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ENGINEERING SOCIETIES MONOGRAPHS 

For many years those who have been interested in the publica¬ 
tion of papers, articles, and books devoted to engineering topics 
have been impressed with the number of important technical 
manuscripts which have proved too extensive, on the one hand, 
for publication in the periodicals or proceedings of engineering 
societies or in other journals, and of too specialized a character, 
on the other hand, to justify ordinary commercial publication in 
book form. 

No adequate funds or other means of publication have been 
provided in the engineering field for making these works available. 
In other branches of science, certain outlets for comparable 
treatises have been available, and besides, the presses of several 
universities have been able to take care of a considerable number of 
scholarly publications in the various branches of pure and applied 
science. 

Experience has demonstrated the value of proper introduction 
and sponsorship for such books. To this end, four national 
engineering societies, the American Society of Civil Engineers, 
American Institute of Mining and Metallurgical Engineers, The 
American Society of Mechanical Engineers, and American 
Institute of Electrical Engineers, have made arrangements with 
the McGraw-Hill Book Company, Inc., for the production of a 
series of selected books adjudged to possess usefulness for 
engineers or industry but of limited possibilities of distribution 
without special introduction. 

The series is to be known as ^‘Engineering Societies Monographs.^ ^ 
It will be produced under the editorial supervision of a Committee 
consisting of the Director of the Engineering Societies Library, 
Chairman, and two representatives appointed by each of the 
four societies named above. 

Engineering Societies Library will share in any profits made 
from publishing the Monographs; but the main interest of the 
societies is service to tkeir members and the public. With their 
aid the publisher is willing to adventure the production and dis- 
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tribution of selected books that would otherwise be commercially 
unpractical. 

Engineering Societies Monographs will not be a series in the 
common use of that term. Physically the volumes will have 
similarity, but there will be no regular interval in publication, 
nor relation or continuity in subject matter. What books are 
printed and when will, by the nature of the enterprise, depend 
upon the manuscripts that are offered and the Committee’s 
estimation of their usefulness. The aim is to make accessible to 
many users of engineering books information which otherwise 
would be long delayed in reaching more than a few in the wide 
domains of engineering. 

Engineeuing Societies Monogkaphs Committee 

Harrison W. Craver, C’hairman. 



PREFACE 

In the present volume on “Applied Aero- and Hydro¬ 
mechanics'^ an attempt has been made to present the more 
important subjects of the wide field of fluid mechanics in a 
strictly scientific manner, avoiding a maze of pure mathematical 
formulas by emphasizing the technical rather than the mathe¬ 
matical treatment. The physical meaning of the various 
problems has always been brought to the fore, and, whenever 
possible, experience has been correlated with the fundamental 
laws and the underlying theories. 

As in the case of the “Fundamentals cf Aero- and Hydrome¬ 
chanics" (McGraw-Hill, 1934) this volume has been reviewed by 
Dr. Prandtl and he has added many valuable remarks. It may 
be mentioned here that Arts. 79 to 81 were written by Dr. 
Prandtl himself. 

The first and the second chapters containing the elements of 
hydrodynamics and the laws of mechanical similarity are written 
in rather close agreement with the lectures of Dr. Prandtl. In 
the third chapter, dealing with the flow through pipes and 
channels, the author has incorporated considerable material of 
his own and has represented the subject in quite an extensive 
manner by making free use of contemporary literature. The 
fourth chapter on boundary layers again' is written in closer 
agreement with Dr. Prandtl's lectures; whereas the fifth chapter, 
on the drag of bodies moving through fluids, goes in many 
respects beyond the discussion given by Dr. Prandtl. This is 
also true for the sixth chapter dealing with the airfoil theory. 
The last chapter, in which the author gives a survey of experi¬ 
mental methods and apparatus, is not based on Dr. Prandtl's 
lectures. However, it was strongly felt that in a treatise on 
aero- and hydrodynamics at least the more important experi¬ 

mental features ^should be presented. 
The references to contemporary literature by no means claim 

completeness but are given rather to facilitate a more extensive 
study of each particular subject. In the “Fundamentals" the 
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number of references was intentionally limited since good books 
on classical hydrodynamics are available in which complete 
bibliographies are given. In this respect one may refer to 
Lainb^s '^Hydrodynamics.’’ 

The author wishes to acknowledge his indebtedness to Dr. J. P. 
Den Hartog for translating the German edition and for his 
kindness in undertaking the reading of the proofs. 

0. G. Tietjens. 

SWAHTHMORE, PA., 

January, 1934. 
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INTRODUCTION 

The Problem of Flow Resistance.—A completely frictionless 
fluid, as was discussed in Chap. Ill, of ‘'Fundamentals,’' repre¬ 
sents only an idealized mental picture of an actual fluid. The 
results obtained when completely neglecting the internal friction 
can therefore be considered in the most favorable case only as 
approximations of actual fluid motions. In general, the agree¬ 
ment between the theoretical and experimental results becomes 
better when the viscosity becomes smaller. 

This statement, however, is true only with one important 
exception (see Art. 55, “Fundamentals"). Only in the cases 
where the “boundary layer" formed under the influence of the 
viscosity remains in contact with the body can an approximation 
of the actual fluid motion by means of a theory in terms of the 
ideal frictionless fluid be attempted, whereas in all cases where 
the boundary layer leaves the body, a theoretical treatment 
leads to results which do not coincide at all with experiment. 
And it has to be confessed that the latter case occurs most 
frequently. 

A classical example is the problem of the resistance of a body 
(for instance, a sphere) moving through a liquid with uniform 
velocity. The theory on the basis of a frictionless fluid discussed 
in Art. 68 leads to the paradoxical result that the resistance 
or drag of such a sphere is zero. The reason for the discrepancy 
is that in the actual case the boundary layer leaves the sphere, 
so that the picture of the flow is entirely different from the one 
examined in the theoretical calculation. 

Since the hydrodynamics of the frictionless fluid leads to com¬ 
pletely useless results regarding the resistance problem, and a 
consideration of viscosity in the equations of motion until now 
has offered unsurmountable mathematical difficulties, there 
remains only the experimental procedure for determining the 
laws of drag. For this purpose, extensive series of tests have 
been carried through, especially for air and water. Such experi¬ 
menting was greatly accelerated since the beginning of this cen¬ 
tury by the enormous development in aeronautics, which created 

XV 



XVI INTRODUCTION 

great interest in the knowledge of the forces exerted by the air 
on the airplane or airship. Because such experiments in general 
are made by suspending models of airplanes or airships in 
artificially produced air currents, it became important to know 
the laws governing the mechanical similarity of the phenomena 
in the model as compared with the full-size airplane. 

Before starting the discussion of the laws of similarity, the 
elements of the theory of flow and the principles of internal 
friction of a fluid will be considered briefly, especially for those 
readers who have not read the “Fundamentals.” 



APPLIED HYDRO- AND 
AEROMECHANICS 

CHAPTER I 

ELEMENTS OF HYDRODYNAMICS 

1. The Equation of Euler for One-dimensional Flow.—When 
dealing with fluid motions one of the most useful conceptions is 
that of a streamline, which is a curve whose direction in each 
point coincides with the direction of the velocity of the fluid. 
In the usual case of continuous velocity distribution, all stream¬ 
lines passing through a small closed curve form a so-called 
“stream tube.’^ 

A special case of fluid motion is the one in which at any point 
of space the velocity, pressure, density, etc., remain constant 
with time. This evidently makes the picture of streamlines 
also invariable and such a flow is called “steady.’^ 

Since the streamlines always have the direction of the velocity, 
the stream tubes in the steady-state case behave like solid tubes 
through which the fluid passes. From the law of conservation 
of matter, it follows that the amount of fluid flowing through 
each section of such a stream tube 
per unit of time must be a constant. 
When A denotes the cross section of the 
stream tube, p the density (which is 

. ., , 1 ii. Fig. 1.—Stream tube, 
not necessarily constant), and w tne 
velocity, the so-called equation of continuity for a stream tube 

becomes (Fig. 1) 

pAw = const. (1) 

Now we shall derive an important dynamical relation for the 
case of a frictionless fluid. To this end we consider an element 
of the fluid having the shape of an infinitesimally small cylinder 
(Fig. 2) inside a stream tube. The fundamental law of mechan¬ 
ics, stating that the product of mass and acceleration equals the 

I 
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sum of the forces, is valid for each particle of the fluid. By 
applying this law to the cylinder of Fig. 2, we obtain 

pdAds • = pgdAds cos a. + dA f+&*)}• 
mass X acceleration gravity force -f- pressure force 

-Forces on an element of 
ideal fluid. 

In this formula p is the density and g the acceleration of gravity. 
The “substantiaF" or total acceleration Dw/dt in the longitu¬ 

dinal direction of a particle of fluid 
is generally composed of two terms: 

1. The change in velocity per 
second caused by the fact that 
the velocities at the various points 
vary with the time, dw/dt. This 
may be called the ^TocaF' differen- 

^ tial coefficient. 
Fia. 2.—Forces on an element of 2. The change in velocity per 

ideal fluid. caused by the fact 

that each particle owing to its motion gets into a region where 
the velocity is different (^^differential coefficient of convection^’). 
The expression of the change in velocity with the location is 
dw/ds so that the differential coefficient of convection becomes 
wdw/dSj the change in location per unit of time being represented 
by the velocity w of the particle. 

Therefore, the substantial differential coefficient becomes 

Dw dw , dw , 

Substituting this expression for the acceleration of a particle 
in the above equation and dividing by pdAj we obtain 

dw. dw. , 1 dp, 
—as + iv—ds = ads cos a--~ds. 
dtds p ds 

dw, , dw, 
—ds + w—ds 
dt ds 

gds cos a 

But for the factor ds this is the equation of Euler for one-dimen¬ 
sional motion. 

^ Mathematically this can be derived also by considering w *= /(^, s), and 
writing for the total differential 

dw,. , dw. 

, ' dw 
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2. The Equation of Bernoulli for One-dimensional Flow; 
Three-dimensional Equation of Euler.—Assuming further that, 
first, the flow is steady, i.e., dw/dt = 0, and, second, the fluid is 
homogeneous and incompressible, i.e., p is constant, we obtain by 
integration with respect to s, 

'W^ 7) 
— + gh + ^ const. (2a) 

This integration has been performed along a streamline. Fur¬ 
ther, we have set ds cos a = -dh (Fig. 2). The equation (2a), 
which is of fundamental importance for frictionless fluids, gives 
the relation between velocity, location, and pressure of those 
particles of the fluid which are on the same streamline. It is 
known as the ‘'equation of Bernoulli.'^ For the case that no 
free surfaces occur and that p is constant in the entire fluid, the 
equation can be simplified somewhat when we denote by p not 
the absolute pressure but rather the difference between the actual 
pressure and the pressure which would exist if the fluid were at 
rest. In that case, the equation of Bernoulli takes the form 

2 

~ + - = const. (26) 
J p 

It is noted especially that the constant is not necessarily the 
same for different streamlines. 

In the previous discussions, the internal friction or viscosity 
(which any real fluid possesses to some degree) has been neglected, 
but even for fluids which have very small viscosity and which can 
practically be considered as frictionless, there are regions in the 
field of flow where the friction forces assume such magnitudes 
that the assumption of no friction is not even approximately 
true. Such regions occur always in the direct proximity of the 
bodies along which the fluid flows. There the friction forces 
assume importance the same as or even greater than the inertia 
forces (mass times acceleration) which we have considered 

exclusively until now. 
In the case of general three-dimensional fluid motions the 

equation of Euler is a vector equation, which can be decomposed 
into three equations for the x-, ?/-, and 2;-directions respectively, 
as shown in Art. 56, ^^Fundamentals.'^^ 

1 Tietjens, 0. G., “Fundamentals of Hydro- and Aeromechanics/' Based 

on Lectures of L. Prandtl, New York, 1934. 
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where u, v, and w are the velocity components in the x-, 2/-, and 
^-directions, and X, F, and Z are the body forces per unit volume 
in^ these three directions. 
/S. Definition of Viscosity; Equation of Navier-Stokes.—In 
order to obtain a physical picture of the friction in fluids, we 
consider first the motion of a fluid between two flat parallel plates 
of which the one moves relatively to the other (Fig. 3). Assum¬ 
ing the lower plate to be at rest and the upper plate to be moving 
with a velocity U\ from left to right, the experiment leads to the 
following observations: (1) the fluid sticks to the surfaces of the 

plate; (2) the change of the 
velocity between the plates is 
linear (in our case the velocity at 
any point between the plates is 
proportional to the distance of 
this point from the lower plate); 

Fio. 3.-Veiocity distributior in internal friction of the 
a viscous fluid between two plates of fluid causes a resistance to the 
wWch one moves relatively to the n^oti^n of the upper plate which 

is proportional to the gradient of 
the velocity; there is a force per unit area or a shear stress r of 
the magnitude 

where m is a factor of proportionality which indicates the amount 
of viscosity. It is a constant for each fluid depending very much 
upon the temperature and is known by the name of “coefficient 
of viscosity.In an elastic medium, the shear stress is propor¬ 
tional to the angular deformation 7: 

T = Gy, 
with 
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where G is the modulus of elasticity in shear, and ^ is the displace¬ 
ment of a point in the x-direction. On the other hand, in a fluid 
medium the shear stress is proportional to the rate of change of 
angle i.e., 

therefore 

This leads to the relation 

(4) 

which has been verified by experiment, as will be discussed in 
Art. 12. 

The general differential equations of fluid motion including the 
effect of viscosity are known as ‘Hhe equations of Navier-Stokes.” 
A derivation of them can be found in Chap. XV, “Fundamentals.^^* 
For the x-direction the equation is 

du , du , du 
-h a— + v~- 

dx dy 

I d U 1 dp ju/ dhl d^u d^U^ 
p dx p \dx^ dy^ dz^ y 

(5) 

Two corresponding equations hold for the y- and ^-directions. 
It is seen that for no viscosity (m = 0), the equation of Navier- 
Stokes (5) reduces to Euler^s equation (3). 

1 See footnote, p. 3. 



CHAPTER II 

LAWS OF SIMILARITY , 

4. The Law of Similarity under the Action of Inertia and 
Viscosity.—In the study of mechanical similarity the question 
comes up: Under what conditions will a geometrically similar 
flow of a liquid or gas occur around geometrically similar bodies? 
For instance, considering the flow of two different fluids (of 
which one may be a gas) round two spheres of different size, 
the question is: What conditions have to be fulfilled in order to 
make the streamline picture in both cases geometrically similar? 
(Fig. 4.) The answer evidently is that in similar points 
of the two fields of flow, the forces acting on an element 
must bear the same ratio to each other at any instant. Depend¬ 
ing on the nature of the various forces acting in the fluid, this 
condition gives us the various laws of mechanical similarity. 
The first and most important case is that all forces except inertia 
and frictional forces can be neglected. This case includes 

the assumption that the liquid 
or the gas can be considered 
incompressible; further, that 
no free surfaces exist and that, 
hence, the action of gravity is 
eliminated by statical buoy¬ 
ancy. When it is desired that 

Fu*. 4.—Streamlines round two spheres around the twO spheres 
Of different size, ^ 

of Fig. 4 be similar, it is neces¬ 
sary, as stated above, that the ratio between the inertia force 
and the frictional force at any instant acting on the two 
corresponding fluid particles be the same. 

Now we proceed to derive the expressions for the inertia force 
and the frictional force acting on an elementary volume. 

An expression for the frictional force per unit volume can be 
obtained by considering an element of fluid (Fig. 5) whose x-direc- 
tion coincides with the direction of motion. The difference 
between the shear forces acting on the element then becomes 

e 
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+ —dy^dxdz — rdxdz = ^dxdydz, 

or the viscosity force per unit volume is equal to 

dr d'-u 

+ ~dy 
dy 

The corresponding expression for the inertia force per unit 
volume is equal to the product of mass and acceleration per 
unit volume. When u denotes the velocity com¬ 
ponent of the fluid particle in the j^-direction, the 
:r-component of the acceleration for a steady motion 

can be represented by the expression u~ and 

therefore the inertia force per unit volume becomes 

pw~ (to be exact, the terms pv^ and should 

dy 

dx 

be added, and for non-steady motions the term p^ 
du 
di’ 

r 
Fig. 5.— 

Shear stresses 
on an cle¬ 
ment. 

however, for geometrically similar flows, these terms behave 
exactly like the term chosen above). The criterion for mechan¬ 
ical similarity therefore is that the rat io of the inertia force and 
the frictional force 

dti 

Inertia force _ dx 
Frictional force dhi 

is equal for points similarly situated with respect to the bodies. 
How do these forces change with a change in the characteristic 
quantities: the velocity V of the fluid at a great distance from 
the sphere, the radius a, the density p, and the viscosity p? 
Evidently the velocity u at any point of the field of flow is pro¬ 
portional to the velocity V of the undisturbed flow (the change 
from one system of flow to another entails only a change in the 
unit of time employed). Denoting by -- proportionality of the 
two quantities on either side of the sign, we can write 

u^V, 

For the same reason the differences between velocities at 
corresponding points are proportional to the velocity F, t.e., 

du ^ V. 
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The distances between two points in mechanically similar flows 

are evidently proportional to the dimensions of the bodies about 

which the flow takes place (for instance, to the radii in the case 

of spheres). Therefore the expression du/dx is proportional to 

F/a, and the inertia force itself being represented by 

proportional to 
F2 

For the same reasons 

d'^u 

dy- 

so that the frictional force is proportional to 

a2‘ 

The ratio of the inertia force and the frictional force then becomes 

Inertia force 

Frictional force 

pu 
du 

dx 

d^u 

y2 

Therefore, if in two different flows around geometrically 

similar bodies the quantity ~Fa is the same, it is to be expected 

that the streamlines themselves are also geometrically similar. 

This is the statement of the law of mechanical similarity. For 

instance, if we compare two flows of the same fluid of the same 

temperature and density (m/p = constant) around two spheres of 

which the one is twice as large as the other, the pattern of the 

flow is geometrically similar in the two cases if the velocity about 

the larger sphere is half as great as the velocity about the smaller 

sphere, because in that case -Fa has the same value. 

Since the quantity ^Fa represents the ratio of two forces, it is 

a dimensionless number and therefore independent of the units 

used. This can be seen immediately by considering the dimen¬ 

sions of the quantities in question. In the so-called engineering 

system of units we have 
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[p] 
L 

T' 
[a] = L and [/x] = 

FT 

where L is length, T is time, F is force. It follows that 

FT^ L- L 

u 'ft' t’ 

Since the quantities p and /x often appear as the ratio p//x, this 
ratio has been given the symbol called the “kinematic viscos¬ 
ity.’' The dimension of v therefore is L'^/T. This law of 
similarity was first found by Osborne Reynolds during his 
investigation of fluid motions through tubes, which will be 
discussed in Art. 22. Therefore, the quantity 

has been called the ‘^Reynolds’ number,” usually denoted by 
R. The fundamental importance of the introduction of this 
dimensionless quantity for the further development of modern 
hydrodynamics will be discussed later. For a great number of 
flow phenomena, the Reynolds’ number was the key to finding 
unknown relations between the experimental results obtained. 

6. The Law of Similarity under the Action of Inertia and 
Gravity.—While in Art. 4 it was assumed that gravity does not 
act (no free surfaces), now a corresponding law of similarity 
will be derived considering only inertia and gravity forces and 
neglecting friction and compressibility. Again it is only neces¬ 
sary to express the fact that for mechanically similar flows 
at similar points the ratio of the forces acting on these points 
per unit volume is the same. In other words, the ratio between 
the inertia force and the gravity force acting on points of similar 
location with respect to the bodies is the same. The gravity 
force per unit volume is equal to the weight per unit volume 
y - pg (g being the acceleration of gravity). Therefore the 
necessary condition for mechanical similarity (neglecting vis¬ 

cosity and compressibility) is 

du 
pu— 

Inertia force ^ ^ const 
Gravity force pg 
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du 
Since changes like —j as was seen in Art. 4, the last equa- 

OijC 0/ 

tion can be written 

Inertia force 

Gravity force 

F2 
— = const. 
ag 

Here V is an entirely arbitrary but characteristic velocity for the 

flow phenomenon under consideration, and a is an arbitrary 

characteristic length. This law of similarity was first found by 

William Froude and is known as Froude\s law.^ The ratio 

V^/ag again is a dimensionless number usually denoted by F. 

This law is extensively used where free surfaces occur, thus 

calling in the influence of gravity, principally in investigations 

with ship models. For instance, if the size of the model is one 

one-hundredth of the size of the ship, Froude’s law requires that 

the velocity of the model be one-tenth of the velocity of the ship, 

in order to make F a constant. Only then are the pattern of the 

flow and the shape of the waves similar in the model and in the 

ship. 

In the case of Reynolds^ law, considering viscosity and inertia 

(neglecting gravity), mechanical similarity is possible only when 

with a small model the model velocity is correspondingly larger. 

Froude’s law, however, requires a decrease in velocity with a 

decrease in model dimensions. It is evident, therefore, that a 

simultaneous fulfillment of the two laws of similarity with the 

same fluid is impossible, i.e., for the same fluid there cannot exist 

a law of similarity considering inertia forces, frictional forces, 

and gravity forces all at the same time. Using two fluids of 

different kinematic viscosity, it is possible to make both laws of 

similarity valid. Practically, however, this is hardly of impor¬ 

tance, since no fluids of sufficiently different v exist. Denoting 

by the suffix (1) the actual body and by the suflSx (2) the corre¬ 

spondingly small model, it follows from 

V iCli V 2(^2 

' Froude, Trans, Inst. Naval Arch., vol. 11, p. 80, 1870. 
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that the kinematic viscosities of the two fluids must bear the 
ratio 

In ship-model tests, the resultant of all viscosity forces, 

the ‘^skin friction,’^ is in general of the same order of magnitude 

as the inertia and gravity forces (pressure resistance and wave 

resistance). According to Froude^s procedure, the frictional 

resistance of the model, as determined by separate tests, is sub¬ 

tracted from the total resistance measured on the model. The 

rest of the model resistance (the residuary resistance^’) is then 

transformed by means of Fronde’s rule to the full-size ship. 

Finally the skin friction of the ship is added to it. This pro¬ 

cedure, however, is fairly inaccurate, since even the residuary 

model resistance mentioned above is not entirely independent 

of the viscosity, the inaccuracies being greater for smaller models. 

For this reason, ship builders use relatively large models (15 ft 

and more). 

In both laws of similarity, Reynolds’ and Fronde’s, it was 

supposed that the effects of compressibility are so small that they 

can be neglected. In Chap. XIII, ^‘Fundamentals,”^ it was shown 

under which conditions gases can be treated as incompressible 

fluids. In case the effects of compressibility are so large that they 

are of definite importance (very large velocities or differences in 

height), it is possible to derive a law of similarity considering only 

inertia and compressibility. However, in this case also, it 

appears that the consideration of a third factor (for instance, 

gravity or viscosity) makes it impossible to fit all conditions. 

Since for most meteorological applications a combination of 

inertia, gravity, and compressibility occurs, it is not possible to 

study these phenomena by means of model tests. 

6. Relation between Considerations of Similarity and Dimen¬ 
sional Analysis.—Since all physical laws can be expressed in a 

form in which only pure numbers appear which are independent 

of the units of measurement used, any consideration of similarity 

can be replaced by a dimensional analysis. Of the quantities 

1 See footnote, p. 3. 
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appearing in the equation of Navier-Stokes, Eq. (5), the unit of 

time is determined by the choice of the unit of velocity F and by 

the unit of length a. On the other hand, the pressure is of no 

importance for the geometrical similarity of the flow. The only 

quantities which determine the streamline picture are therefore 

the velocity F, the length a, the mass per unit volume p, and the 

viscosity We consider the technical system of units with the 

unit of force F, the unit of length L, and the unit of time T. 

The question of dimensional analysis is whether there exists a 

combination 
y S 

a P II y 

which is a pure number. This requires a determination of a, 

Py 7, and 8 such that^ 

[FVpV'] = = 1. 

Since, however, a dimensionless number raised to an arbitrary 

power remains a pure number, one of the quantities a, /3, 7, 8 is 

arbitrary. Putting therefore a = 1 we get, substituting for the 

various physical quantities their dimensions, 

[FuVm^] 
LL^F'^T^'^F^T^ 
f L2« 

F^UT^, 

Equating the exponents of F, L, and T right and left, equations 

for fiy 7, and 8 are obtained, namely, 

7 + 5 = 0. 

1 + ~ 47 - 25 = 0. 

27 + 5 - 1 = 0. 

This leads to the solution 

i(3 = 1, 7 = 1, 5 = -1, 

i.e.j the only possible dimensionless combination of F, a, p, and 

p is 

Fa • ^ = R. 
M 

If it had been known in advance that p and p only appear in the 

combination p/p, i.e,, 5 = — 7, the derivation would have been 

still simpler. Since, therefore, 

^ A quantity in square brackets means the ^^dimension^^ of that quantity. 
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r 1 
= [v] = Y 

and 

[Va] = 

it follows that Yajv is the only possible combination giving a 

pure number. 

Although this dimensional analysis physically is not so instruc¬ 

tive as the similarity consideration, it has the advantage of being 

still applicable when the exact equation of motion is unknown 

and we know only which physical quantities are of importance 

for the phenomenon. 



CHAPTER III 

FLOW IN PIPES AND CHANNELS 

A. LAMINAR FLOW 

8. General.—Investigations of the flow phenomena in pipes 
and channels were performed early; in fact this is the most 
important subject of hydraulics. Since the laws of internal 
friction of fluids were unknown, it was necessary to be contented 
with experimental results pertaining to each individual case. 
These individual experiments, however, could not be coordinated 

into a law. 
In the middle of the nineteenth century, an exact solution of 

the hydrodynamical equations was found for the flow of a fluid 
through straight tubes of circular cross section, taking into 
account the influence of viscosity. This is one of the very few 

cases in which a complete integration of the general differential 
equations of viscous fluids has been accomplished. However, it 
appeared that this solution hardly solved the difficulties of prac¬ 
tical hydraulics any better, since the conditions under which it is 
valid do not occur often. In the large majority of cases of flow 
through pipes or channels, especially in technical applications, 
the solution found does not apply. This is due to the fact that 
there exist two radically different kinds of flow. Considering, 
for instance, the flow through a glass tube, using water in which 
small particles are suspended, it is seen that most often the 
particles of fluid do not move in paths parallel to the walls of 
the tube but flow through in a very irregular manner. Besides 

the principal motion in the direction of the axis of the tube, 
secondary motions perpendicular to the axis can be observed. 
This kind of flow is called “turbulent flow.’' The majority of 
cases of fluid flow including those occurring in technical applica¬ 
tions are of this kind. When in our experiment with the glass 
tube the flow of water is throttled down more and more, there will 
be a certain small velocity at which the individual particles of 
fluid start moving regularly in paths parallel to the walls of the 
tube. This is the second kind of flow referred to. It is com- 

14 
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monly called ^'laminar flow,’' and to it applies the solution of 

the hydrodynamical equations mentioned before. 

9. The Fundamental Investigation of Hagen.—Though the 

existence of the two forms of flow, turbulent and laminar, was 

known for a long time, the first systematic tests to discover the 

laws of these two phenomena were not made until the middle of 

the last century. Very accurate experiments were carried out by 

G. Hagen, who deserves great credit for his work though it did 

not become widely known. This is probably due to the fact that 

he published his results in terms of Prussian ounces,” ^^Parisian 

inches,” etc., which require a considerable amount of calculation 

before they can be compared with the results of more modem 

investigators. The first of his two publications (1839) is limited 

to laminar flow only.^ Hagen used for his tests three brass tubes 

of various diameters^ and expressed the measured pressure heads 

h of his supply tank as a function of the weight of the water flowing 

out per second W. He made the assumption 

h = Jh + h,2 = aW + hW'^ 

and showed that a and b are constants for each tube; a was 

found to be very much dependent on the temperature, while b 

is independent of it. Showing a good understanding of the 

physical phenomenon, Hagen observed that the part = bW‘^ of 

the total head is used for imparting kinetic energy to the fluid 

while the part hi = aW is necessary for overcoming the friction 

resistance. 

Therefore, when only friction comes into consideration, the 

pressure head is proportional to the rate of flow where the factor 

of proportionality depends very much on the temperature. 

Using the method of least squares, the relation between the 

quantity a and the temperature was determined from the experi¬ 

mental data and the value a for the various tubes reduced to a 

definite temperature (10°C). Dividing the expression for h 

by the lengths of the tubes, the factors of proportionality a and b 

thus transformed were found to be inversely proportional to the 

fourth power of the tube diameter. When r denotes the radius 

1 Hagen, G., On the Motion of Water in Narrow Cylindrical Tubes 

(German), Pogg. Ann.j vol. 46, p. 423, 1839. 
2 Diameters, 0.255 cm, 0.401 cm, 0.691 cm; lengths, 47.4 cm, 109 cm, 

106 cm., respectively. 



16 APPLIED HYDRO- AND AEROMECHANICS 

of the tube, he found (in terms of Parisian inch, Prussian ounce 

seconds) that 

IW 
A = /ii + ;i2 = 0.000009117^ + 0.0002056^- 

Considering only the term proportional to the first power of TF, 
which is taken up by friction, it is seen that the weight of water 
delivered per second is proportional to the pressure head hi 

and to the fourth power of the radius, and inversely proportional 
to the length of the tube. Introducing into the above relation 
the mean velocity u instead of the weight delivered per second 
{W = Trr^^uy)^ and, instead of the pressure head hy the pressure 
difference = hy = hpgy we get (in c g s units) 

Ap = Api + Ap2 = 0.103^ + 1.35p'iZl 

The numerical factors in this result have been obtained with 
one Parisian inch equal to 2.707 cm and the specific gravity of 
water as 1.355 Prussian ounces per cubic Parisian inch. Intro¬ 
ducing in place of the coefficient 0.103, the viscosity yu, which for 
the temperature 10°C is^ 0.013 g/cmsec., the above formula 
transforms to 

Ap = Api + Api = + 2.7—- (1) 

For the relation between the viscosity and the temperature 
(between 0® and 20°C), Hagen gives 

M = 0.01800 - 0.000655^ + 0.0000144^^ 

expressed in c g s units and in degrees centigrade. In Fig. 6 
some of the values calculated by means of this formula are com¬ 
pared with the best and most up-to-date results of Thorpe and 
Rodger, as well as with those of Bingham and White, ^ showing 
the remarkable accuracy of Hagen^s tests. 

10. The Investigation of Poiseuille.—Approximately simulta¬ 
neous with Hagen^s publication in Poggendorfs Annaleriy the 
Parisian physician and physicist Poiseuille experimentally found 
the same law for the laminar flow of water through very narrow 

^ Thobpb and Rodger, Phil. Tram. Roy. Soc.y vol. 185, Plate 8, 1894. 

2 Bingham and White, Z. physik. Chem. (German), vol. 80, p. 670, 1912. 
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capillar tubes of glass. With the object of studying the move¬ 
ment of the blood through capillary veins Poiseuille investigated 
the rate of flow as influenced by the pressure drop, the length of 
the capillary, its diameter, and the temperature of the fluid. In 
three preliminary publications in 1840 and 1841 (i.e.y two years 
after Hagen), as well as more detailed in 1846, Poiseuille derived 
from his very careful experiments the law that the rate of flow is 
proportional to the pressure drop, to the fourth power of the 
radius, and inversely proportional to the length of the tube. With 
this result, Poiseuille had shown that the law found by Hagen for 
laminar motion in tubes is also valid for capillary tubes. How- 

Fig. 6.—Visoowity of water as a funetioii of (ho temperature. The upper 
curve after Brngham and White; the lower one after dliorpe and Kodger. The 

+ points by Hagen (1839); the @ by Poiseuille (1841). 

ever, the knowledge that a part of the pressure is used to impart 
kinetic energy to the fluid was lacking with Poiseuille, whereas 
Hagen expressed this thought very clearly. Poiseuille observed 
only that his law ceases to be valid when the length of the tube 
is less than a certain multiple of the diameter. For instance, he 
published the statement that for a capillary of 0.29-mm diameter 
(about three times the dimension of a capillary vein) his law 
ceases to hold for a length shorter than 2 mm. For such short 
tubes (measured in diameters) the pressure head necessary for 
overcoming internal friction becomes so small that it is not 
possible to neglect the second part of the pressure head nece.ssary 

for creating kinetic energy. 
11. The Law of Hagen-Poiseuille.—In view of the fact that 

Hagen published the law of laminar flow two years in advance 
of Poiseuille and moreover that Hagen calculated from his experi- 
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ments a correction term for the kinetic energy, this law is called 
the law of Hagen-Poiseuille since it was derived by both inde¬ 
pendently. 

Neglecting the correction term for kinetic energy, the experi¬ 
ments on laminar flow have led to 

An == 

Fig. 7.—The resistance coefficient as a function of the Reynolds' number after 
Hagen’s tests. 

The pressure drop in tubes with turbulent flow had been investi- 
l 

gated even earlier and was found to be proportional to - • p^- 

Though for laminar flow the pressure is proportional only to the 
I 

first power of the velocity, the proportionality with - * p-^- of the 
T u 

turbulent flow has been applied also to the laminar flow. With 
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this procedure, the proportionality factor X naturally cannot be 
constant any more. We have 

I 
Ap - X • ~•p- 

and, using the above formula for Ap, 

X = — - = 15 
ru p ru 

A i. P u 
to ) ^ oJ 

> (7 

16 j- A 

R’ 

(2) 

(2a) 

V 

where R again is the Reynolds’ number. 
Plotting X as a function of R on double logarithmic paper, the 

relation gives a straight line of 45-deg. slope passing through 
X = 0.16, for R = 100. Logarithmic paper is used in order to 
prevent too great a crowding of the smaller Reynolds’ numbers. 

In Fig. 7 the values of X calculated from Hagen’s experiments 
corrected for kinetic energy have been plotted against R. It is 
seen that the various values conform very well to the straight 
line X = 16//^, although the measurements have been carried out 
with tubes of greatly differing diameters and lengths and over 
a; wide range of temperatures. 

Derivation of Hagen-Poiseuille’s Law from Newton’s 
Viscosity Law.—In order to derive the law of Hagen-Poiseuille 
from Newton’s differential expression for viscosity (page 4), 
we shall consider a cylindrical piece of fluid inside the tube 
(Fig. 8). The pressure difference pi - p2 between the two faces 
of the cylinder causes a longitudinal force excess (pi - p2)^2/^ 
which leads to a certain shear stress r on the curved surface 
of the cylinder. For the case of steady, non-accelerated flow, 

we have 
(Pl - = ^TTT/Zr 

or 
Pi — P2 y 

I ’ 2 
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Considering that du/dy is negative, and substituting Newton's 

friction law r = we have 
dy 

^ = Pi ~ P2 y 
dy fd 2 

or 
Pi - P2 

2til 

Considering further tliat t he fluid adheres to the sides of the tube, 
i,e.y u(r) = 0, it follows that 

Hy) = - y^-)- 

Therefore, it is seen that in the case of laminar flow through cylin¬ 
drical tubes of circular cross section the velocity distribution has 
the shape of a paraboloid of rotation. The maximum velocity 
for 2/ = 0 will be denoted by Uq. Since the volume Q of such a 
paraboloid equals Trr^iio/2, we have 

or 

Q = 
pi - P2 

Syl 

Pi - = Ap = 8m-2 ‘ A, 
irr^ 

Introducing finally the mean velocity w = Q/irr^ we obtain 

(3) 

which coincides completely with the viscosity term Api of Eq. (1) 
on page 16. 

The coincidence of the tests for tubes of various diameters 
with the theoretical Eq. (3) can be considered as an experimental 
verification of Newton's friction law, stating that the shear stress 
is proportional to the rate of deformation and also that the fluid 
sticks to the walls and thus does not flow past them with a finite 
velocity. Since these experiments can be carried out with great 
accuracy they are well suited for an experimental determination 
of the viscosity yA However, in greatly rarefied gases, where 
the molecular free path cannot be neglected with respect to the 

^ Erk, S., Viscosity Measurements on Fluids and Investigations on Vis¬ 
cosimeters (German), Forschungsarbeiien V. D. /., voL 288, 1927. 
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radius of the tube, discrepancies are found which can be inter¬ 
preted as slipping along the walls. This fact is in accordance 
with the theory. 

13. Limits of the VaHdity of the Hagen-Poiseuille Law.— 
Recently experiments have been made to test the validity of the 
law for fluids of extremely high viscosity as well as for fluids under 
very high pressures. The results of Reiger, Ladenburg, and 
Glaser^ show that even for fluids of /j. — (rosin in turpentine) 
the law holds with great accuracy. However, Glaser’s experi¬ 
ments indicate that the law does not hold when the radius of the 
tube is smaller than a certain limit depending on the viscosity. 
This limit in c g s units was found to be 

/X r 

10'‘ 0.1 

10^ 0.5 

10'^ 1.0 

For radii smaller than these, an important increase in the value 
for /X was found. 

Recently colloidal fluids have also been 
investigated as to their behavior with 
respect to the law of Hagen-Poiseuille.*^ 

14. Phenomena Near the Entrance 
of the Tube.—Equation (3), Art. 12, 
applies to the laminar flow in a tube at 
a sufficient distance from its entrance. 
At the entrance itself, which for sim¬ 
plicity’s sake we assume to be rounded as 
shown in Fig. 9, it is clear that no para¬ 
bolic velocity distribution can exist. 
The fluid rather enters the tube with entrance for avoiding en- 

, 1 • 1 • i j ju trance eddies. 
a velocity which is constant across the 
section, and only directly at the wall is the velocity zero; 

^ Reiger, R., On the Validity of PoiBCuillc’s Law for Fluids of High 

Viscosity and for Solids (German), Ann. Phy,sik, vol. 19, p. 985, 1906. 
Ladenburg, R., On the Internal Friction of Viscous Fluids and Its Rela¬ 

tion with the Pressure (German), Ann. Phy.nkj vol. 22, p. 287, 1907. 
Glaser, H., On the Internal Friction of Viscous and Plastic Bodies and 

the Validity of Poiseuille’s Law (German), Ann. Physik, vol. 22, p. 694, 

1907. 
* Reiner, M., The Hydrodynamics of Colloids (German), Z. angew. Math. 

Mech., vol. 10, p. 400, 1930. 
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hence a very sudden increase in the velocity from zero takes place 
in an extremely thin layer near the wall. Due to the influence of 
the internal friction, the layers of fluid lying farther away from 
the surface are retarded, i.e.y the boundary layer which was very 
thin at the entrance of the tube becomes thicker and thicker at 
larger distances from the entrance. 

On the other hand, the volume transported remains the same 
for each section so that due to the fact that the layers near the 
wall are retarded, the inner parts near the center of the tube must 
be accelerated until finally the equilibrium relation between pres¬ 
sure drop and friction resistance (as discussed in the previous arti¬ 
cle) has adjusted itself. As was seen before, the theory gives for 
this condition a parabolic velocity distribution and since a parab¬ 
oloid of rotation of the same volume as a cylinder on the same 
base has twice its height, it follows that the velocity in the middle 
\i[) is accelerated to double the value of the mean velocity u. 

Expressing the velocity u by means of the ratio u/Uj it can be 
stated that at the entrance of the tube, i.e., for x == 0, the condi¬ 
tion is expressed by u/u = 1, while with increasing a:, the para¬ 

bolic distribution- = 21 
u 

is approached asymptotically. 

Although this distribution is theoretically never reached, it is 
of interest to know for which value of x the actual velocity dis¬ 
tribution differs so little from the parabolic distribution that the 
velocities in the middle are not more than 1 per cent apart. This 
length of tube will be called the ‘‘length of transition. 
v^l6. The Length of Transition.—Boussinesq^ was the first to 
make a theoretical investigation of these phenomena. His 
calculated results are in good agreement with the experiment for 
velocity distributions at some distance away from the entrance 
of the tube. However, for sections near to that entrance, his 
calculated distributions do not check with the experimental 
ones. For the length of transition he also finds a value which is in 
good agreement with the experiments, namely. 

where xi is the length of transition and R = (u.r)/p is the 
Reynolds' number. For instance, in a tube of 0.6-in. diameter, a 

^ Boussinesq, J., Compt. rend.j vol. 113, pp. 9 and 49, 1891. 
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Reynolds' number of about R = 4,000^ and water of 20°C, the 
above equation requires a length of at least 22 ft in order to have 
a difference of less than 1 per cent between the actual velocity in 
the middle and the theoretical one according to Hagen-Poiseuille. 
Therefore Hagen-Poiseuille’s law as expressed by Eq. (3) holds 
only in sections farther than 22 ft away from the entrance to the 
tube. 
'^6. The Pressure Distribution in the Region Near the Entrance. 
In sections of the tube near the entrance, it is necessary to have a 
larger pressure drop per unit length than is required by Eq. (3), 
since a part of this drop is utilized for accelerating the inside 
layers and consequently for increasing the kinetic energy of the 
flow. Disregard of this fact has often been the reason that 
experimental results were understood incompletely or found to be 

Fig. 10.— Prossure diagram in a pipe flow with constant head in tank. 

in disagreement with those of others. In order to explain these 
phenomena better, we shall consider in Fig. 10 the flow from a 
large reservoir through a tube with a well-rounded entrance. 
The reservoir is assumed to be so large that the velocities inside 
it can be neglected. Denoting by po = hy the pressure in the 
reservoir at the elevation of the center line of the tube, the pres¬ 

sure at the entrance x = 0 will be pi = po 

equivalent of this loss in pressure energy is found in the gain in 
kinetic energy of the flow in the tube. As we know, the practi¬ 
cally constant velocity distribution at x = 0 is gradually trans¬ 
formed to a parabolic distribution in the region of transition. 
This, however, is equivalent to a further increase in the kinetic 
energy to the amount {pay2) (the flow of kinetic energy through 

the section irr“, being ^ • 2Tydy, is twice as large for the para- 

^ As will be seen in Art. 24, it is possible to obtain a regular laminar flow 

with Reynolds’ numbers of this magnitude when the entrance to the tube is 

rounded off well. 
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bolic distribution as for a constant distribution). The total 
pressure drop used for creating the kinetic energy of the parabolic 

velocity distribution therefore is po — 7)2 = 

To this has to be added the pressure drop for overcoming the 
friction in the tube, determined by the formula of Hagen- 
Poiseuille [Eq. (3)], so that finally 

Ap = po - P2 = (5) 

in which p2 is the pressure in a section with parabolic distribution. 
17. The Correction Term for Kinetic Energy.—The term 

pu^ 
2^ is often referred to as the correction of Hagenbach, which, 

however, is not entirely justified. In the first place, Neumann^ 
gave the complete Eq. (5) in his lectures (published by Jacobson^ 
prior to Hagenbach’s paper^). Further there is an error in 
Hagenbach’s publication,^ owing to which he does not obtain the 

correction term of Eq. (5) but rather 2^® which is too small. 

From his experimentnl investigations Hagen had already recog¬ 
nized the importance of a correction term for the kinetic energy 

pii^ 
and had found it to be 2.7 This value is considerably too 

large, which is due to the fact that Hagen did not use a rounded 
entrance but one which was squarely cut off. This caused a con¬ 
traction of the jet, with subsequent spreading out again, leading 
to an additional pressure drop. 

In Eq. (5), it was assumed that Hagen-Poiseuille’s law is valid 
in the region near the entrance in spite of the fact that the 
velocity distribution in this part is considerably different from 
the theoretical parabola. A justification, however, for this 
assumption cannot be given. It is rather probable that the pres¬ 
sure drop for overcoming the friction in the entrance region is 
larger than the corresponding pressure drop for the final parabolic 

^Neumann, F., ^‘Introduction to Theoretical Physics” (German); lec¬ 

tures given in 1859-1860, Leipzig, 1883. 

* Jacobson, H., Contributions to Haemodynamics (German), Arch. 
Anat. Physiol.j p. 80, 1860. 

* Hagenbach, E., On the Determination of the Viscosity of a Fluid by 

Flow Experiments through Tubes (German), Pogg. Ann.^ vol. 109, p. 385, 
1860. 
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distribution. However, the accuracy of the experiments made so 
far is not yet sufficient to decide this question. 
‘^18. The Velocity Distribution in the Region Near the Entrance. 
In order to make a theoretical investigation of the phenomena 
near the entrance of the tube, L. Prandtl suggested studying 
the equilibrium equation between the change in momentum, the 
pressure drop, and the friction force acting on an elemental slice 
perpendicular to the direction of flow, assuming a certain velocity 
distribution. The assumption made for this distribution con¬ 
sisted of a constant middle part bounded by two parabolic arcs, 
as shown in Fig. 11. At the entrance of the tube, the width of 
the parabolic arcs was zero. This width increased with the 
distance from the entrance', until, at a certain point, the arcs were 
united into a single parabola. The con¬ 
stant velocity in the middle had to 
increase at such a rate that the same 
volume of water was flowing through all 
sections. The constant velocity core 
was made to satisfy the equation of 
Bernoulli, while the momentum theorem 
was satisfied for the total cross section. 
The calculation, as carried out by L. 
Schiller,^ gave an excellent agreement of ii —Approxima- 

the various velocity-distribution curves distribution by a straight 

with subsequent experimental measure- parabolic 

ments, at least for the first third of the 
length of the transition region,, which is its most important part. 

At larger distances from the entrance, the velocity in the core 
increases slower than indicated by the calculation of Schiller. 
Moreover, measurements have shown that the flow in the core 
is constant in cross sections only near to the entrance (where 
the boundary layer has not yet become too thick), while for 
sections farther away from it, the flow in the core has first a slight 
and later a more pronounced curvature. Figure 12 shows the 
development of the laminar velocity distribution for a rounded 
entrance, according to experiments by J. Nikuradse. It is seen 
that until (about) x/rR = 0.04, the assumption of a central flow 
independent of the friction and of a parabolic drop in velocity 

^Schiller, L., Investigations on Laminar and Turbulent How (Ger¬ 

man), Forschungarheiten V. D. vol. 248, 1922j Z. angew. Math. Mech. 
(German), vol 2, p. 96, 1922; or Physik. Z. (German), vol. 23, p. 14, 1922. 
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velocity distribution 
near entrance of pipe 
after tests by Niku- 
radse« 

toward the walls is justified; however, from 
there on a definite core flow, where the fric¬ 
tion has not made itself felt yet, does not 
exist. Figure 13 shows a number of curves 
for which the dimensionless velocity u/u is 
plotted against x/rRy for various distances 
y/r from the axis. For yfr == 0, i,e.y for the 
velocity in the axis of the tube, the theoretical 
values obtained by Boussinesq and Schiller 
are drawn in as dotted lines. It is seen that 
Schiller’s curve agrees fairly well with the 
experiments until (about) x/rR = 0.05; how¬ 
ever, his result for the length of the transition 
region x/rR = 0.11b is considerably too 
small. On the other hand, the values of 
Boussinesq do not check near the entrance 
but give better agreement from x/rR = 0.1 
on, where the velocity curves show a more 
parabolic shape. Also Boussinesq’s value for 
the length of the transition region x/rR == 
0.26 seems to be in agreement with the avail¬ 
able experimental results. 

19. The Pressure Drop in the Entrance 
Region in the Case of Laminar Flow.—For the 
kinetic-energy correction in the total pressure 
drop in the region of transition at the 
entrance, the .theories of both Schiller and 
Boussinesq give values that are too large. 

Schiller gives the value 2.16p“2 while Boussin- 

esq finds 2.24p^* Since both theories are 

approximate, it is for the experiment to decide 
the correct value. A very good agreement 
was obtained between the calculated pressure 
drop of Schiller and experiments made by him¬ 
self. In one of those a tube was used of 
2.399-cm inside diameter; the first pressure 
measurement pi was made at a distance of 
104,15 cm and the second, p2, at a distance 
of 196.77 cm from the rounded entrance. 
Figure 14 shows the theoretical straight line 
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of Hagen-Poiseuille and also the curve passing through the exper¬ 
imental points, showing that in the region near the entrance there 
are important discrepancies with the Hagen-Poiseuille law. The 

calculated values of Schiller shown in the figure by small open 
circles are in very good agreement with the experiments. Denot¬ 
ing by p(, the pressure in the reservoir .and by p the pressure at a 

,0,055 
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Fig. 14.—Pressure-drop coefficient of laminar flow in entrance region. 

distance x from the rounded mouth, Schiller’s calculation gives 

^ function of shown graphically in Fig. 15. 

~2 
If the dimensionless pressure drop per unit length X be defined 

by 
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X2 — Xi 

^2 

this quantity can be determined from Fig. 15 by means of the 
relation 

The Importance of the Pressure Drop in the Entrance 
Region for Viscosity M^surements.—A knowledge of the pres- 

Fia. 15.— Pressure diagram in entrance region. 

sure drop in the entrance region is especially important for vis¬ 
cosity determinations by means of the usual Saybolt method. 
Although in most cases relatively short tubes (small x/rR) are 
employed, the validity of Hagen-Poiseuille's law is assumed. In 
case the tubes used are so long that at the end the parabolic 
velocity distribution is nearly reached, it is generally sufficient 
to apply the correction for kinetic energy in one of the forms 
discussed. However, if the tube is so short that x/rR is smaller 
than about 0.1, Schiller has shown that from the measured 
pressure drop po — pi the corresponding 

rR r^up 
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can be found from Fig. 15. With this chart the value of n can be 
calculated, as soon as experimental determinations have 
been made of the volume flowing through per second, the length 
of the tube, its radius, and the density of the fluid. 

B. THE TRANSITION BETWEEN LAMINAR AND TURBULENT FLOW 

21. The First Investigations by Hagen.—Already in his first 
publication on the flow of water through cylindrical tubes (1839) 
Hagen called attention to the fact that the mode of flow discussed 
by him ceased to exist when the velocity increased beyond a 

certain limit. He observed that the outflowing jet below this 
velocity looked like a solid bar of glass; above it the jet commenced 
to oscillate and the flow ceased to be uniform but came in spurts. 

In 1854 Hagen published a second article' in which he showed 
that the transition of the laminar into the turbulent state does 
not only depend on the velocity but also on the viscosity of the 
fluid. Using the same tubes as with his first tests, he determined 
the relation between the volume delivered and the temperature 
with a constant pressure head for each series of experiments. 
Figure 16 shows the results of Hagen’s tests as given by himse f. 

' Hagen G , On the Influence of Temperature on the Movement of 

Water through Pipes (German), Abimndl. Akad. Wvss., p. 17, Berlin, 1864. 
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Each curve corresponds to a definite pressure head. The curves 
for the narrow tube (diameter 2.8 mm) are drawn in full; those 
for the medium tube (diameter 4 mm) are broken, while for the 
wide tube (diameter 6 mm) dotted lines are shown. the 
upper curve it is seen, for instance, that for a constant pres&dke 

head the mean velocity first increases with increasing temperature 
(i.e.y decreasing viscosity), then decreases again, reaches a mini¬ 
mum, and increases for the second time. The first increasing 
branch of the curve corresponds to the laminar flow. The part 
of the curve between the maximum and the minimum corre¬ 
sponds to the transition between laminar and turbulent flow, 
while the last slowly increasing branch corresponds to the tur¬ 
bulent mode of flow. Hagen ascertained this by adding sawdust 
to the water and observing that for small velocities the wood 
particles moved in straight lines through the tube, while for 
larger velocities they were thrown from one side to another and 
moved quite irregularly. He considered this irregular motion 
to be caused by the irregularities of the tube wall or possibly by 
the entrance of the water through the squarely cut end of the 
pipe. 

In a third publication, ^ Hagen observed several times that the 
transition from the turbulent flow to the laminar one depends 
on the radius of the tube, on the velocity, and on the temperature 
of the water. The turbulent flow will become laminar as soon 
as any one of the three quantities mentioned, or all three of them 
together, decrease below a certain limit. 

22. The Fundamental Investigation by Rejmolds.—Consider¬ 
ing the early date of his investigations, Hagen had a very good 
conception of the phenomena of laminar and turbulent flow. 
However he did not succeed in finding a unifying principle for 
plotting the results of his experiments shown in Fig. 16. The 
credit for having found such a principle belongs to Osborne Rey- 
nolds.2 In his paper of 1883 he showed by means of dimensional 
analysis that the transition between laminar and turbulent flow 
can depend only on the dimensionless expression 

ur 

V 

^ Hagen, G., Ahhandl. Akad, Wiss. (German), Berlin, 1869. 

* Reynolds, Osborne, An Experimental Investigation of the Circum¬ 

stances Which Determine whether the Motion of Water Will Be Direct or 

Sinuous, and of the Law of Resistance in Parallel Channels, Phil. Trans. 
Roy. Soc. London^ 1883, or Sci. Papers vol. 2, p. 61. 
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The law of similarity which later was named after him (Art. 4) 
expresses the fact that two different motions taking place in 
two geometrically similar vessels are also mechanically similar 
when they have the same value of ur/v, the Reynolds’ number.* 

The great simplification obtained in plotting the test results by 
means of this Reynolds’ number can be seen in Fig. 17, which 

Fig. 17.—Pressure-drop coefficient vs. Reynolds’ number, being Hagen’s tests of 
Fig. 16 replottcd (squarely cut off entrance). 

represents the curves of Fig. 16, now plotted on the Reynolds' 
number as abscissa. The ordinates are also represented by a 
dimensionless quantity, namely, 

_ Ap — hi. - 

2 2 

In the plotting from Fig. 16 to Fig. 17, the amounts 2.7^ for 

the laminar flow and 1.4^ for turbulent flow have been sub- 

tracted from the ordinates. This is to take care of the correc¬ 
tion for kinetic energy, as discussed on page 24. It is seen 
in Fig. 17 that the replotted curves of Fig. 16 show all the same 
characteristics: For Reynolds’ numbers below about 1,100 to 
1,400, the pressure-drop coefficients X lie on the straight line of 
Hagen-Poiseuille for laminar motion (Fig. 7). After this, there 

‘ This is true for motions where only inertia forces and viscosity forces 

play a part. It is not true for motions where gravity has to be taken into 

account, as for instance when free surfaces occur. 
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is a comparatively sudden increase in the values of X until a 
certain maximum is reached. From there on, X diminishes again 
with increasing Reynolds^ number, however, slower than at first. 
The region of increasing X corresponds to the transition between 
laminar and turbulent flow. For larger Reynolds^ numbers the 
flow is purely turbulent. It is seen that the experimental results 
lie on a straight line with an inclination of 1:4 so that, owing to 
the logarithmic coordinate system used, it follows that the coeffi¬ 
cient X of turbulent flow is proportional to the fourth root of 
tl^ Reynolds^ number. In Art. 30 this relation will be discussed 
in detail. 

Figure 17 shows, moreover, that for a determination of the 
so-called ^'critical Reynolds’ number” the Reynolds’ number 
where the transition between laminar and turbulent flow occurs) 
pressure-drop measurements are most appropriate. This method 
was usedjftf Reynolds. Unlike Hagen, who measured the pres¬ 
sure ififfl^ptween the reservoir and the end of the tube, Reynolds 
measuniplhe pressure drop in a certain length of tube, having 
a long stretch between the tank and the location of his measure¬ 
ments. He used tubes of yi and y^ in. diameter, both about 16 ft 
long. In either tube the length between the reservoir and the 
measuring spot was 11 ft, t.e., 528 and 204 diameters respectively. 

23. The Critical Reynolds’ Number.—From experiments 
conducted on these two tubes, Reynolds found a complete 
verification of his theorem that the transition between laminar 
and turbulent flow takes place at a definite value of ur/v even 
for tubes of different diameters. Expressing his test results in 
terms of the dimensionless quantities X and w'/v,^ it is seen that 
the firsr deviation of the pressure-drop coefficient X from the 
Hagen-Poiseuille law takes place at ur/v = 1000-1100 
approximately. 2 

The value of R where turbulence just starts is known as the 
'^critical Reynolds’ number” and the mean velocity u corre¬ 
sponding to this number is known as the critical velocity.” 

What conclusion can now be drawn from the experimental 
results of Hagen (Fig. 17) and of Reynolds? The common 
interpretation is that laminar flow or even flow with parabolic 

^ Reynolds himself gave his results as log Ap in terms of log u. 
2 It is noted in passing that the pressure drop per unit length in the tur¬ 

bulent region measured by Reynolds is appreciably smaller than that found 
by other more recent investigators. 
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velocity distribution passes into turbulent flow at a Reynolds^ 

number of about 1,000. This statement, however, is incorrect 

for the following reason: In the first part of the tube adjacent 

to the reservoir, laminar flow, f c., flow parallel to the sides of the 

tube, does not occur. A flow with a parabolic velocity distribu¬ 

tion is even less probable since it was shown in Art. 15 that for 

its generation a fairly long piece of tube is required. Actually 

the fluid gets into the tube with some initial turbulence, which 

in Hagen's experiments is due to the sharp entrance and in 

Reynolds' experiments due to the fact that he connected his 

test tube to the water faucet. Therefore the actual conditions 

are such that below the critical Reynolds' number these initial 

disturbances are damped out, while for larger Reynolds' numbers 

^ they develop into the irregular motions which are typical of 
turbulent flow. 

