das ihm meist nahezu gleiche R_1) ϱ^2 mal größer als $R_L + R_C$ ist, so ist die Abweichung von der Resonanzfrequenz bei normaler großer Resonanzschärfe ϱ außerordentlich gering. Für $\varrho=32$, also $\varrho^2=1000$, beträgt die Abweichung von der Resonanzfrequenz nur etwa $0,1^{\circ}/_{0}$.

Bei verwickelteren Schaltungen erhält man nicht einfach durch Gleichsetzen des Reellen und Imaginären zwei Gleichungen, von denen die eine nur R_1 , die andere nur ω als Unbekannte enthält, und die so unmittelbar einerseits die Amplitude, andererseits die Frequenz der Schwingungen ergeben. Normalerweise enthalten vielmehr beide Gleichungen sowohl R_1 als auch ω , so daß die Berechnung dieser beiden Größen aus den beiden Gleichungen zu wesentlich umständlicheren Formeln führt und damit praktisch im allgemeinen wertlos wird — weitere Rechnungen sind in § 15—17 durchgeführt.

§ 4. Transformator-Rückkopplungen.

Im allgemeinen will man durch die Selbsterregung einen möglichst sinusförmigen Wechselstrom von einer ganz bestimmten Frequenz erzeugen. Das erreicht man am besten durch einen schwach gedämpften Parallelschwingungskreis in der Anodenseite (vgl. Bild 3). Auch bei starker Stromaussteuerung, wie sie bei Selbsterregung im allgemeinen eintritt, bei der der Röhrenstrom is stark von der Sinusform abweicht, bleibt dann der Strom im Schwingungskreise fast sinusförmig. Bei nahezu phasenreiner Rückkopplung wird er nahezu ϱ mal, d. h. oft 100 mal stärker als der Röhrenstrom. Vgl. Bd. II S. 127 Satz 121. Es erregt sich dann praktisch die Resonanzfrequenz des Parallelschwingungskreises, für die die Selbsterregungsbedingungen infolge des auf das ϱ -fache anwachsenden Widerstandes \Re_a be-

sonders günstig sind. Bezüglich der Wahl des günstigsten \Re_a , des günstigsten Arbeitspunktes auf der Kennlinie usw. gilt das in Bd. II über Kraftverstärker und Senderverstärker Gesagte. Denn auch hier kann ja die "unverstärkte", zur Stromaussteuerung erforderliche Wechselspannung \mathbb{I}_g durch eine entsprechende Wahl des Rückkopplungsfaktors ohne alle Schwierigkeiten beliebig groß gemacht werden. Kommt es z. B. auf eine größtmögliche Abgabe von Wechselstromleistung an, so wird man \Re_a gleich dem Grenzwiderstand machen und den Arbeitspunkt ziemlich tief unten auf, die Kennlinie verlegen. Legt man dagegen auf besonders gute Sinusform Wert, wählt man \Re_a etwas kleiner und den Arbeitspunkt höher.

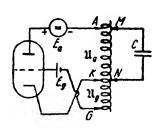


Bild 5. Schaltung wechselstrommäßig mit Bild 3 identisch.

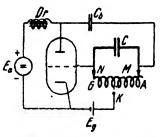


Bild 6. Schaltung wirkt wie die von Bild 3 und 5.

Wichtig ist eine möglichst phasenreine Ruckkopplung. Denn andernfalls wird auch \Re nicht phasenrein und damit die Leistungsabgabe ungünstig. In dieser Hinsicht ist die schon in § 3b besprochene und in Bild 3 gezeichnete Transformatorschaltung recht günstig. Der dort gezeichnete Transformator mit zwei getrennten Wicklungen ist wechselstrommäßig identisch mit dem in Bild 5 gezeichneten Spartransformator mit einer durchlaufenden Wicklung und Anzapfungen. Um die richtige Polung zu erhalten, muß die Gitterspannung G K das entgegengesetzte Vorzeichen wie die Anodenspannung AK haben. Über AG liegt dann die Summe beider Spannungen, die größer als die Anodenspannung ist! Man legt den Kondensator C, der mit der Induktivität des Transformators den Parallelschwingungskreis

bildet, mit seinen Zuleitungen M N am besten über den ganzen Bereich A G, wie das in Bild 6 gezeichnet ist. Dann fließt der starke Schwingkreisstrom auch mit durch die Gitterwindungen G K und erzeugt auch hier einen Ohmschen Spannungsabfall \Im R, der sonst (z. B. bei der Schaltung nach Bild 3) nur in den Anodenwindungen auftritt. Dadurch werden Gitter- und Anodenspannung in der Phase noch mehr entgegengesetzt gleich, der Rückkopplungsfaktor noch phasenreiner. Man kann ganz allgemein durch die Kondensatoranzapfungen M N die sich selbst erregende Frequenz, durch die A-Anzapfung die Anodenspannung und damit den wirksamen Widerstand \Re a, durch die G-Anzapfung die Gitterspannung und damit die Rückkopplung \Re auf jeden gewünschten Wert einstellen (vgl. auch Bd. II § 21, Bild 48).

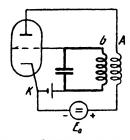


Bild 7. Ruckgekoppelter Gitterschwingungskreis.

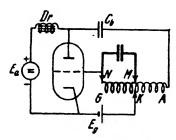


Bild 8. Schaltung wechselstrommäßig mit Bild 7 identisch.

Als Sonderfall der Schaltung von Bild 6 läßt sich auch die in Bild 7 gezeichnete Transformatorschaltung auffassen, bei der der Schwingungskreis mit Kondensator nicht im Anodenkreis, sondern im Gitterkreis liegt¹). Denn sie ist wechselstrommäßig identisch mit der in Bild 8 gezeichneten Schaltung. Diese geht aber in die Schaltung von Bild 6 über, wenn man den Kondensatoranschluß M nicht an die Anzapfung A, sondern an K legt. Es erregt sich dann nahezu die Eigenfrequenz des Gitterschwingungskreises, der aus der Kapazität C und der Induktivität zwischen M N = K G gebildet wird, und das wirksame R_a ist

¹⁾ Diese Schaltung ist rechnerisch in § 17c behandelt.

gleich dem Resonanzwiderstand dieses Schwingungskreises mal dem Quadrat des Übersetzungsverhältnisses der Spannungen AK zu GK. Das gilt freilich nur für eine feste Kopplung der beiden Windungsteile AK und GK. Bei loser Kopplung erzeugt die Streuinduktivität von AK eine um 90° gegen den Anodenstrom phasenverschobene Spannung, so daß auch Rund Ra eine Phasenverschiebung erhalten. Bei der in Bild 5 gezeichneten Schaltung spielt die Streuinduktivität von GK dagegen gar keine Rolle, solange kein Gitterstrom fließt.

Bei einer durchgehenden Transformatorwicklung sind Gitterund Anodenzuleitung gleichstrommäßig mit K und damit auch untereinander verbunden. Man muß dann entweder, wie in Bild 5 gezeichnet, die beiden Gleichspannungen E, und E, in die Zuleitungen unmittelbar vor die Röhre schalten. Das ist besonders bei Hochfrequenz ungünstig, weil die Spannungsquellen nebst ihren Zuleitungen meist große Erdkapazitäten besitzen und so unbestimmte kapazitive Nebenschlüsse mit Erde und damit auch untereinander bilden. Oder man muß anodenseitig statt der Reihen- eine Parallelschaltung von Gleich- und Wechselstrom anwenden, wie sie in Bild 6 und 8 gezeichnet ist (vgl. auch Bd. I § 16). Diese hat bei hohen Spannungen den Vorteil, daß der Blockkondensator C, die lebensgefährliche hohe Gleichspannung von der gesamten Wechselstromschaltung fernhält, hat aber besonders bei kurzwelliger Hochfrequenz den Nachteil, daß die Drosselspule Dr in der Gleichstromseite wegen ihrer natürlichen Kapazitäten schwer genügend hochohmig su machen ist. Will man, etwa durch einen Drehkondensator im Schwingungakreis, eine kontinuierliche Frequenzänderung herstellen, so treten dabei leicht "Schwinglöcher" auf. stimmten Frequenzen gerät die Drosselspule in starkes Mitschwingen und dämpft dadurch die Schwingungen so stark, daß die Selbsterregung unter Umständen ganz aussetzt.

Günstiger ist es, wenn man die Transformatorwicklung bei K auftrennt und wechselstrommäßig durch einen Blockkondensator C, überbrückt, während gleichstrommäßig Gitterseite G K und Anodenseite A K' getrennt bleiben. Bild 9 zeigt diese Schaltung. Die Drosselspule Dr ist unnötig, falls C_b so groß ist, daß über C_b praktisch keine Wechselspannung entsteht. Man beachte aber, daß hier C_b von dem starken Schwingkreisstrom durchflossen wird, während in Bild 6 oder 8 nur der etwa 100 mal kleinere Röhrenstrom hindurchfließt. Dort braucht also C_b nicht größer zu sein als das C des Schwingungskreises, wenn 1/100 der Wechselspannung über C_b liegen darf, während C_b in Bild 9 etwa 100 mal größer sein muß.

Auch in den Reihenschaltungen gemäß Bild 3, 5 und 7 braucht ein etwa erforderlicher Überbrückungskondensator C_b für die Gleichstromquelle E_a nur klein zu

sein.

In Bild 9 ist eingezeichnet, wie man eine negative Gittervorspannung U_g ähnlich wie in Bd. II S. 227 Bild 103 durch den Spannungsabfall J_a R_n des Anodengleichstroms J_a in einem durch einen Kondensator überbrückten Widerstand R_n erzeugen kann. Bei großen Schwingungsamplitu-

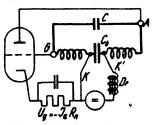


Bild 9. Transformator gleichstrommäßig durch C_b aufgetrennt.

den wächst im allgemeinen infolge Anodengleichrichtung der mittlere Gleichstrom J_a mit der Amplitude der Schwingungen an. Dadurch vergrößert sich dann die negative Gittervorspannung $U_g = -J_a R_a$, so daß die Selbsterregung infolge des ungünstigen Arbeitspunktes schwächer wird. Das bedeutet in gewissem Maße eine selbsttätige Regelung auf eine konstante Schwingungsamplitude. Viel stärker läßt sich eine solche Regelung erzielen, wenn man die negative Gittervorspannung durch eine Gittergleichrichtung in der Audionschaltung erzeugt. Vgl. § 6e.

§ 5. Spannungsteiler-Rückkopplungen (Dreipunktschaltungen).

a) Induktive und kapazitive Spannungstellerschaltung. Bei der Transformatorschaltung kann man durch Umpolen oder durch Ändern des Wicklungssinnes einer Spule stets aus einer negativen eine positive, zur Selbsterregung führende Rück-

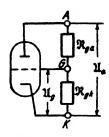


Bild 10. Schema einer Spannungsteiler-Rückkopplung.

kopplung machen. Das ist bei der in Bild 10 gezeichneten Spannungsteilerschaltung nicht möglich. Bei dieser wird die Rückkopplung dadurch hergestellt, daß die zur Rückkopplung dienende Gitterspannung $\mathfrak{U}_{\mathbf{g}}$ über dem einen von zwei Widerständen abgegriffen wird, die in Reihe an der Anodenspannung $\mathfrak{U}_{\mathbf{a}}$ liegen. Falls der Spannungsteiler "leerläuft", d. h. falls der Gitterstrom gegenüber dem den Spannungsteiler durchfließenden Strom zu vernachlässigen ist 1), ist dann

(12)
$$\mathbf{g} = -\frac{\mathbf{u}_{\mathbf{g}}}{\mathbf{u}_{\mathbf{a}}} = -\frac{\Re_{\mathbf{g}k}}{\Re_{\mathbf{g}\mathbf{a}} + \Re_{\mathbf{g}k}}.$$

Bei gleichartigen Widerständen \Re_{gk} und \Re_{gk} ist R stets negativ, \mathfrak{U}_g und \mathfrak{U}_a sind nahezu in Phase, während zur Selbsterregung

eine nahezu entgegengesetzte Phase erforderlich ist. \Re kann dagegen positiv werden, wenn \Re_{gk} und \Re_{gk} nahezu entgegengesetzte Phase haben, also der eine Widerstand stark induktiv, der andere stark kapazitiv ist. Es muß damn freilich auch noch die Summe $\Re_{gk} + \Re_{gk}$ entgegengesetzt zu \Re_{gk} , also gleich mit \Re_{gk} sein, d. h. es muß der Betrag von \Re_{gk} größer als der von \Re_{gk} sein. Bild 11 zeigt für einen solchen Fall das Vektordia-

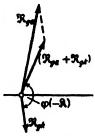


Bild 11. Vektordarstellung su Bild 10 (und Bild 12).

¹⁾ Ein sehr hochohmiger Spannungteiler ist freilich sehr gitterstromempfindlich. Ein geringer Gitterstrom, wie er ohne negative Gittervorspannung oder bei größeren selbsterregten Amplituden eintritt, kann die Größe des Rückkopplungsfaktors stark herabsetzen und auch seine Phase ungünstig verändern. Letzteres bedingt eine Frequenzänderung. Vgl. § 6d.

gramm für induktives \Re_{ga} und kapazitives \Re_{gk} . Ist die Wirkkomponente, die Dämpfung beider Widerstände gering, so ist die Rückkopplung nahezu phasenrein. Dann muß nach der Selbsterregungsformel (7) auch \Re_a nahezu phasenrein sein, wenn sich die Frequenz ω erregen soll, die der Berechnung von $\Re_{ga} \approx j\omega L$ und $\Re_{gk} \approx \frac{1}{j\omega C}$ zugrunde gelegt wurde. Da der Spannungteiler ($\Re_{ga} + \Re_{gk}$) induktiv ist, kann keine Selbsterregung eintreten, wenn er allein das wirksame \Re_a bildet. Man kann aber \Re_a in einfachster Weise dadurch phasenrein machen, daß man zum Spannungsteiler parallel einen kapazitiven Widerstand \Re_{ak} schaltet. Man erhält dann die in Bild 12 gezeichnete Schaltung. Bei geringer Dämpfung erregt sich im wesentlichen die Eigenfrequenz des dick gezeichneten Schwingungskreises, d. h. eine solche Frequenz, daß nahezu

$$\Re_{\mathbf{g}\mathbf{a}} + \Re_{\mathbf{g}\mathbf{k}} + \Re_{\mathbf{a}\mathbf{k}} \approx 0$$

wird¹). — Eine zweite Möglichkeit besteht darin, daß \Re_{ga} kapazitiv ist. Dann muß \Re_{gk} induktiv sein, aber $(\Re_{ga} + \Re_{gk})$ kapazitiv bleiben. Um \Re_a phasenrein zu machen, muß dann noch ein induktiver Widerstand \Re_{ak} zum Spannungsteiler parallel

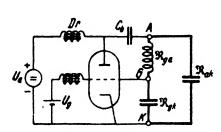


Bild 12. Kapazitive Spannungsteilerschaltung.

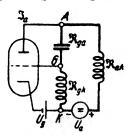


Bild 13. induktive Spannungsteilerschaltung.

geschaltet werden. Das ergibt die in Bild 13 gezeichnete Schaltung. Es erregt sich dann wieder nahezu die Eigenfrequenz des dick gezeichneten Schwingungskreises, so daß auch hier wieder die Gleichung (13) gilt. Zusammenfassend ergibt sich:

¹⁾ Vgl. hierzu auch § 16a.

Selbsterregung verlangt, daß \Re_{gk} und \Re_{ak} untereinander gleiche Phase und zu \Re_{ga} entgegengesetzte Phase haben. Außerdem muß $|\Re_{ga}| > |\Re_{gk}|$, angenähert $|\Re_{ga}| \approx |\Re_{gk} + \Re_{ak}|$ und $\Re_{gk} \approx \Re \cdot \Re_{ak}$ sein.

Bei geringer Dämpfung wird der Strom im Schwingungskreise viel (nahezu $\varrho \approx 100$ mal) größer als der Röhrenwechselstrom \mathfrak{F}_a . Der Strom in den beiden Induktivitäten $L_{g\,k}$ und $L_{a\,k}$ bei Bild 13 ist dann nahezu gleich groß; er unterscheißet sich ja nur um den Röhrenstrom \mathfrak{F}_a , falls der Gitterstrom $\mathfrak{F}_g = 0$ ist. Dann ist auch der Rückkopplungsfaktor, der ja gleich dem Verhältnis der Spannungen über diesen Induktivitäten ist,

$$\mathfrak{R} = -\frac{\mathfrak{U}_{\mathbf{g}}}{\mathfrak{U}_{\mathbf{a}}} \approx \frac{\mathbf{L}_{\mathbf{g}k}}{\mathbf{L}_{\mathbf{a}k}}.$$

In gleicher Annäherung gilt für die Schaltung von Bild 12

(16)
$$\Re \approx \frac{\Re_{gk}^{1}}{\Re_{ak}} \approx \frac{C_{ak}}{C_{gk}}.$$

Man bezeichnet daher die beiden Schaltungen auch wohl als "induktive" und "kapazitive" Spannungteilerschaltungen.

Die induktive Spannungsteilerschaltung von Bild 13 ist nahezu identisch mit der Transformatorschaltung von Bild 9. Der Unterschied besteht nur darin, daß dort die beiden Spulen gekoppelt waren, hier dagegen nicht. Das macht sich z. B. dadurch bemerkbar, daß R ohne Kopplung gleich dem Verhältnis der Induktivitäten, bei gleichartigen Spulen also gleich dem Quadrat des Verhältnisses der Windungszahlen ist, während R bei fester Kopplung unmittelbar gleich dem Verhältnis der Windungszahlen der Transformatorspulen ist.

b) Drei Schwingungskreise in Dreipunkt-Schaltung. Auf die soeben besprochenen Schaltungen lassen sich alle Schaltungen zurückführen, bei denen zwischen den drei Anschlüssen AGK der Röhre beliebige Stromsysteme liegen, die nur nicht aufeinander induzieren oder innerlich miteinander verbunden sein dürfen. Denn solche Stromsysteme können immer als

¹⁾ Diese Formel folgt auch aus (12) und (13).

"Zweipole" mit einem bestimmten Wechselstromwiderstand Raufgefaßt werden. Dieser ist natürlich im allgemeinen nach Amplitude und Phase von der Frequenz abhängig, so daß nur in bestimmten Fällen bestimmte Frequenzen sich selbst erregen können.

Von besonderer grundsätzlicher Bedeutung ist der in Bild 14 gezeichnete Fall, daß alle drei Widerstände $\Re_{\mathbf{z}_k}$, $\Re_{\mathbf{z}_k}$ und $\Re_{\mathbf{z}_k}$ aus Parallelschwingungakreisen bestehen. Ein solcher Kreis besitzt einen Kombinationswiderstand, der stets größer als der kleinere seiner Teilwiderstände ωL_h bzw. $\frac{1}{\omega C_h}$ ist und der induktiv oder kapazitiv ist, je nachdem die sich erregende Frequenz ω kleiner oder größer als seine Eigenfrequenz $\omega_h = \frac{1}{\sqrt{L_h C_h}}$

ist (vgl. Bd. I § 23). Entsprechend der kapazitiven oder induktiven Spannungsteilerschaltung ist dann nur in zwei Fällen Selbsterregung möglich:

1. \Re_{ga} ist induktiv, d. h. $\omega < \omega_{ga}$; dann müssen \Re_{gk} und \Re_{ak} kapazitiv sein, also $\omega > \omega_{gk}$ und $\omega > \omega_{ak}$. Dieser Fall tritt ein, wenn ω_{ga} größer als ω_{gk} und ω_{ak} ist. Es können sich dann nur Frequenzen zwischen ω_{ga} und der größeren von ω_{gk} und ω_{ak} erregen.

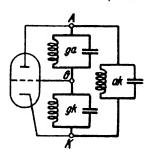


Bild 14. Drei Schwingungskreise in Dreipunkt-Schaltung.

2. \Re_{ga} ist kapazitiv, d. h. $\omega > \omega_{ga}$, dann müssen \Re_{gk} und \Re_{gk} induktiv sein, also $\omega < \omega_{gk}$ und $\omega < \omega_{ak}$. Dieser Fall tritt also ein, wenn ω_{ga} kleiner als ω_{gk} und ω_{ak} ist. Es können sich dann nur Frequenzen zwischen ω_{ga} und der kleineren von ω_{gk} und ω_{ak} erregen.

Liegt dagegen die Frequenz ω_{ga} zwischen ω_{gk} und ω_{ak} , so ist jede Möglichkeit der Selbsterregung ausgeschlossen. Vorausgesetzt ist hierbei, daß die drei Kreise nicht gegenseitig aufeinander induzierend einwirken.

Die weiteren Bedingungen, daß \Re_{gk} kleiner als \Re_{ga} sein muß, damit \Re positiv wird, daß aber \Re_{gk} nicht zu klein sein darf, damit \Re nicht zu klein wird und daß schließlich alle drei Widerstände nicht zu stark gedämpft sein dürfen, gelten hier ebenso wie bei jeder anderen Spannungsteilerschaltung und führen zu weiteren Einschränkungen der Selbsterregung. Besonders ist zu beachten, daß die Dämpfung, das Verhältnis von Wirkwiderstand zu Blindwiderstand durch die Parallelschaltung von L und C stets größer wird, und zwar um so mehr, je mehr man sich der Resonanz nähert. Das gilt übrigens auch für alle anderen Kombinationen aus Induktivitäten und Kapazitäten, weil sich dabei immer die Blindkomponenten zum Teil aufheben, während die Wirkkomponenten erhalten bleiben.

Besteht einer der Widerstände \Re_{ga} , \Re_{gk} , \Re_{ak} aus Induktivität und Kapazität in Reihe, so ist er umgekehrt induktiv, wenn die sich erregende Frequenz $\omega > \omega_h = \frac{1}{\sqrt{L_h C_h}}$ ist, dagegen

kapazitiv, wenn $\omega < \omega_h$ ist. Es ist nicht schwer, die entsprechenden Bedingungen für Selbsterregung in diesem Falle aufzustellen. Es ist nur zu beachten, daß der Widerstand bei der Reihenschaltung in Resonanznähe nicht größer, sondern kleiner wird, und dann meist die zur Selbsterregung erforderliche Größe nicht mehr besitzt.

e) Selbsterregung infolge der natürlichen Gitteranodenkapasität C_{ga} . Von großer praktischer Bedeutung für die Selbsterregung ist die natürliche Kapazität C_{ga} , die zwischen den einerseits mit dem Gitter, anderseits mit der Anode zusammenhängenden Leiterteilen stets vorhanden ist, ohne daß äußerlich eine besonders eingeschaltete Kapazität vorhanden ist (vgl. Bild 15). Sie wird einerseits absichtlich zur Selbsterregung von Schwingungen benutzt, führt aber anderseits sehr leicht bei Verstärkern und sonstigen Schaltungen ganz unbeabsichtigt zu einer störenden Selbsterregung. Der letztere Fall wurde schon in Bd. II § 30 ausführlich behandelt. Es wurde dort in Satz 173 und 177 gezeigt, daß C_{ga} so wirkt, als ob sum Gitterwiderstand \Re_{gk} eine Kapazität C_{ga} eine Kapazität C_{ga} und ein phasenreiner

Widerstand $R_x = -\frac{1}{\Re_b \cdot \omega \, C_{ga}}$ parallel geschaltet wäre 1). Dabei ist \Re_w die Wirk-, \Re_b die Blindkomponente des durch Formel (1) definierten Verstärkungsfaktors $\mathring{\Re} = \Re_w + j \, \Re_b$. Selbsterregung tritt ein, sobald R_x negativ und kleiner als die Wirkkomponente von \Re_{gk} ist und zwar in einer Frequenz ω , für die die Blindkomponente von \Re_{gk} sich mit $\frac{1}{\omega \, C_x}$ zu null ergänzt.

Die letztere Bedingung fordert, daß \Re_{gk} induktiv sein muß, es erregt sich die Eigenfrequenz des durch \Re_{gk} und C_g gebildeten Schwingungskreises. Die erstere Bedingung fordert, daß \Re_{ak} induktiv sein muß. Denn sonst wird \Re_b nicht positiv, R_g nicht negativ. Das entspricht aber gerade den oben in a) abgeleiteten beiden Forderungen, daß bei kapazitivem \Re_{gk} sowohl \Re_{gk} als auch \Re_{ak} induktiv sein müssen.

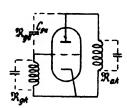


Bild 15. Rückkopplung durch die natürliche Gitter-Anodenkapazität Cga (Huth Kühn-Schaltung).

Das ist z. B. bei einem Verstärker mit Eingangs- und Ausgangstransformator oft der Fall, besonders dann, wenn beide Transformatoren sekundär offen sind. Aber auch dann, wenn wie z. B. bei Hochfrequenzverstärkern \Re_{gk} und \Re_{ak} aus Schwingungskreisen bestehen, sind diese induktiv für alle Frequenzen, die tiefer als die beiden Eigenfrequenzen der zwei Kreise liegen. Es tritt daher dort fast stets Selbsterregung ein, wenn man nicht durch Schirmgitterröhren oder durch die Neutrodynschaltung den Einfluß von C_{ga} unschädlich macht. Vgl. Bd. II § 30,

Eine solche Schaltung, die äußerlich scheinbar gar keine Rückkopplung besitzt, wurde früher auch technisch zur Selbsterregung benutzt und mit dem Namen "Huth-Kühn-Schaltung" bezeichnet. Sie wird auch heute noch zur Erzeugung kurzer Wellen (vgl. § 9) und bei den hier unter d) beschriebenen Piezo-

¹⁾ Im vorliegenden Fall ist das dortige 23 mit dem Verstärkungsfakter 23 identisch. Vgl. auch später § 16a.

quarz-Sendern benutzt. Im allgemeinen sind die natürlichen Kapazitäten aber zu unbestimmt, so daß sie technisch nur ungern als wesentliche Bestandteile einer Schaltung verwandt werden. — Da sich die Eigenfrequenz des durch C_z erweiterten Gitterschwingkreises erregt, für diese aber \Re_{ak} induktiv bleiben muß, so folgt

Selbsterregung kann nur eintreten, wenn die Eigen-(17) frequenz des Anodenschwingkreises höher als die des durch Cz erweiterten Gitterschwingkreises liegt.

Vergrößert man die Kapazität C_{ak} des Anodenschwingkreises, so beobachtet man, daß zunächst die sich erregende Frequenz

etwas tiefer wird, weil Ray durch Resonanznähe größer wird und damit auch & und C, größer werden. Dann setzt meist ganz plötzlich die Selbsterregung völlig aus, weil die Eigenfrequenz von Rak tiefer als die sich erregende Frequenz geworden ist. - Die Selbsterregung tritt um so leichter ein, je größer die (induktiven) Widerstände \Re_{nk} und \Re_{nk} sind. Größeres \Re_{ak} vergrößert die Spannungsverstärkung $\Re = \frac{1}{2} \frac{U_a}{U_a}$, größeres $\Re_{\mathbf{g}\,\mathbf{k}}$ den Rückkopplungsfaktor $\mathbf{R} = -\frac{\mathbf{u}_{\mathbf{g}}}{\mathbf{n}}$. Liegt im Gitterkreis ein großer Kendensator Cak z. B. von 1000 cm, so erhält der Rückkopplungsfaktor 2 die zur Selbsterregung erforderliche Größe D $+\frac{1}{8 \, \Re}$ (also für D = 10 % größer als 10 %) nur dann, wenn der Gitterschwingkreis Rek hinreichend schwach gedämpft ist. Denn da die natürliche Kapazität Cga sehr klein ist, etwa 10 cm, so würde der Kondensator $C_{gk} = 1000$ cm für sich allein eine Spannungsteilung 2 = 1 % ergeben. Durch Resonanzüberhöhung muß also $\Re_{\mathbf{g}\mathbf{k}}$ mindestens 10 mal größer als $\frac{1}{\omega C_{\mathbf{g}\mathbf{k}}}$ werden, wenn 2 = 10% erreicht werden soll. Äußerstenfalls kann aber die erforderliche induktive Blindkomponente von \Re_{gk} nur gleich $\frac{\varrho}{2}\cdot\frac{1}{\omega\,C_{gk}}$ werden, und zwar bei der 45°-Verstimmung (vgl. Bd. I \S 15 Gleichung (95)). In obigem Beispiel muß also $\rho > 20$ sein.

d) Frequenzhaltung durch mechanische Schwingungen (Piesoquars). In neuerer Zeit wird viel Gebrauch gemacht von den piezoelektrisch gesteuerten Sendern. Bei diesen wird in der Huth-Kühn-Schaltung (vgl. Bild 15) statt eines elektrischen Schwingungskreises \Re_{gk} ein kleiner Kondensator C₀ verwandt, der einen piezoelektrischen Kristall (Quars, Turmalin) als Dielektrikum enthält. Vgl. Bild 16 und 17a.

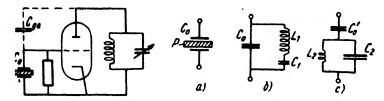


Bild 16. Piesoelektrisch gesteuerte Selbsterregung.

Bild 17. a) Piezokristall P zwischen Kondensatorplatten.

- b) Reihenschwingkreis-Ersatzschaltung.
- c) Parallelschwingkreis-Ersatzschaltung.

Ein solcher Kristall besitzt eine äußerst schwach gedämpfte mechanische Eigenschwingung; bei geeigneter Halterung ist $\varrho=100\,000$ und größer! Infolge der piezoelektrischen Wirkung entstehen wechselnde zusätzliche Ladungen auf dem Kondensator, die durch die wechselnden mechanischen Spannungen während der Schwingung hervorgerufen werden. Der piezoelektrische Kristall im Kondensator C_0 wirkt daher elektrische genau so wie ein entsprechend schwach gedämpfter elektrischer Schwingungskreis in Reihenschaltung, der dem Kondensator C_0 parallel geschaltet ist. Vgl. Bild $17\,b^1$). Es ist angenähert

Es ist angenähert $C_0' = C_0$; $C_1 = 140 C_0 = 20000 C_1$; $L_2 = \frac{1}{20000} L_1$.

¹⁾ Statt dessen kann man auch, wie in Bild 17c gezeichnet, einen Parallelschwingkreis, der mit dem Kondensator in Reihe liegt, als Ernatzschaltung wählen. Bei entsprechend geänderten Größen der Einselteile sind beide Schaltungen für alle Frequenzen völlig identisch.

 $C_1 = \frac{1}{140} C_0$. Außerhalb der Resonanz, sowohl oberhalb wie unterhalb, schwingt der Kristall nicht. Es ist dann nur der Kondensator Co vorhanden und eine Selbsterregung ist unmöglich, da ja Rak induktiv sein muß. Genau in Resonanz stellt der Reihenschwingkreis einen kleinen Ohmschen Widerstand dar, die Anordnung nimmt zwar viel Strom auf, aber eine Selbsterregung ist wegen der falschen Phase auch dann unmöglich. Über der Resonanz wird aber der Reihenschwingkreis induktiv und zwar um so niederohmiger, je mehr man sich der Resonanz nähert (vgl. Bd. I § 23). Ganz in der Nähe der Resonanz, bei einer Verstimmung v < 1/140, wird er niederohmiger als C_0 , trotzdem $C_0 \approx 140 C_1$ ist. Dann wird die ganze Anordnung (Reihenschwingkreis mit parallel liegendem Kondensator Co) induktiv und es tritt durch die Gitteranodenkapazität C. Selbsterregung ein. Weiter ab von der Resonanz wird der Reihenschwingkreis wieder so hochohmig, daß Co weit überwiegt, die ganze Anordnung kapazitiv wird. Es kann sich also praktisch nur fast genau die Eigenfrequenz des Kristalls erregen.

Das Ra des Anodenkreises muß dabei induktiv sein. Seine Größe hat aber praktisch nur auf die Intensität der Schwingungen, nicht auf die Frequenz einen Einfluß. Ra darf nur nicht zu klein sein, weil sonst überhaupt keine Selbsterregung eintritt. Verwendet man als R einen normalen Parallelschwingkreis mit Drehkondensator Ca, so beobachtet man, daß bei großem C, keine Schwingungen einsetzen, weil nämlich R, dann kapazitiv ist. Sofort hinter der Resonanz von R, setzen dann die Schwingungen stark ein, nehmen weiter aber an Intensität allmählich ab und setzen schließlich meist ganz aus, weil bei kleinem C, die Resonanzüberhöhung wegfällt, R, einfach gleich ω L, wird, und dies allein meist zu klein gegen R, der Röhre ist. Man hat auf diese Weise einen Sender, der sich praktisch nur in einer genau vorgeschriebenen Frequenz erregen kann, ganz gleichgültig, wie man den Anodenkreis einstellt. Wenn er sich überhaupt erregt, erregt er sich stete in der Eigenfrequenz des

eingeschalteten Kristalls. Durch einfaches Auswechseln des Kristalls gegen einen anderen erhält man sofort eine andere, auf etwa 1/1000 genau festgelegte Frequenz.

Die Frequenz hängt von der Dicke d des Kristalls ab. Für Quarz gilt angenähert die Formel

(18)
$$\lambda = 1.06 \cdot 10^5 \, \mathrm{d} \, .$$

Für $\lambda=100$ m, $f=3\cdot 10^6$ Hz, ist also eine Quarzplatte von nur I mm Dicke erforderlich. Turmalinplatten lassen sich noch für Wellenlängen bis $\lambda=2$ m herab herstellen. Für Wellen über 1000 m³ verwendet man besser Biegeschwingungen von Quarzstäben, für noch längere Wellen und Tonfrequenz Stahlstäbe oder Stimmgabeln, die man durch Magnetostriktion oder auch durch gewöhnliche magnetische Erregung in mechanische Schwingungen versetzt. Alle diese Anordnungen wirken bei genügend starker Rückwirkung wie elektrische Schwingungskreise und haben gegenüber diesen den Vorteil einer äußerst geringen Dämpfung. Sie können auch in anderen Schaltungen als in Bild 16 elektrische Schwingungskreise ersetzen.

§ 6. Die Amplitude selbsterregter Schwingungen und ihre Stabilität.

a) Weiches und hartes Einsetzen der Schwingungen. Die Selbsterregungsformel $\Re \mathcal{B} = 1$ besagt, daß die von der Anodenspannung \mathbb{I}_a über die Rückkopplung \Re erzeugte Gitterspannung \mathbb{I}_g gerade so groß ist, daß sie durch die \Re mal verstärkende Röhrenanordnung gerade die alte Anodenspannung \mathbb{I}_a wieder hervorruft. Ist $\Re \mathcal{B}$ größer oder kleiner als 1, so ist kein stationärer Schwingungszustand möglich, die Schwingungen wachsen an oder nehmen ab¹). Das Anwachsen wird schließlich dadurch begrenzt, daß \Re und besonders \Re ihre Größe ändern, wenn die Amplituden so groß sind, daß der Zusammenhang zwischen den einzelnen Größen nicht mahr als linear angesehen werden kann. Bezüglich der Verstärkung \Re wurde dies schon in Bd. II in dem Abschnitt 2 "Kraftverstärker" und besonders 3 "Sender-

¹⁾ Vgl. die Anm. auf Seite 9.

verstärker" behandelt. Bei größerer Stromaussteuerung $j = \frac{\Im a}{J_a}$ ist die Krümmung der Kennlinie zu berücksichtigen; die mittlere Steilheit S, ändert sich mit der Amplitude und wird besonders klein, wenn der Sättigungsstrom der Röhre erreicht wird. Anderseits setzt bei zu großen Spannungen 11. ein Gitterstrom ein, wenn die Amplitude der Wechselspannung us größer als die negative Vorspannung U. wird. Der Gitterstrom wird besonders stark im überspannten Zustand, wenn die positive Gitterspannung zeitweise größer als die Anodenspannung wird. Diese beiden Arten von Einflüssen, die das Anwachsen der Amplituden im Falle & 8 > 1 schließlich begrenzen, seien als "Strombegrenzung" und "Spannungsbegrenzung" bezeichnet. Sie werden unter c) und d) näher untersucht. Es kommt aber auch vor, daß R oder B in einem gewissen Bereich mit wachsender Amplitude nicht abnehmen, sondern größer werden. In einem solchen Bereich kann eine stationäre Schwingung, für die 28 = 1 gilt, überhaupt nicht hergestellt werden. Denn bei der geringsten Verkleinerung der Amplitude würde dann \$8 < 1 und infolgedessen die Schwingung sich selbst weiter verkleinern. Ebenso würde bei der geringsten Vergrößerung der Amplitude 28 > 1 und infolgedessen die Schwingung weiter zunehmen, bis schließlich der kritische Bereich überschritten ist und RR mit wachsender Amplitude wieder so weit abnimmt, bis wieder **98** = 1 wird.

In dem Bereich, in dem das Produkt aus Rückkopplung R und Verstärkung B mit wachsender Amplitude der Schwingungen größer wird, mit abnehmender Amplitude

(19) kleiner wird, sind keine stationären Schwingungen möglich.

Die Amplitude springt entweder auf so große oder auf so kleine Werte (bzw. null), daß dort RB nicht mehr mit wachsender Amplitude zunimmt.

Man kann die verschiedenen hier eintretenden Erscheinungen sehr einfach experimentell verfolgen. Am besten eignet sich dazu die in Bild 18 gezeichnete Schaltung unter Verwendung einer schwach geheizten Röhre mit ausgeprägtem Sättigungsstrom. Für diese geht nach (7) die Selbsterregungsformel \$28 = 1 über in

$$\mathbf{R} = \mathbf{D} + \frac{1}{8 \Re_{\bullet}}$$

Den Rückkopplungsfaktor R kann man durch Nähern oder Entsernen der Transformatorspulen a und g, den wirksamen

Anodenwiderstand \Re_a durch Andern des Drehkondensators C oder des Widerstands R stetig verändern. Da sich immer nahezu die Eigenfrequenz des Schwingungskreises erregt, ist angenähert $\Re_a = \frac{L_a}{CR}$. Eine Vergrößerung von \Re hat denselben Einfluß wie eine Vergrößerung von \Re_a , d. h. eine Verkleinerung von C oder R. Beides bewirkt, daß die linke Seite (\Re) der obigen

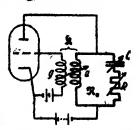


Bild 18. Veränderliche Transformator-Rückkopplungsschaltung.

Gleichung größer als die rechte Seite $\left(D + \frac{1}{S\,\Re_a}\right)$ wird, d. h. daß die Schwingungen stärker angeregt werden. Im folgenden sei immer nur von einer Änderung von R gesprochen, obwohl sich experimentell meist C oder R einfacher und feinstufiger verändern lassen.

Die Verhältnisse seien zunächst so gewählt, daß keine Selbsterregung zustande kommt, weil R su klein ist. Vergrößert man dann R allmählich so lange, bis die Schwingungen gerade einsetzen, so findet man, daß zwei verschiedene Fälls eintreten können:

- 1. Weiches Einsetzen der Schwingungen. Liegt der Ruhepunkt an einer steilen Stelle der Kennlinie (A in Bild 19), so setzen zunschat nur ganz kleine Schwingungen ein und diese vergrößern sich nur in dem Maße, wie R vergrößert wird. Verkleinert man R wieder, so nimmt die Amplitude der Schwingungen wieder altmählich auf null ab. Jedem Wert von R entspricht nur ein einziger, ganz bestimmter Schwingungszustand.
- 2. Hartes Einselzen der Schwingungen. Liegt der Ruhepunkt an einer sehr wenig stellen Stelle der Kennlinie, etwa ganz im Astkhauten, Mehronen-Robres III.

unteren Teile (A in Bild 20), so muß man zunächst & größer als vorher machen, damit die Schwingungen von selbst einsetzen, weil in diesem Teil der Kennlinie S kleiner ist. In dem Augenblick aber, wo die Selbsterregung eintritt, springt die Amplitude sofort auf einen beträchtlichen Wert. Verringert man dann & wieder, so bleiben die einmal erregten Schwingungen zunächst, ruhig weiter bestehen, auch wenn & unter den Betrag verkleinert wird, der anfangs zum ersten Kinsetzen der Selbsterregung erforderlich war. Ihre Amplitude bleibt groß und nimmt nur wenig mit &

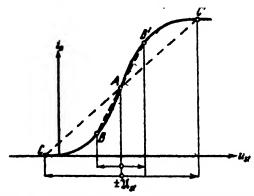


Bild 19. Ruhepunkt A im mittleren Teil. Weicher Schwingungseinsatz.

ab. Von einem bestimmten Punkt ab reißen die Schwingungen dann aber ganz plötzlich und unvermittelt ab. Will man sie wieder erregen, so muß man R erst wieder auf den anfänglichen höheren Betrag bringen. Für die Zwischenwerte von R sind also zwei verschiedene Zustände möglich. Es entstehen von selbst keine Schwingungen, aber die einmal erregten Schwingungen bleiben weiter bestehen.

Häufig beobachtet man auch ein gemischtes Verhalten. Bei allmählicher Vergrößerung von A setzen die Schwingungen zunächst weich ein. Bei weiterer Steigerung von A springt dann aber plötzlich und unvermittelt die Amplitude auf einen sehr viel größeren Betrag, um sieh dann wieder allmählich mit A zu vergrößern. Verkleinert man A wieder, so nimmt die Amplitude zunächst langsam folgend ab, springt dann bei einem etwas

anderen Werte von & als früher wieder plötzlich auf einen kleineren Betrag, um von da an langsam auf 0 abzunehmen.

Der Grund für dies verschiedenartige Verhalten ist leicht einsusehen. Es kommt darauf an, in welcher Weise die mittlere Steilheit der Kennlinie sich mit der Größe der Schwingungen ändert. Im ersten Falle (Bild 19) füt die Steilheit für ganz kleine Schwingungen (die Tangente im Punkte A) am größten. Bei etwas größeren Schwingungen (Verbindungslinie BB') ist sie schon etwas geringer, und bei noch größeren Schwingungen,

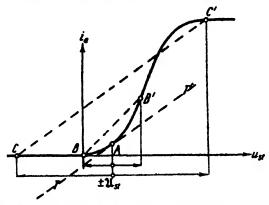


Bild 20. Ruhepunkt A im untersten Teil. Harter Schwingungseinsatz,

die schon bis zur Nullinie und ins Sättigungsgebiet hineinreichen (Verbindungslinie CC'), ist sie noch bedeutend geringer. Die mittlere Steilheit nimmt also mit wachsender Amplitude der Schwingungen dauernd ab. Die Schwingungen können also nur so weit anwachsen, wie durch Vergrößerung von & die Verkleinerung von Sausgeglichen wird und nehmen bei Verringerung von & wieder so weit ab, bis Shinreichend zugenommen hat, um sie dauernd aufrechtzuerhalten.

Im zweiten Falle (Bild 20) ist dagegen die Steilheit für gans kleine Schwingungen (Tangente T T' im Punkte A) gering und wird für etwas größere Schwingungen (Verbindungslinie B B') größer. Können sich also die Schwingungen bei der Steilheit A erregen, so werden sie über B B' hinaus immer weiter anwachsen,

bis schließlich die mittlere Steilheit wieder abnimmt und ebenso groß wie im Punkte A wird (Verbindungslinie C C parallel sur Tangente T T'). Die Amplitude muß also sofort beim ersten Einsetzen bis nach C C' hinaufspringen. Verkleinert man jetzt 2, so können sich die großen Schwingungen zunächst noch dadurch halten, daß ihre Amplitude kleiner und dabei die mittlere Steilheit B B' größer wird. Bei einer bestimmten Amplitude ist aber die maximale mittlere Steilheit erreicht und beim weiteren Verkleinern von 2 können sich dann die Schwingungen nicht mehr halten, reißen sofort ab.

Eine Instabilität, ein plötzlicher Sprung in der Amplitude tritt immer dann ein, wenn die mittlere Steilheit S
der Kennlinie bei größerer Amplitude zunimmt oder bei kleinerer Amplitude abnimmt.