24. Influence of the Initial Disturbance on the Critical Rey¬ 

nolds’ Number.—The question presents itself whether this 

critical number is the same for all tubes and for all experimental 

set-ups. Some doubt as to this comes up in comparing the results 

of Hagen with those of Reynolds. Recent experiments, espe¬ 

cially those of Schiller, have shown that very small disturbances 

can be damped out even for values of Ry which are appreciably 

greater. Quite high critical Reynolds' numbers can be obtained 

by letting the water flowing out of the faucet first come to rest in 

a large tank and then using a well-rounded entrance to the tube 

so that no contraction of the jet takes place. In such cases, it 

can be stated that the laminar flow which is formed close to the 

entrance of the tube is unstable and becomes turbulent owing 

to very small unavoidable disturbances. The first experiments 

of this kind were made by Reynolds on tubes of various diameters 

and with water of various temperatures. He found critical 

values of ur/v = 6,000-7,000. His method, later also used by 

other investigators, consisted of letting a fine line of colored water 

flow into the^test tube (Fig. 18). In the case of purely laminar 

flow, this thin colored line remains well defined, whereas in a 

turbulent flow it is disturbed and after some distance the water 

in the tube appears uniformly colored. Reynolds' expectation 

that the critical number could be made much larger by mini¬ 

mizing the disturbances has been found to be true by subsequent 

experiments of Barnes and Coker. ^ Their tests, conducted with 

1 Baknbs, H. T., and E. G. Coker, The Flow of Water through Pipes, 

Proc. Roy, Soc. {London)^ vol. 74, p. 341, 1905. 



34 APPLIED HYDRO^ AND AEROMECHANICS 

;great precaution on a J^-in. tube, led to a critical Reynolds’ 

number of 10,000. An increase in temperature of the water 

of the storage tank causes convection currents and a consequent 

disturbance near the entrance of the test tube. This results in a 

considerable decrease in the critical Reynolds’ number (at 75°C 

is about 5000).^ Experiments by Ekrnan'^ conducted on 

Reynolds’ original apparatus with the definite purpose of obtain- 

ing a high critical Reynolds’ number led to values of ur/v = 

20,000 and in some isolated instances even up to 25,000. It 

seems, therefore, that the critical Reynolds’ number does not tend 

Fig. 18.—Reynolds’ test set-up. 

to a definite limit when the disturbances are made smaller and 

smaller, but that it can be made to exceed any value by increasing 

the precautions of the test. 

At any rate, the experiments show that the critical Reynolds’ 

number is a monotonous function of the initial disturbance, z.e., 

the critical number always increases with a decrease in the dis¬ 

turbance. Whether there is an upper limit to the critical number 

with disturbances converging to zero is not yet known, but it 

does not seem to be very probable. On the other hand, there is a 

definite lower limit to the critical Reynolds’ number at about 

‘urf V = 1,000 or somewhat above it. Below this, even very large 

initial disturbances are damped down, i.e., below R = 1,000 a 

^ Other experiments by Barnes and Coker conducted on a 2j^-in. tube 
have not much meaning for the determination of the critical Reynolds' num¬ 

ber, since the tube, being only 28 diameters long, was too short for the 
purpose (see Art. 25). 

2 Ekman, V. W., On the Change from Steady to Turbulent Motion of 
Liquids (English), Arkiv Mat. Astron. Fysikj vol. 6, 1910. 
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turbulent flow with its typical irregular mixing motion and the 
consequent velocity distribution (Art. 34) cannot be maintained 
indefinitely. 

With respect to the nature of the initial disturbances occurring 
in the tube, two questions have come up, namely: Which types 
of disturbance in the motion and which parts of the tube are of 
greatest importance for the creation of turbulence? The first 
of these questions has not been answered yet. As to the second, 
the entrance to the tube seems to be most sensitive to irregulari¬ 
ties. Having taken care that the water in the tank has come to 
rest, which generally requires a few hours, it is found that in 
order to obtain a high critical Reynolds' number, it is especially 
important to round off the entrance of the tube. Very small 
irregularities in the shape of this first piece, where the boundary 
layer is as yet very thin, immediately cause a large drop in the 
critical Reynolds’ number, while much larger irregularities at 
the wall of the tube far from its entrance hardly affect the critical 
Reynolds’ number. For instance, Schiller^ succeeded in obtain¬ 
ing the A^alue = 10,000 with a tube of about diameter 
in which a screw thread of about} G4-in. depth had been cut, using 
however, a very well-polished, rounded-ofi‘ entrance piece. 

26. The Conditions at the Transition between Laminar and 
Turbulent Flow.—Now the phenomena in the range between 
the laminar and turbulent modes of flow will be discussed. Rey¬ 
nolds’ original supposition was that when exceeding the critical 
velocity slightly, a weak turbulence would take place at first, 
which would become more violent with larger speeds. However, 
his experiments showed that no such gradual change occurs, but 
that the transition takes place very abruptly. Having a very 
definite colored line throughout the entire length of his tube just 
under the critical number, the slightest touch to the faucet would 
suddenly make it disappear. However in all cases laminar flow 
would persist in the first 20 or 30 diameters from the entrance of 
the tube, even when at greater distances the color would be 
completely mixed with the rest of the water. It has been 
supposed that the critical Reynolds’ number might depend on 
the length of the tube. The fact that a complete turbulence 
takes place at such short distances from the entrance shows 

this supposition to be incorrect. 

1 Schiller, L., Roughness and Critical Reynolds’ Number (German), 

Z, Physik, vol 3, p. 412, 1920. 
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26. Intermittent Occurrence of Turbulence.—Reynolds made 
the observation that in many cases, especially with narrow tubes, 
the sudden destruction of the colored line did not occur over the 
total length of the tube but only in a part of it. Opening the 
faucet very carefully so as to reach the critical velocity gradually, 
the laminar flow would suddenly change into a turbulent one in 
a certain part of the tube, starting at about 30 diameters from 
the entrance, while still farther downstream the colored line 
remained visible. As soon as the turbulent mass of fluid, which 
was moving through the tube like a plug, had flowed out, a new 
turbulent region was formed at the same location. 

The resistance to the flow for the total length of the tube 
increases when a part of the tube becomes turbulent; con¬ 
sequently, the mean velocity decreases, which brings it below the 
critical Reynolds^ number. This phenomenon, which had 
already been observed by Hagen, ^ was studied in great detail by 
Couette.^ He observed water flowing out of a large tank through 
the tube. The jet which came out of the end of the tube at first 
had a slightly rough surface and looked like a curved rod of 
frosted glass (turbulent flow). As the level of the tank went 
down, the jet became intermittently crystal clear and frosted, 
with a frequency which became faster and faster as the level came 
down. The clear jet would jump up, whereas the frosted jet 
would fall down so that a very regular oscillation took place. 
With the level of the tank sinking down still farther, the jet was 
clear most of the time and became frosted only once in a while. 
When Couette poured water into the tank, raising its level 
gradually, the same phenomena would take place in a reversed 
sequence. The surprising regularity of the oscillation of the jet 
in the region of the critical Reynolds’ number can be judged from 
Fig. 19, where the mean velocity is plotted as a function of the 
time. This diagram was obtained by the author by means of 
moving pictures. In each individual picture the velocity was 
determined from the shape of the parabola of the jet. The 
maximum velocities correspond to those instants when turbulence 
suddenly starts in a part of the tube. Owing to the increased 
resistance in the tube caused thereby, the velocity decreases while 
turbulent flow exists. As soon as this turbulent ^^plug” starts 

^ See footnote on p. 29. 

2 Couette, M., Investigations on the Friction of Fluids (French), Ann, 
chim, phys,i vol. 21, p, 433, 1890. 
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to flow out of the tube, the resistance decreases again, which 
causes an increase in the velocity until the next maximum is 
reached and the phenomenon repeats itself. 

Fig. 19.—Variation of spouting velocity (m/sec) with the time (soc) in the 
critical region. 
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The phenomenon of intermittent turbulence can be explained 
somewhat differently by means of Fig. 20.^ When starting 
with a condition below the critical Reynolds^ number, determined 
by the point A, for instance, there will be a permanent laminar 
flow in the tube. When the 
velocity is slightly increased by 
opening the valve at the end of 
the tube until the critical value 
is exceeded (point R), turbulence 
will suddenly appear at a dis¬ 
tance of about 30 diameters from o.04 

the entrance. This turbulent o.o3j 
plug of water is then pushed 
through the tube. The down¬ 
stream end of this plug will 
move with the mean velocity 
whereas the upstream end of it 
will move with a smaller velocity. 
This is due to the fact that at 
the upstream end new regions of 
turbulence grow continuously so that the length of the turbulent 
plug becomes gradually greater. The resistance coefficient 

1 The location of the starting of turbulence is rather close to the entrance, 

so that the points a and b do not lie on the straight line of Hagen-Poisemde 

but slightly higher. This effect wilt not be considered here. 
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X at any time depends on the ratio between the turbulent part 
and the laminar part of the tube. Its gradual increase causes 
a decrease in the mean velocity u and consequently in the Rey¬ 
nolds^ number {B to C in the curve). When the turbulent plug 
of water flows out of the tube, X becomes smaller again and the 
velocity increases (C to A in the curve), the point A in the curve 
corresponding to the instant when the turbulent part of the water 
has just left the tube. However, this condition cannot be steady 
since the pressure head in the reservoir is too high, which causes 
an acceleration of the water until point B is reached and the 
phenomenon repeats itself. 

27. Measurements of Pressure Drop at the Transition between 
Laminar and Turbulent Flow.—In the investigation of the 
transition between laminar and turbulent flow by means of 
pressure-drop measurements, it is found that upon reaching the 
critical Reynolds’ number the meniscus of the manometer, which 
had been completely quiet up to that time, begins to show 
irregularities. Having the faucet in a definite position, the 
meniscus moves irregularly up and down so that a reading of the 
pressure is hardly possible. If the precaution has been taken 
to make the measurement at a distance of at least 50 diameters 
away from the tank, it might be supposed that these irregularities 
are due to vortices in the tube which have not developed far 
enough to become a complete turbulence. This, however, is not 
so. Experiments have shown that the irregular condition of the 
meniscus is due to intermittent turbulence. On account of 
the large damping which usually exists in the manometer, it 
cannot follow the rapid oscillations between the laminar and 
turbulent states. Using a manometer with a very high damping 
(showing only mean values of the pressure over periods as large 
as min), the meniscus varies gradually and not with jumps 
when passing from the laminar flow through the oscillating con¬ 
dition into the permanently turbulent flow. For this it is neces¬ 
sary to use a type of valve which allows very fine changes in the 
velocity instead of a common faucet. 

28. Independence of the Critical Reynolds’ Number of the 
Length of the Tube.—Schiller^ has made the statement that the 
critical Reynolds’ number depends on the length of the tube. 
Against his experiments, however, others can be brought up 

^ Schiller, L., Recent Experiments on the Problem of Turbulence (Ger¬ 

man), Physik, Z., vol. 25, p. 541, 1924. 
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which prove the converse. Couette concluded from his experi¬ 
ments that the critical velocity above which intermittent tur¬ 
bulence takes place is independent of the length of the tube. 
Likewise, Barnes and Coker obtained the same critical Reynolds’ 
number R = 10,000 with two tubes of the lengths 180 and 360 
diameters respectively. Ekman, in his paper, defends himself 
against a possible objection that the very high critical Reynolds’ 
numbers obtained by him might be due to the fact that the tubes 
used by him were so short that the small disturbances did not 
have a chance to grow into a complete turbulence. He reasons 
that if that objection were valid, the turbulence would have to 
start always at the end of the tube, coming nearer to the entrance 
with increasing velocity. This, however, is against experimental 
evidence. We mention again Reynolds’ original experiments, 
who obtained the same critical number, 6,000, although the tubes 
being of the same length had diameters in the ratio 1:1.75:3.4. 

In this connection, a statement by Heisenberg^ regarding the 
stability of fluid flow is of interest. He investigated the condi¬ 
tions under which a disturbance of the form increases 
or decreavses with the time, t.e., whether the imaginary part of 
/5, representing the negative damping, is positive or negative. 
From theoretical considerations he found that the negative 
damping is of the order of (aR)~y- and concluded from this that 
for very large Reynolds’ numbers the negative damping becomes 
very small, so that the fluid under consideration has already left 
the tube when its instability would become serious. In this 
connection, it has to be considered that all quantities used in his 
paper have been made dimensionless, among others /3. This, 
however, entails that the unit of time, with which the negative 
damping is measured, itself depends on the Reynolds’ number, 
since the dimensionless t' is connected with the actual time t by 

the equation t = When, therefore, the time t is measured 

in seconds and the length x in inches, it is found that the increase 
in the disturbance per second is of the order of 

1 {u • 

a} 

1 Heisenberg, W., On Stability and Turbulence in Fluid Flow (German), 

Ann. phys., IV, vol. 74, p. 597, 1924. 
2 X is the coordinate in the direction of flow, y is perpendicular to it, and 

t is the time. 
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because 

llmag. - [“} 

The increase in the disturbance per second therefore becomes 
larger for a tube of a given diameter when the velocity, and 
consequently the Reynolds’ number, becomes larger. 

C. TURBULENT FLOW 

29. Historical Formulas for the Pressure Drop.—The pressure 
drop and the velocity distribution for the laminar flow through 
tubes of circular cross section can be derived from the differential 
equations. This, however, is not possible for turbulent flow. 
Figures 39 and 40, Plate 16, showing turbulent flow through long 
tubes make it plain that the motions are extremely complex. 
Therefore it seems hopeless to try to understand the mechanism 
of turbulence from the differential equations of Navier-Stokes. 
Figures 39 and 40 have been obtained by the author by photo¬ 
graphing the surface of the water in a tank after having scattered 
aluminum powder on it. In Fig. 39 the velocity of the camera 
is very small so that the particles of aluminum near the walls of 
the channel appear as points. In Fig. 40, however, the velocity 
of the camera is about equal to the maximum velocity of the 
particles in the middle of the channel. 

On the other hand, our interest in turbulent flow is much 
greater than that in laminar flow since the turbulent mode occurs 
much more frequently in nature and in technical applications. 
Therefore a great number of experiments have been carried out 
in order to determine the important relation between pressure 
drop and volume transported through tubes and channels. 
Comparing the results of these many experiments with the laws 
connecting pressure drop and mean velocity deduced from 
them, a very unsatisfactory picture is obtained. Nearly every 
investigator constructed his own pressure-drop formula from his 
experiments, largely owing to the fact that the similarity law of 
Reynolds was not known or at least was not used. Further no 
consideration was given to the roughness of the walls of the pipes 
or channels. This roughness, however, is of fundamental impor¬ 
tance for the resistance of turbulent flow, as will be discussed 
later. For laminar flow it was seen before that the resistance is 
independent of the condition of the walls of the tube. The first 
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formulas on resistance or pressure drop can be divided into three 
distinct classes, which have been discussed in detail by Hagen in 
1869, namely: 

^ ^ . .^2 [Ch^zy (1775), Eytelwein (1822)]; 

7- = + 7“ [Prony (1804)]; 

An 
~Y ^ ^^rr25‘ [Woltmann (1804), Flamant (1892)]. 

In none of these formulas is the viscosity considered. This 
was done first by Reynolds, who plotted the pressure drop against 

U . 7* 

the dimensionless number-The resistance law deduced by 

Reynolds from his tests is 

~~ = const. jrJ ^ [Reynolds (1883)], 

where P is a measure for the viscosity taken from Poiseuille’s 
formula. The relation of P to the kinematic viscosity is expressed 
by the formula (c g s units): 

M _ 0.01779 
p 1 + 0.03368T + 0.000221 T2 

0.01779P, 

where T is the temperature. The constant of Reynolds’ formula, 
however, does not check with subsequent experiments.; the pres¬ 
sure drop calculated by him comes out considerably too small. 

According to this formula, the pressure drop is proportional 
to the 1.723 power of the velocity. However, the older measure¬ 
ments of Darcy which were plotted by Reynolds on a logarithmic 
scale showed that the exponent varies between the limits 1.79 
to 2.00, depending on the material of the tube, z.e., on the con¬ 
dition of the walls. 

30. The Resistance Formula of Blasius for Smooth Tubes.— 
Based on Reynolds’ law of similarity and a great number of tests 
up to ur/v = 50,000 (especially those of Saph and Schoder^), 

1 Saph and Schoder, Trans. Am. Soc. Civil Eng., vol. 47, p. 312, 1920. 
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Blasius^ arrived at the following formula for the pressure drop 
in smooth tubes: 

where 

(6) 

(7) 

The main advantage of the pressure-drop law (1), as compared 
with the older formulas, is the fact that for smooth tubes of the 
same Reynolds^ number (having different diameters, velocities, 
and temperatures) the pressure drop expressed in units of 
stagnation pressure per radius length is the same. Therefore 
the complete resistance relation for smooth tubes can be expressed 
by a single curve X == f{R). The fact that the points found from 
experiments with different tube radii, velocities, and for different 
fluids (water and air) lie on a smooth curve is to be interpreted 
as an experimental verification of the law of similarity. The 
agreement is so good that the scattering of the points is + 2 per 
cent at most. 

Further measurements for higher Reynolds^ numbers, espe¬ 
cially those by Stanton and Pannell*^ and those by Jacob and 
Erk'^ (up to about R = 230,000) show that the relation between 
the resistance coefficient X and R cannot be expressed by a simple 
power for such a wide region of R. These experiments can be 
better expressed by the formula 

X = 0.00357 + 
0.3052 

(2/^)0*35 

which was also found by Lees.^ According to measurements by 

1 Blasitjs, H. The Law of Similarity Applied to Friction Phenomena (Ger¬ 

man) Physik. Z., vol. 12, p. 1175, 1911. Or more in detail (German) For- 
schungsarheiten V. D. vol, 131. The formula is also found in the book 

by R. von Mises, ‘‘Elements of Technical Hydromechanics” (German), 

Leipzig, 1914. 
2 Stanton, T. E., and J. R. Pannell, Similarity of Motion in Relation 

to Surface Friction of Fluids, Phil. Trans. Roy. Soc. London, (A), vol. 214, 

p. 199, 1914. 
® Jacob, M., and S. Erk, The Pressure Drop in Smooth Tubes and in 

Standard Orifices (German), Forschungsarbeiten V. D. vol. 267, 1924. 

*Lbbb, Proc. Roy. Soc. (London) (A), vol. 91, p. 46, 1915, 
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Nikuradsei (up to about B == 1.6 * 10«) a systematic deviation 
from the curve of Lees is found for Reynolds^ numbers greater 
than 200,000. 

In the case of tubes of non-circular cross section or of open 
channels, it is not clear what is meant by the characteristic length 
in Reynolds^ number. Considering that the most important 
property for the resistance of the tube is the ratio between the 
cross-sectional area A and the wetted periphery U, it is logical to 
take for the characteristic length the quantity 

The reason for taking twice the area in the numerator is that in 
this way the quantity r becomes equal to the radius for a circular 
cross section. This quantity, which is in common use in hydrau¬ 
lics for open channels, is called the 'Tiydraulic radius.'^ In 
technical literature half this length d ^ AjU can be often found 
referred to as the hydraulic radius. For very wide rivers, d 

is the mean depth. However in a non-circular cross section all 
parts of the periphery will not be equally important in creating 
resistance. Therefore it is necessary to get an experimental 
verification for the use of this hydraulic radius in the formulas. 
Experiments by Schiller,^ Fromm,^ and by Nikuradse"^ have 
shown that the influence of the shape of cross section is unim¬ 
portant if the section is not too elongated. For laminar flow 
through rectangular and elliptical cross sections of various ratios 
of the axes, Boussinesq^ has determined the influence of the shape 
of the cross section. For instance, he calculates X = 14.225/B 
for the square cross section, as compared with X = 16/B for the 

circular one. 
31. The Resistance Law for Rough Tubes.—It was seen that 

the resistance relation up to relatively large values of R for smooth 

1 Niktjradse, J., On Turbulent Flow of Water through Straight Tubes 

at Very Large Reynolds’ Numbers (German), Vorlrdge aus dern Gebiet der 
Aerodynarnik, edited by A. Gilles, L. Hopf, Th. von Kdrnulii, Berlin, 1930. 

2 Schiller, L., On the Resistance to Flow in Tubes of Various Sections 

and Roughness (German), Z. angew. Math, Mech., vol. 3, p. 2, 1923. 

® Fromm, K., Flow Resistance in Rough Tubes (German), Z. angew. Math, 

Mech,, vol. 3, p. 339, 1923. 
^Nikuradse, j., Investigations on Turbulent Flow in Pipes of Various 

Cross Sections (German), ingenieur Archiv. vol. 1, p. 306, 1930. 
® Boxtbsinbsq, j.. Memoir on the Influence of Friction in Regular. Fluid 

Motions (French), J. math, pure et appl., vol. 13, p. 377, 1868. 
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tubes is completely given by the curves of Blasius and Lees. 
This is not the case for tubes with rough walls. The influence of 
wall roughness is always in the direction of increasing the resist¬ 
ance to turbulent flow; moreover, the various curves X = f{R) 

for different roughnesses do not coincide. This is due to the 
fact that Reynolds’ law of similarity is not satisfied since for 
tubes of the same radius and different roughness or for tubes of 
different radius but the same roughness there is no geometrical 
similarity. 

Blasius and von Mises^ introduce a new quantity e, proportional 
to the heights of the various roughness irregularities, and conse¬ 
quently make the resistance coefficient a function of e/r, ^.e., 
the '^relative roughness.” Therefore 

X - /(b. 9- 

Blasius goes even farther than this. He does not consider 
the influence of roughness to be determined by the quantity e, 
but he defines that two tubes of different radii luive the same 

roughness in case these tubes for 
some Reynolds’ number give the 
same value of X. If two tubes have 
the same roughness in this sense, the 
X-values of both tubes can be rep- 

^ resented by the same curve for all 
Reynolds’ numbers. Therefore the 

Fig. 21, 

“roughness” of walls. 

Fio. 22. 

Figs. 21 and 22.-—Examples of resistance relation Can be completely 
expressed by a family of curves 
depending on one parameter of which 
the curve of Blasius or Lees for 
smooth tubes forms a lower limit. 

Fig. 23.-Exampie of “wavi- 32. Roughness and Waviness of 

the Walls.—Measurements by Fromm 
and Schiller as discussed by Hopf^ have shown that the 
resistance relations for rough tubes are more complicated. The 
law of resistance is affected not only by the relative magni¬ 
tude of the various roughness irregularities but also by their form. 

^ See footnote on p. 42. 

* Hopf, L., The Measurement of Hydraulic Roughness (German), Z. 
angew. Math. Mech.y vol. 3, p. 329, 1923, 
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According to Hopf and Fromm, there are two principally different 
types of roughness: 

1. Roughness irregularities of short wave length and relatively 
high amplitude, as shown in Figs. 21 and 22. Examples of 
this are, for instance, cement walls, rusted steel, cast iron, corru¬ 
gated steel. This type will be referred to as wall “roughness.” 

2. Very gradual irregularities of long wave length; for instance, 
planed wood, asphalted steel walls, as shown in Fig. 23. This 
type will be called wall “waviness.” 

For the first type of roughness the resistance coefficient X is 
found to be nearly independent of the Reynolds’ number but 
very much dependent on the “relative roughness” (Fig. 24). 

Fig. 24.—Pressure-drop coefficient vs. Reynolds’ number for pipes with various 
kinds of walls. 

This means that the resistance is proportional to the square of 
the velocity. 

For the second type of roughness (waviness) larger values for 
the pressure-drop coefficient are obtained as compared with the 
smooth tube; however, the [X = /(/^)]-curve is parallel to the 
corresponding curve for the smooth tube while practically 
independent of the radius, especially for small ratios a/6 of Fig. 
23. 

Measurements on drawn metal tubes with halfway smooth 
surfaces, being somewhere in the middle between roughness and 
waviness, show a gradual transition to the velocity-squared 
law with an increasing Reynolds’ number. This can be inter¬ 
preted as a confirmation of the remark by Schiller^ that even for 
very smooth tubes the velocity-squared law will become true 

^ Schiller, L., The Problem of Turbulence and Connected Problems 

(German), Physik. Z., vpl. 26, p. 566, 1926. 
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for sufficiently large Reynolds’ numbers. Since the phenomenon 
depends on the “relative roughness,” it is to be expected that 
the velocity-squared law will be reached at smaller Reynolds’ 
numbers for narrow tubes than for wide ones. 

33. Measurement of the Mean Velocity of a Turbulent Flow 
by Means of a Pitot Tube.—The fact that the resistance coeffi¬ 
cient for turbulent flow is materially greater than that for laminar 
flow is connected with the characteristic turbulent velocity 
distribution, which consists of a steep rise near the wall and a 
practically constant velocity over the rest of the cross section. 
In Art. 46 it will be seen that with certain assumptions it is 
possible to derive the turbulent velocity distribution from the law 
of turbulent pressure drop. 

The velocity at a point of a turbulent flow is defined as the 
mean value of the velocity at this point with respect to time. If 
we denote by f7, F, W the three rectangular components of the 
velocity in a point of a turbulent flow, it is possible to decompose 
these quantities into a part independent of the time Uy Vy w and a 
part giving the fluctuations with respect to time, u'y v\ xv\ i.e.: 

U = u + u^y V — V + v'y W = w + w\ 

The fact that such a procedure is possible, in other words, that 
experiments have shown that the mean values with respect to 
time of u'y v'y w' vanish for very short time intervals, shows that 
a turbulent flow is not quite without regularity. There are 
apparently laws determining this flow, although it seems that 
they can be approached only statistically. 

The ordinary method of measuring velocity distributions 
by means of a Pitot tube and a fluid manometer gives mean 
values on account of the large damping usually existing in such 
instruments. Bazin has been the first to measure the turbulent 
velocity distribution across the circular section in this manner 
and has found for it the shape of a semi-ellipse with an axis 
ratio of 3.5:1. In the “immediate vicinity” of the wall, he 
found u/u = 0.741, where u denotes the mean velocity with 
respect to the cross section. Stanton^ made experiments on cir¬ 
cular tubes, paying special attention to the steep velocity increase 
near the wall. To this end, the Pitot tube was sunk somewhat 

1 Stanton, T. E., The Mechanical Viscosity of Fluids, Proc, Roy. Soc. 
(London) (A), vol. 86, p. 366, 1911. 
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into the wall, which enabled him to determine the velocity at a 
distance of 0.001 in. from it. 

It has to be considered that a damped manometer does not 
exactly indicate the mean value of u with respect to time but 
rather the mean value of the pressure difference which is propor¬ 
tional to t/2. Now in 

= (u u'Y = + u'2 

the mean value of 2 uu' is zero; however, the mean of does not 
vanish. Since u'- is a positive quantity, the Pitot-tube indication 
of a pulsating velocity is always too high. For instance, if the 
variations in the velocity in short time intervals are of the order 
of ±20 per cent, the reading of the manometer in terms of is 
equal to 

+ 'S) - +OT.) 
Extracting the root out of this expression, we get 

or, in other words, our reading is 2 per cent high. Variations of 
±20 per cent in the velocity are rather large. In tubes or chan¬ 
nels which are sharply divergent, such variations may occur 
with ordinary turbulence, however, the variations are con¬ 
siderably smaller. According to Burgers, ^ who measured the 
fluctuations of a turbulent stream of air by means of a hot-wire 
method, the fluctuations are less than ±5 per cent. In that 
case, the error of the Pitot reading would be about 0.15 per cent. 

34. The Turbulent Velocity Distribution.—Stanton also inves¬ 
tigated whether the shape of the velocity-distribution curve 
depends on the Reynolds’ number (the distribution being meas¬ 
ured naturally at a sufficiently large distance away from the 
entrance of the tube). He found on smooth tubes that for the 
same Reynolds’ number with differing diameters or velocities, 

^ Kroener, R., Experiments on Flow through Sharply Diverging Chan¬ 

nels (German), Forschungsarbeiten V. D. /., vol. 222. 

* Burgers, J. M., Experiments on the Fluctuations of the Velocity in a 

Current of Air (English), Proc. Kon. Akad. Wetenschappen, Amsterdam, vol. 

29, No. 4. 
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the velocity distribution is always exactly the same. How¬ 
ever, with varying Reynolds^ numbers, the distribution curve 
changes, so that for larger Reynolds^ numbers the velocity gradient 
at the wall becomes slightly steeper. This change in gradient 
becomes less and less with larger Reynolds’ numbers, so that it 
may be concluded with reasonable assurance that the velocity dis¬ 
tribution asymptotically reaches a certain limit for large Reynolds’ 
numbers in smooth tubes. For tubes of considerable roughness 
(screw thread having been cut in), Stanton’s measurements 
give independence of the velocity distribution from the Reynolds’ 
number. This is tied up with the fact that for rough tubes 
the pressure-drop coefficient X is a constant. Measurements of 
Fritsch^ show that the influence of roughness of the walls on the 
velocity distribution is limited to the immediate neighborhood of 
the walls. He found that in comparing tubes of the same pres¬ 
sure drop with different roughness, the velocity distribution 
curve was the same in the center part of the sect ion up to about 
0.1 radius from the wall. In other words, the velocity-distribu¬ 
tion curve depends only on the shear stress and not on the par¬ 
ticular geometrical shape of the wall. 

The change of the velocity-distribution curve with the Rey¬ 
nolds’ number has some practical significance. In case such a 
change did not exist (u^^Ju independent of R), it would be 
possible to determine the average velocity across the section by 
means of one single measurement of the velocity in the axis of 
the tube. This would mean a considerable simplification of the 
experimental procedure. Stanton and PannelP have investigated 
the relation between and R up to Reynolds’ numbers of 
42,000 with the result that u^/u diminishes slowly with increas¬ 
ing R, Comparing the results of the various investigators, 
it is found that u^^Ju asymptotically reaches the value 1.22 to 
1.25 with increasing R, 

36. The Turbulent Velocity Distribution in the Region of 
Transition near the Entrance of the Tube.—Just as in the case 
of laminar flow, there is a region of transition behind the 
entrance of the tube in which the final velocity distribution 
is formed. Experiments by Kirsten and Nikuradse show that 

1 Fritsch, W., The Influence of Roughness on the Turbulent Velocity 

Distribution in Channels (German), Z, angew. Math. Mech., vol. 8, p. 199, 

1928. 

* See footnote on p. 42. 
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the length of tube in which this occurs is materially shorter 
than in the case of laminar flow and, moreover, is less 
dependent on the Reynolds’ number. Kirsten states that the 
transition takes place in a length of about 100 to 200 radii while 
Nikuradse’s experiments show the final distribution at about 
50 to 80 radii distance from the entrance. A still shorter transi¬ 
tion length (probably too short) is given by the theory of Latzko.^ 
According to him, with a Reynolds’ number of 20,000 the fins) 
velocity distribution has been formed after about 20 radii. 

Fi(}. 25.—Generation of turbulent velocity distribution in entrance region after 
tests by Nikuradse. 

Plgurc 25 shows the distribution at various distances from the 
rounded entrance as found experimentally by Nikuradse 

= ?—- = 25,000^. In Fig. 26 the ordinates of the curves of 

Fig. 25 have been plotted as a function of the distance from the 
entrance of the tube. For comparison the values as calculated by 
the theory of Latzko have been drawn in as dotted lines. It is 
seen that the curves even at a small distance from the entrance 
are radically different from those in the laminar case. In Fig. 27 
the velocity distributions for the turbulent and laminar cases 
have been plotted at a distance of 5 radii from the entrance. It 
is seen that the turbulent curve shows an extraordinary rapid 
velocity rise near the wall of the tube. Therefore it is impos- 

^ Latzko, H., Heat Transmission to a Turbulent Flow of Liquid or Gas 

(German), Z. angew. Math. Mech.^ vol. 1, p. 268, 1921. 
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sible to talk about a laminar flow even at such a short distance 
from the entrance as 5 radii. However, the experiments of Rey¬ 
nolds with a colored line in the center of the tube show that 

»o,o 
= 0,4 
= 0.6 

= C18 

= 0.9 

= 095 

= 0% 

Fic3. 26.—Turbulent velooity distributions according to tests by Nikuradse. 

Fig. 27.—I, velocity distribution in turbulent flow, 5 radii from entrance; 
II, the same curve calculated by the method of Latzko; III, velocity distribution 
for laminar flow at same distance from entrance. 

this line disappears only at a considerably greater distance from 
the entrance. It is possible to explain this by assuming that the 
first turbulence does not appear in the middle of the tube but 
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rather at its walls. Figure 28 shows the final velocity distribu¬ 
tion of turbulent flow in a circular tube at large distances from 

its entrance. 
36. The Pressure Drop in the Turbulent Region of Transition. 

In the case of laminar flow, there is a considerable extra pressure 
drop in the entrance region. This is not the case in a turbulent 
flow, if the entrance has been rounded off sufficiently. 

At the entrance of the tube, both kinds of flow experience a 
pressure drop of u‘^/2g due to the conversion of the static head 

Fig. 28.—Turbulent velocity distribution in pipe fai from entrance. 

into velocity head. In the case of laminar flow, there is an 
additional pressure drop equal to that same amount since the 
kinetic energy of the parabolic velocity distribution is twice as 
large as the kinetic energy of the constant velocity distribution at 
the entrance. For the turbulent flow the additional pressure 

drop due to this effect is only 0.09mV2?- 
If the pipe has a sharp-edged entrance, a vena contracte takes 

place. The contracted jet expands to the full pipe radius in a 
comparatively short distance causing an additional pressure drop. 
On page 243 of “Fundamentals,it was shown that the pres- 

^See footnote, p. 3. 
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sure drop caused by a sudden widening of the cross section is 
equal to 

h = !(«,, - w)^ 

where u\ is the mean velocity at the smallest cross section Ai 

and u is the mean velocity in the large cross section ^4. Intro¬ 
ducing the contraction coefficient a, 

Ui __ A __ 1 
u 1 a 

This becomes 

Taking a = 0.64, the pressure drop due to contraction becomes 

h = 0.31^- 

The total additional pressure drop therefore is made up of three 
parts, the entrance drop Ai, the acceleration drop and the 
jet contraction drop h^: 

h = hi-t hihz = ^(1 + 0.09 + 0.31) = 1.40^"- 
2g 2g 

In Fig. 17 this amount 1.40^2/2^ has been subtracted from the 
experimentally determined pressure drop, and the fact that such 
a smooth curve is obtained shows that this expression h is not 
far from the truth. 

37. Convergent and Divergent Flow.—A very slight conver¬ 
gence or divergence of the walls of the tube or channel has a 
definite influence on the shape of the laminar flow. In the first 
place, the critical Reynolds^ number determining the transition 
between the laminar and turbulent states is influenced consider¬ 
ably by a small deviation from parallelism of the walls. Secondly, 
the velocity distribution across the section and consequently 
the pressure drop vary considerably even with extremely small 
amounts of convergence or divergence. 

A slight convergence has the tendency to stabilize the laminar 
mode of flow, i.c., other conditions (shape of entrance, initial 
turbulence of water) being equal, the critical Reynolds’number 
increases considerably when the tube becomes slightly narrower 
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in the direction of the flow. For slight divergence the conditions 
are opposite. Other things being equal, the turbulent mode of 
flow appears at considerably smaller Reynolds' numbers. How¬ 
ever, exact numerical data for these phenomena are not available 
yet. Blasius^ has calculated the change in the velocity distribu¬ 
tion in the case of laminanflow through channels and tubes of 
varying width on the assumption that the divergence, ^.e., 
the angle between the wall and the axis, is small. Owing to the 
decrease in velocity, an increase in pressure appears which is 
superposed on the pressure drop due to friction. In case the 
resultant pressure drop in the direction of flow becomes negative, 
the possibility exists that the particles of the fluid in the neighbor¬ 
hood of the walls start moving backward. Denoting by y(x) 

the shape of the divergent wall in the two-dimensional case and 
by R the Reynolds’ number, the condition for beginning back¬ 
ward flow as found by Blasius is 

p ^ 
dx 4 * 

A comparison, however, of this approximate result with the 
exact solution by Hamel,leading to elliptic integrals, shows 

dv 
that only until about ^ ‘ ^ ~ ^ results of Blasius in 

satisfactory agreement with the exact solution. For diverging 
channels with straight walls (two dimensional) Pohlhausen'^ 
obtains the result that, even with vanishing divergence, a back¬ 
ward flow in the laminar boundary layer will occur as soon as the 
cross section has become about 22 per cent larger than the original 
section. However, the objection can be made that in the actual 
case laminar velocity distributions, with points of inflection as 
Pohlhausen finds them, can hardly occur. Among others, 
Rayleigh^ has shown that motions with such points of inflection 

1 Blasius, H., Laminar Flow in Channels of Varying Width (German), 

Z. Math, Physik, vol. 58, p. 225, 1910. 
2 Hamel, G., Spiral Motions of Viscous Fluids (German), Jahresber. 

deutsch. math. Ver., vol. 25, p. 34, 1916. 
^ Pohlhausen, K., Approximate Integrations of the Differential Equa¬ 

tion of the Laminar Boundary Layer (German), Z. angew. Math. Mech., vol. 

1, p. 252, 1921. 
^ Rayleigh, Lord, On the Stability or Unstability of Certain Fluid 

Motions, Proc. London Math. Soc.y vol. 19, p. 67, 1887, or Sci. Papers, vol. 3, 

p. 17. 
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in the velocity distribution are very unstable. The great influ¬ 
ence of a very small convergence or divergence on the velocity 
distribution of the laminar flow is shown in Fig. 29. At a Rey¬ 
nolds^ number R = 1,000, the velocity distribution II occurs 
when the convergence of the tube is as little as 2/ = 1 mm change 

It is seen that the velocity distribution in the convergent tube 
is somewhat flatter than the parabola in the middle of the tube, 

while the velocity gradient at the wall has become somewhat 
greater. On the other hand, in the case of a divergent flow, 
there is a decrease in the velocity gradient at the wall while the 
velocity in the middle of the tube becomes somewhat steeper. 
The following consideration will make this plausible. In the 
case of a convergent flow, the mean velocity increases in the 
direction of the flow which causes an additional pressure drop 
besides the pressure drop due to friction. Considering two 
cross sections, 1 and 2, with the pressures pi and pa where 
Pi > p2, and denoting the velocity in some point of the first 
cross section by Ux and the velocity of that point of the second 
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cross-section lying on the same streamline by u^, Bernoulli's 
equation, neglecting friction, gives 

Pi - P2 = Ui^) 

or 

W2 

In Fig. 30, K, and have been plotted as the sides 

of a right triangle. The hypotenuse of the triangle then repre¬ 

sents the new velocity W2, and, since constant across 
\ p/2 

Fig. 30.—Graphical repreaentatiun of the influence of convergence of the pipe 
on the velocity distribution diagram. 

the entire section, it is seen that the velocity-distribution curve 
has become flatter. For divergent flows an analogous reasoning 
can be applied whereby it is only necessary to interchange ui and 
U2 in Fig. 30. 

Of the two possible modes of flow, the turbulent one is of 
greater practical importance, especially for divergent channels. 
For technical applications it is of great interest to know in which 
manner the energy loss due to a change from velocity head to 
pressure head depends on the angle of divergence of the tube, 
at which angle of divergence a back flow at the wall of the tube 
starts, in which location of a divergent flow the energy loss 
takes place, etc. However, these questions have not yet been 
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answered satisfactorily. Beginnings of an answer can be found 
in the work by Gibson,^ Andres,^ Hochschild,*^ Elroner,^ Donch,^ 
and Nikuradse.® 

The experiments have been carried out partly with water and 
partly with air. In one of the investigations^ an experimental 
proof of the mechanical similarity between air and water flow 
has been given. 

Fig. 31.—Turbulent velocity distribution in rectangular channel after 
F. Donch. I, diverging channel (6 deg,); II, constant section channel; III, con¬ 
verging channel (5.8 deg.). 

The cross sections of the tubes or channels used were mostly 
rectangular, the distance between the two small sides of the 
rectangle being kept constant. The influence of the conver- 

^ Gibson, A. H., Proc. Roy. Soc. {London) (A), vol. 83, 1910. 
2 Andres, Experiments on the Transformation of Velocity into Pressure 

with Water, Forschungsarbeiicn V. D. vol. 76. 

8 Hochschild, Experiments on the Flow in Divergent and Convergent 

Channels (German), Forschungmrbeiten V. D. /., vol. 114. 
^ Kroner, R., Experiments on Flow in Sharply Diverging Channels 

(Gennan), Forschungsarbeiicn V. D. vol. 222. 

® DOnch, F., Turbulent Flow in Slightly Divergent and Convergent 

Channels (German), Forschungsarbeiten V. D. vol. 282. 

® Nikuradse, J., Experiments on the Flow of Water in Convergent and 

Divergent Channels (German), Forschungsarbeiten V. D. vol. 289. 
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gence or divergence of the walls on the velocity distribution is 

principally the same as with the laminar flow; in this case also 

the distribution becomes flatter in the middle for converging 

walls and steeper in the middle for diverging ones. Figure 31 

shows three such distributions as measured by Donch. 

When the angle of divergence becomes greater, backward 

flow at the walls takes place and the stream breaks away. This, 

however, does not take place symmetrically but always on one 

side only. The stream follows one of the walls but can be made to 

follow the other wall by very slight changes in the configuration. 

A disagreeable phenomenon in this connection (first observed 

by Kroner and later more extensively by Nikuradse) is that the 

two-dimensionality of the flow is destroyed. Even when the 

ratio of the sides of the entrance rectangle is as small as 1:8, 

the flow ceases to be two-dimensional before it breaks away from 

the wall at a diverging angle of 8 to 10 deg. 



CHAPTER IV 

BOUNDARY LAYERS 

38. The Region in Which Viscosity Is Effective for Large 
Reynolds Numbers.—A consideration of the influence of inertia 
forces simultaneously with viscosity forces as in Oseen^s theory 

(see page 264, ^^Fundamentals'^0 is possible only for very viscous 
fluids or for very small Reynolds^ numbers. In those cases, the 
“convection^’ terms of the acceleration become of importance 
only at very great distances from the body, where the velocity 
is hardly different from the velocity at infinity. Then Oseen’s 
hypothesis can be used as a good approximation. In the immedi¬ 

ate neighborhood of the body, however, where the velocity is very 
much different from the velocity at infinity, the flow is deter¬ 

mined practically entirely by the action of viscosity, and the error 

made in the calculation of the inertia forces there is of little 
importance. 

For large Reynolds’ numbers (t.e., large velocities or dimen¬ 

sions, small kinematic viscosity) the situation becomes entirely 
different. The inertia forces are then of much greater impor¬ 
tance than the viscosity forces, at least at a sufficient distance 

from the walls or other obstacles, i.e.y with the exception of the 
layer of fluid near to the obstacle. However, if the influence of 
viscosity is completely neglected in the differential equation, 
erroneous results are obtained, as is discussed on page 104. This 

is due to the fact that the equations of Navier-Stokes in that 

case reduce to those of Euler where the boundary condition that 

the fluid does not slide along a solid wall cannot be satisfied (see 
page 260, ‘^Fundamentals”2). 

An important improvement in the treatment of fluid motions 

at great Reynolds’ numbers, i.c., for fluids of small viscosity, 
has been made by Prandtl.® His method will now be discussed. 

iSee footnote, p. 3. 
*See footnote, p. 3. 
* Prandtl, L., On Fluid Motions with very Small Friction (German), 

Proc. Zd Intern, Math, Cong.y Heidelbergy 1904. 

58 
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Exi^rience has shown that the motion of a fluid of small 
viscosity (water or air) around a body has velocities of the 
same order of magnitude as the velocity at infinity in practically 
the whole region with the exception of a thin layer surrounding 
the body. In the case of a streamlined body, as shown, for 
instance, in big. 32, the experimental streamlines and velocities 
coincide practically with those calculated on the basis of potential 
flow. More accurate experimental investigations of the velocity 
field ha^^e shown that right at the body, however, the fluid does 
not move relative to it. The transition from zero velocity to 
the velocity which can be observed near the body takes place in a 
very thin layer. 

Therefore the field splits up into two regions: 
1. Surrounding the surface of the solid body there is a thin 

layer where the velocity gradient dw/dn generally becomes very 
large, so that even with very small values of the velocity w the 

Fig. 32.—Cross section of streamlined body (strut). 

shear stresses r = assume values which cannot be neglected. 

2. The region outside of this layer, where the velocity gradient 
does not become so large, so that the influence of viscosity is 
negligible. Here the streamline picture is entirely determined 
by the action of pressure, i.e.y it is the picture of a potential flow. 

In general, it can be stated that the layer in which the velocity 
is reduced to zero owing to the action of viscosity is thin for small 
viscosities or, to be more general, is thinner the greater the Rey¬ 
nolds' number. Owing to this circumstance it is possible so to 
simplify the equations of Navier-Stokes for the thin boundary 
layer that an approximate solution becomes possible. The 
simplifications in this differential equation of the boundary layer 
are the more in agreement with experimental facts the thinner the 
layer is; or in other words, the solutions of the boundary-layer 
differential equation have an asymptotic character for Reynolds' 

numbers tending to infinity. 
39. The Order of Magnitude of the Various Terms in the 

Equation of Navier-Stokes for Large Reynolds’ Numbers.— 
Before proceeding to the simplifications in the equation of Navier- 
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Stokes (see page 258, ^‘Fundamentals^'O for the boundary layer, 
we shall first discuss the order of magnitude of the various quan¬ 
tities appearing in the equation. For this purpose we shall 
consider conveniently a two-dimensional flow along a very thin 
flat plate as shown in Fig. 33. It will be found useful to employ 
dimensionless variables. The velocities will be expressed in 
terms of the velocity at infinity as a unit; the lengtha in terms 

-> X 

Fig. 33.—Flow along a flat sharpened plate. 

of a characteristic length of the body, etc. The kinematic 
viscosity then is replaced by the reciprocal of Reynolds^ number 

JL = i 
VI R 

The ;r-component of the velocity u is supposed to be known 
outside the boundary layer and to be of the order 1. Assuming 
that the thickness b of the boundary layer is small of the first 
order, we deduce from the identity 

that the velocity gradient perpendicular to the plate du/dy is 
of the order 1/5. This also can be seen by introducing the vari¬ 
able rj = y/din the boundary layer, where rj is of the same order 
as X. By this artifice, the coordinates are measured, as it were, 
with two different measuring sticks. We then have 

du ^ 1 du 

dy 5 dr} 

and 
d^u ^ 1 d^u 

dy^ 

Since du/drj and d^uldr}^ are of the order 1, it is seen that duldy 

is of the order 1/5 and d’^uldy^ is of the order 1/6^. 

^ See footnote, p. 3. 
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Since, furthermore, du/dx is of the order 
equation 

= 0 
dx^ dij 

1, the continuity 

shows that dv/dy is also of the order 1. With the aid of the 
identity 

it is seen that v must be of the order d; the same must be true of 

the quantities dv/dx and d-v/dx‘^j while d-v/dy'^ is of the order 
5/52 - 1/8, 

Therefore the orders of magnitude of the various dimensionless 

terms in the two-dimensional equation of Navier-Stokes for the 

flow along a flat plate are as follows: 

and 

In these equations 5' is the ^^dimensionless thickness of the 

boundary layer/’ f.e., the thickness of boundary layer 8 measured 

in terms of the characteristic length / or 6' = 8/L 
On the right side of Eq. (la) d‘^u/dx‘^ is small with respect to 

dhi/dy^ so that it can be neglected. P'or the same reason d'^v/dx^ 
in Eq. (16) can be neglected with respect to dH/dy^. 

Inside the boundary layer the effects of the friction forces are 

of the same order as those of the inertia forces. The convective 

terms giving the effect of inertia on the left side of Eq. (la) are 

of the order 1. Therefore it follows that l/R is of the order 

5'2. Conversely, it follows that in a flow phenomenon where the 

viscosity is so small that in the fluid at large its action can be 

neglected with respect to that of inertia, a boundary layer is 

formed with a thickness 8' = 5/Z of the order 
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In order to get a quantitative picture of this, the following 
problem is presented: What is approximately the thickness of 
the boundary layer in the flow of Fig. 33 at a distance I = 100 cm 
from the sharp edge of the plate when the velocity at infinity is 
100 cm/sec and the fluid is water of 20°C? (v is 0.01 cmVsec). 
The Reynolds’ number then becomes R = ul/v = 10^, and 
therefore 8' is of the order 10“^. The thickness of the boundary 
layer 8 == 8'1 is of the order 10“^ X 10^ cm, z.e., of the order of 
1 mm. In a layer of about this thickness the transition between 
the outside velocity and the velocity zero at the body is taking 
place. 

40. The Differential Equation of the Boundary Layer.—Since 
in Eq. (16) the various terms are of the order 8\ dp/dy must be of 
the same order. It is seen, therefore, that the influence of the 
^-dimension on the pressure inside the boundary layer can be 
neglected at least in the case of a thin boundary layer. In 
other words, in the layer the pressure is approximately equal to 
that in the outside flow so that in a sense the outside flow forces 
its pressure upon it. This result obtained from Eq. (16) exhausts 
the information that can be had from that equation and hence it 
will not be considered any further. 

Since inside the boundary layer p is a function of x only and 
independent of y, and since further dhi/dx^^ is negligible with 
respect to d'^u/dy^, the equation of Navier-Stokes for the bound¬ 
ary layer becomes 

dw du _ dp 1 

dt ^dx p dx R dy^ 
(2) 

Besides this equation, there is the continuity equation 

du dv _ 

which can be satisfied by introducing the stream function ^ 

u 
dy^ ^ dx 

Then Eq. (2) becomes 
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This differential equation of the boundary layer thus derived 
for the flow along a straight wall can also be written for curved 
boundaries; however, then it assumes a somewhat more com¬ 
plicated form.^ 

The boundary conditions to be imposed on Eq. (2a) are as 
follows: First, for y — Oj i.e.y at the boundary, we have 

Second, when y becomes of the order 6', the velocity in the 
boundary layer must asymptotically become equal to that of the 
outside flow or, since v in the boundary layer is neglected, u 

must become equal to Uy where u denotes the velocity parallel to 
the wall at a distance equal to the thickness of the boundary 
layer. 

For instance, if the pressure distribution along the boundary 
of the body has been determined experimentally (see Art. 85), 
the velocity u can be calculated from Bernoulli’s equation 

. p 
= —const. -• 

2 p 

Therefore the total flow phenomenon of a fluid of small vis¬ 
cosity round the solid body is decomposed into a flow in a very 
thin layer where the internal friction has a definite influence 
and an outside flow where the viscosity has practically no effect. 
The pressure inside the boundary layer is determined by the flow 
outside it. 

These statements are true only in case the boundary layer 
is actually sufficiently thin to warrant the simplifications made. 
This, however, is not always the case. Considering, for instance, 
the potential flow round a circular cylinder, we know that this 
solution gives a maximum pressure at the front stagnation point 
and a decreasing pressure from there along the sides of the cylin¬ 
der extending to 90 deg. on either side of the stagnation point. 
The velocity along the wall rises to double the value of the 
velocity at infinity at the two points 90 deg. away from the stagna¬ 
tion point. From there on, a retardation of the fluid particles 
takes place until the rear stagnation point is reached. This is 

^ Hiembnz, K., The Boundary Layer of a Straight Circular Cylinder in a 
Homogeneous Fluid (German), Dissertation, Gottingen, 1911; Dtnglerfi 
polytech, J. (German), vol, 326, p. 321, 1911, 
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accompanied by a corresponding increase in the pressure. Inside 
the boundary layer the individual fluid particles are always 
decelerated owing to the action of friction. This retardation 
does not influence the outside flow very much as long as the par¬ 
ticles are in the region of decreasing pressure. However, in the 
part of the boundary layer where the pressure is increasing, it 
may happen that the fluid particles, which have lost kinetic 
energy due to the action of friction, do not find it possible to over¬ 
come the pressure increase. In the case of a potential flow, the 
kinetic energy accumulated is just sufficient to reach the rear 
stagnation point. In the actual case, the particles in the bound¬ 
ary layer will come to rest in the region of increasing pressure and 

Fia. 34.—Flow in boundary layer with increasing pressure in the direction of 
flow. 

from then on they will experience an acceleration in the opposite 
direction owing to the pressure gradient. The point of the 
boundary layer where this reversal in the motion takes place can 
be calculated only by an integration of the equation of the 
boundary layer as was done by Blasius^ for the case of a circular 
cylinder. The criterion determining the point where this back 
flow starts is 

du _ 

dy dy^ 
(for y = 0), 

since at the wall apparently u = 0 (see Fig. 34). 
41. Definition of Thickness of the Boundary Layer.—The 

definition of the thickness of a boundary layer is arbitrary to a 
certain degree, since theoretically the transition of the velocity 
from zero to the potential velocity takes place asymptotically. 
In Fig. 35 the velocity distribution in the boundary layer is shown 
schematically for the case of two-dimensional flow past a plate, 
as discussed in Art. 39, the ^/-coordinate being exaggerated 1,000 

^Blasius, H., Boundary Layers in Fluids of Small Viscosity (German), 
Dissertation, Gdttingen, 1907, or Z, Math. Physik^ vol. 66, p. 1, 1908. 
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times with respect to the x-coordinate. The thickness of the 
boundary layer may be defined arbitrarily as the distance from 
the plate where the velocity differs 
by 1 per cent from the velocity of y 
the outer flow. 

Another definition of the thickness 
of the boundary layer is obtained by 
taking the intersection of the asymptote 
and a straight line through the origin 
of the velocity-distribution diagram 
(Fig. 85) such that the shaded areas 
are equal. This thickness is somewhat 
smaller than the one defined first. A __ _ 
third possibility is the point of intersec- 
tion of the asymptote with the tangent 35.—Definition of thick- 

^ noss of boundary layer. 
at the origin of the velocity-distribution 
diagram. This leads to a thickness which is only little smaller 
than that due to the previous definition. 

An entirely different manner of defining the thickness of the 
boundary layer is shown in Fig. 36 and expressed by the formula 

u8* ~ ^ 

This thickness 8* therefore represents the amount by which the 

layer. ^^e boundary of the region to 

which we shall apply this analysis. It consists of a piece I 

starting at the front end of the plate, two straight pieces 
perpendicular to the points x = 0 and x = I, and finally a 
streamline which at the point x = I has the distance S 
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from the plate. The momentum theorem, as discussed in Art. 
100, Fundamentals”^ states that the flow of momentum through 
the bounding surface is equal to the sum of the pressure integral 
and the viscous force along the piece I of the plate. Since for 
the upper part of the bounding surface a streamline was chosen, 
no fluid passes through it. Consequently, the amount of momen¬ 
tum flowing through the two vertical parts of the boundary is the 
same. The mass of the fluid flowing through per second is 

approximately equal to where b is the width in the 2;-direc- 

tion. This amount entering the left vertical part of the bound- 

Fiq. 37.—Application of momentum theorem for finding the order of magnitude 
of boundary layer thickness. 

ary with a velocity u loses some of its velocity while flowing 
to the right so that a decrease in momentum takes place. The 
amount of this decrease is not known since in order to calculate 
it we have to know the velocity distribution at the point x = I and 
consequently we have to know the thickness of the boundary 
layer, which is just what we want to find. However, it is pos¬ 
sible to state that the change in momentum is proportional to 
pdbu^. Since in a flow along a flat plate dp/dx = 0, the pressure 
integral taken on the entire boundary becomes zero. Therefore 
the decrease in momentum must be equal to the frictional force 
acting on the piece I of the plate. On page 4 it was shown that 
this force is proportional to plbu/5. We have thus found that 

pdbu^ = 
0 

or 

'See footnote, p. 3. 
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where C is a numerical factor which cannot be found from this 
momentum consideration. The expression here derived for the 
flat plate is also valid for curved boundary layers in the steady 
state, which can be understood from the derivation given in 
Art. 39. For motions starting from rest (non-steady state), the 
relation valid for the first instant is 

8 = 

The factor of proportionality C for the steady state can be cal¬ 
culated from the exact solution of Blasius.^ Taking as a defini¬ 
tion of the thickness of the boundary layer the intersection 
between the tangent at the origin and the asymptote, C was 
found to be 3.4, so that the thickness of the boundary layer along 
a fiat plate becomes 

43. Skin Friction Due to a Laminar Boundary Layer.—By 
integrating the differential equation of the boundary layer, 
Blasius found for the shear stress to = the expression 

ro = 0.332^^1 

The frictional force along one side of a flat plate having the length 
I and the width h then becomes 

Df — ” 0.3326'\/= 0.664?>\//ipu^i 

or, introducing the drag coefficient C/, defined by 

where 

this can be written 

Df cj • 

t' 

S = bl = surface, 

Df 
1.328 „ pm’* 

or 
1.328 

c/ = 

a value which agrees very well with experiments on smooth 

surfaces. 
^ See footnote, p. 64. 

Vr' 
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Figure 38 shows the velocity distribution in the boundary 
layer along a flat plate as calculated by Blasius. The points 

indicated by little crosses in this figure 
were found experimentally by Hansen’ 
by means of a very fine Pitot tube. It 
is seen that the agreement is very 
good. 

Based on some plausible assump- 
tions regarding the velocity distribution 
in the boundary layer, von Kd,rmd.n“ 
gave an approximate procedure for cal¬ 
culating the thickness 5 as a function 

—of X and i for bodies of arbitrary shape 
Fig. 38.—Velocity distribu- by means of the momentum theorem, 

tion m boundary layer along procedure is valid only for very 
HoT/ j3i£tr/0« 

thin boundary layers. Having found 
the value of 5, the drag coeflSicient for any arbitrary body 
can also be calculated. In the anal3^sis the pressure along 
the boundary of the body is supposed to be known. The 
calculations are started either by assuming the pressure 
distribution of the corresponding potential solution or by taking 
the pressures as found by experiment. The latter procedure 
gives a somewhat better agreement with the observed facts, as 
was shown by Hiemenz.'^ This method of von Kdrmdn was 
carried through to numerical results for a few examples by 
Pohlhausen.'* A very good agreement with the calculated values 
by Blasius was found. This is a distinct step forward since the 
results are found with very much simpler mathematical methods 
than the exact solution of Blasius, which involves complicated 
series developments. 

44. Back Flow in the Boundary Layer as the Cause of Forma¬ 
tion of Vortices.—The most important characteristic of the 
boundary layer is that under certain conditions a back flow takes 
place in it which leads to the creation of vortices and to a complete 
change in the flow pattern. This phenomenon will be illus¬ 
trated later by photographs. 

1 Hansen, M., The Velocity Distribution in the Boundary Layer of a Sub¬ 

merged Plate (German), Z. angew. Math, Mech,^ vol. 8, p. 185, 1928. 

* Von KXbmAn, Th., On Laminar and Turbulent Friction (German), 

Z. angew. Math. Mech., vol. 1, p. 233, 1921. 

* See p. 63. 

* See p. 63. 
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An experiment on the two-dimensional flow through a diverg¬ 
ing channel (Fig. 39) shows that in the first instant after starting 
a pure potential flow takes place, having a decreasing velocity 
in the direction of the flow owing to the increase in cross section. 
This decreasing velocity is accompanied by an increase in pres¬ 
sure, as follows from Bernoulli's equation, which means that some 
kinetic energy is transformed into pressure energy. A very 
short time after starting, however, the particles of the fluid in the 
thin boundary layer lose all their kinetic energy since they are 
slowed down, not only by the pressure gradient, but also by the 
friction forces. The particles 
thus coming to rest still experience 
the effect of the pressure gradi- 
ent of the existing potential flow i 
so that they now start to move | 
backward. The flow in the —■—-r- 
boundary layer corresponding y g W ^-^ 

to this is shown in Fig. 39, in 
which for the sake of clearness (T 
the vertical ^/-ordinate has been 1 
very much exaggerated. The - or. ^ i 

Fi«. 39.—Boundary layers in a 
photographs of Figs. 24 to 33, diffuser flow. The zz-component per- 

Plates 12 to 14, show a corre- pendicular to the walls is greatly 
r 1 n exaggerated. 

spending phenomenon for the flow 
past the tail end of a blunt body. In these pictures the flow is 
from left to right. Figure 24 shows the potential flow pattern, but 
in Fig. 25 it is seen that some fluid particles at the wall have come 
to rest. This fact is demonstrated by the particles appearing as 
sharp white points. The velocity diagram is approximately that 
of Fig. 39c. The next picture. Fig. 26 on plate 12 (being the 
third in a succession of exposures of a movie film), shows how these 
particles have taken a backward velocity from right to left and 
how at a certain distance from the body there is a line of fluid 
particles at rest relative to the body. Outside this line the 
original flow from left to right persists. This condition is illus¬ 
trated approximately by the velocity distribution of Fig. 39d. 
In the following pictures of Plates 13 and 14, it is then seeii how 
this dividing line of the forward and backward flows is unstable 
and breaks up into separate vortices. This finally causes a 
complete change in the flow pattern and consequently in the 
pressure distribution at the body. 
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46. Turbulent Boundary Layers.—It will be shown later that 
at a very high Reynolds^ number the laminar boundary layer at 
the front part of the flow around a sphere becomes turbulent. 

In the flow through a circular 
tube the jump from laminar to 
turbulent flow can also be con¬ 
sidered as the transition of a 
laminar boundary layer into a 
turbulent one; in this case, the 
flow at the center of the tube 
follows the change also. On 
page 35 it was seen that the 

turbulent flow in a tube always 
distributions of the shape of 

Fig. 40.—Laminar velocity distribution 
near entrance {x/rR — 0.02). 

transition from laminar to 
takes place with velocity 
Fig. 40. Here we have a laminar boundary layer at the wall of a 
cylinder which becomes turbulent when the critical Reynolds^ 
number is reached. Experiments have shown that this turbulent 
boundary layer differs from the laminar one mainly in having a 
very much higher velocity gradient at the wall (Fig. 41). 

Fig. 41.—Turbulent velocity distribution. 

46. The Seventh-root Law of the Turbulent Velocity Dis¬ 
tribution.—PrandtP has succeeded in finding an expression foi 
the turbulent velocity distribution using only the resistance law 
for turbulent flow through smooth tubes as found by experiment. 
The assumptions on which his result is based are: (1) that the 
velocity distribution in the immediate neighborhood of the wall 
cannot depend on the radius of the tube but is determined com¬ 
pletely by the quantities m and p, as well as by the shear stress 
To at the wall; (2) that the velocity distribution curves remain 
similar with increasing velocity, when the maximum velocity 

1 Prandtl, L., Investigations on Turbulent Flow (Grerman), Z. angew. 
Math, Mech.j vol. 5, p. 136, 1926. See also von Kdrmdn, footnote, p 68. 
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in the center of the tube is doubled, all other velocities are 
doubled also, so that 

u = (3) 

where y is the distance from the wall of the tube and r is its 
radius. 

For a piece I of the tube, the relation between the pressure drop 
Pi — P2 and the shear stress to at the wall is 

so that 
(pi — = 27rr[To 

21 
Pi — P2 = — • To. 

T 

On the other hand, Blasius^ law for the pressure drop in smooth 
tubes (see page 42) is 

Pi - P2 = 
0.133 I 

r 

Therefore the shear stress at the wall becomes 

To 
0.033 

pu^ 0.0S3pv^W~'^*u'^''*. (4) 

Now we specialize the general relation expressed by Eq. (3) in so 
far as we assume u to vary proportional to an unknown power 
q of the distance from the wall: 

Writing 
get 

= const. X u and eliminating u from Eq. (4), we 

To = const. 

or 

To const. pv^W''^ 
yj'* ‘9 — 

yU-<l (5) 

The first assumption discussed above, stating that the shear 
stress at the wall is independent of the radius of the tube, requires 
that the exponent of r be zero, so that the following relation for 

q is obtained: 
7 1 
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leading to 
1 

<7 = 7 

Therefore, based only on Blasius^ experimental law of pressure 

drop and on the two assumptions discussed above, it is found 

that in a turbulent flow through smooth tubes the velocity 

increases as the seventh root of the distance from the wall: 

u — 

Fia. 42.—The seventh j30wor of 
velocity in a turbulent flow. 

the 

In Fig. 42 the seventh power of the velocity as obtained experi¬ 

mentally is plotted against 

the distance from the wall. 

The fact that this curve 

comes out to be nearly a 

perfect straight line shows that 

the validity of the seventh- 

root law is not restricted to 

the immediate vicinity of the 

wall only but extends nearly 

to the center line of the tube. 

This could not have been anticipated. 

In Art. 30 it was seen that Blasius^ J^th-power law breaks 

down for Reynolds^ numbers above about 50,000, so that there 

the derivation of the seventh-root law has to be correspondingly 

changed. For instance, it has been found that for Reynolds^ 

numbers of about 200,000, the velocity distribution near the wall 

is represented more nearly by an eighth-root law. For a Rey¬ 

nolds^ number ten time§ as high again, we reach the tenth-root 

law. PrandtP has shown that the above derivation can be 

generalized so as to find a velocity-distribution law for any experi¬ 

mental pressure-drop law that may come up. 

Quite recently von Kdrm^n^ has shown that for theoretical reasons at 

very large Reynolds’ numbers the expression ■ can depend only on 
\/rc/p 

y/r with the exception of a narrow region near the walls where the viscosity 

has a decided influence. The quantity Vro/p appearing in the denominator 

is a velocity of the same order of magnitude as the turbulent velocities w' 

^ See footnote, p. 70. 

*VoN KXrmXn, Th., Mechanical Similarity and Turbulence (German), 
Nachr. Ges, Wiss.^ Gottingen, p. 58, 1930. 
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and v' discussed in Art. 33. Kd,rmdii’s fundamental assumption is that the 

mechanism of turbulence at all locations in the fluid is of the same nature 
and differs only in the units of length and time employed. From this 

assumption he finds for the shear stress at any point outside the region near 
the wall, 

T = k^A'^yL. 
\dyO 

In this iormula k is an empirical constant of a universal character. Since 

T = To^l — the formula for r leads to a differential equation for du[dy 

which can b(^ easily integrated twice and then gives an expression for u{y). 
Von Kdrmdn finds 

4 
log -Vi- 

For small values of y/r this becomes 

The agreement of this formula wh.li the velocity distributions found at very 

great Reynolds’ numbers is fairly good. The constant k turns out to be 

approximately 0.3G. 
The boundary between this region and the region near the wall in which 

the viscosity becomes important is determined by a definite value R\ of the 

Reynolds’ number yi^s/V^ph, The corresponding distance from the wall 

therefore becomes 

2/1 

Denoting by U\ the velocity corresponding to ?/i, the above formula allows 

a calculation of Umax — ai. Since the mechanism of the flow in the region 

of viscosity is also the same all over, U\ must be a multiple of ■%/ro/pi 

Finally, therefore, 

-4, 
. 2r\- 

- 1 

The relation between the shear stress to and the pressure-drop coefficient, 

X, expressed in terms of the maximum velocity, is 
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Using also a Reynolds’ number in terms of Wn^x, 

we get 

or shorter 

R - 
rUtoMLX 

X = 
{log R\/\ — log Ri -h k{0 — 1)1* 

4A^* 
X - 

llogK\/x + CP 

This formula gives a means for the calculation of X for a given value of R 
by means of successive approximations, which converge very well. The 

mean velocity can also be calculated so that a comparison with the tests is 

possible. The agreement with the recent measurements of Nikuradse,’ 
Schiller* and Hermann,^ has been found to be very good in the region of 

large Reynolds’ numbers. The value found for k was 0.44, and C = 2.83. 

Expressing the formula by means of instead of Um^x (with Rm — utlv), the 
equation still holds as an approximation formula: 

X __d_ 
|‘"log(ft™Vjw,) + Bp 

According to Nikuradse the values of the constants in this formula are 

A = 0.133 and B - 0.18. 

47. Shear Stress at the Wall in the Case of a Turbulent 
Boundary Layer and the Thickness of This Layer.—The constant 
in Eq. (5) can be calculated numerically when it is taken into 
account that the maximum velocity in the center of the tube is 
between 1.22 and 1.25 times as great as the mean velocity u. 

This is an experimental fact. Taking the average, z.e., 

= 1.235W, 

the expression for the shear stress at the wall, using Eq. (4), 
becomes 

j . pyy4r-y*u ^ 
1.235"/* ^ 

1 Nikuradse, J., Turbulent Flow of Water through Straight Tubes at 

very Large Reynolds’ Numbers (German), Vortrdge Aachen^ 1929, p. 63, 

Berlin, 1930. 

* Schiller, L., Pressure Drop in Tubes at High Reynolds’ Numbers (Ger¬ 

man), Vortrdge Aachen^ p. 69, Berlin, 1929. 

* Hermann, R., “Experimental Investigation on the Resistance Law in 

Circular Tubes at Great Reynolds’ Numbers” (German), Leipzig, 1930; Her¬ 

mann AND Burbach, ’'Flow Resistance and Heat Transmission in Tubes” 
(German), Leipzig, 1930. 
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or introducing the seventh-root law, namely, u = this 
is 

- To = 0.022Spp^*u''^y-^\ (6) 

With the introduction of the dimensionless number uy/v^ the 
formula becomes 

To = 0m2Spu4 lY- (6a) 
\uy/ 

As is evident from its derivation, this result is only true where the 
law of Blasius holds. 

This formula, which is independent of the radius of the tube, 
can be applied also to other cases of turbulent flow along smooth 
walls, for instance, along a flat plate where there is a relatively 
thin turbulent boundary layer. In this case, the pressure along 
the plate can be considered constant as a first approximation 
(the same is true with the corresponding laminar flow). The 
influence of the viscous resistance is felt in an increase of the 
thickness of the boundary layer along the plate. 

PrandtT and von Kdrmdn,^ who invented this method of 
calculation independently of each other, assume a velocity 
distribution in the boundary layer expressed by 

where u is the undisturbed velocity and b is the thickness of the 
boundary layer. This assumption was made as an analogy to the 
flow through tubes. The shear stress at the wall can then be 
calculated: 

TO = Q.Q22%pu‘‘(^^'■ (66) 

The total frictional resistance of one side of the plate of a length 

I and a width h then becomes 

This drag must be equal to the loss in momentum of the flow. 
In front of the plate each fluid particle has the velocity u; 

1 Prandtl, L., On the Frictional Resistance of Air (German), Oottinger 

Brgebnisse^ vol. 3, p. 1, 1927. 
* Von KArmXn, see footnote, p. 68. 
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at the end of it this velocity has diminished to u. The corre¬ 

sponding mass flowing by per second is puhdyy so that the loss in 

momentum becomes hpJu(u — u)dy. Substituting flie above 

velocity distribution and performing the integration, this 

becomes 

Equating this expression to the drag where tq assumes the 

value of Eq. (66), we get a relation from which b can be imme¬ 

diately deduced. For convenience, we first calculate 

which leads to 

or 

b dx 

db 

dx 
0.022Spur 

By integration, we obtain 

(7) 

Comparing this result with the corresponding expression for the 

laminar boundary layer on page 67, it is seen that the turbulent 

boundary layer increases with while the laminar layer 

increases with Therefore the turbulent boundary layer 

increases faster than the laminar one. 

48. Friction Drag Due to a Turbulent Boundary Layer.— 
Continuing the calculations for turbulent flow, the relation 

between the shear stress and the length x along the plate becomes 

Consequently the drag for one side of a flat plate of length I 

and width b is 
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D, - . 0.0288,8<(|y‘-6_^'|£ 
or 

where R = ul/v. Introducing the familiar symbol X for the 
drag coefficient, we obtain finally 

Ih = X.S • 

with S == 6Z. 
Figure 78 shows the curve 

. _ 0.072 

^ ■ w 
It has to be noted that the boundary layer at the front end of a 
well-sharpened plate is laminar at first and becomes turbulent 
at a certain critical Reynolds' number. According to the 
measurements of Van dcr Hegge-Zijnen, this happens at 

R,r = {u • d/v)rr = 3,000. 
The deviations from Blasius' law mentioned in Arts. 30 and 46 

are noticed in this case also for large Reynolds' numbers, from 
ulfV — 5,000,000 on. The derivations of Arts. 47 and 48 
have been extended to this more complicated case by Schiller and 
Hermann.^ Further, von Kdrmdn^ has extended his resistance 
theory of Art. 46 to the case of the flat plate. Both procedures 
lead to good agreement with the experiments. 

The friction resistance of a rotating disk can be calculated 
in the same manner as the resistance of the flow along a plate at 
rest, as was shown by von Kdrman in the paper cited on page 68. 
Ijet M be the moment or torque acting on the central circular 
part of an infinitely large rotating disk wetted on one side only. 
Further let r be the radius of this central part and U its circum¬ 
ferential speed; then we have for laminar boundary layers: 

„ . 
^ Schiller, L, and Hermann, Resistance of Plates and Tubes with Large 

Reynolds* Numbers (German), Ing. Arch,^ vol. 1, p. 391, 1930. 

2 Von KXrmAn, Th., Mechanical Similarity and Turbulence (German), 

Proc. Zrd Intern. Cong., Stockholm, 1930, vol. 1, p. 85. 
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and for turbulent boundary layers 

M = 
2 

where 

V 

49. Laminar Boundary Layer inside a Turbulent One.— 
Where in the previous discussions the terms “ velocityor 
^Welocity distribution” were used in connection with turbulent 
flow, the mean value with respect to time was understood (see 
page 46). The actual velocity is found by superposing on this 
mean value the fluctuating flow which is characteristic of tur¬ 
bulence, amounting to approximately ±5 per cent of the mean 
velocity. The magnitude of these fluctuations must decrease 
rapidly when approaching the walls. This is particularly true 
for the component v perpendicular to the wall; the variations 
in the velocity u along the wall decrease much less rapidly; but 
in any case right at the wall the relation 

is true for the mean values both of r and of u. Assuming that 
the seventh-root law of the turbulent boundary layer is valid up 
to the wall itself, it follows that the shear stress becomes infinitely 
large since du/dy increases beyond all limits for i/ = 0. On 
account of this paradoxical conclusion the assumption is seen 
to be false. In fact the seventh-root law of the turbulent flow 
is valid up to a very small distance from the wall but ceases to 
be true exactly at it since there the transportation of momentum 
due to the turbulent fluctuations becomes zero. Therefore 
between the turbulent boundary layer with its seventh-root law 
and the wall there must be a very thin laminar boundary layer. 
Inside tliis latter layer the mean velocity gradient is found from 
the above equation for to, where tq is determined by Eq. (6). 
The part of the velocity-distribution diagram of Fig. 28 near to 
the wall has been plotted to a larger scale in Fig. 43 (up to y/r = 
0.1, where y/r is measured from the wall, whereas it was measured 
from the center line in Fig. 28). It is seen that the seventh-root 
law approaches the wall with a tangent of zero angle. For large 
Reynolds’ numbers the assumption is justified that the laminar 
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boundary layer directly at the wall is very thin so that its velocity 
gradient can be approximately assumed to be a linear function 
of the distance 

To 

With Eq. (4), this becomes 

0.033 

0.033/£-«— • li - 1,1 
p y 

(8) . 

U 

Fig. 43.—Laminar boundary layer at the wall for turbulent flow through pipe. 

or introducing the seventh-root law and the relation = 
1.235^ 

y ^ ^ 

r 
(9) 

An approximate representation of the laminar boundary layer 
inside the turbulent one is found in Fig. 43, which corresponds to a 
Reynolds^ number R = u • r/v = 40,000. At a distance from the 
wall y/r = 68.4/40,000^^ = 0.0065, the seventh-root law is 
joined to the origin by a straight line. In the actual case, there 
is naturally no break in the velocity distribution curve, but a 
gradual transition. This is due to the fact that the turbulent 



80 APPLIED HYDRO- AND AEROMECHANICS 

fluctuations do not die out completely at a finite distance from 
the wall but rather diminish asymptotically toward it. 

It is of interest to know the value of the velocity u in terms of 
the mean velocity u at a distance from the wall equal to the thick¬ 
ness of the laminar boundary layer. Using the relations 

we find 

or with Eq. (7) 

u , 0.033 
To = and To = — 

y 
piV, 

- = 0.033/2?*^. 
u r 

^ = 0.033i2W • 
u 

68.4 2.26 
(10) 

In this connection, we refer to the early measurements oi Stan¬ 
ton,^ who from his experiments concluded the existence of a 
laminar boundary layer inside the turbulent one. 

Although the thickness of these laminar boundary layers 
generally is extremely small, , they can become of importance in 
the problem of heat convection due to flow past the body. This 
will not be discussed here in detail, but the reader is referred to 
some papers by PrandtU and to the experimental results of 
Schiller.^ 

60. Means of Avoiding the Creation of Free Vortex Sheets 
and Their Consequences.—It was seen in Art. 40 that back flow 
will take place in the boundary layer when there is a decrease 
in the velocity due to an increase in the pressure, as for instance 
in a diverging channel. The result of this back flow, as shown 
in Figs. 24 to 31, Plates 12 and 13, is that a free vortex sheet gets 
into the fluid. This sheet has been called ^Tree^^ in order to 
distinguish it from the boundary layer, which is a vortex sheet 
clinging to the body. The ultimate fate of such a free vortex 
sheet is to break up into individual vortices. 

This formation of vorticity is undesirable, not only because 
it dissipates energy, but also because it changes the configuration 
of the flow so drastically that, in the divergent channel for 

4%e footnote, p. 46. 

^ pRANDTL, L., A Relation between Heat Convection and Flow Resistance 

in Fluids (German), Physik, Z,y vol. 11, p. 1072, 1910. Also a Note on 

Heat Convection in a Tube (German), Physik. Z.y vol. 29, p. 487, 1928. 

* Schiller, L., Investigations on the Problem of Heat Convection (Ger¬ 

man), Z. angew. Math, Mech.y vol. 8, p. 468, 1928. 
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instance, the desired pressure increase is practically prevented. 
The phenomenon can be avoided by making the angle of diver¬ 
gence of the channel (and consequently the pressure gradient) 
sufficiently small. In that case, the fluid outside of the boundary 
layer has sufficient power to pull the particles in the boundary 
layer with it against the small increase in pressure, so that back 
flow is avoided. This influence of the outer flow on the boundary 
layer is due to viscosity action in the case of laminar flow, while 
in the case of turbulent flow the transportation of momentum is 
the main agent pulling through the slow particles. The same 
principles apply to the flow around so-called streamlined bodies, 
such as, for instance, airships or airplane wings. Here, the 
pressure gradient at the tail is made sufficiently small by letting 
the body thin itself out very gradually. In this way a back 
flow in ^ the boundary layer and the consequent formation of 
eddies can be avoided. The pulling^’ action of the outer 
flow on the particles in the boundary layer jigain is much 
greater for turbulent boundary layers than for laminar ones on 
account of the interchanging of momentum of the individual 
particles of fluid inside the turbulent layer with those outside. 

61. Influencing the Flow by Sucking away the Boundary 
Layer.—A method for preventing back flow and eddy formation 
at blunt bodies like spheres or cylinders, or in diverging tubes, 
was suggested by Prandth in 1904. It consists of sucking away 
into the interior of the cylinder those particles of the boundary 
layer that are just on the point of standing still before flowing 
back, thus preventing them from starting an eddy. The photo¬ 
graphs of the flow round a circular cylinder with sucking on one 
side, published by Prandtl in 1904, show clearly how effectively 
the eddy formation is prevented. The power consumed by the 
process is relatively small, since very small volumes are involved, 
which was experimentally proved by J. Ackeret^ for a diverging 
pipe and by 0. Schrenk^ for a sphere and several airfoils. Fig- 

1 See footnote, page 58. 
® Ackeret, J., Sucking of the Boundary Laycjr (German), Z. des 1 . D. 

vol. 36, p. 1153, 1926. 
® ScHRENK, O., Experiments on a Sphere with Sucking Away of the 

Boundary Layer (German), Z. Flugtech. Motorluftschiffakrt, vol. 17, p. 366, 

1926; Airfoils with Sucking of the Boundary Layer (German), Luftfahrifor^ 

schung, vol. 2, p. 49, 1928; Experiments on a Wing with Sucking of the 

Boundary Layer (German), Z. Flugtech, Motorluftschiffahrtj vol. 22, p. 259, 

1931. 
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ures 36 to 38, Plate 15, show how drastically the flow pattern 
can be influenced by this method. Figure 36 shows the flow 
from left to right through a very sharply diverging channel with¬ 
out any sucking. It is seen, as was to be expected, that the 
fluid does not follow the walls of the tube at all, but breaks away 
from them at an early stage. Figure 37, Plate 15, shows the 
flow which takes place when a small volume of the fluid is sucked 
away at the upper side, while the same phenomenon with sucking 
on both sides is shown in Fig. 38. The flow in this picture is 
from left to right and is very nearly a potential flow where the 
kinetic energy is transformed into pressure energy according to 
the equation of Bernoulli. 

Fig. 44.—Flow round two rotating ryliriders. 

62. Rotating Cylinder and Magnus Effect.—Another method 
to prevent eddy formation, also initiated by Prandtl, consists of 
making the surface of the body move in the direction of the flow. 
This prevents a slowing down of the fluid particles at the surface 
and consequently prevents eddy formation. The method offers 
greater practical difficulties than the one previously discussed in 
Art. 51. For the simple case of two touching cylinders rotating 
in opposite directions the experimental diflSculties are not great, 
the streamline picture being as shown in Fig. 44. 

Not only was this case investigated by Prandtl (1906) but also 
that of a single rotating cylinder, which is of practical importance 
in connection with the ^^Flettner rotor.^^ The formation of 
eddies is avoided only on the side where the peripheral speed is 
in the same direction as the velocity of the outside flow, while 
on the side where these two velocities are opposite, the eddies 
develop so much easier. The important feature of this flow is 
the fact that owing to the one-sided eddy formation the entire 
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streamline picture becomes unsymmetrical. Figure 8, Plate 5, 
shows some moving pictures of the flow round a rotating cylinder 
starting from rest. The flow takes place from left to right and 
the rotation is clockwise; the ratio of the peripheral velocity 
u to the outside velocity v is kept constant equal to u/v = 4. 
Pictures 3 and 4 show particularly clearly how an accumulation 
of boundary-layer material is formed at the bottom side where the 
directions of the two velocities are in opposition. Owing to the 
small size of the pictures, the back flow inside the boundary layer 
is not visible. In picture 5 and the following ones, it is seen 
how this accumulation of boundary-layer fluid develops into 
a so-called ‘^starting vortex.’^ In accordance with the vortex 

theorems of Helmholtz this vortex remains bound to the same 
fluid particles, so that in the end it is washed away with the 
fluid. The phenomenon is analogous to the starting of an airfoil, 
as described in Art. 99. Just as in that case the streamline 
picture, which remains after the starting vortex has been washed 
away, can be considered as the superposition of a potential 
flow round the cylinder and a circulation. The amount of circu¬ 
lation superposed has been taken such that in Fig. 45 the two 
stagnation points just coincide. A comparison of the constructed 
Fig. 45 with the photographic ones of Fig. 8, Plate 5, shows a 
very close agreement. Figure 46 gives the theoretical picture for 
the value u/v = 2; the corresponding photographs are shown in 
Fig. 13, Plate 8. For values u/v greater than 4, there will be a 
ring of fluid around the cylinder rotating about it permanently. 
Figure 9, Plate 6, shows the conditions for w/v = 6. 
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Just as in the case of the airfoil, there will be a lift on the 
rotating cylinder as soon as the starting vortex has been washed 
away. An inspection of the streamlines shows that they are 
crowded together considerably on top of the cylinder while on 
the bottom side they are spaced farther apart than normal. 
Consequently the velocity above the cylinder is larger than 
below, and an application of Bernoulli's equation (permissible 
outside the boundary layer) leads to an excess pressure below the 
cylinder and a lower pressure above it. In other words, there 
is a force perpendicular to the direction of the flow—a lift. 

Since this lift is proportional to the circulation, it depends very 
much on the value of u/v. For w/t; = 4 (Fig. 45) the two stagna¬ 
tion points just coincide, and the theoretical calculation gives 
for the lift 

L = ^ir^vHd, 

SO that 
Cl = 47r (see Art. 89), 

where d is the diameter and I the length of the cylinder. Meas¬ 
urements in the wind tunnel show a lift considerably smaller 
than this. The explanation for this discrepancy lies in the fact 
that the flow is not sufficiently two dimensional, as it was 
assumed in the calculation. Following a suggestion of Prandtl, 
this was corrected by providing the ends of the cylinder with 
disks of great diameter rotating with it. Figure 47 shows the 
so-called polar diagram" (see Art. 90) of the cylinder with and 
without disks. It is seen that a rotating cylinder is capable 
of giving a much greater lift than an airfoil of the same projected 
area. However, this extra lift is dearly paid for with a drag 
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several times greater than that of a good airfoil. Figure 48 

shows the relation-between the lift coefficient and the ratio of the 

peripheral and outside velocities for cylinders with and without 

disks. 

V 

l-’iG. 48. 

Fig. 47.—Lift cocfficierit vs. drag coefficient for rotating cylinder for various val¬ 
ues of u/v] (a) with disks at the ends of twice cylinder diameter; (b) without disks. 

Fig. 48.—Lift coefficient vs. u/v; same a and b as in Fig. 47. 

In the next chapters on airfoils, yet another possibility of 

avoiding eddy formation will be discussed by which new energy 

is fed to the particles of the boundary layer which have been 

slowed down too much. In principle this is done by blowing air 

jets of great kinetic energy into the boundary layer through 
suitable nozzles. However the energy required for doing this is 

greater than that required for getting the same result by sucking 
some of the boundary-layer material into the inside of the wing. 



CHAPTER V 

DRAG OF BODIES MOVING THROUGH FLUIDS 

^3. Fundamental Notions,—When a body is moved with a 
uniform velocity along a straight line through a fluid at rest, it 

experiences a force in a direction opposite to that of the motion. 
This force is called the ^Mrag^' or ^Vesistance/' 

Now the system of the fluid and of the body is given a uniform 
velocity opposite to that of the body. This brings the body to 
rest, while at infinity the fluid assumes a velocity equal and oppo¬ 
site to that velocity w^hich the body had before. Since the 
superposition of such a uniform rectilinear motion on the system 
cannot have any dynamic consequences, the drag of a body is the 
same whether the fluid is at rest and the body is moving uniformly 
through it or whether the body is at rest and the fluid flows 
against it. 

This presupposes that the individual particles of the fluid (at 
a sufficient distance in front of the body at rest) move completely 
uniformly and parallel to each other. This is not the case with 
natural fluid motions, as, for instance wind or water flowing 
through rivers. In Arts. 141 and 142 it will be seen to what 
extent this uniformity has been accomplished in artificial air 
motions in wind tunnels. 

64. Newton’s Resistance Law.—Historically the first resist¬ 
ance law was proposed by Newton, the founder of mechanics. 
With a small modification this law still holds today for motions 
where the drag is due to inertia, which often is the case for fluids 
of very small viscosity, like water or air. Newton's law is 

D = fApW^y 

where D is the drag, w the velocity, p the density of the fluid, and 
A the projected area of the body in the direction of the flow. 
The factor of proportionality / is as yet undetermined. 

This law was derived by Newton from the momentum theorem: 
the force exerted by the fluid on the body is equal to the rate of 
change of momentum in the fluid due to the presence of the body. 

86 
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Newton assumed instead of air or water a hypothetical medium 
of the following properties: the space round the body is filled 
with a large number of particles having mass but no length 
dimension. These particles which are at rest are not connected 
to each other, nor do they exert any influence whatever on each 
other. The body moving through this medium experiences 
impacts from all the particles in its path and consequently imparts 
momentum to them. The total mass of all the particles coming 
to impact with the body per second is pAw. This mass is given a 
velocity w' which is proportional to the velocity w of the body. 
The amount of momentum created per second, which has to be 
equal to the resistance or drag of the body, thus becomes 

D = pAww' = fApw^. 

The resultant momentum depends on the assumption of whether 
the impact is elastic or non-elastic. Experiments indicated a 
more or less non-elastic impact. In the case of flow against a 
plane inclined under the angle a with respect to the direction of 
flow, Newton assumed this plane to be completely smooth. Thus 
only the component of the velocity perpendicular to the plane 
was annihilated. The mass per second affect/cd is pAw sin a and 
the loss in velocity w sin a so that the force perpendicular to the 
plane becomes pAw"^ sin^ a. 

66. Modem Ideas on the Nature of Drag.—Newton^s assump¬ 
tion led to a very simple formula for the proportionality factors/; 
however, it was found later that these factors did not coincide 
with the experimental ones. Newton's calculation for a square 
plane perpendicular to the direction of motion gives a factor 1, 
while the experiment leads to 0.55. The agreement is still 
worse for skew planes or for rounded bodies like spheres; while 
for streamlined bodies like those of airships, the drag is very 
much smaller than according to the Newtonian theory. The 
cause for this discrepancy is connected with the fact that New¬ 
ton's assumption only takes into account the conditions at the 
front of the body, while those at the sides and at the tail end are 
left out of consideration. But just this tail end is of fundamental 
importance for the value of the drag. 

The modern conception of the nature of drag is based more on 
the fact that the free paths of the individual particles or molecules 
are much too small than that the assumption of Newton could 
agree with experience. It has to be assumed therefore that 
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the motion of a fluid particle is so influenced by its neighbors 
that neighboring particles stay together and occupy approxi¬ 
mately the same amount of space during any short interval of 
time. The paths of the various particles therefore influence each 
other. This makes it clear that a calculation of the total drag 
by a simple summation of the actions on the various elements 
of the surface of the body, as in Newton’s theory, is not 
admissible. The entire shape of the body is of importance 
for the force on any element of its surface on account of the 
mutual influence of the various fluid particles. 

66. The Deformation Resistance for Very Small Reynolds’ 
Numbers.—In the following discussion we assume that the body 
is moving in a straight line with a uniform velocity and is com¬ 
pletely immersed in a homogeneous and incompressible fluid. 
Free surfaces do not occur and therefore the action of gravity is 
neutralized by static buoyancy. This leaves only viscous forces 
and inertia forces to act on the body.^ In Art. 4 it was seen 
that the ratio of inertia forces and viscosity forces is given by 
the Reynolds’ number, i,e.j by an expression of the form wl/v, 
where w is the velocity of the body, I some characteristic length 
of it, and v the kinematic viscosity of the fluid. It is seen that 
for very large fi (sirup) or also for very small velocities or body 
dimensions (falling drops of a fog) the Reynolds’ number can 
become very small. In such cases the influence of the viscosity 
forces on the geometry of the motion and consequently on the 
drag becomes of much greater importance than the influence of 
inertia. The body pushes itself through the fluid which is 
deformed by it. The resistance caused by this is due primarily 
to the forces necessary for the deformation of the various fluid 
particles. A system of stresses in the fluid is built up which 
transmits the force of the body to the fluid particles far away from 
it. In the case where there are solid walls in the neighborhood, 
these stresses are transferred to them. In an infinite extent of 
fluid, however, the force causes an acceleration of the total ocean 
of fluid. For very small Reynolds’ numbers this deforming 
action takes place up to large distances from the body; for large 
Reynolds’ numbers, however, it is restricted to the boundary 
layer. In the latter case the direct action of these viscous stresses 
is called the ^^skin friction” or ^‘friction drag.” In the '^creep- 

^ The case where, due to free surfaces in the fluid, the gravity lorpe is 
causing wave formation will be discussed in Art. 66. ^ 
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ing'' motion discussed here, this skin friction at the surface of the 
body and the pressure drag (both of which presuppc^e an inertia 
action) can be neglected with respect to the deformation 
resistance. 

67. The Influence of a Very Small Viscosity on the Drag.— 
In most practical cases, however, the fluid is less viscous or the 
dimensions and velocities of the body are much larger. In 
such cases the inertia forces are very much larger than the 
viscosity forces. For instance, for a sphere of 2-in. radius moving 
with a velocity of 3 ft/sec in water, the ratio of the inertia forces 
to the viscosity forces is of the order of 50,000:1, since the Rey¬ 
nolds^ number is approximately 50,000. The conclusion lies 
close at hand that under such conditions the influence of the 
viscosity on the drag can be completely neglected and that the 
drag is entirely determined by the inertia forces. However, a 
calculation of the drag due to inertia action in a completely 
frictionless fluid (which will be carried out in Art. 68) shows it 
to be zero. Since, therefore, inertia forces alone cannot be made 
responsible for the existing drag, it must be concluded that 
viscosity forces, however small they may be compared to the 
inertia forces, are necessary for the explanation of a drag. The 
great importance of a very small amount of viscosity in a fluid 
is due to the fact that it can completely change the picture of 
the flow in the ideal fluid (potential flow) on account of the 
formation of boundary layers and vortices (see Art. 44). Because 
of the influence of these, the potential pressure distribution at the 
surface of the body is changed to such an extent that the resultant 
of the pressure forces becomes different from zero. The com¬ 
ponent of this resultant in the direction of the motion is the drag. 
Indirectly, therefore, vifc^cosity is the cause of the existence of 
drag. 

In most practical cases, the inertia forces in the fluid at a 
certain distance from the body or the vessel walls will be very 
much greater than the viscosity forces, so that the latter can be 
neglected. However, as was explained in Chap. IV, this is not 
permitted in the thin boundary layer near the body. Since it is 
an experimental fact that fluid particles exactly on the surface 
of the body cannot flow past it, and since on the other hand the 
potential-flow theory of the ideal fluid leads to solutions with 
finite velocities along the surfaces, it follows that close to the 
surface of the body the viscosity forces become of the same order 
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of magnitude as the inertia forces. The change in the velocity 
from the ouster field to zero at the body itself takes place in a 
thin layer and consequently causes shear stresses in that layer. 
These stresses integrated over the entire area of the body make 
up the so-called ^Triction drag” or “skin friction.” 

For all practical cases, therefore, where the velocities are so 
great that the motion is not of the creeping type, the effect of 
viscosity on the drag of a body is twofold: (1) there are friction 
forces tangential to the surface of the body, the resultant of which 
is the friction drag; (2) the viscosity causes a change in the geom¬ 
etry of the streamline picture which in turn causes a change in 
thp pressure field and consequently leads to a pressure drag. 
'^68, The Relative Importance of Pressure Drag and Friction 
Drag with Various Shapes of the Body.—The shape and the 
position of the body determine to a great extent which part of the 
total drag is due to pressure and which is due to friction. In Fig. 
49 a case is shown where the viscosity hardly makes a change in 

Fig. 49.—Streamlined body. 

the streamline picture, z.e., a breaking away of the fluid from the 
body and its consequent eddy formation are prevented by the 
choice of a suitable shape. Because of this, the pressure drag 
is very small and of the same order as the friction drag. The 
pressure distribution in this case has a resultant which hardly 
differs from zero. 

The converse is found, for instance, in the case of a flat plate 
moved in the direction perpendicular,to its plane. Here the 
total resistance is almost entirely due to pressure while the friction 
drag can be neglected. The streamline pattern in front of the 
plate looks practically like the potential flow. On the back 
side, however, the viscosity forces have altered the shape of the 
velocity field completely, causing a corresponding change in the 
pressure. 

On the other hand, if a flat plate is moved in the direction of its 
plane, there is hardly any influence of the viscosity forces on the 
potential-flow pattern. The resultant of the pressure forces is 
practically zero, so that the total drag, which is naturally smaller 
as in the previous case, is almost equal to the skin friction. 
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A subdivision of the total drag into its pressure and friction 
components can be effected experimentally by subtracting from 
the total resistance, as measured on the aerodynamic balance, 
the pressure drag as calculated from the pressure distribution, 
which in turn is obtained experimentally (see Art. 85). The 
difference thus found is the friction drag. 

Formally the subdivision into friction drag and pressure drag 
can be accomplished by decomposing the total force on each 
element of the surface into a normal and tangential component. 
The normal components are to be interpreted as pressures, and 
their total resultant, or rather its component in the direction of 
the motion, is equal to the pressure drag. The tangential com¬ 
ponents are friction resistances, and their resultant in the direc¬ 
tion of the motion is the friction drag. 

For rough surfaces, it is convenient to carry out this decom¬ 
position into normal and tangential components for a smooth 
surface passing through the individual roughness irregularities. 
This leads to a subdivision into the two kinds of drags, but it 
is observed that the pressure drag on the individual roughness 
elevations in this case is calculated within the friction drag. 
The pressure drag depends to a great extent on the form of the 
body, while the friction drag is determined roughly by the area 
of its surface. This has led to the designations ‘^form drag^’ 
and surface drag.^^ These names, however, are not very 
fortunate since the fpction drag also depends somewhat on the 
form of the body. ^ 

69. The Variation of the Drag with Reynolds’ Number.—It 
was seen that the total drag is composed of the three components: 
deformation drag,^ friction drag at the surface of the body, and 
pressure drag, which is caused by the change in the geometry of 
the flow. For small Reynolds' numbers the drag consists 
primarily of the first kind, whereas for larger Reynolds' numbers 
it is made up of the two latter kinds. Which part of the total 
resistance is pressure drag and which is friction drag depends on 
the form and the position of the body. As generally stated, the 

iThe idea of ‘‘deformation resistance” for very small Reynolds’ num¬ 

bers as a part of what is usually denoted as friction drag is introduced here 

for the first time by the author. The work done by the deformation drag 

is ultimately dissipated into heat in the total field, including those parts at 

great distances from the body. The work of the friction drag in its more 

restricted sense and that of the pressure drag are dissipated into heat more 

specifically in the wake of the body. 
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drag depends on the shape and the position of the body, on its 
velocity, its size, and on the properties of the fluid. It is seen 
therefore that the complications of the problem of resistance in 
its most general form are so great as to leave little hope for a 
complete solution. 

This is the reason that for the present most investigators have 
determined only the relation between the total drag and certain 
other physical quantities, without entering into details regarding 
the subdivision into the three kinds of drag. Since Newton’s 
resistance law (discussed in Art. 54) in many cases agrees fairly 
well with the facts (although the underlying theory is wrong), 
it has become customary to write the drag formula in the form 

D = number • 

where w is the velocity of the body relative to the undisturbed 
fluid, p the density of the fluid, and A the projected area of the 
body in the direction of the flow.^ 

Introducing the dynamic pressure pie“/2, this drag can also 
be written 

The factor of proportionality c, the “drag coefficient,” is 
different for various shapes and various positions of the body. 
On the basis of the Newtonian conception of air resistance, it 
was thought for a long time that for a given shape and position 
of the body the drag coefficient was a constant (z.e., independent 
of the size of the body and its velocity). It was thought there¬ 
fore that for a given body the resistance law was completely 
known as soon as the drag coefficient had been determined for 
one single velocity. In particular, it was believed that with 
the drag coefficient thus determined the resistance of any other 
body geometrically similar to the test specimen could be 
calculated. 

Experience has shown, however, that the conditions are much 
more complicated than this, which is not surprising after the 

^ Instead of taking the projected area in the direction of the flow, it is also 

possible to take any other characteristic area of the body or the square of a 

characteristic length of it. In the case of airfoils, it is customary to take the 

greatest possible projection. In case of comparison of drags of various air¬ 

ship bodies, one could also take A — f.c., the square side of a cube 

having the same volume as the airship body. 
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discussions of the previous articles. The simple relations just 
outlined are practically true for bodies where the total drag 
consists almost exclusively of pressure drag and where the 
geometry of the flow, in particular the location of the breaking 
away of the fluid, is determined by sharp edges (as, for instance, 
with a plate perpendicular to the direction of the flow). In 
all other cases, however, where the resistance consists not only 
of pressure drag but also of friction drag or of deformation drag, 
the drag coefficient does depend on the size and velocity of the 
body. The reason for this is that geometrical similarity does 
not imply mechanical similarity and consequently does not 
imply similar flow patterns. 

In Art. 4 it was seen that the condition for mechanical similar¬ 
ity, when geometrical similarity is insured, consists in having the 
same ratio between the inertia force and the friction force in 
similar points near the two bodies. In other words, mechanical 
similarity exists when the Reynolds^ numbers for the two cases 
are the same. Only then are the drag coefficients for the two 
cases necessarily the same; a change in the Reynolds^ number 
causes a change in the drag coefficient. This has been verified 
completely by experimental resiilts. We have therefore 

D = cA^ = 

By using formally Newton^s quadratic resistance law, all the 
complications of the various effects of the viscosity are expressed 
by the functional relation between the drag coefficient and the 
Reynolds' number. The knowledge of the law of similarity is a 
great advantage since, in carrying out the tests, it is necessary 
to vary only one parameter—for instance, the velocity. Then 
the dependence of the drag coefficient on the body dimensions 
and on the kinematic viscosity is automatically determined. A 
knowledge of the drag coefficient as a function of the Reynolds' 
number, therefore, enables us to calculate the drag of a certain 
shape for all fluids, all velocities, and all body dimensions. The 
relation itself, however, can be ascertained only by experiment, 
and for each shape and position of the body the experiment has 
to be repeated. In other words, to each shape and position 
of the body there belongs a characteristic function c = f{R). 

60. The Laws of Pressure Drag, Friction Drag, and Deforma¬ 
tion Drag.—First some general statements on the subject will be 

made: 
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1. In case the total drag of a body consists almost exclusively 
of pressure drag, the function f{R) is practically a constant 
(except for small Reynolds^ numbers): 

D = const. 

This is the case, for instance, with plates moved perpendicularly 
to their plane or generally for bodies with sharp edges where the 
fluid breaks away at definitely determined points of the body. 

2. On the other hand, if the total resistance is practically 
entirely due to friction, as with a plate moved along its plane, 
two different resistance laws have to be distinguished, according 
to whether the Reynolds^ number R = Iw/v {I is the length of 
the plate in the direction of the flow) is smaller or larger than 
about 5.10^ It is assumed that the surface of the plate is smooth. 

a. For values of R smaller than about 5.10^’, Blasius^ derived a 
formula on the basis of PrandtPs boundary-layer theory. He 
found that c is inversely proportional to the square root of 
the Reynolds’ number, so that the resistance law appears in the 

form 

D = 
1.327 

^forR = ^ < 5-10®^ 

where S is the total surface of the plate. 
b. For Reynolds’ numbers greater than 5.10® (z.e., from about 

ten times the limit mentioned above), experiments of Wiesels- 
berger^ and Gebers® indicate that the drag coeflBcient is propor¬ 
tional to the reciprocal of the fifth root of Reynolds’ number. 

_ 0.074 pw^ 
for ft = — > 5 -10® 

V ) 
This change in the resistance law is caused by the fact that for the 
lower range of Reynolds’ numbers the flow along the plate is 
laminar, while it becomes turbulent for the higher range (see 
Art. 63). 

^ Blasius, H., Boundary Layers in Fluids of Small Viscosity (German), 

Z. Math. Physik, vol. 56, p. 1, 1908. 

^ WiBSELSBERGER, C., Investigations on the Frictional Resistance of 

Canvas Covered Plates (German), Gdttinger Ergebnissc^ vol. 1, p. 121, 1926. 

* Gbbbrs, Note on the Experimental Determination of the Resistance of 

Bodies Moved in Water (German), Schiffbau^ vol. 9, 1908. 



DRAG OF BODIES MOVING THROUGH FLUIDS 95 

c. In the intermediate region a transition between the two 
resistance laws takes place, which, according to L. Prandtl,^ can 
be represented by the formula (see Art. 86) 

0.074 _ 1,700 
(for 5-10^ < R< 5*10«) 

3. For very small velocities or dimensions or for very viscous 
fluids (Reynolds^ number smaller than one) Stokes’s law (Art. 261, 
“Fundamentals”^) gives proportionality of the drag with the first 
power of the velocity and the first power of the length dimension. 
In terms of Newton’s resistance law, this can be formally 
expressed as a proportionality with the reciprocal Reynolds’ 
number: 

D = const, jxlw — R 1) 

where I is a characteristic length dimension of the body. It is 
found, therefore, that the deformation resistance is not propor¬ 
tional to the square but to the first power of the velocity. 

61. General Remarks on the Experimental Results.—During 
the last half century a great number of resistance measurements 
in air and water have been carried out, and an extensive literature 
on the subject has been accumulated.'*^ However, the measure¬ 
ments of the last 20 years have been of more importance than the 
earlier ones. The cause for this is that the older experiments 
were practically all based on Newton’s impact theory of the 
resistance, according to which the drag is determined solely 
by the shape of the front side of the body. Only after it was 
appreciated that the flow around a body has to be interpreted 
as a flow of a continuum, the necessary conditions for properly 
conducting drag measurements were recognized. In partic¬ 
ular, it had to be appreciated that there should be left sufficient 
space round the body so that the fluid can flow past it in an 
undisturbed mannei:. Also it is necessary to take care that the 
flow is not disturbed by the presence of other obstacles situated 
either to the side or even behind the body under test. The older 
measurements, which neglected these conditions more or less, 
show considerable spreading of the experimental data, whereas 

^ See footnote, p. 75. 

2 See footnote, p. 3. 
® A good bibliography up to the year 1910 can be found in the book by 

G. Eiffel, “The Resistance of Air” (French), Paris, 1910. 
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the modern experimental results agree very well among them¬ 
selves. With modern experiments it is also found that the 
drag of geometrically similar bodies at the same Reynolds’ 
number is the same whether the body is iboved through a fluid at 
rest or whether the body is at rest and the fluid is flowing against 
it (if sufficient care is taken that the fluid is moving uniformly, 
without too much vorticity). In the following articles the 
experimental drag coefficients will be given as functions of the 
Reynolds’ number for various shapes of the body. 

n- WOl 

Fig. 60.—Drag coefficdent V8. Keynolds’ number for two-dimenBional flow round 
circular cylinder. 

62. The Relation c = f(R) for the Infinite Cylinder.— 
Figure 50 shows this relation for a cylinder of infinite length with 
its axis perpendicular to the direction of the flow {i.e., the two- 
dimensional case). The region of Reynolds’ numbers of practical 
interest is enormously wide, in this case up to about 8 • 10^, In 
the ordinary manner of plotting, the region of the smaller 
Reynolds’ numbers (up to about R = 10,000) shrinks together 
so much that no detail of the curve can be recognized. In order 
to circumvent this difficulty, it has been found practical to plot 
the logarithms of the drag coefficients as well as of the Reynolds’ 
numbers instead of these quantities themselves. Another 
way of doing the same thing is to plot the drag coefficient and the 
Reynolds’ number itself on logarithmic paper. Figure 51 shows 
the curve of Fig. 50 replotted in this manner. It was determined 
by C. Wieselsberger by measuring the resistances of a number of 
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cylinders of various diameters (from 0.002 in. to 12 in.) at various 
velocities. From these experiments the drag coefficient was 
determined by the usual formula 

D 

The fact that the drag coefficients of cylinders of various diam¬ 
eters lie on a single curve is to be interpreted as an experimental 
verification of Ihe law of similarity. 

In the region of li between 16,000 and about 180,000, the quad¬ 
ratic resistance law is found to hold with good accuracy, the 

Ficj. 51.—Like Fig. 50, hut plotted on logarithmic paper for cjdinder of infinite 
length and for one of fiv^c-diameters length. {Wicsehhergcr.) 

drag coefficient being practically constant == 1.2. With decreas¬ 
ing Reynolds' numbers the drag coefficient first decreases,^ but 
with a still further decrease of U the value of c increases again. 
The smallest value of R for which the resistance coefficient was 
determined is 2.1. For very small values of R {R <K 1), Lamb- 
has derived a formula for the drag of a cylinder, assuming 
preponderance of the viscosity action. This relation between 

1 Relf, E. F., Discussion of the Results of Measurements of the Resist¬ 
ance of Wires, Rf-pLs. and Mem. Nat. Adv. Comm. Aeronautics (Londo7i), 

p. 47, 1913-1914. 
* Lamb, H., On the Uniform Motion of a Sphere Through a Viscous Fluid, 

Phil. Mag., vol. 21, p. 120, 1911. 
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the drag coefficient and R is drawn in the curve as a dotted line. 
It is seen that an extrapolation of the experimental curve fits the 
theoretical one of Lamb without any trouble. 

63. The Region above the Critical Re3molds* Number.—We 
shall now discuss a very peculiar phenomenon in the resistance 
law: in the region of Reynolds’ numbers between 2 • 10® and 5 • 10®, 

the curves of Fig. 50 or 51 
suddenly drop from c = 1.2 
to c = 0.3. This decrease in 
the drag coefficient is so large 
that the drag itself, instead of 
increasing quadratically with 
the velocity, even decreases 
with increasing velocity. Fig¬ 
ure 52, for instance, shows the 
resistance for a cylinder of 12- 
in. diameter and a length of 
40 in. It is seen that the 
resistance drops from 4 kg at 

15m/sec to about 2.5 kg, in spite of the fact that the velocity 
increases to about 21 m/sec. 

This fact was first discovered by Constanzi^ for spheres in 
water and by Eiffel- for spheres in air. PrandtP observed it sub¬ 
sequently and found an explanation in the fact that, in surpassing 
a certain velocity, the boundary layer at the front end of the 
sphere experiences a definite change. Below this so-called 
'^critical Reynolds’ number,” the flow in the boundary layer 
is laminar, while above this Reynolds’ number it suddenly 
becomes turbulent. 

A more detailed investigation shows that the mechanism is as 
follows: The eddies in the turbulent boundary layer cause 
small quantities of the fluid in the dead-water region (near the 
point of breaking away of the flow) to be pushed backward. 
This causes the point of breaking away to be moved backward 
along the body, which makes the total eddying dead-water region 

^ CoNSTANZi, G., Some Experiments in Hydrodynamics (Italian), Rendi- 

conti della esperienze e studi nello stab, di esp. e costr. aeronautiche del genio, 

vol. 2, p. 169, Rome, 1912. 

^ Eiffel G., On the Resistance of Spheres in Air (French), Compt. rend.y 

‘ vol. 156, p. 1697, 1912. 
^ pRANDTL, L., Air Resistance of Spheres (German), Nachr. Ges. Wiss, 

Gottingenf Math.-physik. Klasse^ 1914. 

wf'^/sec) 

Fig. 62.—Decrease in drag due to in¬ 
creasing velocity of cylinder. {Wiescls- 
berger.) 
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b6Coine smaller. Since the pressure drag of a body is deter¬ 
mined primarily by the kinetic energy in the eddies of the wake, 
it is clear that a decrease of the size in this region causes a smaller 
resistance. 

Detailed investigations^ have shown that for round bodies 
without sharp edges the manner of support of the test body in 
the air current and the state of turbulence of the air are of great 
importance. In case the body is supported by means of a strut 
attached to it in the dead-water region, and not by means of 
thin wires in tlie streamline region, the boundary layer is not 
disturbed and it is possible to obtain a greatly diminished drag 
in the region above the critical Reynolds' number without 
influencing the actual value of the critical Reynolds' number 
itself. On the other hand, if the air is made very turbulent 
(for instance, by putting a net of thin wires in front of the sphere), 
or if the flow in the boundary layer is affected greatly by putting 
a very thin wire around the body,^ the critical Reynolds' number, 
at which the drag coefficient suddenly drops, is found to be much 
smaller. Prandtl has proposed to use the critical Reynolds' 
number for a smooth sphere with a definite support as a measure 
for the uniformity of an air stream. 

64. The Resistance Law for Finite Cylinders, Spheres and 
Streamlined Bodies.—Figure 51 shows the resistance curves for 
an infinite cylinder and for a cylinder of 5 diameters length. In 
the latter case the flow is three dimensional, causing a consider¬ 
able decrease in the drag coefficient as compared to the case of 
two-dimensional flow. Figure 53 shows the drag coefficient for a 
Reynolds' number of 8.8 • 10^ as a function of the ratio between 
the length I and the diameter d. It is seen that the resistance 
coefficient of a cylinder of 1 diameter length {d/l = 1) is about 
half as large as for one of infinite length (d/l = 0). This 
phenomenon, which can be observed also with other bodies 
(for instance, with plates of various ratios between the sides), 
is due to the fact that in the three-dimensional flow the fluid can 
leak around the flat ends of the cylinder into the dead-water 
region, i.e., into the region of low pressure. This causes a differ¬ 
ent pressure distribution, leading to a smaller pressure drag. The 

^ Flachsbart, 0., New Experiments on the Air Resistance of Spheres 

(German), Physik. Z., vol. 28, p. 461, 1927. 
* WiESELSBERGER, C., The Air Resistance of Spheres (German), Z. 

Flugtech. Molorluftschifahrt, vol. 6, p. 140, 1914. 
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relative importance of this side leakage for long cylinders as 
compared with shorter ones can be seen in Fig. 53. The drag 
coefficient of very long cylinders becomes more and more nearly 
equal to that of the infinitely long one where two-dimensional 
flow takes place. 

Fig. 53.—Drag coefficient vs. t<lcnclcrness of cylinder d/I for R = wd v — 1()\ 

Figure 54 shows the resistance curve for a sphere and 
also for a circular disk perpendicular to the flow. The 
individual experimental points have not been plotted in the curve, 
but it has been found that the law of similarity holds well so 

gt 1 E 5 10 10^ 10* 10+ 10® 10‘ 

Fig. 54.—Drag coefficient va. Reynold®* number for sphere (a) and circular disk 
(6) according to Wieselsbergcr. 

that the individual points for spheres and disks of various diam¬ 
eters and at various velocities lie on smooth curves. For com¬ 
parison, the theoretical laws of Stokes and Oseen for small 
Reynolds' numbers are also drawn in the figure. 
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Figure 55 shows the curves c = f{R) for a number of bodies 
of revolution of various degrees of slenderness. The two upper 
curves in the diagram are for an ellipsoid of rotation with an 
axis ratio of 1: 0.75 (the small axis parallel to the flow); the next 
curves designated by a are for a sphere. The next two pairs 
of curves are for ellipsoids of rotation with an axis ratio of 1:1.33 
and 1:1.8 respectively (the small axis perpendicular to the flow). 
The curves designated by b give the drag coefficients for an 
airship model. It is seen that the transition between the 
high drag coefficient below the critical number to the small 

Fig. 65.—c — f(R) for rotationally symmetrical bodies of various slenderness. 
Full lines for uniform wind; dashed lines for turbulent wind. 

coefficient above the critical number is less definite and abrupt 
for slender bodies and for turbulent air than for blunt bodies 
and smooth air. 

66. Resistance in Fluids with Free Surfaces; Wave Resist¬ 
ance.— In case the body is not entirely submerged in one fluid 
but moves through the surface of contact between two fluids of 
different density, a new kind of drag appears owing to the forma¬ 
tion of waves. This is of great practical importance for the 
resistance of ships which are partially immersed in water and 
partially in air. The part of the total drag due to the air is 
generally so small that it can be neglected (except, of course, lor 
sailing vessels). 
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The total resistance is the sum of three quantities: (1) the 
friction drag of the water on the hull of the ship, (2) the pressure 
drag of the water, and (3) the wave resistance. This last 
resistance is due to the fact that pressure differences at the ship 
body cause differences in the level of the water, which leave the 
ship in the form of waves. These waves carry a certain amount 
of kinetic energy with them away from the ship. The problem 
of the calculation of the wave resistance is intimately tied up 
with the amount of wave energy which is flowing per unit of 
time through a surface traced around the ship. The velocity 
with which the wave energy is leaving the ship is not the phase 
velocity” of the waves, but rather their group velocity,” ^.c., 
the velocity of propagation of a group of waves in front of which, 
as well as behind which, the water is at rest. In a deep ocean of 
infinite extent (unlike a canal) the ship is accompanied by two 
systems of waves: (1) the cross waves” of which the crests are 
approximately perpendicular to the direction of motion of the 
ship and (2) the ^‘diverging waves” with about 40 deg. central 
angle emerging from the bow as well as from the stern of the 
ship. Depending upon the length of the ship and its velocity, 
the diverging waves of the bow and of the stern can interfere with 
each other to a greater or smaller extent. In case the interference 
causes a decrease in the intensity of the wave, the ship resistance 
becomes smaller, and conversely. The group velocity of these 
wave systems Is equal to half their phavse velocity, which in turn 
is equal to the ship velocity. In case the ship starts from rest, 
the wave system covers half the distance moved through. 