Dieser Satz gilt nur bei reiner Strombegrenzung, also besonders dann, wenn der Gitterstrom null ist. Vgl. später unter d).

b) Reißdiagramme. Einen guten Überblick, wie sich die Amplitude der selbst erregten Schwingungen mit der Stärke der Rückkopplung je nach Lage des Ruhepunktes auf der Kennlinie ändert, erhält man durch die experimentelle Aufnahme eines "Reißdiagrammes". In Bild 21 ist ein solches für eine Schaltung mit Transformatorrückkopplung und Anodenschwingungskreis. wie sie in Bild 18 dargestellt war, und eine ältere Wolframröhre mit 120 mA Sättigungsstrom dargestellt. Nach rechts ist die Gittervorspannung U. aufgetragen, durch die der Ruhepunkt auf der Kennlinie eingestellt wird. Zur Kennzeichnung von dessen Lage ist darunter die Kurve von Anoden- und Gitterstrom, letzterer zehnfach vergrößert, eingezeichnet. In dem eigentlichen Reißdiagramm wird nach oben der Anodenwechsel-Strom 3. oder auch der ihm proportionale Wechselstrom im Schwingungskreise aufgetregen, der sich bei verschieden großer Rückkopplung einstellt. Die Größe der Rückkopplung ist an den dick eingezeichneten Linien konstanter Rückkopplung 1-9 zu erkennen. 1 ist die schwächste, 9 die stärkste gezeichnete Rückkopplung. Bei noch stärkerer Rückkopplung würde die

Amplitude wieder abnehmen. Dieses praktisch weniger wichtige Gebiet ist nicht mit dargestellt, um das Bild nicht zu sehr zu verwirren. Man erkennt, wie die kleinste Rückkopplung 1 zur Selbsterregung nur ausreicht, wenn man angenähert an dem Punkte größter Anodenstromsteilheit arbeitet, die etwa bei + 50 Volt Gittervorspannung vorhanden ist. Auch bei den stärkeren Rückkopplungen 2, 3 usw. werden die Schwingungen

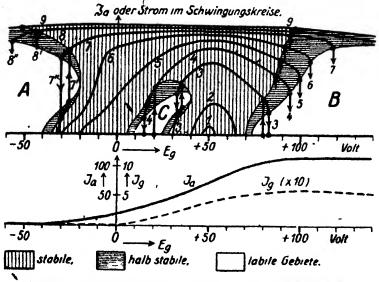


Bild 21. Reißdagramm nach Rukop. 1-9 = verschiedene Rückkopplungen.

dort zu den höchsten Amplituden angeregt, die Ruckkopplungslinien haben in der Gegend von 50 Volt ein Maximum. Verlegt
man den Ruhepunkt durch Verkleinern oder Vergrößern der
Gittervorspannung weiter auf den unteren oder oberen Teil der
Kennlinie, so werden bei derselben Rückkopplung die Schwingungen schwächer, oder man muß zur Erregung gleich starker
Schwingungen eine stärkere Rückkopplung aufwenden, besonders auch dazu, um die Schwingungen überhaupt anzuregen.
Dabei ergeben sich drei weiß gezeichnete Gebiete A, B, C, in

denen die Schwingungen hart, sprunghaft ein- und aussetzen, in denen also überhaupt kein stationärer Schwingungszustand möglich ist, weil die Amplitude immer sogleich von der einen zu der anderen Begrenzung dieser Gebiete hinüberspringt. Die Aund B-Bereiche sind ohne weiteres verständlich. Hier verläuft die Kennlinie so flach, daß man eine sehr starke Rückkopplung anwenden muß, damit die Schwingungen sich selbst erregen. Weil aber bei größerer Amplitude die mittlere Steilheit größer wird, wachsen die einmal erregten Schwingungen sofort zu großer Amplitude an.

Unter - 50 Volt oder über + 100 Volt ist schließlich die Steilheit für kleine Amplituden so gering, daß sich dort auch bei stärkster Rückkopplung von selbst keine Schwingungen erregen. Dagegen können auch hier einmal zu großer Amplitude erregte Schwingungen sich noch halten. Diese halbstabilen Gebiete sind durch wagerechtes, enges Schraffieren gekennzeichnet. Bei - 45 Volt kann man mit der starken Rückkopplung 8 gerade noch Schwingungen erregen, die dann sofort su großer Amplitude anspringen (Punkt 8'). Die so erregten Schwingungen bleiben dann noch bestehen, wenn man im Schwingungszustande die negative Gittervorspannung auf - 57 Volt vergrößert (Punkt 8"). Sobald man sie noch weiter vergrößert, oder die Rückkopplung verkleinert, reißen die Schwingungen sofort auf 0 ab. Bei der Rückkopplung 7 vollzieht sich der Vorgang ein wenig anders. Es erregen sich zunächst bei - 42 Volt ganz schwache Schwingungen, die im stabilen und halbstabilen Gebiete bei allmählicher Änderung bis - 38 Volt allmählich anwachsen, dann aber ganz plötzlich, entsprechend der senkrechten Linie 7' auf wesentlich höhere Amplituden springen, um sich dann im stabilen Gebiet wieder allmählich entsprechend der Kurve 7 weiter zu ändern. Geht man mit der Gittervorspannung zurück, so halten sich jetzt die starken Schwingungen noch in dem halbstabilen Gebiet bis - 40 Volt, springen dann aber plötzlich, entsprechend der senkrechten Linie 7" auf ganz kleine Beträge herunter, um dann in dem senkrecht schraffierten stabilen Gebiete wieder gleichmäßig zu folgen.

Gans entsprechende Erscheinungen ergeben sich in den Gebieten B und C. Bei dem letzteren wird die Labilität nicht durch die Anoden-, sondern die Gitterstromkennlinie verursacht, die gerade an dieser Stelle ihre größte Steilheit besitzt. Daß dies wirklich zutrifft, folgt auch daraus, daß die Gebiete A und B sich bei Verschiebung der Anodenstromkennlinie infolge anderer Anodenspannung oder bei Benutzung von Röhren mit anderem Durchgriff entsprechend mit verschieben, immer am Anfang und Ende des Anstiegs des Anodenstromes liegen bleiben, während das Gebiet C sich dabei nicht mit verschiebt, sondern immer an der Stelle steilster Gitterstromkennlinie, d.h. im Gebiete schwach positiver Gittervorspannung, liegen bleibt. Wird durch eine hinreichend große Verschiebungsspannung D Ua der Sättigungsstrom schon nahezu bei der Gitterspannung Ug = 0 erreicht, so verschmelzen die instabilen Bereiche B und C miteinander.

Die Form der Reißdiagramme ändert sich natürlich mit der untersuchten Röhrenart und den Betriebsverhältnissen. Die durch den Gitterstrom hervorgerufenen Instabilitäten, der C-Bereich, wird besonders stark und teilt sich zuweilen in mehrere Bereiche, wenn man den Widerstand \Re_g des Gitterstromkreises groß macht. Umgekehrt kann der C-Bereich bei kleinem \Re_g gahs verschwinden. Bei den neueren Bariumröhren mit sehr großem Sättigungsstrom verschwindet praktisch der B-Bereich. Die Röhre würde zerstört werden, wenn man ihn durch eine entsprechend hohe positive Gitterspannung erreichen wollte.

Die Linien konstanter Rückkopplung sind die Modulationskennlinien eines Telephoniesenders für den Fall, daß die Modulation durch Änderung der Gitterspannung bei derjenigen Röhre vorgenommen wird, die auch zur Selbsterregung der Hochfrequenz dient. Verzerrungsfreie Modulation verlangt einen geradlinigen Verlauf dieser Linien. Man muß daher besonders die instabilen Sprungbereiche sorgfältig vermeiden. Besser überträgt man die Funktion der Selbsterregung einer Vorröhre und moduliert dann eine spätere, fremderregte Röhre, wie das in Bd. II § 24 besprochen wurde. Die Modulationskennlinien enthalten dann keine instabilen Bereiche. c) Strombegrensung (Mittlere Steilheft). Wenn alle Ströme und Spannungen nur durch lineare Beziehungen miteinander verknüpft sind, läßt sich mathematisch nachweisen, daß selbsteregte Schwingungen genau nach einer Exponentialfunktion immer weiter anwachsen. (Vgl. auch § 19a.) Daraus folgt:

Jeder stationäre Zustand erfordert eine Amplitudenbegren-(21) zung, die nur durch irgend eine Nichtlinearität hervorgerufen werden kann.

Es soll hier von Erscheinungen, wie der Eisensättigung, oder der Widerstandsänderung durch die bei größerem Strom größer werdende Temperatur, oder der Veränderung der Kapazität eines Elektrometers infolge der Änderung der Zeigerstellung u. dgl 1), abgesehen und angenommen werden, daß alle Wechselwiderstände L, C, R der Schaltung konstant, nicht mit der Amplitude von Strom oder Spannung veränderlich sind. Dann kann die für die Amplitudenbegrenzung erfordenliche Nichtlinesrität nur in der Röhre liegen. Wie schon unter a) bemerkt, kann entweder der Anodenstrom oder der Gitterstrom dafür in Betracht kommen. Es sei zunächst der erstere Fall untersucht und vorausgesetzt, daß kein Gitterstrom fließt (oder daß der Gitterstrom ohne Einfluß sei).

Dann besteht die einzige Nichtlinearität, die einen Einfluß auf die Amplituden haben kann, in der Krümmung der Anodenstromkennlinie. Diese bewirkt zunächst eine Verzerrung und eine Gleichrichtung. Die letztere, die in Teil IV näher behandelt wird, besteht darin, daß beim Eintreten größerer Amplituden der mittlere Anodenstrom sich ändert, im allgemeinen größer

1) Oft können schon sehr kleine derartige Änderungen von großem Einfluß sein. Verwendet man z. B. ein Elektrometer von merklicher Kapazität zur Spannungsmessung, so kann es bei geeigneten Verhältnissen leicht vorkommen, daß sich zunächat starke Schwingungen selbet erregen, dadurch das Elektrometer stark ausschlägt und seine Kapazität vergrößert, dadurch aber die Selbsterregungsbedingungen so verändert werden, daß die Schwingungen abreißen. Der Elektrometerausschlag geht dann zurück, damit auch die Kapazität, und die Schwingungen setzen von neuem ein. Es ist dies eine ähnliche "intermittierende Selbst-erregung", wie sie später unter, e) beschrieben ist.

wird. Liegt im Anodenkreis ein größerer Ohmscher Widerstand, so vergrößert sich in diesem der Gleichspannungsabfall, so daß die an der Röhre wirkende Anodengleichspannung U_a kleiner wird. Dadurch verlagert sich der Arbeitspunkt auf der Kennlinie nach links zu kleineren Strömen J_a . Wesentlich $\left(\frac{1}{D} \text{ mal!}\right)$ stärker wird diese Verlagerung, wenn, wie in Bild 9 angegeben war, der Spannungsabfall J_a R_n die negative Gittervorspannung bildet. Je nach der Größe von R_n kann dadurch das Anwachsen der Amplituden mehr oder weniger gebremst werden. Im folgenden soll aber der Gleichstromwiderstand im Anodenkreis gleich null angenommen werden. Dann hat die Gleichrichtung keinen Einfluß mehr auf die Selbsterregung.

Bezüglich der Verzerrung gilt folgendes: die selbsterregten Schwingungen, die bei kleinen Amplituden stets ganz sinusförmig sind, nehmen bei großen Amplituden stark verzerrte Kurvenformen an. Wirkt der verzerrte Anodenstrom uber die Rückkopplung auch auf die Gitterspannung stark verzerrend ein, so kann sich die Verzerrung so weit steigern, daß das Aussehen und Verhalten der Schwingungen ein völlig anderes wird, so daß man dafür den besonderen Namen "Kippschwingungen" geprägt hat. Diese sollen später in \$10 gesondert behandelt werden. Hier wollen wir uns auf die Fälle beschränken, daß die Verstärkung Boder die Rückkopplung Reine bestimmte Frequenz so stark bevorzugen, daß trotz nicht sinusformigen Anodenstromes die Gitterspannung doch nahezu rein sinusförmig bleibt. Das tritt immer ein, wenn (wie z. B. bei der Schaltung von Bild 18) ein schwach gedämpfter Schwingungskreis sich auf große, fast rein sinusformige Amplituden aufschaukelt, auch wenn er von einem stark verzerrten Anodenstrom angestoßen wird. In diesem praktisch wichtigsten Falle kommt es in dem verzerrten Anodenstrom nur auf seine sinusförmige Grundschwingung 3, an. Man kann die ganze nur für Sinusströme gültige Vektorrechnung beibehalten, wenn man an Stelle von

$$S = \frac{d i_a}{d u_{at}} = Anjangssteilheit$$

überall in die Rechnung

(22)
$$8_m = \frac{S_a}{1L_a} = mittlere Steilheit$$

einführt. Ersetzt man die Kennlinie durch eine Taylorsche Reihe

$$i_a = J_a + 8 u_{st} + \frac{1}{2} T u_{st}^2 + \frac{1}{6} W u_{st}^3 + \cdots,$$

so ist 8 die obige Anfangssteilheit, während nach Bd. II § 10 (51) das T-Glied die Verzerrung und Gleichrichtung bedingt und die mittlere Steilheit

(23)
$$S_m = S + \frac{1}{8} W U_{nt}^2 + \cdots \qquad \left(W = \frac{d^3 I_a}{d U_{nt}^3} = \frac{d^3 S}{d U_{nt}^3}\right)$$

in erster Annäherung nur durch das W-Glied geändert wird. S_m nimmt bei positivem W mit der Amplitude U_{st} zu, bei negativem W ab. Für den harten oder weichen Einsatz kommt es also auf den 3. Differentialquotienten der Kennlinie oder den 2. Differentialquotienten der Steilheitskurve $S = f(u_{st})$ an. Der erstere ist an der Kennlinie nicht ganz leicht zu erkennen, der letztere dagegen an der S-Kurve ohne weiteres. Denn er ist das Maß für die Krümmung dieser Kurve.

Die Schwingungen setzen dort hart ein, wo die Steilheitskurve nach oben offen gekrümmt ist, dagegen weich, wo sie nach unten offen gekrümmt ist. (Nur gültig für $i_g \pm 0$; vgl. spåter (29).)

An den in Bild 22 durch \times bezeichneten Wendepunkten der Steilheitskurve ist $\frac{d^3 S}{d u_{st}^2} = 0$. In diesem Gebiet herrscht ein

"indi/ferentes Schwingungsgleichgewicht". Die Amplitude kann im stationären Zustand innerhalb dieses Gebietes beliebig groß oder klein sein. Das ist für die Entdämpfung durch eine Rückkopplung besonders günstig. Vgl. später § 15a.

Für eine Raumladungskennlinie gilt nach Bd. II § 11 (67)

(25)
$$S_{m} = 8\left(1 - \frac{1}{32}\left(\frac{U_{st}}{U_{st}}\right)^{2}\right) = 8\left(1 - \frac{1}{72}j^{2}\right);$$
gültig für $U_{st} \leq U_{ss}$.
$$\left(j = \frac{S_{s}}{J_{s}} = \frac{3}{2}\frac{U_{st}}{U_{st}} = \text{Stromaussteuerung.}\right)$$

$$Sti_{s} I_{s}$$

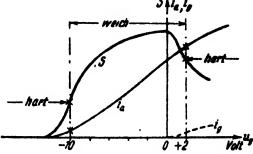


Bild 22. Art des Schwingungseinsatzes aus Steilheitskurve zu erkennen.

 S_m nimmt also stets mit wachsender Amplitude ab. Aber selbst bei einer Stromaussteuerung j=1 verringert sich S_m nur um 1,4% gegenüber S und bei einer Stromaussteuerung j=1,5, d. h. bis zum Anfangspunkt der Kennlinie $u_{st}=0$, wird S_m nur 3% kleiner als S. Bei einer Stromaussteuerung ins Negative, d. h. $U_{st}>U_{st}$, gilt Formel (25) nicht mehr. Man muß dann Berechnungen anstellen, wie sie in Bd. II § 20 ausgeführt sind. Nach den dortigen Rechnungen zu Bild 45 wird bei einem Ruhepunkt im Nullpunkt, d. h. bei einem gleich weiten Ausschwingen ins Negative wie ins Positive, für eine Raumladungskennlinie $S_{s_1}=0.455$ J_s. Da J_s = K $U_{st}^{1.5}$ ist, wird dann

(26)
$$S_m = \frac{\Im_{a_1}}{11_{at}} = 0.455 \text{ K } \sqrt{11_{at}}$$
.

Für eine Parabel wird ebenso nach Bild 46

$$\mathfrak{J}_{a_1} = \frac{4}{3\pi} J_a = 0,425 J_a; \quad J_a = K \mathfrak{U}_{at}^2,$$

also

(27)
$$S_m = \frac{\Im_a}{U_{at}} = 0.425 \text{ K } U_{at}.$$

 S_m nimmt daher in beiden Fällen dauernd mit der Amplitude U_{st} der Stromaussteuerung zu. Das gleiche muß bei einem Ruhepunkt im Nullpunkt ganz allgemein für alle dauernd nach oben gekrümmten Kennlinien gelten, da für diese S_{a_1} schneller zunimmt als U_{st} . Einmal erregte Schwingungen müssen dann also immer weiter anwachsen.

Liegt der Ruhepunkt nicht im Nullpunkt, d. h. ist U_{st} nicht gleich null, so müssen bei sehr großen Amplituden, wenn \mathfrak{U}_{st} $> U_{st}$ ist, doch angenähert die gleichen Verhältnisse gelten. Zusammenfassend ergibt sich:

Bei einer Röhre mit raumladungsåhnlicher Kennlinie ohne Sättigung nimmt die mittlere Steilheit S_m bis zu einer Aussteuerung etwas über den Nullpunkt langsam um etwa 4% ab, dann aber dauernd zu.

Daraus folgt:

Bei Röhren ohne Sättigung lassen sich kleine selbsterregte Amplituden nur durch eine Rückkopplung R herstellen, die gerade eben zur Selbsterregung ausreicht. Eine ganz geringe Vergrößerung von R läßt die Amplituden sofort bis zur vollen Aussteuerung der Röhre anwachsen. Eine etwas weitere Vergrößerung von R führt zu dauernd anwachsenden Amplituden und zu einer Zerstorung der Röhre, wenn keine Spannungsbegrenzung durch den Gitterstrom eintritt.

d) Spannungsbegrenzung (Gitterstrom). Die bisherigen Überlegungen setzten voraus, daß der Gitterstrom null sei. Sie gelten daher exakt für den Fall einer negativen Gittervorspannung U_g und einer so kleinen selbsterregten Schwingungsamplitude ll_g , daß diese kleiner als U_g bleibt. In diesem Falle kommt es in der Tat ausschließlich auf die Anodenstromkennlinie und deren mittlere Steilheit S_m an. Sobald aber ll_g größer als U_g wird, das Gitter also zeitweise positiv wird, oder überhaupt keine negative Gittervorspannung U_g vorhanden ist, setzt ein Gitterstrom ein. Dieser beeinflußt die Selbsterregung in zweierlei Weise. Erstens verändert er die Anodenstromkennlinie $l_a = f$ (u_{st}) und damit die Steilheit S bzw. S_m der Röhre; dies

ist gewissermaßen eine indirekte Strombegrenzung. Zweitens bildet er eine Belastung für den äußeren Gitterstromkreis und verändert dadurch die Schaltungsgrößen R und R.

a) Der erstere Einfluß des Gitterstromes tritt besonders stark bei Eintritt des überspannten Zustandes ein, bei dem die Gitterspannung zeitweise größer als die Anodenspannung wird (vgl. Bd. II § 21). Ein großer Teil der Elektronen fliegt dann zum Gitter, der Anodenstrom wird um diesen Betrag geschwächt, der Wirkungsgrad entsprechend geringer, so daß die selbsterregten Schwingungen nicht weiter anwachsen können. Diese Begrenzung durch den überspannten Zustand tritt um so früher ein, je größer der äußere Anodenwiderstand Ra ist, da ja die Anodenspannung zeitweise um den Betrag Ra absinkt. Bei kleinem Ra tritt er erst bei so großen Amplituden Ra ein, daß die Röhre diese oft nicht mehr verträgt.

Neben dieser Begrenzung großer selbsterregter Amplituden hat aber der Gitterstrom auch auf das erste harte oder weiche Einsetzen kleiner Schwingungen einen großen Einfluß. Es ist ja $i_a = i_b - i_g$ und daher auch $S_a = S_b - S_g$. Nun hat die physikalische Funktion $i_b = f(u_{at})$ nebst ihren Ableitungen einen glatten Verlauf, während i_g bei schwach negativem Gitter zunächst exponentiell ansteigt, dann bei positivem Gitter wegen der verschiedenartigen Stromverteilung und des Einflusses der Sekundärelektronen mehr oder weniger unregelmäßig verläuft.

Besonders zeigt der Differentialquotient $S_g = \frac{d i_g}{d u_g}$ bei einer Änderung der positiven Gittervorspannung U_g um wenige Volt oft recht starke Schwankungen¹). Alle diese Schwankungen müssen mit umgekehrtem Vorzeichen auch in der Anodenstromsteilheit S_a auftreten, da ja die Summe $S_e = S_a + S_g$ keine Unregelmäßigkeiten zeigt. Sie machen sich bei der Änderung der Steilheit S_m mit der Amplitude, d. h. beim 3. Differential-

¹⁾ Vgl. z. B. B:l. I Bild 20g und 20h. Diese "Feinstruktur der Kennlinien" ist für verschiedene Röhrentypen sehr verschieden!

quotienten, der für das harte oder weiche Einsetzen der Schwingungen maßgebend ist, noch wesentlich stärker bemerkbar.

Bei nicht hinreichend negativer Gittervorspannung kann daher infolge des eintretenden Gitterstromes auch bei einem Arbeitspunkte im oberen Teile der Anodenstromkennlinie ein hartes Einsetzen kleiner selbsterregter Schwingungem eintreten oder auch ein anfänglich weiches Einsetzen bei (29) etwas größeren Amplituden hart auf noch größere Amplituden überspringen, überhaupt bei kleinen Schwingungsamplituden (Ug = einige Volt) ein sehr unregelmäßiges Verhalten eintreten, weil sich alle Unregelmäßigkeiten in der Gitterstromkennlinie mit umgekehrtem Vorzeichen auf die Anodenstromkennlinie übertragen.

Dieser Einfluß des Gitterstromes beruht allein auf den inneren Eigenschaften der Röhre, ist unabhängig von den Eigenschaften der äußeren Schaltung.

B) Der zweite Einfluß des Gitterstromes beruht im Gegensatz dazu in seiner dämpfenden Wirkung auf den äußeren Gitterstromkreis. Der Gitterstrom wirkt für den Wechselstrom wie ein Ohmscher Widerstand $R_g = 1/S_g$, wobei $S_g = \frac{\Im g}{11}$ die mittlere Steilheit der Gitterstromkennlinie ist. Dieser innere Röhrenwiderstand R. läßt die Gitterwechselspannung II. zusammensinken, um so mehr, je höherohmig der äußere Widerstand R. der Schaltung, von der Röhre aus gesehen, ist (vgl. Bd. II § 28a und § 37). Er verkleinert dadurch den Rückkopplungsfaktor 🗣 und im allgemeinen auch den wirksamen äußeren Anodenwiderstand R. Beides wirkt dämpfend auf die selbsterregten Schwingungen, um so mehr, je kleiner Rg, d. h. je größer S. ist. Andert sich nun die mittlere Steilheit S. in unregelmäßiger Weise mit der Amplitude der Schwingungen, so können dadurch dieselben Unregelmäßigkeiten in der Selbsterregung hervorgerusen werden, wie sie oben in (29) beschrieben sind. Bei schwach negativer Gittervorspannung ist z. B. der Gitterstrom und damit auch Sg für sehr kleine Amplituden null. Die Schwingungen setzen bei loser Rückkopplung leicht ein, werden dann aber im Anwachsen abgebremst, sobald bei größerer Schwingungsamplitude ein Gitterstrom einsetzt. Der Schwingungseinsatz bleibt also weich, der stationäre Zustand stabil, bei Vergrößerung oder Verkleinerung der Rückkopplung ändert sich die Amplitude dieser entsprechend. Bei größeren Gitterspannungen biegt die Gitterstromkennlinie aber um, infolge von Sekundärelektronen kann sie sogar abwärts gerichtet sein, der Gitterstrom sogar negativ werden. Dadurch wird Sg bei größeren Amplituden kleiner; die dämpfende Wirkung hört auf und die Amplituden wachsen infolgedessen von selbst weiter an. Es tritt eine Instabilität, ein Sprung in der Amplitude der selbsterregten Schwingungen ein. - Wählt man umgekehrt die (positive) Gittervorspannung so, daß der Ruhepunkt an einer steilen Stelle der Gitterkennlinie liegt, so werden kleine Schwingungen wegen des großen S, zunächst stark gedämpft. Man muß die Rückkopplung kräftig anziehen, damit überhaupt Schwingungen einsetzen. Sind auf diese Weise aber einmal etwas grö-Bere Schwingungen entstanden, so vermindert sich S, und die Schwingungen wachsen weiter von selbst an. Auch auf diese Weise kann an einer Stelle, wo die Schwingungen sonst weich einsetzen, ein harter Schwingungseinsatz entstehen. Im Gegensatz zu dem ersten Einfluß kann man diesen Einfluß des Gitterstroms dadurch praktisch zu null machen, daß man das wirksame \Re_s der Schaltung hinreichend klein gegenüber $R_s = 1/S_s$ der Röhre macht. Umgekehrt sind alle Schaltungen mit großem R. in besonders hohem Maße gitterstromempfindlich.

e) Künstliche Amplitudenbegrenzung. Heizt man eine Röhre absichtlich sehr schwach, so werden die anwachsenden Amplituden durch die Strombegrenzung abgebremst, die bei voller Aussteuerung bis zur Sättigung sehr plötzlich und stark einsetzt. Freilich ändert sich dann die selbsterregte Amplitude ebenso stark mit der Heizung wie der Sättigungsstrom J. (vgl. Bd. I § 3). Bei normaler Heizung liegt die Sättigung bei neueren Röhren meist sehr hoch, so daß dann nach Satz (28) eine Strombegrenzung kaum durchfährbar ist. Man muß eine

Spannungsbegrenzung anwenden. Dazu müssen sich die Amplituden immer wenigstens so weit sufschaukeln, daß $U_z > (-U_z)$ wird, ein Gitterstrom einsetzt. Wählt man R, so groß wie beim Kraftverstärker, bei dem es bei der maximal zulässigen Aussteuerung II. = U. auf eine möglichst große Spannungsausnutzung $h = \frac{U_s}{U_s}$ ankommt, so ist bei $\tilde{U}_s > U_s$ auch bald der überspannte Zustand erreicht. Ist aber R. wesentlich kleiner, so tritt der überspannte Zustand erst bei viel größeren Amplituden ein. Man vermeidet aber möglichst die Amplitudenbegrenzung durch den überspannten Zustand, weil mit dem dabei eintretenden starken Gitterstrom meist auch starke Frequenzschwankungen, große Stromverzerrungen und sonstige Unregelmäßigkeiten verbunden sind. Dies geschieht am einfachsten dadurch, daß man durch einen hohen Schaltungswiderstand R. (z. B. einen hochohmigen Spannungsteiler Rak | Rak in Bild 12-16) den Rückkopplungsfaktor A sehr gitterstromempfindlich macht. Ist R. an sich zu klein, so schaltet man einfach einen hohen Ohmschen Widerstand, z. B. 106 Ohm in die Gitterzuleitung. Dieser hat gar keine Wirkung, solange kein Gitterstrom fließt (sofern die natürlichen Kapazitäten nicht zu berücksichtigen sind!). Sobald aber ein Gitterstrom einsetzt, sinkt die Gitterspannung u_g stark ab, bei $\Re_g = \frac{1}{S}$ auf die Hälfte (bei phasenreinem \Re_g).

Das bedeutet, daß auch der Rückkopplungsfaktor $\mathfrak{A}=-\frac{U_g}{U_a}$ auf die Hälfte sinken würde, so daß die Schwingungen nicht weiter anwachsen. Bei sehr kleiner oder gar keiner negativen Gittervorspannung erhält man so auch bei ungenauer Einstellung von \mathfrak{A} immer nur sehr kleine selbsterregte Amplituden. Bei größerer negativer Gittervorspannung U_g tritt die Begrensung durch \mathfrak{A}_g erst ein, wenn $\mathfrak{U}_g = U_g$ geworden ist. Diese durch U_g beliebig groß einstellbare Amplitude erregt sich dann praktisch. Dabel ist freilich zu berücksichtigen, daß die Gitterspannung an der Röhre und damit auch der durch sie gesteuerte Anodenstrom stark verzent wird, well dürch den Gitterstroff.

nur die ins Positive schwingenden Spitzen der zugeführten Wechselspannung abgeschnitten werden (vgl. Bd. II § 39 Bild 125). Bei induktivem \Re_g tritt außerdem ein unangenehmer "Gitterstoß" auf (vgl. dort Bild 126).

Man kann diese Verzerrungen vermeiden, wenn man in die Gitterzuleitung einen hohen Ohmschen Widerstand R legt, der für Wechselstrom durch einen Kondensator C überbrückt ist (vgl. Bild 23). Es ist dies die sogenannte Audionschaltung,

deren Gleichrichterwirkung in Teil IV näher besprochen wird. Die Wechselspannung Ug wirkt bei beliebiger Größe über den Kondensator C praktisch ungeschwächt und unverzerrt auf das Gitter ein. Rg wird bei hinreichend großem C nicht verändert. Es tritt aber gleichzeitig eine Gleichrichterwirkung ein, und der so erzeugte Gittergleich-

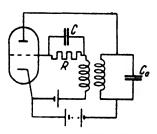


Bild 23. Amplitudenbegrensung durch Audionschaltung.

strom ΔJ_g ruft in dem Widerstande R einen Spannungsabfall $-\Delta U_g = \Delta J_g$ R hervor, der das Gitter negativ auflädt. Dabei bleibt ΔU_g immer kleiner als die Amplitude U_g der Wechselspannung, aber bei großem R ist im stationären Zustande sehr nahe $-\Delta U_g = U_g$. Durch diese automatische Vergrößerung der negativen Gittervorspannung wird stets die mittlere Steilheit S_m verkleinert und so die Amplitude der selbsterregten Schwingungen fast ohne Verzerrungen begrenzt und stabilisiert. Bei festerer Rückkopplung verlagert sich nur der Schwingungsmittelpunkt weiter ins Negative, ohne daß sich die Amplitude wesentlich erhöht.

Diese Art der Amplitudenbegrenzung ähnelt der in Teil V zu besprechenden Schwundregelung bei Rundfunkempfängern, bei der auch durch eine Verlagerung der Gittervorspannung infolge einer Gleichrichterwirkung trotz stark veränderlicher Eingangsspannung eine fast konstante Ausgangsamplitude hergestellt wird. — Ähnlich, nur etwas schwächer wie die beim Audion verwandte Gittergleichrichtung, wirkt die Verlagerung der Gittervorspannung durch die Anodengleichrichtung, wie sie im Anschluß an Bild 9 beschrieben wurde. Der dort durch einen Kondensator überbrückte Widerstand R_n entspricht der C, R-Schaltung beim Audion.

Bei der Audionschaltung (und auch bei der Anodengleichrichtung) können bei ungeschickter Wahl der Verhältnisse, insbesondere bei unnötig starker Rückkopplung sehr störende Erscheinungen auftreten. Macht man den Kondensator C zu groß, so ist eine gewisse Zeit erforderlich, bis er sich durch den schwachen, gleichgerichteten Gitterstrom ΔJ_{g} auf $\Delta U_{g} = -U_{g}$ aufgeladen hat. Bei zu starker Rückkopplung wachsen dann die Schwingungen zunächst rasch und weit über die beabsichtigten Amplituden an, weil \(\Delta \) Ug zunächst noch klein und daher unwirksam ist. Mit wachsender negativer Vorspannung \(\Delta \text{U}_g \) können sich dann die zu großen Amplituden nicht länger halten. Die Schwingungen reißen ab und zwar meist ganz hart und plötzlich, weil ja bei großer negativer Gittervorspannung ∆U, kleinere Amplituden II., den Anodenstrom überhaupt nicht mehr aussteuern (vgl. z. B. im Reißdiagramm Bild 21 die Rückkopplung 8). Es tritt dann eine kleine Pause ein, während der die Schwingungen erloschen sind und überhaupt der ganze Anodenstrom völlig null ist. Während dieser Pause entlädt sich der Kondensator C über den Widerstand R. Dadurch vermindert sich die negative Vorspannung AU, des Gitters, der Ruhepunkt auf der Kennlinie wandert nach rechts und erreicht bald ein Gebiet mit einer für den Schwingungseinsatz ausreichenden Steilheit. Dann setzen die Schwingungen von neuem hart und Kräftig ein und der Vorgang wiederholt sich abermals. Es tritt so eine "intermittierende Selbsterregung" ein, eine stationäre selbsterregte Amplitude wird überhaupt nicht erreicht.

Die Periodendauer dieses Vorgangs wird der Größenordnung nach durch die Zeitkonstante T=CR bestimmt. Diese ist z. B. bei $C=10^{-3} \ \mu F=900 \ \mathrm{cm}$ und $R=1 \ \mathrm{Megohm}$: $T=10^{-9} \cdot 10^{6}=10^{-3} \ \mathrm{sec}$. Man hört dann z. B. bei Selbsterregung von Hochfrequenz einen zwitschernden Ton in der Höhe von etwa

1000 Hertz. Im einzelnen ist dieser Ton natürlich noch von all den Faktoren abhängig, die auf das Anschwellen und Abnehmen der Schwingungen (z. B. Rückkopplungsfaktor, Dämpfung) und auf den Gitterstrom (z. B. überspannter Zustand, Größe von \Re_a) von Einfluß sind.

Macht man den Widerstand R kleiner, so wird der Ton höher. Zugleich vermindert sich aber auch die negative Aufladung - ∆U, des Gitters und bald wird diese so gering, daß die Schwingungen überhaupt nicht mehr abreißen, also eine normale dauernde Schwingung entsteht. Auch wenn man den Kondensator C oder die Rückkopplung verkleinert, hört-das Abreißen bald auf. Denn dann vollzieht sich die negative Aufladung des Kondensators C gleichzeitig mit dem Anwachsen der Schwingungen, weil dies bei der schwächeren Rückkopplung langsamer vor sich geht. Dadurch werden die Schwingungen schon beim Anwachsen selbst am weiteren Anwachsen verhindert und es stellt sich ein stationärer Zustand ohne Abreißen ein. Periodisches Abreißen tritt nur ein, wenn die Schwingungen zunächst schnell, ohne wesentliche Aufladung des Kondensators über den möglichen stationären Zustand hinaus anwachsen, sich dort aber bei nachfolgender negativer Aufladung des Kondensators nicht mehr halten können.

Macht man C und R extrem groß, z. B. 1 µF und 108 Ohm, so dauern die stromlosen Pausen sehr lange, etwa 100 sec, und sind an gewöhnlichen Zeigerinstrumenten zu verfolgen. Ein Strommesser für den Anodenstrom steht dann in den langen Pausen völlig auf null. Am Ende der Pausen steigt er ganz langsam ein wenig an, bis dann plötzlich die Schwingungen hart einsetzen. Das zeigt sich an einem ruckartigen Anstoß des Zeigers. Meist kommt es gar nicht zu einem größeren Ausschlag, weil die Schwingungen schon wieder abgerissen sind, bevor der Zeiger einen größeren Ausschlag annimmt.

Je kleiner man den Kondensator C_a des Anodenschwingungskreises macht, desto höher ist die Frequenz der selbsterregten Schwingungen und desto größer wird $\Re_a = \frac{L_a}{C_a \, R_a}$, desto schneller

also bei gegebener Rückkopplung \Re das Aufschaukeln. Macht man $C_a=0$, so springt der Anodenstrom am Schluß der Pause ohne Schwingungen aperiodisch äußerst schnell auf seinen hohen Wert, um dann sofort nach der, bei kleinem C auch sehr rasch erfolgenden, negativen Aufladung des Kondensators C wieder auf null herabzuspringen. Es sind dies dieselben "Kippschwingungen", die in § 10 Bild 46 und 47 dargestellt sind und die auch technisch verwandt werden.

§ 7. Die Frequenz selbsterregter Schwingungen und ihre Stabilität.

a) Die Konstanz der Frequenz. Eine der technisch wichtigsten Eigenschaften der Selbsterregung besteht darin, daß man die Frequenz der sich erregenden Wechselströme durch geeignete Wahl der Induktivitäten und Kapazitäten beliebig einstellen kann. Es macht keine Schwierigkeiten, durch eine große Eisendrossel L von 1000 Hy und Kondensatoren C von $1000~\mu F$ eine Kreisfrequenz $\omega = \frac{1}{\sqrt{L\,C}} = 1$, d. h. eine Schwin-

gungsdauer von $2\pi = 6,28$ sec herzustellen, so daß man das langsame Hin- und Herwechseln des Stromes an einem Zeigerinstrumente ohne weiteres verfolgen kann. Umgekehrt kann man durch entsprechend kleine Induktivitäten und Kapazitäten ohne alle Schwierigkeiten Frequenzen von 107 Hertz erzeugen und mit besonderen Anordnungen noch 108 bis 1010 Hertz herstellen (vgl. § 8 und 11). Alle Sender der drahtlosen Telegraphie erzeugen ihre Hochfrequenz durch rückgekoppelte Elektronenröhren und zwar mit einer Regelmäßigkeit und Konstanz der Frequenz, wie sie früher nie für möglich gehalten wäre. Für Rundfunksender ist eine Schwankung von höchstens + 50 Hertz zulässig. Das ist bei einer Betriebsfrequenz von 106 Hertz $(\lambda = 300 \text{ m})$ eine Genauigkeit von $\pm 1/20000$. Gute Sender erreichen aber eine wesentlich höhere Konstanz. In der physikalisch-technischen Reichsanstalt sind mehrere Sender in Betrieb, deren Schwankungen $\pm 1 \cdot 10^{-8}$ betragen und während eines ganzen Jahres nur Abweichungen von $\pm 2 \cdot 10^{-8}$ ergaben. Durch synchrone Frequenzerniedrigung (vgl. § 10 Ende) werden von diesen Sendern Uhren mit der gleichen Genauigkeit (d. h. 1/1000 sec am Tag) betrieben. Diese ist ebenso groß wie die der astronomischen Zeitmessung und man kann so prüfen, ob die Umdrehung der Erde so gleichmäßig verläuft, wie die Astronomen es annehmen. Diese ungeheuer große Genauigkeit verlangt natürlich besondere Maßnahmen. An Stelle eines elektrischen Schwingungskreises verwendet man die viel schwächer gedämpften mechanischen Eigenschwingungen piezoelektrischer Quarzstäbe (vgl. § 5d). Der Lufteinfluß wird durch Einbringen ins Vakuum, der Temperatureinfluß künstlich durch einen Thermostaten beseitigt, außerdem durch Wahl einer solchen Form und Schnittrichtung der Quarzstäbe, daß der teils positive, teils negative Temperaturkoeffizient möglichst gerade null wird.

Ohne diese außergewöhnlichen Hilfsmittel und bei Verwendung normaler elektrischer Schwingungskreise verursachen Temperaturschwankungen von 10° etwa Frequenzschwankungen von 10- der Sollfrequenz. Wesentlich störender sind meistens die Schwankungen der Betriebsgrößen: Heizung, Gitter- und Anodenspannung. Diese Gleichstromgrößen können nach dem Überlagerungsgesetz (vgl. Bd. 1 § 26) bei linearen Beziehungen überhaupt keinen Einfluß auf den Wechselstrom ausüben. Bei nahezu linearen Beziehungen und fast sinusförmigen Schwingungen beeinflussen sie in erster Linie die Amplitudenbegrenzung der selbsterregten Schwingungen, die ja nach Satz (21) auf einem nichtlinearen Vorgang beruhen muß. Änderungen der Heizung ändern die Steilheit der Kennlinie, Änderungen der Gitter- und Anodenspannung verlagern den Arbeitspunkt auf der Kennlinie und ändern dadurch ebenfalls die Steilheit der Kennlinie. Bei reiner Strombegrenzung muß sich dadurch die Amplitude der selbsterregten Schwingungen solange vergrößern oder verkleinern, bis die alte, für den stationären Zustand erforderliche Steilheit wieder erreicht ist. Da sich hierbei also im stationären Zustand nichts ändert, kann bei einer Strombegrenzung auch keine Änderung der Frequenz eintreten. - Bei der Spennungsbegrenzung kann der erste Einfluß des Gitterstromes, die Änderung der Anodenstromkennlinie durch Verminderung des Emissionsstromes um den Gitterstrom, ebensowenig einen Einfluß auf die Frequenz haben, solange Gitter- und Anodenwechselspannung in Phase sind, der Rückkopplungsfaktor $\Re = -\frac{\mathfrak{U}_{\mathbf{g}}}{11}$ phasenrein ist. Andernfalls ist mit der Gitterspannung auch der Gitterstrom phasenverschoben und überträgt diese Phasenverschiebung auch auf den Anodenstrom. Jede Phasenänderung bedingt aber zwangsläufig eine Frequenzänderung, da ja im stationären Zustand die Vektorgleichung R B = 1 wieder phasenrichtig sein muß. - Viel stärker frequenzändernd wirkt aber in den meisten Fällen der zweite Einfluß des Gitterstromes auf die äußere Schaltung. Der mit der Amplitude veränderliche innere Gitterwiderstand $R_g = 1/S_g$ begrenzt durch seine Änderung nicht nur die Amplitude der Selbsterregung (vgl. § 6c), sondern bedingt durch seine Änderung gleichzeitig auch eine Änderung der Phase der äußeren Schaltungsteile R, B, bzw. R. Diese bestehen ja im einzelnen meistens aus Blindwiderständen, und diese werden durch die Änderung eines Wirkwiderstandes R, oft mehr der Phase als der Amplitude nach geändert.

Die Schwankungen in der Frequenz der selbsterregten

Schwingungen bei Schwankungen der Betriebsspannungen haben meistens in erster Linie ihre Ursache in der Einwirkung des Gitterstromes auf die äußeren Schaltungsteile.

Man beachte, daß der Gitterstrom nicht nur von der Gitterspannung, sondern auch von der Anodenspannung abhängt, besonders stark im überspannten Zustand. Sind beide Spannungen nicht phasengleich, so ist auch \Im_g nicht mehr phasengleich mit 11_g , also der innere Gitterwiderstand $R_g = \frac{11_g}{\Im_g}$ nicht mehr phasenrein.

Bei starken Verzerrungen werden alle diese nur für sinusförmige Ströme geltenden Vektorrechnungen ungenau. Das erkennt man am besten, wenn man die Verhältnisse bei extrem starken Verzerrungen betrachtet, den sogenannten "Kippschwingungen" (vgl. § 10). Bei diesen bewirkt eine Änderung der Betriebsspannungen meist in erster Linie eine Änderung der Frequenz, während sich die Amplitude nur wenig ändert, also gerade umgekehrt wie bei den Sinusschwingungen. Man muß also starke Verzerrungen, einen Übergang zu Kippschwingungen, vermeiden, wenn man auf unveränderliche Frequenz Wert legt.

Zusammenfassend kann man etwa folgendes empfehlen:

- 1. Man mache die Rückkopplung möglichst lose, denn sonst muß eine zu starke Amplitudenbegrenzung mit entsprechend starken Phasenänderungen und Verzerrungen eintreten.
 - 2. Man mache die Rückkopplung möglichst phasenrein.
- 3. Man verwende einen möglichst schwach gedämpften Schwingungskreis zur Frequenzhaltung. Denn eine Phasenänderung aus der Resonanz von 0 auf φ bedingt eine Frequenz-

änderung $\frac{2 \int f}{f_t} = v = \frac{tg \, \phi}{\varrho}$, die um so kleiner ist, je größer die Resonanzschärfe ϱ des Schwingungskreises ist.

- 4. Man mache den wirksamen Anodenkreis-Widerstand R. klein zur Vermeidung des überspannten Zustandes.
- 5. Man verwende eine künstliche Amplitudenbegrenzung durch einen hohen Ohmschen Widerstand in der Gitterzuleitung mit oder ohne überbrückenden Kondensator. Denn dadurch wird der Gitterstromeinfluß auf die Amplitude groß, auf die Phase aber gering.

Bei Einhaltung dieser Bedingungen läßt sich der Einfluß schwankender Betriebsspannungen unschwer bis auf die Größe des Temperatureinflusses herabdrücken, die Frequenz also auf etwa 10⁻⁴ genau konstant halten. — Natürlich darf man dabei die wirksamen Widerstände nicht etwa durch Anschalten eines veränderlichen Verbraucherwiderstandes ändern. Will man eine veränderliche Leistung entnehmen, so muß dies dadurch geschehen, daß die selbsterregte Wechselspannung das negativ vorgespannte Gitter einer Verstärkerröhre leistungslos steuert und von der Anodenseite dieser Röhre die Leistung abgenommen

wird. Bei hohen Ansprüchen muß man dabei eine Schirmgitterröhre oder eine Neutrodynschaltung (vgl. Bd. II § 30) verwenden, weil sonst der Verbrauchskreis über die natürliche Gitter-Anodenkapazität der Verstärkerröhre auf die erste Röhre zurückwirken würde.

b) Zwei nichtgekoppelte Schwingungskreise, jeder für sich rückgekoppelt. Bei der normalen Schaltung mit einem Parallelschwingungskreis als \Re_a (vgl. z. B. Bild 3) erregt sich bei phasenreiner Rückkopplung die Eigenfrequenz dieses Kreises. Ändert man diese stetig, etwa durch einen Drehkondensator, so ändert sich augenblicklich auch die sich erregende Frequenz

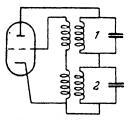


Bild 24. Zwei nicht gekoppelte Schwingungskreise, jeder für sich rückgekoppelt.

in genau derselben Weise mit. Es gibt hier nur eine Möglichkeit der Selbsterregung, und deren Frequenz ist vollkommen stabil.