These conditions are modified when a ship moves in a canal 
of a finite width or in shallow water. In the first case the 
system of diverging waves loses its importance; only cross 
waves appear of which the group velocity depends very much on 
the ratio of the ship velocity to the velocity of the free waves 
in the canal. For a ship velocity which is equal to or greater 
than a certain critical velocity, the group velocity becomes 
equal to the phase velocity, i.e,, the wave energy moves with 
the ship and consequently is not dissipated. This leads to a very 
small wave resistance. However, the amplitude of the waves is 
also a function of the ship velocity, and it happens that this 
amplitude becomes a maximum at the critical velocity mentioned 
above. The combined effect is that the wave resistance increases 
to a maximum when the ship velocity approaches the critical 
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velocity, and then suddenly drops practically to zero when the 
critical velocity is exceeded.^ 

66. The General Resistance Law.—Since ship waves are 
formed under the simultaneous action of inertia forces and gravity 
forces, mechanical similarity of the wave motions is obtained for 
geometrically similar ships if the Froude's numbers F = V'^/lg are 
equal (F is the velocity of the ship, I its length, and g the accelera¬ 
tion of gravity), (see Art. 5). This relation was derived by 
completely neglecting the viscosity forces. The practical con¬ 
sequence of this law is that the wave system belonging to a certain 
ship model is similar to the wave system of the large ship itself if 
the velocities are proportional to the square roots of the lengths. 
If the wave resistance is assumed to be proportional to the 
projected area A, the density p and the square of the velocity F, 
the proportionality factor or wave-drag coefficient is equal for 
geometrically similar ships only if the Froudc\s numbers are 
equal. In general, therefore, the wave-drag coefficient is a 
function of Froude’s number. In the light of the relation found 
in Art. 59, it can be stated that the drag coefficient of a body in a 
viscous, incompressible fluid with free surfaces is a function of 
Reynolds^ number and of Froude^s number: 

For the sake of completenevss it is mentioned that, if the com¬ 
pressibility of the fluid cannot be neglected, the third dimension¬ 
less parameter on which the drag depends is the ratio between 
the velocity iv and the velocity of sound Ws in the undisturbed 
fluid: 

Generally, if inertia, viscosity, gravity, and compressibility all 
influence the resistance, the expression for it can be written as^ 

D = ^-T/i 
wl 

V 

^ MCller, C. H., Hydrodynamics of the Ship (German), “Encyclopaedic 

der mathematischen Wissenschaften,” vol. IV, No. 3, p. 563. 

* Cavitation, capillarity, and heat conduction have not been considered in 

this formula. 
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In case two dimensionless quantities are essential for the drag, 
mechanical similarity is not possible when using the same fluid, 
since two of these dimensionless variables cannot simultaneously 
remain constant when I is changed. 

In Chap. XIII, ^'Fundamentals,it is shown that in all cases 
where the ratio of the velocity of fluid to the acoustic velocity is 
small with respect to unity, the compressibility can be neglected. 

In the case of ship resistance, the friction drag or skin friction 
is less important than the pressure and wave resistances, since it 
depends only slightly on tbe shape of the ship. Therefore 
Froude^s similarity law is usually applied to the model tests. 
The friction drag is determined by a separate experiment and is 
then subtracted from the total resistance measured at the model. 
The ^^residuaF’ thus obtained is converted to the large ship by 
means of Fronde’s rule and to this residual the friction drag of the 
ship is added. This procedure we owe to Froude and it is applied 
generally to model resistance experiments. Recently, Telfer- 
has proposed a somewhat different procedure. 

67. Resistance to Potential Flow.—It is a deplorable fact that 
no theory of drag yet exists which even approximately does justice 
to the experimental results. A relatively unimportant exception 
is the case of ‘^creeping” motion, li <3C 1, which will be discussed 
in Art. 73. The general differential equations of viscous fluids 
lead to mathematical difficulties which may be unconquerable 
for a long time to come. 

Therefore an attempt was made to solve first the very much 
simpler problem of the motion of solid bodies through the ideal 
fluid (incompressible, homogeneous, and without viscosity). 
The integration of the differential equations for this case has 
been accomplished with much ingenuity and often with great 
mathematical complication. However it w^as found that it is not 
permissible to neglect the viscosity completely, even in case 
it becomes infinitely small (see Arts. 1 and 44). A great amount 
of literature exists on the theoretical solution of the flow around 
moving bodies in the ideal fluid. However we shall not dwell 
on these theories here, since they do not lead to a solution which 
conforms in the least with actually occurring flow phenomena. 

^ See footnote, p. 3. 

2 Tblfeb, W., ^‘Frictional Resistance and Ship Resistance Similarity,” 

paper read before the N.E. Coast Institute of Engineers and Ship Builders, 

November, 1928 (London, 1929). 
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68. Drag of a Sphere Is Zero for Uniform Potential Flow.— 
Only one special case will be discussed, since its mathematical 
solution is relatively simple—the motion of a sphere. Utilizing 
the method of sources and sinks, the potential function of a 
sphere of radius ro moving through 
a liquid at rest with the velocity a 
is found to be 

a r,? 

^ = 27^ ^ 

(see Art. 70, ^Tundamentals’^O- 
Since for a fluid without viscosity 
an action on the body can take place 
only in the form of pressure on its surface, the expression for 
the drag, z.e., for the force in the direction of motion, becomes 
(Fig. 56) 

Fio. 56. 

D -s 27rrosin<i? • ’ pcos <p. 

The general case of a non-steady flow will be considered. The 
pressure p has to be computed from the general equation of 
Bernoulli, which can be written as 

dt 

, w- p 
+ + “ == const., / p 

(see page 127, ^^Fundamentals^'0 assuming constant density and 
the action of gravity to be neutralized by buoyancy. The 
constant on the right-hand side depends on the time, since an 
infinite ocean of the fluid is assumed in which the pressure at 
great distances from the sphere remains constant. 

The expression 34^/dt corresponds to a definite point in steady 
space, while r has to be taken from a moving point. Choosing 
the ^'-direction such that it coincides with the direction of the 
velocity a, the rate of change with the time of the velocity 
potential # expressed in terms of a coordinate system at rest with 
respect to the fluid at infinity becomes 

, d^ __ + a—- 
dt dx 

iSee footnote, p. 3. 
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Here dt^ means a differentiation in a system moving with the 
sphere. Substituting the relation x = r cos <py this becomes 

^ + al — cos V?-— sm 
dt \dr rdip 

in 

Performing the differentiations, we get 

1 ro* da ,roV « 
__ ._cos^-a^^cos^^ I sin* ^)- 

Observing that 

- (f ) + (r^) " I' + I *’) 

we therefore obtain for p/p: 

V X 1 ro^ da 1 vu/ o 1-2 
— — const. = —7: ~ cos <p + a^-ri cos^ v? — o sm^ 
p 2 dt 2 

— a^^^cos^ <p + ^ sin^ 

The constant in this equation is the pressure at infinity pu 

divided by the density p, which can be seen by letting r approach 
infinity. 

For points on the surface of the sphere, ^.6., for r = ro, we get 
after some transformations 

V I da 1^2 o 
- = “0^037 cos (p + cos 2ip 
p 2 dt lo 16 p' 

Substituting this value for p in the formula for the drag, it is 
found that the integrals of the last three terms become identically 
equal to zero, so that the total result is 

n 2 3da 

In case the sphere moves with constant velocity, z.e., in case 
da/dt == 0, it is seen that no drag occurs. It is interesting to 
note that the individual fluid particles which are pushed aside 
by the sphere in its motion do not return to their former positions. 
The paths of the individual particles are not closed curves but of 
the shape shown in Fig. 57.^ Besides pushing the particles 
aside temporarily in passing, the sphere also displaces the fluid 

^ Eieckb, E., Notes on Hydrodynamics (German), Nachr. Ges. Wiss. 
Gdttingenj Maih.-phys. Klasse, p. 347, 1888. 
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particles permanently in the direction of its motion. This 
displacement, however, is of importance only in the vicinity of 
the wake. 

69. Resistance Due to Acceleration.—For an accelerated 
motion, it was seen that potential flow does lead to a resistance. 
In order to accelerate a sphere in an ideal fluid it is 
not only necessary to exert a force equal to the product of the 
mass of the sphere and its acceleration, but an additional force 

---- 

-- ^ 

-- ^ 

is required to accelerate the mass of the fluid particles set in 
motion by it. From the above equation for the resistance, it is 
seen that this additional force is equal to the product of the 
acceleration of the sphere and the mass of an amount of fluid of 
half its volume. The motion of a sphere in an infinite ocean of an 
ideal fluid is therefore completely identical with the motion of 
the sphere in a vacuum if its mass is increased with that of an 

amount of liquid equal to half its volume. 
The apparent increase in mass for various bodies depends on 

the shape and on the direction of motion. For instance, for the 
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two-dimensional flow round a circular cylinder, the apparent 
increase in mass is equal to the full mass of the cylinder in liquid. 
For other cylinders of non-circular cross section the apparent 
increase in mass can be calculated also. 

These considerations for spheres and circular cylinders have no 
great practical importance since the actual flow is entirely differ¬ 
ent from the theoretical one.^ However, for bodies of airship 
shape, where the actual flow is very much similar to the calculated 
potential flow, these investigations have some value. 

70. Application of the Momentum Theorem.—The theorem of 
no resistance of a sphere in uniform motion through ideal fluid, 
often referred to as the paradox of Dirichlet,^^ can be easily 
extended to bodies of arbitrary shape by means of the momentum 
theorem. If the body in its uniform motion would have a drag, 
the fluid should show an increased momentum. This should be 
detectable by integration on any closed surface traced around the 
body (see Art. 100, ^^Fundamentals^^-). Assuming a motion 
starting from rest in an infinite ocean of fluid, the velocity poten¬ 
tial of the flow at sufficiently large distances from the body 
decreases with 1/r^ Consequently, the velocity decreases with 
l/r‘\ Since, from then on, the body is supposed to move at a 
constant velocity, the pressure p, being of the order paw, also 
changes with 1/r^. 

The flow phenomenon considered before is a non-steady one. 
It can be made steady by giving the fluid and the body a velocity 
opposite and equal to the velocity of the body, which puts the 
body to rest. Around it we trace a sphere Ci and proceed to 
determine the momentum flowing through this sphere as well as 
the pressure integral over it (see Art. 100, ^T^undamentals^'^): 

^^'rfSoWiWi + ^^'pidS = D. 

Writing down the same expression for other spheres C2, C3, 
etc., with radii r2, rs, etc., it is found that both integrals decrease 
steadily with increasing distance from the body, owing to the 
fact that the velocities and the pressures decrease with 1/r^ 
while the areas of the spheres increase only with For the 

^ For small oscillations (where the amplitude is small with respect to the 
radius), the potential theory is found to agree with experiment. 

* See footnote, p. 3. 
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infinite radius both integrals vanish. Since their sum is inde¬ 
pendent of r, it follows that it must be equal to zero. This 
proves the theorem that a body of arbitrary shape moving uni¬ 
formly through an infinite ocean of ideal fluid does not experience 
any drag. 

It is noted that the proof supposes an infinite extent of fluid 
and only a single body, since otherwise it is not possible to 
proceed to the limit r = «.. It will be discussed later that, 
if there is more than one body or if there are a single body and a 
wall, forces between the bodies do occur even in the case of a 
fluid without viscosity. However, according to the energy 
theorem, these forces cannot be of the nature of a drag since the 

Fig. 68.'—Potoniial flow round two spheres. Since velocity between is great, 

the spheres attract each other. 

energy is not dissipated but remains in the neighborhood of the 
body. The only exception to this rule is if free surfaces exist so 
that energy can be dissipated by means of waves traveling away 
from the body (sec Art. 65). 

71. Mutual Forces between Several Bodies Moving through 
a Fluid.—When more than one body is moving through an ideal 
fluid, a mutual force is exerted between them, which, however, is 
generally very small. As an Example, consider the potential flow 
round two spheres of which the line joining the centers is per¬ 
pendicular to the direction of the flow (Fig. 58). The stream¬ 
lines between the two spheres are crowded together more than the 
lines outside, which, according to Bernoulli's equation, implies 
a smaller pressure between the spheres. Consequently, owing 
to the relatively greater pressure on the outside, the two spheres 
are pushed towards each other, which creates the impression that 
they are attracting each other. 
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Another example is when two spheres are situated one behind 
the other so that the line joining the centers is in the direction of 
the flow (Fig. 59). In this case the streamlines between the two 
spheres are spaced farther apart than those outside, involving a 
larger pressure here, which leads to an apparent repelling. The 
forces involved in this effect are very small; they are inversely 
proportional to the fourth power of the mutual distance. If the 
line of symmetry in Fig. 58 is replaced by a solid wall of infinite 
dimensions, the picture of the flow is apparently not influenced, 
so that a sphere moving in an ideal fluid parallel to a plane wall 
is attracted by that wall. 

72. Resistance with Discontinuous Potential Flow.—The 
great discrepancy between the theory of potential flow and the 
experimental observations soon caused endeavors to modify 

Fig. 59.—Potential flow round two spheres. They repel each other. 

the theory to such an extent as to calculate at least some 
resistance. These early attempts did not strike at the root of the 
trouble, i.e., at the viscosity of the fluid. The difficulties involved 
in the integration of the general equation of the viscous fluid 
seemed unsurmountable, and they still are. The attempts rather 
consisted of assuming certain discontinuities in the velocity field, 
such, for instance, as observed in the formation of a jet coming 
out of an orifice. 

The following discussion serves as a justification for the 
assumption of surfaces of discontinuity, in which the velocity 

changes suddenly (see Art. 92, ‘^Fundamentals^^O- Consider a 
circular cylinder of infinite length moving with the uniform 
velocity u perpendicularly to its axis (two-dimensional flow). 
There are two points Pi and P2 on the circle in the middle between 
the two points of stagnation of the flow, in which the tangential 
velocity reaches its maximum value 2w. In order to prevent the 
absolute pressure at those points from becoming negative, which 

^ See footnote, p. 3. 
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apparently is physically impossible, it is necessary that the pres¬ 
sure at infinity be at least Considering instead of the 
circular cylinder one of elliptical cross section with the major 
axis perpendicular to the direction of flow, the two points Px and 
P2 of maximum velocity show velocities greater than for the 
circular cylinder. This velocity increases for a diminishing 
minor axis of the elliptic cylinder, and in case the minor 
axis becomes zero, and the cylinder reduces to a line per¬ 
pendicular to the direction of flow, the velocities at its edges 
would become infinite. Therefore it is seen that for an elliptic 
cylinder of a decreasing minor axis the necessary pressure at 
infinity becomes larger and larger, and in the case of a flat plate it 
has to become infinitely large in order to prevent negative pres¬ 
sures at these points. 

These difficulties, caused by the fact that solutions of contin¬ 
uous potential flow in certain cases cannot be made to satisfy 
the physical requirements regarding pressure, were first avoided 
by Helmholtz‘S by assuming surfaces of separation across which 
the tangential velocity experiences a sudden change. This 
assumption of surfaces of discontinuity seems to be justified 
by experiment in so far as in the actual case no flow around the 
sharp edges of the plate is observed. The fluid rather breaks 
away from these edges, thus causing a region of dead water 
behind the body. A good explanation of the creation of surfaces 
of discontinuity, however, can be given only on the basis of the 
theory of the boundary layer. That such surfaces are not 
observed in practice is due to the fact that they arc unstable 
against small disturbances. 

The method of discontinuous surfaces represents real progress 
as compared to the theory of continuous potential flow since the 
new theory leads to a calculated resistance proportional to the 

^ Let po be the pressure at an infinite distance from the body, where the 

undisturbed velocity is equal to u. Let p' be the pressure at the two points 

of maximum velocity 2u. Bernoulli’s equation then reads 

^ , Po ^ (2a)^ , p[ 

2 ^ f> 2 ^ p 

so that 

p' ^ po - 

* Helmholtz, H., On Discontinuous Fluid Motions (German), Monatsber. 

Kgl. Akad. Wise. Berlin, 1868, p. 216, or Two Hydrodynamical Essays 

(German), Ostwalds KlassikeTf No. 79. 
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projected area, the density, and the square of the velocity, which 
is in accordance with the experimental results. The actual cal¬ 
culation carried out by Kirchhoff^ (see Art. 82, “Fundamentals^^^) 
for the case of a plate perpendicular to the flow led to a drag 
coefficient which is far too small. The calculated value for 

27r 
c is ~ 0.88, while the experiment gives c == 2.0. 

The great discrepancy between these two results is due to the 
fact that in the actual case there is a partial vacuum in the dead- 

water region, which cannot be taken 
account of by the method of Kirchhoff. 
Moreover, the calculated streamline 
picture behind the plate is consider¬ 
ably different from the experimental 
one. The theoretical surfaces of dis¬ 
continuity extend to infinity approxi¬ 
mately like two parabolic arcs with 
their apices somewhat displaced (Fig. 
60). In the actual case, however, the 
flow closes together somewhat at some 
distance behind the plate and then is 
mixed up with the irregular eddies. 
Owing to the internal friction in the 

fluid, these irregularities in the velocity are damped down 
more and more so that at a great distance behind the plate there 
is approximately undisturbed flow. 

A serious limitation of the method of discontinuous potential 
flow is that it can be applied practically only to two-dimensional 
motions. In the three-dimensional case, where the method of 
complex functions has to be replaced by the general theory of 
potential flow, the difficulties encountered are very much greater 
even in the relatively simple case of rotational symmetry. 
Extensive literature on this subject is quoted by Jaff4.^ 

73. Stokes’s Law of Resistance.—For very small Reynolds' 
numbers, where the inertia forces become small with respect to 

' Kirchhoff, G., The Theory of Free Fluid Jets (German), Crelles J., vol. 
70, 1869. 

* See footnote, p. 3. 

* Jaff6, Discontinuous and Multivalued Solutions of the Hydrodynamical 
Equations (German), Z, angew. Math. Mech., vol. 1, p. 398, 1921. 

Fig. 60.—Discontinuous po¬ 
tential flow round plate (two 
dimensional). The boundary 
consists approximately of two 
parabolic arcs. 
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the viscosity forces, the general differential equation of Navier- 
Stokes can be integrated by completely neglecting the inertia 
forces. In the case of these so-called “creeping motions,” the 
general differential equation 

Dw 1 1 , A 

W = -p ^ 

by neglecting the inertia member, reduces to 

^tAw = grad 

This equation in combination with the equation of continuity 

div w = 0 

was first solved by Stokes^ for the case of the sphere, considering 
the complete boundary condition of no tangential velocity of the 
fluid along the surface of the obstacle. With the aid of a stream 
function invented by him, he found for the drag D of a sphere of 
radius r moving with a velocity w through an incompressible 
viscous fluid of infinite extent the expression 

D = OTTgrw. 

Kirchhoff^ has given a simplified derivation of this formula. 
Assuming the constant force of gravity to be acting on the 

sphere, i.e.j considering its falling motion in a very viscous fluid, 
the velocity of the sphere evidently will be constant as soon 
as the resistance has become equal to the weight of the sphere in 
the surrounding liquid. Let pi be the density of the sphere and p 
the density of the liquid; then this condition is reached when 

D = fiTT/xrw = - p)g. 

The velocity of descent therefore is 

In the case of small water particles in air this becomes numerically 

zp = 1.3 10V (c g s units). 

^ Stokes, G., Trans. Cambridge Phil. Soc.j vol. 8, 1845 and vol. 9, 1851; 

or Collected Papers, vol. 1, p. 75. 
* Kirchhoff, G., "Lectures on Mathematical Physics,’’ (German), 4th ed. 

vol. l,p.378,1897. 
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Since this law of Stokes is an approximate one for very small 
Reynolds^ numbers only {li smaller than about wr/v = 0.5), it 
follows that there is an upper limit for the radii of falling spheres 
above which the flow cannot be represented any more by this 
equation. For small drops of water falling in air, creeping 
motion occurs for radii smaller than 0.002 in. corresponding to 
a Reynolds’ number of approximately li — 0.50. It is seen 
therefore that Stokes’s solution of the equations of hydrodynamics 
is applicable to the fall of water particles in clouds or fog but 
not to the falling motion of rain drops. It is also applicable to 
artificial fogs like those created in the experiment of Thomson 
and Wilson for determining the charge of an electron. 

74. Experimental Verification for Water; Influence of the 
Walls of the Vessel.—Experimental verifications of the law of 
Stokes have been given by several investigators. We mention 
especially the work of Allen, Ladcnburg, Arnold, and Zcleny- 
McKeehan. The experiments of Liebster^ are applicable 
primarily to greater Reynolds’ numbers {R between 0.2 and 500), 
which range has been investigated also by Arnold and Allen. 

Allen^ inserted very small bubbles of air into water (/x = 0.012 
g/cm. sec; 12*^0) or in anilin (/x == 0.006; 12°C) by means of very 
fine capillary tubes of glass. He compared the experimental 
velocities of these bubbles with those calculated from Stokes’s 
formula. In order to determine whether gas bubbles behave 
in the same manner as solid spheres he also investigated the 
velocities of small spheres of paraffin in water as well as those of 
amber in anilin. Figure 61 shows the experimental results 
recalculated to dimensionless quantities; the drag coefficient 

^ |rV(pi - p2)g 

r’^TT-w^ r^TT-w^ 

as a function of 2? = wd/v, 

Ladenburg^ made his experiments with steel spheres in ^Wene- 
tian turpentine,” a mixture of turpentine and rosin (/x = 1,300 

’ Liebster, H., On the Resistance of Spheres (German), Ann. Physrk, vol. 

82, p. 541, 1927. 

* Allen, H. S., The Motion of a Sphere in a Viscous Fluid, Phil. Mag.j 
vol. 50, p. 323, 1900. 

3 Ladenburg, R., On the Viscosity of Fluids and Its Relation with Pres¬ 

sure (German), Ann. Physik, vol, 22, p. 287, 1907. 
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g/cm. sec; 16°C). He noticed the considerable influence of the 
walls of the vessel on the resistance of the spheres. He found, 
for instance, that the drag of a sphere of 3-mnx diameter in a 
vessel of 27-mm diameter was 15 per cent greater than the 
resistance of the same sphere in a vessel of 44-mm diameter 
{R == 10~^). He states that even when the diameter of the vessel 
is 90 times greater than the diameter of t he sphere, an increase 

Fig. 61.—Drag coefficient vs. Reynolds’ number for sphere according to tests of 
Arnold and Alien and according to theories of Stokes and Oseen. 

in the drag due to the influence of the walls of the vessel can be 
detected. In all cases, the viscosities calculated from his meas¬ 
urements by means of Stokes’s law are greater than those cal¬ 
culated by the law of Hagen-Poisscuille from experiments of the 
flow through tubes (Art. 20). Therefore the method of falling 
spheres cannot be used indiscriminately for the measurement of 

the viscosity of fluids. 
The method of theoretical calculation of the influence of the 

walls, initiated by Lorentz,i was carried out by Ladenburg 

‘Lorentz, H. a., “Lectures on Theoretical Physics” (German), vol. I, 

p. 23, Leipzig, 1907. 
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for the case of an infinitely long tube (see also Weyssenhoff^). 
Applying the correction as found by this theory, the experimental 
values of ix found by means of Stokes's formula agree among 
themselves within 1 per cent; however, they are still about 3 
per cent greater than those found by the experiment of flow 
through tubes. A probable explanation of this discrepancy 
Ladenburg believes to be the influence of the cover and the 
bottom of the vessel. 

Arnold also determine^! the viscosity by means of the fall 
method and Stokes's law. He investigated from which sphere 
diameter up the viscosity thus determined differs from the one 
found by the method of Hagen-Poisseuille. His experiments were 
conducted in glass tubes so that it becomes necessary to correct 
the results for the influence of the walls. This correction 
applied by means of Ladenburg's formula leads to very good 
results. The spheres used were made of various metals of low 
melting point falling in some vegetable oil of which the tempera¬ 
ture was kept constant within O.l^C. Figure 61 shows the rela¬ 
tion between the drag coefficient and the Reynolds' number 
calculated from these experiments. 

76. Experimental Verification for Gases.—The experimental 
investigations discussed thus far are limited to liquids, Zeleny 
and McKeehan- investigated the applicability of the law to air. 
They used very small spheres made of wax, paraffin, and mercury, 
of diameters as small as in., made by means of an atomizing 
procedure. These spheres were dropped in a tube of about 12-in. 
length and about diameter. The velocity of fall was 
measured by a special test procedure and agreed with the result 
of Stokes's formula within ] 2 per cent on the average. On the 
other hand, similar experiments by the same authors with spores 
of certain plants of microscopical dimensions (lycopodium 
6 • lO""^ in. diameter ;locoperdon 8 • 10“^ in. diameter; poly trichum 
2 • 10”'‘ in. diameter) gave velocities about 30 per cent smaller 
than those calculated by Stokes's formula. 

The Reynolds' number below which a creeping motion takes 
place and above which the effects of inertia become of importance 
is about 0.2 to 0.5. Below this limit, therefore, the drag is 

1 Wbtbsenhoff, J., Investigations on the Validity of the Formula of 

Stokes-Cunningham (German), Ann. Physikj (4), vol. 62, p. 1, 1920. 

2 Zeleny, J., and L. W. McKeehan, The Falling Velocity of Small 

Spheres in Air (German), Physik. Z., vol. 11, p. 78, 1910. 
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determined sufficiently accurately by Stokes’s formula. In 
case, however, that the dimensions of the obstacles become so 
small as to be comparable to the mean free path of the molecules 
of the liquid or the gas, Stokes’s law ceases to be valid, since it 
was derived on the assumption of a continuous medium. Cun¬ 
ningham^ has made a theoretical, and Millikan- an experimental 
investigation of the change in Stokes’s formula, when the assump¬ 
tion of a continuous medium is dropped. This lower limit of 
Stokes’s law is very small in gases of common pressures and in 
liquids. For instance, PerriiT found the law to be valid for 
spheres of 4 • 10 ~^’ in. diameter in air. A critical survey of this 
subject with an extensive quotation of the literature is given by 
E. Meyer and W. Gerlach.^ 

76. Correction of Stokes’s Law by Oseen.—The characteris¬ 
tics of the flow in the vicinity of the sphere are approximated very 
well by Stokes’s theory and consequently the drag is approxi-* 
mated very well also, Oseen,'’ however, has shown that at 
large distances from the body the assumption that the inertia 
forces are negligible with respect to the frictional forces does not 
hold. This is seen from a comparison of the order of magnitude 
of the inertia members in the equation, for instance, pudu/dx 

with that of the frictional members, for instance, pAu (sec page 
8). In Stokes’s solution the velocity at great distances from 
the sphere can be considered to be equal to the velocity of the 
body w diminished by an amount proportional to wl/Vy where I 

is a characteristic length of the body and r the distance away 
from it. It is seen that the inertia forces, proportional to 
pivH/r^j become large with respect to the frictional forces, propor¬ 
tional to jjLwlIrK At large distances, therefore, the assumption 
of the theory of Stokes is by no means satisfied. It has to be 
noted, however, that, although the ratio between the inertia 
forces and the viscosity forces increases at greater distances 
from the sphere, these forces themselves decrease with l/r^ and 

1 Cunningham, Proc. Roy. Soc. {Loiulon) (A), vol. 83, p. 357, 1910. 

2 Millikan, Phys. Rev.., April, 1911. 

® Perrin, J., The Law of Stokes and the Brownian Movement (PTench), 

Compt. rend., vol. 147, p. 475, 1908. 
^ Meyer, E., and W. Gerlach, On the Validity of Stokes’ Formula and 

the Mass Determination of Ultra Microscopic Particles (German), PV.s'/- 

schrift fiir Elstcr u. Geitel, Brunswick, 1915. 
® Oseen, C. W., On Stokes’ Formula (German), Arkiv Mat. Astron. 

Fysik, vol. 6, 1910; vol. 7, 1911. 
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l/r^ respectively. Therefore, the correction as applied by Oseen 
becomes of importance only in that part of the field where the 
velocities have become so small that they have ceased to be of 
great influence. Because of this, the interest of Oseen’s correc¬ 
tion is mainly theoretical. The experimental results available 
today are not sufficient to determine whether Oseeii’s formula 
or Stokes’s formula gives better results for Reynolds’ numbers 
of the order of magnitude 1. For the case of a circular cylinder, 
Stokes’s method of calculation did not lead to any result at all, 
and the new theory of Oseen was necessary to obtain one. The 
calculations involved in this process were carried out by Lamb.^ 

77. The Resistance of Bodies in Fluids of Very Small Vis¬ 
cosity.—It was seen that the formula of Stokes and the correc¬ 
tion of Oseen apply only to creeping motions, z.e., motions for 
very small Reynolds’ numbers. In case the inertia forces in the 

'fluid become of the same order of magnitude as the viscosity 
forces, the theory breaks down. The discrepancy becomes very 
large when with still greater Reynolds’ numbers the fluid breaks 
away from the body at certain points and executes an eddying 
motion apparently without any regularity. 

In all cases of this kind where it seems impossible to obtain 
results by means of direct theoretical calculations, it is often 
useful to apply momentum and energy theorems in order to 
find at least approximate results. As an introduction to this 
method of attack two theorems will be discussed: (1) one dealing 
with the resistance of the ^^half body” and (2) one with the 
momentum of a source. 

78. The Resistance of the Half Body.—By a half body we 
mean a body of which one end is situated in the field of flow while 
its other end extends to infinity. The relations which can be 
found for such a half body apply approximately to the front 
part of an airship, since the tail of the ship is so far away that it 
hardly affects the flow round the front end. Besides being useful 
for this practical application, the theorems of the half body 
will prove to be of fundamental interest also. The fluid is 
assumed to be completely without friction and we want to deter¬ 
mine the drag of this half body in a potential flow. However, 
the problem is indeterminate as long as no definite statement 
is made regarding the pressure at the rear end of the body. 

1 Lamb, H., On the Uniform Motion of a Sphere through a Viscous Fluid, 

Phil. Mag.y vol. 21, p. 120, 1911. 
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In order to circumvent this difficulty it is assumed that at a 
sufficient distance from the front end there is a slit into which the 
surrounding pressure penetrates (Fig. 62). The pressure drag 
of the half body is then understood to be the resulting force due 
to the pressure differences on the part thus cut off. 

By means of the method of sources and sinks, as discussed 
in Art. 69, ‘^Fundamentals,it is possible to calculate the flow 
round the half body, and therefore the pressure drag can be 
calculated by integrating the momentum and the pressure over 
a sufficiently large bounding surface. 

The result, however, can be obtained in a simpler manner by 
the use of a device, namely, by considering the resistance of a 

1 1 
1 

Pi ! 
1 
1 
IP2 
1 

R 
1 

^ 1 1 

Fig. G2.—round half body in cjdinder. 

half body in a wide hollow cylinder, while the absence of friction 
is still assumed (Fig. 62), The surface of integration is repre¬ 
sented by the dotted line. Letting the ratio of the cross section 
A 2, of the half body to that of the cylinder Aihe a = A2/A1, the 
equation of continuity gives 

A i7ii — (A 1 — A 2)^2 

or 
m = (I — a)u2- 

By means of Bernoulli’s equation the last result can be written as 

Pi - V2 = - (1 - «)■]• 

The momentum theorem applied to the part of the body to the 
left of the slit (in which the pressure equals P2) leads to a resist¬ 

ance 
D = Ai(pi — P2) + Aipui^ — {A 1 — A2)pU2^ 

or, applying the continuity equation, 

D = Ai(pi — P2) + Aipui{ui — 162). 

^ See footnote, p. 3. 
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Substituting in this the result for pi — obtained before, 

or 

D = Ai^ll - (1 - «)•■= + 2{ (1 - a)'^ - 1 + «)] 

n - A ^“2^ ■> A D — A1—2— ‘ OL^ ~ A 2~2~ * OL- 

The drag coefficient referred to the velocity therefore becomes 
equal to a = A2/A1. Letting the cross section Ai of the tube 

Figs. 03 and 04. Pressure distribution on nose of blunt rotationully symmetrical 
body. 

increase beyond all limits, it is seen that a converges to zero. 
In other words, the resistance of a half body in an infinite fluid 
is zero. 

V 

A physical explanation of this fact can be obtained by consider¬ 
ing the pressure distribution at the front end of the half body, 
assuming that the flow does not break away. At the nose of the 
body it is seen that the streamlines at some distance away from 
it are convex with respect to its surface, which implies an excess 
pressure on the nose. Somewhat farther behind, however, the 
streamlines turn their concave side toward the body so that a 
diminished pressure exists there. Figure 63 shows the stream¬ 
lines on the half body whereas Fig. 64 is a graphical representa- 
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tion of the pressure distribution. It is seen that the excess 
pressure and the sucking action are approximately in equilibrium. 

In cases where behind a blunt obstacle there is a dead-water 
region or wake which becomes cylindrical at a great distance 
away from it, the assembly of the body and its wake form a 
half body and the flow round the obstacle plus the dead water 
differs in no respect from the flow round an ideal half body. 
It is concluded from this that a cylindrical wake leads to a zero 
resistance. Consequently, in order to get a drag, it is necessary 
for the wake to increase its cross section indefinitely. It was 
discussed in Art. 72 that Helmholtz and Kirchhoff investigated 
flow phenomena with dead-water regions increasing parabolically 
toward infinity, resulting in a definite drag. 

79. Momentum of a Source. ^—It has been shown before that 
the flow round a half body can be caused by a source or by a 
number of sources. Let Uo be the undisturbed velocity and A 

the cross section of the cylindrical part of the half body. The 
total intensity of all the sources, Le., the volume of fluid generated 
per second is equal to Q = Auq. If we consider instead of the 
half body (in which the source is merely existent in our imagina¬ 
tion) an actual flow with a source, it is seen that an amount Q 

flows out more than in. Surrounding the source at a sufficient 
distance with a surface of integration, the influence of the source 
is felt as an additional flow of momentum pQuo = pAuo^, leading 
to a negative resistance of that same numerical value. Since a 
half body does not experience any force it follows that a source 
in a uniform flow experiences a negative resistance of magnitude 
pQuq, 

Note: The conditions can be understood still better by assuming the 

streamline surface passing through the point of stagnation to be a thin solid 

shell. The outer flow then represents the usual half-body flow round a solid 

shell. The inner flow consists of a source directing its flow toward infinity 

(Fig. 65). We know that the sum of the pressure forces existing on the out¬ 

side and inside of the shell has to be zero, since the shell coincides with a 

free surface of streamlines and could be obliterated without changing the 

flow. On the other hand, the resultant pressure on the outside of the shell 

is zero according to the laws of the half body; consequently the resultant 

pressure on the inside must be zero also. It must be concluded that every 

second an amount of momentum pQuo flows through any surface enclosing 

the source and lying completely inside the shell. We can then shrink this 

surface together indefinitely around the point source and still obtain the 

1 Articles 79, 80, and 81, are original contributions by L. Prandtl. 
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negative resistance pQu^ as a reaction. Actually in each point of space, 

and consequently also in the immediate vicinity of the source, the velocity 

consists of the sum of the source flow and the undisturbed flow uq. The 

source flow by itself lias no momentum because it extends symmetrically in 

all directions. The total flow, however, obtains momentum because of the 

fact that each pai*ticle at its birth receives a velocity which corresponds 

to a hypothetical driving force in the source. This hypothetical force finds 

its reaction in the negative resistance found before. 

Now the theorem of the momentum of a source in a uniform 
flow will be proved in a different manner which will be of use 
in the subsequent considerations on the drag of a body. In 
principle, any kind of ‘'bounding surfaceis useful—a concentric 
sphere, two infinite planes before and behind the source, etc. 
In this case we choose a cylinder of which the axis is parallel 

I'lG. 05.—Half bod3^ with generating source. 

to the flow at infinity. The cylinder is closed off by two faces 
far in front of, and far behind, the source. In order to calculate 
the force exerted on the cylinder in the direction of its axis, 
we have to calculate first the integral of the pressures and second 

the flow of momentum (Art. 100, ‘‘Fundamentals” 0- The 
pressures on the curved surface of the cylinder do not contribute 
anything to the force in the desired direction since they are 
perpendicular to it. On the faces of the cylinder there is a 
pressure difference (excess pressure in front and vacuum behind). 
If, however, the two faces of the cylinder are moved to infin¬ 
ity, these pressure differences disappear (inversely proportional 
to the square of the distance from the source), so that this part of 
the pressure integral also becomes zero in the limit.^ For the 
same reason the contribution of the momentum flow across the 
faces disappears in the limit. Therefore we have to consider 

^ See footnote, p. 3. 

2 It is understood that the contribution of the faces to the pressure integral 

would not disappear in case the cylinder were growing similar to itself. In 

that case the face surfaces would increase proportionally to the square of 

the distance, and the pressure integral therefore would tend to a finite limit. 
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only the momentum contribution on the curved surface of the 
cylinder. Owing to the presence of the source, some fluid flows 
through this surface to the outside. In Fig. 66 we consider two 
surface elements of the same size and situated symmetrically 
with respect to the source. Owing to the source alone, the 
velocities at these two elemental surfaces have symmetrical 
directions. However, besides these velocities there is the veloc¬ 
ity of uniform flow Uq. Since the longitudinal velocity compo¬ 
nents due to the source alone are opposite in direction, the mean 
value of the longitudinal components of the complete velocities 
at the two elemental surfaces is 
equal to Uo. This relation holds 
for any two surface elements sit¬ 
uated symmetrically with respect 
to the source. The total vol¬ 
ume of fluid passing through the 
curved surface of the cylinder becomes equal to the intensity of 
the source Q if the cylinder is extended to infinity. Therefore 
the flow of momentum is calculated to be pQao, which is the same 

result as obtained before. 
The proof which has just been completed can be made the 

starting point for a derivation of the half-body theorem. It 
has to be considered that with the half-body flow the amount of 
fluid Q = Auo is lacking at the back end, since it is occupied by 
the solid body. Because of this effect, there is a shortage in the 
momentum of the amount pQiio, which is felt as a drag. This 
drag combined with the negative resistance of the source again 
leads to a total resistance equal to zero for the half body. 

80. The Resistance of a Body Calculated from Momentum 
Considerations.—If a body in steady motion through a fluid at 
rest experiences a drag, it must be possible to prove the existence 
of this drag by means of the flow of momentum through a surface 
surrounding the body. In this respect, two different effects 

have to be considered. 
1. There is a dead-water region or wake behind the body which 

has definite vortices at great Reynolds' numbers or no such 
vortices at small Reynolds' numbers. Owing to the action of 
viscosity or to the irregular vortex motion, the velocity in the 

wake becomes less and less at greater distances from the doby 
find the wake itself becomes wider, The wake conducts a 

Fiii. Of). 
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certain flow of momentum, the strength of which depends directly 

on the drag. 
2. Further it is noted that the body together with its wake 

pushes the fluid away to the side so that it causes in the fluid 
outside the wake a flow apparently caused by a source. Figure 
67 shows schematically the streamlines of such a flow for a 
coordinate system in which the undisturbed fluid remains at 
rest. It is possible to connect each streamline of the wake to a 
streamline of the source flow. 

The width of the wake increases at a slower rate than is 
proportional to the distance from the body; the increase is 
between 'x/J and depending on the details of the flow. 
Therefore the kind of momentum consideration employed in the 
previous article can be applied here. According to the foot- 

Fia. 67.—Apparent source and wake. 

note on page 122 the pressure integral on the base surface of the 
cylinder becomes zero if its diameter increases at a slower rate 
than proportional to the distance. We assume that the wake 
region remains completely inside the curved surface of the 
cylinder. The flow in the wake becomes more and more nearly 
parallel at increasing distances from the body. Considering the 
pressure differences across the streamlines, it follows that far 
away from the body the pressure inside the wake is practically 
the same as in the source flow directly beside it. 

After this introduction we proceed to apply the momentum 
theorem. As a system of reference we choose the coordinates in 
which the body is at rest, and the velocity of the fluid at infinity 
therefore is equal to uq. The contribution of the curved surface 
of the cylinder is the momentum of the source, which is equal 
to a driving force pQuo (where Q is the intensity of the source). 
The contribution of the two base surfaces of the cylinder is the 
difference between the flow of momentum in front of the obstacle, 
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where the velocity is Mq, and behind, where the velocity is Uo - u', 

u' being the velocity in the wake relative to the body. Figure 68 
shows the velocity distribution behind the obstacle with the 
characteristic "trough.” Consequently the momentum flow 
becomes 

pUo^A — = 2pu^J*J*u'dA pj*J^u'^dA. 

Koes in goes out 

In this expression, J*J*u'dA is equal to the intensity of the source 

Q so that the first term reduces to 2pQuo. The second term 
vanishes when proceeding to the limit of an 
infinite distance from the body, since it con¬ 
tains the wake velocity squared. Finally, 
taking together the contributions of the curved 
surface and the base surface, the total drag ^ 
becomes 

D = pQuo 

so that 
D 

- Uo-g'' 

Q = 
piio 

Fig. C8.—Velocities 
in wake 

Writing the drag in the usual form D = cA^^> we find for the 

intensity of the source 

Q = y^cAuof 

which result is physically quite plausible. It is seen that the 
strength of the source is independent of the distance of the 
bounding surface from the body if this distance is sufficiently 
large. From this it is concluded that all streamlines in the 
wake extend from infinity directly to the body as indicated in 
Fig. 67. 

If the motion of the body had started somewhere in the finite 
region, the wake would extend only to this point. The stream¬ 
lines of the wake, which cannot end in any particular location, 
would then lead to a sink at the point of starting. This sink 
flow is accompanied by a vortex ring. 

81. Method of Betz for the Determination of the Drag from 
Measurements in the Wake.—The relations found in Art. 80 are 
based on the velocity distribution in the wake at a great distance 
from the body. In making actual experiments, however, it is 
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often necessary to come very much closer to the obstacle so that 
the analysis has to be extended to this more general case. This 
was done by Betz/ and the considerations of this article are 
based mainly on his publication. 

As bounding surface for the integration two parallel planes are 
taken perpendicular to the direction of flow of the undisturbed 
fluid, one in front of and one behind the obstacle (Fig. 69). The 
velocities and the pressure in the front plane are U\y Vx, W\y pi, and 
the corresponding ones in the rear plane are ^’2, P2. At 

m h-d| 

-a, ^ 

1 
\ 

-—--P2 

2 > 

Fig. 69. 

infinity we have = Uo, t; = le = 0, p = po- By means of the 
momentum theorem the drag becomes 

-0 = J"jipi + pUi^)dA — ff (P2 + pu2^)dAy (1) 

in which the integrals extend over the entire area of both infinite 
planes. The problem consists of transforming these integrals 
in such a manner that the integration becomes restricted to the 
trough in the wake. To this end, we introduce the abbreviations 

= Pi + 

92 - Pi + 

On any streamline which is not subjected to viscosity actions or 
to apparent friction due to turbulence, Bernoulli's theorem 

1 Betz, A., A Method for the Direct Determination of Profile Drag (Ger¬ 

man), Z. Flugiechn. Motorluftschiffahrtj vol. 16, p. 42, 1925. 
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states that g = constant. Therefore gi — g^ differs from zero 
only in the trough. For this reason, gi and g^ are now substituted 
into Eq. (1) with the result that 

D ~ J*J*({/i “ g2)dA + J*(ur — U2^)dA + 

^ n ^ 

f ~ wi^)}dA. (2) 

m ^ ^ 

The first integral in this expression already has the desired 
properties. In order to transform the second integral, we define 
a hypothetical flow which coincides with the actual flow every¬ 
where except in the wake, where the hypothetical flow shall be 
such that g2 = gi (there are no losses due to friction or turbu¬ 
lence). This is accomplished by changing the .r-component of 
the velocity, which now is designated by Since the actual 
flow is incompressible, the hypothetical flow cannot possess 
this property but rather shows distributed sources of which the 
total strength is Q. Apparently, we have 

Q = / f'iu-/ - u,)dA, 

where the integration has to be extended only over the trough 
since everywhere outside it U2 = U2. This is designated by the 
letter T above the integral sign. 

Now the momentum theorem in the form (2) will be applied in 
such a way that first the differences between V\, wi^ pi, and 
U2 y voj W2y P2y wfll bc writtcn down and then, as a second step, 
the differences between m-j', V2y uh, P2, and U2y V2y W2y P2. The 
result then is found as the sum of the two partial results given 
by these steps. For the first step, integral I becomes zero, since 
g./ = gn. Integral III causes certain difficulties. It is com¬ 
paratively small in the case of a pure source flow. Whenever 
stationary vortices exist, however, as in airfoils, its value may 
become considerable. Its total value will be denoted by Di, 
which will be discussed in detail later. Neglecting contributions 
of the nature of D{, the first step applied to integrals I and II 
leads to a negative drag or driving force pQuoy since there is i) 
distributed source of strength Q between the two planes of inte- 
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gration and there are no losses. Since the integral I is zero, it 
follows that integral II is 

(mj^ — U2"‘')dA = —pQuo = —puojJ (ui — Ui)dA. 

Applying the second step to integral I, we obtain 

ff (gi - g2)dA 

and, correspondingly for integral II, 

f IJ*f ~ M2) (M2' + Ui)dA. 

This second step applied to integral III gives a value equal to 
zero. In total, therefore, the result becomes 

= (gi—g2)dA-h^J'J iu2—U2){U'/-\-U2—2uo)dA+I>i, (3) 

where it is seen that the two integrals actually are restricted to 
the trough. Regarding the third term 

A ^ ^ff [(^2^ + ^2^ — (vi^ + Wi^)]dAy 

the following remark can be made: In case we wanted to 
treat the y- and ^-velocities of a source only, it would be possible 
to put the front integration plane at an equal distance from the 
source as the rear plane, which would result in a canceling of the 
contributions. This relation is not true any more when steady 
vortices emanate from the body, as in airfoils; in such a case 
there are velocities in the rear plane of integration to which 
there are no corresponding ones in the front plane. Then the 
third term of (3) leads to a resistance Di different from zero, 
which is apparently due to the partial vacuum in the vortices. 
In the three-dimensional wing theory (Art. 114) this resistance 
is termed induced drag,’^ and consequently the symbol Di 

has been assigned to it. Drag resulting from integrals I and 
II in the case of airfoils is called profile drag.^’ 

A remark has to be made on non-steady vortices in the turbu¬ 
lent wake. These cause certain deviations, especially in expres- 
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sions II and III, since the mean values of the products of the 
velocities do not coincide exactly with the products of the mean 
values of the velocities. These deviations are gener¬ 
ally small however. In cases where the wake vor¬ 
tices are more or less regular and strong (Kdrman 
trail, see Art. 82), the previous investigation is 
not applicable. 

The numerical calculation of the resistance 
in a practical case requires first an experimental 
determination of g2 with a Pitot tube. Outside 
the trough this value coincides with gi which, being 
the Bernoulli constant of the undisturbed flow, is a 
constant number (Fig. 70). Further the static pressure p2 has to be 

determined; from this follows u^. — — — -VAa For a 
P 

determination of it is usually sufficient to interpolate the 
velocity curves for by a smooth curve over the trough as indi¬ 
cated by the dotted line in Fig. 70. It is also possible to calculate 

it by means of 
P 

With these measurements, the expressions occurring in inte¬ 
grals I and II are known so that the integrations can be carried 
out numerically. The greatest contribution will be furnished by 
the first integral. At great distances from the body where the 
wake velocity is small and the trough is shallow, it leads to the 
same result as the formula in the Art. 80." Contribution II 
gives a correction which becomes rather small at large distances; 
however, close to the body it is of some importance. Expression 
III cannot be calculated in this way since it is not restricted to 
the trough. Consequently the method is of use only when the 
drag consists of profile drag I plus II and when expression III 

p(V2^ — 

^ This is true under the assumption that the values of-2-in the 

trough can he neglected with respect to — Vh which is admissible in all 

practical cases. 

2 In case that wi = Wo, == Wo — w', and pi == P2 = 0, we have 

where the second term is small of the second order. Therefore 

— g2)dA » pwoj*^^u'dA = puqQ. 
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( = Di) is without importance.^ The method has been applied 
with good results to the measurement of profile drag, especially by 
Weidinger^ and Schrenck.^ 

Note: The result of the first step” on page 125 is only equal to pQuq if 
tli(‘ sources of the v-/, V2, w’2-flow all arc located in front of the rear plane of 

integration. In cms(', however, that there arc sources or sinks behind this 

plane there will be forces between thes(‘ and the source Q, whigli, however, 

cannot la; calculated in such a simple manner. This is probably the reason 

that Betz’s foirnula becomes imuaairate when applied very close to the 

body. II. Mutt ray has shown that Betz’s formula (3) can be applied to 

the flow through a channel of constant cross section Ao. It is only 

necessary to n^placa^ the term 2z/o by the sum of the velo(;ity far in front 

of th(^ obstacle (ao) and the velocit}" of the hypothetical flow U2' far behind 

the body, i,c., ?/o + u'2», where u'-y^ can be set equal to Uo + In this 

investigation tlu' friction at the channel walls has been neglectcal. 

82. The Karman Trail.—The phenomeriH discussed in the last 
few articles showed a more or less irregular wake behind the 
obstacle, exchanging its momentum with the neighboring undis¬ 
turbed water so as to make the wake wider and wider with 
increasing distance from the body. There are, however, phe¬ 
nomena where the energy is not dissipated directly in an irregular 
wake but is first transformed into very regular individual vor¬ 
tices. For instance, the two-dimensional flow round a cylinder 
at certain dimensions and velocities assumes the form shown in 
Fig. 59, Plate 24. The vortices formed on either side of the 
body have opposite directions of rotation and form a certain 
geometrical pattern which is observed quite regularly at some 
distance behind the obstacle. These vortices do not mix with 
the outer flow and are dissipated by internal friction only after a 
long time. 

1 With this procedure the remark made before, about locating the two 

planes at equal distances from the body and thus eliminating expression 

III, becomes meaningless. In practical cases no measurements are ever 

made in the front plane of integration, so that this plane is virtually at 

infinity where Vi and Wi are zero. However the values of V2 and uh are 

practically always small, so that neglecting them in expression III does not 

result in any serious error. 

2 Weidinger, II., Profile Drag Measurements on a Junkers Airfoil (Ger¬ 

man), Jahrh. iviss. Gesellsch. Luftfahrl, p. 112, Munich, 1926. 

® ScHRENCK, M., Profile Drag Measurements in Actual Flight by Means 

of the Momentum Method (German), Lvftfahrtforschung, vol. 2, No. 1, 

Munich, 1928. 
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The phenomenon which had been observed casually by various 
investigators was first studied experimentally by Bernard.^ It 
was reserved, however, to von Kdrmdn^ to give an explanation 
of it. 

His observations led him to making an investigation of the 
stability of certain geometrical configurations of these eddies. 
The calculation, restricted to the two-dimensional case, assumes 
linear vortices of equal intensity and opposite direction of 

—^--^- 

-0.-- 

Fkk 71.—Unstable configuration. 

rotation lying in parallel rows at equal distances from each 
other, A further investigation showed that only two different 
arrangements are possible. The eddies of the one row are 
situated either exactly opposite those of the other row or 
they are symmetrically staggered (Figs. 71 and 72). The stability 
investigation, carried through by means of the method of small 
oscillations, leads to the result that the first arrangement is unsta¬ 
ble with respect to small disturbances while the second pattern 
is generally unstable also, but becomes stable for a very definite 

--^- 

-^4—-S- 
—>i < ■ 

- 

Fig. 72.—Stable when h/l — I/tt arc cosh \/2 = 0.2800. 

value of h/l (in this case, the pattern is in indifferent equilibrium 
against disturbances of the wave length 21). Von Kdrmdn 
obtained for the value of h/l the expression 

r = - cosh-i V2 = 0.2806. 
L T 

Measurements of the distance between the vortices on photo¬ 
graphs of actual flows show a good agreement with this calculated 

* B^inard, H., Compl. rend. (French), vol, 147, 1908; vol. 156, 1913; vol. 

182, 1926; vol. 183, 1926. 
2 Von KarmXn, Th., Nachr. Ges. TFiss. Gottingen (German), p. 509, 

1911; p. 547, 1912; KXrmXn and Rubach, On the Mechanism of Fluid 

Resistance (German) Physik. Z., p. 49, 1912. 
3 p — ^Wodr means the circulation and is a measure for the intensity of 

the vortex; sec p. 207, “Fundamentals,^’ see footnote, p. 3. 
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value. The theoretical flow corresponding to the photograph, 
Fig. 60, Plate 24, is shown in Fig. 73 for a coordinate system 
which is at rest with respect to the undisturbed fluid. It is seen 
that some of the streamlines move in a wavy path between the 
various vortices, while the other streamlines are closed round the 
vortex centers. The total geometrical pattern of the eddies has 
a velocity of its own, 

u 
r 

iVs 

in the direction of motion of the body. The individual vortices 
gradually remain far behind the body, which moves at a faster 
rate than the eddies. The same phenomenon looks entirely differ¬ 

ent to an observer moving with the body, with respect to a 
coordinate system in which the body is at rest and in which the 
velocity of the undisturbed fluid is Wo. The theoretical stream¬ 
line picture for this case can be derived from the one of Fig. 73 
by adding to it the constant velocity of the undisturbed flow. 

83. Application of the Momentum Theorem to the Karman 
Trail.—Von K^rmdn has shown that by means of the momen¬ 
tum theorem the drag of a body can be calculated from the 
geometrical pattern of its eddies. To this end two assumptions 
have to be made: (1) the actual eddy formation far behind the 
body should not differ much from thfe one calculated to be stable 
(photographic experiments show this assumption to be correct); 
(2) the fluid at a distance large with respect to the dimensions of 
the body is assumed to be at rest. Hqwever, it is not possible 
with KArmdn’s theory to calculate for any given obstacle the 
dimensions I and h of the KArmdn trail as well as the velocity u 
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of the eddies. A knowledge of the relation between the dimen¬ 
sions of the eddy pattern and the shape of the obstacle would 
indeed make the theory of great practical importance. However, 
it is an advantage to be able at least to calculate the drag when 
only the dimensions of the vortex trail (by means of a single 
photograph) as well as the velocity of the eddies are known 
experimentally. In applying the momentum theorem, it is to be 
noted that the flow is not steady since there is a periodic eddy 
formation behind the body. However, the part of the street far 
behind the body can be considered steady, if the coordinate 
system is moved with the velocity u of the individual vortices. 
Choosing a bounding surface enclosing the body and moving 
forward with this velocity u (Figs. 74 and 75), the fluid enters 
this surface at the left with a velocity u. At the right the surface 

_Llr- 
Fjq. 74. 

i ! 

! —j8? 
I_I 

Fio. 75. 

Figs. 74 and 75. -Application of momentum theorem to Kjirmdn trail. 

cuts in between two eddies so that in the Ktirmdn trail there is a 
velocity to the left (Fig. 73), while outside the flow is to the right 
with the velocity u. 

The body moves with the velocity U relative to the undis¬ 
turbed fluid, i.e,j with the velocity U — u with respect to 
our system of coordinates. Within the bounding surface new 
eddies are being formed all the time at the body; moreover, there 
is the source flow emanating from the body and extending to 
infinity. 

For non-steady motions of this sort the momentum theorem 
has to be modified because, besides the momentum and pressure 
integrals over the bounding surface, the change in momentum 
inside this surface has to be taken into account. According 
to von Kdrmdn^s procedure the phenomenon is considered at 
the two instants between which just two new vortices have been 
formed. Since the body moves with the velocity U ^ u with 
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respect to the trail, and since the distance between two eddies 
of the same sense of rotation is equal to I, the period^’ becomes 
T I!(U — u). Figure 74 shows the initial state and Fig. 75 the 
final state; the surface of integration is shown in both cases by 
the heavy-dotted line. The condition inside the surface of 
integration at the final state is the same as in the initial state of 
Fig. 74, if only the shaded area A is omitted from it and the 
shaded area B is added to it. If the bounding surface is chosen 
sufficiently large in the direction of flow as well as across the 
flow, the contribution of the source flow in the regions A and B 
is sufficiently small to be negligible. It is only necessary to 
calculate the difference in momentum between the undisturbed 
flow in the region A and the eddy flow in the region B. Accord¬ 
ing to von Kdrman the integral of the o'-component of the velocity 
multiplied by p extended over the region B minus the same inte¬ 
gral over the region A is equal to pThA The amount thus calcu¬ 
lated is the change in momentum during the time T = 1/{U — u). 
The change of momentum per unit time, constituting a part of 
the drag, therefore is 

Th 
~ u). 

The intensity of the source is equal to the jump in the velocity 
mentioned before, multiplied by /?., i.e., Q = Th/l. According to 
the investigation of Art. 79 there is a flow of momentum into 
the long sides of the surface of integration to the amount of 
pQu which leads to a negative resistance 

Yh 
-t^U. 

flffie fact that the source moves relatively to the system of coor¬ 
dinates with the velocity U — u does not result in a contribution 
cither in the interior or on the boundary of the surface of integra¬ 
tion at least if that surface is sufficiently elongated. 

As a third contribution we have the momentum and pressure 
integrals on the short sides, corresponding to the base surfaces 
of Art. 79. One of these bases is in the undisturbed fluid while 

^ Since this integration is a linear process, it is permissible to take first 

the mean value of the velocities, which is found by letting the vortices 

take all possible positions successively along the length 1. This amounts 

to an even distribution of the vorticity along which causes a uniform jump 

in the velocity of magnitude T/l. Multiplying this T/l by the density and 

by the area Ih leads to the above result. 
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the other one cuts through the vortex trail. At both those 
locations the flow is a potential one, and, if the effect of the source 
traveling with the body is neglected, the flow is, moreover, 
steady. Therefore the simple equation of Bernoulli can be 
applied. 