Wesentlich anders liegen die Verhältnisse, wenn zwei Möglichkeiten zur Selbsterregung vorhanden sind, die miteinander in Wettstreit treten. Ein besonders übersichtliches Beispiel ist die in Bild 24 gezeichnete Schaltung. Hier gibt es zwei Frequenzen, die sich erregen können,

nämlich einerseits die Resonanzfrequenz des Kreises 1, wobei der anders abgestimmte Kreis 2 praktisch unwirksam bleibt, weil er sich nicht durch Resonanz aufschaukelt, anderseits die Resonanzfrequenz des Kreises 2, wobei Kreis 1 praktisch unwirksam bleibt. Es sind hier zwei Fälle zu unterscheiden.

a) Die beiden Eigenfrequenzen f₁ und f₂ sind von derselben Größenordnung. Sie unterscheiden sich nicht mehr als etwa 1:4. Es sind also entweder beide hochfrequent oder beide niederfrequent. Dann erregt sich praktisch fast stets nur eine der beiden Eigenfrequenzen. Wenn man den Anodenstrom einschaltet, so hört man bei Tonfrequenz in einem eingeschalteten Telephon zwar manchmal, nämlich bei geeigneten sehr losen Rückkopplungen, deutlich, daß sich im ersten Anfang beide

Frequenzen zugleich erregen. Aber nach meist sehr kurzer Zeit bleibt dann nur eine der beiden Frequenzen übrig, und zwar diejenige, die sich schneller aufschaukelt, das ist diejenige, die eine stärkere Rückkopplung, eine geringere Dämpfung oder eine höhere Frequenz besitzt. Denn sobald die eine Schwingung so weit angewachsen ist, daß die Röhre voll ausgesteuert wird (Strombegrenzung) oder der überspannte Zustand eintritt (Spannungsbegrenzung), liefere die Röhre für die andere Schwingung keine Energie mehr, weil ja ein weiteres zusätzliches Aussteuern der Röhre dann nichts mehr bringt. Die zweite schwächere Schwingung wird dann von der ersten stärkeren totgemacht. Ja, man kann sogar, wenn die erste Schwingung sich einmal bei fester Rückkopplung voll erregt hat, nachträglich ihre Rückkopplung wesentlich loser oder die der zweiten Schwingung wesentlich fester machen, ohne daß die erste, bestehende Schwingung aufhört. Erst wenn ein gewisses Maß überschritten wird, springt schließlich die Schwingung ganz plötzlich von der ersten auf die des zweiten Kreises um. Mit dem Umschlagen der Frequenz verschwindet auch der starke Strom im Schwingungskreis 1 und tritt statt dessen in dem vorher fast stromlosen Kreise 2 auf. Hat so der Kreis 2 die Oberhand gewonnen, so kann man umgekehrt die Selbsterregungsbedingungen für ihn sehr viel ungünstiger, oder für Kreis 1 sehr viel günstiger gestalten, ehe die Schwingung wieder auf Kreis 1 zurückspringt. Besitzt freilich eine Schwingung nur die Herrschaft, weil sie einmal da ist, während die Selbsterregungsbedingungen für die andere Schwingung günstiger liegen, so ist der Zustand ziemlich labil. Man braucht nur kurzzeitig den Strom aus- und wieder einzuschalten oder sonst kurzzeitig irgend eine Störung der vorhandenen Schwingung vorzunehmen, um der innerlich bevorrechtigten, d. h. der mit dem schnelleren Wachstum begabten Schwingung zum Siege zu verhelfen.

β) Die beiden Eigenfrequenzen f₁ und f₂ sind von verschiedener Größenordnung. Es ist z. B. die eine hochfrequent, die andere niederfrequent. Dann hat im allgemeinen die hochfrequente Schwingung die Oberhand, weil sie sich in-

folge ihrer hohen Frequenz schneller aufschaukelt. Ist ihre Amplitude so groß, daß sie die Röhre voll aussteuert, so kann sich die niederfrequente Schwingung meist gar nicht erregen. Ist aber die hochfrequente Rückkopplung wesentlich kleiner, so daß sich die hochfrequente Schwingung'nur schwach erregt, während die niederfrequente Rückkopplung groß ist, so erregt sich gleichzeitig auch die letztere. Für sie ist dann statt der normalen Kennlinie eine "Pseudokennlinie" maßgebend, die den Zusammenhang des mittleren Anodenstromes von der mittleren Gitterspannung beim Bestehen der hochfrequenten Schwingungen darstellt (vgl. § 9b). Diese Pseudokennlinie verläuft im allgemeinen wesentlich flacher als die normale Kennlinie, daher muß man beim Bestehen der Hochfrequenz zur Selbsterregung der Niederfrequenz eine stärkere Rückkopplung anwenden als sonst, oder man erhält bei derselben Rückkopplung eine wesentlich schwächere niederfrequente Erregung. Doch kann in gewissen Bereichen, besonders im unteren und bei Sättigung im oberen Knick der Kennlinie oder nahe den instabilen Springbereichen im Reißdiagramm der hochfrequenten Schwingung die Pseudokennlinie auch steiler verlaufen, also das Einsetzen niederfrequenter Schwingungen durch das Vorhandensein hochfrequenter Schwingungen begünstigt werden.

Die Wirkung der niederfrequenten Schwingung auf die hochfrequente ist im wesentlichen dieselbe, als ob man ähnlich wie bei der Aufnahme des Reißdiagramms (vgl. § 6b) durch äußere Änderung der Gitter- und Anodengleichspannung den Arbeitspunkt auf der Kennlinie periodisch verlagern würde. Die hochfrequente Schwingung erregt sich in ungünstigen Arbeitspunkten schwächer als in günstigen, wird also im Rythmus der Niederfrequenz "moduliert". Bei großer niederfrequenter Amplitude und besonders bei einer Verlagerung weit ins Negative setzt die hochfrequente Schwingung oft zeitweise ganz aus. Vgl. Bild 25. Das hat zur Folge, daß die einzelnen hochfrequenten Wellenzüge nicht mehr untereinander kohärent sind, der eine nicht die phasenrichtige Folge des anderen ist, sondern in einer willkürlichen Phase von neuem zu schwingen anfängt. Beim

Überlagerungsempfang ergibt dann die hochfrequente Schwingung keinen Ton, sondern ein unregelmäßiges Rauschen. Dieselben Erscheinungen treten auch beim Pendelrückkopplungsempfänger auf und werden dort in § 19a näher besprochen werden.

Die hier geschilderten Erscheinungen gelten ganz allgemein für den Fall, daß die äußere Schaltung zwei oder auch noch mehr verschiedenen Frequenzen die Möglichkeit zur Selbsterregung gibt. Die in Bild 24 gezeichnete Schaltung ist nur als ein besonders leicht zu durchschauendes Beispiel zu betrachten. Ein anderes

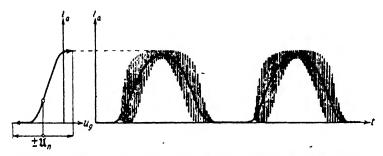


Bild 25. Gleichzeitige Selbsterregung einer (zeitweise aussetzenden) hochfrequenten und einer niederfrequenten Schwingung.

praktisch wichtiges Beispiel wird später unter c) a) besprochen. — Bei verwickelteren Schaltungen ist es oft sehr schwer zu übersehen, wie viele und welche Frequenzen für die Selbsterregung in Betracht zu ziehen sind. Besonders vergißt man leicht die Wirkung der natürlichen, äußerlich als Schaltelemente gar nicht vorhandenen Kapazitäten, die in Verbindung mit den Induktivitäten von Spulen oder sogar schon von Zuleitungsdrähten (für ganz hohe Frequenzen) zur Selbsterregung neigende Schwingungskreise bilden können. Auf diese Weise entstehen oft unbeabsichtigt "wilde Schwingungen" meist sehr hochfrequenter Art, die man manchmal gar nicht leicht als solche erkennt. Sie stören die beabsichtigte Schwingung oder auch eine sonstige beabsichtigte Wirkung meist sehr erheblich. Näheres siehe § 8.

- c) Zwei gekoppelte Schwingungskreise mit einer gemeinsamen Rückkopplung.
- a) Primäre Rückkopplung. Von besonderem praktischen Interesse ist der Fall, daß im Anodenkreise ein Schwingungskreis l liegt, der auf das Gitter rückgekoppelt ist und an dem außerdem

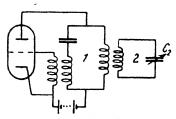


Bild 26. Zwei gekoppelte Schwingungskreise mit primärer Rückkopplung.

noch ein zweiter Schwingungskreis 2 angekoppelt ist (Bild 26).

Z. B. will man die im Erregerkreis 1 entstehenden Schwingungen auf einen Verbraucherkreis 2, etwa eine Antenne übertragen. Ein solches System aus zwei gekoppelten Schwingungskreisen hat bekanntlich zwei Eigenschwingungen, die beiden Koppelfrequenzen" f_t

und f_h , von denen die eine stets oberhalb der höheren, die andere stets unterhalb der tieferen der beiden Eigenfrequenzen f_1 und f_2 der ungekoppelten Kreise liegt und die um so mehr von diesen abweichen, je fester die Kopplung ist (Bild 27).

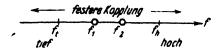


Bild 27. Zusammenhang zwischen den Eigenfrequenzen f₁ und f₂ und den Koppelfrequenzen f₅ und f_h.

Praktisch von besonderer Wichtigkeit ist der Fall, daß es sich um zwei ziemlich lose miteinander gekoppelte Hochfrequenzkreise handelt, die nahezu aufeinander abgestimmt sind. Dann sind auch die beiden Koppelfrequenzen f_t und f_h so nahe benachbart, daß der oben unter a) α) beschriebene Fall vorliegt und sich immer nur eine von beiden Frequenzen erregt und zwar diejenige, für die die Selbsterregungsbedingungen günstiger sind. Das ist die der Eigenfrequenz f_1 benachbarte Koppelfrequenz. Denn bei dieser fließt im Kreis 1 ein starker, im Kreis 2 ein

schwacher Strom, während bei der Selbsterregung der anderen, f_2 benachbarten Koppelfrequenz umgekehrt in f_2 ein starker und in f_1 ein schwacher Strom fließt. Da der Strom im Kreise 1 die Rückkopplung, die Erzeugung der steuernden Gitterspannung bewirkt, sind die Rückkopplungsbedingungen natürlich günstiger, wenn Kreis 1 den starken Strom führt. Praktisch will man aber meist einen möglichst großen Strom im Kreis 2 haben, z. B. wenn dieser aus der zu erregenden Antenne besteht. Versucht man dann durch Änderung der Antennenabstimmung empirisch den größten Antennenstrom einzustellen, so treten sehr merkwürdige "Zieherscheinungen" ein. Immer wenn man sich einem günstigen Zustand mit starkem Antennenstrom nähert, springt plötzlich

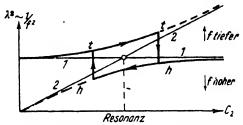


Bild 28. Koppelfrequenzen t, h und Eigenfrequenzen 1, 2 in Abhängigkeit von C₂ in Bild 26.

die Frequenz auf die andere Koppelfrequenz über und man erhält wieder einen ungünstigen Zustand mit großem Strom in Kreis 1 und kleinem Strom in Kreis 2. Die Erklärung dafür gibt Bild 28. In diesem ist als Abszisse die Größe des Abstimmkondensators C₂ aufgetragen, als Ordinate das Quadrat der reziproken Frequenz. Dies liefert für Kreis 2 gemäß der Formel

$$\lambda_2^2 = \frac{c^2}{f_2^2} = (2 \ \pi \ c)^2 \ L_2 \ C_2 = {\rm const} \cdot C_2$$

eine vom Nullpunkt aus schräg ansteigende Gerade 2, 2, für Kreis 1 eine horizontale Gerade 1, 1, da ja dessen Eigenfrequenz durch Ändern von C₂ nicht geändert wird. Für die beiden Koppelfrequenzen t und h, die immer oberhalb, bzw. unterhalb

von 1 und 2 liegen, ergeben sich dann für eine bestimmte Kopplung die gezeichneten Kurven t, t und h, h. Geht man von kleiner Kapazität C, aus, so erregt sich zunächst die Frequenz t, die für $C_2 = 0$ mit 1 zusammenfällt, mit wachsendem C_2 aber immer mehr von 1 abweicht. Oberhalb der Resonanz fällt timmer mehr mit 2 zusammen, so daß der starke Strom immer mehr von Kreis 1 auf Kreis 2 übergeht. Vergrößert man aber C2 noch weiter, so springt ganz plötzlich die Frequenz von t auf h über und der starke Strom fließt wieder in 1. Denn oberhalb der Resonanz ist h die 1 benachbarte Frequenz, für die also die Selbsterregungsbedingungen günstiger liegen. Verkleinert man jetzt wieder C2, so bleibt die einmal vorhandene Koppelfrequenz h solange bestehen, bis die Erregungsbedingungen für die Frequenz t, die hier ja wesentlich näher an 1 liegt, soviel günstiger werden, daß wieder ein Sprung von hauf terfolgt mit einem entsprechenden Umwechseln des Stromes von 2 auf 1. Schon vor dem Sprung hält sich die Frequenz nur deshalb, weil sie einmal da ist. Wenn man eine größere Störung vornimmt, z. B. den Strom in 1 oder 2 kurzzeitig unterbricht, wie das beim Tasten eines Telegraphiesenders erforderlich ist, erfolgt der Übergang stets auf die sich bevorzugt erregende, f, benachbarte Frequenz, für die die Stromverteilung ungünstig ist.

 β) Sekundäre Rückkopplung. Erfolgt die Rückkopplung auf das Gitter nicht von dem im Anodenkreis liegenden Kreis 1,

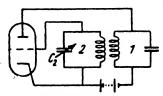


Bild 29. Zwei gekoppelte Kreise mit sekundärer Rückkopplung.

sondern von dem damit gekoppelten Kreis 2 aus, etwa so, wie dies in Bild 29 dargestellt ist, so liegen die Verhältnisse durchaus anders. Betrachtet man wieder das Verhalten bei einer stetigen Änderung von C_2 , so hat man zunächst für $C_3 = 0$ die normale Selbsterregungs-

schaltung des Schwingungskreises 1 mit transformatorischer Rückkopplung, wie sie z. B. in Bild 3 beschrieben war. Selbsterregung ist nur bei "richtiger" Polung des Transformators möglich. Vergrößert man jetzt C2, so erhöht sich zunächst im wesentlichen nur die Spannung am Kondensator C, infolge Annäherung an die Resonanz. Das bedeutet nur eine Erhöhung der Gitterspannung, also des Rückkopplungsfaktors R. Man kann so auch bei sehr loser Kopplung beider Kreise ein recht großes 🞗 herstellen, da die Spannung am Kondensator und damit auch & im Resonanzfall $\varrho \approx 100$ -mal größer wird als für $C_2 = 0$. Die Erniedrigung der Frequenz, die Abweichung der sich erregenden tiefen Koppelfrequenz f, von der Eigenfrequenz f, ist bei loser Kopplung beider Kreise ganz gering. Steigert man C. noch weiter, so daß die Resonanzlage $f_2 = f_1$ überschritten wird, so setzt die Selbsterregung bei loser Kopplung vollständig aus. Denn beim Durchgang durch die Resonanz ändert sich die Phase der Spannung an C, um nahezu 180°. Die Rückkopplung wird negativ, etwaige Schwingungen dämpfend. Man kann sie jetzt dadurch wieder positiv machen, daß man eine der beiden Koppelspulen umdreht oder umpolt, ihnen die "falsche" Polung gibt. In der Tat erregen sich dann die Schwingungen sofort wieder. Es ist jetzt die Koppelfrequenz in, die in benachbart ist und sich erregt.

Bei fester Kopplung beider Spulen setzt die Selbsterregung nicht aus und es tritt auch sonst keine Unstetigkeit ein. Bei der normalen Polung erregt sich auch beim Durchgang durch die Resonanz weiter die tiefere Frequenz f_t , die jetzt aber f_2 benachbart ist. Bei hinreichend fester Kopplung ist das beliebig weit möglich. Bei der entgegengesetzten Polung kann sich ebenso nur die höhere Koppelfrequenz f_h erregen. Das ist vor der Resonanz die f_2 , hinter der Resonanz die f_1 benachbarte Frequenz, aber kontinuierlich übergehend. Vgl. Bild 28. Ein Umspringen von einer Koppelfrequenz auf die andere, wie es vorher beim rückgekoppelten Kreis 1 beschrieben war, kann hier ohne Umpolung nicht auftreten. Bei "richtiger" Polung kann sich sowohl die Eigenfrequenz f_1 des Anodenkreises erregen, wenn C_3 fehlt, als auch die Eigenfrequenz f_2 des Gitterkreises, wenn C_1 fehlt¹). Bei umgekehrter Polung der Spulen ist beides nicht

¹) Bei fehlendem C₂ hat man die normale Rückkopplungsschaltung von Bild 3, bei fehlendem C₂ die von Bild 7.

möglich. Denn dann kann sich nur die höhere Koppelfrequenz f_h erregen. Fehlt einer der beiden Kondensatoren, so würde $f_h = \infty$. Eine Selbsterregung ist dann unmöglich, es sei denn, daß die natürliche Kapazität der betreffenden Spule nebst Anschlußleitungen die fehlende Kapazität ersetzt. Dann erregt sich bei falscher Polung die hohe Eigenfrequenz der betreffenden Spule selbst.

§ 8. Rückkopplungssender für kurze Wellen.

Eine der wichtigsten technischen Eigenschaften der Selbsterregung besteht darin, daß man die Frequenz der sich erregenden Wechselströme durch geeignete Wahl der Induktivitäten und Kapazitäten beliebig einstellen kann. Macht man

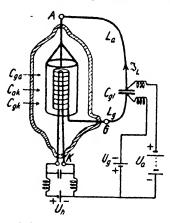


Bild 30. Rückkopplungssender für kurze Wellen.

die letzteren entsprechend klein, erhält man auch entsprechend hohe Frequenzen. Frequenzen bis zu 10^7 Hertz ($\lambda = 30$ m) lassen sich so ohne die geringsten Schwierigkeiten erregen. Bei noch höheren Frequenzen entstehen dadurch Schwierigkeiten. daß die Kapazitäten und Induktivitäten wegen der natürlichen, nach Größe und Lage unveränderlich festliegenden Teilkapazitäten der Röhre und der natürlichen Induktivitäten der Zuleitungen nicht unbegrenzt verkleinert werden können. Dies

führt dazu, daß man unterhalb von etwa 10 m allein mit den natürlichen Kapazitäten der Röhre auszukommen sucht, also äußere Kapazitäten überhaupt nicht mehr verwendet. Auch die Induktivitäten bestehen schließlich nur noch aus einem möglichst kurzen Drahtbügel ($L_{\rm a}+L_{\rm g}$ in Bild 30), der Anode und Gitter verbindet und nur einen Kondensator $C_{\rm gl}$ zur Tren-

nung der Gleichspannungen enthält. Welche Schaltungsanordnung dabei wirksam ist, zeigt Bild 31. Es erregt sich die Eigenschwingung des dick ausgezogenen Kreises. In diesem wird die Stromstärke \mathfrak{F}_L nahezu ϱ mal, d. h. bei geringer Dämpfung etwa 100 mal so groß wie der reine Elektronenstrom \mathfrak{F}_a in der Röhre, also z. B. fur $\mathfrak{F}_a=100$ mA wird $\mathfrak{F}_L=10$ A.

Ein so starker Strom fließt auch als kapazitiver Ladestrom bei A und G in die Röhre hinein! Denn die natürliche Kapazität Cgasitzt ja im wesentlichen im Innern der Röhre. Daher kommt es auch darauf an, die Stromleitungen im Inneren der Röhre hinreichend verlustfrei

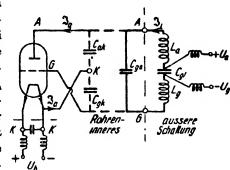


Bild 31. Wirksame Schaltung von Bild 30.

für diese extrem hohen Frequenzen zu gestalten. Normale Röhren werden leicht dadurch zerstört, daß die nur fur die schwachen Elektronenströme bemessenen dünnen Glasdurchführungen (bei G und A in Bild 30) so warm werden, daß das Glas springt. Man muß diese Durchführungen besonders kräftig gestalten. Bei größeren Kurzwellenröhren führt man das Gitter nicht unten, sondern, wie in Bild 30 gezeichnet, gesondert seitwärts heraus, teils um die Leitungsverbindung $L_{\rm g} + L_{\rm h}$ kürzer machen zu können, teils um die Kapazität $C_{\rm gh}$ kleiner zu halten.

Wie man aus Bild 31 erkennt, ist der Rückkopplungsfaktor, falls $\mathfrak{J}_{a} \prec \mathfrak{J}_{L}$ ist, angenähert

$$\mathfrak{R} = -\frac{\mathfrak{U}_g}{\mathfrak{U}_a} = \frac{1/C_{g\,k}}{1/C_{a\,k}} = \frac{C_{a\,k}}{C_{g\,k}} \,.$$

Würden diese Teilkapazitäten nur durch die Felder im Inneren des Anodenzylinders aufgebaut, so wäre $\Omega = D$, gleich dem Durchgriff der Röhre. Vgl. Bd. I (35) Seite 71. Eine Selbst-

erregung wäre dann nach der Selbsterregungsformel (7) nicht möglich. Bei Röhren mit 1 bis 2% Durchgriff ergibt die Messung von Cak aber tatsächlich einen viel größeren Wert als 1/100 bis 1/50 von C_{ak}, auch wenn man die Messung richtig durchführt, was wegen der unvermeidlichen gleichzeitigen Anwesenheit von Cgk und Cgs besondere Meßmethoden erfordert. Der Grund liegt darin, daß das elektrische Streufeld vom Anodenzylinder nach außen viel mehr zu Cak beiträgt als das innere, durch das dazwischenliegende Gitter fast vollständig abgeschirmte Feld. Bei ersterem kommt es wesentlich mit auf die ganze Leitungsführung und die Lage benachbarter Metallteile an. Das Nähern und Entfernen der Hand kann schon viel ausmachen. Eine besondere Bedeutung kommt ferner den Hochfrequenzdrosseln zu, die bei K die Heizspannung Un und bei Cg die Gitter- und Anodengleichspannung U, und U, zuführen. Alle diese Spannungsquellen sind meist so umfangreich, daß sie schon durch ihre natürlichen Kapazitäten für die Hochfrequenz als geerdet gelten können. Zweckmäßig werden sie, oder noch besser ihre Zuleitungen, dicht an der Röhre, über große Kondensatoren noch besonders geerdet. Bei sehr hohen Frequenzen sind nun Drosselspulen mehr oder weniger unwirksam, weil sie durch ihre natürlichen Kapazitäten überbrückt werden. Man kann sie zwar durch abstimmbare kleine Parallelkondensatoren zu Schwingdrosseln ausgestalten, die dann einen ρ mal größeren Widerstand haben. Doch ist das ziemlich mühsam, vermindert auch nicht die Verluste in den Drosseln, da durch den Parallelkondensator ja nur der Blindstrom kompensiert wird. Durch die Drosseln wird ein ziemlich unbestimmter Hochfrequenzweg von Cg1 über Ug, Ua und Uh zu K geschaffen, wie das ja auch aus Bild 30 zu ersehen ist. Dadurch wird die Spannung in K und damit der Rückkopplungsfaktor & noch unbestimmter als er es wegen des unklaren Cak an sich schon ist. Es ist daher nicht zu verwundern, daß kleine Änderungen in den Drosseln, Auseinanderziehen oder Zusammendrücken der frei gewickelten Drahtspiralen, die Stärke der Selbsterregung oft wesentlich beeinflussen. Beobachtet man doch oft in diesen "Drosselspulen" so starke Hochfrequenzströme, daß sie verbrennen.

Man kann die ganzen Drosselspulen vermeiden, wenn man die Spannungen an K und C_{g1} künstlich gleich groß macht. Das ist der Fall, wenn $\frac{L_a}{L_g} = \frac{C_{g\,k}}{C_{a\,k}}$ ist. Denn der Schwingungskreis stellt gewissermaßen eine Wheatstonesche Brücke dar. Um sie der obigen Bedingung entsprechend abzugleichen, legt man zunächst den Kondensator C_{g1} an eine solche Stelle des L_a und L_c bildenden Drahtbügels, daß der gewünschte Rückkopplungsfaktor $\Re = \frac{L_g}{L_a}$ herauskommt. Dann schaltet man zu einer der beiden natürlichen Kapazitäten — im allgemeinen wird es $C_{a\,k}$ sein — einen kleinen einstellbaren Zusatzkondensator parallel und ändert ihn sorgfältig so lange, bis in den bei K und C_{g1} abgehenden

Gleichstromleitungen keine Hochfrequenz mehr fließt. Dann haben diese beiden Punkte gleiche Spannung und zwar das Erdpotential¹).

Wesentlich einfacher läßt sich eine drossellose Schaltung bei der Gegentaktschaltung erzielen. (Bild 32.) Bei dieser ist die Anodenspannung der einen Röhre gerade im Maximum, wenn die der anderen Röhre im Minimum ist. Das Gleiche gilt für die Gitterspannungen. Die drei Symmetrie-

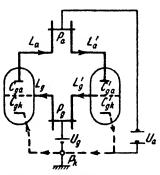


Bild 32. Gegentakt-Schaltung für kurze Wellen.

punkte P_a , P_g , P_k führen also alle drei keine Wechselspannungen, können also ohne weiteres über die Gleichspannungen miteinander

¹⁾ Genau genommen müssen nicht nur die Blindwiderstände, sondern auch die Wirkwiderstände der Brücke abgeglichen werden. Das gilt auch für die Gegentaktschaltung. — Bei extrem hohen Frequenzen kann der einstellbare "Zusatzkondensator" durch Nähern geerdeter Metallteile oder Verbiegen von Leitungsdrähten hergestellt werden.

verbunden werden. Der Hauptstrom fließt durch die Röhrenkapazitäten Cga Cga und die Drähte La, L'aund Lg, L'a. Durch Veränderung ihrer Gesamtlänge kann die sich erregende Frequenz, durch Veränderung des Verhältnisses Lg/La der gewünschte Rückkopplungsfaktor & eingestellt werden. Auf das Verhältnis Cgk/Cak kommt es hier nicht mehr an, da der über Cgk sich ausbildende kleine Hochfrequenzstrom von C'ak der anderen Röhre aufgenommen wird. Die Erdkapazitäten Cak und Cak liegen parallel zu L, und L', haben daher keinen anderen Einfluß, als daß sie die Frequenz etwas herabsetzen. Ungleichheiten in den einzelnen Röhrenkapazitäten kann man durch Ungleichheiten in den entsprechenden Drahtlängen L ausgleichen, Ungleichheiten in den Kennlinien, indem man in den Schwingungskreis an den Punkten Pk, Pg oder Pa Kondensatoren einbaut, die den Hochfrequenzstrom ungehindert durchlassen, aber eine getrennte Regulierung der Gleichspannungen für die beiden Röhren ermöglichen.

Bei einer natürlichen Kapazität C_{ga} = 10 cm erhält man mit einem 25 cm langen Drahtbügel als L, + L, eine Eigenfrequenz von etwa 10^8 Hertz ($\lambda = 3$ m). Dabei ist der Blindwiderstand $\omega L = \frac{1}{\omega C} = 160$ Ohm, so daß bei einer Resonanzüberhöhung $\rho = 50$ ein wirksamer äußerer Widerstand von etwas weniger als $\Re_{a} = 1800$ Ohm entsteht. Das ist für die Selbsterregung und für eine gute Leistungsabgabe noch groß genug. Eine Wellenlänge $\lambda = 3$ m läßt sich in der Tat bei Beachtung der in der Kurzwellentechnik erforderlichen Vorsichtsmaßnahmen schwer herstellen. Nur bei größeren Senderöhren kommt man schwer so weit herunter, da mit den Abmessungen der Röhre auch die Größe ihrer natürlichen Kapazitäten und die zur kürzesten Verbindung erforderlichen Drahtlängen wachsen. Umgekehrt kann man durch extrem kleine Röhren mit günstiger Anordnung (besonders kein gemeinsamer Sockel für die Durchführungen K, G, A!) noch Wellenlängen unter 1 m, etwa bis 30 cm, herstellen, freilich auch nur mit entsprechend kleiner Leistung. Man beachte, daß bei λ = 40 cm bei stehenden Wellen schon auf einem Leitungsstück von $\lambda/4 = 10$ cm Länge an dem einen Ende ein Spannungsmaximum, am anderen Ende ein Spannungsminimum, also ein Spannungsunterschied im Verhältnis $\rho \approx 100$ entsteht! so kufzen Wellen macht sich außerdem die Laufzeit der Elektronen in der Röhre erheblich bemerkbar. Der Anodenstrom ändert sich nicht mehr genau gleichzeitig mit der Steuerspannung, sondern etwas später. Die Steilheit S besitzt eine entsprechende (negative) Phasenverschiebung. Hat der Rückkopplungsfaktor 🎗 wie üblich eine positive Phasenverschiebung, so wirkt das bis zu einem gewissen Grade günstig, indem dann die positive Phasenverschiebung, die 1/S Ra haben muß, zum Teil schon von 1/S hergestellt wird, also R phasenreiner wird. Eine zu große Phasenverschiebung in S ist aber natürlich ungünstig und kann die Selbsterregung unmöglich machen, wenn sie nicht durch geeignete Schaltungsmaßnahmen in ihrer Wirkung aufgehoben werden kann. Die Laufzeit ist umgekehrt proportional der Wurzel aus den Spannungen. Um sie klein zu machen, muß man also neben kleinen Röhrendimensionen möglichst hohe Spannungen anwenden. Vgl. auch § 11.

Wenn bei beliebigen Röhrenschaltungen z. B. zur Aufnahme von Kennlinien, Gitter und Anode mit längeren Zuleitungen verbunden sind, die sich in ihrem Verlauf so weit nähern, daß sie für hohe Frequenzen durch die Leitungskapazität oder durch die natürlichen Kapazitäten größerer angeschlossener Instrumente oder dergleichen als überbrückt gelten können, so liegt praktisch oft eine der in Bild 30 gezeichneten gleiche Schaltung vor und es erregen sich "wilde Schwingungen" von einigen Metern Wellenlänge auch da, wo man sie gar nicht haben will. Größere Senderöhren, die für Kurzwellen nicht berechnet sind und nur dünne, für die schwachen Elektronenströme bemessene Zuleitungen besitzen, können so durch die ρ (\approx 100) mal größeren Schwingkreisströme in kurzer Zeit zerstört werden. Auf alle Fälle stören diese unbeabsichtigten "wilden Schwingungen" die beabsichtigte Wirkungsweise der Röhre, beispielsweise die Verstärkerwirkung oder auch die Aufnahme einer Kennlinie. Ihre

Anwesenheit wird dabei oftmals gar nicht erkannt und so z. B. eine "Pseudokennlinie" statt der normalen Kennlinie aufgenommen (vgl. § 7a β) und § 9b). Ein sicheres Zeichen für das Vorhandensein solcher wilder Schwingungen ist es, wenn die Meßinstrumente hin und her schwanken, wenn man die Hand der Rohre oder Teilen der Schaltung nähert und wieder entfernt, ohne dabei eine leitende Berührung herzustellen. Es handelt sich dann um eine kapazitive Beeinflussung, die nur beim Vorhandensein hochfrequenter Spannungen so stark auftreten kann.

Beseitigen lassen sich diese wilden Schwingungen oft schon durch ganz kleine Änderungen in der Leitungsführung. Wirksamer ist eine möglichst kurze Verbindung zwischen Gitter und Kathode über einen kleinen Kondensator, die für kurze Wellen einen hinreichenden Kurzschluß bildet und dadurch das Auftreten der zur Selbsterregung erforderlichen Gitterwechselspannung verhindert, den Rückkopplungsfaktor & verringert. Ein noch zuverlässigeres Mittel ist das Einschalten eines kapazitätsfreien Widerstandes von einigen hundert Ohm unmittelbar an die Anoden- oder Gitter-Ausführung der Röhre. Ein Zwischenstück von 10 bis 20 cm Leitungslänge kann die Wirkung der Widerstände schon vereiteln. Für die hochfrequenten wilden Schwingungen, für die die wirksame Kapazität in der Röhre liegt, liegen diese Widerstände im Schwingungskreis, werden von dem starken Strome $\mathfrak{J}_{\mathbf{L}} \approx \varrho \, \mathfrak{J}_{\mathbf{A}}$ durchflossen und dämpfen daher stark. Für die langsameren beabsichtigten Schwingungen, die durch die Röhrenkapazitäten nur wenig beeinflußt werden, führt die Röhre nur den schwachen Elektronenstrom 3, bzw. 3, so daß kleine Dämpfungswiderstände gegenüber den großen Widerständen der Schaltung nur wenig ausmachen. Erforderlichenfalls kann man parallel zu den Widerständen kleine Drosselspulen schalten, die den Gleichstrom und tiefe Frequenzen noch besser durchlassen als der Widerstand, die hochfrequenten wilden Schwingungen aber nicht. Drosselspulen allein ohne parallel geschaltete Widerstände sind dagegen sehr gefährlich, da sie in Verbindung mit den verschiedenen natürlichen Kapazitäten Schwingungskreise bilden, die oft gerade wilde Schwingungen erregen, statt sie zu drosseln.

§ 9. Fallende Kennlinien.

a) Wahre Kennlinien. Unter einem Leiter mit fallender Kennlinie versteht man normalerweise einen Zweipol, bei dem größere Stromstärke mit kleinerer, sich dem Strom widersetzender Spannung verbunden ist¹). Das Verhalten eines solchen Leiters ist also entgegengesetzt dem eines gewöhnlichen Ohmschen Widerstandes, bei dem größerer Strom auch größerer Spannung bedingt. Man bezeichnet zweckmäßig

(31)
$$R_1 = \frac{du}{di} = \frac{1}{S} = \text{Widerstand gegen Stromänderungen}.$$

Für einen Leiter mit steigender Kennlinie ist R, positiv, ein solcher Leiter widersetzt sich jeder Stromänderung, indem bei größerem Strom eine größere Gegenspannung auftritt, bei kleinerem Strom eine kleinere Gegenspannung, so daß dann die äußere Spannung den Strom wieder vergrößert. Im Gegensatz dazu unterstützt ein Leiter mit fallender Kennlinie jede positive oder negative Stromänderung, macht also den stationären Zustand instabil, sucht ihn zu ändern. Diese Instabilität kann entweder ein einmaliges Umkippen in eine andere stabile Gleichstromlage zur Folge haben (Gleichstrom-Labilität), oder ein' dauerndes Schwingen um eine gegen Gleichstrom labile Lage (Wechselstrom-Labilität). Diese Erscheinungen sind schon seit 1900 vom Lichtbogen und den sonstigen Gasentladungen her bekannt. Man hat dort gefunden, daß eine Instabilität immer eintritt, wenn der Widerstand R, des Lichtbogens gegen Stromänderungen negativ und größer als der Zweipolwiderstand R. der äußeren Schaltung, von den Klemmen des Lichtbogens aus gesehen, ist. Für die Gleichstromlabilität kommt es auf den

¹) Bei Generatoren ergeben sich gleiche Verhältnisse, wenn mit größerem Strom größere den Strom antreibende Spannungen verbunden sind.

Gleichstromwiderstand R_a , für die Wechselstromlabilität auf den Wechselwiderstand \Re_a der äußeren Schaltung an, wobei nur solche Frequenzen in Betracht kommen, für die \Re_a phasenrein wird, durch "Resonanz" die Blindkomponenten sich aufheben.

Bei den Elektronenröhren ist es gerade umgekehrt. Der Zustand wird labil, ändert sich von selbst, wenn der innere Widerstand R, der Röhre negativ und kleiner als der äußers Widerstand R, bzw. R, der Schaltung ist.

Die Ursache für diesen Unterschied liegt darin, daß beim Lichtbogen die fallende Kennlinie dadurch zustande kommt, daß bei größerer Stromstärke sich die Kathode stärker erwärmt und dadurch die Spannung herabgesetzt wird, also die Änderung der Stromstärke die Ursache für die Änderung der Spannung ist, die letztere als Wirkung daher erst zeitlich später als die Ursache eintreten kann. Bei den Elektronenröhren ist das Verhältnis dagegen gerade umgekehrt. Hier ist die Spannungsänderung die Ursache für die Stromänderung. Beim Dynatron z. B. verursacht eine höhere Anodenspannung mehr Sekundärelektronen an der Anode und damit eine Verkleinerung des Anodenstromes; bei den anderen Röhrenanordnungen liegen die Verhältnisse ebenso. Die Punkte fallender Kennlinie kann man daher beim Lichtbogen nur durch einen hinreichend großen, bei den Röhren nur durch einen hinreichend kleinen Ohmschen Vorschalt-Widerstand R, gegen Gleichstrom stabil einstellen. Anderseits erregt sich beim Lichtbogen am leichtesten eine Schwingung, für die der wirksame Widerstand R. klein wird, bei den Röhren dagegen eine Schwingung, für die Ra groß wird. Beim Lichtbogen verwendet man daher zweckmäßig als Schwingungskreis Induktivität und Kapazität in Reihenschaltung, bei den Röhren dagegen in Parallelschaltung. Denn nach Bd. I § 23 wird der Widerstand für die sich erregende Resonanzfrequenz bei der Reihenschaltung besonders klein, bei der Parallelschaltung besonders groß. Umgekehrt muß zur Selbsterregung der negative Widerstand vom Lichtbogen möglichst groß, von den Röhren dagegen möglichst klein sein. Mit wachsender Amplitude geht der "mittlere" negative Widerstand beim Lichtbogen über 0, bei den Röhren über co ins Positive über, so daß in beiden Fällen das Anwachsen der Amplitude bald begrenzt wird.

Ein Beispiel möge die Verhältnisse veranschaulichen. Bild 33

zeigt die gewöhnliche "Dynatron"-Schaltung (vgl. Bd. I § 6b). Das Gitter liegt an einer konstanten hohen Spannung Eg, z. B. 300 Volt, an die Anode ist ein Schaltungszweipol angeschlossen, dessen Leerlaufspannung Ui in diesem einfachsten Fall gleich der Batteriespannung Ea ist und dessen Widerstand gleichstrommäßig durch den Ohmschen Widerstand Ra, wechselstrommäßig durch den

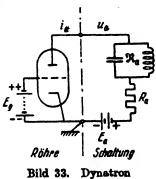


Bild 33. Dynatron (Eg etwa 300 Volt!).

Schwingungskreis $\Re_a = \varrho \omega L_a = \frac{L}{CR}$ gebildet wird. Der letztere sei zunächst kurz geschlossen. Die Spannung $u_a = f(i_a)$ an der Röhre muß dann gleich der Klemmenspannung $v_a = E_a - i_a R_a$ der Zweipolschaltung sein.

(33)
$$u_a = f(i_a) = E_a - i_a R_a$$
.

Die Lösung dieser Gleichung findet man graphisch, indem man die "Kennlinie" $u_a = f(i_a)$ und die "Widerstandsgerade" $u_a = E_a - i_a R_a$ aufzeichnet (Bild 34). Der Schnittpunkt beider Linien erfüllt dann (33). Die durch

otg
$$\alpha = \frac{U_l}{J_k} = \frac{80}{11.4 \cdot 10^{-3}} = 7000 \text{ Ohm } = R_a$$

bestimmte Widerstandsgerade schneidet die Kennlinie in den 3 Punkten a, b, c. Von diesen drei theoretisch möglichen Gleichgewichtszuständen ist b labil, läßt sich praktisch nicht herstellen, während sich sowohl a mit kleiner Anodenspannung ua (daher keine Sekundärelektronen) und positivem Röhrenstrom ia,

als auch c mit negativem Röhrenstrom (infolge Sekundärelektronen) und einer Anodenspaunung ua größer als Ea durchaus
stabil herstellen lassen. Verkleinert man Ra, so dreht sich die
Widerstandsgerade um Ea im Uhrzeigersinne. Der Punkt c
rückt dabei über c1 nach canund bleibt dauernd stabil. Der
andere stabile Punkt a rückt nach a1 und fällt dort mit dem
labilen Punkt b2 zusammen, wenn die Widerstandsgerade dort
die Kennlinie tangiert. In diesem Augenblick wird auch a1

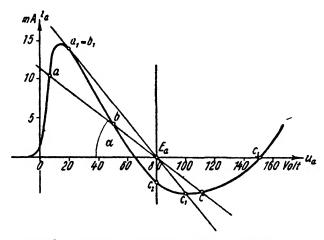


Bild 34. Dynatron-Kennlinie und Widerstandsgerade.

einseitig labil. Auch wenn man den Widerstand R_a ganz kontinuierlich verkleinert, springt der ursprünglich stabile Zustand a ganz unvermutet und plötzlich in den ganz anderen Zustand c_1 um, sobald a_1 erreicht wird. Ändert man jetzt R_a von 0 bis ∞ , so erhält man nur die Punkte zwischen c_2 und c_3 mit negativem Anodenstrom. Die Punkte a mit positivem Anodenstrom kann man nur wieder erreichen, wenn man E_a verkleinert. Dadurch verschiebt sich die Widerstandsgerade parallel nach links. Es kommt dann bei hinreichend großem Widerstand R_a (unter Umständen erst bei negativem E_a) ein Punkt, in dem die Widerstandsgerade die Kennlinie unten tangiert. Dann wird der

Zustand c einseitig labil und springt plötzlich auf den Zustand a über. Die Umspringpunkte sind so scharf, daß man sie zu einer genauen Messung der negativen Steilheit der Kennlinie an dem betreffenden Arbeitspunkt (u_a, i_a) benutzen kann. Es ist in ihnen ja — $S = 1/R_a$.

Man findet zuweilen, daß der Sprung von a₁ nicht sogleich bis c₁ verläuft, sondern sich zunächst ein Zwischenpunkt einstellt, der erst bei einer geringen weiteren Verkleinerung von R_a nach c₁ springt. Der Grund liegt darin, daß die Kennlinie zwischen a₁ und c₁ bei manchen Röhren wellig verläuft, so daß eine streifend schneidende Widerstandsgerade fünf Schnittpunkte ergibt. Von diesen ist außer den beiden äußeren noch der mittelste stabil, freilich nur innerhalb eines sehr kleinen Winkels. Bei einer geringen Verkleinerung von R_a springt er nach c, bei einer geringen Vergrößerung von R_a nach a zurück.

Macht man $R_a = 0$, so wird $\alpha = 90^{\circ}$, die Widerstandsgerade verläuft senkrecht. Es stellt sich stets ein gegen Gleichstrom stabiler Punkt ein (c2 in Bild 34). Schaltet man jetzt einen Parallelschwingungskreis mit dem Resonanzwiderstand R. ein, so wird auch hier in dem Augenblick der Zustand labil, wo R_a > - 1/S wird, aber labil gegen Schwingungen. Es erregt sich von selbst ein Wechselstrom in der Eigenfrequenz des Schwingungskreises. Das Verhalten entspricht dann genau dem der Selbsterregung durch eine äußere Rückkopplung. Die Frequenz kann durch Ändern von L und C des Schwingungskreises beliebig geändert werden. Für die Amplitude ist die "mittlere Steilheit" S_m maßgebend. Diese nimmt wegen des Umbiegens der Kennlinie bei großen Amplituden stets ab und es stellt sich immer eine solche Amplitude ein, daß $\Re_{a} = -1/S_{n}$ wird. Bei kleinen Amplituden kann in gewissen Punkten der Kennlinie - S_m anfangs zunehmen, nämlich dann, wenn der

3. Differentialquotient $\frac{d^3 i_a}{d u_a^3}$ negativ ist. Dann setzen auch hier bei langsamer Vergrößerung von \Re_a die Schwingungen hart ein, springen plötzlich auf eine größere Amplitude um, wie das in § 6a beschrieben wurde.

Das erste Einsetzen der Schwingungen erfolgt so genau bei R = 1/S, daß darauf eine Methode zur Messung von Wechselstromwiderständen R., z. B. der Eigendämpfung von Schwingungskreisen bei Hochfrequenz beruht. Man vergrößert hierbei - S so lange, bis gerade Schwingungen einsetzen, und zwar, entweder durch Anderung von E, und damit des Arbeitspunktes auf der Kennlinie oder bei Verwendung einer Doppelgitterröhre durch Änderung der (negativen) Spannung an dem ersten Gitter. Dadurch ändert man die Größe des Emissionsstroms und, da die Verteilung dieses Stromes auf das zweite stark positive Gitter und die schwächer positive Anode praktisch fast nur von den Spannungen dort abhängt, ändert man mit dem Emissionsstrom gewissermaßen nur den Maßstab der Anodenstromkennlinie, die ähnlich wie in Bild 34 verläuft. Die negative Steilheit S wächst dann dem Strom proportional. Die jeweilige Größe von - S bestimmt man durch Messung der kleinen Gleichstromänderung - 1 i. beim Zuschalten einer kleinen Gleichspannung Au.

Die Wechselstromleistung entstammt natürlich auch hier den Gleichstromquellen. Der Wirkungsgrad ist nicht groß, da der konstante Strom der Primärelektronen beim Aufprallen auf Gitter und Anode nutzlos verloren geht. Die eigentliche Steuerwirkung rührt nur von den Sekundärelektronen her, die im Rythmus der Anodenspannung mehr oder weniger zahlreich an der Anode ausgelöst werden und zum stärker positiven Gitter hinüberfliegen. Man beachte, daß auch im Punkte c₃, obwohl der Anodenstrom dort völlig null ist, doch eine erhebliche Erwärmung der Anode eintritt, weil die Primärelektronen auch dort mit der vollen, der Anodenspannung entsprechenden Geschwindigkeit auftreffen. Daß der äußere Strom null wird, kommt ja nur dadurch zustande, daß neben den zur Anode hinfliegenden Primärelektronen ebenso viele von der Anode wegfliegende Sekundärelektronen vorhanden sind.

Auch an den Gitter-Kathode-Klemmen einer gewöhnlichen Eingitterröhre kann eine fallende Kennlinie infolge von Sekundärelektronen auftreten, wenn man die Gitterspannung ug über 20 Volt positiv macht und die Anodenspannung noch höher wählt, damit sie die am Gitter gebildeten Sekundärelektronen zu sich hinüberzieht ("Gitterdynatron"). Daß hier die gleichen Instabilitäten, insbesondere das bei Senderöhren gefürchtete "Durchstoßen" eintreten kann, wurde schon in Bd. I S. 78 beschrieben. Vgl. auch dort Bild 13c. Da beim Gitterdynatron die Primärelektronen zum größten Teil nutzlos durch das Gitter hindurch zur Anode fliegen, ist der Wirkungsgrad noch geringer als beim Anodendynatron.