It is convenient to calculate at once the sum of the momentum 
integral and the pressure integral giving the result 

r2 

'’2irZ‘ 

The total drag D per unit length of the cylinder therefore 
becomes 

D - ^(U - 2,,) + 

Substituting into this expression the values for h/l and for T 
found before, we obtain 

c - [l587^ - 0.628(^y]j, 

where d is some linear dimension of the body (for instance, the 
width of the plate), and 

D ^ 

The result of the calculation therefore is that the drag is pro¬ 
portional to the square of the velocity, which was to be expected 
from dimensional reasoning; moreover, the drag coefficient is 
obtained, which otherwise could have been found only by an 
experiment. The only limitation is that the drag coefficient is 
not found directly but rather as a function of the two ratios: 

u _ velocity of the vortex system 
U velocity of the body 

and 
I _ pitch of the vortices_ 
d ~ characteristic length of the body 

The ratio l/d can be measured directly from a photograph of the 
phenomenon, while the ratio u/ U can be found from the period of 
the eddy formation T, A simple analysis shows that this rela¬ 

tion is 
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-_Z 
U uf 

since 
T{U -u)=l 

Von Kdrm^n and Rubach^ determined the drag coefficient for 
the cylinder and for the plate from photographs of the eddy trail 
and from stop-watch measurements of the period. They found 
c = 1.60 for the plate and c = 0.92 for the cylinder, with a 
Reynolds^ number between 2,000 and 3,000. Wieselsberger^s 
direct experimental value for the cylinder is 0.93; the most recent 
measurements of Flachsbart for plates give 1.7; so the agreement 
in both cases is very satisfactory. 

It appears strange that von Karmdn^s theory, although it 
assumes an ideal fluid, still takes it for granted that the moving 
body generates eddies all the time, which is impossible according 
to classical hydrodynamics. The explanation of this paradox 
is given by the boundary-layer theory where it was seen that 
in the limit fi = 0 the fluid can be considered without friction 
everywhere except in a thin layer adjoining the body. In this 
layer, which becomes thinner for smaller viscosities, a different 
limit process has to be performed. In Chap. IV it was seen in 
detail how this thin boundary layer, where the friction forces 
cannot be neglected even for fluids with negligible viscosity, 
is the place where vorticity is created. 

84. Bodies of Small Resistance; Streamlining.—Classical 
hydrodynamics leads to impossible results in all cases where 
considerable drag is experienced, while for bodies of very small 
resistance the science can be applied to great advantage. Since 
in most practical cases, among others those of airplane and air¬ 
ship construction, the problem consists in reducing the drag to a 
minimum, it appears that a great field is left open for application 
of the methods of ideal-fluid hydrodynamics. Practical aeronau¬ 
tical construction has derived great help from the modern theories 
on air motions, viz,, the problem of the airship body of least 
resistance, airfoil theory, and propeller theory. 

For an airship body of small resistance, it is essential that the 
air which is divided at the front closes up again smoothly at the 
tail end. A shape as indicated in Fig. 49 fits this condition very 
well. The actual drag, which is very small considering the size 

^ See footnote, p. 131. 
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of the body, consists practically exclusively of skin friction. 
According to experiments in the wind tunnel the resistance is 
about 25 times as small as that of a flat plate of the same size as 
its greatest cross section. 

It is comparatively easy to calculate the flow round bodies of 
this sort by means of the source-and-sink method of Rankine, as 
explained in Art. 69 of ^'Fundamentals.”^ Instead of consider¬ 
ing a single concentrated source, as was done in that example, it is 
more appropriate to take a continuous distribution of sources and 
sinks along the axis of symmetry. By suitably distributing these 
sources and sinks, it is possible to obtain a great variety of body 
shapes, while the thickness of the body is determined by the 
intensity of the parallel flow superposed on the source-sink flow. 
It is relatively simple to calculate the body form and the corre¬ 
sponding streamlines for a given source-sink distribution; how¬ 
ever, the converse problem, consisting of finding the source-sink 
distribution for a given symmetrical body, is very much more 
difficult. This problem will be discussed in the following article. 

85. Comparison of the Calculated Pressure Distribution with 
the Experimental One.—A paper by Fuhrmann^ deals with 
the methods of calculating the streamlines round a body for a 
given source-sink distribution. Besides giving a theoretical 
calculation, it also reports on measurements of the pressure 
distribution at the surface of the body. ITe models experi¬ 
mented with were carefully made so as to resemble the theoretical 
shapes most accurately. The pressures were measured through 
very small holes drilled into the hollow models. Figures 76 and 
77 show the calculated and measured pressure distributions for 
two different cases. In general the agreement is very satisfac¬ 
tory; only at the tail end of the body is there an important dis¬ 
crepancy. For the calculated case the pressure at the tail end 
is equal to the full stagnation pressure, whereas in the actual 
experiment this cannot be so, since fluid elements cannot pene¬ 
trate into this high-pressure region on account of their having 
been retarded in the boundary layer. The integral of the cal¬ 
culated pressures across the whole surface, i.e., the pressure 
drag, must be zero in all cases, since the calculation has been 
based on an ideal fluid. The actually observed drag therefore 

^Soe footnote, p. 3. 
2 Fuhrmann, G., Theoretical and Experimental Investigations on Balloon 

Models (Gorman), Dissertatiorij Gottingen, 1912. 
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exists only in so far as the actual flow deviates from the theoretical 
one. For this purpose the drag can be conveniently expressed 
in terms of an area equal to the side of a cube of the same volume 
as the airship body under consideration, i.e.j so that 

Fig. 77, 

Figs. 76 and 77.—Pressure distribution on airship hulls. Full lines are calcu¬ 
lated; points measured in wind tunnel. {Fuhrmann.) 

With this notation, the calculations based on the experimental 
pressure distribution gave the following drag coefficients: 

Model. I II III IV 

c. 0.0170 0.0123 0.0131 0.0145 

For comparison, the drag coefficients as determined directly in 
the wind tunnel with the aerodynamic balance are given below: 

Model. I II III IV 

c. 0.0340 0.0220 0.0246 0.0248 

It has to be noted that for larger Reynolds^ numbers than could 
be obtained with these experiments, the drag coefficients would 
have been approximately 30 per cent smaller. In order to 
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compare these drag coefficients with those of a fiat plate of the 
same surface condition, it is noted that the surface area of the 
airship models is about equal to seven times V^'\ whereas 
the figures usually quoted fur plates refer to the plate area itself. 
For direct comparison, therefore, thc.above drag coefficients have 
to be divided by seven. The experiment shows that for bodies 
of this streamline form, the total resistance is not materially 
greater than the friction drag of a flat plate having the same 
area as the streamlined body. This fact, to a certain extent, 
can be interpreted as an experimental proof of the theorem of 
classical hydrodynamics: that the drag of a body in uniform 
motion is zero. 

The converse problem, i.e.j the determination of the source- 
sink distribution for a given shape of body, has been treated by 
von Kdrrndn^ on the specific example of the airship ZR-3, 
which later was named ^‘Los Angeles.’^ The solution was 
obtained approximately by taking the source and doublet-distri¬ 
bution constant along short sections of the Vjody. He solved 
not only the case of symmetrical flow but also that of a wind 
blowing obliquely against the ship. The classical solution for an 
oblique flow of this sort leads only to a moment tending to place 
the body perpendicular to the direction of the flow. It definitely 
does not give a force perpendicular to the flow, i.e.j a lift. Since 
in the actual case lift is obtained, von Karmdn assumed in the 
wake of the airship body the existence of an eddy distribution 
very similar to that behind an airfoil (Art. 111). This changes 
the flow markedly, especially around the rear end of the ship, 
and causes a lift at the front end which is considerably greater 
than the down push on the tail so that the result is a definite lift, 
which is in agreement with the experimental facts. 

86. Friction Drag of Flat Plates.—When a fluid flows along a 
flat plate, a force is exerted on the plate in the direction of the 
flow. It is said that the plate suffers a 'Triction drag,^^ which as 
usual is expressed by the relation 

D = C/.S-y; 

although in this case the drag is proportional neither to the 
square of the velocity nor to the area S of the plate. Con- 

^ VoN KXrmXn, Th., Calculation of Pressure Distribution on Airship 

Bodies (German), Abhandl. Aerodyn. Inst.j Tech. Hochschule AacheUy vol. 6, 

p. 1, Berlin, 1927. 
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sequently c/ is no constant but must be a function of the 
Reynolds^ number R — ul/v (I being the length of the plate in the 
direction of flow), as was explained in Art. 59, For small 
velocities, or rather for Reynolds’ numbers smaller than about 
5 • 10’, the law of Blasius^ holds that Cf is proportional to the 
reciprocal of the square root of Reynolds’ number 

1.327 

or writing S = we have, for R < 5'10*'’, 

D = cjhl 
,pir 

1.327 4 V pll- 

ul ■ ^^-2 

1 ^27 

For greater Reynolds’ numbers, the experiments by Wiesels- 
berger,*'-' Gebers,'^ and Gibbons'^ give a different relation between 
C/ and R. In the case that R > 5 -10‘‘ the drag coeflScient is 
proportional to the reciprocal of the fifth root of the Reynolds’ 
number with the proportionality factor 0.072 so that herb we 
have 

Df = 0.072. 
0.072 ,,,, ,, , 

bl~^ — —2—poi''^v 'v/ 

The reason that at a certain Reynolds’ number of about 5 * 10^ 
the resistance law suddenly changes is that below this number the 
flow in the boundary layer along the plate is laminar, while 
above this number it becomes turbulent, as was explained in 
Art. 63.5 

The transition between the two laws is not sharp but very 
gradual especially for smooth plates with sharp front edges. 
Figure 78 shows some experimental results obtained by Gebers, 
Blasius, and Wieselsberger. The last investigator has not used 
sharp-edged plates but rather rounded ones, where the eddy 

^ Blasius, H., Boundary Layers in Fluids of Small Friction (German), 

Z. math. Physik, vol. 56, p, 1, 1908. 

* WiESELSBERGER, C., Investigations on the Skin Resistance of Canvas 
Covered Planes (German), Gottingvr Ergehnisae, vol. 1, p. 120, Munich, 1921. 

^ Gebers, A Contribution to the Experimental Determination of Drag of 

Moving Bodies (German), Schijjhau^ vol. 9, 1908. 

^Gibbons, W. A., Skin Friction of Various Surfaces in Air, Is^ Ann. 
Rept., Nat. Adv. Comm. Aeronautics., 1915, Washington, D. C., 1917. 

® The limit 5 • 10® is only for very smooth flow; in case the fluid strikes the 

plate in a somewhat turbulent state this figure is considerably lower. 
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formation starts immediately at the front end. The shape of the 
curves shown in Fig. 78 becomes clear when remembering that a 
sharpened plate where the first part of the boundary layer is still 
laminar has less resistance than a plate where no such laminar 
initial boundary layer exists as in the case of Wieselsbcrger’s 
experiments. This difference between the drags obtained with 
the two kinds of plates becomes smaller and smaller with increas¬ 
ing Reynolds’ numbers on account of the fact that the distance 
from the front end of tlie plate where the laminar layer turns 
turbulent becomes shorter 

By making a judicious guess at the ratio between the length 
of ^tiie laminar boundary layer and the length of the plate, 
BrandtT has found that in the transition region between the 

Fig. 78.—Skin friction coefficient vs. Reynolds’ number for flow along flat 
plates. 

two resistance laws the conditions are well represented by the 
expression 

_ 0.074 1,700 

In this expression the number 1,700 is still dependent on the 
degree of turbulence of the fluid coming up to the plate. 

It is of interest to mention here the work of Kempf- and his 
associates who have made many investigations on skin friction 
with special application to ship resistance. A publication of 

1 Prandtl, L., On the Friction Resistance of Air (German), Gottinger 

Ergehnisse, vol. 3, p. 1, Munich, 1927. 
2 Kempf, G., Skin Friction (German), Werft, Reederei^ Hafen, vol. 5, 

p. 521, 1925; On the Friction Resistance of Plates of Various Shapes 

(German), Proc, Intern. Cong, for Applied Meek., Delft, 1924. 



142 APPLIED HYDRO- AND AEROMECHANICS 

Kempf and Kloess^ investigates the drag of very short plates. 
The subject of very long plates is treated in the paper by Kempf 
himself^ with the appended discussions of Gebers and von Kdr- 
m4n. Other contributions to the subject have been made by 
Stanton and Marshall,® Shigemitsu,^ and Telfer.® 

The measurements on long plates show consistently somewhat 
higher values than those given by the above formulas. In so far 
as these deviations are due to the influence of very great Rey¬ 
nolds’ numbers they form a parallel case to the deviations from 
Blasius’ law for the pressure drop in pipes at high Reynolds’ 
numbers.® Based on the experimental results of the flow through 
pipes, L. Schiller and R. Hermann^ have made a calculation* of 
the skin friction of plates. For the local drag coefficient c/ for 
ux/v > 3 • 10®, they give the interpolation formula 

/ \-0.1294 

c/ = 0.0206f^j 

Integrating this result leads to 

^ 0.024 ^ 
fV ^o.i3 + Ji • 

« 

For the case of very smooth flow and a sharp front edge, again 
an amount 1,700/ii has to be subtracted from this. As men¬ 
tioned above, this formula is valid for /? > 3 • 10®, while below this 
Reynolds’ number the old formula holds. 

Regarding the influence of roughness on the skin friction, it 
has been found that for surfaces which are not very rough the 
skin friction is hardly different from smooth surfaces, especially 
for small Reynolds’ numbers. In this case, the roughness 
inequalities are still within the laminar boundary layer. For 
larger Reynolds’ numbers, where these inequalities protrude 

1 Kempf, G., and 11. Kloess, Resistance of Short Plates (German), 

Werft, Reederei, Hafen, vol. 6, p. 435, 1925. 

* Kempf, G., ibid. 
^ Stanton and Marshall, On the Effect of Length on the Skin Friction 

of Flat Surfaces, Trans. Inst. Naval Arch.y 1924. 

* Shigemitsu, Skin Friction Resistance and Law of Comparison, Trans. 
Inst. Naval Arch.^ 1924. 

^ Telfer, see footnote, p. 104. 

® See also the note after Art. 48. 

^ Schiller, L., and R. Hermann, Resistance at Large Reynolds’ Numbers 

(German), Ingenieur Archiv^ vol. 1, p. 391, 1930. 
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out of the boundary layer on account of its smaller thickness, 
the rough surface causes considerably greater friction than the 
smooth one. Surfaces of great roughness, as for instance canvas 
covered ones, give a practically square resistance law according 
to experiments of Wieselsberger. This indicates that the drag 
then is of the nature of a pressure resistance. With increased 
plate length, Cf decreases in this case also, since with increasing 
thickness of the boundary layer the relative roughness decreases. 



CHAPTER VI 

AIRFOIL THEORY 

A. EXPERIMENTAL RESULTS 

87. Lift and Drag.—The previous chapter dealt with the drag, 
i.e.y with the component of the total force in the direction of 
the flow. But only in the case of syininetrical bodies where the 
direction of flow coincides with the axis of symmetry does the 
direction of the total force coincide with that of the motion. In 
all other cases there is a definite and sometimes a large angle 
between them. By decomposing the total force into two com¬ 
ponents, one in the direction of the flow and another perpendicular 
to the flow, we are led to the conception of lift. The angle 
between the direction of the flow and the total force exerted on 
the body depends very much on the geometrical position of the 
body with respect to its motion. In practical aeronautics, we 
are interested in bodies (airfoils) where the total resulting force is 
nearly perpendicular to the direction of the flow, so that in this 

case the lift is great and the drag small. 0The lift serves for carrying the airplane and 
therefore is a desirable property, whereas 
the drag is a necessary evil which has to be 
compensated for by the propeller thrust. 

- ^ n ■' _ 88. The Ratio of Lift to Drag; Gliding 

■piQ 7 9 —Lift and been known for a long time’ 
drag on flat plate inclined that a flat plate inclined at a small angle 
under 4 deg.; aspect the direction of the flow has a lift 
ratio G. 

L which is many times greater than 
its drag D. Figure 79 shows the lift and drag of such a 
plate inclined under 4 deg. with respect to the direction 
of flow. The ratio L/D, which is a criterion of the quality of the 
airfoil, depends not only on the ‘‘angle of attacka but to a great 

^ The oldest literature up to 1902 can be found in Finsterwalder’s article on 

Aerodynamics in the “ Encyclopaedie der mathernatischen Wisscnschaften/’ 
vol. IV (Mechanics), No. 17. See also O. Foeppl, Wind Forces on Flat and 

Cambered Plates (German), Jahrh. Motorlvflschiffstudiengesellschaft, vol. 4, 
p. 51, 1910-1911. 

144 
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extent also on the ^^aspect ratio.” For instance, a rectangle of an 
aspect ratio 6:1 (i.6., a ratio between the sides of 6:1), shows a 
considerably larger L/D as a square plate. The ratio D/L is also 
referred to as the tangent of the '^gliding angle,” since this is the 
angle under which the airplane can perform a steady gliding flight. 

A far better L/D ratio is obtained by giving the plate a slight 
curvature or “camber.” Figure 80 shows that the lift-drag 
ratio in this case is about twice as large as for the flat plate. 

Still larger lift-drag ratios can be obtained by using regular 
airfoils as employed on actual airplanes. As an instance. Fig. 
81 shows the cross section or “profile” of such an airfoil. It is 

Flu. 80. Fig. 81. 

Fig. 80,—Lift and drag on curved plate inclined under 4 deg.; aspect ratio 0; 
height of camber equals one twenty-seventh chord. 

Fig. 81.—Lift and drag for airfoil under 4 deg.; aspect ratio 6. 

essential that the front end be rounded off nicely and that the 
top be curved very smoothly; moreover, the tail of the profile 
should have a sharp edge. The curvature of the bottom side 
of the profile generally is of less importance. In Art. 91 the 
relation between the flying characteristics of an airfoil and its 
profile will be discussed in detail. For good profiles at an aspect 
ratio of 6:1, it is possible to reach a lift-drag ratio of 20 or more. 

Since both the lift and the drag are very much dependent 
on the angle of attack of the airfoil with respect to the direction 
of the flow, it is necessary to give a clear definition of this angle. 
In some cases it is to a certain extent arbitrary which plane 
through the airfoil is to be taken for the definition of the angle of 
attack. For profiles where both the top surface and the bottom 
surface are convex, it is usual to define the angle of attack, as 
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indicated in Fig. 82, by the line connecting the sharp trailing edge 
with the center of curvature of the nose. 

Another method which is common for most airfoils is that of 
placing a straightedge against the profile as shown in Fig. 83, thus 

Fui. 82.— Definition of angle of attack for doubly convex airfoils. 

defining the angle of attack. This definition has the additional 
advantage of providing a well-defined point to which the moments 
of the lift and drag can be conveniently referred. Besides the 

n usual decomposition of the 
total air force R into a lift 
L and a drag D, some other 

- V ^1 decompositions are used 

FI«. 83.-Definition of angle of attack sometiinos, for instance, into 
and of origin of moments. a tangential force T and a 

normal force N referred to the center line of the profile. 
89. The Lift and Drag Coefficients.—In the preceding chapter 

the drag coefficient was defined by the formula: 

c - Co-- 

Quite analogous to this, it is possible to define a lift coefficient, 
namely. 

Corresponding coefficients are defined for the other forces 
sometimes used, for instance: Cn for the normal force, Ct for the 
tangential force, and Cr for the resultant force. It is necessary 
to define exactly the area S appearing in the above formulas. 
In our previous considerations the projected area A in the direc¬ 
tion of the flow was used. For airfoils, however, it is common to 
define S as the largest possible projected area;for instance, for rec¬ 
tangular wings S is equal to the product of the span b and the 
chord c (Fig. 84); for wings of other shapes we have similarly 
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90, The Polar and Moment Diagrams of an Airfoil.—Since 
both the lift and drag depend very much on the angle of attack, 
it seems logical to plot the lift and drag coefficients as functions 
of this angle. In the first publications on aeronautics this was 
usually done, the Cl and Cn values being plotted as functions of 

a. It is seen in Fig. 85 that in the region of technical importance 
from O' = — 3 deg. to a = 12 deg., the Cl rehition is practically 
linear and the Cd relation practically quadratic. 

In practice, however, the knowledge of the relation between 
Cl and Cd and the angle of attack a is not necessary, and, more¬ 
over, the angle a cannot be eavsily measured during flight. It 

Fig. 85. - Lift and drag coefficiGiits vs. an^lo of attack. 

was suggested by Otto Lilienthal to plot Cl as a function of 
Cd and to write the angle of attack as a parameter into this 
curve, which is known as the polar diagram.’’ In Fig. 86 
such a diagram is shown with the scale of the drag values five 
times as large as the scale of the lift values. This is usually 
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done for convenience, since the lift is very much greater than the 
corresponding drag. 

For a full knowledge of the air reaction on the wing, lift and 
drag alone are not sufficient 
since they determine only the 
magnitude and direction of the 
total air force but not its location. 
Instead of specifying a point 
through which the total air force 
passes, it is more convenient 
to specify the moment of this 
force about a definite point or 
axis, since the point through 
which the force acts sometimes 
lies quite far behind the airfoil. 
The point 0 about which the 
moment is taken usually is the 
corner point of the straightedge 
shown in the Figs. 83 and 87. 

If N is the normal component of the air force and a its distance 
from 0, the moment is Af = Na, This moment is considered 
to be positive when it tends to raise the sharp trailing edge of 
the wing (Fig. 87). Introducing a moment coefficient Cm with 
c being the chord of the airfoil, we have 

Fig. 87.—Decomposition of total force 
ill lift and drag or in normal and tan¬ 
gential force. 

M Cm a Cm 
= liF == or ~ — rT JV c C N 

It is usual to plot Cm as a function of Cl in the manner shown 
in Fig. 88, where again the angle of attack is written into the 
curve as a parameter. Since Cl — Cn cos a — Ct sin a, it is 
seen that Cn differs very little from Cl for small angles of attack, 
so that we can write approximately 



AIRFOIL THEORY 149 

£ _ ^ M 

c “ 

Therefore if in Fig. 88 the point a = 3 deg., for instance, is 
joined to the origin, and the line thus obtained is intersected with 
the horizontal line Cl = 1, the 
piece cut off from this horizontal i\ 
line is approximately equal to a/c. 
The change of this point of inter¬ 
section for various angles of attack 

0 Pi 

therefore indicates the travel of ' 
the center of pressure along the 
airfoil. 0,6 

91. Relation between the Flying 
Characteristics of Airfoils and o,4 
Their Profiles.—Since the profiles 
usually applied in aeronautics can¬ 
not be expressed by simple mathe¬ 
matical formulas, a useful and 
simple classification of them has not 
yet been devised.^ Only for a very 
special class, the so-called Joukows- -0,2 
kv profiles (Art. 105), is this Fig. 88. - Moment coefficient rs. lift , . XI • r 1 coefficient. 
possible, since their form can be 
described completely by two parameters: the thickness and the 
curvature or camber. Their characteristic properties as a func¬ 
tion of these two parameters have been investigated thoroughly.*^ 

Geckeler^ has made an attempt to describe a more general 
type of profile by means of the theory of complex variables and to 
find the relations between flying characteristics and profile 
shape. The first systematic measurements in this direction were 

1 An attempt to express the profiles in mathematical form has been made 

by E. Everling, An Equation for Airfoil Profiles (German), Z. Flugtech. 
Motorluflschiffahrt, vol. 7, p. 41, 1916. 

2 VON Mises, R., The Theory of the Lift of Airfoils (German), Z. Flugtech. 
Motorluftschiffahrt, vol. 8, p. 157, 1917; Schrenk, 0., Systematic Investiga- 

gations on Joukowsky Profiles (German), Z. Flugtech. Motorluftschiffahrt, 
vol. 18, p. 225, 1927; Loew, G., A Contribution to Joukowsky Profiles (Ger¬ 

man), Z. Flugtech. Motorlufischiffahrij vol. 18, p. 571, 1927. 

3 Geckeler, J., On Lift and Longitudinal Static Stability of Airfoils as a 

Function of the Profile (German), Z. Flugtech. Motorluftschiffahrt, vol. 13, 

p, 137 and p. 176, 1922. 
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made in P]ngland,^ where an investigation was made of the 
influence of a variation in the position of the greatest thickness 
of the profile on tlie polar diagram. In the United States sys¬ 
tematic experiments have been made on profiles which are stiff 
enough in themselves to be used without outer struts.^ 

The fl3dng characteristics of a profile are determined by the 
lift-drag diagram and the moment diagram, which latter gives a 
measure for the static longitudinal stability. It is to be remem¬ 
bered that the drag of an airfoil depends not only on its profile 
and on the angle of attack but also to a great extent on the aspect 
ratio. Therefore in order to determine the influence of the 
profile shape itself, it is necessary to compare only airfoils of the 
same aspect ratio. The diagrams given on the following pages 
are all for an aspect ratio of 5:1. 

In general, the total drag of an airfoil can be divided into three 
parts: 

1. The skin friction, which is very much dependent on the 
condition of the surface of the wing and which can be minimized 
by making the surface very smooth. 

2. A part of the pressure drag which is due to the eddies in 
the wake behind the wing. This part of the drag is greater for 
thick profiles than for thin ones. 

3. Another part of the pressure resistance which is due to the 
fact that the air near the wing flows downward on account of 
the lift and w^hich causes the wing to need a greater angle of 
attack than would be necessary without this effect. 

In Art. 107 it will be explained that this last effect is due to 
leakage round the wing tips and is the more serious the smaller 
the aspect ratio is. I'his part of the drag is equal to the hori¬ 
zontal component of the lift force which is caused by the increased 
angle of attack. It is called ‘'tip resistances^ or “induced drag.’’ 
In Art. 110 a theory is dc^^eloped showing that this induced drag 
is a quadratic function of the lift so that it can be represented by 
a parabola in the polar diagram, with its apex in the origin but 
of a shape depending on the aspect ratio. On the diagrams on 
the following pages, the induced-drag parabola has been plotted 
always for an aspect ratio of 5:1. The horizontal distance 

1 WiESELSBEBGER, C., Investigations on Airfoils in Teddington (German), 
Z. Fluglech. Motorluftschiffahrt, vol. 7, p. 18, 1916. 

* Herrmann, H., Aerodynamic Properties of Thick Profiles According to 

American Tests (German), Z. Fluglech, Motorluflschiffahrt, vol. 11, p. 315, 

1920. 
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between this parabola and the polar curve represents the sum 
of skin friction and eddy resistance, which sum is known as the 

profile drag/’^ 
We shall now discuss the relation between the flying char¬ 

acteristics of airfoils and the shape of their profiles. Figures 89 
to 91 show that with approximately equal wing thickness and 
equal angle of attack an increase in camber is accompanied by a 
considerable increase in lift. However, the drag also increases 
even at a faster rate than the lift so that the most favorable 
value of L/D becomes somewhat smaller, more unfavorable 
for increasing camber. It is also seen that the moment curve 

Fig. 89. Fig. 90. Fig. 91. 

Fig8. 89-91.---Polar diagrams for airfoils of the samo thickness and different 
camber. 

becomes straighter for decreasing camber, and for a symmetrical 
profile it passes through the origin. For such a profile, there¬ 
fore, the center of pressure does not travel when the angle of 
atfhck is varied. 

Figures 92 to 94 show that for airfoils of equal camber the 
influence of the thickness is such that the polar curve becomes 
flatter and the maximum lift becomes slightly greater for thicker 
sections. Figures 95 and 96 show that a thicker profile in general 
has a greater drag for the same lift, which is due to the increased 
eddy resistance while the skin friction for the two wings is 
almost the same. The eddy resistance practically disappears for 
very thin profiles and very small angles of attack. Finally, it is 
seen in Figs. 97 and 98 that a bending down of the front end of 
the profile causes a great increase in the drag for negative angles 

of attack. 
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A rough surface of the airfoil in all cases increases the drag 
considerably and also diminishes the lift. The most sensitive 
part of the section in this respect is the front eiid of the upper 

Fig. 92. Fig. 9.’5. Fig. 94. 

Fig. 92-94,—Polar diagrams for various thickness with the same camber. 

side where there is a partial vacuum. On the other hand, con¬ 
siderable roughness on the upper surface near the trailing 
edge is hardly of any influence.^ 

Fig. 

Figs. 95 and 96.- 

95. Fig. 96. 

“The profile drag generally increases with thickness. 

92. Properties of Slotted Wings.—Wings with slots have been 
proposed independently by Lachmann^ (1918) and Handley-Page^ 

^ Goltinger Ergehnisse, vol. 1, p. 69, 1921; vol. 3, p. 112, 1927. 

2 Lachmann, G., Slotted Profiles (German), Z. Flugtech. Motorluftschiffahrt, 
vol. 12, p. 164, 1921. 

3 Hanscom, D., Investigations on Handley-Page Wings (German), Z. 
Flugtech, Motorluftschiffahrt^ vol. 11, p. 161, 1921. 
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(1920) and have acquired considerable importance lately. The 
main advantage of this type of wing is that the maximum lift 
obtainable with it is considerably higher than for a normal non- 
slotted wing. This advantage is to a certain extent offset by 
the fact that the gliding angle D/L for ordijiary horizontal flight 
is somewhat larger than for simple wings. With slotted wings it 
is possible to fly horizontally at very much lower speeds which is 
clearly of great importance for starting and landing. During 
ordinary horizontal flight it is necessary to close the slot by some 
mechanical means in order to lessen the drag which otherwise 
would be prohibitively large. Figure 99 shows a maximum 
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Figs. 97 and 98.—The profile drag becomes large at negative angles of attack 
when nose of airfoil is depressed. 

lift coefiicient for the slotted wing of Cl = 2.08, as compared to a 
value Cl = 1.38 for a normal wing. This profile has a maximum 
lift-drag ratio of 21 as compared to 15 for the slotted wing with 
closed slot and 13 for the slotted wing with open slot. Still 
higher lift coefficients (up to Cl = 2.3) can be obtained with 
multi-slotted wings (Fig. 100). For such types the sudden 
discontinuity in the drag coefficient obtained with single-slotted 
wings (Fig. 99) does not occur. Naturally, the structural diffi¬ 
culties involved are great. 

93. The Principle of Operation of a Slotted Wing.—In order to 
understand the phenomena in the slotted wing, it is necessary 
first to comprehend why for a simple wing the lift does not always 
increase with the angle of attack but starts decreasing when this 
quantity exceeds a certain limit. 
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Wing lift is due to a partial vacuum on the top side and an 
excess pressure on the bottom. This pressure difference must 
have disappeared at the sharp rear edge where the two currents of 
air join again. Consequently the pressure along the wing is 

Fig. 99.—Polar diagrams. I, slotted wing with open slot; II, with closed slot; 
III, normal wing. 

increasing toward the rear edge on the top side and decreasing 
on the bottom side (this will be discussed more fully in Art. 
94 and is illustrated by Fig. 102). Bernoulli's equation demands 

Fig. 100.—Multiply-slotted wings. 

a decreasing velocity toward the rear edge on the top side corre¬ 
sponding to the increasing pressure, which causes a divergence 
of the streamlines on the top side of a wing. Considering for the 
moment some particular outer streamline as a solid wall and the 
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wing as another solid wall, we have a case of flow through a 
diverging channel similar to that discussed in the previous 
chapters. When the angle of attack increases, the lift becomes 
greater and the pressure gradient on the top side toward the rear 
edge becomes also greater, which leads to an increase in the angle 
of divergence of the channel. It was seen before that a conver¬ 
sion of kinetic energy into pressure energy can take place only 
in diverging channels of a small angle of divergence. As 
soon as this angle has exceeded a certain rather small value, the 
flow does not follow the walls any more but breaks away from 
them and becomes a free jet. This phenomenon occurs also on 
the top side of a wing for large angles of attack. The flow 
breaks loose from the wing and the so-called stalling point 
is reached. Because of this effect the streamline picture around 
the wing is radically changed, and as a consequence of this change 
the lift decreases. In order to prevent a decrease in the lift it is 
apparently necessary to prevent the breaking loose of the flow, 
and this is the function performed by the slot. It was discussed 
before in Art. 49 that the cause of the breaking loose is a loss of 
kinetic energy of the particles in the boundary layer due to the 
action of viscosity. The air coming out of the slot blows into the 
boundary layer on the top of the wing and imparts fresh momen¬ 
tum to the particles in it, which have been slowed down by the 
action of viscosity. Owing to this help, the particles are able 
to reach the sharp rear edge without breaking away. A similar 
action can be obtained by blowing air at great velocities 
through little nozzles from the interior of the wing into the bound¬ 
ary layer, as was proposed by Wieland^ and Seewald.^ 

Another means of preventing the boundary-layer particles 
from flowing back is to suck them into the interior of the wing 
in a manner similar to that discussed in Art. 50 for the flow round 
a cylinder. This is done by means of a blower, and the air thus 
transported into the wing is blown off at some place where it 
cannot do any harrn.^ 

Still another method of obtaining the same result is to replace 
the front edge of the airfoil by a rotating cylinder or also by 

^ WiELAND, K., Investigations on a New Kind of Wing with Nozzles 

(German), Z. Flugtech. Moiorluflschiffahrt, vol. 18, p. 346, 1927. 

2 See WALD, F., Increasing the Lift by Blowing High-pressure Air along 

the Top Side of an Airfoil (German), Z, Flugtech. Motorluftschiffahrty vol. 18, 

p. 360, 1927. 

^ ScHBBNK, 0., see footnote, p. 81. 
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putting this cylinder inside the wing as shown in Fig. 101. 
Experiments made by Wolffs have shown that airfoils with such 
a rotating cylinder can be made to have much greater lift coeffi¬ 

cients {Cl = 2.43 with a = 41.7 
deg.). Of all the methods men¬ 
tioned, only the slotted wings have 

Fig. 101.—Airfoil with rotating \yeeii applied SO far to practical 
cylinder. . , < x* 

airplane construction. 
94. Pressure Distribution on Airfoils.—The pressure distribu¬ 

tion on an airfoil is determined experimentally in the same man¬ 
ner as discussed in Art. 85 for airship models. The airfoil model 
is made of thin metal plate and is hollow inside. At the location 
where a measurement is to be made, a small hole of approxi¬ 
mately j'lQ-in. diameter is provided. The inside of the wing is 
connected to a manometer by means of a rubber tube. For a 
test all measuring holes arc closed up with putty except the 
one at which the measurement is to be made. The model is 
then subjected to the air stream in the wind tunnel and the 
manometer shows the pressure at the location of the one hole 
which has been left open. In this manner the entire pressure 
field on the surface of the airfoil is determined point by point. 

Figure 102 shows the distribution in the middle section of an 
airfoil approximately of the shape of Fig. 86 for various angles 
of attack. The unit in which all pressures are expressed is the 

stagnation pressure.The total force exerted on the wing 
either on the vacuum or on the pressure side is expressed by the 
area of the diagram. It is seen in the figure that the major part 
of the lift is caused by the vacuum action on the top side of the 
wing. It is also seen in Fig. 102 that the vacuum diagram for an 
angle of attack of 15 deg. is considerably different from the same 
diagram of 12 deg. This phenomenon is very intimately con¬ 
nected with the fact that for a — 14.6 deg. the lift starts to 
decrease with the angle of attack (Fig. 86). Such pressure- 
distribution measurements on the middle section of an airfoil 
were made for the first time in England in 1911. 

Pressure-distribution measurements across an entire wing 
were also made in England first in 1912-1913,^ and subsequently 

^ Wolff, E. B., Preliminary Investigation on the Influence of a Rotating 

Cylinder in an Airfoil (Dutch), Verhandel, Rijks Studiediensl Luchtvaari, 
Amsterdam, vol. 3, p. 47, 1925; Wolff, E. B., and C. Koning, Further 

Investigation, etc. (Dutch), Verhandel. Rijks Studiedienst Luchtvaarty 
Amsterdam, vol. 4, p. 1, 1927. 

* MtTNK, M., Z. Flugtech. Motorluftschiffahrt, vol, 7, p. 137, 1916. 
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quite often in the United States. From such experiments, the 
total lift of the wing can be calculated by an integration process 
first across each section and then along the span (Figs. 103 and 
104). The lift and drag values so obtained can be compared to 
the corresponding values found directly in the wind tunnel by 
means of the aerodynamic balance. An example of this is shown 
in Fig. 105, where it is seen that the lift values are in excellent 

Fig. 103.—Lift distribution along span (obtained by integrating measured 
pressures) for various angles of attack. 

Fig. 104.—Drag distribution along span for various angles of attack. (Note 
high drag at tip for large angles of attack.) 

agreement, whereas the drag values calculated from the pressure 
distribution are somewhat lower than those obtained with the 
balance. The explanation for this naturally is that the skin 
friction is measured in the balance, but is not included in the 
calculated figures. 

B. THE AIRFOIL OF INFINITE LENGTH (TWO-DIMENSIONAL 
AIRFOIL THEORY) 

96, Relation between Lift and Circulation,—The theory of 
the lift of a body moving through a fluid is very much different 
from the theory of drag and offers far less difficulty. The 
fundamental reason for this is that any explanation of drag 
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requires a consideration of viscosity (even if it is only in a very 
thin boundary layer), whereas the lift can be explained entirely 
without the concept of viscosity so that the well-known methods 
of the classical hydrodynamics of the ideal fluid are applicable. 
If a body experiences lift, i.e.y a force component perpendicular 
to the flow of the fluid, we can ascribe this phenomenon only to a 
certain excess pressure on the bottom side of the body and a 

Fig. 105.—Lift and drag coefficients vs. angle of attack, from pressure measure¬ 
ments (•) and from aerodynamic balance measurements (o). 

certain partial vacuum on the top side (designated by + + aud 
-, respectively. Fig. 106). 

In case this condition is one of steady state, Bernoulli's equa¬ 
tion leads to the conclusion that the velocity as an average must 
be greater above the body than below it. This condition can 
be explained by superposing on the flow from left to right a cir¬ 
culating flow in a clockwise direction, as was first shown by 
Rayleigh^ and Lanchester.^ This is depicted in Mgs. 106 to 
108, where it is understood that Fig. 107 shows the purely trans- 
latory flow which does not exert any force on the plane but only a 
turning moment. The sup)erposition of the translatory flow of 
Fig. 107 and the circulation of Fig. 108 leads to the condition of 

1 Rayleigh, I..ord, On the Irregular Flight of a Tennis Ball, Messenger 

of Mathematics, vol. 7, p. 14, 1877, or Sd. Papers, Cambridge (England), 

p. 344, 1899. 
»Lanchbster, F. W., Aerodynamics,*' London, 1907. 
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Fig. 106 where the velocity on top of the plane is greater than 
on the bottom of it. The condition of Fig. 107 is the one which 
exists immediately after starting. The amount of circulation is 

designated by T which is equal to ^wodr being the line integral 

of the tangential component of the velocity along any closed 

Fig. 10(3.—Suporposition of tho Fig. 107.—Pure translational 
flows of Figs. 107 and 108. flow round inclined plate. 

curve surrounding the airfoil. In Art. 99 it will be explained 
how the original picture, Fig. 107, is transformed into the one of 
Fig. 106. 

96. The Pressure Integral over the Airfoil Surface.—In the 
following calculations it is assumed that the airfoil extends to 
infinity on both sides in the direction perpendicular to the paper. 

Owing to this simplification, effects of the wing 
tips have not to be considered, so that the stream¬ 
line picture is the same for any cross section 
perpendicular to the wing, or, in other words, 
the flow is two dimensional. The curvature of 
the airfoil and the angle of attack a with respect 
to the direction of flow are both so small that it is 
permissible to assume cos a as I. With this sim¬ 

plification, it is necessary to consider only the .r-component of the 
circulation flow denoted by Ua above the wing and by Ub below 
the wing. The directions of Ua and Ub are so indicated in Fig. 109 

Fig. 108.- Pure 
circulatory flow 
round inclined 
plate. 

Ua-► 

Fig. 109.— Decomposition of velocities. 

that both quantities are positive. The following calculations 
are made for a span length I cut out from the infinitely 
long wing. Denoting the pressures above and below the wing by 
Fa and respectively, the following relation is approximately 
true: 

“ v<x)dS == (Pb ~ Pa)dx, 
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where dS is the element of surface equal to AB • 1. Eliminating 
from this the pressure by means of Bernoulli’s equation: 

Pa)dS = [{V + llaY — {V — Uby]dx 

~ '^^b^]dx. 

With the simplifying assumptions made before, we have 

JfB 
^ Uadx + 'i^hdx = r, 

which, when substituted into the previous equation, leads to 

L = IpVV + - u,-^)dx. 

It will be proved later that the integral appearing in this 
expression is equal to zero so that the final result is L — IpVF, 
or, in words, the lift is proportional to the circulation. 

97. Derivation of the Law of Kutta-Joukowsky by Means 
of the Flow through a Grid.—In order to derive the above result 
for the lift in a more exact manner, 
we shall consider instead of a single 
wing an infinite number of them 
forming a ^^grid,’^ The distance 
between the individual blades is a, 
and the coordinate axes are chosen so 
that X is in the vertical direction 
positive downward and y is horizontal 
and positive to the right (Fig. 110). 
The area over which the integration 
will be performed consists of a plane 
Ai — al on the left side far away 
from the grid and parallel to the x- 

axis, a similar plane A 2 to the right 
of the grid, and two cylindrical sur¬ 
faces along streamlines. Since Ai — A^ the continuity equation 
leads to 

Vi ^ V2 — V, 

Applying the momentum theorem, it is seen that the mo¬ 
mentum integral as well as the pressure integral taken over the 

Fia. 110.—Flow through grid 
for proof of Kutta-Joukowsky 
lift theorem. 
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two Btreamlines are neutralizing each other, since the stream¬ 
lines are identical in shape. Since, moreover, there is no pressure 
component in the ;r-direction, the momentum theorem applied 
to the x-direction becomes 

— X = plav(ii2 — U]). 

For the ^-direction, we find similarly 

Y = pla(vr^ ~ + a/(pi - ps) = al{pi - P2). 

Bernoulli's equation, however, gives 

Pi - p2 = + W2^) - + Ml^) 

and, since Vi = ^2, we have 

rr 7 — Ul^ j U\ + U2. V 

Y = pla-2- == —2-~ 

Now the circulation round one blade will be calculated and it 
is convenient for this purpose to follow the same contour as was 
used for the momentum calculation. The contributions to 
the line integral from the two streamlines neutralize each other 
so that we finally obtain 

r = a(u2 — Ui), 

This substituted in the previous results leads to 

X = ~ plVv, 

The individual blades are now moved away from each other until 
in the limit they are at an infinite distance apart (a = 00). 
With this process r must remain finite and, since T = a{u2 — Wi), 
it follows that 

U2 = Ui 

or, in words, for a single wing the velocity of the fluid far in 
front of it is parallel to the corresponding velocity far behind it. 

If the direction of flow at infinity be made to coincide with the 
2/-axis, we have = U2 = 0; or, in words, the F-component of 
the force in the direction of the flow vanishes and we obtain 
only an Z-component, i.e., a lift. If the x-direction is now 



AIRFOIL THEORY 163 

reckoned positive upward and the velocity of the fluid at infinity 
be denoted by F, we find finally 

L = plVV. 

This very important formula for the lift was first derived by 
Kutta^ (1902) and later indef)endenlly also by Joukowsky- (1906). 

98. Derivation of the Lift Formula of Kutta-Joukowsky on 
the Assumption of a Lifting Vortex.—There are several other 
proofs for this theorem. The proof given by Joukowsky is based 
on the fact that the flow at great distances from the airfoil is 
independent of its exact shape. For the stream function he puts 
in a quite general manner 

ABC 
^ ^ ^ ^ ^ + 7 + + ? + 

<and, consequently, 

= ^ ------- 

~ dz ^ 2irz z^ z-> z^ ■ ■ ■ ’ 

where A, /i, C, . . . are complex constants. These constants 
determine the precise shape of the flow round the body and are 
different for different airfoils and different angles of attack. At 
large distances (large z) the terms proportional to A, By C can be 
neglected, and consequently the velocity field is as if there 
were only a ^Tifting vortexof strength F at the origin. It 
is of importance to note here that this vortex is not a Helmholtz 
vortex (of which the velocity is zero with respect to the surround¬ 
ing fluid) but that it is a ^Tifting vortex’’ or a “bound vortex” 
of which the velocity relative to the surrounding fluid is different 
from zero. It is understood that a lifting vortex is not a physical 
reality but that it is a very useful concept for the theory of air¬ 
foils. The idea of a lifting vortex can be made somewhat plau¬ 
sible by comparing it to a rotating cylinder of which the diameter 

has shrunk to zero. 
With this conception of a lifting vortex the velocity at great 

distances from the airfoil consists of the superposition of the 

^ Kutta, W., Lift Forces in Flowing Fluids (German), III. aeronaut. 

MUt.y 1902. 
* Joukowsky, N., On the Shape of the Lifting Surfaces of Kites (German), 

Z. Flugtech. Moiorlufischiffahrty vol. 1, p. 281, 1910; and vol. 3, p. 81, 1912. 
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constant velocity T" and the secondary circulation velocity 
w == V/2irr (Fig. 111). 

It is now comparatively simple to derive the lift formula by 
means of the momentum theorem, whereby the shape of the inte¬ 
gration surface employed determines which part of the total lift 
is caused by pressure and which part is caused by momentum. 
In case a concentric cylinder round the lifting vortex is used for 
integration surface, the pressure integral and the momentum 
integral both become pW/2 = L/2, where L is the lift per unit 

Fig. 111.—The velocity at larfce dis¬ 
tance from airfoil is made up of undis¬ 
turbed velocity V and secondary vclocit 
111 — r/27rr. 

Fig. 112.- -For circular hound¬ 

ing surface half the lift is due to 
jiiomontum and half to pressure. 

length of the airfoil. The circulation velocity iv due to the 
presence of the lifting vortex is T/2Trr and everywhere perpen¬ 
dicular to the radius r. From Fig. 112 it is seen that the 
momentum integral of the vertical component of the velocity 
per unit length of the wing is equal to 

p^djSww cos (n, w) = ^ 

pTV f pTV 
' - cos-^ (p = 

since 
27r 

cos^ (pdip = TT. 

The resulting momentum is directed downward since the velocity 
in front of the airfoil has an upward component which is changed 
to a downward component behind. The reaction of the fluid, 
therefore, gives a lift on the airfoil in an upward direction. 

Now we proceed to a calculation of the pressure integral. 
Denoting by po the pressure of the undisturbed fluid and by 



AIRFOIL THEORY 165 

V + w the geometrical sum of the vectors V and w, Bernoulli's 
equation is 

7> + |(V + w)=‘ = 

From Fig. 113 it is seen that 

(V + w)^ = (F + ttJ sin ip)'^ + 
{w cos ipy. 

jAj sin ^ 

Choosing r sufficiently large, it 
follows that w becomes infinitely 
small with respect to F, so that the 
expression w'" can be neglected. The pressure then becomes: 

Fi(i. 113. 

Fig. 114. 

/> = Po — 'pF?e sin <p. 

It is seen immediately that the horizontal 
component of the pressure integral is zero. 
The vertical component of p is equal to 
p sin <p so that the vertical pressure 
integral per unit length becomes 

pds = pj^ Vw sin- (p rdp — 

= prxvTrV = 

pFF 

prVivj*^ ’'sin^ <p d(p 

Fig. m 
The total lift per unit length is the sum 

Pii7rvT71>ZTo7Z7morf^encpr of thc pressure integral and the momen- 
turn integral and consequently equal to 

L = prF. 
pressure above crf-mosphenc pr 

before that the parts taken 

Figs. 114-116.—Rec- by the momentum or presvsure integrals 
tanguiar bounding surface in the lift depend on the shape of the 

planes go to infinity, the surface of integration. If, for instance, 
lift is due entirely to this surface is taken to be of rectangular 
momentum (115). If the - • j. ^ -j 
vertical planes go to in- form (Fig. 114) and the horizontal sides 
finity, the lift is due to of the rectangle are moved to infinity, 
pressure only (116). Surface of integration consists of 

two infinite vertical planes (Fig. 115). In this case the pres¬ 
sure integral is zero and the lift is equal to the momentum 
integral. On the other hand, if the vertical sides of the rectangle 



166 APPLIED HYDRO- AND AEROMECHANICS 

are moved to infinity (Fig. 116), the momentum integral vanishes 
and the lift is equal to the pressure integral. 

In an infinite atmosphere it is therefore entirely undetermined 
what part of the lift is due to pressure and what part is due to 
momentum. This is different as soon as the influence of the 
ground is considered. Then the horizontal sides of the rectangle 
of Fig. 114 are prevented from moving to infinity, so that only 
the case of Fig. 116 is possible. This means physically that the 
lift is always transmitted to the ground in the form of an increased 
pressure at the surface of the earth. The distribution of this 

pressure can be conveniently calculated by using the method of 
mirrored images^ (Fig. 117). 

In that case the earth's surface PP is a plane of symmetry. 
The surface of integration is taken to be a semi cylinder on 
PP of length I bounded on the bottom by a rectangle cut out 
of the plane PP. Calculating the pressure integral and the 
momentum integral across this surface, it is seen that for increas¬ 
ing r, the pressure integral becomes more and more equal to the 
lift. In the case of an infinite r, the momentum integral con¬ 
verges to zero and the lift becomes equal to the pressure integral. 

99. The Generation of Circulation.—It was explained before 
that a lift can be understood only by assuming a circulation 

1 Betz, A., Lift and Drag of an Airfoil in the Neighborhood of a Hori¬ 

zontal Plane or of the Earth’s Surface (German), Z. Flugtech. Motorluftschi^f- 

ahrt, vol. 3, p. 86, 1912. 
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flow superposed on the translational flow past the body. How 
can the existence of such a circulation flow be explained? We 
assume that at first the fluid is at rest so that the line integral 
of the velocity along a curve completely surrounding the airfoil 
is zero, because all velocities are zero. According to the theorem 
of Thomson (Art. 84, ‘T^^undamentals^’^), the circulation in a 
frictionless fluid must remain constant (in this case equal to zero) 
when the fluid is suddenly put into a uniform translatory motion 
with respect to the airfoil. This is apparently in contradiction to 
the experimental fact that there is a circulation round the airfoil. 

A close examination of the phenomena shows that the flow in 
the first moment after starting actually is a potential flow without 
circulation as shown in Fig. 118 SLud also in Fig. 48, Plate 19. 

Fig. 118. Potential flow without circulation. 

The most important feature of this potential flow is that the 
velocity round the sharp rear edge of the airfoil is infinitely large. 
Owing to the action of the very small viscosity in the boundary 
layer, however, this large velocity develops into a surface of 
discontinuity. 

This surface of discontinuity emanating from the sharp rear 
edge is rolled up to a vortex, the so-called ‘^starting vortex.^^ 
Since this vortex, according to the theorems of Helmholtz, is 
always associated with the same particles of fluid, it is washed 
away with the fluid. In the actual experiment with fluids of 
small viscosity like air or water the flow in the first moment 
after starting actually shows a great velocity round the sharp 
rear edge. Immediately afterward, however, a vortex is formed 
which at once possesses certain finite dimensions, but as in the 
idealized case this vortex grows rapidly. Figures 49 to 61, 
Plates 19 and 20, show the generation of such a starting vortex. 
The same phenomenon is shown in Figs, 52 to 54, Plates 21 and 

^See footnote, p. 3. 
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22; in this case, however, the camera is at rest with respect to the 
undisturbed fluid and the airfoil is moved with respect to it. 
Owing to the generation of the starting vortex, the velocity field 
is changed in the sense that a circulating motion is superposed 
on the translatory motion in such a manner that the circulation 
round the wing is at any moment equal and opposite to the cir¬ 
culation of the starting vortex. The circulation (round the wing) 
and consequently the starting vortex increase in intensity until 
they have reached such a value that the flow joins smoothly at 
the two sides of the rear edge. As soon as this condition is 
reached (which usually is the case after the wing has moved about 
one chord distance), the starting vortex does not increase any 
more. If the velocity or th^angle of attack is increased, another G"-vortex is shed off having the same 

direction of rotation as the starting 
j vortex. On the other hand, if the 

__velocity or the angle of attack is diinin- 
Fi(}. 119. ished, a vortex is thrown off which 
^-has the opposite direction of rotation 

\ the starting vortex. If the wing 
^ ) is accelerated from rest and immedi- 

_ately afterward stopped, two vortices 
Fi(}. 120. of equal strength and opposite rotation 

are thrown off. This phenomenon is 
\ ^ illustrated by Fig. 55, Plate 22. Later 
_9 p we shall discuss the energy relations 

involved in the formation of these 

Fio. 121. 

Figs. 119-121.—A fluid line When it has been understood that 
round a wing at rest in various the generation of circulation round an 

starting. The total circula- airfoil IS necessarily accompanied by a 
tion round it always remains starting VOrtex, it Can be sliown without 

round the airfoil is equal and difficulty that the existence of circula- 
opposite to that of the start- tion is not in contradiction to 
ing vortex. Thomson’s theorem. Trace a line 

round the airfoil at rest (Fig. 119) and let this line be asso¬ 
ciated always with the same fluid particles. After the motion 

Fig. 121. 

Figs. 119-121.—A fluid line 

zero, so that the circulation j-rc 
round the airfoil is equal and 
opposite to that of the start- tion 
ing vortex. rp. 

has been initiated, this line will always enclose both the wing and 
the starting vortex (Fig. 120). Since it can be seen in Fig. 55, 
Plate 22, that the circulation round the airfoil is equal and oppo¬ 
site to that of the starting vortex, it is clear that the line integral 
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round the closed fluid line remains equal to zero. Conversely 
it can be concluded from Thomson's theorem that the circulation 
round the airfoil will be equal and opposite to that of the starting 
vortex. This becomes clear from an inspection of Fig. 121 
from which follows that if the line integral round the total closed 
curve is equal to zero, the line integral round AiBAi must be 
equal and opposite to the corresponding 
integral round A2BA2. ^J 

100. The Starting Resistance.—The 
starting vortex of circulation F still influ- ^ 
ences the flow round the airfoil after it ^ 

f 122.—Downward 
has been washed away from it. From Fig. velocity w induced by 

122 it is clear that this influence consists of vortex, 

a downward component w of the velocity at the airfoil, having 
the magnitude 

2tI 

where I is the distance between the starting eddy and the airfoil. 
This small additional velocity w causes a deviation in the direc¬ 
tion of the relative air velocity and consequently is responsible 
for a change in direction of the air force. The angle through 

which this air force is turned is expressed 

by 

ip — tan ^ -y' 

It is clear that this causes a drag, which 
is large for small distances between the 
starting eddy and the airfoil. The drag 
D per unit length of span can be 
calculated from Fig. 123, as follows: 

Fig. 123.—Starting re¬ 
sistance due to downward 
velocity w. 

r r /y r JL 1 
D — L cos <p — -oT? 

pVT jr_ 
2tI ^2irl 

It is seen that this starting drag is proportional to the square 
of the circulation and inversely proportional to the distance of 
the starting eddy from the airfoil. The work done by this drag 
when the airfoil moves between h and U consequently is 

pF^ 
27r Jh I 

h 
h 
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This work becomes logarithmically infinite when U becomes 
infinite and it serves to create the kinetic energy round the wing 
and in the eddy which have equal magnitudes. From Fig. 124 
we calculate the kinetic energy K of one of these eddies per unit 
length of span (perpendicular to the figure), namely, 

K = r^2irrdr%p = 
pT^ 
47r Jr, r Itt 

It is seen that the kinetic energy of the circulation is equal 
to half the work done on the 
drag; the other half is accounted 
for by the kinetic energy in 
the starting eddy. However, 
these calculations are pertain¬ 
ing only to the two-dimen¬ 
sional problem of a wing in 
infinite space. In the real 
cases, whether of a wing of 
finite span or of a wing in 
the neighborhood of the ground, 
the work done by the drag as 
well as the kinetic energy of the 
eddies remains finite. 

101. The Velocity Field in the Vicinity of the Airfoil.—At first 
it seems difficult to understand why the direction of the flow far 
in front is influenced at all by the presence of the airfoil, because 
the air at such a location has not yet come into bodily contact 
with the wing. In applying the momentum theorem (page 165) 
to two parallel vertical planes in front of and behind the wing, 
it was seen that at a large distance in front of the wing the momen¬ 
tum corresponds to half the lift. This seems even more strange. 
Lanchester^ deserves great credit for having given a physical 
explanation of this phenomenon as early as 1897. He based his 
considerations on the fact that in order to obtain a lift it is 
necessary to accelerate air particles downward continuously. 
If the wing would not move forward, fresh air could be caught 
and accelerated only by making the wing fall downward (para¬ 
chute). It is therefore of advantage to make the wing move 
forward rapidly in order to catch and accelerate new air particles 
all the time. 

' Lanchester, F. W., see footnote, p. 169. 
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A simple picture of this downward acceleration of the air under 
the airfoil can be obtained by letting a flat plate of infinite 
width fall down freely during a short time. The field of accelera¬ 
tion of the surrounding air can be calculated for this case, and the 
result of such a calculation is shown in Fig. 125. The air above 
and below the plate is acceler¬ 
ated downward, while to both 
sides of the plate the accelera¬ 
tion is directed upward, since 
the air particles pushed down 
by the bottom eventually have 
to get to the top. Now we 
shall calculate what happens 
to this field of acceleration 
when it is moving forward 
with the velocity F, where V 
is assumed to be large with 
respect to the velocities w-, 
caused by the acceleration of 
the plate which is supposed to 
be of very short duration. 
Further, the displacements of the individual air particles are 
assumed to be so small that the general expression 

Flo. 125.—Field of acceleration round 
falling plate (two dimensional). 

dt 
dv , dv , dv 
dt dx dy 

is approximately equal to dv/dt so that 

+ 

- 00 m dt. 