Ähnlich wie die Sekundärelektronen wirken die bei schlechtem Vakuum durch Elektronenstoß gebildeten Gasionen. Auch hierdurch kann ein (schwacher) negativer Gitterstrom mit fallender Kennlinie entstehen, der zu Gleichstrom-Instablilitäten oder zur Selbsterregung von Schwingungen Anlaß geben kann. Vgl. Bd. II 8 36b und 37.

Bei Raumladegitterröhren kann die Änderung in der Stromverteilung bei bestimmten Betriebszuständen ein Absinken der Stromstärke bei Erhöhung der Spannung am Raumladegitter, d. h. also auch eine fallende Zweipol-Kennlinie und die damit verbundene Instabilität verursachen ("Negadyn"; vgl. Bd. I § 15 S. 141). Siehe auch später unter c).

Wie man unter Zuhilfenahme eines konstanten Magnetfeldes bei Elektronenröhren fallende Kennlinien erzeugen kann, hat

Habaun¹) sehr allgemein theoretisch untersucht und zum Teil experimentell bestätigt. Besondere günstig ist eine dem Magnetron (vgl. Bd. I Bild 1f) ähnliche zylindrische Anordnung mit achsialem Magnetfeld und doppelt geschlitzter Anode, d. h.

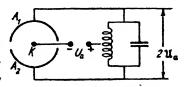


Bild 35. Habann-Generator.

richtiger zwei voneinander isolierten, nahezu halbkreisförmigen Anoden. Bild 35 zeigt schematisch einen Schnitt senkrecht zu der durch den Heizdraht K gebildeten Achse. Das Magnet-

¹⁾ E. Habann, Diss. Jena; Zs. f. Hochfrequenstechnik Bd. 24 Heft 5/6, 1924.

feld wird so stark gewählt, daß, falls man beiden Anoden A₁ und A₂ die gleiche konstante Spannung U_a gibt, die Elektronen wie beim Magnetron im Kreise zur Kathode zurückgebogen werden, der gesamte Anodenstrom also null ist. Vermindert man die Spannung der einen Anode A₁, so entsteht ein von A₂ nach A₁ gerichtetes elektrisches Querfeld, unter dessen Einfluß die Kreisbahn sich spiralig senkrecht zu diesem Felde auszieht, so daß die Elektronen sich immer weiter von der Kathode K weg wälzen und schließlich zum Teil an die Anode A₁ gelangen. Dadurch entsteht jetzt ein Anodenstrom, der nach A₁ fließt und um so stärker wird, je stärker das elektrische Querfeld, d. h. je kleiner die Spannung an A₁ gemacht wird. Das Ergebnis ist also eine fallende Kennlinie, die zur Selbsterregung von Schwingungskreisen dienen kann.

Besonders wirkungsvoll ist die auch in Bild 35 gezeichnete Gegentaktschaltung. Der Spannungsunterschied zwischen A. und A., der das Querfeld in der Röhre erzeugt, ist hier gleich der Wechselspannung 2 U. an dem Schwingungskreise. Durch geeignete Wahl der Stärke des Magnetfeldes und der Anodengleichspannung U, kann man es erreichen, daß der durch das Querfeld entstehende Anodenstrom hauptsächlich zu der Anode geleitet wird, die jeweils die kleinere Gesamtspannung hat. Mit dieser Anordnung kann man auch sehr kurze Wellen erregen. An die Stelle des Schwingungskreises tritt dann ein einfacher Drahtbügel oder ein Lechersches Drahtsystem, ähnlich wie in Bild 53 gezeichnet. - Beim Magnetron können, wie in § 11 b ausgeführt werden wird, auch ganz kurzwellige Elektronentanzschwingungen auftreten. Auch durch diese kann unter Umständen eine fallende Pseudokennlinie für langsam veränderliche Vorgänge hervorgerufen werden. Vgl. den folgenden Abschnitt b).

b) Pseudokennlinien. Grundsätzlich steckt in jedem Leiter mit fallender Kennlinie eine Art von Steuerwirkung, die man gewissermaßen als innere Rückkopplung auffassen kann. Die Zahl der Sekundärelektronen ist eine Funktion der Spannung, mit der die Primärelektronen auftreffen, kann also durch diese Spannung "gesteuert" werden. Ebenso ist die Zahl der

bei schlechtem Vakuum gebildeten Gasionen proportional dem zur Anode gehenden Elektronenstrom, läßt sich also mit diesem durch die Gitterspannung steuern. Diese Steuerwirkung wurde sogar zahlenmäßig den Berechnungen in Bd. II § 37b zugrunde gelegt und dadurch einige neue, überraschende Erscheinungen abgeleitet. Man beherrscht den ganzen Vorgang viel allgemeiner, übersieht z. B. das Vorzeichen im Stabilitätskriterium viel sicherer, wenn man mit dem inneren Steuermechanismus rechnet, als wenn man sich auf eine experimentell aufgenommene Kennlinie oder auch auf eine Kennlinienschar stützt, die doch nur unter den besonderen Verhältnissen gilt, unter denen sie aufgenommen ist. Es ist daher im allgemeinen erst recht unzweckmäßig, wenn man den klaren Steuermechanismus einer äußeren Rückkopplungsschaltung mit in das innere Verhalten der Röhre einbezieht und so insgesamt einen "Leiter mit fallender Kennlinie" konstruiert. Das ist grundsätzlich bei allen Rückkopplungsschaltungen möglich 1). Man wird aber hiervon nur Gebrauch machen, wenn der ganze Vorgang so verwickelt ist, daß man ihn besser in zwei Teile zerlegt. Man faßt dann zuerst einen Teil der äußeren Steuerwirkung mit den inneren Eigenschaften der Röhre zu einer Kennlinie zusammen, die als "Pseudokennlinie" bezeichnet sei, und macht sich dann zweitens an Hand dieser so gegebenen Pseudokennlinie klar, welche weiteren Erscheinungen daraus zu folgern sind.

Ein solcher verwickelter Zusammenhang ist z. B. die Abhängigkeit des mittleren Anodenstroms von der mittleren Gitterspannung, wenn bei einer bestimmten Rückkopplung und Anodenspannung selbsterregte Schwingungen bestehen. Das in § 6b Bild 21 dargestellte Reißdiagramm zeigt, wie sich die Am-

¹⁾ Vgl. hierzu die Anm. 2 Bd. II S. 115. — Bei Ersatzschaltungen für Röhren mit Rückkopplung stellt man gern die Leistungszufuhr durch einen negativen Widerstand dar, der einen Leistung verbrauchenden positiven Widerstand in seiner Wirkung aufhebt (vgl. z. B. die Rechnungen im Teil B: Entdämpfung). Dabei wird der negative Widerstand aber nicht einer "fallenden Kennlinie" entnommen, sondern einer mathematischen Formel, deren einzelne Größen sich aus dem normalen Steuermechanismus der Röhre herleiten.

plituden der selbsterregten Schwingungen mit der Gittervorspannung ändern. Bei größeren Amplituden ändert sich aber auch der mittlere Strom durch die Schwingungen. Es tritt eine Gleichrichterwirkung ein, durch die die wirksame (Ja, Ug)-Kennlinie geändert wird 1). Natürlich hat auch die Anodengleichspannung einen Einfluß auf die Amplitude der Schwingungen und dadurch indirekt auch auf den mittleren Anodenstrom. Das wird besonders in der Nähe der instabilen Gebiete im Reißdiagramm der Fall sein, oder wenn, wie in § 6e beschrieben, eine künstliche Amplitudenbegrenzung durch eine Gleichrichterwirkung vorgesehen ist. Es ist so möglich, daß bei größerer Anodenspannung der mittlere Anodenstrom oder auch bei größerer Gitterspannung der mittlere Gitterstrom sinkt, also eine fallende Zweipol-Pseudokennlinie entsteht. Diese kann dann für langsam veränderliche Vorgänge alle die Instabilitäten oder Schwingungen hervorrufen, wie sie oben unter a) beschrieben wurden. Auch das Eintreten wilder Schwingungen, die meist sehr hochfrequenter Art sind, kann ganz unbeabsichtigt solche Pseudokennlinien hervorrusen. Vgl. § 8. Das gleiche gilt von den Elektronentanzschwingungen. Vgl. § 11. Die langsamen Schwingungen modulieren dann meist die schnellen, wie das in § 7 a β) beschrieben wurde.

e) Widerstands- (Gleichstrom-) Rückkopplungen. Eine andere Art von Pseudokennlinien kann man durch eine Rückkopplung über Ohmsche Widerstände herstellen, die auch für Gleichstrom, die Frequenz null, wirksam bleibt. Die Verformung der wirksamen Kennlinien durch diese Rückkopplung läßt sich dann auch durch Gleichstrommessungen feststellen²). Bei Verwendung einer Röhre mit einem Gitter führt eine solche

¹⁾ Vgl. auch § 7a β). — Diese Pseudokennlinien sind ähnlich den später in Teil IV beschriebenen Richtkennlinien. Sie unterscheiden sich von ihnen nur dadurch, daß letztere bei konstanter Fremderregung, die Pseudokennlinien dagegen bei Selbsterregung, also bei mit dem Arbeitspunkt veränderlicher Amplitude aufgenommen werden. Auch die Richtkennlinien sind Pseudokennlinien, die z. B. in Teil IV für das Verhalten gegenüber Gleichstrom zugrunde gelegt werden.

²⁾ Ähnlich wie bei den Widerstandskennlinien, die in Bd. II § 4 unter "Arbeitskennlinien" beschrieben wurden.

Rückwirkung eines Teiles der Anodenspannung auf die Gitterspannung wegen des entgegengesetzten Vorzeichens der Span-

nungsänderungen stets zu einer negativen Rückkopplung, einer Schwächung der Verstärkerwirkung. Man muß entweder eine zweite Röhre für die Vorzeichenumkehr oder eine Mehrgitterröhre verwenden, wenn man eine positive Rückkopplung und damit die Möglichkeit von Instabilitäten oder von Schwingungserregung herstellen will. Bild 36 zeigt die Schaltung für eine

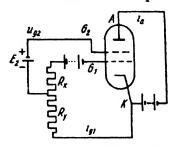


Bild 36. Raumladegitterröhre mit einer Gleichstrom-Rückkopplung.

Raumladegitterröhre. Das Raumladegitter G_1 ist so stark positiv vorgespannt, daß der Emissionsstrom gesättigt, also

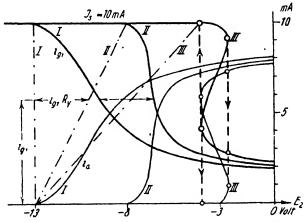


Bild 37. Kennlinien zu Bild 36. $E_1 = u_{g_1} + i_{g_1} R_y$. I) $R_y = 0 \Omega$; II) $R_y = 500 \Omega$; III) $R_y = 1600 \Omega$.

konstant ist. Das Steuergitter G_2 regelt dann die Stromverteilung dieses Stromes zwischen Anode A und G_1 . Die (i_a, u_{g_a}) -Kennlinie verläuft normal, ansteigend. Die (i_g, u_{g_a}) -Kennlinie ver-

läuft dagegen abfallend; sie ist ja angenähert ein negatives Spiegelbild von der ersteren, da $i_a + i_{g_a} = J_a$ konstant bleibt (vgl. Bild 37 die Kurven I, für die u, = E, ist). Es handelt sich hier aber um eine Vierpol-Kennlinie, der Strom am Gitter 1 wird nicht durch die Spannungen an demselben Gitter 1, sondern durch die Spannungen am Gitter 2 gesteuert. Mit einer solchen "fallenden Kennlinie" ist an sich noch keinerlei Instabilität verbunden. Es ist keine fallende Kennlinie in dem oben bezeichneten Sinne mit den Wirkungen eines negativen inneren Widerstandes, sondern eine gewöhnliche Kennlinie mit der bekannten Steuerwirkung, indem eine Wechselspannung Ug einen Wechselstrom $\mathfrak{F}_{\mathbf{g}_1} = S_{12} \mathfrak{U}_{\mathbf{g}_2}$ hervorruft. Daß S_{12} hier negativ ist, also der "verstärkte" Strom $\mathfrak{J}_{\mathbf{s}_i}$ hier die entgegengesetzte Phase hat wie die "unverstärkte" Spannung U., wirkt nur so, als ob die Wechselspannung Ug, anders gepolt zugeführt wäre, macht also auf die Verstärkerwirkung nichts aus. Erst dann, wenn $\mathfrak{J}_{\mathbf{g}_1}$ außerhalb oder innerhalb der Röhre wieder auf $\mathfrak{U}_{\mathbf{g}_2}$ zurückwirkt, kommt es auf die Phase an. Eine solche innere Rückwirkung kommt bei der Raumladegitterröhre stets ganz von selbst durch den Durchgriff D₁₂ zustande (vgl. Bd. I § 15). Die Spannnung ug, verändert die Steuerwirkung von ug, um D₁₂ ug. Größeres ug erzeugt eine größere "Steuerspannung" am Gitter 2, also größeres is und kleineres is. So entsteht die schon oben unter a) erwähnte fallende (ig,, ug,)-Kennlinie (,,Negadyn"), die eine richtige Zweipol-Kennlinie ist mit dem inneren Wider-

stand $R_{l_1}=\frac{d\,u_{g_1}}{d\,i_{g_1}}=\frac{1}{S_{12}\,D_{12}}$, der negativ ist, falls S_{12} negativ und D_{12} positiv ist.

Viel stärker als der Durchgriff D_{18} wirkt aber eine äußere Rückkopplung durch die Schaltung. Im vorliegenden Falle kann man ebenso gut wie den gesteuerten Anodenstrom i_a auch den nahezu entgegengesetzt gleich gesteuerten Raumladestrom i_g zur Rückkopplung verwenden. Der erste Fall führt zu den normalen Rückkopplungsschaltungen, die mit jeder Eingitterröhre in der früher besprochenen Weise hergestellt werden können. Im zweiten Falle muß aber die Rückkopplung die entgegengesetzte Phase er-

halten, wenn sie positiv, anfachend wirken soll. Ein Transformator als Rückkopplung muß also entgegengesetzt gepolt werden. Beim Spannungsteiler müssen die beiden Teile nicht entgegengesetzte, sondern gleiche Phase haben. Während man früher nach § 5 a immer einesteils eine Induktivität, andernteils eine Kapazität verwenden mußte, müssen hier beide Teile gleichartig sein. Dadurch ist es auch möglich, zwei Ohmsche Widerstände als Spannungsteiler zu verwenden. Bild 36 zeigt eine solche Schaltung. Die Spannung ug, zwischen G₂ K ist gleich E₂ vermindert um den Spannungsabfall ig, Ry in Ry. Vergrößert man E2 und damit auch u_{g_1} , so wächst i_{g_2} , während i_{g_2} abnimmt. Für $R_v = 0$ erhält man so die normalen Kennlinien I in Bild 37. Für endliches R, wermindert sich aber ig, Rg entsprechend der Abnahme von ig. Man erhält den Verlauf der neuen Kennlinie, wenn man in der alten die Werte von E2 um ig. Rv verschiebt. Das entspricht einer "Scherung", einer Verschiebung nach rechts um einen ig proportionalen Betrag, wie er durch die strichpunktierten Scherungslinien II, III in Bild 37 dargestellt wird. Für $R_v = 500$ Ohm erhält man so die wesentlich steiler verlaufenden Kennlinien II, für R_v = 1000 Ohm werden die Kennlinien III teilweise rückläufig, weil die Steilheit der Scherungslinie kleiner wird als die Steilheit der Kennlinie. Derartig verformte Kennlinien erhält man in der Tat, wenn man bei konstantem R, die Spannung E, ändert. Die rückläufige Kennlinie kann man freilich nicht aufnehmen. Sie ist labil und der Strom springt dann plötzlich auf den anderen stabilen Wert, wie das in Bild 37 durch die punktierten Linien angedeutet ist. In dem labilen Gebiet ist die (i₂, E₂)-Kennlinie fallend, die (i₂, E₂)-Kennlinie dagegen steigend. Das zeigt, daß man allein aus dem steigenden oder fallenden Verlauf einer Vierpol-Kennlinie keine Schlüsse auf die Stabilität oder Labilität ziehen kann.

Der Widerstand R_x schwächt i_{g_1} und damit die Rückwirkung. Er ist an sich überflüssig und wird im allgemeinen fortgelassen, da man die Rückwirkung schon durch R_y regeln kann. Schaltet man an Stelle von R_y einen Parallelschwingungskreis \Re_y , so erregt sich dessen Eigenfrequenz, da für diese das wirksame \Re_y

am größten und phasenrein ist. Die Verhältnisse entsprechen vollkommen den normalen mit einem rückgekoppelten Schwingungskreis auf der Anodenseite, nur daß hier die Rückkopplung

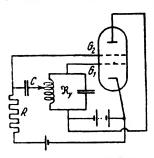


Bild 38. Schwingungserzeugung bei einer Raumladegitterröhre.

keine Phasenumkehr enthalten darf. \Re_y entspricht dem früheren \Re_a , und wenn man G_2 und G_1 unmittelbar verbindet, erhält man eine phasenreine Rückkopplung $\Re=\frac{11_{g_a}}{11_{g_1}}$ von der Größe 1. Natürlich kann man auch \Re durch eine Anzapfung an der Induktivität des Schwingungskreises kleiner machen und ferner in die Zuleitung zum Gitter G_2 einen Blockkondensator C einschalten, um getrennt eine Gleichspanter

nung über einen hochohmigen Widerstand R zuführen zu können (Bild 38). Auch hier lautet ganz allgemein die Selbsterregungsformel

$$\mathfrak{R} = D_{12} + \frac{1}{S_{12} \mathfrak{R}_a} \quad \text{oder} \quad (-\mathfrak{R}) + D_{12} = \frac{1}{(-S_{12}) \mathfrak{R}_a}.$$
 (-\mathbb{R}) und (-S_{12}) sind positiv. Der Durchgriff D_{12} unter-

stützt hier, wie oben ausgeführt, die Rückkopplung und kann sogar für sich allein ohne eine außere Rückkopplung zu Instabilitäten führen, wenn er größer als $\frac{1}{(-S_{12})}\bar{\Re}^t_a$ ist. Diese Formel gilt auch für die in Bild 36 gezeichnete Gleichstromschaltung. Hier ist $-\hat{\Re} = \frac{R_y}{R_x + R_y}$ und $\hat{\Re}_a = R_x + R_y$. Eine Instabilität führt hier nicht zu Schwingungen, sondern zu einem plötzlichen Umkippen in die andere stabile Gleichgewichtslage mit

tät führt hier nicht zu Schwingungen, sondern zu einem plötzlichen Umkippen in die andere stabile Gleichgewichtslage mit kleinerem S₁₂ gemäß Bild 37 Kennlinie III. Schaltet man in Bild 37 so wie in Bild 38 in die Rückkopplungsleitung zu G₂ einen durch einen hohen Widerstand überbrückten Kondensator, so wird der plötzliche Sprung bei Instabilität dadurch nicht beeinflußt. Es treten dann aber "Kippschwingungen" auf, ein

periodisches Umspringen entsprechend den beiden in Bild 37 bei Kurve III gezeichneten Sprunglinien, weil der überbrückte Kondensator seine durch den Kippvorgang erhaltene Spannung bald verliert. Vgl. weiter unten und § 11.

Bild 39 zeigt die Schaltung einer Gleichstrom-Rückkopplung über zwei Röhren. Eine Änderung der Gitterspannung u_{g_a} erzeugt eine Änderung des Anodenstromes i_{a_1} und damit des Spannungsabfalls $i_{a_1}R_{y_1}$, d. h. der Gitterspannung u_{g_a} . Es ist

$$\Delta u_{g_1} = -V_1 \Delta u_{g_1}; \quad V_1 = \frac{1}{D_1} \frac{R_{y_1}}{R_{i_1} + R_{x_1} + R_{y_1}} = \begin{array}{c} \text{Spannungsverstär-kung der ersten} \\ \text{R\"{o}hre.} \end{array}$$

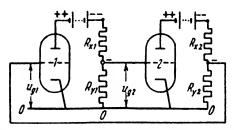


Bild 39. Gleichstrom-Rückkopplung über zwei Röhren.

In gleicher Weise erzeugt eine Änderung von u_{g_*} über die zweite Röhre eine Änderung des Spannungsabfalls i_a , R_{y_*} um Δu_k , der infolge der Rückkopplung gleich der Änderung von u_{g_*} ist. Es ist

$$\varDelta \, u_{\textbf{k}} = - \, V_{\textbf{2}} \, \varDelta \, u_{g_{\textbf{1}}} = + \, V_{\textbf{1}} \, V_{\textbf{2}} \, \varDelta \, u_{g_{\textbf{1}}}; \quad V_{\textbf{2}} = \frac{1}{D_{\textbf{2}} \, R_{\textbf{1}_{\textbf{1}}} + R_{\textbf{x}_{\textbf{1}}} + R_{\textbf{y}_{\textbf{1}}}}.$$

Der Zustand wird instabil, wenn die durch die Rückkopplung erzeugte Änderung Δu_k größer ist als die ursprüngliche Änderung Δu_k .

(34) Bedingung für Instabilität:
$$V_1 V_2 > 1$$
.

Macht man einen stabilen Zustand $V_1V_2 < 1$, bei dem beispielsweise beide Röhren gleichen Strom führen, durch Vergrößerung eines R_y -Widerstandes oder Verkleinerung eines R_x -

Widerstandes allmählich immer instabiler, so kann sich von dem Augenblick an, wo $V_1V_2 = 1$ wird, der symmetrische Zustand nicht mehr aufrechterhalten, der Strom kippt in eine neue stabile Gleichgewichtslage über. Diese besteht bei festerer Rückkopplung, d. h. bei V₁V₂ ≥ 1 meist darin, daß eine Röhre eine so große negative Gitterspannung ug, erhält, daß ihr Anodenstrom ia völlig zu null wird. Damit wird auch die sonst vorhandene negative Gitterspannung ug, zu null, der Anodenstrom ia entsprechend groß, so daß er tatsächlich die große negative Spanning ug, erzeugt. Dieser neue Zustand ist vollkommen stabil, weil für die stromlose Röhre $R_1 = \infty$ und $V_1 = 0$ ist. Er kann nur dadurch in den anderen Zustand zurückgeführt werden, daß man R_{v.} und damit das negative ug, so weit verkleinert, daß die Röhre 1 wieder Strom führt. Da die Schaltungsanordnung bezüglich beider Röhren völlig symmetrisch ist, kann natürlich auch ein Umkippen in der anderen Richtung erfolgen, sodaß die Röhre 2 stromlos wird und die Röhre 1 starken Strom führt. Ein derartiges Umkippen in eine praktisch unbrauchbare neue Gleichgewichtslage kann bei Gleichstromverstärkern (vgl. Bd. II § 34b) leicht eintreten, wenn man statt der in Bd. II Bild 112 gezeichneten gemeinsamen Anodenbatterie die Anodenspannungen von einem gemeinsamen Spannungsteiler abgreifen will. Denn dieser bildet dann auch eine entsprechende Rückkopplung, die um so größer ist, je höherohmig der Spannungsteiler ist. - Schaltet man in die die Kopplung herstellende Verbindung zum Gitter der folgenden Röhre einen Kondensator und führt dann dem Gitter die erforderliche Gleichspannung durch einen hochohmigen Widerstand Rg zu, so erhält man (unter Weglassen der Widerstände Rx), die später in Bild 45 dargestellte Schaltung. Bezüglich schneller Änderungen verhält sie sich genau so wie die in Bild 39 gezeichnete Schaltung. Bei hinreichend großem R, findet also auch dann ein plötzliches Umkippen in eine unsymmetrische Lage statt. Nur verschwindet dann die negative Gitterspannung der stromlos gewordenen Röhre allmählich in dem Maße, wie sich der Koppelkondensator entlädt. Sobald dann ein Auodenstrom eintritt. findet ein plötzliches Umkippen in den anderen Zustand statt, bei dem die andere Röhre stromlos ist. Aber auch hier entlädt sich der Kondensator dann allmählich, so daß dann wieder ein plötzliches Umkippen in den ersten Zustand erfolgt. Es wird so in ununterbrochener Folge bald die eine, bald die andere Röhre stromlos. Derartige Kippschwingungen werden in § 10 näher besprochen.

Schaltet man in Bild 39 in Reihe mit einem (kleinen) R_v-Widerstand oder direkt an seine Stelle einen Parallelschwingungskreis, so stellt dieser für seine Resonanzfrequenz einen sehr großen Widerstand R, dar. Der Zustand wird für diese Frequenz labil, so daß sie sich von selbst erregt. — Schaltet man parallel zu einem (großen) R.-Widerstand einen Reihenschwingungskreis, so stellt dieser für seine Resonanzfrequenz einen niederohmigen Nebenschluß zu R. dar, der unter richtig gewählten Umständen auch zur Selbsterregung der Resonanzfrequenz führt. Würde man an Stelle von R, einen Reihenschwingungskreis oder an Stelle von R, einen Parallelschwingungskreis legen, so würden die Selbsterregungsbedingungen für die Resonanzfrequenz besonders ungünstig, so daß sich diese praktisch nie erregen würde. Im ersteren Falle bildet die Induktivität des Schwingungskreises allein, im letzteren Falle die Kapazität allein für sehr schnelle Stromänderungen einen sehr großen bzw. sehr kleinen Widerstand, so daß in beiden Fällen viel eher schnell verlaufende Kippschwingungen entstehen. — Auch bei der Raumladegitterröhre könnte sich ein Reihenschwingungskreis, der parallel zu einem großen R, (in Bild 36) geschaltet ist, in seiner Eigenfrequenz erregen.

§ 10. Selbsterregung ohne Schwingungskreis. Kippschwingungen.

Zur Selbsterregung von Schwingungen, auch von solchen sinusförmiger Art, ist es nicht notwendig, daß ein Schwingungskreis oder ein sonstiges System mit einer Eigenschwingung vorhanden ist. Auch ein System, das neben Ohmschen Widerständen nur Induktivitäten oder nur Kapazitäten besitzt, kann

sinusförmige Schwingungen selbst erregen. Es braucht nur die Rückkopplungsgleichung $\Re \mathfrak{B} = 1$ erfüllt zu sein, d. h. die Ver-

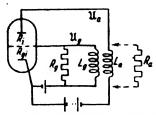


Bild 40. Selbsterregung sinusförmiger Schwingungen ohne Schwingungskreis.

stärkung darf nicht kleiner als die reziproke Rückkopplung sein und beide müssen zueinander die richtige Phase besitzen.

Das einfachste Beispiel ist die in Bild 40 gezeichnete Schaltung¹). Sollen stationäre sinusförmige Schwingungen bestehen, so müssen die folgenden Gleichungen erfüllt sein:

(4)
$$\mathfrak{F}_{a} = \mathbb{S}(\mathfrak{U}_{g} + \mathbf{D}\mathfrak{U}_{a});$$
 (innere, Röhrengleichung)

$$\begin{array}{ll} \text{(35)} & \mathfrak{U}_{\mathbf{g}} = \mathrm{R}_{\mathbf{g}} \mathfrak{J}_{\mathbf{g}} = \mathrm{R}_{\mathbf{g}} \cdot \frac{\mathrm{j} \, \omega \, \mathrm{M}}{\mathrm{R}_{\mathbf{g}} + \mathrm{j} \, \omega \, \mathrm{L}_{\mathbf{g}}} \, \mathfrak{J}_{\mathbf{a}} \\ \text{(36)} & -\mathfrak{U}_{\mathbf{a}} = \mathfrak{R}_{\mathbf{a}} \, \mathfrak{J}_{\mathbf{a}} = \left(\mathrm{j} \, \omega \, \mathrm{L}_{\mathbf{a}} + \frac{\omega^2 \, \mathrm{M}^2}{\mathrm{R}_{\mathbf{g}} + \mathrm{j} \, \omega \, \mathrm{L}_{\mathbf{g}}} \right) \mathfrak{J}_{\mathbf{a}} \end{array} \right) \\ \overset{\text{(Äußere Schaltungs-gleichungen.}}{\mathrm{Spanton}} \, \mathbb{V}_{\mathbf{gl.}} \, \mathbb{H}_{\mathbf{g}} \, \mathbb{H}_{\mathbf{g$$

Dabei ist \Im_g der durch L_g und R_g fließende Strom, der durch die gegenseitige Induktion M von \Im_a hervorgerufen wird, nicht der in die Röhre hineinfließende Gitterstrom. Der letztere ist vielmehr gleich null angenommen. Ist er nicht null, so muß man einen inneren Widerstand $R_{g1} = \frac{d\ u_g}{d\ i_g}$ parallel zu R_g liegend in Rechnung setzen, d. h. statt R_g einen kleineren Widerstand $R'_g = \frac{R_g R_{g1}}{R_g + R_{g1}}$ einsetzen.

Aus (4), (35) und (36) folgt bei Beachtung von $R_1 = 1/SD$:

$$\left(R_{g}+j\,\omega\,L_{g}\right)\,R_{l}=\frac{j\,\omega\,M\,R_{g}}{l\,l}-j\,\omega\,L_{a}\left(R_{g}+j\,\omega\,L_{g}\right)-\omega^{2}\,M^{2}\,.$$

Reelles und Imaginäres getrennt ergibt

(37)
$$R_g R_i = \omega^2 (L_a L_g - M^2)$$
 oder $\omega^2 = \frac{R_g}{L_g} \frac{R_i}{L_a} \frac{1}{(1 - k^2)}$

¹⁾ Vgl. auch § 17b.

und

$$(38) \quad L_g R_i + L_a R_g = \frac{M R_g}{D} \quad \text{oder} \quad R_i = R_g \frac{L_a}{L_g} \left(\frac{M}{L_a D} - 1 \right).$$

Dabei ist $k = \frac{M}{\sqrt{L_n L_n}} = \text{Kopplungsfaktor des Transformators.}$ Gleichung (37) bestimmt die sich erregende Frequenz w, Gleichung (38) die Amplitude der Erregung, indem mit wachsender Amplitude S_m kleiner, also $R_i = \frac{1}{S_m D}$ größer wird, oder bei einsetzendem Gitterstrom das kleinere R'g für Rg zu setzen ist. Die Schwingungen erregen sich um so leichter, je größer die rechte Seite von (38) ist, also je größer R_g , durch $\frac{L_a}{L_a}$ auf die Anodenseite übersetzt, gegenüber R, ist und je fester die Kopplung (M) ist. Die sich erregende Frequenz ist um so tiefer, besitzt eine um so längere Schwingungsdauer, je fester die Kopplung k und je größer die Zeitkonstanten $T_g = L_g/R_g$ des Gitterkreises und T_a = L_a/R_i des Anodenkreises sind. Letzterer ist durch die Röhre geschlossen zu denken. Liegt parallel zu L. ein Widerstand R. (in Bild 40 angedeutet), so liegt dieser auch parallel zu R_i und es ist überall, sowohl in (37) als auch in (38), $R_i || R_a$ $=\frac{R_1R_a}{R_1+R_a}$ an Stelle von R_1 zu setzen. Ebenso ergibt die Berücksichtigung der hier vernachlässigten Widerstände der Spulen La und La nichts grundsätzlich Neues.

Bei so schwacher Selbsterregung, daß die Anodenstromkennlinie noch als geradlinig zu betrachten ist, und kein Gitterstrom einsetzt, erhalt man in der Tat ganz sinusförmige Schwingungen von der berechneten Frequenz. Bei stärkerer Selbsterregung wird nach (37) mit größerem R_i auch die Frequenz höher, mit einsetzendem Gitterstrom, Verkleinerung von R_g auf R_g' , dagegen tiefer. Besonders weicht dann aber die Kurvenform sehr bald so stark von der Sinusform ab, daß die oben angewandte Rechnung mit den gerichteten Wechselstromgrößen nicht mehr zulässig ist. Man muß dann auf die Differentialgleichungen

zurückgehen und die einzelnen Zeitabschnitte getrennt untersuchen.

Eine solche Untersuchung wird besonders übersichtlich bei fehlendem Gitterwiderstand R_g . Dann ist $R_g = \infty$ zu setzen, freilich nur, solange kein Gitterstrom fließt. Nach (38) würde dann die Selbsterregung unendlich stark, nach (37) die Frequenz unendlich schnell. Der Gleichstromzustand wird labil, sobald man die Transformatorkopplung

$$(39) M > L_{\lambda}D$$

macht. Eine kleine Vergrößerung des Anodenstromes i_a erzeugt dann ein Absinken der Anodenspannung u_a um $L_a \frac{di_a}{dt}$ und ein

Anwachsen der Gitterspannung u_g um $M \frac{di_a}{dt}$, also falls (39) gilt, insgesamt ein Anwachsen der Steuerspannung $u_{st} = u_g + Du_a$. Damit ist aber zwangläufig ein sofortiges weiteres An-

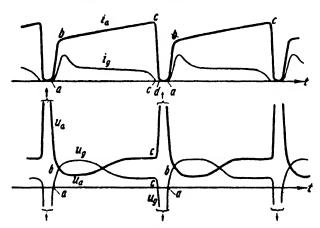


Bild 41. Kippschwingungen bei der Schaltung von Bild 40.

wachsen von ia verbunden (vgl. Bild 41 Punkt a); ug und ua müßten so unbegrenzt schnell weiter zu- bzw. abnehmen. Dieser Sprung wird dadurch sofort aufgefangen, daß ein Gitterstrom einsetzt, und besonders dann, wenn $u_a < u_g$ geworden ist (Punkt b),

der überspannte Zustand eintritt, bei dem der weiter anwachsende Emissionsstrom von der Anode größtenteils zum Gitter hinüberwechselt. Der anwachsende Gitterstrom verringert das Anwachsen von i_a , einerseits unmittelbar infolge der Stromverteilung, anderseits mittelbar durch die Verkleinerung von u_g um $L_g \frac{\mathrm{d} i_g}{\mathrm{d} t}$, die auf die Steuerspannung mehr ausmacht als

die Vergrößerung von u_a um $M\frac{di_g}{dt}$. Die Dauer be und der Verlauf der Ströme und Spannungen während dieser Zeit hängen stark von der mehr oder weniger unregelmäßigen Stromverteilung zwischen i_a und i_g ab, die wesentlich, mit durch Sekundärelektronen beeinflußt wird. Vgl. Bd. I § 13. Es handelt sich im Prinzip um einen Ausgleichsvorgang, der durch die Zeitkonstante $T_g + T_a$ bestimmt wird. — Sobald i_a nicht mehr steigt, fällt die in dem Gitterkreis induzierte positive Spannung $M\frac{di_a}{dt}$ fort. Eine positive Gitterspannung be-

steht dann aber noch eine Zeitlang durch das $L_g \frac{di_g}{dt}$ des absinkenden Gitterstromes fort. In dem Augenblick aber, wo der Gitterstrom null geworden ist, fällt auch dies plötzlich weg (Punkt c). Die Steuerspannung und damit der Anodenstrom müssen dann absinken. Dann erzeugt aber $M \frac{di_a}{dt}$ eine negative Gitterspannung, durch die i_a augenblicklich weiter absinken muß. Es würde theoretisch ein unendlich hohes negatives u_g und ein unendlich hohes positives Du_a entstehen mit einem unendlich schnellen Absinken des Anodenstromes auf null, da infolge (39) auch $u_{st} = u_g + Du_a$ negativ unendlich würde (Punkt d). Praktisch wird dieser zweite Sprung nur durch die natürlichen

stellen kann. Die Spannung kann maximal nicht über $u_{a \text{ max}}$ $= i_{a \text{ max}} \sqrt{\frac{L_a}{C_a}}$ anwachsen. Da C_a sehr klein ist, 10—100 cm,

Kapazitäten des Transformators gemildert, die man im wesentlichen durch einen parallel zu L liegenden Kondensator C darkann das bei größerem L_a (Spulen für Niederfrequenz von einigen Henry) sehr hoch, einige 1000 Volt sein. Bei ungenügender Isolation erfolgen dann periodische Durchschläge, die sich durch ein kratzendes Geräusch bemerklich machen. Sobald die Kondensatorladung durch L_a abgeflossen ist, wird auch der Strom in L_a null, und damit auch die induzierte negative Gitterspannung. Der Anodenstrom beginnt dann wieder zu fließen und der ganze Vorgang beginnt von neuem (Punkt a).

Man bezeichnet einen derartigen periodischen Vorgang, bei dem die einzelnen Teile durch ganz verschiedene Bedingungen geregelt werden und demgemäß im allgemeinen auch ganz verschieden schnell verlaufen, als "Kippschwingung". In dem geschilderten Fall ist der Verlauf be im wesentlichen der Teil eines aperiodischen Ausgleichsvorganges, für den eine nur von den L und R abhängige Zeitkonstante maßgebend ist. Der hier sehr viel schnellere Verlauf cdab ist im wesentlichen der Teil eines periodischen Ausgleichsvorgangs, für den La und Ca maßgebend sind. Er läßt sich daher auch durch Hinzuschalten eines wirklichen Kondensators parallel zu L, oder auch zu L, entsprechend verlangsamen. Durch hinreichendes Vergrößern dieses Kondensators kann man einen kontinuierlichen Übergang zu den normalen selbsterregten Schwingungen eines Schwingungskreises herstellen, wie sie in § 4 beschrieben wurden. Es besteht grundsätzlich kein Unterschied zwischen den beiden Arten von Schwingungen¹). Praktisch verhalten sich die Kippschwingungen aber doch wesentlich anders. Zunächst weicht die Kurvenform meist stark von der Sinusform ab und kann je nach den Versuchsbedingungen die verschiedensten Formen annehmen. Weiter ist die Frequenz sehr wenig konstant und z. B. stark veränderlich mit der Rückkopplung, der Dämpfung oder auch der Gitter- und Anodenspannung und der Heizung. Es fehlt das frequenzhaltende Glied, das ein in seiner Eigenfrequenz erregter schwach gedämpfter Schwingungskreis bildet. Umgekehrt ist die Amplitude von Kippschwingungen oft nahezu fest gegeben, von äußeren Einflüssen wenig abhängig. Das Umkippen

¹⁾ Vgl. auch § 17b Satz (79).

wird gewissermaßen durch eine Art von Anschlag begrenzt, z. B. das Einsetzen oder Nullwerden des Gitter- oder Anodenstroms. Macht man die Rückkopplung größer, so werden diese Anschläge nur schneller erreicht, also nur die Frequenz geändert, nicht die Amplitude.

Kippschwingungen entstehen besonders dann, wenn für irgend eine sinusförmige Frequenz der Rückkopplungsfaktor R oder der Verstärkungsfaktor B bzw. der äußere Widerstand R. übermäßig groß, das Produkt R B viel größer als 1 würde, also eine solche Schwingung übermäßig stark selbsterregt würde. Durch die übermäßig hohe Gitterwechselspannung (großes R) würde dann eine Übersteuerung der Röhre, durch die übermäßig hohe Anodenwechselspannung (großes B bzw. R.) der überspannte Zustand eintreten. Wie schon in Bd. II § 20 und 21 beschrieben, entstehen durch solche starke Strom- und Spannungsbegrenzungen stark verzerrte Stromkurven. Diese werden hier nur noch wesentlich stärker verzerrt, weil dort beim Verstärker die Gitterwechselspannung von außen zugeführt wird, also "unverzerrt" ist, während sie hier durch die Rückkopplung von der stark verzerrten Anodenseite entnommen wird, also selbst schon verzerrt ist und den Anodenstrom noch weiter verzerrt. Diese durch die Rückkopplung bewirkte gegenseitige Steigerung der Verzerrung kann dann, wie in dem obigen Beispiel geschildert, zu einem ganz andersartigen Ablauf führen, besonders wenn kein Schwingungskreis regulierend und sinusförmig machend einwirkt.

Infolge der grundsätzlichen Gleichheit von Kippschwingungen und Sinusschwingungen lassen sich mit allen Anordnungen, die zur Selbsterregung von Sinusschwingungen führen, auch Kippschwingungen erzeugen. Bei allen Schaltungsteilen, bei denen ein Parallelschwingungskreis mit möglichst großem

 $\Re = rac{L}{C\, ar{R}}$ zur Selbsterregung führt, läßt man zur Erzeugung

von Kippschwingungen am besten den Parallelkondensator C ganz weg, erzeugt also Schwingungen mit einer Schaltung, die im einfachsten Falle nur Induktivitäten und Ohmsche Widerstände zu enthalten braucht. Ein Beispiel dafür wurde oben schon besprochen.

Ein anderes Beispiel sind die Dynatron-Kippschwingungen. Bild 42 zeigt die Schaltung, Bild 43 die Kennlinie¹) und Bild 44 den zeitlichen Verlauf bei solchen Schwingungen.

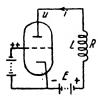


Bild 42. Dynatronschaltung für Kippschwingungen.

Bei a springt die Spannung theoretisch unendlich schnell, praktisch nur durch die natürliche Kapazität der Spule etwas verlangsamt, auf den großen Wert b, ohne daß sich der Strom in dieser kurzen Zeit merklich ändern kann. Die bei b herrschende zu hohe Gegenspannung u ruft dann einen exponentiell abklingenden Ausgleichvorgang nach der Gleichung

$$L\frac{di'}{dt} + Ri = E - u$$

hervor. Da u größer als E — Ri ist, nimmt i ab. Das geht bis zum Punkt c. Dieser ist ebenso wie a instabil für sehr schnelle Änderungen. Die Spannung springt bis d wieder praktisch un-

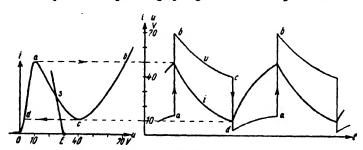


Bild 43. Dynatron-Kennlinie.

Bild 44. Zeitlicher Verlauf einer Dynatron-Kippschwingung.

endlich schnell und ohne Stromänderung. In d ist aber E größer als u, der Strom nimmt wieder zu bis a, von wo sich der Vorgang von neuem wiederholt. Hier ist besonders deutlich zu er-

¹⁾ Vgl. auch § 9a Bild 34.

kennen, daß es sich gar nicht mehr um einen eigentlichen Schwingungsvorgang, sondern um ein periodisch sich wiederholendes plötzliches Umkippen ab und cd, verbunden durch langsame Ausgleichsvorgänge, handelt. Liegt die Anodenspannung E oder genauer der Schnittpunkt 8 der in Bild 43 eingezeichneten Widerstandsgeraden mit der Kennlinie näher an a, so wird der Ausgleichsvorgang da infolge der geringeren antreibenden Spannung E - Ri - u verlangsamt, der Ausgleichsvorgang be beschleunigt. Liegt s näher an c, ist es gerade umgekehrt. Die beiden Zeiten bc und da werden dann ungleich lang. Würde s mit a oder c zusammenfallen, würde der eine Ausgleichsvorgang unendlich lange dauern. Liegt der Schnittpunkt saußerhalb ac auf den ansteigenden Ästen der Kennlinie, so würde dort keine Instabilität, kein Umkippen eintreten. Es würde dort der stabile Gleichgewichtspunkt dauernd bestehen bleiben. - Durch Vergrößerung der natürlichen Kapazität durch einen parallel zu L eingeschalteten Kondensator kann man auch hier die Kippschwingungen in Sinusschwingungen überführen. Bild 42 geht dann in Bild 33 mit $R_* = 0$ über.

Einen selbsterregten Schwingungsvorgang mit einer Schaltung, die nur Widerstände und Kondensatoren, keine Induktivitäten enthält, bekommt man durch einen rückgekoppelten Widerstandsverstärker. Damit die Rückkopplung phasenrichtig wird, Gitter- und Anoden-Wechselspannung gleiche Phase besitzen, muß man eine Raumladegitterröhre verwenden oder über 2 Röhren rückkoppeln. Bild 45 zeigt die letztere Anordnung. Diese ist im wesentlichen identisch mit der in § 9c beschriebenen und in Bild 39 dargestellten Gleichstrom-Rück-Es sind nur die unwesentlichen Widerstände Rx. und R_x, der Einfachheit halber weggelassen und die Rückkopplung zur Trennung der Gleichspannungen über die Kondensatoren Ck, und Ck, geführt. Es sind dann noch Gitterableitewiderstände R_{g_1} und R_{g_2} erforderlich. Bei der Gleichstromrückkopplung konnten zwei stabile Gleichstromzustände dauernd bestehen bleiben, bei denen die eine Röhre vollen Strom führt, während die andere Röhre durch negative Gitterspannung vollkommen stromlos ist. Hier kann sich diese negative Gitteraufladung über C_k nicht dauernd halten, sondern fließt über R_k ab. Sobald dann der Anodenstrom wieder einsetzt, erzeugt er bei der anderen Röhre eine negative Gitterspannung, die deren Anodenstrom sperrt, wodurch wieder die erste Röhre freigegeben wird. Es findet periodisch ein ganz plotzliches und sprunghaftes Umkippen von dem einen Gleichgewichtszustand in den anderen statt, so daß bald die erste Röhre vollen Strom führt und die zweite Rohre stromlos ist, bald das Umgekehrte der Fall ist. Die Verweilzeit in den Gleichgewichtszuständen ist durch die Entladedauer der Kondensatoren C_k bedingt. Diese hängt außer

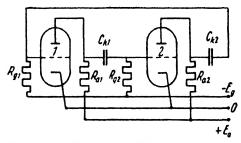


Bild 45. Widerstandverstärker mit Rückkopplung ("Multivibrator").

von C_k , R_g und R_a || R_i auch insofern nochmals von R_a ab, als größeres R_a eine stärkere negative Aufladung während des Springens bewirkt. — Macht man R_a , R_g und C_k immer kleiner und vergrößert die natürlichen Kapazitäten C_{gk} oder C_{ak} durch Parallelschalten eines Kondensators zu R_g oder R_a , so kann man die eckigen Kippschwingungen auch hier allmählich in sinusförmige Schwingungen überführen (vgl. § 17c). — Statt der Rückkopplung über zwei Röhren kann man auch hier eine Raumladegitterröhre verwenden. Vgl. § 10c.

Kippschwingungen enthalten wegen ihrer verzerrten Kurvenform sehr viele Oberschwingungen, von denen die höheren besonders dann sehr stark sind, wenn das Umkippen sehr sprunghaft vor sich geht. Sie sind mathematisch genau ganzzahlige Vielfache der Grundschwingung und wären aus diesem Grunde für Meßzwecke und zur Frequenzvervielfachung gut geeignet. Man hat daher die in Bild 45 gezeichnete Schaltung, an der solche sprunghafte Kippschwingungen zuerst beobachtet wurden, wohl als "Mullivibrator" bezeichnet. Praktisch haben aber Kippschwingungen den gerade für Meßzwecke großen Nachteil, daß ihre Frequenz wenig konstant ist. Man verwendet daher besser durch einen Schwingungskreis stabilisierte selbsterregte Schwingungen, die man dann durch Übersteuerung einer zweiten als Verstärker geschalteten Röhre stark verzerrt, d. h. mit vielen Oberschwingungen versieht. Vgl. auch Bd. II S. 257.

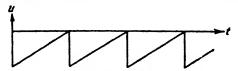


Bild 46. Der Zeit proportionaler periodischer Spannungsanstieg.

In neuerer Zeit werden Kippschwingungen von der in Bild 46 gezeichneten Form viel zur Zeitablenkung bei der Braunschen Röhre (Fernsehen!) verwandt. Durch die geradlinig anwachsende Spannung wird der Kathodenstrahlfleck der Zeit proportional

von links nach rechts abgelenkt, springt dann fast unendlich schnell auf seinen Anfangswert zurück, um von neuem wieder der Zeit proportional zu wandern. Eine derartige Kurvenform kann man erhalten, wenn man in der in Bild 40 gezeichneten Kippschwingungs-Schaltung vor das Gitter einen widerstandsüberbrückten Kondensator' (Audionschaltung) schaltet und Rg fortläßt. Vgl. Bild 47. Das Fortlassen von Rg bedingt, wie oben beschrieben, ein sehr schnelles

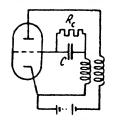


Bild 47. Schaltung zur Erzeugung von Spannungskurven wie in Bild 46.

Umkippen, durch das dann der Gitterkondensator sprunghaft stark negativ aufgeladen wird. Über den Widerstand R_c entlädt er sich dann langsam¹). Eine genau zeitproportionale Ent-

¹⁾ Einfacher erzeugt man gleichartige Kippechwingungen durch eine Glimmlampe mit parallel liegendem Kondensator. Der Konden-

ladung fordert genau konstante Entladestromstärke. Diese erreicht man, indem man statt des Widerstandes $R_{\rm c}$ eine schwach geheizte Elektronenröhre verwendet, die unabhängig von der Spannung nur den konstanten Sättigungsstrom durchläßt.

Daß sich die Frequenz von Kippschwingungen leicht beeinflussen läßt, zeigt sich auch darin, daß sie sich durch Überlagerung einer fremden, nicht zu weit abweichenden Frequenz
leicht mit dieser "synchronisieren" läßt. Die selbsterregte Kippschwingung nimmt dann genau die fremde überlagerte Frequenz
an. Ein solches Synchronisieren ist auch möglich, wenn die fremde
Frequenz 2, 3...n mal höher ist. Die Kippschwingung nimmt
dann genau die 1/2, 1/3, ... 1/n mal tiefere Frequenz an. Auf
diese Weise läßt sich eine genau ganzzahlige Frequenzerniedrigung
herstellen.

§ 11. Elektronentanz-Schwingungen.

- a) Elektrischer Elektronentanz. (Barkhausen-Kurz-Schwingungen.)
- a) Die, Frequenz. Legt man an das Gitter einer normalen Elektronenröhre eine höhere positive Spannung (z. B. Ug = 200 Volt), an die Anode dagegen eine schwach negative Spannung (z. B. Ua = -20 Volt), so erregen sich, besonders bei Röhren mit zylinderförmiger Anordnung, oft ganz von selbst elektrische Schwingungen von einer außerordentlich hohen Frequenz. Der Schwingungsvorgang beruht hier auf einem Tanz der Elektronen im Innern der Röhre. Die aus der Glühkathode austretenden Elektronen fliegen mit zunehmender Geschwindigkeit radial nach außen auf das Gitter zu, treffen aber nur zum kleinen Teil auf das Gitter, besonders wenn letzteres aus sehr dünnen Drähten besteht. Der größere Teil fliegt durch das Gitter hindurch auf die Anode zu. Ist diese aber negativ, so können die Elektronen sie nicht erfeichen. Sie werden durch das Gegenfeld zwischen Gitter und Anode abgebremst und wieder zum positiven

sator lädt sich langsam auf, um sich bei Erreichen der Zündspannung über die Glimmlampe plötzlich zu entladen.

Gitter zurückgetrieben. Es wird dann wieder nur ein kleiner Teil das Gitter treffen, der größere Teil nochmals durch das Gitter hindurchfliegen. So pendeln die Elektronen mehrmals um das Gitter hin und her, ehe sie es treffen. Diese mechanische Hinund Herbewegung der Elektronen im Innern der Rohre bildet die elektrische Eigenschwingung und ist maßgebend fur die Frequenz!

Die Größe der außeren Schaltelemente, die bei den normalen Röhrensendern die Frequenz bestimmt, hat hier nur einen nebensächlichen Einfluß.

Die Frequenz der mechanischen Hin- und Herbewegung ist einerseits proportional der Geschwindigkeit der Elektronen, die der Wurzel aus der Spannung proportional ist (vgl. Bd. I § 1b), anderseits umgekehrt proportional der Weglänge. Bei einer ebenen Anordnung mit dem Abstand l₁

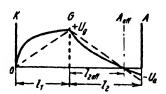


Bild 48. Potentialverlauf zwischen Kathode K, Gitter G und Anode A.

- ___ für eine ebene Anordnung.
- fur eine zylinderförmige Anordnung.

zwischen Kathode K und Gitter G und l₂ zwischen Anode A und G (vgl. Bild 48) werden die Elektronen mit konstanter Beschleunigung

$$b_1 = \frac{d \ v}{d \ t} = \frac{q}{m} \ \frac{U_g}{l_1}$$

von der Kathode auf das Gitter zugetrieben. Nach den gewohnlichen Fallgesetzen berechnet sich dann die "Fallzeit" von Knach G

$$t_1 = \sqrt{\frac{2\,l_1}{b_1}} = \sqrt{\frac{2\,m}{q}}\,\,\frac{l_1}{\gamma\,\bar{U}_g} = \frac{2}{0.594\cdot 10^8}\,\frac{l_1}{\gamma\,U_g}\,.$$

Falls die Anodenspannung $U_a = 0$ ist, gilt entsprechend für die Laufzeit von G nach A

$$t_2 = \frac{2}{0.594 \cdot 10^3} \, \frac{l_2}{\sqrt{U_s}} \, .$$

Die Schwingungsdauer für eine volle Hin- und Herbewegung ist dann $T=2(t_1+t_2)$, also

$$(40) \quad f = \frac{1}{T} = \frac{0.594 \cdot 10^8 \ \text{VU}_g}{4 \ (l_1 + l_2)} \ ; \quad \lambda = \frac{3 \cdot 10^{10}}{f} \approx \frac{2000 \ (l_1 + l_2)}{\text{VU}_g} \ .$$

Bei negativer Anodenspannung U_a kehren die Elektronen schon um, bevor sie die Anode erreichen, und zwar an der Stelle l_{2 eff}, wo im Raume zwischen G und A das Kathodenpotential 0 herrscht Es ist

$$l_{2 \text{ off}} = \frac{U_g}{U_g + (-U_a)} l_2.$$

Es ist dann diese Größe $l_{2\,eff}$ an Stelle von l_{2} in (40) einzusetzen. Bei der zylindrischen Anordnung läßt sich das Feld zwischen G und A im allgemeinen noch als eben betrachten, so daß Formel (40) gültig bleibt, wenn unter l_{2} der Abstand l_{ga} zwischen G und A verstanden wird. Die geringe in Bill 48 gezeichnete Abweichung im Potentialverlauf verlangsamt die Elektronenbewegung ein wenig. Eine wesentlich stärkere Abweichung von der geraden Linie zeigt der logarithmische Potentialverlauf zwischen K und G. Durch das starke Gefälle um die dünne Kathode werden die Elektronen gleich zu Anfang sehr stark beschleunigt. Würden sie dort sofort ihre Endgeschwindigkeit erhalten, die sie sonst erst beim Passieren des Gitters erreichen, so würde die Laufzeit t_{1} halb so lang sein; für $\frac{r_{g}}{r_{k}}=64$ ergibt die exakte Rechnung, daß t_{1} 0,6 mal so lang wird. Man kann

(42)
$$f = \frac{0.594 \cdot 10^8 \sqrt{U_g}}{4 \cdot (0.6 r_g + l_{gaeff})}; \quad \lambda = \frac{2000 \cdot (0.6 r_g + l_{gaeff})}{\sqrt{U_g}}$$

radius r einsetzt

Z. B. wird bei einer Röhre mit $r_g = 2$ mm, $r_a = 4$ mm für $U_g = 400$ Volt, $U_a = -40$ Volt:

daher angenähert setzen, wenn man noch statt l, den Gitter-

$$l_{gaeff} = 2 \frac{400}{440} = 1.8 \text{ mm}, \qquad \sqrt{U_g} = 20'. \text{ Also}$$
 $\lambda = 100 \ (0.6 \cdot 2 + 1.8) \text{ mm} = 30 \text{ cm}; \quad f = 10^9 \text{ Hz}.$

Für eine Überschlagsrechnung genügt oft die einfache Formel

(43)
$$\lambda = \frac{1000 \text{ d}_a}{\sqrt{\text{U}_g}}$$
; (d_a = Anodendurchmesser).

Denn man muß sich darüber klar sein, daß es sich bei diesen Betrachtungen nur um ziemlich grobe Näherungen handelt. Z. B. ist angenommen, daß die Elektronen auch beim Zurückfliegen genau radial wieder auf die Kathode zu fliegen, dort zur

Ruhe kommen und wieder von neuem losfliegen. Praktisch werden die Elektronen aber durch das positive Gitter seitlich mehr oder weniger abgelenkt und fliegen bei ihrer Rückkehr an der sie abstoßenden Kathode vorbei zur nahezu entgegengesetzten Seite des Gitters (vgl. Bild 49). Dabei kommen sie gar nicht zur Ruhe und durcheilen infolgedessen den Innenraum des Gitters schneller als angenommen. Dies wird noch durch die Raumladungen um die Kathode verstärkt,

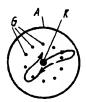


Bild 49. Flugbahn der Elektronen in einer zylinderförmigen Röhre.

die die abstoßende Wirkung der Kathode vergrößern. Diese Raumladungen werden durch die mehrfach zurückkehrenden Elektronen noch besonders erhöht. Auch im Umkehrpunkt nahe der Anode müssen sich, wenn auch wegen der größeren Fläche in wesentlich geringerem Maße, Raumladungen bemerkbar machen. Beides bewirkt einen schnelleren Tanz der Elektronen um das positive Gitter. In der Tat beobachtet man oft bei stärkerer Heizung der Kathode, also bei Vergrößerung des Emissionsstromes und damit der Raumladungen, eine ziemlich erhebliche Zunahme der Frequenz, d. h. Abnahme der Wellenlänge.

Gitter und Anode nehmen bei den Elektronentanzschwingungen entsprechend hochfrequent schwankende Spannungen an, die durch Resonanz mit einem schwach gedämpften angekoppelten Stromkreise, z. B. einem Lecherdrahtsystem, erheblich verstärkt werden können. Diese Wechselspannungen wirken ihrerseits auf die tanzenden Elektronen wieder zurück, beein-

flussen ihre Frequenz ein wenig, je nach der Phase beschleunigend oder verzögernd¹). Ändert man die Länge der angekoppelten Lecherdrähte kontinuierlich, so beobachtet man oft ähnliche Zieherscheinungen, wie sie bei der Selbsterregung gekoppelter Schwingungskreise in § 7 b erwähnt wurden. Die Frequenz ändert sich dabei oft um eine halbe Oktave und springt dann plötzlich wieder auf ihren alten Wert. Da ein Lecherdrahtsystem jeweilig bei einer Verlängerung um $\frac{\lambda}{2}$ wieder eine der früheren gleiche Eigenfrequenz besitzt, kann sich dieser Vorgang mehrmals In der Mitte des so zu erregenden Frequenzwiederholen. bereichs liegt die eigentliche Eigenfrequenz der tanzenden Elektronen. Dort ist auch die Selbsterregung am stärksten. - Zuweilen erregen sich auch andere, höhere Frequenzberesche, noch kürzere Wellenlängen, die zu dem Grundbereich angenähert im Verhältnis 1:2:3:4 . . . stehen. Man hat dies wohl als Resonanz mit den Oberschwingungen der ja durchaus nicht harmonisch schwingenden Elektronen gedeutet. Eine genauere Erklärung wird im folgenden Abschnitt β) gegeben. Die Stärke der Erregung nimmt mit der Höhe der Frequenz dieser Oberschwingungen meist erheblich ab.

β) Der Mechanismus der Selbsterregung. Geht von der Kathode ein dauernder gleichmäßiger Elektronenstrom aus und tanzen alle diese Elektronen gleichartig um das Gitter hin und her, so macht sich dieser Elektronentanz nur in der erhöhten Raumladung, z. B. in einer Verformung der Gleichstromkennlinien bemerkbar. Im ganzen genommen entsteht kein periodischer Vorgang, weil kein Zeitpunkt vor einem anderen irgendwie ausgezeichnet ist, die Elektronen in allen Phasenlagen durcheinandertanzen. Soll nach außen eine peridoische Wirkung erzielt werden, so müssen sich die tanzenden Elektronen

¹⁾ Der Mechanismus des Elektronentanzes ändert sich dadurch nicht. Es ist daher unsweckmäßig, die Schwingungen anders su beneunen (Gill-Morell-Schwingungen), wenn man nur diese Rückwirkung der äußeren Schaltung auf die Frequenz größer macht.

derart ordnen, daß in einer gewissen Phasenlage mehr Elektronen hin und her tanzen, als in der entgegengesetzten Phase. Es ist zunächst schwer einzusehen, wie aus der Unordnung von selbst eine solche Ordnung, ein Zusammenballen von Elektronen entstehen soll, da sich die Elektronen doch alle gegenseitig abstoßen. Dagegen lassen sich unschwer aus Energiebetrachtungen einige Richtlinien aufstellen, wie der geordnete Zustand sich selbst aufrechterhalten kann. Man muß dann ähnlich wie bei der Selbsterregung durch Rückkopplung auch hier annehmen, daß irgendeine anfängliche Störung eine geringe Ordnung hervorruft und diese sich dann selbst weiter anfacht, bis der stationäre Zustand erreicht ist.

Wenn die Elektronen in einer gewissen Phasenlage bevorzugt hin und her schwingen, so müssen dadurch auch synchron wechselnde Spannungen an Gitter und Anode entstehen, die sigh den Gleichspannungen überlagern Durch Ankopplung von Schaltelementen, insbesondere eines Lecherdrahtsystems won einstellbarer Länge (vgl. z. B. Bild 51) kann man Amplitude und Phase dieser Wechselspannungen gegenuber der bevorzugten Elektronenschwingung verändern. Diese synchronen Wechselspannungen uben nun eine Rückwirkung auf die tanzenden Elektronen aus, die nicht nur deren Frequenz, sondern auch deren Amplitude ändert. Sie schaukeln Elektronen der einen Phasenlage zu immer stärkeren Schwingungen auf, bremsen dagegen Elektronen der entgegengesetzten Phasenlage zu immer schwächeren Schwingungen ab. Nach dem Energiesatz geben die Wechselspannungen im ersten Fall eine bestimmte Arbeitsleistung ab, während sie im zweiten Falle Leistung aufnehmen. Das letztere muß also bevorzugt stattfinden, wenn die Schwingungen im äußeren Stromsystem aufrechterhalten werden sollen. Die Elektronen, die in der salschen Phasenlage schwingen, so daß sie von den Wechselspannungen angefacht werden, müssen "aussortiert" werden. Das tritt nun in der Tat von selbst ein, wenn "man der Anode eine schwache negative Vorspannung gibt. Ohne eine Wechselspannung können dann die Elektronen uberhaupt nicht zur Anode gelangen, kehren schon vorher

um¹). Bei Einwirkung einer Wechselspannung werden die durch sie abgebremsten Elektronen schon noch früher umkehren, also erst recht nicht zur Anode gelangen können. Dagegen schwingen die durch die Wechselspannung angetriebenen Elektronen weiter aus, treffen daher auf die Anode und fließen von dort als Anodenstrom ab. Infolgedessen werden diese in der falschen Phase schwingenden Elektronen ständig aussortiert und nur die in der richtigen Phase schwingenden Elektronen nehmen an dem geordneten Tanz längere Zeit teil, bis sie schließlich, ihrer Schwingungsenergie mehr oder weniger beraubt, auf dem Gitter landen und von dort als Gitterstrom abfließen. Gitterstrom J. mal der hohen positiven Gittervorspannung Ug ist die der Röhre zugeführte Gleichstromleistung $N_g = U_g J_g$. Dadurch, daß die Elektronen im Mittel abgebremst, d. h. mit einer kleineren Geschwindigkeit als der Spannung Ug entspricht, auf das Gitter auftreffen, wird nicht der ganze Betrag Ng am Gitter in Wärme umgewandelt, sondern ein Teil dient zur Aufrechterhaltung der Schwingungen, ein anderer kleiner Teil Na = Ua Ja dient zur Aufladung der negativen Anodenbatterie U, und ein weiterer Teil zur Erwärmung der Anode. Da die Elektronen auf die Anode wegen der negativen Anodenspannung nur sehr langsam auftreffen, ist dieser Teil meist sehr klein. Die Anode wird fast gar nicht warm, dagegen das Gitter recht beträchtlich und man muß bei ihm für eine möglichst gute Wärmeabführung sorgen, wenn man auf größere Leistungen Wert legt.

Der Versuch zeigt, daß Schwingungen in geringem Maße auch dann noch bestehen bleiben können, wenn man die Anode so stark negativ vorspannt, daß kein Anodenstrom mehr fließt. Der oben geschilderte Mechanismus der "Anodenaussortierung", der normalerweise die Hauptursache für die Schwingungserzeugung bildet, kann dann nicht mehr stattfinden. In geringem Maße kann dann noch eine "Kathodenaussortierung" wirksam

¹⁾ Das Auftreten eines Elektronenstromes zur negativen Anode ist ein sicheres Zeichen dafür, daß Wechselspannungen vorhanden sein müssen. Dies hat seinerzeit zur Entdeckung der Elektronentanzschwingungen geführt.

sein. Die angetriebenen Elektronen können im Gegensatz zu den abgebremsten von dem Umkehrpunkt vor der Anode durch das Gitter zur Kathode wieder zurückgelangen. Wegen der Kleinheit der Kathode werden aber nur wenige Elektronen diese wirklich treffen. Es kann aber noch ein anderer Mechanismus, die "Phasenaussortierung" wirksam sein. Die in der falschen Phase schwingenden und daher angefachten Elektronen schwingen weiter aus. Für sie ist daher l_{2 eff} und damit T nach (40) größer. Sie brauchen zu einem Hin- und Herweg länger als die abgebremsten Elektronen. Die letzteren bestimmen aber die Frequenz, die sich erregt. Die ersteren ändern daher infolge ihrer etwas geringeren Pendelfrequenz allmählich ihre Phase, bis sie aus der falschen in die richtige Phase kommen und dann auch abgebremst werden, also Schwingungsenergie abgeben.

Auch die Selbsterregung der am Schluß von Abschnitt α) genannten höheren Frequenzbereiche läßt sich energetisch unschwer erklären. Wenn die phasenrichtigen Elektronen abgebremst werden sollen, so mussen sie jeweils bei ihrer Bewegung zum Gitter hin im Mittel ein schwächeres Feld vorfinden als bei ihrer Bewegung vom Gitter weg. Eine volle Bewegung besteht aber in der Bewegung von der Kathode durchs Gitter zur Anode und durchs Gitter zur Kathode zurück, d. h. in einer Bewegung, die zweimal zum Gitter hin- und vom Gitter wegführt. Vgl. Bild 50 v). Daher muß auch die Gitterwechselspannung während einer Elektronenperiode zweimal größer und kleiner werden, also die doppelte Frequenz besitzen, um den Elektronentanz steuern zu können. Vgl. Bild 50a). Daß eine Gitterwechselspannung der gleichen Frequenz (vgl. Bild 50b) insgesamt überhaupt eine Wirkung auf die Elektronen ausübt, kommt nur dadurch zustande, daß die Elektronenlaufzeit auf dem Wege GKG im allgemeinen wesentlich kürzer ist als auf dem Wege GAG. Im Gegensatz dazu wirkt die Anodenspannung offenbar am stärksten ein, wenn sie die gleiche Frequenz wie die Elektronen besitzt, weil sich die Elektronen während einer Periode zur Anode nur einmal hin und her bewegen. Die Anodenspannung u. muß dabei die entgegengesetzte Phase haben wie die in Bild 50 b gezeichnete Gitterspannung, wenn sie die Elektronenschwingung dämpfen soll. Eine Anodenspannung der doppelten Frequenz wirkt freilich bei einer zu der in Bild 50 a gezeichneten entgegengesetzten Phase insgesamt auch dämpfend, weil die Elektronen in dem Raume K G bei einem geringen Durchgriff D der Einwirkung der dort sonst entdämpfend wirkenden Anodenspannung praktisch entzogen werden.

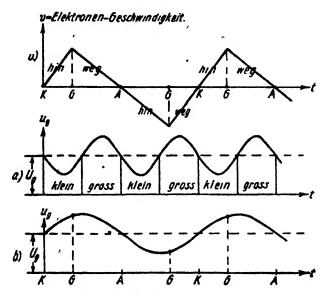


Bild 50. Zeitlicher Verlauf der Geschwindigkeit v der Elektronen ("hin" und "weg" bezogen auf das Gitter) und der Schwankungen" der Gitterspannung ug; a) bei doppelter Frequenz,
b) bei gleicher Frequenz.

Besitzen die Wechselspannungen U_s oder U_a die dreifsche Frequenz, so sind auf einem entsprechenden Elektronenwege nicht eine, sondern drei Halbperioden wirksam. Heben sich davon auch zwei Halbperioden wegen des entgegengesetzten Vorzeichens zum Teil auf, so bleibt doch noch die dritte Halbperiode wirksam, und zwar für Elektronen mit um 180° verschiedener Phase in entgegengesetztem Sinne, so daß der oben

geschilderte Mechanismus der Aussortierung aufrechterhalten bleibt. Es tanzen dann drei in der Phase um 1200 verschobene Elektronenwolken hin und her. Entsprechendes gilt für die Selbsterregung noch höherer Frequenzen. Da sich hierbei noch mehr benachbarte Halbperioden zum Teil in ihrer Wirkung aufheben, ist es erklärlich, daß sich diese höheren Frequenzen nicht so stark erregen. Durch die oben geschilderte unterschiedliche Wirkung der Gitter- und Anoden-Wechselspannung sowie die nicht sinusförmige Bewegung der Elektronen, die noch dazu bei stärkeren Wechselspannungen durch diese selbst erheblich geändert wird, werden die Verhältnisse im einzelnen sehr unübersichtlich. Man muß sich daher theoretisch mit dem Hinweis auf den Mechanismus der Aussortierung und mit der Bemerkung begnügen, daß sich praktisch immer dann Schwingungen erregen, wenn die Möglichkeit zur Selbsterregung irgendwie gegeben ist. Die Frequenz und Phase stellt sich bei der Selbsterregung ganz von selbst stets so ein, wie es unter den gegebenen Bedingungen am günstigsten ist. Auch bei der normalen Selbsterregung durch eine schaltungsmäßige Rückkopplung ist es ja meistens viel leichter, Schwingungen praktisca herzustellen, als ihr Auftreten nachträglich theoretisch zu erklären.

γ) Experimentelle Ergebnisse. Barkhausen-Kurz-Schwingungentreten bei vielen normalen Röhrentypen, besonders solchen mit zylindrischer Anordnung, von selbst auf, wenn man das Gitter stark positiv und die Anode schwach negativ macht. Nur ist die Anordnung der stromführenden Leiter in der Röhre, im Quetachfuß und im Röhrensockel für so extrem kurze Wellen meist so ungeeignet, daß die Wirkungen nach außen nur gering sind. Bestimmte Frequenzen lassen sich oft gar nicht erregen, weil die unbestimmten Resonanzverhältnisse in diesen Leitern bei der betreffenden Spannungsverteilung zu ungünstig sind. Man muß dann durch geeignete Wahl der Gitterspannung und der Heisung sich mühsam günstige Betriebsbedingungen heraussuchen. Das fällt fort bei der in Bild 51 dargestellten Röhre, bei der von Gitter und Anode nach beiden Seiten geradlinige

Leitungen durch besondere Einschmelzungen herausgeführt sind. Dabei ist der Abe:and dieser Einschmelzungen so gewählt, daß sich dort nahezu ein Spannungsminimum ausbildet. Dadurch werden die dort auftretenden dielektrischen Verluste im Glas stark herabgesetzt. In der Mitte herrscht dann zwischen der Anode und dem Gitter gerade ein Maximum der Wechselspannung, so daß eine kräftige Rückwirkung auf die tanzenden Elektronen eintritt. Die Wellenlänge kann dann durch Verschieben der Kurzschlußscheiben S₁ und S₂ auf den Lecherdrahtsystemen I und II etwa im Verhältnis 1:1,5 geändert werden.

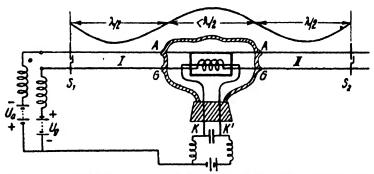


Bild 51. Röhrenanordnung mit zwei Lecherdrähten als Schwingungskreise für Barkhausen-Kurz-Schwingungen.

Ihre Größenordnung und der Wert, bei dem man die maximale Leistungsabgabe erhält, liegt aber durch den Elektronentanz fest, ist also bei gegebenen Dimensionen $\sqrt{U_g}$ umgekehrt proportional. Die Kathode führt praktisch gegenüber dem Gitter nur eine kleine Wechselspannung. Es ist daher angenähert $ll_g=0$ und ll_a gleich der Wechselspannung zwischen Gitter und Anode. Für die Selbsterregung maßgebend ist dann praktisch allein die Beschleunigung oder Verzögerung, die die Elektronen auf dem Wege GAG durch die Wechselspannung erleiden.

Das Lecherdrahtsystem I auf der einen Seite ist möglichst schwach gedämpft und dient zur richtigen Einstellung der Knoten und Bäuche. Im Kurzschlußpunkt S₁ herrscht stets ein Spannungaknoten und ein Strombauch, im Abstand $\lambda/4$ davon also ein Spannungsbauch und ein Stromknoten usw. Die Röhre selbst wirkt wegen ihrer größeren Kapazität wie ein Leitungsstück, das länger als die wirkliche Länge ist. An das Lecherdrahtsystem II auf der anderen Seite wird der Verbraucher, z. B. eine Antenne, günstigst angekoppelt. Die Kurzschlußscheiben S_1 und S_2 bestehen aus zwei voneinander isolierten, sich überlappenden Hälften. Die Überlappung bildet einen kapazitiven Kurzschluß, die Isolation gestattet die getrennte Zuführung der beiden Gleichspannungen U_g und U_a . Die zugeführte Leistung ist durch die Erhitzung des Gitters begrenzt. Das in Bild 51 dargestellte Rohr verträgt 80 Watt, also z. B. $U_g = 400$ Volt, $J_g = 200$ mA. Es gibt dabei maximal 4 Watt Hochfrequenzleistung ab, hat also einen Wirkungsgrad von 5 %. Die natürliche Wellenlänge ist bei $U_g = 400$ Volt $\lambda = 50$ cm.

- b) Magnetischer Elektronentanz. (Magnetronschwingungen.)
- a) Die Frequenz. Das Magnetron (vgl. Bd. I Bild lf) enthält nur einen geraden Heizdraht als Kathode und eine diesen zylindrisch umgebende Anode. Die durch die positive Anodenspannung radial nach außen getriebenen Elektronen werden durch ein kräftiges achsiales Magnetfeld im Kreise herumgelenkt; so daß sie die Anode nicht mehr treffen. Der Anodenstrom ist dann vollständig null. Die Elektronen fliegen nach einem Umlauf alle wieder zur Kathode zurück, führen also ununterbrochen eine kreisähnliche Bewegung aus. Die Dauer eines Umlaufs wäre auf einer kreisförmigen Bahn nach Bd. I (1,19)

$$T = 0.358 \cdot 10^{-6} \frac{1}{28}$$
; $\%$ = achsiales Magnetfeld in Gauß.

Bei der zylindrischen Röhre ist die Kreisbahn eine Kardioide, für die die Näherungsrechnung eine 1,23 mal längere Umlaufszeit ergibt, also eine Umlaufsfrequenz

(44)
$$f = \frac{1}{T} = 2.28 \cdot 10^6 \% \text{ Hertz}; \quad \lambda = c T = \frac{13000}{\%} \text{ cm}.$$

Auch hier würden die umlaufenden Elektronen keine hochfrequenten Wirkungen nach außen hervorrufen, wenn sie ungeordnet in allen Phasen und Richtungen durcheinandertanzen würden. Auch hier ordnen sie sich aber unter bestimmten Bedingungen ganz von selbst und erregen so nach außen eine hochfrequente Schwingung, deren Wellenlänge in der Tat ziemlich genau der Formel (44) entspricht. Man erhält also angenährt

für
$$\Re = 300$$
 1000 4100 Gauß $\lambda = 43$ 13 3,16 cm.

Die Wellenlänge ist nahezu unabhängig von den Ab(45) messungen der Röhre sowie von der Betriebsspannung Ua,
nur abhängig von der Stärke des verwandten Magnetfeldes.

Um Schwingungen zu erhalten muß man nur immer eine solche Anodengleichspannung U_a einstellen, daß die von den Elektronen durchlaufene Kreisbahn nahezu bis zur Anode reicht, daß also der größte Abstand a von der Kathode gleich dem Anodenradius r_a wird. Nach Bd. I (1,21) ergibt sich daher mit $a = r_a$ und $u = U_a$

(46)
$$r_a = \frac{6,72}{8} \sqrt[4]{U_a}$$
; $r_a = \text{Anodenradius in cm.}$

In Verbindung mit (44) folgt daraus

(47)
$$\lambda \sqrt{U_a} = 1930 r_a$$
; oder rund $U_a = \left(1000 \frac{d_a}{\lambda}\right)^2 \text{ Volt}$; $d_a = 2 r_a$.

Will man also mit einer bestimmten Anodenspannung U_a arbeiten, so muß man dem Anodendurchmesser d_a ein bestimmtes Verhältnis zur Wellenlänge geben, nämlich etwa

Praktisch wurde z. B. erreicht:

A¹). $\lambda = 3.16$ cm bei $\Re \approx 5000$ Gauß, $d_a = 3$ mm, $U_a = 1500$ Volt, $J_a = 0.6$ mA. Abgegebene Hochfrequenzleistung \Re_a sehr klein. Dies ist die kürzeste bisher hergestellte ungedämpfte Welle.

¹) Okabe, Proc. Inst. Bad. Eng. 17, 653; 1929 und 18, 1748; 1930. Neuerdings sind noch kürzere Wellen hergestellt worden. Vgl. z. B H. Klinger: Einführung in die Schwingungserzeugung elektrischer Ultrakurzweilen; Hirzèl 1944.

B¹).
$$\lambda = 42$$
 cm bei $\mathfrak{B} = 260$ Gauß, $d_a = 25$ mm, $U_a = 2200$ Volt, $J_a = 50$ mA. $\mathfrak{R}_a = 7$ Watt also $\eta = \frac{\mathfrak{R}_a}{N_a} = 6.3$ %.

Durch diese und viele andere Versuche ist der eindeutige Zusammenhang zwischen der Frequenz und der Umlaufszeit der Elektronen nachgewiesen. Die Abweichungen von den theoretischen Formeln sind hauptsächlich durch die nicht berücksichtigten Raumladungen zu erklären. Diese sind hier infolge des vielfachen Umlaufens derselben Elektronen viel größer als sonst. Ihr Einfluß zeigt sich auch unmittelbar darin, daß die Wellenlänge bei stärkerer Heizung, also stärkerer Emission und Raumladung, nicht unerheblich zunimmt.

Neben diesen reinen Elektronentanzschwingungen kann sich beim Magnetron noch eine ganz andere Art von Schwingungen erregen, deren Wellenlänge bis zu 10 ma¹ größer ist. Sie entsteht oft unter fast denselben Versuchsbedingungen, und zwar mit wesentlich größerer Intensität. Das letztere läßt darauf schließen, daß in diesem Falle die äußere Schaltung auf die Schwingungserzeugung von größerem Einfluß ist. Doch liegt hier die die Frequenz bestimmende Ursache noch nicht fest.

β) Der Mechanismus der Selbsterregung. Wie bei jeder Selbsterregung muß auch hier das Ergebnis der Selbsterregung, das ist der erzeugte Wechselstrom oder die erzeugte Wechselspannung steuernd auf die Ursache der Erregung, das sind hier die kreisförmig tanzenden Elektronen, zurückwirken. Diese Rückwirkung muß zunächst eine Ordnung, ein "Aussortieren" der Elektronen bewirken, weil nur ein geordneter Tanz eine periodische Wirkung nach außen ausüben kann. Offenbar besteht auch hier wie bei den Barkhausen-Kurz-Schwingungen die einfachste Erklärung in der Annahme einer "Anodenaussortierung". Die Elektronen, die in der falschen Phase losfliegen, so daß sie durch die äußere Rückwirkung angefacht werden, schwingen so weit aus, daß sie sofort auf die

²) Kilgore, Proc. Inst. Rad. Eng. 20, 1741; 1932.

Anode treffen. Die in der richtigen Phase lossliegenden Elektronen fliegen dagegen mehrmals herum, so daß sie entsprechend stark abgebremst werden, Schwingungsenergie abgeben.

In Übereinstimmung mit dieser Vorstellung steht die Tatsache, daß man die stärkste Schwingungserzeugung dann erhält, wenn man die Anodenspannung U_a so groß wählt, daß ohne Schwingungen etwa die Hälfte der Elektronen die Anode erreicht, die andere Hälfte nicht. Bei dieser Einstellung ist der Anodenstrom besonders leicht beeinflußbar. Eine kleine Vergrößerung des Magnetfeldes oder Verkleinerung der Anodenspannung läßt den Anodenstrom stark absinken. Darauf beruht ja gerade die in Bd. I Seite 68 beschriebene Wirkung des Magnetrons als Verstärker. Die hochfrequente Rückwirkung

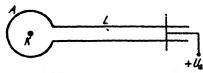


Bild 52. Magnetron-Schwingungen; Anode einfach geschlitzt, im Strombauch liegend.

auf die kreisenden Elektronen kann hier entweder elektrischer oder magnetischer Art sein. Das letztere erreicht man am besten durch die in Bild 52 gezeichnete Ausführungs-

form. Das Anodenblech A ist einseitig geschlitzt und beide Enden mit einem abstimmbaren Lecherdrahtsystem L verbunden. Die Anode wirkt auf diese Weise als Stromschleife, die ein Magnetfeld erzeugt, das dem äußeren Magnetfeld gleich ge-

richtet ist, dies also hochfrequent bald verstärkt, bald schwächt. Auch die in Bild 53 gezeichnete Ausführungsform, eine doppelt geschlitzte Anode mit beiderseitigem Lechersystem, kann eine magne-

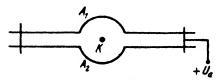


Bild 53. Magnetron-Schwingungen, Anode doppelt geschlitzt, im Spannungsbauch liegend.

tische Rückwirkung ergeben, wenn die Anode in einem Strombauch liegt. Man findet bei ihr aber eine stärkere Schwingungserregung, wenn die Anode im Spannungsbauch liegt, also eine

elektrische Rückwirkung eintritt. Der Mechanismus der Rückwirkung ist hierbei nicht so klar, weil beide Anodenhälften gegenphasig schwingen, also zwischen sich ein hochfrequentes elektrisches Querfeld erzeugen. Eine solche Anordnung entspricht der in § 9a Bild 35 dargestellten Habann-Röhre. Diese kann auch für Gleichstrom eine fallende Kenn-

linie ergeben und infolgedessen beliebige äußere Schwingungskreise, unter anderen auch solche von so tiefer Frequenz anregen, daß die Laufzeit der Elektronen noch keinen Einfluß hat. — Klarer ist dagegen der Mechanismus der elektrischen Aussortierung bei der in Bild 54 dahgestellten Anordnung, bei der das Lechersystem L und damit

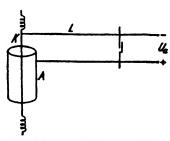


Bild 54. Magnetron-Schwingungen; Anode ungeschlitzt.

die hochfrequente Wechselspannung zwischen Anode und Kathode liegt.

Die durch die Aussortierung entstehende Elektronenwolke befindet sich bald in der Nähe der Anode, bald unmittelbar um die Kathode herum konzentriert. Dadurch entstehen um die Kathode in diesem Augenblick starke Raumladungen, die eine Emission neuer, in der richtigen Phase emittierter Elektronen zu verhindern suchen. Es ist daher günstig, so hohe Anodenspannungen und so kleine Emissionsströme zu verwenden, daß man trotz der erhöhten Raumladungen noch im Sättigungsgebiet bleibt, in dem der Strom nur von der Temperatur der Kathode, nicht von der Größe der durch die Raumladungen veränderten Spannungen abhängt. Ferner sind (Wolfram-) Kathoden günstig, die eine ausgeprägte Sättigung zeigen. Das bestätigen auch die Versuche. Diese zeigen ferner, daß eine Neigung des Magnetfeldes von 5 bis 10° gegen die Röhrenachse eine wesentlich stärkere Selbsterregung ergibt. Die Elektronen bewegen sich dann schraubenförmig um die magnetischen Feldlinien, kommen also durch die Neigung der letzteren mit

jedem Umlauf weiter von der Kathode weg und näher an die Anode heran. Das letztere scheint für die Aussortierung günstig zu sein. Auch hier ist der ganze Mechanismus der Selbsterregung im einzelnen schwer zu übersehen. Die unter α) genannten längeren Wellen können z. B. dadurch entstehen, daß die Elektronen besonders bei schrägem Magnetfeld eine bestimmte Anzahl von Umläufen ausführen, ehe sie auf die Anode treffen.

Bei den ganzen Elektronentanzschwingungen entstehen durchaus nicht immer gleichmäßige Schwingungen von bestimmter Frequenz, sondern oft ein mehr oder weniger unregelmäßiger Vorgang, der akustisch etwa mit der Erzeugung eines Geräusches statt eines Tones vergleichbar ist. Vielleicht ist dies durch die gleichzeitige Erregung zweier oder mehrerer unharmonischer Schwingungen zu erklären, die sich gegenseitig bei der Selbsterregung stören, ähnlich wie dies in § 7 a β beschrieben wurde. Es wurde schon in § 9b erwähnt, daß Elektronentanzschwingungen unter Umständen eine fallende "Pseudokennlinie" ergeben, die Anlaß zu Instabilitäten oder gleichzeitig erregten langsameren Schwingungen sein kann. Besonders können aber bei nicht extrem gutem Vakuum neben den Elektronen auch noch die Ionen zu tanzen anfangen! Weil diese eine viele tausendmal größere Masse haben, sind ihre Bewegungen entsprechend langsamer, die so entstehenden Wellenlängen entsprechend größer, einige hundert oder tausend Meter lang. Bei stärker gashaltigen Röhren treten solche "Ionentanzschwingungen"1) auch ohne Magnetfeld auf, z. B. in gasgefüllten Gleichrichterröhren, wie sie im Netzanschlußteil von Rundfunkgeräten verwandt werden. Sie können dort erheblich stören, und zwar in einem weiten Frequenzhereich, da sie meist durchaus nicht sinusförmig sind.

§ 12. Zusammenfassung von Teil III A.

1. Jeder Verstärker kann durch eine Rückkopplung zur Selbsterregung, zur selbsttätigen Erzeugung eines dauernden Wechsel-

¹⁾ Auch wohl "Plasmaschwingungen" genannt.

stromes gebracht werden. Als "Rückkopplung" bezeichnet man jede absichtliche oder unabsichtliche Rückwirkung der verstärkten Leistung am Verstärkerausgang auf den Verstärkereingang.

- 2. Für stationäre sinusförmige Schwingungen muß die Selbsterregungsformel gelten: Rückkopplung $\mathfrak R$ mal Verstärkung $\mathfrak B$ gleich 1. Bei großer Verstärkung genügt eine kleine Rückkopplung. Für den 1-Röhrensender ergibt sich die spezielle Selbsterregungsformel $\mathfrak R = D + \frac{1}{S_m \, \mathfrak R_*}$.
- 3. Die Selbsterregungsformel ist eine Vektorgleichung, die A. Gleichheit der Amplituden und B. Gleichheit der Phasen verlangt. Ersteres ist die Bedingung für die Konstanz der Amplitude, letzteres für die Konstanz der Frequenz der selbsterregten Schwingungen.

A. Amplitude.

- 4. Ist $\Re \cdot \Re$ kleiner als 1, so nimmt die Amplitude der selbsterregten Schwingungen ab, im allgemeinen bis auf null; ist $\Re \cdot \Re$ größer als 1, nimmt sie zu. Im letzteren Fall hört die Zunahme infolge Strombegrenzung oder Spannungsbegrenzung schließlich auf.
- 5. Die Strombegrenzung besteht darin, daß die "mittlere Steilheit" S_m und damit ß mit wachsender Anodenstrom-Amplitude geringer werden. Bei Röhren ohne Sättigungsstrom ist eine Strombegrenzung kaum vorhanden. Man muß bei ihnen für eine Spannungsbegrenzung sorgen, um ein allzu starkes Anwachsen der Schwingungen und eine Zerstörung der Röhre zu verhindern.
- 6. Die Spannungsbegrenzung besteht in dem bei großen Gitterspannungs-Amplituden einsetzenden Gitterstrom. Dieser bewirkt zweierlei: α) Verkleinerung des Anodenstroms (indirekte Strombegrenzung; überspannter Zustand). Diese Begrenzung wirkt um so stärker, je größer \Re_a des Anodenkreises ist; β) Dämpfung des äßeren Gitterstromkreises und damit Verkleinerung von \Re . Diese Begrenzung wirkt um so stärker, je größer \Re_a des Gitterkreises ist.

- 7. Eine künstliche Amplitudenbegrenzung kann durch eine Gleichrichterwirkung erreicht werden, die die negative Gittervorspannung erhöht. Dabei kann eine "intermittierende Selbsterregung" eintreten.
- 8. In einem Gebiet, in dem das Produkt $\Re \cdot \Re$ bei größer werdender Schwingungsamplitude zunimmt, bei kleiner werdender Amplitude abnimmt, ist die Amplitude instabil, d. h. es können keine Schwingungen mit konstanter Amplitude aufrechterhalten werden. Solche Instabilitäten entstehen, wenn bei größer werdender Schwingungsamplitude die mittlere Sceilheit 8_m der Anodenstrom-Kennlinie zunimmt oder die mittlere Steilheit der Gitterstrom-Kennlinie abnimmt.
- 9. Das erste Einsetzen der Schwingungen erfolgt in stabilen Gebieten weich, folgend, in instabilen Gebieten hart, springend. In letzterem Falle ist es unmöglich, durch Selbsterregung dauernde Schwingungen ganz kleiner Amplituden zu erhalten. Sobald überhaupt Schwingungen da sind, haben sie stets eine größere Amplitude.

B. Frequenz.

- 10. Es können sich grundsätzlich alle Frequenzen erregen, die sich verstärken lassen. Welche sich erregt, bestimmt sich dadurch, daß für diese Frequenz neben der Amplitudenbedingung auch Gleichheit der Phasen in der Selbsterregungsformel bestehen muß. Es muß also die Phase von B entgegengesetzt gleich der Phase von R sein.
- 11. In der speziellen Selbsterregungsformel sind die Röhrengrößen D und S_m für alle Frequenzen phasenrein. Daher bestimmen die Schaltungsgrößen \mathfrak{R} und \mathfrak{R}_a die Phasenlage und damit die Frequenz. Es kann sich nur eine Frequenz erregen, für die die Phasen von \mathfrak{R} und \mathfrak{R}_a entgegengesetztes Vorzeichen haben und für die die Phase von \mathfrak{R}_a größer ist als die von \mathfrak{R} . Ist \mathfrak{R} phasenrein, so muß auch \mathfrak{R}_a phasenrein sein und umgekehrt.
- 12. Bei frequenzunabhängigem \Re erregen sich besonders leicht Frequenzen, für die \Re _s groß wird; wenn \Re _s durch einen Parallelschwingungskreis gebildet wird, also besonders

dessen Resonanzfrequenz. Genau die Resonanzfrequenz erhält man aber nur bei phasenreinem R.