Taking the 2:-axis of the system of coordinates in the direction 
of the velocity V and the y-axis in the direction of the acceleration 
of the plate and introducing the new variable ^ — x + Vt, 
we have 

^ = /(x + Vt, y) = /(f, y). 

For a constant x this can be integrated so that 
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Moreover for this case of a: = constant, we have 

= Vdty 
so that 

" - 

The velocity of the individual particles in the .r-axis therefore is 

In order to carry out this integration, we use the field of the 
acceleration in the ^/-direction for ?/ = 0, as shown in Fig. 126. 

Flos. 126-128. 

Fixing the constant of integration so that in the middle of the 
plate V is zero, the result of Fig. 127 is obtained. 

Since the displacements of the particles due to this field of 
acceleration have been assumed to be small, the velocity v for 
2/ 0 is approximately the same as for y = 0. Now we super¬ 
pose on the whole phenomenon a uniform velocity — V, so that 
the flow becomes steady. Then, at any instant, = dx. The 
streamlines for this steady flow can now be calculated from the 
relation 

d^ _ V y 
& ■" V + u V 

or using the above results, 
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It is seen in Fig. 128 that the streamlines above and below the 
plate have a parabolic shape (since i’ » f); to either side of the 
plate, however, the ordinate y decreases with log f (because 
y « 1/^ at a large distanee from the plate). From this com¬ 
paratively simple consideration, it follows that the air in front 
of the wing is accelerated upward. From the shape of the 
streamlines it ean be concluded that it is of advantage to 
use a curved plate instead of a flat one. In the case of a parabolic 
plate the particles in the neighborhood of the plate are accelerated 
uniformly (see Fig. 126). 

102. Application of Conformal Mapping to the Flow Round 
Flat or Curved Plates.—Independent of Lanchester, Kutta‘ 

irt 

. 1 

1 

Fig. 129.—Flow along flat plate in ^ == ^ + i-ij — plane. 

calculated the streamlines around an airfoil by means of con¬ 
formal mapping. The application of conformal mapping to 
problems of aerodynamics, originated by Kutta in 1902, has 
proved to be of great value. It should be mentioned, however, 
that the nature of the method restricts it to two-dimensional 

problems. 
Usually the starting point is the flow around a circular cylinder 

(see Art. 79, ''Fundamentals''^). The procedure consists of 
transforming this cylinder into some airfoil shape by mapping 
the circle and its streamline picture on another plane by means 

of a suitable analytic function. 
First we consider the trivial case of a uniform flow along an 

infinitely thin plate. In Fig 129 this plate is represented by a 
straight line between the points --2a and -f2a in the f f 
coordinate system. By means of the function 

1 Kutta, W., Lift Forces in Flowing Fluids (German), III Aeronaut. 

Mitt, 1902. 

*See footnote, p. 3. 
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this straight line is mapped into a circle of radius a and the par¬ 
allel flow along the straight line maps into the flow round this 
circle (Fig. 130). In order to verify this we substitute f = ±2a 

into (1) with the result that z — ±a; also a substitution of f = 0 
gives for z the values ±ia. In general the points of the f-axis 
between —2a and +2a can be represented by the formula 

f = 2a cos B 

which, substituted in (1), leads to 

2 = a cos 6 ± \/a- cos^ 6 — a^ 
or 

z a cos B ± \/ —0^(1 — cos^ B) 
or 

z ^ a cos B ± ia sin B. 

Consequently the ^-axis between —2a and +2a is mapped on a 
circle of radius a. The two-sheeted Riemann surface of the 
{•-plane with the branch cut from -~2a and +2a is mapped into 
the entire {z — x + i2/)-plane. 

By using suitable functions, the flow round the circle in Fig. 130 
can be transformed into other flow patterns of great variety. 
For instance, applying the inverse function of (1) 

(2) 
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it is clear that the original flow of Fig. 129 appears again. With 
the function 

the flow round a vertical plane is obtained (Fig. 131). The flow 
round a plate at an angle a can be derived from (2) by 
turning the z-plane of Fig. 130 through this angle a (Fig. 132). 

Kutta also suggested a method for calculating the flow round 
circular arcs. The dotted circle of Fig. 133 is transformed into 
the dotted line of Fig. 134 by means of (2). The full circle of 

Fia. 132.—Figure derived by first turning Fig. 130 through an angle a, then 
applying the function of Fig. 131 to it. 

Fig. 133 passing through the points —a and +a and having the 
point if as a center is mapped by the same function into the 
circular arc of Fig. 134 with a height 2^/. A method for 
the graphical construction of streamlines round circular arcs based 
on Kutta^s method was worked out by W. Deimler.^ 

' Dbimlbr, W., Constructions of the Kutta Flow (German), Z. math, 

Physikj vol. 60, p. 373, 1912, or Z, Flugtech. Motorluftschiffahrtj vol. 3, p. 

63, 1912. 
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103. Superposition of a Parallel Flow and a Circulation Flow.— 
In all cases discussed before, the airfoil may experience a turning 
moment but it does not have either lift or drag. We already 

know that it is necessary to 
have a circulation round the 
airfoil in order to create lift. 
Using the potential function ^ 
and the stream function as 
discussed in Art. 75, Funda¬ 
mentals/^^ it can be shown 

Fig, 133.—Flow round cirmiiar cyiin- with Comparative easc that the 
der of center* = 0, j/ = i/in a coordinate around a circle of radius a 
system turned through angle a. 

in the (z = x + iy)-plsine is 
determined by the complex function 

<1, + = v(^Z + ^ = VZ + Vy (3) 

The first term represents the potential of a parallel flow with the 
velocity V, whereas the second term represents a mirroring on 
the circle of radius a. The superposition of these two terms 
gives the well-known flow round a circular cylinder, as shown in 

1IG. 134. Conformal mapping of Fig. 133; the dashed circle becomes the dashed 
line and the full circle becomes the arc. 

Fig. 135. This can be immediately seen by splitting up (3) 
into its real and imaginary components, which is done in the 
easiest way by using polar coordinates z = r cos 

The second term taken equal to a constant is the equation for the 
streamlines round the circle. The special case ^ = 0 shows that 
the circle itself is a streamline since this equation with r ~ a is 

^See footnote, p. 3. 

^ = V cos (p(^r + + iV si 
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satisfied for all values of <p. The same is the case for all values of 
r different from zero if = 0 or tt; in other words, the x-axis is 
also a streamline. 

The stream function of a flow in concentric circles round the 
circle is given by 

^1 + ~ log z, 

where T is constant. Since i log z = —(p + i log r, this is 

= —— + 2— log r. 

Fi(}. 135.—Construction of flow round cylinder by superposition of parallel flow 
and the mirrored image of a parallel flow. 

The imaginary term set equal to a constant leads to r ~ constant; 
in other words, the streamlines are concentric circles. Differ¬ 
entiation of the function with respect to r gives for the velocity 

r 
^ “ 27rr 

or 
r = 2Trw. 

It is seen that T is the product of the circumference of the circle 
and the velocity, i.e,, the circulation. The numerical value of 
this circulation will be discussed in the next article, while for the 
present it is left arbitrary. 

By addition of these two stream functions, z.e., by 
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the parallel flow with circulation round a cylinder is obtained. 
The streamline picture can be easily constructed graphically by 
drawing the diagonals through the intersections of the individual 
component flows as is shown in Fig. 136. This figure shows two 
points of stagnation, the distance of which can be varied by 
changing the amount of circulation. 

•y 

Fig. 136.—Superposition of translational flow round eylindei with eircuhitory 
flow’. 

104. Determination of the Amount of Circulation.—The case 
of Fig. 136 is of direct practical application to rotating cylinders 
and also to cylinders where tiie boundary layer is sucked off on 
one side only (Art. 52). The greatest value of Fig. 136, however, 
lies in the fact that it is capable of being mapped into a great 
number of other profiles by suitable analytic functions. Apply- 

I 

Fia. 137.—Conformal mapping of Fig, 136 such that the circle becomes twice the 
line from —2a to -f 2a. 

ing first the various functions discussed before to the picture of 
Fig. 136, it is seen in Fig. 137 how the circulatory flow round the 
cylinder changes its shape when the circle is mapped into a 
straight line. The same function maps the fully drawn circle 
of Fig. 138, passing through the points —a and +a, and having 
the point if as center, into the circular arc of Fig. 139. The cir- 
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culation has been taken such that the two stagnation points 
just coincide with the points —a and +a of Fig. 138. We now 
turn our attention to Fig. 133 showing the flow round a circle 
passing through —a and +a and having the point if for center 
where the 2;-plane has been turned through an angle a in the 
clockwise direction. Superposing on this a flow in concentric 
circles, it is possible to choose the circulation in such a manner 
that the point of stagnation at the right just coincides with the 

Fig. 138.—Flow round circu- Fig. 139.—Mapping of Fig. 138 by 
lar cylinder with a circulation the function f = z -f a-/z. 
such that the two stagnation 
points are in —a and -fa. 

point +a. Mapping the 0-plane on the J'-plane by means of (3), 
the flow round the circle goes into the flow round a circular arc 
situated obliquely in the flow. On account of a proper choice 
of the amount of circulation the rear edge of this arc is not encircled, 
but the flow leaves it smoothly from the bottom as well as 
from the top side. If this circular arc had been given a greater 
angle of attack, it would have been necessary to choose a greater 
circulation in order to secure a 
smooth flow from the rear edge. 
This is in agreement with the 
experimental fact that an increase 
in the angle of attack causes an 
increase in the lift and conse¬ 
quently an increase in the circu¬ 
lation. The flow sketched in Fig. 140 is quite similar to the 
one round an actual airfoil with the exception of the large 
velocity at the sharp front edge. 

106. Joukowsky’s Method of Conformal Mapping.—In order 
to circumvent this difficulty at the sharp front edge, Joukowsky^ 
invented a mapping function by which a circle goes into a profile 
which is round at the front end. The theoretical consequences 

* JouKOWSKY, N., On the Profiles of Airfoils (German), Z. Flugtech. 

Motorluftschiffahrt, vol. 1, p. 281, 1910, and vol. 3, p. 81, 1912. 

Fig. 140.—Flow round circular arc 
with such circulation that rear edge 
is left smoothly. 
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of this method were discussed later by Kutta.^ In Figs. 133 and 
134 it was explained how the flow round a circle is mapped into 
the flow round an oblique circular arc. In Fig. 141 the circle 
Ki is surrounded by another circle K2 in such a manner that the 
two circles have only the point +a in common. The circle Kq 
is mapped into the portion ~2a to +2a of the horizontal axis, 
and the circle A"i is mapped into the circular arc on this stretch 
as a chord. Consequently the circle K2 goes into a profile which 

I 

Figs. 141 and 142.—Mapping of Joukowsky profile. 

completely encloses the circular arc and coincides with it only 
at the point +2a (Fig. 142). Since the region outside of the 
circle K2 is mapped on the region outside the new profile, it is 
clear that the streamline picture round K2 is mapped into the 
streamline picture round the new profile. The profiles thus 
obtained have great similarity to actual practical airfoils, espe¬ 
cially in their front and the middle parts. However, all Jou¬ 
kowsky profiles show a sharp rear edge without any thickness, 
which, of course, in an actual construction cannot be realized on 
account of strength considerations. A simple graphical method 

^ Kutta, W., On Plane Circulation Flows and Their Applications to Aero¬ 

nautics (German), Sitz. Ber. Ak.-Wus,^ Math, Phys, Kl, vol. 41, p. 65, 
Miinchen, 1911. 
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for the construction of Joukowsky profiles was given by Trefftz.' 
Joukowsky profiles have been investigated theoretically 

and experimentally a great number of times. The first experi¬ 
ments were carried out by Joukowsky himself in 1912 in his 
laboratory in Moscow.* One year later, BlumenthaP calculated 
the pressure distribution theoretically. He designated the 
various Joukowsky airfoils by means of ihree parameters (Figs. 
141, 142); first, a, determining the size of the profile; second, /, 
determining the mean curvature; and third, d, the difference in 
radii of Ki and Ki, determining the thickness of the profile. 
Betz* has made a comparison between the calculated values for 

Fio. 148.—Ctilculaied — and measured-pressure distribution round 
Joukowsky profile. 

lift and pressure distribution with the experimental ones. The 
agreement with the theory is very satisfactory, as shown in Fig. 
143, where the full line is the experimental pressure curve and 
the dotted one is calculated. It is seen that the calculated curve 
completely encloses the experimental one so that its area, and 
consequently its lift, is greater than that of the experimental 
curve. This can be explained by the action of friction. The 
actual flow does not follow the upper side of the airfoil smoothly 
but breaks away from it somewhat in front of the rear edge 
(point Ay Fig. 144). The turbulent region thus leaving the 
tail end of the airfoil causes a loss of lift since the pressure 
increase at the rear end of the airfoil does not reach the theo¬ 
retical value. 

^ Trefi^z, E., Graphical Construction of Joukowsky Profiles (German), 

Z. Flugtech. Motorluftschiffahrt, vol. 4, p. 130, 1913. 

2 Joukowsky, N., Aerodynamics” (French), p. 145, Paris, 1916. 

^ Blumenthal, O., On the Pressure Distribution along Joukowsky 

Profiles (German) Z. Fhigtech. Motorlufischiffahrt, vol. 4, p. 125, 1913. 

* Betz, A., Investigation of a Joukowsky Airfoil (German), Z. Flugtech. 

Motorluftschiffahrt, vol. 6, p. 173, 1915. 
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106. Mapping of Airfoil Profiles with Finite Tail Angle.— 
Following a suggestion by Kutta^ (page 77), Karmdn and 
Trefftz^ have extended Joukowsky's method to profiles of which 
the tail angle is not equal to zero. In order to accomplish this, 
it is necessary to use a mapping function which transforms the 
circle Kq (Fig. 141) into a figure made up of two circular arcs 
instead of the mapping function of Eq. (3) which transforms 
the circle into a piece of straight line. 

Kutta’s mapping function (1) can be written in the somewhat 
different form 

r + 2a ^ /g + aV 
f - 2a \z — a) 

(4) 

It was seen that this function maps the circle of radius a 
of the g-plane into twice the straight stretch from ~2a to +2a 
in the f-plane. In particular the singular points —a and +« 
of the g-plane go into the singular points —2a and +2a of the 
f-plane, and the angle tt at the singular points in the z-plane 
transforms into an angle zero in the f-plane. 

On the other hand, the function 

r + 2a ^ g + g .f.. 
I ~ 2a z — a * ^ 

maps the circle of radius a in the g-plane into another circle of 
radius 2a in the f-plane. The angle tt in the points —a and +a 
of the g-plane therefore transforms into angles tt in the points 
— 2a and +2a of the f-plane. 

The exponent 2 in ICq. (4) therefore constitutes the mapping 
of a circle into a figure consisting of two circular arcs which have 
degenerated into straight lines, and the angle enclosed by the 
arcs has also degenerated to zero. Similarly the exponent 1 in 

' See footnote, p. 180. 
2 Von KXrmXn, Th., and E. Trefftz, Potential Flow round Airfoil Profiles 

(German), Z, Flugtech, Motorluftschiffahrt^ vol. 9, p. Ill, 1918. 
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Eq. (5) transforms a circle into a figure of two circular arcs 
enclosing angles tt. It is to be expected that an exponent k 
between 1 and 2 would map the circle of the s-plane into a figure 
consisting of two circular arcs in the f-plane enclosing an angle 
between tt and zero. A mathematical investigation shows that 
this is true. The relation of the angle b between the circular arcs 
and the exponent h is given by the relation 

6 = (2 ~ k)Tr. 

Therefore, we find that the function 

^ + 2a ^ A + aV-— 
f — 2a \z — a) 

(6) 

maps the circle of the e-plane into a figure of two circular arcs 
enclosing the angle h in the f-plane. The function 

which is identical with Eq. (4), shows that for very great values 
of z, the points of the f-plane approximately coincide with those 
of the 2-plane. Consequently, the velocity at infinity in both 
planes is equal. On the other hand, the equation 

2z = f, 
which is identical with (5), shows that the velocity at infinity in 
the f-plane is twice as great as in the 2-plane. In the case of the 
transformation expressed by Eq. (6), the velocities at infinity in 
the two planes are also not equal. In order to enforce equal 
velocities in the two planes, it is necessary to modify Eq. (6) to 

^ -\rka _(z + aV 
^ - ka \z - a/ 

An example of the transformation of a Joukowsky circle by 
means of the function (7) is shown in Figs. 145 and 146. The 
dotted circle in Fig. 145 is transformed into the dotted figure 
consisting of two circular arcs shown in Fig. 146. The mean 
curvature of these two circular arcs would become zero if the 
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center M of the dotted circle Ki would coincide with the origin 
of the ary-coordinate system. The greater the distance between 
M and the origin, the greater the average curvature of the profile. 
On the other hand, the greater the difference in the radii of the 
circles K2 and Ki the thicker the profile becomes. Besides these 
two degrees of freedom, the mapping function of Eq. (7) allows a 
variation in the tail angle. Although a free disposal of three 
parameters, namely, mean curvature thickness, and tail angle, 

leads to a very great number of profiles, there are certain features 
in practical airfoils which cannot be approximated by this 
method. For instance, it fails for profiles having a greater 
curvature in the front part than in the rear part or having a curva¬ 
ture of which the center line shows an inflection point (AS-profiles). 
Kdrmdn and Trefftz therefore discuss an approximate method 
by which it is possible to map the circle on any airfoil section. 
By applying modern theorems of the theory of functions of 
complex variables, von Mises^ and W. Muller^ have made great 
progress in this direction as well as in the calculation of the 
relation between the lift and the angle of attack, 

^ Von Mises, R., The Theory of Lift of Airfoils (German), Z. Flugtech. 
Motorluftschiffahrty vol, 8, p. 157,1917; vol, 11, pp. 68 and 87, 1920; Z. angew. 
Math. Mech.y vol. 2, p. 71, 1922. 

* MOller, W., On the Theory of Mises’ Profile Axes (German), Z. angew. 
Math. Mech.y vol. 4, p. 186, 1924; MOller, W., ^‘Mathematical Hydro¬ 

dynamics” (German), Berlin, 1928. 
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C. THREE-DIMENSIONAL AIRFOIL THEORY’ 

107. Continuation of the Circulation of the Airfoil in the 
Wing-tip Vortices.—With a wing of infinite length the various 
pressures above and below it are constant along the span 
because the pressure distribution is the same for all vertical 
planes. This condition cannot exist for wings of finite width 
since here the pressure differences 
between the top and bottom have 
to disappear gradually toward the 
wing tips. On account of the 
greater pressure below the wing 
surface than above it, some air will Fig. 147.—Tip vortices leaving a 

flow from the bottom to the top 
round the wing tips. Therefore a sidewise current exists over 
most of the wing surface, directed outward on the bottom side 
and toward the center on the top side. This causes a surface 
of discontinuity in the air leaving the wing, which is ultimately 

rolled up into two distinct 
vortices. According to the 
theorem of Helmholtz, these 
vortices always consist of the 
same air particles so that they 

vortex leave the wing approximately 
with the velocity V in the form 

of two lines as shown in Fig. 147. In order to simplify the 
calculations, it has been assumed that the circulation, and con¬ 
sequently the lift, remains constant along the entire length of 
the wing and diminishes suddenly to zero at the tips. It was 
seen before that the flow round an infinitely long airfoil can be 
replaced by a flow due to a linear vortex in the wing. This is 
permissible also for a finite wing so that the simplest picture 
of the situation is given by three linear vortices as shown in 
Fig. 148. This phenomenon can be explained in a somewhat 
different manner: a linear vortex cannot terminate in the interior 
of the fluid but only at infinity or at a surface. It is clear 
therefore that the boundvortex of the wing cannot end at 
the tips but must be continued to infinity as a ^^free’’ vortex. 
If the airplane has started some place, the starting vortex closes 

^ pRANDTL, L., Airfoil Theory (German), Pts. I and II, Nachr. Gen, Wias., 

Gottingen^ p. 161, 1918, and p. 107, 1919, 

148.—Simple picture of 
system of finite wing. 
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the two long free-vortex lines at the other end so that the total 
vortex picture consists of a very long rectangle. 

108. Transfer of the Airplane Weight to the Surface of the 
Earth.—Although the condition of Fig. 148 is only a very rough 
approximation of the actual flow, it is capable of explaining 
some of the consequences at large distances from the airfoil. 

One of the most useful results that can be drawn from it is the 
law according to which the weight of the airplane is transferred 
to the surface of the earth. The introduction of a mirrored 
image, as used before on page 166, will prove useful also in this 
case, since then the normal velocity component at the earth 

Fig. 149.—Method of mirrored images. 

automatically reduces to zero. In order to obtain a steady flow, 
the coordinate system is chosen such that the airplane appears 
to be at rest, the :r-axis being in the direction of the wing, the 
?/-axis in the direction of motion, and the z-axis pointing down¬ 
ward (Fig. 149). 

The velocities w, v, w of the vortex system are supposed to be 
so small compared with the velocity V that their squares can be 
neglected with respect to the products of any of them with 7. 
Denoting by po the pressure of the undisturbed air and by p the 
difference between the actual pressure and po, Bernoulli's equa¬ 
tion gives 

Po + P + + (t> - F)* + w^} = po + ^F*, 
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or neglecting the quadratic terms in w, v, and Wj 

p = pVv, 

The pressure p at the earth’s surface {i.e.y the increased pressure 
due to the presence of the airplane) can be calculated by first 
determining v as a function of :r and y for ^ = 0, then integrating 
V over the a-?/“plane and multiplying the result by pV. 

The two 'Tree^’ linear vortices leaving the wing tips are sloping 
downward slightly on account of their own field of motion. 
This slope is so small that it will be neglected in the present 
calculation. Then the wing tijS vortices do not contribute any¬ 
thing to Vy which is caused entirely by the bound vortex. The 
length of this bound vortex h is equal to the span of the wing, 
but for an actual calculation a somewhat smaller value than this 
is more appropriate in order to take account of the fact that a part 
of the free vortices leaves the wing between the tips. Denoting 
the circulation round the airfoil by T and observing that b is 
small with respect to the height h of the plane above the ground, 
we find 

r6 sin a 

where the direction of vi is perpendicular to the plane ABFy 

Fig. 149. 
The mirrored image of the airplane leads to a corresponding 

velocity so that the actual velocity v on the earth becomes the 
geometrical sum of vi and vo. With the angles a and 0 as defined 
by Fig. 149, we have 

or, since 

this becomes 

Eliminating the circulation by means of the relation L = pTVb, 

we find that 
Lh 

V = 2vi sin 0 = 
K 

R' 
sin a = -j^> 

V = 
Tbh 
2tR^' 
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The increased pressure therefore is seen to have rotational 
symmetry with respect to the location of the airplane. Right 
under the plane, the maximum pressure 

L p„..- 2^, 
exists; it is seen that even for small heights, this pressure is 
extremely small since the height appears squared in the denorni- 

Fig. 150.—Transfer of airplane weight to ground. 

nator. The pressure distribution is shown schematically in Fig. 
150. Calculating the pressure integral over the entire surface 

Fig. 151. 

of the earth, using the notations of Fig. 151, 
we get 

ff“^pdxdy = llJX^Vdr -rde. 

Noting that cos y = h/R and r = h tan y so 
that 

cos^ y 

the integral becomes 

L r2 sin y 
2Tjy^oJe«=‘OR^ cos^ y 

dyde = -L. 

It is seen therefore that the lift L is completely carried by the 
ground in the form of increased pressure. 

109. Relation between Drag and Aspect Ratio.—The bound 
vortex finds its continuation in two tip vortices extending along 
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the entire flight path of the airplane. These tip vortices contain 
a certain amount of kinetic energy that has been created by the 
plane in its flight, which presupposes that the plane must have 
been doing work. This means that the plane moving through 
an ideal fluid has to overcome a certain drag. In this connec¬ 
tion we do not consider the profile drag (Art. 91) which, in 
addition, always exists in an actual fluid. 

Other things being equal, the lift is proportional to the wing 
span; on the other hand, the kinetic energy of the tip vortices, 
and consequently the drag caused by them, is approximately 
independent of the span. It is seen therefore that this drag is 
much more important for short spans than for long ones, or the 

Fius. 152 and 153.—Distribution of vertical velocity. I, for infinite wing; II 
induced by tip vortices of finite wing; III = I -f H total for finite wing. 

drag per unit of lift is greater for a wing of small aspect ratio than 
for one of large aspect ratio. Since it is very importan t for gliders 
to have a favorable ratio of lift over drag, wings of large aspect 
ratio are used. A theoretical calculation of this part of the drag 
is possible by assuming the velocities due to the various vortices 
to be small with respect to the velocity V of the wing, which is 

practically always the case. 
no. Rough Estimate of the Drag.—First an estimate of the 

drag will be obtained by means of momentum and energy con¬ 
siderations without entering into the details of the flow. The 
wing-tip vortices cause a downward motion of the air at the wing, 
which will be shown to be responsible for the drag. 

Figure 152 shows the distribution of the vertical component 
of the velocity along a line in the direction of flight for a wing of 
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infinite length. A similar picture was calculated theoretically 
for an idealized case in Figs. 126 to 128. In Fig. 152 we see, 
what we knew before, that the air in front of the wing is deflected 
upward and is then pushed downward by the wing. Now 
suppose a finite piece to be cut from the infinite wing of Fig. 152. 
The tip vortices will cause an additional downward component w 
of the air, of which the distribution is indicated by the dashed 
line II, Fig. 153. This, however, so influences the direction of 
the wind velocity at the wing, that it appears to be flying in a 

w 
direction inclined with the angle (p — tan“^ y with respect to the 

actual direction of flight. Since the air force is perpendicular 
to the apparent direction of motion, it includes the angle p with 
the actual direction of motion. If is the downward velocity 
at the center of pressure of the wing due to the action of the tip 
c ortices, we have the relation 

D ^ m 
L V' (1) 

The induced velocity wq is not the same for all points along the 
span; outside the wing tips the velocities are even directed 
upwards. This complication is neglected at first and the sim¬ 
plifying assumption is made that a certain amount of fluid passing 
through a certain cross section S' is influenced by the wing in such 
a manner that it acquires a downward velocity Wiy while the rest 
of the air does not experience any downward deviation at all. 
The area as well as the shape of this cross section S' cannot be 
determined by this rather rough reasoning, and its calculation 
must be postponed to the more refined analysis which is to follow 
later. Anticipating these later calculations, it is mentioned here 
that S' does not depend on the angle of attack. 

According to our assumptions, a mass of air pS'V is given the 
downward velocity Wiy which causes as a reaction the lift 

L = pS'Vwi, 

An application of the energy theorem stating that the work done 
on the drag is equal to the kinetic energy created in the unit of 
time leads to 

DV . pS'V^. 
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Substituting the expression for the lift obtained above, we get 

n = ^ 
2y ^v{s'i,v) - 

2 

Comparing this result with Eq. (1), it is seen that 

or, in words, the downward velocity due to the tip vortices at 
the center of pressure of the wing is half as great as the final 
downward velocity far behind the wing (see also Art. 113). 

The calculation of the drag is now reduced to a determination 
of the area S\ 

Fic5. 154.—Surface of discontinuity behind a wing. 

111. The Jump in Potential behind the Wing.—In order to 
penetrate further into the problem, it is necessary to drop the 
simplified picture of Fig. 148 and to investigate the wake of the 
wing in detail. With the two-dimensional flow round an infinite 
wing there is a “surface of separations^ behind the trailing edge, 
separating the air which has passed over the wing from that which 
has passed under it. The velocity on both sides of this surface 
however is the same, so that it has hardly any physical reality. 
With the finite wing, however, there is a lateral flow toward the 
tips below the wing and toward the center above it. This flow 
continues in the surface of separation so that it becomes a surface 
of discontinuity for the velocity (see page 221,‘^Fundamentals'^^). 
Owing to the action of the tip vortices this surface moves down¬ 
ward with a velocity Wiy which increases with the lift. A detailed 
consideration shows that this surface rolls itself up in the manner 
shown in Fig. 154. However, the rate of rolling up is small for a 
small Wi and in the following deliberations it will be neglected, 
presuming the surface of discontinuity to be a plane. In other 

^ See footnote, p. 3. 
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words, the iSiow is the same in all planes perpendicular to the 
direction of flight; the phenomenon is a function of x and z only, 
independent of y (Fig. 155). This is a two-dimensional problem, 
which can be solved with the methods of classical hydrodynamics. 

We now return to Lanchester^s conceptions on page 171 and 
Fig. 126. Instead of a downward acceleration of the wing itself 

in its various consecutive posi¬ 
tions we shall consider an instan¬ 
taneous acceleration (impulse) 
of the whole surface of separation. 
In other words, this surface of 
separation is momentarily solidi¬ 
fied into a “ board,and this 
board is given a downward 
impulse. (In order to take care 
of the variation of wi with Xy 
the '^board'^ may be considered 
elastic.) 

The two-dimensional field of 
acceleration thus obtained has 

the distribution of Fig. 125. During the short interval r of the 
acceleration, let —pa be the decrease in pressure on the top of the 
board and be the increase on the bottom side. The ^Tmpulse 
pressure at each point of the air is then given by 

Flo. 155.—Surface of discontinuitj’^ 
in the case of small induced down¬ 
ward velocity w. 

where p is the pressure difference with the undisturbed state. 
The general equation of Bernoulli for non-steady motions applied 
to a coordinate system at rest with respect to the undisturbed air 
is 

1 V 
^ + - = const. at 2 p 

With our assumption that w is very small, this simplifies to 

, p . — + - = const. 
at p 

In order to determine the constant, the phenomena at a great 
distance to the side of the boardwill now be considered. 
Here the fluid is hardly disturbed and both terms on the left- 
hand side go to zero in the limit when the distance to the side 
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increases indefinitely so that the constant also becomes zero. 
Therefore 

_ j) 
m y 

On account of the very short duration of the impulse of the 
''board'’ the "substantial” integration can be replaced by the 
"local ” one. Assuming incompressibility of the air, the previous 
expression can be integrated : 

Since the motion started from rest and consequently ^ = 0 at the 
time ^ = 0, we have 

foPdt = -P^^’ 

where is the potential of the flow after the impulse, which 
remains constant from then on. 

In order to calculate the total impulse for a flight path of length 
I (perpendicular to the plane of the drawing of Fig. 125), the 
impulse pressure has to be multiplied with the area so that it 
becomes 

Jo "" 

The integral 

- Pa)dx 

is the expression for the force on the area (x^ — xi)l at any instant 
between zero and r. After the impact, i.e., for ^ > r we have 
Pb = 0 and Pa = 0, and the integration from zero to r gives the 
total impulse. According to the principle of action and reaction, 
this impulse acting on a surface of the length I is equal to the lift 
on the airfoil multiplied by the time T, which the wing needs in 
order to fly the distance I {T = l/V). Consequently, 

- ^i,)dx = LT = 

or 

L = — ^b)dx. 

It will now be explained that the potential jump at the surface 
of separation is tied up with the circulation round the wing. The 
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line integral of the velocity along any curve which does not 
pierce the surface of separation behind the wing must be equal 
to zero since the curve lies entirely in a region of potential 
flow. If the points B and A of the curve in Fig. 156 are made to 
converge to a common point in the surface of separation, the 
single curve falls apart into two branches. Since the line 
integral along the branch enclosing the wing must be equal to its 
circulation F, the corresponding integral along the other branch 
of the curve must be equal to —F and must also be equal to 
4>a — 4>6. Substituting this result into the last formula, we get 

L == pV f A^dx. (2) 

Fig. 150.—The lino integral of the tangential velocity round the closed curve 
is zero as long as it does not pierce the surface of discontinuity. W^hen the curve 
falls in two branches by letting B — A, the circulations of the two branches are 
equal and opposite. 

Assuming the circulation and consequently the lift to be 
constant along the .r-axis, we obtain 

L = pVV{x2 — Xi) = pVThj 

where 5 = X2 — denotes the span of the wing. This consti¬ 
tutes another proof of the lift theorem of Kutta-Joukoyvsky, 
and it is seen from Eq. (2) that this theorem is still applicable for a 
circulation which varies along the span. 

In order to proceed with a calculation of the area S', discussed 
on page 190,, which is essential for a determination of the drag, 
we replace the potential by the expression ^/wi == <Pf which 
has the dimension of a length. With this notation, the integral XXi 

{<Pa — ipb)dx is of the dimension of a surface, and <p obviously 

can be regarded as the potential of a similar flow in which the 
velocity wi = 1. Comparing the expression for the lift, 

(V5a — <pb)dx, 
Xi 
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with the expression derived from the momentum theorem, 

L = pVwiR', 

t he area S' is seen to be equal to 

{ip a — (P})dx. 
XI 

The integration can be performed as follows: 

{<Pa — (Pb)dx = ifn dx + ipi/ix == ^ tpdx, 

whereby the path of the last integral extends round the surface 
of separation taking first the <^values on the top side and then 
on the bottom side. With this xindcrstanding, we write 

and 

L = pViVi^<pdx 

S' = f,pdx. 

112. The Vortex Sheet behind the Wing with Lift Tapering 
Off toward the Tips.—It has been assumed until now that the 
lift is constant along the span, and that the circulation which 
drops suddenly from its value T to zero at the wing tips is con¬ 
tinued in two free tip vortices, moving away from the wing with 
the air. 

If we consider the more real case of a lift distribution which 
has a maximum at the middle of the span and which decreases 
gradually to zero toward the tips, it follows that free vortex lines 
emanate from the rear edge of the wing in all places where the 
circulation changes along the span. Let the circulation and con¬ 
sequently the potential difference be T at some point Ai of the 
airfoil (Fig. 157) and let the circulation at yl2 be 

r + ox 

The line integral of the velocity along the closed curve of Fig. 157 
is zero since the curve remains entirely inside the region of 
potential flow. Letting the points 1', 1", 2', 2" converge toward 
the surface of separation, the value for the circulation of the 
small closed loop of Fig. 158 is 

dr. 
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This is the circulation of the, vortex leaving the airfoil at that 
particular location. If the circulation is variable along the 
entire span and is not constant at any point, the vortex lines 
leaving the wing form a surface which is identical with the sepa¬ 
ration surface discussed before. It is sometimes referred to as a 

vortex band.^^ 
This result can still be interpreted in the following manner. 

The lift being a maximum in the middle of the span decreases 
gradually toward the tips. Since the lift is made up of a partial 
vacuum above the wing and an excessive pressure at the bottom 
side of it, the decrease in lift toward the wing tips is associated 

-r 

Flos. 167 and 168.—The circulation of a vortex strip emanating from the wing is 

—rfx. 
dx 

with an increasing pressure on the top and a decreasing pressure 
at the bottom toward the tips. Under the influence of these pres¬ 
sure differences along the span, the air particles flowing by from 
front to rear are pushed to the side somewhat, namely, toward the 
middle on top of the wing and toward the tips at the bottom. 
With a non-viscous fluid, the air stream, which is divided into a 
top and bottom stream at the front end of the wing, is closed up 
again at the rear end. Due to the lateral components of the 
velocities, there will be a discontinuity in the velocity at the sepa¬ 
ration surface where the two streams come together. The differ¬ 
ences in lateral velocity at this separation surface increase with 
increasing lateral pressure variation and with increasing change 
in the circulation r. The absolute values of the velocities above 
and below the surface of separation must be equal according to 
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Bernoulli’s equation, since the pressures on both sides of it are 
equal. Figure 159 shows schematically the distribution of the 
vorticity in the surface of separation if the circulation increases 
stepwise from the wing tips toward the center. 

In addition to the velocity field of the bound vortex we have 
to consider the velocities caused by the free vortices leaving the 

V 

Fk;. 159.—Stepwise distribution of circulation. 

trailing edge of the wing. It was seen before that the induced 
drag is due to the downward velocity at the airfoil caused by the 
free vortices and we now proceed to a calculation of this velocity. 
As before, the airfoil is replaced by a single straight vortex 
filament of circulation F which simplifies the analysis consider¬ 
ably. Another simplification is that the down¬ 
ward motion of the free vortices will be 
neglected as being only of secondary importance. 

113. The Downward Velocity Induced by 
a Single Vortex Filament.—It was seen on 
page 206, “Fundamentals,^^' that an element ds 

of a straight vortex line of circulation F (as shown in Fig. 160) 
induces at the point A a velocity, 

, Yds sin ip 

= -4^’ 

or, since 

sin V? = cos a] s = h tan a, ds = 
hda 

cos^ a 
r = 

cos a 

Fig. 160. 

this becomes 

dWA 
Thda cos a 

4ir cos^ a- 

F cos a 

4tirh 
da. 

a 

'See footnote, p. 3. 
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The direction of this velocity is perpendicular to the plane of 
Fig. 160. 

A finite stretch of the vortex filament, the ends of which appear 
under the angles ai and as seen from A, consequently induces 
the velocity 

r /•a*’ r * 
Wa = -4—T I “ "a—rfsin a^i — sin ai]. (3) 

ATTflJai ATTfl 

For a vortex filament extending to infinity on both sides we 
have = —t/2 and ^2 == 7r/2, so that sin a2 — sin ai ~ 2 and 
consequently = T/2Trh (see page 207, ^^Fundarnentals^^O. For 
a vortex line extending to infinity in one direction only, the result 
is 

Wa = ^^(1 

which in the special case ai = 0 reduces to 

Wa 
r 

iwh 

dy 

pv.r::r: 

being exactly half the velocity induced by a vortex filament 
extending to infinity in both directions. For the practical cal¬ 

culation of the downward velocity 
induced at the airfoil by the vortex 
band it is assumed that this band 
extends to infinity back of the airplane 
so that the velocity at the airfoil 
becomes equal to half the velocity far 
behind the plane, where the vortex band 
approximately extends to infinity in both 
directions. 

114, Determination of the Induced^ 
Drag for a Given Lift Distribution.—It is 
assumed that the lift distribution, and con¬ 

sequently the circulation F as a function of is known (Fig. 161). 
The problem is to calculate the velocity field induced by the 
vortex band behind the airfoil, especially the downward velocities 
at the wing. From this the drag can be calculated. 

Fig. 161.—The surface of 
discontinuity behind a wing 
of given lift distribution. 

1 See footnote, p. 3. 

2 This designation is used in analogy with phenomena of electromagnetic 

induction which are quite similar to those of hydrodynamic vortex fields, 

The phrase ‘‘induced drag" was first introduced by M. Munk, 
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The downward velocity due to the entire vortex filament 
emanating from B, Fig. 160, was found to be 

Wa = 
47r/i 

Applying this result to the strip dx of the vortex band shown in 
Fig. 161, the velocity at an arbitrary point x' of the bound vortex 
becomes equal to 

dw(x') 
1 dV, 

4wlx' - x) dx 

The direction of w is along the positive -^-axis, because to the 
right (x > x') the expression dV/dx is negative, while to the left 
(x < x') dV/dx is positive. 

Since the induced velocity at any point of the bound vortex 
(among others at the point x') is due to all the strips making up 
the vortex band, this velocity is found by integrating along 
the span b: 

1_dT 

~ X dx 
dx. 

Since the integral becomes indeterminate at x == a:' on account 
of the integrand becoming infinitely large, it is necessary to take 
the so-called principal value of it, defined by 

This definition is such that the value of .r' has to be approached 
from both sides at the same rate. Both parts of the integral tend 
to infinity, but their sum has a finite limit which can be checked 
up by calculating the velocity w at a point somewhat above or 
below the bound vortex instead of exactly on it. This calculation 
will show that the velocity remains finite and goes to a finite limit 
when the point is moved to the bound vortex itself. 

We are now in a position to calculate the drag induced by the 
system of free vortices. It was seen that the various elements of 
the bound vortex are subjected to different downward velocities 
due to the free vortex band. It is assumed that each individual 
element of the bound-vortex filament behaves like an element of 
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an infinitely long wing (two-dimensional flow), where the relative 
wind velocity is made up of the velocity V of the wing and the 

induced velocity w. Since in such an 
element the resultant force is perpendic¬ 
ular to the relative air velocity, it is seen 
from Fig. 162 that 

dD 
wdL 

Fig. 162.—Deviation of 
the resulting air force due 

to the induced downward Assuming that the lift per unit length Li 

nenTf/thrflight ^long the span is given as a function of 
is the induced drag Dt. :r', ix., = Li(r'), the total induced drag 
is found by integration along the span of the wing: 

D = yf%(x')w(x/)dx'. 

Since Li(x') = dL/dx' = pFF, the drag also can be written 

o 

D = pCT(x')w(x')dx', 

or substituting into this the value for found previously, 

D = ffhK(x'&dx-;^- 
iTrJhJb ^ dx X — X 

The physical meaning of the double integration (first with x' and 
then with x as the variable) is that first the influence of the total 
free vortex band on the velocity of one element of the bound 
vortex is determined and that further all the individual drags for 
the various elements have to be added up to the total induced 
drag of the wing. The formula gives a general method for the 
calculation of the induced drag if the distribution of the lift 
along the span is known. 

There is a simple relation between the induced drag and the 
kinetic energy of the free vortex system, which was used by 
Trefftz^ as a basis for deriving the above result by means of 
Green’s theorem. His analysis is of considerable interest to 

‘ Tbbfftz, E., The Airfoil and Propeller Theory of Prandtl (German), 

Z. angew. Math. Mech.j vol. 1, p. 206, 1921. 
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mathematically inclined students, but it is physically less 
obvious than the proof given here. 

Before investigating whether these results are in accordance 
with the experimental facts, some remarks will be made regarding 
the historical development of the theory. After the formula was 
derived, it was attempted to find by 
trial some plausible functions for the ^ 

lift distribution, which are simple ^^rrTTlIiniW 
enough to make the integration ^ 
practically possible. After some ^ ^ 

time a semi-elliptic lift distribution fxg. 163.—Elliptic lift distribu- 

on the span was found to lead to a x,ion r = /~y 
simple solution, and still later it was ^ \^/2/ 
discovered that this solution is the most important one, since it 
gives a minimum of induced drag. 

Designating as before by b the span and by To the circulation 
in the middle of the airfoil, the elliptical lift distribution shown 
in Fig. 163 is expressed by 

- (m)’ 
Other lift distributions rendering the integration comparatively 

simple are shown in Figs. 164 and 165 

/flilllk /iMMk find can be expressed by 

Fia. 104. r = 
-(# 

lm\\\ Illllllfll \ linear combination of terms of 
(UllliiiililliilllUM ^gp^ 

Figs. 164 and 105.—Lift purpose, 
distributions according to Limiting our selves to the most 

r = Vnx^ \ 1 “ (^) important case (of elliptic lift dis- 
linear superpositions of these, tribution), we have 

^ = Tox 

and the downward velocity at the point .r' of the airfoil becomes 

w(x') = 
X~ __- 
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X 

Substituting ^ = ^^2’ this leads to :* 

w{x') = -—T 

D 

m 

(r - f)Vr- e A ^ 

£0 

26* 

It is seen therefore that the induced downward velocity w is 
independent of x', z.e., w is constant along the entire span. 
It is more convenient to introduce the total lift L instead of 

To, and since 

L 

the result becomes 

10 
2L 

TTpVb'^' 

Since w comes out to be constant along the span, it is not 
necessary to perform the second integration and the induced 
drag immediately becomes 

D 
w ^ L2 

Comparing this result with the expression found on page 191, 

L2 
D = 

4*S'^F2 

it is seen that now the determination of the area S' has been 
accomplished: 

This can be conveniently memorized by noting that the area S' 

is equal to that of a circle on the span as diameter. It may 
be mentioned again that this result is true only for an elliptical 
lift distribution. The same result could have been obtained by 
pursuing the procedure started on page 195 for the two-dimen- 

-.. = —T. See Betz, foot- 
> (F - 

note, p. 204. 
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sional flow determined by a constant velocity wi. It will be 
shown later that the velocity wi, far behind the wing, is exactly 
twice the velocity w at the wing itself. 

The induced velocities for a given lift distribution and its 
consequent induced drag have now been calculated, but the 
question is as yet open which shape has to be given to the wing 
in order to obtain the desired lift distribution. In order to 
find an answer to this problem, the airfoil is subdivided into 
elemental strips of width dx, each having a definite circulation 
determined by the known lift distribution. The question arises 
as to which shape each element has to have in order that the given 
circulation correspond to it if the element is considered to be part 
of an infinitely long wing. Besides depending on the shape of the 
profile, the circulation also is affected by the chord and by the 
angle of attack so that it is clear that the problem of determining 
the wing shape for a given lift distribution is an indeterminate 
one. Various shapes corresponding to the same lift distribution 
can be obtained by varying either the profile or the angle of 
attack, or the chord along the length of the span. The most 
practical case from a structural standpoint is to make the pro¬ 
files of the various elements geometrically similar and their 
angles of attack equal along the span. With this restriction 
the question of the wing shape I 
can be solved by making the 
chord at each point proportional 
to the lift. An elliptical lift dis¬ 
tribution therefore can be rea- 

lized by making a wing consist of loo.-wing Lh elliptic lift 

two semi-ellipses as shown in distribution; the shape of the wing 

Fig. 166. By this special choice semi-eiiipsos. 

the additional advantage is obtained that the centers of pressure 
of the individual profiles are all on a straight line so that this 
particular wing can be approximated very well by a straight 
vortex filament. In case the bound vortex should be curved 
somewhat in the a*?/-plane, the angles of attack would be changed 
by the induced velocities of the individual elements of the bound 
vortex on each other. This would be very difficult to follow 

analytically. 
116. Minimum of the Induced Drag; the Lift Distribution of 

an Airfoil of Given Shape and Angle of Attack.—The so-called 
second problem of airfoil theory'^ consists of finding the lift 
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distribution for a given total lift and a given span such that the 
induced drag is a minimum. In mathematical language the 
problem is therefore: 

h 

D = I r(x)w(x)dx = minimum 
_ ^ 

2 

when 
h 

L = pVf^ r(x)dx 

~2 

is given, and 

This problem has been solved in its most general form by 
Munk^ for monoplanes as well as for multiplanes with the result 
that for a monoplane the minimum is obtained for a velocity 
w which is constant along the span. As was mentioned before, 
the elliptic lift distribution therefore is the one which gives a 
minimum induced drag for a given span and a given total lift. 
A simpler proof of this theorem given later by Betz is discussed 
in Art. 120. 

The minimum in the drag for the elliptic lift distribution is a 
very flat one, however, so that the drag does not increase much 
for lift distributions different from the elliptic one. For instance, 
a rectangular wing of aspect ratio 5 has only 4 per cent greater 
induced drag than the corresponding elliptic wing. 

The ^Hhird problem of airfoil theory'^ consists of finding the 
lift distribution for an airfoil of given shape and given angle of 
attack. Naturally this problem was the first to present itself, 
but being the most complicated one it was last to be solved in 
1919 by Betz.2 The problem leads to a disagreeable integro- 
differential equation which has been solved for the case of the 
rectangular wing of constant profile and constant angle of attack 

^ Munk, M., Isoperimetric Problems in the Theory of Flight (German), 
Dissertation, Gottingen, 1919. 

2 Betz, A., On Airfoil Theory with Special Consideration of Rectangular 

Wings (German), Dissertation, Gottingen, 1919. 
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in the form of a series of 
the aspect ratio 

powers of a parameter P proportional to 

P = 
2 6 
TT C 

The calculation is simpler for small aspect ratios than for large 
ones. Another approximate solution which can be applied for 
large aspect ratios has been found by Trefftz.^ 

The result of these calculations is that for very small aspect 
ratios the lift distribution is practically elliptical; for larger 
aspect ratios the distribution becomes flatter, while for the case 

Fig. 1G7.— Distribution of circulation along the span of rectangular wings of 

. 2 
various aspect ratios I = — I 

V TT cy 

of an infinitely long wing the rectangular distribution results 
(Fig. 167). 

The induced downward velocity w becomes smaller at the 
middle of the -wing and greater at the tips when the aspect ratio 
increases. As was to be expected, the induced downward velocity 
and induced drag become zero when the aspect ratio (and con¬ 
sequently the parameter P) go to infinity (two-dimensional prob¬ 
lem). According to Trefftz^s calculations, a wing extending to 
infinity to one side only has a finite downward velocity at its 
one end and also a finite induced drag. According to the cal¬ 
culations of Betz, an approximate formula for the relation 
between the induced drag and the aspect ratio in the region 
p == 1 to P = 10 is 

= 7^ = 0.99 + 0.015P [see Fig. 168]. 
Llmin 

* See footnote, p. 200. 
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The induced drag is not distributed uniformly along the span but 
is concentrated at the ends, which tendency is very pronounced 
for large aspect ratios. Figure 169 shows the lift, the induced 
velocity, and the induced drag of a very long wing. 

elliptic distribution for various aspect ratios {P ~ 2h/Trc). 

116. Conversion Formulas.—Concerning the relation between 
the calculated induced drag and the experimental results, it 
can be stated with certainty that the experimental drag cannot 

be smaller than the calculated 

di, one 

w mm 

but must be necessarily 
greater. There are two parts 
of the total drag which have 
not been taken account of in 
our calculations thus far, 
namely, the skin friction and 
the small eddy resistance due to 
the fact that the streams from 
above and below the profile do 
not join smoothly. These two 
partial drags together have 
been called the “profile drag.^^ 

Taking into consideration the fact that the total drag is the sum 
of the calculated induced drag and the profile drag, the agree¬ 
ment between theory and experiment is very satisfactory. For 
the induced drag coefiicient we found on page 202 

4S' 
or, with 

Fio. 169.—Distribution of lift L, in¬ 
duced velocity if? and induced drag />*. 
along rectangular wing of large aspect 
ratio. 

S' = 

this becomes: 
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For the rectangular wing, we have specifically S = be = span 
X chord, so that 

irh 
Cn. 

/ 
r- n 

> 

k 
1 

1 t 
pO 

A 
7 
li 

6^ 
1_ 

1 ; T 3 .2\ 
-4Z L— 

[9^ L jj 

Plotting this relation graphically in Fig. 170, it is seen that the 
induced drag becomes a parabola wit h a curvature depending on 
the aspect ratio. Plotting into the 
same diagram the polar curve of a 
good wing of the same aspect ratio 
shows that the total drag consists for 
its larger part of induced drag, espe¬ 
cially for large angles of attack. 

On account of a fortunate coinci¬ 
dence, which was not anticipated, it 
was possible to reduce the results of 
airfoil theory to a very useful form. 
The polar diagrams for a number of 
airfoils of the same profile but of 

different aspect ratio were all plotted 170.-induced drag pa- 
on the same curve sheet and it raboia for aspect ratio 5 to- 

was seen that the difference between gather with experimental curve. 

the calculated induced-drag coefficient and the measured 
total drag coefficient was about equal in all cases. From this it 
was concluded that the profile-drag coefficient was practically 
independent of the aspect ratio, so that the possibility presented 
itself to convert polar curves from one aspect ratio to another. 

The problem therefore is to calculate from a given polar 
curve 1, for a given aspect ratio another polar curve 2 for 
the same profile but of a different aspect ratio In other 
words, it is necessary to calculate for various values of Cl the 
values from the values Cy;,. 

First, we split up the total drag coefficient into its induced and 
profile parts, i.e., 

Cn = Co, + Co^, 

where is a function of Cl. For a given profile with the 

aspect ratio 6iV^i we have 
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f or the same profile with the different aspect ratio we 

have consequently 

Cl' *^2 /L 
TT 

+ c Dp 

SO that the conversion formula becomes 

Cd._ = C;>, + 
TT V62' 61V 

A similar conversion formula can be derived for the angle of 

attack on the basis of an elliptical lift distribution. We first 

consider an element of an infinite airfoil 

(two-dimensional flow), as shown in Fig. 

171a. Assuming that the element now is 

a part of a wing of finite length, we know 

^ T ^ r that owing to the free vortex band the 

the induced velocity w on Velocity V at the wing is subjected to 
the actual angle of atta(;k. induced downward velocity component 

w. In order to obtain geometrical similarity between the element 

of the finite wing and the same element when considered as a 

part of an infinite wing, it is necessary to turn the element 

through an angle <p determined by 

, tC Cl S 
tan ^ = y- = — 

V TT 

The angle of attack which the clement of the finite wing would 

have if it were an element of an infinite wing for the same lift 

consequently is (see Fig. 1716) 

ao = a <p. 

Considering that w is small with respect to V and that conse¬ 

quently (p can be set equal to tan (p, two airfoils of the same profile 

but different aspect ratios are in the same condition if their 

actual angles of attack ao are equal for the same lift coeflBcien* 

i,e.y 

Cl Si Cl S2 

so that 
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This is the conversion formula fi 
version formulas have been 
derived only for airfoils where 
the lift distribution is elliptic 
along the span. This is not 
serious, however, since the drag 
is a minimum for the elliptic 
distribution and consequently 
varies only little even with dras¬ 
tic departures from the elliptic 
loading. Moreover the lift 
distribution for rectangular 
wings is not very much differ¬ 
ent from the elliptic one (Fig. 
167). This makes the conver¬ 
sion formulas applicable with 
sufficient accuracy to almost 
any type of wing. 

In Figs. 172 to 175, an exam¬ 
ple is given of the use of these 
relations. Figures 172 and 173 s 

angles of attack. Both con- 

Fig. 172.—Polar diagrams for wings 
of the same profile and various aspect 
ratio (from 1 to 7). 

the polar diagrams and the 

Fia. 173.—^Lift angle of attack for various aspect ratios. 

relation between the lift coefficient and the angle of attack for 
seven wings of aspect ratios ranging from 1 to 7. In Figs. 174 
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and 175 these two diagrams have been converted to an aspect 

Fig. 174.—Figure 172 replotted 
for aspect ratio 5 by conversion 
formula. 

ratio 5 by means of the conversion 
formulas. It is seen that the va¬ 
rious experimental points lie on a 
smooth curve, with the exception 
of a few points for the wing of 
aspect ratio 1, and this is not 
surprising since the whole theory is 
based on the concept of a bound 
straight vortex filament to which a 
square wing cannot be approxi¬ 
mated with sufficient accuracy. 

117. Mutual Influence of Bound 
Vortex Systems. The Unstaggered 
Biplane.—It has been proved 
before that the free vortex band 
in the wake is responsible for a 
downward induced velocity at the 
wing and consequently for an 
induced drag. The influence exists 

between the free vortex system caused by a bound vortex 

Fig. 175.—Figure 173 converted to aspect ratio 5. 

and that bound vortex itself and therefore can be called 
a case of ^'seZ/-induction.” In the case of biplanes or 
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multiplanes, there also may be an influence of the free vortex 
band of one wing on the bound vortex of another wing which 
might be called mutual induction/^ A theory will now be 
developed, whereby it becomes possible to calculate the induced 
drag of a biplane or a multiplane from the wind-tunnel data of a 
single wing. 

In principle the action of mutual induction in a biplane con¬ 
sists of a downward induced velocity at wing 1 due to the free 
vortex band behind wing 2 and vice versa. 

Each wing therefore has a self-induced drag due to its own 
free vortex band and a mutually induced drag due to the vortex 

Fig. 170.—Surfaces of discontinuity with unstaggered biplane. 

band of the other wing. The total induced drag of a biplane 
therefore consists of four terms, 

D = Dll + Di2 + D21 + D22, 

where Du denotes the self-induced drag of wing 1; D12 is the 
drag of wing 1 due to the influence of wing 2; in the same 
manner D21 is the drag of wing 2 due to the influence of wing 1 
and D22 is the self-induced drag of wing 2. 

Besides inducing a downward component of velocity one 
of the wings of a biplane induces also a horizontal velocity v^ 

causing an increase or a decrease in the relative wing velocity. 
The change in the drag due to this effect, however, is small of 
the second order, so that in the following calculation the influence 
of the horizontal component v will be neglected. 

First the case of an unstaggered biplane will be discussed, i.e.y 

of a biplane where the two wings are perpendicularly above 
one another. As before, the wings are replaced by straight, 
parallel, bound vortex filaments as shown in Fig. 176. In this 
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case neither wing induces a vertical velocity at the other one 
so that the downward induced velocity at either wing is due 
only to the free vortex bands. First, the induced velocity will be 
calculated at a point Xi of wing 1 caused by the free vortices 
of wing 2. The vortex strength of an element dx^ of this band 
is dT2/dx2dx2 so that according to page 198 this velocity cal¬ 
culates to 

_L ^ J 
At dXft a 

with a vertical component 

1 c^r2 dx2 

At 0x2 cl 
cos 7 = — 1 ^r2 dX2 

At 0x2 Ci 
sin 13. 

The total vertical induced velocity at xi due to the entire free 
band of wing 2 is found by integration along the span: 

M’(Xl') = 
J. 
At> r: 20r2 sin ^ 

0X2 
dX2. 

(Considering that F = 0 for X2 = ±6/2 and integrating by parts, 
we obtain 

2 

By means of the relations 

0 /sin _ 0 /xi — .rA _ — 2{xi — XiY 

a ) 0x\ 
_ 1 — 2 sin^ 13 

a“ 
this can be simplified to 

J. 
At, 

cos 2/3 
dx2 

cos 2(3 

a~^ 

Now the expression for the induced drag Dn can be found by 
means of the relations of page 200 and is 

b 
/2 

Tiw(xi)dxi 

~2 
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or, after substituting the value for w(xi), 

b b 

n _ P p cos 2|8 
(1) 

From the symmetrical structure of this integral it is seen that 
the same result would have been obtained for Doi, so that 

/)l2 ~ ^21- 

This theorem, which was derived in a different manner by 
Munk,^ states that for an unstaggered biplane the two mutually 
induced drags are equal. 

Although this relation was derived on the basis of straight 
bound vortices, it is valid also for curved bound vortex filaments 
provided these filaments lie in a plane vertical to the direction 
of flight. In this case, Eq. (1) has to be changed in so far as 
cos (iSi + ^2) has to be substituted for cos 2/?, where fii and 132 

are the angles of the connecting line a with the elements of the 
bound vortex filament; further, dxidx2 has to be replaced by 
dsidso. 

The mutually induced drag is always positive for unstaggered 
biplanes of the ordinary type. With tandem biplanes, where the 
two wings are beside each other in the same line, the mutual 
influence is different in so far as each wing is in the field of an 
upward current of air caused by the other wing and consequently 
the mutually induced drag is negative. In such a case the total 
drag of the two wings is less than the sum of the drags of each 
wing by itself. 

118. The Staggered Biplane.—For the staggered biplane, the 
bound vortex of the one wing induces a vertical velocity at the 
other wing, so that in addition to the influence of the free vortex 
band the influence of the bound vortex has to be considered. 
For a point xi of wing 1, the vertical induced velocity due to 
wing 2 and its vortex band therefore consists of the following 
two contributions: 

1. The velocity wi due to the free vortex band of wing 2, 
2. The velocity W2 due to the bound vortex of wing 2 itself. 
A strip dx of the free vortex band has the strength dT2/dx2dx2f 

and the induced velocity due to it (see page 198 and Fig. 177) is 

^ See footnote, p. 204. 
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1 ars, . 1 aro, . x 
-i--r-dX2 Sin a. == -7- -r-dX2{l ““ siH a), 
4ira dxi a 47ra dx^ 

uf which the vertical component is 

1 dl\ 

4Ta dx2 
dx20 ” a) sin 13. 

The total induced velocity at xi due to the entire free vortex 
band of wing 2, therefore, is 

iviixi') 

b 

1 r2dr2 1 — sin a 

^ttJ j)dx2 (t 
sin (3dx2 

or considering that sin a = ?//r and sin (3 — — {xi — X\)/a, 

^ 1 

bdX2 
2 

Xi — Xi 
dX2 

Since V becomes zero for —6/2 and +6/2 the expression can be 
integrated by parts in the same manner as was done on page 212, 

h 

2 

Performing the differentiation and remembering that r == 
+ 2/^ and a ~ V {xi — XiY + this becomes 
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b 

The second contribution to the vertical induced velocity due to 
the bound vortex of the wing 2 at the point xi' becomes 

JL ■i-T2 sin a 

J b 
dx2 -LTr/. 47r J f, r 

dxn 

if the lower wing 2 is staggered behind the upper wing 1, as 
shown in Fig. 177. It is seen that this vertical component is 
directed upward so that the wing 2 causes a decrease in the 
drag of wing 1. In case the stagger had been reversed and the 
lower wing had been placed in front of the upper one, this effect 
would have been reversed and the induced drag of wing 1 would 
have been increased. 

The total induced downward velocity at the point Xi therefore 
becomes 

wi + W2 = w{xi) == 

b 

2 

or since 

and 

- 2(.ri' - x,y _ cos 2d 
= sin a, 

y(xi — XiY _y_ ^ ify/Cr/ ~ _ A 
^ r“Lr\ a- j 

\ /J r'"r\a) r 

cos^ d 

this becomes 

w(xi') 
cos 2d 

(1 — sin a) — 
sin a cos 

2 

Since, according to page 212, the drag of wing 1 induced by wing 

2 is equal to 
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Di2 = pP^Tiw{xi)dxi., 

this becomes on substitution of the above value for w(xi): 

h l> 
n p r. rcos 2(S,, . . sin a cos“ /S] , . ■ cJ J. “)-;;5— 

2 2 

As is seen in Fig. 177, the drag of wing 2, due to the effect of 
wing 1, can be obtained from the previous formula by putting 
a + TT and /3 + TT instead of a and Consequently 

b b 

D, jp_ 
47r 

20,. , . . , sin a cos^ 0' 
+ S.D 0.) +-- \dxidx2. 

For a = 0 it is seen that the two integrals become equal {Du = 
Z)2i), which is the result for the unstaggered biplane obtained 
before. It was shown first by Munk that the sum Du + D21 

is independent of the amount of stagger (stagger theorem). 
For the general case of bound vortex filaments which are 

not parallel, the final result becomes 

i)i2+D,,= 
cos {01 + 02) 

ds \ ds 2 

where also the independence of the angle of stagger a is apparent* 
It is important to note that this theorem of the independence 

of the total mutual induced drag from the amount of stagger 
is true only if the lift distribution of the two wings is not changed, 
and this is possible only by properly changing the angles of attack 
of the various wing elements. An alteration in the stagger 
without changing the angles of attack would result in a change 
of the effective angles of attack and consequently in a change of 
the lifts of the two wings. The geometrical angles of attack 
have to be corrected in such a manner that for a change in the 
stagger the effective angles of attack remain the same. 

119. The Total Induced Drag of Biplanes.—It was seen on 
page 202 that the self-induced drags of the two wings of a biplane 
are expressed by 
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-; 

■-f 

if the lift distribution is elliptical. Li is the lift on the first wing 
and Li that on the second wing. Analogously, the mutual 
induced drag D12 or D21 can be represented by 

Z/1L2 
cr--f 

where the coefficient a depends on the ratio hi/h2 of the spans and 
on 22/(hi + b2)j where z is 
the distance between the ^ 
wings in a direction vertical to 
the direction of flight. For an 
elliptical lift distribution, the 
value of or has been calculated 
on the assumption that the 
centers of the two straight 
wings are in the same plane of 
symmetry. Figure 178 shows 
the relation between a and 
2z!{bi + 62) for three different 
values of 62/61. Using this 
figure, the total induced drag 
of the biplane can be calculated from 

D = Dll + 2Di2 + D22 =- 

if the lift distribution between the two wings is known. 
It is of interest to know the distribution of the total lift 

between the two wings for which the total induced drag becomes a 
minimum. A simple calculation shows that this is the case if 

b ^ 
U ^ bj_^ 
Li ^ 

62 

6162 

Fig. 178. 

(T 
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In order to obtain this result, we put L\ = \L and consequently 
== (1 — X)!' and then determine the value of X for which the 

parenthesis of Eq. (1) becomes a minimum. The value of this 
minimum then is found to be 

,, _{u + uy 1-^2 _{u + L2)\ 
I*xmi\ - - /I \ 2 

1 - + (j!) 

Since the factor 
(Li + L,y 

(2) 

represents the drag of a monoplane of span hi with a lift Li + L2, 
and since the second factor k is always smaller than unity (cr < 

Ficj. 179.—Ratio of induced drags of biplane and monoplane of the same lift 
and span h\ as a function of the height h/h\ for various values of hx/h^. The 
induced drag is a minimum for hi — hi. 

62/61), it is seen that the total induced drag of a biplane Db is 
smaller than that of a monoplane Dm of the same span 61 and of 
the same total lift. Figure 179 shows the relation between 
Db/Dm and z/hi for a number of values 62/61. It is seen that the 
drag of the biplane decreases rapidly with increasing z and 
62/61. Therefore the most advantageous arrangement of a 
biplane is the one where both wings have the same span, i.e., 
61 = 62. 

However, the advantage of the biplane as compared to the 
monoplane is not so important as these results would indicate. 



AIRFOIL THEORY 219 

A relatively small increase in the span of the monoplane makes it 
possible to decrease its induced drag to the same value as that of 
the biplane. The factor by which the span of a monoplane has 
to be multiplied in order to give it the same induced drag as a 
biplane of the same lift is denoted by a*. We have according to 
Eq. (2) 

or 
1 

Figure 180 shows how the span of a monoplane has to be 
increased to obtain the same induced drag as the biplane hi == 

Fio. 180.-—Tho ordinate x is the factor with which the span hi of a }>ip]ane has 
to be multiplied in order to get a monoplane of the same lift and the same induced 
drag. The biplane has two wings of eiiual span hi = hi. The abscissas are the 
height-span ratio of the biplane. 

For instance, a biplane with a span of 6 = 30 ft and a vertical 
distance of 2 = 6 ft has the same induced drag as a monoplane 
of 34.8-ft span, where both planes have the same lift. 

120. Minimum Theorem for Multiplanes.—After having 
solved the problem of minimum induced drag of a biplane with 
the lift distribution between the two wings as the variable, we 
proceed to the more general problem of determining the lift dis¬ 
tribution over each individual wing of a biplane or multiplane of 
given dimensions, required to make the induced drag a minimum. 
This problem was solved first by Munk while Betz gave a simpler 
proof for it later. The result was that for either a biplane or 
multiplane the drag becomes a minimum when the lift distribu¬ 
tion is such as to cause a constant downward induced velocity at 

both wings. 
The proof given by Betz is based on Munk^s theorem of stagger. 

The original airfoil system and the variation given to it are 
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considered as two separate systems, the variation consisting of a 
very small wing system. According to the stagger theorem 
it is permissible to shift the variation wing system far back of the 
plane. In that case the downward induced velocity at the 
main wings due to the small variation system is negligible, and 
the only change in the induced drag due to variation is caused by 
the effect of the vortex band on the variation wing system. 

If the correct lift distribution for minimum induced drag 
exists to start with, any additional variation system which does 
not change the lift will not change the drag. 

Thus adding to an arbitrary location dx of one of the wings the 
additional lift 5Li, and simultaneously adding to another spot 
of the same or of another wing the lift 6L2 = — 6L1, the variations 
in the induced drag become 

and 

on account of the fact that this variation in the lift is equivalent 
to very small additional wings far behind the actual wing system. 
In these expressions, Wi and W2 are the vertical velocities at the 
corresponding points in the free vortex band. In the case 
where the lift distribution is such as to make the total drag a min¬ 
imum, it is clear that the variation in the lift distribution must be 
zero or 

+ bL^ = 0. 

Considering that 5Li = — 6L2 it follows that 

Wi = W2^ 

Since the velocities at the unstaggered wing system are exactly 
half those in the vortex band far behind the plane (see Art. 117), 
it follows that the velocities at the wings are also equal. The 
locations at which the variation of the lift was made are entirely 
arbitrary and it can therefore be concluded that the induced 
velocities are equal not only at the two points just chosen but have 
to be equal everywhere. This completes the proof of the theorem 
that for a given lift the drag becomes a minimum when the 
induced downward velocities at both wings are equal and con¬ 
stant along the span. In connection with our previous discus¬ 
sions (page 192), where the flow round an airfoil was compared 
to the impulsive downward acceleration of the entire flight path 
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of the wing by means of a “ board,” it is now seen that in the 
case of minimum induced drag the system of “boards” repre¬ 
senting the biplane or multiplane is a rigid one. In case the 
most advantageous induced velocities had not been constant, 
this system of “boards” should have been made flexible. 

It is now possible to find a plausible and simple interpretation 
for the general drag formulas in the case of minimum drag. 
Let Wi be the final velocity of our “board” system after the 
acceleration; then the downward velocity at the wing isw = wi/2 
and the induced drag is 

Lwi 

W 

Expressing wi by means of the momentum theorem, 

L = pS'Vwi, 
we find, as before, that 

2pS'V^ 

In this expression the area S' is to be put equal to^J*(cpa — (pb)dx, 

where the sum covers all individual wings. Remembering 

(see page 202) that the entire mass of air pS'V is given the down¬ 
ward velocity wi and that the rest of the air is not affected, the 
equation states that the lift is equal to the momentum given to 
this mass of air. The work done by the drag is equal to the 
kinetic energy imparted by the wing to the air. 

It was seen before that for the monoplane the area S' is a 
circle with a diameter equal to the span (Fig. 181). Grainmel 
and Pohlhausen have calculated the corresponding areas S' lor 
the usual biplane and for the tandem biplane by means of elliptic 

integrals (Figs. 182 and 183). The relation 
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D = _r_ 
2pF2 • S' 

shows that the induced drag for the same lift is smaller when S' 

is larger. If the distance between the two wings of a biplane 
becomes very large, S' reduces to two circles on the span as a 
diameter, i.e,, the biplane acts as two separate monoplanes. 
Such a biplane has therefore half the induced drag of a monoplane 
of the same lift. On the other hand, if the two wings of the 
biplane get closer and closer together the figure of S' finally 
becomes identical with the circle of the monoplane and con¬ 
sequently the induced drag of the biplane becomes equal to that 
of the monoplane. 

121. The Influence of Walls and of Free Boundaries.—Airfoil 
theory has yielded yet another result, which is of importance 
for the interpretation of the experiments on models in wind 
tunnels either of the solid-wall or of the free-jet type. 

From the tests in a free jet or in a closed tunnel it is intended 
to draw conclusions regarding the behavior of the test body in an 
atmosphere of infinite extent. The differences between the 
wind-tunnel stream and the free atmosphere lie in the boundary 
conditions: on the solid walls of a wind tunnel the normal com¬ 
ponent of the velocity must be zero, while for a free jet the pres¬ 
sure at the boundary is constant and equal to the pressure of the 
surrounding air. With the usual experiments, these deviations 
at the boundary of the jet cause certain changes in the flow around 
the model as well as in its induced drag, and it is often necessary 
to take these boundary effects into consideration. 

We begin by assuming an infinite atmosphere and the corre¬ 
sponding velocity field around the wing under test. Then the 
jet is cut out of this infinite atmosphere and it is seen that there 
are lateral velocity components and pressures at the boundary 
of the jet thus cut out. In order to obtain the actual flow in 
the wind tunnel, it is necessary to superpose another flow, which 
has no singularities in the inside and has lateral velocity components 
(or pressure variations) at the surface of the jet equal and 
opposite to the ones of the first flow. This superposition gives 
the actual flow in the wind tunnel, and the action of the sec¬ 
ondary superposed velocity field on the wing is just equal to the 
correction we are looking for. 

Since this secondary velocity field is a potential field (having 
no discontinuities), it is only necessary to find the expression 
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for its potential. This is the so-called ''second problem of 
potential theory,” where the potential function has to be deter¬ 
mined inside a closed region when its derivatives are known on 
the boundary of the region. 

A similar process leads to the solution of the problem for a 
free jet. The boundary condition here is that the pressure is 
constant on the surface of the jet. Denoting by V the velocity 
of the main flow and by u, v, lo the components of the flow induced 
by the airfoil under test, Bernoulli's equation gives 

V + + (V + vy + w^] = po + 

and applied to the free surface of the jet, where p = po, 

tr + V- + w'^ + 2Vv = 0. 

Assuming the induced velocities so small that their squares can 
be neglected, only the last term 2Vv is of importance and the 
boundary condition for the jet therefore becomes 

= 0. 

On the further assumption that the lift of the airfoil, and 
consequently the deviation in the direction of the jet, is small, the 
problem is simplified by taking = 0 on the original undisturbed 
jet instead of on the actual deflected one. Therefore it is 
seen that the boundary condition for a stream between solid 
walls is such that the normal velocity component is zero while 
for a free jet the tangential component v has to be zero. 

In the same manner as in the closed wind tunnel, the actual 
flow in a free jet is obtained by the superposition of the flow cut 
out from an infinite atmosphere and a secondary flow which 
has the velocities —at the surface of the jet. If ^ is the poten¬ 
tial of this velocity field, the boundary condition on the surface 
of the jet is d^/dy ==—«;. An integration along the generators 
of the cylinder then gives 

Hy) = "T 

The lower limit of this integration expresses the fact that at a 
great distance from the test wing (?/ = — oo) the potential of the 
secondary flow ^ is zero. Thus the condition that the secondary 
velocity field has the prescribed values — at the jet boundary is 



224 APPLIED HYDRO- AND AEROMECHANICS 

equivalent to the condition that the values of the potential are 
given on the boundary and the problem therefore is that of 
finding a function without singularities inside the jet while the 
values of this function are given on the boundary of the jet. 
This problem is known as the ‘‘first problem of potential theory.’’ 

122. Calculation of the Influence for a Circular Cross Section. 
The problem for the solid walled channel as well as that for the 
free jet admits of the easiest solution for the circular cross section. 
The problem reduces to finding the action of an “inverted” 
airfoil, z.e., of a body found from the original airfoil by a 
mirroring process involving reciprocal radii. The circulation 
around this inverted wing has to be taken in the same sense as 
around the actual wing for the case of a solid walled channel 
and with the opposite sign for a free jet. The calculations have 
been carried out in detail for a straight monoplane in the middle 
of the jet, an elliptical lift distribution being assumed. Letting 
the span be 6, the diameter of the jet be d, and f = 2:r/d, where x 

is the distance from the center of the wing, it is found that 

Td^pvy 1 

The added drag due to this velocity consequently becomes 

n. ■ Ti I 3/&Y , 5/b 
ird^pV^ 16V d/ 64’ + 

This expression for the additional drag is exactly true for straight 
monoplanes with an elliptical lift distribution; however, it is also 
valid with a good approximation for all usual wing systems of 
which the dimensions relative to the diameter of the jet are not 
too great. The expression for the induced drag was found on 
page 202, namely. 

Denoting the cross section of the jet 7rdV4 by So, the first approxi¬ 
mation of the total induced drag of an airfoil in an air jet of 
circular cross section becomes 
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For the solid walled channel it was stated that the circulation 
around the inverted wing has to have the same sign as the circu¬ 
lation round the actual wing. This results in a decrease in the 
induced drag due to the channel walls which is of the same amount 
as the increase in drag with the free jet. Therefore the approx¬ 
imate formula for the total induced drag in the tunnel is 

In order to obtain an appreciation of the numerical value of 
this correction, we consider a wing of which the span is equal 
to half the jet diameter or So = AS\ Here the correction equals 
12.5 per cent of the induced drag. In order to determine 
the drag in the free atmosphere, this amount has to be subtracted 
from test results in the jet. The more exact formula for the 
correction gives 0.1262 instead of 0.125. It is seen therefore 
that for most practical cases the approximate formula is suffi¬ 
ciently accurate not only for elliptical wings but also for wings 
with constant lift distribution where the more exact value gives 
0.127. 

Glauert^ has made an analogous calculation for the influence 
of channels of rectangular cross section. 

In case of wings of great chord dimension with respect to 
the diameter of the wind tunnel, the variation of the secondary 
velocities along the chord cannot be neglected. A theory taking 
account of this effect has also been developed with the result that 
the wing model under test in a jet has to be given a slightly 
increased curvature as compared with the original wing in free 

air. 

^ Glauert, H., The Interference of Wind-channel Walls on the Aero¬ 

dynamic Characteristics of an Aerofoil, Repts, and Mem. Nat. Adv. Comm. 

Aeronautics {London)^ vol. 1, p. 118, 1923-1924. 



CHAPTER VII 

EXPERIMENTAL METHODS AND APPARATUS 

A. PRESSURE AND VELOCITY MEASUREMENTS 

123. General Remarks on Pressure Measurement in Fluids 
and Gases.—When measuring the pressure at a point in the 
interior of a liquid or gas, it is impossible to avoid the insertion of 
a foreign body, namely, the measuring apparatus, into the fluid at 
that point. For static conditions this is not important since the 
state of pressure of the fluid in the direct vicinity of the measur¬ 
ing instrument is not disturbed by it. On account of the finite 
dimensions of the instrument the average pressure over a small 
area is measured instead of the exact pressure at a point. This 
value, however, can be approximated by making the apparatus 
sufficiently small. 

The conditions are fundamentally different when the fluid is in 
motion because in that case the velocity and pressure are dis- 
-turbed in the neighborhood of the instru¬ 

ment. For instance, there must be a stag¬ 
nation point on the apparatus where the 
fluid velocity is zero so that the pressure 
measured at this point would be p/2 - too 
large, w being the undisturbed velocity 
(see Art. 2). 

124. Static Pressure.—If the velocity w 

Fig. 184.—Disk for large that the stagnation pressure 
measuring static pres- pj^'vo^ cannot be neglected with respect to 

the pressure in the undisturbed fluid (the 
static pressure), it is not sufficient to decrease the dimensions of 
the instrument, but it is necessary to make its shape such that 
the flow is disturbed as little as possible. 

A shape as shown in Fig. 184 serves the purpose. A thin 
circular tube is closed at the top by a very thin disk pierced in the 
middle. If the disk is placed in the direction of the velocity, 
the flow at the location of the hole is hardly influenced by it so 
that the pressure at this point is the same as if the disk did not 

226 
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exist. However, if the disk is inclined under a small angle with 
respect to the direction of flow, a marked influence is felt and the 
measured pressure does not correspond to the pressure of the 
undisturbed fluid at that point. 
Owing to this great sensitivity 
against angular deviations the disk 
is hardly ever used any more. 

The static tube shown in Fig. 185 
is more advantageous in this 
respect. It is a thin tube held 

„ , . ^ ... , Fig. 185.—Static tube. 
parallel to the flow with a number 
of small holes in the side. Here the recorded pressure is much 
less dependent on the angular position, which will be discussed 
in detail in Art. 126. 

A relatively simple problem is the measurement of the pressure 
at a solid wall along which the fluid flows, since in this case it is 

not necessary to introduce a foreign body 
into the flow. A small hole is drilled in the 
wall at the point where the static pressure 
is to be measured, as shown in Fig. 186. 
The fluid flows past the hole but remains at 
rest in the hole itself if its dimensions are 
sufficiently small. The fact that the veloc- 

Fig. 180.—Hole in wall ity is different outside and inside the hole 
for measuring static jg contradiction to Bernoulli’s 
pressure. . i -r^ 

equation, since the Bernoulli constant 
for the two regions is different (see Art. 58, ^^Fundamentals”^). 

Owing to the influence of viscosity there is some sucking action 
which becomes smaller with decreasing hole diameter. Accord¬ 
ing to Fuhrmann^ the actual pressure exceeds the measured 
pressure by about 1 per cent of the stagnation pressure for a hole 
diameter of about ,^ 32 in. In other words, if po denotes the 
actual pressure, p the measured pressure, and w the velocity of 
the fluid flowing along the hole, we have 

Po == p + 

1 See footnote, p. 3. 
® Fuhrmann, G., Theoretical and Experimental Investigations on Bal¬ 

loon Models (German), Dissertation, Gottingen, 1912; Jahrb. MotorlufU 
schiffstudiengesellschafij vol. 5, p. 63, 1911-1912. 
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It was seen that for the measurement of static pressure it is of 
importance that the flow is not disturbed at the point where the 
pressure is to be measured. For instance, it is necessary to 

make sure that no burr exists 
at the mouth of the hole. 
Small inaccuracies in this 
respect lead to completely 
false results. It is therefore 
recommended to shape the 
hole approximately as shown 
in Fig. 186. 

126. Total Pressure.—The 
Fig. 187.—Pitot tube for measuring total pressure, f.C., the SUm 

of the static pressure and the total pressure. 

stagnation pressure can be measured much more easily than 
the static pressure by itself. Introducing into the flow an 
open tube, as shown in Fig. 187, causes the velocity of the 
fluid to become zero in the opening of the tube so that, 
according to Bernoulli’s equation, in this stagnation point the 

pressure is increased by If denotes the static pressure in 

the stagnation point, it is seen that 
the instrument measures the total 

pressure Pi = This tube 

is known as the Pitot tube'’ after 
its inventor.^ 

It is evident that if the static pres¬ 
sure is known, a measurement of the 
total pressure immediately allows of 
a calculation of the velocity Wy 

namely. 

^ —Measurement of 
dynamic pressure by means of 

This method of velocity measure- 
ment is used very often. For instance, if the velocity at any 
point in the interior of a fluid or gas flowing through a pipe has 
to be measured, a Pitot tube is inserted into it giving the total 
pressure (see Figs. 188 and 189). Since the static pressure is 

^ Pitot, Description of a Machine for the Measurement of Velocity of 
Flowing Water (French), M6m. acad. aci., p. 172, 1732. 
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constant across the cross section, it can be measured at the 
pipe wall as described before. The difference between the 
total pressure and the static pres¬ 
sure can then be measured immedi¬ 
ately as shown in the figures. 

126. Velocity Measurement with 
Pitot-static Tube.—In order to 
measure a velocity directly, an 
instrument has been designed in 
which the static pressure and the 
total pressure can be measured at the 
same time. Such an apparatus was 
first used by D. W. Taylor^ and con¬ 
sists of a combination of a Pitot tube 
with a static tube. For an under¬ 
standing of the limitations of this 

^ ^ ^ i’lu, -AVJI a o u 1 C-111 c; u t wi 

instrument the pressure distribution dynamic pressure by means of 

around a blunt-nosed hollow cylinder 
is of importance. This distribution can be found experimentally 
(see Art. 85) by drilling into the hollow cylinder a number of 
very small holes which are all sealed up with the exception of one 
of them. The interior of the cylinder is then connected to a 
manometer. Inserting the cylinder into a flowing fluid with 
\^elocity w and measuring the pressures on the various holes one 
after another, the pressure distribution as depicted in Fig. 64 is 
found. Therefore, if the pressures are measured at the stagna¬ 
tion point of the cylinder as well as at the point where there is 
static pressure in Fig. 63, and if these two pressures are then 
connected to a manometer, the difference 

will be found at once. For practical reasons, however, the 
apparatus is made in a somewhat different form. Figure 64 or 
190 shows that a very small error in the location of the static 
holes leads to a considerable error in the pressure. Therefore it is 
more accurate to locate these holes farther away from the nose 
of the cylinder where the vacuum decreases asymptotically 
toward zero. Considering further that the stem of the apparatus 
causes an increased pressure distributed in the manner shown in 

D, W., Healing Ventilating Mag,, p. 21, 1905. 
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Fig. 190, it is comparatively easy to find a location where the 
vacuum due to the nose of the cylinder is equal to the increased 
pressure due to the stem. 

It has thus been found that the shape and the dimensions 
of the component parts of the apparatus are of importance for the 

Fig. 190.—Pressure distribution on ii lilunl body, considering also the effect of 
the stem. 

results to be obtained.^ The dimensions given in Fig. 191, which 
are due to Prandtl, have given good results. 

It is to be noted that, for a flow in which the velocity oscillates 
rapidly about a certain mean value in magnitude but has a 

Fig. 191.—Pitot-static tube of Prandtl’s design. 

constant direction, the reading of the manometer or its mean 
value does not correspond to the mean value of the velocity, since 
the apparatus measures pressures which are proportional to the 
squares of the velocity. This point may become important in 
the measurement of velocities in turbulent flows (see Art. 33). 

1 Kumbruch, H., Measurement of Flowing Air by Means of Pitot-static 

Tubes (German), Forechungsarbeiten V, D, vol, 240, 1921. 
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The Prandtl tube is a very reliable instrument since its read¬ 
ings are little dependent on the angle a with respect to the direc¬ 
tion of flow. As is shown in Fig. 192, the total pressure pt 

as well as the static pressure 
varies considerably with a change 
in angle a but in such a manner 
that their difference pt — ps, which 
determines the velocity, is hardly 
affected for angles up to a = 17 
deg. 

Another form of Pitot-static 
tube, which is extensively used in 
the United States and England, is 
the one due to Brabbee (Fig. 193). 
This apparatus, as well as the 
one of Prandtl, has a propor¬ 
tionality factor 1 so that it does not need any calibration. It 
is slightly more sensitive to angular deviations than PrandtTs 
instrument. 
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Fig. 192.—Sensitivity to changes 
in direction of Prandtl’s tube. 

Fio. 193.—Pitot-static tube of Brabbee’s design. 

The influence of the turbulence of the flow on the readings of 
the instrument will not be discussed in detail here, but the reader 
is referred to the publication by Kumbruch. ^ It appears that for 
any form of instrument the reading is about 4 per cent high for 

very turbulent flows. 

^ See footnote, p. 230. 
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127. Determination of the Direction of the Velocity.—The 
measurement of the direction of the velocity is relatively 

complicated. The apparatus 
shown in Fig. 194 consisting of a 
disk with openings on either side 
shows a difference between the 
pressures on the two faces except 
when the direction of the disk 
coincides with the direction of 
the flow. Therefore if the disk 

Fig. 194. --Disk for measuring direc- is held along the direction of the 
lion of velocity and static pressure. velocity, a preSSUrC gauge shoWS 

a zero reading. This method, however, is of use only for velocity 
fields which are fairly constant over large regions. In cases 
where the velocity varies considerably from 
point to point, the instrument of Fig. 195 
has to be used, consisting of two Pitot 
tubes under 90 deg. If the manometer 
does not show any deviation, the direction 
of the flow is under 45 deg. with either 
tube. The relation between the manometer 
reading and the direction of the flow has to 
be found by calibration.^ 

Other instruments for the measurement 
of velocity will be considered later. First, 
some methods of pressure measurement 
will be discussed. 

128. Fluid Manometers.—If the two 
water pressures to be measured are con¬ 
nected by means of rubber tubing to the 
legs of a U-shaped glass tube containing 
mercury, of which the specific gravity in 
water is the equilibrium condition is 
(Fig. 196) 

Fig. 195.—Two per¬ 
pendicular Pitot tubes 
for determining direction 
of velocity. 

^ Lavender, T., A Direction and Velocity Meter for Use in Wind-tunnel 
Work, Repts. and Mem. Nat. Adv. Comm. Aeronautics {London)^ No. 844, 
1923. 

* The term “specific gravity in water’^ in this connection means the specific 
gravity minus the buoyancy due to water, i.e., ym = Tmercury ~ 7w«ter. 



EXPERIMENTAL METHODS AND APPARATUS 233 

If yw denotes the specific gravity of the flowing fluid (water), we 
have 

Vt Ps = 

so that 
2^ 

I yw w- 

and, since for water 7^^ = 1, 

w = \/2yhyM^ 

Considering that the specific gravity of mercury is 13.6 and 
consequently that 7a/ = 12.6, we have for g = 386 in./sec^: 

w; = \/2 X 386 X 12.6/1, = 98.6\//i in./sec 

(velocity of water with mercury as manometer fluid). 

Therefore a level difference in the manometer of 4 in mercury 
corresponds to a velocity of about 16 
ft/sec. Assuming that a level difference 
of 0.01 in. is the limit of accuracy of the ' ' ' ' 
manometer, the smallest velocity that can 
be measured with this method is about 10 
in./sec. Using the water itself as the 
manometer fluid (Fig. 189), we have 

w = V2 X 386 X h = 27.8aA in./sec 
(velocity of water with water as 

manometer fluid). 

For pressure measurements or velocity 
measurements in gases, the method remains V-tubo ma- 

practically the same; only a manometer 
fluid of small specific gravity, for instance water or alcohol, is used 
for the usual gas pressures. Since the specific gravity of water 
referred to air of room temperature and usual barometric pressure 
is 

TWater 

TAir 

= 800, 

we have 

w = \/2 X 386 X 800 X /1 = 780's/a in./sec 

(velocity of air with water as manometer fluid). 
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A level difference of 0.01 in. water therefore corresponds to an 
air velocity of 6.5 ft/sec., which shows that for small air velocities 
the level difference has to be measured very accurately. 

With the usual U-tube mercury manometer without special 
optical appendages, level differences can be estimated down to 
about 0.004 in., whereas for water on account of capillary phenom¬ 
ena the reading cannot be trusted with any better accuracy than 
about 0.04 in. Therefore in all cases where accuracy is required, 
the water of the manometer is replaced by organic fat-dissolving 
fluids, like alcohol, toluol, etc. If 7 is the specific gravity of this 
manometer fluid as compared to water, the above formula for 
velocity has to be changed to 

w — TSOV" hy. 

With these organic fluids, the accuracy is increased to about 
0.010 in. so that with this method air velocities down to about 
6 ft/sec can be measured. For still smaller velocities or pressures 
special sensitive manometers have to be used. 

129. Sensitive Pressure Gauges.—The sensitivity of fluid 
manometers is increased either by special optical devices for 

observing the meniscus or by inclining the 
legs of the gauge at an angle. A third 
method which is used rather seldom consists 
of replacing the air column by a fluid 
lighter than water and not miscible with 
it, as for instance kerosene or amyl acetate. 
The instrument has to be completely filled 
with liquid. In this manner only the 
difference in the specific gravities of the 
two fluids is acting; for water and kerosene 
this is about 0.2. The method which is five 
times as sensitive (and could even be made 
more sensitive by a suitable choice of 

Fig. 197.—Micro- liquids) has the disadvantage that the 
manometer where sen- nieniscus between Water, kerosene, and glass 
sitivity 18 obtained by . ' 70 
lens system for reading IS not SO distinct as between air, alcohol, 
height of meniscus. 

With the usual sensitive manometers one of the legs of the 
U-tube is transformed into a basin of relatively large cross 
section (Figs. 197 and 198). This has the advantage that only 
one reading has to be made, since the change in level in the 
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basin can be either neglected or subsequently corrected. This 
decreases the error of the procedure by 50 per cent. For instance, 
if the diameter of the basin is 4 in. and that of the other leg J 2 in., 
the fluid level in the basin sinks t.e., one sixty-fourth part 
of the change in level in the other leg. The readings of the 
manometer in this example therefore have to be increased by 
one sixty-fourth to correct for the change in level in the basin. 

Modern constructions of inclined manometers are usually such 
that the inclined leg can be swiveled round its connection with 
the basin. By this device several ranges of the instrument and 
several regions of accuracy can be obtained. Let Ap be the pres¬ 
sure difference in inches of water, a the angle of the inclined leg 

with respect to the horizontal, I the travel of the meniscus in 
inches, and 7 the specific gravity of the manometer fluid, then we 
have (see Fig. 198) 

Ap = ly sin a, 

if the level change in the basin is neglected. It is thus seen that 
the sensitivity becomes greater for smaller angles a. For 
inclinations down to about sin a = y25> I^is kind of manometer 
can be used without any special precautions; for still smaller 
inclinations, however, the errors due to capillary action become 
more and more serious. These errors can be avoided only by 
very careful calibration. 

Assuming that a change in the meniscus can be observed with 
an accuracy of 0.01 in., this travel of the meniscus with an 
inclination of one twenty-fifth and alcohol as a manometer 
fluid (specific gravity 0.8) corresponds to a pressure 

Ap = 0.01 X >25 X 0.8 = 0.32 • 10“^ in. (water). 

With this instrument therefore an air velocity as small as 

15 in./sec can be measured. 
The calibration of inclined-leg pressure gauges is accomplished 

by putting a carefully weighed quantity Q of the manometer 
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fluid into the basin and observing the travel of the meniscus due 
to this. If A be the cross section of the basin, the amount Q 
increases the level by Q/yA and therefore is equivalent to an air 
pressure of Ap = hy = Q/A, By repeating this procedure a 
number of times a complete calibration curve p = /(/) can be 

obtained. 
For very small inclinations (under one twenty-fifth) this 

calibration has to be done in small steps for the individual parts 
of the entire capillary tube in order to determine the errors of 
the capillary tube itself. 

An improvement in this instrument giving still greater accuracy 
is due to Rosenmuller. ^ His apparatus is shown schematically 

in Fig. 199. Instead of determining the pressure difference 
from the travel of the meniscus (which includes all the errors 
of the capillary), the inclined capillary tube is swiveled until 
the original zero reading is established. The angle through 
which the capillary is turned can be read off a micrometer screw 
T. By suitable construction of the pitch of the screw, one 
division of T corresponds to 0.001-mm water pressure, which 
constitutes the sensitivity of the instrument. The advantages 
of this construction are that the irregularities of the capillary 
tube do not enter into the result and that the reading can be 
accomplished in a relatively short time (about 3 min). 

If such a great sensitivity is not necessary and if a greater 
range of velocities is to be measured (up to about 12 in. water 
corresponding to about 230 ft/sec wind velocity), the precision 
manometer with vertical leg developed by the Aerodynamic 

^ RosBNMtyLLEH, M., New Measuring Apparatus of Air Velocities (Ger¬ 

man), Messtechnikf vol. 2, p. 343, 1926. 
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Institute of Gottingen is to be recommended.’ The sensitivity 
of this instrument is due to the fact that the meniscus can be 
observed very accurately. Parallel to the manometer tube there 
is a scaled guide carrying a vernier, a lens in front of the tube, and 
a concave mirror M behind it (Fig. 200). This mirror gives an 
inverted real image of the meniscus. The carriage is adjusted to 
such a position that the actual meniscus seen through the lens 

(o) (h) 

Fig. 200.— Micromanometer of Prandtl. 

is just touching the inverted meniscus of the mirror, which 
can be done very accurately. In this position the vernier is read 
by means of a second lens which allows a determination of the 
position of the carriage to 0.002 in. close. For very rapidly 
varying pressures two different degrees of damping can be inserted 
by means of two capillary tubes T, Another precision manom¬ 
eter with a range of 4- to 6-in. water pressure with a sensitivity of 
0.0004 in. water has been brought on the market by the Askania 

Works, Berlin. 

^ Prandtl, L., Gotiinger Ergebnissej vol, I, p. 44, Munich, 1921. 
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For still greater sensitivities (to about 0.04 mil water) with 
a smaller range (about 2 in.) special manometers have been 
constructed. Among these the most important one is the 
Chattock gauge developed in England.^ The instrument, shown 
schematically in Fig. 201, consists of a glass U-tube of somewhat 

extraordinary shape which is 
attached to a metal frame that 
can be tilted round an axis. The 

^ ^ two pressures are connected to 
^ the two reservoirs right and left, 
vJ 1 HHS) f S which are half filled with water (or 

with a salt solution of specific 
gravity 1.07). If the vessel in the 
middle would be filled with the 
same liquid, a flow of the salt solu¬ 
tion from the outer vessel of greater 
pressure to that of lower pressure 
could not be detected in the middle 
vessel. In order to show a displace¬ 
ment from the high-pressure side to 

the low-pressure side, the middle vessel is filled with castor oil, 
which does not mix with water. The glass tube connecting the left 
vessel to the middle reservoir protrudes into the castor oil, and the 
salt solution forms a very distinct meniscus with the oil on the top 
of the tube. This meniscus is viewed through a microscope with 
crossed wires. If a very small pressure difference occurs between 
the two extreme vessels, the shape of the meniscus between the 
salt solution and the castor oil deforms. This deformation is 
made to disappear by giving the proper inclination to the frame 
carrying the glass vessels, which is done by turning a micrometer 
screw from the reading of which the pressure difference can be 
calculated. The sensitivity of this micromanometer is 6 • 10“*^ in. 
of water according to Chattock. 

A similar manometer of the same sensitivity but with a range 
of 6 in. has been described by Douglas;^ see also the paper by 

Fig. 201.—Micromanometer 
Chattock. 

^ Chattock, A. P., Note on a Sensitive Pressure Gauge being an appendix 

to: On the Specific Velocities of Ions in the Discharge from Points, Phil, 

Mag.y 1901, p. 79; see also J. R. Pannell, Experiments with a Tilting Manom¬ 

eter for Small Pressure Differences, Engineering^ vol. 96, p. 343, 1913. 

* Douglas, G. P., Note on a Large-range Manometer for Wind-tunnel 

Work, Repts, and Mem, Nat. Adv, Comm. Aeronautics {London)^ vol. 1, p. 110, 

1919-1920. 
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Duncan.^ A manometer of very great sensitivity (about 4 * 10'-^- 
in. water) has been described by Fry.^ 

Another manometer of rather great sensitivity has been 
developed in the Aerodynamic Institute, Aachen.^ Two vessels 
VI and F2 of accurate cylindrical shape to which the pressures 
are connected contain two floats which are rigidly attached to 
each other and carry a mirror between them. The pressure 
difference causes a difference in the water level between the 
vessels Fi and V2 which turns the connection between the floats 
and consequently the mirror. This angular deviation of the 
mirror is observed with a telescope. The sensitivity of the instru¬ 
ment is about 10”'^ in. of water. A disadvantage of this manom¬ 
eter is that relatively large amounts of water have to be moved 
by very small forces so that it requires from 30 to 45 min to 
obtain one reading. 

Finally, we mention an air micromanometer made by Edel- 
inann & Sohn, Munich.^ In this instrument, the air from the 
spot where its pressure is to be measured is blown through a 
nozzle against a small mica vane attached to a torsion wire. The 
angle of torsion of the mica vane is measured by means of a 
mirror attached to the same wire. The sensitivity is said to be 
about 4 • in. of water. 

Recording manometers have been constructed on the principle 
of either the aneroid barometer or utilizing floats. Wiesels- 
berger'^ has constructed an aneroid barometer which has also 
been adapted® to the registration of the velocity of an airplane 
relative to the surrounding air. 

130. Vane-wheel Instruments.—Besides the Pitot tubes dis¬ 
cussed in Art. 126, there exist a number of instruments which 
require calibration before they can be used. 

The most important among these utilize wheels with vanes or 
buckets. For water measurements the usual rotary-disk water 

^ Duncan, W. J., On a Modification of the Chattock Gauge, DeKsigned 

to Eliminate the Change of the Zero with Temperature, Tech. Rept. 10t)9, 

Aero. Research Comm., 1927, p. 848, London, 1928. 
2 Fry, J. D., A New Microinanometer, Phil. Mag., vol. 25, p. 494, 1913. 

® Ermish, H., Flow and Pressure Distribution of Obstacles as a Function 

of Reynolds^ Number (German), Ahhandl. Aero. Inst., Tech. IlochschvP 

Aachen, vol. 6, p. 21, Berlin, 1927. 

< Z. Ohrenheilk., vol. 56, p. 344. 
® WiESELSBERGER, C., Gdttinger Ergebnisse, vol. 2, p. 6, Munich, 1923. 

• WiESELSBERGER, C., A Manometer for Recording Flying Speeds (Ger¬ 

man), Z. Flugtech. MotorlufUschiffahrt, vol. 12, p. 1, 1921. 
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meters fall under this class, whereas for air-speed measurements 
the instruments are known as anemometers, among; which we 
have to distinguish between vane- or wind-mill type anemometers 
and hemispherical-cup anemometers. The number of revolu¬ 
tions of the instrument is read off on a revolution counter, but 
there are also constructions where the wheel operates an electric 
bell after a certain number of revolutions. The time elapsed 
between two strokes on the bell is determined by means of a 
stop watch. The calibration of water meters of this type can 
be accomplished by towing them with a constant velocity through 
water at rest. The calibration of anemometers for small wind 
velocities up to 30 ft/sec is done mostly on the rotating arm 
(see Art. 140). The relative air velocity of the anemometer is 
eofual to the arm velocity corrected by the wind which is caused 

by the moving arm. For large veloci¬ 
ties (above 15ft/sec) anemometers are 
usually calibrated in the artificial air 
stream of a wind tunnel and compared 
with the readings of a Pitot tube. 

Owing to the considerable inertia of 
the vanes, all instruments of this type 
indicate only the mean value of the 
velocity with respect to time. In wind 
of varying intensity the readings of the 
anemometer show a considerable phase 
lag with respect to the wind velocity.^ 
Gusts of wind of very short duration 
cannot be measured with this kind of 
apparatus. In case an anemometer is 
used for the determination of the veloci¬ 
ties in a pipe, it is to be considered 
that, owing to the volume which the 
instrument takes up in the pipe, the 
indicated velocities are higher than 

those in the undisturbed pipe. With the usual anemometer 
placed in a pipe of about 10 in. diameter this error amounts to 
about 3 per cent. 

^ ScHRBNK, 0., On the Errors Due to Inertia in the Readings of Hemi¬ 

spherical Anemometers in Wind of Varying Intensity (German), Z. tech. 
Physik^ vol. 10, p. 67, 1929. 

Fig. 202.—Constant-volt¬ 
age hot-wire anemometer; the 
bridge voltage is kept 
constant. 
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131. Electrical Methods of Velocity Measurement.—Another 
method of measuring velocities is based on the fact that an 
electrically heated wire exposed to the air stream cools off and 
consequently changes its electric resistance. This method is 
especially valuable for moderately small air velocities. The 
hot wire which is usually very thin (0.5 to 5 mils diameter) is 
connected in a Wheatstone bridge circuit (Fig. 202), which 
makes the measurement of a small change in the resistance 
extremely accurate. This sort of instrument is usually calibrated 
on the rotating arm. 

mm 
Fig. 203.—Calibration curve of a constant-voltage hot-wire anemometer. 

Hot-wire anemometers are used in two kinds of circuits: 
(1) constant-voltage and (2) constant-resistance circuits. With 
the first method the voltage across the bridge is kept constant 
after having been adjusted to such a value that the galvanometer 
shows zero current when the hot wire is in still air. As soon 
as the air starts flowing, the hot wire cools off and the galva¬ 
nometer shows a reading which is related to the wind velocity in 
a manner determinable by calibration. This circuit was first 
suggested by Weber^ and was developed further by King.^ It 
is useful only for very small air velocities, but in this range it 

^ Weber, L., Schriften naturvdss. Ver, Schleswig-Holstein^ vol. 2, p. 

313, 1894. 
* Kino, R. 0., Phil. Trans. Roy. Soc. {London)^ A, vol. 214, p. 373, 1914; 

Phil. Mag.j vol. 29, p. 666, 1916; J. Franklin Inst.^ vol. 181, p. 1, 1916. 
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is extremely sensitive, 
to 0.2 in./sec.^ Since 

the velocity being determinable down 
the very thin platinum wire, which 

is usually heated to a dull-red heat, 
is cooled off considerably by rather 
small air velocities, a further increase 
in the velocity results only in a rela¬ 
tively slight further cooling and con¬ 
sequent change in resistance. Owing 
to this fact, the method of constant 
voltage is not very sensitive for larger 
air velocities. Figure 203 shows the 
relation between air velocity and gal¬ 
vanometer reading for an instrument 
with 4-rnils wire diameter. 

With the second method the resist¬ 
ance in the battery across the bridge 
is increased to such a value that the 

ancc hot-wire anemometer: the wire which waS originally COOled off 

temperature of the hot wire are current IS again brought 
kept constant by varying the up to its first temperature (Fig, 204). 
bridge voltage. temperature of the hot wire and 

consequently its resistance are kept constant by varying the 
bridge voltage so that the galvanometer reading remains zero. 
The current in the hot wire is read by means of a voltmeter which 
gives a measure for the air velocity. This method has been 
improved by Callendar (see King^) so that the calibration curve 
of the instrument is practically a straight line even for very small 
air velocities. The calibration curves for the various types of 
hot-wire anemometers are shown in Fig. 205. 

Another method for^ obtaining a practically straight-line 
characteristic is by using a compensating hot wire, as shown in 
Fig. 206.^ The compensating hot wire H1H2 is always kept in 
still air and the resistor is adjusted to such a value that if the 
main hot wire is also in still air the galvanometer reading is zero. 
When the air begins to flow, the galvanometer gives a certain 
reading which is practically proportional to the wind velocity, as 

1 OvBBBBCK, A., Ann. Physikj vol. 56, 397, 1895; Dau, R., Dissertation, 
Kiel, 1912. 

®King, R. O., The Measurement of Air Flow, Engineeringj vol. 117, 
pp. 136, 249, 1924. 

* Hugttnbard, Mognau, and Planiol, On a Compensated Hot-wire 
Anemometer (French), Compt. rend.^ vol. 176, p. 287, 1923. 
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shown by curve a, Fig. 207; curve 6, for a constant-voltage 
hot-wire instrument, is shown for comparison. 

Scafe div/s/orts 

5 /O /S 20 25 50 
mm Wa/-er 

Fig. 206.—Various calibration curves: (a) constant-voltage anemometer; (6) 
constant-resistance anemometer; (c) dynamic-pressure curve. 

mm 

^^ 
/¥0Q 

Fig. 206.—Hot-wire hook-up of 
Huguneard. 

Fig. 207.—Calibration curves (a) of 
Fig. 206 and (6) of Fig. 202. 

For the special purpose of investigating the structure of the 
wind the Siemens & Halske Company in Berlin has put on the 
market an ingenious hot-wire recording instrument designed 
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by Gerdien.^ This instrument automatically records the wind 
velocity with its smallest and fastest variations as well as its 
horizontal direction and its vertical component. 

132. Velocity Measurements in Pipes and Channels.—In case 
the mean velocity of gas or water in pipe lines has to be deter¬ 
mined (with a view toward finding the transported volume), it is 
possible to determine the velocity in a good many points of the 
cross section by means of a Pitot tube or a hot-wire anemometer. 
This method is very laborious, especially for non-circular cross 
sections, and, moreover, its accuracy is not great on account of 
the rapid drop in velocity near the wall of the pipe. 

The method of finding the mean velocity by means of the 
pressure variations due to cross-sectional variations has been 
found more practical. Bernoulli’s equation states that the 

pressure po is decreased by an amount when the 

velocity is increased from Wo to w: 

Po — p = 

If the cross-sectional area drops from A to a, the continuity 
equation is 

a 
WQ = -jWy 

so that 

Owing to the non-uniform velocity distribution in the pipe above 
the location of the measurement, this velocity has to be corrected 
by a certain factor, the velocity coefficient,” which is to be 
determined by calibration for each shape of pipe. 

133. Venturi Meter.—Certain difficulties are encountered 
in attempting to restore the original pressure by decreasing the 
velocity to its original value. In order to do this, it is necessary 
to increase the cross section very gradually from the narrowest 
section to the original cross section. This type of arrangement, 
shown in Fig. 208, is called a Venturi meter. HerscheP first 

1 Gebdien, H., The Anemoklinograph, an Apparatus for the Investiga¬ 

tion of the Structure of the Wind (German), Jahrb, wisa. Gesellsch. Flugtech., 
vol. 2, 1913-1914, 

2 Herschbl, Cl., The Venturi Meter, paper read before the Am. Soc. 
Civil Eng., December, 1887. 
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suggested its use for the measurement of delivered volume in 
pipe lines. In order to find the relation between the pressure 
difference and the mean velocity 
in the pipe a calibration curve 
of a geometrically similar 
Venturi meter has to be known, 
and in cases where the velocity 
of approach is not very small 
with respect to the velocity in 
the throat this geometrical sim- 

liamy nasto oeextenaea totne distribution along the center Une; the 

approach as well. For Venturi dashed curve along the wall, 

tubes of the shape shown in 
Fig. 208 the velocity coefficient is approximately 1.00. 

134. Orifices.—In spite of the fact that with a Venturi meter 
the pressure drop is very small (about 15 to 20 per cent of the 

Fig. 208.—Flow through Venturi 

Fig. 209.—Flow through rounded-approach orifice, full and dashed lines as in 
Fig. 208. 

pressure drop in the throat), its practical application is limited 
by its large size. Therefore standardized orifices as shown in 
Figs. 209 and 210 are used more frequently. The pressure 

Fig. 210.—Sharp-edged orifice; full and dashed lines as in Fig. 208. 

diagrams in these two figures show that with this kind of appara¬ 
tus the loss in pressure is from 60 to 70 per cent of the pressure 
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drop in the orifice. The velocity coefficient a has been found to 
be 0.96 to 0.98 with the standardized (German) rounded-approach 
orifice (Fig. 209). For the sharp-edged orifice shown in Fig. 210 
the coefficient depends very much upon the ratio of the cross 
sections a/A. For instance, for a/A — 0.15, we have a = 0.61, 
whereas for a/A = 0.75, the velocity coefficient is a = 0.91.^ 

136. Weirs.—For the measurements of velocity in open chan¬ 
nels, weirs are used most frequently. The height h of the undis¬ 

turbed water level above the crest of 
the weir is a measure for the discharge 
per unit of time (Fig. 211). It is 
necessary to ventilate the weir, i.e., to 
let air pass freely under the jet. In 

^ the absence of this precaution a 
I la. 211.—I* low over v/eir. , . 

vacuum will be created under the jet, 
which will pull the jet down and increase the discharge. With 
ventilated weirs an accuracy of 99.5 per cent can be obtained. ^ 

Since the difference in height between the water level and the 
crest of the weir in general is small, its measurement has to be 
carried out with precision. The usual method is to have a 
micrometer screw with a sharp conical point entirely submerged 
in the water. This point is screwed up until it touches the 
water surface, which can be observed very accurately since at 
that moment the point itself and its reflected image coincide on 
the surface. The observation is made from below through a 
glass window in the side of the tank. 

136, Other Methods for Volume Measurement.—For small 
volumes of either water or gas, the method of direct weighing is 
useful. The amount discharged from the pipe is collected in a 
suitable vessel during a definite interval of time and then either 
the volume or the weight is accurately determined. For gases 
the possible error due to temperature changes has to be 
considered. 

Besides the method of direct weighing, volumes in small 
quantities can be measured by ordinary domestic water or gas 
meters as well as by the method of salt titration. 

^ Volume Measurement with Standardized Orifices (German), V. D. I., 

Berlin, 1930; Mueller, H,, and H. Peters, Correction Factors for Standard¬ 

ized Orifices (German), Z. V. D. voL 73, 1929. 

* Rehbock, Th., Discharge Measurements with Sharp-crested Weirs (Ger¬ 

man), Z. V, D. /., vol. 73, p. 817, 1929; de Thierry, G., and C. Matscross, 

“The Hydraulic Laboratories of Europe(German), p. 104, Berlin, 1926. 
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B. DRAG MEASUREMENTS 

137. The Various Methods.—Because of the fact that the drag 
on a body is the same whether the body is at rest and the air 
is moving or whether the body is moving and the air is at rest, 
there are two different methods of drag measurement. 

The first method, where the fluid is at rest, again has several 
modifications.^ 

The body may be attached to a carriage running on rails and 
towed through the fluid, or it may be permitted to fall down 
freely, guided only by a vertical guide wire, or again it may be 
mounted on the extremity of an arm which is rotated through 
still air. 

138. Towing Tests.—The method of towing the test specimen 
is restricted practically to water, as experience has shown it to 
be impractical for air. This is due to the fact that the carriage 
on which the body is mounted is also moving through the air 
and generally creates considerable disturbance in it. In case 
the experiment is conducted in the open, the irregularities of the 
free outside atmosphere are also very disturbing. Moreover, it is 
difficult to move the carriage with an accurately constant velocity. 
Any deviation from constant velocity will cause inertia forces 
in the test specimens, which may become of the same order 
of magnitude as the wind reactions. For a practical realization 
of this method the test track has to be very long, which makes the 
construction as well as the operation of such apparatus expensive. 

However, for drag measurements in water the method has been 
used very successfully, primarily of course in connection with 
the problem of ship resistance. Experimental tanks for this 
purpose can be found in many laboratories all over the world. 

139. The Method of Free Falling.—This procedure has been 
worked out only for air. The first experiments in this direction 
we owe to Piobert, Morin, and Didion (1835),-^ who reached 
velocities up to 30 ft/sec. They had an apparatus for recording 
the velocity. As soon as the velocity had become uniform, the 
drag was equal to the weight. The method was greatly improved 
by Cailletet and Colardeau (1892).® They dropped plane sur- 

1 The various methods used prior to 1910 are described in detail by G. 

Eiffel, *^The Resistance of the Air” (French), Paris, 1910. 

2 Memoirs on the Laws of Air Resistance (French), Memorial de VArtilleric^ 

No. 5, 1842. 
^ Compt. rend,^ vol. 115, p. 13, 1892. 
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faces of various shapes down from the Eiifel Tower and measured 
the relation between the time required and the height of fall. 
They reached velocities up to 90 ft/sec. EiffeP brought this 
method to complete development (1905) and made an elaborate 
series of tests on various bodies with velocities up to 130 ft/sec. 

His apparatus is shown schemati¬ 
cally in Fig. 212. The whole appa¬ 
ratus is sliding down freely on two 
bearings along a tightly stretched 
vertical wire. The object under 
test, D, is attached to two springs 
SS, which expand proportionally to 
the drag of D. The extension of the 
springs is recorded on a rotating drum 
by means of a tuning fork. The 
drive of this drum is by means of a 
worm W and a friction wheel F. 
Owing to the vibrations of the tuning 
fork, the record is not a smooth 
curve but has little ripples on it 
which indicate the time. The 
abscissa of the drum record is pro¬ 
portional to the height of the fall 
and the ordinate is proportional to 
the drag. At the end of the fall 
the guiding wire becomes thicker so 
that the apparatus is brought to a 
stop. The entire mechanism is 
balanced by means of a body of small 

Fig. 212. Apparatus of Eiffel for resistance (7, which is drawn in the 

sketch in dotted lines but really is 
situated on the other side of the wire. If Q is the weight of the 
test specimen and of all moving parts attached to it (tuning fork), 
w the velocity, and / the spring force, the drag D is 

I> = / + 01 {'-Vi) 
since the product of mass and acceleration of the specimen D 
must be equal to the sum of all forces acting on it. The values 

1 Eiffel, G., ** Experimental Researches on Air Resistance Conducted 
at the Eiffel Tower (French), Paris, 1907. 
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of / and of dw/dt can be read from the diagram. The disadvan¬ 
tage of all fall methods in general is that the recording apparatus 
has to move with the specimen. This is bound to affect the 
flow conditions behind the obstacle, which, as we know, are of 
great importance. 

140. Rotating-ann Measurements.—The method of drag 
measurement by the revolving arm has been used by various 
investigators, especially during the last century. The pioneer 
of aeronautics, O. Lilienthal,^ made his fundamental experiments 
(1870) in this manner on flat and curved plates. Figure 213 
shows the apparatus used by him, which was also capable of 

Fig. 213.—Rotatiiig-arm apparatus of Lilienthal. 

measuring the lift. The drive by means of falling weights 
is primitive in comparison with the later constructions of 
Langley^ and Dines f this was due, however, to the fact that 
Lilienthal had hardly any money for conducting his experiments, 
on which account he deserves all the more credit for his funda¬ 
mental researches. 