- 13. Eine nahezu phasenreine Rückkopplung & die Erzeugung der Gitterspannung $\mathfrak{U}_{\mathfrak{g}}$ aus der Anodenspannung $\mathfrak{U}_{\mathfrak{g}}$, stellt man am einfachsten durch einen Transformator (auf richtige Polung achten!) oder durch einen Spannungsteiler her, von dem der eine Teil induktiv, der andere kapazitiv sein muß, damit $\mathfrak{U}_{\mathfrak{g}}$ die erforderliche entgegengesetzte Phase von $\mathfrak{U}_{\mathfrak{g}}$ erhält. Nur bei einer Rückkopplung über zwei Röhren oder bei einer Raumladegitterröhre in besonderer Schaltung kann ein phasengleicher Spannungsteiler, also auch ein Ohmscher Widerstand mit einer mittleren Anzapfung verwandt werden.
- 14. Auch der Rückkopplungsfaktor & kann durch Parallelschwingungskreise (in gewissen Schaltungen auch durch Reihenschwingungskreise) für deren Resonanzfrequenz besonders groß gemacht werden, so daß sich dann diese besonders leicht erregt.
- 15. Durch Schwankungen der Betriebs-Gleichspannungen treten unmittelbar nur Schwankungen der Amplitude ein. Je nach der Art der Amplitudenbegrenzung sind damit aber auch mehr oder weniger starke Frequenzschwankungen verbunden. Strombegrenzung gibt fast keine Schwankungen, Spannungsbegrenzung α bei phasenreinem \Re nur geringe Schwankungen, Spannungsbegrenzung β je nach der Schaltung oft große Schwankungen, bei großem Ohmschen Widerstand in der Gitterzuleitung aber auch nur kleine Schwankungen der Frequenz.
- 16. Bei loser Rückkopplung braucht nur eine schwache Amplitudenbegrenzung einzutreten. Die selbsterregte Frequenz läßt sich dann (unter Berücksichtigung von 15.) auch bei starker Schwankung der Betriebsspannungen leicht auf $0.01\%=10^{-4}$ gemau konstant halten. Durch Verwendung sehr schwach gedämpfter mechanischer Schwingungsgebilde (Stimmgabel, Piezoquarz) zur Frequenzhaltung an Stelle der stärker gedämpften elektrischen Schwingungskreise, durch Konstanthalten der Temperatur usw. ist es gelungen, Schwingungen zu erregen, die jahrelang auf $\pm 2 \cdot 10^{-8}$ genau ihre Frequenz konstanthalten.

- 17. Können sich formelmäßig zwei Frequenzen erregen, so tun sie dies zuweilen auch beide gleichzeitig. Im allgemeinen erregt sich aber nur die stärkere, d. h. die, die sich am schnellsten auf große Amplituden aufschaukelt. Eine einmal vorhandene Frequenz bleibt aber auch dann noch bestehen, wenn man nachträglich die andere Frequenz "stärker" macht, freilich nur bis zu einem gewissen Grade. Dann springt die Selbsterregung plötzlich von der schwächeren auf die zu stark gewordene Frequenz um.
- 18. Kippschwingungen sind selbsterregte periodische Vorgänge, die im allgemeinen aus einem schnellen Umspringen aus einem Zustand in einen anderen und einer darauf einsetzenden langsamen Änderung dieses Zustandes bis zum folgenden schnellen Umspringen bestehen. Ihre Kurvenform weicht stark von der Sinusform ab, enthält also viele Oberschwingungen. Ihre Grundfrequenz ist stark mit den Betriebs-Gleichspannungen veränderlich. Sie lassen sich auch leicht "synchronisieren", d. h. sie nehmen unter der Einwirkung einer fremden Wechselspannung leicht deren Frequenz an, oder auch eine genau 2, 3... n mal tiefere Frequenz.
- 19. Obwohl sich die Kippschwingungen äußerlich völlig anders verhalten wie die selbsterregten Sinusschwingungen, sind sie doch im Grunde dasselbe. Man kann einen kontinuierlichen Übergang zwischen beiden herstellen. Kippschwingungen entstehen besonders dann, wenn für sinusförmige Schwingungen kleiner Amplitude das Produkt & Sehr viel größer als 1 wäre, also eine sehr starke Amplitudenbegrenzung eintreten muß.
- 20. Neben der Selbsterregung infolge einer durch die äußere Schaltung hergestellten Rückkopplung kann auch ohne eine solche überall da Selbsterregung eintreten, wo ein Zweipol mit fallender Kennlinie auftritt, d. h. der Strom mit wachsender Spannung kleiner wird. Es können sowohl die sinusförmigen Eigenschwingungen eines Schwingungskreises als auch Kippschwingungen erregt werden. Durch hochfrequente Schwingungen oder eine Gleichstromrückkopplung können fallende Pseudokennlinien entstehen.

- 21. Bei den Elektronentanzschwingungen bestimmt sich die (extrem hohe) Frequenz aus der Laufzeit der hin und her tanzenden Elektronen, also im wesentlichen aus der Größe der antreibenden Spannung. Die äußeren Schaltelemente können diese Frequenz nur in bestimmten Grenzen ändern. Es gibt einen elektrischen und einen magnetischen Elektronentanz.
- 22. Die Selbsterregung der Elektronentanzschwingungen besteht nicht in einer Steuerung des von der Kathode ausgehenden Elektronenstromes, sondern in einer "Aussortierung" der in falscher Phase tanzenden Elektronen, wodurch aus einer ungeordneten, nach außen unwirksamen Bewegung in allen möglichen Phasenlagen ein geordneter Tanz entsteht.

B. Entdämpfung.

§ 13. Das Problem.

Die technisch wichtigste Anwendung einer Rückkopplung ist die in Teil A behandelte Selbsterregung, die überraschende Erscheinung, daß in einem Stromsystem, das nur Gleichstromquellen enthält, ganz von selbst ein dauernder Wechselstrom entsteht, dessen Frequenz durch keine äußeren Einflüsse angeregt wird, sondern sich nur durch die Größe der inneren Schaltungsteile L, C, R von selbst ergibt. Die notwendige Bedingung für das Zustandekommen einer solchen Selbsterregung war, daß irgendeine angenommene "virtuelle" Wechselspannung U., falls sie dem Gitter einer Verstärkerröhre von außen zugeführt würde, über die Verstärkung und die Rückkopplung wieder am Gitter eine Wechselspannung erzeugen würde, die nach Amplitude und Phase mit der angenommenen Spannung U, identisch Wenn man irgendeine beliebige Wechselspannung U. findet, die dieser Bedingung genügt, kann man sicher sein, daß die Selbsterregung ganz von selbst eintritt.

Im Gegensatz dazu behandelt das Problem der Entdämpfung den Fall der Fremderregung, den rückgekoppelten Verstärker, bei dem das Gitter einer Verstärkerröhre von einer tatsächlich vorhandenen äußeren Wechselstromquelle U, bestimmter Frequenz und bestimmter Größe über die Eingangsschaltung eine bestimmte Spannung U,g erhält, wodurch dann in bekannter Weise auf der Anodenseite eine verstärkte Wechselspannung von der gleichen Frequenz wie die Fremderregung erzeugt und über die Ausgangsschaltung an den Verbraucher abgegeben wird (vgl. Bild 55). Die Rückkopplung, die von der Ausgangsschaltung abzweigt, erzeugt dann ihrerseits eine Spannung in der Eingangsschaltung, die sich der ursprünglichen Fremderregung überlagert.

Dadurch wird dann freilich auch die Gitterspannung und damit die verstärkte Anodenspannung verändert, dadurch wieder die

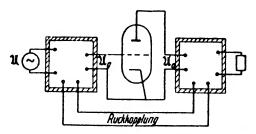


Bild 55. Allgemeines Prinzip einer Rückkopplungsschaltung.

rückgekoppelte Spannung usw. Von dieser Seite betrachtet sieht das Problem sehr verwickelt aus. Geht man aber von hinten aus, von einer bestimmten Spannung an der Anodenseite, und fragt sich, welche Spannung am Gitter erforderlich ist, um diese zu erzeugen, so kommt man zu wesentlich anschaulicheren Vorstellungen. Die gegebene Anodenspannung \mathfrak{U}_a verlangt nach der Verstärkertheorie eine bestimmte Gitter-

spannung $u_g = -\frac{1}{\Re} u_a$, erzeugt aber anderseits durch die Rückkopplung selbst schon eine bestimmte

,,Rückkopplungsspannung"
$$\mathfrak{U}_{\mathbf{k}} = - \Re \mathfrak{U}_{\mathbf{s}}$$

am Gitter. Die durch die Fremderregung von dem äußeren Generator erzeugte Gitterspannung \mathfrak{U}_{tg} braucht dann nur noch den Restbetrag zu decken, den die Rückkopplung nicht aufbringt. Es muß sein

(48)
$$\mathfrak{U}_{\mathfrak{g}} = \mathfrak{U}_{\mathfrak{g}} - \mathfrak{U}_{\mathfrak{k}} = (1 - \mathfrak{R} \mathfrak{B}) \mathfrak{U}_{\mathfrak{g}}; \mathfrak{U}_{\mathfrak{k}} = \mathfrak{R} \mathfrak{B} \mathfrak{U}_{\mathfrak{g}}.$$

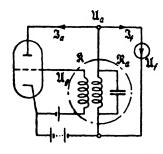
Der Verstärkungsgrad wird durch eine Rückkopplung im Verhältnis 1 vergrößert.

Ist z. B. $\Re \mathcal{B} = 0.9$, also $\mathfrak{V}_k = 0.9 \, \mathfrak{U}_g$, so braucht \mathfrak{U}_{fg} nur noch gleich $0.1 \, \mathfrak{U}_g$ gemacht zu werden. Das heißt aber nichts anderes, als daß der Verstärkungsgrad durch die Rückkopplung zehnmal größer geworden ist. Die in Teil A behandelte Selbst-

erregung stellt dann nur einen Sonderfall der Entdämpfung dar; denn wenn nach der Selbsterregungsbedingung $\Re \mathfrak{B} = 1$, also $\mathfrak{U}_k = \mathfrak{U}_g$ wird, wird $\mathfrak{U}_{fg} = 0$. Man braucht dann überhaupt keine Fremderregung mehr, die Schwingungen halten sich selbst aufrecht. Der Verstärkungsgrad wird bei Selbsterregung unendlich groß. Man darf hier nicht vergessen, daß (48) eine Vektorgleichung ist, die Subtraktion also geometrisch vorzunehmen ist. Es wurde schon in Teil A hervorgehoben, daß auch für $|\Re \mathfrak{B}| > 1$ Selbsterregung nicht eintreten kann, wenn $\Re \mathfrak{B}$ nicht phasenrein ist. Ist z. B. $|\Re \mathfrak{B}| = 1$, aber mit einem Phasenwinkel von 120° , so bilden \mathfrak{U}_{fg} , \mathfrak{U}_g und \mathfrak{U}_k ein gleichseitiges Dreieck, es ist $|\mathfrak{U}_{fg}| = |\mathfrak{U}_g|$, der Verstärkungsgrad also durch die Rückkopplung seinem Betrage nach überhaupt nicht geändert. Vgl. auch § 17 Bild 77.

Im Gegensatz zur Selbsterregung, wo die sich erregende Frequenz zunächst ganz unbekannt ist, zuweilen ja überraschenderweise ganz andere Frequenzen ("wilde Schwingungen") entstehen, als man erwartet, ist hier das Problem insofern wesentlich einfacher, als man nur mit der einen gegebenen Frequenz der Fremderregung f. zu rechen braucht. Freilich ist auch hier wie bei dem gewöhnlichen Verstärker neben dem Verstärkungsgrad auch der Frequenzgang, die Abhängigkeit der Verstärkung von der Frequenz von Interesse. Da eine größere Verstärkung & nach Satz (48) über die Rückkopplung R nochmals entsprechend mehr verstärkt wird, muß ein ungleichmäßiger Frequenzgang eines Verstärkers durch eine positive Rückkopplung noch ungleichmäßiger werden. Ein sehr ungleichmäßiger Frequenzgang, insbesondere die Bevorzugung einer bestimmten Frequenz ist oft erwünscht, z. B. bei Hochfrequenzverstärkern. Hier wird man eine Rückkopplung mit Vorteil anwenden. Kommt es aber, wie besonders bei Tonfrequenzverstärkern, auf einen gleichmäßigen Frequenzgang an, so ist eine Rückkopplung schädlich. Man muß dann sogar gelegentlich nach Mitteln suchen, um unbeabsichtigte Rückkopplungen, wie z. B. durch die natürliche Gitter-Anodenkapazität Cza, unschädlich zu machen (Neutrodynschaltung). — Weiter ist zu beachten, daß alle Schwankungen im Verstärkungsgrad, wie sie z. B. durch Änderung der Betriebsspannungen Ug, Ua, Uh, oder durch Temperaturschwankungen und dergleichen eintreten, wesentlich stärker zur Wirkung kommen müssen, wenn durch eine Rückkopplung diese Schwankungen auch auf die Gitterspannung übertragen werden. - Ebenso müssen auch die nichtlinearen Verzerrungen durch eine positive Rückkopplung größer werden. Denn die von der Anodenseite her rückgekoppelte Spannung U, enthält natürlich alle Verzerrungen der Anodenseite. Wenn sie daher den Hauptbeitrag zur Gitterspannung 11. liefert, muß die gesamte Verzerrung wesentlich größer werden als wenn $\mathfrak{U}_{\mathfrak{g}}$ allein von der unverzeirten Fremderregung U, erzeugt wird1). In gleicher Weise müssen auch alle anderen Störungen, Röhrenrauschen, Netzgeräusche usw., soweit sie in der Fremderregung noch nicht enthalten sind, sondern infolge des Verstärkervorgangs erst hereinkommen, durch eine Rückkopplung entsprechend verstärkt werden. Während man daher früher in der Rückkopplung eine äußerst einfache und wirksame Erhöhung der Verstärkung sah, ist man jetzt, wo man hinreichende Verstärkungen auch ohne Rückkopplung mit geringem Aufwand sicher herzustellen gelernt hat, mehr und mehr von der Verwendung einer positiven Rückkopplung abgekommen. Man hat im Gegenteil mit gutem Erfolg vorgeschlagen, eine negative, die Verstärkung schwächende Rückkopplung anzuwenden, um dadurch die Schwankungen im Frequenzgang, die Verzerrungen und sonstigen Störungen zu verringern. Vgl. § 17d.

§ 14. Ersatzschaltungen.


Die Wirkungen einer Rückkopplung erkennt man am besten aus der in Bild 56 dargestellten Schaltung. Hier ist die fremd-

¹⁾ Eine ähnliche Überlegung, nur mit entgegengesetzten Vorzeichen, wurde schon in Bd. II § 10 Formel (52) durchgeführt, wo gezeigt wurde, daß die Anodenrückwirkung D Ua die Verzerrungen vermindert. Der Durchgriff D ist als eine negative Rückkopplung aufzufassen. Vgl. § 14 Sats (50).

erregte Wechselspannung \mathfrak{U}_l nicht wie beim Verstärker üblich dem Gitter, sondern unmittelbar der Anode zugeführt. Es ist daher

$$\mathfrak{U}_{t} = - \mathfrak{U}_{a} = \mathfrak{R}_{a} \left(\mathfrak{J}_{a} + \mathfrak{J}_{t} \right).$$

Das Gitter erhält seine Spannung durch irgendeine Rückkopplung & von der Anodenspannung. Gemäß der Definition

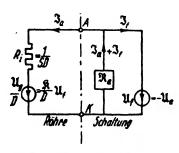


Bild 56. Fremderregung 11st als Anodenspannung.

Bild 57. Leerlauf-Ersatzschaltung zu Bild 56.

von R ist also

$$\mathbf{u}_{\mathbf{g}} = - \mathbf{R} \, \mathbf{u}_{\mathbf{a}} = + \mathbf{R} \, \mathbf{u}_{\mathbf{f}}.$$

Nach der Leerlauf-Ersatzschaltung (vgl. Bd. II § 3) wirkt dann die Röhre wie ein Generator mit der Leerlaufspannung $\mathfrak{U}_1 = \frac{\mathfrak{U}_g}{D} = \frac{\mathfrak{R}}{D} \, \mathfrak{U}_f$ und dem inneren Widerstand $R_i = \frac{1}{8D}$ (vgl. Bild 57). Ohne Rückkopplung \mathfrak{R} ist $\mathfrak{U}_g = 0$, der Röhrenstrom \mathfrak{F}_a ist negativ und die Röhre wirkt dann in bekannter Weise wie ein phasenreiner Ohmscher Widerstand R_i , der \mathfrak{U}_i belastet. Bei positivem \mathfrak{R} tritt aber in der Röhre eine Gegenspannung $\frac{\mathfrak{R}}{D} \, \mathfrak{U}_i$

auf. Für $\mathfrak{A} = D$ wird diese gerade gleich der äußeren Spannung $\mathfrak{U}_{\mathfrak{l}}$. Dann wird der Röhrenstrom $\mathfrak{F}_{\mathfrak{a}} = 0$, die Röhre wirkt gerade so, als ob sie gar nicht vorhanden, ihre Zuleitungen bei A und K unterbrochen wären. Ist aber \mathfrak{A} größer als D, so überwiegt der innere Generator, der Röhrenstrom $\mathfrak{F}_{\mathfrak{a}}$ kehrt sich um, gibt Leistung an $\mathfrak{U}_{\mathfrak{l}}$ ab. Ob die Röhre als Generator oder als

Verbraucher arbeitet, ist nur von dem Verhältnis \mathfrak{R}/D abhängig, nicht von der Stärke der Fremderregung $\mathfrak{U}_{\mathfrak{l}}$. Vergrößert man $\mathfrak{U}_{\mathfrak{l}}$, so vergrößert sich in gleichem Maße auch die innere Röhrenspannung $\mathfrak{U}_{\mathfrak{g}}/D$. Für den die Röhre durchfließenden Anodenwechselstrom gilt

(49)
$$\mathfrak{F}_{a} = \frac{\frac{\mathfrak{U}_{g}}{D} - \mathfrak{U}_{t}}{R_{t}} = S(D - \mathfrak{R}) \mathfrak{U}_{t}.$$

Für $\Re < D$ ist er negativ, \mathfrak{U}_i belastend, für $\Re > D$ positiv, \mathfrak{U}_i Leistung zuführend. Genau genommen handelt es sich um eine Vektorgleichung. Nur bei phasenreinem \Re kann $\Re = D$ werden. Sonst kommt es bezüglich der Leistung auf die phasenreine Wirkkomponente \Re von \Re an. Vgl. weiter unten.

Wenn man jede Rückwirkung der Anodenseite auf die Gitterseite als Rückkopplung bezeichnet, so muß man auch den Durchgriff D als Rückkopplung ansehen. Denn die Anodenrückwirkung D \mathfrak{U}_a vermindert ja die Steuerwirkung der Gitterspannung \mathfrak{U}_g auf den Anodenstrom, wirkt wie eine Verkleinerung von \mathfrak{U}_g und zwar in ganz derselben Weise, wie eine positive Rückkopplung \mathfrak{R} die Gitterspannung \mathfrak{U}_g um \mathfrak{R} \mathfrak{U}_a vergrößert¹).

Der Durchgriff D ist eine negative (innere) Rückkopp(50) lung, die sich einer positiven (äuβeren) Rückkopplung δ
widersetzt.

Der in allen Formeln vorkommende Ausdruck (D — \Re) stellt hiernach die gesamte negative Rückkopplung dar, die erst positiv wird, wenn \Re größer als D gemacht wird. Wie man die durch den Durchgriff D verusachte negative Rückkopplung durch einen positiven Widerstand $R_i = \frac{1}{S\,D}$ in Rechnung setzt, so kann man auch eine positive Rückkopp-

¹) Daß der Durchgriff D in gleicher Weise wie eine negative Rück-kopplung auch die Verzerrungen vermindert, wurde schon in § 13 bemerkt. — Bei Raumladegitterröhren mit negativer Steilheit wirkt der Durchgriff der Raumladegitterspannung wie eine positive Rückkopplung. Vgl. § 9c.

lung \Re durch einen negativen Widerstand $-\frac{1}{S \Re}$ darstellen. Für $\Re=0$ gilt $\mathfrak{U}_{\mathfrak{g}}=0$ und

(51)
$$\mathfrak{F}_{\mathbf{a}} = \mathbf{S} \, \mathbf{D} \, \mathfrak{U}_{\mathbf{a}}, \quad \text{also} \quad \mathbf{R}_{\mathbf{i}} = \frac{\mathfrak{U}_{\mathbf{a}}}{\mathfrak{F}_{\mathbf{a}}} = \frac{1}{\mathbf{S} \, \mathbf{D}}.$$

Mit einer äußeren Rückkopplung \Re ist entsprechend $\mathfrak{U}_{\mathbf{g}} = - \Re \, \mathfrak{U}_{\mathbf{a}}$ und

(52) $\mathfrak{F}_{\mathbf{a}} = \mathbf{S} \left(\mathbf{D} - \mathfrak{R} \right) \, \mathfrak{U}_{\mathbf{a}}, \quad \text{also} \quad \mathfrak{R}_{\mathbf{i}} = \frac{\mathfrak{U}_{\mathbf{a}}}{\mathfrak{F}_{\mathbf{a}}} = \frac{1}{\mathbf{S} \left(\mathbf{D} - \mathfrak{R} \right)}.$ Eine rückgekoppelte Röhre verhält sich anodenseitig gegenüber Wechselstrom wie ein Widerstand $\mathfrak{R}_{\mathbf{i}} = \frac{1}{\mathbf{S} \left(\mathbf{D} - \mathfrak{R} \right)}.$ Für $\mathfrak{R} > \mathbf{D}$ wird $\mathfrak{R}_{\mathbf{i}}$ negativ.

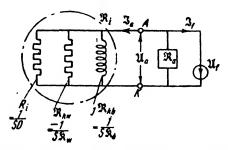


Bild 58. Widerstand-Ersatzschaltung zu Bild 56.

Bild 58 zeigt die entsprechende Ersatzschaltung. Die negative Rückkopplung durch D wird wie bekannt durch den positiven Widerstand $R_i = \frac{1}{S\,D}$ dargestellt, die positive Rückkopplung \Re durch den dazu parallel liegenden negativen Widerstand $\Re_k = \frac{-1}{S\,\Re}$. Ist \Re nicht phasenrein, also $\Re = \Re_w + j\,\Re_b$, so ist \Re_k durch die Parallelschaltung eines reinen negativen Wirkwiderstandes $\Re_k{}_w = \frac{-1}{S\,\Re_w}$ und eines reinen Blindwiderstandes $j\,\Re_k{}_b = \frac{-1}{j\,S\,\Re_b} = +\frac{j}{S\,\Re_b}$ darzustellen. Parallel dazu

liegt dann noch der Widerstand \Re_a der äußeren Schaltung. Die Wirkkomponente des Stromes \Im_a wird negativ, kehrt ihr Vorzeichen um, sobald der negative Widerstand \Re_{k} kleiner als der positive R_1 , d. h. sobald \Re_w größer als D ist. Die Röhre gibt dann Leistung an den äußeren Widerstand \Re_a ab, "entdämpft" ihn. In gleichem Maße vermindert sich der Wirkstrom von \Im_t . Ist $\Re_1 + \Re_a = 0$, also $-\Re_1 = \Re_a$, so bedeutet das, der durch \Re_1 aus der Röhre fließende Strom $-\Im_a$ ist gerade so groß wie der durch \Re_a fließende Strom. Daher ist dann $\Im_t = 0$; man kann dann die Fremderregung \mathfrak{U}_t ganz abschalten, ohne daß \Im_a zu fließen aufhört. Das heißt, es besteht Selbsterregung. Man erkennt leicht, daß die Bedingung $\Re_1 = \Re_a$, d. h. die Summe aller Widerstände = 0 und die Selbsterregungs-

formel $\Re = D + \frac{1}{8 \Re_a}$ identisch sind. — Bei phasenreinem \Re kann $\Re_1 + \Re_a = 0$ nur von einer Frequenz erfüllt werden, für die auch \Re_a phasenrein ist, bei einem Schwingungskreis als \Re_a (vgl. Bild 56) z. B. nur von der Resonanzfrequenz; im anderen Falle nur von einer Frequenz, für die die Blindkomponente \Re_{kb} von \Re_1 entgegengesetzt gleich der Blindkomponente von \Re_a ist.

Man beachte, daß ein negativer Röhrenwiderstand \Re_1 an sich noch nicht zur Selbsterregung führt, sondern erst dann, wenn er kleiner als der positive Widerstand \Re_a ist. Dabei ist, falls \mathfrak{U}_1 nicht abgeschaltet ist, in \Re_a auch der innere Widerstand des Generators \mathfrak{U}_1 einzubeziehen. Ist dieser z. B. sehr klein, so wird auch \Re_a sehr klein und es tritt selbst bei fester Rückkopplung keine Selbsterregung ein. Außerdem ist wohl zu beachten, daß für die Selbsterregung nur die Frequenzen in Betracht kommen, für die die Summe aller Blindleitwerte gleich null ist. Wie groß \Re und \Re_a für die Frequenz der Fremderregung \mathfrak{U}_1 sind, spielt für die Frage der Selbsterregung gar keine Rolle!

Alle hier abgeleiteten Ergebnisse gelten für beliebiges Rund Ra. In Bild 56 ist nur beispielsweise eine transformatorische Rückkopplung als Rund ein Schwingungskreis als Rangedeutet.

§ 15. Entdämpfung eines Schwingungskreises.

a) Fremderregung II, im Anodenschwingungskreis. Bild 59

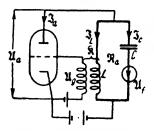


Bild 59. Fremderregung U₁ im rückgekoppelten Anodenschwingungskreis.

zeigt eine Schaltung, bei der die Fremderregung $\mathfrak{U}_{\mathfrak{f}}$ im Anodenschwingungskreis selbst liegt, wobei dieser transformatorisch auf das (stromlose) Gitter rückgekoppelt ist. Unter Berücksichtigung von (52) erhält man die Gleichungen

$$\begin{aligned} - & \mathfrak{J}_{\mathbf{a}} = \mathfrak{J}_{\mathbf{a}} \, \mathfrak{R}_{\mathbf{i}} = \mathfrak{J}_{\mathbf{L}} \, \mathfrak{R}_{\mathbf{L}} = \mathfrak{J}_{\mathbf{C}} \, \mathfrak{R}_{\mathbf{C}} + \mathfrak{U}_{\mathbf{f}} \\ & \mathfrak{J}_{\mathbf{a}} + \mathfrak{J}_{\mathbf{L}} + \mathfrak{J}_{\mathbf{C}} = 0 \; . \end{aligned}$$

Daraus ergibt sich

(53)
$$\mathfrak{J}_{L} = \frac{\mathfrak{U}_{l}}{\mathfrak{R}_{L} + \mathfrak{R}_{C} + \frac{\mathfrak{R}_{L} \mathfrak{R}_{C}}{\mathfrak{R}_{l}}} \approx \frac{\mathfrak{U}_{l}}{R + \frac{L}{C R_{l}} \left(1 - \frac{M}{L D}\right) + j \left(\omega L - \frac{1}{\omega C}\right)}$$

$$\text{mit} \quad \mathfrak{R}_{L} \mathfrak{R}_{C} = \frac{R + j \omega L}{j \omega C} \approx \frac{L}{C}; \qquad \mathfrak{R}_{l} = \frac{1}{S (D - \mathfrak{R})};$$

$$\mathfrak{R} = \frac{\mathfrak{M}}{\mathfrak{R}_{L}} = \frac{j \omega M}{R + j \omega L} \approx \frac{M}{L}; \qquad \frac{1}{\mathfrak{R}_{l}} = \frac{1}{R_{l}} \left(1 - \frac{M}{L D}\right).$$

Wäre der Schwingungskreis für sich allein da, so wäre der Strom in ihm

$$\Im_{L} = -\Im_{C} = \frac{\mathfrak{U}_{1}}{\Re_{L} + \Re_{C}} = \frac{\mathfrak{U}_{1}}{R + j\left(\omega L - \frac{1}{\omega C}\right)}$$

und es wäre die Resonanzschärfe $\varrho_0 = \frac{1}{R} \sqrt{\frac{L}{C}}$. (Vgl. Bd. I

§ 23 Gleichung (23,10).) Ohne Rückkopplung verursacht die parallel zum Schwingungskreis liegende Röhre in bekannter Weise (vgl. Bd. I § 24,3) infolge ihres inneren Widerstandes $\Re_1 = R_1$ eine Pseudodämpfung. Es wird

(55)
$$\varrho = \frac{1}{R + \frac{L}{C \Re_i}} \sqrt{\frac{L}{C}} = \varrho_0 \frac{1}{1 + \frac{\Re_{ar}}{\Re_i}}$$

$$\cdot \left[\Re_{ar} = \frac{L}{CR}; \quad \Re_i = \frac{1}{S(D - \Re)} = \frac{R_i}{1 - \frac{\Re}{D}} \right].$$

Für $\Re_1 = \Re_1 = \Re_{ar}$, d. h. Widerstandsanpassung für die Resonanzfrequenz, wird z. B. $\varrho = \frac{1}{2}\varrho_0$, d. h. \Im_L im Resonanzfall nur halb so groß. — Bei einer positiven Rückkopplung \Re wird zunächst \Re_1 größer als R_1 , die Dämpfung also geringer, ϱ größer. Für $\Re = D$ wird $\Re_1 = \infty$ und $\varrho = \varrho_0$, d. h. bei dieser Rückkopplung ist die Röhre völlig wirkungslos, wie schon in § 14 gezeigt wurde. Bei noch festerer Rückkopplung wird \Re_1 negativ, es tritt eine Entdämpfung ein, ϱ wird größer als ϱ_0 ; für — $\Re_1 = 0.9$ \Re_{ar} wird z. B. $\varrho = 10$ ϱ_0 , \Im_L im Resonanzfall 10 mal so groß. Für — $\Re_1 = \Re_{ar}$, d. h. $\Re = D + \frac{1}{S \Re_{ar}}$ wird ϱ und damit auch \Im_L im Resonanzfall unendlich. Oder es bleibt \Im_L endlich, auch wenn \Im_1 unendlich klein gemacht wird, d. h. nicht vorhanden ist. Das ist wieder die alte Bedingung für die Selbsterregung und zwar bei phasenreinem \Re in der Resonanzfrequenz, für die $\Re_a = \Re_{ar}$ wird \Im_1).

Man kann den negativen inneren Widerstand $-\Re_1 = \frac{1}{S(\Re - D)}$ einer rückgekoppelten Röhre nicht nur durch festere Kopplung \Re vergrößern, sondern auch durch Vergrößerung der Steilheit S, indem man z. B. den Arbeitspunkt auf der Kennlinie verschiebt. Bezeichnet man die Rückkopplung, bzw. die Steilheit, die gerade eben Selbsterregung hervorruft, mit

(55) "Grenzrückkopplung"
$$\Re_{gr} = \frac{1}{\Re} = D + \frac{1}{S \Re_{ar}}$$

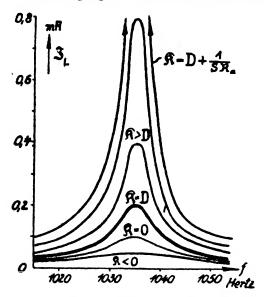
¹⁾ Der Nenner in (54) gleich null gesetzt ist mit der in § 3c für dieselbe Schaltung abgeleiteten Selbsterregungsbedingung identisch. Hier ist nur $R_C=0$ und R für R_L gesetzt, d. h. die ganze Dämpfung in den L-Zweig verlegt.

(56) "Grenzsteilheit"
$$S_{gr} = \frac{1}{\Re_{ar}(\Re - D)}$$
, so wird das

(57) "Entdämpfungsmaß" =
$$\frac{\varrho}{\varrho_0} = \frac{\Re_{gr} - D}{\Re_{gr} - \Re} = \frac{1 - D \Re}{1 - \Re \Re}$$

$$= \frac{S_{gr}}{S_{gr} - S}$$

Die Resonanzschärfe ρ wird gegenüber der Resonanzschärfe ρ₀ des Schwingungskreises allein um so mehr vergrößert, je mehr die tatsächliche Rückkopplung R bzw. Steilheit S sich der jeweils zur Selbsterregung erforderlichen Grenzrückkopplung R_{gt} bzw. Grenzsteilheit S_{gt} nähert.


Ist $\mathfrak A$ nicht phasenrein, so muß man sich gemäß Bild 58 parallel zum Schwingungskreis $\mathfrak R_a$ außer den Wirkwiderständen noch einen Blindwiderstand j $\mathfrak R_{k\,b}=\frac{j}{S\,\mathfrak R_b}$ liegend denken. Die Resonanzfrequenz bestimmt sich dann aus der Gleichung

$$\frac{1}{S \, \overline{\Re}_b} + \omega \, \mathbf{L} - \frac{1}{\omega \, \mathbf{C}} = 0 \, .$$

(59) Die Resonanzfrequenz ist stets mit der Frequenz identisch, die bei Selbsterregung entstehen würde.

Diese hier beschriebenen Wirkungen einer Rückkopplung wurden auch experimentell bestätigt. Bild 60 zeigt den gemessenen Strom \mathfrak{J}_L im Schwingungskreis, wenn in diesem eine von außen zugeführte Spannung $\mathfrak{U}_I=0,1$ Volt einwirkte und deren Frequenz verändert wurde. Ganz ohne Röhre erhielt man die dick ausgezogene Resonanzkurve des Schwingungskreises allein. Genau dieselbe Kurve wurde mit Röhre erhalten, wenn $\mathfrak{X}=D$ gemacht wurde. Man konnte dann bei beliebiger Frequenz die Heizung der Röhre unterbrechen, ohne daß sich dadurch im Verlauf der Kurve irgend etwas änderte. Die Voraussetzung dafür, daß \mathfrak{R} phasenrein und nicht mit der Frequenz veränderlich sein muß, damit für alle Frequenzen tatsächlich $\mathfrak{X}=D$ bleibt, war hier hinreichend erfüllt. Es ist dies ein scharfes Kriterium dafür, daß genau $\mathfrak{X}=D$ ist, das geradezu

zur Messung von R bei bekanntem D oder auch umgekehrt dienen kann. War R kleiner als D, z. B. null oder gar negativ (erreicht durch Umpolen der Gitterspule), so vergrößerte die Röhre die Dämpfung, während bei R > D die Dämpfung mit wachsendem R immer kleiner, der Strom im Resonanzfall immer größer wurde, und schließlich Selbsterregung eintrat. — Vergrößerte man die Dämpfung des Schwingungskreises durch Einschalten von Wider-

Bill 60. Strom im Schwingungskreis von Bild 59 bei $\mathfrak{U}_f=0,1$ Volt. Frequenz f von \mathfrak{U}_f geändert.

stand in den Kreis selbst oder durch Parallelschalten zum Kreise oder durch Wirbelströme in genäherten Metallkörpern, so konnte man die so erhöhte Dämpfung immer durch eine Vergrößerung der Rückkopplung auf den ursprünglichen Wert wieder herabdrücken.

Man kann hiernach durch eine Rückkopplung die Dämpfung eines Schwingungskreises beliebig weit verringern. (60) Die Größe der Eigendämpfung des Schwingungskreises selbst ist dabei theoretisch ganz gleichgültig, praktisch jedoch nicht. Praktisch besteht nämlich doch ein erheblicher Unterschied infolge der Einstellungsschwierigkeiten. Will man z. B. 100 fach entdämpfen, d. h. $\rho = 100 \, \rho_0$ machen, so muß man den positiven Dämpfungswiderstand R des Schwingungskreises zu 99 % durch den negativen Widerstand $\frac{L}{CM}$ sufheben. Eine Änderung von R um nur 1 %, wie sie z. B. schon durch eine Temperaturerhöhung um 4º hervorgerufen werden kann, ebenso eine Änderung von \Re_1 um 1%, führt dann schon entweder zur Selbsterregung ($\varrho = \infty$) oder zu einer Verminderung der Resonanzschärfe von ϱ auf $\frac{1}{2}\varrho$. R, schwankt besonders durch Änderungen von S. Im Raumladungsgebiet ist S proportional $\sqrt{U_{\rm st}}$. Eine Änderung der Steuergleichspannung $U_{st} = U_g + D U_s$ um 2% ruft dann schon 1% Änderung von S und damit von R, hervor. Besonders ändert sich aber S auch mit wachsender Amplitude des Wechselstromes, indem dann S durch die mittlere Steilheit Sm zu ersetzen ist. Im Raumladungsgebiet ist nach (25) in § 6c in erster Annäherung

$$S_m = 8\left(1 - \frac{j^2}{72}\right).$$

Für eine Stromaussteuerung j=1 ist also S_m um 1,4% kleiner als die Anfangssteilheit S für kleine Amplituden. Dies oder auch ein einsetzender Gitterstrom hat zur Folge, daß bei stärkerer Fremderregung U_t die in Bild 60 aufgenommenen Resonanzkurven oben flacher verlaufen, nicht so hoch ansteigen, wie es normale Resonanzkurven mit konstantem ϱ tun würden. Es kann freilich auch das Gegenteil eintreten, daß S_m und damit auch ϱ mit wachsender Amplitude zunehmen, die Resonanzkurven oben spitzer verlaufen. Es sind dieselben Dinge, die in \S 6 beim weichen oder harten Schwingungseinsatz behandelt werden. Man erkennt leicht die Richtigkeit des folgenden Satzes:

Im Gebiete weichen Schwingungseinsatzes kann man große Amplituden nicht extrem stark entdämpfen, ohne daß beim Aufhören der Fremderregung kleine selbsterregte Amplituden bestehen bleiben. — Im Gebiete harten Schwingungseinsatzes kann man kleine Amplituden nicht extrem stark
entdämpfen, ohne daβ bei irgendeinem stärkeren Anstoβ
große selbsterregte Amplituden auftreten und dauernd bestehen bleiben.

Man kann im allgemeinen bei kleinen Amplituden eine etwa 20 fache Entdämpfung ($\varrho=20~\varrho_0$) noch betriebssicher herstellen. Es ist dann S noch um 5 % kleiner als S_{gr}, so daß Schwankungen von 1 % noch nicht sehr viel ausmachen, nur 20 % im Resonanz-

fall. Da die Stabilität durch das Entdämpfungsmaß $\frac{\varrho}{\varrho_0}$ bestimmt wird, kommt es bei der Herstellung sehr kleiner Dämpfungen, großer Resonanzschärfen ϱ also praktisch doch durchaus auf eine geringe Eigendämpfung, großes ϱ_0 des Schwingungskreises an.

Die entdämpfende Wirkung der Rückkopplung erstreckt sich nicht nur auf die Resonanzerscheinungen bei Einwirkung einer dauernden sinusförmigen Fremderregung, sondern auch auf alle anderen Erscheinungen schwach gedämpfter Kreise. Beim Einschalten der Fremderregung schaukeln sich die Schwingungen entsprechend langsam auf. Auch ein einmaliger elektrischer Stoß, z. B. das Einschalten der Anodengleichspannung, ruft bei weitgehender Entdämpfung einen langsam abklingenden Ausgleichsvorgang hervor. Bei Tonfrequenz hört-man dann im Telephon sekundenlang einen abklingenden Ton, ähnlich wie bei einer angeschlagenen Glocke. Bei größeren Amplituden treten dabei freilich die durch Satz (61) gekennzeichneten Störungen auf. — Die letzte Feineinstellung auf die Grenzrückkopplung stellt man am einfachsten durch Nähern eines Metallbleches an die Spule des Schwingungskreises her. Die Wirbelströme in dem Blech ändern dann die wirksame Dämpfung R des Schwingungskreises ein wenig.

b) Fremderregung U_t auf der Gitterseite. Legt man in Bild 59 die fremderregte Spannung U_t , wie in Bild 61 dargestellt, in den Gitterkreis, so tritt ohne Rückkopplung die normale Verstärkerwirkung ein. Es ist dann

$$\begin{split} \mathfrak{U}_g &= \mathfrak{U}_f \quad \text{und} \quad \mathfrak{F}_a = S\left(\mathfrak{U}_g + D\,\mathfrak{U}_a\right) = S\,\mathfrak{U}_f & \stackrel{1}{\overset{\cdot}{\cdot}} \, \mathfrak{R}_a \\ 1 & + \frac{\mathfrak{R}_a}{R_i} \end{split}$$
 mit
$$\mathfrak{R}_a = \mathfrak{R}_L ||\,\mathfrak{R}_C = \frac{\mathfrak{R}_L \cdot \mathfrak{R}_C}{\overline{\mathfrak{R}}_L + \overline{\mathfrak{R}}_C}.$$

Bei einer Rückkopplung wird

(62)
$$u_{g} = u_{t} + u_{k}; \qquad u_{k} = -\Re u_{a}; \qquad -u_{a} = \Re_{a} \Im_{a};$$

$$3_{a} = 8 (u_{g} + D u_{a}) = \frac{8 u_{t}}{1 + \frac{\Re a}{\Re a}};$$

(63)
$$\Im_{L} = \Im_{a} \frac{\Re_{C}}{\Re_{L} + \Re_{C}} = \frac{\Im u_{i} \Re_{C}}{\Re_{L} + \Re_{C} + \frac{\Re_{L} \Re_{C}}{\Re_{i}}}$$

Es tritt auch hier wieder an die Stelle von R_i der innere Widerstand mit Rückkopplung $\Re_i = \frac{R_i}{1 - \frac{R_i}{D}}$. Die Verminderung der

Pseudodämpfung durch die Röhre mit wachsendem \Re und die bei $\Re > D$ eintretende Entdämpfung erfolgt hier in genau derselben Weise. Der Nenner in (63) ist mit dem von (53) identisch.

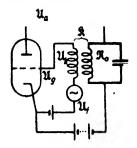
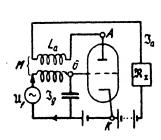


Bild 61. Fremderregung Uf auf der Gitterseite.

Daß dies so sein muß, folgt schon daraus, daß für $\mathfrak{N}=D+\frac{1}{S}\frac{1}{\mathfrak{R}_a}$ in beiden Fällen die gleiche Selbsterregung eintreten muß. Denn für die Selbsterregung ist ja $\mathfrak{U}_f=0$ zu setzen. Dann sind aber die Schaltungen von Bild 59 und Bild 61 identisch.

Bezüglich der Rückwirkung auf die Fremderregung \mathfrak{U}_i besteht aber ein wesentlicher Unterschied zwischen den


beiden Schaltungen. Bei der Schaltung von Bild 61 bleibt der Generator $\mathfrak{U}_{\mathfrak{l}}$ völlig stromlos, auch wenn eine beliebigstarke Rückkopplung wirksam ist, falls nur das Gitter dauernd negativ

bleibt, d. h. eine negative Vorspannung — $U_g > u_t + u_k$ angewandt wird. Bei der Schaltung von Bild 59 wird der Strom 3c durch den Generator bei wachsender Entdämpfung im Resonanzfall immer größer, im Grenzfall unendlich groß. Die Leistung stammt aber nicht vom Generator, sondern von der Röhre. Im Grenzfall wird ja auch der innere Wirkwiderstand R, des Generators U, mit entdämpft, so daß der im Grenzfall unendlich hohe innere Spannungsabfall 3cR, von der Röhre erzeugt wird, der Generator auf den Gesamtwiderstand null arbeitet. Besteht z. B. bei Bild 59 der Schwingungskreis in Wirklichkeit aus einer Empfangsantenne, in der der ferne Sender die Fremderregung U, hineininduziert, so besteht im Resonanzfalle der Antennenwiderstand R aus dem eigentlichen Verlustwiderstand R, und dem Strahlungswiderstand R., der dadurch definiert ist, daß $\mathbf{R}_{s} \cdot \mathfrak{J}_{c}^{2}$ die von der Antenne in Form von Wellen ausgestrahlte Leistung ist, wenn in der Antenne ein Strom 3c fließt. Durch die Rückkopplung wird nicht nur R_v , sondern auch R_a entdämpft. Ohne Entdämpfung ist im Resonanzfall $\mathfrak{F}_{c} = \frac{\mathfrak{U}_{f}}{R_{-} + R_{-}}$. Die Antenne entzieht dem vom Sender herrührenden Wellenfeld die

Antenne entzieht dem vom Sender herrührenden Wellenfeld die Leistung $\mathfrak{U}_1\mathfrak{F}_{\mathbb{C}}$ und strahlt von sich aus die Leistung $R_{\mathfrak{g}}\mathfrak{F}_{\mathbb{C}}^2$ $=\frac{\mathfrak{U}_1^2\,R_{\mathfrak{g}}}{(R_{\mathfrak{g}}+R_{\mathfrak{g}})^2}$ wieder aus, während der Rest $R_{\mathfrak{g}}\mathfrak{F}_{\mathbb{C}}^2$ in der Antenne verlorengeht. Bei 20 facher Entdämpfung wird $\mathfrak{F}_{\mathbb{C}}=20\,\frac{\mathfrak{U}_1}{R_{\mathfrak{g}}+R_{\mathfrak{g}}}$, der Empfänger nimmt aus dem Senderfeld 20 mal soviel Leistung $\mathfrak{U}_1\mathfrak{F}_{\mathbb{C}}$ auf, strahlt aber 400 mal soviel Leistung $R_{\mathfrak{g}}\mathfrak{F}_{\mathbb{C}}^2$ nach außen ab; entsprechend werden auch die inneren Antennenverluste $R_{\mathfrak{g}}\mathfrak{F}_{\mathbb{C}}^2$ größer. Ist z. B. $R_{\mathfrak{g}}=R_{\mathfrak{g}}$, so wird $(R_{\mathfrak{g}}+R_{\mathfrak{g}})\mathfrak{F}_{\mathbb{C}}=2\,R_{\mathfrak{g}}\mathfrak{F}_{\mathbb{C}}=20\,\mathfrak{U}_1$, also $\mathfrak{U}_1\mathfrak{F}_{\mathbb{C}}=10\,R_{\mathfrak{g}}\mathfrak{F}_{\mathbb{C}}^2$. Die Empfangsantenne strahlt von sich aus 10 mal soviel Leistung aus, wie sie vom Senderfeld aufnimmt. Die entdämpfte Empfangsanlage wirkt wie ein Relaissender, der von dem fernen Sender synchronisiert wird und zwar nicht nur bezüglich der Frequenz, sondern auch bezüglich der Modulation. Denn für $\mathfrak{U}_1=0$ wird auch $\mathfrak{F}_{\mathbb{C}}=0$, und damit die Ausstrahlung null; Verdopp-

lung von $\mathfrak{U}_{\mathfrak{l}}$ verdoppelt auch $\mathfrak{J}_{\mathbb{C}}$, soweit die Empfänger-Röhre noch nicht übersteuert ist¹).

c) Gitterschwingungskreis. Bild 62 zeigt eine Schaltung, bei der der rückgekoppelte Schwingungskreis L, C auf der

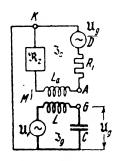


Bild 62. Fremderregung im Gitterschwingungskreis.

Bild 63. Ereatzechaltung zu Bild 62.

Gitterseite liegt, Bild 63 die dazu gehörige Ersatzschaltung. Aus dieser ergeben sich die Gleichungen

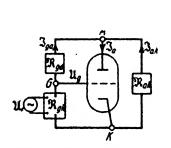
Daraus folgt

(64)
$$\Im_{\mathbf{a}} = \Im_{\mathbf{g}} \frac{1}{\mathbf{j} \, \omega \, \mathrm{CD}} \, \frac{1 - \omega^2 \, \mathrm{MCD}}{\mathrm{R}_1 + \Re_b}$$

¹⁾ Der Strahlungswiderstand R₈ kann auch bei der Selbsterregung eine merkliche Rolle spielen. Bei gerichteten kurzen Wellen kann man R₈ durch ein reflektierendes Blech noch in einem Abstand von mehreren Metern merklich ändern. Mit wachsendem Abstand wird ja R₈ periodisch größer und kleiner, je nachdem der Abstand ein geradzahliges oder ein ungeradzahliges Vielfaches von einer viertel Wellenlänge ist. Man kann dann die Rückkopplung so einstellen, daß der Sender nur bei kleinem R₄ schwingt, bei großem R₈ aussetzt. Es ist äußerst überraschend, daß man dann durch Bewegen' des weit entfernten Reflektors die Selbsterregung des Senders hervorrufen, bzw. unterdrücken kann.

(65)
$$\Im_{g} = \frac{1}{R + j\left(\omega L - \frac{1}{\omega C}\right) + \frac{\omega^{2}M^{2} - M/CD}{R_{1} + \Re h}}$$

Die Kopplung durch die Gegeninduktivität M des Transformators hat auf den Schwingungskreis zweierlei Wirkungen. Erstens eine dämpfende, indem sie Leistung auf den Anodenkreis überträgt; bei abgetrennter Gitterzuleitung, also für $u_g = 0$ wäre $R + j\left(\omega L - \frac{1}{\omega C}\right) + \frac{\omega^2 M^2}{R_1 + \Re_b}$ als wirksamer Gitterkreiswiderstand einzusetzen. Zweitens eine entdämpfende Wirkung, indem durch M Leistung aus dem durch u_g hervorgerufenen Anodenstrom \mathfrak{F}_a dem Gitterkreis zurückgeführt wird. Ob die dämpfende oder die entdämpfende Wirkung überwiegt, hängt davon ab, ob ω M größer oder kleiner als $\frac{1}{\omega CD}$ ist. Für ω M = $\frac{1}{\omega CD}$ wird $\mathfrak{F}_a = 0$ und $\mathfrak{F}_g = \frac{1}{(\omega L - \frac{1}{-\omega C})}$. Die Anodenseite


hat dann überhaupt keine Einwirkung. Dies entspricht wie in den früheren Beispielen dem Fall, daß $\Re=D$ ist. Die stärkste entdämpfende Wirkung erhält man für ω M = $\frac{1}{2} \frac{1}{\omega \, C \, D}$. Selbsterregung tritt wieder ein, wenn der Nenner in (65) gleich null wird. Ist \Re_b phasenrein oder klein gegenüber R_i , so erregt sich genau die Resonanzfrequenz, für die ω L = $\frac{1}{\omega \, C}$ wird, andernfalls eine etwas davon abweichende Frequenz. Für $\Re_z=0$ ist Bild 62 mit der in § 4 Bild 8 dargestellten Selbsterregungsschaltung identisch. Man beachte, daß der wirksame Anodenkreiswiderstand \Re_a nicht gleich der Summe der im Anodenkreis selbst liegenden Widerstände \Re_b ist, sondern infolge der Transformatorwirkung

$$\Re_{a} = \Re_{b} + \frac{\omega^{2} M^{2}}{R + j \left(\omega L - \frac{1}{\omega C}\right)}$$

ist. Bei fester Kopplung M ist im Resonanzfall der zweite Aus druck rechts meist wesentlich größer als \Re_b .

§ 16. Weitere Schaltungen.

a)-Dreipunktschaltung. Für die in Bild 64 gezeichnete Dreipunktschaltung mit Fremderregung \mathfrak{U}_{t} am Gitterkreis \mathfrak{R}_{g1} zeigt Bild 65 die Leerlauf-Ersatzschaltung. Aus dieser ergeber sich unter der Voraussetzung, daß der Gitterstrom der Röhre null bleibt, die Formeln:

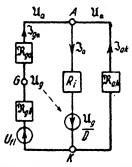


Bild 64. Dreipunktschaltung.

Bild 65. Leerlauf-Ersatzschaltung zu Bild 64.

$$\begin{split} -\,\mathfrak{U}_{\mathbf{a}} &= \mathfrak{J}_{\mathbf{a}\,\mathbf{k}}\,\mathfrak{R}_{\mathbf{a}\,\mathbf{k}} = \frac{\mathfrak{U}_{\mathbf{g}}}{D} - \mathfrak{J}_{\mathbf{a}}\,R_{\mathbf{i}} = \mathfrak{J}_{\mathbf{g}\,\mathbf{a}}\,(\mathfrak{R}_{\mathbf{g}\,\mathbf{a}} + \mathfrak{R}_{\mathbf{g}\,\mathbf{k}}) \\ \mathfrak{U}_{\mathbf{g}} &= \mathfrak{U}_{\mathbf{i}\,\mathbf{i}} - \mathfrak{J}_{\mathbf{g}\,\mathbf{a}}\,\mathfrak{R}_{\mathbf{g}\,\mathbf{k}}; \quad \mathfrak{J}_{\mathbf{a}} = \mathfrak{J}_{\mathbf{g}\,\mathbf{a}} + \mathfrak{J}_{\mathbf{a}\,\mathbf{k}}. \end{split}$$

Aus ihnen folgt

(66)
$$\mathfrak{F}_{ak} = \frac{\mathfrak{U}_{rl}}{\mathfrak{R}} \left(\frac{\mathfrak{R}_{ga}}{D R_i} - 1 \right)$$

(67)
$$\mathfrak{F}_{ga} = \frac{\mathfrak{U}_{fl}}{\mathfrak{R}} \left(1 + \frac{\mathfrak{R}_{ak}}{D R_i} (1 + D) \right)$$

mit

$$\Re = \Re_{gk} + \Re_{ga} + \Re_{ak} + \frac{1}{DR_1} (\Re_{gk} \Re_{ak} (1+D) + D \Re_{ga} \Re_{ak}).$$

Für $\Re_{ga} = DR_i = 1/S$ wird der Strom \Im_{ak} gleich null und zwar

für beliebiges \Re_{gk} und \Re_{ak}^{-1}). Die beiden Generatoren, die Fremderregung \mathfrak{U}_{fl} und die Röhrenerregung \mathfrak{U}_{g}/D arbeiten einander in bezug auf den Außenkreis ak entgegen. Das wird anders, wenn \Re_{ga} ein Blindwiderstand ist, mit entgegengesetzter Phase wie \Re_{gk} und \Re_{ak} . In diesem Falle kann, wie in §5a beschrieben, Selbsterregung eintreten. Diese kommt hier dadurch zum Ausdruck, daß der Nenner $\Re=0$ wird. Es erregt sich dann im wesentlichen die Eigenfrequenz, für die $\Re_{gk}+\Re_{ga}+\Re_{ak}=0$ wird. Für $\Re_{ga}=\frac{1}{j\,\omega\,C},\ \Re_{gk}=R_g+j\,\omega\,L_g,\ \Re_{ak}=R_a+j\,\omega\,L_a$ (vgl. Bild 66) wird z. B.

(68)
$$\Re = R_g + R_a + \frac{1}{DR_1} \left[(R_g R_a - \omega^2 L_g L_a) (1 + D) + D \frac{L_a}{C} \right]$$

$$+ j \left[\omega (L_g + L_a) - \frac{1}{\omega C} + \frac{R_g R_a}{DR_1} \left[\left(\frac{\omega L_g}{R_a} + \frac{\omega L_a}{R_a} \right) (1 + D) - \frac{D}{\omega C R_g} \right] \right].$$

Der zweite, imaginäre Teil von \Re , gleich null gesetzt, bestimmt die sich erregende Frequenz, für die angenähert gilt ω ($L_g + L_a$) $-\frac{1}{\omega C} = 0.$ Denn der wei-

tere Ausdruck ist bei ge-

Bild 66. Rückkopplung durch C zwischen G und A.

ringer Dämpfung R_g , R_a nur eine kleine Korrektur für diese Frequenz. Im ersten reellen Teil von \Re muß das negative Glied $-\omega^2 L_g L_a$ die übrigen positiven Glieder zu null kompensieren, wenn Selbsterregung eintreten soll. Bei Fremderregung bewirkt eine Verkleinerung dieses Gliedes eine Entdämpfung, macht \Re für die Frequenz klein, für die die Blindkomponente verschwindet. Dementsprechend werden dann alle Ströme und Spannungen groß.

¹⁾ Dies ist die in Bd. I § 20 Bild 20d dargestellte Schaltung zur Messung der Steilheit S.

Dieser Fall einer Entdämpfung bzw. Selbsterregung durch eine Rückkopplung über eine zwischen Gitter und Anode liegende

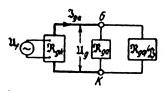


Bild 67. Auf den Gitterkreis bezogene Ersatzschaltung zu Bild 64.

Kapazität wurde schon in Bd. II \S 30 und hier in \S 5c behandelt. Es wurde dort auch schon angegeben, daß man die Wirkung der zwischen G und A liegenden Kapazität C_{ga} in bezug auf den Gitterkreis durch eine $(1 + \Re)$ mal so große Kapazität zwischen G und K ersetzen kann. Eine

solche Umrechnung ist auch bei beliebigem \Re_{qa} möglich und führt dann zu der in Bild 67 gezeichneten Ersatzschaltung. Hierbei ergibt sich aus Bild 65 die Spannungsverstärkung¹)

(69)
$$\mathcal{B} = -\frac{u_{\mathbf{a}}}{u_{\mathbf{g}}} = \frac{1}{D} \frac{1 - \frac{DR_{1}}{\Re \kappa_{\mathbf{a}}}}{1 + \frac{R_{1}}{(\Re g_{\mathbf{a}}||\Re_{\mathbf{a}}k)}}$$

$$\text{mit } \Re g_{\mathbf{a}}||\Re_{\mathbf{a}}k = \frac{\Re g_{\mathbf{a}} \cdot \Re_{\mathbf{a}}k}{\Re g_{\mathbf{a}} + \Re_{\mathbf{a}}k}$$

Man kann auch für die Fremderregung oder für die Röhre oder für beides die Kurzschluß-Ersatzschaltung anwenden. Tut man

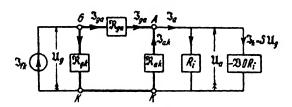


Bild 68. Kurzschluß-Ersatzschaltung zu Bild 64.

¹⁾ In Bd. II § 30 steht \mathfrak{B} für \mathfrak{B} . Außerdem wurde dort der wirksame Anodenwiderstand \mathfrak{R}_a nicht näher ausgerechnet. Wird \mathfrak{R}_{ga} durch die natürliche Kapazität C_{ga} gebildet, so ist \mathfrak{R}_{ga} meist groß gegen D R_i und gegen \mathfrak{R}_{ak} . Dann wird $\mathfrak{R}_a = \mathfrak{R}_{ak}$ und $\mathfrak{B} = \frac{1}{D} \frac{1}{1 + R_i/\mathfrak{R}_{ak}}$. Das ist die bekannte Verstärkerformel.

das letztere und stellt den Röhrenkurzschlußstrom $\mathfrak{F}_{k}=S\,\mathfrak{U}_{g}$ $=\frac{\mathfrak{U}_{a}}{-\,\mathfrak{B}\,D\,R_{i}}\,\,\mathrm{durch\ einen\ an}\,\,\mathfrak{U}_{a}\,\,\mathrm{liegenden}\,\,\mathrm{Widerstand}\,-\,\mathfrak{B}\,D\,R_{i}$ dar, so erhält man die in Bild 68 gezeichnete Schaltung. Da \mathfrak{B} nach (69) eine ziemlich verwickelte Rechengröße ist, so ist mit solchen Ersatzschaltungen nur in vereinfachenden Sonderfällen etwas gewonnen.

b) Verwickeltere Schaltungen. Bei verwickelten Schaltungen kommt man theoretisch und auch experimentell am schnellsten zum Ziel, wenn man die Entdämpfung bis zur Selbsterregung treibt. Entdämpfung und Selbsterregung sind ja ihrem Wesen nach gleichartig. Die Entdämpfung besteht in einer Rückkopplung, die nicht ganz bis zur Selbsterregung führt. Daraus folgt:

Bei beliebigen Schaltungen werden stets diejenigen Frequenzen besonders stark entdämpft, für die eine Neigung (70) zur Selbsterregung besteht. Schaltungen, die nicht zur Selbsterregung führen können, können auch keine Entdämpfung hervorrufen.

Das gilt auch für Mehrröhren-Verstärkeranordnungen und für jede Art von Rückkopplung. Z. B. kann auch eine akustische Rückkopplung (vgl. Bd. II § 32d) eine Entdämpfung bewirken und so den Frequenzgang ungünstig beeinflussen.

(71) Auch ein Leiter mit einer fallenden Kennlinie kann zur Entdämpfung benutzt werden.

Ein solcher enthält gewissermaßen eine innere Rückkopplung und wirkt unmittelbar wie ein negativer Widerstand $R_n = -\frac{du}{di}$, während die durch eine äußere Rückkopplung erzeugte Steuerwirkung nur mittelbar durch eine mehr oder weniger verwickelte Rechnung in einen negativen Widerstand umgewandelt werden kann.

Alles in Abschnitt A über die Selbsterregung Gesagte läßt sich hiernach ohne weiteres auf die Entdämpfung übertragen. Bei einem Gitter- und einem Anodenschwingungskreis, die in-

duktiv miteinander gekoppelt sind (vgl. Bild 69), hat man z. B. den in Teil A § 7cβ) behandelten Fall der "sekundären Rückkopplung". Bei verschiedener Abstimmung beider Kreise wird

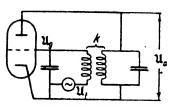


Bild 69. Gekoppelte Kreise "Sekundåre Rückkopplung"

bei "richtiger" Polung der transformatorischen Kopplung k stets die tiefere Eigenfrequenz entdämpft, die höhere gedämpft (vgl. Bild 70 Kurve b), ganz gleichgültig, ob der Gitterkreis oder der Anodenkreis tiefer abgestimmt ist. Bei der "falschen", entgegengesetzten Po-

lung wird umgekehrt die höhere Eigenfrequenz entdämpft, die tiefere gedämpft (Kurve c in Bild 70; vgl. auch Bild 79 in § 17d).

Bei gleicher Abstimmung beider Kreise erhält man ohne Kopplung (k = 0) eine Resonanzkurve mit nur einer Spitze. Es genügt dann schon eine wesentlich losere Kopplung (etwa k = 0,01), um die gleiche entdämpfende Wirkung hervorzubringen. Bei so loser Kopplung weichen die beiden Koppelfrequenzen nur sehr wenig von der gemeinsamen Eigenfrequenz und von einander ab. Bei richtiger Polung wird wieder die tiefere Koppelfrequenz entdämpft, die höhere gedämpft, bei falscher Polung ist es umgekehrt. Das bewirkt hier aber nur, daß wieder eine der ursprünglichen ähnliche, nur schwächer gedämpfte Resonanzkurve mit einer einzigen Spitze herauskommt, die bei richtiger Polung zu tieferen Frequenzen, bei falscher Polung zu höheren Frequenzen hin etwas verschoben erscheint

Bei der primären Rückkopplung (vgl. § 7 Bild 26) ist das Verhalten ein wesentlich anderes. Hier können sich bei de Koppelfrequenzen erregen. Durch den Wettstreit beider treten ja gerade die eigentümlichen, in § 7 c a) beschriebenen "Zieherscheinungen" auf. Daher werden auch bei de Koppelfrequenzen entdämpft, bei falscher Polung beide gedämpft. Die auch bei gleicher Abstimmung bei nicht zu loser Kopplung auftretenden Doppelgipfel in der Resonanzkurve bleiben auch bei einer Entdämpfung bestehen,

werden sogar noch stärker hervorgehoben. Im allgemeinen ist freilich die entdämpfende Wirkung für beide Koppelfrequenzen nicht gleich groß, da das wirksame & und & für beide verschieden sind. Es kann sogar vorkommen, daß für eine Koppelfrequenz & < D ist, also bei Einschalten der Röhre eine Dämp-

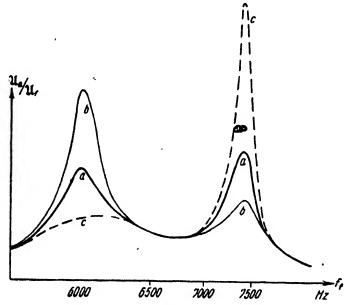


Bild 70. Frequenzgang der Schaltung von Bild 69. Gitter- und Anodenkreis verschieden abgestimmt. Kopplungsfaktor k bei a) k = 0; b) k = +0,13; c) k = -0,13, d. h. gleich b) nur umgepolt.

fung eintritt, während für die andere Koppelfrequenz $\Re > D$ ist, also eine Entdämpfung eintritt. Erst bei stärkerer Rückkopplung werden dann beide Koppelfrequenzen entdämpft.

Sind Gitter- und Anodenschwingungskreis nicht wie bei der oben beschriebenen sekundären Rückkopplung induktiv, sondern durch eine (natürliche) Kapazität C_{ga} zwischen Gitter und Anode rückgekoppelt, so hat man die in \S 5c Bild 15 dargestellte Huth-Kühn-Schaltung. Selbsterregung und damit auch Entdämpfung tritt nur ein, wenn die Schwingungskreise \Re_{gk} und

 \Re_{ak} beide induktiv sind, d. h. für eine Frequenz, die tiefer als die tiefere der beiden Eigenfrequenzen ist. Auch hier kann man die beiden Schwingungskreise als kapazitiv gekoppelt auffassen. Es ergeben sich dann auch zwei Koppelschwingungen, von denen durch die Rückkopplung immer die tiefere entdämpft, die höhere gedämpft wird. Wie in Bild 70 geht so eine Resonanzkurve a ohne C_{ga} bei Einwirkung von C_{ga} in b über. Nur kann man hier

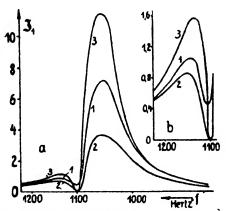


Bild 71. Resonanzkurven zur Schaltung von Bild 74. f₁ = f₂ = 1070 Hertz; f₂ = 1100 Hertz. (b = linker Teil von a vergrößert.)

Bild 72. Wie Bild 71, nur f₂ = 1075 Hertz.

nicht durch "Umpolen" die höhere Frequenz entdämpfen, nicht die Kurve o herstellen.

Ein durch Rückkopplung stark entdämpfter Schwingungskreis kann alle Funktionen eines normalen, schwach gedämpften Schwingungskreises übernehmen, z. B. auch als Schwingdrossel seine Resonanzfrequenz fast vollkommen absperren. Ein solcher Fall wurde ja schon in § 14 Bild 56 behandelt. Durch geeignete Schaltungen lassen sich durch eine Rückkopplung sowohl die Strommaxima heben als auch die Minima senken. Vgl. Bild 71, 72 und 73. Diese wurden mit der in Bild 74 gezeichneten Schaltung aufgenommen. L_1C_1 und L_2C_3 (= Antenne) besitzen nahezu gleiche Abstimmung (auf die zu empfangende Frequenz), so daß \mathfrak{J}_1 ein Maximum wird, wenn die äußere Erregung \mathfrak{U}_1 hiermit in

Resonanz ist. L_2C_2 besitzt eine abweichende Abstimmung (auf die störende Frequenz) und \mathfrak{F}_1 wird ein Minimum, wenn die äußere Erregung \mathfrak{U}_1 mit Zweig 2 in Resonanz ist. Denn dann bildet dieser Zweig einen sehr kleinen Widerstand, der den von

Bild 73. Wie Bild 71, nur f₂ = 1020 Hertz.

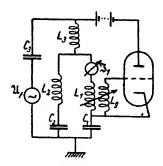


Bild 74. Schaltung zu Bild 71, 72 und 73.

 \mathfrak{U}_{l} erzeugten Strom an \mathfrak{F}_{1} vorbeileitet. In Bild 71 war \mathfrak{f}_{2} höher, in Bild 73 tiefer abgestimmt als $\mathfrak{f}_{1}=\mathfrak{f}_{3}$. In Bild 72 war nahezu $\mathfrak{f}_{2}=\mathfrak{f}_{1}=\mathfrak{f}_{3}$. Das Minimum, das bei Bild 71 auf der linken, bei Bild 73 auf der rechten Seite des Maximums lag, fällt hier mitten in das Maximum hinein. Durch die Rückkopplung wird in allen drei Fällen das Maximum erhöht, das Minimum fast bis auf 0 erniedrigt (vgl. Bild 71 b). Ließ man dagegen die Rückkopplung (die Gitterspule L_{g}) auf L_{3} statt auf L_{1} einwirken, so war das Minimum weniger ausgeprägt und schließlich überhaupt nicht mehr zu erkennen.

§ 17. Rückgekoppelte Verstärker mit breitem Frequenzbereich.

a) Ein scheinbarer Widerspruch. Bringt man bei Verstärkern, deren Verstärkung B in einem weiten Frequenzbereich konstant und phasenrein ist, eine Rückkopplung R an, die auch in einem weiten Frequenzbereich konstant und phasenrein ist, so muß man

mach Satz (48) nicht nur für eine bestimmte Resonanzfrequenz, sondern für einen weiten Frequenzbereich eine gleichmäßige Erhöhung der Verstärkung erhalten. Dies scheint im Widerspruch mit der Tatsache zu stehen, daß man durch Steigern der Rückkopplung schließlich zu einer Selbsterregung in einer bestimmten Frequenz kommt, also kurz vor der Selbsterregung nur für diese eine Frequenz eine außergewöhnlich große Verstärkung bestehen muß. Ferner ist auffallend, daß gerade solche Verstärker schwer zu einer sinusformigen Selbsterregung zu bringen sind, bei ihnen meist "Kippschwingungen" eintreten, die stark von der Sinusform abweichen. Die Erklärung für diese Zusammenhänge beruht in folgendem.

Jeder Verstärker, der eine Induktivität L oder eine Kapazität C enthält, ist nur so weit frequenzunabhängig, wie die frequenzabhängigen Blindwiderstände j ω L bzw. $\frac{1}{i\omega C}$ bei Reihenschaltung klein, bei Parallelschaltung groß gegenüber den frequenzunabhängigen Ohmschen Wirkwiderständen bleiben. Man rechnet die "Konstanz" des Frequenzganges meist bis zur "Grenzfrequenz", bei der Blind- und Wirkwiderstand gleich groß werden (vgl. Bd. II § 27). Die Summe beider ist dann $\sqrt{2} = 1.4 \text{ mal}$ so groß geworden und eine solche Änderung macht bei Verstärkern meist noch nicht viel aus. Durch die Rückkopplung, die ja wie ein negativer Widerstand in Rechnung zu setzen ist, wird aber die Wirkung der positiven Wirkwiderstände mehr und mehr aufgehoben. In gleichem Maße muß dann der Einfluß der frequenzabhängigen Blindwiderstände mehr und mehr hervortreten, der "konstante" Frequenzbereich, in dem diese nichts ausmachen, kleiner werden. Daraus folgt:

In demselben Maße wie durch die Rückkopplung die Verstärkung erhöht wird, wird der Frequenzbereich, in dem die Verstärkung "konstant" bleibt, verkleinert. Kurz vor der Selbsterregung wird der Verstärkungsgrad sehr groß, aber wie bei der Resonanz nur in einem sehr engen Frequenzbereich.

Dieser Satz steht in engem Zusammenhang mit dem in Bd. I § 24 ausgesprochenen Satz (24,11), daß Widerstandsanpassung und Resonanz im Grunde genommen dasselbe sind. Bei einer Resonanzschaltung wird der konstante Frequenzbereich einerseits durch die Induktivität, anderseits durch die Kapazität begrenzt. Man erhält aber die gleiche Wirkung, wenn man beide Begrenzungen durch Induktivitäten (bzw. Kapazitäten) herstellt. Ein Beispiel kann dies am besten erläutern.

b) Verstärker mit Transformatorkopplung. Bild 75 zeigt eine Schaltung, bei der, eine Röhre über einen Ausgangstrans-

formator auf einen Ohmschen Widerstand R_A arbeitet. Wie in Bd. II § 27 ausführlich beschrieben, ergibt sich dann ein Frequenzgang, der nach oben durch die in Reihe mit dem inneren Röhrenwiderstand R_1 und $R_A' = \ddot{u}^2 R_A$ liegende Streuinduktivität, nach unten durch die parallel zu R_1 und R_A' liegende

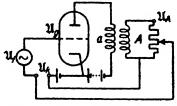
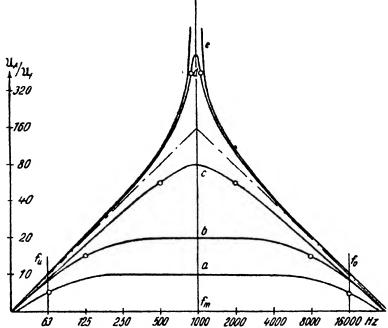



Bild 75. Verstärker mit Ausgangstransformator und Widerstandsrückkopplung.

Leerlaufinduktivität begrenzt ist (vgl. Bild 76 Kurve a; diese ist mit Bild 70 in Bd. II identisch). Bei den Grenzfrequenzen f_0 und f_u sinkt die Verstärkung auf $\frac{1}{\sqrt{2}} = 0.7$ und die Phase dreht sich um 45° .

Bringt man jetzt eine Rückkopplung an, indem man die Rückkopplungsspannung $\mathfrak{U}_k = p \, \mathfrak{U}_A$ (p=veränderlicher Abgriff) durch einen Spannungsteiler von \mathfrak{U}_A abzweigt und in Reihe mit \mathfrak{U}_f dem Gitter zuführt, so wird nach (48) in § 13 der Verstärkungsgrad dadurch vergrößert. Ist z. B. $\mathfrak{U}_k = \frac{1}{2} \, \mathfrak{U}_g$ und sind beide in Phase, so braucht \mathfrak{U}_f nur noch halb so groß zu sein, um das gleiche \mathfrak{U}_g und damit das gleiche \mathfrak{U}_A zu erzeugen. Die Verstärkung ist also doppelt so groß geworden. Wenn dies für den mittleren Teil gilt, so ist für die Gransfrequenzen \mathfrak{U}_k nur

Frequenzgang des Verstärkers von Bild 75 für verschiedene

Ruckkopplungen: a) ohne Rückkopplung $ll_k = 0$, $\varrho = \frac{1}{16}$;

b)
$$u_k = \frac{1}{2} u_g$$
, $\varrho = \frac{1}{8}$; c) $u_k = \frac{7}{8} u_g$, $\varrho = \frac{1}{2}$;

d)
$$u_k = \frac{63}{64} u_g$$
, $\varrho = 4$; e) $u_k = u_g$, $\varrho = \infty$, Selbsterregung

gleich $0.7 \cdot \frac{1}{2} \, \mathfrak{U}_{\mathbf{g}}$ und außerdem gegen $\mathfrak{U}_{\mathbf{g}}$ um 45° in der Phase

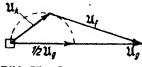


Bild 77. Zusammensetzung von Uk und Uf zu Ug.

verschoben (vgl. Bild 77). Daher muß hier U, immer noch fast ebenso groß wie Ug sein. Hier hat sich also die Verstärkung fast gar nicht gehoben. Es ergibt sich so die Kurve b in Bild 76. Macht man für die mittlere Frequenz U $= 7/8 \, \mathrm{U_g}$, so erhält man in der Mitte

die 8fache Verstärkung. Aber alle Abweichungen in der Verstärkung ohne Rückkopplung machen sich jetzt 8 mal stärker bemerkbar (Kurve c). Dort wo \mathfrak{U}_A bei Kurve a um 5% kleiner als die maximale Verstärkung war, wird auch \mathfrak{U}_k um 5% kleiner. Das macht aber in der Differenz $\mathfrak{U}_f = \mathfrak{U}_g - \mathfrak{U}_k$ eine Änderung von 40% aus.

Je mehr im mittleren Bereich $u_k = u_g$ wird, d. h. je mehr die Verstärkung infolge der Rückkopplung zunimmt, desto mehr machen sich ursprünglich ganz kleine Abweichungen im Verstärkungsgrad auf den Frequenzgang bemerkbar.

Auch ohne Rückkopplung ist ja die Verstärkung gemäß Kurve a nur angenähert konstant, aber es überrascht, daß diese kleinen Abweichungen sich so stark wie in Kurve c oder gar d und e auswirken können!

Die mathematische Berechnung ergibt ganz allgemein für die Sekundärspannung des Transformators in Bild 75:

(74)
$$\begin{split} \mathfrak{U}_{A} &= \frac{\mathfrak{U}_{g}}{D} \frac{R_{A}}{R_{A} \frac{L_{a}}{M} + R_{1}} \frac{R_{A}}{M} + \frac{R_{A}}{M} \frac{L_{a}L_{A} - M^{2} + \frac{R_{1}D_{A}}{M}}{M} \\ &= \frac{\mathfrak{U}_{g}}{D} \frac{R_{A}}{\Re} \quad \text{mit} \quad \Re = R + j \omega L + \frac{1}{j \omega C}, \end{split}$$

wobei gesetzt ist

(75)
$$R = R_A \frac{L_a}{M} + R_1 \frac{L_A}{M}$$
; $L = \frac{L_a L_A - M^2}{M}$; $C = \frac{M}{R_1 R_A}$

Mathematisch verläuft das Spannungsverhältnis $\mathfrak{U}_{\mathbf{A}}/\mathfrak{U}_{\mathbf{g}}$ also in Alhängigkeit von der Frequenz genau so wie eine normale Resonanzkurve eines aus R, L und C bestehenden Schwingungskreises mit einem Maximum für ω L $-\frac{1}{\omega}$ C = 0, d. h. $\omega^{\mathbf{g}}$ (L_a L_A $-\mathbf{M}^{\mathbf{g}}$) = R₁ R_A und einer Resonanzschärfe

$$\begin{split} \varrho &= \frac{\sqrt[]{s}}{x + 1/x} \text{ mit } s = 1 - \frac{M^2}{L_a L_A} = \text{,,Streufaktor" und} \\ x &= \sqrt[]{\frac{R_i}{L_a} \cdot \frac{L_A}{R_A}} = \sqrt[]{\frac{T_A}{T_a}} \,. \end{split}$$

150 § 17. Rückgekoppelte Verstärker mit breitem Frequenzbereich.

Bei optimaler Anpassung $R_A' = \ddot{u}^2 R_A = R_1$ mit $\ddot{u} = \sqrt{\frac{L_a}{L_A}}$ = ,, \ddot{U} bersetzungsverhältnis" wird x = 1 und $\varrho = \frac{\sqrt{s}}{2}$, also die 45%-Verstimmung $v_{45} = \frac{1}{\varrho} = \frac{2}{\sqrt{s}}$. In Bild 76 ist für Kurve a:

$$v_{45} \approx \frac{f_o}{f_m} = \frac{f_m}{f_u} = 16, \quad \text{also } \varrho = 1/16 = 0.0625 \; .$$

Eine so geringe "Resonanzschärfe", d. h. ein so weiter, nahezu frequenzunabhängiger Bereich erfordert einen Transformator mit der Streuung s = $4 \varrho^2 = 1/64 = 1,6\%$ (vgl. hierzu Bd. II § 27). Das entspricht etwa den normalen Verhältnissen.

Durch die in Bild 75 gezeichnete Rückkopplung wird

$$u_g = u_t + p u_A = u_t + p \frac{u_g}{D} \frac{R_a}{\Re}$$
, also

(76)
$$u_{A} = \frac{u_{f}}{D} \frac{R_{A}}{\Re - \frac{p R_{A}}{D}} = \frac{u_{f}}{D} \frac{R_{A}}{\Re - R_{a}}; \quad R_{a} = \frac{p R_{A}}{D}.$$

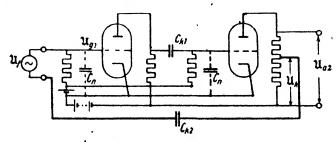
Der Ausdruck R_n wirkt wie ein negativer Widerstand, der den positiven Wirkwiderstand R von \Re zum Teil aufhebt und somit ϱ entsprechend vergrößert. Für $R_n=R$ wird $\varrho=\infty$. d. h. es tritt Selbsterregung ein¹).

Der Frequenzgang für verschiedene Rückkopplungen ist bei der Schaltung von Bild 75 identisch gleich dem bei (77) der normalen Entdämpfung eines Schwingungskreises $\Re = \mathbb{R} + \mathbf{j} \left(\omega \mathbf{L} - \frac{1}{\omega \mathbf{C}} \right)$ mit der Resonanzschärfe $\varrho = \sqrt{\frac{\hat{\mathbf{l}}_u}{\hat{\mathbf{t}}_o}}$. Es ist nur $\varrho < 1$.

¹⁾ Man überzeugt sich leicht, daß dies dieselbe Bedingung wie (38) in § 10 ist. Dort war nur $u_k = u_A$, also p = 1. Ferner wurde der Index g statt A verwandt.

Daß die unbesbeichtigte Rückkopplung durch die natürliche Gitteranodenkapazität $C_{g,k}$ den Frequenzgang ebenso verzezet, wie die hier gezeichnete transformatorische Rückkopplung, wurde schon in Bd. II § 10 erwähnt. Bild 30 dort ist mit Bild 76 hier identisch.

Die zweite Frage, warum bei Verstärkern ohne ausgeprägte Resonanz so leicht Kippschwingungen eintreten, findet in folgendem ihre Erklärung. Für $\varrho=1/16$ ist nicht wie bei schwach gedämpften Schwingungskreisen die Wirkkomponente R klein gegen die Blindkomponenten ω L und $\frac{1}{\omega C}$, sondern umgekehrt 16 mal so groß. Selbst wenn man $R_n=7/8$ R macht, also 8 fach entdämpft, ist die restliche Wirkkomponente noch doppelt so groß wie die Blindkomponenten, es ist dann also $\varrho=1/2$. Nun gilt aber folgender Satz:


Für positives ϱ und $\varrho < 1/2$ verläuft ein Ausgleichsvorgang aperiodisch, ohne Schwingungen abnehmend; für (78) negatives ϱ und $-\varrho < 1/2$ verläuft entsprechend ein Ausgleichsvorgang aperiodisch, ohne Schwingungen anwachsend.

Wenn man also R_n nur um 1/8 zu groß, größer als R macht, erhält man schon keinen sinusförmig anklingenden, sondern einen aperiodisch anwachsenden Verlauf. Das ist es aber gerade, was man als Kippvorgang bezeichnet. Das Kippen, das aperiodische Anwachsen geht natürlich nicht unbegrenzt weiter, sondern hört infolge Strom- oder Spannungsbegrenzung bald auf. Es erfolgt dann im allgemeinen nach einer mehr oder weniger langen Dauer ein Zurückkippen; dadurch entsteht dann insgesamt auch ein periodischer Vorgang, eine Kippschwingung, die aber mit der sinusförmigen Eigenschwingung ω L = $\frac{1}{\omega C}$ gar nichts mehr zu tun hat.

Bei sehr kleinem wirksamen ϱ (etwa $\varrho < 0,1$), d. h. bei einer in einem weiten Frequenzbereich konstanten Verstärkung $\left(\frac{f_0}{f_u} \approx \frac{1}{\varrho^2} > 100\right)$ kann man sinusförmige Schwingungen nur durch eine sehr sorgfältige Einstellung der Rückkopplung auf die Grenze der Selbsterregung erhalten. Bei einer nur ganz wenig größeren Rückkopplung treten nichtsinusförmige Kippschwingungen auf.

Voraussetzung ist hierbei, daß auch die Rückkopplung, das Verhältnis $\mathfrak{U}_{\mathbf{k}}/\mathfrak{U}_{\mathbf{A}}$ in dem betreffenden Frequenzbereich konstant ist. Es kommt nach (48) in § 13 auf den Frequenzgang des Produktes $\mathfrak{A} \, \mathfrak{B} = \frac{\mathfrak{U}_{\mathbf{k}}}{\mathfrak{U}_{\mathbf{k}}} = \frac{\mathfrak{U}_{\mathbf{k}}}{\mathfrak{U}_{\mathbf{k}}} = \frac{\mathfrak{U}_{\mathbf{k}}}{\mathfrak{U}_{\mathbf{k}}}$ an. Vgl. auch später unter d).

e) Verstärker mit Widerstandskopplung. Beim Widerstandsverstärker, der außer Widerständen nur Kondensatoren enthält (vgl. Bild 78) liegen die Verhältnisse genau so. Die

- Bild 78. Rückgekoppelter Widerstandsverstärker.

untere Grenzfrequenz f_u ist durch die in Reihe liegenden Koppelkondensatoren C_k , die obere f_o durch die parallel liegenden natürlichen Kapazitäten C_n bedingt. Sind letztere 30 $\mu\mu$ F groß, wahrend man erstere gleich 1 μ F macht, so verhalten sich etwa die Grenzfrequenzen $\frac{f_o}{f_u}\approx 10^4$. Daraus berechnet sich ein wirksames $\varrho=\sqrt{\frac{f_u}{f_o}}=\frac{1}{100}$. Es ist bekannt, daß man Widerstandsverstärker leicht für einen sehr großen Frequenzbereich herstellen kann. Bei 20 facher Entdämpfung, die man, um die richtige Phase zu erhalten, durch eine Rückkopplung über 2 Röhren herstellen muß, ist $\mathfrak{U}_k=\frac{19}{20}\,\mathfrak{U}_{g_1}$ und $\mathfrak{U}_l=\frac{1}{20}\,\mathfrak{U}_{g_1}$, der Verstärkungsgrad $\mathfrak{U}_a/\mathfrak{U}_l$ also 20 mal so groß wie ohne Rückkopplung. Auch hier wird durch eine solche Rückkopplung f_o 20 mal tiefer, f_u 20 mal höher, der Frequenzbereich also 400 mal kleiner; es ist dann aber immer noch $\frac{f_o}{f_u}\approx\frac{1}{25}$ und

 $\varrho = \frac{1}{\kappa}$. Man ist also noch weit von der Selbsterregung entfernt und hat einen für viele Zwecke völlig ausreichenden breiten Frequenzbereich bei 20 mal größerer Verstärkung. Mehr als 20fach zu entdämpfen macht im allgemeinen wegen der zeitlichen Inkonstanz der Röhren- und Schaltungsgrößen Schwierigkeiten (vgl. § 15a). Aus dem gleichen Grunde ist es bei den oben angenommenen Verhältnissen praktisch völlig unmöglich, sinusförmige Schwingungen selbst zu erregen. Bei $\rho=1/100$ ergibt schon eine Änderung um 1/50 über die Grenzrückkopplung aperiodisches Anwachsen und Kippschwingungen. — Macht man aber Ck kleiner und Cn durch Einschalten wirklicher Kondensatoren größer, so daß beide in derselben Größenoldnung liegen, so werden fo und fo nur wenig verschieden; es gelingt dann unschwer, durch eine fein einstellbare Rückkopplung und einen Arbeitspunkt mit weichem Schwingungseinsatz sinusförmige Schwingungen herzustellen. Vgl. auch § 10 Bild 45.

Bei Anwendung getrennter Batterien kann man die Koppelkondensatoren C_k ganz weglassen (vgl. Bild 39 in § 10e). Es wird dann $f_u=0$, es ist auch eine Gleichstrom-Verstärkung möglich. In diesem Falle erniedrigt sich nur die obere Grenzfrequenz f_o durch die Rückkopplung, während f_u null bleibt. Bei Selbsterregung wird $f_o = 0$, es stellt sich nur ein anderer Gleichstromzustand ein. Vgl. § 10c. — Alles über die Widerstandsverstärker Gesagte behält seine Gültigkeit, wenn man statt der Rückkopplung über 2 Röhren eine Raumladegitterröhre verwendet.

d) Zweidraht-Fernsprech-Verstärker. Eine gleichmäßige Erhöhung der Verstärkung durch die Rückkopplung, wie sie in Bild 76 dargestellt wurde, erfordert nicht nur, daß Verstärkung B und Rückkopplung A ihrer Größe nach von der Frequenz unabhängig sind, sondern auch ihrer Phase nach. Trifft das letztere nicht zu, so kann für einige Frequenzen Uk und Ug gleichgerichtet, für andere Frequenzen entgegengerichtet sein. Für die ersteren Frequenzen ergibt sich dann eine Erhöhung, für die letzteren dagegen eine Erniedrigung der Verstärkung durch die Rückkopplung. Das zeigt z. B. das in Bild 79 dar-

gestellte Versuchsergebnis mit einem Zweidrahtverstärker. Bei diesem soll eine Verstärkung in der einen und der anderen Richtung über je eine Röhre hergestellt werden; die Rückkopplung und Selbsterregung, die an sich über diese beiden Röhren eintreten würde, muß dann durch je eine Brückenschaltung verhindert werden (vgl. Bd. II § 34a Bild 110). Die dick gezeichnete

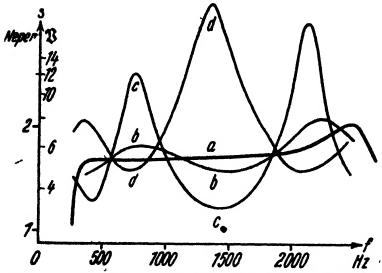


Bild 79. Frequenzgang des Verstärkungsgrades & eines Zweidraht-Fersprechverstärkers. — a) bei genauem Abgleich der Nachbildungsleitungen; b) beide Nachbildungsleitungen um 13% zu groß; c) beide Nachbildungsleitungen um 28% zu groß; d) eine Nachbildungsleitung su groß, die andere zu klein.

Kurve a in Bild 79 zeigt den normalen Betriebsfall mit richtig abgeglichenen Brücken und einem in einem weiten Frequenzbereich nahezu konstanten Verstärkungsgrad. Diese durch eine Entzerrerschaltung künstlich hergestellte, begrenzte Frequenzunabhängigkeit erstreckt sich aber nur auf die Amplitude. Dagegen wird der Phasenwinkel der Ausgangsspannung gegenüber der Eingangsspannung infolge der angewandten Kunstschaltungen mit wachsender Frequenz immer größer, dreht sich zwischen 300—2500 Hertz um über 360°, wovon man sich durch eine Mes-

sung nach dem Kompensationsverfahren unschwer überzeugen kann. Stört man jetzt den beiderseitigen Brückenabgleich, so tritt eine Rückkopplung ein, die den Verstärkungsgrad verändert. Bei den Kurven b und c waren beide Nachbildungsleitungen gegenüber dem Abgleichswert vergrößert, bei c mehr als bei b. Man sieht, wie nur in dem Bereich um 800 Hertz und dann wieder um 2200 Hertz eine Erhöhung der Verstärkung eintritt, während in dem Bereich um 400 und 1500 Hertz eine Erniedrigung eintritt. Bei der Kurve d war die eine Nachbildungsleitung größer, die andere kleiner als der Abgleichswert. Dadurch kehrt sich die Phase der über beide Röhren wirksamen Rückkopplung um 180° um. Daher tritt dort, wo vorher eine Erhöhung der Verstärkung eintrat, eine Erniedrigung ein und umgekehrt. Man erkennt deutlich, wie sehr es bei der Rückkopplung auf die Phase ankommt 1).