The main disadvantage of the rotating-arm method is that 
after one-half revolution the plate or obstacle does not pass any 
more through still air but through the wake of the other plate, 
which generally consists of very turbulent air. Moreover, owing 
to the rotation of the arms, the air is gradually put into rotation 
itself. This additional air velocity was recognized by Lilienthal 
but not considered in his calculations. It would be necessary 

^Lilienthal, 0., ^^The Flight of Birds as the Foundation of the Art of 

Flying’^ (German), Berlin, 1889. 

2 Langley, S. P., The Internal Work of the Wind, Phil, Mag., vol. 37, 

p. 425, 1897. 

3 Dines, W. H., Some Experiments Made to Investigate the Connection 

between the Pressure and Velocity of the Wind, Quart. J. Meteorolog. Soc,, 

vol. 15, 1889. 
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to measure this relative velocity by means of very sensitive 
vane-wheel or hot-wire anemometers. Another difficulty of 
this method is to take care of the action of centrifugal acceleration 
on the flow. Because of all these factors combined, the drag 
measurements with the rotating arm show serious errors and 
therefore the method is now hardly ever used. 

Another method which has become obsolete utilizes a pendulum 
and is associated with the names of Borda, Hergesell, and 
Frank. In this case the motion naturally is accelerated or 
decelerated all the time, and the velocities involved are very 
small. It has the same disadvantages as the rotating-arm 
method, namely, that the test specimen is moving through the 
turbulent air of its own wake. 

Fig. 214.—Lift- and drag-measuring apparatus of Lilienthal. 

Now we shall proceed to discuss the second general method of 
drag measurement, where the test specimen is at rest and the air 
is streaming with respect to it. 

141. Drag Measurement in the Natural Wind,—At first 
thought the simplest way of measuring the drag of a test specimen 
seems to be to subject it-to the action of the natural wind, the 
velocity of which can be measured by means of one of the methods 
discussed before. In fact, this is the oldest procedure known. 
Besides his measurements on the rotating-arm apparatus, 
0. Lilienthal has made lift and drag determinations on planes 
inclined slightly with respect to the natural wind. The apparatus 
used by him is shown schematically in Fig. 214. He found that 
the drag values obtained in this manner were considerably 
different from those obtained by means of the rotating arm. 
Several commentators on Lilienthars work concluded from this 
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discrepancy that it made a difference whether the test specimen 
was moved with respect to the surrounding air or whether the 
air was moved with respect to the object. However, the matter 
can be easily explained by the fact that both methods are 
inherently very inaccurate. 

The drag measurement in a natural wind differs in two funda¬ 
mental points from the method of towing or of free falling. The 
free wind is always more or less turbulent, whereas an object 
towed through still air experiences a laminar flow at least at its 
front side. The other fundamental difference lies in the fact 
that the wind intensity depends very much on the distance from 
the ground. p]xactly at the surface of the ground the wind 
velocity is zero, from which value it increases rapidly with the 
height above the ground. Very small hills or other unevennesses 
of the ground are capable of upsetting the test results completely. 
The natural wind, moreover, is seldom very steady in its magni¬ 
tude but is always more or less gusty. 

142. Advantages of Drag Measurement in an Artificial Air 
Stream.—In order to avoid the various difficulties of the free 
atmospheric wind, it has become customary to create artificial 
air streams by means of blowers and to study their action on the 
models. The advantages of this method are obvious. In the 
first place the various components of the force acting on the test 
model can be measured by means of sensitive scales, one after the 
other. For these measurements plenty of time can be taken, 
which improves their accuracy, whereas in the free wind all 
results have to be taken frqpi recording instruments which are 
inherently less accurate. An advantage over the falling method is 
that all difficulties relating to inertia forces due to the necessary 
acceleration period are avoided. Furthermore it is possible to 
locate all measuring instruments outside the air stream, while the 
test model itself is held in place in the stream by means of thin 
wires or struts. For this reason, the errors arising from the 
Jact that the air stream is affected not only by the test specimen 
but also by its supports are reduced to a minimum. 

With any measurement employing artificial air streams, it is 
of great importance, however, that the stream reach the model 
in as uniform a state as possible. We shall now proceed to a 
discussion of the various test set-ups in existence and shall 
examine to what extent the requirement of non-turbulence of the 
stream is satisfied. 
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C. WIND TUNNELS 

143. The First Open Wind Tunnels of Stanton and Riabou- 
chinsky.—The first wind tunnel was built by Stanton^ in the 

National Physical Laboratory in 
London in 1903 (Fig. 215). The 
air was sucked by a ventilator B 
through an intake tube P and then 
flowed past the test model M, At 
this point the tube widened out to a 
box in which a very sensitive scale 
was mounted. The model was 
attached to one arm of the scale by 
means of a very thin strut. The 
maximum air velocity was 30 ft/sec; 
the diameter of the air stream 2 ft. 
Stanton and, after him, Riabou- 
chinsky found that even for small 
test specimens the drag is affected 
by the walls of the tube. For 

Fig. 215.—w^iid tunnel of T. K. plates of more than 2 in. width 
Stanton (1903). {i.e.y about 8 per cent of the tube 

diameter), the drag per unit area increased rapidly with the 
width of the plate. 

On suggestions from Joukowsky a very elaborate experimental 
laboratory was built in 1906 in Moscow by Riabouchinsky.^ 
The tunnel had a diameter of 4 ft and a length of about 45 ft. 
The model was suspended in the mitldle of this tunnel, where the 
cylindrical walls were made of glass so that the model could be 
observed during the test. The vorticity of the air was diminished 
by arranging a rather large intake nozzle at the entrance of the 
tunnel and also by installing a number of honeycomb grids, with 
the result that the air velocity had variations less than 4 per cent 
of the mean. The wind velocity could be varied from 3 ft/sec to 
20 ft/sec. As in Stanton’s tunnel, the air was also sucked in by* 
a blower since it had been shown by previous experiments that 
an air stream of this kind is far less turbulent than one blown into 
the tunnel. 

^ Stanton, T. E., On the Resistance of Plane Surfaces in a Uniform Cur¬ 
rent of Air, Proc. Inst. Civil Eng,, vol. 166, London, 1903-1904. 

* Riabouchinsky, D.: Bull. Inst. a4rodynamique de Koutchino, vols. I, 
JI, and III, Moscow, 1906, 1909. 
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144. The First Closed Wind Tunnels in Gottingen and Lon¬ 
don.—Prandtl in Gottingen (1907-1909) and Stanton in the 
National Physical Laboratory in London (1910) constructed 
closed wind tunnels where the air discharged by the ventilator is 
guided through a closed circuit and after having been freed from 
vorticity is led back to the test model. The Gottingen tunnel of 
1909^ was intended to be a temporary one in order to obtain 
experience for a subsequent larger construction. It was demol¬ 
ished in 1918 and reconstructed in a somewhat modified form.^ 

Fig. 216.—First closed wind tiiimel of Prandtl (1907-1909). 

The old tunnel had a cross section of 6 by 6 ft. The wind 
velocity could be varied up to 30 ft/sec (Fig. 216). In order to 
guide the air four times through a right angle, special guide vanes 
were built in. The apparatus for smoothing out the air after leav¬ 
ing the ventilator consisted of two honeycomb rectifiers//i and 7/2, 
coarse and fine, respectively, and of a sieve S of 0.1-in. opening. 
After having passed through these, the air struck the test model, 
which was supported by means of thin wires on the aerodynamic 
balance. Near the model the wall of the tunnel had windows 
so that observations could be made during the test. It was 
found that the rectifiers and the sieve did not insure sufficient 
uniformity of the velocity across the section of the tunnel and, 

^ Prandtl, L., The Importance of Model Experiments for Aeronautics 
and the Apparatus for Such Tests in Gottingen (German), Z. V. D. /., voL 63, 

p. 1711, 1909. 
^Goiiinger Ergebniase^ vol. 2, p. 1, Munich, 1923. 
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in order to secure this uniformity, a process of correction, con¬ 
sisting of widening or narrowing some of the openings, was 
applied to both rectifiers. A uniformity of the air velocity 
within ±1 per cent was thus obtained. When discussing the 
larger wind tunnel in Gottingen, Art. 147, it will be seen that 
there are better methods of obtaining uniformity in the air 
velocity with simpler means. 

The wind tunnel built by Stanton^ in 1910 is shown schemat¬ 
ically in Fig. 217. The air is sucked through the inside channel 
by a blower B. It then passes through the outside channel 
and returns to the inside one, in which the test models are 
suspended. At the entrance of this test tunnel, which has a 
cross section of 4 by 4 ft, a honeycomb is provided in order to 

Fig. 217.—Closod wind tunnel of T. E. Stanton (1010). 

smooth out the air stream. The attachment of the models to 
the balance is by means of a thin strut, such as was used on the 
previous English construction (Fig. 215). 

146. The First Wind Tunnel of Eiffel with a Free Jet.—The 
construction of a free-jet wind tunnel, first introduced by EiffeF 
in 1909, constitutes a definite improvement. The walls of a 
wind tunnel prevent the air from flowing fi^eely around an 
object of somewhat large size. In order to avoid this effect, 
Eiffel replaced the tunnel walls for a short stretch near the test 
model by a large air-tight chamber (Fig. 218). This construc¬ 
tion has the added advantage that the models can be approached 
without difficulty at any time. 

Another advantage of the free jet over the closed channel is 
that the pressure along the length of the jet is practically con¬ 
stant, equal to the pressure of the surrounding air, which con- 

^ Stanton, T. E., Report on the Experimental Equipment of the Aero¬ 

nautical Department of the National Physical Laboratory, Rept. Adv. 

Comm. Aeronautics^ 1909-1910, London, 1910. 

* Eiffel, G., ^‘The Resistance of Air and Aviation" (French), Paris, 1910. 
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sequently makes the air velocity in the jet constant (with the 
exception of the narrow range near the boundary, where mixing 
with the outside air takes place). With a channel, on the other 
hand, the boundary layer increases in thickness along it in 
the direction of the flow. This tapers the cross section for the 
undisturbed air stream down to a smaller diameter, which leads 
to an increased velocity along the stream. The air is sucked 
from the hall H through a nozzle N, a sieve, the test chamber T, 
and a receiving nozzle by means of a ventilator B, The air is 
then pushed through a channel of widening cross section D back 
into the hall //. The model is suspended in the test chamber 

about 3 ft distant from the sieve. The velocity of the air stream 
can be varied between 15 and 70 ft/sec approximately. Since the 
air in the hail H has atmospheric pressure, the pressure in the test 
chamber is lower; according to Bernoulli's law, this difference is 
about 1 in. water for 70 ft/sec wind velocity. Since the jet flows 
rectilinearly through the test chamber T, the same partial 
vacuum exists in it so that it has to be closed off air-tight. Dur¬ 
ing the test the chamber can be entered only through a double 
set of doors. Eiffel^ built another larger wind-tunnel installation 
in 1914, which, however, does not differ fundamentally from the 
one just described. It uses a different type of blower and a 
long diffuser or gradually widening channel instead of the intake 
nozzle of Fig. 218. The diameter of the jet is nearly 7 ft, and 
the maximum wind velocity is about 130 ft/sec. 

Another installation utilizing a free jet is the one in the Aero¬ 
dynamic Laboratory at Vienna built between 1911 and 1914 by 

^ Eiffel, G., "New Researches on the Resistance of Air and Aviation’^ 

(French), Paris, 1914. 
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R. Knoller. Besides having a vertical jet, it differs from Eiffel’s 
tunnel mainly in the construction of the intake nozzle. 

146 Modem English Tunnels.—The tunnel of 1910 (Fig. 217) 
had the disadvantage of pulsations in the 
air velocity. Elaborate researches^ into 
the cause of this phenomenon led to the 
construction of another type which is 
used to a great extent in England^ (Fig. 
219). The entire structure is set up in a 
large hall about 6 ft above the floor. The 
channel has a square cross section of 4 by 
4 ft and is 25 ft long. On the intake side, 
it is rounded (.4), and the blower B is 
built in a somewhat wider section. Up 
to this point the construction is very much 
similar to the one of Riabouchinsky. The 
improvement on this construction, however, 
consists in the fact that the air is not 
blown directly into the room but into a 
long channel L having a great number of 
small openings from which the air escapes 
at a reasonably slow velocity. Because of 
this, the state of turbulence of the air in 
the hall outside the wind channel is con¬ 
siderably less. Without the muffler L the 
non-uniformity of the velocity in the 
channel would amount to ±5 per cent, 
whereas the muffler reduced it to ±1 per 
cent. The models can be observed through 
a glass door placed at about 15 ft from 
the entrance of the channel. 

In 1919 another larger wind tunnel of 7- 
by 7-ft cross section was built on the same 
general principles.^ In this construction 

the wind channel itself was made to widen out gradually behind 

^ Bairstow, L., and H. Booth, An Investigation into the Steadiness of 
Wind Channels, Kept, Nat. Adv. Comm. Aeronautics, 1912-1913, p. 48, Lon¬ 
don, 1913. 

2 Bairstow, L., J. H. Hyde, and H. Booth, The New Four-foot Wind 

Tunnel, Rept. Nat. Adv. Comm. Aeronautics, 1912-1913, p. 59, London, 1913. 
^ RepL Nat. Adv. Comm. Aeronautics, vol. 1, p. 161, 1918-1919; and 

vol. 1, p. 283, 1922-1923. 
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the models. This makes the velocities in the blower somewhat 

smaller and also recovers part of the kinetic energy of the air at 

the model by converting it into pressure. Instead of using a 

muffler of the construction of Fig. 219, the air was forced by the 

blower through a very coarse sieve of brick work into another 

room, from which it entered into the main hall again through 

another part of the same sieve. 

147. The Large Wind Tunnel in Gottingen.—For the large 

installation built in Gottingen in 1916-1917 by Prandtl, a free- 

jet construction w^as chosen rather than a closed channel. The 

older Gottingen tunnel (Fig. 216) having a closed channel had 

shown that in many cases the walls were responsible for errors in 

Ficj. 221.—Sections of Gottingen tunnel (1910-1917). 

the test results. The reason for such errors, as was dis¬ 

cussed before, is that for large test objects the constriction 

of the jet by the solid walls increases the wind velocity at the 

model. 

The construction differed from EiffeFs tunnel in so far as the 

free jet was made at atmospheric pressure and not at a partial 

vacuum. Because of this, the test place could be kept entirely 

open, so that its accessibility was not impeded in any way. 

EiffePs tunnel has the disadvantage that the air discharge of 

the blower into the free atmosphere becomes very turbulent 

and has to be smoothed out again by special means. This was 

avoided in the Gottingen construction by inserting a diffuser 

between the model and the blower. As shown in Figs. 220 and 

221, the air discharging from the blower B first passes through 

some stationary blades V which serve the purpose of annihilating 
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the rotation of the stream imparted to it by the propeller. The 

air stream is then deflected downward through an angle of 90 deg. 

by means of a series of blades of special construction. After 

another turn of 90 deg., it enters into a square cross-sectional 

channel in the basement of the building. From there it finally 

enters through a rectifier or sieve II into the nozzle chamber 

having a cross section of 15 by 15 ft. It is then accelerated into 

the nozzle, which is of circular cross section with a smallest 

diameter of llo ff> causing the velocity to be five times as great. 

From the nozzle it flows through tlxC model space as a free jet. 

The main advantage of this construction lies in the fact that 

the smoothing out of the air by means of a sieve takes place in 

the largest channel cross section, which results not only in a 

smaller power loss but also in a much more efficient smoothing- 

process. As was stated before, the velocity in the jet is five times 

as great as the velocity in the nozzle chamber so that an air 

particle in the jet has twenty-five times as much kinetic energy as 

one at the sieve. After smoothing out. the air stream, the devia¬ 

tions from the ideal state have only one twenty-fifth of the kinetic 

energy of the jet so that of each air particle 2^25fhs of the energy 

is transmitted to the nozzle. Even if it were possible to reduce 

in the sieve the error in the kinetic energy to only 50 per cent, 

this would result in an energy variation of 2 per cent in the jet 

itself, i.e.y a velocity variation in the direction of the jet of only 

1 per cent. 

148. Wind Tunnels in Other Countries.—A wind tunnel of 

considerably larger dimensions was built in 1927 at Langley 

Field, Va., the center of aeronautic research in the United States.^ 

The channel is of the closed type shown schematically in Fig. 222. 

The jet has a cross section of over 300 sq ft. A still larger wind 

tunnel of similar construction was completed in 1932 having a jet 

cross section of about 1300 sq ft. Another wind tunnel worthy of 

mention in the United States is the one designed by von Karmd.n 

in Pasadena, Calif., which is remarkable for its freedom from 

turbulence and its great over-all efficiency. 

It is not necessary to go into details regarding installations in 

other countries since the constructions are all more or less of the 

^ Weick, F. E., and D. H. Wood, The Twenty-foot Propeller Research 
Tunnel of the N. A. C. A., Rept. 300, Nat. Adv. Comm. Aeronautics, Washing¬ 

ton, 1928. 
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described types. Regarding the wind tunnels in Japan^ and in 

Russia,2 reference is made to the literature. 

The development in the construction of wind tunnels has 

been guided by the quest for two properties: first, to obtain an air 

Fia. 222.—New American tunnel at Langley Field (1928). 

stream of great uniformity f and, second, to carry out the tests 

with high Reynolds^ numbers in order to obtain dynamic similar¬ 

ity with the actual conditions. This second desideratum has 

led to the very large dimensions now in use, especially in 

England and the United States, and to the very large wind veloc¬ 

ities (Gottingen 180 ft/sec, Moscow 260 ft/sec). A completely 

^ The Resistance of Airship Models Measured in the Wind Tunnels of 

Japan (English), Rfpt. Aero, Research Inst,j Tokio Imperial Univ., No. 15, 

March, 1926, The Wind-tunnel Committee of the Aeronautical Council of 
Japan. 

^ OzEROFF, G. A., The Central Aero-hydrodynamical Institute, JJ. S. S. R. 
Sci, Tech. Dept., No. 183, Supreme Council of National Economy (Russian), 
Moscow, 1927. 

3 WiESELSBERGER, C., Oil the Improvement of the Flow in Wind Tunnels 

(German), paper read before the 108th meeting of the Japan. Soc. Mech. 
Eng., 1926. 
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dififerent method of attack was proposed by Munk,^ who use?d 

moderate dimensions and velocities but reached high Reynolds’ 

numbers by making the kinematic viscosity v = /x/p very small. 

This was done by compressing the air to about twenty times 

atmospheric pressure which diminishes the kinematic viscosity 

to about one-twentieth its original value, so that the Reynolds’ 

number becomes twenty times as large. The method naturally 

involves great structural difficulties since the entire installation 

has to be able to withstand an internal pressure of 20 atmospheres. 

The outside shell is made of steel plates of 2-in. thickness. A 

sketch of the construction actually carried out in the United 

States is shown in Fig. 223. The entrance to the tunnel is 

through the door T, The various forces are measured auto- 

Fig. 223.—High-presaurc wind tunnel designed by M. Munk. 

matically by recording instruments or by small servo-motors 

electrically controlled from the outside to change the load on the 

various balances, which can be observed from the outside through 

small windows. Recently another larger tunnel on the same 

principle was built in England. 

149. Suspension of the Models and Measurement of the 
Forces.—Of importance for the suspension of the models in the 

air stream is the knowledge of the forces exerted by the stream 

on the suspension wires or struts. It is evident that these forces 

have to be made as small as possible. If a suspension by means 

of a strut is employed, the strut is preferably attached to the 

model in a location where the air would be in a turbulent state 

without the strut (with a sphere, for instance, on the rear side). 

This reduces the errors introduced by the strut to a minimum. 

It is further desirable that the suspension be made such that 

1 Munk, M., and E. W. Miller, The Variable-density Wind Tunnel of 

the N. A. C. A., Repis, 227 and 228, Nat, Adv. Comm, Aeronautics, Washing¬ 

ton, 1925. 
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the various components of the air forces on the model can be 

measured conveniently. A free body in space has six degrees of 

freedom so that six quantities have to be measured (Fig. 224) : 

1. The drag D. 
2. The lift L. 
3. The lateral force Y. 
4. The pitching moment il/, i.e., the moment round Y as axis. 

5. The rolling moment L, z.c., the moment round D as axis. 

6. The yawing moment t.e.j the moment round L as axis. 

In most cases, however, the object under test is symmetrical 

and is situated symmetrically with respect to the flow: for 

instance, an airplane in forward flight. In 

/ such cases, the resultant air force lies in the 

plane of symmetry and consequently is 

determined by three components. The 

/ y/ lateral force Y as well as the rolling and 

{// yawing moments is zero, so that it is neces- 

Fig. 224.—Forces act- measure only the drag, the lift, and 
ing on airplane. the pitching moment. 

The construction of the various balances for measuring these 

forces differs in various countries. They are discussed in a fairly 

extended manner in the literature quoted before on the various 

wind tunnels so that it is not necessary to dwell upon them in 

this book. 

Only two special constructions will be considered here, namely, 

the three-component balance at Gottingen and the balance 

employed by Eiffel. The suspension in Gottingen is by means of 

thin wires, whereas Eiffel employs a strut of streamlined shape. 

160. The Three-component Balance in Gottingen.—The object 

under test, in this case an airfoil (Fig. 225), is attached by wires 

in the three points a, 5, and c to various points on the arms Lx 
and Li of the two balances. From the point a two wires in 

V-shape connect to the balance Lx] similarly two wires connect 

c to Li- The point h, however, is connected with a single vertical 

wire to Lx- The V-wires at a and c are for the purpose of pre¬ 

venting a side sway of the model. 

When lift forces are to be measured, the models are usually 

suspended upside down so that the lift is pointing downward 

and can be measured by a wire in tension from the model upward. 

However, with negative angles of attack the models sometimes 

are subjected to negative lift forces, and, in order to take these, 
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it is necessary to give the measuring wires some initial ten¬ 

sion by means of small weights Wx and W^. In order not to 

subject the test model itself to stresses, these compensating^ 

weights have been attached to the points a, h. First the various 

balances are put in equilibrium when no wind is blowing, 

in order to take care of the effect of the compensating weights 

as well as of the weight of the model itself. If then the 

model is subjected to the air stream causing a lift, this lift is 

measured by the sum of the forces exerted on Li and Lo. The 

Fig. 225.—'I’hree-component acrodynaniic balaiK^ti at Gottingen. 

pitching moment is determined by the force measured by L2. 

For the measurement of the drag a wire is stretched from the 

middle of the model to the point K whence one wire goes up 

vertically to the drag balance D and another wire under 45 deg. 

down to a fixed point P, A decomposition of the drag force in 

these directions causes it to be measured on the balance i), as is 

shown by the force diagram of Fig. 225. The drag wire is also 

given initial tension by means of a small counterweight W3. The 

drag of the suspension wires is measured separately by replacing 

the model by another object of very simple shape whose resist¬ 

ance can be calculated. The drag of the original model finally 

is the difference between the measured drag of it and the drag 
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of the suspension. In all airfoil and airplane measurements 

it is of importance to know the air forces for various angles 

of attack, hence it is convenient to have an apparatus for varying 

the angle of attack without changing the suspension of the model 

itself. In order to do this, the balance L2 can be lowered or 

raised round the axis A by means of a lever H, This causes the 

model to turn about the axis ab so that various angles of attack 

can be obtained. To be sure that the suspension wires at c 
remain exactly vertical after rotation, it is necessary that the 

horizontal distance between ab and c be exactly equal to the 

horizontal distance between the balance L2 and the axis A, 
Further details regarding the balance, its calibration, and sources 

of error are described in the literature.^ 

161. The Aerodynamic Balance of Eiffel. ^—A T-shaped bal¬ 

ancing arm T has knife-edges at its ends I and II (Fig. 226). 

The test model is attached to T by means of the streamlined 

strut S. The arm Z of the balance can be lengthened or short¬ 

ened by means of the eccentric E so that the horizontal arm of 

T can be raised or lowered and either one of the two knife-edges 

I or II can be made to touch its support. In the first case the 

balance measures the moment about I and in the second case 

the moment about II. 

^Qdttinger Ergehnisse (Gennan), vol. 1, Munich, 1921. 

* See footnote, p. 256. 
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Let the resultant air force exerted on the model be given in 

magnitude and position by the vector R. This vector B is 

decomposed into a lift vector L and a drag vector D in the figure, 

both passing through the point 0 which is taken to be vertical 

under the knife-edge I. The moments about I and II are 

respectively, 

Mi = ~Dy, 
Mil = Lh- D(y - c). 

A third measurement is needed. For this we take the moment 

round the hypothetical point C, which is the mirror image of 1 

about S as an axis. The measurement about C is carried out by 

inverting the model and measuring the moments about I, giving 

Me = D(2a - y). 

From these three equations the three quantities />, L, and y can 

be calculated to be 

Me - M, 
^ = “la"”' 

L = l(Mn - Ml) + ~(Mc - Ml), 

o Ml 
Me - Ml 

D. VISUALIZING FLOW PHENOMENA 

162. Fundamental Difficulties.—Since the liquids or gases 

studied are always homogeneous, and since consequently the indi¬ 

vidual particles in them cannot be distinguished from each other, 

it is fundamentally impossible to observe the motion in a liquid or 

gas without using special means. 

One way of approaching the problem is to measure the pressure 

and the velocity at many points of the flow by means of Pitot 

tubes or similar apparatus. This, however, gives only an average 

value of the velocity in space as well as in time, and in general 

the method is too rough to give a complete picture of the entire 

flow. 

The only manner in which a flow phenomenon can be made 

visible is by inserting very small particles into the fluid which 

distinguish the elements from each other without changing 

the density or other properties of the fluid. For a liquid it is 

usual to mix certain parts of it with a dye, taking care that the 

Drag = 

Lift - 

y = 
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density of the colored liquid is not different from that of the 
uncolored liquid. For the flow in air, a convenient method is to 
mix smoke with certain parts of the air stream, but care has to be 
taken that in feeding in the smoke no additional velocity is 
imparted to the general stream. Another fairly simple way 
to obtain a rough picture of the flow of gas (air) is by the use of 
very thin and light threads of silk. For a steady-state flow these 
threads show the direction of the velocity at the points where 
they are located. A fairly complete picture of the flow can be 
obtained b}^ scanning the field with such a thread. 

163. Mixing Smoke in Air Streams.—The usual manner of 
feeding smoke into a gas or air stream is by means of a number of 
nozzles which are held stationary in the stream. Figures 34 and 
35, Plate 14, show photographs taken in this manner. Several 
good methods of producing smoke exist, of which the most 
convenient one consists of permitting air saturated with hydro¬ 
chloric acid to come into contact with the fumes of ammonia. 
This leads to a white, fog-like smoke which shows a good con¬ 
trast against a black background. Other methods for producing 
smoke photographs are described in the literature.^ 

Vortex rings especially are {suitable objects for being shown by 
means of the smoke method. A box closed on all sides has on one 
side a taut rubber membrane, and on the opposite side it has a 
circular hole. The box is filled with smoke and then a light tap 
is given on the membrane. A well-formed smoky vortex ring 
escapes from the opening and remains intact for a long time in 
still air since such a vortex structure is in a very stable state of 
equilibrium. By tapping the membrane a number of times in 
succession several smoke rings can be produced and the mutual 
reaction of them can be demonstrated. 

164. Motions in the Boundary Layer.—In an investigation of 
the flow in the wake of a body where there is considerable tur¬ 
bulence, the smoke method is unsuitable since the various smoke 
threads will become completely mixed with each other. In 
order to avoid this difficulty, Riabouchinsky^ used the following 

^ Gdttinger Ergebnisse, vol. 2, Munich, 1923. Marey, On the Movements 

of Air Flowing round Various Obstacles (French), Compt. rend.^ vol. 

131, p. 160, 19(X); Changes in the Direction and Velocity of an Air Stream 

(French), Compt, rend.j vol. 131, p, 1291, 1901. 

* Eiabouchinsky, D., BvU, insi, aero, Koutchino (French), vol. 3, p. 59, 

Moscow, 1909. 
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method for the investigation of a two-dimensional flow: The 
models were cylinders of various cross sections mounted with 
their bases on very thin blackened steel plates on which a 
light-yellow powder (lycopodium) had been deposited. The 
model was then subjected to a horizontal air stream parallel to 
the plate, and the plate at the same time was put into vibration 
by means of light hammer taps. The picture of the powder 
on the black background then indicated the streamline pattern. 
A serious objection to this method is that the air flow is recorded 
not in the free air but rather in the region of the boundary layer 
on the plate. 

The same objection can be raised against another method for 
visualizing air flows, originated by Tales. ^ He wanted to 
investigate the angle of attack at which the flow round an airfoil 
would break away. His airfoil model was of white color and 
in the middle a disk was attached to it perpendicularly. Both 
the airfoil and the disk were coated with a suspension of lamp¬ 
black in kerosene. Owing to the action of the wind, the kerosene 
flowed along the model as w^ell as along the disk and showed 
the flow as white lines on a black background. 

The various methods for visualizing flow phenomena in water 
can be divided into two groups, depending on whether it is 
desired to study the flow in the interior of the fluid or only on its 
surface. 

166. Three-dimensional Fluid Motions.—In the case of a 
three-dimensional fluid motion, it is necessary to study the flow 
not only on the surface but also in the interior of the fluid. The 
flow can be shown in such cases by inserting colored water of the 
same specific gravity through a number of nozzles, but care has 
to be taken that the velocity of efflux at the nozzle is equal to the 
velocity of the surrounding fluid. For water a suitable coloring 
is potassium permanganate or certain kinds of anilin dyes dis¬ 
solved in a small amount of alcohol and then distributed into a 
large volume of water. If great accuracy is necessary, these 
dyes can be given the same specific gravity as water by adding to 
them other liquids of suitable specific gravity before mixing them 
with the water. If it is intended to make photographs of the 
flow instead of making visual observations only, the choice of 
color is determined by somewhat different considerations. Then 

1 Falbs, E. N., Visible Study of Flow, McCook Field Report^ Serial No. 

2635, Published by the Chief of Air Service, Washington, 1926. 
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it is desirable to choose a color that would make hardly any 
impression on the photographic plate, for instance, certain 
red dyes usually employed for coloring the glass in photographic 
darkrooms. In cases when there is a dark background, skimmed 
milk is a suitable coloring agent. Another method of showing the 
flow is to use a suspension of extremely small aluminum particles 
in the water, which on account of their size remain floating for a 
very long time. Such a suspension can be made by first wetting 
the aluminum powder with alcohol and then pouring it into a 
bottle of water which is shaken violently. An advantage of this 
procedure over the color method is that the aluminum suspension 
is still capable of showing details of the flow in a turbulent region 
where a colored jet becomes completely mixed up.^ 

A method of showing motions in the boundary layer near to a 
body immersed in water consists of coating the body with a color 
which can be dissolved easily in water or of painting it with 
condensed milk. In this connection it is of interest to mention 
the method of Thoma,^ who uses a precipitate which is formed 
by the chemical action of the air on a substance painted on the 
surface of the body and which evaporates and comes into contact 
with the air by diffusion. Since diffusion is subject to the same 
laws as the change in velocity due to internal friction, this 
method gives a coloring of the boundary layers and of the 
turbulent regions. Thoma wrapped the body in blotting paper 
saturated with hydrochloric acid. The air was mixed with 
ammonia vapor, causing a white fog in the region of diffusion. 

Another method for making boundary-layer motion visible 
is that of Simmons and DeweyThe model in this case is 
painted with titanium tetrachloride (TiCU), which evaporates 
as a white fog. 

It is also possible to mix the entire fluid with a suspension of 
very small aluminum particles; the concentration of the particles 
has to be made rather small in order to make it possible to 
look sujEciently far into the fluid. In case only certain path 

^ Ermisch, H., Flow Pattern and Pressure Distribution on Various 

Objects as a Function of the Reynolds^ Number (German), Abhandl. Aero. 
Inst., Tech. Hochschule Aachsn, vol. 6, p. 21, Berlin, 1927. 

2 Thoma, H., Highly Efficient Boilers (German), Berlin, 1921, 

® Simmons, L. F. G., and N. S. Dewey, Wind-tunnel Experiments with 

Circular Disks, Repts. and Mem. Nat. Adv. Comm. Aeronautics, No. 1334, 

London, 1931; Photographic Records of Flow in the Boundary Layer, 

Repts. and Mem. Nat. Adv. Comm. Aeronautics, No. 1336, London, 1931. 
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lines are wanted, it is practical to take a smaller number of larger 
suspended particles. A method for the making of spheres of 
the same specific gravity as water for this purpose has been given 
by Marey.i These spheres are made of a mixture of wax of 
specific gravity 0.96 and rosin of specific gravity 1.07. The 
spheres so obtained are silvered like pills in the pharmacy. 
They are made a trifle heavier than water so that they sink 
down slowly; then some salt is mixed with the water until the 
point of perfect equilibrium is reached. Another method which 
is often used in England consists of injecting oil into the fluid 
by means of an atomizer. The resulting droplets are then 
illuminated sharply by means of a thin sheet of light.^ Satis¬ 
factory results have been obtained by drops made of mixture 
of olive oil and nitrobenzol or of a mixture of tetracarbonchloride 
and xylol. 

166. Two-dimensional Fluid Motions.—In case the flow is a 
two-dimensional one, it can be visualized in a much simpler 
manner since it is usually necessary to observe only the motions 
on the water surface in a tank. As an example, let the model be a 
cylinder of which the base sits on the bottom of the tank and of 
which the top just protrudes from the surface of the water. In 
such a case, the flow is completely two dimensional, z.e., the same 
in all planes parallel to the surface. Care has to be taken that 
no capillary effects come in, by keeping the surface of the water 
meticulously clean. Even the dipping in of a clean hand, or a few 
hours^ contact of the water surface with the atmosphere, makes 
the surface useless for this purpose. To be certain that the condi¬ 
tion of the surface is satisfactory, the following simple test can be 
made. Sprinkle some aluminum pow^der on the water and then 
blow vertically down on it with the mouth. This spreads the 
aluminum particles in all directions and clears a circular area of 
the surface. If, after the blowing, the aluminum particles 
remain where they are, the surface is clean; if, however, the circle 
closes up by itself, the surface is contaminated and has to be 
renewed. This can be done in the simplest way by using an 

^ Marby, Experimental Hydrodynamics (French), Compt. rend.^ vol. 

116, p. 913, 1893. 
2 Eden, C. G., Investigation by Visual and Photographic Methods of the 

Flow past Plates and Models, Repi, Nat, Adv. Comm. Aeronautics, 1911-1912, 

p. 97, London, 1912; Relf, E. E., Photographic Investigations of the Flow 

round a Model Airfoil, RepL Nat. Adv. Comm. Aeronautics, 1912-1913, 

p. 133, London, 1913. 
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overflow. Given a clean surface the flow can be shown very 
satisfactorily by means of aluminum powder or lycopodium 
powder. The first experiments of this sort were made in 1900 
by Ahlborn.^ Later Rubach^ photographed the motion of a vor¬ 
tex pair behind cylindrical bodies in motion. Most of the 
photographs shown at the end of this book have been made in this 
manner by the author. To prevent the aluminum particles from 
running away from the model under the influence of the capillary 
angle between the water surface and the model it is helpful to coat 
the latter with a thin layer of paraffin. By means of this pro¬ 
cedure it is possible to prevent the capillary action so that the 
fluid surface remains completely horizontal at the model. It is 
even possible to create a negative capillary angle by lowering 
the model somewhat, which may be useful for showing the history 
of the boundary-layer particles. Under the influence of a nega¬ 
tive capillary angle the aluminum particles are crowded round 
the model, and after a short time of motion it can be seen clearly 
where these boundary-layer particles move (see Fig. 7, Plate 4). 

Another met hod of visualizing the motion of water is due 
to Prandtl (1904).'*^ He suspended very small flakes of mica 
in the water. Certain regular motions, especially vortices, 
could be seen clearly because a great number of these flakes then 
had the same orientation, 

A serious disadvantage of the method of observing the surface 
of the fluid is that at relatively small velocities capillary waves 
are formed. For water this critical velocity is about 10 in./sec. 
A circular cylinder moving through the water with a certain 
velocity shows approximately twice this velocity at some local 
points so that it cannot be moved at a speed greater than 
5 in./sec if capillary waves are to be avoided. 

If greater velocities are desired, it is necessary to move the 
model entirely under water and to photograph the motion not of 
the top surface but of a plane parallel to it in the water. The 
technical difficulties of such a procedure, however, are great. 
The best method is to mix the water with drops of a mixture 

^ Arlborn, F., On the Mechanism of Hydrodynamic Drag (German), 

Ahhandl. Gehiete Naturwiss.^ vol. 17, Hamburg, 1902; or Jahrh. Schiffhautechn. 
Gesellsch.j 1904, 1905, and 1909. 

* Rubach, H., On the Generation and Motion of the Vortex Pair behind 

Cylindrical Bodies (German), Dissertation, Gottingen, 1914; or ForschungS'- 
arbeiten V. D. vol. 185, 1916. 

® See footnote, p. 68. 
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of olive oil and nitrobenzol and then illuminate only a plane 
sheet of the water under the surface. Because the oil drops are 
illuminated under an angle of 90 deg. with respect to the direction 
of motion they are very clearly visible, whereas the drops in the 
fluid above the illuminated surface do not impede vision to a 
great extent. This latter property makes oil drops more prac¬ 
tical than the spheres of wax and rosin discussed before. 

167, Advantage of Photographs over Visual Observations.— 
Aside from the fact that photographs are far more convincing 
to an outsider than a mere description of the observations of an 
experimenter, a photograhic record of a flow will disclose many 
facts which cannot be obtained by visual observation. It has 
been shown in Art. 37, “Fundamentals,”^ that the shape of the 
streamlines depends very much on the choice of the coordinate 
system. For instance, if an airfoil model is moved through water 
the streamlines obtained by photographing the aluminum powder 
with the camera standing still with respect to the water are 
different from those taken with the camera at rest with respect 
to the model. In the first case the streamline picture has the 
appearance of Fig. 52, Plate 21, whereas in the second case Fig. 
50, Plate 20, is obtained. An observer without special training 
sees only the pictures of the second kind since the eye has the 
tendency to follow the model in its motion. 

Moreover, the element of time is very important. Whereas a 
photograph can be studied at leisure, and many details can be 
found in this manner, the visual observer has to digest all his 
information in a few seconds. Another advantage of photo¬ 
graphic records, especially moving pictures, is that they can be 
shown repeatedly, which is very instructive. 

168. Streamlines and Path Lines.—The photographs obtained 
do not give the streamlines with mathematical accuracy. The 
picture consists of short stretches of curve of various length due to 
the motion of the individual aluminum particles during the time 
of exposure of the plate. Therefore these little stretches are parts 
of path lines. On the other hand, during a short interval the 
path lines and streamlines have the same tangent so that the 
picture made of the various stretches of path line put together 
gives the appearance of a field of streamlines. Therefore 
streamlines appear the more exact the shorter the time of expo¬ 

sure is. 
^See footnote, p. 3. 
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If the velocity field is independent of time (steady flow), it 
was seen in Art. 35, Fundamentals,’^^ that streamlines and path 
lines are identical. In such a case, streamlines could be obtained 
also with a long exposure (Fig. 50, Plate 20). For non-steady 
motions (Fig. 52, Plate 21), the streamline picture changes with 
the time; only short exposures show approximately the instan¬ 
taneous stream geometry, whereas a long exposure gives path 
lines which in general give a very irregular and useless picture. 
An analysis of a number of consecutive streamline pictures follows 
the procedure of Euler, whereas an analysis of path lines requires 
the use of Lagrange’s method (see Art. 34, “Fundamentals”^). 
In the case of three-dimensional flow phenomena it is useful and 
sometimes necessary to make stereoscopic photographs. 

169. Slow and Fast Moving Pictures.—In case the actual 
phenomena occur at a very fast rate, it is useful to take a great 
number of exposures during a short time and reproduce them 
later at a slower rate, which has the effect of slowing up the 
motion. With the usual motion-picture camera 16 to 20 pic¬ 
tures per second are made and the reproduction on the screen 
is at the same rate. With special cameras, up to 2,000 pictures 
per second can be taken. ^ 

For instance, if a phenomenon has been photographed 320 
times per second and is reproduced at the rate of 16 pictures per 
second, the motion appears twenty times as slow as in the actual 
case. For motions of great rapidity for which this is not suffi¬ 
cient (flying bullets, explosions, cavitation), the number of 
exposures per second has to be even greater. For this purpose 
ballistic engineers have constructed cameras with intermittent 
illumination by means of electric sparks, which are capable of 
taking 40,000 pictures per second.^ By the use of several lenses 

^ See footnote, p. 3. 

2 Thun, R., Application and Theory of the “Time Stretcher(German), 

Z. V. D. p. 1353, 1926. 

3 The upper limit of the number of pictures per second is not caused by 

the frequency of the sparks, which can easily be increased to 100,000, but is 

rather due to the strength of the film which moves with very great velocity 

in order to obtain sufficiently large pictures. For instance, for 6,000 pic¬ 

tures per second at J'^-in. width each, the film has to move at a speed of 

250 ft/sec. See paper by Terazawa, Kinematographic Study of Aeronau¬ 

tics (English), Rept. Aero. Research Inst., Tokio Imperial Univ.y vol. 1, p. 8, 
1924. 
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the frequency of the pictures can be increased still further, up 
to about 300,000 per seconds 

The opposite procedure of taking a smaller number of pictures 
than are reproduced later has also been used.‘^ This is useful 
for reproducing very slow motions; for instance, if the motion of a 
cloud during 50 min has to be shown, it is of advantage to take 
one picture every 5 sec and to reproduce it at the usual rate of 
20 pictures per second. The whole phenomenon then takes 
place in ^2 niin, which reveals the characteristic motions of the 
cloud in a very striking manner. 

160. Long-exposure Moving Pictures.^—Since in a usual mov¬ 
ing picture the exposure is about sec, a single picture does not 
show anything about the state of flow. For instance, a picture 
taken of the water tank with aluminum powder will show the 
various aluminum particles as dots only. If the cranking of the 
moving camera is slowed down so that only two exposures per 
second are made, the illumination is about ^ i sec for each picture. 
Then the particles show as short lines so that one single photo¬ 
graph in itself gives a clear idea of the flow. If a print were 
made on transparent paper and several consecutive pictures were 
put on top of each other, the various images of the same aluminum 
particle would form a dashed line. The various dashes show the 
exposures, whereas the gaps between the dashes are due to the 
closing of the lens during the transportation of the film to its 
next position. The lengths of the dashes as well as of the gaps 
are a measure of the instantaneous velocity of the particular 
particle under consideration. 

In order to shorten the time of non-exposure and thus to 
improve the possibility of interpolation, Prandtl has suggested 
a modification of the usual motion-picture camera^ in which, 
by means of the insertion of a ^^maltese cross'' into the drive, the 
time necessary for transportation of the film is reduced to about 
one-twelfth of the time of exposure. Figures 7, 8, and 9 on 
Plates 4, 5, and 6 show a number of films taken by the author 
with this apparatus. 

1 Ceanz, C., and H. Schardint, Kinematography on a Non-moving Filin 

with Extremely High Frequency (German), Z. Physik, vol. 56, p. 147, 1929. 

2 Neumann, H., Time-condensing Pictures (German), Kinotechnik, vol. 9, 

p. 173, 1927. 
3 Prandtl, L., and 0. Tietjens, Kinematographic Flow Pictures (Ger¬ 

man), Naturwissenschafteiiy vol. 13, p. 1050, 1925. 
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It is mentioned in passing that it has been found useful in 
many cases to photograph not only the flow but also a clock, a 
scale, etc,, in order to record the time, velocities, and distances 
immediately on the film itself. 

161. Technical Details.—Since it is desired to obtain the 
greatest possible contrast in the flow photographs, it is of impor¬ 
tance to make the background as black as possible. For this 
purpose, black velvet is very useful since it reflects less than 1 per 
cent of the incident light, whereas from dull-black metal surfaces 
or black paper about 10 per cent of the light is reflected. In 
order to get the maximum contrast in the pictures, it is generally 
better to use intense illumination and good lenses than sensitive 
plates or films. The best plates or films available are relatively 
non-sensitive ones, since with them the curve giving the relation 
of the blackening as a function of the intensity of illumination 
is much steeper than with hypersensitive plates or films. Another 
advantage of Ihe less sensitive plates is that the grain is much 
finer. If the sensitivity of an ordinary fine-grained plate is not 
sufficient for the purpose in hand, it can be raised about thirty 
or forty times by suitable baths without increasing the size of 
grain. ^ If there exists danger of underexposure, it is well to 
raise the sensitivity threshold of the film by previously exposing 
it to a very weak source of light in the dark room, such that 
the plate remains clear but is just on the point of blackening. 

The choice of lens is not of particular importance since very 
little depth focusing is required in the picture. Any powerful 
lens of short focal length serves the purpose, for instance, a 
well-corrected doubly anastigmatic lens. 

Regarding illumination, it has to be borne in mind that it is 
desired to make an impression on the photographic plate and not 
on the eye. For the usual non-sensitized plates the maximum 
sensitivity is for light of about X = 400 A. Therefore lamps with 
much ultra-violet light like mercury-arc or carbon-arc lamps are 
better suited than the usual incandescents. Among arc lamps 
the enclosed types are better than the open-arc ones, since for the 
same watt consumption they give three to four times as much 
actinic light. For short exposures (3-^o sec) flash-light powder 

1 Guilleminot, P., Hypersensitizing and Ultrasensitizing (French), 

Rev, frang. de photog. et cinimatog.^ vol. 8, No. 181, 1927; Sheppabd, S. E., 

Increasing the Sensitivity of Silver Emulsions (German), Die Photographische 
Indu8tri€j p. 1032, 1925. 
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is useful. In order to increase the length of time of the flash 

which is necessary for flow photographs, a mixture of magnesia 

powder and some inert powder is used. 

In choosing the developing and fixing baths it is to be remem¬ 

bered that for ordinary snapshots it is desirable to have the 

various shades of darkness merge into each other gradually, 

while here sharp contrasts are wanted. Therefore hydrochinon 

is useful as a developer since it makes very black pictures. 

Special developers made for titles in moving pictures are also 

suitable. 

If the film is underexposed it is desirable to overdevelop it, so 

that the unexposed parts start to blacken. This blackening is 

then removed by means of a reducing bath (Farman reducer) 

and the film is then intensified in a uranium bath. Though for 

ordinary pictures the uranium intensifier is capricious, it is very 

suitable for obtaining negatives of great contrast. 

The best paper for making prints is non-sensitive extra-glossy 

‘^developing-out’’ paper, having a steep blackening curve.^ 

In order to get a still better gloss the paper may be dried on 

plate glass, which gives pictures that are very suitable for 

reproduction in print. 

’ Goldberg, E,, Tlie Composition of the Photographic Picture (Gorman), 

vjI. I, Hallo, 1925. 





PLATES 



The flow photographs are made at the Kaiser Wilhelm Insti¬ 
tute for Flow Research (Gottingen, Germany) with an experi¬ 
mental equipment developed by the author. 



Plate l.i 

Fio. 1.—Mow round cylinder im- Fig. 2.—Backward flow in the 
mediately after starting (potential boundary layer behind the cylinder; 
flow). accumulation of boundary layer 

material. 

Plate 2. 

Fig. 3.—Formation of two vortices; Fig. 4.—The eddies increase in size, 
flow breaking loose from cylinder. 

Plate 3. 

Fig. 6.—The eddies grow still Fia. 6.—Final picture obtained a long 
more; finally the picture becomes time after starting, 
unsymmetrical and disintegrates. 

^ The direction of flow in all photographs is from left to right, 
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Plate 4. 

Fig. 7.—Consecutive pictures of the flow round a cylinder. Between the third 
and fourth vertical column a number of pictures is missing. The fourth 
column shows the disintegration of the symmetrical vortices ending in a picture 
like that of Fig. 6. 
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Plate 5. 

Fig. 8.—Consecutive pictures of the flow round a rotating cylinder starting 
from rest. The ratio of peripheral velocity of rotation u to the forward velocity 
V is u/v » 4. 
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Plate 6. 
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Plate 7. 



Plate S. 



Plate 9. 

Fig. 16.—ujv = 6. 

Fig. 17.—w/» = « . This picture was taken by moving the rotating cylinder 
with the camera through the water, stopping both and immediately afterward 
exposing the plate. 

285 



Plate 10. 

Fig. 20.—w/t? « }^. 

Figs. 18-20.—Consecutive stages of development of the flow for w/z) * 
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Plate 11. 

Fig. 21.—iz/d = 3. 



Plate 12. 

Fig. 24. 

Fig. 25. 

Figs. 24-33.—Flow along rear end of blunt body. 
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Plate 12.—(Contin ued) 



Plate 13. 



Plate 13.—{Continued) 

Fia. 30. 

Fig. 31. 
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Plate 14. 

Fia. 33. 
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Plate 14.—{Continued) 

Fig. 34.—Flow round sphere below critical point. {Wieselshcrgcr.) 

Fig. 36.—-Owing to a thin wire ring round the sphere, the flow becomes of the 
other type with turbulent boundary layer. {WieseUherger.) 
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Plat® 15. 

Fig. 36.—Flow in a sharply diverging channel. 

Fig. 37.—The boundary layer is sucked away at the upper wall. 



Plate 16. 

Fia. 39.—Turbulent flow in an open 
channel; the speed of the camera is 
about equal to the speed of the water 
near the walls. 

Fig. 40.—As before, but here the 
camera speed is that of the water in 
the center. 

Fig. 41.—Flow round a knife edge. 
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Plate 17. 



Plate IS, 

Fig». 45-47.—Continuation of Figs. 42-44, 
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Plate 19, 

Fig. 48.—Streamlines round an airfoil the very first moment after starting. 

Fio. 49.—Formation of the starting vortex which is washed away with the fluid. 
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Fig. 50.—Growing of the starting vortex. 

Fig. 51.—Taken somewhat later than Fig. 50, 
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Plate 21. 

Fig, 62.—Like Fig. 49; but the camera is at rest with respect to the undisturbed 
fluid. 

Fig. 53.—Like Fig, 51, but with camera at real. 
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Plate 22. 

Fid. 54.—Like Fig. 52, but with greater angle of attack and consequently 
stronger starting vortex. Also shorter exposure of plate. 
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PliATB 23. 

Fig. 68.—wdfv = 9. 

Figs. SO-SS.—Flow round cylinder at small Reynolds’ numbers. 
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Plate 24. 

Pia. 59.—Kdrmdn trail; wd/v = 250. The camera is at rest with respect to 
the cylinder. 

Fia. 60.—Kdrmdn trail; wdtv = 250. The camera is at rest with respect to 
the undisturbed jQuid. 
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Plate 25. 

Fig. 63.—wh[v - 250. 

Figs. 61-63.—Flow round sharp plate of width 6. 
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Plate 26. 

Pia. 66.—«p6/y s= 250. 
Figs. 64-66.—Flow round elliptic cylinder with major axis h. 
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PLAIE 27. 

306 



INDEX 





INDEX 

A 

Acceleration, lonji;itiidinaI, substan¬ 
tial, 2 

resistance due to, 107 
Aerodynamic balance, 202 
Airfoil, with finite tail an^h;, 182 

Joukowsky profile, 180 
pressure distri])ution on, 15b 
slotted, 154 
sucking boundary layc'r from, 155 
theory of finit{!, 185 
theory of infinhi!, 158 

Airplane, transfer of weight to 
ground,18b 

An(unomet(ir, 239 
Angles of attJick, 140 
Aspect ratio influence of, on drag, 

145 

B 

Backflow in boundary layer, 09 
Balance, aerodynamic, 202 
Bernoulli’s constant, 3 
Bernoulli’s equation, 3 
Biplane, theory of staggered, 213 

theory of unstaggered, 210 
Boundary layer, backflow in, 09 

definition of thickness of, 04, 07, 
76 

differential equation of, 62 
for flat plate, 66 
order of magnitude of, 61 
sucking of material from, 81 
velocity distribution in laminar, 

68 
in turbulent, 70 

visualizing motion in, 266 

C 

Circulation, definition of, 160 
generation of, 167 

Colored line, criterion for turbulence, 
34 

Conformal mapping, 173 
Continuity equation, 1 
Convergent flow, 52 
Conversion formulas, 206 
C^orrection term for kinetic energy, 

24 
C’ritical Reynolds’ number, 32 

D 

Deformation resistance, 88 
Diffenuitial coefficient, convective, 2 

local, 2 
substantial, 2 

Differential equation of Navier- 
Stokes, 5 

Dimensional analysis, 12 
Dirichlet’s paradox, 108 
Discontinuity, surface of, 191 
Divergent flow, 52 
Downward velocity, induced, 197 
Drag, of airfoil, 147 

determination from wake meas- 
uremctits, 126 

with discontinuous potential flow, 
110 

of half body, 118 
induced, 198 
measurement of, in natural wind, 

250 
in wind tunnel, 251 

momentum theory of, 123 
with potential flow, 104 
self-induced, 210 
starting, 169 

Drag coefficient, 92 
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E 

Eddy (see Vortex) 

Electric velocity measurement, 241 

Euler’s equation, for one-dimen¬ 

sional flow, 2 

for three-dimensional flow, 4 

E 

Falling, free, drag measuring meth¬ 

ods by, 247 

Flettner rotor, 82 

Fluid resistance, 86 

Flying characteristics of airfoils, 149 

P>iction, internal, 4 

(See also Skin) 

Froude’s number, 10 

G 

Gliding angle, 144 

H 

Hagen-Poiseuille, law of, 17 

Half body, 118 
Hot-wire anemomeic^r, 241 

Hydraulic radius, 43 

I 

Image method, 166 

Induced drag, approximate calcula¬ 

tion of, 189 

minimum of, 204 

of staggered biplane, 213 

of unstaggered biplane, 210 

Induced downward velocity, 197 

Inertia effect on still-air drag 

measurement, 251 

Inertia force, 7 

Intermittent turbulence, 36 

J 

Joukowsky’s profiles, 180 

K 

KArmdn trad, 133 

Kinematic viscosity, 9 

ICutta-Joukowsky’s lift theorem, 162 

L 

Laminar boundary layer inside tur¬ 

bulent one, 78 

Laminar flow, 14 

Lanchestcr, 159 

Lift, of airfoils, 144 

and circulation, 158 

Kutta-Joukowsky’s theorem, 162 

Lift coefficient, 146 

M 

Magnus effect, 82 
Manometer, 232 

Mean velocity of turbulent flow, 46 

Micromanometc^rs, 234 

Minimum theorem for multiplanes, 

219 

Mirrored imago m(‘thod, 166 

Moment coefficient, 148 

Moment diagram of airfoil, 147 

Mom<uitum of a sourc(‘, 121 

Momentum analysis of drag, 123 

Mouuuitum iiit(^gnd of airfoil, 164 

Momentum theorem, 108 

N 

Navier-vStok(^s, equation of, 5 

Newton’s law, of resistanc(^ 86 

of viscous friction, 4 

Nozzle, 245 

O 

Orifices, 245 

P 

Path lines, visualizing of, 271 

Photography of fluid motion, 274 

Pitot static tube, 229 

Pitot tube, 228 

Poiseuille, Hagen, law of, 17 

Polar diagram, 147 

Potential flow, with circulation, 177 

drag due to, 104 

Potential jump behind airfoil, 191 
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Pressure, stagnation, 228 

static, 226 

Pressure distribution on airfoils, 156 

on streamlined bodies, 137 

Pressure drag, 137 

of half body, 119 

Pressure drop, due to contraction, 

52, 245 

in entrance region, laminar, 23 

turbulent, 51 

laminar flow in pipes, 20 

turbulent flow ui pipes, 42 

Pressure integral of airfoil, 165 

Pressure measurements, 226 

Pi'essure variations between turbu¬ 

lent and laminar flow, 38 

Profile dnig, 150 

R 

Resistance {see Drag) 

Reynolds’ number, 9 
critical, 32 

Rotating arm, 249 

Rotating cylinder, 82 

Rotor, Flettncr, 82 

Roughness, wall, 44 

S 

S(’paration, surface of, 191 

Seventh-root law, 70 

Shear stress in laminar boundary 

layer, 71 

in turbulent boundary layer, 74 

Ship resistance, 101 

Similarity laws, 6 

Skin fri(;tioii, 64 

of flat plate, 77 

with laminar boundary layer, 67 

of rotating disc, 77 

with turbulent boundary layer, 76 

Slotted wing, 153 

Smoke, 266 

Source, momentum of, 121 

Source-sink method, 137 

Speed {see Velocity) 

Stagger theorem, 213 

Stagnation pressure, 228 

Starting drag, 169 

Static pressure, 226 

Static tube, 226 

Steady motion, 3 

Stokes’s resistance law, 113 

Stream tube, 1 

Streamline, 1 

visualizing of, 271 

Streamlined body, 136 

Sucking of boundary layer material, 

81 

T 

Tip vortices, 185 

Total pressure, 228 

Towing method for drag measure¬ 

ment, 247 

Turbulence, intermittent, 36 

Turbulent flow, 40 

Turbulent velocity distribution, 48 

V 

Vane wheel instruments, 239 

Velocity, critical, 32 

Vcflocit}^ coefficient, 244 

V(4ocity distribution, in laminar 

boundary layer, 68 

iii laminar pipe flow, 27 

in turbulent boundary layer, 70 

in turbulent pipe flow, 48 

Velocity field round Jiirfoil, 170 

Velocity measurement, 229 

electrical, 241 

Venturi meter, 244 

Viscosity, definition of, 4 

Vortex, bound, 163 

Karin dn, 133 

starting, 168 

Vortex band, 196 

W 

Wall, roughness, 44 

waviness, 44 
Wake, drag determination in, 126 

Wave resistance, 101 

Weir, 246 

Wind tunnel, 252 

Wing, slotted, 153 
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