Will man bei beliebigen äußeren Schaltelementen eine nach Amplitude und Phase frequenzunabhängige Rückkopplung her-

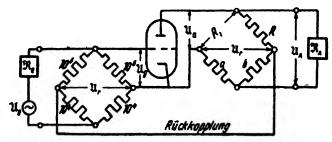


Bild 80. Negative, von der Eingangs- und Ausgangsschaltung völlig unabhängige Rückkopplung. (Macht den Verstärkungsgrad kleiner, aber von störenden Einflüssen unabhängiger.)

stellen, so kann man die in Bild 80 dargestellte Schaltung anwenden. Wird in der im Anodenkreis liegenden Brücke der Widerstand R gegenüber dem durch die Röhre gebildeten Widerstand R_1 so groß gemacht, daß $R_1:R=a:b$ ist, so hat die Ausgangs-

²⁾ Die Phasenumkehr der Rückkopplung beim Übergang von der einen sur anderen Koppelfrequenz bewirkt auch das im Bild 70 dargestellte Verhalten.

spannung u, und damit der äußere Widerstand R, gar keinen Einfluß auf die die Rückkopplung bewirkende Spannung U.. Ebenso wird durch die im Gitterkreis liegende Brücke erreicht, daß die Eingangsspannung U. und der innere Widerstand R. gar keinen Einfluß auf U, haben. Dabei ist bei dem eingeschriebenen Zahlenverhältnis die Gitterspannung $\mathfrak{U}_{\mathfrak{q}}$ (bei $\mathfrak{U}_{\mathfrak{r}}=0$ und $\Re_e \ll 10^6$ Ohm) nur um 1% kleiner als U_e . Es geht also durch die Brückenschaltung nur 1% verloren. Bei Einwirkung der Rückkopplung wird die Gitterspannung um - verkleinert. — Wie alle über eine einzige Eingitterröhre hergestellten Rückkopplungen gibt die gezeichnete Schaltung ohne phasenumkehrenden Transformator stets eine negative, die Verstärkung verringernde Rückkopplung. Diese Anordnung wird praktisch verwandt, um den Verstärker stabiler, den Verstärkungsgrad von allen inneren und äußeren Einflüssen unabhängiger zu machen. Auch die Verzerrungen werden kleiner; vgl. § 13.

§ 18. Selbstüberlagerung.

Wenn die Rückkopplung so klein ist, daß noch keine Selbsterregung eintritt, so kann bei Fremderregung nur ein Strom entstehen, dessen Frequenz gleich der der Fremderregung f, ist, ganz gleichgültig, ob diese mit dem Empfänger in Resonanz ist oder nicht. Macht man aber die Rückkopplung fester, so daß schon ohne Fremderregung infolge Selbsterregung Schwingungen eintreten, so haben diese natürlich zunächst die durch die Abstimmung des Empfängers festgelegte Eigenfrequenz fk. Wirkt dann auf den Empfänger gleichzeitig eine Fremderregung ein, deren Frequenz f, nicht gleich f, ist, so treten im allgemeinen alle beide Frequenzen f, und f, auf. Sind sie nicht sehr verschieden voneinander, so entstehen Schwebungen, deren Frequenz $f_n = f_t - f_k$ ist. Bei Hochfrequenz liegt diese Schwebungsfrequenz fn im Bereich der Tonfrequenzen und ruft nach einer Gleichrichtung in einem Telephon das sog. "Überlagerungspfeifen" hervor, einen Ton, dessen Höhe fa sich bei einer kleinen

Änderung von f_t oder f_k sehr stark ändert. Man bezeichnet diesen Vorgang in dem hier behandelten Fall, daß die Hochfrequenz durch Selbsterregung in derselben Röhre erzeugt wird aut die auch die Fremderregung einwirkt, als "Selbstüberlagerung".

In einem gewissen, mehr oder weniger engen Bereich in der Nähe der Resonanz, dem sog. "Mitnahmebereich", treten aber keine Schwebungen und infolgedessen auch kein Überlagerungspfeifen auf. Die selbsterregte Frequenz f_k verschwindet hier ganz und es ist nur die Frequenz f_t vorhanden. Bild 81 zeigt

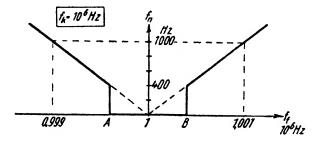


Bild 81. Schwebungsfrequenz fa bei Änderung der Fremderregung ft.

Im Mitnahmebereich AB keine Schwebungen.

den Verlauf der Schwebungsfrequenz f_n, wenn man auf einen Empfänger, der durch eine lose Rückkopplung gerade eben zur Selbsterregung gebracht ist, eine Fremderregung einwirken läßt und deren Frequenz allmählich ändert. Der zunachst hohe Schwebungston wird schnell in dem Maße tiefer, wie man sich der Eigenfrequenz des Empfängers nähert. Von einem bestimmten Punkte vor der Resonanzlage an (A in Bild 81) hören aber die Schwebungen vollständig auf. Sie setzen erst wieder ein, wenn man f₁ über die Resonanzlage hinaus um etwa ebensoviel weiter ändert (B in Bild 81). Schwebungstöne unter 400 Hz treten also bei den in Bild 81 dargestellten Verhältnissen überhaupt nicht auf. Bild 82 zeigt für etwas andere Verhältnisse, wie sich der Strom 3_L in einem Anodenschwingungskreis bei transformatorischer Rückkopplung (vgl. z. B. Bild 59) ändert, wenn die Frequenz f₁ der Fremderregung geändert wird und zwar

für verschieden starke Rückkopplungen. Bei Kurve a war die Rückkopplung gleich der Grenzrückkopplung \Re_{gr} , d. h. so gewählt, daß gerade eben noch keine Selbsterregung eintrat, also

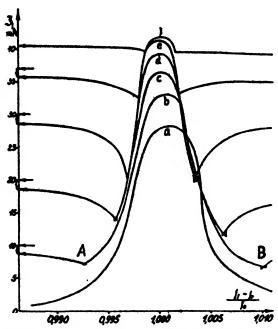


Bild 82. Amplitudenverlauf im Mitnahmebereich bei verschieden starker Rückkopplung 2.

- a) $\Re = 0.256 = \Re_{gr}$ d) $\Re = 0.265$ b) $\Re = 0.258$ e) $\Re = 0.270$
- c) $\mathbf{R} = 0,260$ f) $\mathbf{R} = 0,275$

der Strom ohne Fremderregung $\mathfrak{J}_0=0$ war. Die Kurve a ist eine Resonanzkurve, die einer weitgehenden Entdämpfung entspricht. Die Spitze ist stark abgerundet, geht nicht so hoch hinauf, wie es eine normale Resonanzkurve tun würde, weil bei größeren Amplituden die mittlere Steilheit und damit auch die wirksame Entdämpfung kleiner wird (vgl. § 15a). Bei den weiteren Kurven b, c . . . f war die Rückkopplung immer fester gemacht, so daß bei fehlender Fremderregung Selbsterregung eintrat. Die Pfeile links zeigen an, wie groß die Selbsterregungs-

amplitude \mathfrak{F}_0 ohne Fremderregung war. Der Knick in den Kurven entspricht den Punkten A, B in Bild 81, in denen neben der Fremderregung \mathfrak{f}_t auch die Selbsterregung mit ihrer Eigenfrequenz \mathfrak{f}_k auftritt, also Schwebungen entstehen, die in dem eigentlichen Resonanzbereich fehlen. Bild 83 zeigt dieselben Kurven,



Bild 83. Dieselben Werte wie in Bild 82. Nur Amplituden anderung $\Im_L - \Im_{\bullet}$ infolge der Fremderregung aufgetragen.

nur ist hier die sich ohne Fremderregung erregende Amplitude Se von der mit Fremderregung abgezogen, damit der Einfluß der Fremderregung besser hervortritt. Man sieht, daß man

auch im Mitnahmebereich, also bei schwacher Selbsterregung (80) ($\Re > \Re_{g_1}$), ganz ähnliche Resonanzkurven erhält wie ohne Selbsterregung und Entdämpfung ($\Re < \Re_{g_1}$).

Die Maxima nehmen aber stark mit der Rückkopplung ab. Man beachte, daß die Kurven a, b, c sich nur je um 0,8%, die Kurven c, d, e, f um je 2% in der Rückkopplung unterscheiden. Wenn man also eine möglichst große Amplitudenänderung durch die Fremderregung erreichen will, so muß man sehr genau auf die Grenzrückkopplung \Re_{g_T} einstellen. Man erkennt ferner, daß der

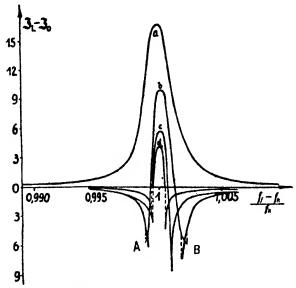


Bild 84. Wie Bild 83, nur Fremderregung etwa 3 mal kleiner.

- a) R = 0,256
- c) $\mathbf{R} = 0.264$
- b) 2 = 0.260
- d) $\Re = 0.268$.

schwebungslose Mitnahmebereich um so breiter ist, je loser die Rückkopplung ist. Aber selbst bei der schwächsten Selbsterregung (Kurve b) entspricht seine Breite nur einer Verstimmung von 0,7% nach beiden Seiten. Dabei war in Bild 83 die Fremderregung groß. Sie bewirkte ja bei der Grenzrückkopplung (Kurve a) im Resonanzfall einen Strom $\mathfrak{F}_L=28\,\mathrm{mA}$. Bild 84 zeigt, wie die Kurven sich ändern, wenn die Fremderregung schwächer gemacht wird. Sie war etwa dreimal so schwach wie

in Bild 83. Trotzdem entsteht jezt bei der Grenzrückkopplung ein maximaler Strom von 17 mA, also wesentlich mehr als $28/3 \approx 9$ mA, weil hier bei den dreimal kleineren Amplituden die entdämpfende Wirkung der Rückkopplung fast voll erhalten bleibt. Das macht sich auch an dem ganzen Verlauf bei sämtlichen Kurven bemerkbar. Sie entsprechen einer schärferen Resonanz, wie sie bei Resonanzkreisen mit geringerer Dämpfung eintreten würde. Die Breite des Mitnahmebereiches ist auch etwa dreimal geringer geworden. Sie ist ganz allgemein nahezu proportional der Stärke der Fremderregung.

Die Grenzen des Mitnahmebereiches sind manchmal zweideutig. Ändert man die Frequenz von außen nach innen, so hält sich der Zustand mit Schwebungen, in dem also noch keine "Mitnahme" der Frequenz erfolgt, etwas weiter, als wenn man von innen, von der Resonanzfrequenz ausgeht und mehr und mehr verstimmt. Im letzteren Fall tritt der Schwebungston ein klein wenig später auf als dort, wo er vorher verschwand. Es tritt ein Herüberziehen des jeweilig herrschenden Zustandes über die Grenze ein. Der Übergang von dem einen zum anderen Zustand erfolgt dann sprunghaft. Das macht sich auch in der Amplitude bemerkbar (in Bild 84 bei A, B die punktierten Linien).

Man hat den Bereich AB, in dem keine Schwebungen auftreten, als "Mitnahmebereich" bezeichnet, um zum Ausdruck zu bringen, daß in ihm die Frequenz f_k der selbsterregten Schwingungen identisch mit der Frequenz f_f der Fremderregung ist, also bei Änderung von f_f von dieser "mitgenommen", synchronisiert wird. Da aber der Verlauf innerhalb dieses Bereichs völlig dem normalen, früher ausführlich behandelten Verlauf der Entdämpfung entspricht¹), in dem Bereich AB nichts neuartiges eintritt, wenn man von $\Re < \Re_{g_f}$ zu $\Re > \Re_{g_f}$ übergeht, ist es im Rahmen dieser Darstellung zweckmäßiger, die starken Schwingungen im Resonanzbereich nicht als "mitgenommene" Selbst-

¹) Auch die Leistungsverhältnisse bleiben völlig dieselben. Auch bei der normalen Entdämpfung wirkt die Röhre wie ein gesteuerter Relaissender, der die Leistung für die großen Amplituden bei der Entdämpfung hergibt. Vgl. § 15b.

erregung, sondern als durch Entdämpfung gesteigerte Fremderregung aufzufassen. Diese Fremderregung stört dann die Selbsterregung in derselben Weise, wie das in § 7b bei dem Wettstreit zweier Frequenzen beschrieben wurde, die sich beide erregen wollen und für sich allein auch erregen könnten, von denen aber die stärkere die schwächere unterdrückt. In dem Mitnahmebereich AB wird die Fremderregung durch Resonanznähe so stark, daß sie die Selbsterregung der benachbarten Eigenfrequenz fk völlig unterdrückt, totmacht. Außerhalb AB kann sich zwar fk erregen, aber wie man aus Bild 82 deutlich erkennt, stört auch da die Fremderregung. Die Amplitude 30 ohne Fremderregung wird durch das Hinzukommen der Fremderregung verkleinert. Es ist in Bild 83 und 84 3 ... 3 außerhalb des Bereiches AB negativ, obwohl in 31, auch die Fremderregung mit gemessen wurde. Erst weiter ab von der Resonanz, wo die Fremderregung nur noch sehr kleine Amplituden erzeugt, stört sie die Selbsterregung wenig. Hiernach ist es ohne weiteres einleuchtend, daß der Bereich AB, in dem die Selbsterregung totgemacht wird, um so größer ist, je größer die Amplitude der Fremderregung und je kleiner die der Selbsterregung 30, d. h. je kleiner die Rückkopplung R ist. Auch die "Zieherscheinungen", das unstetige Umspringen auf den Zustand mit selbsterregter Frequenz f, in den Punkten A und B ähnelt den in § 7b beschriebenen Erscheinungen. Ein wesentlicher Unterschied besteht hier nur darin, daß die andere Frequenz f, natürlich niemals ganz totgemacht werden kann, da die Fremderregung ja von außen zwangsmäßig zugeführt wird. Wie zu erwarten, wird nach Bild 82 die absolute Amplitude Jt der Fremderregung in dem Bereich A B um so größer, je stärker die Rückkopplung N ist. Die Amplituden ander ung mit und ohne Fremderregung wird aber nach Bild 83 und 84 um so größer, je kleiner die Rückkopplung ist. Der Grund liegt darin, daß bei stärkerer Rückkopplung sich ohne Fremderregung schon so große Amplituden erregen, daß eine starke nichtlineare Strom- oder Spannungsbegrenzung eintritt. Vgl. § 6c und d. Die zusätzliche Fremderregung kann dann die großen Amplituden nicht mehr viel weiter steigern.

Die ganzen hier besprochenen Erscheinungen beruhen notwendigerweise auf irgendeiner Nichtlinearität, insbesondere der Krümmung der Anoden- oder Gitterstromkennlinie. Wären alle Beziehungen linear, so würden sich nach Satz (142) in Bd. I § 18 Selbsterregung und Fremderregung einfach überlagern, ohne sich irgendwie zu beeinflussen. Für R > Rg, würde sich daher auch bei Anwesenheit der Fremderregung die Selbsterregung immer weiter aufschaukeln. Selbst ganz kleine Abweichungen von der Linearität dürfen also hier nicht vernachlässigt werden, da sie allein für $\Re > \Re_{_{\!R\, I}}$ die Amplituden begrenzen und ihre Größe bestimmen. Es kommt also wesentlich mit auf den Verlauf der Kennlinie an und auf den Arbeitspunkt, den man einstellt. In der Nähe der instabilen Springbereiche, wo eine kleine Änderung der Rückkopplung eine besonders große Änderung der selbsterregten Amplituden hervorruft, wird auch eine zusätzliche Fremderregung, die ja ähnlich wie eine erhöhte Rückkopplung wirkt, besonders große Änderungen hervorrufen. Der Praktiker wird aber aus naheliegenden Gründen diese instabilen Bereiche vermeiden.

§ 19. Pendelrückkopplung.

a) Der Anfang einer anklingenden und das Ende einer abklingenden Schwingung. Wenn man einen Schwingungskreis durch eine Rückkopplung $\Re > \Re_{gr}$ entdämpft, so entstehen anklingende Schwingungen,

$$\begin{split} u &= \mathfrak{U}_0\,e^{A_0\,t}\sin\omega\,t\\ \left(\delta_0 &= \frac{R_n}{2\,L};\ R_n = \text{,,wirksamer negativer Widerstand''}\right), \end{split}$$

deren Amplitude genau nach einer e-Funktion anwächst, solange der Vorgang mathematisch durch lineare Differentialgleichungen darstellbar ist, d. h. praktisch, solange die Röhrenkennlinie als geradlinig zu betrachten ist und kein Gitterstrom einsetzt. Das ist für sehr kleine Schwingungsamplituden und negative Gittervorspannung sieher der Fall. Bei größeren Amplituden wird dagegen bald ein Endwert erreicht, der durch die in § 6 beschriebene Strom- oder Spannungsbegrenzung bedingt ist. Dieser Endwert wird, vom Augenblick des Wirksamwerdens der Entdämpfung an gerechnet, um so früher erreicht, je größer die Anfangsamplitude \mathfrak{ll}_0 ist. Wäre $\mathfrak{ll}_0=0$, so würde der Endwert erst nach unendlich langer Zeit erreicht werden. Da er praktisch stets nach mehr oder weniger kurzer Zeit erreicht wird, muß man folgern:

Es ist stets eine gewisse Anfangsamplitude 110 von selbst vorhanden.

(81) Die Zeit vom Einschalten der Entdämpfung bis zum Erreichen des Endwertes ist ein quantitatives Maβ für die Anfangsamplitude U₀.

Bild 85 zeigt, wie man hiernach eine Messung von 110 oszillographisch durchführen kann. Die Entdämpfung wird (völlig

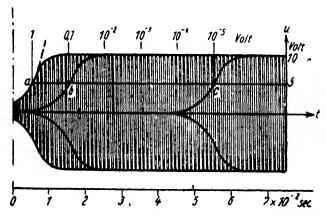


Bild 85. Dauer des Anklingvorgangs, abhangig von der Anfangsamplitude ll₀. a) ll₀ = 1 Volt; b) ll₀ = 0,1 Volt, eingestellt; c) ll₀ unbekannt, zu bestimmen.

störungsfrei!) stets zur Zeit t=0 eingeschaltet. Zur Eichung wird zunächst eine genau gemessene Anfangsamplitude \mathfrak{U}_0 = 1 Volt hergestellt. Man erhält dann die Anklingkurve a, die nur im unteren Teil eine e-Funktion ist. Ebenso erhält man mit

 $\mathfrak{U}_0=0,1$ Volt die Kurve b, die in dem gezeichneten Fall gegen a genau um 10^{-2} sec nach rechts verschoben ist. Daraus folgt, daß bei der hier angewandten Größe der Entdämpfung kleinere Amplituden jedesmal genau 10^{-2} sec brauchen, um sich auf den 10 fachen Wert aufzuschaukeln. So ergibt sich für den Zusammenhang zwischen Verschiebung und Anfangsamplitude \mathfrak{U}_0 die obere Skala in Bild 31. Erhält man jetzt ohne eine Anfangsspannung zuzuführen die Kurve c, die gegen a um $5\cdot 10^{-2}$ sec verschoben ist, so muß zur Zeit t=0 die Anfangsamplitude $\mathfrak{U}_0=10^{-5}$ Volt gewesen sein. Der Keim für die Schwingungen c wird durch Einschalten der Entdämpfung schon zur Zeit t=0 gelegt; die Schwingungen verlaufen von da an gewissermaßen unterirdisch, aber nach einem genau vorgeschriebenen Gesetz. Erst nach über $4\cdot 10^{-2}$ sec sind sie so weit gewachsen, daß sie im Oszillographen sichtbar werden.

Man kann den Vorgang im Oszillographen sich periodisch wiederholen lassen. Die Versuche ergeben dann, daß die Kurve c in unregelmäßiger Weise hin und her schwankt, sich besonders bei benachbarten Störungen stark nach links verschiebt, ein Zeichen, daß diese Störungen die Anfangsamplitude vergrößern und bestimmen. Schirmt man die ganze Apparatur sorgfältig gegen alle außeren Störungen ab, so erhält man immer noch unregelmäßig schwankende Kurven, die im Mittel so weit nach rechts verschoben sind, wie es einer Anfangsamplitude $\mathfrak{U}_0=10^{-5}$ Volt entspricht. Dies ist geräde die Größe der unregelmäßigen Schwankungen, die durch die Wärmebewegung der Elektronen oder den Schroteffekt hervorgerufen wird (vgl. Bd. II § 33c). Daraus folgt:

Die Anfangsamplitude selbsterregter Schwingungen wird durch den im Augenblick der Entdämpfung herrschenden (82) Storpegel bestimmt. Bei Vermeidung aller sonstigen Störungen bildet das "Wärmegeräusch" oder der "Schroteffekt" der Elektronen den Störpegel.

Bei einer frei abklingenden Schwingung

$$u = ll_1 e^{-\delta_1 t} \sin \omega t$$

nehmen die Amplituden auch genau nach einer e-Funktion ab. Sie verschwinden theoretisch erst nach unendlich langer Zeit, praktisch aber bekanntlich sehr schnell. Wann sie praktisch verschwunden sind, läßt sich bei dem oben geschilderten periodisch wiederholten Vorgang leicht feststellen. Nach Erreichen des Endwertes muß man dort die Entdämpfung wieder ausschalten, damit die Schwingungen wieder abklingen können. Schaltet man hierbei die Entdämpfung erst so spät wieder ein. daß die Schwingungen praktisch abgeklungen sind, so beobachtet man, wie oben geschildert, die entsprechend dem Störpegel hin und her schwankende Anklingkurve c. Macht man die Abklingzeit allmählich kürzer, z. B. indem man die Entdämpfung später ausschaltet, so hat das zunächst auf den darauf folgenden Anklingvorgang gar keinen Einfluß. Von einem bestimmten Punkt an hören aber die Schwankungen der Anklingkurve c plötzlich auf; jede Kurve deckt sich auch bezüglich der Lage der einzelnen Schwingungen genau mit der folgenden und bei einer weiteren Verkürzung der Abklingzeit rücken die Anklingkurven c genau proportional der Verkürzung der Abklingzeit nach links im Oszillogramm. Der Grund ist leicht einzusehen. In der kurzen Zeit sind die Schwingungen noch nicht völlig abgeklungen und ihre Restamplitude in dem Zeitpunkt, wo die Entdämpfung wieder eingeschaltet wird, bildet die Anfangsamplitude Un für den einsetzenden Anklingvorgang. Bei einer Restamplitude von 0,1 Volt muß z. B. die Kurve c bis zur Kurve b verschoben werden, bei einer Restamplitude von 1 Volt bis zur Kurve a. Der Exponent des Abklingens δ_1 t_1 müßte gleich dem Exponenten des Anklingens δ_0 to sein, wenn das Anklingen bis zum Endzustand nach einer e-Funktion weiterginge. Eine Änderung von t, muß also, wie beobachtet, eine proportionale Änderung von to hervorrufen. - Der Versuch bestätigt weiter die Erwartung, daß der Abklingvorgang von da ab keinen Einfluß mehr auf den Anklingvorgang besitzt, wo die durch ihn bedingte Anklingkurve in Bild 85 weiter rechts liegen würde als die durch den Störpegel hervorgerufenen Kurven c. Hieraus folgt:

Ein abklingender Vorgang ist dann praktisch verschwun(83) den, wenn seine Amplitude kleiner als die des Störpegels geworden ist.

Bei sehr niedrigem Störpegel sind Schwingungen also noch lange nicht abgeklungen, wenn sie im Oszillographen nicht mehr sichtbar sind. Bei einem Störpegel von 10^{-5} Volt dauert das unsichtbare Abklingen innerhalb der Nullinie ebenso lange wie das unsichtbare Anklingen bei der Kurve c in Bild 85, falls $\delta_1 = \delta_2$ ist. Selbst wenn die Schwingungen scheinbar schon so lange "null" geworden sind, haben sie auf das Einsetzen der anklingenden Schwingungen immer noch einen Einfluß.

Bei einer periodisch wirkenden Entdämpfung, einer sog. "Pendelrückkopplung", macht es in bezug auf die Amplitudenkurve kaum einen Unterschied, ob die Anfangsamplitude Un durch den Störpegel oder durch die Restamplitude der abklingenden Schwingungen gebildet wird, wenn diese nur wenig größer ist. Im letzteren Falle verschwinden nur die durch den Störpegel bedingten Unregelmäßigkeiten. Ein wesentlich größerer Unterschied besteht aber darin, daß im letzteren Falle die aufeinanderfolgenden Wellenzüge untereinander "kohärent" sind, sich auch bezüglich der Phase gegenseitig bedingen. Sind die abklingenden Schwingungen völlig verschwunden, so setzen die anklingenden Schwingungen mit einer ganz willkürlichen, weil durch die Störungen bedingten Phase, neu ein. Im anderen Falle bilden die anklingenden Schwingungen dagegen die kontinuierliche Fortsetzung der abklingenden Schwingungen, führen denselben Wellenzug phasenrichtig nur mit langsam sich ändernder Amplitude weiter. Der Unterschied kommt besonders zum Ausdruck, wenn man (bei Hochfrequenz) durch Überlagerung einer benachbarten Frequenz das sog. Überlagerungspfeifen herstellt. Bei kohärenten Pendelfrequenzschwingungen erhält man dann wie bei normalen Schwingungen einen musikalischen Ton, bei nicht kohärenten dagegen ein unregelmäßiges Geräusch.

Bei Kohärenz ist die kleine Anfangsamplitude \mathfrak{U}_0 proportional der großen Endamplitude \mathfrak{U}_e . Hat letztere beim Aufhören der Entdämpfung noch nicht den Sättigungswert erreicht, der bei

der betreffenden Rückkopplung durch die Strom- oder Spannungsbegrenzung schließlich eintreten würde, so ist der Zustand instabil. Eine kleine Vergrößerung von \mathfrak{U}_e vergrößert \mathfrak{U}_0 , dies wieder \mathfrak{U}_e usw. Ebenso würde eine Verkleinerung von \mathfrak{U}_e auch \mathfrak{U}_0 verkleinern usw. Im letzteren Fall ist die Grenze dadurch gegeben, daß \mathfrak{U}_0 unter den Störpegel sinkt, die Kohärenz aufhört. Daraus folgt:

Bei Kohärenz wächst im Verlauf mehrerer An- und Abklingvorgänge die Amplitude stets so weit an, bis eine nichtlineare Begrenzung eintritt, oder nimmt so lange ab, bis die Kohärenz durch den Störpegel zerstört wird.

Eine Pendelrückkopplung stellt man am einfachsten dadurch her, daß man die rückgekoppelte und dadurch die Entdämpfung bewirkende Röhre periodisch sperrt, indem man dem Gitter periodisch eine hinreichend große negative Vorspannung gibt, d. h. einer geeigneten Gleichstromvorspannung eine hinreichend große Wechselspannung von der Frequenz der beabsichtigten Pendelungen überlagert. Dadurch wird freilich die Entdämpfung nicht plötzlich ein- und ausgeschaltet, sondern ein kontinuierlicher Übergang von der positiven zu der negativen Dämpfung erzeugt; & ändert sich periodisch mit der Zeit. Das bewirkt aber nur, daß das An- und Abklingen nicht genau nach einer e-Funktion erfolgt, ändert aber sonst nichts an dem Wesen des Vorgangs, wie auch die Versuche zeigen. Man kann sogar die tiefere Pendelfrequenz ihrerseits durch Selbsterregung eines entsprechend abgestimmten und rückgekoppelten Schwingungskreises mit derselben Röhre erzeugen, die auch die Entdämpfung für die eigentliche höhere Frequenz bewirkt. Dann erhält man dieselben Erscheinungen, die schon in § 7b bei der gleichzeitigen Selbsterregung zweier stark verschiedener Frequenzen besprochen wurden. Vgl. dort Bild 25.

b) Überlagerung einer Fremderregung.

Mit der Pendelrückkopplung lassen sich ganz überraschend große Verstärkungen herstellen; man kann nämlich mit einer (85) beliebig kleinen Eingangsspannung, deren Amplitude nur über dem Störpegel liegen muß, unmittelbar die volle Ausgangsleistung einer beliebig großen Röhre steuern.

Freilich ist diese Ausgangsleistung im Rythmus der Pendelfrequenz zu 100% durchmoduliert. Das beschränkt die Anwendung der Pendelrückkopplung auf solche Fälle, bei denen die zu empfangenden Signale eine so tiefe Frequenz gegenüber der Trägerfrequenz, dem zur Übermittlung der Signale benutzten Wechselstrom, besitzen, daß eine zwischen beiden liegende Pendelfrequenz noch sehr viel höher als die Signalfrequenz, aber sehr viel tiefer als die Trägerfrequenz ist. Das ist z. B. der Fall bei der Hochfrequenztelegraphie, bei der die Frequenz der Telegraphiezeichen meist 100 Hertz nicht überschreitet, die hochfrequente Trägerfrequenz aber z. B. 108 Hertz beträgt, also eine Pendelfrequenz von 10000 Hertz 100 mal höher als 100 Hertz und 100 mal tiefer als 106 Hertz gewählt werden kann. Auch bei der Hochfrequenztelephonie, beim Rundfunk, kann man eine Pendelrückkopplung in der Frequenz von etwa 5·104 Hertz verwenden, wenn die Hochfrequenz höher als etwa 5 · 106 Hertz ist.

Bei der Pendelrückkopplung erzeugt die Fremderregung, d. h. die ankommende Hochfrequenz während der Zeit, wo die Entdämpfung nicht wirksam ist, in dem Schwingungskreis nach den bekannten Wechselstromgesetzen eine bestimmte Amplitude \mathfrak{U}_0 , die um so größer ist, je geringer die positive Dämpfung δ_1 wahrend dieser Zeit ist. Diese Amplitude bildet in dem Zeitpunkt, wo die Entdämpfung wirksam wird, die Anfangsamplitude Un für den dann einsetzenden anklingenden Schwingungsvorgang. Dieser wird bei schwacher Fremderregung bald so groß, 1000 und mehr mal größer, daß er genau so verläuft wie ohne Fremderregung. Man wählt dann die Dauer und Stärke der Entdämpfung am besten so, daß bei stärkster Fremderregung Un die Röhre bei der Endamplitude gerade eben voll ausgesteuert wird, während der ganzen Anklingzeit also ein nahezu gleichmäßiges exponentielles Anwachsen der Amplituden vorhanden ist. Dann ist auch die unter Umständen 106 und mehr mal größere Endamplitude $\rm U_e$ genau proportional der Anfangsamplitude; sinkt $\rm U_0$ bei schwächerer Fremderregung auf den halben Maximalwert, so tut das auch die Endamplitude.

Alle Schwankungen der winzig kleinen Anfangsamplitude llo ergeben dann entsprechende Schwankungen der großen Endamplitude llo. Nach der Gleichrichtung erhält man entsprechend große niederfrequente Schwankungen, bei Hochfrequenztelephonie also entsprechend große Telephonströme.

Die Zeiten, während deren die Entdämpfung nicht wirkt, müssen unbedingt so lang sein, daß die großen Amplituden Ue wieder völlig abklingen, d. h. bis auf eine Amplitude, die unter dem Störpegel liegt. Sonst erhält man Kohärenz und sehr störende Interferenzen zwischen der von der Selbsterregung herrührenden kleinen Restamplitude und der sich überlagernden ebenfalls kleinen Fremderregung.

An sich könnte man die Zeit to der Entdämpfung dadurch sehr klein machen, daß man durch eine entsprechend starke Rückkopplung die negative Entdämpfung δ_0 sehr groß macht, ebenso durch eine sehr starke positive Dämpfung δ_1 die große Amplitude in sehr kurzer Zeit zum Abklingen bringen. Dann besitzt der Empfänger aber eine sehr geringe Resonanzschärfe, spricht auf eine störende Fremderregung auch dann noch fast ebenso stark an, wenn deren Frequenz von der der Selbsterregung erheblich abweicht. Denn die positive Dämpfung δ_1 bestimmt ja, wie bei jedem Resonanzvorgang, die Resonanzüberhöhung = Resonanzschärfe, die dafür maßgebend ist, welche Anfangsamplitude Uo die Fremderregung bei verschiedener Frequenz erzeugt. Aber auch die negative Dämpfung δ_0 hat einen gleichartigen Einfluß. Je kleiner δ_0 ist, desto langsamer schaukeln sich die Schwingungen zu größeren Amplituden auf, desto länger wirkt also eine frequenzrichtige, klein bleibende Fremderregung noch merklich fördernd ein, im Gegensatz zu einer in der Frequenz etwas abweichenden Fremderregung, die wie beim normalen Resonanzvorgang bald außer Tritt fällt und kein hohes Aufschaukeln verursacht. Wie auch Versuche bestätigt haben, gilt der Satz:

Die wirksame Resonanzschärfe ϱ_{ett} ist im wesentlichen gleich der Summe der Resonanzschärfen $\varrho_0 + \varrho_1$, die während der Zeit der Dämpfung und der der Entdämpfung vorhanden sind.

Für die wirksame Dämpfung gilt dann

(87)
$$\frac{1}{\delta_{\text{eff}}} = \frac{1}{\delta_0} + \frac{1}{\delta_1}.$$

Hierbei sind alle ϱ und δ positive Größen. — Erfolgt die Entdämpfung allmählich, so daß δ zeitweise null, ϱ zeitweise unendlich ist, so kann $\varrho_{\rm eff}$ bis etwa 2 mal größer werden, als $\varrho_0 + \varrho_1$, wenn ϱ_0 und ϱ_1 die kleinsten Werte bedeuten, die bei der größten auftretenden Dämpfung δ_0 bzw. Entdämpfung δ_1 vorhanden sind.

§ 20. Zusammenfassung von Teil III B.

- 1. Bei einem Verstärker kann man einen Teil der zum Steuern erforderlichen Leistung durch eine Rückkopplung aufbringen. Die von außen zugeführte Leistung, die "Fremderregung", kann dann entsprechend kleiner sein; der Verstärkungsgrad wird dann $\frac{1}{1-\theta}$ mal größer.
- 2. Die Vergrößerung des Verstärkungsgrades durch eine frequenzunabhängige Rückkopplung R ist in Abhängigkeit von der Frequenz um so größer, je größer die Verstärkung B an sich schon ist. Bei einem Verstärker mit einer ausgesprochenen Resonanz ist sie praktisch nur im Resonanzbereich wirksam.
- 3. Durch eine positive Rückkopplung wird ein Verstärker unzuverlässiger; nichtlineare Verzerrungen und Störungen durch äußere Einflüsse werden größer. Daher läßt sich praktisch nur eine etwa 20 fache Erhöhung der Verstärkung durch sie herstellen. Umgekehrt kann man einen Verstärker durch eine negative Rückkopplung auf Kosten des Verstärkungsgrades zuverlässiger, nichtlineare Verzerrungen kleiner machen.

- 4. Der Durchgriff D ist als eine negative innere Rückkopplung aufzufassen, die sich der positiven äußeren Rückkopplung & widersetzt.
- 5. Eine rückgekoppelte Röhre besitzt anodenseitig gegen- über Wechselstrom einen wirksamen Widerstand $\Re_1 = 1/S(D-\Re)$. Für $\Re > D$ wird \Re_1 negativ, entdämpfend.
- 6. Ein Zweipol mit fallender Kennlinie besitzt ebenfalls gegenüber Wechselstrom einen negativen Widerstand, kann daher in gleicher Weise entdämpfend wirken, wie eine rückgekoppelte Röhre.
- 7. Ein durch eine rückgekoppelte Röhre (oder Leiter mit fallender Kennlinie) entdämpfter Schwingungskreis wirkt in jeder Beziehung so wie ein entsprechend schwächer gedämpfter Schwingungskreis, besitzt also eine größere Resonanzschärfe, bei Resonanz einen kleineren Reihenwiderstand bzw. größeren Parallelwiderstand, und gibt entsprechend langsamer abklingende Ausgleichsvorgänge.
- 8. Dabei ist es ganz gleichgültig, woher die ursprüngliche Dämpfung des Schwingungskreises kommt. Ohmsche Widerstände werden ebenso entdämpft wie Wirbelstrom-, Hysteresisoder Strahlungsverluste.
- 9. Auch der innere Widerstand der Fremderregung wird bei vielen Schaltungen mit entdämpft. Die zum Steuern erforderliche Fremderregung gibt dann keine Leistung ab, sondern nimmt Leistung auf.
- 10. Ist der Rückkopplungsfaktor nicht frequenzunabhängig und phasenrein, so verschiebt sich die Resonanzkurve durch die Entdämpfung. Die Resonanzfrequenz ist bei starker Entdämpfung stets mit der Frequenz identisch, die bei Selbsterregung entstehen würde.
- 11. Bei beliebigen Schaltungen werden stets diejenigen Frequenzen besonders stark entdämpft, für die eine Neigung zur Selbsterregung besteht. Schaltungen, die nicht zur Selbsterregung führen können, können auch keine Entdämpfung hervorrufen.
- 12. Ein Verstärker ohne jeden Schwingungskreis mit einem breiten (von f_u bis f_0 reichenden) Frequenzbereich, in dem die

Verstärkung nahezu konstant und phasengleich ist, kann aufgefaßt werden als ein Verstärker mit einem extrem stark gedämpften Schwingungskieis, dessen Resonanzschärfe $\varrho=\sqrt{\frac{f_u}{f_0}}$ ist $(\varrho\ll1!)$. Auch hier wird durch eine Rückkopplung nur eine Entdämpfung hervorgerufen. Es wird einerseits die "Resonanzüberhöhung" ϱ , die Verstärkung in "Resonanznähe" (d. h. zwischen f_u und f_0) vergrößert, aber anderseits auch die "Resonanzschärfe" ϱ vergrößert (d. h. der Bereich f_u bis f_0 verkleinert). Bei extrem starker Entdämpfung würde man auch hier wie bei einem Schwingungskreis eine scharfe Resonanzkurve erhalten. (Praktisch meist schwer herstellbar; vgl. 3.)

- 13. Bei größeren Amplituden vermindert sich die wirksame Verstärkung oder Rückkopplung durch die Strom- oder Spannungsbegrenzung (vgl. Teil A). Dadurch wird die Entdämpfung bei größeren Amplituden kleiner, eine Resonanzkurve also oben flacher. In Gebieten, in denen selbsterregte Schwingungen hart einsetzen, tritt aber das Gegenteil ein. Die Entdämpfung wird mit größeren Amplituden stärker, eine Resonanzkurve oben spitzer.
- 14. Erhöht man die Rückkopplung so weit, daß Selbsterregung eintritt, so entstehen bei gleichzeitiger Fremderregung im allgemeinen Schwebungen zwischen den beiden Frequenzen. Im "Mitnahmebereich" wird dagegen die selbsterregte Frequenz durch die infolge Resonanznähe stärker wirksame Fremderregung unterdrückt. Es herrscht nur die Frequenz der Fremderregung, keine Schwebungen. Man erhält auch im Mitnahmebereich normal entdämpfte Resonanzkurven, die nur infolge der großen Amplituden (vgl. 13) oben abgeflacht sind.
- 15. Bei der "Pendelrückkopplung" sperrt man durch eine Gitterwechselspannung periodisch die Verstärkerwirkung einer stark rückgekoppelten Röhre. Dadurch wird ein Schwingungskreis periodisch zu exponentiell anwachsenden Eigenschwingungen angeregt, die dann dazwischen immer wieder frei abklingen. Der Anfang der anklingenden und das Ende der abklingenden Schwingungen wird durch die Störungen bestimmt,

bei Beseitigung aller äußeren Störungen durch den Schroteffekt der Elektronen selbst.

16. Bei Einwirkung einer Fremderregung, die nur größer als der Störpegel zu sein braucht, bestimmt diese Fremderregung die Anfangsamplitude der anklingenden Schwingungen. Mit der Anfangsamplitude ist aber auch die Endamplitude proportional, und diese kann durch geeignete Wahl der Pendelzeit gleich der maximal möglichen Amplitude gemacht werden, die die Röhre hergeben kann. Man erreicht dann mit einer einzigen Röhre die größte überhaupt mögliche Verstärkung, indem die kleinstmögliche Anfangsamplitude die größtmögliche Endamplitude steuert.

Sachverzeichnis.

Amplitude selbsterregter Schwin- Gitterwiderstand, innerer 7 gungen 31 Amplitudenbegrenzung 40 künstliche 47, 55, 116 Amplitudenbilanz 9 Anfangsamplitude 164 Anfangssteilheit 41 Anklingkurve 164 Anodenaussortierung 104, 111 Audionschaltung 49 Aussortierung der Elektronen 103, 111, 119

Barkhausen Kurz Schwingungen 98 Biegeschwingungen von Quarzstäben 31

Dreipunktschaltung 21, 24, 138 Durchgriff 125, 172 Durchstoßen 77 Dynatron-Kippschwingungen 94 Dynatron-Schaltung 73

Elektronentanz, elektrischer 98 magnetischer 109 Empfangsantenne 135 Entdämpfung 120 Entdämpfungsmaß 130 Ersatzschaltung 123

Fremderregung 3, 120, 128, 133, 171 Überlagerung einer — 168 Frequenz des Kristalls 31 selbsterregter Schwingungen 52 Frequenzerniedrigung 98 synchrone 53 Frequenzgang 122, 143 Frequenzkonstanz 52 Frequenzschwankungen 52

Gegentaktschaltung für kurze Wellen 67 Gitter-Anodenkapazität 26 Gitterdynatron 77 Gitterschwingungskreis 136 Gitterstoß 49 Gitterstrom 44

Gleichstrom-Rückkopplungen 80,85 Grenzfrequenz 146 Grenzrückkopplung 129 Grenzsteilheit 130

Habann-Generator 77 Habann-Röhre 77, 113 Huth-Kühn-Schaltung 27, 143

Ionentanz-Schwingungen 114 Instabilität 36

Kathodenaussortierung 104 Kennlinien, fallende 71, 118 wahre 71 Kippschwingungen 3, 41, 52, 55, 84, 87, 118, 146, 151 Synchronisieren von — 98, 118 Dynatron- — 94 Koppelfrequenz 60 Kristall, piezoelektrischer 29 Kurzwellenröhren 65

Magnetostriktion 31 Magnetronschwingungen 109 Mitnahmebereich 157 Multivibrator 96

Negadyn 82 Neutrodynschaltung 122

Parallelschwingungskreis 12, 17, 29, 75 Pendelrückkopplung 163 Phasenaussortierung 105 Phasenbilanz 11 Piezoquarz 29 Piezoquarz-Sender 29 Plasma-Schwingungen 114 Pseudokennlinien 58, 70, 78, 114

Quarz 29

Raumladegitterröhre 81 Raumladungskennlinie 42 Reihenschwingungskreis 29

Reißdiagramme 36	-Schaltung, induktive und kapa-
Relaissender 135	zitive 21
Resonanzschärfe 55, 130, 150, 171 Resonanzüberhöhung 13	Steilheit, mittlere 7, 9, 40, 42, 115, 132
Rückgekoppelter Verstärker 120.	Stimmgabel 31
145	Streufaktor 149
Rückkopplung 3, 115	Stromaussteuerung 32, 43
gemeinsame — zweier Schwing-	Strombegrenzung 32, 40, 57, 115
kreise 60	Synchronisieren von Kippschwin-
innere 78, 172	gungen 98, 118
_	gungen 00, 110
negative 125 positive 125	Taylorsche Reihe für die Kenn-
	linie 42
primäre 60 sekundäre 62, 142	Transformator 14, 18
·	Kopplung 147
Rückkopplungsfaktor 5	Rückkopplungen 17
Rückkopplungssender 64	Turmalin 29
Rückkopplungsspannung 121	Jurmaini 29
Schroteffekt 165	Überlagerung einer Fremderregung
Schwinglöcher 20	168
Schwingungen, abklingende 165	Überlagerungspfeifen 156
anklingende 163	Übersetzungsverhältnis 150
Barkhausen-Kurz- 98	Überspannter Zustand 9, 32, 55
Elektronentanz- 98, 119	
Ionentanz- 114	Verstärker, rückgekoppelter 120, 145
Magnetron- 109	rückgekoppelte mit breitem Fre-
Plasma-, 114	quenzband 145
wilde 4, 59, 69, 122	mit Transformatorkopplung 147
Schwingungseinsatz, harter 3, 31,	mit Widerstandskopplung 152
33, 42, 46, 133	Zweidraht-Fernsprech- 153
weicher 3, 31, 33, 42, 46, 132	Verstärkungsfaktor 4
Schwingungsgleichgewicht, indiffe-	0
rentes 42	Warmegeräusch 165
Sekundärelektronen 45, 74	Wechselstromwiderständen,
Selbsterregung 2, 24, 28	Methode zur Messung von — 76
intermittierende 3, 40, 50, 116	Widerstand gegen Stromänderun-
ohne Schwingungskreis 87	gen 71
Selbsterregungsformel 10, 33, 115	innerer 10
allgemeine 5	negativer 71
spezielle 6	wirksamer negativer 163
Vektordarstellung 11	Widerstandsanpassung 10
Selbstüberlagerung 156	Widerstands-Ersatzschaltungen 126
Spannungsanstieg, zeitproportio-	Widerstandsgerade 73
naler 97	Widerstandskopplung 152
Spannungsbegrenzung 32, 44, 57,	Widerstandsrückkopplung 80
115	** 0
Spannungsteiler-Rückkopplungen	Zeitablenkung 97
21	Zieherscheinungen 4, 61, 142, 162
	-

PROF. DR. H. BARKHAUSEN

Lehrbuch der Elektronen-Röhren und ihrer technischen Anwendungen

Band I: Allgemeine Grundlagen

5. Auflage. VIII und 235 Seiten mit 177 Abbildungen. Gebunden DM 7,50

Band II: Verstärker

4. Auflage. XVI, 289 Seiten mit 127 Abbildungen. Gebunden DM 9,-

Band IV: Gleichrichter und Empfänger

Auflage. XV, 294 Seiten mit 147 Abbildungen und 3 Schalttafeln.
 Gebunden DM 9.—

In Vorbereitung:

PROF. DR. H. BARKHAUSEN

Einführung in die Schwingungslehre

nebst Anwendungen auf mechanische und elektrische Schwingungen

3. Auflage. VIII, 128 Seiten mit 118 Abbildungen. Halbleinen etwa DM 6,50

S. HIRZEL VERLAG LEIPZIG

CENTRAL LIBRARY BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE

PILANI (Rajasthan) Acc. No, Call No. DATE OF RETURN 36010

